The Randomized Play the Winner

Rule in Adaptive Clinical Trials

By

Heather J. Prior

A Thesis
Submitted to the Faculty of Graduate Studies
In Partial Fulfillment of the Requirements

For the Degree of
Master of Science

Department of Statistics
University of Manitoba
Winnipeg, Manitoba

© 2003 by Heather J. Prior



THE UNIVERSITY OF MANITOBA
FACULTY OF GRADUATE STUDIES

whRxk

COPYRIGHT PERMISSION PAGE

THE RANDOMIZED PLAY THE WINNER RULE IN ADAPTIVE CLINICAL TRIALS.
BY

Heather Jane Prior

A Thesis/Practicum submitted to the Faculty of Graduate Studies of The University
of Manitoba in partial fulfillment of the requirements of the degree

of
Master of Science

HEATHER JANE PRIOR © 2003

Permission has been granted to the Library of The University of Manitoba to lend or sell
copies of this thesis/practicum, to the National Library of Canada to microfilm this thesis and
to lend or sell copies of the film, and to University Microfilm Inc. to publish an abstract of this
thesis/practicum. '

The author reserves other publication rights, and neither this thesis/practicum nor extensive
extracts from it may be printed or otherwise reproduced without the author's written
permission.



Abstract

The randomized play the winner rule design, although popular in the statistical
literature since its introduction by Wei and Durham in 1978, has been rarely used in
medical trials. One well-known instance where the design was used in an adaptive
clinical trial was in the controversial ECMO trials. The ECMO trials randomized their
extremely ill infant patients into one of two treatments. The controversy surrounding the
trials resulted from the ethical concerns of randomizing patients with life-threatening
illnesses. The randomized play the winner rule attempts to distinguish these ethical
issues by making a compromise between information gathering and immediate payoff to
the patient. The primary goal of the design is to maximize the number of patients who
receive the superior treatment without sacrificing the power of the test so that a valid
conclusion can still be obtained. Through simulation studies, the expected proportion of
patients allocated to the superior treatment is compared for various randomized and
adaptive designs. Furthermore, the monotonicity of the randomized play the winner
design is studied through modifications to the parameters in the classical randomized play
the winner rule design. Finally, comparisons with real clinical trials will attempt to

improve upon previous results.
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Chapter 1

Introduction

1.1 Background Information

The science of medicine is one of the greatest accomplishments of mankind.
Medical knowledge has expanded faster in the past century than it ever has before. The
study of medicine, which pursues to prolong peoples’ lives as well as reduce their pain
and suffering, is both rewarding and endless. Medical research plays an integral part in
improving the knowledge base that doctors have to help cure their patients.

Before there was medical research or clinical trials, there was the scientific
method. The scientific method originated in the seventeenth century and was developed
by great scientists including Galileo, Francis Bacon and Sir Isaac Newton [15]. The
process of the scientific method involves making observations about a process or item
under study without any prior assumptions. Randomization was incorporated into the
scientific method by Sir Ronald A. Fisher in the early twentieth century. Fisher was
conducting agricultural experiments when he had the innovative idea of allocating
different conditions to plots of land “deliberately at random” [12], and thus, the first
randomized experiment was conducted.

Around the same time that Fisher was carrying out randomized comparative

experiments, Karl Pearson, considered another founder of statistics, was developing the



concept of a control [17]. He reasoned that in order to study the full effects of an anti-
typhiod inoculation, only half of those who wished to receive the inoculation should
actually receive it, while the other half should receive a placebo. Furthermore, Pearson
felt that for the control to be most effective, the two groups should be as similar as
possible in terms of age, sex and other covariates that may bias the trial.

Today, randomized experiments involving controls to reduce bias are used in
many disciplines such as chemistry, biology and psychology. In medical clinical trials,
randomization is considered a necessity. | Almost all medical experiments must
incorporate some sort of randomization if their results are to be considered valid. In most
cases, medical trials use equal randomization, also called 50-50 randomization, where an
equal number of patients receive each of the treatments and the treatment groups are most
likely balanced with respect to the patients’ characteristics. This is often considered the
only way to allocate patients to treatments in order to obtain a valid statistical conclusion,
and in most cases it is the best way.

When patients are extremely ill, conducting a medical experiment using equal
allocation can be considered unethical. If one experimental treatment or pharmaceutical
holds promise of performing better than the conventional treatment, then preventing half
of the deathly-ill patients under study from receiving the new treatment is indeed
distressing to them. Some patients will take their chances in hopes of receiving the new
treatment. However, just because the treatment is new and experimental does not mean
that it is superior. In a randomized clinical trial, the superior treatment is not determined
until the end of the study and in some cases there may be insufficient evidence to detect a

difference among treatments. So, the fifty per cent of patients hoping to receive a



treatment better than the conventional one are not only disappointed, but may also have
been randomized to receive an inferior treatment.

For very ill patients enrolled in clinical trials, there are more humane and ethical
alternatives to equal randomization.  Adaptive clinical trials incorporate both
randomization and information from the trial to identify the superior treatment under
study and to maximize the proportion of patients who receive that treatment. Adaptive
designs are a more ethical alternative to randomized clinical trials, particularly equal
randomization, because they allocate more than fifty per cent of patients to the superior
treatment. For critical patients, this may mean more lives saved.

There have been cases in the history of clinical trials that would 'have warranted
use of adaptive designs over randomized clinical trials simply because of the possibility
of more lives saved. The use of equal randomization was unethical. One such instance is
the UK ECMO trial of 1993-1995 [25]. Extracorporeal membrane oxygenation (ECMO)
was tested in a clinical trial for treatment of persistent pulmonary hypertension in
newborns. Due to the extreme severity of the illness, randomly assigning the young
patients to either ECMO or the conventional treatment limited the proportion of babies
who could receive the ECMO treatment to only half. An adaptive design would have
been a more ethical choice for the study. A similar case was in the Antiviral Zidovudine
Treatment (AZT) trial of 1991-1994 [5]. The pharmaceutical AZT was given to Human
Immunodeficiency Virus (HIV) positive pregnant women to prevent the spreading of the
virus to their unborn child. Again, a completely randomized design was used in the trial
when an adaptive design would have been more appropriate and could have possibly

prevented more HIV positive babies.



Although adaptive designs are not suitable for all clinical trials, in cases where the
usual 50-50 randomization is unethical; adaptive designs are an attractive alternative.
They are currently not widely used in the medical community, but hopefully will become
as acceptable as concepts such as the scientific method, the randomized trial and the

control group are in present day.

1.2 Summary

There are both advantages and disadvantages to adopting an adaptive design
instead of a randomized design in a clinical trial. Obviously, any ethical worry is
diminished when an adaptive design is used, especially when patients are critically ill.
Since more patients are allocated to the superior treatment, more have the benefit of that
treatment and a better chance of improving their health. Randomized clinical trials,
however, are the most powerful choice for detecting a difference between treatments.
Certainly, they have achieved hallowed status [3] among experimental designs in the field
of medicine due to their ability to draw a statistically significant conclusion and to reduce
bias.

In cases where patients are quite ill, the objective of using a randomized design
with a powerful statistical conclusion plays second to maximizing the number of patients
who receive the superior treatment in the trial. Adaptive clinical trials are ideal in such
cases because they can be thought of as a compromise between the goal of gathering
information for future patients and the goal of immediate payoff to current patients.
Thus, adaptive designs partially satisfy both collective ethics and individual ethics.
Chapter two describes in detail the ethical concerns of randomization in medical trials

and how various adaptive designs overcome these concerns. Also, historic cases of



unethical randomization including the UK ECMO trial and the AZT trial will be
discussed.

The main advantage of adaptive designs is that they maximize the number of
patients allocated to the superior treatment without significant loss of power. This is a
key idea that will be demonstrated in this thesis through simulation studies. In particular,
Wei and Durham’s Randomized Play the Winner Rule (RPW) [30] will be compared with
50-50 randomization and a sequential maximum likelihood procedure specified by
Neyman Allocation [18]. Chapter three discusses the basics of random number
simulation, and then uses simulation results to compare the aforementioned designs and
explore the monotonic properties of the randomized play the winner design. Then,
simulations of real data will be compared with actual experiments to see if the use of
adaptive design methods could have improved the number of patients who received the
superior treatment without noticeable loss of power. Finally, some recommendations are
made as to when it is appropriate to use certain adaptive designs.

The goal of this thesis is to show that a randomized design is not always the best
choice for a clinical trial, and to demonstrate this by way of simulation studies. It will be
shown that adaptive clinical trials, and the randomized play the winner rule in particular,
are simple to integrate into a medical trial and carry out, and provide results nearly as

powerful as randomized clinical trials without overt ethical question.



Chapter 2

Randomized Trials and Adaptive Designs

2.1 Randomization: Ethics and Practice

To conduct an effective experiment is no menial task; it takes planned, purposeful
and methodological research. To conduct an effective medical experiment, however, is
something quite more challenging. The medical community, including physicians and
statisticians, believe that for clinical trial to be valid, it must include randomization. Sir
Ronald A. Fisher, often named “the father of statistics,” developed the concept of the
comparative randomized experiment [12].. Fisher believed that randomization was
essential to an experiment. Without randomization, he reasoned, an experiment would be
reduced to an observational study. A randomized experiment improves on an
observational study due to the fact that at the end of a successful randomized trial, it may
be possible to establish a cause and effect relationship, while at the end of an
observational study, only an association can be concluded.

Randomization reduces the possibility of systematic bias in a trial. Without
randomization or comparison of treatments, experimental results can be negatively
affected by the experimental design, the selection of patients or the placebo effect. Bias,
or the systematic favouritism toward one outcome, may ensue. In a medical trial, there

are usually two groups of patients under study, the treatment group and the control group.



Randomly placing subjects into one of the two groups reduces the probability that the
response of one group may dominate over the other due to chance, or due to confounding
factors. It also helps in balancing out unknown covariates, or factors that have the
possibility to bias final results. Once treatment groups are balanced, analysis can be
conducted without being concerned about systematic bias.  Furthermore, using
randomization in clinical trials simplifies the method of analysis and also guarantees the
validity of the conclusion. Probabilities used in the random assignment of treatment
groups can also be used in the comparison of the treatments. Another feature of
randomization is that these probabilities remain constant throughout the entire trial. Once
a comparison is made, and if there is a statistically significant difference between the two
treatments, a cause and effect relationship can be established. Thus, randomization is
necessary in medical trials to reduce bias and make the leap from association to
“-causation.

For obvious reasons the medical community trusts randomized clinical trials as
the gold standard of medical experimentation [3]. Randomized trials have been used for
decades, and thus are usually positively received and well understood. Many clinicians
are quite sceptical of new treatments or pharmaceuticals developed under unconventional
rheans, especially if randomization was not used. Randomized clinical trials do however
have their weaknesses. If the trial is a double-blind experiment, where neither the
physician nor the patient knows which treatment they are to receive, then both parties
give up control of the treatment of the patient. Moreover, if the allocation is 1:1,
physicians may be apprehensive about relinquishing control ‘of treatment, or they may
decline to put certain patients in the trial for fear of having them receive the placebo. In

these cases the clinical trial cannot be considered truly random since the doctor has



shown favouritism with his patients. There are other cases where doctors only enrol
severely ill patients into trials whom he féels have nothing to lose by experimenting with
a new treatment. Despite these disadvantages, randomized clinical trials remain the
undisputed primary choice for experimentation in the medical field.

The outcomes of medical trials have the potential to affect many human lives.
Not only is there a drive to perform the trial well in the traditional sense, there is also a
drive to perform the trial well in an ethical sense. There are many ethical issues
associated with medical experiments. The main ethical dilemma involves respecting the
conflicting issues of individual ethics and collective ethics [4]. Both the wishes of the
individual patient and future patients must be incorporated into the trial. Thus, to address
the conflict a compromise must be made between what is best for the individual, and
what is best for society.

It is often difficult to fully satisfy both individual and collective ethics
simultaneously. And, often those who participate in a medical trial do not agree as to
which side of the ethical dilemma should prevail. Obviously, patients in a trial care more
for their well being than any patients after a trial. Moreover, patients trust that their
caregivers will also do what is best for their individual needs. Physicians, who are bound
by the Hippocratic Principle, “To do no harm,” [32] must consider the interests of their
patient before the interests of society. This concept has been termed the personal care
principle [8]. Putting the needs of their patient above all else often makes it difficult for a
doctor to participate in a clinical trial. They are torn between the care of their current
patients and finding a better method of caring for future patients. Clinicians may wish to
discover new, more effective ways of treating illness, but to do this means that their

current patients may have to be randomized in a clinical trial. Randomization comes with
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the price of forsaking the expectation that the doctor will always give his patient what he
believes is the best treatment. In other words, the physician must forgo the personal care
principle.

The only case where the personal care principle is not violated is if the physician
is truly undecided between a current treatment and a new, experimental treatment. Here,
the physician is in a state of equipoise [7], or mental suspense. He has no prior
knowledge that one treatment is superior over the other. If equipoise exists between two
treatments, then a doctor’s fears of violating his patient’s trust can be subdued, provided
that the patients involved in the trial have been fully informed of the risks associated with
the trial. Also, sick patients who volunteer for the trial may have nothing to lose; they
will either receive the new treatment, which has not been proven to be any better or worse
than the current one, or they will receive the standard treatment, which would have been
the case anyway if they had not registered in the trial. Informed consent [16] is essential
if the personal care principle is to remain significant. In cases where the physician has a
pre-determined state of mind as to which treatment will most benefit their patients, true
equipoise does not exist and a randomized clinical trial is unethical.

Those who design and carry out the randomized clinical trial, usually statisticians,
are mostly concerned with having a well-balanced experiment, resulting in a high power
and a valid conclusion. It is important to note that a trial need not necessarily have 1:1
allocation to have a high power. Often it can be difficult to get volunteers to a trial if
there is only a fifty per cent chance of receiving the new treatment. If more subjects are
placed in the treatment group, say using a 3:1 allocation, then more patients may receive
the new, better treatment. Only the use of a balanced design will maximize the power of

the test. A significant conclusion can still be reached without using 1:1 allocation if the



probabilities of selection are adjusted at the beginning of the trial. Statisticians strive for
a significant conclusion of the trial sincé it could lead to new treatments. These new
treatments may aid in curing future patients and while this directly benefits society as a
whole, does little for the patients who were in the trial.

Ethicists in most cases are.involved with a medical trial to some extent. They
may be torn as to which category deserves more weight ethically, the individual or the
society. It is impossible to say for certain which side deserves more consideration:
collective ethics or individual ethics [14]. Oné factor that may make the choice between
collective ethics and individual ethics easier is the severity of the disease under study.
The more severe the disease, the more urgent the need is to care for the individual subject
before the group. Yet, the ethical dilemma still comes into play since a severe disease
beckons for a faster, more humane cure for all of society to benefit from. Some ethicists
believe that if a true state of equipoise exists, then a physician is acting within the best
interests of both current and future patients. One can further argue that given a state of
equipoise, satisfying the collective need of society to find a cure for a disease also
satisfies the individual need of future patients to have the best treatment. Only after a
clinical trial has been carried out can a physician make a fully informed decision as to the

-best treatment for his patient.

2.2 Historical Cases: Unethical Randomization

There are cases where 1:1 allocation in a randomized clinical trial was unethical,
but was used nonetheless. The classic example is of the British ECMO (Extracorporeal
membrane oxygenation) trial [25]. ECMO is currently used to treat newborn babies

inflicted with persistent pulmonary hypertension (PPHN), a condition where the baby has
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decreased blood flow through the lungs, resulting in insﬁfﬁcient oxygenation of the
blood. Before the onset of ECMO, the conventional therapy for PPHN was intensive
ventilatory support. This treatment has a very low survival rate for newborns with severe
forms of the disease. ECMO had been used to treat adults with acute respiratory failure,
but failed to show improvements over conventional treatments. In the late 1970’s ECMO
began to be used as an experimental treatment on infants with PPHN. Some early studies
showed promising results of the ECMO treatment on newborns, but these were
observational studies since no control group was used as a comparison, only historical
data[2, 11, 31].

In 1985, Dr. Robert Bartlett and his colleagues at the University of Michigan
performed an adaptive clinical trial investigating the benefits of ECMO over the
conventional treatment [1]. Their study incorporated the randomized consent design
developed by Zelen [34] in 1979. Treatment assignments were based on the randomized
urn designs proposed by Wei and Durham in 1978 [26]. This study resulted in eleven
babies receiving ECMO and only one receiving the conventional treatment. Of these
patients there was only one death, the baby who received the conventional treatment.
This resulted in a 0% failure rate for ECMO and a 100% failure rate for the conventional
treatment. Some claimed that this was good evidence that the survival rate for patients
treated with ECMO was significantly higher than patients treated with the conventional
medical therapy. Many, however, were not convinced because the study did not have
balanced sample sizes. Obviously, it is difficult to compare the results of one patient to a
group. Other small sample studies that were done include a 2-stage sequential trial in
1989 by O’Rourke et al. [13] and a randomized trial in 1994 by Gross et al. [9]. Both

studies should an approximate 40% increase in the failure rate whenever the conventional
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treatment was compared with ECMO. Many in the medical and statistical communities
were still unconvinced that ECMO was a statistically significant improvement other the
usual therapies for PPHN.

In 1993, a large-scale study of ECMO was undertaken by physicians in the UK
[25]. They believed that performing a randomized medical trial was the only way to
finally prove the treatment’s superiority. The reason the trial was not only controversial,
but also unethical was 50-50 randomization was used in the trial. Due to the severity of
the disease, and the presence of evidence that 6ne treatment may be inferior, randomizing
infants in a trial brings up ethical concerns. The doctors involved were basically giving
half of the newborns a better chance of survival. The results of the trial were as follows:
30 out of 93 (32.3%) babies who received ECMO died, and 54 out of 92 (58.7%) babies
who received the conventional treatment died. The findings of the clinical trial proved
once and for all that ECMO was indeed a superior treatment for newborn babies afflicted
with PPHN. Unfortunately, 84 babies died in this trial. If another method of clinical
trials had been adopted other than randomization, maybe some lives would have been
saved with the same end result. Clearly, many newborns died unnecessarily.

Given the stress placed on the parents of a sick newborn, the physicians thought it
would be best to use randomized informed consent [27]. This is another case of unethical
randomization. All involved doubtlessly believed that they were acting in the best
interests of the patients, and their parents. By using randomized informed consent, the
physicians would only inform the parents of the newbomn selected to receive ECMO
treatment that their baby was participating in a clinical trial. The parents of the newborn
receiving the conventional therapy would not be informed that their baby was involved in

a trial, or that he or she had been randomized to receive the conventional therapy. Some
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may argue that there is no harm done keeping one half of the subjects in the dark if it is
the half that receives the usual treatment since they would have anyway if they had not
participated in the trial. The ethical problem lies with the fact that collective ethics
prevails when informed consent is randomized. The physicians put the welfare of society
above the welfare of their patient when they focus on the trial instead of their patient. As
doctors, they are sworn to put the welfare of their patient first. If they inform the patient
as to the aspects of the trial and share the decision making process with them, they
alleviate the tension between individual and collective ethics. In a sense, once the patient
is fully involved in his care, and has made a fully informed choice as to whether to
participate in a trial or not, then the pressure is off the physician to fulfill his role as a
researcher and he can now fully focus on his role as a care-giver.

Another unforgettable case in the history of randomized clinical trials is that of
the 1994 trial concerning the drug Antiviral Zidovudine Treatment (AZT), used for
reducing the risk of transference of HIV from mother to unborn child [5]. As was the
case with the ECMO treatment, there was strong, but not statistically significant evidence
that AZT was very effective in preventing the spread of HIV. A trial was conducted
using 50-50 randomization in order to test whether AZT would be more effective than a
placebo. 476 patients were involved in the trial, 238 in each of the treatment and placebo
groups. After the birth of each baby, an HIV test was administered in order to determine
if the newborn had contracted the virus. The final results of the trial were that 60 (25.2%)
newborns had contracted HIV in the placebo group, while only 20 (8.4%) newborns in
the treatment group had contracted the virus. This amounted to a statistically significant
difference between the two groups. Thus, both researchers and physicians had very

strong evidence that AZT prevents the transference of HIV from mother to unborn child,
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but the cost of that result was high. The 60 infants whose mothers received a placebo
were born with HIV and would most likely die of AIDS at a young age. More infants
could have been saved if 1:1 allocation had not been used in the trial. This is another

circumstance where the greater good of society was put above the welfare of unbom

children.

2.3 Alternatives to Randomized Clinical Trials

In clinical trials involving the research of treatments for life-threatening illnesses,
such as the above examples of ECMO and AZT, randomization is often an unethical
choice. There are other tools available to test the effectiveness of a new drug or
treatment. Historical data, sequential clinical trials and adaptive clinical trials are all
alternatives to randomized clinical trials. Although these methods do come with some
disadvantages, they are much more ethically sound. This is most important when dealing
with severe diseases, as all parties involved wish to give the patient the best possible
chance for survival. If desperately ill patients are involved in a clinical trial, it is to their
benefit that they have a better than a 50-50‘ chance of receiving a superior treatment.

Historical data can be a powerful tool in a trial if used properly. The abundance
of historical data on any treatment is readily accessible for use in a clinical trial. The data
can be compiled for use as a historical control. The advantage of using historical data as
a pseudo-control group instead of live subjects is that patients do not have to be tested on
what is already known as fact. For example, if a treatment has been in use for say, twenty
years, and the results of this treatment have been well documented, accounting for
differences in age, race or gender, then there is no reason to further test patients of the

results of this treatment. The historical data can be used as a control in a clinical trial
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where live subjects are tested on with a new, hopefully more effective treatment. The
results of the trial are compared with the historical data to reach a permissible conclusion.
Both time and money are saved when historical controls are used. The main advantage,
however, is that patients can be subject to a hopefully superior treatment without the
ethical worry of other patients being randomized to an inferior, conventional treatment.
The choice of collective ethics over individual ethics does not have to be made.

Historical controls do have disadvantages. Historical data can be biased by time,
location, race, gender, age, or other unknown factors. If the historical data is quite old,
using the data as a control group may not be feasible. For instance, patients from ten
years ago may not be comparable with present patients due to differing lifestyles.
Historical data may be available, but the data for the control group may be incomparable
with the treatment group. Data may be available for patients in the United States, while
current patients live in Canada, or the data involves white male subjects, but the current
trial is comprised of Asian women. Historical controls may be useful when they are
available, but control groups must be matched as close as possible with treatment groups
if systematic bias is to be minimized.

Sequential clinical trials are special case of adaptive designs. They differ from
randomized clinical trials in that they incorporate a stopping rule. Afier a pre-determined
number of patients have entered the trial testing is undertaken to determine if a
statistically significant difference has been established between the two treatments under
study. If a substantial difference has been observed from the accumulated information,
then the trial ends. Otherwise, experimentation continues until the next set of
experimental units has been run. The advantage of a sequential clinical trial over the

usual randomized trial is that the trial can be stopped if the treatment shows clear signs of
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being superior (or inferior) to the conventional treatment. This prevents unnecessary
further experimentation. The problem with sequential trials is that 50-50 randomization
is still used in the trial. In cases of acute, critical illness, full randomization of subjects is
nonetheless considered unethical. Although sequential trials can be considered more
efficient, they may be inappropriate in experiments concerning serious illnesses.

Adaptive clinical trials, although distinct from randomized clinical trials, still
incorporate random assignment. The difference is the way in which the randomization is
integrated into the trial. Unlike randomized ‘clinical trials, adaptive clinical trials (or
ACTs) make use of the information collected during the trial and use that information for
the progression of the trial. This process has both advantages and disadvantages. The
main problem with adaptive clinical trials is concerned with their adaptive nature:
because the data collection process is adaptive, the treatment assignment probabilities
change throughout the trial. This can make inference of the ACT the end of the trial quite
difficult. So, the question is when is the extra work worthwhile? In other words, when
are adaptive clinical trials an improvement on randomized clinical trials? To answer this,
one must understand the main goal of ACTs. Adaptive clinical trials aim to minimize the
risk of a patient receiving an inferior treatment. They are a trade-off between a
randomized clinical trial and a non-randomized trial. Randomized clinical trials (or
RCTs) simply intend to collect data on the success or failure of two or more treatments
and determine which is superior. ACTs go a step further by identifying which treatment
is performing best during the trial and allotting a higher proportion of subjects to the
currently identified better treatment, (and thus a lower proportion of subjects to the
inferior treatment(s)). The expectation is that as many patients as possible will receive

the best care available. ACTs enable the clinician to perform a clinical trial and come to
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a sound conclusion, but to do it in a more ethical way. Thus, adaptive clinical trials are a
compromise between doing what is best for the patient and what is best for society.

Although randomized clinical trials will always be integral to medical
experimentation, there are circumstances when they may not be morally feasible.
Particularly, under cases of life-threatening illness, randomized clinical trials may not be
ethically viable. When patients are very ill, even terminally ill, they will care little for
expanding society’s knowledge by taking part in a medical experiment. Their primary
concern, and that of their doctor, will be to have the best possible care. The focus shifts
from research to healthcare, from researcher and subject to doctor and patient.
Randomization may be justified if the patient is fully informed about all the risks
associated with the trial and the different treatments they may receive. Informed consent
provides a moral justification for randomized clinical trials. Unfortunately, under
desperate or terminal medical situations, informed consent may be unattainable. Patients
are under extreme duress and may be unable to fully comprehend all the aspects of a
randomized clinical trial. In such cases, adaptive designs are a morally safe alternative to
fully randomized designs. ACTs provide a means for clinicians to study a new treatment
under life-threatening illness while not sacrificing the care of their patient.

When clinicians enrol their patients in a well designed ACT, they ensure that their
patients obtain the finest care available at that time of enrolment and gain information
about a new, experimental treatment. Both goals are accomplished without any
compromise of ethics due to the principle of interchangeability [16]. Pullman and Wang
state that a design satisfies the principle of interchangeability if any two patients are
ethically interchangeable, whether they are treated in the trial or afterwards. Adaptive

designs satisfy this principle because any patient receiving treatment while in the trial is
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ethically interchangeable with any patient receiving treatment after the trial. The
principle dictates that the care that a pati'ent receives, whether they are treated during the
trial or afterwards, will be the best possible care available, given current information [16].
The patient’s treatment depends only on when they fell ill. If treatment is administered
during the trial, then the patient will receive the treatment identified as the best possible
one given current information. A patient treated after the trial will receive what was
proven to be the superior treatment.

An adaptive clinical trial begins much the same as a randomized clinical trial.
There are usually two treatments, an experimental and a control, although there can be
more. Ideally, the clinician will hopefully be in a state of equipoise at the start of the
trial. Equipoise is ideal, but it is often not the case in Phase III of a clinical trial. After
Phase I, a small trial to establish dosage, and Phase I, a study to determine toxicity, there
is usually prior knowledge of any beneficiary performance of the drug or treatment.
However, it is usually the practice at the start of Phase III to equally allocate the
treatments to the subjects. Once the first subject, or group of subjects has received
treatment, then data is collected on the success or failure of this treatment. This data is
then used to adjust the probabilities of assignment to future subjects. So, if the treatment
was successful, the probability that the next subject will receive that treatment increases,
while the assignment probability of the other treatment decreases accordingly. As the
trial progresses, the process continues and allocation probabilities are adjusted
accordingly. It is important to note that while the assignment proportions change during
the trial, every subject is still randomly allocated to his treatment. At the end of the trial,
the hope is that not only will a superior treatment be revealed, but also that a higher

percentage of patients will have had received that treatment.
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There are many different types of adaptive designs. Perhaps the most famous is
Wei and Durham’s randomized play the winner design (1978). An adaptation of this
design was used in the ECMO trial conducted at the University of Michigan [1]. The
design begins with 1:1 allocation of two treatments, an experimental and a control. Two
marbles are placed in an urn, each of a different colour to symbolize the two treatments.
For this reason, the randomized play the winner design is one of the Urn models. One
marble is drawn from the urn. Its colour corresponds to the treatment that the first patient
is to receive. For example, if we have red and white marbles, red for experimental
treatment and white for control, and a red marble is drawn then the patient will receive
the experimental treatment. This is how randomization is incorporated into the trial.

After the experimental treatment has been administered, it will be deemed a
success or failure. If the treatment was successful, then another red marble will be added
to the urn.  This will increase the probability of the next patient receiving that treatment.
If it was a failure, then a white marble will be added, which increases the assignment
probability of the control, or conventional treatment. Another marble is drawn and
whatever colour it is, that is the treatment that the next patient will receive. Depending
on success or failure of that treatment on this second patient, another marble of the
appropriate colour will be added. In this way, the trial continues. All the while, the
assignment probabilities change with every additional patient. That is what makes this
design adaptive.

What makes this design particularly attractive is that as the trial progresses, the
patient will in time have higher probability of receiving the better treatment. This is due
to the design of the experiment. If one treatment is superior to the other, then there will

be a higher concentration of that treatment’s marbles in the urn, and thus a higher
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probability of receiving that treatment. If there is a stopping rule set before the start of
the trial, and, during the trial, this rule is satisfied or there is a statistically significant
difference in the performance of the two treatments, then the trial can be stopped ahead of
schedule and a valid conclusion can still be reached. In desperate medical situations, the
need to find the best treatment possible is strong. It may be that the experimental
treatment was not found to be different from (or better than) the conventional treatment.
Whether the valid conclusion is positive or negative, the sooner it is made, the sooner
more patients will receive the best care possible. One disadvantage of adaptive clinical
trials is that it may not be immediately obvious if one treatment is out-performing the
other, and the trial may carry on longer than necessary. ACTs improve upon RCTs by
effectively treating as many patients as possible with the superior treatment within the
trial.

There is some danger, however, that the urn model can skew results quickly. If
the first few patients receive the treatment A, and these treatments are deemed successful,
then there will be a higher concentration of type A marbles in the urn in the beginning of
the trial. This can give little chance for the other treatment to “prove itself.” Also, the
opposite can happen, resulting in a high quantity of type B marbles in the urn after the
first few patients. In both cases, the results can become skewed to favour one treatment.
An even more extensive problem may be that there is an abundance of patients treated
with one treatment, resulting in few patients treated with the other. This was the case
with the ECMO trials at the University of Michigan in 1985 [1]. At the end of the trial
there were ten patients who received ECMO (eleven, if you include the patient treated

after the trial), but only one patient who had received the control treatment. In addition to
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making it difficult to compare treatments this imbalance of treatments can at times make
it impossible to draw a statistically significant conclusion.

Even with the above drawbacks of the randomized play the winner design, it
remains an eloquent method for clinicians to compare treatments in life-threatening
situations. The majority of patients receive the superior treatment and due to the
principle of interchangeability, the ethical dilemma between individual and collective
ethics is diminished. It is obvious that although RPW designs are not widely used in the
medical community as of yet, incorporating adaptive designs such as the randomized play

the winner design would be of great benefit to the patient.

2.3.1 Play the Winner Designs

Although 50:50 randomized designs are the most commonly' used designs in
clinical trials, they may not always be the best choice for an experimental design when
the patients to be randomized are severely ill. Certainly, 50:50 randomized designs are
the gold standard [3] in medical trials because they reduce systematic bias, are easy to
implement and are relatively straightforward to analyze. In sdme cases, however, they
are not the best choice in medical trials, éthically speaking. Doctors cannot justify using
50-50 randomization when their patients are suffering from life-threatening illnesses.
Often, adaptive designs are a more attractive option to patients because they allocate a
greater proportion of patients to the superior treatment.

Even though adaptive designs out-perform 50:50 randomized designs in terms of
increasing the number of patients who receive the better treatment almost always, they
are rarely used in practice. Simon [23] believes that this is the case because most

methods have important deficiencies that render them unsuitable for application. Even
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though adaptive designs may be more complex in implementation and analysis, the extra
effort is definitely worthwhile when mbre patients receive the better treatment under
study, especially in cases of life threatening illness. Important adaptive designs in the
literature include Zelen’s play the winner design [34] and Wei and Durham’s randomized
play the winner design [30].

Adaptive designs do not always have to include randomization. This is the case
with Zelen’s play the winner rule [34], or PW. This design is appropriate when there are
two treatments under study and patients entef the trial sequentially. Furthermore, it is
necessary to assume that the outcome of a trial is only dependent on the treatment
administered and is dichotomous. When the first patient enters the trial, he is randomly
assigned one of the two treatments with probability of one half. Once the response of that
treatment is known, a marble is placed in an urn. If the treatment is a success, then a
marble of type A corresponding to treatment A is placed in the urn, if the treatment is a
failure, then a marble of type B corresponding to treatment B is placed in the urn. When
the next patient enters the trial, a marble is drawn from the urn without replacement.
Since there is only one marble to choose from, the patient receives that treatment. As
long as all future trials are succéssful,_ all successive patients will receive the same
treatment. As soon as a failure is observed, a marble of the other treatment is placed in
the urn and the next patient to enter the trial is allocated to the other treatment. Then, all
future patients will receive the other treatment until a failure is observed. If a patient
enters the trial in between responses, and there are no marbles in the urn, then the patient
is randomized.

Zelen is the first to admit that the design is not optimal, but he states it is nearly

optimal, requires very few assumptions about prior distribution, and most importantly,
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tends to assign more patients to the better treatment [34]. The main flaw with this design
is that it is deterministic. Due to the design of the study, the researcher will know with
almost complete certainty what the next treatment will be given the previous treatment.
If a success was observed on the previous trial, the next patient will receive the same
treatment, and if a failure was observed, then the next patient will receive the other
treatment available. The deterministic property of the PW design can cause selection bias
in the researcher.

A modification of the PW, aptly named the modified play the winner rule, or
MPW, maximizes the chance of selection bias. MPW can be used in place of PW when
the response to treatment is immediate, and the second patient enters the trial right after
the first patient has completed treatment. For example, if the first patient’s treatment was
successful using treatment A(B), then the second patient receives treatment A(B). If it
was a failure, then the second patient receives the opposite treatment. The next patient is
never treated until the outcome of the previous patient is known. Due to the immediate
response of this design, the researcher knows with probability one what treatment the
next patient will be assigned once the first patient’s response is ascertained. Moreover,
on account of the lack of randomization in both the PW and MPW designs, there is also
the possibility of systematic bias.

What makes the PW design particularly unattractive is that in practice the design
is not quick to come to a conclusion and when there is an extreme delay between
responses, patients are randomly allocated to treatments. Thus, at times the PW is not
adaptive and does no better than 1:1 allocation. One way to improve these designs, as
well as to reduce bias, is to include randomization in the design, as with Wei and

Durham’s randomized play the winner design.

23



Wei and Durham designed the randomized play the winner design in 1978 in the
hope of improving Zelen’s play the winner design. They wanted to build on Zelen’s
notion of maximizing the proportion of patients who receive better treatment, and on his
ethical concern for reducing the length of the trial. The best way to solve the problems of
a deterministic design with the possibility of selection bias and systematic bias was to
include randomization into the design. This is the main difference between the PW,
MPW and RPW designs. Adding randomization into the design is a simple change, but
improves many characteristics of the design. Immediately, systematic bias is reduced.
Furthermore, the allocation of patients is no longer deterministic, patients are randomly
allocated to treatments, and thus selection bias is also reduced.

The assumptions necessary for the design are similar to those of the PW: the
response of the patient must be dichotomous, either a success or a failure, and there are
two treatments under study where the probability of success of treatment { is pi, =A, B,
and where it is assumed pa > ps, without loss of generality. The trial begins with p
marbles of each type placed into an urn, each with one of two markings to represent the
two treatments. When the first patient enters the trial, a marble is drawn from the urn and
replaced. Recall that in the PW design, the marbles were drawn without replacement. If
the marble drawn was of type A (B), then the patient will receive treatment A (B). When
the response of the patient is available, additional marbles are placed into the urn to
reflect that response and to alter the assignment probabilities of the two treatments. If the
treatment was a success, then a marbles of the same type are placed into the urn. If the
treatment was a failure, then B marbles of the opposite type are placed into the urn. Thus,
the randomized play the winner rule is referred to as RPW(y, a, B). Often, however, a is

equal to B, so the design is also denoted as RPW(p, o) When the next patient is available,
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another marble is drawn from the urn and he receives the corresponding treatment. Note
that this design allows for delayed responses to treatments. The main improvement of the
RPW over the PW is that it decreases the number of patients assigned to the inferior
treatment, and reduces selection bias.

It is common practice to only add one marble after obtaining the response of each
patient. Often, the experiment commences with more than one marble of each type in the
urn. If the initial urn size is increased, the conventional choice is to begin with five
marbles of each type, or RPW(5, 1, 1). An increase in the initial marble count, however,
shifts the focus of the trial away from adaptation of treatment allocation probabilities and
towards randomization of patients. Due to the increased weight on randomization, the
trial progression may speed up, and a significant conclusion may be reached sooner, but
fewer patients may actually receive the superior treatment. In fact, one can expect the
allocation proportions to be less extreme when the initial urn composition is increased, as
the urn will not favour the superior treatment as highly [17].

But, what if more than one marble is drawn with replacement to determine the
treatment to be administered, and then the same number of marbles is then added to the
urn after the result of a treatment is known? What improvement, if any, will come from
drawing, then adding, more than one marble? For example, what if a RPW(3, 3, 3) or
RPW(S, 5, 5) design was conducted instead of a RPW(1, 1, 1) or RPW(5, 1, 1) design?
Note that out of necessity, the trial must begin with at least the same number of marbles
that will be drawn initially. Thus, the urn contains 2n+1 marbles of each type at the
beginning of the trial (where n is a natural number.) After the first patient enters the trial,
2n+1 marbles are drawn, and then replaced. For convenience, an odd number of marbles

should be drawn. If an even number of marbles is drawn, then there is the possibility of
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having the same number of marbles of each type. This may result in having to randomize
the patient to one of the two treatments, and could also lead to poor results in terms of
maximizing the number of patients to the superior treatment. Since the number of
marbles drawn is odd, one type of marble will always outnumber the other type. It
follows that majority rules and the patient receives the treatment corresponding to the
winning marble type. Once the response of the first patient is known, 2n+1 marbles are
added to the urn. As before, if the treatment was a success, 2n+1 marbles of the same
type are added to the urn, and if the treatment was a failure, 2n+1 marbles of the opposite
are added to the um. When the second patient enters the trial, 2n+1 marbles are again
drawn and replaced. When the response of that patient is known, 2n+1 marbles of the
appropriate type are added, and so on. This design works for any nonnegative integer
value of n. Note that when n equals zero, the design reverts back to the classic RPW(1, 1,
1.

A RPW(2n+1, 2n+1, 2n+1) design would hopefully increase the immediate payoff
to current patients by maximizing the number of patients who receive the superior
treatment without sacrifice to the power the test. This improvement results from drawing,
and then adding more marbles. The more marbles of any one type in the urn, the better
chance the treatment corresponding to that marble type will be administered. Thus,
multiplying the number drawn from one to 2n+1 skews the test to the superior treatment
faster. Then, the superior treatment becomes apparent faster, and more patients receive
that treatment earlier. These modifications do improve on the classic RPW(1, 1, 1)
design in terms of immediate payoff to the patient.

Day [6] points out that adaptive clinical trials are better than sequential trials,

which in turn are better than randomized clinical trials in terms of maximizing the
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proportion of patients to the superior treatment. Just the opposite is true if the goal of the
researcher is to maximize power. In situations where patients’ health is critical, the
ethical choice is to choose a higher proportion of successes over a higher significance
level. The RPW design is a well-known design for its higher proportion of successes
without sacrifice to power. The next chapter will highlight in detail which designs excel

in which situations, and if modifications to the RPW design can improve results.

2.3.2 Neyman Allocation

The optimal allocation for minimizing the expected proportion of treatment
failures can be found by fixing the variance of the test statistic and then calculating the
optimal allocation ratio based on the ratio of the sample sizes of the.two treatments, na/ng
[19]. When comparing two proportions, each assumed to be from a noﬁnal distribution,
the variance of the difference of treatments A and B, y, — ys, is the squared denominator

of the Z-test [19], given by:
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and o} is the variance of treatment {, { = A, B. Note that p: is the probability of success

of treatment 7 and g; is the probability of failure of treatment i, equal to 1-p;. We can set

this equation equal to a constant, and with some calculations, obtain the ratio,
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where v(6) and u(8) are functions of the treatment effect, @ = uy - up. When v(8) and u(9)
are equal, then we are left with the ratio of standard deviations of the two treatments,
o4/05, which is Neyman allocation. Neyman allocation minimizes the total number of
patients in the treatment when the variance of the difference in sample proportions is
fixed [18].

To use Neyman allocation in a trial, the variances of the probabilities of success
of the two treatments must first be estimated. They can be estimated from historical data,
previous trials or previous phases of the current trial. Then, patients are randomly
allocated to treatments. First, the initial value of O, the allocation rule, is calculated as

below,

Oy

>
O, +0g

then patients are assigned treatments, where Q is the probability of allocating treatment
A. This allocation rule maximizes the power of the test when the total sample size is
fixed. When the first patient enters the trial, a table of random numbers, or a similar tool,
is consulted. If the random number drawn is less than or equal to O, then the patient
recetves treatment A, the experimental treatment. If the random number is greater than
0, then he receives treatment B, the conventional treatment. When the response of the
patient is known, the probabilities of success are adjusted accordingly, which causes their
standard deviations to change as well. As a result, Q is updated after every response.
Neyman allocation is found to improve upon of the proportion of patients who receive the
superior treatment when compared with 50-50 randomization, but only when pg < qa. If
PB > Qa, then Neyman allocation actually puts a higher proportion of patients on the

inferior treatment [18], which is not ethical.
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Adaptive designs, including Neyman allocation and play the winner designs, are
underutilized alternatives to randomized‘designs in the medical field. Adaptive clinical
trials are the only ethical choice for clinicians when treating severely ill patients as the
patient’s chances of receiving the better treatment are improved. The goal of this paper is
not to argue the merit of the RPW design, but to improve upon it. Though adjustments to
the experimental design and through simulation studies, it will be shown that it is possible
to increase the proportion of patients who receive the superior treatment without

significant loss of power.
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Chapter 3

Simulation Design and Analysis

A simulation is an experiment carried out on a computer. Simulations are an
attractive alternative to actual experiments. They can be used to model and analyse
statistical systems. Observations generated from simulated experiments can be analysed
in the same manner as those produced by an actual trial without the construction or
experimentation of a real system. Simulations are particularly ideal to model medical
experiments. Compared to the years it can take to accumulate all the subjects needed, as
well as the expense involved with monitoring all the patients, simulations can not only
save time and money but can also obtain results similar to those obtained by an authentic
clinical trial. Furthermore, simulations can observe trends and strategies. They can test
theories as well as perform experiments tHat may not otherwise have been possible.

The most significant advantage of using a simulated experiment over a real one is
that there are no ethical issues to be considered. Since none of the subjects are actual
patients, just random numbers, there is no conflict between individual and collective
ethics. Possibly one draw back is that if the simulation results are misleading it can lead
to the wrong conclusion. This danger, nonetheless, is much less worrisome than if the
wrong conclusion is reached in an actual clinical trial. In this thesis simulations will be
used to model adaptive clinical trials including the classical randomized play the winner

design and variations on it.
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3.1 Random Number Generation

Before a clinical trial can be simulated, a source of randomness is required for the
simulation. Often this source comes from a random number generator. A random
number generator can obtain a dataset that simulates the actual experiment. Simulations
do not duplicate or replace actual clinical trials. For ethical reasons, as in the case of
medical trials, it may be more appropriate to simulate experiments and obtain
approximate results that one would expect on average rather than obtaining real data.
The dataset generated usually has a uniform distribution, where random numbers are
contained on the open subset (0, 1). Then, the sequence is transformed into the required
distribution to obtain the desired dataset.

Not all random number generators are considered “good.” A “bad” random
number generator produces variables with non-random properties [10]. A good random
number generator has the following aspects: it produces random variables that are
independent and uniformly distributed, it is fast, efficient and easily implemented, and it
expresses little deviation from the desired statistical properties.

Most generators operate using a recursive relationship. That is, the next number
in the sequence is a function of one or more previous numbers in that sequence. The

recursive relationship is of the form:
xn = f(xn—l> xn—?.""’xn——k)’

where k<n. To start the sequence, a seed is required. Just as there are good and bad
generators, there are also good and bad seeds. In theory, any choice for a seed other than

zero should not affect the results of the simulation. Sometimes, however, some seeds

31



work better for certain random number generators than others. It is best to select an odd
numbered seed. Even values for seeds cén lead to poor results. It is also beneficial to not
use a random seed, such as the time of day, because it can be difficult to replicate results.
If the random number generator requires a certain value or type of seed for independent,
uniformly distributed results, it may not be such a wise choice, as it is too easy to choose
a poor seed, and thus a non-random sequence. In order to reproduce the same dataset on
each run, the same seed should be used in successive replications. Once the seed has
been chosen, the sequence of random variables. can be predicted with certainty. Thus, the
numbers produced are called but pseudo-random numbers. Pseudo-random numbers are
not truly random because the choice of the seed determines with absolute certainty the
sequence of the random numbers [10]. Pseudo-random numbers are more desirable than
fully random numbers because if the experiment needs to be repeated, the simulation will
produce exactly the same outcome if the same seed is selected. In all simulations
mentioned in this thesis the seed used was 12773.

There are numerous types of random number generators, some more widely used
than others. ~Common ones include Linear-Congruential generators, Tausworthe
generators, Fibonacci generators and Combined generators, which are a combination of
two or more other types. In this paper, Linear-Congruential generators, (or LCG’s), will
be used for all simulations. LCG’s rely on a recursive relationship to produce the

sequence of random variables. The basic form of the LCG is:

x,=ax, modm,

where a is the multiplier and m is the modulus, or remainder. A common variation on

this form that is popular in generators today is:
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x, =(ax, , +b)modm.

Generators of this form are also called Mixed Linear-Congruential generators because the
equation includes both multiplication and addition. As before, there are good and bad
choices for m, a and b. The multiplier, a as well as b, should be non-zero. The modulus
m should be large. Both m and b should have no common factors between them, thus it
may be best to choose prime numbers for both. A LCG that has been shown to perform

very well is:
x,=Tx_| mod(231 - 1).

This recursive relation generates a sequence of independent random variables distributed
uniformly with lower limit zero and upper limit one, denoted U(0, I). It is the random
number generator used in all simulations in this thesis.

After a sequence that behaves statistically like data from random numbers has
been generated, it is necessary to check that the numbers are indeed random, independent
and uniformly distributed. One simple, but important check is to insure that the sequence
is uniformly distributed with values between zero and one. To do this, calculate the mean
and variance of the random numbers. The mean should equal one half, which

corresponds to the mean of a uniform distribution,

_ a+b
X=——0
2
The variance of the uniform distribution,
2 _ (b - a)2
12 °
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should equal one twelfth. Other important tests include the Chi-square Goodness of Fit
test, the Kolmogorov-Smirnov Test, and the Serial Correlation Test.

The Chi-square Goodness of Fit test, or the chi-square test, tests whether a
sequence of random numbers satisfies the required distribution [10]. Furthermore, the
test can verify if the sequence is independently and identically distributed U(0, 1). It
follows that the chi-square test can also verify if a sequence of numbers is random, and if
the random number generator is working properly. To begin the test, the closed interval
[0, 1] is divided into k equal parts, or cells. Then, for a sequence of size n, the expected
frequency in each cell is wk. The random numbers generated are sorted into their
appropriate cells, and a count of the number of variables in each cell is taken. Then, this
actual count is compared with the expected frequency for each cell. This comparison is

made through the calculation of the chi-square statistic,
]2

The above statistic calculates the sum of the adjusted, squared differences between the

k
=34
i=1 i

e

observed (0;) and expected (e;) counts for each cell. It has a chi-square distribution with
k-1 degrees of freedom. If the random number generator produces a dataset that perfectly
fits the stipulated distribution, then the statistic would be zero. Due to the randomness of
the generator, the difference will be nonzero. To test the null hypothesis,
H,: The random numbers are distributed U(0, 1), versus the alternative,
Ha: The random numbers are not distributed U(0, 1),
the chi-square statistic is compared with the critical value for the chi-square distribution

with k-1 degrees of freedom at significance level a. If the chi-square statistic is less than
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the critical value, then the null hypothesis will not be rejected and the generated dataset
can be considered uniformly random.

Before the random numbers generated using the aforementioned LCG were used
in any simulation for this paper, they were tested to ensure they were independent and
identically distributed U(0, I). The chi-square test was used to test the above null
hypothesis. The value of the test statistic was 49.335, which was less than 66.34, the chi-
square critical value at significance level 0.05 with 50-1 degrees of freedom. Thus, the
null hypothesis was not rejected and the pseudo-random numbers generated and used in
this thesis indeed behave statistically like data from uniformly distributed and random.

The chi-square test is best used for large samples and discrete distributions. It can
be used as an approximate test for smaller samples or continuous distributions, but more
specific tests exist. One such test is the Kolmogorov-Smirnov test, or K-S test, so named
for the statisticians who developed it [’10]. Like the chi-square test, the K-S test
determines if a dataset follows a specific distribution. The test is based on the
observation that the observed Cumulative Distribution Function (CDF) should be close
numerically to the expected CDF. Two statistics are calculated to carry out the test, K"
and K, which measure the maximum or nﬁnimum deviation of the empirical CDF above
or below the expected CDF, respectively. The form of the expected CDF for the Uniform

distribution is as follows:

a’ xe [a,b]

F(x;a,b)zz

Whena=0and b=1, F(x) =x, and if x is greater than j-/ of the » random numbers, then

the form of the observed CDF is F(x) = j/n. To carry out the test, the data must first be
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sorted in increasing order. Then, to compare the observed and expected CDF ’s, K" and
K are calculated as below:
K =«/;m§1x(£—-xjj,
K = \/;max(xj —]—_—lj .
J } n
If both K and K are less than the Kolmogorov-Smirnov critical values for significance
level , then the null hypothesis cannot be rejected against thé alternative, as below:
H,: The random numbers are distributed U(0, 1),
Ha: The random numbers are not distributed U(0, 1).

One advantage the K-S test has over the chi-square test is that it is not necessary
to group the data into cells. Grouping data into cells can be problematic. Often cells
need to be combined if there are too few data points in any one cell. In addition, cell size
can effect the conclusion of the test. The K-S test handles each observation individually,
eliminating the need to group data, and making better use of it.

Besides testing for randomness in a generated sequence, it is also necessary to test
for correlation between data. To apply the serial-correlation test, we calculate the sample
autocovariance, or the sample covariance between numbers that are & values apart. The
difference in location between the numbers is called the lag. The sample autocovariance

at lag & is denoted Ry and is of the form:

R=—3(v,-Lu, -1
k"'n_ki:1 i 2 itk 2 .

As n gets large, R; becomes normally distributed,

N(0,1/144(n - £))).
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Thus, a 100(1-0)% confidence interval for the autocovariance at lag £ can be computed.
Ifthe interval, R, £z _ % / (1 2Vn— k)

includes zero for all lags one through £, then the null hypothesis cannot be rejected
against the alternative, as below:

H, : there are no correlations in the sequence,

Hy: there is a significant correlation.
Note that if the null hypothesis is not rejected, evidence suggests the sequence is not
independent. Testing independence is necessary in a generated sequence to ensure that
the generator is working properly.

The generated pseudo-random numbers used in all simulations in this paper were
tested using the serial correlation test to certify that there are no correlations for lags one
through k in the sequence. The above null hypothesis was tested for lags one through ten,
and all confidence intervals contained zero with the exception of lag five. Although the
lag five confidence interval did not contain zero, the upper limit was extremely close to
zero with a value of negative 0.005836. Therefore, overall, the null hypothesis was not
rejected at significance level 0.05 and the pseudo-random numbers used in this thesis
behaved as though they were not correlated.

There are many tests available beyond the ones mentioned that test the quality of
the pseudo-random numbers, including Multi-Dimensional tests like the Serial Test and
the Spectral Test [10]. What is important is not that the numbers generated pass every
test available, but that the pseudo-random numbers are tested and deemed reliable.

Once tests have been conducted to ensure that the sequence generated is in fact
random, then the sequence can be transformed to the desired distribution. This

transformation can be obtained by various methods including inverse transformation,
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rejection, convolution, composition and characterization. One of the simplest methods is
inverse transformation which uses the prdperty that a cumulative density function (CDF),
F(x), of a random variable, u, of any distribution is uniformly distributed between zero
and one. This means that given a sequence of random variables {u} distributed U0, 1),
the inverse of the CDF, F~' (1) can be used to transform the sequence to a sequence {x} of
the desired distribution as long as the CDF is known. For example, suppose we wish to
transform a sequence of pseudo-random numbers from a uniform distribution to an

exponential distribution. Since the CDF of an exponential distribution is:
F(x)=1-e*=u, x>0,
then the inverse CDF is:

X= —%ln(l—u), ue (0,1]

Thus, if the pseudo-random numbers are substituted into the above equation at u, a
sequence, {x}, of exponential random numbers can be obtained without intense
calcﬁlations.

Simulation is a powerful tool that can help to answer questions unanswerable if
attempted by normal means, whether it is due to expense or ethical issues. Simulation
studies, although they cannot duplicate actual clinical trials, can be used to obtain ideas
before a trial or speculate on theoretical results. After the assumptions necessary for
good simulations have been validated, simulation studies can be carried out and results
analysed. In an upcoming section, simulated clinical trials of various experimental

designs will be compared.

38



3.2 An Overview of Simulation Procedures

All the simulation studies carried out begin with the generation of pseudo-random
numbers. The performance of the random number generator is examined with various
statistical methods before it is applied to all simulations. Once a pseudo-random number
has been generated, it is then compared against another number or variable called a
decision variable. For example, in most of the SAS programs used in this thesis, the
decision variable was the probability of success of the superior treatment. If the pseudo-
random number was less than the current value of the probability of success of the
superior treatment, then a decision would be made to allocate another experimental unit
to one treatment. Otherwise, the experimental unit would be assigned to the other
treatment.

Although the probabilities of success are declared at the start of the simulation to
indicate the superior and inferior treatments, they are not fixed. As the simulation
progresses, the probabilities are updated based on the number of successes and failures of
the corresponding treatments. Likewise, as the probabilities of success are updated, so
too are other variables used in the ‘calculaiions of the statistics analyzed. Variables such
as the count of the total number of successes, overall and on each treatment, as well as the
count of the total number of patients on each treatment were all updated after the
generation of a pseudo-random number and the decision process.

Once one hundred pseudo-random numbers had been generated, the final value of
the simulation variables were used in the calculation of statistics such as the power of the
test, the expected proportion on the superior treatment, the odds ratio and the proportion
of successes on each treatment and in total. These values were saved by the computer

program. Then, all the variables would return to a zero count and the simulated
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experiment would be repeated for another one hundred experimental units. The
simulation was repeated at least two thousand times, and after each time the values of the
statistics were saved in the memory of the program. After completion of the repetitions,
an average was taken of the saved values of the statistics to get a more accurate estimate
as well as a value for error. Those final values were used in the simulation analysis to
compare various designs and study the monotonic properties of the randomized play the

winner design.

3.3 Comparison of Various Designs

When carrying out an experiment, the design is just as important as the results, if
not more important. The design of an experiment dictates what type of analysis should
be done. Moreover, without the proper design, an experimenter may not be able to carry
out the required analysis to obtain the desired results. In clinical trials, the experimental
design must accomplish two goals: first, to carry out the required analysis, and, second, to
carry out the trial in an ethically responsible way. This implies that the trial must take
into consideration that the experimental units are human beings, and any randomization
of treatments must be done in a careful manner as to not prolong the experiment, nor to
cause any undue harm to patients.

Obviously, not all experimental designs are well suited for clinical trials. Often,
clinical trials can be improved upon by incorporating prior knowledge or accumulating
information when assigning treatments to patients, in other words, by making use of
adaptive designs. But, there are numerous adaptive designs to choose from, and not all
are appropriate for clinical trials. Different situations require different optimal adaptive

designs. Adaptive trials can be designed to maximize the percentage of patients assigned
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to the superior treatment, minimize the expected sample size or minimize the expected
cost. In this paper, an experimental design is considered optimal when it maximizes the
expected proportion of patients assigned to the superior treatment, without significant
loss of power. The performance of various experimental designs will be compared. It
will be shown that adaptive designs improve upon a 50:50 randomized design in this
context. In particular, the randomized play the winner design, or RPW, is a powerful
design that is useful when the response variable is acutely life threatening. Also, it will
be shown that modifying the parameters in the RPW design improves the allocation of
patients to the superior treatment while still remaining a powerful design.

Adaptive designs are considered to be a compromise between two goals, the goal
of gathering information for future patients and the goal of immediate payoff to current
patients. Different designs give different weight to the opposing goals. When the patient
is extremely ill, then main focus should be on improving their health. To focus on
gathering information would be unethical. To improve a patient’s well being while they
are in a trial can be accomplished by improving their chances of receiving a superior
treatment. The program SAS (version 8 for Windows) was used for simulation studies
used to compare and contrast experimental designs. All simulations are based on 5000
replications, each with a sample size of one hundred unless otherwise indicated. The goal
of the simulation studies in this paper is to improve the patient’s chances of being
allocated to the superior treatment. It will be shown that this goal is accomplished using

the RPW design where the number of balls drawn and then added is greater than one.
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3.3.1 Expected Proportion on the Superior Treatment

The expected proportion of patients allocated to the superior treatment has been
mentioned frequently in this paper. It is a very significant statistic, because it explains
numerically how an adaptive design like the randomized play the winner rule, improves
upon a completely randomized design. Essentially, the higher the expected proportion,
the greater the number of patients receiving the superior treatment and in cases of life-
threatening illness, the higher the number of possible lives saved. So, if the expected
proportion is higher for an adaptive design as opposed to a randomized one, it can be
called an ethically superior design because the patient’s health is put before the goal of
information gathering. The expected proportion for treatment A is calculated by

n,

>
n, +ng

where #; is the number of patients who received treatment 1.

Table 1 gives the values of the expected proportion of patiénts allocated to
treatment A for the various designs previously mentioned. Note that due to the nature of
its design; 50-50 randomization always allbcates one half of the subjects to one treatment
and the other half to the other treatment. In all cases, the RPW designs have a much
higher expected proportion as compared to the Neyman allocation and 50-50
randomization cases. For example, when ps = 0.8 and pg = 0.3, the expected proportion
is 0.499 (0.049) for 50-50 randomization, 0.464 (0.056) for Neyman allocation, 0.752
(0.073) for RPW(1, 1, 1), 0.840 (0.076) for RPW(3, 3, 3) and 0.888 (0.074) for RPW(5,
5, 5). Another trend visible in Table 1 is that the increase in the expected proportion is

greater between RPW(1, ,1, 1) and RPW(3, 3, 3) than between RPW(3, 3, 3) and RPW(5,
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5, 5). It may be that as parameters increase, the increase in expected proportion becomes
less drastic. This will explored further in the monotonicity section.

Furthermore, as the difference between pa and pg increases, we see an increase in
the expected proportion because there is a higher chance that the patient will receive
treatment A. Figure 1, which is a graph of the expected proportion on treatment A for
various designs with pa varying and pg held constant at 0.1, shows that the RPW designs
outperform 50-50 randomization and Neyman allocation in terms of allocating more
patients to the superior treatment. In fact, the trend seems to be that the higher the
number of marbles added, the higher the expected proportion of patients assigned to the
superior treatment. As the expected proportion on the superior treatment increases, so
does the standard deviation, but overall the number of patients receiving the superior
treatment rises. This result is quite noteworthy. A simple modification to the
randomized play the winner design that is easy to implement has produced a more ethical
choice for clinicians who face the task of conducting clinical trials on dreadfully ill

patients.
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Type of P(A) 0.2 0.3 0.4 0.5
Design P(B)
Randomization 0.499 (0.049) 0.499 (0.049)| 0.499 (0.049)| 0.499 (0.049)
Neyman 0.579 (0.067)[ 0.614 (0.350)| 0.630 (0.062)| 0.635 (0.062)
RPW(1,1,1) [ 0.1 | 0.529 (0.040)] 0.561 (0.044)| 0.597 (0.048)| 0.637 (0.051)
RPW(3, 3, 3) 0.536 (0.041)] 0.577 (0.046)[ 0.624 (0.051)| 0.679 (0.057)
RPW(5, 5, 5) 0.540 (0.042)] 0.586 (0.048)] 0.639 (0.053)| 0.702 (0.059)
Randomization 0.499 (0.049)] 0.499 (0.049)] 0.499 (0.049)
Neyman 0.537 (0.056)] 0.555 (0.055)] 0.560 (0.054)
RPW(1,1,1) | 0.2 0.533 (0.049)| 0.569 (0.053)] 0.611 (0.570)
RPW(3, 3, 3) 0.541 (0.053)] 0.589 (0.059)] 0.646 (0.065)
RPW(S, 5, 5) 0.547 (0.056)] 0.602 (0.062)} 0.668 (0.069)
Randomization 0.499 (0.049)] 0.499 (0.049)
Neyman 0.519 (0.052)] 0.524 (0.051)
RPW(1,1,1) | 03 0.538 (0.058)] 0.580 (0.063)
RPW(3, 3, 3) 0.549 (0.068)| 0.607 (0.075)
RPW(5, 5, 5) 0.557 (0.072)] 0.627 (0.082)
Randomization 0.499 (0.049)
Neyman 0.507 (0.049)
RPW(1,1,1) | 0.4 0.544 (0.070)
RPW(3, 3, 3) 0.559 (0.089)
RPW(S, 5, 5) 0.572 (0.099)

Table 1: Expected Proportion on the Superior Treatment (Standard deviations are given

in parentheses)

Note 1o this and all subsequent tables: P(4) is the probability of success of treatment A

and P(B) is the probability of success of treatment B unless otherwise indicated.
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Type of P(A) 0.6 0.7 0.8 0.9
Design P(B)
Randomization 0.499 (0.049)| 0.499 (0.049)] 0.499 (0.049)| 0.499 (0.049)
Neyman 0.630 (0.062)| 0.613 (0.064)| 0.578 (0.067)| 0.500 (0.077)
RPW(1,1,1) | 0.1 | 0.684 (0.054)] 0.737 (0.055)] 0.798 (0.056)| 0.867 (0.050)
RPW(3, 3, 3) 0.740 (0.059)| 0.807 (0.059)| 0.878 (0.050)] 0.941 (0.035)
RPW(S, 5, 5) 0.772 (0.061)| 0.847 (0.058)] 0.916 (0.045)] 0.967 (0.026)
Randomization 0.499 (0.049)| 0.499 (0.049)( 0.499 (0.049)| 0.499 (0.049)
Neyman 0.555 (0.055)} 0.537 (0.056)| 0.500 (0.059) 0.422 (0.067)
RPW(1,1,1) | 0.2 | 0.659 (0.060)] 0.713 (0.063)| 0.777 (0.063)] 0.851 (0.059)
RPW(3, 3, 3) 0.712 (0.069)| 0.784 (0.070)] 0.861 (0.061)] 0.932 (0.044)
RPW(S, 5, 5) 0.744 (0.073)| 0.827 (0.070)] 0.904 (0.057)] 0.961 (0.034)
Randomization 0.499 (0.049)| 0.499 (0.049)] 0.499 (0.049)| 0.499 (0.049)
Neyman 0.519 (0.052)] 0.501 (0.053)] 0.464 (0.056)] 0.388 (0.063)
RPW(1,1,1) | 03 | 0.630 (0.068)| 0.685 (0.072)] 0.752 (0.073)] 0.829 (0.071)
RPW(3, 3, 3) 0.677 (0.082)| 0.755 (0.084)| 0.840 (0.076)| 0.920 (0.057)
RPW(S, 5, 5) 0.708 (0.088)| 0.800 (0.088)[ 0.888 (0.074)| 0.953 (0.048)
Randomization 0.499 (0.049)| 0.499 (0.049) 0.499 (0.049)| 0.499 (0.049)
Neyman 0.501 (0.050)| 0.483 (0.051){ 0.446 (0.054)| 0.371 (0.062)
RPW(1,1,1) | 0.4 | 0.595 (0.076)] 0.652 (0.082)] 0.722 (0.086)| 0.802 (0.086)
RPW(3, 3, 3) 0.632 (0.099)] 0.717 (0.102)] 0.810 (0.098)] 0.901 (0.079)
RPW(S, S, 5) 0.659 (0.110)} 0.761 (0.113)] 0.861 (0.100)] 0.938 (0.071)
Randomization 0.499 (0.049); 0.499 (0.049)| 0.499 (0.049)] 0.499 (0.049)
Neyman 0.495 (0.050)] 0.477 (0.051)| 0.441 (0.054)] 0.366 (0.061)
RPW(1,1,1) | 0.5 | 0.553 (0.085)| 0.612 (0.093)| 0.683 (0.100)| 0.768 (0.103)
RPW(3, 3, 3) 0.577 (0.117)] 0.667 (0.127)] 0.769 (0.128)| 0.874 (0.110)
RPW(S, 5, 5) 0.593 (0.138)|. 0.705 (0.149)] 0.820 (0.141)] 0.914 (0.109)
Randomization 0.499 (0.049)] 0.499 (0.049)[ 0.499 (0.049)
Neyman 0.483 (0.051)] 0.446 (0.054)] 0.371 (0.061)
RPW(1,1,1) | 0.6 0.562 (0.107)|] 0.635 (0.117){ 0.723 (0.126)
RPW(3, 3, 3) 0.598 (0.157)| 0.711 (0.166) 0.829 (0.155)
RPW(S, 5, 5) 0.618 (0.198)] 0.749 (0.204)] 0.862 (0.180)
Randomization 0.499 (0.049)] 0.499 (0.049)
Neyman 0.463 (0.056)] 0.388 (0.063)
RPW(1,1,1) | 0.7 0.577 (0.136)] 0.668 (0.151)
RPW(3, 3, 3) 0.624 (0.217)| 0.758 (0.220)
RPW(S, 5, 5) 0.642 (0.279)| 0.776 (0.274)
Randomization 0.500 (0.049)
Neyman 0.422 (0.066)
RPW(1,1,1) | 0.8 0.595 (0.181)
RPW(3, 3, 3) 0.647 (0.299)
RPW(S, 5, 5) 0.654 (0.369)
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Figure 1: Expected Proportion to the Superior Treatment

1.200

1.000

0.800 -

0.600

Expected Proportion

0.400

0.200 -

0.000 T T T T T T .
0.2 0.3 0.4 0.5 0.6 0.7 08 0.9

P(A)

—o— Randomization —#— Neyman ——RPW(1, 1, 1) —=—RPW(3, 3, 3) —=—RPW(5, 5, 5) |

46



3.3.2 Power of the Test

The concept of power is talked about frequently in statistics, and it is definitely an
important tool for measuring the validity of tests of hypothesis. In this paper, the power
of a test can be defined as the probability of correctly rejecting the null hypothesis. The
test of hypothesis in question is:

Ho: pa=ps

Hy: pa #ps,
where pa is the probability of success of the experimental treatment and pp is the
probability of success of the conventional treatment.

Table 2 gives values of the power of the above test of hypothesis for 50:50
allocation, Neyman allocation, RPW(1, 1, 1), RPW(3, 3, 3) and RPW(5, 5, 5). The
probabilities found are relevant for a two-sided alternative hypothesis and are significant
at the five per cent level. The standard nofmal critical value used for alpha equal to 0.025
was 1.96. Note that the power calculated is based on random and independent samples so
all values are approximations. The probabilities were estimated by comparing two

binomial proportions. The form of the probability calculated is given below:

.
Power = ® pBI \/p‘q(%f; +%3)

>
pAqA quB P94 +quB
n, ng

where @ is the standard normal density function, p; is the probability of success of

treatment 1, q; is equal to 1 - p; n; is the sample size of treatment i,

7= n,pPytnpgPg and, §=1-D.
n,tng
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Type of P(A) 0.2 0.3 0.4 0.5
Design P(B)
Randomization 0.284 (0.012)] 0.707 (0.011); 0.944 (0.003)| 0.996 (0.000)
Neyman 0.257 (0.026)] 0.655 (0.046)| 0.922 (0.024)] 0.994 (0.004)
RPW(1,1,1) | 0.1 0.277 (0.012)] 0.690 (0.019)] 0.934 (0.011)] 0.994 (0.003)
RPW(3, 3, 3) 0.275 (0.013) 0.682 (0.025)| 0.926 (0.977)] 0.991 (0.008)
RPW(S, 5, 5) 0.273 (0.013)] 0.677 (0.027)| 0.921 (0.022)] 0.987 (0.014)
Randomization 0.207 (0.006)| 0.586 (0.009)] 0.891 (0.004)
Neyman 0.202 (0.009)] 0.572 (0.020)|] 0.884 (0.012)
RPW(1, 1, 1) 0.2 0.203 (0.007)] 0.567 (0.021)} 0.870 (0.022)
RPW(, 3, 3) 0.202 (0.009)] 0.558 (0.029)] 0.852 (0.038)
RPW(5, 5, 5) 0.200 (0.010)] 0.551 (0.034)] 0.836 (0.051)
Randomization 0.178 (0.003)|] 0.529 (0.006)
Neyman 0.177 (0.004)] 0.526 (0.010)
RPW(1, 1, 1) 0.3 0.175 (0.006)] 0.511 (0.023)
RPW(3, 3, 3) 0.173 (0.008)f 0.497 (0.035)
RPW(5, 5, 5) 0.172 (0.009)] 0.486 (0.044)
Randomization 0.167 (0.002)
Neyman 0.167 (0.002)
RPW(1, 1, 1) 0.4 0.165 (0.005)
RPW(3, 3, 3) 0.162 (0.008)
RPW(5, 5, 5) 0.160 (0.010)

Table 2: Power of the Test (Standard deviations are given in parentheses)

As to be expected, the highest values for power in Table 2 belong to the 50-50

randomization simulations.

It has been well established that completely randomized

experiments reduce bias and give a high value for power provided the sample size is large

enough. Although it may be impossible to improve upon the high power of randomized

trials, the main goal of adaptive trials is to improve upon the number of patients who

receive the superior treatment without significant loss in power. Indeed, the values for

power of the test for the randomized play the winner rule designs do not deviate too far

from those of 50-50 randomization or Neyman allocation. In some cases, the power of

the RPW designs comes very close to the Neyman allocation probabilities. For example,
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Type of P(A) 0.6 0.7 0.8 0.9
Design P(B)
Randomization 1.000 (0.000)] 1.000 (0.000)] 1.000 (0.000)] 1.000 (0.000)
Neyman 1.000 (0.000)| 1.000 (0.000)] 1.000 (0.000)| 1.000 (0.000)
RPW(1, 1, 1) 0.1 1.000 (0.000)| 1.000 (0.000)] 1.000 (0.001)| 0.999 (0.011)
RPW(3, 3, 3) 0.999 (0.005)| 0.999 (0.009)| 0.994 (0.040)| 0.981 (0.059)
RPW(5, 5, 5) 0.996 (0.015)] 0.990 (0.048)] 0.966 (0.100)| 0.934 (0.102)
Randomization 0.989 (0.001)f 1.000 (0.000)] 1.000 (0.000)] 1.000 (0.000)
Neyman 0.989 (0.002)f 1.000 (0.000)( 1.000 (0.000)] 1.000 (0.000)
RPW(1,1,1) | 0.2 | 0980 (0.011)] 0.998 (0.004)| 0.999 (0.004)| 0.998 (0.018)
RPW(3, 3, 3) 0.964 (0.031)| 0.985 (0.033)] 0.979 (0.062)| 0.951 (0.096)
RPW(S, 5, 5) 0.945 (0.056)] 0.956 (0.083)] 0.920 (0.136)| 0.869 (0.148)
Randomization 0.863 (0.005)] 0.986 (0.001)| 1.000 (0.000)] 1.000 (0.000)
Neyman 0.861 (0.006)| 0.986 (0.001)[ 1.000 (0.000)] 1.000 (0.000)
RPW(1,1,1) | 0.3 | 0831 (0.033)] 0.966 (0.023)| 0.992 (0.015)] 0.993 (0.029)
RPW(3, 3, 3) 0.798 (0.063)| 0.925 (0.071)] 0.943 (0.092)] 0.911 (0.125)
RPW(5, 5, 5) 0.768 (0.087)] 0.870 (0.123)] 0.852 (0.168)| 0.806 (0.174)
Randomization 0.513 (0.005)] 0.863 (0.005)| 0.989 (0.001)] 1.000 (0.000)
Neyman 0.512 (0.006)| 0.862 (0.006)| 0.989 (0.002)| 1.000 (0.000)
RPW(1,1,1) | 0.4 | 0492 (0.026)] 0.820 (0.046)| 0.956 (0.039)] 0.980 (0.045)
RPW(3, 3, 3) 0.471 (0.047)| 0.762 (0.097)] 0.870 (0.127)| 0.862 (0.152)
RPW(S, 5, 5) 0.453 (0.062)] 0.701 (0.140)| 0.761 (0.195)| 0.745 (0.196)
Randomization 0.167 (0.002)j 0.529 (0.006)| 0.891 (0.004)] 0.996 (0.000)
Neyman 0.167 (0.002)| 0.527 (0.009)| 0.884 (0.012)| 0.994 (0.004)
RPW(1,1,1) | 0.5 | 0.164 (0.006)] 0.505 (0.034)| 0.834 (0.065) 0.948 (0.068)
RPW(3, 3, 3) 0.160 (0.011)| 0.468 (0.068) 0.731 (0.146)] 0.797 (0.178)
RPW(5, 5, 5) 0.156 (0.015)] 0.433 (0.094)| 0.633 (0.198)| 0.685 (0.207)
Randomization 0.178 (0.003)| 0.586 (0.009) 0.944 (0.003)
Neyman 0.177 (0.004)| 0.573 (0.019)| 0.922 (0.023)
RPW(1,1,1) | 0.6 0.174 (0.008)| 0.552 (0.049)] 0.867 (0.093)
RPW(3, 3, 3) 0.165 (0.018)] 0.482 (0.105)] 0.705 (0.196)
RPW(S, 5, 5) 0.156 (0.026)] 0.419 (0.137)| 0.609 (0.231)
Randomization 0.207 (0.006)| 0.707 (0.011)
Neyman 0.202 (0.009)| 0.657 (0.044)
RPW(1,1,1) | 0.7 0.200 (0.016)| 0.649 (0.082)
RPW(3, 3, 3) 0.179 (0.034)| 0.519 (0.159)
RPW(S, 5, 5) 0.155 (0.045)] 0.433 (0.182)
Randomization 0.283 (0.012)
Neyman 0.258 (0.026)
RPW(1,1,1) | 0.8 0.267 (0.041)
RPW(3, 3, 3) 0.207 (0.072)
RPW(5, 5, 5) 0.161 (0.080)
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when pa is equal to 0.8 and when pg is equal to 0.7, then the power of the test using
Neyman allocation is 0.202 (0.009) and the power using RPW(1, 1, 1) is 0.200 (0.016).
We can also see in the tables that as the difference between p, and pg increases, the
power of the test increases. This is due to the fact that we are testing for a difference
between treatmenfs A and B. The larger the observed difference, the easier it is to make a
statistically significant conclusion. The trend seems to be that the more marbles that are
drawn and then added, the lower the power of the test, and the more variable the results.
Figure 2 further emphasizes this trend. ‘The graph shows the value of the power
of the two-sided test for various designs with pa varying between 0.2 and 0.9 while pg is
held constant at 0.1. Figure 2 clearly shows that while the randomized play the winner
designs do have a lower level of power as compared to 50-50 randomization and Neyman
allocation, the decrease is minor. Only when pa, or both pa and pg become quite large
does the decrease in the power seem to be more substantial, especially as the parameters
- of the RPW design increase. This will be discussed further in the monotonicity section.
This is the price that must be paid if the expected proportion of patients allocated to the
superior treatment is to increase. For the most part, however, the decrease in the power

of the RPW designs is small and to be expected.

3.3.3 Odds Ratio

The odds ratio is a quotient of the number of successes versus failures of
treatment A over the number of successes versus failures of treatment B. Obviously, if
treatment A has a higher probability of success than treatment B, then the odds ratio
should be greater than one. Without loss of generality, treatment A has been assumed to

be the superior treatment. The data in Table 3 gives the odds ratio for various
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probabilities of success of treatment A and B for 50-50 randomization, Neyman
allocation, RPW(1, 1, 1), RPW(3, 3, 3) and RPW(5, 5, 5) experimental designs. In the
table, all of the odds ratios are consistently greater than one, indicating that treatment A
has a higher number of successes versus failures than treatment B. Furthermore, as pa
and pg increase, so does the odds ratio for all designs.

When the odds ratios are compared for the various designs, it is evident that all
designs improve upon 1:1 allocation. This implies that for the same treatment
probabilities of success, randomization has a lower proportion of successes versus
failures on the superior treatment than all other designs studied. In most cases, the
randomized play the winner designs have a higher value for the odds ratio than Neyman
allocation. Particularly, when the values of ps and pgp are greater than 0.5, all RPW
designs outperform Neyman allocation. Recall that when pg is greater than g, Neyman
allocation gives poor results and allocates less than fifty per cent of subjects to the
superior treatment. For smaller values of ps and ps, Neyman allocation has the highest
odds ratio of all the designs. If the randomized play the winner designs are compared, the
RPW(3, 3, 3) improves upon the RPW(1, 1, 1) design in most cases, except when there is
a large numerical difference between pa and pg. In addition, for some large values of pa
and ps, RPW(5, 5, 5) has a higher odds ratio than RPW(3, 3, 3), indicating a higher
number of successes versus failures on treatment A. It should be noted, however, that the
odds ratio was found to be a highly variable statistic; in some cases the standard error was
greater than the average value, so all conclusions drawn based on these values are only

approximations.
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Type of P(A) 0.2 0.3 0.4 0.5
Design P(B)
Randomization 294 (246)] 504 (3.96) 7.88 (6.05)| 11.95 (9.29)
Neyman 304 (236)] 523 (3.86) 8.15 (587)| 1236 (8.87)
RPW(1, 1, 1) 0.1 3.01 (247) 516 (3.95)| 8.06 (6.03)] 1227 (9.06)
RPW(3, 3, 3) 3.03 (247) 525 (407) 825 (6.15)] 12.17 (8.46)
RPW(5, 5, 5) 3.00 (236)] 523 (4.03) 8.08 (585 11.84 (7.94)
Randomization 1.95  (L.10) 3.06 (1.73)] 4.64 (2.68)
Neyman 206 (1.32)] 324 (2.08)] 491 (.11
RPW(1,1, 1) 0.2 202 (1.26)] 3.19 (2.00)] 501 (3.62)
RPW(@3, 3, 3) 203  (1.36); 327 (230)] 512 (3.92)
RPW(S, 5, 5) 206 (137 329 (236)] 521 (3.96)
Randomization L71 (0.78)] 2.60 (1.21)
Neyman 1.76  (0.86)] 2.68 (1.33)
RPW(1,1, 1) 0.3 1.76  (0.87)] 270 (1.51)
RPW(3, 3, 3) 1.76  (0.92)] 271 (1.54)
RPW(S, 5, 5) 1.78 (0.94)] 278 (1.70)
Randomization 1.65 (0.73)
Neyman 1.66 (0.73)
RPW(1, 1, 1) 0.4 1.67 (0.76)
RPW(3, 3, 3) 1.69 (0.85)
RPW(5, 5, 5) 1.72  (0.97)

Table 3: Odds Ratio (Standard deviations are given in parentheses)
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Type of P(A) 0.6 0.7 0.8 0.9
Design P(B)
Randomization 18.25 (14.33) 28.95 (24.42)| 51.75 (49.19)] 131.50 (139.48)
Neyman 18.73 (13.68)] 29.81 (22.58)| 53.94 (45.01)| 137.97 (147.48)
RPW(1,1,1) | 0.1 | 1840 (13.06) 27.53 (18.37)| 43.00 (26.46)] 7821 (47.93)|
RPW(3, 3, 3) 17.03 (10.77)| 23.47 (13.36)| 31.11 (1634)| 4391 (25.17)
RPW(5, 5, 5) 16.19  (9.66)| 2029 (10.77)| 23.94 (12.48)] 3130 (20.17)
Randomization 708 (4.12)] 11.20 (6.75)] 20.09 (14.58)] 5157 (46.77)
Neyman 745 (4.58)] 11.78 (7.35)| 2143 (14.82)| 53.11 (44.72)
RPW(1,1,1) | 02 | 785 (6.05) 1279 (10.25)| 22.79 (18.11)| 4953  (38.27)
RPW(3, 3, 3) 8.06 (6.47)| 1258 (9.51)| 19.76 (13.48) 33.11 (21.64)
RPW(5, 5, 5) 8.06 (6.14)] 12.11 (8.40)| 16.84 (10.75)] 2595 (18.35)
Randomization 397 (191 627 (3.19) 11.24 (731)] 2886 (23.87)
Neyman 407 (2.03)| 650 (3.59)| 11.93 (7.61)| 2977 (22.76)
RPW(1,1,1) | 03 | 418 (252) 687 (497)| 12,75 (1020)] 3213 (28.06)
RPW(3, 3, 3) 435 (3.16)) 731 (5.99)| 12.80 (10.17)] 2499 (18.93)
RPW(S, 5, 5) 445 (3.43)] 742 (5.93)] 11.92 (8.80)] 2069 (16.05)
Randomization 251 (1.15)] 398 (193)| 7.13 (449 1827 (14.70)
Neyman 254 (1.15) 4.08 (2.08)| 749 (4.63)| 1855 (13.37)
RPW(1,1,1) | 0.4 | 256 (129)] 415 (@40) 774 (583)] 2051 (19.77)
RPW(3, 3, 3) 267 (1.66)] 450 (3.73)| 826 (6.96)| 1830 (15.39)
RPW(S, 5, 5) 271 (1.82)] 4.65 (3.75| 823 (6.70) 1619 (12.83)
Randomization 165 (0.72)] 261 (1.12)] 468 (273)] 1199  (9.45)
Neyman 167 (0.73)| 266 (134)] 493 (.07 1219 (8.52)
RPW(1,1,1) | 0.5 167 (0.76)] 268 (1.66) 4.93 (3.41)| 13.06 (12.13)
RPW(3, 3, 3) 172 (0.89) 286 (2.12)| 544 (487) 1328 (12.34)
RPW(S, 5, 5) 175 (1.03)|. 301 (@51)] 563 (490)] 1239 (10.67)
Randomization 1.72  (0.80) 3.09 (1.83) 7.93 (6.31)
Neyman 1.76  (0.94) 324 (2.05| 804  (5.69)
RPW(1,1,1) | 0.6 1.75 (0.87)| 3.18 (2.05)| 848  (7.83)
RPW(3, 3, 3) 1.84 (1.17) 352 (3.12)) 083  (0.16)
RPW(5, 5, 5) 191 (1.49) 3.80 (3.55)| 902 (842
Randomization 198 (1.19) 5.07 (4.04)
Neyman 207 (1.31) 5.18 3B.77)
RPW(1,1,1) | 0.7 203 (1.29) 543 (532
RPW(3, 3, 3) 218 (1.82)] 616  (6.96)
RPW(5, 5, 5) 243 (232)] 640  (6.51)
Randomization 2.94 (2.46)
Neyman 3.02 231
RPW(1,1,1) | 0.8 311 (2.99)
RPW(3, 3, 3) 3.67 (4.27)
RPW(S, 5, 5) 408  (4.78)
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3.3.4 Proportion of Successes

The results obtained from the RPW(2n+1, 2n+1, 2n+1) design must be verified to
ensure that they are similar to results obtained from other designs. This helps to ascertain
that there are no apparent flaws in the design and to ensure that the proportion of
successes on the conventional treatment and on the experimental treatment were
approximately equal to the allocation probabilities of those treatments. Table 4 gives the
total proportion of successes on treatment A, which is equal to the total number of
successes on treatment A divided by the total number of patients on treatment A. Table 5
gives similar data for treatment B. Both Table 4 and Table 5 show that the expected
proportion of successes on treatment A and B are approximately equal to the allocation
probabilities of treatments A and B, respectively. The table values are similar for all
designs simulated: 50-50 randomization, Neyman allocation, RPW(1, 1, 1), RPW(3, 3, 3)
and RPW(S, 5, 5). Thus, this is a good indication that the RPW design is allocating

subjects to treatments properly.
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Type of | P(A) 0.2 0.3 0.4 0.5
Design P(B)

Randomization 0.200 (0.057)] 0.299 (0.066)] 0.399 (0.070)] 0.499 (0.071)
Neyman 0.200 (0.053)] 0.300 (0.059)[ 0.399 (0.062)[ 0.500 (0.064)
RPW(1, 1, 1) 0.1 0.199 (0.055)] 0.298 (0.060)| 0.397 (0.063)| 0.497 (0.063)
RPW(3, 3, 3) 0.199 (0.054)| 0.297 (0.060)| 0.397 (0.062)] 0.497 (0.062)
RPWG(, 5, 5) 0.198 (0.054)] 0.297 (0.060)] 0.396 (0.061)] 0.496 (0.060)
Randomization : 0.299 (0.066)| 0.399 (0.070)] 0.499 (0.071)
Neyman 0.300 (0.063)] 0.400 (0.066)| 0.500 (0.067)
RPW(1, 1, 1) 0.2 0.298 (0.062)] 0.397 (0.065)] 0.497 (0.064)
RPW(3, 3, 3) 0.297 (0.062)| 0.397 (0.064)] 0.497 (0.063)
RPW(5, 5, 5) 0.297 (0.062)| 0.395 (0.063)] 0.496 (0.062)
Randomization 0.399 (0.070)] 0.499 (0.071)
Neyman 0.399 (0.068)] 0.500 (0.069)
RPW(1, 1, 1) 0.3 0.397 (0.067)| 0.497 (0.066)
RPW(3, 3, 3) 0.396 (0.067)| 0.497 (0.065)
RPW(, 5, 5) 0.395 (0.066)] 0.495 (0.064)
Randomization 0.499 (0.071)
Neyman 0.500 (0.070)
RPW(1, 1, 1) 0.4 0.496 (0.068)
RPW(3, 3, 3) 0.496 (0.069)
RPW(5, 5, 5) 0.494 (0.067)

Table 4: Treatment A Proportion of Successes (Standard deviations are given in

parentheses)
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Type of P(A) 0.6 0.7 0.8 0.9
Design P(B)
Randomization 0.601 (0.070)] 0.700 (0.065)| 0.799 (0.057)] 0.900 (0.042)
Neyman 0.601 (0.063)| 0.701 (0.059)( 0.802 (0.054)] 0.903 (0.043)
RPW(1,1,1) | 0.1 | 0.598 (0.061)] 0.698 (0.054)] 0.799 (0.046)] 0.899 (0.033)
RPW(, 3, 3) 0.598 (0.058){ 0.699 (0.052)] 0.799 (0.042)| 0.900 (0.031)
RPW(S, 5, 5) 0.596 (0.057)] 0.698 (0.050)] 0.798 (0.042)] 0.900 (0.030)
Randomization 0.601 (0.070)| 0.700 (0.065)} 0.799 (0.057)] 0.900 (0.042)
Neyman 0.601 (0.067)] 0.702 (0.063)| 0.803 (0.058)] 0.903 (0.047)
RPW(1,1,1) | 0.2 | 0.598 (0.062)] 0.698 (0.055)| 0.799 (0.047)] 0.899 (0.033)
RPW(3, 3, 3) 0.597 (0.059)] 0.698 (0.053)} 0.798 (0.043)] 0.899 (0.031)
RPW(S, 5, 5) 0.595 (0.058)| 0.697 (0.051)[ 0.798 (0.043)] 0.900 (0.030)
Randomization 0.601 (0.070){ 0.700 (0.065)] 0.799 (0.057)| 0.900 (0.042)
Neyman 0.601 (0.069){ 0.702 (0.065)] 0.803 (0.060){ 0.904 (0.049)
RPW(1,1,1) | 03 | 0597 (0.063)] 0.698 (0.056)] 0.799 (0.048)] 0.899 (0.034)
RPW(3, 3, 3) 0.597 (0.061) 0.698 (0.054)] 0.798 (0.044)| 0.899 (0.031)
RPW(5, 5, 5) 0.595 (0.059)] 0.696 (0.052)] 0.798 (0.043)| 0.899 (0.030)
Randomization 0.601 (0.070)| 0.700 (0.065)] 0.799 (0.057)f 0.900 (0.042)
Neyman 0.601 (0.070)| 0.702 (0.066)] 0.803 (0.061)] 0.904 (0.050)
RPW(1,1,1) | 0.4 | 0.597 (0.065)] 0.697 (0.058)| 0.798 (0.049)] 0.899 (0.034)
RPW(3, 3, 3) 0.596 (0.064)| 0.697 (0.056)] 0.797 (0.045); 0.899 (0.032)
RPW(S, 5, 5) 0.594 (0.062)] 0.696 (0.054)] 0.797 (0.045)] 0.899 (0.031)
Randomization 0.601 (0.070)j 0.700 (0.065)[ 0.799 (0.057)] 0.900 (0.042)
Neyman 0.602 (0.071)] 0.702 (0.067)] 0.804 (0.061)] 0.904 (0.050)
RPW(1,1,1) | 0.5 | 0.596 (0.068)] 0.696 (0.060)] 0.797 (0.051)] 0.899 (0.035)
RPW(3, 3, 3) 0.595 (0.068)] 0.696 (0.059) 0.797 (0.047){ 0.899 (0.033)
RPW(S, 5, 5) 0.592 (0.067)] 0.694 (0.058)] 0.796 (0.047)] 0.899 (0.032)
Randomization 0.700 (0.065)| 0.799 (0.057)] 0.900 (0.042)
Neyman 0.702 (0.066)| 0.803 (0.061)] 0.904 (0.050)
RPW(1,1,1) | 0.6 0.696 (0.064)] 0.797 (0.053)| 0.898 (0.037)
RPW(3, 3, 3) 0.694 (0.065)| 0.795 (0.051)] 0.898 (0.034)
RPW(S, S, 5) 0.690 (0.066)] 0.794 (0.052)] 0.898 (0.035)
Randomization 0.799 (0.057)] 0.900 (0.042)
Neyman 0.803 (0.060)] 0.904 (0.049)
RPW(1,1,1) | 0.7 0.796 (0.057)] 0.898 (0.039)
RPW(3, 3, 3) 0.792 (0.060)] 0.897 (0.040)
RPW(S, 5, 5) 0.791 (0.069)] 0.896 (0.097)
Randomization 0.900 (0.042)
Neyman 0.903 (0.047)
RPW(1,1,1) | 0.8 0.897 (0.044)
RPW(3, 3, 3) 0.893 (0.055)
RPW(5, 5, 5) 0.889 (0.091)
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Type of P(A) 0.2 0.3 0.4 0.5
Design P(B)
Randomization 0.101 (0.043)|] 0.101 (0.043)| 0.101 (0.043)| 0.101 (0.043)
Neyman 0.097 (0.046)| 0.096 (0.048)] 0.096 (0.050){ 0.096 (0.050)
RPW(1, 1, 1) 0.1 0.099 (0.043)] 0.099 (0.045)] 0.099 (0.047)] 0.098 (0.049)
RPW(3, 3, 3) 0.098 (0.044)] 0.098 (0.046)| 0.097 (0.049)] 0.096 (0.053)
RPW(S, 5, 5) 0.098 (0.044)| 0.098 (0.046)] 0.097 (0.050)] 0.097 (0.055)
Randomization 0.210 (0.057)| 0.210 (0.057)| 0.210 (0.057)
Neyman 0.198 (0.060){ 0.198 (0.061)] 0.197 (0.062)
RPW(1,1, 1) 0.2 0.198 (0.059)] 0.198 (0.061){ 0.197 (0.065)
RPW(3, 3, 3) 0.198 (0.059)[ 0.197 (0.063)| 0.197 (0.068)
RPW(S, 5, 5) 0.197 (0.060)] 0.196 (0.064)] 0.194 (0.070)
Randomization 10.301 (0.065)] 0.301 (0.065)
Neyman 0.297 (0.068)] 0.297 (0.068)
RPW(1, 1, 1) 0.3 0.296 (0.068)] 0.295 (0.072)
RPW(3, 3, 3) 0.297 (0.068)] 0.296 (0.073)
RPW(S, 5, 5) 0.294 (0.069)] 0.292 (0.075)
Randomization 0.400 (0.069)
Neyman 0.398 (0.071)
RPW(1,1,1) 0.4 0.395 (0.073)
RPW(3, 3, 3) 0.394 (0.075)
RPW(S, 5, 5) 0.390 (0.078)

Table 5: Treatment B Proportion of Successes (Standard deviations are given in

parentheses)
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Type of P(A) 0.6 0.7 0.8 0.9
Design P(B)
Randomization 0.101 (0.043)] 0.101 (0.043)| 0.101 (0.043)] 0.101 (0.043)
Neyman 0.096 (0.050)| 0.096 (0.048)] 0.097 (0.046)| 0.098 (0.043)
RPW(1,1,1) | 0.1 | 0.098 (0.053)| 0.097 (0.058)| 0.095 (0.067)| 0.092 (0.083)
RPW@3, 3, 3) 0.096 (0.060)|] 0.094 (0.068)| 0.091 (0.087)] 0.083 (0.125)
RPW(S, 5, 5) 0.096 (0.063)] 0.093 (0.079)] 0.088 (0.109)] 0.072 (0.147)
Randomization 0210 (0.057)] 0.210 (0.057)] 0.210 (0.057)] 0210 (0.057)
Neyman 0.197 (0.061)| 0.198 (0.060)| 0.198 (0.058)] 0.199 (0.053)
RPW(1, 1, 1) 0.2 0.196 (0.069)] 0.195 (0.076)] 0.191 (0.087)} 0.185 (0.110)
RPW(3, 3, 3) 0.196 (0.076)| 0.193 (0.089)| 0.187 (0.114)| 0.172 (0.167)
RPW(5, 5, 5) 0.193 (0.081)| 0.188 (0.103)| 0.176 (0.144)| 0.150 (0.203)
Randomization 0301 (0.065)] 0301 (0.065)] 0301 (0.065)| 0.301 (0.065)
Neyman 0.297 (0.067)] 0.297 (0.066)| 0.297 (0.064)| 0.298 (0.060)
RPW(1, 1, 1) 0.3 0.294 (0.076)[ 0.292 (0.083)| 0.288 (0.094)| 0.278 (0.119)
RPW(3, 3, 3) 0.293 (0.082)| 0.290 (0.097)| 0.283 (0.126)] 0.261 (0.191)
RPW(S, 5, 5) 0.290 (0.088)] 0.283 (0.113)] 0.267 (0.161)] 0.229 (0.236)
Randomization 0.400 (0.069)] 0.400 (0.069)| 0.400 (0.069)] 0.400 (0.069)
Neyman 0.398 (0.070){ 0.398 (0.069)} 0.398 (0.067)| 0.398 (0.063)
RPW(1,1,1) | 0.4 | 0394 (0.078)] 0.392 (0.085)| 0.387 (0.097)] 0.378 (0.128)
RPW(3, 3, 3) 0.391 (0.084)| 0.387 (0.099) 0.379 (0.129)] 0.352 (0.203)
RPW(5, 5, 5) 0.387 (0.090){ 0.380 (0.117)} 0.362 (0.172)] 0.316 (0.258)
Randomization 0.500 (0.071)j 0.500 (0.071)[ 0.500 (0.071)] 0.500 (0.071)
Neyman 0.499 (0.071)| 0.499 (0.070)| 0.499 (0.068)| 0.499 (0.064)
RPW(1,1,1) | 0.5 | 0494 (0.076)| 0.493 (0.084)| 0.489 (0.096)| 0.479 (0.122)
RPW(3, 3, 3) 0.491 (0.080)] 0.487 (0.096)| 0.477 (0.129)} 0.445 (0.207)
RPW(5, 5, 5) 0.486 (0.086)| 0.479 (0.113)] 0.461 (0.170)] 0.411 (0.267)
Randomization 0.601 (0.070)] 0.601 (0.070)| 0.601 (0.070)
Neyman 0.601 (0.069)| 0.601 (0.066)] 0.600 (0.063)
RPW(1, 1, 1) 0.6 0.594 (0.078){ 0.592 (0.089)] 0.582 (0.115)
RPW(3, 3, 3) 0.587 (0.087)| 0.578 (0.119)| 0.545 (0.202)
RPW(5, 5, 5) 0.581 (0.102)] 0.560 (0.163)] 0.511 (0.266)
Randomization 0.700 (0.065)] 0.700 (0.065)
Neyman 0.701 (0.063)| 0.700 (0.059)
RPW(1,1,1) | 0.7 0.692 (0.077)} 0.683 (0.101)
RPW(3, 3, 3) 0.681 (0.105)] 0.654 (0.185)
RPW(5, 5, 5) 0.665 (0.148)| 0.619 (0.252)
Randomization 0.801 (0.006)
Neyman 0.801 (0.053)
RPW(1,1,1) | 0.8 0.789 (0.081)
RPW(3, 3, 3) 0.767 (0.156)
RPW(5, 5, 5) 0.736 (0.227)
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Table 6 gives the total proportion of successes on both treatments A and B
divided by the total number of patients tfeated. Again, the same properties present in
Tables 4 and 5 are present here. The values in this table hold more significance however
because the greater the total proportion of successes, the greater the number of patients
cured. Moreover, a higher total proportion of successes may imply that the design is
better at allocating patients to the superior treatment. The proportions for 50-50
randomization increase linearly as the probabilities of success of treatments A and B
increase. The proportions for Neyman alloéation are greater than those of 50-50
randomization until the probability of success of treatment B is greater than the
probability of failure of treatment A. For example, when pg = 0.7 and pa = 0.9, then the
total proportion of successes is 0.777 (0.041), which is lower than 0.80 (0.040), the value
for 50-50 randomization.

The proportions for the randomized play the winner designs are almost
consistently higher than 50-50 randomization and Neyman allocation except when both
pa and pp are small. Furthermore, as the number of balls drawn then added increases
from one to three to five, so does the proportion of successes. This trend can be
visualised by Figure 3. Figure 3 ié a graph of total proportion of successes for various
values of pa while pg is held constant at 0.1. As the graph indicates, the randomized play
the winner rules perform better than both 1:1 allocation and Neyman allocation in terms
of increasing the number of successes in the trial. In addition, RPW(5, 5, 5) outperforms
RPW(3, 3, 3), which outperforms RPW(1, 1, 1). Note, however, that the increase in the
total proportion of successes is greater between RPW(1, 1, 1) and RPW(3, 3, 3) than
RPW(3, 3, 3) and RPW(5, 5, 5). This may indicate that as the parameters of the design

increase, the improvement in the total number of successes is not as significant. Even so,
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the more balls drawn, then added to the urn, the higher the total proportion of successes

in the trial. This implies that more patients are successfully treated when randomized

play the winner designs are used in clinical trials.

Type of P(A) 0.2 0.3 0.4 0.5
Design P(B)
Randomization 0.150 (0.036)] 0.200 (0.040)] 0.250 (0.043)] 0.300 (0.046)
Neyman 0.159 (0.036)| 0.223 (0.041){ 0.289 (0.044)| 0.354 (0.045)
RPW(1,1,1) | 0.1 0.154 (0.036)] 0.213 (0.042)| 0.279 (0.049)] 0.355 (0.054)
RPW(3, 3, 3) 0.154 (0.037)] 0.215 (0.044)| 0.287 (0.051)] 0.372 (0.059)
RPW(5, 5, 5) 0.154 (0.037)] 0.217 (0.045)] 0.291 (0.053)] 0.380 (0.061)
Randomization 0.250 (0.044)| 0.300 (0.046)] 0.350 (0.004)
Neyman 0.254 (0.009)] 0.311 (0.045)] 0.368 (0.046)
RPW(1,1,1) | 0.2 0.254 (0.044)} 0314 (0.049)| 0.383 (0.053)
RPW(3, 3, 3) 0.255 (0.044)| 0319 (0.050)f 0.395 (0.057)
RPW(S, 5, 5) 0.255 (0.044)| 0.320 (0.050)] 0.400 (0.058)
Randomization 0.350 (0.048)| 0.400 (0.049)
Neyman 0.351 (0.048)] 0.404 (0.049)
RPW(1,1,1) | 0.3 0.353 (0.049)| 0.416 (0.052)
RPW(3, 3, 3) 0.356 (0.049)] 0.423 (0.054)
RPW(S, 5, 5) 0.355 (0.049)] 0.425 (0.055)
Randomization 0.450 (0.050)
Neyman 0.450 (0.050)
RPW(1,1,1) | 04 0.454 (0.051)
RPW(3, 3, 3) 0.457 (0.051)
RPW(5, 5, 5) 0.457 (0.052)

Table 6: Total Proportion of Successes (Standard deviations are given in parentheses)
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Type of P(A) 0.6 0.7 0.8 0.9
Design P(B)
Randomization 0.350 (0.047)] 0.400 (0.048)| 0.449 (0.049)| 0.500 (0.049)
Neyman 0.415 (0.045)| 0.468 (0.045)] 0.506 (0.044)] 0.500 (0.050)
RPW(1,1,1) 0.1 0.443 (0.060)| 0.542 (0.063)] 0.659 (0.065)| 0.794 (0.058)
RPW(3, 3, 3) 0.471 (0.065)| 0.585 (0.068)| 0.714 (0.063)] 0.853 (0.048)
RPW(, 5, 5) 0.485 (0.068)] 0.608 (0.070){ 0.741 (0.062)] 0.873 (0.042)
Randomization 0.401 (0.047)| 0.450 (0.049)] 0.500 (0.049)| 0.550 (0.049)
Neyman 0.422 (0.045)] 0.469 (0.043)| 0.501 (0.041)] 0.496 (0.043)
RPW(1,1, 1) 0.2 0.464 (0.058)] 0.557 (0.061)| 0.667 (0.063)] 0.795 (0.058)
RPW(3, 3, 3) 0.486 (0.062)| 0.593 (0.066); 0.717 (0.062)] 0.853 (0.049)
RPW(S, 5, 5) 0.497 (0.065)| 0.613 (0.068)] 0.742 (0.062)| 0.873 (0.043)
Randomization 0.450 (0.050)] 0.500 (0.050)| 0.549 (0.049)| 0.600 (0.048)
Neyman 0.455 (0.048)] 0.500 (0.045)] 0.532 (0.043)] 0.532 (0.045)
RPW(1, 1, 1) 0.3 0.489 (0.056)| 0.574 (0.059)] 0.676 (0.061)} 0.797 (0.057)
RPW(3, 3, 3) 0.504 (0.058)| 0.603 (0.063)] 0.720 (0.061)| 0.852 (0.050)
RPW(S, 5, 5) 0.512 (0.062){ 0.620 (0.066)| 0.743 (0.062)] 0.871 (0.044)
Randomization 0.500 (0.050) 0.550 (0.050)| 0.599 (0.048)| 0.650 (0.047)
Neyman 0.500 (0.049)| 0.545 (0.047)| 0.578 (0.002)] 0.585 (0.046)
RPW(1, 1, 1) 0.4 0.519 (0.054)] 0.595 (0.056)| 0.688 (0.058)] 0.800 (0.056)
RPW(3, 3, 3) 0.528 (0.055)] 0.616 (0.060)| 0.725 (0.060)| 0.851 (0.050)
RPW(S, 5, 5) 0.531 (0.057)] 0.628 (0.063)] 0.744 (0.062)] 0.869 (0.047)
Randomization 0.550 (0.050)| 0.600 (0.049)| 0.649 (0.047)] 0.700 (0.045)
Neyman 0.550 (0.050)] 0.595 (0.048)| 0.632 (0.047)} 0.646 (0.046)
RPW(1, 1, 1) 0.5 0.555 (0.051)[ 0.622 (0.052)] 0.705 (0.055)] 0.807 (0.054)
RPW(3, 3, 3) 0.559 (0.051)] 0.635 (0.055)] 0.731 (0.058)] 0.849 (0.054)
RPW(S, 5, 5) 0.558 (0.053)| 0.641 (0.058)] 0.746 (0.062)] 0.865 (0.052)
Randomization 0.650 (0.048)| 0.700 (0.046){ 0.750 (0.043)
Neyman 0.649 (0.047)] 0.690 (0.046)| 0.711 (0.044)
RPW(1,1,1) 0.6 0.657 (0.049)| 0.728 (0.050)| 0.817 (0.051)
RPW(3, 3, 3) 0.661 (0.050)| 0.742 (0.054)] 0.849 (0.056)
RPW(5, 5, 5) 0.662 (0.051)] 0.750 (0.059)] 0.859 (0.059)
Randomization 0.750 (0.043)] 0.800 (0.040)
Neyman 0.747 (0.044)| 0.777 (0.041)
RPW(1, 1, 1) 0.7 0.758 (0.045)| 0.833 (0.046)
RPW(3, 3, 3) 0.763 (0.046)] 0.852 (0.053)
RPW(, 5, 5) 0.764 (0.050)] 0.855 (0.060)
Randomization 0.850 (0.036)
Neyman 0.842 (0.037)
RPW(1, 1, 1) 0.8 0.859 (0.038)
RPW(3, 3, 3) 0.865 (0.043)
RPW(5, 5, 5) 0.865 (0.047)
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Figure 3: Total Proportion of Successes
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3.4 Monotonicity of RPW(u, a, B; v)

In order to study the monotonic properties on the randomized play the winner
design, a new notation will be introduced to fully represent all the different values the
parameters may take. The general case of the randomized play the winner rule design
shall be denoted as RPW(y, a, B; y).. The parameters in the design include p, the number
of balls at the start of the trial of each type, a, the number of balls added after the
response of the patient was a success, B, the number of balls added when the response
was a failure and vy, the number of balls drawn. Note that it is possible that at the
beginning of the trial for the number of balls of each type to be unequal. If that were the
case then p would actually have two levels, and the randomized play the winner design
would be denoted as RPW(,;, uz; a, B; v). Beginning the trial with an uneven sample
size may favour one treatment over the other and also may reduce power. In this paper
only the case where the trial begins with an equal number of balls will be explored.

Varying any or all of the parameters in the randomized play the winner design
enables us to see its monotonic properties. If the parameters are allowed to
systematically increase, and a trend emer;ges with respect to the parameters, then the
design can be considered monotonic. The monotonicity of the RPW(y, a, B; y) design is
explored with respect to both the expected proportion on the superior treatment and the
power of the test. The parameters are increased simultaneously as well as individually
while holding all others constant to determine how strongly each parameter affects the
results of the statistic under study. All simulations use 2000 replications, each with a
sample size of one hundred patients unless otherwise indicated. As before, the program
SAS was used for simulation studies. The goals of the monotonicity study are to not only

determine which parameters hold the most influence on the RPW design, but also to
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hopefully discover an optimum level for the parameters in the design to maximize the
expected proportion of patients allocated to the superior treatment without significant

sacrifices in power.

3.4.1 Monotonicity in all Parameters Concurrently

Studying the monotonic properties of the RPW(2n+1, 2n+1, 2n+1; 2n+1) design
enables us to understand the trends of the design as n increases. Tables 7 and 8 show the
monotonic properties of various randomized play the winner designs for the expected
proportion on the superior treatment and the power of the test for various probabilities of
treatment A and B. Also, the tables include values for 50-50 randomization so we are
able to compare the randomized play the winner designs with the classical 50:50
randomized design.

Table 7 shows an increasing trend in the expected proportion as n increases while
Table 8 shows a decreasing trend in the power of the test. These trends are clearly visible
in Figure 4, which plots the expected proportion against the power of the test for various
values of n as well as randomization when pa = 0.7 and pg = 0.4. The trend visible in the
graph is that as the number of balls in the urn increases, there is a higher chance that a
patient will receive the superior treatment, but there is also less likely of a chance of
reaching a valid conclusion at the end of the trial. The intuition behind these trends is
that as n increases, the trial focuses more on allocating patients to the superior treatment
and less on information gathering. So, increasingly more patients receive a better

treatment, but the trial becomes less balanced, causing a substantial decrease in power.

65



Treatment | 50-50 RPW(2n+1, 2n+1, 2n+1; 2n+1) design, where n is

probability | random 0 1 2 4 8 16 32 64
P(A)=0.2 0.500] 0.528] 0.536] 0.539] 0.545] 0.551] 0.555] 0.559] 0.562
PB)=0.1] (0.048)] (0.040)] (0.041)] (0.041)] (0.043)] (0.043)] (0.044)} (0.048)] (0.047)|
P(A)=0.5 0.500} 0.637} 0.678] 0.702] 0.732] 0.765] 0.801} 0.827] 0.851
PB)=0.1] (0.048)] (0.051)] (0.058)] (0.058)] (0.064)] (0.068)] (0.070)] (0.075)] (0.075)|
P(A)=0.9 0.50001 0.868] 0.941] 0967} 0982] 0989 0.992} 09921 0.992
P@B)=0.1] (0.048)] (0.051)] (0.036)] (0.027)] (0.018)] (0.013)] (0.010)] (0.009)] (0.010)|
P(A)=0.5 0.500] 0.544] 0.559] 0.573 0.585] 0.608] 0.632} 0.655] 0.674
PB)=0.4| (0.048)] (0.070)] (0.090)] (0.098)] (0.114)] (0.137)] (0.158)] (0.179)] (0.193)|
P(A)=0.7 0.500] 0.652] 0.718} 0.763 0.814 0.871 0.907| 0.929] 0.934
PB)=0.4| (0.048)] (0.082)] (0.100)| (0.114)] (0.120)] (0.12D)] (0.122)] 0.113] (0.112)]
P(A)=0.9 0.500] 0.803F 0901}y 0938] 09631 0973} 0975] 09761 0.975
PB)=04| (0.048)] (0.086)] (0.079)| (0.070)] (0.059)} (0.054)] (0.062)] (0.057)] (0.061)|
P(A)=0.38 0.500] 0.633 0.712} 0.750] 0.799] 0.813] 0.814] 0.781 0.782
PB)=0.6| (0.048)] (0.116)] (0.166)] (0.205)] (0.234)] (0.283) (0.318)] (0.367)| (0.375)]
P(A)=0.9 0.500] 0.722] 0.830f 0.862] 0.892] 0.887F 0.879] 0.838} 0.842
PB)=0.6| (0.048)] (0.126)] (0.155)] (0.180)] (0.193)] (0.233)] (0.268)] (0.328)] (0.333)]
P(A)=0.9 0.500] 0.592] 0.650} 0.658] 0.640] 0.614} 0.611 0.5921 0.603
P@B)=08| (0.048)] (0.181)] (0.298)] (0.366)] (0.428)] (0.467)| (0.479)| (0.487)| (0.485)|

Table 7: Expected Proportion on the Superior Treatment for RPW(2n+1, 2n+1, 2n+1;

2n+1) (Standard deviations are given in parentheses)
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Treatment | 50-50 RPW(2n+1, 2n+1, 2n+1; 2n+1) design, where n is

probability | random 0 1 2 4 8 16 32 64
P(A)=10.2 0.284] 0277 0.275 0.274 0.272 02701 0.268 0.267 0.265
P(B)=0.1] (0.012)} (0.012)] (0.013)} (0.131)] (0.014)] (0.015)] (0.016)] (0.017)] (0.017)|
P(A)=0.5 0.996] 09941 0990} 0987] 0.978] 0957] 00917 0.861} 0.796
PB)=0.1 ] (0.000)] (0.003)] (0.008)] (0.015)] (0.033)] (0.070)] (0.128)] (0.186)] (0.239)|
P(A)=0.9 1.000} 0.999] 0980] 0.933] 0868] 0.817] 0.789 0.786} 0.783
P(B)=0.1] (0.000)] (0.011)] (0.060)] (0.102)] (0.120)] (0.113)] (0.099)] (0.098)] (0.096)|
P(A)=0.5 0.167} 0.165 0.162] 0.160 0.157 0.152 0.146 0.139f 0.133
PB)=0.4 | (0.002)] (0.005)] (0.008)] (0.010)] (0.013)] (0.102)] (0.025)| (0.031)| (0.035)]
P(A)=0.7 0.863 0.820 0.759] 0.698 0.605 0.479 0.384 0.335| 0.322
P(B)=0.4 | (0.005)] (0.046) (0.100)] (0.142)] (0.192)] (0.227)) (0.240)] (0.233)| (0.236)|
P(A)=0.9 1.000} 0.980 0.862] 0.745 0.649 0.600 0.585 0.583 0.590]
PB)=0.4] (0.000)] (0.045)] (0.152)] (0.197)| (0.207) 0.206| o.210| 0.206] 0215
P(A)=0.38 0.586 0.553 0.482 0.418 0.340 0.278 0.237 0.204 0.189
PB)=0.6 | (0.008)] (0.049)] (0.105)] (0.138)] (0.159)] (0.160)} (0.157)| (0.148)| (0.140)|
P(A)=09 0.944] 0.867 0.706] 0.611 0.534 0.496] 0.443 0.407 0.386
P(B)=0.6 | (0.003)] (0.093) (0.194)] (0.230)} (0.242)} (0.245)] (0.244)] (0.246)| (0.233)|
P(A)=0.9 0.284 0.267 0.208 0.163 0.119 0.097 0.089 0.085 0.089
PB)=0.8 | (0.012)] (0.040) (0.072)] (0.080)] (0.078)] (0.07D)] (0.061)] (0.056)] (0.052)

Table 8: Power of the Test for RPW(2n+1, 2n+1, 2n+1; 2n+1) (S’tandard deviations are

given in parentheses)
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Figure 4: Monotonicity of RPW(2n+1, 2n+1, 2n+1; 2n+1)

Note that there are some exceptions to these trends, particularly in Table 7 when
pg is large. This is likely due to the large number of type B balls and the higher chance of
drawing one of them. If a type B ball is drawn early in the trial, and the response is a
success, then a large amount of B balls are then added to the urn. This will further
increase the chances of receiving treatment B. The probability of receiving treatment B
increases with each success on that treatment. So, more patients may actually receive the
inferior treatment and the trial can easily become skewed as n increases. For the most
part, however, as n increases the expected proportion on the superior treatment is quite an
improvement over the classical randomized design, which only allocates fifty per cent of
patients to either treatment. The values for power of the test are highest when 50-50
randomization is used, and then steadily decrease as n increases, except when n = 64, pa
= 0.9 and pg = 0.8. While it is beneficial to have the expected proportion on the better

treatment to be as high as possible, any trial would be a waste if no valid statistical
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conclusion could be drawn. Thus, it is necessary to choose a value of n so that the
RPW(2n+1, 2n+1, 2n+1; 2n+1) design gives valid statistical results with less ethical

compromise to the patients in the trial.

3.4.2 Monotonicity in p

Increasing the number of balls of each type at the beginning of the trial, denoted
i, reduces the rate at which the treatment assignment probabilities adjust. If the treatment
assignment probabilities adjust slowly, then it takes longer for the trial to reveal the
superior treatment, and thus a smaller proportion of patients receive that treatment. This
has a slowing effect on the trial and provides a level playing field for the treatments. In a
sense, more weight is given to randomization than adaptation. Note that all other
variables are kept constant at three (similar properties are expected at other fixed values.)
When the number of balls added to the urn after a response are small compared to the
number of balls already in the urn, those added do little to change the treatment
probabilities. Thus, the larger the initial size of the urn, the slower the trial progresses,
and the less extreme the results.

Table 9 shows the monotonic properties of various randomized play the winner
designs for the expected proportion on the superior treatment and Table 10 shows the
monotonic properties for the power of the test. In Table 9 we see that as n increases, a
decreasing trend can be seen in the expected proportion to the superior treatment. In
Table 10 an increasing trend can be seen in the power of the test as n increases. For large
values of n, the initial urn size is quite large. Whether more balls of type A or type B are
added after a response, the number added is so few in comparison to the total number of

balls in the urn that it has little effect to change to the treatment probabilities. The effect
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will not be seen until towards the end of the trial, in which case the trial could have been
already skewed to the inferior treatment. These results indicate that the initial urn size
places a substantial role in the outcome of the trial. A large initial urn size in comparison
to the number of balls drawn and added will reduce the effect of adding or drawing balls,
which slows the adaptation of the treatment assignment probabilities. This reduces the
number of patients who receive the superior treatment overall but actually increases the

power of the test. Particularly, if both p, and pp are large, it is best to keep the initial urn

size small.
Treatment RPW(2n+1, 3, 3; 3) design, where n is
probability 1 2 4 8 16 32 64

P(A)=02] 0536 0536 0.535] 0533] 0530 0.526] 0.520
PB)=0.1] (0.041)] (0.041)] (0.040)] (0.040)] (0.039) (0.039)I (0.039)
P(A)=05] 0678 0675 0669 0658 0.641] 0.616] 0.587
P@B)=0.1] (0.058)] (0.057)] (0.056)] (0.054)] (0.051)] (0.048) (0.046)|
P(A)=09] 00941 o931 o912 0.881] 0832] 0767 0.692
PB)=0.1] (0.036)] (0.036)] (0.038)] (0.040)] (0.043)] (0.045) (0.047)|
P(A)=05] 0559 0558 0.555] 0550 0.542] 0.534 0.524
PB)=04 ] (0.090)] (0.088) (0.084) (0.078)] (0.070) (0.062)] (0.055)|
P(A)=0.7 O.718| 0712 0696 0.675] 0.646] 0.612] 0.578
PB)=04] (0.109)] (0.100) (0.093)] (0.086) (0.077)] (0.068)| (0.060)|
P(A)=09] 00901 03887 0.861 o‘szzl ‘0.765I 0.700] 0.636
PB)=04| (0079 0.078)] 0.077) (0.079) (©.07D)] (0.067)] (0.061)
P(A)=08]| o712 o0701] 0683 0653 0621] 0587 0.557
P®)=06| (0.166)] (0.1549)| 0.139)) (0.121)] (0.101)] (0.083)] (0.068)]
P(A)=09]| o830 o0816] 0789 0.744] 0691 0.637] 0.589
PB)=06] (0.155) (0.144) (0.131)] (0.116)] (0.100)] (0.083) (0.069)]
P(A)=09] 0650 o0646] 0632] o0.605] 0577] 0552 0.532
PB)=08] (0298)] (0.267)] (0.226)] (0.181) (0.138)] (0.102) (0.078)J

Table 9: Expected Proportion on the Superior Treatment for RPW(2n+1, 3, 3; 3)

(Standard deviations are given in parentheses)
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Treatment RPW(2n+1, 3, 3; 3) design, where n is
probability 1 2 4 8 16 32 64

P(A)=0.2 0.041 0.275 0.275 0.276 0.276 0.278 O.279|
PB)=01] (0.013)] (0.013)] (0.012)] (0.012)] (0.012) (0.011)] (0.011)
P(A)=0.5 0.990 0.991 0.992 0.993 0.994 0.995 0.996
PB)=0.1] (0.008)] (0.007)] (0.006)] (0.005)] (0.003)] (0.002)] (0.001)|
P(A)=0.9 0.980 0.990 0.997 1.000 1.000 1.000 1.000I
P@B)=0.1] (0.060) (0.040) (0.2} (0.009) (0.000)] (0.000)] (0.000)
P(A)=0.5 0.162 0.162 0.163 0.164 0.165 0.166 0.166
P@B)=0.4] (0.008) (0.008)] (0.007)| (0.006)] (0.005)] (0.004) (0.003)|
P(A)=0.7 0.759 0.768 0.786 0.805 0.826 0.842 0.853
P@B)=04] (0100 (0.09D] (0.074)] (0057} (0.039)] (0.024)] (0.014)]
P(A)=0.9 0.862 0.899 0.943 0.979 0.995 0.999 1.000
P@B)=04]| (0152 ©.123)] (0.083)] (0.039)] (0.009)] (0.002)] (0.000)
P(A)=10.8 0.482 0.497 0.518 0.543 0.563 0.577 0.584
PB)=0.6] (0.105] (0.096) (0.078) (0.056)] (0.036)] (0.021)] (0.012)]
P(A)=09] 0.706 0.744 0.798 0.858 0.901 0.925 0.937
PB)=06] 0199 (0.172)] (0.136)] (0.087)] (0.047)] (0.023)| (0.011)]
P(A)=0.9 0.208 0.226 0.248 0.268 0.280 0.286 0.287
PB)=08] (0.072)] (0.065)] (0.054) (0.040) (0.028)] (0.020)] (0.017)|

Table 10: Power of the Test for RPW(2n+1, 3, 3; 3) (Standard deviations are given in

parentheses)

3.4.3 Monotonicity in a

Increasing the number of balls added after a successful response has the effect of
speeding up the trial and producing more extreme results. In all the simulations, all other
variables are kept constant at three, but similar results are expected at other fixed values.
Steadily raising o quickly skews the trial towards one treatment when the treatment
probabilities are small. The reason behind this is that after only one successful treatment,
the number of balls added is large compared to the urn size. Therefore, when the next
balls are drawn to determine the next treatment, the treatment probabilities have changed

dramatically, especially for large values of n. For example, if treatment A had a
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successful treatment, then for the next treatment selection, the number of type A balls
would greatly outweigh the number of type B balls, thus giving treatment A a much
higher probability of selection. Further successes on treatment A would only improve its
chance of selection, and further skew results.

Tables 11 and 12 reflect this analysis. It should be pointed out that these tables
give the more extreme results on average when compared with other monotonicity tables
measuring the same statistic. The values for the expected proportion are higher and the
values for power are lower. This is most likely owing to how rapidly the trial skews as a

result of increasing the number of balls added after a successful response.

Treatment RPW(3, 2nt1, 3; 3) design, where n is

probability 1 2 4 8 16 32 64
P(A)=0.2 0.536] 0.549] 0.574] o0618] 0.678] 0.713] 0.709
PB)=0.1] (0.04D] (0.051)] (0.073)] (0.114)] (0.179)] (0.266)] (0.350)
P(A)=0.5 0.674f 0.732] 0809 0885] 0924] 0924] 0901
PB)=0.1] (0.058)] (0.069)] (0.078)] (0.082)] (0.102)] (0.157)] (0.227)|
P(A)=0.9 0941] 0964] 09771 0984] 0983 0978 0966
PB)=0.1] (0.036)] (0.028)] (0.026)} (0.028)] (0.040)] (0.070)] (0.122)|
P(A)=0.5 0.559] 0.581] 0605] 0614] 059} 0569 0.564
PB)=0.4] (0.090)] (0.132)] (0.208)] (0.317)] (0.413)] (0.465) (0.482)
P(A) =0.7 0.718 O.768| O.809| 0.797] 0.744 0.693| 0.674
PB)=0.4] (0.109)] (0.134)] (0.191)] (0.286)] (0.381)] (0.438)] (0.458)|
P(A)=0.9 0901] 0923] 0923 0889 0829 0771 0.745
PB)=04] (0.079)] (0.095)} (0.140)] (0.228)] (0.329) 0399 (0.427)
P(A)=0.8 0712l 07311 0713] o0662] 0.620] 0601 0594
PB)=0.6] (0.166)] (0.233)] (0.332)] (0.420)] (0.466)] (0.481)] (0.487)
P(A)=0.9 0.830] 0830} 0.787] 0.720] o0.666] 0643] 0.635
PB)=0.6| (0.155)] (0.216)] (0.312)] (0.404)| (0.455)] (0.472)| (0.478)|
P(A)=0.9 0.650] 0.627] 0590 0565 0.554] 0549 0.546
PB)=08] (0.298)] (0.375)] (0.442)| (0.478)] (0.492)] (0.495)] (0.496)|

Table 11: Expected Proportion on the Superior Treatment for RPW(3, 2n+1, 3; 3)

(Standard deviations are given in parentheses)
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Treatment RPW(3, 2n+1, 3; 3) design, where n is

probability 1 2 4 8 16 32 64
P(A)=0.2 0.275 0.270 0.258 0.234 0.190 0.143 0.107
pB)=0.1] 0.013)] (0017 (0.028)] (0.050) (0.079)| (0.098)] (0.097)]
P(A)=0.5 0.990 0.977 0.904 0.666 0.401 0.301 0.273
P@B)=0.1] (0.008)] (0.035)] (0.123)] (0.270)] (0.321)] (0.338)] (0.339)]
P(A)=0.9 0.980 0.941 0.892 0.855 0.837 0.831 0.829|
P@B)=0.1] (0.060)] (0.098)] (0.118)] (0.12)] (0.119)] (0.118)] (0.118)
P(A)=0.5 0.162 0.155 0.140 0.110 0.077 0.056 0.047
PB)=04] (0.008)] (0.015] (0.027)] (0.038)] (0.036)] (0.026)] (0.018)|
P(A)=0.7 0.759 0.672 0.533 0.406 0.299 0.199 0.146
PB)=04] (0.100)] (0.166)] (0.235)] (0.264)] (0.235)] (0.179) (0.120)|
P(A)=0.9 0.862 0.766 0.705 0.685 0.629 0.488 0.414
P®B)=04| (0.152) (0.198)] (0.225)] (0.250)] (0.267)| (0.262)] (0.208)|
P(A)=0.8 0.482 0.407 0.303 0.193 0.125 0.104 0.093
PB)=0.6] (0.105 (0.14D] (0.157)] (0.140) (0.111)] (0.092)] (0.059)|
P(A)=0.9 0.706 0.628 0.551 0.390 0.248 0.220 0.215
P@B)=0.6] (0.199)] (0239 (0257 (026D (0.227)] (0.186) (0.137)|
P(A)=0.9 0.208 0.160 0.112 0.082 0.069 0.072 0.074
PB)=08] (0.072)] (0.082)] (0.082)] (0.074)| (0.062)} (0.057) (0.053)|

Table 12: Power of the Test for RPW(3, 2n+1, 3; 3) (Standard deviations are given in

parentheses)

It is important to note that both the increasing trends seen in Table 11 as well as
the decreasing trends seen in Table 12 are only valid for small values of pa, pgand n. It
may seem counter-intuitive, but when pa, ps and n all have extremely high values there is
actually a decreasing trend seen in the expected proportion and an increasing trend in the
power. This exception is in all likelihood due to the high probability of choosing
treatment B. If the trial consisted of a series of successes on treatment B, (which is very
likely Because ps is high) then the trial could become skewed toward the inferior
treatment, even if treatment A has a higher probability of selection. If, in this case, there

was a large number of successful treatments on treatment B early in the trial, then the
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number of B balls would outweigh the number of A balls and treatment B would most
likely be selected more often than treatment A. This obviously reduces the number of
patients allocated to the superior treatment. In conclusion, the number of balls added
after a successful response should not be set too high, otherwise the trial will quickly be
skewed and produce extreme values for the expected proportion on the superior treatment

and for the power of the test.

3.4.4 Monotonicity in p

Next we explore the monotonic properties of the number of balls added afier a
failed response, denoted as B. Increasing the number of balls added afier a failed
response has the opposite effect of increasing the number of balls added after a successful
response. Instead of an increasing trend in the expected proportion on the better
treatment, we see a decreasing trend as n increases. In addition, a non-decreasing trend
can be seen in power as n increases. One reasoning for these differing trends is that
adding more balls of the opposite treatment after a failed response will actually decrease
the chances of selecting that failed treatment again.

In essence, even if the superior treatment has a larger selection probability, the
occurrence of a failure of that treatment early in the trial will decrease its selection
probability substantially, especially for large values of n. Given a large value of n, it is
quite easy to skew results to the inferior treatment as the number of balls added afier a
failed response will outnumber the initial urn size. Thus, it is not only counter-
productive, but also unethical to have large values for the number of balls added afier a

failed response because patients have a lower chance of receiving the superior treatment.
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Tables 13 and 14 show the monotonic properties of B for the expected proportion on the

superior treatment and the power of the test, respectively.

Treatment RPW(3, 3, 2n+1; 3) design, where n is

probability 1 2 4 8 16 32 64
P(A)=0.2 0.536 0.529 0.524 0.521 0.519 0.519 0518
PB)=0.1| (0.04D)] (0.053)] (0.032)] (0.030) (0.029)| (0.029)] (0.028)|
P(A)=0.5 0.678 0.643 0.618 0.604: 0.596 0.592 0.589
P(B)=0.1] (0.058)] (0.049)] (0.043)} (0.039) (0.037)] (0.036)] (0.035)
P(A)=0.9 0.941 0.917 0.881 0.847 0.822 0.807 0.800
PB)=0.1] (0.036)] (0.043)] (0.049) (0.050) (0.048)] (0.046)] (0.045)
P(A)=0.5 0.559 0.547 0.537 0.533 0.530 0.528 0.528
PB)=0.4] (0.090) (0.069)| (0.055)] (0.048)] (0.044)| (0.042)] (0.042)
P(A)=0.7 0.718 0.679 0.646 0.626 0.614 0.609 O.606I
PB)=04]| (0.104) (0.083)] (0.068)] (0.058)] (0.053)] (0.050)] (0.049)
P(A)=0.9 0.901 0.878 0.841 0.804 0.778 0.763 0.755
PB)=04]| (0.079)] (0.076)f (0.073)] (0.068)] (0.062)] (0.059)] (0.057)|
P(A)=0.38 0.712 0.686 0.653 0.629 0.616 0.609 0.605
PB)=0.6] (0.166)] (0.128)] (0.100) (0.081)] (0.070) (0.066)] (0.062)|
P(A)=0.9 0.830 0.818 0.785 0.751 0.726 0.712 0.704
PB)=0.6] (0.155] (0.126)] (0.107f (0.091)] (0.080) (0.074) (0.071)
P(A)=0.9 0.650 0.658 0.653 0.637 0.622 0.614 0.607
PB)=08| (0.298)] (0.246)] (0.188)] (0.144)] (0.118)] (0.103)| (0.094)

Table 13: Expected Proportion on the Superior Treatment for RPW(3, 3, 2n+1; 3)

(Standard deviations are given in parentheses)
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Treatment RPW(3, 3, 2n+1; 3) design, where n is

probability 1 2 4 8 16 32 64
P(A)=0.2 0.041] 02771 0279 0280] 0280 0280 0.281
PB)=0.1] (0.013)] (0.010) (o.009)| (0.008) (o.oos)l (0.008)] (0.008)|
P(A)=0.5 0.990] 0994 0.995] 0995] 0996} 0.99%] 0.996
P(B)=0.1] (0.008)] (0.003)] (0.002)] (0.00D)] (0.008)] (0.001)] (0.001)|
P(A)=0.9 0980 0992] 0998 1.000 1.ooo| 1.000 1.ooo|
PB)=0.1] (0.060)] (0.038)] (0.018)] (0.007)] (0.006)] (0.002)] (0.000)
P(A)=0.5 0.162] o. 164| 0.166] 0.166] 0.167] 0.167} 0.167
P(B)=0.4] (0.008)] (0.005)] (0.004)] (0.003)] (0.002)] (0.002)] (0.002)|
P(A) =0.7 0.759} 0.803] 0828] 0839 0845] 0847 0848
[PB)=04] (0.100)] (0.059)] (0.035] (0.024)] (0.019)] (0.016)] (0.016)|
P(A)=0.9 0.862] 0915] o0961] 0984 0992] 0995] 0.996]
PB)=04] (0.152)] (0.116)] (0.070)] (0.039)] (0.023)] (0.015)] (0.010)|
P(A)=0.8 0.482] 0523 05520 0567 0574 0577 0579
PB)=0.6] (0.105)} (0.075)] (0.046)] (0.030)] (0.022)] (0.019)] (0.017)
P(A)=0.9 0706 0.755] 0.820] 0.864] 0888] 0.898] 0.903
PB)=0.6] (0.199)| (0.164)} (0.118)] (0.08D| (0.057)] (0.044) (0.039)|
P(A)=0.9 0208] 0236] 0263 0279 02871 0290 0292
PB)=08] (0.072)] (0.060)] (0.043)] (0.030)] (0.021)] (0.016)] (0.014)|

Table 14: Power of the Test for RPW(3, 3, 2n+1; 3) (Standard deviations are given in

parentheses)

3.4.5 Monotonicity in y

When studying the monotonicity of vy, the number of balls drawn, one must
consider that the number drawn cannot exceed the total initial urn size. Ideally, the
number drawn should be equal to one half the number of balls in the urn at the start of the
trial. This provides a nice compromise between the expected proportion on the superior
treatment and the power of the test. Drawing too many balls will result in a low power
and an inability to make a sound conclusion, while drawing too few will give rise to a
lower probability that a patient may receive the superior treatment. It is important to

determine a balance between increased proportion of patients on the better treatment and
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a valid statistical conclusion. Depending on the situation, one might find it more
appealing to focus on one property more‘ than the other, and thus drawing more or fewer
balls. Table 15 shows an increasing trend for the expected proportion concerning the
number balls drawn while all other variables are kept constant. Likewise, Table 16
shows a decreasing trend for the power of the test regarding the number of balls drawn
while all other variables are kept constant at five. These trends have been present
throughout the entire monotonicity section to some degree. The main concept to grasp is
that there is no perfect combination of variablés for the perfect experiment, what is key is
that once the monotonic properties are known, the variables can be manipulated to suit

the experiments needs and goals.

Treatment RPW(S, 5, S; v) where vy is

probability 1 3 5 7 9

P(A)=0.2 0.529 0.536 0.539 0.661 0.738
PB)=0.1] (0.04D)] (0.04D)] (0.041) (0.042)] (0.040)|
P(A)=05 0.636 0.678 0.702 0.848 0.922
P@B)=0.1| (0.051)] (0.058)] (0.058)| (0.052)] (0.041)|
P(A)=09 0.865 0.941 0.967 0.994 0.998
PB)=0.1]| (0.050)] (0.036)] (0.027)] (0.009)| (0.005)|
P(A)=0.5 0.541 0.559 0.573 0.788 0.897
PB)=04] (0.070)] (0.090)) (0.098)| (0.086)] (0.062)|
P(A)=0.7 0.649 0.718 0.763 0.939 0.983
PB)=04] (0.082)] (0.108) (0.114)] (0.053)] (0.023)|
P(A)=0.9 0.798 0.901 0.938 0.990 0.997
P@B)=04]| (0.086)] (0.079)| (0.070)] (0.017)] (0.007)
P(A)=0.8 0.6324 0712 0.750 0.964 0.992
P(B)=06| (0.1 18§1 (0.166)] (0.205)] (0.060)| (0.020)|
P(A) = 0.9 O.718I 0830} 0862 0985 0997
PB)=06] (0.124) (0.155)] (0.180)] (0.038)] (0.011)|
P(A)=09 0.592 0.650 0.658 0.954 0.994
PB)=08] (0.177)] (0.298)] (0.366)] (0.145)] (0.033)|

Table 15: Expected Proportion on the Superior Treatment for RPW(5,5,5; v) (Standard

deviations are given in parentheses)

77



Treatment RPW(S, S, S; v) where v is

probability 1 3. 5 7 9
P(A)=0.2 0.277 0.275 0.274 0.222 0.178
PB)=0.1] (0.012)] (0.013)] (0.013)] (0.022)] (0.026)|
P(A)=0.5 0.994 0.990 0.987 0.858 0.554
P(B)=0.1] (0.003)] (0.008)] (0.015)] (0.149)] (0.259)|
P(A)=0.9 1.000 0.980 0.933 0.800 0.761
PB)=0.1] (0.009)] (0.060) (0.102)] (0.105)] (0.074)|
P(A)=0.5 0.165 0.162 0.160 0.119 0.082
PB)=0.4] (0.005)] (0.008)] (0.010)] (0.025) (0.025)
P(A)=0.7 0.822 0.759 0.698 0.330 0.191
PB)=0.4] (0.044) (0.100f (0.142)] (0.167)] (0.100)|
P(A)=0.9 0.982 0.862 0.745 0.534 0.479
PB)=04] (0.042)] (0.152)} (0.197)] (0.158)] (0.115)
P(A)=0.8 0.552 0.482 0418 0.202 0.152
PB)=0.6]| (0.05D (0.105)] (0.138)] (0.104) (0.062)
P(A)=0.9 0.871 0.706 0.611 0.386 0.329
PB)=06] (0.088)] (0.194)] (0.230) (0.157) (0.099]
P(A)=0.9 0.269 0.208 0.163 0.149 0.130
PB)=038] (0.039)] (0.072)] (0.080) (0.056)] (0.036)

Table 16: Power of the Test for RPW(S, 5, 5; v) (Standard deviations are given in

parentheses)

3.5 Simulations with Real Data

Besides studying the properties of an experimental design, it is essential to try to
simulate actual experiments and compare results obtained with those of real clinical trials.
Only then will it be possible to say if the RPW(2n+1, 2n+1, 2n+1) design can improve on
results obtained in actual clinical trials. Recall that the RPW designs are most
appropriate for cases of life-threatening illness. That is why the two clinical trials we
have chosen to compare with the RPW design are the ECMO trials and AZT trials

previously mentioned in chapter two. In the following sections the RPW design will be
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compared with real data and simulations based on the clinical trials in terms of the

expected proportion on the superior treatment and the power of the test.

3.5.1 Comparison with U.K. ECMO Trial

The ECMO trial used for comparison in this section is actually the UK. ECMO
Study of 1993 to 1995. The study consisted of 185 infant patients who were randomized
into either the conventional treatment or the ECMO treatment for treatment of PPHN. 93
patients were allocated to the ECMO treatment, of which 63 survived and 92 patients
received the conventional treatment, of which 38 survived. This breaks down to a
mortality rate of 32.3% on the ECMO treatment and 58.7% on the conventional treatment
[25]. Differences between the two randomized groups were presented as relative risks
and as absolute percentage differences or differences between means or medians.
Statistical tests used to calculate a statistically significant difference include chi-square
tests, Fisher’s exact tests, t tests and median tests [25]. The study concluded with
overwhelming evidence that the ECMO treatment was superior to the conventional one,
with a p-value of 0.0005 [25].

Although the ECMO treatment had been proven without refute to be the better
treatment, the randomized clinical trial did not come without a cost. The actual
proportion of patients who received the superior treatment was 50.3%, which is as
expected for a randomized clinical trial. A higher proportion of patients would most
likely have received the ECMO treatment if an adaptive design had been used instead of a
classical randomized design. A simulation study was done using 2000 replications, each
with a sample size of 185 to compare the expected proportion of patients on ECMO with

the actual proportion in the clinical trial. Table 17 gives the expected proportion on the
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superior treatment for various values of pa and pg. In the table it is evident that even
small treatment assignment probabilities .still exhibit a higher expected proportion than
50.3%. In addition, the proportions tend to increase as n increases. Table 18 gives
values of the power of the test for various values of p, and pg and increasing values of n.
As n increases, the power of the test decreases, making it more difficult to reach a valid
conclusion. Nonetheless, it is still possible to make a valid statistical conclusion using a
RPW(2n+1, 2n+1, 2n+1) design and is quite worthwhile if more patients can be treated
successfully with the superior treatment. Note‘especially when the treatment assignment
values are close to those actually observed in the study (pa = 0.6 and pg = 0.3) that the
expected proportion definitely improves on the study results and the power is only
slightly diminished. Therefore, although the simulations do not provide indisputable
proof that a RPW design will save more lives than a 50:50 randomized design, it can be
concluded that the RPW design would have been a better choice in the UK. ECMO

study.
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Treatment | 50-50 RPW(2n+1, 2n+1, 2n+1) design, where n is
probability § random 0 1 2 4 8 16
P(A)=0.2 0.499 0.530 0.536 0.541 0.545 0.551 0.554
PB)=0.1| (0.036) (0.029)| 0.030)] (0.031)] (0.031)] (0.032)] (0.033)
P(A)=0.5 0.499 O.640| 0.682 0.705 0.735 0.770 0.803
PB)=0.1] (0.036)] (0.037)] (0.042)] (0.044)] (0.042)] (0.051)| (0.054)|
P(A)=09 0.499 0.881 0.954 0.976 0,990| 0.994 0.995
PB)=0.1| (0.036)] (0.037)] (0.024)] (0.017)] (0.010)] (0.007)} (0.006)|
P(A)=0.6 0.499 0.631 0.685 O.716| 0.761 0.814 0.865
PB)=03] (0.036)] (0.051)] (0.061)] (0.068) (0.075)] (0.080)] (0.078)]
P(A)=0.5 0.499 0.545 0.564 0.575 0.591 0.615 0.642
PB)=04| (0.036)] (0.052) (0.065) .0.074] (0.090) (0.106)] (0.122)]
P(A)=0.7 0.499 0.657 0.732 0.778 0.839 0.902 0.940
P@B)=04| 0036)| 0063 .07 (0.087)] (0.090)] (0.086) (0.073)
P(A)=0.9 0.499 0.821 0.926 0.958 0.980 0.986, 0.987
P@B)=04| (0.036)] (0.007)| (0.052)} (0.047] (0.033)] (0.209)] (0.030)
P(A)=0.8 0.499 0.645 0.742 0.785 0.840 0.852 0.850|
PB)=06] (0.036) (0.097)] (0.132} (0.170)] (0.198)] (0.251)] (0.285)
P(A)=10.9 0.499 0.744 0.870 0.900 0.928 0.917 0.908
PB)=06| (0.036) (0.104) (0.117)] (0.140)] (0.147)| (0.196)] (0.228)|
P(A)=09] 0499 0.608 0.682 0.666 0.663 0.598 0.601
PB)=08]| (0.036) (0.158)] (0.282) (0.369)] (0.431)] (0.476) (0.484)J

Table 17: Expected Proportion on the Superior Treatment, Comparison with UK. ECMO

Study (Standard deviations are given in parentheses)
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Treatment ] 50-50 RPW(2n+1, 2n+1, 2n+1) design, where n is
probability | random 0 1 2 4 8 16
P(A)=02 0.476 0.468 0.466 0.465 0.463 0.461 0.459
PB)=0.1] (0.009)] (0.010) (0.010)‘ 0.01D)] (0.012)] (0.013)] (0.013)l
P(A)=0.5] 1.000] 1.000f 1.000 1_000| 1.000] 0999  0.996
PB)=0.1] (0.000)] (0.000)] (0.000)] (0.000)] (0.001)] (0.005)] (0.017)|
P(A)=0.9 1.000 1.000 0.995 0.963 0.881 0.824 0.805
P®B)=0.1| (0.000)] (0.000) (0.030)] (0.079) (0.116)] (0.109)} (0.101)|
P(A)=06] 0.987 0.980| 0.969] 0.957] 0.925 0.849| 0.728
P@B)=03] (0.001)] (0.066)] (0.018)] (0.03D)] (0.065)] (0.138)] (0.212)]
P(A)=05) 0274] 0271 O.267| 0264l 0259 0251 0241
P(B)=04 0.002 0.006 0.010 0.013 0.018 0.027 0.035
P(A)=0.7 0.987 0.975 0.947 0.904 0.801 0.605 0.448
PB)=0.4| (0.001) (0.012)J 0.043) (0.087) (0.169) (0247} (0.265)|
P(A)=09 1.000 0.999 0.932 0.804 0.660 0.612 0.598
PB)=04| (0.000)] 0.006] (0.104) (0.182)] (0.209)] (0.206)] (0.209)|
P(A)=0.38 0.847 0.806 0.710 0.611 0.464 0.368 0.321
PB)=0.6] (0.003)] (0.049)] (0.126)] (0.189)] (0.239)] (0.250)] (0.246)}
P(A)=09 0.998 0.973| 0.812 0.674 0.564 0.550 0.523
PB)=0.6] 000D} (0.038)] (0.179)] (0.242)] (0.270)] (0.279)] (0.279)]
P(A)=0.9 0.475 0.444 0.326 0.230 0.146 0.099 0.092
PB)=038| (0.009)] (0.048)] (0.115] (©.127) (0.113)] (0.090)] (0.073)|

Table 18: Power of the Test, Comparison with U.K. ECMO Study (Standard deviations

are given in parentheses)
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3.5.2 Comparison with AZT Trial

A study of the drug AZT was carried out from 1991 to 1994 to study the
effectiveness of the drug in prevention of HIV transmission from mother to infant. A
stratified (with respect to institute) permuted block design [5] was used to allocate 476
women to treatment using eifher of AZT or a placebo. At the end of the study, the
success rates for AZT and the placebo were 92.8% and 75.2%, respectively [33]. The
study had a very strohg and statistically valid conclusion with a p-value of 2 x 107 [33].
The test statistic for testing the equality of AZT and the placebo was based on the
difference between their corresponding Kaplan-Meier estimates [33]. Of the 409 women
who gave birth to live babies, 53 infants had contracted HIV, 13 out of the 205 who were
treated with AZT and 40 out of the 204 who had been administered a placebo. The actual
proportion of patients who received the superior treatment was 50.1%, which is
concurrent with a randomized trial.

Although the study reached a very powerful and irrefutable conclusion, it may
have been possible to obtain nearly the same results and save more infants from
contracting HIV if an adaptive clinical trial‘ had been used. A simulation study was done
to compare the RPW(2n+1, 2n+1, 2n+1) design with the AZT study in terms of the
expected proportion on the superior treatment and the power of the test. 2000
replications were used, each with a sample size of 476.

Tables 19 and 20 provide the results for different combinations of pa and ps.
Note that in Table 19 there is an overall increasing trend as n increases and all of the
expected proportions are greater than 50.1%. Table 20 displays a non-increasing trend as
n increases. One comparison to note in particular is when the treatment allocation

probabilities are similar to those actually observed in the AZT study. When ps = 0.95
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and pg = 0.8, we see that the expected proportion on the superior treatment is quite higher
than fifty per cent and the power of thé test is still acceptable for drawing a valid
conclusion as long as n is small. It is important to point out that for smaller values of n
the power of the test is the same as that of 50-50 randomization. The conclusion is that a
RPW(2n+1, 2n+1, 2n+1) design can allocate more patients to a superior treatment

without substantial loss of power and could have saved more infants from infection of

HIV if used in this study.
Treatment | 50-50 RPW(2n+1, 2n+1, 2n+1) design, where n is
probability | random 0 1 2 4 8 16

P(A)=0.2 0500 0.530] 0.536] 0.541] 0.545] 0.550} 0.555
PB)=01 | (0.023)] (0.018)] (0.019)] (0.018) (0.019) (0.021)| (0.020)}
P(A)=0.5 0.500] o0641] 0683 0.708] 0738} 0.774] 0.808
PB)=0.1 | (0.023)] (0.024)] (0.026)] (0.027)] (0.030)] (0.032)] (0.035)]
P(A) =09 0500 0.890] 0963] 0.985] 0.995] 0.998] 0.998
PB)=0.1 | (0.023) (0.023)| (0.014)] - (0.009)] (0.004)] (0.003)] (0.002)]
P(A)=05 05001 0545 0563] 0.578] 0.593] 0.619] 0.648
PB)=04 | (0.023)] (0.034)] (0.043)] (0.048)] (0.057)] (0.070)] (0.083)|
P(A)=0.7 0500 o0.661] 0741] 0.793] 0860] 0.927] 0.968
P@)=04 | (0.023)] (0.04D)| (005D (0.054)| (0.058)] (0.048)] (0.036)|
P(A) =0.9 0500 0.835] 0945] 0.976] 0990 0994 0.995
P(B)=0.4 | (0.023)] (0.043)] (0.030)} (0.022)] (0.016)] (0.012)] (0.01 1)J
P(A)=0.38 0500] o0.651] 0762] 0.834] 0884 0912] 0.886
PB)=0.6 | (0.023)] (0.065)] (0.100)] (0.117)] (0.15D)] (0.176)] (0.254)]
P(A)=0.9 0.500] 0.760] 0901 0.946] 09571 0956] 0.936
P(B)=0.6 | (0.023)] (0.072)] (0.081) (0.083)] (0.10D} (0.127)] (0.193)f
P(A)=0.9 0.500 0.618| o.713| o.714| O.657| O.618I 0.591
P®B)=0.8 | (0.023)] (0.124)] (0.264)] (0.356)] (0.443)] (0.479)] (0.489)|
P(A)=095] 0.500] 0.692] 0.805] 0.780] 0709} 0.664f  0.635
PB)=038 | (0.023)] (0.140)] (0.253)] (0.338)] (0.428)] (0.466)| (0.480)

Table 19: Expected Proportion on the Superior Treatment, Comparison with AZT Study

(Standard deviations are given in parentheses)

84



Treatment | 50-50 RPW(2n+1, 2nt+1, 2n+1) design, where n is
probability | random 0 1 2 4 8 16
P(A)=0.2 0.865] 0862] 0862 0861 0860 0859 0.858
PB)=0.1 | (0.00n)] (0.003)] (0.003)] (0.003)] (0.004)| 0.009)] (0.004)|
P(A)=0.5 1.000] 1.000] 1.000] 1.000}] 1.000] 1.000 1.000'
PB)=0.1 | (0.000)] (0.000)] (0.000)] (0.000)] (0.000)] (0.000)} (0.000)
P(A) =09 1.000 1.ooo| 1.000] 0990 0.904] 0.836] 0.813
PB)=0.1 | (0.000)] (0.000)] (0.00D)} (0.043)] (0.110)] (0.108)] (0.099)]
P(A)=0.5 0.592] 0.586] 0582 05777 0570 0557 0.538
PB)=04 | (0.000)] (0.006)] (0.011)] (0.015)] (0.020)] (0.033)] (0.049)|
P(A)=0.7 1.000] 1.000] 1.000] 0999 0982 0.850] 0.548
PB)=0.4 | (0.000) (o.000)| (0.000)] (0.003)] (0.035)] (0.161) (O.268)J
P(A)=0.9 1.000] 1.000] 0994 0898] 0.692] 0622} 0.611
PB)=0.4 | (0.000)] (0.000)] (0.022)] (0.135)] (0.211)] (0.208)] (0.213)
P(A)=0.8 0.998] 0994] 0962 0871] 0641 0441} 0416
PB)=0.6 | (0.000)] (0.005)] (0.049)] (0.126)] (0.259)] (0.319)] (0.330)|
P(A)=0.9 1.000] 1.000] 0949 0.762 0.585| 0.569]  0.564
PB)=0.6 | (0.000)] (0.004)] (0.080)] (0.205)] (0.271)] (0.288)] (0.291)|
P(A)=0.9 0.865 O.826| O.609| 0‘400| 0.201 0.097| 0.093
PB)=0.8 | (0.002)] (0.054)] (0.203)] (0.235)] (0.182)] (0.108)] (0.085)|
P(A)=0.95] 0.999] 0980] 0733] 0585 0371 0.186] 0207
PB)=0.8 | (0.000)] (0.037)] (0.248)] (0.287)] (0.275)] (0.203)] (0.176)

Table 20: Power of the Test, Comparison with AZT Study (Standard deviations are given

in parentheses)

3.6 Recommendations

Although the randomized play the winner rule design is not appropnate for all
clinical trials, when it is appropriate it is definitely an ethical experimental design to
choose. The comparison study in the previous section demonstrates that the RPW design
outperforms other designs in terms of allocating more patients to the superior treatment.
When patients are afflicted with life-threatening illness, this can amount to saving more
lives. What is especially appealing about the design is that both the total number of

successes and the expected proportion on the superior treatment are higher than if an
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alternate design had been used, but the power of the test is not necessarily compromised,
hence a statistically valid conclusion cah still be obtained. Furthermore, due to the
compromise between information gathering and payoff to current patients, the ethical
concerns often found in randomized trials are eliminated when an adaptive clinical trial is
used.

There has been much discussion as to the monotonic properties of the RPW
design. The parameters can be raised or lowered, depending on the focus on the trial,
whether it is maximizing the power of the test‘ or the number of patients on the superior
treatment. Certainly, taking a large sample size will always help to increase the power of
the test. To increase the expected proportion on the superior treatment, increasing all
parameters simultaneously, such as a RPW(3, 3, 3) or a RPW(5, 5, 5) design will provide
better results than a RPW(1, 1, 1) design. One cautionary note is that if the treatment
allocation probabilities are expected to be high, especially the probability on the inferior
treatment, then all the parameters should be kept small to prevent skewing results to
favour the inferior treatment.

The main message to take away from this in depth study of the RPW(y, a, B; v)
design is that there are other optioﬁs to use in lieu of randomization in a clinical trial, and
when those options are exercised, the results are not compromised. Equal randomization
is thought of as the gold standard [3] of research in the medical field. It may be so in
terms of obtaining the most powerful test. Where the patient’s chances of receiving the
best treatment are concerned, randomized trials are deficient. It has been shown in the
previous simulation studies that adaptive clinical trials consistently outperform
randomized clinical trials in terms of allocating a higher percentage of patients to the

superior treatment. In situations where the disease or affliction under study is severely
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life-threatening, adaptive clinical trials are the only ethical option. The RPW(2n+1,
2n+1, 2n+1; 2n+1) design is perfectly sﬁited for studies of severe illness because it is
highly customizable. The parameters can be modified to focus more on goal of
information gathering or on immediate payoff to the patient. The RPW design is highly
valuable to both the medical community and to patients as an alternative to randomization

and should not be overlooked.
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Chapter 4

Conclusions

4.1 Summary

Wei and Durham’s Randomized Play the Winner Rule is an adaptive design well
suited to medical trials studying the treatment of severe illness. Compared to other
designs, the RPW design determines during the study which treatment is currently
identified as superior and then allocates a greater proportion of patients to that treatment.
Moreover, the RPW design is still able to reach a statistically valid conclusion as the
power of the test is comparable to that of randomized clinical trials. The main attraction
of the design is that it makes a compromise between individual and collective ethics,
resulting in a better choice for clinicians wishing to conduct medical trials on very ill
patients.

Adaptive designs are indeed a better choice than randomized clinical trials in
cases of testing treatments on life-threatening illness. In chapter two, the advantages and
disadvantages of randomized clinical trials over adaptive clinical trials were discussed.
Randomized designs are well known, highly regarded designs that reduce many types of
bias and have solid methods for inference. However, adaptive designs are better suited to
trials of ethical question since they focus more on the patient’s concerns of randomization

than on the validity of the trial. In particular, two cases that would have benefited from
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the use of adaptive clinical trials were the UK ECMO trial of 1993-1995 and the AZT
trial of 1991-1994. Randomizing patients in these cases was unethical. Using an
adaptive design might have saved more lives and still resulted in statistically valid
conclusions.

Simulation studies were used in chapter three to demonstrate the superiority of the
RPW design over 50-50 randomization and Neyman allocation. The total number of
successes, the expected proportion on the superior treatment, and the odds ratio were all
found to have higher values overall compared to other designs. In addition, the power of
the test was found >to be quite comparable to other designs, indicating that a valid
conclusion could be obtained. Later in the chapter the monotonic properties of RPW(y,
a, B; v) were explored. It was found that the higher the values the parameters, the greater
the expected proportion on the superior treatment and the lower the power of the test.
There were some significant exceptions, particularly when the allocation probability of
the inferior treatment was high.

In general, adaptive designs are ethically appropriate but underutilized in medical
clinical trials. Incorporating designs such as the randomized play the winner design
would benefit patients of severe illness without sacrificing the goal of the medical trial: to

further medical knowledge and save future patients’ lives.

4.2 Future Research

Although much research has been done to as to the design of the randomized play
the winner rule, more research is needed as to the inference of the design. Solid,

statistical tests that are quickly and easily computable are lacking for adaptive designs. If
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these designs are ever to be adopted fully by the medical community, reliable statistical
methods for inference must be developed.

Another area of possible future research is to expand the design of the randomized
play the winner rule to include more than two treatments. Simulation studies could be
done to compare this design to the two treatment randomized play the winner design as
well as other experimental designs. Also, a monotonicity study of the multiple treatment
adaptive design would be insightful as to not only how the design operates, but also

which values to choose for parameters of the design to achieve desired results.
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Appendix: SAS Programs

1. Chi-square Test

options linesize=80 pagesize=50 nodate;

/*This program is for the Chi-square Test for Randomness. The purpose
of this program is to determine that the random numbers generated are
in fact random. TIf the Chi-square statistic is not significant, then
there will be insufficient evidence to reject the null hypothesis, Ho:
The numbers are random.*/

data generate;
seed=12773;
array x{1000};
array y{50};
chisquare = 0; /*set chisquare value to zero*/
chi = 0; /*set chisquare in each subset to zero*/

do i = 1 to 100; /*repeat simulation 100 times*/
do k = 1 to 50;

v{k} = 0; /*set all counts in subsets to zero*/
end;
do j = 1 to 1000; /*generate 1000 random numbers*/
link randgen; .
x{j}=rand; /*create an array of random numbers*/
do k = 1 to 50;
if x{j} > (k-1)/50 & x{j} <= k/50
then y{k} = y{k} + 1; /*count of random # in
each subset*/
end;

end;
do k =1 to 50;
chi = chi + (y{k} - 1000/50)**2/(1000/50) ;

end;

chisquare = chisquare + chi; /*cummulative sum over all
subsets*/

chi = 0; /*reset each subset to zero*/
end;

chisquare = chisquare / 100; /*take average of chisquare variables*/
output;

randgen:

a=T7**5;

b=2*+*31-1;

seed=mod (a*seed, b) ;

rand=seed/b; /*set up random number generator*/
return;

proc print;

var chisquare;

title "Chi-square Test for Randomness™;
run;



2. Serial Correlation Test
options linesize=80 pagesize=50 nodate;

/*This program is for the Serial Correlation Test. The purpose of this
program is to determine that the random numbers generated are
independent from one another. If the 100(l-a)% confidence interval for
the autocovariance does contain zero, then there will be insufficient
evidence to reject the null hypothesis, Ho: There is no ‘correlation.*/

data generate;
seed=12773;
array x{100};
Lag = 0;
/*n = 100; number of random numbers
k 10; lags 1 to 10*/

do j =1 to 100;
link randgen;
x{j}=rand;

end;

= 0; /*autocovariance statistic*/
do j =1 to 100-k;
R=R+ (x{j}-0.5)*({x{j+k}-0.5)/(100-k);
end;
UCL = R + 1.96/(12*sqrt (100-k));
ICL = R - 1.96/ (12*sqrt (100-k)) ;-
output;
end;

randgen:

a=7**5;

b=2**31-1;

seed=mod (a*seed,b) ;

rand=seed/b; /*set up random number generator*/
return;

proc print;

var Lag R LCL UCL;

title "Serial Correlation Test";
run;



3. 50-50 Randomization

options linesize=80 pagesize=50 nodate;

/*Program

data sim;

for 50:50 Randomization*/

seed=12773;

patsN =

100; /*total # of patients treated*/

array RedS{5000}; /*total # of successes using trmt 1*/
array WhtS{5000}; /*total # of successes using trmt 2*/
array TotalS{5000}; /*total # of successes*/

array RedPat{5000}; /*total # of patients on trmt 1*/
array WhtPat{5000}; /*total # of patients on trmt 2*/
array TotalPat{5000}; /*total # patients*/

array RedFail{5000};

array WhtFail{5000};

dims = dim(totalS); /*# of simulations*/
7 = 1.96; /*critical value corresponding to given alpha*/
pl = 0.8; /* prob of success of red treatment*/

p2 = 0.3; /* prob of success of white treatment*/
gl = 1 - pl;
g2 = 1 - p2; /*variables for power calculation*/

do i =1 to dimS; /*perform simulation 5000 times*/

Reds{i}
whts{i}

TotalS{i} =
RedPat{i} =
WhtPat{i} =
TotalPat{i}

do j =

=0;
=0;

I

Ihooo

0; /*set arrays to zero for each simulation*/

1 to patsN;

link randgen;
if rand > 0.5
then link RedTrmt; /*patient receives Red Trmt*/
else link WhtTrmt; /*patient receives White Trmt*/

end;

TotalS{i} = RedS{i} + WhtS{i}:
TotalPat{i} = RedPat{i} + WhtPat{il}:;
Red = RedS{i}/RedPat{i};

White =
Total =

WhtS{i}/WhtPat{i};
TotalS{i}/TotalPat{i};

nl = RedPat{i}:
n2 = WhtPat{i};

pbar =
gbar =
Denom
Terml
Term?2
Term3 =
Power =

il

(nl*pl 4n2*p2)/(nl + n2);
1 - pbar;

{(pl*gl/nl)+(p2*g2/n2))**0.5;

(pl - p2)/Denom;

( (pbar*gbar* ((1/nl)+(1/n2)))**0.5)/Denom;
Terml — Z*Term2;

probnorm{Term3) ;

RedFail{i} = RedPat{i} - RedS{i}:;
WhtFail{i} = WhtPat{i} - WhtsS{i}:;



OddsRatio = (RedS{i}/RedFail{i})/ (WhtS{i}/WhtFail{i});
ExpProp = nl/{nl+n2);

TestStat = (Red-White)/sqrt(Total* {1-Total)*((1/nl)+(1/n2)));
Pvalu = 2* (l-probnorm(TestStat));
output;

end;

go to done:;

RedTrmt: /*trmt 1*/
RedPat{i} = RedPat{i} + 1;
link randgen;
if rand < pl
then Red${i} = RedS{i} + 1;

return;

WhtTrmt: /*trmt 2*/
WhtPat{i} = WhtPat{i} + 1;
link randgen;
if rand < p2
then WhtS{i} = Whts{i} + 1;

return;

randgen:
a=T7**5;
b=2**31-1;
seed=mod (a*seed,b);
rand=seed/b;
return;

done:
keep Red White Total Power OddsRatio ExpProp Pvalu;
run;

proc means;
var Red White Total Power OddsRatio ExpProp Pvalu;
title "50:50 Randomization";

run;



4. RPW(1, 1, 1)

options linesize=80 pagesize=50 nodate;

/*Program for Classic Urn Model, RPW(1, 1, 1)*/

data sim;
seed=12773;
AddBall = 1;
patsN = 100;

/*number of balls to add*/
/*total # of patients treated*/

red ball*/

NBall = 1; /*# balls of each trmt at start*/
array p{2}; /*array prob of success of all trmts*/
p{l} = 0.8; /*probablity of success for trmt 1;
p{2} = 0.3; /*probablity of success for trmt 1;

array RedS{5000};

array Whts{5000};

array TotalS{5000};
array RedPat{5000};
array WhtPat{5000};
array TotalPat{5000};
array RedFail{5000};
array WhtFail{5000};

/*total #

/*total

dimS = dim(totalS);

white ball*/

/*total # of successes using trmt 1*/
/*total # of successes using trmt 2*/
of successes*/

/*total # of patients on trmt 1*/
/*total # of patients on trmt 2*/

# patients*/

/*# of simulations*/

Zz = 1.96; /*critical value corresponding to given alpha*/
pl = p{1}; /* prob of success of red treatment*/

p2 = p{2}; /* prob of success of white treatment*/

ql =1 - pl;

g2 = 1 - p2; /*variables for power calculation*/

do i = 1 to dimS;
RedS{i} = 0;
WhtsS{i} =

0;
TotalS{i} = 0;
RedPat{i} = 0;
WhtPat{i} = 0;

TotalPat{i} = 0;
RedBall = NBall;
WhtBall = NBall;

do j = 1 to patsN;
TotalBall = RedBall + WhtBall;
ProbRed = RedBall / TotalBall;
link DrawBall;
if BallOne = 1 then link RedTrmt;
else link WhtTrmt;
end;

TotalsS{i} = RedS{i} + WhtS{i}:;
TotalPat{i} = RedPat{i} + WhtPat{i};
Red = RedS{i}/RedPat{i};

White = WhtS{i}/WhtPat{i};

Total = TotalS{i}/TotalPat{i};

nl = RedPat{i};

n2 = WhtPat{i};

pbar = (nl*pl +n2*p2)/(nl + n2);
gbar = 1 - pbar;

/*set arrays to zero

/*if draw white,

/*perform simulation 5000 times*/

for each simulation*/

/*if draw red, then trmt 1*/
then trmt 2%/



Denom = ({pl*ql/nl)+{(p2*g2/n2))**0.5;
Terml = (pl - p2)/Denom;
Term?2 = ({pbar*gbar*{(1/nl)+(1/n2)))**0.5)/Denom;

Term3 = Terml ~ Z*Term2;

Power = probnorm(Term3) ;

RedFail{i} RedPat{i} - Reds{i}:

WhtFail{i} = WhtPat{i} - WhtS{i};

OddsRatio = (RedS{i}/RedFail{i})/ (WhtS{i}/WhtFail{i});
ExpProp = nl/({nl+4n2);

TestStat = (Red-White)/sqgrt(Total* (1-Total)*((1/nl)+{(1/n2}));

Pvalu = 2*(l-probnorm{TestStat)):;
output;
end;

go to done;

DrawBall:
link randgen;
if rand < ProbRed
then BallOne = 1; /*draw red ball*/
else BallOne = 0; /*draw white ball*/
return;

RedTrmt: /*trmt 1*/
RedPat{i} = RedPat{i} + 1;
link randgen;
if rand < p{1}
then
do;

RedBall
Reds{i}
end;
else WhtBall = WhtBall + AddBall;
return;

RedBall + AddBall;
RedS{i} + 1;

WhtTrmt: /*trmt 2*/
WhtPat{i} = WhtPat{i} + 1;
link randgen;
if rand < p{2}
then
do;

WhtBall
whts{i}
end;
else RedBall = RedBall + AddBall;
return;

wWhtBall + AddBall;
wWhts{i} + 1;

randgen:
a=7**5;
b=2**31-1;
seed=mod (a*seed,b) ;
rand=seed/b;
return;

done:
keep Red White Total Power OddsRatio ExpProp Pvalu;
run;



proc means;
var Red White Total Power OddsRatio ExpProp Pvalu;
title "Classic Urn Model, RPW(1l, 1, 1)";

run;



5. RPW(2n+1, 2n+l1, 2n+l)

options linesize=80 pagesize=50 nodate;
/*Program for RPW(2n+l, 2n+l, 2n+l)*/

data sim;
seed=12773;

patsN = 100;

AddBall =

NBall = AddBall;

/*total # of patients treated*/
3; /*number of balls to add*/
/*# balls of each trmt at start*/

TestBall = (AddBall-1)/2;

array p{2}; /*array prob of success of all trmts*/

p{l} = 0.8; /*probablity of success for trmt 1; red ball*/
p{2} = 0.3; /*probablity of success for trmt 2; white ball*/

array RedS{5000};
array WhtS{5000};
array TotalS{5000};
array RedPat{5000};
array WhtPat{5000};
array TotalPat{5000};
array RedFail{5000};
array WhtFail{5000};

dimS = dim(totals):

/*# of simulations*/

/*total # of successes using trmt 1*/

/*total # of successes using trmt 2*/

/*total # of successes*/

/*total # of patients on trmt 1*/

/*total # of patients on trmt 2*/
/*total # patients*/

72 = 1.96; /*critical value corresponding to given alpha*/
pl = p{l};

p2 = p{2};

gl =1 - pl;

g2 = 1 - p2; /*variables for power calculation*/

do i = 1 to dimS;

RedsS{i} = 0;
whts{i} = 0;
TotalS{i} 0;
RedPat{i} = 0;
0;

o

WhtPat{i} =
TotalPat{i}
RedBall = NBall;
WhtBall = NBall;

do j = 1 to patsN;
TotalBall = RedBall + WhtBall;

ProbWht = WhtBall / TotalBall;

link DrawBall;

if Ball > TestBall then link RedTrmt;

1*/

else link WhtTrmt;

end;

TotalS{i} = RedS{i} + WhtS{i}:
TotalPat{i} = RedPat{i} + WhtPat{i}:;
Red = RedS{i}/RedPati{il};

White = WhtsS{i}/WhtPat{i};

Total = TotalS{i}/TotalPat{i};

nl = RedPat{i};

n2 = WhtPat{i};

/*if draw 2 white,

/*perform simulation 5000 times*/

0; /*set arrays to zero for each simulation*/

/*if draw 2 red, then trmt

then trmt 2*/



pbar (nl*pl +n2*p2)/(nl + n2);
‘gbar = 1 - pbar; '
Denom = ({(pl*gl/nl)+(p2*q2/n2))**0.5;
Terml (pl - p2)/Denom;
Term2 ((pbar*gbar* ({1/nl)}+(1/n2)})**0.5)/Denom;
Term3 = Terml - Z*Term2;
Power = probnorm(Term3);
RedFail{i} = RedPat{i} — RedS{i};
WhtFail{i} = WhtPat{i} - WhtsS{i};
oddsRatio = (RedS{i}/RedFail{i})/(WhtS{i}/WhtFail{i});
ExpProp = nl/{nl+n2);
TestStat = (Red-White)/sqrt(Total*(1-Total)* ((1/nl)+(1/n2)));
Pvalu = 2*{l-probnorm(TestStat));
output;
end;

i

Il

go to done;

DrawBall:
Ball = 0;
do k = 1 to AddBall; /*# balls drawn = # balls added*/
link randgen;
if rand > ProbWht /*if random # > P(Wht), then red trmt*/
then Ball = Ball + 1;
end;
return;

RedTrmt: /*trmt 1*/
RedPat{i} = RedPat{i} + 1;
link randgen;
if rand < p{1}
then
do;

RedBall
RedS{i}
end;
else WhtRall = WhtBall + AddBall;
return;

i

RedBall + AddBall;
Reds{i} + 1;

WhtTrmt: /*trmt 2*/
WhtPat{i} = WhtPat{i} + 1;
link randgen;
if rand < p{2}
then
do;

WhtBall
whts{i}
end;
else RedBall = RedBall + AddBall;
return;

WwhtBall + AddBall;
Wwhts{i} + 1;

randgen:
a=T7**5;
b=2**31-1;
seed=mod (a*seed, b) ;
rand=seed/b;
return;



done:
keep Red White Total Power OddsRatio ExpProp Pvalu;
run;

proc means;
var Red White Total Power OddsRatio ExpProp Pvalu;
title "RPW(2n+1, 2Zn+l, 2n+l1)";

run;



6. Neyman Allocation

options linesize=80 pagesize=50 nodate;
/*Program for Neyman Allocation*/

data sim;
seed=12773;
patsN = 100; /*total # of patients treated*/
array RedsS{5000}; /*total # of successes using trmt 1*/
array WhtS{5000}; /*total # of successes using trmt 2*/
array TotalS{5000}; /*total # of successes*/
array RedPat{5000}; /*total # of patients on trmt 1%/
array WhtPat{5000}; /*total # of patients on trmt 2%/
array TotalPat{5000}; /*total # patients*/
array RedFail{5000};
array WhtFail {5000};

dimS = dim(totals); /*# of simulations*/

Z = 1.96; /*critical value corresponding to given alpha*/
pl = 0.7; /* prob of success of red treatment*/

p2 = 0.4; /* prob of success of white treatment*/

gl =1 - pl;

g2 = 1 - p2; /*variables for power calculation*/
do i = 1 to dimS; /*perform simulation 5000 times*/

InitRed = 10;

InitWht = 10;

InitRedS = InitRed*pl;
InitWhtS = InitWht*p2;
RedPat{i} = InitRed;
WhtPat{i} = InitWht;
TotalPat{i} = 0;
Reds{i} = InitRedS;
WhtsS{i} = InitWhtS;

TotalS{i} = 0; /*set arrays to zero for each simulation*/
pr = pl;

qr = 1 - pr;

pw = p2Z;

aqw 1 - pw; /*probabilities for Neyman allocation*/

Q = sqgrt{pr*qr)/(sqrt(pr*qr)+sqgrt{pw*qw)); /*initial Q value*/
do j = 1 to patsN;

link randgen;
if rand < Q
then link RedTrmt; /*patient receives Red Trmt*/
else link WhtTrmt; /*patient receives White Trmt*/
0 = sqrt(pr*qr)/ (sqrt(pr*qr)+sqrt(pw*qw)); /*adaptive Q value*/
end;

TotalS{i} = RedS{i} + WhtS{i} - InitRedS - InitWhtS;
TotalPat{i} = RedPat{i} + WhtPat{i} - InitRed - InitWht;
Red = (RedS{i}-InitRedS)/(RedPat{i}-InitRed);



White = (WhtS{i}-InitWhtS)/(WhtPat{i}-Initwht);
Total = TotalS{i}/TotalPat{i};
nl = RedPat{i} - InitRed;

n2 WhtPat{i} - InitWht;
pbar = {(nl*pl +n2*p2)/(nl + n2);
gbar = 1 - pbar;

Denom = {{pl*gl/nl)+(p2*g2/n2))**0.5;
Terml = (pl - p2)/Denom;
Term? = ((pbar*gbar*{(1/nl)+(1/n2)))**0.5)/Denom;

Term3 = Terml - Z*Term2;
Power = probnorm(Term3);

RedFail{i} = (RedPat{i}-InitRed) - {(RedS{i}-InitRedS);
WhtFail{i} = (WhtPat{i}-Initwht) - (WhtS{i}-InitWhtS);
OddsRatio = ((RedS{i}-InitRedS)/RedFail{i})/ ((WhtS{i}-

InitWhtS)/WhtFail{i});
ExpProp = nl/(nl+n2);
output;

end;

go to done;

RedTrmt: /*trmt 1*/
RedPat{i} = RedPat{i} + 1;
link randgen;
if rand < pl
then RedS{i} = RedS{i} + 1;
pr = RedS{i}/RedPat{i}; /*update red variables*/
qr = 1 - pr;
return;

WhtTrmt: /*trmt 2*/
WhtPat{i} = WhtPat{i} + 1;
link randgen;
if rand < p2
then WhtsS{i} = Whts{i} + 1;
pw WhtS{i}/WhtPat{i}; /*update white variables*/
gw = 1 - pw;
return;

il

randgen:
a=T**5;
b=2**31-1;
seed=mod (a*seed, b) ;
rand=seed/b;
return;

done:
keep i Red White Total Power OddsRatio ExpProp;
run;

proc means;
var Red White Total Power OddsRatio ExpProp;
title "Neyman Allocation";

run;



