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Several analytical models of bifurcations, chaos and multifractals are proposed in this

thesis. To verify and access the performance of these models, comparisons with published

solutions are made whenever possible, otherwise, the analytically generated results are

compared with those obtained via numerical simulations. In all cases, good to excellent

agreements are observed. The research is divided into three parts: Part I describes models

for continuous systems, Part II characterizes models for discontinuous systems and Part

III introduces multifractal models for chaotic dynamics.

To study a continuous system, the Dufüng oscillator is employed. The Chirikov overlap

criterion and the renormalization group technique are used to independently derive, for the

first time, the chaotic condition near a subharmonic resonant orbit of the undamped

Duffing oscillator. To analyze the stability and bifurcation of periodic solutions of the

damped Duffing oscillator with strong nonlinearities, an improved harmonic balance

method is proposed. The physical system studied is the buckling of a nonlinear rod and for

this structure, four types of Duffing oscillator are identified. Chaos in the weakly damped

Duffing oscillator is studied using the Melnikov method.

A new method based on the incremental energy approach is developed to model stochastic

layers near the homoclinic and the heteroclinic orbits, and also, resonant layers in the

vicinity of the resonant orbit. Analytical expressions for the strengths of these layers are

derived. In the case of the stochastic layers, the outer and inner strengths for the Duffing

and forced planar-pendulum oscillators are obtained, and for the resonant layers, the
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appearance, disappearance and accumulated disappearance strengfhs for the Duffing

oscillator are determined. Employing a Naive discretization of the differential equation of

motion of the Duffing oscillator and the subsequent application of the cubic

renormalization on its discrete mapping, the universal character of the oscillator is studied

for the first time. The jump phenomenon and the strange attractor are clearly seen in the

cascades of bifurcations.

To examine a discontinuous system, the impact oscillator is used. Based on the differential

equation of motion of a ball bouncing on a massive vibrating table, the stability and

bifurcation conditions are derived for the first time. Analyzing the mappings of the motioq

three types of stable motion and two types of unstable motion are found. From the

Poincare mappings of the unstable period-l motion, the two saddles are shown to possess

identical Smale horseshoe structures. However, this is not necessarily true for the higher

periodic solutions. Another example of a discontinuous system is that of a horizontal

impact pair. A theory for a system with discontinuities and applied to the impact analysis

of a horizontal impact pair is developed. Mappings for four switch planes are defined and

from these, five impact motions; Model I, Model II, Model III, Model rV and Model V

are derived. One of the findings here is that period doubling bifurcations cannot occur for

equispaced impacts of the Model I motion.

A highly accurate method for the analysis of period doubling bifurcations in l-D iterative

maps is proposed. The technique consists of constructing similar structures of the period

doubling solutions and appþing a renonnalization procedure to evaluate the appropriate

length scaling factors. An example is solved to demonstrate and assess the accuracy of the

procedure. The weight parameter function, several generaiized fractal dimensions, the

scaling index and the fractal spectrum functions are derived.

To develop a theory for multifractals in chaotic dynamics, tbe m-D horseshoe map is

adopted. The results for l-D uniform and nonuniform Cantor sets are first derived, and
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then extended to handle 2-D uniform and nonuniform Smale horseshoes. Fractal

characteristics for the invariant sets generated via the Cantor sets and Smale horseshoes

can be easily determined using this new theory.

One of the key features of the analytical models developed for the study of the various

nonlinear dynamiss phenomena is that bifurcations and the onset of chaos can be

theoretically predicted by employing computed instead of prescribed input parameters in

numerical simulations. This ability is very beneficial as it can significantly reduce the

amount of numerical experimentations.
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P.{RT I CONTINUOUS SYST'EM: I}UFFWG OSCil-X.ATOR

A Cross-section area, response amplitude of vibration.

C r-time.s differentiable.
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M Bending moment of the nonlinear rod.

P Axial load.
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q(t) Lateral load or phase orbits.

I Time variable
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T Period of vibration.
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u(t) Coefücient in the method of harmonic balance.
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PAR.Tm ÐXSCOI{TII{UOUS SYSTEMS: W{FACT' OSCU,LATORS
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E External excitation.
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P.ART' [Xn DISCONTIN{IÛUS SYSTEMS: WÏFACT ÛSCffi-L.{TORS

Ð Dimension, unit square.

Do Hausdorffdimension.

Dt Informationdimension.

Dz Correlation dimension.

D¡ Dimension in the lth direction.

Dq Fractal dimension.

Í Mapping function, fractal spectrum.

JØ Æ-times mapping.

m Number of dimensions.

M Scaled number of the original object.
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x Variable.

y Variable.
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rì Intersection.

u Contained in.
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L.1 Literature Survey

The advent of powerfi.rl and affordable computers during the past two decades was the

major impetus towards the rapid growth and development in nonlinear dynamics. This

emergence created increased a\¡/areness which in turn, led to an expanding number of

applications in engineering. Chaotic phenomena in completely deterministic systems arise

from the nonlinearities present in the systems. These nonlinearities include the following:

geometrical nonlinearities, materiai noniinearities, dissipative nonlinearities (e.g., structural

damping, fluid damping, dry friction), motion nonlinearities (e.g., impacts, clearance,

backlash, piaÐ, boundary condition nonlinearities, coupled system nonlinearities (e.g.,

fluid-solid coupling, mechanical-electrical coupling), feedback control nonlinearities,

(Moon (1987)). Since nonlinearities are unavoidable, engineers have come to recognize

chaotic vibrations and accept that the ensuing stochastic motion can exist in deterministic

systems. Therefore, it is the objective of engineering-based nonlinear dynamics not only to

study and comprehend these compiex phenomena, but also to learn how to control them.

To achieve this, it is crucial that engineers keep abreast of the new developments and

discoveries that are taking place with great vigor in this area. New concepts for modeling

bifurcations and chaotic vibrations, modern techniques of chaos detection, quantification

and characterizatioq and the evolution of highly sophisticated mathematical and numerical

tools constitute the bulk of cuffent research in nonlinear dynamics. Indeed, the use of

çsmput€r simulations, coupled with powerful analysis methods meant that realistic
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problems can now be adequately and accurately investigated.

One of the first persons to notice the dynamical instability arising from the sensitive

dependency on initial conditions was Hadamard (1901), in his work on the geodesic flow

on compact surfaces, towards the end of the 19th century. This feature was also observed

by Poincare (1899) who around this time, formulated a theory for the perturbative analysis

of planetary orbits. Unfortunately, these work slipped into obscurity for just over half a

century later, until Lorenz (1963) empioyed a high-speed computer to model weather

patterns via the Rayleigh-Benard convection equations. He not only re-confirmed the

sensitivity of nonlinear systems to initial conditions (now popularly known as the butterfly

effect), but also demonstrated the frrst chaotic solutions through numerical simulations.

Henon and Heiles (1964) also used numerical techniques to study the motion in a two-

dimensional potential well, as an example of a two-degree of freedom system. New

analytical tools were also being introduced. Based on the conjecture of Kolmogorov

(1954), A¡nold (1963) proved that for an analytically perturbed Hamiltonian and also,

Moser (1962) for a sufficient number of continuous derivatives, a very fundamental result

concerning orbit stability which is now accorded the name KAM theorem in their honor. It

states that when an integrable Hamiltonian system is given a small perfurbation, invariant

tori continue to exist. This implies that the stochastic motion near the separatrix of each

resonance is still constrained by KAM curves and is valid only for sufficiently

incommensurable orbits. For commensurate orbits, one can resort to the Poincare-Birkhoff

fixed point theorem. Melnikov (1963) presented a criterion which predicts the onset of

chaos near the separatrix of an integrable dissipative system. It can be used to investigate

the bifurcation to subharmonic and homoclinic orbits. Morosov (1973) and Holmes (1979)

applied the method to study the Duffing equation.

By the late 1960's, research in nonlinear dynamics had moved into high-gear and with

even greater vigor. Smale (1967) described strange attractors in dynamical systems, but it

was Ruelle and Takens (197i) who actually introduced the ternq strange attractor, 1n
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their work on flow turbulence. They suggested that the behavior of turbulent flow is due

to a strange attractor regime in the Navier-Stokes equation. Feigenbaum (1978)

discovered universality and scaling in sequences of period doubling bifurcations to chaos.

Earlier on, May (1976) had demonstrated this route to chaos via a one-dimensional

quadratic map for modeling population growth. One could generalize the results for a

wider class of one-dimensional maps by employing the renormalizøtion techntque. This

has been shown by Collet, Eckmann and Lanford (1930) using Nr exact renormalization

theory, and by Helleman (1980) based on an approximate model. One could also utilize

renormalization to deduce universalþ in global bifurcations. Luo and Han (1992a)

constructed selÊsimilar structures of the period doubling solutions and obtained

multifractal results of very high precision using a renormalization procedure. Chirikov

(1979) presented an improved overlap criterion, to study the transition to conservative

global chaos. He observed that befween the two lowest order resonances, chaos occurs

when the distance between these resonances is greater than the sum of half the vertical

distances of the two island separatrices formed by the resonances. In other words, when

the two island separatrices overlap, chaos occurs, and when they are just touching the last

KAM torus is destroyed. For higher accuracy, it is necessary to include the width of the

stochastic layer and the secondary resonances lying in-between the main ones.

Probabilistic methods for handling the stochastic motion are a logical development in

chaos modeling. Hsu (1981) introduced the concept of cell-to-cell mapping by dividing the

phase space into many cells, then applying probabilistic methods (for Markov processes)

to analyze chaos. Symbolic dynamics is another area of current interest. Pioneering work

was first carried out by Frechet (1938) and more recently, by Devaney (1986) and Hao

(1989). The procedure involves not only discretizing the time domain, but also the state

variables. With this approach, the state variables can take a finite set of values and this

permits the use of symbols such as L, C, R to denote feft., Center and 4,ight of the map for

a given orbit. Kluiving, Capel and Pasmanter (1992a, b) applied the method to analyze

fully developed chaos via a statistical technique. Recentiy, Benedicks (199a) presented a
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survey of the more recent developments in the ergodic theory of chaos and strange

attractors. His work focused on the non-uniformly hyperbolic dynamical systems.

With the proliferation of powerful and affordable computers, the analysis of actual

observed chaotic time series data is now becoming increasingly important. An excellent

review in this area is given in a recent publication of Babarbanel, Brown, Sidorowich and

Tsimring (1993). Masri, Chassiakos and Caughey (1993) applied the method of neural

networks for the identification of nonlinear dynamical systems, specifically, a damped

Duffing oscillator. Through neural networks \ile can have parallel information processing

of the immense chaos data and the benefit is obvious. Bressloffand Stark (1991) described

the relationship between neural networks and lterated Function Systems (IFS) which are

basically, finite sets of mappings in some metric space. IFS has the distinct advantage of

being able to describe an extremely complex image using a relativeþ small number of
parameters and thus, when combined with neural networks, the method can be very useful

and efficient for analyzing chaos and for generating fractal images. We are not aware of

anyone working in this exciting area of research which combines neurai networks with IFS

for chaos modeling, and we feel there is great potential in doing so.

Although fractals have been known to mathematicians and artists for hundreds of years, it

was only in the mid-seventies of this century that the concept was introduced to describe

the nature by Mandelbrot (1977). Several books have since been published. For example,

see Mandelbrot (1977, 1982) for a good and original introduction of the basic concepts;

Feder (1988) and Falconer (1990) for a mathematical foundation of the fractal theory;

Bunde and Havlin (i991) for a summary of papers on the use of fractals in disordered

structures and random processes; and Schroeder (1991) for a discussion of fractal

phenomena in nature. Naturally, there has been countless articles in this fast developing

area. Among the interesting ones are, Herrmann (199i) for a description of fractals in

modeling material fracture and crack growth; Gouyet, Rosso and Sapoval (1991) for the

use of fractals in surface roughness modeling; Luo (1991) and, Leung and Luo (1,992) for
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the generation of multifractals via multigenerators; Olemskoi and Flat (1993) for the

development of fractals in condensed matter; and, Meneveau et. al (1990) for the

application of fractals in turbulence; and Borgas (1993) for a survey of multifractals in

small-scale dynamics of turbulent flows.

With respect to fractals in chaotic dynamics, it is well known that chaotic dynamics

possess characteristics of selÊsimilar structures which is an essentiai property of fractals.

Therefore, fractal dimension measurements can be used to describe strange attractors (see

Moon (1987)). Statistical mechanics can be formulated completely in which a single-

particle energy is the Lyapunov exponent for a given trajectory and the lattice

configuration is identified as the symbolic sequence of the iterative map. Several

researchers have applied ergodic theory and statistical thermodynamic approaches to

determine chaotic behavior, see for instance, Eckman and Ruelle (1985); Szepfalusy and

Tel (1989); and, Shigmatsa (1990). Others such as Mori et al. (1989) and Kobayashi et al.

(1989) studied the statistical characteristics of chaotic phenomena; and Kluiving et al

(1990) described the scaling structures of chaos and the use of phase transition methods.

Specific developments of fractal theory in chaotic dynamiss are summarized as follows.

Renyi (1971) expressed the generalized Hausdorff dimension using concepts based on

generalized entropies. Grassberger and Procaccia (1983a) employed these ideas to study

the complexities of chaotic attractors (or strange attractors) since these attractors exhibit

selÊsimilarity. In their work on the singularities of strange attractors, Halsey et al. (1986)

presented a generalization of multifractals via a scaling analogy of the phase transitions.

They applied the multifractal theory to several simple cases of chaotic dynamics for l-D

problems. The variations of Lyapunov exponents with initial conditions generate

multiscale fractals and based on this idea, McCauley (1990) presented a detailed

introduction to multifractals in dynamical systems. Considering the fractality of chaotic

structures in l-D dynamical system, Bene and Szepfalusy (1988) and, Szepfalusy and Tel

(1989) studied the multifractai properties of l-D random field Ising models and l-D maps.

A highly açcurate method to compute period doubiing bifurcation solutions of a general 1-
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D iterative map was presented by Luo and Han (I992a). For period doubling bifurcations

leading to chaos, this approach yields very accurate multifractal results compared to say,

the analytical technique of Halsey et al. (1986). This is evident by comparing with the

experimental results reported by Glazier et al. (1986). Luo and Han (I992b) presented

some ideas on the fractality of multi-dimensional horseshoe maps for chaotic dynamics. In

another publication, Luo and Han (1995d) introduced a ne\ry definition for

multidimensional fractals based on the l-D multifractal theory for the analysis of

horseshoe maps.

L.2 Contin¡.¡ous and Ðiscrete Systems in Engineering

In the previous section, we presented development

fractals. Next, we consider continuous and discrete

oscillator and an impact oscillator respectively.

1.2.1 lluffing oscillators

histories of bifurcations, chaos and

systems as modeled by the Duffing

Consider the following damped Duffing oscillator subjected to a periodic forcing function:

i+ãÈ+x3 = ercost, (1. 1)

where r is the displacement and the dot denotes time derivatives. The parameters ô and Q
represent the damping constant and excitation amplitude respectively. The behavior of the

solutions for this nonlinear oscillator was first investigated by Duffing (1918) (hence its

name). The generalized form of Equation (1.1), namely,

i + ãi + d,J + d,rxt = -f(t), (1 2)

can be used to capture the nonlinear vibration of structural elements such as springs,

beams, plates and shells. Note that a, and d2 aÍe appropriate system parameters.
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Using traditional techniques, Hayashi (1964) employed the method of harmonic balance to

determine its periodic solution and the amplitude-frequency curves. In addition, using the

technique of Poincare mapping, he provided topological portraits in phase space for the

strongly nonlinear and forced oscillations. Recently, Debnath and Chowdhury (1991),

Wang et aL (1992) etc. studied the bifurcations for the periodic solution of the Duffing

oscillator. Luo and Han (1995b) considered the stability and bifurcations for periodic

solutions of the Duffing oscillator.

In the study of chaos, the behavior of undamped and damped systems is quite different.

For an undamped Duffing oscillator, Reicirl and Zhang (1984a, b) used Chirikov

resonance overlap criteria to compute the width of the stochastic layer for the double-well

problem near its homoclinic orbit. They verified their calculations of the width of the

stochastic iayer by using an alternative approach involving standard mappings. Han and

Luo (1994) employed this technique to calculate critical conditions for the ensuing global

stochasticity near the subharmonic resonant orbits. Luo, Han and Xang (1995)

determined the critical condition of an undamped Duffing oscillator via the

renormalization technique. Applying the universality of the standard mapping, Luo(1993b,

1994) devised a prediction method for determining the minimum critical condition for the

onset of global stochasticity near the subharmonic resonant orbits. For the damped

oscillator, using a one-mode model of a buckled beam and the Melnikov method, Moon

and Holmes (1979), Moon (1980), and Holmes and Moon (1983) presented an

approximate analytic criterion for the onset of chaos. To further understand the chaotic

characteristics, Luo and Han (1995d) empioyed an approximate renormalization approach

to explore the universal behavior of a damped Duffing oscillator. Moon and Holmes

(1979) and Moon (1980a, b) demonstrated chaos in a damped oscillator via experiments

by studying the buckling of an elastic cantilevered beam in a magnetic field. Using

numerical simulation of the Poincare mapping section, Ueda (1980a, b) demonstrated

steady-state chaos and strange attractors. Other important numerical works were reported

by Dowell (1982, 1984), Moon and Li (19S5a b), Dowell and Pezeshi (1986) in their
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study of the double-well problem.

1,"2"2 \rnpact tscillatons

Discontinuous systems are commonly encountered in engineering. Many physical systems

have operational constraints in their dynamical behavior, and therefore, result in

discontinuities or intermittencies in their motions. Examples include constrained vibrating

beams, moored ships in rough sea states, the rattling of gears, and the bouncing of balls.

Impact oscillators constitute an important class of non-smooth dynamical systems. A

formal definition of an impact oscillator was recently forwarded by Bishop (I99\ to

represent a periodically driven system which also exhibits intermittence or a continuous

sequence of contacts with motion limiting constraints. Impact oscillators not only produce

typical characteristics associated with smooth nonlinear systems, for example, generic

bifurcations, multiple solutions and chaos, but also displays new phenomena such as

grazing bifurcations.

In mechanical vibrations, noise and wear are often attributed to impacts in machinery. The

increase in impact forces due to clearances was evaluated by Johnson (i958); Dubowsþ

and Freudenstein (1971); Dubowsþ and Moening (1978); Haines (1979). Rattling of
gears was investigated using an impact model by Pfeiffer and Kunert (1990) and the action

of print hammers was studied by Hendricks (19S3). In the area of fluid-induced impacts, a

moored ship undergoing repeated contacts with the fender was investigated by Lean

(1971), wave forces on structures was studied by Thompson and Ghatrari (1982) and

Paidoussis and Li (1992) researched on vibration of fluid-filled tubes. In earthquake

engineering, Housner (1963) investigated the behavior of buildings under random

excitations. Stabilþ analysis of impact dampers have been investigated by many people,

starling with Masri and Caughey (1966); Bapat, Popplewell and Mclachlan (1983); Bapat

and Bapat (1988); Heiman, Bajaj and Sherman (1987); and Han, Luo and Deng (1994).

Bifurcation and chaos in impact oscillators have been studied by Shaw and Holmes
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(1983a, b); shaw (1985a, b); Nordmark (1991); Foale and Bishop (1992) peterka and

Vacik (1992) and also, by Han, Luo and Deng (1995). A very interesting impacr model

was studied by Holmes (1982); Tufillaro and Albano (1986); Everson (1986); and

Whiston (1992) using a bouncing ball. Further improvement of this model was introduced

by Luo and Han (199aa). The impacts of a constrained driven pendulum was analyzed by

Shaw and Shaw (1989). In experimental studies of impact oscillators, models subjected to

random forcing were studied by Davies (1980); and Wood and Byrne (1981); and

pendulum-type models by Moore and shaw (1990); and Bayly and virgin(1993).

1..3 tsasic Theories in Bifurcation, Chaos and F'ractals

To avoid cluttering this doctoral dissertation with unnecessary material, the basic theories

in bifurcation, chaos and fractals are describ ed in Appendix A. Since many of the materials

covered are expressed in a form not readily found in books and other publications, I have

presented a detailed report in an invited state-oÊthe-art-review in Han and Luo (1995c).

1.4 Thesis Objective and Scope of Study

The objective of this doctoral thesis research is to carry out analytical studies of
bifurcations, chaos and multifractals for nonlinear dynamic problems arising from

engineering applications. The work consists of research and development of theoretical

models to study these phenomena, in order to achieve a better understanding of their

mathematical and statistical structures. Numerical simulations are employed to verify and

assess the performance of these models.

The scope of study includes the following areas:

ø Investigation of stability and bifurcation of periodic solutions, and the development of

chaotic conditions for a continuous system via the Duffing oscillator.

ø Investigation of stability and bifurcation of periodic solutions for a discrete system
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such as the horizontal impact pair and the bouncing ball. Work also includes research

in the universality of the Duffing oscillator via a discrete mapping.

ø Development of multifractal theories for l-D andz-D chaotic dynamics.

X.5 trganization of Thesis

The body of this thesis, not including Introduction and Conclztsion, consists of th¡ee main

parts distributed into 9 chapters. Part I, consisting of 5 chapters, describes the nonlinear

dynamical behavior of continuous systems modeled by the Duffing equation; Part II,

comprising 2 chapters, discusses similar nonlinear behavior but for the discrete systems

modeled by impact oscillators; and finally, Part III; composing of 2 chapters, introduces

fractals and their applications in chaotic dynamics. The details are as follows:

InChapter i, an introduction of the doctoral research by presenting a literature survey of

the major recent developments in bifurcation, chaos and fractal modeling is presented.

Additionally, the thesis objective and scope of study are discussed.

In Chapter 2, the stability and bifurcations of periodic solutions for a nonlinear rod

modeled by the Duffing equation are studied. Analytical results are obtained using the

method of harmonic balance. Verification of the analytical result is carried out via

numerical exp erimentations.

In Chapter 3, the theoretical chaotic conditions for the Duffing oscillator are derived

based on an energy approach. Four types of Duffing osciliators including both undamped

and damped systems, are identified. For the undamped system, the Chirikov overlap

criterion approach and the renormalization group technique are used. For the damped

system, the Melnikov method is employed. As before, verification through numerical

simulations are performed.

IO
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In Chapter 4, an incremental energy method is presented to determine the critical

conditions for predicting stochastic layers in forced Hamiltonian systems near their

homoclinic/heteroclinic orbits. Stochastic layers for an undamped Duffing oscillator and

also, an undamped forced planar-pendulum oscillator are investigated. The former

represents the computation of the stochastic layer for the homoclinic orbit and the latter,

for the heteroclinic orbit. Both the appearance and disappearance strengths of the

stochastic layer for these two oscillators are determined. Numerical simulations for the

two models are carried out for the purpose of model verification.

In Chapter 5, resonant layers near the resonant orbits for the undamped Duffing oscillator

are investigated. Approximate conditions for predicting the appearance and disappearance

of these resonance layers are established by the use of an incremental energy method.

Once again, four types of the undamped Duffing oscillator are investigated. The results are

compared not only with similar results computed via the Chirikov overlap criterion and the

renormalization group technique but also with numerical simulations.

In Chapter 6, a quaütative investigation of the universal character of the damped Duffing

osciilator is presented. The onset of chaos via period-doubling bifurcation of the

discretized Dufüng oscillator is predicted. Applying cubic renormalization to the discrete

mapping of the Duffing oscillator, selÊsimilarity leading to whole sequences of period

doubling bifurcations is demonstrated. Numerical investigations are also carried out to

observe the chaotic attractors of the damped Duffing oscillator.

In Chapter 7, the dynamics of a bouncing ball is revisited by computing its exact periodic

solutions, stability and bifurcation conditions. The basic mapping and its Poincare mapping

sections are established to facilitate the study of the regular and chaotic motions of the

ball. Numerical experimentation is performed not only for the purpose of comparison with

analytical results but also, to observe the chaotic attractors. Finally, physical motion

associated with both the periodic and the chaotic motion are also plotted.

11
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In Chapter 8, the dynamics of a horizontal impact pair subjected to a periodic base

excitation is investigated. Based on its motion characteristics, mappings for four switch-

planes are defined. From these mappings, five possible impact motions, Model I to V, are

developed. The most studied model is the Model I motion which includes both the

equispaced and non-equispaced impacts. Numerical simulations are also presented.

In Chapter 9, a highly accurate method to compute the period doubling bifurcation of a

general l-D iterative map is presented. The technique consists of constructing similar

structures of the period doubling solutions and then applying a renormalization procedure

to evaluate the appropriate length scaling factors. For period doubling bifurcations leading

to chaos, this approach yields multifractal results of very high precision compared with the

traditional multifractal anaiysis alone.

InChapter 10, a new fractal theory is developed via a l-D multifractal model. Application

to Smale horseshoe invariant sets in chaotic dynamics is also carried out. Multifractal

characteristics of these invariant sets generated by l-D and 2-D horseshoe maps in chaotic

dynamics are easily and directly determined.

In Chapter 11, several important results and observations of this doctoral research are

summarized. In addition, further research is suggested.

L2
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In this chapter, an analytical approach for the quantitative predictions of stability and

bifurcation of periodic solutions for the Duffing oscillator are presented. Physically, the

oscillator considered is a nonlinear rod which is subjected to strong nonlinearities. Several

methods for handling this situation are available: Barkham and Soudack (1969), and Yuste

and Bejarano (i989, 1990) proposed an extended KB method; Burton and Rahman (1986)

developed a multi-scale procedure; Garcia-Margallo and Bejarano (1987) suggested a

generalized harmonic balance approach; and Xu and Cheung Q99Ð used an averaging

technique based on generalized harmonic functions. In the work here, I employed an

improved harmonic balance method to treat the strong noniinearity. Verification via

numerical simulation is performed and good accuracy is obtained.

2.L Fonmulation of the Nonlinear Rod Dynarnics

The model considered is a rod undergoing large displacements but at smail strains. A

sketch of the rod is depicted in Figure zl(a). It will be shown that this geometric

nonlinearity manifest itself in the form of the cubic term in the Duffing equation. Consider

an initially straight, long slender rod under the action of a compressive force P, shown in

Figure z.I(a). The usual engineering beam assumption of the bending plane sections not

only remaining plane but also being perpendicular to the middle surface during

deformations is invoked. Due to the small strain assumption in the model, Hook's law is

applicable. A differential element of the rod is shown in Figure 2.1(b) where {
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Q" and M represent the normal force, the shear

respectively. OnIy planar vibration is considered here.

have

force and the bending moment,

Adopting the exact curvature, we

15

sin9= and cosd=
wx-_

,,1(t+u,)'+wl
(2 r)

where u andw ate the axial and lateral deformations, respectively. Also, the zubscript r
denotes partial derivative with respect to x.

_@-
X,U

(a) (b)

Figure 2.1 Nonlinear rod: (a) mechanical model and (b) differential element.

The bending momentM, based on exact curvature, is (Stoker (1968))

M = -810, = _ EIe* __ (2 2)
(t+u.)'+wl

in which E, I, u andw are the Young's modulus, moment of inertia, respectively. The

.x

curve length 
" = JJ(t +u*)' +w]*. The exact strain for the extensional nonlinearity is:

c- c -Lo - oO t (2.3)

O¡dO."*o '" N+dN

(t+u,)'

l+u,)'

where eo = - PI(EA) is an initial strain at the neutral æris of the beam. The instantaneous
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force.À(x,t) is given by

(2.4)

Note that I denotes the cross-sectional area. Equation (2.4) is identical to the expression

given in Nayfeh and Mook (1979). As both bending and extensional noniinearities are

captured, the equations of motion for the planar vibration of the nonlinear rod based on

the differential element shown in Figtre 2. 1(b) are

Axial component:

16

pAuo + A, - fi{wcosá- Q sin e) = X(t) .

Trønsverse component:

pAw o + fo , - ft{* rr"o + g,cosd) = y(t) 
;

Rotational motion about the center of mass:

(2.s)

(2.6)

- % * 
g"l(t + u,) cos 0 + w *sin d] - Nfw, cos 0 - (t + u,)sin á] = (t + u,)J e *; e.7)

where p 6, i, Xþ) ndY(t) arethe mass density, damping coefficient, mass moment of

inertia per length of the rod, axial and lateral distributing loads in x and y directions,

respectively. To simplify Equation (2.7), it is assumed that the rotational inertia is small

and can be neglected. Thus we have fromEquation (2.7),

o,= (2 8)

It is assumed that the longitudinal inertia and damping can be neglected. In our model, we

considered only the loading situation of X(t)=0 and Y(t)=q(t). Substituting Equation

(2.5) into Equation (2.6) and using Equøtions (2.1)-(2.4) and (2.8) we finally ar¡ived ar

(t+u,)'+wf;
a4
t̂x
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the equation of motion for the nonlinear vibration of a rod. The result is,

(
pAw. + gv, +"[,- H- @A.",[, #][,- - tr)

t- L,( ", -'o" l I I Q9)

* EI æ lw*(t+u,)-w,u.* l_*\-*' (t*u,) ) d lw*(t+u,)-w.,tt.., l_ ^r,,- 
r n, u L6 | 

-T;r *Tãl@] = ør';,

To solve Equation (2.9), boundary conditions corresponding to a hinged-hinged rod are

used, namely,

(2 lo)
tt=w =0. I' I atx=0 and x=1.
xlo =wo = 0r|,

lntegrating Equation (2.5), we get

y'/cosd-Qsine=eU), (2.rr)

where e(r) is an arbitrary function. Similar to Nayfeh (1973), we considered small

transverse shear component in comparison with the normal force component, namely,

Q,sin9 << ,ðy'cosd inùquation Q.lI). In view of Equations (2.1) and (2.4), we have:

e(t) * (2.r2)

From Equation (2.12), we conclude that for small strains, e(t) = O(P)..81. Also, the

traditional assumptions in the beam theory, i.e., lul..lrl and lzr,l..lr,l.l, can be

employed to further assist in the evaluatíon of Equation (2.12). Noting that, u* = O(*3),

Equation (2.12) reduces to,

(t+u,)t +wf;-f + nel
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Observe that e(t) can no\il be easily solved from Equatíon (2.13). Invoking boundary

conditions in Equation (2.10) and integrating, we get

P+e(t\ I
2!- =' 

' "\'/ -1v2,EA2*

e(t) = -, *4'¡*1a*,

,, - j'¡,i*-)*:

(2.13)

(2.r4)

Substituting Equation (2.L4) nto Equation (2.9) and appþing the beam assumptions, we

finally get the l-D differential equation governing the motion of the nonlinear rod, that is,

pAwo.O,.f Pwo

*jl*i* *r-1,

(2.1s)

= q(t).

Except for certain limiting cases, it is difficult to solve Equation (2.15) exactþ. We will

further introduce appropriate approximations so as to make the problem mathematically

tractable. The assumption of w,1l enables us to approximate the irrational terms in

Equation (2.15) by means of a Taylor series expansie¡. For simplicity, we will neglect all

powers of 5 and above. Thus we have:
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(2.t6)

Assuming w(x,t) = p(t)sin(mnxll) for the simply supported boundary conditions, and

applying the Galerkin method to Equation (2.16) we get:

l9

pAw o + €w, + Pw *(t **: - * I,:*)- ** = * I*:*
. ,1, *(r+wl - *,I,:*)*z* ** =,, **'*]= q(x,t).

aÍo +(P^", - p)f *if*-2p,",1.f' = e(t), (2.r7)

where -f =f(t)=mtr.F(t)ll,a=lpAf(mn) andp.n=(mr)'EIf t'. There are only four

cases to be considered in solving Equation (2.17), as all the other remaining cases produce

diverging results. These four cases are:

Case I P^n ) P, 2P^", < EA

Case II P^n) P, zP^rr> EA

Case Itr P^", = P, zP^o < EA

CaseIV P^n1P,2P,",<EA: (a)Eo>0, (b)Eo<0 and

where Eo is the initial energy (or non-time dependent Hamiltonian, unperturbed

Hamiltonian) defined n Chapter 3. The external excitation aszumed is e=aeocoset,
where the parameter a is inserted for convenience. Furthermore, introducing

qr=(1",-p)1", ar=(EA-LP^",)f 4a, õ: (ll@m) and x=.f , Equation (2.t7)

becomes

i + & + dfi + d,rxt = O" cosOf . (2.re)

Observe that Equation (2.19) takes the form of the Duffing equation. Equøtion (2.18)

should now be re-expressed in terms of the newly defined parameters dt,dz,6,{2and Qo,

and the results are listed inTable 2.L

I o,,,
(44 = 0j
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Tahle 2,1 Four Types of Duffing oscillator

CaseI dr))andø,>0 i+6x+që+d,rxt=Oocos{Lt

CaseII dr>O and ø" <0 i+6x+d,f -lo 
't*t 

=OocoseÍ

CasefII dt=0andar>O i+6x+d,rx,t-e.cos{h

Case IV d, <0 and a, > 0; i + & -lorlt + d,rx3 = eo coseÍ
(a) Eo > 0, (b) Eo .0, (c) Eo = O

2.2 Feriodic Soh¡tions, Stability and Eifurcation

In this section, the development of an analytical procedure for the determination of the

stability and bifurcation of periodic solutions of Equation (2.I9) is presented. We will

begin our discussion by first deriving the periodic solutions, and then we will examine their

stability and bifurcation.

2.2.1 Feriodic Solutions

Assume a periodic solution of Equation (2.I9) to be given as follows:

x =u(t)sinOr +v(t)cosC)1. (2.20)

Substitutin g Equati on (2.20) into Equati on (2.i 9) yields :

du^ì
* = -,rru + I\,,v - Iqru(ut + vt) - kov(ut + vt ¡ + r,, 

I

dv l' Qzt)
dt = -krru - krrv + kr.u(uz +r')- hrv(u' +vt¡ + krul

)

in which the coefficients are defined as follows,

20
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ht=
Q(2{Lz +82 -2a,) ,. _({lt +ar)6

¡n2 c2 , n12 = -- 
^;-,4{12 +82 4{12 +6?

3Qu,
z(+a'* á'),

,.-2QQo L- Q,\s= Oç *52., 6,ø=æ+F

6r;,uo +[(", - a') * 
I",@',* "3)]r, =

-âc)uo *[{", -e¿') +1o,þi +"i)]r,

[(", -o') * ! o,¿'f' n' + 8'cr'A2 = e3

6ç)A2uo= 
en 

ândvo=

, 36a"
. ,lr, - -7-----=----------:-

414Q" +6')

kto =

(2.22)

(2.23)

(2.2s)

Since periodic solutions of Equation (2.19) are computed from the static equilibrium

solutions of Equation (2.20), we set duldt = 0 and dvldt = 0. This leads to,

:Ì

Note that the É-coefficients have been replaced by their actual expressions in Equation

(2.23). Also, the symbols uo,vo tepresent the steady-state solutions. It is not easy to

directly solve for uo,vo in Equation (2.23). An indirect approach is necessary and this

involves introducing A=J'¿4+v3 to denote the system response amplitude. In view of

tlns, Equation (2.23) can no\ry be compactly written as,

(2.24)

Observe tbat Equation (2.24) depicts the reiationship between the response amplitude I
and the system parameters d1,d2,O and po. From Equation (2.24), it is easy to solve for

L Having determined this quantity, we can proceed to solve for ur,vo from EEtation

(2.23) by noting thal u! + vj = Az . The results are,

l@,-a)*ïo,¿'1,¿'

Finally, the periodic solution is obtained by substituting Equation (2.25) into Equøtion
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(2.20) and we get,

,=*{**'sinc)r*[(o,-f¿') +1o,A,l,a,.orcrl] . (2.26)ø t L' + j-- -"--- 
J

2.2"2 Stabilify and tsifurcatiom

Having solved for the steady-state solutions, we next examine their stability and

bifurcation. To accomplish this task, it is necessary to linearize Equation (Z.ZI) in the

neighborhood of the steady-state solution (uo,ro) via a Taylor series expansion.

Introducing É=u-uo and T =v-vo, Equation (2.21) is linearized to

/r\ tr\
I ? l= Df(uo,ùlt l, çz.zt¡\q) \ry)

in which

r¡d-. -. \ l-krr-ku(3u! +v'o)-2krouovo kr-Zlqruovo-kro(u! *Eú) I .D|\uo'")=l 
-, _ 1t .,,, r t la.,? , ,,2\ t- t- 

'-.' 
,.-.)' , ^,- .' l' (2'28)

L-hu -Zkrruovo + krr(1fi + v!) - kr, - ku(ul +lvi) +Zkrouovo )' 
\-'--l

The characteristic equation of Equation (2.27) is therefore given by

.Lz + Tr(nfo)t" + net(n7) = o, (2.2s)

where the trace and determinant of the linearized matrix are defined respectively as

rr(Dft)--2krz-4kßA" 
, r, \,? ^/,a ",,Ì e3o)Det(Df) = ,tu, + 14, +  (knth - tqrtq)A' ú(k;, * Ir:")A- l

Having expressed Equation (2.28) in a matrix form, it is now easy to determine the

stability of periodic solution through an eigenanalysis. Since the steps are mechanical, we

will just summarize the analytical results here as follows.

22
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Stab¡l¡ry Cond¡t¡ons

(a) The conditions for stable periodic solutions corresponding to a stable focus are,

1.,,'

z(A'+a,)+3arA? >o 
I

a' (za' + 62 - 2o,) + 6' (t>' * o,)' +sa,(õ'+ +cl')[(ø, - O,) * 2 o,n 
fA, 

r ol Q'31)

(b) The conditions for unstable periodic solutions corresponding to an unstable focus are,

z(A'+ør)+3arAz <O j

a' (za' + õ' -ro,)' + õ' (o' * o,) +3,."(6'++o')[(ø, -O') * Lo,o,fA, r 0l Q'32)

(c) The conditions for unstable periodic solution corresponding to a saddle is,

a'(za'z +õ2 -2o,) +6'(o'*o,)' +3a"(6? ++a)l@.,-o') * j-o,o,fAz <o. (2.33)

It is also trivial to obtain the associated bifurcation conditions for the periodic solutions.

As before, we will simply summarize the results as follows.

B ifur c ati on C on di ti on s

(a) Hopf bifurcation occurs when

A, = -2 
Q' *o, 

>O3a,
^. lll.2+a
O: = -IYf;l{rn' - "i)' + +6'o,f

a'(za'+õ'-ro,)' +8'(a' *o,)' - 
ljrc,,+cl')(a' 

++a')(sa, -t1c¿,)> 0

(b) Saddle-node bifurcation occurs when
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For the occurrence of the saddle-node bifurcation in going from the stable node to

saddle, we must satisfy the following additional condition,

-r,)* to e.36)

¿'= a lz(a'9a"l \.L

e.==*llr,
-L\

.[,,,,'

(cr'* *,).!lzp'

. (2.3s)

(2.37)

Similarly, for the saddle-node bifurcation to occur in going from the unstable node to the

saddle, the additional condition is,

.t

(f)'* 4*l

Next, a qualitatively sketch of the nature of the stabilþ of the periodic solutions (or more

precisely, period-l solutions) for the four case types is presented. As shown in Figure Z.Z,

stable solutions are represented by the bold solid lines and unstable solutions by the dash

lines. Figures 2.2(a) to (d) corespond to Cases I to IV respectively. Observe that for

Cases I and III, the unstable solution is bounded by the 'outer' and 'inner' stable solutions.

For Case II the 'outer' and 'inner' stable solutions encapsulating the unstable solutions

occur entirely inside the heteroclinic orbit. Outside the heteroclinic orbit, we have only the

unstable solutions (not shown). The behavior of the periodic solutions for Case fV is even

more complicated. Observe that the 'outer' and 'inner' stable solutions encapsulating the
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unstable solutions occur outside the homoclinic orbit, and therefore are termed "large-

orbit" solutions. However, upon a careful inspection, there exists a'large' orbit solution at

the crossing of the homoclinic orbit and is shown by the dash line, i.e., unstable. It should

be mentioned that it is not possible to ana\yze this solution via the present procedure.

Inside the homoclinic orbit (two potential wells), there are the so-called, "small-orbit"

solutions. To study the nature of these solutions, an alternative approach has been

proposed by Luo and Han (1995e) and Han and Luo (1995a), but not reported here.

(a) Case I (b) Case II

25

(c) Case III

Phase trajectories

- - unstable).

(d) Case IV

Duffing oscillator

v

t:-'i a
=\

1 ", '
\ 

\r... \-

\

) ,i,
/

x

Figure 2.2 of the damped driven stable,
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2.3 companison of Analytical Results wittr Nurnenicatr solutio¡ls

A comparison of the analytical predictions with the numerical results is outlined here. The

intention is not only to verift the proposed method, but also, to demonstrate the analyticai

procedure by carrying out a parametric study. We will restrict our model to the period-l

motion of the Duffing oscillator.

The term 'numerical solutions' is used here to impty results obtained via a numerical

integration of the differential equations. The algorithm employed is based on the automatic

time-stepping Runge-Kutta integrator (a standard IMSL routine). To minimi ze the

çemputational effort, we adopted the initial conditions calculated by the analytical method.

The results are plotted in Figtre 2.3 where the lines denote the analytical response and the

s5tmbols the numerical solutions in the excitation frequency-response amplitude curves.

Note also, the solid, dash and dot lines respectively represent, the stable, saddle and

unstable focus (or node)-type periodic solutions. Obviously, only stable period-1 soiutions

are obtained in the numerical simulation. In addition, the hatched areas indicate

numerically computed complex motions which couid include higher-periodic and chaotic

motions. Also, the subharmonic solutions are not considered in these regions of complex

motions.

As shown in the graphs, the lines and the symbois match quite closely indicating good

agreement between the analytical and numerical solutions. However, at the tip of the

curves, the agreement is not that great and this is attributed to the fact that we did not

consider the superharmonic terms in the assumed solutions. As presented in Han and Luo

(1994), the exact undamped period-l solutions take the form of the highly complicated

Jacobi-elliptic functions. The overall good agreement indicates that our proposed

anal¡ical model is sufficiently accurate and can be a viable aiternative to the tedious and

extremely time-consuming numerical simulations.
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Having verified the analytical model, it would be useful to carry out some parametric

studies of the method. The parameter manifolds involving the excitation frequency f)
versus the excitation amplitude Qo is plotted in Figure 2.4, and the excitation frequency Ç)

versus the response amplitude A in Figure 2.5. For both plots, á= 0.5 is used. Once

agaJn, all four loading cases are considered. 'We first present a discussio n of Figure 2.4,

followed by a discussion of,Flgzre 2.5.

Note that in Figure 2.4, the broken lines (i.e. dot and dash lines) represent the symmetric

saddle and saddle-node bifurcation in going from the saddle to the unstable node (or vice-

versa), respectively. Also, the bold and thin continuous lines mark the boundaries of the

Hopf (IIB) and saddle-node (SNB) bifurcations, respectively. Observe that the graphs for

Cases I and III are very similar in that they only have SNB and thus, they will be discussed

together. They have only two regions; in Regions I there is only one period-l solution

which is stable, and in Region II are three period-l solutions, 2 stable and I unstable. As

f) increases, the Region II soiution jumps to the Region I at the lower branch of the SNB

and likewise, as C) decreases, the jump occurs at the upper branch of the SNB.

Next, we discuss the Cases tI and tV which have five regions of stability, Regions I-V.

For Case II, there are one stable, one saddle and one unstable node or focus solutions in

Regions I and tr. In Region il, wê have only one unstable focus or node solution; in

Region IV, only one stable focus solution and finally, in Region V, there are three

solutions, ofwhich one is a saddle, and the other two are stable. In going from Regions IV
to trI and from Regions V to II, HB takes place; and in going from Regions IV into V,

SNB is observed. For Case IV, the solutions in Regions I and II are similar to Case II.

However, for Region III there exists only one stable solution; in Region fV, there is only

one saddle among the three equilibrium solutions; and finally, in Region V, there exists

one stable solution. Note also that the points (a, b, c) marked in the figure will be

discussed later as these are used in the numerical simulation section.
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Figure 2.5 shows the stable and unstable manifolds in the Q-A plot for Cases I-IV, for

varying 00. Note that here we employed the following line notations: solid, dash and dot

lines to denote respectively the stable, saddle and unstable focus solutions. As before,

Cases I and III are very similar where the two stable branches connected by one unstable

branch. However, this is not necessarily the situation with Cases tr and IV where for some

of the curves, the stable branch becomes unstable. As in Figzrre 2.4, the points (a)-(c) will
be discussed later as these are used in the numerical simulation section.

2.4 Numerical Simulations

Numerical integration of Equation (2.I9) for its period-l solutions are presented here. To

expedite the numerical experimentation, the analytically computed stability conditions are

employed in the computer simulations. The motivation for this section is to produce a

computerized plot of the phase portraits, similar to the hand-drawn plot in page 72 of
Guckenheimer and Holmes (1983). It should be pointed out that our numerical simulation

is based on the original equation of motion for the Duffing oscillator (Equation (2.1g))

whereas in Guckenheimer and Holmes (1983), they used the approximate equations

(similar to our Equation (2.21)).In our opinion, it is more appropriate to use the original

equation rather than the approximate equation.

Input data comprising system parameters and initial conditions for the numerical

simuiation are tabulate d in Toble 2.2. For the selected stability conditions, the appropriate

system parrmeters are computed from the analytical model. The initial conditions are

calculated rather than prescribed, as done traditionally. The basis of the computation of
these initial conditions is by solving Equation (2.26), re-expressed here as follows,

6Q2A'

30

Qo

at I = 0.0. (2.38)
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Table 2.2 Computed input data for numerical simulations for periodic solutions

Initial Conclitions Stability
Status

ô=0.5 ur

32

xo)loQod2

Case I

(a)

(b) 10.0 4.0

(c)

3.11446

2.0 3.70101

3.6995t

0.616269

-0.524218

-0.478948

1.437760

1.5 i4300

2.9276t0

Stable

Stable

Unstable

Case II 10.0 -4.0

2.49546

1.0 1.01700

1.01125

0.250093

0.8s4611

-0.809 I 55

0.218681

1.494450

1.574860

Stable

Unstable

Unstable

(a)

(b)

(.)

(a)

Case III (b) 0.0

(c)

2.50921

2.0 2.50695

2.50463

0.783871

-0.3599t4

-0.632589

10.0

1.637621

0.215098

0.779483

Stable

Stable

Unstable

Case fV -10.0 10.0

*This result cal be proved using an alternative anatytical method (Han and Luo (1995a), and Luo and
Han (i995e)).

Using these comFuted initial conditions, we are able to exactly predict the period-l

solutions. Note that (u)-(c) marked in Table 2.2 correspond to points (a)-(c) in Figres
2.4-2.5. The time interval employed in the numerical integration is 50 seconds, starting

from 0. The results are present ed in Figure 2.6. The starting points for the phase portraits

are marked by the dots labeled with an "I.C.". Once again, all four cases are presented.

(a)

(b)

(c)

4.00683

8.0 4.00772

4.00572

1.722370

-0.3i4018

- 1.54 i 860

3.953690

0.099608

2.9153s0

Stable

Unstableo

Unstable
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Graphs (a)-(c) of Case I show two stable and one unstable (saddle) solutions as predicted

by the analytical model, and they correspond to points (a)-(c) of Case I in Figztres 2.4-2.5.

Observe that the stable periodic solution exhibits only one cycle. On the other hand, the

unstable solution which cannot maintain this status quo in the numerical simulation, must

eventually move to the stable solution as it passes through its transients.

In Case II, graphs (a)-(c) confirm that there are only one anal¡ically predicted stable and

two unstable (saddle and unstable node) solutions and they correspond exactly to points

(a)-(c) of Case IIin Figures 2.4-2.5. As before, the two numerically determined unstable

solutions must move eventually to their stable solutions via their transients.

In Case III, graphs (a)-(c) exhibit two stable and one unstable (saddle) solutions, which

agree completely with the analytical predictions. Note that these graphs correspond to

points (a)-(c) of Case trI in Figures 2.4-2.5. Observe that the periodic solution of graph

(a) is not exactly an expected single orbit, but rather a series of very close orbits and this is

due to the not so precise agreement with the analytical model as shown in Case III of
Figure 2.3. AIso, as before, the unstable solution in graph (c) eventually gravitates to a

stable solution via several transient states.

In Case IV, graphs (u)-(") show one stable and two unstable solutions as predicted

analyticall¡ and they correspond to points (a)-(c) inFigures 2.4-2.5. As in Case III (a),

graph (a) of Case [V exhibits similar behavior and once again, the absence of an expected

single orbit is due to the imprecision of the analytical model which is evident in Case IV of
Figure 2.3. The unstable solution in graph (b) is of the saddle-type as defined by

Guckenheimer and Holmes (1983) (see page 87). The two unstable solutions in graphs

(b)-(c) must eventually move to the stable solutions by going through several transients.

We should also point out that the predictions here are only for large orbits. For small

orbits, this technique does not work and an alternative method as reported in Luo and Han

(1995e), and Han and Luo (1995a) musr be employed.
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2"5 Conclusior¡s

An improved harmonic balance technique for predicting stability and bifurcation of
periodic solutions in a nonlinear dynamic system is presented via an investigation of the

Duffing oscillator. Comparison of the anal¡ical model with numerical simulation are

shown and good agreement is observed. Using these analytical conditions, stable and

unstable manifolds are plotted in the amplitude-frequency curves. AII input data for the

numerical simulations are calculated and not prescribed as done traditionally. This

significantly reduces the amount of numerical experimentations required to simulate the

nonlinear dynamics phenomena. The number of numerically determined stable and unstable

solutions agree exactly with the analytical predictions.

35



Crxapq'pm,3

.4¡qanyrrnc.ar, Corupxg'IoÌ{s F,oR Cxxaos

It is very useful to be able to predict the onset of chaos and strange attractors in a

nonlinear dynamical system. There are only a handful of anal¡ical methods available for
the determination of critical conditions for the onset of chaos. Methods such as the

Chirikov resonance overlap criterion (Chirikov (1979)), and the renorrnalization group

1sçhnique (Escande and Doveil (1981), Escande (i985) yield critical conditions for the

undamped Duffing oscillator near subharmonic resonant orbits. For a weakly damped

oscillator, the Melnikov method is available for the computation of the critical conditions

for chaos and subharmonic bifurcations (Moon and Holmes (1979), Moon (1980a) and

Holmes and Moon (1983)). The stability and bifurcation of the Duffing oscillator were

studied in the previous chapter. In this chapter, four cases of Equation (Z.lg)
corresponding to an undamped oscillator are considered. The equivalent forms of their

first order differential equations are:

Case I: (3 1)

Case II: (3 2)

Case III: (3 3)

x=! I
y = -arx - drxt + Q cos(ft)J'

x=r I
y = -arx + d,rx3 + Q cos(Ol)J'

*=! I
j,=-drxt +Q cos(C2r)J'

x=! I

! = dfi - drx, + po cos(OrrJ; {a) Eo > 0, (b) ¿' < 0, (c) Eo = 0,Case IV: (3 4)
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in which all parameters ør, d2, Qo, Q and Eo are positive and represent respectively, the

system parameters, the excitation amplitude and frequency, and initial energy.

3.1 Emergy Analysis for Case {

We first present the procedure of the determination of critical conditions for Case I as

governed by Equation (3.1). Then, we will simply state the results for Cases II-IV(b) in

Appendix 8.1. The remaining Case IV(c) requires special handling and will be treated in a

separate section. From Equation (3 i), the Hamiltonian for Case I is given by,

37

This Hamiltonian can be separated into the non-time dependent part (unperturbed) Ho and

the time-dependent part (perturb ed) Hr. That is

n = ! y' *! o,r' * ! o"*o - xO^cosor.
2-2'4¿pv

H=Ho+Hv

1" I " 1
Hn = -:1" + - d,,x" +: d.nx" ." 2' 2 ' 4-' )

Ht= -xØ cosf)1.

(3.s)

(3 6)

(3 7)

(3 8)

where

The phase plane energy contour for three given values of Ho is sketched in Figure 3.1,

using dt = dz = 1.0. The three values of the initial energy are Ho = Eo 18, < Er. Solving

the energy equation of EEtation (3.7) for the situation of Ho= Eo, tbe results are (Han

and Luo (1994)),

*=n "ol?Íw,r], (3 e)

,=*E+*W*fa"l&,r,f, (3.10)
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Figure 3.r Phase plane energy trajectories for the undamped case I.

in which cn, sn and dn are the Jacobi-elliptic functions, K(Æ) the complete elliptic integral

of the first kind, and k the modulus of the Jacobi-elliptic function. The other parameters å

and 0inthese expressions are defined by

38

where a¡ is the nonlinear natural frequency of the undamped Dufñng oscillator for Case I
and is computed frorn,

- 1 2kza.
t^L _ Ift

(1.-2k2)a,'

1E hr
Ú)---!-

2 \ 2 kK(k)

The particular value Eo canthen be calculated using

, _ k, (l- kr)oi
-u -l--u (r-zk')'a"

and the action variable Jfor an orbit is given by

0=@t, (3.11)

(3.r2)

(3.13)

r = @-!l( - n' 
) 
rçrc¡ + (zrc, - \ nçn¡], (3.r4)
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where the symbol E(k) in Equation (3.14) denotes the complete elliptic inregral of the

second kind. The period Zis given by

(3 ls)

Substituting Equations (3 .9)-(3 . I 0) into Equation (3 . 5) and expanding the time-dependent

term, the complete Hamiltonian function now becomes

H = H o U) - Q r>,, 2 Qr,_, c o sl(Z n - I) attlc o s( f)r), (3.16)
n=I

H = HoQ) - QrlQr*r{cosf(zn - r), - A]r + cosl(zn- r)ø + Cl]l]
n=7

(3 17)

in which

Q.rn-t =
zkK cosbl r( 

" - 
!\E:1'

L \ 2)K)
(3 i8)

where K'=K(k')and k'=1-k2. Except for the term of the (2n-T)th primary

resonance, all other terms in ä will average to zero over time l. Hence, we have, in

combination with Equation (3 11) and Equation (3.12), thefollowing expression

39

)r

Ct)

or

lzh

C¿ f",
X 1-2n'2n-r zK(k)

(3.1e)

from which we can determine k atthe (2n-I)th primary resonance for some given n. Let

this value be symbolized by Æi-,. Now, \rye are interested in the region near the (Zn-I)th

primary resonance influenced by the (2n+l)th primary resonance. Assuming the effects of

the other resonances to be negligibie, the Hamiltonian can be expanded by Taylor series
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about the (2n-I)th primary resonance. That is

H = H o(ri. ,) .(#) 
,,*,(, 

- rí.-,) + ;(#) ,,._,(, 
- rí.-,)' *. . .

- 8, {8r, -, (J í, -,) c o sl(zn - t), - Çtft + e,., (¡ ;, - r) c o sl(z n + t) ø - alt}

Noting that Ho = Eo, the following parameter can be introduced:

40

,_ ( ¿, n \ .., _l u(0, ,\ _r 
_ r(:!."): 

øØ;. ,)1. (3 zt)o' =1ffi)*_, *.@;LK(k;.-,)--f-ço;._,) I

A new canonical coordinate system @,ø) can be introduced, where p = 0 when J = Jí,u.

The generating function is

G(J,ø)=-(J-JL-,X#)

. (3.20)

(3.22)

(3.23)

Then we have

aú ó can be evaluated from

;_ aG _J-Jí,u
u---' dó 2n-L '

=ú)t= #=-!-g (3.24)

The new Hamiltonian is now given by

-ø{ø,-,(Jí,-,)cos/+Ø,.,(t;,-,¡"*1ffiø*.r,r]},
(3.2s)
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in which Qt=2Ql(2n-t). Nore in EEtation (3.25), dclêt=-(aCo¡alrr*,(J_Jí,_r)

has already been involved. It is convenient to re-scale Eqttation (3.25) by introducing

4l

ú=õ
(2n-t)'(zn+l)G^ -U--y'o

n =Wff*¡g"ln _u,Q;._,)l

and thus, the re-scaled Hamiltonian is

u = Lo, - 
(ro cos þ - 4 *(#ø * a,,),

,, _ (2, - t)z (zn *rfu 
eogr,_r,"o - ---- f¿f

,,, (2, -t)2 (zn *r)' oo goer,*r',o------E-

where

(3.26)

(3 27)

(3.28)

(3.2e)

(3.30)

(3.31)

and
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3.2 chaotic conditions for tf¡e {Jndarnped Ðuffirag oscilÍaton

To predict onset of chaos (from local to global stochasricity) in Equarion (3.27), Chirikov

(1979) provided the following condition (for more information, the reader is directed to
Lichtenberg and Lieberman(1992) and Reichl (t992)):

LJq +Z^ffi =r, (3.32)

we obtained the chaotic condition governing the onset of globat stochasticity near the

(2n -I)th primary resonance as influenced by the (2n+l)th primary resonance, that is,

Oo=
4(2n-t)'(zn+r)z Go

Itl'
U4;*,[6:, )

(3.33)

Using the renormalization group technique, Escande and Doveil (1981) and Escande

(1985) developed a mathematically more consistent method for the prediction of chaos,

and obtained the following expression which agrees quite closely with Equation (3.32):

2^[q *z^ln = 0.7. (3.34)

From Escande (1985) result, the chaotic condition in Equation (3.33) gets modified to,

/1 _ o.4gç¿z ( 1 I'vo-ffi1W.ffi) (3.3s)

Having determined the fwo parameters Eo, Qo anatytically, \Ã/e can use them to predict the

onset of chaos. Note that in determining these parameters it is necessary to evaluate a

number of intermediate parameters, such as Go, Øn_t, O.n*, etc.It will be useful to show

the relationship between Q andEo, O^. For the undamped Case I, these relationships are

depicted in Figure 3.2 for dt=üz=i.0. Observe that both the resonant and chaotic

conditions as describedby Equations (3.19) and (3.33) respectively, Ne displayed.

.la

l)2
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We can derive in a similar fashion the corresponding results for alt other cases. The only

exception to this is Case tV(c) which requires special handling. This is reported in Section

3.3. For Cases II to IV(b), their formulas are summarized in Appendix B.I. The phase

plane energy contours for Cases II-IV are sketched in Figure 3.3.

(a) Case II (b) Case III

(c) Case IV(a)-(c)

Figure 3.3 Phase plane energy trajectories for undamped cases II-IV.

The values of Go, Ø,-rmdQrn*rfor each of the Cases II to IV(b) are different and thus

the relationships between O and Es, Qo Ne not the same. Using dt = dz = 1.0, these

relationships are plotted in Figures 3.4-3.7 for Cases tr-Iv(b) respectively. Once again,

both the resonant and chaotic conditions as described by their respective equations in

Appendix 8.1 are depicted.

44
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3.3 Chaotic Conditions fo¡- the Undamped Câse {V(c)

This case requires special handling because Eo = O. As before, the Hamiltonian can be

separated in the non-time dependent part and the time-dependent part. That is,

H^ =!r'-l d.x'- 1

" Z- Z , ,¡orr* - 0, (3.36)

49

Ht = -xQo cosCl¡'

Using Equation (3.36), the solutions for this case are given by

(3.31)

(3 38)

(3.40)

(3.41)

(3 3e)

As Æ -+ l, Eo -+ 0, that is, near the separatrix manifold of Case IV(a) Using the rezults of
Case IV(a) inAppendix 8.1 we have:

and the nonlinear period Zis

*=xffrech(^fÇt),

y = t E *,sech(^[Çt)tann(^[Çl .

h' =2Ï, , ø, = !ç- k ),dz-dz

7 = !þyç,¡
tlazk

From Cayley (1895), we have

K(k)*;''(#) ç42)
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In view of Equation (3 .40) and Q .al and as k -+ L, EEration (3 .3 9) simplifies ro

7=ln(Y4\.lo, lo=Eo )

The energy increment for one period is

AH = I;(T# T+þ, = -za,,çtfs-^(#)sin(o,. )

The phase angle increment of the trajectory for one period is

Lú=ttr=#^(#)

||i*, =w, + Lw -wi -zo,roffr*^(#lsi,,(/,),

þ,*t=6,+$nff-64-l
tlut \azw'¡ )

za. ( l6a3l--lnl : l=2tt(2n-I),
ldt \dzwt )

where lo is the initial time. For the convenience of notation for numerical simulation, .we

letw= ãr (a"d Lw=AH) and ø-Cllo.Hence, near the separatrix, the energy and the

phase angle of the (l+ l)th period and the ith period are:

(2.43)

(3.44)

(3.4s)

(3.46)

(3.47)

Equations (3.46)-(3.47) represent the separatrix mapping with period-1 fixed points ar

(3.48)

where (2n -l) is an integer and w, is the energy of the (2n -l)thfixed point. To converr

the separatrix mapping to the standard mapping form, we put wi=wr+Lw,, and
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lineanzing in w yields

in which

[,u = I, +Ksin(/,),

þ,*r=þ, 11,*,

, 2{2 Lw,
, =__J

Ja, *,

51

is the new action and K is the strength of the stochasticity parameter defined by

(3 4e)

(3 50)

(3 s1)

(3.s3)

(3.s4)

(3.s2)

For standard mapping, the transition to chaos occurs at K* =0.9716.... The KAM torus

will disappear and thus, we can determine the chaotic condition related to the resonant

orbits outside the homoclinic orbit:

4Qoftçrz fT , ( ,n \fi =- '-SeCni : i

wr^ld, \ o, lZ^1", )

n, = +(Ð' E"-[¡zn-t¡' 
¡4 r, ."*[#ì

n, = ]+(ä)' 
ffi,-t" 

" ¡-, r 
qza¡1."*[#ì

Similariy, the chaotic condition related to resonant orbits inside the homoclinic orbit is:

Figure 3.8 displays the relationships between Cl and Eo, Qo in the neighborhood of Case

IV(c) for ø, = dz = 1.0. Note that the chaotic conditions are plotted in Figure 3.8(b).

3.4 Cnitical Conditions for a Wealdy Damped Duffing Oscillaton

The system considered here is a forced integral system with a dissipative perturbation.
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To study the chaotic motion, Melnikov method is employed. The necessary conditions for
the subharmonic bifurcation and the occurrence of the chaotic layer around the separatrix

are derived. Then to recover the original system, we let the perturbation parameter e= 1.

As done previously, we will once again consider the four cases. We will derive the results

for Cases I and IV(c), and deduce and list the results for Cases II-IV(b) inAppendixB.Z.

Case I
'We 

consider a damped system with a dissipative perturbation e. From Equation (2.19), we

have,

(3 ss)

The Melnikov function for this system can be defined as

(2n-1)

53

*=! I
y = -arx- drxt + t(Qrcosor-áx)j'

l¡t[ i=t (to,Q,o,6,a7= lllao cos(o(r+lo)- Îy)þt, (3.56)

where I is the period of the undzmped Duffing oscillator.

section, the various parameters pertaining to the und,anped,

derived. Hence, the integration can be carried out and the

computed. For compactness, let it be expressed as

(2n-1)

M- (ro,Q.r,6,O)= -ál, *eolr,

Recall from the previous

system have already been

Melnikov function can be

(3.s7)

(3 s8)whereI,(2n-|,j=L)=$-|(t_n,)xçt)+(ztc.-\ngc¡],
3J(r- k') o,

r,(Zn - t, i = r, q ='#,.,n[(, - ;)" #]sin(oro )
(3 se)
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Defining

inwhich

Introducing

and if Qolõ >.Ro(O), then

R2,-rl.-)) - I,(Zn-l,I)
\ / Ir(2n- 1,1, CI) '

(2n-1) +€

MT (to,Qo,6,Q = I ylQ, cos{Ct(l + t) - 6yldt = -61, + eol,

, 4ør^[Ç
3d,

znJztl- -----:-sech

^lo,

f
Ro(O) = +,

l2

the stable manifold intersects the

5-t

(3 60)

we find that if Qol I t R'^t(e)), there exists apair of subharmonics of the order (2n-I),
and period 2(2n-1)nlù, which appears on a bifurcation manifold. The subharmonic

bifurcation condition is thus given by

Q, = R"-'((2)õ. (3 61)

Note that in Equation (3.61), if Q is known, then the amount of damping ð can be

computed. On the other hand, if the damping is prescribe d, 8o can then be computed.

Also, no ultra-subharmonics (Guckenheimer and Holmes (1983)) can occur here. As

before, the conditions for subharmonic bifurcation for Cases II to IV (b) are given in
Appendix B.2. We will now consider the special case of Eo = O for Case IV(c).

Case IV(c)

For this case, the Melnikov function is defined as

I2

(3 62)

(3 63)

(3.64)

(3.65)

unstable manifold, and we



Chapter 3: Anall'tical Conditions for Chaos

have a minimum chaotic condition as

Ø = Ào(Q)á. (3 66)

This is of the same form as in Equation (3.6L). In fact, all the cases have this form, with

the appropnate 1r,1, substituted into the expression. Graphical plots of the subharmonic

bifurcation condition near the homoclinic orbits for ø, = dz = 1.0, and 6 = 0.5 for all cases

are depicte d in Figure 3 .9.

3.5 l{urnerical Simulations

To verify the formulation for the analytical prediction of the subharmonic bifurcation and

chaos, numerical simulations based on Runge-Kutta integration of the appropriate

differential equations for the four cases are performed. The ability to analytically predict

the onset of chaos is a useful one as it implies that unnecessary prolonged and tedious

numerical experimentations are eliminated. Verification is achieved when the number of
numerically predicted subharmonic resonance agrees with that obtained theoretically.

Chaotic solutions are obtained in the numerical simulation by inputting parameters that

satisfy the derived chaotic condition for the four cases. However, the computation of these

input parameters is not trivial and a systematic approach is adopted. The technique starts

off by specifying appropriate initial conditions of displacement x0 and either the initial

energy Eo ot the initial velocity yo, since it is straight forward to calculate one from the

other via Equation (3.2). In this work, we have prescribed as initial conditions the

quantities xo, Eo and, lo as the calculated quantity. From the curves depicted by Figures

3.2 and 3.4-3.9, the excitation frequency C) and excitation amplitude Q corresponding to

the chosen case are determined. Since Q satisfies the critical conditions computed via

Chirikov overlap criterion and renormalization$oup techniques, numerical integration of
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the differential equations now produces chaotic solutions. For a damped Dufüng

oscillator, it is necessary to use Figure 3.9 which is generated for a system with damping.

The various input parameters of the numerical simulation are summarized in Tabte 3.1.

Note that the two structural parameters dt, dz have values of 1.0 in all the numerical

simulation runs.

Table 3.l system input parameters for numerical simulations

57

dt=dz-L CaseTypes Qo

Undamped

Systems

Case I

Case II

Case III

Case IV(a)

Case IV(b)

Case IV(c)

0.0 6.0415

0.0 0.5592

0.0 1.1619

0.0 3.2t71

0.8 0.3667

0.0 0.0

7.6452

2.s172

3.2582

5. 1 955

2.577t

3.t400

13.0916"

0.2599^

0.7260^

I.6664^

0.1638"

0.0425"

6.4t49b

0.tzTb

03357b

0.8 1 65b

0.0802r'

0.0213d

0.0

0.0

0.0

0.0

0.0

0.0

Damped

Systems

Case I(a)

Case I(b)

Case I(c)

Case II

Case III

Case IV(a)

Case IV(b)

Case tV(c)

0.0005 0.0
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"Chirikov overlap (Han and Luo (1994)).
brenormarization group technique (Luo (1993c,1994), Luo, Han and xiang (1995)).
'standard mapping method based on the outside orbit (I{an and Luo (1994)).
dstandard mapping method based on the inside orbit.
"lvfelnikov method for a damped Duffing oscillator (Hal and Luo (1994)).

The Poincare mappings of the undamped Duffing oscillator are sketched as follows:
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Figtre 3. 10 for Cases I-II,

Figure 3.1 I for Cases III-IV(a), and

Figure 3.12 for Cases IV(b)-(c).

For Case I, the chaotic motion based on the primary resonance of order (Zn-l)= 3 is

simulated via numerical integration using the two critical conditions, and the result is
shown in FÌgure 3. 10(a) using Chirikov overlap criterion, and in Figure 3. l0(b) based on

the renormalization group technique. The computed input parameters for this simulation

are also tabulated in Table 3.1. Since the chaotic motion with a primary resonance of
order 3 is desired, the subharrnonic resonance of order 3 will appear first. However, due

to the influence of the energy of the fifth-order primary resonance arising from the

(Zn+1) = 3 term, the KAM torus for the resonance of order 3 is destroyed. Note that the

influence from the other higher primary resonances are very small and thus, can be

neglected' The chaotic motion which is simulated based on the third primary resonance for
Case II is plotted in Figure 3.10(c) using Chirikov overlap criterion, and in Figure 3.10(d)

based on the renormalization group technique. Note that the maximum energy of this

system cannot be larger than the energy of the separatrix, otherwise the solution will
diverge.

Figure 3.11 depicts the Poincare mappings for Case tII: (i) is based on the Chirikov

overlap criterion, and (ii) on the renormalization group technique. For this situation, the

structure is in a critical buckling state since it is loaded by its buckling load (see EEtation

Q 14))'As before, the chaotic motion based on the third primary resonance is shown.

When the loading exceeds the buckling load, which is the situation for Case IV, there

exists three distinct parts separated in the phase plane by its separatrix. As a result, the

chaotic motion can take very different forms, depending on the th¡ee values of ð0. As

given in Figure 3.11(c)-(d), the motion of Case IV(a) is similar to rhat of Case I. As

before, Figtre 3.1l(c)-(d) is generated based on the Chirikov overlap criterion, and the

renorma I ization group ¡sçh n i que resp ectively.
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Figure 3.10 Poincare mapping sections fo¡ undamped Cases I-II.
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Figure 3.Lr Poincare mapping sections for undamped cases rII-IV(a).



Chapter 3: Analrtical Conditions for Chaos

Figure 3.12 plots the Poincare mapping sections of the Cases IV(b)-(c). The results for
Case IV(b) are sketchedinFigzu'e 3.12(a) and (b) generated using the Chirikov overlap

criterion, and the renormalization group technique respectively. Likewise, the results for
Case IV(c) are sketched in Figure 3.12(c) and (d) but now, the graphs are generated

based on the standard mapping for the outside and inside orbits respectively. For Case

IV(b), the chaotic motion is based on the primary resonance of order 2 in the right

potential well, and for Case IV(c) the chaotic motion is based on the separatrix or

homoclinic orbit.

The Poincare mappings of the damped Dufüng oscillator are sketched as follows:

' Figztre 3. 13 for Cases I-II,

, Figure 3.14 for Cases ru-IV

InFigure 3.13, since it is desired to obtain chaos and strange attractors in the plots, the

damping coefficient chosen for the numerical simulation is less than the critical damping

õ",x0.8468. For Case I, th¡ee different damping coefficients are empioyed (see Table

3.1) and their corresponding Poincare mapping sections are identified as Case I(a), I(b),

I(c). In Case I(a), the chaotic motion based on the third primary resonance is depicted.

Observe the presence of the strange attractors. In comparing with the undamped Case I of
Figure 3.10, it is clear that the difference in the chaotic motion is due to the introduction

of the small dissipation in the system. Increasing the damping, the chaotic motion for Case

I(b) is obtained. Note that the strange attractor is based on the third subharmonic

resonance. Increasing the damping still further as shown in Case I(c), the third primary

resonance disappears and goes into the first primary subharmonic resonance. For Case II
the strange attractor is almost cyclically symmetric.

The Poincare mapping sections for Cases III-ry are given inFigure 3.14. For Case IV,

once again we have the same th¡ee situations corresponding to the three values of Eo.

Qualitatively, the same description as given for the undamped system applies,

6l
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Figure 3.12 Poincare mapping secrions for undamped cases lv(b)-rv(c).
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3.6 Conclusions

In this chapter, the Chirikov overlap criterion and renorm alization group technique are

used for the first time to derive the chaotic conditions near a subharmonic resonant orbit

for the undamped Duffing oscillator. The analytically predicted chaos by these two

methods is confirmed numerically and perfect agreement in their number of subharrnonic

resonances is observed. The chaotic motion of a forced integrable system with a

dissipative perturbation is studied via the Melnikov method. Plots of the poincare mapping

section indicate the presence of strange attractors in the damped system.
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In the vicinity of the homoclinic and the heteroclinic orbits of a nonlinear dynamic system,

there exist domains where the motion is stochastic. These domains are termed "stochastic

layers", also sometimes referred to as homoclinic tangles (Guckenheimer and Holmes

(i983)). They are actually very complicated sets of invariant curves. The detennination of
the strength (or width, chaotic condition), of the stochastic layer is very useful for the

understanding of the stochasticity of the motion. Using the Chirikov overlap criterion,

Reichl and Zheng (1984a, b) and Reichl (1992) estimated the srrength of the stochasric

layers for the undamped Duffing oscillator, and they showed qualitatively that these results

are in agreement with the estimates obtained using the standard map for this system. In a
later publication, Lin and Reichl (1986) employed the renormalization group method to

compute the strength of the stochastic layer for a particle in an infinite square well
potential and they compared their results with those from numerical experimentations.

In this chapter, a new approach is presented to predict the presence of stochastic layers

near the separatrix and the computation of their strengths. The method is based on an

incremental energy approach and involves determining the relationship between energy

increments along the entire homoclinic (or heteroclinic) orbit and the resonant orbit. To

demonstrate the procedure, two coÍrmon undamped nonlinear oscillators are analyzed: the

Duffing oscillator and forced planar-pendulum oscillator. To verify the results, numerical

experimentation is performed to observe the presence of the stochastic layers in these

oscillators and the computation of their strengfh.
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4"1 &¡flethodology

In this section, a new method is developed for the study of a stochastic layer near the

separatrix (of either a homoclinic or a heteroclinic orbit). We consider a time-periodic

system defined by

6'7

x = f(x)+ g(x,t); ' = (') =o', (4.1)

wherefx) is a Hamiltonian vector field defined on -R2 and g(x,t), is a I-periodic (fixed

period) Hamiltonian in time r. Specifically, they are of the form

f(x)=tjÐ and s(x, ,=(;,'r:',')r), (4.2)

and are assumed to be sufficiently smooth (c',r >2) arrrd, bounded on bounded sets

D c Rz in the phase space. We introduce the following assumptions (see Figure 4.1).

Figure 4.1 Phase portrait of a conservative system

The conservative system possesses a separatnx qÙ(t) with at least one hyperbolic

saddle point ¿.
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(iÐ Defining a set r0 = {ø'(t)lt e R} u,{¿ }, the interior and exterior of f o are filled with

two continuous families of periodic orbits q" (t) for a el-r, O)and qp (t) for

þ e(0, 1], respectively.

(iä) Introducing Hamiltonian tunctions E.=Hr(q"(t)) and Ee= Ho(qp(t)) for two

selected orbits, ard T" and To are periods of q" (t) and qp (t), respectively; \¡ie set

dT"ldE" > 0 inside f0 and dTpf dLp > 0 outside fo.

Note that I/o i. the unperturbed Hamiltonian or energy function of the conservative

system, and assumptions (ii)-(in) imply that \-+æ (To-à.o) monoronically as a-+0
(þ -+ 0). For simpliciry we consider the system to have a Hamiltonian described by,

H (x, y,t) = H o(x, y) + Hr(x, y, t). (4 3)

where Hr(*,y,1) is the perturbed Hamiltonian or energy function of the extemal periodic

excitation with
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, _ffi,
Jl - ^ )q
r- âHo

J2- ^ ,
ax

a{l
&= ^L Iryt

aH. (
8, = --jlox)

(4.4)

(4 s)

To obtain the criticai conditions for the prediction of the stochastic layer, we compute the

energy increment along the separatrix of Equation (a.1). The result for a conservative

system subjected to the external excitation aiong the separatnx T" -+ co(or Tu + æ) is,

LH x'"i"'" *rnir,"O, -
To+to

!{no,nr}roí""odt =
.0

T6+to

[6s,- Í,s,vt
¿o

where {}r.u,on denotes the Poisson bracket. As an example, we consider the stochastic

layer sketched in Figure a.2@). For any given external excitation frequency O, there

exists a resonant q,-orbit satisfiiing ø = mlnd) in the neighborhood of the separatrix;
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where m, n ate positive integers, and Ø is a nonlinear natural frequency for the a-orbit.

similarly, the B-orbit is charactenzed in the same manner. Let E, = Ei and Eo = El

denote respectively, the energies of any one of the subharmonic resonant ø-orbits and p-
orbits, as shown in Figre 4.2(b). Note that the superscripts i and 7 represent positive

integers pertaining to the strength of the stochastic layer. As shown in Chapter 3, these

energies can be computed by the resonant conditions depicted in Figure 4.2(b). Note that

in the stochastic layer, the energy of its elliptic orbits is bounded in the neighborhood of
the energy of the separatrix { (see Appendix 8.3). Next we consider 3 theorems

governing the stochastic layer. The proofs are summariz ed in Appendix 8.3 .

Eo Et,

(b)

Figure 4.2 Stochastic layer: (a) phase portrait and (b) resonant conditions.

Theonem 4.1: Consider a system described by Equation @.I) and invoke assumptions (1)-

(i1i). For any sfficiently small 6 > 0 , the elliptic orbits of the Hamiltonian vector field
f (x) in Equation (4.I) near the separatrix must satisfu the following condition:
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l- k'(_t I4t.
]=.,n,'"(%-o')

(4 6)
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then there exists a stochastic lqyer near lhat separatrix.

Note that Æ is the modulus of the Jacobi-elliptic function associated with the energy Hr.
The strength of the stochastic layer can be determined via the second theorem as follows.

Theonern 4.2: Consider a system described by Equation (.1) qnd invoke assumptions (i)-
(Lri). For some 6>0, there exists aneighborhood N(E) of Eo(xo,yo), inwhich all the

elliptic orbits satisfu Equation (4 6). If Eiþr El) eN(Eo) is computed based on

ø = mlnÇ\, then the strength of the stochastic layer in N(Er) for selected values of i and

j canbe determinedfrom the incremental energy LH using

l^4={l¿l -¿,1 o, ln¡ - E,l} 
= 

6 , (4.7)

in which the symbol I ' I represents the absolute value. For the disappearance of a
stochastic layer, we must hqve

lLI( = *'" 
-'i1*{løi 

- E,l, lzl - E, l} = 
á (4 8)

As the excitation increases, more and more primary resonances get absorbed by the

stochastic layer which then becomes thicker and thicker. Eventually, it may coalesce with
the resonant layer (see next chapter). The merging of the primary resonances leads to the

onset of global stochasticity in the motioq and we have named this enlarged stochastic

layer the "global' stochastic layer. The ability to model the global stochastic layer is very

useful and in the next theorem, an approximate analytical method is suggested.

Theorern 4.3: Consider a system described by Equation @.1) and invoke assumptions (i)-
(11i). For øny E, or E, of the prescribed resonsnt orbits, the incremental energy can be

approximøted by

70

lr,I4= {l¿, -¿.1 or lE,-¿,1} t â (4.e)



Chapter 4: Stochastic Layers in Nonlinea¡ Dvnamics

4.2 Cornputation of the Strength of Stochastic l,ayens

In this section, the computation of the strength of stochastic layers is demonstrated by

applying the procedure to two very popular nonlinear oscillators: the Duffing oscillator

and the forced pianar-pendulum oscillator. The former represents the computation of the

stochastic layer for the homoclinic orbit and the latter, for the heteroclinic orbit.

4.2"'1, An undamped Case W(c) IlufÏing oscillator

An undamped Duffing oscillator of Case IV(c) as described in Chapter 3 is considered

here. We will demonstrate the appearance of the stochastic layer and compute its strength

for a given level of the Hamiltonian energy. The Hamütonian of Equation (3.4 (c)) is
H = Ho +11,, where

T,1 " I
tI n = 

= 
l' - - d,x' + : d.,x"," 2- 2 ' 4--¿-- '

Ht = -xQo cos(clr).

The saddle point (0,0) of the conservative system can be easily calculated. A homoclinic

orbit passing through this saddle point can then be determined. The resulting stochastic

layer is qualitatively sketched in Figure 4.3. Note that the darker region constitutes the

inner layer and the lighter region, the outer layer. It is important to make this distinction

between the inner and outer stochastic layers since the motion characteristics in these

layers are not the same. From Equation (a.5) the energy increment along the homociinic

orbit can be computed by setting To -+ æ (o, T" + *). That is,

'71

LH=
Tp+to

I(¡t,
.o

- rzl,W =, F n,n*"o(ft1 sin(crr, ),

(4.10)

(4. i 1)

(4.r2)

Í, = y, -fz = ütx - or*t )

g, = 0, gz = Qocos(Or)J'
where (4.13)
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Figure 4.3 Stochastic layer for the undamped Case IV(c)

For the inner layer, we have from Figure 4.2(b) Ho < Eo Since

primary subharrnonic resonant orbit, i.e., Ho = Er> resonance

resonant condition (see Han and Luo 1994) can be written as

na=Ç\ for Ho < Eo.
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Duffing oscillator.

l/o is the energy ofthe

will occur. Thus, the

(4.t4)

similarly for the outer layer, we have from Figure a.2þ) Ho, Eo and, Ho = Er, and tbe

resonant condition is

(Zn-t)a = q for Ho > Eo. (4 ls)

The situations described by Equations (4.14) and (4.15) correspond to Cases IV(b) and

(a) respectively (see Chapter 3). The equations governing these situations are presented in
AppendixB.l (Equations @.18)-(8.19) and @.26)-(8.27)). using rhese equations, the
resonant energy E, and E, fot the primary subharmonic resonant orbit can be computed.

From Equations (a.6) and (4.7), the strength for the stochastic layer of the homoclinic

orbit for Case IV Duffing oscillator as describe d by Equation (3.4) can be determined as

follows,

FromEquøfion (4.12) we have

lLI4= {zln,l * lE,l} (4 t6)



Chapter 4:"Stochastic Lavers in Nonlinear Dynamics t-)

zo,,QE *^(#l = {rt,t or la,l} (4.17)

Choosing dt=dz=1.0, a graphical plot of the resonant condition and strength of the
stochastic layer for the Duffing oscillator are plotted in Figures a.a@)-(b) respectively.
We denote the stochastic layer by solid lines: bold for inner and light for outer. Adopting
e =LO-z, Equation @.6) can be solved for the maximum å. Then from Equation (8.26)
for the inner layer (or (8.i8) for the outer layer) of Appendix 8.1, the energy Er for the
inner layer (or E2 for the outer layer) can be computed. With this information, f) can be

determined ftom Fìgure a.a@) and the strength of the stochastic layer eç can then be

obtained from Figure 4.4(b). The results are plotted in Figure 4.5 as solid line, together
with strength results from 4 other independent methods: i) dotted line for the standard

mapping method based on the homoclinic orbit (see Equation (3.53) for the outer layer
and Equation Q5\ for the inner layer); ii) dash line for the standard mapping method
based on the resonant orbit (see Equation (B 20) ) for the outer layer and Equation (B.Zg)
for the inner layer); iii) hollow circle for the Chi¡ikov overlap criterion approach (see

Appendix 8.1 Case IV(a) for the outer layer and Case tV(b) for the inner layer); and iv)
solid circle for the renormalization group technique (see Appendix B.l Case IV(a) for the
outer layer and Case IV(b) for the inner layer). Figure a.5@) depicts the strength of the
outer stochastic layer and Figure 4.5(b) the strength of the inner stochastic layer.

Observe that very good agreement is obtained for the lower-order resonances but becomes

progressively poorer as the order of the resonance increases. This can be attributed to the
fact that the 4 independent methods constitute approximate solutions. For example, the

standard mapping approach is based on linearized energy and phase angle. In the case of
the Chirikov overlap criterion and the renormalization group methods, they contain only 2
resonant terms instead of infinite number. On the other hand, our method which is based

on an incrementai energy approach is solved without introducing any approximations. On

this basis, we feel that our method is more accurate than the 4 independent methods.
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4.2"2 Are undamped forced pranar-pendulu¡n oscilator

As a second example, a forced planar-pendulum oscillator is investigated.

has a stochastic layer located near the heteroclinic orbit as depicted

consider the differential equation of the planar-pendulum oscillator:

76

This oscillator

in Figtre 4.6.

i=! 
ì

j,= -).sinx + Qo cos}tJ' (4.18)

(4.re)

Figure 4-6 stochastic layer for an undamped forced planar pendulum.

As before, its Hamiltonian consists of the unperturbed and perturbed parts, namely,

H^=!y'- lcosx-"2- Hr: -Qox cosC)1.

The center and saddle points of the unperturbed component of Equation (4. l g) are

(¡Zjo,0) and (X(Z¡+I)4 O) at j=0,1,2,..., respectively. Substituting rhe saddle poinr

into Ho, the energy of the heteroclinic orbit is obtained. Let this quantity be denoted by

Ho = Eo = .1". AIso, denoting the energy of either the libration or the rotation orbits by

Ho = E, it is easy to show that their nonlinear frequencies are given respectiveþ by,
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and

oJT
2K(k)'

oJT
zK(F )',

k < I for the libration orbir,

k > I for the rotation orbit,

(4.20)

(4.2r)

where tc = ,lT + E I IJZ . For a conservative systern, the solution at theheteroclinic orbit

is given by,

r(l) = t2 arcsin(tanh(l)), y(t) = Ð.J-Asech(t). (4.22)

Therefore, the energy increment along this heteroclinic orbit, i. e., T" -+ *(o, ç -+ *), is

Td+to

LH = [(r," - .fzl,þt = zQon"tZ*"n(f)sin(czo ),
to

(4.23)

where

f, = Y, Í, = -Lsin(x) ì
gr = 0.0, gz = eocos(ft)J'

Following the approach empioyed in the energy analysis described

subharmonic resonant condition for the libration orbit is,

na¡ = {l for Ho < ),.

Likewise, the resonant condition for the rotation orbit is

(4.24)

in Chapter 3, the

(4.2s)

(Zn-I)a =Q for Ho > )". (4.26)

Substituting Equation (4.23) into Equations (4.7) and (a.9) yields rhe strength of the

stochastic layer for the forced pendulum,

2oonJãse"(+)= {lE - Alorln, - 4} (4.27)
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The strength computation equation from the standard

heteroclinic orbit and is given by (see Section 3.3),

mapping model is based on the

78

(4.28)

Choosing I = 1.0 , a graphical plot of the resonant condition and strength of the stochastic

layer for the pendulum are plotted in Figures a.7@)-(b) respectively. As before, the

stochastic layer is represented by solid lines: bold for inner and light for outer. Using

e = l0-2 , Equation (4.6) can be solved for the maximum å. Then ftom Equation (4.20) for
the inner layer (or (4.21) for the outer layer), the energy El for the inner layer (or Ez for
the outer layer) can be computed. With this information, f) can be determined from Figure
a.7@) and the strength of the stochastic layer Qs can then be obtained from Figure a.7þ).
The results are plotted in Figure 4.8 as solid line, together with strength results from the

standard mapping method based on the heteroclinic orbit shown as dotted line. Figure
a.8(a) depicts the strength of the outer stochastic layer andFigure 4.8(b) the strength of
the inner stochastic layer. Observe that very good agreement is obtained for the lower-
order resonances but becomes progressively poorer as the order of the resonance

increases. The reason for this behavior is precisely the same as discussed in the previous

section for the Duffing oscillator.

4.3 Numerical Experimentations

In this section, we report the results of numerical simulations using an automatic time-
stepping Runge-Kutta integrator. The intent here is to provide an additionai check on the
proposed model by ensuring that the analytically computed number of resonances agrees

with that observed in the numerical simulations. Poincare mapping sections are piotted in
the numerical runs and the number of resonances generated via numerical integration is

noted. The initial conditions for the numerical experimentations are chosen on the

homoclinic orbit for the Duffing oscillator and on the heteroclinic orbit for the pendulum.

( (J--\
coshl -"' l.

\2 )
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The selection of the strength Qo and the subsequent numerical simulation runs are plotted

in Figures 4-9-4.12 for the Duffing oscillator and Figres 4.73-4.14 for the pendulum. The

details are explained as follows.

4.3.1 Case [V(c) Ðuffing osciilaton

Figure 4.9 depicts the Qo - Q graph for varying values of n: the outer stochastic layer is

shown in Figure a 9@) and the inner layer in Figare 4.9(b). The points A, B, c, D, E, F
marked as shown are the locations for carrying out the numerical experimentations. To

perform the numerical simulations so that the results make sense, it is crucial that f) and

Qo b" selected appropriately. Take for example, choosing c)= 0.50 and eo = 0.01 we

arrived at pointl. Observe that for pointA in the outer layer graph, the influence of the

z:1 curve is very strong. This implies that uie expect to see in the numerical simulations,

just one n:l resonance in the outer layer. On the other hand, from the inner layer graph,

the influence of the n--l curve is extremely weak and we will not be able to see any

resonance in the inner layer. This is obvious in the numerical simulation plot of Figure
a'10(a). Observe that there is only one resonance in the outer iayer as indicated by the

"arro'w" symbol and also, the inner layer is very weak which is what we expected even

though we had plotted approximately 10,000 poincare mapping points.

At point B(O= I.O,Qo = 0.01) in Figure 4.9, we expect to see in the outer layer an

extremely weak n:3 resonance but in the inner layer, a very strong z=1 resonance. This is

very clear from the numerical simulation plot of Figure 4.I0(b).

At point C(C¿ = l.S,Qo = 0.01) in Figure 4.9, we expect to see in the outer layer a strong

n:3 resonance but in the inner layer, a very weak n:2 resonance. Once again, this is

obvious from the numerical simulation plot of Figure all@).
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At point ,(e¿ = L8,Qo = 0.01) in Figure 4.9, we expect to see in the outer layer a weak

n:5 resonance but in the inner layer, a very strong n:2 resonance. This is very clear from

the numerical simulation plot of Figtre 4. i l (b).

At point.E(C¿ = 2.2,Qo = 0.01) inFigure 4.9,we expect to see in the outer layer a strong

n:5 resonance and in the inner layer, a weak n:3 resonance. This is clearly shown in the

numerical simulation plot of Figure 4.12(a).

Finally, at point F(C¿ = 2.5,Q0 = 0.01) in Figure 4.9, we expect to see in the outer layer a

reasonably strong n:7 resonance and in the inner layer, a weak n:4 resonance. This is

obvious in the numerical simulation plot of Figure a.D(b).

4.3.2 Forced planar-pendulurn oscillator

We repeat the same process here for the pendulum. Figure 4. i3 depicts the Q - O graph

for varying values of n: the outer stochastic layer is shown tn Figure a. l3(a) and the inner

layer in Figure 4.13(b). For brevity, we will present discussion for only two points; A, B,

marked as shown for carrying out the numerical experimentations. To plot the Poincare

mapping for the pendulum, we note that due to its multiple saddie points, we will define

the Poincare mapping section as,

> = {(*(t),t(4)l lr(41 modlr, t = Znn I {2,n = t,2,3... }.

85

(4 2e)

At pointl(O = 0.4,90 = 0.01) n Figure 4.13, we expect to see in the outer layer a strong

/¡:1 resonance and in the inner layer, a strong n:1 resonance. This is very clear from the

numerical simulation plot of Figure 4.14(a).

At point -B(O = 0.8,Q0 = 0.01) in Figure 4.13, we expect to see in the outer layer a weak

n:3 resonance but in the inner layer, a strong n--Z resonance. This is cleariy shown in the

numerical simulation plot of Figure 4.14(b).
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4.4 Conch¡sioms

A new method is developed to predict the presence of stochastic layers near the separatrix

of a nonlinear system. Two undamped systems are analyzed: the Case IV(c) Duffing
oscillator and a forced planar-pendulum oscillator. The outer and inner strengths of the
stochastic layer for these two oscillators are computed and verified by comparing with
results obtained based on other methods. For the Case IV(c) Duffing oscillator, we

employed two standard mapping methods, the Chirikov overlap criterion and the

renormalization group technique; and for the forced planar-pendulum oscillator, we
utilized the standard mapping method based on the heteroclinic orbit. Good agreement is

observed, particularly for the lower-order resonances. From the results of the numerical

simulations, the analytically computed number of the resonance agrees perfectly with that
generated numerically for both oscillators.
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In Chapter 4, the stochastic layer near the homoclinic and the heteroclinic orbits was

discussed. In this chapter, we look at another type of stochastic layer, one that is located

in the vicinity of the resonant orbit. To avoid confusion with the stochastic layer located in

the vicinity of the separatrix, we propose to name the region of stochasticity near the

resonant orbit the "resonant" layer. The condition of resonance with the unperturbed

oscillation at frequency o is

m@ = nd) (s 1)

in which f) denotes tåe excitation frequency, and m, n aÍe positive integers. Thus, the

resonant orbit leads to a separation between the actions of neighboring resonances. The

resonant layers are isolated from each other and motion from one layer to another is

generally forbidden except when the external excitation is very strong. When this happens,

the last invariant curve separating the layers surroundirg the adjacent elliptic orbits is

destroyed and the layers merge together. We can now talk of global resonant layers, in

analogy to global stochastic layers as introducednChapter 4.

An approximate analytical model of the resonant layer is developed for the first time in this

thesis. It is based on the incremental energy approach described in Chapter 4. The theory

is then applied 1s çsmpute the strength of the resonant layer for the four types of Duffing

oscillator identified as Cases I to IV in the previous chapters. To verify the model,

comparisons of results with those computed by applying the Chirikov overlap criterion,

the renormalizationgoup technique and from numerical experimentations are made.
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5.1 Stochasticify nean a Resor¡ant Onbit

We consider a nonlinear conservative dynamical system subjected to an external excitation

with a frequency C). Repeating Equation Q.3) here, the total energy of the system is,

H (t, y, t) = H o(x, y) + H r(x, y, t), (s 2)

where Ho@,y) and Hr(x,y,t) are the energy functions of the conservative system and

external excitation (unperfurbed and perturbed Hamil¡66¿as) respectiveþ. For a given

energy level, i.e. Ho = Eo = constan! the nonlinearly natural frequency and the

unperlurbed solution can be similarly obtained as describe d in Chøpter 3. Apptying Tayior

series expansion to the perturbed Hamiltonian H1, the resonant condition given by

Equation (5. 1) becomes,

9t

(l* = Lç.
nn

Note that C), denotes the (m:n) resonant frequency. Consider

natural frequency ø close to O., that is,

l, - a^l < " *¿ r(E^\ = 
2o . r(8.\ =2' .,

I iil \ v/ {2^'-t-'t 0)'

(5.3 )

in the neighborhood of a

(s 4)

where e << I and Z is the nonlinear period. Choosing the odd-order subharmonic

resonance as an example, Equation þ.\ can be illustrated as shown in Figure 5.1. From

Chapter 4 and Equation (5.4), the energy increment along the resonant orbit of the forced

conservative system is,

LHo =f(ro)+'o 
gYYùr=;r(ro)*'o 

{Ho,Hr}ro*.ndl: f(Eo)*ro 
(frs, -.fr,rvt, (5.s)
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Figure 5-l Neighborhood of the (zn-r)thresonant frequency.

where lo is the initial time. Note that Equation (5.5) has the form,

A,Ho =tlrF(úo),

wi*t =w, +UoF(þ,)]

þ,*, = ú, +4(,,.,) I

92

(s 6)

in which Uo is a system parameter function excluding the initiai phase angle þo = l)lo, and

F(ør) is a bounded and periodic function. For the elliptic orbits in the neighborhood of

the prescribed resonant orbit, the change ofphase angle over one period is

Ló = þ,*, - þ, = or(E) =vo(Er), (s 7)

where V, is a function associated with energy .E,. To caiculate this new energy iteratively,

rve introduce the following notation: Et=w,*t at the (;+t)ttr period and the

corresponding phase angle is þ,*r. Equations (5.6)-(5.7) cannow be written as,

(s. 8)

Observe that Equøtion (5.8) is now expressed in a form that permits the resonant layer to
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be investigated iteratively. It is a map of the energy change and phase change of a

trajectory for each period of its motion. It resembles a perturbed twist map and when

applied to the Duffing oscillator, it becomes the whisker map. In the neighborhood of the

resonant layer, Eqttation (5.8) can be linearized about a fixed point and we obtain a map

similar to the standard map. Considering the period-l motion, its fixed point can be easily

determinedt w¡*t=w¡=wo nd þ,*, = þ, *2mrfn= úo *Zmnf n. This implies,

(s.e)

Defining a new dimensioniess energy

93

F(úo) = o 
l

4@r)='"il

, m,(* )l ,I, = -;:l (,, -wo),
lw j=wo

and linearizingEquation (5.8) about the fixed point yields

(s 11)

where K =UoilrlArr. Observe thatEquation (5.11) resembles the standard map and as

shown in the next section, when applied to the Duffing oscillator, it becomes the standard

map. From Equation (5.11) the mechanism involved in the transition to global

stochasticity in a conservative system is very clear. The coefficient K is the only control

paremeter for the charactenzation of the KAM tori. For instance, for the standard map, a

critical value of Kis attained when K=K*=0.9716354..., since at this value, the last

remaining KAM torus is broken. When this happens we have,

I,*r=1,+KF(ø,)\

þ,*, = þ, r 1,, )'

u,+=K',
OvYo

(s.1o)

(s.12)

Increasing the excitation ¡esults in the merging of the primary resonant layers until they
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come into contact the closest resonant orbit. When this happens, the resonant layers will
be destroyed, and a new stochastic motion near that resonant orbit will appear. This is
qualitatively sketched in Figttre 5.2 where Figures 5.2(a) and (b) show appearance and

disappearance of the resonant layer respectively, near the inner most resonant orbit.

Depending on the physicai system modeled, it is also possible for the resonant layer to
come into contact with an outer resonant orbit, instead of the inner orbit as depicted.

(a) (b)

Figure 5.2 Resonant layer: (a) appearance and (b) disappearance

We postulate that when the resonant layer is destroyed, the energy increment in Equation

(5.5) is given by the energy difference between the two closest resonant orbits, one of
which is associated with the destroyed resonant layer. That is,

min(lø,"-' - E:*'j|, lø:*' -E;^'l) =lvloQ,-t'|= u,lt(ú)l (s.13)

Equation (5.13) constitutes the critical condition for the disappearance of the resonant

layer. From this equation, the disappearance strength of the resonant layer can be

computed. To compute the appeqrance strength, we can resort to Equation (5.12). For

greater accuracy, we should consider the effects of the secondary resonances in the

neighborhood of the interrnediate resonant layer shown by the dash line in Figure 5.2.
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5.2 R.esonânt l-åyers for the {Jndarnped Ðufäng Oscillato¡.

The resonant layers for the four undamped Dufüng oscillators are discussed in this section.

As presented in Chapter 3, the four oscillators are described by Equations (3.1)-(3.4)

representing Cases I to IV, respectively.

Case I

Resonant layers for the Case I Duffing oscillator are qualitatively sketched in Figure 5.3.

Note that the outer dark patch is bounded by the I st and 3rd resonant orbits and the inner

dark patch by the 3rd and 5th resonant orbits. Thus, these outer and inner dark patches are

respectively, the resonant layers of the first and third order. There are other resonant

layers which are near the neighborhood of the origin, but these are not shown.

Figure 5.3 Resonant layers near the first and third resonant orbits for Case I.

The unperturbed Hamiltonian for this oscillator is given by Equation (3.7) and for a given

energy Ho= Eo, its solutions are listed in Equations (3.9)-(3.10). The resonant condition

as describedby Equation (3.i9) is obtained by analyzing the perturbed Hamiltonian given

by Equation (3.8). The result is,

95



Chapter 5: Resonant Layers in Nonlinear Dynamics

where

Uo=

4=*c,K(krÇi

AHo = fo'uu*'o ,oo cos(dlt)dt= uo sin(cro),

'"*[(" +)"*]

96

r(8,) =2-o .

C!)

The change of phase angle over one period f(¿,) it

Lú=QT(Er)=4

in which

(s 14)

The period of the resonant orbit is computed using Ç)",-,. However, for all other orbits in

the resonant layer, the period is calculated based on co, that is,

(s.17)

Therefore, from Equøtion (5.5), the energy increment over one period r(Er) can be

approximated by

(s. 1 s)

(5 16)

(s. I 8)

zJ-zfto7o

Æ-
(s.1e)

Note that K (k) = K(E).Observe that the function t/o identifie d. in Section 5.1 is given by

Equøtion (5.19) and comprises only of system parameters. Following the procedure

outlined in that section, Equations (5. 16) and (5. I8) are written as

wi*t =wi +(Josin(/,)f

ó,*t = þ, +4(w,u) 
,,l

(s 20)
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Note that EEtation (5.20) is the whisker map. To obtain the standard map, we linearize

Equation (5'20) in the neighborhood of the resonant orbits about the period-l fixed point

wi*! =w¡ =wo and þ,*r- ú, =2(2n-l)n. The resonant energy is given by

2(2n -t)n = Vo(w). (s.21)

From Equation (5.i0) a new dimensionless energy I, = GrAw, can be defined, where the

function G, = ilolfu¡*t àtw¡+t=wi ='r.ø0, is given by

G,=-ffiWIul*r0,.-,, Wu@,.-,)] (s zz)

Linearizing Equation (5.20) about the fixed point, we get

(s.23)

where K = UolGrl. Observe that Equøtion (5.23) is now the srandard map. Employing the

universal constant of the standard map, i.e. K = K* = 0.9716354..., we can compute the

appearance strength of the resonant layer and the result is,

I,*, ={ t,Ksin(/,)}.

þ,*, = ú, t I,*, )'

(s.24)

As a check of Equation (5.24), we can use anyone of the 3 methods: Chirikov overlap

criterion, renormalization group technique and numerical simulation; to compute the

appearance strength. The results based on the Chirikov overiap criterion and the

renormalization group technique have already been derived in Chapter 3 as EEøtions
(3.33) and (3.35). We will simply re-quote them here. Based on Chirikov overlap

criterion, the appearance strength is

za,TTeE:."[(, - :)" ffilo, = K. x o e7 T63s4
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o,=ffiÉæ)=
using the renormalizationgroup technique, the appearance strength is,

/\_ o.4g{¿' ( t I'-=..-'u +(zn-t)'(zn+r)'Go U4;* Jq; )

(s 2s)

(s.26)

The comparison of the predictions of the Chirikov overlap criterion, renormalization

group technique and numerical simulation with our results based on the incremental

energy approach is listed in the next section.

To compute the disappearance strength we assume that our energy postulate which is

described mathematically by Equation (5.13) holds. This yields the critical condition for

the disappearance of the resonant layer, from which the disappearance strength of the

resonant layer can estimated. The result is,

,e,*ff;.*[(" -+)"ffi1='i"1¡ø; n+t 
-rzr'llana løf'-' -E:*'l] (s27)

If the incremental energy along a resonant obit is set equal to lü"-t - E;1, where ðí = 0 is

the energy at the origin, Equation (5.27) describes the accumulated disappearance

strengh of all the possible resonances higher than order (2n - 1) of the system. Therefore,

\ /e get the maximum cntícal condition for the accumulated disappearance strength:

, o, * [*;.*[(" - +)" ffif= *., (s.28)

A more accurate model is to sum the effects of each individual resonant layer instead of

simpty setting the incremental energy tolE!'-' - E;l
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Case II

Figure 5.4 Resonant layers near the first and third resonant orbits for Case II.

Resonant layers for the Case II Duffing oscillator are qualitatively sketched in Figure 5.4.

The structure of the resonant layerdiffers from that of the Case I oscillator because as

shown in Figure 5.4, we now have a heteroclinic orbit. For this sifuation, the resonant

layer exist only inside the heteroclinic orbit, otherwise, this layer will lose its stability when

it comes into contact with the heteroclinic orbit. The maximum critical condition for
instability of the resonant layer is,

99

(s.2e)

in which Efr is the energy of the separatrix, i.e., Eoo = al f (+ar). For brevity, all the

results pertaining to the appearance and disappearance strengths are listed inAppendÌxB.

Case III

Resonant layers for the Case III Duffing oscillator are qualitatively sketched in Figure 5.5.

This oscillator is a special situation of Case I and therefore, all its results, with the

exception of the maximum critical condition for the accumulated disappearance strengtl¡

zo,,}ffic'"[(, - )" ffi]= lai - E3*'1,
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are summarizedinAppendixB. The maximum critical condition is,

_ ¡72n-tluo l, (s.30)

Figure 5.5

Case IV

Resonant layers near the first and third resonant orbits for case III.

For the Case fV Duffing oscillator, there are two kinds of resonant layers as qualitatively

sketched in Figure 5.6, representing ¿0 < 0 and Eo > 0. Recall that Case IV(c) which is

described by E, = 0, possesses only stochastic layers as discussed, in Chapter 4. Once

agun, for these two situations, all their results listed inAppendix B, with exception of the

maximum critical condition for the accumulated disappearance strength. The result for

Case tV(a) is obtained by noting that EI = 0. That is,

(s.31)

and for the Case IV(b) we have,

100

a,*8""n1,,ffi]=El (s 32)
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(b) Case IV(a)

Figure 5.6

(a) Case IV

(c) Case rVG)

Resonant layers for Case IV, Case IV(a) and Case IV(b)

t0l
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5.3 companisor¡ of Appearance strength of,Resonânt n-ayers

Having obtained the appearance strengfh of resonant layers based on our proposed

incremental energy approach ({E), we will now present verification of its predictions. To

accomplish this comparative study, three independent methods are employed: Chirikov

overlap criterion (CC), renormalization group technique (RG) and numerical simulations

(NS). We set ø, =üz= 1.0 in Equations (3.1)-(3.4) and based on the prescribed initial

conditions and the resonant conditions depicted in Figures 3.2(a), and 3.4(a) to 3.7(a), we

can compute the appearance strengths using Equøtion (5.24) for IE, Equation (5.25) for

CC, and Equation (5.26) for RG. As for the numerical simulation, we used the automatic

time-stepping Runge-Kutta integrator with a prescribed tolerance of l0ó. To determine

the appearance strength during the numerical experimentation, we check for the

appearance of the resonance. For example, if we use input parameters pertaining to say,

the third-order resonance and during the numerical experimentation, the third-order

resonance visualþ appears, we record the value of appearance strength.

The results are tabulatedin Table 5.1 for all four types of Duffing oscillator. 'We have also

listed both the computed input parameters and the computed excitation frequency (to

guarantee resonance of the appropriate order). Observe that the agreement among m, CC

and R'G are generally better at lower-order resonances and this is attributed to the fact CC

and R.G are based on a 2-term approximation which becomes increasingly less accurate as

the order of resonance increases. On the other hand, the agreement between IE and NS is

quite good.

Note that we did not give any comparison between the disappearance strength and the

accumulated disappearance strength. This is because there are currently no known

procedures to compute these quantities other than our proposed incremental energy

method.

r02
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Table 5.1 Comparison of strength computations

103

Order of krput
Resonance Paramete¡s

Excitation
Frequency

Appearance Strength

Qo

(*,y) xE" CCb R.G"

Case I

1st

3rd

5th

(0,10.271)

(0,6.042)

(0,4.701)

3.28265

7. 64517

11.3406

3.04407

4.25025

33.1472

3.22748

13.09158

142.4808

I 58146

6.414878

69.2t561

3.04995

3.60555

33.2000

Case tr

(0,0.447)

(0,0.559)

(0,0.629)

0.91066

2.51717

3.80862

0.08633

0.28158

1.02497

lst

3rd

5th

0.25983 0.12732

1.32309 0.64831

0.02873

0.25875

1.02500

Case IV(a)

(0,9.877)

(0,3.217)

(0,3.471)

3.11735

5. I 9558

9.01867

2.53486

0.77066

5.60284s

1.99073

1.66639

17.47684

0.97513

0.81653

8.563 65

2.54550

0.75750

5.90000

lst

3rd

5th

Case tV(b)

(0.8,0.259)

(0.8,0.367)

(0.8,0.432)

1.33651

2.57710

3.73673

0.04687

0.08425

0.21239

0.06420

016379

0.49209

0.03145

0.08026

0.24109

0.03547

0.1 0500

0.19985

1st

Znd

3rd

"Luo and Han (1995f).

TIan and Luo (1994b).

T-uo, FIan and Xang (1995).

5.4 Connparison of the R.esonant Layers

In this section, we present a comparison of the resonant layers predicted by [E and NS via

their Poincare mapping sections. Once again the results for alt four Duffing oscillators are

compared, but because the Case III oscillator is very similar to the Case I oscillator, the

results of the former are not shown. The input parameters for the numerical

experimentations are summarized in Table 5.2. The use of these computed input
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parameters ensutes that we obtained resonant layers during the numerical simulations. We

considered only the third-order resonance. Once again, dt = dz = l.O is employed.

Table 5.2 Computed input data for numerical simulations for resonant layers

i0-t

Figure No. Oscillator Type (*, y) O 0o (m) 0o (Ns)

Figure s.7(a)-(b)

Figure s.7(c)-(d)

Figure s.8(a)-(b)

Figure s.8(c)-(d)

Case I

Case II

Case IV(a)

Case IV(b)

(0.0,5.042)

(0.0,0.559)

(0.0,3.217)

(0.8,0.432)

7.645169

2.517172

5.195584

3.736736

4.25025

0.28158

0.77066

0.21239

3.60555

0.2s875

0.75750

0. I 9985

Figures 5.7(a)-(d) show the result for the Cases I and II Duffing oscillators, and Figures

5 s(a)-(d) show the result for the Cases IV(a) and IV(b) Duffing oscillators. We have

plotted oniy the right-hand side of the resonant layer for the Case IV(b) Duffing oscillator.

Observe the close qualitative agreement between the IE and NS predictions for all the 4

oscillators. Also, the number of resonances obtained is 3 which is expected for the 3rd-

order resonant layer.

5.5 Conclusions

A new method based on an incremental energy approach is proposed for the study of
resonant layers in Duffing oscillators. This procedure can be quite easily extended to other

nonlinear dynamical systems. The appearance, disappearance and accumulated

disappearance strengths of the resonant layers are derived. Both quantitative and

qualitative verifications of the appearance strength are provided. In former, 3 independent

methods are employed: CC, RG, and NS to check the results computed by our IE

technique, and in the latter, comparison between NS and IE are made. Good quantitative

and qualitative agreements are observed for all four Duffing oscillators.
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In Chapter 2, the local bifurcation and stability of the periodic solutions of the damped

Duffing oscillator are discussed. In Chapters 3-5, we focused on the analytical conditions

for the predictions of the stochastic and resonant layers for the undamped Duffing
oscillator. In this chapter, we are interested in deriving analytical conditions for the

prediction of chaos for the damped Duffing oscillator by examining its universal character.

Universality in a dynamical system was shown by Feigenb aum (1979) for the period-

doubling bifurcation sequence to chaos. Collet and Eckmann (1982) later developed an

exact renormzlizvlis, theory for a systematic investigation via mapping. This technique,

however, is hard to use and Helleman (1980a, 1980b, 1983) provided an approximate

renormalization theory based on period doubling sequence for all one-humped mappings.

Holmes (1979) suggested a two-dimensional cubic map which has some features similar to

our Case IV Duffing oscillator. HoweveE to the best of our knowledge, we are unabie to
find in the literature any work done directly on the Poincare map of the Duffing attractor
(see also, Moon (1987). In our model as reported in Luo and Han (I995a,1995c), the

discrete Duffing equation is derived by applying the Naive discretization to its continuous

system' Based on this Duffing map, \rye suggested a cubic renormalization scheme for the

computation of its universai property. We demonstrated that self-similarity between the re-

scaied and the original maps exist which impiies that the fixed points of the re-scaied map

exhibit a cascade of period-doubling bifurcations. Verifications via numerical simulations

are also provided.
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6"1 Ðiscrete Ðuffing Osciltrator

Applying the Naive discretizati on of EEtation (2.19) with respect to time yietds a discrete

map for studying qualitatively the bifurcation and universal behavior of the Duffing

oscillator. This leads to the discrete Duffing equation ãt x, = x(t =Znnldl) and time step

Lt =ZnlQ, namely,

x n+t - Zx n +x,_r + (l - t)(*, - r,_, ) + cx, + dx) = (I - b)ø,

where the various parameters are defined by

(6.1)

108

b=L-o" E-
O

¿ =(?2\' o^.\f¿l ¿)

From Equation (6. i), the discrete map is,

(r)'
Qo 2n

p: xr+r = xn + EÍ + Yn+r I
!n+r=byr-cxn-d.:)

t,,l

l

(6 2)

u)-
dt C)

(6.3)

6.2 Cubic Renormalization for the Ðiscrete Duffing Equation

In this section we present the derivation of the condition governing the onset of chaos for

the discrete Duffing equation. This is then followed by a quantitatively analysis of the

Feigenbaum cascade as illustrate d in Figure 6. i. In the sketch, we have shown the route

to chaos via period-doubling bifurcations on the positive branch of Xn and further

bifurcations result in either the onset of chaos and/or the route 'Jumping" to the negative

branch of X, until fully developed chaos occurs. Note that this jump phenomenon is

unique to the Duffing map and may or may not be present in other dissipative maps.
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Jrl-p

C; C; C;

Fully
developed

chaos
¡z:4 *

n=8

Figure 6.1 cascade of bifurcations for the discrete Duffing map.

The points of bifurcations are indicated by ci ,c; ,c; ,cJ,... for the positive branch and

cr,c;,c;,c;,... for the negative branch. observe that there are two ,,special,,points

denoted bV Ci and C- representing respectively, the onset of chaos for the positive and

negative branches. They are the universal parameters of the dissipative Duffing map. In
our work here, we have proposed a model for computing them anaiytically and to verify

the results, we have also generated them via numerical simulations. In our model, a cubic

renormalization scheme for Equation (6 3) is set up. Introducing the following

transformation,

(6.4)

and substituting into Equation (6.3) yields,

(6.s)

t09

íN5r\

F\\:\\
5\è\\

*r=Xr+61
ln = Yn -.1'

Xr*t = X, +\u I
4*t = B\ + CX, + DX: - EX: J'

\\*
Nt*\\\\\\

N

I

Y

+

where

-d8' +c6+(-I+b)ø=0 (6.6)
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and (6.7)

Note that the parameter ã can be evaluated using Equafion (6.6). From Equation (6.5)"

the period-l solution can be computed, i.e.

110

B = b, C_= -(, +3dõt)l
D=-3d6, E=d )

1=ol Y,=o

x,, = oJ and 
xr., =

_l
D+J D' +qCE l...-l

2E)
(6.8)

Eliminating YninEquation (6.5) leads to,

X,*t t BXn_t = (1 + B+ QX, + D4 - E4

Taking the second iteration of Equation (6.9), we get

Xn*, + BXn = (1 +B+ C)X,*, + DXj*, - 84il.

To compute the period-2 solution (see Figure 6.l), we set X,*, = X,

Equations (6 9)-(6 10) and after a considerable algebraic effort

coefficients, we arrive at

qfi + arfi + aoXl + q\ + ar$ + arX, * øo = 0,

(6 10)

and Xr*, = Xr_, in

in solving for the

(6.e)

(6 i1)

in which

(6.r2)

Solving Equation (6.11) numerically, we get X^ = I as solutions. Then from Equation

(6.9) (or (6.10)) and invoking solution periodicity, namely, X,*z = X, and Xn*t = X"_r, we

get the second set of (unstable) solutions X,*t = {,. Next, a perfurbation in the

ao =(r+$'lC+2(t+B)], a, =zDElC-(t+B)], 
Iat=D(I+$lC+2(t+B)1r, dc=82[:qr+ g+zC]-OrU,l

ãz=D2(1+B)+ECz -38(t+f)[C+(t+B)], as=zDEz, e6=-8 . 
I
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neighborhood of these two solurions xj *d 4u is introduced:

LXn + BAX,_2 = erAX,_, +erdfrn_, - EMt_r,

LX,*, + BLX,_, = erA,X, + e oLfi - EAX:,

Mn*z + BAX, = e, LXn*, + erL-Y,*, - EMI_r;

where etrez)e3,e4 Ne given by

111

X =f +LX I-_n,,nte\nt

Xn*t={u+LX,*r)'

Likewise, we have

X ^-X)+AX,*,)'^ n+2

Xn-t=XIu+nl^,_r)

substituting Equations (6.13)-(6.14) into Equations (6.9)-(6.10) and noting

satis$r Equation (6.1 1), we get a new group of iterative equations:

(6.13)

(6.r4)

Multiplying Equation (6.15) by B and Equation (6.16) by er, we have after substiruting

into Equation (6.17):

et =l+B+C+zDX) -sn(X))', ez = D-3EX:, 
I

€t =T+ B +C +ZD$*r-sø(X)u)', e+ = D-zAXï., 
)

Mn*z + B? AXn_z = ("rt, - ZB)LX, + e.,eo!,Xl - erEAXj

+ er(LX',., + BLX]_,) - ¿(*v:., + BAXj_, ).'

that X)

(6 ls)

(6.16)

(6.17)

(6 18)

(6 te)

In the neighborhood of the period-2 solution, LXn*, and. AX,,-, are very close. A scale ratio

r canbe defined as follows,
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- - 
Mn*t

I 
- 

--

Mn-t

LXn_, = s=nx"
r+B n

substituting Equations (6.20)-(6.21) inro Equation (6.19) produces

Neglecting the nonlinear terms inEquation (6.16), an approximate expression of AX,_, is

obtained as a function of ÁX,:

L12

(6 20)

(6.21)

To make Equation(6.22) algebraically similar to Equation (6.9) we perform the following

re-scaling,

(6.23)

where e is a scaling constant. Substituting Equation (6.23) into Equation (6.22) yields

X',*, + B'XI. =eX', + D'X',, - E'Xl|*r, (6.24)

in which

B'=82, C=erer-ZB, e =L+B+C 
I

D,=ulr,r^*tr'i(" +!')1. 
E, =,rÃu*rik'*{')-lf G.zs)

L (r+B)' j L' e+B)'Jl

By setting the scaling ratio r = 1, selÊsimilarity exist between the re-scaled map given by

Equation (6.24) and the original map described by Equation (6.9). That is, Equations

Mn*z + B2 LX,-, = ("re, -28)LX, *lrrr-.'#fl1*'

-4",.ffi1*,

Xl = eAX, I

Xl*, = 'LX,t J'

(6 22)
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(6.9) and (6-24) have identical form, implying that the fixed poinrs of the re-scaled map

exhibit a cascade of bifurcations with B', C'replacing B, C. Chaos via period-doubling

bifurcations will ensue at B'=B=B-, c=e =e_,D'=D=D_andE,=E=E-.
Thus, for a dissipative map fromEquation (6.25),we have:

ll3

B=0or1,

e +28 = [d + zDX, 48{-]le +zDX,*t -sLXl_,f,

(t + r)' l'

erel(t* B')

(6.26)

(6 27)

(6.28)n = '1"'o 
*

,'1", * ei(r+¿')l_,
(1+B)' l-' (6.2e)

Observe that there are five unknown parameters B, e , D, E and,e in four Equations

(6.26)-(6.29). Forrunarely, from Equations (6.6)-(6.7),D is related to B, c, and E. These

results ciearly portray the univers al character of the dissipative map near the transition to
chaos. In general, there are several fixed points and each must undergo the period-

doubling bifurcation in the transition to global chaos.

6.3 Verification thro u gh Universality Cornputation

Employing Equations (6.11) and (6.26)-(6.29), the universal character of a damped

Duffing oscillator is studied by computing the universal parameter d-. fo verify the

comFuted solutions, the discrete Dufüng Equation (6.5) is then solved numericaily via

iteration. The results are tabulatedinTable 6.1. Note that our computed universal results

are denoted by CR (cubic renormalization) and the numerically obtained soiutions by NS

(numerical simulation). Also, the superscript ,.+,, and ,,-"signs represent the positive and
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negative values of Xn, respectively (see Figure 6.1). fVe will present comparison studies

for Cases tI and IV Duffing oscillators since they are the only ones that have saddles.

Table 6. 1 comparison of cR and NS values for universal paramete r e *

tt4

Case II Oscillator
(D=E=-1.0)

Case W Oscillator
(D=E=1.0)Equivalent

Damping

B
NS' Error

%

NS Error
%

CR.n NS* Error CR
%

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

9.81

6.93

6.90

4.5s

3.08

2.69

2.43

2.28

2.t4

3.40

50.73.

-L562 -1.560 0.13

-1.640 -1.640 0.00

-1.724 -r.720 0.24

-1.824 -1.820 0.22

-1.9t6 -1.910 0.31

-2.024 -1.990 t.7I

-2.1t0 -2.t00 0.48

-2.228 -2.200 1.30

-2.344 -2.315 1.27

-2.444 -2.425 0,78

-2.570 -2.240 t4.73.

T.434 1.590

1.638 1.760

t.834 t.970

2.074 2.1,10

2.200 2.270

2.384 2.450

2.566 2.630

2.746 2.810

2.926 2.990

3.t02 3.000

3.286 2.180

2.812 2.790 0.79

3.032 2.980 7.75

3.262 3.250 0.37

3.486 3.370 3.44

3.704 3.590 3.18

3.916 3.800 3.05

4.132 4.010 3.04

4.342 4.220 2.89

4.548 4.440 2.43

4.774 4.670 2.23

4.958 4.660 6.40"

*Hamiltonian System

The Feigenbaum cascade in phase plane for Case II Duffing oscillator is sketched in

Figure 6.2. Since bifurcation points at the positive and negative branches of .1, are the

same, it is not necessary to treat them separately, i.e., CT = C, = Cr, CT - Cî = Cr, ....

Observe the excellent agreement obtained between the CR and NS results. The oniy

exception is at B=1.0 where the system is Hamiltonian and the model is no longer valid.
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Figure 6.2 Feigenbaum cascade for the case II Duffing oscillator.

The Feigenbaum cascade in phase plane for Case fV Duffing oscillator is sketched in
Figure 6.3' For this system, it is necessary to consider both the positive and negative

branches of Xn . Observe that very good agreement is obtained between the CR. and NS
results. As before, the model breaks down at B:I.0.

Figure 6.3 Feigenbaum cascade for the case IV Duffing oscillator.

The results of the Cases II and IV Duffing oscillators obtained via numerical simulations

are depicted in Figures 6.4-6.5 respectively. The prescribed parameters for Case II
oscillator are B -0.0, D=E =-1.0 andforcaserv,wehave B =0.0, D=E=1.0. Note

t15
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that for each figure, we have plotted both the increasing and decreasing C. For Case II
oscillator, observe that the CT = C, = Cr, Cî - Cì = Cr, ... and it exhibits a

catastrophe bifurcation when e is increasing. For Case IV oscillator, the jump

phenomenon is clearly visible. These numerical results qualitatively con-firm our analyrical

model.

6.4 ß[urnerical Experimentations

In this section, we are interested in employing the analytically computed universal

parameters to numerically simulate the continuous Duffing equation as described by

Equation (2.I9). To carry out the numerical experiments, it is necessary to compute the

original system parameters 6,d1,d2,Q0 of the continuous Duffing equation. They are

given by Equations (6.2), and (6.6)-(6.7); and the expressions are:

ti8

5 = 9qi-r),
¿lr

(6.30)

(6.31)

(6.32)

dr= -(*)'lr- -t- B.#1,

*,=(fi)'',

-'-4](#)' (6.33)

The results are plotted n Figure 6.6 for varying values of B. From this plot and Equation

(2.19), we numerically simulated the bifurcation cascade and strange attractor for the

damped Case IV Duffing oscillator n Figure 6.7. Once again, the jump phenomenon is

clearly visible.

n,=+l#*(c*
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6.5 Co¡rclusions

This chapter investigates for the first time, the universal character of the Duffing oscillator
via its discrete mapping. The approach used is based on the Naive discretization of the

differential equation of motion and the subsequent application of the cubic renormalization

on its discrete equation. The analytically computed universal parameters are compared

with the numerically simulated solutions of the mapping. Very good agreement is
observed. Based on the analyticatly obtained universal parameters, results of numerical

simulations for the discrete and continuous Duffing systems are performed. From the

graphs of the bifürcation cascades, the jump phenomenon and the strange attractor for a
damped Duffing oscillator are clearly seen.

t21
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Holmes (1982) can be credited as the first person to systematically study the noniinear

dynamics of a ball bouncing vertically on a sinusoidally vibrating table. The ball was

considered small compared to the massive table and thus, the motion of the tabie was not
affected by the repeated impacts of the ball. He also assumed that the distance traveled by
the free-falling ball between impacts is large compared to the overall displacement of the
table and proceeded to give an approximate equation for the time interval between
impacts. On the basis of this model, he arrived at a simple difference equation which he

used to demonstrate the various periodic and non-periodic motions and other chaotic
phenomena. In our opinion this simplified model based on a discrete mapping approach is

unnecessary and in some respects, inadequate. 'We will present a model that is based on
the differentiai equation of motion of the ba[ (Luo and Han (Lgg4)).

Impact motion exists in a wide spectrum of engineering applications, ranging from moored

ships undergoing repeated contacts with fenders to moving parts in machinery and fluid
induced vibration in tubes. An engineer is not only concerned with the wear and fatigue
generated by the impacting system, but also the undesirable noise level that accompanies

such motion- A simple model of this discontinual system is to employ a single degree-oÊ

freedom impact osciilator. This deceptiveiy simple model can exhibit an amaeingty rich
variety of nonlinear behaviors, (see for exampre, Masri and caughey (1966), shaw and

Holmes (1983), Everson (1986), Reithmeier (1989), Bishop (tggl)). wood and Byrne
(1981) presented an interesting analysis of a randornly repeated impacting process and

hinted that such random non-periodic motion apparently exist even when the system is
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forced by sinusoidal excitations. This motivated Holmes (i982) to launch an investigation

into the problem. Everson (1986) investigated the chaotic response of a bouncing balt

using a model similar to Holmes's. Other studies related to the dynamics of a bouncing

ball are the motion of impact dampers, see for example, Bapat and Bapat (19gg), Heiman,

Sherman and Bajaj (1987), Shaw and Shaw (1989),'Whiston (1gg2), peterka and Vacik
(1992), Bayly and Vrgin (1993), Han, Luo and Deng (1995).

In this work, the dynamics of a bouncing ball impacting on a harmonically excited massive

table is not only revisited, but also, generalized for higher-order motions. Uniike Holmes

(1982) our model is based on the differential equation of motion of the ball and from this,

an appropriate mapping (or switch plane) is constructed. We did not have to assume that

the distance traversed by the free-falling ball is large compared to the motion of the table

and this enables us to model large amplitude excitations. Accordingly, our computed time

interval between impacts is exact, whereas it was approximate in Holmes. The stability and

bifurcation conditions of the system are derived and presented here. To veri$ the results,

numerical simulations are carried out.

7.1 Equation of Motion, rliscontÍnua! subsets and Foincare Mapping

Figure Z. 1 depicts the mechanical model of a bouncing balt m movingfreely in the vertical

direction with a vibrating table of mass M. It is aszumed that the table is massive

compared to the ball; therefore, the motion of the table is not affected by the repeated

impacts of the bouncing ball i.e. m <<M. As in the work of Holmes (1982), the external

excitation, namely, the motion of the table, is taken to be that of simple harmonic motion.

That is,

E=Asin(at+ç),

12+

(7.r)

where A, ø and Q are the forcing amplitude, the forcing frequency and the initial phase

angle. Denoting the absolute and relative (to the table) dispiacements of the ball by x,y
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respectively, and if ( ) represents time derivatives, we have:

125

(7.2)

T
lsin(ol + S)

Figure 7.l Mechanical model of the bouncing ball with a vibrating table.

Substituting Equation (7.1) into Equation (7.2) and, considering gravity but neglecting

friction, yields the equation of motion in the relative coordinate system:

j)=Aø' sin(øl +ç)-s (7 3)

where g is the gravitational acceleration. Integrating Equation (7.3) and invoking initial

conditions (/0, jtò, the velocity and displacement of the ball are,

x=!*E(t,A))
*=5t+E(t,A)l

i=!+Ëçt,,qJ

t'
I

SSSS

! = -Ao cos(at + e) - gt *l!o + #o + Aø cos(øto + ç)f (7.4)
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/ = - A sin(aÍ + a) - | ø' *ll, * F o * A ø cos(att o + ç)](t - t,)

+Asin(øt, *ç)*)øî *t,
(7 s)

For a system with discontinuities such as the impact problem here, all results concerning

the existence, stability and bifurcation of periodic solutions of a nonlinear system are, with
some modifications, directly applicable (Reithmeier (1989)). The disconrinuities caused by

the impacts between the ball and the table impty that the state-space of the bouncing ball

can be divided into many continuous subsets -{. For the subset between the lth and

(l + i)th impacts, the values of the lth impact just after the impact can be chosen as initiat

conditions ror X,. This subset can be derermined from Equations (7 .4)-(7.5) as,

! = -Aotcos(øl + ù - gt +lii + g, + Aø cos(øt, + A)1, (7 6)

! = - Asin(øl + a) - I O' *li,: * g, + A ø cos(att, + ç)l(t - t,)

+Asin(at, +ç)+)øi *ti,
(7.7)

inwhich telt,,t,*rl, ll=y*(t,)nd j,i=i*(t,). Notethatthesuperscript,,+,,denotes

immediately after an impact and likewise, the superscript "-" for immediately beþre an

impact. The boundary of Xi, AXi constitutes the switch plane of codimension 1 and to

sfudy the impact process, we would be interested to obtain the discontinual zubse t AXi+r

immediately prior to the (l+l)th impact. Therefore, taking values of state variables at

t = t,*, in Equation (7.8), we have:

!,., - li = - A sin(at,*, + e) - f, O:., + A sin(øt, * ç) * ) ø?
(7 8)

+lr: + st, + Aø cos(øt, + e)](t,*, - t,)

Neglecting the duration of the impact and considering only the simpiest impact law,

namely, the modeling of impacts via a constant coefficient of restitution e <!, the impact



(7.e)

An impact is deemed to occur when Equation (7 .9a) is satisfied and the resulting loss of
energy is captured by Equation (7.9b). Substituting Equation (7.9) into Equations (7 6)

and (7.8), and repiacing y;,i; by y,,y, respectively, to simplify notation usage, \¡ve get:

/¡*t = -Aø cos(att,u + e) - gt,*t *l-"j,, + gt, + Aa cos(at, + A)], (7.10)
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process can be described by,

where

0 = -Asin(ø1,*, * e) - ig?-, 
+ Asin(øt, * p¡ * )fti

*l-ti, + gt, + Aøcos(ør, +ç)](t,., - t,)

¡/
r=Ur,,

r=0

r, = 
{(,,, 

i,)lt, = o, t¡ ^"0 T}

I,(o) ={{t,, *,)l !¡=0, t, ^"d T}

Y, =Yi =Of
.+ l'!¡ = -e!¡ )

t27

(7 11)

(7.12)

(7 13)

(7.r4)

For an impact problem, the discontinual boundary (or switch plane) is the poincare

mapping section X which therefore, can be defined by

When the absolute reference frams is considered, the poincare mapping section is defined

by

Note that all quantities measured in the absolute reference frame carry the subscript ,,a,, 
as

shown in Equation (7.14). The Poincare mapping p cannow be defined as
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P'T.-rT'' ar 'ai+l . (7 ls)

7"2 Feniodic Motion

The periodic solutions of the bouncing ball are derived in this section. First, the period-l

motion is formulated, followed by the period-2 motion and finally, generalizing the results

for the period-É motion.

7.2"L Period-I rnotiore

T, r,*,

Figure 7.2 Mapping diagram for the period-l motion.

Figure 7.3

(a) trme-displacement (b) phase-plane

Qualitative sketch of the period-1 motion in the relative reference frame.

The mapping diagram for the period-l motion and its corresponding physical motion are

sketched respectively inFiguresT.2 and7.3.For any x =(t,,y,)'o e x we bave px=x,

and this leads to the following fwo equations:

P

2nn
t,*t= t, *; = t, *nT,

1+T 1+zT q+37

(a) time-displacement

n =t,2,3;.. (7.16)
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where the supers cnpt þ
excitation. Substituting

simplifying yields

!¡*t = !¡

implies transpose (of a

Eqttations (7.16)-(7.17)

(7 t7)

matrix) and T is rhe period of the

into Equations (7 10)-(7.11) and

!¡=
g Znn

7+e o' (7.18)

cos(øt, +e) =r"(#)Aø2
(7.1e)

Equations (7.18)-(7.19) represent the initial impact conditions for the period-l morion to

occur in the repeated impacts of a ball with a massive vibrating table. These are just the

necessary conditions and in a later section, we will provide the sufficient conditions as

well' Noting that lcos(ør, *òl<1 in EEmtion (7.tg) the following more general

conditions can be derived:

Ztn -L < @t, + o t\ln +L2'2

Aaz (l- e\
g \l+e)

where / is a positive integer. Note that the impact conditions (t,,i,) derived here actually

represent the fixed points of the discrete mapping, from which the stability of the motion

can be ascertained. This is outlined in Section 7.3.

7.2.2 Period-2 rnotion

The mapping diagram for the period-2 motion and its corresponding physical motion are

depicted rnFigures 7.4 and 7.5, respectively. As before, its mapping pØ* -x indicates

(7 20)

(7 21)
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x,*,

vu t

F\p,/ \P'r/ 
\

/\/ /-\
P\') YZ-¿ ^

Figure 7.4 Mapping diagram for the period-2 motion.

(a) time-displacement (b) phase-plane

Figure 7 '5 Qualitative sketch of the period-2 motion in the relative reference frame.

that t,*, = t¡ iLnrlú) = t, +nT and !, = /,*r. substituting into Equations (7.1,0)-(7.1 l) and

simplifying, we get:

!,*t = -Aø cos(øtu, + e) - gt,*t *l-"y, + gt, + Aa cos(att, + A)f ,

0 = -llsin (a4u + ç) - sin(øt, + ç)l- |4,?., -,?¡

*l-"j,, * &, * Aa cos(øt, + q)f(t,., - t,),

/,*, = t, = -Aco cos(øt, + a) - 
4r, 

*T)*l-"y,*, * gt,*t + A.øcos(art,*, * ùj, (7.24)

0 = -Asin(att, + ç) -;t(,, .T)' + Asín(att,*, + a) *|ø?.,

*l-ri,u, * gt,*t + Aatcos(ø1,*, * r)l(r, .T- t..,).

(7.22)

(7.23)

1*tT 1+27

(7 2s)
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To obtain the parameter manifold and its corresponding initial conditions for the period-2

motion, two methods of algebraic manipulation are developed: Method 1 is more direct

and obvious, and Method 2 is more general and can be easily extended to handle the

formulation for the period-Ë motion.

Method I

Adding Equations (7.22) and (7.29 yietds

131

/,u + !,= --'g-Zn'î ,L+e ú)

Similarly, adding Equations (i.23) and (7.25) leads to

2nn
tr*, - t,

(t)

(7 26)

(7 27)

(7 28)

tr*, = l, I
a¡jt, + Aø2 cos(øt, + rp)+ntry Znn

z;rry + (I + r)Øy, ;

For simplicity, we introduce a new parameter such that 0 < q < i. Then, the time interval

between two consecutive impacts is computed from

Note that by setting 8=I we can recover from Equation (7.28), period-l motion from

period-2 motion (it is also possible to come to the same conclusion by setting g = 0 in
Equation (7.28), but it wòuld be necessary to replace qby (l-q) in rhe expression).

Substituting Equation (7.28) into Equation (7.27) we ger:

!¡-
¿r*'(r,,*p)*(l-q)Ts

(7.2e)r- q(I+ e)

observe that q +rl0+ e) inEquation (7.29). In rhe lirntt q -+ tlT+ e) then we ger
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Eliminating y,*,

simplify, we get:

t32

I 2ntrg It'--1¡s ,' 
t

cos(øt,+e)=-(: Ð#l
from Equations (7.22) and (7.26), and also using Equation (7.25) to

(7.30)

(7 31)

(7.32)

-(t - #") ry - Q - e)i', = A ølcos(a¡tu, + e) - cos(at, + ùl

substitutin g Equations (7.27)-(7.28) into Equation (7.z3)produces

@Pl:(T)' r.ryYl ='io('r,., + a) - sin(rot, + e)

From Equations (7.3r)-(7.32), eliminating the sine and cosine terms we have:

A=ñq,\Jf(' +)# tr; e33)

Equation (7 .33) for calculating the excitation ampütude l, depicts the parameter manifold

for the period-2 motion for prescribed values of q. Note that from its denominator, it is
obvious thatA will not exist for Q=lln where l<n is integer. physically, it implies the

motion is unattainable. For example, if q = If 4, then n t 4,g,!2,...; if q = lf 2,then n

cannot take even values; if q = 1, then n cannot any integer values; and so on.

In the lintt q -+ llQ+ e), we ger a much simpler expression of Equation (7.33).

A=#r (7.34)
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Method 2

As mentioned, this approach is an alternative to Method I and because it is more general,

it can be easily generalized to handle the analysis of the period-É motion. Once agaiq
substituting Equation (7.25) into Equations (7.22)-(7.23) and performing rhe algebraic

manipulations for the sine and cosine terrns, we have:

133

(7.3s)

in which the various coefficients Kn ,Kf ,-..,KI are defined in Appendix C.1. Substituting

Equation (7.35) into Equation (7.22) leads to

. U +L1ù\ :¿t
J i+l tdL'

(7.36)

where the coefficients Lq,LI,Ll are also listed in Appendix C.l. Once agaln, following the

same procedure as in deriving Equation (7.35), but now, ftom Equations (7.24)-(g.25) we
oat

r,*z =, = 
L\-' + !-\-nY,-',___F_ 

Q 37)

In view of Equation (7 .36), we get after elimin ating i,*, rrom Equation (7 .37).

. Ll-sLs +L?Ll:s
1)= L I J
-, i 

Ls t_s _ LqrLt;a
(7 38)

We can obtain Equation (7.26) lromEquations (7.36)-(7.38). Eliminating the sine and

cosine terms inEquation (7.35) leads to,

cos(øt,+(p)=W,)

sin(a;t, + (p) = fí + eKí i" + Kii'^ |AttI<' )

-ffiu:+(eK! .(7.3e)
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Observe that Equations (7 .35) and (7 .36) are expressed in terms of coefficie nts Lq , Ltr, LI
K',Kf ,"',K: which are defined inAppendix C.1. Expressing them in this fonn makes

the task of extending the formulation to handle the analysis of the period-k motion more

intuitive and thus, easier. It can be shown that Equations (7.38) and (g.39) are identical

respectively, to Equations (7 .29) and (7.33) derived in Merhod l.

Discussion

It would be interesting to examine the situation of even values of n for g=U2. That is

replacing nby 2m. For this situation, we have fromAppendix C.l, the following resuits for
the impact velocity and phase angle:

t34

jr,=!,-r=-r 8 r"=- I Zmr)/' rt+! (r+e) ;--F;4, 
I

Aø cos(øt, + (p) = r(+- #):# I

(7.40)

Observe that Equation (7.40) is identical to Equations (7.i8)-(7.19) which have been

derived for the period-l motion. What this implies is that we actually get period-l motion

from period-2 motion if the table motion is vibrating with a penod,2mT.

7.2.3 Feniod-k n¡otion

W'e will formulate the necessary condition for the period-Æ motion, i.e. p@x = x oveÍ nT
period. The mapping diagram and its corresponding physical motion are qualitatively

sketched in Figures 7 .6-7.7 . We will extend Method 2 described previously to handle this

period-,t motion. Introducing a series of impact time-interval parameter 0 < g¡ <I and,

k

Zq, = 1, the/h impact time-interval is given by,
j=1

ti+¡ - t,*r-t = 7¡nT ' (7.41)
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D
sr), .-----.Þ
" t+I
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z,*, P
_--_---_@> Ð,*o-,

\
PG)

Figure 7.6 Mapping diagram for the period-Æmotion.

(a) (b)

Figure 7 '7 Quaiitative sketch of the period-Æ motion in the relative reference frame.

Note that it is necessary to introduce a series of g¡, instead of a single q inthe previous

sectior¡ since we are now dealing with the period-É motion. The mapping equations of
motion pertaining to the Q, impact time-intervals can be obtained by suitably modifting

Equations (7.10)-(7.11). That is,

/¡*i = -Aø cos(a4*¡ + g) - gti*¡ *l-ri,,*r-, + &i*¡-r + Aot cos(att,*¡-, + O)f, (7 .42)

0 = - A sin(at, *, * a) - ï Oi,, + A sin(ot,* j -r + a) + 
) st?- i -

*l-'i',*.,-, + #i*¡-r + Aø cos(øti*¡-r + r)l(,,., - t,*¡u).

Substituting EEtation (7.41) into EEtations (7.42)-(7.43), and carrying out the algebraic

maniFulation as before, we get:

(7.43)
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where

Kf' +eKli i,*,_r+ Kli i,*,
AcoKqj

Kl¡ + eKl' i,*,_, + Kl¡ i,*,
AaKqj

136

cos(d,*,-, * o) =

in which the coefficients Lqr,Lq¡,1:¿ are also listed in

process for all the Æ-time intervals and back substituting

velocity results in

.H,ì, - ------i--
'' - l-H'

(7.44)

(7.46)

(7.47)

(7 48)

sin(at,*,-, * W) =

where the various coefficients Kqt,Klt,.-.,KuL are given in Appendix C.l. Substituting

Equations (7.41) and Q.a$ into Equation e. Z) produces,

(7.4s)

Appendix C.1. Repeating this

to recover the (l + k)th impact

r4p rQt

H, =tr+ftHo_,,

,=fr#

The excitation amplitude ,4 for the period-Ë motion is given by eliminating the

trigonometric terms and setting j = l. The result is,

A=#r

As before, Equation (7.48) constitutes oniy the necessary condition for the existence of
the period-Ë motion.
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7.3 Stability and Eifuncatiore Conditions

To determine the sufficient condition for the periodic motion of the bouncing ball, it is

necessary to carry out a stability analysis. Both stability and bifurcation are discussed in

this section' For the period-l motion, the results of Holme (lgBZ) are available for
comparison. For the period-2 motion, its stabitity conditions are presented both
analytically and numerically. For the period-Ë motion, we indicate only the procedures as

the problem very rapidly becomes numerically very intensive.

7.3.1 Feniod-l motion

The stability and bifurcation conditions for the period-l motion are obtained by studying

the characteristics of the fixed points of the linearized discrete mapping of Equations
(7.10)-(7.1 1):

137

ú: ) = D P(; 
) 

= IWG,) =fî df,lla, q,, )

(7 4e)

(7.sr)

where DP is the Jacobian matrix and its elements, ã,*rlã, ,ã,*rl t, ,âj,,*rlã, ,ôJ,,*r/d, ,

are defined in the Appendix C. 1. Evaluating DP at the fixed point s (t,, y,) by substituting

Equøtions (7 .18)-(7 .1 9) into Equati ons (C. 28)-(C. 3 1 ) yietds,

T = 1-!J!¿r2 sin(øt, + e), (7.s0)

ã,*, _ _e(t+e)
âJ,, g

T = -Tlor2 sin(øt, * ç)l'+(i + e)Aøz sin(øt, + ç), (7.s2)



Chapter 7: Dynamics of a Bouncing Ball 138

T=ez -Aø2 sin(øt,.r)tf

The trace and determinant of the Jacobian Dp of mapping are

rr(DP) = t + e2 -*l 
^atz 

sin(at, + ç),

Det(DP) = e2 .

The eigenvalues ),r,),2 canbe computed from

,, _Tr(DP)t@/ul,z -

B^ .4t. B,o
o

in which the constants 4,, . . . 
, B,+ in Figure 7 .g are defined as,

(7.s3)

stability conditions can be stated as fonows: rr ll,rl,llrl< l, then we have a sink (stable

node or focus); if V"tl.r.llrl, then we have a saddle; and if lnrl,llrl> 1, then we have a

source. Since 2, . 1, = Det(DP) = e2 , ottly sinks and saddles are found for e < l. For the

specific situation of e =r, centers and saddles are obtained. If lzrl= r for both

eigenvalues, then the norm is preserved in the directions associated with these eigenvalues.

Using the stability conditions of the discrete mapping, the stability and bifurcation for
period-l motion can be qualitatively determined as shown in Figure 7.8. A summary is

given as follows:

Stabililv conditions

From Figure 7.8(a) sin(ott, +g)> o (or 2tn <ú)ti +e <Zrrc*nl2),theparâmeter range of

the stable period-1 motion is

(7.s4)

(7 ss)

(7.s6)

(7.s7)
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8,,=""(#), (7 58)

(7.se)

(7 6t)

(7 60)

and

Saddle Node Bifi.ucation

Stable

Period Doubling Bifrrcation

Node (-)'*f'*"" n'

w+

Stabie Focus

I+W
I

Y

(a) for sin(at, + ç) > O

Saddle of the Second Kind
I

I.w

Saddle Node Bifurcation

Pornt 

I

w

Fixed

I

,w

No Saddle of the First Kind

I

Y

(b) for sin(ør, + A) <o

Figure 7.8 Qualitative analysis of stability and bifurcation for the period-l motion.

+(nr)'

u,=J,.("r\?)' ,

Urr=1ffi

Stable Regions for Period-l Motion
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Discttssion

(a) Stable motion:

(Ð For 8,, .Ar'lglBnr, the eigenvalues of Dp are real and for the range

0 . lr., < l the fixed point of the mapping is a stable node (+).

(ii) For B,r.ArtlgsB,r, the eigenvalues of Dp are complex conjugate in the

range l1r,rl.l. The real part ne(2,,r) changes from positive to negative, and

therefore the fixed point of the mapping is a stable focus.

(iiÐ fur 4, . Ar'lg s Bna, eigenvalues of Dp are real and for-r < rr., <0, therefore

fixed point of the mapping is a stable node (-).

(b) Comparisonwith Holmes's result (19g2):

(Ð Holmes (1982) presented the following result for the stable motion of the

bouncing ball,

8,, .4 < 8,3. (7.62)(,
ó

Comparing our results in Equation (7.57) with Hoimes's expression in Equation

(7 .62), it is clear that the upper limit of the stability condition is different except

at e = 1. The upper limit of Holmes's result in Equation (7.62) is just the

exfreme point of the stable focus O as depicted in Figure 7.8. On the other

hand, the upper limit of our result inEquation (7.57) goes a little further, to the

pornt B,o which corresponds to the period-doubling bifurcation condition. We

will show through numerical experimentation, that our result is more accurate.

(c) Unstable motion:

(Ð The parameter range for the unstable motion of the bouncing ball is given by

Aaz
g , U*. (7.63)

t40
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For this situation, the eigenvalues )"r.r<0 are such that A, <-l<).r, and

therefore, all saddles of this unstable motion are of the second kind.

(iÐ From Figure 7.8(b) sín(øt, + a) <o (or 2lr +3ttlz < ú)ti + ç <2(l +r)z), stable

motion caffiot exist and thus, we have only the unstable motion governed by,

t41

4t, B^.
o

The eigenvalues )..,,, > 0 for this unstable motion are such that )",

thus, this unstable motion is different from the unstable motion in

points of this unstable motion is the saddle of the first kind.

B i furc ati on c ondi ti ons

(7 64)

<l < 1", and

(i). The fixed

The bifurcation conditions of period-1 motion of the bouncing ball are:

(r) Aotz f g= fi,, for saddle-node bifurcatio4 and

(ä) Aatz f g = B,o for period doubling bifurcation.

The stability and bifurcation conditions are summarized qualitatively in Figure 7.g.

However, it would be much more informative to sketch them quantitatively. We can for
example, get a feel for the relative sizes of the stable and unstable regions. The

quantitative plots are present ed in Figure 7 .9. To generate the plots, the following values

are used: 8=9.8, e=0.5, n=landt¡=Zlrcla+2 mod 2nf a. As shown, the dashJine

denotes saddle of the first kind; the darkened solidJine, stable node point; the dottedJine,

stable focus point; and the dash-dottedJine, saddle of the second kind. To ciearly indicate

the start/end points of the stable regions, 8n1,...,8,o aÍe marked on these graphs. As in

Figure 7 -8, Bñ in these graphs corresponds to the saddle-node bifurcation (SNB) and

likewise, Bno to the period doubling bifurcation (PDB). Note that the unmarked gaps
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-20 2 + 6 8 10 12
Excitation Frequency o)

(a) inilial Impact Conditions

0.0

Excitation Frequency c,)

(U) Parameter Manifold

Figure 7.9 Quantitative analysis of stability and bifurcation for the period-l motion
stable node, ---- stable focus, - - rst saddle, - - 2nd saddle).
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between two saddles (including the saddles themselves) represent the period doubling

route to chaos, intermittency, etc. Further research is required to quantitatively chart these

unmarked gaps.

To provide a comparisonwith Figure I of Holmes (1982), Figure 7.10 is plotted using

g=9'8, e=0'5 and cÐ=nr. It should be emphasued, that the comparison here is

qualitative rather than quantitative in nature since it is difficult to obtain the exact values

of the parameters used in generating Holmes's solution. For our figures, it is more

appropriate to plot them without shifting the graphs by *v as done by Holmes.

Qualitativel¡ our result compares well with Hol¡nes in the sense that both of them are

very similar. However, there is one notable difference. While the starting points of the

stable regions are the same, the endíng points are not. Holmes's stable region ends at ,Br,

whereas ours, at Bro. Also, note that our curves contain additional information pertaining

to the nature of the stability which is absent in Holmes's plot.

7.3.2 Period -2 motion

As before, the eigenvalues of the linearized x,*, = pQ)x, are computed via the Jacobian

listedinAppendix c.l.2. For the period-2 motion, its Jacobian is given by,

(7 65)

in which

l+3

ï

&(t,*r,Y,*r)

4t,*r,Y,*r)

t, ! ¡+t

,!¡)

&(t,*

4t,
DP(z) = Dp.Dp =l )

lu:ì1'*î:1

T = * {- rr, +l.a ro'sin(ør,*, + ç) - sl(t,., - r, )}, (7 66)

(7.67)
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and

T =l.na' sin(att,*, + e) - rlþ -lor' sin(øt, + ò - sl,

T =ler' rin(rt,u + e) - rl\ - r,

æ = i{-"r,, 
+l.a ø, sin(at, * ù - rl(,, . ry- *., )},

H=i(".T-".,),

* =l.ta' sin(øt, + e) - rlæ -L¿r,sin(ør,*, * ò - sl,

#=l.aø, 
,ro(at, +e)- rlþ-"

t45

Substituting the solutions of the period-2 motion into Equations (7.66)-(7.72), we obtain

the period-Z Iacobiaa defined by Equation (7.65). This then allows the trace fr(nf@)

and the deterrninant net(nfØ) to be calculated, yielding the eigenvalues of the period-2

motion:

(7.6e)

(7.67)

(7.68)

(7.70)

(7 71)

(7 72)

(7.73)

The stability and bifurcations of period-2 motion are computed from Equation (7.73). The
input parameters are g=9.8, ú)=7r and e =0.5. The stability and bifurcation results for
sin(at,+g)>0 and sin(att,+a)<0 are plotted respectively, in Figztre.s 7.1l(a)-(c) and

7 11(d)-(Ð. Note that the line types used have the same interpretations as those employed

inFiguresT-9-7.10. Due to the small size of the individual graphs, the start/end points of
the stable regions, B^,"',Bno are not marked in Figure 7.i1. Observe that unlike the

period-l motion, it is possible to have stable motion for sin(ø1, + a) < 0 .
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7.3.3 Feriod-/r rnotio¡r

l+'7

The procedures for determining the stability and bifurcation of the period-å motion are

discussed here. Following the steps outlined previously, the eigenvalues of the linearized

matrix of x,*o - PG)x, are computed using the period- k lacobianwhich is defined by

(7.74)

Substituting the solutions for the period-É motion into EEtation (7.74), the trace

rr(nr@) and determinant oet(nr@) can be ôomputed. This then perrnits the

eigenvalues of the linearized matrix to be evaluated,

_rr(nrk))tM
(7 7s)

As shown in the period-2 motion, the stability and bifurcation for the period-Æ motion can

be determined from Equation (7.75).

7.4 Ftrumerical Simulations

As a verification of the stability and bifurcation conditions for the period-l and period-2

motions, numerical simulations are performed. To guarantee stable motion, input
parameters are chosen such that they lie within the theoretically determined stable range,

and similarly, to simulate unstable motion, input parameters within the theoretically

obtained unstable range are used.

7.4.1, Feriod-l motion

The computed input parameters for numerical simulations of rrl, period-l motion are

1,,,
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tabulated in Table 7' 1. For stable motion, we have plotted time-displacement and phase-
plane curves based on the equations of motion described by Equations (7.6)-(7.7) and
(7'9); for unstable motion, we presented Poincare mapping sections generated via
Equations (7 .6)-(7 .7), (7 .9) and (7 .r3)-(7 .14)

TableT.L Computed input data for period-l motion (g=9.g, e=0.5, ú)=¡r and
l, = 0'0)'

Figure No. Q¡ Types of Stability

1,18

v,

Period-1 Motion

Figures 7 .12 (a) e,7.U (a)

Figures 7.12 (b) e,7.t4 (b)

Figures 7.12 (c) &,7.V (c)

1.040063 9

1.2518871

r.5039512

-r3.0666666

-13.0666666

-13.0666666

0.02199t8

0.5966194

0.8073893

Stable Node (+)

Stable Focus

Stabie Node (-)

Chaotic Motion

Figures 7.13 (a) e,7.14 (d)

Figures 7.T3 (b) e,7.Ia G)

2.0003417 -13.0666666

2.0003417 -13.0666666

1.0241592 2nd Saddle

5.2590265 lst Saddle

Figure 7 .12 depicts the steady period-l motion of the bouncing ball, in the form of time-
dispiacement and phase-plane curves, corresponding to the th¡ee kinds of stability
conditions: (a) stable node (+), (b) stable focus and (c) stable node (-). Observe that these

three phase-plane curves change their shapes in accordance to the three types of stability,
and approach a "D"-shaped curve in (c).

Figure 7.13 shows the Poincare mapping sections for the two saddles associated with the

period-1 unstable motion. We have plotted the saddle of the second kind (sin(ør, + rp)> O)

in Figure 7 .r3 (a) and saddle of the firsr kind (sin(at, + a) < o) in Figure 7 .t3 (b). The

graphs on the left pertain to the relative frame of reference, and on right, to the absolute

frame of reference- The latter is provided to enable comparisons with physicai experiments
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to be made should these be available. In plotting the two unstable motions, we
varied oniy their phase angles. observe that when the phase angles are shifted exactly by
2tr, we still end up with completely identical Poincare mapping sections. What this
implies is that the two saddles have identical Smale horseshoe structures. Furthermore, a
careful scrutiny of Figure 7.13 reveals that there exists selÊsimilarity, indicating the
presence of fractals. Thus, a chaotic attractor is clearly evident in the plot for the
parameters chosen.

It would be very interesting to view the physical motion of the bouncing ball. This
illustrated in Figure 7' 14, superimposed together with the physical motion of the vibrating
table for up to / = 50s. Both stable and unstable motion are drawn. Since Holmes,s
model is based on a discrete mapping, he can only furnish a qualitative sketch and only for
the stable motion. In contrast, based on our differential equation model, we can produce a

quantitative description of the physical motion of the bouncing ball, for stable and as well
as unstable motion. Note that for both Figure 7.14, the following graphs are plotted: (a)

stable node (+), (b) stable focus, (c) stable node (-), (d) saddle of the second kind and (e)

saddle of the first kind. Morion (a)-G) are stable whereas (d)-(e) are chaotic.

In addition to the anatytical checks presented in the previous section, we can also

demonstrate physically that the motion in Figures 7.1a(d)-(e) are indeed chaotic, by
simulating the physical motion over a prolonged period of time and checking if they would
repeat themselves. The results are shown in Figure 7.15 where the unstable motion is re-
plotted for up to I = 200s. Observe that the motions do not repeat themselves for this
duration of time.

7.4.2 Feriod-2 motion

Numerical simulations for time-displacement curves, phase planes and poincare mappings

for period-2 motion are presented here. The computed input parameters for n:I,
period-2 motion are tabulated in Tables 7.3-7.4. Note Table7.3 pertains to

151
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sin(øt,+a)>0and for Tabte 7.4 to sin(øt,+a)<0. The time-displacement and phase-

plane curves are plotted by using EEtations (7.6)-(7.7) and (7.9) for unstable motion, and
we presented Poincare mapping secrions generated via EEtations (7.6)-(7.7), (7.9) and
(7'13)-(7.14). The stability results are plotted in FÌgures 7.16-7.17 for sin(øt,+a)>0
and Figures 7 .18-7 .19 for sin(øt, + A) < 0 .

Tqble 7 -2 Input data for period-2 motion for sin(ør, + a) >0 (e = 0.5, g = 9.g,
A = 2.0 and t, = 0.0).

Figure No. Q¡ Types of Stability

154

v,

Period-2 Motion

Figures 7.16(a) & 7.zo(a)

Figures 7 .16(b) e,7.20(b)

Figures 7 .r6(c) e, 7 .20(c)

Fi gure s 7 .r7 (a) e, 7 .20(d)

Figures 7 .17 (b) e, 7 .20(e)

2.72000 -3.516950 0.518909 0.721
2.71000 -3.617650 0.474160 0.726
2.697s0 -3.722500 0.358759 0.739

Stable Node (+)

Stable Focus

Stable Node (-)

Chaotic Motion

3.49750 -0.018551 t.Z74B4O 0.616 2nd Saddle
2.75625 -2.077890 0.0T6765 0.777 lsr Saddle

Table 7.3 Input data for period-2

A = 2.0 and t, = 0.0).

motion for sin(ør, +A)<0 (e=0.5, g=9.g,

Figure No. !¡ 9¡ Types of Stability

Period-2 Motion

Figures 7. I 8(a) &, 7 .Zt(a)

Figures 7.18(b) e,7 .21(b)

Figures 7. I 8(c) e, 7.Zt(c)

Figures 7 .19(a) e. 7 .Zt(d)

Figures 7 .19(b) e, 7 .Zt(e)

2.69750 -11.47990 4 998830

2.70000 -11.55360 5.014590

2.7t500 -r1.65660 5.041640

0.260 Stable Node (+)

0.266 Stabie Focus

0.277 Stable Node o
Chaotic Motion

3.00000 -9.62446 4 789790

3.34000 -11.7321 5.148490

0.181 2nd Saddle

0.373 1st Saddle
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Observe that for the period-2 motion there are only two possible types of impacts: a

'large' impact followed by a 'small' impact as depicted in Figure 7.16 (fo,
sin(at,+A)>0) and a'small' impact followed by a'large' impact as depicted inFigure

7.18 (for sin(øt, +g)<0). The poincare mappings for sin(ø1, +a)>0 are plotred in

Figure 7.17 and for sin(ør, +g)<O in Figure 7.19. Observe the presence of the Smale

horseshoe structures which are not identical. However, their presence indicates the

presence offractals and thus, chaotic attractors in these figures.

The physical motion plots are shown n Figure 7 .20 for sin(øt, + rp) r- 0 and Figure 7.27

for sin(ør, +A)<0 and like those plotted for the period-l morion, the unsrable motions

do not repeat themselves.

7.5 Conclusions

Based on the differential equation of motion, the stability and bifurcation conditions for a

bouncing ball with a massive harmonically vibrating table are derived for the first time.

The mappings for period-l, period-2 and finally, generalizing to period-Ë motion of the

bouncing ball are derived. It is found that three types of stable motion exist: stable node

(+), stabie focus and stable node (-); and two-types of unstable motion exist: saddle of the

first kind and saddle of the second kind. From the Poincare mappings of the unstable

period-l motion, the two saddles are found to possess identical Smale horseshoe

structures. This is however, not true for period-2 motion (and period-Æ motion) where

their horseshoe structures are not identicat. As shown, the unstable motion exhibits

chaotic attractors. Plots of the physical motion of the bouncing ball superimposed on the

vibration of the table are also given.

r59
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Uniike Chapter 7 where the motion of the ball is vertical (and thus, gravity has to be

considered), in this chapter, we are interested in the motion of a horizontal impact pair.

Another major difference between Chapter 7 and, this chapter is that, in the former, the

impacts are free-falling onto one plane whereas, in here, we have rapid impacts on two
closely-separated planes. This difference is significant in that the energy of the horizontai
impact pair is much higher and therefore, leads more readily to chaotic motion. In this

sense, the study of the motion of a horizontal impact pair is more general than the motion
of a bouncing ball. Collisions or impacts caused by discontinual motion is complex and

highly nonlinear, and the most basic model is that of an impact pair (À4asri and Caughey

(1966), Bapat and Bapat (1988), and Heiman,BajE and sherman (1988)). other impact

modeis include the acceleration or impact dampers (Lieber and Jensen (1945), Grubin
(1956), Warbuton (1957), Kobrinskii (1969), Bapat and Sankar (1985)) and the impact

oscillators (Senator (t970), Shaw (1985a, b), Bishop (1994).

This chapter is concerned with the dynamical modeling of a horizontal impact pair,

subjected to a periodic base excitation. As in chapter 7, applyrng the theory of
discontinual motion, mappings for four switch-planes are defined, and from these, five
possible impact motion models are developed: Modei I, Model tr, Model III, Model IV
and Model V. Note that the most studied impact model pertains to that of the equispaced

and non-equispaced, periodic two-impacts in exactly z-cycles of base motio4 and is
captured by the Model I motion. Numerical simulations are also presented.



Chapter 8: Motion of a Horizontal impact pair

8.1 Systern Description

Figure 8.1 shows an impact pair consisting of a secondary mass (rigid ball) M" moving

freely within a gap d in a primary mass M, where Mp >>n. Assuming the excitation of
the primary mass is harmonic, that is,

Figure 8.1 Mechanical model of an impact pair.

163

V-* E(t,A,)

where Ar, , ,, e ¡ arc the 7th-amplitude, 7th-frequency and jth-phase

Let (",t) denotes the absolute displacement of the secondary

displacement relative to Mo. For simplicþ, a one-term expression

external excitation becomes (Hatr, Luo and Deng (1995)):

E=Asin(øt+q).

E(t, A, , Ø ¡,e ¡) = ZA, sin(ø ,t + e ) ,

'i=1

substituting Equation (8.2) into Equation (7.2)(c) and neglecting

equation of motion in relative coordinate system. That is,

! = Aø' sin(øt + ç).

(8.1)

angle, respectively.

mass and (y,t) its

is assumed and the

(8.2)

friction yields the

(8 3)
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Integrating Equation (8.3) leads to

! = - Asin(øt + (p) + ljt o + A a cos(øt o + Ðl(t - t ) + A sin(øt o + e) + y o.

Thus, the equation of motion for state subset X,*, it

! = -Aø cos(øt + e)+ j,o + Aø cos(roto + ç),

/ = -Asin(øl +Q)+lii *¿rcos(at, +rÐl7 -t,)+ Asin(øt, +Ð+yi. (8.7)

in which t elt,,t,*rl Át,.)=y,u, y(t,*r)= jt,u. Note that ( )- *d( )* denote before

and immediately after an impact, respectively. The switch-plane or the discontinued subset

âX,*, is

! = -Aø cos(at + Ð+ i: + Aø cos(øt, + ç),

/,.r - li = -Asin(at,*, + e) +lj,i +,la cos(øt, + ç)f(t,. - t,) + Asin(øt, + rp). (8.8)

An impact is deemed to occur whenever

t64

Assuming the simplest impact law, namely, one that considers the impact process is

instantaneous and employs the concept of a constant coefficient of restitutio n e to model

the energy loss during impact. The relative velocities before and after an impact are related

by

(8 4)

(8 5)

In view of Equations (8.9)-(8.10), we have the switch-plane

ly,rl = lr;l=l

(8.6)

!,*t = -Aa cos(øt,*t * e) +l-uj,; + Ao cos(øt, + A)1,

li = -ef, '

(8.e)

(8 10)

(8 i1)
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!,.t - !, = -Asin(øt,*, + e) +l-tj,; + Aø cos(')ti + ç)1Q,., - t,) + Asin(øt, + rp).çt.tZ¡

For convenience, the minus superscript used for the relative coordinates will be dropped in

the ensuing derivation. That is, y-,i- will be simpry denoted by y,i,, respectively The

switch-plane is now defined as

Using Equation (8.5), for every discontinuity we have

x=E+Ux-

where I + 
= 

{t+r) Ir,=T, 
, 
^oa 

?2}, (8 ls)

r - = 
{A,,r,)lr,= -l, r mod T} (8 16)

In terms of the absolute coordinate reference freme, the corresponding expression for
Equation (8.13) is

> = 
{{',, 

,, )
, , d .Ztt)
V,l=;,1mod-f .z co)
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where Ð* and

t = {(',*) I þ, 1=i}= Ð- Ux+,

r = 
{,,,r) I Þ,1 =4, t ^od

X- can be similariy defined.

8.2 Fossible nmpact Motion Models

(8 13)

Based on the proposed formulation, four new mappings can be defined. These are

P,,X+ ->X-; pr:Ð--+X+ ; pr:E+ ->X+; po:Ð-+X-. (g.19)

(8 14)

':j=x- uE+

(8.17)

(8 18)
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The switch-plane X-(orÐ.) can be interpreted as the Poincare section. Hence, the

Poincare mapping P can be defined for several impact motion models.

8.2.1 Model I motion

\r-
i,zo..{,
,/_\

>+ r+
(a)

Figure 8.2 Modei I motion - RZ
physical model.

s*
l to 14\
'/D\c_ -l

(a)

L(-)

Figtre 8.3 Model I motion - ZR impact sequence: (a) commutative diagram and (b)
physical modei.

The commutative diagram for Model I motion is depicted in Figure 8.2(a) with the

physical interpretation given in Figure 8.2(b). As shown, this model corresponds

physically to the situation of just one impact per side or more commonly known as two

aiternating impacts. It could be either an impact on the left side followed by an impact on

the right (ZR), or an impact on the right side followed by an impact on the left (ÀZ). The

latter is depicted inFigure 8.3. Hence, there are fwo possible cases and since these two

cases are the identical, we will consider only the ZA impact sequence for further

discussion. As discussed ìn the next section, this motion involves the grazing bifurcation at

the parameter values of the saddle of the second kind. For this situation, we have

r66

impact sequence:

R(+)

(a) commutative diagram and (b)

(b)

L(-) Ã(+)

(b)
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X+ P 
> X* so that the mapping becomes,

P=Pr"pr.

This classical trvo alternating impacts per cycle of base motion is perhaps the most studied

steady-state impact motion. A more generai investigation involving two-impacts in exactly

n-cycles of base motion will be presented later. For any x . x* we have,

so that

where tr is an identity mapping.

8.2.2. Model ntr motion

Px=x,

Pr"Pr=X

D

).+ tt * I+

(a)
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(8.20)

D
Is- :-

(a) Z-impacts

L(-)

Figure 8.4 Model II motion: (a) commutative diagram and (b) physicat model.

For this model, the commutative diagram is given in Figure 8.a(a) and the corresponding

physical model in Figure 8.4(b). Physically, the impact process is rhat of one impacr per

side, per cycle. Since the impact can be one the right side (R) or on the lift side (L), we

R-impacts

or

L(-)

(8.22)

(8.23)

R(+)

(b)

R(+)

(b)
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again have two possibilities. Since these two situations

considered. As before, the motion is described by

px=x=prx,

and its periodic solution is characterized by

t, = nT +to, )
_t

Øto+e=;,1
:t

h=j)o =o,J

where T = 2tr / a¡ is the period. From the result of Mapping P, is entiste d, in Appendix C.2

for I e (tr,tr),the solution simplifies to,

! = Aa cos(att + ç), lyl=l-¿sin(øt + e)+ A+4..<4 .| 21 2

Thatis A<0.

identical, just one case is

However, E = Asin(ør +p) where I is always positive. This conflicting result implies that

this model is physically unattainable, and thus, the solution non-viable. The ball actually

stops before reaching the sides. Similarly, for the period-doubling bifurcation motion, we
have
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(8 24)

where from Appendix C.2.1,

(8.25)

P(z)v - PrQ)u - P, o PrN. = x.,

for mapping Pr, we have

(l+e)(jt, *¿) = 0,1

, -ftn,' t,r-1ttto, 
rtr=nT+to. )

(8.26)

(8.27)

(8 28)

(8 2e)
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Since /r,i,oeX* and €)0,r¡ieget lt=lo=lz=0. Once again,thisconstitutesanon_

viable solution and therefore the motion is physically unattainable.

8.2.3 Model lTtr ¡¡s1¡st

,DY-i- 't s-
d _______Þ lJ

,rl

I+

Figure 8.5 Model III motion: (a) commutative diagram and (b) physicat model.

Figure 8.5 shows Model III motion: its commutative diagram inFigure g.5(a) and the
corresponding physical interpretationin Figure 8.5(b). The impact process as represented

here contains four impacts per cycle, comprising of either a HLLR or a LRRL impact

sequence' Since these two cases are the same, the discussion here will be limited to just

the RLLR sequence. The mapping is

Dt4 Fr-

-L

\r
\2
r

P

(Ð

r69

L(-)

I+

Since this modei is the same as Model I motion, no further discussion is necessary.

8.2.4 Model f,V motion

R(+)

It should be mentioned that in going from a ZA sequence (Model I motion) to a RLLR
sequence (Model III motion), it is possible to generate fwo intermediate impact models. a

LLR impact sequence and a AÃZ impact sequence. These are sketche d in Figztre g.6 and

(b)

P=Pz"P4"PloP3. (8 30)
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their mappings are P=Pz"Po"Pt and P =ProPr"p, respectively. In going from this

model to chaos via period-doubling bifurcation, the general mapping for the ZZ.R motion is

and for the.RRI motion we have

p(r) - (P, "Po "P,)". ..o(propo"pr), k =1,2,3,...,

Pw) = (p, " 
p, 

" 
p)"..."(p, 

" 
p, " pr),

,t terms

D
F- t4
L¿ ______@>

1l
I+ P

t70

s*4L¿ ___Þ

(a)

1/
>-

k =1,2,3,....

LLR-impacts (b)

or

>+ Le A(+)

(8 31)

Figure 8-6 Model IV motion: (a) commutative diagram and (b) physical model.

8.2"5 Vlodel V rnotio¡l

It is desirable to generalize Modei Itr motioq to handle the situation of uneven multiple
impacts per side. This is shown in Figure 8.7 where we have m-impacts on the right side

m^) and n-impact on tbe left(n"), resulting in an impact sequence described by

P

(8.32)

(a) ÃRZ-imoacts (b)
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(;f,L¿;LR. The morion is defined by
mR nL

P(mÐf
'{*

P=PzoPÞ') "Prop@,)

Figure 8.7 Model V motion: (a) commutative diagram and (b) physicai model.

This model could have also been equa[y described by a A,¿y.ßL impact sequence.
tilt nR

The total number of impacts per cycle of the base motion for either description is

(m + n + 1). The mapping is given by

P

I-
\¿
\-

(a)

I+

L(-)

rrl

p(rt) - !P, " 
pl'ù 

" 
p, 

" 
p:^^\o...o(p, o pÞù 

" 
p, 

" 
p:^^)),

For the most general case of a varying, uneven multiple impacts per side, we have
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p(tt) - (pr"pÞù "prop@Ð¡o...o(pro pØ,) oprop.r(^Ð) (g.35)

inwhich ffin¡,frI¡ consistof asetofpositiveintegers, i=l,2,...,k,thatcanberandomly

selected.

8.3 F{on-Equispaced Feriodic Motion

(8 33)

Ã(+)

(b)

l"

k terms

To determine the periodic motion of the five proposed impact models, a method similar to
the one outlined in Section 7.2 is devised by introducing a new parameter pertaining to the

impact time-interval for charactenzing the motion. The formulation for the most general

k:1,2,3, (8.34)
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situation of non-equispaced, periodic motion is presented. The details are as follows.

8.3.1 Non-equispaced period-l motion for Model I

The periodic two-impacts in exactly n-cycles of base motion for Model I is discussed here.

This model is very popular since its motion is easily observed during physical

experimentations. A considerable amount of research fo¡ this type of motion exist,

particularly for the case of symmetric two equispaced impacts per cycle motion (i.e., n=1).

Note the tetm symmetric as used here implies that n is an odd integer. Choosing the initial

Poincare section to be defined by x- which implies l, < 0, .we have, fromEquation (g.22)

for periodic motion:

From the results shown inthe Appendix c.2, the solutions for l = t,*, aÍe

Znn ìt,*r=-*lj 
ICD¡

j),*z = !r, j,,*r, !, 10.)

l-t2

d = -Alsin(at,*, + ç) - sin(att, + ç)l *l-ri, + Aøcos(ør, + p)](t,., - t,), (8.3 8)

and for t = t¡*2, they are,

i,*t = -Aø cos(øt, + e) *l-ti, + Aco cos(att, + A)1,

!¡*z = -Aat cos(at,*, + g) *l-rj,,u + Arocos(ø1,*, * ç)1, (g.39)

-d = -Alsin(at,*, + ç) -sin(øt,*, * ç)]*l-ry,u + Aøcos(øt,*, + ç)]U,., - t,*r).(8.40)

Two methods of manipulating Equations (8.37)-(8.40) for quantities of interest (such as

i,, A, etc.) are provided: Method I is more direct and obvious, and Method 2 is more

general and can be easily extended to handle the analysis of the five impact models.

(8 36)

(8.37)
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Method I

Adding Equations (8.37) and (8.39) and simplifying via Equation (8.36) yields

(t+e)(¡, +.y,*,)= o => /, = -!,*r.

substitutingEquation (8.41) nto Equation (g.37) and for e *l,we get

. Aø, ,i, = åLcos(øt,*, 
+ a) - cos(øt, * q)l

Similarly adding Equations (8.38) and (8.a0) leads to

l-ei', + Aa cos(cot, * p)f(t,., - t,) +l-eit,*, + Aa)cos(øt,*, . ,)1(T + tt - t,.t)= 0.(8.43)

Next, we introduce a new parameter such that 0 < q < 1. Then, the time interval between

fwo consecutive impacts is given by,

t,*t - t, = qZ'o .

û)

Observe from Equation (8.44) for Model I motion, q can be interpreted as follows: no
impacts for ç0 arñ q:r; and equispaced impacts for g = u2. Therefor e, q can be

interpreted as the impact time-interval parameter. Substituting Equations (g.al) and

(8.44) into Equations (8.42)-(8.43) yields
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(8.41)

From Equation (8.45) we can compute the initial velocity for a given

cos(at, +p) from Equations (5.42) and (g.45), we have

cos(ø1,*, + e) = -e - 
q(I+ e) 

, .

ACI)

(8.42)

.Aøi, = -ñ+ 
ùcos(att, 

+ ç).

(8 44)

(8 4s)

q. Eliminating

(8.46)
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substitutingEquations (s.44) and (9.a5) into Equation (8.38),we obtain

ll n . 2(1 + e)(t - q) qn njt,J 
=,in(r,,. t + a) - sin(øt, + ç) .ALør

Combining Equations (8.42) and (8.a7) and eliminating the sine and cosine terms we ger:

n=ffi , y,30, n--r,2,3, . (848)

Equation (8.48) describes the parameter manifold of Model I motion for prescribed values

of q. It yields the amplitude of the excitation A. Note that from its denominator, it is
obvious thatA will not exist for g=lln where /is an integer less than n. physically, it
implies the motion is non-attainable.

Method 2

Applyrng the procedure outline d in Section 7.2 for non-equispaced impacts, namely, by
substituting Equation (s.44) into Equations (8.37)-(8.38), we obtained the following
equations governing the periodic motion of Model I motion:

t74

(8.47)

where the various coefficients Kn,Kf ,...,K: are defined inAppendÌx c.2. Substituting

Equation (8.49) into Equation (8.37) leads to

/ \ K3 +eKly, + K!!,*,cos(ø1,+(p)= ' -,:::
AøKq

. L? +L!ùI ¿rtv. , _ 

-

J t+L raL'

(8 4e)

(8.50)
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\¡/here the coefficients ¿e, L'r,Ll are also listedinAppendix C.2. Once again, following the

same procedure as in deriving Equation (8.49), but now, fromEquations (8.39)-(g.40) we

get,

ln view of Equation (8.50), we have fromEquation (g.51), after eliminating y,*,:

It can be shown from Equations (8.50)-(8 52) that jt, = -/¡*t Also, eliminating the

trigonometric terms inEquation (8.49) by squaring and adding, leads to

o=*1 , y,30, n:1,2,3,.... (8.53)

Observe that Equations (8.52) and (8.53) are expressed in terms of coefficients Lq ,Ll,Ll
K',Kf ,"',K: which are defined inAppendix C.2. Expressing them in this form makes

the task of extending the formulation to handle the analysis of the non-equisp aced k-
impacts periodic motion for all the five proposed impact motion models more intuitive and

thus, easier. It can be shown that Equations (8.52) and (8.53) are identicai respectively, to

Equations (8.45) and (8.a8) derived in Method 1.

Equispaced period- I motion

!,*z=r,=t#:^

. Ll.-sLs + I: Lt^-srt¿
J ' Ls Lt-s _ I¿Lln ,

t75

(8.5 i)

For this motion, q = ll2. We can use equations from either Method i or Meth od 2 to
derive the simplified equations governing this equispaced period-l motion. Choosing

Method 2, we have from Equations (8.49) and (8.53) for odd n:

(8.52)
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cos((Dti+ç)=-W,

sin(øt,+e)=*(r.E#r,)

and Equation (5.53) reduces to,

As shown in Han, Luo and Deng (1995), Equation (8.56) constitutes only a necessary

condition for stabilþ of equispaced motion. \Me will defer the derivation for the sufficient

condition to the next section where the stability and bifurcation of periodic motion are

formally introduced. If X* is chosen as the initial Poincare section which implies /,20,
then Equation (8.56) modifies to:

A = ! ^l¡ 
0 - q¡',1' 

*l -o *Q + e)ntri,,l' . it^-,tll- , I L á-)' !¡)o' n:1'3'5""' (8'57)

GeneralizingEEtations (8.56) and (8.57) we have,

A = !./¡rr -,1¿ l' *l n _Q+ Òn"li,,l]' tú I^=llL-., J L ^"); 
li"l)}'n:1'3'5""' (8'58)
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(8.s4)

!, S 0, n:1,3,5,... . (8.56)

(8 ss)

For the case of two alternating impacts per cycle, that is n:I, we have from Equation

(8 s8),

For perfectly elastic impacts, i.e. e:I we have,

i

¿ = !.ll (t - e)i, 
l' *l a _lt + e)nlj,,l 

I2lL (D .l L 2ø I' Þ'l= o (8.5e)
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8.3.2 Non-equispaced /r-irnpacts periodic motion for Models tr-v

The equations derived previously are valid only for the non-equispaced period-1 motion of
Model I. In this sectio4 we will formulate the equations for the most general situation,

namely, that of the non-equispaced É-impacts periodic motion for Models I-V. Consider a

model exhibiting /r-impacts over nT period. Following the procedures of Method 2, we

introduce a series of impact time-intervai parameter qr, satis$ring,

!, = -/,*t ì

d=t2A ryI'
n:1,3,5,.--

where 034¡ <l andZq,= .Notethatitisnecessarytointroduceaseries of Q¡,instead
j=r

of a single q inthe previous section, since we are now dealing with motion consistin g of k-

impact time intervals. The governing equations for the motion pertaining to the g¡, impact

time-interval are,
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tr*¡ - tr*r-, = 8¡717 ,

(8.60)

A,=-Asin(øt,*r*, +rp)+Asin(ør,*, *A) *l-uj,,*,_r+Arøcos(att,*,_r*ç)l(r,.,-t,*¡u),(8.63)

!,*j = -Aø cos(ø,.,* e)*l-ry,*,-, + Aøcos(øt,*r-, * ç)],

where

Substituting Equation (8.61) :rrrto Equations (8.62)-(8.63) yields

l-d
A=l d

lo

(8.61)

for mapping f ,

for mapping Pr,

for mappings P3 and P..

(8.62)

(8.64)
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/ \ Krnt *eKlti,*¡-r+Klty,.,fcos(ø1,*r_,+ç)=ffiL
. / \ KTt * eKrqt j,,*¡_, + Klt j,,., Istn(ø1,*r_,+e)= - 'r*, "-t

where the coefficients Kqt,Klt,...,Kuqi are defined in Appendix

Equations (8.61) and (8.65) back into Equation (8.62), we obrain

. ü' +L1l i',*¡-t
r I+J 

fi

where the coefficients Ér ,Lni' ,I:i are defined inAppendix C.2. Repeating this process for

all the k-time intervals and back substituting to recover tbe (i + k)th impact leads to

where
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(8 6s)

C.2. Substituting

As shown in the previous section, the necessary condition for the existence of the k-

impacts periodic model is given by,

A=+ . (8 6e)

To obtain the sufficient condition, we have to carry out a stability analysis and this is
presented in the nexl section.

rQt r4t
no=fu*ftuu,,

,=v#

(8 66)

(8.67)

(8 68)
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8.4 Stability and Bifurcation

Similar to the procedures outlined in Chapter 7, the sufficient condition for the Æ-impacts

periodic motion will be fonnulated here via alineanzation of the periodic solutions.

E.4.1 Feriod-X motion fon Model I

Non-e qui sp ac e d p eri o di c moti on

We fust linearize x¡*t = Px, and then compute its eigenvalues using the expressions given

inAppendix c.z.r. Therefore, the Jacobian of the linearized mapping Dp = Dpr.Dp, is,

Dp = DF, .Dp^ -l ap'(t'.''iu)ll apr(t,.,'i,.,)lt ' I d(t*,'Yì )L 4t,,Y,) )(;;:)=(',-í,",')

in which 
T = *ltr,+ Aaf (t,*,- r,)sin(ør, ., + e)f ,

^.-:, = 3U,*r-t,),â!, !,*, ' ''' 
t 't )

t79

T = Aø2 sin(øt,., * a)+: - Aaz sin(øt, + e),

T = Aaf sin(at,., + w)ff - e;

and
æ = ïl-'r,, + Aaz(,, .7- r,.,)sin(ør * ù7,

ã,*r_ e( 2nn \
Ø,*, [[+* , -"u)'

(8 70)

(8 71)

(8.72)

(8.73)

(8.74)

(8 7s)

(8.76)
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A),," . . ,ã.^
æ = Aa' sin(att, + e)*- Aø2 sin(øt,*, * e),

+- = A(,)' sin(ø1, + ç74,:z - ,
Ø,*t 

\ ¡ "Ø,*,

Substituting the solutions in Section 8.3. 1 into Equations (8.71)-(S.78), the paramererized

matrix DP of Equation (8.70) is determined, from which its trace fr(DP) and deterrninant

Det(DP) can be easily calculated. The result for the eigenvalues ofDp is

, _Tr(DP)x@/vl,z -

Eguispaced periodic motion

Speciaiizing the formulas for the well-known equispaced periodic motion, i.e. q - l/2, the

computed trace and deterrrinant of the linearized matrix are respectively given by,
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Substituting the results of Equatioz (8.80) into Equation (8.79) yields the eigenvalues,

and from the subsequent eigenanalysis, the following conclusions can be derived.

(i) Stability conditions

(a) For stable motion (stable node (+)) we have,

(8.77)

Tr(DP) = 2e2 + (r - rr(a'"" t'!!'t' + a))',1

Det(DP)=s4. 
)

(8.78)

(8.7e)

since no fixed points exist below the lower rimit, there is no

(8 80)

n:1,3,5,- -. 
. (8 81)

period-1
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equispaced motion below this limit. This observation can also be confirmed by

examining Equation (8.54) and imposing lcos(ør, *ùl<1. This implies rhat

A> d(l- e)llntr(t+e)], which can also be derived by manipul ating Equations

(8.54)-(8.55). The equaüty at the upper limit is a bifurcation condition and will
be discussed later.

(b) For unstable motion (saddle of the first kind) we have,

(ü) Bifurcation condition

Instead of period-doubling bifurcations, .we have

bifurcation. The condition is,

If e=1, we have Tr(DP)=2andDet(DP)=l and thus, its

always +1. This implies that a saddle-node always exists

perfectly elastic impacts.

Stab¡litv plots

(1+e\2
rl- I'\u" )

181

n = I,3,5,...

In this section, Iile are interested in generating stability plots of the period-l motion for
Model I. For equispaced motion, we employed the anai¡ical results obtained previously

and for non-equispaced motion, we generated the results numerically by computing its

eigenvalues using Equation (8.79). To judge the stability and bifurcations of the motion,

we adopted the method given it Section 7.3.1. The input parameters for the numerical

simulations are @ = fr, € = 0.5 and d =10. The results are piotted,inFigures 8.8 and 8.9.

only the

n = 1,3r5r...

(8 82)

saddle-node

(8 83)

eigenvalues are

for the case of
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Note that Figure 8.8 depicts the motion starting on the left-side and, Figure 8.9 for motion

starting on the right-side. As shown in both figures, the curve ABC represents the stable

period-l equispaced motion, and the points A and C are its saddle-node bifurcation. The

dash lines starting at A and C denote the unstable motion pertaining to the saddle of the

first kind for equispaced motion.

observe from graph (a) of the two figures, we have equispaced motion (i.e. q:0.5) for
curve BC and non-equispaced motion once past the bifurcation point C. That is, the

period-l non-equispaced motion are represented by the two branches CDtEtn and

CDzEzFr. Therefore, it can be seen that equispaced impacts become non-equispaced after

bifurcation at C.

From graph (b) of the two figures, the line DEF represents the merging of the two
branches, namely, the points Dr,Er,4 coincide with corresponding points Dr,Er,4.
Observe that Figures 8.8(b) and 8.9(b) are the mirror-image of each other about the

horizontal axis.

From graph (c) of the two figures, we note that they are the same with the initial phase

angle transiated by n in Figure 8.9(c). Observe also that period-doubling bifurcations or

more accurately, grazing bifurcations of the period-1 non-equispaced motion occurs at F1

and F2. The dot-dash lines denote the unstable motion pertaining to the saddle of the

second kind.

8"4"2 k-impacts periodic motio¡r fon Modeh n-V

184

Results of the ,t-impacts periodic motion for atl motion modeis are discussed here, with
the exception of Model II motion since it does not exist. The Jacobian for each of the

motion models is derived and using the method outlined in Section 7.3, tbe stability and

bifurcation of the motion can be determined via numerical experimentations. However,

due to the extremely large number of possible impact combinations, the problem very
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rapidly becomes numerically very intensive. Therefore, v/e will oniy list the Jacobian of the

linearized mappings for the motion models considered.

Model III motion

DP

PP(r)

Model fV motion

_DP
--2

:

= Dpz

.DPo D4 DP3

DPo DPt . D4...DP, . DPo . DP, . DP,

Model V motion

DP

pp(r)

= Dpz

= Dp7

återms

t85

DP4.D4

.DP4 DP1

DP=

DP=

Drr.nr[")

8"5 Nr¡rnerical Ve¡'ifïcations

DP2. DPy') . DPt' PP(mnì... DP,

ttorms

'DPr'nf{^^t

To verify the stability of the periodic motion and to observe the chaotic phenomena,

numerical simulations in the form of displacement-time curves, phase planes, switch-planes

and Poincare mapping sections are presented. To simulate the nature of the stability, the

input parameters for the numerical experimentations are computed rather than prescribed.

In particular, the excitation parameter A, initial impact velocity jt, md initial impact phase

(8.84)

Ëterms

.DPfù -DPr.PP(mn*)

(8.8s)

(8 86)
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angle tp, are computed via appropriate analytical expressions for ø=7T, €=0.5 and

d = 10.0, by assuming the impact to start at the left side of the oscillator, i.e. /, = -d I 2 .

This information is summarized in Tøble 8.1.

Table 8.1

Figure No.

Computed input

!¡ = -dl2 and t,

Figure 8.10(a)

Figure 8.10(b)

Figure 8.10(c)

Figure 8.10(d)

Figure 8.11

data for numerical simulations (, = ,t, e = 0.5 , d = 10.0,

= o.o).

2.2620

3.9140

4.2860

s. i900

8.2520

* Equispaced motion

j,,

-21.6t21 4.5363

-22.6736 5.35s0

-23.7000 5.5573

-27.2962 s.8889

-36.7835 4.4228

Note that due to the choice of the computed input parameters, the fust four motions listed

in Table 8.1 are stable. This is also evidently clear from the results of the numerical

experimentations in Figure 8.10 which depicts the relative displacement-time and phase

plane plots in the relative frame for the Model I motion. Figure 8.10(a) plots the simplest

and the most studied case for the impact pairs, nameþ, the stabie equispaced motion. As

the forcing amplitude,4 is increased, the impact motion becomes nonequispaced and this is

shown in Figure 8. i O(b)-(d).

Further increase of I result in chaos and the relative displacement-time and the relative

velocity-time plots are shown in Figure 8.1 1. For this situation, we have the second saddle

of non-equispaced impacts of the Model I motion. To confirm that the motion is indeed

chaotic, we have also presented its phase plane and the left-right switch plane X.

Q,

186

0.50

0.45

0.390

0.299

0.80

Stability Status

Stable node (+)*

Stable Node (+)

Stable Focus

Stable Node (-)

Unstable 2nd Saddle o
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To get a feeling of the actual motion, ìile have also presented physical motion of the

impact pair for all the cases listed in Table 8.1. This is given in the absolute displacement-

time piots of Figure 8.12. The motion of the oscillator is denoted by the solid lines and the

impact mass by the circles. Note that the first four plots (from the top) pertain to that of
the stable motion and the last plot is that of the chaotic motion. Observe that there is no

repeats in the chaotic motion.

8.6 Conclusions

A theory for a system with discontinuities as applied to the impact analysis of a horizontal

impact pair is developed. Mappings for four switch planes are defined and from these, five

impact motions; Model I, Model II, Model III, Model IV and Model V are derived. The

simplest and most studied case, namely that of the equispaced impacts of the Model I

motio4 is scrutinized in detail. For this impact model, it is shown that period-doubling

bifurcation cannot occur. Using computed instead of prescribed input parameters,

numerical experimentations are performed and the analytically predicted stability is in

excellent agreement with the numerically generated results. Both stable and unstable

(chaotic) motions are generated. To get a sense of the impacts, plots of the physical

motions are also provided.

189



Chapter 8: Motion of a Horizontal Impact Pair

15

10

5

0

-5
-10
-15

15

10

5

0

-5
-10
-15

15

10

5

0

-5
-10
-15

15

i0
tr

0

-5
-10

20

10

0

-.10

-20

H

{J
14
0)

Ë
0)
o
d
Ê"
(n

â
0)

..F)

o
Ø€

190

Figure 8.I2 Fhysical motion for the stable and unstable Model I motion (o o o þ¿ll,
- wall).

10

Time t



(g)

UMg&#ÈÊ
4

åUÞ
{

F
c

ÕHÞ
Ä

{

UøĤ(8)
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Consider the 1-D iterative map

Mug,r¡FR,ACT,4r,s nN x.-Ð Ãranarlw

wherel/is the natural number set. The rxhiterationof f(x,) is denoted as

For l-D discrete processes, it is the simplest nonlinear difference equation that has an

extraordinary rich dynamical behavior, i.e. from stable point to chaos through cascades of

stable cycles. Such a mathematical model has been extensively studied by several

researchers. In particular, May (1976) gave an interesting account of this model for

problems in the biological, economic and social sciences. The metric universality for this

class of mapping is now a well-established phenomenon (Derrida, Gervois and Pomeau

(1979)). Among the early investigators, Feigenbaum (1978, 1980a) studied the universal

behavior of l-D systems and quantitatively determined the universal numbers. These

numbers present the threshold values from period doubling bifurcation to chaos.

Nauenberg and Rudnick (1981) discussed the universality and the power spectrum at the

onset of chaos for l-D iterative maps. Collet, Eckman and Koch (1981) generalized the

period doubling theory to higher dimensions. Zisook (1981) studied the universal effects

of dissipation in the 2-D mapping. The computation of the universal rescaling factors for

both 1 and 2-D maps has been carried to a very high precision by Hu and Mao (1985).

xn+t = f(xr, /t),

lØ) (r, p) = Í(Í("t) (*, p)),

n eN;

f(o) (r,lt) = x.

(e.1)

(e.2)
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Halsey et al. (1986) provided fractal measures and their singularities, and applied them to

characterize strange sets. They studied the fractal of the 2* -cycle of period doubling by

choosingfractalscales Ir=lfaoo,lr=7faio where dpo=2.502907575 isthefactorin

the period doubling for the iterate map xn+r =h,(l-x"). They obtained the following

dimensions:

Do =0.537..., D-* =#=0.75551..., D*- =#-0.377 7s..., (9 3)

where Do is the Hausdorff dimension and D*,D* are the limit dimensions. A more

accurate Hausdorffdimension was given by Rasband (1989):

In this chapter, a highly accurate method to compute the period doubling solutions of a

general l-D iterative map is presented. The technique consists of constructing similar

structures of the period doubling solutions and then applying a renormalizationprocedure

to evaluate the appropriate length scaling factors. For period-doubling solutions leading to

chaos, this approach yields multifractal results of very high precision compared to the

usual multifractal analysis alone. If the critical parameter associated with the Feigenbaum

number is employed, the fractal characteristic parameters calculated will be exact. The

stability status of the computed solutions can also be easily determined. An example is

solved to demonstrate and to assess the accuracy of the procedure.

9.1. Sirnitran Structures i¡r Feniod Ðoubling

ln2
Do =-6=0543 8i...,

hlll I
'"Lt(."*.4))

t93

Consider a dynamical system represented by a famity of l-D maps of one parameter and

which passed through a sequence of period doubling to chaos

xo+r = f(*,, P),

(e 4)

(e.s)
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where p is the parameter. The fixed point x * can be easily

(9.5) by setting xn*t = x,.ff

&,*t _ df l __r
dxn ù,1_ __,

then this fixed point is the critical point of bifurcation. Suppose this solution of Equation

(9.5) satisfies the condition under which it exists, i.e., xr, Sx,+r Srnf, \rye can find the

minimum value ¡:i at the onset of the fixed point. The maximum value of p prior to the

first bifurcation is pi 
^d thus, stable solution of Equation (9.5) can be easily determined

for p.fAi,pi]. for lr> pi, Equation (9.5) exists period-2 biturcations,

If Equation (9.7) has a critical condition of bifurcation at xn+z=x,, similar to Equation

(9.6), i.e.,

determined from Equation

194

then the critical parameter for the bifurcation of Equation (9.7) ¡s p). In a similar fashion,

the stable solutions are evaluated at ¡t.lfi,Ail.me period-2 bifurcation of Equation

(9.5) for p > t4 is given by

xn+z = ÍØ(*,,P)-

&,*z =dÍ"'(r,,p)l = 
fun*zfun*tI 

=_'d\ - ù, l'"=* 
- d-"" e" 1""=,* 

- -"

xn+4 = .f(o\ (*,, p).

ln general, this process can be represented by

(e 6)

To ana)yze this process, we consider the various graphs for the period doubling

bifurcation as depicted inFigure 9.l(a)-(d). It is clear from the squares in the plot there

(e.7)

x,+z^ = .f('^) (*,, p)

(e 8)

(e e)

(e.10)
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exist similar structures in period doubling, in the iterative map Equation (9.5). From the x-

axis of the plot, we can extract the similar structures and these results are summarized in

Figure 9.2. Note that it is easier to compute the parameters þ,/\,ltz etc. via a

renormaüzation group method rather than using numerical techniques. From the similar

structure constructionin Figztre 9.2, Equation (9.7) can be renormalized by rescaling its

map. That is, move the origin to the fixed point inEquation (9.5), by letting Z=x-x*,
and z = aV, where a is the scaling factor of renormalization. Equation (9.7) then becomes

z,+t = f(r,, pr) ,

where the new parameter ¡-1, is given by the function

P, = g(,P).

Equation (9.11) is similar to Equation (9.5). If it generates

we get

Pr=g(,Pr)=g(,g(,P)),

and after m-cycle period doubiing bifurcations, we have

t95

If p^= lt,_l= lt-, the period-doubling process approaches chaos. For p^<p_, the

iterative map, xn+t= Í(*,,¡t),wllIhave m-cycles period doubling bifurcations. The period

doubling length scaling factors are defined as follows:

(e.t2)

period doubling bifurcation,

(e 13)

p^=g(,p^-r)=g'^'(p).

in which the index i e{1,2,..-,m} refers to the ¡th bifurcation of the iterative map and

q e{O,t}. The terms zl-t, 2.q,0"t...,, are computed respectively from:

(e.1 1)

1,, =lri-, - zn, 
-u,1, 

t' =lri - t n"* ,,1;

(e 14)

(e 15)
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Note that in determiniîg zA,o"t-.,t, only two of its three nonzero z,_, which results in

minimum !ti-r- r,-rl are selected. In particular, the length scaling factors of tbefirst period

doubling bifurcation are given by

Ià=*'-xno, Il=xnr-x", I0=x'-xni Q.r7)

II
I

ti-, = Í(ri-r, p,-r), zi-, = f(2) (2,-r, lt,-r).

ll l ll| |r

where as shown inFigure 9.2, x.ro and xu,can be calculated from

*" = le)(x, /t).

(e. 16)

(e. 18)
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In general, for the mth-cycle period-doubling bifurcations,

factor of the similar structure is defined as

The solution of the period doubling for the iterative map Equation (9.5) is given by

[*å,]
lrr"r...r. = xrrrr,..r.-, +(-l) Irrr...r.f^,

where 4o =.ro is its fixed point. Equation (9.20) may also be expressed as

I rrr...r, = I rrr..*^-rl {, = ll ¡;
i=1

the associated length scaling

or more compactly by

x,,,,...,.= x' + É (-r¡[''it.,), ",,,...,,r',i=l

Since Equation (9.22) gives all the solutions of the mth-cycle period doubling bifurcation

of the iterative map, it is clear that of these rnth-solutions, only tbe mth soiutions, namely,

r",",...",, are stable atmth cycle period doubling bifurcation. All other solutions up to the

(m-l)-cycle period doubling bifurcation, i.e., ï",,x"r"r,..., ï",or...",_,, âro unstable. The

usefulness of this analytical form of the result which is currently unavailable in literature is

that, it can be employed to check the numerically-computed solutions. In view of these

stable and unstable results, the chaotic solutions of the period doubling biftrcation of the

iterative map can be conveniently summarized as follows

198

x,,",...,.= .rn + É {-t,['-") nr,,r,

(e. ie)

i=i

(e.20)

i=1

(e.21)

x rrrr...,^ = x rr,r...,__, * (-1)t--o' (¡i)-(¡j 7@-t') ,o ,

(e.22)

(e.23)
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in which Ë is the total number of + =1, i e{1,2,3,...,m} as

scaling factors Il = 4,1à = { and I' = Io remain constant

could also express this equation as

where know, is the number of s, - 1, j e{1,2,3,...,i} for every i, as m+æ. It should

also be mentioned that this similar structure analysis can be just as easily studied by means

of the symbolic dynamics approach.

9.2 Fractatrity of Chaos via Feriod Iloubling Eifr¡rcatior¡

x,,,2..,". = rco + Ë(-t)"-" çt¡¡o çt¿¡u-n) t, 'r=l

For the period doubling bifurcations of i-D iterative map leading to chaos, the fractal is a

multifractal as shown inFigure 9.2. From Equation (9.I4), p. is constant at chaos, i.e.,

ft^ = ft*, and the similar structure of iterative map will become the self-similar structure.

Thus

m + Ø. Note that the length

as shown. Alternatively, one

I'r, = I!, = I,r, i eN, s, e{0,1}.

The chaotic fractal scalings of period doubling are constant, i.e.,

I 
-f 

I 
-ft, - tgt t2 = 11,

From Halsey et al (1986) the multifractal partition sum function is

199

(e.24)

where for the two-scale fractai, n:2, î is a weight parameter and p¡ = Il2 is the action

probabilþ. For the same action in period-2 bifurcation similar structure, we have:

n^q
f =TP'=l-L¿ IÍ

,-t l.I

(e.2s)

(e.26)

(e 27)
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The weight parameter is

Since 4q) = (q -l)Dn, the generalized fractal dimension e becomes

m(r +(r,¡r, ¡("-t)nø)- qnzn_\\=W. (9.30)

Several special cases of the generalized fractal dimensions are given as follows. The

Hausdorffdimension is

1-s 1-s

--r--1
| 

- 
l.Tt Ítto rl

The inforrration dimension is

200

The two limit dimensions a¡e

(e 28)

_ ln2_ D __lnZl)^= -ln1o, D*-= -1"1,

The scaling index is

- -dr(q)- -ln zlt+(t,¡t,)"1

dq (Irlt)" h1o +ln/, '

The singular fractal spectrum function is

Do=-
rn(r + (r, lÐ")

(e.2e)

lnlo

2ln2
' lnlo +1n/,

(e.31)

Í(o) = qq- c(q).

(e.32)

(e.33)

(e.34)

(e.3s)
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For the correlation dimension Q, we have

The characteristic paramsls¡5 of the multifractal can be determined using Equations

(9.29)-(9.36). Note that these relationships are not quite the same as those given in Halsey

et al. (1986) and Cosenza et al. (1989). Since the fractal is constructed from the similar

structure of the period doubling solutions of the iterative map, the scaling factors derived

here are based on a more meaningful approach. As shown in an example, the results

obtained here are more accurate than the previously published solutions.

9.3 .{n Example

D, =Za(q)- Í("(ù)1,=,

In order to explain the similar structure approach for computing the soiutions of the

iterative map at periodic doubling, the following example is considered:

Renormalizing the lth-period doubling bifurcation equation of Equation (9.37) yields,

201

x)*, = p,r:(l- x:),

where the parameter relation is given by

(e.36)

/r, = p?-t-21t,-r-2.

9.3.tr Feriod doubling solutions

x,+t= w,(l-x,).

Let p=3,5 and ftom Equation (9.39), the renormalized parameter h=3.25. Since

Itr>3 which is the threshold value (as determined by Equation (9.6)), the new iterative

map of Equation (9.37) will also exhibit period doubling bifurcations. Invoking Equation

(e 37)

(e.38)

(e.3e)
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(9.39) once again but this time for þt =3.25, yields the renormalizedparameter associated

with the period-2 doubling bifurcation þz=2.06. However, since lrr<3, this map will

not exhibit period doubling bifurcations, and thus for this case, its solutions are stable. The

first fixed point of the iterative map, Equation (9.37), is r"= l-Up and its period

doubling factor are

1

Ii=zi -1- '
lJ¡

_i1
-¿'-títztt-ru 

þ¡_t

ti -t 
2

I o - r - 
-,
lJ ¡_t

For ¡t-3.5, the solution of Equation (9.37) are

x*=1_Up

xo =r* -IåI',

ïor = ro - tlotlt2, xol = xo + IroIî12,

,l

^s¡t2s¡-10

202

I'o =

þ ¡-t

According to the above analysis, the solutions of iterative map r", xo and :cl are unstable

?t p=3.5 but the period-2 bifurcation solutions xor, xoo, xro, ïrr are stable. These

results are tabulated in Table f.i. For the purpose of comparison, the exact period-l

bifurcation solutions of Equation (9.37) which are computed using

2 - lt,-t

2lt,-t

+ J /t-14
2lt,-t

rr =ro +IlIl

are also listed. As shown in Table 9.I,

(e.40)

Íro =ïr -tltlt2, ïro =rr -titit'z

xo=
l+ p- p'-2p-3

(e.4r)

xr=
t+ ¡t+ J7 -r/*3

the similar structure technique for computing the

2¡t
(e.42)
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Sampling
Point

Table 9 .1 Solution of Equation (9.37) at p = 3.5

x
xo

xl

xot

xoo

rro

xu

Doubling
Time

0

I

1

2

2

2

2

Stability
Status

period doubling soiutions for the i-D iterative map yieids excellent agreement with the

exact soiutions. If the period doubling solutions are chaotic at p= ¡t*,this structure will

be a similar structure, and its solutions can be determined from Equation (9.24). Note that

the scaling factors of period doubling forthese solutions are constant. Figure 9.3 lists the

perioddoublingsolutionsoftheiterativemapat p=p-=3.5699456 inabinarytree

format.

unstable

unstable

unstable

stable

stable

stable

stable

Similar Structure
Solution

0.714 285 143

0.417 582 4r7
0.850 005 845

0.373 027 890

0.502 497 502

0.811 163 383

0.870 386 293

Exact
Result

0.7t4 285 t43
0.428 571 428

0.857 142 857

203

xs=0.7l9rrr{

Relative
Error

0.00%

2.56yo

0.83%

ro:0.403", 

{

xoÍ 0.341795...

xr:0.859-, 

{

Figure 9.3 Binary tree for the chaotic solution at p = /t- = 3.569 945 6 . . .

xro= 0.542 5r4 I

t-xor¡ 0.329 845... -l_ ...

roro= 0.368 *44 {
rooo= 0.481 299'..L 

...

xoo,= 0.569 573.'. L ...

r,o,= 0.786 290'.. -_ ...

r,oo:0.825 287 {
\n:0.874 968"'-_ 

..

x..= 0.892197 ... 4rlr l_ ...

xrc= 0.798 238"'

rrr= 0.886 ,18 
{
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9.3.2 Fractality

Taking þ¡ = P¡-t in Equation (9.39), the critical chaos parameter of the period doubling

solutions can be calculated to yield, p= p_ = 3.56i 552 8... and the length scaling factors

are:

Io = Iå = 0.438 447 185-.., I, - /,t = 0.194496 855 ..., IrlIo =0.433 603 840 ....(g.43)

Substituting these length scaling factors into Equations (9.31)-(9.33), several of the

generalized fractal dimensions can be computed and the results are listed in the Tabte 9.2.

To assess the accuracy of these results obtained through renormalization, the length

scaling factors associated with the critical parameter of the chaos /r. =3.569 g4s 6 are

evaluated as follows

Io = Il =0.439 767 373 "', I, = /,t = 0.194 283 973 "', 4/1, = 0.441788 057 ....(g.44)

Table 9.2 comparison of the computed generalized fractal dimension e
D.t

204

Do

Dl

D_-o,

D**

Renormalization
Results

0.585 286 432

0.563 tO9 625

0.840 671 676

0.423 337 537

These length scaling factors are exact and when substituted into Equations (9.31)-(9.33),

yield the exact results of the generalized fractal dimensions. Observe that the solutions

calculated via the renormalization technique agree very well with exact results. For the

purpose of comparison, some of the available solutions of other researchers are also

tabulated in Table 9.2. As shown, the results of Rasband (1989) are not only slightly

larger than those of Halsey et ai. (1986) and Cosenza et al. (1989), but also more

Exact
Solution

0.586 670 729

0.563 547 168

0.843 748 337

0.423 054 580

Halsey et al. (1986) Rasband
Cosenza et al. (1989) lrlss¡

0.537

0.755 5T

0.377 75

0.543 87
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and this can be attributed to the rather crude approximations employed in these models.

The discussion here refers to the plots presented in the next four figures, namely, Figures

9.4-9.7.It will be of interest to compare the weight parameter function z(g) given in

Equation (9.29), using the two different sets of length scaling factors. This is shown in

Figvre 9.4. The generalized fractal dimension D, is sketched in FÌgure 9.5, the scaling

index a(q) in Figure 9.6 and the fractal spectrum function in Figure 9.7.In all cases,

excellent agreement befween the renormalzed and exact solutions and those of Halsey et

al. (1986) marked by the dash line are observed. Additionally, in Figure 9.7, we have

provided an independent comparison in the form of the experimental results of Glazier et

al. (1986) which are denoted by solid circles. Observe that our analytical solutions agree

particularly well with the experimental results.

9.4 Conclusions

Through the construction of similar structures, a new method for the analysis of period

doubling bifurcations in l-D iterative maps is suggested. An example was solved to

demonstrate and assess the accuracy of the procedure. The weight parameter function,

several generalized fractal dimensions, the scaling index and the fractal spectrum functions

are derived. Comparison with published solutions and that obatined via physical

experiments showed that the proposed procedure yields very accurate rezults. In this

sense, the method represents a significant improvement over the currently available

techniques.

205
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Figure 9.4 Weight parameter function r, for the iterative map of Equation (9.37)
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o.75
õ

X
c)d
E 0.60

U)à
H

d
CJ(n 0.45

Figure 9.6 Scaling index a(q) for the iterative map of Equation (9.37)) (- exact

solutions, o o o renormalization solutions, ---- Halsey et al. (1936).
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(1986), @ @ @ experimental rezults (Glazier et al. 1986)).
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In Chapter 9, we discussed the fractality of the chaotic attractor in l-D iterative maps via

period-doubling bifurcations. This chapter introduces multifractals in chaotic dynamics via

z-D horseshoe maps. In chaotic dynamiss, various methods are used for characterizing

the complexity of chaos, such as Poincare mapping sections, po\¡ier spectrum analysis,

Lyapunov exponent and generalized Hausdorff dimension, statistical thermodynamic

approach and ergodic theory, etc. (Renyi (1971), Ott (1981), Eckman and Rueile (1985),

Rasband (1989) and Shigmatsa (1990)). Fractal theory was formally introduced by

Mandeibror (1977). A detailed introduction to multifractals in dynamical systems was

presented by McCauley (1990). Other studies invoiving the application of fractals in

nonlinear dynamics include Grebogi, Ott and Yorke (1988), Bene and Szepfalusy (1988),

Szepfalusy and Tel (1989), Romeiras, Grebogi and Ott (1990), Kovacs and Tel (lgg}),

and Luo and Han (I992a). Our main work here is concerned with the development of a

new fractal theory based on the ¡z-D horseshoe maps and its application to hyperbolic

invariant sets in chaotic dynamics.

10.1 .4l{ew Multifractal Theory in ø-I} Euclidean Space

In this sectior¡ a nel¡/ theory for describing multifractals of the hyperbolic invariant sets is

established.
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n0.1.1 Fractals

Mandelbrot (1977) presented the following definition of a 1-D fractal

NrD = l,

by considetiog u l-D nonfractal segment of unit interval which is divided into M parts,

with each part having a scaling ratio of r=UM, and repeating this process ad infinitum

for i/ non-empty parts (or non-tremas) yietds a fractal. For further details, the reader is

referred to Appendix 4.3. The exponent D is called the Hausdorff dimension (or more

accurately, HausdorñBesicovitch dimension) and is given from Equation (l}.l) as,

where log(') is natural logarithms. Extending the l-D fractal concept to aZ-D Euclidean

fractal body, we consider a nonfractal body of unit square which is divided into M parts in

two directions: Mo and M" pieces respectively in the horizontal and vertical directions.
'we 

assumed that M=MnxM, and their scaling ratios ate rh=UMn and r"=UM,.
Assuming N=Nn xl/" non-empty parts and repeating the process ad infinitum, the2-D

fractal object shown inFigure i0.1 is realized. From Equation (10.1) and assuming that

the fractals in each of the directions are generated independently, we get,

los¡/ loe¡/I t-

logM Iogr'

209

Note that for each of the directions, Norooo = 1 and Nuruo" = 1 and this leads to

(10. r)

NrN"rl'r"4 =1.

(10.2)

.,_logÀ4,_ IogNo
'-'- logMo-- logro'

,-.,_logÀ/,_ logÀ/,
""-GM,-- Lrgr"

(10 3)

(10 4)
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ffiffiffiffi
ffiffiffiffi

210

ffiffiffiffi

Thus the fractal dimension of the 2-D fractal object is

D=Dn+D".

EFRfi

EEEE

EHHg

FEtsE FFEfr ñFIfr
HEHE HgEg gEãH

BEHE HHEH H$gg

HHHä HËHE Hff$g HËflË
BHHg HEEE EHËg HEãE
EgHü EtrF* HHFH frFgF

Generalizing the concept to handle the computation of the m-D fractal dimension of an m-

D fractal body where m < n, we conclude as follows.

Figure l0.l

EHflg gËHH frHEg gE$E

BHHg åEHH ffiHËg HËilfl
EEg$ EEBE EEEg EEËg

2-D fractal object.

Dividing an n-D unit nonfractal geometric object into M sub-objects in the m-D

Euclidean space leads to M =frÏrU,, where we have the scaling ratio r, =llM,..If

(10.5)
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there are iy'nonempty sub-objects corresponding to the m-D

have l/ = f1:, { . Assuming the fracrals in each of the

independently, we have,

N,r,D' =1,

.,_logt/,_ log4
' logM, logr,

The fractal dimension of the n-D objects is

D = (n- m)+2n, .

t-1

To demonstrate and verify the suggested procedure, we will compute the fractal

dimension of the triadic Koch surface depicted inFigure 10.2. From Figure 10.2(a), we

have n=2,m- 1,^{ = 4,Mt=3 (or alternatively, 7t= m =2,N, = 4,M, =3,N2 = Mz).

From Equations (10.6)-(10.7) we get Dr=log4/og3 and Dz=l and thus, the fractal

dimension of the triadic Koch zurface is

Euclidean space, then we

directions are generated

2tt

Note that this fractal dimension is identical to that obtained using the traditional approach.

D = | +log4 - z.z6rtsg5...
log3

(10 6)

(10 7)

(a)

Figtre 10.2

(b)

Triadic Koch surface

(10.8)

@@@



Chapter 10: Multifractals in Chaotic Dl.namics via m-D Horseshoe Maps

î0.1,.2 .4 Model fon Multifractals

The formalism developed up to now, is valid only for uniform fractals. To extend the

method to handle m-D nonuniform fractals (or simply, multifractals) in the ¡¡-D Euclidean

space, we modify the models of Halsey et. al. (i986) and Leung and Luo (1992). We

consider that there are ¡/, sub-objects having n, scales in the ¡th direction, and theTth-

scale has a measured length 4;, scale probability weight p¡ and scale numb er nü. The

multifractal partition function is given by,

where r,(q) is defined by introducing the following weight parameter for multifractals in

the lth direction:

r,(q) = (q - t)D,(q) ,

and the partition function behaves as,

T,(",,q) =irro; =r,

212

Furthermore, from thermodynamics consideration, the scaling index in the ith direction is

or=#,

and applying the Legendre transform yields,

I o at .r; < r,(q),
f,(r,,ò=1 oo atrr>t,(q),

lconstant dt r, = c,(q).

in which the f,(a,) is a fractal spectrum in the ith direction given by,

(10.e)

(i0.10)

r,(q) = a,q- l(a,),

(10.1 1)

(10.12)

(10.13)



Clrapter 10: Multifractals in Chaotic Dynamics via tn-D Horseshoe Maps

dl _^.
, -4,dd,

Summarizing the results for all the directions, \ /e arrive at the following equations for the

rz-D multifractal theory nn-D Euclidean space:

m

r(q) = (, - r)(q -l) + Z r,(q),
r_-1

L0.2 Fractals Generated by a L-D Horseshoe lterative Map

In this section, fractals generated by a 1-D horseshoe iterative map in chaotic dynamics is

studied. Luo and }Jan (1992a) analyzed the fractality of chaos caused by period doubling

bifurcations for l-D iterative maps. Tel and his co-workers (1989, lgg}) studied the

fractality.of fully developed chaos. Beyond the fully deveioped chaos of i-D iterative

maps, we have the chaotic state produced by l-D horseshoe maps, and it is proposed to

discuss its fractalþ. Initially, we will look at the fractality of chaos generated by a uniform

l-D iterative map and then, we will investigate the multifractals produced by a nonuniform

1-D iterative map.

10.2"L Fractals in a ¡¡nif,orr¡l X.-Ð Canton-horseshoe

o =f-o,,
i=l

213

f(a)=Z¡@,)
i=l

(10.14)

(10.1s)

Consider a l-D iterative map that possesses a uniform horseshoe structure, namely,

uniform cantor structure in the phase space x,*r = .f(*,,1t) where ncN andp is

(10. i6)

(10.17)

a

a



clrapter 10: Multifractals in chaotic Dynamics viam-D Horseshoe Maps

control parameter. Note that .ðy' expresses a natural number set. Consider for instance, the

tent map/in the unit interval 1= 10, l] given by,

wherep > 2. The phase gÍaph and fractat structure are procreated using Equation (i0.1B)

for unit interval 1 as shown in Figure 10.3. The two sub-intervals, /o and I, n Figure

10.3(a) are obtained f¡om the first iteration of Equation (10.18) with xn*r S l. That is,

Io = It = U lt. Therefore, for the first iteratio n of Equation (I0.18), its invariant set is

lr,*, 
= ro, fo, *n <!,

f: 
1r,., 

= p(r-)c,) ro, ,,>!.

similariy for the second iteration, we have lt)(r)=UIo,o,, and o, e{o,t} for i e{1,2}.

Repeating this iteration ad infinitum leads to its invariant set as follows,

211

where lò(t)=U|o,o,...o,, ând o, e{l,z} for i e{1,2,...,n}.

ratio and the number of the non-empty interval are

,=lr l- I I, - I'otoz...onl- ur,l

^f-anN =2.' j

,f(I) = Iow Ir.

(i0.18)

L=nÍ@(0,
n=Q

The Hausdorffdimension of the invariant set shown in Equation (10.20) is

4=LTH=ffi

(10.1e)

(10.20)

For any value n, the scale

(10.21)

(r0.22)
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A BC D

Io

f
@

Ir /Nilh

(a)

A

215

A

ABCD

/oo Iu Irc /lr

Io Il

BC

ABCD

rooo 1oo, Ioro lon /roo lror /rro /ru

Figure 10.3 Phase graphs and fractal structures generated viaEquation (i0.18).

L0.2,2 F¡'actatrs in a non¡¡nüfor¡¡l l-D Cantor-horseshoe

D

ABCD

Orgrnal Intewal

D

(b)

Fi¡st Fractal Level

Consider a i-D iterative map to have the multiscale Cantor-horseshoe structure, for

instance, an asymmetric tent map as follows,

Second Fractal Level

Thi¡d Fractal Level

(c)
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where the control parameteÍs /rt, pz saúsry ptpz2(pr*pr). Figure 10.4 shows the

phase graph and fractal structure procreated using Equation (10.23). Observe that due to

the nonuniforrr structure, we now have a two-scale multifractal. Therefore, after the first

iteration of Equation (10.23) on the original interval / = 10,1], i.e., f(I) = /o u 1,; we find

that the lengths of two new sub-intervals are not identical, namely, rr=f.ol=l/þr,

r, =Vrl= Il lt". Repeating this iterative process ad infinitum results in an invariant set,

f:{
xn+t = /ltxn

x n+t = pz(l - x ,) for

^u^ïor xnSL,
l\ * lrz

u^tz
'-n - /\ t ltz

where "fþ)(Ð--Uro,o,.',, and o, e{t,z} for i e{1,2,...,n}. From the

process, the probability of appearance for the two scales is

p, = p, =:.

2r6

Applying Equation (10.9), a partition function for the horseshoe invariant set of Equation

(10.23) can be computed from

1\ = n/(,)(/).

(10.23)

from whiclr, we get

/ t rV

f=lþt*/tz1-1l)s )q I
./

(r0.24)

iteration

(10.2s)

log2

(r0.26)

(r0.27)
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A BC

Io

f
@

Ir il[
D

(a)

zt7

A
I o Il

A BC

A

roo lot 4o Il
ABCD

looo loor loto 1or, lroo lror lrro 1',

BIC

Figure 10.4 Phase graphs and fractal structures generated via Equation (10.23).

From Equations (i0.10)-(10.13) and (10.26), the fractal dimension, scaling index and

fractal spectrum are given respectively by:

Ito

(b)

Orginal Interval

Fi¡st Fractal Level

ABCD

D

D

Second Fractal Level

Third Fractal Level

(.)
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Imposing Ft S lrz in Equations

dimensions,

4=o'

Dq _ rlog2-w'
(tti + tti)tosz

pí log p, + pjlog p,'

f(o)=aq-4q).

d-

and the Hausdorffdimension Q is deterrrined using

ltroo +pìDo =1.

Fractal characteristics of the nonuniform l-D Cantor-horseshoe set are plotted in Figure

10.5. The following line notations are employed in the graph:

(10.28)-(10.30), we get the following specific fractal

D^= D*=
to9 þt

solid line for p, = 2, lrz = 3,

dash line for p, = 2, ltz = 4,

dash-dot line for Ft = 3, lt, = 4.

278

(10 28)

Figure 10.5(a) shows the weight parameter r versus the order of moment, q, Figure

10.5(b) the fractal dimension Dn versus q, Figure 10.5(c) the scaling index ct versus e, and

finally, Figure i0.5(d) the fractal spectrum /(ø) versus c¿. Unlike Figure 9.7 where our

theoretical solutions have been compared with those of physical experiments, here we can

only provide theoretically computed limiting values such as the Hausdorff dimension, since

experimental results are unavailable. From Figare 10.5(d), we see that the Hausdorff

dimension Do=0.788,0.674,0.556 for the three combinations of pt,ltz. These values

can also be directly computed fromEquation (10.32), using a noniinear solver.

log2
logpr'

(10.2e)

(10.30)

(10.3 1)

(1032)
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10.3 Fractals of the 2-X) Horseshoe

In this section, we introduce 2-D fractals based on the Smale horseshoe map. As before,

we will first consider fractals of the uniform horseshoe set, and then f¡actals of the

nonuniform horseshoe set.

tr0.3.1 ,{ uniforrn Srnale honseshoe

The Smale horseshoe arising from the transversely homoclinic orbits via the Poincare map

is very important essential fo¡ describing the dynamics in the neighborhood of the saddle.

To analyze the fractality of this 2-D invariant set, we consider the original 2-D unit square

n={@,ù eR'?lo<x<1, 0<y<1} anddefineamapping f .Ð-+42. Therefore, weget

(Wiggin (1e88)),

220

,[(;.:',) 
= (l')G) .n Ìi.,

l[,;:l ) 
= (-J !.)(;.).0'n ä,

where 0<r.<U2, p>2. From Equation (10.33), we can define two rectangles in the

horizontal direction:

Applying/to these fwo horizontal rectangles produces two vertical rectangles. That is,

Ho={@,y) =Ã'lo<r<r, o <y<Up}, I
H, = {(r,y).R' I o < x < 1, t-tl p=/= 1}.-J

f(Hr) =vo = {{r,ù=R' I o < x < 1., o < y <r}, 
I

f(Hr) =4={(r,,v) .R' I r- ).<x < 1, 0 =/= 1}.f

(10.33)

(10.34)

(10.3s)



Chapter i0: Mr¡ltifractals in Chaotic Dynamics via m-D Horseshoe Maps

ffi ffi,"m

To construct the Smale horseshoe that intersects between a vertical invariant set and a

horizontai invariant set, we fust apply/ad infinitum to the unit square,S, namely,

Figure 10.6 Vertical invariant

tr, = )-f(') (D) = U (.f(4_,...,_r )n 4_, ) 
: 

l)v,_,...,_0...
n=l r-¡d s_¡d

i=1,2,... i=1,2,...

= {p = @,y) . olfc'.,) @) .4_,, r-, e s,i = r,r,.. .},

where 5={O,t}. This results inthe vertical invariant set as shown inFigure 10.6. Note

that the fractal fo¿s ¿ sçaling ratio r* = l" and its Hausdorffdimension can be computed by

set procreated via Equation (10.33)

f
*-&.-
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Since the vertical invariant set does not have fractais in the y-direction, Drr=\.

Therefore, the resultant Hausdorff dimension for the vertical invariant set is

Note that Equation (10.38) is identical with the expression obtained by Guckenheimer and

Holmes (1983) using a different approach.

n log2
uor---.

rcgL

log2D= Do,¡Dor=l-ffi

(10.36)

(10.37)

(10.38)
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ffi r.''m J-Gt)

Figure 10.7 Honzontai invariant set procreated via an inverse map of Equation (10.33).

In a similar manner, the horizontal invariant set can be reprocreated via the inverse map

f-t) acting on the unit square,S, that is,

ro

Ar = )¡{-')çÐ= Un=t i=ii

The result is sketched inFigre 10.7 where its scaling ratio rr=Ult. The fractal of the

horizontal invariant set in they-direction has a Hausdorffdimension of

= {r = @,y) . olÍØ @) . H,,, r, e,s, I = o,\,2,...}.

)17

(f(u,, ,r...)nø". ) 
=

The resultant Hausdorffdimension of the horizontal invariant set is thus given by,

Do =t.l??' (10 41)
Iog p

The intersection of the vertical and the horizontal invariant sets yields the Smale horseshoe

which is shown inFigure 10.8. That is, we have:

l.Jã"0...,o...
s-¡ €S
i=|,2,.-'

Do, =
log2

logp

(10.3e)

Ä. = A¡, n Àr, = l"t@ @) .

(10.40)

(r0.42)
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ffi

m
Figure 10.8 Smale horseshoe generated by iteration of Equation (10.33).

The Hausdorff dimension of the Smale horseshoe procreated via ad infinitum n iterations

of the 2-D map f on the unit square S is:

ffi

ffi

D= Do,¡Do,=^rr(#, #r)
Figure 10.9(a)-(c) shows respectively the Hausdorff dimensions

horizontal invariant sets, and the Smale horseshoe.

ffiw
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ffiffi

ffiffi
ffiffi

ffiw
Wffi
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Eg @g

g6 øø
E8 @E
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øø øg
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øø gø
øø qg

qE 86
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øê s6
8¿ø øE
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4 r.e
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7.4

2'o+ì

f iqìl' o,' þ

2.0

1.8

1.6

L4

(a)

Figure 10.9

for the vertical and

(10.43)

Hausdorff dimension for the uniform Smale horseshoe.

(b)
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10.3.2 A nonr¡niform Smale horseshoe

In this section, we discuss the multifractality of the nonuniform Smale horseshoe. Consider

a map for nonuniform Smale horseshoe given by

where 0<x¡<112 and /r,22 and i={t,z}. Note that rrom Equation (10.44), two

separate rectangles in the horizontal direction can be defined:

ü:l)=[î i,,)(;") .n H.,

[":l) =a:' i,)û.).[":) .n ä1

Applying/in Equation Q}.a\ to these two horizontal rectangles produces two verticai

rectangles,

Ho ={(*,y) .R' I o =, < t, o <y <U pr}, 
ì

Hr={(r,y) €R'lo=r<1, t- Upr<r=r}J

aa.l

Applying maps / and /{-tl ad infinitum to the unit square ^9 
yields the Smale horseshoe,

that is,

Í(ur)=Vo --{(t,ù .R' lo <¡ < tr, o<.y < i}, I
Í(Hr)=4 ={(r,.v) eR2 | i - xrsx < 1, 0 =/= t}.1

(t0.44)

IVe will fust present multifractal results for the vertical rectangle invariant set, followed by

the horizontai invariant set. Then we will add these two sets of results to get the

multifractai characteristics for the nonuniform Smale horseshoe.

À = r\nr-rÀ¡r = n;.l,ø= [f=Jt 
',,r1]n[Ör,",(Ð)]

(10.4s)

(10.46)

(r0.47)
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Observe that the vertical invariant set of Equation (10.44) has two scaling ratios t, = A,

and rr, = lz and probability weight pt, = pv = 112 . Therefore, from the l -D multifractal

theory, its partition function in x-direction is

I ^_t, ,L_^", \nr -lLtr*-r-+ " | =l-" [2u zn )

Re-expressing Eqaation (1 0.48), we have

The multifractal dimension, scaling index and fractal spectrum for the vertical invariant set

in the x-direction are

q- Iog(x;" +2;"')

225

log2

D_

Next, we consider the multifractality of the horizontal invariant set of Equation (10.44) in

they-direction and the results are,

ç log(rr"'+U")-logz'

(U"' + 4 ')togz
* 1r" log2", + l;"' log.tr"r'

r,log2

(10.48)

f,(o,)= d,g-r,(q).

(10.4e)

q-
loe(pí' + /t;')

D,,

(10 50)

lo92

Ioe(p"i' + ui')-losl

(pi' * a"r')losz

t,log2

dr=

(i0.s 1)

pi'logpr+ pi'logp,

(10.s2)

(io.s3)

(10.54)

(10.55)
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We can now suÍtmarize the multifractal characteristics for the verticai invariant set, the

horizontal invariant set and the non-uniform Smale horseshoe in Table 10.1.

Table l0.I Multifractal characteristics for 2-D nonunifor¡n invariant sets

Vertical Invariant Set

f("r)= drQ-"r(ø)

Tq=g-l+Tn*,

Dn =I+ D*,

cr,=I+dÞ

"f(a) =L+ f(a,).

Horizontal Invariant Set

tq=Q-l+îry,

Dr=1+ D*,
(i0.57)

The multifractal characteristics of the Smale horseshoe tn Equation (10.59) are plotted in

Figure 10.10using þr=4 and þz=5,1r=U2 and lz=U3.

10.4 Conclusions

226

d. =I+ d,

.f(a) =t+ f(a,).

(1 0.56)

A theory for investigating multifractals in chaotic dynamics is developed via rn-D

horseshoe maps in this chapter. We first examined and derived the results for l-D uniform

and nonuniform Cantor sets, and then followed by the 2-D uniform and nonuniform Smale

horseshoes. The various fractal characteristics are studied. Plots of these results are also

provided.

T=TrlTr,

Du=Dn*+D*

a=ar*dy

Smale horseshoe

(i0.58)

.f(a) = "f(",)* ¡("r)

(1o.se)
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Cr¡aprrn ãl

Corocrusx0Ns

This thesis is concerned with the analytical modeling of bifilrcations, chaos and

multifractals. The objective was to carry out theoretical studies of these areas for nonlinear

dynamic problems arising from engineering applications. To verift and assess the

performance of these analytical models, comparisons with published solutions and those

obtained via numerical simulations are performed. In all cases, good to excellent

agreements are observed. One of the notable achievements of this doctoral research is the

demonstration of the abilþ to analytically predict bifurcations and the onset of chaos by

employing computed instead of prescribed input parameters in numerical simulations. This

abilþ is very beneficial as it can significantly reduce the amount of numerical

experimentation required to simulate the desired nonlinear dynamiss phenomena. From an

engineering point of view, this would be a very useful tool for nonlinear analysis.

The chapter is organized by first presenting a summary of the achievements and

conclusions of the three main parts of the research, followed by a brief discussion on some

unsolved problems and future work.

1X."1 .{chieverner¡'ts and Conch¡sions

In Part I, we focused our investigation on the modeling of bifurcations and chaos in

continuous systems by solving the Duffing oscillator. The main achievements are as

follows.



Chapter I l: Conclusions

@ An improved method of harmonic balance for handling stabilþ and bifurcation of
periodic solutions of damped Duffing oscillators is presented. In order to substantially

reduce the amount of numerical experimentation, the input data are computed rather

than prescribed as is done traditionally. The number of numerically determined stable

and unstable solutions agree exactly with the analytical predictions.

Chirikov overlap criterion and renormalization group technique are used for the first

time to independently derive the chaotic condition near a subharmonic resonant orbit

for the undamped Duffing oscillator. The analytically predicted chaos by these fwo

methods is confirmed numerically and perfect agreement in their numbers of

subharmonic resonances is observed. Chaotic motion of a weakly damped oscillator is

studied using the Melnikov method. Plots of the Poincare mapping section indicate the

presence of strange attractors in the damped system.

A new method based on the incremental energy approach is developed for the

modeling of stochastic layers near the separatrix. Analytical expressions for the outer

and inner strengths of the stochastic layer for the Duffing and forced planar-pendulum

oscillators are obtained. Good agreement between the analytical results computed

using the Chirikov overlap criterion and the renormalization group technique on one

hand, with our proposed incremental energy method on the other, is observed,

particularly at the lower-order resonances. Numerical simulations confirm the number

ofanalytically predicted resonances generated for both the oscillators.

A new method based on the incremental energy approach is developed for the

modeling of resonant layers in nonlinear dynamics via an investigation of the Duffing

oscillator. The appearance, disappearance and accumulated disappearance strenglhs of

the resonant layers are derived. Comparisons between the proposed procedure with

the Chirikov overiap criterion, the renormalization group technique and numerical

simulations are performed, and good quantitative and qualitative agreements are

observed for all four types of Duffing oscillator.

229



Chaptef 11: Conclusions

* Based on its discrete mapping, the universai character of the Duffing oscillator is

studied for the first time. The approach involves a Naive discretization of the

differential equation of motion and the subsequent application of the cubic

renormalization on its discrete equation. Very good agreement is observed between

the analytical predictions and the numerically simulated results of the mapping. The

jump phenomenon and the strange attractor are clearly seen in the cascades of
bifurcations of the damped oscillator.

In Part II, the stability and bifurcation of periodic solutions of a discrete system are

investigated. A bouncing ball and a horizontal impact pair subjected to harmonic excitation

is prescribed. The following are the main achievements.

ø Based on the differential equation of motion of a ball bouncing on a massive vibrating

table, the stability and bifurcation conditions are derived for the first time. Mappings

for up to period-/r motion are obtained. Three types of stable motion are found: stable

node (+), stable focus and stable node (-); and two types of unstable motion are

observed: saddle of the first kind and saddle of the second kind. From the Poincare

mappings of the unstable period-l motion, the two saddles are shown to possess

identical Smale horseshoe structures. This is not necessarily true for the higher

periodic solutions. Plots of the physicai motion are also provided.

230

A theory for a system with discontinuities as applied to the impact analysis of a

horizontal impact pair is developed. Mappings for four switch planes are defined and

from these, five impact motions; Model I, Model Ir, Modei trI, Model rv and Model

V are derived. From a detailed scrutiny of the equispaced impacts of the Model I
motion, it is shown that period-doubling bifurcation c¡nnot occur. Using computed

instead of prescribed input parameters, numerical experimentations are performed and

the analytically predicted stability is in excellent agreement with the numerically

generated results. Both stable and unstable (chaotic) motions are generated. To get a

sense of the impacts, plots of the physical motions are also provided.



Chapter l1: Conclusions

Part Itr'presents our research in the area of multifractals in chaotic dynamics. New modeis

for the construction of multifractals and analysis of their fractal characteristics are

developed. The primary achievements are described as follows.

ø Through the construction of similar structures, a new method for the analysis of period

doubling bifurcations in l-D iterative maps is suggested. An example was solved to

demonstrate and assess the accuracy of the procedure. The weight parameter function,

several generalized fractal dimensions, the scaling index and the fractal spectrum

functions are derived. Comparison with published solutions and that obtained via

physical experiments showed that the proposed procedure yields very accurate results.

In this sense, the method represents a significant improvement over the currently

available techniques.

ø d theory for investigating multifractals in chaotic dynamics is develope d via m-D

horseshoe maps. We fust examined and derived the results for l-D uniform and

nonuniform Cantor sets, and then followed by the 2-D uniform and nonuniform Smale

horseshoes. The various fractal characteristics are studied. Plots of these results are

also provided.

1L.2 Unsolved Froblems and Future \ffork

231

During the course of carrying out this research, severai unsolved problems have been

identified and are summarized in this section. Some of these unsolved problems can be

treated as future work. Additionally, there is a conspicuous lack of actual physical

experiments to verify the modeling of chaos and other nonlinear dynamics phenomena,

* One of the key unsolved problem in this work (and also, for that matter, in nonlinear

dynamics) is the ability to model multi-degrees of freedom systems. Since such

systems are more realistic, the solutions obtained are not oniy more useful, but also,

more accurate. However, this is an extremely difficult and complex undertaking.



Chapter l1: Conclusions

ø Much of the work described in this thesis pertains to the Duffing oscillator. It would

be interesting (and not necessarily difficutt) to extend the analytical methods to other

types of common engineering systems such as the van der pol oscillator.

For strongly damped systems, there are no anal¡ical methods for the prediction of
bifurcation and the onset of chaos

Well established methods such as the Chirikov overlap criterion and the

¡snsrmalization group technique are able to capture approximately the primary

resonance, whereas our proposed incremental energy approach is able to exactly

model the primary resonance. However, our incremental energy method suffers from

one minor drawbaclq namely, the effects of secondary resonance have not been

adequately considered.

The analytical prediction of chaos in discrete oscülators is an area that needs

addressing. Currentl¡ the most popular approach is to treat zuch systems by solving

their equivalent mappings. However, it is not necessarily clear if the mappings actually

represent the physical systems. A better approach is to employ the differential

equations governing the discrete systems, but this method can be mathematically

intractable.

It can be very challenging to simulate the anal¡ically determined higher periodic

solutions of discrete systems. This is due to the extremely large number of possible

combinations of their motion modeis. Not only an efficient book-keeping technique

needs to be developed to keep track of each of the motion models, but it is necessary

to address the requirement for very intensive computer memory consumption.

It is also extremely difficult to model multi-discrete variables even in single degree of
freedom discontinual systems.

Multifractals generated at the onset of chaos for m-D iterative maps (non-horseshoes)

have not been investigated due to the extreme difficuþ in their construction.

)1)



Chapter I 1: Conclusions

ø fr theory for constructing multifractals for chaotic and strange attractors in continuous

systems is still unavailable.

Further identification and application of fractals in engineering problems need to be

addressed. Currently, some of the most popular usage of fractals in engineering

include strength characterization, fracture propagation and fluid turbulence modeling.
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Appendix A: Basic Theories in Bifrucations. Chaos and Fractals

autonomous and non-autonomous systems. Note that the vice-versa is not necessarily

true. That is, not all asymptotic solutions are due to bifurcation. Consid er a n-D system of
differential equations with m-D parameter p

where xe,Øn, lr€,ø'o. The equilibrium solutions of Equation (4.1) are determined

byf (*,/r)=0. If Df(x,p)=ö(*,p)le at an equilibrium point(xo,¡;o) has a zero

eigenvalue, several branches of equilibrium may be ensue; and this point(xo,po) is catled

the bifurcation point. We will now consider bifurcation of continuous dynamical systems

in one- and two-dimensions.

.{. 1. I (a) One-dirnensional systerns

Several typical bifurcations of l-D dynamical systems are presented here. Note that stable

solutions are marked with the solid line, while unstable solutions are indicated by the dash

line. Figure 4.1 depicts the bifurcation conditionDf (xo, fto) = 0 in the complex plane.

* = .f (*,lt) ,
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(A1)

(i) Saddle-node bifurcation

Figure A.I Eigenvalues of Df (xo,¡tr)

--.# Re

in the complex plane.
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Consider the following example of saddle-node bifürcation,

x= p-xz, (A.2)

which describes for instance, the dynamics of snap-through bucküng of an arch. Its

bifurcation diagram is illustrate d in Figure L2(a).

(ii) Transcritical bifu rcation

Consider an example depicting transcritical bifurcation, that is,

x= lß_xz,

Equation (4.3) can be used to describe the dynamics of buckling

bifurcation diagram for this case is sketched in Figure A2(b).

(iii) Pitchfork bifi¡rcation for stable-symmetry

Consider the following equation

x= l&_xt

237

representing for example, the dynamical Euler buckling problem in structural engineering.

Its bifurcation diagram is given in Figure A.Z(c).

(iv) Pitchfork bifu rcation for unst ab le-syrnmetry

The following equation governs the dynamical buckling of beams, plates, shells, etc.,

(A3)

of a frame. The

Its bifurcation diagram shown in Figre Az(d). Note that other

systems, such as the symmetric break, are not covered here.

¡= ¡a+x3

(A 4)

(as)

bifurcations for l-D
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(u)

Figure A.2 Bifurcation diagrams: (") saddle-node bifurcation, (b) transcritical
bifurcation, (c) pitchfork bifurcation for stable-symmetry and (d) pitchfork
bifu rcation for unstable-symmetry.

A.1.1(b) Two-dimensional systems

Next we consider 2-D systems. Once again, several typical bifurcations are outlined.

B iÍur c at i on s at n on hyo e r b o li c e qui I i b r i u m s o lu t i on s

Consider the nxn matnx Df (*r,pò of Equation (A.l) at the nonhyperbolic equilibrium

solution. Assume it has a zero eigenvalue corresponding to eigenvector r, and similarly, its

transpose, namely, Df(*g,¡to)r has a zeÍo eigenvalue corresponding to eigenvector w.

238
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Furthennore, suppose that Df (*0, p) has k eigenvalues with negative part

and(n - k -l) eigenvalues with positive real part, then we say that Equation (A.l) exhibits:

(i) saddle-node bifurcation if

wr ¡r(xo, po) t o, w'lnt ¡(xo, pr)(v,v)]* o ,

(ii) transcritical bifurcation if

*' fr(ro, po) = o, wrln¡(xr, ¡to)vl+ 0, and wrlo2 ¡(xo, po)(v,v)l* 0 , (A 7)

(iii) pitchfork biturcation if

Note that the bifurcations at the nonhyperbolic periodic orbits are quite similar to the

bifurcations at the nonhyperbolic equilibrium soiutions.

*' .fo(*,, po) = o, w'ln¡(xo, p)vl+ o 
I

w'ln' ¡(xo, po )(v, v)] = 0, w' lD' f(xo, po)(v,v,"¡] * oJ

(A 6)

(a)

Figure L3 Hopf bifurcations: (a) supercritical and (b) zubcritical.

(A8)

(b)
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-l
"l

S addle-no de biñlrcation

210

Figure A.4 Stability and bifurcation diagrams for a 2-D system.

Hop-f bifurcations at equilibrium solutions

If the nxn matnx Df (xo,p) of Equation (A.1) at the equilibrium solution has a simple

pair of pure imaginary eigenvalues and all other eigenvaiues have non-zero real part,

Equation (4.1) will exhibit Hopf bifurcation af lto. Hopf bifurcations are of two kinds:

supercriticai Hopf bifurcation which has a stable limit cycle and subcritical Hopf

bifurcation which has an unstable limit cycle. For a 2-D dynamical system, Hopf

bifurcation is sketched in Figure 43. Engineering examples of this type of bifurcation

,* 4 Im A Focus-node separatrix.l* I

"l Re *î**

MA
I
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includes, the galloping vibration of a fluid-structure problem and the dynamics of a

spinning shaft system.

Taking a 2-D dynamic system as an example the bifurcation conditions and stability

condition are summarized in Figure 4.4. Note thar we have, Det(nÍ) = Det(Df (xo, ¡t))

nd Tr(Df) = rr(n¡(xo, þò)

G I o b a I b ifur c ati on s (hom o c I i n i c b ifu r c a ti on s )

Global bifurcations at equilibrium solutions are characterized by the lost of transversalþ

between the stable and unstable trajectories. Using Melnikov method, homoclinic

bifurcations can be investigated. For many continuous systems, their nonlinear

characteristics can be qualitatively studied via discrete maps, such as Poincare mapping

and energy iterative map. 'We will present bifurcation and chaos analyses of discrete

dynamical systems in a later section.

^4.1.2 Chaos

Here we look at some basic concepts of chaos and also, examine some anaiytical methods

for predicting its onset in continuous systems. We will first ciassify chaos and then we will

attempt to define it. Traditionally, chaos is divided into two types: chaos in a conservative

system and chaos in a dissipative system, as depicted inFigure A.5.

211

Chaos in a Conservative Svstem

Figure A.5 Classifications of chaos.

Chaos in a Dissipative System
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Some methods of chaos analysis are valid only for conservative systems (e. g. Chirikov

overlap criterion) and some for both conservative and dissipative systems (Melnikov

method). Intuitively, chaos can be defined in terms of the dynamical behavior of orbit pairs

in the phase space. If these initially close together orbits move apart exponentially, we

have a chaotic flow. Mathematically, we say that theflow of trajectories in a given region

of phase space exhibits deterministic chaos if its KS entropy'^ is positive (Krylov (1950),

Kolmogorov (1958), Sinai (1959, 1963)). That is, the flow of trajectories (in the phase

space) intersected in the neighborhood of a hyperbolic fixed point. For regular motion, the

KS entropy is zero and for random motion, it is infinite. Adle¡ Konheim and McAndrew

(1965) introduced the notion of T-entropy (topological entropy) which is not dependent

on metric scales as in KS entropy. Shaw (1981) proposed a new characterization of chaos

based on information via the information production rate. Unüke the KS and T-entropies

which can only be zero or positive, this information production rate can take positive and

negative values.

Many researchers believed that horseshoe maps are fundamental to chaos models of
dynamical systems. One prototypical map in nonlinear dynamics is the Smale horseshoe

which can be constructed via a linearized map in the neighborhood of the hyperbolic fixed

point. That is, a map f. from a unit square of phase space defined by,

212

,,{

t

with 0 <X"<0.5, p>2.At the hyperbolic fixed point, a dynamical system displaying such

behavior is said to exhibit sensitive dependence on initiai conditions. Also, from a fractal

Ho: (;.:',)=(i ')(;")

E:l)=[Í i)(").[,1)
Ht:

We shall discuss more about this KS entropy in a later sectiot

(A.e)
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point of view, the complicated geometrical

fractional dimensions (Luo and Han (l99ab)).

the motion on them is chaotic.

A."1.2(a) Ðetermination of chaos

Criteria for determining chaos are basically of two types: empirical and theoretical, and

some of the principal ones are Lyapunov characteristic exponent, fractal dimension

characterization, Poincare mapping and Fourier spectra of trajectories. These criteria can

be verified through either physical experimentation or numerical simulation. In this paper,

we will concentrate on the most popular technique; namely, the Lyapunov characteristic

exponent method.

Lvapunov C haracteri stic Exponent

As explained earlier, chaos is said to occur when the o¡bit pairs diverges exponentially,

and the Lyapunov characteristic exponent mea$lres the rate of this exponential

divergence. A positive exponent implies chaos, while a zeÍo or negative exponent indicates

the motion is regular. For a detailed derivation, we consider the following map,

structures can be charactenzed as having

They are termed as strange attractors and

243

which will result in a chaotic motion. The Lyapunov exponent )"(xo)

divergence as sketched inFigure 1-6.

Consider the neighborhood of the pointxo

Equation (4.10). Setting 
" 

= ll^roll, we have

xn+t = -f (*,),

lla'o¡¡""'t',) = ll/"(ro + A'r) - ¡'(rr)ll,

in the phase space which

(4.10)

measures exponent

is acted on by

(A 11)
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\ryhere ll( )ll aenotes nonn. In the limits e = ll^rrll-+ 0 and iy' + co , Equation (A lt)
leads to the correct formal expression for Z(xo) :

t(t,)= lim rim lrog\ v / À/-+o lirrxoll+O 1y'

=,1'-,*fr"'ll#3ll

ll¡"(', +&o)-¡"(',)ll

Figure L6 Definition of the Lyapunov characteristic exponent.

Note that the Lyapunov exponent measures the average loss of the information after one

iteration. Using the chain rule ìn Equation (A.12), we have

ll^r,il
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(4.12)

).(x)=

Thus, base on the Lyapunov exponent, the criterion for chaos is

)"(x)> o, chaotic;

(4.13)

(A.14)
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Z(xo)< o,

The Kolmoeorov-Sinai (KSt Entropv

The KS-entropy is perhaps the most important measure for charact enztng the chaotic

motion in an arbitrary dimensional phase space. Therefore, we would like to introduce this

concept here. For a more detailed discussior¡ the reader is referred to Reichl (lgg2).

Consider in Figure A.7(a) the phase space of a unit square that is partitioned into a set

Øt(0)) of cells, where Ai(O), I:7,2. A new set of cells ft¡(-l)) is generated by allowing

the original set to evolve backwards for a unit time. Let us next introduce the partition B(-

1) which consists of the intersection of these two sets, that is, B(-t) = {¿ (o)n lr(-Ð}

as shown in Figure 4.7(b). We can continue to generate the next partition B(-2) such that

B(-2)={¿(o)n A,?t)nAkFz)} and so on (in Fisre 4.7(c)). rr can be shown that

(Lichtenberg and Lieberman (1992)),

regular motion.

is required if the B(-r) decreases exponentially as l-+cowhere &, olB,(-l)] are the

number of elements of B(-l) and the measure of each element respectively. The maximum

of Æ¡ as the initial cell size tends to zero, is the KS entropy, K. Note that K>0 when the

average measure of an eiement of B decreases exponentially, that is, chaos occurs when

this happens. Pesin (1977) derived the relationship between the KS-entropy and the

Lyapunov exponents as follows

215

Æ"({4(Ð})= -11giå aþ,1-t¡lrn all,(-r)1, 0

(A ls)

r1
K= Jl lt",(x)laa,

r l-,a.'("¡>o l

(A.16)

(A 17)
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where the integral is over a prescribed portion of the phase space and the sum is over all

positive Lyapunov exponents.

A{0) Az(o)

Figure L7 Partitions of the phase space of a unit square: (a) 2-element, (b) 4-element

and (c) 8-element.

(a)

,{. 1.2(b) Analytical rnethods

We will now describe some more recent analytical methods for predicting the appearance

of chaos in continuous systems.

Chirikov resonance overlap criterion

To estimate the critical condition for the transition of local stochasticity to chaos (or

global stochasticity), the work of Chirikov (1979) can be employed. He postulated that the

critical condition required to destroy the last KAM tori between the two lowest-order

primary resonances occurs when the sum of the halÊwidths of the two island separatrices

is equal to the distance between these two resonances. Consider the following

Hamiltonian,
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(b) (c)

, = 4 * K cos 0 + ZK cos 0 cos(Clr),
2

(4.18)



Appendix A: Basic Theories in Bifurcations, Chaos and Fractals

where ! = þ. It is assumed that third term of Equation (A 18) is a perturbation, therefore,

the unperturbed Hamiltonian of Equation (4. l8) is

From anundamped pendulum, the fixed points are at (y=0, cosá=+1). tne centers of

the ellipse are at (y=0, cosd=-l) and the hyperbolic fixed points onthe separatrix are

at (y=0, cosá=l). Hence, the halÊwidth of the island separatrix at cosá=-l is

calculated by

H^=t*Kcoso."2

Three kinds ofresonance overlap condition can be obtained and they are,

(i) simple overlap condition

¡:2
Z$y^u*=Zr + K:lÐ x2.46740;

(ä) overlap condition of the first qnd second-order resonances

zJt<+!x=o.
2

which yields K =1.46;
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Â/.u* =ZJK .

(A.1e)

(rir) the improved overlap condition

Here, Chirikov considered the thickness of the separatrix layer based on the overlap

condition of the first and second-order resonances. The critical condition is therefore,

(A 20)

(A.2t)

(A.22)
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in which

From Equation (L23), we can çsmpute K 'vl.2.

(iv) Stochastic layers of a physical problem.

We consider the Hamiltonian of system to be given by

('.+)**f=o

*,=%*r(_#)

H(*, y) = Ho!) + eV(x, y,t),

wherello is an integrable part and, eVis a perturbation,

Analyzing the resonance condition of Equation (A.25) aod

energy, the following simplified expression:

')t¡'

H =?- Mcos?- pcosf?-At).
2
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(A.23)

Setting P = 0 inEquation (^.26), we can calculate the halÊwidth of the resonance due to

the cosinewaveof amplitude Mat y=0 to be Â7-"* =ZJM. Simüarly, setting M=0
in Equation (A.26), we can also calculate the halÊwidth of the resonance due to the

cosine wave of amplitude P at y=l to be Ày-o* =zJP. Applying Chirikov overlap

criteriorq we get

(4.24)

(A.2s)

dependent on the time l.

'we get after rescaling the

ZJM +2JF =r.

(A.26)

(A.27)
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Renormali z ati on te chni au e s

Escande and Doveil (1981), Doveil and Escande (1981) and Escande (i985) discussed the

paradigm Hamiltonian and presented the renormalization procedure for Equation (L26).

We will adopt Escande and Doveii methodology to derive the renormaluationprocedure.

In so doing, it is assumed that M > P. Consider Equation (L26) to consist of two parts:

I/o *d Hr,namely,

Ho=4-Mcos|=Eo,"2

where Eo denotes a constant energy term. Then, we have

Ht=-Pcosv(e-cu).

From Equation (4.28), we have as its solution

e=z^(ff,r,),
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where am and cn are respectively, the elliptic amplitude and the Jacobi eiliptic functions;

and k is the modulus of elliptic function given by

y=x2kJMc"(ry,ù,

using Equations (4.30) and (4.31), the action variable J canbe calculated as

t =aP rçn¡
1îK

(428)

(Lze)

lc- - 2M
Eo+ M

(A3o)

(4.31)

(4.32)

(4.33)
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Substituting EEtøtions (4.30)-(4.31) and (4.33) into Equation (A.26) yields

n = HoQ)- pI v"(J)cos[(v +n)e - re,], ( A.34)

where 't/,(J) is coefficient of Fourier series of cosk(rp-C¿l). Invoking Equation (A.34),

the resonant condition is obtained,

. ( aE^l r,c¿ oJ u
'=lãî )= ,*n*5= kKø (A'35)

in which ô = {0, 1}. Renorm ahoogthe energy in Equation (/,l3[for the ¡eth resonance

yields,

i2H=/ -Mcoso-Pcosv(o-ot), (A.36)
2

2s0

U _ PV,*r-uco(v + n)2 (v + n +)z
..>,

'--' 
(A'38)

,, _(v+n+1-á)v = (4.39)v+n+õ '

o- Qd -t)"ç¿
v +n+r- 3' (A'40)

þ =(v+n+6)ç-t{)t ,

(4.37)

(A41)
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Solving Equations (4.37)-(4.39) numerically as selÊsimilar structures, we have

observe thatEEtation (A.37) and Equation (A.42) have similar form.

Melnikov method

For a conservative system, we have introduced two methods, the Chirikov overlap

criterion and the renormalization technique, to predict the chaos. For a dissipative system,

the motion near the separatrix is not necessarily chaotic, as it may be in either transient or

steady states. It is important to determine the critical condition under which the transverse

intersection of the stable and unstable manifolds will appear. Melnikov (1963) devised a

method to analyze the motion near the separatrices of near-integrable systems. Apptying

this method to a near-integrable system yields a criticai condition for the onset of a

homoclinic intersection near the separatrix. This procedure is valid even for a system with

a dissipative perturbation. Morosov (1973), Mclaughiit(1979) and Holmes (7979,1980)

applied the Melnikov method to look at the perturbed dynamics of non-Hamiltonian

systems. Guckenheimer and Holmes (1983) generalized the method to study subharmonic

bifurcations. Wiggins (1989, 1990) applied this method to investigate the criticai condition

of higher-dimensionai dynamical systems. In this paper, we will emphasize the method to

determine approximately, the chaotic conditions of some selected engineering problems.

Consider a 2-D dynamical system which has homoclinic or heteroclinic orbits and is

perturbed by a periodic function of time. The governing equations for this system are,

2J M +zJF x 0.7 .
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(A,.42)

The Melnikov function is defined as,

M (t ) = Jl lÍ (rr, y o) sr(x o, y o, t - t r) - fr(tr, y o) Er(* o, y r, t - h)f dt

I r = fr(r, r) + egr(x, y,t)

li = -fr(*, y) + egr(x, y, t)' (A 43)

(A.44)
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where (ro,yo) is the homoclinic orbit of the conservative system. If M(t)=ç is

independent of perturbation parameter t, then for e> 0 sufficiently small, the stable and

unstable trajectories in phase space intersect transversely. Similarly, (ro,!o) yields the

subharmonic resonant orbits of the conservative system under a periodic function. That is,

M,l'(tr)

If M^l'(to)= 0 is independent of perturbation parameteÍ t , and in Equation (4.43), for

s > 0 sufficiently small, then Equation (A.43) has a subharmonic orbit of period mT.

Other methods for handling dissipative systems include the methods of harmonic balance

and averaging.

.d.2 Discrete Ðynamical Systern

= Ii'lfr(*o,yo)gr(*o,lo,t - to)- -fr(*o,/o)gr(*",lo,t - 4)]at

For many continuous systems, their nonlinear characteristics can be qualitatively

investigated via discrete maps, such as Poincare mapping and energy iterative maps. At the

same time, for discontinuous systems, their iterative maps can be easily setup on the basis

of appropriate physical laws. Therefore, the methods of discrete mapping constitute very

important tools in a nonlinea¡ dynamics analysis. Once again, we have divided the

presentation here into 1-D and2-D maps.

.&.2"L Bifurcations
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4.2.1(a) ûne-dimensional xnaps

Consider a l-D map,

(A.45)

xn+r = Í(*,, p) , (4.46)

where ¡t is a unknov/n parameter. To detennine the period-l solution of Equation

(A.46), we substitute xn*, = xn into Equation (A.46), and this yields the periodic solution
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xn = xo. 'We 
can then investigate the stability of the solution

bifurcation parameters for the following conditions:

(i) Pitchfork bifurcation

(ii) Tangent (saddle-node) biturcation

These two kinds of bifurcation for l-D iterative maps are depictedin Figure AB. Note

that the most common pitchfork bifurcation involves an infinite cascades of period

doubling bifurcations with universal scalings. An exact renormalization theory for period

doubling bifurcation was developed in terms of a functional equation by Feigenbaum

(i978), and Collet and Eckmann (1980). Helleman (1980) employed an algebraic

renormalization procedure to determine the rescaling constants. It is assumed that "f (*, p)

has a quadratic maximumal x = ro. If chaotic motion ensues àt þ* through the period-

doubling bifurcatiorq the functioî xn+L= f(x,,þ-) is rescaled by a scale factor q and,it

has self-similar structure near x = xo.

and compute the critical

&n*t df(r,,àl
Ë= d*- | =''

lln=Í4
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Under the transition to chaos, we will first introduce the period doubling bifurcation where

we will discuss two renormalization procedures, namely, the renormalization group

approach via the functional equation method as outlined by Feigenbaum (1978) (see aiso,

Schuster (1988), and Lichtenberg and Lieberman (lggz)), and the algebraic

renormalization technique as described by Helleman (1980). Then we will discuss the

quasiperiodicþ route to chaos and also, the intermittency route to chaos.

(A47)

(A.48)
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Figure A.8 Bifurcation types: (a) Period-doubling and (b) saddle-node.

.{. 1.2(b) Two-dimensional maps

Bifurcation and stabili?t-for 2-D discrete maps

Consider a2-D map defined by,

p. [*,*r= Í(*n,Y,,/r)
- ' 

l!,*r= g(xn,Y,,P)

lJ1

(a)
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where p is an unknown parameter. The period-n frxed point for Equation (4.a9) is

(*i,ñ, ri) , i."., 
^r3:)= [;;) 

where pØ) - p o pb-r¡ and p(o) = r, and its stabitity

and bifurcation conditions are given as follows.

(i) period-doubling (flip or pitchfork) biturcation

(b)

rr(Drþ\ + net(nr(')) + 1 = o,

(A.4e)

(A 50)
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(ii) saddle-node bifurcation

(iii) Neimark bifurcation

where

rr(nr@)+ net(np(",) = t,

Note that

net(nr@) = r,

and

fr(DP) = D,.f + Drg, Det(DP) = D,.f . Drg - DrÍ .D,g;

D*.f = 4(*,y,p)f &1,=,.,r=r., Drf = 4(x,y,p)lAl,=,-._r.I

D,g = 4(*, y, p) f &|,:..nr., Drg = &(x, y, p) I d,l,=,- ,r=r. I

Dp =l 
*@,ù1=(o,Í D,"f\

L 4",y) J [4s D,E )'
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The bifurcation and stability conditions for the solution of period-n for Equation (A.49)

are summarized in Figure A.9.

4.2.2 Routes to chaos

(A.s 1)

Nexl, we consider routes to chaos. We will first present the l-D discrete system, then we

will discuss the 2-D discrete systems.

(A.s2)

(4.53)

(4.s4)

(As5)

(A s6)
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r4DP9 M

Saddle-node bifurcation
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Flip bifi.ucation

hl h["
-@-*-+*

I^A

r1)-YV n"

ha

"r1l-YV n"

I^i I^ !
-@-*@*-

Im

Figure A.9 Stability and
(A.4e)

Neimark bifurcation

De(nrø\

t-l
-+-r11 I \ *Y) n"

bifurcation conditions for period-n solutions of Equøtion
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4.2.2(a) One-d imensional rnaps

Period doubling route to chaos

Q) Functional renormolization theory

The universal function is

g*(,)= l* ",ror(#,r*),

where g* must satisfy the rescaling equation of the geometry, that is,

s*=,,s-[,.(;)) -rso

in which 7 is a period-doubling operator. From Equation (4.58), \ /e can determine the

universalþ of the scale factor a . To obtain the universal constant ô, we first linearize

-f(*,p,) ãt /t,= lt*

f(*,p,)= f (x,p-)*ö@'P)l (p,- p*).
oul

' tþn=lJ_

Applying the period-doubling operator n times to Equation (L59) yields,

L\r' f (,, /t,) =g* (') . r,.(ry)l (p, - p-)
\ ¡ / lp^=tt-

Substituting the unstable eigenvalue of Lr* irrto Equation (4.60), we get

l:lr f(,, tt,) =,sË(') . o(u*,.,à)l (p,- p-) .\oull\ ' /lq^=p-
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(A s7)

(A.58)

(A.se)

(A.60)

(4.61)
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Transforming the point of origin to Í = xo and normalizing Equation (4.46) by setting

g -(0) 
= 1, we arrived at the condition as follows,

From Equations (A.61-A.62), the universal constant is proportional to

Fn- lt. - õ-n .

(i) Algebraic renormalization theory

Taking into account the period-2 solutions of Equation (A.46), \rye can solve for x1¡,x2¡

at x, = xr*r:

Í(r")(p,,0)=0.

Í(r,,p) = xn+L and f (x,*r,F) = x,*r.

Using a Taylor series expansio4 we can apply a perüurbation to

xn = x2!+ Lx* xn+t= xft+ Axn+L and xn*, = xzxi Mn+z, that is,

Lx,*, = .fr(Lt,, p) ,

M,*z = lr(M,u, p) .

Substitutin g Equati on (4. 65) tnto Equati on (A.66), we obtain

Lx,*2 = Í"(-fr(nt,, p), p) = f (M,, p) .

Re-scale Equation (67) by putting

x' = d.Ax,
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(A 62)

(a63)

into Equation (A.67), the renormaJized Equation (4.a6) is

(A 64)

Equation (64) at

(A 65)

(A.66)

(4.67)

(A 68)
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where

Equation ('{.70) presents a relationship of the bifurcation values between two period

doubling bifurcations. The rescaling factor a is determined by comparing Equation

(4.69) with Equation (A.46). If chaos appears via the period-doubling cascade, i. e. ,

F2n*r =Fzn = /J-, wê can determine the universal parameter manifolds.

Ouasiperiodici|t route to chaos

Consider a mapping defined on the unit interval 0 < r ( l, that is,

xl*z = Í(ri, /tr*,) ,

/_ \
F2n*r = S\Pr").

wheref (x,,/t) it a periodic modulo, i. e. , f (x,¡l,lò=.f (*,,p); and o is a prescribed

parameter defined in the interval 0 < O < I . Note rn Equation (A7l) we have to adjust

two parameters C),p to generate a transition from quasiperiodicity to chaos. We can

increase say, p and to keep the rational winding number w = plqfixed to a selected

value, we will have to increase C) as well. The winding number w is an important quantity

for describing the dynamics and is given by,

x,+t = x, + Q+ f (x,, p) = F(x,,Q, p) ,
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(4.6e)

(A.70)

Define a quantity Oo,rfu) which belongs to a q-cycle of the map f (x, p) *td shifted byp.

This quantity generates a rational winding number w = plq and for a fixed value of p , it

can be determined from

*(a,p)= lim ffi,
n->@ n

(A.71)

F,n,(o,oo,n,/t)= p,

(A.72)

(A.73)



Appendix A: Basic Theories in Bifirrcations, Chaos and F¡actals

where p@) - F(F(s-t)). Choosing the winding number equal to the golden mean

w* = (Ji - \ lr, we get the ensuing motion to be chaotic and the universal constants can

be computed.

Intermittenqt route lo chaos

There are three types of intermittencies, Type I, II and III. In this section, we will present

only Types I and Itr interrnittencies. The Type II intermittency is discussed in a later

section under 2-D maps.

(i) Type I interrnittency

Consider an iterative map with a small perturbation defined by

Xn+t=t+xn+ryi:,

where e is a control parameter nd q is a prescribed parameter. This mapping results in

the Type I intermittency and is caused by the tangent bifurcation which occurs when a real

eigenvalue of EEtation (A.7$ crosses the unit circle at +I. Figure 4.10 shows the

tangent bifurcation and iterative map for the Type I intermittency. Examples of this

situation include the Poincare map for the Lorenz model and the iterative map for the

window of period-3 solution in the chaotic band. The renormalization procedure of
Equation (A.74) has been presented in Hu and Rudnick (1982). Also, an interested reader

can refer to Guckenheimer and Holmes (1983), and Schuster (1988) for additional details.

(ii) Type III intermittency

Consider the following iterative map,
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(A.74)

xn+r = -(t+ e)x, - qx|, (1-7s)
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which produces the Type III intermittency and is caused by the inverse pitchfork

bifurcation. Here, we know that a real eigenvalue equals to -1 at bifurcation. Figrre A1I
depicts the bifurcation diagram and the iterative map for the Type III intermittency.

tr:0

(a)

Figure A.10 Equation (A.7$.
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x
s

(a) bifurcation and (b) iterative map.

Figare A.Ll Equation (4.75): (a) bifurcation and (b) iterative map.

4.2.2(b) Two-dirnensional systerns

Period doubling route to chaos

xs xc

(b)

t"=0

(")

X n+l

For 2-D invertible maps, the transition from regular motion to chaos takes place via a

series of cascades of period-doubling bifurcations. Coilect and Eckmann (1980)

x, xr(x") xu

(b)
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introduced an exact renormalization method for this situation. However, this exact method

is not convenient to use for soiving the practical problems, therefore, Mackay (1983) and

Helleman (i980, 1983) have developed a simpler anal¡icat approach to renormalize the

period doubling bifurcation sequences of the 2-D iterative map. This method is similar to

the algebraic renormalization technique of i-D iterative map presented earlier and will not

be pursued here. For additional details, the reader can refer to the work of Eckmann and

his co-workers. Eckmann et. al. (1981) developed for a conservative systern, an exact

renormalization procedure (see also Collet, Eckmann and Koch (1981). Greene et. al.

(1981) carried out a more complete study of 2-D Hamiltonian maps.

Ouasiperiodic transition to chaos

This route to chaos is best studied via the standard map. Here, we will introduce the map

and the chaotic conditions. The standard map is defined by,

The critical condition of Equation (A,.76) for transition from local to global stochasticity is

Kn * 0.9716.... For a dissipative standard map, we have
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Xn+I

0 n+t

where á is the dissipative coefficient. Note that some results are given in Lichtenberg and

Lieberman (1983).

T:¿pe II intermittenqt to chaos

Consider the following mapping which represents Type II intermittency to chaos,

= xn tf sin(d,)]

=0n+xr*, )

xn+t = Q- A)x, + Ksin(9,)'l

0 n+r = 0, + xn*, J'

(L76)

(1-77)
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When a pair of complex eigenvalues of Et1uation (A.78) passes the unit circle,

subcriticai Neimark bifurcation occurs. Hence, Type tr intermittency results from

subcritical Neimark bifurcation as shown in Figure A.IZ.

Xn+l

0 r*t

= (1+ e)x, + rpj)
=0,+ç¿ I

Figure A.l2 Equation (478): (a) Neimark bifurcation and (b) iterative map.

.4..3 I'nactals in Chaotic dynamics
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(a)

Chaos possesses self-similar structures which i-ply the presence of fractais. By self-

similarity, we mean that no matter how much the view is zoomed, the same basic shape is

retained. Therefore, whether an object is viewed globally or locally, the same basic

structure is observed. It is also possible to use fractal dimension measurements to describe

chaotic or strange attractors in a dissipative dynamicai system. Most fractals in chaotic

dynamics have multiscales and multimeasures, and thus, they are nonuniform fractals or

multifractals. Unlike fractals which are geometricaliy self-similar, multifractals aÍe

statistically self-similar. Some basic concepts of fractals necessary to study their

characteristics in chaos will be presented next.

(A.78)

the

the

(b)



Appendix A: Basic Theories in Bifi¡rcations. Chaos and Fractals

,{.3.X tsasic concepts

What are fractals? Simply speaking, fractals are objects that possess non-integer dimension

and selÊsimilarity. They do not necessarily have characteristic sizes, namely, we cannot

measure dimensional quantities such as length, area, and volume. Their geometry can only

be realized using a recursion of the iterative map.

(lst) (znd) (3rd)

Figztre A.13 The first four generations of the

aggregation rule.
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(ist) (znd) (3rd)

Figure A.l4 The first four generations of the Sierpinski

reduction rule.

(4th)

Sierpinski gasket fractals based on a

Before formally defining fractals, we would like to present the following two examples

known as the Sierpinski gasket fractals. In Figure A.I3, the fractals are generated by

@@@

(+th)

gasket fractals based on a

@@ø,
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addition (aggregation rule), whereas in Figure 4.14, they are produced by subtraction

(reduction rule). They possess the characteristics of self-similarity and as will be shown

later, they have a non-integer dimension of 1.58. Therefore, the Sierpinski gasket is a

fractal.

Table A-l Fractal distribution of the sierpinski gasket n Figure A.l3

Generation No.

1st

Znd

3rd

4th

nfh

Scaling Size L

2oro

2t ro

2'ro

2'ro

2" ro
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Tøble A.2

No. of Self-Similar Structure l(Z)

Generation No.

Fractai distribution of the Sie¡pinski gasket inFigure A.l4

lst

Znd

3rd

4th

nth

^05

al
J

^2J

a3J

:

ân
J

Scaling S:r,e L

(ll2)o rs
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From Figttres A.13-14, the scaling size L and number of self-similar structures .V(Z) can

be summarizedinTables 1 and A.

The self-similar law in Figure A. 13, based on Table A.l and the aggregation rule, is:

¡(¿) = (t)' ,

\ro )

whereas, inFigure A-14, the self-similar law, based on

is:

¡(¿) = l+1"\L)

observed that in Equation (A.79), the scaling size L 'grows' rapidly as would be

expected under the aggregation rule. On the other hand, it is obvious from Equation

(4.80), the scaling stze L'shrink' rapidly as would be expected under the reduction rule.

To charactenze a fractal, we wiil work with the simplest dimension, namely, the

Hausdorffdimension based on a uniform formula.

Definition: For any objects with non-empty ¡/parts which are scaled by a ratio r inthe m-

D Euclidean space, we have, assuming self-similarity,

¿6ft

(A7e)

Table 4.2 and the reduction rule,

Solving for the Hausdorffdimension D in Equation (A.BI), we get

rì - log 'À/

logr'

To formally derive Equations (,A..81)-(4.82), we can pursue the following mathematical

approach (seefor example, Faiconer (1990)). Define amapping S. E-+E in R', where

N(r)rD = t.

(A 80)

(A 81)

(A82)
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EeR' is a closed set. Assuming a number r with 0<r<i such that

lsfrl-s(y)l= rl*-yl for all x,y eE, we termed the mapping s a similarity since it

transforms sets into geometrically similar ones. 
'We 

consider a self-similar set F of E to be

invariant under the mapping 
^9 

if F = ij'ttol, where we have assumed that after mapping
j=l

,S has acted on { it produced .a(Z) similar sets. The Hausdorff dimension measure lPø
is defined for any á > 0:

H,(r.) = l,33t,r{Ëp,f

where {4} ir any non-empty 6 -cover of F in À'. Apptyine IP(Ð in Equation (A.83)

to the self-similar set d \¡ie get:

, r -lu,
t=l

In Equation (L84), if the linear scale of the closed set .E is now the scaling size L, we

recover back Equation (A.81).

To compute the Hausdorff dimension for the Sierpinski gasket fractals of Figures A 13-

A-14, we can use Equation (L82) and get the scaling ratio r = ro I(2, ro) = Z-, for Figure

413, and r =(z-'ro)f ro =2-' for Figure 414 to yield:
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e .R' and o . 
l¿¡rl 

< á for 
"r, Ì,

N(E)

H"(J7) = U HD(^'(F)) = ¡(E) rDttD (F) .

j=l

Another interesting point about fractals is that different fractals can have the same fractal

dimension as for example, the Sierpinski gasket fractals. Take for instance, the fractals in

(A.83)

n- loe(¡') _ log(s) 
=i.58..."-lodØ-Lrg(Ð-r'Jo""

(4.84)

(A8s)
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Figure 4.15. Using Equation (4.82), we can calculate

D = 1.58....

Fractals can be classified as nonrandom artd røndom, and also, depending on their scales

and measures, they can be uniform or non-uniform. Uniform fractals are called simply as

'fractals' whereas nonuniforrn fractals a¡e known as 'multifractals'. As expected, a

nonrandom fractal is generated by a deterministic rule, such as a given iterative map and a

random f¡actal by a stochastic rule. Random fractals whether uniform or otherwise, are

always statistically selÊsimilar. That is, they cannot be geometrically self-similar. Thus,

random fractals can represent natural phenomena zuch as coastlines, land surfaces,

roughness, cloud boundaries, etc. much better than nonrandom fractals.

Figtre A.15 Fractals generated by an iterative map in 2-D space.

their Hausdorff dimension
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^"3.2 
Computer generation of fnactals

Next we discussed the generation of fractals via a multigenerator (see Luo(1991) and,

Leung and Luo (1992)). We will first present the generation of nonrandom fractals using

a single-scale single generator, then we will generate random fractals using a single-scale

multigenerator.

Nonrandom Fractals

If there are K generators in the fractal structure, and the lth generator has { non-empty

sets with a linear scaling ratío r, in R', then for all K generators, we have respectively,

the equivalent nonempty sets // and linear scaling ratio r given by:

@@ø
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From Equation (4.82), the Hausdorffdimension of this fractal is

Zloe4
D=_'-_* (A.87)

I loer
i=l

¡r= fÏ¡/,
i=l

Generalizing, if the lth generator has m,-time action on the fractal, the

dimension is defined by

K

\m,togN,
n- i=lu___Í-

lm,logr,
j=l

Y

and r =nr,.
r=l

However, from Equøtion (4.86), it is obvious that the Hausdorff dimension is

independent of the action order of the generators. This implies that the different fractals

can have the same Hausdorffdimension.

Random Fractals

Basically, there are 3 possible methods of generation: random action, random generators

and, combined random action and generators.
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(A.86)

(i) Random action

From Equation (4.88),

Hausdorff

K
we can set M =Z*,, and manipulating, we get,

i=i

(a88)

KvnK

l'ftosN, \p,toeN,
n - i-t /v! i=l

-

L\^r,,- fP,bE,,';t JVI

(4.8e)
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where p¡ is the action probability of the lth generator and possesses

K
properties: 2p, = | and p, = mi lM .

j=l

(ii) Random generator

If the ith generator has Z¡ sub-generators with action probabilities pu (

scaling rutio r¡and, non-empty subsets N¡ (j =7,2,...2,), we have

K

I iz, log(,U)
and D=-'-* -

lm,tog(a)
i=l

LI\

(¡/,) = ZprN, and (r,) =lprr*
. i=l j=r

(iii) Combined random action and random generator

Combining the previous two cases, we get the most general approach, that is, the

combined random action and random generator. The Hausdorffdimension is given by,

the following

270

LI

ZP,, = 1), linear

Y

I¿ toe(4)
rì - i=lu=-V

la tos(a)
i=1

4.3"3 Multifractals

Next, we turn our attention to multifractals which are fractals with nonuniform scales and

measures. First, we introduce the concept of fractal measures and then fractal scales.

(A.eo)

K

Zp,to-t

(A el)

å"'*[å or,)

14\

ZprMrlj=r ) (A.e2)
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4.3.3 (a) Single rnultifractal rneasure

O n e sc alin s mu ltifr acta I

Multifractal distributions can be described using the scaling properties of the coarse-

grained measures. For example, consider p,(x,) to be the probability measure in a box of

size I¡ centered at the point x,; and that this box has a scaling ratio q=l,lL, where Z

denotes its largest scaie. We can define the scaling index d as alocal singularity strength

at position x¡ (Halsey et al. (1986)):

Consider the scaling of the qth order moment of p,(x,) with box size l¡. A new auxiliary

parameters r(q) is now introduced via the following equation,

Solving Equation (4.94) for {q) we get

Pr(x,) - r," -

271

Next another dimension is introduced, namely, the generalized

by

or=9q-I

Zlo,(*,)ln =,:"'
i

, \ ,. t"r[zÞ,(',)]')
4q)=lim--Y ,-\z/ r--* log(l)

Consider a number U r(a) of a box of size r¡, which has a value of a in the band dq . The

fractai spectrum f(ø) is defined as

(4.e3)

(Ae4)

(A.es)

dimension which is given

(A.e6)
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4(r,) = p(a)r,-r@) da,

where p(a) is a nonsingular weighting function. In view of Equations (493)-(4.94),

Equation (L97) when summed for all ø\¡ie get:

Consider r - max(r) + 0, we obtain

4q)=qq_"f(a).

Differentiating Equation (A 99) with respectto q yields

|lpr(',)]' = I, p!)r:t-tg) ¿6 - r'G)

Multiscaling fractals

Before presenting a discussion of the multiscaling-fractals, it is necessary to introduce

Hausdorff dimension for fractals with multiscales. Deriving in the same fashion a was

done in section 43.1, we can define a group of mappings ,{: E-+E in ^R", which

E eR' is a closed set. Assuming a number r¡ with 0 <4 <l such as

ls,(r)-^t,þ)l= nl*-yl for all x,y eE, we rermed the mapping.l, similarities. Nexr, we

N(E')

consider a self-similar set F of E to be invariant under the mapping,t, if f = US,(p)
i=t

where we have assumed that after mapping .9, has acted on d it produced 1(E) similar

sets. We can apply in an analogous fashion, IP(Ð in Equation (4.83) to the selÊsimilar

set F, and get:
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o =dt(q) and. a - dÍ(a)
dq'da

(4.e7)

(4.e8)

(A ee)

(A loo)

H"(F) = ZH"(,y,(F))= Ids"(r).
N(E)

i=l

N(E)

(4.101)
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Simplifying Equation (4.101) leads to the following expression for calculating the

Hausdorff dimension of multifractals :

Next we look at the measure of a multifractal. Considering

measure of fractals, Grassberger (1983a, b, c), and Halsey et

general spectrum of fractal dimensions. If the scaling ratio 1

variable, a partition sum can be similarly defined as

l(q,r,r\= T Pí. 
-¡ ) - /i 

r.t(q) 
,

where the auxiliary parameter ris now given by,

4q) = (q_r)D,.

N(E)

Zr,' = 1.
i=l

For a chosen value of q, for r = max(l) -+ 0, the partition sum goes from zero to infinity,

and we get:

(A.i02)

a multiscaling box as a

al. (1986) introduced a

=l,lL of every box is
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[o r<r(q)
f(q,/q),r,)= 1* r> 4q) (A.tos)

lconstant r: 4q)

Note Equations (A-99)-(4.100) are still available for use in the computation of the

scaling index and fractal spectrum.

4"3.3 (b) .foint multifractal measune

Assume pr(r,) denotes theTth measure in the total m-probability measures, for a box of

size l¡, centered at the point x¡ where j =7,2,...,12. Assume also, this box has a scaling

(4103)

(A 104)
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ratio 1= l,lL, whereZ is the largest scale. The scaling index o,(qr,gr...Q) is defined as

a local singularity strength at position x¡ for probability pr(r,). That is,

P'('') - 
''o' '

Similarly, we can define a partition sum:

ilpí'
| ({qr, 8 r,. . - g 

^}, 
t(gr, g r,. . . q 

^), {rr, 
rr, - . . r^}) = 1 ;þã,

where the auxiliary parameter 
"(gr,q,,...q^) 

is now given by

"(0,...,8¡,...,0)=(q, -r)Do, (A.1oB)

Choosing a q andfor r = max(l)-+ 0, the partition sum goes from zero to infinity, and

we get:

[o , < r(qr,gr,...Q-)
l({qr,82,"'8^},r(8r,8r,"'q*),{r,,rr,"'t })= J* ,r r(qr,gr,-..g^). (4.109)

fconstant " 
: 

"(qr,gr,... 
g^)
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Consider a number N,,(or,d2t...,a^) of the boxes of size r¡, which have values of

(ar,ar,...d^) in a volume ffi,ilo,,, the fractal spectrum -f(or,ar,...a.)is defined by:
j=l

(A.106)

For all (or,or,".a^),and in view of Equations (4.106) and (4. 109), Equation (A.r07)

becomes

(4.107)

N,,(o r, d 2,. 
. ., o 

^) = p(a r, ø 
",. 

. ., o 
^)r,- 

f (o,'o,' "'o,) 
frdd ¡ .

i=1

(A. i 1o)
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[-lht,,l]"
zfu..; = I p(o,, d 2,' ", ",(Uo ",)r-'*"'n'" 

"'.-)*is)o rrþçat'" "a'). 
(A. 1 I 1 )

For r = max(t)-+ o, we get

t(er,qr,-..,q^) = ig,o, - .f(or,dr,.--,d^). (a I 12)
j=r

Differentiating Equation (4.I 12) with respectto q, anda, yields

o,(qr,gz,...,q^) =ê'(q"qz_"''q^) and g¡ - d(ar'a-r""'a^). 
(A.113)

4i 'r âo,
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Ð q.IBF'¡roc 8s cru.,r,ar0n

ts.tr Results for the Undarnped llufling oscillator

Since the solutions for Cases I and IV(c) Duffing oscillators are already given in Chapter

3, we only list the corresponding results for Cases tr-Iv(b) oscillators in this appendix.

These results are obtained in the s4me manner as for the Case I oscillator.

Case XI The results are:

E, _ k'or'
Do -- (t+k')'a,'

. 2k2a,
D'- r" - 

(r +kz)ar'

ç=(2n-t)r,,-,,

zo,a, 
[2*'"[(" - )" #41u, = o s7 163 s4,

JÇen
a) = ---:--2JzkK(k)'

(B 1)

@2)

(B 3)

(B 4)

(B 5)
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The chaotic conditions obtained using the Chirikov overlap criterion and the

renormalization group methods are respectively, of the same forrn as given by Equations

(3.33) and (3.35).

Case ffi The results are:

ez.*,=ffi^"'n['('*Ðffi] r"B)
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k=#, r=(+)* , *rorxtB54r, ,=%, (B e)

Zo^Çtn E""r[("-])"lto,l=0e7163sq, r" r0)-v \o,

zo^n',E"*[(, -:)"]=lq,u -83*,1, c" 1r)þv 
\o,

o'= rr'ftJ' @'r2)

o, = - 
tïlÍ,'i') 

(B 13)
oT'h'
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To derive the chaotic conditions we substitute Equatior?s @.14)-(8.15) into Equations

(3.33) and (3.35) and the following explicit formulas derived based on the Chirikov

overlap criterion and the renormalization group technique respectively are:

J-za

Qo=

Jla

Qo=

Case II/(a) The results are:

(t-tc')n,a? -, _ 2k2a,
Lo-

(ztt'-L)'or' (ztt' -t)or'
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(2n-l)3 (2n+l)n3

(8.14)

(2n-l)3(2n+1)n3 rfÇ

(8.1s)

ç=(Zn_l)arn_1,

20,o,îfs.*[(" _+)"ffi

, (8.16)

zQ,an fs.*[[" - :)"ffi] = F,..' - E:*,1,

^la^eou¿W - 
-:--2JzkK(k)'

(8 17)

]u'= 
os7r63s4,

(8 18)

(B le)

(8.20)

(B 2i)
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Ø.*,=#,*rt"'o["("*Ðffi] ."2s)

The chaotic conditions computed via the Chirikov overlap criterion and the

renormalization group technique are respectively, of the same forrn as listed in Equation

(3.33) and (3.3s).

Case W(b) The results are:

Ø.-,=ffi-,..0['('Ðffi] @24)
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where we have,

n,*F_ :*nl" " ffi] = Fr' - aN, (8.2e)
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The chaotic conditions for this oscillator based on the Chirikov overlap criterion and the

renormalization group technique respectively are:

n- Q' I t l'Yo 4nz(n+t)zGoUd* 
^[ñ )'

in which

n_ o. sçt" ( t I'v'-o¡@ffil@.ffi)'
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o'=#(dl'un^' #'@)f'

n.=ffi*l*ffi),

(B.30)

ts.2 Rnsur,TS FoRTrm Wn¿rg,y XlAn/pED Ðutr'FINc Oscll,l,¡.ton

Qn*t=ffi'""nlo@-rffil

The results for Cases I and IV(c) oscillators are already presented in Chapter 3 and in this

appendix, we list only the solutions for Cases rI, m, IV(a) and IV(b) oscillators.

(8.31)

(8.32)

(B 33)

(8 34)

(8.3s)
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Case ffi P^", ) P, zPrn > EA

,, = .rffi1þ + rr')øçrr) - (l - rc, ¡rgc¡],

Case ffi P^", = P, LPrr, > ful

Case IV(a) P^", 1 P, zP.n < EA, Eo > 0

1, = ;;-16:.',- K(k)4 ç¿3, (8.3g)' 3((zn-r))'o,
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,,=#f;l(ro'-T)E@+1r-rc'¡r<qrc¡], cn 40)

(B 36)

Case [V(h) P.u < P, zP,n", < EA, Eo < 0

(8.37)

,,= .r(r$f;l(z-r,')nçÐ-z(t-k\R@)1, @ 42)

(8.3e)

r. = 
oÕQ 

,""n1 ,o5-lsin(eir,)." ^lo, L

(8 41)

(8.43)
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ts.3 A STocTHSTIC I,AYER

Invoking the three assumptions for a conservative system stated in Section 4.\, we carr

introduce the following definition pertaining to the stochastic layer near either a

homoclinic or heteroclinic orbit.

De.finition:

Considering the conservative parl of Equation (4.1), there exist â > 0 in the energy space

for all ár ) 0 in the phase space. That is, for the separatrix energy Eo, we have

rhe sers r" = {ø" 
(t)llø" U) - q' (Ðls €,,t e R} and rp = {øp U)lløp U) - q, U)l< e,,t e R}

are respectively termed as the domains of the q,-orbit and p-orbit near fo (see Figure

4.1). The union of the a-orbtt and p-orbit domains with f0, namely, f = f " Ufp Uf o

produces a larger domain covering both the a and p-orbits. If the phase trajectory of

Equation (4.1) exists in this domain, then this enlarged domain is defined as the stochastic

Iayer of Equation (4.1).

Proo-f o-f Theorem 4.1:

lEo -ql. 6 þrlr,o
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From assumption (iii) in Section 4.1, all the ø-orbit (or B-orbit)

(Lichtenberg and Lieberman (1992), Abraham and Marsden

nonlinear period of the a-orbit (or B-orbit) is

r =?1î ="(4il-' = P(r(¿)),ú) \dJ ) \ \ //)

-41'u I

where the action variable J = +6 -y* for the given energy Eoof aclosed orbit q', the
2t Jq""

modulus k = 4(8") and the functions F arid{ is all differentiable in 8,. Expanding the

(B 44)

are periodic and elliptic

(1978)), therefore the

(8 45)
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kernei K(k) of F (Cayley i895), we have:

where k' = "[1- ¡' . Note that this series is rapidly convergent as k -+ l. That is, for small

6 > 0, we have

K(k)=^(#).#(^(,t)-t){r,')'

which is identical to Equation @.6). Note that Equation (B 47) indicates the orbit q"

approaches its separatrix qo as k + 1. From Equations (B 45) and @.a7), the energy band

lL"-nol<á nea¡ the separatrix qo can be determined and invoking the definition, this

band is the stochastic layer. Likewise, we can carry out the same process for the B-orbit.

Proof qf Theorem 4.2:

If the elliptic orbits of the Hamiltonian vector field /(x) in Equation (4.1) satisfy

Equation @.47), there exists a neighborhood /V(Eo) of the separatrix energy Eo given by

^(#)
=+l'd='(e)

+ h. o. t.,
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(8.46)

If the phase trajectory of Equation @.1) is located at the energy orbits of the unperturbed

Hamifls6¿o and these orbits satisfy Equation (B.48), then this neighborhood is a

stochastic layer. ln this neighborhood, the energy increment of Equation (.1) AH is
exactly determined by

¡(z,) =F"u Epllz" - nol <á and 
lno - zrl. a\

(8.47)

l^Hl = {lE" - u,l *lEo- u,l} 
= 

u,

(8 48)

(B 4e)
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where Eo (or E) is the energy of the cr-orbit (or p-orbit) of the unperturbed Hamiltonian

for one cycle of the separatrix. Since the stochastic layer of Equation (a.1) is composed of
resonance overlap, different structures of stochastic layer are subjected to different

resonance overlaps. If the resonance of the c¿-orbit (or p-orbit) in the stochastic layer is

governed by ø=m(\fn, this resonant orbit energy satisfies Equation (8.48). Therefore

using Equation (8.45) and invoking a = m{lln and k = n(Eit') yieids the resonant

energy of the cr-orbit. That is,

Likewise, the resonant energy of the B-orbit Ef,l' canalso be similarly determined. Setting

Eo = 6;t'= Ei (or Ep = Eil' = EÐ in Equation (8.4g),we have

E^ t n -r<', 
[re' 

r (^" ff")))

where Equation @.50) can be used for evaluating the resonant energy. Observe that

Equation (B 51) is identical to Equation @.7).
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To determine the disappearance of a stochastic layer, we must set the minimum condition

to the largest energy of the resonant orbit in the stochastic layer. That is,

l^rll = {lul - Eol or ln4 - z,l} < a,

Proof of Theorem 4.3:

This proof is similar to the proof of Theorem 4.2. For disappearance of a stochasti c layer,

the global stochastic layer must satisfy In" - nol> á (or l\o - "rl> 
á), i.e.,

lLHl=." 
---q{14 

- z,l, ln4 - E,l} t 6

(B s0)

(8.51)

tut={ln; - ¿o 
I 
o' ln¡ - n,lj, a

(B s2)

(8.53)
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C.L Eouncing Ball

The various equations pertinent to the bouncing ball of Chapter 7 are presented here.

C.1.1 Feriodic motiora

Since the results of the period-l motion are already given in Chapter 7, we will only list

the corresponding results for period-/r motion where k > Z here.

Period-2 motion:

The coefficients for the period-2 motion are:

ml =I-cos(atqnT),

ml = sin(a¡qnT),

ml = qgnT,

Kn =12 -Zcos(øqnT) - øqnT sin(c'tqnT)1,

Kf = sqr|r - cos(øqnr¡ - ) 
qrr a sin(øqnl1r,

Kl = t - cos(c,4nT) + qnTø sin(øqnT),

(c.1)

(c.2)

(c.3)

(c 4)

(c 5)

(c.6)
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x i = qnrg{- Yf, + cos(otqn r)l + sin(øqn\},

K! = -aqnT cos(atqnT) + sin(øqnT),

Kl = -øqnT+sin(qønT),

Lq = Kq -mrrKl _mlKl,

I4 =-mlKq +mf Kf +mlKf ,

Ll = -¡ça +mf Kl +mlKrq .

Period-Æ motion:

Similarly, the coefficients for the period-/c motion are:

.lj =t-cos(c,a,nT),

*r% = sin(atq,nT),

m:i = Q¡gnT,

Kl =t-cos(qønT),
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(c 7)

(c 8)

(c e)

(c 10)

(c 11)

(c.12)

(c.13)

KQj = 2 - z cos(aa,nT) - cùg,nT sin(aq,nT) ,

K,n' = søf{r- cos(øq,nr)-}a,nrarin(au,nr)1r, (c tB)

K7 = 1- cos(aq,"f) - 7¡nTø sin(øq,nT),

(c.14)

(c. rs)

(c.16)

(c t7)

Kl' =l-cos(øq,nT),

(c 1e)

(c 20)
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Kotu = ,Orr{-*#lr + 
"or(øq,nr)l+ 

rin(oa,rr)},

Lqi = Kqi _ mli y1i _ *rb K:t ,

4 =-rl,yøi ¡*fiyli +*tXo%,

L? = -Kq¡ +m!Xli +m! X{i .

C.1,.2 Stability and bifurcation

K!' = -Q,nT cos(aq,nT) + sin(ary,nT),

K7 = -e¡nT +sin(c,tq,nT),

The Jacobian of the mapping P atthe lth impact of the bouncing ball, DP is defined by
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(c.21)

where

O, =l

(c.22)

(c.23)

(c.24)

(c.2s)

(c.26)

&(t,*r, j',*t)

T = *{-"r, 
+lt ø'sin(arr,*, + ç) - sll ,-, - r, )},

ã,*, 
- j-(t,., - t,) ,â!, /,*r'''' '/)

4t,,i,)

( ôt,*, ã,*r\
1-lq Ø, 1

l-l Ø,., ôJ,,*, | )

J l-

\ ã, ôi,, )çt,,¡,,)

T =lA r' sio(t,u + e) - dT -lA r' sio(t, + p) - sf,

T =l^lot' rio(øt,*, + e) - tlæ - "

(c.27)

(c.28)

(c.2e)

(c 30)

(c.31)



Appendi.x C: Impact Oscillator

Forperiod-kmotion of the bouncing ballwe have x,*o= P@)x,, where P(k) - ?oPo....oP.

Its Jacobian at its fixed point is

Dpn, = Dp...Dp =l ?(t,.0,i,.) 1...1ap(,r',¡,r)l
l4t,*o-r,i',*u-t)l L 4t,,i,) l( tyo\=(t,*znr/ø\Ë L"\,¡a¡_1t!i+k_r ) ) L _(y,..o)_l. 

!¡ )

from which the trace fr(nf@)) and the determinant Oet(nf@)) of Equation (C.32) can

be easily evaluated. Its eigenvalues are then computed from,

Setting one of eigenvalues of (C.33) to -1 we get the condition for the period doubüng

bifurcation of the period É motion, that is,

rr(nr@))+net(neT))+1=0. (C.34)

On the other hand, setting one of eigenvalues of (C.33) to *1, we get the condition for the

saddle node bifurcation of the period É motion, nâmely,

, _rr(nru\x@
z

C.2 An Impact Fair

(c.32)

The various equations pertinent to the horizontal impact pair of Chapter 8 are presented

here.

rr(nr@)) = t + n"t(nP@)) .

C.2.1tsasic n'lappings and thein Jacobian rnatnix

Basic maryings:

The solutions for the four mappings and the evaluation of their Jacobian are listed here.

(c.33)

(c.3s)



Appendix C: Impact Oscillator

Mapping {:

- d = - A sin(at, + e) + l- ejt, + A a cos(at, + e)l!, u - t,) + A sin(øt, + ç) .

Mapping Pr:

!,*t = -Aø cos(øf ,*r* e)+L-ej,, + Aa cos(at, +p)1,

j)¡*t = -Aat cos(atti*t + p)+l-ejt, + Aø cos(at, + (p)1, (C.38)

d = -Asin(ø1, + e)+l-ej4 + Aø cos(at, + e)f!,*, - t,) + Asin(øt, + ç). (C.39)

Mapping P, and Po:

j,,*t = -Aro cos(øt,*, * e) +l-ei, + Aro cos(@t¡ + e)1, (C.40)

0 = -Asin(øt, + (p)+f-ejt, + Aa cos(øt, + e)7(t,.r -t,)+ Asin(øt, + ç). (C.41)

.Iacobian matrix'.
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The Jacobian of mapp^g Pr, DP, is defined by

(c.36)

(c 37)

l4t- 4"t1
DP,=lW],,,n, =W^l

I at, 4, )(,,,r,)

where

(c 42)



Appendix C: Impact Oscillato¡

T = *l-"r, + A a2 (t,*, - t,) sin(øt, * ç)tr

+= j-u,*,-t,),
o|i !¡*t

*-i- 
= ]- o r' sin(øt, + e)l- ry, + A coz (t,*, - t,) sin(øt, * ç)l- A ø2 sin(øt, + e),at¡ !,*,

Ø:*, 
= j-,er,1t*, -r,)sin( øÍ,+g)-e.

4, i',*, \ rr'

The Jacobians for the remaining mappings, that is, P, to Pn can be defined in the same

manner. However, it is necessary to first obtain the impact times. This is described as

follows. The times of ith and the (l+l)th impacts for mappin1 4, t, and l,*, can be

computed using Equations (C.36)-(C.37). Similarly, the impact times l, and l,*, for

mapping Pr, and for mapping P, and Po can be determined from Equations (C.38)-(C.39)

and Equati ons (C. 40)- (C. 41), respectively.

C.2.2 Feniodic n'rotion
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Non-e qui space d peri od- I moti on :

The coefficients for the non-equispaced period-i motion are:

ml =l-cos(otqnT),

mî = sin(atqnT),

Kq = 2 - 2 cos(orynT) - aqnT sin(øqnT),

Kr' = Løsin(qanT),

(c.43)

(c 44)

(c 45)

(c.46)

(c.47)



Appendix C: Impact Oscillator

K! = -rqrT cos(a4nT) + sin(aqnT),

Kl = -øqnT +sin(qatnT),

Ii = Kq -mrnKl -mlKl,

Lqt = mf Kf +mlKf ,

Itz = e(-Kf + m{ Kl + mlK!),

(-d formaooinsP
where Â={ _ ___, : j i" Equations (C.48)and(C.51).

I d for mapping P, t

Kl = t - cos(øqnT) + qnTø sin(c'4nT),

Kl =t-cos(qatnT),

KÍ = Lr¿lt- cos(qanT)],
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(c.48)

(c.4e)

(c.so)

(c.51)

(c.s2)

(c.53)

(c.s4)

(c.55)

k-impact periodic motion :

Similarly, the coefficients for the non-equispaced k-impact periodic motion are:

mlj =t-cos(coq,nT),

Kq¡ - 2 - 2 cos(aa,nT) - Øg ¡nT sin(aq,nT),

4; . / ã\ffi2' = srn\(Dqnt )>

Kl' = r - cos(øq,"r) - Q ¡nTø sin(øq,nT),

Kft = -A,øsin(qnaT),

(c.s6)

(c.s7)

(c.s8)

(c.5e)

(c 60)



Appendix C: Impact Oscillator

Klt =l-cos(øq,nT),

Kl' =m(r - cos(q,otNT)),

Kl' = -7,nT cos(øA,nT) + sin(c,ry,nT),

K7 = -g,nT +sin(aq,nT),

Lai =Kqi _mliyli _*r%Kuni,

4t = *rnt rrnt + *r% xf; ,

f; = -Yai +mfi frq +*t Kl' ,

where
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(c.61)

(c.62)

(c.63)

(c.64)

(c.6s)

(c.66)

(c 67)

f-d for mapping {
A=J d formappingP,

L 0 for mappings P, and Po
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Globai bifurcation, 241
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H
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Hopf bifurcation, 23, 240
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