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ABSTRACT

An algorithm to perform the free vibration analysis of a
transmission tower system has been developed. The algorithm
is designed to be a general purpose package which is suit-
able for a micro-computer. Therefore, the support structures
may be free-standing or guy—suppofted, lattice or non-lat-

tice.

The finite element method has been employed to model the
interactive components of the towers, guys, insulators and
conductors. Both lattice or non-lattice tower segments have
been idealized as beam elements with a consistent mass ma-
trix. The effects of axial load have been incorporated in
the element by using a geometric stiffness matrix. However,
a lattice tower usually contains tapered segments. There-
fore, the stiffness and consistent mass matrices were de-
rived by employing the exact displacement function for an
eguivalent tapered beam 1loaded only at its ends. Also, a
specialized finite element has been developed to represent
the transverse vibrations of an inclined cable. It was as-
sumed that the cable follows a parabolic profile when it
hangs under its own weight. This element has been used to

model both guy-wires and conductors.
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The free-vibration analysis of a free-standing lattice
tower has been performed. The idealized model gave compara-
ble results with those obtained from a structural analysis
package known as SAPIV. However, the input is much more com-
plicated with SAPIV and many more elements are reguired.
Natural freqguencies obtained by using the finite element
model for a horizontal cable were comparable with analytical
results. Finally, the algorithm was employed to perform a
detailed free-vibration analysis of a two-span transmission
line with guyed supporting structures. The effect of swing-
ing of the insulator on the tower/conductor interaction has
been studied. The low frequency modes primarily involved
conductor motion so that the conductor may be excited with
large amplitudes in a condition known as gélloping. By as-
suming a feasible amplitude of galloping, an estimation has
been made of the load transferred to the tower. It was no-
ticed that the swinging of the insulators significantly de-
creased the horizontal(along-line) 1loads due to galloping.
Also, static coupling with remote conductor spans was con-
sidered. It was found that such coupling significantly re-

duced the vertical loads on the central tower.
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Chapter 1

INTRODUCTION

1.1 General Introduction

Severe freezing rain storms are not uncommon during win-
ter months. Such storms have resulted in extensive damage
to transmission and communication tower systems. For in-
stance, nine transmission towers collapsed completely south
of Oakville, Manitoba during an ice storm on April 27, 1984.
The failure was due to heavy ice build-up on the conductor
and towers in conjunction with moderate winds. Similar fail-
ures have been experienced with communication tower systems

which are generally guy supported.

A contributing factor in a collapse is that most designs
are based on a static analysis so that dynamic loads are in-
variably ignored. This practice is due to the extreme diffi-
culty of studying the dynamic behaviour of complicated
structures, either experimentally or analytically. However,
the increased availability of computer facilities will pro-
mote the inclusion of a dynamic analysis in future designs
of towers. 1In general, a tower system can be loaded dynami-
cally by earthguakes, longitudinal impact due to gusty

winds, unbalanced tension in the 1line and a broken cable
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usually caused by icing [1]. In addition, one of the most
common causes of dynamic loading is the galloping of iced
cables. Galloping is the wind-induced excitation of the low
frequency modes of a cable to large amplitudes of vibration
[2]. The energy transfer has the form of a negative viscous

damping and does not usually occur unless the cable is iced.

The initial objective of a dynamic analysis is to calcu-
late a tower system's natural frequencies. These frequencies
may be then employed to estimate, for example, the tower's
peak response to a gusty wind, the impact caused by conduc-
tor breakage or the forces on the tower due to cables in

gallop.

In this thesis, the free vibration analysis of a tower
system will be performed. The basic element of the tower
system can be either a lattice or a non-lattice structure.
This supporting structure can be either free standing as
shown in Figure 1.1 or guy-supported as in Figure 4.1. An
algorithm will be developed to accommodate both types of

structure on a microcomputer.

1.2 Free-Vibration Analysis

The dynamic stiffness, K(w), for a beam and a cable ele-
ment are available in references [3] and [4], respectively.
These stiffnesses are functions of the natural frequencies,

W o They can be used potentially to obtain an analytical
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solution of a forced-vibration analysis. However, the use of
a dynamic stifffness in a free vibration analysis leads to
an eqguation of the form det|K(w)|] = 0 . This equation con-
tains transcendental functions which are trignometric and
hyperbolic expressions involving w. [5]. The solution of
such an equation can be obtained by using the incremental
search method [6]. However, there is a chance of missing
some particular natural freguencies because of the highly
variable nature of K(w). It is much simpler and more relia-
ble to construct a finite element model and solve the eigen-
value problem in the form (K - w?M) a = 0 . Here the assem-
bled stiffness matrix [K] and mass matrix [M] are
independent of ws. The eigenvalue solution will give a rea-
sonable approximation to the lower natural freguencies of a
system without skipping roots. The accuracy qf the results
can be increased by choosing a larger number of elements.
The eigenvector corresponding to each eigenvalue represents
the deflected shape of the system vibrating at a particular
natural frequency. Convenient finite element representations
for masts and cables will be developed in this thesis and

their modelling will be tested by using practical examples.

A procedure will be developed in Chapter 1II to generate
stiffness and mass matrices for typical tower body sections.
Specifically, uniform lattice, tapered lattice and prismatic
structural sections will be considered. In Chapter III, the

stiffness and mass matrices for an inclined cable element
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will be generated. A detailed analysis of the transmission
tower system shown in Figure 4.1 will be presented in Chap-
ter IV. From the results, an estimation of the loads trans-
ferred to the tower in the event of galloping will be given.
Also, the effects of such factors as axial loads on the tow-

ers, and insulator swing will be discussed.
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Figure 1.1: Typical Free-standing Lattice Tower.



Chapter 11

FINITE ELEMENT MODELLING

2.1 Introduction

The Finite element modelling of the segment of a tower's
body will be developed in this chapter. Specifically, the

type of elements which will be considered are:

1. straight prismatic segments such as rectangular or
circular tubes; and,
2. lattice segments which may be either tapered or

straight.

It is well known that prismatic elements can be modelled
straightforwardly as beam elements, which resist bending,
torsional and axial loads [7]. The resulting twelve-by-
twelve stiffness and consistent mass matrices for one such
element are given in books [8] and, for reference, in Appen-
dix A. A geometric stiffness is also included to account for
axial loads on the tower and is as given in Appendix A. This
latter stiffness modifies the conventional stiffness matrix

and geﬁerally reduces the flexural natural frequencies [9].

The development of mass and stiffness for a tapeféd lat-

tice structure is not straightforward. One approach 1is to
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employ a space-frame model using a computer analysis package
such as SAPIV [10]. However, each and every leg or bracing
member must be represented, so that preparation of the com-
puter input is very tedious and requires very careful check-
ing. Also, the number of degrees of freedom in a space-frame
model is very large (typically 1000-2000) and, consequently,
there may be problems associated with the availability of

computer storage and time.

The aim here 1is to circumvent the above problems and
produce a tower analysis package which is suitable for use
on a micro-computer. The approach 1is based on the assump-
tion that the typical tapered 1lattice segment shown in Fig-
ure 2.1 can be represented approximately by an eguivalent
tapered beam [7,11]. It will be shown that then the stiff-
ness and consistent mass matrices can be easily developed,
based on an assumed mode shape. It will be shown that the
solution for the equilibrium equation for a tapered beam el-
ement is a logarithmic function. Such a solution, however,
leads to a complicated procedure for obtaining the mode
shapes and, eventually, the stiffness and mass matrices. To
avoid this complication and thereby develop an efficient
computational approach, a simple cubic polynomial will be
assumed. This polynomial happens to be the exact solution
of the equilibrium equation for a straight beam. Although
the cubic polynomial will be demonstrated to be computation-

ally efficient for straight beams, it will be shown to fail
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for tapered beams. Hence both, the cubic polynomial and log-
arithmic expressions will be employed for the generation of
stiffness and mass matrices, depending upon the type of beam

considered.

This procedure will be illustrated in detail for the case

of the bending of beam elements.

2.2 Tapered beam representation of a latticed structure

2.2.1 Bending

A Typical tapered lattice segment has a sguare cross sec-

tion. It is supported by four continuous legs, each having a

4\)(

i w7

1 1
' 1
) ' 1 bx
! 1]
' 1

N
— e ——— . N
[ —
v bx

Figure 2.1 (a): Typical Tapered segment
(b): Plan-view at section X-X .

cross-sectional area A, as shown in Figure 2.1(a) and 1(b).

The moment of inertia, I(x), about the segment's longitu-
dinal axis x, at section X-X, is given by equation [12]

I(x) = AL by? (2.1a)

L]

in which b, by (1 - Bx) (2.1b)
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and B =b;y -Db (2.1c)
T biL ‘

hence I(x) = A_b;2(1 - Bx)?2 (2.2a)

or I(x) = Io(1 - Bx)?2 (2.2b)

where Io is the moment of inertia at the base of the segment.

Now the area of each leg, A, is constant along the
length of the segment, so that the mass per unit length of

the segment, mo, is also constant.

The next step is to develop the stiffness and consistent
mass matrices for the typical beam element shown in Figure
-2.2. The generalized coordinates vy, vz, vz and v, are the

end displacements and slopes as shown in the figure and the

A y.v {x)
/_Y_ Ve
- ]
v,
V3

I,
b L

Yk

|
o
1
Figure 2.2: An element undergoing transverse deflection

mode shape is v(x).

The element's stiffness matrix [K] is derived from the
expression of strain energy [8]
L ~x
U= ]_SEI(V")z dx = 1 {v} [K] {v} (2.3a)

2 Jo 2
where {V} = < vy v2 v3 vg > . (2.3b)
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Similarly, the consistent mass matrix, [M], is obtained

from the expression for kinetic energy, T, which is

L
T = 1Smoz ax = 1 (U} M) (9} . (2.4)
2 70 2

An appropriate mode shape can be chosen from the equilib-
rium equation

(EI(x) v'")'' =0 (2.5)

for a beam element loaded only at its ends.

Substituting relation (2.2b) into equation(2.5) and inte-
grating gives

v{x) = C4Ln(1 - Bx) + Co(1 - Bx)Ln(1 - Bx) + C3(1 - Bx) + Cg4

(2.6)

in which C; through C, are constants.

This function represents the exact static deflection for
a tapered beam. However, it leads to a procedure which is
rather cumbersome for wuse in the finite element method.
Generally it is desirable to minimize computational effort,
especially if the method is to be suitable for a micro-com-
puter. A much simpler but more computationally efficient al-
ternative is to use the cubic relation
v(x) = By + By(x/L) + B3a(x/L)2 + By(x/L)?3 (2.7)
which happens to be the static deflection for a wuniform
beam. Therefore, the accuracy and efficiency of finite ele-
ment computations based on the alternative mode shapes will

be considered.
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The generation of the stiffness and mass matrices by us-

ing relation (2.7) is straightforward and similar to that
shown in reference [8). Firstly, let

vi(x) = Yyvy + Yava + Yava + Ygvy (2.8)

where 3 through ¢, are independent cubic polynomials.

Hence, since v(0) = vy, v'(0) = vz, v(L) = vz, v'(L) = v,
then
v,(0) = 1, vi'(0) = ¢ (L) = ¢y4'(L) =0
U2'(0) =1, ¢2(0) = yo(L) = Yo' (L) =0
(2.9)
Vva(L) = 1, ¢3(0) = ¢3'(0) = y3'(L) =0 and
Va' (L) = 1, Ya(0) = Y3' (L) = Ya(L) = 0.
Conseguently
Vi =1 - 3(x/L)%2 + 2(x/L)3
vz = x - 2L(x/L)? + L(x/L)?3
(2.10)
vz = 3(x/L)? - 2(x/L)3
and ¢4 = -L(x/L)? + L(x/L)% .
It follows from the energy relations (2.3a) and (2.4) that
ki = [ BTGy 'y ax (2.11)
- t ’ )
m; = Lm Y ¥ dx (2.12

where I(x) is given in equation(2.2d).

The resulting analytical expressions for [K] and [M] are
fairly straightforward. Elements of the four-by-four symme-
tric stiffness matrix are given by the following expres-

sions.

kiy = -Kj13 = kas 12E£p [ 1 + __2_(BL)2 - (BL)]
L 5

6EIo [ 1 + _7(BL)2 - 2(gL)]
L2 30

6EIo [ 1 + 17(BL)2 - 4(BL)]

T? 30 3 (2.13)

k12 = ka3

k1s = —kags
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koo = 4EIpg [ 1 +_2_(3L)2 - l(ﬂL)]
L 15 2
kzs = 2EIo [ 1 + 13(pL)2 - (8L)]
L 30
and kas = 4EIo [ 1 + 19(gL)2% - 3(gL)].
L 30 2

Although the deflected shape of the beam, v(x), is not a
function of PL, the stiffness coefficient k;; are polynomials
of BL; because the flexural rigidity, EI, depends upon BL.
The case of a uniform beam 1is obtained by substituting gL =
0 into the above stiffness equations. The conventional

stiffness coefficients are then obtained.

However, the mass matrix is independent of BL because mp
is a constant. Equation (2.12) yields the consistent mass
matrix for a uniform beam element which can be found in ref-

erence [8].

In contrast, analytical expressions.for the stiffness and
mass matrices become very complicated when the alternative
relation (2.6) is used. Nevertheless, the numerical evalua-
tion of k;; and my; can be accomplished as follows. Firstly,

apply the boundary conditions to relation (2.6), so that
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(Y T 10N
Vi 0 0 1 1 Ci
Va2 B -B -B 0 C»
J ) = {
vy -Ln(1-pL)  (1-gL)Ln(1-pL)  (1-pL) 1 Cs
va g/(1-pL)  -p(1+Ln(1-pL)) -8 0 Ca
L i 1 U
(2.14a)
or {v}l =1[D:] {C}. (2.14b)

The matrix [ Dy ] is evaluated for a particular element and
is inverted in order to obtain

{c} = [ D] {v} (2.15)
in which [ D ] equals [ Dy ]-' . Now from the energy rela-

tion (2.3) and equation (2.6)

4 L
22 ky vy = 15 EI(v'')2 dx (2.16)
(= §= 2 °
p é ky vi vy = 1 EI B3L[C»28L + C42 BL + 2C+Cp Ln( 1 - BL)].
= 2 T-BL (2.17)
Similarly, by using energy relation (2.4) and equation (2.7)
4 \ L
‘%3=\mﬂv5% = E,mX§V(X))2 ax (2.18a)
4 L
Z éimnviw = %JnSO{C1Ln(1 - Bx) + Co(1 - Bx) Ln(1 -~ Bx)
+ Ca(1 - Bx) + C4 }2 @8x . (2.18b)
For fixed values of i and j (i,j = 1 to 4) the elements of

the symmetric stiffness and mass matrices can be evaluated
by substituting the numerical values for CyC.. in Eguations
(2.17) and (2.18b) as

§
Cy Cwm = Z Z D, Dy Vi V; (k,m = 1 to 4) . (2.19)
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A restriction of this method is that the logarithmic
function BL cannot take a value of zero or wunity. Hence,
these two values may be approximated as 0.01 or 0.99, re-
spectively. Further in the chapter this approximation will
be justified pertaining to results shown in Table I(a) and

(b).

Natural frequency computations were carried out for a
cantilever beam. Results from the two different finite ele-
ment approximations, based on Equations (2.6) and (2.7),

were compared with analytical frequencies.

Properties of the wuniform and tapered test beams are as

shown in Figure 2.3.

The analytical expression for the natural freqguencies of

a uniform cantilever beam is given as [3]

w,= C, / EI_ Hz. (2.20)
mL 4

in which n=1,2,3,... and C; = 0.560,C, = 3.51, C; = 9.82,
Also the analytical expression for a tapered cantilever
beam, derived in reference [7], are the roots of

Jo(rfi) I1(rj£) + 1 (rfi) J1(r(£) =0 (2.21)
where 7 = 2(m w? L2/EI)Y~ and I.and Jn, respectively, are
modified and ordinary Bessel functions of the nth order and

first kind.

Table I(a) shows the comparison of natural freguencies

for a straight cantilever beam, obtained analytically and by
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using the finite element method with either tﬁe simple cubic
polynomial given by Equation (2.7) and/or the iogarithmic
expression from equation (2.6) as mode shapes. Table I(b)
shows the comparison for the tapered cantilever beams. Table

I1(c) shows the comparison of the fundamental freguencies for

(a) (b)

Figure 2.3: Typical (a) straight and (b) tapering sections.

Straight beam Tapered beam

H = 30.48m H = m

A = 0.0062 m? A= 1m?

Bl = B = 6.706 m Bl = 1m

E = 0.2048 X108N/m? E =1 N/m?

m = 421 Kg/m m = 1 Kg/m

L =7.62m L =1m
Number of elements = 4 Number of elements = 4

tapered beams with varying bspect ratio bL.

Results in Table I(a) show that, for the uniform beam (BL
= 0) shown in Figure 2.3(a), a cubic polynomial method gave

frequencies which are comparable with analytical results.
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TABLE I

(a) Comparison of natural frequencies for the straight beam
Aspect ratio BL = O

Natural Frequency in rad/sec

Mode Finite Element Method Analytical
Results
Cubic Polynomial Logarithmic Expression*

1 0.440 0.426 0.440
2 2.760 2.670 2.757
3 7.779 7.520 , 7.715
4 15.340 14.819 15.085

* Using BL = 0.01

(b) Comparison of natural frequencies for the tapered beam
Aspect ratio BL = 1.0

Natural Frequency in rad/sec

Mode Finite Element Method Analytical
: Results
Cubic Polynomial Logarithmic Expression*¥*

1 8.164 2.576 2.553
2 14.699 10.307 9.942
3 21.782 23.692 22.276
4 42.778 48.452 39.546

** Using BL = 0.99
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(c) Comparison of fundamental freguency for the tapered beam
Aspect ratio between zero and unity..

fundamental Frequency in rad/sec
BL Finite Element Method Analytical
) Results**x
Cubic Polynomial Logarithmic Expression
0.9 7.949 2.711 2.628

0.8 7.560 2.835 2.762

~%*%* These reults were obtained by using Dunkerley's method
[7]. They are 2 to 4% lower than the corresponding
.exact results.

Conversely, it can be seen from Table I1(b) that the analo-
gous natural frequencies for a tapered beam (gL = 1.0),
shown in Figure 2.3(b), have enormous discrepancies. How-
ever, the logarithmic expression gave reasonably good re-
sults for both a straight beam (using gL ~ 0.01) and for a
tapered beam (using BL = 0.99). Results in Table I(c) also
show the suitability of the logarithmic expression for
aspect ratios, between zero and one. Therefore, it is clear
that, in case of the straight beam, both the cubic polynomi-
al and the logarithmic expression can be employed for the
generation of the stiffness and mass matrices. However, the
cubic polynomial 1is simpler and computationally more effi-
cient than the logarithmic expression, so that the former is
best suited for nearly straight beam. On the other hand, the
logarithmic expression is preferred to the cubic polynomial

for tapered beams.
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A typical tower such as that shown in Figure 1.1 has both
straight and tapered beam segments. Therefore, a computer
package was developed to have two options. A cubic polynomi-
al was employed for uniform segments whereas a logarithmic

expression was used for tapered segments

2.2.2 Torsion

A lattice segment derives almost all its torsional rigid-
ity from the bracing elements which interconnect the main
legs of a tower. The torsional rigidity of a lattice member
changes with the type of bracing used. Consider, for exam-
ple, a typical tapering lattice beam with the most commonly
used X-shaped bracing members. Each ‘bracing member is sup-
posed to have the cross-sectional area As as shown in Figure

2.4.

The expression for the torsional rigidity of such a cell

can be approximated as [7]

GJ = 2[2 EbA g;z b (2.22)
1+

where A, is the area of the bracing.

Similar expressions may be developed for other types of

bracing, such as for K-shaped bracing [7].

The mass per unit length, m, of the segment may be sepa-
rated into the leg mass, m,, located at the corners of a

cross-section, and a bracing mass, my,, distributed approxi-
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C

‘ Bracing \

members

D
b, ——

Figure 2.4: Typical X-bracing cell

mately uniformly along the sides. A reasonable approximation
for the‘torsional inertia per unit length is [7]

| m. = (m /2 +m,/3) b 2 orm. =mp(1 - Bx)2 (2.23a)
where b 1is the width of a segment at any section X-X and

mo = (m./2 + my/3)bi . (2.23b)

The equilibrium equation for an element loaded statically
by an end torque is given as [8]

(Gg 6')' = 0. (2.24)
Let the assumed mode shape, which satisfies boundary condi-

tions as well as the equilibrium equation, be given as
yi =1 - x/L and ¢, = x/L . (2.25)
A similar procedure to that adopted in section 2.2.1 is used
to obtain the torsional stiffness and mass matrices which
are given in Appendix B. However, it is the mass matrix
which differs from that of a uniform beam in this case, be-

cause the torsional inertia depends upon SL.
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2.2.3 Axial

As mentioned earlier in section 2.2.1, the area of a sup-
porting leg remains constant along its 1length. Therefore,
the tapered lattice segment can be modelled as a uniform
beam for the case of axial deformation. The stiffness and
mass matrices for the axial motion of a uniform beam can be
found in reference [8] and are given, for completeness, 1in

Appendix B.

2.2.4 Geometric stiffness matrices

The effect of an axial load and self weight on the bend-
ing stiffness of a beam element were not considered in sec-
tion 2.2.1. However, the axial load on an element and its
own self weight are guite significant practically [9].
Hence, the elemental stiffness mat:ix should be modified for

these kind of loads.

In the case of a cubic polynomial approximation, the geo-
metric stiffness matrix for the axial load is given as
Kamyy = (e v v dx (2.26)
and the geometric stiffness matrix for the self weight of
the member is found from
Kaviy = Lqu x W' ax (2.27)
Here y; and yjare as given in equation (2.10), P is the com-
pressive axial force on the member and go is the self weight

per unit length of the member.
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In the case of the logarithmic expression, however, it
can be seen that |

Koniy = K:P (v')2 dax (2.28)

and Kooy = xqo x (v')? dx (2.29)

where v'(x) is given by equation (2.6) and C, through C; may

be obtained from eguation (2.19).

Finally, the modified stiffness is given as
K modified = kij + Kang* Kaoy (2.30)
in which ki is given by equation (2.11) or (2.16),>depending

upon the approximation chosen.

2.3 Practical implementation of the finite element
modelling.

The transmissioﬁ tower shown in Figure 2.5a was analysed
to assess the accuracy of the finite element modelling. The
tower was idealized as shown in Figure 2.5b . An assembly of
nine segments was employed with each segment being treated

as a beam element having six degrees of freedom per node.

The lowest natural frequencies for the same tower are
available from a SAPIV finite element model which employed
452 beam and 176 truss elements [10]. Table II compares the
natural frequencies for in-plane bending, out-of-plane bend-
ing and torsion. It can be seen that the results obtained by
using the algorithm detailed in this chapter are comparable
to those obtained from SAPIV [10] but gives an overestimate

of the natural frequencies. The probable reason for this is
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the use of consistent mass matrix in the present algorithm,
whereas, SAPIV employs a lumped mass matrix. Another proba-
ble reason 1is the approximate 1idealization of the lattice
segment in form of a beam element, which could give an over-

estimate of the stiffness.

TABLE II Comparison of the Fundamental natural fregquencies
of the transmission tower of Figure 2.5.

Mode Shapes Fundamental Natural Frgeuencies Hz

Present model SAPIV model
In-plane
Bending 4,02 3.82
Out-of~-plane
Bending 4,39 3.97
Torsion
6.52 6.19
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Chapter IIl

CABLE STRUCTURE

3.1 Introduction

A cable hanging under its own weight generally follows a
catenary profile [13]. However, for the case of a structural
guy which supports a tower, the pretension is high and the
sag is very small. 1In this situation, the catenary profile
can be approximated by a parabola. This approximation,
which is reasonable for sag-to-span ratios of 1/8 or less,

éreatly simplifies an analysis.

Various authors [4,13,14] have produced convenient lin-
earized approximations to the equation of motion of a cable
hanging in a parabolic profile. Irvine has given expressions
for the natural frequencies of a horizontal cable fixed at
both ends and oscillating in-plane and out-of-plane. - These
expressions are functions of several parameters such as the
axial rigidity A<E., pre-tension in the cable, Ty, the self
weight per unit of chord length, q,, and the span length of
the cable, Lc.. Veletsos [4] has considered the inclined ca-
ble shown in Figure 3.1. This cable is fixed at the base and
free to move at the upper end, which is presumed to be at-

tached to a tower as shown in Figure 3.2a. Veletsos present-

- 24 -




25
ed expressions for the dynamic stiffness at the upper, move-
able end of the cable which correspond to the displacements
in three diréctions. These expressions are functions of fre-
quency and they can be added to the stiffness matrix of the

tower itself to produce a set of transcendental equatidns
<o

/ \
L)

Figure 3.1: Typical inclined cable

for the natural frequencies, wn. A solution to these equa-
tions can be obtained by using an incremental search method.
However, because the cable sfiffness, K(w), is a discontinu-
ous function, there is a chance of missing a particular wyg.
It is more reliable to solve a standard eigenvalue problem.
Therefore, a finite element representation of a parabolic
cable will be developed in this chapter. The accuracy of the
finite element technigue will be verified by comparison with

the analytical results for a horizontal cable.
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3.2 Finite element method

The finite element approach may be formulated for an in-
clined cable by considering the typical element shown in
Figure 3.2b. Let u, v, and w be the end displacements of the
cable element albng the positive x, y, and z directions, re-
spectively, so that there are generally six degrees of free-
dom. The force-displacement relation is

@) = 5] W) (3.1)
where {W} is composed of the elements < u; v; w; Uz Va2 Wy >,
{P} is the 1load vector and [S] is the stiffness matrix de-

rived in Appendix C. Matrix [S] has the form

K&x ny 0 _K)(x —K‘Y 0
K.y 0 -Kx -Kyy 0 1
[s]" = 4 Kz O 0 -Kex | (3.2)
(&Z, oy °
Symmetric £ R, 0
*f ’
KZZ

It can be seen from relation (3.2) that there are only
four different stiffness coefficients Ky, , Kxy, Ky, and Kza.
These coefficients can be expressed conveniently in terms of
the local coordinate system of the cable. Inertias corre-
sponding to each degree of freedom are lumped at each node
of the element. This procedure results in a six-by-six diag-
onal mass matrix for the cable. In special situations, where

only in-plane vibrations are excited, the out-of-plane de-
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v(x,t} dynamic

deflection
y(x) static
position
X z
\\jﬁfQ
ann
tower cable \\\TO
(&) (b)

Figure 3.2 Modelling of the vibration of an inclined cable
(a) Theoretical dynamic configuration, and
(b) representation by parabolic cable element with
degrees of freedom u, v, and w given in local
coordinates

grees of freedom may be treated as dummy degrees of free-
dom. Then only the four by four stiffness and mass matrices
need be assembled. This simplification greatly reduces the
size of the resulting eigenvalue problem and, hence, the

computational effort.

When the transverse dynamic displacement is combined with
a guasi-static axial stretching of the cable, the inertia
forces can be assumed to act only in the transverse direc-
tion. This assumption is reasonable for the lower-frequency
transverse modes because the wavelength of axial vibration

is then very much greater than the length of cable [14].
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The accuracy of the finite element model may be assessed
by a comparison with analytical results. However, analytical
results are available for only a few cases. For instance, in
the case of a horizontal cable like that shown in Figure
3.3, the transverse natural frequencies are given by Irvine
[13]. A distinction must be made in the analytical solution .
between the symmetric modes, which have an odd number of vi-
bration loops per span, and the anti-symmetric modes which
have an even number. The characteristic equation for the
symmetric modes is [13]
tan{wn) = wns 4(wad 3 (3.3)
A2 2
where wws = wsL / (To/m) V2 (3.4)
and we is the natural freguency of the symmetric in-plane
mode. The wwis the normalized value of weand m is the mass
per unit length of the cable. Also, A? is a factor depending
upon the flexibility of the cable. It is given by
2 = 2
A2 = (cl%%) L/ T_g;f) (3.5)
where Le is an effective length as given by Equation (C5).
The case A2=0 represents a perfectly flexible cable and A?=%
represents a rigid cable. For a guyed-tower structure, A2
ranges typically between 2 and 60. Solutions giving was for

various values of A2 are available in [13].

In contrast, the natural frequencies of the anti-symme-
tric in-plane modes are independent of the flexibility and
they are given by

wa = 2nm (Tg) Y , where n=1,2,3..... . (3.6)
m
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These frequencies happen to be the anti-symmetric modal

frequencies of a taut wire. Similarly, the natural frequen-

cies for out-of-plane vibrations are independent of the
flexibility and are given by the taut wire relation

wo = nu(Tg) V2 , where n=1,2,3.... . (3.7)

This last relatign encompasses both the symmetric and anti-

symmetric modes. The reasonableness of the expressions for

natural freguencies in all three modes has been confirmed

ay

R AR
Le !

e

To

417.0 kN

201.7 N/m

Q
«w
#

AgEc= 4.21 N

Figure 3.3: Typical test cable

experimentally in reference [15].

The horizontal cable shown in Figure 3.3 will now be
studied using the finite element analysis. Both the in-plane
and out-of-plane natural frequencies will be determined and
compared with theoretical results described above. Also,
the effect of the flexibility coefficient, A2, on the natu-
ral frequencies will be studied. Values of A? between 2 and
60 typically represent the range of situations for structur-

al guys. Such a variation can be obtained most conveniently
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by changing the cable length, Le, in expression (3.5). 1In
other words, the values of L. which were chosen in this ex-
ample are essentially dummy variables. Although they range
from 92 to 500 metres, they are not intended to represent

the typical length of a guy or conductor cable.

Tables I1I(a) and (b) present results for the in-plane
natural freguencies. It can be seen that an idealization of
eight elements produces reasonable accuracy for the first
four transverse natural frequencies (two symmetric and two
antisymmetric). The error increases from only 1.7% for the
first symmetric mode to 10.0% for the second antisymmetric
mode. Similarly, sixteen elements produce reasonable accura-
cy for the first eight transverse natural frequencies., Re-
sults for the out-of-plane natural freqguencies shown in Ta-
ble III{(c) give the same trends. In all cases, there is no
significant variation in error magnitude with the flexibili-
ty parameter, A2, at least in the range of interest for
guyed towers. Also, only the first few transverse modes are
required, so that the longitudinal motions can be considered
quasi-static. This last contention was verified by comparing
results obtained with and without 1longitudinal inertia.

There was no difference in results at all.

Condensation techniques can sometimes reduce computation-
al effort whilst maintaining accuracy. 1In the present exam-
ple, degrees of freedom were condensed by using a technique

known as Guyan's reduction [8] at alternate nodes. This pro-
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cedure halves the size of the eigenvalue problem for a given
number of elements. Results for in-plane symmétric vibra-
tions are shown in Table IV. They may be compared with the
results shown in Table III(a). It can be seen that Guyan's
reduction technique is significantly less accurate for a
given number of elements. Further; the use of 17 elements
with Guyan's reduction gives comparable accuracy to a
straightforward technigue with ohly 8 elements. This finding
supports the contention that Guyan's reduction technique is

not successful when a lumped mass matrix is used [8].




Number of Elements = 8

Table III(a)

In-Plane symmetric mode

CPU Time =

32

1.06 sec

Normalized natural freguencies rad/sec
Length
A2 (m) Mode FEM Analytical Error
results results
wi/m 2.32 2.29 1.3
60 |506.3
w3/ T 4,24 5.03 15.7
ws/m 4.99 7.01 28.8
wi/m 1.58 1.61 1.7
wa/m 2.86 3.04 6.0
20 {291.6
ws/m 4.24 5.01 15.5
ws/ T 5.00 7.00 28.6
wi/m 1.21 1.22 1.0
wa/m 2.83 3.01 5.9
6 |159.6
w3/ m 4,24 5.00 15.3
ws/m 5.00 7.00 28.6
wi/m 1.07 1.08 0.8
wa/m 2.83 3.01 5.9
2 92.1
ws/m 4,24 5.00 15.3
wa/m 5.00 7.00 28.6

(Contd.)




(Contd.)

Number of Elements = 16

CPU Time = 7.0 sec

33

Normalized natural frequencies rad/sec
Length
A2 (m) Mode FEM Analytical % Error
results results

wa/7 3.12 3.18 1.9

60 |506.3
w3/m 4.81 5.03 4,4
wi/m 1.60 1.61 0.5
wa/m 2.99 3.04 1.7

20 [291.6
wq/m 1.22 1.22 0.2
wa/m 2.97 3.01 1.5

6 [159.6
wa/m 6.46 7.00 7.7
: wa/m 2.96 3.01 1.7

2 92.1
w3/ 4,80 5.00 4.0
wa/m 6.46 7.00 7.7




Table I1I(b)

Number of Elements

In-Plane anti-symmetric mode

8

34

CPU Time = 1.06 sec

Normalized natural frequencies rad/sec
Length
A2 (m) Mode FEM Analytical Error
results results
wi/m 1.94 2.00 3.1
wy/m 3.59 4.00 10.3
60 |[506.3
wa/m 4.70 6.00 21.8
wa/m * % * % * %k
20 [291.6
w3/m 4,70 6.00 21.6
w4/1r % % * % * %
w1/ 1.95 2.00 2.6
VL 3.60 2,00 70.0
6 |[159.6
w3/ m 4.70 6.00 21.6
ws/m * % * % * %
wi/m 1.95 2.00 2.5
wa/m 3.60 4.00 10.0
2 92.1
ws/m 4,70 6.00 21.6
w4/ﬂ * % * % * %

(Contd.)



(Ccontd.)

Number of Elements

16

CPU Time =

7.0 sec

Normalized natural frequencies rad/sec
Length N
A2 (m) Mode FEM Analytical % Error
results results
wi/m 1.97 2.00 1.3
wa/m 3.88 4.00 3.0
60 |506.3
wa/m 5.64 6.00 6.0
wi/m 1.98 2.00 0.9
wa/m 3.89 4.00 2.7
20 |291.6
ws/m 7.20 8.00 10.0
wi/m 1.99 2.00 0.7
wa/ 3.90 4.00 2.6
6 [159.6
ws/m 5.66 6.00 5.7
ws/m 7.20 8.00 10.0
wa/m 3.90 4.00 2.6
2 92.1
w3/m 5.66 6.00 5.7
wa/m 7.20 8.00 10.0
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Table 111 (c) Out-of-Plane mode

Number of Elements = 8 CPU Time = 1.06 sec
Normalized natural frequencies rad/sec
Length
A2 (m) Mode FEM Analytical % Error
, results results
wi/7m 0.99 1.00 0.6
wa/7m 1.95 2.00 2.6
60 |506.3
w3/ m 2.83 3.00 5.7
wg/m 3.60 4.00 10.0
wi/m 0.99 1.00 0.6
wa/m 1.95 2.00 2.6
20 |291.6
ws/w 2.83 3.00 5.7
‘04/" 3-60 4.00 . 10.0
wi/m 0.99 1.00 0.6
‘wa/m 1.95 2.00 2.6
6 |159.6
wa/7 2.83 3.00 5.7
wi/m 0.99 1.00 0.6
wa/m 1.95 2.00 2.6
2 92.1
wa/n 2.83 3.00 5.7
wa/m 3.60 4.00 10.0

(Contd.




(Contd.)

Number of Elements = 16

CPU Time = 7.0 sec
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Normalized natural frequencies rad/sec
Length
A2 (m) Mode FEM Analytical % Error
results results
wi /7 1.00 1.00 0.2
60 [506.3
ws/® 3.90 4.00 2.5
wi/m 1.00 1.00 0.2
wa/m - 1.99 2.00 0.7
20 [291.6
wa/m 2.96 3.00 1.4
ws/m - 3.90 4.00 2.5
wi/m 1.00 1.00 0.2
wa/m 1.99 2.00 0.7
6 |159.6
w3/ 2.96 3.00 1.4
ws/m 3.90 4.00 2.5
wi /T 1.00 1.00 0.2
wa/m 1.99 2.00 0.7
2 92.1




Table IV

Number of Elements

Guyan's reduction technique

=9

38

Normalized natural frequencies rad/sec
Length -
1% (m) Mode FEM Analytical % Error
results results

wi/m 2.07 2.29 g.6
60 |506.3

wi/m 1.53 1.61 5.0
20 |291.6

wi/m 1.18 1.22 3.0
6 |158.6

wi /T 1.05 1.08 2.5
2 92.1

wa/m 2.48 3.01 17.3

‘(Contd.)
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(Contd.)
Number of Elements = 17
Normalized natural frequencies rad/sec
Length
A? (m) Mode FEM Analytical % Error
results results
wi/m 2.22 2.29 2.9
wa/m 3.01 3.18 5.5
60 |506.3
wa/m 5.21 7.01 25.7
wa/m 2.88 3.04 5.2
20 |291.6
wa/m 4,32 5.01 13.7
ws/m 5.21 7.00 25.6
wi /7 1.21 1.22 0.9
wy/m 2.86 3.01 5.1
6 |159.6
w3/ 4,32 5.00 13.6
wg/m 5.21 7.00 25.6
wi/m 1.07 1.08 0.8
wa/m 2.85 3.01 5.0
2 92.1
w3/ 4,32 5.00 13.6
wa/m 5.20 7.00 25.6




Chapter IV

DYNAMICS OF A GUYED TRANSMISSION TOWER SYSTEM.

The contents of this chapter are related to the free vi-
bration analysis of the tower system shown in Figure 4.1.
The analysis is based on the finite element models for tower
and cable developed in Chapters 1II and III, respectively.
For completeness certain sections from previous chapters re-

appear in this chapter.

4.1 Introduction

The guyed tower shown in Figure 4.2 has been designed by
Manitoba Hydro as the tangent suspension structure for their
138 kv Radisson-Churchill transmission line. The Y-shaped
frame is pinned at the base and consists of high-strength
steel sections which are bolted together. The concept should
allow a more rapid erection of the 1line as compafed to a
standard lattice design, and 1is especially cost-beneficial
in the remote northern terrain. The tower is also less ob-
trusive visually, especially since the structure will have

the dark rust finish of natural weathering steel.

A structural analysis has been based primarily on static
considerations as is usual in current practice. However, the

transmission line passes
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through a region close to Hudson's Bay where frequent icing
is possible. Therefore, large-amplitude conductor vibration
known as galloping may develop. Also, the design for a radi-
al ice load of 44 mm indicates that there may be large tran-
sient 1longitudinal loads due to sudden shedding of Iice.
There was concern that such dynamic loads might be critical
because the structure does not carry groundwires.' In a
standard design, these wires would normally provide a re-
straint, limiting the bending or torsional stress in the
tower caused by longitudinal loads [16,17]. Also, a key
structural feature is the welded box connection shown in de-
tail A of Figure 4.2. This box is designed to develop the
full static strength of the adjacent 200x200-mm members and
the 275-mm diameter stem. However, it is necessary to ensure
that there are not excessive flexural or torsional vibra-
tions at this location; otherwise fatigue of the welded

joints may develop.

This chapter outlines the results of an analysis of the
free-vibration characteristics of the transmission-line sys-
tem. Such a study gives the relative modal displacements for
each of the different components: tower, gquys, insulators
and conductors. It 1is then possible to assume a galloping
amplitude and, hence, compute the displacements and stresses
in the tower's structural components [18]. There is some

guestion as to the accuracy of a linear vibration analysis

1 Groundwires were not used because the structures were lo-
cated at a low isokeraunic level.
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because galloping amplitudes are large. However, even 6 me-
tres of galloping is small in comparison to a span of 400
metres. Further, it was argued in reference [18] that theo-
retical estimates of the lowest natural frequencies of a
conductor are close to those determined from experimental

records of large-amplitude galloping.
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4.2 Theoretical modelling

The dynamic analysis of a transmission tower structure is
complicated because there are a number of components which
may interact. These are (1) the structural steel frame, (2)
the inclined guy-wires, (3) the insulator strings, and (4)

the conductors.

Each component is distinctly different and, if interac-
tions are indeed important, a finite element approach is
also mandatory. Specialized types of elements are used to
model the dynamic bending of the tower's frame, elongation
and transverse displacement of conductors and guys (in the
plane of the sag) and the rigid-body rotations of insula-
tors. Details of the application and theory of the mod-
elling will be discussed only briefly here since appropriate

references are given.

4.2.1 Tower's Frame

The steel Y-frame was modelled using thirteen beam ele-
ments having stiffness in both bending and torsion. There
are twelve nodal points as shown Figure 4.1. A complication
arises from the fact that the tower carries significant com-
pressive load due to its self weight, the conductors' weight
and the prestress in the four guys. Such loads are likely to
réduce the bending stiffness of the structure and,” there-

fore, lower the natural frequencies. They were incorporated
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into the finite element model by means of a geometric stiff-

ness matrix [8].

4.,2,.2 Inclined quy wires

Previous dynamic analyses of guyed transmission towers
have been performed by Tsui [18] and by Kempner et al [19].
However, in reference [18] the guys were represented sim-
plistically by a single axial element. No attempt was made
to simulate transverse vibration in a guy. On the other
hand, transverse vibrations were considered in reference [8]
using 10 straight beam elements to approximate the cable's
profile. Arbitrary, but small, values of torsional and fle-
xural rigidity could be then specified to stabilize the
movement of interior nodes. Also, the cable's static preten-
sion, To, which is a crucial parameter, was accommodated by
employing a geometric stiffness matrix. However, although
this model appears reasonable, a beam element requires
twelve degrees of freedom and hence computational effort can

be onerous.

An alternative approach utilizing specialized parabolic
cable elements has been developed. Such elements can repre-
sent more accurately the cable profile and yet each has only
four degrees of freedom. The element's characteristics are
derived from the linearized theory of cable dynamics summa-
rized in references [13,14]. 1In particular, the caﬁie mod-

elling is intended to approximate reasonably the accurate
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theoretical work of Veletsos and Darbre [4]. They studied
the situation of an inclined vibrating guy intefacting with
the tower illustrated in Figure 3.2a. The ensuing finite el-
ement shown in Figure 3.2b has an axial degree of freedom,
u, parallel to the x or chord axis, and a transverse degree
of freedom, v, perpendicular to the chord. The four-by-four
symmetric stiffness matrix for an element is derived 1in
terms of the 1local coordinates x; and x; and is listed in
Chapter III. Corresponding inertias are lumped at each end
of the element but the inertia forces are assumed to act
only in the transverse direction. 1In other words, the tran-
sverse dynamic displacement v is combined with a quasi-stat-
ic axial stretching of the entire cable. This assumption
[4,14] is reasonable for the lower-frequency modes because
the wavelength of axial vibrations is then very much greater

than the length of cable.

The stiffness and mass matrices may easily be extended to
six by six to include out-of-plane motions of the guys.
Stiffnesses for motion in the local z-direction, where x, ¥y
and z is a right-handed coordinate system, are also given in
Chapter I1I. The importance of out-of-plane guy motions will

be studied.
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4.2.3 Insulator strings

The insulator shown in Figure 4.3 is subjected to a hori-
zontal force F,at the crossarm level. Therefore, it under-
goes a rigid body displacement. The translation, Ug , is re-
sisted by the conductors which are represented, for
convenience, by a linear spring with stiffness Ke. On the
other hand, the rotation A6, 1is resisted by the restorative
action of the vertical weight, Wg. The force-displacement

.relations are given in Appendix D where it is demonstrated
that the conductor and insulator may be represented by two
horizontal springs acting in series as shown in Figure 4.4.
Assuming small displacements, the magnitude of the insula-

tor's equivalent lateral stiffness, K;is given by [16,20,21]

K'I. = W} / L 1 ’ (4 .1 )
initial
position
: L e/
t t [}
l—-—-—..UB—___.l i I/
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caple

Figure 4.3: Illustrating the Derivation of the Insulator's
Stiffness.
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insutator : conductors

Figure 4.4: Model of the Restraint Provided by the
Insulator-Conductor System.

where Ly is the length of the insulator. The representation
of the stiffness Ky in the finite element model and the se-
ries connection to the conductors will be described in the

next sections.

4.2.4 Conductors

Typical span and sag-tension conditions for the line are
shown in Figure 4.1. A finite element modelling of the con-
ductors was accomplished by employing the same type of ele-
ments as were used for the guys. However, only vertical gal-
loping excitation was considered and therefore four-by-four
in-plane element matrices were wused to reduce computational
effort. On the other hand, the conductors are very much

longer than the guys. Therefore, it was suspected that long-
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jtudinal resonances of the conductor might occur close to
the lowest natural freguencies predominantly affecting the
tower. Thus, lonéitudinal inertia was included in the con-
ductor elements. The insulator string was modelled by a
very short beam element which cangilevers vertically from
the tower. The deflections of the tip of this beam in the
along-line direction represent the swing of an insulator be-
cause the cantilever stiffness (3EI/L®) is made egqgual to Ki.
In other directions the beam is essentially rigid. Also, the
mass of the short beam is made identical to that of the ins-
ulator so that the modelling then conforms with the schematic

representation shown in Figure 4.4.

The conductors are shown in Figure 4.1 connected at each
end of their far ends to a linear spring of stiffness Ke.
The purpose of these springs is to represent static coupling
with remote spans. The magnitude of K, varies with the num-
ber of spans considered [18]. Here, it has been assumed that
there is one additional span at each remote end. The hori-
zontal stiffness of one span is added, therefore, to the
stiffness of the remote insulator to produce a value for K.

of 17000 N/m.



50

4.3 Results and Discussion

4.3.1 Trial solutions

Several finite element models were constructed to inves-
tigate the interactions amongst structural components. Fur-
thermore, the importance of the axial loads on the tower and
-conductor end conditions were evaluated. Specifically, the
models studied were:

a) An isolated tower and guys - no axial loads;

b) An isolated tower and guys - bending stiffness
modified to account for axial loads;

c) As (b) but with conductors included - direct
connection to the tower, remote ends fixed.

d) As (c) but including insulators.

e) As (d) with the far ends of the conductor coupled

to remote spans through the spring stifiness K..

The lowest bending and torsional natural frequencies of
the isolated tower were found from models (a) and (b) to oc-
cur in the range of 1.5 to 1.8 Hz. However, the lowest natu-
ral frequencies started at about 0.2 Hz in models (c), (&)
and (e) and the corresponding mode shapes predominantly in-
volve transverse vibration of the conductors in the plane of
sag. Significant differences in the natural frequencies giv-

en by models (c), (d) and (e) will be discussed later.

During icy conditions the conductors can be excited to

large amplitudes of vibration in the lowest frequency modes;
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the phenomenon is known as galloping. 1In this situation the
resulting tower férces may be significant. Such interac-
tions can be calculated directly from the mode shapes by as-
suming a galloping amplitude from experience. Here, it is
assumed that the maximum galloping amplitude is 6 metres in
the fundamental or one loop (conductor) mode. This magnitude
is approximately that chosen in éeference [18] for a similar
span length. Also, in compliance with that reference, the
amplitude of the nth harmonic is assumed to be 6/n? metres,
according to the principal of eqguipartition of energy. Con-
sequently, the maximum amplitudes for double and triple loop
galloping are 1.5 and 0.67 metres, respectively. Galloping
with more than 3 1loops per span is a rare event and, from

the above formula, amplitudes should not be significant.

4.3.2 Behaviour of the tower without conductors

4.3.2(a) Excluding out-of-plane inertia of the guys

In order to illustrate the interaction between the guy wires
and the tower without confusion, the solution obtained by
neglecting out-of-plane guy inertia will be considered
first. Then, the six lowest natural freguencies and corre-
sponding modes for the isolated tower are as shown in Figure
4.5. The results are from model (b) which includes axial
loads. In each mode it can be seen that the guy-wires are
vibrating essentially in their fundamental.or one-loop mode.
Indeed, all of the frequencies shown in Figure 4.5 a}e with-
in 15% of the fundamental natural freqguency for in-plane vi-

bration of a guy with both ends fixed (1.72 Hz). Neverthe-
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less, the tower motions are strongly dependent upon the rel-
ative phases of the four vibrating guys and the degree of
interaction between the tower and the guys is significant.
Depending on the direction of the four interaction forces
there may be a bending, torsional or axial response of the
tower's frame. It may seem unusual that there is a pair of
rather similar in-plane bending modes at 1.52 Hz and 1.61 Hz
and, again, a pair of out-of-plane bending modes at 1.55 Hz
and 1.72 Hz. However, a close study of each modal pair
showed that either the directions or the magnitude of the

cable interaction forces varied significantly.

The axial loads incorporated in model (b) cause only a
slight reduction in the natural frequencies of the bending
modes. The maximum lowering is about 8%, as can be seen from
the Table V. However, the mode shapes given in Figure 4.5
have significantly greater curvatures than those obtained
from an analysis without axial 1loads (model (a)). This ob-
servation justifies the inclusion of the geometric stiffness

matrix.
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Notes

1 . .
X relative displacements

-=+ directions of the cable

forces (acting on the tower)

«8& ¢ solution includes
out-of-piane guy inertia

« out-of-plane guy displac-
ement - 0% at midspan

«« revised tower displacemen

Lowest-Freguency Tower Modes from Model b.

Figure 4.5:
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TABLE V

Effect of Axial Loads on the Lowest Natural Freguencies
Predominantly Affecting the Tower.

Lowest Natural Frequencies Hz
Mode
Shape Without Axial Load With Axial Load
In-Plane 1.54,1.68 1.52,1.61
Bending
Out-of~Plane 1.55, 1.85 1.55, 1.72
Bending
Torsion 1.55 1.55
Axial 1.70 1.70

4.3.2(b) 1Including out-of-plane guy inertia:

The incorporation of the out-of-plane inertias in tﬁe guy
elements produces four additional natural frequencies, as
will be discussed later. However, the modes identified in
Figure 4.5 are not significantly changed except that there
is a coupled one-loop vibration of the guys in the out-of-
plane éirection. This coupling is conveniently expressed as
an amplitude ratio at midspan which may be as high as 54 %.
Nevertheless, the natural freguencies are unchanged. Also,
the relative tower displacements are increased only slightly

or not at all.

In Figure 4.6, the four additional modes are illustrated
with plan diagrams because the dominant component of guy mo-
tion is out-of-plane. indeed, all four natural freguencies

occur at 1.59 Hz, which is theout-plane natural freduency of
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a guy with both ends fixed. The modes are probably of 1less
importance than those shown in Figure 4.5 because the rela-
tive magnitudes of the tower displacements are significantly
smaller. Nevertheless, the diagrams in Figure 4.6 serve to
illustrate the phasing of the out-of-plane guy motions asso-
ciated with each type of tower displacement. Not surprising-
ly, it was found that the patterns shown 1in Figure
4.6(a),(b) and (c) also indicate the phases of the out-of-

plane guy components associated with Figure 4.5(a),(b) and

(a) Bending In-Plane 1.59Hz (b) Bending Out-of-Plane 1.59 Hz

[o%]

(c) Torsion 1.59Hz (d) Axial 1.59Hz

» Indicates in-plane guy motion (percentage at midspan)

Figure 4.6: Tower Modes Coupled Predominantly with Out-of-
Plane Guy Vibration.
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(c), respectively.

4.3.3 Tower with conductors

The modal density for modes primarily involving tran-
sverse vibrations of the conductors is very high. There are
eighteen natural frequencies shown in Table VI for the range
0.19 to 0.54 Hz. However, these frequencies can be grouped
into three sets of six values depending upon whether the
conductors are exhibiting one, two or three loops of vibra-
tion per span. Differences within each set depend upon the
phases of the six conductor spans. This phenomenon is illus-
trated in Figure 4.7(a) to (f) in which the set of six sin-
gle-loop modes is shown. Such modes are labelled according
to the type of displacement pattern introduced by ﬁhe con-
ductors to the tower. There are three bending modes, B1, B2
and B3, a torsional mode T1, and two axial modes, A1 and A2.
These types of tower response are repeated for double-and
triple-loop modes as can be seen from the examples of Fig-
ures 4.7(f) and (g). Each response to conductor vibration is
essentially a static deflection because the fundamental mode
of the 1isolated tower occurs at a much higher frequency.
(See Table V). This means that, in this case, the modes
shown in Figure 4.7 would have been generated by represent-
ing the tower by a six-by-six array of flexibilities at the
conductor attachment points. Thus, the forces and:bending

moments in the tower can be defined by an array of horizon-
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tal translations A, through Az, and vertical translations, A,
through Ag, at the conductor attachment points. These de-
flections can be converted, in turn, to a set of equivalent
static forces, P, through Pg in Table VI, according to the
flexibility of the structure. The forces were obtained by
assuming appropriate galloping amplitudes as discussed pre-

viously.

A general scan of the results in Table VI shows that con-
ditions at the conductor's end points do not significantly
affect the two-loop galloping modes. This result is consis-
tent with the theory [13,19] which shows that antisymmetric
modes (2, 4 loops, etc.) occur without stretching of the ca-
ble and are not affected by conductor's longitudinal flexi-
bility: In stark contrast, the symmetric modes (1, 3 loops,
etc.) are altered significantly by the end conditions. It
can be seen from Table VI(a) that if the conductors are con-
nected directly to the tower, then the horizontal forces P,
to P; for single-loop galloping are a large 10 to 15 kN.
However, the inclusion of insulators in the modelling causes
a reduction of these forces by a factor of about ten as
shown in Tables VI(b) and (c). The corresponding natural
frequencies are also reduced from 0.22 Hz to 0.19 Hz. The
reduction in the vertical forces P, to Py is somewhat dif-
ferent. The results from Tables VI(a) and VI(b) are identi-
cal because these forces are generated without iﬁsulator

swing at the central tower. However, the inclusion of static
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coupling from remote spans alleviates axial stretching of
the vibrating conductors as shown in Figures 4.7(d-e). Con-
sequently, the frequencies of the one-loop modes A1, A2 and
B2 are reduced from 0.30 Hz to 0.23 Hz and the forces P, to
Pg are attenuated by about 40%; There is a similar reduction
in vertical forces resulting from the three-loop gallop, al-

though in this case the frequencies remain unchanged at 0.54

Hz.




Table VI. Summary of Tower Loads Induced by Conductor Galloping

(a) Model (c)

‘ ONE LOOP MODES - GALLOPING AMPLITUDE = 6 m
INatural [ Horizontal Loads (N) Insu. | Tower
Freq. Pl P2 P3 Swing.| Mode
Hz Deg. | (Fig.4.7)

.22 10,083 0 -10,083 - Tl
.22 12,740 10,090 12,713 - Bl
.29 16,748 -38,109 16,758 - B2
Vertical Loads (N)
P4 P.5 P6
.30 4,954 0 4,954 - B3
.30 4,750 -1,448 4,7501 -~ Al
.30 668 4,782 667 - A2

TWO LOOP MODES - GALLOPING AMPLITUDE -~ 1.5 m

P, P, Py
.37 <0 0 g0 - T1
.37 %0 ) ) - Bl
.37 20 ) 20 - B2

P, P P,

.37 941 0 -940 - B3
.37 938 -256 938 - Al
.37 130 933 130 - A2

THREE LOOPS MODES

- GALLOPING AMPLITUDE = 0.67 m

P, P, P,
.53 47 0 47 Z T1
.53 44 39 44 - Bl
.54 5 -12 5 - B2

P, P Pg

.54 816 0 816 - B3
.54 761 -197 761 - Al
.54 104 738 104 - A2

(Contd.)
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(b)

Model (d)

ONE LOOP MODES - GALLOPING AMPyITUDE = 6 m
Natural Horizontal Loads (N) |Insul.|Tower
Freq. Hz P1 P2 P3 Swing.| Mode

Deg. |(Fig.4.7)
.19 1,532 0 -1,532 26 Tl
.19 1,546 1,400 1,546 25 Bl
.19 777 -1,751 777 26 B2
Vertical Loads (N)
P4 PS P6
.30 4,962 0 -4,962 0 B3
.30 4,857 -1,370 4,857 0 Al
.30 670 4,731 670 0 A2
TWO LOOP MODES - GALLOPING AMPLITUDE - 1.5 m
.37 & =0 20 0 *
.37 = s =0 0 *
.37 =0 =0 =0 0 *
P4 P5 P6
.37 939 0 -939 0 B3
.37 951 -260 951 0 Al
.37 132 ' 935 132 0 A2

THREE LOOPS MODES - GALLOPING AMPLITUDE = 0.67 m

P, P, P

3
.53 49 0 -49 1 T1
.53 54 46 49 1 Bl
X 26 =57 26 1 B2
P, P5 Pe
.54 830 - -830 0 B3
.54 750 ~208 570 0 Al
.54 104 738 104 0 A2

(Contd.)
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(c) Model (e)

ONE LOOP MODES -~ GALLOPING AMPLITUDE = 6 m
Natural Horizontal Loads (N) j{Insul.|Tower
Freq. Hz Pl P2 P3 Swing |Mode

Deg. | (Fig.4.7)

.19 1,477 0 =1,477 25 Tl
.19 1,516 1,368 1,516 25 Bl
.19 738 -1,635 738 24 B2

Vertical Loads (N)

P4 PS P6
.23 3,017 0 -3,017 0 B3
.23 3,077 =712 3,077 0 Al
.23 417 2,928 416 0 A2

TWO LOOP MODES - GALLOPING AMPLITUDE - 1.5 m

P1 P2 Q3
.37 =0 =0 =0 =0 *
.37 20 =0 =0 =0 *
.37 =0 =0 =0 =0 *
P4 PS P6
.37 971 0 -971 0 B3
.37 919 -266 919 0 Al
.37 128 900 128 0 A2

iTHREE LOOPS MODES - GALLOPING AMPLITUDE = 0.67 m}

.53 54 0 -54 1 Tl

.53 54 49 54 1 Bl

.33 28 =61 28 1 B2
P4 P5 P6

.54 672 0 -672 0 B3

.54 606 -158 606 0 Al

.54 84 602 84 0 A2
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The above trends are consistent with theoretical expecta-
tions. However, an assessment of the importance of the loads
is obtained most appropriately from Table VI(c) because
these results were generated by using the most realistic end
conditions. The galloping loads may be compared with other
conductor loads such as the total weight of one span with 44
mm of radial ice (6,700 N) or a horizontal load due to a
45—m/s wind (6,200 N). In terms of these values, the gallop-
ing forces are not catastrophic by themselves. However, it
should be noted that the present analysis considers the
bare-wire condition, which is consistent with very light ic-
ing. A more significant comparison is the ratio of the gal-
loping loads to the conductor's weight (3830 N per span) .
The fact that this ratio is significant for single-loop gal-
loping points to the need to undertake further parametric
studies. In particular, galloping may well occur under the
condition of heavy icing assumed by Tsui [18]. 1It might be
expected, then, that the galloping loads will grow approxi-
mately in proportion to the increased weight of the conduc-
tors. However, there are several additional factors. For in-
stance, the resistance against insulator swing, represented
by the spring constant Kg, will also rise with a greater
weight. Furthermore, a galloping excitation may occur in
one, rather than two or three, adjacent conductors. This oc-
currence would not necessarily be beneficial because the re-
sulting loads would introduce coupled bending and torsion

into the tower's frame.
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Finally, the effect that the conductors and insulators
have on those. frequencies in Table V which primérily affect
the tower should be elucidated. It can be seen from Table
VII that the out-of-plane bending and torsional frequencies
are increased slightly by the 1longitudinal stiffness of the
conductors. However, the inclusion of the insulator swing
decreases the longitudinal motion of the conductors, as
shown in Figure 4.8. The frequencies corresponding to out-
of-plane bending and torsion of the tower then return to the
values for an isolated tower. On the other hand, the in-
plane bending freguencies appear to be lowered very slightly
by the inclusion of insulators and conductors. This effect
was found to be due to an increase in the in-plane rotation-
al inertia caused by (a) the mass of the insulators and (b)
the lumped mass of the conductor elements which are adjacent
to the cross arm. Therefore, it appears that the conductors'
motions have a negligible effect on this tower's lowest mod-
es. Nonetheless, the first resonance involving mainly long-
itudinal motion of the conductor was detected at 1.02 Hz and
this mode is illustrated in Figure 4.9. Such modes may be
important in the study of phenomena such as ice-shedding or
broken-wire conditions which result in sudden changes in the
conductor's tension. The appearance of this mode at a fre-
quency lower than that of the isolated tower's fundamental
‘mode justifies the inclusion of the longitudinal inertia in

the conductor's modelling.




TABLE VII

65

The Effect of Insulators and Conductors on the Lowest
Natural Frequencies Predominantly Affecting the Tower.

With Conductors Insulator
Mode Isolated ) &
Tower No Insulator Insulator End Spring
In
Plane |1.52, 1.61 1.51, 1.59 1.48, 1.56] 1.48, 1.56
Bend.
Qut-of
-Plane|1.55, 1.73 1.56, 1.94 1.55, 1.71 [1.55, 1.72
Bend.
ion
Axial 1.70 1.70 1.70 1.70

Figure 4.8:

Vibration of the Transmission Line System at a

Natural Frequency of 1.55 Hz.
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Figure 4.9: Lowest-Freguency Mode Involving a Significant
Longitudinal Motion of the Conductors.

4.4 Conclusion

The free-vibration characteristics have been determined
for a two-span transmission line with guyed supporting tow-
ers. Low-frequency modes essentially involve conductor mo-
tions which may be categorized, initially, according to the
number of vibration 1loops per span. However, within each
category, whether one, two, or three loops per span, S§ix
closely spaced natural frequencies were always found. This
proliferation of modes happens because there are different
types of coupling with the guyed towers. The coupled mo-
tions in the towers were seen to involve three types of

bending, two types of axial and a torsional deformation.

Load transferred to the tower by galloping were estimated
directly from the coupled mode shapes. Very high loads occur
when the conductors are connected directly to the ‘tower.

However, the inclusion of insulator swing significantly de-
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creases the horizontal (along-line) loads due to galloping.
In contrast, vertical loads are reduced by the inclusion of
coupling with remote conductor spans. The inclusion of both
these ameliorating factors suggests that the loads trans-
ferred to the tower should not be catastrophic, at least for

the case of light icing.

Those mode shapes primarily affecting the towers show
significant dynamic interactions between the guys and the
Y-shaped steel frame. However, the corresponding natural
frequencies occur in the range of 1.5 to 1.8 Hz which is
much higher than that possible for one- to three-loop gal-
loping of the conductors (0.19 to 0.54 Hz). On the other
hand, a longitudinal conductor resonance was identified at
H.O Hz which is fairly close to this range. Such conductor
modes may be importantrin the study of the dynamic response

due to ice-shedding-or a broken-wire condition.




Chapter V

SUMMARY AND CONCLUSIONS.

An algorithm to perform the free-vibration analysis of a
tower has been developed. The basic element of the tower
system can be either a lattice or a non-lattice structure.
This supporting structure can be either free-standing or
guy-supported. The algorithm is suitable for use on a micro-

computer.

The approach is based on the assumption that the lattice
segment can be represented approximately by an eguivalent
beam element. Corresponding stiffness and mass matrices for
a straight lattice beam have been developed based on an as-
sumed cubic polynomial. The exact displacement function was
derived for a tapered beam element loaded only at its ends.
This is a logarithmic function which gives much better re-
sults than the assumed cubic polynomial. Also, a finite el-
ement model has been developed for an inclined cable element
assuming that the cable follows a parabolic profile when it
hangs under its own weight. Furthermore, an estimation of
the load transferred to a typical tower can be made if the
amplitude of the vibratiﬁg conductor can be reasonably as-

sumed.

- 68 -
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The main conclusions obtained from the computations are

summarized below:

1.

The natural freguencies of a free-standing lattice
tower obtained by the present finite element method
are greater than those obtained by using SAPIV. Some
of the difference between the present model and SAPIV
is due to the stiffness modelling which 1is approxi-
mate as compared to the very detailed representation
used with SAPIV. Also, part of the difference prob-
ably arises because a consistent mass matrix has been
used here whereas SAPIV employs a lumped mass matrix.
An axial compressive load was incorporated by use of
a geometric stiffness matrix. For the tower system
shown in Figure 4.1, the wuse of geometric stiffness
was justified because the natural frequencies of the
tower were lowered by 8%.

Generally, the mode shapes of interest lie in the
lower freguency range. In this range the cable in-
teracts with the tower in one, two or perhaps three
vibration loops. Thus, the finite element idealiza-
tion which can determine accurately the first four
natural freguencies of a cable should be sufficient.
At least eight cable elements are necessary for this
purpose.

Since only the first few transverse modes of a vi-

brating cable need to be considered in a tower inter-
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action problem, the longitudinal motion can be con-
sidered quasi-static. Therefore, longitudinal inertia

can be conveniently ignored.

Suggestions for Further Research - The present algorithm can

further be used to perform parametric studies of tower sys-
tems. Factors such as cable mass, pre-tension in cable, ca-
ble area of cross-section can be varied and tower system re-

sponse can be studied.



[1]

[2]

[3]

[4]

[5]

le]

[7]

(8]

71

REFERENCES

D. B. Campbell, "Unbalanced Tensions in Transmission
Line." ASCE Journal of Structural Divison, Vol. 96,

No. ST10, Oct. 1970.

A. G. Davenport, "The Static and dynamic Behaviour of
Guy Cable Under the Loading of Ice and Wind." Proceed-
ing of the Tenth Canadian Congress of Applied mechan-

ics, June 1985,

R. W. Clough and J. Penzien, "Dynamics of Structures.”

McGraw-Hill Inc. 1975.

A.S. Veletsos and G.R. Darbre, "Dynamic Stiffness of
Parabolic Cables." Earthquake Engineering and Struct-

ural Dynamics, Vol. 11, pp. 367-401, 1983.

T.Hayashikawa and N.Watanbe, "Free Vibration Analysis
of Continuous Beam." ASCE Journal of Engineering Mecha-

nics, Vol. 111, No. 5, May 139865.

J. Singer, "Elements of Numerical Analysis." Academic

Press Inc. 1964.

P. G. S. Trainor, N. Popplewell, A. H. Shah and C. K.
Wong, "A Simple Procedure for Preliminary Dynamic Anal-
&sis of Transmission Tower." Report No. G-8401 E4.19,

1984, HVDC Research Centre, University of Manitoba."

R.R. Craig, Structural Dynamics. New York: John




72

Wiley and Sons, 1981.

[9] J. S. Przemieniecki, "Theory of Matrix Structural Ana-

lysis." McGraw-Hill Book Company, 1968.

[10] Y. F. Chin, "Static and Dynamic Behaviour of An Exist-
ing 450-kV Type E-400 Transmission Tower. " Undergraduate

Thesis, University of Manitoba, 1983.

[11] A. K. Gupta, "Vibration of Tapered Beams." ASCE Journal

of Structural Engineering, Vol. 111 No. 1, January 1985.

[12] s. Timoshenko, "Theory of Elastic Stability." New York:

McGraw-Hill Book Co., 2nd Edition, 1960.

[13] H.M. Irvine, "Cable Structures". Cambridge Massachu-

setts: MIT Press 1981,

[14] M.S. Triantafyllou, "Linear Dynamics of Cables and
Chains." Shock and Vibration Digest, Vol. 16, pp. 9-17

March 1984.

[15] S. E. Ramberg and O. M. Griffin, "Free Vibration of
Taut and Slack Marine Cables." ASCE Journal of Struct-

ural Divison, 103(sT11), November 1977.

[16] J.D. Mozer, J.C. Pohlman and J.F. Fleming, "Longi-
tudinal Load Analysis of Transmission Line Systems."
IEEE Transactions on Power Apparatus and Systems,

Vol. PAS 96, pp. 1657-65, Sept/Oct. 1977.

[17] J.D. Mozer, W.A. Wood and J.A. Hribar. "Broken Wire




[18]

[19]

[20]

[21]

73
Tests on a Model Transmission Line System."
IEEE Transactions on Power Apparatus and Systems,

Vol. PAS 100 pp. 938-947, March 1981.

Y.T. Tsui, "Dynamic Behaviour of a Pylon at Chainette
Line - Part I Theoretical Studies - Part II Experimen-
tal Studies." Electric Power Systems Research, Vol. 1,

pp. 305-332, 1977/78.

L. Kempner and S. Smith, "Cross-Rope Transmission Tower-
Line Dynamic Analysis." ASCE Journal of Structural

Engineering, Vol 110, pp. 1321-1335, June 1984.

A.H. Peyrot, J.W. Lee, H.G. Jensen and J.D. Osteraas,
"Application of Cable Elements Concept to a Transmiss-
ion Line with Cross-Rope Suspension'Structures,".IEEE
Transactions on Power Apparatus and Systems, Vol. PAS

100 pp. 3254-3262, July 1981.

A. Simpson, "Determination of the Inplane Natural
Frequencies of Multispan Transmission Lines by a Trans-
fer Matrix Method," IEEE Proceedings, Vol. 113, pp. 870

-878, May 1966.




Appendix A

STIFFNESS AND MASS MATRICES FOR A UNIFORM BEAM
ELEMENT.

Consider a beam element with six degrees of freedom at
each of its nodes. These degrees of freedom are u; through
u;2 as shown in Figure A1l. The x-axis is in the axial di-
rection and the y-and- z-axes are principal axes in the
cross-section. I, and I, are moments of inertia of the
cross-section and I, is the polar moment of inertia about
the x-axis. The stiffness and mass coefficients associated
with u; and u; are for axial deformation; those associated
with uz, us, us, and uy, are based on bending in the xy-
plane; us, us, ug and u,y are associated with bending in the

xz-plane; and u, and u;o are associated with torsion.

Centroidal axis

Figure A1l: Notation for a beam element with 12 D.O.F.
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For the beam element, shown in Figure A1, a twelve-by-
twelve symmetric matrix is given in reference [8] and is as

shown below.

Bz —EA BE
L L
12E1, 6El, —12E1, 6El, |:
T = U L
12E1 —6EI ~12El ~6EI 3
U L U r
6J _GJ ‘
L L
~6E], 4EI, 6El, 2E, s
I L & L
6EI, 4El, —6El, 261, |6
L L L L
_E4 £4 K
L L
—12E1, ~6El, 12E1, —6EL | s
U L R r
~ 12l 6El 12E1, 6EI 5
3 r T r
G GJ 10
L L
—6El 2E], 6El, 4El, "
r L r L
6El, 2E, —6El, 4El, | n
L L L L

where E is the Young's modulus of elasticity; GJ is the tor-
sional rigidity; L is the length of the element and A is the

cross—-sectional area of the element.




Similarly the

symmetric mass matrix is as shown below:

76

140 70 =1
156 22L 54 —-13L}?
156 —22L 54 13L 3
1401, 701, 4
A A
—-22L 412 —13L —31? s
22L 41 13L =317
10 140 !
mL 54 13L 156 —20L |
420
54 —13L 156 2L 9
1(_)_]2 1401E 10
A A
13L -3 22L aL !
—13L -3 —-22L 412 | n
— 1 2 3 4 s 6 7 % 9 10 n 2

A four-by-four geometric stiffness matrix for the axial

load and corresponding to bending stiffness is as shown be-

low

6 P P -6P P
5L 10 5L 10
2 PL -p -P L
15 10 30
Symmetric 6 P -p
5L 10
2 PL
15

in which P is the compressive axial force on the member.



Similarly a

the self weight of the

four-by-four symmetric geometric

stiffness is as shown below

—

3 Qo oL
5
qoL?
30
Symmetric

in which go is the

ber.

-3 do 0
5
-goL —qoL?
10 30
3_go 0
5L
qolL?
10

self weight per unit length

77

stiffness for

element and corresponding-to bending

of the mem-



Appendix B

TORSIONAL AND AXIAL STIFFNESS AND MASS MATRICES

A two-by-two stiffness matrix for an element subjected to
twisting is given as
1 -1
[K~] = GJ (B1)
L | -1 1
where GJ is the torsional rigidity of the element. For a
typical element, shown in Figure 2.4, GJ is as given by
Equation (2.22). Also, a two-by-two mass matrix for the ele-

ment is given as

L - AL? + P2 L - pL? + 23
3 6 30 6 6 20
[M<] = m, , (B2)
Symmetric L - BL? + B2L3
6 6 5
L. o

where BL and mo are as given by Equation (2.1¢c) and (2.23b)
respectively. Similarly, a two-by-two stiffness and mass
matrices for an element subjected to axial deformation is
given as

1 -1

[Ka]l = EA (B3)
L] -1 1

in which EA is the axial rigidity of the element.
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A two-by-two mass matrix is given as
[Ma] = mL
6

in which m is the mass per unit length of the element.
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(B4)



Appendix C

CABLE ELEMENT STIFFNESS

The parabolic deflection of the cable shown in Figure
3.2b, at its position of static equilibrium, is given by

equation [4]

L 2
2 To Lo L
qL_ 2
yc
’ = 1 1 -2( x)
(x) = — = (C2)
y 2 TO [LC LC2 ]
where y(x) is the deflection of the cable at any point x

along the chord, gquis the intensity of the normal load per
unit of chord length, Lcis the length of the chord and Ty is
the component of the cable tension along the chord. The

length ds of the cable element can be expressed in terms of

dx and dy as

ds

(dx? + dy?)l/2 (C3)

or ds = (1 + -%-y'z)l/2 %“% (c4)

The effective cable length Le¢is defined by

- fLe,ds\ 3 ~
Le = [ 4@ dx (C5)
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The static configuration of the cable is given by the dif-

ferential equation [4]

g9y AT
= = = (Cé)
o To *
Therefore, integrating Equation (C6) with respect to x
vi(x) = C'x + Cy (c7)
and, v(x) = sz + Cix + Cy (C8)
q_ AT
° (€9)

where C = A
T
[o]

C, and C, are constants of integration and can be evaluated
using boundary conditions; v is the normal displacement com-
ponent (in y-direction) and ATo is the increment in To.

The equation relating the displacements and the incre-

ment in tension ATo, is given by [4]

(C10)

du + 9y av
CC( )'

AT (-a-—) = 'bx

Combining Equations (C5) and (C10) and integrating with re-
spect to x between the limits x; and x, for the cable ele-

ment shown in Figure 3.2b yields

AT

2 2 (@8 ax - [ au + [2 @D D o (c1n)

cte 1 X1
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Substituting for dy/dx and av/ex from Equations (C2) and

(C7) into Equation (C11)

o ) ; C12)
y | _ .
¢ = (U2 - ul) - {(sz - L) vy t (L. 2x1) vl} (
AcEc 7T6 ,
i
S GLCNE COR SRR SN E ! s 2 7 %)
T 2 -
o

where u;,,u;,vy and v, are displacement coordinates as shown

in Figure 3.2b and L; is the effective length of the element,

given by,
X 3 (€13)
[ . 2dS dx
L' = fxl (&%)
2 .2
. (w) = w,) = Clxy" = %xp7) (C14)
1—_-
(x1 - X%,
c (w)xy = wyx ) = Cxyxy O = X . (C15)
2" (x, - x)
2 1

Let T be the tension in the cable element and H and V be the
axial and transverse components of this force along x-and
y-directions, respectively. Denoting increments in the

forces by prefix A, it can be seen that

H=T cos y' (Cl6)
H+ AH = (T + AT) cos(y' + v') © o (C17)
V=7Tsiny' : (C18)
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V+ AV = (T + AT) sia(y' + v'), (€19)

Considering small sags and low-amplitude motions, the cosine
terms can be approximated by unity and the sine terms are
equal to the guantities themselves. Neglecting higher-order

non-linear terms as AT v', Equations (C16) to (C19) yield

AH = AT
(C20)

AV = (AT . y' + T V') . (CZI)

Considering now the case when the lower end of the cable el-

ement is restricted, ie., u;=v;=0 while the upper end moves

e
a distance X along the x-direction ie. v2=0 and u:=X, (Jqua—ﬁ\-E

4
AT L q.C
S (C22)
AE T .
c C (o]
Combining Equations (C20) and (C22),
AE
cc
Kex = 8H _ _— ~ (1 ) (C23)
X L' l+p/
and Pp = ¢ ° ) (C24)

To = L, T L
where K, is the étiffness of the cable element in the x-di-
rection. In the second case, the bottom end of the element
is fixed as before while the top end is given a prescribed
displacement, Y, along the y-direction, ie. ujs=vy=ur=0 and

V2=Yo
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Substituting these boundary conditions in Equation (C13),

AT L q

y
—Y[ 1 {1 L, -x, - x c
=— ("c 2 nij. (C25)
AE, I4p, 2 T,

From Equations (C20) and (C25)

= 1 c ¢

AE [ 1 q
I+p L' 2

Koy = A_g (L, =%, = x)) } (C26)

y
T
o

where Kyy is the stiffness coefficient relating the force in
the x-direction to the displacement in the y-direction. The
expression for Ky, ie., the force in the y-direction corre-
sponding to unit displacement in the x-direction, can be ob-
tained by relating AV and X. The boundary conditions in this
case will be u;= v;=u3=0 and u:=X. Applying these boundary

conditions to Equation (C12) and (c21),

q
av=x[ 1 A {1 l(Lc—xz—xl}] (c27)
4o L' 2 T, .
AE dy
K o=av = _1 .7cec {1 T -x-x)} . (c28)
Y x T Lt 2 T,

From Equations (C26) and (C28) it can be observed that
ky=ky., which can also be justified from Maxwell's reciprocal

theorem.

Finally, consider again the case when the top end is al-
lowed to move only in the transverse y-direction, while the
bottom end is fixed. . The boundary conditions will be u;=v;,
uy;=0 and v;=Y. Applying these boundary conditions to Equa-

tions (C12) and (C21),




K‘I‘!: é-Y-
Y
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q To
v Afe {1 Y@ -x,-xp e ] (€29)
1+pm Le' 2 TO x?.—xl
q 2 T
1 Afe {1 Y -x,-xp ) e 20 (C30)
o, L 2 T, —

where ky, is the cable force in the y-direction corresponding

to a unit displacement in y-direction.

The out-of-plane stiffness, kza,of the cable element will

be the same as kyy Since there is no sag in the xz-plane

because

taining

of absence of any load in this plane, the term con-

g, in the expression for kg, (C29) will vanish, and

for the same reason Ku»x=kay=0. Thus
TO
Kzz =
xz—xl . (C31)
Summary:
A E
ce
S L. S O W (c23)
X L, I4p
ny=Kx=AV= 1 .AE {1 qY(L - X - x }
* X Teo L 2T e 27 (c28)
e o]
TO
Kzz = (c31)




Appendix D

HORI ZONTAL STIFFNESS OF AN INSULATOR

It can be seen from Figure 4.4 that the displacement due
to the tower force, Pp, 1is Ua at the top of the insulator.
However, this displacement has two components

Up = Ug + Ug. (p1)
Here Ug is a torsional component given by

Ue = Ly tan A6 (D2)
where Lyis the insulator's length. On the other hand, Ug is
a translational component which aepends solely upon the
stiffness of the conductor spring, Kc.
The relation is obviously

Us = Pn /Kec. (D3)
Also, by resolving forces at the bottom of the insulator, it
is clear that

Pa= Wy tan 46 . . (D4)
Here ngs the vertical load carried by the string. Substitu-

ting Equation (D4) in (D2) and rearranging gives
P

Uy aiszi (D5)
where W/L may be regarded as the insulator's effective hor-
izontal stiffness, K;. The net stiffness at the top of the
insulator may now be computed by substituting egquations (D3)
and (D5) into (D1) so that

1

: 1
U = P lsz—~+—].
A AK, K, (p6)
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This last equation indicates a series addition of stiffness

as illustrated in Figure 4.5.





