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ABSTRACT 

 

This study reports an experimental investigation of the effects of upstream roughness on the 

turbulent boundary layer over a forward-facing step. Two types of upstream roughness were 

investigated, including a transitionally rough 16-grit sandpaper (ks
+ ≈ 69) and fully rough staggered 

cubes (ks
+ ≈ 500). A two-dimensional two-component time-resolved particle image velocimetry 

(2D-2C TR-PIV) method was used to measure the mean velocities, Reynolds stresses, temporal 

auto-correlations and frequency spectra of the flow field to quantify the influence of upstream 

roughness on the downstream evolution of the turbulence over the step. The results indicate that 

upstream roughness decreased the vortex shedding frequency. Roughness also decreased the 

reattachment length by enhancing the streamwise turbulence intensity level, reducing the 

magnitude of backflow and suppressing the vortex shedding frequency in comparison to the 

smooth wall. In the recirculation region, upstream roughness reduced the mean streamwise 

velocity only in the outer layer. The Reynolds stresses remained relatively unchanged by the 

sandpaper roughness but were significantly modified by the cube roughness. Downstream of the 

leading edge, the staggered cubes increased the streamwise Reynolds stress both near the wall and 

outside the shear layer but decreased the wall-normal Reynolds stress and Reynolds shear stress 

within the shear layer. These modifications are inversely proportional to distance in the 

recirculation region. The life times of the streamwise and wall-normal velocity fluctuations 

increase with streamwise distance and are much longer in the redevelopment region than in the 

recirculation region.  

The quadrant decomposition method and joint probability density functions were used to 

characterize the dominant motions producing the Reynolds shear stress. Multi-point statistics such 

as two-point spatial and space-time correlations were used to quantify the impact of large upstream 

roughness on the downstream evolution of the separated shear layer over the step. 
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CHAPTER 1 

INTRODUCTION AND OBJECTIVES 

1.1    Introduction 

Separated and reattached turbulent flows are of enduring interest in fluids engineering as they play 

a key role in the transport and mixing of fluids. The prototypical configuration for studying flow 

separation and reattachment is the forward-facing step (FFS). The FFS has many useful 

engineering applications, including manufacturing discontinuities on aircraft wings, swept wing 

applications, and air-flow over electronic chips. Apart from its technological applications, 

forward-facing steps in the form of blunt obstacles are also frequently observed in environmental 

flows such as bridge piers, large buildings and other man-made obstacles. Unsteady flow 

phenomena such as induced vortex fields, cross-winds and recirculation near these obstructions 

often lead to undesirable effects such as structural vibrations and noise. The FFS flow is frequently 

used as a benchmark for testing turbulence models. Nevertheless, our understanding of important 

features such as shear layer separation and reattachment and the physical mechanisms responsible 

for its unsteadiness is still incomplete. 

The flow of an incompressible turbulent boundary layer over a FFS produces dynamic 

behaviour of considerable complexity. Figure 1.1 shows a schematic of a two-dimensional 

forward-facing step in an open channel. The Cartesian coordinate system is aligned with the mid-

span of the test section; the x-coordinate points in the streamwise direction, while the y-coordinate 

is aligned with the wall-normal direction; x = 0 is at the leading edge of the step and y = 0 is on 

the upstream wall. The upstream boundary layer of freestream velocity Uo and thickness, δ, 

approaches the FFS of height, h. The adverse pressure gradient induced by the step causes the flow 

to separate upstream of the front face of the step.  At a certain height, say, hr, from the bottom wall 
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the flow reattaches on the front face of the step. The flow separates again at the leading edge of 

the step and reattaches on the top face of the step after some distance, say, Lr, hereinafter referred 

to as the reattachment length. The maximum height of the recirculation region on the top face of 

the step is denoted by Hr. The region beyond the reattachment point is referred to as the 

redevelopment region. Several interesting phenomena documented in the literature on the FFS 

flow are worth noting, including a relatively more stable upstream separation bubble (Moss and 

Baker 1980; Leclercq et al. 2001), flapping motion of the shear layer leading to unsteady 

reattachment (Largeau and Moniere 2007), substantially higher wall-pressure fluctuations on the 

step compared to the upstream boundary layer (Efimstov et al. 1999; Camussi et al. 2008), and the 

bifurcation of the shear layer in the redevelopment region (Bradshaw and Wong 1972; Kiya and 

Sasaki 1983). 

 

 

  
Figure 1.1: Schematic of a forward-facing step (FFS).  

 

A consistent trend in the archival literature on FFS flows is that most earlier investigations 

have been conducted primarily over smooth walls. Although these studies have helped to enhance 

our understanding of the flow, questions still remain as to the exact impact of the step on the flow 

characteristics and the evolution of the large-scale structures in the presence of wall roughness. 

Roughness effects on the zero pressure gradient (ZPG) turbulent boundary layer have been known 
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for decades, which include increase in the wall shear stress, and enhancements of the turbulence 

intensities and Reynolds stresses, by margins that may extend well into the outer parts of the 

boundary layer. In practice, roughness effects may arise due to either the presence of 

manufacturing defects on test surfaces, corrosion, abrasion or deposition of small particles over 

time. Due to the high sensitivity of the FFS flow to on-coming disturbances (Wilhelm et al. 2003; 

Marino and Luchini 2009), the imposition of additional perturbations such as wall roughness can 

lead to an extremely more complex fluid dynamics structure when compared to the canonical 

smooth wall flow. 

 

1.2      Governing Equations 

The governing equations are the continuity, momentum, and transport equations for Reynolds 

shear stress and turbulence kinetic energy (TKE) for an incompressible turbulent boundary layer: 

Continuity 

𝜕𝑈𝑖

𝜕𝑥𝑖
= 0 (1.1) 

Momentum 

𝜕𝑈𝑖

𝜕𝑡
+ 𝑈𝑗

𝜕𝑈𝑖

𝜕𝑥𝑗
= −

1

𝜌

𝜕𝑃

𝜕𝑥𝑖
+

𝜕

𝜕𝑥𝑗
(

𝜕𝑈𝑖

𝜕𝑥𝑗
− 〈𝑢′𝑖𝑢′𝑗〉)  (1.2) 

Reynolds stress transport equation 

𝜕〈𝑢′𝑖𝑢′𝑗〉

𝜕𝑡
+ 𝑈𝑘

𝜕〈𝑢′𝑖𝑢′𝑗〉

𝜕𝑥𝑘

= − (〈𝑢′𝑖𝑢′𝑘〉
𝜕𝑈𝑗

𝜕𝑥𝑘

+ 〈𝑢′𝑗𝑢′𝑘〉
𝜕𝑈𝑖

𝜕𝑥𝑘
) + 〈

𝑝′

𝜌
(

𝜕𝑢′𝑖

𝜕𝑥𝑗

+
𝜕𝑢′𝑗
𝜕𝑥𝑖

)〉 − 2 〈
𝜕𝑢′𝑖

𝜕𝑥𝑘

𝜕𝑢′𝑗
𝜕𝑥𝑘

〉

+
𝜕

𝜕𝑥𝑘
(

𝜕〈𝑢′𝑖𝑢′𝑗〉

𝜕𝑥𝑘

− 〈𝑢′𝑖𝑢′𝑗𝑢′𝑘〉 − 〈
𝑝′

𝜌
[𝑢′𝑖𝛿𝑗𝑘 + 𝑢′𝑗𝛿𝑖𝑘]〉) 

(1.3) 

TKE transport equation 

𝜕𝐾

𝜕𝑡
+ 𝑈𝑗

𝜕𝐾

𝜕𝑥𝑗

= −〈𝑢′𝑖𝑢′𝑗〉
𝜕𝑈𝑖

𝜕𝑥𝑗

+
𝜕

𝜕𝑥𝑗
(

𝜕𝐾

𝜕𝑥𝑗

− 〈𝐾𝑢′𝑗〉 − 〈
𝑝′

𝜌
𝑢′𝑗〉) −  〈(

𝜕𝑢′𝑖

𝜕𝑥𝑗

+
𝜕𝑢′𝑗
𝜕𝑥𝑖

)
𝜕𝑢′𝑖

𝜕𝑥𝑗

〉 (1.4) 
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In equations (1.1) – (1.4), the flow variables are defined as follows: x is the coordinate 

direction, U and u are the mean and fluctuation velocities, respectively; ρ is the density; P and p' 

are the mean thermodynamic (static) and fluctuating pressures of the fluid, respectively; K is the 

turbulent kinetic energy and   is the kinematic viscosity. The second-order terms 〈𝑢′𝑖𝑢′𝑗〉 

correspond to the Reynolds stresses. 

1.3    Research Motivation and Objectives 

Despite their prevalence in practical engineering and environmental applications roughness effects 

on forward-facing step flows have received very little attention within the near-wall turbulence 

research community when compared to the smooth-wall counterpart. Also, although the 

characteristics of the flow over smooth forward-facing steps have been extensively investigated, 

majority of investigators reported only the one-dimensional profiles of the mean velocity and 

Reynolds stresses. Mostly, this is due to the limitations of the measurement methodologies 

employed. Single-point measurement methods such as hot-wire anemometry (HWA) and laser 

Doppler velocimetry (LDV) are incapable of measuring the often-sought multi-point statistics such 

as two-point correlations directly without using approximations. On the other hand, most flows 

studied with whole-field laser techniques such as particle image velocimetry (PIV) were not 

sufficiently resolved in order to fully capture the relevant turbulence scales. Thus, experimental 

data is still lacking on the impact of the FFS on the evolution of the turbulent structures in the 

flow. Nevertheless, with the development of high-repetition rate lasers and high-speed cameras in 

recent times, high-resolution PIV methods such as time-resolved particle image velocimetry (TR-

PIV) are now available. The high spatial and temporal resolutions provided by TR-PIV facilitates 

the accurate measurement of the turbulence scales and multi-point statistics such as two-point 

spatial correlations and two-point space-time correlations. To date, no experimental study has 
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applied the time-resolved PIV technique to characterize the turbulent boundary layer over a 

forward-facing step with upstream wall roughness.  

In order to fulfill the need for well-qualified, temporally resolved rough-wall turbulent 

boundary layer experiments over forward-facing steps, a 2D-2C TR-PIV system is applied. The 

overarching goal of this study is to systematically investigate the effects of upstream wall 

roughness on the spatio-temporal characteristics of separating and reattaching turbulent flows over 

a forward-facing step with upstream deep turbulent boundary layer using both single- and multi-

point statistics. This will advance physical understanding of the statistical properties and coherent 

structures of separating-reattaching turbulent flows. Also, the results obtained from this study can 

provide comprehensive benchmark datasets that will help Computational Fluid Dynamics (CFD) 

experts to improve the accuracy of turbulence models and validate their numerical results. 

 

1.4    Organization of the Report 

The remainder of this report is organized as follows: In Chapter 2, a detailed literature survey is 

presented on previous investigations of separated and reattached turbulent flows over FFS with 

and without wall roughness. The coherent structures in the unperturbed boundary layer and in 

separated shear layers are reviewed and their methods of eduction explored in this investigation 

are presented. Chapter 3 describes the experimental setup and test conditions investigated. Details 

of the time-resolved PIV (TR-PIV) system used are explained as well as the operating principle of 

TR-PIV. In Chapter 4, the results of the investigation are presented and discussed. Finally, in 

Chapter 5, the experimental results are summarized and the major conclusions are highlighted 

along with future work. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1    Overview 

In this chapter, previous studies of separated and reattached turbulent flows such as those produced 

by two-dimensional blunt flat plates and forward-facing steps (FFS) immersed in a turbulent 

boundary layer are reviewed. Turbulent shear flows with separation and reattachment have long 

been the subject of many investigations. In calculations of flow past obstacles, the obstacle is 

treated as a source of perturbation to the initial turbulent boundary layer. According to Bradshaw 

and Wong (1972), the strength of perturbation can be classified based on the relative height, h/δ 

of the obstacle as: weak perturbation (h/δ << 1), where the velocity and length scales of the flow 

are altered without significant change in the stress ratios and two-point correlations; strong 

perturbation (h/δ ≈ 1), where the turbulence structure is significantly modified; and overwhelming 

perturbation (h/δ >> 1), where the boundary layer changes into a free shear layer such as wake or 

mixing layer. 

Separated and reattached turbulent flows investigated in the past employed a variety of 

techniques to characterize the state of the boundary layer. These include computational fluid 

dynamics (CFD) and experimental methods. CFD methods such as Reynolds-averaged Navier-

Stokes (RANS) modelling, direct numerical simulation (DNS) and large-eddy simulation (LES) 

rely on the processing power of the computer to solve the discretized differential equations of fluid 

motion. Nevertheless, the complex nature of the flow in the recirculation and recovery regions 

renders the numerical prediction of practical flows a formidable task. This makes it more attractive 

to use experimental techniques such as hotwire anemometry (HWA), laser Doppler velocimetry 

(LDV) and particle image velocimetry (PIV) for turbulence measurements. Being pointwise 
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measurement techniques, HWA and LDV are more challenging for examining the large-scale 

coherence of the velocity fluctuations. On the other hand, time-resolved PIV (TR-PIV) does not 

only capture the large-scale coherent structures but also provides instantaneous two-dimensional 

velocity fields for visualizing the temporal evolution of the instantaneous structures.  

2.2    Characteristics of the Upstream Turbulent Boundary Layer 

In an open channel, the flow upstream of a forward-facing step can be treated as a zero pressure 

gradient (ZPG) turbulent boundary layer (e.g., Tachie et al. 2001). Classical theory of wall 

turbulence indicates that the boundary layer is a composite fluid layer consisting of both inner and 

outer regions (e.g., von Karman 1930; Prandtl 1932). For a ZPG turbulent boundary layer flow, as 

shown schematically in Figure 2.1, the inner layer corresponds to the region extending from the 

wall (y/δ = 0) to y/δ  0.1 (Pope 2000), where δ is the boundary layer thickness defined as the 

distance from the wall to the wall-normal location where the local mean streamwise velocity (U) 

is 99% of the freestream velocity (Ue). In the inner region, the turbulence dynamics depend on the 

friction velocity, Uτ, the fluid kinematic viscosity, , and the distance from the wall (y). This leads 

to two types of scaling parameters for the inner region, namely, the viscous length scale, /Uτ, and 

the viscous time scale, /Uτ
2. In the outer layer (y+ = 50 to y = δ), the wall acts to retard the fluid 

velocity in a manner that is independent of viscosity, but depends on the distance from the wall, 

and the outer variables δ and Ue. At sufficiently high Reynolds numbers, an overlap region exists 

between the outer and inner layers. For smooth boundary layers, the overlap region follows a 

logarithmic mean velocity profile of the form (Millikan 1938),  

U+ = (1/κ) ln(y+) + B (2.1) 
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where к is the von Kármán constant, B is an additive constant, and subscript (+) denotes 

normalization by inner variables. Typical values of the constants к and B are к = 0.41 and B = 5.0; 

or к = 0.40 and B = 5.5.  

 
Figure 2.1: Schematic of the various regions of the turbulent boundary layer. 

 

To account for the wake of the boundary layer, Coles (1956) proposed a logarithmic profile 

of the form 

U+ = (1/κ) ln(y+) + B + (Π/κ)w(y/δ) (2.2) 

 

where Π is the wake parameter and the function w(y/δ) is called the “law of the wake”. For ZPG 

turbulent boundary layers, the wake parameter was found to be approximately 0.55 (Coles 1956). 

The drag characteristics of the wall or boundary are quantified by the wall shear stress, τw = ρUτ
2, 

and the skin friction coefficient, Cf = 2(Uτ/Ue)
2. The skin friction coefficient is an asymptotic 

function of Reynolds number that increases with freestream turbulence level and surface roughness 

for a given Reynolds number. Typical values of Cf ≈ 0.0044 – 0.0048 have been observed for low 

Reynolds numbers turbulent boundary layers over smooth walls (e.g., Tachie et al. 2000). 
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 The turbulent boundary layer is often characterized by one or more integral parameters. 

These include the displacement thickness, momentum thickness and shape factor. The 

displacement thickness (*), defined as the wall-normal distance by which the wall will have to be 

moved into the fluid for a potential flow at velocity, Ue to have the same mass flux over the wall, 

is given by 

𝛿∗ = ∫ (1 −
𝑈

𝑈𝑒
) 𝑑𝑦

𝛿

0

 (2.3) 

 

Similarly, the momentum thickness (), which measures the momentum flux deficit 

occurring in the boundary layer due to fluid retardation, is given by 

𝜃 = ∫ (
𝑈

𝑈𝑒
) (1 −

𝑈

𝑈𝑒
) 𝑑𝑦

𝛿

0

 (2.4) 

The ratio of the displacement thickness to the momentum thickness gives the dimensionless 

boundary layer shape factor: 

𝐻 =
𝛿∗

𝜃
 (2.5) 

 When the flow is subjected to a roughness perturbation, the effect of roughness is to disrupt 

the turbulence structure, especially in the immediate vicinity of the wall. It has been suggested that 

when the roughness height k is large enough, the modifications in the mean velocity, turbulence 

intensities and Reynolds stresses can extend well into the outer layer (e.g., Krogstad et al. 1992; 

Jimenez 1998). Based on data compiled from studies over a wide range of roughness elements, 

Jimenez (1998) concluded that smooth and rough wall boundary layers will exhibit outer layer 

similarity if the relative roughness height k/δ is less than 2%.  

The effect of the wall roughness is to enhance the drag characteristics and produce a shift 

in the logarithmic mean streamwise velocity profile. By accounting for the roughness shift and 
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enhanced wake generated by roughness elements, the rough wall mean velocity profile satisfies 

the log law of the form  

U+ = (1/κ)ln(y + yo)
+ + B  ΔB+ + (Π/κ)w(y/δ) (2.6) 

 

where ΔB+ is the roughness shift, y is the wall-normal distance measured from the roughness crest 

and yo is the virtual origin, which depends on the size and distribution of the roughness elements. 

The roughness Reynolds number, k+ = kUτ/, is an important parameter in rough-wall flows. When 

k+ is small, the flow is said to be hydraulically smooth, whereupon the turbulent eddies shed by 

the roughness are completely damped by viscous forces. As k+ increases, the flow becomes 

transitionally rough so that viscosity no longer completely affects the eddies produced by the 

roughness elements. The net effect is that both form drag by the roughness elements and viscous 

drag contribute to the overall skin friction. At sufficiently large k+, the flow becomes fully rough 

and form drag is the pre-dominant contributor to skin friction. A more universal roughness 

parameter termed the equivalent sand grain roughness height, ks, was also proposed by Nikuradse 

(1933) for comparing roughness effects among different flows, irrespective of roughness type. The 

scale ks represents the size of monodisperse sand grains to provide the same skin friction 

coefficient as the roughness under investigation. Using the dimensionless equivalent sand grain 

roughness height, ks
+, Schlichting (1979) suggested that the flow may be considered hydraulically 

smooth for 0 < ks
+ ≤ 5, transitionally rough for 5 < ks

+ < 70, and fully rough for ks
+ ≥ 70. 

2.3    Turbulent Structures 

The archival literature presents overwhelming evidence of the existence of orderly structures in 

wall bounded flows. These orderly structures, also known as coherent structures, are believed to 

be responsible for providing the generation and self-sustaining mechanism for turbulence. 

According to Robinson (1991), a coherent structure may be defined as a three-dimensional region 



11 
 

of the flow field over which at least one fundamental flow variable (e.g., velocity, density or 

pressure) exhibits significant correlation with itself or with another variable with length and time 

scales larger than the smallest scales of turbulence scales. Evidence of their presence in turbulence, 

for instance, is seen in the non-zero Reynolds shear stress and the two-point spatial and temporal 

correlations. Various coherent structures have been identified in ZPG turbulent boundary layers, 

both near the wall and in the outer region. In the wall region, these include low-speed streaks with 

average spanwise spacing of approximately 100 wall units (Kline et al. 1967), bursts (Grass 1971), 

sweeps and ejections (Corino and Brodkey 1969); quasi-streamwise vortices (Blackwelder and 

Eckelmann 1979), Q2/Q4 events (Wallace et al. 1972), where Q2 and Q4 are the second and fourth 

quadrants of the plane of instantaneous streamwise and wall-normal velocity fluctuations, and 

inclined shear layers (Brown and Thomas 1977; Schoppa and Hussain 2000). In the outer layer, 

the flow has been observed to be dominated by loop-like vortices (Head and Bandyopadhyay 

1981), large-scale three-dimensional bulges (Blackwelder and Kaplan 1976) as well as structures 

called very large scale motions, VLSM (Kim and Adrian 1999).  

 Figure 2.2 shows a schematic of a loop-like vortex (called a hairpin vortex) often observed 

in the logarithmic region. A number of studies have emphasized the hairpin vortex as a simple 

coherent structure that explains many of the features observed in ZPG turbulent boundary layers. 

Theodorsen (1952) described the hairpin vortex as either a symmetric or asymmetric hairpin-like 

structure, and its modified versions, that produce regions of intense negative streamwise and 

positive wall-normal velocity fluctuations under a clearly defined spanwise rotating vortex head. 

In Figure 2.2, the vortex consists of a spanwise rotating head that is connected to the neck inclined 

at an angle of approximately 45° to the streamwise (x) direction. The neck is connected to the two 

quasi-streamwise legs which correspond to the counter-rotating quasi-streamwise vortices near the 
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wall. Also, due to their rotation, the quasi-streamwise vortices induce regions of negative 

streamwise velocity fluctuations corresponding to the low-speed streaks near the wall. The vortex 

head when viewed in the streamwise wall-normal plane corresponds to spanwise vortex cores 

whose vorticity are of the same sign as the mean shear. Such spanwise vortices are called prograde 

vortices, while those with vorticity opposite to that of the mean shear are called retrograde vortices 

(Wu and Christensen 2006). The spanwise rotation of the vortex head induces Q2 motions or 

ejections underneath the vortex, accompanied by opposite Q4 or sweep-type motions outboard of 

the vortex. The opposing Q2 and Q4 motions form an inclined shear layer, and where their velocity 

fluctuation magnitudes cancel out creates a region of stagnation flow along the edge of the shear 

layer. 

 
Figure 2.2: Schematic of a hairpin vortex taken from Adrian et al. (2000). 
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 Although a considerable amount of work has already been done to understand the dynamics 

of coherent structures very little is known of the details of the turbulence structure in the separated 

shear layer. It is widely accepted that the behaviour of large-scale vortices in the recirculation 

region does not only affect the flow properties in the separation bubble but in the developing region 

also. Figure 2.3 shows a schematic of the coherent structures observed in the recirculation region. 

 

 

 
Figure 2.3: Schematic of the large-scale vortices in a separated and reattaching shear layer taken 

from Sasaki and Kiya (1991) and Kiya and Sasaki (1985), (a) side view of the vortices; (b) top 

view of the vortices; (c) structure in the y-z plane and (d) structure in the x-y plane. 

 

It has been shown (e.g., Hillier and Cherry 1981; Eaton and Johnston 1981) that the 

turbulence in the separated shear layer is characterized by three-dimensional low-frequency 

(a) 

(b) 

(c) (d) 
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unsteady motions responsible for the production and transport of the Reynolds stresses in the shear 

layer. As shown in Figure 2.3, in the streamwise-wall-normal plane, these structures bear a 

resemblance to the hairpin vortex and have been attributed to the large-scale vortices shed 

upstream of the reattaching zone. Measurements presented by Kiya and Sasaki (1983, 1985) 

suggest that the large-scale vortices are shed from the separation bubble at a frequency of 

approximately f = 0.6Ue/Lr, where Ue is the freestream velocity of the approach boundary layer. 

Kiya and Sasaki (1983) reported that the vortices are propagated at a convection velocity of 

approximately 0.5Ue, and exhibit an average streamwise separation of roughly (0.6 – 0.8)Lr. 

Spanwise flow visualizations by Dimaczek et al. (1989) revealed the existence of streaky 

structures, separated by a spanwise spacing of λz/h ≈ 0.4 – 0.8. They observed that these were the 

same quasi-streamwise legs of the hairpin vortices emanating from the upstream region and 

propagating over the step. Experimental and numerical results presented by Pollard et al. (1996) 

over a range of Reynolds numbers (1500 ≤ Reh ≤ 6700) indicate that the spanwise spacing of the 

streaks is a function of Reynolds number. At the lowest Reynolds number (1500) the streak spacing 

λz/h was found to be approximately 2.8, while at the highest Reynolds number it was found to be 

approximately 0.95. The authors concluded that the streaks and their spacing in the recirculation 

region are the result of a mechanism triggered by Taylor-Gortler like vortices. 

2.4    Review of Separated and Reattached Turbulent Flows over Smooth FFS 

Numerous studies have been conducted in the past to quantify the impact of different flow 

conditions on the mean flow and turbulence characteristics over smooth FFS and rectangular blunt 

plates. Some previous experiments and numerical simulations that are of interest to the present 

investigation are summarized in Table 2.1. The summary includes the type of measurement or 

computational technique used, Reynolds number, relative step height and quantities reported.  
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Table 2.1: Summary of previous studies on FFS (smooth and rough) 

Author(s) Technique h (mm) Reh BR (h/Hu) /h Lr/h 
Analysed 

Parameters 

Awasthi et al. 

(2014) 

HWA 

(CC-Air) 
3.65– 58.3 

6640 – 213000 

(Smooth) 
0.002 – 0.033 1.62 – 26.02  2.3 – 4.2 U, P 

Sherry et al. 

(2010) 

Planar PIV 

(OC-Water) 
15 – 45 

1400 – 19000 

(Smooth) 
0.018 – 0.056 0.83 – 2.5 1.9 – 3.8 U,〈𝑢′2〉, −〈𝑢′𝑣′〉 

Camussi et al. 

(2008) 

TR-PIV 

(CC-Water) 
20 

8800 – 26300 

(Smooth) 
–– 5.0 1.5 – 2.1 U, P 

Largeau and 

Moriniere (2007) 

HWA and PIV 

(CC-Air) 
30 – 50 

76900 – 128200 

(Smooth) 
0.06 – 0.11 0.3 3.50 – 3.75 

U, 〈𝑢′2〉,〈𝑣′2〉, 
−〈𝑢′𝑣′〉, P 

Leclercq et al. 

(2001) 

LDA 

(CC-Air) 
50 

170000 

(Smooth) 
0.14 0.7 3.2 U, K, P 

Rifat et al. 

(2016) 

Planar PIV  

(OC-Water) 
12.0 

3400 

(Rough) 
0.2 4.7 1.26 – 1.78 U, V, −〈𝑢′𝑣′〉 

Shao and Agelin-

Chaab (2016) 

Planar PIV 

(CC-Water) 
6.0 

1600 – 4800 

(Rough) 
0.11 4.7 1.2 – 2.3 

U, V, 〈𝑢′2〉,〈𝑣′2〉, 
−〈𝑢′𝑣′〉, POD 

Essel and Tachie 

(2015) 

Planar PIV 

(CC-Water) 
9.0 

4940 – 8650 

(Rough) 
0.2 3.0 – 3.8 1.3 – 2.2 

U, K,〈𝑢′2〉,〈𝑣′2〉, 
−〈𝑢′𝑣′〉, quadrant 

analysis, two-point 

correlation 

Essel et al. 

(2015) 

Planar PIV 

(CC-Water) 
9.0 

2040 – 9130 

(Rough) 
0.2 2.4 – 3.7 1.2 – 2.2 

U, V, , 〈𝑢′2〉,  
〈𝑣′2〉, −〈𝑢′𝑣′〉, K 

Ren and Wu 

(2011) 

Planar PIV 

(CC-Air) 
6.35 

3450 

(Rough) 
0.01 8.0 1.17 

U,〈𝑢′2〉,〈𝑣′2〉,  
−〈𝑢′𝑣′〉, quadrant 

analysis, PDF 

OC: Open channel; CC: Closed channel
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Due to the presence of two separation regions in these cases the flow structure is relatively 

more complex compared to other separated and reattached turbulent flows. Previous studies have 

revealed that the upstream recirculation region of a forward-facing step contains near stagnant 

fluid and is not significantly affected by changes in Reynolds number (Moss and Baker 1980; 

Leclercq et al. 2001; Addad et al. 2003). These studies have shown that generally, the flow 

separates from the upstream wall at a distance of approximately 0.81.5h upstream of the step and 

reattaches to the front face of the step at approximately 0.60.65h. Previous observations on the 

salient features of the turbulent boundary over a smooth FFS are summarized in the next sections. 

2.4.1    The Flow in the Recirculation Region 

The primary recirculation region, the simplest characteristic scale of which is the reattachment 

length, is known to exhibit strong low Reynolds number effects. Ota et al. (1981), for instance, 

observed a seven-fold increase in length of a recirculation bubble transitioning from laminar to 

turbulent flow over a flat plate as the Reynolds number increased from 40 to 2000. At higher 

Reynolds numbers, the length of the separation bubble remained either relatively invariant with 

Reynolds number or decrease with increasing Reynolds number, depending on the nose angle of 

the leading edge of the plate. The Reynolds number invariance of the recirculation region at large 

Reynolds numbers was also observed by Hillier and Cherry (1981) for a blunt flat plate (34000 < 

Reh < 80000), and by Djilali and Gratshore (1991) using a flat plate at zero incidence to the fluid 

stream. In the latter study, the Reynolds number was varied from 25000 to 90000.  

The effects of turbulent intensity on the recirculation bubble have also been examined in 

detail. Hillier and Cherry (1981) investigated the effects of turbulent intensity in flow over a two-

dimensional blunt flat plate. The turbulent intensity, which was varied from 1.0% to 6.5%, was 

produced using different grids. It was shown that the size of the separation bubble contracted 



17 
 

substantially (about 40%) as the turbulent intensity increased. The effect of turbulent intensity on 

the reattachment length over a blunt flat plate at Reh = 26000 was also investigated by Kiya and 

Sasaki (1983). The freestream turbulence was generated using circular rods of different diameters 

placed at different locations upstream of the plate. The reattachment length decreased by about 

70% as the turbulent intensity was increased from 1.0% to 7.0%. Similar results were obtained by 

Nakamura and Ozono (1987) for the separated boundary layer over a blunt flat plate, noting that 

the effect of turbulence intensity was monotonic irrespective of Reynolds number. Yaghoubi and 

Mahmoodi (2004) performed a series of experiments over a finite blunt flat plate at Reh = 15000 

to 36000 to investigate the separated shear layer for different values of the plate length to thickness 

ratio (L/h = 4.0 to 9.0). A reduction in reattachment length of approximately 25% was observed 

when the turbulent intensity level increased from 0.56% to 1.8%, but it was found that the effect 

diminishes as the plate length to thickness ratio decreases. In a more recent study conducted by 

Shu and Lia, (2017), the effect of turbulent intensity generated by diverse types of grids was 

investigated. It was shown that the size of the recirculation bubble over the blunt flat plate 

decreased from 3.42h to 1.26h when the turbulent intensity was increased from 3.1% to 9.5%. 

Sherry et al. (2010) investigated the effects of Reynolds number, Reh and relative boundary 

layer thickness, δ/h on FFS in a turbulent boundary layer. The Reynolds number was varied from 

1400 to 19000 and δ/h varied in the range 0.83 ≤ δ/h ≤ 2.5. It was found that for a given value of 

δ/h, the reattachment length increased linearly with Reynolds number up to 8500, beyond which 

no significant change in reattachment length was observed. It was reported that when δ/h < 1, the 

influence of the upstream boundary layer is minimal. Conversely, when δ/h > 1, the reattachment 

length is significantly affected by the Reynolds number. 
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Hattori and Nagano (2010) studied the state of the upstream boundary layer over a FFS 

using DNS. The Reynolds number varied from Reh = 900 to 3000 and δ/h varied from 1.5 to 3. A 

counter gradient diffusion phenomenon (negative Reynolds shear stress) was observed near the 

leading edge of the step at the low Reynolds number (Reh = 900) but this phenomenon vanished 

at higher Reynolds numbers (1800 ≤ Reh ≤ 3000). Distributions of the second invariant of the 

velocity gradient tensor revealed that the flow over the step has finer-scale vortical structures at 

higher Reynolds numbers than at lower Reynolds numbers. Through a quadrant analysis of the 

mean Reynolds shear stress it was shown that ejections contributed more to the mean Reynolds 

stress than sweeps. 

2.4.2    Development of the Reattached Boundary Layer 

Although there have been many investigations of the separated shear layer over the FFS, only a 

few studies examined the redevelopment of the boundary layer after reattachment. On the other 

hand, extensive studies have been conducted in the past on the separation and recovery of the 

turbulent flow over blunt flat plates (Ruderich and Fernholz 1986; Castro and Epik 1998) and 

backward-facing steps (Tani et al. 1961; Bradshaw and Wong 1972; Jovic 1993; Song 2000). One 

key observation reported in the literature is the splitting or bifurcation of the shear layer after 

reattachment. This results in the deflection of part of the reattached flow back into the recirculation 

region, while the other part continues downstream (Bradshaw ad Wong 1972). A number of 

previous investigators including, Tani et al. (1961), Mueller and Robertson (1963), and Coles and 

Hirst (1969) expressed the view that the mean velocity profile after about 50 step heights (x/h ≈ 

50) recovers to the standard profile and still follows the log law of the wall in the recovery region. 

However, evidence presented by Bradshaw and Wong (1972) suggests that the outer part of the 

boundary layer develops much more slowly than the inner region. Castro and Epik (1998) 
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presented the argument that it is not possible for the inner layer, which is dynamically linked to 

the outer layer, to fully recover while the outer flow is significantly different from that of the 

standard boundary layer. 

 In their blunt plate experiment, Ruderich and Fernholz (1986) employed hot-wire and 

pulsed-wire anemometry to measure the mean velocities, Reynolds stresses and spectra of velocity 

fluctuations at a Reynolds number of Reh = 14000. The profiles of the mean streamwise velocity 

and Reynolds stresses were self-similar in a short region bounding the reattachment point. Results 

obtained from the pulsed-wire measurements revealed that the logarithmic law of the wall holds 

neither in the recirculation region nor in a region about half the length of the recirculation 

downstream from the reattachment point. 

Tachie et al. (2001) performed open-channel experiments over a FFS to investigate the 

redevelopment of the separated and reattached turbulent boundary layer. The Reynolds numbers 

based on the freestream velocity and water depth were in the range 960 ≤ Reh ≤ 1890. A laser 

Doppler anemometer (LDA) was used to conduct the flow measurements. It was observed that the 

mean velocity profiles collapsed onto the corresponding upstream profiles at x/h ≥ 50, while the 

integral parameters such as the friction coefficient and shape factor recovered to within 5% of their 

upstream values. In case of the turbulence field, it was found that even at x/h ≈ 100, the streamwise 

turbulence intensity profiles did not collapse on the upstream profiles. Similar results were 

reported by other investigators of reattached and recovering turbulent flows over BFS (e.g., Yoo 

et al. 1992; Jovic 1993; Song and Eaton 2004). 

Shah and Tachie (2007) performed particle image velocimetry measurements of the mean 

velocities and Reynolds stresses over a FFS in an open channel. Two step heights were investigated 

(δ/h ≈ 8 and 5), corresponding to two Reynolds numbers of Reh ≈ 1900 and 2800. The integral 
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parameters decreased to minimum values at the separation point followed by sharp increases 

immediately downstream of the step and then levelling off to values slightly higher than upstream. 

Their results indicate that the mean streamwise velocity relaxes more quickly to the self-similar 

values than the mean wall-normal velocity. At their last measurement station (x/h = 50), the 

Reynolds stresses follow the same curve irrespective of δ/h although their magnitudes still exceed 

the upstream values in the inner region. 

Another subject of interest that has received significant research attention is the influence 

of separation and reattachment on the wall pressure fluctuations (e.g., Farabee and Casarella 1984; 

Efimtsov et al. 1999; Fiorentini et al. 2006; Camussi et al. 2008; Becker et al. 2010; Awasthi et al. 

2014; Scheit et al. 2013). The study of pressure fluctuations is of fundamental importance in 

aeroacoustics applications because of the sound and vibrations induced by the fluctuations.  

Farabee and Casarella (1984) examined the flow characteristics of the turbulent boundary 

layer (Reh = 21000) in a FFS flow with relative boundary layer thickness δ/h ≈ 2.5. A hot-wire 

anemometer was used for the velocity measurements while a pressure transducer was used for the 

fluctuating pressure measurements. Their results indicate that the mean (static) pressure 

distribution is strongly adverse immediately upstream of the step, highly favourable at the top of 

the step, and returns rapidly to ZPG conditions further downstream. Distributions of the frequency 

spectra upstream of the step show high pressure fluctuation levels at least up to 6 step heights as 

well as rapid variation in pressure fluctuation up to the onset of the secondary separation. 

Downstream of the step, they found that the maximum value of pressure fluctuations occurs at the 

reattachment point and that the flow remains highly energized (relatively high prms values) after 

reattachment, at least up to 36 step heights. The pressure spectrum downstream of the step is 
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elevated at low and high frequencies as well, indicating the presence of larger structures in the 

reattachment region.  

Efimtsov et al. (1999) conducted an experimental study of wall-pressure fluctuations over 

a FFS in a wind tunnel. The Reynolds number of the approach flow was in the range 600 ≤ Reh ≤ 

6400, while the ratio of the displacement thickness to step height varied between 5 and 100. They 

found that the pressure fluctuations due to the FFS exceed those on a smooth wall by up to about 

30 dB. One-dimensional profiles of the pressure fluctuations at selected upstream locations up to 

the step revealed a monotonic increase in pressure fluctuations from far upstream down to the step. 

Frequency spectra of the pressure fluctuations depict that the energy containing range of the 

pressure spectra is independent of Reynolds number while the spectral density of the dissipation 

range increases with Reynolds number. 

A time-resolved PIV (TR-PIV) method coupled with pressure measurements was used by 

Fiorentini et al. (2006) to measure the velocities and wall pressure fluctuations over a FFS in an 

open channel. The Reynolds number of the unperturbed boundary layer (δ*/h ≈ 0.5) varied from 

4400 to 26300. Profiles of the pressure fluctuation spectra were used to evaluate the impact of the 

FFS on the spectral power law regions. They reported that the pressure spectrum exhibits a 7/3 

power law region that widens for reference locations closer to the leading face of the step, albeit 

independent of Reynolds number. Over the step, increasingly lower values of the exponent were 

observed corresponding to a decrease in spectral energy as the flow propagates downstream.  

A time-resolved PIV was also used by Camussi et al. (2008) to measure both the spatial 

and temporal statistics over a FFS in an open channel. For the approach flow, the Reynolds number 

ranged from 8800 to 26300, while the displacement thickness to step height ratio was kept constant 

at δ*/h ≈ 0.5. Mean velocity contours and values of the reattachment length suggest that the 
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characteristics of the secondary recirculation region are independent of Reynolds number as was 

reported by previous investigators (e.g., Bowen and Lindley,1977; Sherry et al. 2010; Essel et al. 

2015). It was observed that the reattachment point downstream of the step is strongly unsteady, 

and corresponds to the location of maximum amplitude of the coefficient of pressure. Distributions 

of pressure-velocity temporal correlations revealed that downstream of the step, the wall pressure 

fluctuations have a strong coherence indicative of the large-scale vortical structures in the 

separated shear layer downstream of the step. 

Awasthi et al. (2014) performed velocity and pressure measurements of the turbulent flow 

over a FFS in a wind tunnel. They used a Pitot tube and a HWA to measure the velocities and 

pressure transducers to measure to the static pressure. Reynolds number (Reh) from 6640 to as high 

as 213000 were investigated for three values of the relative boundary layer thickness (δ/h ≈ 2, 7 

and 26). Similar to the study of Sherry et al. (2010), two flow regimes were found: the first regime 

is for Reh < 3000 where Lr is a strong increasing function of Reynolds number, and the second 

regime is for Reh > 3000 where Lr is independent of Reynolds number. It was found that the 

increase with Reynolds number is more dramatic at lower values of the relative boundary layer 

thickness than at higher values. As the boundary layer approached the step, low frequency pressure 

fluctuations on the wall intensify and become more organized in the spanwise direction. At the 

secondary separation point, low frequency pressure fluctuations develop a strong spanwise 

correlation that can exceed their upstream levels by over two orders of magnitude. Over the step, 

it was observed that the pressure fluctuations were most strongly enhanced at lower frequencies, 

suggesting more energetic structures in the separated and reattaching shear layer.  
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2.5    Separated and Reattached Turbulent Flows over FFS with Wall Roughness 

Despite their numerous practical applications, roughness effects on separated and reattached 

turbulent flows over FFS are not extensively documented. Of the handful of studies that 

investigated roughness effects, only conventional (non-time resolved) PIV systems were used to 

characterize the flow (e.g., Ren and Wu 2011; Wu and Ren 2013; Essel et al. 2015; Essel and 

Tachie 2015; Shao and Agelinchaab 2016; Rifat et al. 2016). Ren and Wu (2011), for example, 

investigated the effects of roughness on separated and reattached flow over a FFS in a wind tunnel. 

Velocity measurements were performed over smooth and rough steps with a smooth upstream 

boundary layer at a Reynolds number of Reh = 3450 and relative boundary layer thickness of δ/h 

= 8. A 3D and highly irregular topographical roughness replicated from a realistic turbine blade 

was used to produce the roughness. Their results showed that wall roughness reduced the mean 

velocities as well as the Reynolds stresses over the step in comparison to the smooth wall. Quadrant 

analysis revealed that roughness reduced the shear stress contributions from both ejections and 

sweeps. 

Essel et al. (2015) and Essel and Tachie (2015) investigated the effects of upstream 

roughness and Reynolds number on the reattachment and redevelopment regions of the FFS in a 

fully developed channel. Sand grain of mean diameter 1.5 mm was used as the upstream roughness. 

The Reynolds numbers based on the step height and maximum mean streamwise velocity of the 

approach flow were in the range 2040 ≤ Reh ≤ 9130. It was observed that the mean reattachment 

length of the primary recirculation region increased with increasing Reynolds number for the 

smooth wall up to a Reynolds number of approximately 6400; beyond this critical Reynold number 

it remained constant. Over the rough wall, the mean reattachment length was unaffected by 

Reynolds number. For the sand grain roughness, the dimensionless equivalent sand grain 
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roughness height ks
+ varied from 8 to 198. It was observed that at comparable Reynolds numbers, 

the upstream rough wall reduced the reattachment length by about 40% compared to the smooth 

wall. It was suggested that the reduction in Lr was not due to the upstream roughness per se but 

could be attributed partly to the reduction in mean velocity and higher turbulence intensity in the 

shear layer. The turbulent kinetic energy and Reynolds shear stress were independent of the 

roughness condition in the immediate vicinity of the wall. In the separation bubble, the integral 

scales were independent of the upstream roughness for reference locations in the inner region, but 

the size of the scales were enhanced for reference locations further from the wall. In the recovery 

region, the effect of upstream roughness gradually diminished as the boundary layer developed 

downstream. 

In a more recent investigation, Shao and Agelinchaab (2016) performed measurements 

over smooth and rough forward-facing steps at three Reynolds numbers (Reh = 1600, 3200, and 

4800) in a fully developed channel. Two roughness conditions were investigated, including 

sandpaper 24 grit (ks = 1.7 mm) and sandpaper 36 grit (ks = 1.37 mm). It was found that the 

reattachment length increased with increasing Reynolds number over the smooth wall but 

decreased with wall roughness at similar Reynolds number. They reported that the profiles of the 

mean velocity and Reynolds stresses did not attain self-similarity even at 60 step heights 

downstream of the leading edge of the step. 

The impact of upstream roughness produced by a 36-grit sandpaper (ks
+ = 13) and sand 

grain roughness (ks
+ = 176) on the separated and reattached flow over a smooth FFS was 

investigated by Rifat et al. (2016) in an open channel. It was observed that the upstream roughness 

increased the turbulent intensity near the wall by about 14% and 35%, respectively for the 

sandpaper and sand grain roughness conditions in comparison to the smooth-wall case. On the 
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other hand, upstream roughness dampened the physical sizes of the mean velocity and turbulence 

intensities and reduced the reattachment length on top of the step compared to the smooth wall 

condition. 

2.6    Eduction of Coherent Structures 

Several quantitative methods have been developed in the literature for extracting coherent 

structures from turbulent flows. Most of these are comprehensively discussed in many previous 

articles, including Hussain (1983) and Adrian et al. (2000). Those explored in this investigation 

are quadrant decomposition, swirling strength, linear stochastic estimation (LSE), and proper 

orthogonal decomposition (POD). The mathematical details and the algorithmic implementation 

of these approaches are discussed next. 

2.6.1      Quadrant Decomposition 

Quadrant decomposition is used to investigate the relative contributions of the coherent motions 

to the mean Reynolds shear stress. The method consists of sorting the instantaneous Reynolds 

shear stress values into the four quadrants of the u'v' plane based on the signs of u and v. The 

first quadrant (Q1: u > 0 and v > 0), referred to as the outward interaction term, contains outward 

motion of high-speed fluid; the second quadrant (Q2: u < 0, v > 0) contains the motions associated 

with ejection of low-speed fluid away from the wall; the third quadrant (Q3: u < 0 and v < 0), 

also called the inward interaction term, contains the inward motion of low-speed fluid; and the 

fourth quadrant (Q4: u > 0 and v < 0) contains an inrush of high-speed fluid (or sweeps). Thus, 

Q2 and Q4 events contribute to positive Reynolds shear stress (〈𝑢′𝑣′〉), while Q1 and Q3 events 

contribute to the negative Reynolds shear stress.  
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Following Lu and Willmarth (1973), the mean Reynolds shear stress at a given (x,y) 

location is decomposed into contributions from the quadrants excluding a hyperbolic hole of size 

Hq (see Figure 2.4) as 

〈𝑢′𝑣′〉𝑄(𝑥, 𝑦, 𝐻𝑞) =
1

𝑁
∑ 𝑢′

𝑖

𝑁

𝑖=1

(𝑥, 𝑦)𝑣′
𝑖(𝑥, 𝑦)𝑆𝑄(𝑥, 𝑦, 𝐻𝑞) (2.7) 

where N is the total number of instantaneous velocity vectors (= total number of PIV snapshots) at 

a given (x,y) location and SQ is a detector function given by  

𝑆𝑄(𝑥, 𝑦, 𝐻𝑞) = {
1          𝑖𝑓 |𝑢′

𝑖(𝑥, 𝑦)𝑣′
𝑖(𝑥, 𝑦)|𝑄 ≥ 𝐻𝑞𝑢𝑟𝑚𝑠(𝑥, 𝑦)𝑣𝑟𝑚𝑠(𝑥, 𝑦)

0               Otherwise                                                                    
 (2.8) 

 

 
Figure 2.4: A sketch of the four quadrants and hole region of the u'-v' plane. 

 

The hole size Hq represents a threshold on the strength of the Reynolds shear stress 

producing events, with Hq = 0 allowing all u'v' events to be included in the decomposition, and 

higher values of Hq allowing the inclusion of only increasingly intense Reynolds shear stress 

producing events. The contribution to the Reynolds shear stress from the hole region is given by 

〈𝑢′𝑣′〉𝑄(𝑥, 𝑦, 𝐻𝑞) =
1

𝑁
∑ 𝑢′

𝑖

𝑁

𝑖=1

(𝑥, 𝑦)𝑣′
𝑖(𝑥, 𝑦)𝑆ℎ(𝑥, 𝑦, 𝐻𝑞) (2.9) 

where 

u'i 

v'i 

Q1 Q2 

Q3 Q4 

|u'iv'i| = Hq u'v' 
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𝑆ℎ(𝑥, 𝑦, 𝐻𝑞) = {
1          𝑖𝑓 |𝑢′

𝑖(𝑥, 𝑦)𝑣′
𝑖(𝑥, 𝑦)| < 𝐻𝑞𝑢𝑟𝑚𝑠(𝑥, 𝑦)𝑣𝑟𝑚𝑠(𝑥, 𝑦)

0            Otherwise                                                                    
 (2.10) 

By accumulating the values of SQ, the space fraction NQ can be calculated as 
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2.6.2      Swirling Strength 

Swirling strength is a term used to describe the imaginary part of the complex eigenvalues of the 

velocity gradient tensor and provides a means for identifying vortex cores in a flow field. In three 

dimensions, the local velocity gradient tensor will have one real eigenvalue λr, and a pair of 

complex conjugate eigenvalues (λcr ± iλci) when the discriminant of its characteristic equation is 

positive (Zhou et al. 1999). Chong et al. (1990) observed that when complex eigenvalues occur, 

fluid particle trajectories about the eigenvector corresponding to λr exhibit a spiralling motion with 

a period of magnitude λci
-1. For a planar PIV velocity field, the complete local velocity gradient 

tensor is unavailable. Thus, only a two-dimensional swirling strength can be calculated using the 

in-plane velocity gradients (Adrian et al. 2000; Hutchins et al. 2005), and which in the x-y plane 

is formulated as 
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This is a quadratic equation with solution given by 
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Since the swirling strength, λci, is defined at a location where the solution is complex, the 

magnitude of swirling strength associated with the spanwise vortex core at that location becomes 
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acbzci 4
2

1 2

,     where 4ac > b2.  (2.14) 

In this form, the swirl has no sign information. Sign is however recovered by multiplying 

λci,z by  the sign of the local in-plane instantaneous fluctuating vorticity. Using notation from 

previous studies (e.g., Wu and Christensen 2006), the instantaneous signed swirling strength is 

given by 
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where 
z  is the instantaneous fluctuating vorticity. 

 The advantage of swirling strength, λci,z over the vorticity, ωz, is that λci,z can be used to 

unambiguously differentiate between regions with vorticity arising from pure rotation and those 

with vorticity originating from shear.  

2.6.3      Linear Stochastic Estimation (LSE) 

Stochastic estimation is a least-square method for approximating conditional averages based on a 

set of prescribed events. The technique was first applied by Adrian (1977) to estimate the 

conditionally averaged flow structures associated with turbulent boundary layers.  

 In general, the conditional average of a function U denoted EU | where E is a set of event 

data is defined as (Adrian et al. 1989)  

 
 

dUU
Ef

EUf
EU 

,
|  (2.16) 

where f (U, E) is the joint probability density function of U and E, and f(E) is the probability density 

function of E. While equation (2.16) is the best estimate of the conditional average, its direct 

computation is impractical due to the large number of events that must be included for the results 
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to converge. The stochastic estimate of the conditional average EU |  where Ui is the ith component 

of velocity is obtained by expanding the conditional average in a Taylor series about E = 0, and 

truncating the series at some level (Adrian et al. 1989). Thus, assuming  NEEEEE ,...,,, 321 , 

where the Ei's are fluctuations with respect to the mean, EU |  is expanded as follows (Adrian et 

al. 1989): 

...|  lkjijklkjijkjiji EEENEEMELEU  (2.17) 

The unknown coefficients L, M, N, ... are determined by requiring that the mean-square 

error between the approximation and the conditional average be minimized, 


2

...]|[ lkjijklkjijkjiji EEENEEMELEU Minimum.   (2.18) 

In the case of linear stochastic estimation, only the first term in equation (2.17) is retained. 

The minimization leads to the orthogonality principle which states that the error must be 

statistically uncorrelated with each of the data. That is,  

  0|  kjiji EELEU ,    i = 1, 2, 3    j, k = 1, 2, 3,..., N.  (2.19) 

which on simplification yields  

kiijkj EULEE  ,       j, k = 1, 2, 3, ..., N.  (2.20) 

Expanding equation (2.20) for indices j and k leads to a linear system of equations (or the 

Yule-Walker equations) which can be solved for the estimation coefficients Lij. 
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For a scalar event E at the reference location (xref, yref), equation (2.21) reduces to 
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),(),(),(),( refrefrefrefirefrefrefi yxEyxELyxEyxxU   (2.22) 

 from which the corresponding LSE coefficient is obtained as 
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Then, using equations (2.22) and (2.23), the LSE of the conditional average of the ith 

component of velocity (u or v) is given by 
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Equation (2.24) allows the reconstruction of the average velocity field associated with a 

given value of E (Christensen and Adrian 2001). The event E can be set as u or v, a single 

component of vorticity vector (e.g. ωz) or swirling strength Λci,z. 

2.6.4      Proper Orthogonal Decomposition (POD) 

Proper orthogonal decomposition (POD) is used to extract coherent structures from an ensemble 

of data by decomposing the data into an infinite series of spatial eigenfunctions. The POD 

eigenfunctions provide an optimal basis for expansion of the flow in the sense that their energy 

convergence is more rapid than any other representation. The POD method was first introduced 

by Lumley (1967) for analysis of turbulent flows. Its advantage is that it is a more objective method 

for educing coherent structures in comparison to conditional averaging techniques such as LSE 

which require a priori knowledge of the presence of a coherent structure in the flow. 

 Mathematically, the goal of POD is to seek orthogonal spatial eigenfunctions, Φ(x) so that 

each member U(x, t) of an ensemble of instantaneous realizations can be expressed as 
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where an(t) are time coefficients. The zeroth eigenfunction, or Mode 0, Φ0, represents the mean 

flow field while subsequent modes contain the fluctuations. Following Berkooz et al. (1993), the 

values of the eigenfunctions are chosen to maximize a functional of the form 

),(

),(
2



U
 (2.26) 

where the operation (g, h) between two functions g and h denotes the inner product given by 



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x

dxxhxghg )()(),(  (2.27) 

In equation (2.27), the function h*(x) is the complex conjugate of h(x). Applying a calculus 

of variations procedure on equation (2.26) with the restriction that (Φ,Φ) = 1 leads to a Fredholm 

integral equation of the form 

)()()()( xxdxxuxu

x




  (2.28) 

where the kernel  )()( xuxu  is the two-point auto-covariance function. Solving equation (2.28) 

for Φ(x) and eigenvalues λ requires the auto-covariance function to be calculated at all spatial 

points in the domain Ωx. In practical applications such as PIV, where high spatial resolution is 

required, the number of grid points is usually very large leading to an extremely large eigenvector 

problem.  

 In the present study, the POD analysis is carried out using the Sirovich's (1987) method of 

snapshots. The snapshot method facilitates the computation of the two-point auto-covariance from 

a relatively small number (N < M) of instantaneous realizations or snapshots where M is the 

number of grid points. The methodology consists of the following steps. First, all the fluctuating 

velocity components from the N realizations are arranged in a matrix U as follows: 
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The cross-covariance matrix is then calculated as (Sirovich 1987): 

)(1 UUC T
N  (2.30) 

which is symmetric and positive definite. The corresponding eigenvalue problem is 

nnn VCV   (2.31) 

The eigenvectors nV are arranged according to the size of the eigenvalues 

021  N   (2.32) 

where each eigenvalue represents the amount of the total variance explained by a given POD mode. 

From the eigenvectors, the eigenfunctions or modes, Φn, are constructed as  
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where 
n

iV  is the ith component of the eigenvector corresponding to eigenvalue n , and the L2-norm 

for a vector x is given by 
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Writing the matrix of POD eigenmodes as  NM  21
, the temporal coefficients 

an(t) are determined by projecting the fluctuating field onto the eigenmodes as 

nTn UMa   (2.35) 
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which because of the orthogonality of the eigenfunctions are uncorrelated in time with mean square 

values equal to the eigenvalues n , 

n

nmmn tata )()(  (2.36) 

Using equation (2.22), the fluctuating part of the nth snapshot can be reconstructed as 

(Sirovich 1991): 
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Since the POD is performed on the fluctuating velocity fields, the nth eigenvalue, n , 

represents the turbulent kinetic energy (tke) contribution of the nth POD mode, Φn, with Mode 1 

contributing the most energy, followed by Mode 2, and so on. The fractional contribution of mode 

Φn to the total tke is given by (Sen et al. 2007): 
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Lower-order modes are representative of the large-scale coherent structures of the flow 

while higher-order modes correspond to the small-scale and less energetic turbulent structures. 

The cumulative energy contained in modes 1 to m is given by 
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It must be noted that because the lower-order modes contribute much more energy than the 

higher-order ones, only the first few modes may be necessary to reconstruct the essential features 

of the flow. Using equation (2.37), a low-order representation of an instantaneous flow field based 

on the first m (< N) leading modes can be reconstructed as  
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The accompanying residual field composed of the motions from the discarded higher-order 

modes is then calculated as  

n
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 (2.41) 

 

2.6.5      Energy Spectra  

Energy spectra describe the distribution of energy among the various scales of turbulence. The 

spectral representation of a turbulent flow considers turbulence to be made up of a hierarchy of 

scales, including large scales of wavelength or size comparable to the size of the flow domain, and 

small scales of significantly shorter wavelength. The large scales extract energy from the mean 

flow to provide the kinetic energy for the turbulence, while the small scales, formed because of 

the continuous stretching or straining of the large scales by the mean deformation, drain energy 

from the large scales to be dissipated by viscosity. 

In near-wall turbulence, the large scales are anisotropic due to the strain imposed by the 

mean deformation. Kolmogorov (1941) hypothesized that at sufficiently high Reynolds numbers 

the small-scale motions are statistically steady, isotropic and independent of the detailed structure 

of the large scales and the mean deformation rate. This hypothesis, popularly referred to as K41 in 

the literature, implies that while the large scales may be flow dependent, the small scales are 

universally similar for all kinds of turbulent flows.  

Figure 2.5 shows a schematic of the turbulence energy spectra often observed in high 

Reynolds number turbulent flows. At high Reynolds numbers an intermediate range of scales is 

observed between the small and large scales across which inter-scale energy transfer occurs and is 

known as the inertial subrange. For the inertial subrange, Kolmogorov postulated that the energy 

transfer depends solely on the value of the average dissipation rate ε and proposed the relation 
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 (2.42) 

where the value of the constant CK for the three-dimensional spectrum is given by Monin and 

Yaglom (1975) as 1.5 ± 0.1. 

 

 
Figure 2.5: Schematic of the turbulent kinetic energy spectrum. (a) Wavenumber spectrum, (b) 

Frequency spectrum. 

 
From the energy spectrum the average dissipation rate ε can be calculated as (Nelkin 1994): 

𝜀 = 2∫ 𝑘2𝐸 𝑑𝑘
∞

0

 (2.43) 

The dissipation spectrum is given by 

 (2.44) 

The quantity E(k, t) represents the turbulent kinetic per unit mass, per unit wavenumber in 

all three velocity components (Nelkin 1994). It is obtained as the surface integral of the Fourier 

transform of one-half the trace of the cross-correlation tensor (Pope 2000) over a sphere of radius 

k = (k1
2+k2

2+k3
2). Since E(k, t) provides no directional information, the one-dimensional energy 
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spectral density Eii and cross-spectral density Eij are found more useful and are the spectra 

considered in the present data analysis. The cross-spectral density is defined as 

 (2.45) 

where Rij is the one-dimensional two-point cross-covariance function given by 

 (2.46) 

Using the properties of the Fourier transform, the spectrum may also be calculated in a 

more computationally efficient manner. Following Hong and Katz (2011), the cross-spectral 

density was estimated along the streamwise direction as 

 (2.47) 

where L is the length of the flow domain, N is the number of points and k1 is the wavenumber in 

the streamwise direction. The quantity Fi denotes the Fourier transform of the velocity field given 

by (Doron et al. 2001): 

 (2.48) 

where W is a windowing function and F* is the complex conjugate of F.  
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Following Pope (2000), the frequency spectra can be estimated from the temporal 

correlation of a stationary random process as  
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where R is temporal auto-covariance of the velocity fluctuation u or v given by 

𝑅𝑖𝑖(𝑥, 𝑦, Δ𝑡) = 〈𝑢𝑖(𝑥, 𝑦, 𝑡)𝑢𝑖(𝑥, 𝑦, 𝑡 + ∆𝑡)〉 (2.51) 
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In equations (2.50) and 2.51, Δt is the temporal separation. Both the spatial and temporal 

(frequency) spectra are explored in this investigation. 

2.7    Summary  

Separated and reattached turbulent flows over smooth forward-facing steps and blunt rectangular 

plates have been investigated extensively in the past by means of experimental methods as well as 

numerical simulations. From these studies, the following conclusions can be drawn: The 

reattachment length of the primary recirculation region decreases almost linearly with increasing 

freestream turbulence intensity but is an increasing function of Reynolds number up to a critical 

Reynolds number. The value of the critical Reynolds number decreases with background 

turbulence level. Beyond the critical Reynolds number, the reattachment length remains relatively 

constant. Also, the increase with Reynolds number is more dramatic at lower values of the relative 

boundary layer thickness than at higher values. 

The mean (static) pressure is adverse upstream of the FFS with largest value occurring 

close to the step, favourable on top of the step, and returns to equilibrium conditions (or ZPG) as 

the flow evolves downstream. The largest pressure coefficient, root-mean-square pressure 

fluctuation and highest spectral energy occur at the mean reattachment point. 

The values boundary layer integral parameters such as the skin friction coefficient and 

boundary layer shape factor decrease to minimum values at the separation point followed by sharp 

increase immediately downstream of the step, though they level off to slightly higher values than 

observed upstream. The mean streamwise velocity relaxes more quickly to the self-similar values 

than the mean wall-normal velocity, turbulence intensities and Reynolds stresses.  

In the presence of wall roughness, place either upstream or on top of the step, the 

reattachment length is reduced by the presence of wall roughness both upstream of the step and 
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over the step. In the presence of upstream roughness, the reattachment length is relatively invariant 

with Reynolds number. 

Wall roughness also reduces the mean velocity both upstream and downstream of the step. 

On the contrary, while the turbulence intensities and Reynolds stresses are enhanced by roughness 

in the unperturbed case, reductions are observed over the step when compared to a smooth wall. 

Roughness also reduces the contributions of Reynolds shear stress producing events: ejections and 

sweeps, leading to reduction of the mean Reynolds shear stress. 
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CHAPTER 3 

EXPERIMENTAL SETUP AND MEASUREMENT PROCEDURE 

This chapter presents details of the experimental setup used for the velocity measurements. These 

include a description of the test section, the principles of time-resolved particle image velocimetry 

(TR-PIV) and a summary of the test conditions investigated.  

3.1    Test Section 

The experiments were conducted in an open recirculating water channel as shown in Figure 3.1. 

The test section of the channel is 6000 mm long, and has a cross section of dimensions 600 mm × 

450 mm. The side and bottom walls of the channel were fabricated from smooth 31.8 mm thick 

Super Abrasion Resistant (SAR) transparent acrylic plates that facilitate optical access. A smooth 

step of nominal height, h = 15 mm and length L = 2400 mm, spanning the entire width of the 

channel, was positioned 3600 mm from the inlet of the channel. The aspect ratio, AR (= W/h) was 

approximately 40, which is four times larger than the minimum value of W/h ≈ 10 (Brederode and 

Bradshaw 1972) required to ensure the flow is nominally two-dimensional at the mid-span of the 

channel. The flow in the channel was driven by an impeller pump that delivers a maximum flow rate 

of 33950 LPM. A 40HP variable-speed drive motor was used to regulate the speed of the pump. The 

flow in the channel was driven by a centrifugal pump through a series of flow conditioning units, 

including a perforated plate, a hexagonal honey-comb, mesh screens and a 4.88:1 converging 

section. The resulting fine-scale flow at the inlet was triggered by a 100 mm wide sandpaper 16-

grit to promote a rapid transition of the approach boundary layer to turbulence. 
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Figure 3.1: Picture of test facility used for flow measurements: (a) front view of the water channel; 

(b) side view of the water channel and (c) experimental facility.  
 

3.2    Description of Wall Roughness 

In addition to the upstream smooth wall, two replaceable upstream rough-wall conditions were 

investigated: a 16-grit sandpaper of average roughness height, 1.54 mm, which was glued to a 6 

mm acrylic insert (Figure 3.2b), and staggered cubes of height, k = 3 mm, and spacing Px = Py = 

6 mm, which were glued to a 3 mm acrylic insert (Figure 3.2c). The average roughness height of 

the sandpaper was measured using a SMZ800N optical stereo microscope that yielded a sample 
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standard deviation, skewness and kurtosis of approximately 0.42 mm, 0.63 and 3.08, respectively. 

The two types of roughness elements used in this study are shown in Figure 3.3. 

 

 

  
 

Figure 3.2: Schematic of the FFS with replaceable upstream wall (not drawn to scale): (a) test 

section with FFS (smooth wall); (b) replaceable rough wall made from sandpaper 16-grits; and (c) 

replaceable rough wall made from cubes. 
 
 

 

  

  

Figure 3.3: Types of roughness elements used: (a) 16-grit sandpaper; (b) and (c) staggered cubes. 

(a) 

(b) (c) 
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3.3    Test Conditions 

The step height, h, was kept constant for all three cases at 15 mm. The upstream water depth, Hu, 

was about 415 mm for all cases, leading to a blockage ratio (BR = h/Hu) of 0.03. The measurements 

were made in the mid-span (z/h ≈ 0) in seven measurement planes, P0 to P6, corresponding to the 

upstream station, the recirculation and redevelopment regions, respectively. For the smooth and 

rough walls, the velocity of the approach flow was approximately 0.520 m/s, corresponding to a 

Reynolds number of 7800, based on the freestream velocity and step height. In all cases, the Froude 

number, FrH = Uo/(gHu), was approximately 0.25, which ensured that the effects of surface waves 

on the quality of results were minimal. For ease of reference, the test conditions for the smooth 

upstream wall, sandpaper and cube roughness are denoted by the acronyms SM, SP and CB, 

respectively.  

3.4    Time-Resolved Particle Image Velocimetry 

In the last few decades particle image velocimetry (PIV) has been established as a whole-field 

measurement methodology for simultaneously measuring the velocities in both 2D (planar) and 

3D (volumetric) flow regions. A typical setup is depicted schematically in Figure 3.4. The flow is 

seeded with small neutrally buoyant particles whose response times are much shorter than the fluid 

time scale so that their velocities approximate the fluid velocity. The area of interest (AOE) also 

known as the field of view (FOV) is illuminated by a pulsed sheet of high-intensity laser light, 

fired at precise time intervals. The images of the light scattered by the particles are captured and 

recorded by a high-speed camera. Image processing methods are then applied to estimate the 

displacement of the particles within the images. The displacement is divided by the time interval 

between laser pulses to yield the velocity. 



43 
 

 
Figure 3.4: A typical setup of a planar TR-PIV system. 

 

 

3.4.1     Particle Illumination and Recording 

Lasers are widely used to illuminate seeding particles in PIV due to their high-energy density 

monochromatic light that can be formed into thin sheets of light. A laser consists of three main 

components, namely, the laser material consisting of atomic or molecular gas, semiconductor or 

solid material; the pump source that excites the laser material by electromagnetic energy or 

chemical energy, and the mirror arrangement allowing an oscillation within the laser material. To 

provide light sheets of high intensity, laser beams with good and stable properties as well as high 

energy pulses are required. One such laser is the Neodymium: Yttrium Aluminum Garnet 

(Nd:YAG) semi-conductor type laser in which the laser beam is generated by excited Nd3+ ions. 

The excitation is produced by pumping the laser material with electromagnetic energy. The excited 

ions are then promoted to higher energy levels after absorbing photons of electromagnetic energy. 

If the energy released on subsequent fall back to their unexcited state is in phase with the exciting 
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photons light amplification by stimulated emission is said to occur. Frequency doubled Nd:YAG 

lasers emit infra-red radiation whose frequency is doubled to produce green light of wavelength 

532 nm. The pulses of the laser are triggered by means of a quality switch (Q-switch). The most 

important property of a laser system that determines its suitability for flow measurement is the 

pulse repetition rate. For most commercially available Nd:YAG lasers, the pulse repetition rate is 

limited to 10 to 15 Hz. These are often adequate for most low-speed applications. However, the 

need for high-speed, time-dependent turbulence applications has led to the development of high-

repetition rate lasers capable of delivering pulse bursts of up to 1 kHz – 1 MHz. An example is the 

Neodymium: Yttrium Lithium Fluoride (Nd:YLF) dual-pulse laser with a pulse width of about 129 

ns and wavelength 527 nm that delivers a total energy of 30 – 60 mJ/Pulse at 1 kHz – 10 kHz. 

The intensity of the light sheet produced by the laser is considered to follow a Gaussian 

distribution of the form 

 22 /8exp lo dzII   (3.1) 

where Io is the peak intensity of the sheet and dl is the light sheet thickness, defined at the Ioe
-2 

intensity level (that is, where z = dl/2).  

 In order to capture the images of the illuminated particles, high-spatial resolution cameras 

such as the charge-coupled device (CCD) camera are used. The cameras are synchronized with the 

laser to allow image acquisition within the duration of the pulse. However, typical commercially 

available CCD cameras are limited to the acquisition of relatively few image pairs per second (e.g., 

4 image pairs/second or 4Hz). On the contrary, the development of high-speed cameras such as 

the complementary metal-oxide semiconductor (CMOS) camera makes it possible to achieve up 

to kilohertz (kHz) image acquisition rates. When coupled with the high-repetition rate lasers, the 

CMOS camera becomes an extremely valuable tool for performing time-resolved PIV 

measurements. The availability of the high-speed CMOS cameras allows turbulence research into 
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rapidly evolving time-dependent flow phenomena as found in separating and reattaching flows 

around bluff bodies.  

 In practical applications, the images recorded by the camera are acquired in one of two 

ways: i.e., either as a single-frame/multi-exposure or multi-frame/single-exposure acquisition. In 

single-frame/multi-exposure mode, two or more exposures are recorded on the same frame, 

leading to multiple images of the same particle within the frame. The method is successful only 

when a relatively small number of particles are involved since too many particles in the flow can 

result in overlapping images. The single exposure also leads to directional ambiguity as there is no 

way to decide which image comes from the first illumination or the second illumination. The 

directional ambiguity is solved by using the multi-frame/single-exposure mode.  

The particle image intensity is approximated by a two-dimensional Gaussian distribution 

of the form 

       222
8exp, tppp dyyxxIyxI   (3.2) 

 

where I is the laser sheet intensity distribution given by equation (3.1), (xp, yp) is the location of 

the peak intensity and dt is the particle image diameter given by (Adrian 1991): 

  2/1222

spt ddMd   (3.3) 

      

where M is the magnification and ds is the width of the Airy function of a diffraction limited lens. 

For a camera of f-number, f # = f'/Da, where f' is the focal length and Da the aperture diameter, the 

Airy function width is given by (Adrian 1991): 

  #144.2 fMd s   (3.4) 

        

where λ is the wavelength of the light. Knowing the particle intensity distribution, the 

corresponding particle pixel value is the integral over the area of the pixel: 
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3.4.2      Statistical Evaluation of Recorded Images 

The images acquired by the camera are processed numerically using convolution algorithms to 

determine the average displacement of the particles within the image. The algorithm first divides 

the image into a number of smaller regions called interrogation areas (IA). To calculate the particle 

displacement for a given IA, the pixel intensity values are statistically correlated with one another 

over the same IA (auto-correlation), or with the pixel intensity values of a corresponding IA in 

another image (cross-correlation). A detailed discussion of the mathematical background of the 

two correlation methods in PIV can be found in Westerweel (1997) and Raffel et al. (1998). 

3.5      Measurement Procedure 

A high-resolution 2D-2C TR-PIV system, which consists of a high repetition-rate laser source, a 

high-speed camera, and data acquisition system was used to measure the data. The flow was seeded 

with 10 μm silver coated hollow glass spheres with specific gravity of 1.4 and illuminated by a 

Photonics DM30-527DH dual-head high-speed Nd:YLF laser, that emits green light up to a 

maximum of 30 mJ/pulse for each laser at  = 527 nm. A high speed 12-bit f#2.8 Phantom VEO-

340L complementary metal-oxide semiconductor (CMOS) camera with 806 frame rate at a full 

resolution of 2560 pixel × 1600 pixel was used to capture the images. The pixel pitch of the camera 

was 10 μm. In the present experiments, the images were acquired at a rate of 1047 Hz at a reduced 

resolution of 1920 pixel × 1600 pixel. The field of view of the camera was set to approximately 88 

mm × 73 mm (i.e., 5.8h × 4.8h) for the SM in the x and y directions. Due to the significantly thicker 

boundary layers over the sandpaper (SP) and cube roughness (CB), the field of view was increased 

to 131 mm × 109 mm (8.7h × 7.3h) for the rough-wall cases.  
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Table 3.1: Summary of TR-PIV experimental parameters 

Parameter Value 

Camera pixel pitch 10 µm 

Laser power 30 mJ/Pulse 

Aperture (f#) 2.8 

Light sheet thickness 1 mm 

Field of view (FOV) 88  73 mm2 (SM); 131  109 mm2 (SP and CB) 

Pulse separation (Δt) 5 s 

Magnification (M) 0.22 (SM); 0.15 (SP and CB) 

Diameter of tracer particles (dp) 10 μm 

Slip velocity (Us) 2.1810-5 m/s 

Particle response time (𝒑) 2.2210-6 s 

Stokes number (Sk) 0.00085 (SM); 0.0015 (SP); and 0.0027 (CB) 

Image sampling frequency (f) 1047 Hz 

Sampling time (T) 17s (SM); 23s (SP and CB) 

 

The TR-PIV experimental parameters are summarized in Table 3.1. The corresponding 

magnification factors were respectively 0.22 for the smooth wall and 0.15 for SP and CB. The slip 

velocity of particles was estimated as (Raffel et al. 1998): 

𝑈𝑠 =
𝑑𝑝

2(𝜌𝑝 − 𝜌𝑓)

18𝜌𝑓
𝑔 (3.6) 

where 𝜌𝑝 and 𝜌𝑓 are the density of seeding particles and working fluid (water), respectively. Also, 

the response time of the seeding particles was estimated as 

𝜏𝑝 =
𝑑𝑝

2(𝜌𝑝 − 𝜌𝑓)

18𝜌𝑓
 (3.7) 

The fluid characteristic time scale, 𝜏𝑓, herein taken as the viscous timescale,  /𝑈𝜏
2, was 

approximately 2.60×10-3 s, 1.48×10-3 s and 8.16×10-4 s for SM, SP and CB, respectively. The 

corresponding values of the Stokes number, Sk = 𝜏𝑝/𝜏𝑓, were 0.00085, 0.0015 and 0.0027 for SM, 

SP and CB, respectively. These values are within the recommended range of  Sk  0.05 proposed by 

Samimy and Lele (1991).  
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Detailed velocity measurements were made first in Plane 0 upstream of the step (with the 

field of view centered at x/h = 20) to characterize the upstream smooth and rough wall turbulent 

boundary layers. This was followed by successive measurements in planes P1 to P6 spanning the 

recirculation and redevelopment regions. For the smooth and rough test condition, 18000 and 24000 

instantaneous image pairs were acquired in each measurement plane, respectively. The sample 

sizes of 18000 and 24000 were confirmed in a convergence analysis (Appendix A) to be sufficient 

for the statistics to converge. The data acquisition was controlled using commercial software (DaVis 

version 8.4) supplied by LaVision. The experiment was designed to have the particle image diameter 

between 24 pixels to minimize the effect of peak-locking. The particle displacement was 

calculated using the adaptive multigrid cross-correlation algorithm, starting with a IA size of 128 

× 128 pixels with 50% overlap and decreasing it to 32 × 32 pixels with 75% overlap. The 

processing procedure used a multi-pass FFT with a one-dimensional Gaussian peak-fitting 

function to determine the average particle displacement within the interrogation window to sub-

pixel accuracy. The resulting vector spacing in the streamwise and wall-normal directions were 

0.024h × 0.024h for the smooth wall and 0.036h × 0.036h for sandpaper and cube roughness. At 

32 × 32 pixels (75% overlap), the spacing between vectors in physical units were 0.37 mm and 

0.37 mm in the x and y directions respectively for SM. The corresponding spacing between vectors 

for SP and CB were 0.55 mm and 0.55 in the x and y directions, respectively. In viscous wall units, 

these dimensions correspond to 7.3, 14.3 and 19.3 for the smooth wall, sandpaper and cube 

roughness, respectively. 

3.6      Uncertainty Estimates 

In their most recent publication, Coleman and Steele (2009) defined an uncertainty in a measured 

result as a term used to describe the degree of goodness of the measured result. This implies that a 
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measurement uncertainty has a direct impact on the reliability of the measurement. Thus, the 

identification and mitigation of sources of experimental uncertainty is of paramount significance 

to the present investigation. In any given experiment, two types of uncertainty can be identified: 

systematic uncertainties and random uncertainties. There are several sources of systematic 

uncertainty in PIV that tend to bias the measurement results. These include particle response to 

fluid motion, light sheet positioning, light pulse timing, seeding density, out-of-plane motion and 

interrogation area (IA) size. Random uncertainties, on the other hand, describe measurement 

uncertainties whose magnitude does not change during the measurement period (Coleman and 

Steele 2009).  

Uncertainties in the TR-PIV results were estimated using the correlation statistics method 

proposed by Wieneke and Prevost (2014), in which the computed displacement field is used to 

compare correlated interrogation areas in the first and second image frames. A sub-pixel 

interpolation function is then fitted to the cross-correlation function, which is subsequently used 

to estimate the root-mean-square value of the displacement error. Details of the uncertainty 

estimation procedure are presented in Appendix B. Based on this approach, the uncertainty in the 

instantaneous streamwise velocity for the upstream smooth wall, sandpaper, and cube roughness 

at the 95% confidence level were estimated to be ±1.0%, ±2.1% and ±3.0%, respectively. Using 

the uncertainty propagation methodology suggested by Sciacchitano and Wieneke (2016), the 

uncertainties in the mean velocity, streamwise Reynolds stress, wall-normal Reynolds stress and 

Reynolds shear stress for the upstream smooth wall condition were estimated to be ±1.5%, ±1.8%, 

±1.8%, and ±3.5%, respectively. The corresponding values for the SP are respectively, ±2.0%, 

±2.2%, ±2.2%, and ±6.1% and for CB are ±3.1%, ±2.3%, ±2.3%, and ±7.9%, respectively.  
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CHPTER 4 

RESULTS AND DISCUSSION 

In this chapter, the statistical properties of the flow obtained within the three regions of the flow: 

upstream region, recirculation region and redevelopment region for the upstream smooth- and 

rough-wall conditions are discussed.  

4.1    Upstream Boundary Layer Characteristics 

The velocity measurements made at x/h = –20 were analysed in order to characterize the state of 

the approach boundary layer upstream of the step. The boundary layer characteristics for the 

upstream smooth- and rough-wall conditions are summarized in Table 4.1. These include the 

freestream velocity, Uo, boundary layer and displacement thicknesses δ and δ*, respectively, 

momentum thickness, θ, shape factor, H (= δ*/θ), relative boundary layer thickness, δ/h, 

momentum thickness Reynolds number, Reθ, and velocity scales, U|h, urms|h, and vrms|h, measured 

at the height of the step (y = h). The boundary layer thickness was estimated as the distance from 

the wall to wall-normal location where the mean streamwise velocity reaches 99% of the 

freestream velocity.  The shape factor of H = 1.39 observed over the smooth wall is within the 

range of typical values of 1.3 – 1.4 documented for ZPG turbulent boundary layers over smooth 

walls (e.g., Karlsson 1978; Smith and Smits 1994; Tachie et al. 2000). Over the sandpaper and 

cube roughness, the shape factor value is increased by approximately 10% and 36%, respectively, 

because the rough walls increase the mass flux deficit (δ*) more substantially than the momentum 

flux deficit (θ) upstream of the FFS. For the smooth and rough walls, the value of δ/h corresponds 

to the δ/h = O (1) Bradshaw and Wong’s (1972) classification, indicating a strong perturbation of 

the boundary layer by the FFS. Because roughness enhanced the momentum flux deficit, the values 

of the momentum thickness Reynolds number are approximately 70% and 72% higher over the 

sandpaper roughness and staggered cubes, respectively, in comparison to the smooth wall. As 



51 
 

expected, roughness reduced the mean streamwise velocity and enhanced the streamwise and wall-

normal turbulence intensities at the step height. Also summarized in Table 4.1 are the values of 

the skin friction coefficient, Cf = 2(Uτ/Ue)
2 and dimensionless equivalent sandgrain roughness, ks

+ 

= ksUτ/, where Uτ is the friction velocity and ν is the kinematic viscosity. The values of the friction 

velocity were estimated by a Clauser chart fit of the logarithmic mean velocity profiles U+ = (1/κ) 

lny+ + B and U+ = (1/κ)ln(y + yo)
+ + B – ΔB+ to the mean velocity data over the smooth and rough 

walls, respectively, where κ = 0.41 and B = 5.0 are the logarithmic law constants, ΔB+ is the 

roughness function (ΔB+ = 0 for a smooth wall) and yo is the virtual origin. The results indicate a 

63% enhancement in skin friction by the sandpaper roughness and a more than a three-fold increase 

in friction by the cube roughness. The dramatic increase in skin friction by the cubes is consistent 

with the relatively large value of the corresponding equivalent sandgrain roughness height. 

Following Schlichting (1979), the value of ks
+ ≈ 503 suggests that the cube roughness is fully 

rough (ks
+ > 70) while the sandpaper roughness is transitionally rough (ks

+ < 70). It should be 

mentioned that the precision uncertainty in the boundary layer thickness (δ), displacement 

thickness (δ*), and momentum thickness (θ) for SM was estimated as 4.1%, 8.0%, and 6.5%, 

respectively. The corresponding values for the SP were 5.2%, 9.7%, and 7.2% and for the CB 

were 5.9%, 11.2%, and 7.6%. The uncertainties in the friction velocity (U) were estimated to 

be 3.0%, 5.0%, and 6.0% for SM, SP, and CB, respectively. Accordingly, the uncertainty in 

skin friction coefficient, Cf, was estimated to be 4.3%, 7.0%, and 9.1% for SM, SP, and CB, 

respectively.  
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Table 4.1: Summary of upstream boundary layer parameters and drag characteristics 

Parameters SM SP CB 

Uo (m/s) 0.517 0.527  0.515 

U (m/s) 0.019 0.026 0.035 

δ (mm) 64.8 100.3 100.4 

δ*(mm) 11.04 20.02 25.52 

 (mm) 7.8 13.0 13.5 

H 1.39 1.52 1.89 

δ/h 4.3  6.7 6.7 

Reθ 4032 6877 6952  

Uh/Uo 0.738 0.631  0.587 

urmsh/Uo 0.071 0.089  0.110  

vrmsh/Uo 0.042 0.056  0.062  

Cf 0.0030 0.0049  0.0092  

ks
+ --- 69 503 

 

4.2    Flow Characteristics in the Separated and Reattached Region 

4.2.1    Instantaneous Flow Visualization 

For all the test cases investigated, the flow in the separated and reattached region was observed to 

be highly unsteady and dominated by large-scale coherent structures. To provide insight into the 

instantaneous large-scale structures in the separated shear layer a Galilean decomposition was 

applied to the instantaneous velocity fields. Figure 4.1 shows time-sequenced plots of the Galilean 

decomposition of the instantaneous velocity fields for the upstream smooth wall condition. The 

vector plots were obtained by subtracting a constant convection velocity of approximately Uc = 

0.8Uo from the instantaneous streamwise velocities. The decomposition reveals the presence of 
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streamwise-aligned vortex cores representing the heads of the spanwise vortices produced by the 

Kelvin-Helmholtz roll up of the separated shear layer. The vortex cores are inclined at angles of 

approximately 10º – 15º over the step in the downstream direction. In order to elucidate the vortical 

structures in the flow the swirling strength criterion (λci) proposed by Zhou et al. (1999) was used. 

Because the complete 3D velocity gradient tensor was inaccessible, the 2D velocity gradient tensor 

was used in estimating the values of the swirling strength, λci,z, in the x-y plane. A similar approach 

has been used in previous planar PIV measurements of canonical turbulent shear flows (Hutchins 

et al. 2005; Tay et al. 2015). The instantaneous λci,z distribution was decomposed into prograde 

(negative) and retrograde (positive) swirling strength in order to differentiate between clockwise 

and counter-clockwise swirling motions, respectively. Contours of the prograde (blue λci,z patches) 

and retrograde (red λci,z patches) were superimposed on the vector fields as shown in Figure 4.1. 

The plots depict a larger proportion of prograde swirling motions compared to retrograde swirling 

motions in the separated shear layer. The prograde swirling patches are located along the edge of 

the shear layer and coincide with the spanwise vortex cores. This implies that prograde vortices 

are more dominant features of the separated shear layer than retrograde vortices. Additional flow 

structures revealed by the Galilean decomposition include low-speed motions (ejections) away 

from the leading edge and top surface of the step and high-speed motions (sweeps) towards the 

wall further downstream. As explained by Tomkins and Adrian (2003), these motions are induced 

by the spiralling motion of the vortex cores. The appearance of the vortical structures in all the 

vector fields provides an indication that these structures are recurrent features of the separated and 

reattached shear layer over the FFS.  
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Figure 4.1: Time-sequenced plots of the Galilean decomposition of the instantaneous flow fields 

over the FFS for the upstream smooth (SM) wall condition: (a) t = 0s (t/T = 0); (b) 2.0s (t/T = 69); 

(c) 4.0s (t/T = 139); (d) 6.0s (t/T = 208); (e) 8.0s (t/T = 277); (f) 10.0s (t/T = 347). 

 

(a) (b) 

(c) (d) 

(e) (f) 
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Figure 4.2 shows the time-sequenced plots of the vector fields for the upstream sandpaper 

roughness. In this case a constant convection velocity of Uc ≈ 0.7Uo was subtracted from the 

velocity fields to reveal the vortices. For the most part, the coherent structures in the time-

sequenced plots are qualitatively similar to those observed for the smooth wall case, except for a 

reduced streamwise inclination of the spanwise vortices. This would suggest that the transitionally 

rough 16-grit sandpaper (ks
+ ≈ 69) has no significant impact on structure organization over the 

FFS.  

Figure 4.3 shows the Galilean decomposition over the FFS for the upstream staggered 

cubes with Uc ≈ 0.9Uo. The plots show frequent large-scale ejections away from the step, extending 

well into the outer parts of the flow compared to the smooth wall and sandpaper roughness. These 

large-scale ejections are caused by vigorous eruptions of fluid from the FFS by the cube roughness 

and are consistent with the relatively large drag characteristics (Cf and ks
+) observed for the 

staggered cubes. The plots also show a significantly larger proportion of non-zero swirling 

strength, which are distributed over a wider area of the flow field than was observed for the cases 

with the upstream smooth wall and sandpaper roughness. These results are in agreement with 

previous boundary layer measurements (Volino et al. 2011) over staggered cubes that attributed 

the violent eruptions to strong Reynolds shear stress producing events in the shear layer. 
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Figure 4.2: Time-sequenced plots of the Galilean decomposition of the instantaneous flow fields 

over the FFS for the upstream sandpaper (SP) roughness condition: (a) t = 0s (t/T = 0); (b) 2.0s 

(t/T = 69); (c) 4.0s (t/T = 139); (d) 6.0s (t/T = 208); (e) 8.0s (t/T = 277); (f) 10.0s (t/T = 347). 

 

 

 

(a) (b) 

(c) (d) 

(e) (f) 
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Figure 4.3: Time-sequenced plots of the Galilean decomposition of the instantaneous flow fields 

over the FFS for the upstream cube (CB) roughness condition: (a) t = 0s (t/T = 0); (b) 2.0s (t/T = 

69); (c) 4.0s (t/T = 139); (d) 6.0s (t/T = 208); (e) 8.0s (t/T = 277); (f) 10.0s (t/T = 347). 

 

 

 

(a) (b) 

(c) (d) 

(e) (f) 
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4.2.2    Flapping of the Separated Shear Layer 

The literature identifies two main mechanisms as the factors responsible for the large-scale 

unsteadiness of the separated and reattached shear layer over the step. These include the Kelvin-

Helmholtz roll up of the vortices shed from the leading edge of the step, and the low-frequency 

oscillation (flapping) of the shear layer. Previous investigations (e.g., Ota et al. 1981; Driver et al. 

1987) concluded that the flapping of the shear layer leads to the streamwise oscillation of the 

instantaneous reattachment point. To investigate flapping of the shear layer the distributions of the 

temporal auto-correlation of the velocity fluctuations were calculated. For a given reference 

location (xref, yref) and time lag, τ, the temporal auto-correlations were estimated as  

𝑅𝐴𝐴(𝑥𝑟𝑒𝑓 , 𝑦𝑟𝑒𝑓 , 𝜏) =  〈𝐴(𝑥𝑟𝑒𝑓 , 𝑦𝑟𝑒𝑓 , 𝑡)𝐴(𝑥𝑟𝑒𝑓 , 𝑦𝑟𝑒𝑓 , 𝑡 + 𝜏)〉/[𝜎𝐴(𝑥𝑟𝑒𝑓 , 𝑦𝑟𝑒𝑓)𝜎𝐴(𝑥𝑟𝑒𝑓 , 𝑦𝑟𝑒𝑓)] (4.1) 
 

where A denotes the quantity whose auto-correlation function is required and σA is the root-mean-

square value of A. The temporal auto-correlations Ruu and Rvv, calculated at the edge of the shear 

layer near the leading edge of the step (x/h ≈ 0.01), are shown in Figures 4.4(a) and 4.4(c), 

respectively. Near the leading edge, the auto-correlations for the smooth and rough walls exhibit 

a long tail. Similar observations were reported by various investigators (e.g., Ota and Motegi 1983; 

Kiya and Sasaki 1983; Djilali and Gartshore 1991), who attributed it to the flapping of the shear 

layer. The distributions also exhibit a high-frequency oscillation with temporal separation (t) due 

to the large-scale vortices shed from the leading edge of the step. The dimensionless vortex 

shedding frequency or Strouhal number estimated from the peak values of the frequency spectra, 

Euu and Evv near the leading edge (Figures 4.4(b) and 4.4(d)) were approximately Sto = 0.103 

(3.38Hz), 0.067 (2.35Hz) and 0.059 (2.09Hz), respectively, for the upstream smooth wall, 

sandpaper and cube roughness. The Strouhal number of 0.103 observed over the smooth wall is in 

good agreement with the value of approximately 0.1 reported by Pearson et al. (2011) for a FFS 

flow. The vortex shedding frequency is reduced by the wall roughness in comparison to the smooth 
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wall. Previous bluff body experiments (e.g., Achenbach and Heinecke 1981; Ausoni et al. 2007) 

suggested that there is a direct connection between the upstream conditions and the vortex 

shedding frequency. For instance, the vortex shedding frequency was found to increase linearly 

with an increase in the velocity upstream of smooth and rough airfoils (Ausoni et al. 2007). The 

lower shedding frequencies observed for the present rough wall cases are in concert with the 

reduction in the mean streamwise velocity at the step height for these cases. 

 

  

  
Figure 4.4: Temporal auto-correlations of the velocity fluctuations and energy spectrum near the 

leading edge of the FFS: (a) Ruu vs. dimensionless t; (b) Euu vs. dimensionless f; (c) Rvv vs. 

dimensionless t; (d) Evv vs. dimensionless f. 
 

4.2.3    Distributions of the Mean Velocities and Reynolds Shear Stress 

Figure 4.5 shows the iso-contours of the normalized mean streamwise velocity, U/Uo, and the 

stream function, Ψ, in the recirculation region, where Uo is the freestream velocity of the approach 

boundary layer.  
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Figure 4.5: Contour plots of the normalized mean streamwise velocity (U/Uo) and stream function 

over the smooth and rough walls. Top-left to bottom-left: Contours of the mean streamwise 

velocity. Top-right to bottom-right: Streamlines over the smooth and rough walls. 

 

Figure 4.5(a) shows the mean streamwise velocity contours for the upstream smooth-wall 

condition. In the vicinity of the step, the flow is decelerated and deflected due to the obstruction 

caused by step. As observed in previous studies (Chou and Chao 2000; Largeau and Moriniere 
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2007), the flow is deflected both in the wall-normal and spanwise directions. While the upstream 

separation is caused by secondary currents within the upstream corner of the step, the separation 

downstream of the step is due to the sudden change in direction of the flow over the leading edge. 

The flow separation upstream and downstream of the step results in backflow in both regions 

depicted as regions of negative mean streamwise velocity. The recirculation bubble in both regions 

is defined as the area of the flow enclosed by the zero-mean velocity contour line (U/Uo ≈ 0). The 

strongest backflow is observed in the primary (downstream) recirculation region, amounting to 

approximately 20% of the approach velocity. The corresponding mean velocity distributions over 

the sandpaper and cube roughness are shown in Figures 4.5(c) and 4.5(e), respectively. The 

distributions over the rough walls bear a close resemblance to the smooth wall except for the 

smaller primary recirculation zones in these cases compared to the smooth wall. The maximum 

backflow over the sandpaper and cubes are substantially reduced to about 9% and 4% of the 

approach velocity, respectively. These results suggest that the upstream roughness has a damping 

effect on flow separation downstream of the step. This is consistent with the damping of the vortex 

shedding process over the rough walls.  

The streamlines shown in Figures 4.5(b), 4.5(d) and 4.5(f) for the smooth wall, sandpaper 

and cube roughness, respectively, depict the extents of the recirculation regions for the smooth and 

rough wall cases. Each plot also shows the zero-mean velocity contour level, superimposed to 

facilitate the estimation of the mean reattachment lengths, Lr and lr, of the primary and secondary 

recirculation regions, respectively. From the streamlines, the centres of the primary recirculation 

bubble for the smooth wall, sandpaper and cube roughness were estimated to be approximately 

(0.82h, 1.19h), (0.68h, 1.17h) and (0.55h, 1.11h), respectively. These results indicate a monotonic 

decrease in the values of the x and y coordinates of the center of the bubble with increasing 

upstream roughness effect. It should be noted that among all three surface conditions, only the 
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smooth wall and cube roughness exhibit complete streamline reversal in the secondary (upstream) 

recirculation region. Over the sandpaper, the results were affected by laser light reflection from 

the roughness elements, leading to difficulties in capturing flow reversal by the camera. 

Table 4.2 provides a summary of the mean reattachment lengths, Lr and lr, as well as the 

vertical extents, Hr and hr, of the primary and secondary recirculation regions, respectively. The 

reattachment length Lr was estimated as the distance from the leading edge of the step to the 

reattachment point downstream of the step (that is, the x-location where U/Uo ≈ 0 contour line 

makes contact with the top face of the FFS), while the reattachment length lr was estimated as the 

distance from the upstream separation point to the vertical face of the step (see Figure 1.1). The 

height of the primary recirculation region (Hr) was estimated as the vertical distance from step to 

the highest point on the U/Uo ≈ 0 contour level, while the height of the secondary recirculation 

region (hr) was estimated as the distance from the upstream wall to the y-location where the V/Uo 

≈ 0 contour level touches the vertical face of the step. For the smooth wall, the primary 

reattachment length, Lr ≈ 2.27h, is in good agreement with the value of 2.5h ± 0.5% obtained by 

Sherry et al. (2010) at Reh ≈ 7500 for δ/h > 1. The presence of the sandpaper and cube roughness 

led to reductions of approximately 22% and 45%, respectively, in the primary reattachment length. 

The upstream reattachment length of lr ≈ 0.74h over the smooth wall is approximately 8% less 

than the value of approximately 0.8h previously reported for FFS flows (Leclercq et al. 2001; 

Largeau and Moriniere 2007). The rough-wall value of lr ≈ 0.76h suggests that the upstream 

reattachment length is nearly independent of roughness upstream of the step and agrees with 

previous observations that the upstream recirculation region of a FFS is relatively stable and 

independent of upstream disturbances (Pearson et al. 2013). The height of the primary recirculation 

region for the upstream smooth wall is within the range of Hr/h ≤ 0.5 – 0.8 reported in the literature 

(Mohsen 1967; Moss and Baker 1980). In the presence of upstream roughness, however, the value 
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of Hr/h is diminishing, albeit by nearly the same amounts (≈ 20% and 44% for SP and CB, 

respectively) as for Lr/h. The literature shows that the size of the primary recirculation bubble is 

highly sensitive to changes in the external turbulence intensity (Hillier and Cherry 1981; Kiya and 

Sasaki 1983; Largeau and Moriniere 2007), and that an increase in the turbulence intensity 

contracts the recirculation bubble over the step. In this context, the reductions in Lr/h and Hr/h can 

be attributed to enhanced turbulence levels over the rough walls (urms|h ≈ 8.9% and 11%, 

respectively, for SP and CB) compared to the smooth wall (urms|h ≈ 7.1%). The height of the 

secondary recirculation region is approximately hr ≈ 0.56h ± 3% for the smooth wall and cube 

roughness. This is within 7% of the value of approximately 0.6h reported in previous boundary 

layers over FFS (Moss and Baker 1980; Leclercq et al. 2001). Despite the diminishing effect of 

upstream roughness on Lr/h and Hr/h, the ratio Lr/Hr is relatively invariant with roughness (Lr/Hr 

≈ 6.5 ± 0.19). The results also indicate that the ratio lr/hr is relatively independent of the upstream 

roughness perturbation. 

Table 4.2: Summary of reattachment lengths and heights of the primary and secondary 

recirculation bubbles 

Test Lr/h lr/h Hr/h hr/h Lr/Hr lr/hr 

SM 2.27 0.74 0.34 0.54 6.67 1.37 

SP 1.78 --- 0.28 --- 6.36 --- 

CB 1.23 0.76 0.19 0.58 6.47 1.31 
 

The effects of upstream roughness on flow acceleration over the step are examined in 

Figure 4.6. The deflection of the flow by the step leads to mean flow acceleration so that the 

freestream velocity over the step is higher than that upstream. Figure 4.6(a) shows the streamwise 

development of the normalized freestream velocity, Ue
* = Ue/Uo′, within the range 1.5 ≤ x/h ≤ 

3.5, where Uo′ is the value of Ue at x/h = 1.5. For the upstream smooth wall, Ue
* increases almost 

linearly within -1.5 ≤ x/h ≤ 1.0 but drops off to near-constant values thereafter. Over the rough 

walls, the variation of Ue
* with streamwise distance is significantly slower when compared to the 
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smooth wall. This is because of the deceleration of the approach boundary layer by the upstream 

roughness. The rough-wall distributions take a relatively longer streamwise distance to level out 

because of the inhomogeneities introduced by the roughness.  

 

  
Figure 4.6: Streamwise development of the (a) freestream velocity and (b) acceleration parameter.  

 

Figure 4.6(b) shows the streamwise development of the acceleration parameter, K', 

estimated as K' = (/Ue
2)(dUe/dx), at the y location of the maximum mean streamwise velocities, 

where  is the kinematic viscosity. In all cases, the value of K' is less than the critical value of K' 

≈ 3.5 × 10-6 required for an accelerated flow to become relaminarized (Moretti and Kays 1965; 

Sreenivasan 1982). As expected, the values of K' over smooth wall are substantially higher than 

over the rough walls within -1.5 ≤ x/h ≤ 1.0. The higher acceleration over the smooth wall will 

also contribute to a delay in reattachment downstream of the step in the smooth-wall case. For the 

rough walls, the acceleration parameter is relatively invariant with streamwise distance and is an 

order of magnitude smaller than for the smooth wall within 1.5 ≤ x/h ≤ 1.0. Further downstream, 

smooth and rough wall results are nearly similar. 

The contours of the mean wall-normal velocity, V/Uo, are presented in Figures 4.7(a), 4.7(c) 

and 4.7(e), for the smooth wall, sandpaper and cube roughness, respectively. The deflection of the  
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Figure 4.7: Contour plots of the mean wall-normal velocity and Reynolds shear stress over the 

smooth and rough walls. Top-left to bottom-left: Contours of the mean wall-normal velocity. Top-

right to bottom-right: Contours of the Reynolds shear stress over the smooth and rough walls. 

 

flow by the step produces an upwash of fluid near the leading edge of the step. This creates near 

the leading edge a high positive mean wall-normal velocity, whose magnitude is decreasing with 

increasing upstream roughness condition. The mean continuity equation for the two-dimensional 

FFS is given by 

∂U/∂x + ∂V/∂y = 0   (4.2) 

As the mean flow accelerates over the step, ∂U/∂x > 0. The continuity equation would 

imply that ∂V/∂y < 0, as evident in the contours above the separated shear layers. For the rough 
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walls, the flow is undergoing retardation because of the enhanced drag so that ∂U/∂x is decreasing. 

To satisfy continuity, ∂V/∂y must increase. This occurs by means of the reductions in V occurring 

over smaller wall-normal distances than observed for the smooth wall. This is consistent with the 

reduction in size of the mean wall-normal velocity contours observed for the rough walls. As the 

upwash is swept over the step by the high-momentum outward flow (U > 0, V > 0), the flow near 

the step reverses direction. This leads to a downwash towards the step, producing regions of 

negative mean wall-normal velocity downstream of the leading edge. Some of this wall-ward-

moving high-momentum fluid (U > 0, V < 0) is entrained by the primary shear layer to overcome 

the momentum deficit created by the separation but the effect diminishes with increasing upstream 

roughness. It should be pointed out that although the downwash towards the wall is more intense 

with increasing upstream roughness, the streamwise inclination of the V/Uo ≈ 0 contour level is 

nearly independent of the roughness effect. A line-fit through the V/Uo ≈ 0 contour level yields a 

streamwise inclination angle of approximately 29.5º ± 0.5º for the smooth and rough walls.  

Figures 4.7(b), 4.7(d) and 4.7(f) show the contour plots of the Reynolds shear stress,  

−〈𝑢′𝑣′〉/Uo
2 for tests SM, SP and CB, respectively. For the smooth wall, the distribution shows a 

small region of negative Reynolds shear stress close to the leading edge of the step, as well as an 

extended region of positive Reynolds shear stress both upstream and downstream of the leading 

edge. The maximum values of positive Reynolds shear stress (u'v'/Uo
2 ≈ 0.17) occur over the 

step, which suggest a strong turbulent mixing process that entrains high-momentum freestream 

fluid into the recirculation region over the step. For the rough walls, the distributions are 

qualitatively similar and the peak value of the Reynolds shear stress remains approximately the 

same as for the smooth wall. However, the enclosed area of the maximum contour level is 

increasingly smaller for the rough-wall cases. It should be noted that the negative Reynolds shear 

stress near the leading edge of the step occurs also for the rough walls. The region of negative 
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Reynolds shear stress can be attributed to the presence of the small wall jet produced by the 

interaction between the upwash along the vertical face and the high-momentum fluid convecting 

in the streamwise direction. Similar negative Reynolds shear stress regions were reported by 

previous investigators of flow over smooth FFS (Sherry et al. 2010; Hattori and Nagano 2010) and 

over rough FFS (Ren and Wu 2011; Essel et al. 2015). Hattori and Nagano 2010 explained the 

occurrence of the negative Reynolds shear stress near the leading edge to be due to the counter-

gradient diffusion phenomenon (CDP) that results in a negative contribution to the kinetic energy 

of turbulence. 

 

4.2.4    Streamwise Growth of the Separated Shear Layer 

The behaviour of the separated shear layer is often compared to a plane mixing layer. The growth 

of the plane mixing layer is commonly characterized using the vorticity thickness, δω, defined as 

(Brown and Roshko 1974): 

δω = (Ue – Umin)/(∂U/∂y)max (4.3) 

where Umin is the local minimum mean streamwise velocity in the shear layer. For steady separated 

shear layers with recirculation, a linear growth of δω has been observed for flow over blunt flat 

plates (Kiya and Sasaki 1983; Ruderich and Fernholz 1986) and backward facing steps (Eaton and 

Johnston 1980; Driver and Seegmiller 1985). Figure 4.8(a) first examines the streamwise 

development of the velocity difference ΔUmax = Ue – Umin over the step. For the smooth wall, the 

normalized velocity difference has a maximum value of approximately 1.1 at the center of the 

recirculation region. A similar value was reported in separated and reattached turbulent flow over 

a blunt flat plate (Castro and Haque 1987) and a backward facing step (Driver and Seegmiller 

1985). The values of ΔUmax/Ue for SP and CB lie within 1.1 ± 3.5%, which are not significantly 

different from the smooth wall value.  
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Figure 4.8: Streamwise development of (a) the velocity defect, ΔUmax, and (b) vorticity thickness, 

δw in the recirculation region. 
 

The streamwise evolution of the vorticity thickness, δω for the smooth and rough cases is 

examined in Figure 4.8(b). The distributions of δω/h are almost linear over the respective 

streamwise extents of the recirculation regions. For the smooth wall, the growth rate dδω/dx was 

estimated to be approximately 0.224, which compares favorably with the range of values of 0.145 

– 0.22 reported by Brown and Roshko (1974) for a single stream plane mixing layer. For the 

sandpaper and cube roughness, the growth rates are approximately dδω/dx = 0.275 and 0.336, 

respectively, which are about 30% and 50% higher than the smooth-wall value. The drop-off of 

the rough-wall profiles at larger x/h is due to these points falling outside the recirculation regions 

for the rough walls. 

 

4.2.5    One-dimensional Profiles of Mean Velocity and Reynolds Stresses 

Figure 4.9 presents the one-dimensional profiles of the mean streamwise velocity and Reynolds 

stresses in the primary recirculation region. The mean velocity is normalized by Ue, while the 

Reynolds stresses are normalized by Ue
2. The profiles were plotted at three successive streamwise 

locations: x/Lr ≈ 0, 0.5 and 1.0 in the recirculation region in order to examine the streamwise 

evolution of the mean velocity and Reynolds stresses. For each statistic, the corresponding smooth-

wall profile obtained at the upstream location, x/h ≈ –20, is superimposed on the plots for reference. 
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The profiles from the various streamwise locations are staggered relative to one another with the 

origin, 0, redefined on the top axes to indicate the correct intervals for the axes. It should be noted 

that after accounting for the step height, the correct wall-normal location of the top surface of the 

step is y/h ≈ 1. 

   

  
Figure 4.9: Streamwise evolution of the one-dimensional profiles over the FFS for the upstream 

smooth and rough wall conditions: (a) streamwise mean velocity; (b) streamwise Reynolds stress; 

(c) wall-normal Reynolds stress; (d) Reynolds shear stress.  

 

The dimensionless mean streamwise velocity profiles (Figure 4.9(a)) at the leading edge 

of the step indicate a decrease in velocity with upstream roughness for the entire range of y/h. 

However, all three profiles at x/Lr ≈ 0 are ‘fuller’ in comparison to the upstream profile due to the 

flow acceleration. At the mid- and reattachment points of the recirculation region the influence of 
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acceleration is felt only in the outer parts of the flow. However, for the rough walls the outer part 

is moving more slowly while the inner part is moving faster than the smooth wall. Within the shear 

layer the mean velocity profiles develop an inflection point (for example, y/h ≈ 1.3 at x/Lr ≈ 0.5 

and y/h ≈ 1.4 at x/Lr ≈ 1.0), reaching negative values due to the separation. The height of the 

inflection point grows with streamwise distance until about 2 step heights downstream of the 

reattachment point. The presence of an inflection point in the mean velocity profile leads to a 

Kelvin-Helmholtz type instability of the shear layer and the accompanying roll up of the shear 

layer into spanwise vortex cores. Figure 4.9(b) shows the profiles of the normalized streamwise 

Reynolds stress, u′2/Ue
2. For the smooth-wall condition, the upstream profile reaches a peak value 

close to the wall because of the high levels of turbulence generated by the quasi-streamwise 

vortices in the wall region (Krogstad et al. 1992). At the leading edge of the step the peak value is 

reduced by about 32% compared to the upstream value. This reduction can be attributed to the 

breakdown of the quasi-streamwise vortices by the step. Over the step, the peak values of the 

streamwise Reynolds stress coincide approximately with the inflection points of the mean velocity 

profile, increasing rapidly to values that are substantially larger downstream of the leading edge 

than at x/Lr ≈ 0. For example, at x/Lr ≈ 0.5 and 1, the respective peak values are approximately 

218% and 136% higher than at the leading edge. The peak values of u′2/Ue
2 are also wider and 

their wall-normal locations are farther from the wall as the flow propagates downstream due to the 

effect of the roller vortices. At all three streamwise locations, u′2/Ue
2 is unaltered by the 

sandpaper roughness within the experimental uncertainty limits. For the upstream cube roughness, 

the streamwise stress is substantially increased at x/Lr ≈ 0 relative to the smooth wall with a peak 

that is approximately 69% larger than the corresponding smooth-wall value, albeit the differences 

diminish with increasing y/h across the boundary layer. At x/Lr ≈ 0.5 and 1, the stress peaks are 
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enhanced by approximately 21% and 31%, respectively, by the cube roughness, while the cubes’ 

influence on the outer layer gradually diminishes as the flow moves downstream.  

The streamwise evolution of the wall-normal stress is shown in Figure 4.9(c). The smooth-

wall peak at the leading edge is more than four times as large as the upstream value but is lower 

than the peaks over the sandpaper and cube roughness by approximately 52% and 41%, 

respectively. The smooth-wall profile of v′2/Ue
2 evolves similarly to that of the streamwise 

Reynolds stress in the shear layer, but the peak values are approximately 1/3 of those of the 

streamwise Reynolds stress, indicating the presence of strong anisotropy in the separated shear 

layer. For the smooth wall, the peak value of v′2/Ue
2 at x/Lr ≈ 0.5 and 1 are respectively 178% 

and 160% larger than at the leading edge of the step. Downstream of the leading edge, the disparity 

between the sandpaper and smooth-wall profiles gradually disappears as the influence of the 

sandpaper diminishes. On the contrary, cube roughness reduced the peak value of v′2/Ue
2 at x/Lr 

≈ 0.5 and 1 by approximately 27% and 17%, respectively, in comparison to the smooth wall. It 

should be noted that reductions in wall-normal stress are limited to the region of negative mean 

wall-normal velocity (V < 0). Above this region (V > 0), the cubes increased the wall-normal stress 

relative to the smooth wall and sandpaper roughness. These discrepancies are consistent with the 

more rapid reduction in vortex shedding frequency by the cubes (Figure 4.4) but more intense 

ejections in the outer layer (Figure 4.3) than the smooth wall and sandpaper.  

Profiles of the Reynolds shear stress, –u′v′/Ue
2 (Figure 4.9(d)), are qualitatively similar 

to those of the wall-normal stress in the shear layer, except near the leading edge of the step where 

the profiles develop negative peak values due to the counter-gradient diffusion phenomenon. 

Evaluation of the production term in the turbulent kinetic energy equation,  

PK = – [u′2∂U/∂x + v′2∂V/∂y + u′v′(∂U/∂y + ∂V/∂x)], (4.4) 
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near the leading edge of the step showed negative turbulence production for the smooth and rough 

walls (not shown). It was found that the negative turbulence production is predominantly due to 

the shear component, –u′v′(∂U/∂y + ∂V/∂x), arising from negative –u′v′ and positive (∂U/∂y + 

∂V/∂x) near the leading edge of the step. As will be shown subsequently, the negative values of the 

Reynolds shear stress can be attributed to the dominance of negative Reynolds shear stress 

producing events near the leading edge. These events are accompanied by a turbulent transport of 

–u′v′ away from the leading edge. The counter-gradient diffusion of Reynolds shear stress near 

the leading edge would imply that eddy-viscosity models based on the assumption of positive eddy 

viscosity will fail to properly predict the flow near the corner of the step (Essel et al. 2015). 

Downstream of the leading edge, the peak Reynolds shear stress for the smooth wall and sandpaper 

roughness are about an order of magnitude higher than the upstream smooth-wall value. This 

demonstrates the enhanced turbulence mixing of the separated shear layer compared to the 

nominally ZPG upstream turbulent boundary layer. As observed for wall-normal stress, the cube 

roughness reduced the peak value of the Reynolds shear stress by approximately 36% and 17% at 

x/Lr ≈ 0.5 and x/Lr ≈ 1, respectively, in comparison to the smooth wall. 

 

4.2.6    Quadrant Decomposition of the Reynolds Shear Stresses 

In order to investigate the dominant motions contributing to the mean Reynolds shear stress a 

quadrant decomposition was performed for the smooth- and rough-wall cases. Using the Lu and 

Willmarth’s (1973) hyperbolic hole method, the contribution of each quadrant of the u′-v′ plane to 

the mean Reynolds shear stress were estimated for Hq = 0, where the hole size of 0 represents 

Reynolds shear stress contributions from all events in the decomposition.  
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Figure 4.10: Contours of the quadrant decomposition of the Reynolds shear stress over the FFS 

for smooth wall and cube roughness.  
 

Figure 4.10 presents the iso-contours of the contributions from the four quadrants: outward 

interactions (Q1), ejections (Q2), inward interactions (Q3) and sweeps (Q4) for the smooth wall 

and rough walls for a hyperbolic hole of size 0. Using a hole size of 0 ensures that all Reynolds 

shear stress events are included in the decomposition. It should be noted that only the smooth wall 
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and cubes results are presented here because the sandpaper results were found to be similar to the 

smooth wall. The thick solid line in the plots corresponds to the V = 0 contour level superimposed 

to demarcate the regions of positive and negative mean wall-normal velocity. The results in Figures 

4.10(a) to 4.10(d) indicate that the negative Reynolds shear stress at the leading edge, produced by 

the counter-gradient diffusion phenomenon, can be attributed to more prevalent Q1 and Q3 events 

near the leading edge in the smooth and rough cases. The identical peak value of –0.007 in all four 

plots suggest that the inward and outward interaction terms contributed nearly equally to the 

negative Reynolds shear stress near the leading edge of the step for both upstream conditions. 

However, the wider spread of the larger-magnitude contours (–0.007 ≤ –u'v'/Uo
2 ≤ –0.002) of Q1 

and Q3 in the cubes case would have a diminishing effect on the mean Reynolds shear stress 

downstream of the leading edge compared to the smooth wall. The contour plots in Figures 4.10(e) 

– 4.10(h) show that ejections (Q2) are the more dominant contributors to the Reynolds shear stress 

in the shear layer compared to sweeps (Q4). Above the leading edge of the step for CB (Figure 

4.10(f)), a region of relatively intense ejections is observed, which is reminiscent of the large-scale 

ejections from the step observed in the instantaneous flow visualizations of CB (Figure 4.3). Other 

than this feature, the upstream roughness suppresses the ejection and sweep motions in comparison 

to the smooth wall, although the effect is more dramatic on Q4 than Q2. These results are 

qualitatively consistent with previous fully developed channel measurements with upstream wall 

roughness (Essel et al. 2015) and turbulent boundary layer measurements over a rough FFS (Ren 

and Wu 2011). 

In order to compare the relative magnitudes of the quadrant contributions at specific 

locations over the step, one-dimensional profiles of the contributions are plotted in Figure 4.11. 

The peak values of Q1 and Q3 have the largest magnitude near the leading edge of the step and 

decrease with streamwise distance in the recirculation region. Downstream of the leading edge 
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(x/Lr > 0), the smooth wall and sandpaper distributions are in agreement to within measurement 

uncertainty. However, the cube roughness produces an increase of approximately 43% in Q1 at 

the intermediate location, x/Lr ≈ 0.5 when compared to the smooth wall that vanishes near the 

reattachment point (Figure 4.11(a)).  

 

  

  
Figure 4.11: Profiles of the quadrant events over the step for the upstream smooth and rough wall 

conditions: (a) Quadrant 1: outward interactions (Q1); (b) Quadrant 3: inward interactions (Q3); 

(c) Quadrant 2: ejections (Q2); (d) Quadrant 4: sweeps (Q4). 
 

Figure 4.11(b) shows that there is approximately a 36% increase in the peak value of Q3 

from the smooth wall to the cube roughness at the center of the recirculation region. This difference 

increases to about 45% near the reattachment point over the step. Profiles of the Q2 (ejection) 

contributions are shown in Figure 4.11(c). Near the leading edge, the peak value of Q2 is reduced 
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by the sandpaper by approximately 41% but enhanced by the cubes by approximately 59%. The 

lower peak of Q2 for SP can be attributed to a more substantial loss of Reynolds shear stress by 

counter-gradient diffusion near the corner of the step compared to SM and CB. Further 

downstream, the cubes reduced the Q2 contributions near the wall but produced enhancements in 

the outer layer. Downstream of the leading edge, differences are found between the sandpaper and 

smooth wall but these are within the measurement uncertainty. At x/Lr ≈ 0.5 and x/Lr ≈ 1, the near-

wall reductions by the cube roughness are approximately 30% and 14%, respectively. The quadrant 

4 profiles are presented in Figure 4.11(d). At x/Lr ≈ 0, the peak values of Q4 are about 56%, 44% 

and 47% lower than those of Q2 for SM, SP and CB, respectively. Again, the cube roughness 

increases Q4 near the leading edge, albeit by a larger amount (75%) compared to the smooth wall 

and sandpaper. This is followed by reductions near the wall and enhancements above the shear 

layer for x/Lr > 0 in comparison to the smooth wall. The outer layer enhancements of Q2 and Q4 

by the cubes are consistent with a similar trend in the Reynolds shear stress distributions but most 

of this is due to the effect of the cubes on Q2. 

 

4.2.7    Turbulent Transport 

The structural differences in the Reynolds stress producing motions are imprinted on the higher-

order turbulence statistics, such as triple velocity correlations. In the Reynolds stress transport 

equations, the spatial gradients of the triple correlations determine the turbulent transport of the 

Reynolds stresses in the flow. The profiles of the triple correlations, representing turbulent 

transport in the wall-normal direction, are shown in Figure 4.12 non-dimensionalized by Ue
3. 

Figure 4.12(a) presents the profiles of the wall-normal turbulent transport of the streamwise 

Reynolds stress (u′2v′). Near the leading edge of the step (x/Lr ≈ 0.0, y/h ≈ 1.1), u′2v′ is negative 

for the smooth wall but positive for the sandpaper and cube roughness. The negative smooth wall  
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Figure 4.12: Profiles of the triple correlations over the step for the upstream smooth and rough 

wall conditions: (a) wall-normal transport of u′2; (b) wall-normal transport of v′2; (c) wall-normal 

transport of turbulent kinetic energy; (d) wall-normal transport of Reynolds shear stress. 

 

value can be attributed to negative excursions in the wall-normal motions in this case and indicates 

the turbulent transport of streamwise Reynolds stress towards the leading edge. In contrast, the 

positive near-wall values of u′2v′ observed for the sandpaper and cube roughness are due to more 

frequent positive excursions of v′ in these cases and indicate an upward transport of streamwise 

Reynolds stress away from the leading edge of the step. Similar results were noticed in the 

skewness factors of u′ and v′ (not shown) for the smooth and rough walls. Above the leading edge, 

a secondary peak develops in the profiles of u′2v′, that is approximately 62% and 295% higher 

for CB than SM and SP, respectively. These positive peaks would also imply an outward transport 
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which are y/h ≈ 1.3 and 1.5 at x/Lr ≈ 0.5 and 1, respectively. It should be noted that near the leading 

edge, u′2v′ decays more rapidly with y/h in the sandpaper case than the smooth wall and cube 

roughness. This may be attributed to the high irregularity of the sandpaper roughness. Downstream 

of the leading edge, the profiles of u′2v′ are antisymmetric about the edge of the separated shear 

layer, reaching peak values to either side of the edge of the shear layer. The negative peaks near 

the wall would imply a turbulent transport of u′2 towards the wall, while the positive peaks would 

imply a turbulent transport u′2 towards the outer layer. Above the recirculation bubble the 

magnitude of u′2 transported by the wall-normal motion diminishes for CB because the cubes 

reduced the streamwise Reynolds stress in this region. In the outer flow, positive values are still 

observed for the cube roughness although they decay slightly with x/Lr. 

Figure 4.12(b) shows profiles of the wall-normal turbulent transport of the wall-normal 

stress (v′3). The profiles are qualitatively similar to those of u′2v′, suggesting that the motions 

responsible for the wall-normal transport of the streamwise and wall-normal Reynolds stresses are 

similar. At x/Lr ≈ 0, the wall-ward transport of v′2 is much smaller than that of u′2 for the upstream 

smooth wall condition. Away from the wall, the cube roughness increased the positive peak value 

of v′3 by approximately 52% in comparison to the smooth wall and produced more than a four-

fold increase in comparison to the sandpaper. In the downstream region, the increases produced 

by the cube in the outer layer are more substantial than were observed for u′2v′ in Figure 4.12(a). 

At the same time, the near-wall negative values of v′3 within the shear layer are attenuated for 

the cube roughness in comparison to the smooth wall and sandpaper roughness. 

Figure 4.12(c) shows the profiles of the wall-normal transport of the turbulent kinetic 

energy, u′2v′ + v′3. At x/Lr ≈ 0, u′2v′ + v′3 is negative for the smooth wall and positive for 

the sandpaper and cube roughness in the near-wall region. The negative near-wall value observed 
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for SM suggests that the contribution to turbulent diffusion, –∂(u′2v′ + v′3)/∂y is positive. This 

indicates a gain in turbulent kinetic energy by diffusion near the leading edge. The positive near-

wall values for the rough walls suggest that the mechanism for the turbulent transport of the 

turbulent kinetic constitutes a loss in energy as opposed to a gain in energy in the smooth wall 

case. In the downstream region, –∂(u′2v′ + v′3)/∂y is consistently positive in the proximity of 

the wall (1.0 ≤ y/h ≤ 1.2), indicating a gain in energy by diffusion at a rate that is nearly independent 

of upstream roughness. The near-wall gain in energy is fed by the loss in energy by diffusion 

within the adjacent region 1.2 ≤ y/h ≤ 1.5. While the term u′2v′ + v′3 decays rapidly with y/h 

beyond the location of positive peak value for SM and SP, there is substantial turbulent diffusion 

of the turbulent kinetic energy for the cubes. Within 1.5 ≤ y/h ≤ 1.8 and 1.7 ≤ y/h ≤ 2.0 at x/Lr ≈ 

0.5 and x/Lr ≈ 1.0, respectively, there is a loss in energy by diffusion for CB, leading to a reduction 

in peak value of u′2v′ + v′3 by approximately 57% and 74% for CB near y/h ≈ 1.5 compared to 

SM and SP.  

Figure 4.12(d) shows profiles of the wall-normal turbulent transport of the Reynolds shear 

stress (u′v′2). Near the leading edge, u′v′2 is predominantly positive within 1.0 ≤ y/h ≤ 1.1. This 

is within the counter-gradient Reynolds shear stress zone of the leading edge. The positive near-

wall values of u′v′2 suggest a turbulent transport of u′v′ away from the wall. This counter-gradient 

transport of Reynolds shear stress results in loss in Reynolds shear stress near the leading edge of 

the step. Within the recirculation region, the u′v′2 correlations remain positive in the wall region 

but the peak values are farther from the wall than observed near the leading edge. The correlation 

is also nearly independent of upstream roughness in the wall region. Further from the wall (y/h > 

1.3), there is a gain in Reynolds shear stress by turbulent diffusion fed by the loss in Reynolds 

shear stress by turbulent diffusion from the wall region. Although this is comparable for SM and 
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SP, it is smaller for CB so that the negative peak near y/h ≈ 1.4 is reduced for CB in comparison 

to SM and SP.  

 

4.2.8    Joint Probability Density Function Distributions 

The joint probability density function (pdf), P(u′, v′) defined as (Wallace and Brodkey 1977) 

〈𝑢′𝑣′〉 = ∬ 𝑢′𝑣′𝑃(𝑢′, 𝑣′)𝑑𝑢′𝑑𝑣′
+∞

−∞

 (4.5) 

is often used to investigate the correlation between the instantaneous velocity fluctuations. It 

should be noted that the integral in equation (4.5) is not a time average but a probability-weighted 

average of u′v′(t). The joint pdfs were estimated by sorting the velocity fluctuations into equal-

width 100 × 100 bins. Figure 4.13 shows the distributions of the joint pdfs at the three streamwise 

locations, x/Lr ≈ 0, 0.5 and 1.0 for the smooth and rough walls. At x/Lr ≈ 0 (top row), the joint pdfs 

were calculated at y/h ≈ 1.1. At x/Lr ≈ 0.5 (middle row), the calculations were done at y/h = 1 + 

Hr/h, which corresponds to the highest point on the mean dividing streamline. At x/Lr ≈ 1.0 (bottom 

row), the distributions were calculated at y/h ≈ 1.1. For non-isotropic turbulence, the contours of 

P(u′, v′) are elliptical, where the innermost contours correspond to high-probability but weak 

Reynolds shear stress events and outermost contours correspond to strong but low-probability 

events. Thus, the total Reynolds shear stress will be a balance between the strong but low-

probability joint events and the weak but high probability joint events. Near the leading edge 

(Figures 4.13(a), 4.13(b) and 4.13(c)), the distributions are inclined towards Q1 and Q3, indicating 

the predominance of outward and inward interactions in the determination of the Reynolds shear 

stress. These results are also consistent with the negative Reynolds shear stress values observed 

near the leading edge of the step for the smooth and rough walls. With increasing upstream 

roughness condition, the maximum contour becomes increasingly elongated in the third quadrant. 

The larger size and more elongated shape of the maximum contour for CB is in agreement with 



81 
 

the relatively large spread of the higher contours levels in Q3 in the quadrant decomposition for 

CB. 

 

   

   

   
 

Figure 4.13: Contours of the joint PDF of the velocity fluctuations along the mean dividing 

streamline: (a) SM (x/Lr = 0, y/h = 1.1); (b) SP (x/Lr = 0, y/h = 1.1); (c) CB (x/Lr = 0, y/h = 1.1); 

(d) SM (x/Lr = 0.5, y/h = 1 + Hr/h); (e) SP (x/Lr = 0.5, y/h = 1 + Hr/h); (f) CB (x/Lr = 0.5, y/h = 1 + 

Hr/h); (g) SM (x/Lr = 1.0, y/h = 1.1); (h) SP (x/Lr = 1.0, y/h = 1.1); (i) CB (x/Lr = 1.0, y/h = 1.1). 

Contour levels are from 0.0005 to 0.0045 at intervals of 0.001. Hr is as defined in Figure 1.1.  
 

At x/Lr ≈ 0.5 (Figures 4.13(d), 4.13(e) and 4.13(f)), where the chosen wall-normal location 

also coincides with the location of [–u′v′/Ue
2]max, the iso-probability contours are inclined 

towards Q2 and Q4. The Q2-Q4 inclination indicates the larger contributions of ejections and 

sweeps to the mean Reynolds shear stress at this location as observed in the quadrant 
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decomposition. It can also be discerned that the contours for SM and SP are more elliptical than 

those for CB that show a slight expansion in Q2 and a contraction towards the highest probability 

contour in Q3. Despite the expansion in Q2, the resulting large-amplitude values have low 

probabilities, and therefore do not contribute as much as Q3. The closeness of the larger-amplitude 

contours in Q3 to the maximum contour suggest a non-negligible influence of Q3 in the 

determination of the Reynolds shear stress, which explains the reduction in the peak value of –

u′v′/Ue
2 for CB in comparison to SM and SP at this location. The contours presented at x/Lr ≈ 1.0 

(Figures 4.13(g), 4.13(h) and 4.13(i)) for SM, SP and CB are also predominantly skewed towards 

Q2 and Q4 in agreement with the more dominant contribution of ejections and sweeps to the 

Reynolds shear stress at this location. For a given surface, the joint pdfs are nearly independent of 

streamwise distance in the recirculation bubble. 

Figure 4.14 shows the distributions of the joint pdfs at successive wall-normal locations 

(y/h ≈ 1.1, 1.5, 2.0, 2.5) away from the leading edge of the step for SM (left column), SP (middle 

column) and CB (right column). Except for the joint pdfs close to the leading edge (Figures 4.14(a) 

– 4.14(c)), all distributions show a Q2-Q4 orientation because Q2 and Q4 motions contribute the 

largest to the Reynolds shear stress (–u'v'). At y/h ≈ 1.5, the maximum joint pdfs shift in favour 

of the second quadrant, indicating the dominance of ejections in producing the Reynolds shear 

stress compared to sweeps. The smaller size of the maximum contour for SP is consistent with the 

lower value of the corresponding Reynolds shear stress compared to SM and CB at y/h ≈ 1.5. Away 

from the wall, the outermost (low-probability) contours do not show any systematic change in size, 

but the maximum probability contours generally diminish in size.  Also, at y/h ≈ 2 for SP, the 

maximum joint pdf contour is inclined towards the negative-u′ axis, indicating the prevalence of 

negative-u′ motions of relatively small amplitude of v′-fluctuations in the Reynolds shear stress 

signal.  
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Figure 4.14: Contours of the joint PDF of the velocity fluctuations along the wall-normal direction: 

(a) SM (x/Lr = 0, y/h = 1.1); (b) SP (x/Lr = 0, y/h = 1.1); (c) CB (x/Lr = 0, y/h = 1.1); (d) SM (x/Lr 

= 0, y/h = 1.5); (e) SP (x/Lr = 0, y/h = 1.5); (f) CB (x/Lr = 0, y/h = 1.5); (g) SM (x/Lr = 0, y/h = 2); 

(h) SP (x/Lr = 0, y/h = 2); (i) CB (x/Lr = 0, y/h = 2); (j) SM (x/Lr = 0, y/h = 2.5); (k) SP (x/Lr = 0, 

y/h = 2.5); (l) CB (x/Lr = 0, y/h = 2.5). Contour levels are from 0.0005 to 0.0045 at intervals of 

0.001. 
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 At y/h ≈ 2.5, the maximum probability for SP is inclined approximately towards Q2 and 

Q3. This is also noticed for smooth wall at this location. The prevalence of Q3 motions in the 

instantaneous signal would lead to a reduction in –u'v' for SP and SM at this location in relation 

to the cube roughness.  

 

4.2.9    Temporal Correlations and Turbulence Spectra 

Figure 4.15 shows the streamwise evolution of the temporal auto-correlations Ruu and Rvv 

at two wall-normal locations, y/h ≈ 1.1 and 2, in the primary recirculation region of the step. Figure 

4.15(a) shows the Ruu plots at y/h ≈ 1.1. With increasing distance from the leading edge, the area 

of the time-correlated region of the auto-correlation (Ruu > 0) increases as the rolled-up eddies 

increase in size. A similar variation with streamwise distance was observed for flow over blunt flat 

plates (Swamy et al. 1979; Ota and Motegi 1983; Djilali and Gartshore 1991). Near the leading 

edge (x/Lr ≈ 0), Ruu is slightly reduced by both the sandpaper and cube roughness at small temporal 

separations (tUe/h < 2). At larger temporal separations, Ruu is enhanced by the cube roughness, but 

nearly indistinguishable for smooth wall and sandpaper. At the middle of the recirculation bubble 

(x/Lr ≈ 0.5), the correlations are nearly independent of upstream roughness. At the reattachment 

location (x/Lr ≈ 1.0), the values of Ruu for SM are mostly negative for tUe/h > 10. This may be 

attributed to low-momentum fluid produced by the deceleration of flow near the reattachment 

location for SM. This is in agreement with the acceleration parameter profile for smooth wall 

which levels off much earlier than occurred for SP and CB. Figure 4.15(b) shows profiles of Ruu 

at y/h ≈ 2. At this wall-normal location, the decay of the tails is more gradual than closer to the 

wall. This is because the scale of the structures increases as the measurement position moves away 

from the wall so that the structures survive much longer with time than the smaller-scale structures 

near the wall. While the auto-correlation is relatively unaffected by the sandpaper roughness, 
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substantial enhancements are produced by the cube roughness. This increase with the cube 

roughness is consistent with the enhancements produced in the streamwise Reynolds stress for CB.  

 

  

  
Figure 4.15: Streamwise evolution of the temporal autocorrelations, Ruu and Rvv, in the primary 

recirculation region: (a) Ruu profiles at y/h = 1.1; (b) Ruu profiles at y/h = 2; (c) Rvv profiles at y/h = 

1.1; (d) Rvv profiles at y/h = 2. 
 

The profiles of the wall-normal velocity auto-correlation, Rvv at y/h ≈ 1.1 and 2 are 

presented in Figures 4.15(c) and 4.15(d), respectively. The plots indicate that Rvv decorrelates 

much faster than Ruu, and even more dramatically close to the wall. This suggests that the wall-

normal motions such as those that produce the wall-normal Reynolds stress are less persistent in 

time than the larger-scale quasi-streamwise motions. At y/h ≈ 1.1, Rvv is invariant with streamwise 

distance and nearly independent of upstream roughness. This suggests that the smaller-scale 

structures near the wall in the recirculation region are unaffected by upstream roughness and 
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distance from the leading edge. Further from the wall (y/h ≈ 2), Rvv decays faster for SP than SM 

and CB, while that of CB decays the slowest. The higher values of Rvv for CB are attributable to 

structures of larger time scales, and by inference, larger spatial scales than SM and SP. The 

dominance of large-time scale disturbances in the separated shear layer have been reported in the 

literature (e.g., Eaton and Johnston 1981; Cherry et al. 1984; Largeau and Moriniere 2007), where 

they were observed to produce a significant contribution to the low frequency part of the turbulence 

spectrum. 

Figure 4.16 shows wall-normal profiles of the integral time scales, Tu and Tv of the u' and 

v' fluctuations, respectively, estimated from the temporal auto-correlation functions as 

𝑇𝑢 = ∫ 𝑅𝑢𝑢(𝑡)𝑑𝑡

∞

0

 (4.6) 

𝑇𝑣 = ∫ 𝑅𝑣𝑣(𝑡)𝑑𝑡

∞

0

 (4.7) 

Following previous studies (Swamy et al. 1979; Ota and Motagi 1983), the integrals were 

performed from t = 0 to the first zero crossing of Ruu and Rvv on the temporal separation axis. The 

profiles of Tu normalized by Ue and h are shown in Figure 4.16(a). The time scales are relatively 

small close to the wall and have maximum values within the region of maximum Reynolds shear 

stress. The values then decay to relatively constant values in the outer parts of the flow. The 

streamwise integral time scale is relatively unchanged by the sandpaper roughness at all three 

streamwise locations shown. However, the peak values are increased by the cube roughness by 

approximately 52%, 87% and 110% at x/Lr ≈ 0, 0.5 and 1.0, respectively, compared to the smooth 

wall. For the smooth wall, the peak value of Tu at the reattachment location (x/Lr ≈ 1.0) are lower 

than those upstream. Bradshaw and Wong (1972) concluded that the shear layer at reattachment is 

split in two, where one part of the flow is deflected upstream into the recirculation region and the 
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other part continues downstream. The authors suggested that this would lead to a reduction in eddy 

length and time scales as observed herein at least for SM. The profiles of the normalized values of 

Tv are shown in Figure 4.16(b). Near the leading edge, the sandpaper reduces the peak value of the 

time scale relative to the smooth wall and cube roughness, with the cube profile reaching the largest 

peak. Downstream of the leading edge, the differences between the SM and SP values are 

approximately 35%, while Tv is dramatically increased by the cube roughness. It should be noted 

that for the smooth wall, the value of Tv in the region of maximum Reynolds shear stress becomes 

increasingly smaller with streamwise distance within the recirculation.  

 

  
Figure 4.16: Wall-normal distribution of the integral time scales of the velocity fluctuations in the 

primary recirculation region: (a) integral time scale of the streamwise velocity fluctuations; (b) 

integral time scale of the wall-normal velocity fluctuations. 
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density of the low frequency motions in the recirculation region is independent of upstream 

roughness. For the high frequency motions, on the other hand, the spectral density exhibits a 

tendency to increase with upstream roughness.  

 

  

Figure 4.17: Frequency spectra of the streamwise velocity fluctuations (Euu) in the primary 

recirculation region: (a) Euu at y/h = 1.1; (b) Euu at y/h = 2. 
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lack a distinct inertial subrange region (5/3). However, further downstream, the spectra exhibit 
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roughness enhances the spectral density of the low frequency motions at all three streamwise 

locations. This is similar to the observed enhancements in Ruu and the integral time scale Tu by the 

cube roughness in the outer region. There is still a weak increase in the spectral density of the high 

frequency motions with the cube roughness, indicating the injection of energy into the flow at the 

small scales as well as the large scales by the cube roughness. 

Figures 4.18(a) and 4.18(b) show the corresponding frequency spectral density plots of the 

wall-normal velocity fluctuations, Evv, at y/h ≈ 1.1 and 2.0, respectively. Near the leading edge 

(Figure 4.18(a)), the spectral density is independent of upstream roughness, except for an 

intermediate region (0.9 ≤ fh/Ue ≤ 2.5) in which there is an increase with roughness. The increase 

can be attributed to high-frequency contributions from the large wall-normal velocity fluctuations 

near the leading edge for SP and CB. This is also consistent with the larger values of wall-normal 

Reynolds stress and wall-normal turbulent transport of v′2 at y/h ≈ 1.1 for the rough-wall cases 

compared to the smooth wall. Downstream of the leading edge, the low-frequency contributions 

to the wall-normal velocity fluctuations are suppressed by the cube roughness. This suppression 

occurs over a frequency range that is considerably larger at the reattachment location than at the 

middle of the recirculation bubble. These spectral modulations are in agreement with the 

attenuation of the peak values of v′2 by CB observed in the recirculation region. At y/h ≈ 2.0 

(Figure 4.18(b)), the low-frequency contributions to Evv are unaltered by the sandpaper but they 

are dramatically enhanced by the cube roughness in relation to the smooth wall and sandpaper. 

The largest enhancements are observed for x/Lr > 0, which are consistent with the increase in time 

scale of the turbulent structures with increasing distance from the leading edge. At high 

frequencies, the spectral density is increased by both the sandpaper and cube roughness compared 

to the smooth wall. This is also an indication of energy supply to the turbulence field at the scale 
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of the smallest eddies that may be due to a turbulent-turbulent interaction mechanism that produces 

no net contribution to Reynolds stress. 

  
Figure 4.18: Frequency spectra of the wall-normal velocity fluctuations (Evv) in the primary 

recirculation region: (a) Evv at y/h = 1.1; (b) Evv at y/h = 2. 
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35 step heights from the reattachment location were selected for this evaluation. Figure 4.19 

examines the redevelopment of the wall-normal profiles of the mean streamwise and wall-normal 

velocities after the reattachment. At each streamwise location, the profiles are compared to the 

corresponding distribution obtained at the upstream location, x/h ≈ 20, over the smooth wall. 

During early redevelopment ((xLr)/h ≈ 2), the mean velocities have not yet relaxed to the 

upstream distribution, and a slight roughness effect is noticed in this region. However, the profiles 

collapsed appreciably well for (xLr)/h ≥ 12, indicating that sufficiently far downstream of 

reattachment, the mean flow is independent of upstream roughness. Previous investigations of 

separated and reattached wall-bounded turbulent flows (e.g., Song et al. 2000; Tachie et al. 2001) 

show that the mean flow recovery is very rapid downstream of reattachment. 

 

  
Figure 4.19: Streamwise evolution of the one-dimensional profiles of the mean velocities in the 

redevelopment region for the upstream smooth and rough wall conditions. 
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𝐶𝑓 = 0.246 × 10−0.678𝐻𝑅𝑒𝜃
−0.268 (4.8) 

 

  

  
Figure 4.20: Streamwise evolution of the boundary layer integral parameters over the FFS for the 

upstream smooth and rough wall conditions: (a) friction coefficient, Cf = 0.246 × 100.678HRe-0.268; 

(b) shape factor, H = δ*/θ; (c) Clauser shape parameter, G = (2/Cf)
1/2(H1)/H; (d) (H–1)/H versus 

δ*/δ. 
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recovery region of a blunt flat plate (Ruderich and Fernholz 1986) and backward-facing steps 

(Adams and Johnston 1988; Jovic 1994). Figure 4.20(b) shows the profiles of the shape factor, H. 

The shape factor varies with streamwise distance and upstream roughness within the early 

redevelopment region but becomes invariant with distance and roughness for (xLr)/h ≥ 20. Far 

downstream, the values of H are not significantly different from H ≈ 1.3 – 1.4 for the standard 

ZPG turbulent boundary layer. The values of the Clauser shape factor, estimated as G = 

(2/Cf)
1/2(H1)/H, are presented in Figure 4.20(c). The profiles of G closely mimic those of H, with 

values of approximately 13.5, 11 and 9.5 for SM, SP and CB, respectively, immediately 

downstream of reattachment. With increasing distance downstream of reattachment, G decreases 

to a relatively constant value of approximately 8.5 that is independent of upstream roughness. The 

converged value of G ≈ 8.5 is about 25% larger than the value of 6.8 obtained by Coles (1962) for 

the ZPG turbulent boundary layer. Sandborn and Kline (1961) suggested that in the recirculation 

region, the mean velocity satisfies a family of power-law type velocity profiles. Figure 4.20(d) 

shows the profiles of (H – 1)/H versus δ*/δ for locations in the recirculation and redevelopment 

regions. In the plot, the straight line represents (H – 1)/H = 1.5(δ*/δ) which is considered to fit 

most non-separated turbulent boundary layers at high Reynolds number (Simpson 1989). The 

curved lines (from Sandborn and Kline 1961), intersecting the straight line, correspond to turbulent 

boundary layers undergoing separation or detachment. As can be seen, the two points from 

recirculation region for SM nearly coincide with the curves. Corresponding points for SP and CB 

fall below the detachment curves, indicating differences in boundary layer shape factor between 

the smooth and rough walls in the recirculation region. A possible manifestation of these 

differences can be seen even in the shape factor plots of Figure 4.20(b) close to reattachment, 

where the rough-wall values of H are lower than the smooth-wall value. For points in the 
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redevelopment region, the profile either collapses on the straight line or lies close to it. Similar 

results were reported by Simpson (1989). 

 

 

  

  

  

Figure 4.21: Streamwise evolution of the peak values of the (a,b) streamwise Reynolds stress; (c,d) 

wall-normal Reynolds stress, and (e,f) Reynolds shear stress. 
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maximum mean streamwise velocity (Figures 4.21(a), 4.21(c) and 4.21(e)) and the maximum peak 

Reynolds stress (Figures 4.21(b), 4.21(d) and 4.21(f)). 

The peak values of the streamwise Reynolds stress (Figure 4.21(a)) increase rapidly within 

the upstream region and undergo an abrupt change in magnitude to their maximum values near the 

leading edge of the step. The highest value is observed for the cube roughness, exceeding those of 

the smooth wall and sandpaper by approximately 4% and 10%. After reattachment, the peak values 

of u′2/Ue
2 decay rapidly to a relatively constant value of 0.012 in the far downstream region. In 

the redevelopment region, the peak streamwise Reynolds stress is independent of upstream 

roughness. The decay of the Reynolds stress after reattachment is consistent with the idea of 

bifurcation of the large-scale eddies near reattachment (e.g., Bradshaw and Wong 1972). This 

effect reduces the strength of the eddies convecting with the redeveloping boundary layer to 

produce Reynolds stress in comparison to the rolled-up eddies in the separated shear layer. Figures 

4.21(c) and 4.21(e) indicate that the peak values of wall-normal stress and Reynolds shear stress, 

respectively, also increase rapidly with streamwise distance near the leading edge of the step, 

reaching the largest peaks within the recirculation bubble. For the Reynolds shear stress, however, 

negative peaks are also observed in the profiles close to the leading edge due to the counter-

gradient transport phenomenon. For both stresses, the maximum in the profiles are reduced by the 

upstream roughness, although the effect is less dramatic for the Reynolds shear stress values than 

the wall-normal stress. Also, the highest reductions were produced by the cube roughness in 

comparison to the smooth wall: approximately 12% and 30% reductions in v′2/Ue
2 by SP and CB, 

respectively, but 15% and 30% in –u′v′/Ue
2, by SP and CB, respectively, compared to the smooth 

wall. The streamwise decay of the Reynolds stresses in the redevelopment region to relatively 

constant values in the far downstream region have been reported in other separated and reattached 

boundary layer investigations, including flow over backward-facing steps (Moss and Baker 1980; 
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Jovic 1998) and blunt flat plates (Ruderich and Fernholz 1986; Castro and Epik 1998). When 

normalized by the maximum peak value, the profiles of the streamwise Reynolds stress (Figure 

4.21(b)) and Reynolds shear stress (Figure 4.21(f)) collapse reasonably well over the step but the 

wall-normal Reynolds stress profiles (Figure 4.21(d)) show an increase with wall roughness in the 

far field of the redevelopment region. 

 

  

  

Figure 4.22: Streamwise evolution of the one-dimensional profiles of the Reynolds stresses in the 

redevelopment region for the upstream smooth and rough wall conditions: (a) streamwise 

Reynolds stress; (b) wall-normal Reynolds stress; (c) Reynolds shear stress; (d) normal stress ratio.  
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reductions are observed for the rough-wall profiles in comparison to the smooth wall in the early 

redevelopment region. Further downstream, the rough- and smooth-wall profiles collapse 

reasonably well, but do not fully recover to the upstream smooth wall distribution. For the smooth 

wall (SM), this implies that a longer redevelopment distance is required for the stresses to recover 

to the upstream profile. For the rough walls, on the other hand, this implies that upstream roughness 

still influences the velocity fluctuations far downstream of the step. Figure 4.22(d) shows the 

profiles of the normal stress ratio, v′2/u′2. These show discrepancies among the smooth- and 

rough-wall values and do not collapse on the upstream smooth-wall profile, even at the farthest 

downstream location.   

 

  

  
Figure 4.23: Streamwise evolution of the temporal autocorrelations, Ruu and Rvv, in the 

redevelopment region: (a) Ruu profiles at y/h = 1.1; (b) Ruu profiles at y/h = 2; (c) Rvv profiles at y/h 

= 1.1; (d) Rvv profiles at y/h = 2. 
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Downstream redevelopment of the temporal auto-correlations Ruu and Rvv is examined in 

Figure 4.23. Here, the values of the temporal separation were normalized by /Ue. The profiles of 

Ruu plotted at the wall-normal location y/h ≈ 1.1 (Figure 4.23(a)) reveals appreciable differences 

between the smooth- and rough-wall results but these differences become less important in the far 

downstream region. The same conclusion applies to the profiles of Ruu at y/h ≈ 2 (Figure 4.23(b)) 

although more substantial enhancements by the upstream cube roughness and sandpaper are 

observed at 2 and 20 step heights, respectively, downstream of reattachment. However, for both 

wall-normal locations, the region of positive Ruu between zero separation and the first zero crossing 

is larger in the redevelopment region than in the recirculation region. This is due to the increase in 

longitudinal extent of the large-scale vortices as the flow propagates downstream (Kiya and Sasaki 

1985). The profiles of the auto-correlation of the wall-normal velocity fluctuation at both wall-

normal locations (Figures 4.23(c) and 4.23(d)) suggest that the wall-normal auto-correlation in the 

redevelopment region is invariant with upstream roughness for dimensionless temporal separations 

larger than approximately 2. 

 

  

Figure 4.24: Wall-normal distribution of the integral time scales of the velocity fluctuations in the 

redevelopment region: (a) integral time scale of the streamwise velocity fluctuations; (b) integral 

time scale of the wall-normal velocity fluctuations. 
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Figure 4.24 shows the streamwise evolution of the of the integral time scales, Tu and Tv in 

the redevelopment region. During the early stages of redevelopment, the time scales are 

independent of the sandpaper roughness but have larger peak values for CB than the smooth wall 

and sandpaper. Further downstream, there is no systematic dependency of the time scales on 

upstream roughness. 

Figures 4.25 and 4.26 show the frequency spectral density distributions of the streamwise 

and wall-normal velocity fluctuations, respectively, in the redevelopment region. There are 

significant differences between the smooth- and rough-wall profiles close to the wall, but the 

spectra exhibit near universality further from the wall. In Figure 4.25(a), an increase in spectral 

density at higher frequencies is observed for upstream rough-wall conditions, which is generally 

more substantial at larger distances from reattachment. This may be an indication of a merging of 

smaller eddies to form larger-scale eddies as the reattached boundary layer convects downstream 

in the recovery region for the rough walls. An imprint of such an inverse energy cascade process 

is noticed in Figure 4.26(a) for Evv that show a general reduction in the spectral density for the 

rough walls compared to the smooth wall. This will arise when the smaller eddies responsible for 

Evv are merged to form larger-scale vortices in the recovery region by the rough walls.  
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Figure 4.25: Frequency spectra of the streamwise velocity fluctuations (Euu) in the redevelopment 

region: (a) Euu at y/h = 1.1; (b) Euu at y/h = 2. 
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Figure 4.26: Frequency spectra of the wall-normal velocity fluctuations (Evv) in the redevelopment 

region: (a) Evv at y/h = 1.1; (b) Evv at y/h = 2. 
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4.4   Effects of Upstream Roughness on the Coherent Structures in the Separated Shear 

Layer 

The effects of upstream roughness on the single-point turbulent statistics were examined in the 

preceding sections. In this section, various multipoint turbulent statistics such as linear stochastic 

estimates of the velocity fields, two-point spatial and space-time correlations are used to provide 

insight into the evolution of the large-scale coherent structures in the separated shear layer. It 

should be noted however that in discussing these results, attention is given only to the smooth and 

cube roughness test conditions. The results for the sandpaper are not shown because no significant 

differences were observed in comparison to the smooth wall. 

4.4.1   Linear Stochastic Estimation (LSE) of the Velocity Fields 

The flow visualization results earlier (Figures 4.1 and 4.3) revealed the spanwise vortex cores 

produced by the Kelvin-Helmholtz roll up of the separated shear layer. Using contours of 

instantaneous swirling strength, these vortex cores were identified to be predominantly prograde 

vortices shed by the step. To obtain the average flow field associated with these prograde vortices 

a conditional average of the velocity fields was performed using the linear stochastic estimation 

(LSE) approach. Figure 4.27 shows the vector plots of the linear stochastic estimation in the 

recirculation region of SM and CB. The LSE calculations were conditioned on the presence of 

prograde swirling strength at the location x/h = 0.6 and y/h = 1.3. To prevent the obscuring of 

weaker motions away from the event location, the velocity vectors in the plots were set to unity by 

normalizing them with their respective magnitudes. The smooth wall vector field is shown in 

Figure 4.27(a). The LSE calculation shows a prograde vortex at the event location, demarcated by 

a red circle. This vortex is accompanied by two other swirling motions centered at (x/h = 0.8, y/h 

= 1.5) and (x/h = 1.4, y/h = 1.4).  
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Figure 4.27: Linear stochastic estimate (LSE) of the velocity fields in the recirculation region for 

SM and CB based on a prograde event at x/h = 0.6 and y/h = 1.3. 
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between the wall and the vortex cores and an extended region of sweep-like (Q4) events above the 

crease. While the present smooth wall still shows a large-scale Q4 region above the vortices, there 

is very minimal ejection of fluid from the top face of the step in the recirculation. This is due to 

the boundary layer separation over the step.  

The vector field obtained from the LSE of the rough wall boundary layer is shown in Figure 

4.27(b). As expected, a strong prograde vortex is detected at the event location x/h = 0.6 and y/h = 

1.3. However, due to the disruptive nature of the wall roughness, the flow over the step in this case 

is less organized than over the smooth wall. The rough wall result shows only one other vortex at 

x/h = 1.8 and y/h = 1.6 in addition to the event vortex. The fewer number of vortices is consistent 

with the reduced vortex shedding frequency observed for the rough wall cases. Also, the crease is 

less defined if not non-existent because of the smearing effect of wide variability in the convection 

velocities over the rough wall. In the place of the organized structure or Karman vortex street 

observed for the smooth wall, a large-scale region of ejections is observed over the step, which is 

similar to that observed in the Galilean decomposition for the cubes. 

4.4.2   Estimation of Convection Velocities in the Recirculation Region 

The spanwise vortex cores revealed by the linear stochastic estimation would be captured in the 

conditional average only if they were part of the same large-scale structure, or if they were 

propagating at the same convection velocity. Early investigators estimated the convection velocity 

of the large-scale structures in turbulence using the Taylor’s (1938) frozen turbulence hypothesis. 

Taylor’s (1938) hypothesis suggests that for a homogeneous turbulent flow the ∂/∂t term in the 

Navier-Stokes equations can be substituted according to the relation 

∂/∂t = -U(∂/∂x) (4.9) 

where U is the local mean velocity. That is, the large-scale eddies may be considered as 

propagating downstream at a speed approximately equal to the local mean velocity. Despite its 
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usefulness in coordinate transformation from temporal to spatial, the validity of the Taylor 

approximation has been questioned in certain cases. Lin (1953), for instance, showed that the 

Taylor hypothesis is invalid in the presence of large flow acceleration caused by shear. Fisher and 

Davies (1964) argued that in the mixing region of an axisymmetric jet there are uncertainties in 

the coordinate transformation from time to space due to mean shear and high turbulence intensities 

in the shear layer. Nevertheless, the Taylor approximation has been widely used in the past to 

analyze the spatial structure of both canonical (e.g., Choi and Moin 1990; Kim and Hussain 1993; 

Krogstad et al. 1998) and free shear (e.g., Browand and Wiedman 1976; Wygnanski et al. 1976; 

Sokolov et al. 1980) turbulent flows. Other techniques have also been used in the literature to 

estimate the convection velocity, including use of the phase velocity of velocity fluctuations (del 

Alamo and Jimenez 2009), core velocity of the spanwise vortices (Wu and Christensen 2010) and 

from space-time correlations (Favre et al. 1958, 1967; Goldschmidt et al. 1981). In this 

investigation, the values of the convection velocity, UC, were estimated from the slope of the iso-

contours of the longitudinal space-time auto-correlation function. This is similar to the celerities 

method described by Favre et al. (1967). Following Wallace (2014), the space-time correlation 

RAB, between any two arbitrary quantities A(x, y) and B(x, y) was calculated as 

𝑅𝐴𝐵(𝛥𝑥, 𝛥𝑦, 𝜏) =
〈𝐴(𝑥𝑟𝑒𝑓 , 𝑦𝑟𝑒𝑓, 𝑡)𝐵(𝑥𝑟𝑒𝑓 + 𝛥𝑥, 𝑦𝑟𝑒𝑓 + 𝛥𝑦, 𝑡 + 𝜏)〉

𝜎𝐴(𝑥𝑟𝑒𝑓 , 𝑦𝑟𝑒𝑓)𝜎𝐵(𝑥𝑟𝑒𝑓 + 𝛥𝑥, 𝑦𝑟𝑒𝑓 + 𝛥𝑦)
 (4.10) 

where the point (xref, yref) denotes the reference location,Δx and Δy are the spatial separations 

between A and B in the streamwise and wall-normal directions, respectively, τ is the temporal 

separation between the times t and t + τ; A and B are the root-mean-square values of A and B at 

the space-time locations (xref, yref , t) and (xref +x, yref +y, t + τ), respectively.  
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 Figure 4.28: Iso-contours of the space-time auto-correlation function of streamwise velocity for 

SM and CB at x/Lr = 0.5, and y/h = 1.1, 1.3, 1.5, 2.0, 2.5 and 3.  
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Figure 4.28 shows the iso-contours of the space-time auto-correlation Ruu (Δx, 0, τ) at 

increasing wall-normal distances away from the step (y/h ≈ 1.1, 1.3, 1.5, 2.0, 2.5, 3.0) at the center 

of the primary recirculation bubble. The contours display the characteristic inclination with the 

positive direction of the streamwise spatial separation axis. This diagonal orientation is an 

indication that the turbulent structures are not only elongated in space but they are persistent in 

time as well. Near the wall, the contours are almost elliptical. Farther from the wall, the outermost 

contour lines are approximately parallel to ridge of the contours. The almost straight contour lines 

in the outer parts of the flow can be attributed to the larger-scale structures in the outer layer 

convecting at nearly the same speed as the mean flow. Also, with increasing distance from the 

wall, the temporal scales of the correlations are larger, which reinforces the idea that the outer 

layer is dominated by larger-scale eddies with longer lifetimes than eddies closer to the wall. 

Similar contours have been reported in the literature for both equilibrium turbulent boundary layers 

(Favre et al. 1967; Blackwelder and Kovasznay 1972; Nakagawa and Nezu 1981) and separated 

shear layers (Tinney and Ukeily 2009; Mohammed-Taifour and Weiss 2016). At the closest 

location to the wall, the effect of upstream cube roughness is negligible. At larger distances from 

the wall, the extent of significant correlation is considerably increased by the cube roughness when 

compared to the smooth wall. As shown by the LSE and flow visualization results, the rough wall 

correlations confirm the existence of larger and more persistent turbulent structures in the outer 

parts of the flow for the cubes than the smooth wall. Figure 4.29 shows the iso-contours of the 

wall-normal space-time auto-correlation function, Rvv (Δx, 0, τ). For a given wall-normal location, 

Rvv (Δx, 0, τ) is less spatially and temporally coherent than Ruu (Δx, 0, τ). This is because this 

correlation is caused by the small-scale spanwise vortices in the shear layer. Thus, the reduced 

temporal extents of the wall-normal space-time correlation may be attributed to a more rapid 

decorrelation of the small-scale eddies in time in comparison to the larger scale eddies.  
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 Figure 4.29: Iso-contours of the space-time auto-correlation function of wall normal velocity for 

SM and CB at x/Lr = 0.5, and y/h = 1.1, 1.3, 1.5, 2.0, 2.5 and 3.  
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process of the small-scale eddies. They suggested that their rapid reduction in time can arise either 

by the sweeping action of the larger-scale eddies or the local straining of the small eddies 

themselves. Close to the step, the cube roughness caused a further reduction in both the spatial and 

temporal spreads of the wall-normal space-time auto-correlation Rvv (Δx, 0, τ). This is qualitatively 

consistent with the damping action of the cubes on the wall-normal velocity fluctuations in the 

shear layer (Figure 4.9). On the contrary, at larger distances from the wall, a predominant increase 

in scale is observed for the rough wall compared to SM because the outer flow is characterized by 

more energetic v fluctuations in the rough wall case.   

To estimate the convection velocities a least squares straight line was fitted to the locus of 

the maximum correlation along the ridge of the contours of Ruu (Δx, 0, τ). A comparison of the 

convection velocities calculated from the slope Δx/Δτ of the line is shown in Figure 4.30. In these 

plots, the values of Uc were normalized by the upstream freestream velocity (Uo). Figure 4.30(a) 

shows the effect of upstream roughness on the wall-normal variation of Uc/Uo at the center of the 

primary recirculation bubble. Near the wall (y/h ≤ 1.5), the convection velocity increases rapidly 

with wall-normal distance. The results indicate that the small-scale structures are propagating at a 

much lower speed than that of the approach boundary layer and reflects the strong anisotropy of 

the flow close to the wall. In the wall region, the small-scale eddies are about 30% faster for CB 

compared to SM. Farther from the wall (y/h > 1.5), the convection velocity remains approximately 

constant, with the larger-scale structures convecting at nearly the same speed as the mean flow (Uc 

≈ Uo) for SM. For CB, on the other hand, a reduction in convection velocity is observed in 

comparison to the smooth wall, with the differences in Uc/Uo reaching about 21%. The results in 

Figure 4.30(a) suggests that the larger the structures, the smaller the convection velocity, and by 

inference, the longer their lifetime. Similar conclusions were reached by previous investigators 

(Favre et al. 1967; Kovasznay et al. 1970; Blackwelder and Kovasznay 1972). Figure 4.30(b) 
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shows the streamwise evolution of the normalized convection velocity, measured at the location 

of maximum turbulence intensity. This location was chosen to highlight the convection velocities 

of the rolled-up eddies in the shear layer. Within the first half of the recirculation bubble, the 

convection velocity is a decreasing function of x/Lr. In both cases, a minimum value is reached 

near the center of the recirculation bubble. Within most of the shear layer, the values of Uc/Uo are 

nearly independent of upstream roughness. In the second half of the recirculation bubble, the 

normalized convection velocity is quasi-invariant with streamwise distance with a value of Uc/Uo 

≈ 0.5. A similar trend of nearly constant values has been reported for separated and reattached 

shear layers (Na and Moin 1998; Weiss et al. 2015).  

   
Figure 4.30: Normalised convection velocity (a) in the wall-normal direction at x/Lr = 0.5; (b) 

along the locus of maximum streamwise turbulence intensity in the recirculation region. 
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where Δx and Δy are the spatial separations in the streamwise and wall-normal directions and the 

superscript s is introduced to denote spatial correlation. Figure 4.31 shows iso-contours of 𝑅𝑢𝑢
𝑠

 

centred at various streamwise locations (x/Lr ≈ 0.0, 0.25, 0.5 and 1.0) along the locus of maximum 

turbulence intensity in the shear layer for SM and CB. In each plot, the highest and lowest contour 

levels are respectively 0.9 and 0.4, and the contours are at intervals of 0.1. The largest regions of 

high streamwise velocity correlation occur near the leading edge of the step (Figures 4.31(a) and 

4.31(b)). The relatively strong spatial coherence of the u fluctuations here and their inclination to 

the vertical and top faces of the step are the imprints of the low-momentum fluid erupting 

diagonally from the corner of the step (see Figures 4.1 and 4.3). The 𝑅𝑢𝑢
𝑠  correlation is even more 

pervasive for the cube roughness because the corner eruptions are strongly correlated with the 

larger-scale ejections in the shear layer compared to the smooth wall. For the smooth wall, the 

inclined structure decorrelates rapidly as the flow separates from the step, and is replaced by a 

streamwise-aligned structure whose size grows with distance from the leading edge. The 

enhancement in spatial correlation with downstream distance is consistent with growth of the 

vortical structures as the flow evolves downstream. For the rough wall, the inclined structure is 

more resilient to the flow separation due to the more dominant influence of the ejections from the 

step in comparison to the smooth wall. Also, for the wall roughness condition, the 𝑅𝑢𝑢
𝑠  correlation 

contours at x/Lr ≥ 0.5 bear a striking resemblance to those of attached turbulent boundary layers. 

This may have resulted from the reduced vortex shedding from the step in the case of the rough 

wall. The average streamwise inclination angle of the correlation was estimated to be 

approximately 11º, which is in good agreement with the value of approximately 11º-13º reported 

for equilibrium turbulent boundary layers (Volino et al. 2007). As was observed in the temporal 

and space-time correlation results, for a given reference location, the effect of roughness is to 
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enhance the spatial coherence of the fluctuations by increasing the average size of the turbulent 

structures.  

  

  

  

  
Figure 4.31:  Iso-contours of the two-point spatial auto-correlation function of streamwise velocity 

(𝑅𝑢𝑢
𝑠 ) along the locus of maximum streamwise turbulence intensity in the recirculation region. 
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The iso-contours of 𝑅𝑣𝑣
𝑠  plotted versus Δx and Δy are shown in Figure 4.32. As expected, 

the contours are smaller and more compact than those of the streamwise fluctuating velocity auto-

correlation function. The correlations are also inclined to the leading edge of the step as was 

observed for their streamwise counterparts. Downstream of the leading edge, the smooth wall 𝑅𝑣𝑣
𝑠  

correlation exhibits a characteristic shape that is elongated in the wall-normal direction and grows 

with increasing distance from the leading edge. This is consistent with the streamwise evolution 

of a turbulent mixing layer. For the cube roughness, on the other hand, the contours are relatively 

more circular and show a much less tendency to growth with streamwise distance than the smooth 

wall correlations. The roughly circular shapes in this case are another feature indicating quasi-

similarity with equilibrium boundary layers. This is not unexpected since for the upstream rough 

walls, reattachment on the step and subsequent flow redevelopment occur much sooner than the 

smooth wall. Also, except near the leading edge, the correlation areas of the rough wall contours 

are much smaller than the smooth wall contours.  

Figure 4.33 shows the contours of the spatial cross-correlation 𝑅𝑢𝑣
𝑠  at the various 

streamwise locations for SM and CB. The two-point spatial cross-correlation provides information 

regarding the size and shape of the vortical structures responsible for mixing across the shear layer. 

It embodies the turbulent motions that transport low-momentum fluid from the wall into the faster 

moving outer layer and high-momentum fluid from the outer layer toward the wall. The plots show 

that the cross-correlation function has both positive and negative distributions in the shear layer. 

The positive correlations correspond to the Q1 (u > 0, v > 0) and Q3 (u < 0, v < 0) motions in the 

shear layer, while the negative correlations correspond to the Q2 (u < 0, v > 0) and Q4 (u > 0, v 

< 0) motions in the shear layer.  
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Figure 4.32: Iso-contours of the two-point spatial auto-correlation function of wall-normal velocity 

(𝑅𝑣𝑣
𝑠 ) along the locus of maximum streamwise turbulence intensity in the recirculation region. 
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Figure 4.33: Iso-contours of the two-point spatial cross-correlation function (𝑅𝑢𝑣

𝑠 ) along the locus 

of maximum streamwise turbulence intensity in the recirculation region (Contour levels are from 

-0.5 to -0.1 and 0.1 to 0.5 with the interval of 0.1). 
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The negative contours are of considerably larger spatial extent than the positive contours. 

This suggests that Q2 and Q4 are the dominant motions producing the Reynolds shear stress. The 

Q2 and Q4 structures are thus important parts of the turbulent mixing process, transporting low-

speed fluid from the wall into the higher-speed regions and bringing high-speed fluid towards the 

wall, respectively. For the smooth wall, the streamwise evolution of the cross-correlation is similar 

to those of the u and v auto-correlations. For the cube roughness, the region of significant negative 

correlation remains massive for all reference locations in the recirculation region. This reflects the 

more dominant contributions of the Q2 and Q4 motions to the Reynolds shear stress in the quadrant 

decomposition for CB compared to SM. Also evident in the rough wall results are the diminishing 

size and magnitude of the positive correlations when compared to the smooth wall. This implies 

that rough wall flow is recovering more rapidly than the smooth wall. 

To compare the average dimensions of the vortical structures the streamwise and wall-

normal integral length scales of the velocity fluctuations were calculated. The integral length scales 

were estimated by integrating the one-dimensional profiles of the two-point spatial auto-

correlation functions 𝑅𝑢𝑢
𝑠  and 𝑅𝑣𝑣

𝑠 . The streamwise and wall-normal integral length scales, Lu
x and 

Lu
y, respectively, of the fluctuating streamwise velocity were estimated as follows: 

𝐿𝑥
𝑢 = ∫ 𝑅𝑢𝑢

𝑠 (∆𝑥, 0)𝑑𝑥

∞

0

 (4.12) 

𝐿𝑦
𝑢 = ∫ 𝑅𝑢𝑢

𝑠 (0, ∆𝑦)𝑑𝑦

∞

0

 (4.13) 

The profiles of Lu
x and Lu

y normalized by the step height are shown in Figures 4.34(a) and 

4.34(b), respectively. The values of Lu
x and Lu

y were calculated at the leading edge (x/Lr = 0.0) 

and the two downstream locations x/Lr = 0.5 and 1.0. The corresponding profiles of the integral 

length scales obtained at x/h ≈ -20 over the smooth wall are included for reference. For the smooth 
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wall, no significant differences were observed between the length scales at the leading edge and 

upstream location. Further downstream, the spatial scales in the shear layer are reduced in 

comparison to the upstream structures with the differences reaching about 70%. For the upstream 

roughness, however, a dramatic increase in the spatial scales is observed over a considerable extent 

of the separated shear layer relative to the smooth wall. For Lu
x and Lu

y the differences were found 

to average to about 138% and 68%, respectively within the shear layer.  

 

  

  
Figure 4.34: Wall-normal distribution of the length scales of the two-point spatial correlations in 

the primary recirculation region.  
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The streamwise and wall-normal integral length scales of the fluctuating wall-normal 

velocity, Lv
x and Lv

y, respectively, were estimated as: 

𝐿𝑥
𝑣 = ∫ 𝑅𝑣𝑣

𝑠 (∆𝑥, 0)𝑑𝑥

∞

0

 (4.14) 

𝐿𝑦
𝑣 = ∫ 𝑅𝑣𝑣

𝑠 (0, ∆𝑦)𝑑𝑦

∞

0

 (4.15) 

The profiles of Lv
x and Lv

y are presented in Figures 4.34(c) and 4.34(d), respectively. For 

both spatial scales, the smooth and rough wall profiles at the leading edge are nearly 

indistinguishable, but are about 70% larger than the upstream smooth wall values within 1 ≤ y/h ≤ 

3.  Downstream of the leading edge, the differences with the upstream values gradually diminish. 

4.4.4   Space-Time Correlations with Δx = 0 

Figure 4.35 shows the streamwise evolution of the iso-contours of the space-time correlation Ruu 

(0, Δy, τ). This correlation is often used to show the temporal evolution of the eddies ejected from 

the wall region. Therefore, it can be used to investigate the interconnection between the outer 

turbulent structure and events near the wall. At all four reference locations, the extent of significant 

correlation is much larger for the cube roughness than the smooth wall. The substantial streamwise 

elongation for CB is a further indication that the large eddy structure has a longer memory for CB 

than SM. The larger wall-normal extents of the CB correlations are indicative of the transport of 

events originating near the wall that reach much further into the outer layer than over the smooth 

wall. This is consistent with the large region of ejected fluid observed for CB over the step and 

reflects the higher levels of Reynolds stress in the outer layer for CB in comparison to SM. 

 The iso-contours of the wall-normal fluctuating velocity space-time auto-correlation Rvv 

(0, Δy, τ) are shown in Figure 4.36. The extents of the wall-normal correlation are significantly 
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less than the streamwise correlation irrespective of the upstream roughness condition. This 

suggests that the wall-normal fluctuations have less influence on the eddies responsible for the 

inner-outer layer interaction. 

 

  

  

  

 
 

 
 

 Figure 4.35: Iso-contours of two-point space-time auto-correlation of the streamwise velocity 

along the locus of maximum streamwise turbulence intensity in the recirculation region.  
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 Figure 4.36:  Iso-contours of two-point space-time auto-correlation of the wall-normal velocity 

along the locus of maximum streamwise turbulence intensity in the recirculation region.  
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Figure 4.37: Wall-normal distribution of the length scales of the two-point spatial auto-correlations 

in the redevelopment region.  
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layer evolves much more quickly than the outer layer. In the near-wall region, the profiles show 

nearly complete recovery to the upstream smooth wall distribution. In the outer layer the profiles 

did not recover to the upstream smooth wall profile even at the farthest downstream location. These 

observations are consistent with the measurements of Song and Eaton (2004) that showed that the 

inner layer recovers much faster than the outer layer for turbulent boundary layers downstream of 

reattachment. 

 

4.5    Proper Orthogonal Decomposition (POD) of the Flow Fields 

The snapshot POD method was applied to the flow fields to reveal the spatial and temporal 

characteristics of the dominant eddies in shear layer. For each upstream condition, the POD was 

performed for the three measurement planes P0, P2 and P5, corresponding to the upstream plane, 

recirculation region and part of the redevelopment region, respectively. To ensure that the optimum 

number of TRPIV snapshots was used in the decomposition, a convergence study was conducted 

in which increasing number of snapshots (36 ≤ N ≤ 9000) were used to perform the POD. The 

values of the fractional energy of the first POD mode are summarized in Table 4.3 for SM and CB. 

Except for plane 0 of SM it is clear that the decomposition converges for number of snapshots N 

> 1800. The upstream plane data of the smooth wall may have been affected by measurement 

noise causing λ1
* to oscillate. Nevertheless, the values of the fractional energy in mode 1 converged 

to within 1%. For the smooth wall, the energy of mode 1 readjusts to the presence of the step as 

indicated by the decrease of λ1
* from P0 to P2 and an increase to P5. The rough wall values on the 

other hand show a consistent increase from P0 to P5. Also, for a given measurement plane, the 

rough wall values are consistently larger than those over the smooth wall. This agrees with the 

spatial and space-time correlation results that showed that the rough wall flows possess more 

coherent large-scale vortical structures than the smooth wall flow. In the results presented 

subsequently, a sample size of N = 6000 was used to perform the POD. 
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Table 4.3:  Energy convergence for increasing number of snapshots (N) of the first mode 

Snapshots (N) 
SM 

 
CB 

1
∗
 (P0) 1

∗
 (P2) 1

∗
 (P5) 1

∗
 (P0) 1

∗
 (P2) 1

∗
 (P5) 

36 19.66 15.23 26.98  21.97 33.16 37.30 

90 19.49 14.34 22.27  22.02 33.71 35.57 

180 18.70 12.96 21.71  21.41 33.45 35.19 

360 18.61 12.97 21.62  21.58 33.40 34.87 

900 18.61 13.02 21.63  21.35 33.35 34.98 

1800 18.69 13.01 21.63  21.37 33.21 35.00 

3600 18.74 13.00 21.63  21.37 33.22 35.00 

6000 18.72 13.00 21.63  21.37 33.22 35.00 

9000 18.75 13.00 21.63  21.37 33.22 35.00 

 

 Figure 4.38 shows a comparison of the modal energy and cumulative modal energy 

distributions among the upstream and downstream planes. To avoid clatter of the data only the 

first 40 POD modes are plotted. The results in Figures 4.38(a) and 4.38(b) show that the first POD 

mode contributes to the largest fraction of the total TKE, while the contributions from the higher 

order modes decay very rapidly, reaching less than 2% from the 15th mode. Similar decay with 

increasing mode number has been reported in a wide range of flows including ZPG turbulent 

boundary layers (Sen et al. 2008; Wu and Christensen 2010), separated shear layers (Kostas et al. 

2005; Sherry et al. 2010; Sampath et al. 2014; Iftekhar and Agelin-Chaab2016) and jets (Gordeyev 

and Thomas 2000; Iqbal and Thomas 2007; Shinneeb et al. 2008). The shape of the curves provides 

a rough indication of how fast the POD modal energy converges. In the recirculation region (Figure 

4.38(a)), the enhanced growth of the structures by the cube roughness caused a more rapid 

convergence than was observed for the smooth wall. This contrasts with the upstream data where 

the smooth and rough walls converge at nearly the same rate. The results in Figure 4.38(b) reveal 

that the modal energy of the lowest-order modes does not recover to the upstream values, which 

is consistent with the spatial correlation results in the outer parts of the redevelopment region. The 

energy convergence is more clearly depicted in the profiles of the cumulative energy (Figures 

4.38(c) and 4.38(d)). The results suggest a more rapid energy convergence in both the recirculation 
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and redevelopment regions of CB compared to SM. That is, in order to capture the same amount 

of total TKE, a smaller number of POD modes will be required in the case of CB than SM. For 

instance, to capture approximately 50% of the total TKE in the recirculation region, only the first 

5 low-order modes are required for CB as opposed to 16 modes for the smooth wall. In the 

redevelopment region, even fewer modes are required (2 and 8 for CB and SM, respectively) to 

capture about 50% of the total TKE. The reduced number of low-order modes in the redevelopment 

region is indicative of faster energy convergence in this region compared to upstream and 

recirculation regions. 

  

  
Figure 4.38: Distributions of modal and cumulative energy fraction for the first 40 modes.  
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The effects of upstream roughness on the spatial eigenmodes in the recirculation region are 

examined in Figure 4.39. The plots show the iso-contours of the streamwise component Φu(x, y) 

of the first five low-order POD modes. The percentage of total TKE contributed by the mode is 

indicated in each plot. As depicted in Figure 4.39(a) and 4.39(b) for SM and CB, respectively, the 

iso-contour of the first spatial mode encompasses the entire recirculation bubble. This suggests 

that the dynamics of the most dominant spatial mode are related to the physical mechanism 

responsible for the formation of the recirculation bubble. It has indeed been suggested in previous 

studies (e.g., Humble et al. 2009; Thacker et al. 2013; Mohamme-Taifour and Weiss 2016) that 

the first POD mode is exclusively associated with global velocity fluctuations within the 

recirculation bubble, which are linked with the flapping motion of the recirculation bubble. The 

effect of the cube roughness is to reverse the sign of the spatial mode from negative to positive. It 

is likely the high-speed inward moving u fluctuations represented by the positive Φu counteract the 

outward expansion of the recirculation bubble resulting in a smaller bubble in the case of CB 

compared to SM. The sharp contrast between the first POD mode and the higher-order modes is 

shown in the Figure. With increasing number of modes, smaller-scale structures arise as alternating 

positive and negative contours. These are considerably larger for the rough wall and their signs are 

reversed when compared to the smooth wall contours. The periodicity of the higher-order modes 

was also observed in previous investigations over a forward-facing step (Iftekhar and Agelin-

Chaab 2016), an Ahmed body (Thacker et al. 2013) and flat plate turbulent boundary layer 

(Rempfer and Fasel 1994). The parity of the spatial modes reported by previous investigators can 

be noticed in the smooth wall contours. For instance, the smooth wall plots can be paired as 

follows: (Φ𝑢
2 , Φ𝑢

3), (Φ𝑢
4 , Φ𝑢

5), and so on, where each member of a pair is obtained by a streamwise 

shift of the other member. Following Thacker et al. (2013), the wavelength λΦ between two positive 

or negative extremum zones of fluctuating velocity can be estimated as indicated in Figure 4.39(c) 
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 Figure 4.39: Iso-countours of the spatial eigenmodes in the recirculation region (Plane 2). 
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Figure 4.40: Iso-countours of spatial eigenmodes in the redevelopment region (Plane 5). 
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for SM. By using a convection velocity of Uc = 0.23 m/s measured from the plots in Figure 4.30(a) 

for the smooth wall, the frequency of the positive/negative alternation was estimated as fΦ = Uc /λΦ 

≈ 2.9 Hz. This corresponds to a Strouhal number, St = fΦ Lr/Uc of approximately 0.43 and reflects 

the relatively high frequency activity signature observed in this region for SM. 

 The iso-contours of Φ𝑢
𝑛(𝑥, 𝑦) in the redevelopment region (P5) are shown in Figure 4.40. 

The contour values of first POD mode are predominantly negative indicating the presence of more 

strongly coherent or larger-scale structures in the redevelopment region compared to the 

recirculation region. The higher-order modes show a similar streamwise periodicity but their 

orientation is more random than was observed in the recirculation region. Despite the randomness, 

the contour sizes are considerably larger than those observed in the recirculation region. The spatial 

structure of the second POD mode for CB closely resembles that reported for equilibrium turbulent 

boundary layers. This supports the earlier observation that the rough wall flow is recovering more 

quickly than the smooth wall flow. 

 The temporal modes of the POD (also known as chrono-modes) were investigated using 

temporal spectra of the POD coefficients. Figure 4.41 shows the frequency spectra of the first four 

chrono-modes in the recirculation region. The more energetic structures produced by the upstream 

roughness reflect in the temporal spectra of Figure 4.41(a) that indicate a larger spectral density at 

low frequencies for CB in comparison to SM. With increasing mode number, the spectral density 

is decaying. The decay is more rapid for the rough wall than the smooth wall due to the faster 

convergence of the rough wall POD. To obtain the dominant frequencies associated with the POD 

modes the pre-multiplied spectra of the chrono-modes were calculated. Those obtained in the 

recirculation region are shown in Figure 4.42. The dominant frequencies in the first chrono-modes 

are approximately 1.0 Hz and 0.8 Hz for SM and CB, respectively.  
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Figure 4.41: Frequency spectra of the temporal modes in the recirculation region. 

 

    

    
Figure 4.42: Pre-multiplied energy spectra of the temporal modes in the recirculation region. 
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Due to the parity rule, the dominant frequencies in the spectra are similar for successive 

pairs of temporal modes. For instance, the dominant frequency for the second and third is 2.5 Hz 

for SM and 2.3 Hz for the rough wall. It should be noted that the frequency of 2.5 Hz obtained for 

SM in Figure 4.42(b) is in good agreement with 2.9 Hz obtained for the positive/negative 

alternating contours of spatial mode 2 in Figure 4.39(c). A similar equality was observed for the 

fourth and fifth chrono-modes. The spectra for the fifth chrono-mode is not shown here for 

economy of space. The corresponding frequencies are approximately 5 Hz and 4 Hz for SM and 

CB, respectively. The consistently lower frequency values over the rough wall are indicative of 

the much larger structures over the rough wall than the smooth wall. Also, the increasingly smaller 

areas under the CB curves are consistent with the rapid convergence of energy for the rough wall.  

  

  
Figure 4.43: Frequency spectra of the temporal modes in the redevelopment region. 
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 The chrono-modes in the redevelopment region are shown in Figure 4.43. The plots show 

a similar decay in spectral density with increasing mode number but there is no systematic 

dependency on upstream roughness. The profiles of the pre-multiplied spectra in the 

redevelopment region are displayed in Figure 4.44. Each of the plots shows that there are two 

dominant frequencies for the temporal characteristics of the modes in the redevelopment region. 

This illustrates the presence of smaller-scale eddies (higher frequencies) in the redevelopment 

region, which merge under the inverse cascade mechanism to form larger-scale structures (lower 

frequencies). 

 

    

    
Figure 4.44: Pre-multiplied energy spectra of the temporal modes in the redevelopment region. 
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implications for RANS-based models is the existence of significant negative Reynolds shear stress 

near the leading edge of the step under the counter gradient diffusion mechanism. In the standard 

eddy viscosity model (EVM), the Reynolds stress tensor, ui′uj′, is related to the mean velocity 

gradients as 

−〈𝑢𝑖
′𝑢𝑗

′〉 = 𝜈𝑡 (
𝜕𝑈𝑖

𝜕𝑥𝑗
+

𝜕𝑈𝑗

𝜕𝑥𝑖
) −

2

3
𝐾𝛿𝑖𝑗 (4.16) 

 

where νt is the turbulence eddy viscosity, K is the turbulent kinetic energy and δij is the Kronecker  

delta. Central to the eddy viscosity approximation is the requirement that both the Reynolds stress 

and strain rate tensors be in alignment with each other. This is to ensure that the eddy viscosity is 

always positive, since a negative eddy viscosity would have no physical meaning. 

  

  

  
Figure 4.45: Distribution of Reynolds shear stress and velocity gradients at the leading edge of 

step. 
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To investigate the sign of the eddy viscosity, νt = u′v′/(∂U/∂y + ∂V/∂x), in the present 

flow, profiles of the Reynolds shear stress and mean strain rate were plotted at the leading edge of 

the step. These are shown in Figure 4.45. In all cases, u′v′ is negative while ∂U/∂y + ∂V/∂x is 

positive close to the wall (1.0  y/h  1.3). These values will contribute to negative eddy viscosity 

near the leading edge of the step. The occurrence of a negative eddy viscosity near the corner of 

the step suggests that RANS models based on equation (4.16) above are not appropriate for this 

flow.  

In RANS simulations based on the two-equation turbulence model, the isotropy assumption 

(u′2 v′2) is made. In order to investigate the validity of this assumption, values of the anisotropy 

parameter, v′2/u′2, were calculated. Figures 4.46(a) and 4.46(b) show the streamwise evolution 

of v′2/u′2 in the recirculation and redevelopment regions, respectively, for SM, SP and CB. The 

results indicate a strong anisotropy between the Reynolds stresses in the shear layer. Within the 

recirculation and redevelopment regions, the wall-normal Reynolds stress is approximately one-

half of the streamwise Reynolds stress. This high level of anisotropy in the flow suggests that 

RANS models employing isotropic stress assumption cannot be used to reproduce the turbulence 

intensities measured over the step. 

Also, in the standard k-ε model, the turbulent eddy viscosity is evaluated as (Wilcox 1993): 

 𝜈𝑡 = 𝐶𝜇

𝐾2

𝜖
 (4.17) 

where Cμ is a dimensionless constant. The value of Cμ is obtained from experiments, typically two-

dimensional turbulent boundary layer experiments. In the logarithmic region of the 2D turbulent 

boundary layer, where production balances dissipation, it can be shown that Cμ
1/2 = -u'v'/K. The 

calculations by Bradshaw et al. (1975) have shown that -u'v'/(2K) ≈ 0.15. This yields Cμ ≈ 0.09.  

The values of the structure parameter, -u'v'/2K, were measured in the present experiments. In 
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estimating the structure parameter, the turbulent kinetic energy (k) was estimated as K = 0.75(u'2 

+ v'2). The profiles of the structure parameter are shown Figures 4.46(c) and 4.46(d) for the three 

test cases in the recirculation and redevelopment regions, respectively. The structure parameter is 

negative at the leading edge of the step for all cases due the negative values of -u'v'. The structure 

parameter is nearly independent of upstream roughness in both the recirculation and 

redevelopment regions. Except in a thin layer close to the wall, -u'v'/2K is approximately constant 

with a value approximately 0.15. This suggests that use of C = 0.09 is appropriate for this flow 

except near the step corner and very close to the wall. 

  

  
Figure 4.46: Distribution of (a,b) stress ratio; (c,d) structure parameter in the recirculation and 

redevelopment regions. 
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Finally, as shown in Figure 4.12(d), the near-wall values of wall-normal turbulent transport 

of the Reynolds shear stress (u′v′2) are predominantly positive near the step corner (1.0 ≤ y/h ≤ 

1.1). This falls within the region where the counter-gradient diffusion phenomenon is observed. 

The positive near-wall values of u′v′2 suggest a turbulent transport of u′v′ away from the wall. In 

the k-ε model, the triple velocity products are modelled as (Skare and Krogstad 1994):  

〈𝑢𝑘
′ 𝑢𝑖

′𝑢𝑗
′〉 = −𝐶𝑠

𝐾

𝜀
〈𝑢𝑘

′ 𝑢𝑙
′〉

𝜕〈𝑢𝑖
′𝑢𝑗

′〉

𝜕𝑥𝑙
 (4.18) 

where K and ε are the turbulent kinetic energy and turbulent kinetic dissipation rate, respectively, 

and Cs = 0.08 is a modelling constant. For a two-dimensional FFS flow, this equation can be 

expanded as 

〈𝑢′𝑣′2〉 = 0.08
𝐾

𝜀
[〈𝑢′𝑣′〉

𝜕(−〈𝑢′𝑣′〉)

𝜕𝑥
+ 〈𝑣′2〉

𝜕(−〈𝑢′𝑣′〉)

𝜕𝑦
] (4.19) 

Near the leading edge, the first term in the parenthesis is positive, while the second term is negative 

but of larger magnitude than the first. This would result in negative values of u′v′2 contrary to the 

positive values observed near the leading edge. These conditions imply that the gradient transport 

model will not be able to accurately predict the wall-normal transport of Reynolds shear stress near 

the corner of the step.  
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CHAPTER 5 

CONCLUSIONS AND RECOMMENDATIONS 

5.1    Summary and Conclusions 

A planar time-resolved particle image velocimetry method was used to investigate the effects of 

upstream roughness on the flow characteristics of turbulent boundary layer over a forward-facing 

step. Two types of upstream roughness were investigated, including a transitionally rough 16-grit 

sandpaper and fully rough array of staggered cubes. Instantaneous flow fields and time-averaged 

quantities such as the mean velocities, Reynolds stresses, triple correlations, temporal auto-

correlations and frequency spectra were measured. Quadrant decomposition and joint probability 

density functions of the velocity fluctuations were also measured to investigate the contribution of 

the dominant motions to mean Reynolds shear stress. To completely characterize the spatial and 

temporal evolution of the flow in the various regions of the flow, multi-point statistics such as two-

point spatial and space-time correlations were calculated.  

A Galilean decomposition of the instantaneous flow fields revealed that the flow 

downstream of the step is populated by streamwise-aligned spanwise vortices produced by the 

Kelvin-Helmholtz roll up the separated shear layer. These were found to be common features of 

the upstream smooth wall and sandpaper roughness but were replaced by large-scale ejections 

away from the step in the case of the staggered cubes. For the smooth wall and sandpaper 

roughness, the spanwise vortices were observed to be predominantly prograde-type vortices with 

instantaneous swirling strength that are of the same sign as the mean shear. 

Turbulence spectra measurements near the leading edge of the step indicate that the upstream 

roughness reduced the vortex shedding frequency of the separated shear layer and at rate that 

increased with increasing roughness condition (ks
+). A possible explanation for this reduction is 
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the reduction of the mean streamwise velocity at the step height by the sandpaper and cube 

roughness. 

The reattachment length of the recirculation bubble over the step decreases with increasing 

upstream roughness condition. This may be partly attributed to the reduction in magnitude of 

backflow with increasing roughness and the suppression of the frequency of vortex shedding from 

the leading edge. The upstream roughness also caused reductions in the height of the recirculation 

bubble and the distance of its centre from the leading edge of the step. The results also indicate 

that the flow accelerates more rapidly over the step for smooth wall than the rough walls, which 

will delay reattachment over the step for the smooth wall in comparison to the rough walls. 

As the flow evolved in the recirculation region, the upstream roughness caused a decrease 

in the mean streamwise velocity in the outer layer and an increase in the shear layer. The Reynolds 

stresses remained relatively unchanged by the sandpaper roughness but showed significant 

modifications by the cube roughness. Downstream of the leading edge, the cubes increased the 

streamwise Reynolds stress both near the wall and outside the shear layer, while decreasing the 

wall-normal Reynolds stress and Reynolds shear stress near the wall but enhancing them in the 

outer layer. These changes are inversely proportional to distance in the recirculation region. 

Similar observations were made in the triple correlations measured for the three test cases. Near 

the leading edge, the wall-normal transport of the turbulent kinetic energy and Reynolds shear 

stress were attenuated by the sandpaper roughness in comparison to the smooth wall. Near the 

leading edge a counter-gradient diffusion of Reynolds shear stress was observed. The counter-

gradient diffusion suggests that eddy-viscosity models based on the assumption of positive eddy 

viscosity will fail to properly predict the flow near the corner of the step. 

The quadrant decomposition of the Reynolds shear stress and joint probability density 

function analysis reveals that the dominant contributors to the mean Reynolds shear stress near the 
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leading edge are the inward (Q3) and outward (Q1) interaction terms. These are independent of 

upstream roughness. Downstream of the leading edge, the largest contributions to the mean 

Reynolds shear stress come from sweeps and ejections. The quadrant decomposition results also 

indicate that ejections (Q2) are the more dominant contributors to the Reynolds shear stress in the 

shear layer than sweeps (Q4). In the region of high Reynolds shear stress, this caused a shift in the 

maximum iso-probability contours of the joint probability density function in favour of the second 

quadrant. The cube roughness produced substantial enhancements in Q2 and Q4 in the outer layer 

but reductions in the near-wall region as was observed for the Reynolds shear stress. 

In the recirculation region, the temporal auto-correlations show a more gradual decay with 

temporal separation at larger distances away from the wall. This is due to the increase in scale of 

the velocity fluctuations for reference locations away from the wall. Overall, away from the wall, 

the temporal correlations remain unaffected by the sandpaper roughness but were dramatically 

enhanced by the cube roughness. Also, the life times of the u′ and v′ fluctuations are considerably 

longer for the cube roughness within the shear layer. The two-point spatial and space-time 

correlations suggest that for the upstream cube roughness the vortical structures are more resilient 

to the presence of the step than the smooth wall. Convection velocity measurements in the 

recirculation region suggest a decrease in the propagation speed of the turbulence structures in the 

outer layer for a large upstream roughness condition. The convective velocities also revealed that 

larger-scale structures travel much slower than smaller-scale structures in the shear layer.  

In the redevelopment region, the mean flow relaxes relatively quickly and recovers to the 

upstream distributions after some 12 step heights from the reattachment location. After recovery, 

the effects of upstream roughness on the mean velocities are negligible. The reduced influence of 

upstream roughness was supported by collapse of the streamwise profiles of the skin friction 

coefficient, boundary shape shaper factor and the Clauser shaper parameter. In the far downstream 
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region (about 20 to 35 step heights from the reattachment point), the smooth- and rough-wall 

Reynolds stresses collapse reasonably well but do not recover to the upstream distributions. Also, 

in the redevelopment region, the turbulence generated by the step decays in intensity and grows in 

scale. The life time of u′ and v′ fluctuations increases with streamwise distance and are much larger 

in the redevelopment region than in the recirculation region. The measurements of the spatial and 

space-time correlations showed that structures are not only persistent but are spatially more 

coherent for the rough wall than the smooth wall. The spatial and space-time correlations were 

also helpful in showing that the turbulence structure recovers more quickly to the upstream 

conditions than indicated by the one-point statistics when the flow is subjected to large upstream 

roughness. The frequency spectra of wall-normal velocity fluctuations showed that energy is 

injected at the small scales for the cube roughness. This effect would lead to merging of the small 

scales to form larger scale structures. 

A proper orthogonal decomposition (POD) of the flow fields was performed in order to 

reveal more relevant features of the separated and reattached shear layer. It was found that the 

enhanced growth of the vortical structures by the cubes caused a corresponding increase in 

fractional energy convergence of the POD modes. In the recirculation region, the most energetic 

eigenmode was found to be responsible for the large-scale dynamics of the recirculation bubble. 

The larger scale structures produced by amalgamation were confirmed by the POD results in the 

recirculation region. 

5.2    Contributions and Recommendations for Future Work 

5.2.1    Research Contributions 

Although turbulent boundary layers subjected to a forward-facing step have been studied 

extensively in the past, this is the first time within the near-wall turbulence community when a 
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time resolved PIV was used to characterize the influence of upstream roughness on the turbulence 

characteristics and flow structure of over the step. 

 To quantify roughness effects on the flow, a large set of metrics were used in probing the 

data. These include the time-averaged flow characteristics such as the mean velocities, Reynolds 

stresses, quadrant contributions, triple correlations, probability density functions, temporal 

correlations and spectra, and multi-point statistics such as the two-point spatial and space-time 

correlations. By examining the profiles of the single- and multipoint turbulence characteristics in 

both the recirculation and redevelopment regions, a more detailed picture of the temporally and 

spatially evolving flow has emerged in comparison to most previous investigations where 

measurements were limited to either the upstream region (e.g., Pearson et al. 2013) or the 

recirculation region (e.g., Largeau and Moriniere 2007; Sherry et al. 2010; Wu and Ren 2013). 

Thus, a large database of well-resolved measurements has been obtained that will invariably be 

useful to CFD researchers for calibrating and developing near-wall turbulence models. 

 Finally, this work employed some of the advanced statistical structure identification tools 

such as linear stochastic estimation and proper orthogonal decomposition to reveal the vortical 

structures in the smooth and rough wall flows. As a contribution to the FFS literature, the POD 

was used to confirm the results from the temporal and spatial correlations of smaller-scale vortices 

merging to form larger-scale structures in the redevelopment region, an inverse cascade process 

resulting in the “amalgamation” of the smaller-scale vortices. The POD also confirmed that the 

turbulent structure over the step recovers more rapidly to the equilibrium state when subjected to 

large upstream roughness.  

 

5.2.2    Recommendations for Future Work 

In this research a two-dimensional two-component time-resolved PIV was used to measure the 

flow characteristics of the FFS flow. Because of this, various turbulence characteristics such as the 
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spanwise Reynolds stress, turbulence kinetic energy dissipation rate, and the complete three-

dimensional velocity gradient tensor could not be measured. Also, due to the current planar 

measurements, flow visualization of the coherent structures and the statistical correlations are 

limited to the streamwise – wall-normal (x-y) plane of the fields of view. Based on the above 

shortfalls, the following recommendations are suggested for future research: 

 A three-dimensional measurement system such as tomographic PIV will be very useful in 

gaining complete understanding of the complex nature of the separated and reattached flow 

over FFS. This will be very useful in measuring all three components of instantaneous 

velocity and in obtaining the complete velocity gradient tensor. These quantities are crucial 

in developing sub-grid scale models relevant to large eddy simulation. 

 Additional measurements made in the spanwise (x-z) and cross-stream (y-z) planes will no 

doubt help to reveal three-dimensional structure of the spatially evolving flow over the 

step.   

 Since time averaging tends to smear the educed structures, further structural identification 

methods such as dynamic mode decomposition (DMD) that provide both spatial and 

temporal decomposition without averaging will give further insight into the coherent 

structures in the shear layer. 
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APPENDIX A 

CONVERGENCE AND SPATIAL RESOLUTION ANALYSIS 

A.1    Convergence Analysis 

In order to determine the adequacy of the sample size used in computing the statistics, a 

convergence test was performed by comparing profiles of the mean velocity and higher-order 

moments from samples of various sizes: N = 6000, 12000, 16000, 18000 and 24000. The statistics 

were calculated in the second measurement plane at the upstream location x/h ≈ 0.5 and over the 

step at the three streamwise locations, x/Lr ≈ 0.0, 0.5 and 1.0 for the smooth and rough walls. 

Figure A1 shows the one-dimensional wall-normal profiles of the mean streamwise velocity, 

Reynolds stresses, as well as profiles of the skewness and flatness factors for the upstream smooth-

wall condition. The results indicate that the mean velocity is statistically converged both at the 

upstream location and over the step for N ≥ 6000. Similar conclusions can be drawn for the 

Reynolds stresses as well as the skewness and flatness factors of the wall-normal velocity at the 

upstream location and over the step. For the skewness and flatness factors of the streamwise 

velocity, however, the data are statistically converged only in the inner region. In the outer parts 

of the flow, Su' and Fu' are nearly Gaussian (Su' ≈ 0 and Fu' ≈ 3) at the upstream location and over 

the step for N = 6000. The outer layer discrepancies are most dramatic for the flatness factor of the 

streamwise velocity both at the upstream location and over the step although these discrepancies 

reduce as the sample size increases. Figure A2 presents the convergence tests for the upstream 

sandpaper roughness. The results show that any of the sample sizes is sufficient for calculating the 

mean velocities, Reynolds stresses and the skewness and flatness factors of V. The profiles of Su' 

and Fu', on the other hand, show a similar trend as observed for the smooth wall although the outer 

layer differences are smaller. Figure A3 shows the convergence results for the upstream cube 

roughness. 
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Figure A1: Comparison of profiles of the mean velocity and higher-order moments at various 

streamwise locations in plane 1 for the upstream smooth-wall condition calculated using samples 

of various sizes. 
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Figure A2: Comparison of profiles of the mean velocity and higher-order moments at various 

streamwise locations in plane 1 for the upstream sandpaper-roughness condition calculated using 

samples of various sizes. 
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Figure A3: Comparison of profiles of the mean velocity and higher-order moments at various 

streamwise locations in plane 1 for the upstream cube-roughness condition calculated using 

samples of various sizes. 
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The results at the various sample sizes show reasonable collapse for the mean streamwise 

velocity, wall-normal stress and Reynolds shear stress, but the streamwise Reynolds stress at the 

upstream location and near the leading edge of the step shows differences as the sample size 

increases. Nevertheless, the skewness and flatness factors of the streamwise and wall-normal 

velocities are statistically converged for N > 6000 at the upstream location and over the rough 

wall. On the basis of the above results, it was decided to use a sample size of N = 18000 for 

statistical computations for the upstream smooth wall and N = 24000 for the upstream sandpaper 

and cube roughness. These sample sizes are significantly larger than twice the largest integral time 

scales in the smooth- and rough-wall experiments.  

A.2    Spatial Resolution Analysis 

Studies have shown that a low spatial resolution can underestimate the true values of the turbulent 

quantities in PIV (e.g., Piirto et al. 2003; Saikrishnan et al. 2006). In the present investigation, the 

smooth- and rough-wall statistics calculated at x/h ≈ 0.5, and x/Lr ≈ 0.0, 0.5 and 1.0 were used to 

examine spatial resolution effects in the experiments. Three special resolutions were tested 

corresponding to interrogation area sizes of 32 × 32, 24 × 24 and 16 × 16, with an overlap of 75% 

in each case. The number of samples for the upstream smooth and rough walls were N = 18000 

and 24000, respectively. The spatial resolution tests for SM, SP and CB are presented in Figures 

A4, A5 and A6, respectively. The results indicate that the interrogation area size has negligible 

effect on the mean streamwise velocity, streamwise Reynolds stress, Reynolds shear stress, as well 

as the skewness and flatness factors. However, as the spatial resolution increases, the peak value 

of the wall-normal Reynolds stress increases both at the upstream location and over the step for 

the smooth- and rough-wall cases. Similar observations were reported by Shah et al. (2008). 
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Figure A4: Comparison of profiles of the mean velocity and higher-order moments at various 

streamwise locations in plane 1 for the upstream smooth-wall condition calculated with data at 

various spatial resolutions. 
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Figure A5: Comparison of profiles of the mean velocity and higher-order moments at various 

streamwise locations in plane 1 for the upstream sandpaper-roughness condition calculated with 

data at various spatial resolutions. 

0 1 2 3 4
0

1

2

3
1000

 32×32

 24×24

 16×16

x/L
r
 = 0 x/L

r
 = 1.0x/L

r
 = 0.5x/h = -0.5

y/
h

<U>/U
e

0

0 1 2 3 4
0

1

2

3

 3232

 24*24

 16*16

x/L
r
 = 0 x/L

r
 = 1.0x/L

r
 = 0.5x/h = -0.5

y
/h

U/U
max

00 0 0 0.07

0.00 0.07 0.14 0.21 0.28
0

1

2

3
x/L

r
 = 1.0x/L

r
 = 0.5x/L

r
 = 0x/h = -0.5

y/
h

<u'
2
>/U

e

20

1

2

3

x/h = -0.5
 3232

 24*24

 16*16

 3232

 24*24

 16*16

 X = 0

 0.5 Lr

 Lr

 X = 0

 0.5 Lr

 Lr

 X = 0

 0.5 Lr

 Lr

x/L
r
 = 0 x/L

r
 = 1.0x/L

r
 = 0.5x/h = -0.5

y
/h

U/U
max

0.00 0.03 0.06 0.09 0.12
0

1

2

3
x/L

r
 = 1.0x/L

r
 = 0.5x/L

r
 = 0

y/
h

<v'
2
>/U

e

2

0 0 0 0 0.03
0 1 2 3 4

0

1

2

3

 3232

 24*24

 16*16

 X = 0

 0.5 Lr

 Lr

 X = 0

 0.5 Lr

 Lr

 X = 0

 0.5 Lr

 Lr

x/L
r
 = 0 x/L

r
 = 1.0x/L

r
 = 0.5

y
/h

U/U
max

0.00 0.03 0.06 0.09 0.12
0

1

2

3
x/L

r
 = 1.0x/L

r
 = 0.5x/L

r
 = 0x/h = -0.5

y/
h

-<u'v'>/U
e

2

0 0 0 0 0.03

0 1 2 3 4
0

1

2

3

 3232

 24*24

 16*16

 3232

 24*24

 16*16

 X = 0

 0.5 Lr

 Lr

 X = 0

 0.5 Lr

 Lr

 X = 0

 0.5 Lr

 Lr

x/L
r
 = 0 x/L

r
 = 1.0x/L

r
 = 0.5x/h = -0.5

U/U
max

00 0 0 5

-5 0 5 10 15
0

1

2

3
x/L

r
 = 1.0x/L

r
 = 0.5x/L

r
 = 0x/h = -0.5

y/
h

S
u'

0 1 2 3 4
0

1

2

3

 3232

 24*24

 16*16

 X = 0

 0.5 Lr

 Lr

 X = 0

 0.5 Lr

 Lr

 X = 0

 0.5 Lr

 Lr

x/L
r
 = 0 x/L

r
 = 1.0x/L

r
 = 0.5x/h = -0.5

y
/h

U/U
max

00 0 0 5

-5 0 5 10 15
0

1

2

3
x/L

r
 = 1.0x/L

r
 = 0.5x/L

r
 = 0x/h = -0.5

y/
h

S
v'

0 1 2 3 4
0

1

2

3

 3232

 24*24

 16*16

 X = 0

 0.5 Lr

 Lr

 X = 0

 0.5 Lr

 Lr

 X = 0

 0.5 Lr

 Lr

x/L
r
 = 0 x/L

r
 = 1.0x/L

r
 = 0.5x/h = -0.5

y
/h

U/U
max

00 0 0 10

-10 0 10 20 30 40
0

1

2

3
0

x/L
r
 = 1.0x/L

r
 = 0.5x/L

r
 = 0x/h = -0.5

y/
h

F
u'

0 1 2 3 4
0

1

2

3

 3232

 24*24

 16*16

 X = 0

 0.5 Lr

 Lr

 X = 0

 0.5 Lr

 Lr

 X = 0

 0.5 Lr

 Lr

x/L
r
 = 0 x/L

r
 = 1.0x/L

r
 = 0.5x/h = -0.5

y
/h

U/U
max

00 0 0 15

-15 0 15 30 45
0

1

2

3
x/L

r
 = 1.0x/L

r
 = 0.5x/L

r
 = 0x/h = -0.5

y/
h

F
v'



149 
 

  

  

  

  
Figure A6: Comparison of profiles of the mean velocity and higher-order moments at various 

streamwise locations in plane 1 for the upstream cube-roughness condition calculated with data at 

various spatial resolutions. 
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APPENDIX B 

EXPERIMENTAL UNCERTAINTY ANALYSIS 

This appendix describes the correlation statistics procedure and the uncertainty propagation 

methodology used in estimating the uncertainties in the instantaneous velocities and time-averaged 

quantities. In the correlation statistics method, the measured displacement field, s(x) is used to 

dewarp the second image back to the first image. This matches the pixel intensities in the IAs of 

the second image to corresponding intensities in the IAs of the first image. This is mathematically 

represented by the equation (Wieneke and Prevost 2014): 

𝐼2
∗(𝑥) = 𝐼2(𝑥 + 𝑠) (B1) 

 

which requires a sufficiently accurate high-order sub-pixel interpolation scheme. 

Assuming that cross-correlation algorithm has sufficiently converged so that the residual 

given by 

𝐶(𝑠) =  ∑[𝐼1(𝑥) − 𝐼2(𝑥 + 𝑠)]2 = ∑[𝐼1(𝑥) − 𝐼2
∗(𝑥)]2 (B2) 

 

is at a minimum with zero slope dC/ds, then the following equality holds: 

∆𝐶 = 𝐶(𝑠 + ∆𝑥) − 𝐶(𝑠 − ∆𝑥) ≅ 0 (B3) 
 

where Δx is a small distance away from s. 

A non-zero value of ΔC indicates that the correlation algorithm did not converge (Wieneke 

and Prevost 2014). This implies that taking the three points C(s), C(s – Δx), and C(s + Δx), an 

improved optimal displacement s + δs can be calculated, where δs is the residual displacement 

whose magnitude can be determined using any suitable peak-fitting algorithm. Fitting a second  

order polynomial, for instance, to the three points yields 

𝛿𝑠 =
∆𝑥

2

∆𝐶

2𝐶0 − 𝐶+ − 𝐶−
 (B4) 
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where C0 = C(s), C+ = C(s + Δx) and C– = C(s – Δx).   

Rewriting equation (B3) as (Wieneke and Prevost 2014): 

∆𝐶 = ∑ ∆𝐶𝑖 = ∑[(𝐼1(𝑥) − 𝐼2
∗(𝑥 + ∆𝑥))2 − (𝐼1(𝑥 + ∆𝑥) − 𝐼2

∗(𝑥))2] (B5) 

  

ignoring small differences from shifting the second term by Δx. Equation (B5) implies that if I1 = 

I*
2, ΔCi is exactly zero so that the residual displacement is zero. However, because of various 

sources of error, the values of I1 and I*
2 in actual experiments do not perfectly match. The standard 

deviation of ΔC is given by (Wieneke and Prevost 2014): 

𝜎∆𝐶 = √𝑁𝜎∆𝐶𝑖
= √𝑁 (

∑ ∆𝐶𝑖
2

𝑁
)

1
2

= (∑ ∆𝐶𝑖
2)

1
2
 (B6) 

 

Using equation (B4) and (B6), the standard deviation of the residual displacement is given by 

𝜎𝑠 =
∆𝑥

2

(∑ ∆𝐶𝑖
2)

1
2

2𝐶0 − 𝐶+ − 𝐶−
 (B7) 

  

Equation (B7) yields the uncertainty estimate of the displacement field. The correlation statistics 

technique is implemented as a built-in tool in the LaVision DaVis software for direct computation 

of the experimental uncertainties in the instantaneous velocities. The uncertainty limits at the 95% 

confidence level in the instantaneous streamwise and wall-normal velocities at y/h ≈ 0.1over the 

smooth and rough walls are summarized in Table B1 for the upstream location x/h ≈ -20. 

Table B1: Summary of uncertainty limits in the instantaneous velocities at y/h = 0.1 and x/h = -20 

Test u (m/s) v (m/s) Uncertainty in u Uncertainty in v 

SM 0.268 0.012 1.0% 1.0% 

SP 0.017 0.005 2.1% 2.0% 

CB 0.014 0.001 3.0% 2.0% 

 

 Using the methodology suggested by Sciacchitano and Wieneke (2016), the experimental 

uncertainties in the mean velocity and Reynolds stresses are given by: 
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Uncertainty of mean velocity: 

𝐸𝑈𝑖
=

𝜎𝑖

√𝑁𝑒𝑓𝑓

 (B8) 

 

Uncertainty of normal Reynolds stresses: 

𝐸𝑅𝑖𝑖
= 𝑅𝑖𝑖√

2

𝑁𝑒𝑓𝑓
 (B9) 

 

Uncertainty of Reynolds shear stress: 

𝐸𝑅𝑖𝑗
= 𝜎𝑖𝜎𝑗√

1 + 𝜌𝑖𝑗
2

𝑁𝑒𝑓𝑓 − 1
 (B10) 

 

where i, j = 1 and 2 are the Cartesian indices, σ denotes the standard deviation or root-mean-square 

value, ρ denotes the correlation coefficient, and Neff denotes the effective number of independent 

samples. 

 The effective number of independent samples is given by (Sciacchitano and Wieneke 

2016): 

𝑁𝑒𝑓𝑓 =
𝑇

2𝑇𝑢
 (B11) 

 

where T is the total sampling time and Tu is the integral time scale. It should be noted that if the 

samples are independent, the effective number of independent samples can be replaced by the total 

number of samples N.  

 From equations (B8) to (B10) the uncertainties in the mean velocity and Reynolds stresses 

at x/h ≈ -20 and y/h ≈ 0.1 are summarized in Table B2. 

 

Table B2: Summary of uncertainty limits in the mean velocities and Reynolds stresses at y/h = 0.1 

and x/h = -20 

Test 
Uncertainty in 

U 

Uncertainty in 

<u'2> 

Uncertainty in 

<v'2> 

Uncertainty in 

-<u'v'> 

SM 1.5% 1.8% 1.80% 3.5% 

SP 2.0% 2.2% 2.2% 6.1% 

CB 3.1% 2.3% 2.3% 7.9% 
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