
Agent, Genetic Algorithm with Task Duplication based
Scheduling Technique For Heterogenous Systems

by

Navdeep Singh Sidhu

A thesis submitted to

The Faculty of Graduate Studies of

The University of Manitoba

in partial fulfillment of the requirements

of the degree of

Master of Science

Department of Computer Science

The University of Manitoba

Winnipeg, Manitoba, Canada

August 2018

c© Copyright 2018 by Navdeep Singh Sidhu

Thesis advisor Author

Dr. Parimala Thulasiraman Navdeep Singh Sidhu

Agent, Genetic Algorithm with Task Duplication based

Scheduling Technique For Heterogenous Systems

Abstract

High-Performance Computing (HPC) is used to solve complex problems in parallel for in-

creased performance. Over the past few years, parallelization has become more challenging

with the many core general purpose systems and accelerators. One of the challenges is

in better utilization of the resources available on these architectures through better task

scheduling strategies. In this thesis I consider a distributed, heterogeneous network with

general processing CPU based systems of varying speed and architectures. I propose an

efficient mapping and scheduling of tasks to processors using agents to explore the network

and Genetic Algorithm with Task Duplication Scheduling(GATDS) to schedule the tasks.

The SIPS (Serial algorithms In Parallel System) framework is used to exploit parallelism

using abstract syntax trees generated directly from the source code. This framework helps

in automating the process of converting serial code for use in parallel systems, thus reducing

the overhead of writing parallel code.

GATDS is compared with various scheduling strategies for task independent and task

dependent problems. The performance of GATDS is comparable to the use of existing

genetic algorithms for task independent problems. For inter-dependant tasks, the proposed

technique matches or performs better than the traditional Chunk scheduler and genetic

algorithm 75 % of the time. GATDS also provides better resource utilization.

ii

Contents

Abstract . ii
Table of Contents . iv
List of Figures . v
List of Tables . vii
Acknowledgments . ix
Dedication . x

1 Introduction 1
1.1 Introduction . 1
1.2 Thesis Organization . 4

2 Literature Review 6

3 SIPS Framework 14
3.1 Code Hierarchy . 14
3.2 Programming Syntax . 16
3.3 Role of Abstract Syntax Tree(s) (AST(s)) 18
3.4 Execution of Job . 19
3.5 Execution Modules . 22

3.5.1 SIPS-Run . 22
3.5.2 Master . 23
3.5.3 Slave . 23

3.6 Supported Layouts . 24
3.7 Cache Exploitation . 25

3.7.1 Cache hierarchy . 25
3.7.2 Cache Implementation and Exception 26

4 Using Agents to Locate Resources 27

5 Genetic Algorithm for Scheduling 36

6 Task Duplication Strategy for Scheduling 43

iii

7 Evaluation 48
7.1 Infrastructure and Setup . 49
7.2 Implementation . 50
7.3 Evaluation . 50

8 Experiments and Results 52
8.1 Experiment 1 (Matrix Multiplication) . 52
8.2 Experiment 2 (Merge Sort) . 60
8.3 Summary . 64

9 Conclusion 65

A Source Code 67
A.1 Sample Manifest File . 67

Bibliography 75

iv

List of Figures

3.1 Hierarchy Of Different SIPS framework Modules 15
3.2 Example of an AST for a simple for loop . 19
3.3 SIPS P2P setup, Image by Kumar et al. [1], [2] 25
3.4 SIPS Master Slave setup, Image by Kumar et al. [1], [2] 25

4.1 Isolated Nodes in the Network. 29
4.2 Network Connection Established. 29
4.3 Agents exploring adjacent Nodes. 29
4.4 Agents from Adjacent Nodes Returning With Information. 30
4.5 Explored Network with now known Communication Overhead between Nodes. 30

5.1 Example of Directed Acyclic Graph(DAG) of Tasks. 37
5.2 Task Scheduling on Single Processor. 37
5.3 Chromosomes generated using Roulette’s Wheel Method 38
5.4 Random Selection of Crossover point Genetic Algorithm. 38
5.5 After Crossover. 38
5.6 Element Selection For Mutation. 38
5.7 Chromosome After mutation. 38
5.8 Final Chromosome. 38
5.9 Schedule length for Example. 39

6.1 Example of Directed Acyclic Graph(DAG) of Tasks. 44
6.2 Improved Schedule length After task Duplication. 44

7.1 Experimental Setup . 49

8.1 Experiment 1 - Execution time of Chunk, Factoring and GSS 53
8.2 Experiment 1 - Execution time of Chunk, TSS and QSS 53
8.3 Experiment 1 - Execution time of Chunk, GA and GATDS 53
8.4 Experiment 1 - Average Network Overhead of Chunk, Factoring and GSS . . 53
8.5 Experiment 1 - Average Network Overhead of Chunk, TSS and QSS 55
8.6 Experiment 1 - Average Network Overhead of Chunk, GA and GATDS . . . 55

v

8.7 Experiment 1 - Average CPU load of Chunk, Factoring and GSS 55
8.8 Experiment 1 - Average CPU load of Chunk, TSS and QSS 55
8.9 Experiment 1 - Average CPU load of Chunk, GA and GATDS 55
8.10 Experiment 1 - Average Sleep/idle time of Chunk, Factoring and GSS 55
8.11 Experiment 1 - Average Sleep/idle time of Chunk, TSS and QSS 56
8.12 Experiment 1 - Average Sleep/idle time of Chunk, GA and GATDS 56
8.13 Experiment 1 - Average Cache Hit-Miss Ratio of Chunk, Factoring and GSS 57
8.14 Experiment 1 - Average Cache Hit-Miss Ratio of Chunk, TSS and QSS . . . 57
8.15 Experiment 1 - Average Cache Hit-Miss Ratio of Chunk, GA and GATDS . 57
8.16 Experiment 1 - Average Upload Speed with Chunk, Factoring and GSS . . . 57
8.17 Experiment 1 - Average Upload Speed with Chunk, TSS and QSS 58
8.18 Experiment 1 - Average Upload Speed with Chunk, GA and GATDS 58
8.19 Experiment 1 - Number of Distributed Chunks/Tasks 58
8.20 Experiment 1 - Number of Duplicates Chunks/tasks created by GATDS . . . 58
8.21 Experiment 1 - Scheduling Overhead with Chunk. Factoring and GSS 59
8.22 Experiment 1 - Scheduling Overhead with Chunk, TSS and QSS 59
8.23 Experiment 1 - Scheduling Overhead with Chunk, GA and GATDS 59
8.24 Experiment 1 - Distribution Overhead with Chunk, Factoring and GSS . . . 59
8.25 Experiment 1 - Distribution Overhead with Chunk, TSS and QSS 60
8.26 Experiment 1 - Distribution Overhead with Chunk, GA and GATDS 60
8.27 Experiment 2 - Execution Time with Chunk, GA and GATDS 61
8.28 Experiment 2 - Execution Time with Chunk, GA and GATDS (without node 1) 61
8.29 Experiment 2 - Average Network Overhead with Chunk, GA and GATDS . . 61
8.30 Experiment 2 - Average CPU usage/load Chunk, GA and GATDS 61
8.31 Experiment 2 - Average Sleep Time Chunk, GA and GATDS 62
8.32 Experiment 2 - Average Cache Hit-Miss ratio with Chunk, GA and GATDS 62
8.33 Experiment 2 - Scheduling Overhead with Chunk, GA and GATDS 63
8.34 Experiment 2 - Distribution Overhead with Chunk, GA and GATDS 63
8.35 Experiment 2 - Number of Duplicates created by GATDS 64

vi

List of Tables

4.1 Example Network Representation on Step 1 33
4.2 Example Network Representation on Step 2 33
4.3 Example Network Representation on Step 3 33
4.4 Example Network Representation on Step 4 33
4.5 Example Network Representation on Step 5 34
4.6 Example Network Representation on Step 6 34
4.7 Snapshot of Node N1ś routing table . 34

vii

List of Algorithms

1 Example For Loop . 18

2 SIPS Framework- Stage 1 (SIPS-Run) . 20

3 SIPS Framework- Stage 2 (SIPS-Node Master) 21

4 SIPS Framework- Stage 3 (SIPS-Node Slave) 21

5 Master . 30

6 Network Mapping Algorithm . 31

7 Collect Information of Node . 32

8 Slave . 33

9 Genetic Algorithm . 42

10 Task Duplication Scheduling/Strategy(TDS) 45

11 Duplicate Task . 46

12 Algorithm to check eligibility of Task for duplication 47

13 Find Task with Minimum End Time . 47

viii

Acknowledgments

I would like to begin by thanking my advisor Dr. Parimala Thulasiraman for mentoring

me and helping me in my thesis. Her expert guidance, consistent motivation and constructive

criticism helped me overcome numerous challenges that i faced during my research.

I am very grateful to my committee members, Dr. Jun Cai and Dr. Peter Graham for

their valuable comments, time and guidance.

I am thankful to my family, for their priceless love and support.

I am also thankful to my mentor Dr. Anil Kumar who introduced me to High Performance

Computing (HPC).

Special thanks to my mentor, friend and big brother Raminder Pal Gill for his continuous

motivation which always inspired me to push limits and achieve higher goals.

Thanks to all my friends Guramrit Singh, Anmol Sekhon, Arshdeep Samra, Karanjeet

Singh Rai, Anurag and Muskaan for not disturbing me in last few months and letting me

complete my thesis.

Special thanks to Gilbert E. Detillieux and technical team of Department of Computer

Science (University Of Manitoba) for helping me with the experimental setup and providing

me access to the computer resources.

ix

Dedicated to my parents Sardarni Biran Kaur and Sardar Tikka Singh, nephew

Prabhpratap Singh Sidhu, brother Jagdeep Singh Sidhu and sister-in-law Nirmal

Kaur Sidhu. Without your endless support and love, i couldn’t be here.

“If you want to shine like a sun, first burn like a sun.” - Dr. A.P.J. Abdul Kalam

x

Chapter 1

Introduction

1.1 Introduction

High-Performance Computing (HPC) is used to solve complex problems in parallel for

increased performance. Over the past few years, parallelization has become more challenging

with the development and advancement of different computational devices based on different

architectures. There are mainly two categories of architectures - CPU based homogeneous ar-

chitectures and accelerator-based heterogeneous architectures which can further be classified

as discrete GPUs or fused CPU and GPU multi-cores such as AMD accelerated processing

units (APU) [3; 4]. Besides GPU, in recent years, field-programmable gate arrays (FPGA)

also have been considered for accelerating algorithms, in particular machine learning algo-

rithms [5] due to their power efficiency. Amazon and Microsoft offer FPGA accelerators on

their Cloud based services.

One of the many challenges in these architectures is in obtaining better utilization of the

resources available on these architectures through better task scheduling strategies. The goal

1

of scheduling is to keep the execution time of a job at minimum by distributing the tasks to

the processors efficiently. However, finding an optimal solution to the scheduling problem is

very difficult. Therefore, researchers have been satisfied with sub-optimal solutions.

In recent years, evolutionary algorithms such as genetic algorithms (GA) [6], have been

used to find sub-optimal but generally good quality solutions to the task scheduling problem.

Data flow in application program can be represented by using Directed Acyclic Graph(DAG),

where edges represent the communication delay between tasks and the tasks are partitioned

to preserve data locality with minimum communication between tasks. To improve the

quality of the solution, genetic algorithms have been combined with other strategies such as

Task Duplication Strategy/Scheduling (TDS) [7].

Task duplication scheduling algorithm duplicates and allocates tasks to multiple proces-

sors to minimize the communication overhead in such a way that the required data for future

tasks are readily available on processors that require them. To select eligible nodes for du-

plication, various techniques can be used and implemented. A few of such techniques (task

duplication algorithms) duplicates only the direct predecessor tasks while other algorithms

try to duplicate all possible ancestor tasks. Duplication based heuristics are useful in com-

puting systems with high network overheads and low network bandwidths, and processors

with future tasks that are sitting idle. An example of a computing system that may make

use of duplication based heuristics are processors connected by wide area networks.

In scheduling tasks on high performance systems, it is important to consider the commu-

nication latency between processors together with the task dependencies in an application.

In this thesis, I consider a network of CPU based machines with varying speed. I propose

an efficient mapping and scheduling of tasks to processors by considering the different ar-

chitectural features and communication latencies of the processors within this distributed

2

environment. The SIPS (Serial Algorithms In Parallel System) [2] framework is used to ex-

ploit parallelism using abstract syntax trees generated directly from the source code. SIPS is

a Java based framework, which supports the execution of Java programs in parallel system.

This framework helps in automating the process of converting serial code for use in a parallel

systems, thus reducing the overhead of writing parallel code. I have used this framework for

my research since I am one of the co-authors of this framework and therefore have experience

with it. The goal of SIPS is to reduce the programming overhead to implement problems

in parallel system, with the minimal use of special syntax. This framework was further ex-

tended by Kumar et al.[1] with some improvements, like addition of new schedulers. In this

thesis, I have extended the work further by adding the ability to locate resources scattered

across the network as mentioned in Chapter 4, to implement new schedulers and to execute

algorithms by using programmer defined tasks.

There are a few challenges in designing a scheduling algorithm including:

• Deciding on finding a schedule for the given tasks in such a manner that they get

executed in minimal time using the available resources in the network.

• Reducing the time taken to distribute various tasks in the system (the scheduling

overhead).

• Ensuring that upcoming tasks are scheduled in such a manner that they reduce the

waiting time of each task due to the selection of most the suitable processing element

to execute the task.

I develop a solution to solve the above challenges by using agents to map the network,

a genetic algorithm to schedule the given tasks on the machines and the task duplication

scheme to increase reliability and minimize the network communication between nodes. The

3

agents collect all the required information about the resources present on the network to

make the scheduling decisions. I use a master-slave approach to accomplish this step. Com-

munication overhead, Request Processing Time, and the distance between the nodes are

considered in collecting the information. After collecting information and constructing a

network graph, the best scheduling strategy within minimal time is determined using the

genetic algorithm. Here, performance, the architecture of the node, communication latency

between nodes and nature of parallelism within task and inter-dependency between tasks

are considered as parameters to the genetic algorithm. The result of the genetic algorithm

is then improved further using the task duplication technique. By using task duplication, I

provide the possibility of further minimizing execution time. Duplicating tasks on multiple

nodes also help to reduce communication between nodes and shorten schedule lengths.

I use a master-slave approach to conduct my experiments, which is supported by the SIPS

framework. The computing machines are in a distributed network environment, with varying

CPU speed and/or architecture. In my implementation, only one master node schedules and

distributes the tasks. The task graph is created using an abstract syntax tree. I have tested

my approach to two types of problems, data parallel (task independent) and divide and

conquer (task dependent). I have made a comparative analysis of my technique to other

schedulers such as Chunk[8], Factoring[8], Guided Self Scheduler (GSS)[8], Trapezoid Self

Scheduler (TSS)[8], Quadratic Self Scheduler (QSS)[9], and Genetic Algorithm(GA)[10] .

1.2 Thesis Organization

In Chapter 2, I have summarized all the important related work to my thesis, which

assisted me in laying out all the ground work. The framework which I choose to implement

4

my work is explained in Chapter 3. Chapter 4 explains the use of agents for network explo-

ration for resources. In Chapter 5, I discuss the working of the genetic algorithm used for the

task matching problem. Chapter 6 contains information related to Task Duplication Strat-

egy/Scheduling (TDS), and how it affects schedule length of the schedules created by GA.

Evaluation techniques and results are explained in Chapter 7 and Chapter 8, respectively.

Finally, my findings are concluded in Chapter 9.

5

Chapter 2

Literature Review

Task scheduling has been studied on large scale distributed systems such as Cloud and

Grid system ([11; 12]) and also high-performance parallel systems. Many modern day high-

performance systems are heterogeneous in nature. Not all architectures are suitable for all

problems. For example, accelerators are suitable for data parallel applications with struc-

tured data, while CPU based systems are more sophisticated to handle both structured and

unstructured data problems. This heterogeneity adds complications to the scheduling al-

gorithm. I have divided this section into a number of sub-sections to logically group the

relevant papers.

Scheduling on high-performance parallel systems: David J Lilja [8] presented

different scheduling techniques like Chunk, Factoring, Guided Self Scheduling (GSS) and

Trapezoid Self Scheduling (TSS) to divide big loops into smaller chunks, thus exploiting

parallelism within loops. All these schedulers used different formulas to split loops into

smaller loops to keep the execution time at minimum.

Diaz et al. [9], created a new scheduler Quadratic Self Scheduler for exploiting parallelism

6

within loops. It uses quadratic formula to split loops across different processors.

An edge-weighted directed acyclic graph (DAG) can be used to represent the data flow

in a parallel program, where edges represent communication latency between different tasks

and nodes represent tasks. Kwok and Ahmad [13] proposed a Dynamic Critical Path (DCP)

scheduling algorithm to allocate the task graph on a parallel system. They benchmarked

[14] their algorithm on a broad range of task graphs and compared the performance with

other 20 (mentioned in their paper) existing algorithms. They used random graphs with

predetermined optimal schedules, peer set graphs, trace-based graphs and random graphs

without optimal schedules for benchmarking the algorithms. According to their results, DCP

outperformed other 20 algorithms.

Kwok and Ahmad [15] also surveyed different algorithms, all with the goal of keeping the

completion time at minimum and experimented using homogeneous processors for DAG al-

location. They analyzed 21 such algorithms and classified these algorithms into four groups.

The first group, “bounded/fixed number of processors” scheduling algorithm included algo-

rithms that allocates the DAG to a fixed number of processors directly. The second group, an

“unbounded number of cluster scheduling algorithms”, allocate the DAG to an unbounded

number of clusters. The third group, “task duplication based” scheduling algorithms sched-

uled the DAG using task duplication. The fourth category, “arbitrary processor network”

scheduling algorithms allocate and map the DAG on arbitrary processor network topologies.

This was one of the few earlier works in the literature when scheduling was becoming a

critical topic for parallel systems. This classification helped to understand the structure of

tasks and DAG and the allocation/scheduling of DAG on multiple homogeneous systems.

Oh and Ha [16] presented “a static1 scheduling heuristic algorithm called best imaginary-

1Static Scheduling: selection of resources for execution before actual execution starts

7

level (BIL) scheduling for heterogeneous systems”[16], which used inter-processor communi-

cation and node priority to schedule different tasks on nodes. They claimed to have 20%

better performance than general dynamic level scheduling which does not consider inter-

processor communication as a factor to schedule tasks.

A scalable scheduling scheme called Task Duplication Scheme (TDS) for heterogeneous

systems was introduced by Ranaweera and Agrawal [7]. This technique considered different

processors have different processing power, which could result tasks could potentially have

different execution times if scheduled on these processor. Prior to this technique task dupli-

cation based scheduling was mostly considered for homogeneous systems. They compared

the performance of TDS with the BIL algorithm (proposed by Oh and Ha [16]) and showed

that TDS is better than BIL in terms of communication-to-computation cost ratios(ccr) and

makespan.

More Recently, Lima et al. [17], provided some ideas on dividing and allocating tasks on

a heterogeneous system with multiple CPUs and GPUs. They studied and analyzed various

scheduling strategies on these systems. They concluded that techniques such as heteroge-

neous earliest finish time (HEFT)[18] and data-aware work stealing [19] gave performance

and speedup boost over other scheduling techniques. HEFT selects the task with highest

rank/priority to be scheduled on a processor, thus using an insertion based approach on the

DAG to keep the earliest finish time of the task at minimum. The whole process was divided

into two stages: task prioritization and resource selection with task scheduling. Data aware

work stealing (to use ideal processor for tasks waiting in queue) ensured minimal memory

transfers by using meta-data information. That is, this technique kept track of data on all

the nodes required for the next task. Then it allocated the next task to the node where the

maximum amount of required data was available. Lima et al.[17] also introduced the use of

8

task annotation technique that provided hints to the scheduler for making easier scheduling

decisions. For example, this technique can be used to make scheduler aware of each task’s

resource preference (i.e. CPU or GPU).

The performance analysis of resource allocation strategies by Beaumont et al. [20] also on

heterogeneous resources showed that static scheduling was better than dynamic scheduling2

for matrix multiplication problems. Thus the same can be assumed for similar problems

with bounded size. Static scheduling exploits prior knowledge of the available tasks.

Zhang et al. [21], analyzed the impact of different factors such as workload, the perfor-

mance of each processing element, network performance and input-output performance on

the performance and effectiveness of scheduling strategies. Their results showed that these

issues played a crucial part in dynamically scheduling tasks in a heterogeneous system.

Sun et al. [11], focused on real time applications in a fault-tolerant heterogeneous sys-

tem. Their results showed improvements over traditional task scheduling algorithms, by

minimizing the average response time for each task, and improved the system availability

without adding additional hardware cost. They considered availability and response time

of each node while scheduling the task which proved a vital factor for scheduling real-time

applications over the parallel system.

Frameworks: Other work in the literature has considered frameworks for harnessing

the performance of the processing systems. Ahmad et al. [22], proposed a framework called,

CASCH (Computer Aided Scheduling) that helped to automate scheduling on a distributed

or parallel system. Sohn and Simon [23], presented JOVE, a framework to balance the load

between nodes dynamically. Jove re-partitioned the load at run-time by considering the cost

of data transfer between processors.

2Dynamic Scheduling: Allocation of resources during execution process as they become available or free

9

Earlier frameworks were for strictly homogeneous systems. Recently, with the advent of

different type of processors, there has been tremendous interest in developing a framework

or run-time system for scheduling tasks on heterogeneous multi-core architectures. StarPu

by Augonnet et al. [24] presented one such run-time system. It provided multiple scheduling

strategies with high-level implementations to reduce the gap between the theoretical com-

pletion time of parallel programs and actual implementation of such programs on hetero-

geneous multi-core architectures. StarPU[24; 25] considers load-balancing and data-locality

while scheduling on CPU and GPU architectures. Further programming language supports

such as OpenCL and CUDA are supported by StarPU. StarPU implemented asynchronous

data transfer techniques for GPU-GPU or CPU-GPU which the authors (Augonnet et al.

[24]) claim produced more performance gain than traditional scheduling techniques (such as

greedy and HEFT) on heterogeneous systems.

The SIPS (Serial Algorithms In Parallel System) [1; 2] framework is focused on exploiting

parallelism using Abstract Syntax Trees (ASTs) generated directly from the source code.

Important information gained from ASTs is then stored into local database files. This

framework helps in automating the process of converting serial code for use in parallel systems

by interpreting special syntax gained from ASTs, thus reducing the overhead of writing

parallel code. Kumar et al. [1] also compared SIPS with JPPF [26] and found that SIPS

performs better than JPPF when scheduling matrix multiplication problem for different

number of nodes. They used Matrix Multiplication as sample problem and used different

schedulers (Chunk, Factoring, GSS and TSS) to compare the performance on the basis of

execution time for the sample problem.

Heuristic Scheduling Techniques: Earlier work in developing heuristic-based schedul-

ing algorithms has been primarily focused on Genetic Algorithms (GAs). Dhodhi and Ishtiaq

10

[27] combined GA with list scheduling heuristics. In list based static scheduling, computation

time and communication time are known apriori. They claim that the combination of GA

with other static scheduling techniques improved the scheduling strategy to find better sub-

optimal solutions. Their proposed technique performed better than critical path/maximum

immediate successor first list scheduling techniques[28].

Palis et al. [29] studied the scheduling problem as a task clustering problem. They

clustered tasks to improve data locality and reduce communication overhead while scheduling

the clustered tasks on the processing elements. They showed that the quality of the schedule

was directly proportional to the granularity3 of the task graph.

Bohler et al. [30], made several improvements to existing approaches, by designing and

implementing scalable adaptive genetic scheduling algorithms. These algorithms reduced the

schedule length for a general task graph.

Zomaya et al. [6], described a framework using GA, to provide a solution for the task

scheduling problem. They showed that the combination of heuristics (to generate the initial

population) with GA improves the overall performance. They also showed that GA provided

more reliable and better solutions as the size of the task graphs increased because of the

linear relationship between time taken to find the schedule and the size of the task graph.

Other works on GA for task scheduling have also been done for grid and Cloud comput-

ing systems (e.g. [31], [10], [32]). Some research used GPUs to parallelize the scheduling

algorithms [33]. Solomon et al. [34], gave a collaborative muti-swarm PSO (Particle Swarm

Optimization) task scheduling algorithm and parallelized it on a GPU. Their idea was to

exploit data parallelism available in PSO algorithm to find sub-optimal solutions in mini-

mum possible time. Their results showed a huge performance boost over sequential version

3The granularity of the graph is the ratio between the average communication time of the tasks and the
average execution time of the tasks.

11

of the scheduling techniques. Sidhu et al. [35] and Beegom and Rajasree [36] used similar

meta-heuristic techniques to find solutions for task scheduling and load balancing on a Cloud

system.

Song and Dongarra [37] presented a new framework and techniques (including compu-

tation and communication overlap) to harness more power from existing machines. Various

techniques were used to achieve load balancing among CPUs and GPUs to cultivate more

processing power from existing hardware, thus resulting in reduced execution time.

Other meta-heuristic techniques such as Ant Colony Optimization (ACO) [38] inspired

by ants in nature, have also been used to find better sub-optimal solutions for dynamic

scheduling at run time (e.g. [39],[40]). Ant Colony Optimization as inspired from ants sends

ants to traverse the network and while traversing the network they leave a trail of (depleting)

pheromones behind. More ants travel the same path could result in high concentration of

pheramone on a path which thus can help to identify shortest path on a network.

Hybrid Heuristic Scheduling : Over the past few years, several studies have tried

to combine heuristics, for better solution quality. Gagandeep [41] showed that the schedul-

ing techniques proposed by Bruno et al.[42] and Baz̀ewicz et al. [43] combined with Task

Duplication Scheduling (TDS) produced high-quality scheduling results, compared to other

single heuristic scheduling techniques. Sri et al. [44], proposed a hybrid genetic and case

based reasoning algorithm for better convergence of local optima. Their algorithm predicted

the performance of processing resources available in the heterogeneous system, to improve

scheduling in dynamic environments. They showed that combining case-based reasoning and

GA significantly improved the solutions and generated better solutions in less time.

Benchmarking: A benchmark group to compare static scheduling algorithms was pro-

posed by Kwok and Ahmad [14]. The diverse structure and unbiased nature of laid solid

12

ground for the benchmarks. Scheduling scalability (SS) is a performance measure used to

determine the effectiveness of scheduling algorithms in terms of solution quality, resource

utilization (the number of processing elements used), and execution time.

13

Chapter 3

SIPS Framework

SIPS (Serial algorithms In Parallel Systems), a novice framework created by Singh et al.

[2], targets parallelism using Abstract Syntax Trees (ASTs). SIPS is a Java based framework,

which supports the execution of Java programs in parallel system. I have used this framework

for my research since I am one of the co-authors of this framework and therefore have

experience with it. As described in Chapter 2, SIPS goal is to reduce the programming

overhead to implement problems in parallel systems, with the minimal use of special syntax.

Later this framework was extended by Kumar et al.[1] with some improvements, like addition

of new schedulers. In this thesis, I have extended the work further by adding the ability to

locate resources scattered across the network as described in Chapter 4 to implement new

schedulers and to execute complex problems by using programmer defined tasks.

3.1 Code Hierarchy

SIPS code is mainly divided into four parts, SIPS-lib, SIPS-Scheduler, SIPS-Node and

SIPS-Run. Each of these parts share some common classes and depend on each other for the

14

SIPS-lib

SIPS-Schedulers

SIPS-Run SIPS-Node

Figure 3.1: Hierarchy Of Different SIPS framework Modules

common code shared among them. Figure 3.1 shows the dependencies between these parts.

As we can see from the figure, SIPS-lib is the common dependency (the root) among the

other three modules. Only SIPS-Node inherits both SIPS-lib and SIPS-Schedulers. These

modules are explained briefly below.

1. SIPS-lib: contains all the libraries essential for the execution of Jobs within SIPS. It

also contains some extra utilities that allow easier development and extension of the

framework.

2. SIPS-Schedulers: contains a set of predefined schedulers and custom data types

required for their functionality.

3. SIPS-Run contains all the tools like the code parser and job client that are required

for stage 1 of the execution process (mentioned in Algorithm 2) in Section 3.4 .

15

4. SIPS-Node: contains the code to run important services like Job Server, Task Server,

Ping Server, File/Data Server, File/Data Download Server, and tools to execute Jobs

and Tasks. It can act as Master and/or slave as mentioned later in Sections 3.5.2 and

3.5.3 respectively (also in Algorithm 3 and 4 in Section 3.4).

3.2 Programming Syntax

SIPS supports the execution of Java 7 programs and uses various user defined elements

such as SIPS Task, Parallel For Loop and Simulate Section to exploit parallelism within the

problem. These are explained below:

1. SIPS Task is a user defined section of code that can be executed independently from

the rest of the code. Users can use the following methods to define a SIPS task.

(a) defineTask: Users can define a SIPS task by calling the ‘defineTask’ method of

the SIPS object. Method ‘defineTask’ accepts the unique name of the task as a

parameter to avoid conflicts between multiple sections of the code.

(b) endTask: To mark the end of SIPS task section, it is required to call the ‘endTask’

method of the SIPS object, which also accepts the same name as the parameter.

All the code between these two calls is executed independently from the rest of

the code. It is required for successful execution of the Job.

(c) setTaskDependency: This is used to establish the dependencies between mul-

tiple tasks. It accepts task name as first parameter followed by the names of other

tasks on which it depends.

(d) setTaskResources: This is used to notify the scheduler about the priority of

16

the resources (such as CPU, GPU, Storage, Memory etc.) for the mentioned task.

It accepts task name as first parameter followed by the names of the resources in

order of their priority.

(e) setTimeout: Assigns a timeout value in the event there is a failure and the task

is unable to respond at a specific mentioned time, appropriate actions can be

taken by the scheduler. It accepts task name as first parameter followed by the

timeout value in milliseconds.

(f) setDuration: This is used to assign the weight to task. This weight can also

be interpreted by schedulers in SIPS framework to assign the expected execution

time to mentioned task. It accepts task name as first parameter followed by the

weight value (double data type).

2. Parallel For Loop is the section of code that contains a for loop, which can be

parallelized. Users use the following methods to define a parallel for loop.

(a) parallelFor: marks the starting point of the section which contains the for loop.

SIPS picks the first for loop which start after this call for parallelization. All other

for loops (nested or trailing one’s) are ignored.

(b) endParallelFor: marks the end point of s Parallel For Loop section and is re-

quired for successful execution of the Job.

3. Simulate Section is the section of code that contains the code for the execution of

simulation stage. In simulation stage, SIPS-Run comments out code except the code

written in ‘simulateSection’ and ‘endSimulateSection’. Then executes the modified

code. It can contain data generation part of the Job, which can be saved by using

17

methods such as ‘saveValue’ and ‘saveObject’. Then comment out code within simulate

section from the original copy of code and save it for the later stages of SIPS execution

of a job (discussed in Section 3.4). Thus simulate section will be excluded from the

actual execution of tasks.

(a) simulateSection: marks the starting point of the section which can be executed

in simulation stage and will be excluded from the actual execution of Tasks.

(b) endSimulateSection: marks the end point of a Simulate section and is required

for successful execution of the Job.

3.3 Role of Abstract Syntax Tree(s) (AST(s))

SIPS converts the user-defined code to an Abstract Syntax Tree (AST). AST is a tree

representation of code created by a code parser and used by the compiler to convert source

code into compiled form (for example byte-code is the compiled form of Java source code).

Figure 3.2, represent an example representation of a simple for loop (from Algorithm 1.)

as Abstract Syntax Tree (AST). SIPS-Run generates this kind of information from source

code and saves in SQLite databases. Then during simulation stage updates the corresponding

fields to ‘saveValue’ with the actual value of the object. Then later SIPS-Node modifies

the initializer and conditional values (in case of parallelFor) with the values (Chunk sizes)

generated by scheduler, during Stage 2 explained in Algorithm 3.

Algorithm 1 Example For Loop

1: for (int i=0; i<=10; i++) {
2: //Body
3: }

18

For loop

initializer Condition Update Statement
(e.g. i++)

Declaration
(e.g. Int i=0)

initializer

Data type
(e.g. int)

Initial value
(e.g. 0)

Expression
(e.g. i <= 10)

Left
(e.g. i)

Comparator
(e.g. <=)

Right
(e.g. 10)

Operand
(e.g. i)

Operator
(e.g. ++)

Body

Figure 3.2: Example of an AST for a simple
for loop

In case of SIPSTask, SIPS-Node comment out code except the task it is scheduling, to

do so it extracts the information from the databases generated from ASTs (created during

Stage 1).

3.4 Execution of Job

SIPS executes a Job1 in three stages. The execution of stages 1 and 3 run separately but

overlap with the execution of stage 2. In the first stage (also represented in Algorithm 2),

SIPS-Run is used to perform all the operations. SIPS-Run reads the manifest file, which a

file in JSON format to read special values like the number of nodes to use for the execution

of the job, job name, Master Node’s address (ip/hostname:port) etc. (See sample manifest

file in appendix’s section A.1). Then it contacts the master node with a request to get job

token. Then it parses the source code and gathers all the information related to user defined

tasks (SIPSTask), parallel for loop and data interacting within these elements. Information

1Job is different from Task in this thesis. Job is a complete process that constitutes one or many
tasks(SIPS Task)/parallel loops, whereas a task is the smallest portion of the Job that can be executed in
parallel with other tasks.

19

gathered in the first stage is stored for processing in the second stage. SIPS-Run then

execute the Simulate Stage. SIPS-Run is used in the first stage to perform all these actions

and interact with the master side of the framework to generate a Job token, data transfer

(databases which contains ASTs, objects generated during simulation stage etc.) and start

the Job.

In the second stage (represented in Algorithm 3), (SIPS framework use SIPS-Node to

perform all these operations) the Master Node use agents to gather information about other

nodes available on the network, grants job token, accepts the Job request and then parses

the information, selects the defined scheduler for the task and distributes the smaller tasks

to nodes chosen by the scheduler, after making modifications to the abstract syntax tree(s).

In Algorithm 3, submitter is the host which is using SIPS-Run to execute the Stage 1 of the

job.

In the third stage (represented in Algorithm 4), chosen nodes execute the smaller tasks

and send back the results to the Master Node.

Algorithm 2 SIPS Framework- Stage 1 (SIPS-Run)

1: procedure SipsRun
2: Start
3: Read manifest file.
4: Contact master node and requests a job token.
5: Read Source Code.
6: Generate Abstract Syntax Trees (ASTs).
7: Store ASTs in Database Files.
8: Comment out code except simulate section from source files.
9: Start Simulation Stage.

10: Analyze data dependence in the code, save objects and values in simulate section.
11: End Simulation Stage.
12: UnComment code and Comment out simulate section.
13: Upload all the files (source code, manifest, databases, objects etc.) to Master Node.
14: Send Start Signal with Job Token.
15: EXIT

20

Algorithm 3 SIPS Framework- Stage 2 (SIPS-Node Master)

1: procedure SIPS-Master
2: START
3: On New Thread Use Agents to locate resources on network. . explained in Chapter

4
4: On New Thread Start Service to handle file/data requests.
5: while (STOP = FALSE) do
6: Accepts new job request from submitter (SIPS-Run), generate a job token and

send job token to submitter (SIPS-Run).
7: Accepts all the files (source code, manifest, databases, objects etc.) and move

them to appropriate directory (assigned to that job).
8: Wait for Start Signal from submitter (SIPS-Run).
9: Read Manifest File.

10: Result = Scheduler(Ln, Data). . where it accepts list of live nodes and type of
data to schedule, like Parallel For and SIPS Task, and returns data paired with nodes

11: Distribute the Data to paired nodes.
12: On New Thread Wait For Results.
13: On New Threads Serve Results. . Uses Multiple Threads
14: On New Thread Receiving Last result, calculate total time, average cache hit-miss

ratio, upload speed, upload data, cached data and store in local data warehouse .
15: end while
16: EXIT

Algorithm 4 SIPS Framework- Stage 3 (SIPS-Node Slave)

1: procedure SIPS-Slave
2: START
3: Benchmark the Resources (HDD,CPU etc)
4: On New Thread Start Service Respond to Agents. . See Chapter 4 for more

information.
5: On New Thread Start Service to handle data dependencies. . This

service transfers objects, results and files upon receiving the request from the tasks this
node currently executing.

6: while (STOP =FALSE) do
7: On New Thread Accepts Job Data.
8: On New Threads Solve File/Data Dependencies. . Instead directly

contacting nodes to fulifill data dependencies, it relies on the service which queues all
the data request mention in early steps of this algorithm.

9: On New Thread Start Execution of the job.
10: Send Results back to master node.
11: end while
12: EXIT

21

3.5 Execution Modules

SIPS has three modules (on the basis of roles) which play different roles during execution

of a Job.

3.5.1 SIPS-Run

SIPS-Run handles the execution of the first stage (see Algorithm 2). It mainly consists

of the following elements.

1. Code Parser: converts the source code into abstract syntax tree (AST), extracts the

required information (such as intial value, conditional value, update value, variable

name etc. in case of for loop) and stores it in the SQLite databases. (Also explained

in Section 3.3)

2. Code Simulator: uses information generated by Code parser, comments out the

code except Simulate section, executes the code to analyze data dependencies, saves

data/values required during execution stage, and uncomments the source code and

comments out Simulate section.

3. File/Data Uploader: sends all the data/information generated by code simulator,

and all the other files which are required to execute the Job to the master.

4. Job Client: requests master to provide a Job token and handles additional responsi-

bilities of sending the start signal and checking the Job status.

22

3.5.2 Master

The Master side of the framework runs essential services (like Job server, file/data

server, API server etc.) on multiple threads. It handles execution of stage 2 (see Algorithm

3). Components used by the Master side are described below:

1. Job Server handles the multiple stages of a Job, from Job token creation, receiving

all the necessary files and data from submitter, to starting the Job.

2. File Server handles the file requests made by tasks before and during execution. All

the data related to a particular job is transferred through master node, even the nodes

which have completed the execution of the tasks assigned to them, send results to

master node and nodes who want to access results to complete the execution of tasks

assigned to them, send their requests to master node’s file server.

3. API (Application Programming Interface) Server provides the access to API(s)

which can be used to retrieve data from SIPS framework and can also be used to

manipulate the settings and services of the SIPS framework.

3.5.3 Slave

The Slave side of the framework runs essential services (like task server, file download

server, ping server etc.) on multiple threads. It handles execution of stage 3 (see Algorithm

4). Components used by the Slave side are described below:

1. Task Server handles the tasks submitted by the Master Node, submits the requests

to file download server (see below) to download all the necessary data required to start

the execution of the tasks and starts the execution of tasks.

23

2. PING Server handles the ping request made by other nodes and replies back with all

the information related to current node like CPU Model, CPU architecture, Number

of CPU Cores, Hard drive size, Hard drive free space and benchmark2 results of these

resources.

3. File Download Server handles the file/data requests made by tasks before and during

execution. Then it forwards those requests to Master Node’s file server. It plays the

role of a common download queue for all the tasks to keep the CPU and the Network

load at minimum levels.

3.6 Supported Layouts

The SIPS framework supports the execution of tasks even via complex setup of nodes

such as Peer 2 Peer (P2P) (as shown in Figure 3.3) and Master Slave (as shown in Figure

3.4) Architectures. In P2P layout two (or more) master nodes can submit tasks to each other

for execution. As it is also represented in Figure 3.3, Node A and Node B are execution two

Tasks X and Y, where for Task X, Node A acts as a Master and Node B acts as a slave,

and for Task Y Node B is acting as Master and Node A is acting as slave. For Master-Slave

layout (as shown in Figure 3.4), Node 1 acts as a Master node to other nodes which act as

Slave nodes and are connected via the network.

2SIPS use JDiskMark library to benchmark hard drive and SciMark library to benchmark CPU

24

PEER BPEER A

MASTER
(Process X)

SLAVE
(Process X)

MASTER
(Process Y)

SLAVE
(Process Y)

Figure 3.3: SIPS P2P setup, Image by Ku-
mar et al. [1], [2]

NODE 1

NODE nNODE 2 NODE 3 NODE 4

NETWORK

MASTER

Slave(s)

Figure 3.4: SIPS Master Slave setup, Image
by Kumar et al. [1], [2]

3.7 Cache Exploitation

SIPS nodes use a local cache on each machine’s hard drive to reduce the communi-

cation between nodes. As multiple tasks from the same job can request for the same

file/(data/objects), using a disk cache can help in minimizing network traffic, CPU load

and maximizing data reuse. The file download service mentioned in this chapter in section

3.5.3 takes advantage of local cache storage to prevent duplication of file/data requests.

3.7.1 Cache hierarchy

Local cache storage is organized the cache by node uuids3. These directories contain sub

directories named using Job token and then the relative path to file on the file server (also

3uuid stands for Universally Unique Identifier, SIPS use two 128-bit uuids combined in one string for
node identification

25

shown below, as 3.1).

cache/ < node− uuid > / < job− token > / < relative− path− to− file > (3.1)

3.7.2 Cache Implementation and Exception

SIPS uses sha checksum of files to check the validity of local files stored in the cache by

comparing it with the checksum received from the server. The only exception in checksum

matching is to results which belong to the same job and tasks executing on the same node.

This helps in reducing the execution time of job and minimize the wait time of the successor

or dependent tasks, which do not need to wait to receive checksums from the master node

which hasn’t even received the result yet. To avoid the waiting time that can occur due

to transfer of results from slave to master and master to slave (here slave is the same node

which is sending results to master), we store a copy of the results in the cache and transfer

the results later to the master node, to prevent the other tasks from getting cache misses.

Other nodes that are executing dependent successor tasks need to wait for the master node

to receive those results and then access those results from the master node to complete their

execution.

26

Chapter 4

Using Agents to Locate Resources

In this chapter, I discuss how i have implemented agents to explore resources which are

available over the network. Throughout this chapter I have used COH for Communica-

tion overhead, RPT for Request Processing Time. The technique i used is inspired from

techniques such as ant colony optimization and particle swarm optimization mentioned in

Chapter 2.

To perform the resource allocation task, I have used agents to collect all the required

information to make the scheduling decisions. At the start, the master processor has no

information about the computing devices (nodes), and these nodes are scattered over the

network in a non-dedicated environment. The agent exploration technique is illustrated

by using Fig. 4.1 with five nodes, where, N1 is the master processor. All the participating

nodes, upon start-up, load the list of IP addresses (eg. 192.168.0.111) and network addresses

(eg. 192.168.0.0/24). From this list of network addresses and by using the current sub-net

address of the node, it generates another list of IP addresses to scan (as shown in Algorithms

5 and 8, which use Algorithm 6 to perform this task). In Fig 4.2 every node becomes aware

27

of the IP addresses it has to scan. As we can see from Fig. 4.3, all nodes send agents to

adjacent nodes in the network to collect data about the participating nodes. At this stage,

all the nodes send a unique hash id (representing themselves) to the agents so that the nodes

are aware of the nodes participating in the network. On the receiving end, receivers use these

unique id’s and IP address (of the sender) to restrict/filter blacklisted1 nodes. The procedure

of the sender side node is represented in Algorithms 5, 6 and 7. Then sender processor waits

for the agent to return back with the information as illustrated in Algorithm 6.

When an agent reaches a node, Ni, it collects all the information (such as Hostname of

machine, Information of Adjacent Nodes, Information of Non-Adjacent Nodes, Type of CPU,

Total Number of CPU cores, Storage Device, currently maximum available memory/RAM,

average CPU load etc.) and returns the information back to the sender processor (Fig. 4.4),

as described in Algorithm 8. In addition to the current node’s information, the agent also

sends a list of adjacent and non-adjacent nodes separately with minimum distance from the

current node (described in a later part of this chapter). Unique id (uuid) generated by

each node is used to communicate within system. The sender node also tracks the time

taken to send the agent and the time to receive the agent back with the information. This

communication delay indicates approximately the latency between the nodes and the time

it may take to send a message to that node in the network. This communication overhead

is calculated using Equation 4.1. Both sides keep track of the network delay and keep

sending latest values during future exchanges of information between the nodes and the

master processor. The communication delay is calculated by tracking the execution time of

different requests, so there is no need for a globally synchronized clock.

To send back the information to the sender node, the adjacent nodes also send agents

1SIPS maintains a list of UUIDs and IPs, which are not allowed to access any functionality of the system.
user with correct permission level can add or remove values from this list by using SIPS api.

28

Figure 4.1: Isolated Nodes
in the Network.

Figure 4.2: Network Con-
nection Established.

N4N2

N3

N6
N5

N1

Figure 4.3: Agents explor-
ing adjacent Nodes.

along to their adjacent nodes (in parallel) to explore the network, as can be seen in Fig. 4.4,

and also represented in Algorithm 8 and 6.

I have used the following formula to calculate the communication overhead (COH) be-

tween two nodes, Ni and Nj:

COH(Ni, Nadj) = TotalT ime(Ni)− (ExecutionT ime(Nadj)) (4.1)

where node Ni is the sender/master node and node Nadj can be the receiver/slave node.

TotalTime(Ni) is the time recorded by node Ni from sending agent to receiving reply.

ExecutionTime(Nadj) is the time recorded by node Nadj from start of the request processing

to the end of request processing(just before sending reply).

This value can be divided by 2 to get the approximate value for one sided communica-

tion delay. Agents also send a list containing information about adjacent nodes and a list

containing information of non-adjacent nodes to the node Ni. This allows each participating

node to construct the connected graph for the whole network. Nodes also keep scanning the

29

N4N2

N3

N6
N5

N1

Figure 4.4: Agents from Adjacent Nodes Re-
turning With Information.

Figure 4.5: Explored Network with now
known Communication Overhead between
Nodes.

network to check for the availability of new nodes or to detect the failure of already available

nodes, after a finite interval. This repitation of this process after a finite interval also helps

Agents also keep the information up to date.

Algorithm 5 Master

1: procedure Master
2: Boot.
3: Generate Unique Hash ID and assign to itself.
4: New Thread(MapNetwork()). . Algorithm 6

As mentioned, using Algorithm 7, the agent also builds two tables, the Adjacent table

and the Non-Adjacent table which contain the information of adjacent and non adjacent

nodes, respectively. After receiving the information via the agents, the nodes also iterate

30

Algorithm 6 Network Mapping Algorithm

1: GLOBAL AdjNodeTable,NonAdjNodeTable,RoutingTable
2: procedure MapNetwork
3: ListA ← Load list of ip addresses and network addresses.
4: ListB ← Load list network addresses.
5: ListC ← Generate List of ip addresses on current subnet and for each element of

ListB.
6: Nodes ← Concatenate (ListA and ListC).
7: while true do . Infinite Loop
8: while (Node← Nodes.Next()) 6= null do . For every active participating node
9: New Thread(CollectInformation(Node)) . Create a separate thread to collect

information of particular node, (using Algorithm 7.)
10: end while
11: sleep . For a finite interval to reduce unnecessary load
12: end while

through the adjacent and non-adjacent tables received from the adjacent node. They check

if the Adjacent table has a value under the same node id. If yes, then they compare the

time stamps and update the value if the received information is the latest. To perform this

operation, we compare values using checkedAgo method. If Adjacent table doesn’t contain

the values under the given node id, then it performs another check to see if the node is

adjacent or not. If the node is adjacent to the current node we again can insert the new

value in the adjacent node, other wise we can look up in the Non-Adjacent table and perform

insert or update operation using the same checks we have performed on Adjacent table. For

the Non-Adjacent nodes, we maintain another table where we keep the information related

to Non-Adjacent nodes.

31

Algorithm 7 Collect Information of Node

1: procedure CollectInformation(Node Nadj)
2: StartT ime← CurrentT imeStamp
3: Send Agent to Nadj accompanied by Current Node’s UUID
4: Wait For Response from Nadj

5: Information(Nadj) = Receive Agent from Nadj with Collected Information
6: EndTime← CurrentT imeStamp AND RPT ← Information(Nadj).RPT
7: COH(Nadj) ← (EndTime− StartT ime) - (RPT)
8: Information(Nadj).COH ← COH(Nadj)
9: Information(Nadj).CheckedOn ← EndTime) . CheckedOn can be used to

calculate CheckedAgo by substracting current time stamp from CheckedOn
10: if AdjNodeTable.has(Nadj) then
11: Update AdjNodeTable(Nadj) ← Information(Nadj)
12: Update RoutingTable(Nadj) with Hop(Nadj) ← Information(Nadj).COH
13: else
14: Insert AdjNodeTable(Nadj) ← Information(Nadj)
15: Insert RoutingTable(Nadj) with Hop(Nadj) ← Information(Nadj).COH
16: end if
17: while (V al ← Information(Nadj.AdjNodeTable.next()) 6= NULL OR (V al ←

Information(Nadj.NonAdjNodeTable.next()) 6= NULL do
18: Update/Insert RoutingTable(V al) with Hop(Nadj) ← Information(V al).COH
19: if AdjNodeTable.has(V al) then
20: if V al.CheckedAgo < AdjNodeTable.V al.CheckedAgo then
21: Update AdjNodeTable(V al) ← Information(V al)
22: end if
23: else
24: if V al is adjacent then
25: Insert AdjNodeTable(V al) ← Information(V al)
26: else
27: Add new Hop to V al if doesn’t have with (Nadj).id
28: (V al).COH ← (V al.COH + (Nadj).COH)
29: if NonAdjNodeTable.has(V al) then
30: if V al.CheckedAgo < NonAdjNodeTable.V al.CheckedAgo then
31: Update NonAdjNodeTable(V al) ← Information(V al)
32: end if
33: else
34: Insert NonAdjNodeTable(V al) ← Information(V al)
35: end if
36: end if
37: end if
38: end while
39: EXIT

32

Algorithm 8 Slave

1: procedure Slave
2: Boot
3: Generate Unique Hash ID and assign to itself.
4: New Thread(MapNetwork()).
5: while true do . Infinite Loop to accept new Connections
6: Check Sender’s IP and/or id against blacklist
7: if (Sender is not Blacklisted) AND (Packet is Agent) then
8: Receive Agent From Master
9: StartT ime←CurrentTimeStamp

10: Add Information about the node to Agent
11: Add Adjacent Nodes Table and Non Adjacent Table to Agent with minimum

distance of each node (from current node) by using Routing table
12: EndTime←CurrentTimeStamp
13: Information.RPT ← (StartT ime− EndTime)
14: Send Packet(Information,Master)
15: end if
16: end while

N1 N2 N3 N4 N5 N6
N1 0 0 0 0 0 0
N2 0 0 0 0 0 0
N3 0 0 0 0 0 1
N4 0 0 0 0 0 0
N5 0 0 0 0 0 0
N6 0 0 1 0 0 0

Table 4.1: Example Network Representation
on Step 1

N1 N2 N3 N4 N5 N6
N1 0 0 0 0 0 0
N2 0 0 2 0 2 [3]
N3 0 2 0 0 [4] 1
N4 0 0 0 0 0 0
N5 0 2 [4] 0 0 [5]
N6 0 [3] 1 0 [5] 0

Table 4.2: Example Network Representation
on Step 2

N1 N2 N3 N4 N5 N6
N1 0 0 0 0 0 0
N2 0 0 2 0 2 [3,3]
N3 0 2 0 0 [4] [1,5]
N4 0 0 0 0 0 0
N5 0 2 [4] 0 0 [5]
N6 0 [3,3] [1,5] 0 [5] 0

Table 4.3: Example Network Representation
on Step 3

N1 N2 N3 N4 N5 N6
N1 0 4 [6] 0 [6] [7]
N2 4 0 2 0 2 [3,3]
N3 [6] 2 0 0 [4] [1,5]
N4 0 0 0 0 0 0
N5 [6] 2 [4] 0 0 [5]
N6 [7] [3,3] [1,5] 0 [5] 0

Table 4.4: Example Network Representation
on Step 4

33

N1 N2 N3 N4 N5 N6
N1 0 4 [6] 6 [6] [7]
N2 4 0 2 [10] 2 [3,3]
N3 [6] 2 0 [12] [4] [1,5]
N4 6 [10] [12] 0 [12] [13]
N5 [6] 2 [4] [12] 0 [5]
N6 [7] [3,3] [1,5] [13] [5] 0

Table 4.5: Example Network Representation on Step 5

N1 N2 N3 N4 N5 N6
N1 0 [4,9] [6,7] 6 [6,11] [7,8]
N2 [4,9] 0 2 [10] 2 [3,3]
N3 [6,7] 2 0 [12] [4] [1,5]
N4 6 [10] [12] 0 [12] [13]
N5 [6,11] 2 [4] [12] 0 [5]
N6 [7,8] [3,3] [1,5] [13] [5] 0

Table 4.6: Example Network Representation on Step 6

Destination Hop Distance
N1 N1 0

N2
N2 4
N3 9

N3
N2 6
N3 7

N4 N4 6

N5
N2 6
N3 11

N6
N2 7
N3 8

Table 4.7: Snapshot of Node N1ś routing table

34

To keep routing simple, we also maintain a routing table2 (as shown in the example

in Table 4.7). This routing table contains the primary key as the id of the node which is

adjacent or non adjacent to the current node. In the second column we keep the id of the

adjacent node which can relay information. The third column contains the communication

overhead (COH) from current node. All the information in the second and third columns

are sorted in ascending order of distance from current node. If a node is adjacent, then

the destination and hop id is the same and the distance is the communication overhead

we observed for the adjacent node. However, for non adjacent nodes, to keep track of

the communication overhead in case we need to relay information through traversed nodes,

we add the communication overhead observed from the adjacent node to the communication

overhead observed for the adjacent node, and store this in the routing table with the adjacent

node’s id as Hop. When choosing the non adjacent nodes for task execution, when adjacent

node with minimum communication overhead is selected to relay information between the

master node and selected adjacent node.

Tables 4.1 though 4.6, represent the connectivity of all nodes, where discovery of each

node is considered as a step. There is a co-relation between each step and distance between

two nodes in the network. We assume all the nodes boot up at the same time and send

agents (in parallel) to explore the network at the same time. We also assume the Request

Processing Time (RPT) is constant, and the distance between nodes varies. Thus two nodes

with minimum distance between them gain information faster about each other than the

nodes with higher distance between them.

2Worst-case Space Complexity of such routing table will be O(Number of Adjacent Nodes x Number of
Total Nodes in the system). Worst Case time complexity of such tables can be O(1+1), if Hashmaps are
being used to maintain these tables. SIPS use ConcurrentHashMap to maintain this table.

35

Chapter 5

Genetic Algorithm for Scheduling

The agents discussed in Chapter 4 collect the information from the network and con-

struct a network graph. The next step is to find the best scheduling strategy within the

smallest reasonable time. I achieve this by using a genetic algorithm (GA). I consider per-

formance, the architecture of the node, communication latency between nodes and nature

of parallelism within each task and inter-dependencies between tasks as parameters to the

GA. The scheduling also depends on certain methods (also mentioned in Chapter 3) defined

by the programmer/end-user who submit tasks to the system for execution. Below is a

sample of a method that can be used to set resource priority for a task. Here, STORAGE

represents resources that can be used as storage devices (like a Hard disk drive(HDD) or

Solid State Drive (SSD) etc.), CPU represents processing resource (like Processors of various

architectures i386, x86-64, ARM etc.).

s i p s . s e tResource s (STORAGE,CPU)

In the above example, the programmer has set STORAGE as his/her highest priority. If

STORAGE is not available the method also indicates to use a node with CPU resources.

36

T1

T7

T3 T4T2

T5T6

T8

Figure 5.1: Example of Directed Acyclic
Graph(DAG) of Tasks.

T1 T7T3 T4T2 T5 T6 T8

Time taken

P0

Figure 5.2: Task Scheduling on Single
Processor.

In my implementation, I use the SIPS framework [2] introdued in Chapter 3. SIPS con-

verts the user-defined code to an Abstract Syntax Tree (AST). AST is a tree representation of

code created by a code parser and used by the compiler to convert source code into compiled

form (for example byte-code is the compiled form of Java source code). With the help of

methods, I split the code into different tasks. The master node maintains a list of resources

about different nodes, based on the information collected using the agents (explained in

Chapter 4). The scheduler constructs a directed acyclic graph of the program code. Fig.

5.1 shows an example of 8 interdependent tasks. In the following example, I assume two

processors P0 and P1 are to be allocated the tasks mentioned above (or vice versa).

In any genetic algorithm, there are four important operations: generation, selection,

crossover and mutation. I define a mapping of information to “chromosomes” and use this

technique to finalize a scheduling strategy to allocate resources to different tasks.

1. Generation: Consider the tasks (T1,T2,T3...Tn). The length of each chromosome

37

T1 T7T3 T4T2 T5 T6 T8

P1 P1P0 P1P0 P1 P0 P0

P1 P0P0 P0P1 P1 P1 P1

Chromosome 1

Chromosome N

Figure 5.3: Chromosomes generated using
Roulette’s Wheel Method

T1 T7T3 T4T2 T5 T6 T8

P1 P1P0 P1P0 P1 P0 P0

P1 P0P0 P0P1 P1 P1 P1

Chromosome 1

Chromosome N

Randomly Selected
Crossover Point

Figure 5.4: Random Selection of Crossover
point Genetic Algorithm.

T1 T7T3 T4T2 T5 T6 T8

P1 P0P0

P1P1 P1 P0 P0P1 P0P1

P0P0 P1 P1 P1

Chromosome 1

Chromosome N

Randomly Selected
Crossover Point

Figure 5.5: After Crossover.

T1 T7T3 T4T2 T5 T6 T8

P1P1 P1 P0 P0P1 P0P1

Selected
For Mutation

Figure 5.6: Element Selection For
Mutation.

T1 T7T3 T4T2 T5 T6 T8

P1P1 P1 P1 P0

Replaced
With Other
Element

P1 P0P1

Figure 5.7: Chromosome After mutation.

T1 T7T3 T4T2 T5 T6 T8

P1P1 P0 P1 P0P0 P1P0

Figure 5.8: Final Chromosome.

corresponds to the total number of tasks (Fig. 5.3). Each task is allocated to a

processor. A resource is selected randomly using the roulette wheel1 method [10; 45]

from the list of available resources which is built according to the resource priority

1Roulette wheel method selects a random element from the provided list of inputs and returns as output.

38

T1

T7T3 T4

T2 T5 T8P0

P1

Time taken

T6

Figure 5.9: Schedule length for Example.

defined for the task. . Other factors of resource selection are communication delay

between resources and performance of resources. The scheduler maps the directed

acyclic graph to the network according to task interdependence and communication

overhead between nodes.

2. Selection: In this step, by using the roulette wheel method [10] two chromosomes are

selected randomly for the next step.

3. Crossover: In this step, the GA performs the crossover operation offer selecting a

random crossover point. After crossover, the best chromosome is selected for next step

on the basis of expected finish time. As we can see from Fig. 5.4 and Fig. 5.5 subparts

of Chromosome 1 and Chromosome N get interchanged as the result of the Crossover

process.

4. Mutation: In this step an element is selected randomly and replaced with the resource

with better performance to improve the schedule length (Fig. 5.6 and Fig. 5.7). The

result is then selected for next iteration of steps2.

The termination condition for the GA processing is either the number of iterations or no

improvement (reduction) in the schedule length. The resultant chromosome for the above

2Generation step is executed only once.

39

example after few iterations is shown in Fig. 5.8 and the final schedule is shown in Fig. 5.9.

SL(Chromosomen) = C(T1)/CPT (Psel)+C(T2)/CPT (Psel)+...+C(TN)/CPT (Psel) (5.1)

From equation 5.1, to compute schedule length (SL) GA assume processor’s (Psel) per-

formance is to handle computations per time unit (CPT), and for each task length need C

computations, so that gives an estimate execution time for each task by dividing C with

CPT as C/CPT. Then adding up all the estimate completion times for each task, that gives

an estimate finish for a chromosome.

In this chapter, I have included the algorithm used for finding the optimal schedule

length before Task Duplication Stage (Chapter 6). As mentioned in Algorithm 9, initially

our algorithm takes input from a manifest file for variables like, maximum number of nodes

(need for this job), maximum number of generations (for Genetic Algorithm) and maximum

population (number of chromosomes). Then we sort the processors according to available

task slots, then average load observed on CPU, maximum tasks it can handle in parallel and

the distance from current node. A sublist of processors with size of MaxNodes is created,

only if list of processors is greater than the MaxNodes number. This helps in selecting best

available processors for our Job. Then GA sorts tasks according to their dependencies, so

that independent tasks can be scheduled before dependant tasks. GA creates n number

(equal to MaxPopulation) chromosomes and assign random3 processors using Roulette’s

wheel method. After generating the initial population, GA select one chromosome randomly

at the beginning of the crossover step and one chromosome randomly for each generation.

3In my implementation i have used Java’s Random class so that we get different non-repeating random
number each time.

40

GA also select a crossover point randomly for the length of chromosome, on that cross

over point chromosomes exchange their elements. After cross-over GA re-calculate schedule

lengths according to new allocated processors. GA selects the best chromosome among the

selected two chromosomes on the basis of minimum schedule length, for the mutation step.

In the mutation step, GA selects a random element of the best chromosome and assign

a better processor (also randomly selected among the best, if any available) which may for

example have a low load distribution than the currently allocated processor. Then again,

after re-calculating schedule lengths of the best chromosome, we repeat this in finding better

chromosomes for the next generation until we satisfy the MaxGenerations condition in the

for loop, as shown in Algorithm 9. As a result,GA returns best possible chromosome so that

all the tasks can be distributed to the assigned processors.

41

Algorithm 9 Genetic Algorithm

1: procedure Genetic Algorithm(Processors, Tasks)
2: MaxNodes ← JobManifest.MaxNodes
3: MaxGenerations ← JobManifest.MaxGenerations
4: MaxPopulation ← JobManifest.MaxPopulation
5: Sort list of processors according to Available Task Slots, CPU Average Load, Max-

imum Tasks it can execute in parallel, CPU Score and then distance from the current
node.

6: Processors ← sublist of processors of size MaxNodes.
7: Sort Tasks According to their dependencies.
8: Create an Empty List for Chromosomes.
9: for i ≤ MaxPopulation do

10: Sort Processors by choosing a random sorting factor from Available Task Slots,
CPU Average Load, Maximum Tasks it can execute in parallel, CPU Score and then
distance from the current node.

11: for each Task in Tasks do
12: Select a random processor from Processors and assign to Task . Using

Roulette Wheel Method
13: end for
14: Create a Chromosome with Tasks as it’s elements
15: Add Chromosome to Chromosomes list
16: end for
17: BestChromosome ← new Chromosome
18: RandomChromosome ← Randomly Choose a Chromosome from Chromosomes
19: for i ≤ MaxGenerations do
20: RandomChromosome2 ← Randomly Choose a Chromosome from Chromosomes
21: Randomly Choose a crossover point
22: Crossover RandomChromosome and RandomChromosome2 at crossover point
23: Re-calculate Schedule Lengths
24: BestChromosome ← MinScheduleLength (RandomChromosome, RandomChro-

mosome2)
25: Randomly Choose a mutation element
26: Replace processor of randomly chosen mutation element with a randomly chosen

better processor . On the basis of CPU score
27: Re-calibrate Schedule Lengths
28: RandomChromosome ← BestChromosome
29: end for
30: return BestChromosome

42

Chapter 6

Task Duplication Strategy for

Scheduling

The result of the genetic algorithm can be improved further using the task duplication

technique [7]. By using task duplication strategy (TDS), I can try to further minimize

execution time. Duplicating tasks on multiple nodes will also help to reduce communication

between nodes and shorten schedule lengths.

The TDS technique checks if it is better to duplicate a task on another node or leave the

tasks where they are and transfer data between nodes as needed by the parallel program.

First, I calculate the total calculations(TOTcalculations)
1 required to finish all the tasks. Then

by dividing total calculations(TOTcalculations) by the performance of the processor (i.e. the

CPU score we obtain from benchmarks mentioned in Chapter 3), we can set the priority

factor (using ‘setResources’ method mentioned in Chapter 3) for the resources. This will be

helpful to determine if the candidate task (i.e. task to be duplicated) will take less time on

1In many cases, this will presumably be an *estimate* since runtime factors may determine the number
of calculations needed.

43

T1

T7

T3 T4T2

T5T6

T8

Figure 6.1: Example of Directed Acyclic
Graph(DAG) of Tasks.

T1

T2P0

P1

Time taken

T1 T4 T5

T3 T4 T6 T7

T8

Figure 6.2: Improved Schedule length After
task Duplication.

selected processor (i.e. new processor where the duplicate task will execute). To check if

the duplicating task will be beneficial, this strategy compares the estimated time to transfer

required data from one processor to another to the time reduced by duplicating the task

on the selected processor (see Algorithm 12). During this process the dependencies of the

candidate task, predecessor task of the candidate tasks on the current processor and their

estimated start and finish times are considered so that the task to be duplicated fits in free

slots available inn the schedule length on the target machine. After applying this technique

in the example above, the final schedule length obtained is shown in Fig. 6.2, which is an

improvement over the schedule length (in Fig. 5.8) generated by the genetic algorithm alone.

In Fig 6.2 we can observe that T4 has different execution time because of the different CPU

speed, and is duplicated which eliminates the need of data transfer between the processors

and reduce the wait time for Task T5.

In Algorithm 10, we take the output of the GA as input for TDS. In Algorithm 11, for

44

Algorithm 10 Task Duplication Scheduling/Strategy(TDS)

1: procedure TDS(Processors, Tasks)
2: create new empty list for tasks as TaskList
3: BestChromosome ← GeneticAlgorithm(Processors, Tasks).
4: Processors ← DuplicateTask(BestChromosome) . See Algorithm 11
5: for each processor in Processors do
6: for each task in processor.queue do
7: TaskList.add(task)
8: end for
9: end for

10: Sort tasks in TaskList according to their startTime
11: return TaskList . For Distribution

every task in the final chromosome we check if we can duplicate it’s dependencies, then we

check if we can move or duplicate the task on another processor. Before duplicating any task

or dependency, we check if the processor assigned to the task is not assigned to the processor

our algorithm is checking. If yes, then we skip the current processor from the list and move

on to the next one. It saves us time checking for a free slot on the same processor as we want

to make sure that a task doesn’t execute on the same processor more than once. We check

for free slots2 on the processors. For duplicating a task or dependency, we check for certain

conditions (Algorithm 12), like if the estimate 3 completion time of the task is less than or

equal to the available slot size, and if the free slot’s starting point is greater than or equal

to it’s dependencies finish times. If this is true, then we duplicate the task or dependency

task to the current slot. Algorithm 13 finds the minimum completion/end time for a task in

the whole schedule. The algorithm determines the tasks minimum end time.

2A free slot is the idle time of processor’s schedule length between two tasks.
3which can be obtained by dividing the task length by the CPU performance factor.

45

Algorithm 11 Duplicate Task

1: procedure DuplicateTask(BestChromosome)
2: Tasks ← BestChromsome.Tasks
3: Processors ← BestChromsome.Processors
4: for each Task in Tasks do
5: for each Dependency in Task.dependencies do
6: duplicated ← FALSE and k ← 0
7: while (!duplicated) AND k < processors.size() do
8: processor ← processors.get(k)
9: if processor.id = Dependency.assignedProcessorId then

10: k++
11: CONTINUE . Skips the processor if task is already assigned to it.
12: end if
13: estExecTime = (Dependency.length/processor.performance)
14: for each freeSlot in processor.freeSlots do
15: if IsEligible(processor,dependency,freeSlot) then . See Algorithm 12
16: Duplicate Dependency on freeSlot on freeSlot
17: duplicated ← TRUE . This step will affect the processor’s queue

not Tasks List
18: end if
19: end for
20: end while
21: duplicated ← FALSE and k ← 0
22: while (!duplicated) AND k < (processors.size()) do
23: processor ← processors.get(k)
24: if processor.id = Task.assignedProcessorId then
25: k++
26: CONTINUE . Skips the processor if task is already assigned to it.
27: end if
28: estExecTime = (Task.length/processor.performance)
29: for each freeSlot in processor.freeSlots do
30: if IsEligible(processor,Task,freeSlot) then . See Algorithm 12
31: Duplicate Task on freeSlot on processor
32: duplicated ← TRUE
33: end if
34: end for
35: end while
36: end for
37: end for
38: return Processors

46

Algorithm 12 Algorithm to check eligibility of Task for duplication

1: procedure IsEligible(Processor, Task,freeSlot)
2: if Task can fit in freeSlot AND MaximumFinishT ime for Task.dependencies is
≤ freeSlot.Start AND Task.endTime ≥ freeSlot.start + estExecTime +processor.COH
AND Task.execTime ≥ estExecTime +processor.COH then

3: return TRUE
4: end if
5: return FALSE

Algorithm 13 Find Task with Minimum End Time

1: procedure FindMinimumEndTimeTask(Processors, TaskId)
2: int min=0
3: Task value=null
4: for each processor in Processors do
5: for each taskInQueue in processor.queue do
6: if taskInQueue.id = TaskId then
7: if min = 0 AND taskInQueue.endTime ¿ min then
8: min=taskInQueue.endTime
9: value=taskInQueue

10: else if min > 0 AND taskInQueue.endTime ¡ min then
11: min=taskInQueue.endTime
12: value=taskInQueue
13: end if
14: end if
15: end for
16: end for return value

47

Chapter 7

Evaluation

I used a master-slave layout of SIPS framework (see Chapter 3) to conduct my experi-

ments. The computing machines were naturally organized as distributed network, in which

the computing machines have CPUs with different speeds and/or architectures. Each node

also acts as master. However, only one master node schedules and distributes the tasks.

SIPS created a task graph using abstract syntax tree. This graph initially resides on a des-

ignated master processor or CPU. The master processor then splits the tasks and allocates

these tasks to slave processors, CPUs in the network. Slave processors execute the tasks and

allocate resources according to the nature of the task.

As mentioned there are three parts to my solution to provide better scheduling. The first

part is to collect information about the nodes and resources available in the system. This

was done using agents, explained in Chapter 4. The second part of the solution finds a better

schedule using a genetic algorithm (GA) while considering performance, the architecture of

the node, communication latency between nodes, nature of parallelism within each task and

inter-dependency between tasks, as explained in Chapter 5. The third part duplicates tasks

48

to minimize communication overhead, execution time and maximize hardware utilization,

explained in Chapter 6.

P0 P1 P2 Pn

Linux Machines

Gigabit Ethernet

P11P10

P1P0

P2P3

Internet

Figure 7.1: Experimental Setup

7.1 Infrastructure and Setup

For my experiments, I utilize the resources available in the Department of Computer

Science. I use machines available in the Linux lab. To simulate the resource exploration, I

use a remote machine (setup at my home) with 12 core processor. To serve the purpose of

49

the master node, I use the node named “eagle” from Linux lab.

7.2 Implementation

I used Java and SIPS(Serial Algorithms In Parallel System) framework for my implemen-

tation (Chapter 3). Being the core developer of SIPS gave me the advantage of tweaking its

crucial parts to gain more performance.

7.3 Evaluation

I conducted my experiments to schedule tasks in a heterogeneous1 system consisting of

multiple CPUs of different architectures (number of cores, number of threads, speed, cache

size etc). I evaluate the proposed scheduling technique using evaluating parameters discussed

below (as used in [13]).

1. Total Execution Time of Tasks is the time taken by all the tasks in one scheduling

to finish execution. It depends on the performance of processing elements.

2. Scheduling Overhead (SOH) is the time taken by the system in making decisions

to pair tasks with particular processing elements

3. Distribution Overhead (DOH) is time taken to distribute the tasks to the process-

ing elements.

4. Disk Cache Hit/Miss Ratio used to evaluate the re-usability of data on each node.

If nodes duplicate tasks on their local system, then fetching data to fulfill dependencies

1System is heterogeneous because nodes available in Linux lab had different CPU than Remote server,
other level of heterogeneity is introduced with varying performances of all the nodes.

50

becomes unnecessary and the local cache can be exploited to minimize communication

overhead and execution time.

5. Average CPU usage represents average system load in the last 1 minute, where 0.0

means very low or no system load and 1.0 or any number greater than 1.0 means high

system load. Higher number also means CPU is getting flooded with requests and

waiting time for processes is getting higher as CPU is being used by other processes

or subtasks. For each running subtask I keep track of this parameter and at the end

of the execution I calculate the average load on the during execution. Then for each

task I calculate the average system load collected for subtasks.

6. Average Sleep/Idle Time is the total time a task went into sleep during execution,

to fulfill the data dependencies.

For evaluation, I compare my technique on the basis of the parameters defined above

to different schedulers: [1] Chunk, Factoring, Guided Self Scheduler (GSS), Trapezoid Self

Scheduler (TSS), Quadratic Self Scheduler (QSS), and Genetic Algorithm(GA) for a set

of different processors for experiment 1 described in Chapter 8. For experiment 2, I only

compared Chunk, GA and my proposed technique Genetic Algorithm with Task Duplica-

tion (GATDS), since the Chunk scheduling was performing better than the other standard

schedulers.

51

Chapter 8

Experiments and Results

I conducted two experiments to analyze the advantages of the proposed scheduling tech-

nique. In the first experiment, I used SIPS’s parallel for loop to parallelize the multiplication

of two 1000x1000 matrices. This is a more data-parallel problem. I compared my proposed

scheduler with Chunk, Factoring , Guided Self Scheduling (GSS), Trapezoid self scheduling

(TSS), Quadratic Self Scheduling (QSS), and Genetic Algorithm (GA) alone. To test the

technique for problems with dependencies, in the second experiment, I considered merge-

sort. I used SIPS task to parallelize the sorting of 20 arrays of different sizes. The algorithm

for the second experiment performs sorting in multiple stages, by combining the results of

previous stage, which simulates the dependency problem with 39 tasks. As I am using shared

resources, I ran several iterations and averaged the results collected in the experiments.

8.1 Experiment 1 (Matrix Multiplication)

In this experiment, I exploit parallelism in the matrix multiplication problem. I use two

1000*1000 matrices in this experiment. I observed the performance of different schedulers in

52

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

5000

10000

15000

20000

25000

30000

35000

Execution Time

Chunk
Factoring
GSS

Total Nodes

T
im

e
 (

in
 m

s)

Figure 8.1: Experiment 1 - Execution time of
Chunk, Factoring and GSS

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

5000

10000

15000

20000

25000

30000

35000

Execution Time

Chunk
TSS
QSS

Total Nodes

T
im

e
 (

in
 m

s)

Figure 8.2: Experiment 1 - Execution time of
Chunk, TSS and QSS

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

5000

10000

15000

20000

25000

30000

35000

Execution Time

Chunk
GA
GA-TDS

Total Nodes

T
im

e
 (

in
 m

s)

Figure 8.3: Experiment 1 - Execution time of
Chunk, GA and GATDS

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

2000

4000

6000

8000

10000

12000

14000

16000

Avg Network Overhead

Chunk
Factoring
GSS

No of Nodes

T
im

e
 (

in
 m

s)

Figure 8.4: Experiment 1 - Average Network
Overhead of Chunk, Factoring and GSS

terms of execution time, communication overhead (also referred as network overhead), disk

cache hit-miss ratio, average sleep/idle time , average upload speed, and average CPU load.

To present the data in a clean way, I divided the graph of each result into three groups. The

three groups are Chunk, Factoring, GSS and Chunk, TSS, QSS and Chunk, GA , GATDS. As

can be seen Chunk is common in all. The reason behind is that results produced by Kumar

et al [1] reflect that Chunk performs best, which I also found true in my initial experiments.

So my target is to check the performance of GA and GATDS against the Chunk scheduler.

But in this experiment I have also included the data I collected for other schedulers and

their performance comparison against Chunk for completeness.

53

Figures 8.1, 8.2 and 8.3 show execution time of the sample problem on different schedulers.

From Figure 8.1 it can be noticed that Chunk outperforms Factoring and GSS scheduler. In

figure 8.2 TSS and QSS does beat Chunk in some cases, but Chunk performs better in 11

out of 20 cases, with the only major drop in the performance is when I schedule the problem

for 19 and 20 nodes. But that drop of performance can also be observed for TSS and QSS

with respect to their overall performance. Chunk and QSS perform consistently which TSS

does not. The reason behind this unexpected behaviour I believe originates from the shared

network and systems. But, a separate study was conducted via running this experiment

using a completely dedicated system. It was found that overall TSS beats the performance

of QSS in 45% of the cases and improves when more nodes are added. From these results it

can be concluded that TSS does perform better than QSS.

For the GA scheduler in this experiment, it was necessary to provide a weight (length)

to tasks. While all the other schedulers divide problems into smaller tasks, GA has no

predefined method of doing so. To tackle this issue, I have used TSS to split the problem

into smaller tasks and then schedule them using the techniques proposed in this thesis. Also

as explained in Chapter 6, GATDS depends on the output of GA for the best schedule

length, so GATDS schedules the tasks divided by TSS via GA. By comparing the results,

GA overall beats or matches the performance of Chunk, but for the higher number of nodes

(i.e. 13 and above) GATDS does better or stays marginally behind GA in the case of nodes

18, 19 and 20.

Figures 8.4, 8.5 and 8.6 show the average network/communication overhead, which is

time represented in milliseconds spent sending or receiving data. Figures 8.7, 8.8 and 8.9

present the average CPU load during execution of tasks on the given number of nodes. CPU

load directly reflects the over utilization or under utilization of the CPU resources. It was

54

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Avg Network Overhead

Chunk
TSS
QSS

No of Nodes

T
im

e
(in

 m
s)

Figure 8.5: Experiment 1 - Average Network
Overhead of Chunk, TSS and QSS

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Avg Network Overhead

Chunk
GA
GA-TDS

No of Nodes

T
im

e
 (

in
 m

s)

Figure 8.6: Experiment 1 - Average Network
Overhead of Chunk, GA and GATDS

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

0.1

0.2

0.3

0.4

0.5

0.6

Average CPU Usage

Chunk
Factoring
GSS

Total Nodes

A
ve

ra
g

e
 L

o
a

d

Figure 8.7: Experiment 1 - Average CPU load
of Chunk, Factoring and GSS

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Average CPU Usage

Chunk
TSS
QSS

Total Nodes

A
ve

ra
g

e
 L

o
a

d

Figure 8.8: Experiment 1 - Average CPU load
of Chunk, TSS and QSS

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Average CPU Usage

Chunk
GA
GA-TDS

Total Nodes

A
ve

ra
g

e
 L

o
a

d

Figure 8.9: Experiment 1 - Average CPU load
of Chunk, GA and GATDS

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

500

1000

1500

2000

2500

3000

3500

Average Sleep Time

Chunk
Factoring
GSS

No of Nodes

T
im

e
 (

in
 m

s)

Figure 8.10: Experiment 1 - Average Sleep/i-
dle time of Chunk, Factoring and GSS

55

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

500

1000

1500

2000

2500

3000

3500

4000

Average Sleep Time

Chunk
TSS
QSS

No of Nodes

T
im

e
 (

in
 m

s)

Figure 8.11: Experiment 1 - Average Sleep/i-
dle time of Chunk, TSS and QSS

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

500

1000

1500

2000

2500

3000

3500

Average Sleep Time

Chunk
GA
GA-TDS

No of Nodes

T
im

e
 in

 m
s

Figure 8.12: Experiment 1 - Average Sleep/i-
dle time of Chunk, GA and GATDS

observed that CPU load crossed 0.6 while computer’s responsiveness dropped. So for the

experiments here any value more than 0.6 is over-utilization/flooding the CPU and lower

values means under-utilization.

Average sleep/idle time is presented in Figures 8.10, 8.11 and 8.12. It can be defined as

the sum of time taken when task is waiting for file request to be fulfilled and/or waiting in

queue before execution. By comparing the related figures we can see that Factoring and GSS

sleep less than other schedulers. My proposed scheduler does perform better than Chunk

which I use as the de-facto comparison standard. GA does perform better than GATDS as

per this parameter, because distribution of number of tasks per node is better for GATDS

than GA.

Cache Hit-Miss ratio is represented in Figures 8.13, 8.14, and 8.15. All the schedulers

perform better than the Chunk scheduler in exploiting cache, because number of tasks allo-

cated to per node is higher for all other schedulers than Chunk scheduler. GSS and Factoring

does a great job of reusing the cache, as the number of tasks is directly proportional to the

number of nodes in the system, which can also be observed from Figure 8.19. If the number

of chunks distributed by every scheduler is compared with their corresponding cache hit-

56

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

0.5

1

1.5

2

2.5

3

Cache Hit:Miss Ratio

Chunk

Factoring

GSS

Total Nodes

R
at

io

Figure 8.13: Experiment 1 - Average Cache
Hit-Miss Ratio of Chunk, Factoring and GSS

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

0.5

1

1.5

2

2.5

3

3.5

Cache Hit:Miss Ratio

Chunk
TSS
QSS

Total Nodes

R
at

io

Figure 8.14: Experiment 1 - Average Cache
Hit-Miss Ratio of Chunk, TSS and QSS

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

0.5

1

1.5

2

2.5

3

Cache Hit:Miss Ratio

Chunk
GA
GA-TDS

Total Nodes

R
at

io

Figure 8.15: Experiment 1 - Average Cache
Hit-Miss Ratio of Chunk, GA and GATDS

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

10000000

20000000

30000000

40000000

50000000

60000000

70000000

Average Upload Speed/Node

Chunk
Factoring
GSS

Total Nodes

S
p

e
e

d
 in

 B
yt

e
s/

S
ec

Figure 8.16: Experiment 1 - Average Upload
Speed with Chunk, Factoring and GSS

miss ratio, GA and GATDS does a good job of exploiting cache, similar to TSS. The reason

behind their similar performance is that they all use same kind of task sizes. The blips for

GA with nodes 13, 15 and 16 is because GA allocated more tasks to same nodes.

Figure 8.19 represents the number of chunks/tasks distributed with respect to number

of nodes. And Figure 8.20 presents the number of duplicate chunks created by GATDS.

As the sample problem used in this experiment is data parallel and there are no inter-

dependencies between tasks/chunks GATDS only creates duplicates where tasks of a schedule

length on the same processor have gaps between them. So in this case, the gaps are due to

high communication latency between nodes. That is another reason for the relatively poor

57

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

10000000

20000000

30000000

40000000

50000000

60000000

Average Upload Speed/Node

Chunk
TSS
QSS

Total Nodes

S
p

e
e

d
 in

 B
yt

e
s/

S
ec

Figure 8.17: Experiment 1 - Average Upload
Speed with Chunk, TSS and QSS

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

10000000

20000000

30000000

40000000

50000000

60000000

Average Upload Speed/Node

Chunk
GA
GA-TDS

Total Nodes

S
p

e
e

d
 in

 B
yt

e
s/

S
ec

Figure 8.18: Experiment 1 - Average Upload
Speed with Chunk, GA and GATDS

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

10

20

30

40

50

60

70

80

90

100

Number of Chunks Distributed

Chunk
Factoring
GSS
TSS
QSS
GA
GA-TDS

Total Nodes

N
o

 O
f

C
h

u
n

ks

Figure 8.19: Experiment 1 - Number of Dis-
tributed Chunks/Tasks

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

0.5

1

1.5

2

2.5

3

3.5

Duplicates Generated By GATDS

GATDS

Total Nodes

N
u

m
b

e
r

o
f

D
u

p
lic

a
te

s

Figure 8.20: Experiment 1 - Number of Du-
plicates Chunks/tasks created by GATDS

performance of GATDS in terms of execution time in some cases. Looking at Figures 8.20 and

8.3 it seems that GATDS couldn’t reap the benefits of duplication in Matrix Multiplication

problem as expected. Thus, overall GATDS gave the same performance as GA (as with

duplication part both are the same), and gave better performance than Chunk in terms of

execution time, better CPU utilization and cache exploitation.

Scheduling Overhead (SOH) for Factoring and GSS is less than Chunk scheduler in most

of the cases, when number of nodes were 9 or more, as shown in Figures 8.21,8.22 and 8.23.

As the number of nodes increase, scheduling overhead for the Chunk Scheduler increases,

whereas almost consistent for Factoring and GSS (Figure 8.21). It remains the same for

58

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

2

4

6

8

10

12

Scheduling Overhead

Chunk
Factoring
GSS

Total Nodes

T
im

e
 (

in
 m

s)

Figure 8.21: Experiment 1 - Scheduling Over-
head with Chunk. Factoring and GSS

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

2

4

6

8

10

12

Scheduling Overhead

Chunk
TSS
QSS

Total Nodes

T
im

e
 (

in
 m

s)

Figure 8.22: Experiment 1 - Scheduling Over-
head with Chunk, TSS and QSS

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

5

10

15

20

25

30

35

40

45

Scheduling Overhead

Chunk
GA
GA-TDS

Total Nodes

T
im

e
 (

in
 m

s)

Figure 8.23: Experiment 1 - Scheduling Over-
head with Chunk, GA and GATDS

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

500

1000

1500

2000

2500

3000

3500

4000

Distribution Overhead

Chunk
Factoring
GSS

Total Nodes

T
im

e
 (

in
 m

s)

Figure 8.24: Experiment 1 - Distribution
Overhead with Chunk, Factoring and GSS

TSS and QSS when compared to SOH with the Chunk scheduler. TSS and QSS take less

time than chunk and perform consistently, with exceptions only for QSS when the number

of nodes were 2 and 13 (see Figure 8.22). Inconsistencies for Chunk scheduler in terms of

SOH were due to varying load on the master node. As we can see from Figure 8.23, GA and

GATDS do not perform as well in comparison to the Chunk scheduler in terms of Scheduling

Overhead, as they execute multiple stages in multiple iterations to pair tasks with the best

possible nodes in such a way to keep schedule length at minimum.

Distribution Overhead (DOH) for Factoring and GSS is higher than the Chunk Scheduler

as they distribute more tasks than Chunk scheduler (From Figure 8.24 and 8.19). In Figure

59

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Distribution Overhead

Chunk
TSS
QSS

Total Nodes

T
im

e
 (

in
 m

s)

Figure 8.25: Experiment 1 - Distribution
Overhead with Chunk, TSS and QSS

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

500

1000

1500

2000

2500

3000

3500

Distribution Overhead

Chunk
GA
GA-TDS

Total Nodes

T
im

e
 (

in
 m

s)

Figure 8.26: Experiment 1 - Distribution
Overhead with Chunk, GA and GATDS

8.25 for TSS and QSS, DOH increases, as the number of tasks increases with the number

of nodes (see Figure 8.19). DOH for GA and GATDS fluctuated for nodes 2 to 10, 1 and

GA and GATDS did perform better than Chunk for the rest of the experiments. The reason

behind this change in values could be the change in network load during the experiments.

8.2 Experiment 2 (Merge Sort)

In the second experiment, I used Merge Sort as the sample problem. In this problem I use

20 randomly generated arrays, sort them, merge the sorted arrays in pairs then again sort the

merged arrays. This is repeated until one big sorted array is obtained. I used SIPSTask to

divide this problem into sub-problems, which resulted in 39 (sub)tasks (called SIPSTasks).

I assigned a weight (length) to each task as per the size of the arrays by using the API of

SIPS framework. I used Chunk and GA schedulers to compare results with the my GA-TDS

technique, as these two gave the best performance results in the previous experiment.

Figure 8.27 shows the execution time of the Job when I use the different schedulers. As

1As per my observation, The reason behind this is the shared or busy network resources. Even after
multiple iterations it was difficult to correct this issue. To keep the error margin at minimum the average
distribution overhead of multiple iterations was observed.

60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

50000

100000

150000

200000

250000

300000

350000

Execution Time

Chunk
GA
GA-TDS

Total Nodes

T
im

e
in

 m
s

Figure 8.27: Experiment 2 - Execution Time
with Chunk, GA and GATDS

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

Execution Time

Chunk
GA
GA-TDS

Total Nodes

T
im

e
 in

 m
s

Figure 8.28: Experiment 2 - Execution Time
with Chunk, GA and GATDS (without node
1)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Avg Network Overhead

Chunk
GA
GA-TDS

No of Nodes

T
im

e
 in

 m
s

Figure 8.29: Experiment 2 - Average Network
Overhead with Chunk, GA and GATDS

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Average CPU Usage

Chunk
GA
GA-TDS

Total Nodes

A
ve

ra
g

e
 L

o
a

d

Figure 8.30: Experiment 2 - Average CPU
usage/load Chunk, GA and GATDS

can be seen, it is difficult to interpret the data from Figure 8.27 clearly, because of the high

difference between mean value and maximum value in the graph. So I have presented the

data again after eliminating the value for node 1 in Figure 8.28, which represents the data

more clearly. As can be seen from Figure 8.28, my GA-TDS technique beats or matches the

performance of Chunk and GA in more than 75 % of the cases. GA and chunk gave virtually

identical performance in most of the cases.

Figure 8.29 shows the average time spent on communication over the network. The reason

behind the higher values for GATDS is because of the higher number of duplicate tasks (see

61

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Average Sleep Time

Chunk
GA
GA-TDS

No of Nodes

T
im

e
 in

 m
s

Figure 8.31: Experiment 2 - Average Sleep
Time Chunk, GA and GATDS

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cache Hit:Miss Ratio

Chunk
GA
GA-TDS

Total Nodes

R
a

tio

Figure 8.32: Experiment 2 - Average Cache
Hit-Miss ratio with Chunk, GA and GATDS

Figure 8.35). Because of the higher number of tasks running in parallel and requesting for

file/data transfer the average communication overhead is high.

Figure 8.30, represents the average CPU usage. From this figure and the reduction in

total execution time, it can be deduced that GATDS does a better job at resource utiliza-

tion than the other two. The reason why the results for GATDS lies between GA and the

Chunk scheduler is that, Chunk scheduler tries to divide tasks equally and big tasks con-

sume all the available resources without letting other tasks use the resources resulting in

high CPU load. While GA tries to match the best resources for the task execution, because

as it allocates more capable resources for execution it could result in low resource utilization.

GATDS duplicates the same tasks and tries to take advantage of hardware level paralleliza-

tion (multicore and multithreading), thus resulting in adequate level of hardware utilization

with minimal execution time.

Figure 8.31 shows the average sleep time for tasks. GATDS tasks wait more than GA

and Chunk tasks, as the number of tasks is almost double of that other scheduler’s tasks

(From Figure 8.35 and number of predefined tasks) in some cases. It can be observed from

Figure 8.32, that GATDS does a better job of exploit caching than Chunk and GA, as the

62

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

20

40

60

80

100

120

140

Scheduling overhead

Chunk
GA
GA-TDS

Total Nodes

T
im

e
 in

 m
s

Figure 8.33: Experiment 2 - Scheduling Over-
head with Chunk, GA and GATDS

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

5000

10000

15000

20000

25000

30000

35000

40000

45000

Distribution overhead

Chunk
GA
GATDS

Total Nodes

T
im

e
 in

 m
s

Figure 8.34: Experiment 2 - Distribution
Overhead with Chunk, GA and GATDS

number of tasks distributed by GATDS is higher and the results of other tasks were locally

available to successor tasks.

Figure 8.33 shows the scheduling overhead of all the schedulers. The scheduling overhead

for Chunk is very low as it just pairs the tasks with the best possible nodes evenly. Whereas

the values for GA and GATDS vary and are higher than Chunk. This is because GA

performs multiple iterations to find the best schedule length and GATDS (additionally)

follows a brute force approach to find slots in which duplicates tasks. In Figure 8.34, the

distribution overhead for Chunk and GA remains same as number of tasks were constant,

whereas GATDS distributes some extra tasks (because of duplication), thus takes extra times

to send those tasks and related data to the assigned nodes. I observed network latency also

plays a very huge role here.

Figure 8.35, presents the number of duplicate tasks generated by GATDS. GATDS as

mentioned in Chapter 6, duplicates the tasks in the free slots available between tasks on

processors. From the graph we can observe that with the increase in the number of nodes,

the number of duplicates also increases, which i believe is because of the communication

latency between nodes give rise to the number of free slots between tasks on processors.

63

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0

5

10

15

20

25

30

35

40

45

Duplicates generated by GATDS

GATDS

Total Nodes

N
u

m
b

e
r

o
f

D
u

p
lic

a
te

s

Figure 8.35: Experiment 2 - Number of Du-
plicates created by GATDS

8.3 Summary

In summary, the experiments indicate that for data parallel problems such as Experi-

ment 1, GATDS performance is comparable to genetic algorithm. In these problems there

is no task dependency and the communication latency is not a hindrance. Task duplication

causes negative performance in these problems for higher numbers of processors. However,

for problems with inter-dependent tasks such as Experiment 2, GATDS improves the per-

formance and is better than GA. Task duplication allows processors to execute other tasks

instead of idling and reduces communication latency between the processors. The execution

time is thereby reduced.

64

Chapter 9

Conclusion

In conclusion, this thesis proposed a scheduling strategy that uses agents to collect in-

formation about the network, a genetic algorithm to determine a good schedule to map

the tasks on to the network machines and use of the task duplication scheme to further im-

prove the scheduling to increase reliability and minimize communication between processors.

The SIPS (Serial Algorithms In Parallel System) framework was used to exploit parallelism

using abstract syntax trees generated directly from the source code. The proposed schedul-

ing strategy, Genetic Algorithm with Task Duplication Startergy (GATDS) was tested on

two problems, one task-independent and other task-dependent. GATDS performs better for

task-dependent problems such as merge-sort compared to a pure genetic algorithm.

Future Work: A separate study could be conducted to further study the overheads

mentioned in this thesis. I also believe that GATDS can be improved further by exploiting

parallelization within the technique or finding a better way to duplicate tasks. As mentioned

in Chapter 2, parallel scheduling algorithms already exist, thus it will also be interesting to see

if we can minimize scheduling overhead for GA and GATDS by parallelizing their execution.

65

Currently, SIPS does not support GPU execution. One other area of future research would

be to widen the usability of the SIPS framework to accelerators. I also believe that my results

were affected by the shared usage of the available resources. By conducting the experiments

in controlled and dedicated environment, i expect to generate different results than the ones

i have presented in this thesis.

66

Appendix A

Source Code

All the code we have used in our experiments are hosted on Github. All the source code

is available under GNU GPL License v3. Below are the links to the corresponding modules.

SIPS-samples: https://github.com/deepsidhu1313/SIPS-samples

SIPS-lib: https://github.com/deepsidhu1313/SIPS-lib

SIPS-Schedulers: https://github.com/deepsidhu1313/SIPS-Schedulers

SIPS-Node: https://github.com/deepsidhu1313/SIPS-Node

SIPS-Run: https://github.com/deepsidhu1313/SIPS-Run

A.1 Sample Manifest File

// sample mani f e s t . j s on

{

”PROJECT” : ”MatMul” ,

”ARGS” : [] ,

”LIB ” : [” SIPS−l i b −0.2−SNAPSHOT−j a r−with−dependenc ies . j a r ”] ,

67

”OUTPUTFREQUENCY” : 100 ,

”JVMARGS” : [] ,

”SCHEDULER” : {

”MaxNodes ” : ”4” ,

”Name” : ” in . co . s13 . s i p s . s c h e d u l e r s . Chunk”

} ,

”MASTER” : {

”HOST” : ” 1 2 7 . 0 . 0 . 1 ” ,

”API−PORT” : ”13139” ,

”JOB−PORT” : ”13136” ,

”API−KEY” : ” f f21930e−2f22−4d57−8ca8−0e1b0d4b4e31 ” ,

} ,

”MAIN” : ”MatMul” ,

”ATTCH” : []

}

68

Bibliography

[1] A. Kumar, H. Singh, and N. Singh, “Sips: A framework to run serial algorithms in par-

allel systems using abstract syntax tree,” International Journal of Applied Engineering

Research, vol. 13, no. 8, pp. 6165–6176, 2018.

[2] N. Singh, “Framework for implementing serial algorithms in parallel system using ab-

stract syntax tree,” Master’s thesis, Department of Computer Science,Guru Nanak Dev

University, Amritsar, Punjab, India, 2014.

[3] M. Daga, A. M. Aji, and W. chun Feng, “On the efficacy of a fused CPU+GPU processor

(or apu) for parallel computing,” in Symp on Appl. Accelerators in HPC, July 2011.

[4] K. Nilakant and E. Yoneki, “On the efficacy of apus for heterogeneous graph computa-

tion,” in Fourth Workshop on Systems for Future Multicore Architectures, Amsterdam,

Netherlands, 2014.

[5] E. Nurvitadhi, G. Venkatesh, J. Sim, D. Marr, R. Huang, J. Ong Gee Hock, Y. T.

Liew, K. Srivatsan, D. Moss, S. Subhaschandra et al., “Can fpgas beat gpus in acceler-

ating next-generation deep neural networks?” in Proceedings of the 2017 ACM/SIGDA

International Symposium on Field-Programmable Gate Arrays. ACM, 2017, pp. 5–14.

[6] A. Y. Zomaya, C. Ward, and B. Macey, “Genetic scheduling for parallel processor

69

systems: comparative studies and performance issues,” IEEE Transactions on Parallel

and Distributed systems, vol. 10, no. 8, pp. 795–812, 1999.

[7] S. Ranaweera and D. P. Agrawal, “A task duplication based scheduling algorithm for

heterogeneous systems,” in Proceedings of the 14th International Parallel and Dis-

tributed Processing Symposium (IPDPS). Cancun, Mexico: IEEE, May 2000, pp.

445–450.

[8] D. J. Lilja, “Exploiting the parallelism available in loops,” Computer, vol. 27, no. 2, pp.

13–26, 1994.

[9] J. Diaz, S. Reyes, A. Nino, and C. Munoz-Caro, “A quadratic self-scheduling algorithm

for heterogeneous distributed computing systems,” in Cluster Computing, 2006 IEEE

International Conference on. IEEE, 2006, pp. 1–8.

[10] M. Aggarwal, R. D. Kent, and A. Ngom, “Genetic algorithm based scheduler for com-

putational grids,” in 19th International Symposium on High Performance Computing

Systems and Applications. IEEE, May 2005, pp. 209–215.

[11] J. Sun, X. Dong, X. Zhang, and Y. Wang, “An availability approached task scheduling

algorithm in heterogeneous fault-tolerant system,” in 9th IEEE International Confer-

ence on Networking, Architecture, and Storage (NAS). Tianjin, China: IEEE, August

2014, pp. 275–280.

[12] K. J. Naik and N. Satyanarayana, “A novel fault-tolerant task scheduling algorithm

for computational grids,” in 15th International Conference on Advanced Computing

Technologies. Newboyanapalli, Rajampet, India: IEEE, September 2013, pp. 1–6.

70

[13] Y.-K. Kwok and I. Ahmad, “Dynamic critical-path scheduling: An effective technique

for allocating task graphs to multiprocessors,” IEEE transactions on Parallel and Dis-

tributed Systems, vol. 7, no. 5, pp. 506–521, 1996.

[14] ——, “Benchmarking and comparison of the task graph scheduling algorithms,” Journal

of Parallel and Distributed Computing, vol. 59, no. 3, pp. 381–422, 1999.

[15] I. Ahmad, Y.-K. Kwok, and M.-Y. Wu, “Analysis, evaluation, and comparison of algo-

rithms for scheduling task graphs on parallel processors,” in Proceedings of the Second

International Symposium on Parallel Architectures, Algorithms, and Networks. Beijing,

China: IEEE, June 1996, pp. 207–213.

[16] H. Oh and S. Ha, “A static scheduling heuristic for heterogeneous processors,” in Eu-

ropean Conference on Parallel Processing. Lyon, France: Springer, August 1996, pp.

573–577.

[17] J. V. Lima, T. Gautier, V. Danjean, B. Raffin, and N. Maillard, “Design and analysis of

scheduling strategies for multi-cpu and multi-gpu architectures,” Parallel Computing,

vol. 44, pp. 37–52, 2015.

[18] H. Topcuoglu, S. Hariri, and M.-y. Wu, “Performance-effective and low-complexity task

scheduling for heterogeneous computing,” IEEE transactions on parallel and distributed

systems, vol. 13, no. 3, pp. 260–274, 2002.

[19] J. V. F. Lima, T. Gautier, N. Maillard, and V. Danjean, “Exploiting concurrent gpu

operations for efficient work stealing on multi-gpus,” in 2012 IEEE 24th International

Symposium on Computer Architecture and High Performance Computing, Oct 2012, pp.

75–82.

71

[20] O. Beaumont, L. Eyraud-Dubois, A. Guermouche, and T. Lambert, “Comparison of

static and dynamic resource allocation strategies for matrix multiplication,” in 26th

IEEE International Symposium on Computer Architecture and High Performance Com-

puting (SBAC-PAD). Paris, France: IEEE, May 2015.

[21] Y. Zhang, A. Sivasubramaniam, J. Moreira, and H. Franke, “Impact of workload and

system parameters on next generation cluster scheduling mechanisms,” IEEE Transac-

tions on Parallel and Distributed Systems, vol. 12, no. 9, pp. 967–985, 2001.

[22] I. Ahmad, Y.-K. Kwok, M.-Y. Wu, and W. Shu, “Automatic parallelization and schedul-

ing of programs on multiprocessors using casch,” in Proceedings of the 1997 Interna-

tional Conference on Parallel Processing. Yaroslavl, Russia: IEEE, September 1997,

pp. 288–291.

[23] A. Sohn and H. Simon, “Jove: A dynamic load balancing framework for adaptive com-

putations on an sp-2 distributed memory multiprocessor,” in Technical Report, New

Jersey, USA, 1994.

[24] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier, “Starpu: a unified plat-

form for task scheduling on heterogeneous multicore architectures,” Concurrency and

Computation: Practice and Experience, vol. 23, no. 2, pp. 187–198, 2011.

[25] C. Augonnet, J. Clet-Ortega, S. Thibault, and R. Namyst, “Data-aware task schedul-

ing on multi-accelerator based platforms,” in IEEE 16th International Conference on

Parallel and Distributed Systems (ICPADS). Shanghai, China: IEEE, December 2010,

pp. 291–298.

[26] L. Cohen. (2018) Jppf. [Online]. Available: http://jppf.org

72

http://jppf.org

[27] M. K. Dhodhi and I. Ahmad, “A multiprocessor scheduling scheme using problem-space

genetic algorithms,” in IEEE International Conference on Evolutionary Computation,

vol. 1. Perth, Western Australia: IEEE, December 1995, p. 214.

[28] T. Yang and A. Gerasoulis, “List scheduling with and without communication delays,”

Parallel Computing, vol. 19, no. 12, pp. 1321–1344, 1993.

[29] M. A. Palis, J.-C. Liou, and D. S. L. Wei, “Task clustering and scheduling for distributed

memory parallel architectures,” IEEE Transactions on Parallel and Distributed Systems,

vol. 7, no. 1, pp. 46–55, 1996.

[30] M. Bohler, F. W. Moore, and Y. Pan, “Improved multiprocessor task scheduling using

genetic algorithms.” in FLAIRS Conference, Orlando, Florida, July 1999, pp. 140–146.

[31] S. Kim and J. B. Weissman, “A genetic algorithm based approach for scheduling de-

composable data grid applications,” in International Conference on Parallel Processing.

Montreal, Quebec, Canada: IEEE, August 2004, pp. 406–413.

[32] A. J. Page, T. M. Keane, and T. J. Naughton, “Multi-heuristic dynamic task allocation

using genetic algorithms in a heterogeneous distributed system,” Journal of parallel and

distributed computing, vol. 70, no. 7, pp. 758–766, 2010.

[33] F. Pinel, B. Dorronsoro, and P. Bouvry, “Solving very large instances of the scheduling of

independent tasks problem on the gpu,” Journal of Parallel and Distributed Computing,

vol. 73, no. 1, pp. 101–110, 2013.

[34] S. Solomon, P. Thulasiraman, and R. Thulasiram, “Collaborative multi-swarm pso for

task matching using graphics processing units,” in Proceedings of the 13th annual con-

73

ference on Genetic and evolutionary computation. Dublin, Ireland: ACM, July 2011,

pp. 1563–1570.

[35] M. S. Sidhu, P. Thulasiraman, and R. K. Thulasiram, “A load-rebalance pso heuristic

for task matching in heterogeneous computing systems,” in IEEE Symposium on Swarm

Intelligence (SIS). Singapore: IEEE, April 2013, pp. 180–187.

[36] A. A. Beegom and M. Rajasree, “A particle swarm optimization based pareto optimal

task scheduling in cloud computing,” in International Conference on Swarm Intelligence.

China: Springer, October 2014, pp. 79–86.

[37] F. Song and J. Dongarra, “A scalable framework for heterogeneous gpu-based clusters,”

in Proceedings of the twenty-fourth annual ACM symposium on Parallelism in algorithms

and architectures. USA: ACM, June 2012, pp. 91–100.

[38] M. Dorigo and T. Stützle, “The ant colony optimization metaheuristic: Algorithms,

applications, and advances,” in Handbook of metaheuristics. Springer, 2003, pp. 250–

285.

[39] Z. Jin, Z. Yang, and T. Ito, “Metaheuristic algorithms for the multistage hybrid flowshop

scheduling problem,” International Journal of Production Economics, vol. 100, no. 2,

pp. 322–334, 2006.

[40] T. Liao, T. Stützle, M. A. M. de Oca, and M. Dorigo, “A unified ant colony optimization

algorithm for continuous optimization,” European Journal of Operational Research, vol.

234, no. 3, pp. 597–609, 2014.

[41] G. Singh, “Job Scheduling In Parallel Computing using Task Duplication Technique,”

74

Master’s thesis, Department of Computer Science,Guru Nanak Dev University, Amrit-

sar, Punjab, India, 2015.

[42] J. Bruno, E. G. Coffman Jr, and R. Sethi, “Scheduling independent tasks to reduce

mean finishing time,” Communications of the ACM, vol. 17, no. 7, pp. 382–387, 1974.

[43] J. B lazewicz, J. Weglarz, and M. Drabowski, “Scheduling independent 2-processor tasks

to minimize schedule length,” Information Processing Letters, vol. 18, no. 5, pp. 267–

273, 1984.

[44] R. L. Sri and N. Balaji, “Meta-heuristic hybrid dynamic task scheduling in heteroge-

neous computing environment,” in International Conference on Computer Communi-

cation and Informatics (ICCCI). Tamil Nadu, India: IEEE, January 2013, pp. 1–6.

[45] S. A. Kazarlis, A. Bakirtzis, and V. Petridis, “A genetic algorithm solution to the unit

commitment problem,” IEEE transactions on power systems, vol. 11, no. 1, pp. 83–92,

1996.

75

	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgments
	Dedication
	Introduction
	Introduction
	Thesis Organization

	Literature Review
	SIPS Framework
	Code Hierarchy
	Programming Syntax
	Role of Abstract Syntax Tree(s) (AST(s))
	Execution of Job
	Execution Modules
	SIPS-Run
	Master
	Slave

	Supported Layouts
	Cache Exploitation
	Cache hierarchy
	Cache Implementation and Exception

	Using Agents to Locate Resources
	Genetic Algorithm for Scheduling
	Task Duplication Strategy for Scheduling
	Evaluation
	Infrastructure and Setup
	Implementation
	Evaluation

	Experiments and Results
	Experiment 1 (Matrix Multiplication)
	Experiment 2 (Merge Sort)
	Summary

	Conclusion
	Source Code
	Sample Manifest File

	Bibliography

