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ABSTRACT

A o s .

This thesis presents a new problem in combinatorial
design theory which is a generalization of the well-kncwn
problem cf covering designs. The problem is defined as
follows., Let there be a set of objects, of cardinality V,
called varieties. Define a K-set to be a subset containing
exactly K of these varieties. A (T7,K,L,V) design is defined
to be a collection of K-sets such that every possible L-set
must intersect at least one of these K-sets in at least T
varieties. A minimal (T,K,1,V) design is one which contains
the smallest possible nunker of K-sets, The number of
K-sets in a minimal design is denoted by B{T,K,L,V). The
problem 1is to determine the value of B(T,K,L,V) and the
. structure of the minimal designs.,

The sub-problem in which T=L is the well-known problem of
covering designs. The subcase in which T=K 4is also an
established problem which has been posed by P.Turan. A
summary of the known results in these areas is given,

In this thesis, The value of B{2,3,3,V) is determined for
all values of V, as is the structure of the corresponding
minimal designs. The value of B{T,X,L,V)} is also investi-
gated for the remaining cases in which T=2, K=3 or 4, and
Ls5. The values of B({T,K,L,V) are determined for most
values of Vv in these cases,

A computer algorithm is presented which was used to
establish scme additional results, and a table of known
values of B(T,X,L,V) is given.
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Chapter 1

e < . i S A o

1.1 _Statement of the problen

Combinatorial problems, according to M.Hall Jr. [5], are
primarily ccncerned with the arrangement of a given set of
objects accordiﬁg to a specified se% of rules. The central
problem may be to determine whether or not such an arrange-
ment exists, or to determine the number of ways in which the
" arrangement c¢an be done, ér to find ont how large or how
small such an arrangement can be.

The problem which is discussed in this thesis belongs to
the class of problems known as combinatorial designs..
Design theory first arose from J. ' Steiner's work in
algebraic geonetry in 1853 [17]. Since then, tﬁe field has
flourished, and the number of different design problems is

constantly growing. The many branches of design theory now

 dinclude Steiner systems, coverings, packings, block designs,

including balanced inconmplete block designs of ﬁany dif-
ferent types, {r,A) designs, and many others. These designs
have found applications in the design of statistical experi-
ments, in the éonstructicn of error-correcting codes, in
optimization problems of various kinds, and in many octher

areas, including such things as games and puzzles.
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Chapter 1

The difficulty of constructing these designs varies
greatly from problem to problem. Some classes of designs
are constructed relatively e¢asily, while others are found
only with a lérge amount of +time and effort. With the
proliferation o¢f modern hiéh-syeeﬁ computers, many designs
can now be constructed which «could not have been found
before, Not only can prcgrams be written which will find
relatively large designs by using exhaustive search techni-
ques, but the production of a reasonable number of actunal
designs may enable a design thecrist to detect a pattern or
trend, and thereby produce a general result ﬁhich night not
have been discovered otherwise, The solution of >maﬁy
problems alsc requires that they be broken down into a large
number of  relatively small subcases, which may then be
treated individmally. Many such problems could not easily
be solvea without the aid of a computer, sither to generate
and kéep track of the subrases, or toc process the large~
number of resulting smaller problems. {The recent proof of
the four-colour conjecture is an excellent example.) It is
becoming 1increasingly rare té find a paper oﬁ design theory
in which a ccmpnter has not teen nsed, either directly or
indirectly, to obtain some of the results, Invﬁhis thesis,
many of the results which are obtained or referred to were
obtained with the aid of a ccmputer program.

In this thesis, a mnew and fairly general A type of
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Chapter 1

combinatorial design is defined. It is actuallyva generali-
zation of several known classes of designs, the nost
important of which is the class known as covering designs.
This provides not only several new, previously unstudied
classes ¢of designs, but also gives a common framework within
which all designs of this type may be studied. The problen

is defined as follous.

tises. 2 E-get is defined to be a subset of the

varieties of cardinality XK. 3 (T,XK,L,V) design is a

that every possible I-set nmust intersect one of these
K-sets in at least T varieties., Clearly, the paranme-
ters must satisfy the conditions TXKLV and T<LsV. If a
K-set intersects an L-set in T or more varieties, then
that K-set is said to coyer the L-set. A minimal
j{T,K,L,V) design is a (T,K,L,V) design containing the
- smallest possible number of blocks. Bi{T,K,1,¥) denotes

the number of blocks in-a minimal {7,K,L,V) design.

For example, let the varieties be the integers 1 to 7.
The +three Dblecks (1 2 3), {3 4 %, and (5 6 7) form a
{2,3,4,7) design, since any 4-set on the 7 varieties nmust
intersect one of these 3-seté in at least two varieties, It

is not a mipnimal {(2,3,4,7) design, however, since the blocks
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Chapter 1

{1 2 3 and (8 5 6} alsoc forma {2,3,4,7) design., But a
single block cannot form such a desigﬁ {the u;set containing'
the 4 unused varieties would nct be covered), and so this
design is minimal and B(2,3,4%,7)=2.

Standard terminolcgy and notation will be employed in the
remainder of this thesis. In several sections, graph-
theoretic termé will be employed, and the reader is referrted
to Harary {30] for definiticns of these terms.. In particu-
lar, the terms "hbipartite", "tripartite®™, and YN-partite®
will be used frequently. In sonme cases, a design or 4graph
will be ‘referred to as simply "partite" or ™non-partite”,
In these cases, the ﬁumher of partitions will be clear fron

the context,

1.2 Overview of the thesis

In Cpapter 2, several special subcases of the general
problem are discussed, and the interrelationships between
them are described. Several of these subcases are well
known problems, and a summary of the work which has been
done on these problems is given, Several small results that
concern the prcecblem as a whole are also presented here,

Chapter 3 investigates {2,2,L1,V) designs, which is ones of
these well-kncwn subcases, known as Turan’s problem. An

independent proof of the value of B{2,2,1,V) is given, Dbut

Introduction 7




Chapter 1

several other, more important results concerning other types
oft {2,2,L,V) de=signs are alsc given. These raesults provide
the foundation for the follcwing chapters.

Chapters 4 and 5 investigate {7,Kk,X,V) designs, which is
the -only special subcase of the problem which has not
previously béen studied to any great extent., In Chapter &
the case 1in which T=2 and K=3 is discussed, and Chapter 5
considers the case T=2 and K=4. W. H. Mills, in a summary
of  covering designs {[9], noted that, in that problem, the
case K=4 was much more difficult than the case K=3. He
stated "In part this is becasse . . . and in part it is
because 4 is a bigger number than 3." It may certainly be
stated that, in any design theory problem, if 4 is a bigger
number than 3, then 5 is a puch bigger number than u;_ This -
is certainly +true in the current problem, and {2,5,5,Y)
ﬁesigns will be mentioned only briefly.

In Chapter &, siwmilar results are presented concerning
{T,K,L,¥) designs 1in general. The value of g(T,K,L,V) is
determined for the majority of the sets of ?arameters‘ in
which T=2, k=3 or 4, and L<5.

In Chapter 7, several algorithms are described which were
used to determine B({T,X,L,V) for some sets of parameters,
and the feasibility of using computer algorithms to deter-
mine minimal designs for cther, larger, sets of parameters

is discussed. Finally, an appendix is provided containing
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tables of the kncwn values of B(T,K,L,V) for V<16.

Introduction 9




Chapter 2

2,1 _Special éubcaseg

‘In this section, several subcases of the general problenm
are ?resented, and +the relationships between them are
demonstrated, In the follcwing section, a summary of the
known results concerning these subcases will be given.
First, a duality may be established between designs by the

following theoren.

Definiticn The corplement of a K-set 1s the set of V=X
elements which do =not appear in the K-set. The
corplement of a {7,K,%L,V) design is obtained by comple-

menting every K-set in the design.

Theorem 2.1.1 The conplement of a {T7,K,L,V) design is a

{V-K-L+T,V-K,V-L,V) design.

Proof Consider a {T,XK,1l,V) design. Any L-éet nust intersect
one o0f the K-sets in at least T varieties. Therefore
there are at most K+L-T distinct varieties contained in
these two sets, and at least V-K-1#+T varieties which
are contained in neither of them. Now consider an

arbitrary {V-L)-set, and its complement, which is an
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Chapter 2

L-set. One of the K-sets in the design will intersect
this L-set in at least T varieties, The complement of
this K=-set will intersect the (V-L)-set in exactly
those varieties which are contained iﬁ neither the
K=set nor the L-set. There nust be at least V-K-1+T
such variseties, Therefore, by conplementing every
K-set, a Qesign will be formed which has the required

parameters.
corollary B(T,K,L,V) = B{V-K-L#T,V-K,V-L,V)

All of the special subcases of the problem in which two
or more of the parameters are egual will now be considered.
Several of these are trivial subcases, and these are treated

in the fcllcwing lemmas.

Lemma_2.1.1 If V=T, V=K, or V=L, B(%,K,L,V)=1.

Proof If V=K, there is only cne possible K-set, If V=L, any

K-set will form a design. If V=T, +this implies that

T=K=L=V,

Lemma_ 2.1.2 If T=K=L, then B{7,X,L,V) = (V)
K7,
and the design consists of every possible K-set,

The remaining subcases occur when T=K, T=L, or K=L. If
T=L, then the design will be a collection of K-sets which

includes every T-set at least once. Such a (7,%X,T,V) design

Background 11




Chapter 2

is known as a c¢overing design. The problem of covering
designs is a well known one, and it has been extensively
studied din Trecent years. A summary of'the work which has
been done in this field is cecntained in section 2.2.1. A
special case ’cf coverihg designs occurs when every T-set
appears exacily once in the design. Such a design is known

as a %"tactical configuration® or a Steiner system. This

problem is a very ¢l1d cne, and has received a great deal of
study. This subcase of the procblem also includes all
balanced incomplete block designs with A=1, as well as many
other similar designs.

If T=RK, then the probler becomes egquivalent to a problen
first posed by Paul Turan in 1987. Such a (T,T,L,V)’ design

will 'be referred to as a Turan design. This subcase is a

particularly difficult one, and reiatively little 1is known
about it, The original prcblem posed by Turan and a survey
of the known results on this topic is presented in section
22242,

These two - subcases are actually complements of each
other. Thus every result concerning covering designs will
provide a corresponding result on Turan designs, and con-

versely. This duality is stated in the following lenma.

3 The conrplement cof a‘COVering design is a Turan

design, and vice versa.
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The subcase in which K=L is a relatively new problem.
Such a (T,K,K,V) design will be referred to as a symmetric
design., It was actually a problem of this type which 1led to
the formulation of the general (T,K,L,V) problem. Recently
Bernhard Neumann posed the following problem. #®hat is the
minimum number of 6-sets cn 16 varieties which will inter-
sect every possible b6-set in at least 4§ varieties? In the
tefminslogy of this thesis, such a design would be a miniral
{4,6,6,16) design. 1In attempting toc solve this problem, the
general symmetrié problem for any T, X, and Vv was consi-
dered, which, in turn, led %c the formulation of the general
problem on which this thesis is based. However, the value
of B{#,6,6,16) is still unknown. The sﬁbcase of the problen
in .which I=K will receive the majcrity of the attention in

/

the remainder of this thesis.

iempa_2.1.4 The conplement of a symmetric design is a

symmetric desigmn.
Proof B(T,K,K,V)=B{V-2K+T,V-K,V-K,V)=B{T',K?,K?,V)

The only remaining subcase of the overall prcblem is the
most general case in which the four parameters are distinct.
This subcase will also be considered in +the following

chapters,
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In this section, the historical background of the problen
will be presented, and a summary of the results which have
been obtained will be given. As noted in the last section,
the two subcases of the proﬁlem which have been studied are
those concerning covering designs and Tuyran designs. The
results that have been obktained in these areas are sum-
marized separately below. The topic of coverings is also
closelyv related to Steiner systems, balanced incomplete
block designs, and other related combinatorial designs.
Eveh a brief survey of these areas would be much too large
to be included here. Instead, the reader is referred tc the

bibliography for further information in these areas.

2+2.,1 Covering _designs

In 1853, J. Steiner [17] posed the following problen.
For what integer N is it possible tc form triples, out of N
given elements, in such a way that every pair of elements

appears in exactly one triple? Such a system is now

referred to as a Steiner triple system, or an gxacht_covering
of pairs by triples., Steiner then went on to formulate the
problems of exact coverings of +triples by guadruples,

guadruples by guintuples, etc.

~

Background 14




Chapter 2

In 1859, H. Reiss [ 14] proved that Steiner triple
systems can be construcied if and only if the number of
elements, N, is congruent tc 1 or 3 {modulo 6). This result
was anticipated by Woolhouse in 1834 [42], and was also
proved independently by Mcore in 1896 {13]. Moore also
generalized the problem to include exact coverings of T-sets
by K-sats for any‘T<K, and called such designs "tactical
configurations”, Such a design on V varieties will be
denoted by S{?7,%X,V). He also showed +that the folloﬁing
divisibility conditions are necessary for the existence of

any S{T,K,V).

K-i | V=i
T=-i T-3i for all 0 £ i < 7T,

These divisibility conditions were proved to be suffi-
cient as well as necessary by Hanani between 1960 and 1963
f6,7,8] for some values of T and R, Of particular interest
here, he showed that Steiner systems S{T,X,V) exis£ for

T=2,K=4 1if and only if V=1 or 4 {modulo 12),
T=2,%¥=5 1if and only if V=1 or 5 {mcdulo 20),
and T=3,K=u if and only if V=2‘or 4 {mcdulo &) .

The first results concerning minimal coverings other than
Steiner systems were found by Fort and Hedlund in 1958 [ 3].
They solved the problem of covering pairs by triples and

determined that

B{2,3,2,7) = “2 E:.J.'l
3 2 ~for all v.

Background 15




Chapter 2

The first important results concerning coverings in
general were given by J. Schonheim in 1964 [15]. In this

paper, the following important lower bound was established.

B(T,kK,T,V) 2 L(T,K,N)=[ Y [.V.:l’ » » v=T#1 —‘]
' K -1 K-T+1

This is a very good lower bound, and it can be achieved
in many cases, including B{Z2,3,2,V) as shown above. Schon-
heim alsc proved the important result that if a Steiner
system S{7,K,V) exists, then B{T,K,L,V+1)=L{T,K,V+1). This
theorem, in conjunction with the results of Hanéni, shows
that

BiZ,B;Z,V) = L{(2,4,V) feor Vv=1,2,4 or 5 {modulo 12),

B{2,5,2,V)

]

1{2,5,Y) for v=1,2,5 or % (modulo 20),

and B(3,4,3,V) L{3,4,V) fcr ¥=2,3,% or 5 {modulo 8).
Since 1964, the problem c¢f cecverings has received a great
deal of study, principally by Kills {9,10,11,12], Stantcn,
Kalbfleisch, and Mullin {16],baﬂd Gardner {#], among others,
The cases éor which many results are known are as follows.
The problem of covering pairs by quadruples, B{(2,4,2,Y),

has Dbeen solved for all values of V by Mills. He has shown

that

i

B{2,4,2,N L{2,4,V)y for all v#7,9,10, or 19,

B{2,4,2,V) = L(2,4,V)+1 for v=7,9, or 10,

]

and B{(2,4,2,19)= L(2,4,2,19)+2 .

The §;oblem of covering triples by quadruples has also
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been solved by Mills for most wvalues of V. In this case, it

is known that

it

B{3,4,3,7) L{3,4,V) for all V#7 {(modulo 12),

and B{3,4,3,7)

L{3,4,3,7)+1.

There are many results known concerning B{2,5,2,V) as
well, although these are not nearly so complete as tﬁe,
results in the previous two cases. The results of Schonhein
and Hanani show that

B{2,5,2,v) = L{(2,5,V) for Vv=1,2,5, or 6 (modulo 20).

Gardner({ﬁ] has shown that

B{(2,5,2,V)

L{2,5,v) for Vv=10,%4,17,18,30,94,97,98
{modulo 100)
{V#17,30,9&,110,13&,130,?9&,2?0,230),
B{2,5,2,V) = L{2,5,V)+1 for v=13,93 {(mod 100) (V>293)
and B{(2,5,2,V) > L{2,5,V) for V=13 (modulo 20).
In addition, the value of B{(2,5,2,V) is known for many

specific values of V. Scme cf these are 1listed in Table

2.2.1.7.

Background 17
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¥ kN K ) 3
i v i B(2,5,2,7) § L{(2,5,V) | Result due to i
— } + . + - : ]
{12 ] 9 ] 8 i ]
{ 13 i 10 1 8 | Stanton, Xalbfleisch,{
| 14 | 12 i 12 | and Mullin i
| 15 i 13 ] 12 i 1
i 20 1 21 1 20 ] o |
T+ { + ¢ 1
| 17 { 16 ] 14 | Stanton, Kingsley i
— t + + :
{ 18 | 18 i 18 | 1
{ 19 i 19 1 19 i |
i 23 i 28 { 28 ] Gardner i
{ 38,39, 1 H ] i
i 54,7¢, | 1 i i
i and I L{2,5,V) i ] i
i others 1 ] i |
) L "= % 3 3
Table 2.2.1.1
The values of B(2,K,2,9) for all small values of 7V,

including the values of B(2,5,2,V) when V<11, are given by

the fo

liowing results, ﬁhich

are due to Stanton, Kalbhf-

leisch, and Mullin {163, and Mills [9].

B{(2,

K,2,Vy = 3
= i

= 5

if
if
if
if
if

if

There are also a

which

K < V<
38k/2 < V <
5k/3 < V <
9K/5 < ¥V <

2K < ¥

iA

2Kk < ¥

A

very few,

ccncern c¢ther, 1larger,

These results are summarized in

3K/2,

5K/3,

9K /5,

2K,

7K/3 and 7K-3V%1,

T€/3 and 7K-37V=1.

widely scattered, results
classes of covering designs.

{93]. Also, since covering
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designs may be ottained by ccmplementing Turan designs, the
results given in the following section %ill provide results
cn covering designs whose parameters are of the form
{y-L.,v-7,v-L,V). Appendix I1 contains tables of the kncwn

values of B(T,X,T,Y) for V<1¢6.

2+2.2 Turan_designs

In 1941, P. Turan posed the fcllowing problem on
hypergraphs. Consider an r-graph whose vertices are denoted
by 1,s+..,v and whose edges ares r-subsets of these v
vertices. ¥hat 31is - the maximal number of =dges in such an
r-graph which does not contain a complete r-subgraph Von L
yvertices? For =axample, if r=3 and L=4, then not all of tha
edges 123, 124, 134, and 234 may occur. This problem is
equivalent to the determiration ova(T,T,L,V) since it is
clear that the edges which are pgt included in such a
maximal graph must form a minimal (r,r,%L,v) design.

Turan determined the answer to this guestion for r=2 {see
Chapter 3), but very 1little is kncown for r2»3. He did,
however, give the following conjectures {which have been

reformulated in terms of B{T,K,L1,V) designs).

Conjecture I Let there be 3n varieties, and partition themnm

into three subsets, ¥, Y, and Z, each of cardinality n.

The minimal {3, 3,4, 3n) design will then consist of all
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possible blocks of the form
(xxx), (YY Vs (Zzz22), xXXY¥), (YY 2Z), and {z z Xx),
where x, vy, and =2z denote elements of X, Y, and Z,

respectiVely. This would give the result

B{3,3,4,3n) = 3(2) + Bn(g)‘

Conijecture II Let there be 21 vertices and partition then

into +two sets X and Y of cardinality n., The minimal

{3,3,5,2n) design will consist of all possible bdblocks

0of the form .
xxx), (yy ¥, xxy), and (y ¥y %),
where X and y denote elements of X and Y, respectively.
This would give

B{3,3,5,2n) = 2 n) + Zn(n)
3 2 .

Conjecture I was generalized to include all values of ¥
by P.H.Dirksen and R.G.Stanton {1], by requiring only that
the vertices be partitioned into three sets as evénly as
possible, The conjecture was alsc proved for all V subject
to the condition that, in some minimal {3,4,3,V) design, the

\
set of blocks which do not include some variety, x, form a

{3,4,3,v-1 design. This condition has not, however, been

provéd.

The orly other results which are known <concerning Turan
designs are those which can be obtained from complementing

the results c<n covering desigrs which were given previously.
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2:3_Small results

In this sesction, several lemmas are presented which

concern small {T7,X,L,V) designs,
1 B(T,K,L,V)=1 if and only if TLK+L-V,

Proof A single K-set will form a (7,K,%L,V) design if and
only if it is not possible to choose 1 varieties
without including T or more of the varieties that
appear in the K-set. This will occur if and only if

L>(V-K) +{T-1), which gives the stated result.
2 B{1,K,L,V) = [ (V-L+1)/K 7T .

Proof In order to form a (1,K,L,V) design it is only
necessary to include at least V- (L-1) varieties in +the
design, din order that no L-set exists which does not
intersect any of the K-sets, This can clearly be dcne

in the stated number of blocks,

Lemma _2.3.3 There exists a minimal (T,K,L,V) design which
either contains every variety, or elss contains no

repeated varieties,

Proof Suppose some variety, x, occurs more than once in a

minimal (7,X,L,V) design, and that a second variety, v,

does not occur., Select cne of the sets containing x,
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call it set A, and change the x in this set to a y.
The resulting design must alsc be a wminimal {7,K,L,V)
design for the following reasons.

If there exists scme L-set which was covered in the
original design, but is not covered in the modified
design, then tﬁat L~-set must contain ¥, must not
contain y, must contain exactly T-1 other varieties
from set A, and must not be covered by any other K-set
in the design. But if such an L-set existed, then that
L-set, with the x replaced by a y, would not have been
covéred in the original design. Since this design was
assumed to be a {T,K,L,V) design, this is a
contradiction,

Therefore any minimal design may be altered in this
way uvntil it contains every variety, or until no

repeated varieties remain.

Corpliary If B{T,K,L,V) 2 V/K then there exists a minimal

design which contains every variety.

Corollary If B{(T,X,L,V) < V/K then there exists a nmninimal

St e e -

design which consists of distinct varieties.

lempa_2,.3.4 B(T,K,L,V)=V/K if and only if

- <ty
K+1=T K J .

Proo Select N<| V/K ] K-sets which contain no repeated
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elements. If a (T,K,L,V) design exists on N blocks,
then it may be constructed in this way, by the previcus
lemma, The resulting design will be a (T,X,L,V) design

if and only if it is not possible to choose an L-set

which intersects each K-set in no more than T=1
varieties, which occurs when

L > N{(T-1)+{V~-KNK)

or L-V > N{T-K-1)

or V-1 < N{K+1-T)

or _3_’:;_ < N » Q.E.D.
K+1=-7 '

Corocllary If _Vv-1L < [.X J then
K

B{(T,K,L,V) = V-1+1
: K+1=-T .

Note: The extra +1 in the numerator is required since
the number of blocks must be greater than this gquanti-

ty, not greater than or equal to it.

5 If N2V/K and L>{T-1)¥ then B{T,X,L,V)5V¥.

Propof Form a design on N blocks which contains sach variety
at least once. Suppose there exists an L-set which is

not covered by this design. Such an L-set can inter-

sect each block in at meost T-1 varieties, and hence can
contain at most N{T-1) varieties. But L>N(T-1) and

therefore such an L-set cannot sxist.
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lemma 2.3.6 B{2,K,L,V} # L.

- FO—- 7 M oy o8 St 2t

Proof If T V/KE77 <1 then B{2,X,L,V)<L by the preceeding

lemma. If [ V/K 72L then suppose there exists a design

on { V/K 7 blocks, By a previous lemma, such a design

may be constructed which <contains every variety at
least once. Such a design can <contain at most X-1.

repeated varieties and therefore every block must

contain at least one variety which does not appear in

any other block, Therefore it is possible to form an
L-set which intersects each bleck in such a design in
at most 1 variety, This is a contradiction. Therefore

B(2,K,L,V) > T V/K 7T 2 L.
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CHAPTER 3 -_{2,2,L,¥) DESIGNS

3.1 _Introduction

In this «chapter, several results concerning (2,21L,V)
designs will be presented. As nmentioned earlier, the
subcase inAwhich T=K is £quivalent to a problem first stated
by Turan in 1941 [19]. This particular case, in which
T=K=2, was first solved by Turan himself, and since then
several additional proofs have appeared {2,18j.

The results c¢f this chapter will be needed in order to
investigate B{2,K,L,V) designs in Chapters 34, 5, and 6. In
addition to a determination of the structure of the minimal
(2,2,L,V) designs, and an independent proof of the value of
B{2,2,L.,V), several necessary results will be obtained aboﬁt

other, non-minimal, 2,2,1,V) designs.

It will be convenient throughout this chapter to refor-
mulate the ©problem as a graph-theoretical problem, as

follows,
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Definition The egguivalent graph of a (2,2,L,V) design is a

graph on V vertices, ccrresponding to the V varieties
in the design, such that twc vertices are connected by
an edge if and only if the <corresponding pair of

varieties does not appear in the design.

An exémgle of a design and its equivalent graph is shown

in Figure 3.2.1 .

W W -
VT O 82N
%]

(F%)

4
A {2,2,3,5) design and its eguivalent graph

Figure 3.2.1

Since every L-set of the ¥V varieties contains at 1least
one pair which is present in the design, the following lemma

is immediate,

fempa__3.2.1 A graph is the eguivalent graph of a {2,2,L,V)
design'if and only if it contains no complete subgraphs

on L vertices,

It is also clear that the minimal design will correspond
to the equivalent graph containing the maximum number of

edges., The structure of this maximal graph will be deter-
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nined by induction, beginning with the following lemma.

Lemma__3.2.2 The eguivalent graph of the minimal {2,2,3,V)
design is a complete bipartite graph on two sets of
[ V21 and { V/2 ]} vertices.

Proof Let v be a vertex of maximum valence, m, in the
graph,_viet A denote the set of m vertices which are

connected to vi, and B denote the remaining vertices

{Figure 3.2.2).

Since the graph can contain no triangles, there can
bhe 50 edges within set A, and so all of the remaining
vertices must be incident with a vertex in set B,
Since the maximum valence is m there can be at most
m{¥-m)} e€dges in the gragh; Also,'thére can he exactly
n{V-m} edges only if @no edges occur Letween *two
vertices in set B, in which case sach vertex in B will
be connacted to =each vertex in A, giving a complete
bipartite graph, as required.

To achieve this wmaximum without violating  the
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assumption that m is the maximum valence of any vertex
in the graph, it 1is alsc necessary that m > V/2.
However, m{V-m) is maximized when m={V/2|, which satis-

fies this conditicn and completes the prbof.

Corollary

- s iy T - g o

B{2,2,3,V) =

L2\ (=1 2
Ve /T )T

An analogous result fer any 1T may now be proved as

follows.

Theorem_3.2.1 The egquivalent graph of the minimal (2,2,L,V)

design is a complete {L-1)~-partites graph.
Broof

Suppose that +the theorem is true for all IL<L', and

consider the minimal {(2,2,L'+17,V) design and its =equi-

valent graph.  2Again, 1let vl be a vertex of maximunm
valence, n, énd let A and B denote the sets of vertices

connected to v and noct connected to vl, vTespectively

Since no vertex may be incident with more than nm

edgés, the maximur number of edges ontside of set 3 is

i m{V-m) . This maximum is achieved only when each vertex
in B 1is <connected tc each vertex in 4, and no edges

occur within set B.
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The edges within set A can contain nc complete
subgraphs on L' edges, else this subgraph, in con junc-
tion with vi, would form a complete subgraph on L'+1

vertices, which is forbidden., Thus the maximum number

of edges within A occurs when this subgraph is a
completé (L'-1)-partite graph, by the induction hypo-
thesis. This gives a ccmplete L'-partite graph over-

all, as reqguired,

"It 1is «clear, from symmetry, that the maximum number of
edges will occur when the vertices are partitioned into the

L-1 s2ts as eyenly as possible, {That is, every set has

cardinality § V/{(L-1) T or L V/(L-1) 1. )y If a detailed
proof 1is desired, please see the proof given in Appendix I.

This gives the following corcllary.

Corollary The minimal (2,2,1,V}) design can be formed by
partitioning the varieties into L-1 disjoint sets, as

evenly as possible, and including all possible pairs

from within each of these sets,

| Jor ¥y-r +1
| . -7 L=1
] B{2,2,L,V) = {i-1-I) + T
2
=¥ ~{L-1)V # £(L-1-t) '
2{L-1) 2{1-1) ’
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where r=V¥ {mcdulo I-1) and (<r<i-2,

Since +the wmaximum possible value of r(L-1-1)/2{L-1) is
{(L-1) /8, a simpler formula can be obtained for 1<8, as
follows,

2

B(2,2,L,V) = [zﬁé;%uz‘] (138).

3.3 _Non-minimal (2,2,1,V) designs

In the last section, it was seen that the optimal méthcd
cf coanstructing {2,2,L,V) designs involved partitioning the
varieties into L-1 disjoint sets, and including all possihle
pairs from within each of these sets. The equivalent graph
for such a design is an {L-1)-partite graph, and the design
itself will be called an (L-1)-partite design.

In Chapters 4%, 5, and 6, {2,K,L,V) designs will be
constructed using a similar technique. In order to estab-
lish that these aesigas are minimal, it will be necessary to
consider the class of {2,2,1L,V) deéigns which are not
constructed in this manner.

This section, then, will discuss the following gquestion.
What 1is the number of blocks in the smallest {2,2,1,V)

design that is not {L-1)-partite?
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323,31 Non-minimal (2,2,3,V) designs

Consider the graph with the maximum number of edges that
contains no triangles, and is noct bipartite,. }Since such a
graph must centain a cycle with an cdd number of vertices,
there must be at least 5 vertices.) Again, let vl be a
vertex of maximum valence, m, and let sets 2 and B deﬁote
the vertices connected to\ vl and =not connected to vi,
respectively. There can be no edges within set A4, else
there would bs a triangle, and seo, since the graph is not
btipartite, there must be an. edge within set B ({Figure

Note that; the presence of this edge 1s a necessary
condition but is not a sufficient condition to guarantee a
non-bipartite graph. There mnpust valsc \be at least two
vertices in set A, or else the maximuym valence in the graph
would be 1 and +the graphk wculd be bipartite, and each
endpoint of the edge in B must be connected to at least one

vertex in A, or else one of these endpoints could be
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considered to b2 in the same partition as the vertices in A
and the graph would again be_bipartite. If bcth of these
additional ccnditions are met, however, then +the graph
contains a 5-cycle and nust therefore be non-bipartite.
These conditicns are easily mret for V25 in the construction
below.

Consider the edge in B and its two endlpoints. Both of
these vertices cannot be connected to any given vertex in

set A, since that would form a triangle, and so the maximun

number of edges between these two vertices and set A is m.

A1l remaining edges in the graph must be incident with the
remaining (V-m-3) vertices in set B. Since the nmaximunm
valence is m, there are at mcst m{V-m-3) other edges. Thus

the total number of edges is at most

m+mn{V-m-3)+m+1

= n{¥-u~-1)+1 .

This is maximized when m={ {V-1}/2 7, giving a +total of
at most

2 2
¥.-2V+4 (V even) or YV_-2¥*5 (V o0dd)
Y

P T L

4

edges. Furthermore, this number of edges is easily achieved
without wviclating the original assumption that m is the
paximum valence in the graph. Fach end point of the edge in

B must ke connected to at least one vertex in A, else the
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other end roint would be {m+17)-valent,. This poses no
problem. Each vertex in A is connecdted to vi as well as all
bot one vertex in B, Thus nc vertex in A will bz more than
m-valent as long as m2{V-1),/2, but since the maximum was
obtained with m=[ {V-1)/2 77, this condition is satisfied.

This proves

1 The minimum cardinality of a non-bipartite
(2,2,3,V} design {V¥25) is
2

()7 L) T

3.3.2 Non-minimal (2,2,1,Y) Designs

The results of the previous section may now be genera-

lized as follows.

Lemma_3.3.1 A graph on V vertices which contains no complete

subgraphs on L vertices, and is not {L-1)-partite, can be

constructed if and only if V2L+2.

not {L-1)-partite is the Ccmpléte graph on L vertices, which
is forbidden, it is clear that V>L. Suppose V=L+1 and vt is
the vertex of ninimum valence in the grarh. First, suppose
that v1! is {(L-1)-valent, and that only the edge between v!?

and v2 is missing. Since the subgraph on the 1 vertices
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other +than v «cannot be c¢onplete, there must be another
missing edge, say betweern v3 and v*. But this graph would
then 5e {L.-1)~-partite, with partitions {(vi,v2), (v3,v%) ,etc.
Therefore v is at most {L-2)-valent. Suppose the =edges
between v! and v2 and betweer v! and v3 are missing. Again,
there must be an additional missing edge not involving vi,
If this edge is the edge between v2 and v3, then the  graph
is (L-1)-partite with partitions (v1,v2,v3), {v%) ,etc. If
this:edge ipvolves only one of v2 and v3, say the edge

between v2 and v4, then the graph is (L-1) -partite with

'partitiens {vi,y3), (v2,v%),etc. If this edge involves

neither v2 nor v3, say the edge between v4 and vS, then the
graph is {L-1)}-partite with partitiocns (vl,viy,(v4,v5),etc,
Thus such a graph must always be (L-1)-partite. Therefore
V2L +2.

Por all v2L+2, a suitable graph may be 'constructed as
follows. Form a complete (L-3)-partite graph from the first
V-5 vertices. Connect the rewmaining 5 vertices to form a
5-cycle, and coaneci gach of them to all of the other L-3
vertices. The ©resulting graph contains no complete sub-

graphs on 1 vertices, and is not {L-1) ~-partite.

Theorem _3.3.2 The structure of the eqguivalent graph of some

minimal, non-partite (2,2,L,V) design is as follows. It is
a comnplete {L-1)-partite graph with the following two

modifications. First, there is a single edge within one of
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the partitions {X). Second, each vertex in one ¢f the octher
partitions {Y¥) is connected to only one of the two endpoints
of this edge {Figure 3.3.2) .

In addition, partition X will contain at 1east three
vertices, partition Y will contain at least two vertices,
and each endpoint of the edge in X will be connected to at
least one vertex in Y.’ These gonditions are neceésary‘to

guarantee that the graph is non-partite.

i Other Partitions . .« .

{Other edges omitted for clarity)

Figure 3.3.2

Proof The eguivalent graph of sonme minimal non-bipartite
{2,2,3,V) design has this structure, as shown in the
prévious section. The theorem may now be proved by induc-
tion, as follows.

Sﬁgpose that the theorem is true for wminimal, non-
partite, (2,2,1—1,V} designs, and consider a m@minimal, non-
partite, (2,2,1,V) design, and its equivalent graph. Define
my, Vv, A, and B as in the last section. Since the graph is
not {L-1}~-partite, there are two cases to be considered,

Either A is not (L-2)-partite, or else A is {L-2)-partite
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and there is an edge within E.

If A is not {L-2)-partite, then the maximum number of
edges within A will occur when A has the reguired structure,
by the induction hypothesis. The maximum number of edges
outside of A will occur when each vertex in B is connected
to each vertex in A, as before. This gives the overall
graph the required structurs.

Now suppose that A is {L-2)-partite, and that theﬁe is an
edge within set B, The set cf vertices consisting of v1 and
B will ccntainvat least thres verfices, as regquired. Let
the partiticns of sét ;| vbe F1, P2, ...,Pn and let their
cardinalities be m1, m2, ...,nn, where mi<m2 ;..Smn,

Consider the vertices in B other thah the +ftwo endpoints
of *the special édge, and consider the edges incident with
these vertices. Since no vertex may be more than m—valént,
the maximum number of edges incident with these vertices
will be achieved when each of thei is connectsed to =every
vertex in set A.

Now consider the remaining subgraph consiéting of the two
endpoints of the edge in B, and set A. Suppose that every
possible edge is present in this subgraph, that is, 4 is a
complete partite graph, and each endpoint is'éonnecteﬁ to
every vertex in A. There will be exactly {(81){m2)...{mn)
complete subgraphs on 1L vertices in this graph. Since such

subgraphs are forbkidden, at least one edge must be missing
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from each of these complete sunbgraphs. If an edge from P1
to one of the endpoints of the edge in B is removed, an sdge
will now be nmissing from exactly (m2)...{nn) of +these
complete subgraphs. Furthermore, this is the largest number
of complete subgraphs which shate a common edge. By
removing an edge from each vertex in P71 to an endpoint of
the edge in B, no complete subgraphs will remain, and the
minimum number of edges {m1) will have been removed.

There is cone additional restriction, however. At  least
one edge must be removed frcm each endpoint of the edge in
B, otherwise one of the endpcints would be {m+l)-valent,
which is contrary to the assumption that the maximunm valence
is m. Therefore there «can be at most 2m-2 edges between
these endpoints and set A, and tﬁe construction above casnnot
be used for m1=1. In this cas¢, however, it is ‘always
possible fo select another partition, P, containing exactly

two vertices, and to remove one edge from each vertex- in P

~to a ‘distinct endpoint of +the edge in B, resulting in a

graph with the maximum number of edges and the reguired
structure. There must always be a partition containing
exactly two vertices, for the following reasons.

If there is no partiticn containing exactly two vertices,
then either all of the partitions contain only one vertex,

or some partition contains more than two vertices. If all

of the partiticns contain bnly one vertex, then m=L-2 and
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the number of edges 1in the graph is at most V{L-2)/2.
However, it is easy to show that a larger non-partite graph
can, 1in fact, bLe constructed. The construction used in
~Lemma 3.3.1 yields a graph in which every vertex has valence
2L-1, for example, Thus m cannot équal L-2 in the npaximal
graph. If there is a partition containing p>2 vertices, on
the other hand, then perform +the following operation.
Remove one vertex <from this partition, and add it to P71,
giving a partition containing exactly two vertices. This
operation will increase the number of edges within A by
(2p-2)-p = p~2, while still allowing the maximum number of
edges {(2m-2) ©between A and the endpointé of the edge in B.
Thus a larger non-partite graph has been formed, and
therefore the original graph could not have been the maximal
graph, |

Therefore the maximum numker of edges occurs when 2 is a
complete (L-2)-partite graph, ahd. every vertex in some
partitiocn P; cgntaining at least tyo vertices, is connected
to on1y one endpoint of the edge in B. This gives the

overall graph the Teguired structure and proves the theoren.

Corollary The wmaximum numnber of edges will occur when the
varieties are partitioned as evenly as possible, subject to
the 7restriction that at least one partition {partition X)

rust contain at least three vertices.
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Proof The nunmber of édges in a mwaximal non-partite graph
which is formed from a partite graph by the construction
above is N-n+1, where n is 'the cardinality of partition
Y{which mnmust be at least twc), and N is the number of edges
in the corressponding complete partite graph. As shown in
appendix I, N is maximized when the vertices are partitioned
as =evenly as possible. For V22L-1, at least one partition
¥will contain at least three wertices, and the rest will
contain at 1least +¢wo vertices, which satisfies all condi-
~tions, For VSZL-Z; the value ¢f ¥ 1is maximized when one
Partition ccntaigs exactly three vertices, and the Test are
split evenly into partitions of sizes two and one. Since
y2L+2, by lemma 3.3.1, there will always be at least one
partition of size two, as reguired. The value of n 1is
minimized when partition Y 1is <chosen to be the smallest
partiticn containing at least two vertices,

Suppose that the vertices are initially partitioned in
this way so as to maximize N. ﬁow suppose that the vertices
are re-grouped in order to attempt to increase the number of
edges in +the graph. Since the vertices were initially
partitioned as evenly as possible, such a rTe-grouping can
always be done by a series éf'operatiqns in which e vertices
are moved frem a partiticn containing r vertices into a
partiticr containing s vertices, where r<s. Such an opera-

tion can decrease n by at most e {if r was formerly the size
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of the smallsst partition and (r-e)>1 ). However, such an
operation must also decrease N by exactly

2 2
{rs)~-(r~e) {ste) = & +{s-T)e 2 e 2

[

Therefore the number of edges in the graph cannot be
increased by sSuch operaticns, and the maximum number of

edges will occur when the vertices are partitioned evenly.

Corplliary The minimum cardinality of a non-partite (2,2,L,V)
design is

v

B(2,2,L,V) + I_L—1J -1 for v > 21-1,

“and B{2,2,L,V) + 2 for L+2 £V £ 21-2 .

Proof For V22L-1, +the equivalent graph of the minimal
{2,2,L,V) design 1is a comrplete partite graph with the
vertices partiticned as evenly as ?ossible, The eguivalent
graph of a minimal non°parti£e design may be formed from the
same partite graph by adding one edge to "one of the
partitions, and deleting one edge from each vertex in the
smallest partition to one of the endpcints of this new edge,
giving a design with the stated size.

For V=2L-2, the eguivalent graph of the minimal design is
a complete partite graph with all partitions having cardina-
- 1ities 2 or 1. To form the minimal hon-partite design,
however, the size of one of these partitions must be

increased to 3 vertices, and another one decreased from 2 to
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1 vertex. This will decrease the number of edges by 1. One
gdge 1s then added to the graph, and two edges removed,

giving two less esdges in all, This gives the stated result.

3.4 _Summary

The value of B{2,2,L,V) has been determined for all I and
Vv, and it h%s been shown that the m@minimal design is an
{L-1)~partite design in which the varieties arevpartitioned
as evenly as possible. The cardipalities of +the nminimal
non-partite (2,2,%L,Y) designs have also been determined for
all L and V. The resulting formulas for L=3, 4, and 5 will
be used in subsequent chapters. For convenience, these
formulas have be re-written in a simplified form, and are

summarized in Table 3.48.1.

; ; ; Minimal ;
! L} B(2,2,L,V) | Nom-partite {
- 4 :
| | 2 | 2 i
1 31 [ ¥ =27 | y -4 i
i | 4 I L ]
—1 + i
| i 2 i 2 ]
141 Fr=3vy 1 ¥ -¥-%6 J !
i H 6 i L 6 i
4 —4-—v 1
1 1 2 1 2 i
151 Yy -3y71 1 ¥y _-2¥-7 i
1o 8 L8 !

Table 3.H.1
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CHAPTER B4 _-_12,3,3.9)

4.1 Prelimipary results

a {2,3,3,V) design is a set of n triples which intersect
evary possible triple in at least a pair. It is worthwhile
to consider the 3n pairs that are contained in the triples
of such a désign, rather than the triples themselves,
Clearly these 3n pairs, or perhaps a subset of these pairs,
must form a {2,2,3,V) design. If it Qere possible to take
the minimal (2,2,3,V) design, and then find a set of triples
which contained each pair in this design exactly once, the
result would clearly be the wrinimal (2,3,3,V) design.

In general, the set of ali T-sets contained in any
{T,X,L.,v) design wnust form a (7,7,L,V) design., This gives

the following lower becund on B{T,K,L,V).

Lemma #.1.1
| BAT,T,L.V)
B{T,K,L,V) 2 (x)
: T .

In the current case, it has been shown that

UNWERS,/)

2
4 , —_ "\
OF MANITOBA ‘)~

N 5
LBRARIES
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and so B{2,3,3,V) 2 [_l[ yf;gy‘] ]
3 4 »
This is a reasomnably good bound, and, as will be showun,
it can actually be obtained for all Vv = 2, 4, or 6 {mod 12).
The following two sections will determine B(2,3,3,7) for
all Vv by considering the (2,2,3,V) desigﬁ that must always
be present, and the way in wshich this design can be covered
by triples., First, in section 4.2, only bipartite {2,2,3,V)
designs will be considered. In the reméining section,

non-bipartite {2,2,3,V) designs will be used.

4.2 Bipartite designs

As shown in Chaptér 3, w®»inimal (2,2,3,V) designs are
bipartite, that is, they consist of all possible pairs fronm
éach of two disjcint subsets of the varieties, Consider the
problem of covering such a design by triples in order to
create a (2,3,3,N désign. No triple can cover ©pairs fron
both subsets of the varieties, and so there must be two
independent sets of triples, each covering all the pairs of
one of the +two subsets, in other words, two independent
(Z,Q,B,V) designs. Th?s

B(2,3,3,V) < B{2,3,2,s8) + B{2,3,2,V-3)

for any s between 0 and Y.
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The minimal (2,2,3,V) design will occur when the varie-
ties are partiticned evenly. However, the minimal (2,3,3,7)
design will not necessarily result from the same partition-
ing, since some sets of paire are co?ered by +triples wmore
efficiently than others. The behaviour of this inequality
must be investigated for all ¥ and s.

The value of B{(2,3,2,V) is known for all V. It was shown

by Fort and Hedlund in 1958 [3] that

B(2,3,2,V) = [%l’.-!%l]]

This gives the bound

AU I ol I s o

Since this function behaves differently for each residue
class of Vi{mod 12) and s{mod 6), it is ccocnvenient to look at
particular residue classes cf V and S. Let V=12a+x and let
s=bb+y, where 0<x<171 and 0%y<5. The bound beconses

2 2
24a + 12b - 24ab + Kla + R2b + K3 ,

where K1, K2, and X3 are functions ¢f x and y, as follows.

Kt = 4[’&:2;1 ] + 2{x-y)
' 2
K2 = 2(’1:1 ] + 2y - x - 2[’&:1:1 ]
2 2 .
K3 =

"z_;_zl’ z:g:l\'l ‘I + [%[27;_3 'l ‘l
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For any particular value of a, and fixed values of x and
Y, the bound is a quadratic function of b which is maximized

when

248 - 28a + K2 = Q

or b = a - X2

24 o
However, b must be integral, and so the minimum is
obtained when b=a+e, where € 1is the nearest dinteger to
{-K2) /24,
Substituting a+e for b, and then (V-%) /12 for a, the

bound becomes simply
|

-2
{¥y=x) + cl{y-x) + c?
12 12
2 H
where ¢t = K1 + K2 gnd ¢c2 = 12e¢ + K2e %+ K3,

The values of Xt, X2, K3, =&, cl, and c?2 ‘are easily
computed for all x and y by a simple APL program, and the
results are given in Table 4.2.1. For each V¥V, the optinmunr
value for s, within a particular residue class, will be

6{(ate)+y, and this value is also shown in the table.
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For each residuse class ©f Vv, it can be seen that one or
rore of the six bounds is the smallest for every V23. These
are indicated by a * in the table. Most of the bounds will
appear twice in the table since if s' gives a particular
bound, =so must V-s?', and these two values will usualily be in
different residue classes.

The wpinimal {2,3,3,V) designs which contain bipartite
{2,2,3,7) designs have tﬁus been determined. These minimal
designs consist of two independent, minimal, ({2,3,2.7)
designs on subsets of s and V~-s varieties. A summary of the
bounds for each residue class of ¥V, as well as the optinunm
value{s} for s, is given in Table 4.2.2. The bound has been
Te-written in terms of V alcne by replacing X by the
appropriate value, and simplifying. The optimum value for s
has aléo been rewritten in terms of V.

For V=2, 4, or 6 (mod 12), the unpper bound is equal +to
the lower bound of Lenma u.d.a, and is therefore the actunal

value of B{(2,3,3,V).
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4,3 MNon-bkipartite designs

The bounds in Table 4.2.2 reflect the smallest possible
{2,3,3,V) designs which cortain hi;artite (2,2,3,V) designs.
If a design does noct contain a bipartite (2,2,3,V) design,
then it must contain a non-bipartite {2,2,3,V) design.. 'By
Theorem 3,3.1 the minimum cardinality of such a non-
bipartite design is

2 .
l_ -t J
b v
and therefore the number of blocks in any {2,3,3,V) design

which contains it must be at least

IR
| 2

or [‘1_;3 ] {V even)
12 -

But this is greater than or equal to the upper bounds in

Table 4.2.2 for every V23. Therefore those bounds are the

/

best possible, and the following theorem is proved.

Thecrem 4.3.1

2
B(2,3,3,V) = [ V_~2V {v=2, 4, or & {(mod 12) )

=35
2

v =2V ]+1 {v=0, 8, or 10 {mod 12) )
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[z..:z {v=1, 3, 5, or 7 {(mod 12) )

[.1-:X ]*1 (V=9 or 11 {(mod 12) ) .
12

In every case, the nminimal design consists of two
disjoint (2,3,2,V) designs. The exact value of B{2,3,3,7)
and the optimunm partitiohing(s) of the varieties for svery Vv

- are given in Table #,2.2.
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CHAPTER_S5 -_(2,4,4,V) DESIGNS

5.1 Introducticn

In this chapter, the structure of {2,4,4,V) designs will
be investigated, and the wvalue of B{2,4,4,V) will be
determined for most values of V. The approach to this
problem %ill be similar to that used in the iast chapter.

From Lemma 4.%1.1, any {2,4,4,V) design must contain a

{2,2,4,7) design, and therefcre

For all V=3 or 12 (mod 36) this bound becomes simply

2
v_-37

36 .
For these values of V, the nminimal {2,2,4,V) design
- consists of all possible pairs from each of three disjoint
spbsets of the varieties, each having cardinality 1 or 4
{mod 12). It is knpnown [15] that such sets of pairs can be
covered eXactly by gunadruyples, and therefore this bound can
actually be attained for all V=3 or 12 {(mod 36).

in general, the minimal {2,2,4,V) designs are tripartite,
that is, they contain all pecssible pairs from three disjoint

subsets of the varieties., Clearly, such a tripartite design
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can be covered by quadruples by using three independent
{2,4,2,V) designs. The ﬁinimal designs that can be obtained
in this nmanner lwill be determined in section 5.2. In
section 5.3, several special cases that are not covered by
the general <results of the previous section will be dis-
cussed. In section 5.4, it will be shown that these designs
are the spallest possible designs that contain tripartite
{2,2,&,?) designs.v Finally, in section 5.5, designs that do

not contain tripartite {2,2,4,7) designs will be considered.

5.2 _Th= upper bound

As shown in Chapter 3, the minimal (2,2,3,V} designs are
tripartite, that is, they consist of all possible pairs fron
each of three disjoint subsets of the varieties. One method
cf covering such a tripartite design by quadruples in order
to form a {2,4,4,V) design is to combine three independent

{2,4,2,V) designs., This gives the fcllowing bound.

B(2,4,4,V) € B{2,4,2,Tr)+B{2,4,2,s) +B(2,4,2,V-r-s) ,

for any 20, s20, and r+s<V.

The behaviour of this inequality may easily be investi-
gated, since the value of B{2,4,2,V) is known for all values

of V. Mills {10,117 has shown that

{2,4,4,Y) designs 5%
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B(2,4,2,V) = [%“ygg ‘] ’]

for all values of V with the exception of 7, 9, 10, and 19.
These four special cases will be ignored for the rest of
this section., Their effect on the following results will be
discussed in detail in secticn 5.3.

Since‘this bound will behave differently according to the
residue <classes of r and s {(mod 12), and V {mod 386), it is
convenient to let r=12a+x, s=12b+y, and V=36¢c+z, where
0<x<11, 0%y<x11, and 0<z<£35. The bound can then be rewritten
as follows,. |

2 2 2 '
B{2,%,4,V) £ 108c + 28a + 24b + 28ab - T72ac - 72bc

+ K'a #+ K2%L + K3c + K&+ ,

yhere K1, K2, K3, and K% are functions of x, y, and z, as

folloys.
Kt = 3".22:.1] - 3]’2:&:2:.1"’ +2x +y -z
3" 3
K2=3l‘2:.1'l'3 z:.:s:z:l'l+2y+3t°z
13 3 ‘
K3 = 9[ .2.:5:2:3.'] + 3z - 3x - 3y
| 3
ke = "zl‘ 2_::1] '] ¥ .zl‘:i:_l'] '| * [ zzxzy Z:X‘l"'[
uf 737 | | 4| 3 n 3

Por a fixed value of Vv, and fixed values of x and y, the
bound is a quadratic function of both of the variables a and

. There 1is a single ninimum which occurs when
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0
0

48a + 24bh - 72¢c 4+ K1
and 48b + 24a - 72c + R2

1|

or when a=c+el and b=c+e?, where

el = K2 - 2K1 and e2 = K!i - 2K2

B e T v 4 zoqn o ey

72 72 .

This minimum, howsver, will normally occur for non-
integral values of a and b, and, for the purposes of this
construction, a and t must be‘integers. The integral values
of a and b which minimize the bound will be one of the four

possible sets of values that can be obtained by letting

[ KZ_-_2K1 ] or [.EE-:-zii
72 72

XK1 _-_2KZ ] or | Rl _-_2K2
72 l_ 72 J .

{This result is proved in Appendix I.)

el

1]

and =2

Substituting c+e! for a, and c+e? for b, and {(V-2)/36 for
c, the bound becomes simply
2
{¥-2) + ctf¥-z) + c?
36 . 36

where ¢t = K1 + K2 % K3
2 2 | |
and c2 = 24el1 + 24e2 4+ 2lUele? + K222 4+ Kigl ¢+ K4
It should be noted that cnly.the constant term c2 depends
on the values cf el and e2, Thus the optimum values for el
and 2 are casily determined, and these values are indepen-
dent of the pagnitude Cf,v'

With the aid of a simple APL program, the best bound nmay
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be determined for any residus class c¢f ¥V {mod 38). First,

the set of all possible values for x and v must be

[

generated, and rtedundant cases rejected, For exanple, if
V=36c+4, on2 possible partiticning of the varieties is into
subsets c¢f 12c, 12c+1, and 12¢c+3 varisties. Thus the three
cases in which x=0 and y=1, =0 and y=3, and x=1 and vy=3,
are eqguivalent, and only one of them need be considered.

For each pair of values for x and y, X1, K2, K3, and K%
are determined, and the values of ths cosfficients ¢! and c2
are found fcr the optimum settings of el and e2, Since
there are slightly cver 1000 individual casss to be consgi-
dered, a complete table c¢f results 1is too 1large to b=a
presented hers, As an example, the results for the case
V=36Cc+4 are shewn ia Table 5.2.1.

Tn t+1

o

is case, four different partiticnings of +the varie-
ties will give the optimum kound, and these are marked by a
% in the table, The partiticning that involves a subset of
size 12¢-1 «clearly cannot be use2d when c¢=0, but otherwise
all of these four cases will give the optimum bound for all

values of V in this residue class.
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12¢c/12c/12c+4
12¢/12c+1/12¢c+3 |

12c/12¢c+2/12¢c+2

12¢c/12¢c+5/12¢-1

12¢/12c+6/12¢c-2

12¢c/12c+7/12c-3

12¢/12c+8,/712¢c-8

12¢c+1/12¢c+1/12c+2
12c+1/12c+8/12¢c~1
12¢c+1/12¢+5/12¢c=2
12c+1/12c+#6/12¢-3
12c+1/12c+7/12¢c~4
12¢c+2/12c4+3/12¢-1
12¢c+2/12c+4/12¢c =2
12¢c+2/12¢c+5/12¢c~3
12c+2/12c+6/12c-4
12¢c+2/12c+7/712¢c-5
12¢c+3/12c+3/12¢~2
12c+3/12c+8/12¢-3
12¢+3/12c+5/12¢c~4
12c+3/12¢c+6/12¢~5
12c+4/12¢c+i/12¢c-4
12c+4/12¢c+5/12¢~-5
12c+4/12c+6/12c-6
12¢c+5/12c+5/12¢c~6
12c+6/12c-1/12¢c-1
12¢c+7/12¢c~2/12c-1
12c+8/12c-3/12¢c~1
12¢c+8/12¢-2/12¢c~-2
12¢+9/12c-3/12¢c-2

Table 5.2.1

s . o — > o "
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For most residue classes of V, the x and y values which
give the smallest value for c2. alsc give the smallest value
for c¢1, This is convenient, since it always gives a bound
that is cptimal for all values of V in that particular
residue class. For example, referring to Table 5.2.1, all
of the cases in which ¢2=1 {the minimum value for c¢2) give
ci=7 {(the wminimum value for c¢1), The single excéption
occurs when V=i8 {mod 36)., In this case, there is one set
of wvalues for xb and y {x=6,y=6) which gives the smallest
value for c¢2, but does not give the smallest value for ci,
This means that there is cne partitioning of the varieties
{12¢+6/12c+6/12c4+6) which givesrtﬁe optimum bound opnly when
c=0,.that is, only when V=18,

The optimal =zresults for each residue class of ¥V are
summarized in Table 5.2.2. It is convenient to obtain the
bound in the form

2

{V +pV+q) /36
2

where p=cl-2z and g=z -clz+36c?2 ,

The values of p and q are given in the table as well as

the values of c! and c2, The optimal partitionings are also

given in a condensed form. For exanmple, "0/2/-1" will be

used 1in place qof "12¢/32c+2/12c-1”. The spetiai case for

V=18 is alsoc noted,
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i v f cr 1 ec2 ] p1i{ g { cptimum partitioning{s) ]
I {mod 36) | i | ] | i
f ~+ + -+ } + -9
1 0 1 =34 1 ¢ -31 36§ 1/1/-2 1
i 1 i 14 01 -1 0 O/0/7 1/1/-1 H
] 2 121 011 =21 014§ o/1/1 H
i 3 1 31 0¢~-31 04 /11 ]
| 4 {7 ¢ 11 =14 28y 00/ O0/1/3 1,172 |
} 1 ! i | 1 174/-1¢D) : !
i 5 {1 81 14{-21211% 0778 11/1/3 ]
| 6 ! 91 1Y} -3 1 18 1/1/4 i
| 7 {13y 2 ¢ ~-114% 303 0/3/% 1/2/4% 1/3/3 |
| i { i 1 | #/4/-101) i
{ 8 114 ) 21 -2 1 24 { 048 17374 ]
i 9 } 15y 2 | -3 { 18 | 1/4/4 ]
| 10 { 19y 31 -1 4§ 18 | 2/4/4 3/3/4 |
i 11 1201 31 -21% 91 3/4/8 |
i 12 1291 31 -31 01 474,48 ]
| 13 {1 25y 51 -1} 24 | 374876 u4/4/5 ]
1 14 126 51 =21 12 1 4,476 |
i 15 1 27 | 6§ -3 { 36 | /4,7 1
{ 16 1 3171 7§ -1 4 12 | 4,6/6 |
1 17 i 32y 8 ) -2 1 33 1 4/6/7 1
i 18 1 331 91 =3 { 84§ 47777 [6/6/6182) i
i 19 1 37 { 10} -1 1 18 { 6/56/7 i
| 20 { 381 11 § -2 4§ 36 | 67777 1
| 21 1391121 -3 sS4 7/7/7 1
] 22 ] 43 { 14 7 -1 | 42 | 6/6/10 6/7/9 7/7/8 i
{ 23 { 44 | 15§ =2 | 57 | 6/7/10 777/9 ]
] 24 {1 45 1 16 § -3} 72y 7/77/10 i
] 25 j 49 § 18§ -1 1 48 | /9710 7/8/10 7/9/9 i
| 26 } 50 § 19 | -2 | €0 §} 6/10/10 7/9/10 1
! 27 | 51 { 20 ¢t =3 | 72 § 7/10/10- i
i 28 1 351 22 { -1 {1 36 | 8/10/10 9/9/710 |
I 29 } 56 § 23 | -2 1 45 § 9/10/10
{ 30 157 1 241 -3 ¢ 54§ 10/10/10 i
{ 31 1 61 4 27 } -1 | 42 y 12/9710 1378710 13/9/9 |
! P ! | I 10/10/11 i
i 32 1 62 | 28 1 -2 | 48 |} 12710/10 13/9,/10 i
{ 33 ] 63 1 29 ¢ -3 1 54 | 13710/10 ‘ {
| 34 } 67 1 32 1 -1 { 30 § 12/12/90 12/13/9 13/13/8 |
i i { i i 1. 13/10/11 i
i 35 ] 68 { 33 ] -2 { 33 | 12/13/10 13/13/9 i
L A 1 k N 1 & R 3
{1) ~not applicable for V<36 {2)=-only for V=18

Table 5.2.2
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2.3 _Special cases

As stated in the last section, the value of B{2,4,2,V) is

usually given by the formula

B(2,4,2,7) = l'w_l”' zg_j_‘] 'l

However, for the four cases in which v=7, 9, 10, or 19,
the actwal value of B{(2,4,2,V) is greater than the value
'given by this formﬁla, For v=7, 9, or 10 the actual value
is greater by 1 {5, 8, and 9 instead of ﬁ,'?,‘and 8), and
for V=19 the value is greater by 2 {31 instead of 29).

The bounds obtained in the last section are <correct for
mest  values of V. However, all of the cases in which an
optimum partitioning involves a subset of 7, 9, 10, 40: 19
varieties must be treated separately. There are 30 such
cases to be considered. These cccur when V=15, 17 +to 36,
51, 53 to 57, 59, 60, and 63. |

In two of theée'cases, when ¥=18 or 34, not all of the
cptimunm pamtitionings.ihvolve one of the special cases. For
V=34, the partitioning 13/13/8 can be ﬂsed, and for V=18,
the special partitioning 6/6/6 can be used, The predicted
bound can therefore still be achieved in these two cases.

In the other 28 cases the bound given in Table 5.2.2
cannot be achieved. For these cases, a very simple progran
was used to determine the best design which <could be

constructed £from three (2,4,2,V) designs. The results are
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given in Table 5.3.1.

Chaptar 5

! V| Predicted ] Actual | Cptimum partitioning({s) {
1 ] bound i bound | ]
¢ + } + —q
i 15 | 6 i 7 { 4/5/6 3/6/6 /477 !
17 i 8 ] 9 1 5/6/% 4/6/7 - i
| 18- g 1 9 } 6/6/6 1
{1 19 4 10 1 11 | &/6/7 i
} 20 i 11 { 12 { 6/6/8 i
I 21 1 12 ] 14 | €/7/8 6/6/9 |
1 22 1 14 i 15 | 6/8/8 6/6/10 1
{ 23 4 15 i 17 { 7/8/8 6/8/9 6/7710 1
i | | I 6/6/11 4/6/13 i
1 24 3 16 | 18 | 8/8/8 6/8/10 6/6/12 1
{ 25 4 18 i 19 { 6/6/13 1
] 26 | 19 | 21 | 8/8,10 6/10/10 6/8/12 {
1 i i 1 6/7/13 -
1 27 4§ 20 i 22 { 6/8/13 |
1 28 | 22 ] 24 | 8/10,10 8/8/12 6,10/12 i
i 1 | | 7/8/13 6/9/13 i
i 29 i 23 | 25 i 8/8/13 6/10/13 }
{1 30 % .24 { 27 1 10710/10 8/10/12 6/12/12 i
| i | { 89,13 7/10/13 6/11/13 4/13/13}
1 311 27 ] 28 i 8/10/13 6/12/13 {
] 32 | 28 i 29 i 6713713 |
] 33 4 29 1 31 | 10/10,13 8/12713 7/13/13 H
1 34 | 32 { 32 | 8/13,/13 H
i 351 33 i 34 { " 10,12/13 9/13/13 ]
i 36 i 34 H 35 I 16/13/13 {
1 51 1 69 | 71 1 16716719 H
1 53 § 76 } 77} 16/1€/21 1
i 54 ] 78 | 79 i 16/16/22 {
| 55 | 83 i 84 ] 16/18/21 { -
{ 56 | 85 i 86 ! 16,18/22 i
{ 57 1 87 H 90 1 16,19/22 16/16/25 i
1 59 | 95 1 86 | 16,21/22 i
1 60 1 97 1 98 | 16/22/22 ]
{ 63 | 107 i1 109 | 19/22/22 16/22/25 1
: N 1 1 : 8 E |

Table 5.3.1
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S.4 Qverlap

In sections 5.2 and 5.3 the smallest {2,4%,4,V) designs
which could te ccnstructed from three (2,4,2,V) designs were
determined. Any design ccnstructed in  this manner must
clearly contain a tripartite {2,2,4,V) design. The gquestion
to be considered in this section is as follows. Are thesé
designs the smpallest possible (2,%,4,V) designs which con-
tain tripartite (2,2,4,V3'designs?

Consider the three subsets of the varieties in such a
design, and the three independent sets of pairs which must
be covered. Each set of pairs could be covered by its cwn
independent set of guadruples, which would give a design of
the type constructed in the preceding sections., If this is
not the case,b however, then there must be at least one
gquadruple in the design which covers pairs- from two of the
subsets o©of the varieties. Such a quadruple nust consist of
two independent paits, one from each 0f two subsets of the
varisties, Let such a guadruple be <called a split

quadruple.

lenma 5.%.1 The minimal {(2,4,4,V) design which contains a

tripartite (2,2,4,V) design can be constructed using at
most one split quadrupls.
Progf The +two pairs in a split guadruple are completely

independent. They may te separated from = one another
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without affecting the integrity of the design. Suppose
\that a design contains 2 or more split guadruples. At
iecast two of the pairs in these guadruples must then be
ftom the same subset of the varieties, The pairs in
the split quadruples can therefore be re-grouped in
order to place these twc pairs in the same quadraple,
thereby removing one of the split guadruples. This
process can be continued until at wmost one split
guadruple remains, without affecting the size of the

design. Q.E.D.

The minimal designs which contain nc split quadruples
have already been determined in the last two sections. Any
design which contains one split quadruple consists of one
independent {2,4,2,V) design, and two overlapping {2,4,2,Y)
designs., That is, two designs, each of which consists of a
set of guadruples plus one gair. Every such design éill be
exactly one guadruple smaller than a corresponding design
formed from three aon-o&erlayying 2,4,2,7) designs. Thus
ihe bounds already determined can be improved if and only if
two of the three independent, ominimal, {2,4,2,V) designs
that form the optimal scluticn{s) can be overlapped. To
determine whether or not this can be done, twc gquestions
must be answered.

First, for what values of ¥V can the minimal {2,4,2,Y)

design be constructed using E(2,4,2,V)~1 guadruples and one

{2;ﬂ,ﬂ,v3 designs B4
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pair? Second, are there any cases in the last two secticns
in which an optimal partitioning involves +two or more of

these values of V¥?

5.4.1 General results

Consider a nminimal (2,%,2,V) design in which two varie-
ties can be removed from a singile guadruple withouf affect~
ing *the inteqgrity of the design. If this is the case, five
of the six pairs in that quadruple must also appear in other
blocks. That is, there must be at 1least five repeated
pairs.

in addition, every variefy nust appear at least once with
cach of +the other V-1 varieties, and therefore must appear

in at least " {V-1)/3 7 blocks. Therefore, if V=0{mod 3)

each variety must occur in at least one repeated pair, and

if v=2{mod 3) each variety mnst o¢ccur 1in at least two
repeated pairs. Thus, 1in addition to the five repeated
pairs involving the varieties in the special quadruple,
there must be at least k{V-4)/2 repeated pairs involving the
other V-4 varieties, where X depeﬁas on the residue class of
V-1 {mod 3).

For each residue class of V {(mod 12), the exact number of
repeated pairs din any minimal {2,4,2,V) design is easily

calculated. 1In Table 5.4.171.171, the number of repeated pairs
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in the  minimal designs is shown, along with the minimum
number regquired by the calculations above. In all but the
case V=2 or 5 {(mod 12), there are not enoungh repeated pairs

to enable twc varieties to be deleted from a single block.

However, for V=2 or 5 (mod 12) a suitable design can be
constructed, as follows. BEegin with a minimal {2,%,2,V-1)
design. Since V-1=1 or 4 {mcd 12), this design will contain

every pair exactly once {a Steiner systenm). Only the V-1

pairs inmvolving the Tremaining variety have yet to be

covered. This requires (V-2)/3 gquadruples and one pair.
This gives a minimal {2,4,2,V) design which consists of

B{2,4,2,V)-1 guadruples and cne pair, as reguired.

¥ 1 ] § 3
1 V {mod 12) | repeated | minimunm |
] i rairs | reguired]
E T £l 3
1 0,6 1 V2 | (V#6) /2 |
i 3,9 ] (V3 /2 | {V+6) /2 |
L 1.4 ] 0 i 5 H
i 7,10 i 3 i 5 i
i 8,11 | v } V+1 1
| 2,5 ] V+3 ] v+ 1 |
i 3 i 3

Table_5.4.1.1

Dal.2 The special_cases

The arguments presented above do not apply to the four

'special cases 1inr which V=7, 9, 10, or 19. These cases are

treated separately below.
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In this case, B{2,4,2,19)=31. Mills [11] has shown that
a minimal {2,4,2,19) design <c¢an be constructed using 30

quadruples and one pair;

¥=1 B(2,4,2,7)=5
Suppose that there are fcur guadruples which cover all
but one of the pairs. Each variety must still gccur at
least twice. Since there ate enly 16 varieties in ail, at
ieast 5 of them occur exactly twicé. Without loss of
generality, suppose that the miésing pair contains neither
of the varieties 1 or 2, and that both 1 and 2 occur exactly

twice. This forces the gquadruples

/

BN sk o
[ 81N
ooy w
CN RN

This clearly cannot be completed with only one more
‘quadruple, since neither 3 nor 4 has yet appeared with 5, 6,

or 7.

¥=9 B{2,4,2,9)=8

Suppose there are seven quadruples which cover all but
one of the pairs. Every variety must occur at least three
times, and therefore; since there are 28 varieties in the
quadruples, 8 varieties occur exactly 3 times, and the
remaining variety occurs exactly 4 times. Withount loss of

generality, suppose that the missing pair is 1 2 and that 1

{2,4,4,Y) designs &7
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occurs three times. The first three guadruples must then be

1345 1345 1345
1367 or 1346 or 1367
1489 1789 1389
M (2) (3)

Case {2) can be eliminated, since both 3 and 4 would have
to occur twice more, which would give a contradiction, In
case {3), 3 must occur a fourth time, and therefore 2 must

only occur three tines. This implies that the three

guadruples inveolving 2 must have one of these three struc-

tures as well, It is weasily seen that the quadruples

involving 2 must have the same structure as case {1). Thus
oﬁly case {1) need be consﬁdered.

In case {1), one of 3 q; 4 must occur exactly three
"times, fércing the guadruple

238893 ,

One of 8 and 9 must occur exactly three times, forcing

5678 .
One of 6 and 7 must occar exactly three times, forcing

24369 .,

Since 2, 5, and 7 have appeared only twice, the last
quadruple must be

25 7x .

But none of the pairs 4 7, 5 9, or 7 9 have appeared, and
/

therefore the design cannot be completed.
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¥=10 B(2,4,2,10)=9

Suppose that all but one pair can be covered Ly 8
quadruples, Every variety must occur at least three t}mes,
and therefore at most two varieties can occur more \than
three times. If a variety occurs in a repeated pair, then
either it occurs more than three times, or it does not
appear with every other variety. Only the two varieties in
the missing pair do not occur with every other variety.
Therefore at nmost U varieties cccur in repeated pairs, and

at least 6 varieties appear with every other variety exactly

once. Let 1 be such a variety, giving the quadruples

wud
® W
W W
wdowd 4

0

Let 2 be ancther such variety, giving the guadruples
25 7 8
2 8 1 10
{

~ O

2 56

0 or 2789

1 (2)
In case {1), six varietiss have appeared 1in repeated
pairs,  and so this case can be rejected. 1In case {2} 5, 6,
9, and 10 have appeared in repeated pairs. Therefore 3 nust
appear exactly three times. But this cannot be done without
a repeated pair involving 7. Therefore +this case can be

rejected as well.
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5.8.3 Conclusion

The resulis of this secticn can be summarized as follows.

Theorem _5.4.1 A minimal (2,%4,2,V) design can be constructed

using B{2,4,2,V)~1 quadruples and one pair if and only

if v=2 or 5 {(mod 12) or V=19,

By consulting Tables 5.3.1 and 5.2.2, it can be seen that
there are no values of V in which an optimum gartitioning
involves two such values cof V. Therefore, the designs
constructed in sections 5.2 anrd 5.3 are the smallest
possible {2,4,4,V) designs that écntain tripartite {2,2,4,7)

designs,

2:5_Non-partite designs

The bounds obtained in the preceding sections give ‘the
‘cardiﬁalities of the minimal (2,4,4,V) designs which contain
tripartite (2,2,4,V) designs. If a 12,u,u,v} design does
not contain a tripartite (2,2,#,V) design, then it nust
contain a non-tripartite {Z,Z,H,V) design. In Chapter 3, it
was shown that such a non—tripaftite design must contain at
least
P

L5 )
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blocks, and therefore any (2,4,4,V) design which contains it
must include at least

,'% L l’f:.‘é:é j 'l

!;:Xzé
36

[
1

1l

blocks.

This guantity Q is greater than or egqual +to +the bounds
established in the previous sections for most values of vV,
thereby establishing that these bounds are, in fact, the
exact - values of B{2,4,4,V). However, for all values of V¥
congruent to 7, 22, 25, 28, 31, cr 34 {mcdulo 36), as well
as 22 of the 30 special valués of ¥, the valne of Q is less
than the bounds given in Tables 5.2.2 and 5.3.1. Therefore,
for these valuss of Vv, Q proﬁides only a lower bound on the
value of B{2,4,4,YV). These cases are summaﬁized in Tables
5.5.1 and 5.5.2, below.

In one small case, the value of B{2,4,4,V) 1is easily
established.  For V=7, the value of Q is 1. However, it is
clear that B{2,4,4,7) cannot be 1, and therefore B(2,#,8,7)=»

2, as given by the bound in Table 5.2.2.
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5.6 Summary

For all values of V except those in Tables 5.5.1 and
5.5.2, the @minimal (2,4,4,V) design is a tripartite design
consisting of three independent (2,%,2,V) designs., For
these values of V, the value of B{2,4,4,7V) and the parti-
tioning cf the varieties which will give the minimal design
are given in either Table 5.2.2 or 5.3.1.

For each value of V in Tables 5.5.1 and 5.5.2, an upper
bound and a lower bound is given, Tﬁese bounds differ by at

nost three,

- {2,4,4,V) designs 72




Chapter 5

3

Lower bound | Upper bound from |

[ T VYR M me e SVET T e o o v ———T -
]
(8]
o
@®
1
Q Ll sl i B L Ll SR ol i ol
Yt
4
o
[}
b~ v b o U ey . U o — T B

i Table 5,.3.,1

Q)

e e o

v

i

RN NS DA
ETNMMMO MO

|

{

iiiiiiiiiiii -+
MO O O™ mMmmo;miUn
T NMM MmO

!!!!!!!!!!! !T.
nNe~-ONMIIINO M~
T NM MMM NN W

A S g I qyr ST guaie WIS quos M ) r

iiiiiii oy T e —
il]!iij«qlT!‘ll«’J
AN N0 e o 2~
o = e (N OO o= NN N
iiiiii ot m— T et wnor
N MG M™02mMmp fel e o B it o
oo e OO N ™ e NN
NI DO Mmoo
NN M NN NMm
P Ly e W s e g el

-
»
10
[
0

-Table

73

{2,4,4,V) designs



Chapter 5

; ¥V {mod 3%) ; Lower bound ; Upper bound from ; Difference ;
] | Q) I Table 5.2.2 1 1
4 + + t 1
! ] 2 . 2 ] 1
i 7* 1 Y =¥-6 | Yy -¥x30 | 1 i
i i 36 | 36 1 |
i ] 2 i 2 ] i
1 22 1 Yy -Vt6 | Y -V+h2 ] 1 i
i i 36 ] 36 1 1
| | 2 i 2 ] i
1 25 P I Z¥+12 Yy _-¥+48 I i i
i ! 36 I 36 i 1
| i 2 | 2 | i
i 28 1 y -V ] V_-V+36 i 1 |
i i 36 [ 35 i i
] i 2 ] 2 { i
i 31 | Y _-Vx6 i Y -vu2 i 1 H
| R 36 | 36 | y
i | 2 | 2 i 1
i 34 I Y =¥-6 ] ¥ _-yx30 ] 1 |
i ] 36 i 36 ; ]

* - except for v=7

Table 5.2,2
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‘CHAPTER_6_-_ OTHEER {2,X,L,V) DESIGHNS

6.1 _Introduction

The methods which‘were used in Chapters # and 5. to
determine B{(2,3,3,Y) and B{(2,4,4,V), for most values of V,
may also be applied to any {2,K,1,V) design in which XK=3 or
g, In +this chapter, the results which can be obtained in
this manner will be presented for {2,3,4,V), (2,4%,3,V),
{2,3,5,v), and (2,4,5,V) designs, ©No details concerning the
methods used will be presented, only the results themselves,
Since Chépters 3 and 4 prcvide adeguate examples of these
technigues,

In general, any (2,K,L,V) design muét contain a (2,2,%L,V)
design; which may be either a partite design, or a non-
partite design. Any partite design may be covered by
K-sets, in order to form a (2,X,%L,V) design, by using I-1
indépendent {2,¥,2,V) designs, which gives the following

upper bcund.

-1 L-1
B{2,K,L,V) € Min| > 'B{2,K,2,v ) (2 v = v)
{v} | =1 i i=1 i

For K=3, any partite (2,2,L,V) design must be covered by

independent (2,3,2,V) designs since no overlap is possible.
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Thefefore, for K=3, the above bound gives the size of the
smallest possible design which contains a partite (2,2,1,V)
design. This is also true for X=4, unless at least two of
"the partiticns in scne dptimum partitioning have cardinali-
ties which are congruent to 2 or 5 {mod 12), or equal to 19
{see secticn 5.4). Since any two (2,&,2,V) designs with
such cardinalities could be éverlapped, thié would allow the
bound to be decreased by { N/2 i, if there were §¥ such
partiticns. This sitpaticon is unlikely to arise, however,
since the {2,4,2,V) designs for which it occurs are not
particularly good'cnes, and so it would be rare to find two
of them in an cptimum partitioning. There is; in fact, no
known case 1in which this cccurs. The valunes of B{2,3,2,V)
and B{2,4,2,V) are known for all values of V, and therefore
the size of +the smallest possible {2,K,L,V) design which
contains a' partite {2,2,L,V) design may be determined for
K=3 or &=4,

Similar technigues can not =easily be applied when K=5
Since the problem of overlapping designs is not so sinmply
solved in this case, and since relatively little is known
about {2,5,2,V) designs,

If a (2,K,L,V) design <contains no partite {2,2,5L,V)
designs, then it must contain a non-partite {2,2,L,V)
design., The minimum size of such a design may be calculated

by the fermula given in Chapter 3, and used to obtain a
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lower bound on the size of any {2,K,L,V) design which does
not conta;n a partite ({2,2,1,V) design. If ihis jower bound
is greater than the upper bcurd on B(2,X,L,V) which is given
by the fermula presented akcve, then that upper bound is the
actual value of B{2,X,L1,V). Otherwise, the non-partite
lover bound provides a good lower bound on B{2,K,L,V).

The remaining four classes of designs in which 1L<5 have
been examined in this way, and- the results are presented
here, Although the technigues used can be applied to
,classesAof designs in which 126, it doés not seem worthwhile
to do so. The calculation o©of the general upper bound
becomes quite tedious, even for 1=5, and the number of cases
which must be examined growus extremeiy rapidly as 1 becomes
large. However, any specific {Q,K;L,V) design may easily be
investigated, A& fairly simple écmputer search will provide
the size of the minimal ©partite design, and the optimunm
partitioning, although the size cf this seérch also grows
rapidly as I increases. The lower bound is also very easily
obtained. This will/ determine either the exact value of
B{2,K,L,V), or at least a fairly good pair of bounds, for
any specific set of parameters in which T=2 and K=3 or 4.
For this reascn, no attempt has been made +c¢ obtain a

general solution for any class of designs in which 126,
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i~ 0 ol o

In this case, the upper bound is given by
B{2,3,4,V) < B{2,3,2,r)+B{2,3,2,s)+B{(2,3,2,V-r-s).
The behaviour of this functicon depends on the residue
classes of r and s (modulo 6) and V {modulo 18). If

¥=18A+a, r=6B+bh, and s=6C+c, the bound becomes

2
B(2,3,4,V) < {¥-a) + c1{¥-a) *+ c*?
18 18
2 :
= ¥ _ipl¥iqg
18 7

wvhere <c¢i1, c2, P. and g de?end on a., The values of these
coefficients for each residne <c¢lass are given in Table
6.2.1, along with +the values of b and ¢ which are used to
cbtain them., The lower bound on the size of a non-partite

design in this case is

HES SN

This Jlower bound is greater than or equal to the values
given by the bounds in Table 6.2.1, with the exception of
three small cases.,  For V=12, 14, or 16, a lower bound is
obtained which is exactly one less than the upper bound.
For all other wvalues of V, Table 6.2.1 gives the value of

B(2,3,4,V).
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3/7/7 5/5,7

k) k3 3 k] T kD |
| ajct{cz] pi g b/c/h-b-c |
bt T } |
1 01 -2 1 14 -2 18 | 0/1/-1 1/1/=2 {
1 141 =11 1141 =-31201 1/1/-1 ;
| 21 291 01 =21 01 0/1/1 ]
f 39 31 01-31 01 111 i
1 £ 1( 6 1 11 -2 4110 4§ 0/1/3 1,172 j
! 51 7141 11-31 81 1/1/3 _ 1
1 6 1 10y 21 =21 12 1 0/3/3 1/2/3 i
! 741} 21 -31 81 1/3/3 i
! 841 11 31-21 61 2/3/3 i
| 9 1 15 1 21 =31 0] 3/3/3 {
1 10 1 18} 5| =2 ] 10 | 3/3/4 i
} 114194y 6} -3¢ 20 1 3/3/5 : ]
1 121221 81 =214 24 { 3/3/6 3/4/5 i
1 131231 919 =31 321 3/3/7 3/5/5 i
] 14 { 26 1 11§ -2 | 30 { 3/5/6 37477 4/5/5 4
1 15 4 27 1 12 {4 -3 { 36 | 3/5/7 5/5/5 i
1 16 1 30 |} 18 | -2 { 28 | 3/6/7 5/5/6 4/5/7 |
] 17 1 311 15 1 =3 | 32 1 |
1. - £ = A A A 3

Table 6.2.1

6.3 _(2,3,5,V) designs

In this case, the upper bound is

B{(2,3,5,V)<B{2,3,2,r)+B(2,3,2,s)+B8{2,3,2,t) +B{2,3,2,V-r -s-t)

and its behavicur depends on the residue classes of r, s,

and t {moduloc 6), and V {modulo 23). For V=24iA+a, the bound

becomes

B{2,3,5,¥) <

H

2

{¥-a) + ci{y-a) + c?
24 :

2

Y ipiig
24

24
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~where +the «coefficients ¢!, c2, p, and g, depend on the

residue class of V. The values of these coefficients for

each residue class are given in Table 6.3.71 along with the

optimum partitioning(s).

This non-partite bound is greater than or

[ L'v —2v -7 J ] [

h] —ZV 11

—--—p

Other {2,K,L,V) designs

-

egual

| alct | c2| pl g1 £/s/t/V-t-s-t 1
1 3 c | L ;| 3. N 3
| L LB i K3 ] ]
i 0§ -4y 21} -4 48 ) 11713 1/1/-1/-1 ]
1] 11 -1 14V =314 2671 1112 1/170/-1 {
I 241 01 11 =411 2814 11171 {
1 31 341 01 -371 01 1/1/1/0 i
i 41 441 01 -3y Cy 1N H
1 541 71 11 =34 1181 3/1/1/0 21711 ]
! 61 81 1141 -4 11214 3/1/1/1 {
f 7 ¢4 117y 21 -3 20 1% 3/3/1/0 372711 1
f 841 1271 21 -8} 16 | 3,311 i
i 9115y 3y -3 18 | 3/3/3/0 3/3/2/1 1
{1101 16t 3% -4 12 { 3/3/3/1 {
{11119 1 4 1 -3 1 8 3,3/3/2 ]
112 1 20y 4 -3 O ) 3/3/73/3 |
113123y 6] -34%4 14 { 4,3/3/3 i
§ 14 ] 284 7 1 -4 ) 2811 5,3/3/3 ]
11541 274 9| -3 4§ 36 § 6/3/3/3 5/4/3/3 i
i 161 281 10§ -4 §y 48 { 7/3/3/3 5/5/3/3 _ i
117 ¢ 31y 12 -3 | 50 { 7,4/3/3 6/5/3/3 5/5/4/3 {
118 32y 13 | -4y 60 § 7/5/3/3 5/5/5/3 i
{1 19 { 35} 15| -3y 56 | 7,6/3/3 7/5/4/3 6/5/5/3 5/5/5/4 )
1 201 36 { 16 { -4 { 64 § 7,773/3 7/5/5/3 5/5/5/5 |
21 39| 18 } -3 { 54 { 7/7/4/3 7/6/5,3 7/5/5/8 6/5/5/5 1
1 22} 40 ¢y 19 { -4y 0 § 7/77/5/3 7/5/5/5 i
§ 23 | 43y 21 ) -3y 43 ?7,7/6/3 1/7/5/4 1/6/5/5 i
Table_6.3.1
The non-partite lower bound in this case is

to

the
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upper bounds given in Table 6.3.1 except for the small cases
noted here, The lower bound for V=19 is exactly twc smaller
than the upper bound. The lower bounds for the following
valués of V are exactly one smaller than the corresponding
upper bound: 7,15,16,17,1&;20,21,22,23,&3. The bounds in
Table 6.3.7 are the exact valueé of B(2,3,5,V) for all other

values of Vv,

In this case, the upper bound is
B{2,4,3,V) < B{2,4,2,5)*B(2,4,2,V-5) ,
and its behaviour depends on the residue classes of s

{modulo 12) and V¥ (modulo 28y, -For V=24A+a, the bound

becones
: 2
B{2,4,3,V) < iV-a) + CIJE:.@.}. ¥ c?
24 24
2
= ¥ _ipVig
24 .

where, as usuval, the coefficients depend on +the residue
class of V. The values of the ccefficients for each residue
class are given in Table 6.4.1, along with the optimunm

partitionings.
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l atct t c2} pti g1 s/V-s |
F + + { + S 1
1 04 04 01 €41 01 0/0 171 ]
1 11 14 ¢t -11 0 O/1 {
1 2}y 21 011 -2 04§ I/ ]
{1 31 61 11 €1 15 4§.0/3 1/2 4/-1 1
1 %1 741 14§ -11121) 0,48 1/3 1
] 51 831 141 -21 91 18 |
{ 61121}y 21 011 124 2/4 3/3 i
I 71131 21 -1t 6 3/4 ]
1 81 14 ) 24 -21 01 u/4 i
1 91181 41 01 151 3/6 4,5 |
1 101 191 4971 -11 6 1 8/6 ]
1 11 12014 54 -21 211 8,7 1
] 12 12861 61 031 01 6/6 |
11312531 74 -1% 121 6,7 1
1 18 ] 261 8¢ -2 24 7 777 1
1 151301 101 04§ 15 6,9 7/8 ]
1 161 311 111 -11 28 | 6/10 7/9 1
{1 17 1 32 ¢ 12 1 =21 33 1 7/1¢ 1
] 18 1 36 ¢ 14} 014 12 7 8/10 9/9 |
1 19 1 37 { 15§ -1 1 18 { 9/10 1
§ 20 1 381 16 | =2 1 24 1 10710 1
i 211 824 1991 01 151 12/9 13/8 10/11 |
] 22 § 43 1 2041 -1 18 § 12710 13/9 |
] 23 188 3 211 =21 2114 13,10 i
i 1 1 i A 1 3

Table 6.4.1

In this case, the ﬁQﬂ*pattite lower bound is
2 2 ‘

1] 3.3 ] = ¥ -4

6 4 : 24 e
This non-partite bound is greater than cr equal %o the bound
in Table 6,.4,71 for all values of V., However, it is less
than the actual upper bound obtainable in some of the
special cases which occur when the coptimum partitioning from

the table will result in a sub-design on 7, 9, 10, or 19
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varietises, In these cases, the upper bound of Table 6.4.1
cannot actually ke achieved.‘ There are 15 such cases, and
they are summarized in Table 6.4.2. 1In this table, the
predicted upper bound, the actuoal wupper bound and the
partitioning which gives it, and the lower bound are given

for each valune of V.

]

E T T i o 3
} V { Predicted ] Actual | Optimum } Lower |
1 ] bound { bound | partitions ] bound |
i + , } -3 1 4
i 114 .5 i 5 | 7/4 6/5 { "5
1 13 4 7 i 8 1 &8/7 ! 7 1
1 14 1 8 1 3 | &/8 1 8 1
{ 15 | 10 ] 11 | 6,9 7/8 1 10
3 16 | 1" i 12 | 6,10 8/8. 1 11 i
1 17 12 1 18y 4,13 6/11 7/10 8/9 | 12 4
i 18 i 14 i 15 | 6/12 8710 ] 14
1 19 | 15 i 16 § 6,13 v { 15 1
i 20 16 1 18 1 7/13 8/12 10/10 ] 17
1 22 } 20 | 21 } $,13 1012 1 20 4
] 23 | 21 ] 22 } 10713 | 22 4
1 35 | 49 i 51 { 16719 { 51 1
1 37 | 56 { 57 16,21 } 57
] 38 | 58 | 58 | 16,22 { 50 |
1 811 68 i 70 § 16,725 19,22 1 70 4§
1 X 31 ] N 3

Table 6.4,2

$.5_(2,84,5,V) designs

In this case, the upper kcund is
812,4,5;V)SB{2,ﬂ,2,r)+B(2,a,2,s)+8(2,u,2,t)+B(2,E,2,V4r-s-t)
and its behaviour dependé on the residue classes of 1, s,

and t (mcdalo ié) and ¥ {modulo 48) . {This generates a very
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large number of cases to be considered.) For V=48A%+a, the

bound becones

2
B{2,4,5,V) £ {V-a) + c1{V-a) + c2
48 24
2
= ¥ _%pVtg
48 ,

where the coefficients depend on the residue c¢lass of V.

Table $.5.1 1lists the general bounds for each residue class

by giving the‘four coefficieﬁts;‘ and the partitioning{s)

i which achieve these coefficients.

T k3 4 3 El 1 E
| alct Jc2} pi{ g1 ryss/t/V-r-s-t |
i1 01 ~-391 11| -394 48 | 1,1/1/-3 1/1/0/-2 1
1] 11 =21 11 %1451 1/1/1/=2 1
I 21 2%ty 04 =21 01 /Y1 1/1/0/0 ]
I 31 31 61-31 01 171/1/0 H
I 41 431 04} ~81 01 121791 |
{ 51 81 144 =-2133) 8/1/1/-148/1/0/0 3/1/1/0 2/1/1/11
i1 61 91 1] =371 307 8,110 3,21/ 1 |
1 741101 14 =81 27 1 41/11 1
1 84 141 2| =21 48 | 4/4/1/-1 8/4,0/0 4/3/1/0 i
| i i ! i {4271, 373/1 1 ]
1 91 151 24 =31 42 | 4,4/1/0 4/3/11 i
1 101 161 2§ -8 { 36 | 48711 |
{111 201 3| -2 1 45| 4s4/48/-1 Us473/0 G872/ 8737371
1 12 1 21 31 -3 36 | 4,4,/8/0 4/4/3/1 ]
1 13 ) 221 31 -4 1 271 48/ i
1 14 | 26 1 4 | =21 248 | #,8/48,2 4,4/3/3 1
1151 271 4] -3 {1 12§ 8/4/4/3 |
1 16 | 281 4y -4 1 014 u/48/4/4 ;
§ 1791 321 6 | =21 331 €s4/4,3 S48/ {
] 18 1 331y 6§ -3 {1 18| 6/4,4/1 i

Table 6.5.1
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alctjc2| p{ g9g1i r/s/t/V-r~s5-¢ i
i kN 1 1 3. |
19 § 381 71 -8 1 511 7/4/4/8 {
20 ] 381 B8 1 =2 ] 24 | &s86/4/4 1
211 391 91 -3 1 54 1/6/8/4 |
22 1 40 § 10 | -4 | 84 | 7/7/4/4 [6/6/6/4 ] 1) i
23 1 44 1 11 ) -2 | 45 Ts6/6/4 1
24 y 45 1 12 =3 1 72} 7/7/6/8 [6/6/6/6 L 1) |
25 | 46 | 13 1 -4 | 991 T/7/7/4 [7/6/6/6]¢1) 1
26 | 50 1 14 |} -2 ] 48§ 7/7/6/6 ‘ {
27 { 511 15 { =3 1 721 T/7/7/6 1
28§ 52 4 16 | =4 | 96 y 7/7/7/7 ]
29 | 56 | 18 § -2 | 81 ) 108/7/6,6 977,7/6 8/7/7/7 i
30 1 57 1 19 {--3 1102 | 10/7/7/6 9/7/7/7 {
31y 58 1 20 | -4 1123 1 10/7,7/7 1
32 | 62 § 22 4 -2 | 96 1 14/10/6/6 10/9/7/6 i
] } | i | 16/8/7/7 9/9/7/7 1
33 4 63 § 23 | =3 | ¥14 ) 10107776 10,9777 1
34 y 64 | 28 y -4 {132 1 1C/10,7/7 {
351 68 26 } -2 { 93 {1 10/10/9/6 10/10/8/7 18/9/9/7 i
36 1 69 | 27 | =3 1108 | 10/10,10/6 10/10/9/7 i
37 1 70 ] 28 1| -4 {123 | 10,10/10/7 !
28 1 741 30 | -2 1 72 { 10/10/10/8 10/10/9/9 H
39 1 75 1 311 -3 ] 84 | 10/10/10/9 1
40 76 | 32 | -4} 96 ] 10/10/10/,10 ]
41 4 80 ) 351 -2y 811 13/10,10/8 13710/9/9 1
1 i ] 1 1 12/10/10/9 11710710710 s
42 1 811 36 § -3 | 90 | 13/10/10/9 12,10/10/10 |
43 | 824 37 1 -4 1 99 1 13/10/10/10 ]
Ly y 86 } 40 | -2 } 72 1 13/13/10/8 13,13/9/9 13/12/10/9 |
] 1 i i 1 13/11/10/,10 12/12/10/10 {
45 § 87 | %1 ) -3 § 78 { 13/13,10/9 13/12/10/10 i
46 1 881 42 1] -4 { 84 | 13,13/10/10 {
47 | 92 1 85 | -2 1 45 | 13/13/13/8 13/13/12/9 1
i i 2 D 1 13/13/11/10 13,12/12/10 1

{1} - only valid for v<47

Zable 6.5.1 - _continuned

The non-partite lower bound for this class of designs is |

[ [.2_122_2 J ] [ E_:2E_§ )

This non-partite bound is not guite as good as the non-

partite bounds in the previcus cases, although it is still
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greater than or equal to the upper bound for the majority of
tﬁe values of V. There are eleven residue classes {modulo
48) for which the lower bound is smaller +than the upper
bound for every value of V in that residue class. The lower
bound is exactiy one less than the upper bound for all v
congruent to 8, 11, 23, 26, 29, 38, %1, 44, or 47 {modulo
48y, and is exactly two less than the upper bound for all v
congruent to 32 or 35 {modualo 48). 1In addition, the lower
bound 1is one less than the upper bound for the two small -
cases V=22 and V=24,

There are also 42 speciél cases in which the
partitioningis) given in Table 6.5.1 will resuit in a
sub-design on 7, 9, 10, or 19 varietiss,. These 42 cases
have larger upper bounds than those given by the formulas in
Table 6.5.1. 1In 37 of these cases, the lower bound is less
vthan the upper bound. Table 6.5.2 gives the predicted upper
bound, the actual upper bound, the optimum. partitioning(s),
and the 1lower bound for each of these 42 special cases,
Note that many of these cases have a large number of‘optimum
partiticpings., For ¥=36, for example, there are ten dif-
ferent ways to partition the varieties which will all result

in a minimal partite design.
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T Y T T T E]
i V ] Pred. | Act. | Lower | Optimunm i
i ] Bound | Bound | Bound | Partitions 1
1 = i 3 1 1 3
¥ ) 3 ) k3 E
1 19 | 7 i 8 1 T ) T/4/8/4 6/,6/4/3 6/5/8/48 1
1 21} g 10 | 9 | /6748 6/6/6/3 6/6/5/4 i
] 23 14 11 12 1 10 1 7/6/86/4 6,6/6/5 i
i 25 4 13 ] 14 12§ 7/,6/6/6 1
1 26 | 18 Y 15 13 | B/6/56/6 i
1 27 4 15 | 17 4 14 { 9,6/6/6 8/7/6/6 |
1 28 16 | 18 | 15 | 10/6/6/6 8/8/6/6 ]
] 29 1 18 | 20 | 17 | 13/6/6/4 11/6/6/6 10/7/6 /6 |
i | l 1 | 9/8/6/6 8/8/7/6 !
] 30 1 19 | 21 1 18 | 12/6/6/6 10,/8/6/6 8/8/8/6 |
i 31 20 1 22 19 | 13/6/6/6 !
§ 32 | 22 1 24 20 } 13/7/6/76 12/8/6/76 10/10/6/6
i | i | 1 16/8/8/6 £/8/8/8 |
1 33 4 23 ] 25 1 22 { 13/8/6/6 H
34 | 24 27 1 23 § 13/9/6/6 13/8/7/6 12/10/6/6 |
i 1 1 i 1 12/8/8/6 10/10/8/6 10/8/8/8 |
| 354 26 | 28 | 24y 13/10/6/6 13/8/8/%6 A 1
} 36 1§ 27 | 30 | 26 | 13/13/6/4 13/11/6/6 13/9/8/6)
| | i ’ i | 13/10/7/6 1378/8/7 12/712/6/6]
| - { i ! 12/10/8/6 12/8/8/8 |
i | | 1 { 10,10710/6 10/10/8/8 ]
] 37 1| 28 | 31} 27 | 13712/6/6 13,10/8/6 13/8/8/81
] 38 3 30 4 32} 29 } 13/13/6/5 |
] 39 | 31 4 38 36 §y 13/13/7/6 13/12/8/6 i
1 1 | | .V 13/106/10/6 13/710/8/8 i
} 40 | 32 i 35 | 32 | 13,13/8/6 {
1 41 9 35 | 37 1 34 { 13/13/9/6 13/13/8/7 i
i { i | 1 13/12/10/6 13/12/8/8 i
i | i | | 13,10/10/8 i
} 42 1 36 1 38 | 35 § 13/13/10/6 13/13/8/8 |
] 43 4 37 ] 40 37 § 13713/13/4 13/13/11/86 i
i i i 1 | 131371077 13/13/9/8 |
i 1 H | \ 13/12/12/6 13/12/10/8 i
i 1 i | i 13,16/10/10 |
1 4% 4 40 41 | 39 |} 13713/1276 13/13/10/8 {
{1 45 | 41 ] 32 41 1 13/713/13/6 |
} 46 | 42 By g 42 y 13/13/13/7 13/13/12/8 |
1 i { | 1 13/13/10/10 1
I 48 | 48 | 47 ) 46 } 13/13/13/% 13/13/12/10 i
] 49 | 47 48 | 48 ) 13/13/13/10 i
E R 1 E R i K3 i |

Table 6.5.2
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Table 6.5.2_-_continued

Other {2,X,L,V) designs

{ V | Pred. | Act. ] Lower | Uptinunm {
1 } Bound | Bound ] Bound | Partitions i
1 687 14 89 | 91 91 | 19/16716/16 i
] 59 | 96 1 97 ] 97 { 21/18/16/16 i
1 70 98 99 99 | 22/16/16/16 i
{711 103 y 104 } 102 § 21/18/16/16 i
{721 105 | 106 |} 105 | 22/18/16/16 i
} 731 107 1 110 1 108 | 25/16/16/16 22/18/16/16 |
74 4 3112 1 113 111 | 22/18/18/16 i
1 75 1 114y 116 1 118 | 22/21/16/16 {
{76 116 118 {117 | 22/22/716/16 1
177 1 122 1y 123y 121§ 22721718716 ]
178y 124 § 125 y 124 )| 22/22,18/16 !
§ 799 126 { 129 | 127 | 25722716716 22/22/19/16 1
1 81 1 134 { 135 | 134 | 22/22/21/16 1
| 82 ¢ 136 | 137 | 137 | 22/22/22/1% ]
{1 851 1456 | W48 | 147 | 25/22/22/16 22/22/22/19 i
1 . 1 1 i i 3
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CHAPTER 7 - _Conpputer searches

7.1 Introduction

In this chapter, several versions of an algorithm are
presented which will determine the value of B(7,K,L,V) for
any s=2t of parameters., This algorithm uses the well-known

technique of backiracking. The term backtracking was coined

by D.H.Lehmer in 1950, and in 1960 Walker[20] gave a
formalized definiticn of the technigque. This type of
algorithm has been used in the =solution of va very large
number bf problems in ccembinaterics and graph theory, and is
by far the most common search technique.

In general, a backtrack aigorithm builds up a sequence of
Cditems (c(1) c{(2)...c{n)) which are taken from a giveﬁ set of
items . C, In the algorithn éiesented here, C is the set of
all possible K-sets on V¥V varieties. At each stage, the
algorithm must use the partial solution {c ({1} c{2)..c(k)} to
determine a set S of all candidates for c{k+1), The first
of these items is then added +to the seguence, and the
process 1s repeated. If S contains no items, then the
ci{k). If no possibilities remain for c¢{k), then the

algorithm must backtrack still further, and so on.
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It is helpful to think of this algorithm as traversing a
tree of possibilities, The rcot of this tree is the empty
séquence. The nodes at the first level consist of all the
possible sequences of length one, and sc on. The search
proceeds down cne side c¢f the +tree before it begins to
backtrack., Fcr this reason, it is sometimes called a "depth
first" search.

Section 7.2 describes the basic structure of the back-
track algorithnm foi deternining B(T,X,L,V) as well as sone
details concerning efficient implementation.

Any backtrack algorithm, if implemented in its simplest
form, is inherently inefficient. A good deal of work has
been done on improving  the efficiency of backtrack
algorithms, and there are a numbsr of technigues which are
commonly used, Among these are the follcwing, npreclusion®
consists of immediately backtracking ‘whenever it becones
“certain that the current sequence cannot lead to a solution. .
"Branch merging” or "isomorphism rejection” entails removing
from the search tree any sub-tree which is éqnivalent {or
isomorphic§ to some other suthree. "Search reférrangement“
involves choosing the next item in such a way that the set S
is kept as small as possible early in the search. The
"branch and bound” technique is used when the solution is to
be minimal in some senée, and it involves rejecting any

sequence which is "larger" than the best solution which Thas
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been obtained +thus far. 211 of these technigues have been

considered, and a discussion of the enhancements which

made to the basic algorithm is contained in section 7.3.

were

In the remaining section, a few conclusions are reached

concerning the practicality of wusing = such a search

technique.

7.2 _The _basic_algorithnm

The basic structure of the algorithm is as followus.

{1] Find the next L-set which has not been covered.
there are no uncovered L-sets, go to {53.

{23 If the design already contains the maximum number
blocks, return to the last level immediately.

If

of

[3] Generate every K-set which covers this L-set. For each

0f these K~sets:

[34] 2dd4 it to the design.

[38] Flag every L-set which is covered by this K-set ta

indicate that it has been covered.

[3C] Apply this algorithm to attempt to complete
design.

the

[3D] Remove the flag from every L-set covered by this

[3BE] If a solution was found on the level immediately

below, retvrn to the previous level immediately.

{81 A1l possibilities have been considered. Return to the

previous level.

Computer searches
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[5] A soluticn has been found. Reccrd this solution. Reset
the maximun number of blocks +to one 1less +than the
number contained in this sclution. Return to the
previous level,

The most time-consuming steps in this algorithm are steps
{31, {3B], and {3D]. The task of generating all of the
K-sets (or L-sets) which intersect a given set in T or more
elements consumes the major portion of time in this
algorithm. In order to =save unnecessary effort, this
operation shculd be done as few times as possible. Note
thatv in steps [3B)] and [3D] the same L-sets are affected.
Thereforé a list of these L-sets should be generated once,
and maintained wuntil it is nc longer needed. In general,
whenever any change is made to the status of an L-set {or
K-set), that change should be recorded so that it may be
removed with as little effort as possible at a later tinme.

It is also necessary, as mentioned above, to keep track
of the status of every L-set (and in subseguent versions,
every K-set as well). In order to d6 this, an efficient
method is reguired for locating the entry in a table that
correspends to a particular set. To accomplish this, an
algorithm is used which converts a set into an iﬁdex nunmber
which can then be used to access the appropriate.entry of a
table, It is also necessary‘to convert tﬁe index numbéf
back into the set itself in a number of cases {in step [1],

for example),
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To do this, an ordering of the sets mnust first be
defined., It is most convenient to use the natural ordering
in which {1 2 3...) is at cne extreme and {...K-1 K} is at
the other. For example, the 3-sets on 5 varieties would be
crdered as shown in Table 7.2.171. The corresponding index

numbers that will be used is alsc shown in this table.

E ) T ]
] set | index|
3 3 3
i 12 34 3 g
] 12 8 8
1125} 7
1 13 144 6 ]
i 1351 5
1 14 5 $
i 23 4 4 3 ]
i 2 3 54 2 9
i 2 4 5 1 i
i 34 54 0 1
L i 1
Table 7.2.1

Notice that ‘the number of sets beginning with each

variety 1is easily determined by a simple formula. The

nunber of sets which contain a given second variety is also
easily computed once the first variety is known, and so on.
In general, if n varieties have already been chosen, then

there are exactly

( V-x
K-n-1

sets which «contain x as the next <lement. A simple

algorithe can e cbtained which will use this fact in order
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to *transform a set into an index number, of the reverse.
First, a table of the binomial coefficients is TrTequired as
shown in Table 7.2.2. The entry in row R and column C wil;
ke denoted TABLE(R,C) and the values in the table will be
given in general by

TABLE{R,C) =<c-2+3)
R /.

The algorithms themselves are as follows. 5113 will
denote the Ith element of the set. V and K are the number
of varieties éﬁd the size of the set, respectively. ¥
refers to the irdex number of the set. Fiﬁally, n:=" jg the

assignment operator.

¥ E) 3
] | Ccl. |
j Row ¥ 1 2 3 & 54
t + 4
i 1 10 1 2 3 4
1 2 10 1 3 610
i 3 1 0 1 4 10 20
1 4 10 1 515 35 )
i i 3
TABLE

Table 7.2.2

o —— s vo 7o v

= V+1-S(K)
= TABLE{1,CCL)
FOR I := K TO 2 BY -1
COL 3= COL+S{I)-S{I-1)-1
N := N+#TABLE {K+2~-71,C)
END
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COL 1= V#1-K
_FOR ROW := K TO 1 BY -1
WHILE TABLE{ROW,CCL)>N
COL := COL-1
S{K+1-ROW) := V#2-RCH+COL
N := N-TABLE (RO¥,COL)
END

Each of these algorithms can be optimized scomewhat and

implemented in 10 machine language instructions on a PDP11..

| This makes them very efficient., The reader may wish to try
these algorithms by 'converking.the set {1 3 4 B) with V=7
into its index number {(23) and tack again.

The basic algorithm as described here was imélemented as
efficiently as possible in assembler language to run on a
PDP11/45 computer., However, as might be expected, the tasic
algorithm is much too inefficient to allow minimal designs
to. be found for any but the smallest of parameters, In
crder for this algorithm +to be at. all useful,‘ several
improvements had to be made, and thesevare\discussed in the

folloying sectiocn,
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1.3 _Enhancements

7.3.3_Preclusion

The first, and simplest, enhancement which can be made is
cf the type known as ®preclusion®, The anumber of IL-sets
which are covered by a given K-set is easily computed by the

formula
K
c=3y_ (K)(V-K
i=?iNL-il.

This qﬁantity is computed once at the beginning bf the
program, and is stored for later use, Also defined at the
beginning of the program is a depth limit called LINMIT.
This quantity determines the maximunm number of blocks which
may be placed in the design. It is set initially to a large
number which depends on the amount of available space for
the required tables and stacks. Whenever a  solution is
found, LIMIT is decreased to one less than the number of
blocks in the =solution. These +two gquantities may be
combined to give MAXPOS, the waximum possible number of
additional L-seté which could be covered by adding enough
blocks to reach the LIMIT, For example, if there were
already B blocks in the design, the value of MAXPOS would be

C times LIMIT-B. This variable may easily be maintained by
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simply subtracting € from it whenever a block is added to
the design, and adding C to it whenever the prcgram
backtracks. it must also be adjusted whenever LIHIT is
changed, which may reguire a multiplication, but this
happens very infrequently.

A count is-alsO'maintained of the number of L-sets which
have not yet been covered. This variable, NLEFT, is easily
maintained by decrementing it whenever an L-set is flagged
as covered and incrementing it when that flag is removed.

Thus the twec guantities NLIEFT and MAXPOS may be main-
tained at the cost of only a few additions and subtractions.
By comparing the two, it can be determined whether or not is
is possible for the design toc be completed in the maximunm
number of blocks. If it is not possibie, the algorithm
backtracks impediately. This seemingly trivial addition
often has a dramatic effect c¢n the size of the search tree.
In one case, the number of nodes in the tree was reduced
from 16,663,323 to 211,305 by this enhancement alone.

It is natural to ask whether cr not any other enhance-
ments of this type would be effective. Unfortunately, the
answer seems to be no. The problem of determining whether
the design can be completsd in a given number of blocks is,
in fact, a smaller but more general version of the overall
‘problem, and as such, it is very difficult. This bound on

the number of blocks required may seem to be a trivial one,
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but it seews +to be the cnly cne which can be calculated

easily enough to justify its use.

1.3.2 Isomorphism_rejectiocn

7

The greatest improvements in the speed of any backtrack
algorithe %ill <result from +the inclusion of some form of
isomorphism testing, However, in this area more than any
other, the overhead introduced must be carefully weighed
against the resulfing reduction in the size of the search.

If a certain K-set ¥ has been added to the design ét
level 1, and it has subseguently been determined that the
resulting sub-design cannot bte completed, then 'X need no
longer be considered as a possitle cﬁcice on level L, or any
lower 1level of the search tree, until the search backtracks
to a higher level, Therefoe, the following chanées can be
made to the btasic algorithnm.

7 A& statns flag is kert for eacﬁ E-set which indicates
whether or nct that K-set has been rejected.

2) Before adding a K-set tc the design, this flag is
tested, and if it is set then the K-set is skipped.

3y After each K-set has been tried, its rejection flag is
set,  and a record of the K-sets which have been rejected in
this way is kept.

4)After every K-set has been tried, and before returning
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to the next level, all of these flags are reset.

This change produces a moderate improvement. However,
step 3} can be extended by rejecting =nct only 'the- K~-set
itself, but alsc all those K-sets which would result in an
isomorphic sub-design. That is, if the partial design to
this point is (c{1) c{2)...cik)) and a K-set x has just been
tried without success, then all XK-sets s such that {C{1) eua
c{k) s) is iscmorphic to {c{N...c{k) X) may be rejected.
Such K-sets will be called eguivalent to x.

If a complete isomorphism test of this nature is done on
every level, this will have the effect of eliminating all
duplicaticn of isomorphic subtrees. 1In practice, however,
the cost of snch an isomorphism search is far +too great.
Instead, some simple tecbniqﬂeb must be found which will
detect some, but no{ necessézily all, of the K-sets which
are eguivalent to a given K-set. The simplified test which

was adopted is as followus.

Defipitiocn Twc varieties are said to be trivially isomorphic

if every block in the dgsign contains either both of
thém or neither of then. Two blocks are itrivially
egquivalent if one of them can be transformed into the
other by replacing varieties with trivially isomorphic
varieties,

In the modified algorithm, a table is kept which indi-

cates which varieties are trivially isomorphic to any given
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variety. ¥When a K-set is added to the design, this table is
first updated, and then an attempt is made to complete the
design. When this attempt is complete, +the table is
restored to its former status. TFollowing this, the K-set
and any other K-sets which are trivially equivalent to it
are rejected. A record is also kept of the K-sets which
wvere rejecteqd, When every possible K-set has been tried,
all of the rejection flags are reset before the progran
returns to the previous level.

This simple form of isomorphism testing results in a
dramatic reduction of the size of the search tree, with only
a moderate increase in overhead. Table 7.3.1 provides a
Compariscn of the three versions cf the aigorithm discussed
to fhis point. The number cf nodes in the search +tree and
the approximate execution +tinme, in secoads, are given for

each algorithm in a number of different cases.

E ER T T k |
1 | Basic alg. { Preclusion { Isomorphism]
| TEKL V] nodes time | nodes time |(nodes time |
1 1 R 3 1 3
| T L N !
1232 8 116,663,323 15,600 211,305 193.1 7,228 7.2}
{2339 5,126,742 18,000 | 2,567,524 9,000{ 10,173 43.4}
1 334 7 324,867 319.3 | 80,234 78.57 7,786 8.1}
i 242 8 432,081 587.9 | 38,920 52.21 5,710 10.1%
i 3358} 958,842 678.6 | 130,275 247,11 2,335 5.51
! 34 4 8 1 283,972 1016.3 | 88,183 312.2] 8,676 34.14
] 3 4 58 9 859,644 8,400 | 845,825 9,208 1,471 15.9}
] 252 91 747,682 432.4 | 145,192 295.9] 4,062 12.5}
1 L = 3 K J

Table 7.3.1
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7.3.3 Other technigues

Two other changes were made to the Lasic algorithm +to
improve its efficiency, both of which 2nable the user to
restrict the search in some way. First, the initial value
of LINMNIT was placed under direct control of the user. Sone
searches may begin by finding a solution containing as  many
as 50 blocks, and then the size of the solution is reduced
one block at a time until +the nminimal design, which may
contain. c¢nly 4 or 5 blocks, is found. If such a search is
limited to, say, 10 1levels from the very beginning, a
substantial Saving in time will pfteu result. In many
cases, a fairly good upper bcund on the number of blocks in
the minimal design is known, enabling the user to effective-
1y restrict the depth of the search.

The second modification allows the user to specify an
initial set of'blocks, Often, thecretical methods can b=
- used to determinge that a set of blocks with a certain
structﬁre nust appear in the minimal design. If the search
can be started from this pcint, the result will be obtained
much more rapidly.

The only technique which was nét used is that of ”séarch
re-arrangement¥, The most cobviocus improvement of this kind
could be made in step {1]. 1Instead of <choosing any L-set

which has not yet been covered, choose the cne which is
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covered by the smallest number of ncn-redjected K-sets. This
will decrease the number of branches in the +tree at each
point, and therefore will improvs the speed of the search.
However, the c¢ost of keeping +track of +the humber of
nbn-rejected K-sets which covers each L-set is prohibitive.
To do this, whenever a K-set is rejected, all of the L-sets
which are coveredvby that K-set nust be determined. This is
much too time-consﬁming, and the amount of overhead that is
involved more than makes up for any reduction in the size of

the trée,

1.4 _Conclusicns

The algorithm described in +the previous sections was
implemented in assembler language on a PDP11/45 computer. A
considerable amount of time and effort was'speni in optimiz-
ing the algorithm, and impleménting it as efficiently as
possible. Despite this, the number of cases which could be
solved in a reasonahlev arpount of time was disappointing.
The size c¢f the search grows sc rapidly as the paraméters
increase that even a very efficient backtrack search soon
runs into difficulties. The addition of isomorphism test-
ing, which resulted in a drastic reduction of the search
times, as shown in Table 7.3.7, nevertheless allowed only a

relatively small number c¢f cases to be solved which could
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not have been solved by the previous versions.

This does not mean that computer search technigues will
be of little use in determining the value of B{T,¥,L,V) for
additional sets of parameters., In many cases, sufficient
theoretical results may bLe obtained to(allow an efficient
search program to be written for a Testricted set of
parameters. Any geuéral prcgram which is capable of handl-
ing any values of T, X, L, and V, however, will necessarily

be fairly limited in scope.
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APPENDIX I = SUPPLEMENTARY PROOFS

In this appendix, several supplementary proofs are pre-
sented. The results of these theorems have been used in
previous chapters, but the proofs were not considered
suitable for inclusion in the chapters themselves.

; In Chapter 3, it was stated that the minimal {2,2,L,V)
‘ design oCcurfed when the varieties were partitioned as
evenly as possible. This result is proved by the theoren

below.

Theorem A complete L-partite graph on v vertices has the
maximum number of edges when the I subsets of the
vertices all have cardinality‘i v/L | or { v/L |a.

Prbof Let the cardinalities cf the L subsets be

L
n{1), n{2), «.. ,n{lL) where > n{i) = v.
i=1

The number of edges in the complement of the graph
is then

2 i '

N =i(n2{i} = i_xzéil - Za_z(é);
_ ey

i=1 i=1 .
The number of edges in the partite graph will be

maximized when this guantity ¥ is wminimized. Suppose
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that N is minimized, but that the caradinalities of two
of the subsets, say n{l) and n(L-1), differ by at least

tWo.

Now let n (1) thrcugh n(L-2) remain fixed and let
n{L-1) vary. =n{l) will now be a function of a{(i-1).
The nuﬁber of edges beccmes a gquadratic function of-
n{i-1) which is minimized when

n{l-1 + o) dnil) _ - 1-14dnll) _
d n(-T) 2 24 n(L-M

= n{L-1) - n{l) = 0.

Since n{l~1) and n{l) nmust be integral, the mininum
occurs either when +they are equal (if their sunm is
even), or when they differ by exactly 1 {if» their sunm
is o0d44d). But it was assumed that ¥ was minimized and
that n{L) and n{i-1) differed by at least 2. This is a
contradiction and therefore the cardinalities: of any
t9o subsets can differ by at most 1. This can only

happen when n{i)={ v/L 7 or | v/L ], for all i. Q.E.D.

The following thecrem wmas used in section 5.2 to aid in

establishing the upper bound on B(2,4,4,V).

Theoren

2 2
Let f£{x,v) = ax #+by +cxytdx+ey+f (a>0,b>0) .

Let the function have a single minimum for x=x1, y=yl,
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Then if {ci{<a and jci<b, the nminimal value of +the function
for integers x and y will occcur when X=f‘x1 7 or L x! | and
y=C y* 7 or L y* 1.

Proof For a fixed valune of y, the function becomes a simple

quadratic function of x with a single minimum when
2ax+cy*d=0 or x=(-cy-4) /2a. The minimum value when
y=y! occurs vwhen x=x1!, and so the minimum for y=yl+t
will occur for x=x1f(C/2a3t. Since {cijfa, this implies

that the minimum occurs when [x-x1igit{/2. Similarly,

the minimun value when =x=x1+t will occur when

fy-yr1sit]/2.

Consider the behavicur c¢f the function when x=[ x1 7

or | X! J. The minimum value in either case will occur
/

for {y-y1]<€1/2, and therefore the minimum value which

J
o
|
1
|
t
]

can be obtained for an integral value of y will occur

Lyt 3, the dintegral valne of x which minimizes the
function will be either [ x1 7] or L x?t j.

Now consider an arbitrary dintegral point {x*,y%).

Without loss of generality, assume that
X% - %] < qy* - yi] .
The wminimum value of the function when x=x* will

oCcCcur when

b oy-y* | < §x* - x1{/2 < jy* - yi|/2.
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Therefore either (x*,[ y! ) or {(x*,_ y! J) will be
at least as close tc +the onininmun as {x*,y¥), and
therefore will give at 1eaét as small a function value.
But, as shown earlier, either x={ x1! 7 or Lxt 1 will
give +the  ©pinimum function value when y= [ y1 7 or
Lyt 1, and therefore these values will give the
overall wminimum value of the function for integers x

and v. Q.E.D.
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APPENDIX _II - TABLES_OF B{T,K,L,V)

In this appendix, tables of values of B{(T,K,L,V) are
given for V<16, 1In order to reduce the size of the tables
and the number of duplicaticns, only those sets of parane-
ters in which V2K+L are given. Any design in which VXK+1L is
the <corplement of one of these designs. The trivial cases
in which either only 5 K-set, or all possible' K-sets, form
the minimal design are also critted.

The follecwing codes are used in the tables to indicate
the source of several c¢f the results. Entries which are
unmarked were either determined by a computer search, are
part of a known family of designs (these will be noted), or
gere small enocugh to find easily by hand.

{1) - a covering number with V<7K/3 {9]
{2) -~ Stanton, Kalbfleisch, Mullin [18]

{3) - Jchnson, Krieger {[see 9]
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T=2 ,K=
¥ 3 T K]
i } i v { Remarks
1K1 L 1 5 6 7 8 9 10 11 12 13 14 15 16}
t + + +
{ i 3 1 4 6 9 12 16 20 25 30 36 u42 4% 561
i [ T 3 5 7 9 12 15 18 22 26 30 351
| i 5 4 3 4 6 8 10 12 15 18 21 24
i i1 6 3 4 5 7 911 13 15 18]
1 1 7 1 3 4 5 6 8 10 12 144
i { 8 3 4 5 6 7 9 114
i ] 9 3 4% 5 6 7. 8iTuran
121 10 3 &% 5 6 7)designs
i 1 11 ) ‘ 3 4 5 8]
i i 12 3 4 5j
| | 13 4 3 43
i I 14 31
i i A N
=2,K=3
4 k3 1 K
{ i {BRemarks |
K{1L &7 8 91011 12 13 14 15 161 N
+ + . + ]
i 216 711 12 17 19 24 2% 33 35 43| Fort,Hed. ]
{ 34124 5 7 810 171 13 1 18 19ichap. 4 i
! 34 2 3 3 5 6 7-8 9 10-11 12 13-14§chap. & 1
i 5 ] '3 3 3 4 4 & 7 89 9-10jchap. 6 |
31 63 2 3 3 4 5 5 71 1
! 71 2 3 3 4 4 5 5i {
i 8 1 2 3 3 4 g 51 {
I 91 2 3 3 i iR |
1 10 4 2 3 3 49 {
] 11 2 3 33 i
4 12 ) 2 3] 1
1 13 4 .21 {
1 i ik 3
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