ELECTROMAGNETIC SCATTERING BY SYSTEMS
OF ARBITRARILY ORIENTED SPHEROIDS

BY
M. FRANCIS R. COORAY

A thesis
Submitted to the Faculty of Graduate Studies
in Partial Fulfillment of the Requirements
for the Degree of

DOCTOR OF PHILOSOPHY

Department of Electrical and Computer Engineering
University of Manitoba

Winnipeg, Manitoba

© May, 1990



B8

National Library
of Canada

Canadian Theses Service

du Canada

Ottawa, Canada
1A ON4g

The author has granted an irrevocable non-
exclusive ficence allowing the National Library
of Canada to reproduce, foan, distribute or sell
copies of his/her thesis by any means and in any
form or format, making this thesis available to in-
terested persons.

The author retains ownership of the copyright
in his/her thesis. Neither the thesis nor substan-
tial extracts from it may be printed or otherwise
reproduced without his/her permission.

Bibliothéque nationate

Service des théses canadiennes

L'auteur a accordé une licence irrévocable et
non exclusive permettant a la Bibliothéque na-
tionale du Canada de reproduire, préter, dis-
tribuer ou vendre des copies de sa thése de
quelque maniére et sous quelque forme que ce
soit pour mettre des exemplaires de cette thése
3 la disposition des personnes intéressées.

L'auteur conserve la propriété du droit d'auteur
qui protége sa thése. Ni la thése ni des extraits
substantiels de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son autorisation.

ISBN 0B-315-63332-8

Canadd



ELECTROMAGNETIC SCATTERING BY SYSTEMS

OF ARBITRARILY ORIENTED SPHEROIDS

BY

M. FRANCIS R. COORAY

A thesis submitted to the Faculty of Graduate Studies of
the University of Manitoba in partial fulfillment of the requirements

of the degree of

DOCTOR OF PHILOSOPHY

© 1990

Permission has been granted to the LIBRARY OF THE UNIVER-
SiTY OF MANITOBA to lend or sell copies of this thesis. to

the NATIONAL LIBRARY OF CANADA to microfilm this
thesis and to lend or sell copies of the film, and UNIVERSITY
MICROFILMS to publish an abstract of this thesis.

The author reserves other publication rights, and neither the
thesis nor extensive extracts from it may be pnnted or other-

wise reproduced without the author’s written permission.



i1
ABSTRACT

The main objective of this thesis is to provide an éxact solution to the problem of
scattering of electromagnetic waves by spheroids of arbitrary orientation. The solution
is obtained in general for the case of n dielectric spheroids of arbitrary orientation, by
expanding the incident, scattered, and transmitted electromagnetic fields in terms of
appropriate vector spheroidal eigenfunctions, the excitation being a monochromatic
uniform plane electromagnetic wave of arbitrary polarization and angle of incidence.
The boundary conditions at the surface of a given spheroid are imposed by using the
rotational-translational addition theorems for vector spheroidal wave fﬁnctions derived
in this thesis, which transfer the outgoing waves from all the other spheroids, as‘
incoming waves to the spheroid under consideration. Imposing the boundary conditions
at the surfaces of éach of the n spheroids leads to a set of algebraic equations, the
solution of which can be expressed in matrix form such that the column matrix of the
total transmitted and scattered field expansion coefficients is equal to the product of a
system matrix, which is independent of the direction and polarization of the incident
wave, and the column matrix of the known incident field expansion coefficients. This
special feature of the system matrix makes it possible to evaluate the unknown
transmitted and scattered field expansion coefficients for a new direction of incidence
and for a different polarization, without repeatedly solving a new set of algebraic equa-
tions. The formulation for the special case of n perfectly conducting spheroids of arbi-
trary orientation is then deduced from that of the corresponding case of n dielectric
spheroids. Numerical results are presented for the bistatic and backscattering cross sec-

tions for two prolate spheroids with various axial ratios, orientations, and a given



iii
dielectric constant. An approximate method is described in this thesis too, for calculat-

ing the far field scattering cross sections for scattering by two coaxial spheroids at

oblique incidence.

An analytic solution is also being obtained to the problem of electromagnetic cou-
pling between two spheroidal dipole antennas in arbitrary configuration, each antenna
being modeled by a very thin prolate spheroid which is centrally fed by a gap voltage.
The problem is then solved by imposing the boundary conditions at the surface of each
spheroidal antenna. Numerical results are presented for the mutual admittance of two
center-fed thin spheroidal dipole antennas of arbitrary orientation, for various center
displacements. Also given are the far field patterns for systems of two dipole antennas.

in various configurations, with one dipole being parasitic.
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CHAPTER 1

INTRODUCTION

1.1 Historical Survey and Applications

Solutions to problems in electromagnetic scattering have many important practical
applications in the fields of applied physics, acoustics, and electrical engineering. Dur-
ing the past few decades, an extensive amount of research has been done on elec-
tromagnetic wave scattering by regular shaped bodies such as cylinders, spheres, and
spheroids, as the effects due to scattering by real system objects can well be analyzed
by modeling these objects using one of the aforementioned bodies. The important
aspécts of a scattering problem are the effects that arise due to the presence of a given
object or a number of objects being in the path of a traveling wave. It is generally
assumed that the field for the source in isolation is known. The requirement then is to
find the redistribution of radiation arising from the presence of the objects. An exact
solution to the problem can be presented only if it involves objects having a regular
geometry. In this case, the method of solution is based on expanding the different
associated electromagnetic fields in terms of an appropriate set of vector eigenfunc-
tions. In this thesis, since we are interested only in scattering by spheroids, our con-

cern will be on spheroidal wave functions.

The first investigation of the spheroidal wave functions was made by Niven [1] in
1880 in order to treat a problem on the conduction of heat in spheroidal bodies, by
introducing series of Legendre functions for the spheroidal angle functions and series
of spherical Bessel functions for the spheroidal radial functions. In 1898, Maclaurin [2]

did a more extensive investigation with several applications, by introducing power



series solutions for the spheroidal wave functions. The free oscillations of a prolate
spheroid was studied by Abraham [3] also in 1898, using integral representations of

the spheroidal wave functions.

In 1941, Chu and Stratton [4] used the spheroidal wave functions they deduced to
solve the boundary value problem of the forced electromagnetic oscillations of a con-
ducting prolate spheroid which is fed by a gap of infinitesimal width across the central
section of the spheroid. Ryder [5] also carried out a similar analysis for the same prob-
lem, using the earlier work of Page and Adams [6]. The model of a prolate spheroidal
monopole antenna with a finite gap was treated by Flammer [7] by means of a varia-
tional approach. The radiation from a point electric dipole located at the tip of a pro-.
late spheroid has been computed by Hatcher and Leitner [8]. The oblate spheroidal
wave functions have also been used in antenna problems. Leitner and Spence [9] cal-
culated the radiation from a quarter wavelength electric dipole situated axially over a
conducting circular disk, and Kloepfer [10] calculated the radiation from a disk
antenna with an infinitesimally narrow, circular gap. The classical boundary value
problem of the diffraction of plane electromagnetic waves by a perfectly conducting
circular disk and by the complementary circular aperture in a plane conducting screen
was solved by Flammer [11] using oblate spheroidal wave functions. Wait [12]
analyzed electromagnetic radiation from spheroidal structures, using both prolate and
oblate spheroidal wave functions. The rapid development of computer facilities and
numerical techniques during the recent past have become the foundations for many
new approximate methods, which are based on integral equation formulation or on the
volume integral and surface integral representations of the scattered fields obtained by

using Green’s theorem and are applicable in general, for the analysis of



electromagnetic scattering by arbitrary shaped bodies, including spheroids.

A well known method for solving problems in electromagnetics is the point
matching technique, in which the electric and magnetic fields associated with the prob-
lem are expanded in terms of appropriate vector wave functions. The unknown
coefficients in the field expansions are obtained from the boundary conditions for
representative points on the surface of the scatterer. This method has been used by

several authors to investigate scattering by spheroidal objects [13]—[15].

In 1965, Waterman [16] proposed a method for computing radar cross sections
and other associated field quantities for scattering of electromagnetic waves by a
smooth perfectly conducting obstacle. His method is essentially an integral equation”
formulation using Green’s functions, and is known as the extended boundary condition
method. Warner and Hizal [17] used this method to study the scattering and depolari-
zation of microwaves by spheroidal raindrops. A modified form of this method was
used by Barber and Yeh [18]-[19] in investigating the differential scattering charac-
teristics of arbitrary shaped dielectric objects. The method proposed by Waterman
which deals with one object was extended by Peterson and Strom [20], to be applica-
ble for the case of several objects, and they used it in studying electromagnetic scatter-

ing by an arbitrary number of bodies, and from multilayered bodies [21].

For inhomogeneous and anisotropic media, the integral equation formulation is
not very suitable, as Green’s functions for this case become very complicated in com-
parison to the same for a homogeneous isotropic case. Since the finite difference or
finite element equations are easily formulated, regardless of the complexity of the

medium, they are more attractive than the integral equations in inhomogeneous media.



However, the large matrices obtained in this type of a formulation create a problem,
making it difficult to perform matrix inversion using the general methods. The unimo-
ment method introduced by Mei [22] presents a way of dealing with these matrices
efficiently. The method was used by Mei et. al. [23], to treat electromagnetic scattering
from two bodies of arbitrary shape. Finally, for the analysis of very large systems
(consisting of say more than 100 scatterers), one can use the concepts of statistical

ensemble averaging [24]-[26], or lattice sum techniques [27].

1.2 Exact Solutions for Scattering by Spheroids

In attempting exact solutions to the scattering problems, we find that solving
problems associated with objects modeled by spheroids, is more difficult than solving—
those modeled by spheres or cylinders, due to the complex nature of the spheroidal
wave functions, which also makes the numerical computation of these functions much
more difficult. The very first attempt of obtaining a classical solution to the problem of
electromagnetic scattering by a spheroid involved solving of the scalar Helmholtz
equation

Vo +khy=0 (1.1)
in the spheroidal coordinate system. The solution results in the scalar spheroidal wave
function, in terms of which the different vector spheroidal wave functions are defined
[28]. In [28] and [29] we find tables of numerical values for different spheroidal wave

functions, which are very useful for comparative purposes.

In reviewing the literature, we find that there are quite a few publications on the
subject of obtaining an exact solution to the problem of scattering of electromagnetic

waves by a single spheroid, by expanding each of the fields associated in terms of



appropriate vector spheroidal wave functions. Even though various applications of
spheroidal wave functions have been there since 1880, it is the work of Schultz [30] in
1950 that gave for the first time a formulation for obtaining an exact solution to the
problem of scattering of plane electromagnetic waves by a perfectly conducting prolate
spheroid for axial incidence. Based on Schultz’s technique, Siegel et. al. [31] carried
out quantitative calculations of the backscattering from a prolate spheroid, and have
given a curve which shows the variation of the backscattering cross section with the
size of the spheroid for a prolate spheroid of axial ratio 10. Senior [32] compared
these results with some experimental results obtained by him for the same case. Taylor
[33] also obtained an exact solution to electromagnetic scattering by a prolate spheroid
for broadside incidence and TM polarization of the incident wave, but has not

presented any numerical results.

An exact solution for the more general case of scattering of plane electromagnetic
waves by a conducting prolate spheroid for arbitrary polarization and angle of
incidence was given by Reitilinger [34], but without any numerical results. There were
two major drawbacks in this solution. One was the necessity to repeat the process of
inverting matrices with changing direction of the incident wave. The other was the ina-
bility to use the same matrix to calculate the unknown coefficients in the series expan-
sion of the scattered field for both TE and TM polarizations of the incident wave.
These two problems were eliminated in the work of Sinha and MacPhie [35], who also
presented numerical results in the form of plots of backscattering cross section versus
angle of incidence for prolate spheroids of axial ratio 1, 2, 10, and 100. An exact solu-
tion to the same problem was also given by Dalmas [36]—[37], but using a different

type of vector wave functions than in [35], for the expansion of the fields. Using the



latter type of vector wave functions Asano and Yamamoto [38] presented an exact
solution to a similar problem involving a dielectric spheroid, and Sebak and Shafai
[39] obtained an analytic solution for electromagnetic scattering by a single spheroid

with impedance boundary conditions at axial incidence.

Research on electromagnetic scattering by two spheroids is not as extensive as in
the case of a single spheroid due to the fact that the solution is now more complicated
compared to that of scattering by a single spheroid, as the problem requires transfer-
ring of fields scattered by one of the spheroids as incoming fields to the other. For this
purpose either the translational addition theorems or the rotational-translational addition
theorems for vector spheroidal wave functions are used, depending on the orientation_
of one spheroid with respect to the other. The above mentioned theorems have been
developed on the basis of the translational addition theorems for scalar spherical wave
functions presented by Friedman and Russek [40], and the translational and rotational
addition theorems for vector spherical wave functions presented by Stein [41] and
Cruzan [42]. The translational addition theorems for the scalar spheroidal wave
functions \,U,(,i,)l (h;€n,9) and vector spheroidal wave functions Mf;ﬁf )(h;?;,n,q)):
Vyis(hEnoxa, NaOmen,e) =kt VsxMED(h;En,0) (i=1,3,4), where a is any
one of the Cartesian unit vectors 9{, 9, or %, were deduced by Sinha and MacPhie, and
these theorems have been used by them for the analysis of scattering of a plane elec-
tromagnetic wave by two spheroids with parallel major axes, and for deriving the
mutual admittance characteristics of a pair of spheroidal dipole antennas with parallel
major axes [43]-[45]. The same theorems were used by Cooray et. al. [46] for analyz-

ing plane wave scattering by two parallel dielectric spheroids. Analogous theorems for



the vector wave functions in the case when a is the radial vector r were derived by
Dalmas and Deleuil, and these have also been used in solving the problem of scatter-
ing of electromagnetic waves by two parallel perfectly conducting spheroids [47]-[50].
The rotational addition theorem and the rotational-translational addition theorems for

scalar spheroidal wave functions were given by MacPhie et. al. [51].

In this thesis we use the addition theorems for scalar spheroidal wave functions
[51] to derive the rotational-translational addition theorems for the vector spheroidal
wave functions M2 (h;Em,0) and N2O(h;En,0) with @ =x,7,2;i=1,2,3,4, as well as
for ML Y0, (h;Em,0) and NZ9) (h:61,0) (1=1,2,3,4) when a is the radial vector r. We
also derive the same theorems for the vector wave functions M;‘L,l(,';)(h;i,n,q)) and-
Ni(,‘;)(h;ﬁ,n ,0), which intervene in the solution of vector field problems in the presence
of a system of two spheroids of arbitrary orientation. Then we use them to obtain
exact solutions to the problems of scattering of electromagnetic waves by two
spheroids of arbitrary orientation and electromagnetic coupling between two spheroidal
dipole antennas in arbitrary configuration. The coordinates &, 7, ¢ mentioned above are
the spheroidal coordinates and h=kF, where k is the wavenumber of the time har-
monic fields and F is the semi-interfocal distance of the spheroidal surfaces & =const.
The vector wave functions Mi(,i)(h;i,n,(b) and NXO(;€1,0) are those defined in

Appendix A, having a e/ ™1 ¢_dependence, with j=V-1.

1.3 Synopsis
In Chapter 2 we derive the rotational-translational addition theorems for vector
spheroidal wave functions X;ﬁf)(h;g,n,q)), Xi(,‘;)(h;ef;,n,qn, X7 ¢ (h;EM,0), where X is

e,omn

either of the vector spheroidal wave function M or N, and also for vector spherical



wave functions m/$) and n/ (. Sample results of some numerical experiments per-
formed on the equations describing the rotational-translational addition theorems for
vector spheroidal wave functions are given at the end of the chapter. Next, using the
appropriate rotational-translational addition theorems for vector spheroidal wave func-
tions, we present in Chapter 3 the formulation and analysis for the general problem of
scattering of electromagnetic waves by n dielectric spheroids of arbitrary orientation.
The transformation of the electromagnetic fields scattered by one spheroid as incoming
to another, the imposing of the boundary conditions, and the derivation of the system
matrix are discussed in detail. The solution of the problem of scattering by n perfectly
conducting spheroids is then deduced from the above solution for n dielectric_

spheroids. The solutions for the special case n =2 are also given separately.

The numerical results that have been obtained by solving the problems of scatter-
ing by two perfectly conducting and by two dielectric spheroids of arbitrary orientation
are presented in Chapter 4. Since all the matrices associated with the solutions are of
infinite dimensions, the criteria used for truncating these matrices are described in this
chapter, and the numerical results obtained in the form of plots of normalized bistatic
and backscattering cross sections for various axial ratios, orientations, and center-to-
center distances of the two spheroids are discussed. In Chapter 5, we describe an
approximate method for solving the problem of scattering of electromagnetic waves by
two coaxial spheroids at oblique incidence, based on the exact solution to scattering by
a single spheroid, and present numerical results for the far field scattering cross sec-

tions.



An exact solution to the problem of electromagnetic coupling between two
spheroidal dipole antennas in arbitrary configuration is obtained in Chapter 6, the for-
mulation being done on the basis of the equivalence principle and the rotational-
translational addition theorems for vector spheroidal wave functions. Numerical results
are given in the form of plots of mutual admittance versus the separation between the
two dipole antennas and plots of E— and H - plane patterns for different orientations
of the two antennas, when one of them is parasitic. Finally, in Chapter 7 we present

the general conclusions and make some recommendations for future research.
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CHAPTER 2

ROTATIONAL-TRANSLATIONAL ADDITION THEOREMS
FOR VECTOR SPHEROIDAL WAVE FUNCTIONS

In order to solve the problem of scattering of electromagnetic waves by n(22)
spheroids of arbitrary orientation, we require that the outgoing waves due to the fields
scattered by one spheroid, which are functions of the coordinate system attached to
that spheroid, be expressed as incoming waves to another spheroid in the coordinate
system attached to it. Since the scattered field is expressed as a series expansion in
terms of vector spheroidal wave functions, this requires rotational-translational addition
theorems which express vector spheroidal wave functions of the third or fourth kind
(depending on whether the time dependence of the field quantities is e V¢ or e/,
respectively,) in the outgoing system in terms of vector spheroidal wave functions of
the first kind in the incoming system. As the problem can be formulated by using
either vector spheroidal wave functions X,i(,i) and X,z,l(,i) or X;<;2,m, (where X is either
M or N), we first derive in Section 2.1 the rotational-translational addition theorems
for both types of vector spheroidal wave functions, even though we use only the
former type in our formulation. Next we deduce in Section 2.2 the translational addi-
tion theorems for these vector spheroidal wave functions, as a special case, and finally
obtain the rotational-translational addition theorems for vector spherical wave functions

as another special case.

2.1 Derivation of the Rotational-translational Addition Theorems

In order to simplify the notation, without any loss of generality, consider only

IR AN 4

two Cartesian reference frames (x,y,z) and (x]y;z’) as shown in Fig. 2.1. A point P



Fig. 2.1 Rotation and translation of the Cartesian system (x,y,z) to (x

’ ’ ’

Y5z ).

11
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has spheroidal coordinates &,1,¢ and £',m’,¢’ associated with these two reference

(AN A 4

frames, respectively. The system (x]y;z’) is obtained from (x, ¥,z) by rotating the latter

’ ’ 7

to (x,,¥,,2,) which is parallel to (x;y;z”) and then by a translation. The origin O’ of
(x7y7z’) has spherical coordinates d,0,,¢, with respect to the Cartesian system
Oy 2,).

By using the rotational-translational addition theorems for scalar spheroidal wave
functions given in [51], the scalar spheroidal wave functions \V,(,‘;,),(h;&,n,qn in the

unprimed system can be expressed as series expansions in terms of scalar spheroidal

wave functions in the primed system as,

. o Vo
ENO=Y ¥ Dom@py;dy@n i En ), ri<d;i=1234 @1y

v=0p=—v
. oV .
Ve (END) =Y, Y Pr(ouBy;d) wll(h'; E.7,00), r'zd;i=1234 (2.2
v=0 p=-v

in which o, 3,7y are the Euler angles [52] that specify the rotation of the primed system
with respect to the unprimed one, and (i)Qm(a,B,y;d) and Py (o,B,y;d) are the

rotational-translational expansion coefficients with (I)Qﬁ‘\j‘(a,ﬁ,y;d) =Py (oL.B,y;d),

A A, A, A,

defined in Appendix B. The unit vectors 9(, §I,z and x’,y’,z” are related by

A A A A A A
a=cax,x’+cay,y’+ca2'z’, a=x,y,z (2.3)

where the coefficients ¢ 4y, ¢4y, - are expressed in terms of the Euler angles,

Cyr’ =cCOSOcOsPcosy— sinasiny

Cxy» =—(cosacosPsiny+ sinccosy)

€y =cOs0sinf
Cyx = sinacosPBcosy+ cososiny

Cyy’ = COSOCOSY — sinoicosBsiny (2.4)

¥y

Cy,» = sinaisin3
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Cr=—sinPcosy

¢, =sinPsiny

zy
C,r=cosf

The independent elementary solutions of the vector Helmholtz equation in the

spheroidal coordinate system give the vector spheroidal wave functions [53],

M3 Em,0) = Vi) (h:En,0)xa (2.3)
NEOsEm0) =k~ VMED(h:Em,0) 2.6)

where a is a constant vector or the radial vector. In this thesis we consider the vector
wave functions given in (2.5) and (2.6) with @ being one of the Cartesian unit vectors
?(,fl,%, and their linear combinations which are particularly useful in the analysis of
field problems involving spheroids [44]-[46]. Also considered are the vector wave

functions with a being the radial vector r.

2.1.1 Theorems for Vector Wave Functions Defined with X, ¥, or z

In the following, we will be denoting the coordinate triads (€,n,0) and (§',1,¢")
by r and r’, respectively, and will be omitting the arguments of ¢ )Q’ﬁ\'}(a,B,y;d) and
Py (a,B,y;d). If we substitute (2.1) and (2.2) in (2.5) and then (2.5) in (2.6), for

a=x,y,z, we obtain

. Rl \% . ’ ’
X (hin) =% Y O0m (c0 X2 P 1)+ ¢y XD 1)
v=0 p=-v

+0u XU T, r7Sd s i=1234 Q.7

. L v re re:
X (hir)= 3 Y P [0 X XA 1)+ €y X, 1)
v=0 p=—v

+0u XML, r'2d;i=12,34 (2.8)

where X is either of the vector spheroidal wave functions M or N. These expressions
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give the functions M and N in one system of spheroidal coordinates in terms of the
same type of functions in another system of spheroidal coordinates, rotated and
translated with respect to the first one. In the analysis of field problems, the following

linear combinations [44] are used:

XED .y =-;— X2 X2 O ), i=1,23,4 (2.9)

From (2.7), (2.8), and (2.9), the following expressions are derived finally [54], [55]:

XOun=3% ¥ Oome 0, X 1)+ O X (1)
v=0p=-v

+C XD, r<d;i=1234 (2.10)
XiPmin=3 3 P C X h )+ CX W h )

v=0p=-v

+C X1, r'2d; i=1234 (2.11)
XO0m;n=3 Z Do ey X v+ of X

v=0p=-v

+C5 XeD( ], risd; i=1234 (2.12)
X O%hin=3 z PR ICy X5 v+ of X8 (v

v=0 p=—v

+C5 X\, r'zd; i=1234 (2.13)
XDtin=3 3 Oom c, XV (h )+ C) XM )

v=0 p=-v

+Cs XD, rr<d;i=1,2,3,4 (2.14)
X0 ;)= 3 ZP [CX e+ ¢ Wy

v=0p=-v

+Cs X505, r'2d;i=1234 (2.15)

where the asterisk denotes the complex conjugate, and
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(Cxzr+JCyz7) (2.16)

The expressions in (2.7)—(2.8) and (2.10)—(2.15) constitute the rotational-translational
addition theorems for the vector spheroidal wave functions M2Y), MEW), NZ®) and

’

NG,

2.1.2 Theorems for Vector Wave Functions Defined with the Radial Vector r

Using eq. (B.1) in the Appendix B and (2.1), the even and odd spheroidal scalar
wave functions in the unprimed system can be expressed in the form of a series expan-
sion in terms of both even and odd spheroidal scalar wave functions in the primed sys-

tem, for r'<d and i=1,2,3,4, as

o Imi+q
Vimin= 3 Y Fm Y 3 ane

=01 f=—(Iml+q) T H=0 I=p,p+1

[ “2Bitig Voo (ks 1) % 5B i (h' )] (2.17)
where
e,z }ﬁ/nﬁq =] iml+g—n e—jH‘Dd { (i), ;’.L\,}!ml+q (d) ej}iq)d cos [(E"“)q)a’ +Iy+m Q]
\%
£t T Oakieve @) e M cos (g, +Eremel) @18)

o,?B}rﬁlrtﬁq = j Imitq—n P { (i)aﬂ,!mi+q (d)eju(bd sin [(F—L)by + Ty -+m o]

F(— )H g_}_ﬁ;' (z) !ml+q<d)e ~Jj g sin [(Hﬂl)(bd +LW+mOL]} (2.19)

for u>0,
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CBOV = jImiq-n g s (i )a B Imi+9 (q) cos (o, +Ly+mo) (2.20)
SeBOv = jImign —JP%a (L)au mI+g () sin (L, +Ty+m o) (2.21)
for u=0, 12
R I e R (222
K, iml+q
and ) v
Tyt = % at, (n) (223)

Equation (2.17) gives the rotational-translational addition theorems for the scalar
spheroidal wave functions uffzfg,m (i=1,23,4), for r’<d. Using the relationship
between the spheroidal and spherical scalar wave functions [28], we get for r’'<d

Iml+q

v n=Y" s Fr > 2[“&1’3@, WS (00 F B, W (e ¢>
q=0,1 p.“—(im|+q) 7 v=0 p=0

(2.24)

where
ay _. , m , cos q),
Veopy=Jvlkr) Py (cost’) . K (2.25)
The notation in (2.17)—(2.25) is explained in Appendix B.

Taking the gradient on both sides of (2.24) and then the cross product with r gives

|ml+q
MO (= 5SS Fre Z Z[”Bﬁ‘v"w w800
q=0,1 T=—(Imi+q) v=0 p=0

F eBp,L’i/nuq V'\\Uo,e p.v(r 50500 Ixr (2.26)

Since the gradient of a scalar function is invariant to a transformation of the coordinate

system, denoting the wvector spherical wave function V \yfalgw,(r 8,0)xa’ by

mgo(fl{, (a’=x]y;z,r’), and omitting the argument of Mz(o‘,zm (h;r), we get
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oo iml+q , . ,
MO, =3 % FI Y Y B, (I, + dsing,coso,mE D,
q=0,1 H=(Imi+q) v—O n=0

+dsin@, sind, m 2, +dcos,mZ 1) 5 “<B, (m) ),

+d sin@, coso, m} {2, +d sinb, sing, my B, + d cos, mZ (1))} (2.27)

where the following relations are used;

r=r+d;  d=dsinf,cosd, X'+dsinB,sind, § ' +dcosd, 2’ (2.28)
Now we express the vector spherical wave functions mgo(h)v (@’=xy’z’) in terms of

the vector spherical wave functions mgy'élu)v and ng,'o(h)v in the following form, which is

valid for any of “CBVr, and “Bjvi, [471:

%EBHVM zo(hv v% E—%)(auvuq go(l;,zv'*‘byivuq gélpv)
VZ_% EBuvuq L= z E)( viig Mo.Siv + Yluzg MESTY) (2.29)
I 2o mithef, B e ianc

where auvu - » Bivig s 4, quq » Blvimg é;’a 4> and by, are given correspondingly by

.k
%vite = 2y(va) { 2v+3)

[(V+}.L+1)(V+H+2)Bp+1,v+1,ﬁq = ByZ1 vt

v+1 n
((2\/— 1) y FOV=H=DOADBL v g + B v-1 5] }
144 ik mn
Uviig = 2v(v+1) (2\/ 3) [(Vﬂ“’1)(V+“+2)Bp.+1,v+1,ﬁq + B},L—l,w-l,ﬁq] (2.30)
v+l
((2 )) [((v=p=1)(v- u)Buﬂ,v—l,uq + Bp.—lv 1p,q]}

rer k (V+1)(V~H) an + V(V+u'+1)an _
WHE T y(v+l) | 2v-1 RV gyg3 TRviLEg
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p tk

_ mn
\vilg = m [(V—H) (v+u+1)B p+ivig T B I:Tl VHgq }

” k
Wig = Duivrl) [(V*H)(WHH)B@N@ - ;T—nl,vﬁq‘J (2.31)
e _ F k 9 mn

Substituting (2.29) in (2.27), and taking into account the cancellation of the three
components of mg,'o(}zv and ng:glu)v for v=p=0, yields
[+

. oo q oV
r@iy _ ’ mn e,0..mn r'(l e,0.,mn r'a
Me,omn - Z Z Fﬁq Z E { x;,wﬁq mé,O(LBV + yp_vﬁq ne,o( },l)V
=01 f=-(Imi+q) v=1 u=0

s (1 . (1
+ ez mp L+ 2ermn nl () (2.32)

where

Goxmn. = “?Blvn, + dsinBycosdy “%a’  + dcos®y ¢%a’’ x dsin®,sing, *¢a”

RVig — HVHg ¢ “uvitg c“uvig s uvig
€,0 — 3 3 e, 44 3 , ’ . 777
yﬁ’&q =dsinf,sind, oYl F (dsinb cosdy 5 \witg T dcosby ¢ \iviig) (2.33)
o,e. . mn __ 3 : s 144 0. nmn : . , 14
Zivirg =4 sinf,sing, gamq F (7B, + dsinB,cos0, ¢ ‘ja{wm’ + dcosf, ° gap,wﬁq)
0.€ tﬁ% . =dsinB cosd, © ;:wﬁq + dcos, e'ﬁbp’t{,'ﬁq T dsinB,sing, 7€ &Eq
. . . €,0 o/ 0’ . mn_ .
in which the coefficients cAvigs eDwmgs - - - aTE evaluated by replacing By, in
(2.30) and (2.31) by “2Bg, and “(B/;,, appropriately.
Taking the curl of both sides of (2.32) and then multiplying by k™! gives
rQ) _ wr R o s eo (1) r(1)
— mn ,0 . r 2,0y, mn
Ne,omn - Z Z Fﬁq Z E { xp,v'}_[q ne,o Uv + ypvﬁq me,o [TRY
=01 fT=—(imi+q) ~ v=1 pu=0
yoegmn pri(h) 4 ooegmn mri) (2.34)

HVEG T oelv HVHg T oe v

where the invariance of the curl operator to a transformation of the coordinate system

has been considered. Using the relations [28], [47]
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m A0 8500 = 3 Ty Mot (k' 1) (2.35)
I=ppu+l

LS 050) = X Ty NLD(h%5 1) (2.36)
=0+

in (2.32) and (2.34), gives [55]
o imi+

; q ° Vv o . P
r(z) — ’ ’ mn r (1) mn r (1)
Me,omn = Z Z Z 2 Z (Ap,vﬁql ME,O pl +B wvitgl NO,E ui
q=01 fg=-(imi+q)Vv=1 u=0 I=p,p+1

(1 , 1
+ ngniql Mz.e( u)l +D$lﬁq1 N;,o(p)l) (2.37)

NGO = s S S S amn NTD pmn )
e,omn = > > > 2 Z ( wvigl “Yeopl uviigl ““to.epl
=01 T=—(Imi+q)v=1t p=0 I=p,p+1

" N
+Cm  No S +DI ML ED) (2.38)

The rotational-translational addition theorems for vector spheroidal wave functions
were also obtained independently in [56]. The explicit form of the coefficients in the

above two equations are obtained in this thesis as

g = SOX T (0B Ty, O =07 (a,By;d) Ty,

HVigl T HVE HVigl HVE
! ! (2.39)
Divia = Y g PV Dpwr s By = T, (Bvid) Ty,
with
£,0 mn . — &0 .. mn nmn o,e ymn . — 0,8 MmN mn
XNVEq(a’B’Y’d)" *vitg Fig > ZuVEq(a’B’Y’d)“ Zuvitg it (2.40)

e,oymn d)= &oymn_ mn o.emn_ ‘d)= o€ pmn mn
Ywﬁq(a’ﬂ’y’d) Yuvitg F g > T\ (Bv:d) fuvirg F g

Expressions in (2.37) and (2.38) give the rotational-translational addition theorems for
vector spheroidal wave functions M;(o‘,zm and N;(O‘,Zm for i=1,2,3,4 and r’<d, which

are necessary in the study of multiple scattering of electromagnetic waves by two

spheroids of arbitrary orientation.
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2.2 Special Cases
2.2.1 Translational Addition Theorems
This special case is obtained when 00— 0, B —0, and y— 0. Referring to (B.3),
(B.4), and (B.5) (see the Appendix B), we can write
R%‘SS(O,O,O) = Smﬁ (2.41)
where 0 is the Kronecker delta function. By setting s=|ml+q, /=Iul+r in (B.1) and
(B.2), and then substituting ©a 7 mH (d) in (B.1) from (B.6), and b7 (d) in

(B.2) from (B.8) and (B.9), (B.1) and (B.2) can be rewritten as

: 2D & & MY e (TRHUA)! Vo,
(z)an — s Jp+v n dmn(/’l)df' (/’l )
N () q:ZQl ,;Zm po%l (l=p+r)r 9

- a(m, Iml+ql-, lukr1p) 20(kd) P M (cos, ) e/ 7 1% (2.42)

2=t &2 oo p+imi+

Y Uy ammyam, imlvgin-m,lip)

Pmn_
W N
(1hY q=0,1 p=lul, i+l I=ly,lp+l

N ! '
g i) B O ) ppobeose )/ @y

When a0 — 0,8 —0,7— 0, the coefficients ¢y, Cay’s Cazr (@=X,Y,2) defined in (2.4)

are all zero except ¢y, ¢yy+, and c,,- which are equal to unity. Substitution of these in

P27

(2.7)—(2.8) gives for a =x,y,z and a’=x'y’z

. oo v . ’
X =3 3 OOEXLOGr), r'sd;i=1234 (2.44)
v=0 p=-v
. g v rrs
Xo (=% ¥ PR XD, rizd;i=1234 (2.45)
v=0 p=~v

where X is either of the vector spheroidal wave functions M or N.
Equation (2.44) for X=M and X=N is exactly the same as egs. (2.42) and (2.44) in

[43]. However eq. (2.45) for X=M and X=N is not the same as eqgs. (2.43) and (2.45)
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in [43], but can be brought to the same form by the following rearrangement and

change of notation. After substituting Pﬁ‘{} from (2.43), (2.45) becomes

. o Y _1yn—L oo oo +imi+
Xian=3 ¥ 20— 3 3 U8 g

’
v=0 p=-v Nuv(h) q=0.1 p=iul,ul+1 I=lylg+l

e - mlal /| d};:m (h ')
L en g +qlp— —
j QlI+)ya(m, ml+qlu~m,lip) 2p+D)
' . rer
PHDL L 0 k) Py t(cos6 ) e 0 XD, (2.46)

!

By replacing |1 by m—y, v by ¢, [ by v, and rearranging, we obtain

Xf’lu(j)h; =°° 3 w’ ﬂ/_
o)=Y 3 3 Wi

v=0 pu=-v t=im—pl,im-p+1

, o miq+v  ivH-n _

P} (Cosed)eJH% 3 Zqz J @+m—)!
g=01 py.petl 2p+1) (@-m+u)!

v+1) 28V (kd)

Sdrr () dy Tl (R alm, Iml+q-uvip) X58) (k' 1) (2.47)

Equation (2.47) for X=M and X=N gives the translational addition theorems for the
case r’=d. Also in the limit « —0, §—0, y—0, (2.37) and (2.38) give the transla-
tional addition theorems for the vector spheroidal wave functions M-¢)  and N7¢)

e,omn e,omn:

for r’<d. When i =3, their expressions are identical to those in [471.

2.2.2 Rotational-translational Addition Theorems for Vector Spherical Wave

Functions

In this section we particularize the rotational-translational addition theorems for
vector spheroidal wave functions to obtain the theorems for vector spherical wave
functions. These theorems are necessary for solving problems involving spheres which
do not have homogeneous material properties; e.g. spheres whose material properties

vary with the spherical coordinate 6. Even though translational addition theorems and
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rotational addition theorems for vector spherical wave functions are available
separately, they cannot be combined in a straightforward manner to obtain the

rotational-translational addition theorems for vector spherical wave functions.

In the limit #—0 and hA’—0, the spheroidal coordinate systems (&,1,0) and
(E.n’,¢") reduce to the spherical systems (r,0,9) and (r’,0,0"), respectively, with the
spheroidal angle functions and the spheroidal radial functions becoming the associated

Legendre functions and spherical Bessel functions, respectively,

Smn (h,M) = P (cosB)
Suw(h’M") — P (cosd”)

2 (vH)!

2v+1 (v—)! (2.48)

Ny(h) =
(RN (1,E),RG) (1 5), R (h.E)Y — {j, tkr ), RV kr ), P (ler )}
RO B ELRE) (B RE 1 E)} = (o kr ), h{D (kr’), kP (kr"))

Substituting (2.18)—(2.22) in (2.24), and rearranging, we get in the limit A— 0, A’— 0,

YOreN=3 3 Vo yle9) (2.49)
v=0 p=-v
where
)rmn V-n N~/ gmn g m,iml+
Guv =(-D* 2v+1) > dq thy 3 Ru |m|+qq (o,B,y)
q=0,1 T=—(imi+q)
Im|+q+v @)
3 jP a(m, Iml+gi-u,vip) Vo, (@ (2.50)
Py Pgtl

By expanding \jf(l) ,(@) in double integrals [40], [53], (2.50) becomes
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. oo |mi+q Imi+g+v
OGp=cireun Y S TS e dm
=01 [=(imi+q) Po»Pe+l

RIS (0,By) @ (T, Iml+q—Lv I p) (4njP )

L, Imi+q
2n ) e
[ Jexp(jkdcosyy) PR+ (cose)) e/ % singr a6, d o, 2.51)
0c
where
COSYy, =sinbj sinb, cos(dp,— 9% ) +cosb’ cosb, (2.52)
T /2] oo b
with f being _‘- fori=1, 2 f for i=3, and 2 j for i=4. Taking into account the
c 0 0 T/2—j oo

linearization expansion [40], [41] of the product P|,‘—,‘”+q (cosB) P, (cosBy), (2.51) can
be written in the limit 2" — 0 as

oo

. Im|+q
DG =CDF@vD ™ En™ 37 Y REImE (By) d (k)

2n
: J fexp( Jkdcosy,) P,F,;Hq (cosOy) Py (cosBf, ) e (P
0c

Using the expansion [51],

iml+

. q _ [
Plivg(cos) e = 3 R (B y) P, (cos8}) /M (2.54)

f=—(imi+q)

yields, in the limit 4 — 0,

2n
O = (1 @u+D) j* (4™ [ [exp(jid cosyg) Peose),)
0c

- B# (cos}) ™% e 7% sing) d 0, d ¢, (2:33)

Applying again the expansion of P,{”(cos@k)ejm(b" as shown in (2.54) gives
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n 21
DG = (D @v+D) Y 3 RELBY) @nyt [ [exp(ikdcosyy)
ﬁ:—n, 0c

. PR(cos®?,) P (cosb), ) ef (B9 sinB7,d 0, d ¢, (2.56)

and with the linearization expansion of Pf(cos6})B;* (cos8;) and the expansion of

w®  (d) in double integrals, we obtain finally

H—u,p
. . n n+v, i _
OO =EDR v+ M X RENBY) X P a(En-wyip)
H=n PoPotl
- 280(kd) PIH (cosB ) e! (0 (2.57)

Equation (2.57) gives the rotational-translational coefficients for scalar spherical wave
functions, when r’<d.

From Fig. 2.1 we have
r=r'+d (2.58)

Taking the cross product of Vy{) with each side of (2.58) gives
m,O=Vylxr'+Vylixd (2.59)
Since the gradient of a scalar function is invariant to a transformation of the coordinate

system, we use (2.49) to write

. oo M . ,
Vyiaxr'=3 3 Ocm mi (b (2.60)
v=0 p=-v
Also
Vyiaxd=d myO+d myD+ d,mz{) (2.61)

As given in [42], the vector spherical wave functions m2{%) (a=x,y,z) can be expressed

in terms of the vector spherical wave functions m/,{" and n/,{! in the form
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b o V ’ 7 13
mizgp: > X (ep’LVm(L\l(l)+g}LVn{L\/(1))

v=0 p=-v
[ — 4 ’ ’7 4
myP=3 3 (grmD+glni D) (2.62)
v=0 pl=—v
[ — hd ’ e r’
my=3 3 (epmD+gin D)
v=0 p=-v
€uvs uv - - - have the same form as those of aﬁvﬁq, bivggs - - - » TESpectively, with
pvig Teplaced by (")GL"\’,‘, and + in aﬁ;ﬁq and b 7, and F in wiig Y —J and +j,
respectively.
Finally (2.59) can be expressed in the form
L=V , ,
D=3 ¥ (ATm V4B D) r'<d;i=123,4 (2.63)
v=0 pl=—v -
in which
A=A+ DG (2.64)
where
A“V=dxeﬁv+dy ewtdely (2.65)
Bl =d g td, g +4, S (2.66)

with the x,y, and z components of d given by

dy =d ($In8 1 COSPy Crpr + 51004 SINQ 4 €y + €086 4 €y,
dy =d (sin6, 08¢, ¢,y +$in0, sindy ¢y -+ €056 4 ¢y, ) (2.67)

d, =d (sinB,cosd, ¢, -+ sinb; sind, Czyr+C€080,¢557)
Equation (2.63) gives the rotational-translational addition theorems for the vector
spherical wave functions m$), when r’<d. The expressions corresponding to the vec-
tor spherical wave functions n{) [41], [42] have the same form, with m/ (" and n,
in (2.63) replaced by n[n',(l) and mﬁ\',(l), respectively. It is also possible to obtain these
theorems starting directly from the corresponding theorems for vector spheroidal wave

functions, given in (2.37) and (2.38). However this derivation is more elaborate than
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that presented above.

The translational addition theorems for vector spherical wave functions m/{) are
obtained from (2.63) as a special case, when o0—0,—0,y—0. Now Cax’s Cay’s Cay’
(a=x,y,z) are all zero except ¢, Cyys> and ¢,,- which are equal to unity. In this case
(2.57) reduces to

n+v

OGE =DF@v+D) Y™ 37 jP alm,ni-wyip) 20kd) P (costy ) e! %2 68)
Pg> P+l

and (2.63) becomes identical to Theorem I, given in [42]. Similarly, for the vector

spherical wave functions n;¢) we obtain Theorem II given in [42].

2.3 Numerical Experiments

Some numerical experiments have been performed on the equations describing the
rotational-translational addition theorems for vector spheroidal wave functions (equa-
tions (2.10), (2.12), (2.14)). The objective of these experiments was to determine how
many values for 4 and v are required in the double summations on the right hand sides
of each equation in order to obtain a two significant digit accuracy when compared
with the corresponding left hand sides, for various values of m and n. Numerical

results corresponding to a sample calculation are given below.

In performing the following calculations, we have taken the points P and O’ in
Fig. 2.1 to have coordinates (-1.0,4.0,2.0) and (15.0,20.0,25.0), respectively, with
respect to Oxyz, and have considered the system O’x’y’z’ as being rotated by the
Euler angles ao=n/5, B=n/8, y=mn/3, relative to Oxyz. The spheroidal systems associ-
ated with the unprimed and primed Cartesian systems are assumed to have semi-

interfocal distances of 6 and 7 units, respectively. With these parameters, the 7
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component of the vector wave functions nM,;(,f'), nM,;Ef), and nM,an) calculated

directly using the unprimed En.d have the values

0.010178,-/0.011765, -0.007669,-0.012229, and 0.003172,-j0.011274, respectively,

spheroidal coordinates

for m=1, n=2. The same values calculated with respect to the primed spheroidal coor-
dinates £’,n",0", but using the double summations in {1 and v on the right hand sides of

egs. (2.10), (2.12), and (2.14), are tabulated below for different values of W and v.

Table 2.1 Calculated values of nM;,(f), nM’,;l(,‘z’), and ann(,f'), using the summation on

the right hand side of the addition theorem equations, for different values of

i and v
-1<u<l
vs M M ML
[l 0.035681,—j0.006774 -0.020981,-;0.006537 0.001523,-70.001847
lnl+1 0.01046,—70.018574 -0.016272,-70.001801 0.000762,—;0.005542
ni+2 0.005694,-70.015367 -0.017525,-j0.001556 0.001431,-70.000278
Il +3 0.004164,-j0.020236 -0.012547,-j0.005426 0.002018,—70.009143
nl+4 0.006245,-j0.017337 -0.011620,-70.008074 0.002535,-70.007355
Inl+5 0.006581,—70.021546 -0.010233,-70.007068 0.002727,-50.008434
-25u<2
Il +1 (0.018461,-0.032574) (-0.022781,-0.018271) (0.005225,-0.018761)
i +2 (0.016123,-0.012316) (~0.011562,-0.014357) (0.003762,-0.020028)
Ll +3 (0.011593,-0.011660) (-0.009525,-0.012425) (0.003551,-0.013402)
lul+4 (0.010246,~-0.012028) (-0.007533,-0.012243) (0.003273,-0.011332)
Ll +5 (0.010316,~0.011243) (-0.007692,-0.012374) (0.003157,~-0.011408)



Il +6

[l +2
Il +3
[l +4
[l +5
Ll +6

Il +7

V<

[l +3
[l +4
Ll +5
ful+6
lul+7

[l +8

(0.010320,-0.011238)

(0.021069,-0.038446)
(0.014233,-0.023564)
(0.011934,-0.013721)
(0.010566,-0.011411)
(0.010432,-0.011326)

(0.010428,-0.011313)

0
(0.017832,-0.019578)
(0.012103,-0.012377)
(0.010421,-0.011233)
(0.010398,~-0.011203)
(0.010381,-0.011215)

(0.010428,~0.011313)

(-0.007686,-0.012383)

-3<p<3
(-0.020720,-0.023278)
(~0.015476,-0.019342)
(~0.009632,-0.014563)
(=0.007602,-0.012553)
(-0.007658,-0.012099)

(-0.007633,-0.012087)

-4<u<4

M
(-0.018533,-0.017265)
(-0.008724,-0.013521)
(-0.007681,-0.012199)
(-0.007653,-0.012078)
(=0.007643,-0.012067)

(-0.007638,-0.012059)

28

(0.003165,-0.011415)

(0.004125,-0.029761)
(0.003841,-0.014335)
(0.003322,-0.012211)
(0.003188,-0.011589)
(0.003124,~0.011356)

(0.003127,-0.011344)

M
(0.003564,-0.021644)
(0.003214,-0.012537)
(0.003168,-0.011461)
(0.003153,-0.011378)
(0.003142,-0.011364)

(0.003136,-0.011362)

The values on the column under v< indicate the maximum value of v, with the start-

ing value always being [ul. The results for ¢M;§), ¢M;l§f), and ¢an(,‘f>, have similar

convergence. From these experiments it is obvious that it is sufficient to consider only

-2<pu<2 and v=|pl, [ul+1,... I[nl+5 in the summations in Y and v in order to

obtain a two significant digit accuracy for the calculated vector spheroidal wave func-

tions, for major axes of the spheroids in the range of magnitude considered.
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CHAPTER 3

SCATTERING OF PLANE ELECTROMAGNETIC WAVES
BY SPHEROIDS OF ARBITRARY ORIENTATION

By expanding the incident, scattered, and transmitted electromagnetic fields in
terms of appropriate vector spheroidal eigenfunctions, an exact solution is obtained in
this chapter to the more general problem of scattering of a plane electromagnetic wave
by n dielectric prolate spheroids of arbitrary orientation. The boundary conditions at
the surface of a given spheroid are imposed by expressing the electromagnetic fields
scattered by all the other n-1 spheroids, in terms of the spheroidal coordinates
attached to the spheroid considered, using the rotational-translational addition theorems
for vector spheroidal wave functions. The solution of the associated set of algebraic
equations yields the column matrix of the unknown scattered and transmitted field
expansion coefficients, being expressed as the product of a system matrix and the
column matrix of the known incident field expansion coefficients. In Section 3.1 we
discuss the formulation and analysis of the problem and in Section 3.2, the imposing
of the boundary conditions and the derivation of the system matrix [G4]. Next, as a
special case, the derivation of the system matrix [G.] associated with the solution to
the problem of scattering by »n perfectly conducting spheroids of arbitrary orientation
is presented in Section 3.3, and finally in Section 3.4 we give the special form of the

solution for the case of two spheroids of arbitrary orientation.
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3.1 Formulation and Analysis of the General Problem

Let us consider in general n prolate spheroids of arbitrary orientation, with their
centers located at the origins 0, of the Cartesian coordinate systems Oy x5y, 2,
(g =1,2,...,n), respectively, and the gth coordinate system attached to the gth
spheroid. The major axes of the spheroids are along the z axes of the respective Carte-
sian systems. Each of the origins 0, has spherical coordinates dg,Gog,%g with respect
to the global Cartesian system Oxyz, and each system Q x5y, 2, is rotated with respect
to Oxyz through the Euler angles o, Bg,yg. The positions and orientations of the gth
and rth spheroids, which are two members of the above mentioned system of n
spheroids, and the Cartesian systems attached to them are shown in Fig. 3.1. Let a
linearly polarized, monochromatic uniform plane electromagnetic wave with an electric
field of unit amplitude be incident at an angle 6; with respect to the z axis of the sys-
tem Oxyz, the plane of incidence being chosen as the x—z plane (¢; =0), as shown in
Fig. 3.1. The polarization angle vy, is the angle between the direction of the incident
electric field intensity vector and the direction of the normal to the plane of incidence.
For transverse electric (TE) polarization v, is zero and for transverse magnetic (TM)
polarization it is 7/2. It is vassurned that the medium in which the spheroids are embed-
ded is isotropic and nonconducting, and further that both the medium and the
spheroids are nonmagnetic. If we consider the rth spheroid to which the Cartesian sys-
tem O, x,y,z, is attached, then the incident electric field can be expanded in terms of
vector spheroidal wave functions in the rth coordinate system as shown below. A time

dependence of ¢/®" is assumed throughout, but suppressed for convenience.

Since the direction of the incident wave vector k with respect to the system Oxyz
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Az

Fig. 3.1 The geometry of the gth and rth prolate spheroids and the associated Carte-

sian systems of arbitrary orientation.



is specified by the angular spherical coordinates 6; and ¢; =0, we have

k=—k (sin; X+ cosf ; Q)
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3.1)

If the direction of k with respect to the system O,x,y,z, is specified by the angular

spherical coordinates 9; , ¢; , then

. A . . A A
k =~k (sin6; cosd; X, +sinb; sind; y, +cosb; z,)

(3.2)

. A A A, . A A A,
The unit vectors X, y, z in Oxyz can be expressed in terms of X,, ¥,, z, in O,x,y,2, as

where

"Cyr = COSOL, COSP, COSY, — sina, siny,

e

7Cyp = COSQL, SINP,

It

r ny

"¢y, = COSQL, COSY, —sinoL, cosP, siny,

yy

rey, = sino, sinf,

yz

TCp = _SinBr CosY,

"¢,y = sinf, siny,

"¢, = COS Br

'y = —(cosa, cosP, siny, +sina, cosy, )

sino., cosf, cosy, +cosa, siny,

(3.3)

(34

with a,, B,, ¥, being the Euler angles as defined in [52]. Substituting x and Z from

(3.3) in (3.1) and identifying the corresponding coefficients of )A(,, 3\',, /i, with those in

(3.2) gives

sinB; cosd;

sind; sing;

I

cosO: =Tc¢, sind; + "¢, cosH;
I, xz i 44 i

from which 6; and ¢; can be evaluated.

"€ SING; + 7, cOsH;

"Cyy 8In0; + 7,y cOSH;

(3.5)

The incident electric field intensity E; in the system O, x,y,z, can be written as
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IE; = OEEcosy, + PEM siny, (3.6)

where
(NETE = §gikr (3.7)
(DEMM = (—cos8; X+ sind; z) e /KT (3.8)

From the relationship between the vectors r, r,, and d, (see Fig. 3.1) we get
e kT = pmikd - —jkT, (3.9)
Taking first the gradient on both sides of (3.9) and then the cross product with X gives

Je KT = (jkcos®; ) L e VK V(e TRy & (3.10)

Substituting X from (3.3) and applying the expansion [28]

ARSI Spun By 088 )e Ny 60y 0,) (A1),
m=—oo n=|m| m’l(h)
gives
(IETE =2 (jkcos, ) te K4 ——— 5, (h,,cos8; ) e e,
L 1 r
m=—co n=\m| N (h )
e OMED (B, 1)+ megy OMED(h, 1) + ey, OMED (5 r,)] (3.12)

with r, denoting the coordinate triad (§,,n,.9,), and the superscript (r) to the left of

the vector wave functions denoting that they have been evaluated with respect to the

r th spheroidal coordinate system centered at O,. Using the vector wave functions [44]
OMES r,)=%— [OMED R e )27 OMDn x )], i=1234 (3.13)

(3.12) can be rewritten as

—ik had o .
(r)EiTE=e Jjk-d, Z Z qgf[(rcxx —j rcxy)(r)M;;(nl)(hr’ r)

m=—co n=|m|

+ (T +J TCry) OMED(hys 1) + ey, OMED (B, 1)) (3.14)

where
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e -jm ¢ir

cos;

‘n—1
gTE = _4t Sy (B €086, )

= ) (3.15)

This expansion can be used only when 8;= /2. To obtain an expansion for the case
;= m/2, we take the gradient on both sides of (3.9) and then the cross product with 2,
which yields

ETE = —(jksin®; ) e VK4 V(e TRy 5 (3.16)

Substituting e ¥ from (3.11) and Z from (3.3), and then using (3.13), we have

CEF=eTEY 3 3 % e~ rey) MG r,)

m=-o0 n=|{m|

+(ep +J Tey) OMED (s 1)+ re,, OMED (5 1) (3.17)
with
- —jm;
%, TE 2jn 1 e §
q ~=—-————3S5 . (h,cosB; ) — (3.18)
mto kN, (R ™ 7 sin®;

which is valid for sin6;# 0. By taking now the gradient on both sides of (3.9) and then
the cross product with S\', we have

(~c0s8; X+5in6;z) e T¥T=—jk LK g /KTy & (3.19)

Substituting ¢ /™ from (3.11) and § from (3.3), and then using (3.13), gives

—ikd, = - 1
(’)EiTM=€ J Z E q’z;i'l [(rcyx - rcyy)(r)M;Sz)(hﬁ r,)

m=—con=\m|

+ (T +J 7eyy) OMLD s 1) + ey, OMED (B, 5 T,)] (3.20)
where
2" —imo;,
qmn = m—)—smn (hr,COSGir)e (3.21)

From here onwards for the sake of convenience we will be denoting ("M(h,;r,) by
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("M throughout. Thus the electric field intensity (VE; given in (3.6) can be expanded
in terms of spheroidal vector wave functions associated with the system O,x,y,z, in
the form

OB =Y T X (ph, MR+, OMGD+ z, OMED) (3.22)

m=—ce n=|{m|

where
2j7 1 ~jmo; [ . ,
+ r —
Dian = EYRUS) Sy (hy ,c0S6; ) € ("Cyx TJ Teyy) siny
. COSYy 0
r r fi ol
( Cox 7J cxy) Cosei } or el 2
+ (3.23)
) CcosY,
=(Tep 37 TC5y) pevey :‘ for 6;#0,n
4
21 ~jm; [ .
mZ =2 9 h , 0. r|r
B = iy - rc089i.) € Cy, sinyy
COSYy T
r for 9;=—
Cx2 cos6; } oy
i (3.24)
COSYy
— CZZ ;r;—él—} for 9,#0,75

If the terms in the series expansion of (PE; are arranged in the ¢, sequence

. i ; i2 y . . . . .
/0, ™% ™% then we can write this expansion in a matrix form as

(r)Ei = (r)Ml_ rr (3.25)
where (’)MED and "I are column matrices whose elements are prolate spheroidal vec-
tor wave functions of the first kind, expressed in terms of the coordinates in the rth

spheroidal system &,,7,,0,, and the corresponding known expansion coefficients,

respectively,
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(T

(r)M [(r)ﬁl% (F)Mg (r)Mlg L .]’ [r‘-T r=T rpzT o ] e"jk'dr (326)

Py
in which

M= [ OMDT O ONEDT
(r)M [(r)M+(1)T (r)M—(l)T (r)MZ(l)T (r)M+(1)T) (r)M—(l)T (r)MZél)T] 21 (327)

with
Rt (DT _ 1 1 1
M«: [(r)Mﬂ:() (r)MT(T)+1 (r)M't(ITI)+2
(OT _ 1 1 1
OM = M) OMER, OMEQ,, -J (3.28)
and
_[ p+T r[)1 -T rp—OZT]
T -T T — T — T
"[ Pocy "Pon Do rp—(c+1) Doy Dol 021 (3.29)
with
o T 1ot rpt ryE
23 “[ px,l’rl pr,|r|+1 pt,m+2 < ']
T
’ =1 rpﬂzs,m rpi,mﬂ rp%,m +2 ] (3~3O)

Similarly, the incident electric field intensity on any of the spheroids can be
expanded in terms of the spheroidal coordinates attached to that particular spheroid.
Now if we consider the electromagnetic field scattered by the rth spheroid which
corresponds to a nonplane wave, then the scattered electric field intensity (’)Es can be
expanded in terms of a set of vector spheroidal wave functions associated with the Sys-
tem O,x,y,z, in the form [44]

DB, =3 3 (Bl OMED + 782, 1 i OMEY, 0+ z< By e M
=0

m=0n=m

+ B (r)Mz(4))+ Z Z ("B (r)M:'(:’z + rBi(m+1),n+1 Mz(m+1) nal) (3.31)

m=0n=m

If the terms in the expansion of )ES are arranged in the same ¢, sequence as in the

expansion of (’)Ei, then we can write
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(DR, = OMIT 7§ (3.32)
where <’>M§"’) and "B are column matrices whose elements are prolate spheroidal vec-
tor wave functions of the fourth kind, expressed in terms of the spheroidal coordinates
associated with O,x,y,z,, and the corresponding unknown expansion coefficients,
respectively,

M= OME OME OML ., BT =0 BT BD L1 3.39)
in which

ML= OMOT OVEET

M =[OMEYT OMET M OMEPT], 621 (3.34)
with
gt (DT (4 +(4 +(4
OM; ™ =[OMER OMER, OMED
—z (4)T 4 4 4
OM; 7 =1OMER) OMER, OMESR,, L) (3.35)
and
5 = 5zl
Bo=1"B"T "By 1
= a 2l p G- 52T
Bo=0"Bely TBY "By TS o1 (3.36)
with

n*T +
rB’t =[rB:,m rB%,mH rBri,l‘cl+2 o]

rBiT‘_‘[rBi,m rBf:,I'clH rB'!ZZ,I’tI-i-Z ool (3.37)

In order to impose the boundary conditions at the surface of the rth spheroid, the elec-
tromagnetic fields scattered by all the other n—1 spheroids should be expressed as
incoming fields to the rth spheroid. This is done by using the rotational-translational
addition theorems for vector spheroidal wave functions. Let us consider first the elec-
tric field scattered by the gth spheroid WE,. Similar to E,, @E_ can also be writ-

ten as a series expansion in terms of vector spheroidal wave functions of the fourth
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kind associated with the system O, x4Y,42, in the form

@E, = @OM*T 4§ (3.38)
where )M§4) and 9B are column matrices whose elements are vector spheroidal wave
functions of the fourth kind, and the corresponding unknown expansion coefficients,
respectively, having the same structure as those of ( >ﬁ§4) and "B, respectively. Thus,
to express ‘DE, as an incoming field to the rth spheroid, we have to express the vec-
tor spheroidal wave functions of the fourth kind associated with the system Opxq¥q245
in terms of vector spheroidal wave functions of the first kind associated with the Sys-

tem O,x,y,z,, using the appropriate rotational-translational addition theorems for vec-

tor spheroidal wave functions [55]:

Lol A%
OMD(hyit)= T 3 PO O Bor Yy 380) [7C; OMED (51,
v=0 ll=-v

+ TG OME i)+ TCOM P (i), v, <d, (3.39)
o v

OMD(hyir)= % 3 PO 0 By Yy 14, ) [7CF OMED(h, 51,
v=0 u=—v

+ 7y OMD(h, )+ 70 OME (B, ix)1, 1, <d (3.40)

r —=qr

oo v
DM (it )= 3 3 PO g By Vgr 1) [7C, OMED(h, 1, )

v=0 p=-v

+7C8 OMP 51, + TCOMP i), o <d (3.41)
where r, and r, represent the coordinate triads (?;q,nq,(bq) and (€, n,,9,), respec-
tively. d,, is the vector drawn from Q, 1o O, (see Fig. 3.1) and O Bygrs Y, are the

Euler angles which describe the rotation of the system O, x,y, z, relative to OpXg¥q24-
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1 .
Ty = (Tog +7ey)+ ] (Tey = Tc,0)]

T Cy= (T = )+ (T + 7Cy,)]

1 .
=5 (Tep+] Tey) (3.42)
TCy= Ty —j T
7Cs=7c,,
with the asterisk denoting the complex conjugate. 7c,,, ¢y, . . . are obtained from
"Cxxs "Cay»> - . . (see eq. (3.4)), respectively, by replacing o, B,, and v,, by Oy Bors

and Y, , respectively. (PO (e, B, .Y, ;d,) are the rotational-translational
coefficients in the expansion of scalar spheroidal wave functions of the fourth kind
associated with O, x,y, z, in terms of the same functions of the first kind associated

with 0, x,y,z,, for r,<d,,, and are defined in Appendix B. By arranging the terms in

qr>
. . . ; +7 +27
the series expansions (3.39)—(3.41), in the ¢, sequence e/0, e¥% =% o can
. . . . (ORAD -
express the outgoing vector wave functions associated with ququzq, M,"”, in

. . . . . =(1) .
terms of incoming vector wave functions associated with O,x,y,z,, @ M ), in the

form [57], [58]

Vs, gD
(q)MS =[T,] @M (3.43)
in which the structure and elements of the matrix [T, ] are also defined in Appendix

B. The transpose of (¢ MY is

@7 = [(qr)M(l)T @M e ] (3.44)

where
(gring LT _ (,)M+(1)T (,)—M—-(l)T (,)—Mfz(l)T
My~ = -1 1 0
LT _ 7 (T (g2 DT (e + ()T (T o (DT
(qr)M( I:(r)M;(_ll)T (r)Mgill) (r)Mé (r)Mf((cl-l) (r)M_((cll) M il (3.45)

for o=1.
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Denoting the secondary incident field on the rth spheroid due to @E, by @)E,, tak-

ing the transpose of both sides of (3.43) and then substituting (q)m4)T in (3.38) gives

@E, = @M [T, 17 9B (3.46)
Thus for ¢ =1,2,...,r=1,r+1,...,n, we get the secondary incident electric fields on
the rth spheroid, due to the electric fields scattered by each of the spheroids

1,2,...,r=1,r+1,...,n.

The electromagnetic field transmitted inside the rth spheroid also corresponds to
a nonplane wave whose electric field intensity (VE, can be expanded in terms of a set

of vector spheroidal wave functions as [46]

Mg, = OMV rg (3.47)
where Mﬁ” and "@ are column matrices whose elements are prolate spheroidal vec-
tor wave functions of the first kind, expressed in terms of spheroidal coordinates asso-
ciated with O,x,y, z,, taking into account the permittivity of the material inside the rth
spheroid, and the corresponding unknown coefficients in the series expansion, respec-
tively. The structure of " is similar to that of ’B, with BB replaced by a. The tran-
spose of M is

M = OME OME OME .. (3.48)

where
T ==+ T, , —z(1)T,, ,
M= OMI () r,) OV /)]
z ()T

—T == +(DT,, , ==z (T, , a7 (LT ’ R 7 ’
M= MY h/sr,) OMEY (fsr) M 7ir) O ir)], 021
(3.49)

with
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vr,, .. - , ,
OV (e =L OMED (/r, ) OMED,(h/ir) OMED (ko) ]

A ’ 1 ’ ’
OM (e = OMER ()5, OMER 1 (fir) OMED o(hfse,) .1 (3.50)

in which &/ =(g,/e)?h,. € and €, are the permittivities of the media outside and

T

inside the rth spheroid, respectively.

Using Maxwell’s equation
H=jk ! (e/n)2 VXE (3.51)
where &, €, and (L are the wavenumber, the permittivity, and the permeability, respec-
tively, the expansions of the different magnetic (H) fields in terms of appropriate vec-
tor spheroidal wave functions can be obtained from those of the corresponding electric
(E) fields by replacing M by N and multiplying each expansion by the appropriate

)1/2

value of j(e/u)"“. Thus we have

OH, = j e N T (3.52)
@H, = j /g2 NV [r,, 17 9B (3.53)
(DH, = j e/ug)? ONDT 7B (3.54)
(DH, =j (e, lng)? N rg (3.55)

in which g is the permeability of free space. The elements of the matrices NEUT,
(gr )N—(l)T, (r )N§4)T, and )NEI)T can be obtained from the corresponding elements of the
matrices (’)_1\71—51”, @ )M(DT, (r )M§4)T, and Wﬁ”T, respectively, by replacing the vec-

tor wave functions M by N, where N=4"1 (VxM).

3.2 Imposing the Boundary Conditions

The boundary conditions require that on the surface of each dielectric spheroid

§, =§,, (r=1,2,...,n), the tangential components of both E and H fields be continu-
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ous across the boundary. Thus considering the r th spheroid we can write

(OM T+ 3 18, @MY (1, 17 +8,, @M 9B)xE, [,
q=1

=M @)X, | e (3.56)

( (r)Ngl)T r[_+ Z [(I_Sqr)(qr)ﬁ(l)T [qu ]T + Sqr (q)fﬁ§4)T] qB) % {;r Ig’ "

q=1
172
€ — (1T .. A
=) (N o) g e (3.57)
where 3., is the Kronecker delta function. For r =1,2,...,n, we obtain 2n such equa-

tions in total after imposing the boundary conditions on the surfaces of all the n

r] n’\
n
spheroids. Taking the scalar product of both sides of (3.56) and (3.57) by { rlq)&\)r }

S e M) e Y for p =12, 0, m=...-2,-1,0,1,2, ..., k=0.1,2, ...,
integrating correspondingly over the surfaces of the n spheroids, and using the ortho-

gonality properties of the spheroidal angle functions, gives after rearranging [31], [44]

(G418, =[R,T (3.58)
where
[Py [0 ... [0] [Ou1] [Ria[Toil" oo [RygnidIT, 107
[Pyl [01 ... [0] [On1] [RyalTol" ... [Rywid[Typ)”
[01 [Pyl ... [0] [RypoliTyol” [Oua] o [Rypd[Tad”
[0] [Pyl ... [0] [RyplTpl" [On>2] oo [Rymd[T,007
[Gd]=
O 101 ... [Pan] [Riyg1ndTin]" [Ry2nllT2a)T o (O]
0107 P] [RyidTL] [Ryga T2 o (O]

(3.59)
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Z [Rir] 101 ... [0]
a [Ryi] [0] ... [0] - 1[_-
| [01 [Rys) ... [0] -
e [0] [Rys]l ... [0 _
Sqa= 15 [Ry]= I= (3.60)
2B .
0 [0 ... [Ryl R
".B [0 [0 . [Ryd

The coefficients "/, and "/, used in the integrations of (3.56) are given by
"l =J2F, (= 1’1,)1/2 "lo=2F, E:-n% and those wused in (3.57) by
"Ly =2FAER-NAIEE -2, "1y = j2FAEE-NDNEL-1). E. is the semi-interfocal
distance of the rth spheroid and &, is the value of & . on the surface of the rth

spheroid. Definitions of all the matrices are given in Appendix C.

Equation (3.58) can now be written in the form

S,=[G]I (3.61)

where
[G1=[G,I'[R,] (3.62)
is the system matrix which is independent of the direction and polarization of the
incident wave. The matrix form (3.61) gives the coefficients in the expansion of the

electromagnetic fields scattered and transmitted by the n arbitrarily oriented spheroids.

3.3 Case of Perfectly Conducting Spheroids

The solution for the case of n perfectly conducting spheroids can be derived from
the one for n dielectric spheroids, by letting the permittivity of each of the n dielectric

spheroids become very high (theoretically infinite). In this case since the spheroids
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cannot sustain any field inside them, the boundary conditions require that the tangential
component of the resultant electric field be zero on the surface of each of the »

spheroids. Hence if we consider the rth spheroid we can write

—()T ,=— & —(1)T AT, = A
(M T+ ZIA-8) @MY [, T +8, OMY1 Byxb, e =0 @.63)
q=1
For r=1,2,...,n, we obtain n such equations after imposing the boundary conditions

on the surfaces of all the n spheroids. Following a procedure identical to that
described in the previous section, we can finally obtain a system of algebraic equations

which could be written in matrix form as

[G.15, =[RIT (3.64)
where
[Oum1] (RyraallTogl" ... [Ryp J[T007
RyidTial” [Qyal - [Rygoll Tyl
[G.1= (3.65)
Rir12 01 [Rygon D210 . [Oumn] ]
15| ‘[(Ry] O] ... [0] ] B
23 (0] [Ryol ... [0] o
S, = [R.]= I= (3.66)
_”BJ | [0] 01 ... [Rypl] _"1__

Equation (3.64) can be rearranged and written as

S.=[G1I (3.67)

in which
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[G'1=[G.I'[R,] (3.68)
Similar to [G], the system matrix [G’] in this case is also independent of the direction
and polarization of the incident wave. However, the size of [G'] is half of that of [G].
The solution for the case of imperfectly conducting spheroids can be obtained by
incorporating the surface impedance in the boundary conditions. For the case of a
mixture of dielectric and perfectly conducting spheroids of arbitrary orientation, the
solution can be obtained from that for the dielectric spheroids, by considering the per-

mittivity of the perfectly conducting spheroids as being infinite.

3.4 Special Case of Two Spheroids of Arbitrary Orientation

We now consider the special form of solution for the case of two spheroids of
arbitrary orientation. The system of algebraic equations we obtain in this case for

dielectric spheroids can be derived from (3.58)—(3.60) as [59]

(G418, =[R41T (3.69)
where
Pyl 101 [Oui]  [Rysl[Tyl |
[Pyl [0] [Ovi]  [Rypgllly07 .
G.l= .70
Cal=1 10] 1Pyl RylTulT  [Qysl G709
01 [Pya] [RydiTid"  [Owdl
: ]
- [Ry1] (0]
R Ry [0] _ |7
5= |15 [Ral=1 0] [Rya) I=\o7 3.71)
B 0] [Rya]

Similarly for the case of two perfectly conducting spheroids, from (3.64)-(3.66), we

obtain [57], [58], [60]
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[G.1S, =[R. 1T (3.72)

where

[Om1]  [RypllTyl?
[G.]= (3.73)

[Ryr12)[Tyo)" [Opo]

_ | [Ryi]  10] _ V} e
Se = 2B [R.]= [0]  [Rys] I= 2 (3.74)

| SO |
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CHAPTER 4

RADAR CROSS SECTIONS FOR SCATTERING BY
TWO SPHEROIDS OF ARBITRARY ORIENTATION

The size of the system matrix in both dielectric and perfectly conducting cases
increases with the number of spheroids. The computational times also increase
correspondingly. In this chapter the scattering cross sections associated with the far
field are computed for a system of two spheroids of arbitrary orientation, with the
incident wave being a monochromatic uniform plane electromagnetic wave of arbitrary
polarization and angle of incidence. In Section 4.1, we derive the asymptotic expres-
sions of the different vector wave functions and the analytical expressions of the far
field scattering cross sections. The criterion used for truncating all the series and
matrices of infinite dimension that appear in Chapter 3, is given in Section 4.2,
together with the numerical results in the form of normalized bistatic and backscatter-
ing cross sections for both perfectly conducting and dielectric spheroids having various

axial ratios and orientations.

4.1 Normalized Scattering Cross Sections

Consider two spheroids A and B with the Cartesian system Oxyz attached to the
spheroid A, O’x’y’z” attached to the spheroid B, and a point of observation having
spherical coordinates 7,6, and r’0,¢" with respect to the two systems Oxyz and
O’x’y’z’, respectively, as shown in Fig. 4.1. The spheroidal coordinates associated

with the two systems are given by §,m,¢ and &',m’,¢", respectively. The scattering

cross sections are calculated in the far zone (r — oo, r "= o), where



Fig. 4.1 Scattering system geometry
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lim A& — kr, lim n — coso, Iimﬁ—>—é

¥ -3 o0 F e X- ] r— oo

lim '€’ — kr’, limn"—cos®’,  lim n —— 6’ 4.1
r’'—eo r—)oo r——-)oo

Using these asymptotic values, we can obtain the following asymptotic expressions of

the radial functions R )(h &) and R(4) (h;E):

r—>oc0

lim Ry (h,8) - 7112— I R }é, o7/ e
__>jn+1e—-jh§/h§, —)jn+1€_jh,§,/h I&/

— j e —jm ek ¢ (42
and differentiating these expressions with respect to & and &’, respectively, and neglect-

ing the second and other higher inverse powers of & and &', the expressions of their

derivatives R (1) an

ag ™ d%

lim R(4)(h - 4 d [e—jhg }, lim d R(4)(h gy 14 d [e“jh'a J

r—>°°dE_y . ‘: hE.» ri—eo d‘i dE—’ h'é'
I g-ing, _)ng_eﬁh'&'

—Jkr -k

— j" kF — jrkF L ik d
kr kr

(4.3)

in which F and F’ are the semi-interfocal distances of the spheroids A and B, respec-
tively, and
K, =k (Xsinfcosd+ ysinOsind +2cosd) (4.4)

When h§— oo and h'E’— co, substituting the asymptotic expressions of R (h,E),

E"R(‘l) (h,E), a di{;' ,(,?,)l (k&) in the explicit expressions of the &—, n—,

and ¢— components of the vector spheroidal wave functions M,fl(,f), M,Zn(,f), and neglect-

@
Ry (38)), —

ing the second and other higher inverse powers of & and &', we obtain the asymptotic
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forms of these components:

Jim gM,;Si”(h;&m)=hg;nmgM,;(;"<h;&,n,¢>=hginmng,,§:"’<h;é,n,¢>=o (4.5)
n+l ~jkr
o M EN,0) = Sk S, (1) £ el
in+1 —jkr
Jm M En.0)=-L k S () < gm0 4.6)
lim ML (h;:Em,0)=0
h&—> o0
lm M@ L ks o €2 e
h&?oc‘b mn( 7§’n9¢)—n7 mn( ,ﬂ) kr €
in =j .
Jm MG EN) =N ok S () S el 10 @47
lim MED(hEn,0)= (1D & 5,0, (h ) S g
hE_,_)oo(b mn EA-TRN £ mn 3 kr

The asymptotic expressions of M (87,07 and oMpn (7;€'1,¢") are obtained
from those of M, (h;En,0) and oMpn (h3E1,0), respectively, by replacing m,
Smn(A,N) and ¢ by 1, S, (AN, and ¢, respectively, and multiplying each expres-
sion by the phase factor elksd Substituting the above asymptotic expressions of the
vector spheroidal wave function components in the series expansion of the scattered
field due to each spheroid, the electric field intensity in the far zone can be written as

[44], [59], [61]

Es = EsA + EsB
—jkr

= £ | For 000D + Fiop 0018+ Frg @009 + Fyp 0109 & |

—'jkr
kr
—_]kr
kr

e

[FeA 0.0)8 + Fou ©0.0)6 + Fyp (80" {g 1é+82$} + Fyp (6797 (836+2,0) }

e

[Fe (0.0)6 + F, (6,¢)$] 4.8)

It

where



Fe(ev(b) = FBA (e9¢) + FéB (esq))
Fq)(e’q)) = F(bA (9a¢) + Fq’)B (9,¢)

lg1 g2 =[Q1[C][cosd’cosd’ cos@’sing’  —sin6’]7

[g3 g4" =[QI[C1[-sing’ cosp’ 0]7

with
= = n+l Sm” A+ —’
Foa(80) == X T j™ —= { (0]~ 0,,,) cos (m+1)¢
m=0n=m
, ’ _ . — A ’
+j (afm+oc_mn)sm(m+1)q)} - 21]"” Tn(xtln
n=
> S S L . o
Fyu (6,0)= Zo > J [cose—a—— {(ocmn+ O, ) cos (m+1)d +j(ci
m=0n=m
-sin n+1)0 } = $inB S, 41 s (041 prt O (ms1ynst)
€08 (A1) + (0,1 1= O 1y np) SIDO+1)0 ) ]
em.nslﬂ +7 .eoo.nS z’
+cosd Y j ~2—0L_1n—51n 27" Son X,
n=1 n=0
and
Coyn? Comy ? Cynr’
cosBcosd cosBsing —sind A
[£2]= —sing cost 0 P [C1= e cyyr Gy
Cox’ Czy’ Cpz?
in which

of =kaf, of =k0, ,  Spn =S, (h,cosb)

- a:
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(4.9)
(4.10)

(4.11)

(4.12)

)

(4.13)

(4.14)

(4.15)

ocin and o are the coefficients in the series expansion of the electric field scattered

by spheroid A, in terms of vector spheroidal wave functions in the unprimed system,

which are evaluated beforehand by solving the set of algebraic equations
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Pl

[Qua]  [RypallTps )" ﬂ [tRMAl [0]]
= (4.16)

[RyaplTagl¥ [Ous] BT [ 01 [Rypl

&

for the perfectly conducting case, which has the same form as (3.72), and

[(Pyal  [0] (04l  [RugpallTga
[Pnal O] [Onal [RypallTpal”
[0] [Pyp] [RyapllTypl” [Oup]
| (01 [Pypl [RyapliTapl” [Ovp]

[Ryal (0]
[Ryal (01 | |I,

0] [Rysll| |z | 417
0]  [Ryp]

i

™I Rl ol =<

for the dielectric case, which has the same form as that of (3.69), and are obtained by
imposing the boundary conditions at the surface of each of the spheroids, as described
in Chapter 3. cg, Cay and c,,- for a =x,y,z, are defined in (2.4). The explicit
expressions of Fgp(079"), and Fy3(87¢") in primed coordinates are obtained from those
of Fgu (6,0) and Fy, (6,0), respectively, by replacing o by the corresponding 3, which
are the expansion coefficients in the expansion of the electric field scattered by
spheroid B, in terms of vector wave functions in the primed system, and multiplying
each expression by an overall phase factor e/%9 The expressions of Fgp(0,0) and
Fip(8.9) are obtained from those of [g;Fyp(®0)+ g3Fyp(00)] and
(82 Fgp (030")+g 4 Fyp (8707, tespectively, by substituting all the functions in primed
variables 670" in terms of the unprimed variables 8,¢. Since the direction of the scat-
tered wave vector k; in the far field with respect to the primed system is specified by
the angular spherical coordinates (87¢") (see Fig. 4.1), we have

k, =k(X’ sin®’cosd’ + ¥~ sind’sind’ +2 " cos8’) (4.18)
Substituting X,¥,2 in (4.4) in terms of X,y,%2° (see 2.3), and identifying the

corresponding coefficients of X, ¥",Z" with those in (4.18) gives
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[sin®’cos¢’” sind’sing’ cos®’)f = [C]T [sinBcosd sinBsind cosB]? (4.19)
which is the required relationship between the primed and unprimed angular coordi-

nates.

The bistatic radar cross section is defined as

6(0,0) = lim 4nr?

(4.20)
r—o0 |E. ] 2

with the unit vector T denoting the direction of polarization of the receiver at the point
: A o . o

of observation. When 7 has the same direction as E,, the normalized bistatic cross sec-

tion is

ﬂ(‘gﬂ = IFo 0,001 + |7 N (4.21y

The normalized bistatic cross sections in the E— and H — planes are obtained by substi-

tuting ¢ =m/2 and ¢ =0, respectively, in (4.21).

The normalized backscattering cross section is obtained from (4.21) for 6 =0; and

jjve) Gi
;2 ) = |Fy (ei,0)12+ IFy (ei,O)I2 (4.22)

4.2 Numerical Results for Two Spheroids of Arbitrary Orientation

Results of numerical computation are presented in the form of plots of normalized
bistatic and backscattering cross sections in the far field for scattering by two spheroids
having various displacements of their centers and different relative orientations. As the
formulation and the computation for the case of scattering by two perfectly conducting
spheroids is much simpler than for the case of scattering by two dielectric spheroids,

the plots for the perfectly conducting spheroids will be presented first, followed by
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those for the dielectric spheroids.

4.2.1 Perfectly Conducting Spheroids

Since the series expansions of the different electromagnetic fields in terms of vec-
tor spheroidal wave functions are infinite in extent, all the matrices introduced in
Chapter 3 are of infinite dimensions. Thus, in order to obtain numerical results it is
necessary to truncate these matrices according to the required accuracy. As mentioned
in Chapter 2, from the numerical experiments performed on the equations describing
the rotational-translational addition theorems for vector spheroidal wave functions, it is
clear that it is sufficient to consider —2<u<2 and v=lpl, lul+1,... |ul+5 on the
right hand sides of these equations in order to obtain a two significant digit accuracy‘
when compared with the values of the corresponding left hand sides, for different
values of m and n. All the vector spheroidal wave functions and the rotational-
translational coefficients have been calculated with a five significant digit accuracy.
When using these functions and coefficients in our calculations, it has been found that
to obtain a two significant digit accuracy in the computed bistatic and backscattering
cross sections, it is sufficient to consider only the ¢— harmonics /%, e¥/?, and ¢*%/9,
All the results given in this section have thus been obtained with m corresponding to
the above ¢— harmonics, n = Iml,... Iml+3, ¥=0,1,2,3, in truncating the matrices
[Omal, [Oump]s [Ryals and [Rygp] in (4.16), and with n = Iml,... Im|+5, k=0,1,2,3,
in truncating the matrices [I4z1, [T'p4 1, [Ry451, and [Rypa] in (4.16).

The formulation presented in Chapter 3 is general. However, it is interesting to

note that for a particular system of only two spheroidal objects, the relative position of

one with respect to the other can always be obtained by choosing the x and y axes
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appropriately, and then by performing only one rotation through the Euler angle B, i.e.
with o=0° y=0°, followed by the corresponding translation. Even though, to demon-
strate the generality of the theory presented and the validity of the software being
used, some of the results presented in this chapter have been obtained with o and Y
different from zero. But the reduction in the total amount of computation time required
when using a=0° y=0° is only about 5% with respect to the case when o and 7 are

different from zero.

Fig. 4.2 shows the normalized bistatic cross section as a function of the scattering
angle, for two identical sets of prolate spheroids of axial ratios 2 and 10, semi-major
axes A/4, with the spheroid centers displaced along the z axis of spheroid A. The
orientation of spheroid B with respect to A is specified by the Euler angles o =0°,
B=45° y=0°. The incident field propagates along the negative z axis, as shown in the
figure. In Fig. 4.2(a) the center-to-center distance is A/2 and in Fig. 4.2(b), it is A.
When the axial ratio changes from 2 to 10, a significant decrease in the magnitude of
the bistatic cross section is visible in both E— and H - plane patterns which is partly
due to the reduction of the area available for scattering. When the distance between the
centers of the spheroids is increased from A/2 to A we observe that the scattering cross
sections are subject to more oscillations in general due to the interference pattern of

the two spheroids.

Fig. 4.3 shows the plots of normalized backscattering cross section versus angle
of incidence for TE and TM polarizations of the incident wave. The spheroids are
identical to those in Fig. 4.2, and so are the orientation and center-to-center distances

between the spheroids. Fig. 4.4 is for the same two spheroids and for the same separa-
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Fig. 4.3 Normalized backscattering cross section versus 9;, for two identical prolate

spheroids and for two axial ratios, with a4 =ap =A/4, Euler angles

o=0°%B=45°y=0° and displaced along the z axis: (a) d =A/2 (b) d =A.
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tion between the centers as in Fig. 4.3, but the orientation of spheroid B with respect
to A changed to @=0° B=90° y=0° It is interesting to note that for axial ratio 10,
the cross sections in Fig. 4.4 are almost symmetrical about 6; =90°, and that for both
axial ratios the behavior of the backscattering cross sections for TE and TM polariza-

tions is almost the same.

In Fig. 4.5 we present the plots of normalized backscattering cross section as a
function of ©; for two spheroids of axial ratio 2, semi-major axes A/4, with their
centers displaced along the z axis of the spheroid A by distances A/2 and A, for both
TE and TM polarizations of the incident wave. In Fig. 4.5(a) the orientation of
spheroid B with respect to that of A is specified by the Euler angles o=45°, B=90°,
y=45° and in Fig. 4.5(b) by a=30° B=45° y=60°. As the distance between the
centers of the two spheroids increases we observe an increase in the amount of oscilla-
tions in the curves for both polarizations. When comparing the corresponding plots in
Figs. 4.5(a) and 4.5(b), we observe that the behavior of the curves for TE polarization
remain the same, whereas the curves for TM polarization tend to oscillate more in Fig.
4.5(b).

If the centers of the two spheroids are displaced by A/2 in a direction perpendicu-
lar to the z axis of spheroid A, the plots of the normalized backscattering cross section
versus angle of incidence are shown in Fig. 4.6. In Figs. 4.6(a) and 4.6(b), the orien-
tations of spheroid B with respect to that of A are identical to those in Figs. 4.5(a) and
4.5(b), respectively. When the axial ratio of the spheroids a/b is 2, in Fig. 4.6(a), the
curve for TE polarization shows more oscillations than that for a/b =10. The minima

for TM pblarization occur near 9; =30° and 6; =150°, the lower minimum being for
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Fig. 4.4 Normalized backscattering cross section as a function of the angle of

incidence, for the same two spheroids as in Fig. 4.3, but with the Euler

angles a=0°3=90°v=0° and displaced along the z axis: (a) d =A/2 (b)

d=A
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alb =10. For a/b =2, the curve in Fig. 4.6(b) for TM polarization follows that of TE

closely, but there is no such behavior for a/b =10.

In Fig. 4.7, the variation of the normalized backscattering cross section with the
angle of incidence is presented for two different spheroids of axial ratios 2 and 10,
with the centers displaced along the direction specified by the spherical coordinates
8p=60° and ¢o=20° by a distance A/2. The Euler angles for the two spheroids in Fig.
4.7(a) are =45°, B=90° y=45° and for those in Fig. 4.7(b) are ao=P=v=0.001°,
The plots obtained in Fig. 4.7(b) are compared with the corresponding ones obtained
for the same two spheroids, but with parallel major axes [44]. As expected, the results
are in agreement with the maximum relative difference being 3.2%, which validates
the software that we use in our calculations in the case of two spheroids of arbitrary

orientation.

4.2.2 Two Dielectric Spheroids

In this section we present the results for scattering by two dielectric spheroids of
arbitrary orientation. When computing the numerical results for this case, again we
have found that in order to obtain a two significant digit accuracy in the computed bis-
tatic and backscattering cross sections, it is sufficient to consider only the ¢— harmon-
ics e/%, ¢*/®, and ¢*¥®, Thus the values of m being used in the truncation of the asso-
ciated matrices in (4.17) remain the same as in the perfectly conducting case, but the

values of n and x are now given by n = Iml, Iml|+1,... Iml+5, and x=0,1,...5.

Fig. 4.8 shows the normalized bistatic cross section for TE polarization of the
incident wave versus the scattering angle for two identical sets of prolate spheroids of

axial ratios 2 and 5, dielectric constant €, =3.0, with the spheroid centers displaced
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Fig. 4.7 Normalized backscattering cross section as a function of 9;, for two prolate
spheroids of different axial ratios, with a, =ag =A/4, and centers displaced
along the direcdon 6y=60°, ¢y=20° by d =A/2, with Euler angles: (a)
(45°,90°,45°) (b) (0.001°,0.001°,0.001°). The triangles on Fig. (b) show the

results obtained for parallel spheroids [44].
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65

along the z axis of the spheroid A. The orientation of spheroid B with respect to A is
specified by the Euler angles a=30° =45° y=60°. The incident field propagates
along the negative z axis. It should be noted that the geometries of the systems of
spheroids considered in all the cases are similar to those shown for the perfectly con-
ducting case, and therefore are not shown again with the figures. In Fig. 4.8(a) the
center-to-center distance is A/2 and in Fig. 4.8(b), it is A. Here we observe that in all
the figures, the magnitude of the forward scattering cross section (6 =) is higher than
that of the backscattering cross section (6=0). This is partly due to the contribution to
the forward scattered field from the field transmitted inside the spheroid. A reduction
in the magnitude of the scattering cross section is also observed due to the reduction in

the area available for scattering.

In Fig. 49 we present the plots of normalized backscattering cross section as a
function of the angle of incidence, for two spheroids of axial ratio 2, semi-major axes
M4, €, =3.0, with their centers displaced along the z axis of the spheroid A by dis-
tances A/2 and A, for both TE and TM polarizations of the incident wave. In Fig.
4.9(a) the orientation of the spheroid B with respect to that of A is specified by the
Euler angles o=30° f=45° y=60° and in Fig. 4.5(b) by a=15° B=90°, y=45°.
When the curves in Fig. 4.9(a) are compared with the corresponding curves in Fig.
4.5(b) for the perfectly conducting case, we observe that the magnitudes of the back-
scattering cross section are now less, for both polarizations. This is due to the fact that
a part of the incident field is now being transmitted inside the spheroid, without being
scattered. In Fig. 4.9(b) it is interesting to note that the curves are almost symmetrical

about 0; =90°, for both TE and TM polarizations.
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The variation of the normalized backscattering cross section with the angle of
incidence is shown in Fig. 4.10, for the general case of two non identical spheroids,
one having an axial ratio 2, the other 5, and separated center-to- center by a distance
A/2 in the direction specified by the spherical coordinates 8p=60°, ¢y=20°. The orien-
tation of the spheroid B with respect to A is given by the Euler angles a=30°,
B=45° y=60°. Spheroids of two different dielectric constants are being considered to
observe the effect of the change in dielectric constant on the backscattering cross sec-
tion. In Fig. 4.10(a), both spheroids A and B have dielectric constants €,, and €8
equal to 3.0. In Fig. 4.10(b), €4 =3.0, £,3=40, and in Fig. 410 (c¢),
€4 =4.0, &3 =3.0. The behavior of the curves for both TE and TM polarizations is
almost the same in each figure. However, the positions of the minima are slightly

different in each figure, and the minima in Fig. 4.10 (b) are deeper than in the other

two figures.

Fig. 4.11 shows the plots of normalized backscattering cross section versus 0;, for
two sets of identical spheroids of axial ratios 2 and 5, and dielectric constant 3.0, with
their centers displaced along a direction perpendicular to the z ‘axis of spheroid A. The
orientation of spheroid B with respect to A is given by a=30°, B=45° y=60°. When
the curves for axial raﬁo 2, are compared with the corresponding curves in Fig. 4.6(b),
for the perfectly conducting case, we observe a reduction in the magnitude of the
scattering cross section. Also we observe that for axial ratio 2, the lower minima in
Fig. 4.11 for both TE and TM polarizations occur at the same position, whereas in Fig.
4.6(b) they are not. Other than this the general behavior of the curves is almost the

same. In Fig. 4.11, when the axial ratio changes from 2 to 5, we observe a significant
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reduction in the magnitude of the backscattering cross section due to the fact that the
semi-minor axes are now 2.5 times smaller. The lower minima for both axial ratios
occur around 6; =30°. However, when the axial ratio is 5, the lower minimum in the
curve for TE polarization is much deeper and sharper than the corresponding one for

axial ratio 2.

It should be noted that the results for a system of perfectly conducting spheroids
can be obtained as a special case from the corresponding results for a system of dielec-
tric spheroids for €, — eo. In Fig. 4.12 we present results for such a case. In this figure,
the normalized backscattering cross section calculated for two spheroids A and B each
of an axial ratio 2, semi-major axis A/4, with the spheroid B rotated with respect to A
by the Euler angles oe=0° B=90° y=0°, the spheroid centers displaced along the z
axis of the spheroid A, and a relative permittivity g, taken to be 109, is compared with
the corresponding results for an identical set of perfectly conducting spheroids. As
seen from the figure, the results are in good agreement with the maximum relative
difference being 1.4%, which validates the software being used in the calculations.
From the above result we can also verify that the accuracy obtained in the case of
scattering by two dielectric spheroids with more terms in the series expansion, is still

the same as that for scattering by two conducting spheroids.

To show further the applicability of the general software to limiting cases of
eccentricity, the backscattering cross section has been calculated for two spheroids of
axial ratio 1.001 with arbitrary Euler angles and a given separation between the
centers. The results have been compared with those obtained for two spheres having

the same center-to-center distance, and are in good agreement, with the maximum rela-
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tive difference being 3.9%. Also the backscattering cross sections calculated for the
same two spheroids with two different sets of Euler angles and a given separation are

found to be almost the same.
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CHAPTER 5§

AN APPROXIMATE METHOD FOR THE PROBLEM OF
SCATTERING BY TWO COAXIAL SPHEROIDS

In this chapter we present an approximate method for solving the problem of
scattering of electromagnetic waves by two coaxial prolate spheroids, with their major
axes along the common axis, the excitation being a uniform plane wave at oblique
incidence, having an electric field of unit amplitude. The method is based on the exact
solution to scattering of a plane wave by a single spheroid. To account for the multiple
interactions between the spheroids, the total field seen by each spheroid is written as
the sum of the corresponding fields of the incident plane wave and another plane wave
of unknown magnitude propagating along the common axis from the other spheroid.
Thus the total far field scattered by each spheroid can be written as the sum of the
field scattered due to the incident plane wave and the field scattered due to the plane
wave of unknown magnitude, propagating axially. The total far field scattered by one
spheroid can also be written as the sum of the field scattered by that spheroid due to
the incident plane wave and the field scattered due to the total far field scattered by the
other spheroid, acting as an incident plane wave on the first spheroid. Equating the two
different expressions of the total far field scattered by each of the spheroids
corresponding to TE and TM polarizations separately, yields a set of simultaneous
linear equations, whose solution gives finally the total far scattered field at any given
point in space. Similar conditions for the scattered fields have been used in [62] for a
linear array of perfectly conducting spheres in the special case of an axially incident
field. For the case of two dimensional electromagnetic fields, equivalent sources from

point of view of scattered far fields were first proposed in [63], and were recently used
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by other researchers [64]-[65].

5.1 Scattering by a Single Spheroid
When the incident wave has an electric field of unit amplitude, for axial incidence

and TE polarization, the far field scattered by a single spheroid at any given point

(r,0,0) can be written as
"'jkr A A
EEE(V,Q@):—ekT [F&E(8,0)0+FLE(6,0) ] (5.1)

Explicit expressions of F(;_,T E (0,0) and Fq,T E (8,0) are similar to those given in (4.12) and
(4.13), respectively, but with the corresponding expansion coefficients for axial
incidence. Substituting for é and c/[; in terms of X and ¥ appropriately, we obtain the

backscattered (6=0) and forward scattered (6 =7) far fields respectively as

EfE(r0,0)= e—k-’;k’— A©O)y (5.2)
and
"
EfErmo)=-—Am3 (5.3)
in which
AO)= X 1" Sou(h,1) 0, T Am)= Sfbj"son (h,~1) i, TE (5.4)
n=0 n=

where ocBnTE are the coefficients in the expansion of E% in terms of vector spheroidal

wave functions for axial incidence of the TE polarized incident wave. If only the
polarization of this incident wave changes from TE to TM, then the far field at the

point (r,0,0) can be written as

—jkr A A
BP0 0.0)= < (FJY ©0)8+F" 0.0)8) 53

The explicit expressions of F§" (6,0) and F{™ (6,0) are the same as those of FIE (6,)
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and Fq,TE (6,9), respectively, with the expansion coefficients correspondingly defined.

The backscattered and forward scattered far fields in this case can be written as

™ e Ik A
E; (r,0,¢)=—/2;—3(0)x (5.6)
and
_]kr
EMrmo)=-S——Bmk (5.7)
in which
B(O)== % j"*!Son (k1) o, B(m)==3% j""'Sou(h=D) 0, " (5.8)
n=0 n=0
where OL’(L)”TM are the coefficients in the expansion of EI™ in terms of vector

spheroidal wave functions for axial incidence of the TM polarized incident wave. From
(5.2), (5.3), (5.6), and (5.7), it is obvious that in the case of axial incidence, both the
backscattered and forward scattered far fields have the same polarization as that of the
incident field. This property of the far scattered field allows the implementation of the

proposed approximate method.

5.2 Formulation

Consider the two coaxial prolate spheroids 1 and 2 with the Cartesian system
Oyx1y 2, attached to the spheroid 1 and the system O,x,y,z, attached to the spheroid
2, as shown in Fig. 5.1. The major axes of the two spheroids lie along the common z
axis, with the distance between the centers denoted by d. The system O;x,y,z; is
taken as the global system. Assume a linearly polarized plane wave, having an electric
field of unit amplitude being incident on the system of two spheroids, the plane of

incidence being chosen as the x;—z, plane (¢; =0) so that the angle of incidence 6;, is
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Fig. 5.1 System of two coaxial prolate spheroids and the associated Cartesian sys-

tems.
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the angle the incident propagation vector makes with the z; axis.
The far field scattered by the spheroid 1 at any point (r,0,0) due to the plane

wave propagating along the negative z axis can be written as

e ik
kr

Eq'=5— {(FIF ©0.0)6+FIE(0.0)6]1 CTE + (FIM 0.0)8 + FIM 0.0)61CTM }  (5.9)
in which CT® and C {M are the unknown amplitudes corresponding to TE and TM
polarizations of the wave. The far field scattered by the spheroid 2 at the same point
due to the incident plane wave with an electric field of unit amplitude, propagating
along the direction (6;,0; =0) is given by

e Ik

i
27 kr

[Fo(8,0) 8 +Fy (6,0) §] /420 g kdcosd (5.10)

The expressions of Fg(0,0) and F(6,0) have the same form as those defined in (4.12)
and (4.13), respectively, but with the expansion coefficients corresponding to the par-
ticular angle of incidence 6;. The far field scattered by the spheroid 2 due to the plane

wave of unknown amplitude propagating along the positive z axis can be written as

c,_e ¥ TE & rTE o ~TE
By = ——{[-F§* (0,00 + F{¥ (n-6,0) 61 C]
+ [FEM (7-6,0) 6 — FTM (n—0,0) 6] CTM } g Jdcosd (5.11)

in which C1Z and CT™ are also unknown amplitudes. Evaluating E/, at O, yields

[ ik AN A jkd cos©; 1
Es‘zlox=~%;[A”(n)y+B”(7t)x]e”‘d 6 g=jid (5.12)
where
— o n
A=Y L Sy, (h cosB) (o, +ig,,) (5.13)

n=02



78

— ) cn+1
B"(®)=- 3 < 5 Soa (,c088) (e, — 0i5,,) (5.14)
n=0

with o, correspond to the expansion coefficients in the expansion of E/, in terms of

. . . c .
vector spheroidal wave functions. Evaluating E,? at O, gives

~2jkd
kd

e

c 7 A ’” -
E o, = [A7(0)CEE § —B"(0) cTM%] (5.15)

with A”(0) and B”(0) given in (5.4) and (5.8) corresponding to spheroid 2. The far

field scattered by the spheroid 1 due to the incidence of Esizlol and Esczzlo1 is

;o e IF { TE (g é TE (g A "yCIE _ 7 Jjkd cos;
15— [Fg= (8,000 +F3= (6,0) 91 [A”(0)C3" —A"(m) e 1
A A — dcos... 1 @2k
+[F3M (0,0)0 +FIM (8,0)01[B”(0) CIM + B"(r) ™4 9*]}9—/“7 (5.16)
From (5.9) and (5.16) we now obtain
—2jkd - .
cTE= € T (A7) CTF — A7 (m) 4% (5.17)
~2jkd . .
c™ = £ —— [B" ) " +B"(m) e*4°0% (5.18)

The far field scattered by the spheroid 1 due to the incident plane wave with an elec-

tric field of unit amplitude, propagating along the direction (6;,9; =0) can be written as

Pt

[ —
U™ kr

[Fo(8,0) 8 +F, (6,0) 6] (5.19)

Evaluating E; and E&' at 0, gives

i 4 jkd 7’ A ) A
Elilp,= A OF+B(0R] (5.20)

where A’ ’(0) and B’(0) have the form in (5.13) and (5.14) corresponding to spheroid 1,

and
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e~k

C
E.S'11]02= kd

A0 CTEy+B(0)CcTMz] (5.21)
with A7(0) and B’(0) given in (5.4) and (5.8) corresponding to spheroid 1. The far field

scattered by the spheroid 2 due to the incidence of E{, o, and Escl‘lo2 is

Jkr A A _-
= —— {[-FJF (n-0.0) 6+ FJE (n-6,0) 0] [4°(0) CTE + A/(0)]

2=

A A — —jkd )
~ [F (1-6,0) 6 - FM (7-6.,0) 6] [B“(O)CT™ + 3701} £ k’d o Jkdcosd (5.22)

From equations (5.11) and (5.22) now we get

_‘kd _
ClE = % [4°0) CTE + 2°(0)] (5.23)
oL [B’(0)CT™ +B"(0)] (5.24)
2 kd 1 .

Solving the four algebraic equations (5.17), (5.23) and (5.18), (5.24), simultaneously,
yields the four unknown constants. Once these are known, the total far scattered field

at any given point (r,0,0) is calculated as

Jjkr A N ' |
E = ekr {[Fe(e,cp) 0 +F¢(9,¢) 011 4 pJkdcosd; ejkdcose)

+(F§E(0.0)6 +FIE (0,0)61 CTE + (FI™ (6,008 + FI™ (6.0) 6] C T
+[-FE (n-6,0) 8 + FIE (1-0,0) 6] C]E eskdcosd
+ [FEM (1-6,0) 8 — FIM (1-0,0) 6] C M g/kdeost) (5.25)

This equation can be written in a condensed form as

AT S S
" [Fo (8.0) 6+ Fy (8,0) 0] (5.26)

E =%

The normalized bistatic cross section is then calculated from
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"0~ F @+ IF] @) (527)

with the £~ and H - plane patterns corresponding to ¢ =7n/2 and ¢ =0, respectively.

In the special case of axial incidence and TE polarization, CTM =CIM =0 Thys

in this case the expression of the far scattered field at (r,8,0) simplifies to

e’

— {(FEP0.0) 8+ FIE (6,0)0] (1 + ¢/ gjdeost . CTE)

E,=

+[~FJE (1-8,0) 8 + FIE (n-8,0) 6] CTE eskdeos0 ) (5.28)

5.3 Computed Results

Numerical results obtained for scattering by two coaxial perfectly conducting
spheroids at oblique incidence, are presented in this section in the form of normalized
bistatic scattering cross sections in the E— and H— planes. The corresponding results
obtained for the same problem by using the exact method, and also by neglecting the
interaction between the two spheroids, are also included for the purpose of comparison.
The cases of 8; =0°, 45°, and 90°, where 6, is the angle of incidence, are considered

separately, for TE polarization of the incident wave.

Fig. 5.2 shows the plots of normalized bistatic cross section in the E — plane as a
function of the scattering angle, for two coaxial perfectly conducting spheroids of axial
ratio 2, semi-major axes a4 =ap =A/4, having a center-to-center distance d =0.6).
When compared with the other two plots in the same figure, we observe that the result
obtained by the approximate method is better than that obtained by neglecting the
interaction between the spheroids for all the range of the scattering angle, in particular
for this small separation of 0.1A between the tips of the spheroids. It is in good agree-

ment with the result obtained by the exact method, the maximum relative difference
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Fig. 5.2 Normalized bistatic cross section in the E— plane for axial incidence of the
incident wave, as a function of the scattering angle for two identical coaxial
prolate spheroids of axial ratio 2 with a4 =ap =A\/4, and displaced along the

z axis by d =0.6A.
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being 2.6%, in the range 6=0°-30° and 6=150°-180°. The result calculated near
8=100° with the interaction neglected is drastically low, but the result obtained using

the approximate method has a reasonable value.

The normalized bistatic cross section versus scattering angle in the E— and H -~
planes are given in Figs. 5.3 and 5.4, respectively, for two spheroids which are the
same as in Fig. 5.2, but with the distance between the centers now being A. When we
compare the results of Figs. 5.2, and 5.3, we find that the one in Fig. 5.3 is in much
better agreement with the result obtained by the exact method, except around the
minima. However, since the effect of the interaction becomes less influential as the
distance between the centers increases, the result obtained by neglecting the interaction
also doesn’t deviate too much from the other two except in the region 8 =120°-150°.
For the H - plane pattern given in Fig. 5.4 we observe a similar type of variation in
the curves. It should be noted that the values of the minima in the results obtained by
neglecting the interaction are minus infinity in dB theoretically and therefore are not
represented on the plot. These values are due to the superposition of the individual
interference patterns of the two spheroids. It should be remarked that the positions of

the minima are given reasonably accurately for all the cases considered.

Figs. 5.5 and 5.6 show plots similar to those in Figs 5.3 and 5.4, respectively, for
the same configuration of the two spheroids as in these latter figures, but with the
angle of incidence now being 45°. Figs. 5.7 and 5.8 also show the E— and H - plane
patterns for the same two spheroids as in the two previous figures, but the angle of
incidence now being 90°. In all these figures we observe that in general the results

obtained by the approximate method are closer to the exact result than the one
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Fig. 5.3 Normalized bistatic cross section in the E - plane for axial incidence of the

incident wave, as a function of the scattering angle for two identical coaxial

prolate spheroids of axial ratio 2 with a4 =ap =A/4, and displaced along the

z axis by d =A.
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Fig. 5.4 Normalized bistatic cross section in the H - plane for axial incidence of the
incident wave, as a function of the scattering angle for two identical coaxial
prolate spheroids of axial ratio 2 with a4 =ap =A/4, and displaced along the

z axis by d =A.
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Fig. 5.7 Normalized bistatic cross section in the E - plane for 8; =90°, as a function

of 6 for the same configuration of the two spheroids as in Fig. 5.3.
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of 6 for the same configuration of the two spheroids as in Fig. 5.4.
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obtained by neglecting the interaction, except around the peak region, with the max-
imum relative difference on an average being 4.3%, and the agreement being better

close to 8=0° and 0 =180°.

Finally in Fig. 5.9 we present the variation of the normalized bistatic cross sec-
tion in the E— plane as a function of 6, for two prolate spheroids of axial ratio 2,
semi-major axes A/2, having a center-to-center distance of 1.5A. Here we observe that
from about 6=30° to 6=150°, the results obtained by the approximate method as well
as by neglecting interaction, are very close to that obtained by the exact method except
near minima. At and near minima they both deviate from the exact value, but still the
one calculated by using the approximate method being closer to the exact. Outside this
range of O the agreement is not very good. However, with the curve for the approxi-
mate method it is still possible to find out approximately the location of the minima
which are close to 10° and 170°. This is not the case when neglecting the interaction

for 6 less than about 10° or greater than about 170°, as seen from Fig. 5.9.

From the numerical analysis performed on the basis of this approximate method,
it 1s possible to conclude that it gives acceptable results for spheroids of semi-major
axes lengths up to A/2, and for separations between the tips of the spheroids that are
greater than A/2. Much more accurate results are obtained for larger separations
between the tips of the spheroids compared to their sizes, and also for larger axial
ratios of the spheroids. The reduction in computation time as compared to that of the

exact method, calculated on an average for the cases considered is about 30%.
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Fig. 5.9 Normalized bistatic cross section in the E— plane for 6; =90° as a function
of the scattering angle for two identical coaxial prolate spheroids of axial

ratio 2 with a4 =az =M2, and displaced along the z axis by d =1.5A.
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CHAPTER 6

ADMITTANCE CHARACTERISTICS AND FAR FIELD PATTERNS FOR COUPLED
SPHEROIDAL DIPOLE ANTENNAS IN ARBITRARY CONFIGURATION

Practical dipole antennas modeled by using spheroids of large axial ratios, fed by
a central gap voltage, have been under investigation for a long period of time [4], [28],
[66]-[69]. Admittance characteristics of a system of two such antennas in parallel
configuration have already been studied [45] by applying the translational addition
theorems for vector spheroidal wave functions [43]. In this chapter we present an ana-
lytic solution to the electromagnetic coupling between two spheroidal dipole antennas
in an arbitrary configuration, which enables one to study the admittance characteristics
of a system of two such antennas. Each antenna is modeled by a very thin prolate
spheroid which is centrally fed by a gap voltage. By using the equivalence principle,
each spheroidal dipole is replaced by a solid spheroidal conductor of the same size
without gap, encircled by a corresponding filamentary ring carrying magnetic current
of proper magnitude. The associated electric and magnetic fields are expanded in terms
of appropriate vector spheroidal eigenfunctions, and the boundary conditions at the sur-
face of each spheroid are imposed by using the rotational-translational addition
theorems for vector spheroidal wave functions derived in Chapter 2. The solution of
the resulting set of algebraic equations gives the unknown scattered field expansion

coefficients.

The formulation of the problem and the expansion of the electric fields associated
with the two antennas in terms of appropriate vector spheroidal wave functions are
given in Section 6.1. Section 6.2 deals with imposing of the boundary conditions at the

surface of each spheroidal dipole antenna, from which a set of linear algebraic
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equations is obtained for the unknown scattered field expansion coefficients. The calcu-
lation of the mutual and self admittances, as well as of the electric field in the far
zone, is discussed in Section 6.3. Finally in Section 6.4, numerical results are
presented for the variation of the real and imaginary parts of the mutual admittance
with the distance between two spheroidal dipole antennas of arbitrary orientation, hav-
ing unequal major axis lengths. Also given in this section are the E— and H— plane
patterns for the same two antennas in different configurations, with one antenna now

being parasitic.

6.1 Electromagnetic Field Modeling

Consider two arbitrarily oriented prolate spheroidal antennas A and B, as shown
in Fig. 6.1. The unprimed coordinate system is attached to antenna A, which is fed by
a central gap voltage V,, and the primed coordinate system to antenna B, which is fed
by a central gap voltage V3. Major axes of A and B are along the z and z’ axes of the
Cartesian systems Oxyz and O’x’y’z’, respectively. The system Ox,y,z, is parallel to
O'x’y’z’ and is rotated with respect to Oxyz through the Euler angles «,B,vy. The
center O’ of B has spherical coordinates d, 6, 0, relative to Oxyz and d.,8,,0,, rela-
tive to Ox;y,z,. The prolate spheroidal coordinates associated with the unprimed and
primed systems are denoted by &n,¢ and &',n’,¢’, respectively. The surfaces of the
two antennas A and B coincide with the coordinate surfaces €=&, and &'= &5 TESpec-
tively.

Using the equivalence principle, the pair of centrally fed spheroidal antennas A

and B is modeled by two solid spheroidal conductors, without gaps, of the same size

as the respective antennas, encircled at their middle (n=0,1'=0) by filamentary rings of



Fig. 6.1 System of two spheroidal dipole antennas of arbitrary orientation.
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magnetic currents V; and Vp, respectively. The resultant electromagnetic field can be
determined by the superposition of the fields produced by the filamentary magnetic
currents and the fields scattered by the solid spheroids assumed to be perfect conduc-
tors. The electric field intensities due to these filamentary magnetic currents considered

to be alone in an unbounded free space can be expressed in a matrix form as [45]:

M enR1A,  esg)

E ? =z e +
N A(& TI) M(l)T(g,T])A, §<§A

6.1)
MY @mRIB, &8y

E ” V=)= 7N D ’ ’+ 6.2
sEp(E'm) MY & ny B bt (6.2)

where &) and &7 are the values of & and &’ just outside the surfaces of the spheroids
A and B, respectively, the overbar denotes a column matrix, and T the transpose of a

matrix. The matrices M(l)T, ,A, and B are all defined in Appendix E. [R] and

[R’] are diagonal matrices, with the respective n th diagonal elements given by

_ROMEY , _RERED

= tn A = - (6.3)
IR R RSP EY)

nn

where R (V(h,£) and RE(h ) are the spheroidal radial functions of the first kind and
the fourth kind, respectively, given in Appendix A.

The electric field scattered by the spheroid B can be expanded in the form

Ejp =My B (6.4)

as given in (3.32), where M(;B and B are column matrices whose elements are prolate
spheroidal vector wave functions of the fourth kind, expressed in terms of the primed

spheroidal coordinates, and the corresponding unknown expansion coefficients,
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respectively. In order to impose the boundary conditions at the surface of antenna A , it
is necessary to express the scattered field E;z and the source field gEp for &>}
which are seen from A as incoming fields, in terms of vector wave functions of the
first kind in unprimed coordinates. This is achieved by using the appropriate
rotational-translational addition theorem for vector spheroidal wave functions (see
Chapter 2) to express the outgoing vector wave functions in primed coordinates M(j};

—(4) . . . . . . . ~=(1
and M@ in terms of incoming vector wave functions in unprimed coordinates M%A as

in (3.43)
M) =[] M%) (6.5)
MO =[a1M ) (6.6)

in which [T] and [A] are defined in Appendix E. The structure of MBA is similar to
that of @M given in (3.44) with the vector wave functions evaluated with respect
to the unprimed coordinate system. Denoting the incoming fields corresponding to E
and sEp by Egps and gEp,, respectively, taking the transpose of both sides of (6.5)

and (6.6), and then substituting M. in (6.4) and M in (6.2) gives

nT
Eps =M, (I B (6.7)
1574
sEgs =My (AT [RB (6.8)
In the presence of fields ¢Ep,, Epy, and ¢E,, antenna A scatters an electric
field which can also be expanded in a series of prolate spheroidal vector wave func-

tions and expressed in a matrix form similar to Ez as

E, =My @ (6.9)
where M(;X and o are column matrices whose elements are prolate spheroidal vector

wave functions of the fourth kind, expressed in terms of unprimed spheroidal



96

coordinates, and the corresponding unknown expansion coefficients, respectively. Thus,
the total electric field seen from the antenna A is given by

Ej=gEs + sEpy + Epa + Egy

()T 37T

= MY A+ MG (AT R1B + MYT TR+ MY E

(6.10)

Similarly, the total electric field seen from the antenna B can be expressed in
terms of appropriate prolate spheroidal vector wave functions in the primed coordinate
system as

Ep = sEp + sEsp + Egup + Egp
=M B+ MY AT RIA+MP T e+ MY B 61D
with [[’] and [A’] defined in Appendix E. The elements of the matrix M, AB are
obtained from the corresponding elements of M(l) by evaluating the vector wave

functions with respect to the primed coordinate system.

6.2 Boundary Conditions and Field Solution

On the surface of each perfectly conducting spheroid £=§&, and &'=&%;, the
tangential components (N and ¢) of the total electric field intensity must be equal to
zero. Thus from (6.10) and (6.11) we get

MYT &+ My (AT [R1B + M) [T17B + M xEleee =0 (6.12)
MU B+ My (A7 RIA+ MYy (T &+ MG Bx& g =0 (6.13)

Taking the scalar product of both sides of (6.12) and (6.13) by

A

n[n . n’[n’ , . +1 , .

o1, [ Smomeclh M) e 9 and 'l S, i (B’ M) €5 DY respectively, for
]

m=...-2,-1,0,1,2,..., x=0,1,2,..., with [,=2jF@E}-n)H'?

Ly =2jF ' EF-nA2, 1,=2F £3-1?), and Iy =2F '(}?-n"), integrating over ¢ and ¢’
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from 0 to 27, and in 1 and M’ from -1 to 1, and using the orthogonality properties of

trigonometric functions and spheroidal angle functions, yields [31], [44], [57]
(04]  [Rpal(TV {a} [Ry] [Rea (AT (R | [
[Rp1T [Q8] BT | [Rapl AT [R] [Rp] Li]
(6.14)
with [R4] and [Rp] defined in Appendix E. The structure of the matrices [Q4] and
[Rpa] are the same as those of [Q,s] and [Ryr01], respectively, given in (3.73), but
with the elements evaluated with respect to the unprimed coordinate system. The ele-
ments of [Qp] and [R,p] are obtained from the corresponding elements of [O4] and
[Rpa ], Tespectively, by evaluating them with respect to the primed coordinate system.

Equation (6.14) can be rewritten in the form [45], [70]

S =161 (6.15)
where
__[a} _ ;]
S=lg) =13 (6.16)
-1
[QA] [RBA][F]T [RA] [RBA] [A]T [R/]
o= [Rap1 [T1F (O3] [Rup1 AT [R] [Rp] (6.17)

[G] is the system matrix, which depends only on the geometry of the scattering system
and frequency, being independent of the position of the voltage gaps along the antenna

axes.

6.3 System Admittances and Far Field Patterns

For the two spheroidal dipole antennas A and B, the gap electric currents /, and

Iy corresponding to the gap voltages V, and V3, respectively, can be defined in terms
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of an admittance matrix:

Ig |~ | Yaa Y35 | |V (6.18)
where
Iy Ip
Yjg = — , Ypp= — (6.19)
a4 Vi |y =0 BB V3 v, =0
are the self admittances and
Iy Ip
Yip = — , Ypy = — (6.20)
7V |y =0 BT, Vp =0

are the mutual admittances associated with A and B.

6.3.1 Calculation of the Mutual and Self Admittances

In order to calculate Y,z and Yz, for instance, we let V4 =0, such that all the
elements of A are zero, which makes sE4=0. In this case the total electric field inten-
sities seen from antennas A and B can be written from (6.10) and (6.11), respectively,
as

E, =My) (AT [R]B + M) (117 B+ M & 6.21)
Ep =M B+ M) (') o+ MY B (6.22)

Using Maxwell’s equation

H=je/y? '/IZ (VXE) (6.23)

in which € and [ are the permittivity and permeability, respectively, gives the total
magnetic field intensities seen from antennas A and B,

H, =, (/w2 (NG (AT [R1B +NOX T B+ N ) (6.24)

Hy =/ /w2 NV B+ N (7 a+NYTB) (6.25)
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The electric current /, at the feed point of the antenna A is

Iy=]H-d ‘n=o,g=g

= J.(E,HA é'*'nHA M+ oHy 0)- (hed0 ) n=0&=¢,

2%
=F E2-1)" [ H, ¢,.0.0)d0 (6.26)
0

where h, is the scale factor and F the semi-interfocal distance of the spheroid A.

Similarly, for the electric current /5 we can write

2n
Ig=F’ €212 [ Hy (€,,00)d¢ (6.27)
0

where F’ is the semi-interfocal distance of the spheroid B. Substituting o4 from

(6.24) in (6.26) and using

N A Ea 00 =N 1, 0.0)=0.5kRES,,,  i=1,23,4 (6.28)
where 4N, denotes the ¢—component of the vector wave functions N,,, defined in
Appendix A, finally yields [71]

Vis =~ (V) (E3-DV2 | TB; $(C{0l - Lo fin+ Cl*Q k- C3to' )

n=1 v=1

RS+ Zﬁ—lnﬂ Z(C1Q' Latl_ s ornln+ly g (Dg

v=1
+ B¢, Z(C4Q’°" - ClOMRYS+ Y T (Bh T(CI0 - C o mmRYS,,
m=0 n=m v=1
+Bm+1 nal Z(C4Q/m+1 n+l_ CA:*Q’Y\I;H'HH)Rl(\})Sw}

v=1

+ Z Z {B—-mn Z(CZ,*Q Cl Q l_\fm)R(l)Slv"*'Bf(ma-l),nﬂ

m=0 n=m
S (C oy - o RIS, b+ B at, RS, (6.29)
v=1 n=1

with the asterisk denoting the complex conjugate and
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Sty = S (h,0), | RO=RY(h,Ey), i=1273.4 (6.30)
C/,(i=1,2,3,4,5) and B, are defined in Appendix E and the rotational-translational
coefficients O’/ are given in Appendix B. The coefficients o and P in (6.29) are the
elements of the column matrices & and B, respectively. Substituting 4Hp from (6.25)

in (6.27), integrating and using (6.28) yields
Vg ==(@A)"2 (mh V) G5 =1 | $2B, RES1, + 3B, R 1,
n=1 =

+ Za a1 S(G O - GO RDS,,

v=1

+ g, DCO% - GOMRIS+ T T {of TG0, - o RYS,

v=1 m=0 n=m v=1

* 1
PO S(COTE - ey R D )

v=l
+ 3 T {ag, T@Gogm - qlorrYS,
m=0 n=m v=1
F Oy aynet (G QDA L g im Dty g ) J (6.31)
v=1
where now
Sty = Sy (R7,0), RY=RY W&y,  i=1234 (6.32)

G, (=1,2,3,4,5) are defined in (2.16) and Qv and B, are given in Appendixes B
and E, respectively. Yp,4 can be obtained from Yz by replacing the first summation in

the expression of Ypp by the summation

$4; TGO - GO+ GOk - GORIRES,
n=1  v=]
and Y4, from Y,p by replacing the first summation in the expression of Y,z by the

summation ¥ 24,RYS,,, with A, and A} both given in Appendix E.

n=1
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6.3.2 Far Field Patterns

If the spheroidal dipole antenna B is assumed to be parasitic, we have V3 =0, and
the expansion coefficients B, are zero for all n. The total electric field at any given

point in space is therefore given by

E,=sE4s+E, +Ep (6.33)
If all the field components are expanded in terms of appropriate vector spheroidal
eigenfunctions, then by using their asymptotic expressions as r —eo, r’—eo, the electric
field intensity in the far zone can be written in terms of spherical coordinates attached

to the two antennas in the form [44], [57]

_jkr A A A A
E=2 [FGA (8.0)8 + Foy (8,000 + Fyrp (808" + Fog (e',qy)qy} (6.34)
where
oo oo n+l
For80)=-3 3 12 Spn (h,c080) { (o~ )cos(m+1)o
m=0n=m
oo in+l
+j (o, +0, )sin(m+1)o} - 3 12 Sin(h,cos8) (o, +247)  (6.35)
n=1
Fos(8,0)= T3 [ Cozse Spn (1 ,c088) { (0F,+ 0T, ) cos (m+1)0 +j (0, —~ o, )
m=0n=m

sin(m+1)0} = $in8 Sy iy, c080) {(o, 1 1+l 00
.CoS (MA1)0 + (00 1 =01y sin(m+1)0 ) }

=] +n (-]
+cosf *]-—2—— S1n(h,cosB) octln —-sin® Y j" Sq,(h,cos) 0(6,1 (6.36)

n=1 n=0

Fgp(879") and Fyp (870") in primed coordinates can be obtained from the expressions
for Fgy (6,0) and Fys (8,0), respectively. This is done by replacing o by B, A, by 0,

and multiplying each expression by the phase factor exp(jk,-d), with k; being the
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scattered wave vector in the far field. Expressing é’ and qA>’ in terms of é and (/I\J and
using the relation between the primed and unprimed spherical coordinates, E can be

written in terms of unprimed coordinates only as [45]

e/
E =

[Fe (8,0)6 + Fy (&d))ﬂ (6.37)

r

The magnitude of this far field is

E=F(6,0)/r (6.38)

where
F(8,0)=[1Fg(8,0) 12+ | Fy(8,0) 122 (6.39)
The E - plane pattern is obtained from (6.39) by plotting F (8,0) versus 6. Numerical
results are presented in the following section for ¢ =0,& when the centers of the two
spheroids are displaced along the x axis, and for ¢ =*mn/2 when they are displaced
along the y axis. The H - plane pattemn is obtained by plotting F (8,9) versus ¢ when

O=m/2.

6.4 Numerical results

Computed results are presented for the real and imaginary parts of the mutual
admittance of two spheroidal dipole antennas of arbitrary orientation and also for the
E— and H - plane patterns of the same antennas when one of them is parasitic. Since
all the matrices defined in Sections 6.2 and 6.3 are infinite in extent, it is necessary to
truncate these series and matrices according to the required accuracy. All the computed
results have been obtained with a two significant digit accuracy by considering the
¢—harmonics e/°, ¥/, and e*¥® only [57]. We take n=Iml, Iml+1... Iml+3 in
truncating the matrices [Q4] and [Qp], and n = |ml, Im|+1,... Iml+5 in truncating

matrices [T'], [I'], [A], [A"], [Rpa], and [R4z], with m corresponding to the above
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¢—~harmonics. The truncation of matrices [R4] and [Rp] is performed by retaining

n=1,2,3,4. For truncating all the matrices we consider k=0, 1, 2, 3.

Fig. 6.2 shows the variation of the real part G45 and the imaginary part B,p of
the mutual admittance Y,p= Yp, for two spheroidal dipole antennas A and B, each of
axial ratio 100, for an arbitrary orientation, as a function of the center to center dis-
tance 4. The location of the center of B with respect to that of A is specified by the
spherical coordinates 63=90° 0,=0° As d varies from 0.5A to 2.0A, we observe an
oscillatory behavior in the variation of both the real and imaginary parts of Y,p5, with
the minima and maxima for the imaginary part being higher in magnitude than the
corresponding ones for the real part. The accuracy of the numerical algorithm has also
been checked by computing the real and imaginary parts of Yy, . Detailed numerical
experiments yield plots of G,p for axial ratios between 10 and 100 which are practi-
cally the same and so are those of B,p. For instance, in the case of an orientation
specified by a=60° B=45° and y=60°, the maximum relative difference for both

The mutual admittance for the special case of two parallel spheroidal antennas is
calculated in [45] using the approximate one mode solution corresponding to the
¢—harmonic e/®. The numerical values are in agreement with those of the mutual
admittance calculated for the same two dipole antennas with very small values of the
three Euler angles, on the basis of the general analytical formulation presented in this

chapter.

E - and H - plane patterns are presented in Figs. 6.3 and 6.4 for various orienta-

tions of the two spheroidal antennas A and B, with antenna A being excited and B
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Fig. 6.2 Real and imaginary parts of the mutual admittance versus center to center
distance for two antennas of semi-major axes a4 =A/4, agz =5A/16 and Euler

angles a=30° B=45° y=90°.
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parasitic, and the distance between the centers of the two fixed at 0.6\, In Fig. 6.3 the
centers of the two antennas are displaced along the y axis and in Fig. 6.4 along the x
axis. Different £— and H - plane patterns are obtained by changing the Euler angle 3,
with the angles o and vy held fixed at 90° and 0°, respectively. The axes shown in Figs.
6.3 and 6.4 are those of the unprimed system of coordinates, attached to spheroid A .
The pattern for any given orientation is drawn by normalizing the magnitude of F in
(6.39) with respect to the maximum value of F out of the two plane patterns when the

two antennas are parallel (f=0°).

As B increases from 0° to 90°, we observe an increase in the size of the back
lobe compared to that of the front lobe, for both E - plane patterns. When ¢=0°, the
variation of the E - plane patterns in Fig. 6.4 is somewhat regular with changing 3, for
82 40°, but curves start again intersecting each other around 6=140°. All the E — plane
patterns shown in Fig. 6.4 are symmetrical about the x axis, but the same patterns in
Fig. 6.3, when the axes of the elements A and B are in the same plane, do not present
such symmetry. However the H — plane patterns in Fig. 6.3 are symmetrical about the
y axis and those in Fig. 6.4 are symmetrical about the x axis. For the H~ plane pat-
terns we again observe an increase in the size of the back lobe compared to that of the

front lobe for increasing B.

When B=0° the E— and H- plane patterns in Fig. 6.3 are identical with the
corresponding ones in Fig. 6.4, as expected. The front to back ratio for the patterns
increases with decreasing B, the maximum being obtained for B=0°, in which case the
two dipole antennas are parallel to each other. As expected, the worst coupling is when

they are perpendicular to each other. It should be noted that in this case the minimum
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E-PLANE  f? ~ ——§=0

Fig. 6.3 Normalized £~ and H - plane patterns for two spheroidal dipoles of axial
ratio 100, with the semi-major axis lengths of the excited and parasitic
dipoles of A/4 and 5A/16, respectively, Euler angles a=90° y=0° and the
centers displaced along the y axis by d =0.6A.
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yz —— B=0
E-PLANE B___30°

Fig. 6.4 Normalized E - and H - plane patterns for the two spheroidal dipoles in Fig.

6.3, with the centers displaced along the x axis by d =0.6A.



108

d for which the rotational-translational addition theorems are valid is equal to the
greater of the two semi-major axes, i.e. SA/16. The practical relevance of the work
presented here consists in the fact that the reduction in the coupling between the two

antennas for various relative orientations has been evaluated quantitatively.
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CHAPTER 7

GENERAL CONCLUSIONS AND SUGGESTIONS FOR FUTURE RESEARCH

7.1 Discussion

The main objective of the thesis has been to provide analytical solutions to vari-
ous problems involving electromagnetic scattering by spheroids of arbitrary orientation.
These solutions are useful in analyzing models which have similar configurations for
important engineering problems such as scattering of radar signals from hydrometeors,
visible light absorption by heterogeneous particles, and also in biomedical engineering.
Results obtained by the exact method developed here with a controllable accuracy are
also important for evaluating the accuracy of other approximate methods and validating
numerical codes which can be used for the analysis of electromagnetic scattering by

similar configuration systems.

The formulation and analysis of all the problems are based on the rotational-
translational addition theorems for vector spheroidal wave functions which are derived
in this thesis. Rotational-translational addition theorems for the vector spheroidal wave
functions Ma%), Na© MED NEO 5=y 7 i=1,2,3,4) as well as for M. and
Ngi;,im (1=1,2,3,4) have been derived in Chapter 2. Translational addition theorems for
vector spheroidal wave functions M,‘;ff) and Nf;ff ) (a=x, ¥ z) have been deduced as spe-
cial cases. Even though tanslational addition theorems and rotational addition
theorems for vector spherical wave functions already exist in the literature [41], [42],
they cannot be simply combined to obtain rotational-translational addition theorems for

vector spherical wave functions. Thus new rotational-translational addition theorems
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for vector spherical wave functions m{) and n) have also been deduced as a special
case. These theorems are useful in solving problems associated with spheres which do
not have homogeneous material properties, such as spheres with different kinds of
coatings on the surfaces, for instance, spheres whose material properties change with

the spherical coordinate 8.

On the basis of the rotational-translational addition theorems for vector spheroidal
wave functions M,J‘;,(,f), N,i(,f) M,zn(,f), and anﬁ ) derived in Chapter 2, an exact solution of
the problem of scattering of electromagnetic waves by a system of n lossless dielectric
prolate spheroids of arbitrary orientation has been obtained in Chapter 3 for the first
time. The exact boundary conditions are imposed by expanding the resultant field seen
from a system of coordinates attached to each spheroid in terms of appropriate vector
spheroidal eigenfunctions. The unknown coefficients in the series expansion of the
scattered and transmitted electromagnetic fields are obtained by using a matrix formu-
lation, in which the column matrix of the total transmitted and scattered field expan-
sion coefficients is equal to the product of a matrix, which is generally known as the
system matrix, and the column matrix of the known incident field expansion
coefficients. As in the case of scattering by two spheroids with parallel major axes
[44], [46], the system matrix has the special feature of being independent of the direc-
tion and polarization of the incident wave. This makes it possible to evaluate the unk-
nown transmitted and scattered field expansion coefficients for various angles of
incidence and for both TE and TM polarizations of the incident wave, using the same
system matrix, which is a great advantage in numerical computations. Results of a

prescribed accuracy, corresponding to a whole range of angles of incidence, are there-
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fore calculated with a better computational efficiency as compared to those obtained by
various numerical techniques, for instance, moment methods where the problem has to

be solved for each angle of incidence separately.

The solution for the case of n perfectly conducting spheroids of arbitrary orienta-
tion is derived from that for n dielectric spheroids, by letting the dielectric constant (or
the refractive index) of the material of each dielectric spheroid become very high
(theoretically infinite). In this case, since the spheroids cannot sustain any electromag-
netic fields inside them, there is no transmitted field present inside, and as a result the
size of the system matrix reduces to half of that of the corresponding dielectric case.
However, the system matrix still retains the special feature it possessed in the dielec-
tric case. The solutions for the special case of scattering by two dielectric spheroids
and by two perfectly conducting spheroids of arbitrary orientation are obtained directly

from the general formulation for scattering by n spheroids of arbitrary orientaton.

Numerical results are given in Chapter 4 in the form of plots of normalized bis-
tatic cross sections in the £~ and H - planes, and plots of normalized backscattering
cross sections corresponding to scattering by two spheroids of arbitrary orientation.
Spheroids of axial ratios 2 and 10 are considered in the perfectly conducting case, and
spheroids of axial ratios 2 and 5 in the dielectric case, rotated with respect to each
other in various configurations. In Chapter 5 we present an approximate method for
solving the problem of scattering of a plane electromagnetic wave by two coaxial
spheroids, with their centers displaced along the common axis, for oblique incidence.
The formulation of the problem is based on the exact solution to scattering by a single

spheroid. The greatest advantage of the method is to be able to reduce the amount of
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computational time involved as compared to that of the exact method, and still obtain
results of an acceptable accuracy. Numerical results are presented in the form of far
field scattering cross sections. It is seen that this method gives acceptable results com-
pared to those obtained by the exact solution, for spheroids of semi-major axes lengths
up to A/2 and for distances between the tips of the spheroids greater than 0.5A. The
agreement with the exact solution becomes better as the axial ratios of the spheroids

become higher and/or the distance between their centers becomes larger.

Using the rotational-translational addition theorems for vector spheroidal wave
functions, an analytic solution is obtained in Chapter 6, to the problem of electromag-
netic coupling between two spheroidal dipole antennas in arbitrary configuration.
Explicit expressions for the self and mutual admittances of a system of two such
antennas are derived, and plots of real and imaginary parts of the mutual admittances
have been presented to show their dependence on the distance between the two anten-
nas. As well, the £— and H - plane patterns for two dipole antennas of different orien-
tations and configurations having a fixed separation, with one antenna being parasitic,
have been computed. It is seen from the £— and H - plane patterns that the coupling
between the antennas is worst when they are perpendicular to each other, and that it is

best when they are parallel to each other.

7.2 Recommendations for Future Research

The solution presented in this thesis for non-lossy dielectric spheroids can be
extended to lossy dielectric spheroids. The major change in this case is due to the
dielectric constant of the material of the spheroid becoming complex. As a result, in

expanding the electromagnetic field transmitted inside the spheroid it becomes
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necessary to use vector spheroidal wave functions with complex arguments. The rest of
the formulation is similar to that in the case of scattering by non-lossy dielectric
spheroids. It is also be possible to obtain the solution for a mixture of perfectly con-
ducting and dielectric spheroids by imposing the proper boundary conditions, and the
solution for imperfectly conducting spheroids or for spheroids with very thin coatings,

by incorporating the surface impedance in the boundary conditions.

Another extension would be to consider scattering by two spheroids of arbitrary
orientation, when the excitation is different from that of a plane wave, e.g. as that due
to the field of an electric dipole. To formulate the problem for such a case it is neces-
sary to know the expansion of the incident field in terms of spheroidal wave functions.
Once this is known, the rest of the formulation is similar to the case of plane wave

incidence.

It would also be important from a computational point of view to extend the
approximate method we have proposed in Chapter 5 for solving the problem of scatter-
ing by two coaxial spheroids, to the more general case of two spheroids of arbitrary

orientation.
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APPENDIX A

PROLATE SPHEROIDAL WAVE FUNCTIONS

In this Appendix we give explicit expressions of the spheroidal scalar wave func-
tion, the spheroidal angle function and the spheroidal radial functions. Also defined

here are the different types of vector spheroidal wave functions.

A.1 Spheroidal Scalar Wave Function

The relation between the Cartesian coordinates x,y,z and spheroidal coordinates
&.n.0 is as follows:
x =F (1-n%) (£2-1)"? coso

y =F (1-n)Y2 (£2-1)2 5ing (A1)
z=F&n

where F is the semi-interfocal distance, and —-1<n<1, 1<E€<eo, 0<$p<2m. The

differential equation

Vg +k2y=0 (A.2)

known as the scalar wave equation, is separable in eleven orthogonal coordinate sys-
tems out of which the prolate spheroidal system is one. By using the method of

separation of variables, the solution of (A.2) can be written as [28]

COos
m

Wemn(h ,g;qsq)) =Rmn (h ’g) Sm-n (h ’n) sin

o

o (A.3)

The functions R,,,(h,E) and S, (h,n) are known as spheroidal radial functions and
spheroidal angle functions, respectively, and they satisfy the ordinary differential equa-

tions
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A | g2y 4 _ 22, mt _
and

N PN _ 2 mt _
an {(1 i )dn Sm,,(h,ﬂ)}L {Mm hm " ZJSm(h,ﬂ)—O (A.S)

In these equations A,, and m are separation constants; A,  being a function of
h (=kF). The discrete values of A, (n =m,m+1,m+2,...), for which the differential

equation (A.5) gives solutions that are finite at =%1 are the desired eigenvalues, the

value of m being an integer which includes zero, and n >m [28].

A.2 Spheroidal Angle Functions

The spheroidal angle functions are the associated eigenfunctions S,,,(4,n)
corresponding to the eigenvalues A, (h) of (A.5). There are two kinds of angle func-
tions, S,(,},,) (h,m), which is known as the angle function of the first kind and S,(nz,,) (b)),
which is known as the angle function of the second kind. Out of these it is S,(nln)(h )
that is used frequently in physical problems, since it is regular throughout the interval
—-1sm<1. Hence we simplify the notation by writing S,,,(k,m) to mean the angle

function of the first kind.

Smn (A M) can be expressed in the form of an infinite series of associated Legendre

functions of the first kind as [28], [72]

oo

Sma(hM) = 3" d7™(h) Py, (M) (A.6)
r=0,1

in which the prime over the X indicates that the summation is over only even values of
r, when (n —m) is even and over only odd values of r, when (n —m) is odd. d/"(h)

are the spheroidal expansion coefficients.
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An important property of angle functions is the orthogonality in the interval
—lsn <1, which results from the theory of Sturm - Liouville differential equations.

Thus

1
f Smn M) Spp- (M) dM =3,/ N,,, (A7)
-1

where 0, is the Kronecker delta function, and

2
= (r+2m)!dr
Npw=2 3 re2m)! @™ (A.8)
r=0,

; @re2Zm+1)r!

is the normalization constant.

A.3 Spheroidal Radial Functions

The spheroidal radial functions are the solutions of the differential equation (A.4).
The range of the coordinate § is 1<E<e and the eigenvalues A,,, which occur in

(A.4) are those to which the angle functions S, (4,n) belong.

In physical problems one usually requires both spheroidal radial functions of the
first kind R,(,i,z (h,&) and the second kind R,(,%,z (h,&), which are independent solutions of
(A.4). The third and fourth kind of functions R,(,?,z(h,ﬁ) and R,(:,z(h,ﬁ) however are a

linear combination of RS (#,£) and R2 (4,£).

Similar to the spheroidal angle functions, the spheroidal radial functions R,(,},z (h,&)

and R,(,%,z (h,&) can also be expanded as the sum of an infinite series given by [29], [72]

2 mi2
RD &) = [%I—J 2 a7 ) sy (hE) (A9
r=0,1

and
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@ &2—1 mi2 .
RO (&) = : S a™(h)n,,,, (hE) (A.10)
r=0,1

where j,. ., and n,,, are spherical Bessel and spherical Neumann functions, respec-

tively, and a;"(h) are the expansion coefficients.

The spheroidal radial functions of the third and fourth kind are given by

Rffﬁ(h,ﬁ)=Rﬁ,3<h,§)+j R® (h,E) (A.11)
and
R (h,&)=R% (h,E)~j RD (h ) (A.12)

respectively. The asymptotic behavior of Ro(4,£), R (k,5), RS (h,E), and R (1,&)
is readily obtained by the asymptotic behavior of the spherical Bessel and Neumann

functions as ~&—eo, and is given by

RO (1,8) - %cos [hE = (n+1)1/2] (A.13)
RO 8 - 7{155“1 (hE—(n+1)m2) (A.14)
RO)E) — ieﬂhi-@“”"zl (A.15)
RS (h,E) — Zl—&—e-f'[hi-m“)“’z] (A.16)

From the above expressions of R,(,f,z(h,?;) and R,(:,a (h,&) it is evident that they have the

properties of diverging spherical waves at large distances from the spheroid.

A.4 Spheroidal Vector Wave Functions

By the application of vector differential operators to the scalar spheroidal wave

function given in (A.3), it is possible to obtain the vector spheroidal wave functions M
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and N as [28]
M=V, X @ (A.17)
N, =k (VxM,,) (A.18)
in which a is either an arbitrary constant unit vector or the position vector r. None of
A A
the coordinate unit vectors &,ﬁ, or ¢ in the spheroidal coordinate system, has the pro-
perties required for @. Hence the Cartesian system is used, as it has the propertes
required for ¢ and also since the transformation from Cartesian to spheroidal system is
known.

. . A A A . e
The three Cartesian unit vectors X, ¥, and z generate three distinct classes of

spheroidal vector wave functions M and N, viz,,

MO0 Ene)=Vyl) (EN,0x P, p=xy.z (A.19)
and .
N O o) =k [Vxmz G &m0 ], p=xyz (A.20)

in which e and o refer to the even and odd functions respectively. Explicit expres-
sions of these spheroidal vector wave functions are available in [28]. In the functions
Mg’:z, Mg ©) Ng'(rf:, and Ngy’g the ¢—dependence of various components is equal to the
product of cosd or sing with either cosm ¢ or sinm¢. It is convenient therefore to
define the following additional vector wave functions where the components labeled
with the index m+1 have either a cos(m+1)¢ or sin(m+1)$ ¢—dependence, while the

components of those labeled with m—1 have either a cos(m—1)¢ or sin(m-1)¢,

¢o—dependence [28].
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MG Ene)=3 (Mg = CANCRL Y (A21)
M igno=5 [MOmigne = MOkiEne)] (A22)
*f,jil (h;&m ¢)—— Ng,ﬁg(h;&,n,d:) F Ngg(h;&m@)} (A.23)
N e e =5 [N:OoiEno) + N Onigno)] (A24)

Explicit expressions for Mg:ll'n, M;’i)_l’n, N;ﬁll‘n, and N;;i)—m are also given in
[28]. As shown in [44], it is possible to express the sinusoidal variation of ¢ present in
the above vector spheroidal wave functions M and N as an exponential variation, but
with M3, M9, N and N, in [28] being denoted by M), M%),
Ny, and N8, respectively, so that M2Y) and N2 have exp[j(m=1)0] o— depen-
dence. It is these vector wave functions that we have used throughout this thesis. All
the spheroidal wave functions described above are for a prolate spheroidal system. The
corresponding functions for the oblate spheroidal system can be obtained from those

for the prolate spheroidal system by the transformation £—j& and hA——jh (or

F ——jF).



APPENDIX B

THE ROTATIONAL-TRANSLATIONAL COEFFICIENTS
AND THE ASSOCIATED MATRICES

The rotational-translational coefficients (‘)Q (o,B,y;d) and P (o,B,y;d) given
in egs. (2.1) and (2.2) are those obtained in [51]:

Oom@pyd= T df () 3 R (@BY)

s=lml,Iml+1 fT==s

— ’ [ i - _ l
Z (l)d&‘lg(d)js n+v—{ i i
I=1ul, pl+1 Nyy(h?)

d ) B.D

oo

PR (aBy;d)= 37 d, (h) Z RS (0uByy)

s=lml,iml+1 H=-s

o

T b @
p=lul, Ipl+1 uv

Y () (B.2)

in which df*"*(h), dy”(h’) are the spheroidal expansion coefficients, and Ny(h') is the

normalization constant [28]. In these expressions the following notation is used:

2 (l+m)!

Nt = 3050 U= ! (B.3)
172
R @By =1y | 2| eimTgl) B)eime (B.4)
m'l
’ ’ 2 m'+m ‘—m
T T o
P M) (cosp) (B.5)

with P, 7mm+m) (cosB) being the Jacobi polynomial of argument cosp;
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- l+s
Qaffid=c0F T 7 @+Da@snlip) vl @  B6)
P=Po.Py+1

in which a(I,sl-W,/1 p) are the linearization expansion coefficients [40]—-[43], the first

term in the series being py=max (|/-s!,|~Ll) or py+1 so that its last term is /+s,

and

(L) @) p-p J )04

Vi, p(d) Zp (kd)P (cosB,)e (B.7)
“where z(‘), i=12,3,4, are the spherical Bessel functions j,, n h(l) and h(z) respec-

tively, and Ppn‘PL is the Legendre function of the first kind;

b&;(d)=l lzmb“ i@ (B.8)

D ap D= DRI QI a(slp-LI p) v, (@) (B.9)
with [g=max (|p-s |, g—pl)

rt.. 7,7

Considering the translation from the system O’xy’z’ to Ox,y,z, and then the
rotation of the system Ox,y,z, about O through the Euler angles —y,-f, -0, we
derive the rotational-translational coefficients ’Q’J%* for the expansion of spheroidal

wave functions in primed coordinates in terms of functions in unprimed coordinates,

forr<d andi=1,2,3,4, as

M) —y mn ’ -’  § ey V=] .Nlll Hv

Yo' oBysdy= X dT (DY Y N—;‘dz-|m (h)
s=iml,Im|+1 I= W, Il +1 pv( )

l I3

Y R (—v=B.—o) Db (d) (B.10)
c=-

with

. l+s .

OplE =D X D2 P @iDalm,s i =¢,l1p) yile ,(d) (B.11)

P =py.pytl
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Substituting s = Iml+q, / = |pl+r in (B.1) and (B.10) we get, respectively,

. = lml+q

DoN @Byid)= T df"h) ¥ REm(By)
g=0.1 H=—(iml+q)
3 Oaflniaa jimeaeveider SR g g,
r=0,1 pv(h )

and

OO Byid= By 3 e s R v,
q=0,1 r=0,1 uv(h)

I +r
5 RS mr " (~y,~B,~00) (t)bm Iml+4(d) (B.13)
c=—({ul+r)

The rotational-translational coefficients (‘)Q v (@ Bgr Ygr 34y, £ =1,2,3,4, that are
used in Chapter 3, for expressing vector spheroidal wave functions associated with the
system O,x,y,2z, in terms of those associated with the system O,x,y,z,, can be

derived from (B.12) as

Iml+u
G )Q ((Xq, ’qu 7qu s dqr )= % 1dmn(h ) Z R}T |],:,n|i_-;u (aqr ’qu "qu )
u p=—C(Iml+u)

) El (l) u l-i;t(dqr)jiml+u—n+v~—lw—w Nil Il +w dl’w(}l)

w=0,1 el Nyv(hy,)
(B.14)
The matrix [I‘q,] introduced in (3.43) can be written as
(Tgrloo Tgrlgy Marlpy = - -
- [Tpl Tyl Moly - - - s

[qu]zo [rqr]zl [qu]22 - - -

with



[FQ’]OO

[I“q, ] Oc

[Tor)og

[rqf]rc =

121,021

The submatrices [I}]; and [*I‘i]; for 1,0=....

are 7C; [Fq,];

JSzii e v iy

(15 (Bl ;!

(1S

[GI}, [Bl7, (B (g1 o) (B o [G12

-2,-1,0,1,2,.

asterisk denotes the complex conjugate, and

(4) T, 11 (4) T, Il (4) T, Il (4) T, It
Qc lol Qo lol+1 Qo lol+2 Qc lol+3
(4) T, I+l (4) T, 1T+l (4) T, T+l (4) T T+l
(L. 1° Qo lol ch lol+1 Qc lol+2 Qc loi+3
qgris = (4) T, 1tl+2 (4) T lTl4+2 (4) T, lTl+2 (4) T, ltl+2
Qc lol Qc lol+1 Qo lol+2 Qc lol+3

) 21

(Llg, UL, B (015, UL, 1% °
mI mt mt
(17 "Ll (Bl

>
[ ;)oED FRITCY et | 21
I 2RI A vl ML § v} P
0l [l (BT Mk, BT, (B15
(Lls, ["Ll,, [Bl L)y Uhliey (15
" rr““” (Gl D UBL™Y URIZSD oIy reit
[RleS, PRI, (BT (GG, (Tl (B
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(B.16)

(B.17)

(B.18)

-

(B.19)

.and i =1,2,3,4,5,

and ¥ CL-*[I“q,];, respectively, where 9C; are defined in (3.42), the

(B.20)



APPENDIX C

MATRICES [P], [Q], AND [R] RESULTING FROM
IMPOSING THE BOUNDARY CONDITIONS

The elements of the matrices [P,], [Q),], [R},], and [Ryg), for g =1,2,...n

r=1,2,..

132

and

.n, can be grouped in submatrices, such that all these matrices are quasi-

diagonal in the sense that only the diagonal submatrices are different from zero. All

null off-diagonal submatrices have the same size as the corresponding diagonal subma-

trices. The diagonal submatrices of [P},], [Q,,], [R},], and [R Jq,] can be written as

[44], [46], [57], [58]

[ Dy

[PJr]o = [ (%)Yffi)]
[ QY4
[ @YD)
[P]r]m =
(0]
[ X
[er]o - [ (%)Xffd')]
[ Ny +&)
[ nXm—l]
[FX]
[Q,]r]m

[ (11'1) Y6(4) ]
[re@1 |

[ DY)

[ (:D) Y;(“)] 0]

[y,

-(m-1)
4
[ (r)Y~((m) 1) ]
[ ({q)Xé("')]
[ (TD)X(Z)(“)] ’

[ QX
[0]
[ ("'b)X); (4)]

[ (r)X ) ]

—(m~1)

(0]

—(4
[(%)X ((m) 1)]

[ (r)YZ (4)]

[ Qrid

4
[RXE]

[9x5)]

(C.1)

(C2)

(C.3)

(C4)



{RJr]O =

(R}, =

[R]qr]o = -

[qur]m

[Qx7]
[ @x0]

[ %3]

[ QX5

[ @x*D7] [ Qx7®]
[Qx01 1 Rx7V)

mz=21.

[QxT)

[@WxP

[ 0x0]

[ X,

(0]

(0]

[ (r)X+(1)

[ XD

The submatrices [X,, ] have the form

(Xn] =

X
X
X

m,0, Iml Xm

m,2, Iml| Xm

where the elements are given by

(r)X“'(l)

m+0,
)

VA

K,n
27c 0 -

1 "

,0,Iml+1 Xm,O.lm|+2 -
mLiml Xmiml+l Eml,iml+2 —

20ml+1 X2 iml+2 —

m+l)]

(m+1)]

[GX60]
1 s
[ Bx581

[0]

[R% 81 1RxH1 [ Q%)

nm+1

[WxXE ] (@Wx, 01 [ QxED)

(r)
[

[ (%)X

(r)
[ @

[@Wx:D 01 [ %X

-1
-(m-1)

~(1)
—(m=1)

+(D)
~(m+1)

]

I

]

, m=21

[0]

[ Ox=()

—(m-1)

(1)
—-(m-1)
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(C.5)

(C.H)

(C.7)

1)
] [ (r)XZ(l ]—j

(C.8)

(C9)

.f f (F[ (r)‘]i(li))n(hrv r )Sm lml+K<hr Mrle e an, d¢,

(C.10)
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"1

Tl
n ; Zitm
J‘ J’ ("[q) )(r)J'Zn<+)]- "(h”; rf)Sm,lml+K(hr nye JmDer dTlr as,
0- o

(r)XZ @) —

m+1,x,n

1
((D) 2

(C.1D)

with J being either M or NV, i.e. the respective component of M or N. The submatrices

[Y,,] have the same form as those of [X,,], with the elements given by

2rl 7}
1 n , ~j +1)0, .
0 Een = 5= 1 TG 0 QR0 Sy ety ) e P g,
(q)) 0-1 °0 (¢)
(C.12)
1l T
- 1 1 , ~j (m+1)0,
( )Y;(j-)lKn = _27)'5_ J. J(rl ) (r)JZ(-:-)l n(hr;rr)sm,]ml-t-lc(hr’nr)e Jimebe an, do,
(¢) 0-1 o (¢)
(C.13)

in which J is either M or N. The explicit expressions of X for /=M are given in

[35]. The explicit expressions of XD (y=0), x*6)  (y=2) and Ox2®
P mx,n

m+2,x,n m+1,x,n

for / =N are given below.

RO e 8 ERD G800 L ][(&3—1>13m g

(i) 2
Xmn™ [a ~1) S JE

ér

+§ R(l)(hr’gr)l li 1)[4ml<n +[15mm+2[14mm:]

* dg,

@ [ az }
-R . hrs s I mxn > I mxn
mn( & ) 16 (&?—-1) 15
+ (mil)R(l) (h, aas [:(F’z—l)[l&nm +2[4mm]

-—m (mi‘l)R,(,i,), (hr ,as) ]:(E.:Z_l)]l%mcn +2[3mx‘n]

_ (m=l)

(&2—1) Ry Uty £5) (0 i £ 157m) (C.14)
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DX = {(&ln st 8 SR80, ][<23~1>18m

+[19m1cn]+&s dé R(l)(hr’a )l l: 1)[9mKn +120mm+2119m1cnj|

az
r(7‘11-2n (h,,Es) [Izmm - ‘(Eszi—l)lzomm

Fm+2£1) R 0 (By ) l:(‘:sz_l)leKn + 2[9m1<n}

~(m+2)(m+2£1)RY), , (1, &) [@f—l)lzzmm +2[8mvcn}

t1
-(m-;z ) r(rlz?i-Zn(hr’gs [:(m+2)[19mmi120m|(n:l (C.15)

(E2-1)

i 32 d

(r)X)Zn(+)lKn‘2 Ii(éz_l)/ dé r(rlzlln(hr’ar)lé_g (]6m1cn ISmKn)
r
12 d
+(&3_1)/ d&r r(rtli-ln(hr’ér)lg §(124m1<n [25mKn)

8 @07 R 0l (€D i)

r

m+12E, 4 R®
@2_1)3/2 d& m+1n

(hr’ér)l { 1)2[26ml<n

2%,
+2(é3—1)[5mm +I25mKn }+ (éz—sl) Rr(rzz?f-l,n (hrsgs)[24mm
s
2 2
és d (l) (hr’&r>lg_& [25mKni] (C16)

- (&“3_1)1/2 d& m+1n

2 i
QXD = E2-1RE (&) (1 Lgen £ Lypmn) [(&3—1)2 ;"&—ZR“G»,& ol

m,x,n"
r

- (E2-1) it R(’)(h,,ﬁ,.)l&r:éx.(—1im)(im)R,(,‘;,),(h,,E,s)} I (C.17)
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WXr83 = E=D RS 0 (B Es) (1 42) Ustmen +E32mn) £ Uz = Ts1mn))

li(&.'z 2 é f:;lz.n (hr ’ir) l& = - &S (;;2_1) {—1x(m +2)}

d_p()
. d&_, m+2n
.

(hr ’ir) l +(m+2)Rr(7i?1-2,n (hr’gs):] '17m1cn <C18)

172
XD = =2 (m+1) (E2-1) [& RSt 1 By o) Dy

+(&'s_ d(é n;+1,n (hr’ér)lg___é [zmm:l (Clg)

; 172 d i
(%)Xz()(,ic),n= -2 1:@:' 1) R4, (1, 5, )I { “Dli1n Hi2.xn }

g
&, (£2-1)"? dg Ron<h,,a,>l§r . {(&f—l)llo,m +113,m}
R o OB R (G WA
s dér rior 10,xn 13,xn
Z&S (t) 2
+(a2_1) ACHRIDE ) SORES (S5 ) ey PO (C.20)
X0n= 0 c21)

Explicit expressions of Y:%, (v=0), Vv  (v=2), and OY Y2 s for J =M
and J =N have the same structure as those of the corresponding X, but with the func-
tions J evaluated with respect to 4/, which is the value of A inside the rth spheroid.
&, is the value of & on the surface of the spheroid considered. I;,,, —/ 11,kn are given

in [35] and 113 «, —I33x, in Appendix D.

It should be noted that for computational purposes, the following relations are

used [28],[44]:
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Smn (h ’TI) =Kmn Slm] n (h ’n)

R (e &) =Rl (hy ), <1234

. (C.22)
apry=c-n 2 el g g imingy
Ny () =K 2 Nipt o (1)
where
Im|—m n )

(n+Im)



138

APPENDIX D
EVALUATION OF THE INTEGRALS IN APPENDIX C
The integrals /1,5, —/33,n, that result when applying the orthogonality proper-
ties of the spheroidal angle functions in equations (C.10)—(C. 13) are evaluated using

the recurrence relations for the associated Legendre functions and the integrals [34],

[351, [53]
} PrMPEMydn = ——— B (D.1)
e} Y @uAD (u-m)t M
. 0, VoL
ijg*z(n)P?(ﬂ)dn=< (2;%1) (\f\_’;"i)zl)!, V=i (D.2)
2( +1) ?’*”’) [1+(-1)V*],  v<p

where 8, is the Kronecker delta function. The integrals Iy,n, —Zomnn. [1onn. and
Iy nn are evaluated in [35]. We derived expressions for [i5n,, [j3y,, and

Liamnn —133mn, 10 the form:

d
Iy Nn = fn(l n2)3/2—nSOn S1,148 @M

<« (g
=2
qil (29 +3)

+1)(g+2) [_ (q-2)(q—1)gd;% . q(q+1)%d)"
(2¢-3)2¢-D(2q+1) = (2¢-1)(2g9+1)(2g+5)

@234 @+ } L

Qq+D2q+5)2q+T) | Qq+5@qag+9) [ o ) even

=0, (n+N) odd (D.3)
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h 32
/
Iisng = j(l"ﬂz) Son S1,14n @M
21

Jp i, (g+1)(g+2) I:_ (q—l)qdqofz . (3q2+5q—4)dqo"
TS Qe+ (2¢-3)2q-1)2q+1)  (2¢-1)(2q+1)(2q+5)

B (3q2+13q+8)dq+2 _ (61+3)(q+4)dff4 :I . N
QRg+1DQ2q+5)2q+7) (Qq+35)Q2q+T)2g+9) 17 , (n+N) even

=0, (n+N) odd

(D.4)
LiamNn = .’;(l_nz)nsmn Sm.m+N an
2§Dy [ dpgN g }
S| @m+2g-3)2m+2q-1) L 2m+2q-5) (2m+2q-1)
Cm+1)2m+q+1)q [d(’,"-’i"’w g }
Cm+2g-1)2m+2q+3) L Cm+2g-1) @Cm+2q+3)
+(2m+q+1)(2m+q+2)(2m+q+3)[ s - ]
Cm+2g+3)(2m+2g+5) Cm+2g+3) (Cm+2g+7)
Cm+q)! mn
. am, +N) od
Gma2g+Dgl %a » (w¥lV)odd
=0, (n+N) even (D.5)
2 d
LiSmNn = .[1(1“712) ET'.I_Smn Sm,m+N AN
2§ Qm+)ldg”™ | (m+q+1)(g-2)(g-1)q [ g gt ]
g= Cm+2g+1)q! | Cm+2g-3)2m+2g-1) Cm+2g-5) (2m+2g-1)
0,1

[20m+q)2+5m +2q [(2m+q +1) g ag
+ q q q q _
Cm+2q-1)2m+2g+3) 2m+2q-1) (@2m+2g+3)



_ (m+q)Cm+q+1)2m+q+2)2m+q +3) [ d;’ic{"*” _ d7i3 N
Cm+2q+3)2m+2q +5) @m+2g+3)  QCm+29+7)

(n+N) odd

=0, (n+N) even

d
_Smn Sm,m+N dﬂ

1
Lomna = | (=090
16mN —J; d.n

= LymNn = L15mNn

1
mn

5 (1-—n2)

[17mNn = Sm,m+N d'ﬂ

(=] ' [==]
Z/ (2m _*'_q ) dgm Z/d:n,m+N
q=0,1 q- r=q+1

. (2””‘1) dmmN 5 gm (4N odd

q=1,0 r=q+1

=0, (n+N)even

a

118mNn = dﬂ

IL—.»—-‘

S Sm,m+N dﬂ

— Z (2m+Q) dmm+N den
q=1,0 r=q+l

i= -] ' [=-]
q=0,1 : r=q+1

=0, (n+N)even, m=0

i

(D.6)

(D.7)

(D.8)

(D.9)
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1
Ligmin = fl (11D M S s2n S msn 4T

Y (2m+g+5) l: i I 1. }
7=0.1 @m+2g+5)2m+q+T7) (2m+2q9+3) (2m+2g+9)
L1 q dgg L Omigesdpp ]
(2m+29+7) L Cm+2g+3)2m+2q+5)  (2m+2g+9)2m+2g+11)
. a i dp ) 2a7,mN }
(2m+2q+1) L Qm+2g-1)2m+2g+3) (Q2m+2g+3)2m +2g+5)

Em+q+4)! +2,
am+2 45 d{zn ", (n+N) odd
=0, (rn+N) even (D.10)

1
2 d

Loomnn = I(l—ﬂz) I Sm+2.n S maN AT
-1 n

=2 i,{ (m+q+3)q l: d;n*,in ngﬂlflw :]

a1 | @m+2q+1)@m+2q+3) L @m+2q—1)  2m+2q+5)
(m+q +2)(2m+q+5) [ s R X/ J
Qm+2q+5)2m+2q+7) L @m+2q+3)  (2m+2q+9)
[ (m+q+3)q dim N (maq2)@m+q+5) dp gy } 1
@Cm+2g+3)2m+2q+5) 2m+2g+9)2m+2g+11) 2m+2g+7)
(2772 +q +4)' m+2,n
BmaagesT T () odd
=0, (n+N) even | (D.11)

1
d
IZlmNn - ‘f(1~n2)n2___ m+2,n Sm,m+N an
-1 an

= L9mnn = 120mNn (D.12)
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[22mNn = I —_Sm+2.n Sm,m+N dﬂ
-1 (I=m )

oo 1 Nt hind
=2 3 @2m+r)! d;n'm+N Z/ [qd(fznjiln +(2m+2g+3) Z'd’\;"“z'”], (n+N) odd

{
r=0,1 r q=r v=q+1

=0, (n+N)even (D.13)

T d

= L dn Sm+2n Sp,manN AT

>, 2m+r)! <
=23 Cmr)t mr'r) d;""”+NZ [—q(m+q+1)d;"_+12"‘

r=0,1 : q=r

+(m+2)2m+2q+3) T'dT2"], (n+N) odd
v=q+1

=0 (n+N)even (D.14)

32 d
DoamNn = .fﬂ(l -n?) TS”H"I"S'" manN AT

=2

1Y \g!

=, QmAq+)ldIY | o0y [ (q-DdpgN
g=01 (2m+29+3)q! Cm+2g+1) L 2m+2g-3)2m+2g-1)

@m+1)dpmN @m+q+2) dng N }
(2m +2q-1)2m+2q +3) 2m+2g+3)2m+2g+5)

_ (m+q+D)(2m+q+3) l: (q*'l)d?’mw
(2m+29+5) Cm+2q+1)(2m+24+3)

Q@m+1)drgN (2m+q+4) drp N } N
, (n+
T om+2q3)2m+2q+7) | @m+2q+T)(2m+24+9) (n+N) even

=0, (n+N) odd (D.15)
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3/2
[25mNn :[ (1'— m+1 n Sm ym+N dT]

Y Qm+q+) A7 |0 10 43)2m+q+4)
g=0.1 2m+2g+3)q! @Cm+2q+5)
[ dén,m+N 2d{r{n+:£n+N
Cm+2g+1)2m+2g+3) (2m+2q+3)Cm+2qg+7)
dm m+N } B (q—l)q {j dgz__ng
(2m +2q +7)(2m+2g +9) Cm+2g+1) L Cm+2g-3)2m+2g-1)
T Qm+2q- 1)(2m 12943) | Qm+2g+3)2m+29+5) | | eve
=0, (n+N) odd (D.16)
1
Lgnn = | ———5 S d
26mNn — 2 (1—ﬂ2)1/2 m+ln 2m m+N n
i/ (2m+r) dm.,m+N i/dgz+1,n, (fl+N) even
r=0,1 q=r
=0, (n+N)odd (D17

1
1/2 d 212 d
- - _ d
L7mNn _J;(l n? an [(1 2 an —— Spn }Sm,m+N n

2 Z ((g +;) dq+1 dyi q+1 +2 Z dON Zdtﬂ , (n+N)even, m=0
q=1.0 r=0,1 t=r+1

-3 (2mqw:q)' [q(m+q)(-2+”(lq+z;)ir?)+q+l) dm g (1)
q=0,1

'd‘rzn,m-rN Z’d;’"‘—(m—l)d('{‘" Z’d;’h”‘*N:], (n+N) even, m=0
r=q+2 r=q+2

=0, (n+N)odd (D.18)
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1
d i
I = | ma-n®"? [ S }S d
28mNn ‘:l.l ( n ) dn (1—‘]’]2)1/2 mn m,m+N n

_ — (2m+Q)! [:(m+2q+1> mn gm,m+N m.m+N
= q;zdl p @m+2g+D) dq dq +(m+1)dq

. XYM = (m=-1)dp" Z'd,’"’”‘w], (n+N) even
r=q+2 r=q+2

=0, (n+N)odd (D.19)

1
12 d
129mNn = '[1(1—1']2) E]—Smﬂ,n Sm,m+N dT]

=2 if (m+q+1)(2m+q+1)' dm+1,ndc)7n+:in+N

P 2m+2g+3)q! 1
o ’ =-]
+2m+1) 3 CIEDL grmel S gmela - (n4N) odd
q=1,0 q- r=q+1
=0, (n+N) even (D.20)

1
[30mNn = J'n2sm+2,n Sm,m+N dﬂ
-1

=, @m+r)tdr N {(2m +r+1)2m+r +2)(2m+r +3)

+1)dm*2n
5 @mt2r+Dr! Qm+2r+3)2m+2r+5) [<r )ar

+@2m+2r+5) Y/dptn

} + Cm+1)Cm~+r+1)r

-1 m+2.n
Qm+2r—1)2m+2r +3) [(r ) a7

q=r+2
— —2)(7‘—1)?‘ m+2,n
2 2r+1 dm+2,n j! _ (l‘ [ -3} gm+2,
H@maareh 24 Gmi2r3)@mazr—1) LTI

+(2m+2r-3) z'dg““] } (n+N) even
q=r-2

=0, (n+N)odd (b.21)



d
IBlmNn = -[n d Sm+2.n Sm,m+N dT\
-1 n

2 3 Qm+r)tdr N r [ 1 4mE2n
= a—— — + )
,%1 rl Gmaarel) L DIm)ar

+(m+2)Cm+2r+1) i'd(j”z’” :] + i’

v=r

I:—q (m+q+1) d;"_‘“lz"‘
g=r+1

+(M+2)2m+2¢ +3) Z’d'v’““z"‘} , (n+N) even
v=g+1

=0, (n+N)odd

1
1
[32mNn = —J-l msm+2,n Sm,m.+N dﬂ

oo

{
q=0,1 q. r=q

YN _om Qma2g -1y 37 dmmN

r=q-+2 r=q
. l:Z’(Zm+2t+3) Z'd;’”’z'”:] }, (n+N) even
t"—"q r=t
=0, (n+N)odd

d2
'd_n'{ Sm+2,n Sm,m+N dﬂ

1
L33unn = J;(l—ﬂz)

2 2
= 2[31mNn +(m +2) I32mNn ")"m+2,n 17mNn +h I30mNn

For m =0, 11 8min =2drON Z,d\(/)-ﬁl

v=r

= 3 @mta=2)! {(Zm +q-1)2m+q)2m+2g+3). 3’ drien
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(D.22)

(D.23)

(D.24)
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APPENDIX E

DEFINITIONS OF THE VARIOUS MATRICES INTRODUCED IN CHAPTER 6

. ==()T i) ’ .
The matrices M°) E.n), M(‘)T(é ) for i=1,4, and the transpose of the

matrices A, B in (6.1) and (6.2) are [45]

MY En=mPEm MPEn ...,

7T s s 1 ? oan? i 7oA .
M & =MPEn) MPEN) ... =14 E.1)
T -4, A,...], BT =B, B,...] (E.2)
in which
M(i) - M*‘(‘) M‘(l) S
n (&9”)— (& n q)) (F;,n,q)) 1= 13 2, 394 (E3)
A =Vh£§—A———ﬁR(4)(h§ )S,. (h,0) (E.4)
n A Nln (h) A in *
and
B, =V, h’(& 1/2R(4)(h &S, (h',0) (E.5)
n B Nln (h ) B in M
R 4, S,,, and N,, are the spheroidal radial function of the fourth kind, the spheroidal
in n in D

angle function, and the normalization constant, respectively which are given in Appen-
dix A.

The structure of the matrix [I'] in (6.5) is similar to that of [T, ] defined in
Appendix B, but with its elements being submatrices of the form [I;]; and [*I; ] for
1,0=...-2,-1,0,1,2,... and i =1,2,3,4,5, defined by C/[T']] and C;"[T'], respec-

tively, with the asterisk denoting the complex conjugate, and



1

Ol =+ Oy )+ (= 03]
C}= %[(cn.-—cw,) eyt eyl

;1 .
C3= E(sz’ + -]czy')

s .
C4=sz‘-—jcyz'

/7
CS =y

® et it @7 Tl ®HArT It @t it
Q o, lol Q o, lol+l Q c,lol+2 Q o, lol+3
@i+l @At iti+l @At lTi+l @At T+l
[F]T _ Q c, lol Q o, lol+1 Q c,lol+2 Q G, lol+3
s~ | @Wprnitls2 @Artniti2 @ aniti+2 ()T ITi+2

Q c, lol Q o, lol+l Q o, lol+2 Q c,lol+3
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(E.6)

(E.7)

The coefficients Cgyr, Cqyrs Cgpr fOr a =x,y,z, are given in (2.4), and the rotational-

translational coefficients )Q’ /" are given in Appendix B. The structure of the matrix

[T’] in (6.11) is similar to that of [I"], with its elements consisting of the submatrices

[Vl [*IY1

The elements of the submatrices [IY]> are obtained from the

corresponding ones of [[;1] by replacing Q"% by “Q[¥, given in Appendix B,

and C/ by C;, given in (2.16).

The matrix [A] introduced in (6.6) is given by

[Al=[[A0] [A)] [A;]...] (E.8)
where
[A)=[[GIT-"RYY, BI'-UR) (Bl -5l (E.9)
-1 * 1 ~1 * 1 -1 * 1
A]=[ 01, - U'Ble, [R5 -URL,, [BJ-0Bl
G- (Bl (Bl ey~ (hlgy [BIG-UBlG1 (B0
for o21. The submamices [[;1%', and [*LI3' for o=...-2,-1,0,1,2,... and

i =1,2,3,4,5, are C/[T1Z" and C/"[T']}", respectively, with C{ and [[):" as defined
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above. The elements of the matrix [A’] introduced in (6.11) are obtained from the -

corresponding elements of [A] by replacing C/ by C; and T by I,

The transpose of the matrix [R4] in (6.14) is defined as

Ry)" = [[XIPV]-[ X7  [X2PT-[X7 1 [0 [0 . . . (E.11)
[Rp] has the same structure as that of [R,], but with the corresponding elements
evaluated with respect to the primed system. [ XF"] and [(XV] are given in

Appendix C.

The coefficients A; and B;, introduced in Chapter 6 are given by

A>—VhwR(”(h§ )8, (h,0) (E.12)
n— YA Nln(h) 1n *2A n » .

({;};2_1)1/2 W
B, =Vgh' ————R/(h',£,)S,,,(h',0 E.13
n B Nm(h,) ln( éB) ln( ) ( )



