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ABSTRACT

Several analytical models of bifurcations, chaos and multifractals are proposed in this
thesis. To verify and access the performance of these models, comparisons with published
solutions are made whenever possible, otherwise, the analytically generated results are
compared with those obtained via numerical simulations. In all cases, good to excellent
agreements are observed. The research is divided into three parts: Part I describes models
for continuous systems, Part II characterizes models for discontinuous systems and Part

IIT introduces multifractal models for chaotic dynamics.

To study a continuous system, the Duffing oscillator is employed. The Chirikov overlap
criterion and the renormalization group technique are used to independently derive, for the
first time, the chaotic condition near a subharmonic resonant orbit of the undamped
Duffing oscillator. To analyze the stability and bifurcation of periodic solutions of the
damped Duffing oscillator with strong nonlinearities, an improved harmonic balance
method is proposed. The physical system studied is the buckling of a nonlinear rod and for
this structure, four types of Duffing oscillator are identified. Chaos in the weakly damped
Duffing oscillator is studied using the Melnikov method.

A new method based on the incremental energy approach is developed to model stochastic
layers near the homoclinic and the heteroclinic orbits, and also, resonant layers in the
vicinity of the resonant orbit. Analytical expressions for the strengths of these layers are
dertved. In the case of the stochastic layers, the outer and inner strengths for the Duffing

and forced planar-pendulum oscillators are obtained, and for the resonant layers, the



Abstract iv

appearance, disappearance and accumulated disappearance strengths for the Duffing
oscillator are determined. Employing a Naive discretization of the differential equation of
motion of the Duffing oscillator and the subsequent application of the cubic
renormalization on its discrete mapping, the universal character of the oscillator is studied
for the first time. The jump phenomenon and the strange attractor are clearly seen in the

cascades of bifurcations.

To examine a discontinuous system, the impact oscillator is used. Based on the differential
equation of motion of a ball bouncing on a massive vibrating table, the stability and
bifurcation conditions are derived for the first time. Analyzing the mappings of the motion,
three types of stable motion and two types of unstable motion are found. From the
Poincare mappings of the unstable period-1 motion, the two saddles are shown to possess
identical Smale horseshoe structures. However, this is not necessarily true for the higher
periodic solutions. Another example of a discontinuous system is that of a horizontal
impact pair. A theory for a system with discontinuities and applied to the impact analysis
of a horizontal impact pair is developed. Mappings for four switch planes are defined and
from these, five impact motions; Model I, Model II, Model III, Model IV and Model V
are derived. One of the findings here is that period doubling bifurcations cannot occur for

equispaced impacts of the Model I motion.

A highly accurate method for the analysis of period doubling bifurcations in 1-D iterative
maps is proposed. The technique consists of constructing similar structures of the period
doubling solutions and applying a renormalization procedure to evaluate the appropriate
length scaling factors. An example is solved to demonstrate and assess the accuracy of the
procedure. The weight parameter function, several generalized fractal dimensions, the

scaling index and the fractal spectrum functions are derived.

To develop a theory for multifractals in chaotic dynamics, the m-D horseshoe map is

adopted. The results for 1-D uniform and nonuniform Cantor sets are first derived, and



Abstract v

then extended to handle 2-D uniform and nonuniform Smale horseshoes. Fractal
characteristics for the invariant sets generated via the Cantor sets and Smale horseshoes

can be easily determined using this new theory.

One of the key features of the analytical models developed for the study of the various
nonlinear dynamics phenomena is that bifurcations and the onset of chaos can be
theoretically predicted by employing computed instead of prescribed input parameters in
numerical simulations. This ability is very beneficial as it can significantly reduce the

amount of numerical experimentations.
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PARTI CONTINUOUS SYSTEM: DUFFING OSCILLATOR

A Cross-section area, response amplitude of vibration.
C r-times differentiable.

ds Differential arch-length.

dx Differential element.

Det(-) Determinant of matrix.
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E(k) Complete elliptic integral of the second kind.

H Hamiltonian energy function.

Hy Conservative energy.

H, External energy.

I Moment of inertia.
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K(k) Complete elliptic integral of the first kind.
/ Length of the nonlinear rod.

m Modal number.

M Bending moment of the nonlinear rod.

P Axial load.

9o Static load.

Oo Excitation amplitude.

q(f)  Lateral load or phase orbits.

f Time variable
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T Period of vibration.
Tr() Trace of matrix.
u(f)  Coefficient in the method of harmonic balance.
W)  Coefficient in the method of harmonic balance.
w Lateral deflection of the nonlinear rod.
X(7) Axial distributing load in the x-direction.
Y(¢) Axial distributing load in the y-direction.
a Coefficient for the forced planar-pendulum oscillator.
a Linear stiffness of the Duffing oscillator.
o Nonlinear coefficient in the Duffing oscillator.
Damping coefficient.
Poincare mapping section.
Nonlinear frequency.

o

z

)

0 Excitation frequency.
N Intersection.

v

Contained in.

IS A member of,
\v4 For all.
3 There is.

PARTII DISCONTINUOUS SYSTEMS: IMPACT OSCILLATORS

A Amplitude of excitation.

d Gap.

Det(-) Determinant of matrix

DP  Jacobian of the mapping P.

e Coefficient of restitution.
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Mass of the vibrating table.
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Time variable.
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Element of switch plane £* or Z7or X.
Absolute displacement of impact ball.
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Frequency of excitation.

ith frequency of excitation.

A member of.

Contained in.
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PARTIII DISCONTINUOUS SYSTEMS: IMPACT OSCILLATORS
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Dy Hausdorff dimension.

D, Information dimension.

Dy Correlation dimension.
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I Mapping function, fractal spectrum.
Vi k-times mapping.
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3
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S

N Number of nonempty objects.

Di Action probability.

q Order g of moment.
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o4 Scaling (fractal) index.
y7 Parameter.
IT Products.
T Weight (auxiliary) parameter.
€ Member of.
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CHAPTER 1

INTRODUCTION

1.1 Literature Survey

The advent of powerful and affordable computers during the past two decades was the
major impetus towards the rapid growth and development in nonlinear dynamics. This
emergence created increased awareness which in turn, led to an expanding number of
applications in engineering. Chaotic phenomena in completely deterministic systems arise
from the nonlinearities present in the systems. These nonlinearities include the following:
geometrical nonlinearities, material nonlinearities, dissipative nonlinearities (e.g., structural
damping, fluid damping, dry friction), motion nonlinearities (e.g., impacts, clearance,
backlash, play), boundary condition nonlinearities, coupled system nonlinearities (e.g.,
fluid-solid coupling, mechanical-electrical coupling), feedback control nonlinearities,
(Moon (1987)). Since nonlinearities are unavoidable, engineers have come to recognize
chaotic vibrations and accept that the ensuing stochastic motion can exist in deterministic
systems. Therefore, it is the objective of engineering-based nonlinear dynamics not only to
study and comprehend these complex phenomena, but also to learn how to control them.
To achieve this, it is crucial that engineers keep abreast of the new developments and
discoveries that are taking place with great vigor in this area. New concepts for modeling
bifurcations and chaotic vibrations, modern techniques of chaos detection, quantification
and characterization, and the evolution of highly sophisticated mathematical and numerical
tools constitute the bulk of current research in nonlinear dynamics. Indeed, the use of

computer simulations, coupled with powerful analysis methods meant that realistic
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problems can now be adequately and accurately investigated.

One of the first persons to notice the dynamical instability arising from the sensitive
dependency on initial conditions was Hadamard (1901), in his work on the geodesic flow
on compact surfaces, towards the end of the 19th century. This feature was also observed
by Poincare (1899) who around this time, formulated a theory for the perturbative analysis
of planetary orbits. Unfortunately, these work slipped into obscurity for just over half a
century later, until Lorenz (1963) employed a high-speed computer to model weather
patterns via the Rayleigh-Benard convection equations. He not only re-confirmed the
sensitivity of nonlinear systems to initial conditions (now popularly known as the butterfly
effect), but also demonstrated the first chaotic solutions through numerical simulations.
Henon and Heiles (1964) also used numerical techniques to study the motion in a two-
dimensional potential well, as an example of a two-degree of freedom system. New
analytical tools were also being introduced. Based on the conjecture of Kolmogorov
(1954), Arnold (1963) proved that for an analytically perturbed Hamiltonian and also,
Moser (1962) for a sufficient number of continuous derivatives, a very fundamental result
concerning orbit stability which is now accorded the name KAM theorem in their honor. It
states that when an integrable Hamiltonian system is given a small perturbation, invariant
tori continue to exist. This implies that the stochastic motion near the separatrix of each
resonance is still constrained by KAM curves and is valid only for sufficiently
incommensurable orbits. For commensurate orbits, one can resort to the Poincare-Birkhoff
fixed point theorem. Melnikov (1963) presented a criterion which predicts the onset of
chaos near the separatrix of an integrable dissipative system. It can be used to investigate
the bifurcation to subharmonic and homoclinic orbits. Morosov (1973) and Holmes (1979)

applied the method to study the Duffing equation.

By the late 1960’s, research in nonlinear dynamics had moved into high-gear and with
even greater vigor. Smale (1967) described strange attractors in dynamical systems, but it

was Ruelle and Takens (1971) who actually introduced the term, strange attractor, in
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their work on flow turbulence. They suggested that the behavior of turbulent flow is due
to a strange attractor regime in the Navier-Stokes equation. Feigenbaum (1978)
discovered universality and scaling in sequences of period doubling bifurcations to chaos.
Earlier on, May (1976) had demonstrated this route to chaos via a one-dimensional
quadratic map for modeling population growth. One could generalize the results for a
wider class of one-dimensional maps by employing the renormalization technique. This
has been shown by Collet, Eckmann and Lanford (1980) using an exact renormalization
theory, and by Helleman (1980) based on an approximate model. One could also utilize
renormalization to deduce universality in global bifurcations. Luo and Han (1992a)
constructed self-similar structures of the period doubling solutions and obtained
multifractal results of very high precision using a renormalization procedure. Chirikov
(1979) presented an improved overlap criterion, to study the transition to conservative
global chaos. He observed that between the two lowest order resonances, chaos occurs
when the distance between these resonances is greater than the sum of half the vertical
distances of the two island separatrices formed by the resonances. In other words, when
the two island separatrices overlap, chaos occurs, and when they are just touching, the last
KAM torus is destroyed. For higher accuracy, it is necessary to include the width of the

stochastic layer and the secondary resonances lying in-between the main ones.

Probabilistic methods for handling the stochastic motion are a logical development in
chaos modeling. Hsu (1981) introduced the concept of cell-to-cell mapping by dividing the
phase space into many cells, then applying probabilistic methods (for Markov processes)
to analyze chaos. Symbolic dynamics is another area of current interest. Pioneering work
was first carried out by Frechet (1938) and more recently, by Devaney (1986) and Hao
(1989). The procedure involves not only discretizing the time domain, but also the state
variables. With this approach, the state variables can take a finite set of values and this
permits the use of symbols such as L, C, R to denote Left, Center and Right of the map for
a given orbit. Kluiving, Capel and Pasmanter (1992a, b) applied the method to analyze
fully developed chaos via a statistical technique. Recently, Benedicks (1994) presented a
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survey of the more recent developments in the ergodic theory of chaos and strange

attractors. His work focused on the non-uniformly hyperbolic dynamical systems.

With the proliferation of powerful and affordable computers, the analysis of actual
observed chaotic time series data is now becoming increasingly important. An excellent
review in this area is given in a recent publication of Babarbanel, Brown, Sidorowich and
Tsimring (1993). Masri, Chassiakos and Caughey (1993) applied the method of neural
networks for the identification of nonlinear dynamical systems, specifically, a damped
Duffing oscillator. Through neural networks we can have parallel information processing
of the immense chaos data and the benefit is obvious. Bressloff and Stark (1991) described
the relationship between neural networks and [terated Function Systems (IFS) which are
basically, finite sets of mappings in some metric space. IFS has the distinct advantage of
being able to describe an extremely complex image using a relatively small number of
parameters and thus, when combined with neural networks, the method can be very useful
and efficient for analyzing chaos and for generating fractal images. We are not aware of
anyone working in this exciting area of research which combines neural networks with IFS

for chaos modeling, and we feel there is great potential in doing so.

Although fractals have been known to mathematicians and artists for hundreds of years, it
was only in the mid-seventies of this century that the concept was introduced to describe
the nature by Mandelbrot (1977). Several books have since been published. For example,
see Mandelbrot (1977, 1982) for a good and original introduction of the basic concepts;
Feder (1988) and Falconer (1990) for a mathematical foundation of the fractal theory;
Bunde and Havlin (1991) for a summary of papers on the use of fractals in disordered
structures and random processes; and Schroeder (1991) for a discussion of fractal
phenomena in nature. Naturally, there has been countless articles in this fast developing
area. Among the interesting ones are, Herrmann (1991) for a description of fractals in
modeling material fracture and crack growth; Gouyet, Rosso and Sapoval (1991) for the
use of fractals in surface roughness modeling; Luo (1991) and, Leung and Luo (1992) for
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the generation of multifractals via multigenerators; Olemskoi and Flat (1993) for the
development of fractals in condensed matter; and, Meneveau et. al (1990) for the
application of fractals in turbulence; and Borgas (1993) for a survey of multifractals in

small-scale dynamics of turbulent flows.

With respect to fractals in chaotic dynamics, it is well known that chaotic dynamics
possess characteristics of self-similar structures which is an essential property of fractals.
Therefore, fractal dimension measurements can be used to describe strange attractors (see
Moon (1987)). Statistical mechanics can be formulated completely in which a single-
particle energy is the Lyapunov exponent for a given trajectory and the lattice
configuration is identified as the symbolic sequence of the iterative map. Several
researchers have applied ergodic theory and statistical thermodynamic approaches to
determine chaotic behavior, see for instance, Eckman and Ruelle (1985); Szepfalusy and
Tel (1989); and, Shigmatsa (1990). Others such as Mori et al. (1989) and Kobayashi et al.
(1989) studied the statistical characteristics of chaotic phenomena; and Kluiving et al
(1990) described the scaling structures of chaos and the use of phase transition methods.
Specific developments of fractal theory in chaotic dynamics are summarized as follows.
Renyi (1971) expressed the generalized Hausdorff dimension using concepts based on
generalized entropies. Grassberger and Procaccia (1983a) employed these ideas to study
the complexities of chaotic attractors (or strange attractors) since these attractors exhibit
self-similarity. In their work on the singularities of strange attractors, Halsey et al. (1986)
presented a generalization of multifractals via a scaling analogy of the phase transitions.
They applied the multifractal theory to several simple cases of chaotic dynamics for 1-D
problems. The variations of Lyapunov exponents with initial conditions generate
multiscale fractals and based on this idea, McCauley (1990) presented a detailed
introduction to multifractals in dynamical systems. Considering the fractality of chaotic
structures in 1-D dynamical system, Bene and Szepfalusy (1988) and, Szepfalusy and Tel
(1989) studied the multifractal properties of 1-D random field Ising models and 1-D maps.

A highly accurate method to compute period doubling bifurcation solutions of a general 1-
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D iterative map was presented by Luo and Han (1992a). For period doubling bifurcations
leading to chaos, this approach yields very accurate multifractal results compared to say,
the analytical technique of Halsey et al. (1986). This is evident by comparing with the
experimental results reported by Glazier et al. (1986). Luo and Han (1992b) presented
some ideas on the fractality of multi-dimensional horseshoe maps for chaotic dynamics. In
another publication, Luo and Han (1995d) introduced a new definition for
multidimensional fractals based on the 1-D multifractal theory for the analysis of

horseshoe maps.

1.2 Continuous and Discrete Systems in Engineering

In the previous section, we presented development histories of bifurcations, chaos and
fractals. Next, we consider continuous and discrete systems as modeled by the Duffing

oscillator and an impact oscillator respectively.

1.2.1 Duffing oscillators

Consider the following damped Duffing oscillator subjected to a periodic forcing function:
X+8& +x* =Q, cost, (1.1)

where x is the displacement and the dot denotes time derivatives. The parameters 8 and O,

represent the damping constant and excitation amplitude respectively. The behavior of the
solutions for this nonlinear oscillator was first investigated by Duffing (1918) (hence its

name). The generalized form of Equation (1.1), namely,
X+ & +ax+a,x’ = f(1), (1.2)

can be used to capture the nonlinear vibration of structural elements such as springs,

beams, plates and shells. Note that ¢, and ¢, are appropriate system parameters.
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Using traditional techniques, Hayashi (1964) employed the method of harmonic balance to
determine its periodic solution and the amplitude-frequency curves. In addition, using the
technique of Poincare mapping, he provided topological portraits in phase space for the
strongly nonlinear and forced oscillations. Recently, Debnath and Chowdhury (1991),
Wang et al. (1992) etc. studied the bifurcations for the periodic solution of the Duffing
oscillator. Luo and Han (1995b) considered the stability and bifurcations for periodic

solutions of the Duffing oscillator.

In the study of chaos, the behavior of undamped and damped systems is quite different.
For an undamped Duffing oscillator, Reichl and Zhang (1984a, b) used Chirikov
resonance overlap criteria to compute the width of the stochastic layer for the double-well
problem near its homoclinic orbit. They verified their calculations of the width of the
stochastic layer by using an alternative approach involving standard mappings. Han and
Luo (1994) employed this technique to calculate critical conditions for the ensuing global
stochasticity near the subharmonic resonant orbits. Luo, Han and Xiang (1995)
determined the critical condition of an undamped Duffing oscillator via the
renormalization technique. Applying the universality of the standard mapping, Luo(1993b,
1994) devised a prediction method for determining the minimum critical condition for the
onset of global stochasticity near the subharmonic resonant orbits. For the damped
oscillator, using a one-mode model of a buckled beam and the Melnikov method, Moon
and Holmes (1979), Moon (1980), and Holmes and Moon (1983) presented an
approximate analytic criterion for the onset of chaos. To further understand the chaotic
characteristics, Luo and Han (1995d) employed an approximate renormalization approach
to explore the universal behavior of a damped Duffing oscillator. Moon and Holmes
(1979) and Moon (1980a, b) demonstrated chaos in a damped oscillator via experiments
by studying the buckling of an elastic cantilevered beam in a magnetic field. Using
numerical simulation of the Poincare mapping section, Ueda (1980a, b) demonstrated
steady-state chaos and strange attractors. Other important numerical works were reported

by Dowell (1982, 1984), Moon and Li (1985a, b), Dowell and Pezeshi (1986) in their
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study of the double-well problem.

1.2.2 Impact Oscillators

Discontinuous systems are commonly encountered in engineering. Many physical systems
have operational constraints in their dynamical behavior, and therefore, result in
discontinuities or intermittencies in their motions. Examples include constrained vibrating
beams, moored ships in rough sea states, the rattling of gears, and the bouncing of balls.
Impact oscillators constitute an important class of non-smooth dynamical systems. A
formal definition of an impact oscillator was recently forwarded by Bishop (1994) to
represent a periodically ‘driven system which also exhibits intermittence or a continuous
sequence of contacts with motion limiting constraints. Impact oscillators not only produce
typical characteristics associated with smooth nonlinear systems, for example, generic
bifurcations, multiple solutions and chaos, but also displays new phenomena such as

grazing bifurcations.

In mechanical vibrations, noise and wear are often attributed to impacts in machinery. The
increase in impact forces due to clearances was evaluated by Johnson (1958); Dubowsky
and Freudenstein (1971); Dubowsky and Moening (1978); Haines (1979). Rattling of
gears was investigated using an impact model by Pfeiffer and Kunert (1990) and the action
of print hammers was studied by Hendricks (1983). In the area of fluid-induced impacts, a
moored ship undergoing repeated contacts with the fender was investigated by Lean
(1971), wave forces on structures was studied by Thompson and Ghaffari (1982) and
Paidoussis and Li (1992) researched on vibration of fluid-filled tubes. In earthquake
engineering, Housner (1963) investigated the behavior of buildings under random
excitations. Stability analysis of impact dampers have been investigated by many people,
starting with Masri and Caughey (1966); Bapat, Popplewell and Mclachlan (1983); Bapat
and Bapat (1988); Heiman, Bajaj and Sherman (1987); and Han, Luo and Deng (1994).

Bifurcation and chaos in impact oscillators have been studied by Shaw and Holmes
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(1983a, b); Shaw (1985a, b); Nordmark (1991); Foale and Bishop (1992) Peterka and
Vacik (1992) and also, by Han, Luo and Deng (1995). A very interesting impact model
was studied by Holmes (1982); Tufillaro and Albano (1986); Everson (1986); and
Whiston (1992) using a bouncing ball. Further improvement of this model was introduced
by Luo and Han (1994a). The impacts of a constrained driven pendulum was analyzed by
Shaw and Shaw (1989). In experimental studies of impact oscillators, models subjected to
random forcing were studied by Davies (1980); and Wood and Byrne (1981); and
pendulum-type models by Moore and Shaw (1990); and Bayly and Virgin(1993).

1.3 Basic Theories in Bifurcation, Chaos and Fractals

To avoid cluttering this doctoral dissertation with unnecessary material, the basic theories
in bifurcation, chaos and fractals are described in Appendix A. Since many of the materials
covered are expressed in a form not readily found in books and other publications, I have

presented a detailed report in an invited state-of-the-art-review in Han and Luo (1995c).

1.4 Thesis Objective and Scope of Study

The objective of this doctoral thesis research is to carry out analytical studies of
bifurcations, chaos and multifractals for nonlinear dynamic problems arising from
engineering applications. The work consists of research and development of theoretical
models to study these phenomena, in order to achieve a better understanding of their
mathematical and statistical structures. Numerical simulations are employed to verify and

assess the performance of these models.

The scope of study includes the following areas:
o Investigation of stability and bifurcation of periodic solutions, and the development of
chaotic conditions for a continuous system via the Duffing oscillator.

e Investigation of stability and bifurcation of periodic solutions for a discrete system
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such as the horizontal impact pair and the bouncing ball. Work also includes research
in the universality of the Duffing oscillator via a discrete mapping.

e Development of multifractal theories for 1-D and 2-D chaotic dynamics.

1.5 Organization of Thesis

The body of this thesis, not including /nfroduction and Conclusion, consists of three main
parts distributed into 9 chapters. Part I, consisting of 5 chapters, describes the nonlinear
dynamical behavior of continuous systems modeled by the Duffing equation; Part II,
comprising 2 chapters, discusses similar nonlinear behavior but for the discrete systems
modeled by impact oscillators; and finally, Part ITI, composing of 2 chapters, introduces

fractals and their applications in chaotic dynamics. The details are as follows:

In Chapter 1, an introduction of the doctoral research by presenting a literature survey of
the major recent developments in bifurcation, chaos and fractal modeling is presented.

Additionally, the thesis objective and scope of study are discussed.

In Chapter 2, the stability and bifurcations of periodic solutions for a nonlinear rod
modeled by the Duffing equation are studied. Analytical results are obtained using the
method of harmonic balance. Verification of the analytical result is carried out via

numerical experimentations.

In Chapter 3, the theoretical chaotic conditions for the Duffing oscillator are derived
based on an energy approach. Four types of Duffing oscillators including both undamped
and damped systems, are identified. For the undamped system, the Chirikov overlap
criterion approach and the renormalization group technique are used. For the damped
system, the Melnikov method is employed. As before, verification through numerical

simulations are performed.
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In Chapter 4, an incremental energy method is presented to determine the critical
conditions for predicting stochastic layers in forced Hamiltonian systems near their
homoclinic/heteroclinic orbits. Stochastic layers for an undamped Duffing oscillator and
also, an undamped forced planar-pendulum oscillator are investigated. The former
represents the computation of the stochastic layer for the homoclinic orbit and the latter,
for the heteroclinic orbit. Both the appearance and disappearance strengths of the
stochastic layer for these two oscillators are determined. Numerical simulations for the

two models are carried out for the purpose of model verification.

In Chapter 5, resonant layers near the resonant orbits for the undamped Duffing oscillator
are investigated. Approximate conditions for predicting the appearance and disappearance
of these resonance layers are established by the use of an incremental energy method.
Once again, four types of the undamped Duffing oscillator are investigated. The results are
compared not only with similar results computed via the Chirikov overlap criterion and the

renormalization group technique but also with numerical simulations.

In Chapter 6, a qualitative investigation of the universal character of the damped Duffing
oscillator is presented. The onset of chaos via period-doubling bifurcation of the
discretized Duffing oscillator is predicted. Applying cubic renormalization to the discrete
mapping of the Duffing oscillator, self-similarity leading to whole sequences of period
doubling bifurcations is demonstrated. Numerical investigations are also carried out to

observe the chaotic attractors of the damped Duffing oscillator.

In Chapter 7, the dynamics of a bouncing ball is revisited by computing its exact periodic
solutions, stability and bifurcation conditions. The basic mapping and its Poincare mapping
sections are established to facilitate the study of the regular and chaotic motions of the
ball. Numerical experimentation is performed not only for the purpose of comparison with
analytical results but kalso, to observe the chaotic attractors. Finally, physical motion

associated with both the periodic and the chaotic motion are also plotted.
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In Chapter 8, the dynamics of a horizontal impact pair subjected to a periodic base
excitation is investigated. Based on its motion characteristics, mappings for four switch-
planes are defined. From these mappings, five possible impact motions, Model I to V, are
developed. The most studied model is the Model I motion which includes both the

equispaced and non-equispaced impacts. Numerical simulations are also presented.

In Chapter 9, a highly accurate method to compute the period doubling bifurcation of a
general 1-D iterative map is presented. The technique consists of constructing similar
structures of the period doubling solutions and then applying a renormalization procedure
to evaluate the appropriate length scaling factors. For period doubling bifurcations leading
to chaos, this approach yields multifractal results of very high precision compared with the

traditional multifractal analysis alone.

In Chapter 10, a new fractal theory is developed via a 1-D multifractal model. Application
to Smale horseshoe invariant sets in chaotic dynamics is also carried out. Multifractal
characteristics of these invariant sets generated by 1-D and 2-D horseshoe maps in chaotic

dynamics are easily and directly determined.

In Chapter 11, several important results and observations of this doctoral research are

summarized. In addition, further research is suggested.



PARTI
CONTINUOUS SYSTEMS: DUFFING OSCILLATOR



CHAPTER 2

STABILITY AND BIFURCATIONS OF PERIODIC SOLUTIONS

In this chapter, an analytical approach for the quantitative predictions of stability and
bifurcation of periodic solutions for the Duffing oscillator are presented. Physically, the
oscillator considered is a nonlinear rod which is subjected to strong nonlinearities. Several
methods for handling this situation are available: Barkham and Soudack (1969), and Yuste
and Bejarano (1989, 1990) proposed an extended KB method; Burton and Rahman (1986)
developed a multi-scale procedure; Garcia-Margallo and Bejarano (1987) suggested a
generalized harmonic balance approach; and Xu and Cheung (1994) used an averaging
technique based on generalized harmonic functions. In the work here, I employed an
improved harmonic balance method to treat the strong nonlinearity. Verification via

numerical simulation is performed and good accuracy is obtained.

2.1 Formulation of the Nonlinear Rod Dynamics

The model considered is a rod undergoing large displacements but at small strains. A
sketch of the rod is depicted in Figure 2.1(a). It will be shown that this geometric
nonlinearity manifest itself in the form of the cubic term in the Duffing equation. Consider
an initially straight, long slender rod under the action of a compressive force P, shown in
Figure 2.1(a). The usual engineering beam assumption of the bending plane sections not
only remaining plane but also being perpendicular to the middle surface during
deformations is invoked. Due to the small strain assumption in the model, Hook’s law is

applicable. A differential element of the rod is shown in Figure 2.1(b) where N,
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Q, and M represent the normal force, the shear force and the bending moment,

respectively. Only planar vibration is considered here. Adopting the exact curvature, we

have

w 1+u
=3 and cosé = X

\/(l+ux)2 +w? \/(l+ux)2 +w? ’

sinf =

2.1)

where u and w are the axial and lateral deformations, respectively. Also, the subscript x

denotes partial derivative with respect to x.

+d
W Ay’w Qs Qs N+dN
Y DY e
w+dw 0. i 0+dg
ds w | ds | M+du
0ya M
P f m P N u u+du
— o
0.? l < X,u olX dx x,u
(a) ‘ ()

Figure 2.1  Nonlinear rod: (a) mechanical model and (b) differential element.

The bending moment M, based on exact curvature, is (Stoker (1968))

EIG, _EI[wm(1+ux)—umwx]

\/(l+ux)2 +w, ) l: (1+ux)2+w;’;7:|3

M=-EIg, =~ 2.2)

>

in which E, /, w andw are the Young's modulus, moment of inertia, respectively. The

X
curve length s = ‘H(l +u,)* +w2dx. The exact strain for the extensional nonlinearity is:
0

e=gy+(1+u)" +w? -1, (2.3)

where &, = — P/(EA) is an initial strain at the neutral axis of the beam. The instantaneous
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force N(x,?) is given by
N(x,t)zEAaz—P+EA[ (1+u,)" +w? —1:’. (2.4)

Note that 4 denotes the cross-sectional area. Equation (2.4) is identical to the expression
given in Nayfeh and Mook (1979). As both bending and extensional nonlinearities are
captured, the equations of motion for the planar vibration of the nonlinear rod based on

the differential element shown in Figure 2.1(b) are

Axial component:

pAu,,-t—é‘u,——gc—(NcosB—Qs sin 6) = X(7). (2.5)
Transverse component.
o .
pAw, + Ew, ——%—(Nsm9+ O, cosd) =¥(¢); (2.6)
Rotational motion about the center of mass:

—%+Qs[(1+ux)cos<9+wx sin 9]—N[wx cosB—-(l—t—ux)sin@] =(1+u,)J0,; (2.7)

where p &, J, X(¢) and Y(£) are the mass density, damping coefficient, mass moment of
inertia per length of the rod, axial and lateral distributing loads in x and y directions,
respectively. To simplify Equation (2.7), it is assumed that the rotational inertia is small

and can be neglected. Thus we have from Equation (2.7),

0, = ! L 2.8)

T ) et &

It is assumed that the longitudinal inertia and damping can be neglected. In our model, we
considered only the loading situation of X(¢) =0 and Y(f) = ¢(¢). Substituting Equation
(2.5) into Equation (2.6) and using Equations (2.1)-(2.4) and (2.8) we finally arrived at
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the equation of motion for the nonlinear vibration of a rod. The result is,

pAW, +&w, + P(wm 2Py j-— (E4A+P)|1- 1 (w_a _uw, J
s Joeu ez N7 10,
2.9
E] u,xx + wxxwx ( )
EI & wxx(l +ux) -W.u,, (1 +ux) Vi wm(l +ux) -wa,, 0
_ o - 4(0)

2 3 2 3
I+u, & ( (l+ux)2+w§) (I+u,) +wl & ( (1+ux)2+w3)

To solve Equation (2.9), boundary conditions corresponding to a hinged-hinged rod are

used, namely,

u=w=0 0 and I 2.10
u_=w_ =0, atx=0 and x=/ (2.10)

Integrating Equation (2.5), we get
Ncos@-Q,sinf=e(?), : (2.11)

where e(f) is an arbitrary function. Similar to Nayfeh (1973), we considered small
transverse shear component in comparison with the normal force component, namely,

O, sin6 << N cos@ in Equation (2.11). In view of Equations (2.1) and (2.4), we have:

e(t) ~ - (1+u,). (2.12)

From Equation (2.12), we conclude that for small strains, e(¢) = O(P) << EA. Also, the

traditional assumptions in the beam theory, i.e., [u]<<|w| and |u|<<|w,|<1, can be
employed to further assist in the evaluation of Equation (2.12). Noting that, u, = O(wﬁ),

Equation (2.12) reduces to,
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L P+e)
¥ EA

w2

X

U

N =

18

(2.13)

Observe that e(f) can now be easily solved from Equation (2.13). Invoking boundary

conditions in Equation (2.10) and integrating, we get

(2.14)

Substituting Equation (2.14) into Equation (2.9) and applying the beam assumptions, we

finally get the 1-D differential equation governing the motion of the nonlinear rod, that is,

[ L, 1
P ) 1+21 wadx+2w)
pAW, +w, +| = Edw_| 1~
142 (w2 1+1j’w2asc 1+-—l—flw2dx-——1—w)
] [do [doF 2000 F 2

1
+ EJ

I
Woe| 14+ = w2 +lj wfcbc)+3wmwﬁwx +wl
2 2770

3
1/1+1J'1W5615€ (l+—l~ " w2dc -
/70 2170 2

1
2
._..wx

)

Except for certain limiting cases, it is difficult to solve Equation (2.15) exactly. We will

further introduce appropriate approximations so as to make the problem mathematically

tractable. The assumption of w, <1 enables us to approximate the irrational terms in

Equation (2.15) by means of a Taylor series expansion. For simplicity, we will neglect all

powers of 5 and above. Thus we have:
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2 L, Lol o
pAw, +&w, +Pwﬁ(1 +w; ——EEJ‘O wxa’x)—EAw):r Zj;wxdx
. (2.16)
+E[[wm(l +w? —E—I-J;wfaﬁc) +3w_w_w, +w;] = q(x,?).

Assuming w(x,?) = F(t)sin(mnx/I) for the simply supported boundary conditions, and

applying the Galerkin method to Equation (2.16) we get:
1
oy +(Poor = P)f +[EA=2P,, ]F° = 0(1), (2.17)

where f= f(£)=maF(t)/l, a=IpA/(mz) andP, =(mn)’EI/I*. There are only four
cases to be considered in solving Equation (2.17), as all the other remaining cases produce

diverging results. These four cases are:

Casel P _>P 2P <FEA

mer nicr

CaseII P _>P 2P _>FEA4

mer mer

Caselll P, =P 2P _<EA

Case IV B,.<P, 2P, <EA: (@)E,>0, (b)E,<0 and (c)E, =0

mer

(2.18)

where E, is the initial energy (or non-time dependent Hamiltonian, unperturbed
Hamiltonian) defined in Chapter 3. The external excitation assumed is Q = a(Q, cos¥,
where the parameter @ is inserted for convenience. Furthermore, introducing

a,=(P,,—P)ja, a,=(EA-2P,,)[4a, S=E&/(mma) and x=f, Equation (2.17)

mer

becomes
¥+&+ax+a,x’ =0, cosC¥. (2.19)

Observe that Equation (2.19) takes the form of the Duffing equation. Equation (2.18)

should now be re-expressed in terms of the newly defined parameters «,,a,,d,Qand Q,,

and the results are listed in 7able 2.1.
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Table 2.1 Four Types of Duffing oscillator

CaseI a,>0anda, >0 X+&+ax+a,x’ =0 cosQf
CaselI «,>0anda, <0 X+&+ax—|a,|x’ =0, cos
CaseIIl «,=0and a,>0 X +8% +a,x’ =0, cosQ

CaseIV @, <0and o, >0; E+&—|ax+a,x* =0 cosu

(@) E, >0, (b) E, <0, (c)E, =0

2.2 Periodic Solutions, Stability and Bifurcation

In this section, the development of an analytical procedure for the determination of the
stability and bifurcation of periodic solutions of Equation (2.19) is presented. We will
begin our discussion by first deriving the periodic solutions, and then we will examine their

stability and bifurcation.
2.2.1 Periodic Solutions

Assume a periodic solution of Equation (2.19) to be given as follows:
x = u(#) sin Qf + v(¢) cos Q.. (2.20)
Substituting Equation (2.20) into Equation (2.19) yields:

= kb= Rt ) e ) ey

%: ~kyu = kv + ke u(u® V) — ke v(u? +V*) + kg

(2.21)

in which the coefficients are defined as follows,
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= QA5 -2a) (@ ra)s K, = 39
‘ A%+5* 7T 4QP 450 T 4(400 +67)
(2.22)
3Q«, 2Q0, 50

ks = b =

o = 2(4Q% +6%) 4% +5% Q*+6°

Since periodic solutions of Equation (2.19) are computed from the static equilibrium

solutions of Equation (2.20), we set du/dt = 0 and av/dt = 0. This leads to,

oQu, +[(0{1 —Qz)+%dl(u§ +v§)]vo =0,
. (2.23)
-6Qw, +[(0¢1 —Qz)+%al(u§ +v§)]u0 =0

Note that the £-coefficients have been replaced by their actual expressions in Equation

(2.23). Also, the symbols u,,v, represent the steady-state solutions. It is not easy to
directly solve for u,,v, in Equation (2.23). An indirect approach is necessary and this
involves introducing A =/u] +v} to denote the system response amplitude. In view of

this, Equation (2.23) can now be compactly written as,
3 2
l:(al -F) +Za2A2] A*+ 82074 = Q2. (2.24)

Observe that Equation (2.24) depicts the relationship between the response amplitude A

and the system parameters o, c,,Q and Q,. From Equation (2.24), it is easy to solve for
A. Having determined this quantity, we can proceed to solve for u,,v, from Equation

(2.23) by noting that u? +v} = A*. The results are,

[(al - +%a1A2JA2
O,

s

sQ4*
O

Uy = and v, = (2.25)

Finally, the periodic solution is obtained by substituting Equation (2.25) into Equation
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(2.20) and we get,

xz.b}..{gmzsmgm[(al —QZ)+—jr-a1A2}A2 coth}. (2.26)

=0

2.2.2 Stability and Bifurcation

Having solved for the steady-state solutions, we next examine their stability and
bifurcation. To accomplish this task, it is necessary to linearize Equation (2.21) in the

neighborhood of the steady-state solution (u,,v,) via a Taylor series expansion.

Introducing & =u—u, and 7= v—v,, Equation (2.21) is linearized to

(5) = Df (s, v, )(g) (2.27)

n

in which

~k, — iy (37“’; + vg) =2k uv, Ky =2kguv, - km(ug + 3"5)

Df(uy,v,) = [ } (2.28)

—ky, =2k uyv, + kl4(3u§ + vg) —k, - kB(ug + 3v§) +2ku,v,
The characteristic equation of Equation (2.27) is therefore given by
A* +Tr(Df,)A + Det(Df,) = 0, (2.29)

where the trace and determinant of the linearized matrix are defined respectively as

Ti =— —4f A*
r(Dfy) = -2k, ~ 4k, } (2.30)

Det(Dfy) = Iy + ke + 4(kiphs = Kok, ) A + 3K, + k) A*

Having expressed Equation (2.28) in a matrix form, it is now easy to determine the
stability of periodic solution through an eigenanalysis. Since the steps are mechanical, we

will just summarize the analytical results here as follows.
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Stability Conditions

(a) The conditions for stable periodic solutions corresponding to a stable focus are,

2(Q% +a, ) +3a,4° >0

9 -(231)

Q20" +5*-20,) +6*(Q + ;) +3a, (5 +4Q2)[(a1 - ) +—1—6—a2A2:lA2 >0
(b) The conditions for unstable periodic solutions corresponding to an unstable focus are,

2(Q +a,)+3a,4” <0

Q2(2Q2 +82-2¢ )2 +52(Q2 . )2 +3a (52 _!_492)[(“ _Q2)+ia Az]Az -6 .(2.32)
1 o 1 167

(¢) The conditions for unstable periodic solution corresponding to a saddle is,
Q20 +82-2a,) +8*(Q + ;) +3a, (5 +4Q2)I:(al - ) +—1—96—a2A2}A2 <0.(2.33)

It is also trivial to obtain the associated bifurcation conditions for the periodic solutions.

As before, we will simply summarize the results as follows.

Bifurcation Conditions

(a) Hopf bifurcation occurs when

g _ 2Q%+a, 50
3w,
1OQ% +a, ., 2
Q: = 5 a L [(JQZ -a}) +452Q2] L (2.34)
Q20 +6* ~2a,) +6*(Q* +a,) —211-(051 +Q%)(8% +4Q%) (5, -119%) > 0

(b) Saddle-node bifurcation occurs when
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2 2

2
2 4 2 2 2 52 —4a; ) 2 -
U," = 81a2 [(a’1 —Qz)iJ(Q —al) -30 Qz(m) ] +96 QZ ;. (235)

soof 8 —4a, Y
{2(92 ~a,) t\/ (@ -a) -35°Q° (m‘%‘) J

For the occurrence of the saddle-node bifurcation in going from the stable node to the

saddle, we must satisfy the following additional condition,

2 (5 —4a V|
(Q2+a1)+3{2(92—al)i\/(Qz—a1)2—35“Q2(m§;—) J>O. (2.36)

Similarly, for the saddle-node bifurcation to occur in going from the unstable node to the

saddle, the additional condition is,

2 2]
(@ +a1)+—§—i:(£22 —al)i\/(Qz ~a,) —35292(352—5%) J< 0. (2.37)

Next, a qualitatively sketch of the nature of the stability of the periodic solutions (or more
precisely, period-1 solutions) for the four case types is presented. As shown in Figure 2.2,
stable solutions are represented by the bold solid lines and unstable solutions by the dash
lines. Figures 2.2(a) to (d) correspond to Cases I to IV respectively. Observe that for
Cases I and III, the unstable solution is bounded by the ‘outer’ and ‘inner’ stable solutions.
For Case II the ‘outer’ and ‘inner’ stable solutions encapsulating the unstable solutions
occur entirely inside the heteroclinic orbit. Outside the heteroclinic orbit, we have only the
unstable solutions (not shown). The behavior of the periodic solutions for Case IV is even

more complicated. Observe that the ‘outer’ and ‘inner’ stable solutions encapsulating the
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unstable solutions occur outside the homoclinic orbit, and therefore are termed “large-
orbit” solutions. However, upon a careful inspection, there exists a ‘large’ orbit solution at
the crossing of the homoclinic orbit and is shown by the dash line, i.e., unstable. It should
be mentioned that it is not possible to analyze this solution via the present procedure.
Inside the homoclinic orbit (two potential wells), there are the so-called, “small-orbit”
solutions. To study the nature of these solutions, an alternative approach has been

proposed by Luo and Han (1995¢) and Han and Luo (19952), but not reported here.

(c) Case II (d) Case IV

Figure 2.2 Phase trajectories of the damped driven Duffing oscillator ( stable,

— — unstable).
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2.3 Comparison of Analytical Results with Numerical Solutions

A comparison of the analytical predictions with the numerical results is outlined here. The
intention is not only to verify the proposed method, but also, to demonstrate the analytical
procedure by carrying out a parametric study. We will restrict our model to the period-1

motion of the Duffing oscillator.

The term ‘numerical solutions’ is used here to imply results obtained via a numerical
integration of the differential equations. The algorithm employed is based on the automatic
time~stépping Runge-Kutta integrator (a standard IMSL routine). To minimize the
computational effort, we adopted the initial conditions calcﬁlated by the analytical method.
The results are plotted in Figure 2.3 where the lines denote the analytical response and the
symbols the numerical solutions in the excitation frequency-response amplitude curves.
Note also, the solid, dash and dot lines respectively represent, the stable, saddle and
unstable focus (or node)-type periodic solutions. Obviously, only stable period-1 solutions
are obtained in the numerical simulation. In addition, the hatched areas indicate
numerically computed complex motions which could include higher-periodic and chaotic
motions. Also, the subharmonic solutions are not considered in these regions of complex

motions.

As shown in the graphs, the lines and the symbols match quite closely indicating good
agreement between the analytical and numerical solutions. However, at the tip of the
curves, the agreement is not that great and this is attributed to the fact that we did not
consider the superharmonic terms in the assumed solutions. As presented in Han and Luo
(1994), the exact undamped period-1 solutions take the form of the highly complicated
Jacobi-elliptic functions. The overall good agreement indicates that our proposed
analytical model is sufficiently accurate and can be a viable alternative to the tedious and

extremely time-consuming numerical simulations.
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Having verified the analytical model, it would be useful to carry out some parametric
studies of the method. The parameter manifolds involving the excitation frequency Q
versus the excitation amplitude Oy is plotted in Figure 2.4, and the excitation frequency Q
versus the response amplitude 4 in Figure 2.5. For both plots, § = 0.5 is used. Once
again, all four loading cases are considered. We first present a discussion of Figure 2.4,

followed by a discussion of Figure 2.5.

Note that in Figure 2.4, the broken lines (i.e. dot and dash lines) represent the symmetric
saddle and saddle-node bifurcation in going from the saddle to the unstable node (or vice-
versa), respectively.- Also, the bold and thin continuous lines mark the boundaries of the
Hopf (HB) and saddle-node (SNB) bifurcations, respectively. Observe that the graphs for
Cases I and Il are very similar in that they only have SNB and thus, they will be discussed
together. They have only two regions; in Regions I there is only one period-1 solution
which is stable; and in Region II are three period-1 solutions, 2 stable and 1 unstable. As
Q2 increases, the Region II solution jumps to the Region I at the lower branch of the SNB

and likewise, as {2 decreases, the jump occurs at the upper branch of the SNB.

Next, we discuss the Cases II and IV which have five regions of stability, Regions I-V.
For Case II, there are one stable, one saddle and one unstable node or focus solutions in
Regions I and II. In Region III, we have only one unstable focus or node solution; in
Region IV, only one stable focus solution and finally, in Region V, there are three
solutions, of which one is a saddle, and the other two are stable. In going from Regions IV
to III and from Regions V to II, HB takes place; and in going from Regions IV into V,
SNB is observed. For Case IV, the solutions in Regions I and II are similar to Case IL.
However, for Region III there exists only one stable solution; in Region IV, there is only
one saddle among the three equilibrium solutions; and finally, in Region V, there exists
one stable solution. Note also that the points (a, b, c) marked in the figure will be

discussed later as these are used in the numerical simulation section.
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Figure 2.5 shows the stable and unstable manifolds in the Q-4 plot for Cases -1V, for
varying Qo. Note that here we employed the following line notations: solid, dash and dot
lines to denote respectively the stable, saddle and unstable focus solutions. As before,
Cases I and III are very similar where the two stable branches connected by one unstable
branch. However, this is not necessarily the situation with Cases II and IV where for some
of the curves, the stable branch becomes unstable. As in Figure 2.4, the points (a)-(c) will

be discussed later as these are used in the numerical simulation section.
2.4 Numerical Simulations

Numerical integration of Equation (2.19) for its period-1 solutions are presented here. To
expedite the numerical experimentation, the analytically computed stability conditions are
employed in the computer simulations. The motivation for this section is to produce a
computerized plot of the phase portraits, similar to the hand-drawn plot in page 72 of
Guckenheimer and Holmes (1983). It should be pointed out that our numerical simulation
is based on the original equation of motion for the Duffing oscillator (Equation (2.19))
whereas in Guckenheimer and Holmes (1983), they used the approximate equations
(similar to our Equation (2.21)). In our opinion, it is more appropriate to use the original

equation rather than the approximate equation.

Input data comprising system parameters and initial conditions for the numerical
simulation are tabulated in Table 2.2. For the selected stability conditions,v the appropriate
system parameters are computed from the analytical model. The initial conditions are
calculated rather than prescribed, as done traditionally. The basis of the computation of

these initial conditions is by solving Equation (2.26), re-expressed here as follows,

B%—Qﬂ+%%A1f e

: at7=0.0. (238)
O, 0

Xo =
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Table 2.2 Computed input data for numerical simulations for periodic solutions
Initial  Conditions Stability

Status

=05 @, a, 0 Q X X

(a) 3.11446  0.616269 1.437760  Stable

CaseI (b) 100 40 2.0 3.70101 -0.524218 1.514300 Stable
(©) 3.69951 -0.478948 2927610 Unstable

(@ 249546  0.250093 0.218681  Stable
CaselI (b) 10.0 -4.0 1.0 1.01700 0.854611 1.494450 Unstable
(c) 1.01125 -0.809155 1.574860  Unstable

(a) 2.50921 0.783871 1.637621  Stable

CaseIIl (b) 0.0 10,0 2.0 250695 -0.359914 0.215098  Stable
(© 2.50463 -0.632589 0.779483  Unstable

(a) 4.00683 1722370 3.953690  Stable

CaseIV (b) -10.0 10.0 8.0 4.00772 -0.314018 0.099608 Unstable®
(©) 4.00572 -1.541860 2.915350  Unstable

*This result can be proved using an alternative analytical method (Han and Luo (1995a), and Luo and
Han (1995¢)).

Using these computed initial conditions, we are able to exactly predict the period-1
solutions. Note that (2)-(c) marked in Table 2.2 correspond to points (a)-(c) in Figures
2.4-2.5. The time interval employed in the numerical integration is 50 seconds, starting
from 0. The results are presented in Figure 2.6. The starting points for the phase portraits

are marked by the dots labeled with an “I.C.”. Once again, all four cases are presented.



Chapter 2: Stability and Bifurcations of Periodic Solutions

Figure 2.6

4 T . ; 4 . T .
(a) (b)
oot re. 1 "2t 1c .
> >
b =
g0l { %ot —
) o
> >
-2 L - 2L _
-4 1 L ! —4 1 ! 1
-2 -1 0 1 2 -2 -1 0 1 2
Displacement =z Displacement =z
Case I
4 T T T 4‘ T T T
(a) (b)
-8 2 = 8 2+ I.C. E
I.C.
> >
2 L
g _2 L. r g_z - -
—4 L ! ! —4 t ! !
-1.0-05 0.0 05 1.0 -2 -1 0 1 2
Displacement =z Displacement =z
Case 1I
3.0 3.0 T . T
(b)
81.5 | 1 8 1.5¢F -
>y >
50.0 1 5 oof I‘C‘O ]
o )<}
o) o)
Z15 | 1 Z-15} -
~-3.0 . L L —3.0 1 1 1
-2 -1 0 1 2 -2 -1 0 1 2
Displacement =z Displacement =z
Case III
12 T . T 12
- {1 8 gl _
> B
= =
8 0r 1 © 0t 1
2 E)
0 v
> sl I |
-12 L ! : —12 . . !
-4 -2 0 2 4 -4 -2 0 2 4
Displacement =z Displacement =z
Case IV

Velocity z

-2

-1

Displacement =z

0

N

Velocity =z
o

|
N

—4

©
LC. @

1

-2

0

1

Displacement =z .

“
o

_x
tn

o
o

[
IR
tn

Il

(c)
' I.C.@

i

T

-3.0
-2

12

-1

0

1

Displacement =z

Velocity =z
o

-12

—4

Displacement =z

Phase portraits for Cases I-IV.




Chapter 2: Stability and Bifurcations of Periodic Solutions 34

Graphs (a)-(c) of Case I show two stable and one unstable (saddle) solutions as predicted
by the analytical model, and they correspond to points (a)-(c) of Case I in Figures 2.4-2.5.
Observe that the stable periodic solution exhibits only one cycle. On the other hand, the
unstable solution which cannot maintain this status quo in the numerical simulation, must

eventually move to the stable solution as it passes through its transients.

In Case II, graphs (a)-(c) confirm that there are only one analytically predicted stable and
two unstable (saddle and unstable node) solutions and they correspond exactly to points
(a)-(c) of Case II in Figures 2.4-2.5. As before, the two numerically determined unstable

solutions must move eventually to their stable solutions via their transients.

In Case III, graphs (a)-(c) exhibit two stable and one unstable (saddle) solutions, which
agree completely with the analytical predictions. Note that these graphs correspond to
points (a)-(c) of Case I in Figures 2.4-2.5. Observe that the periodic solution of graph
(a) is not exactly an expected single orbit, but rather a series of very close orbits and this is
due to the not so precise agreement with the analytical model as shown in Case III of
Figure 2.3. Also, as before, the unstable solution in graph (c) eventually gravitates to a

stable solution via several transient states.

In Case IV, graphs (a)-(c) show one stable and two unstable solutions as predicted
analytically, and they correspond to points (a)-(c) in Figures 2.4-2.5. As in Case III (a),
graph (a) of Case IV exhibits similar behavior and once again, the absence of an expected
single orbit is due to the imprecision of the analytical model which is evident in Case IV of
Figure 2.3. The unstable solution in graph (b) is of the saddle-type as defined by
Guckenheimer and Holmes (1983) (see page 87). The two unstable solutions in graphs
(b)-(c) must eventually move to the stable solutions by going through several transients.
We should also point out that the predictions here are only for large orbits. For small
orbits, this technique does not work and an alternative method as reported in Luo and Han

(1995e), and Han and Luo (19952) must be employed.
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2.5 Conclusions

An improved harmonic balance technique for predicting stability and bifurcation of
periodic solutions in a nonlinear dynamic system is presented via an investigation of the
Duffing oscillator. Comparison of the analytical model with numerical simulation are
shown and good agreement is observed. Using these analytical ‘conditions, stable and
unstable manifolds are plotted in the amplitude-frequency curves. All input data for the
numerical simulations are calculated and not prescribed as done traditionally. This
significantly reduces the amount of numerical experimentations required to simulate the
nonlinear dynamics phenomena. The number of numerically determined stable and unstable

solutions agree exactly with the analytical predictions.



CHAPTER 3

ANALYTICAL CONDITIONS FOR CHAOS

It is very useful to be able to predict the onset of chaos and strange attractors in a
nonlinear dynamical system. There are only a handful of analytical methods available for
the determination of critical conditions for the onset of chaos. Methods such as the
Chirikov resonance overlap criterion (Chirikov (1979)), and the renormalization group
technique (Escande and Doveil (1981), Escande (1985)) yield critical conditions for the
undamped Duffing oscillator near subharmonic resonant orbits. For a weakly damped
oscillator, the Melnikov method is available for the computation of the critical conditions
for chaos and subharmonic bifurcations (Moon and Holmes (1979), Moon (1980a) and
Holmes and Moon (1983)). The stability and bifurcation of the Duffing oscillator were
studied in the previous chapter. In this chapter, four cases of Equation (2.19)
corresponding to an undamped oscillator are considered. The equivalent forms of their
first order differential equations are:

CaseI: *=) }, @.1)

y==—ax—a,x’ + 0, cos(%)

xX=
Case II: ) 4 . , 3.2)
y=—ax+a,x’ +0, cos()

¥ =
Case III: ) 4 , , (3.3)
y=-a,x’ + 0, cos({k)

X=y
Case IV: ; @ E,>0, (b)E, <0, (0)E, =0, 3.4
as y.zalx_azx3+roos(Qt)} @ £, >0, () E, <0, (9) §, (3:4)



Chapter 3: Analytical Conditions for Chaos 37

in which all parameters «,, «,, 0,, Q and E, are positive and represent respectively, the

system parameters, the excitation amplitude and frequency, and initial energy.
3.1 Energy Analysis for Case I

We first present the procedure of the determination of critical conditions for Case I as
governed by Equation (3.1). Then, we will simply state the results for Cases O-IV(b) in
Appendix B.1. The remaining Case IV(c) requires special handling and will be treated in a

separate section. From Equation (3.1), the Hamiltonian for Case I is given by,

H= _;.}ﬂ +—;—a1x2 -;-:11—042x4 - x(Q, cos)r. (3.5)

This Hamiltonian can be separated into the non-time dependent part (unperturbed) H, and

the time-dependent part (perturbed) H,. That is

H=H,+H, (3.6)
where H =2 2~i—105x2+lozx4 (3.7)
- = il 3.
0 2)’ ;% et
H =-x0, cost. (3.8)

The phase plane energy contour for three given values of H, is sketched in Figure 3.1,
using ¢, = a, = 1.0. The three values of the initial energy are H, = E, < E, <E,. Solving
the energy equation of Equation (3.7) for the situation of H, = E, the results are (Han
and Luo (1994)),

2K(0
T

x=h cnl: , (3.9)

y=i\/-‘?‘z—-zﬁisn[ZK(k”,k]dn_ZK(@,k], (3.10)

k /o 7
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N

Figure3.1  Phase plane energy trajectories for the undamped Case I,

in which cn, sn and dn are the Jacobi-elliptic functions, X(k) the complete elliptic integral
of the first kind, and 4 the modulus of the Jacobi-elliptic function. The other parameters A

and @in these expressions are defined by

) 2K,

N (3.11)

O=wr

where o is the nonlinear natural frequency of the undamped Duffing oscillator for Case I

L& hn
=3 \/—?.‘kK(k)’ 3.12)

The particular value E; can then be calculated using

and is computed from,

P A%

> 3.13
0 (1 _ 2k2)2 az ( )
and the action variable J for an orbit is given by
J2a, ? 2
J= ik [(1=F")K () + (24 - E®)], (3.14)
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where the symbol E(k) in Equation (3.14) denotes the complete elliptic integral of the
second kind. The period 7'is given by

r=2% (3.15)
w

Substituting Equations (3.9)~(3.10) into Equation (3.5) and expanding the time-dependent

term, the complete Hamiltonian function now becomes

H=H,(J)- Qoi 20,,., cos[(2n—)wr]cos(Qs), (3.16)

n=1

or

H=H,(J)-0, i Oap {cos[(Zn — 1w - QJf + cos[(2n - D + Q]t} (3.17)

n=1
in which
7th

2K cosh[n( - —1~) E—]
2/ K

where K'=X(k')and k'=1~%*. Except for the term of the (2z—1)% primary

Ot = (3.18)

resonance, all other terms in A will average to zero over time 7. Hence, we have, in

combination with Equation (3.11) and Equation (3.12), the following expression

Q a,
2n-1" 2K(k)V1-2k

(3.19)

from which we can determine % at the (27 —1)th primary resonance for some given 7. Let
this value be symbolized by %;, ;. Now, we are interested in the region near the 2n-Dth
primary resonance influenced by the (22+1)th primary resonance. Assuming the effects of

the other resonances to be negligible, the Hamiltonian can be expanded by Taylor series
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about the (21— 1)th primary resonance. That is

. dH, . 1(d*H .
H=H,(J;,)+ (df)ﬁ (J—JZn_1)+—7—( djzo) (J~J.) + 620
2n-1 - IS . .

-0, {Q.'Zn—l (J;n_l) cos[(2n-1)w - Q+0,,., ( e ) cos[(2n+1)w - QJt }

Noting that H, = E, the following parameter can be introduced:

d'E 7:2 1-2(k5,.,)’
G, = : =———— K(k ———-—————E ks ) 3.21
0 (Ci]z )Jgnl 4h2K(k20n 1)3[ ( 2n—l> (k;n_l) ( 2n—l)J ( )

A new canonical coordinate system (7, §) can be introduced, where p=0whenJ=J, ,.

The generating function is

- + Q1
6B =~ -s5, ) (6.22)
Then we have
p=-29_J- o (3.23)
¢ 2n-1
and ¢ can be evaluated from
—or=-29 _ 9+ (3.24)
oJ 2n-1
The new Hamiltonian is now given by
H= H+—§—~H (S5)— —B (2n—1°p
(3.25)

{an— ( 2n- 1)COS¢+02,,+1 (chn—l)co [211—- +Q tj]}
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in which Q, =2Q/(2n~1). Note in Equation (3.25), G/ = —(dE, jas),. (J-

41

Jf.fn—l )

has already been involved. It is convenient to re-scale Equation (3.25) by introducing

p=9
p= (2n-1) gn+1)G 5

_@n=0'Cn+DGy 15 (e
H= = Ei EO(JQH_I)])

and thﬁs, the re-scaled Hamiltonian is

1 2n-1
H:Ep2 —-U, cosg—V, COS(2n+1 ¢+Qlt),
where
2n-1)*(2n+1)*G
Uo = ( ) ;z ) . QOQ2n—1a
2n-1*(2n+1)’G
=22l Bt G,
and
V20
Q2n<l = Nk
Ja,(2n-1) coshl}z(n - 5) —Kf]
V20
QZn—l =

NK: |
,(2n+1 h 4 — | 2nxl
Jaa( n+1)cos ’:7[(}1 ) " ]

2n+l

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)
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3.2 Chaotic Conditions for the Undamped Duffing oscillator

To predict onset of chaos (from local to global stochasticity) in Equation (3.27), Chirikov
(1979) provided the following condition (for more information, the reader is directed to

Lichtenberg and Lieberman(1992) and Reichl (1992)):

2,JU, +2.J¥; =1, (3.32)

we obtained the chaotic condition governing the onset of global stochasticity near the

(2n—1)th primary resonance as influenced by the (272 + 1)tk primary resonance, that is,

2

2 1
0, = - . 3.33
= 4(2n_l>2(2n+1)~G0 [w/ Oppt + QZn—l) 33

Using the renormalization group technique, Escande and Doveil (1981) and Escande
(1985) developed a mathematically more consistent method for the prediction of chaos,

and obtained the following expression which agrees quite closely with Equation (3.32):

2,JU, +2,/7, =07. (3.34)

From Escande (1985) result, the chaotic condition in Equation (3.33) gets modified to,

0.490°

1 2
G 4(2n—1)2(2n+1)2G0( Oyt +\/§;_—1J : (3.35)

Having determined the two parameters £,, O, analytically, we can use them to predict the

onset of chaos. Note that in determining these parameters it is necessary to evaluate a

number of intermediate parameters, such as G,, O 0,,.,, etc. It will be useful to show

=2n-17 X2n+l

the relationship between Q andE, Q,. For the undamped Case I, these relationships are

=

depicted in Figure 3.2 for ; = a, =10. Observe that both the resonant and chaotic

conditions as described by Equations (3.19) and (3.33) respectively, are displayed.
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We can derive in a similar fashion the corresponding results for all other cases. The only
exception to this is Case IV(c) which requires special handling. This is reported in Section
3.3. For Cases II to IV(b), their formulas are summarized in Appendix B.1. The phase

plane energy contours for Cases II-IV are sketched in Figure 3.3.

<
<
N

>
¢

s

/

(a) Case I (b) CaseITI

>>;

(c) Case IV(a)-(c)

Figure 3.3 Phase plane energy trajectories for undamped Cases II-IV.

The values of G,, 0,, ;and Q,,,, for each of the Cases II to IV(b) are different and thus

the relationships between Q and £, O, are not the same. Using a, = @, = 1.0, these

=

relationships are plotted in Figures 3.4-3.7 for Cases II-IV(b) respectively. Once again,
both the resonant and chaotic conditions as described by their respective equations in

Appendix B.1 are depicted.
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3.3 Chaotic Conditions for the Undamped Case IV(c)

This case requires special handling because E, =0. As before, the Hamiltonian can be

separated in the non-time dependent part and the time-dependent part. That is,

1 1 1
Hy==y'——ax*+=a,x* =0, 3.36
0 2)’ 5% et ( )

H, =—xQ, cos¥. 3.37)

Using Equation (3.36), the solutions for this case are given by

x=+ /z—al—sech( a,1), (3.38)
az

y=+ \galsech( a,1)tanh(\/a,1). (3.39)
2

As k—1, E, — 0, that is, near the separatrix manifold of Case IV(a). Using the results of

Case IV(a) in Appendix B.1 we have:

===t E zfi@—kz), (3.40)

and the nonlinear period 7'is

K(k). (3.41)

From Cayley (1895), we have

K(k)z%ln( 16 ) (3.42)
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In view of Equation (3.40) and (3.42) and as k — 1, Equation (3.39) simplifies to

2
Tzi1n(l6al ) (2.43)
\/a? a,k,

The energy increment for one period is

A=

0

H, H, _dH, H, = 20,0, | = sech| 2 |sin(Q2z,). (3.44)
& & & & a, 2\/;:

The phase angle increment of the trajectory for one period is

20 . (1602
Ad=QT = 1 L 3.45
p=ar=22 n(%EO) (.49)

where 1, is the initial time. For the convenience of notation for numerical simulation, we
let w=H, (and Aw = AH,) and ¢ = Qr,. Hence, near the separatrix, the energy and the

phase angle of the (i+1)th period and the ith period are:

2 .
Wig =W, +Aw =w, — 20,70} o) sech(zﬁ)mn(;fﬁi), (3.46)
G =9+ 2/—Q In ooy . (3.47)
al a2wi+l

Equations (3.46)-(3.47) represent the separatrix mapping with period-1 fixed points at

2
—z-giln(léal ): 272(2n~1), (3.48)

where (27 ~1) is an integer and w, is the energy of the (272 —1)th fixed point. To convert

the separatrix mapping to the standard mapping form, we put w, =w, +Aw,, and
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linearizing in w yields

I =1 +Ksin(g,), (3.49)
¢i+l = ¢i + [i+l (3.50)
in which [ =20 A, (3.51)

o
is the new action and K is the strength of the stochasticity parameter defined by

40,720 [2

0
= sech . (3.52)
wiia, \a, (24&1 )

K

For standard mapping, the transition to chaos occurs at X~ =0.9716---. The KAM torus
will disappear and thus, we can determine the chaotic condition related to the resonant

orbits outside the homoclinic orbit:

4K" («a, 2 Q) -l@n-l)rfa;/9] 7
= — f——— h : 3.53
O V2 ( Q ) 2a, ¢ o08 2\/21—1‘ G-33)

Similarly, the chaotic condition related to resonant orbits inside the homoclinic orbit is:

* 2
Q= Lof (5—1—) —fxl—e—[m‘/amm) ] cosh 2 : (3.54)
T \Q 2a, 2\/—6;1—

Figure 3.8 displays the relationships between Q and £, O, in the neighborhood of Case

P

IV(c) for @, = &, = 1.0. Note that the chaotic conditions are plotted in Figure 3.8(b).

3.4 Critical Conditions for a Weakly Damped Duffing Oscillator

The system considered here is a forced integral system with a dissipative perturbation.
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To study the chaotic motion, Melnikov method is employed. The necessary conditions for
the subharmonic bifurcation and the occurrence of the chaotic layer around the separatrix
are derived. Then to recover the original system, we let the perturbation parameter ¢ =1.
As done previously, we will once again consider the four cases. We will derive the results

for Cases I and IV(c), and deduce and list the results for Cases II-IV(b) in Appendix B.2.

Casel
We consider a damped system with a dissipative perturbation & From Equation (2.19), we
have,

Xy } (3.55)

y=—ax-a,x’ +&Q, cos Qf - &%)

The Melnikov function for this system can be defined as

(2n-1) T
M7 (t,00,6,) = [ )]0, cos(Qt +1,) - &)}, (3.56)
0
where T is the period of the wndamped Duffing oscillator. Recall from the previous
section, the various parameters pertaining to the wndamped system have already been
derived. Hence, the integration can be carried out and the Melnikov function can be
computed. For compactness, let it be expressed as

@n-1)

M ! (to:Qo’& Q) ==d +Qy1,, (3.57)

where L(2n-1j=1)= M[(l - F*)K(k)+(2k - 1)E(k)], (3.58)

31/(1--1‘:2)3052

L(2n-1j=1,Q)= 2720 sech[( —%)H%Jsin(ﬂto). (3.59)

Ja.
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L(2n-1,)

Defini R(Q) =
i = ooy

(3.60)
we find that if O, /& > R**'(Q), there exists a pair of subharmonics of the order 2n-1),
and period 2(2n—1)7z/Q, which appears on a bifurcation manifold. The subharmomic

bifurcation condition is thus given by
0, =R Q). (3.61)
Note that in Equation (3.61), if O, is known, then the amount of damping & can be

computed. On the other hand, if the damping is prescribed, O, can then be computed.

Also, no ultra-subharmonics (Guckenheimer and Holmes (1983)) can occur here. As
before, the conditions for subharmonic bifurcation for Cases II to IV (b) are given in

Appendix B.2. We will now consider the special case of E, =0 for Case IV(c).

Case IV(c)

For this case, the Melnikov function is defined as

@rn +o
MU (6,006, = [HQ, cos{Qt +1,) - §ldr = 6T, + 0, 1, (3.62)
4

in which I= M, (3.63)

3a,
I, = 2720 sech| 2 sin(Q1,). (3.64)

NN EN

. o I

Introducing R(Q)= A (3.65)

and if 0, /8> R°(Q), then the stable manifold intersects the unstable manifold, and we
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have a minimum chaotic condition as
0, =R°(Q)5. (3.66)

This is of the same form as in Equation (3.61). In fact, all the cases have this form, with
the appropriate 7, 7, substituted into the expression. Graphical plots of the subharmonic
bifurcation condition near the homoclinic orbits for @, = @, = 1.0, and & = 0.5 for all cases

are depicted in Figure 3.9.

3.5 Numerical Simulations

To verify the formulation for the analytical prediction of the subharmonic bifurcation and
chaos, numerical simulations based on Runge-Kutta integration of the appropriate
differential equations for the four cases are performed. The ability to analytically predict
the onset of chaos is a useful one as it implies that unnecessary prolonged and tedious
numerical experimentations are eliminated. Verification is achieved when the number of

numerically predicted subharmonic resonance agrees with that obtained theoretically.

Chaotic solutions are obtained in the numerical simulation by inputting parameters that
satisfy the derived chaotic condition for the four cases. However, the computation of these
input parameters is not trivial and a systematic approach is adopted. The technique starts

off by specifying appropriate initial conditions of displacement x, and either the initial
energy £, or the initial velocity y,, since it is straight forward to calculate one from the

other via Equation (3.2). In this work, we have prescribed as initial conditions the

quantities x,, £, and, y, as the calculated quantity. From the curves depicted by Figures
3.2 and 3.4-3.9, the excitation frequency Q and excitation amplitude O, corresponding to
the chosen case are determined. Since Q, satisfies the critical conditions computed via

Chirikov overlap criterion and renormalization group techniques, numerical integration of
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the differential equations now produces chaotic solutions. For a damped Duffing
oscillator, it is necessary to use Figure 3.9 which is generated for a system with damping.
The various input parameters of the numerical simulation are summarized in Table 3.1.

Note that the two structural parameters «,, , have values of 1.0 in all the numerical

simulation runs.
Table 3.1 System input parameters for numerical simulations
@, =a,=1  Case Types d X, Yo W 0,
Casel 0.0 0.0 6.0415 7.6452 13.0916° 6.4149°
Case II 0.0 0.0 05592 25172 0.2598* 0.1273° 4
Undamped  Case III 0.0 0.0 1.1619 3.2582 0.7260°  0.3357°
Systems Case IV(a) 0.0 00 32171 51955  1.6664* 0.8165°

Case IV(b) 0.0 0.8 03667 25771 0.1638°  0.0802°
Case IV(c) 0.0 0.0 0.0 3.1400 0.0425°  0.0213¢

Case I(a) 0.0005 0.0 6.0415 7.6452 13.0916°
Case I(b) 0.0020 0.0 6.0415 7.6452  13.0916°
Case I(c) 0.0100 0.0 6.0415 7.6452 13.0916°
Damped Case II 0.0001 0.0 0.5592 2.5172 0.2598°
Systems Case IIT 0.0001 0.0 1.1619 3.2582 0.7260°
Case IV(a) 0.0001 0.0 32171 5.1955 1.6664°
CaseIV(b) 0.0001 08 0.3667 2.5771 0.1638°
CaseIV(c)  0.0001 0.0 0.0 3.1400 0.0851°

*Chirikov overlap (Han and Luo (1994)).

® renormalization group technique (Luo (1993c,1994), Luo, Han and Xiang (1995)).
‘standard mapping method based on the outside orbit (Han and Luo (1994)).
dStandard mapping method based on the inside orbit.

‘Melnikov method for a damped Duffing oscillator (Han and Luo (1994)).

The Poincare mappings of the undamped Duffing oscillator are sketched as follows:
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o Figure 3.10 for Cases I-II,
o Figure 3.11 for Cases III-IV(a), and
o Figure 3.12 for Cases IV(b)-(c).

For Case I, the chaotic motion based on the primary resonance of order (2n-1)=3 is
simulated via numerical integration using the two critical conditions, and the result is
shown in Figure 3.10(a) using Chirikov overlap criterion, and in Figure 3.10(b) based on
the renormalization group technique. The computed input parameters for this simulation
are also tabulated in Table 3.1. Since the chaotic motion with a primary resonance of
order 3 is desired, the subharmonic resonance of order 3 will appear first. However, due
to the influence of the energy of the fifth-order primary resonance arising from the
(2n+1) =3 term, the KAM torus for the resonance of order 3 is destroyed. Note that the
influence from the other higher primary resonances are very small and thus, can be
neglected. The chaotic motion which is simulated based on the third primary resonance for
Case Il is plotted in Figure 3.10(c) using Chirikov overlap criterion, and in Figure 3.10(d)
based on the renormalization group technique. Note that the maximum energy of this
system cannot be larger than the energy of the separatrix, otherwise the solution will

diverge.

Figure 3.11 depicts the Poincare mappings for Case III: (1) is based on the Chirikov
overlap criterion, and (i) on the renormalization group technique. For this situation, the
structure is in a critical buckling state since it is loaded by its buckling load (see Equation
(2.14)). As before, the chaotic motion based on the third primary resonance is shown.
When the loading exceeds the buckling load, which is the situation for Case IV, there
exists three distinct parts separated in the phase plane by its separatrix. As a result, the
chaotic motion can take very different forms, depending on the three values of E,. As
given in Figure 3.11(c)-(d), the motion of Case IV(a) is similar to that of Case I. As
before, Figure 3.11(c)-(d) is generated based on the Chirikov overlap criterion, and the

renormalization group technique respectively.
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Figure 3.12 plots the Poincare mapping sections of the Cases IV(b)-(c). The results for
Case IV(b) are sketched in Figure 3.12(a) and (b) generated using the Chirikov overlap
criterion, and the renormalization group technique respectively. Likewise, the results for
Case IV(c) are sketched in Figure 3.12(c) and (d) but now, the graphs are generated
based on the standard mapping for the outside and inside orbits respectively. For Case
IV(b), the chaotic motion is based on the primary resonance of order 2 in the right
potential well, and for Case IV(c) the chaotic motion is based on the separatrix or

homoclinic orbit.

The Poincare mappings of the damped Duffing oscillator are sketched as follows:
o Figure 3.13 for Cases I-II,
o Figure 3.14 for Cases III-1V

In Figure 3.13, since it is desired to obtain chaos and strange attractors in the plots, the
damping coefficient chosen for the numerical simulation is less than the critical damping
6, ~0.8468. For Case I, three different damping coefficients are employed (see Table
3.1) and their corresponding Poincare mapping sections are identified as Case I(a), I(b),
I(c). In Case I(a), the chaotic motion based on the third primary resonance is depicted.
Observe the presence of the strange attractors. In comparing with the undamped Case I of
Figure 3.10, it is clear that the difference in the chaotic motion is due to the introduction
of the small dissipation in the system. Increasing the damping, the chaotic motion for Case
I(b) is obtained. Note that the strange attractor is based on the third subharmonic
resonance. Increasing the damping still further as shown in Case I(c), the third primary
resonance disappears and goes into the first primary subharmonic resonance. For Case II

the strange attractor is almost cyclically symmetric.

The Poincare mapping sections for Cases III-IV are given in Figure 3.14. For Case 1V,

once again we have the same three situations corresponding to the three values of E,.

Qualitatively, the same description as given for the undamped system applies.
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3.6 Conclusions

In this chapter, the Chirikov overlap criterion and renormalization group technique are
used for the first time to derive the chaotic conditions near a subharmonic resonant orbit
for the undamped Duffing oscillator. The analytically predicted chaos by these two
methods is confirmed numerically and perfect agreement in their number of subharmonic
resonances is observed. The chaotic motion of a forced integrable system with a
dissipative perturbation is studied via the Melnikov method. Plots of the Poincare mapping

section indicate the presence of strange attractors in the damped system.



CHAPTER 4

STOCHASTIC LAYERS IN NONLINEAR DYNAMICS

In the vicinity of the homoclinic and the heteroclinic orbits of a nonlinear dynamic system,
there exist domains where the motion is stochastic. These domains are termed “stochastic
layers”, also sometimes referred to as homoclinic tangles (Guckenheimer and Holmes
(1983)). They are actually very complicated sets of invariant curves. The determination of
the strength (or width, chaotic condition), of the stochastic layer is very useful for the
understanding of the stochasticity of the motion. Using the Chirikov overlap criterion,
Reichl and Zheng (1984a, b) and Reichl (1992) estimated the strength of the stochastic
layers for the undamped Duffing oscillator, and they showed qualitatively that these results
are in agreement with the estimates obtained using the standard map for this system. In a
later publication, Lin and Reichl (1986) employed the renormalization group method to
compute the strength of the stochastic layer for a particle in an infinite square well

potential and they compared their results with those from numerical experimentations.

In this chapter, a new approach is presented to predict the presence of stochastic layers
near the separatrix and the computation of their strengths. The method is based on an
incremental energy approach and involves determining the relationship between energy
increments along the entire homoclinic (or heteroclinic) orbit and the resonant orbit. To
demonstrate the procedure, two common undamped nonlinear oscillators are analyzed: the
Duffing oscillator and forced planar-pendulum oscillator. To verify the results, numerical
experimentation is performed to observe the presence of the stochastic layers in these

oscillators and the computation of their strength.



Chapter 4: Stochastic Layers in Nonlinear Dynamics 67

4.1 Methodology

In this section, a new method is developed for the study of a stochastic layer near the
separatrix (of either a homoclinic or a heteroclinic orbit). We consider a time-periodic

system defined by

%= F(x)+g(x.0): x:(;) R, @.1)

where f{x) is a Hamiltonian vector field defined on R? and x,1), is a T-periodic (fixed
g p

period) Hamiltonian in time . Specifically, they are of the form

A(x)

£ () “.

), and g(x,7)= (j g’ 2),

f(x)=(

and are assumed to be sufficiently smooth (C”,7>2) and bounded on bounded sets

D < R? in the phase space. We introduce the following assumptions (see Figure 4.1).

Figure 4.1 Phase portrait of a conservative system

(i) The conservative system possesses a separatrix ¢°(f) with at least one hyperbolic

saddle point p,.
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(i) Defining a set I = {¢°(1)}f e R} {p, ], the interior and exterior of I"* are filled with
two continuous families of periodic orbits ¢(f) for @ e[-1, 0)and ¢*(f) for
B €(0, 1], respectively.

(iif) Introducing Hamiltonian functions E, =Ho(q"‘(z‘)) and £, =H0(qﬁ (t)) for two
selected orbits; and T, and 7} are periods of g*(¢) and ¢”(¢), respectively; we set

a

dr, /dE, > 0 inside I'* and dT, /dE, >0 outside T°.

Note that H, is the unperturbed Hamiltonian or energy function of the conservative
system, and assumptions (ii)-(iii) imply that 7, — oo (7, — ®) monotonically as o — 0

(8 —> 0). For simplicity, we consider the system to have a Hamiltonian described by,
H(x,y,1) = Hy(x,y) + H, (x,,1). (4.3)

where H,(x,y,?) is the perturbed Hamiltonian or energy function of the external periodic

excitation with
aH. .
f{ = 2 ] gl = —+
4 4 . (4.4
PO AR
2 @C 2 2 @C

To obtain the critical conditions for the prediction of the stochastic layer, we compute the
energy increment along the separatrix of Equation (4.1). The result for a conservative

system subjected to the external excitation along the separatrix 7, — co(or T, —> ») is,

Ty +ty T+t T+t

e dH(x e I {Ho B}t = [(fig: ~ 180l (4.5)

I f

where { } denotes the Poisson bracket. As an example, we consider the stochastic

Poisson

layer sketched in Figure 4.2(a). For any given external excitation frequency Q, there

exists a resonant ¢z-orbit satisfying @ =m/nQ in the neighborhood of the separatrix;
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where m, n are positive integers, and @ is a nonlinear natural frequency for the o -orbit.

Similarly, the B-orbit is characterized in the same manner. Let E, = E' and E,=E]

denote respectively, the energies of any one of the subharmonic resonant ¢ -orbits and S~
orbits, as shown in Figure 4.2(b). Note that the superscripts / and j represent positive
integers pertaining to the strength of the stochastic layer. As shown in Chapter 3, these
energies can be computed by the resonant conditions depicted in Figure 4.2(b). Note that
in the stochastic layer, the energy of its elliptic orbits is bounded in the neighborhood of

the energy of the separatrix E, (see Appendix B.3). Next we consider 3 theorems

governing the stochastic layer. The proofs are summarized in Appendix B.3,

\ A 4 . e

~ /|

(@) o

Figure 42 Stochastic layer: (a) phase portrait and (b) resonant conditions.

Theorem 4.1: Consider a system described by Equation (4.1) and invoke assumptions »-
(iii). For any sufficiently small £ >0 , the elliptic orbits of the Hamiltonian vector field
J(x) in Equation (4.1) near the separatrix must satisfy the following condition:

1-%*

1-

2

4

1n(15

)

= o(e),

(4.6)
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then there exists a stochastic layer near that separatrix.

Note that & is the modulus of the Jacobi-elliptic function associated with the energy H,.

The strength of the stochastic layer can be determined via the second theorem as follows.

Theorem 4.2: Consider a system described by Equation (4.1) and invoke assumptions (i)-
(iii). For some & >0, there exists a neighborhood N (Ey) of Ey(xy,Y,), in which all the
elliptic orbits satisfy Equation (4.6). If Ej(or E]) e N(E,) is computed based on
@ =m[n Q, then the strength of the stochastic layer in N (E,) for selected values of i and

J can be determined from the incremental energy AH using
|AH| = {|E} - E,| or |E{-E,| }<5, 4.7)

in which the symbol | - | represents the absolute value. For the disappearance of a

stochastic layer, we must have

|AH| = min n}a}x{lEf ~E)|, |E-E|[}<s. | (4.8)

As the excitation increases, more and more primary resonances get absorbed by the
stochastic layer which then becomes thicker and thicker. Eventually, it may coalesce with
the resonant layer (see next chapter). The merging of the primary resonances leads to the
onset of global stochasticity iﬁ the motion, and we have named this enlarged stochastic
layer the “global” stochastic layer. The ability to model the global stochastic layer is very

useful and in the next theorem, an approximate analytical method is suggested.

Theorem 4.3: Consider a system described by Equation (4.1) and invoke assumptions (i)-

(ii). For any E, or E, of the prescribed resonant orbits, the incremental energy can be

approximated by
|AH| = {|E, — E,| or |E,~E,[}>6. (4.9)
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4.2 Computation of the Strength of Stochastic Layers

In this section, the computation of the strength of stochastic layers is demonstrated by
applying the procedure to two very popular nonlinear oscillators: the Duffing oscillator
and the forced planar-pendulum oscillator. The former represents the computation of the

stochastic layer for the homoclinic orbit and the latter, for the heteroclinic orbit.

4.2.1 An undamped Case IV(c) Duffing oscillator

An undamped Duffing oscillator of Case IV(c) as described in Chapter 3 is considered
here. We will demonstrate the appearance of the stochastic layer and compute its strength
for a given level of the Hamiltonian energy. The Hamiltonian of Equation (3.4 (c)) is
H = H,+H,, where

1 1 1
Hy=—y"——ax’+=a,x* 4.10
0 2)/ 5% 4 % ( )
H, =-xQ, cos(Q). (4.11)

The saddle point (0,0) of the conservative system can be easily calculated. A homoclinic
orbit passing through this saddle point can then be determined. The resulting stochastic
layer is qualitatively sketched in Figure 4.3. Note that the darker region constitutes the
inner layer and the lighter region, the outer layer. It is important to make this distinction
between the inner and outer stochastic layers since the motion characteristics in these
layers are not the same. From Equation (4.5) the energy increment along the homoclinic

orbit can be computed by setting 7, — o (or 7, —> o). That s,

AH = pf Eflgz - f&g )t =2 \gOoﬂQsech[zf/Q&TJ sin(Qy,), (4.12)

I 2

- oy D
where K=0s fo= o . (4.13)
& =0, g=0, COS(QZ‘)
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A

Figure 43 Stochastic layer for the undamped Case IV(c) Duffing oscillator.

For the inner layer, we have from Figure 4.2(b) H, < E,. Since H, is the energy of the
primary subharmonic resonant orbit, i.e., H,=FE,, resonance will occur. Thus, the

resonant condition (see Han and Luo 1994) can be written as
no=CQ, for Hy<E, (4.14)

Similarly for the outer layer, we have from Figure 4.2(b) H, >E, and H, = E,, and the

resonant condition is
(@2n-No=Q, for H,>E, (4.15)

The situations described by Equations (4.14) and (4.15) correspond to Cases IV(b) and
(a) respectively (see Chapter 3). The equations governing these situations are presented in
Appendix B.1 (Equations (B.18)-(B.19) and (B.26)-(B.27)). Using these equations, the
resonant energy £, and E, for the primary subharmonic resonant orbit can be computed.
From Equations (4.6) and (4.7), the strength for the stochastic layer of the homoclinic
orbit for Case IV Duffing oscillator as described by Equation (3.4) can be determined as
follows,

|AH| = {2|E,| or |E,]}. (4.16)

From Equation (4.12) we have
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Q)
20,70 —i—sech(z JZJZME“ or |E,[} (4.17)

Choosing @, = a, =10, a graphical plot of the resonant condition and strength of the
stochastic layer for the Duffing oscillator are plotted in Figures 4.4(a)-(b) respectively.
We denote the stochastic layer by solid lines: bold for inner and light for outer. Adopting
£=10", Equation (4.6) can be solved for the maximum %. Then from Equation (B.26)
for the inner layer (or (B.18) for the outer layer) of Appendix B.1, the energy E; for the
inner layer (or E; for the outer layer) can be computed. With this information, Q can be
determined from Figure 4.4(a) and the strength of the stochastic layer Oy can then be
obtained from Figure 4.4(b). The results are plotted in Figure 4.5 as solid line, together
with strength results from 4 other independent methods: 1) dotted line for the standard
mapping method based on the homoclinic orbit (see Equation (3.53) for the outer layer
and Equation (3.54) for the inner layer); i) dash line for the standard mapping method
based on the resonant orbit (see Equation (B.20) ) for the outer layer and Equation (B.28)
for the inner layer); iii) hollow circle for the Chirikov overlap criterion approach (see
Appendix B.1 Case IV(a) for the outer layer and Case IV(b) for the inner layer); and iv) -
solid circle for the renormalization group technique (see Appendix B.1 Case IV(a) for the
outer layer and Case IV(b) for the inner layer). Figure 4.5(a) depicts the strength of the

outer stochastic layer and Figure 4.5(b) the strength of the inner stochastic layer.

Observe that very good agreement is obtained for the lower-order resonances but becomes
progressively poorer as the order of the resonance increases. This can be attributed to the
fact that the 4 independent methods constitute approximate solutions. For example, the
standard mapping approach is based on linearized energy and phase angle. In the case of
the Chirikov overlap criterion and the renormalization group methods, they contain only 2
resonant terms instead of infinite number. On the other hand, our method which is based
on an incremental energy approach is solved without introducing any approximations. On

this basis, we feel that our method is more accurate than the 4 independent methods.
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Figure 4.4
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4.2.2 An undamped forced planar-pendulum oscillator

As a second example, a forced planar-pendulum oscillator is investigated. This oscillator
has a stochastic layer located near the heteroclinic orbit as depicted in Figure 4.6.

Consider the differential equation of the planar-pendulum oscillator:

¥=y } (4.18)

y=-Asinx +Q, cos Q¢

Figure 4.6 Stochastic layer for an undamped forced planar pendulum.

As before, its Hamiltonian consists of the unperturbed and perturbed parts, namely,
H, =—;-y2 —Acosx,  H, =-0,xcos{¥. (4.19)

The center and saddle points of the unperturbed component of Equation (4.18) are
(¥2j7, 0) and (£(2j +1)7, 0) at j= 0,1,2,---, respectively. Substituting the saddle point
into Ho, the energy of the heteroclinic orbit is obtained. Let this quantity be denoted by

H, =E, = . Also, denoting the energy of either the libration or the rotation orbits by

H, = E, it is easy to show that their nonlinear frequencies are given respectively by,
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= 2’;{ (i), k<1 forthe libration orbit, (4.20)
and o= A k>1 for the rotation orbit 4.21)
2Ky ’ '

where k= 1+ E/A / V2. For a conservative system, the solution at the heteroclinic orbit

1s given by,

x(f) = H2arcsin(tanh(r)), y(¢) = +2/Asech(?). (4.22)

Therefore, the energy increment along this heteroclinic orbit,i. e, 7, — 00( or 7, — 00), is

Ta+ty
A = J‘(fl‘gZ - /&)t = 2Qo”ﬁ530h(—ﬂ§2)5in(wo)a (4.23)
%

where

h=r o fo=oAsing) } | (4.24)

& =00, g, = Qo COS(QJ)

Following the approach employed in the energy analysis described in Chapter 3, the

subharmonic resonant condition for the libration orbit is,

nw =0 for H, <A. (4.25)

Likewise, the resonant condition for the rotation orbit is
(2n-No=0Q for H,>A. (4.26)

Substituting Equation (4.23) into Equations (4.7) and (4.9) yields the strength of the

stochastic layer for the forced pendulum,

2Q0nﬁsech(—2”9) ={E -4 or |E, - A]}. (4.27)
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The strength computation equation from the standard mapping model is based on the

heteroclinic orbit and is given by (see Section 3.3),

0, = %e_(mﬁm) cosh(%@). (4.28)

Choosing A = 1.0, a graphical plot of the resonant condition and strength of the stochastic
layer for the pendulum are plotted in Figures 4.7(a)-(b) respectively. As before, the
stochastic layer is represented by solid lines: bold for inner and light for outer. Using
&£ =107, Equation (4.6) can be solved for the maximum #. Then from Equation (4.20) for
the inner layer (or (4.21) for the outer layer), the energy £, for the inner layer (or £, for
the outer layer) can be computed. With this information, Q can be determined from Figure
4.7(a) and the strength of the stochastic layer Oy can then be obtained from Figure 4.7(b).
The results are plotted in Figure 4.8 as solid line, together with strength results from the
standard mapping method based on the heteroclinic orbit shown as dotted line, Figure
4.8(a) depicts the strength of the oufer stochastic layer and Figure 4.83(b) the strength of
the inner stochastic layer. Observe that very good agreement is obtained for the lower-
order resonances but becomes progressively poorer as the order of the resonance
increases. The reason for this behavior is precisely the same as discussed in the previous

section for the Duffing oscillator.

4.3 Numerical Experimentations

In this section, we report the results of numerical simulations using an automatic time-
stepping Runge-Kutta integrator. The intent here is to provide an additional check on the
proposed model by ensuring that the analytically computed number of resonances agrees
with that observed in the numerical simulations. Poincare mapping sections are plotted in
the numerical runs and the number of resonances generated via numerical integration is
noted. The initial conditions for the numerical experimentations are chosen on the

homoclinic orbit for the Duffing oscillator and on the heteroclinic orbit for the pendulum.
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The selection of the strength O, and the subsequent numerical simulation runs are plotted

in Figures 4.9-4.12 for the Duffing oscillator and Figures 4.13-4.14 for the pendulum. The

details are explained as follows.
4.3.1 Case IV(c) Duffing oscillator

Figure 4.9 depicts the Q, — Q) graph for varying values of 7: the outer stochastic layer is
shown in Figure 4.9(a) and the inner layer in Figure 4.9(b). The points 4, B, C, D, E, F
marked as shown are the locations for carrying out the numerical experimentations. To
perform the numerical simulations so that the results make sense, it is crucial that Q and
O, be selected appropriately. Take for example, choosing Q=050 and O, =0.01 we
arrived at point 4. Observe that for point 4 in the outer layer graph, the influence of the
n=1 curve is very strong. This implies that we expect to see in the numerical simulations,
just one #=1 resonance in the outer layer. On the other hand, from the inner layer graph,
the mfluence of the #=1 curve is extremely weak and we will not be able to see any
resonance in the inner layer. This is obvious in the numerical simulation plot of Figure
4.10(a). Observe that there is only one resonance in the outer layer as indicated by the
“arrow” symbol and also, the inner layer is very weak which is what we expected even

though we had plotted approximately 10,000 Poincare mapping points.

At point B(Q=10,0, =0.01) in Figure 4.9, we expect to see in the outer layer an

extremely weak #=3 resonance but in the inner layer, a very strong n=1 resonance. This is

very clear from the numerical simulation plot of Figure 4.10(b).

At point C(Q =15,0, = 0.01) in Figure 4.9, we expect to see in the outer layer a strong
n=3 resonance but in the inner layer, a very weak #»=2 resonance. Once again, this is

obvious from the numerical simulation plot of Figure 4.1 1(a).
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At point D(Q =18,0, = 0.01) in Figure 4.9, we expect to see in the outer layer a weak

n=5 resonance but in the inner layer, a very strong #=2 resonance. This is very clear from

the numerical simulation plot of Figure 4.11(b).

At point £(Q =22,0, = 0.01) in Figure 4.9, we expect to see in the outer layer a strong

n=5 resonance and in the inner layer, a weak »=3 resonance. This is clearly shown in the

numerical simulation plot of Figure 4.12(a).

Finally, at point F(Q = 2.5,0, = 0.01) in Figure 4.9, we expect to see in the outer layer a

reasonably strong #=7 resonance and in the inner layer, a weak #»=4 resonance. This is

obvious in the numerical simulation plot of Figure 4.12(b).
4.3.2 Forced planar-pendulum oscillator

We repeat the same process here for the pendulum. Figure 4.13 depicts the 0, — Q graph

for varying values of n: the outer stochastic layer is shown in Figure 4.13(a) and the inner
layer in Figure 4.13(b). For brevity, we will present discussion for only two points; 4, B,
marked as shown for carrying out the numerical experimentations. To plot the Poincare
mapping for the pendulum, we note that due to its multiple saddle points, we will define

the Poincare mapping section as,
= {(x(z‘),y(t))l [x(r)|mod 27, t=2n7x/Qn=123-- } (4.29)

At point 4(Q = 0.4,0, = 0.01) in Figure 4.13, we expect to see in the outer layer a strong

r=1 resonance and in the inner layer, a strong »=1 resonance. This is very clear from the

numerical simulation plot of Figure 4.14(a).

At point B(€=0.8,0, = 0.01) in Figure 4.13, we expect to see in the outer layer a weak

n=3 resonance but in the inner layer, a strong #=2 resonance. This is clearly shown in the

numerical simulation plot of Figure 4.14(b).
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4.4 Conclusions

A new method is developed to predict the presence of stochastic layers near the separatrix
of a nonlinear system. Two undamped systems are analyzed: the Case IV(c) Duffing
oscillator and a forced planar-pendulum oscillator. The outer and inner strengths of the
stochastic layer for these two oscillators are computed and verified by comparing with
results obtained based on other methods. For the Case IV(c) Duffing oscillator, we
employed two standard mapping methods, the Chirikov overlap criterion and the
renormalization group technique; and for the forced planar-pendulum oscillator, we
utilized the standard mapping method based on the heteroclinic orbit. Good agreement is
observed, particularly for the lower-order resonances. From the results of the numerical
simulations, the analytically computed number of the resonance agrees perfectly with that

generated numerically for both oscillators.



CHAPTER 5

RESONANT LAYERS IN NONLINEAR DYNAMICS

In Chapter 4, the stochastic layer near the homoclinic and the heteroclinic orbits was
discussed. In this chapter, we look at another type of stochastic layer, one that is located
in the vicinity of the resonant orbit. To avoid confusion with the stochastic layer located in
the vicinity of the separatrix, we propose to name the region of stochasticity near the
resonant orbit the “resonant” layer. The condition of resonance with the unperturbed
oscillation at frequency o is

mao = nk) ' 5.1

in which Q denotes the excitation frequency, and m, n are positive integers. Thus, the
resonant orbit leads to a separation between the actions of neighboring resonances. The
resonant layers are isolated from each other and motion from one layer to another is
generally forbidden except when the external excitation is very strong. When this happens,
the last invariant curve separating the layers surrounding the adjacent elliptic orbits is
destroyed and the layers merge together. We can now talk of global resonant layers, in

analogy to global stochastic layers as introduced in Chapter 4.

An approximate analytical model of the resonant layer is developed for the first time in this
thesis. It is based on the incremental energy approach described in Chapter 4. The theory
is then applied to compute the strength of the resonant layer for the four types of Duffing
oscillator identified as Cases I to IV in the previous chapters. To verify the model,
comparisons of results with those computed by applying the Chirikov overlap criterion,

the renormalization group technique and from numerical experimentations are made.
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5.1 Stochasticity near a Resonant Orbit

We consider a nonlinear conservative dynamical system subjected to an external excitation

with a frequency Q. Repeating Equation (4.3) here, the total energy of the system is,

where H,(x,y) and H,(x,y,7) are the energy functions of the conservative system and
external excitation (unperturbed and perturbed Hamiltonians) respectively. For a given
energy level, ie. H,=FE, =constant, the nonlinearly natural frequency and the
unperturbed solution can be similarly obtained as described in Chaprer 3. Applying Taylor
series expansion to the perturbed Hamiltonian A, the resonant condition given by

Equation (5.1) becomes,

0, =20 (5.3)

n

|3

Note that Q,, denotes the (72:1) resonant frequency. Consider in the neighborhood of a

natural frequency @ close to Q),,, that is,

}w—Qﬂ <& and T(E,) =%, 1(E) ==, (5.4)

where £<<1 and T is the nonlinear period. Choosing the odd-order subharmonic
resonance as an example, Equation (5.4) can be illustrated as shown in Figure 5.1. From
Chapter 4 and Equation (5.4), the energy increment along the resonant orbit of the forced

conservative system is,

T(Ey 1o dH (X, y, T(Ey )+ T(Ey ot
AHO ~ to( 0> 0 (dty ) t:-"to( O) O{HO’HI}Possiondt=_’;o ’ O(f;gZ “ngl)dt, (55)
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Figure 5.1 Neighborhood of the (272 —1)th resonant frequency.

where 7, is the initial time. Note that Equation (5.5) has the form,
AH, = UOF(¢0)> (5.6)

in which U is a system parameter function excluding the initial phase angle ¢, = Qf,, and
F(4,) is a bounded and periodic function. For the elliptic orbits in the neighborhood of

the prescribed resonant orbit, the change of phase angle over one period is
Ag=¢,., -9, =QT(E1):V0(E1): (5.7)

where ¥, is a function associated with energy E,. To calculate this new energy iteratively,
we introduce the following notation: E, =w,, at the (i+1)th period and the

corresponding phase angle is ¢,,,. Equations (5.6)-(5.7) can now be written as,

Wiy =w, +U,F (%)} (5.8)

Gy =0, + K)(wm)

Observe that Equation (5.8) is now expressed in a form that permits the resonant layer to
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be investigated iteratively. It is a map of the energy change and phase change of a
trajectory for each period of its motion. It resembles a perturbed twist map and when
applied to the Duffing oscillator, it becomes the whisker map. In the neighborhood of the
resonant layer, Equation (5.8) can be linearized about a fixed point and we obtain a map
similar to the standard map. Considering the period-1 motion, its fixed point can be easily

determined: w,, =w, =w, and ¢, = ¢, +2mz/n= ¢, +2mz/n. This implies,

F(p,)=0
: 5.9
Vo(wo) = 2m )

n
Defining a new dimensionless energy
v, (w .
iz___;z_fl (w, =w,), (5.10)
w;=w,

and linearizing Equation (5.8) about the fixed point yields

I, =1 +KF(¢,-)} (5.11)

¢i+1 = ¢i +]i+1

where K = U, &, [dv, . Observe that Equation (5.11) resembles the standard map and as
shown in the next section, when applied to the Duffing oscillator, it becomes the standard
map. From Eguation (5.11) the mechanism involved in the transition to global
stochasticity in a conservative system is very clear. The coefficient X is the only control
parameter for the characterization of the KAM tori. For instance, for the standard map, a
critical value of X is attained when K = K* = 0.9716354---, since at this value, the last

remaining KAM torus is broken. When this happens we have,

N

U, o=k (5.12)

P

Increasing the excitation results in the merging of the primary resonant layers until they
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come into contact the closest resonant orbit. When this happens, the resonant layers will
be destroyed, and a new stochastic motion near that resonant orbit will appear. This is
qualitatively sketched in Figure 5.2 where Figures 5 2(a) and (b) show appearance and
disappearance of the resonant layer respectively, near the inner most resonant orbit.
Depending on the physical system modeled, it is also possible for the resonant layer to

come into contact with an outer resonant orbit, instead of the inner orbit as depicted.

v y A

Resonant orbit Resonant orbit

(a) (b)

Figure 5.2 Resonant layer: (a) appearance and (b) disappearance

We postulate that when the resonant layer is destroyed, the energy increment in Equation
(5.5) is given by the energy difference between the two closest resonant orbits, one of

which is associated with the destroyed resonant layer. That is,

2n+l 2n-1
Eo - Eo

b

min(|E" - E2!

= Uy f(#o)]: (5.13)

) - {AHO(Z"_I)

Equation (5.13) constitutes the critical condition for the disappearance of the resonant
layer. From this equation, the disappearance strength of the resonant layer can be
computed. To compute the appearance strength, we can resort to Equation (5.12). For
greater accuracy, we should consider the effects of the secondary resonances in the

neighborhood of the intermediate resonant layer shown by the dash line in Fi igure 5.2.
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5.2 Resonant Layers for the Undamped Duffing Oscillator

The resonant layers for the four undamped Duffing oscillators are discussed in this section.
As presented in Chapter 3, the four oscillators are described by Equations 3B.D)-(G.49)

representing Cases I to IV, respectively.

Case I

Resonant layers for the Case I Duffing oscillator are qualitatively sketched in Figure 5.3.
Note that the outer dark patch is bounded by the 1st and 3rd resonant orbits and the inner
dark patch by the 3rd and 5th resonant orbits. Thus, these outer and inner dark patches are
respectively, the resonant layers of the first and third order. There are other resonant

layers which are near the neighborhood of the origin, but these are not shown.

Figure 5.3  Resonant layers near the first and third resonant orbits for Case I.

The unperturbed Hamiltonian for this oscillator is given by Equation (3.7) and for a given
energy H, = E,, its solutions are listed in Equations (3.9)-(3.10). The resonant condition
as described by Equation (3.19) is obtained by analyzing the perturbed Hamiltonian given
by Equation (3.8). The result is,
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Q
Q .= .
2n-1 2}7"1 (514)

The period of the resonant orbit is computed using Q,,.,. However, for all other orbits in

the resonant layer, the period is calculated based on o, that is,
. (5.15)
)
The change of phase angle over one period T(Z,) is

Ap=QI(E) =7, (5.16)

V. = 40K (k) \/&T—% (5.17)

Therefore, from Equation (5.5), the energy increment over one period 7| (E)) can be
approximated by

in which

A, ~ | T 0, cos(@i)dt = U, sin(Cx, ), (5.18)
0
where
U, = Msech[( -—1—)7:—]&11} (5.19)
V&, 2 2n-1

Note that K (%) = K('). Observe that the function U, identified in Section 5.1 is given by

Equation (5.19) and comprises only of system parameters. Following the procedure
outlined in that section, Equations (5.16) and (5.18) are written as

Wi =W, +U, sin(g, )} (5.20)

Pin =9 +V:)(wi+l)
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Note that Equation (5.20) is the whisker map. To obtain the standard map, we linearize
Equation (5.20) in the neighborhood of the resonant orbits about the period-1 fixed point

Wi =W, =W, and ¢, — ¢, =2(2n—1)z. The resonant energy is given by
22n-D)m=V,(w,). (5.21)

From Equation (5.10) a new dimensionless energy /I, = G, Aw; can be defined, where the

function G, =&V, [dw,,, at w,, =w, =w,, is given by

5

_ 2Qa, (1-2(k,)" ) 1-2(k, )
b (kz,,_l)z ( a, J {K(kznnl) 1—(k2n_1)2 E(an—l)]' (522)

Linearizing Equation (5.20) about the fixed point, we get

I,=I+K sin(¢i)} (5.23)

¢i+1 = ¢i + [i+l

where K = U,|G,|. Observe that Equation (5.23) is now the standard map. Employing the
universal constant of the standard map, i.e. K = K* = 0.9716354---, we can compute the
appearance strength of the resonant layer and the result s,

K (k,

n—l) i
— 2G| =K ~0.9716354. (5.24)
K(an—l) JI Il

@,

20,7 -2—sech[( ——;—)75

As a check of Equation (5.24), we can use anyone of the 3 methods: Chirikov overlap
criterion, renormalization group technique and numerical simulation; to compute the
appearance strength. The results based on the Chirikov overlap criterion and the
renormalization group technique have already been derived in Chapter 3 as Equations
(3.33) and (3.35). We will simply re-quote them here. Based on Chirikov overlap

criterion, the appearance strength is
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2
Q 1
0, = : 5.25
S @@, (\/Q;-{ﬂ/’g;,-{) 62
Using the renormalization group technique, the appearance strength is,
2
0. = 0.49Q° 1 (5.26)
= 4(2n - 1)2 (2n+ 1)2 Gy \ Vs Oy ) '

The comparison of the predictions of the Chirikov overlap criterion, renormalization
group technique and numerical simulation with our results based on the incremental

energy approach is listed in the next section.

To compute the disappearance Streﬁgth we assume that our energy postulate which is
described mathematically by Equation (5.13) holds. This yields the critical condition for
the disappearance of the resonant layer, from which the disappearance strength of the

resonant layer can estimated. The result is,

1o Gan

and |y - B3

. v
20,7 ——2—sech[( - —1-)75———-——]{‘ ( 2”_1)] = min{lEg"+1 -E™
aZ 2 K(k2n—1 )

If the incremental energy along a resonant obit is set equal to lEg"“1 — L5, where E; =0 is

the energy at the origin, Equation (5.27) describes the accumulated disappearance
strength of all the possible resonances higher than order (21— 1) of the system. Therefore,

we get the maximum critical condition for the accumulated disappearance strength:

K (k ,
20,70 l—sech{( —-2{)”?-(-—2":-‘2} E3 (5.28)

&,

A more accurate model is to sum the effects of each individual resonant layer instead of

simply setting the incremental energy to ]E(f”“1 -k
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Case I

Figure 5.4 Resonant layers near the first and third resonant orbits for Case II.

Resonant layers for the Case II Duffing oscillator are qualitatively sketched in Figure 5.4.
The structure of the resonant layer-differs from that of the Case I oscillator because as -
shown in Figure 5.4, we now have a heteroclinic orbit. For this situation, the resonant
layer exist only inside the heteroclinic orbit, otherwise, this layer will lose its stability when
it comes into contact with the heteroclinic orbit. The maximum critical condition for

instability of the resonant layer is,

2Q07[Q _.z_csch[(n — _I_)ﬂ' _E'_(_l_cz_n.__}_).} = !ng — E(;'Zn—l
az 2 K(an—-l )

, (5.29)

in which E* is the energy of the separatrix, ie., E5 = a?/(4a,). For brevity, all the

results pertaining to the appearance and disappearance strengths are listed in Appendix B.

Case IT1

Resonant layers for the Case III Duffing oscillator are qualitatively sketched in Figure 5.5,
This oscillator is a special situation of Case I and therefore, all its results, with the

exception of the maximum critical condition for the accumulated disappearance strength,
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are summarized in Appendix B. The maximum critical condition is,

2 1 K (an—l) n+ n—- |
2Q0ﬂQ '&:’SeChI:(n—-z-)ﬂ'm = lEg 1 "Eg : > (530)

Figure 5.5  Resonant layers near the first and third resonant orbits for Case IIL

Case IV

For the Case IV Duffing oscillator, there are two kinds of resonant layers as qualitatively
sketched in Figure 5.6, representing £, <0 and E, > 0. Recall that Case IV(c) which is
described by E, =0, possesses only stochastic layers as discussed in Chapter 4. Once
again, for these two situations, all their results listed in dppendix B, with exception of the
maximum critical condition for the accumulated disappearance strength. The result for

Case IV(a) is obtained by noting that £ = 0. That is,

K (%
20,7 —g——sech[(n - —1—)7r ———(—3’—”—1—)} =E"™, (5.31)
aZ 2 K(an—l )

and for the Case IV(b) we have,

(5.32)

El.

Q, 7€ —2——sech nﬁ—K;(—kiz
a2 K(kn)

]:
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7A

(a) Case IV

|

(b) CaseIV(a) (c) Case IV(b)

Figure 5.6 Resonant layers for Case IV, Case IV(a) and Case IV (b).
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3.3 Comparison of Appearance Strength of Resonant Layers

Having obtained the appearance strength of resonant layers based on our proposed
incremental energy approach (IE), we will now present verification of its predictions. To
accomplish this comparative study, three independent methods are employed: Chirikov
overlap criterion (CC), renormalization group technique (RG) and numerical simulations
(NS). We set @, =a, =10 in Equations (3.1)-(3.4) and based on the prescribed initial
conditions and the resonant conditions depicted in Figures 3.2(a), and 3.4(a) to 3.7(a), we
can compute the appearance strengths using Equation (5.24) for IE, Equation (5.25) for
CC, and Equation (5.26) for RG. As for the numerical simulation, we used the automatic
time-stepping Runge-Kutta integrator with a prescribed tolerance of 10°. To determine
the appearance strength during the numerical experimentation, we check for the
appearance of the resonance. For example, if we use input parameters pertaining to say,
the third-order resonance and during the numerical experimentation, the third-order

resonance visually appears, we record the value of appearance strength.

The results are tabulated in Table 5.1 for all four types of Duffing oscillator. We have also
listed both the computed input parameters and the computed excitation frequency (to
guarantee resonance of the appropriate order). Observe that the agreement among IE, CC
and RG are generally better at lower-order resonances and this is attributed to the fact CC
and RG are based on a 2-term approximation which becomes increasingly less accurate as
the order of resonance increases. On the other hand, the agreement between IE and NS is

quite good.

Note that we did not give any comparison between the disappearance strength and the
accumulated disappearance strength. This is because there are currently no known
procedures to compute these quantities other than our proposed incremental energy

method.
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Table 5.1 Comparison of strength computations
Order of Input Excitation Appearance Strength
Resonance  Parameters  Frequency Oo
(x,) 9} IE® CC®  RG* NS*

1st (0,10.271) 3.28265 3.04401 3.22748 1.58146 3.04995

Casel 3rd (0,6.042) 7.64517 4.25025 13.09158 6.414878 3.60555

5th (0,4.701) 11.3406  33.1472 142.4808 69.21561 33.2000

Ist (0,0.447) 0.91066  0.08633 - - 0.02873

Case I 3rd (0,0.559) 251717 0.28158 0.25983 0.12732 0.25875

5th (0,0.629) 3.80862 1.02497 1.32309 0.64831 1.02500

Ist (0,9.877) 3.11735  2.53486 1.99073 0.97513 2.54550

Case IV(a) 3rd (0,3.217) 5.19558 0.77066 1.66639 0.81653 0.75750

5th (0,3.471) 9.01867 5.602845 17.47684 8.56365 5.90000

Ist (0.8,0.259) 133651 0.04687 0.06420 0.03145 0.03547

Case IV(b) 2nd (0.8,0.367) 2.57710  0.08425 016379 0.08026 0.10500

3rd (0.8,0.432) 3.73673  0.21239 0.49209 0.24109 0.19985
“Luo and Han (19951).
*Han and Luo (1994b).

‘Luo, Han and Xiang (1995).

5.4 Comparison of the Resonant Layers

In this section, we present a comparison of the resonant layers predicted by IE and NS via
their Poincare mapping sections. Once again the results for all four Duffing oscillators are
compared, but because the Case IIT oscillator is very similar to the Case I oscillator, the
results of the former are not shown. The input parameters for the numerical

experimentations are summarized in Table 5.2. The use of these computed input
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parameters ensures that we obtained resonant layers during the numerical simulations. We

considered only the third-order resonance. Once again, a, = a, =10 is employed.

Table 5.2 Computed input data for numerical simulations for resonant layers

Figure No. Oscillator Type (x, ») Q Qo (IE) O (NS)
Figure 5.7(a)-(b) Case (0.0,5.042) 7.645169  4.25025 3.60555
Figure 5.7(c)-(d) Case I1 (0.0,0.559) 2.517172  0.28158 0.25875

Figure 5.8(a)-(b) CaseIV(a)  (0.0,3.217) 5.195584 0.77066  0.75750
Figure 5.8(c)-(d)  CaseIV(b)  (0.8,0432) 3.736736 021239  0.19985

Figures 5.7(a)-(d) show the result for the Cases I and II Duffing oscillators, and Figures
5.8(a)-(d) show the result for the Cases IV(a) and IV(b) Duffing oscillators. We have
plotted only the right-hand side of the resonant layer for the Case IV(b) Duffing oscillator.
Observe the close qualitative agreement between the IE and NS predictions for all the 4
oscillators. Also, the number of resonances obtained is 3 which is expected for the 3rd-

order resonant layer.

5.5 Conclusions

A new method based on an incremental energy approach is proposed for the study of
resonant layers in Duffing oscillators. This procedure can be quite easily extended to other
nonlinear dynamical systems. The appearance, disappearance and accumulated
disappearance strengths of the resonant layers are derived. Both quantitative and
qualitative verifications of the appearance strength are provided. In former, 3 independent
methods are employed: CC, RG, and NS to check the results computed by our IE
technique, and in the latter, comparison between NS and IE are made. Good quantitative

and qualitative agreements are observed for all four Duffing oscillators.



Velocity y

Chapter 5: Resonant Layers in Nonlinear Dynamics

Figure 5.7

Resonant layers for undamped Cases I and IT oscillators.
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Figure 5.8 Resonant layers for undamped Cases IV(a) and IV(b) oscillators.



CHAPTER 6
UNIVERSALITY IN A DAMPED DUFFING OSCILLATOR

In Chapter 2, the local bifurcation and stability of the periodic solutions of the damped
Duffing oscillator are discussed. In Chapters 3-5, we focused on the analytical conditions
for the predictions of the stochastic and resonant layers for the undamped Duffing
oscillator. In this chapter, we are interested in deriving analytical conditions for the

prediction of chaos for the damped Duffing oscillator by examining its universal character.

Universality in a dynamical system was shown by Feigenbaum (1979) for the period-
doubling bifurcation sequence to chaos. Collet and Eckmann (1982) later developed an .
exact renormalization theory for a systematic investigation via mapping. This technique,
however, is hard to use and Helleman (1980a, 1980b, 1983) provided an approximate
renormalization theory based on period doubling sequence for all one-humped mappings.
Holmes (1979) suggested a two-dimensional cubic map which has some features similar to
our Case I'V Duffing oscillator. However, to the best of our knowledge, we are unable to
find in the literature any work done directly on the Poincare map of the Duffing attractor
(see also, Moon (1987)). In our model as reported in Luo and Han (1995a, 1995c), the
discrete Duffing equation is derived by applying the Naive discretization to its continuous
system. Based on this Duffing map, we suggested a cubic renormalization scheme for the
computation of its universal property. We demonstrated that self-similarity between the re-
scaled and the original maps exist which implies that the fixed points of the re-scaled map
exhibit a cascade of period-doubling bifurcations. Verifications via numerical simulations

are also provided.
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6.1 Discrete Duffing Oscillator

Applying the Naive discretization of Equation (2.19) with respect to time yields a discrete
map for studying qualitatively the bifurcation and universal behavior of the Duffing

oscillator. This leads to the discrete Duffing equation at x, = x(¢ = 2n7/Q) and time step

At =27/Q, namely,
Xy = 2%, +%, , +(1-8)(x, - X, )+ex, +ded =(1- byw, 6.1)

where the various parameters are defined by

2
b=1—£7-[—5, c==(37£) a,,
Q Q
27\ 0, 2r 62
d= ('—') &,, w = i“"
Q : a, Q
From Equation (6.1), the discrete map is,
Xy =X, +T+Yy
P: n+l n n+l ) 63
yn+l:byn—cxn—61x':} ( )

6.2 Cubic Renormalization for the Discrete Duffing Equation

In this section we present the derivation of the condition governing the onset of chaos for
the discrete Duffing equation. This is then followed by a quantitatively analysis of the
Feigenbaum cascade as illustrated in Figure 6.1. In the sketch, we have shown the route
to chaos via period-doubling bifurcations on the positive branch of X, and further
bifurcations result in either the onset of chaos and/or the route “jumping” to the negative
branch of X, until fully developed chaos occurs. Note that this jump phenomenon is

unique to the Duffing map and may or may not be present in other dissipative maps.
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0

Figure 6.1 Cascade of bifurcations for the discrete Duffing map.
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The points of bifurcations are indicated by Cr,C;,C,,Cy -+ for the positive branch and

Cr,C;,C,,Cy -+ for the negative branch. Observe that there are two “special” points

denoted by C;, and C_ representing respectively, the onset of chaos for the positive and

negative branches. They are the universal parameters of the dissipative Duffing map. In

our work here, we have proposed a model for computing them analytically and to verify

the results, we have also generated them via numerical simulations. In our model, a cubic

renormalization scheme for Equation (6.3) is set up. Introducing the following

transformation,

X, =X, +6
V,=Y,-a]

and substituting into Equation (6.3) yields,

X=X, +7

n+l1 .
I;1=3K+(D;+me—ﬁxf}

where

~d8* +c6+(-1+b)w =0

(6.4)

(6.5)

(6.6)
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(6.7)

aad B=b, C’=—(c+3d52)}‘

D=-3d5, E=d

Note that the parameter § can be evaluated using Equation (6.6). From Equation (6.5),

the period-1 solution can be computed, i.e.

Y. =0
Y, =0 "
X 20} and ¥ _ D+ND*+4CE ¢. (6.8)
" s 2E

Eliminating Y, in Equation (6.5) leads to,

X

n+l

+BX,  =(1+B+C)X, +DX’ -EX>. (6.9)
Taking the second iteration of Equation (6.9), we get

X

n+2

+BX, =(1+B+0O)X  +DX? - EX’

n+l n+l n+l*

(6.10)

To compute the period-2 solution (see Figure 6.1), we set X, = X, and X =X _ in

n+1
Equations (6.9)-(6.10) and after a considerable algebraic effort in solving for the

coefficients, we arrive at

a4 X, +a, X, +a X! +a X +a,X> +a X, +a, =0, (6.11)
in which
a, =(1+B)*[C+2(1+B)], a, =2DE[C-(1+B)],
a, = D1+ B)[C+2(1+B)], a, = E’[3(1+ B)+2C]- D’E,} (6.12)

a, = D*(1+ B)+ EC* =3E(1+B)[C+(1+B)], a; =2DE?, a, =-E°.

Solving Equation (6.11) numerically, we get X, = X: as solutions. Then from Equation
(6.9) (or (6.10)) and invoking solution periodicity, namely, Ky =X, and X, =X, we

get the second set of (unstable) solutions X, =X, . Next, a perturbation in the
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neighborhood of these two solutions X and X, is introduced:

X =X + AX,
. (6.13)
Xm-l = X:H + AXnH
Likewise, we have
Xn+2 = X: + A‘er1+2
. . (6.14)
Xy =X +AX,

Substituting Equations (6.13)-(6.14) into Equations (6.9)-(6.10) and noting that X,

satisty Equation (6.11), we get a new group of iterative equations:

AX, +BAX, , =eAX, | +e,AX" -EAX? |, (6.15)
AX,, +BAX, | =e,AX, +e,AX’ — EAX?, (6.16)
AX,., +BAX, =e AX,  +e,AX? -FEAX:; - - (6:17)
where e, ¢, e, e, are given by
e =1+B+C+2DX, 3E(X.)', e, =D-3EX,,
(6.18)

e;=1+B+C+2DX,,, ~3E(X,,)’, e, =D-3EX),,.

n+

Multiplying Equation (6.15) by B and Equation (6.16) by e,, we have after substituting
into Equation (6.17):

AX,., +B*AX, , =(ee; —2B)AX, +e,e,AX? — e, EAX®
+e,(AXZ,, + BAX, )~ E(AX?,, + BAX.,).

n+l n+l

(6.19)

In the neighborhood of the period-2 solution, AY

n+l

and AX_ , are very close. A scale ratio

7 can be defined as follows,
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AX .,
= 6.20
AX (620)

n=-1

=

Neglecting the nonlinear terms in Equation (6.16), an approximate expression of AX, | is

obtained as a function of AX :

~

e3
2 AX . 6.21
- R ©.21)

Substituting Equations (6.20)-(6.21) into Equation (6.19) produces
e,el(r’ + B*
AX,,, +B*AX, , =(e,e, - 2B)AX, +[ele4 +—2—3(——————2JAX3

n+2 (r+B)2
eX(r*+ B
— el +__3(_..___._3_) AX;
(r+B)

To make Equation(6.22) algebraically similar to Equation (6.9) we perform the following

(6.22)

re-scaling,

X, = eAX,
, (6.23)

’ —
Xn+1 - 8AXni2

where ¢ is a scaling constant. Substituting Equation (6.23) into Equation (6.22) yields

X, +BX, =CX +D'X*-EX", (6.24)
in which
B'=B*,  (C'=ee,-2B, C=1+B+C
e,e;(r* + B* es(r’ +B%) |}. 6.25
D’:gele4+ﬁ(——-—2——)-, E =g’ el~}-—3—(—————;—2 (5:25)
(r+B) (r+B)

By setting the scaling ratio r = 1, self-similarity exist between the re-scaled map given by

Equation (6.24) and the original map described by Equation (6.9). That is, Equations
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(6.9) and (6.24) have identical form, implying that the fixed points of the re-scaled map
exhibit a cascade of bifurcations with B’, C" replacing B, C. Chaos via period-doubling
bifurcations will ensue at B'=B=B_, C'=C = C,,D'=D= D,andE'=FE=FE_.

Thus, for a dissipative map from Equation (6.25), we have:

B=0orl, (6.26)
C+2B=[C +2DX, -3EX2]C +2DX,,, - 3EXZ, ), (6.27)
e,el(1+ RB*
D=¢lege, +—23-(———2—) , (6.28)
(1+B) :

| el(1+ B3

g2 e, +—3—(———;l =1. (6.29)
(1+B)

Observe that there are five unknown parameters B,C,D, Eand ¢ in four Equations
(6.26)~(6.29). Fortunately, from Equations (6.6)-(6.7), D is related to B, C, and E. These
results clearly portray the universal character of the dissipative map near the transition to
chaos. In general, there are several fixed points and each must undergo the period-

doubling bifurcation in the transition to global chaos.

6.3 Verification through Universality Computation

Employing Equations (6.11) and (6.26)-(6.29), the universal character of a damped
Duffing oscillator is studied by computing the universal parameter C.. To verify the
computed solutions, the discrete Duffing Equation (6.5) is then solved numerically via
iteration. The results are tabulated in Table 6.1. Note that our computed universal results
are denoted by CR (cubic renormalization) and the numerically obtained solutions by NS

(numerical simulation). Also, the superscript “+” and “-”signs represent the positive and
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negative values of X,, respectively (see Figure 6.1). We will present comparison studies

for Cases II and I'V Duffing oscillators since they are the only ones that have saddles,

Table 6.1 Comparison of CR and NS values for universal parameter C,, .

Case IT Oscillator

Case IV Oscillator

Equivalent (D=E=-10) (D=E=10)
Damping  cR NS Emor CR° NS' Emor CR NS  Error
B % % %
0.0 -1.562 -1.560 0.13 1434 1.590 9.81 2812 2790 0.79
0.1 -1.640 -1.640 0.00 1.638 1.760 693 3.032 2980 1.75
0.2 -1.724 -1.720 024 1.834 1970 690 3.262 3250 037
0.3 -1.824 -1.820 022 2014 2110 455 348 3370 3.44
0.4 -1.916 -1.910 031 2200 2270 3.08 3.704 3.590 3.18
0.5 -2.024 -1.990 171 2384 2450 2.69 3.916 3.800 3.05
0.6 -2.110 -2.100 048 2566 2.630 243 4132 4010 3.04
0.7 -2.228 2200 130 2746 2810 228 4342 4220 2.89
0.8 2.344 2315 127 2926 2990 2.14 4548 4440 2.43
0.9 -2.444 2425 078 3.102 3.000 3.40 4774 4.670 2.23
1.0 2.570 -2.240 14.73" 3286 2.180 50.73° 4.958 4.660 6.40"
*Hamiltonian System

The Feigenbaum cascade in phase plane for Case II Duffing oscillator is sketched in

Figure 6.2. Since bifurcation points at the positive and negative branches of X, are the

same, it is not necessary to treat them separately, i.e., C;f =C; =C,, C =C; =C,, ---.

Observe the excellent agreement obtained between the CR and NS results. The only

exception is at B=1.0 where the system is Hamiltonian and the model is no longer valid.
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|

Figure 6.2  Feigenbaum cascade for the Case IT Duffing oscillator.

The Feigenbaum cascade in phase plane for Case IV Duffing oscillator is sketched in
Figure 6.3. For this system, it is necessary to consider both the positive and negative
branches of .X;, . Observe that very good agreement is obtained between the CR and NS

results. As before, the model breaks down at B=1.0.
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Figure 63 Feigenbaum cascade for the Case IV Duffing oscillator.

The results of the Cases II and IV Duffing oscillators obtained via numerical simulations
are depicted in Figures 6.4-6.5 respectively. The prescribed parameters for Case II

oscillator are B=0.0, D = £ = —1.0 and for Case IV, we have B=0.0, D= E =1.0. Note
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Figure 6.4  Numerically simulated cascades of bifurcation for the Case I Duffing
oscillator.
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Numerically simulated cascades of bifurcation for the Case IV Duffing
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that for each figure, we have plotted both the increasing and decreasing C . For Case II
oscillator, observe that the C) =C[ =C,, Ci =C; =C,, -~ and it exhibits a
catastrophe bifurcation when C is increasing. For Case IV oscillator, the jump
phenomenon is clearly visible. These numerical results qualitatively confirm our analytical

model.
6.4 Numerical Experimentations

In this section, we are interested in employing the analytically computed universal
parameters to numerically simulate the continuous Duffing equation as described by
Equation (2.19). To carry out the numerical experiments, it is necessary to compute the

original system parameters &,a,,,,0, of the continuous Duffing equation. They are

given by Equations (6.2), and (6.6)-(6.7); and the expressions are:

5= 5%(1-3), (6.30)

o, = —(%ﬂ@ ~-1- B+3%;-], 6.31)
a, = (%)E (6.32)

0, = _;_[4917]; +(C, -1—3)](5%)2. (6.33)

The results are plotted in Figure 6.6 for varying values of B. From this plot and Equation
(2.19), we numerically simulated the bifurcation cascade and strange attractor for the
damped Case IV Duffing oscillator in Figure 6.7. Once again, the jump phenomenon is

clearly visible.
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6.5 Conclusions

This chapter investigates for the first time, the universal character of the Duffing oscillator
via its discrete mapping. The approach used is based on the Naive discretization of the
differential equation of motion and the subsequent application of the cubic renormalization
on its discrete equation. The analytically computed universal parameters are compared
with the numerically simulated solutions of the mapping. Very good agreement is
observed. Based on the analytically obtained universal parameters, results of numerical
simulations for the discrete and continuous Duffing systems are performed. From the
graphs of the bifurcation cascades, the jump phenomenon and the strange attractor for a

damped Duffing oscillator are clearly seen.



PART II
DISCONTINUOUS SYSTEMS: IMPACT OSCILLATORS



CHAPTER 7
DYNAMICS OF A BOUNCING BALL

Holmes (1982) can be credited as the first person to systematically study the nonlinear
dynamics of a ball bouncing vertically on a sinusoidally vibrating table. The ball was
considered small compared to the massive table and thus, the motion of the table was not
affected by the repeated impacts of the ball. He also assumed that the distance traveled by
the free-falling ball between impacts is large compared to the overall displacement of the
table and proceeded to give an approximate equation for the time interval between
impacts. On the basis of this model, he arrived at a simple difference equation which he
used to demonstrate the various periodic and non-periodic motions and other chaotic
phenomena. In our opinion this simplified model based on a discrete mapping approach is
unnecessary and in some respects, inadequate. We will present a model that is based on

the differential equation of motion of the ball (Luo and Han (1994)).

Impact motion exists in a wide spectrum of engineering applications, ranging from moored
ships undergoing repeated contacts with fenders to moving parts in machinery and fluid
induced vibration in tubes. An engineer is not only concerned with the wear and fatigue
generated by the impacting system, but also the undesirable noise level that accompanies
such motion. A simple model of this discontinual system is to employ a single degree-of-
freedom impact oscillator. This deceptively simple model can exhibit an amazingly rich
variety of nonlinear behaviors, (see for example, Masri and Caughey (1966), Shaw and
Holmes (1983), Everson (1986), Reithmeier (1989), Bishop (1994)). Wood and Byrne
(1981) presented an interesting analysis of a randomly repeated impacting process and

hinted that such random non-periodic motion apparently exist even when the system is
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forced by sinusoidal excitations. This motivated Holmes (1982) to launch an investigation
into the problem. Everson (1986) investigated the chaotic response of a bouncing ball
using a model similar to Holmes’s. Other studies related to the dynamics of a bouncing
ball are the motion of impact dampers, see for example, Bapat and Bapat (1988), Heiman,
Sherman and Bajaj (1987), Shaw and Shaw (1989), Whiston (1992), Peterka and Vacik
(1992), Bayly and Virgin (1993), Han, Luo and Deng (1995).

In this work, the dynamics of a bouncing ball impacting on a harmonically excited massive
table is not only revisited, but also, generalized for higher-order motions. Unlike Holmes
(1982) our model is based on the differential equation of motion of the ball and from this,
an appropriate mapping (or switch plane) is constructed. We did not have to assume that
the distance traversed by the free-falling ball is large compared to the motion of the table
and this enables us to model large amplitude excitations. Accordingly, our computed time
interval between impacts is exact, whereas it was approximate in Holmes. The stability and
bifurcation conditions of the system are derived and presented here. To verify the results,

numerical simulations are carried out.

7.1 Equation of Motion, Discontinual Subsets and Poincare Mapping

Figure 7.1 depicts the mechanical model of a bouncing ball 7 moving freely in the vertical
direction with a vibrating table of mass M. It is assumed that the table is massive
compared to the ball; therefore, the motion of the table is not affected by the repeated
impacts of the bouncing ball, i.e. m <<M . As in the work of Holmes (1982), the external
excitation, namely, the motion of the table, is taken to be that of simple harmonic motion.

That is,

E = 4sin(wt +¢), (7.1)

where 4, @ and ¢ are the forcing amplitude, the forcing frequency and the initial phase

angle. Denoting the absolute and relative (to the table) displacements of the ball by x,y
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respectively, and if ( ) represents time derivatives, we have:

x=y+E(tA)
X =y+E(t A) (7.2)
X=j+ k(1 A)

m

y m @
“L Y Y

M Asin(of +¢)

X

AN\

Figure 7.1 ~ Mechanical model of the bouncing ball with a vibrating table.

Substituting Equation (7.1) into Equation (7.2) and considering gravity but neglecting

friction, yields the equation of motion in the relative coordinate system:
y=Ao®sin(wt+p)-g (7.3)

where g is the gravitational acceleration. Integrating Equation (7.3) and invoking initial

conditions (¥y,J,), the velocity and displacement of the ball are,

¥ =—Aw cos(wt + ) - gt +[y0 + gty + Aw cos(wt, + (a)] (7.4)
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y =~Asin(wt +¢p) - %gtz +[y0 +gt, + Aw cos(wt, +go)](z‘ =
: (75)
+A sin(wt, + @) t 813 +,.

For a system with discontinuities such as the impact problem here, all results concerning
the existence, stability and bifurcation of periodic solutions of a nonlinear system are, with
some modifications, directly applicable (Reithmeier (1989)). The discontinuities caused by
the impacts between the ball and the table imply that the state-space of the bouncing ball
can be divided into many continuous subsets X,. For the subset between the ith and
(7 +1)th impacts, the values of the ith impact just after the impact can be chosen as initial

conditions for X;. This subset can be determined from Equations (7.4)-(7.5) as,

y=-Awcos(wt + ) - gt + [y,?‘ +gt, + Aw cos(wt, + (0)], (7.6)

y=—Asin(wt + @) - —l—gz‘2 + [y,+ +gt, + Aw cos(at, + gp)](t ~t)
2 7.7)

+4 sin(wt, + ) + -;— gt +y;,

in which 7 €[t,, 1,,], ¥ =y*(1,) and ¥} = y*(1,). Note that the superscript “+*” denotes
immediately affer an impact and likewise, the superscript “~” for immediately before an
impact. The boundary of X, X, constitutes the switch plane of codimension 1 and to
stﬁdy the impact process, we would be interested to obtain the discontinual subset K,y
immediately prior to the (i +1)th impact. Therefore, taking values of state variables at
t =1, in Equation (7.8), we have:

2

Y =Yi =—-Asin(art,,, + ) --;—gfil +4sin(wt, +¢) +%gf,~ 78

+[ 37 +gt, + Aw cos(t, + )|t 1),

Neglecting the duration of the impact and considering only the simplest impact law,

namely, the modeling of impacts via a constant coefficient of restitution e < 1, the impact



Chapter 7: Dynamics of a Bouncing Ball 127

process can be described by,

Y= :O}. (7.9)

i =—eyy
An impact is deemed to occur when Equation (7.9a) is satisfied and the resulting loss of

energy is captured by Equation (7.9b). Substituting Equation (7.9) into Equations (7.6)

and (7.8), and replacing y;,y; by y,,, respectively, to simplify notation usage, we get:
Vin T cos(@t,,; + ) —gt,,, + [—ey,. +gt, + Aw cos(wt, + q))], (7.10)

0= ~Asin(ar,,, +¢) -—-21- o+ Asin(at, +p)+ %gﬁ (7.11)

+[——ey,. +gt, + Aw cos(wt, + ¢)](t,.+l -1,).

For an impact problem, the discontinual boundary (or switch plane) is the Poincare

mapping section £ which therefore, can be defined by

z:LNJz,., (7.12)

i=0

where z = {(4, J",-)J Y; =0, £, mod 22} (7.13)
@

When the absolute reference frame is considered, the Poincare mapping section is defined

by

3, =0, 1, mod Eﬁ} (7.14)
(0]

Zi(a) = {(tia X“'i)

[T

Note that all quantities measured in the absolute reference frame carry the subscript “a” as

shown in Equation (7.14). The Poincare mapping P can now be defined as
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P2 =2 (7.15)

7.2 Periodic Motion

The periodic solutions of the bouncing ball are derived in this section. First, the period-1

motion is formulated, followed by the period-2 motion and finally, generalizing the results

for the period-4 motion.

7.2.1 Period-1 motion

Z,‘ - Zi+l

Figure 72 Mapping diagram for the period-1 motion.

o\h\ i

ol (4T 2T (8T t

(a) time-displacement (b) phase-plane

Figure 7.3 Qualitative sketch of the period-1 motion in the relative reference frame.

The mapping diagram for the period-1 motion and its corresponding physical motion are
sketched respectively in Figures 7.2 and 7.3. For any x=(f,,5,)¥ €Z we have Px=x,

and this leads to the following two equations:

to=t,+ 2 fnT, =123 (7.16)
@
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)}m =Y, (7-17)

where the superscript #p implies transpose (of a matrix) and 7 is the period of the

excitation. Substituting Equations (7.16)-(7.17) into Equations (7.10)-(7.11) and

simplifying yields
) g 2nrzw
| = ——— 7.18
% l+e o (7.18)
2
l1-e
cos(wt; + @) =nx| — |. 7.19
(o, +9) ”(1+e) (7.19)

Equations (7.18)-(7.19) represent the initial impact conditions for the period-1 motion to
occur in the repeated impacts of a ball with a massive vibrating table. These are just the

necessary conditions and in a later section, we will provide the sufficient conditions as

well. Noting that ]cos(a)t,. +(p)' <1 in Equation (7.19) the following more general

conditions can be derived:

Ur-Z <ot vp<2r+Z | (7.20)
2 2
2 mamm
Ao” nﬂ(—l—-e-) (7.21)
g l+e

where / is a positive integer. Note that the impact conditions (¢,,7,) derived here actually

represent the fixed points of the discrete mapping, from which the stability of the motion

can be ascertained. This is outlined in Section 7.3.
7.2.2 Period-2 motion

The mapping diagram for the period-2 motion and its corresponding physical motion are

depicted in Figures 7.4 and 7.5, respectively. As before, its mapping P%x =x indicates
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i+]

> PP >

i 1. i+2

Figure 74 Mapping diagram for the period-2 motion.
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Figure 7.5  Qualitative sketch of the period-2 motion in the relative reference frame.

that 7,,, =£, +2nx/w =1, +nT and y, =y, ,. Substituting into Equations (7.10)-(7.11) and

simplifying, we get:

Jin = =A@ cos(@hy,, + ) = gl +[~ey; + g1, + Aw cos(ar, + ), (7.22)

0 = ~A[sin(ar,,, +¢) - sin(wt, + ?)]- %g(zﬁl ~1) (7.23)

+[—ey,. +gt, + Aw cos(wt, + go)}(z‘,‘+I ~t),

Viua =Y, = —Aw cos(at, + @) - g(z‘i + _7:11_75) + [——ey,.+l +gt,,, +Aw cos(wt,,, + go)], (7.24)
@

2
0=-4 sin(a)ti + ¢J) - é—g(fi + g:—)ﬁ) +4 sin(a)t,.ﬂ + 40) + %gtil
(7.25)

+[—ey,.+1 +gt,,, + Awcos(at,, + go)](t,. L f, )
o
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To obtain the parameter manifold and its corresponding initial conditions for the period-2
motion, two methods of algebraic manipulation are developed: Method 1 is more direct
and obvious, and Method 2 is more general and can be easily extended to handle the

formulation for the period-%4 motion.

Method 1
Adding Equations (7.22) and (7.24) yields

. . 2nrw
YintVi=- g " (7.26)
l+e o

Similarly, adding Equations (7.23) and (7.25) leads to

. @y, + Ao’ cos(at, + )+ nag 2nx
2nng +(1+e)ay, o

w = (7.27)
For simplicity, we introduce a new parameter such that 0 < g <1. Then, the time interval

between two consecutive impacts is computed from

—t=g=% (7.28)

Note that by setting g =1 we can recover from Equation (7 .28), period-1 motion from
period-2 motion (it is also possible to come to the same conclusion by setting g =0 in
Equation (7.28), but it would be necessary to replace ¢ by (1—¢) in the expression).

Substituting Equation (7.28) into Equation (7.27) we get:

2nr

Aw cos(at, +p) + (—l—— q) kiad
2 /o (7.29)

I-g(1+e)

yi=-

Observe that g #1/(1+e) in Equation (7.29). In the limit ¢ — 1/(1+¢) then we get
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1 2nng
i 1+ b)
¢ (7.30)
cos(wr, +¢) = - 11 \2nm=
’ 2 l+e) do®’

Eliminating y,,, from Equations (7.22) and (7.26), and also using Eguation (7.28) to

simplify, we get:

—(q ~ -l—j_—;) 2};@ ~(1-e)y, = Ao[cos(wt,, +p)~ cos(wt, + ?)]. (7.31)

Substituting Equations (7.27)-(7.28) into Equation (7.23) produces

(e-4)[1 (2m)2 L 2+epnm,
A 2\ o & W

] = sin(wt,,, + ) —sin(@t, + ). (7.32)

From Equations (7.31)-(7.32), eliminating the sine and cosine terms we have:

1 \/[(q 1 )Znizg_(l—E)J'/,-T+(q_q2)2(zgﬁ)z[f§g.+(1+g)yi]z.(7.33)

- 2fsin(ng ) l+e) @

Equation (7.33) for calculating the excitation amplitude A4, depicts the parameter manifold
for the period-2 motion for prescribed values of g. Note that from its denominator, it is
obvious that 4 will not exist for g = //n where /<n is integer. Physically, it implies the
motion is unattainable. For example, if q= 1/4, thenn = 438]12,--+; if g =1/2 then n

cannot take even values; if ¢ = 1, then # cannot any integer values; and so on.

In the limit ¢ — 1/(1+e), we get a much simpler expression of Equation (7.33):

4= lein(lnqn)] \/l:(l —af - :'2 " [(1 +ee)2 ZZ)HTI:nzg H e)j/,T ' (739
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Method 2

As mentioned, this approach is an alternative to Method 1 and because it is more general,
it can be easily generalized to handle the analysis of the period-%# motion. Once again,
substituting Equation (7.28) into Equations (7.22)-(7.23) and performing the algebraic

manipulations for the sine and cosine terms, we have:

Ky +eK)y + Ky,

cos(at, +p) = e ’
(7.35)
q q q .
sin(wt, + @) = LS +e]j'45 aJ)}}( :‘ KV, '

in which the various coefficients K¢, K7, -- -, K are defined in Appendix C.1. Substituting
Equation (7.35) into Equation (7.22) leads to

_L+Ly,

Yin = (7.36)

where the coefficients 27, L7, 1.7 are also listed in Appendix C.1. Once again, following the
same procedure as in deriving Equation (7.35), but now, from Equations (7.24)-(8.25) we
get,

L+ L,

= (7.37)

Y2 =Y =
In view of Equation (7.36), we get after eliminating Vi from Equation (7.37):

1-g qrl-q
) L) s

Vi = = —. (7.38)
e —Lngz 4

We can obtain Equation (7.26) from Equations (7.36)-(7.38). Eliminating the sine and

cosine terms in Equation (7.35) leads to,

2 2
1 2n X 2n .
=—= \/[Klq-m:f;w K§+(eK§—K§)y,~J +[K§— (1+Zio Kg+(eK5"—~K§)yiJ (7.39)
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Observe that Equations (7.35) and (7.36) are expressed in terms of coefficients ¢, 17, L]
K K, -, K¢ which are defined in Appendix C.1. Expressing them in this form makes

the task of extending the formulation to handle the analysis of the period-%4 motion more
intuitive and thus, easier. It can be shown that Equations (7.38) and (8.39) are identical

respectively, to Equations (7.29) and (7.33) derived in Method 1.

Discussion

It would be interesting to examine the situation of even values of 7 for q=1/2. That is
replacing 72 by 2m. For this situation, we have from Appendix C.1, the following results for

the impact velocity and phase angle:

Vi = Vi (1+e) »  (1+e)
(7.40)
Acocos(a)t.+¢)=g(_1___£_)2m7z
1 2 l+e) o

Observe that Equation (7.40) is identical to Equations (7.18)-(7.19) which have been
derived for the period-1 motion. What this implies is that we actually get period-1 motion

from period-2 motion if the table motion is vibrating with a period 2m7T.

7.2.3 Period-k motion

We will formulate the necessary condition for the period-k motion, i.e. P*x = x over nT’
period. The mapping diagram and its corresponding physical motion are qualitatively
sketched in Figures 7.6-7.7. We will extend Method 2 described previously to handle this
period-k motion. Introducing a series of impact time-interval parameter 0<g, <1 and

k
>.q, =1, the jth impact time-interval is given by,
J=1

ti+j g = anT- (7.41)
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Figure 7.6 Mapping diagram for the period-4 motion.
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Figure 7.7  Qualitative sketch of the period-% motion in the relative reference frame.

Note that it is necessary to introduce a series of q;, instead of a single ¢ in the previous

section, since we are now dealing with the period-% motion. The mapping equations of

motion pertaining to the g, impact time-intervals can be obtained by suitably modifying

Equations (7.10)-(7.11). That is,

Yoy =—4w cos(a)z‘,.+j + qo) —&hy; + [—e)’),.ﬁgj_1 +8ly Ao cos(cot,.ﬂ_1 + go)] , (7.42)

. 1 : 1
0=-4 sm(a)t,. b go) —3 gt ;+4 sm(a)t,.+ ja go) + Y gtl -1 (7.43)

+[—eJ}i+ T8 tAw Cos(a)ti+j—l +¢)](ti+ L j-—l)‘

Substituting Equation (7.41) into Equations (7.42)-(7.43), and carrying out the algebraic

manipulation as before, we get:
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4 CI qj -
K'IJ +eK21yi+j—1 +K3in+j
AwKY

q; v 9 .
: - K4J +eK5qui+j~1 +K6in+j
sm(a)z‘H 1 +(p) = . .

AwKY

>

cos(catH it go) =
(7.44)

where the various coefficients K K o+, K are given in Appendix C.1. Substituting

Equations (7.41) and (7.44) into Equation (7.42) produces,

q; 9 .
L7 + in+j-l
LY '

+j =

(7.45)

in which the coefficients Lq’,L?f,ng are also listed in Appendix C.1. Repeating this
process for all the -time intervals and back substituting to recover the (i +k)th impact
velocity results in

H,

Y=g (7.46)
where
_Lt L
k qu qu k-1>
: (7.47)
k sz
ALY )

The excitation amplitude 4 for the period-% motion is given by eliminating the

trigonometric terms and setting j = 1. The result is,

_ 1

. . 2 . . 2
=~ V& +eks, + K2y, V(K +eks, +K03,.) (7.48)

As before, Equation (7.48) constitutes only the necessary condition for the existence of

the period-£ motion.
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7.3 Stability and Bifurcation Conditions

To determine the sufficient condition for the periodic motion of the bouncing ball, it is
necessary to carry out a stability analysis. Both stability and bifurcation are discussed in
this section. For the period-1 motion, the results of Holme (1982) are available for
comparison. For the period-2 motion, its stability conditions are presented both
analytically and numerically. For the period-k motion, we indicate only the procedures as

the problem very rapidly becomes numerically very intensive.

7.3.1 Period-1 motion

The stability and bifurcation conditions for the period-1 motion are obtained by studying
the characteristics of the fixed points of the linearized discrete mapping of Equations

(7.10)-(7.11):

071’4—1 071+1
f, 4 V. f Y f,
(.’”):DP(,’J: LO’”’?"“) ( ,’): a4 P ( ) (7.49)
Yia Vi 5(1‘,-,.)’,') Yi B B Yi

a4 G

where DP is the Jacobian matrix and its elements, ¢, /&, ,4,,, Ve IRy L A Y -
are defined in the Appendix C.1. Evaluating DP at the fixed points (t,,7,) by substituting
Equations (7.18)-(7.19) into Equations (C.28)~(C.3 1) yields,

174 l+e

—f:l—?Aa)z sin(wt; +¢), (7.50)
Iy __e(lte), (7.51)
P, g
@/‘I- 1 l1+e 2 . 2 2 .
—L:——~—-—[Aa) sm(a)z‘,.+¢)] +(1+e)Aw’ sin(awt, +p), (7.52)

&, g
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Dins _ 2 - Ao’ sin(at, +¢)f§1+——el. (7.53)
& g

The trace and determinant of the Jacobian DP of mapping are

2
Tr(DP)=1+¢* - (L4e)” 42 sin{at, +p), (7.54)
g
Det(DP) = ¢, (7.55)

The eigenvalues 4,,4, can be computed from

i = Tr(DP) ++/ Tr(DzP)z - 4Det(DP) 756)

Stability conditions can be stated as follows: if |4,},]1,| <1, then we have a sink (stable
node or focus); if |4, <1<|A,], then we have a saddle; and if |41}]4,|> 1, then we have a
source. Since 4,1, = Detf(DP)=¢?, only sinks and saddles are found for e <1. For the
specific situation of e=1, centers and saddles are obtained. If ]/’L fl =1 for both

eigenvalues, then the norm is preserved in the directions associated with these eigenvalues.
Using the stability conditions of the discrete mapping, the stability and bifurcation for
period-1 motion can be qualitatively determined as shown in Figure 7.8. A summary is

given as follows:

Stability conditions

From Figure 7.8(a) sin(at; +¢) > 0 (or 2l <ot, +¢ <2l +x/2), the parameter range of

the stable period-1 motion is

<B, (7.57)

in which the constants B,,,---, B,, in Figure 7.8 are defined as,
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~

2
A1+e’)  (nn(1-e))?
and na = 4 + :
(1+e) l+e
Saddle Node Bifurcation Period Doubling Bifurcation
Stable Node (+) Stable Node (-)
No Fixed Point Stable Focus Saddle of the Second Kind

Stable Regions for Period-1 Motion

(2) for sin(at, + ) > 0

Saddle Node Bifurcation
No Fixed Point

Saddle of the First Kind

| ’0‘0’0‘o’o'0‘o‘o’o‘o’o‘&’o‘o’o’o’o’o’o‘0’0’0’0’0’0‘0’o’0’0‘0'0’0’0‘0‘0’0'0'o‘0’0‘0‘¢’0’0‘0’0’0’c‘o‘o‘o‘o‘o‘o’0’0’0‘o‘0’0‘0’0’0"‘0‘0’0‘0'0'0’0’0’0’0’0’0‘0‘0’0’0’0’0’0‘
0 By
(b) for sin(wt, +9) <0

Qualitative analysis of stability and bifurcation for the period-1 motion.
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(7.58)

(7.59)

(7.60)

(7.61)
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Discussion

(a) Stable motion:

®

(iD)

(iii)

For B, <Aw®/g<B,,, the eigenvalues of DP are real and for the range
0 <A, <1the fixed point of the mapping is a stable node ).

For B, <Aw’/g<B,, the eigenvalues of DP are complex conjugate in the

range /11,2, <1. The real part Re(/lm) changes from positive to negative, and

therefore the fixed point of the mapping is a stable focus.
for B,; <Aw®[g < B,,, eigenvalues of DP are real and for—1 < A,, <0, therefore

fixed point of the mapping is a stable node ).

(b) Comparison with Holmes’s result (1982):

®

Holmes (1982) presented the following result for the stable motion of the

bouncing ball,

B, <49 _p (7.62)
g

Comparing our results in Equation (7.57) with Holmes’s expression in Equation
(7.62), it is clear that the upper limit of the stability condition is different except
at e=1. The upper limit of Holmes’s result in Equation (7.62) is just the
extreme point of the stable focus (-) as depicted in Figure 7.8. On the other
hand, the upper limit of our result in Equation (7.57) goes a little further, to the

point B,, which corresponds to the period-doubling bifurcation condition. We

will show through numerical experimentation, that our result is more accurate.

(c) Unstable motion:

®

The parameter range for the unstable motion of the bouncing ball is given by

Aw?
g

>B,,. (7.63)
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For this situation, the eigenvalues A,, <0 are such that A <-1<4,, and

therefore, all saddles of this unstable motion are of the second kind.
(i) From Figure 7.8(b) sin(wrt, +¢) <0 (or 2/ +37/2 < wt, + ¢ < 2(/+ V), stable
motion cannot exist and thus, we have only the unstable motion governed by,

Aw?
g

>B

nl:

(7.64)

The eigenvalues A,, >0 for this unstable motion are such that A, <1<4,, and

thus, this unstable motion is different from the unstable motion in (). The fixed

points of this unstable motion is the saddle of the first kind.

Bifurcation conditions

The bifurcation conditions of period-1 motion of the bouncing ball are:

() Aw*/g=B, for saddle-node bifurcation, and
(i) Ao*/g=B,, for period doubling bifurcation.

The stability and bifurcation conditions are summarized qualitatively in Figure 7.8.
However, it would be much more informative to sketch them quantitatively. We can for
example, get a feel for the relative sizes of the stable and unstable regions. The
quantitative plots are presented in Figure 7.9. To generate the plots, the following values
are used: g=98, e=05, n=1andt, =2/n/w+2 mod 27/w. As shown, the dash-line
denotes saddle of the first kind; the darkened solid-line, stable node point; the dotted-line,
stable focus point; and the dash-dotted-line, saddle of the second kind. To clearly indicate

the start/end points of the stable regions, B,,,--,B,, are marked on these graphs. As in
Figure 7.8, B, in these graphs corresponds to the saddle-node bifurcation (SNB) and
likewise, B,, to the period doubling bifurcation (PDB). Note that the unmarked gaps
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between two saddles (including the saddles themselves) represent the period doubling
route to chaos, intermittency, etc. Further research is required to quantitatively chart these

unmarked gaps.

To provide a comparison with Figure 1 of Holmes (1982), Figure 7.10 is plotted using

g£=98,e¢=05 and w=x It should be emphasized that the comparison here is

qualitative rather than quantitative in nature since it is difficult to obtain the exact values
of the parameters used in generating Holmes’s solution. For our figures, it is more
appropriate to plot them without shifting the graphs by +7 as done by Holmes.
Qualitatively, our result compares well with Holmes in the sense that both of them are
very similar. However, there is one notable difference. While the starting points of the

stable regions are the same, the ending points are not: Holmes’s stable region ends at B,
whereas ours, at B,,. Also, note that our curves contain additional information pertaining

to the nature of the stability which is absent in Holmes’s plot.

7.3.2 Period -2 motion

As before, the eigenvalues of the linearized x,,, = P®x, are computed via the Jacobian

listed in Appendix C.1.2. For the period-2 motion, its Jacobian is given by,

DP® = pp.DP = P(t42,912) | P (i1 V1) (7.65)
a(ti+liyi+l) 42‘{:}),') ({i-&-Z )=(ti+2NIZ'/0)J
Yiv2 J"i

in which

o, 1 . .
et ey, ¢ 40 sinfor,, +0)- gl 1) (7.66)
G 4y, (7.67)

@}i yi+l
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@}H _ 2 é’tﬂ_ 2 .
o, -= [Aa) Sm(wtm + ¢) "g]_ﬁzl— - [Aa) Sm(a}t" + gp) —g]’ (7.67)
@.jiﬂ 2 éyi*'l
—=|Aw”sin(wt,,, + )~ g|—=L—e, 7.68
@/i [ ( 1 ) J @i ( )
zj - _li{—eym +[40? sin(a, + p) - g](ti + 3-:-)-’5~ n )} (7.69)
é}i‘z‘zfe_(ti +2?_7£—ti+1)2 (7.70)
@)i*-l yi @
Dz _ [Aa)2 sin(wt, +¢) —g]é‘iz—*[Aa)z sin(at,,, + ) —g], | (7.71)
alﬂ-l O?HI
Pra 2 2
and ——==|4o"sin(wt, +p) - g| 2 —e. (7.72)
@/H-l [ ( ) ] @}iﬂ

Substituting the solutions of the period-2 motion into Equations (7.66)-(7.72), we obtain
the period-2 Jacobian defined by Equation (7.65). This then allows the trace Tr(DP(z) )

and the determinant Det(DP(z)) to be calculated, yielding the eigenvalues of the period-2

motion:

(2) @\? _ (2)
;LuzTr(DP )i\/Tr(D;) ) 4Dez‘(DP ) 073

The stability and bifurcations of period-2 motion are computed from Equation (7.73). The

input parameters are g=9.8, @ =7 and ¢ =0.5. The stability and bifurcation results for
sin(@t, +9) >0 and sin(at, +¢) <0 are plotted respectively, in Figures 7.11(a)-(c) and
7.11(d)~(f). Note that the line types used have the same interpretations as those employed

in Figures 7.9-7.10. Due to the small size of the individual graphs, the start/end points of
the stable regions, B,,---,B,, are not marked in Figure 7.11. Observe that unlike the

period-1 motion, it is possible to have stable motion for sin(wr, + 9)<0.
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7.3.3 Period-% motion

The procedures for determining the stability and bifurcation of the period-% motion are
discussed here. Following the steps outlined previously, the eigenvalues of the linearized

matrix of x,,, = P*x, are computed using the period-k Jacobian which is defined by

s | [t
DP® = DP.-.DP = itk ' LTI i+l - i+l . (7.74)
[ !:ﬁ(li-»k-lbyﬂ-k—l) §(ti:yi) (fi*rk):(t’*zfv”/m)

Yivk Yi

Substituting the solutions for the period-% motion into Equation (7.74), the trace

Tr(DP*) and determinant Def(DP®) can be computed. This then permits the

eigenvalues of the linearized matrix to be evaluated,

T; DP(k) + P(k) 2_ D (k)
. K )+\/Tr(D2 ) -4Dei(D) o)

As shown in the period-2 motion, the stability and bifurcation for the period-% motion can

be determined from Equation (7.75).

7.4 Numerical Simulations

As a verification of the stability and bifurcation conditions for the period-1 and period-2
motions, numerical simulations are performed. To guarantee stable motion, input
parameters are chosen such that they lie within the theoretically determined stable range,
and similarly, to simulate unstable motion, input parameters within the theoretically

obtained unstable range are used.

7.4.1 Period-1 motion

The computed input parameters for numerical simulations of n=1, period-1 motion are



Chapter 7: Dynamics of a Bouncing Ball 148

tabulated in Table 7.1. For stable motion, we have plotted time-displacement and phase-
plane curves based on the equations of motion described by Equations (7.6)-(7.7) and
(7.9); for unstable motion, we presented Poincare mapping sections generated via
Equations (7.6)-(7.7), (7.9) and (7. 13)-(7.14).

Table 7.1 Computed input data for period-1 motion (g=98, e=05, w=x and
1, =0.0).

Figure No. A Vi o, Types of Stability

Period-1 Motion

Figures7.12 (a) & 7.14 (a)  1.0400639 -13.0666666 0.0219918 Stable Node (+)
Figures 7.12 (b) & 7.14 (b) 1.2518871 -13.0666666 0.5966194 Stable Focus
Figures 7.12 (c) & 7.14 (c)  1.5039512 -13.0666666 0.8073893 Stable Node (-)

Chaotic  Motion

Figures 7.13 (a) & 7.14 (d)  2.0003417 -13.0666666 1.0241592 2nd Saddle
Figures 7.13 (b) & 7.14 ()  2.0003417 -13.0666666 5.2590265 1st Saddle

Figure 7.12 depicts the steady period-1 motion of the bouncing ball, in the form of time-
displacement and phase-plane curves, corresponding to the three kinds of stability
conditions: (a) stable node (+), (b) stable focus and (c) stable node (-). Observe that these
three phase-plane curves change their shapes in accordance to the three types of stability,

and approach a “D”-shaped curve in (c).

Figure 7.13 shows the Poincare mapping sections for the two saddles associated with the

period-1 unstable motion. We have plotted the saddle of the second kind (sin(wt, + )= 0)
in Figure 7.13 (a) and saddle of the first kind (sin(awt, + ) <0) in Figure 7.13 (b). The

graphs on the left pertain to the relative frame of reference, and on right, to the absolute

frame of reference. The latter is provided to enable comparisons with physical experiments
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to be made should these be available. In plotting the two unstable motions, we
varied only their phase angles. Observe that when the phase angles are shifted exactly by
27, we still end up with completely identical Poincare mapping sections. What this
implies is that the two saddles have identical Smale horseshoe structures. Furthermore, a
careful scrutiny of Figure 7.13 reveals that there exists self-similarity, indicating the
presence of fractals. Thus, a chaotic attractor is clearly evident in the plot for the

parameters chosen.

It would be very interesting to view the physical motion of the bouncing ball. This
illustrated in Figure 7.14, superimposed together with the physical motion of the vibrating
table for up to 7=350s. Both stable and unstable motion are drawr. Since Holmes’s
model is based on a discrete mapping, he can only furnish a qualitative sketch and only for
the stable motion. In contrast, based on our differential equation model, we can produce a
quantitative description of the physical motion of the bouncing ball, for stable and as well
as unstable motion. Note that for both Figure 7.14, the following graphs are plotted: (a)
stable node (+), (b) stable focus, (c) stable node (-), (d) saddle of the second kind and (e)
saddle of the first kind. Motion (a)-(c) are stable whereas (d)-(e) are chaotic.

In addition to the analytical checks presented in the previous section, we can also
demonstrate physically that the motion in Figures 7.14(d)-(e) are indeed chaotic, by
simulating the physical motion over a prolonged period of time and checking if they would
repeat themselves. The results are shown in Figure 7.15 where the unstable motion is re-
plotted for up to 7=200s. Observe that the motions do not repeat themselves for this

duration of time.

7.4.2 Period-2 motion

Nurmerical simulations for time-displacement curves, phase planes and Poincare mappings
for period-2 motion are presented here. The computed input parameters for n=1,

period-2 motion are tabulated in Tables 7.3-7.4. Note Table 7.3 pertains to
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sin{wf; +p) > Oand for Table 7.4 to sin(@f, +¢) < 0. The time-displacement and phase-

plane curves are plotted by using Equations (7.6)-(7.7) and (7.9) for unstable motion, and
we presented Poincare mapping sections generated via Equations (7.6)-(7.7), (7.9) and

(7.13)-(7.14). The stability results are plotted in Figures 7.16-7.17 for sin(wr, +¢) = 0

and Figures 7.18-7.19 for sin(wt, +¢) < 0.

Table 7.2 Input data for period-2 motion for sin(wf, +¢)>0 (e=0.5, g=98,
A=20 and £, =0.0).
Figure No. o) Y, @, q  Types of Stability

Period-2 Motion

Figures 7.16(a) & 7.20(a) 272000 -3.516950 0.518909 0.721 Stable Node (+)

Figures 7.16(b) & 7.20(b)  2.71000 -3.617650 0.474160 0.726 Stable Focus

Figures 7.16(c) & 7.20(c) ~ 2.69750 -3.722500 0.358759 0739 Stable Node (-)
Chaotic Motion

Figures7.17(a) & 7.20(d)  3.49750 -0.018551 1274840 0.616 2nd Saddle

Figures 7.17(b) & 7.20() ~ 2.75625 -2.077890 0.016765 0.777 1st Saddle

Table 7.3 Input data for period-2 motion for sin(cot,. +9)<0 (e=0.25, g=938,
A=20 and £, =0.0).
Figure No. o Y @, q  Types of Stability
Period-2 Motion
Figures7.18(a) & 7.21(a)  2.69750 -11.47990 4.998830 0260 Stable Node (+)
Figures 7.18(b) & 7.21(b)  2.70000 -11.55360 5.014590 0.266 Stable Focus
Figures7.18(c) & 721(c)  2.71500 -11.65660 5.041640 0277 Stable Node (-)
Chaotic Motion
Figures 7.19(a) & 7.21(d)  3.00000 -9.62446 4.789790 0.181 2nd Saddle
Figures 7.19(b) & 7.21(e)  3.34000 -11.7321 5.148490 0373 1st Saddle
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Observe that for the period-2 motion there are only two possible types of impacts: a
‘large’ impact followed by a ‘small’ impact as depicted in Figure 7.16 (for
sin(t, +¢) 2 0) and 2 ‘small’ impact followed by a ‘large’ impact as depicted in Figure
7.18 (for sin(at, +¢)<0). The Poincare mappings for sin(af; +¢) >0 are plotted in
Figure 7.17 and for sin(wt, +¢) < 0 in Figure 7.19. Observe the presence of the Smale

horseshoe structures which are not identical. However, their presence indicates the

presence of fractals and thus, chaotic attractors in these figures.

The physical motion plots are shown in Figure 7.20 for sin(wf, +¢)> 0 and Figure 7.21
for sin(wt, +¢) <0 and like those plotted for the period-1 motion, the unstable motions

do not repeat themselves.
7.5 Conclusions

Based on the differential equation of motion, the stability and bifurcation conditions for a
bouncing ball with a massive harmonically vibrating table are derived for the first time.
The mappings for period-1, period-2 and finally, generalizing to period-# motion of the
bouncing ball are derived. It is found that three types of stable motion exist: stable node
(+), stable focus and stable node (-); and two-types of unstable motion exist: saddle of the
first kind and saddle of the second kind. From the Poincare mappings of the unstable
period-1 motion, the two saddles are found to possess identical Smale horseshoe
structures. This is however, not true for period-2 motion (and period-£ motion) where
their horseshoe structures are not identical. As shown, the unstable motion exhibits
chaotic attractors. Plots of the physical motion of the bouncing ball superimposed on the

vibration of the table are also given.
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Figure 7.20  Period-2 physical motion for sin(af, +¢)>0: (a) stable node (+), (b) stable

focus, (c) stable node (), (d) 2nd saddle (-) and (e) 1st saddle () (oo
ball, — table).
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Period-2 physical motion for sin(awt, +¢) < 0: (a) stable node (+), (b) stable

focus, (c) stable node (-), (d) 2nd saddle (-) and (e) 1st saddle (+) (o o o
ball, —— table).



CHAPTER 8
MOTION OF A HORIZONTAL IMPACT PAIR

Unlike Chapter 7 where the motion of the ball is verfical (and thus, gravity has to be
considered), in this chapter, we are interested in the motion of a Aorizontal impact pair.
Another major difference between Chaprer 7 and this chapter is that, in the former, the
impacts are free-falling onto one plane whereas, in here, we have rapid impacts on two
closely-separated planes. This difference is significant in that the energy of the horizontal
impact pair is much higher and therefore, leads more readily to chaotic motion. In this
sense, the study of the motion of a horizontal impact pair is more general than the motion
of a bouncing ball. Collisions or impacts caused by discontinual motion is complex and
highly nonlinear, and the most basic model is that of an impact pair (Masr and Caughey
(1966), Bapat and Bapat (1988), and Heiman, Bajaj and Sherman (1988)). Other impact
models include the acceleration or impact dampers (Lieber and Jensen (1945), Grubin
(1956), Warbuton (1957), Kobrinskii (1969), Bapat and Sankar (1985)) and the impact
oscillators (Senator (1970), Shaw (1985a, b), Bishop ( 1994)).

This chapter is concerned with the dynamical modeling of a horizontal impact pair,
subjected to a periodic base excitation. As in Chapter 7, applying the theory of
discontinual motion, mappings for four switch-planes are defined, and from these, five
possible impact motion models are developed: Model I, Model II, Model III, Model IV
and Model V. Note that the most studied impact model pertains to that of the equispaced
and non-equispaced, periodic two-impacts in exactly n-cycles of base motion, and is

captured by the Model I motion. Numerical simulations are also presented.
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8.1 System Description

§—» Et A;)
N

Figure 8.1 Mechanical model of an impact pair.

Figure 8.1 shows an impact pair consisting of a secondary mass (rigid ball) A, moving
freely within a gap 4 in a primary mass M »» Where M, >>m. Assuming the excitation of

the primary mass is harmonic, that is,

Et4;,0,,0,)=2 4 sin(w,t+9)), (8.1)

J=1

where 4;, @, ¢, are the jth-amplitude, jth-frequency and Jjth-phase angle, respectively.
Let (x,7) denotes the absolute displacement of the secondary mass and (),7) its

displacement relative to A7,. For simplicity, a one-term expression is assumed and the

external excitation becomes (Han, Luo and Deng ( 1995)):
E = Asin(wt + ). (8.2)

Substituting Equation (8.2) into Equation (7.2)(c) and neglecting friction yields the

equation of motion in relative coordinate system. That is,

V=Aw?sin(wt + ). (8.3)
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Integrating Equation (8.3) leads to
Y =—Awcos(wt + @)+ y, + Aw cos(wt, + p), (8.4)
Yy =—4sin(wt + @)+, + Aw cos(wt, + )]t —1,)+ A sin(wt, +@)+y,. (8.5)
Thus, the equation of motion for state subset X, is
Yy =—Aocos(wt + p)+ y; + Aw cos(wt, + @), (8.6)
y=—Asin(wt + @) + [y,+ + Aw cos(wt, + qo)](t — 1)+ Asin(wt, + @)+ y; . ‘ 8.7)

in which 7 e[t,,,,] (4.)) =y, $(t.) =7, Note that ()™ and ()" denote before

and immediately after an impact, respectively. The switch-plane or the discontinued subset

5‘X;+1 iS
Vin =Y =—Asin(ot,,, + )+ [y,.“ +Aw cos(wt, + qo)](z‘m —1,)+ Asin(at, +p). (8.8)

An impact is deemed to occur whenever

=7 |= 521__ (8.9)

vy

Assuming the simplest impact law, namely, one that considers the impact process is
instantaneous and employs the concept of a constant coefficient of restitution e to model
the energy loss during impact. The relative velocities before and after an impact are related
by

yi=-ey. (8.10)

In view of Equations (8.9)-(8.10), we have the switch-plane

Vin = —Aocos(at,,; + )+ [—ey,.‘ +Aw cos(wt, + ¢)], (8.11)
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Vi —Yi =-Asin(wt,,, +¢)+ [—ejz,.“ + Aw cos(wt, + go)](t,.ﬂ —1,)+ Asin(at, + ¢).(8.12)

For convenience, the minus superscript used for the relative coordinates will be dropped in
the ensuing derivation. That is, y~, y~ will be simply denoted by y, y, respectively. The

switch-plane is now defined as

Z:{(ti’yi) ’ M:%, t modz}. (8.13)

)

Using Equation (8.5), for every discontinuity we have

T=3xtUz". (8.14)

where Y= {(f,-y',-) ,y,- =2/ mod 375} (8.15)
| 2 w

> ={(ti7yi) lyi = "g‘: ¢t mod —26—07—[.} (8.16)

In terms of the absolute coordinate reference frame, the corresponding expression for

Equation (8.13) is

zz{(x,x')m;:g}:z—uzﬁ .17)
or Zz{(l,)&) || = —g, ¢ mod —Za—jz—}-—- Uzt (8.18)

where ¥ and X~ can be similarly defined.

8.2 Possible Impact Motion Models

Based on the proposed formulation, four new mappings can be defined. These are

BTt >ZIT, BZT It gzttt pEToIT. 319
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The switch-plane Z'(or E*) can be interpreted as the Poincare section. Hence, the

Poincare mapping P can be defined for several impact motion models.

8.2.1 Model I motion

>, L(-) R(+)
£ 2
:///V‘P \\\\‘ _ '
> + 3 + g %
(@ (b)
Figure 82 Model I motion - RL impact sequence: (a) commutative diagram and (b)
physical model.
p Tt i e
2 1
— e
_/ P \ —_ gy
) >

(2) (b)

Figure 83  Model I motion - LR impact sequence: (a) commutative diagram and (b)
physical model.

The commutative diagram for Model I motion is depicted in Figure 8.2(a) with the
physical interpretation given in Figure 8.2(b). As shown, this model corresponds
physically to the situation of just one impact per side or more commonly known as two
alternating impacts. It could be either an impact on the left side followed by an impact on
the right (LR), or an impact on the right side followed by an impact on the left (RL). The
latter is depicted in Figure 8.3. Hence, there are two possible cases and since these two
cases are the identical, we will consider only the LR impact sequence for further
discussion. As discussed in the next section, this motion involves the grazing bifurcation at

the parameter values of the saddle of the second kind. For this situation, we have
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T2 5% 50 that the mapping becomes,

P=P, P,

167

(8.20)

This classical two alternating impacts per cycle of base motion is perhaps the most studied

steady-state impact motion. A more general investigation involving two-impacts in exactly

n-cycles of base motion will be presented later. For any x € >t we have,

so that

where I is an identity mapping.

8.2.2. Model II motion

(2)

Q)

™M

(@

L(-)

(8.22)
(8.23)

R(+)

R-impacts

or

L(-)

(b)

R(+)

L-impacts

(b)

Figure 8.4  Model Il motion: (2) commutative diagram and (b) physical model.

For this model, the commutative diagram is given in Figure 8.4(a) and the corresponding

physical model in Figure 8.4(b). Physically, the impact process is that of one impact per

side, per cycle. Since the impact can be one the right side (R) or on the lift side (L), we
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again have two possibilities. Since these two situations are identical, just one case is

considered. As before, the motion is described by
Px=x=Px, (8.24)

and its periodic solution is characterized by

4 =nl+t,,
wt, +go:§, (8.25)
yl =y0 :O:

where T' =27 / @ is the period. From the result of Mapping P, is enlisted in Appendix C.2

for ¢ e(¢,,1,), the solution simplifies to,
. . d _d
Yy =Awcos(wt+@), |y|=|-Asin(wt +p)+ 4 +5 3-2—. (8.26)

That is A<0. (8.27)

However, E = Asin(wt +¢) where 4 is always positive. This conflicting result implies that
this model is physically unattainable, and thus, the solution non-viable. The ball actually
stops before reaching the sides. Similarly, for the period-doubling bifurcation motion, we

have

PPx=PPx =P oPx=x, (8.28)
where from Appendix C.2.1, for mapping P,, we have

(1 +e)0)1 +y0) = O)
t :g-THO, (8.29)

t, =nl +1,.
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Since y,,y, €Z” and e > 0, we get Y1 =Y, =y, =0. Once again, this constitutes a non-

viable solution and therefore the motion is physically unattainable.

8.2.3 Model IIT motion

- P —
st 4 X 4 ey L() R(+)

7 / LA N
P + ~=g -
s+ )

(a) (b)

Figure 8.5  Model III motion: (a) commutative diagram and (b) physical model.
Figure 8.5 shows Model III motion: its commutative diagram in Figure 8.5(a) and the
corresponding physical interpretation in Figure 8.5(b). The impact process as represented
here contains four impacts per cycle, comprising of either a RLLR or a LRRL impact

sequence. Since these two cases are the same, the discussion here will be limited to just

the RLLR sequence. The mapping is
P=P, <P, PP, (8.30)
Since this model is the same as Model I motion, no further discussion is necessary.
8.2.4 Model IV motion
It should be mentioned that in going from a LR sequence (Model I motion) to a RLLR

sequence (Model IIT motion), it is possible to generate two intermediate impact models: a

LLR impact sequence and a RRL impact sequence. These are sketched in Figure 8.6 and
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their mappings are P=P,cP,oP, and P = B o P o P, respectively. In going from this

model to chaos via period-doubling bifurcation, the general mapping for the LLR motion is

P® = (B, 0P, o B)oro(B, o P, o P), k=123,..., (8.31)

~
k terms

and for the RRL motion we have

PO = (P oP oo o(P o P o b)),  k=123,.... (8.32)
ktzrms
= A > L(-) R(#)

Z+ P s + g —
(a) LLR-impacts (b)
or
st_ 5 | s+ L() R(+)

5 /‘ \? - -

(@) RRL-impacts (b)

Figure 8.6 Model IV motion: (a) commutative diagram and (b) physical model.

8.2.5 Model V motion

It is desirable to generalize Model III motion, to handle the situation of uneven multiple
impacts per side. This is shown in Figure 8.7 where we have m-impacts on the right side

my) and n-impact on the lefi(n,), resulting in an impact sequence described by
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R---BL---LR. The motion is defined by

Mg g

P=P o™ opop"™), (8.33)
(1) L(-) R(*)
>t & s~ & >

g(m}z/ \ﬁ ()

Z+ P Z+

N -
D) (Al

N

(a) (b)
Figure 8.7  Model V motion: (a) commutative diagram and (b) physical model.

This model could have also been equally described by a L---LR---RL impact sequence.

The total number of impacts per cycle of the base motion for either description is

(m+n+1). The mapping is given by

PO =(BoPI o B o P™Yor-o(P o P o P o Py k=123, (8.34)

k terms

For the most general case of a varying, uneven multiple impacts per side, we have

PY=(poplop o B\ You+-o( B, o P{"™) o P o P{ma0)) (8.35)
in which mg,,n,, consist of a set of positive integers, / =1,2,... %, that can be randomly
selected.

8.3 Non-Equispaced Periedic Motion

To determine the periodic motion of the five proposed impact models, a method similar to
the one outlined in Section 7.2 is devised by introducing a new parameter pertaining to the

impact time-interval for characterizing the motion. The formulation for the most general
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situation of non-equispaced, periodic motion is presented. The details are as follows.

8.3.1 Non-equispaced period-1 motion for Model I

The periodic two-impacts in exactly n-cycles of base motion for Model T is discussed here.
This model is very popular since its motion is easily observed during physical
experimentations. A considerable amount of research for this type of motion exist,
particularly for the case of symmetric two equispaced impacts per cycle motion (i.e., #=1).
Note the term symmerric as used here implies that # is an odd integer. Choosing the initial

Poincare section to be defined by X~ which implies y, <0, we have, from Equation (8.22)

for periodic motion:

2nw
lig = +1;

@ (8.36)
yi+2 =y1> y,'+2, yi SO

From the results shown in the Appendix C.2, the solutions for ¢ = t,, are
Vi = —A cos(wt, + @)+ [—ey,. +Aw cos(wt, + go)], (8.37)
d= -A[sin(a)tm + )~ sin{at, + )]+ [-ey; + Aw cos(wr, + go)](t,.+1 -1), (8.38)
and for ¢ = ¢, ,, they are,
Viva = —Aw cos(at,,, + )+ [—ey,.+1 +Aw cos(wt,,, + qo)], (8.39)
-d = —A[sin(ayt,.+2 +¢)—sin(at,,, + go)] + [~ + Aw cos(at,,, + @)ty 1., ). (8.40)

Two methods of manipulating Equations (8.37)~(8.40) for quantities of interest (such as

Y;» 4, etc.) are provided: Method 1 is more direct and obvious, and Method 2 is more

general and can be easily extended to handle the analysis of the five impact models.
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Method 1
Adding Equations (8.37) and (8.39) and simplifying via Equation (8.36) yields

I+ +510) =0 = ==, (8.41)
Substituting Equation (8.41) into Equation (8.37) and for e = 1, we get

y, = lﬁl—-a)—[cos(a)ti+1 +¢) - cos(t, +9)|. (8.42)
~e

Similarly adding Equations (8.38) and (8.40) leads to

1

[—eyi + Aw cos(wt, + go)](t,.+1 —1)+ [—ey,.+l + 4w cos(wt,,, + go)](gﬂ +t~ tm) =0.(8.43)
)

Next, we introduce a new parameter such that 0 < g <1. Then, the time interval between

two consecutive impacts is given by,

_t =g 2% (8.44)
[

ti+1
Observe from Equation (8.44) for Model I motion, g can be interpreted as follows: no
impacts for ¢=0 and g=1; and equispaced impacts for g =1/2. Therefore, g can be
interpreted as the impact time-interval parameter. Substituting Equations (8.41) and

(8.44) into Equations (8.42)-(8.43) yields

Aw

—mCOS(@fi + {D) (845)

V=
From Equation (8.45) we can compute the initial velocity for a given ¢. Eliminating
cos(wt, + @) from Equations (8.42) and (8.45), we have

_e—g(l+e) .

. 8.46
P (8.46)

cos(ar,, +¢) =
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Substituting Equations (8.44) and (8.45) into Equation (8.38), we obtain

g[mzaw)a—q)qmyp
A

J = sin(wt,,, + ) - sin(wt, + ). (8.47)
)

Combining Equations (8.42) and (8.47) and eliminating the sine and cosine terms we get:

1 J[(l—e)y,]z+[d+2(1+e)(1—q)qmv>f]z. Y, <0, n=123, . (8.48)

B 2sin(gnr)| @ )

Equation (8.48) describes the parameter manifold of Model I motion for prescribed values
of g. It yields the amplitude of the excitation 4. Note that from its denominator, it is
obvious that 4 will not exist for g = I/n where [ is an integer less than 7. Physically, it

implies the motion is non-attainable.

Method 2

Applying the procedure outlined in Section 7.2 for non-equispaced impacts, namely, by
substituting Equation (8.44) into Equations (8.37)-(8.38), we obtained the following

equations governing the periodic motion of Model I motion:

Kl +eK1y 2
cos(wt; + @) = eK 7y, +Kipy
AaK?
g (8.49)
q q., q.
sin(a)ti +¢) = Ki +eKsy, + Ky
AwK? ]

where the various coefficients X K, K¢ are defined in Appendix C.2. Substituting
Equation (8.49) into Equation (8.37) leads to

L+ 1%y,

yi+1 Lq 2 (8 50)
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where the coefficients L7, L7, L{ are also listed in Appendix C.2. Once again, following the

same procedure as in deriving Equation (8.49), but now, from Equations (8.39)-(8.40) we

get,
Vi =Yy =£jﬁ;—q—y—‘~ (8.51)
In view of Equation (8.50), we have from Equation (8.51), after eliminating y,, :
L+ ke 8.52)

yi - - —q?
Iy

It can be shown from Equations (8.50)-(8.52) that Y; ==Y;,,. Also, eliminating the

trigonometric terms in Equation (8.49) by squaring and adding, leads to

1 2 2

A=— [Klu(eK;—K;)y',.] +KE+(eKS =Ky ] 5 5,50, n=123-. (8.53)
Observe that Equations (8.52) and (8.53) are expressed in terms of coefficients L, L7 L3
K%K}, K¢ which are defined in Appendix C.2. Expressing them in this form makes
the task of extending the formulation to handle the analysis of the non-equispaced -
impacts periodic motion for all the five proposed impact motion models more intuitive and
thus, easier. It can be shown that Equations (8.52) and (8.53) are identical respectively, to
Equations (8.45) and (8.48) derived in Method 1.

Equispaced period-1 motion

For this motion, g =1/2. We can use equations from either Method 1 or Method 2 to

derive the simplified equations governing this equispaced period-1 motion. Choosing

Method 2, we have from Equations (8.49) and (8.53) for odd »:
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(l—e).}'}i
coswt; + @) = ——-t 8.54
sin(ar, + )—-l—(d+g+—e)’l’5') (8.55)
it Y w Yi |- .

and Equation (8.53) reduces to,

e 74 . 72
A:l [Q—i)}i:, +[a’+(—1j——el’-7-@"—:‘ ; Y; <0, n=13)5,.---. (8.56)
2 @ 2w

As shown in Han, Luo and Deng (1995), Equation (8.56) constitutes only a necessary
condition for stability of equispaced motion. We will defer the derivation for the sufficient
condition to the next section where the stability and bifurcation of periodic motion are

formally introduced. If £* is chosen as the initial Poincare section which implies y, >0,

then Equation (8.56) modifies to:

S . 12
Az_l_\/[(_l:_e)_)i] +[_d+.(_liflﬁ7ﬁJ : 9,20, n=135,-. (8.57)
2 @ 20

Generalizing Equations (8.56) and (8.57) we have,

_1fa-ew [, QeomapT s
A"E\/[TJ +[d ———Z—a—)—-——] |20, n=135,--. (8.58)

For the case of two alternating impacts per cycle, that is #=1, we have from Equation

(8.58),

R KO A I )2 |

For perfectly elastic impacts, i.e. e=1 we have,
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yi:—yi+1

d:iZA—mzb}"I ; n=13)5--. (8.60)
@

8.3.2 Non-equispaced k-impacts periodic motion for Models I-V

The equations derived previously are valid only for the non-equispaced period-1 motion of
Model L. In this section, we will formulate the equations for the most general situation,
namely, that of the non-equispaced &-impacts periodic motion for Models I-V. Consider a
model exhibiting A-impacts over nT period. Following the procedures of Method 2, we

introduce a series of impact time-interval parameter q,, satisfying,

Loy —bjm = anT7 (8.61)

k
where 0<¢g. <1 and ;= . Note that it is necessary to introduce a series of ¢,, instead
q; q; ary q;
j=1

of a single g in the previous section, since we are now dealing with motion consisting of %-

impact time intervals. The governing equations for the motion pertaining to the g;, impact

time-interval are,
Yy = —Aw cos(at,, , +p)+ [—-ey,.+ ja tAwcos(at,, ., + gp)], (8.62)
A=-4 sin(a)z‘,,,j+1 + (p) +4 sin((ot,.ﬂ + qp) + [—ej/,.ﬂ_1 +Aw cos(a)ti+j_1 + go)](t,.+j - t,.+j_1) ,(8.63)

where

~d  for mapping P,
A=¢ d formapping P,, (8.64)
0  for mappings 7, and P,.

Substituting Equation (8.61) into Equations (8.62)-(8.63) yields
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q; gj qj ¢
K +eszyi+j—1 +K; Yisj
AwK¥

q; 9. q; -
) _ K’ ‘*'eKsJij—l +K6in+j
sm(a)ti+ -1 +go) = .
AwKY

cos(a)t,.+ 1T go) =
; (8.65)

where the coefficients K'Y JKY - KX are defined in Appendix C.2. Substituting

Equations (8.61) and (8.65) back into Equation (8.62), we obtain

q; q; .
Ly +L2in+j—1

& (8.66)

Yiej =

where the coefficients L”, LY IV are defined in Appendix C.2. Repeating this process for

all the k-time intervals and back substituting to recover the (i + ) th impact leads to

. . H
yi+k=yi=l_l}{: (867)
where
_Lr L
% o ED
(8.68)
k 4q;
H=]]%-
= LY )

As shown in the previous section, the necessary condition for the existence of the k-

impacts periodic model is given by,

1

K%

A=

iR +eky, + Koy, ) o (K8 +eky, + K23, ) (8.69)

To obtain the sufficient condition, we have to carry out a stability analysis and this is

presented in the next section.
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8.4 Stability and Bifurcation

Similar to the procedures outlined in Chapter 7, the sufficient condition for the k-impacts

periodic motion will be formulated here via a linearization of the periodic solutions.

8.4.1 Period-1 motion for Model I

Non-equispaced periodic motion

We first linearize x,,, = Px, and then compute its eigenvalues using the expressions given

in Appendiic C.2.1. Therefore, the Jacobian of the linearized mapping DP = DP, - DP, is,

. ). z. )
DP = DPI DPZ - ﬁPl(tx+2’.yz+2) éPZ( 1+l"-yl+1) (870)
ﬁ(ti+l’yi+l) o”(ti,y,.) (fn-z )z[tﬁ-z.nn/w)
Yix2 i
. . 07'.,_1 1 . 2 :
in which —5—- = .——-[—ey,. +Aw*(t,, - 1)sin(at,, + (0)], (8.71)
i Yin
A, e
== —(f,, - 1), 8.72)
@}i yi+l ( l )
—_@)"“ = Aw*> sin(coz‘H1 +¢) Ay - Aw? sin(a)t,. + qo), (8.73)
a, a,
—@/f—“—zAa)z sin(a)z‘i+l +go)£f‘-e; (8.74)
P, @,
and _0211’«.’_ = ;[—eym +Aw? (ti + -:-ZE =1, )sin(a)ti -+ (p)}, (8.75)
ﬁ(i+1 i @
éiig‘:fe“(ti +£}?£“ti+1)> (8.76)
P W @
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@/1+2 - AwZ sm(a)ti + go)___'i_z_._.Aa)z Slﬂ(a)tﬂ_l + qﬂ), (877)
07”-1 071'\“1
D ) . A,
————@f’*- = Aw” sin(wt, + p) =22 —¢. (8.78)
@)iﬂ @’iﬂ

Substituting the solutions in Section 8.3.1 into Equations (8.71)~(8.78), the parameterized
matrix DP of Equation (8.70) is determined, from which its trace 73 7(DP) and determinant

Det(DP) can be easily calculated. The result for the eigenvalues of DP is

b= Tr(DP) +./ Tr(l;P)z - 4Det(DP) (575)

Equispaced periodic motion

Specializing the formulas for the well-known equispaced periodic motion, i.e. ¢ =1/2, the

computed trace and determinant of the linearized matrix are respectively given by,

Tr(DP)=2¢* +(1- e)z(Ammh.l(wt" s gp)) > (8.80)

i

Det(DP) = ¢*.

Substituting the results of Equation (8.80) into Equation (8.79) yields the eigenvalues,

and from the subsequent eigenanalysis, the following conclusions can be derived.

(1) Stability conditions

(a) For stable motion (stable node (+)) we have,

Since no fixed points exist below the lower limit, there is no period-1
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equispaced motion below this limit. This observation can also be confirmed by
examining Equation (8.54) and imposing [cos(a)t,. +qo)l <1. This implies that
A2d(1-e)/[na(1+e€)], which can also be derived by manipulating Equations
(8.54)~(8.55). The equality at the upper limit is a bifurcation condition and will

be discussed later.

(b) For unstable motion (saddle of the first kind) we have,

. 2 2
A>[_yLl\/(l_.‘f) +(1_ﬁ) i n=135,-. (8.82)
o 2

Nz

(1) Bifurcation condition
Instead of period-doubling bifurcations, we have only the saddle-node

bifurcation. The condition is,

. 2 2
Az_Ly_,.l\/(l—e) +(1+e) . n=135... (8.83)
@ 2 nr

If e=1, we have 7r(DP)=2 and Def(DP) =1 and thus, its eigenvalues are

always +1. This implies that a saddle-node always exists for the case of

perfectly elastic impacts.

Stability plots

In this section, we are interested in generating stability plots of the period-1 motion for
Model 1. For equispaced motion, we employed the analytical results obtained previously
and for non-equispaced motion, we generated the results numerically by computing its
eigenvalues using Equation (8.79). To judge the stability and bifurcations of the motion,
we adopted the method given in Section 7.3.1. The input parameters for the numerical

simulations are ® =7, e = 0.5 and d = 10. The results are plotted in Figures 8.8 and 8.9.
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Note that Figure 8.8 depicts the motion starting on the left-side and F. igure 8.9 for motion
starting on the right-side. As shown in both figures, the curve 4BC represents the stable
period-1 equispaced motion, and the points 4 and C are its saddle-node bifurcation. The
dash lines starting at A and C denote the unstable motion pertaining to the saddle of the

first kind for equispaced motion.

Observe from graph (a) of the two figures, we have equispaced motion (i.e. g=0.5) for
curve BC and non-equispaced motion once past the bifurcation point C. That is, the
period-1 non-equispaced motion are represented by the two branches CDEF and
CD,E,F, . Therefore, it can be seen that equispaced impacts become non-equispaced after

bifurcation at C.

From graph (b) of the two figures, the line DEF represents the merging of the two
branches, namely, the points D,,E,,F] coincide with corresponding points D,,E, E,.
Observe that Figures 8.8(b) and 8.9(b) are the mirror-image of each other about the

horizontal axis.

From graph (c) of the two figures, we note that they are the same with the initial phase
angle translated by 7 in Figure 8.9(c). Observe also that period-doubling bifurcations or
more accurately, grazing bifurcations of the period-1 non-equispaced motion occurs at F;
and F,. The dot-dash lines denote the unstable motion pertaining to the saddle of the

second kind.
8.4.2 k-impacts periodic motion for Models I-V

Results of the A-impacts periodic motion for all motion models are discussed here, with
the exception of Model II motion since it does not exist. The Jacobian for each of the
motion models is derived and using the method outlined in Section 7.3, the stability and
bifurcation of the motion can be determined via numerical experimentations. However,

due to the extremely large number of possible impact combinations, the problem very
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rapidly becomes numerically very intensive. Therefore, we will only list the Jacobian of the

linearized mappings for the motion models considered.

Model IT] motion

DP=DP,-DP,-DP,- DP,
: . (8.84)

Dp® = DP,-DP, - DF, - DP,---DP, - DP, - DP, -DP,

kterms J

Model IV motion

DP =DP,-DP, -DP,
: ;. (8.85)
DP"® = DP, - DP, - DP,---DP, - DP, - DP-,

kte;’rms J

Model V motion

DP =DP,-DP\"). DP, . DP{"™®
: g (8.86)

DP = DP2 ,DR4("L1) -DPI .DPB(mRI)”_DIJZ 'DR;,(nLk)‘DPl ,DP3(mRk)

ktéfms P,

8.5 Numerical Verifications

To verify the stability of the periodic motion and to observe the chaotic phenomena,
numerical simulations in the form of displacement-time curves, phase planes, switch-planes
and Poincare mapping sections are presented. To simulate the nature of the stability, the
input parameters for the numerical experimentations are computed rather than prescribed.

In particular, the excitation parameter 4, initial impact velocity y, and initial impact phase
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angle ¢, are computed via appropriate analytical expressions for @ =7, ¢=0.5 and
d =10.0, by assuming the impact to start at the left side of the oscillator, i.e. y,=-d/2.

This information is summarized in Table 8.1.

Table 8.1 Computed input data for numerical simulations (w =7, e=0.5, d=10.0,
Y;=—dj2 and t, =0.0).

Figure No. A Y ®; q  Stability Status

Figure 8.10(a)  2.2620 -21.6127 4.5363  0.50 Stable node (+)*
Figure 8.10(b)  3.9140 -22.6736 53550  0.45 Stable Node (+)
Figure 8.10(c)  4.2860 -23.7000 5.5573  0.390 Stable Focus

Figure 8.10(d)  5.1900 -27.2962 5.8889  0.299 Stable Node (-)

Figure 8.11 8.2520 -36.7835 4.4228 0.80 Unstable 2nd Saddle (-)

* Equispaced motion

Note that due to the choice of the computed input parameters, the first four motions listed
in Table 8.1 are stable. This is also evidently clear from the results of the numerical
experimentations in Figure 8.10 which depicts the relative displacement-time and phase
plane plots in the relative frame for the Model I motion. Figure 8.10(a) plots the simplest
and the most studied case for the impact pairs, namely, the stable equispaced motion. As
the forcing amplitude 4 is increased, the impact motion becomes nonequispaced and this is

shown in Figure 8.10(b)-(d).

Further increase of 4 result in chaos and the relative displacement-time and the relative
velocity-time plots are shown in Figure 8.11. For this situation, we have the second saddle
of non-equispaced impacts of the Model I motion. To confirm that the motion is indeed

chaotic, we have also presented its phase plane and the left-right switch plane X .
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To get a feeling of the actual motion, we have also presented physical motion of the
impact pair for all the cases listed in Table 8.1. This is given in the absolute displacement-
time plots of Figure 8.12. The motion of the oscillator is denoted by the solid lines and the
impact mass by the circles. Note that the first four plots (from the top) pertain to that of
the stable motion and the last plot is that of the chaotic motion. Observe that there is no

repeats in the chaotic motion.

8.6 Conclusions

A theory for a system with discontinuities as applied to the impact analysis of a horizontal
impact pair is developed. Mappings for four switch planes are defined and from these, five
impact motions; Model I, Model II, Model III, Model IV and Model V are derived. The
simplest and most studied case, namely that of the equispaced impacts of the Model I
motion, is scrutinized in detail. For this impact model, it is shown that period-doubling
bifurcation cannot occur. Using computed instead of prescribed input parameters,
numerical experimentations are performed and the analytically predicted stability is in
excellent agreement with the numerically generated results. Both stable and unstable
(chaotic) motions are generated. To get a sense of the impacts, plots of the physical

motions are also provided.
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PART III
MULTIFRACTALS IN CHAOTIC DYNAMICS



CHAPTER 9
PERIOD DOUBLING AND MULTIFRACTALS IN 1-D ITERATIVE
MAPS

Consider the 1-D iterative map

Xuag = S (X0 1), nen, 0.1)

where N is the natural number set. The nth iteration of f(x,) is denoted as

SO0, 1) = f(F0(x, ), FO w=x. (9.2)

For 1-D discrete processes, it is the simplest nonlinear difference equation that has an
extraordinary rich dynamical behavior, i.e. from stable point to chaos through cascades of
stable cycles. Such a mathematical model has been extensively studied by several
researchers. In particular, May (1976) gave an interesting account of this model for
problems in the biological, economic and social sciences. The metric universality for this
class of mapping is now a well-established phenomenon (Derrida, Gervois and Pomeau
(1979)). Among the early investigators, Feigenbaum (1978, 1980a) studied the universal
behavior of 1-D systems and quantitatively determined the universal numbers. These
numbers present the threshold values from period doubling bifurcation to chaos.
Nauenberg and Rudnick (1981) discussed the universality and the power spectrum at the
onset of chaos for 1-D iterative maps. Collet, Eckman and Koch (1981) generalized the
period doubling theory to higher dimensions. Zisook (1981) studied the universal effects
of dissipation in the 2-D mapping. The computation of the universal rescaling factors for

both 1 and 2-D maps has been carried to a very high precision by Hu and Mao (1985).
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Halsey et al. (1986) provided fractal measures and their singularities, and applied them to
characterize strange sets. They studied the fractal of the 2°-cycle of period doubling by
choosing fractal scales /; = 1/a,; .4, = 1/al, where a,, =2.502 907 875 is the factor in
the period doubling for the iterate map x,,, = Ax, (1-x,). They obtained the following

dimensions:

02 075551, D =—22 037775, (93)

DO = 0.537"" D_w = 1
napy 2Inapy

where D, is the Hausdorff dimension and D__, D, are the limit dimensions. A more

accurate Hausdorff dimension was given by Rasband (1989):

In2
11 1 1
lo| = —+——
[2 (aPD a%D)J

In this chapter, a highly accurate method to compute the period doubling solutions of a

Dy =- =0543 87--, (9.4)

general 1-D iterative map is presented. The technique consists of constructing similar
structures of the period doubling solutions and then applying a renormalization procedure
to evaluate the appropriate length scaling factors. For period-doubling solutions leading to
chaos, this approach yields multifractal results of very high precision compared to the
usual multifractal analysis alone. If the critical parameter associated with the Feigenbaum
number is employed, the fractal characteristic parameters calculated will be exact. The
stability status of the computed solutions can also be easily determined. An example is

solved to demonstrate and to assess the accuracy of the procedure.

9.1 Similar Structures in Period Doubling

Consider a dynamical system represented by a family of 1-D maps of one parameter and

which passed through a sequence of period doubling to chaos

X = (%, 1), (9.5)
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where p is the parameter. The fixed point x* can be easily determined from Equation

(9.5) by setting x,,, =x,. If

n+l

dxm—l __Cz]_r_ — __1

dx, dx

; (9.6)

By, =x*

then this fixed point is the critical point of bifurcation. Suppose this solution of Equation

(9.5) satisfies the condition under which it exists, i.e., X0 <X, <X ,, we can find the
(]

400
minimum value 4, at the onset of the fixed point. The maximum value of  prior to the
first bifurcation is 4 and thus, stable solution of Equation (9.5) can be easily determined

for u e[,u;, oy ] For u> 4, Equation (9.5) exists period-2 bifurcations,
Xy = fO (%, 10). ©.7)

If Equation (9.7) has a critical condition of bifurcation at x,,, = x_, similar to Equation

(9.6), ie.,

Cbcn+2 - df(Z)(xn’lu)| - dxn+2 dxnﬂ

dx dx

n n

=1, (9.8)

=x¥
X, =x* n+l n x,=x

then the critical parameter for the bifurcation of Equation (9.7) is 4. In a similar fashion,
the stable solutions are evaluated at u e[,uf , ,uz] The period-2 bifurcation of Equation
(9.5) forp > p; is given by

Xoua = 1 (%, ). 9.9

In general, this process can be represented by
xn+2”l =f(2 )(xmlu)' (910)

To analyze this process, we consider the various graphs for the period doubling

bifurcation as depicted in Figure 9.1(a)-(d). It is clear from the squares in the plot there
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exist similar structures in period doubling, in the iterative map Equation (9.5). From the x-
axis of the plot, we can extract the similar structures and these results are summarized in
Figure 9.2. Note that it is easier to compute the parameters g, u,,u, etc. via a
renormalization group method rather than using numerical techniques. From the similar
structure construction in Figure 9.2, Equation (9.7) can be renormalized by rescaling its
map. That is, move the origin to the fixed point in Equation (9.5), by letting z =x —x",

and z = az, where a is the scaling factor of renormalization. Equation (9.7) then becomes
zn+] =f(zn>/u1)> (911)
where the new parameter x, is given by the function

 =8g(u). (9.12)

Equation (9.11) is similar to Equation (9.5). If it generates period doubling bifurcation,

we get

s, = 8() = gle(m), (9.13)

and after m-cycle period doubling bifurcations, we have
o = 8 Hr) = 8™ (1), (9.14)

If u,=p,,=H,, the period-doubling process approaches chaos. For u, <y, the
iterative map, x,,, = f(x,, &), will have m-cycles period doubling bifurcations. The period

doubling length scaling factors are defined as follows:

*

Zin1 T 2,

I, = , I =!z,.* —ZA-W]-'-WI; (9.15)

in which the index 7 €{1,2,---,m} refers to the jth bifurcation of the iterative map and

s, €{0,1}. The terms z; ,, z 45 87€ cOmputed respectively from:
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Figure 9.2 Period doubling construction of the 1-D iterative map x,,, = f(x,, )

z, = f(z;—luui—l)’ z, = f(z)(zi—lﬂui-l)' (5.16)

Note that in determining z dgysyons» ONLY two Of its three nonzero z,_, which results in

minimum 'z,_ L z,._1| are selected. In particular, the length scaling factors of the first period

doubling bifurcation are given by

Li=x"-x,, I'=x, -x", I'=x"-x,; (9.17)
where as shown in Figure 9.2, x, and x, can be calculated from

x" = fO(x, ). (9.18)
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In general, for the mth-cycle period-doubling bifurcations, the associated length scaling

factor of the similar structure is defined as

Ligros, =1Ly Sm—H . (9.19)

i=1

The solution of the period doubling for the iterative map Equation (9.5) is given by

(2]
x =X +(-1) I I, (9.20)

5187 %8y, Sy89°* 8,

where x, = x" is its fixed point. Equation (9.20) may also be expressed as

i =X 4D 1)['%] ol ©.21)

or more compactly by

Xy =X +Z( 1){’—231Jf[11 I, (9.22)

Since Equation (9.22) gives all the solutions of the mth-cycle period doubling bifurcation
of the iterative map, it is clear that of these mth-solutions, only the mth solutions, namely,
X5es, » ATE stable at mth cycle period doubling bifurcation. All other solutions up to the
(m-1)-cycle period doubling bifurcation, ie., x,, x,,, -, X5, ,» are unstable. The
usefulness of this analytical form of the result which is currently unavailable in literature is
that, it can be employed to check the numerically-computed solutions. In view of these
stable and unstable results, the chaotic solutions of the period doubling bifurcation of the
iterative map can be conveniently summarized as follows

=Xy D)L, (9.23)

2
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in which £ is the total number of s, =1, i €{1,2,3,---,m} as m — co. Note that the length
scaling factors Iy =I,/; = I and I' =I° remain constant as shown. Alternatively, one
could also express this equation as

Xy5y0es, = < +i(—l) (i-k) ([ll)k([é)(i—k)[i ’ (9.24)

i=1

where k£ now, is the number of s;=1,] e{1,2,3,---,i} for every i, as m — oo. It should

also be mentioned that this similar structure analysis can be just as easily studied by means

of the symbolic dynamics approach.
9.2 Fractality of Chaos via Period Doubling Bifurcation

For the period doubling bifurcations of 1-D iterative map leading to chaos, the fractal is a

multifractal as shown in Figure 9.2. From Equation (9.14), u,, is constant at chaos, i.e.,
K, = M, and the similar structure of iterative map will become the self-similar structure.

Thus
I, =1, =I,, ieN, s {01} (9.25)

51
The chaotic fractal scalings of period doubling are constant, i.e.,
L=1, L=1I. (9.26)

From Halsey et al (1986) the multifractal partition sum function is

n q
r=}:f—;‘=1, (9.27)

i=1 H

where for the two-scale fractal, #=2, 7 is a weight parameter and p, =1/2 is the action

probability. For the same action in period-2 bifurcation similar structure, we have:
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277 277
+
Iy If

=1. (9.28)
The weight parameter is

In1+(L,/1)" |- qIn2

= 9.29
7(q) T, (9.29)
Since 7(q) = (g ~1)D,, the generalized fractal dimension D, becomes
In(1+(, /1))~ gIn2
D,= (9.30)
(g-1)In1,

Several special cases of the generalized fractal dimensions are given as follows. The

Hausdorff dimension is
D,
L nlte(/n)”) 031
° InJ, ' ‘
The information dimension is
___ 22 (9.32)
Inf, +In1];
The two limit dimensions are
p,=-182 p __In2 (9.33)
In’, In/
The scaling index is
—1n2{1+(L /L)
o= dz(q) _ [ (4/1,) ] (9.34)

dg  (L/1,) Inl,+Inl,’

The singular fractal spectrum function is

fla)=ag-1(q). (9.35)
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For the correlation dimension D,, we have

D, =2a(q)- f(a(q)) (9.36)

g=2

The characteristic parameters of the multifractal can be determined using Equations
(9.29)-(9.36). Note that these relationships are not quite the same as those given in Halsey
et al. (1986) and Cosenza et al. (1989). Since the fractal is constructed from the similar
structure of the period doubling solutions of the iterative map, the scaling factors derived
here are based on a more meaningful approach. As shown in an example, the results

obtained here are more accurate than the previously published solutions.
9.3 An Example

In order to explain the similar structure approach for computing the solutions of the

iterative map at periodic doubling, the following example is considered:
X, = ,(1-x,). (9.37)
Renormalizing the ith-period doubling bifurcation equation of Equation (9.37) yields,
xiy=pxi(l-x), (9.38)
where the parameter relation is given by

B =~ 2p,-2. (9.39)
9.3.1 Period doubling solutions

Let 4=35 and from Equation (9.39), the renormalized parameter x4, =325. Since
4, >3 which is the threshold value (as determined by Equation (9.6)), the new iterative
map of Equation (9.37) will also exhibit period doubling bifurcations. Invoking Equation
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(9.39) once again but this time for g, = 3.25, yields the renormalized parameter associated

with the period-2 doubling bifurcation x, =2.06. However, since M, <3, this map will

not exhibit period doubling bifurcations, and thus for this case, its solutions are stable. The

first fixed point of the iterative map, Equation (9.37), is x" = 1-1/p and its period

doubling factor are

. " 1
I'=z =1-—
Hi
2
i 1 2 Mg L -4
A.\‘,'.\'zxi_lo ,Lli__l 4 A.r,':z.ri_lo - 2#,‘_1

2 D 2= Ful, -4

[(I)zl""-"—, ¢ =

Hig 24,4
For u=3.5, the solution of Equation (9.37) are
x"=1-1/u

N gl
o=x —L)I", x =x"+11

_ 17272 _ 17272 _ 17272 _ 17272
Xop =Xg LIy 1%, Xop =% + L IGI7, xy0 =x, = L1GT", x0 =%~ LI )

(9.40)

L (9.41)

According to the above analysis, the solutions of iterative map x”, x, and x, are unstable

at u=3.5 but the period-2 bifurcation solutions x,,, ¥, ¥%,,, ¥, are stable. These

results are tabulated in 7able 9.1. For the purpose of comparison, the exact period-1

bifurcation solutions of Equation (9.37) which are computed using

2
N =2u-3
. :1+,u+ B =2u-3 (9.42)

0 1

v = l+pu—p*-2u-3
= » ,

2u

>

are also listed. As shownin Table 9.1, the similar structure technique for computing the
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Table 9.1 Solution of Equation (9.37) at u=3.5
Sampling Doubling Stability Similar Structure Exact Relative
Point Time Status Solution Result Error
x 0 unstable 0.714 285143 0.714285143  0.00%
X, 1 unstable 0.417 582417  0.428 571428  2.56%
x, 1 unstable 0.850 005845 0.857 142857 0.83%
Xo1 2 stable 0.373 027 890 - -
X0 2 stable 0.502 497 502 - -
X5 2 stable 0.811 163 383 - -
X 2 stable 0.870 386 293 - -

period doubling solutions for the 1-D iterative map yields excellent agreement with the

exact solutions. If the period doubling solutions are chaotic at x = ., this structure will

be a similar structure, and its solutions can be determined from Equation (9.24). Note that

the scaling factors of period doubling for these solutions are constant. Figure 9.3 lists the

period doubling solutions of the iterative map at u= u_ =3.569 945 6

format.

x*=0.719 883 —

Figure 9.3

— X,=0.403 302

— x,=0.859 745 -

x01= 0341 795'

%oo= 0.542 524

x10= 0798 238"‘

%,,=0.886 918

o

Xoi= 0.329 845...
Xo0=0.368 844...
Koo 0.481 299
Xoor=0.569 573~
— X,0,= 0.786 290---
 x,,=0.825 287...
¥i10=0.874 968

—x,,=0.892 197 -

in a binary tree

aininininininis

Binary tree for the chaotic solution at =y, =3.569 9456 ---.
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9.3.2 Fractality

Taking p, =y, , in Equation (9.39), the critical chaos parameter of the period doubling
solutions can be calculated to yield, = 2 =3.561 552 &-- and the length scaling factors

arc:
Iy =1y=0438 447 185 -+, I, = I] = 0194496 855 -+, I, /I, = 0433 603 840 ---.(9.43)

Substituting these length scaling factors into Equations (9.31)-(9.33), several of the
generalized fractal dimensions can be computed and the results are listed in the Table 9.2.
To assess the accuracy of these results obtained through remormalization, the length

scaling factors associated with the critical parameter of the chaos x, =3.569 9456 are

evaluated as follows

I, =1, =0.439 767 373 -+, I, = I! = 0194 283 973 ---, I, /I, = 0.441 788 057 ---.(9.44)

Table 9.2 Comparison of the computed generalized fractal dimension D,
D, Renormalization Exact Halsey et al. (1986)  Rasband
Results Solution Cosenza et al. (1989)  (1989)
D, 0.585 286 432 0.586 670 729 0.537 0.543 87
D, 0.563 109 625 0.563 547 168 - -
D_, 0.840 671 676 0.843 748 337 0.755 51 -
D, 0.423 337 537 0.423 054 580 037775 -

These length scaling factors are exact and when substituted into Equations (9.31)~(9.33),
yield the exact results of the generalized fractal dimensions. Observe that the solutions
calculated via the renormalization technique agree very well with exact results. For the
purpose of comparison, some of the available solutions of other researchers are also
tabulated in 7able 9.2. As shown, the results of Rasband (1989) are not only slightly
larger than those of Halsey et al. (1986) and Cosenza et al. (1989), but also more
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and this can be attributed to the rather crude approximations employed in these models.

The discussion here refers to the plots presented in the next four figures, namely, Figures
9.4-9.7. It will be of interest to compare the weight parameter function 7(g) given in

Equation (9.29), using the two different sets of length scaling factors. This is shown in
Figure 9.4. The generalized fractal dimension D, is sketched in Figure 9.5, the scaling

index a(g) in Figure 9.6 and the fractal spectrum function in Figure 9.7. In all cases,

excellent agreement between the renormalized and exact solutions and those of Halsey et
al. (1986) marked by the dash line are observed. Additionally, in Figure 9.7, we have
provided an independent comparison in the form of the experimental results of Glazier et
al. (1986) which are denoted by solid circles. Observe that our analytical solutions agree

particularly well with the experimental results.

9.4 Conclusions

Through the construction of similar structures, a new method for the analysis of period
doubling bifurcations in 1-D iterative maps is suggested. An example was solved to
demonstrate and assess the accuracy of the procedure. The weight parameter function,
several generalized fractal dimensions, the scaling index and the fractal spectrum functions
are derived. Comparison with published solutions and that obatined via physical
experiments showed that the proposed procedure yields very accurate results. In this
sense, the method represents a significant improvement over the currently available

techniques.
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Figure 9.4 Weight parameter function 7, for the iterative map of Equation (9.37)
(— exact solutions, o o o renormalization solutions, ---- Halsey et al.
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Figure 9.5  Generalized fractal dimensions D, for the iterative map of Equation (9.37)

( exact solutions, o o o renormalization solutions, ---- Halsey et al.
(1986)).
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Figure 9.7  Fractal spectrum function () for the iterative map of Equation (9.37)

exact solutions, o o o renormalization solutions, ---- Halsey et al.
(1986), e e e experimental results (Glazier et al. 1986)).




CHAPTER 10
MULTIFRACTALS IN CHAOTIC DYNAMICS VIA #-D HORSESHOE
MAPS

In Chapter 9, we discussed the fractality of the chaotic attractor in 1-D iterative maps via
period-doubling bifurcations. This chapter introduces multifractals in chaotic dynamics via
m-D horseshoe maps. In chaotic dynamics, various methods are used for characterizing
the complexity of chaos, such as Poincare mapping sections, power spectrum analysis,
Lyapunov exponent and generalized Hausdorff dimension, statistical thermodynamic
approach and ergodic theory, etc. (Renyi (1971), Ott (1981), Eckman and Ruelle (1985),
Rasband (1989) and Shigmatsa (1990)}. Fractal theory was formally introduced by
Mandelbrot (1977). A detailed introduction to multifractals in dynamical systems was
presented by McCauley (1990). Other studies involving the application of fractals in
nonlinear dynamics include Grebogi, Ott and Yorke (1988), Bene and Szepfalusy (1988),
Szepfalusy and Tel (1989), Romeiras, Grebogi and Ott (1990), Kovacs and Tel (1992),
and Luo and Han (1992a). Our main work here is concerned with the development of a
new fractal theory based on the m-D horseshoe maps and its application to hyperbolic

invariant sets in chaotic dynamics.
10.1 A New Multifractal Theory in #-D Euclidean Space

In this section, a new theory for describing multifractals of the hyperbolic invariant sets is

established.
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10.1.1 Fractals

Mandelbrot (1977) presented the following definition of a 1-D fractal
NrP =1, (10.1)

by considering a 1-D nonfractal segment of unit interval which is divided into M parts,
with each part having a scaling ratio of »=1/M, and repeating this process ad infinitum
for N non-empty parts (or non-tremas) yields a fractal. For further details, the reader is
referred to Appendix A.3. The exponent D is called the Hausdorff dimension (or more

accurately, Hausdorff-Besicovitch dimension) and is given from Equation (10.1) as,

_logN _ _logN
logM  logr’

D (10.2)

where log(") is natural logarithms. Extending the 1-D fractal concept to a 2-D Euclidean
fractal body, we consider a nonfractal body of unit square which is divided into M parts in

two directions: M, and M, pieces respectively in the Aorizontal and vertical directions.
We assumed that M =M, xM, and their scaling ratios are r, =1/M, and r, =1/M, .
Assuming N = N, x N, non-empty parts and repeating the process ad infinitum, the 2-D

fractal object shown in Figure 10.1 is realized. From Equation (10.1) and assuming that

the fractals in each of the directions are generated independently, we get,

NNl =1. (10.3)

v

Note that for each of the directions, N,#, =1 and N,»® =1 and this leads to

_loghN, _ logh, ]
" logM, logr, ~

L (10.4)
D = logN,  logN,
" logM, logr,

J
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Figure 10.1  2-D fractal object.
Thus the fractal dimension of the 2-D fractal object is
D=D,+D,. . (10.5)

Generalizing the concept to handle the computation of the m-D fractal dimension of an m-

D fractal body where m < n, we conclude as follows.

Dividing an »-D unit nonfractal geometric object into A/ sub-objects in the m-D

Euclidean space leads to M = H;M , Where we have the scaling ratio 7, =1/M, .. If
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there are N nonempty sub-objects corresponding to the m-D Euclidean space, then we

have N = HZfo' Assuming the fractals in each of the directions are generated

independently, we have,

NiriDl =5
_loghN, __logW, (10.6)
' logM, logr,

The fractal dimension of the #-D objects is

D:(n-m)+§m;1),.. (10.7)

i=l

To demonstrate and verify the suggested procedure, we will compute the fractal
dimension of the triadic Koch surface depicted in Figure 10.2. From Figure 10.2(a), we
have n=2,m=1,N, =4,M, =3 (or alternatively, n=m=2,N, =4,M, =3,N, = M,).
From Equations (10.6)-(10.7) we get D, =log4/log3 and D, =1 and thus, the fractal
dimension of the triadic Koch surface is

log4
log3

D=1+

=2.2618595--. (10.8)

Note that this fractal dimension is identical to that obtained using the traditional approach.

% = %
(2) (b)

Figure 10.2  Triadic Koch surface
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10.1.2 A Model for Multifractals

The formalism developed up to now, is valid only for uniform fractals. To extend the
method to handle m-D nonuniform fractals (or simply, multifractals) in the 7-D Euclidean
space, we modify the models of Halsey et. al. (1986) and Leung and Luo (1992). We

consider that there are N, sub-objects having 7, scales in the ith direction, and the jth-

scale has a measured length 7;, scale probability weight py and scale number ;. The

multifractal partition function is given by,

n pq
I(z,q) =2 m, =L =1, ~(10.9)

’j T3
J=1 Zij

where 7,(q) is defined by introducing the following weight parameter for multifractals in
the /th direction:
7,(¢)=(q-1)D(9), (10.10)

and the partition function behaves as,
0 at 7; <7,(g),

I(r,9)=1 at 7; > 7,(g), (10.11)
constant at 7; = 7,(q).

Furthermore, from thermodynamics consideration, the scaling index in the ith direction is

o =% (10.12)
dq
and applying the Legendre transform yields,
Ti(q)zaiq_./;(ai): (10.13)

in which the f(a;) is a fractal spectrum in the ith direction given by,
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ﬁﬁ:g (10.14)
da,

H

Summarizing the results for all the directions, we arrive at the following equations for the

m-D multifractal theory in #-D Euclidean space:

v(g) = (n=-m)(g=1)+ 3 7,(a), (10.15)
a=Ya, (10.16)
ﬂ®=iﬂ%) (10.17)

10.2 Fractals Generated by a 1-D Horseshoe Iterative Map

In this section, fractals generated by a 1-D horseshoe iterative map in chaotic dynamics is
studied. Luo and Han (1992a) analyzed the fractality of chaos caused by period doubling
bifurcations for 1-D iterative maps. Tel and his co-workers (1989, 1992) studied the
fractality of fully developed chaos. Beyond the fully developed chaos of 1-D iterative
maps, wé have the chaotic state produced by 1-D horseshoe maps, and it is proposed to
discuss its fractality. Initially, we will look at the fractality of chaos generated by a uniform
1-D iterative map and then, we will investigate the multifractals produced by a nonuniform

1-D iterative map.
10.2.1 Fractals in a uniform 1-D Cantor-horseshoe

Consider a 1-D iterative map that possesses a uniform horseshoe structure, namely, a

uniform cantor structure in the phase space x,,, = f(x,,u4) where neNandy is a
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control parameter. Note that NV expresses a natural number set. Consider for instance, the

tent map f in the unit interval 7 =[0, 1] given by,

1
X = HX, for x, < 2’
f: (10.18)

X = p(l-x,) for x, > —;—

wherey > 2. The phase graph and fractal structure are procreated using Equation (10.18)
for unit interval / as shown in Figure 10.3. The two sub-intervals, / o and I, in Figure
10.3(a) are obtained from the first iteration of Equation (10.18) with x,.; <1. That is,

Iy = I, =1/ . Therefore, for the first iteration of Equation (10.18), its invariant set is

AD=1,u1,. (10.19)
Similarly for the second iteration, we have f*(J)= U[Glaz, and o; €{0,1} for i e{1,2}.
Repeating this iteration ad infinitum leads to its invariant set as follows,

A= ﬁ D, (10.20)

where f(I) = U[alaz,,,d" , and o; €{1,2} for i €{1,2,---,n}. For any value #, the scale

ratio and the number of the non-empty interval are

1
7 (10.21)

r=(10'10'2"'0‘n

N=2"

The Hausdorff dimension of the invariant set shown in Equation (10.20) is

D, =lim 08 _ log2 (10.22)
n>o logr  logu
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Figure 10.3  Phase graphs and fractal structures generated via Equation (10.18).

10.2.2 Fractals in a nonuniform 1-D Cantor-horseshoe

Consider a 1-D iterative map to have the multiscale Cantor-horseshoe structure, for

instance, an asymmetric tent map as follows,
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-

xn+l = lulxn fOI' xn < 'uz F)
Mty
I (10.23)
xn+l =#2(1_xn) for xn ZJ—Z_—’
M+ My

where the control parameters u,, u, satisfy u,u, >(u, +p,). Figure 10.4 shows the

phase graph and fractal structure procreated using Equation (10.23). Observe that due to
the nonuniform structure, we now have a two-scale multifractal. Therefore, after the first

iteration of Equation (10.23) on the original interval 7 =[0,1], i.e., f(I)=1, U1 ; we find
that the lengths of two new sub-intervals are not identical, namely, 7 =|l,|=1/y,,

r, =|I| =1/ 1, . Repeating this iterative process ad infinitum results in an invariant set,
A= "0). (10.24)
n=0

where f (")(I)=U1dlo_z,,,an , and o, €{12} for ie{12,--,n}. From the iteration

process, the probability of appearance for the two scales is

1
Do=p = > (10.25)

Applying Equation (10.9), a partition function for the horseshoe invariant set of Equation

(10.23) can be computed from

r:(i‘l—+i‘—2-) =1, (10.26)
21 " ¢
from which, we get
1 DLl
_ Og(/‘l..ﬁ;)_ (10.27)

log?2
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Figure 10.4  Phase graphs and fractal structures generated via Equation (10.23)

From Egquations (10.10)-(10.13) and (10.26), the fractal dimension, scaling index and

fractal spectrum are given respectively by:

217
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log?2
D, = e , (10.28)
log(,uI +y2)—log2
F 4+ ul)log?2
= ,(ﬂl M), = (10.29)
Hy log g + pi5 log p,
fla)=aq-1(q). (10.30)

Imposing x4 < u, in Equations (10.28)-(10.30), we get the following specific fractal

dimensions,
D=a D_=108%2 p _los2 (1031)
log 14, log 1,
and the Hausdorff dimension D is determined using
ui? +uy =1, (10.32)

Fractal characteristics of the nonuniform 1-D Cantor-horseshoe set are plotted in Figure

10.5. The following line notations are employed in the graph:

e solid line for 4, =2, u, =3,
e dash line for u, =2, u, =4,
e dash-dot line for u, =3, u, =4.

Figure 10.5(a) shows the weight parameter 7 versus the order of moment, g, Figure
10.5(b) the fractal dimension D, versus g, Figure 10.5(c) the scaling index o versus g, and
finally, Figure 10.5(d) the fractal spectrum f(&) versus o. Unlike Figure 9.7 where our
theoretical solutions have been compared with those of physical experiments, here we can
only provide theoretically computed limiting values such as the Hausdorff dimension, since
experimental results are unavailable. From Figure 10.5(d), we see that the Hausdorff

dimension D, ~ 0.788, 0.674, 0.556 for the three combinations of u,, i,. These values

can also be directly computed from Equation (10.32), using a nonlinear solver.
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Figure 10.5  Fractal characteristics of the 1-D nonuniform Cantor set.
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10.3 Fractals of the 2-D Horseshoe

In this section, we introduce 2-D fractals based on the Smale horseshoe map. As before,
we will first consider fractals of the uniform horseshoe set, and then fractals of the

nonuniform horseshoe set.
10.3.1 A uniform Smale horseshoe

The Smale horseshoe arising from the transversely homoclinic orbits via the Poincare map
is very important essential for describing the dynamics in the neighborhood of the saddle.
To analyze the fractality of this 2-D invariant set, we consider the original 2-D unit square

D={(x,y)eR | 0<x<L 0<y< 1} and define a mapping f:D — R*. Therefore, we get

(Wiggin (1988)),
() o)
= onH,,
yn+1 O lu n

f (10.33)
bo)(3 )
(\Vns1 0 —u)\y,) \#

where 0 <A <1/2, u>2. From Equation (10.33), we can define two rectangles in the

horizontal direction:

Hy={(xy) eR [ 05251, 02y 51/} (1034)

H ={(xy)eR|0<x<], 1-Yu<y<i}.
Applying fto these two horizontal rectangles produces two vertical rectangles. That is,

f(H,)
()

i

Voz{(x,y)eRZIOsxgl,OSysl}, (10.35)
10.3

V1={(x,y)eR2]1—-/1stl, OSyg1},
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Figure 10.6 Vertical invariant set procreated via Equation (10.33).

To construct the Smale horseshoe that intersects between a vertical invariant set and a

horizontal invariant set, we first apply f ad infinitum to the unit square S, namely,

A =N9D)= U (V) ) = UV
n=1 s_;&8 s_; &8

=12, i=1,2,+4 (1 036)
={p=(cy) e D/ () eV, s, €8i=12]

where §={0,1}. This results in the vertical invariant set as shown in Figure 10.6. Note

that the fractal has a scaling ratio 7, = 4 and its Hausdorff dimension can be computed by

__log2
* logA’

(10.37)

Since the vertical invariant set does not have fractals in the y-direction, D,, =1.

Therefore, the resultant Hausdorff dimension for the vertical invariant set is

log2
logA

D=D, +D,, =1~ (10.38)

Note that Equation (10.38) is identical with the expression obtained by Guckenheimer and
Holmes (1983) using a different approach.
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Figure 10.7 Horizontal invariant set procreated via an inverse map of Equation (10.33).

In a similar manner, the horizontal invariant set can be reprocreated via the inverse map

T acting on the unit square S, that is,

Ap =)= U (AHyn)NH,)= UH, .
"~ = = (1039)

= {p:(x,y) efo(’)(p) €H, ,s; €8,i= 0,1,2,---}.

The result is sketched in Figure 10.7 where its scaling ratio r, =1/pu. The fractal of the

horizontal invariant set in the y-direction has a Hausdorff dimension of,

D, =82 (10.40)
log 1
The resultant Hausdorff dimension of the horizontal invariant set is thus given by,
D, =1+1082 (10.41)
log

The intersection of the vertical and the horizontal invariant sets yields the Smale horseshoe

which is shown in Figure 10.8. That is, we have:

A=A,NA, = ﬁf‘")(D)‘ (10.42)

n=-—cc
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Figure 10.8  Smale horseshoe generated by iteration of Equation (10.33).

The Hausdorff dimension of the Smale horseshoe procreated via ad infinitum # iterations

of the 2-D map f on the unit square S is:

1 1

logu logl

D=D,, +D,, =log2 (10.43)

Figure 10.9(a)-(c) shows respectively the Hausdorff dimensions for the vertical and

horizontal invariant sets, and the Smale horseshoe.
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Figure 10.9  Hausdorff dimension for the uniform Smale horseshoe.
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10.3.2 A nonuniform Smale horseshoe

In this section, we discuss the multifractality of the nonuniform Smale horseshoe. Consider

a map for nonuniform Smale horseshoe given by

( xn+1 /11 O xn
H
(yn-i-l) 0 /‘x)( n) on Ho
iR (10.44)

X -A 0 Yx 1
b5 ) =
\yn+l 0 —H, n Ho

where 0<A;<1/2 and x4, 22 and i={1,2}. Note that from Equation (10.44), two

I

separate rectangles in the horizontal direction can be defined:

Hy={(xy)eR*|0<x<1, 0<y<l/uy),
(10.45)
H={(xy)eR|0<x<1, 1-Yu, <y<1l.

Applying f in Equation (10.44) to these two horizontal rectangles produces two vertical

rectangles,

f(Hy) =V, ={(x,y) eR*|0<x< 4, Osysl},
(10.46)
<

f(H)=V,={(xy) eR|1-2,<x<1, 0<y<1}.

Applying maps f and " ad infinitum to the unit square § yields the Smale horseshoe,
that is,

A=A,NA, = ﬁ (D) = [ﬁ f(‘”)(D)}ﬂliﬁ f(")(D):l. (10.47)

=0 n=1

We will first present multifractal results for the vertical rectangle invariant set, followed by
the horizontal invariant set. Then we will add these two sets of results to get the

multifractal characteristics for the nonuniform Smale horseshoe.
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Observe that the vertical invariant set of Equation (10.44) has two scaling ratios he =24
and r,, = 1, and probability weight p,, = p,, =1/2. Therefore, from the 1-D multifractal

theory, its partition function in x-direction is

I"x = (————121; +_ﬂ,22q’) =1. (1048)

Re-expressing Equation (10.48), we have

_ log(ﬂ.;’x + A5 )
- log2 '

(10.49)

The multifractal dimension, scaling index and fractal spectrum for the vertical invariant set
in the x-direction are
D = 7. log2 ,
# log(A47™ + A7)~ log2

(10.50)

A+ A7 ) log2
a, = _,( — ) = (10.51)
A logd, + A, log A,

fila,)=a.q-7.(q). (10.52)

Next, we consider the multifractality of the horizontal invariant set of Equation (10.44) in

the y-direction and the results are,

_ log(u +7)

10.53
log2 ( )
log2
=2 % : (10.54)
” log(u + )~ log?2
4y log?2
a,= (i + 4 og (10.55)

Yy

i log py + p1y log e,
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fle,)=a,9-7,(q). (10.56)

We can now summarize the multifractal characteristics for the vertical invariant set, the

horizontal invariant set and the non-uniform Smale horseshoe in 7able 10.1.

Table 10.1 Multifractal characteristics for 2-D nonuniform invariant sets

Vertical Invariant Set Horizontal Invariant Set Smale horseshoe
Tg=q-l+7g, T, =q-1+7,, | T=7,+7,,
D, =1+Dg, D,=1+D,, D,=D, +D,,
r (10.57) L (10.58) L (10.59)
=l+a =
@ x> a=1+a, a=0,+a,
a)=1+ fla,).
fle)=1+fle) ] fa)=1+1(a,)] #a)= flo) + f(a,)

The multifractal characteristics of the Smale horseshoe in Equation (10.59) are plotted in
Figure 10.10 using 1, =4 and p, =5,4,=1/2 and 4, =1/3.

10.4 Conclusions

A theory for investigating multifractals in chaotic dynamics is developed via m-D
horseshoe maps in this chapter. We first examined and derived the results for 1-D uniform
and nonuniform Cantor sets, and then followed by the 2-D uniform and nonuniform Smale
horseshoes. The various fractal characteristics are studied. Plots of these results are also

provided.
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Figure 10.10 Multifractal characteristics of the 2-D nonuniform Smale horseshoe.




CHAPTER 11
CONCLUSIONS

This thesis is concerned with the analytical modeling of bifurcations, chaos and
multifractals. The objective was to carry out theoretical studies of these areas for nonlinear
dynamic problems arising from engineering applications. To verify and assess’ the
performance of these analytical models, comparisons with published solutions and those
obtained via numerical simulations are performed. In all cases, good to excellent
agreements are observed. One of the notable achievements of this doctoral research is the
demonstration of the ability to analytically predict bifurcations and the onset of chaos by
employing computed instead of prescribed input parameters in numerical simulations. This
ability is very beneficial as it can significantly reduce the amount of numerical
experimentation required to simulate the desired nonlinear dynamics phenomena. From an

engineering point of view, this would be a very useful tool for nonlinear analysis.

The chapter is organized by first presenting a summary of the achievements and
conclusions of the three main parts of the research, followed by a brief discussion on some

unsolved problems and future work.
11.1 Achievements and Conclusions

In Part 1, we focused our investigation on the modeling of bifurcations and chaos in
continuous systems by solving the Duffing oscillator. The main achievements are as

follows.
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An improved method of harmonic balance for handling stability and bifurcation of
periodic solutions of damped Duffing oscillators is presented. In order to substantially
reduce the amount of numerical experimentation, the input data are computed rather
than prescribed as is done traditionally. The number of numerically determined stable

and unstable solutions agree exactly with the analytical predictions.

Chirikov overlap criterion and renormalization group technique are used for the first
time to independently derive the chaotic condition near a subharmonic resonant orbit
for the undamped Duffing oscillator. The analytically predicted chaos by these two
methods is confirmed numerically and perfect agreement in their numbers of
subharmonic resonances is observed. Chaotic motion of a weakly damped oscillator is
studied using the Melnikov method. Plots of the Poincare mapping section indicate the

presence of strange attractors in the damped system.

A new method based on the incremental energy approach is developed for the
modeling of stochastic layers near the separatrix. Analytical expressions for the outer
and inner strengths of the stochastic layer for the Duffing and forced planar-pendulum
oscillators are obtained. Good agreement between the analytical results computed
using the Chirikov overlap criterion and the renormalization group technique on one
hand, with our proposed incremental energy method on the other, is observed,
particularly at the lower-order resonances. Numerical simulations confirm the number

of analytically predicted resonances generated for both the oscillators.

A new method based on the incremental energy approach is developed for the
modeling of resonant layers in nonlinear dynamics via an investigation of the Duffing
oscillator. The appearance, disappearance and accumulated disappearance strengths of
the resonant layers are derived. Comparisons between the proposed procedure with
the Chirikov overlap criterion, the renormalization group technique and numerical
simulations are performed, and good quantitative and qualitative agreements are

observed for all four types of Duffing oscillator.
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e Based on its discrete mapping, the universal character of the Duffing oscillator is
studied for the first time. The approach involves a Naive discretization of the
differential equation of motion and the subsequent application of the cubic
renormalization on its discrete equation. Very good agreement is observed between
the analytical predictions and the numerically simulated results of the mapping. The
jump phenomenon and the strange attractor are clearly seen in the cascades of

bifurcations of the damped oscillator.

In Part 11, the stability and bifurcation of periodic solutions of a discrete system are
investigated. A bouncing ball and a horizontal impact pair subjected to harmonic excitation

is prescribed. The following are the main achievements.

o Based on the differential equation of motion of a ball bouncing on a massive vibrating
table, the stability and bifurcation conditions are derived for the first time. Mappings
for up to period-4 motion are obtained. Three types of stable motion are found: stable
node (+), stable focus and stable node (-); and two types of unstable motion are
observed: saddle of the first kind and saddle of the second kind. From the Poincare
mappings of the unstable period-1 motion, the two saddles are shown to possess
identical Smale horseshoe structures. This is not necessarily true for the higher

periodic solutions. Plots of the physical motion are also provided.

o A theory for a system with discontinuities as applied to the impact analysis of a
horizontal impact pair is developed. Mappings for four switch planes are defined and
from these, five impact motions; Model I, Model II, Model I, Model IV and Model
V are derived. From a detailed scrutiny of the equispaced impacts of the Model I
motion, it is shown that period-doubling bifurcation cannot occur. Using computed
instead of prescribed input parameters, numerical experimentations are performed and
the analytically predicted stability is in excellent agreement with the numerically
generated results. Both stable and unstable (chaotic) motions are generated. To get a

sense of the impacts, plots of the physical motions are also provided.
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Parrt 11 presents our research in the area of multifractals in chaotic dynamics. New models

for the construction of multifractals and analysis of their fractal characteristics are

developed. The primary achievements are described as follows.

®

Through the construction of similar structures, a new method for the analysis of period
doubling bifurcations in 1-D iterative maps is suggested. An example was solved to
demonstrate and assess the accuracy of the procedure. The weight parameter function,
several generalized fractal dimensions, the scaling index and the fractal spectrum
functions are derived. Comparison with published solutions and that obtained via
physical experiments showed that the proposed procedure yields very accurate results.
In this sense, the method represents a significant improvement over the currently

available techniques.

A theory for investigating multifractals in chaotic dynamics is developed via m-D
horseshoe maps. We first examined and derived the results for 1-D uniform and
nonuniform Cantor sets, and then followed by the 2-D uniform and nonuniform Smale
horseshoes. The various fractal characteristics are studied. Plots of these results are

also provided.

11.2 Unsolved Problems and Future Work

During the course of carrying out this research, several unsolved problems have been

identified and are summarized in this section. Some of these unsolved problems can be

treated as future work. Additionally, there is a conspicuous lack of actual physical

experiments to verify the modeling of chaos and other nonlinear dynamics phenomena.

One of the key unsolved problem in this work (and also, for that matter, in nonlinear
dynamics) is the ability to model multi-degrees of freedom systems. Since such
systems are more realistic, the solutions obtained are not only more useful, but also,

more accurate. However, this is an extremely difficult and complex undertaking.
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e Much of the work described in this thesis pertains to the Duffing oscillator. It would
be interesting (and not necessarily difficult) to extend the analytical methods to other

types of common engineering systems such as the van der Pol oscillator.

o For strongly damped systems, there are no analytical methods for the prediction of

bifurcation and the onset of chaos

e Well established methods such as the Chirikov overlap criterion and the
renormalization group technique are able to capture approximately the primary
resonance, whereas our proposed incremental energy approach is able to exactly
model the primary resonance. However, our incremental energy method suffers from
one minor drawback, namely, the effects of secondary resonance have not been

adequately considered.

e The analytical prediction of chaos in discrete oscillators is an area that needs
addressing. Currently, the most popular approach is to treat such systems by solving
their equivalent mappings. However, it is not necessarily clear if the mappings actually
represent the physical systems. A better approach is to employ the differential
equations governing the discrete systems, but this method can be mathematically

intractable.

e It can be very challenging to simulate the analytically determined higher periodic
solutions of discrete systems. This is due to the extremely large number of possible
combinations of their motion models. Not only an efficient book-keeping technique
needs to be developed to keep track of each of the motion models, but it is necessary

to address the requirement for very intensive computer memory consumption.

e It is also extremely difficult to model multi-discrete variables even in single degree of

freedom discontinual systems.

e Multifractals generated at the onset of chaos for m-D iterative maps (non-horseshoes)

have not been investigated due to the extreme difficulty in their construction.
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o A theory for constructing multifractals for chaotic and strange attractors in continuous

systems is still unavailable.

o Further identification and application of fractals in engineering problems need to be
addressed. Currently, some of the most popular usage of fractals in engineering

include strength characterization, fracture propagation and fluid turbulence modeling.
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APPENDIX A

BASIC THEORIES IN BIFURCATION, CHAOS AND FRACTALS

In this chapter, the basic theories of bifurcation, chaos and fractal for engineering
applications are presented. Several main types of bifiircation models in continuous and
discrete dynamical systems are described. For continuous dynamical systems in Section
A1, bifurcations in 1-D and 2-D systems are introduced . An attempt to define chaos in
terms of the KS entropy and a means of characterizing it are also provided. Several
analytical methods for predicting the appearance of chaos are described. These include the
Chirikov resonance overlap criterion, renormalization techniques and Melnikov method.
For the discrete dynamical systems in Section A.2, bifurcations in 1-D and 2-D maps are
discussed. The various routes to chaos for 1-D and 2-D maps are mentioned. Finally, in
Section A.3, multifractals in chaotic dynamics are presented. The basic concepts of fractals
and their generation by multigenerators are introduced. The section ends by a discussion

of the measures of multifractals.
A.1 Continuous Dynamic Systems

A.1.1 Bifurcations

Poincare first coined the term bifurcation to describe the branching of equilibrium
solutions derived from a family of differential equations. Since bifurcation solutions are
asymptotic solutions of the nonlinear equations, the bifurcation theory is thus, concerned

with the theory of steady, periodic, subharmonic and quasi-periodic solutions for both
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autonomous and non-autonomous systems. Note that the vice-versa is not necessarily
true. That is, not all asymptotic solutions are due to bifurcation. Consider a #-D system of

differential equations with m-D parameter 1
x=f(x,p1), (A.1)

where x e Z”, ueZ". The equilibrium solutions of Equation (A.1) are determined
by f(x,1)=0. If Df(x,p)=5f(x,1)/é at an equilibrium point(x,,z,) has a zero
eigenvalue, several branches of equilibrium may be ensue; and this point(x,, 4,) is called

the bifurcation point. We will now consider bifurcation of continuous dynamical systems

in one- and two-dimensions.

A.1.1(a) One-dimensional systems

Several typical bifurcations of 1-D dynamical systems are presented here. Note that stable

solutions are marked with the solid line, while unstable solutions are indicated by the dash

line. Figure A.1 depicts the bifurcation condition Df (x,, 4, ) = 0 in the complex plane.

Im )
P S .
o Re

Figure A1 Eigenvalues of Df(x,, 4,) in the complex plane.

(1) Saddle-node bifurcation
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Consider the following example of saddle-node bifurcation,

X=p-x°, (A2)

which describes for instance, the dynamics of snap-through buckling of an arch. Its

bifurcation diagram is illustrated in Figure A.2(a).

(i1) Transcritical bifurcation

Consider an example depicting transcritical bifurcation, that is,
%= px—x%, (A3)

Equation (A.3) can be used to describe the dynamics of buckling of a frame. The
bifurcation diagram for this case is sketched in Figure A.2(b).

(i) Pitchfork bifurcation for stable-symmetry

Consider the following equation
X=p-x (A.4)

representing for example, the dynamical Euler buckling problem in structural engineering.

Its bifurcation diagram is given in Figure A.2(c).

(iv) Pitchfork bifurcation for unstable-symmetry

The following equation governs the dynamical buckling of beams, plates, shells, etc.,
X=p+x. (A5)

Its bifurcation diagram shown in Figure A.2(d). Note that other bifurcations for 1-D

systems, such as the symmetric break, are not covered here.
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Figure A2 Bifurcation diagrams: (a) saddle-node bifurcation, (b) transcritical
bifurcation, (c) pitchfork bifurcation for stable-symmetry and (d) pitchfork
bifurcation for unstable-symmetry.

A.1.1(b) Twe-dimensional systems

Next we consider 2-D systems. Once again, several typical bifurcations are outlined.

Bifurcations at nonhyperbolic equilibrium solutions

Consider the 7 x n matrix Df(x,,s,) of Equation (A.1) at the nonhyperbolic equilibrium
solution. Assume it has a zero eigenvalue corresponding to eigenvector v, and similarly, its

T . . .
transpose, namely, Df (xo,yo) has a zero eigenvalue corresponding to eigenvector w.
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Furthermore, suppose that Df(x,,z,) has k& eigenvalues with negative part

and (n — & — 1) eigenvalues with positive real part, then we say that Equation (A.1) exhibits:

(1) saddle-node bifurcation if
W' £,(%y, 119) # 0, wT[D2 S (%o, 120)(v, v)] %0, (A.6)
(i) transcritical bifurcation if
W £, (%0, 110) =0, w'[Df (x5, 1)v] 0, and wT[D2 F (%o o)) 20, (A7)
(1ii) pitchfork bifurcation if

WL (X0 16) =0, WI[Df(xy, 1y )v] 0 } (A.8)

WT[DZf(xm:Uo)(V: V)] =0, WT[D3f(X0>,uo)(V: v, V)] =0

Note that the bifurcations at the nonhyperbolic periodic orbits are quite similar to the

bifurcations at the nonhyperbolic equilibrium solutions.

(2) (b)

Figure A3 Hopf bifurcations: (a) supercritical and (b) subcritical.
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Figure A4 Stability and bifurcation diagrams for a 2-D system.

Hopf bifurcations at equilibrium solutions

If the nxn matrix Df(x,,1,) of Equation (A.1) at the equilibrium solution has a simple

pair of pure imaginary eigenvalues and all other eigenvalues have non-zero real part,

Equation (A.1) will exhibit Hopf bifurcation at u,. Hopf bifurcations are of two kinds:

supercritical Hopf bifurcation which

has a stable limit cycle and subcritical Hopf

bifurcation which has an unstable limit cycle. For a 2-D dynamical system, Hopf

bifurcation is sketched in Figure A.3.

Engineering examples of this type of bifurcation




Appendix A: Basic Theories in Bifurcations, Chaos and Fractals 241

includes, the galloping vibration of a fluid-structure problem and the dynamics of a

spinning shaft system.

Taking a 2-D dynamic system as an example the bifurcation conditions and stability

condition are summarized in Figure A.4. Note that we have, De#(Df)= Det(Df (x,, 1t,))

and 7r(Df) = Tr(Df (%o, 1t5))

Global bifurcations (homoclinic bifurcations)

Global bifurcations at equilibrium solutions are characterized by the lost of transversality
between the stable and unstable trajectories. Using Melnikov method, homoclinic
bifurcations can be investigated. For many continuous systems, their nonlinear
characteristics can be qualitatively studied via discrete maps, such as Poincare mapping
and energy iterative map. We will present bifurcation and chaos analyses of discrete -

dynamical systems in a later section.

A.1.2 Chaos

Here we look at some basic concepts of chaos and also, examine some analytical methods
for predicting its onset in continuous systems. We will first classify chaos and then we will
attempt to define it. Traditionally, chaos is divided into two types: chaos in a conservative

system and chaos in a dissipative system, as depicted in Figure A.S5.

Chaos

Chaos in a Conservative System Chaos in a Dissipative System

Figure A5  Classifications of chaos.
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Some methods of chaos analysis are valid only for conservative systems (e. g. Chirikov
overlap criterion) and some for both conservative and dissipative systems (Melnikov
method). Intuitively, chaos can be defined in terms of the dynamical behavior of orbit pairs
in the phase space. If these initially close together orbits move apart exponentially, we
have a chaotic flow. Mathematically, we say that the flow of trajectories in a given region
of phase space exhibits deterministic chaos if its KS entropy™ is positive (Krylov (1950),
Kolmogorov (1958), Sinai (1959, 1963)). That is, the flow of trajectories (in the phase
space) intersected in the neighborhood of a hyperbolic fixed point. For regular motion, the
KS entropy is zero and for random motion, it is infinite. Adler, Konheim and McAndrew
(1965) introduced the notion of T-entropy (topological entropy) which is not dependent
on metric scales as in KS entropy. Shaw (1981) proposed a new characterization of chaos
based on information via the information production rate. Unlike the KS and T-entropies
which can only be zero or positive, this information production rate can take positive and

negative values.

Many researchers believed that horseshoe maps are fundamental to chaos models of
dynamical systems. One prototypical map in nonlinear dynamics is the Smale horseshoe
which can be constructed via a linearized map in the neighborhood of the hyperbolic fixed

point. That is, a map /. from a unit square of phase space defined by,

( xn+l 2‘ 0 xn
H,: =lo
y n+l ,U n

I (A.9)
Kol C B

H = +

{ Vel 0 —uf\y,) \u

with 0 <A <05, z>2. At the hyperbolic fixed point, a dynamical system displaying such

behavior is said to exhibit sensitive dependence on initial conditions. Also, from a fractal

™ We shall discuss more about this KS entropy in a later section.
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point of view, the complicated geometrical structures can be characterized as having
fractional dimensions (Luo and Han (1994b)). They are termed as strange attractors and

the motion on them is chaotic.

A.1.2(a) Determination of chaos

Criteria for determining chaos are basically of two types: empirical and theoretical, and
some of the principal ones are Lyapunov characteristic exponent, fractal dimension
characterization, Poincare mapping and Fourier spectra of trajectories. These criteria can
be verified through either physical experimentation or numerical simulation. In this paper,
we will concentrate on the most popular technique; namely, the Lyapunov characteristic

exponent method.

Lyapunov Characteristic Exponent

As explained earlier, chaos is said to occur when the orbit pairs diverges exponentially,
and the Lyapunov characteristic exponent measures the rate of this exponential
divergence. A positive exponent implies chaos, while a zero or negative exponent indicates

the motion is regular. For a detailed derivation, we consider the following map,
xn+1 = f(xn) > (A 10)

which will result in a chaotic motion. The Lyapunov exponent A(x,) measures exponent

divergence as sketched in Figure A.6.

Consider the neighborhood of the pointx, in the phase space which is acted on by

Equation (A.10). Setting & = [Ax,|, we have

[ Axglle™ ) = | £ (s + Ay ) = £ (o). (A.11)
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where H( )| denotes norm. In the limits e=|Ax,| >0 and N — o, Equation (A.11)

leads to the correct formal expression for A(x,):

. . 1
M) = Jim, lim log T,

di(xo)

(A.12)

0

Figure A.6  Definition of the Lyapunov characteristic exponent.

Note that the Lyapunov exponent measures the average loss of the information after one

iteration. Using the chain rule in Equation (A.12), we have

arv N-1 gf(x.
)= im o togf o)y L1og f 1910
; - (A13)
_ 1 N-1 df(x,)
VL

Thus, base on the Lyapunov exponent, the criterion for chaos is

Ax,)>0, chaotic; (A.14)
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A(xy) <0, regular motion, (A.15)

The Kolmogorov-Sinai (KS) Entropy

The KS-entropy is perhaps the most important measure for characterizing the chaotic
motion in an arbitrary dimensional phase space. Therefore, we would like to introduce this
concept here. For a more detailed discussion, the reader is referred to Reichl (1992).
Consider in Figure A.7(a) the phase space of a unit square that is partitioned into a set
{4i(0)} of cells, where 4;(0), /=1,2. A new set of cells {4;(-1)} is generated by allowing

the original set to evolve backwards for a unit time. Let us next introduce the partition B(-

1) which consists of the intersection of these two sets, that is, B(~1)= {A, (0N 4 j(——l)}

as shown in Figure A.7(b). We can continue to generate the next partition B(-2) such that
B(-2)= {A,.(O)ﬂAj(—l)ﬂAk(—Z)} and so on (in Figure A.7(c)). It can be shown that

(Lichtenberg and Lieberman (1992)),

R

ko({4(0)}) = =1im= 3" o B,(~0)] 1n o B,(~0)]> 0 (A.16)

e L0

is required if the B(-f) decreases exponentially as ¢ —> o where R,, a[B(~t)] are the
number of elements of B(-£) and the measure of each element respectively. The maximum
of kg as the initial cell size tends to zero, is the KS entropy, K. Note that X>0 when the
average measure of an element of B decreases exponentially, that is, chaos occurs when
this happens. Pesin (1977) derived the relationship between the KS-entropy and the

Lyapunov exponents as follows

sz[ z,li(x)}da, (A.17)

A;(x)>0
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where the integral is over a prescribed portion of the phase space and the sum is over all

positive Lyapunov exponents.

4:(0) 4(0)

\

\
\\"_
\\ A

(a) (b) (©

_

Figure A7 Partitions of the phase space of a unit square: (a) 2-element, (b) 4-element

and (c) 8-element.

A.1.2(b) Analytical methods

We will now describe some more recent analytical methods for predicting the appearance

of chaos in continuous systems.

Chirikov resonance overlap criterion

To estimate the critical condition for the transition of local stochasticity to chaos (or
global stoéhasticity), the work of Chirikov (1979) can be employed. He postulated that the
critical condition required to destroy the last KAM tori between the two lowest-order
primary resonances occurs when the sum of the half-widths of the two island separatrices
is equal to the distance between these two resonances. Consider the following
Hamiltonian,

5 .

H= %—+ K cosf+2K cosfcos(Q), (A.18)
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where y =@ It is assumed that third term of Equation (A.18) is a perturbation, therefore,

the unperturbed Hamiltonian of Equation (A.18) is

2

H(,:%—+Kc059. (A.19)

From an undamped pendulum, the fixed points are at (y =0, cos@= +1). The centers of
the ellipse are at (y =0, cosd=-1) and the hyperbolic fixed points on the separatrix are
at (y=0, cosf=1). Hence, the half-width of the island separatrix at cosd=—1 is

calculated by
Ay,..=2JK . (A.20)

Three kinds of resonance overlap condition can be obtained and they are,

(i) simple overlap condition

2
2Ay,. =27 = K= (12’-) ~ 2.46740; (A.21)

(ii) overlap condition of the first and second-order resonances

2VK +—;-K= r, (A.22)
which yields K =~ 146;
(i) the improved overlap condition

Here, Chirikov considered the thickness of the separatrix layer based on the overlap

condition of the first and second-order resonances. The critical condition is therefore,
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(2+ﬁ)«/f Lo (A.23)
2 2
in which
4(27)* 7’
w, = R exp[—— Wrdk (A.24)

From Equation (A.23), we can compute K ~1.2.

(iv) Stochastic layers of a physical problem.

We consider the Hamiltonian of system to be given by
H(x,y)= Hy(y)+eV(x,,1), (A.25)

where H, is an integrable part and, &V is a perturbation, dependent on the time £

Analyzing the resonance condition of Equation (A.25) and we get after rescaling the

energy, the following simplified expression:

2

H= 12—— Mecos8— Pcos (60— Q). (A.26)

Setting P =0 in Equation (A.26), we can calculate the half-width of the resonance due to
the cosine wave of amplitude A/ at y =0 to be Ay, = 2JM . Similarly, setting M =0
in Equation (A.26), we can also calculate the half-width of the resonance due to the
cosine wave of amplitude P at y=1 to be Ay__ = 24P . Applying Chirikov overlap |

criterion, we get

27M +24/P =1. (A.27)
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Renormalization techniques

Escande and Doveil (1981), Doveil and Escande (1981) and Escande (1985) discussed the
paradigm Hamiltonian and presented the renormalization procedure for Equation (A.26).
We will adopt Escande and Doveil methodology to derive the renormalization procedure.
In so doing, it is assumed that M > P . Consider Equation (A.26) to consist of two parts:
H, and H,, namely,

2
H, =-y?—-Mcost9=E0, (A.28)

where £ denotes a constant energy term. Then, we have
H, = -Pcosv(0— Q). (A.29)

From Equation (A.28), we have as its solution

G:Zam(K(k)(D,k), (A.30)

T

y= iZk\/Mcn(M, k), (A31)
T

where am and cn are respectively, the elliptic amplitude and the Jacobi elliptic functions;

and k is the modulus of elliptic function given by

pr =21 . (A32)
Ey+M
Using Equations (A.30) and (A.31), the action variable J can be calculated as
J= A/ K(k). (A.33)

7k
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Substituting Equations (A.30)-(A.31) and (A.33) into Equation (A.26) yields

H=H,(J)- Pi V,(J) cof (v +n)p -], (A.34)

where V,(J) is coefficient of Fourier series of cosk(¢ Q). Invoking Equation (A.34),
the resonant condition is obtained,

. (B W aIM
¢“(d1)‘v+n+5'k1<(k) (A.33)

in which &= {0, 1}. Renormalizing the energy in Equation (A.34) for the nth resonance
yields,

=2

ﬁz%—ﬂcos?—ﬁcos?@—ﬁt), (A.36)
where
2 2
e PI/,1+5w(V+Viz) (v+n+) ’ (A37)
2 2
Fz Pr/n-l-l—é'a)(v-:zn) (V+n+) , (A38)
— (v+n+l1-6
(—““‘3‘2 (A.39)
Q= E?.:_l)_‘_’_f}_, (A.40)
v+n+l-6

O=(v+n+8)p—1xu, (A.41)
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Solving Equations (A.37)-(A.39) numerically as self-similar structures, we have

24/M +2JP =07 . (A.42)

Observe that Equation (A.37) and Equation (A.42) have similar form.

Melnikov method

For a conservative system, we have introduced two methods, the Chirikov overlap
criterion and the renormalization technique, to predict the chaos. For a dissipative system,
the motion near the separatrix is not necessarily chaotic, as it may be in either transient or
steady states. It is important to determine the critical condition under which the transverse
intersection of the stable and unstable manifolds will appear. Melnikov (1963) devised a
method to analyze the motion near the separatrices of near-integrable systems. Applying
this method to a near-integrable system yields a critical condition for the onset of a
homoclinic intersection near the separatrix. This procedure is valid even for a system with
a dissipative perturbation. Morosov (1973), McLaughlin (1979) and Holmes (1979, 1980)
applied the Melnikov method to look at the perturbed dynamics of non-Hamiltonian
systems. Guckenheimer and Holmes (1983) generalized the method to study subharmonic
bifurcations. Wiggins (1989, 1990) applied this method to investigate the critical condition
of higher-dimensional dynamical systems. In this paper, we will emphasize the method to
determine approximately, the chaotic conditions of some selected engineering problems.
Consider a 2-D dynamical system which has homoclinic or heteroclinic orbits and is

perturbed by a periodic function of time. The governing equations for this system are,

JE":f.l(x:.y)_i_‘ggl(xuyal() .
. A 43
{y'=fz(x,y)+6gz(x,y,t) (A.43)

The Melnikov function is defined as,

M) = J:[ﬂ(anyo)gz(anyO:t"to)“ﬂ(anJ’o)gz(x0>J’0af‘to)] dt (A.44)
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where (X,,),) is the homoclinic orbit of the conservative system. If M(z,)=0 is
independent of perturbation parameter &, then for &> 0 sufficiently small, the stable and
unstable trajectories in phase space intersect transversely. Similarly, (x,,y,) vields the

subharmonic resonant orbits of the conservative system under a periodic function. That is,
mT
M™(1) = jo [/ Ya) 82 (s Vst = 1) = Fi(%ur ¥ )2 (%o Vian E — f)]dt  (A.45)

If M™"(#,)=0 is independent of perturbation parameter ¢, and in Equation (A.43), for

€>0 sufficiently small, then Equation (A.43) has a subharmonic orbit of period m7.
Other methods for handling dissipative systems include the methods of harmonic balance

and averaging.

A.2 Discrete Dynamical System

For many continuous systems, their nonlinear characteristics can be qualitatively
investigated via discrete maps, such as Poincare mapping and energy iterative maps. At the
same time, for discontinuous systems, their iterative maps can be easily setup on the basis
of appropriate physical laws. Therefore, the methods of discrete mapping constitute very
important tools in a nonlinear dynamics analysis. Once again, we have divided the

presentation here into 1-D and 2-D maps.

A.2.1 Bifurcations

A.2.1(a) One-dimensional maps
Consider a 1-D map,

X1 = S (%, 1), (A.46)

where 4 is a unknown parameter. To determine the period-1 solution of Equation

(A.46), we substitute x,,; = x, into Equation (A.46), and this yields the periodic solution
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x, =x". We can then investigate the stability of the solution and compute the critical

bifurcation parameters for the following conditions:

(i) Pitchfork bifurcation

=-1. A.47
oy & | (A.47)
(ii) Tangent (saddle-node) bifurcation
ey _ A (%10
ot =1. A48
. ey (A.48)

These two kinds of bifurcation for 1-D iterative maps are depicted in Figure A.8. Note
that the most common pitchfork bifurcation involves an infinite cascades of period
doubling bifurcations with universal scalings. An exact renormalization theory for period
doubling bifurcation was developed in terms of a functional equation by Feigenbaum
(1978), and Collet and Eckmann (1980). Helleman (1980) employed an algebraic

renormalization procedure to determine the rescaling constants. It is assumed that f (x, 1)
has a quadratic maximum at x = x,. If chaotic motion ensues at 4, through the period-
doubling bifurcation, the function x,,, = f(x,, ) is rescaled by a scale factor & and it

has self-similar structure near x = x,.

Under the transition to chaos, we will first introduce the period doubling bifurcation where
we will discuss two renormalization procedures, namely, the renormalization group
approach via the functional equation method as outlined by Feigenbaum (1978) (see also,
Schuster (1988), and Lichtenberg and Lieberman (1992)), and the algebraic
renormalization technique as described by Helleman (1980). Then we will discuss the

quasiperiodicity route to chaos and also, the intermittency route to chaos.
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:d 1 y2i
(a) (b)

Figure A.8 Bifurcation types: (a) Period-doubling and (b) saddle-node.

A.1.2(b) Two-dimensional maps

Bifurcation and stability for 2-D discrete maps

Consider a 2-D map defined by,

P {xnﬂ = f(xmyn) ,U) (A49)

Vst = (%, Y 1)
where 4 is an unknown parameter. The period-n fixed point for Equation (A.49) is

(x;,y:,,u:), ie., P(”)(x’;)=[x';) where P = Po P and PO =1, and its stability
Yn

n

and bifurcation conditions are given as follows.
(1) period-doubling (flip or pitchfork) bifurcation

Tr(DP™) + Det( DP™) +1=0, (A.50)
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(i) saddle-node bifurcation

Tr(DP(”>) +Det( DP") =1, (A.51)
(1ii) Neimark bifurcation
Det( DP™) =1, (A.52)
where DP™ = [ P(x,,3,) ][ P(x, 1) J (A.53)
¥ﬂ)(xx-layn—l) @D(anyO) ]
D D
Note that pp=| ZE2) | (DS Dyf , (A.54)
Ax,) D.g D,
Tr(DP)=D,f +D,g, Det(DP)= D.f-D,g-D,f-D,g; (A.55)

D.f=(x,y, 1)/ & D,f = (x5, 1)/ &)

and had = (A.56)
D.g=2g(x,y, 1)/ &| D,g=g(x,y, 1)/3)

x=x",y=y"’ x=x",y=y"

The bifurcation and stability conditions for the solution of period-n for Equation (A.49)

are summarized in Figure A.9.

A.2.2 Routes to chaes

Next, we consider routes to chaos. We will first present the 1-D discrete system, then we

will discuss the 2-D discrete systems.
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Im
(1N,
]/ Re
T l’(DP (n)) A Im |
(1N
Im T
Q' Re
Im )
LI

| ke

Saddle-node bifurcation

Det(Dp®)

Flip bifurcation

Figure A.9  Stability and bifurcation conditions for period-n solutions of Equation
(A.49).
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A.2.2(a) One-dimensional maps

Period doubling route to chaos

(i) Functional renormalization theory

The universal function is

g*(x)=lim anf(zn)(‘f,;‘,ﬂm) , (A.57)

n=>»0

where g* must satisfy the rescaling equation of the geometry, that is,
g*=ag*(g*(i))= Tg* (A.58)
a

in which T is a period-doubling operator. From Equation (A.58), we can determine the

universality of the scale factor «. To obtain the universal constant 8, we first linearize

flem,) at p,=u,

(0= b)) (A.59)

Applying the period-doubling operator » times to Equation (A.59) yields,

(Hn— 1) - (A.60)

Hn=Heo

,1,1_&10 T"f(x, ) = g*(x)+L;*(_q%1ﬂ)

Substituting the unstable eigenvalue of L. into Equation (A.60), we get

(Hn = M) (A.61)

Hp=Ho

lim T”f(x,un>:g*(x>+5"ff§lﬂ))
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Transforming the point of origin to x =, and normalizing Equation (A.46) by setting

g*(0) =1, we arrived at the condition as follows,

7,00 =0. (4.62)
From Equations (A.61-A.62), the universal constant is proportional to
fy =y~ 67" (A.63)

(ii) Algebraic renormalization theory

Taking into account the period-2 solutions of Equation (A.46), we can solve for b 2

at x, =X,,,:

f(xn,,u) = xn+1 and f(xm-lhu) = xn+2 . (A64)

Using a Taylor series expansion, we can apply a perturbation to Equation (64) at

Xy =Xy +AX,, X, = Xy + A%, and X, = Xy +Ax,,, that s,
A,y = fi(x,, 1) 5 (A.65)
Az = fo( A%y, 11). (A.66)
Substituting Equation (A.65) into Equation (A.66), we obtain
Ax,y = Fo( il A%, ), 1) = f( A, 1) (A.67)
Re-scale Equation (67) by putting
x'=alx, (A.68)

into Equation (A.67), the renormalized Equation (A.46) is
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Xru2 = F (%0 ) » (A.69)

where y7, et = g(ﬁ ,n ) ) (A.70)

Equation (A.70) presents a relationship of the bifurcation values between two period
doubling bifurcations. The rescaling factor « is determined by comparing Equation
(A.69) with Equation (A.46). If chaos appears via the period-doubling cascade, i. e. ,

7, g = ﬁz,, = U, , we can determine the universal parameter manifolds.

Quasiperiodicity route to chaos

Consider a mapping defined on the unit interval 0<x <1, that is,
X, =%, +Q+ f(x,, 1) = F(x,,Q, ), (A71)

where f(x,, 1) is a periodic modulo, i. e., f(x,+1,4)= f(x,,); and Q is a prescribed
parameter defined in the interval 0<Q<1. Note in Equation (A.71) we have to adjust
two parameters (), to generate a transition from quasiperiodicity to chaos. We can
increase say, pand to keep the rational winding number w = p/qfixed to a selected

value, we will have to increase Q as well. The winding number w is an important quantity

for describing the dynamics and is given by,

w(Q, 1) = lim 22— %o (A.72)

n—>wm n

Define a quantity Q, () which belongs to a g-cycle of the map f (x, 1) and shifted by p.
This quantity generates a rational winding number w = p/q and for a fixed value of s, it

can be determined from

F90,9,,,u)=p, (A.73)
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where F@=F (F (‘7"”). Choosing the winding number equal to the golden mean

w¥ = («[5— - 1) /2 , we get the ensuing motion to be chaotic and the universal constants can

be computed.

Intermittency route to chaos

There are three types of intermittencies, Type I, IT and III. In this section, we will present
only Types I and III intermittencies. The Type II intermittency is discussed in a later

section under 2-D maps.

(1) Type I intermittency

Consider an iterative map with a small perturbation defined by
X, = E+X, F1pE, (A.74)

where ¢ is a control parameter and 7 is a prescribed parameter. This mapping results in
the Type I intermittency and is caused by the tangent bifurcation which occurs when a real
eigenvalue of Equation (A.74) crosses the unit circle at +1. Figure A.10 shows the
tangent bifurcation and iterative map for the Type I intermittency. Examples of this
situation include the Poincare map for the Lorenz model and the iterative map for the
window of period-3 solution in the chaotic band. The renormalization procedure of
Equation (A.74) has been presented in Hu and Rudnick (1982). Also, an interested reader
can refer to Guckenheimer and Holmes (1983), and Schuster (1988) for additional details.

(i1) Type III intermittency

Consider the following iterative map,

xn+1 = —(1 + 8))6” - 77353 3 (A*75)
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which produces the Type I intermittency and is caused by the inverse pitchfork
bifurcation. Here, we know that a real eigenvalue equals to -1 at bifurcation. Figure A.11

depicts the bifurcation diagram and the iterative map for the Type III intermittency.

xn+1 A

i
s ¢ xn
(b)
Figure A.10  Equation (A.74): (a) bifurcation and (b) iterative map.
x A Yrei b £<0 £=0
- xu
X xu I
—l —— —
|xc l
X, i
s
- |
I ! ! | B
o g, = T;- 0 Xy x.s(xc) X xn
(a) ©)

Figure A11 Equation (A.75): (a) bifurcation and (b) iterative map.

A.2.2(b) Two-dimensional systems

Period doubling route to chaos

For 2-D invertible maps, the transition from regular motion to chaos takes place via a

series of cascades of period-doubling bifurcations. Collect and Eckmann (1980)
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introduced an exact renormalization method for this situation. However, this exact method
is not convenient to use for solving the practical problems, therefore, Mackay (1983) and
Helleman (1980, 1983) have developed a simpler analytical approach to renormalize the
period doubling bifurcation sequences of the 2-D iterative map. This method is similar to
the algebraic renormalization technique of 1-D iterative map presented earlier and will not
be pursued here. For additional details, the reader can refer to the work of Eckmann and
his co-workers. Eckmann et. al. (1981) developed for a conservative system, an exact
renormalization procedure (see also Collet, Eckmann and Koch (1981)). Greene et. al.

(1981) carried out a more complete study of 2-D Hamiltonian maps.

Quasiperiodic transition to chaos

This route to chaos is best studied via the standard map. Here, we will introduce the map

and the chaotic conditions. The standard map is defined by,

X,41 =X, +Ksin(6,) (A76)
9n+1 = 9n>+ Xnt1 ‘

The critical condition of Equation (A.76) for transition from local to global stochasticity is

K ~09716---. For a dissipative standard map, we have

Xpey =(1-6)x, + Ksin(Hn)} A7)

9n+1 = gn + xn+l

where & is the dissipative coefficient. Note that some results are given in Lichtenberg and

Lieberman (1983).

Type II intermittency to chaos

Consider the following mapping which represents Type II intermittency to chaos,
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xn+1 = (l+g)xn +T7x3} (A 78)

1 =60,+Q

When a pair of complex eigenvalues of Equation (A.78) passes the unit circle, the
subcritical Neimark bifurcation occurs. Hence, Type II intermittency results from the

subcritical Neimark bifurcation as shown in Figure A.12.

xn+1A £>(0 £<0

X ) Xt X,

(@) (b)

Figure A.12  Equation (A.78): (a) Neimark bifurcation and (b) iterative map.

A.3 Fractals in Chaotic dynamics

Chaos possesses self-similar structures which imply the presence of fractals. By self-
similarity, we mean that no matter how much the view is zoomed, the same basic shape is
retained. Therefore, whether an object is viewed globally or locally, the same basic
structure is observed. It is also possible to use fractal dimension measurements to describe
chaotic or strange attractors in a dissipative dynamical system. Most fractals in chaotic
dynamics have multiscales and multimeasures, and thus, they are nonuniform fractals or
multifractals. Unlike fractals which are geometrically self-similar, multifractals are
statistically self-similar. Some basic concepts of fractals necessary to study their

characteristics in chaos will be presented next.
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A.3.1 Basic concepts

What are fractals? Simply speaking, fractals are objects that possess non-integer dimension
and self-similarity. They do not necessarily have characteristic sizes, namely, we cannot
measure dimensional quantities such as length, area, and volume. Their geometry can only

be realized using a recursion of the iterative map.

A L

(1st) (2nd)

Figure A.13  The first four generations of the Sierpinski gasket fractals based on a

aggregation rule.

(1st) (2nd)

Figure A.14 The first four generations of the Sierpinski gasket fractals based on a

reduction rule.

Before formally defining fractals, we would like to present the following two examples

known as the Sierpinski gasket fractals. In Figure A.13, the fractals are generated by
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addition (aggregation rule), whereas in Figure A.14, they are produced by subtraction
(reduction rule). They possess the characteristics of self-similarity and as will be shown
later, they have a non-integer dimension of 1.58. Therefore, the Sierpinski gasket is a
fractal.

Table A.1 Fractal distribution of the Sierpinski gasket in Figure A.13

Generation No. Scaling Size L No. of Self-Similar Structure N(L)
Ist 2°r, 3°
2nd 2" 1 3!
3rd 2% 1 32
4th 2° 1o 3’
nth 2" 1o 3"

Table A2 Fractal distribution of the Sierpinski gasket in Figure A.14

Generation No. Scaling Size L No. of Self-Similar Structure N(L)
Ist (1/2)° 1 3°
2nd 1/2)" 1o 3!
3rd 1/2)" 1 3?
4th (1/2)* 1o 3?

nth (1/2)" 1o 3"
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From Figures A.13-14, the scaling size L and number of self-similar structures N(L) can

be summarized in Tables 1 and A.

The self-similar law in Figure A.13, based on Table A.1 and the aggregation rule, is:

D
N(L) = (5) , (A79)
Ty
whereas, in Figure A.14, the self-similar law, based on 7able A.2 and the reduction rule,

is:
r\’ |
ML) = (-0—) | (A80)
L
Observed that in Equation (A.79), the scaling size L ‘grows’ rapidly as would be
expected under the aggregation rule. On the other hand, it is obvious from Equation
(A.80), the scaling size L ‘shrink’ rapidly as would be expected under the reduction rule.

To characterize a fractal, we will work with the simplest dimension, namely, the

Hausdorff dimension based on a uniform formula.

Definition: For any objects with non-empty N parts which are scaled by a ratio 7 in the m-

D Euclidean space, we have, assuming self-similarity,
N(L)rP =1. (A.81)

Solving for the Hausdorff dimension D in Equation (A.81), we get

_logN

D= ,
logr

(A.82)

To formally derive Equations (A.81)-(A.82), we can pursue the following mathematical

approach (see for example, Falconer (1990)). Define a mapping S: £ — E in R", where
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EeR" is a closed set. Assuming a number » with O<r<1 such that
]S(x)—S(y)[zr]x— )| for all x,y €E, we termed the mapping S a similarity since it

transforms sets into geometrically similar ones. We consider a self-similar set  of £ to be

N(E)
invariant under the mapping S if F = US(F ), where we have assumed that after mapping

i=1
§ has acted on F, it produced M(E) similar sets. The Hausdorff dimension measure 5 0]
is defined for any 6 > 0

HP(F) = }si_r}ginf{i;!Uj,D: F CQUJ. €R"and 0 <|U,|< & forall j } (A.83)
j= i=

where {UJ} is any non-empty & —cover of F in R”. Applying H°(F) in Equation (A.83)

to the self-similar set F, we get:

N(E)
HP(F) = ZHD(S(F)) = N(E)r"H”(F). (A.84)

i=1

In Equation (A.84), if the linear scale of the closed set £ is now the scaling size L, we

recover back Equation (A.81).

To compute the Hausdorff dimension for the Sierpinski gasket fractals of Figures A.13-
A.14, we can use Equation (A.82) and get the scaling ratio 7 =7, / (Z”ro) =2"" for Figure

Al3,and r = (2“”)‘0)/7;) =27" for Figure A.14 to yield:

_log(3") log(3) ..
D'log(zn)“log(z)"l'ss . (A.85)

Another interesting point about fractals is that different fractals can have the same fractal

dimension as for example, the Sierpinski gasket fractals. Take for instance, the fractals in
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Figure A.15. Using Equation (A.82), we can calculate their Hausdorff dimension
D=158-..

Figure A.15 Fractals generated by an iterative map in 2-D space.

Fractals can be classified as nonrandom and random, and also, depending on their scales
and measures, they can be uniform or non-uniform. Uniform fractals are called simply as
‘fractals’ whereas nonuniform fractals are known as ‘multifractals’. As expected, a
nonrandom fractal is generated by a deterministic rule, such as a given iterative map and a
random fractal by a stochastic rule. Random fractals whether uniform or otherwise, are
always statistically self-similar. That is, they cannot be geometrically self-similar. Thus,
random fractals can represent natural phenomena such as coastlines, land surfaces,

roughness, cloud boundaries, etc. much better than nonrandom fractals.

A.3.2 Computer generation of fractals

Next we discussed the generation of fractals via a multigenerator (see Luo(1991) and,
Leung and Luo (1992)). We will first present the generation of nonrandom fractals using
a single-scale single generator, then we will generate random fractals using a single-scale

multigenerator.

Nonrandom Fractals

If there are K generators in the fractal structure, and the ith generator has N, non-empty
sets with a linear scaling ratio 7, in R”, then for all X generators, we have respectively,

the equivalent nonempty sets NV and linear scaling ratio 7 given by:
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K

N=ﬁN and rznr.. (A.86)

i i
i=] i=]

From Equation (A.82), the Hausdorff dimension of this fractal is

K
2 log¥,
D=-i8— (A.87)

K
2 logr,

i=]

Generalizing, if the 7th generator has m,-time action on the fractal, the Hausdorff

dimension is defined by

X

2. mlogh,
D=-S—— (A.88)
> mlogr,
i=1

However, from FEquation (A.86), it is obvious that the Hausdorff dimension is
independent of the action order of the generators. This implies that the different fractals

can have the same Hausdorff dimension.

Random Fractals

Basically, there are 3 possible methods of generation: random action, random generators

and, combined random action and generators.

(1) Random action

K
From Equation (A.88), we can set M = Zm,. , and manipulating, we get,

i=]

K

m. K
27loeN 2plogh,
D=-4 -3 , (4.89)

K
Z%logn 2. plogr,

i=1 i=]
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where p; is the action probability of the ith generator and possesses the following

X
properties: > p,=1landp, =m, /M.

i=1

(i) Random generator

L
If the ith generator has L, sub-generators with action probabilities p; ( Z p; =1), linear
j=1

scaling ratio r;and, non-empty subsets Ny (j =1,2,--- L), we have

L L
(N)=22p;N; and (r)=> py, (A.90)
= /=

K X L
z m; 10g<Ni> Zmi log(zpij]vzj)
1= Jj=1

and D= = : (A.91)

K - I% I, .
> m;log(r) > m, log[z pijr;.jJ
=l i=1 j=1

(iii) Combined random action and random generator
Combining the previous two cases, we get the most general approach, that is, the

combined random action and random generator. The Hausdorff dimension is given by,

K X L
Soosy)  Zotod Sa)
=1

D=1l = — = / (A92)

K 1% I
zlpi log(r,) > p, log(z p,.jrﬁ]
= i=l J=1

A.3.3 Multifractals

Next, we turn our attention to multifractals which are fractals with nonuniform scales and

measures. First, we introduce the concept of fractal measures and then fractal scales.
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A.3.3 (a) Single multifractal measure

One scaling multifractal

Multifractal distributions can be described using the scaling properties of the coarse-

grained measures. For example, consider p,(x;) to be the probability measure in a box of
size /; centered at the point x;, and that this box has a scaling ratio 7 =1 /L, where L

denotes its largest scale. We can define the scaling index « as a local singularity strength

at position x; (Halsey et al. (1986)):
p,(x)~r". (A.93)

Consider the scaling of the gth order moment of p, (x,) with box size /.. A new auxiliary

parameters 7(qg) is now introduced via the following equation,

2 [p n (x, )]‘1 =5, (A.94)

H

Solving Equation (A.94) for 7(q) we get

1

log(z P, (xi)]q)

(A.95)

=1
7(q) = lim tog(7)

Next another dimension is introduced, namely, the generalized dimension which is given

by

p =4 (A.96)
q g-1

Consider a number N, () of a box of size 7;, which has a value of « in the band der. The

fractal spectrum f(«) is defined as
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N, (x,) = pla) " da, (A.97)

where p(a) is a nonsingular weighting function. In view of Equations (A.93)-(A.94),

Equation (A.97) when summed for all @ we get:

a

o)) = [ o9 g~ 7. (A.98)

1

Consider 7 = max(r,) — 0, we obtain

2(9) = qa - f(a). (A.99)
Differentiating Equation (A.99) with respect to g yields

_ 97(9) _%(a)
a= 2 and g = Jo (A.100)

Multiscaling fractals

Before presenting a discussion of the multiscaling-fractals, it is necessary to introduce
Hausdorff’ dimension for fractals with muitiscales. Deriving in the same fashion a was

done in Section A.3.1, we can define a group of mappings S;: E— E in R", which
EeR" is a closed set. Assuming a number 7 with O <r <l such as

I.S;.(x)—S,.(y)! =rlx -y for all x,y € E, we termed the mapping S; similarities. Next, we

N(E)
consider a self-similar set 7 of £ to be invariant under the mapping S; if F = US,(F)

i=1
where we have assumed that after mapping S; has acted on F, it produced N(E) similar
sets. We can apply in an analogous fashion, H°(F) in Equation (A.83) to the self-similar
set F, and get:

N(E) N(E)
HY(F)= Y H(8(F) = X rPHO(F). (A.101)

i=]
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Simplifying Equation (A.101) leads to the following expression for calculating the

Hausdorff dimension of multifractals:

N(E)
> =1 (A.102)
i=1
Next we look at the measure of a multifractal. Considering a multiscaling box as a
measure of fractals, Grassberger (1983a, b, c), and Halsey et al. (1986) introduced a

general spectrum of fractal dimensions. If the scaling ratio 7 =/ /L of every box is

variable, a partition sum can be similarly defined as

q
M(g.7n)= 355, (A.103)

where the auxiliary parameter 7 is now given by,
7(q) =(q—- l)Dq. (A.104)

For a chosen value of g, for » = max(7;) — 0, the partition sum goes from zero to infinity,

and we get:

0 7<7(q)

T(g,7(9),n) =4 7> 17(q). (A.105)
constant 7= 7(q)

Note Equations (A.99)-(A.100) are still available for use in the computation of the

scaling index and fractal spectrum.

A.3.3 (b) Joint multifractal measure

Assume p,(x,) denotes the jth measure in the total m-probability measures, for a box of

size [;, centered at the point x; where j=1,2,--,m. Assume also, this box has a scaling
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ratio 7, = /L, where L is the largest scale. The scaling index «,(q;,g,"+-q,,) is defined as

a local singularity strength at position x; for probability p,(x,). That is,

pyx)~n™. (A.106)

Similarly, we can define a partition sum:

[z}

r({ql’ qza'"qm}’ T(qla qz:"'qm): {7‘1,7‘2,""‘,,,}) = Z;#‘::Im’ (A107)

H

where the auxiliary parameter 7(g,,q,,---g,,) is now given by
2(0,++,,+,0)= (¢, - 1)D, . (A.108)

Choosing a g and for r = max( ) — 0, the partition sum goes from zero to infinity, and

we get:

0 <7(¢, 04,

r({%a%a'--qm},T(%,%:"'Qm)’{rl’r2>'"rm}): ®© T>T(q“q2’”.qM). (A.109)
constant 7= T(q,,%,'”qm)

Consider a number N, (al,az,--v,am) of the boxes of size r;, which have values of

Qy,Q,,++Q,,) inavolume | | da;,, the fractal spectrum f(a,, a,, -, ) is defined by:
1 2 m J 1 2 m

i=1
Nr)(alaazpn'aam)=p(a1>a2>' 122 —f A Hda (AllO)

For all (@, ,, - «,,), and in view of Equations (A.106) and (A.109), Equation (A.107)

becomes
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H [ ij(xi )]qj —f(qx,Qz,"',qmﬁiqjarf(a:,az,---,am)

Z ji(al,az,-..,a,,,) = fp(al, Xpytory am)(ﬁ daj)’: ~ ’ (Al ! 1)
j=

i K

H

For r = max(r,) — 0, we get

WG G+ 9) = 24,0, = fla, o, a,). (A112)
=
Differentiating Equation (A.112) with respect to ¢, ande, yields

(a4, 9,9,
&,

7(“17“2’...’ am)
o, )

(9,90 9) = and g, = (A.113)




APPENDIX B

DUFFING OSCILLATOR

B.1 Results for the Undamped Duffing oscillator
Since the solutions for Cases I and IV(c) Duffing oscillators are already given in Chapter
3, we only list the corresponding results for Cases II-IV(b) oscillators in this appendix.

These results are obtained in the same manner as for the Case I oscillator.

Case II The results are:

a2 2k Q. er :
Ey=—-—t— 2= = N2 B.1
YT O TR A N P72 oy
Q=02n-la,,,, (B.2)

20,07 | 2-csch ( —-l)nﬂ’-‘ﬂ G,| = 0.9716354, ®3)

a, B 2 K(an—l)d
2 A0 1 Klk)] ram o),
2Q07Z£2 ?;;CSCh-(n—E)ﬂ—kﬁ =!Eg I“Eg 1: (B4)
7[2 1+(k2 1 )2

G, = Kk, )~ —2mt) g |, B.S
° 4e2<k;,,-1>21<(k2n-1){ ) (7 EVm) 5
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2Qa, l+(k2n—1)2
G =- )2
1

k (k' 2%

2n=-1\""2n-

= oy gj D) m[ (”é")‘[j}ﬁz“l‘z

K’(k2n+1)

1
Q2n+l ﬁ;(zn N 1) SECh,: (}’l'*‘ )mJ .
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B.7)

(B.3)

The chaotic conditions obtained using the Chirikov overlap criterion and the

renormalization group methods are respectively, of the same form as given by Equations

(3.33) and (3.35).

Case ITI The results are:

1/4
_Jah
=L h=(4E°) , K(k)~1.8541, o = X227
(04

2" 2 2K(k)
2 " 1\ T
20,Qx /——sech (n——)rz |G,|=0.9716354,
a, B 2) |
2Q07ZQ —g—SCCh ( _._1_)7[ =‘E§n+1 _E:n-l ,
a, i 2 J
72,'2

) 2Kk, )

_ 8QK(k3,.,)
1 a;/z hs

(B.9)

(B.10)

(B.11)

(B.12)

(B.13)
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Qs = V20 T (B.14)
Ja, (2n-1) cosh[ﬂ(n - 5)]
Dy = V20 (B.15)

\/aj (2n+1) cosh[n(n + —}Z—)J |

To derive the chaotic conditions we substitute Equations (B.14)-(B.15) into Equations
(3.33) and (3.35) and the following explicit formulas derived based on the Chirikov

overlap criterion and the renormalization group technique respectively are:

Kk, )@ {\/(Zn —~1)sech[(n-1/2)] +./(2n +1)sech[z(n + 1/2)]}_2

% = 2n-1’C2n+)7’ /e, , (B.16)

0.49K (K5, ) @ {J(zn ~sech[z(n-1/2)] +./(2n+1)sech[z(n+ 1/2)]}—2

- .(B.17
O (2n-1P2n+1)7* Ja, ®.17)
Case IV(a) The results are:
1- )k a? 2 [
E():L_.__)T_L’ 32:__22_/&'{1__’ a,:__fz_e_’i_, (B.18)
(24 ~1)a, (2k* -1, 22K (k)
Q=02n-Yo,, ,, (B.19)
K (k)]
20,Qn /isech[(n - —1—)75———(—2'1:12 IG,|=0.9716354, (B.20)
@, 2 K(k2n—1) i

f k.
ZQOQT[ isech[(n — _1_)7[5__(_2.1’:_1) = IEgnH _E02n~1 ) (le)
aZ 2 K(k2n—1>
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7 1-2(k,,,)*
Go W{K(an—l) - "'_‘_—L'%"'l‘)z_E(kzn—l )J’

2Qa, [ 2k, ) -1 : 1-2(k,, )’
G =- 22[ (2 1) J[K(kn-l)" (2 1) E(an-l)jl’
1

]' - (k2n~1 )2

_ \/’2— Q 1\ K ,(an—I)
Oppr = msechl:ﬂ(n - E) K (an-l) :!,

V20 {ﬂ(n + —1—) —K:gfz—'ﬂzj'

0, = —==——sech
ot Jaynr )N 2) Kl,,)
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(B.22)

(B.23)

(B.24)

(B.25)

The chaotic conditions computed via the Chirikov overlap criterion and the

renormalization group technique are respectively, of the same form as listed in Equation

(3.33) and (3.35).

Case IV(b) The results are:

(kz - 1>a12 ) 2w a,er
E = — 1 = 2 .
T (2-#)a,’ ) (2-F)a,’ TN

Q=nw

n?2

Q, 72 ——%—sech nﬂK(k") ]Gllz 0.9716354,
x, K(k )

n

n+l n
Eo - Eo

B

a, Kk

n

(0.9 —2—sech{nn— —Kl(_(_k_"_)).J =

where we have,

(B.26)

(B.27)

(B.28)

(B.29)
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G, =- (520;4 (2 ~(k) ﬂﬂ{(/e )- ?“(k"): Elk )J. (B.30)

The chaotic conditions for this oscillator based on the Chirikov overlap criterion and the

renormalization group technique respectively are:

QZ

1 2
TICreY (@}@) ’ B31)

0.4900°

1 2
%= G, [JQ}JQHZJ ’ (B-32)

in which
__ 7 _2-(k,)’
o | ®3
_ V20 K'(k,)
Qn - a,n SeCh[ﬂn K(kn) J’ (B34)
= \/Q‘Q K'(km-l)
Q,,H = ——'—MSGCh[ﬂ(n +1) K(kn+l) :l (B35)

B.2 RESULTS FOR THE WEAKLY DAMPED DUFFING OSCILLATOR

The resuits for Cases I and IV(c) oscillators are already presented in Chapter 3 and in this

appendix, we list only the solutions for Cases II, ITI, IV(a) and IV(b) oscillators.
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CaseIl P

mecr

>P, 2P > EA

8o}
I =—— |1+ *)E) - 1 - EHKF)],
3(Mz)f%[h JEW)- (1=K ®)]

I, =270 —%—csch[(n - —;—)n:{ sin(€4,).

@,

Caselll P,, =P, 2P, >FA

mer

16

RECEIA

I, =27Q —Z—sechl:(n - —;—)ﬁJ sin(Q,).

@,

CaselV(a) P, <P, 2P, <EA, E,>0

83
I =——(2K* - 1)E(k)+ (1- EH)K (k)|
e O T EB (K]

I, =27Q —z—sech (n—l)n—]—{—]sin(ﬁto).
2) K

@,

CaseIV(b) P,, <P, 2P, <EA, E; <0

405%
I, = —————|(2-F)E(k) - 2(1- K> )K(k)|,
3(2_162)7%[( VE(R)-2(1- KK ()]

14

_ 20 K ]sin(Qto).
K

A

I sech[:mr
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(B.36)

(B.37)

(B.38)

(B.39)

(B.40)

(B.41)

(B.42)

(B.43)
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B.3 A STOCHASTIC LAYER

Invoking the three assumptions for a conservative system stated in Section 4.1, we can
introduce the following definition pertaining to the stochastic layer near either a

homoclinic or heteroclinic orbit.

Definition:
Considering the conservative part of Equation (4.1), there exist § > 0 in the energy space

for all &, >0 in the phase space. That is, for the separatrix energy £, we have

|E. - Ey| <5 (or |[E,~E|<5). (B.44)

The sets T'” = {q“(t)} lq"‘(z‘)—qo(t)’ <ég,t ER} and I'? = {qﬂ(t)l Iqﬁ(z‘)——q‘)(t)i <ég,t ER}

are respectively termed as the domains of the a-orbit and B-orbit near T (see Figure
4.1). The union of the ¢r-orbit and S-orbit domains with I'°, namely, [ =T*UTr?Ur®
produces a larger domain covering both the o and B-orbits. If the phase trajectory of
Equation (4.1) exists in this domain, then this enlarged domain is defined as the stochastic

layer of Equation (4.1).

Proof of Theorem 4.1:

From assumption (iii) in Section 4.1, all the ¢z-orbit (or B-orbit) are periodic and elliptic

(Lichtenberg and Lieberman (1992), Abraham and Marsden (1978)), therefore the

nonlinear period of the ¢r-orbit (or S-orbit) is

T= 2_75___ 27{5]{0
al

- ) = F(K(k)), (B.45)

where the action variable J = —21— 5{; . ydx for the given energy E_of a closed orbit g°, the
7T Jq

modulus k= F(E,) and the functions F and F, is all differentiable in E,. Expanding the

24
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kernel K(k) of F (Cayley 1895), we have:

K (k) = ln(g—l-)+§-(ln(%)—l)(k’)2 +hot, (B.46)

where &' = 1-%* . Note that this series is rapidly convergent as & — 1. That is, for small

£>0, we have

_}I[m(%)—l](k’)z 1| o (B.47)

NE R IV N

which is identical to Equation (4.6). Note that Equation (B.47) indicates the orbit ¢°

approaches its separatrix ¢° as k¥ — 1. From Equations (B.45) and (B.47), the energy band
|E, - E,|< & near the separatrix ¢° can be determined and invoking the definition, this

band is the stochastic layer. Likewise, we can carry out the same process for the B-orbit.

Proof of Theorem 4.2.
If the elliptic orbits of the Hamiltonian vector field f(x) in Equation (4.1) satisfy

Equation (B.47), there exists a neighborhood N(E, ) of the separatrix energy E, given by
ME,)={E, VB, ||E,~E,|<5 and |, - Ey| <5}, (B.48)

If the phase trajectory of Equation (4.1) is located at the energy orbits of the unperturbed
Hamiltonian and these orbits satisfy Equation (B.48), then this neighborhood is a
stochastic layer. In this neighborhood, the energy increment of Equation (4.1) AH is

exactly determined by

a8 ={|E, - E| or |E, -El}<s, (B.49)
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where Ea (or E 1) i8 the energy of the a-orbit (or B-orbit) of the unperturbed Hamiltonian

for one cycle of the separatrix. Since the stochastic layer of Equation (4.1) is composed of
resonance overlap, different structures of stochastic layer are subjected to different
resonance overlaps. If the resonance of the o-orbit (or B-orbit) in the stochastic layer is

governed by w =m{)/n, this resonant orbit energy satisfies Equation (B.48). Therefore
using Equation (B.45) and invoking @ =mQ/n and k=F (EZ'/") yields the resonant

energy of the o-orbit. That is,

e 550

m

Likewise, the resonant energy of the B-orbit E/';’/ " can also be similarly determined. Setting

Ea =E"" =E' (or Eﬁ = E/’,”/” = EJ) in Equation (B.49), we have
(AH = {|B{ - Ey| or |Ef - Ey[} <5, (B.51)

where Equation (B.50) can be used for evaluating the resonant energy. Observe that

Equation (B.51) is identical to Equation (4.7).

To determine the disappearance of a stochastic layer, we must set the minimum condition

to the largest energy of the resonant orbit in the stochastic layer. That is,

|AH = minmax{|E] - E|, |Ef - E,[} <. (B.52)
LJ

Proof of Theorem 4.3:

This proof is similar to the proof of Theorem 4.2. For disappearance of a stochastic layer,

the global stochastic layer must satisfy |E, — E,|> & (or 'Eﬂ - Eol >0), ie.,

|AH| = {[E - E| or|By - Ey[}> 6. (B.53)




APPENDIX C

IMPACT OSCILLATOR

C.1 Bouncing Ball

The various equations pertinent to the bouncing ball of Chapter 7 are presented here.

C.1.1 Periodic motion

Since the results of the period-1 motion are already given in Chapter 7, we will only list

the corresponding results for period-% motion where % > 2 here.

Period-2 motion:

The coefficients for the period-2 motion are:

mi =1-cos(wgnT), (C.D)

m? = sin(wgnT), (C2)

mi =qgnT, (C.3)

K* = (2 -2 cos(wqnT) - wgnT sin(wgnT)], (C.4)
Kl= gan[l — cos(wgnT) - % gnlw sin(quT)], (C.5)

K7 =1~cos(wgnT)+ gnTw sin(wgnT), (C.6)
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K =1-cos(qonT),

Ki= ang{— a)anT[l + cos(a)an)] +sin(coan)},

K¢ = ~wqnT cos(wgnT) +sin(wgnT),
K = ~awgnT +sin(qanT),
7 = K- mIK? - miKY,
Ll = -miK? + m{K{ +miKQ,

L} =-K?*+m{K] +miK¢.

Period-% motion:

Similarly, the coefficients for the period-£ motion are:
my =1- cos(coanT),
my = sin(a)anT),

my’ = q.gnT,

K% =2-2 cos(a)anT) - a)anTsin(a)anT) ,

KY = gq}.nT[l - cos(coq jnT) - —;—anT w sin(anjnT )},

KV =1- cos(a)anT) -gnTw sin(a)anT),

Kl = 1—-cos(a)anT),

286

(C.7)

(C.8)

(C.9)

(C.10)

(C.11)

(C.12)

(C.13)

(C.14)

(C.15)

(C.16)

(C.17)

(C.18)

(C.19)

(C.20)
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K} =qnT; g{— wanT[l +cos(wg;nT )] + sin(coanT )}, (C.21)
K = ~-qnT cos(coanT) + sin(a)anT), (C.22)

K = —q,nT +sin(wg,nT), (C.23)

LY =KY -mUKY -mI kY, (C.24)

LV =-mPKY +mVKY +mVKY (C.25)

LY =KV +mPKY +mP KD (C.26)

C.1.2 Stability and bifurcation

The Jacobian of the mapping P at the ith impact of the bouncing ball, DP is defined by

P P
LtV 2

DP = M = ?7" é)’ , (C.27)
dti:yi) —'——%1 =L

di @'}1 ( t’_ 5 yl)

where —%—:‘—‘— = i—l-{—ey,. + [Aa)2 sin(wt,,, +¢) - g](t,.+1 -1, )}, (C.28)
O, €
— == 1), (C.29)
¥ Vi ( 1 )
01,);1 = [Aco2 sin(Z,, +¢) —-g]%i— [A w”sin(t, + @) —g], (C.30)

i i

D _ [Aa)2 sin(wt,,, + @) - g]—’il——

. C31
3, 5, (€31
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For period- motion of the bouncing ball we have x,,, = P*)x,, where P*) = Po Po...o P
k

Its Jacobian at its fixed point is

. 2 . ).
DP(k) =DP...DP = ﬂD(i’*"’:})’“"k) Jl:ﬂ)( ’“’:)}H'l) , (C.32)
k é(ti+k-1:yf+k—1) 5(ti’yi) [{”‘k):(t’ﬂfm/m)

itk Yi

from which the trace Tr(DP(")) and the determinant Det(DP(")) of Equation (C.32) can

be easily evaluated. Its eigenvalues are then computed from,

DP¥)x | Tr(DP®)’ - 4 Det DP¥
lm:Tr( ) 7o : ) ~4Dei(DP*) )

Setting one of eigenvalues of (C.33) to -1 we get the condition for the period doubling

bifurcation of the period £ motion, that is,

Tr( DP®)+ Det( DP¥) +1= 0. (C.34)

On the other hand, setting one of eigenvalues of (C.33) to +1, we get the condition for the

saddle node bifurcation of the period 4 motion, namely,
Tr(DP®) =1+ Det( DP®), (C.35)
C.2 An Impact Pair

The various equations pertinent to the horizontal impact pair of Chapter 8 are presented

here.

C.2.1 Basic mappings and their Jacobian matrix

Basic mappings:

The solutions for the four mappings and the evaluation of their Jacobian are listed here.
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Mapping B:
Vi =—Aaw cos(at,, +p)+[—ey, + Aw cos(wt; + )], (C.36)
—-d = ~4sin(awt, + @) +[-ep, + Aw cos(wt, + @)1(¢,,, — 1)+ Asin(ax, + @). (C37)
Mapping F,:
Vi =—Aw cos(awt,, +@)+[-ep, + Aw cos(wt; + )], (C.33)
d = —Asin(wt; + @) +[~ey, + Aw cos(wt, + p)I(t,, —1,) + Asin(wt, + @). (C.39)
Mapping £, and F,:
Vin = —Aw cos(at,,, + @) +[~ey, + Aw cos(wt, +@)], (C.40)
0= -4sin(wt, + @) +[—ey, + Aw cos(at, + p)I(t,, —1,) + Asin(wt, + ). (C41)

Jacobian matrix:

The Jacobian of mapping B, DPF, is defined by

al‘xﬂ &H-l
ot v, o, 2
DP, = [_(_H_)I:Q] = & ay , (C.42)
a(ti’yi) (ti y’) ayiﬂ ayiﬂ
Z8 %7 (Ii’yi)

where
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&iﬂ 1 . 2 :
—==—|—ey, + A0"(t,,, — ;) sin( @}, + @)},

x, yr+1[ ( - ) ( (o)]

071‘4—1 €
— = |t =

0,,[[ n ( i+l x)’

+(C.43)
Bt L gl -5 4o -1l )] A0 st +9)
i ik

ﬁyiﬂ € 2 H

= =——Ada(t,, —1;)sin(et, +¢)—e.

Y Vi ( " ) ( ) J

The Jacobians for the remaining mappings, that is, P, to P, can be defined in the same

manner. However, it is necessary to first obtain the impact times. This is described as

follows. The times of ith and the (i+1)th impacts for mapping P, ¢, and t,; can be

computed using Equations (C.36)-(C.37). Similarly, the impact times ¢, and ¢, for

mapping £, and for mapping £, and P, can be determined from Equations (C.38)-(C.39)

and Equations (C.40)-(C.41), respectively.

C.2.2 Periodic motion

Norn-equispaced period-1 motion:

The coefficients for the non-equispaced period-1 motion are:
m! =1-cos(wgnT),
m} = sin(wgnT),
K% =2-2cos(wgnT)— wgnT sin(wqnT),

K = Awsin(qanT),

(C.44)

(C.45)

(C.46)

(C.47)
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K} =1-cos(wgnT)+gnTaw sin(wgnT),

K7 =1-cos(qunT),

K= Aa)[l - cos(qa)nT)],

K? = —wgnT cos(awgnT) +sin(wgnT),

K? = —wgnT +sin(qanT),

L =K? -miKi -miK¢,
LI =mIK{+miK],

9 — q q
L = e(-K{ +m{K7 + miK3),

—d for mapping P,
d for mapping P,

where A = { in Equations (C.48) and (C.51).

k-impact periodic motion:

Similarly, the coefficients for the non-equispaced A-impact periodic motion are:

m? =1- cos(coanT),

mY = sin(wgnT),

K% =2-2 cos(a)anT ) —-agqnT sin(wanT ) ,

K" = -Awsin(gnaT),

KV =1- cos(a)anT ) -gnlw sin(coanT ) ,
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(C.48)

(C.49)

(C.50)

(C.51)

(C.52)

(C.53)

| (C.54)

(C.55)

(C.56)

(C.57)

(C.58)

(C.59)

(C.60)
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KY=1- cos(wanT), (C.61)

K = Aof1- cos(g,oNT)), (C.62)
K= -q;nT cos(a)anT ) + sin(a)anT), (C.63)
K = —qnT +sin(wgnT), (C.64)

LY =K% —ml K —mPKY (C.65)
LV =mIKY +mP KD, A (C.66)

LY =-KY 1 mIKY +mV KD (C.67)

~d for mapping P,
where A=1{ d for mapping P,
0 for mappings £, and P,
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Algebraic renormalization theory, 258

Auxiliary (weight ) parameter, 199-207,
270-275

Axial load, 16

B

Bending moment, 15

Bifurcation, 14, 22-29, 137-148, 179-
185, 235-241, 252-255.
Bifurcation condition, 22-26, 137-
148, 179-185
Global bifurcation, 241
Hopf bifurcation, 23, 240
Neimark bifurcation, 255-256
Period-doubling / Pitchfork / flip
bifurcation, 131, 237, 252-255
Saddle-node/Tangent bifurcation,

23-29, 131, 237, 252-255

Subharmonic bifurcation, 53-57
Transcritical bifurcation, 236, 253

Bouncing ball, 122, 124-160

C

Chaos, 1, 36, 241-246.

Chaotic Conditions, 36, 42-53

Chaotic attractor, 147-160, 185-189

Chirkov resonance overlap criterion, 7,
42, 246-248

Cantor-horseshoe, 213-219
Uniform Cantor horseshoe, 213-215
Non-uniform Cantor horseshoe, 215-
219

Correlation dimension, 200

Continuous system, 13

Cubic Renormalization, 108-113

)]

Discrete Duffing oscillator, 108-123
Discontinuous system, 122
Discontinual subset, 124-127, 164-165
Duffing Oscillator, 6, 14-19
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Undamped Duffing oscillators, 36-
106
Damped Duffing oscillators, 19, 107

E

Energy analysis, 37-41

Energy increment, 68-89, 90-106.
Equispaced period-1 motion, 175-177

F
Flip (Pitchfork or Period-doubling)
bifurcation, 131, 237, 252-255
Fractals, 199-205,208-226, 263-275
Nonrandom fractals, 268.
Random fractals, 269.
Multiscaling fractals, 272-273
Fractal (generalized Hausdorff)
dimension, 200-205, 208-226, 263-
275
Fractal spectrum, 200, 209-210, 269-275

Functional renormalization theory, 257

G
Global bifurcation, 241
Global stochasticity, 7, 41, 70.

H
Hamiltonian, 38-43, 36-104
Hausdorff dimension,199-205, 208-213,
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263-275
Hausdorff dimension measure, 263
Heteroclinic orbit, 52, 66-89
Homoclinic orbit, 51, 66-89
Homoclinic tangle, 66
Hopf bifurcation, 23, 240
Horizontal impact pair, 162-189
Horizontal invariant set, 220-227
Horseshoe, 213-226

I
Impact Oscillator, 8, 122-124
Impact model, 165-172
Incremental energy, 68-89
Information dimension, 200
Intermittency, 255-262
Type I intermittency, 260
Type II intermittency, 262
Type III intermittency, 260
Invariant sets, 212-226, 264-275
Horizontal invariant set, 220-227

Vertical invariant sets, 220-227

J
Joint multifractal, 273

Joint multifractal measure, 273

K
KAM torus, 53
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KS entropy, 245

L

Lyapunov characteristic exponent, 246

Local stochasticity, 7, 41,70

M
Melnikov method, 53, 251-252.

Multifractals,199-207,209-226, 270-275.

Single scaling multifractal, 271-272
Multiscaling fractals, 272-273
Joint multifractal, 273

Measure, 263-275
Single scaling multifractal measure,
271-272

Joint multifractal measure, 273

N

Neimark bifurcation, 255-256

Non-equispaced period-1 motion, 171-
175

Non-equispaced A-impact motion, 177-
179

Nonlinear rod, 14-15

Nonlinearity, 15-16
Extensional nonlinearity, 15

Nonlinear natural frequency, 38

Non-uniform Cantor horseshoe, 215-219
Non-uniform Smale horseshoe, 224-225

P

Pendulum oscillator, 76-89

Period doubling, 137-148, 179-185, 192-

207
Period-doubling (Pitchfork or flip)
bifurcation, 131, 237, 252-255
Periodic solution, 19-23
Period-1 motion, 129, 137,148
Period-2 motion, 129, 143, 152
Period-% motion, 134, 147
Poincare mapping, 127-160, 165-190
Poincare mapping sections, 127-160,
165-190

Q
Quasiperiodicity, 257

R

Renormalization, 107-112, 195, 246-
250, 257-261
Cubic Renormalization, 108-113

Renormalization group technique, 42,
57-58, 192-196,246-250, 257-261
Functional renormalization theory,
257
Algebraic renormalization theory,
258

Resonance, 39-42

Resonant condition, 39-42 92-106
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Resonant layer, 90-106

S

Saddle, 22-35
Saddle of the first kind, 137-160,
179-190
Saddle of the second kind, 137-160,
179-190

Saddle-node/Tangent bifurcation,  23-
29, 131, 237, 252-255

Scaling index, 199-207, 208-226, 263-
273

Self-similar, 192-196, 246-250, 257-261.

Self-similarity, 192-196, 246-250, 257-
261

Shear force, 15

Similar structure, 92-196

Single scaling multifractal measure, 271-
272

Smale Horseshoe, 220-226
Uniform Smale horseshoe, 220-224
Non-uniform Smale horseshoe, 224-
225

Stability, 14, 22-29,137-148, 179-185

Stability conditions, 22, 137-148, 179-
185

Standard mapping, 90-104, 261

Stochasticity, 7, 41, 70
Global stochasticity, 7, 41, 70.

Local stochasticity, 7, 41,70
Stochastic layer, 66-89
Strain, 15
Strength of the stochastic layer, 66-89
Strength of the resonant layer, 90-106
Subharmonic resonant orbit, 36-42, 51-
65, 66-89, 90-106
Subharmonic bifurcation, 53-57

T ,

Tangent /Saddle-node bifurcation, 23-29,
131, 237, 252-255

Transcritical bifurcation, 236, 253

U

Undamped Duffing oscillators, 36-106
Uniform Cantor horsesho e, 213-215
Uniform Smale horseshoe, 220-224
Universality, 107-121

A%
Vertical invariant sets, 220-227

W

Weight (auxiliary) parameter, 199-207,
270-275

Width of the stochastic layer, 66
Weakly damped Duffing oscillator, 51



