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.A.tsSTR.ACT'

The main objective of this thesis is to provide an exact solution to the problem of

scattering of electromagnetic waves by spheroids of arbitrary orientation. The solution

is obtained in general for the case of n dieiectric spheroids of arbitrary orientation, by

expanding the i¡cident, scattered, and transmitted electromagnetic fields in terms of

appropriate vector spheroidal eigenfunctions, the excitation being a monochromatic

uniform plane electromagnetic wave of arbitrary polarization and angle of incidence.

The boundary conditions at the surface of a given spheroid are imposed by using the

rotational-translational addition theorems for vector spheroidal wave functions d,erived

in this thesis, which transfer the outgoing waves from all the other spheroids, as

incoming waves to the spheroid under consideration. Imposing the boundary conditions

at the surfaces of each of the n spheroids leads to a set of algebraic equations, rhe

solution of which can be expressed in matrix form such that the column matrix of the

total transmitted and scattered field expansion coeffi.cients is equal to the product of a

system matrix, which is independent of the di¡ection and polarization of the incident

wave, and the column matrix of the known incident field expansion coefficients. This

special feature of the system matrix makes it possible to evaluate the unknown

transmitted and scattered field expansion coefficients for a new d.irection of incidence

and for a different polarization, without repeatedly solving a new set of algebraic equa-

tions. The formulation for the special case of n perfectly conducting spheroids of arbi-

trary orientation is then deduced from that of the corresponding case of n dielectric

spheroids. Numerical results are presented for the bistatic and backscattering cross sec-

tions for two prolate spheroids with various axial ratios, orientations, and a given
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dielectric constant. An approximate method is described in this thesis too, for calculat-

ing the far field scattering cross sections for scattering by two coaxial spheroids at

oblique incidence.

An analytic solution is aiso being obtained to the problem of electromagnetic cou-

pling benveen rwo spheroidal dipole antennas in arbitrary configuration, each antenna

being modeled by a very thin prolate spheroid which is centrally fed by a gap voltage.

The problem is then solved by imposing the boundary conditions at the surface of each

spheroidal antenna. Numerical results are presented for the mutual admittance of two

center-fed thin spheroidal dipoie antennas of arbitrary orientation, for various center

displacements. Also given are the far field patterns for systems of two dipole antennas.

in various configurations, with one dipole being parasitic.
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CF{APTER. I

INTR.OD{JCT'IOI\

L.i. Historical Survey and Applications

Solutions to problems in electromagnetic scattering have many important practical

applications in the fields of applied physics, acoustics, and electrical engineering. Dur-

ing the past few decades, an extensive amount of research has been done on elec-

tromagnetic wave scattering by regular shaped bodies such as cylinders, spheres, and

spheroids, as the effects due to scattering by real system objects can well be analyzed

by modeling these objects using one of the aforementioned bodies. The important

aspects of a scattering problem are the effects that a¡ise due to the presence of a given

object or a number of objects being in the path of a traveling wave. It is generally

assumed that the field for the source in isolation is known. The requirement then is to

find the redistribution of radiation arising from the presence of the objects. An exact

solution to the problem can be presented only if it involves objects having a regular

geometry. In this case, the method of solution is based on expanding the different

associated electromagnetic fields in terms of an appropriate set of vector eigenfunc-

tions. In this thesis, since we are interested only in scattering by spheroids, our con-

cern will be on spheroidal wave functions.

The first investigation of the spheroidal wave functions was made by Niven [1] in

1880 in order to treat a problem on the conduction of heat in spheroidal bodies, by

introducing series of Legendre functions for the spheroidal angle functions and series

of spherical Bessel functions for the spheroidal radial functions. In 1898, Maclaurin [2]

did a more extensive investigation with several applications, by introducing power
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series solutions for the spheroidal wave functions. The free oscillations of a prolate

spheroid was studied by Abraham [3] also in 1898, using integral representarions of

the spheroidal wave functions.

In 1941, Chu and Sratton [4] used the spheroidal wave functions they ded,uced to

solve the boundary value problem of the forced electromagnetic oscillations of a con-

ducting prolate spheroid which is fed by a gap of infinitesimal width across the central

section of the spheroid. Ryder [5] also carried out a similar analysis for the same prob-

lem, using the earlier work of Page and Adams [6]. The model of a prolate spheroidal

monopole antenna with a finite gap was treated by Flammer l7l by means of a varia-

tional approach. The radiation from a point electric dipole located ar the tip of a pro-_

late spheroid has been computed by Hatcher and Leitner [8]. The oblate spheroidal

wave functions have also been used in antenna problems. Leitner and Spence t9l cai-

culated the radiation from a quarter wavelength electric dipole situated axially over a

conducting circular disk, and Kloepfer [10] calculated the radiation from a disk

antenna with an infinitesimally narow, circular gap. The classical boundary value

problem of the diffraction of plane electromagnetic waves by a perfectly conducting

circular disk and by the complementary circular apernrre in a plane conducting screen

was solved by Flammer tlll using oblate spheroidal wave functions. Wait ll2l

analyzed electromagnetic radiation from spheroidal structures, using both prolate and

oblate spheroidal wave functions. The rapid development of computer facilities and

numerical techniques during the recent past have become the foundations for many

new approximate methods, which a¡e based on integral equation formulation or on the

volume integral and surface integral representations of the scattered fields obtained by

using Green's theorem and are applicable in general, for the analysis of



electromagnetic scattering by arbitrary shaped bodies, including spheroids.

A weli known method for solving problems in electromagnetics is the point

matching technique, in which the electric and magnetic fields associated with the prob-

lem are expanded in terrns of appropriate vector wave functions. The unknown

coefficients in the field expansions are obtained from the boundary conditions for

representative points on the surface of the scatterer. This method has been used by

several authors to investigate scattering by spheroida-l objecrs t13l-ti5l.

In 1965, 'Waterman 
[16] proposed a method for computing radar cross sections

and other associated field quantities for scattering of electromagnetic waves by a

smooth perfectly conducting obstacle. His method is essentially an integral equation-

formulation using Green's functions, and is known as the extended boundary condition

method. Warner and Hizal [17] used this method to study the scattering and depolari-

zation of microwaves by spheroidal raindrops. A modified form of this method was

used by Barber and Yeh t18l-t191 in investigating the differential scattering cha¡ac-

teristics of arbitra¡y shaped dielectric objects. The method proposed by Waterman

which deals with one object was extended by Peterson and Strom [20], to be applica-

ble for the case of several objects, and they used it in studying electromagnetic scatrer-

ing by an arbitrary number of bodies, and from multiiayered bodies [21].

For inhomogeneous and anisotropic media, the integral equation formulation is

not very suitable, as Green's functions for this case become very complicated in com-

parison to the same for a homogeneous isotropic case. Since the finite difference or

finite element equations are easily formulated, regardless of the complexity of the

medium, they are more attractive than the integral equations in inhomogeneous media.
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However, the large matrices obtained in this type of a formulation create a problem,

making it difficult to perform matrix inversion using the general merhods. The unimo-

ment method introduced by li4'ei l22l presents a, way of dealing with these marrices

efficiently. The method was used by Mei et. aI. 1231, to treat electromagneric scattering

from two bodies of arbitrary shape. Finally, for the analysis of very large systems

(consisting of say more than 100 scatterers), one can use the concepts of statistical

ensemble averaging 124l-1261, or lattice sum techniques [27].

X,.2 Exact Solutions for Scattering by Spheroids

In attempting exact solutions to the scattering probiems, we find that solving

problems associated with objects modeled by spheroids, is more difficult than solving

those modeled by spheres or cylinders, due to the compiex nature of the spheroidal

wave functions, which also makes the numerical computation of these functions much

more difficult. The very first attempt of obtaining a classical solution to rhe problem of

electromagnetic scattering by a spheroid involved solving of the scalar Helmholtz

equation

Y\+ka{=g (1.1)

in the spheroidal coordinate system. The solution results in the scala¡ spheroidal wave

function, in terms of which the different vector spheroidal wave functions a¡e defined

[28]. In [28] and [29] we find tables of numerical values for different spheroidal wave

functions, which are very usefui for comparative purposes.

In reviewing the literature, we find that there are quite a few publications on the

subject of obtaining an exact solution to the problem of scattering of electromagnetic

waves by a single spheroid, by expanding each of the fields associated in terms of
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appropriate vector spheroidal wave functions. Even though various applications of

spheroidal wave functions have been there since 1880, it is the work of Schultz [30] in

1950 that gave for the first time a formulation for obtaining an exact solution to the

problem of scattering of plane electromagnetic waves by a perfectly conducting prolate

spheroid for axial incidence. Based on Schultz's technique, Siegel et. ai. [31] carried

out quantitative calculations of the backscattering from a prolate spheroid, and have

given a curve which shows the variation of the backscattering cross section with the

size of the spheroid for a prolate spheroid of axial ratio 10. Senior [32] compared

these results with some experimental results obtained by him for the same case. Taylor

[33] also obtained an exact solution to electromagnetic scattering by a prolate spheroid

for broadside incidence and TM polarization of the incident wave, but has not

presented any numerical results.

An exact solution for the more general case of scattering of plane electromagnetic

waves by a conducting prolate spheroid for arbitrary polarization and angle of

incidence was given by Reitilinger 1341, but without any numerical results. There were

two major drawbacks in this solution. One was the necessity to repeat the process of

inverting matrices with changing direction of the incident wave. The other was the ina-

bility to use the same matrix to calculate the unknown coefficients in the series expan-

sion of the scattered field for both TE and TM polarizarions of the incident wave.

These two problems were eliminated in the work of Sinha and MacPhie [35], who also

presented numerical results in the fonn of plots of backscattering cross section versus

angle of incidence for prolate spheroids of axial ratio 1, 2, 10, and 100. An exact solu-

tion to the same problem was also given by Dalmas l36l-L371, but using a different

type of vector wave functions than in [35], for the expansion of the fields. Using the
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latter type of vector wave functions Asano and Yamamoto [38] presented an exact

solution to a similar problem involving a dielectric spheroid, and Sebak and Shafai

[39] obtained an anaiytic solution for electromagnetic scattering by a single spheroid

with impedance boundary conditions ar axial incidence.

Research on electromagnetic scattering by two spheroids is not as extensive as in

the case of a single spheroid due to the fact that the solution is now more complicated.

compared to that of scattering by a single spheroid, as the problem requires transfer-

ring of fields scattered by one of the spheroids as incoming fields to the other. For this

purpose either the translational addition theorems or the rotational-Íanslational addition

theorems for vector spheroidal wave functions are used, depending on the orientation_

of one spheroid with respect to the other. The above mentioned theorems have been

developed on the basis of the translational addition theorems for scalar sphericai wave

functions presented by Friedman and Russek [40], and the translational and rotational

addition theorems for vector spherical wave functions presented by Stein [41] and

Cruzan 142). The translational addition theorems for the scalar spheroidal wave

functions VnØ;€,n,Q) and vecror spheroidal wave functions M:ti,|Ø;Ë,r1,0) =

vVf)(h;\,q,þ)xa, rqf,f)fn;É,I,0)=k-1 VxMî,?fn;q,n,O) e=r,3,4), where ø is any

one of the Cartesian unit vectors t,$, or â, *e.e deduced by Sinha and MacPhie, and

these theorems have been used by them for the analysis of scattering of a plane elec-

tromagnetic wave by two spheroids with parailel major axes, and for deriving the

mutual admittance characteristics of a pair of spheroidal dipole antennas with parallel

major axes [43]-[45]. The same theorems were used by Cooray et. al. [46] for analyz-

ing plane wave scattering by two parallel dielectric spheroids. Analogous theorems for
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the vector wave functions in the case when a is the radial vector r were derived by

Dalmas and Deleuil, and these have also been used in solving the problem of scatter-

ing of electromagnetic waves by two parailel perfectly conducring spheroids t47l-t501.

The rotational addition theorem and the rotational-translational addition rheorems for

scala¡ spheroidal wave functions were given by MacPhie et. al. [51].

In this thesis we use the addition theorems for scalar spheroidal wave functions

[51] to derive the rotational-translational addition theorems for the vector spheroidal

wave functions Mff)1å;[,n,0) anA ruff)1ø;8,n,0) with ¿ =Í,!,2;i=1,2,3,4, as well as

tor t4i,(jl& ;\,t1,þ) anA ru!,!}, (å ; €,rl,Q) Q =7 ,2,3,4) when ø is the radial vecror r. We

also derive the same rheorems for the vector wave functions Mff)çå;E,r1,q¡ *d-

N*f)t¿;q,n,Q), which intervene in the solution of vector field. problems in the presence

of a system of two spheroids of arbitrary orientation. Then we use them to obtain

exact solutions to the problems of scattering of electromagnetic waves by two

spheroids of arbitrary orientation and electromagnetic coupling between two spheroidal

dipole antennas in arbitrary configuration. The coordinates Ç,r'¡,Q mentioned above a¡e

the spheroidal coordinates and h=kF, where È is the wavenumber of the time har-

monic fields and F is the semi-interfocal distance of the spheroidal surfaces €=const.

The vector wave functions W',1i,)fn;€,rl,Q) ana mff)1å;E,n,Q) are those defined in

Appendix A, having u rl@!t)Q Q-dependence, wirh ;=./ì.

n.3 Synopsis

In Chapter 2 we derive the rotational-translational addition theorems for vector

spheroidal wave functions Xff)(å;€,r1,0), x!,f,)çn;q,n,0), xL.9),*fn;€,rl,Q), where X is

either of the vector spheroidal wave function M or N, and also for vector spherical
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lvave functions rnff) and *#). S*-ple results of some numerical experiments per-

formed on the equations describing the rotational-translational addition theorems for

vector spheroidal wave functions are given at the end of the chapter. Next, using the

appropriate rotational-translational addition theorems for vector spheroidal wave func-

tions, we present in Chapter 3 the formulation and analysis for the general problem of

scattering of electromagnetic waves by n dielectric spheroids of arbitrary orientation.

The transformation of the electromagnetic fields scattered by one spheroid as incoming

to another, the imposing of the boundary conditions, and the derivation of the system

matrix a¡e discussed in detail. The solution of the problem of scatterin g by n perfectly

conducting spheroids is then deduced from the above solution for n dielectric

spheroids. The solutions for the special case n =2 are also given separately.

The numerical results that have been obtained by solving the problems of scarter-

ing by two perfectly conducting and by two dielectric spheroids of arbitrary orientation

are presented in Chapter 4. Since all the maffices associated with the solutions a¡e of

infinite dimensions, the criteria used for truncating these matrices are described in this

chapter, and the numerical results obtained in the form of plots of normalized bistatic

and backscattering cross sections for various axial ratios, orientations, and center-to-

center distances of the two spheroids are discussed. In Chapter 5, we describe an

approximate method for solving the problem of scattering of electromagnetic waves by

two coaxial spheroids at oblique incidence, based on the exact solurion to scattering by

a single spheroid, and present numerical results for the far field scattering cross sec-

tions.
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An exact solution to the problem of electromagnetic coupling between two

spheroidal dipole antennas in arbitrary configuration is obtained in Chapter 6, the for-

mulation being done on the basis of the equivalence principle and the rotationai-

translational addition theorems for vector spheroidal wave functions. Numerical results

are given in the form of plots of mutual admittance versus the separation between the

two dipole antennas and plots of E - and H - plane patterns for different orientations

of the two antennas, when one of them is parasitic. Finally, in Chapter 7 we present

the general conclusions and make some recommendations for future resea¡ch.
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CÉ{,APTER. 2

R.OT.4T'TON,4T,.TR.ANST..{TTON,4N. .{ÐÐrrTTN THEOR.EMS
F'OR. VECTOR. SPFTER,OIDAL WA\rE F'{JNCTIONS

In order to solve the problem of scattering of electromagnetic waves by n(>Z)

spheroids of arbitrary orientation, we require that the outgoing waves due to the fields

scattered by one spheroid, which are functions of the coordinate system attached to

that spheroid, be expressed as incoming waves to another spheroid in the coordinate

system anached to it. Since the scattered field is expressed as a series expansion in

terns of vector spheroidal wave functions, this requires rotationai-translational addition

theorems which express vector spheroidal wave functions of the third or fourth kind

(depending on whether the time dependence of the field quantities is e-i'' or ei^' ,

respectivelY,) in the outgoing system in terms of vector spheroidal wave functions of

the first kind in the incoming system. As the problem can be formulated by using

either vector spheroidal wave functions xff) and, xfi) or xi1"),*,, (where x is either

M or N), we fi¡st derive in Section 2.1 rhe rotational-translational addition theorems

for both types of vector spheroidal wave functions, even though we use only the

former type in our formulation. Next we deduce in Section 2.2 the translational addi-

tion theorems for these vector spheroidal wave functions, as a special case, and. f,nally

obtain the rotational-translational addition theorems for vector spherical wave functions

as another special case.

2.L Derivation of the Rotational-translationat Addition Theorems

In order to simplify the notation, without any loss of generality, consider only

two Cartesian reference frames (x,y,z) and (xiyiz') as shown in Fig. 2.i. A point p
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I

I
/ x,,

Fig.2.l Rotation and translation of the Cartesian system (x,y,z) to (x',y',2').
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has spheroidai coordinates Ç,r,Q and \',\',Q'associated with these two reference

frames, respectively. The system (xiyiz') is obøined from (x,y,z) by rotating the latter

to ({r,),,,2,,) which is parallel to (xlyiz') and then by a rransration. The origin o'of

(x',yiz') has spherica-t coordinates d,0¿,þ¿ with respect to the Cartesiar sysrem

(xr,!,, zu).

By using the rotational-translational addition theorems for scalar spheroidal wave

functions given in [51], the scala¡ spheroidal wave functions yfl(å;€,n,0) in the

unprimed system can be expressed as series expalsions in terms of scalar spheroidal

wave functions in the primed system as,

æV
It,](h;(,rl,Q)= E > G)eK(s,Þ,T;d)V[?C¿';\',Tt',þ'), r,1d; i=r,2,3,4 (z.I).

v=0 ¡r.=-y
æV

\+r|"(h; E,rl,0) = I >, p 
ffi (cr,Ê,y ; d) V,ÍJf ¿' ; E',.\,,þ,),

v-0 P=-Y

in which cr, Þ, Y are the Euler angles [52] that specify the rotation of the primed sysrem

with respect to the unprimed one, and (i)eï(cr,F,y;d) 
and, pffi(cr,0,y;d) a¡e the

rotational-translational expansion coefficients with G)eW(cr,F,T;d) 
=pW(cr,F,y;d),

defined in Appendix B. The unit vecrorr t,l,i, and,k',1',1,'ar" related by

a.=car,*.' + cor,þ' + cor,l,', o=*.,!,à

where the coefficients cor,,cr,,cor,are expressed in terms of the Euler angles,

cs, = cosctcos Bcosl - sincrsiny

cr, = -(cosocospsiny+ sincrcosy)

crz, = coscrsinF

c yr, = sinccosPcosT+ coscrsiny

cy, = coscx,cosÏ- sinacosBsiny

crr, = sincxsinÊ

r')d;i=r,2,3,4 (z.z)

(2.3)

(2.4)
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co'= -sinÞcosY

cry,= sinÞsinT

c,,' = cOSþ

The independent elementary solutions of the vector Helmholtz equation in the

spheroidal coordinate system give the vector spheroidal wave functions [53],

where a is a constant vector or the radial vector. In this thesis we consider the vector

wave functions given in (2.5) and (2.6) with a being one of the Cartesian unit vecrors

k,î,L, and their linear combinations which are particularly useful in the analysis of

field problems involving spheroids [44]-[a6]. Also considered are rhe vecror wave

functions with a being the radial vector r.

2.1,.1, Theorems for Vector Wave Functions Defined \{ith t, }, or Þ,

In the following, we will be denoting rhe coordinate rriads (€,r1,0) and (€',n',0')

by r and r', respectively, and will be omitting the arguments of (i)Qï(cr,p,y;d) 
and

fff((u,Þ,"t;d). If we substitute (2.1) and (2.2) in (2.5) and then (2.5) in (2.6), for

T"/;fl:l fn; É,n,0) = v v*)(h ; l,r1,Q)x a

Wi,S) fn; É,r1,0) = k-1 Vx M î,9 ø; €,n,0)

ã=x,!,4 we obtain

xi,Ílø;r)= Ë Ë, ,,rAW ¡c*,x[Jl)( h,;r,)1 cat,x]ulr){ø,; r,)
v{p=-Y

* c*,xlJ')fn'; r')1, r' 1 d ; i=L,2,3,4

xï,9fn;r)= Ë i, rW ¡c*,xd|i)(h';r')* car xtu']i){tt';r')
v=0 p--v

* c*,x:uli)fn'; r')1, r' 2 d ; i=r,2,3,4

(2.s)

(2.6)

(2.7)

(2.8)

expressionswhere X is either of the vector spheroidal wave functions M or N. These
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give the functions M and N in one system of spheroidal coordinates in terms of the

same type of functions in another system of spheroidal coordinates, rotated and

ffanslated with respect to the first one. In the analysis of fietd problems, the following

linear combinations [44] are used:

xi|ø;r)= L ¡fift)çn; Ðt jx#:)(h;r)1, i=7,2,3,4 (z.s)

From (2.7), (2.8), and (2.9), rhe following expressions a¡e derived finaly [54], [55]:

xil,lø;r)= Ë L rtrAy tclx;$)'(å,;r,)+ c2xuf;)'{n,:r,)
v-0 ¡r=-v

+ c, xfrÍ1)( h'; r')f , r' <d. ; i=1,2,3,4

xi})ø;r)= i i, rf, tc1xi$')'(¿';r')+ c2x¡|'Ø,;r,)
v-0P=-Y

+crxi,lt)( h': r')1, r' ) d ; i=1,2,3,4

x#,)ø;r)= Ë L ,'rOffi tcj xfiflr'q h,:r,)+ ci 4$) (h,;r,)
v=0p=-v

+ci xi,Jt)(h'; r')f, r' 1d ; i=1,2,3,4

x,,f,)<n;r)= Ë t rrc tcJ xü9rf h';r')+ ci ry$)'(h,;r,)
v=0 p=-v

+ci xfil¡) (h'; r')], r' 2d ; i=1,2,3,4

x,S)fU r)= I Ë <ùAW .c4x#)'Ø,:r,)+ cl x¡p'{n,:r,)
v=0 p=-v

+ cr xirJi)( h'; r')f , r' ( d ; í =1,2,3,4

x!,,|,)fu.) = Ë L ,rc LC4xi|'Ø,; r,)+ c] x¡|'{tt,: r,)
vl)¡r=-y

+crxirJ')( h'; r')f, r' ) d ; i=r,2,3,4

where the asterisk denotes the complex conjugate, and

(2.10)

(2.1r)

(2.r2)

(2.13)

(2.r4)

(2.1s)
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'|

C- i lGo, + cu,) - I @r, - crx))

1

Cz= i 1G,,, - crr,) + Ì (cr, + crxò)

l
Ct= i (co,* jcrr,) eX)
C4= Co'- jcry,

c5=c"'

The expressions in (2.7)-(2.8) and (2.10)-(2.15) constiture rhe rorarional-rranslationai

addition theorems for the vecror spheroid,al wave functions Mff), MrlÍjr), Nff), and

Nt(t)''mn'

2.L.2 Theorems for Vector Wave Functions Defined with the R.adial Vector r

Using eq. (8.1) in the Appendix B and (2.1), the even and odd spheroidal scalar

wave functions in the unprimed system can be expressed in the form of a series expan-

sion in terrns of both even and odd spheroidat scalar wave functions in the primed sys-

tem, for r'1d and i=I,2,3,4, as

v!,)*,ru r)= Ë' 'ln ,# i, L !'r,,ur
q=0,1 þ-(tmt+q) v=0 p-0 /-¡r,¡r+1

'| ^?BffwvL\,u,<n'; r') + "'",\ffi' y|[u¡Ø': r')) (2.1i)

where

",2 B ffpn - ¡ 
tmt+q -n r- i FÞ a 

1 
G ) o tt, t mr+ø qd¡,' i *Qo cos [( tr_p) þ o + ¡ty + m u]

t (-t¡rL 
#Ë+ 

{Ðo!¡çt+ø(d) ¿-ir¿o' cos [(lr+p) þ¿ + ¡ty+ ma]] (2.i8)

"'i Biftn - ¡ tmt+, -n 
"-iFÞ 

a I G) ou t mr+ø 
1d¡, i vÞa sin t( ¡r_p)Q ¿ + ¡ty + m al

+ (-1)r' 
**iì| 

ç)o-p')mt+q (d) e-i pçosin 
t([+p)Q o + ¡ty+ m u]] (2.1g)

for p>0,



for p=6,

and

: B ffio - ¡ 
tmt+q -n r- i tt|a (i ) o-1t, 

t m t +q (d) cos (¡tþ o + ¡ty + m a)

iBffin - ¡ tmt+q-n ,-itlÞa Q)ostnt+q (d) sin (¡tþo +¡ty+mu)

F ff = dî, (h) (-r¡u-- 
I 
y:]''' a¡;,.n,rÞt

L F, )mt+q )
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(2.20)

(2.21)

(2.22)

(2.2s)

r gives

(2.23)

Equation (2.I7) gives the rotational-translational addition theorems for the scalar

spheroidal wave functions \ty,)^" (i=1,2,3,4), for r'1d. using the relationship

between the spheroidal and spherical scalar wave functions [28], we get for r,1d

lml+q v .-..
\lty,¿,,*(h;r)= 2' >' Fff I ät "'ZBff-un ,''Lïu,e,,e,,Q) + ',",\fftn vS2'¡rut,,O,,Þ,))

q=0,1 p=-1 lml+q) 
- 

v=o p=o

(2.24)

r¡rvi = #,# dï\Ø')

where

\rJh = j u(kr,) pf (coso,li,iuO'

The notation in (2.17)-(2.25) is explained in Appendix B.

Taking the gradient on both sides of (2.24) and then rhe cross product with

wl,\à,<n;r)= Ë' 'Yo ry i Lt"",Bfføovy!!u"?,,0,,Q,)
q=0,1 þ-(tmt+q) v=0 p=0

+"'í*ff¡rvyf)ut',0',Q,)lxr (2.26)

Since the gradient of a scalar function is invariant to a transformation of the coordinate

system, denoting the vector spherical wave function V V52u¡r,,0,,þ,)x a, by

*t,l'ì" (a,'=xiyizir'), and omitting the argument of M'L|f;fi(h;r), we ger
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lw|YL= Ë"Yn ry Ë b t ^infføo r^1,'lì,+dsin0¿cor0r*ä,(t,
q=o,l þ-(1mt+Q) v=o F=o

+ d sino¿ sinQ¿ m/,Jþ + dcos1¿*Z,lìì + "'38ffp, (*;JtÀ

+ d sinO¿ cor0¿ *ãJuÐ, + d sinO¿ sinQ¿ mlJþ + d cos} ¿^'"'JIlì j e.zi)

where the following relations are used;

r=r'+d ; d=dsin0¿cosQ¿ *'+dsinOrsinQ¿ $'+d cos}¿2, e.Zg)

Now we express the vector sphericai wave functions mf,r{uÐu (a'=xlyit) in terms of

the vector spherical wave functions mlJþ and nllþ in the fottowing form, which is

vaiid for any of "o,Bfft, ana "'iÙffO, l4ll:

å år,m n^i,::rì"= Ë Ë,";, ¡n^1,[rì,*ø["onni',[þ)v=0 p=0 v=l p=0

\ i,eiwr*¿;(li" = Ë Ë r'; iso^i|Íl)"* b*pn"t:[ìì e.zs)
v=0 F=0 v=l p=0

\ f, affi, 
^'",'$)'= Ë Ë r,;;o n^L:[ì" + bíJpq';J'À)

v=0 p=0 V=l p=0

where o*un, birgn, oíu4r, b*pn, oíJpn, and biiíp.q are given correspondingty by

, kloi,¡n=r*,-+tt¿*d[(v+p+l)(v+¡t+2)8ff r,v+l,pq-Tff-r,,+r,¡qJ

(v+1) I
+ -* l-(v-p-lXv-p)Bfft.u_1,*q * Bit,"-¡pql I(2V-1) ' ' r- -/\' r/-Pr-r'v-r'*q -W-L,v't,¡'øt 

)

,t+kloíusr=æti"-#t[(v+¡r+l)(v+¡t+2)Bffr,v+1,pq + Bffr,u*tpq) (2.30)

(v+1) ì
+ -:j-j-jl- l(v-p-1Xv-tÐBfft.r_t¡ q t Bit,u_t¡rl I(2V-1) 't r' -/ \ ' r/- lL+L'v- 

)

a,,,- [(v+tXv-p) o,," - v(v+Lr+l) o,,- IutwFq - 
"(r,+Ð L Z"-t Dtt,v-r,ttq -r 

Zv+3 
Õp,v+t,+ø 

_l
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Substituting (2.29) in (2.27), and taking into account the cancellation of the three

components of m!,Jþ and njJþ for v = þr = 0, yields

+1.T1
b*v, =^Ët f(v-tXv+r+t)Bfft,,pn + Birnv, 

)

,,, k l, <¡çffi I
b*¡n = 

^("-Ð 
[(v-uXv+r+l)Bfft,vs,q - air,'pn 

)

bîíon=ffiuç-

nø;yà,= Ë' 'Ën off Ë Ë {".o*ffpn^r::i}"*""yffsrrL,'.[l],
4=0,1 ¡r=-( lml+q) v=1 P=0

+ o'" zff*mt'JÌ"*.ß tff*nï'jf;"t

where

"'o xffi<= "'iBffiq+ dsin0¿cosþ¿ ",iaþon + dcosO o "'?oíJpn ç dsinO¿sinQ¿

"'olffiq =dsinO¿ sinQ¿ "prbfupa + (dsin0¿cosQ¿ ''"rbt"go + dcosO¿ ''"rbiJqq)
o'" zffiø=dsinO¿ sinQ¿ "prau ps + ( "'"rBiipn+ dsinO¿cosQ¿ t'\awpq + dcos0¿

(2.31)

(2.32)

^uo pvpq

(2.33)

''ia[]¡n)

in which the coefficients ",lairuuq,

(2.30) and (2.31) Uy 428fføn and

"'orbíu7q' r . r, are evaluated

"' ", B i(ip o, ap propria tel y.

by replacin e B[r'g, in

o'" rffiø =dsinO¿cosþ¿ "'lbirupo + dcos}¿ "'?bíJø, ç dsin0¿ sinL¿ ''fb*on

Taking the curl of both sides of (2.32) and then muitiplying by Æ-1 gives

N;,,L = rå; n'.ä',.f,ffå _ä, 
"'o *ffonntJ'À * "'" vffso^L,[î]"

+ o," zffonnt'Jì,* "c t;;oumï'tf;"\

where the invariance of the curl operator to a transformation of the coordinate system

has been considered. Using the relations 1281, l47l

(2.34)



^L|[I]'V"Q"þ') =

"L,'Jì"t"0',0') =

in (2.32) and (2.34), gives [55]

¡' fpv/ Mt::f;,(h': r')
i =p,¡r+1

¿'rpv/ N!,jj/,(å'; r')
/=p,¡t+1
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(2.3s)

(2.36)

(2.37)

(2.38)

Trri,yL= å: 'Xn Ë å i, ,roffon,Ml',[\),*Bffpn,NåJîÌ,
c=0,1 F=*( lml+q)v=I ¡r=0 /=p,¡r+1

* c ffw,M;,jtù * Dffrn,NlJtl, )

Ni.Yk= å. 'Yn Ë å Ë'loff n,wL,Íf;,*Bffpn,w:',llì,
4=0,1 tr=-( tmt+q)v=l ¡t-0 /-p,p+1

* c ffpr,N;, 
j tù * D ffsr, Mril:l)ù

The rotational-translational addition theorems for vector spheroidal wave functions

were also obtained independently in [56]. The explicit form of the coefficients in the

above two equations are obtained in this thesis as

Affpnt= "'oxffirrø(*,Þ,y;d) l,ru, , Cffpn,= o'"2ffiF.ø1*,p,y;d) fp,ri 
(2.3g)

Dffpn,- "'oYffipn(cr,Þ,y;d) 1p,,, , Bfftn,- o'"Tffipn(o,p,y;d) fpvr

with

"'o Xffiun(cr,Ê,T;d) = "'o *fft q Fff , o," ZffiFn(o,Ê,y;d) - o,e zmn- trryn-pvþq - pq 
e.40)

"'oYKun(cr,F,T;d) = "'oyffu, Fff , o."TKun(cr,Þ,T;d) = o," rff¡n Fff

Expressions in (2.37) and (2.38) give the rotational-translational addition theorems for

vector spheroidal wave functions Mi,f) anO ruj,!) lor i=I,2,3.4 and r'1d, which

are necessary in the study of multiple scattering of electromagnetic waves by two

spheroids of arbitrary orientation.
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2.2 Special Cases

2.2.L T'ranslational .{ddition Theorems

This special case is obtained when cx-+O, Ê-+0, and y+0. Referring to (8.3),

(8.4), and (8.5) (see the Appendix B), we can write

RËi(o,o,o) = ô.r, e.4r)

where ô is the Kronecker delta function. By setting s=lml+q,l=lpl+r in (8.1) and

(8.2), and then substituting (i)om,,,fi'|+ø (d) in (8.1) from (8.6), and, bff'tmt+s(d) in

(8.2) from (8.8) and (8.9), (8.1) and (8.2) can be rewritten as

(i)offi 
= ##,å,,å; 

*'),T,,!i 

"** f1fiffi dtr &) drØ,

. a (m,lml+qt-¡t", lpl+r t p¡ zli)çta) pffw(coseÐ ei@-Ðqo

Dt,,t -2(-¡m-¡t' Ë, Ë, 
n+f,rTø 

di"Ø)a(m,lml+ql¡t"_m,ltp)'pv- 
^r 

(h\ t
¡ rFv\'! / q4,L p = ltrl , lpl +1 l=lo,lo+l

' ¡t+v-n Qt +r) %#3# r,(t)çkd¡pf-r(cos0 o¡ si 
(^-ÐQo

xi,gru r) = Ë b ,'rOil xfiÍ){å,; n,), r,1d ; i=t,2,3,4
V==0 p=-y

xi,llru r)= Ë i oW x{uØ{h';r'), r,}d; i=r,2,3,4

When G-+0,Þ-+0,y-+0, the coefficients c*,, cor,,c*,(ã=x,y,z) defined in (2.4)

are all zero except cs,,crr,, and crr, which are equai to unity. Substitution of these in

(2.7)-(2.8) gives for d =x,J,z and a'=xlyit'

(2.42)

(2.43)

(2.44)

(2.45)
v=0 p=-y

where X is either of the vector spheroidal wave functions M or N.

Equation (2.44) for X=M and X=N is exactly the same as eqs. (2.42) and (2.44) in

L431. However eq. (2.45) for x=M and x=N is nor rhe same as eqs. (2.43) and (2.45)
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in [43], but can be brought to the same form by the following rearrangement and

change of notarion. After substituting Pffi from (2.43), (2.45) becomes

-/:\ V .)(_1\m-lL æ æ D+lml+AXil|(t ;r) = I Ð "' ^' \" Z' Z" dtr Ø)
v=0 p=-v Npu(h') n5,, o=,ut,tu,*, t=to,to+t

ru-m.¡1o1dl!'Pt 
&')

(2p+r)

8# ,,Q)çkd¡rf -r(coso o¡ "i 
(^-*)Þo 

xfru(i){h'; r')

By replacing p by ffi-þ, v by r,l by v, andrearranging, we obtain

ffir(2v+1) 
z{t)çca¡

r'l?r$lv iv+t-n @+m-¡t)!

o,în, QP+Ð (P-*fltJ

væ
xi,l'Ø;r)= I

v=0 F=-v t=lm-l.l ,lm1tl+l

. pf (coso¿ ) si*Þo Ë'
q=0,1

(2.46)

(2.47)

for the

transia-

rur(j)
"e,omn,

di" (h) di-h'-u,(h') a(m,lmt+qt-p,vlp )xlyì,,(h'; r')

Equation (2.47) for X=M and X=N gives the translational addition rheorems

case r')d. Also in the limit cr+O, P-+0, y+0, (2.37) and (2.38) give the

tional addition theorems for the vecror spheroidal wave functions Mj,$), ffid

for r' <d. When i =3, their expressions are identicai to those in [47].

2.2,2 Rotational-translational Addition Theorems for Vector Spherical Wave

Functions

In this section we particulanze the rotationai-transiational addition theorems for

vector spheroidal wave functions to obtain the theorems for vector spherical wave

functions. These theorems are necessary for solving problems involving spheres which

do not have homogeneous material properties; e.g. spheres whose material properties

vary with the spherical coordinate 0. Even though translational addition theorems and
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rotational addition theorems for vector spherical wave functions øÍe available

separately, they cannot be combined in a straightforward manner to obtain the

rotational-[anslational addition theorems for vector spherical wave functions.

In the limtr h+0 and h'-+0, the spheroidal coordinate sysrems ((,q,Q) and

(1' ,t1',þ') reduce to the spherical systems (r,0,0) and (r ',0',Q'), respectively, with the

spheroidal angle functions and the spheroidal radiat functions becoming the associated

Legendre functions and spherical Bessel functions, respectively,

S^"(h,I) + Pf;(cos0)

,Spu(¿',\') ) Pf (cosO')

Nþu(h) -+ =]= !".t'Jl e.4B)2v+1 (v-ir)!

{ RH (h,1), nÊ) fn,E), Rffi (h, €) } -+ U, (kr ¡, n[Ð çtcr ¡, n f) çtcr ¡ ¡

{R fJ (å',Ë), n 
[?J Ø',\i, RfJ &',e' )] -+ { 

j,(kr' ), h$) çkr'¡, nf) 1tcr,¡¡

Substituting (2.18)-(2.22) n (2.24), and rearranging, we ger in the limit h-+0, h'-+0,

ry#1r,e,q¡= ! Ë çi)Gff v[l]'rr',e',Q')
v-0 P=-v

where

(i)Gii 
= (-1)rr (zv+r) jv-n i,a7" rn> 'Y *rr,,if,].r, (a,F,ï)

q=0,1 tt=_(tml+q)'
lml+q+v

I', jp a(lt,lml+qt-¡t,v tr ) rylu]u,o cal (2.50)
Po,Po+7

By expanding 'V{rri]rr,o(d) in double integrals [40], [53], (2.50) becomes

(2.49)
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(i)Gff =(-l)p(2v+1) ju-" Ë, 'Y' '^'Xl' jp dtrØ)
q=0,1 ¡r=-(lmt+q) p¡,pn+l

R i; i,f,ü' (cr, F,y) a ( ¡t", I ml + ql -¡r,v I p ) (4n ¡ e ¡-t

2n

I Iexpf¡tdcosy¡,¿) Pl-u (cos0'¿ ¡ ¿i{#-ÐÞI sin0'nd.0'¡,d.þ'¡,
0c

(2.sr)

where

Çosf ¡,¿ = sinOi sin0¿ cos(Q a- þ'*) + cosO'¿ cos0¿ (2.s2)

n nlL-i* rE

withJ being Jfori=1, 2J fori=3,and zI fori=4.Takingintoaccountthe
c 0 0 ntz-¡*

linearization expansion [40], t41l of the product Ptkt*q (cosO'¿)P;lt(cos0'¿), (2.51) can

be written in the limit å'-+ 0 as

(i)Gii 
= (-l)rt (2v+1) ¡v-n ç!n)-t å, 'Tn *i,',t#,:[ø (u,F,Ð di" &)

q=0,1 F=_(lmt+q)
2n

J i"*pt,r kdcosy¡¿) Pht*q(cos0f) Pfp (cosOi ¡ si (s-ÐÞ'r,

0c

sin1'¡d0'¡rdþ'¡

Using the expansion [51],

(2.s3)

pt1,*q(coso¿) ,i^Qr - '!' o*u,,i:,ï; (cr,Þ,ï) 4k,*n(cosoî,) ,itt['t e.54)
[=_(tmt+q)

yields, in the limit å -+ 0,

2n
(i)Gii 

= (-1)p (2v+1) ¡v-" ç4¡¡-r I I exp(iucos]¿¿ ) 
pfl(cosO¿ )

0c

pu + (cosof ) sl*Q, ,-ivÞ'r sin}'¡rd}Ldþ't (2.55)

Applying again the expansion of P/(cos0 t) ei*þr as shown in (2.54) gives
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(i)Gii= (-1)p (2v+t) iv-, i nçro,g,y) (4n)-tT I"*niloocosyp¿)
þ-n 0c

Pf (cosOi ) Pf I (cosO'¿ ¡ ¿ 
I G-ÐQ' r sin}'¡ d 0î d þ' t (2.s6)

expansion ofand with the linearization expansion of Pf(cos0'ùp;þ (cosO'¿) and the

\r1u?u,, (d) in double integrals, we obtain finalty

(i)Gii =(-1)P(2v+i) i"-" > nffi@,Þ,Ð y ir a(t,nt-t-r,vtp)
þ--n Po'Po+l

. z(i)&Ðrf-+ 1cos0 Ð eiuL-p)þ" (2.57)

Equation (2.57) gives the rotational-translational coefficients for scalar spherical wave

functions, when r'1d.

From Ftg.2.l we have

r=¡"fd

Taking the cross product of V'ryS with each side of (2.58)

^!*) =V 'V!)* r' + V'yS x d (2.se)

Since the gradient of a scalar function is invariant to a transformation of the coordinate

system, we use (2.49) to write

gives

Also

v vÍ)*r'= Ë i ,tr"ii mili)
v=0 p--v

(2.s8)

(2.60)

(2.6r)

can be expressed

form

V V!)* d= d,^i#) + dr^!,,f) + d,rnffi)

As given in 1421, the vector sphericai wave functions mff') (a=x,y,z)

in terms of the vector spherical wave functions mfft) and, nfrt) in the
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eiru,giru,...have

Bffpn replaced by

respectively.

6v

^i,Íl = Z Ð i{m["(l) + g["n[Jl) )
v=0 !r=-v

^r#) = Ë L f"r^;"rr) a r;u¡;u{r) ¡
v=0 p=-v

v

^1,t? 
= Z y çe;jm[J') + sí.i41') )

v-0 ¡r=-y

the same form as those of o*W, bíupr, .

çilGW, and + in o*pn and b{rrgq and ç in

(2.62)

. , respectively, with

b{i,iro bY -i and +i,

Finally (2.59) can be expressed in the form

^i,l)= Ë * fogm[]l) +Bffin;]l) ), r,<d :i=r,2,3,4
v=0 F=-v

in which

AW =AFv+ <¡>Gffi

where

A uu = d, e{ru + d, efu + d, eiií

B ii = d, gi" + d, s¡ru + dr síJ

with the x,y, and z components of d given by

d, = d(sinO¿ cosQ dcrr, t sin0¿ sinQ¿ cr, * cos} ¿ crr,)

dy = d (sin0¿ cosQ¿ crr, + sinOa sinQ¿ crr, + cosO¿ crr,)

d, = d (sinO¿ cosQ d c o, * sinO¿ sinQ¿ c r, * cos} ¿ c rr,)

(2.63)

(2.64)

(2.6s)

(2.66)

(2.67)

Equation (2.63) gives the rotational-translational addition theorems for the vector

spherical wave functions mff), when r'1d. The expressions corresponding to the vec-

tor spherical wave functions nffi) ¡+t1, l42l have rhe same form, witir m;J1) and n[jl)

in (2.63) replaced by n[Ju and m[iil), respectivety. It is also possible to obtain these

theorems starting directly from the corresponding theorems for vector spheroidal wave

functions, given in (2.37) and (2.38). However this derivation is more elaborate than
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that presented above.

The translational addition theorems for vector spherical wave functions mff) ¡.,

obtained from (2.63) as a special case, when G,+0,Ê-+0,T-+0. Now cor,, cor,,cor,

(a=x,y,z) are arl zero except co,,cyy,, and crr,which are equal to unity. In this case

(2.57) reduces to

çi)Gffi =(-1)rt(2v+1) ju-" Z' jP a(m,nt-¡t",vtp¡zr?)çka)p{-*(cos1o¡"iØ-ÐQd(2.6g)
Po, Po+l

and (2.63) becomes identical to Theorem I, given in 1421. Similarly, for the vecror

spherical wave funcrions nff) we obtain Theorem II given in 1421.

2.3 Numerical Experiments

Some numericai experiments have been performed on the equations describing the

rotational-tra¡siational addition theorems for vector spheroidat wave functions (equa-

tions (2.10), (2.12), (2.14)). The objective of these experiments was to determine how

many values for ¡r and v are required in the double sunìmations on the right hand sides

of each equation in order to obtain a two significant digit accuracy when compared

with the corresponding left hand sides, for various values of rz and. n. Numerical

results corresponding to a sample calculation are given below.

In performing the following calculations, we have taken the points P and O' in

Fig. 2.1 to have coordinares (-1.0,4.0,2.0) and (15.0,20.0,25.0), respecrively, with

respect to Oxyz, and have considered the system O'x'y'z' as being rotated by the

Euler angles u.=n15, F=n/8, T=n13, relative to Oxyz. The spheroidal systems associ-

ated with the unprimed and primed Cartesian systems are assumed to have semi-

interfocal distances of 6 and 7 units, respectively. With these paramerers, the 11
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component of the vector wave functions rM#), ,lM#), and ,1l/l:,r#) calculated

directly using the unprimed spheroidal coordinares (,'r1,0 have the values

0.010178,-70.011765, -0.007669,-j0.0t2229, and 0.003r72,-j0.0rr274, respectivety,

for m--1, n=2. The same values calculated with respect to the primed spheroidal coor-

dinates E',\' ,Q' , but using the double summarions in p and v on the right hand sides of

eqs. (2.10), (2.12), and (2.14), arc tabulated below for different values of p and v.

Tabte 2.1 calculated values of nMff), \Nr#), and nMff), using the summation on

the right hand side of the addition theorem equations, for different values of

pandv

y(

lpl

llrl+t

Ittl+2

Itrl+3

lpl+4

Itrl+5

lpl+1

lpl+2

lpl+3

lpl+4

lpl+5

''M#)
0.035681,-l 0.00677 4

0.01046,-i 0.018574

0.005694,-j 0.015367

0.004164,-j 0.020236

0.006245,-j 0.017337

0.006581,-j 0.021546

(0.018461,4.A32574)

(0.016123,4.012316)

(0.011593,-O.011660)

(0.010246,-0.012028)

(0.010316,-0.01 1243)

-1<Lr<1

nM#)

-0.02098 r,-j 0.006537

-0.0r6272,-j 0.001 801

-0.0r7525,-j 0.001556

-4.012547,-j 0.005426

-0.011620,-j 0.008074

-0.010233,-j 0.007068

-2<lt<2

(-0.0227 8 I,-0.0 1 8 27 1 )

(-0.01 1562,-0.01 4357)

(-0. 009525,-0.0 t2425)

(-0.007 5 3 3,-0.0 t2243)

(-0 .007 692,-0 ,01237 4)

'M!'#)
0.001523,-j 0.001847

0.000762,-j 0.005542

0.00i431,-i 0.000278

0.002018,-i 0.009143

0.002535,-j 0.007355

0,002727,-j 0.008434

(0.005225,-0.018761)

(0.0037 62,-0.020028)

(0.003551,-0.013402)

(0.003273,-0.01 1332)

(0.003157,-0.01 1408)



lpl+6 (0.010320,-0.011238) (-0.007686,-0.0 1 2383)

-3<p<3

(-0 .0207 20,-0.02327 8)

(-0.0 1 547 6,-0.0 t93 42)

(-0.009 632,-0.0 1 4s 63)

(-0.007602,-0.0 1 255 3)

(*0.007658,-0.0 1 2099)

(-0.007633,-0.0 1 2087)

-4<lt<4

nM#)

(-0.0 1 8533,-0.017 2.65)

(-0.008724,-0.0 1 352 1 )

(-0.00768 1,-0.0 12 199)

(-0.007 65 3,-0.0 1 207 8)

(-0. 007 643,-0.0 t20 67 )

(-0.00763 8,-0.0 1 2059)

28

(0.003165,-0.01 1415)

(0.004125,-0.02976r)

(0.003841,-0.014335)

(0.003322,-0.0r22tt)

(0.003188,-0.01 1589)

(0.003124,-0.011356)

(0.003127 ,-0.01 1344)

,M',#)

(0.003564,-0.02t644)

(0.003214,-0.012537)

(0.003168,-0.01146r)

(0.003153,-0.011378)

(0.003142,-0.01 1364)

(0.003136,-0.011362)

lltl +2

lpl+3

Itrl+4

lpl+5

lpl+6

Itrl+z

V<

lpl+3

Itrl++

lLrl +5

Itrl+6

Itrl+7

lpl+8

(0.021069,-0.038446)

(0.0t4233,4.023564)

(0.011934,4.0t3721)

(0.010566,-O.0114i 1)

(0.010432,-0.011326)

(0.010428,{.011313)

nMÏ#)

(0.017832,-O.019578)

(0.012103,4.012377)

(0.010421,-O.01 t233)

(0.010398,-0.01 1203)

(0.010381,-O.01 t2t5)

(0.010428,-O.0113 i3)

The values on the column under v < indicate the maximum value of v, with the start-

ing value always being lLrl. The resulrs for qMff), þM#), and. qW|ft), harre similar

convergence. From these experiments it is obvious that it is sufficient ro consider only

-2<¡l<2 and v= lpl ,lpl+1,... |p|+5 in the summations in p and v in order to

obtain a two significant digit accuracy for the calculated vector spheroidal wave func-

tions, for major axes of the spheroids in the range of magnitude considered.
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CF{A,PTER, 3

SC.ATTtrR.TNG OF' PT,ANE ELECTROMAGNETIC WAVES
8Y SFF{EROTDS OF' AR.tsITRAR.V OR,XENT'ATTON

By expanding the incident, scattered, and transmitted electromagnetic fields in

terms of appropriate vector spheroidal eigenfunctions, an exact solution is obtained in

this chapter to the more general problem of scattering of a plane electromagneric wave

by n dielectric prolate spheroids of arbitrary orientation. The boundary conditions at

the surface of a given spheroid are imposed by expressing the electromagnetic fields

scattered by all the other n-l spheroids, in terms of rhe spheroidal coordinates

attached to the spheroid considered, using the rotational-translational addition theorems_

for vector spheroidal wave functions. The solution of the associated set of algebraic

equations yields the column matrix of the unknown scattered and transmitted field

expansion coefficients, being expressed as the product of a system matrix and the

column matrix of the known incident field expansion coeff,cients. In Section 3.1 we

discuss the formulation and analysis of the problem and in Section 3.2, the imposing

of the boundary conditions and the derivation of the system matrix [G¿]. Next, as a

special case, the derivation of the system matrix [G.] associated with the solution to

the problem of scatterin g by n perfectly conducting spheroids of arbitrary orientation

is presented in Section 3.3, and finally in Section 3.4 we give the special form of the

solution for the case of two spheroids of arbitrary orientation.
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3.f. Fonmulation and Analysis of the Genenal Froblem

Let us consider in general rz prolate spheroids of arbitrary orientation, with their

centers located at the origins Os of the Cartesian coordinate systems OsxeJeze

(g =1,2,...,tt), respectively, and the gth coordinate system attached to the gth

spheroid. The major axes of the spheroids are aiong the z axes of the respective Carte-

sian systems. Each of the origins O, has spherical coordinares dr,00r,Qo, with respect

to the global Cartesian system Oxyz , and each system Oexslez, is rotated with respect

to Oryz through the Euler angles o, ,Þr, yg . The positions and orientations of the 4 th

and r th spheroids, which are two members of the above mentioned system of n

spheroids, and the Cartesian systems attached to them are shown in Fig.3.l. Let a

linearly polarized, monochromatic uniform plane electromagnetic wave with an electric

field of unit ampiitude be incident at an angle 0¡ with respect to the z axis of the sys-

tem Oxyz, the plane of incidence being chosen as the x-z plane (0¡ =0), as shown in

Fig. 3.1. The polarization angle y¿ is the angle between the direction of the incident

electric field intensity vector and the direction of the normai to the plane of incidence.

For tra¡sverse electric (TE) polarization y¿ is zero a¡d for transverse magnetic (TM)

polarization it is nlL. It is assumed that the medium in which the spheroids are embed-

ded is isotropic and nonconducting, and further that both the medium and the

spheroids are nonmagnetic. If we consider the r th spheroid to which the Cartesian sys-

tem Orxryrz, is attached, then the incident electric field can be expanded in terms of

vector spheroidal wave functions in the rth coordinate system as shown below. A time

dependence or ei't is assumed throughout, but suppressed for convenience.

Since the direction of the incident wave vector k with respect to the system Oryz
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V,l

r

Fig. 3.1 The geometry of the qth and rth prolate spheroids and the associated Ca¡te-

sian systems of arbitrary orientation.
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is specified by the angular spherical coordinares 0¡ and 0; =0, we have

k=-k (sinO¡â+cos0,â¡ (3.1)

If the direction of k with respect to the system orxryrz, is specified by the angular

spherical coordinates 0¡,, Q¡,, then

k=-È (sin0;cosQi,*, *sinO¡,sinQ¡,$, +cosO;,âr¡ e.2)

The unit vectors *, $, â in Oryz can be expressed in terms of i' l,l, in Orxryrz, as

à= ,cn *, * ,roy!, + ,corl,, â= *, $, t e.z)

where

, co = cosctr cosB, cosy, - sincr, siny.

'r, = -(coscr, cosp. siny. + sincr, cosy, )

'c,, = cosct', sinB,

'cy, = sincr. cosB, cosÏr + coscr. siny,

,cyy= coscrrcosyr -sinorcosBrsiny, (3.4)

'cy, = sincr, sinB,

'cr, = -sinB, cosYt

,crJ = sinB, siny,

'c" = cosP'

with ør, þr, T, being the Euler angles as defined in t521. substituting i and â fro-

(3.3) in (3.1) and identifying the corresponding coefficients of *, ,1,,b, with those in

(3.2) gives

sin0¡,cosQ; -,cosinO¡ + rcrrcos9 
¡

sin0;sinQ¡, - ,rrsin0¡ + rcrrcos0¡ (3.5)

cos0¡, -'cosinO¡ + rcrrcos9¡

from which 0¡, and Q; can be evaluated.

The incident electric field intensity (')p- in the system Orxryrz, can be written as



(')E¡ - (')E,IEcosy¿ + (')EfMsiny¿

where

<,)Ð,TE = $¿-.rk.r

<')ET'- (-coso¡ â+ sino¡ à) r-¡u''

From the relationship between the vectors r, r' and d,. (see Fig.

¿-lk'r - 
"-lk'a, 

. n-ik'r,

Taking first the gradient on both sides of (3.9) and then the cross

- i 'cry¡O)Yn+A)çt' I r, )

r r) + r c xz 
Q)M,lfi) çh, ; r r)l

55

(3.6)

(3.7)

(3.8)

3.1) we get

(3.e)

product with * gives

(3.10)

(3.12)

i=I,2,3,4 (3.i3)

!e-ik'' =Çk cosg¡ ¡-1 ,-rk d' V(¿-Jk'r') x +

Substituting t frorn (3.3) and applying rhe expansion [28]

,-ik'r,=2Ë ; i" -imö,z¿ L¿ 
^/ ,, ,S*(h,cos9¡,)e 

' "'Yl$(hr',1r,\r,þr) (3.11)-
7l--< n=lml " Û-n\ttf 'l

glves

ØETE =Z(jkcos}.¡-L r-ik'd, Ë î -I,^ S,*(h,.cos0;) ,-imï',
m=a n=lml lYmr\nr )

. l-, c o t'lfi#) (hr; r, ) + r ç n 
(Òyp Q) qh, ; r r) *, c r, ØM,ffi) çh, ; r, ¡1

with r, denoting rhe coordinate triad (Er,\r,Q,' ), and the superscript (r ) to the ieft of

the vector wave functions denoting that they have been evaluated with respect to the

r th spheroidal coordinate system centered at Or. Using the vector wave funcrions [44]

u)M#) Ur,; r,. ) = l- ú¡wt f,) çh, ; r,) x ¡ a)yt 0 ) 
çh, ; r, ) ),

(3.I2) can be rewritten as

ØEIE = r-t 
u o, 

^Ð_,F^,ql: 
l( co

*(,co* j ,cry)Øfr/"#)Ø,:

where

(3.r4)
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.:n_l -j^þ,-qT,l=ffi5,,n(h,,cos0;)fr¡i (3.1s)

This expansion can be used only when 0t+ nlL. To obtain an expansion for the case

0¡=7t12, we take the gradient on both sides of (3.9) and then the cross product with â,

which yields

substituting ¿-ik'r' from (3.11) and â from (3.3), and then using (3.13), we have

(,)ETE 
=_eksing¡ )-1 "*ik'a, 

Vçe-ik'r, ¡xl,

-j^þ,.
e

r-e,'

(3.16)

(3.18)

on both sides of (3.9) and then

¡:n-7
^TM_ ¿J'' ^ -jmþ¡-qi,ä = **(r) S,nn(h* cosO¡,) e r (3.2I)

From here onwards for the sake of convenience we will be denoting ?)M(h,; r,' ) by

ØETE - e-ik d, i Ë *qllff ,co - j rço¡Q)¡yf(r)çh,; r,¡
fn=-æ n=lml

* (, c r, * j, c ry ¡ 
<')Ivya) 

ç¡t, I r, ) *, c r, ØTvffi) çh, ; r r¡1 (3.r7)

with

''¡:n-7x^TE - 
zJ-qini=- r-*(r) s"*(h" coso¡')

which is valid for sinO, * 0. By taking now rhe gradient

the cross product with $, we have

where

(-coso; *+ sin0¡ à¡ 
"-iu'' =-jþ-r ,-ik'd', Vçe-ik'', ¡xþ (3.19)

SubstitutinEe-ik'r' from (3.11) and $f.om (3.3), and then using (3.13), gives

ØElM = r-t u o' 

*i_,h,n# l( cy, - i, cyy¡<'>y-G, çtr ; rr )

+ (, cyx * i , cyy¡v)y¡14)ç¡r ; rr ) + , cr, ØNL1#)(h,; r,)l (3.20)
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(')M th¡oughout. Thus the electric field intensity (')p- given in (3.6) can be expanded

in terms of spheroidal vector wave functions associated with the system Orxryrz, in

the form

1')E; ,-jk'd, ('pkØM:,::) +'p,,*(')nn#) +'påntr¡yy1)¡ ß.22)

where

ËË
¡n=-æ n=l¡¡71

).in-l -imö, l-
= ffi&) s,rn(h, cosO¡,) € ""'-', l{,cr, + j ,cyy) sinl¿

('co+j '.,") 
totÏ -l 

". 
a,+!

"OrU,. 
I

-('c,,¡Ì 'c,r, ,,rq j for 0¡*0,n

'pf,*= # s,,*(h,.coso¡,) 
"-lm\i' l'rrr rrnTo

',- 
"oi9#] 

,", e,* î
- ,c,,+l for o,+0, n

srn0¡ l

(3.23)

(3.24)

the Q,' sequence

form as

If the tenns in the

eio, eliq,. ,*riþ, . . .

series expansion of 1')Ei are arranged in

, then we can write this expansion in a matrix

(')E¿ - (r)p1(t)rr¡ (3.2s)

where (r)M(1) and '1 are column matrices whose elements are prolate spheroidal vec-

tor wave functions of the fi¡st kind, expressed in terms of the coordinates in the r th

spheroidal system \r,\r, Q' and the corresponding known expansion coefficients,

respectively,

+
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(')MÍl)r= 
t 
(')M,T r')¡øf ØNII2 . . l, ,Ír =¡,il ,{ , ol . .f e-ix.a, G.26)

in which

(')Må 
= ¡ 

(r)ffi+(l)I 1r;*g-(t) (r)Mz (1)zl

(.)Ma=¡(r)ffi+(Ðt (,)M;lt1t ,.,nryÍt,t r,M-lfåflr r,hø_-r(ål1r <,.,o,rl$)r], o> 1 (3.27)

with

(r)ffi(i)r-tt')nn.,Ílì (')na"tÍ|ì*, (')rw"*jlì*, . . .l
(r) 

v-;2,(Ðr -t (')Mí,Ílì (',Mí,Íll*, (')N4,111., . . l (3.28)

and

'ff =l'L¡r 'U-r '4" l

'É =l'%.1 'p"l '-p:' 'l-ïl*r¡ 'p_ê_r, 'll l, o>1 (3.2s)

with

-_ +Trprrt =l'pl,l", 'p1¡",*, 'pT,,",*z . . .l
'lJ' =L'ptr,rc, 'p1,,rt*t'ptr¡"t*z . . .l (3.30)

Similarly, the incident electric field intensity on any of the spheroids can be

expanded in terms of the spheroidal coordinates attached to that particular spheroid.

Now if we consider the electromagnetic field scattered by the r th spheroid which

corresponds to a nonplane wave, then the scattered electric field intensity (')p can be

expanded in terms of a set of vector spheroidal wave functions associated with the sys-

tem Orxryrz, ín the form [44]

+, þ6,r.\a6ial¡+ i i {,Þ_,*ØMI_n +,þL@+t)**tØv,:_Í2+r),2+i) (3.31)
m=0 n=m

If the tefins in the expansion of (t)4 are arranged in the same Q. sequence as in the

expansion of (')E¿, then we can write



(r)E = (r)54(+)I rU

where (r)pg(a) and r þ are column matrices whose elements are prolate spheroidal vec-

tor wave functions of the fourth kind, expressed in terrns of the spheroid,al coordinates

associated with Orx,yrz. and the corresponding unknown expansion coefficients,

respectively,

(')n¿Ía)r 
= t 

(')-nnå (')M"1 (')Mrl
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(3.32)

.1, 'þ' =t,'pl' 'Fl 'FT . I (3.33)

<'ltrrylo = ¡ {.)¡a]f+)r 1r¡*z (a)r,

(,)MI"= 
¡ 
(r)¡u,J+(Ðr 1r¡*z(4)r M_-,,å4, r.l-nnlf)tl, o'> I (3.34)

in which

with

and

with

(r)ffi(+)r-t<')rw.l(,Xì (')na.*,\Xì*, (')vr"*(Íì*, . . .l
Q)fr@r -i(')Nfí,ÍXì (')nní,ÍXì*, ØrøXj;l*, . . .t

'85=t'Få1, 'ff 'Få, ,FXl, o>1

'Fft=['Þ"1r"r'Êf,,",*r'Ftr"r*z . .' ]

'þ7d=l'þl,nt 'þ1,,",*t 'þ",t t+z. . .f

In order to impose the boundary conditions at the surface of the r th spheroid, the elec-

tromagnetic fields scattered by all the other n-1 spheroids should be expressed as

incoming fields to the r th spheroid. This is done by using the rotational-translational

addition theorems for vector spheroidal wave functions. Let us consider fi¡st the elec-

tric field scattered by the qth spheroi¿ (ø)B . Similar to (')Er, (ø)8, can also be writ-

ten as a series expansion in terms of vector spheroidal wave functions of the fourth

(3.3s)

(3.36)

(3.37)
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kind associated with the system Oqxqjqzn in the form

(ø)8" - @)g@r ,g (3.38)

where {ø)-¡u'¡!a) a¡d rF are column matrices whose elements are vector spheroidai wave

functions of the fourth kind, and the corresponding unknown expansion coefficients,

respectively, having the same structure as those ef (r)¡v/+) and '8, respecrively. Thus,

to express (ø)p, ut an incoming field to the r th spheroid, we have to express the vec-

tor spheroidal wave functions of the fourth kind associated with the sysrem Oqxqlqzq,

in terms of vector spheroidal wave functions of the first kind associated with the sys-

tem Orxry, z' using the appropriate rotational-ranslational addition theorems for vec-

tor spheroidal wave functions [55]:

<ø1y11\a)çhr;rs 
) = Ë Ë llray (dq,,Þq,,Tq, tdq,) lq,ct(,)vtü$)(¿,';., )

v=0 p=-y

+ e'cz(')tvçÍt)(¿r;rr)+ ørçr(r)ylzQ)(hr;rr)1, r, 3dq, (3.39)

(Ðy¡1-@çhn 
;r q) =Ë Ë [îraf, (dq,,Fq,,\q, idq,) ls, c; {,)tvt[$){ø,. 

; r, )
v{ ¡t=-v

+ q'cl (')n¿tf;)(¿,;r,)+ q'çl (r)tr/xzf;)çh,;r,¡1, r, tdq, (3.40)

@y¡f (a) 
ç¡ n ; 

r q) = Ë Ë [!, Affi (u q,,Þ q,,l q, i d q,) I 
q, c o,L')tvt[9){ø,' ; r,. )

v-0 ¡r=-Y

+ q'cÏ (')nn;ft)(¿,;rr)+ ørçr(r)yyzQ)çh,;r,¡1, r, sdq, (3.4t)

where rn and r, represent the coordinate triads (1r,\n,0n) and (€r,r'Qr), respec-

tively. dn, is the vector drawn from on to Q (see Fig. 3.1) and uqr,þq,Tq, are the

Euler angles which describe the rotation of the system OrxrJrz, relative to Onxnlnzn.



39

qrCr 
!Kr,r* * n,rrr)+ j (q,c,y - e,cr,))

q'C2= 
|Kr'r* - r'rrr)+ i (q'c,y + e,cr,)J

q,C3=!{r,rr,+j a,cr)

q, C4= 4, Cr, - j 4, Cu,

4,Cs_e,c*

with the asterisk denoting the complex conjugatc. Q,co, n,rÐ, . . . are obtained from

'co,'crr,. . . (see eq. (3.4)), respectively, byreplacing cr'B'and ^{r,by dqr,Þq.

and Tq. respectively. [i,affi (dq,Fq,,fq, idqr) are the rotationar-translational

coefficients in the expansion of scalar spheroidal wave functions of the fourth kind

associated wirh Onxolnzn in terms of the same functions of the fi¡st kind associated_

with orxryrz. for rrsdq. and are defined in Appendix B. By arranging the terms in

the series expansions (3.39)-(3.41), in the Q, sequence ei\, exiq,, eÐiq,,. , we can

express the outgoing vector wave functions associated. with oqxqlqrq, (n)M1o), in

terms of incoming vector wave functions associated with orxryrzr, (qr)M(l), in the

form [57], [58]

(ø)¡*4(a) =lf q,1 
(ør)¡ug(t) 

e.43)

which the structure and elements of the matrix [fnr l are a]so defined in Appendix

The transpose of (ør)ffi(t) 
1,

(qr)ffi(l)r = [rn.naftlt 
<n'hnlt)n <r,rfv$), l

in

B.

(3.42)

(3.44)

where

tn,livl$)t = [,.,O]Ír)r 
1rç-(1lz 1r¡*z{r)r]

<ø.r¡,1$)r = [,',Oå!t/t 
(.)MÍtlt (r)Mz(1)? r,ha]<(ållr <.\n_-8ï¡,,,-*1t,t] (3.45)

for o>1.
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Denoting the secondary incident field on the r rh spheroid due ¡o (ø)9" 6t (ø')4, tak-

ing the transpose of both sides of (3.43) and then substituting {øl¡4{+lr in (3.3g) gives

(ør)p, _ (qr)M(t)r llq,f cþ G.46)

Thus for q =I,2,...,r-I,r+L,...,ft, we get the secondary incident electric fields on

the rrh spheroid, due to the electric fields scattered by each of the spheroids

1,2,. . .,t-1,r*I,. . .,n,

The electromagnetic field transmitted inside the rth spheroid also corresponds to

a nonplane wave whose electric field intensity (t)6, can be expanded in terms of a set

of vector spheroidal wave functions as [46]

(.)Er - (r)pq(l)r ¡U (3.47)

where (tMÍt) and t cr are column matrices whose elements are prolate spheroidal vec-

tor wave functions of the first kind, expressed in terms of spheroidal coordinates asso-

ciated wíth Orxryrz. taking into account the perminiviry of the material inside the rth

spheroid, and the coresponding unknown coefficients in the series expansíon, respec-

tively. The structure of 'cr is simila¡ to that of 'P, with B replaced by o.The ran-

spose of (')ñ1) i,

(')MÍl)r=t(')M,l (')M,1 ØNT!; . l (3.48)

where

i')ffi[ = ¡ 
( r)x4+( t )r1 

h i ; r,) <oy¡yzo{,)r 
çt i ; r, ) ]

(')Ml=¡(r)¡,1+(1)rØi:r,) ç,¡¡¡'(1)rç¡i;r,¡ (r)ffi_[!!r>Øírr,) (r)¡u1z(t)r(h;;r)1, o> 1

(3.4e)

with
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1'¡o4f{1)r1¿ i:r,)=¡r'l¡4+jliqø;;r,.) (')M"*,1I!,*r(hí:r,) (r)¡uqt(il*zØí;r,) . . .l
¡ ¡ry(t)r 

ç¡ i ; r, ) = r <'>wX\Il 
rn i : r ) {')Nfi,|ì uØ i ;r, ¡ (r)p4 ( r 

| *zØ i ;r, ) . . . l (3.s0)

in which hi=@rle)1''h. u and e, are the permittivities of the media outside and

inside the r th spheroid, respectively.

Using Maxwell's equation

yN= jk-r@t¡.r¡1/2 VxE (3.s 1)

where k, e, and Lr are the wavenumber, the permittivity, and the permeability, respec-

tively, the expansions of the different magnetic (H) fields in terms of appropriate vec-

tor spheroidal wave functions can be obtained from those of the corresponding electric

(E) fields by replacing M by l{ and multiplying each expansion by the appropriate

value of j (elp.)1/2. Thus we have

(')H¿ -l @tlto)r'2 
(,')ñÍ1)r'¡ 

e.5z)

(sr)I4 
=¡@tp.s)r/2 (qr)ñ(t)z Ltq)r sÞ (3.53)

(')H, -J @tltù1'2 
(')ñÍ4)r'p 

e.54)

(r)¡¡, 
=7 (er lþo)r,2 (r)¡q(t)? 'U (3.55)

in which ps is the permeability of free space. The elements of the matrice, (r)¡g(1)T,

(qr)N(l)T, ('lÑÍo)t, un¿ (')ñÍt)t run be obtained from the corresponding elements of the

matrices ,'MÍt't, (qr)M(i)r, (')MÍ)t,un¿ (r)¡4(1)?, r"rp..tivery, by replacing rhe vec-

tor wave functions M by N, where N=k-l(VxM).

3.2 Imposing the Boundary Conditions

The boundary conditions require that on the surface of each dielectric spheroid

Er=Err(r=t,2,...,n), the tangential components of both E and H fields be continu-
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ous across the boundary. Thus considering

1 
(r)ffi(t)r ,l * *[(l-ðqr ¡ 

(ør)¡4(t)r ltq,]r

the rth spheroid we can write

+ðn. (ø)MÍo'tl np)" 
Ê,' lç =L

Q=l

= q (r)ffi(l)r'cr) x ê, l+=+,

q (r)p(t)r ,, * Ë¡1t-ôn,¡ 
(ør)p(r)r

4=1

(3.56)

Ifq, ]r + ô0,' (ø)ñ!a)tl np) * Ê,' lq, =6,,

^ 1t2
_/trr\ ¡1r¡ç(1)Tr-. â I

= (;J ( .' ,1\f . C[) x Ç,. lq, =6,, e.57)

where ôn, is the K¡onecker delta function. For r = I,2, . . . , n , we obtain 2n such equa-

tions in total after imposing the boundary conditions on the surfaces of all the n

spheroids. Taking the scalar producr of both sides of (3.56) and (3.57) o, f 
''nT I

i ',*ô I
S-,,*l**(hr,\r)eri (^ttÞ' fo, r=r,2,,,..,n, m-...-2,-1,0, r,2,..., K= 0,r,2,...,

integrating correspondingly over the surfaces of the n spheroids, and using the ortho-

gonality properties of the spheroidai angle functions, gives after rearranging [31], [44]

lG¿l S¿ =LRdl I (3.58)

where

LPu l
[P¡'¡ r]

I0l

t0l

t0l

t0l

IPuz]

IPuz]

t0l

t0l

t0l

t0l

lQu l
LQ¡ri

lRunlLln)r

[R¡.¿ rz][f rz]?

lRy2l[12]r
[R,vzr][fzi]r

lQuzl

lQuz)

[R¿,r 1][fr 1Jr

[R¡¿, r][f, r]r
IRy,]Ll,2Jr

lRu,zlll,zlr
lG¿l=

t0l

t0l

t0l

tOl lPu,l

lRun)lf nlr
IRN1,,][f1n]r

lRuznlLf z,lr
IR¡¡zn]lf zìr

. lQ'u,l

lQu"l

(3.se)
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Sd=

1_
'cf,

'd.

na
1p

2þ

_
"p

I_IR¿] =

lRul tOl tOl

lR¡¿rl tOl tOl

tOl lRuzl tOl

tol [R¡¿z]

tOl tOl lRunl

tOl tOl [R¡¿,]

tI
2T

nJ

(3.60)

The coefficients 'ln and 'lq used in the integrations of (3.56) are given by

r Ir= i 2F,G?,lh''', 'I þ=zp,G?,-nh and those used in (3.57) by

'tn=2F,2(1?,-nht''t(E?,-t)''', 'tþ= jzr,2(E?,--r1?yrE?,-t>. f is the semi-interfocat

distance of the rth spheroid and (r" is the value o¡ €, on the surface of the rth

spheroid. Definitions of all the matrices are given in Appendix C.

Equation (3.58) can now be written in the form

S¿ =lGlI (3.6i)

where

[G]=LG¿l-tlR¿l (3.62)

is the system matrix which is independent of the direction and polarization of the

incident wave. The matrix form (3.61) gives the coefficients in the expansion of the

electromagnetic fields scattered and ransmitted by the n arbitrarily oriented spheroids.

3.3 Case of Ferfectly Conducting Spheroids

The solution for the case of n perfectly conducting spheroids can be derived from

the one for n dielectric spheroids, by letting the permittivity of each of the n dielectric

spheroids become very high (theoretically infinite). In this case since the spheroids
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cannot sustain any field inside them, the boundary conditions require that the tangential

component of the resultant electric fieid be zero on the surface of each of the n

spheroids. Hence if we consider the r th spheroid we can write

q(r)ffi(t)r 'l*L,[(i-õqr¡(ør)¡4(i)r [fq.]r+õn, (')M!a)tl np)x{,lE=ç=0 (3.63)
Q=l

For r =L,2,...,fl, we obtain n such equations after imposing the boundary conditions

on the surfaces of all the n spheroids. Following a procedure identical to that

described in the previous section, we caÌl finally obtain a system of algebraic equations

which could be written in matrix form as

IG.]^S. =[Rc]1 (3.64)

where

IG"]=

[Qu] lRuzl[lz]r lRu,ìlt,ir
LRutù[lr.]r lQuù LRunzlLf nzlr

.:

lRu tnl ta,, lt lRuzn)Lf zn)r

S"= [R.] =

Equation (3.64) can be rearranged and written as

lRuì tOl tOl

tOl lRuzl tOl

tOl tOl

tI
2l

-NT

1p

2B

_
"þ

l=

(3.65)

(3.66)

in which

S, =lG'l I (3.67)



Similar to [G], the system matrix [G'] in this case is also independent of the direction

and polarization of the incident wave. However, the size of [G'] is half of that of tGl.

The solution for the case of imperfectly conducting spheroids can be obtained by

incorporating the surface impedance in the boundary conditions. For the case of a

mixture of dielectric and perfectly conducting spheroids of arbitrary orientation, the

solution can be obtained from that for the dielectric spheroids, by considering the per-

minivity of the perfectly conducting spheroids as being infinite.

3.4 Special Case of Two Spheroids of Arbifrary Orientation

We now consider the special form of solution for the case of two spheroids of

arbitrary orientation. The system of algebraic equations we obtain in this case for

dielectric spheroids can be derived from (3.58)-(3.60) as [59]

lG¿lS¿=lRdll (3.6e)

where

lG'l=[G.]-1[R"]

lPui tOl lQui LRuzilrzir
[P¡¿r] tOl lQ¡,t i [R¡¿2iJ[f21ìr

tOl LPuù lRunllrdr lQuù

tol lP¡,tzl [R¡¿rdlfrz]r lQwù

45

(3.68)

(3.70)

(3.7 r)

IG¿l=

c_rd-

Similarly for

obtain [57], [5

lRui tol

[Ã¡¿r] tol

tOl lRuz)

tOl [R¡¡z]
'= [;l]

t::l'!
I'p
L'B

the c

81. t(

Ir
t,

L;

he

ì1,

[R¿] =

t60l

of two perfectly conducting spheroids, from (3.64)-(3.66), we
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(3.72)

(3.73)

(3.74)

IG.],S-. =[Rc]¡

where

I fa*rl lRuztllrzrlrf
[G"] = 

llRu")ltrr)' lQuzl ]

['p.] [lnørl to] I - ['¡l
L'OJ rR.I = L ror tnrrt) T= 

Lit )
S-. =
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CH.{PTER. 4

R,A.DAR. CR,OSS SECT'IONS FOR SCATTER.TNG EY
TWO SPHEROIDS OF ARBI'TRAR.Y ORMÞITATXON

The size of the system matrix in both dieiectric and perfectly conducting cases

increases with the number of spheroids. The computational times also increase

correspondingly. In this chapter the scattering cross sections associated with the fa¡

field are computed for a system of two spheroids of arbitrary orientation, with the

incident wave being a monochromatic uniform plane electromagnetic wave of arbitrary

polarization and angle of incidence. In Section 4.1, we derive the asymptotic expres-

sions of the different vector wave functions and ttre analytical expressions of the fa¡

field scattering cross sections. The criterion used for truncating all the series and

matrices of infinite dimension that appear in Chapter 3, is given in Section 4.2,

together with the numerical results in the form of normalized bistatic and backscatter-

ing cross sections for both perfectly conducting and dielectric spheroids having various

axial ratios and orientations.

4.î l{ormalized Scattering Cross Sections

Consider two spheroids A and B with the Cartesian system Oryz attached to the

spheroid A, o'*'y't'attached to the spheroid -8, and a point of observation having

spherical coordinates r,O,Q and r',0',Q' with respect to the two systems Oryz and

O'x'y'z', tespectively, as shown in Fig. 4.1. The spheroidal coordinates associated

with the two systems are given by €,q,Q and E',\',Q', respectively. The scattering

cross sections are calculated in the fat zone (r -+ -, r'+ *), where
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(B'.+')

€'= €;

\

\,, 8o

(9¡ ,+¡=O) /r,,

I
I

I

/u,,

€"€u

Fig. 4.1 Scattering system geometry



Iim hE-+ kr , lim q -+ cos0,

,\y*r'l' -+ kr ', 
,Ji31n'-+ 

coso',

Using these asymptotic values, we can obtain

the radial functions nÍ2Ø,\) and, RfØiE):

^^
.!1q-+-0
li- î'- - ô' (4.1)

the following asymptotic expressions of

firn RflØ,€) -, |g r-troe-@+1\n/2), ,ry*flØ:E) - ;{ ")th'E'-Ø+t)ru2)
-+ jn+t e-ih?h\, -+ jn+L ¿-ih'( ¡¡'1,
-) i"*r e-ib lk , -+ ¡n+r ,-ib ¡¡r, ,ik''a Ø.2)

and differentiating these expressions with respect to I and €', respectiveiy, and neglect-

ing the second and other higher inverse powers of ( and (', the expressions of their

derivatives fr^n(h,l) and þ afl<n :C'>,

!*&*fi¿Ø,\) --+,'- * l+) )yh*flçniE') - i'*' # l+;
,l r-ior,, -r 

Ç r-to'e'

> i' kF +, -+ in kF'+ 
"ik,'a

(4.3)

in which F and F' ate the semi-interfocal distances of the spheroids A and B , respec-

tively, and

k, =,t(tsin0cosQ+$sinOsinQ+âcos0) (4.4)

when h\-+* and h'1'-+*, substituting the asymptotic expressions of nff)(h,E),

nÍ|)fnl\'>, 
ftnfl"er,\), 

u"a 
þnS)çnig 

in the explicit expressions of the Ë-, n-,

and 0- components of the vector spheroidal wave funcrions Mff), Mk?, and neglect-

ing the second and other higher inverse powers of Ç and E', we obtain the asymptotic
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forms of these components:

oL* *cMiJ? ç' ; \,n,q) =, [T- ew,t? Ø; É,r], 0) = 
o åT_ EM ^Í? 

rn; 8,n,0 ) = 0

o[T-nM#)1/z ; (,r,0) = + k s,,*(h rÐ + ri (m+t)Þ

,[T-nM#)(¿ ; €,r,0) = - + k s,,*(h,rù + ri (n-t)Q

,t ^ nl.4',,$)(å tq,n,Q) = o
ltÇ--+ø

,[T-oM#)(¿;q,'r,o) =r1+ k s*nØ,rÐ + ¿t(m+eq

,[:*r*]:)(/,;q,.,r,o) =r1+ k s^nØ,rÐ + ,t(m-t)Q

,L\*oM:,#)(¿; €,n,0) = -(1-rr2)1 '' i' k s^,(h ,Ð ff ,r^o

The asymptotic expressions of nM_,, (h':E,,\',þ,) and aW^n(h,;E,,t1,,þ,) are obtained

from those of ,M^n(h;í,\,þ) and þM,r*(h;E,t1,Q), respectively, by replacing I,
S"*(h,q) and 0 by rl', S^r(h',q'), and Q', respectively, and multiplying each expres_

sion by the phase factorclks'a. Substituting the above asymptotic expressions of the

vector spheroidal wave function components in the series expansion of the scattered

field due to each spheroid, the electric field, intensity in the far zone can be written as

1441, 1591, 16ll

E, =E"A *Er¡
e-JPl ¡^

-vln= k LFeA 
(e,Q)e + F6e(e,0)0

p-Jtrl n^
= t * lrro 1e,q;e + Fqa (e,O)O

o-jþ | n ,rl
= . w LFo 

(0,0)e + rq (e,Q)01

where

(4.s)

(4.6)

(4.7)

* Fyn(oíA)& t Fa,a(eiQ')qf ]
-^À¡nl+ Fe,n (e:0') {g r0+gzQ¡ + Fq,n(eíO) {s3ê+s4ô} 

_]

(4.8)
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Fe(0,0) = FøA(O,Q) + Fé¿ (0,0)

Fo(e,0) = Fþe(0,0) + FóB (0,0)

[g t gz]r = [Q] [C ] [cos0'cosQ' cos0'sinQ' -sin0']T

lg z g oJr = tC¿l [C ] [-sinQ' cosQ' 0]r

(4.e)

(4.10)

(4.i 1)

(4.r2)

(4.i3)

(4.r4)

(4.1s)

with

Fe¿ (0,0) = -å 
þ_^,".' ; t@.;-a-',*)cos (rn +1)Q

- ,, +' æ , S1r, !'+i (a+,*+q.-_r*)sin(rn +1)Q) - El"*t -j:1cr*,_
n=l 2 -Ln

Fqa(0,0)= å i ¡" ["ore ; t<ufl+ a--'.)cos(m+l)Q +7 @-;- a--',,*)
m=0 n=m

. sin (n +1)O ) -i sinO S¡z+1,¿+1 {@l*r,,*r+ u'_.1*¡11,n¡1)

and

I cos0cosó
tol = L -sin0

in which

. cos (m+i) þ + j @l*t,n*r-aÍ-'.1^*i),n+r) sin (rz+r)q] ]

+coso it" * ú-'rn-sino !7, so,dlo,,
n=l n=0

cos0sinQ

cosQ [C] =

olr=kot*, oíi=ka',,*, S^n=S,rr(h,cos0)

afl and ufu are the coefficients in the series expansion of the elecric field scatrered

by spheroid A, in tenns of vector spheroidal wave functions in the unprimed system,

which are evaluated beforehand by solving the set of algebraic equations

| ,*' cÐ' ,,,'f
| 'u' cvv' 'r,'l
l'^' c,v 

'',,' )

-sine IoJ'
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for the

I ra*^t tRun¡rrr¡¿ ,'l lul lrnrol r0] I |-r; I
lrnr*ltr¿¡ lr teuar j Lp.l 

= L Iol r^rr ll 
Lr, l

perfectly conducting case, which has the same form as (3.72), and

(4.t6)

(4.18)

lPut) tOl

lP¡t¡J iOl

lQutl lRun¿ lIf¡¿ ]r
lQwel [R¡¿¡¿ ][f¡¿ ]?

[;].-,,,
tol lPual lRueal[l¿¡]? lQual

tol lP,vel LR¡,tABltf¿¡ lr lQual

R¡¿¿ I tol

tOl lRual

tOl [R¡¿¡ ]

for the dielectric case, which has the same form as that of (3.69), and are obtained by

imposing the boundary conditions at the surface of each of the spheroids, as described

in Chapter 3. cor,, cor,, and cor, fot s=x,!)2, aÍe defined in e.Ð. The explicit

expressions of F6,¡(0iQ'), and F6,a(0íQ') in primed coordinates are obtained from those

of F.o (0,Q) and Fq¿ (0,Q), respectively, by replacing cr by the corresponding Þ, which

are the expansion coefficients in the expansion of the electric field scattered by

spheroid B, in terms of vector wave functions in the primed system, and multiplying

each expression by an overall phase factor eik''d. The expressions of F(¡s(0,Q) and

FóB (e,0) are obtained from those of lg tFe,n(eiQ') + g 3Fq,a(el0')l and

lgzFe'a(e:O') +gaFq,a(eí0)1, respectively, by substituting all the functions in primed

variables 0iQ' in tenns of the unprimed variables 0,Q. Since the direction of the scat-

tered wave vector k, in the far field with respect to the primed system is specified by

the angular spherical coordinates (010) (see Fig. 4.1), we have

k, =k(*'sinO'cos0'+$' sin0'sinQ'+ â'cosO')

substituting i,i,L in Ø.4) in rerms of I',i',à' (see 2.3), and identifying the

corresponding coefficients of *.',í^',â'with those in (4.18) gives



[sin0'cosQ' sin0'sinQ' cos0']T = lClr [sin0cosQ

which is the required relationship between the primed and

nates.

The bistatic radar cross section is defined as
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sin0sinQ cosOl? (4.19)

unprimed angular coordi-

(4.20)o(e,ç) =li^4n'+#
with the unit vector ê denoting the direction of polarization of the receiver at the point

of observation. When t has the same direction as 8", the normalized bistatic cross sec-

tion is

æo'(0.ö) ,2 .2
--'f-- = lF6 (e'Q)l + lFo (0,0)l Ø.2r)

The normalized bistatic cross sections in the E- and É1- planes are obtained by substi-

tuting þ=rcl2 and Q =0, respectively, in (4.21).

The normalized backscattering cross section is obtained from (4.2I) for 0 = 0¡ and

0=Q¡ =0,

æo(0¡ )
= lFe (o;,0)12 + lrr(oj ,o)12 (4.22)

4,2 Numerical Results for Two spheroids of Arbitrary orientation

Results of numerical computation are presented in the form of plots of normalized

bistatic and backscattering cross sections in the far field for scattering by two spheroids

having va¡ious displacements of thei¡ centers and different relative orientations. As the

formulation and the computation for the case of scattering by two perfectly conducting

spheroids is much simpler than for the case of scattering by two dielectric spheroids,

the plots for the perfectly conducting spheroids will be presenred first, followed by



54

those for the dielectric spheroids.

4.2.n Ferfectly Conducting Spheroids

Since the series expansions of the different electromagnetic fields in terms of vec-

tor spheroidal wave functions a¡e infinite in extent, all the matrices inroduced in

Chapter 3 are of infinite dimensions. Thus, in order to obtain numerical results it is

necessary to truncate these matrices according to the required accuracy. As mentioned

in Chapter 2, fuom the numerical experiments performed on the equations describing

the rotational-translational addition theorems for vector spheroidal wave functions, it is

clear that it is sufficient to consider -z<¡t"<2 and v= lLrl , lpl+1,... lpl+5 on the

right hand sides of these equations in order to obtain a two significant d.igit accuracy

when compared with the values of the corresponding left hand sides, for d.ifferent

values of m and n. All the vector spheroidal wave functions and the rotational-

translational coefficients have been calculated with a five significant digit accuracy.

When using these functions and coefficients in our calculations, it has been found that

to obtain a two significant digit accuracy in the computed bistatic and backscattering

cross sections, it is sufficient to consider only the þ harmonics slÙ, sLiÞ, and, er2iþ.

AII the results given in this section have thus been obtained with rn corresponding to

the above Q- harmonics, n = lml ,... lml+3, r=6, r,2,3, in truncating the matrices

lQuel, lQun), lRut), and [R¿4¡ ] in (4.16), and with n = lml ,. . . l*l +5, r=0, !,2,3,

in truncating the marrices fls], [f¡¿ ],lRu¿nl, and lRuael in (a.16).

The formulation presented in Chapter 3 is general. However, it is interesting to

note that for a particular system of only two spheroidal objects, the relative position of

one with respect to the other can always be obtained by choosing the x and y axes
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appropriately, and then by performing only one rotation through the Euler angle B, i.e.

with Cr=0o, Y=0o, foilowed by the corresponding translation. Even though, to demon-

strate the generality of the theory presented and the validity of the software being

used, some of the results presented in this chapter have been obtained with cr and y

different from zero. But the reduction in the total amount of computation time required

when using c[=Oo, T=0o is only about 57o with respect to the case when cr and y are

different from zero.

Ftg. 4.2 shows the normalized bistatic cross secfion as a function of the scattering

angle, for two identical sets of prolate spheroids of axial ratios 2 and. 10, semi-major

axes ìv14, with the spheroid centers displaced along the z axis of spheroid A. The

orientation of spheroid B with respect to A is specified. by the Euler angles cr,=0o,

Þ=45o, Y=0o. The incident field propagates along the negative z axis, as shown in the

figure. In Fig. 4.2(a) the center-to-center distance is À"t2 and. in Fíg. a.2þ¡ it is ì..

When the axial ratio changes from 2 to 10, a significant decrease in the magnirude of

the bistatic cross section is visible in both E - and È/ - plane parrerns which is partly

due to the reduction of the area available for scattering. When the distance between the

centers of the spheroids is increased from ì,,/2 to À we observe that the scattering cross

sections are subject to more oscillations in general due to the interference pattern of

the two spheroids.

Fig. 4.3 shows the plots of normalized backscattering cross section versus angle

of incidence for TE and TM polarizations of the incident wave. The spheroids are

identical to those in Fig. 4.2, and so are the orientation and center-to-center distances

between the spheroids. Fig. 4.4 ís for the same two spheroids and for the same separa-
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tion between the centers as in Fig. 4.3, but the orientation of spheroid B with respect

to A changed to c[,=Oo, F=90o, Y=0o. It is interesting to note that for axial ratio 10,

the cross sections in Fig. 4.4 are almost symmetrical about 0i = 90o, and that for both

axial ratios the behavior of the backscattering cross sections for TE and TM polariza-

tions is almost the same.

In Fig. 4.5 we present the plots of normalized backscattering cross section as a

function of 0¡ for two spheroids of axial rario 2, semi-major axes À/4, with their

centers displaced along the z axis of the spheroid A by distances ìulT and. À, for both

TE and TM polarizations of the incident wave. In Fig. a.5@) the orientation of

spheroid B with respect to that of A is specified by the Euler angles a.=45o, F=90o,

n{=45o, and in Fig. a.5@) by o-30o, P=45o, T=600. As the distance between the

centers of the fwo spheroids increases we observe an increase in the amount of oscilla-

tions in the curves for both polarizations. When comparing the corresponding plots in

Figs. a.5(a) and 4.5(b), we observe that the behavior of the curves for TE polarization

remain the same, whereas the curves for TM polarization tend to oscillate more in Fig.

4.5(b).

If the centers of the two spheroids are displaced by ?ulT in a direction perpendicu-

lar to the z axis of spheroid A, the plots of the normalized backscattering cross section

versus angle of incidence are shown in Fig. 4.6. In Figs. a.6@) and 4.6(b), the orien-

tations of spheroid B with respect to that of .4 a¡e identical ro rhose in Figs. 4.5(a) and

4.5(b), respectively. When the axial ratio of the spheroids alb is 2, in Fig.4.6(a), the

curve for TE polarization shows more oscillations than that for alb =10. The minima

for TM polarization occur near 0; =30o and 0¡ =150o, the lower minimum being for
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a/b = 10. For alb =2, the curve in Fig. 4.6(b) for TM polarization follows that of TE

closely, but there is no such behavior for alb =10.

In Fig. 4.7, the variation of the normalized backscattering cross section with the

angle of incidence is presented for two different spheroids of axial rarios 2 and 10,

with the centers displaced along the direction specified by the spherical coordinates

0o=60o and Qs=20o by a distance XlZ.The Euler angles for the two spheroids in Fig.

a.7@) are s.=45o, Ê=90o, ^{=45o, and for those in Fig. a.7þ) are .,-Þ-y-0.001o.

The plots obtained in Fig. 4.7(b) are compared with the corresponding ones obtained

for the same rwo spheroids, but with parallel major axes [44]. As expected, the results

are in agreement with the maximum relative difference being 3.2Vo, which validates

the software that we use in our calculations in the case of two spheroids of arbitrary

orientation.

4.2.2 Two Dielectric Spheroids

In this section we present the results for scattering by two dielectric spheroids of

arbitrary orientation. When computing the numerical results for this case, again we

have found that in order to obtain a two signif,cant digit accuracy in the computed bis-

tatic and backscattering cross sections, it is sufficient to consider only the Q- harmon-

ics ¿/0, 
"t/0, 

and etziþ. Thus the values of rn being used in the truncation of the asso-

ciated matrices in (4.17) remain the same as in the perfectly conducting case, bur rhe

values of ¡¿ and K are now given by n = lml ,lml+1,.. . lml+5, and K=0, 1,...5.

Fig. 4.8 shows the normalized bistatic cross section for TE polarization of the

incident wave versus the scattering angle for two identical sets of prolate spheroids of

axiai ratios 2 and 5, dielectric constant t,' = 3.0, with the spheroid centers displaced
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along the z axis of the spheroid A . The orientation of spheroid B with respecr to A is

specified by the Euler angles cx,=30o, F=45o, y=60o. The incident field, propagares

along the negative z axis. It should be noted that the geometries of the systems of

spheroids considered in ail the cases are similar to those shown for the perfectly con-

ducting case, and therefore are not shown again with the figures. in Fig. 4.8(a) the

center-to-center distance is ìvl2 and in Fig. 4.8(b), it is À. Here we observe that in all

the figures, the magnitude of the forwa¡d scattering cross section (0=æ) is higher than

that of the backscattering cross section (0=0). This is partly due to the contribution to

the forward scattered field from the field transmitted inside the spheroid. A reduction

in the magnitude of the scattering cross section is aiso observed due to the reduction in

the area available for scattering.

In Fig. 4.9 we present the plots of normalized backscattering cross section as a

function of the angle of incidence, for two spheroids of axial ratio 2, semi-major axes

Xl4, e, =3.0, with their centers displaced along the z axis of the spheroid A by dis-

tances ),"12 and À, for both TE and TM polarizations of the incident wave. In Fig.

a.9@) the orientation of the spheroid B with respecr to that of A is specifie¿ by the

Euler angles c[,=30o, Þ=45o, y=60o, and in Fig. 4.5(b) by cr=15o, p=g0o, T=45o.

When the curves in Fig. a.9@) are compared with the corresponding curves in Fig.

4.5(b) for the perfectly conducting case, we observe that the magnitud.es of the back-

scattering cross section are now less, for both polarizations. This is due to the fact that

a pa-rt of the incident field is now being transmitted inside the spheroid, without being

scattered. In Fig. 4.9(b) it is interesting to note that the curves are almost symmetrical

about 0¡ = 90o, for both TE and TM polarizations.
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The variation of the normalized backscattering ffoss section with the angle of

incidence is shown in Fig. 4.10, for the general case of two non identical spheroids,

one having an axial tatLo 2, the other 5, and separated center-to- center by a d.istance

)ulL in the di¡ection specified by the spherical coordinates 00 = 60o, 0o = 20o. The orien-

tation of the spheroid B with respect to A is given by the Euler angles cx, = 30o,

Ê=45o, Y=60o. Spheroids of two different dielectric constanrs are being considered to

observe the effect of the change in dielectric constant on the backscattering cross sec-

tion. In Fig. 4.70(a), both spheroids ,4 and ,B have dielectric consranrs r.¿ and e,¡

equal to 3.0. In Fig. 4.10(b), tr¡ =3.0, Ers =4.0, and in Fig. 4.10 (c),

Er¡=4.0, tr¿ =3.0. The behavior of the curves for both TE and TM polarizations is

almost the same in each figure. However, the positions of the minima a-re slightty

different in each figure, and the minima in Fig. 4.10 (b) are deeper than in the other

two figures.

Fig. 4.11 shows the plots of normalized backscattering cross section versus 0¡, for

two sets of identical spheroids of axial ratios 2 and 5, and dielectric constant 3.0, with

their centers displaced along a direction perpendicular to the z axis of spheroid A. The

orientation of spheroid.B with respecr to A is given by o=30o, B=45o, y=60o. When

the curves for axial ratio 2, are compared with the corresponding curves in Fig. 4.6(b),

for the perfectly conducting case, we observe a reduction in the magnitude of the

scattering cross section. Also we observe that for axial ratio 2, the lower minima in

Fig.4.11 for both TE and TM potarizations occur at the same position, whereas in Fig.

4.6(b) they are not. Other than this the general behavior of the curves is almost the

same. In Fig.4.11, when the axial rario changes from 2to 5, we observe a significant
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reduction in the magnitude of the backscattering cross section due to the fact that the

semi-minor axes are now 2.5 times smaller. The lower minima for both axial ratios

occur around 0¡ = 30o. However, when the axial ratio is 5, the lower minimum in the

curve for TE polarization is much deeper and sharper than the corresponding one for

axial ratio 2.

It should be noted that the results for a system of perfecrly conducting spheroids

can be obtained as a special case from the corresponding results for a system of dielec-

tric spheroids for E, -) -. In Fig. 4.72 we present results for such a case. In this figure,

the normalized backscattering cross section calcuiated for two spheroids A and B each

of an axial ratio 2, semi-major axis ),14, with the spheroid B rotated with respect to A

by the Euler angles cr,=Oo, F=90o, y=Oo, the spheroid centers displaced along the z

axis of the spheroid A, and a relative permittivity r. taken to be 106, is compared with

the corresponding results for an identical set of perfectly conducting spheroids. As

seen from the figure, the results a¡e in good agreement with the maximum relative

difference being 1.4Vo, which validates the softwa¡e being used in the calculations.

From the above result we can also verify that the accumcy obtained in the case of

scattering by two dielectric spheroids with more tenns in the series expansion, is still

the same as that for scattering by two conducting spheroids.

To show further the applicability of the general software to limiting cases of

eccentricity, the backscattering cross section has been caiculated for two spheroids of

axial ratio 1.001 with a¡bitrary Euler angles and a given separation between the

centers. The results have been compared with those obtained for two spheres having

the same center-to-center distance, and are in good agreemenf, with the maximum rela-
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tive difference being 3.9Vo. Also the backscattering cross sections calculated for the

same two spheroids with two different sets of Euler angles and a given separation are

found to be almost the same.
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CF{APT'ER 5

ATd APPR,OXTMATE METFTOD F''OR. TF{E PR.OtsT,EM OF-
SCATTER.XNG EY T'WO COAXNAT, SPHER,OMS

In this chapter we present an approximate method for solving the problem of

scattering of elecromagnetic waves by two coaxial prolate spheroids, with their major

axes along the common axis, the excitation being a uniform plane wave at oblique

incidence, having an electric field of unit amplitude. The method is based on the exacr

soiution to scattering of a plane wave by a single spheroid. To account for the multiple

interactions between the spheroids, the total field seen by each spheroid is written as

the sum of the corresponding fields of the incident plane wave and another plane wave

of unknown magnitude propagating along the common axis from the other spheroid.

Thus the total far field scattered by each spheroid can be written as rhe sum of the

field scattered due to the incident plane wave and the field scattered due to the plane

wave of unknown magnitude, propagating axially. The total fa¡ field scattered by one

spheroid can also be written as the sum of the field scattered. by that spheroid due to

the incident plane wave and the field scattered due to the total far field scattered by the

other spheroid, acting as an incident plane wave on the fi¡st spheroid. Equating the two

different expressions of the total far field scattered by each of the spheroids

corresponding to TE and TM polarizations separately, yields a set of simultaneous

linear equations, whose solution gives finally the rotal far scattered field at any given

point in space. Simila¡ conditions for the scattered fields have been used in 162l for a

linear array of perfectly conducting spheres in the special case of an axially incident

field. For the case of two dimensional electromagnetic fields, equivalent sources from

point of view of scattered far fields were first proposed in [63], and were recently used
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by other researchers t64l-t651.

5.1 Scattering by a Single Spheroid

When the incident wave has an electric field of unit amplitude, for axial incidence

and TE polarization, the far field scattered by a single spheroid at any given point

(r,0,Q) can be written as

trflE1r,e,q¡ = +t rfE (e,o) ô + r{E(e,o) ôl (s.1)

Explicit expressions of FerE(0,Q) and Ff,E(e,O) are similar ro rhose given in (4.I2) and

(4.13), respectively, but with the corresponding expansion coefficients for axial

incidence. Substituting ror ô ano fi in terms of * and $ appropriarely, we obtain the

backscattered (0 = 0) and forward scactered (0 = n) far fields respectively as

nf,E1r,o,q¡ = +A (o)$ (s.2)

and

EflE(r,æ,Q) =- + A@)î, (s.3)

(s.4)

in which

æ

A (0) = Il"So, (h ,l) u*onrE
n=0

A (n) = Ë t" So, (h,-I) otrnrc
n=0

where a*onTE are the coefficients in the expansion of EflE in terms of vector spheroidal

wave functions for axial incidence of the TE polarized incident wave. If only the

polarization of this incident wave changes from TE to TM, then the far field at the

point (r,0,S) can be written as

8,ru1r,0,q¡ =+lF{M(e,o)ô *Fl*(e,o)ôl (s.s)

The explicit expressions of r{'@,þ) and,F{M (0,Q) are the same as rhose orrf'E10,q¡
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and, FIE(e,O), respectively, with the expansion coefficienrs correspondingly defined.

The backscattered and forward scattered fa¡ fields in this case can be written as

ElMlr,o,q¡ = +B (o) *

E{Me,r,q)=- +B (ru) *

(s.6)

and

(s.7)

in which

æ

B (0)=- Ei"*t,s 6n(h,r)d*onTM B (æ)=- f,i "*ts on(h,-r)otrn" (5.g)
¿=0 ¿=0

where d*onTM are the coefficients in the expansion of Erru in tenns of vector

spheroidal wave functions for axial incidence of the TM polarized incident wave. From

(5.2), (5.3), (5.6), and (5.7), it is obvious that in the case of axial incidence, both the

backscattered and forward scattered far fields have the same polarization as that of the

incident field. This properry of the fa¡ scattered field allows the implemenrarion of the

proposed approximate method.

5.2 Formulation

Consider the two coaxial prolate spheroids 1 and 2 with the Cartesian system

0úù121 attached to the spheroid 1 and the system O2x2)222 attached ro rhe spheroid

2, as shown in Fig. 5.1. The major axes of the two spheroids lie along rhe common z

axis, with the distance between the centers denoted by d.The system of ù121 is

taken as the global system. Assume a linearly polarized plane wave, having an elecrric

field of unit ampiitude being incident on the system of two spheroids, the plane of

incidence being chosen as the x r-z t plane (Q; = 0) so that the angie of incidence 0¡ , is



76

Fig. 5.1 System of

tems.

two coaxial prolate spheroids and the associated Canesian sys-
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the angle the incident propagation vector makes with the z 1 axis.

The fa¡ field scattered by the spheroid 1 at any point (r,0,0) due ro the plane

wave propagadng along the negative z axis can be w¡itten as

sÍ'= + {rr7jt(e,o) ô * Flt(e,o) ôl cT, *trfM (e,Q) 6 + r{M(e,o) ôl cT, } (s.e)

in which CIE and, CIM are the unknown amplitud.es corresponding to TE and TM

polarizations of the wave. The fa¡ field scattered by the spheroid 2 at the same poinr

due to the incident plane wave with an electric field of unit ampiitude, propagating

along the di¡ection (0; ,0¡ = 0) is given by

wlr= #[F0(e,O) ô +F.(0,S) $1¿ikd"o'e' ¿ikdcosa (s.10)

The expressions of Fe(0,0) and F6(0,Q) have the same form as those defined in (4.12)

and (4.13), respectively, but with the expansion coefficients corresponding to the par-

ticular angle of incidence 0;. The fa¡ field scattered by the spheroid 2 due to the plane

wave of unknown amplitude propagating along the positive z axis can be written as

^c. e-iÞ8"""=-+ {f_r{t (n-0,0) ô +r*rE(n_0,0) hc;,òL kr

+V{M (n-o,Q) à - rçu (æ-0,0) hc5" } sid*'e (s.i 1)

in which CIE and CIM are also unknown amplitudes. Evaluating Ej2 at 01 yields

^- ik¿
Eizlo, =- " * lA"(n)þ+a"çn¡kleiucosøt e-iu

æ:n
A"(A)= L {_ Son(h,cos0) (crf, +cr6")u1

n4o

where

(s.r2)

(s.13)
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€ :n+1
B"(o)=- Ðf-so"(å,cosO)(qå,-cro") (5.14)

n=O L

with cfl correspond to the expansion coefficients in the expansion of Ej2 in terms of

vector spheroidal wave funcrions. Evaluating y,frt at O1 gives

wftlo,= + lA"(0) cT, i - 8,,(0) cT, il (s.ls)

with A"(0) and .8"(0) given in (5.4) and (5.8) corresponding to spheroid 2. The fa¡

field scattered by the spheroid 1 due to the incidence of Ej2lp, ano nr!'lo, is

w!r= * {rrlt(e,o) ô * Flr(e,o) ôl [A,,(0) clE -I,,1n¡ eiu*,0,,

+VlM (e,0) ô * Fl' (e,O) ôl [8"(0) c[M + a"qn) ¿lu*,a,]] +f (s.16)

From (5.9) and (5.i6) we now obtain

^-2ik¿
CTt =î [4"(0) CIE -e"6¡eiu*'ê,t

cT, = if lB"(o) c[M + a,,1n) eiu"o,o,1

The far field scattered by the spheroid 1 due to the incident plane wave

tric field of unit amplitude, propagating along the direction (0;,0¡ = 0) can

.o-jk^^
Eh= : t, [Fe(0,0) 0 +F*(e,0) O]

Evaluating Eji and nfi' at 02 gives

o-jM
Ei r I o, = ft-fe' fot$ + ¡-'(o)* l

(5. 17)

(s.18)

with an elec-

be wrítten as

(s,1e)

(s.20)

where A](0) and A-'(0)

and

have the form in (5.13) and (5.14) corresponding to spheroid i,
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Efi'lr,= +[Á'(o) cTt 9+8,(o) cTrkl (s.21)

with A'(0) and B'(0) given in (5.4) and (5.8) corresponding to spheroid 1. The far field

scattered by the spheroid 2 due to the incidence of Ejl lçrand. nr!'lr, is

ø!r= # {re{t(æ-0,0) à +r{E(n-0,0)ôl to'(o) cT, *¿,roll

-V{M (n-0,0) ä *r{u(n-0,0) Llw'rorcT' +B-'(0)l } + ¿ik:dcosl 6.22)

From equations (5.11) and (5.22) now we ger

Cît =4Y [Á,(0) clE +e,ço¡1 (s.23)'kd

.-iu
cT =-+ [B'(o) clM +n,p71 6.24)

Solving the four aigebraic equations (5.17), (5.23) and (5.18), (5.24), simultaneously,

yields the four unknown constants. Once these are known, the total fa¡ scattered field

at any given point (r,0,Q) is caiculared as

,, = + { trr(e,o) ô +Fq(0,0) ôl r, * ,ikdcosli sik¿cÐsê¡

+vlE(0,0) ô * Fltte,ol ôl cTt *trfM(e,Q) â + r{Mro,ol ôl cTM

+?F{E(æ-0,0) ô +rrrE(æ-0,0) hcSt ¿ikdcosl

+V{M (æ-0,0) ä -r¡u (r-0,0) hc;* ¿tucnso}

This equation can be written in a condensed form as

o-jþr^+A
E, = L t, [Fd (e,0) 0 +F*r (e,Q) Q] 6.26)

The normalized bistaric cross section is then calculated from

(s.25)



ryt = lFe? (o,o)l 
2+ 

lrrt {o,o)l'
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(s.27)

(s.28)

with the E- and H- plane patterns corresponding to Q =nlT and. Q=0, respectively.

In the special case of axial incidence and rE porarizarion, cT, =cT, =0. Thus

in this case the expression of the far scattered field at (r,0,Q) simplifies to

o-jb,, = T {rel'(e,o) ô * Fln(e,o)ôl (L + eikd"o'ot rlktcnsl * cTE)

+?F{E (n-0,0) ô +rf,Ë(n-0,0) hc;, ¿iucnse}

5.3 Computed Results

Numerical results obtained for scattering by two coaxial perfectiy conducring

spheroids ac oblique incidence, are presented in this secrion in the form of normalized

bistatic scattering cross sections in the E- and H- planes. The corresponding results

obtained for the same problem by using the exact merhod, and also by neglecting the

interaction between the two spheroids, are also included for the purpose of comparison.

The cases of 0¡ =0o, 45o, and 90o, where 0¡ is the angle of incidence, a¡e considered

separately, for TE polarization of the incident wave.

Fig. 5.2 shows the plots of normalized bistatic cross secrion in the E- plane as a

function of the scattering angle, for two coaxial perfectly conducring spheroids of axial

ratio 2, semi-major axes aA-ds À/4, having a center-to-center distance d=0.6)".

When compared with the other two plots in the same figure, we observe that the ¡esult

obtained by the approximate method is better than that obtained by neglecting the

interaction between the spheroids for aii the range of the scattering angle, in particular

for this small separation of 0.11" between the tips of the spheroids. it is in good agree-

ment with the resuit obtained by the exact method, the maximum relative difference
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Fig.5.2 Normalized bistatic cross section in the E- plane for axial incidence of the

incident wave, as a function of the scattering angle for rwo identical coaxial

prolate spheroids of axial ratio Z with a¿ =aB À./4, and displaced along the

z axis by d =0.6X.
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being 2.6Vo, in the range 0=0o-30o and e=1500-1800. The result calculated nea¡

0 = 1000 with the interaction neglected is d¡astically low, but the result obtained using

the approximate method has a reasonable value.

The normalized bistatic cross section versus scattering angle in the E - and, H -
planes are given in Figs. 5.3 and 5.4, respectively, for two spheroids which are rhe

same as in Fig. 5.2, but with the distance between the cenrers now being 1,. When we

compare the results of Figs. 5.2, and 5.3, we find that the one in Fig. 5.3 is in much

better agreement with the result obtained by the exact method, except a¡ound the

minima. However, since the effect of the interaction becomes iess influential as the

distance between the centers increases, the result obtained by neglecting the interaction

also doesn't deviate too much from the other rwo except in the region 0 = 1200-1500.

For the H- plane pattern given in Fig. 5.4 we observe a simila¡ type of variarion in

the curves. it should be noted that the values of the minima in the results obtained by

negiecting the interaction a¡e minus infinity in dB theoretically and therefore are nor

represented on the plot. These values are due to the superposition of the ind.ividual

interference patterns of the two spheroids. It should be remarked that the positions of

the minima are given reasonably accurately for all the cases consid.ered.

Figs. 5.5 and 5.6 show plots similar to those in Figs 5.3 and 5.4, respectively, for

the same configurarion of the two spheroids as in these latter figures, but with the

angle of incidence now being 45o. Figs. 5.7 and 5.8 also show the E- and H- plane

patterns for the same two spheroids as in the two previous figures, but the angle of

incidence now being 90o. ln all these figures we observe that in general the resuits

obtained by the approximate methd a¡e closer to the exact result than the one
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Fig. 5.3 Normalized bistatic cross section in the E- plane for axial incidence of the

incident wave, as a function of the scattering angle for two identical coaxial

prolate spheroids of axial ratio 2 with a¿ =aB )J4, and displaced along the

z axis by d =7v.
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Fig. 5.5 Normalized bistatic cross secdon in the E- plane for 0¡ =45o, versus scatter-

ing angle for the same configuration of the two spheroids as in Fig. 5.3.
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obtained by neglecting the interaction, except around rhe peak region, with the max-

imum ¡elative difference on an average being 4.37o, and the agreement being better

close to 0=0o and 0=1800.

Finally in Fig. 5.9 we present the variarion of the normalized bistaric cross sec-

tion in the E - plane as a function of 0, for two prolate spheroids of axia-l ra;tio Z,

semi-major axes ),J2, having a center-to-center distance of 1.5ì,. Here we observe that

from about 0=30o to 0=1500, the results obtained by the approximate method as well

as by neglecting interaction, are very close to that obtained by the exact method except

nea¡ minima. At and near minima they both deviate from the exact value, but still the

one calculated by using the approximate method being closer to rhe exacr. Outside this

range of 0 the agreement is not very good. However, with the curve for the approxi-

mate method it is still possible to find out approximately the location of the minima

which a¡e close to 10o and 1700. This is not the case when neglecting the interaction

for 0 less than about 10o or greater than about 170o, as seen from Fig. 5.9.

From the numerical analysis performed on the basis of this approximate merhod,

it is possible to conclude that it gives acceptable results for spheroids of semi-major

axes lengths up to ?rJZ, and for separations between the tips of the spheroids that a¡e

greater than 
^J2. 

Much more accurate results a¡e obtained for larger separations

between the tips of the spheroids compared to their sizes, and also for larger axial

ratios of the spheroids. The reduction in computation time as compared to that of the

exact method, calculated on an average for the cases considered is about 307o.
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CF{APT'ER. 6

AÐMITTANCE CF{,ARACTERTSTXCS .{ND FAR. F''TET,Ð PAT'TER,NS F'OR, COTJPT-ED
SPT{ERO{DAN. ÐTPOLE ANTENNAS TN AR.BNT'R.AR.Y CONF'IGURATION

Practical dipole antennas modeled by using spheroids of large axial ¡atios, fed by

a central gap voltage, have been under investigarion for a long period of time L4l,l2g),

t66l-t691. Admittance characteristics of a system of two such antennas in parallel

configuration have already been studied [45] by applying rhe translational addition

theorems for vector spheroidal wave functions [43]. In this chapter we presenr an ana-

lytic solution to the electromagnetic coupling between two spheroidal dipole antennas

in an arbitrary configuration, which enables one to study the ad,mittance characteristics

of a system of two such antennas. Each antenna is modeled by a very thin prolare

spheroid which is centrally fed by a gap voltage. By using the equivalence principle,

each spheroidal dipole is replaced by a solid spheroidal conducror of the same size

without gap, encircled by a conesponding filamentary ring carrying magnetic currenr

of proper magnitude. The associated electric and magnetic fields a¡e expanded in rerms

of appropriate vector spheroidal eigenfunctions, and the boundary conditions at the sur-

face of each spheroid are imposed by using the rotational-translational add,ition

theorems for vector spheroidal wave functions derived in Chapter 2. The solution of

the resulting set of algebraic equarions gives the unknown scattered field expansion

coefficients.

The formulation of the problem and the expansion of the elecrric fields associated

with the two antennas in terms of appropriate vector spheroidai wave functions a¡e

given in Section 6.1. Section 6.2 deals with imposing of the boundary conditions ar rhe

surface of each spheroidal dipole antenna, from which a set of linear algebraic
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equations is obtained for the unknown scattered field expansion coefficients. The calcu-

lation of the mutual and seif admittances, as well as of the electric fietd in the fa¡

zone, is discussed in Section 6.3. Finally in Section 6.4, numerical results are

presented for the va¡iarion of the real and imaginary parts of the mutual admittance

with the distance between two spheroidal dipole antennas of arbitrary orientation, hav-

ing unequal major axis lengths. Also given in this secrion a¡e the E- and H- plane

patterns for the same two antennas in different configurations, with one antenna now

being parasitic.

6.L Electromagnetic Field Modeling

Consider two arbitrarily oriented prolate spheroidal antennas A and .8, as shown

in Fig. 6'1. The unprimed coordinate system is attached to anrennaA, which is fed by

a central gap voltageV¡, and the primed coordinate system to antenna,B, which is fed

by a central gap voltage V3. Major axes of A and B are along the z and z'axes of the

cartesian systems oryz and o'x'y'z', respectivery. The system ox¡\2,, is parallel to

o'x'y'z' and is rotated with respect to oxyz through the Eule¡ angles cr,p,y. The

center o' of B has spherical coordinates d,0s,Q6 relative to oryz and. d,}a,þ¿, rela-

tive to Oxp¡2,,. The prolate spheroidal coordinates associated with the unprimed and

primed systems a¡e denoted by É,n,0 and É',1',0', respecrively. The surfaces of the

two antennas A and B coincide with the coordinate surfaces €=€¿ and E'=1'0, respec-

tively.

Using the equivalence principle, the pair of cenrrally fed spheroidal antennas A

and B is modeled by rwo solid spheroidal conductors, without gaps, of the same size

as the respective antennas, encircled at their middle (rl=0,1'=0) by filamentary rings of
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Fig. 6.1 System of two spheroidal dipole antennas of arbitrary orientation.
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magnetic cturents V¿ and V6, respectively. The resultant electromagnetic field can be

determined by the superposirion of the fields produced by the filamentary magneric

currents and the fields scattered by the solid spheroids assumed to be perfect conduc-

tors. The electric fieid intensities due to these filamentary magnetic currents considered

to be alone i¡ an unbounded free space can be expressed in a matrix form as [45]:

t_,.._
lMt"', (E,l) [R ]Ã, € t €i

sE¿ (€,n) = 
I *,t,t(€,n)Ã, €. Eå
t

Io*'t (€',n') tR'] B , \'rE'i
sE¡ (€',rl') = 

I *,t,r (1,,t1) B , E, .8,Ë
t

(6.1)

(6.2)

(6.4)

where (j and 1'B* u" the values of ( and (' just outside the surfaces of the spheroids

A and B, respectiveiy, the overbar denotes a column matrix, and Z the transpose of a

matrix. The matric", M(t)t, M(o)r, Ã, and B are all defined in Appendix E. [R] and

[R'] are diagonal matrices, with the respecrive n th diagonal elements given by

Rk=
n{})Q,',\'r)

(6.3)
n{1)e",\'r)

where n{))<n,[) and n{l)<n,€) ar" the spheroidal radial functions of rhe fi¡st kind and

the fou¡th kind, respectively, given in Appendix A.

The electric field scattered by the spheroid B can be expanded in the form

EB =M!?tp

^ nÍl)r h,\e)
"nn n{?ø,Et)'

as given in (3.32), where M!! ana þ are column matrices whose elements are proiate

spheroidal vector wave functions of the fourth kind, expressed in terms of the primed

spheroidal coordinates, and the corresponding unknown expansion coefficients,
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respecûvely. [n order to impose the boundary conditions ar the surface of antenna A, it

is necessary to express the scattered field E¡ and the source field 5E¡ for f'rl'u*,

which are seen from A as incoming fields, in terms of vector wave functions of the

first kind in unprimed coordinates. This is achieved by using the appropriate

rotational-translational addition theorem for vector spheroidal wave functions (see

Chapter 2) to express the outgoing vector wave functions in primed cooianates M!f;

*d M(a) in terms of incoming vector wave functions in unprimed coord.inares rvrll 
^t

in (3.43)

ñ? = trrM!?

M(4) = tAr M!?

in which [f] and [A] are defined in Appendix E. The structure of nn!]r is similar to

that of (qr)M(t)r given in (3.44) with the vector wave functions evaluated with respecr

to the unprimed coordinate system. Denoting the incoming fields corresponding to E ¡

and 5E¿ bY Es¡¿ and 5E¡¿, respectively, taking the nanspose of both sides of (6.5)

and (6.6), and then substituting M!?t in (6.4) -d M(a)r in (6.2) gives

(6.s)

(6.6)

(6.7)

(6.8)

EsBA =MlTtrlr F

_,/ I \1
sEB¿ =Mli tAl' tRlB

In the presence of fields sEB¿, E ¡a, and 5Eo , antenna A scatters an electric

fi.eld which can also be expanded in a series of prolate spheroidal vector wave func-

tions and expressed in a matrix form similar to E 6 as

B,¿ = M!?r cr (6.e)

where n4$ anA cr are column matrices whose elements are prolate spheroidal vector

wave functions of the fourth kind, expressed in tenns of unprimed spheroidal
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coordinates, and the conesponding unlmown expansion coefficients, respectively. Thus,

the total electric field seen from the artenna A is given by

E¿=sEe*sEa¿*Es¡¿+Eø

= M(l)r Ã+ MtT[A]r [R']r + nn$lltrlr p * ffita (6.r0)

Similariy, the total eiectric field seen from the antenna B can be expressed in

terrns of appropriate prolate spheroidal vector wave functions in the primed coordinate

system as

E¿=sE¡+sE¿¡fFsaB*8"¡

= M(l)r r + rw!)?[A']r lR lÃ+ lvrlT[r']r o * M!?tp (6.11)

with [f'] and [a'] defined in Appendix E. The elements of the marrix nrrlf *"

obtained from the corresponding elements of nnllf, by evaluating the vecror wave

functions with respect to the primed coordinare system.

6.2 Boundary Conditions and Field Solution

On the surface of each perfectly conducting spheroid f= Ço and ('= €'3 , the

tangential components (1 and 0) of the total electric field intensity must be equal to

zero. Thus from (6.10) and (6.11) we ger

(ñ¿(t>rÃ+ nnlTt^lr tnlB + Mllf trlr F * nnlf?cr¡"Êl€=Ê^ = Q (6.12)

(M(trr a + ffir[^']1 [RlÃ+ rvrlTIr']r cr * M!?tBl " ? 16,=E; =0 (6.13)

Taking the scalar product of both sides of (6.12) and (6.13) by

É,n ì J.û',n, ì

tôr, ¡s^,^'+K(h'11)exi(^xt)o 
and 

ta,r., ls^.,^'**{h',r1)tli(m!r)ö', 
respectivelY, for

m = . . -2, -1,0, I,2, , K=0, 1, 2,. ., with trl=2jF(\À-rf)''',

In,=TjF'(\'f1'2¡1/2, lþ=2Ff\ï-nzl and /6,=2F'(\';-4'2¡, integrating over Q and Q'
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from 0 to 2n, and in 11 and q' from -1 to 1, and using the orrhogonality properties of

trigonometric functions and spheroidal angle funcrions, yields t311, [44], [57]

Ir[r
I ra; ßsil rrlr | [u I I rRA] tna¡l r^lr rn,l I t¡-l
I tn*] tr'r' tQat 

-J 
LnJ 

= 
L 

rn¿¡l r^'lr rR1 rnaì I Lul

(6.14)

with [Ro ] and [R6 ] defined in Appendix E. The structure of the marrices lQl and

[R¡¿] are the same as those of lQul and [rRøzr], respectively, given in (3.73), but

with the elements evaluated with respect to the unprimed coordinate system. The ele-

ments of lQnl and [R¿¡ ] are obtained from the corresponding elements of lQtl a¡d

[R¡¿ ], respectively, by evaluating them with respect to the primed coordinare sysrem.

Equation (6.14) can be rewritten in the form [45], [70]

5 = ¡Gl1 (6.1s)

where

(6.16)

l- -l-t r l
I rol [Ra¿] trlr I I tnel LRaelt¡lr tn'l I

[G] = 
lr^*r [r']r lenl I L 

tn¡¿l [a']r [R ] tn¡r I t6'tzl

[G] is the system matrix, which depends only on the geometry of the scattering sysrem

and frequency, being independent of the position of the voltage gaps along the antenna

axes.

6.3 System Admittances and Far Field Fatterns

For the two spheroidal dipole antennas A and B, the gap electric crurents I¡ and

1¡ corresponding to the gap voltages V¿ and Vg, respeÇtively, can be defined in terms

f_l T-]l*l -,ltlt=Lpj' t= 
LBJ
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of an admittance matrix:

where

Vs =0

are the self adminances and

,
Vt =0

are the mutual admittances associâted with A

ItvIAA _ 
VA

[;;]=l';^T,] tä]

IB

VB

vIBB _

IB 
I_l

vAl
IA

uB

vIAß

V¡ =0

Va =0

(6.18)

(6.1e)

(6.20)

(6.2r)

(6.22)

(6.24)

(6.2s)

vlBA -

and B.

6.3.1 Calculation of the Mutual and Self Admittances

In order to calculate Yea and Y6B, for instance, we \et V¡ =0, such that all the

elements of Ã a¡e zero, which makes sE.4 = 0. In this case the total electric field inten-

sities seen from antennas.4 and B can be written from (6.10) and (6.11), respectively,

AS

EA = Mllf t^lr tnl B + Mltf trlr p+ na!?ra

EB =M(1)7'a +nnlf tf'lr cx,+Mgrp

Using Maxwell's equation

¡¡ =7 (e/p)lrz ! qVxE) (6.23)k'
in which e and p are the permittivity and permeability, respectively, gives the totai

magnetic field intensities seen from antennas A and B,

w¡ = j (etþ)r/z (ñ!T t¡lr tn'l r +ñ!tf trlr p+ ro!?ral

H¡ =i @tp)\,z(ñ(trra +rulf [r']r G+ñ!?tBl
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The electric current I¿ at the feed point of the antenna A is

ro=lH dl In=0,Ë=Ç

= I {goè* rroÄ* Foôl r¿r¿oôl In=o,E=ç^
2n

=F G?A-r¡rrz I ono (€¿,0,0)d0
0

(6.26)

where å6 is the scale factor and F the semi-interfocal distance of the spheroid A.

Similarly, for the electric cturent I g we can write

2n

Is =F'(E']-t¡r'z J ,H, (E'r,O,ç'¡dq' 6.27)
0

where F'is the semi-interfocal distance of the spheroid B. Subsrituting ,É1o from

(6.24) n (6.26) and using

o¡¿lÍ'Jfqo ,0,0) = - o¡¿# 
)f€o ,0,0) = 0.5lkn#,)s1,,, i =1,2,3,4 (6.2g)

where d-r., denotes the f-component of the vector wave functions f{-, defined in

Appendix A, finally yields [71]

yAB = -@tp)r'z (nh tvr) (E?o-t)''2 
[p,rt å,rt e':li - c;e'J'+ c i. e']i - c;- e']i,)

.R,\l)s,u* Ë pi,,*, Ëctí e':]'"*r - cíe'tut,n*l)R,(.,})s,u
¿=O v=l

ææ
+ pó" zG;Q'!iu- c;.Q'li)n,$)s,"+ 2 :, {p; itc; Q'K- c;Q'ff)R,Î)s,u

¡nfl 4=¡¡7 V=l

+þk+t,+t i<r;ç'l11¡r'n+r - c;.Q'fr*t'"*t) R,!})S,u Ì
v=1

+ f, > {p-; Erc;.Q'-ff- cí.Q'ttr)R,Î)s,,,*Þ3(-+r),,,+r
¡¡=$ y7=¡¡ V=1

Zrc;Q'-l^+r¡'n+'- cÁ.Q'lJn +1)'n+1¡R,$)s,,, 
) * I oi, nff)s,, 

-l 
6.29)

V=l n=l I

with the asterisk denoting the complex conjugare and

v=1



Sru = Sr,r(å,0), R$) = R,(r1) (¿,Eo ), i=1,2,3,4

Cí, (¡ =!,2,3,4,5) and Bi are defi¡ed in Append"ix E and the rotational-translational

coefficients Q'ff arc given in Appendix B. The coefficients c¿ and p in (6.29) a¡e the

elements of the column matrices cr and p, respectively. Subsrituting ùHs from (6.25)

in (6.27), integrating and using (6.28) yieids

t--
yBB =-@tv)r,z (nh'tvu) (E']-t¡t'z I Ëu"RÍl)s,, * Ë pi" R,(Í)s,"

l_ n=1 n=l

+ I Gi,,,*r Ð(cr g_l{*, - q7-u1,2+1)R,(,})s,u

100

(6.30)

(6.32)

Appendixes B

summation in

of Y* by the

n=0 v=1

where now

Stu = Stu(/¿',0), n,(,1) = n,(í) t¿ ',E'B), i=!,2,3,4

C¡,(i=1,2,3,4,5) are defined in (2.16) úd Qffi and 8,, are given in

and E, respectively.Yn¿. can be obtained from l¡¡ by replacing the first

the expression of Ynn by the summation

æ

:,4; Ð (ÇQ:]i - qO tJ" + c{Q il - c; A :fu )Â,(u')s,u
n=l v=l

and Yon, from Ym by replacing the fi¡st summaúon in the expression

æ

summarion ZZA'R{:)S,,, with An and.Al both given in Appendix E.
n=I

* d6n Ë<roe!r, - c;oli)RÍJ)sl"+ i i {"; Ëtr, ory" - c4orc)R,(u')s,
V=l ¡n{ n=¡n V=1

(6.31)

* ul +t,n +t I Q+ çm 
+r,n +t - c; OT,il'' *t ) R,\l )s,u 

)
v=l

* ! Ë {"-; î,rc}a-ff - cietr )R,!})s,u
m4 n=m V=l

+ a!çn+rln.*, Ë fao ç -{n+l)'n+t - cì Q-(n+i)'n+l I n$)s," } 
]
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6.3,2 Fan Field Fatterns

If the spheroidal dipole antenna .B is assumed to be parasitic, we have V¡ = 0, and

the expansion coefficients B' are zero for atl n. The total electric field at any given

point in space is therefore given by

E¿=sE¿+Eo+E¡ (6.33)

If all the field components are expanded in terrns of appropriate vecror spheroidal

eigenfunctions, then by using their asymptotic expressions as r-+æ, r'+*, the elecn-ic

field intensity in the far zone can be w¡itten in terms of spherical coordinates amached

to the two antennas in the form [44], [57]

o-iÞ [ n ^ ^ ¡-l

" 
= .; Irro1e,q¡e + Foe(e,O)O + Fø,a(e1ç')e' + Fø,n(oiq')ô'.] fe.:+¡

where

¡n+I
FeÁ(0,0) =-), 2 L" S^n(h,cosO) {({^,-a--,,*)cos(ln+1)Q

m=0 n=m /-

. - ¡n+l+i (a+r*+a--,,*)sin(n+1)O] - ), ¿" Stn(h,cos0) (ù_r^+ZAi) (6.35)
n=l L

Fqa(0,0)= ì å i" [ry s^n(h,cos0) {t";* a--^,)cos(m+l)Q +7 @:,*- a--,,*)
m=O n=m

. sin (z +1)Q ] -7 sin0 S-¡y,nay(h, cosO) {(dT*t,^*t+ d!_1^*t¡n*t)

'1

. cos (m+ 1 )Q + 7 (dT *t,n *t- d1_ç^ +t¡,n *t) sin (m + t )A ) l

+ cosO 
P=r+ 

S n(h, cosO) sl-rn - ,ine å i" S on(h, cos0) cr[,,

Fs,6(0',Þ') and Fs'B(eiQ') in primed coordinates can be obtained from the expressions

for Fsa (0,Q) and Fq¿ (0,0), respectively. This is done by replacing G by B, .41 by 0,

and multiplying each expression by the phase factor exp(/kr'd), with k, being the

(6.36)



scattered wave vector in rhe far field. Expressing ü and $' in

using the relation between the primed and unprimed sphericai

written in terms of unprimed coordinates only as [45]

e-ib I n nlt = =; L 
Fe (e,Q)e + Fô (e,0)0l

The magnitude of this far field is

r02

^^terms of 0 and 0, and

coordinates, E can be

(6.37)

E = F (O,Q)/r (6.38)

where

F(0,0)= [ I Fs (0,0) | 
2 + I Fr(0,0) | 

2]1'2 (6.3e)

The Ë- plane pattern is obtained from (6.39) by plotting F(0,Q) versus 0. Numerical

results are presented in the following section for Q = 0,n when the centers of the two

spheroids are displaced along the x axis, and for Q =htlT when they are displaced

along the y axis. The H- plane pattem is obtained by plotting F(e,Q) versus Q when

0=n12.

6.4 Numerical results

Computed results are presented for the real and imaginary parts of the murual

admittance of two spheroidal dipole antennas of arbitary orientation and also for the

8- and 11- plane patterns of the same antennas when one of them is parasitic. Since

all the matrices defined in Sections 6.2 and 6.3 a¡e infinite in extent, it is necessary ro

truncate these series and matrices according to the required accuracy. Ail the computed

results have been obtained with a two significant digit accuracy by considering the

Q-harmonics ¿i0, ,tr0, and ¿t2i0 only [57]. We take ¡¿ =lml ,lml+l...lml+3 in

truncating the matrices [0¿] and lQpl, and n=lml,lml+I,...lml+5 in truncating

matrices [f], [f'], [A], [A'], [R¡e], and [Rs], with m corresponding to the above



103

þharmonics. The truncation of matrices [R¿] and [R¡] is performed by retaining

n =1,2,3,4. For truncating ail the marices we consider K= 0,I,2,3.

Fig. 6.2 shows the variarion of the real pan G¿3 and the imaginary parr B¡s of

the mutual admittance Y¿a= Yne for two spheroidal dipole antennas A and B, each of

axial rario 100, for an arbitrary orientation, as a function of the center to center dis-

tance d. The location of the center of B with respect to thar of A is specified by the

spherical coordinates 00=90o,00=0o. As d varies from 0.51" to 2.01,, we observe an

oscillatory behavior in the variation of both the real and imaginary pa-rts of Ys, wirh

the minima and maxima for the imaginary part being higher in magnitude than the

corresponding ones for the real part. The accuracy of the numerical algorithm has also

been checked by computing the real and imaginary parts of Yeo. Detailed numerical

experiments yield plots of Gs for axial ratios between 10 and 100 which are pracri-

cally the same and so are those of ^8a3. For instance, in the case of an orientarion

specified by cr=60o, B=45o, and y-60o, the maximum relative difference for both

G¿3 and B¿3 is L}Vo.

The mutual admiftance for the special case of two parallel spheroidal antennas is

calculated in [a5] using the approximate one mode solution corresponding to the

þharmonic eiÙ. The numerical values are in agreement with those of the mutual

admittance calculated for the same two dipole antennas with very small values of the

th¡ee Euler angles, on the basis of the general analytical formulation presented in this

chapter.

E- and É/- plane patterns are presented in Figs. 6.3 and 6.4 for various orienta-

tions of the two spheroidal antennas A and .8, with antenna A being excited and B
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0.5 2.0

dtL

Real and imaginary parts of the mutual admittance versus center to center

distance for two antennas of semi-major axes dA=ìJ4, aa=51,"116 and Euler

angles cr, = 30o, Þ = 45o, T= 90o.

1.51.0

Fig. 6.2
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parasitic, and the distance between the centers of the rwo fixed at 0.6À. In Fig. 6.3 the

centers of the two antennas are displaced along the y axis and in Fig. 6.4 along the -r

axis. Different ¿- and F1- plane pafterns are obtained by changrng rhe Euler angle p,

with the angles cr and y held fixed at 90o and 0o, respectively. The axes shown in Figs.

6.3 and 6.4 a¡e those of the unprimed system of coordinates, attached to spheroid A.

The pattern for any given orientation is drawn by normalizing rhe magnitude of F in

(6.39) with respect to the maximum value of F out of the rwo plane parterns when the

two antennas are paraliel (F=0o).

As B increases from 0o to 90o, we observe an increase in the size of the back

lobe compared to that of the front lobe, for both E - plane patterns. when 0 = 0o, the

variation of the E - plane patterns in Fig. 6.4 is somewhat regular with changing $, for

e>40o, but curves start again intersecting each other around 0=140o. All the E- plane

patterns shown in Fig. 6.4 are symmetrical about the x axis, but the same patterns in

Fig. 6.3, when the axes of the elements A and B are in the same plane, do not presenr

such symmetry. However the H- plane patterns in Fig. 6.3 arc symmetrical about the

y axis and those in Fig. 6.4 are symmetrical about the x axis. Forhe H- plane par-

terns we again observe an increase in the size of the back lobe compared to that of the

front lobe for increasing Ê.

When F=0o, the E- and Ë/- plane patterns in Fig. 6.3 a¡e identical with the

corresponding ones in Fig. 6.4, as expected. The front to back ratio for the patterns

increases with decreasing p, the maximum being obtained for p = 0o, in which case rhe

two dipole antennas are parallel to each other. As expected, the worst coupling is when

they are perpendicular to each other. It should be noted that in this case the minimum
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Fig. 6.3
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Normalized E- and H- plane patterns for two spheroidal dipoles of axial

rado 100, with the semi-major axis lengths of the excited and parasidc

dipoles of IJ4 and 5À/16, respecdveiy, Euler angles s=90o, Y=0o, and the

centers displaced along the y axis by d =0.6),.
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d for which the rotational-translational addition theorems are vaüd is equal ro rhe

grealer of the two semi-major axes, i.e. 51/16. The pracrical relevance of the work

presented here consists in the fact that the reduction in the coupling between the two

antennas for various relative orientations has been evaluated quantitatively.
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CH,AIYTER 7

GENER.A{, CONCI-USTONS ANÐ S{JGGESTTONS F'OR. F''{JTUR,E R.ESEAR.CF{

7.n Ðiscussion

The main objective of the thesis has been to provide analytical solutions to vari-

ous problems involving electromagnetic scattering by spheroids of arbitrary orientation.

These solutions a¡e useful in analyzing models which have simila¡ configurations for

important engineering problems such as scattering of radar signals from hydromereors,

visible light absorption by heterogeneous pafiicles, and also in biomedical engineering.

Results obtained by the exact method developed here with a controllable accuracy are

also important for evaluating the accuracy of other approximate methods and validating

numerical codes which can be used for the analysis of electromagnetic scattering by

similar configuration systems.

The formulation and analysis of atl the problems a¡e based on the rotational-

translational addition theorems for vector spheroidal wave functions which are derived

in this thesis. Rotational-translational addition theorems for the vector spheroidal wave

functions M,.i,-), N#), M#), Nfj) (o =x,t,z, i=L,2,3,4) as well as for M!",fu and,

Ni,9* (i=1,2,3,4) have been derived. in Chapter 2. Translational add"ition theorems for

vector spheroidal wave funcrions Mff) and Nff) (a=x,y,z)have been deduced as spe-

cial cases. Even though translational addition theorems and rotational addition

theorems for vector spherical wave funcrions already exist in the literatue l4ll, L4Zl,

they cannot be simply combined to obtain rotational-rranslational addition theorems for

vector spherical wave functions. Thus new rotational-ft'anslational addition theorems
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for vector spherical wave functions m9 and n$ have also been deduced as a special

case. These theorems a¡e useful in solving problems associated with spheres which do

not have homogeneous material properties, such as spheres with different kinds of

coatings on the surfaces, for instance, spheres whose materiai properties change with

the spherical coordinate 0.

On the basis of the rotational-translational addition theorems for vector spheroidal

wave functions Mff), Nffl ¡a'r'1, and Nff) derived in Chapter Z, an exactsolution of

the problem of scattering of electromagnetic waves by a system of n lossless dielectric

prolate spheroids of a¡bitrary orientation has been obtained in Chapter 3 for the first

time. The exact boundary conditions a¡e imposed by expanding the resultant field seen

from a system of coordinates attached to each spheroid in terms of appropriate vector

spheroidal eigenfunctions. The unknown coefficients in the series expansion of the

scattered and transmitted electromagnetic fields are obtained by using a marix formu-

lation, in which the column matrix of the totai transmitted and scattered field expan-

sion coefficients is equal to the product of a matrix, which is generally known as the

system matrix, and the column matrix of the known incident field expansion

coefficients. As in the case of scattering by two spheroids with parallel major axes

LMl, 1461, the system matrix has the speciai feature of being independent of the d-i¡ec-

tion and polarization of the incident wave. This makes it possible ro evaluate the unk-

nown transmitted and scattered field expansion coefficients for various angles of

incidence and for both TE and TM polarizations of the incident wave, using the same

system mari.x, which is a great advantage in numerical computations. Results of a

prescribed accuracy, corresponding to a whoie range of angles of incidence, are there-
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fore calculated with a better computational efficiency as compa¡ed to those obtained by

various numerical techniques, for instance, moment methods where the problem has to

be solved for each angle of incidence separately.

The solution for the case of n perfectly conducting spheroids of arbirary orienta-

tion is derived from that for r¿ dielectric spheroids, by letting the dielecric consranr (or

the refractive index) of the material of each dielectric spheroid become very high

(theoretically infinite). In this case, since the spheroids cannot sustain any elecromag-

netic fields inside them, there is no transmitted field present inside, and as a result the

size of the system matrix reduces to half of that of the corresponding dielectric case.

However, the system matrix still retains the special feature it possessed in the dielec-

tric case. The solutions for the special case of scattering by two dielectric spheroids

and by two perfectly conducting spheroids of arbitrary orientation a¡e obtained directly

from the general formulation for scattering by n spheroids of arbinary orientation.

Numerical results are given in Chapter 4 in the form of plots of normalized bis-

tafic cross sections in the E- and H- planes, and plots of normaiized backscattering

cross sections colresponding to scattering by nvo spheroids of arbitrary orientation.

Spheroids of axial ratios 2 and 10 are considered in the perfectly conducting case, and.

spheroids of axial ratios 2 and 5 in the dielectric case, rotared with respect to each

other in va¡ious configurations. In Chapter 5 we present an approximate method for

solving the problem of scattering of a plane electomagnefic wave by two coaxia-l

spheroids, with their centers displaced along the common axis, for oblique incidence.

The formulation of the probiem is based on the exact solurion ro scattering by a single

spheroid. The greatest advantage of the method is to be able to reduce the amount of
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computational time involved as compared to that of the exact method, and still obtain

results of an acceptable accuracy. Numerical results are presented. in the form of fa¡

field scanering cross sections. It is seen that this method gives acceptable results com-

pared to those obtained by the exact solution, for spheroids of semi-major axes lengths

up to )"tZ and for distances between the tips of the spheroids greater than 0.5À. The

agreement with the exact solution becomes better as the axial ¡atios of the spheroids

become higher and,/or the distance between their centers becomes larger.

Using the rotational-translational addition theorems for vector spheroidal wave

functions, an analytic solution is obtained in Chapter 6, to the problem of electromag-

netic coupling between two spheroidal dipole antennas in arbirrary configuration.

Explicit expressions for the self and mutual admittances of a system of two such

antennas are derived, and plots of real and imaginary parts of the mutual admittances

have been presented to show ttreir dependence on the distance between the two anten-

nas. As well, the E- and H- plane patterns for two dipole antennas of d.ifferent orien-

tations and configurations having a fixed separation, with one antenna being parasidc,

have been computed. It is seen from the E- and É1- plane panerns that the coupling

between the antennas is worst when they are perpendicular to each other, and that it is

best when they are parallel to each other.

7.2 Recommendations for Future Research

The solution presented in this thesis for non-lossy dielecrric spheroids can be

extended to lossy dielectric spheroids. The major change in this case is due to the

dielectric constant of the material of the spheroid becoming complex. As a result, in

expanding the electromagnetic field transmitted inside the spheroid it becomes
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necessary to use vector spheroidal wave functions with complex argumenß. The rest of

the formulation is simila¡ to that in the case of scanering by non-lossy dielectric

spheroids. It is also be possible to obtain the solution for a mixru¡e of perfectly con-

ducting and dielectric spheroids by imposing the proper boundary condirions, and the

solution for imperfectly conducting spheroids or for spheroids with very thin coarings,

by incorporating the surface impedance in the boundary conditions.

Another extension would be to consider scattering by two spheroids of arbirrary

orientaúon, when the excitation is different from that of a plane wave, e.g. as that due

to the field of an electric dipole. To formulate the problem for such a case it is neces-

sary to know the expansion of the incident field in terms of spheroidal wave funcrions.

Once this is known, the rest of the formulation is simila¡ to the case of plane wave

incidence.

It would aiso be important f¡om a computational point of view to extend the

approximate method we have proposed in Chapter 5 for solving the problem of scatter-

ing by two coaxial spheroids, to the more general case of two spheroids of arbirary

orientation.
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PR.O Ï,.AT'E S PF{ER.OÏÐ,{N, W.{\i E F'UNCTTO NS

In this Appendix we give explicit expressions of the spheroidal scalar wave func-

tion, the spheroidal angle function and the spheroidat radial functions. Also defined

here a¡e the differenr types of vector spheroidal wave functions.

A..tr Spheroidal Scalar Wave Function

The relation between the Cartesian coordinates xJ,z and spheroidal coordinates

€,q,0 is as follows:

z =FE\

where F is the semi-interfocal distance, and -i<n<1, 1<Ë<-, 0SQ<2n.The

differentiai equation

Vfo* k\=o (A.2)

known as the scalar wave equation, is separable in eleven orthogonal coordinate sys-

tems out of which the prolate spheroidal system is one. By using the method of

separation of variables, the solution of (4.2) can be written as [28]

x = F (r-tl2)''2 1(2-l¡1l2 cos6

! =F (7-\2)1'2 qf2-t¡1/2 sinq

V, ,*,(h;€,r1,0) = R-nØ ,\) 5,,*f ¿ ,tll lT- O

(4.1)

(4.3)

The functions R-, (h,E) and S^r(h,I) a¡e known as spheroidal radial functions and

spheroidal angle functions, respectively, and they satisfy the ordinary differentiai equa-

tions



#ql'e'-"&*.*"'*'1-
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[^* - 
hr\r* 

#)R,,*(h,€)=o (A.4)

and

r ' I f- ,f
* [,t-nlfnt,*,,,,n,.1* L^-, 

- h',1' #)s,,*(^î)=0 (A s)

In these equations 1"-.,, and m are separation constanrs; X^, being a function of

h (=kF ). The discrete values of )"*, (n =m,m*I,m+2,... ), for which the differentia-l

equation (4.5) gives solutions that a¡e finite at I =tl a¡e the desi¡ed eigenvalues, rhe

value of m being an integer which includes zero, and n > m 128).

A.2 Spheroidal Angle Functions

The spheroidal angle functions are the associated eigenfunctions 5,,*(h,rl)

corresponding to the eigenvalues ).,-, (h) of (4.5). There are rwo kinds of angle func-

tions, Sfl1å,q), which is known as rhe angle function of the fi¡st kind and Sfl(å,n),

which is known as the angle function of the second kind. Out of these it is Sfl1n,q¡

that is used frequently in physical problems, since it is regular throughout the interval

-1<tì<1. Hence we simplify the notaúon by writing s^n(å,r1) to mean the angle

function of the fi¡st kind.

S^ (h,1) can be expressed in the form of an infinite series of associated Legendre

functions of the fi¡st kind as 1281,172)

5,,*(h,r1) = Z' dtr(h) Pi,*, (tl) (A.6)
r =0,1

in which the prime over the I indicates that the summation is over only even va-lues of

r, when (n -m) is even and over only odd values of r, when (n -m) is odd. dy(h)

are the spheroidal expansion coefficients.



N -?. 5""îtn
r=0,1

is the normalization constant.

.4..3 Spheroidal Radial Functions

124

An important property of angle functions is the orthogonality in the interval

-1<r¡<1, which results from the theory of Srurm-Liouville d.ifferential equarions.

Thus

1
I
J s,,* (n) s.",(r) dr1=8ru., Nnul
-1

where ô-", is the K¡onecker delta function, and

(4.7)

(r+2m)t (dy)2
(2r+2m+1) r !

(4.8)

The spheroidal radiai functions are the solutions of the differenrial equation (4.4).

The range of the coordinate ( is 1 < ( < ". and the eigenvalue s L,r* which occu¡ in

(4.4) are those ro which the angle functions S^ (h,q) belong.

In physical problems one usually requires both spheroidal rad.ial functions of the

tust kind nÍ'],)fn,€) *d the second kindRf (h,E), which are independenr solutions of

(4.4). The third and fourth kind of functions nf)fn,€) *d nÍ[fn,() however are a

linear combination ot nflçh,€) *d n9^Ø,q.

Simila¡ to the spheroidal angle functions, the spheroidai rad-ial functions n$fn,l)

and Rfl(h ,\) can also be expanded as the sum of an infinite series given by 1291, l7Z)

lrr,)m/2 æ

nl))tn,€)= l+ I z'atr(h)j^*,(hr)
L I ) r=0,1

(A.e)

and
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,ô\ I rz-, )m/2 -RX(h,\) = I ä I X' aY'(h) n^*, (h\) (A.10)
t q" ) r=Q,1

where i^*, md nm+r are spherical Bessel and spherical Neumann functions, respec-

tively, and a!(h) are the expansion coefficients.

The spheroidal radial functions of the thi¡d and fourth kind are given by

and

n9)rn,E) =R,fl Ø,E)+ j n9Ø,q)

nlTrn, €) = Rl? Ø ,q) - j n9,Ø ,q)

respectively. The asymptotic behavior of nf6,E), Rn(h,\), nflrer,1),

is readily obtained by the asymptotic behavior of the spherical Bessel

functions as å f+-, and is given by

nÍ))fn,€) r 
fr.or thE-Ø+L)nt2)

n?,<n,E) + f ,i" lh\-(n+r)ntz)

nï)<n,€) - ä 
t,rhl-(n+r)nr2)

nÍ|)rn,€) + ft t-,*e-@+1)n/2)

(4.1 1)

(4.12)

ana nflq,\¡

and Neumann

(4.13)

(4.14)

(4.1s)

(A.i6)

From the above expressions of nfq,() and nl[fn,() it is evident that they have the

properties of diverging spherical waves at large distances from the spheroid.

A'.4 Spheroidal Vector Wave Functions

By the application of vector differential operators to the scala¡ spheroidal wave

function given in (4"3), it is possible to obtain the vector spheroidal wave functions M



and N as [28]

and

in which ¿ is either an arbirary constant unit vector or the position vector r. None of

the coordinate unit vectors Ê, fi, o, $ in ttre spheroidal coordinare system, has the pro-

perties required for a. Hence the Cartesian system is used, as it has the properries

required for ø and also since the transformation from Car:tesian to spheroidal system is

known.

The th¡ee Cartesian unit vectom *, û, and â generate th¡ee distincr classes of

spheroidal vector wave functions M and N, viz.,

&{r*=VtYr-rx a

N.r,=k-l1Vx Mr-)

rur!ØØ;q,I,o) =vVfltn;E,I,Q)x ô, P=x,!,2

rt',"Í)fn;€,r1,0) =¿-t þ* M!ØØ;8,n,0)], p = x,J,z
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(A..17)

(,{.18)

(A.1e)

(A.20)

in which e and o refer to the even and odd functions respectively. Explicit expres-

sions of these spheroidal vector wave functions are available in [28]. In the functions

M;j], Mlj] Nij], and Nlo the Q-dependence of va¡ious components is equal to the
;ûtÌ1 ;ûn ;în o

product of cosQ or sinQ with either cosm Q or sinn Q. it is convenient therefore to

define the following additional vector wave functions where the components labeied

with the index m*! have either a cos(n+1)Q or sin(n+1)q Q-dependence, while the

components of those labeled with rn -1 have either a cos(rn -1)Q or sin(n-l)Q,

$-dependence [28].



*î!)1.r,,<r; Ç,r ,0) = ! l*;2(å ; €,rr,Q) + wr!flqn; E,n,Q) ]

* 
zl,'-r,^ro; 

E,rl,0) = | l*;9(å ; €,r1,0) x w"flçn; E,l,o) ]

*# 1,,,,0 ; €,r1,0) = * [*;Í,](å ; 8,11,0) + Nr"}rn; €,n,0) ]

* 
z!)'- r,,rr; 

E,rr,o ) = | l";fl(h ; E,t1,þ) t rql}rn; €,n,0) ]
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(4.21)

(4.22)

(A.23)

(4.24)

Explicit expressions ror nalj|, ,^,M,!)'-r,^,*if},,", ano ro,jl r,n Na aiso given in

[28]. As shown in [44], it is possibie to express the sinusoidal va¡iation of Q present in

the above vector spheroidal wave functions M and I{ as an exponential variation, but

with M|$ì,,, n¿;(:ì,", N;gì,", and N-9|,, in [28] being denoted by MiÍ), M*),

N#),and l{ff), respectively, so rhar M#) and Nff) have exp[j(rn+l)Q] Q- depen-

dence. It is these vector wave functions that we have used throughout this thesis. AII

the spheroidal wave functions described above are for a prolate spheroidal system. The

corresponding functions for the oblate spheroidal system can be obtained from those

for the prolate spheroidal system by the rransformation l-+j\ and h+-jh (or

F +-jF ).
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APPENDIX B

TF{E R.OT ATTONAT.. TR.ANS T.,{TTO NAL C OE FFTCTENT S
AND T'FtrE ASSOCIATED MATR.XCES

The rotational-rranslational coefficients Q)eW(s,p,T;d) and, pffi(ø,p,y;d) given

in eqs. (2.1) and (2.2) arc those obtained in [51]:

G ) 
Q ii(o, Þ,ï ; d) =, 

=, ^F, ^, 
*rd\ nt,r, 

oå, 
* ff (cr, Þ,ï)

Ë, litoft(d) l,-n+v-t --Ü-_ ¿
/= rpr, lpr+1 

t ir-'rttv-t 
ffi 

df:vt Ø') (B'1)

Pff (cr,Þ,y;d) = 2' dtrht Ø) ;, Rffi (o,Þ,T)
s=lml ,lml+L lr=_s

o=,uåu, *ro1(d);s-z+v-o # 
a!!'u' ltt'¡ (B'2)

in which di"(h), dT(h') are the spheroidal expansion coefficienrs, and Nþv(h') is the

normalization constant [28]. In these expressions the following notation is used:

N^t-#ffi (83)

f 1r/2

R#t@,F,Ð=(-1¡m'-n I 
N-L 

| ,,^'rau)^(þ)"i^o (8.4)

| **'' l

¿#,)^rBt = lgffil "',.", 
-}, ^' 

*^ 
{,in l)^ 

-^

.p ¡@^;^'^'+øo) 1çosÊ) (B.5)

wtth P¡(!);m'm'+m) (cosÞ) being the Jacobi polynomiai of argument cosp;



in which a(¡r,si-¡r,/lp) are the linearization expansion coefficients [40]-[43], the first

term in the series being p6=max( l/-s l,ll.r-pl) or po+l so that its last rerm is /+s,

and

vÉì,0 @)=rÁi)çtca¡r*-vçcoso¿ ¡ri(*-Ðøo (8.7)

where tÁ'), i=I,2,3,4, are the spherical Bessel functions ip,rp, h;Ð, and. hQ), respec-

tively, and el-* is the Legendre function of the first kind;

(t)off(a)=(-1)p tË',r'*o-' 
(zt+t)ø(p,sl-¡r,/lp) v!¿,p(d)

p =po, po+L

å ffi (d) =, 
=|,#,_ru 

f-¡,,i,' 
(d)

bfn.,,o(d) = (-1¡F-u ¡t+o-s (21+t) a(w,slp-lr,/ tp i 'ryu$,, {al

with /6=max( lP-s I,llt-til)

r29

(8.6)

(8.8)

(8.9)

(8.10)

Considering the translation from the system O'x'y'z'to Oxrluz, and then the

¡otation of the system Oxulrzu about O through the Euler angles -y,-P,-s, we

derive the rotational-translational coefficients G)Q'ff for the expansion of spheroidal

wave functions in primed coordinates in terms of functions in unprimed coordinates,

for r < d and i =I,2,3,4, as

(i)9'ff@,Þ,y;d)=,=,_å_, 
*fiwr ro'r,=,rl;.{'-"-"' # df:v Ø)

I

E RÊ, (-y,-F,-cr) G)ø!f @)
c =-l

with

/+su)a{f@)=(-t). I' Gge ¡t*r-s (2t+t)a(m,sl-c,t lp) V#1.,0(¿)
P =Po,Po+7

(8.1i)
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Subsdruting s = lml+q, I = lpl+r in (8.1) and (8.r0) we ger, respecdvely,

(i)OK (c¿,F,y;d) = Z' di"Ø)
q4,1

lml+q
I, R!',1:,1*_q (G,Ê,T)H !L,tmt+q

¡=-1lrnl+q)

!, tiroRl,i|;otal ¡tmt+4-n+v-rr!-. Ï- lil dlu(t,)
r=o,r Nþu(h') t \" '

and

(i)ç'ff(u,Þ,y;d)= fi'ayfn') i' ¡tmt+l-n+v-lpJ-' 
Np'rpl*' rrrr'" '

q=o,t r=o,r Nur(/,t dr"(h)

lul +r

) nil,,ljll (-y,-F,-c) (i)bm,l,l:s@)
6 =-( lpl +r )

The rotational-translational coefficients [lroft(dq,,Þq,,n{q,idqr), i = r,2,3,4,

used in Chapter 3, for expressing vector spheroidal wave functions associated

system Oqxqiqzq in terms of those associated with the system Orx,yrz.

derived from (B.12) as

[','aW (dq, ,Þq, ,^{q, idq,l = å. di'Øq) 'Y' Rij,l#,1: (dr, ,Þn, ,^rn,)
¿ =0,1 ¡¡=_(lml+u)

,"ä; 
<tta-¡llftf,i(dq,) itmt+u-n+v- *-' iï;t,í d#'(h,)

(8.12)

(8.13)

that

with

can

are

the

be

The matrix [IlrJ introduced in (3.43) can be written as

[tr*t* [rì,]0, lrq)62 - -l
rF ltro,r,o[Iì,'],[rq,l12- -l[I]'J = 

| 
trrtro rrq,J21 rrq)22 - 

iL - -.i
with

(8.14)

(B.rs)
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[I]' Jo6 =

[I],loo =

tDr;1

t- Iìl10

Irn r-i
lru',
L-1

Irnr"],

lrnri-,

trjr;tl
rBrS l

rrìlJl rrìl;1

t- ü1j.1 rEr:
tnl-ä1) trìl-å-1)

tIìl1o*1) t- Iìl:(o-r)

(8.16)

, o> 1 (8.17)
rBrl I
rErî 

J

[I]' J"o =

rnllil
trìllr
[- D] -Í"-tl

rar_J

rDl¡-1

t- üll
[* n]-(r-1)

t 
- &li'

trrr;;l
t- rìl;1
t- nl<'. tl

l- Iìlfil

rElJ-i

tEr,;

[ 
* I¡ 1o-{t-tl

rEtJ

rElJ-l

tEr;
¡* *1-(t-t)

IG]o*

, T) 1 (8.18)

rü r;:1

rrir;_1
[I],1.o =

t- Dl;t';tr
tIil"11

t)1,o21

The submarrices [I] lj and t- [ ]J for r, o=. . . .-2,-I,0,1,2,. . . . and

are q'C¡lfq,lj anO q'C¡* lfqrJj , respectively, where 4'Ci ate defined

asterisk denotes the complex conjugate, and

tn ll¿i.r)

tIìl](o*1)

t- rlr_(:;lì

tIìJ-fo*rr

t12ll¿ll)

t- Iìl]1o-r;

r.n r_¡;_ll

t-ül_i*rr

rEll;1

tBll"
[- q]-G-rl

tEl;

Ilu,lj =

$,eJ',',"', [!re]',t,"',*, [!,o J',',2,., á1, a J',',21,..

[î,o:',i:::' jÍ'o j' 1"1.1 [!)e:',t:t:' [?e:,,|t't:L

[!'j a ;',31¡' [î, o :',Zl,i? [î, o !,',!,13 ;7) e [',t,'',*'

(B.1e)

in (3.42), the

(8.20)
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.{PPENÐffi C

M.ATRICES [p], [Q], AND [R] RESUI Tm{G F,ROM
TMPOSING TF{E EOUI{ÐAR,Y CONDTTIONS

The elements of the marrices [p¡r], let), [R¡.], and [R4r], for q =1,2,...n and.

r =L,2,...n, carr be grouped in submatrices, such that all these matrices are quasi-

diagonal in the sense that only the diagonal submatrices are differenr from zero. AII

null off-diagonal submatrices have the same size as the corresponding diagonal subma-

trices. The diagonal submarrices of lPnl, lQtl, [R,,r], and [R4.] can be written as

(c.1)

r olv)91) t oìYi@l

lQlY;91) lQìYz( )l

lPt)^ = , m>l (c.2)

1441,1461, [57], [58]

I r 
t'f r{+r l t r,'ì16(o)l I

lP¡'lo = 
lt 

r?r1o)t ¡ rfr6<+r1l '

t0l

t0l
t

t

QìX'o@l

('c/x6t+1,

(r)'yz (4) 
1

\ttm I

r}xztr)1 tol

t';r-lj)-'¡ t
(r)v14) l
0 ' -(n-l) I

l
I

.J 
'

L o.]r'-ff)1

t QìY'-#)l

lQn)6 = -
r'lx{ar 

1

('+ìxl1or,

t (,ìx;!4ì l

r 
(?x;!4ìl

t

t

, mlI

(c.3)

(c.4)LQt)^ = -
t0l

t t'ìx-19'-tr t t i'lxfr1

t ("tx-,(i)-t, I t tlx'-f¡l
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[R.r']o =

lR¡,)* =

lRtq,lo =

[¡ t'¡rxlf')l r 
('ìxl')l]

Ir 
t?x1Í')] t ('dxl"rl

[:

,'ì#!'ìr t r'fx;fJ1

r3x;!'ìl r 
(ilx;f11 tol

t r'fx-1fl-t,l

t t'/x--,fl-t¡t

t t'ìxl,9.t,l

t t'dxl,9.t,l

, m)-l

t0l

t r'fx--,p-,, t

t <'/x--,[)-t,l

(c.s)

(c.6)

(c.7)

oìx'-l)'l

(r)yz (1)1
ött-m )

(c.8)

t t'fxI,f\', 
t

t0l
t <'/xl,p-,, t

(î]xl1t'l 
¡ rf;¡¡ttrl t (rìxó(l)l

r'/x{ul ¡ it¡¡ttrl t t'dx6(t) l

¡ r';xjfìl r r'lx;f11

r 
(.dx;qìl 

r 
('Jx;111

t0l

¡ t'fx;rtr1

¡ {t¡z{t)1

lR¡qrl^ = -
t

t

m>1.

The submatrices [X- ] have the form

lx^) =

Xm,0,lml Xm,0,lml+1

Xm,l,lml X-,t,1^l*t

X^,2,1^l Xn,2,lnl+1

where the elements are given

2n I rl
(')x-'ÍJ,*,n =+ J jt,'lnl

Ltç O _l ,0

(c.e)

Q)Ê"\I*Ø,i rr) s^,¡,,1¡ç(h, ,\r ) s-i(^+vttþ, dr1, dþ,1
(o)

n
(o)

(c.10)



134

,r.Øx:,:'*\,*,, = +T Ï ,',',', , ØJ',,1'*)r,n(h,;r,)s^,wt*o(h,,\,¡¿-i(^*r)Q. d\, dQ,(O) LtL g-1 ¿0 (o)

(c.11)

with -/ being either M or ly', i.e. the respective component of M or N. The submatrices

[l-] have the same form as those of lX^1, with the elements given by

- t,lvl(¡.ì.- = 1 
T '¡ ,',',', , vttj(i\,{ni;r,) s^,, t+rc(h,,\,) e-j@*ut )þ. d.,1, de,<fl ^m+1¿K"n 2n o -r ,o (o)

(c.12)

(r\wz(i) r 'T '' 'l-
(;)t"r;tlÌ'. ,^ = --zn j ], t',*' ,;r""'l'*'r',(hi:r,) 

s^,1^t**(h,,\,) s-iØ+rp' dt1, dþ,

(c.13)

in which "I is either M or N. The explicit expressions of X for .l = M are given in

[35]. The explicit expressions or ('X,*li,ì,, (u=Ð, rrly¡<1¿,',, (Ð=2), and Q)x']lr,*,,

for -/ =N are given below.

"ìxåí.',= [a3-t, #.--'::(h,,8,)1..*, 
*8, 

#^f,)e,,,€,,1,.*"] r(€,2-r¡ r3^*,*rt+^*n)

* ç, #*!)Ø,'8, ) l*.*, [,r3-t, I4^*n * I ts^*n *z r ro^*f

- Rn(h,,E,) l,ru^*, 4- ,rr^*,fL (Ç,-_I) r

| (m+r) Rf)(t,,8, I [É"t-r ) I ß^*, + z t a^*,]

-m (mtr) R9 (h,,E,l [feiU I 17 mrn * z tr^*)

Ëî 
Rl,)(tr,,E)(* Iø^*ntlts**n) (c.r¿)
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"ìx'I),*,,= [,r3-t, #*';'-r,n(h,,\,)lr,*, 
*e, 

#^Íi)*2,,(h,,Ë,'1 
l**,] , [(€,2-1) /r-*,

* I ts^*,1 * E, # nÍ)) Ø,' E' ) lr,*, ftai t, I s^o, i I 2o^*, + z t re^*"]

-nÍ)\r,^(h,,E,, lr^*, å ,ro^*l

+(m +2+r) nÍ|.r.,(h,,E,l [eitl r23^*n + z te^.,f

-(m +2)(m +zt¡ nf)*^, (h,,\,1 [eiri rzz^*, * z t s^.,f

ffi nllt'','(h"E,' [t' +2) Irs^o, xtro^*f

('ìxillr,*,,= , le?-rlt'' ftoy'.t,,(h,,8, ) 1,,*, (t a^* - I s^*)

* (E?-Ð''' 
t*y"-r,,(h,,\,)lr,=r, 

(Iz¿^*, - Izs^*n)

- E, r€3-rl''' 4n'))*r,n(h,,€, ) lr.*, ((€,2-t) Is^*n + 125^,ç,)
dç;

.(m+I)21, d, , (

. ffi ft *::'.''"(h"E') lr,*, 
lt\!-tl' 

r'u^.'

+z çç!,-t¡ Is^*n i I2s^nnÌ . 
å 

RÍl*r,,(h, ,8,) rz,^*n

- zE? L,rlr*',(h,,Ç,rlr.*,,rr^*)
(\2,-t¡r/2 d1, "'

vlx#,?,,=(€"2-r¡ nÍ))Ø,,8) (* r2'^*n ! rzt^nnl t freir r, #**(h,,8,) 
1..*,

(c.1s)

(c.16)

-8, {6"'-t; #^n(h,,1,) lr,*, . (-ttm) (tm) Rn(h,,q,)] rr.* (c.17)
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Qx'!à.*,,= f €3- t I R!))*r,^ (h,,1,) (m +2) (I y^ o, + I zz^n) x (I tz^n - I zt ^*,))

x 
fe?-r>' #*')'-r,n(h,,8,) 

lr,*, - E, tç,'-rl {-rt(m+z)I

ft**'.''n(h"\')lr,*, 
+ (m+2) R!)\r.,(h, '\,'] 'r^., (c'18)

= -z (m+t¡ 1[,2-t¡1'' V, RÍl*r,, (h,,8,) Izg^nn

+ (8,2-1 ) # *y,,-r,^ (h,,8,) l*.*,,^.,f

-z [reiri''' ¿*f) Ø,,E,) 1.,*" 
{,e3-,1r,,,*n 

* r 12.*n

(r)yz (i)
$ 

1\rn +1,K, n

t'ìx'ol'J,"=

-€, {€,'-t¡ ''' 
ft*'t)ur,,E,)lr,*, {,e3-r, 

rrs,Kt"+r

l
13,

(c.1e)

(c.20)

-Ì

l- (\!-t¡,z t ^'¿l 
(h,,8,, l, *, {,e1,, 

r,0, * * 113, *

. å n(Å)rn,,€,1 
{r,'* -€, {€,'-r; ''',o,.,|f

t"'xãl'/,= o e.zr)

Explicit expressions ot Q)vå\?, (u=0), <'¡vl,\),*,, (u=2), ana Øy'Á1t,rc,¿, for J =M

and"r=N have the same structure as those of the correspondingX, but with the func-

tions -I evaluated with respect to hi, which is the va-lue of /¡ inside the rth spheroid.

(" is the vaiue of Ç on the surface of the spheroid considered.It^*n-ltt,* are given

in [35] and lp,o, -133^*n in Appendix D.

It should be noted that for computational purposes, the following relations a¡e

used [28],[44]:



where

S^"(h ,\) = K 
^n 

S wl n(h ,t1)

RÍ))&,,8,')=RÍlr n(h,,E), i=r,2,3,4

m_lml

di"(h) = (-1)T (lml -m+q)t u--
q I "^n d¿^t " (h)

N,,*(h)=KkNwt n(h)

lml-m____;__ (n+m)!
K^rr=(-I) t )-qn+lml)l

t37

(c.22)

(c.23)
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APPENÐIX D

EVAI,UA.TITN OF TF{E INTEGR*ALS Md APPET{ÐW C

The integrù.s I1^¡¡r-133^Nn that result when applying the orthogonality proper-

ties of the spheroidal angle functions in equations (C. 10) -(C.13) are evaluared using

the recur¡ence relations for the associated Legendre functions and the integrais [34],

[35], [53]

1

J
-1

Pf (n)Pf (rll dt1=#*@#uu"

v>p

v=1.1

v<p

(D.1)

(D.2)

(D.3)

1

I pi.' (rl) Pi (rl) drl =
-1

0,

-2 (v+m)t.

(2v+1) (v-m-Z)!'

2(m+t) !"*- ìl [1+(-1)v+r1,
\v-m )t

where õuu is the K¡onecker delta function. The integrals 11-¡¿r, -lg^Nn, Iro,Nn, and

Itt,¡,t, are evaluated in t35].We derived expressions for In,¡,tn, Ir3,Nn, and

It4^Nn -133^Nn in the form:

1

I tz,¡¡n = J I Q-lrl\3'z * to^sr, r*¡u drl

, S, @+r)(q+2) t-' o*o,, Qq +' L

, (q+212(qß)dfiz

(q -2)(q -rlqdflz q 1q +t¡zdf"
(2q -3)(2q -I)(2q+r) (2q +I)(Zq +5)-r)(2q

,¡ i,1+Nuq̂
+

(q+3)(q+4¡çq+s>afi+ )- 
Qq +5)Qq rr)Qq +Ð ) , (n +N) even

(2q +I)(Zq +5)(2q +7) (2q +5)(2q+7)(2q+9)

- 0, (n+N) odd



139

I

Irz,Nn = J (1-ï12)t'' tonsr, r*v drl
-1

-. ë, (q +r)(q+2) t çq-\qdf!2 ßq2+sq-4¡df"-'n*, Qq-3) S çut¡2r-1¡12*r-M
(3q2+t3q+z>dfiz @+3)(q+gafh 

-l 
,, ,*"- 

Qq+r)Qq+s)Qq+?) 
- Qq+ÐQqt/)Qq+Ð )o;"-" ' (n*N ) even

- 0, (n+N) odd (D.4)

1

Ir4*N, = J (t-nt)ISrr- S^,-*u d\
-1

(
I

- i s,? Q-z)(q-r)q t dî:T*N dî:T*N I- - 
n?u,rl- Q^+rq-3)Q^+rq-r) L Qm+}q-Ð- Qmt q-D )

, (2m+r)(2m+q+r)q t di.T*N a{;?*N I- 2*+ZU1¡2^**, L Qm+zq-Ð- Qm+zq+Ð )

, (zm+q+r)(zm+q+z)(zm+q+3) t diìf*N di¡f*N I I- qzry L em+zq+Ð- em+rq+D ) J

-þ4- ¿T,, (n+N) odd
(2m+Zq+L)ql -ø ' \'- '

- 0, (n +N) even (D.5)

i
I7s^Nn = J (t-rlt )" * s*" s^,^*¡¡ dn

-., ë, (Zm+q)tdi" I f**q*t)(q-z)(q-r)q t di:T** di.i*r -.l

-'ri,rQm+zq+W lQ^+rqâe^+rq-Ð L Qm+zq-Ð- Qm+zqlÐ )

, l2(m+q)2+5m+2ql(2m+q+r)q t dî.i*r aTiT*N I- 2* *Zn -1¡12* **, L Qm +2q -I) - Qm +2q +Ð J
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_ (m+q)(2m+q+r)(2m+q+2)(2m+q+3) I lrc* a\;i*r I I
L em+rq+Ð - em+zq+T ) 1,

(n+N) odd

- 0, (n+N) even

Il^-2ddô
Ir6^Nn = J, (1-n') \' ;î s^, s^,^*¡¡ dt1

_Í f
- r4mNn - rISmNn

1

(D.6)

(D.7)

r -l m\trtmNn = J -;.--:;:5,,* S^,^*y dt1
-r ( i -r1-)

= Ç, (Zm+q)l 
On* i,Oy,^*rL¿^

q{,l I ' r=q+l

* i'@#L¿m,m+N i'*tr, (n+N) odd
4=1,0 Ll i r-q+l

- 0, (n +N) even (D.g)

I

It8*Nn = !r* s*, s^,^*¡¡ d,r1

= Ç, (Zm!q)t 
df,,n+u i,ofAJ

q=1,0 q I r-4+!

þ, 
(zmlq)l 0,," fi,0y,^**, (n*N) odd, m*0

qÃ,I q : r=q+I

- 0, (n+N) even, m+0 (D.9)
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1

Irs^N, = J (1-q2) \s^+z,ns^.^+w d\
-l

(
I_. ë, I Qm+q+S) t aTiT*N 2diii*N I

n.'-.t [. (2m+2q+5)(2m+q+7) L Qm+2q+3) (2m+2q+Ð )

, 1 t n a{ii*N (2m+q+5) di¡i*N I- ç**z*v L em+2q+3)em+zq+Ð*6 I

_ n I dî:T*N zai+i*N ll
(2m+2q+1.) L (2m+2q-I)(2m+2q+3) (Zm+2q+3)(2m+Zq+sl J 

J

(2m+q+4)l ,,
ffidl*''", (n+N) odd

- 0, (n +N) even

I

(D.10)

I2o^Nn = J (t-nt)'* s^+2,n s^,^*¡t d\

I
-. s, { @+q+3)q t di:T*r zai;?*N I-'n*.rl@ L em+zq-D- em+zq+Ð J

_ (m+q+2)(zm+q+Ð | diif *N zaiii*N I- (2m+2q+5)Qm+2q+7) t Qm+Zq+3)- em+rq+Ð )

t (m+q+ziq di;i*N (m+q+2)(2m+q+5)di¡i.r f t I,- |L (2m+2q+3)(2m+2q+5) (2m+?q+9)(2m+2q+II) _J em+Zq+T )

ffidl*''n' (n +N) odd

= 0, (n+N ) even (D.il)

I

I2r^Nn = J (t*r1t) ,f 
* s^+2,n s^,**u d\

_f Í= Ig^Nn - Izo^Nn (D.12)
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I
f _ i ntzznNn- J - ^S^+z,nS^,^+xd\-1 (r-n")

=2 i'(2m-+r)l d,!'m+w Ë'rq¿i:?,n +(2m+2q+3) L'd1*r'nl, (n+N) odd
r=0,1 t' Q=r v-q+l

- 0, (n+N) even (D.13)

i
I?3^Nn = !r* s^+z,n s^,^*w d\

= z fi, Q-!D! d!.m+u i, f-, (m +Q +r)diJl,,
r=0,1 Q=r

+ (m+2)(2m+2q+3) \'dT*''" f, (n+N) odd
v--q +1

- 0 (n +N) even

t

= J n e-rlr)t'' j¡ t^*,,,, s^,^*u d\

_. *, (zmtQ+z)tdl+L'' I {**q+z¡q t (q-r)di:i*r
- " n*,, Qm+zq+3)qt I Q*.rq.Ð L Qm+zq-3)Am+2q-D

, (2m+L) di'^+N (2m+q +Z) ay;t*N I- ç.^+zu1¡12^*2*r- QM J

- (m+q+L)(2m+q+3) | @+r)dî'^*N- Am+WÐ L Am+WÐQm{2q+,

(2m+r) di;i*N (2m+q+4) dtr*t*N I 
'l

T 

- 

I I . t/¿TtV 
' 

UVUII
(2m +2q +3)(2m +2q +7) (2m +2q +7)(2m +2q+9) -.J J'

- 0, (n+N) odd (D.15)

(D.14)

I2+^N,
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1

I2s^Nn = J (1-r2)t'' s^*r,n s^,^*¡,t d\
-1

(

_ i *, (2m+q+2)r. ¿7+r'" )ç**q+3)(Zm+q+4)-' 
,?o,t Q*+zq+3)q! | Q^+WÐ

t d,{,m+u za{ii*N
L (2m+2q +I)(2m+2q +3) (2m+2q +3)(2m+2q+7)

diitr*r l_ rn-r>n I oi.f.r
(2m+2q +7)(2m+2q+9) ) (2m+2q+l) L (2m+2q -3)(2m+2q -L)

2 d.T',^+¡',t _ Oirr* )\
Qm+2q-r)(2m+2q+3) 

- Qm+lq+3)Qm+WÐ ) I' 
@+N ) even

- 0, (n+N) odd

- 0, (n+N) odd

(D.16)

1

f _ f 1
126^Nn = I .- ..u S-+1,r, S^,^*u d\

-1 (1-n')'

-2 |., (zmtr)t 
d!.n+w î,d^*r,n, (n+N) evenH nl I u .l

r=0,1 I : 
Q=r

- 0, (n +N) odd (D.17)

,l- , I
rz,^Nn = f (r-q2)''' h Ir-n',t" f, s,*, )s^,^*r ¿rt

-, å, (q+L)z n * æ

- -,- k r.r^a\ Jrtï, d;lt +2 fl'd,oN E'd,Tt, (n +N) even, m=0
q=l,Q \Ln tJ/ r=0,1 t=r+\

. d.f,'n+n i' or - @-r) df i' oy '^*rf , (n +N ) even, mÃ
y=q+Z r--q+Z I

(D.18)
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r ,.r/2d t n I
rze^Nn = [r^(t-,r')''' i¡ lffirs,* -] 

s^,^*u d\

= Ç, (2m+q)l I rtr*zq-*t>,, d! ¿y,^*w+(n+1) ¿m.m+N.L nt L em+Zq+l)*C 
*q I \"! ¡

q{,r Ll

Ë ' dtr - @ -r) df i' oy '^*rl , (n +N ) even
r--q +2 ¡ =q +2 1

1

I2s*Nn = J (1-n2)''' 
*s-+1,n 

s^,**y d\

" å, (m+q+I)(Zm+q+l)l sm*r.n.tm.m+N
--L L 

-"q 

uq+l
ø=o,r (2m+2q+3)q I

+Z(m+r) i' Qrylq)l ¿m,m+N fi'¿^*''n, (n+N) odd
q=1,0 Y' r-q+L

= 0, (n+N) even (D.20)

= 0, (n+N) odd (D.19)

- 0, (n+N ) odd (D.2r)
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I)(r+m) dLf*

(m+q +t¡ d{lfn

) even

-(r

t_-q

+N

-q

t

rl
(n

Ð

-1)

\
Á

4=t

ì
I

Ij'

+

+

r
.2,

l

']

+

+2,n

(2m

n+2,

¿m+ldç
I

r1

o

m+

cç

,d.

I
I
t

,dr,

.t
+1

+N

Ð"
=r

ì

4,m+N

,m+N

1)Ë

3):
V-:a

'm

?

+l

¡2

dr
-

-¿r

2q

12,n

r)!r

7

+2

t2¿

s^

'.)(2m

)(2m

q

(2m

.2)(2

2\Q;

d
d11

()

,1

+2)

+2\(

I
I

I3r^Nn = J'n-
-1

:') S
H

r=0,

+(m

+(m'

- 0, (n+N) odd

1

r - i 1
r3\mNn - J ,. ,), S^+z,n S^,^*w d\

_1 (r-n-)

æ(a(-
- -z ,' '|m+,q.-2)l le**r-t)(zm+q)(2m+2q+3). fr'¿^*r,n

s{,r q! |t .=q

(D.22)

(D.23)

. f' d.!,n+u -2m(2m+2q -L) . \' ¿^'^+u
r-q+2 r=Q

T- -rì
I Z'(z^+2t+3)2'd7*^" I l, (n +N) even
Lr1 r=t J )

- 0, (n +N) odd

I
-I...dz
133^Nn = j (l-tl') a; S^*r.n S^.^*N d\

-1 dr1'

= 2I3r^Nn + (m+2)2 I3?-¡nNn -L^+z,n I-t^Nn + h2 l3s^ìrn (D.24)

For ¡a =0, Iß^Nn=zafN i'dgit
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AFPENDIX E

ÐEF'{NITXONS OF'' TF{E VAR.TOIJS M,{TR,TCES TNT'R,OÐUCEÐ Mq CÍ{APTER. 6

The matrices nry(')t(E,q), Mt"t(E',rl') for i=I,4, and the rranspose of the

matrices A, B in (6.1) and (6.2) are [45]

twt"t(q,q) = ßryÍt)(€,q) nnå'-)(€,n) . l,

M(')t(q',rl') = [MÍt)(€',1) nnÍ-)(E',n') . ], i=r,4

Ir = lAt Az. . .), Ef =lBt 82...)

(E.1)

(E.2)

(E.3)

(E.4)

in which

n¿Í')(E,n) = MlÍ'J(€,n,0) - nnîÍi)t€,r1,0) i = r,2,3,4

G? "7/2
An =vA, +h n#)fn,E¿ ) sr,, (/¿,0)

and

¡pr/_111/2
Bn =vBo' ffi n[f')<n',1'B) sr,(h',0) (E'5)

RÍÍ),S,", and N,,, are the spheroidal radial function of the fourth kind, the spheroidal

angle function, and the normalization constant, respectively which are given in Appen-

dix A.

The structure of the matrix [f] in (6.5) is similar to that of [fq,] defined in

Append.ix B, but with its elements being submatrices of the form lllJj ana [-I]j fot

T,o= ...-2,-1,0, 1,2,.., and i=I,2,3,4,5, defined Uv CitflJ and. Ci* [fìj, respec-

tively, with the asterisk denoring the complex conjugate, and
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c'r= TfA-.+ cr) + i (c,y

cí=IUr*.-,rr.)+i(c,y

^,LL3= 
1\c7r.+ lcrr.)

ci= crr'- jcyr'

\'5-czz'

'- crr'))

.+ Crr.))

trli =

(E.6)

(8.7)

(E.8)

The coefficients c*,,csy,,cor,, fot s=x,!,2, are given in (2.4), and the rotational-

translational coefficients ( )Q'ff are given in Appendix B. The structure of the matrix

[f'] in (6.11) is similar to that of [f], with its elements consisting of the submatrices

tli l;, ¡- fíìJ. The elemenß of the submatrices tfi lJ are obtained from the

corresponding ones of tIlJ UV replacing @Q'ff by @/nn, given in Appendix B,

and Ci by C¡, given in (2.16).

The matrix [A] introduced in (6.6) is given by

t^l= tt&l [Âr] t^zl . . .l

where

t^,ol= t tnr-rt - t- Dl]r trìl;1- t- nl11 tB];l- t- E]å l

lao]= t tlì];11- t-Dlå-l tr]l;1- t-nlå*1 tril;1- t-El:
tnl:L1)- [.D]lo*l) tl]llf-i)- [-n]l(o-r) tErl- t-iilll (E.10)

for o21. The submatricet tli ljt, and [* [ ]o*t for

i =I,2,3,4,5, arc CiIf]ot1 and Cio If ]otl, respectively,

(E.e)

o-.,, -2,-1,0,1,2,... and

with Cj attd [f]o*l as defined



above. The elemens of the matrix [Â'] introduced in (6.11) are obtained

corresponding elements of [Â] by replacingCi by C¡ attd f by f'.

The transpose of the matrix [R¿] in (6.14) is defined as

[R¿]r = ltnxlfi)J-t,,rx¡<ul t¿{trì-tqx¡tr)1 tol tgl l

[Ra] has the same structure as that of [R4], but with the corresponding

evaluated with respect to the primed system. t.,ëttfl)l and [#*tfl)] *.

Appendix C.

The coefficients Aj and Bl introduced in Chapter 6 are given by

i48

from the

(8.11)

elements

given in

(E.12)

(8.13)

¡þ2 -1'rrl2Aì=v¡' ffinÍj)r¿ 'E¿ ) 
sr,' (å 

'o)

Bì=vn o' #!: nÍ',)<n',8'B) srn(h',0)


