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Abstract

With the fast growing of wireless communication applications, cognitive radio has become

popular in recent years as an effective dynamic spectrum access technique to improve

spectrum utilization efficiency. However, the channels that are allocated to the secondary

users (SUs) can be re-occupied by the primary users (PUs) at any time which makes

it difficult to meet SUs’ quality of services (QoS) requirements. Therefore, the SUs

may simultaneously use multiple noncontiguous spectrum bands for transmission. It is

important to study how to make spectrum decisions for the SUs in multi-channel cognitive

radio neworks (CRNs) to meet their heterogeneous QoS requirements. In this thesis, after

presenting some fundamentals and related works, we discuss a dynamic load-balancing

spectrum decision framework where the SU with prioritized services dynamically selects

the most suitable operating channels for packet transmission. A discrete time priority

queueing model is applied to model multiple interruptions from PUs and heterogeneous

channel conditions. Optimal spectrum decision policies are obtained to achieve minimum

delay using dynamic programming techniques, such as Markov decision process (MDP)

and reinforcement learning, under different assumptions. To address the computational

complexity issue in the MDP solutions, a myopic scheme is proposed based on the

estimated packet sojourn time. Simulation results demonstrate the effectiveness of all

proposed algorithms for load-balancing spectrum decision. It also shows that the proposed

myopic scheme can achieve significant reduction on computational complexity with a cost

on the delay performance of low priority BE services.
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Chapter 1

Introduction

1.1 Background and Motivations

Radio spectrum is used for wireless communication which ranges from 3KHz-300GHz.

From cellphones to security systems, from television remote control to wireless head-

phones, virtually every wireless device depends on access to the radio frequency (RF)

wireless spectrum. Each application / service / user needs a certain bandwidth of spectrum.

For example, the bandwidths for WiFi, WCDMA and TV are 20MHz, 5MHz and 6MHz

respectively. Radio spectrum is one of the most tightly regulated resources of all the time.

To ensure interference-free communications between users, since 1930s, fixed portions of

wireless spectrum were assigned by governmental agencies to licensed holders based on

long term policies.

Recent years, demand for wireless band has increased rapidly due to technology

development, such as 3G and 4G, and the rapid expansion of wireless internet services.

The radio spectrum has therefore become a scarce commodity in many countries. However,

according to a report published by Federal Communications Commission (FCC) in 2002,

spectrum access is a more significant problem than physical scarcity of the spectrum [1].

The reason is that exclusive access through licensing limits the ability of potential users to

obtain access, leading to underutilization of a significant amount of spectrum. According
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to the report, the licensed spectrum are utilized 15 to 85 percent with a high variance at

different geographic locations at a given time. To keep up with the demand, as an alternative

to exclusive access, dynamic spectrum access (DSA) techniques were proposed to solve

these spectrum inefficiency problems [2].

Cognitive radio (CR) is a key enabling technology for efficient DSA which provides

the capability to access the usable spectrum opportunistically and dynamically [3] [4].

CR is an intelligent radio that can monitor, sense and detect the available channels from

surrounding wireless spectrum, and dynamically change transmission parameters, enabling

more communication to run concurrently and also improving radio operating behavior.

By opportunistic access to the idle channels, cognitive users (also called as secondary

users (SUs)) can share the spectrum and extract more bandwidth which improves overall

spectrum efficiency. The FCC and wireless regulatory bodies around the world are in the

process of opening up new spectrum, as well as reclassifying the existing spectrum, to make

it available for opportunistic use for CRs. The FCC and the Office of Communications in

the United Kingdom have opened up some unused portions of the RF spectrum (known as

white spaces) for public use in 2008 and 2010, respectively [5] [6]. This would allow new

market entrants, utilities, public safety, enterprise and even existing wireless operators to

offer new services with additional bandwidth and higher capacity without requiring these

entities to purchase expensive and scarce wireless spectrum.

Cognitive radio networks (CRNs) have some challenging characteristics, such as

high fluctuation in the available spectrum and diverse QoS requirements of various

applications. To realize efficient spectrum utilization using CR technology, a dynamic

spectrum management framework is required. The spectrum management framework

consists of spectrum sensing, spectrum decision, spectrum sharing and spectrum mobility

[7]. Through spectrum sensing, SUs detect available channels that are not occupied by the

licensed users, also called as primary users (PUs). Spectrum enables one SU access the

channel coordinately with other SUs. With spectrum mobility, the SUs are able to vacate

the channel when the PU is detected. Spectrum decision is an important part of spectrum
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management which helps SUs to select the best available channels for transmission to

satisfy their QoS requirements. We will focus on the component of spectrum decision

process in this work.

During the spectrum decision process, the vacant spectrum bands are firstly identified

and each spectrum band is characterized based on the observed and statistical information

about the PU’s activity. After the available spectrum bands are characterized, the next

step is to select the most suitable spectrum bands. In the last step, the CR transmitter

reconfigures its transmission parameters to support best services for the SU while keeping

interference on the PUs under certain limits. Due to the characteristics of unstable topology

and time varying RF propagation of CRNs, spectrum decision is mostly proceeded in a

dynamic manner. A comprehensive literature review of spectrum decision are presented in

Chapter 2.

The motivation of this thesis is mainly concentrated on the following.

Most works in the literature review assume that SUs support only single class traffic.

However, in practical applications, SUs may need to support different classes of services,

such as delay sensitive (DS) services (video conference and voice over IP), and best effort

(BE) services (file transfer and video streaming) [8]. In most of the works that considered

heterogenous traffic, each SU or each connection is assigned to only one channel at the

same time. But to achieve higher data rate in multi-channel CRNs, the SUs with multi-

radios will be able to transmit data through multiple channels simultaneously. How to

allocate packets with different QoS requirements to multiple channels will be a challenging

problem. A few works have proposed some channel selection policies regarding the case

with multi-channel transmission. They focused on the problem that how many channels

should be assembled or reserved by the high priority SU and the proposed policy are

based on intuitive ideas. However, no optimal dynamic channel selection policy with

the consideration of both RF environment characterization and PUs’ activities has been

proposed. To address this channel selection issue, in chapter 3, we proposed a dynamic

load-balancing spectrum decision scheme for the SU in multi-channel CRNs with multi-
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class services. With the proposed scheme the SU’s traffic load can be distributed effectively

to the channels, thus to improve overall delay performance. Further more, heterogeneous

PUs’ activities, channel characteristics and buffer dynamics are considered when finding

the optimal channel selection policies.

1.2 Summary of Contributions

The contribution of this thesis are summarized as follows:

The dynamic spectrum decision process is addressed in a CRN consisting of multiple

PUs and one SU which support both DS and BE services. The SU is given the opportunity

to access multiple channels shared by the two services. To avoid the head of line effect

[9–11], we consider a system model where the SU maintains one buffer at each channel to

buffer the interrupted packets or the packets waiting to be transmitted. To analyze the

transmission delay of the SU’s traffic, a priority queueing model with ON/OFF server

is developed. Based on the queueing analysis, Markov decision processes (MDPs) are

formulated to find the optimal channel selection policies, according to which the SU’s DS

and BE packets are distributed to all the available channels to minimize their average delay.

To evaluate the average delay ,we jointly consider heterogeneity in PU activities, channel

service rates and number of packets in each buffer. An optimal policy is obtained using

relative value iteration. We further extend our work to the case where the distributions

of packet arrivals at the primary transmitters and the channel statistics of the primary and

secondary links are unknown. A form of reinforcement learning (RL) technique, which is

known as R-learning, is introduced to solve the MDPs without a priori knowledge of the

state transition probabilities. Moreover, to reduce the huge complexity in the solution to

the MDP problem, a myopic method with low computational complexity is also proposed

where the decisions are made to minimize the immediate cost, defined as the expected delay

of the arriving packet.
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1.3 Outline of the Thesis

The rest of the thesis is organized as follows. Chapter 2 introduces some fundamentals

and related works that are relevant to our research. Motivated by the limits of existing

spectrum decision techniques in multi-channel CRNs, a dynamic load-balancing spectrum

decision scheme is proposed and the policies obtained via different techniques are evaluated

through simulations in Chapter 3. Chapter 4 presents a brief conclusion of this thesis and

summarizes some possible extensions as future works.
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Chapter 2

Fundamentals and Related Works

In this chapter, fundamental knowledge and related literatures are presented as the basis

for future reference. We first provide an overview of CRNs including their architectures,

spectrum decision framework and research challenges. Channel selection, as a major issue

in spectrum decision, has been widely discussed in CRNs. A comprehensive literature

review about channel selection is therefore presented. After that, some basic knowledge of

the MDP and RL is introduced.

2.1 Overview of Cognitive Radio Networks

The concept of CR was first proposed by Joseph Mitola III in 1998 and later published

in an article in 1999. It is defined as “an intelligent wireless communication system

capable of changing its transceiver parameters based on interaction with the external

environment in which it operates” [12]. Conventional radios are designed under the

assumption that they were operated in interference-free spectrum and therefore unable to

dynamically change transmission parameters, switch between different channels. Different

from conventional radios, CRs are able to monitor and sense their operating condition and

dynamically reconfigure their transmission parameters, such as power output, frequency

and modulation, to best match the environment. Therefore, an optimized communication

6



experience for user can be ensured.

2.1.1 Cognitive Radio Technology

The CRNs can be classified as two groups: a primary network and a secondary network

[13]. The spectrum bands are licensed to the users in the primary network and therefore the

PUs have higher priority in spectrum access and their operation should not be affected by

the SUs. The secondary network (also called CR network or unlicensed network) does not

have a license to access the primary network’s spectrum band. Hence, additional functions

are required for the SUs. For example, they have to detect if PUs are occupying the channels

or not before access to the spectrum. Furthermore, if PUs appear in the spectrum band

occupied by SUs, the SUs should vacate the spectrum band immediately and switch to

other available channels.

To achieve these functions, CR has two main characteristics which can be defined as

[14]:

Cognitive capability: By analyzing the radio environment SUs can detect spectrum

holes, which are defined as a band of frequencies assigned to a PU, but at a particular time

and specific geographic location, the band is not being utilized by that user [15]. It can be

achieved by direct spectrum sensing, using geo-location database, beaconing techniques or

the combination of spectrum sensing and geo-location database [16]. SUs can also estimate

the channel state information and predict the channel capacity.

Reconfigurability: CR is built on software-defined radio which can operate on different

frequency bands and access channels with various techniques. With this capability, SUs can

accommodate new interface standards and exploit heterogenous applications and services.

CRNs impose unique challenges because of the coexistence with the primary network

and diverse QoS requirements of different applications. First of all, when sharing spectrum

with primary networks, the interference on PUs should be limited. Second, QoS-aware

communication needs to be supported under the dynamic and heterogenous spectrum

environment. Finally, seamless communication should be ensured regardless of the

7



appearance of PUs. Therefore, new spectrum management techniques are required to deal

with these critical challenges.

To address these challenges, spectrum management in CRNs consists of the following

steps as shown in Fig. 2.1 [7]:

Radio Environment

Spectrum 

Mobility

Spectrum 

Access

Spectrum 

Decision

Spectrum 

Sensing

Transmitted 

Signal

Channel 

Capacity

Decision 

Request

Primary User 

Detection

Spectrum 

Hole

RF 

Stimuli

Spectrum 

Characterization

Figure 2.1: Dynamic Spectrum Management Framework

Spectrum sensing: To access the unused spectrum band, an SU should monitor available

spectrum bands and collect channel information to detect spectrum holes through spectrum

sensing.

Spectrum decision: Among the detected available spectrum bands, the SU should select

the best operating channel based on channel characteristics and QoS requirements.

Spectrum sharing: For the cases where multiple SUs try to access the same spectrum

bands, the SUs should be able to coordinate with each other to avoid collision.

Spectrum mobility: Since SUs have lower priority than PUs, multiple interruptions by

PUs may occur during each connection. Therefore, to achieve seamless connection, the SU

must be able to continue transmission at other vacant channels.

8



With all these functions, CR is able to exploit spectrum access opportunities efficiently.

However, the heterogeneous spectrum environment makes spectrum decision a critical

issue for CRNs. Generally, multiple available spectrum bands may be found over a wide

frequency range that have different characteristics and the CRNs need to support different

applications. Through spectrum decision process, CRs select the best spectrum band

according to the application requirements once available spectrum bands are identified.

2.1.2 Spectrum Decision Framework for CRNs

Spectrum decision involves three main functions: spectrum characterization, spectrum

selection and CR reconfiguration [7]. Once available spectrum bands are identified through

spectrum sensing, each spectrum band is characterized based on radio conditions and the

PU’s activity. In the second step, the most appropriate spectrum band is selected according

to a predefined decision making policy which is obtained based on the spectrum band

characterization. Third, a CR should be able to reconfigure transmission parameters to

support communication on the selected band. The relationship of required functions for the

spectrum decision framework is described in Fig. 2.2 [17].

A. Spectrum Characterization

SUs characterize the spectrum band by considering the received signal strength,

interference and the number of users currently operating on the spectrum. SUs should

also observe PUs’ activities which cause spectrum holes fluctuating over time and location.

Spectrum characterization should include RF environment characterization and PU activity

modelling [17].

1) Radio Frequency Environment Characterization

Since available spectrum bands have various characteristics, channel characterization

is continuously performed in CRNs. RF environment characterization involves channel

identification and estimation of channel capacity.

Channel identification includes environment learning and primary traffic classification.

As CRNs can be applied to different networks, such as television white space networks,

9



InternetGeo-Location 
Database

Current Radio 
Conditions

Primary User 
Activities

QoS
Management

Local Observation 
(spectrum sensing)

Sp
ec

tr
u

m
 S

el
ec

ti
o

n

C
R

 R
ec

o
n

fi
gu

ra
ti

o
n

C
R

 T
ra

n
si

ti
o

n

Figure 2.2: Spectrum Decision Framework

smart grid networks, machine-to-machine networks, public safety networks, broadband

cellular networks and wireless medical networks [18], the primary network traffic patterns

can be either deterministic or statistic. In the networks with deterministic traffic, such as

TV broadcasting, the channels are occupied by PUs at fixed time slots. Once the PUs stop

communicating, the channels become available for the SUs. Therefore, fixed channel idle

periods make it easier to predict the future channel states based on the past observed values.

On the other hand, for the networks with stochastic traffic, such as cellular networks,

PUs’ activities vary in time and space which can only be predicted using probabilities

and statistics. A prediction method for both deterministic and stochastic traffic patterns is

proposed in [19].

To estimate channel capacity in CRNs, some factors need to be considered such as

channel interference, switching delay and holding time.

• Channel interference: The SUs may lead harmful interference on PUs operating on
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adjacent channels. It is important to estimate channel interference on the PUs caused

by CRNs which can be controlled by limiting the transmission power.

• Switching delay: In CRNs, each SU can have multiple available channels to perform

opportunistic access. Switching delay is caused when the SU switches from one

channel to another, which happens when the PU is detected on the operating channel

or the degradation of QoS. During the switching process, transmissions between

transmitters and receivers are temporally suspended until the communication is

resumed on another idle channel.

• Channel holding time: Channel holding time is the expected duration that a SU can

occupy the channel before PU’s interruption [7]. The longer holding time the channel

has, the better QoS experience the SU can achieve.

2) Primary User Activity Modelling

CRNs access the spectrum band when PUs are not utilizing it. However, it cannot be

ensured that the spectrum band will be idle during the entire SU’s communication period.

The transmission will be interrupted once the PU appears, and switching delay or packet

loss will be incurred. Therefore, it is very important to predict the PU’s activity, which

is defined as the probability of the PU’s appearance during SU’s transmission, based on

the history of spectrum usage information. The process is called PU activity Modelling.

According to PU activity modelling, the CRNs can be aware of spectrum fluctuation

which is an important factor for making spectrum decision. With appropriate PU activity

modelling, CRNs can utilize spectrum effectively.

The most frequently used PU activity modelling method is Poisson Modelling [20],

where the PU activity is modelled as a Poisson process with exponentially distributed inter-

arrivals. The PU traffic is modelled as a two-state birth-death process where birth rate

denotes the PU’s arrival rate and death rate denotes the transmission rate. Let ON and OFF

represent the channel is idle or not, respectively. As a result, the durations of ON and OFF

are exponentially distributed. Some papers [19, 20] proposed some modelling techniques
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based on statistics. In paper [19], primary traffic was classified into deterministic and

stochastic traffic based on stored spectrum usage information. Channel selection decision

for the SU was made based on predicated channel idle time. Paper [20] characterized a

channel based on the statistics of the TV channels which were classified into long-term and

short-term usage.

B. Spectrum Selection

After available spectrum bands are characterized, the next important step is to select the

best spectrum bands among them according to the SU’s QoS requirements. According to

different QoS measurements, the decision schemes can be divided into two main groups:

delay minimum schemes and throughput maximum schemes. Different approaches have

been applied in each group.

Some media access control (MAC) protocols based on partially observed Markov

decision process (POMDP) have been proposed to find the optimal channels to sense and

access in order to achieve optimal opportunistic spectrum access [21–23]. Game theoretic

frameworks [24, 25] were proposed to solve channel selection problems. Based on the

game theory models, each SU decides the best channel selection probabilities to maximize

its utility function. Joint channel and power allocation optimization problems have been

formulated in some papers to maximize the total throughput under QoS and interference

constraints [26, 27]. Some policy-based spectrum selection schemes were proposed, such

as sequential selection and weighted selection [28–30]. In sequential selection schemes, the

available channels are ordered according to a pre-defined policy and the channel selection

procedure continues until there are no more idle channels. In weighted selection, weights

are given to each selection criterion and the best channels are selected based on the sum

of weighted values. For delay performance analysis and practical considerations, priority

queueing theory is introduced in CRNs to model the priority of PUs over SUs, as well as

multiple interruptions from the PUs. A detail channel selection literature review will be

presented in the following section.

C. Reconfiguration in CRNs
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In traditional wireless network, users operate on pre-defined frequency bands with

pre-defined transmitter parameters. The existing hard-ware based architecture limits the

flexibility to adapt to the external environment. To achieve heterogeneous spectrum ability

and dynamic spectrum access, CRNs are implemented on software defined radio (SDR) to

rapidly adjust their transceiver parameters based on the external RF environment, policy

updates, QoS requirements, selected spectrum, channel characteristics and the needs of the

users. Reconfiguration of parameters occurs after the operating channel is characterized

and selected.

To adapt to the QoS requirements and regulatory policies, the following reconfiguration

parameters are mainly included.

• Modulation and Coding Schemes: Reconfiguration in modulation and coding is

needed when the SU’s QoS requirements or channel conditions are changed. An

adaptive transmission scheme was proposed in [31] which adaptively selected the

modulation order that can achieve the maximum throughput for the SUs.

• Transmission Power: Power control is an important issue in CRNs which has been

discussed in the literature [32, 33]. The objective of power control is to support the

QoS requirement while minimizing energy consumption and limiting interference to

PUs and other SUs.

• Operating Frequency: Operating frequency reconfiguration is another key capability

of CRNs which enables SUs to dynamically adapt to the RF environment. A

predictive model is proposed in [34] to dynamically select the correct configurations

including operating frequency.

• Channel Bandwidth: To transmit data on heterogeneous networks SUs has to be able

to support variable channel bandwidths. For example, if a SU intends to utilize both

TV white spaces and 2.4G WiFi spectrum bands, it has to adapt its channel bandwidth

to 20MHz, 40MHz, 5MHz and 10 MHz.

13



• Communication Technology: CRNs are heterogenous wireless networks that can

intemperate with different communication systems such as GSM, WiFi and LTE.

Therefore, it is necessary for a SU to be able to use different communication

technologies.

2.1.3 Research Challenges in Cognitive Radio Networks

In this section, the main challenges in CRNs will be discussed.

1. Spectrum Sensing

Existing spectrum sensing techniques mainly include energy detection and feature

detection. For energy detection, since the energy detector is not able to distinguish signal

types, false alarm may happen when uncertainty noise power is mistakenly considered.

Although feature detection is robust, complex computation and long observation time

are required. Since longer sensing time leads to shorter transmitting time, inefficient

sensing can possibly leads to performance degradation. Therefore, it is a challenge to

design a sensing technique which can accurately detect PU signals with low computational

complexity.

2. Spectrum decision in Heterogeneous Traffic Networks

Because of the low priority in utilizing the spectrum band, SUs cannot obtain a

reliable channel for a long period of time and may not detect any single channel to meet

their QoS requirements. Therefore, multiple noncontiguous spectrum bands can be used

simultaneously by the SUs for transmission as shown in Fig. 2.3 [4]. With multi-channel

transmission, the SUs can not only achieve higher throughput but also more reliable

transmission. Even if the transmission on one channel is interrupted, the rest of the channels

can still maintain communication. A major challenge is to select the best channels in multi-

channel CRNs to meet the SU’s heterogenous QoS requirements.

3. Channel Selection in Multi-hop CRNs

In multi-hop CRNs, each transmission is completed via multiple nodes. Each relay

node receives packets on one channel and then transmits them on another channel which
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Figure 2.3: Channel structure of the multi-spectrum decision.

leads to cumulative delay. Therefore, to minimize delay along the path it is necessary to

develop a joint spectrum and route selection approach.

4. Economic incentive and rationality

To opportunistic access the licensed primary networks, it is important to provide

sufficient economic incentive for PUs to participate in spectrum sharing. Therefore, it

is a challenge to balance economic rationality and fairness in CRNs.

5. Transmission security

Network security is an important issue in wireless networks. CRNs are built based on

intelligent radio which leads to higher probability for potential attacks [35]. It is a critical

issue to provide secure transmissions for both SUs and PUs.

2.2 Related Works in Channel Selection

To select the most suitable spectrum for SUs’ heterogeneous QoS requirements, many

factors, such as spectrum sensing results, PU modelling, channel characteristics, network

topology and media access control (MAC) need to be considered. Due to the importance

and complexity, channel selection is one of the most popular topics in CRNs. In this section,

a general survey on channel selection techniques is presented.

Channel selection techniques can be classified by different aspects. Based on the
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objective, it can be mainly divided into throughput maximization and delay minimiza-

tion. It can also be grouped according to the network structures, i.e., centralized and

decentralized CRNs. Based on the service supported, there are channel selections for

CRNs with multi-class or single-class services. It can also be categorized into connection

based or packet-wise channel selections, which depends on when the channel selection

is executed. For connection based channel selection, it happens when a connection is

interrupted. For packet-wise channel selection, it happens in each slot. Here, we classify

the existing channel selection approaches into channel selection with single class and multi-

class services.

A. Channel selection for Secondary Users with Single class Services

In the CRNs with single class traffic, all the SUs have the same priority in selecting

operating channels. This problem has been studied in different settings within the literature

[21–23] [36–44].

Some papers have proposed cross-layer approaches, which integrate spectrum sensing

and access, to achieve opportunistic spectrum access. In paper [21], Zhao et al. proposed

decentralized MAC protocols that allowed SUs to choose a set of channels to sense and

select a set of channels to access at the beginning of each time slot without a central

coordinator. They developed an analytical framework for opportunistic spectrum access

based on the theory of Partially Observable Markov Decision Process (POMDP). Under

this framework, an SU made optimal decisions for sensing and access based on the belief

vector that summarized the knowledge of channel states based on all the past decisions

and observations. In the formulation, sensing errors and collisions were also considered in

limiting the interference perceived by PUs. To reduce complexity, a suboptimal strategy

with comparable performance was also developed. In paper [22], the authors considered

the scenario where the at the beginning of each slot, an SU selected one channel to sense,

and access if the channel was sensed to be at good state. An POMDP problem was formed

to obtain the best channel selection policy with the objective of maximizing the throughput.

They have established the structure of myopic policy for designing sensing strategy with
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low complexity, analyzed the performance and partly obtained the optimality for the case

of independent and identically distributed (i.i.d) channels. Later in [23] and [36], the

optimality of the myopic policy was derived for access to only one channel and multiple

i.i.d channels each time, respectively, with positively correlated i.i.d channels.

Some works addressed joint spectrum allocation and power control for the SUs.

Digham in paper [37] studied a CRN where a set of channels were assigned among

multiple SUs that opportunistically accessed to the available spectrum. They jointly

considered channel and power allocation while maximizing the total throughput of the

CRN under interference constraints on PUs. The optimization problem was solved in a

modified form of water filling. In [38], a CRN under the microscopic spectrum opportunity

setting was explored, where a same channel might simultaneously present different levels

of availability to different CRs. To coordinate channel access between SUs and ensure

efficient utilization of spectrum opportunities, they formulated the joint power control

and channel assignment problem as a mixed integer nonlinear programming problem

(MINLP). The solution was obtained by transforming the MINLP into a binary linear

program (BLP) that contained only binary variables and linear objective function and

constraints. Both centralized and distributed algorithms, aiming at better performance

and better implementability, were developed for the BLP, respectively. Q-learning was

applied in [39] to solve channel and power allocation for the incoming service of a specific

SU, where the arrival and departure of the SU’s services were used to learn the optimal

strategy to maximize the total system throughput. The proposed algorithm can be applied

to centralized CRNs where each SU is constrained to transmit over at most one channel.

A distributed joint spectrum allocation and power control strategy in multi-hop CRNs

was also derived in [40]. Cooperation between nodes was introduced to deal with the

interflow interference and cumulative interference so that multiple flows were able to

coexist. Optimal waiting time was derived by balancing the tradeoff between spectrum

efficiency and route switching overhead.

Channel selection involving buffer dynamics in a cognitive setting has been considered
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in a few works such as [41–44]. Wang et al. in [41] proposed a preemptive resume

priority (PRP) M/G/1 queueing model to model the priority of PUs over SUs, as well

as the multiple interruptions caused by PUs. In the model, each channel has two types

of customers. The connections of the PUs and SUs join the high priority queue and the

low priority queue, respectively, and the PUs have preemptive priority to interrupt the SUs’

transmission. A probability-based load-balancing spectrum decision scheme was designed

on top of the queueing model, where the SUs’ traffic load was properly distributed to

multiple channels. By deriving the optimal channel selection probabilities, the minimum

system delay was achieved. Similarly, in [42], Do et al. proposed a lightweight algorithm

to calculate channel selection probabilities and analyzed system delay based on an M/M/1

queueing model with a breakdown server. Based on a similar queueing model as [41],

F. Sheikholeslami in [43] further considered the target channel selection policies after the

occurrence of an interruption due to the arrival of a primary connection. They proposed

a joint probabilistic approach for initial and target channel selection schemes for a SU in

a CRN and analyzed the delay performances under different handoff policies. In [44], an

orthogonal band allocation scheme was proposed where each user randomly accessed one

band at the beginning of each time slot with a predefined probability and the stability region

of the proposed system was analyzed.

All the above work considered scenarios where SUs support only one class of traffic,

however, in practical applications, SUs may need to support different classes of services,

such as delay sensitive (DS) applications (video conference and voice over IP), and best

effort (BE) services (file transfer and video streaming). To address this issue, some

spectrum decision schemes have been proposed by considering priority-based secondary

users.

B. Channel selection for Secondary Users with Multi-class Services

Supporting SUs with multi-class services in CRN is challenging because of heteroge-

nous QoS requirements. It is important to allocate wireless channel resources efficiently to

ensure quality-driven transmissions.
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To analyze the delay performance of SU with prioritized traffic, different queueing

models have been proposed. In [45], a queueing-based dynamic channel selection scheme

was developed for heterogeneous multimedia autonomous users. They proposed a priority

virtual queue framework to consider different priorities of access to the channels and

different channel conditions. In the framework, each user maintains M physical queues

for various frequency channels and a “virtual queue” was formed at the same frequency

channel. Based on the queueing model, expected utility was evaluated for each user at

different frequency channels, according to which they proposed a decentralized learning

algorithm that could dynamically adapt the channel selection strategies to maximize the

utility functions. To manage and characterize spectrum usage behaviour of PUs and SUs

in multimedia transmissions, Wu et al. in [46] proposed a mixed preemptive and non-

preemptive resume priority (PRP/NPRP) M/G/1 queueing model. In the proposed model,

a PRP M/G/1 queueing model was formed to ensure that the PUs had preemptive control

over the channels and their transmission will not be effected by the SUs. The queueing

among SUs was modelled as NPRP to avoid SUs from frequent spectrum handoffs due to

the interruption from other SUs but also provide differentiated service. A reinforcement

learning handoff scheme was proposed to adaptively perform spectrum handoff under

changing channel conditions and traffic loads to maximize the transmission quality for

the prioritized multimedia SUs. A virtual queue with different priorities was applied to

model the traffic of PUs and SUs on the same channel [47]. To avoid starvation of delay

insensitive SU’s packets, a transmission window (TW) strategy was applied so that the

packets of both delay sensitive SUs (DSP) and delay insensitive SUs (DIP) inside the TWs

were first served under the condition that DSPs had priority over DIPs. Delay analysis

under this strategy was conducted and a dynamic adaptive channel selection strategy based

on learning automata was developed with the objective to reduce the queueing delay.

Some policy-based channel allocation schemes have been proposed to meet heteroge-

neous SUs QoS requirements. Jiang et al. in paper [29] established a QoE-driven channel

allocations scheme where the sub-bands with smaller switch/dropping probabilities were
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allocated to the SUs with delay sensitive traffic to improve their performance. Similarly, in

paper [30], channel holding time was considered as the principle for channel selection. The

channels with more holding time were assigned to the applications with a higher priority

so that less handoff would be needed. Balapuwaduge et al. in [8] proposed a queueing-

based dynamic channel assembling strategy which introduced two queues dedicated for

real-time SU (RSU) services and elastic SU (ESU) services, separately. In this strategy,

both real time and elastic SUs could assemble several channels to increase their service

rates, but the number of aggregated channels for real-time services was fixed. Two schemes

were proposed. In the first scheme, when RSU services was interrupted and there was

no available channels, the ESUs would be forced to terminate the service on one of the

channels and denote it to the RSU. While it was not needed in scheme 2 if its minimum

number of channels requirement would not be met. Therefore, the first scheme was more

appropriate for delay-critical applications. Similarly, in [48], a certain number of channels

were reserved for the high priority user and two dynamic channel access schemes with

different handoff schemes were proposed. In the first handoff scheme, the ongoing low

priority SU calls were terminated if the required idle channels were not available for high

priority SU’s handoff. While in the second scheme no ongoing low priority calls were

terminated for the sake of the high priority SU’s handoff. Based on the proposed schemes,

performance analysis, such as blocking probabilities, forced termination probability and

throughput, were derived. The optimal sub-channel reservation was also obtained.

Join power and channel allocation for heterogeneous services with imperfect sensing

has been considered in papers [26] and [27]. In [26], the services was classified into ones

with minimum-rate guarantee and the others with best effort services. An optimization

problem was formulated with the objective to maximize the total capacity of CRNs under

the total power constraint, minimum rate guarantee constraint and proportional-fairness

constraint. An aggressive discrete stochastic approximate algorithm was proposed to

reduce the computational complexity. Similar resource allocation optimization problem

was formulated in [27], but taking mutual interference into consideration. To solve the
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problem, channel allocation was performed in the first step based on channel gains and

interferences to PUs, and then power was allocated among the assigned channels.

2.3 Markov Decision Process and Reinforcement Learn-

ing

Since the system state dynamically evolves with time in CRNs, spectrum decision has to be

proceeded dynamically. Markov decision processes (MDPs) are useful for studying a wide

range of optimization problems solved via dynamic programming (DP) and reinforcement

learning (RL). It provides a mathematical framework for modeling decision making in

situations where outcomes are partly random and partly under the control of a decision

maker. In this thesis, we formulate the proposed dynamic channel selection problem into

a MDP problem and both DP and RL are used to solve the problem. Therefore, in this

section, the key theories of MDP and RL are summarized.

2.3.1 Fundamentals of Markov Decision Process

In general, an MDP can be characterized by four elements, namely the state space, the

action space, the state transition probability and the system reward (cost), which are defined

as follows [49]:

1. χ = {χ1, χ2, . . . χN}: the finite space withN states. At the beginning of each period,

the MDP is in one of the states.

2. For each state, there is a finite set of allowable actions A(i).

3. Pr[χ′|χ, a]: the transition probability from state χ to state χ′ under action a. Suppose

a period begins in state χ, and an action a ∈ A is chosen. Then with probability

Pr[χ′|χ, a], the next period’s state will be χ′. The next period’s state only depends

on the current period’s state and the selected action.
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4. g(χ, a): the system reward (cost) in the state χ under action a. During a period in

which the state is χ and action a is chosen, an expected reward (cost) of g(χ, a) will

occur.

A policy Ω: χ→ A is a mapping from the state space χ to action space A, which determines

the action to take when the system state is χ. A policy is called a stationary policy if it

depends on state but not time. Given policy Ω the random process of the system state will

evolve as a Markov chain. The policy induces a distribution on sequences of states. An

MDP is ergodic if the associated Markov chain is ergodic for every deterministic policy

[50].

The goal of the MDP problem is to find a policy π that maximize (minimize) the

expected total reward (cost) over an infinite horizon, (the number of time period,) which is

an infinite value. To compare policies of infinite value, two approaches are commonly used

to resolve the problem of unbounded expected rewards over an infinite horizon [51].

1. Discount reward

We can discount the rewards (or costs) by assuming that a 1$ reward received during

the next period will have the same value as a reward of β dollars. Therefore, a reward

n steps away is discounted by βn, where 0 < β < 1 is the discount rate. Let M be the

maximum reward that can be achieved during a single period. Then the maximum expected

discounted reward that can be received over an infinite period horizon is:

M +Mβ +Mβ2 + . . . =
M

1− β
<∞ (2.1)

Define a value function VΩ(χ) as the expected discounted reward earned during an

infinite number of periods. Given that at the beginning of period 1, the state is χ and

stationary policy is Ω. Then

VΩ(χ) = EΩ(
t=∞∑
t=1

βt−1g(χ(t),Ω(χ))|χ(1) = χ) (2.2)
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Bellman Equations for the discounted objective function is:

VΩ(χ) = g(χ,Ω(χ)) +
∑
χ′∈χ

Pr(χ′|χ,Ω(χ))βVΩ(χ′) (2.3)

The optimal policy Ω∗is obtained by solving

V ∗Ω(χ) = max
Ω

[g(χ,Ω(χ)) +
∑
χ′∈χ

Pr(χ′|χ,Ω(χ))βVΩ(χ′)] (2.4)

for every state in χ.

2. Average Reward

Another way to solve the infinite horizon MDP problem is to find the policy that can

maximize (minimize) the expected cost (reward) incurred per period. The average reward

ρ associated with a particular policy π at a state χ is defined as:

ρΩ(χ) = lim
T→∞

1

T
EΩ(

T∑
t=1

gt(χ,Ω(χ))) (2.5)

For an ergodic MDP,

ρΩ(χ) =
∑
χ′∈χ

g(χ′,Ω(χ′))ΠΩ(χ′) (2.6)

where ΠΩ(χ′) is the steady-state probability of being in state χ′ given policy Ω.

The Bellman equation is described as follows [52]: For any MDP that is either unichain

or communicating, there exists a value function V ∗ and a scalar ρ∗ satisfying the equation

V ∗(χ) + ρ∗ = max
Ω

[g(χ,Ω(χ)) +
∑
χ′∈χ

Pr(χ′|χ,Ω(χ))VΩ(χ′)] (2.7)

where ρ∗ is the optimal average reward per period and the corresponding Ω∗ is the optimal

policy.

2.3.2 Solving MDPs

In this section, we will have an overview of classical solution methods for MDPs known as

dynamic programming (DP).
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A. Policy Itertaion

The first algorithm is called policy iteration, introduced by Howard [53]. It starts with

a policy and iteratively improves it. Two steps are included: policy evaluation and policy

improvement. Set an arbitrary policy Ω0 as an initial policy and set i = 0.

1. Policy evaluation: For discount MDP, given a policy Ωi, solve a set of linear

equations (2.3) for each state and obtain the values VΩi
. The equations can be solved

by linear equation solution methods or solved iteratively. For average reward MDP,

given a policy Ωi, solve equations (2.7) for the average reward ρΩi
and values VΩi

by

setting the value of a reference state V (χ) = 0.

2. Policy Improvement: With the obtained value function VΩi
, obtain the improved

policy Ωi+1 by solving equation (2.4) in discounting MDP or (2.7) in average reward

MDP at each state.

3. Stop if there is no change in the policy, i,e,. Ωi+1 = Ωi. Otherwise increment i and

go to step 1.

Consider discounted MDP as an example. The solution procedure can be describe as:

1. Initialize policy Ω with arbitrary value

2. Repeat

3. Policy evaluation: solve the linear system and obtain VΩ(χ)

VΩ(χ) = g(χ,Ω(χ)) +
∑

χ′∈χ Pr(χ
′|χ,Ω(χ))βVΩ(χ′) ∀χ ∈ χ

4. Policy improvement: for each state χ ∈ χ:

Ω(χ)← arg maxa[g(χ,Ω(χ)) +
∑

χ′∈χ Pr(χ
′|χ,Ω(χ))βVΩ(χ′)].

5. Until Ω is unchanged.

B. Value Iteration

The difficulty with policy iteration is that it requires solving N equations at every

iteration, which is computationally intractable whenN is large. A more attractive approach
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is value iteration, where the value functions are iteratively obtained until it converges.

With an arbitrary function V0 as the initial value function, the value iteration contains the

following steps:

1. For each state χ ∈ χ:

v ← V (χ)

V (χ)← maxa[g(χ, a) +
∑

χ′∈χ Pr(χ
′|χ, a)βV (χ′)]

2. ∆← max(∆, |v − V (χ)|)

3. Stop if ∆ < θ, otherwise go back to step 1.

Output a deterministic policy Ω, such that

Ω(χ) = arg max
a

[g(χ, a) +
∑
χ′∈χ

Pr(χ′|χ, a)βV (χ′)] (2.8)

For average reward MDP, define T (V )(x) as the right hand side of the equation (2.7), i.e.,

T (V )(x) = max
a

[g(χ, a) +
∑
χ′∈χ

Pr(χ′|χ, a)V (χ′)] (2.9)

The value iteration algorithm for average reward MDP is as follows:

1. For each state χ ∈ χ:

t← T (V )(χ)

T (V )(χ)← maxa[g(χ, a) +
∑

χ′∈χ Pr(χ
′|χ, a)βV (χ′)]

2. ∆← max(∆, |t− T (V )(χ)|)

3. Stop if ∆ < θ, otherwise go back to step 1.

The value iteration algorithm does not explicitly compute the average reward, but it can be

estimated as V n+1(χ)− V n(χ) for large n.

C. Relative Value Iteration

For average award MDP, value iteration has the disadvantage that the values V (χ) can

be very large since the iterate can become unbounded, which causes numerical instability.

To avoid this problem, a relative value iteration algorithm is generally used.
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The Bellman equation for average reward can be written as

V (χ) = max
a

[g(χ, a) +
∑
χ′∈χ

Pr(χ′|χ, a)V (χ′)]− ρ (2.10)

In the value iteration, the main transformation is obtained by setting the optimal average

reward ρ to 0. In the regular version of relative value iteration, ρ is arbitrarily set to one

of the current value, i.e., ρ = Vi(χ), where i denotes the current time period and χ is an

arbitrarily selected state. In [54], the maximum value of the current iteration is selected as

the value of ρ, i.e., ρ = maxχ∈χ[Vi(χ)]. Then the step-by-step details of the algorithm will

be:

1. Set k = 0 and select an arbitrary vector V (0).

2. For each state χ ∈ χ:

v ← V (χ)

V (χ)← maxa[g(χ, a) +
∑

χ′∈χ Pr(χ
′|χ, a)βV (χ′)]−maxχ∈χ[V (χ)]

3. ∆← max(∆, |v − V (χ)|)

4. Stop if ∆ < ε otherwise go to step 2.

The ε-optimal policy Ω is determined by:

Ω(χ) = arg max
a

[g(χ, a) +
∑
χ′∈χ

Pr(χ′|χ, a)V (χ′)] (2.11)

2.3.3 Reinforcement Learning

All the algorithms discussed in the last section are model-based which require complete

knowledge of the state transition matrices as well as the expected reward or cost of each

action and state pair. However, the RL algorithm is model-free which eliminates this

requirement, and can adaptively perform decisions by learning from the environment and

previous decisions.

RL is an area of machine learning inspired by behaviourist which focuses on how to take

actions for the software agents to obtain the expected maximum (minimum) cumulative
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reward (cost) over a long run. In RL, an agent is placed in an unknown environment. By

learning from its history of interaction with the environment, the agent tries to learn the

optimal policy. There exists a variety of RL algorithms. Among them Q-learning is the

best studied discounted RL method and has been widely used in solving MDP problems.

It was first introduced by Watkins in 1989 [55]. The first average-reward RL method, R-

learning, was proposed by Schwartz [56]. It has been proved that it outperforms Q-learning

if the parameters are well adjusted [57]. In this section, a brief overview of the two main

RL method are presented.

A. Q-learning

A history of an agent is a sequence of state-action-reward which can be represented by

a tuple < χ, a, r, χ′ >. It means that the agent was in state χ, took action a and received

reward r. As a result, it went into state χ′.

Define Q∗(χ, a) as the expected value (cumulative discount reward) of taking action

a in state χ and then following the optimal policy. In Q-learning, the agent maintains a

table of Q[χ, A], where Q[χ, a] represents its current estimate of Q∗(χ, a). The value of

Q∗(χ, a) is estimated according to

Q[χ, a]← Q[χ, a] + α(r + γmax
a′

Q[χ′, a′]−Q[χ, a]) (2.12)

The procedure of the algorithm is:

1. Initialize Q(χ, a) arbitrarily

2. Repeat (for each episode)

Initialize χ

3. Repeat (for each step of episode)

Selection action a according to certain exploration policy and observe reward r and

state χ′.

Update Q[χ, a] with equation (2.12)

χ← χ′
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4. Until termination

The parameters used in the update process are defined as:

• α denotes the learning rate which is set between 0 and 1. 0 means no learning since

the Q-values are never updated. The higher value it is set the quicker the learning

occurs.

• γ is the discount factor which is also between 0 and 1. It models the fact that the

future rewards worth less than the immediate rewards. Convergence requires the

discount factor to be less than 1.

The convergence proof of Q-learning algorithm was presented by Watkins and Dayan

in 1992 [55]. The algorithm learns an optimal policy no matter which policy it is following,

as long as every action and state pair has been tried unlimited times. However, it may suffer

from slow rate of convergence especially when the discount factor γ is close to one.

B. R-Learning for Undiscounted Continuing Tasks

R-learning Similar to the definition of Q-learning, the value function RΩ(χ, a) repre-

sents the average value of taking action a at state χ and then following the policy Ω. R(χ, a)

is defined as [57]:

RΩ(χ, a)← r(χ, a)− ρΩ +
∑
χ′

P (χ′|χ, a)V Ω(χ′) (2.13)

where V Ω(χ′) = maxa∈AR
Ω(χ′, a) and r(χ, a) is the average reward of policy Ω. R-

learning algorithm consists of the following steps:

1. Initialize R(χ, a) with an arbitrary value

2. Repeat (for each episode)

Initialize state χ

3. Repeat (for each step of episode)

Choose action a = arg maxR(χ, a) with some probability. Otherwise choose a
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random exploratory action. Observe the reward r and the next state χ′.

Update the R values with the following rules:

R(χ, a)← R(χ, a)(1− β) + β(r − ρ+ max
a
R(χ′, a)) (2.14)

If a non-exploratory action is performed, the average reward ρ is updated according

to:

ρ← ρ(1− α) + α[r + max
a
R(χ′, a)−max

a
R(χ, a)] (2.15)

4. Until termination

Here, β is the learning rate for the action values between 0 and 1 and α is the learning

rate for updating ρ which is also between 0 and 1.

C. Exploration Strategies

To try all the actions in every state to achieve convergence, RL methods apply

exploration strategy to occasionally take sub-optimal actions. Exploration methods can

be divided into undirected and directed methods. Undirected methods select a random

action without considering the results from learning. Directed methods decide which

states to explore according to the results of learning. A detailed comparison of these two

methods was given in [57]. We will briefly introduce one undirect exploration method

(semi-uniform exploration) and one directed exploration method (uncertainty exploration

(UE)) as examples.

• Semi-Uniform Exploration: Let U(χ, a) denote a generic value function which could

be Q(χ, a) or R(χ, a). The best action a that maximizes the value function U(χ, a)

is selected with a fixed probability pexp. With probability 1 − pexp, a random action

is applied.

• UE exploration: The agent selects action a = arg max(χ, a) + c
Nf (χ,a)

with

probability p and picks a random action with probability 1− p.
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The configuration of learning rate parameters α and β is also important when applying

the algorithms. A detailed sensitivity analysis of R-learning was conducted in paper [57].

In the paper, the authors compared the two algorithm and two findings were discovered:

R-learning is more sensitive than Q-learning to exploration strategies and can get trapped

in limit cycles; however, R-learning can be fine-tuned to outperform Q-learning in two

domains where the comparison experiments were carried out.
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Chapter 3

Dynamic Load-balancing Spectrum

Decision for Multi-channel Cognitive

Radio Networks with Heterogeneous

Services

In this chapter, we study dynamic load-balancing spectrum decision for cognitive radio

networks that dynamically distributes packets from an SU to different available primary

channels. We consider two different classes of services at the SU, i.e., delay sensitive

(DS) and best effort (BE) services, and assign a higher priority to the DS services. We

propose a new queueing analytical model to address this priority issue and analyze delay

performance for the two services separately. Based on the analytical results, two Markov

decision processes (MDPs) are formulated with objectives to minimize the average delay of

both services while guaranteeing the priority of the DS services. Reinforcement learning

(RL) is applied to find the optimal solutions when the traffic and channel characteristics

are unknown. To address the computational complexity issue in the MDP solutions, we

proposed a myopic scheme based on the estimated packet sojourn time, which can be

calculated by formulating a phase type distribution. Simulation results show that the

31



CH1

Load-
Balancing 
Controller

a2

a1

CH2

CHN

PH/PL

α1

α2

αN

Channel 
Imformation

Queue length 
information

BH1

BH2

BHN

BL2

BL1

BLN

a'1

a'2

a'N

aN

Figure 3.1: Load-balancing model

proposed myopic scheme can achieve significant reduction on computational complexity

with a cost on the delay performance of low priority BE services.

3.1 System Model

We consider a time-slotted CR system, which consists of N independent PUs and one SU.

Each channel is allocated to one PU. We assume that the SU is equipped with multiple

receiving and transmitting antennas and can access all the N channels. Both BE and DS

services are supported by the SU. At the beginning of each time slot, spectrum sensing

is performed for all the N channels and the SU’s packets will be transmitted only if the

channel is sensed idle. Perfect sensing is assumed in the paper [8] [48]. The duration of
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each time slot is denoted by ∆t and the required sensing time is τ . The arrival processes

of SU’s DS and BE packets are assumed to follow independent and identically distributed

(i.i.d) Bernoulli processes in each time slot, with parameters pH and pL, respectively. Let

1/qHn and 1/qLn denote the average service times of the SU’s DS and BE packets at

channel n, respectively, which are assumed to follow geometric distributions [43]. We

first assume that the arrival probabilities and service times of the PUs are known to the

SUs based on the collected empirical data. The situations that PUs’ statistical information

is unknown will be discussed in section 3.4. For the explanation purpose, we assume that

the arrival processes of the PU’s packets at channel n follows Bernoulli distribution with

rate αn, and the service times follow geometric distribution with parameter 1/βn. We

consider block fading and the channel fading coefficient of channel n, hn, follows an i.i.d

distribution among time slots but remains quasi-static within each time slot. Then, the

maximum achievable data rate of the SU at channel n is

Rn = log(1 + γn|hn|2), (3.1)

where γn is the received signal-to-noise ratio (SNR) when the channel gain is equal to unity.

Let the packet length of both SU’s services be d bits. Then, in order to guarantee that one

packet can be transmitted within one time slot, the required packet transmission rate is

Rreq =
d

∆t− τ
. (3.2)

Thus, qHn and qLn at channel n can be calculated as:

qHn = qLn = Pr{Rreq < Rn}. (3.3)

A. Queueing Model and Dynamic Channel Access Scheme

To evaluate the effect of prioritize channel access, traffic rate and channel conditions,

we propose the following priority queue model. We consider that the SU maintains one

finite buffer for each channel to buffer both interrupted packets and the packets that can not

be immediately served. As illustrated in Fig.3.1, for each channel, each secondary buffer
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consists of two virtual queues. One is high priority queue BHn for the DS packets and the

other is low priority queue BLn for the BE packets. The buffers’ lengths for the DS and BE

services are KH and KL, respectively. We assume each PU has one buffer at the assigned

channel with length Kp to capture its potential dynamics. All the queues in the system

adopt the first come first service (FCFS) protocol.

It is worth mentioning that the proposed system model can be applied to the scenario

where the SU is a broadband user who opportunistically accesses N narrow-band primary

links. In such case, the SU transmits data via orthogonal frequency-division multiple

access (OFDMA) scheme. Moreover, the system model can also be adapted to the cases

where a secondary network consists of multiple SUs with homogeneous arrival and service

distributions [43].

Upon each packet’s arrival at the beginning of a time slot, a decision has to be made

on which channel to be selected for transmission. After the decision, the packet will be

delivered to the corresponding buffer and waits for the chance to access to the channel.

During the transmission of SU’s packet, if the PU appears on the channel, the SU has to

stop its transmission immediately and retransmit the packet until the channel becomes idle

again. The BE packets transmission will be interrupted if a DS packet tries to access the

same channel. The interrupted packet will be resumed and re-transmitted when the channel

is idle again and no DS packets waiting in the queue. Therefore, the packets in the low

priority queue can not be transmitted unless the high priority queue is empty.

We further define the following parameters.

i) Let an and a′n ∈ {0, 1} indicate whether channel n is selected at the current slot for

the DS and BE packets, respectively. an = 1 (a′n = 1) denotes channel n is selected for the

DS (BE) packet. Otherwise, an = 0 (a′n = 0).

ii) Let QH = {QH1(t), . . . , QHN(t)} and QL = {QL1(t), . . . , QLN(t)} be the

secondary queue lengths over all N channels for the DS and BE services, respectively,

where QHn(t) and QLn(t) denote the unfinished number of packets in queue BHn and

BLn, respectively, at the beginning of the t-th time slot;
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iii) Let St = {S1(t), . . . , SN(t)} be the set of states of all the N channels, where

Sn(t) = 0 denotes that the channel is idle, i.e, the PU is not occupying the channel;

otherwise, Sn(t) = 1.

At the beginning of each slot, the SU dynamically makes channel selection decisions

based on the channel state and the joint queue length states. The decision policies will be

derived in the following sections.

3.2 Queueing Analysis

To jointly consider the PU’s activity, channel capacity and buffer states, in this section, we

develop queueing models to describe the behaviors of the PU activity, and both the SU’s

DS and BE services.

A. Primary User Activity

To capture all the channels’ ON/OFF behavior according to the PUs’ occupancy, we

build a Markov chain for each PU based on their arrival and service processes. Let Nn(t)

denote the number of packets in the queue of PU n. Then, Nn(t) follows a Markov chain

with state space {kp, 0 ≤ kp ≤ Kp + 1}, and the transition matrix of Nn(t) is:

Pn =


ᾱn αn

ᾱnβn ᾱnβ̄n + αnβn αnβ̄n
. . . . . . . . .

ᾱnβn ᾱnβ̄n + αn


, (3.4)

where ᾱn = 1− αn and β̄ = 1− βn. The derivation process considers following cases.

• The state of Nn(t) stays zero when the queue length of channel n is zero at time k

and remains zero at time k + 1, which means that no packet arrives at the beginning

of slot k + 1. The probability that no packet arrives is ᾱn.

• The state of Nn(t) transitions from 0 to 1, if one packet arrives. The probability is

αn.
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• The state of Nn(t) transitions from 1 to 0, if no packet arrives and one packet leaves.

The probability is ᾱnβn. The same probability applies when the state of NN(t)

transitions from any n ≥ 1 to n− 1.

• If the state of Nn(t) stays at n 6= 0 , it means that no packet arrives and no packet

leaves with a probability of ᾱnβ̄n, or one packet arrives and one packet leaves with a

probability of αnβn. Thus, the overall transition probability is ᾱnβ̄n + αnβn.

• The state of Nn(t) transitions from n ≥ 1 to n + 1 , if one packet arrives and no

packet leaves. The probability is αnβ̄n.

• If the state ofNn(t) stays atK , it means that one packet arrives and no packet leaves,

or one packet arrives but the buffer is full. The overall probability is ᾱnβ̄n + αn.

Let x(k)
i be the probability that there are i packets in the queue of PU n at time slot k,

and x(k) = [x
(k)
0 , x

(k)
1 , . . .]. Then we have

x(k+1) = x(k)Pn or x(k+1) = x(0)Pn
k+1. (3.5)

Given that each PU’s queue is stable, there exists a steady state distribution x =

[π0, π1, . . . , πK ] such that

xPn = x, x1 = 1. (3.6)

The vector x can be solved by applying the Matrix-analytic approach [58].

Given the transition matrix of Nn(t), n = 1, 2, . . . , N , we can derive the transition

matrix for each PU channel’s ON/OFF states, where OFF denotes that the channel is idle,

i.e., the number of packets in the PU buffer is 0, and ON otherwise. We can rewrite the

transition matrix (3.4) in the following format:

Pn =

 ᾱn αnφ

v V

 ,
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where φ = [1, 0 . . . , 0] with a dimension of Kp, V is a Kp ×Kp matrix as:

V =


ᾱnβ̄n + αnβn αnβ̄n

ᾱnβn ᾱnβ̄n + αnβn αnβ̄n
. . . . . . . . .

ᾱnβn ᾱnβ̄n + αn


,

v = 1 − V 1, where 1 is a K-dimensional column vector. Let v = [v1, . . . , vK ] and

V = [V1, . . . ,VK ]. We use 0 to denote the OFF state and 1 for the ON state. Then the

transition probabilities of channel n between ON/OFF states can be calculated as:

P00 = π0ᾱn, P01 = π0αnφe,

P10 =

∑K
i=1 πivi∑K
i=1 πi

, P11 =

∑K
i=1 πiV e∑K
i=1 πi

.

B. Queueing Analysis of the DS Service

To make channel selection decision for the DS packets, we need to consider the PU’s

activity, i.e., each channel’s ON/OFF state, each channel’s service rate, and the number of

packets in each high priority queue. With this consideration, we develop a queueing model

that combine all these three factors. Since the DS packets have a higher priority than the

BE packets, the BE packets in the low priority queue have no influence on the transmission

of the DS packets.

Define χ(t) = (χ1(t), . . . , χN(t)) as the overall system state for the DS packets at the

t-th slot, where χn(t) = (QHn(t), Sn(t)) denotes the system state of channel n. Let aH(n)

and bH(n) be the DS packets’ arrival probability and departure probability, respectively, in

each time slot at channel n. Define khn and sn as the number of packets in queue BHn and

the state of channel n, respectively. Then it is easy to prove that χn(t) is a discrete time

Markov chain (DTMC), and its state space is ∆ = {(khn, sn)|0 ≤ khn ≤ KH + 1, sn =
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0 or 1}. Therefore, the transition matrix for χn(t) can be derived as:

Pχn =



B1 B0

A2 A1 A0

A2 A1 A0

. . . . . . . . .

A2 A1 + A0


, (3.7)

where

B1 = p̄H

P00 P01

P10 P11

 , B0 = pH

P00 P01

P10 P11

 ,

A2 =

ās(n)bs(n)P00 ās(n)bs(n)P01

0 0

 ,

A0 =

as(n)b̄s(n)P00 as(n)b̄s(n)P01

as(n)P10 as(n)P11

 ,

A1 =

P(khn,0)→(khn,0) P(khn,0)→(khn,1)

P(khn,1)→(khn,0) P(khn,1)→(khn,1)

 ,
with

P(khn,0)→(khn,0) = (ās(n)b̄s(n) + as(n)bs(n))P00,

P(khn,0)→(khn,1) = (ās(n)b̄s(n) + as(n)bs(n))P01,

P(khn,1)→(khn,0) = ās(n)P10, P(khn,1)→(khn,1) = ās(n)P11.

The submatrices in (3.7) are explained as follows:

• B1 is a block that denotes the probability of QHn(t) remaining at zero at time k and

k + 1, while the channel state is changing between ON and OFF. Since the arrival
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process is independent from the channel states, B1 can be represented by the product

of the probability of no arrival in one slot p̄H and the transition matrix of the channel

state.

• Block B0 denotes the probability that the state of QHn(t) increases by 1 from zero in

two consecutive time slots. This event means that there is one arriving DS packet.

• BlockA2 denotes the transition ofQHn(t) from state khn to state khn−1 while kkn >

0. Thus, if the channel is OFF, the transition happens when one packet completes

service and no new packet arrives. If the channel state is ON, since no packets can

be transmitted, the probability of having one less packet in the queue is 0.

• Block A1 denotes that the state of QHn(t) remains unchanged from one slot to the

next one when kkn > 0. When the channel is OFF, the transition can happen when

no packet leaves and no packet arrives, or one packet arrives and one packet leaves.

When the channel is ON, it can happen only when no packet arrives.

• Block A0 denotes that the state of QHn(t) increases by one when kkn > 0. The

transmission becomes feasible only when one packet arrives while no packet leaves

or there is one packet arrived.

C. Queueing Analysis of the BE Service

The delay of the BE packets in the low priority queue is influenced by the BE packets

that are already in the queue, the DS packets that are already in the high priority queue,

the newly arriving DS packets during waiting time, the channel states and the service rates.

In order to study the queueing dynamics of the BE service, we propose a Markov analysis

model which combines the high priority queue for DS packets and the low priority queue

for BE packets with the ON/OFF server.

Define a Markov chain ψ(t) = (ψ1(t), . . . , ψN(t)) as the overall system state for the

BE packets at the t-th slot, where ψn(t) = (QLn(t), QHn(t), Sn(t)) is the system state

of channel n. Let kln and khn denote the number of packets in the high and low priority
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queues, respectively, and sn denote the channel state. The state space of this Markov chain

becomes ∆ = {(kln, khn, sn)|0 ≤ kln ≤ KL + 1, 0 ≤ khn ≤ KH + 1, sn = 0 or 1}. At each

time slot, the SU selects a target channel for the arriving BE packets after observing the

global system stateψ(t). Let aL(n) and bL(n) denote the arrival and departure probabilities

of the BE packets at each time slot for channel n, respectively. Then, the transition matrix

for ψn(t) can be formulated as:

Pψn =



B′1 B′0

A′2 A′1 A′0

A′2 A′1 A′0
. . . . . . . . .

A′2 A′1 + A′0


, (3.8)

where B′
1 = āLPχn ,B

′
0 = aLPχn , as(n) = aH(n), bs(n) = bH(n),

A′
2 =


B1

2 B0
2

0 0

. . . . . . ,

 , (3.9)

A′
1 =

 B1
1 B0

1

A2
1 A1

1 A0
1

. . . . . . . . .
A2

1 A1
1+A0

1

 ,A′
0 =

 B1
0 B0

0

A2
0 A1

0 A0
0

. . . . . . . . .
A2

0 A1
0+A0

0

 ,

B1
2 =

āL(n)bL(n)āH(n)P00 āL(n)bL(n)āH(n))P01

0 0

 ,

B0
2 =

āL(n)bL(n)aH(n)P00 āL(n)bL(n)aH(n)P01

0 0

 ,
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B1
0 =

aL(n)b̄L(n)āH(n)P00 aL(n)b̄L(n)āH(n)P01

aL(n)āH(n)P10 aL(n)āH(n)P11

 ,

B0
0 =

aL(n)b̄L(n)aH(n)P00 aL(n)b̄L(n)aH(n)P01

aL(n)aH(n)P10 aL(n)aH(n)P11

 ,

B1
1 =

B10
10 B11

10

B10
11 B11

11

 , B0
1 =

B00
10 B01

10

B00
11 B01

11

 ,
with

B10
10 = (āL(n)b̄L(n) + aL(n)bL(n))āH(n)P00,

B11
10 = (āL(n)b̄L(n) + aL(n)bL(n))āH(n)P01,

B10
11 = āL(n)āH(n)P10, B

11
11 = āL(n)āH(n)P11,

B00
10 = (āL(n)b̄L(n) + aL(n)bL(n))aH(n)P00,

B01
10 = (āL(n)b̄L(n) + aL(n)bL(n))aH(n)P01,

B00
11 = āL(n)aH(n)P10, B

01
11 = āL(n)aH(n)P11,

A2
1 = āL(n)A2, A

1
1 = āL(n)A1, A

0
1 = āL(n)A0,

A2
0 = aL(n)A2, A

1
0 = aL(n)A1, A

0
0 = aL(n)A0.

We use A′0 as an example to show the derivation processes of all submatrices.

BlockA′0 denotes the transition matrix ofQLn from state kln to state kln+1 when kln >

0, which further consists of several sub-blocks. The sub-block B1
0 denotes the probability

of QHn staying at 0. For the case that the channel state is OFF, one BE packet will receive

service since no DS packets is waiting, and the system state will transition from (kln, 0)

to (kln + 1, 0), kln > 0, under the conditions that the BE packet that is under service has

not been completed, a new BE packet arrives, and no DS packet arrives. For the case that

the channel state is ON, no packets can be served. Hence, the system state transitions from
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(kln, 0) to (kln + 1, 0) , kln > 0, if one BE packet arrives and there is no newly arrived DS

packet. When the channel state is ON, no BE packets can leave. Therefore, the state of

QLn increases by one only if one BE packet arrives. The development of sub-block B0
0 is

in a similar way, except that the state of QHn increases by 1 due to one DS packet’s arrival.

When QHn is larger than zero, i.e., there are packets in the high priority queue, the BE

packets can not be served. Therefore, only if one BE packet arrives, the state of QLn will

change from kln to kln + 1. Since the arrival process of BE packets is independent of the

service and arrival processes of the DS packets, sub-blockA2
0, A

1
0 andA2

0 can be represented

by the product of the BE packets’ arrival probability and the transition matricesA0, A1, and

A2 of the DS packets, respectively.

D. Problem Formulation

Given observed system states χ(t) and ψ(t), the SU makes channel selection decisions

for the DS and BE packets, respectively, according to a stationary policy defined below.

Definition 1. (Stationary Channel Selection Policy) A stationary channel selection

policy is a mapping from the system states to channel selection actions. The action space

is A = {0, 1, 2, . . . , n} where A = n, n 6= 0 means channel n is selected, A = 0 means

all the buffer is full and the packet is dropped. Only one channel can be selected for each

packet.

Denote ΩDS as a stationary policy for the DS packets. Given a feasible unichain policy

ΩDS , the induced Markov chain {χ(t)} is ergodic so that there exists a unique steady state

distribution π(ΩDS) [49]. Assume that the arrival rate falls inside the stability region of

the system and we use average queue length as an approximate measurement for average

delay [49]. The delay-optimal channel selection problem for the DS service is formulated

as the following optimization problem.

Problem 1. (Delay-Optimal Policy for the DS Services)

min
ΩDS

Eπ(ΩDS)[
∑
n

QHn]. (3.10)

where EΩDS denotes the expectation operator with respect to the probability measure
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induced by policy ΩDS .

Based on same analysis, the delay-optimal channel selection problem for the BE service

can be formulated.

Problem 2. (Delay-Optimal Policy for the BE Services)

min
ΩBE

Eπ(ΩBE)[
∑
n

QLn]. (3.11)

3.3 Markov Decision Problem Formulation

In this section we shall formulate the delay minimization problems in (3.10) and (3.11)

as infinite horizon Markov Decision Problems (MDPs) to obtain optimal policy channel

selection policies for both SU’s services.

A. MDP formulation for the DS services

A stationary control policy induces a random process χ(t). We can show that

χ(t) is a Markov chain. Let Pr[χ′|χ,ΩDS(χ)] represent the transition probability from

the current state χ to the next state χ′ when action ΩDS(χ) is taken, where ΩDS(χ)

represents the action that is taken based on policy ΩDS when the system state is χ.

The conditional transition probabilities Pr[χ′|χ,ΩDS(χ)] can be calculated based on

the queueing dynamics derived in the previous section. Specifically, for channel n, the

transition probability Pr[χ′n|χn,ΩDS(χ)] can be derived from (3.7) with

as(n) =


pH if ΩDS(χ) = n

0 otherwise
,

bs(n) = qHn.

It means that if channel n is selected as the transmission channel for the coming packet, the

probabilities of one packet arrives at the current time slot are pH at channel n, and 0 at any

other channel.

Since χn(t) is independent of n once the transmission channel is selected, the joint
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transition probabilities Pr[χ′|χ,ΩDS(χ)] can be derived through kronecker product of the

transition probability of each channel.

Pr[χ′|χ,ΩDS(χ)]

=Pr[χ′1|χ1,ΩDS(χ)]⊗ Pr[χ′2|χ2,ΩDS(χ)]⊗ . . .⊗ Pr[χ′N |χN ,ΩDS(χ)]. (3.12)

Hence, given a feasible unichain policy ΩDS , χ is a ergodic Markov chain and we can

rewrite the delay minimum problem for the DS service in (3.10) as a MDP problem

min
ΩDS

EΩDS [g(χ,ΩDS(χ),χ′)], (3.13)

where χ′ = {χ′1, . . . , χ′N} with χ′n = {Q′Hn, S ′n}, g(χ,ΩDS(χ),χ′) is the per-stage delay

cost which can be calculated as

g(χ,ΩDS(χ),χ′) =
∑
n

Q′Hn. (3.14)

The delay optimal policy ΩDS can be obtained by solving the following Bellman

equation [52]

θ + V (χ) = min
ΩDS

∑
χ′

Pr[χ′|χ,ΩDS(χ)][g(χ,ΩDS(χ),χ′) + V (χ′)]. (3.15)

If there exists a pair (θ∗, {V ∗(χ)}) satisfying (3.15), then θ∗ is the optimal average cost

(delay) per stage, V ∗(χ) is the total expected cost at the end of the process if it starts from

state χ. (θ∗, {V ∗(χ)}) can be obtained using relative value iteration. Once (θ∗, {V ∗(χ)})

is settled, the corresponding Ω∗DS is the optimal policy which can be obtained from

Ω∗DS = arg min
ΩDS

∑
χ′

Pr[χ′|χ,ΩDS(χ)][g(χ,ΩDS(χ),χ′) + V ∗(χ′)]. (3.16)

B. MDP formulation for the BE services

Using a similar method, we formulate the channel selection problem for the BE services

as the following MDP with state space ψ(t) = {QL(t),QH(t),S(t)} and action space A.

Define channel selection probability vector PΩDS = {p1, p2, . . . , pN} where pn denotes
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the probability that channel n is selected under policy ΩDS . Then the arrival process of the

DS packets at channel n follows Bernoulli process with a parameter pcH(n) = pH × pn.

Therefore, the state transition probability at channel n, Pr[ψ′n|ψn,ΩBE(ψ)], can be derived

from (3.8) with

aH(n) = pcH(n), bH(n) = qH(n), bL(n) = qL(n),

aL(n) =


pL if ΩBE(ψ) = n

0 otherwise
.

Since ψn(t) is an independent process at each channel, Pr[ψ′|ψ,ΩBE(ψ)] can be

calculated as

Pr[ψ′|ψ,ΩBE(ψ)]

=Pr[ψ′1|ψ1,ΩBE(ψ)]⊗ Pr[ψ′2|ψ2,ΩBE(ψ)]⊗ . . .⊗ Pr[ψ′N |ψN ,ΩBE(ψ)]. (3.17)

The minimum average delay problem for the BE service in (3.11) can also be

formulated as an MDP problem as follows.

min
ΩBE

EΩBE [g(ψ,ΩDS(ψ),ψ′)], (3.18)

where the per-stage delay cost is given as

g(ψ,ΩBE(ψ),ψ′) =
∑
n

Q′Ln. (3.19)

Thus the optimal policy for the BE packets and the minimum average delay cost θ′∗ can

be derived by solving the following Bellman equation with relative value iteration.

θ′ + V (ψ) = min
ΩBE

∑
ψ′

Pr[ψ′|ψ,ΩBE(ψ)][g(ψ,ΩBE(ψ),ψ′) + V (ψ′)]. (3.20)

For the system model defined, the total number of the system states of the DS and BE

services are (2(KH + 1))N and (2(KH + 1)(KL + 1))N , respectively. If we use relative

value iteration to solve the MDP problems in (3.15) and (3.20) and assume i and j iterations
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are needed to get the optimal policies, respectively, then the computational complexities for

solutions to (3.15) and (3.20) are O(iCHN(2(KH + 1))N) and O(jCLN(2(KH + 1)(kL +

1))N), respectively [59], where CH (CL) is the average number of nonzero entries per row

of (3.7) ((3.8)) with 4 < CH < 6 (12 < CL < 18).

3.4 Online R-learning Algorithm

In section 3.3, the MDP formulation is based on the assumption that both traffic and channel

characteristics are known. However, in practice, such information may not be always

available. To address this issue, in this section, we remove this assumption and introduce a

reinforcement learning (RL) algorithm, called R-learning, to solve the MDP problem only

based on perfect observations of the channels’ ON/OFF states.

Let c(x, a) be the immediate cost incurred by action a at state x. Since the traffic

characteristics are unknown, we define the immediate cost c(x, a) =
∑

nQHn if x ∈ χ,

and c(x, a) =
∑

nQLn if x ∈ ψ, for the DS and BE packets, respectively. Instead of

computing transition matrices and cost functions directly, R-learning is based on adaptive

iterative learning of the action value function Rt(x, a) and the average cost ρ. Here,

Rt(x, a) represents the average adjusted value of doing an action a at state x, and then

following policy Ω in the future steps. It can be defined as [57]:

RΩ(x, a) = c(x, a)− ρΩ +
∑
x′

Pr[x′|x, a]V Ω(x′), (3.21)

where V Ω(x′) = mina∈AR
Ω(x′), and ρΩ is the average cost under policy Ω.

The R-learning algorithm for solving (3.13) and (3.18) consists of the following steps:

1. At time t = 1, initialize all the values Rt(x, a) (e.g., 0) and average cost ρ = 0. Let

x denote the current state.

2. Choose non-exploratory action a according to (3.24) with probability θ, whereas with

probability 1− θ, choose exploratory action a uniformly from action space A.
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3. Carry out action a. Let the next state be x′. Update R values using the following rule

Rt+1(x, a) =Rt(x, a)(1− ηtr) + ηtr[c(x, a)− ρt + min
a∈A

Rt(x
′, a)]. (3.22)

If the non-exploratory action is selected, the average cost ρ is updated based on:

ρt+1 =ρt(1− ηρ) + ηρ[c(x, a) + min
a∈A

Rt(x
′, a)−min

a∈A
Rt(x, a)]. (3.23)

4. Set current state as x′ and t = t+ 1, and go to step 2.

In (3.22) and (3.23), 0 ≤ ηtr ≤ 1 and 0 ≤ ηρ ≤ 1 are the learning rates of the

action value R(x, a) and the average cost ρ. They represents how quickly the errors in

the estimated values are corrected.

We apply UE counter-based strategy as the exploration strategy. In this strategy, the

non-exploratory action a is picked according to the following equation.

a = arg minRt(x, a) +
c

Nt(x, a)
, (3.24)

where c is a constant, and Nt(x, a) represents the number of times that action a has been

tried in state x till time t. With probability 1− θ, a random action is selected. The learning

rate ηtρ for updating a particular R(x, a) value is calculated as follows:

ηtr(x, a) =
η0k

k +Nt(x, a)
, (3.25)

where η0 is the initial value of the ηr. According to (3.25), ηr is decayed based on the

number of updates of a particular R(x, a) value. Convergence is obtained after all the

state-action pairs are visited infinitely often. After the convergence, the optimal decision at

state x is arg mina∈AR(x, a).

3.5 A Myopic Method

Since the cardinality of the state space increases exponentially with the number of channels,

directly solving MDP suffers from the well-known “curse of dimensionality”. In addition,
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the computational complexity of R-learning is also very high with the increase of system

states because of the convergence condition. From an implementation perspective, it is

desirable to design a less-complex method with reasonable performance provisioning. In

this section, a myopic method is proposed to solve the delay minimum problems defined in

(3.15) and (3.20) with significantly reduced complexity.

Assume a DS packet J is sent to channel n by action an at time t and the current system

state of channel n is χn(t) = (QHn(t), Sn(t)). We also assume that a decision and its action

can be completed instantly. Then, after the arrival of the packet, the system state of channel

n changes to (QHn(t)+1, Sn(t)) immediately. We show that the sojourn time (i.e., the total

time the packet spends in the system) for packet J follows phase type distribution. Define

an absorbing Markov chain to represent the service process of packet J with QHn + 1

transient states {1, 2, . . . , QHn + 1} and one absorbing state {0}. Due to the FCFS policy,

only the packets that are ahead of packet J get served first, and hence the transient state

transition matrix becomes

T =


A1

A2 A1

. . . . . . ,

A2 A1


,

where A1 =

q̄nP00 q̄nP01

P10 P11

 andA2 =

qnP00 qnP01

0 0

 . Note that T is a substochastic

matrix. In addition, since the packets arriving later than packet J will not affect its sojourn

time, the packet arrival is not considered in the transition process. Block A1 denotes that

the queue length remains the same, or there is no packet leaving. Block A2 denotes the

transition probability that the number of DS packets in the queue decreases by 1, which

happens when one packet leaves the queue.

Let t = e1−Te1, where e1 is a 2(QHn+1)-dimensional column vector of ones. Denote

y as the initial vector, where the n-th element represents the probability that the system
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starts from a transient state n. Then, y is a row vector with a dimension of 2(QHn + 1). In

this case, y = [0, 0, . . . , 1, 0] when the channel state is idle or y = [0, 0, . . . , 0, 1] when the

channel state is busy. Thus, the probability that the sojourn time has a duration bi can be

calculated as

bi = yT i−1t, i ≥ 1. (3.26)

From (3.26), the mean sojourn time for packet J at channel n equals:

h(χn(t)) = y(I − T )−2t, (3.27)

where I is an identity matrix of size 2(QHn + 1).

The average sojourn time for each arriving BE packet can be derived in a similar way.

Assume a BE packet is assigned to channel n after observing the system state ψ(t). Then,

the service process of the BE packet can also be formulated to be a phase type distribution

with transient states {1, 2, . . . , QLn + 1} and an absorbing state {0}. The substochastic

transition matrix becomes:

T′ =


A′1

A′2 A′1
. . . . . . ,

A′2 A′1


,

where A′0, A
′
1 and A′2 are defined in section 3.2 with aH(n) = pcH(n), bL(n) =

qL(n), bH(n) = qH(n), aL(n) = 0. Therefore, the mean sojourn time for the arriving

packet is:

h(ψ, A′(t)) = y′(I − T ′)(−2)t′, (3.28)

where t′ = e2 − T ′e2, e2 is a 2(QLn + 1)(KH + 1)-dimensional column vector of ones,

and y′ is a 2(QLn + 1)(KH + 1)-dimensional row vector with element 1 at the start state

and 0 anywhere else.
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Note that (3.14) and (3.19) define the per-stage delay costs based on the assumption

that the channel selection probabilities are known. In addition, the mean sojourn times in

(3.27) and (3.28) are online estimations for the delay of each arriving packet based on both

the current system state and the possible future queueing dynamics.

We can now define the proposed myopic policy, which aims at minimizing the

immediate cost instead of considering the impact of the current action on the future.

Specifically, at each time slot, we first consider channel assignment for the arriving DS

packet. We calculate the mean sojourn time of each channel based on (3.27) and select the

channel that has the minimum value. We update the channel selection probability vector

P = {p1, . . . , pN} according to pn = Num(n)
Sum

, where Num(n) is the number of slots that

channel n is selected for the DS packets, and Sum is the total number of time slots so far.

After that, we compute the mean sojourn time of each channel for the BE packets using

(3.28) and select the channel with the minimum mean sojourn time for the newly arrived

BE packet. The myopic algorithm for the channel selection is summarized in Algorithm 1.

The computation complexities of the myopic algorithm are O((2(QHn + 1))3) and

O((2(QLn + 1)(KH + 1))3) at each time slot for the DS and BE packets, respectively. The

calculation mainly considers the computation complexity of (3.27) and (3.28). Obviously,

these complexities are much smaller than MDP solutions. In addition, the myopic

algorithm needs little storage space while a large storage space with size (2(KH + 1)(kL +

1))N+(2(KH+1))N is needed for solving the MDP problem by the relative value iteration.

3.6 Simulation Results

In this section, we compare the delay performance of the decision policies obtained from

the proposed schemes for both DS and BE packets via Matlab based simulation results.

For the case with full knowledge about the environment, we obtain the optimal policy by

solving the MDP problems using the relative value iteration (RVI).
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Algorithm 1 Myopic Channel Selection algorithm
1: procedure ONLINE CHANNEL SELECTION

2: Initialization: Nm := 0, Sum := 0, P := 0, pcH(1) := 1, pcH(n) := 0, n =
1, 2, 3 . . . , N .

3: for each time slot t do
4: for the arriving DS packets do
5: Obtain the system state information χ(t) = (QH(t),S(t)).
6: for each channel n ∈ N do
7: Update y, T, t base on QHn(t), Sn(t).
8: Compute the mean sojourn time for channel n using (3.27).
9: end for

10: Select the channel with the minimum mean sojourn time.
11: end for
12: for n = 1 : N do
13: if the n-th channel is chosen then
14: Num(n) = Num(n) + 1;
15: end if
16: Sum = Sum+ 1;
17: pn = Num(n)

Sum
;

18: pcH(n) = p× pn
19: end for
20: for the arriving BE packets do
21: Obtain the system state information ψ(t) = (QH(t),QL(t),S(t)).
22: for each channel n ∈ N do
23: Update y′, T ′, t′ base on QLn(t), QHn(t), Sn(t).
24: Compute the mean sojourn time for channel n using (3.28).
25: end for
26: Select the channel with the minimum mean sojourn time.
27: end for
28: end for
29: end procedure
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In the simulations, a CRN with one SU and N PUs is configured, where N is set to

3. The service rates for the SU’s packets and the PU’s packet at channel 1, 2 and 3 are

bH1 = bL1 = 0.8,bH2 = bL2 = 0.7, bH3 = bL3 = 0.4, and β1 = 0.85, β2 = 0.75, β3 = 0.55,

respectively. The default arrival rates of the packets of PU1, PU2, PU3 and SU’s DS packets

are α1 = 0.15, α2 = 0.1, α3 = 0.1 and pH = 0.2, respectively. For each simulation result,

one or two of these parameters vary at a time while others are kept same as default values.

The buffer lengths are set to Kp = 10, KH = 4, and KL = 5. Note that due to the high

computational complexity of the optimal MDP schemes, some simulation parameters are

set at small values to allow the simulation feasible. However, the observations are general

to other settings of simulation parameters. The parameters for the R-learning algorithm

are set as: c = 100, η0 = 0.5, k = 500 and ηρ = 0.05. The policy for the BE service is

carried out based on the cumulative reward obtained over 2,000 runs of 500,000 steps in the

R-learning algorithm. For comparison purpose, another spectrum decision method called

the shortest queue channel selection scheme is also simulated, where both the DS and BE

packets select the channel with the shortest queue length for transmission.

In Fig. 3.2, the delay performance of the proposed schemes is evaluated for the DS

packets. It can be seen that as the DS packets’ arrival rate increases, the average delay

increases. The simulation results of the optimal policy obtained by RVI can well match the

analytical results, which justifies the accuracy of our proposed analytical model. The R-

learning algorithm converges to the same optimal solution as RVI, while the performance of

the myopic algorithm is slightly worse than them. However, as the DS packets’ arrival rate

increases, the outperformance of the proposed schemes become more obvious compared to

the shortest queue scheme. This is because the shortest queue scheme only considers the

current queue length, which can not accurately represent the delay that the arriving packet

is actually going to experience, while the myopic scheme estimates the packet delay which

is more accurate for making decision. The MDP schemes perform best because it considers

both the current system state and the influence of the current channel selection on the future

packets.
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The DS Packets' Arrival Rate
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Figure 3.2: Average Delay for the DS packets with increasing arrival rate
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Figure 3.3: Average Delay for the DS packets with increasing PUs arrival rate
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In Fig. 3.3, the delay performance of the DS packets is evaluated when the PU’s

arrival rate changes. In our simulation, the arrival rates of PU1, PU2 and PU3 are set

to 0.03x, 0.04x, 0.06x (x = 1, . . . , 8), respectively. From the figure, it can be seen that the

average delay of the DS packets increases as PUs’ arrival rate increases. This is because as

PUs’ arrival rates increase, the channels’ idle probabilities decrease, which leads to longer

delay for the SU’s packets.
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Figure 3.4: Average Delay for the DS packets with increasing PUs arrival rate (Three channels)

We repeat a similar simulation as shown in Fig. 3.4, where all the PUs’ arrival rates

are set to be the same. Comparing Figs. 3.3 and 3.4, we can observe that the performance

gap between the shortest queue scheme and the proposed schemes under the heterogenous

channel conditions is larger than the homogeneous case. It is because when the channel

states become more heterogeneous, the influence of channel selection decision on the future

becomes stronger so that the schemes with the consideration of future work better.

In Fig. 3.5, the simulation is carried out under a two-channel scenario and homogeneous

PUs’ arrival rates are considered. Compared to Fig. 3.4, it can be seen that the performance
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PUs' Arrival Rate (Two Channels)
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

A
ve

ra
ge

 D
el

ay
 fo

r 
th

e 
D

S
 P

ac
ke

ts

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

RVI Simulation Result
RVI Analysis Result
R-learning Simulation Result
Myopic  Simulation Result
Shortest Queue Simulation Result

Figure 3.5: Average Delay for the DS packets with increasing PUs arrival rate (Two channels)

of the three methods becomes quite similar in this simulation. The reason is that the more

channels exist, the more heterogeneous the system may become and the more advantage

the MDP schemes may have.

Most importantly, from all the above figures, we can see that the performance of the

myopic algorithm is slightly worse compared to the optimum based on MDP, but is much

better than the shortest queue scheme. It is because the myopic method considers the

current decision on the future network evolution to some extend. By considering its low

computational complexity, the myopic scheme is more suitable for practical applications.

The delay performance of the proposed schemes for the BE packets are shown in Fig.

3.6. Similarly, the average delay of the BE packets increases as their arrival rate increases

and the MDP schemes perform the best among the three methods. It further justifies the

fact that the MDP schemes allocate the channel resources in the most efficient way among

all the schemes, so that both DS and BE services achieve the minimum delay. The myopic

scheme performs better than the shortest queue scheme when the BE packets’ arrival rate
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The BE Packets' Arrival Rate
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

A
ve

ra
ge

 D
el

ay
 o

f t
he

 B
E

 P
ac

ke
ts

1.9

2

2.1

2.2

2.3

2.4

2.5

RVI Simulation Result
RVI Analysis Result
R-learning Simulation Result
Myopic Simulation Result
Shortest Queue Simulation Result

Figure 3.6: Average Delay for the BE packets with increasing arrival rate

is small and two schemes achieve almost equal performance when the BE packets’ arrival

rate becomes large. In addition, the performance of the myopic scheme is much worse than

the optimum. The reason is that more resources are allocated to the DS services under the

myopic scheme, and hence as the arrival rate increases, the channel resources may become

scarce so as to cause larger delay to BE services.
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Chapter 4

Conclusions and Future Works

4.1 Conclusions

In this thesis, we firstly reviewed the characteristics and functions of CRNs. More

specifically, we introduced the general spectrum decision framework for CRNs and

provided a comprehensive literature review on channel selection. In chapter 2, we

explained some fundamental knowledge of MDP and RL which was used in chapter 3.

In chapter 3, channel selection policies were derived for the SU with multiple-class

services, based on which an optimal channel was selected upon each packet’s arrival. A

priority queue model with an ON/OFF server was proposed to analyze the evolvement of

queue lengths at each channel, with heterogenous PUs’ activities, channel conditions and

SU’s packets arrival rates considered. Based on the queueing analysis, an MDP method

was developed to obtain the minimum delay policies, according to which the SU’s DS and

BE services selected the best transmission channel for each packet. The problem in the

case with no prior knowledge about the environment was also solved using R-learning

algorithm. Simulation results showed that based on partial information the R-learning

algorithm could converge to the optimal result. To reduce complexity of solving the MDP

problems directly, we proposed a myopic algorithm where a decision was made based

on the estimated delay of the current packet. Simulation results also showed that the MDP
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schemes greatly improved the delay performance for both DS and BE services compared to

the shortest queue scheme, and the myopic scheme was able to achieve a better performance

for the DS services with a cost of longer delay for the BE services.

4.2 Future Works

In this section, some practical extensions, challenges that may occur for the extensions and

possible solutions are discussed for future research.

In our proposed channel selection scheme, the DS service is granted a higher priority

over the BE services on all available channels. However, in some applications, the BE

service may also have delay requirements even though not as strict as DS service. To

ensure delay requirements for the BE service, certain portion of available channels can be

reserved so that these channels will allow the BE service to have higher access priority

than the DS service. In this scheme, the decision policy for the BE packets will affect

the decision making for DS packets and thus spectrum decisions for both services will be

interacted which makes the channel selection problems difficult. Furthermore, the system

model can be extended to a CRN in which multiple SUs have heterogeneous packet arrival

distributions. Packets from different SUs with a same priority will be sent to the same queue

on each channel. Each SU performs as an independent decision maker to determine channel

selections. Since each SU’s spectrum decision depends on the other SUs’ decisions, the

problem becomes even more complex.

For both of the above extensions, reinforcement learning method can be applied to

find channel selection policies. In the first extension, the DS and BE services can learn

each other’s channel selection policies by interacting with the environment and adjust their

decisions. In the second extension, through reinforcement learning each SU learns the other

SUs’ channel selection strategies and arrival rates on each channel so that it can estimate

the average delay and make spectrum decisions.

In our current work, we only consider that the channel coefficients are i.i.d. among time
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slots. To be more practical, channel coefficients can be considered to be correlated among

time slots which will leads to correlated service rates. Therefore the number of channel

states will increase and the size of transition matrices will be greatly increased. As a result,

the computational complexity will be hugely increased as well. To address this issue MDP

approximation algorithms with state space reduction may be employed.

Full knowledge of all channel states is assumed in our work. However, acquiring such

knowledge is energy-hungry and hard-ware demanding, and thus low-cost and battery-

powered wireless nodes may have to employ partial spectrum monitoring (i.e., only sensing

part of channels). On the other hand, it is usually difficult for a real sensing equipment

to implement perfect sensing, which inevitably leads to some sensing errors. Under

partial spectrum monitoring and imperfect sensing, system states cannot be fully perfectly

observed. Our problem then becomes one of the POMDPs with uncertain channel states,

which is very challenging since POMDPs are often computationally intractable to solve

optimally. Again, some approximation methods suitable for this specific problem have to

be developed to reduce the computational complexity.
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