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Abstract

This thesis is devoted to investigation of some properties of the permanent function

over the set Ωn of n×n doubly stochastic matrices. It contains some basic properties

as well as some partial progress on Foregger's conjecture.

Conjecture (Foregger). For every n ∈ N, there exists k = k(n) > 1 such that, for

every matrix A ∈ Ωn,

per(Ak) ≤ per(A).

In this thesis the author proves the following result.

Theorem. For every c > 0, n ∈ N, for all su�ciently large k = k(n, c) ∈ N, for all

A ∈ Ωn which minimum nonzero entry exceeds c,

per(Ak) ≤ per(A).

This theorem implies that for every A ∈ Ωn, there exists k = k(n,A) > 1 such

that

per(Ak) ≤ per(A).
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Chapter 1

Notation

The following list of notations is used throughout this thesis.

N set of all positive integers

N0 N ∪ {0}

R set of all real numbers

C set of all complex numbers

H quaternion algebra

n (1, 2, ..., n)

π permutation, i.e., bijection from {1, 2, ..., n} to itself

Sn set of all permutations

N(π) number of pairs of elements x, y of {1, 2, ..., n} such that x < y

and π(x) > π(y)

sgn(π) (−1)N(π)
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Mn set of all n× n matrices

A∗ conjugate transpose matrix of A

|(aij)| (|aij|)

A(i|j) matrix A without ith row and jth column

On,m n×m zero matrix

In n× n identity matrix

Jn
(
1
n

)
n×n

Pn set of all n× n permutation matrices

det((aij)n×n)
∑

π∈Sn sgn(π)
∏n

i=1 aiπ(i)

per((aij)n×n)
∑

π∈Sn
∏n

i=1 aiπ(i)

σk(A) the sum of permanents of all k × k submatrices of A

A⊕B if A ∈Mn and B ∈Mm, then A⊕B =

 A On,m

Om,n B


d(A) minimum entry of matrix A

D(A) maximum entry of matrix A

d∗(A) minimum non-zero entry of A

Ωn set of all doubly stochastic matrices, i.e.,

Ωn :=

{
A = (aij) ∈Mn : aij ≥ 0,

n∑
i=1

aij =
n∑
j=1

aij = 1

}

ρ metric on Mn, ρ(A,B) is the biggest value among

entries of |A−B|

B(A, r) open ball in metric ρ with center at A and radius r
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Chapter 2

De�nitions and basic properties

De�nitions that are used throughout this thesis are introduced in this chapter. Since

the behaviour of the permanent function on doubly stochastic matrices is the main

interest for this thesis, we concentrate on de�nitions of classes of matrices and some

characteristics of matrices (e.g., index of imprimitivity). Also, we provide necessary

de�nitions from probability theory and Cli�ord algebras which will be used in Section

3.1.3.

Throughout this thesis, we consider several classes of matrices. Positive (non-

negative) matrices are all matrices whose entries are positive (nonnegative). n × n

matrix A is called positive semide�nite if, for every x ∈ Rn, xTAx ≥ 0. A matrix

is called doubly stochastic if it is a nonnegative matrix with row and column sums

equal 1. The set of doubly stochastic matrices is denoted by Ωn. A matrix is called

diagonal if all its nonzero entries are on the main diagonal. A (0, 1) matrix is a
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matrix whose entries are either 0 or 1. We denote by Λk
n the subset of (0, 1) matrices

consisting of those matrices that have exactly k 1's in each column and in each row.

In other words,

Λk
n :=

{
A = (aij) ∈Mn : aij ∈ {0, 1},

n∑
i=1

aiν =
n∑
j=1

aνj = k for all 1 ≤ ν ≤ n

}
.

De�nition 2.1. • The permanent function of A = (aij)n×n is de�ned as

per(A) :=
∑
π∈Sn

n∏
i=1

aiπ(i),

where Sn is the set of all permutations of {1, 2, ..., n}.

• σk is the sum of permanents of all k× k submatrices. If k = n, then σn = per,

and if k = 1, then σ1 is the sum of all entries of A.

There are some immediate consequences of the de�nition of the permanent func-

tion:

• For every A ∈Mn, per(A) = per(AT ).

• For every P ∈ Pn, per(P ) = 1.

• For every P,Q ∈ Pn, per(PAQ) = per(A).

• If D is a diagonal matrix, then per(DA) = per(AD) = per(A) per(D).

• Let A and C be square matrices. If

X =

A 0

B C

 ,

then per(X) = per(A) per(C).
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Note that the permanent of a matrix A does not change if one multiplies A by a

permutation matrix, and so we recall some basic properties of permutation matrices.

Lemma 2.2. P T = P−1 for every permutation matrix P .

This statement immediately follows from the fact that PP T = I.

The following de�nition is useful here in the investigation of Foregger's conjecture

(Conjecture 4.1).

De�nition 2.3 ([Min88, p. 5]). Matrix A is said to be cogredient to a matrix Ã, if

there is a permutation matrix P such that A = PÃP T .

Let π be the permutation that corresponds to a permutation matrix P , in other

words, (i, π(i))th entry of P is 1, 1 ≤ i ≤ n. Note that PA can be obtained

by permutation of rows of A correspondingly to permutation π, while AP T can

be obtained by permutation of columns of A by permutation π. Therefore, A is

cogredient to Ã if and only if A can be obtained from Ã by simultaneous permutation

of rows and columns of Ã.

Cogredient matrices have the following properties:

1. Let P be a permutation matrix. If A = PÃP T and B = PB̃P T , then AB =

PÃB̃P T , so if A and B are cogredient to Ã and B̃, respectively, then AB is

cogredient to ÃB̃.

2. If A is cogredient to Ã, then An is cogredient to Ãn.
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Also, in Chapter 4, we discuss the properties of irreducible matrices in superdiag-

onal block form, and so the following de�nition is needed.

De�nition 2.4 ([Min88, p. 53]). A matrix A in the form

A =



0 A1 0 ... 0

0 0 A2 ... 0

...
...

...

0 0 0 ... Am−1

Am 0 0 ... 0


,

where the block Ai is an ni × ni+1 matrix, i = 1, 2, ...,m− 1, and Am is an nm × n1

matrix, is said to be in the superdiagonal block form, or more speci�cally, in the

superdiagonal (n1, n2, ..., nm)-block form.

In this thesis, we consider only superdiagonal block matrices where all ni are

equal.

De�nition 2.5 ([Min88, p. 5]). A nonnegative n × n matrix A, n ≥ 2, is called

reducible if it is cogredient to a matrix of the formB C

O D

 ,

where B and D are square submatrices. Otherwise, A is irreducible.

Reducible/irreducible matrices are sometimes called decomposable/indecomposable.
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Lemma 2.6. A matrix A ∈ Ωn is reducible if and only if there exists P ∈ Pn and

square matrices B and C so that

A = P (B ⊕ C)P T ,

Proof. If A = P (B ⊕ C)P T , then, obviously, A is reducible. Conversely, if A is

reducible, then there exist P ∈ Pn and m ∈ N such that A = P

B C

O D

P T , where

B ∈ Mm and D ∈ Mn−m. Since A ∈ Ωn (column sums equal 1), the sum of all

entries of B equals m. A ∈ Ωn (row sums equal 1) implies that the sum of all entries

of B plus the sum of all entries of C is m. Therefore, the sum of entries of C equals

0. Since A is a nonnegative matrix, C = Om,n−m.

Note that every matrix A ∈ Ωn can be expressed in the form

A = P (A1 ⊕ A2 ⊕ ...⊕ Al)P T ,

where P ∈ Pn and Ai is irreducible, 1 ≤ i ≤ n.

De�nition 2.7 ([Min88, p. 47]). Let A be an irreducible n×n matrix with maximum

eigenvalue r, and suppose that A has exactly m eigenvalues of modulus r. The number

m is called the index of imprimitivity of A, or simply the index of A. If m = 1, then

matrix A is said to be primitive; otherwise, it is imprimitive.

We denote the index of imprimitivity of A by ind(A).

The connection between the index of the matrix and its superdiagonal form is

shown in Theorem 4.16.
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Since Foregger's conjecture (Conjecture 4.1) deals with powers of matrices, we

need to determine the form of powers of a matrix in the superdiagonal form.

Lemma 2.8. Let A ∈Mmµ be in the superdiagonal (µ, µ, .., µ)︸ ︷︷ ︸
m

-block form, i.e.,

A =



0 A1 0 ... 0

0 0 A2 ... 0

...
...

...

0 0 0 ... Am−1

Am 0 0 ... 0


,

where Ai ∈Mµ, 1 ≤ i ≤ m. Then, for every k ∈ N0 and 0 ≤ r < m, there is P ∈ Pn

such that

Akm+r =

(
m⊕
i=1

Bi

)
P

where

Bi =

(
i+m−1∏
j=i

Aj

)k

AiAi+1...Ai+r−1.

In the case r = 0, P is identity permutation.

In the last formula, the index in the product is modulo m, so j should be under-

stood as j(modm).

Proof. Note that in order to �nd the power of a block matrix, we need to perform all

operations as if blocks Ai were numbers. Then the statement is straightforward.

We also need the following de�nition.
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De�nition 2.9. • A graph G = (V,E) is bipartite if there is a partition V =

XUY , X ∩ Y =, such that E ⊂ X × Y .

• A bipartite graph is a graph whose vertices can be divided into two disjoint sets

U and V (called partite sets)such that every edge connects a vertex in U to a

vertex in V .

• A graph is called k-regular if each vertex has degree k.

• A perfect matching is a 1-regular subgraph that uses all vertices.

Let G be a bipartite graph with partite sets U = {u1, u2, ..., un} and V =

{v1, v2, ..., vn}. If (aij)n×n is the biadjacency matrix for G, then

aij =


1, if there is an edge that connects ui and vj,

0, otherwise.

Observation 2.10. The number of perfect matchings in a bipartite graph G coincides

with the permanent of the biadjacency matrix for G.

Proof. Let G be a bipartite graph and A be a biadjacency matrix for G. The perfect

matching in G corresponds to the diagonal in A without zeros. Since diagonal prod-

ucts of A can be only 0 and 1, the sum of diagonal products of A over all diagonals is

the number of perfect matchings in G. By the de�nition, this sum is the permanent

of A. This �nishes proof.

Therefore, we can restate the problem of �nding the permanent of a (0, 1) matrix

in terms of the number of perfect matchings.
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Also, we de�ne a near-perfect matching as a matching (subgraph in which degree

of every vertex is at most 1) that leaves exactly one pair of vertices unmatched. Note

that the number of near-perfect matchings corresponds to σn−1 (see, e.g., [Wan99]).

In Section 3.1.3, we discuss methods of approximation of the permanent function.

To discuss randomized algorithms, we need some basic de�nitions from probability

theory.

De�nition 2.11. Let 2X be the set of all subsets of some set X. A set F ⊆ 2X is

called a σ-algebra if it satis�es the following condition:

• F is non-empty: there is at least one A ⊆ X in F.

• F is closed under complement: if A is in F, then so is its complement X\A.

• F is closed under countable unions: if for each n ∈ N, An ∈ F, then so is

A =
⋃
n≥1An.

Note that X ∈ F.

De�nition 2.12. A probability space is a triple (X,F,P) of a sample space X, set

F and probability P that satis�es the following condition:

• F ⊆ 2X is a σ-algebra. Elements of F are called events.

• P : F→ [0, 1] is a probability measure, i.e., P satis�es the following conditions.

1. P is a nonnegative function, P (∅) = 0.
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2. If {An}n≥1 is a collection of pairwise disjoint subsets of F, then

P

(⋃
n≥1

An

)
=
∑
n≥1

P(An).

3. The measure of the entire space is 1, i.e., P(X) = 1.

De�nition 2.13. • ξ : X → R is said to be a real valued random variable, if it

is Borel-measurable function.

• F : R→ [0, 1] de�ned by

F (x) := P ({ω : ξ(ω) ≤ x})

is called a distribution of real valued random variable ξ.

• Mathematical expectation of a random variable ξ with distribution F is de�ned

by

Eξ :=

∫
R
xdF (x)

if the integral exists.

• Variance of ξ is the value Dξ := E [(ξ − Eξ)2].

Let ξ be a random variable with �nitely many values. Then we say that ξ is

uniformly distributed if it achieves each value with the same probability.

The concept of an independent random variable is basic for all estimators and is

used in Section 3.1.3.
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De�nition 2.14. Random variables ξi, i = 1, 2, ..., n, are independent, if Ai ∈ F,

i = 1, 2, ..., n, implies

P ({ω : ξi(ω) ∈ Ai, i = 1, 2, ..., n}) =
n∏
i=1

P ({ω : ξi(ω) ∈ Ai}) .

In Section 3.1.3 we discuss the approximation algorithm that uses quaternions and

Cli�ord algebras. The quaternions H is a division algebra, generated by {1, i, j, k}

with multiplicative rules i2 = j2 = k2 = ijk = −1. Note that quaternions is a

non-commutative algebra.

De�nition 2.15 ([CRS03]). Let V be an algebra with basis elements vi1i2...ik , where

1 ≤ i1 < i2 < ... < ik = m, together with v0 = 1 and with multiplication rules:

• if i 6= j, vivj = vij = −vjvi,

• v2i = −1.

An mth Cli�ord algebra CLm is a subalgebra of V with basis vi1i2...ik , where the

number of indeces is even.

Note that CL1 coincides with the algebra of real numbers R, CL2 is the algebra

of complex numbers C, CL3 is the quaternion algebra H.
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Chapter 3

Basic facts

It seems (see, for example, H. Minc [Min78]) that the permanent function �rst ap-

peared in 1812 in Binet's [Bin13] and Cauchy's [Cau25] articles.

De�nition 3.1. If (aij) ∈Mn, then the permanent function is de�ned as

per((aij)) :=
∑
π∈Sn

n∏
i=1

aiπ(i).

Despite the fact that de�nitions of permanent and determinant look similar, their

properties are signi�cantly di�erent. For example, while for every pair of matrices

A,B ∈Mn,

det(AB) = det(A) det(B),

we generally cannot state any relation between per(AB) and per(A) per(B).
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3.1 Computation

There are several ways how to evaluate the permanent function. If we use the

de�nition

per((aij)n×n) =
∑
π∈Sn

n∏
i=1

aij,

the computation requires O(n!n) arithmetic operations. This is not too e�cient!

3.1.1 Pólya's permanent problem

One can see the similarity between the de�nitions of permanent and determinant and

also observe the fact that determinant can be evaluated in polynomial time using

Gaussian elimination. Therefore, it would be nice if we could transform any matrix

A and get some matrix B such that per(A) = det(B). G. Pólya (see, e.g., [McC04, p.

11]) asked if it possible to achieve this by changing some signs of entries of A. The

answer is negative in the sense that, if n ≥ 3, then there is no common pattern of

changing signs for all n × n matrices. For n = 2 the pattern of the sign change is

trivial: + −

+ +

 .

For n ≥ 3, the answer remains negative even for a weaker statement (see, e.g.,

[BR91]): there is no linear transformation T : Mn → Mn such that per(A) =

det(T (A)), A ∈Mn. However, the answer changes for some subclasses of matrices.

If A = (aij)n×n and B = (bij)n×n, then we denote A ∗B := (aijbij)n×n.
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Theorem 3.2 (see, e.g., [BR91, p.237-238]). Let E be a matrix with entries -1, 0, 1

satisfying per(|E|) = det(E). Then, for every matrix A that has zeros exactly in the

same positions as E,

per(A) = det(E ∗ A).

For example, let

E =



0 1 0 1

−1 0 1 0

−1 0 −1 1

−1 1 −1 −1


.

Then det(E) = per(|E|) = 6. Therefore, for every matrix A with the same positions

of zeros as in E, per(A) = det(A ∗ E).

3.1.2 The fastest algorithms

In 1979, L. Valiant [Val79] proved that the computation of permanent function of

(0, 1) matrix is #P-complete. Therefore, under standard assumptions (P 6=NP) of

theory of complexity, the permanent function cannot be found in polynomial time.

The fastest known algorithm (according to [RW08]) for general matrices is due to H.

Ryser [Rys63] and it is exponential in time:

per((aij)n×n) =
∑

S⊆{1,...,n}

(−1)n−|S|
n∏
i=1

∑
j∈S

aij. (3.1)
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Using Ryser's formula (3.1), permanent can be evaluated using O(2nn2) arith-

metic operations.

In 2010, D. Glynn [Gly10] proposed a di�erent algorithm with the same running

time.

Theorem 3.3 ([Gly10]). Let A = (aij)n×n be a matrix over a �eld F of a charac-

teristic not two. Then

per(A) = 21−n

∑
δ

(
n∏
k=1

δk

)
n∏
j=1

n∑
i=1

δiaij

 ,
where the outer sum is over all 2n−1 vectors δ = (δ1, δ2, . . . , δn) ∈ {±1}n, with δ1 = 1.

Note that F can be the �eld of real numbers R.

3.1.3 Approximation of permanent

As discussed above, the fastest known algorithms to �nd the permanent have expo-

nential running time. Therefore, we are interested in algorithms that allow to approx-

imate the permanent function with an arbitrarily small error and having polynomial

running time.

In 2000, L. Linial, A. Samorodnitsky and A. Widgerson [LSW00] showed that

there is a polynomial time algorithm of running time O(n5 log n) such that, for every

nonnegative matrix A ∈Mn,

e−np̂er(A) ≤ per(A) ≤ p̂er(A), (3.2)
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where p̂er(A) is the output of the algorithm. This result is based on the following

idea. If we can scale the input matrix A to make it su�ciently close to any B ∈ Ωn,

then, using van der Waerden-Falikman-Egorychev theorem (see Theorem 3.7 for

further discussion), we get bounds on per(B), namely e−n < n!/nn ≤ per(B) ≤ 1,

and, therefore, we bound per(A). This algorithm is fast, however, the interval for

per(A) is huge if n is large.

In 2010, D. Gamarnik and D. Katz [GK10] proposed an algorithm that has better

accuracy, but it is in exponential time. If G = (V1 ∪ V2, E) is a bipartite graph,

|V1| = |V2| = n, then, for every A ⊂ V1 ∪ V2, we denote the set of neighbors of A by

N(A). Let

α(G) := min
A

N(A)

|A|
− 1,

where minimization is over all sets A such that A ⊂ Vi, i = 1, 2 and |A| ≤ n/2.

Theorem 3.4 ([GK10]). Let α, 4 and ε > 0 be �xed, and let G be an n-by-n

bipartite graph such that α(G) ≥ α and 4 is a maximum degree of vertices in G. If

A is an biadjacency matrix of G, then there is a deterministic polynomial time (in

n) approximation algorithm with the output p̂er(A) satisfying

(1− ε)np̂er(A) ≤ per(A) ≤ (1 + ε)np̂er(A).

The algorithm is not of polynomial time in ε, because the dependence of the

running time on ε is in the form O(nε
− log−1(1+α) log(4)

). However, the accuracy of this

algorithm is signi�cantly better than the accuracy in (3.2).
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To discuss randomized algorithms, �rst we state the remarkable result of M.

Jerrum, A. Sinclair and E. Vigoda [JSV01] that was a breakthrough in the theory of

approximation of permanents.

We need the following de�nitions. An algorithm for computing permanent has

relative error ε means that the output p̂er(A) satis�es

(1− ε)p̂er(A) ≤ per(A) ≤ (1 + ε)p̂er(A)

with high probability. The randomized algorithm with relative error ε is said to be

a fully polynomial randomized approximation scheme (FPRAS) if its running time

for the input of size n is bounded by a polynomial in n and ε−1. (see, e.g., [Kar99]

for more details).

Theorem 3.5 ([JSV01]). There exists FPRAS for the permanent of a nonnegative

matrix.

The running time of the algorithm, provided in the paper for ε−1 = cn5 log n is

O(n26(log n)3). The power of n is fairly large, but the same authors simpli�ed the

algorithm [JSV04] and got the running time O(ε−2n10(log n)2).

Another approach is to use determinants for computing the permanent. The idea

is based on the following formula. Let A = (aij). For independent random variables

ξij with mean 0 and variance 1, let B be a matrix such that its entries are
√
aijξij.

Then

E(| det(B)|2) = per(A).
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This idea appeared �rst in the paper of C. Godsil and I. Gutman [GG81], where ξij are

independent Bernoulli random variables (P(ξ = ±1) = 1/2). This estimator is called

Godsil-Gutman estimator. However, | det(B)|2 can have big variance, therefore, it is

not commonly used as an estimator of per(A).

N. Karmarkar, R. Karp, R. Lipton, L. Lovász and M. Luby [KKL+93] proved

the following result. If ξij are independent Bernoulli random variables, then the

(arithmetic) mean of | det(B)|2 for 3n/2 (independent) sampling of {ξij} is FPRAS

of running time p(n)3n/2 1
ε2
, where p is a polynomial. If ξij are independent uni-

formly distributed over {1,−1/2 +
√

3/2i,−1/2−
√

3/2} random variables, then the

(arithmetic) mean of | det(B)|2 for 2n/2 (independent) sampling of {ξij} is FPRAS

of running time p(n)3n/2 1
ε2
, where p is a polynomial.

In the paper [CRS03], S. Chien, L. Rasmussen and A. Sinclair modi�ed the

Godsil-Gutman estimator. Namely, they proved following.

Theorem 3.6 ([CRS03]). Let A = (aij) ∈ Mn be a (0, 1) matrix, and let uij be

independent uniformly distributed random variables whose support is

{±e1,±e2, ...,±e2m−1},

where ei is a basis element of Cli�ord algebra CLm = CL4d1/2 log2 ne+2. If B = (aijuij),

then

E(| det(B)|2) = per(A),

and the number of samples needed to approximate the permanent with multiplicative
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accuracy 1± ε is bounded by a constant.

This result is promising, since we need to work in the algebra whose dimension is

24d1/2 log2 ne+2−1 ≈ 2n2 which is polynomial in n. However, for m ≥ 3, CLm is not a

communicative algebra, so there is no common de�nition of the determinant. In the

formula above, the de�nition det((bij)n×n) =
∑

π∈Sn(−1)sgn(π)
∏n

i=1 biπ(i) (Cayley's

determinant) was used. For this de�nition of the determinant function, there is no

known fast method of evaluation determinant for high dimensions of CLm.

In the same paper [CRS03], the authors modify the estimation for CL3 = H

(quaternion algebra) in the following way. Let B be a matrix over H. We de-

note a determinant which is computed using Gaussian elimination only by Gauss(B)

(Dieudonné determinant). Note that Gauss(B) and det(B) can be signi�cantly dif-

ferent. Gauss(B) depends on the way we �nd it, but |Gauss(B)|2 does not. Since we

use Gaussian elimination, the algorithm for Gauss(B) in polynomial in time, but the

number of trials to get high probability (with factor 1 ± ε) is (3/2)n. The running

time of this algorithm is less than for the algorithm in [KKL+93].

3.2 Inequalities

In this section, we list some of the inequalities that represent basic properties of the

permanent function.

22



Van der Waerden's conjecture (now van der Waerden-Falikman-Egorychev The-

orem, see Theorem 3.7) is one of the most famous conjectures in the theory of the

permanent function. It was posed in 1926 and the full solution was found only in

1981. The conjecture had a strong in�uence on the permanental theory, and nu-

merous papers containing partial results on this conjecture (see, e.g., [MN59]) were

published over the years. Finally, it was resolved independently by D. Falikman

[Fal81] and G. Egorychev [Ego81].

Theorem 3.7 (van der Waerden-Falikman-Egorychev, [vdW26]). If A ∈ Ωn, then

per(A) ≥ per(Jn), (3.3)

and the equality is obtained only if A = Jn.

Note that minimum of the determinant over Ωn is easy to �nd using geometrical

representation of determinant (the absolute value of determinant is volume of a

parallelepiped).

An elegant idea of Falikman's proof of van der Waerden-Falikman-Egorychev

theorem is to consider function

Fε((aij)) := per((aij))−
ε∏n

i=1

∏n
j=1 aij

on the set of positive doubly stochastic matrices and show that, for ε > 0, the

minimum of Fε is attained at Jn which implies that the minimum of per(F0) is

attained at Jn. However, this proof does not imply that there are no other matrices

in Ωn for which (3.3) can become an equality.
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Egorychev's proof is based on London's result (see, e.g., [Min78, p. 85]) that if A

is a matrix which provides an equality in the van der Waerden-Falikman-Egorychev

theorem, then per(A(i|j)) ≥ per(A) for all i, j, and the fact that if for A ∈ Ωn,

per(A(i|j)) ≥ per(A), then per(A(i|j)) = per(A). Recall that A(i|j) denotes (n −

1)× (n− 1) matrix obtained from A ∈Mn by deleting ith row and jth column.

Also, we can consider the generalization of van der Waerden conjecture for σk.

This conjecture was posed by H. Tverberg [Tve63] in 1963 and solved by S. Friedland

in 1982.

Theorem 3.8 ([Fri82]). For each n ∈ N and for each k ∈ {2, 3, ..., n}, minimum of

σk over Ωn is attained uniquely at Jn.

E. Wang [Wan79] showed that permanent function is convex on Ω2, but is not

convex on Ωn for n ≥ 3. However, R. Brualdi and M. Newman [BN65] proved that,

for λ ∈ [0, 1] and for every A ∈ Ωn,

per(λIn + (1− λ)A) ≤ λ+ (1− λ) per(A).

Clearly, we can not state general inequality between determinant and permanent.

However, for some classes of matrices we can compare determinant and permanent.

Clearly, for all nonnegative matrices A, per(A) ≥ det(A). The following result

provide the comparison for another class of matrices.

Theorem 3.9 ([MN62]). If A is positive semide�nite hermitian, then

per(A) ≥ det(A) ≥ 0.
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Equality holds if and only if A has a zero row or A is a diagonal matrix.

Some inequalities for the determinant function can be modi�ed for the permanent

function. M. Marcus [Mar66] proved an analog of the equality for determinants:

det(A⊗B) = (det(A))m(det(B))n,

where ⊗ is the tensor or direct product of A and B. This equality can be rewritten

in the form

| det(A⊗B)|2 = (det(AA∗))m(det(B ∗B))n.

Theorem 3.10 ([Mar66]). If A ∈Mn and B ∈Mm, then

| per(A⊗B)|2 ≤ (per(AA∗))m(per(B∗B))n.

Equality holds if and only if either

1. A has a zero row or B has a zero column, or

2. each of A and B is a product of a diagonal matrix and a permutation matrix.

The other example of the inequality for the determinant that can be modi�ed for

the permanent function is Hadamard inequality.

Let A be n × n complex matrix whose jth column is aj. |aj| is the Euclidian

norm of aj. Hadamard inequality for the determinant function is

| det(A)| ≤
n∏
j=1

|aj|.
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Theorem 3.11 ([CLL06]). For any vectors ai, i = 1, 2, ..., n in Cn we have inequality

| per(A)| ≤ n!

nn/2

n∏
j=1

|aj|.

For N > 2, the equality holds if and only if either

1. at least one of vectors aj is zero, or

2. rank of F is 1 and, for every j, j = 1, 2, .., n, all entries of aj have the same

absolute value.

The matrix is said to be substochastic if it is nonnegative and its row sums does

not exceed 1.

Theorem 3.12 ([Gib68]). If A ∈Mn is a substochastic matrix, then

per(In − A) ≥ det(In − A) ≥ 0.

The following inequality is an analog of Cauchy-Schwarz inequality and is useful

for proving other inequalities. In particular, the proof of Theorem 4.5 is based on

the inequality.

Theorem 3.13 ([MN62]). If A and B are in Mn, then

| per(AB)|2 ≤ per(AA∗) per(B∗B).

If the above inequality holds, then one of the following eventualities must occur:

1. a row of A or a column of B is zero;
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2. no row of A and no column of B is zero, and there exist a diagonal matrix D

and a permutation matrix P , both in Mn, such that

A∗ = BDP.

Later D. Ðokovic generalized this result for submatrices. Recall that A[α|β] is a

matrix on the intersection of α rows and β columns.

Theorem 3.14 ([Ðok67]). Let A,B be complex n× n square matrices, then

|per(AB[α|β])|2 ≤ per(AA∗[α|α]) per((B∗B)[β|β]).

The equality holds if and only if one of following conditions is satis�ed:

• a row of A or a column of B is zero;

• no row of A and no column of B is zero, and there exist a diagonal matrix D

and a permutation matrix P , both in Mn, such that A∗[n|α] = B[n|β]DP.

The following three theorems allow to compare the permanent of some special

matrices.

Theorem 3.15 (see,e.g., [Min78, p. 9]). Suppose c = (c1, c2, ..., cn) has positive

entries, and let the entries of a = (a1, a2, ..., an) and b = (b1, b2, ..., bn) be nonneg-

ative integers. Let A and B be n × n matrices whose (i, j) entries are c
aj
i and c

bj
i ,

respectively. A necessary and su�cient condition that

per(A) ≤ per(B)

is that there exists C ∈ Ωn such that a = Cb.
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Recall that the elementwise product of two matrices A,B ∈ Mn is denoted by

A ∗B.

Theorem 3.16 ([WW07]). Let A = (aij) ∈ Mn and B = (bij) ∈ Mn are positive

matrices such that

ai1
ai+11

≤ ai2
ai+12

≤ ... ≤ ain
ai+1n

, i = 1, 2, ..., n− 1, (3.4)

and

bi1
bi+11

≤ bi2
bi+12

≤ ... ≤ bin
bi+1n

, i = 1, 2, ..., n− 1. (3.5)

Then

per(A ∗B)

n!
≥ per(A)

n!

per(B)

n!
. (3.6)

The inequality in (3.6) is reversed for (3.4) and reversed (3.5). The equality in (3.6)

holds if and only if rank(A) = 1 or rank(B) = 1.

Theorem 3.17 ([Fal97]). Let

A =

A11 A12

A21 A22

 B =

B11 A12

A21 B22


be such that Aii, Bii are hermitian ni × ni matrices such that Aii − Bii is positive

semide�nite matrix, i = 1, 2, and A12 = A∗21. Then

per(A) ≥ per(B) ≥ 0.

Another interesting problem is to �nd asymptotical bounds on permanent. T.

Tao and V. Vu [TV09] established the following relation.
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Recall that ξ is called a random variable with Bernoulli distribution if P{ξ =

1} = P{ξ = −1} = 1/2. A matrix is said to be a random Bernoulli matrix if its

entries are independent random variables with Bernoulli distribution.

Theorem 3.18 ([TV09]). Let Mn be a random Bernoulli matrix of size n.

1. Asymptotically almost surely, | per(Mn)| = n(1/2+o(1))n as n→∞.

2. There is c > 0 such that, for every ε > 0 and n ≥ N(ε),

P{| per(Mn)| ≥ n(1/2−ε)n} ≥ 1− n−c.

3.3 Generalization

In this section, we discuss several generalizations of the permanent and determinant

functions. To emphasize similarity of the generalization and the permanent, some

results are provided. The idea of all generalizations mentioned below are based on

similarity of de�nitions of the permanent and determinant functions.

De�nition 3.19 ([CW05]). Let A = (aij) ∈Mn and let H be a subgroup of Sn. Let

χ : H → C be a function on H. We de�ne function

dHχ (A) =
∑
σ∈H

χ(σ)
n∏
i=1

aiσ(i).

If χ is a nontrivial homomorphism, then dHχ is called a Schur function. If H = Sn,

then such Schur function is called immanent.
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In particular, if H = Sn and χ ≡ sgn, then dHχ is the determinant function. If

H = Sn and χ ≡ 1, then dHχ is the permanent function. In this sense, permanent is

a partial case of generalized matrix functions.

The following theorem is a generalization of Theorem 3.13.

Theorem 3.20 ([MM65]). Let A,B ∈Mn. Then

|dHχ (AB)| ≤ dHχ (AA∗)dHχ (B∗B).

In case χ ≡ 1, the equality holds if one of the following conditions is satis�ed.

• A has a zero row;

• B has a zero column;

• A = DPB∗, where D is a diagonal matrix, P is a permutation matrix.

Also, we are interested when H is a proper subgroup of Sn. For example, if

H ⊂ Sn is all even permutations and χ ≡ 1 , then dH is called the "even permanent"

and is denoted by perev.

The following equality is a straightforward property of the even permanent. For

A ∈Mn,

per(A) + det(A) = 2 perev(A).

Similar to van der Waerden - Falikman - Egorychev theorem (see Theorem 3.7),

R. Brualdi and B. Liu conjectured that minimum of even permanent over doubly
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stochastic matrices is 1/2n!/nn. However, I. Wanless [Wan08] found counterexamples

for n = 4, 5. The validity of the conjecture for large n is still unknown.

For the following two generalizations, −1 in the de�nition of determinant is re-

placed by a parameter. However, the formula for the determinant can be written in

several ways, therefore such generalization is not unique. In this thesis, we discuss

two such generalization, namely, the "α-permanent" and the "q-permanent" (de�ned

below).

De�nition 3.21 ([Brä12]). The α-weighted permanent of a square matrix A = (aij)

of order n is de�ned by

perα(A) =
∑
π∈Sn

αc(π)
n∏
i=1

aiπ(i),

where c(π) is the number of disjoint cycles in π. The α-weighted determinant is

de�ned by

detα(A) = αn per1/α(A).

If α = 1, then perα is the permanent function, and if α = −1, then perα is

the determinant function. Therefore, the α-permanent is a generalization of the

permanent and determinant function.

Note that Theorem 3.9 implies that for a positive semide�nite Hermitian matrix

A, per(A) ≥ 0. The following theorem states for which α the generalization of this

statement holds.

Theorem 3.22 ([Brä12]). Let DR be the set of all α such that detα(A) ≥ 0 for all
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symmetric positive semide�nite A ∈ Mn and let DC be the set of all α such that

detα(A) ≥ 0 for all (complex) hermitian positive semide�nite matrices A.

DR =

{
− 1

m+ 1
: m ∈ N

}
∪
{

2

m+ 1
: m ∈ N

}
∪ {0},

DC =

{
± 1

m+ 1
: m ∈ N

}
∪ {0}.

Also, according to [KM09], it seems that α-permanent is #P-complete for α 6= 1,

however, it is not proved yet.

De�nition 3.23 ([Lal98]). Let A = (aij)n×n. q-permanent is de�ned by

perq(A) :=
∑
π∈Sn

qN(π)

n∏
i=1

aiπ(i),

where N(π) is the number of transpositions in the permutation π.

In this de�nition, per1 = per and per−1 = det.

Note that the q-permanent sometimes is called µ-permanent (see, e.g., [dF10]).

Recall that for Hermitian positive semide�nite matrix A, per(A) ≥ 0 (it is a

corollary from Theorem 3.9). For q-permanent the analog of this statement holds for

all q ∈ [−1, 1].

Theorem 3.24 ([Bap92]). For a Hermitian positive semide�nite matrix A,

perq(A) ≥ 0, q ∈ [−1, 1].

Moreover, in the case of tridiagonal positive semide�nite matrices, the statement

of Theorem 3.9 can be generalized.

32



Theorem 3.25 ([DF05]). Let G be a tree, which biadjacency matrix A is a tridiago-

nal positive semide�nite matrix. Then perq(A) is increasing function on q in [−1, 1].

In other words,

det(A) ≤ perq(A) ≤ per(A), −1 ≤ q ≤ 1.

3.4 Doubly stochastic matrices

Recall that matrix is doubly stochastic if it is nonnegative and its row and column

sums equal 1. The set of doubly stochastic matrices is denoted by Ωn. Note that

matrix is doubly stochastic implies that the matrix is square.

R. Brualdi [BR91, p.14-22, p.379-380] provides two following motivations for con-

centrating on doubly stochastic matrices.

We consider the set

F := {f : {1, 2, ..., n} → {1, 2, ..., n} : f is a bijection}.

Let g : Ω→ F be a probability distribution on the functions of F . We associate with

it function g′ : Ω × {1, 2, ..., n} → {1, 2, ..., n} such that g′(i) = g′(ω, i) = (g(ω))(i).

Let aij := P(g′(i) = j) = aij). We show that A = (aij)n×n is doubly stochastic.

Clearly, aij ≥ 0. Note that

n∑
j=1

aij =
n∑
j=1

P(g′(i) = j) = P(g′(i) ∈ {1, 2, ..., n}) = 1

and
n∑
i=1

aij =
n∑
i=1

P{ω : (g(ω))(i) = j) =
n∑
i=1

P{ω : (g(ω))−1 (j) = i} =
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= P{ω : (g(ω))−1(j) ∈ {1, 2, .., n} = 1.

Therefore, by R. Brualdi [BR91, p.379-380], A is a probabilistic analog of a

bijection from {1, 2, ..., n} onto itself.

Another motivation for concentration on doubly stochastic matrices is a majoriza-

tion (see Theorem 3.27).

De�nition 3.26 ([BR91, p.15-16]). Let x = (x1, x2, ..., xn) ∈ Rn and y = (y1, y2, ..., yn) ∈

Rn be nonincreasing vectors. Then x is majorized by y, denoted x � y, provided their

partial sums satisfy
k∑
i=1

xi ≤
k∑
i=1

yi, k = 1, 2, ..., n,

with equality for k = n.

Theorem 3.27 ([HLP34]). Let x ∈ Rn and y ∈ Rn be nonincreasing vectors. Then

x � y if and only if there is a doubly stochastic matrix A such that X = Y A.

Famous representatives of doubly stochastic matrices are Jn and all permutation

matrices, i.e., Pn ⊂ Ωn.

There is a criterion to determine if a matrix is doubly stochastic.

Theorem 3.28. Let u = (1, 1, ..., 1)T ∈ Rn. The following statements are equivalent:

1. A ∈ Ωn

2. A is nonnegative matrix, Au = u and uTA = uT

3. A is nonnegative matrix AJn = JnA = Jn
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4. A is nonnegative matrix and has eigenpair (1, u), and AT has an eigenpair of

(1, u)

Note that this criterion (the equivalency of the �rst and the third statements)

implies that set of doubly stochastic matrices is closed under multiplication (see

Property 1)

Theorem 3.29. The spectral radius of doubly stochastic matrix is 1.

Proof. Let A = (aij) ∈ Ωn. Theorem 3.28 implies that spectral radius ρ(A) is at

least 1. Let (λ, v) be an eigenpair of A, i.e., Av = λv. Let vj be a greatest entry of

v by absolute value. Then,
∑n

k=1 ajkvk = λvj.

|λ||vj| =

∣∣∣∣∣
n∑
k=1

ajkvk

∣∣∣∣∣ ≤
n∑
k=1

ajk|vk| ≤ |vj|
n∑
k=1

ajk = |vj|.

Hence, |λ| ≤ 1 and so ρ(A) ≤ 1.

The set of doubly stochastic matrices is closed under following operations.

Properties.

1. A ∈ Ωn and B ∈ Ωn implies AB ∈ Ωn.

2. If A,B ∈ Ωn and λ ∈ [0, 1], then λA+ (1− λB) ∈ Ωn, i.e., Ωn is a convex set

3. If A ∈ Ωn and B ∈ Ωm, then A⊕B ∈ Ωn+m.

4. If A ∈ Ωn and B ∈ Ωm, then A⊗B ∈ Ωnm.
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Proof. All above-mentioned properties except the �rst one can be easily veri�ed by

the de�nition of doubly stochastic matrix.

Let A,B ∈ Ωn.

(AB)Jn = A(BJn) = AJn = Jn

and

Jn(AB) = (JnA)B = JnB = Jn.

Then, by Theorem 3.28, AB ∈ Ωn.

To discuss inverse matrices of doubly stochastic matrices, we need the following

notation.

De�nition 3.30. A matrix is said to be doubly quasi-stochastic, if its row and column

sums are 1.

Note that a nonnegative doubly quasi-stochastic matrix is doubly stochastic.

Theorem 3.31 (see, e.g., [Min88, p. 123]). The inverse of non-singular doubly

quasi-stochastic matrix is doubly quasi-stochastic.

The proof follows from the following observation. A matrix A is doubly quasi-

stochastic if and only if AJn = JnA = Jn.

The following theorem gives a nice property of doubly stochastic matrices.

Theorem 3.32 ([Kön16]). For every doubly stochastic matrix, there is at least one

diagonal which does not contain zero entries.
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Also, this theorem follows from van der Waerden-Falikman-Egorychev theorem

(Theorem 3.7).

Since Pn ⊂ Ωn and Ωn is convex, the convex hull of Pn is a subset of Ωn. G.

Birgho� proved that those two sets coincide.

Theorem 3.33 (Birkho�, see,e.g.,[Min88, p. 117]). Ωn is a convex hull of Pn.

Note that Theorem 3.32 is a corollary of this Theorem 3.33.

Note that dimΩn = (n−1)2. By Carathéodory's theorem, every doubly stochastic

matrix can be represented as a convex combination of dimΩn + 1 = n2 + 2n + 2

permutation matrices.
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Chapter 4

Notes on Foregger's Conjecture

4.1 History of Foregger's conjecture

The conjecture of Foregger �rst appeared in the book of H. Minc �Permanents�

[Min78] in 1978. This book contains the most important theorems in the theory of

the permanent function and also lists some of the most important open conjectures

of that time, such as van der Waerden's conjecture (Conjecture 1)(see Theorem 3.7).

Foregger's conjecture appeared as Conjecture 17 there.

To clarify the date when the conjecture was �rst posed, the author of this thesis

contacted T. Foregger who kindly replied that on 17 December 1977, he wrote a

letter to H. Minc where this conjecture was stated.

Conjecture 4.1 (Foregger, see [Min78]). There exists k = k(n) > 1 such that, for
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every A ∈ Ωn,

per(Ak) ≤ per(A). (4.1)

We emphasize that k is independent of A in the statement of this conjecture.

This conjecture can be easily validated for n = 2 (see the next proposition), is

proven by D. Chang in 1990 for n = 3 (see below for more details), and remains open

for n ≥ 4.

For n = 2, Foregger's conjecture follows from the following proposition.

Proposition 4.2. If A,B ∈ Ω2, then per(AB) ≤ per(A).

Proof. Let A =

 a 1− a

1− a a

 and B =

1− b b

b 1− b

. Then

AB =

 a+ b− 2ab 1− a− b+ 2ab

1− a− b+ 2ab a+ b− 2ab

 ,

and so

per(AB)− per(A) =(a+ b− 2ab)2 + (1− a− b+ 2ab)2 − a2 − (1− a)2

=− 2b(1− b)(1− 2a)2.

Since b ∈ [0, 1], the last expression doesn't exceed zero, so per(AB) ≤ per(A).

So using Proposition 4.2 with B = Ak−1 shows that any k > 1 satis�es Foregger's

conjecture for n = 2.
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The full proof of Foregger's conjecture for n = 3 was obtained by D. Chang in

1990.

Theorem 4.3 ([Cha90]). For A ∈ Ω3,

per(A8) ≤ per(A).

The following proposition is an important part of Chang's proof of Theorem 4.3

and provides a partial proof of Foregger's conjecture for n× n matrices.

Proposition 4.4 ([Cha90]). If A ∈ Ωn and 1
2
< per(A) < 1, then for every integer

m ≥ 2

per(Am) < per(A).

Despite the fact that Foregger's conjecture is still unsolved for n ≥ 4, there are

some results verifying it for some subclasses of doubly stochastic matrices.

Theorem 4.5 ([MN62]). If A is a symmetric positive-de�nite doubly stochastic ma-

trix and B ∈ Ωn commutes with A, then per(AB) ≤ per(A). If A is non-singular,

then equality holds if and only if B is a permutation matrix.

Corollary 4.6. If A ∈ Ωn is a symmetric positive-de�nite matrix, then, for every

k ∈ N, per(Ak) ≤ per(A).

Proof. If we put B = Ak−1, then all conditions of Theorem 4.5 hold for every k >

1.
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Theorem 4.7 ([Cha83]). Let W (a) be a doubly stochastic matrix with all elements

except for the main diagonal entries equal to a. Then, for every A ∈ Ωn,

per(AW (a)) ≤ per(W (a)).

Corollary 4.8. For every k ∈ N,

per(W k(a)) ≤ per(W (a)).

In 1983, D. Chang proved the following theorem.

Theorem 4.9 ([Cha83]). For any positive integer n and 0 < c < 1
n
, there exists an

integer N = N(n, c) > 1 such that, if A = (aij) ∈ Ωn with all entries greater than c,

then per(A2k) ≤ per(A) for all k ≥ N .

This theorem implies that, for every positive doubly stochastic matrix A, there

is k > 1 such that per(Ak) ≤ per(A). In this thesis, we generalize this result.

Recall that d∗(A) is the minimum of positive entries of A, and let

C(c) := {A ∈ Ωn : d∗(A) > c}.

Our main result in this thesis is the following theorem.

Theorem 4.10. For every c > 0, n ∈ N, for all su�ciently large k = k(n, c) ∈ N,

A ∈ C(c) implies

per(Ak) ≤ per(A).

Throughout this thesis, �for su�ciently large k� should be understood as �there

exists N = N(n, c) such that for all k ≥ N �.
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Corollary 4.11. For every A ∈ Ωn, there exists k = k(n,A) > 1 such that

per(Ak) ≤ per(A).

Proof. Note that d∗(A) is the minimum of positive entries of A, therefore, d∗(A) > 0.

Using Theorem 4.10, for su�ciently large k and for every B ∈ C(d∗(A)/2), per(Bk) ≤

per(B). Since A ∈ C(d∗(A)/2), per(Ak) ≤ per(A).

Recall that Λm
n is the set of (0, 1) matrices whose row and column sums equal m.

Note that A ∈ Λm
n implies 1/mA ∈ Ωn.

Corollary 4.12. There exists k = k(n,m) > 1 such that, for every A ∈ Λm
n ,

per(Ak) ≤ m(k−1)n per(A). (4.2)

Proof. Every entry of A ∈ Λm
n is either 0 or 1. Then, every entry of 1/mA is 0

or 1/m, and so d∗(1/mA) ≥ 1/m. Since 1/mΛm
n ⊂ Ωn, using Theorem 4.10, for

su�ciently large k and for every A ∈ 1/mΛm
n ,

per((1/mA)k) ≤ per(1/mA).

Using per(cA) = cn per(A), we get (4.2).

4.2 Auxiliary lemmas

Lemma 4.13. If, for some k, inequality (4.1) holds for both matrices A ∈ Ωn and

B ∈ Ωm, then it also holds for P (A ⊕ B)P T , where P is an arbitrary permutation

matrix from Pn+m.
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Proof. Suppose (4.1) holds for A ∈ Ωn and B ∈ Ωm and for the same k. Then,

per(P (A⊕B)P T ) = per(A⊕B) = per(A) per(B),

and, by Property 2 of cogredient matrices,

per
((
P (A⊕B)P T

)k)
= per(P (Ak ⊕Bk)P T ) = per(Ak ⊕Bk)

= per(Ak) per(Bk) ≤ per(A) per(B),

and the proof is complete.

Corollary 4.14. If, for some k, inequality (4.1) holds for all Ai ∈ Ωni, i = 1, 2, ..,m,

it also holds for P (A1⊕A2⊕...⊕Am)P T , where P is an arbitrary permutation matrix

from P∑
i ni

.

The following theorem can be proved using Corollary 4.14. Recall that

C(c) := {A ∈ Ωn : d∗(A) > c}.

Theorem 4.15. Let c ∈ (0, 1/n). Suppose that for every n ∈ N, there exists N ′(n)

such that for all k ≥ N ′(n), and all for every irreducible A ∈ C(c),

per(Ak) ≤ per(A).

Then, for every n ∈ N, for su�ciently large k, A ∈ C(c) implies per(Ak) ≤ per(A).

Proof. Fix n ∈ N and let N(n) := maxi=1,2,...,nN
′(i). Every A ∈ C(c) is cogredient

to a direct sum of irreducible matrices, i.e.,

A = P (A1 ⊕ A2 ⊕ ...⊕ Am)P T ,
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where P ∈ Pn and Aj is an irreducible matrix, j = 1, 2, ...,m. Then, per(A) =∏m
j=1 per(Aj).

Note that since A is doubly stochastic, so are Aj, j = 1, 2, ...,m, and d∗(A) > c

implies d∗(Aj) > c. Also, note that

Ak = P (Ak1 ⊕ Ak2 ⊕ ...⊕ Akm)P T .

Note that k ≥ N(n) implies k ≥ N ′(i), i = 1, 2, ..., n, then, for k ≥ N(n),

per(Ak) =
m∏
j=1

per(Akj ) ≤
m∏
j=1

per(Aj) = per(A).

The following theorem shows a connection between the form of a matrix and its

index of imprimitivity.

Theorem 4.16 ([Min88], p. 109). Let A ∈ Ωn be an irreducible matrix with index

of imprimitivity ind(A) = m. Then m divides n ( i.e., n = mµ), and the matrix A is

cogredient to a matrix in the superdiagonal block form

Oµ,µ A1 Oµ,µ · · · Oµ,µ Oµ,µ

Oµ,µ Oµ,µ A2 · · · Oµ,µ Oµ,µ

...
. . .

...

Oµ,µ Oµ,µ Oµ,µ · · · Oµ,µ Am−1

Am Oµ,µ Oµ,µ · · · Oµ,µ Oµ,µ


, (4.3)

where all the blocks are µ-square.
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Theorem 4.17 ([BR91, p. 74]). Let A ∈Mn be an irreducible nonnegative matrix

with index of imprimitivity equal to m. Let k be a positive integer. Then Ak is irre-

ducible if and only if k and m are relatively prime. In general, there is a permutation

matrix P of order n (independent of k) such that Ak = P (
⊕r

i=1Bi)P
T , where r is

the greatest common divisor of k and m. The matrices Bi are irreducible matrices

and ind(Bi) = m/r, i = 1, 2, ..., r.

Corollary 4.18. Suppose that A ∈ Ωn is irreducible and ind(A) = m, µ = n/m.

For every k ∈ N, Akm is cogredient to ⊕mi=1Bi, where Bi are irreducible matrices with

ind(Bi) = 1, i = 1, 2, ...,m.

Using Theorem 4.16, A is cogredient to a matrix (4.3). Then, by Lemma 2.8, Akm

is cogredient to
⊕m

i=1Bi. Corollary 4.18 implies that Bi is irreducible, i = 1, 2, ...,m.

Note that if A is cogredient to a matrix in the form (4.3), then Lemma 2.8 implies

that Bi =
(∏i+m−1

j=i Aj

)k
.

Theorem 4.19 ([HJ85, p. 520]). If A ∈ Mn is a nonnegative matrix, then A is

primitive if and only if An
2−2n+2 is positive.

Corollary 4.20. Let A ∈ Ωn be an irreducible matrix with index of imprimitivity m

(µ = n/m is necessarily an integer). Then A is cogredient to the matrix in the form

(4.3); Am(n2−2n+2)! is cogredient to a direct sum of positive µ× µ matrices.

Proof. Let A ∈ Ωn be an irreducible matrix with index of imprimitivity m, n = mµ.

Using Theorem 4.16, we get that A is cogredient to the matrix in the form (4.3).
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Lemma 2.8 implies that Am = P (B1⊕B2⊕ ...⊕Bm)P T , where P ∈ Pn and Bi ∈ Ωµ.

Using Corollary 4.18 to Bi, we get that Bi is primitive matrix, i = 1, 2, ...,m. Note

that µ2− 2µ+ 2 divides (n2− 2n+ 2)!. Therefore, using Theorem 4.19, we have that

B
(n2−2n+2)!
i is positive, i = 1, 2, ...,m. Lemma 2.8 implies that

Am(n2−2n+2)! = P
(
B

(n2−2n+2)!
1 ⊕B(n2−2n+2)!

2 ⊕ ...⊕B(n2−2n+2)!
m

)
P T .

Therefore, Am(n2−2n+2)! is cogredient to a direct sum of positive µ× µ matrices.

In the following lemmas, the behavior of minimum entries of powers of a matrix

is investigated.

Recall that for A = (aij)n×n, d(A) := min{aij|1 ≤ i, j ≤ n} and D(A) :=

max{aij|1 ≤ i, j ≤ n}. We now state several properties of these functions.

Lemma 4.21. Let A ∈ Ωn. Then D(A) ≥ 1− (n− 1)d(A).

Proof. Let A = (aij) and suppose ai∗j∗ = D(A). Since A ∈ Ωn,

ai∗j∗ = 1−
∑
i 6=i∗

aij∗ ≥ 1− (n− 1)d(A).

Lemma 4.22. For every A,B ∈ Ωn, d(AB) ≥ max{d(A), d(B)}. In particular, for

A ∈ Ωn and k ∈ N, d(Ak) ≥ d(A).

Proof. Let A = (aij)n×n, B = (bij)n×n and AB = (cij)n×n. Suppose d(AB) = ci∗j∗ =

arg min{cij|1 ≤ i, j ≤ n}. Then

ci∗j∗ =
n∑
r=1

ai∗rbrj∗ .
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Since all entries of A and B are nonnegative,

d(AB) = ci∗j∗ =
n∑
r=1

ai∗rbrj∗ ≥ min
r
d(B)

n∑
r=1

ai∗r = d(B)

and

d(AB) = ci∗j∗ =
n∑
r=1

ai∗rbrj∗ ≥ min
r
d(A)

n∑
r=1

brj∗ = d(A).

Lemma 4.23. Suppose A,B ∈ Ωn. If d(B) ≥ d and d(A) ≥ d, then d(AB) ≥

d(2− nd).

Proof. Every entry in AB is an inner product of a row in A and a column in B. Let

a = (a1+d, a2+d, ..., an+d) be a row in A and b = (b1+d, b2+d, ..., bn+d) be a column

in B. Note that ai and bi are nonnegative, i = 1, 2, ..., n, and
∑

i ai =
∑

i bi = 1−nd.

Then

a · b =
n∑
i=1

(ai + d)(bi + d) = 2d− nd2 +
n∑
i=1

aibi ≥ 2d− nd2,

and hence d(AB) ≥ 2d− nd2.

Lemma 4.24. If A, B are nonnegative matrices such that d∗(A) > d1 and d∗(B) >

d2, then d∗(AB) > d1d2. In particular, if A ∈ Ωn is such that d∗(A) > c, then

d∗(Ak) > ck for every k ∈ N.

Proof. Let A = (aij)n×n, B = (bij)n×n and AB = (cij)n×n. Suppose that cij is a

positive entry of AB. As A and B are nonnegative matrices and

0 < cij =
n∑
k=1

aikbkj,
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there is m such that aimbmj > 0. Hence aim and bmj are non-zero. Thus,

cij =
n∑
k=1

aikbkj ≥ aimbmj ≥ d∗(A)d∗(B) > d1d2,

and so d∗(AB) ≥ d1d2.

Recall that ck ↑ means that {ck} is a non-decreasing sequence.

Theorem 4.25 ([Cha84b, Lemma 1]). Let 0 < c0 ≤ d0 < 1/n, {ck}k≥0 be the

sequence de�ned recursively: ck+1 = 2ck − nc2k, and {dk}d≥0 be a sequence such that

1/n ≥ dk+1 ≥ 2dk − nd2k, k ≥ 0. Then, for k ≥ 0,

1. ck ≤ dk ≤ 1/n

2. ck ↑, dk ↑

3. limk→∞ ck = limk→∞ dk = 1/n.

Corollary 4.26. Let n ∈ N and c ∈ (0, 1/n). Let {ck} be de�ned by ck+1 = 2ck−nc2k,

c0 = c. Then for every A ∈ Ωn such that d(A) ≥ c and for every k ≥ N , d(A2k) ≥ ck.

Proof. Let A ∈ Ωn be such that d(A) ≥ c. Let dk = d(A2k). Clearly, dk ≤ 1/n. Using

Lemma 4.23, we have dk+1 ≥ 2dk − nd2k. Theorem 4.25 completes the proof.

Lemma 4.27. If n ∈ N and c ∈ (0, 1/n), then

lim
k→∞

inf{d(Ak) : A ∈ Ωn, d(A) ≥ c} = 1/n.
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Proof. Corollary 4.26 implies that

inf{d(A2k) : A ∈ Ωn, d(A) ≥ c} ≥ ck.

Since limk→∞ ck = 1/n by Theorem 4.25,

lim
k→∞

inf{d(A2k) : A ∈ Ωn, d(A) ≥ c} = 1/n.

By Lemma 4.22, we have that {d(Ak)}k≥1 ↑ for every A ∈ Ωn, and so inf{d(Ak) :

A ∈ Ωn, d(A) ≥ c} ↑.

Since the subsequence inf{d(A2k) : A ∈ Ωn, d(A) ≥ c} of a monotonic sequence

inf{d(Ak) : A ∈ Ωn, d(A) ≥ c} converges to 1/n, so does the sequence inf{d(Ak) :

A ∈ Ωn, d(A) ≥ c}.

In the following lemmas, we show that the inequality per(A) ≥ per(Ak) holds in

a neighborhood of Jn = (1/n)n×n for every k ∈ N.

Lemma 4.28. Let A,B ∈ Ωn be such that d(B) ≥ d(A) ≥ n−2
(n−1)2 . Then per(AB) ≤

per(A).

Note that our proof of Lemma 4.28 is similar to the proof of Lemma 2 in [Cha84b]:

Theorem 4.29 ([Cha84b, Lemma 2]). Let A = (aij) ∈ Ωn be such that

n− 2

(n− 1)2
≤ d(A) ≤ 1

n
,

then per(A2) ≤ per(A).
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To prove Lemma 4.28, we need the following notations. Let Wn(a) = (wij) be

an n × n matrix such that wii = a and wij = (1 − a)/(n − 1), 1 ≤ i 6= j ≤ n. Let

Tn(a) = (tij) be an n × n matrix such that t11 = a, t1j = ti1 = (1 − a)/(n − 1) and

tij = (n+ a− 2)/(n− 1)2 for 2 ≤ i, j ≤ n. Note that, if a ∈ [0, 1], then Wn(a) ∈ Ωn

and Tn(a) ∈ Ωn.

The proof of Lemma 4.28 is based on the following theorems.

Theorem 4.30 ([Cha83, Corollary 2]). Let b ∈ [0, 1] and a = (1− b)/(n− 1). Then

for every A = (aij) ∈ Ωn such that aij ∈ [min(a, b),max(a, b)],

per(A) ≤ per(Wn(b)).

We need this theorem for b = (1− d)/(n− 1), where d ∈ [(n− 2)/(n− 1)2, 1/n].

Corollary 4.31. Let d ∈ [0, 1/n]. Then for every A = (aij) ∈ Ωn such that

1− (1− d)/(n− 1)

n− 1
≤ aij ≤

1− d
n− 1

,

1 ≤ i, j ≤ n, the following inequality holds:

per(A) ≤ per

(
Wn

(
1− d
n− 1

))
.

Proof. Note that

1− 1−d
n−1

n− 1
≤ 1− d
n− 1

is equivalent to d ≤ 1/n, and the proof of the Corollary is complete.
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Theorem 4.32 ([Cha83, Lemma 5]). Let 0 ≤ d ≤ 1/n. Then for n ≥ 2,

per

(
Wn

(
1− d
n− 1

))
≤ per(Tn(d)).

Theorem 4.33 ([Cha84a, Theorem 1]). Let d ∈ [0, 1] be such that per(Tn(0)) >

per(Tn(d)). Then for every A = (aij) ∈ Ωn with a11 = d,

per(Tn(d)) ≤ per(A).

Theorem 4.34 ([VAP80]). per(Tn(d)) is decreasing as a function of d on [0, 1/n].

Corollary 4.35. For every d ∈ [0, 1/n] and for every A ∈ Ωn such that d(A) = d,

per(Tn(d)) ≤ per(A).

Proof. Let d ∈ [0, 1/n] and let A = (aij) ∈ Ωn be such that d(A) = ai∗j∗ = d. Let P

be a permutation such that its (1, i∗)th entry is 1 and let Q be a permutation matrix

such that its (j∗, 1)th entry is 1. Then (1, 1)th entry of PAQ is d. Theorems 4.33

and 4.34 imply that

per(Tn(d)) ≤ per(PAQ) = per(A).

Proof of Lemma 4.28. Since the inequality is obvious if A = Jn or B = Jn, we can

assume that A,B 6= Jn, and so d(A) < 1/n and d(B) < 1/n.

Let d := d(A). By Lemma 4.23, d(AB) ≥ d(2− nd). Therefore,

1/n ≥ d(AB) ≥ d(2− nd) = d+ d(1− nd)

51



≥ n− 2

(n− 1)2
+ d

(
1− n n− 2

(n− 1)2

)
=

1− (1− d)/(n− 1)

n− 1
.

By Lemma 4.21,

D(AB) ≤ 1− (n− 1)d(AB) ≤ 1− (n− 1)
1− (1− d)/(n− 1)

n− 1
≤ 1− d
n− 1

.

Using Corollary 4.31, Theorem 4.32 and Corollary 4.35,

per(AB) ≤ per

(
Wn

(
1− d
n− 1

))
≤ per(Tn(d)) ≤ per(A).

Corollary 4.36. If A ∈ Ωn is such that d(A) ≥ n−2
(n−1)2 , then per(Ak) ≤ per(A) for

every k.

Proof. If k = 1, the statement is trivial. If k > 1, by Lemma 4.22, d(Ak−1) ≥ d(A).

Lemma 4.28 implies that per(Ak) ≤ per(A).

4.3 Proof of the main result

Recall that

C(c) := {A ∈ Ωn : d∗(A) ≥ c},

and denote

C0(c) := {A ∈ Ωn : d∗(A) ≥ c, A is irreducible}.

For convenience we introduce the following statement. Let c > 0 and let M(c)

be some class of matrices.
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Statement 4.37. There is N = N(n, c) such that, for every k ≥ N and every

A ∈M(c), the following inequality holds:

per(Ak) ≤ per(A).

If M(c) = C(c), then Statement 4.37 coincides with Theorem 4.10. Note that

it is enough to prove Theorem 4.10 only for irreducible matrices, i.e., it is enough

to prove Statement 4.37 for M(c) = C0(c) (see Theorem 4.15). We split C0(c) into

�nitely many classes (namely, A(n,m, P, c) and B(n,m), see de�nitions below) and

we prove Statement 4.37 for each of them.

Recall that ρ(A,B) is the maximum entry of |A−B|, and that B(A, δ) is an open

ball in the metric ρ with center at A and radius δ.

De�nition 4.38. Let n,m ∈ N, P ∈ Pn, µ = n/m ∈ N and c ∈ (0, (n−2)/(n−1)2).

We denote by A = A(n,m, c, P ) the set of all A ∈ C0(c) which satisfy the following

conditions:

1. ind(A) = m;

2.

A = P



Oµ,µ A1 Oµ,µ · · · Oµ,µ Oµ,µ

Oµ,µ Oµ,µ A2 · · · Oµ,µ Oµ,µ

...
. . .

...

Oµ,µ Oµ,µ Oµ,µ · · · Oµ,µ Am−1

Am Oµ,µ Oµ,µ · · · Oµ,µ Oµ,µ


P T ;
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3. there is an i ∈ {1, 2, ...,m} such that ρ(Ai, Jµ) > 1
µ(µ−1)2 .

Let

J :=



Oµ,µ Jµ Oµ,µ · · · Oµ,µ Oµ,µ

Oµ,µ Oµ,µ Jµ · · · Oµ,µ Oµ,µ

...
. . .

...

Oµ,µ Oµ,µ Oµ,µ · · · Oµ,µ Jµ

Jµ Oµ,µ Oµ,µ · · · Oµ,µ Oµ,µ


.

Remark 4.39. Since ρ(A,PJP T ) = max{ρ(Ai, Jµ) : 1 ≤ i ≤ m}, the condition 3

in De�nition 4.38 is equivalent to ρ(A,PJP T ) > 1
µ(µ−1)2 .

De�nition 4.40. Let m ∈ N. We denote by B = B(n,m) the set of all A ∈ C0(c)

that satisfy the following conditions:

1. ind(A) = m;

2. A is cogredient to 

Oµ,µ A1 Oµ,µ · · · Oµ,µ Oµ,µ

Oµ,µ Oµ,µ A2 · · · Oµ,µ Oµ,µ

...
. . .

...

Oµ,µ Oµ,µ Oµ,µ · · · Oµ,µ Am−1

Am Oµ,µ Oµ,µ · · · Oµ,µ Oµ,µ


;

3. for every i ∈ {1, 2, ...,m}, ρ (Ai, Jµ) ≤ 1
µ(µ−1)2 .
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We will prove that Statement 4.37 holds forM(c) = A(n,m, c, P ) and su�ciently

large k = k(n,m, c, P ). Our goal is to show that

lim
k→∞

sup
A∈A

per(Ak) = per(J ) < inf
A∈A

per(A).

If we prove it, then for su�ciently large k, infA∈A per(A) > supA∈A per(Ak) which

implies Statement 4.37 for A.

Let A ∈ A. Then A is cogredient to

Oµ,µ A1 Oµ,µ · · · Oµ,µ Oµ,µ

Oµ,µ Oµ,µ A2 · · · Oµ,µ Oµ,µ

...
. . .

...

Oµ,µ Oµ,µ Oµ,µ · · · Oµ,µ Am−1

Am Oµ,µ Oµ,µ · · · Oµ,µ Oµ,µ


and, using Lemma 2.8 and Property 2 of cogredient matrices, Ak is cogredient to

(
⊕m

i=1Bi)Q, where Q ∈ Pn and Bi ∈ Ωµ. Note that Q and Bi, 1 ≤ i ≤ m, depend

on k.

Lemma 4.41. Let m,n ∈ N, µ = n/m ∈ N. For every c ∈ (0, 1/n) and every δ > 0,

there exits k = k(n,m, c, δ) ∈ N with the following property. If A ∈ A(n,m, c, P ),

then

Ak = P (B1 ⊕B2 ⊕ ...⊕Bm)P T ,

where Bi ∈ Ωµ and d(Bi) ≥ 1/µ− δ/(µ− 1), i = 1, 2, ...,m.
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Proof. Let A ∈ A(n,m, c, P ). Then

A = P



Oµ,µ A1 Oµ,µ · · · Oµ,µ Oµ,µ

Oµ,µ Oµ,µ A2 · · · Oµ,µ Oµ,µ

...
. . .

...

Oµ,µ Oµ,µ Oµ,µ · · · Oµ,µ Am−1

Am Oµ,µ Oµ,µ · · · Oµ,µ Oµ,µ


P T ,

and Corollary 4.20 implies that Am(n2−2n+2)! is cogredient to a direct sum of positive

matrices Ci, 1 ≤ i ≤ m. In other words,

Am(n2−2n+2)! = P (C1 ⊕ C2 ⊕ ...⊕ Cm)P T .

Note that positivity of Ci implies d(Ci) = d∗(Ci). Using Lemma 2.8, Ci is a

product of m(n2 − 2n + 2)! Ai's. Note that, for every i ∈ {1, 2, ...,m}, d∗(Ai) ≥

d∗(A) ≥ c. Then Lemma 4.24 implies

d(Ci) = d∗(Ci) ≥ cm(n2−2n+2)!.

By Lemma 4.27, there is k′ ∈ N such that

d
(

(Ci)
k′
)
≥ 1/µ− δ/(µ− 1).

Let k = m(n2 − 2n+ 2)!k′. Then,

Ak = Am(n2−2n+2)!k′ =
(
Am(n2−2n+2)!

)k′
= P (Ck′

1 ⊕ Ck′

2 ⊕ ...⊕ Ck′

m)P T

that �nishes the proof.
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Lemma 4.42. Let n,m ∈ N, µ = n/m ∈ N. For every c ∈ (0, 1/n) and every

δ > 0, there exits N = N(m, c, δ) with the following property. If k ≥ N and A ∈

A(n,m, c, P ) there exists Q = Q(n,m, k, P ) ∈ Pn such that

ρ

Ak, P
Jµ ⊕ Jµ ⊕ ...⊕ Jµ︸ ︷︷ ︸

m

QT

 < δ. (4.4)

Proof. A ∈ A(n,m, c, P ) implies

A = P



Oµ,µ A1 Oµ,µ · · · Oµ,µ Oµ,µ

Oµ,µ Oµ,µ A2 · · · Oµ,µ Oµ,µ

...
. . .

...

Oµ,µ Oµ,µ Oµ,µ · · · Oµ,µ Am−1

Am Oµ,µ Oµ,µ · · · Oµ,µ Oµ,µ


P T .

Lemma 4.41 implies that there exists k̃ = k̃(n,m, c, δ) such that

Ak̃ = P (B1 ⊕B2 ⊕ ...⊕Bm)P T

and d(Bi) > 1/µ− δ/(µ− 1).

Let k ≥ k̃. Lemma 2.8 implies that there exists Q ∈ Pn such that

Ak = P

(
m⊕
i=1

Ci

)
QT .

Note that Bi and Ci, 1 ≤ i ≤ m, de�ned in Theorem 2.8, have the following

property: Ci equals Bi multiplied by some doubly stochastic matrix. Hence, by

Lemma 4.22,

d(Ci) ≥ d(Bi) > 1/µ− δ/(µ− 1).
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By Lemma 4.21, the last inequality implies D(Ci) < 1− (µ− 1)d(Ci) < 1/µ+ δ

and thus ρ(Ci, Jµ) < δ. Therefore, (4.4) holds.

Recall that

J :=



Oµ,µ Jµ Oµ,µ · · · Oµ,µ Oµ,µ

Oµ,µ Oµ,µ Jµ · · · Oµ,µ Oµ,µ

...
. . .

...

Oµ,µ Oµ,µ Oµ,µ · · · Oµ,µ Jµ

Jµ Oµ,µ Oµ,µ · · · Oµ,µ Oµ,µ


.

Lemma 4.43. If A(n,m, c, P ) is non-empty,

inf{per(A) : A ∈ A} > per (J ) .

Proof. Since A ∈ A(n,m, c, P ),

A = P



Oµ,µ A1 Oµ,µ · · · Oµ,µ Oµ,µ

Oµ,µ Oµ,µ A2 · · · Oµ,µ Oµ,µ

...
. . .

...

Oµ,µ Oµ,µ Oµ,µ · · · Oµ,µ Am−1

Am Oµ,µ Oµ,µ · · · Oµ,µ Oµ,µ


P T .

Using properties of the permanent function and the van der Waerden-Falikman-

Egorychev theorem (see Theorem 3.7),

per(A) =
m∏
i=1

per(Ai) ≥
m∏
i=1

per(Jµ) = per(J ). (4.5)
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Therefore

inf{per(A) : A ∈ A} ≥ per(J ).

-Falikman-Egorychev theorem (uniqueness) completes the proof.

Theorem 4.44. If m ∈ N and c ∈ (0, 1/n), there exists N = N(n,m, c) such that

per(Ak) ≤ per(A) for every A ∈ A(n,m, c, P ) and k ≥ N .

Proof. Let M := inf{per(A) : A ∈ A}. By Lemma 4.43,

M > per(J ) = per(Jµ ⊕ Jµ ⊕ ...⊕ Jµ︸ ︷︷ ︸
m

).

Now we want to show that, for su�ciently large k, supA∈A per(Ak) ≤M .

Using continuity of the permanent function on matrix entries, there is δ > 0

such that, for an open ball U = U(n,m) = B(Jµ ⊕ Jµ ⊕ ...⊕ Jµ︸ ︷︷ ︸
m

, δ), C ∈ U implies

per(C) < M . Let V = ∪Q∈PnPUQT . Note that C ∈ V implies that there exists

Q ∈ Pn such that P−1CQ ∈ U , then per(C) = per(P−1CQ) < M . We want to show

that for su�ciently large k, for every A ∈ A(n,m, c, P ), Ak ∈ V .

Let N = N(n,m, c) be de�ned as in Lemma 4.42. Let A ∈ A(n,m, c, P ) and

k ≥ N . Then there exists Q ∈ Pn such that

ρ

Ak, P
Jµ ⊕ Jµ ⊕ ...⊕ Jµ︸ ︷︷ ︸

m

QT

 < δ.

Hence, Ak ∈ V and the proof is complete.

We now prove Statement 4.37 forM = B(n,m), 1 ≤ m ≤ n.
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Theorem 4.45. Let n,m, k ∈ N, µ = n/m ∈ N. Then, for every A ∈ B(n,m),

per(Ak) ≤ per(A).

Proof. Since A ∈ B(n,m), A is cogredient to a matrix

Ã =



Oµ,µ A1 Oµ,µ · · · Oµ,µ Oµ,µ

Oµ,µ Oµ,µ A2 · · · Oµ,µ Oµ,µ

...
. . .

...

Oµ,µ Oµ,µ Oµ,µ · · · Oµ,µ Am−1

Am Oµ,µ Oµ,µ · · · Oµ,µ Oµ,µ


.

Since permanents of cogredient matrices are equal, per(Ak) ≤ per(A) is equivalent

to per(Ãk) ≤ per(Ã). By the de�nition of B (De�nition 4.40), ρ (Ai, Jµ) ≤ 1
µ(µ−1)2 ,

1 ≤ i ≤ m. Then, by the de�nition of the metric ρ,

d(Ai) ≥
1

µ
− 1

µ(µ− 1)2
=

µ2 − 2µ

µ(µ− 1)2
=

µ− 2

(µ− 1)2
.

Let k = sm+ r, 0 ≤ r < m. By Lemma 2.8,

Ãsm+r =

(
m⊕
i=1

Bi

)
Q,

where Q ∈ Pn and

Bi =

(
i+m−1∏
j=i

Aj

)s

AiAi+1...Ai+r−1.

Note that Bi = AiCi, where Ci ∈ Ωµ is a product of Aj's. Therefore, by Lemma

4.22,

d(Ci) ≥ d(Ai) ≥
µ− 2

(µ− 1)2
.
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Lemma 4.28 implies per(Ai) ≥ per(AiCi) = per(Bi). Therefore,

per(A) =
m∏
i=1

per(Ai) ≥
m∏
i=1

per(Bi) = per(Ãk) = per(Ak).

Proof of Theorem 4.10. For every n ∈ N and c ∈ (0, 1/n), using Theorem 4.20

⋃
m:1≤m≤n

⋃
P∈Pn

(A(m, c, P ) ∪ B(n,m))

= {A ∈ Ωn| d∗(A) ≥ c, A is irreducible} = C0(c).

For each of A and B, Statement 4.37 holds. Since the union is over a �nite set,

Statement 4.37 holds for the union, i.e, forM(c) = C0(c).

Theorem 4.15 completes the proof of Theorem 4.10.
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