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Abstract

The r¿ndomized play the winner rule desigrq although popular in the statistical

literature since its introduction by Wei and Durham in 1978, has been rarely used in

medical trials. One well-known instance where the design was used in an adaptive

clinical trial was in the controversial ECMO trials. The ECMO trials randomized their

extremely ill infant patients into one of two treatments. The controversy surrounding the

trials resulted from the ethical concerns of randomizing patients with lifethreatening

illnesses. The randomized play the winner rule attempts to distinguish these ethical

issues by making a compromise between information gathering and immediate payoffto

the patient. The primary goal of the design is to maximize the number of patients who

receive the superior treatment without sacrificing the power of the test so that a valid

conclusion can still be obtained. Through simulation studies, the expected proportion of

patients allocated to the superior treatment is compared for various randomized and

adaptive designs. Furthermore, the monotonicity of the randomized play the winner

design is studied through modifications to the parameters in the classical randomized play

the winner rule design. Finally, comparisons with real clinical trials will attempt to

improve upon previous results.
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Chapter 1

Introduction

1.1 Bacþround Information

The science of medicine is one of the greatest accomplishments of mankind.

Medical knowledge has expanded faster in the past century than it ever has before. The

study of medicine, which pursues to prolong peoples' lives as well as reduce their pain

and suffering, is both rewarding and endless. Medical research plays an integral part in

improving the knowledge base that doctors have to help cure their patients.

Before there was medical research or clinical trials, there was the scientific

method. The scientific method originated in the seventeenth century and was developed

by great scientists including Galileo, Francis Bacon and Sir Isaac Newton [15]. The

process of the scientific method involves making observations about a process or item

under study without any prior assumptions. Randomization was incorporated into the

scientific method by Sir Ronald A. Fisher in the early twentieth century. Fisher was

conducting agricultural experiments when he had the innovative idea of allocating

different conditions to plots of land "deliberately at random" 112f, and thus, the first

randomized experiment was conducted.

Around the same time that Fisher was carrying out randomized comparative

experiments, Karl Pearson, considered another founder of statistics, was developing the



concept of a control 1171. He reasoned that in order to study the full effects of an anti-

typhiod inoculatiorq only half of those who wished to receive the inoculation should

actually receive it, while the other half should receive a placebo. Furthermore, pearson

felt that for the control to be most effective, the two groups should be as similar as

possible in terms of age, sex and other covariates that may bias the trial.

Today, randomized experiments involving controls to reduce bias are used in

many disciplines such as chemistry, biology and psychology. In medical clinical trials,

randomization is considered a necessity. Almost all medical experiments must

incorporate some sort of randomizationif their results are to be considered valid. In most

cases, medical trials use equal randomization, also called 50-50 randomizatior¡ where an

equal number of patients receive each of the treaments and the treatment groups are most

likely balanced with respect to the patients' characteristics. This is often considered the

only way to allocate patients to treatments in order to obtain a valid statistical conclusior¡

and in most cases it is the best way.

When patients are extremely ill, conducting a medical experiment using equal

allocation can be considered unethical. If one experimental treatment or pharmaceutical

holds promise of performing better than the conventional treatment, then preventing half

of the deathly-ill patients under study from receiving the new treatment is indeed

distressing to them. Some patients will take their chances in hopes of receiving the new

treatment. However, just because the treatment is new and experimental does not mean

that it is superior. In a randomized clinical trial, the superior treatment is not determined

until the end of the study and in some cases there may be insufiîcient evidence to detect a

difference among treatments. So, the fifty per cent of patients hoping to receive a



treatment better than the conventional one are not only disappointed, but may also have

been randomized to receive an inferior treatment.

For very ill patients enrolled in clinical trials, there are more humane and ethical

alternatives to equal randomization. Adaptive clinical trials incorporate both

randomization and information from the trial to identifu the superior treatment under

study and to maximize the proportion of patients who receive that treatment. Adaptive

designs are a more ethical alternative to randomized clinical trials, particularly equal

randomization, because they allocate more than fifty per cent of patients to the superior

treatment. For critical patients, this may mean more lives saved.

There have been cases in the history of clinical trials that would have warranted

use of adaptive designs over randomized clinical trials simply because of the possibility

of more lives saved. The use of equal randomization was unethical. One such instance is

the UK ECMO trial of 1993-T995 [25]. Extracorporeal membrane oxygenation (ECMO)

was tested in a clinical trial for treatment of persistent pulmonary hypertension in

newborns. Due to the extreme severity of the illness, randomly assigning the young

patients to either ECMO or the conventional treatment limited the proportion of babies

who could receive the ECMO treatment to only halfl An adaptive design would have

been a more ethical choice for the study. A similar case \üas in the Antiviral Zidovudine

Treatment (AZT) trial of 199l-1994l5l. The pharmaceutical AZT was given to Human

Immunodeficiency Virus (IilÐ positive pregnant ì¡/omen to prevent the spreading of the

virus to their unborn child. Again, a completely randomized design was used in the trial

when an adaptive design would have been more appropriate and could have possibly

prevented more HIV positive babies.



Although adaptive designs are not suitable for all clinical trials, in cases where the

usual 50-50 randomization is unethical, adaptive designs are an attractive alternative.

They are currently not widely used in the medical community, but hopefully will become

as acceptable as concepts such as the scientific method, the randomized tnal and the

control group are in present day.

1.2 Summary

There are both advantages and disadvantages to adopting an adaptive design

instead of a randomized design in a clinical tnal. Obviously, any ethical worry is

diminished when an adaptive design is used, especially when patients are critically ill.

Since more patients are allocated to the superior treatment, more have the benefit of that

treatment and a better chance of improving their health. Randomized clinical trials,

however, are the most powerful choice for detecting a difference between treatments.

Certainly, they have achieved hallowed status [3] among experimental designs in the field

of medicine due to their ability to draw a statistically significant conclusion and to reduce

bias.

In cases where patients are quite ill, the objective of using a randomized design

with a powerful statistical conclusion plays second to maximizing the number of patients

who receive the superior treatment in the trial. Adaptive clinical trials are ideal in such

cases because they can be thought of as a compromise between the goal of gathering

information for future patients and the goal of immediate payoff to current patients.

Thus, adaptive designs partially satisôr both collective ethics and individual ethics.

Chapter two describes in detail the ethical concerns of randomization in medical trials

and how various adaptive designs overcome these concerns. Also, historic cases of



unethical randomization including the UK ECMO trial and the AZT tnal will be

discussed.

The main advantage of adaptive designs is that they maximize the number of

patients allocated to the superior treatment without signifîcant loss of power. This is a

key idea that will be demonstrated in this thesis through simulation studies. In particular,

Wei and Durham's Randomized Play the'Winner Rule @PW) [30] will be compared with

50-50 randomization and a sequential maximum likelihood procedure specified by

Neyman Allocation [18]. Chapter three discusses the basics of random number

simulatio4 and then uses simulation results to compare the aforementioned designs and

explore the monotonic properties of the randomized, play the winner design. Therq

simulations of real data will be compared with actual experiments to see if the use of

adaptive design methods could have improved the number of patients who received the

superior treatment without noticeable loss of power. Finally, some recommendations are

made as to when it is appropriate to use certain adaptive designs.

The goal of this thesis is to show that a randomized design is not always the best

choice for a clinical trial, and to demonstrate this by way of simulation studies. It will be

shown that adaptive clinical trials, and the randomized play the winner rule in particular,

are simple to integrate into a medical trial and carry out, and provide results nearly as

powerful as randomized clinical trials without overt ethical question.



Chapter 2

Randomized Trials and Adaptive Designs

2.1 Randomization: Ethics and Practice

To conduct an effective experiment is no menial task; it takes planned, purposeful

and methodological research. To conduct an effective medical experiment, however, is

something quite more challenging. The medical community, including physicians and

statisticians, believe that for clinical trial to be valid, it must include randomization. Sir

Ronald A. Fisher, often named "the father of statistics," developed the concept of the

comparative randomized experiment [2]. Fisher believed that randomization was

essential to an experiment. Without randomization, he reasoned, an experiment would be

reduced to an observational study. A randomized experiment improves on an

observational study due to the fact that at the end of a successful randomi zed trial, it may

be possible to establish a cause and effect relationship, while at the end of an

observational study, only an association can be concluded.

Randomization reduces the possibility of systematic bias in a trial. Without

randomization or comparison of treatments, experimental results can be negatively

affected by the experimental design, the selection of patients or the placebo effect. Bias,

or the systematic favouritism toward one outcome, may ensue. In a medical trial, there

are usually two groups of patients under study, the treatment group and the control group.

6



Randomly placing subjects into one of the two groups reduces the probability that the

response of one goup may dominate over the other due to chance, or due to confounding

factors. It also helps in balancing out unknown covariates, or factors that have the

possibility to bias final results. Once treatment groups are balanced, analysis can be

conducted without being concerned about systematic bias. Furthermore, using

randomization in clinical trials simplifies the method of analysis and also guarantees the

validity of the conclusion. Probabilities used in the random assignment of treatment

groups can also be used in the comparison of the treatments. Another feature of

randomization is that these probabilities remain constant throughout the entire trial. Once

a comparison is made, and if there is a statistically significant difference between the two

treatments, a cause and effect relationship can be established. Thus, randomization is

necessary in medical trials to reduce bias and make the leap from association to

causation.

For obvious reasons the medical community trusts randomized clinical trials as

the gold standard of medical experimentation [3]. Randomized trials have been used for

decades, and thus are usually positively received and well understood. Many clinicians

are quite sceptical of new treatments or pharmaceuticals developed under unconventional

means, especially if randomization was not used. Randomized clinical trials do however

have their weaknesses. If the trial is a double-blind experiment, where neither the

physician nor the patient knows which treatment they are to receive, then both parties

give up control of the treatment of the patient. Moreover, if the allocation is l:1,

physicians may be apprehensive about relinquishing control 'of treatment, or they may

decline to put certain patients in the trial for fear of having them receive the placebo. In

these cases the clinical trial cannot be considered truly random since the doctor has



shown favouritism with his patients. There are other cases where doctors only enrol

severely ill patients into trials whom he feels have nothing to lose by experimenting with

a new treatment. Despite these disadvantages, randomized clinical trials remain the

undisputed primary choice for experimentation in the medical field.

The outcomes of medical trials have the potential to affect many human lives.

Not only is there a drive to perform the trial well in the traditional sense, there is also a

drive to perform the trial well in an ethical sense. There are many ethical issues

associated with medical experiments. The main ethical dilemma involves respecting the

conflicting issues of individual ethics and collective ethics [4]. Both the wishes of the

individual patient and future patients must be incorporated into the trial. Thus, to address

the conflict a compromise must be made between what is best for the individual, and

what is best for society.

It is often difficult to fully satisf-y both individual and collective ethics

simultaneously. And, often those who participate in a medical trial do not agree as to

which side of the ethical dilemma should prevail. Obviously, patients in a trial care more

for their well being than any patients after a trial. Moreover, patients trust that their

caregivers will also do what is best for their individual needs. Physicians, who are bound

by the Hippocratic Principle, "To do no harrn," [32] must consider the interests of their

patient before the interests of society. This concept has been termed the personal care

principle [8]. Putting the needs of their patient above all else often makes it difficult for a

doctor to participate in a clinical trial. They are tom between the care of their current

patients and finding a better method of caring for future patients. Clinicians may wish to

discover new, more effective ways of treating illness, but to do this means that their

current patients may have to be randomized in a clinical trial. Randomization comes with



the price of forsaking the expectation that the doctor will always give his patient what he

believes is the best treatment. In other words, the physician must forgo the personal care

principle.

The only case where the personal care principle is not violated is if the physician

is truly undecided between a current treatment and a new, experimental treatment. Here,

the physician is in a state of equipoise [7], or mental suspense. He has no prior

knowledge that one treatment is superior over the other. If equipoise exists between two

treatments, then a doctor's fears of violating his patient's trust can be subdued, provided

that the patients involved in the trial have been fully informed of the risks associated with

the trial. Also, sick patients who volunteer for the trial may have nothing to lose; they

will either receive the new treatment, which has not been proven to be any better or worse

than the curent one, or they will receive the standard treatment, which would have been

the case anyway if they had not registered in the trial. Informed consent [16] is essential

if the personal care principle is to remain significant. In cases where the physician has a

pre-determined state of mind as to which treatment will most benefit their patients, true

equipoise does not exist and a randomized clinical trial is unethical.

Those who design and carry out the randomized clinical trial, usually statisticians,

are mostly concerned with having a well-balanced experiment, resulting in a high power

and a valid conclusion. It is important to note that a trial need not necessarily have 1:1

allocation to have a high power. Often it can be diffrcult to get volunteers to a trial if

there is only a fifty per cent chance of receiving the new treatment. If more subjects are

placed in the treatment group, say using a 3:1 allocation, then more patients may receive

the new, better treatment. Only the use of a balanced design will maximize the power of

the test. A significant conclusion can still be reached without using 1:1 allocation if the



probabilities of selection are adjusted at the beginning of the trial. Statisticians strive for

a significant conclusion of the trial since it could lead to new treatments. These new

treatments may aid in curing future patients and while this directly benefits society as a

whole, does little for the patients who were in the trial.

Ethicists in most cases are involved with a medical trial to some extent. They

may be torn as to which category deserves more weight ethically, the individual or the

society. It is impossible to say for certain which side deserves more consideration:

collective ethics or individual ethics [14]. One factor that may make the choice between

collective ethics and individual ethics easier is the severity of the disease under study.

The more severe the disease, the more urgerit the need is to care for the individual subject

before the group. Yet, the ethical dilemma still comes into play since a severe disease

beckons for a faster, more humane cure for all of society to benefit from. Some ethicists

believe that if a true state of equipoise exists, then a physician is acting within the best

interests of both current and future patients. One can further argue that given a state of

equipoise, satisfying the collective need of society to find a cure for a disease also

satisfies the individual need of future patients to have the best treatment. Only after a

clinical trial has been carried out can a physician make a fully informed decision as to the

best treatment.for his patient.

2.2 Historical Cases : Unethical Ra ndomization

There are cases where l:l allocation in a randomized clinical trial was unethical,

but was used nonetheless. The classic example is of the British ECMO @xtracorporeal

membrane oxygenation) trial [25]. ECMO is currently used to treat newborn babies

inflicted with persistent pulmonary hypertension (PPHN), a condition where the baby has

10



decreased blood flow through the lungs, resulting in insufficient oxygenation of the

blood. Before the onset of ECMO, the conventional therapy for PPHN was intensive

ventilatory support. This treatment has a very low survival rate for newborns with severe

forms of the disease. ECMO had been used to treat adults with acute respiratory failure,

but failed to show improvements over conventional treatments. In the late 1970's ECMO

began to be used as an experimental treatment on infants with PPHN. Some early studies

showed promising results of the ECMO treatment on newborns, but these were

observational studies since no control group was used as a comparison, only historical

datafZ,ll,3ll.

In 1985, Dr. Robert Bartlett and his colleagues at the University of Michigan

performed an adaptive clinical trial investigating the benefits of ECMO over the

conventional treatment [1]. Their study incorporated the randomized consent design

developed by Zelen [3a] in 1979. Treatment assignments were based on the randomized

urn designs proposed by Wei and Durham in 1978 [26]. This study resulted in eleven

babies receiving ECMO and only one receiving the conventional treatment. Of these

patients there was only one death, the baby who received the conventional treatment.

This resulted in a 0% failure rate for ECMO and a l00yo failure rate for the conventional

treatment. Some claimed that this was good evidence that the survival rate for patients

treated with ECMO was signifïcantly higher than patients treated with the conventional

medical therapy. Many, however, were not convinced because the study did not have

balanced sample sizes. Obviously, it is diffrcult to compare the results of one patient to a

group. Other small sample studies that were done include a 2-stage sequential trial in

1989 by O'Rourke et al. [T3l and a randomized trial in 1994 by Gross et al. l9l. Both

studies should an approximate 40Yo increase in the failure rate whenever the conventional

11



treatment was compared with ECMO. Many in the medical and statistical communities

were still unconvinced that ECMO was a statistically significant improvement other the

usual therapies for PPHN.

In 1993, a large-scale study of ECMO was undertaken by physicians in the UK

1251. They believed that performing a randomized medical trial was the only way to

finally prove the treatment's superiority. The reason the trial was not only controversial,

but also unethical was 50-50 randomization was used in the trial. Due to the severity of

the disease, and the presence of evidence that one treatment may be inferior, randomizing

infants in a trial brings up ethical concerns. The doctors involved were basically giving

half of the newborns a better chance of survival. The results of the trial were as follows:

30 out of 93 (32.3%) babies who received ECMO died, and 54 out of 92 (58.7%) babies

who received the conventional treatment died. The findings of the clinical trial proved

once and for all that ECMO was indeed a superior treatment for newborn babies afflicted

with PPHN. Unfortr¡nately, 84 babies died in this trial. If another method of clinical

trials had been adopted other than randomization, maybe some lives would have been

saved with the same end result. Clearly, many newborns died unnecessarily.

Given the stress placed on the parents of a sick newborrq the physicians thought it

would be best to use randomized informed consent [27]. This is another case of unethical

randomization. All involved doubtlessly believed that they were acting in the best

interests of the patients, and their parents. By using randomized informed consent, the

physicians would only inform the parents of the newborn selected to receive ECMO

treatment that their baby was participating in a clinical trial. The parents of the newborn

receiving the conventional therapy would not be informed that their baby was involved in

atnal, or that he or she had been randomized to receive the conventional therapy. Some

12



may argue that there is no harm done keeping one half of the subjects in the dark if it is

the half that receives the usual treatment since they would have anyway if they had not

participated in the trial. The ethical problem lies with the fact that collective ethics

prevails when informed consent is randomized. The physicians put the welfare of society

above the welfare of their patient when they focus on the trial instead of their patient. As

doctors, they are sworn to put the welfare of their patient first. If they inform the patient

as to the aspects of the trial and share the decision making process with then¡ they

alleviate the tension between individual and collective ethics. In a sense, once the patient

is fully involved in his care, and has made a fully informed choice as to whether to

participate in a trial or not, then the pressure is off the physician to fulfill his role as a

researcher and he can now fully focus on his role as a care-giver.

Another unforgettable case in the history of randomized clinical trials is that of

the 1994 trial concerning the drug Antiviral Zidovudine Treatment (AZT), used for

reducing the risk of transference of HIV from mother to unborn child [5]. As was the

case with the ECMO treatment, there was strong, but not statistically significant evidence

that AZT was very effective in preventing the spread of HIV. A trial was conducted

using 50-50 randomization in order to test whether AZT would be more effective than a

placebo. 476 patients v/ere involved in the tnal,238 in each of the treatment and placebo

groups. After the birth of each baby, an HfV test was administered in order to determine

if the newborn had contracted the virus. The final results of the trial were that 60 (25.2%)

newborns had contracted HIV in the placebo group, while only 20 (8.4%) newborns in

the treatment group had contracted the virus. This amounted to a statistically significant

difference between the two groups. Thus, both researchers and physicians had very

strong evidence that AZT prevents the transference of HIV from mother to unborn child,

13



but the cost of that result was high. The 60 infants whose mothers received a placebo

were born with HIV and would most likely die of AIDS at a young age. More infants

could have been saved if l:1 allocation had not been used in the trial. This is another

circumstance where the greater good of society v/as put above the welfare of unborn

children.

2.3 Ãlternafives to Randomized Clinical Trials

In clinical trials involving the research of treatments for life-th¡eatening illnesses,

such as the above examples of ECMO and AZT, randomization is often an unethical

choice. There are other tools available to test the effectiveness of a new drug or

treatment. Historical data, sequential clinical trials and adaptive clinical trials are all

alternatives to randomized clinical trials. Although these methods do come with some

disadvantages, they a¡e much more ethically Sound. This is most important when dealing

with severe diseases, as all parties involved wish to give the patient the best possible

chance for survival. If desperately ill patients are involved in a clinical trial, it is to their

benefit that they have a better than a 50-50 chance of receiving a superior treatment.

Historical data can be a powerfi.rl tool in a trial if used properly. The abundance

of historical data on any treatment is readily accessible for use in a clinical trial. The data

can be compiled for use as a historical control. The advantage of using historical data as

a pseudo-control group instead of live subjects is that patients do not have to be tested on

what is already known as fact. For example, if a treatment has been in use for say, twenty

years, and the results of this treatment have been well documented, accounting for

differences in age, race or gender, then there is no reason to further test patients of the

results of this treatment. The historical data can be used as a control in a clinical trial

t4



where live subjects are tested on with a new, hopefully more effective treatment. The

results of the tnal are compared with the historical data to reach a permissible conclusion.

Both time and money are saved when historical controls are used. The main advantage,

however, is that patients can be subject to a hopefully superior treatment without the

ethical worry of other patients being randomized to an inferior, conventional treatment.

The choice of collective ethics over individual ethics does not have to be made.

Historical controls do have disadvantages. Historical data can be biased by time,

location, race, gendeÍ, agq or other unknown factors. If the historical data is quite old,

using the data as a control group may not be feasible. For instance, patients from ten

years ago may not be comparable with present patients due to differing lifestyles.

Historical data may be available, but the data for the control group may be incomparable

with the treatment group. Data may be available for patients in the United States, while

current patients live in Canada, or the data involves white male subjects, but the current

trial is comprised of Asian women. Historical controls may be useful when they are

available, but control groups must be matched as close as possible with treatment groups

if systematic bias is to be minimized.

Sequential clinical trials are special case of adaptive designs. They differ from

randomized clinical trials in that they incorporate a stopping rule. After a pre-determined

number of patients have entered the trial testing is undertaken to determine if a

statistically significant difference has been established between the two treatments under

study. If a substantial difference has been observed from the accumulated information,

then the trial ends. Otherwise, experimentation continues until the next set of

experimental units has been run. The advantage of a sequential clinical trial over the

usual randomized trial is that the trial can be stopped if the treatment shows clear signs of

15



being superior (or inferior) to the conventional treatment. This prevents unnecessary

further experimentation. The problem with sequential trials is that 50-50 randomization

is still used in the trial. In cases of acute, critical illness, full randomization of subjects is

nonetheless considered unethical. Although sequential trials can be considered more

efficient, they may be inappropriate in experiments concerning serious illnesses.

Adaptive clinical trials, although distinct from randomized clinical trials, still

incorporate random assignment. The difference is the way in which the randomization is

integrated into the trial. Unlike randomized clinical trials, adaptive clinical trials (or

ACTs) make use of the information collected during the trial and use that information for

the progression ofthe trial. This process has both advantages and disadvantages. The

main problem with adaptive clinical trials is concerned with their adaptive nature:

because the data collection process is adaptive, the treatment assignment probabilities

change throughout the trial. This can make inference of the ACT the end of the trial quite

difücult. So, the question is when is the extra work worthwhile? In other words, when

are adaptive clinical trials an improvement on randomized clinical trials? To answer this,

one must understand the main goal of ACTs. Adaptive clinical trials aim to minimize the

risk of a patient receiving an inferior treatment. They are a trade-off between a

randomized clinical trial and a non-randomized trial. Randomized clinical trials (or

RCTs) simply intend to collect data on the success or failure of two or more treatments

and determine which is superior. ACTs go a step further by identifuing which treatment

is performing best during the trial and allotting a higher proportion of subjects to the

currently identified better treatment, (and thus a lower proportion of subjects to the

inferior treatment(s)). The expectation is that as many patients as possible will receive

the best care available. ACTs enable the clinician to perform a clinical trial and come to
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a sound conclusior¡ but to do it in a more ethical way. Thus, adaptive clinical trials are a

compromise between doing what is best for the patient and what is best for society.

Although randomized clinical trials will always be integral to medical

experimentation, there are circumstances when they may not be morally feasible.

Particularly, under cases of life-threatening illness, randomized clinical trials may not be

ethically viable. When patients are very ill, even terminally ill, they will care little for

expanding society's knowledge by taking part in a medical experiment. Their primary

concern, and that of their doctor, will be to have the best possible care. The focus shifts

from research to healthcare, from researcher and subject to doctor and patient.

Randomization may be justified if the patient is fully informed about all the risks

associated with the trial and the different treatments they may receive. Informed consent

provides a moral justification for randomized clinical trials. Unfortunately, under

desperate or terminal medical situations, informed consent may be unattainable. Patients

are under extreme duress and may be unable to fully comprehend all the aspects of a

randomized clinical trial. In such cases, adaptive designs are a morally safe alternative to

fully randomized designs. ACTs provide a means for clinicians to study a new treatment

under life-threatening illness while not sacrificing the care of their patient.

When clinicians en¡ol their patients in a well designed ACT, they ensure that their

patients obtain the finest care available at that time of enrolment and gain information

about a ne\ry, experimental treatment. Both goals are accomplished without any

compromise of ethics due to the principle of interchangeability [16]. Pullman and TVang

state that a design satisfies the principle of interchangeability if any t\¡/o patients are

ethically interchangeable, whether they are treated in the trial or afterwards. Adaptive

designs satisfy this principle because any patient receiving treatment while in the trial is
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ethically interchangeable with any patient receiving treatment after the trial. The

principle dictates that the care that a patient receives, whether they are treated during the

trial or afterwards, will be the best possible care available, given current information [16].

The patient's treatment depends only on when they fell ill. If treatment is administered

during the trial, then the patient will receive the treatment identifìed as the best possible

one given current information. A patient treated after the trial will receive what was

proven to be the superior treatment.

An adaptive clinical trial begins much the same as a randomized clinical trial.

There are usually two treatments, an experimental and a control, although there can be

more. Ideally, the clinician will hopefully be in a state of equipoise at the start of the

trial. Equipoise is ideal, but it is often not the case in Phase Itr of a clinical trial. After

Phase I, a small trial to establish dosage, and Phase II, a study to determine toxicity, there

is usually prior knowledge of any beneficiary performance of the drug or treatment.

However, it is usually the practice at the start of Phase III to equally allocate the

treatments to the subjects. Once the first subject, or group of subjects has received

treatment, then data is collected on the success or failure of this treatment. This data is

then used to adjust the probabilities of assignment to future subjects. So, if the treatment

was successful, the probability that the next subject will receive that treatment increases,

while the assignment probability of the other treatment decreases accordingly. As the

trial progresses, the process continues and allocation probabilities .are adjusted

accordingly. It is important to note that while the assignment proportions change during

the trial, every subject is still randomly allocated to his treatment. At the end of the trial,

the hope is that not only will a superior treatment be revealed, but also that a higher

percentage of patients will have had received that treatment.
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There are many different types of adaptive designs. Perhaps the most famous is

Wei and Durham's randomized play the winner design (1978). An adaptation of this

design was used in the ECMO trial conducted at the University of Michigan [l]. The

design begins with 1:l allocation of two treatments, an experimental and a control. Two

marbles are placed in an urn, each of a different colour to symboli ze the two treatments.

For this reaso4 the randomized play the winner design is one of the Urn models. One

marble is drawn from the urn. Its colour corresponds to the treatment that the first patient

is to receive. For example, if we have red and white marbles, red for experimental

treatment and white for control, and a red marble is drawn then the patient will receive

the experimental treatment. This is how randomization is incorporated into the trial.

After the experimental treatment has been administered, it will be deemed a

success or failure. If the treatment was successful, then another red marble will be added

to the urn. This will increase the probability of the next patient receiving that treatment.

If it was a failure, then a white marble will be added, which increases the assignment

probability of the control, or conventional treatment. Another marble is drawn and

whatever colour it is, that is the treatment that the next patient will receive. Depending

on success or failure of that treatment on this second patient, another marble of the

appropriate colour will be added. In this way, the trial continues. All the while, the

assignment probabilities change with every additional patient. That is what makes this

design adaptive.

What makes this design particularly attractive is that as the trial progresses, the

patient will in time have higher probability of receiving the better treatment. This is due

to the design of the experiment. If one treatment is superior to the other, then there will

be a higher concentration of that treatment's marbles in the urn, and thus a higher
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probability of receiving that treatment. If there is a stopping rule set before the start of

the trial, and, during the trial, this rule is satisfied or there is a statistically significant

difference in the performance of the two treatments, then the trial can be stopped ahead of

schedule and a valid conclusion can still be reached. In desperate medical situations, the

need to find the best treatment possible is strong. It may be that the experimental

treatment was not found to be different from (or better than) the conventional treatment.

Whether the valid conclusion is positive or negative, the sooner it is made, the sooner

more patients will receive the best care possible. One disadvantage of adaptive clinical

trials is that it may not be immediately obvious if one treatment is out-performing the

other, and the trial may calry on longer than necessary. ACTs improve upon RCTs by

effectively treating as many patients as possible with the superior treatment within the

trial.

There is some danger, however, that.the urn model can skew results quickly. If

the first few patients receive the treatment d and these treatments are deemed successful,

then there will be a higher concentration of type A marbles in the urn in the beginning of

the trial. This can give little chance for the other treatment to "prove itself." Also, the

opposite can happer¡ resulting in a high quantity of type B marbles in the urn after the

first few patients. In both cases, the results can become skewed to favour one treatment.

An even more extensive problem may be that there is an abundance of patients treated

with one treatment, resulting in few patients treated with the other. This was the case

with the ECMO trials at the University of Michigan in l9S5 []. At the end of the trial

there were ten patients who received ECMO (eleven, if you include the patient treated

after the trial), but only one patient who had received the control treatment. In addition to
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making it difficult to compare treatments this imbalance of treatments can attimes make

it impossible to draw a statistically significant conclusion.

Even with the above drawbacks of the randomized play the winner desigq it

remains an eloquent method for clinicians to compare treatments in life-threatening

situations. The majority of patients receive the superior treatment and due to the

principle of interchangeability, the ethical dilemma between individual and collective

ethics is diminished. It is obvious that although RPW designs are not widely used in the

medical community as of yet, incorporating adaptive designs such as the randomized play

the winner design would be of great benefit to the patient.

2.3.1Play the Winner Designs

Although 50:50 randomized designs are the most commonly used designs in

clinical trials, they may not always be the best choice for an experimental design when

the patients to be randomized are severely ill. Certainly, 50:50 randomized designs are

the gold standard [3] in medical trials because they reduce systematic bias, are easy to

implement and are relatively straightforward to analyze. In some cases, however, they

are not the best choice in medical trials, ethically speaking. Doctors cannot justifu using

50-50 randomization when their patients are suffering from life-threatening illnesses.

Often, adaptive designs are a more attractive option to patients because they allocate a

greater proportion of patients to the superior treatment.

Even though adaptive designs out-perform 50:50 randomized designs in terms of

increasing the number of patients who receive the better treatment almost always, they

are rarely used in practice. Simon [23] believes that this is the case because most

methods have important deficiencies that render them unsuitable for application. Even
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though adaptive designs may be more complex in implementation and analysis, the extra

effort is definitely worthwhile when more patients receive the better treatment under

study, especially in cases of life threatening illness. Important adaptive designs in the

literature include Zelen's play the winner design [3a] and rüei and Durham's randomized

play the winner design [30].

Adaptive designs do not always have to include randomization. This is the case

with Zelen's play the winner rule [34], or PW. This design is appropriate when there are

two treatments under study and patients enter the trial sequentially. Furthermore, it is

necessary to assume that the outcome of a trial is only dependent on the treatment

administered and is dichotomous. When the first patient enters the trial, he is randomly

assigned one of the two treatments with probability of one half. Once the response of that

treatment is known, a marble is placed in an urn. If the treatment is a success, then a

marble of type A corresponding to treatment A is placed in the urn, if the treatment is a

failure, then a marble of type B corresponding to treatment B is placed in the urn. When

the next patient enters the trial, a marble is drawn from the urn without replacement.

Since there is only one marble to choose from, the patient receives that treatment. As

long as all future trials are successful, all successive patients will receive the same

treatment. As soon as a failure is observed, a marble of the other treatment is placed in

the urn and the next patient to enter the trial is allocated to the other treatment. Ther¡ all

future patients will receive the other treatment until a failure is observed. If a patient

enters the trial in between responses, and there are no marbles in the urn, then the patient

is randomized.

Zelen is the first to admit that the design is not optimal, but he states it is nearly

optimal, requires very few assumptions about prior distributiorl and most importantly,
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tends to assign more patients to the better treatment [3a]. The main flaw with this design

is that it is deterministic. Due to the design of the study, the researcher will know with

almost complete certainty what the next treatment will be given the previous treatment.

If a success was observed on the previous trial, the next patient will receive the same

treatment, and if a failure was observed, then the next patient will receive the other

treatment available. The deterministic property of the PW design can cause selection bias

in the researcher.

A modification of the PW, aptly named the modifïed play the winner rule, or

MPW, maximizes the chance of selection bias. MPV/ can be used in place of PW when

the response to treatment is immediate, and the second patient enters the trial right after

the fìrst patient has completed treatment. For example, if the first patient's treatment was

successful using treatment A(B), then the second patient receives treatment A(B) If it

was a failure, then the second patient receives the opposite treatment. The next patient is

never treated until the outcome of the previous patient is known. Due to the immediate

response of this design, the researcher knows with probability one what treatment the

next patient will be assigned once the first patient's response is ascertained. Moreover,

on account of the lack of randomization in both the PW and MPW designs, there is also

the possibility of systematic bias.

What makes the PW design particularly unattractive is that in practice the design

is not quick to come to a conclusion and when there is an extreme delay between

responses, patients are randomly allocated to treatments. Thus, at times the PW is not

adaptive and does no better than 1:1 allocation. One way to improve these designs, as

well as to reduce bias, is to include randomization in the design, as with Wei and

Durham's randomized play the winner design.
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Wei and Durham designed the randomized play the winner design in 1978 in the

hope of improving Zelen's play the winner design. They wanted to build on Zelen's

notion of maximizing the proportion of patients who receive better treatment, and on his

ethical concern for reducing the length of the trial. The best way to solve the problems of

a deterministic design with the possibility of selection bias and systematic bias was to

include randomization into the design. This is the main difference between the pW,

MPW and RPW designs. Adding randomization into the design is a simple change, but

improves many characteristics of the design. Immediately, systematic bias is reduced.

Furthermore, the allocation of patients is no longer deterministic, patients are randomly

allocated to treatments, and thus selection bias is also reduced.

The assumptions necessary for the design are similar to those of the pW: the

response of the patient must be dichotomous, either a success or a failure, and there are

two treatments under study where the probability of success of treatment í is p¡, í:À B,

and where it is assum"d po > ps, without loss of generality. The trial begins with ¡r

marbles of each type placed into an urn, each with one of two markings to represent the

two treatments. When the first patient enters the trial, a marble is drawn from the urn and

replaced. Recall that in the PW design, the marbles were drawn without replacement. If

the marble drawn was of type A (B), then the patient will receive treatment A (B) When

the response of the patient is available, additional marbles are placed into the urn to

reflect that response and to alter the assignment probabilities of the two treatments. If the

treatment was a success, then o marbles of the same type are placed into the urn. If the

treatment \¡/as a failure, then p marbles of the opposite type are placed into the urn. Thus,

the randomized play the winner rule is referred to as RpW(p, o, F). often, however, o is

equal to p, so the design is also denoted as RPW(p, o) When the next patient is available,
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another marble is drawn from the urn and he receives the corresponding treatment. Note

that this design allows for delayed responses to treatments. The main improvement of the

RPW over the PW is that it decreases the number of patients assigned to the inferior

treatment, and reduces selection bias.

It is common practice to only add one marble after obtaining the response of each

patient. Often, the experiment commences with more than one marble of each type in the

urn. If the initial urn size is increased, the conventional choice is to begin with five

marbles of each type, or RPW(5, 1, 1). An increase in the initial marble count, however,

shifts the focus of the trial away from adaptation of treatment allocation probabilities and

towards randomization of patients. Due to the increased weight on randomizatiorq the

trial progression may speed up, and a significant conclusion may be reached sooner, but

fewer patients may actually receive the superior treatment. In fact, one can expect the

allocation proportions to be less extreme when the initial urn composition is increased, as

the urn will not favour the superior treatment as highly [17].

But, what if more than one marble is drawn with replacement to determine the

treatment to be administered, and then the same number of marbles is then added to the

urn after the result of a treatment is known? What improvement, if any, will come from

drawing, then adding, more than one marble? For example, what if a Rpw(3, 3, 3) or

RPw(s, 5, 5) design was conducted instead of a Rpw(l, l, l) or Rpw(5, l, l) design?

Note that out of necessity, the trial must begin with at least the same number of marbles

that will be drawn initially. Thus, the urn contains 2n+1 marbles of each type at the

beginning of the trial (where n is a natural number.) After the first patient enters the trial,

2n+1 marbles are drawn, and then replaced. For convenience, an odd number of marbles

should be drawn. If an even number of marbles is drawn, then there is the possibility of
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having the same number of marbles of each type. This may result in having to randomize

the patient to one of the two treatments, and could also lead to poor results in terms of

maximizing the number of patients to the superior treatment. Since the number of

marbles drawn is odd, one type of marble will always outnumber the other type. It

follows that majority rules and the patient receives the treatment corresponding to the

winning marble type. once the response of the first patient is known, 2n+l ¡¡¿t6les are

added to the urn. As before, if the treatment was a success, 2n+1 marbles of the same

type are added to the urn, and if the treatment was a failure, 2n+1 marbles of the opposite

are added to the urn. When the second patient enters the trial, 2n+l marbles are again

drawn and replaced. V/hen the response of that patient is known, 2n*l marbles of the

appropriate t)¡pe are added, and so on. This design works for any nonnegative integer

value of n. Note that when n equals zero, the design reverts back to the classic RPW(I, 1,

r).

A RPW(2n-rl,2ntl,2n+1) design would hopefully increase the immediate payoff

to current patients by maximizing the number of patients who receive the superior

treatment without sacrifice to the power the test. This improvement results from drawing,

and then adding more marbles. The more marbles of any one type in the urrq the better

chance the treatment corresponding to that marble type will be administered. Thus,

multiplying the number drawn from one to 2n+1 skews the test to the superior treatment

faster. Then, the superior treatment becomes apparent faster, and more patients receive

that treatment earlier. These modifications do improve on the classic RPW(I, l, 1)

design in terms of immediate payoffto the patient.

Day [6] points out that adaptive clinical trials are better than sequential trials,

which in turn are better than randomized clinical trials in terms of maximi zing the
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proportion of patients to the superior treatment. Just the opposite is true if the goal of the

researcher is to maximize power. In situations where patients' health is critical, the

ethical choice is to choose a higher proportion of successes over a higher significance

level. The RPW design is a well-known design for its higher proportion of successes

without sacrifïce to power. The next chapter will highlight in detail which designs excel

in which situations, and if modifications to the RPW design can improve results.

2.3.2 Neyman Allocation

The optimal allocation for minimizing the expected proportion of treatment

failures can be found by frxing the variance of the test statistic and then calculating the

optimal allocation ratio based on the ratio of the sample sizes of the two treatments, n^lns

[19]. When comparing two proportions, each assumed to be from a normal distribution,

the variance of the difference of treatments A and B, y¿ -./¿, is the squared denominator

of the Z-test [19], given by:

o1 *c-, *h"r.
nA nB

-z _ P¡Q¡u¡ --
ni

and o! is the variance of treatment \ í: LB. Note that pi is the probability of success

of treatment i and qi is the probability of failure of treatment i, equal to T-pi. We can set

this equation equal to a constant, and with some calculations, obtain the ratio,

R=õn
oB
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where v(0) and u(0) are functions of the treatment effect, 0 : t o- É¡. When v(0) and u(0)

are equal, then we are left with the ratio of standard deviations of the two treatments,

otr/os, which is Neyman allocation. Neyman allocation minimizes the total number of

patients in the treatment when the variance of the difference in sample proportions is

fixed [18].

To use Neyman allocation in atnal, the variances of the probabilities of success

of the fwo treatments must first be estimated. They can be estimated from historical data,

previous trials or previous phases of the current trial. Therq patients are randomly

allocated to treatments. First, the initial value of Q, the allocation rule, is calculated as

below,

Q= 
on 

)
oA +õB

then patients are assigned treatments, where p is the probability of allocating treatment

A. This allocation rule maximizes the power of the test when the total sample size is

fixed. When the first patient enters the trial, a table of random numbers, or a similar tool,

is consulted. If the random number drawn is less than or equal to Q, then the patient

receives treatment A' the experimental treatment. If the random number is greater than

Q, then he receives treatment B, the conventional treatment. When the response of the

patient is known, the probabilities of success are adjusted accordingly, which causes their

standard deviations to change as well. As a result, Q is updated after every response.

Neyman allocation is found to improve upon of the proportion of patients who receive the

superior treatment when compared with 50-50 randomization, but only when pe < qA. If

ps ) qe, then Neyman allocation actually puts a higher proportion of patients on the

inferior treatment [18], which is not ethical.
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Adaptive designs, including Neyman allocation and play the winner designs, are

underutilized alternatives to randomized designs in the medical field. Adaptive clinical

trials are the only ethical choice for clinicians when treating severely ill patients as the

patient's chances of receiving the better treatment are improved. The goal of this paper is

not to argue the merit of the RPW desigr¡ but to improve upon it. Though adjustments to

the experimental design and through simulation studies, it will be shown that it is possible

to increase the proportion of patients who receive the superior treatment without

significant loss of power.
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Chapter 3

Simulation Design and Analysis

A simulation is an experiment carried out on a computer. Simulations are an

attractive alternative to actual experiments. They can be used to model and analyse

statistical systems. Observations generated from simulated experiments can be analysed

in the same manner as those produced by an actual trial without the construction or

experimentation of a real system. Simulations are particularly ideal to model medical

experiments. Compared to the years it can take to accumulate all the subjects needed, as

well as the expense involved with monitoring all the patients, simulations can not only

save time and money but can also obtain results similar to those obtained by an authentic

clinical trial. Furthermore, simulations can observe trends and strategies. They can test

theories as well as perform experiments that may not otherwise have been possible.

The most significant advantage of using a simulated experiment over a real one is

that there are no ethical issues to be considered. Since none of the subjects are actual

patients, just random numbers, there is no conflict between individual and collective

ethics. Possibly one draw back is that if the simulation results are misleading it can lead

to the wrong conclusion. This danger, nonetheless, is much less worrisome than if the

wrong conclusion is reached in an actual clinical trial. In this thesis simulations will be

used to model adaptive clinical trials including the classical randomized play the winner

design and variations on it.
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3.1- Random Number Generation

Before a clinical trial can be simulated, a source of randomness is required for the

simulation. Often this source comes from a random number generator. A random

number generator can obtain a dataset that simulates the actual experiment. Simulations

do not duplicate or replace actual clinical trials. For ethical reasons, as in the case of

medical trials, it may be more appropriate to simulate experiments and obtain

approximate results that one would expect on average rather than obtaining real data.

The dataset generated usually has a uniform distributio4 where random numbers are

contained on the open subset (0, l). Then, the sequence is transformed into the required

distribution to obtain the desired dataset.

Not all random number generators are considered "good.,' A ..bad,' random

number generator produces variables with non-random properties [10]. A good random

number generator has the following aspects: it produces random variables that are

independent and uniformly distributed, it is fast, effïcient and easily implemented, and it

expresses little deviation from the desired statistical properties.

Most generators operate using a recursive relationship. That is, the next number

in the sequence is a function of one or more previous numbers in that sequence. The

recursive relationship is of the form:

x, = .f (x*r,xn2,...,xr-¡),

where k<n. To start the sequence, a seed is required. Just as there are good and bad

generators, there are also good and bad seeds. In theory, any choice for a seed other than

zero should not affect the results of the simulation. Sometimes, however, some seeds
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\¡/ork better for certain random number generators than others. It is best to select an odd

numbered seed. Even values for seeds can lead to poor results. It is also beneficial to not

use a random seed, such as the time of day, because it can be difficult to replicate results.

If the random number generator requires a certain value or type of seed for independent,

uniformly distributed results, it may not be such a wise choice, as it is too easy to choose

a poor seed, and thus a non-random sequence. In order to reproduce the same dataset on

each run, the same seed should be used in successive replications. Once the seed has

been chosen, the sequence of random variables can be predicted with certainty. Thus, the

numbers produced are called but pseudo-random numbers. Pseudo-random numbers are

not truly random because the choice of the seed determines with absolute certainty the

sequence of the random numbers [0]. Pseudo-random numbers are more desirable than

fully random numbers because if the experiment needs to be repeated, the simulation will

produce exactly the same outcome if the same seed is selected. In all simulations

mentioned in this thesis the seed used was 12773.

There are numerous types of random number generators, some more widely used

than others. Common ones include Linear-Congruential generators, Tausworthe

generators, Fibonacci generators and Combined generators, which are a combination of

two or more other types. In this paper, Linear-Congruential generators, (or LCG's), will

be used for all simulations. LCG's rely on a recursive relationship to produce the

sequence of random variables. The basic form of the LCG is:

)cn = cßn_rmOdm ,

where a is the multiplier and m is the modulus, or remainder. A common variation on

this form that is popular in generators today is:
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xn =(ün-, +b)modm.

Generators of this form are also called Mixed Linear-Congruential generators because the

equation includes both multiplication and addition. As before, there are good and bad

choices for m, a and b. The multiplier, a as well as á, should be non-zero. The modulus

iz should be large. Both m and b should have no common factors between them, thus it

may be best to choose prime numbers for both. A LCG that has been shown to perform

very well is.

)tn =7s x'-'mOO(2" - t)'

This recursive relation generates a sequence ofindependent random variables distributed

uniformly with lower limit zero and upper limit one, denoted U(0, I). It is the random

number generator used in all simulations in this thesis.

After a sequence that behaves statistically like data from random numbers has

been generated, it is necessary to check that the numbers are indeed random, independent

and uniformly distributed. One simple, but important check is to insure that the sequence

is uniformly distributed with values between zero and one. To do this, calculate the mean

and variance of the random numbers. The mean should equal one half, which

corresponds to the mean of a uniform distribution,

a+b
L_

The variance of the uniform distribution,

" (b-oY
-¿ _ \ /
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should equal one twelfth. Other important tests include the Chi-square Goodness of Fit

test, the Kolmogorov-Smirnov Test, and the Serial Correlation Test.

The Chi-square Goodness of Fit test, or the chi-square test, tests whether a

sequence of random numbers satisfies the required distribution [0]. Furthermore, the

test can verify if the sequence is independently and identically distributed U(0, I). It

follows that the chi-square test can also veriSr if a sequence of numbers is randor4 and if

the random number generator is working properly. To begin the test, the closed interval

[0, 1] is divided into å equal parts, or cells. Then, for a sequence of size n, the expected

frequency in each cell is n/k. The random numbers generated are sorted into their

appropriate cells, and a count of the number of variables in each cell is taken. Then, this

actual count is compared with the expected frequency for each cell. This comparison is

made through the calculation of the chi-square statistic,

r=z(T)'

The above statistic calculates the sum of the adjusted, squared differences between the

observed (o¡) and expected (e) counts for each cell. It has a chi-square distribution with

É-.1 degrees of freedom. If the random number generator produces a dataset that perfectly

fits the stipulated distribution, then the statistic would be zero. Due to the randomness of

the generator, the difference will be nonzero. To test the null hypothesis,

Ho: The random numbers are distributed U(0,,1,), versus the alternative,

Ha: The random numbers are not distributed U(0, I),

the chi-square statistic is compared with the critical value for the chi-square distribution

with k-I degrees of freedom at significance level a. If the chi-square statistic is less than
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the critical value, then the null hypothesis will not be rejected and the generated dataset

can be considered uniformly random.

Before the random numbers generated using the aforementioned LCG were used

in any simulation for this paper, they were tested to ensure they were independent and

identically distributed U(0, I). The chi-square test was used to test the above null

hypothesis. The value of the test statistic was 49.335, which was less than 66.34, the chi-

square critical value at significance level 0.05 with 50-1 degrees of freedom. Thus, the

null hypothesis was not rejected and the pseudo-random numbers generated and used in

this thesis indeed behave statistically like data from uniformly distributed and random.

The chi-square test is best used for large samples and discrete distributions. It can

be used as an approximate test for smaller samples or continuous distributions, but more

specific tests exist. One such test is the Kolmogorov-Smirnov test, or K-S test, so named

for the statisticians who developed it [0]. Like the chi-square test, the K-S test

determines if a dataset follows a specific distribution. The test is based on the

observation that the observed Cumulative Distribution Function (CDF) should be close

numerically to the expected CDF. Two statistics are calculated to carry out the test, K+

and.K, which measure the maximum or minimum deviation of the empirical CDF above

or below the expected CDF, respectively. The form of the expected CDF for the Uniform

distribution is as follows:

F(x;a,b)=:-" , xela,bl
D_EI

When a:0 and b: l, F(x) : x, and ifx is greater thanj-I of the z random numbers, then

the form of the observed CDF is F(x) : j/n To carry out the test, the data must first be
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sorted in increasing order. Thelr" to compare the observed and expected CDF 's, K* and

K ue calculated as below:

K- =Jnm*( ,,- j-tljU n)
If both I{ and K are less than the Kolmogorov-Smirnov critical values for signifïcance

level a, then the null hypothesis cannot be rejected against the alternative, as below:

Ho: The random numbers øre distributed U(0, I),

Ha: Ihe random mtmbers are not distributed U(0, I)

One advantage the K-S test has over the chi-square test is that it is not necessary

to group the data into cells. Grouping data into cells can be problematic. Often cells

need to be combined if there are too few data points in any one cell. In addition, cell size

can effect the conclusion of the test. The K-S test handles each observation individually,

eliminating the need to group data, and making better use of it.

Besides testing for randomness in a generated sequence, it is also necessary to test

for correlation between data. To apply the serial-correlation test, we calculate the sample

autocovariance, or the sample covariance between numbers that are å values apart. The

difference in location between the numbers is called the lag. The sample autocovariance

atlag fr is denoted Ar and is of the form:

K* =Jimu*[I-r,),r \n -)

O=*Eþ, -I)(u,.r Ð

As n gets large, ,R¿ becomes normally distributed,

w(o,r¡lr++("- n)X.
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Thus, a 1Ù0(I--a)o/o conltdence interval for the autocovariance at lag k canbe computed.

If the interv al, Ro x tr_* 
f lzJ" - k)

includes zero for all lags one through Ë, then the null hypothesis cannot be rejected

against the alternative, as below:

Ho : there are no correlations in the sequence,

Ho: there is a significant correlation.

Note that if the null hypothesis is not rejected, evidence suggests the sequence is not

independent. Testing independence is necessary in a generated sequence to ensure that

the generator is working properly.

The generated pseudo-random numbers used in all simulations in this paper were

tested using the serial correlation test to certify that there are no correlations for lags one

through k in the sequence. The above null hypothesis was tested for lags one through ten,

and all confidence intervals contained zero with the exception of lag five. Although the

lag five confidence interval did not contain zero, the upper limit was extremely close to

zero with a value of negative 0.005836. Therefore, overall, the null hypothesis was not

rejected at significance level 0.05 and the pseudo-random numbers used in this thesis

behaved as though they were not correlated.

There are many tests available beyond the ones mentioned that test the quality of

the pseudo-random numbers, including Multi-Dimensional tests like the Serial Test and

the Spectral Test [10]. What is important is not that the numbers generated pass every

test available, but that the pseudo-random numbers are tested and deemed reliable.

Once tests have been conducted to ensure that the sequence generated is in fact

randon¡ then the sequence can be transformed to the desired distribution. This

transformation can be obtained by various methods including inverse transformation,
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rejection, convolution, composition and characterization. One of the simplest methods is

inverse transformation which uses the property that acumulative density function (CDF),

F(x), of a random variable, u, of any distribution is uniformly distributed between zero

and one. This means that given a sequence of random variables {zl distributed U(0, I),

the inverse of the CDF, F|(u) can be used to transform the sequence to a sequence {x} of

the desired distribution as long as the CDF is known. For example, suppose we wish to

transform a sequence of pseudo-random numbers from a uniform distribution to an

exponential distribution. Since the CDF of an exponential distribution is:

F(x)=l-e-k ='tt, x)0,

then the inverse CDF is:

* = -)ne-u), ue (o,rl

Thus, if the pseudo-random numbers are substituted into the above equation at u, a

sequence, {t}, of exponential random numbers can be obtained without intense

calculations.

Simulation is a powerful tool that can help to ans\¡/er questions unanswerable if

attempted by normal means, whether it is due to expense or ethical issues. Simulation

studies, although they cannot duplicate actual clinical trials, can be used to obtain ideas

before a trial or speculate on theoretical results. After the assumptions necessary for

good simulations have been validated, simulation studies can be carried out and results

analysed. In an upcoming section, simulated clinical trials of various experimental

designs will be compared.
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3.2 Ln Overview of Simulation Procedures

All the simulation studies carried out begin with the generation of pseudo-random

numbers. The perficrmance of the random number generator is examined with various

statistical methods before it is applied to all simulations. Once a pseudo-random number

has been generated, it is then compared against another number or variable called a

decision variable. For example, in most of the SAS progr¿rms used in this thesis, the

decision variable was the probability of success of the superior treatment. If the pseudo-

random number was less than the current value of the probability of success of the

superior treatment, then a decision would be made to allocate another experimental unit

to one treatment. Otherwise, the experimental unit would be assigned to the other

treatment.

Although the probabilities of success are declared at the start of the simulation to

indicate the superior and inferior treatmenis, they are not fixed. As the simulation

progresses, the probabilities are updated based on the number of successes and failures of

the corresponding treatments. Likewise, as the probabilities of success are updated, so

too are other variables used in the calculations of the statistics analyzed. Variables such

as the count of the total number of successes, overall and on each treatment, as well as the

count of the total number of patients on each treatment were all updated after the

generation of a pseudo-random number and the decision process.

Once one hundred pseudo-random numbers had been generated, the final value of

the simulation variables were used in the calculation of statistics such as the power of the

test, the expected proportion on the superior treatment, the odds ratio and the proportion

of successes on each treatment and in total. These values were saved by the computer

program. Then, all the variables would return to a zero count and the simulated
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experiment \tvould be repeated for another one hundred experimental units. The

simulation was repeated at least two thousand times, and after each time the values of the

statistics were saved in the memory of the program. After completion of the repetitions,

an average was taken of the saved values of the statistics to get a more accurate estimate

as well as a value for error. Those final values were used in the simulation analysis to

compare various designs and study the monotonic properties of the randomized play the

winner design.

3.3 Comparison of Various Designs

When carrying out an experiment, the design is just as important as the results, if

not more important. The design of an experiment dictates what type of analysis should

be done. Moreover, without the proper design, an experimenter may not be able to carry

out the required analysis to obtain the desired results. In clinical trials, the experimental

design must accomplish two goals: first, to carry out the required analysis, and, second, to

carry out the trial in an ethically responsible way. This implies that the trial must take

into consideration that the experimental units are human beings, and any randomization

of treatments must be done in a careful manner as to not prolong the experiment, nor to

cause any undue harm to patients.

Obviously, not all experimental designs are well suited for clinical trials. Ofte4

clinical trials can be improved upon by incorporating prior knowledge or accumulating

information when assigning treatments to patients, in other words, by making use of

adaptive designs. But, there are numerous adaptive designs to choose frorn, and not all

are appropriate for clinical trials. Different situations require different optimal adaptive

designs. Adaptive trials can be designed to maximizethe percentage of patients assigned
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to the superior treatment, minimize the expected sample size or minimize the expected

cost. In this paper, an experimental design is considered optimal when it maximizes the

expected proportion of patients assigned to the superior treatment, without significant

loss of power. The perficrmance of various experimental designs will be compared. It

will be shown that adaptive designs improve upon a 50:50 randomized design in this

context. In particular, the randomized play the winner design, or RPW, is a powerful

design that is useful when the response variable is acutely life threatening. Also, it will

be shown that modifying the parameters in the RPW design improves the allocation of

patients to the superior treatment while still remaining a powerful design.

Adaptive designs are considered to be a compromise between two goals, the goal

of gathering information for future patients and the goal of immediate payoff to current

patients. Different designs give different weight to the opposing goals. When the patient

is extremely ill, then main focus should be on improving their health. To focus on

gathering information would be unethical. To improve a patient's well being while they

are in a trial can be accomplished by improving their chances of receiving a superior

treatment. The program SAS (version 8 for Windows) was used for simulation studies

used to compare and contrast experimental designs. All simulations are based on 5000

replications, each with a sample size of one hundred unless otherwise indicated. The goal

of the simulæion studies in this paper is to improve the patient's chances of being

allocated to the superior treatment. It \ iill be shown that this goal is accomplished using

the RPW design where the number of balls drawn and then added is greater than one.
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3.3.1 Expected Proportion on the Superior Treatment

The expected proportion of patients allocated to the superior treatment has been

mentioned frequently in this paper. It is a very significant statistic, because it explains

numerically how an adaptive design like the randomized play the winner rule, improves

upon a completely randomized design. Essentially, the higher the expected proportion,

the greater the number of patients receiving the superior treatment and in cases of life-

threatening illness, the higher the number of possible lives saved. So, if the expected

proportion is higher for an adaptive design as opposed to a randomized one, it can be

called an ethically superior design because the patient's health is put before the goal of

information gathering. The expected proportion for treatment A is calculated by

n,
na +nB

where n¡ is the number of patients who received treatment í.

Table I gives the values of the expected proportion of patients allocated to

treatment A for the various designs previously mentioned. Note that due to the nature of

its design; 50-50 randomization always allocates one half of the subjects to one treatment

and the other half to the other treatment. In all cases, the RPW designs have a much

higher expected proportion as compared to the Neyman allocation and 50-50

randomization cases. For example, when pa: 0.8 and pn : 0.3, the expected proportion

is 0.499 (0.049) for 50-50 randomizatiory 0.464 (0.056) for Neyman allocation, 0.752

(0.073) for RPW(I, l, l), 0.840 (0.076) for RPW(3,3,3) and 0.888 (0.074) for RPW(S,

5, 5). Another trend visible in Table 1 is that the increase in the expected proportion is

greater between RPW(I, ,1, l) and RPW(3, 3, 3) than befween RPW(3, 3, 3) and RPW(5,
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5, 5). It may be that as parameters increase, the increase in expected proportion becomes

less drastic. This will explored further in the monotonicity section.

Furthermore, as the difference between pa and ps increases, we see an increase in

the expected proportion because there is a higher chance that the patient will receive

treatment A. Figure 1, which is a graph of the expected proportion on treatment A for

various designs with pa varying and pe held constant at 0.1, shows that the RPV/ designs

outperform 50-50 randomization and Neyman allocation in terms of allocating more

patients to the superior treatment. In fact, the trend seems to be that the higher the

number of marbles added, the higher the expected proportion of patients assigned to the

superior treatment. As the expected proportion on the superior treatment increases, so

does the standard deviatior¡ but overall the number of patients receiving the superior

treatment rises. This result is quite noteworthy. A simple modification to the

randomized play the winner design that is easy to implement has produced a more ethical

choice for clinicians who face the task of conducting clinical trials on dreadfully ill

patients.
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Type of
Desien

P(A) 0.2 0.3 0.4 0.5
P(B)

Randomization

Neyman

RPW(I, l, 1)

RPW(3,3,3)
RPW(s. s. s)

0.1

0.4ee (0.04e)

0.s7e (0.067)

0.sze (0.040)

0.536 (0.041)

0.s40 (0.042\

0.4ee (0.04e)
0.614 (0.3s0)
0.s61 (0.044)
0.s17 (0.046)
0.s86 (0.048)

0.4ee (0.04e)
0.630 (0.062)
0.se7 (0.048)
0.624 (0.0s1)
0.639 (0.053)

0.4ee (0.04e)
0.635 (0.062)
0.637 (0.0s1)
0.67e (0.0s7)
0.702 (0.059)

Randomization

Neyman

RPW(I, l, 1)

RPW(3,3,3)
RPW(s,5,5)

0.2

0.4ee (0.049)

0.s37 (0.0s6)
0.533 (0.04e)
0.541 (0.0s3)
0.s47 (0.0s6)

0.4ee (0.04e)
0.sss (0.0ss)
0.56e (0.0s3)
0.s8e (0.05e)
0.602 (0.062)

0.4ee (0.04e)
0.s60 (0.054)
0.611 (0.s70)
0.646 (0.065)
0.668 (0.069)

Randomization

Neyman

RPW(I, l, 1)

RPW(3,3,3)
RPW(s,5,5)

0.3

o.4ee (0.04e)
0.sre (0.0s2)
0.s38 (0.0s8)
o.s4e (0.068)
0.557 (0.072\

o.4ee (0.04e)
0.s24 (0.0s1)
0.s80 (0.063)
0.607 (0.07s)
0.627 (0.082)

Randomization

Neyman

RPW(I, l, l)
RPW(3,3,3)
RPW(s,5,5)

0.4

0.4ee (0.04e)
0.s07 (0.04e)
0.s44 (0.070)
0.5se (0.08e)
0.s72 (0.0ee)

Table 1: Expected Proportion on the Superior Treatment (Standard deviations are given

in parentheses)

Note to this and all subsequent tables: P(A) is the probability of success of treatment A

ønd P(B) is the probability of success of treatment B unless otherwise indicated.
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Type of
Desien

P(A) 0.6 0.7 0.8 0.9
PIB)

Randomization

Neyman

RPW(1, 1, l)
RPW(3,3,3)
RPW(s,5,5)

0.1

0.4ee (0.04e)

0.630 (0.062)

0.684 (0.0s4)
0.740 (0.Ose)

0.772 10.061)

0.4ee (0.04e)

0.613 (0.064)

0.737 (0.0s5)
0.807 (0.0se)
0.847 10.058)

0.4ee (0.04e)

0.s78 (0.067)

0.7e8 (0.0s6)
0.878 (0.0s0)
0.916 (0.04s)

0.4ee (0.04e)

0.s00 (0.077)

0.867 (0.050)
0.e4r (0.03s)
0.967 (0.026\

Randomization

Neyman
RPW(I, l, 1)

RPW(3,3,3)
RPW(s,5, 5)

0.2

0.49e (0.04e)

0.sss (0.05s)
0.65e (0.060)

0.712 (0.06e)
0.744 (0.073)

0.4ee (0.049)

0.s37 (0.056)

0.7t3 (0.063)

0.784 (0.070)

0.827 (0.070)

0.4ee (0.04e)
0.s00 (0.0se)
0.777 (0.063)

0.861 (0.061)
0.904 (0.057)

0.4ee (0.04e)
0.422 (0.067)
0.8s1 (0.0se)
0.e32 (0.044)
0.961 (0.034)

Randomization

Neyman

RPW(I, 1, l)
RPIV(3, 3,3)
RPrV(s, s, s)

0.3

0.4ee (0.04e)
0.s1e (0.0s2)
0.630 (0.068)
0.677 (0.082)
0.708 10.088)

0.4ee (0.04e)

0.s01 (0.0s3)
0.685 (0.072)
0.7s5 (0.084)

0.800 (0.088)

o.4ee (0.04e)

0.464 (0.0s6)
0.7s2 (0.073)

0.840 (0.076)

0.888 rc.074\

0.4ee (0.04e)
0.388 (0.063)
0.82e (0.071)
0.e20 (0.057)
0.953 10.048)

Randomization

Neyman

RPW(I, 1, 1)

RPW(3,3,3)
RPW(s,5,5)

0.4

o.4ee (0.049)

0.s01 (0.050)

0.ses (0.076)

0.632 (0.Oee)

0.659 (0.110)

0.4ee (0.04e)

0.483 (0.051)

0.6s2 (0.082)
0.717 (0.102)
0.761 10.113)

0.499 (0.049

0.446 (0.0s4
0.t22 (0.086

0.810 (0.098

0.861 (0.100

0.4ee (0.04e)
0.371 (0.062)
0.802 (0.086)
0.eol (0.07e)
0.938 (0.071)

Randomization
Neyman

RPW(I, 1, l)
RPW(3,3,3)
RPW(5.5.5)

0.5

0.4ee (0.049)
o.4es (0.0s0)

0.ss3 (0.085)
0.s77 (0.117)
0.5e3 (0. r38)

0.4ee (0.04e)

0.477 (0.0s1)

0.612 (0.0e3)

0.667 (0.127)
0.70s (0.149)

0.499 (0.049

0.441 (0.0s4

0.683 (0.100

0.769 (0.128

0.820 (0.141

0.4ee (0.04e)
0.366 (0.061)

0.768 (0.103)
0.874 (0.1r0)
0.9r4 (0.109)

Randomization

Neyman
RPW(I, l, 1)

RPW(3,3,3)
RPW(s,5,5)

0.6

o.4ee (0.04e)
0.483 (0.0sr)
0.s62 (0.r07)
0.se8 (0.1s7)
0.618 (0.198)

0.4e9 (0.04e)
0.446 (0.0s4)
0.63s (0.1 17)

0.711 (0.166)
0.749 (0.204\

0.4ee (0.04e)
0.371 (0.061)
0.723 (0.126)
0.82e (0.1ss)
0.862 (0.180)

Randomization

Neyman

RPW(I, 1, l)
RPW(3,3,3)
RPWí5.5.5)

0.7

0.499 (0.04e)
0.463 (0.0s6)
0.s77 (0.136)

0.624 (0.217)
0.642 rc.279\

0.4ee (0.04e)
0.388 (0.063)

0.668 (0.1s1)
0.7s8 (0.220)
0.776 (0.274\

Randomization

Neyman

RPW(I, 1, 1)

RPW(3, 3,3)
RPW(s,5,5)

0.8

0.s00 (0.04e)

0.422 (0.066)

O.ses (0.18r)
0.647 (0.299)
0.6s4 (0.36e)
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3.3.2 Power of the Test

The concept of power is talked about frequently in statistics, and it is definitely an

important tool for measuring the validity of tests of hypothesis. In this paper, the power

of a test can be defined as the probability of correctly rejecting the null hypothesis. The

test of hypothesis in question is:

Ho: pn: pa

HA: pA #pB,

where pe is the probability of success of the experimental treatment and ps is the

probability of success of the conventional treatment.

Table 2 gives values of the power of the above test of hypothesis for 50:50

allocatior¡ Neyman allocation, RPW(I, l, l), RPW(3, 3, 3) and RPW(5, 5, 5). The

probabilities found are relevant for a two-sided alternative hypothesis and are significant

at the five per cent level. The standard normal critical value used for alpha equal to 0.025

was 1.96. Note that the power calculated is based on random and independent samples so

all values are approximations. The probabilities were estimated by comparing two

binomial proportions. The form of the probability calculated is given below:

Power = Q
lp^ - p"l

PnQn , PnSs
nA nB

where (Þ is the standard

treatment l" q¡is equal to I

normal density functior¡ pi is the probability of success

- p¡, nt is the sample size of treatment í"

nApA+nBpB

of

*(,/"^. /,")
P¿Qt , PaSn-t- 

-

p=
nA+nB

arLd,q=l-P.
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Type of
Desisn

P(A) 0.2 0.3 0.4 0.5

Pß)
Randomization

Neyman

RPW(I, 1, 1)

RPW(3,3,3)
RPW(s, 5, 5)

0.1

0.284 (0.012)

0.2s7 (0.026)
0.277 (0.012)

0.27s (0.013)

0.2t3 (0.013)

0.707 (0.011)

o.6ss (0.046)

o.6eo (0.01e)

0.682 (0.02s)
0.677 (0.02t\

0.e44 (0.003)
0.e22 (0.024)
0.e34 (0.011)
0.e26 (0.e77)

0.921 (0.022\

0.ee6 (0.000)
0.ee4 (0.004)
0.ee4 (0.003)

0.eel (0.008)

0.987 t0.014)
Randomization

Neyman

RPW(I, 1, 1)

RPW(3,3, 3)
RPW(5, s, s)

0.2

0.207 (o.006)

0.202 (0.00e)

0.203 (0.007)

0.202 (0.009)

0.200 10.010)

0.s86 (0.00e)

0.s72 (0.020)
0.s67 (0.021)

0.ss8 (0.02e)
0.551 10.034)

0.8e1 (0.004)
0.884 (0.012)
0.870 (0.022)
0.8s2 (0.038)
0.836 (0.051)

Randomization

Neyman

RPW(I, l, 1)

RPW(3,3,3)
RPW(s,5, 5)

0.3

0.178 (0.003)
0.r77 (0.004)
0.r7s (0.006)
0.173 (0.008)
0.172 (0.009)

0.s29 (0.006
0.s26 (0.0r0
0.s11 (0.023
a.497 (o.o3s

0.486 rc.044
Randomization

Neyman

RPW(I, 1, 1)

RPW(3,3,3)
RPW(s,5, 5)

0.4

0.167 (0.002)
0.167 (0.002)
0.165 (0.00s)
0.t62 (0.008)
0.160 (0.010)

Table 2: Power of the Test (Standard deviations are given in parentheses)

As to be expected, the highest values for power in Table 2 belong to the 50-50

randomization simulations. It has been well established that completely randomized

experiments reduce bias and give a high value for power provided the sample size is large

enough. Although it may be impossible to improve upon the high power of randomized

trials, the main goal of adaptive trials is to improve upon the number of patients who

receive the superior treatment without significant loss in power. Indeed, the values for

power of the test for the randomized play the winner rule designs do not deviate too far

from those of 50-50 randomization or Neyman allocation. In some cases, the power of

the RPW designs comes very close to the Neyman allocation probabilities. For example,
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Type of
Desisn

PIA) 0.6 0.7 0.8 0.9
P(B)

Randomization

Neyman

RPW(I, l, 1)

RPW(3,3,3)
RPW(s,5, 5)

0.1

1.000 (0.000)

1.000 (0.000)

1.000 (0.000)
0.eee (0.00s)
0.996 (0.015)

r.000 (0 000)

1.000 (0.000)

1.000 (o.ooo)
0.ege (0.00e)

0.990 (0.048)

1.000 (0.000)

1.000 (0.000)

r.000 (0.001)
0.ee4 (0.040)
0.966 (0.100)

1.000 (0.000)

1.000 (0.000)

0.eee (0.011)

0.e81 (0.0s9)

0.934 (0.102ì

Randomization

Neyman

RPW(I, 1, 1)

RPW(3,3,3)
RPW(5.5.5)

0.2

0.e8e (0.001)
0.e8e (0.002)

0.e80 (0.011)

0.e64 (0.031)
0.94s 10.056)

r.000 (0.000)
1.000 (0.000)
0.ee8 (0.004)
0.e8s (0.033)
0.e56 (0.083)

1.000 (0.000)
1.000 (0.000)
0.eee (0.004)
0.e79 (0.062)
0.e20 (0.136)

1.000 (0.ooo

1.000 (0.ooo

0.998 (0.018

0.9s 1 (0.096

0.869 (0.148

Randomization

Neyman

RPW(1, l, 1)

RPW(3,3,3)
RPW(5. s.5)

0.3

0.863 (0.00s)
0.86r (0.006)
0.831 (0.033)
0.7e8 (0.063)
0.768 10.087)

0.e86 (0.001)
0.e86 (0.001)
0.e66 (0.023)
0.ezs (0.071)
0.870 (0.123)

1.000 (0.000)
1.000 (0.000)
0.eez (0.0rs)
0.e43 (0.0e2)
0.8s2 (0.168)

1.000 (o.ooo)

1.000 (0.000)

o.ee3 (0.02e)

O.el 1 (0.12s)
0.806 (0.174\

Randomization
Neyman

RPW(I, 1, 1)

RPW(3,3,3)
RPW(s, s. s)

0.4

0.s 13 (0.00s)
0.s12 (0.006)
0.4e2 (0.026)
0.471 (0.047)
0.453 (0.062)

0.863 (0.00s)
0.862 (0.006)
0.820 (0.046)
0362 (o.oe7)
0.701 10.140)

0.e8e (0.001)
0.e8e (0.002)
0.es6 (0.03e)
0.870 (0.127)
0.76T (0.195)

1.000 (0.000)

1.000 (o.ooo)

0.e80 (0 o4s)
0.862 (0.1s2)
0.74s (0.r96)

Randomization
Neyman

RPW(1, 1, l)
RPV/(3,3, 3)

RP\ry(5, 5, 5)

0.5

0.167 (0.002)
0.167 (0.002)

0.T64 (0.006)
0.160 (0.011)
0.1s6 (0.0rs)

o.sze (0.006)
0.s27 (0.00e)

0.50s (0.034)
0.468 (0.068)
0.433 (0.094)

0.8e1 (0.004)
0.884 (0.012)

0.834 (0.06s)
0.731 (0.r46)
0.633 (0.198)

0.ee6 (0.000)

0.ee4 (o.oo4)

0.e48 (0.068)

0.7e7 (0.178)

0.685 (0.207\

Randomization

Neyman

RPW(I, l, l)
RPW(3,3,3)
RPW(s,5,5)

0.6

0.178 (0.003)
0.177 (0.004)
0.r74 (o.oo8)
0.16s (o.or 8)
0.1s6 (0.026)

0.s86 (0.009

0.s73 (0.019

0.ssz (0.049

0.482 (0.10s

0.419 rc.ß7

0.944 (0.003

0.922 (0.023

0.867 (0.093

0.70s (0.196

0.609 (0.231

Randomization

Neyman

RPW(I, 1, 1)

RPW(3,3,3)
RPW(5. s.5)

0.7

0.207 (0.006)
0.202 (0.009)

0.200 (0.016)
0.779 (0.034)
0.1ss (0.04s)

0.707 (0.0r r
0.657 (0.044i

0.64e (0.082

0.s 19 (0.l s9

0.433 (0.r82
Randomization

Neyman

RPW(I, 1, l)
RPW(3,3,3)
RPW(s,5,5)

0.8

0.283 (0.012)

0.2s8 (0.026)

0.267 (0.04r)
0.207 (0.072)
0.161 (0.080)
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when pa is equal to 0.8 and when ps is equalto 0.7, then the power of the test using

Neyman allocation is 0.202 (0.009) and the power using RPW(I, 1, 1) is 0.200 (0.016).

Vy'e can also see in the tables that as the difference between pa and pn increases, the

po\¡/er of the test increases. This is due to the fact that we are testing for a difference

between treatments A and B. The larger the observed difference, the easier it is to make a

statistically significant conclusion. The trend seems to be that the more marbles that are

drawn and then added, the lower the power of the test, and the more variable the results.

Figure 2 further emphasizes this trend. The graph shows the value of the power

of the two-sided test for various designs with pe varying between 0.2 and 0.9 while pn is

held constant at 0.1. Figure 2 clearly shows that while the randomized play the winner

designs do have a lower level of power as compared to 50-50 randomization and Neyman

allocation, the decrease is minor. Only when pe, or both pa and ps become quite large

does the decrease in the power seem to be more substantial, especially as the parameters

of the RPW design increase. This will be discussed further in the monotonicity section.

This is the price that must be paid if the expected proportion of patients allocated to the

superior treatment is to increase. For the most part, however, the decrease in the po\ryer

of the RPW designs is small and to be expected.

3.3.3 Odds Ratio

The odds ratio is a quotient of the number of successes versus failures of

treatment A over the number of successes versus failures of treatment B. Obviously, if

treatment A has a higher probability of success than treatment B, then the odds ratio

should be gteater than one. Without loss of generality, treatment A has been assumed to

be the superior treatment. The data in Table 3 gives the odds ratio for various
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probabilities of success of treatment A and B for 50-50 randomizatior¡ Neyman

allocation, RPW(I, l, 1), RPW(3, 3, 3) and RPW(5, 5, 5) experimental designs. In the

table, all of the odds ratios are consistently greater than one, indicating that treatment A

has a higher number of successes versus failures than treatment B. Furthermore, as pA

and pn increase, so does the odds ratio for all designs.

When the odds ratios are compared for the various designs, it is evident that all

designs improve upon l:l allocation. This implies that for the same treatment

probabilities of success, randomization has a lower proportion of successes versus

failures on the superior treatment than all other designs studied. In most cases, the

randomized play the winner designs have a higher value for the odds ratio than Neyman

allocation. Particularly, when the values of pe and ps are greater than 0.5, all RPW

designs outperform Neyman allocation. Recall that when pn is greater than q¿, Neyman

allocation gives poor results and allocates less than fifty per cent of subjects to the

superior treatment. For smaller values of pa and pe, Neyman allocation has the highest

odds ratio of all the designs. If the randomized play the winner designs are compared, the

RPW(3, 3, 3) improves upon the RPW(I, 1, 1) design in most cases, except when there is

a large numerical difference between pa and pe. In addition, for some large values of pa

and pe, RPW(S, 5, 5) has a higher odds ratio than RPW(3, 3, 3), indicating a higher

number of successes versus failures on treatment A. It should be noted, however, that the

odds ratio was found to be a highly variable statistic; in some cases the standard error was

greater than the average value, so all conclusions drawn based on these values are only

approximations.
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Type of
Desisn

P(A) 0.2 0.3 0.4 0.5
P(B)

Randomization

Neyman

RPW(I, 1, 1)

RPW(3,3,3)
RPWI5- 5- s)

0.1

2.e4 (2.46)
3.04 (2.36)
3.0r Q.47)
3.03 (2.47)
3.00 0.36\

s.04 (3.e6)

s.23 (3.86)

s.16 (3.es)
s.zs (4.07)
s.23 (4.03)

7.88 (6.0s)
8.1s (s.87)
8.06 (6.03)
8.2s (6.1s)
8.08 (s.8s)

11.es (e.2e)
12.36 (8.87)
12.27 (e.06)
12.17 (8.46)
l r.84 (7.94\

Randomization

Neyman

RPW(I, l, 1)

RPW(3,3,3)
RPW(s,5,5)

0.2

1.es (1.10)

2.06 (1.32)
2.02 (1.26)
2.03 (r.36)
2.06 fi.37\

3.06 (1.73)
3.24 (2.08)
3. re (2.00)
3.27 (2.30)
3.29 (2.36\

4.64 (2.68)
4.er (3.11)
s.01 (3.62)
s.12 (3.e2)
5.2r ß.96\

Randomization

Neyman

RPW(I, 1, 1)

RPW(3,3,3)
RPW(s,5, 5)

0.3

r.7t (0.78)
1.76 (0.86)
r.76 (0.87)
r.76 (0.e2)
r.78 (0.94)

2.60 (t.zt)
2.68 (1.33)

2.70 (1.51)
2.71 (1.s4)
2.78 (1.70)

Randomization

Neyman

RPW(I, l, 1)

RPW(3,3,3)
RPW(s,5,5)

0.4

1.6s (0.73)

t.66 (0.73)
r.67 (0.76)

r.6e (0.8s)
1,.72 (0.e7)

Table 3: Odds Ratio (Standard deviations are given in parentheses)
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Type of
Desien

P(A) 0.6 0.7 0.8 0.9

P(B)

Randomization

Neyman

RPW(I, 1, 1)

RPW(3,3,3)
RPW(5. s. s)

0.1

r8.2s (14.33)
18.73 (r3.68)

18.40 (13.06)
17.03 (10.77)
16.19 (9.66)

28.es (24.42)

29.81 (22.s8)

27.s3 (18.37)

23.47 (13.36)

20.29 (r0.77\

st.7s (4e.te)
s3.e4 (4s.01)

43.00 (26.46)
31.1 I (r6.34)
23.94 (12.48\

r31.s0 (139.48)

137.97 (147.48)

78.21 (47.e3)
43.e| (2s.17)
31.30 Q0.17\,

Randomization

Neyman

RPW(I, 1, 1)

RPW(3,3,3)
RPW(s,5,5)

0.2

7.08 (4.12)
7.4s (4.s8)
7.8s (6.05)

8.06 (6.47)
8.06 rc.r4\

11.20 (6.7s)
11.78 (7.3s)
12.7e (10.2s)

12.s8 (e.sl)
t2.tt (8.40)

20.0e (14.s8)
2T.43 (14.82)
22.7e (18.1l)
te.76 (13.48)
16.84 lr0.7s)

st.s7 (46.t7)
s3.11 (44.72)
4e.s3 (38.27)
33.tt (2r.64)
2s.9s (18.3sì

Randomization

Neyman
RPW(I, 1, 1)

RPW(3,3,3)
RPW(s, 5,5)

0.3

3.e7 (1.e1)
4.07 (2.03)
4.18 (2.s2)
4.3s (3.16)
4.4s (3.43)

6.27 (3.1e)
6.s0 (3.se)
6.87 (4.e7)
7.3r (s.ee)
7.42 (s.e3)

11.24 (7.31)
r r.e3 (7.61)
12.7s (r0.20)
12.80 (10.17)
1r.92 (8.80)

28.86 (23.87)
29.77 (22.76)
32.13 (28.06)
24.ee (18.93)
20.69 (16.05)

Randomization

Neyman

RPW(I, 1, 1)

RPW(3,3, 3)

RPW(5,5, 5)

o-4

z.sr (1.1s)
2.s4 (1.ls)
2.s6 (r.ze)
2.67 (1.66)
2.71 (1.82)

3.e8 (1.e3)
4.08 (2.08)

4.1s (2.40)
4.s0 (3.73)
4.65 (3.75\

7.r3 (4.4e)
7.4e (4.63)
7.74 (s.83)
8.26 (6.e6)
8.23 (6.70)

18.27 (14.70)
18.s5 (13.37)
zo5r (Le.77)
18.30 (1s.3e)
t6.te (12.83)

Randomization

Neyman

RPW(I, 1, 1)

RPW(3,3,3)
RPWí5. s. s)

0.5

1.6s (0.72)
r.67 (0.73)

r.67 (0.76)

1.72 (0.8e)
1.7 s ll .03)

2.61 (r.12)
2.66 (1.34)

2.68 (1.66)
2.86 (2.12)
3.01 Q.st\

4.68 (2.73)
4.e3 (3.07)

4.e3 (3.41)
s.44 (4.87)
5.63 (4.90)

tT.ee (e.4s)
72.Te (8.s2)

13.06 (12.T3)

13.28 (t2.34)
12.39 (10.67)

Randomization

Neyman
RP\ry(l, 1, 1)

RPW(3,3,3)
RPW(5,5,5)

0.6

1.72 (0.80)
r.76 (0.e4)
r.7s (0.87)
1.84 (1. r7)
1.91 n.49)

3.0e (1.83)
3.24 (2.0s)
3.18 (2.0s)
3.s2 (3.12)
3.80 (3.ss)

7.e3 (6.31

8.04 (s.6e
8.48 (7.83

0.83 (0. r6
9.02 (8.42

Randomization

Neyman

RPW(I, l, 1)

RPW(3,3,3)
RPW(s. s.5)

0.7

1.e8 (l.le)
2.07 (1.31)
2.03 (r.ze)
2.r8 (1.82)
2.43 Q.32\

s.o7 (4.04)
s.l8 (3.77)
s.43 (s.32)
6.16 (6.e6)
6.40 (6.s1)

Randomization

Neyman

RPW(I, l, 1)

RPW(3,3,3)
RPW(s,5, 5)

0.8

2.e4 (2.46)
3.02 (2.31)
3.11 (z.ee)
3.67 (4.27)
4.08 (4.78)
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3.3.4 Proportion of Successes

The results obtained from the RPW(2n+1 ,2É1,2n+l) design must be verified to

ensure that they are similar to results obtained from other designs. This helps to ascertain

that there ¿re no apparent flaws in the design and to ensure that the proportion of

successes on the conventional treatment and on the experimental treatment were

approximately equal to the allocation probabilities of those treatments. Table 4 gives the

total proportion of successes on treatment A which is equal to the total number of

successes on treatment A divided by the total number of patients on treatment A. Table 5

gives similar data for treatment B. Both Table 4 and Table 5 show that the expected

proportion of successes on treatment A and B are approximately equal to the allocation

probabilities of treatments A and B, respectively. The table values are similar for all

designs simulated: 50-50 randomization, Neyman allocation, RPW(I, 1, 1), RPW(3, 3, 3)

and RPW(S, 5, 5). Thus, this is a good indication that the RPV/ design is allocating

subjects to treatments properly.
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Type of
I)esisn

P(A) 0.2 0.3 0.4 0.5

P(B)

Randomization

Neyman

RPW(I, 1, 1)

RPW(3,3,3)
RPW(5, s, s)

0.1

0.200 (0.0s7)
0.200 (0.0s3)
0.1ee (0.05s)
0.1ee (0.0s4)
0.198 (0.0s4)

0.2ee (0.066)

0.300 (0.0se)
0.2e8 (0.060)

0.2e7 (0.060)

0.297 10.060)

0.3ee (0.070)
0.3ee (0.062)
0.3e7 (0.063)

0.3e7 (0.062)

0.396 (0.061)

0.4ee (0.071)

0.s00 (0.064)

0.4e7 (0.063)

0.4e7 (0.062)

0.496 (0.060)

Randomization

Neyman

RPW(I, l, l)
RPW(3,3,3)
RPWls. s.5)

0.2

0.Tee (0.066)

0.300 (0.063)

0.2e8 (0.062)

0.297 (0.062)

0.297 10.062)

0.3ee (0.070)
0.400 (0.066)
0.3e7 (0.06s)
0.3e7 (0.064)
0.39s (0.063)

0.4ee (0.071)

0.s00 (0.067)

0.4e7 (0.064)

0.4e7 (0.063)

0.496 (0.062)

Randomization

Neyman

RPW(I, 1, l)
RPW(3,3,3)
RPW(5. s. s)

0.3

0.3ee (0.070)
0.3ee (0.068)
0.3e7 (0.067)
0.3e6 (0.067)
0.395 (0.066)

0.4ee (0.071)

0.500 (0.06e)
0.4e7 (0.066)
0.4e7 (0.065)
0.49s (0.064)

Randomization

Neyman

RPW(1, 1, 1)

RPW(3,3, 3)

RPW(s,5,5)

0.4

o.4ee (0.071)

0.s00 (0.070)
0.4e6 (0.068)
0.4e6 (0.06e)
0.4e4 (0.067)

Table 4: Treatment A Proportion of Successes (Standard deviations are given in

parentheses)

56



Type of
Desien

P(A) 0.6 0.7 0.8 0.9

P(B)

Randomization

Neyman

RPW(I, l, 1)

RPW(3,3,3)
RPW(5. s. s)

0.1

0 60r (0.070)

0.601 (0.063)

0.se8 (0.061)

0.se8 (0.0s8)
0.596 (0.0s7)

0.700 (0.06s)

0.701 (0.0s9)

0.6e8 (0.054)

0.6ee (0.0s2)
0.698 (0.0s0)

0.7ee (0.0s7)

0.802 (0.0s4)

o.7ee (0.046)
0.7ee (0.042)
0.798 rc.042\

0.900 (0.042)
0.e03 (0.043)

0.8ee (0.033)
0.e00 (0.031)
0.900 (0.030)

Randomization

Neyman
RP\ry(l, l, 1)

RPW(3,3,3)
RPW(5, 5,5)

0.2

0.601 (0.070)

0.601 (0.067)

o.se8 (0.062)
0.s97 (0.0s9)
0.59s 10.058)

o.7oo (0.06s)
0.702 (0.063)
0.6e8 (0.0ss)
0.6e8 (0.0s3)
0.697 (0.051)

0.7ee (0.0s7)
0.803 (0.0s8)
0.7ee (0.047)
0.7e8 (0.043)
0.798 (0.043)

0.e00 (0.042)
0.e03 (0.047)
0.8ee (0.033)
0.8ee (0.031)
0.900 (0.030)

Randomization

Neyman

RPW(I, l, 1)

RPW(3,3, 3)
RPIV(s,5, 5)

0.3

0.601 (o.o7o)

0.601 (0.069)
0.se1 (0.063)

0.se7 (0.06r)
0.595 (0.059)

0.700 (0.06s)
0.702 (0.06s)
0.6e8 (0.0s6)
0.6e8 (0.054)
0.696 (0.052)

0.7ee (0.0s7)
0.803 (0.060)
0.Tee (0.048)
0.7e8 (0.044)
0.798 (0.043)

0.e00 (0.042)
0.e04 (0.04e)
0.8ee (0.034)
0.8ee (0.031)

0.899 10.030)

Randomization

Neyman

RPW(I, 1, l)
RPW(3,3,3)
RPWí5- 5- 5)

0.4

0.601 (0.070)
0.601 (0.070)

0.se7 (0.06s)
0.se6 (0.064)
0.s94 (0.062)

0.700 (0.06s)
0.702 (0.066)
0.6e7 (0.0s8)

0.6e7 (0.0s6)
0.696 (0.0s4)

o.7ee (0.0s7)
0.803 (0.061)
0.7e8 (0.049)
0.7e7 (0.04s)
0.797 (0.04s)

0.e00 (0.042)
0.e04 (0.0s0)
0.8e9 (0.034)
0.8e9 (0.032)
0.899 (0.031)

Randomization
Neyman

RPW(I, 1, 1)

RPW(3,3,3)
RPW(5, s, s)

0.5

0.601 (0.070)

0.602 (0.071)

0.se6 (0.068)

0.ses (0.068)

0.sez (0.067)

o.7oo (0.06s)
0.702 (0.067)

0.6e6 (0.060)

0.6e6 (0.ose)
0.694 (0.0s8)

0.7ee (0.0s7)
0.804 (0.061)

0.7e7 (0.0s1)
0.7e7 (0.047)
0.796 (0.047)

0.e00 (0.042)
0.e04 (0.0s0)

o.8ee (o.03s)
0.8ee (0.033)
0.899 (0.032)

Randomization

Neyman

RPW(I, 1, 1)

RPW(3,3,3)
RPW(s.5. 5)

0.6

o.7oo (0.06s)
0.702 (0.066)
0.6e6 (0.064)
0.6e4 (0.06s)
o.6eo (0.066)

0.7ee (o.os7)
0.803 (0.061)
0.7e7 (o.os3)
o.7es (o.os1)
0.794 (0.052)

0.e00 (0.042)
0.e04 (0.0s0)

0.8e8 (0.037)

0.8e8 (0.034)

0.898 10.035ì

Randomization

Neyman

RPW(1, 1, 1)

RPW(3,3,3)
RPW(s.5,5)

0.7

0.7ee (o.os7)
0.803 (o.060)

0.7e6 (0.057)

0.7e2 (0.060)

0.79r 10.069)

0.e00 (0.042)
0.e04 (0.04e)
0.8e8 (0.03e)
0.897 (0.040)

0.896 (0.097)

Randomization

Neyman

RPW(I, l, l)
RPW(3,3,3)
RPW(5,5,5)

0.8

0.e00 (0.042)
o.eo3 (0.047)
0.8e7 (0.044)
0.8e3 (0.05s)
0.88e (0.091)
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Type of
Desisn

P(A) 0.2 0.3 0.4 0.5

P(B)

Randomization

Neyman

RPW(I, 1, l)
RPW(3,3,3)
RPW(5. s. s)

0.1

0.101 (0.043)
0.0e7 (0.046)
0.Oee (0.043)
0.0e8 (0.044)
0.098 (0.044)

0.101 (0.043)

o.oe6 (0.048)

o.oee (0.04s)
0.0e8 (0.046)

0.098 (0.046)

0.101 (0.043)

0.0e6 (0.0s0)
0.Oee (0.047)
0.0e7 (0.04e)
0.097 10.050)

0.101 (0.043)

0.0e6 (0.0s0)

0.0e8 (0.04e)

0.0e6 (0.0s3)

0.097 (0.0ssl

Randomization

Neyman
RPW(I, 1, l)
RPW(3,3,3)
RPW(s. s. s)

0.2

0.210 (0.0s7)
0.1e8 (0.060)

0.1e8 (0.05e)

0.1e8 (0.0se)

0.197 (0.060)

0.210 (0.0s7)
o.le8 (0.061)
0.1e8 (0.06l)
0.1e7 (0.063)
0.1e6 (0.064)

0.210 (0.057)
0.1e7 (0.062)
0.re7 (0.06s)
o.te1 (0.068)
0.t94 (0.070)

Randomization

Neyman

RPW(I, 1, l)
RPW(3,3,3)
RPW(5. s. s)

0.3

0.30r (0.06s)
0.2e7 (0.068)

0.2e6 (0.068)

0.2e7 (0.068)
0.294 (0.069)

0.301 (0.065)
0.2e7 (0.068)
0.2es (0.072)
0.2e6 (0.073)

0.292 (0.07s)

Randomization

Neyman

RPW(I, l, l)
RPW(3,3,3)
RPW(s,5,5)

0.4

0.400 (0.06e)
0.3e8 (0.071)
0.3es (0.073)
0.3e4 (0.07s)
0.3e0 (0.078)

Table 5: Treatment B Proportion of Successes (Standard deviations are given in

parentheses)
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Type of
Desisn

PIA) 0.6 0.7 0.8 0.9

PIB)

Randomization

Neyman

RPW(I, l, 1)

RPW(3,3, 3)
RPW(5. s. s)

0.1

0.l0l (0.043)

0.0e6 (0.0s0)

0.0e8 (0.0s3)
0.0e6 (0.060)

0.096 (0.063)

0.101 (0.043)

0.096 (0.048)

0.0e7 (0.0s8)
0.0e4 (0.068)
0.093 (0.079)

0.101 (0.043)

0.0e7 (0.046)

0.Oes (0.067)
0.0e1 (0.087)
0.088 (0.109)

0.101 (0.043)

0.0e8 (0.043)

0.0e2 (0.083)
0.083 (0.12s)
0.072 (0.147)

Randomization

Neynan
RPW(I, l, 1)

RPW(3,3,3)
RPW(s,5, 5)

0.2

0.2t0 (0.0s7)
0.1e7 (0.06r)
0.1e6 (0.06e)

0.re6 (0.076)

0.193 (0.081)

0.210 (0.0s7)
0.1e8 (0.060)
0.les (0.076)

0. re3 (0.08e)
0.188 10.103)

0.210 (0.0s7)
0.1e8 (0.0s8)

0.1e1 (0.087)

0.187 (0.114)
0.176 (0. r44)

0.2r0 (0.0s7)
0.1ee (0.0s3)
0.18s (0.110)

0.t72 (0.167)

0.1s0 (0.203)

Randomization

Neyman

RPW(I, 1, 1)

RPW(3,3,3)
RPW(s,5,5)

0.3

0.301 (0.065)

0.2e7 (0.067)

0.2e4 (0.076)

0.293 (0.082)

0.290 10.088)

0.301 (0.065)

0.2e7 (0.066)
0.2e2 (0.083)
0.2e0 (0.0e7)
0.283 (0.113)

0.30r (0.06s)
0.2e7 (0.064)
0.288 (o.oe4)
0.283 (0.126)
0.267 10.r61)

o.3ol (0.06s)
0.298 (0.060)

0.278 (0.1Ie)
0.261 (0.lel)
0.229 (0.236\

Randomization

Neyman

RPW(I, 1, 1)

RPW(3,3,3)
RPW(5. s. s)

t.4

0.400 (0.06e)

0.3e8 (0.070)

0.3e4 (0.078)
0.3e1 (0.084)

0.387 (0.090)

0.400 (0.06e)
0.3e8 (0.06e)
0.3e2 (0.08s)
0.387 (0.0ee)
0.380 (0.117)

0.400 (0.06e)
0.3e8 (0.067)
0.387 (0.0e7)
0.379 (0.1,29)

0.362 rc.fiz\

0.400 (0.06e)

0.3e8 (0.063)

0.378 (0.128)
0.3s2 (0.203)

0.316 (0.258)

Randomization
Neyman

RPW(I, 1, l)
RPW(3,3,3)
RPW(s.5, s)

0.5

0.500 (0.071)
0.4ee (0.071)

0.4e4 (0.076)

0.4e1 (o.o8o)
0.486 (0.086)

0.s00 (0.071)
0.4ee (0.070)

0.4e3 (0.084)
0.487 (0.0e6)
0.479 (0.113)

0.s00 (0.071)
0.4ee (0.068)

0.48e (o.oe6)

0.477 (0.12e)
0.461 (0.170)

0.s00 (0.071)

o.4ee (0.064)

0.47e (0.122)
0.44s (0.207)
0.411 (0.267\

Randomization

Neyman

RPïV(I, 1, 1)

RPW(3,3,3)
RPW(5.5. s)

0.6

0.601 (0.070)
0.601 (0.069)
0.s94 (0.078)

0.s87 (0.087)
0.58r (0.102)

0.601 (0.070)
0.601 (0.066)
0.sez (0.08e)
0.s78 (0.1 1e)

0.s60 (0.163)

0.601 (o.o7o)

0.600 (0.063)

0.s82 (0.1 ls)
0.s4s (0.202)
0.s 1 1 (0.266)

Randomization

Neyman

RPW(I, 1, l)
RPW(3,3,3)
RP\ry(s.5. 5)

0.7

0.700 (0.06s)
0.701 (0.063)

0.6e2 (0.077)
0.681 (0.105)

0.66s (0.148)

0.700 (0.06s

0.700 (0.0s9
0.683 (0.101

0.6s4 (0.18s

0.619 (0.2s2

Randomization

Neyman

RPW(I, 1, l)
RPW(3,3,3)
RPW(s,5,5)

0.8

0.801 (0.006)

0.801 (0.0s3)
0.789 (0.081)

0.767 (0.1s6)
0.736 (0.227\
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Table 6 gives the total proportion of successes on both treatments A and B

divided by the total number of patients treated. Again, the same properties present in

Tables 4 and 5 are present here. The values in this table hold more significance however

because the greater the total proportion of successes, the greater the number ofpatients

cured. Moreover, a higher total proportion of successes may imply that the design is

better at allocating patients to the superior treatment. The proportions for 50-50

randomization increase linearly as the probabilities of success of treatments A and B

increase. The proportions for Neyman allocation are greater than those of 50-50

randomization until the probability of success of treatment B is greater than the

probability of failure of treatment A. For example, when Pe: 0.7 and pe: 0.9, then the

total proportion of successes is 0.777 (0.041), which is lower than 0.80 (0.040), the value

for 50-50 randomization.

The proportions for the randomized play the winner designs are almost

consistently higher than 50-50 randomization and Neyman allocation except when both

pe and pn are small. Furthermore, as the number of balls drawn then added increases

from one to three to five, so does the þroportion of successes. This trend can be

visualised by Figure 3. Figure 3 is a graph of total proportion of successes for various

values of pa while pn is held constant at 0. l. As the graph indicates, the randomized play

the winner rules perform better than both l:l allocation and Neyman allocation in terms

of increasing the number of successes in the trial. In addition, RPW(5, 5, 5) outperforms

RPW(3, 3, 3), which outperforms RPW(I, 1, l). Note, however, that the increase in the

total proportion of successes is greater between RPW(I, 1, l) and RPW(3, 3, 3) than

RPW(3, 3, 3) and RPW(S, 5, 5). This may indicate that as the parameters of the design

increase, the improvement in the total number of successes is not as significant. Even so,
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the more balls drawn, then added to the urq the higher the total proportion of successes

in the trial. This implies that more patients are successfully treated when randomized

play the winner designs are used in clinical trials.

Table 6: Total Proportion of Successes (Standard deviations are given in parentheses)

Type of
Desien

P(A) 0.2 0.3 0.4 0.5

P(B)

Randomization

Neyman

RPïV(I, 1, l)
RPW(3,3,3)
RPW(5. s. s)

0.1

0.150 (0.036)
0.1se (0.036)
0.154 (0.036)

0.1s4 (0.037)
0.rs4 (0.037)

o.2oo (o.o4o)
0.223 (0.041)
0.2t3 (0.042)
0.21s (0.044)
0.2r7 (0.04s)

o.2so (0.043)

0.289 (0.044)

0.27e (o.o4e)

0.287 (0.051)

0.291 (0.053)

o.3oo (0.046)
0.3s4 (0.04s)
0.3s5 (0.0s4)
0.372 (o.os9)
0.380 (0.061)

Randomization

Neyman

RPW(I, l, 1)

RPV(3,3,3)
RPW(5. s. s)

0.2

o.2so (0.044)
0.2s4 (o.ooe)
0.2s4 (0.044)

0.zss (0.044)
0.zss (0.044)

0.300 (0.046)
0.311 (o.o4s)

0.314 (0.049)

o.3le (o.osO)

0.320 (0.0s0)

o.3so (0.004)
0.368 (0.046)
0.383 (0.0s3)

0.3es (0.0s7)
0.400 (0.0s8)

Randomization

Neyman

RPW(I, 1, l)
RPW(3,3,3)
RPW(5. s. s)

0.3

0.3s0 (0.048)
0.3s1 (0.048)
0.3s3 (o.o4e)

0.3s6 (0.04e)

0.3ss (0.049)

0.400 (0.049)
0.404 (0.049)

0.416 (0.0s2)
0.423 (0.0s4)
0.425 (0.0ss)

Randomization

Neyman
RPW(I, 1, 1)

RPW(3,3,3)
RPW(s,5,5)

0.4

0.4s0 (o.os0)
0.4s0 (0.0s0)
0.4s4 (0.051)

0.4s7 (0.0s1)
0.4s7 (o.os2)
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Type of
Desien

P(A) 0.6 0.7 0.8 0.9

P(B)

Randomization

Neyman

RPW(I, 1, 1)

RPW(3,3,3)
RPW(5.5.5)

0.1

0.3s0 (0.047)

0.41s (0.04s)

0.443 (0.060)

0.471 (0.06s)
0.485 10.068)

0.400 (0.048)

0.468 (0.045)

0.s42 (0.063)
0.s8s (0.068)

0.608 (0.070)

0.44e (0.04e)

0.s06 (0.044)

0.6se (0.06s)
0.714 (0.063)
0.74t (0.062)

0.s00 (0.04e)

0.s00 (0.0s0)

0.7e4 (0.0s8)
0.8s3 (0.048)
0.873 (0.042\

Randomization

Neyman

RPW(I, 1, l)
RPW(3,3,3)
RPW(s, 5,5)

0.2

0.401 (0.047)
0.422 (0.04s)
0.464 (0.0s8)
0.486 (0.062)

0.497 (0.06s)

0.4s0 (0.049)
0.46e (0.043)

0.ss7 (0.061)
0.se3 (0.066)
0.613 (0.068)

0.s00 (0.049)
o.5ol (0.041)
0.667 (0.063)
0.717 (0.062)
0.742 10.062)

0.ss0 (0.04e)
0.4e6 (0.043)
0.7es (0.0s8)
0.8s3 (0.04e)
0.873 (0.043)

Randomization

Neyman
RPW(I, 1, 1)

RPW(3,3,3)
RPW(5. s. s)

0.3

0.4s0 (0.0s0)
0.4ss (0.048)

0.48e (0.0s6)
0.504 (0.0s8)
o.srz (0.062)

0.s00 (0.0s0)
0.s00 (0.04s)
0.s74 (0.ose)
0.603 (0.063)
0.620 (0.066)

0.s4e (0.049)
0.s32 (0.043)
0.676 (0.061)
0.720 (0.061)
0.743 (0.062)

0.600 (0.048

0.s32 (0.04s

0.797 (0.0s7
0.8s2 (0.0s0
0.871 (0.044

Randomization

Neyman
RPW(I, 1, l)
RPW(3,3,3)
RPWls. s.5)

0.4

0.s00 (0.0s0)
0.s00 (0.04e)
0.519 (o.os4)
0.s28 (0.05s)
0.531 (0.057)

0.ss0 (0.0s0)
0.s4s (0.047)
0.ses (0.0s6)
0.616 (0.060)
0.628 (0.063)

0.see (0.048)
0.s78 (0.002)
0.688 (0.0s8)
0.72s (0.060)
0.744 (0.062)

0.6s0 (0.047)

0.s85 (0.046)

0.800 (0.0s6)
0 8s1 (0.0s0)
0.869 (0.047)

Randomization

Neyman

RPW(1, l, l)
RPW(3,3,3)
RPW(s, 5,5)

0.5

0.5s0 (0.0s0)
0.ss0 (0.0s0)

0.sss (0.0s 1)

0.5s9 (o.os l)
0.ss8 (0.0s3)

0.600 (0.04e)
0.s9s (0.048)

0.622 (0.0s2)
0.63s (0.055)
0.641 10.0s8)

0.649 (0.047)
0.632 (0.047)

0.70s (0.0ss)
0.73T (0.0s8)
0.746 (0.062)

0.700 (0.04s

0.646 (0.046

0.807 (0.0s4
0.849 (0.0s4
0.865 (0.052

Randomization

Neyman

RPW(I, 1, 1)

RPW(3,3,3)
RPWts. s. s)

0.6

0.6s0 (0.048)
0.&e (0.047)
0.6s7 (0.04e)
0.661 (0.0s0)
0.662 (0.0s1)

0.700 (0.046)
0.6e0 (0.046)

0.728 (0.0s0)
0.742 (0.0s4)
0.750 (0.0s9)

0.7s0 (0.043)
0.711 (0.044)

0.817 (0.0s1)
0.84e (0.0s6)
0.8s9 (0.0s9)

Randomization

Neyman

RPW(I, 1, 1)

RPW(3,3,3)
RPW(s,5,5)

0.7

0.7s0 (0.043)
0.747 (0.044)
0.758 (0.04s)
0.763 (0.046)
0.764 (0.0s0)

0.800 (0.040)

0.777 (0.04r)
0.833 (0.046)

0.8s2 (0.0s3)
0.8s5 (0.060)

Randomization

Neyman

RPW(I, l, 1)

RPW(3,3,3)
RPW(s,5,5)

0.8

0.8s0 (0.036)

0.842 (0.037)

0.8se (0.038)

0.865 (0.043)

0.865 (0.047)
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3.4 Monotonicity of RPW(p, u, f; y)

In order to study the monotonic properties on the randomized play the winner

design, a new notation will be introduced to fully represent all the different values the

parameters may take. The general case of the randomized play the winner rule design

shall be denoted as RPW(p, q F; y). The parameters in the design include p, the number

of balls at the start of the trial of each type, û,, the number of balls added after the

response of the patient was a success, p, the number of balls added when the response

was a failure md T, the number of balls drawn. Note that it is possible that at the

beginning of the trial for the number of balls of each type to be unequal. If that were the

case then p would actually have two levels, and the randomized play the winner design

would be denoted as RPW(pr, pz; o, Fi T). Beginning the trial with an uneven sample

size may favour one treatment over the other and also may reduce power. In this paper

only the case where the trial begins with an equal number of balls will be explored.

Varying any or all of the parameters in the randomized play the winner design

enables us to see its monotonic properties. If the parameters are allowed to

systematically increase, and a trend emerges with respect to the parameters, then the

design can be considered monotonic. The monotonicity of the RPW(p, o, Ê; l) design is

explored with respect to both the expected proportion on the superior treatment and the

power of the test. The parameters are increased simultaneously as well as individually

while holding all others constant to determine how strongly each parameter affects the

results of the statistic under study. All simulations use 2000 replications, each with a

sample size of one hundred patients unless otherwise indicated. As before, the program

SAS was used for simulation studies. The goals of the monotonicity study are to not only

determine which parameters hold the most influence on the RPW design, but also to
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hopefully discover an optimum level for the parameters in the design to maximize the

expected proportion of patients allocated to the superior treatment without significant

sacrifices in power.

3.4.L Monotonicity in all Parameters Concurrently

Studying the monotonic properties of the RPW(2n]-l,Zn-rl,Zn+l;2n+l) design

enables us to understand the trends ofthe design as n increases. Tables 7 and 8 show the

monotonic properties of various randomized play the winner designs for the expected

proportion on the superior treatment and the power of the test for various probabilities of

treatment A and B. AIso, the tables include values for 50-50 randomization so we are

able to compare the randomized play the winner designs with the classical 50:50

randomized design.

Table 7 shows an increasing trend in the expected proportion as n increases while

Table 8 shows a decreasing trend in the power of the test. These trends are clearly visible

in Figure 4, which plots the expected proportion against the power of the test for various

values of n as well as randomization when pa:0.7 *d pu :0.4. The trend visible in the

graph is that as the number of balls in the urn increases, there is a higher chance that a

patient will receive the superior treatment, but there is also less likely of a chance of

reaching a valid conclusion at the end of the trial. The intuition behind these trends is

that as n increases, the trial focuses more on allocating patients to the superior treatment

and less on information gathering. So, increasingly more patients receive a better

treatment, but the trial becomes less balanced, causing a substantial decrease in power.
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Treatment
probability

50-50

random

RPW(2n+1.2n+1,Zn+l;Zn+l\ design where n is

0 I 2 4 8 16 32 64

P(A):0.2
P(B):0.t

0.500
(0.048)

0.528
(0.040)

0.536
(0.041ì

0.53ç
(0.041ì

0.545
(0.043)

0.551
(0.0431

0.555
(o.o44l

0.55ç
(o.048l

0.562
(0.047"

P(A):0.5
P(B):0.1

0.50c
(0.0481

0.637
(0.0s1)

0.678
(0.0s8)

0.702
(0.0s8)

0.732

(o.064l
0.765

(0.068)
0.801

(0.070)
0.82',1

(0.07s)
0.851

(0.07s)

P(A):9.9
P[B):0.1

0.500
(0.048)

0.868
(0.0sr)

0.941
(0.036)

0.967
(o.ozt)

0.982
(0.018)

0.989
(0.013ì

0.992
(0.010'

0.992
(0.0091

0.992
(0.0r0'

P(A): o.s

P(B):0.4
0. 500

(0.048)
0.544

(0.070)
0.559

(0.0e0)
0.573

(0.098)
0.585

(0.114ì
0.608

(0.137',
0.632

(0.1s8ì
0.655

(0.179)
0.67¿

(0.193'

P(A):0.7
P(B):0.4

0.500
(0.048)

0.652
(0.082)

0.718
(0.104)

0.763
(0.114)

0.814

10.120ì

0.871
(0. r211

0.90?
(0.122'

0.929
0.1 13

0.934
(0.112ì

P(A): s.9
P(B):0.4

0.500
(0.0481

0.803
(0.086)

0.901
(0.07e)

0.938
(0.070)

0.963
(0.0s9'

0.973
(0.0s4ì

0.975
(0.062)

0.97(
(0.os7l

0.975
(0.061ì

P(A):0.8
P(B):0.6

0.50c
(0.0481

0.633
(0.1 l6)

0.712
(0.166)

0.750

(o.20s)
0.795

(0.234',.

0.813
(0.283)

0.814
(0.318ì

0.78r
(0.367\

0.782
(0.37s'

P(A):0.9
P(B):0.6

0.500
(0.048)

0.722
(0.126)

0.830
(0.1 ss)

0.862
(0.180)

0.892
(0.1e3ì

0.88i
rc.n3'

0.879
(0.268ì

0.838
(0.328ì

0.842
(0.333'

P(A):0.9
P(B):0.8

0. 500

(0.048)
0.592

(0. r 8r)
0.65C

(0.2981
0.658

(0.366ì
0.64C

(0.428',
0.614

rc.467)

0.611
(0.47e)

0.592
(0.487',

0.603
(0.485')

Table 7: Expected Proportion on the Superior Treatment for RPW(2n*1, 2n*1, Zn+l;

2n+1) (Standard deviations are given in parentheses)
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Treatment
probability

50-50
random

RPV/(2n+1 ,2n*1,2n+l;2n+1) desipgt, where n is
0 I 2 4 8 t6 32 64

P(A):0.2
P(B):0.1

0.284
(0.012)

0.277
(0.012)

0.275
(0.013)

0.274
(0.13 1)

0.272
(0.0141

0.27(
(0.015'

0.268
(0.0161

0.261
(0.017ì

0.26:
(0.017'

P(A): o.s

P(B):0.1
0.996

(0.000)
0.994

(0.003)
0 99C

(0.008ì
0.987

(o.o1s)
0.978

10.0331

0.95i
(0.070'

0.91,i
(0.128ì

0.861
(0.186)

0.79(
(0.23e"

P(A):0.9
P(B) : 0.1

1.000

(0.ooo)
0.999

(0.0r 1)

0.98C
(0.060ì

0.933

(0.102)
0.868

(0. l20l
0 81i

(0.1 13ì

0.789
(0.099ì

0.786
(0.098ì

0.783

(0.0e61

P(A):0.5
P[B):0.4

0.167

(0.002)
0.165

(0.005)
0.t62

(0.008ì
0.160

(0.010)
0.1s?

(0.0131
0.152

(0. ro2l
0.14(

(0.02sì
0.139

(0.031ì
0.133

(0.03s'

P(A):0.7
P(B):0.4

0.863
(o.oos)

0.820
(0.046)

0.759
(0.100ì

0.698
(0.142\

0.605
(0.192ì

0.479

(0.227',
0.384

(0.240'
0.335

(0.233\
0.322

(0.236',

P(A):0.9
P(B):0.4

1.000
(0.000)

0.980
(o.o4s)

0.862
(0. l s2)

o.745
(0. le7)

0.649
(0.207'

0.60(

0.20(
0.585

0.21(
0.583

0.206
0.59(

0.21:
P(A):0.8
P(B):0.6

0.586
(0.008)

0.553
(0.0491

0.482
(0.105)

0.418
(0. r38)

0.34C

(0.159ì
0.27t

(0.160'
0.23i

(0. r 57ì

o.204
(0.148)

0.18!
(0.1401

P(A):0.9
PCB):0.6

0.944
(o.oo3)

0.867
(o.oe3)

0.706
(0. re4)

0.611
(0.2301

0.534
(0.242\

0.49(
(0.24s'

0.443
(0.244\

0.401
(Q.246',,

0.38(
(0.233',

P(A):0.9
P(B):0.8

0.284
(0.012)

0.267
(0.040)

0.208
(0.072\

0.163
(0.080)

0.1 19

(0.078'
0.09,

(0.071'
0.089

(0.0611

0.085
(0.0s6ì

0.08ç
(0.0s2'

Table 8: Powerofthe Test forRPW(2n+I,2n*1,Zn+l;Zn+l) (Standard deviations are

given in parentheses)
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conclusion could be drawn. Thus, it is necessary to choose a value of n so that the

RPW(2n+1, 2ntl, 2n+l; 2n+1) design gives valid statistical results with less ethical

compromise to the patients in the trial.

3.4.2 Monotonicity in p

Increasing the number of balls of each type at the beginning of the trial, denoted

¡r, reduces the rate at which the treatment assignment probabilities adjust. If the treatment

assignment probabilities adjust slowly, then it takes longer for the trial to reveal the

superior treatment, and thus a smaller proportion of patients receive that treatment. This

has a slowing effect on the trial and provides a level playing field for the treatments. In a

sense, more weight is given to randomization than adaptation. Note that all other

variables are kept constant at three (similar properties are expected at other fixed values.)

When the number of balls added to the urn after a response are small compared to the

number of balls already in the urn, those added do little to change the treatment

probabilities. Thus, the larger the initial size of the urn, the slower the trial progresses,

and the less extreme the results.

Table 9 shows the monotonic properties of various randomized play the winner

designs for the expected proportion on the superior treatment and Table 10 shows the

monotonic properties for the power of the test. In Table 9 we see that as n increases, a

decreasing trend can be seen in the expected proportion to the superior treatment. In

Table 10 an increasing trend can be seen in the power of the test as n increases. For large

values of n, the initial urn size is quite large. \ì/hether more balls of type A or type B are

added after a response, the number added is so few in comparison to the total number of

balls in the urn that it has little effect to change to the treatment probabilities. The effect
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will not be seen until towards the end of the trial, in which case the trial could have been

already skewed to the inferior treatment. These results indicate that the initial urn size

places a substantial role in the outcome of the trial. A large initial urn size in comparison

to the number of balls drawn and added will reduce the effect of adding or drawing balls,

which slows the adaptation of the treatment assignment probabilities. This reduces the

number of patients who receive the superior treatment overall but actually increases the

power of the test. Particularly, if both pn and pB are large, it is best to keep the initial urn

size small.

Treatment
probability

RPW(2n+I,3,3;3) design, where n is

I 2 4 8 t6 32 64

P(A):0.2
P(B):0.1

0.536
(0.041ì

0.53(
(0.041'

0.535
(0.040'

0.533
(0.040ì

0.53C
(0.03eì

0.52C

(0.03e1

0.52(
(0.03e'

P(A):9.5
P(B):0.1

0.678
(0.0s8ì

0.675
(0.0s7')

0.669
(o.os6l

0.658
(0.0s4ì

0.641
(o.os1)

0.61(
(0.048'

0.58t
(0.046'

P(A):0.9
P(B):0.1

0.941
(0.036)

0.931
(0.036)

0.91i
(0.038'

0.881
(0.0401

0.832
(0.043'

0.76i
(0.04s'

0.692
(0.047)

P(A):0.5
P(B):0.4

0.559
(0.0901

0.558
(0.088'

0.55i
(0.084'

0.55C

(0.078)
0.542

(0.070'
0.534

(0.0621

0.524
(0.0s51

P(A):0.7
P(B):0.4

0.718
(0.104ì

0.712
(0.100'

0.69(
(0.093'

0.675
(0.086ì

0.646,

(0.077\,
0.612

(0.0681

0.57t
(0.060'

P(A):0.9
P(B):9.4

0.901
(0.079'

0.88'
(0.078'

0.861
(0.077)

0.822
(0.074"

0.765
(0.071)

0.70c
(0.067'

0.636
(0.0611

P(A):0.8
P(B):0.6

0.712
(0.166'

0.701
(0.154ì

0.683
(0. l3eì

0.653

(0.121.
0.621

(0.101')
0.58t

(0.083'
0.557

(0.068)

P(A):0.9
Pß):0.6

0.83C

(0.1 ssl
0.81é

(0.r44"
0.789

(0.13 ll
0.74t

(0. I l6'
0.691

(0. l00l
0.631

(0.0831

0.589

(0.06e1

P(A):0.9
PfB): 0.8

0.65C

(0.2e8ì
0.646

(0.267)
0.632

(0.226"
0.605

(0.18r)
0.57'.1

(0.1381
0-552

(0.102ì
0.532

(0.0781

Table 9: Expected Proportion on the Superior Treatment for RPW(2n+1, 3, 3; 3)

(Standard deviations are given in parentheses)
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Treatment
probability

RPW(2n+I,3,3;3) design, where n is

I 2 4 I l6 32 64

P(A):0.2
P(B):0.1

0.041
(0.0131

0.275
(0.013')

0.274

(o.ol2l
0.27C

(0.0121

0.27(.

(0.012ì
0.27t

(0.011'
0.279

(0.011'

P(A):0.5
P(B) : 0.1

0.99(
(0.008.

0.991

(0.007)
0.992

(0.0061

0.993
(0.00s

0.994
(0.003'

0.995
(0.0021

0.99(,
(0.001ì

P(A):0.9
P(B):0.1

0.98C

(0.060)
0.99C

(0.040ì
0.99i

(0.021'
1.00(

(0.009'
1.00(

(0.000'
1.00c

(0.000ì
1.00c

(0.000ì

P(A):9.5
P(B):0.4

0.162
(0.008ì

0.1.62

(0.008ì
0.163

(0.007'
0.164

(0.006ì
0.165

(0.00s)
0.16(

(0.oo4l
0. l6(

(o.o03l

P(A):9.7
P(B):0.4

0.759
(0.100ì

0.768

(0.091'
0.78(

(0.074'
0.805

(0.0s7)
0.82(

(0.039ì
0.842

(0.024'
0.853

(0.014'

P(A):0.9
P(B):0.4

0.862
(0.1s2ì

0.89ç
(0.123',

0.94:
(0.083'

0.979
(0.03e]

0.995

(o.ooel
0.999

(0.002'
1.00c

(0.000')

P(A):0.8
P(B) :0.6

0.482
(0. l0s'

0.49'l
(0.0e6)

0.518

(o.o78l
0.543

(0.0s6'
0.563

(0.036'
0.57i

(0.021ì
0.584

(0.012ì

P(A):0.9
P(B):0.6

0.70c
(0.194'

0.744
(0.172'

0.798
(0.136'

0.858
(0.087')

0.901

@.047)

0.92:
(0.0231

0.93i
(0.01lì

P(A):0.9
P[B):0.8

0.20t

rc.072'

0.22(.
(0.06sì

0.24t
(0.0s4'

0.268
(0.040ì

0.28C

(0.028ì
0.28C

(0.020.

0.28-l
(0.017ì

Tabte L0: Power of the Test for RPW(2n+1 ,3.,3;3) (Standard deviations are given tn

parentheses)

3.4.3 Monotonicity in a

Increasing the number of balls added after a successful response has the effect of

speeding up the trial and producing more extreme results. In all the simulations, all other

variables are kept constant at three, but similar results are expected at other fixed values.

Steadily raising a quickly skews the trial towards one treatment when the treatment

probabilities are small. The reason behind this is that after only one successful treatment,

the number of balls added is large compared to the urn size. Therefore, when the next

balls are drawn to determine the next treatment, the treatment probabilities have changed

dramatically, especially for large values of n. For example, if treatment A had a
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successful treatment, then for the next treatment selection, the number of type A balls

would greatly outweigh the number of type B balls, thus giving treatment A a much

higher probability of selection. Further successes on treatment A would only improve its

chance of selection, and further skew results.

Tables 11 and 12 reflect this analysis. It should be pointed out that these tables

give the more extreme results on average when compared with other monotonicity tables

measuring the same statistic. The values for the expected proportion are higher and the

values for power are lower. This is most likely owing to how rapidly the trial skews as a

result of increasing the number of balls added after a successful response.

Treatment
probability

RPIV(3, 2n*1,3; 3) design, where n is

I 2 4 I t6 32 64

P(A):0.2
P(B):0.1

0.53(
(0.041'

0.549
(0.051')

0.574
(0.073'

0.618
(0.114ì

0.678
(0. l79l

0.773

rc.266\
0.709

(0.350ì

P(A):0.5
P(B):0.1

0.674
(0.0s8)

0.732
(0.06eì

0.80ç
(0.078'

0.885
(0.082ì

0.924
(0.102ì

0.924

(0. r s7l
0.901

(Q.227"

P(A):0.9
P(B):0.1

0.941
(0.036)

0.964
(0.028)

0.97'.,

(0.026'
0.984

(0.028'
0.983

(0.0401
0.978

(0.070'
0.96(

(0.122',

P(A):9.5
P(B):9.4

0.559
(0.090'

0.581
(0.132\

0.605
(0.208ì

0.614
(0.3171

0.59(
(0.413'

0.56ç
(0.46s'

0.564
(0.482'

P(A):0.7
P(B):0.4

0.71t
(0.104'

0.768
(0.134'

0.809
(0.191'

0.791
(0.286\,

0.744
(0.381'

0.693
(0.438')

0.674

(0.4s8ì

P(A):0.9
P[B): 0.4

0.901
(0.0791

0.923
(0.09s'

0.923
(0.140)

0.889
(0.228'

0.82ç
(0.329'

0.77t
(0.3ee)

0.745
(0.427)

P(A):0.8
P(B):0.6

0.712
(0.166ì

0.731
(0.233ì

o.713
(0.332'

0.662

(0.420',

0.62C
(0.466ì

0.601

(0.481)
0.594

(0.487)

P(A):0.9
PíB):0.6

0.83C

(0.1 s5ì

0.83C

(0.216ì
0.78'1

(0.312\)
0.72(

(0.404'.

0.66É

(0.45s1

0.643
(0.472',

0.635
(0.478ì

P(A):0.9
P(B) :0.8

0.65C

(0.298',
0.621

(0.375'
0.59C

(0.442',,

0.565

(0.478)
0.554

(0.492"
0.54t

(0.49s.
0.54(,

(0.496"

Table 11: Expected Proportion on the Superior Treatment for RPW(3,2n+1,3;3)

(Standard deviations are given in parentheses)
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Treatment
probability

RPW(3, 2n-rl,3; 3) desigr¡ where n is

1 ) 4 8 l6 32 64

P(A):0.2
P(B) : 0.1

0.275

(0.013)
0.27C

(0.0171 (0.028
0. 25t 0.234

(o.osoì
0.19C

(0.079\,
0.143

(0.098'
0.10?

(0.097ì

P(A):0.5
P(B) : 0.1

0.99(
(0.008ì

0.97i
(0.035'

0.904
(0.123',

0.66(,

rc.270',

0.401
(0.327'

0.301
(0.3381

0.273
(0.33e)

P(A):0.9
P(B):0.1

0.98(
(0.060'

0.947
(0.0981

0.892
(0.1 18ì

0.855

rc.nl
0.83t

(0.1 1eì

0.831
(0.1 l8')

0.829
(0.1 1 8l

P(A):9.5
P(B):0.4

0.762
(0.008'

0.155
(0.01s')

0.14(
(0.027^,

0.1 1(

(0.038'
0.07i

(0.036.
0.05É

(0.026ì
0.04i

(0.018ì

P(A):0.7
P(B):0.4

0.759
(0.1001

0.672
(0.1661

0.533
(0.235',

0.406
(0.264\,

0.299
(0.23s1

0. r9ç
(0.17eì

0.14(
(0.120'

P(A):0.9
P(B):0.4

0.862
(0. ls2)

0.76(.

(0. lesl
0.705

(0.22s"

0.68s
(0.2s0)

0.629

rc.267',

0.48t

rc.262',

0.414
(0.208ì

P(A):0.8
PCB):0.6

0.482
(0.10sì

0.401
(0.141ì

0.303
(0. I s7'

0.793
(0. r40l

0.125
(0.1 l1ì

0.10r
(0.092'

0.093
(0.0se)

P(A):0.9
P(B):0.6

0.70(.
(0.194'

0.628
(0.234',

0.551
(0.257',,

0.39(
(0.261'

0.248
(0.227"

0.22C

(0. r86)

0.215
(0.137)

P(A):0.9
PCB):0.8

0.20t
(0.072'

0.16(
(0.082'

0.t12
(0.0821

0.082
(0.074)

0.06ç

(0.062"
0.072

(0.0s7ì
0.074

(0.053'

Table 12: Power of the Test for RPW(3, 2n*1,3; 3) (Standard deviations are given in

parentheses)

It is important to note that both the increasing trends seen in Table 11 as well as

the decreasing trends seen in Table 12 are only valid for small values of pa, pe and n. It

may seem counter-intuitive, but when p¿, pe and n all have extremely high values there is

actually a decreasing trend seen in the expected proportion and an increasing trend in the

power. This exception is in all likelihood due to the high probability of choosing

treatment B. If the trial consisted of a series of successes on treatment B, (which is very

likely because ps is high) then the trial could become skewed toward the inferior

treatment, even if treatment A has a higher probability of selection. If in this case, there

was a large number of successful treatments on treatment B early in the trial, then the
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number of B balls would outweigh the number of A balls and treatment B would most

likely be selected more often than treatment A. This obviously reduces the number of

patients allocated to the superior treatment. In conclusio4 the number of balls added

after a successful response should not be set too higtr, otherwise the trial will quickly be

skewed and produce extreme values for the expected proportion on the superior treatment

and for the power of the test.

3.4.4 Monotonicity in p

Next we explore the monotonic properties of the number of balls added after a

failed response, denoted as p. Increasing the number of balls added after a failed

response has the opposite effect of increasing the number of balls added after a successful

response. Instead of an increasing trend in the expected proportion on the better

treatment, we see a decreasing trend as n increases. In addition, a non-decreasing trend

can be seen in power as n increases. One reasoning for these differing trends is that

adding more balls of the opposite treatment after a failed response will actually decrease

the chances of selecting that failed treatment again.

In essence, even if the superior treatment has a larger selection probability, the

occurrence of a failure of that treatment early in the trial will decrease its selection

probability substantially, especially for large values of n. Given a large value of n, it is

quite easy to skew results to the inferior treatment as the number of balls added after a

failed response will outnumber the initial urn size. Thus, it is not only counter-

productive, but also unethical to have large values for the number of balls added after a

failed response because patients have a lower chance of receiving the superior treatment.
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Tables 13 and 14 show the monotonic properties of p for the expected proportion on the

superior treatment and the power of the test, respectively.

Treatment
probability

RPW(3, 3,2n+1,3) desien where n is

I 2 4 8 16 32 64

P(A):0.2
P(B) : 0.1

0.536
(0.041ì

0.525
(0.0s3'

0.524
(0.032ì

0.521
(0.030ì

0.51ç
(0.029'

0.519
(0.029'

0.518

(0.028.
P(A):0.5
P(B):0.1

0.678
(0.0s8)

0.643
(0.049'

0.61t
(0.043'

0.604
(0.03eì

0.59é

(0.0371

0.591
(0.036'

0.58ç
(0.03sì

P(A):0.9
P(B):0.1

0.941
(0.0361

0.gti
(0.043.

0.88 1

(0.0491
0.841

l0.0s0l
0.822

(0.0481

0.80;
(0.046'

0.80c
(0.04s'

P(A):0.5
P(B):0.4

0.559
(0.090')

0.54i
(0.06eì

0.53i
(0.0ssl

0.533
(0.0481

0.53C

(0.044'
0.52Í

(0.042"
0.528

(0.042'

P(A):0.7
P(B):0.4

0.718
(0.1041

0.679
(0.083ì

0.64(.
(0.0681

0.626,

(0.0s81
0.6t4

(0.0s3ì
0.60ç

(0.0s0'
0.60(

(0.049'
P(A¡:6.9
P(B):0.¿

0.901
(0.0791

0.878
(0.076'

0.841
(0.0731

0.804
(0.068)

0.778

rc.062',,

0.762
(0.0s9'

0.75:
(0.0s7ì

P(A):0.8
PIB):0.6

0.7t2
(0. r66ì

0.68(
(0.128ì

0.653
(0.100)

0.629
(0.0811

0.616

(0.070ì
0:60!

(0.066'
0.605

(0.062'

P(A):0.9
P(B):0.6

0.83(
(0. I ss'

0.81t
(0.126'

0.785
(0.107ì

0.75r
(0.0911

0.72(
(0.080ì

0.7|i
(0.074

0.704
(0.0711

P(A):0.9
PCB):0.8

0.6s(
(0.2e8ì

0.6s8
(0.246',

0.653
(0.188)

0.63i
(0.144'

0.622

(0. r 18l

0.67t
(0.103'

0.60t
(0.0e4ì

Table 13: Expected Proportion on the Superior Treatment for RPW(3 , 3, 2n*I;3)

(Standard deviations are given in parentheses)
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Treatment
probability

RPW(3, 3,2n+l;3) desig4 where n is
I 2 4 8 t6 32 64

P(A):9.2
PIB):0.1

0.041
(0.0131

0.27i
(0.010'

0.279

(o.Ooeì

0.28C
(0.008ì

0.28(
(0.008'

0.28(
(o.oo8ì

0.281
(0.008ì

P(A):0.5
P(B):0.1

0.99(
(0.008'

0.99¿
(0.003'

0.995

(0.002ì
0.995

(0.001)
0.99(

(0.008'
0.99(.

(0.0011

0.99é
(0.001ì

P(A):0.9
P[B):0.1

0.98(
(0.060'

0.992
(0.038'

0.998

(0.0181

1.00c
(o.o07)

1.00(
(0.006'

1.00(
(0.002ì

1.00c

(0.000ì

P(A):0.5
P(B):0.4

0.162
(0.008ì

0.164
(0.00sì

0. l6(
(0.004'

0.166

(o.oo3)
o.T6i

(0.002'
Q.161

(0.002ì
0.161

(0.002ì

P(A):0.7
P(B):0.4

0.7s9
(0.100ì

0.803

(0.0seì
0 82t

(0.03s'
0.839

(0.024)
0.845

(0.019'
0.84i

10.016ì

0.848
(0.016ì

P(A):0.9
P(B):0.4

0.862

(0.1s2ì
0.915

(0. l 161

0.961
(0.070ì

0.984
(0.039')

0.991
(0.023'

0.995

(0.015ì
0.99É

(0.0101

P(A):0.8
P(B):0.6

0.482
(0.105ì

0.523
(0.075'

0.552
(0.046'

0.56',1

(o.03o)
0.57t

rc.022'
0.57'j

(0.01eì
0.579

(0.0171

P(A):9.9
P(B):0.6

0.70(,

(0.1e41

0.755
(0.164'

0.82(
(0. l 18'

0.864

(0.08r.
0.88t

(0.057'
0.89t

rc.044',,

0.903
(0.03e1

P(A):0.9
P[B):0.8

0.208
(0.072)

0.23C

(0.060ì
0.263

(0.043'
0.279

(0.030'
0.28i

(0.021'
0.29(

(0.016ì
0.292

(0.014')

Table 14: Power of the Test for RPW(3, 3,2n-rl;3) (Standard deviations are given in

parentheses)

3.4.5 Monotonicity in y

When studying the monotonicity of y, the number of balls drawn, one must

consider that the number drawn cannot exceed the total initial urn size. Ideally, the

number drawn should be equal to one half the number of balls in the urn at the start of the

trial. This provides a nice compromise between the expected proportion on the superior

treatment and the power of the test. Drawing too many balls will result in a low power

and an inability to make a sound conclusion, while drawing too few will give rise to a

lower probability that a patient may receive the superior treatment. It is important to

determine a balance between increased proportion of patients on the better treatment and
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a valid statistical conclusion. Depending on the situation, one might find it more

appealing to focus on one property more than the other, and thus drawing more or fewer

balls. Table 15 shows an increasing trend for the expected proportion concerning the

number balls drawn while all other variables are kept constant. Likewise, Table 16

shows a decreasing trend for the power of the test regarding the number of balls drawn

while all other variables are kept constant at five. These trends have been present

throughout the entire monotonicity section to some degree. The main concept to grasp is

that there is no perfect combination of variables for the perfect experiment, what is key is

that once the monotonic properties are known, the variables can be manipulated to suit

the experiments needs and goals.

Treatment
probability

RPW(5, 5, 5; y) where 1 is

I J 5 7 9

P(A):0.2
PfB):0.1

0.529
(0.041ì

0.53(
(0.041'

0.539
(0.041'

0.661
(0.042"

0.738
(0.040ì

P(A): o.s

P(B):0.1
0.63é

(0.0s1ì
0.67Í

(0.058.
0.702

(0.0s8ì
0.848

(0.0s2ì
0.922

(0.041'

P(A):0.9
P(B¡:9.1

0.865
(0.0s0ì

0.941
(0.0361

0.961
(0.027"

0.994
(0.009ì

0.99t
(0.00s'

P(A):0.5
P(B):0.4

0.541
(0.070ì

0.s5ç
(0.090'

0.573
(o.oe8)

0.788

(0.086ì
0.89'

(0.062'

P(A):0.7
P(B) :0.4

0.649
(0.0821

0.71t
(0.104'

0.763
(0.114)

0.939
(0.0s3ì

0.983
(0.023'

P(A):0.9
P(B):0.4

0.798

(0.086)
0.901

(o.o7e)
0.93t

(0.070'
0.99C

(0.017ì
0.99i

(0.007,

P(A):0.8
P(B):0.6

0.6i2
(0.1 t8l

0.712

(0. r66.
0.75(

(0.205'
0.964

(0.060ì
0.992

(0.020.

P(A):0.9
PCB):0.6

0.718
(0.r24)

0.83(
(0. I 5sì

0.862
(0. I 801

0.985
(0.038ì

0.99i
(0.01rì

P(A¡: s.9

P(B):0.8
0.592

rc.n7)
0.65(

(0.2e8,
0.658

(0.366ì
0.954

(0.145ì
0.994

(0.033ì

Table 15: Expected Proportion on the Superior Treatment for RPW(5,5,5; T) (Standard

deviations are given in parentheses)
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Treatment
probability

RPW(S, 5, 5; y) where y is
I J, 5 7 9

P(A):9.2
P(B):0.1

0.271
(0.0121

0.27:
(0.0131

0.274

10.0r3ì

0.222

(0.022"
0.178

(0.026ì

P(A):6.5
P(B):0.t

0.99¿
(0.003'

0.99(
(0.0081

0.98?
(0.0151

0.858

(0.149ì
0.554

(0.259\,

P(A):0.9
P(B) : 0.1

1.00(
(0.009'

0.98C

(0.060ì
0.933

(0.102')
0.80c

(0.10sì
0.761

(0.074)
P(A):0.5
P(B):0.+

0.16i
(0.005ì

0.t62
(0.008ì

0.16(
(0.010

0.1 19

(0.02s1
0.08i

(0.02s'
P(A):0.7
PCB): O.+

0.822
(0.044ì

0.7s9
(0. l00l

0.69t
(0.142',

0.33C

rc.rc7)
0.191

(0.1001

P(A):0.9
P(B):0.4

0.982

(0.042,,
0.86'

(0.1s2'
0.74:

(0.197'
0.534

(0.158)
0.479

(0.1 r5'
P(A):9.3
P(B):0.6

0.552

10.0s1ì

0.482
(0. l0s.

0.418
(0.138ì

0.202
(0.104ì

0.152
(0.062'.

P(A):0.9
P(B):0.6

0.871
(0.088ì

0.70(
(0.1e4ì

0.611

(0.230ì
0.38(

(0.157'
0.329

(0.Oeeì

P(A):0.9
P(B):0.8

0.269
(0.03e)

0.20t
(0.072'

0.163
(0.080)

0.149
(0.0s6ì

0.13C

(0.036ì

Table 16: Power of the Test for RPw(s, 5, 5; y) (Standard deviations are given in

parentheses)

3.5 Simulations lyith Real Data

Besides studying the properties of an experimental design, it is essential to try to

simulate actual experiments and compare results obtained with those of real clinical trials.

Only then will it be possible to say if the RPW(Zn+\,2È1,Zn+l) design can improve on

results obtained in actual clinical trials. Recall that the RPW designs are most

appropriate for cases of life-threatening illness. That is why the two clinical trials we

have chosen to compare with the RPW design are the ECMO trials and AZT trials

previously mentioned in chapter two. In the following sections the RPW design will be
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compared with real data and simulations based on the clinical trials in terms of the

expected proportion on the superior treatment and the power of the test.

3.5.1 Comparison with U.I( ECMO Trial

The ECMO trial used for comparison in this section is actually the U.K. ECMO

Study of 1993 to 1995. The study consisted of 185 infant patients who were randomized

into either the conventional treatment or the ECMO treatment for treatment of PPHN. 93

patients were allocated to the ECMO treatment, of which 63 survived and 92 patients

received the conventional treatment, of which 38 survived. This breaks down to a

mortality rate of 32.3Yo onthe ECMO treatment and 58.7Yo on the conventional treatment

[25]. Differences between the two randomized groups were presented as relative risks

and as absolute percentage differences or differences between means or medians.

Statistical tests used to calculate a statistically signifïcant difference include chi-square

tests, Fisher's exact tests, t tests and median tests [25]. The study concluded with

overwhelming evidence that the ECMO treatment was superior to the conventional one,

with a p-value of 0.0005 [25].

Although the ECMO treatment had been proven without refute to be the better

treatment, the randomized clinical trial did not come without a cost. The actual

proportion of patients who received the superior treatment was 50.3%, which is as

expected for a randomized clinical trial. A higher proportion of patients would most

likely have received the ECMO treatment if an adaptive design had been used instead of a

classical randomized design. A simulation study was done using 2000 replications, each

with a sample size of 185 to @mpare the expected proportion of patients on ECMO with

the actual proportion in the clinical trial. Table 17 gives the expected proportion on the
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superior treatment for various values of po and ps. In the table it is evident that even

small treatment assignment probabilities still exhibit a higher expected proportion than

503%. In addition, the proportions tend to increase as n increases. Table 18 gives

values of the power of the test for various values of pa and p¡ and increasing values of n.

As n increases, the power of the test decreases, making it more diffrcult to reach a valid

conclusion. Nonetheless, it is still possible to make a valid statistical conclusion using a

RPW(2n+1 ,2n*1,2n+l) design and is quite worthwhile if more patients can be treated

successfully with the superior treatment. Note especially when the treatment assignment

values are close to those actually observed in the study (po : 0.6 and pn : 0.3) that the

expected proportion definitely improves on the study results and the power is only

slightly diminished. Therefore, although the simulations do not provide indisputable

proof that a RPW design will save more lives than a 50:50 randomized design, it can be

concluded that the RPW design would havq been a better choice in the U.K. ECMO

study.
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Treatment
probability

50-50

random

RPW(2n+1 ,2n-rt, 2n+7) design, where n is

0 1 2 4 8 16

P(A¡:9.2
PfB):0.1

0.499
(0.036)

0.53(
(0.02e'.

0.53(
(o.03ol

0.541
(o.031l

0.54:
(0.03 r'

0.551
(0.032\

0.554
(0.033ì

P(A):0.5
P(B):0.1

0.499
(0.036)

0.640
(0.037')

0.682
(0.042"

0.705

(o.o44l
0.735

(0.042\
0.77C

(0.0s 1'

0.803
(0.0s41

P(A):0.9
P(B):0.1

0.499
(0.036)

0.881
(0.037ì (0.024

5¿0.9 0.97(
(0.017'

0.99C

(0.010'
0.99t

(0.007'
0.995

(o.006l

P(A):9.6
P(B):0.3

0.499
(0.036)

0.631
(0.0s1ì

0.685
(0.061ì

o.7t(
(0.068'

0.761
(0.07s)

0.814
(0.080')

0.86:
(0.078

P(A):9.5
P(B):0.4

0.499
(0.036)

0.545

(0.052ì
0.564

(0.065'
0.575

o 074

0.591
(0.0e01

0.615

(0. l06l
0.642

(0.122',,

P(A):0.7
P(B):0.4

0.499
(0.0361

0.65'l
(0.0631

0.732
(0.077'

0.778
(0.087ì

0.83ç
(0.0e0ì

0.902
(0.086'

0.94C
(0.073ì

P(Ð:0.9
PfB):0.4

0.499
(0.036)

0.821
(0.007ì

0.92C

(0.0s2'
0.95t

(0.047',
0.98C

(0.033'
0.98(

(0.209'
0.98i

(0.030'

P(A):0.8
P(B):0.6

0.499
(0.036)

0.645
(0.0e7ì

0.74i
(0.r32'

0.78s
(0.1701

0.84(
(0.198'

0.852
(0.2s1')

0.850
(0.285')

P(A): o e

P(B):0.6
0.499

(0.036ì
0.744

(0.104'
0.87C

(0.117ì
0.90c

(0.140)
0.92t

(0.147',
0.gti

(0. le6ì
0.908

(0.228\,

P(A):0.9
P(B):0.8

0.499
(0.036)

0.60t
(0.1 58.

0.682

(0.282"
0.66É

(0.36e1

0.663
(0.431ì

0.59t
(0.476',

0.601
(0.484ì

Table 17: Expected Proportion on the Superior Treatment, Comparison with U.K. ECMO

Study (Standard deviations are given in parentheses)
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Treatment
probability

50-50

random

RPW(2n+1,2n*1,2n+1) desigrq where n is

0 I 2 4 8 l6
P(A):0.2
P(B):0.1

0.476
(0.00e1

0.46t
(0.010'

0.46C

(0.0101

0.465
(0.011')

0.463
(0.012'

0.461
(o.or3)

0.459
(0.013'

P(A):0.5
PCB) : 0.1

1.00c
(0.000)

1.00c

(o.oool
1.00(

(0.000ì
1.00c

(0.000ì
1.00c

(0.001ì
0.999

(0.0051
0.99(

(o.ol7.

P(A):0.9
P(B) : 0.1

1.000

(o.ooo)
1.00c

(0.000ì
0.995

(0.030'
0.963

(0.079)
0.881

(0. l 161

0.824
(0.1 oe)

0.805

(0.101.

P(A):0.6
P(B):0.3

0.987
(0.001)

0.98C

(0.066'
0.969

(0.018ì
0.95i

(0.031.
0.92:

(0.06s
0.84ç

(0.138ì
0.728

(0.272',

P(A):0.5
P(B):0.4

0.274
o.oo2

0.27t
0 006

0.261

0.01c

0.264
0.013

0.259

0.018

0.251
0.02'l

0.241
0.035

P(A):0.7
P(B):0.4

0.987
(0.00r)

0.975
(0.0r2ì

0.94i
(0.0431

0.904
(0.087ì

0.801
(0.164ì

0.60i
(0.247',

0.448
(0.26s'

P(A):0.9
P(B):0.4

1.000
(0.000)

0.999

0.00É

0.932
(0.104'

0.804
(0.182',

0.66C
(0.209'

0.612
(0.206')

0.59t
(0.20e.

P(A):0.8
P(B):0.6

0.847
(0.003ì

0.806
(0.049)

o.7T(
(0.t26'

0.611

(0. r8e)
0.464

(0.239'
0.368

(0.2s0ì
0.327

(0.246)

P(A):0.9
P(B):0.6

0.998
(0.001)

0.973

(0.038'
0.812

(0.179"
0.674

(0.242)
0.56¿

rc.270'

0.55(
(0.279',

0.523

rc.279)

P(A):0.9
P(n¡: ç.3

0.475
(0.ooe)

0.444
(0.048)

0.32(
(0. I ls'

0.23C
(0.r27',

0.14(
(0.1 13ì

0.09ç
(0.090'

0.092
(0.0731

Table 18: Power of the Test, Comparison with U.K. ECMO Study (Standard deviations

are given in parentheses)
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3.5.2 Comparison with AZT Trial

A study of the drug AZT was carried out from l99l to 1994 to study the

effectiveness of the drug in prevention of HIV transmission from mother to infant. A

stratified (with respect to institute) permuted block design [5] was used to allocate 476

women to treatment using either of AZT or a placebo. At the end of the study, the

success rates for AZT and the placebo were 92.8%o and 75.2Yo, respectively [33]. The

study had a very strong and statistically valid conclusion with a p-value of 2 x 10-? [33].

The test statistic for testing the equality of AZT and the placebo was based on the

difference between their corresponding Kaplan-Meier estimates [33]. Of the 409 women

who gave birth to live babies, 53 infants had contracted HIV, 13 out of the 205 who were

treated with AZT and 40 out of the 204 who had been administered a placebo. The actual

proportion of patients who received the superior treatment was 50.1olo, which is

concuffent with a randomized trial.

Although the study reached a very powerful and irrefutable conclusion, it may

have been possible to obtain nearly the same results and save more infants from

contracting HIV if an adaptive clinical trial had been used. A simulation study was done

to compare the RPW(Zn+I, 2n*1, 2n+l) design with the AZT study in terms of the

expected proportion on the superior treatment and the power of the test. 2000

replications were used, each with a sample size of 476.

Tables 19 and 20 provide the results for different combinations of pa and pn.

Note that in Table 19 there is an overall increasing trend as n increases and all of the

expected proportions are greater than 50.lYo. Table 20 displays a non-increasing trend as

n increases. One comparison to note in particular is when the treatment allocation

probabilities are similar to those actually observed in the AZT study. When Pe : 0.95
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and ps : 0.8, we see that the expected proportion on the superior treatment is quite higher

than fifty per cent and the po\¡/er of the test is still acceptable for drawing a valid

conclusion as long as n is small. It is important to point out that for smaller values of n

the power of the test is the same as that of 50-50 randomization. The conclusion is that a

RPW(2n+1 , 2n*1, 2n+l) design can allocate more patients to a superior treatment

without substantial loss of power and could have saved more infants from infection of

HIV if used in this study.

Treatment
probability

50-50

random

RPW(2n+1 ,2n*1,2n+l) design, where n is

0 1 2 4 I l6

P(A¡:9.2
P(B): o.l

0.500
(0.023)

0.53C

(0.0r8ì
0.53(

(0.019'
0.541

(0.0181
0.545

(0.01eì
0.55(

(0.021'
0.555

(0.020'

P(A):0.5
P(B) : 0.1

0.500
(0.023')

0.641
(0.024)

0.68:
(0.026'

0.708
(0.027)

0.738
(0.0301

0.774
(0.032ì

0.808
(0.03s1

P(A):0.9
P(B):0.1

0.500
(0.023)

0.890
(0.0231

0.963
(0.014)

0.98s
(0.009ì

0.995
(0.004'

0.998

(o.o03l
0.998

(0.002ì

P(A): o.s

P(B):0.4
0.500

(0.023)
0.545

(0.034ì
0.563

(0.043'
0.57t

(0.048.
0.593

(0.0s7ì
0.61ç

(0.070'
0.648

(0.083ì

P(A¡: s.7

P(B):0.4
0.50c

(0.023ì
0.661

(0.041)
o.741

(o.os1ì
0.793

(0.0s4'
0.86C

(0.os8l
0.927

(0.048ì
0.96t

(0.036'

P(A):0.9
P(B):0.4

0. 500
(0.023)

0.835
(0.043ì

0.94J
(0.030'

0.97(
(0.022"

0.990
(0.016')

0.994
(0.012)

0.995
(0.011')

P(A):0.8
P(B):0.6

0.500
(0.023)

0.651
(0.06s1

0.761
(0.100'

0.834

(0.1 17'

0.884
(0. 1s 1)

0.912
(0.176'

0.886

(0.254',

P(A¡:9.9
P(B):0.6

0.500

(0.023)
0.76(

(0.072'
0.901

(0.081)
0.94(

(0.083ì
0.951

(0.101ì
0.956

(Q.t}t\;
0.93É

10.193'

P(A): o.e

P(B):0.8
0.500

(0.023)
0.618

rc.124)
0.7t3

(0.264"
0.714

(0.3s6'
0.657

rc.443)

0.618

(0.47e"

0.591
(0.48e1

P(A):0.95
P(B): 0.8

0.50c
(0.0231

0.692
(0.140)

0.805

(0.253)

0.78C
(0.338ì

0.709
(0.428)

0.664
(0.466',)

0.635
(0.480)

Table 19: Expected Proportion on the Superior Treatment, Comparison with AZT Study

(Standard deviations are given in parentheses)
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Treatment
probability

50-50

random

RPW(2n+I,2ft+1,2n+l) desigq where n is

0 1 2 4 8 t6
P(A):0.2
P(B):0.1

0.865
(0.001ì

0.862
(0.003ì

0.862
(0.003'

0.861

(0.003)
0.86t

(0.004'
0.85ç

(0.004ì
0.858

(0.004'

P(A):0.5
P(B):0.1

1.000
(o.ooo)

1.00(
(0.000'

r.00c
(0.oool

1.00c
(0.000')

1.00(
(0.000'

1.00c

(0.000'
1.00c

(0.000'

P(A):0.9
PIB) :0.1

1.000
(o.ooo)

1.

(0.000
00( 1.00c

(0.001ì
0.99C

(0.043ì
0.904

(0.110ì
0.83(

(0.108'
0.81:

(0.Oee

P(A):0.5
P(B) :0.4

0.592
(0.001)

0.58é
(0.006ì

0.582

(0.011'
0.57i

(0.01sì
0.57C

(0.020ì
0.557

(0.0331

0.538
(0.04e1

P(A):0.7
P(B) :0.4

1.00c
(0.000ì

1.00c

10.000ì

1.00(
(0.000'

0.999
(0.003'

0.982
(0.03s]

0.85C

(0.1611

0.548

(0.2681

P(A):0.9
P(B) :0.4

1.000
(0.000)

1.00c

(0.000ì
0.994

rc.022',, (0.13s
9t0.8 0.692

(0.21|
0.622

(0.208'
0.611

(0.2t3\

P(A):0.8
P(B) :0.6

0.998
(0.000)

0.994
(0.005'

0.962
(o.o4el

0.871
(0.126ì

0.641

rc.259\,

0.441
(o.3le)

0.4t(
(0.330'

P(A):0.9
P(B):0.6

1.000
(0.000)

1.00c
(0.004')

0.949
(0.080'

0.762

10.205ì

0.585
(0.27l',

0.56ç
(0.288'

0.564
(0.2e1"

P(A):0.9
P(B) :0.8

0.865
(0.0021

0.82(
10.0s4ì

0.60ç
(0.203'

0.40c

(0.23s"
0.201

(0.182)
0.097

(0.1081

0.093
(0.08s1

P(A):0.9s
P(B):0.8

0.999
(0.000)

0.980
(0.037)

0.733

(0.248)
0.585

(0.287)
o.371

rc.27s',,

0.186
(0.203)

0.207
(0.176)

Table 20: Power of the Test, Comparison with AZT Study (Standard deviations are given

in parentheses)

3.6 Recommendations

Although the randomized play the winner rule design is not appropriate for all

clinical trials, when it is appropriate it is definitely an ethical experimental design to

choose. The comparison study in the previous section demonstrates that the RPW design

outperforms other designs in terms of allocating more patients to the superior treatment.

When patients are afflicted with life-threatening illness, this can amount to saving more

lives. What is especially appealing about the design is that both the total number of

successes and the expected proportion on the superior treatment are higher than if an
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alternate design had been used, but the power of the test is not necessarily compromised,

hence a statistically valid conclusion can still be obtained. Furthermore, due to the

compromise between information gathering and payoff to current patients, the ethical

concerns often found in randomized trials are eliminated when an adaptive clinical trial is

used.

There has been much discussion as to the monotonic properties of the RPW

design. The parameters can be raised or lowered, depending on the focus on the trial,

whether it is maximizing the power of the test or the number of patients on the superior

treatment. Certainly, taking a large sample size will always help to increase the power of

the test. To increase the expected proportion on the superior treatment, increasing all

parameters simultaneously, such as a RPW(3, 3, 3) or a RPW(5, 5, 5) design will provide

better results than a RPW(I, l, l) design. One cautionary note is that if the treatment

allocation probabilities are expected to be higt¡ especially the probability on the inferior

treatment, then all the parameters should be kept small to prevent skewing results to

favour the inferior treatment.

The main message to take away from this in depth study of the RPW(p, o, Ê; t)

design is that there are other options to use in lieu of randomi zationin a clinical trial, and

when those options are exercised, the results are not compromised. Equal randomization

is thought of as the gold standard [3] of research in the medical field. It may be so in

terms of obtaining the most powerlul test. Where the patient's chances of receiving the

best treatment are concerned, randomized trials are defrcient. It has been shown in the

previous simulation studies that adaptive clinical trials consistently outperfbrm

randomized clinical trials in terms of allocating a higher percentage of patients to the

superior treatment. In situations where the disease or affliction under study is severely
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life-threatening, adaptive clinical trials are the only ethical option. The RPW(2nr-\,

2n*1,2n+1;2n+1) design is perfectly suited for studies of severe illness because it is

highly customizable. The parameters can be modified to focus more on goal of

information gathering or on immediate payoffto the patient. The RPW design is highly

valuable to both the medical community and to patients as an alternative to randomization

and should not be overlooked.
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Chapter 4

Conclusions

4.L Summary

Wei and Durham's Randomized Play the Winner Rule is an adaptive design well

suited to medical trials studying the treatment of severe illness. Compared to other

designs, the RPW design determines during the study which treatment is currently

identified as superior and then allocates a greater proportion of patients to that treatment.

Moreover, the RPW design is still able to reach a statistically valid conclusion as the

power of the test is comparable to that of randomized clinical trials. The main attraction

of the design is that it makes a compromise between individual and collective ethics,

resulting in a better choice for clinicians wishing to conduct medical trials on very ill

patients.

Adaptive designs are indeed a better choice than randomized clinical trials in

cases of testing treatments on life-threatening illness. In chapter two, the advantages and

disadvantages of randomized clinical trials over adaptive clinical trials were discussed.

Randomized designs are well known, highly regarded designs that reduce many types of

bias and have solid methods for inference. However, adaptive designs are better suited to

trials of ethical question since they focus more on the patient's concerns of randomization

than on the validity of the trial. In particular, two cases that would have benefited from
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the use of adaptive clinical trials were the UK ECMO trial of 1993-1995 and the AZT

trial of 199I-1994 Randomizing patients in these cases was unethical. Using an

adaptive design might have saved more lives and still resulted in statistically valid

conclusions.

Simulation studies were used in chapter three to demonstrate the superiority of the

RPW design over 50-50 randomization and Neyman allocation. The total number of

successes, the expected proportion on the superior treatment, and the odds ratio were all

found to have higher values overall compared to other designs. In addition, the power of

the test was found to be quite comparable to other designs, indicating that a valid

conclusion could be obtained . Later in the chapter the monotonic properties of RPW(p"

u,, F; t) were explored. It was found that the higher the values the parameters, the greater

the expected proportion on the superior treatment and the lower the power of the test.

There \ryere some significant exceptions, particularly when the allocation probability of

the inferior treatment was high.

In general, adaptive designs are ethically appropriate but underutilized in medical

clinical trials. Incorporating designs such as the randomized play the winner design

would benefit patients of severe illness without sacrificing the goal of the medical trial: to

further medical knowledge and save future patients' lives.

4.2 Future Research

Although much research has been done to as to the design of the randomized play

the winner rule, more research is needed as to the inference of the design. Solid,

statistical tests that are quickly and easily computable are lacking for adaptive designs. If
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these designs ¿Ìre ever to be adopted fully by the medical community, reliable statistical

methods for inference must be developed.

Another area of possible future research is to expand the design of the randomized

play the winner rule to include more than two treatments. Simulation studies could be

done to comp¿lre this design to the two treatment randomized play the winner design as

well as other experimental designs. Also, a monotonicity study of the multiple treatment

adaptive design would be insightful as to not only how the design operates, but also

which values to choose for parameters of the design to achieve desired results.
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Appendix: SAS Programs

L. Chi-square Test

options linesize=80 pagesize:50 nodate;

/*T}:'is program j-s for the Chi-square TesL for Randomness. The purpose
of this program is to determine that the random numbers generated are
in fact random. If the Chi-sguare statistic is not signifícant, then
there wiJ-J- be insufficient evidence to reject the nulf hlpothesis, Ho:
The numbers are random. */

á-ta generatei
seed=L2773;
array x{1000};
array y{50l;
chisquare = O; /*set chisquare val-ue to zero*/
chi = 0; /*set chisquare in each subset to zero*/

do i : 1 to 100; /*repeat simul-ation 100 times*,/
dok=1to5O;

y{k} : 0; /*set- all counts in subsets to zero*/
endi
do j : 1 to 1000ì /*generate 1000 random numbers*,/

link randgen;
x{j}:rand:' /*create an array of random numbers*,/

dok=1to50;
if x{j} > (k-1) /5o d x{j} <: k/so
then y{k} : y{k} + 1; /*count of random # in

each subset*,/
end;

end;
dok:1to50;

chi: chi + (y{k} - 1000/So)**2/ (1000/50);
end;
chisquare : chisquare * chi; /*cummulative sum over all

subsets*/
chi : O; /*reset each subset to zero*/

endi

chisquare : chisquare / 100 t /*Lake average of chisquare variables*/
output;

randgen:
a:7**5 '
b=2**3L-L'
seed=¡nod (a*seed,b) ;
rand=seed/b; /*set up random number generator*/

return;

proc print;
var chisquare;
titl-e "Chi-square Test for Randomness";

ru¡l;
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2. Serial- Correlation Test

opti-ons li-nesize=80 pagesize=50 nodate;

/*This program is for the Serial Correlation Test. The pu.rpose of thi-s
program is to determine that the random numbers generated are
independent from one another. If the 100(1-a)t confidence lnterval for
the autocovariance does contain zero, then there wj-ll be insufficient
evidence to reject the null hlpothesis, Ho: There is no'correlatíon.*/

data generate;
seed:L2773¡
aic.ray x{100};
Lag : 9'

/*n : 100; number of random numbers
k : 1-0; lags 1 to 10*./

doj=1to100;
link randgen;
x{ j }:rand;

end;

dok=1to10;
Lag : ¡'
R = O; ,/*autocovari-ance statistic*,/

do¡:1tolOO-k;
R = R + (x{j}-0.5)*(x{j+k}-0.s)/(100-k);

end;
UCL: R + 1.96/(t2*sqrr(100-k));

LCL: R - 1.96/(!2*sqrt(100-k));
output;

end;

randgen:
a:7 * *5, '
b--2**31-L.
seed=nod(a*seedrb);
rand=seed/b; /*seL up random number generator*/

returnr'

proc print;
var Lag R ICL UCL;
title "Seria1 Correfation Test" i

rulli
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3. 50-50 Randomization

opti-ons linesize=80 pagesize:50 nodatei
/ *Program for 50 : 50 Randoraization*/

.¡=ta sim;
s eed=12773;
patsN = 100; /*toÌ'al # of patients treated*,/
array RedS{5000} i /*:uotat # of successes using trmt 1*,/
array ülhts{5000}; /*toLal- # of successes using trm1-u 2*/
array TotalS{5000}; ,/*total- # of successes*/
array RedPat{5000} ; /*:'oiual- # of pati-ents on trmt 1*,/
array l,{htPat{5000}; /*total # of patients on i'rmL 2*/
array Tota1Pat{5000}; /*total # patients*/
array RedFai1{5000};
array ltlhtFail- {5000 } ;

dims : dim(totalS); /*# of simulations*/
Z : L.96¡ /*critical va]ue corresponding to given alpha*,/
p1 = O.g; /* prob of success of red treatment*/
p2 : O.3¡ /* prob of success of white Lreatment*/
q1=1-p1;
q2 : I - p2; ,/*varj-ables for pohler calculation*,/

do i : 1 to dims; /*pexform simufation 5000 times*/
RedS{i} : o,
ÍIhtS{i} : o;
Total-S{i}:0;
RedPat{i} : 0;
whtPat{i} : 0;
Total-Patii) : O; /*seL arrays to zero for each simulation*,/

do¡:ltoPatsN;
link randgen;

if rand > 0.5
then link RedTrmt; /*patient receives Red Trmt*,/
el-se 1ink WhtTrmt; ,/*patient receives Vlhite Trmt*/

end;

TotalS{i} = Reds{i} + v{hts{i};
TotalPat{i} : RedPat{i} + WhtPat{i} ;
Red = RedS{i} /RedPat{i} ;
lrlhite = WhtS {i} /VthtPat{i} ;
Total : TotaIS{i} /Tota1Pat{iJ ;
n1 = RedPat{i};
n2 : ItlhtPat{i};
pbar : (n1*p1 *n2*p2) / (nI + n2);
gbar:1-pbar;
Denom = ( (p1*q1-ln1-) + (p2*q2/n2) )**0.5;
Terml = (p1 - p2I /Denom;
Term2 = ( (pbar*qbar* ( (L/n1,)+(L/n2) ) ) **0.5) /Denom;
Term3=Terml-Z*Tenn2;
Power : probnorm(Term3) ;
RedFail{i} : RedPat{i} - RedS{ii ;
I¡IhtFail-{i} : VühtPat{i} - vlhts{i};
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oddsRatio = (RedS{i}/RedFail{i} ) / (vfhts{i}/!{htFail{i} ) ;
ExpProp : nL/ (nl-+n2);
Teststar = (Red_vthj-re) /sqrt (Totat-* (l_Totar) * ((L/n1_l+(L/n2)));
Pvalu : 2* (l-probnorm(Teststat) );
output;

end;

go to done;

RedTrmt: /*1crm]c L*/
RedPat{i} = RedPat{i} + L¡
Iink randgen;
if rand < p1
then RedS{i} : RedS{i} + 1;

return;

!ùhtTrmt. /+lurm'l-u 2* /
!ähtPat{i} = I{htPat{i} + L¡
J-ink randgen;
if rand < p2
then VIhts{iJ : vthts{i} + L;

return;

randgen:
a:7**5, '
b=2**3t-L'
seed=nod(a*seed,b) i
rand=seed/b;

return;

done:
keep Red l¡Ihíte Totaf Power OddsRatio ExpProp Pvalu;

run;

PÎOC IlE¿rf¡S;
var Red !ùhite Total- Power OddsRatio ExpProp Pvalu;
title "50: 50 Randomization";

ru¡t;
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4. RPW(1, L, 1)

options linesize:8O pagesize:S0 nodate;
,/*Program for CLassi-c Urn Model, RPVü(1, I, 1)*/

¡l-ta simi
seed.=L2773;
AddBaIl : 1; /*number of balls to add*/
patsN : 100; /*total ff of patients treated*,/
NBaII : 1; /*# bal-l-s of each trmt at start*/
array p{21 ¡ /*arxay prob of success of all- trmts*,/
p{1} : 0.8; ./*probablity of success for trmt 1; red ball-*/
p{2} : 0.3; ,/*probablity of success for trmt 1; white baff*/
array RedS{5000} ¡ /*iuota1 # of successes using trmt 1*/
array whts{5000}, /*i-otal # of successes using tr:¡rt 2*/
array TotalS{5000}; /*total- # of successes*/
array RedPat{5000} i /*tobal- # of patients on trmt 1*,/
array I¡IhtPat{5000}; ,/*total # of patients on trmt 2*/
array TotalPat{5000}; ,/*total # patients*,/
array RedFail-{5000};
array I¡¡htFaiI { 5000 } ;

dims = dim(total_s) ; /*# of simulati-ons*,/
z : L.96¡ /*critical value corresponding to given alpha*/
pl : p{1}; /* prob of success of red treatment*,/
p2 = p{21; /* pxob of success of white treatment*/
q1:1-p1;
q2 : L - p2; /*variables for power calculation*/

do i- : 1 to dims; /*perform simulation 5000 t.imes*/
RedS{i} : O;
vfhtsiiÌ = 0;
Total-S{i} : 0;
RedPat{i} = 0;
V{htPat{i} = 0;
TotalPat{i} = 0; /*set arrays to zero for each simul-ation*/
RedBalI = NBaff;
!ÍhtBall = NBaII;

doj=ltoPatsN;
Total-BaII : RedBaII + WhtBall;

ProbRed : RedBaIt ,/ TotafBall;
l-ink DrawBall;
if Ballone = 1 then link RedTrmt; /*if draw red, then trmt 1*/

el-se fink VùhtTrmt; ,/*if draw white, Xi;rel¡ trmt 2*/
end;

TotalS{i} : RedS{i} + ViIhtS{i};
TotalPat{i} : RedPat{i} + lvhtPat{i} ;
Red : RedS{i} /RedPat{i} ;
vrhire : vfhrs{i} /vshrPat{i} ;
Total : ToLaIS{i} /Total-Pat{ii ;
n1 = RedPat{i};
n2 = I{htPat{i};
pbar = (n1*p1 *n2*p2) / (nI + n2);
ebar:1-pbar;
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Denom : ( (p1*q1lnl) + (p2+q2/n2) )**0.5;
Terml- = (p1 - p2) /Denomi
Terra2 : ((pbar*qbar* ( (L/nL)+(L/n2) ))**0.5),/Denom;
Term3 : Terml - Z*Terra2;
Power : probnorm(Term3) ;
RedFail{i} : RedPat{i} - RedS{i};
WhtFail{f } : lthtPat{i} - wht.S{i};
oddsRario = (Reds{i}/RedFail{i} ) / (whrs{í}/!{hrFail{i} ) ;
ExpProp = n7/ (n1+n2);
Teststat : (Red_r,¡hite) /sqrr (Torar* (l_Total_) * ( (1/n1) + (t/n2) ) ) ¡
Pvalu = 2* (1-probnorm(TestStat) );
output;

end;

go to donei

DrawBal-l-:
link randgen;
if rand < ProbRed
then Ba.IIOne : 1; /*draw red ba.l-l-*/
else Ballone : 0; /*draw white baLL*/

return;

RedTrmtz /*Lrmt I*/
RedPat{i} : RedPat{i} + L;
link randgen;
if rand < p{1}
then
do;

RedBal-] = RedBafl + AddBal]:,
Reds{i} =Reds{i} +L;

end;
el-se [¡IhtBall : VthtBall- + AddBall;

return;

WhtTrmt2 /*trmt 2*/
WhtPat{i} : whtPat{i} + L;
link randgen;
if rand < p{2}
then
do;

I¡thtBal-l = lilhtBal-l + AddBaIl;
vühts{i} : !'Ihts{i} + 1;

end;
el-se RedBal-l- = RedBaIl + AddBall-;

retu.rni

randgen:
a:7**5'
b=2**3L-L'
seed=nod ( a*seed, b ) ;
rand=seed,/b;

returni

done:
keep Red !Íhite Total- Power OddsRatj-o ExpProp Pvalu;

ru¡l;
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Proc llre¿r¡rs i
var Red !ûhite Total- Power OddsRatio ExpProp Pvalui
tj.tle "Classj-c Urn Model, RPUI(1, L, I) " i

rulr;
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5 . RPVü ( 2n+7, 2n+I, 2n+I)

options linesize:8O pagesize=S0 nodate;
/*Program for RPI¡I(2n*L, 2n*L, 2n+t)*/

d:ta sim;
seed:L27'13;
patsN : 100; ,/*total # of patients treated*/
AddBafl = 3; ,/*nu¡iber of balts to add*./
NBaff : AddBalt, /*# ball-s of each trmt at start*/
TesrBalt = (AddBatl-1) /2;
array pt?}; /*array prob of success of atl trmts*/
p{1} : 0.8, /*probabli-ty of success for trmt 1; red ball-*,/
pi2) : 0.3; ,/*probablity of success for trmt 2; white baLL*/
array RedS{5000} i /*total # of successes using :ur¡rft 7*/
array !Ùhts{sooo} ì /*total # of successes using Lrmt- 2*/
array Totals{5000}; /*total # of successes*/
a.rray RedPat{5000}; /*totat # of patients on trmt 1*/
array I¡IhtPat{5000}; /*total- # of patients on Lrm"L 2*/
array TotalPat{5000}; /*total # patients*,/
array RedFai]{5000};
array l,tlhtFail- { 5000 } ;

dimS : di-m(totalS); /*# of simul-ations*/
Z = L.96¡ /*criLical value corresponding to given alpha*,/
p1 : p{1};
p2 = p{2} ¡
q1:1-p1;
q2 = L - p2¡ ,/*variables for poerer, calculatíon*/

do i : 1 to dims; /*perform simul-ation 5000 times*,/
Reds{i} = O;
!ühts{i} = 0;
TotalS{i} = 0;
RedPat{i} = 0;
VthtPat{iJ = 0t
Total-Pat{i} = 0; /*set ar.rays to zero for each simul-ation*/
RedBaIf = NBall;
VühtBa]-l = NBall-;

doj=ltoPatsN;
TotalBall- : RedBaII + ltlhtBal-l-;

Prob!{ht = I¡IhtBaIl- ,/ TotalBall;
l-ink DrawBal-l;
if BalI > TestBall- then link RedTrmt; /*if draw 2 red, then trmt

l*/
el-se link I¡IhtTrmt; /*if draw 2 white, then trmt 2*,/

endi

Totals{i} = nedS{i} + vühts{i};
TotalPat{i} = RedPat{i} + !ÛhtPat{i};
Red = Reds{i}/RedPat{i} ;
llhite = glhtS{i} /?{htPat{i},
Total : TotalS{i}/Total-Pat{i} ;
n1 = RedPat{iJ;
n2 : [rlhtPaL{i};
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pbar = (n1*p1 +n2*p2) / (nI + n2);
gbar:1-pbar;
Ðenom : ( (p1*ql-ln]-) + (p2*q2/n2) )**0.5;
Terml- = (p1 - p2) /Denom;
Term2 : ( (pbar*qbar* ( (1,/n1]l+(L/n2) ) )**0.5)/Denom;
Term3 : Terml - Z*Terrn2;
Power : probnorm(Term3) ;
RedFail{i} : RedPat{i} - RedS{.i} ;
I¡IhtFaiÌ{i} : VÍhtPaL{i} - v{hts{i};
oddsRario = (Reds{i} /RedFail{i} )/ (!Ùhts{i}/!,rhtrair{i} ) t
ExpProp : nL/ (nl-+n2);
reitstàt = (Red-Vthite)/sqrt (Total-* (1-Total)* ( (1/n1) +(l/n2) ) ) ;
Pval-u : 2* (1-probnorm(TestStat) ) ;
output;

end;

go to done;

DrawBalI:
Bal-f = 0;
do k:1to AddBal-l-; /*# ball-s drawn: # balls added*/

link randgen;
if rand > Probl¡Iht /*if random # > P (vÙht) , then red trmt*,/
then BalI : BalI + 1;

endi
reLurni

RedTrmt: /*xrmt L*/
RedPat{i} = RedPat{i} + 1;
link randgen;
if rand < p{1}
then
do;

RedBal-I = RedBal] + AddBall-;
RedS{i}:Reds{i}+1;

end;
else üIhtBall : !ÛhtBall + AddBal-l-;

return;

whtTrmt | /*rur7rË 2* /
I{htPaL{i} : !ÙhtPat{i} + L;
link randgen;
if rand < P{2}
then
do;

I¡IhtBaIl : llhtBall + AddBall;
whts{i}:whts{i}+1,

end;
else RedBalI : RedBall + ÀddBall;

return;

randgen:
a:7*+5'
b=2**3L-L'
seed=nod(a*seed'b);
rand=seed,/b i

returni



done:
keep Red Whi-te Total Power OddsRatio ExpProp Pvalu;

runi

Proc me¿r¡rs;
var Red I¡Ihite Total Power OddsRatj-o ExpProp Pval-u;
title "RP!{ (2n*1 , 2n*7, 2n*I) " ì

ru¡li



6. Neyman Al-l-ocation
options .l-inesj-ze:80 pagesize:So nodate;
/ *Program for Neyman Àl-location* /

data sim;
seed:t2773;
patsN : 100; /*iuotal- # of patients treated*/
array RedS{5000} i /*LoLal- # of successes using trmt 1*,/
array WhtS{5000} i /*torual # of successes using LrmL 2+/
array TotaIS{5000}; /*total # of successes*/
array RedPat{SOOO}; /*:uoÌual- # of patients on trmt 1*,/
array l,ÍhtPat{5000}; /*tota] # of patienLs on trmL 2*/
array TotalPat{5000}; /*total- # patients*/
array RedFaiL{5000};
array WhtFail-{5000};

dims : dim(totalS); /*# of simulations*/
Z = 1.96; ,/*critical value corresponding to given alpha*,/
p! = O.7; /* prob of success of red treatment*,/
p2 : O.4; /* prob of success of white treatment*/
q1=1-pl;
q2 : I - p2t ,/*variables for power calculation*/

do i : 1 to dims; /*perform simul-ation 5000 times*/
InitRed : 1Ot
InitVüht = 1Oi
Ini-tRedS = InitRed*p1;
InitVühtS = InitVtht*p2;
RedPat{i}: rnitRed;
I¡lhtPat{i} : Initl¡lht;
Tota1Pat{iJ : 0t
RedS{i} : rnitRedS;
lthts{i} : InitÍ{hts;
TotalS{i} : 0; /*set arrays Lo zer.o for each simul-ation*/

pr : p1;
qr=1-pü
pw = p2;
gw : 1 - pwi /*probabili-ties for Neyman allocation* /

e = sqrt (pr*gr) / (sqrt (pr*qr) +sqrt (pw*gw) ) ; ,/*initial Q val-ue*,/

doi=ltoPatsN;

link randgen;
if rand < Q

then l-ink RedTrmt; /*patient receives Red Trmt*,/
el-se l-ink VlhtTrmL; ,/*patient receives vlhite Trmt+ /
e : sqrt (pr*qr)/ (sqrt (pr*qr) *sqrt (pw*gw) ) ; /*adapti-ve Q val-ue*/

end;

Total-S{i} = RedS{i} + V,rhtS{i} - InitRedS - InitWhtS;
Total-Pat{i} : RedPat{i} + Vt1htPat{i} - InitRed - Initwht;
Red : (RedS{i} -InitReds) / (RedPat{i-}-InitRed) ;
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I¡Ihite : (WhtS{i}-InitûÍhts) / (I¡IhtPat{i}-lnitvüht) ;
Tota1 : Total-S{i} /TotalPat{i} ;

n1 = RedPat{i} - InitRed;
n2 : VlhtPat{i} - InitWht;
pbar = (n1*p1- +n2*p2) / (nl + n2) ;
qbar:1-pbar;
Denom : ( (p1*qlln]-') + (p2*q2/n2\ )**0.5i
Terml: (p1_p2)/Denom;
Texm2 : ((pbar*qbar* ((L/n]-)+(L/n2) ) )**0.5)./Denom;
Term3 = Terml - Z*Îer¡n2i
power = probnorm(Term3) ;
RedFail-{i} = (RedPat{i}-InitRed) - (RedS{i
WhtFai]{i} : (WhtPat{i}-Iniwrht) - (vühts{i
oddsRatio = ( (Reds{i} -InitReds) /RedFail{i}

lnitWhtS) /v¡htFail{i} ) ;
ExpProp = n1-/ (n1+n2);
output;

end;

go to done;

RedTrmt. /*Lrm-u l*/
RedPat{i} : RedPat{i-} + 1;
link randgen;
if rand < p1
then RedS{i} : Reds{i} + L;
pr : RedS{i}/RedPat{i}; /*update red variables*/
qr:1-pr;

returni

I,lhtTrmt z /*|urmt 2* /
T¡IhtPat{i} : v{htPat{i} + L;
link randgen;
if rand < p2
then VühtS{i} = !ühts{i} + 1;
pw : lrfhtS{i}/vghtpat{i} r ,/*update white variables*/
gw:1-pv¡;

return;

randgen:
a:7**5 '
b:2**3L-L'
seed=nod (a*seed'b) ;
rand:seed/b;

returni

done:
keep j. Red White Total Power OddsRatío ExpProp;

run;

Proc l¡le¿urs;
var Red lfhite Total- Power OddsRatio ExpProp;
title "Neyman Ai-l-ocation" i

rull;

-InitRedS);
-InitVühtS ) ;
/ ( (vührs{i}-
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