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ABSTRÀCT

Àn algorithm to perform the free vibration analysis of a

transmission tower system has been developed. The algorithm

is designed to be a general purpose package which is suiÈ-

able for a micro-computer. Therefore, the support structures

may be free-standing or guy-supported, lattice or non-lat-

t ice.

The finite element method has been employed to model the

interactive components of the towers, 9uYS, insulators and

conductors. Both lattice or non-lattice tower segments have

been idealized as beam elements with a consistent mass ma-

trix. The effects of axial load have been incorporated in

the eJement by using a geometric stiffness matrix. However,

a lattice tower usually contains tapered segments. There-

fore, the stiffness and consistent mass matrices were de-

rived by employing the exact displacement function for an

equivalent tapered beam loaded only at its ends. AJso, a

specialized finite element has been developed to represent

the transverse vibrations of an inclined cable. It r.tas as-

sumed that the cable foLlows a parabolic profile when it

hangs under its oyrn weight. This element has been used to

model both guy-ttires and conductors

tv



The free-vibration analysis of a free-standing lattice

tower has been performed. The idealized model gave compara-

ble results with those obt,ained from a structural analysis

package known as SAPIV. However, the input is much more com-

plicated with SAPIV and many more elements are required.

Natural frequencies obtained by using the finite element

model for a horizontal cable were comparable with analytical

results. Finally, the algorithm was employed to perform a

detailed free-vibration analysis of a two-span transmission

Line with guyed supporting structures. The effect of swing-

ing of the insulator on the tower/conductor interaction has

been studied. The low frequency modes primarily involved

conductor motion so that the conductor may be excited with

large amplitudes in a condition known as galloping. By as-

suming a feasible amplitude of galloping, an estimation has

been made of the load transferred to the tower. It was no-

tieed that the swinging of the insulators significantly de-

creased the horizontal(along-Iine) loads due to galloping.

À1so, static coupling with remote conductor spans yras con-

sidered. It was found that such coupling significantly re*

duced the vertical loads on the central tower.
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Chapter I

I NTRODUCTT ON

1.1 General Introduction

Severe f.reezing rain storms are not uncommon during win-

ter months. Such storms have resulted in extensive damage

to transmission and communication tower systems. For in-
stance, nine transmission towers collapsed completely south

of Oakville, Manitoba during an ice storm on Àpril 27,1984.

The failure vras due to heavy ice build-up on the conductor

anC towers in conjunction with moderate winds. SimiIar.fail-
ures have been experienced with communication tower systems

which are generally guy supported.

À contributing factor in a collapse is that most designs

are based on a static analysis so that dynamic loads are in-
variably ignored. This practice is due to the extreme diffi-
culty of studying the dynamic behaviour of complicated

structures, either experimentally or ana1ytically. However,

the increased availability of computer facilities wiIl pro-

mote the inclusion of a dynamic analysis in future designs

of towers. In general, a tower system can be loaded dynami-

cally by earthquakes, longitudinat irnpact due tò gusty

winds, unbalanced tension in the line and a broken cable

1
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usually caused by icing [1]. In addition, one of the most

common causes of dynamic loading is the galloping of iced

cables. GaIJ.oping is the wínd-induced excitation of the low

freguency modes of a cable to large amplitudes of vibration

121. The energy transfer has the form of a negalive viscous

damping and does not usually occur unless the cable is iced.

The initial objective of a dynamic analysis is to caLcu-

late a tower system's natural freguencies. These frequencies

may be then employed to estimate, for example, the tower's

peak response to a gusÈy wind, the impact caused by conduc-

tor breakage or the forces on the tower due to cables in
ga 1 lop.

In this thesis, the free vibration analysis of a tower

system will be performed. The basic element of the tower

system can be either a lattice or a non-Iattice structure.
This supporting structure can be either free standing as

shown in Figure 1.1 or guy-supported as in Figure 4.1. Àn

algórithm will be developed to accommodate both types of

structure on a microcomputer.

1.2 Free-Vibration Ànalysis

The dynamic stif f ness, K(r^r), f or a beam and a cable eÌe-

ment are available in references t3l and [4], respectively,

These stiffnesses are functions of the natural frequencies,

@r,,. They can be used potentially to obtain an analytical
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solution of a forced-vibration analysis. However, the use of

a dynamic stifffness in a free vibration analysis leads to

an equation of the f orm det lK(ar) | = 0 . This equation con-

tains transcendental functions which are trignometric and

hyperbolic expressions involving r^r,,, t5]. The solution of

such an eguation can be obtained by using the incremental

search method [6]. However, there is a chance of missing

some particular natural frequencies because of the highly

variable nature of K(ar). It is much simpler and more relia-

ble to construct a finite element model and solve the eigen-

vaLue problem in the form (x - ¿.r2M) a = 0 Here the assem-

bled stiffness matrix tnl and mass matrix tul are

independent of ú)n. The eigenvalue solution will give a rea-

sonable approximation to the lower natural frequencies of a

system without skipping roots. The accuracy of the results

can be increased by choosing a J.arger number of elements.

The eigenvector corresponding to each eigenvalue represents

the deflected shape of the system vibrating at a particular

natural frequency. Convenient finite element representations

for masts and cables will be developed in this thesis and

their modelling will be tested by using practical examples.

À procedure will be developed in Chapter II to generate

stiffness and mass matrices for typical tower body sections.

Specifically, uníform lattice, tapered Iattice and prismatic

structural sections will be considered. In Chapter III, the

stiffness and mass matrices for an inclined cable element
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r¡i11 be generated. À deLailed analysis of the transmission

tower system shown in Figure 4,1 wiII be presented in Chap-

ter IV. From the results, an estimation of the loads trans-

ferred to the tower in the event of galloping will be given.

Àl.so, the effects of such factors as axial loads on the tow-

ers, and insulator sh'ing wiII be discussed.
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Chapter I I

FINITE ELEMENT MODELLING

2.1 Introduction

The rinite element modelÌing of the segment of a tower's

body wilI be developed in this chapter. Specifically, the

type of elements which rvill be considered are:

1. straight prismatic segments such as rectangular or

circular tubes; and,

2. Iattice segments which may be either tapered or

straight.

It is weII known that prismatic eLements can be modelled

straightforwardJ-y as beam elements, which resist bending,

torsional and axial loads t7l. The resulting twelve-by-

twelve stiffness and consistent mass matrices for one such

element are given in books t8] and, for reference, in Appen-

dix À. À geometric stiffness is aLso included to account for

axial loads on the tower and is as given in Appendix A. This

latter stiffness modifies the conventional stiffness matrix

and generally reduces the flexural natural frequencies [9].

The development of mass and stiffness for a tapered lat-

tice structure is not straightforward. One approach is to

6
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employ a space-frame model using a computer analysis package

such as SÀPIV [10J. However, each and every leg or bracing

member must be represented, so that preparation of the com-

puter input is very tedious and requires very careful check-

ing. Also, the number of degrees of'freedom in a space-frame

model is very large (typically 1000-2000) and, conseguently,

there may be problems associated with the availability of

computer storage and time.

The aim here is to circumvent the above problems and

produce a tower analysis package which is suitabÌe for use

on a micro-computer. The approach is based on the assump-

tion that the typical tapered Lattice segment shown in Fig-

ure 2.1 can be represented approximately by an equivalent

tapered beam. 17 ,11). It will be shown that then the stiff-
ness and consistent mass matrices can be easily developed,

based on an assumed mode shape. It will be shown that the

solution for the equilibrium equation for a tapered beam el-
ement is a logarithmic function. Such a solution, however,

leads to a complicated procedure for obtaining the mode

shapes and, eventually, the stiffness and mass matrices. To

avoid this complication and thereby develop an efficient
computational approach, a simple cubic polynomial will be

assumed. This polynomial happens to be the exact solution

of the equiLibrium eguation for a straight beam. Although

the cubic polynomial will be demonstrated to be computation-

ally efficient for straight beams, it will be shown to fail



I
for tapered beams. Hence both, the cubic polynomial and log-

arithmic expressions will be employed for the generation of

stiffness and mass matrices, depending upon the type of beam

cons i dered.

This procedure

of the bending of

will

beam

be illustrated in detail for the case

elements.

2.2 Tapered beam reÞresentati n of a l-atticed structure

2.2.1 Bendinq

A Typical tapered lattice segment has

tion. It is supported by four continuous

4.x

a square cross sec-

legs, each having a

w-- ru

B ú

segment's longitu-
eguation t1 2l

(2 .1a)

( 2. 1b)

X
ô

X

4_L

Iv'1

.1 (a)
(b)

-> I

b,

(b)

Typical Tapered segment
P1an-view at section X-X

cross-sectional area ÀL as shown in Figure 2.1(a) and 1(b).

The mornent

dinal axis x,

br

(a)

Figure 2

of inertia, I(x), about the

at section X-X, is given by

I (x) = À,- bxz

which bx = br(l ßxlln



and ß

hence r (x)

or I (x)

where fo is the moment of

= Àubr2(1 - þx)2

= Io(1 þx)2

inertia at the base of

9

Q.1c)

Q.2a)

Q.2b)

the segment.

br b--E

Now the area of each 1.9, A'

length of the segment r so that the

the segment, mor is also constant.

The element's stiffness matrix

I8l
2dx=

expression of strain energy

1
2

is constant

mass per unit
along the

length of

The next step is to develop the stiffness and consistent

mass matrices for the typical beam element shown in Figure

2.2. The generalized coordinates vr, Yzt v3 and v¿ ôr€ the

end displacements and slopes as shown in the figure and the

y'vlxl

ta

u2

t,3

ut

L

Figure 2.22 Àn element undergoing transverse deflection

mode shape is v(x).

lnl is derived from the

.r

[J=!
2 Jþ

Yz

I (v" )
'f

{v} (2.3a1

(2.3b)where {v} v v3 v4 >t

lxl {v}



Similarly, the consistent mass matrix,

from the expression for kinetic energy, T,

lul ,

which

10

obta i ned1S

1S

(2 .4)

An appropriate mode shape can be chosen from the equilib-
rium equation

r (i+2 dx = 1 {ü}- [u] {.'ü}
7 )o Z

(ei(x) v")" = 0

for a beam eLement loaded only

Substituting relation (2.2b1

grating gives

v(x) = CrLn(1 þxl + cz(1

(2.s)

at its ends.

into equat ion ( 2. 5 ) and inte-

px)Ln(1 ßx) + Cs(1 9x) + Cq

Q.6l

in which Cr through C¿ are cÒnstants.

This function represents the exact static deflection for
a tapered beam. However, it l-eads to a procedure which is
rather cumbersome for use in the finite element method.

Generally it is desirable to minimize computational effort,
especiatly if the method is to be suitable for a micro-com-

puter. À much simpler but more computationally efficient aI-
ternative is to use the cubic relation

v(x) = Br + Bz(x/t) + Bs(x/¡,)z + Bq(x/f.|s (2.7)

which happens to be the static deflection for a uniform

beam. Therefore, the accuracy and efficiency of finite ele-

ment computations based on the alternative mode shapes will

be considered.



The generation

ing relat ion (2.7')

shown in reference

v(x) = úrvr
where tt through

Hence, since v(0)

then

úr(0) = 1, úr'(0)
Itrz'(0) = 1, úz(0)

ús(L) = 1, ús(O)

rl¿'(r,) = 1, ú¿(0)

Consequently

-krs = kss

-krz = kzs

kr¿ = -ke¡

= úr (L) = úr'(r,) =

= ,ltz(L) = ú2. (tl =

= ús'(0) = ús'(L) =

= ¡/r¿'(t,) = ú¿(L) =

11

of the stiffness and mass matrices by us-

is straightforward and similar to that

l8l. FirstIy, Iet
+ úzvz + úsvs + úava (2.8)

úq are independent cubic polynomials.

= Vrr v'(01 = vz, v(¡,) = v3r v'(L) = v¿

+ t(pLlz
30

+ U(pt 12
30

and

(pr)l

2( pLll

g(pr)l
3

(2.e)

0

0

0

0

tr = 1 - 3(x/tlz + 2(x/r.\3

{/i= x 2f(x/f.)2 +t(x/t)3

úE = 3(x/r')2 2(x/t)3

and út = -t(x/tl2 + L(x/r,)3 ,

It follows from the energy relations (2.3a)
lL¡ri = J,et(x)ú,;"ú¡" dx

¡Lmij )"* nlr ú.j dx

where I (x) is given in equation(2.2d).

(2.10)

and (2.4) that

Q.11)
(2 .12)

The resulting analytical expressions for txl and tul are

fairly straightforward. Elements of the four-by-four symme-

tric stiffness matrix are given by the following expres-

sions.

kr r =
2(1 2

5-

+ pL2Eþ t
Ló0¡þ t
L¿6ik t
L¿

1

1

=1

(2.13)
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and

kzz =

kzc =

ke¡ =

4EIo t
L

2E-I-o t
L

4Efu t
L

+ 2.( pL) 2

15
+ 1J(pLl2

30
+ 12(pL)2

30

(pr)l
(pr)l

3(pr,)1 .
2

1

z
1

1

1

Although the deflected shape of the beam, v(x). is not a

f unct ion of 9L, the st i f f ness coef f ic ient k i¡ are polynomials

of ßL, because the flexural rigidity' EI, depends upon PL.

The case of a uniform beam is obtained by substituting PL =

0 into the above stiffness equations. The conventional

stiffness coefficients are then obtained.

However, the mass matrix is independent of pL becausê me

is a constant. Equation Q.12) yields the consistent mass

matrix for a uniform beam eLement which can be found in ref-

erence t8l.

In contrast, analytical expressions for the stiffness and

mass matrices become very complicated when the alternative

relation (2.6) is used. Nevertheless, the numerical evalua-

tion of k¡¡ and mii cârì be accomplished as follows. Firstly,

apply bhe boundary conditions to relation (2.6), so that



V1

4\
¡l È, k,¡ Vi Vr =

lÉkiiv¡v¡=
tzl t?l J

0

Er(vtt)2 dx

r PsLlcz2Pt' + Ctz

1

0

1

0

0

p

1

13

Cr

(2 ,16)

Y2 -p -p V2

Vg -Ln(1-pL) (1-pL)r,n(l-pr) (1-pl) Cs

V¿ ß/(t-pLl -p(1+Ln(1-pr)) -p Ce

(2 .1 4a)

or {v} = [ or ] {c}. (2.14b)

The matrix I Dt ] is evaluated for a particular element and

is inverted in order to obtain

{c} = [ o ] {v} (2.15t.

in which t o I equals I Dr ]-1 . Now from the energy rela-

tion (2.3 ) and equation (2.6')

1('
2J"
1E
2

pL)1.
(2 .17 )

pL + ZCtCz Ln( 1

1=FL

SimiIarly, by using energy relation (2.4) and equation (2.7\

åÉ,m¡¡v¡v¡ = àrjjv(x))2 dx (2.18a)

,åË,,mijvivj=;mJ"{crLn(1 0x) + cz(1 ßx) Ln(1 Fx)

+ ce(1 gx) + c+ \2 dx . (2.18b)

For fixed values of i and j (i,j = 1 to 4) the eÌements of

the symmetric stiffness and mass matrices can be evaluated

by substituting the numerical values for C¡C- in Equations

(2.17 ) and ( 2.18b) as
rq

ckc- = .,!. f=, 
D¡.'. D-¡ vi v¡ (krm = 1 to 4) ' (2'19)
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A restriction of this rnethod is that the logarithmic

function PL cannot take a value of zero ot unity. Hence,

these two values may be approximated as 0.01 or 0.99r r€-

spectively. Further in the chapter this approximation wilI

be justified pertaining to results shoYrn in Table I (a) and

(b).

Natural frequency computations were carried

cantilever beam. ResuÌts from the two different

ment approximations, based on Equations Q.6)

were compared with analytical frequencies.

Table r (a)

for a straight

shows the

cant i lever

comparison of

beam, obtained

out for a

finite eIe-

and (2.7') ,

natural frequencies

analyticatl'y and bY

Properties of the uniform and tapered test beams are as

shown in Figure 2.3.

The analytical exPression

a un i f orm cant i I"tr", beam i s

oh= Ch Hz.

in which n=1r2t3r... and C1 = 0.550rC2

AIso the analytical expression for a

beam, derived in reference 17), are the

Jo rrf,L) rr 1rf,) + r (r[r,) J., ("fi) = o

where r = 2(m a2 ¡z/E'Lltla and InâDd Jn r

modified and ordinary BesseI functions

first kind.

EI
Ito

for the natural frequencies of

given as t3l
(2.201

= 3.51, Cs = 9,82.

tapered cantilever

roots of
(2 .21l.

respectively' are

of the nth order and
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using the finite element nethod with either the simple cubic

polynomial given by Equation (2.7) and/or the Iogarithmic

expression from equation (2.6) as mode shapes. Table I (b)

shows the comparison for the tapered cantilever beams. Table

I(c) shows the comparison of the fundamental frequencies for

H H

(a) (b)

Figure 2.3t Typicat (a) straight and (b) tapering sections.

Straight, beam Tapered beam
0.48 m

.0062 m2

= 6.706 m
.2048 x10 8N/m2
21 Kg/n
.62 m
elements = 4 Number of elements = 4

tapered beams with varying bspect ratio bL.

Results in Table I(a) show that, for the uniform beam (PL

= 0) shonn in Figure 2.3(al , a cubic polynornial method gave

frequencies which are eomparable with analytical results'

{f

=4m
=1m
=1m
= 1N
=1K
=1m

H
À

B1
E
m
L

H=3
À=0'l =B
E=0
m=4
L=7
er of

B

umbN

2

/^'
g/n



TABLE I
(a) Comparison of natural frequencies

Àspect ratio pL =
for the
0

16

straight beam

* Using PL = 0.01

(b) Comparison of natural frequencies for the tapered beam
Aspect ratio þL = 1.0

Mode

Natural Frequency in rad/sec

Finite Element Method Analytical
Results

Cubic Polynomial Logarithmic Expression*

0 .440 0 .426 0.440

2.760 2.670 2.757

7.779 7.520 7.715

15.340 14.819 15.085

1

2

3

4

Mode

Natural Frequency in rað,/sec

Finite Element Method Analytical
Results

Cubic Polynomial Logarit,hmic Expression't't

8 .164 2 .57 6 2. 553

14.699 1 0.307 9.942

21 .782 23.692 22.276

42.778 48.452 39.546

1

2

3

4

** Using ßL e 0.99
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tapered beam(c) Comparison of fundamental frequency for the
Aspect ratio between zero and unity'

*** These reults were
[7]. They are 2 to 4e"

exact results.

obtained by using Dunkerley's method
Lower than the corresponding

Conversely, it can be seen from Tab1e I(b) that the analo-

gous natural frequencies for a tapered beam (pr, = 1.0),

shown in Figure 2.3(b), have enormous discrepancies. How-

ever, the Logarithmic expression gave reasonably good re-

sults for both a straight beam (using PL = 0.01) and for a

tapered beam (using PLe 0.99). Results in Table I(c) al'so

show the suitability of the logarithmic expression for

aspect ratios, between zero and one. Therefore, ít is cLear

that, in case of the straight beam, both the cubic polynomi-

aI and the logarithmic expression can be employed for the

generation of the stiffness and mass matrices. However, the

cubic polynomial is simpler and computationally more effi-

cient than the logarithmic expression, so that the former is

best suited for nearly straight beam. On the other hand, the

logarithmic expression is preferred to the cubic polynomial

for tapered beams.

pL

0.9

0.8

fundamental Freguency in rad/sec

Finite Element Method AnalYtical
fi¿gulf g**rr

Cubic Polynomial Logarithmic Expression

7 .949 2.711 2.628

7.560 2.835 2.762
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A typical tower such as that shown in Figure 1.1 has both

straight and tapered beam segments. Therefore, a computer

package vras developed to have two options. A cubic polynomi-

aI was employed for uniform segments whereas a logarithmic

expression lras used for tapered segments

2.2.2 Torsion

A lattice segment derives almost all its torsional rigid-

ity from the bracing elements which interconnect the main

legs of a tower. The torsional rigidity of a lattice member

changes with the type of bracing used. Consider, for exam-

ple, a typical tapering lattice beam with the most commonly

used X-shaped bracing members. Each bracing member is sup-

posed to have the cross-sectional- area Au as shown in Figure

2.4.

The

can be

where

expression for the torsional rigidity of such a cell

approximated as l7l
cJ=Z[TsÀbl2b (2.22)' G"*ET'

Au is the area of the bracing.

Similar expressions may be developed for other types of

bracing, such as for K-shaped bracing t7l.

The mass per unit length, m, of the

rated into the leg mass, rìL, Iocated

cross-section, and a bracing massr rìb,

segment may be sepa-

at the cornèrs of a

distributed approxi-
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c
r.__ b _._l

Brocing
members

D

B

b

Figure 2.42 Typical X-bracing cell

mately uniformly along the sides. À reasonable approximation

for the torsional inertia per unit tength is l7l
mF = ( n,/2 + no/Z't b 2 or mn = mo ( 1 þx)2 (2.23a)

where b is the width of a segment at any section X-X and

Írs = 6"/2 + mÞ ß)b? . (2.23b)

The equilibrium equation for an eLement loaded statically
by an end torque is given as t8l

(c.] 0')' = 0. (2.24)

Let the assumed mode shape, which satisfies boundary condi-

tions as well as the equil-ibrium equation, be given as

út =1-x/L and ,þz =x/L. (2.25)

À similar procedure to that adopted in section 2.2.1 is used

to obtain the torsional stiffness and mass matrices which

are given in Appendix B. However, it is the mass matrix

which differs from that of a uniform beam in this case, be-

cause the torsional inertia depends upon PL.

A



20

2.2.3 AxiaI

As mentioned earlier in section 2.2.1, the area of a sup-

porting leg remains constant along its length. Therefore,

the tapered lattice segment can be modelled as a uniform

beam for the case of axial deformation. The stiffness and

mass matrices for the axial motion of a uniform beam can be

found in reference t8] and are given, for completeness, in

Appendix B.

2.2.4 Geometric stif fness matrices

The effect of an axial load and self weight on the

ing stiffness of a beam element were not considered in

tion 2.2.1. However, the axial load on an element and

own self weight are quite significant practically

Hence, the elemental stiffness matrix should be modified

these kind of loads.

(2.10) , P

go is the

bend-

sec -
its

lel .

for

Q.27')

is the com-

self weight

In the case of a cubic polynomial approximation, the geo-

metric stiffness matrix for the axial load is given as

K<.rìi = tl" *,' ,/ri dx (2.2G)

and the geometric stiffness matrix for the self weight of

the member is found from

Kr.u¡r = J.tn" x ú¡' új' dx .

Here úi and ú¡ are as given in equation

pressive axial force on the member and

per unit length of the member.



In the case of the logarithmic expression,

can be seen that
rL

Kc^¡ìj = J.P (v')2 dx

and Kc.uì) = J"n. x (v')2 dx

where v'(x) is given by equation (2.6) and Cr

be obtained from equation (2.19r.

21

however, it

(2.28)

(2.29)

through Ca may

Finally, the modified stiffness is given

K modif ied = kij + Kc.ri)+ Kquì!

in which krj is given by equation (2.11) or

upon the approximation ehosen.

as

(2.30)

(2.16), depending

2.3 Practical implementation of the finite element
modellinq.

The transmission tower shown Ín Figure 2.5a was analysed

to assess the accuracy of the finite element model-ling. The

tower nas idealized as shown in Figure 2.5b. Àn assembly of

nine segments was employed with each segment being treated

as a beam element having six degrees of freedom per node.

The lowest natural frequencies for the same tower are

available from a SÀPIV finite element model which employed

452 beam and 176 truss elements [10]. Table rI compares the

natural frequencies for in-plane bending, out-of-plane bend-

ing and torsion. It can be seen that the results obtained by

using the algorithm detailed in this chapter are comparable

to those obtained from SÀPIV [10] but gives an overestimate

of the natural frequencies. The probable reason for this is
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the use of consistent mass matrix in the present al.gorithm,

whereas, SÀPIV employs a lumped mass matrix. Another proba-

b1e reason is the approximate idealization of the lattice

segment in form of a beam element, which could give an over-

estimate of the stiffness.

TABLE II Comparison of the Fundamental natural
of t,he transmission tower of Figure 2

frequencies
tr

Mode Shapes Fundament,al Natural Frqeuencies Hz

Present model SAPIV model

I n-pIane
Bendi ng 4.02 3.92

Out -of -plane
Bend i ng 4.39 3.97

Tors i on
6.52 6.19
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Chapter I I I

CÀBLE STRUCTURE

3.1 Introduction

À cable hanging under its own weight generally follows a

catenary profile [13]. However, for the case of a structural
guy which supports a tower, the pretension is high and the

sag is very smalI. In this situation, the catenary profile

can be approximated by a parabola. This approximation,

which is reasonable for sag-to-span ratios of 1/g or less,

greatly simplifies an analysis.

Various authors [4,13,14J have produced convenient lin-

ear i zed approx imat ions to t,he equat ion of mot ion of a cable

hanging in a parabolic profile. Irvine has given expressions

for the natural frequencies of a horizontal cable fixed at

both ends and osc i J.lat ing in-plane and out-of -pJ-ane. These

expressions are functions of several parameters such as the

axial rigidity À.E", pre-tension in the cable, To, the self

weight per unit of chord length, gs, and the span length of

the cable, Lc. Veletsos t4] has considered the inclined ca-

ble shown in Figure 3.1. This cable is fixed at the base and

free to move at the upper end, which is presuned to be at-

tached to a tower as shown in Figure 3.2a. Veletsos present-

24
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ed expressions for the dynamic stiffness at the upper, move-

abre end of the cabre which correspond to the displacements

in three directions. These expressions are functions of fre-
quency and they can be added to the stiffness matrix of the

tower itself to produce a set of transcenclental equations
{c

¡(o t

Figure 3.1: Typical inclined cable

f or the natural f requenc ies r ú)n . À soLut i'on to these egua-

tions can be obtained by using an incrementar search method.

However, because the cable stiffness, K(o¡), is a discontinu-
ous function, there is a chance of missing a particular r.rn.

rt is more reriable to solve a standard eigenvarue problem.

Therefore, a finite erement representation of a paraboric

cable will be deveroped in this chapter. The accuracy of the

finite element technigue wilr be verified by comparison with
the analytical results for a horizontal cabIe.
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3.2 Finite element method

The finite element approach may be formulated for an in-

clined cable by considering the typical element shown in

Figure 3.2b. Let u, v, and w be the end displacements of the

cable element along the positive x, y, and z directions, F€-

spectively, so that there are generally six degrees of free-

dom. The force-displacement relation is

Itl = [s] [w] ( 3.1 )

where {wi is composed of the elements ( ur v1 w1 uz v2 Ít2 J,

{p} is the Load vector and tsl is the stiffness matrix de-

rived in Àppendix c. Matrix tsl has the form

Is]'''

''rl,i
Fir

_Kxy

_Kvy

0

_K 
v),

Kvl

0

0

-Kr.z.

0

0

Kr=

(3.2)

K¡¡ K ¡Y 0 -K"*

O _Kxy

Kr- 0

¡fSymmetr ic lL

It can be seen from relation (3.21 that there are only

four different stiffness coefficients Kr", K'y, Kyy and R-*.

These coefficient,s can be expressed conveniently in terms of

the local coordinate system of the cable. Inertias corre-

sponding to each degree of freedom are lumped at each node

of the element. This procedure results in a six-by-six diag-

onal mass matrix for the cable. In special situations, where

only in-plane vibrations are exèited, the out-of-plane de-
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\

0 (
(x,l I dynamic

dolloctíon

Y(rl stslic
posil ion ù

x

v

lowor cebl€ To
(r) (b)

F i gure Mode1J.ing of the vibration of an inclined cable
Theoretical dynamic configuration, and
representation by parabolic cable element with
degrees of freedom u, v, and w given in local
coord inates

grees of freedom may be treated as dummy degrees of free-

dom. Then only the four by four stiffness and mass matrices

need be assembled. This simplification greatly reduces the

size of the resulting eigenvalue problem and, hence, the

computational effort.

When the transverse dynamic displacement is combined with

a quasi-static axial stretching of the cable, the inertia

forces can be assumed to act only in the transverse direc-

tion. This assumption is reasonable for the lower-frequency

transverse modes because the wavelength of axial vibration

is then very much greater than the length of cable [14].

3.2
(a)
(b)
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The accuracy of the finite element model may be assessed

by a comparison with analytical results. However, analytical

results are available for only a few cases. For instance, in

the case of a horizontal cable like that shown in Figure

3.3, the transverse natural frequencies are given by Irvine

1131. A distinction must be made in the analytical solution

between the symmetric modes, which have an odd number of vi-

bration }oops per span, and the anti-symmetric modes which

have an even number. The characteristic equation for the

symmetric modes is [13]

or'c) 3

2
L / (to/m) tt"

4(
¡z
û)5

and ar5 is the natural frequency of the symmetric

mode. The r^¡ñáis the normalized value of arrand m is
per unit length of the cable. ÀIso, À2 is a factor

upon the flexibility of the cable. It is given by

À2 = (g" L. ) 2 L./( ToLe )î" T.¿;

tan (o.¡,.s) = ú).i

where ú)ne =

In contrast, the

tric in-p1ane modes

they are given by

natural frequencies of

are independent of the

(3.3)

(3.4)

i n-plane

the mass

depend i ng

(3.5)

the anti-symme-

flexibility and

where Ls is an effective length as given by Equation (CS).

The case À2=0 represents a perfectly flexible cable and l2=oo

represents a rigid cable. For a guyed-tower structure, À2

ranges typically between 2 and 60. Solutions giving r,;",t f or

various values of À2 are available in t13].

2nr ( gs) trt r
m

fdar ¡vhere n=1r2r3..... (3.6)
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These frequencies happen to be the anti-symmetric modal

frequencies of a taut wire. SimílarIy, the natural frequen-

cies for out-of-plane vibrations are independent of the

flexibility and are given by the taut, wire relation

o)o = n7r(To)1¿t , where n=1 ,2',3.... (3.7)

This last relatiän encompasses both the symmetric and anti-

symmetric modes. The reasonableness of the expressions for

natural frequencies in all three modes has been confirmed

qy

To
T"

Figure 3.3: TypicaJ-

To = 417 '0 kN

qy = 201 '7 Ñ/n

A<Ec= 4'21 N

test cable

experimentally in reference [15].

The horizontal cable shown in Figure 3.3 will now be

studied using the finite element analysis. Both the in-plane

and out-of-plane natural frequencies wilI be determined and

compared with theoretical results described above. Also,

the effect of the flexibility coefficient, I2, on the natu-

ral frequencies will be studied. Va1ues of À2 between 2 and

60 typically represent the range of situations for structur-

a1 guys. Such a variation can be obtained most conveniently

Le
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by changing the cable length , L.,, in expression (3.5) . In

other ltords, the values of Lc which nere chosen in this ex-

ample are essentially dummy variables. Àlthough they range

from 92 to 500 metres, they are not intended to represent

the typical length of a guy or conductor cable.

Tables III(a) and (b) present results for the in-pIane

natural frequencies. It can be seen that an idealization of

eight elements produces reasonable accuracy for the first

foui transverse natural frequencies (two symmetric and two

antisymmetric). The error increase5 from only 1.7eo for the

first symmetric mode to 1O.Oeo for the second antisymmetric

mode. Similarly, Sixteen elements produce reasonabfe accura-

cy for the first eight transverse natural frequencies., Re-

sults for the out-of-plane natural frequencies shown in Ta-

b1e III(c) give the same trends. ID all cases, there is no

significant variation in error magnitude with the flexibili-

ty parameter, À2, at least in the range of interest for

guyed towers. AIso, only the first few transverse modes are

required, so that the longitudinal motions can be considered

quasi-static. This last contention was verified by comparing

results obtained with and nithout longitudinal inertia'

There was no difference in results at all.

Condensation techniques can sometimes reduce computation-

aI effort r¡hilst maintaining accuracy. In the present exam-

ple, degrees of freedom were condensed by using a technique

known as Guyanfs reduction t8] at alternate nodes. This pro-
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cedure halves the size of the eigenvalue problem for a given

number of elements. Results for in-plane symmetric vibra-

tions are shown in Table IV. They may be compared with the

results shown in Table III(a). It can be seen that Guyan's

reduction technique is significantly Iess accurate for a

given number of elements. Further, the use of 17 elements

with Guyan's reduction gives comparable accuracy to a

straightforward technique with only I elements. This finding

supports the contention that Guyan's reduction technique is

not successful when a lumped mass matrix is used [8].
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Table III (a)

Number of Elements =

Norma
Length

(m)

ized natura f requenc ies rad 5ec

FEM
result s

ÀnaIyt caI 9o Error
results

In-Plane sYmmetric

I CPU Time

mode

= 1 .06 sec

¡z Mode

,, /¡ 2.32 2.29 1.3

2.97 3. 18 6.6az/tr
60 506.3

4.24 5.03 15.7,"/n

t¿q/¡ 4.99 7 .01 28.8

1.s8 1 .61 71a, /ß
2. 3.04 6.0oz/ n

20 291 .6
ots/¡ 4.24 s.01 15.5

, o/n s.00 7.00 28.6

,¡r/r 1 .21 1.22 1.0

os z/ tr 2.83 3.01 s.9
6 1 59.6

,¿"/t, 4.24 s. 00 15.3

5. 7.00 28 .6ao/r

,, /t 1 .07 1 .08 0.8

,r/n 2.83 3.01 5.9
2 92.1

as/ r 4.24 5. 00 15.3

,o /n 5. 00 7.00 28.6

( Cont d.
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(contd. )

À2 Mode

Number of Elements 16 CPU Time 7.0 sec

NormaI ze natural frequencies ra sec
Length

(m) FEM
results

AnaIyt ca
resul t s

,, /n 2.27 2.29 0.9

,r/O 3 .12 3. 18 1.9
60 506. 3

,"/n 4.81 5. 03 4.4

,o/n 6.45 7 .01 8.0

Error

,, /O 1 .60 1.61 0.5

az/t 2.99 3.04 1.7
20 291 .6

ot"/n 4.80 5. 01 4.1

, o/n 6 .46 7.00 7.7

,, /O 1.22 1.22

,r/n 2.97 3.01 1 5

6 1 59.6
,"/n 4 .80 s"00 4.0

,o/¡ 6 .46 7.00 7.7

,t/n 1 .08 1 .08 0.3

,r/O 2.96 3.01 1.7
2 92 .1

,"/tr 4.80 5.00 4.0

,o/o 6 .46 7.00 7.7
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Table

Number of

III(b)

Elements

I n-Plane

I
anti-symmetric mode

CPU Time = 1 .06 sec

¡2
Length

(m)

Normalized natural frequenc es ra sec

Mode FEM
result s

Àna yt ca 9o Error
results

,, /n 1.94 2.00 3.1

,r/O 3. s9 4.00 10.3
60 506.3

,"/o 4.70 6.00 21 .8

to/o ** ** **

,, /O 1 .95 2.00 2.7

,r/O 3.60 4.00 10. 1

20 291,6
, "/n

4.70 6.00 21 .6

,o/n ** ** **

.rt/n 1 .95 2.00 2.6

,ran 3.60 4.00 10.0
6 1 59.6

,"/n 4.70 6.00 21 .6

, O/, ** *rr **

øt/t 1 .95 2.00 2.5

,r/t 3.60 4.00 10.0
2 92.1

,"/o 4.70 6.00 21 .6

,o/o ** ** **

( Contd.
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(Contd. )

À2 Mode

Number of Elements = 16 CPU Time = 7 .0 sec

Normalized natural frequenc es ra sec
Length

(m) FEM
result s

AnaIyt ical
results

9o Error

,, /f 1 .97 2.00 1.3

,r/O 3.88 4.00 3.0
60 506. 3

,"/¡ 5 .64 6.00 6.0

,o/n 7 .18 8.00 10.3

., /¡ 1 .98 2.00 0.9

,r/, 3.89 4.00 2.7
20 291 .6

,"/n 5.65 6.00 5.8

, o/n 7 .20 8.00 1 0.0

,, /O 1.99 2.00 0.7

6 159.6
,r/n
út)3 7t

3.90 4.00 2.6

s. 66 6.00 5"7

,o /n 7 .20 8.00 10.0

,, /n 1.99 2.00 0.7

,r/rf 3.90 4.00 2.6
2 92.1

,"/¡ s. 66 6. 00 5.7

cuc/¡ 7 .20 8.00 10.0
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Table III(c)

Number of Elements = I
Out-of-Plane mode

CPU Time = 1 .06 sec

sec

¡z
tength

(m)

NormaI rzed natural frequencies ra

Mode FE}I
results

Ànalyt cal 9" Error
results

,, /t, 0.99 1 .00 0.6

,r/O 1 .95 2.00 2.6

,"/o 2.83 3.00 5.7

,o/n 3.60 4.00 10.0

60 s06.3

,, /¡ 0.99 1 .00 0.6

,r/n 1 .95 2.00 2.6
20 291 .6

,s/t, 2.83 3.00 5.7

,o/o 3.60 4.00 10.0

,,t /O 0.99 1 .00 0.6

,r/n 1 .95 2.00 2.6
6 1 59.6

,"/n 2.83 3.00 5.7

, o/n 3.60 4.00 10.0

,t/o 0.99 1 .00 0.6

,r/O 1 .9s 2.00 2.6
2 92 .1

,"/n 2.83 3.00 5.7

,o/o 3.60 4.00 10.0

( Contd.
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(Contd. )

¡z

Number of Elements = 16

Length
(m)

Normal ze natural frequenc

FEM
re sult s

AnaIyt ca
results

CPU Time = 7 .0 sec

es ra sec

Er rore

,t/o 1 .00 1 .00 0.2

,r/n 1.99 2.00 0.7
60 s06.3

20 291 .6

,"/t, 2.96 3.00 1.4

,O/r, 3.90 4.00 2.5

orr/t

(ù2 7t

1 .00 1 .00 0.2

1 .99 2.00 0.7

,"/n 2.96 3.00 1 4

,¿c/n 3.90 4.00 2.5

,, /O 1 .00 1 .00 0.2

,r/, 1 .99 2.00 0.7
6 1s9 .6

,s/t 2.96 3.00 1.4

,o/n 3.90 4.00 2.5

,, /n 1 .00 1 .00 0,2

,r/t, 1 .99 2.00 0.7
2 92 .1

,"/o 2.96 3.00 1.4

,o/o 3.90 4.00 2.5
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Table Iv Guyan's reduction

Number of Elements =

techn ique

9

tr2
Length

(m)

Norma

Mode

zed natural frequenc es rad sec

FEM
results

Àna yt ical 9" Error
results

,'t /n 2.07 2.29 9.6
60 506.3

,r/O 2.83 3. 18 11.1

,, /n 1 .53 1 .61 5.0
20 291.6

,r/t 2. 50 3.04 7.7

,, /n 1.18 1.22 3.0
6 1 59.6

,r/n
Éd1 Í

2.49 3.01 17 .4

1 .05 1 .08 2.5
2 92.1

,r/n 2 .48 3.01 17 .3

'( Contd .
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(Contd. )

À2 Mo
Length

(m)

Number of Elements 17

NormaI zed natural requencles ra sec

Analyt caI 9" Error
result s

FEM
result s

,t;t/n 2.22 2.29 2.9

,r/O 3.01 3. 18 trtr
60 506. 3

ot"/¡ 4.33 5.03 1 3.8

, o/n 5.21 7 .01 25.7

,, /t 1 .59 1.61 1.5

,r/n 2.88 3.04 5.2
20 291 .6

,"/n 4.32 5.01 13.7

,o/t, 5.21 7.00 25.6

,, /n 1 .21 1.22 0.9

,r/n 2.86 3.01 5.1
6 159.6

,s/'t 4.32 5.00 13.6

,o/t, 5.21 7.00 25.6

,, /O 1 .07 1 .08 0.8

tuz/¡ 2.85 3.01 5.0
2 92.1

,"/n 4.32 5.00 13.6

,o/n 5.20 7.00 25.6



Chapter IV

DYNÀMICS OF A GUYED TRÀNSMISSION TOWER SYSTEM.

The contents of this chapter are related to the free vi-

bration analysis of the tower system shown in Figure 4.1.

The analysis is based on the finite element models for tower

and cable developed in Chapters II and IIIr respectively.

For completeness certain sections from previous chapters re-

appear in this chapter.

4.1 Introduction

The guyed tower shown in Figure 4.2 has been designed by

Manitoba Hydro as the tangent suspension s.tructure for their

138 kv Radisson-ChurchilI transmission line. The Y-shaped

frame is pinned at the base and consists of high-strength

steel sections which are bolted together. The concept should

allow a more rapid erection of the line as compared to a

standard l-attice design, and is especially cost-beneficial

in the remote northern terrain. The tower is also less ob-

trusive visually, especially since the structure will have

the dark rust finish of natural weathering steel.

À structural analysis has

considerations as is usual in

transmission Line passes

been based primarily on static
current practice. However, the

40
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through a region close to Hudson's Bay where frequent icing

is possible. Therefore, large-amplitude conductor vibration

known as galloping tnay develop. Àlso, the design f or a radi-

aI ice load of 44 mm indicates that there may be large tran-

sient longitudinal loads due to Èudden shedding of ice.

There was concern that such dynamic loads might be critical

because the structure does not carry groundwires.l In a

standard design, these wires would normally provide a re-

straint, limiting the bending or torsional stress in the

tower caused by longitudinal loads 116,17). AIsot a key

structural feature is the welded box connection shown in de-

tail À of Figure 4.2. This box is designed to develop the

fuI1 static strength of the adjacent 200x200-mm members and

the 275-mm diameter stem. However, it is necessary to ensure

that there are not excessive flexural or torsional vibra-

tiond at this location; otherwise fatigue of the welded

joints may develop.

This chapter outlines the results of an analysis of the

free-vibration characteristics of the transmission-line sys-

tem. Such a study gives the reÌative modal displacements for

each of the different components: tower, guys, insulators

and conductors. It is then possible to assume a galloping

amplitude and, hence, compute the displacements and stresses

in the tower's structural components t18]. There is some

question as to the accuracy of a linear vibration ànalysis

1 Groundwires were not used because the structures were lo-
cated at a low isokeraunic leve].
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because galloping amplitudes are Iarge. However, even 6 me-

tres of galloping is small in comparison to a span of 400

metres. Further, it was argued in reference t18] that theo-

retical estimates of the lowest natural frequencies of a

conductor are close to those determined from experimental

records of large-amplitude galloping.
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4.2 Theoretical modellinq

The dynamic analysis of a transmission tower structure is

complicated because there are a number of components which

may interact. These are (1) the structuraL steel frame, (2)

the inclined guy-r¡ires, (3) the insulator strings, and (4)

the conductors.

Each component is distinctty different and, if interac-

tions are indeed important, a finite element approach is

also mandatory. Specialized types of elements are used to

model the dynamic bending of the tower's frame, elongation

and transverse displacement of conductors and guys (in the

plane of the sag) and the rigid-body rotations of insula-

tors. DetaiLs of the application and theory of the mod-

e1ling will be discussed onJ.y briefly here since appropriate

references are given.

4.2.1 Tower's Frame

The steel Y-frame was modelled using thirteen beam ele-

ments having stiffness in both bending and torsion. There

are tweÌve nodal points as shown Figure 4.1. À complication

arises from the fact that the tower carries significant com-

pressive load due to its self weight, the conductors' weight

and the prestress in the four guys. Such loads are likely to

reduce the bending stiffness of the structure and, there-

fore, Jower the natural frequencies. They were incorporated



into the finite element

ness matrix t8l.
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model by means of a geometric stiff-

4.2.2 Inclined ouv h¡ t res

Previous dynamic analyses of guyed transmission towers

have been performed by Tsui t18l and by Kempner et aI 1191.

However, in reference t18] the guys vtere represented sim-

plistically by a single axial element. No attempt was made

to simulate transverse vibration in a guy. On the other

hand, transverse vibrations vrere considered in reference t8]

using 1O straight beam elements to approximate the cable's

profile. Àrbitrary, but small, values of torsional and fIe-

xural .rigidity could be then specified to stabilize the

movement of interior nodes. À1So, the cable's static preten-

sion , To, which is a crucial parameter, l¡as accommodated by

employing a geometric stiffness matrix. However, although

this model appears reasonable, a beam element requires

twelve degrees of freedom and hence computational effort can

be onerous.

An alternative approach utilizing specialized parabolic

cable elements has been developed. Such elements can repre-

sent more accurately the cable profile and yet each has only

four degrees of freedom. The element'S characteristics are

derived from the linearized theory of cable dynamics summa-

rized in references [13,14]. In particular, the cable mod-

elling is intended to approximate reasonably the accurate
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theoretical work of veletsos and Darbre t4l. They studied

the situation of an inclined vibrating guy interacting with

the tower illustrated in Figure 3.2a. The ensuing finite eI-

ement shown in Figure 3.2b has an axial degree of freedom,

u, paralle1 to the x or chord axis, and a transverse degree

of freedom, v, perpendicular to the chord. The four-by-four

symmetric stiffness matrix for an element is derived in

terms of t,he local coordinates x 1 and x2 and is listed in

Chapter III. Corresponding inertias are lumped at each end

of the element but the inertia forces are assumed to act

only in the transverse direction. In other words, the tran-

sverse dynamic displacement v is combined with a quasi-stat-

ic axial stretching of the entire cable. This assumption

L4,14] is reasonable for the Iower-frequency modes because

the wavelength of axial vibrations is then very much greater

than the length of cable.

The stiffness and mass matrices may easily be extended to

six by six to include out-of-p1ane motions of the guys.

Stiffnesses for motion in the Local z-direction, where x, y

and z is a right-handed coordinate system, are also given in

Chapter III. The importance of out-of-pIane guy motions wiIl

be studied.
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4.2.3 Insulator strinqs

The insulator shown in Figure 4.3 is subjected to a hori_
zontaL force pnat the crossarm level. Therefore, it under_
goes a rígid body displacement. The.translation, Us , is re_
sisted by the conductors which are represented, for
convenience, by a linear spring with stiffness Kc. On the
other hand, the rotation a0, is resisted by the restorative
action of the vertical weight, W}. The force_displacement
rerations are given in Àppendix D where it is demonstrated
that Lhe conductor and insurator may be represented by two
horizontal springs acting in series as shown in Figure 4.4.
Àssuming smaÌ1 displacements, the magnitude of the insula_
tor's equivalent raterar stiffness, Kris given by [16,20,21J

K-'= WT/LL (4.1)

init ¡a I

postt¡on

Ug

tot
A

L¡

equilibrium position
ol lhe ¡nsulelor

PA
UA

K

lo
w9

Figure 4.3 z

ceþle wg

lJly:traring the Derivarion of the Insularor,sStiffness"
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Figure 4.4 Model of the Restraint Provided by the
Insulator-Conductor System.

where L:- is the length of the insulator. The representation

of the stiffness Ka in the finite element model and the se-

ries connection to the conductors wil,l be described in the

next sections.

4.2.4 Conductors

Typical span and sag-tension conditions for the line are

shown in Figure 4.1. A finite element modelling of the con-

ductors h'as accomplished by employing the same type of ele-

ments as Þrere used for the guys. However, only vertical 941-

Loping excitation was considered and therefore four-by-four

in-plane element matrices nere used to reduce computational

effort. On the other hand, the conductors are very much

longer than the guys. Therefore, it was suspected that long-

o¡
o
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itudinal resonances of the conductor might occur close to

the lowest natural. frequencies predominantly affecting the

tower. Thus, Iongitudinal inertia r¡as included in the con-

ductor elements. The insulator string was modelled by a

very short beam element which cantilevers vertically from

the tower. The deflections of the tip of this beam in the

along-line direction rePresent the swing of an insulator be-

cause the cantilever stiffness (gït/f'3} is made equal to K1.

In other directions the beam is essentially rigid. Àlso, the

mass of the short beam is made identical to that of the ins-

ulator so that the modelling then conforms with the schematic

representation shown in Figure 4.4.

The conductors are shown in Figure 4.1 connected at each

end of their far ends to a linear spring of stiffness Kr.

The purpose of these springs is to represent static coupling

with remote spans. The magnitude of K. varies with the num-

ber of spans considered [18]. Here, it has been assumed that

there is one additional span at each remote end. The hori-

zontal stiffness of one span is added, therefore, to the

stiffness of the remote insulator to produce a value for K¡

of 17000 N/m.



4.3

4.3.1

Results and Discussion
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conductors can be excited to

in the lowest frequency modes;

Several finite element models nere constructed to inves-

tigate the interactions amongst structural components. Fur-

thermore, the importance of the axial loads on the tower and

conductor end conditions r¡ere evaluated. SpecificaIIy, the

models studied were:

a) Àn isolated tower and guys no axial loads;

b) An isolated tower and guys bending stiffness

modified to account for axial loads;

c) As (b) but with conductors included - direct

connection to the tower' remote ends fixed.

d) Às (c) but inctuding insulators.

e) As (d) with the far ends of the conductor coupled

to remote spans through the spring stiffness Kr.

The lowest bending and torsional naturaf frequencies of

the isolated tower were found from models (a) and (b) to oc-

cur in the range of 1 .5 to 1 .8 Hz. However, the lowest natu-

ra1 frequencies started at about 0.2 Hz in models (c), (d)

and (e) and the corresponding mode shapes predominantly in-

vol-ve transverse vibration of the conductors in the plane of

sag. Significant differences in the naturaL frequencies giv-

en by models (c), (d) and (e) will be discussed later.

During icy conditions the

large ampLitudes of vibration
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the phenomenon is known as gal.loping. In this situation the

resulting tower forces may be significant. Such interac-

tions can be calculated directly from the mode shapes by as-

suming a galloping amplitude from experience. Here, it is

assumed that the maximum galloping amplitude is 6 metres in

the fundamental or one loop (conductor) mode. This magnitude

is approximately that chosen in reference t18l for a similar

span lengt,h. Àlso, in compliance with that reference, the

amplitude of the nth harmonic is assumed to be 6/n'metres'

according to the principal of equipartition of energy. Con-

sequently, the maximum amplitudes for double and triple loop

galloping are 1.5 and 0.67 metres, respectively. GalLoping

with more than 3 loops per span is a rare event and, from

the above formula, amplitudes should not be significant.

4.3.2 Behaviour of the tower without conductors

4.3.2(a) Excludinq out-of-plan e inertia of the ouvs

In order to illustrate the interaction between the guy wires

and the tower without confusion, the solution obtained by

neglecting out-of-p1ane guy inertia will be considered

first. Then, the six lowest natural frequencies and corre-

sponding modes for the isolated tower are as shown in Figure

4.5. The results are from model (b) which íncludes axial

Ioads. In each mode it can be seen that the guy-wires are

vibrating essentially in their fundamental.or one-J.oop mode.

Indeed, aII of the frequencies shown in Figure 4.5 are with-

in 15eo of the fundamental natural frequency for in-plane vi-

bration of a guy with both ends fixed (1.72 Uz). Neverthe-
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Iess, the tower motions are strongly dependent upon the re}-

ative phases of the four vibrating guys and the degree of

interaction between the tower and the guys is significant.

Depending on the direction of the four interaction forces

there may be a bending, torsional or axial response of the

tower's frame. It may seem unusual that there is a pair of

rather similar in-p1ane bending modes at 1.52 Hz and 1.61 Hz

and, again, a pair of out-of-plane bending modes at 1.55 Hz

and 1.72 Hz. However , a close study of each modal pair

showed that either the directions or the magnitude of the

cable interaction forces varied significantly.

The axial loads incorporated in model (b) cause only a

slight reduction in the natural frequencies of the bending

modes. The maximum towering is about 9eo, as can be seen from

the Table v. However, the mode shapes given in Figure 4.5

have significantly greater curvatures than those obtained

from an analysis without axial loads (model (a) ). This ob-

servation justifies the inclusion of the geometric stiffness

matrix.
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TABLE V

Effect of Axial Loads on the Lowest Natural Frequencies
Predominantly Affecting the Tower.

Lowest Natural Frequenc es Hz
Mode
Shape

I n-P1ane
Bending

1 .54, 1 .68 1.52,1.61

Out-of-PIane
Bending

1.55, 1.8 1.55r 1,72

Torsion 1 .55 1 .55

Ài iaI 1.70 1.70

4.3 .2 ( b) Includin out-of-olane c¡uv inert ia:

The incorporation of the out-of-plane inertias in the guy

elements produces four additional natural frequencies, as

wilI be discussed later. However' the modes identified in

Figure 4.5 are not significantly changed except that there

is a coupled one-Ioop vibration of the guys in the out-of-

plane direction. This coupling is conveniently expressed as

an amplitude ratio at midspan which may be as high as 54 eo.

Nevertheless, the natural frequencies are unchanged. À1so'

the relative tower displacements are increased only sLightly

or not at aII.

In Figure 4,6, the four additional modes are illustrated

with plan diagrams because the dominant component of guy mo-

tion is out-of-plane. Indeed, all four natural frequencies

occur at 1.59 Hz, which is theout-plane natural frequency of

Without Axla I Load w 1 t Àx aI Loa
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a guy v¡ith both ends fixed. The modes are probably of less

importance than those shown in Figure 4.5 because the rela-

tive magnitudes of the tower displacements are significantly

smaller. Nevertheless, the diagrams in Figure 4.6 serve to

iLlustrate the phasing of the out-of-plane guy motions asso-

ciated with each type oi tower displacement. Not surprising-

Iy, it was found that the patterns shown in Figure

4,6(a),(b) and (c) also indicate the phases of the out-of-

plane guy components associated with Figure 4.5(a), (b) and

+

10

fo.rr ì-
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Figure 4.62 Tower Modes Coupled Predominantly with Out-of-
PIane Guy Vibration.
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(c), respectively.

4.3.3 Tower with conductors

The modal density for modes primarily involving tran-

sverse vibrations of the conductors is very high. There are

eighteen natural frequencies shown in Table VI for the range

0.19 to 0.54 Hz. However, these frequencies can be grouped

into three sets of six values depending upon whether the

conductors are exhibiting one, two or three loops of vibra-

tion per span. Differences within each set depend upon the

phases of the six conductor spans. This phenomenon is illus-

trated in .Figure a.7 (a) to ( f ) in which the set of six sin-

gIe-loop modes is shown. Such modes are labelled according

to the type of displacement pattern introduced by the con-

ductors to the tower. There are three bending modes, 81, B2

and 83, a torsional mode T1, and two axiaL modes, À1 and À2.

These types of tower response are repeated for double-and

triple-loop modes as can be seen from the examples of Fig*

ures 4.7 (f.) and ( g ) . Each response to conductor vibrat ion i s

essentially a static deflection because the fundamental mode

of the isolated tower occurs at a much higher frequency.

(See Table V). This means that, in this case, the modes

shown in Figure 4.7 would have been generated by represent-

ing the tower by a six-by-six array of flexibilities at the

conductor attachment points. Thus, the forces and bending

moments in the tower can be defined by an array of horizon-
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taI translations Ar through 43, and vertical translations, Aa

through Ae, at the conductor attachment points. These de-

flections can be converted, in turn, to a set of equivalent

static forces, P1 through P6 in Table VI, according to the

flexibifity of the structure. The forces were obtained by

assuming appropriate galloping amplitudes as discussed pre-

viously.

À general scan of the results in Table VI shows that con-

ditions at the conductor's end points do not significantly

affect the two-loop galloping modes. This result is consis-

tent with the theory [13,19] which shows that antisymmetric

modes (2, 4 Loops, etc.) occur without stretching of the ca-

ble and are not affected by conductor's longitudinal flexi-

bility. In stark contrast, the symmetric modes (1, 3 J.oops,

etc. ) are altered significantly by the end conditions. It

can be seen from Table VI (a) that if the conductors are con-

nect,ed directly to the tower, then the horizontal forces Pr

to Pg for single-Ioop galloping are a large 10 to 15 kN.

However, the inclusion of insuLators in the modelling causes

a reduction of these forces by a factor of about ten as

shown in Tables vI(b) and (c). The corresponding natural

frequencies are also reduced from 0.22 Hz to 0.19 Hz. The

reduction in the vertical forces P¿ to Po is somewhat dif*

ferent. The results from Tab1es VI(a) and vI(b) are identi-

caI because these forces are generated without insulator

swing at the central tower. However, the inclusion of static
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coupling from remote spans alleviates axial stretching of

the vibrating conductors as shown in Figures 4.7(d-e). Con-

sequently, the frequencies of the one-loop modes 41, A2 and

82 are reduced from 0.30 Hz to 0.23 Hz and the forces P¿ to

Po are attenuated by about L}eo. There is a similar reduction

in vertical forces resulting from the three-loop 9aJ.1op, al-

though in this case the frequencies remain unchanged at 0.54

Hz.
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lable VI. Sumary of lower Loads Induced by Conductor Gallopfng

(a) l'todel (c)

ONE LOOP !'IODES - GALLOPING AI1PLIÎUDE - 6 n

Natural
t'req.

Hz

Horizontal Loads (N)
Pt Pz P3

Insu.
Swing.
Deg.

Tower
Mode
(Ff e.a,.;)

.22

.22

.29

l0,083
12,740
16, 748

0
10,090

-38, I09

I 0, 083
L2,7 L3
t6, 758

TI
BI
82

Vertical Loads (N)
Pr, Ps P6

.30

.30

.30

4,954
4,750

668

0
-L,448
4,782

4,954
4,750

667

B3
AI
A2

TI{o LOOP MODES - GALLOPING A}IPLITIIDE - 1.5 n

P
1

P2 P3

.37

.37

.37

Ê0
Ê0
ã0

0
r0
i0

ã0
Ê0
ã0

I
B
I
I

B2

P
4

P
5

P
6

.37

.37

.37

941
938
r30

0
-256

933

-940
938
130

B3
AI
A2

ltlREE LOOPS DIODES - GALLOPING AITPLITUDE - 0.67 n

Pl ?2 P3

53
53
54

47
44

5

0
39

-12

47
44

5

TI
BI
82

P
4

P
5

P
6

.54

.54

.54

816
761
104

0

-t97
738

-816
76r
104

B3
AI
A2

(Contd. )



60

(b) Ìlodel (d)

ONE LOOP MODES - GALLOPING AÈIPLITI]DE - 6 n

Natural
Freq. Hz

Horizontal Loads (N)
Pr Pz P3

Insul.
Swing.
Dee.

lower
Ìlode

.19

.19

.19

L,532
L,546

777

0
1 ,400

-l ,751

L,532
L,546

777

26
25
26

TI
BI
82

Vertfcal Loads (N)
P4 Ps Po

30
30
30

4,962
4,857

670

0
-I ,370
4,73L

-4,962
4,957

670

0
0
0

B3
AI
A2

11{O LOOP MODES - GALLOPING A}ÍPLITUDE - 1.5 n

P
1

Pz P3

.37

.37

.37

:0
=0;0

=0;0
=0

ç0

=0
=0

0
0
0

*
*
*

P
4

P
5

P
6

.37

.37

.37

939
951
L32

0

-260
935

-939
95I
r32

0
0
0

B3
AI
A2

THREE LOOPS ÌIODES - GALLOPING AIÍPLIIIIDE - 0.67 n

Pl P2 Pg

.53

.53

.53

49
54
26

0
46

-57

-49
49
26

I
I
I

1l
BI
B2

Pr, P P
5 6

.54

.54

.54

830
750
104

-208
738

-830
570
104

0
0
0

B3
AI
A2

(contd. )
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(c) Model (e)

ONE LOOP MODES - GALLOPING AIÍPLITIJDE = 6 n

Natural
Freq. Hz

Horizontal Loads (N)
Pt Pz Pg

Insul.
Swing
Dee.

Tower
Mode
(Ff e.¿

.I9

.19

.r9

L,477
I,516

738

0
1,368

-1.635

-r,477
I ,516

738

25
25
24

T
B

B

I
I
2

Vertfcal Loads (N)
Pr, Ps Po

23
23
23

3,017
3,077

417

0
-712

2,928

-3,017
3,O77

416

0
0
0

B3
AI
A2

I1JO LOOP ÌÍODES - CAI.LOPINC AMPLITIIDE - 1.5 ¡¡

P
1

Pz P3

.37

.37

.37

=0
e0

=0

=0
=0
s0

=0
=0
=0

=0
=0
=0

*
*
*

P
4

P5 P
6

.37

.37

.37

971
919
128

0

-266
900

-971
9r9
128

0
0
0

B3
AI
A2

THREE LOOPS MODES - GALLOPING AMPLITIIDE = 0.67 n

P1 P? Pg

53
53
53

54
54
28

0
49

-61

-54
54
28

I
I
I

TI
BI
B2

P P
5

P
4 6

54
54
54

672
606

84

0

-r58
602

-672
606

84

0
0
0

B3
AI
A2
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The above trends are consistent with theoretical expecta-

tionS. However, an assessment of the importance of the loads

is obtained most appropriately from Table VI(c) because

these results ttere generated by using the most realistic end

conditions. The galloping loads may be compared with other

conductor loads such as the total weight of one span with 44

mm of radial ice (6,700 N) or a horizontal load due to a

45-n/s wind (6,200 N). In terms of these values, the gallop-

ing forces are not catastrophic by themsefves. However, it

should be noted that the present analysis considers the

bare-wire condition, which is consistent with very light ic-

ing. A more significant comparison is the ratio of the 9a1-

loping loads to the conductorrs weight (3830 N per span).

The fact that this ratio is significant for single-loop 9a1-

loping points to the need to undertake further parametric

studies. In particular, galloping may well occur under the

condition of heavy icing assumed by Tsui [18]. It rnight be

expected, then, that the galloping loads wiIl grow approxi-

mately in proportion to the increased weight of the conduc-

tors. However, there are several additional factors. For in-

stance, the resiStance against insuLator swing, repreSented

by the spring constant K' will also rise with a greater

weight. Furthermore, a galloping excitation may occur in

One, rather than two or three, adjacent conductors. This oc-

currence would not necessarily be beneficial because the re-

sulting Ioads would introduce coupled bending and torsion

into the tower's frame.
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Finally, the effect that the conductors and insulators

have on those. freguencies in Table V which primarily affect

the tower should be elucidated. It can be seen from Table

VII that the out-of-plane bending and torsional frequencies

are increased slightly by the longitudinal stiffness of the

conductors. However, the inclusion of the insulator swing

decreases the longitudinal motion of the conductors, âS

shown in Figure 4.8. The frequencies corresponding to out-

of-plane bending and torsion of the tower then return to the

values for an isolated tower. On the other hand, the in-

plane bending frequencies appear to be lowered very sIightIy

by the inclusion of insulators and conductors. This effect

was found to be due to an increase in the in-plane rotation-

al inertia caused by (a) the mass of the insulators and (b)

the lumped mass of the conductor elements whieh are adjacent

to the cross arm. Therefore, it appears that the conductorsf

motions have a negligible effect on this tower's lowest mod-

es. Nonetheless, the first resonance involving mainly long-

itudinal motion of the conductor ¡{as detected at 1.02 Hz and

this mode is illustrated in Figure 4.9. Such modes may be

important in the study of phenomena such as ice-shedding or

broken-wire conditions which result in sudden changes in the

conductor's tension. The appearance of this mode at a fre-

quency lower than that of the isolated tower's fundamental

mode justifies the inclusion of the longitudinal inertia in

the conductor' s modelling.
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TÀBLE VI I

The Effect of Insulators and Conductors on the Lowest
Natural Frequencies Predominantly Affecting the Tower.

10
-64 .64

Figure 4.8¡ Vibration of the Transmission Line System at a
Natural Frequency of 1 .55 Hz.

Mode I solated
Tower

with Conductors I nsulator
&

End Spring

1 .48, 1 .56

1.55,1.72

1 .56

1.70

No Insulator I nsulator

In
PIane
Bend.

1 .52, 1 .61 1.51, 1.59 1 .48, 1 .56

Out-of
-PIane
Bend.

1.55,1.73 1.56, 1.94 1.55r 1.71

Tor s-
ion

1 .56 1"55 1 .56

Ax ial 1.70 1 .70 1.70
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+1.5
.4> I 10 I

Figure 4.9 Lowest-Frequency Mode Involving a Significant
Longitudinal Motion of the Conductors.

4.4 Conclusion

The free-vibration characteristics have been determined

for a tvro-span transmission Iine with guyed supporting tow-

erq. Low-frequency modes essentially involve conductor mo-

tions which may be categorized, initially' according to the

number of vibration loops per span. However, within each

category, whether one' two, or three loops per span, six

closely spaced natural frequencies were aLways found. This

proliferation of modes happens because there are different

types of coupling with the guyed towers. The coupled mo-

tions in the towers were seen to involve three types of

bending, two types of axial and a torsional deformation.

Load transferred to the tower by galloping Ytere estimated

directly from the coupled mode shapes. Very high loads occur

when the conductors are connected directly to the tower.

However, the inclusion of insulator swing significantly de-
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creases the horizontal (along-line) Ioads due to galloping.

In contrast, vertical loads are reduced by the inclusion of

coupl-ing with remote conductor spans. The inclusion of both

these ameliorating factors suggests that the loads trans-

ferred to the tower should not be catastrophic, at least for

the case of light icing.

Those mode shapes primarily affecting the towers show

significant dynamic interactions between the guys and the

Y-shaped steel frame. However, the corresponding natural

frequencies occur in the range of 1.5 to 1.8 Hz which is

much higher than that possible for one- to three-loop 9a1-

Ioping of the conductors ( 0. 1 9 to 0.54 Hz) . on the other

hand, a longitudinat conductor resonance was identified at

1.0 Hz which i3 fairly close to this range. Such conductor

modes may be important in the study of the dynamic response

due to ice-shedding'or a broken-wire condition.



Àn algorithm to perform the

to¡{er has been developed. The

system can be either a latt,ice

This supporting structure can

guy-supported. The algorithm is

computer.

ChaPter V

SUMMARY AND CONCLUSIONS.

free-vibration analysis of a

basic eÌement of the tower

or a non-Lattice structure.

be either free-standing or

suitable for use on a micro-

The approach is based on the assumption that the lattice

segment can be represented approximately by an equivalent

beam element. Corresponding stiffness and mass matrices for

a straight lattice beam have been developed based on an as-

sumed cubic polynomial. The exact displacement function ltas

derived for a tapered beam el-ement loaded only at its ends.

This is a logarithmic function which gives much better re-

sults than the assumed cubic polynomial. ÀIso, a finite el-

ement model has been developed for an inclined cable element

assuming that the cable fol-lows a parabolic profile when it

hangs under its ovln weight. Furthermore, ârì estimation of

the load transferred to a typical tower can be made if the

amplitude of the vibrating conductor can be reasonably as-

sumed.

68
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The main concl-usions obtained from the computations are

summarized below, '

1. The natural frequencies of a free-standing lattice

tower obtained by the present finite element method

are greater than those obtained by using SAPIV. Some

of the difference between the present model and SÀPIV

is due to the stiffness modelling which is approxi-

mate as compared to the very detailed representation

used with SÀPIV. Àlso, part of the difference prob-

abty arises because a consistent mass matrix has been

used here whereas SAPIV employs a lumped mass matrix.

2. Àn axial compressive load was incorporated by use of

a geometric stiffness matrix. For the tower system

shown in Figure 4.1, the use of geometric stiffness

l¡as justified because the natural frequencies of the

tower were lowered by 8eo.

3. Generally, the mode shapes of interest lie in the

lower frequency range. In this range the cable in-

teracts with the tower in one, teto or perhaps three

vibration loops. Thus, the finite element idealíza-

tion which can determine accurately the first four

natural frequencies of a cabLe should be sufficient.

Àt }east eight cable elements are necessary for this

purpose.

4. Since only the first few transverse modes of a vi-

brating cable need to be considered in a tower inter-



action problem, the longitudinal motion can

sidered quasi-static. Therefore, longitudinal

can be conveniently ignored.

70

be con-

inertia

Suqqest i ns for Further Resear eh - The present algorithm can

further be used to perform parametric st,udies of tower sys-

tems. Factors such as cable mass, pre-tension in cabler câ-

ble area of cross-section can be varied and tower system re-

sponse can be studied.
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Appendix A

STTFF'NESS AND MASS MÀTR ICES FOR À UNIFORM BEÀM
ELEMENT.

Consider a beam element with six degrees of freedom at

each of its nodes. These degrees of freedom are ur through

urz as shown in Figure 41. The x-axis is in the axiaf di-

rection and the y-and z-axes are principal axes in the

cross-section" 19 and Iz- âF€ moments of inertia of the

cross-section and Ie is the polar moment of inertia about

the x-axis. The stiffness and mass coefficients associated

with ur and uz are for dxial deformationi those associated

with nzt u6r ugr and urz are based on bending in the xy-

planei us, u5r us and urr are associated with bending in the

xz-plane; and u¿ and uro are associated with torsion.

ua

v ril

1 Centroidal axis

¡
ul

Ito
u3

un ug

ul

aa ul

Figure A1 : Notation f or a beam element r¡ith 12 D.O.F.

ozLv
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For the beam element, shown

twelve symmetric matrix is given

shown below.

- þ:A

L

75

in Figure 41, a twelve-by-

in reference t8l and is as

L

I

5.

ó

6EI,
L2

_ 12EI,
Lt

6EI,
L2

12EI,
LJ

_ I2EI,
Lt

_681,
L2

I2EI,
Lt

_681,
L2

GJ
L

GJ
T

z-Elr
L

9E!,
L2

lllr
L

-681,
L2

2EI,
L

_681,
Lz

4EI,
L

6EI,-F
EA
L

EA
L

_68/',
L2

_681,
L2

I2EI,
Lt

_I2EI,
LJ

9E!,
L2

IzEI,
Lt

gEL
L2

_ I2EI,
Lt

GJ
L

GJ
L

!E!'
L

9lJ,
L2

2]lr
L

_681,
L2

6EI,
L2

2

zEI,
L

_681,
L2

t

4EI,
L

t2

il

tor-
the

l2

I 7 I lo ll

where E is the Young's modulus of elasticity; GJ

sional rigidity; L is Èhe length of the element

cross-sectional area of the element.

is the

and A is
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Similarly the symmetric mass matrix is as shown below:

t40 70

l

4

m¿
420

t0

il

4L7 t2

-l3L
2

-3L2
_11 

'
ó l0I t2

the axial

shown be-

À four-by-four geometric stiffness matrix for

load and corresponding to bending stiffness is as

low

P
Tõ

-6_-9 -P
0

2PL-Tr

6P
5-r, 1L5

-P
iõ'

-PL
l0'

Symmetr ic g_P
5L

-P
10

2PI,
15

-t3L5422Lr5ó

t3L54-22Ll5ó

19!"
A

l4OI,
A

-3L2- l3L4L2-22L
-3 L1l3L4L222L

r4070

-22Lt5ól3L54

22L¡5ó-t3L54

l4OI o

A
ty

A

4L222L-3L2t3L

in which P is the compressive axial force on the member.
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SimiIarIy a four-by-four symmetric aeometric stiffness for

the self weight of the element and corresponding to bending

stiffness is as shown below

'# ?# -+'

'# -# -*åä'

Symmetric 3o
5L

0

o 0

in which qe is the self weight per unit length of the mem-

ber.

q9! 2

10



Appendix B

TORSTONÀL ÀND ÀXIÀL STI FFNESS ÀND MÀSS MÀTRICES

À two-by-two stiffness matrix for an element subjected to

twisting is given as

1 -1
lx-l GJ (sl )

-1 1

where GJ is the

typical element,

Equation (2.22).

ment is given as

torsional rigidity of the el-ement. For a

shown in Figure 2.4, GJ is as given by

AIso, a two-by-two mass matrix for the ele-

T

[¡t" ] mo

t-- 9L' + P:L'3 6 30

Symmet,ric

+L
6

+L.
6

pt"
6

pL2
6

p'Lt
20

p:L"
5

ß2)

where pL and me are as given by Equation (2.1c) and Q.23b)

respectively. Similarly, a two-by-two stiffness and mass

matrices for an element subjected to axial deformation is

given as

1 -1
lx nl (sg)

-1 1

in which EA is the axial rigidity of the element.

Ð
L

78



A two-by-two mass matrix is given as

in which m is the mass per unit length of the element.

1

2

2

1

79

(s+)lurl mL
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Àppendix C

CABLE ELEMENT STIFFNESS

The parabolic deflection of the cable shown in Figure

3.2b, ât its position of static equilibrium, is given by

equat i on t4l

qt2'yc 2
y(*) = å To

x
Lc

(x)
lt (ct ¡

Lc

qL'yc 2

í<"> = i r-2(x)
Lc L"2

l (c2)

where y(x) is the deflection of the cable at any point x

along the chord, e5is the intensity of the normal load per

unit of chord length, Lcis the length of the chord and To is

the component of the cable tension along the chord. The

length ds of the cable element can be expressed in terms of

dx and dy as

¿s=(dx2 +ayz¡l/z (c3)

ds = (r *+ r'2¡L/2 )'"¡ (c4)

iTo

or

The effective cable Iength Leis defined by

,n = I:,c$|r3 a" .

80

(cs)
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The static configuration of the cable is given by the dif-

ferential equation t4l

ATotlv
T a

v'(x)=Crx*Cl

and, v(x) C*2 + C1x + C2

9y

T-
o o

(c6)

(c7 )

(c8 )

(ce)

Therefore, integrating Equation (C0) with respect to x

qÂTvowhere C = J2T
o

Cr and C2 âF€ constants of integration and can be evaluated

using boundary conditions; v is the normal displacement com-

ponent (in y-direction) and ATo is the increment in To.

The equation relating the displacements and the incre-

ment in tension ATo, is given bY t4l

( ds
ffi

3 (c to)
AT

o )

Combining Equations (CS) and (C10) and integratlnÇ dith re-

spect to x between the limits xr and xz for the cable ele-

ment shown in Figure 3.2b Yields

-A"E" t}***t'#,.

Jî' ,åå,3 d* = f ii . . lif fåt> ({) a" '
ATo

cAEc

(cl 1)



Substituting for dy/dx and av/ax from Eguations

(c7 ) into
AT LI

o

whefe U1 ¡U27V1

in Figure 3.2b

given by,

Equat i on

e =(u2_rt)
AcEc

L") t2 a (Lc

82

(c2) and

zxr) v1l (clz)

(c11 )

9y

T Itz*,
o

J

+ 2*z
ca

2

+
ot 

{ c, .*23 - *r3)
T

o

( *r2) * ca Gz *t)

and

and

Y2

?l
tr e-

are displacement coordinates as shown

is the effective length of the element,

(cl3),-(x2- rxl (å+)

wr) - C(xt 2 2
) (ct4)

(c15)

and H and V be the

force along x-and

increments in the

(cr6)

(cl7 )

3d*
L

e

(w *2
I

c1
(x *z)I

(rl*2 - nz*,) - cxt*2 (*I - *z)
c2 (x x

2 t

Let T be Èhe tension in the cable element

axiaL and transverse components of this
y-directions, respectively. Denoting

forces by prefix A, it can be seen that

H=Tcosyr

H + ÂH = (T + ôT) cos(yr + v')

)

V=Tslnyr (ct8)



v + Av = (T + ÂT) sin(y' + v'),

Considering smaLl sags and low-amplitude motions' the cosine

terms can be approximated by unity and the sine terms are

equal to the quantities themselves. Neglecting higher-order

non-Iinear terms as AT vr, Equations (Cl0) to (Clg) yield

ôH=ÂT (c20)

6y=(ÂT.y'*Tv') (c2r)

83

(cl9 )

of the cable e1-Considering now the case when the }ower end

ement is restricted, ie. ' ur=Vr=0 while the

a distance X along the x-direction ie. Vz=0

upper end

and u2=X,

moves

(c22)

(c23 )

Ð

ATL
e

anð
To

where K", is
rection. In

is fixed as

di splacement ,

V2=Y.

ã-Ecc
=x+-

To

ovc

t

Combining Equat ions (c20 ) and (c22') ,

K**=^H-4"E"( I )
X L"' l*p','

o. = (ort"), 
t"

'*2 
- *l'3 

'24)(r)
c

of the cable element in the x-di-

AEc c

LTeo
the stiffness

the second case, the bottom end of the element

bef ore while the top errd is given a priscribed

Y, along the y-direction, ie. ur=vr=u2=0 and

ua-



Substituting these boundary conditions in Equation (C13)'

ATL
e

K =ÂHxyT

Âv=XI

q

T

Y (r-

q

*z )
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(c25)

(c26)

(c27 )
a

='[=!{1:(1"-*2-*r)
1+pm 2 1o

Ì1,Ancc

From Equations GZO) and (c25)

I A"E"

ï+p- L'IIlE

vI
2

( xL
c t

o

where ¡*v is the stiffness coefficient relating the force in

the x-direction to the displacement in the y-direction. The

expression for Ky' ie., the force in the y-direction corre-

sponding to unit displacement in the x-direction, can be ob-

tained by relating AV and X. The boundary conditions in this

case will be ut= vr=U2=0 and uz=X. Applying these boundary

conditions to Equation (c121 and (c21),

I
G_'m

ccAC
{ lx-x2c_l_

2

q

T
I

L

Kyx =AV
x

AEcc
Lre

I
lro-'m

l*t)-x2c

o

I
2

{

e

From Equations (C26)

k¡r=kr^, which can also

theorem.

Y (r,
T

and (c28 )

be justified

o

(c2B )

it can be observed that

from Maxwell' s reciprocal

FinaIIy, consider again the case when the top end is aL-

lowed to move only in the transverse y-direction, while the

bottom end is fixed. The boundary conditions will be ur=Vl

uz=0 and v2=Y. Applying these boundary conditions to Equa-

Itions ßlZ) and (c21')
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*2-* I

85

lczs )

(c¡o)

AV=Y AE
c

l+pn L"'

v.vv= Âv I A"E
{

Y l{?n L" t

is the cable

di splacement

qy

r ot(r"-*,
2To

t t x(L" - x2
T

].
2

I{c ) + l2
Ì

o

+c
2 T

*r) l
o

*2-* r

where k yy

to a unit

Kzz =

Summary:

Kxx (l )
l+o'm

force in the y-direction corresponding

in y-direction.

The out-of -pJ.ane stif f ness , k.-, of the cable element will

be the same as ky!. Since there is no sag in the xz-plane

because of absence of any load in this plane, the term con-

taining es in the expression for kg: (CZg) will vanish, and

for the same reason k.,'*=k*r =0. Thus

T
o

*z-*l (c3l)

(c23)

(c28 )

(c3r)

A"E"
AH

x -L'
e

x
AE

{cc
Lre

K=VxY "yx =ÂV

T
o

I
l{t'm

Ì*t)-x2(1,
cI

2

qy

T
o

Rzz =
*2-* 

r



Appendix D

HORIZONTAL STIFFNESS OF AN INSULATOR

It can be seen from Figure 4.4

to the tower force, PA, is U¡ at

However, this displacement has two

that the displacement due

the top of the insulator.
components

(D1 )

(D2 )

other hand, U6 is
so1ely upon the

(og )

the insulator, it

(o¿ )

Subst i tu-

U¡=UsçU*.
Here Ug is a torsionat component

Uß = L3 tan A0

given by

where Lais the insulator's J-ength. On the

a translational component which depends

stiffness of the conductor spring, Kc.

The relation is obviously

Uc = PA /x..
Also, by resolving forces at the bottom of

is clear that

Here wXis the

ting Equation

A0.
carried by the

and rearranging

P¡= W

vert ical
(o¿ ) in

tan

load

(pz )

r
string.
gives

rr-Pe
"n - wp,

regarded as thewhere W/L may be

izontal stiffness,
insulator may now

and (os) into (D1 )

insulator's
stiffness at

substituting

(os )

effective hor-

the top of the

eguations (Pg)

Ka. The net

be computed by

so that

I
Ç

t
I+ Kl

86

ue Pe l (D6 )
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a series addition of stiffnessThis last equation indicates

as illustrated in Figure 4.5.




