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Abstract. Sliding windows have been crucial in mining time series.
Many existing studies focus on reconstruction of the underlying structure
(e.g., suffix tree) for each new window. However, when the window size is
large or when the window slides frequently, reconstruction may perform
poorly. In this paper, we propose a solution that dynamically updates the
structure (rather than reconstruction for each modification or sliding).
Moreover, many existing studies rely on the weight of maximum weighted
item in the database to avoid testing unnecessary patterns when mining
weighted periodic patterns from time series, but it may still require lots
of weight checking to determine whether a pattern is a candidate. In this
paper, we also propose an additional solution to address this problem by
discarding unimportant patterns beforehand so as to speed up the candi-
date generation process. Evaluation results on real-life datasets show the
effectiveness of our two solutions in handling sliding window and pruning
redundant candidate patterns.

Keywords: Time series · Weighted periodic pattern mining · Dynamic
database · Sliding window · Pruning.

1 Introduction

Discovering an efficient approach for mining frequent patterns has always been an
important issue in knowledge discovery [5, 10, 12, 13, 16]. The idea of generating
patterns has evolved over time and flooded a huge set of new domains. Sequential
pattern mining [9, 14, 17, 19] is one of the popular areas in the field of pattern
mining, and time series pattern mining [6, 7] is a very renowned and widely
discussed topic in sequential pattern mining. The core input of time series pattern
mining is data stream (e.g., a stream of sequence of events or items found with
respect to time interval). A popular structure to represent time series is a suffix
tree [18], from which frequent patterns can be mined on different thresholds
and conditions. Data streams are continuous, unbounded, and not necessarily
uniformly distributed [3, 11]. This creates the challenge of dynamicity, which is



also the core of sliding window problem [1] in numerous real-life applications (e.g.,
weather forecast, natural disasters prediction, etc.) [21]. To solve this sliding
window problem, many existing studies rely on reconstructing the data structure
to represent a modified window. However, this approach can be very expensive,
especially in case of large window size or frequent sliding of windows. In this
paper, we propose a dynamic tree based solution to handle sliding window in time
series (DTSW), which focuses on (i) updating the data structure dynamically,
(ii) maintaining (rather than reconstructing) a dynamic tree for each modified
window, and (iii) keeping the tree suitable for various kinds of pattern mining.

In addition to DTSW, our second contribution centers around mining weighted
periodical patterns [6] from time series. The introduction of weight to patterns
helps in mining more interesting patterns when compared with its unweighted
counterpart [1]. Weighted periodical patterns in time series are weighted se-
quences that periodically occur at least a certain amount of times along with a
weight satisfying the user-specified threshold. Weighted pattern mining can be
very useful in time series to discover interesting features. For example, if ana-
lyzing the transactions of a sports kit shop, the sold products may vary with
many parameters (e.g., time, event, etc.). Selling rate of football jersey increases
after every four years when the World Cup hits. A main challenge in weighted
pattern mining is how to avoid testing undesired candidates so as to speed up the
candidate generation process. Note that the downward closure property (DCP)
cannot be applied directly in weighted versions of pattern mining. To speed up
candidate generation, many existing works use the Max Weight concept, but
they need to test a large number of unnecessary patterns for candidacy which in
turn degrades performance. Hence, our second contribution in this paper is an
efficient pruning solution—called maximum possible weighted support (MPWS)
pruning—to significantly reduce the number of patterns to be tested for candi-
dacy. To recap, our key contributions of this paper is our following two solutions:

– DTSW, a dynamic tree based solution to handle sliding window in time
series (Section 3).

– MPWS pruning, an efficient solution to speed up the candidate generation
process in weighted periodic pattern mining (Section 4).

The remainder of this paper is organized as follows. The next section gives
background and related works. Sections 3 and 4 present our two proposed so-
lutions. Section 5 shows evaluation results. Finally, conclusions are drawn in
Section 6.

2 Background and Related Works

2.1 Sliding Window Problem

Discretization is a technique to represent a group of data with a single symbol.
As time series is basically information gathered with respect to time interval,
it can be represented as a string or sequence of characters from a given set by
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Fig. 1: Explicit suffix tree for string “abcabababc$”

1

3 5

6 7

8

11 12

13 14

16

ab

cabababc ab

abc c

b

cabababc ab

abc c

cabababc

Fig. 2: Implicit suffix tree
for string “abcabababc”.

discretizing the values. For example “abcabababc$” is a discretized time series
sequence.

As the suffix tree has been shown [18] to be an efficient data structure to
represent time series and for frequent periodical pattern mining, we use it as
our data structure. We use Ukkonen’s algorithm [20], which a fast linear-time
algorithm to construct suffix tree. To elaborate, a suffix tree represents all the
suffixes of a string. If all the suffixes can be found by traversing from root to leaf
nodes, then the suffix tree is in its explicit form. On the other hand, if all the
suffixes do not end in leaves but rather embedded in the paths, then the tree is
in its implicit form. Fig. 1 shows an explicit suffix tree of string “abcabababc$”,
and Fig. 2 shows an implicit suffix tree of string “abcabababc”. An important
concept in the Ukkonen’s algorithm for constructing a suffix tree is suffix link,
which helps to traverse the tree efficiently. According to Ukkonen’s proposal,
each and every internal node of the tree points to another internal node (or the
root) as its suffix link. Suffix link of a node A with path “αβ” from root where
(i) ‘α’ is exactly one symbol and (ii) ‘β’ can contain zero or more symbols will
point to another (internal or root) node B as its suffix link if and only if node
B has the path ‘β’ from the root. For example, in Fig. 1, Node 1 points to Node
8 as its suffix link. Each pass of Ukkonen’s algorithm for adding symbol starts
from an active point, which represent the position of largest implicit suffix in
the tree at the current moment. The active point consists of (i) an active node
representing the node position from which new pass will start), (ii) an active
edge providing the information about the edge from active node where suffixes
overlapping is being occurred, and (iii) an active length representing the number
of symbols been overlapped in the direction of active edge from active node.
Ukkonen proposed rule extensions in his algorithm. For instance, to add a new
symbol to the end of all the existing suffixes in the tree, one does not have to
traverse all the leaves. One can use a global reference. The extensions ensure
maximization of suffixes overlapping in the tree. Moreover, Ukkonen also used
edge label compression in the algorithm by not saving the exact symbols for edge
labels. Instead, it stores only pointers to the starting and ending position of the
input sequence. Each pass inserts a new symbol to the tree. Before each pass,
every existing node must have a suffix link to some other node, and active point
must be maintained accordingly.

However, many existing works in time series do not give solution for handling
the data structure in a dynamic environment. To handle sliding window problem
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Fig. 3: Sliding window

in time series, many existing works build the structure from scratch for each new
window. Let us illustrate the sliding window problem by Fig. 3, in which the
window size is considered to be 9 (symbols). Window 1 contains the sequence
“abcababab”. After the arrival of new discretized input symbol ‘c’, the window
slides and we get new modified window with (i) symbol ‘a’ is deleted from the
beginning of the old window and (ii) symbol ‘c’ is inserted at the end. When the
time series is represented by a suffix tree, if we have a sequence S and a suffix
tree T for S, we need to be able to efficiently update T in case of (i) insertions
of new symbols at the end of S or (ii) deletion of symbols from the beginning
of S.

As a preview, to alleviate this problem, we propose DTSW, which is a frame-
work for handling both insertion and deletion of events in a single framework. The
basis of our solution is to keep the tree consistent so that, any time insertion or
deletion of events is possible. The idea of making a data structure consistent for
batch events was inspired by Leung and Khan’s work on the DSTree [11], which
aims to keep the tree consistent for future updates and makes only necessary
modifications to reflect the current data under consideration.

2.2 Pruning for Weighted Periodical Pattern Mining

Introduction of weight has been an important concept in pattern mining because
it helps to find patterns with more important features [1, 2] and is popular in time
series. Many existing studies [7, 18] mine (unweighted) periodic patterns from
time series by using the downward closure property to speed up the candidate
generation process. Related works [6] for mining weighted periodic patterns from
time series use the weight of maximum weighted character/item in the time
series to reduce the number of unnecessary patterns tested, and thus to speed
up the candidate generation.

As a preview, we propose the MPWS pruning solution. It provides a much
tighter bound so as to reduce the number of candidates to be tested by using a
heuristic value for the patterns.

3 Our Dynamic Tree Based Solution to Handle Sliding
Window in Time Series (DTSW)

Our dynamic tree based solution to handle sliding window in time series (DTSW)
consists of two modules: (i) A module for handling deletion events, which updates
suffix tree if we delete some symbols from the starting of the sequence; and (ii) a
module for handling insertion events, which updates our tree if we insert new
symbols to the end of the sequence.

121



3.1 Handling Deletion Events

Deleting a symbol from the starting of a sequence means deletion of the largest
suffix from the sequence. For example, if we have sequence “abcabababc”, then
removing the first symbol ‘a’ from the sequence means deleting the largest suffix
“abcabababc” from the sequence resulting in sequence “bcabababc”. So, the
problem centers around how we can delete a suffix from the suffix tree. Hence,
we define our Condition 1.

Condition 1. Before deleting any suffix from the suffix tree, the tree must be
in its explicit form. Main reasoning behind this is, if the tree is in explicit form,
then it is always enough to remove a leaf node from the tree to delete a suffix.
For example, if we want to remove suffix “abcabababc$” from the explicit tree
of Fig. 1, it is sufficient to remove Node 3 from the tree. Moreover, by definition,
deletion of suffixes from a sequence goes from larger to smaller suffixes. Let us
discuss some possible scenarios resulted from the deletions nodes and the ways
to tackle them. We will state them as propositions.

Proposition 1 (Conversion from internal to leaf node). If the parent
of a node V (say, U) loses all of its child nodes after removing V from an explicit
suffix tree, then if U is not root, we will (i) convert U to a leaf node from
an internal node and (ii) if any node W was pointing to U as its suffix link,
then the suffix link of W will be redirected to root node. Reasoning behind this
redirection lies in definition of suffix links that point from an internal node to
another internal node. Path symbols from the root to any node X is unique
because of the tree structure. So, suffix link of W must be redirected to the root.

Proposition 2 (Merging a splitted path). Suppose we remove node V
for deletion from an explicit suffix tree. After the deletion, if (i) parent of V
(say, U) becomes a node having a single child node W and (ii) U is not the root
and has a parent node X, then we will (i) delete node U , (ii) merge the split
path between X to U and U to W , and (iii) redirect the suffix link to root if any
internal node Y was pointing to U as its suffix link. For example, from Fig. 1,
after removing Node 3, Node 2 will only have a single child Node 4. Then, we
will remove Node 2, and merge the path between Node 1 to Node 2 and the path
between Node 2 to Node 4. Here, no node was pointing to Node 2 as its suffix
link. Otherwise, we would have redirected to the root because path symbols
“abc” (from the root to Node 2) would not have repeated elsewhere in the tree
(from the root). This proposition is essential to maintain our Condition 1 and
insertion module.

3.2 Handling Insertion Events

Our proposed solution DTSW is a complete framework for maintaining a dy-
namic suffix tree to handle sliding window, where our algorithm considers both
insertion and deletion as two independent modules. Our solution is capable to
(i) update the suffix tree for multiple insertion or deletion events and (ii) keep
the structure consistent for future updates.
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To convert an implicit suffix tree to an explicit suffix tree, a unique symbol
is added to the tree. A symbol that does not exist in the sequence (upon which
suffix tree is built) is considered as a unique symbol. This addition creates many
nodes, splits many paths, and converts every implicit suffix explicit. Fig. 1 is the
explicit suffix tree of string “abcabababc$”, where main string is “abcabababc”
and ‘$’ is the unique symbol; implicit suffix tree of “abcabababc” is shown in
Fig. 2. Although both figures represent the same suffixes, Fig. 1 has an advantage
of ending all suffixes in leaves and ignoring the last symbol from each suffix we
can extract the main suffixes to work with.

The main goal of our insertion module is to convert the tree to such an
extent that the Ukkonen’s algorithm can be used to insert symbols to the tree.
Key steps include:

1. Conversion from explicit to implicit: We will revert back the tree from explicit
to implicit form, which means we will remove the unique symbol and erase
all the effects created due to it.

2. Finding new active point: Each pass of the Ukkonen’s algorithm starts from
the largest implicit suffix of the tree. After Step 1, some explicit suffixes will
become implicit, then we need to find the largest implicit suffix’s position
and update the active point for the new pass.

There exists many reasons behind Step 1: (i) As unique symbol is not part of the
input, this symbol has to be removed from the tree before any new addition. If
we keep unique symbol, then adding new input and extracting the main suffixes
will be costly. (ii) Addition of unique symbol creates some extra nodes and
split paths in the tree. If we do not revert back the effect before new insertion,
maximization of overlapping suffixes will not be ensured. The compact nature of
the tree will be violated. Consider ‘$’ as our unique symbol. Let us discuss cases
which can occur due to addition of ‘$’ and we have to revert back those effects:

1. Child node V created from an existing node for ‘$’. In this case, we have to
remove the child node V . Because of deletion, if parent of V (say, U) loses all
its children and U is not the root, then we have to convert U to a leaf node
following Proposition 1 and if U remains with only one single child node,
then we have to delete U and merge the path following Proposition 2.

2. Child node V created by splitting an existing path for ‘$’. This case can be
explained from Figs. 2 and 1. Due to addition of ‘$’ path between Node 1 and
Node 3 gets split. New node 2 is inserted in between them, and then Node
4 is created for ‘$’. To revert back this case, we will first delete node V and
then merge the split path by following Proposition 2. Here, in our example,
we will first delete Node 4, then delete Node 2 and merge the path between
Nodes 1 to 2 and Nodes 2 to 3. We would also have redirected the suffix link
if any suffix link was pointing to Node 2 to the root.

Step 2 is find active point for the new pass. The whole process and reasoning
can be provided as follows:
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– In Step 1, we convert explicit suffixes to its implicit form. So, we can actually
count the number of suffixes that have been converted. This number denotes
the length of the largest implicit suffix at the moment after conversion. Sup-
pose the number is l. So, all the suffixes present at most 1 distance from the
end of the sequence will be implicit now, because a suffix becomes implicit
along with all of its smaller sub suffixes. Moreover, suffix deletion is also
sequential, larger suffixes will be effected first before its smaller sub-suffixes.

– Then, we will revert back the effects in reverse order by which the nodes
were created or paths were split due to addition of ‘$’. So, while erasing the
effects, if we encounter a node which has been modified, we stop reverting
because all of the previous effects created due to addition of ‘$’ have been
compromised. So, we already found the largest implicit suffix of the tree.
Now, by traversing the tree, we can find its position and update active point
(aka active Node), active Edge and active Length. These information can also
be saved while erasing the effects. As an example, if we want to have the tree
of Fig. 2 from Fig. 1, we will revert back the effects of Nodes 18, 15, 9 and 2,
respectively. Removing child for ‘$’ from the root does not help determining
the largest implicit suffix because it is a dummy node.

Let us consider a simulation of our algorithm. Suppose we had a window of
string “abcabababc” (the explicit tree for this window is shown in Fig. 1) and
then we get a new symbol ‘b’ and our window slides. Fig. 4 shows the tree after
deletion of ‘a’, Fig. 5 shows the tree after conversion and from explicit to implicit
with the largest implicit suffix “bc”, and Fig. 6 shows the resultant explicit tree
after addition of ‘b’.

4 Our Maximum Possible Weighted Support (MPWS)
Pruning

Checking every pattern if they are weighted frequent (or weighted periodic)
pattern is impractical. In unweighted version of pattern mining, the downward
closure property (DCP) is used. As trivial DCP does not work in weighted pat-
tern mining, most used technique is to use the weight of the maximum weighted
character (MaxW) of the database to reduce the number of patterns tested.
Testing a pattern means evaluating if that pattern can be a candidate pattern.

In this section, we propose a maximum possible weighted support (MPWS)
pruning solution, which provides a tighter bound than the use of MaxW. In
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the remainder of this section, we will use 0.8, 0.1, 0.2 and 0 as the weights of
characters ‘a’, ‘b’, ‘c’ and ‘$’, respectively.

Definition 1. sumW (N) is defined as the sum of all the characters from the
root to node N .

Definition 2. weight(X) is defined as the average weight of the characters of
pattern X.

Definition 3. min sup is defined as a user-specified support threshold with a
real number between 0 and 100, and σ is defined as its corresponding normalized
threshold:

σ =
min sup× (MaxW × length of dataset)

100.0
(1)

With the maximum weight of a character in the dataset be MaxW, no pattern
can have weighted support greater than MaxW × length of dataset.

Definition 4. weightedSupport(X) is defined as a product of the average
weight of the character of pattern X and the actual periodicity support(X) of
the pattern X:

weightedSupport(X) = weight(X)× support(X) (2)

A pattern X is defined as weighed periodic if weightedSupport(X) ≥ σ.

Definition 5. cnt(A,B) is defined as the number of characters encountered
on the path from node A to node B.

Definition 6. maxW (A,B) is defined as the weight of the character having
the maximum weight among the characters on the path from node A to node B.

Definition 7. sizeV (N) is defined as the size of the occurrence of vector of
node N . In other words, it captures the number of occurrence of the pattern that
ends at node N .

Definition 8. subStr(A,B) is defined as the substring of the time series en-
countered on the path from node A to node B.

For example, in Fig. 1, sumW (Node 14) is the sum of weight of the char-
acters ‘b’, ‘a’, ‘b’ and ‘c’, which is 0.1 + 0.8 + 0.1 + 0 = 1.2. If X is “abac”,
then weight(X) = 0.8+0.1+0.8+0.2

4 = 0.475. In Fig. 1, cnt(8, 13) = 6, mean-
ing that 6 characters are encountered on the path from Node 8 to Node 13.
maxW (8, 13) = 0.8 means that the maximum weight among all 6 characters on
the path from Node 8 to Node 13 is 0.8. subStr(8, 13) is “ababc$”, which is the
substring of the time series encountered on the path from Node 8 to Node 13.

Definition 9. Let (i) node P be the parent of node N , (ii) E be the edge between
nodes N and P , and (iii) R be the root. Then, nodeW (N) is defined as the
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maximum possible weighted support of a pattern ending exactly above node N
(between nodes N and its parent P ):

nodeW (N) = max{A,B} × sizeV (N) (3)

where

A =
sumW (P ) +maxW (P,N)

cnt(R,P ) + 1
(4)

B =
sumW (P ) +maxW (P,N)× cnt(P,N)

cnt(R,P ) + cnt(P,N)
(5)

Definition 10. Let (i) node P be the parent of node N , (ii) E be the edge
between nodes N and P , and (iii) R be the root. Then, S is defined as a repre-
sentative of all the patterns that end between some node N and its parent P :

S ← S1 + S2 (6)

where

S1 ← subStr(root, P ) (7)

S2 ← any nonempty prefix of subStr(P,N) (8)

Lemma 1. nodeW (N) ≥ weightedSupport(S) always holds.

Proof. By Eq. (3), nodeW (N) = max{A,B} × sizeV (N) where values of A
and B can be computed by Eqs. (4) and (5), respectively. And, by Eq. (2),
weightedSupport(S) = weight(S)×support(S). Here, max(A,B) gives the max-
imum possible value of weights(S) under any circumstances. Consider the fol-
lowing three cases:

1. weight(S1) > maxW (P,N): In this case, even if all the characters in E
has the same weight as maxW (P,N), weight(S) cannot be greater than A.
Because Eq. (4) assumes that S3 has length 1. If we increase length of S3,
weight(S) will gradually decrease. So, A is the maximum possible value of
weight(S) in this case.

2. weight(S1) < maxW (E): We need an upper bound for weight(S). So, let
us assume all the characters in E has weight equal to maxW (P,N). Then,
weight(S) will gradually increase with the increasing length of S3. We get
the value of B (see Eq. (5)) by assuming S3 has maximum possible length.
So, B is the maximum possible value of weight(S) in this case.

3. weight(S) = maxW (P,N): In this case, the length of S3 does not matter.

So, max{A,B} ≥ weight(S), and sizeV (N) ≥ Support(S). Hence, nodeW (N)
= max{A,B} × sizeV (N), and thus nodeW (N) ≥ weightedSupport(S). ut

Definition 11. MPWS(N) is defined as the maximum value among nodeW ()
of all the nodes in the subtree of node N . Subtree of node N includes itself.
Let nodeW (N) be the maximum possible weighted support pattern S. Then,
MPWS(N) is the maximum of nodeW of all the nodes in the subtree, and it is
the maximum possible weighted support any pattern can achieve that has S1 as
a prefix.
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Fig. 7: Example of our MPWS pruning solution

Table 1: MPWS pruning necessary values calculated for Fig. 7

Node sizeV A B nodeW MPWS

1 1 0.48 0.68 0.68 0.68
2 1 0.37 0.67 0.67 0.67
3 1 0.50 0.73 0.73 0.73
4 4 0.80 0.80 3.20 3.20
5 1 0.52 0.62 0.62 0.62
6 4 0.10 0.10 0.40 1.13
7 1 0.45 0.60 0.60 0.60
8 2 0.57 0.62 1.25 1.25
9 1 0.40 0.37 0.40 0.40

Node sizeV A B nodeW MPWS

10 2 0.45 0.57 1.13 1.13
11 1 0.30 0.28 0.30 0.30
12 2 0.37 0.37 0.73 0.73
13 1 0.28 0.28 0.28 0.28
14 2 0.15 0.15 0.30 0.67
15 1 0.10 0.10 0.10 0.10
16 2 0.20 0.20 0.40 0.73
17 1 0.10 0.10 0.10 0.10
18 1 0.00 0.00 0.00 0.00

Candidate generation. Candidate patterns can be generated by a breadth
first search (BFS) in the suffix tree. Following Definition 10, when we reach
node N in the breadth first search, for every S, if weight(S) × sizeV (N) ≥ σ,
then we will consider S as a candidate pattern.

Pruning condition. In the suffix tree for a string of size L, the number of
nodes will be around N . However, the sum of the number of characters in the
edges can be close to L2. Thus, there can be around L2 possible patterns in the
dataset.

The candidate generation process mentioned above tests every pattern and
makes that a candidate if it passes the test. However, checking every pattern
is time consuming. So, we have to find a better pruning condition that reduces
the number of patterns checked. The most commonly used technique is to use
the weight of the maximum weighted character (MaxW) of the database. If
MaxW × support(P ) < σ, any super pattern of P cannot be weighed frequent.
So, those patterns cannot be periodic patterns either.

Lemma 2. For any child C of node N , if MPWS(C) < σ, then we can ignore
the whole subtree of C. This means that we do not need to visit any node in the
subtree during the candidate generation of BFS.

Proof. It can be easily proved because any node U in the subtree of C will not
have nodeW (U) ≥ σ according to the definition of MPWS(N). ut

All the candidate patterns are actually weighted frequent subsequence of the
current time series. To check if they are also periodic patterns, we can test the
occurrence vector of each candidate pattern with different period values using
known periodicity detection algorithms.
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An example of our MPWS pruning solution is shown in Fig. 7 and Table 1.
Here, the figure shows a suffix tree of string “abcabababc$” withmin sup = 10%.
Detailed calculation of MPWS and other associated values is shown in Table 1.
There are 3 types of nodes in Fig. 7:

1. Any pattern that has a blue node (e.g., Nodes 4, 6, 8 and 10) in its subtree is
tested. For example, only patterns “a”,“ab”,“aba”,“abab”,“b”,“ba”,“bab”
has a blue node in their subtree. So, only these patterns are tested for can-
didacy.

2. A green node N means that, starting from N , its whole subtree is unimpor-
tant and can be ignored during candidate generation BFS. Nodes 5, 7, 9, 11,
12, 14, 16 and 18 are green nodes.

3. All the nodes having a green node as an ancestor are red nodes (e.g., Nodes 1,
2, 3, 13, 15 and 17).

In this example, according to MPWS pruning, only seven patterns are tested
for candidacy. Five of them eventually become candidate patterns. There are
50 patterns in total that had to be tested if we did not use any pruning. If we
used the traditional MaxW pruning, we had to test 10 patterns.

Additional complexity for pruning. If we build a suffix tree for a string
of size L, there can be at most 2× L nodes in the suffix tree. During candidate
generation, we first determine the MPWS value for all the nodes, which can be
done by a depth first search (DFS) on the tree. We need the MaxW value for
each edge during that DFS. We have determined it using range minimum query
(RMQ) in static data. As the query complexity for each edge is O(1), the added
complexity by MPWS pruning becomes O(L).

5 Evaluation Results

We have used several data sets taken from UCI Machine Learning Repository [8]
to compare our solutions with existing approaches. As all of them show consistent
results, we will be showing the results of the following three datasets, which were
discretized into string of characters:

1. Individual household electric power consumption dataset, which consists of
50000 events discretized into 13 types;

2. Appliances energy prediction dataset, which consists of 19735 events dis-
cretized into 12 types; and

3. Diabetes dataset, which consists of 2400 events discretized into 37 types.

All the codes were written using the C++ programming language. We used a
machine having AMD Ryzen 5 machine with 1600 CPU (3.2 GHz) and 8 GB
RAM for evaluation.
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(b) Data stream with window size 1000
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(c) Data stream with window size 10000
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(d) Data stream with window size 30000

Fig. 8: Sliding window with window sizes 100, 1000, 10000 and 30000

5.1 Evaluation on the DTSW Algorithm

Existing works on time series do not handle the sliding window based problem.
Hence, they build the data structure from scratch for every window sliding, which
can be inefficient. We show a comparison of the experimental result between
DTSW and reconstruction of the tree for every window. Building the tree again
for each new window performs poorly when the window size is large or the
number of windows is large. In these scenarios, DTSW is very useful.

In Fig. 8, we show four graphs for four different window sizes from the indi-
vidual household electric power consumption dataset. (As results for the other
three datasets are similar, we omit them.) In the figures, the x-axis shows the
number of windows passed and the y-axis shows the total time taken from the
beginning. With the increasing window size, the performance of reconstruction
gets worse, but DTSW runs very efficiently.
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Fig. 9: MPWS pruning vs. MaxW pruning on varying minimum weighted support
threshold

5.2 Evaluation on the MPWS Pruning

In the candidate generation process without any pruning, every pattern has to
be tested to check if it can be a candidate. However, this is not practical as there
can be many unnecessary patterns. Our main goal in the MPWS pruning is to
avoid testing patterns that will not become a candidate pattern eventually.

For all the datasets, we have discretized them and assigned each unique
character a weight that follows a normal distribution (µ=0.5 and σ=0.2). For
different weighted support thresholds, we have compared our MPWS pruning
with the traditional MaxW pruning on all the databases. Fig. 9 shows that our
MPWS pruning tests much fewer patterns when compared with the traditional
MaxW pruning. For example, in the individual household electric power con-
sumption dataset, when the minimum support threshold is 0.005%, if we try to
optimize the candidate generation process by using only MaxW in the database,
it checks 63, 490 patterns. In contrast, mining with our MPWS pruning checks
only 21, 592 patterns. With only 21, 408 actual candidate patterns, our MPWS
pruning significantly reduces the number of tested patterns to close to the num-
ber of actual candidate patterns. Moreover, our MPWS pruning is observed not
to test more patterns than the traditional MaxW pruning. In fact, our MPWS
pruning is guaranteed to test no more patterns than the traditional MaxW prun-
ing.

6 Conclusions

In this paper, we solved two important problems in time series pattern mining.
Our dynamic tree based solution to handle sliding window in time series (DTSW)
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is an algorithm for solving the sliding window problem. Our maximum possible
weighted support (MPWS) pruning is a technique that reduces the number of
patterns to be tested for candidacy. Both solutions are shown to be more efficient
than existing approaches. Note that both of these solutions are independent
of each other and can be used as two separate modules. Specifially, our first
contribution—namely, DTSW —is an algorithm to dynamically update suffix
tree. It is adaptable to run time dynamic window size, and is applicable for
both weighted and unweighted framework. It solves the challenge of dynamic
time series data. Our second contribution—namely, MPWS—can be used in
different kinds of weighted pattern mining (with necessary modifications) in
place of traditional MaxW because of its unique style for approximating an
upper bound. As ongoing and future work, we are extending our solutions using
dynamic weights in time series.
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