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Abstract

Network coding allows each node in a network to perform some coding operations on the

data packets and improve the overall throughput of communication. However, network

coding cannot be done unless there are enough packets to be coded so at times it may be

advantageous to wait for packets to arrive.

We consider a scenario in which two wireless nodes each with its own buffer communicate

via a single access point using network coding. The access point first pairs each data packet

being sent from each node and then performs the network coding operation. Packets arriving

at the access point that are unable to be paired are instead loaded into one of the two buffers

at the access point. In the case where one of the buffers is empty and the other is not

network coding is not possible. When this happens the access point must either wait for

a network coding opportunity, or transmit the unpaired packet without coding. Delaying

packet transmission is associated with an increased waiting cost but also allows for an increase

in the overall efficiency of wireless spectrum usage, thus a decrease in packet transmission

cost. Conversely, sending packets un-coded is associated with a decrease in waiting cost but

also a decrease in the overall efficiency of the wireless spectrum usage. Hence, there is a

trade-off between decreasing packet delay time, and increasing the efficiency of the wireless

spectrum usage.

We show that the optimal waiting policy for this system with respect to total cost, under

phase-type packet arrivals, is to have a separate threshold for the buffer size that is dependent

on the current phase of each arrival. We then show that the solution to this optimization

problem can be obtained by treating it as a double ended push-out queueing theory problem.

We develop a new technique to keep track of the packet waiting time and the number of

packets waiting in the two ended push-out queue. We use the resulting queueing model to



resolve the optimal threshold policy and then analyze the performance of the system using

numerical approach.
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Chapter 1

Introduction

The idea of network coding was first conceived, by Alhswede et al. [1], as means to improve

the throughput of transmitted packets in wireless networks using bitwise XOR addition

(modulo 2 addition). Since its conception, the popularity of network coding has increased

considerably within the telecommunications research community. Network coding consists

of intermediate nodes algebraically encoding clusters of data packets together using bitwise

XOR or linear combination in a Galois field. At the same time, nodes at the destination

decode these clusters to recover the original data. To generate multi-node network flows,

Ahlswede et al. applied the idea of network coding at intermediate nodes. Network coding

provides network nodes the ability to decode and re-encode transmitted information. There-

fore, the retransmission of messages are a function of incoming messages, as opposed to

traditional routing. The advantages of network coding includes increased network through-

put, reduced energy consumption, and an enhanced network reliability.

Network coding can be classified into inter-session and intra-session, depending on the

type of operations on sessions [2]. Intra-session network coding deals with adding redundancy

into individual network flows. It allows for intermediate nodes to encode packets within the

same session without the knowledge of the other nodes in the network [3] [4]. For the problem

of minimum-cost multicast network coding involved with intra-session network coding in [5],
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Figure 1.1: Network Coding in a Butterfly Network

Lun et al. proposed a dual subgradient method. They extended the rate control techniques

in [6] [7] so that it could be applied to wireless network coding. In [8], the rate stability

region for a wireless network, with or without correlated arrivals, is characterized. Inter-

session network coding allows coding several network flows together to reduce the number

of transmissions required for the overall communication which is the main focus on this

thesis. The best examples for intersession network coding are the butterfly network and

opportunistic XOR coding explained below.

Originally, the concept of network coding was intended to be an alternate routing method

for error free network links to improve the overall throughput of a network. Normally, store-

and-forward routers send an identical copy of the received packet to the destination without

modifying the body of the message. However, network coding proposes that the nodes in

the network modify the packet’s content before it is transmitted. Using reasoning based

in information theory, Alhswede et al. [1] prove two theories important to the capacity

of a network. First, the multicast capacity of a network is equal to the minimum of the

maximum flows between the source and any individual destination. Secondly, traditional

routing methods alone are insufficient to achieve this fundamental limit. Therefore, the
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nodes are required to mix the data units received from neighbouring nodes using XOR

coding operations in order to achieve higher throughputs.

The initial concept of network coding is best explained by the butterfly network, shown

in Figure 1.1 (a) [1], where each edge is assumed to have the same bit rate capacity, B bps.

Nodes 1 and 2 send two multicast flows, a and b, to nodes 5 and 6 through direct links and

also through the shared path, link 3-4. If node 3 performs traditional packet switching, link

3-4 has to be shared between streams a and b. Therefore, in this instance only node 1 or node

2 can transmit data at the maximum B bps rate, but not both at the same time. As shown

in the graph in Figure 1.1 (b) the data rate of one node has to be reduced to allow data from

the other nodes due to the switching bottle neck in link 3-4 using traditional routing. To

overcome the bottleneck between nodes 3 and 4, node 3 combines the incoming bits through

an XOR operation. Nodes 5 and 6 then use the bits they receive directly from nodes 1 and 2

to decode this XOR operation, and thus reconstruct the desired multicast flow. This allows

both data streams, a and b, to be transmitted at the maximum rate of B bps as shown in

the graph in Figure 1.1 (c).

Network coding, in its various forms, can be applied in every layer of the network protocol

stack. However, this thesis is concerned with the use of network coding in the link layer only.

Network coding applied to the link layer allows for XOR operations to be performed on data

packets being transmitted in opposite directions through a wireless access point [9]. The basic

principle and underlying advantages of this approach is explained in Figure 1.2. Suppose

that two wireless nodes A and B are communicating with each other via an access point.

Node A sends data packet X1 to node B and, at the same time, node B sends data packet X2

to node A via the access point. Figure 1.2 (a) shows how the access point receives these data

packets from each node and then relays them to the destination nodes. Whereas the access

point in the access point in Figure 1.2 (a) needs to access the wireless spectrum 4 times

to complete the desired communication, the access point in Figure 1.2 (b) needs to access

3
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Figure 1.2: Network Coding at an Access Point.

the wireless spectrum only 3 times to broadcasts the coded X1 ⊕X2 packet. Since received

packets are a function of transmitted packets, and since the transmitter knows everything

about the data packets it is sending, it is able to easily decode received packets. If the access

point has to make a decision about where to send data packets X1 and X2, it will need

to access the wireless spectrum 4 times. However since each node decodes the combined

X1⊕X2 data packets, the access point needs to only access the wireless spectrum 3 times- a

reduction of 25%. However, the limiting factor to using this method is that the access point

must be receiving data packets from both nodes simultaneously. When the access point is

receiving data packets from one node at a time, it needs to wait indefinitely for a packet

from the other node before it can apply network coding. As the waiting time for pairs of

packets to join at the access point increases, the system performance decreases, and thus
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packet transmissions will be delayed and the overall throughput will be worse. However, if

the access point does not wait long enough for pairs to join, then it will ultimately have to

transmit many uncoded data packets before two packets arrive there to be coded.

1.1 Research Motivation

Network coding necessitates the need for two questions to be answered: When, and for how

long, should the access point wait for packets to be paired? And, when should it transmit

unpaired packets? To answer these questions, special techniques should be used to deter-

mine what decision should be made for an arbitrary situation that will minimize delays and

maximize network throughput. Telecommunication systems usually have correlated inter-

arrival times and can be accurately modelled using Phase type distribution [11] therefore

is important to take that into consideration when we develop a system to answer these

questions.

The main motivation of this thesis is to develop stochastic models as a mechanism to

find the optimal decisions in network coding; when to delay the packets or transmit packets

under general data packet arrival to minimize the total cost of the system.

1.2 Contribution and Outline of the Thesis

Chapter 2 presents the background of the opportunistic network coding and the previous

work that has been done to analyze the trade-off between decreasing packet delay time and

increasing the efficiency of the wireless spectrum usage. We also present the background of

using phase type distribution in telecommunication traffic and the importance of this tool

in analyzing general traffic arrivals.

In Chapter 3, we further analyze the packet delay time/wireless spectrum usage efficiency

trade-off in opportunistic network coding under phase type distributions. The sequence of
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decisions involved with this system can be efficiently modelled and analysed by using a

Markov decision process (MDP). Therefore we develop an MDP to model all possible states

of the system which are dependent on whether the access point waits for packet arrivals or

transmits un-coded packets. From the MDP we develop a proof that the optimal waiting

policy for our system is to have a different threshold for the number of waiting packets at

each of the two queues (the arrival phase vector), and that each threshold is dependent on

the current phase of each queue. We then discuss the observability of the current phase

of the arrival function and note that in some cases the phase vector of the arrival function

may be unknown. To handle these situations we utilize a technique that probabilistically

determines the arrival phase vector and consequently determines a threshold policy.

Solving for the optimal threshold policy using a MDP is not ideal since this problem

has an infinite horizon. Due to its high complexity of implementation solving the MDP,

in Chapter 4 we present a novel queueing theoretic model which enables us to analyze this

system and ultimately solve for the optimal waiting policy efficiently. Our model records

the packet waiting times and the number of packets in a First-In-First-Out (FIFO) Phase-

Phase-1 (PH/PH/1) push out queueing model with two ended traffic. According to the best

of our knowledge this is the first time a queueing model is presented that records the packet

waiting times and the number of packets in a FIFO PH/PH/1 push out queue. Recoding

the age of the packets in a queueing model with finite buffers is a challenging problem in

general due to the fact that some packets can leave the system without getting served when

the buffers are full. Our model is capable of recording the waiting time of the Head of Line

(HoL) packet and the time that the HoL packet spends in the queue before it is either served,

or pushed out. Based on the inter-arrival times of the arrival functions of each queue and the

time that each HoL packet spends in its respective queue, the waiting time for each packet

is calculated. We then show how our queueing model can be reduced to a level dependant,

Quasi-Birth-Death (QBD) structure, for efficient computing.
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In Chapter 5, we generate numerical and simulation results to analyse the behaviour of

the proposed optimal policy and show how it reduces the total cost compared the other

coding policies in given the literature.

Finally, in Chapter 6, conclusions are summarized and we discuss the situations where

the proposed policy is more efficient to be used. We also identify possible future directions

of research extensions.

7



Chapter 2

Background and Literature Survey

Ahlswede et al. in [1] changed how the world viewed data communication over networks by

introducing the concept of network coding. They showed that the algebraic combination of

information at network nodes can increase the capacity of a network beyond conventional

network routing. This concept characterised the beginning of a breakthrough research era

in network communications.

Before network coding was introduced, the theory of coding was broadly divided into two

categories: Source Coding and Channel Coding. Whereas Source Coding is the increasing

of transmission efficiency by compressing information at the source nodes, Channel Cod-

ing transforms a noisy channel into a noiseless one by introducing redundant bits into the

information sequence.

With the introduction of network coding, another branch of coding theory was revealed

which performed packet-level algebraic coding at network nodes. The key concept of Network

Coding is that each node in the network performs coding operations. Therefore, a node can

transmit functions of previous messages received from incoming links onto outgoing links.

Over the last decade, network coding theory and its applications have become increasingly

widespread. This has encouraged the incorporation of well-established mathematical tools

including algebra, graph theory, and optimization theory, into network coding. As a result,
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network coding has evolved into a much broader and more complex field within communica-

tions than when it was first introduced. Moreover, the strong connection between network

coding applications and queueing theory has played a pivotal role in leading network coding

to its current level.

Initially, network coding was used only for operations over binary fields and was later

developed for applications with larger field sizes. Moving from the binary field to larger field

sizes allows the nodes in the network to perform more complex mathematical operations

on data packets. The concept of linear network coding was first proposed, in [12] and [13],

as a fully distributed mechanism to replace traditional store-and-forward routing. These

studies proposed that nodes in the network can generate linear combinations of data packets

by using randomly generated coefficients. In doing so, the mechanism necessary to achieve

theoretical min-cut max-flow multicast capacity, defined in [1], was brought to fruition. Since

each of these algebraic combinations are modulo operations within a finite field, the mixing of

packets, through linear network coding, does not increase the packet size. In order to perform

the decoding procedure, the destination node performs Gaussian elimination on the incoming

data packet combinations. The destination node first waits until it has received a sufficient

number of linearly independent data packet combinations, along with their respective coding

coefficients, before decoding them into their original form. One drawback to linear network

coding is that the coding coefficients consume space in the packet headers. However, since

the space occupied in the header is small in comparison to the packet payload, this overhead

is often neglected.

Figure 2.1 shows an example of a typical linear network coding application for unicast

data. Initially, the sender has four packets to be transmitted. Rather than transmitting the

raw packets, the sender generates five linearly independent combinations of the four data

packets before transmitting them. During the transmission, even if one packet is lost, the

receiver can decode the four coded data packets by decoding the remaining four coded data

9
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Figure 2.1: Network Coding for Unicast Data

packets.

A similar example for multicast transmission is given in Figure 2.2. In this situation the

sender transmits four data packets to a pair of receivers using traditional store-and-forward

routing. Suppose that, due to transmission errors, both receivers lose two packets each.

As a result the sender must retransmit the same four packets again since it does not know

which packets were lost. However, if in the same situation network coding is used, the sender

needs only to retransmit two coded packets to the receiver nodes so they can recover the

lost information. This is because the sender only needs to know the number of packets each

receiver requires for packet decoding and not the specific identity of the packets lost.

Network coding in the application layer is the preferred method of implementation. This

is because network coding is implemented on software level on top of existing network proto-

cols. Therefore, there is no requirement to replace any network equipment with sophisticated

routers to perform low level coding operations. Despite the fact that these higher level pro-

tocols do not give the same ideal performance as lower layer coding techniques, there are

many promising applications in the literature for higher level network coding.

Peer-to-peer (P2P) file sharing is one area that can be improved by linear network cod-

ing. In [14], the authors developed and implemented a P2P file sharing algorithm based

on network coding. In their algorithm, each node in the network collects linearly coded

combinations of file fragments until the complete file is downloaded. This method contrasts

10
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Figure 2.2: Network Coding for Multicast Data

traditional P2P sharing algorithms, like Bit Torrents [15], where peer nodes must download

all file fragments until the file is complete. This is because in traditional P2P file sharing,

un-coded file fragments are stored at each peer node. However, in network coded P2P file

sharing systems the peer nodes store linear combinations of file fragments instead. As a

consequence the downloader only needs to collect the required number of coded file frag-

ments to complete the file. This provides the flexibility of distributed storage, adds more

redundancy, and reduces the download time for each peer node. The authors also showed

significant improvements in download time and tolerance for more dynamic network environ-

ments, such as seeders disconnecting before any peer node is able to download the complete

file. Furthermore, some P2P streaming techniques based on network coding have shown

that it can reach the theoretical maximum capacity of the network [16]. In general, file

transfer protocols, based on network coding [17] [18], have shown significant improvement in

reliability and transmission time over conventional protocols. Network coding has also been

applied to distributed storage systems whose storages are unreliable [19] [20]. Moreover,

network coding has even been applied to relatively new emerging areas such as molecular
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communications [21] in underwater acoustic networks [22].

In addition to the application layer, the transport layer of the network protocol stack

is another area where network coding can be applied. The transport layer is responsible

for reliable end-to-end delivery of transmitted data, as well as acknowledgements, and the

retransmissions of lost packets. It is also responsible for flow and congestion control through

its monitoring of the network traffic and the buffer capacities at network nodes. However the

sending of acknowledgements for every data packet received at the receiver nodes is inefficient

and consumes a considerable amount of network bandwidth. In the case of network coding

applied at the transport layer, acknowledgements sent by receiver nodes do not contain

information about which packets were received or not. Instead of acknowledging the receipt

of individual packets, each destination node sends back requests for degrees of freedom that

are required for decoding [23] [17] [18]. After receiving acknowledgements from the receivers,

the source node sends another set of random linear combinations of packets to the receiver

according to the required degrees of freedom requested in the acknowledgement packet. The

advantage of this technique is that if some packets are lost in the communication link, the

destination node is not required to request by the sequence numbers of the lost data packets,

but instead request the missing number of degrees of freedom; in other words, the receiver

requests the the missing number of linearly independent packets. Therefore, end-to-end data

delivery using random linear network coding is more efficient in flow control, and uses less

bandwidth than the traditional go-back-N protocol.

2.1 Network Coding Opportunities

Wireless networks are significantly different from wired networks due to the broadcast nature

of the communication protocol. Opportunistic network coding exploits the broadcast nature

of data packet transmission. Using the technique of opportunistic hearing of data packets in

the transmission range, the overall throughput of the network can be increased significantly

12



[9]. Most network coding applications for wireless networks [24] [25], assume noiseless links

with no interference due to careful scheduling, or that interfering packets are simply dropped.

These assumptions simplify the wireless network coding problems for the sake of analyzing

the most relevant issues.

We will now outline how a wireless architecture designed around network coding can

help improve throughput. This improvement is possible because coding allows the routers to

compress the transmitted information according to what packets are available at the receiver

nodes. By matching what each neighbour node has with what another neighbour node

requires, the network router or the access point (AP) can deliver multiple packets to different

neighbours in a single transmission. This style of coding is called opportunistic network

coding because coding is done on packets that can be overheard during the transmission by

neighbour nodes and also from different flows.

The use of opportunistic network coding using omni-directional antennae was first inves-

tigated by Lun et al. in [26]. They analysed the minimization of communication cost and

solved the problem in a distributed manner using linear programming. However, their work

was mainly theoretical, and it was assumed that the network utilized multicast traffic. As

a consequence, their technique has limited applicability to systems with unicast topologies.

Consequently, authors such as Zhang et al. [27] and Sengupta et al. [28] have studied unicast-

specific topologies. Their work demonstrated that, for the studied topologies, network coding

results in better throughput than the pure forwarding of packets.

Chachulski et al. [29] presented a network coding based opportunistic routing technique

that did not require centralized node coordination. They designed a practical system called

MORE (MAC-independent Opportunistic Routing and Encoding), that applies network cod-

ing into the current network stack. Using this system they exploit the opportunistic over-

hearing, inherent to the wireless medium, in order to significantly increase the performance

of the system. Using tests conducted on a wireless testbed, they showed that MORE pro-
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vides both unicast and multicast traffic with significantly higher throughput than traditional

routing.

Katti et al. [30] introduced MIXIT: The network meets the wireless channel, which is

an architecture that performs opportunistic routing on groups of correctly received sym-

bols. The core component of MIXIT is a novel symbol-level network coding system that also

functions as an error correcting code. They utilized the physical layer of network coding to

encode and decode the symbols. This allowed the network coding routers to identify the cor-

rupted symbols and correct them before forwarding them to the next node. They addressed

the main challenges in forwarding the coded packets as follows: First, the management of

the packet buffers at each network node so that received symbols are stored correctly thus

preventing duplicate transmission. Second, the maintenance of the error correcting mech-

anism. Despite the fact that network coding routers forward only the symbols that can

be decoded, there is a probability that the forwarded symbols are corrupted. Therefore,

symbol-level network coding co-functions as an error correcting mechanism by providing a

redundant number of data packets. This redundancy allows for the correction of any cor-

rupted symbols that pass through the network. MIXIT takes advantage of the broadcast

nature and opportunistic overhearing characteristics of the wireless medium, and presents a

merging technique that achieves both space and time diversity. It also forces the network and

lower layers to enhance network throughput and the overall reliability of the communication.

Ultimately, MIXIT conserves the distributed and unsophisticated nature of network coding

necessary for practical implementation.

COPE was the first approach to implement opportunistic network coding for practical

multi-hop wireless networks [9]. The authors explored the use of network coding for different

network topologies, with an emphasis for two-way relay networks. COPE takes advantage

of the broadcast nature of the wireless medium and performs opportunistic overhearing to

reduce the number of packet transmissions. COPE also provides a general scheme for inter-
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session wireless network coding by extending this topology to multicast traffic with multiple

nodes. The authors also analyse the possibility applying their technique to other known

topologies under dynamic network flows. The COPE architecture uses simple bitwise XOR

operation to provide the advantages of network coding in wireless networks. These coding

opportunities are affected by many factors, such as network topology, routing techniques,

and network traffic patterns. Katti et al. [9] have shown that COPE cannot provide the

same throughput-gain for TCP as UDP does. The main reason for this is explained by the

connection-oriented nature of TCP. This can result in burst-like traffic behaviours with rate

mismatch in different network edges. This is not the ideal situation to perform network

coding as there is no waiting mechanism employed in COPE to tackle such situations.

To summarize, the key characteristics of the COPE coding scheme are as follows: 1) No

scheduling technique exists in the scheme for synchronization. 2) Packets are not delayed;

each time the node transmits a packet it occupies the head of the line (HoL) position in the

queue. When multiple packets are available the access point (AP) will code them together,

but if not they will be transmitted un-coded. 3) Packet reordering is not done at the nodes,

and the AP transmits the packets in the same order in which they arrived at the FIFO

queue.

Since COPE lacks both session and link scheduling algorithms, Cuit et al. [31] proposed a

fully distributed, suboptimal scheduling algorithm, called Coding with Opportunistic Recep-

tion (COPR), as an extension to COPE. They showed that COPR can reduce routing power

by exploiting multiple-reception gain in network coding. Therefore, COPR significantly im-

proves the overall network performance when compared to COPE. Their extensions to COPE

can be summarized as 1) The utilization of intersession network coding to both multicast

and unicast sessions. 2) The use of an achievable rate region for single-hop wireless network

coding using an interference model. 3) The use of a back pressure algorithm to do dynamic

scheduling and single-hop wireless network coding. This back pressure-based scheduling sys-
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tem is then combined with the fixed path routing presented in COPE. 4) The reduction of

the acknowledgement overhead.

2.2 Opportunistic Network Coding in Wireless Two Way Relay

The opportunistic network coding over two-way relay networks became very popular after

its first introduction, as a part of the COPE protocol, since it offered significant performance

improvements over traditional store and forward packet routing [9] [32].

Data packets going in opposite directions through a wireless AP are coded together in

order to reduce the amount of spectrum access [9]. This reduction of wireless frequency

spectrum usage also reduces the transmission cost. In the early stages of network coding,

in order to achieve maximum network capacity through network coding it was assumed

that packets of different flows were well synchronised. Both Chen et al. [3] and Larsson et

al. [33] focused on the assumption that waiting queues at the AP are saturated (i.e., they

focused on removing the assumption that the AP always has packets from both connections

available). By doing so, they created a situation where the relay could choose to either

transmit an un-coded packet, or wait for a coding opportunity with a newly arrived packet.

However, network coding can be applied only when the wireless AP has received at least

one data packet from each of the wireless nodes. When the AP receives a data packet

from only one node but not from the other, the AP can either transmit the received packet

without coding, or wait for a packet to be received from the other node. The former strategy

leads to no delay but also reduces the spectral efficiency, while the latter strategy incurs a

coding delay but improves the spectral efficiency as packets from both nodes are transmitted

simultaneously. Using network coding as the only mechanism for removing packets from the

AP can cause network buffer instability. This instability is caused when there is an arrival

rate mismatch between the two nodes. The node with less frequent data packet arrivals will

send packets to the AP at a lower rate on average. As a consequence, there will be insufficient
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opportunities to serve the packets of the node having the higher frequency of data packet

arrivals. Furthermore, this instability occurs even when the two flows have the same rate

due to the probabilistic nature of packet arrivals. Dealing with this stochastic arrival of data

packets to the AP has gained special interest in opportunistic network coding, especially for

cases where there are no packets available at one of the nodes.

In opportunistic network coding, the AP can delay packet transmission, for a pre-specified

amount of time, before transmitting an un-coded packet. If this waiting time is too long,

then packet transmissions will be delayed significantly and the system performance will

degrade. However, if the AP does not wait long enough it will have to transmit many

data packets un-coded before it has an opportunity to pair two packets for network coding,

thus diminishing the advantage of network coding. For each delay of packet transmission

there is an associated waiting cost, and similarly, for each un-coded transmission there is

an associated transmission cost due to the loss of spectral efficiency. Therefore there comes

about a trade-off between the waiting cost and the transmission cost.

The waiting vs transmission tradeoff with plain routing has been studied for a single

wireless link as well as multiuser scenarios [34] [35] [36]. The stability region for two-hop bi-

directional communications between a pair of nodes with stochastic flows is further studied

in [37] and for other network topologies in [8] [38]. The main focus of these works is mainly

queue stability but looks at the maximum achievable throughput without optimizing the

wireless transmission costs.

There have been a number of works studying the interaction of network coding with

stochastically-varying traffic in two-way relay networks. The authors in [39] present a sim-

ulated scheduling technique that minimizes the queueing delays in opportunistic network

coding for both uniform and random packet arrival models. For the case of unequal arrival

rates, they propose the use of a waiting threshold at the network node with the fastest arrival

rate. Due to the probabilistic nature of the packet arrivals, having a waiting a threshold for
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only one node can cause some packets to be delayed too long. Furthermore, ignoring the

effects caused by not having a threshold for one data stream may result in suboptimal system

performance. For this reason, a deadline-aware waiting technique was proposed in [40], for

broadcast network-coded data, under the assumption that the nodes generate packets at a

constant rate. Their technique focused mainly on reducing the transmission cost within the

limits of given deadlines for the packet delivery, but did not address the issue of degrading

the quality of service within the deadline. Techniques for optimization of the trade-off be-

tween transmission and coding costs have been analysed in [41] for a linear tandem network

using network coding. They calculated the probabilities for not having packets for coding,

but did not allow for the delaying of packets to wait for a coding opportunity. The authors

in both [42] and [3] analyzed opportunistic network coding with geometric arrivals. They

proposed the transmission of packets waiting for a network coding opportunity with some

probability that is proportional to the data packet arrival rate. However, the main drawback

of their approach was that it requires a system with an infinite memory, making it impracti-

cal. Furthermore, their approach can delay some packets for an extended amount of time as

it does not utilize any waiting limit for the probabilistic transmissions. Umehara et al. [43]

proposed coded packet priority access (CPPA) protocol in which coded packets have higher

transmission opportunity than uncoded packets at the relay node. In [44] the authors extend

this proposed method to model a network coding aware router.

A more comprehensive analysis for a waiting time based time-out mechanism was pre-

sented in [45] for avoiding excessively long waiting times at the relay, as in [44]. They

also considered a two-way relay capable of network coding that receives packets from two

different flows. When a packet from one flow arrives at the relay and find a packet from

the other flow waiting there, the new packet is coded with the HoL packet from the other

flow, and transmitted. If the arriving packet finds only packets from the same flow (or no

packets at all) waiting, the packet combines the queue of the waiting packets according to a
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FIFO policy. Network coding operations and packet removal from each queue are assumed

to occur instantaneously, so waiting packets necessarily belong to the same flow. As soon as

a waiting packet becomes the HoL packet, a timeout period is assigned to it which acts as

the maximum additional sojourn time of this packet at the relay. If a packet from the other

flow arrives during the timeout period, the network coding mechanism is exercised, and the

waiting packet is removed from the queue. If not, a timeout occurs and the waiting packet is

immediately removed from the queue and is transmitted. Timeout periods, assigned to dif-

ferent packets in the same flow are independently and identically distributed (I.I.D.) random

variables from a distribution that is tailored to flow-related parameters. Their system model

is simplified to include the factors strictly relevant to network coding and its trade-offs (e.g.

the details of the final packet transmission stage are not included). The simplified model

provides a tractable analysis, leading to simple closed-form expressions. These expressions

illustrate how, by changing the timeout parameters, the performance and efficiency of the

system is affected. The result of these analyses are subsequently employed in the selection of

the timeout parameters for the traffic load present at the relay. The selection of the timeout

parameters are done in such way that achieves the highest possible network coding efficiency

subject to the given delay-related QoS requirements. Two delay control approaches are con-

sidered: 1) Separate timeout parameters in the two flows that can be independently tuned.

2) A simple suboptimal approach with common timeout parameters for both flows. Some

closed-form results have been obtained to support the concept of delaying packets. In the

presence of asymmetric traffic, they eliminate the timeout mechanism on the packets of the

slower flow. By doing so, they still maintain the stable operation and the maximum net-

work coding gain possible for this traffic pattern. Even though this approach provides some

improvement over COPE, their waiting threshold is suboptimal, and thus cannot guarantee

the optimal performance.

In [46] a queueing model is developed in which the decision to transmit an uncoded
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packet may depend on the number of packets in each queue. They derive the diversity

order of several bi-directional protocols such as Direct Transmission (DT), Multiple Access

BroadCast (MABC), Time Division BroadCast (TDBC) and Hybrid BroadCast (HBC).

The impact of these decisions on the transmission cost vs delay trade-off is analyzed in [47].

Similarly, the scenario where packets are always transmitted un-coded if no opportunity

arises is studied in [48] and [49].

Liu et al. in [48] characterize the achievable rate regions for the four-slot multi-hopping

mechanism (FSMH), and the two-way opportunistic network coding scheme. For a given

Poisson traffic pattern, they analyse the optimal end-to-end sum rates for both the FSMH

and the two-way opportunistic network coding scheme. They first, focus on only maximizing

the sum rate in one-way transmissions. They also show that, regardless of the transmission

method used, the maximum network coding gain is always achieved when two-way traffic is

symmetric. Consequently, the proposed opportunistic network coding scheduling algorithm

is able to achieve a stable system without knowing the actual Poisson arrival rates for either

the FSHM or the opportunistic network coding scheme.

Game theoretic models for network coding presented in [50], [51]. The main focus of their

work is flow optimization, rather than the optimization of transmission and waiting costs.

Ciftcioglu et al. in [52] present two threshold-based waiting policies: a centralized policy, and

a distributed policy, where each source tries to optimize its own cost-delay trade-off. In [53],

the authors consider the probabilistic transmission for all packets waiting for coding. In their

method, the transmission probabilities are dependent on whether the packets are coded or

not, and on the destination of the packets. Khreishah et al. [54] analyze the upper-bound

of the capacity region for two-way relay network coding. The analog network coding (ANC)

schemes for asynchronous two-way relay network is presented in [55] [56].

In [57], the authors propose a method based on Markov decision process (MDP) to find

the waiting times that optimizes the total cost. They were the first to prove that the optimal
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waiting policy for this problem is to have a threshold-based policy for packets waiting in each

queue for networks with Geometric packet arrivals.

2.3 Related Queueing Theoretic Analysis of Opportunistic Net-

work Coding

The delaying of packets indefinitely in order to achieve network coding can lead to system

instability. This is because the buffers which are attached to the relays with high data rates

may have memory overflow issues. Therefore, in this context, the use of queueing theory

to analyse the performance of network coding becomes very important. Queueing analysis

can be used to mathematically analyse the delay performance of network coding and help

to make the optimal decision for efficient system performance.

The authors in [49] analyze queueing systems with specific service processes which capture

the queueing behavior of two-way relay network coding. They show that network coding can

improve network throughput significantly if it is used opportunistically or implemented in a

fully-synchronized network setting. In [58] a queueing analysis is presented to maintain the

physical queue size in order to track the backlog of the degrees of freedom required at the

receiver node. They minimize the buffer size required in network-coded file transfer protocols

which are originally presented in [17] [18]. Sagduyu et al. [41] consider the problem of network

coding in wireless queueing networks with tandem topology, and also consider multi-hop

packet propagation. Their model is a discrete-time-slotted and synchronous system in which

the transmission time of each packet is one time slot.

Yuan et al. [59] present a queueing model for asynchronous network coding at a single

router. They assume traffic arrivals to be I.I.D. Their coding node maintains a separate FIFO

queue, with a queue size K for each flow, which tries to increase the coding opportunities at

the coding node by delaying packets with a maximum opportunistic delay threshold.

The opportunistic network coding presented in [3] uses queueing analysis to make deci-
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sions of coding dependent on the size of the buffer at a given node. In their queuing model,

the decision to transmit un-coded packets depends on the number of packets in the buffers.

The authors propose a queueing model with Bernoulli symmetric arrival processes where the

relay node maintains a queue to store received packets from each source. The relay node

performs network coding when both queues are non-empty. Otherwise, it sends the packets

un-coded with a probability that depends on the state of the queues. They use queueing

analysis to optimise this probability in order to minimize packet delays for a given a power

constraint. Ding et al. in [60], extend this work to model asymmetric arrival processes as

well. Using a Finite State Markov Chain they characterize the relay queue states, derive

the transition probabilities and the stationary distribution to analyze the average power and

delay costs. They then find the optimal power-delay trade off, and propose a heuristic dis-

crete solution for the problem. The impact of this decision on the energy-delay trade-off is

then analysed in [47]. In this work the authors present energy-efficient transmission deci-

sions based on the state of queue buffers. By doing so they maintain stable queues at the

nodes, thereby providing a cross-layer optimization trade-off between different measures of

throughput and energy efficiency.

Chieochan et al. [61] propose a discrete time Markov chain (DTMC) model for a wire-

less, lossy, butterfly network, where a opportunistic network coding scheduling protocol [62]

is employed at the relay node. They use the queueing model to solve the synchronization

problem using dynamic buffer allocation at the relay station. In [4], the authors use a

Continuous-Time Markov Chain (CTMC) with exponential inter-arrival times, to model the

energy-delay trade-off problem. They use the queueing model to determine the buffer size

and decide to transmit data packets un-coded when the buffer is full. When the length of

the waiting queue exceeds a threshold, the packets are transmitted uncoded. They assume

the relay node has independent Poisson arrivals and show that network coding, with no

limiting measures, results in infinite delays and propose a technique that is a hybrid be-
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tween network coding and traditional routing. In [63], they consider the same scenario, but

develop different priority-based queues in the relay nodes buffer for different flows. Their

opportunistic network coding scheme is based on traffic priority and queue length. However,

non of the above queueing models provide any closed-form expressions for the optimization

of the transmission-versus-waiting costs.

In our work, presented in [64], we propose an analytical method using a DTMC to model

the system behaviour of an AP using network coding under packet arrivals according to a

discrete time Markov arrival process (DMAP). We presented a threshold for the maximum

waiting times of data packets in each queue to minimize the packet delays. We derived this

by extending the work in [65] and the pair formation technique presented by Neuts and

Alfa [66]. We showed how the variation of waiting time affects the amount of spectrum

access and the average waiting time of packets. Based on what we formulated, an efficient

waiting strategy to minimize both transmission and waiting costs is presented. Therefore we

show how the delaying of packets to increase coding opportunities is more beneficial to the

queue of the lower arrival rate. We also found the optimal waiting times thresholds which

minimize both the number of transmissions and the average waiting time of packets in the

buffer.

2.4 General Arrivals and Use of Phase Type Distribution

One disadvantage of Geometric (Poisson in continuous time) arrivals is that it forces the

assumption that each time slot has the same arrival probability due to its lack of memory

property. Therefore, it cannot be used to model most correlated inter-arrival processes as

shown in [67]. The data packets in telecommunication systems can be more accurately

modelled by correlated inter-arrival processes using Phase-type distributions [11] and most

general arrival functions can be represented using such a distribution. This allows us to

analyse the correlated inter-arrival times of packets having general arrival distributions.
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Using phase-type distribution to model the arrival process is advantageous because most

general arrival distributions can be represented (or closely approximated) by a phase type

distribution [68]. Rather than assuming geometric distribution (or Poisson distribution for

the continuous-time case), the data arrivals can be modelled using phase type (PH) distribu-

tion with parameters (α, T ) of order n, where α and T are a row vector and a square matrix

of order n, respectively [69]. Every element of T has the following property 0 ≤ Tij ≤ 1

and T1 ≤ 1 with at least one of the rows strictly less than 1, where 1 is a column vector

of ones of appropriate dimension. Also, the vector α is stochastic, i.e., α1 = 1. We define

pb(k) as the probability that there is an arrival after k time slots. Then, according to the

PH distribution, we have,

pb(k) = αT (k−1)t (2.1)

where t = 1− T1.

To model data arrivals as a phase type distribution and we need to find the exact pa-

rameters for matrix T . We can use the Expected Maximization (EM) algorithm to find the

exact elements in transition matrices as presented in [68]. The EM algorithm used in [70]

is an iterative method for implementing a Maximum Likehood estimation in the case of

incomplete data. The complete iterative steps of the EM algorithm are presented in [68].

By following these iterative steps, we can calculate the T matrix of phase-type distributions

for a given data set of an arrival pattern. While the size of the matrix is not restricted in

the original algorithm, they showed that using a larger number of states provides a more

accurate data-fitting for the phase-type distribution. Using numerical analyses, they showed

that a dimension of six is a sufficient size to represent the phase-type distribution of data in

a telecommunication system.

Therefore the phase type distribution is a very accurate tool to model general packet

arrival functions in telecommunications traffic and we use it to model all the data arrivals
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in the following chapters and analyse the optimal waiting policy for opportunistic network

coding.
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Chapter 3

Determining the Optimal Waiting

Policy

In this chapter, we investigate the problem of finding the optimal waiting policy for data

packets in two-way relay opportunistic network coding under phase type arrivals. We first

model the trade-off between waiting and transmitting packets, using a Markov decision

process (MDP) to analyze the problem and to find an optimal waiting policy that gives us

a minimum average cost in the long term (as the system epoch tends to infinity). By using

Sennott’s theorem [71] [72] for MDP optimization, we prove the existence of an average-

cost optimal policy within our MDP model. We further prove that the problem is convex

under sufficient conditions, thus allowing us to find the global optimal solution using the

Gradient Descent Algorithm (GDA). Using the steps of value iterations algorithm for the

MDP, we prove that the nature of the global optimal solution is a threshold-based policy.

This threshold-based policy defines a separate threshold for each phase vector of phase-type

arrival functions within each queue. In some cases the current phase of the arrival function

may be unknown. For such situations we introduce a technique to probabilistically predict

the arrival phase vector in order to determine a threshold policy.
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Figure 3.1: Two Way Relay Access Point with Phase Type Packet Arrivals

3.1 System Model and Problem Statement

We consider network coding in a two-way relay AP as shown in Figure 3.1. Node 1 and

Node 2 each generates packets and transmits them to the AP according to discrete time

phase-type distributions defined by (α, T ), having n1 number of phases, and (γ,W ) having

n2 number of phases, respectively. The packets are assumed to have the same length. The

whole system shares a synchronized clock to define the time unit i.e. the packet arrivals

from each node happen at the same time during a time slot. The access point uses the

same channel to transmit packets to each node. The AP receives data packets from both

nodes, computes the bit-wise XOR addition of the packets received from each node, and then

broadcasts the coded packet to both nodes. This saves the transmission cost by one unit

in comparison to traditional un-coded communication (two separate transmissions). This

transmission cost savings represents a 50% savings in transmission spectrum access and a

25% savings in the overall spectrum access for this communication. Furthermore, the saved

downlink spectrum can also be used to send more data and thereby increase the overall

throughput of the system. However, since the two wireless nodes are not synchronized and

the packet transmissions from the nodes are not regular, it is possible that when the AP

receives a packet from one node, the waiting queue for the other node is empty. In this case

the packets in the non-empty queue wait for packets to arrive at the other queue. The AP

tries to reduce the number of packet transmissions by using network coding. The AP buffers
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packets coming from each node into separate queues to facilitate network coding. As long

as both queues contain one or more data packets, the relay node will code one packet from

each queue and transmit them as a single packet. However, when a packet cannot be paired

for coding, the AP can choose to buffer the packet in the queue or transmit without coding.

However, in order to for the AP to make this choice it must abide by an optimal policy that

yields the best choice at any instance in time. To find this policy we first analyze the trade-off

between the costs associated with waiting, and the cost associated with transmitting packets

un-coded. To simplify our analysis, we assume that the capacity of the transmission links

are large enough so that system is stable and the queues are finite. So long as there are one

or more packets in each queue to be paired, network coding can be performed without any

delay. If queue 1 has i number of packets and queue 2 has j (i 6= j) number of packets, then

there are |i− j| number of extra packets that will not immediately be coded.

3.2 Markov Decision Process for the System

We develop a MDP [73] to analyze the trade-off between buffering vs transmitting packets

in this system. An MDP is a sequential decision making process (Figure 3.2). In an MDP a

system is defined by the state of the system at any given time. At any given state we can

choose an action to take. In our case the state is defined by the number of packets waiting

at each queue, and the action we take is how many packets to transmit, both coded and

un-coded. For any action taken there will be an associated immediate cost. In our case,

the immediate cost is the cost of transmitting packets summed with the cost of buffering

the remaining packets until the next time unit. Depending on the action we take, and the

probability of packet arrivals for a given time unit, the system may move to a different state

with a new set of possible actions. The MDP is composed of the following factors: The set

of possible states, the set of possible actions, the set of immediate cost for each action in a

given state, and the set of transition probabilities between states. Furthermore, we assume
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Figure 3.2: Markov Decision Process

that all necessary information is available to us in order to make the best decision at a given

state. For every decision there will be an associated immediate cost, and a transition to

a new state. The immediate cost we pay and the transition probabilities depend on what

action was taken, and the state we were in prior to the decision. As the system moves on

in time, we take a set of actions and pay a sequence of immediate costs. Our objective is to

find the optimal set of actions that minimizes the sum of the immediate costs paid in the

long-term.

A decision policy is a technique that provides us with a given set of actions by predicting

the possible future states we will progress through. Any given policy is associated with a

fixed set of immediate costs. Furthermore, the sequence of actions associated with a given

policy are predetermined prior to the initialization of the system. Therefore, it is known

beforehand what expected total long-term cost for a given policy will be. Moreover, the set

of actions defined by a given policy is determined by the set of immediate costs, and the
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set of transition probabilities between states. Finally, a policy is independent of all previous

costs paid, all previous actions taken and any state we previously occupied.

The state space of the MDP is defined by (i, j, e) ∈ S. Here i is the number of packets

waiting in queue 1, j packets waiting in queue 2, e = (b, d) ∈ E is the current arrival phase

vector where, b (0 ≤ b ≤ n1 − 1) is the arrival phase of queue 1 and d (0 ≤ d ≤ n2 − 1) is

the current arrival phase of queue 2. Here E = {(0, 0), (0, 1), (0, 2), · · · (n1 − 1, n2 − 1)} is

the state space of the phase vector. At state s = (i, j, e), the system will take some action

a(s), where a(s) is defined by the total number of packets being transmitted (both coded

and un-coded). For i and j packets waiting in queue 1 and queue 2 respectively, the action

space can be defined as A = {min(i, j), · · · ,max(i, j)}. Let ct define the cost incurred when

transmitting a packet and let ch define the holding cost of a packet for one time unit. Since

our model is a discrete time system, we need to define the order of events happening during

one time slot because two events cannot occur simultaneously in a discrete time system.

Therefore, we assume that a transmission action is taken at the beginning of a time unit and

packet arrivals occur only after this action is taken. Note that the order of events does not

affect the long term performance of the system. When the action a(s) is taken at the state

s = (i, j, e) the total cost for that time unit is the cost of a(s) packets being transmited,

plus the cost of buffering the remaining packets, plus the cost of buffering the newly arrived

packets until the next time unit, as shown in (3.1),

c(i, j, e, a(s)) = cta(s) + ch((i− a(s))+ + (j − a(s))+) + ch(tb + wd) (3.1)

where (x)+ = max(x, 0), tb is the bth element in t (t = 1−T1) and wd is the dth element

in w (w = 1−W1) and s = (i, j, e).

Our objective is to find a transmission policy that provides the optimal action at every

state s in order to minimize the long-term average cost. It is important to note that the

action produced by transmission policy may not be optimal in the short-term due to the
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probabilistic nature of the packet arrivals. However, the long-term average cost under this

optimal transmission policy θ is defined as,

g(θ) = lim
N→∞

N−1Eθ[
N∑
n=0

c(in, jn, en, a(s))|(is, js, es)] (3.2)

where (is, js, es) is the random state at the nth time unit. We start the system at

state (is, js, es). The probabilities of the initial arrival phases in es are defined by α =

[α1, α2, ..., αk, ..., αn1 ] and γ = [γ1, γ2, ..., γk, ...γn2 ] for queue 1 and queue 2 respectively. Our

objective is to find the optimal policy that minimizes the average cost g(θ).

We assume that the equivalent present cost in a MDP is discounted when compared to

the future cost due to the time-value of cost [73]. Therefore we introduce a discount factor

β (0 ≤ β ≤ 1) per time unit. Thus, the total expected β discounted cost under policy θ is

given by,

vβ,θ(i, j, e) = Eθ[
∞∑
n=0

βnc(in, jn, en)|(i0, jo, e0) = (i, j, e)] (3.3)

The optimal discounted cost at the state (i, j, e) is given by vβ(i, j, e).

3.3 Proof of the Optimal Threshold Policy

Our objective is to find a policy that minimizes the expected average cost per unit time.

The number of steps for finding the optimal policy are three fold. First, we prove that

the discounted cost function in our MDP has an average cost optimal policy. Second, we

prove it’s convexity so that we can find the solution using a GDA. The third step is to show

that the optimal policy for minimizing the expected average cost is a threshold based policy

dependent on the current arrival phase vector.

Using Sennott’s theorem [71] [72] for the parameters given in our MDP, we derive Theo-

rem 1.
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Theorem 1

(a) There exists a finite constant g = limβ↑1(1−β)vβ(i, j, e) for every state s = (i, j, e) ∈ S.

(Note: The physical meaning is that the constant g is less than or equal to the worst

case of g(θ) [74] [71]).

(b) There exists a limit function h(i, j, e) satisfying the average cost optimality inequality,

g + h(i, j, e) ≥ min
a(s)∈Ai,j,e

{c(i, j, e, a(s))

+
∑

k,l,enext

pk,1e,enext
pl,2en,enext

vβ((i− a(s))+ + k, (j − a(s))+ + l, enext))} (3.4)

(c) Let θ∗ be the stationary policy realizing the minimum of (3.3), then θ∗ is an average

cost optimal stationary policy that is a limit point of a sequence of discounted cost

optimal stationary policies {θβk}k≥1 where βk ↑ 1 (one sided limit of βk approaches

from the left).

Sennott’s theorem given in section 3.4 shows that there exists a discounted average cost

optimal policy for an MDP if Proposition 1, Proposition 2 and Proposition 3, stated in

below, are satisfied. We prove that our MDP discounted cost function given in 3.3 satisfies

these three propositions for the existence of a minimum average cost optimal policy.

Proposition 1

The optimal discounted cost function vβ(i, j, e) is finite for every state (i, j, e) ∈ S and β.

Proof of Proposition 1

To prove this we consider a policy θ where every packet in each queue is transmitted at every

state. The cost under this policy is then defined as,
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vβ,θ(i, j, e) = ct max(i, j) + E[
∞∑
n=1

βnct max(A1
n + A2

n)] (3.5)

where A1
n and A2

n are the number of packet arrivals to the queue 1 and queue 2, respec-

tively, between (n− 1)th and nth transmission opportunities. The optimal discounted cost

vβ(i, j, e) is the lower bound for the discounted cost vβ,θ(i, j, e) under policy θ. Therefore

this policy satisfies the following inequality:

vβ(i, j, e) ≤ vβ,θ(i, j, e)

≤ ct max(i, j) + E[
∞∑
n=1

βnct(A
1
n + A2

n)]

= ct max(i, j) + βαt+ β2αTt+ β3αT 2t+ · · ·+ βγw + β2γWw + β3γW 2w + · · ·

= ct max(i, j) + β(α(I − βT )−1 · 1 + γ(I − γW )−1 · 1) <∞

(3.6)

Therefore, for any initial state (i, j, e), the optimal discounted cost vβ(i, j, e) < ∞ for

0 ≤ i <∞ and j ≤ ∞ and 0 < β ≤ 1.

Proposition 1 implies that the optimal discounted cost function vβ(i, j, e) for (i, j, e) ∈ S,

satisfies the discounted cost optimality equation 3.7 [73],

vβ(i, j, e) = min
a(s)∈Ai,j,e

{c(i, j, e, a(s))+β
∑
k,l

pk,1e,enext
pl,2e,enext

vβ((i−a(s))++k, (j−a(s))++l, enext)}

(3.7)

where pk,me,enext
is the probability of arriving k ∈ {0, 1} packets to the queue m ∈ {1, 2},

with the arrival phase transition from the phase vector e to enext.

Here p0,1e,enext
, p1,1e,enext

, p0,2e,enext
and p1,2e,enext

are defined by the elements in T , αt, W , and γw

respectively.
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A stationary policy that satisfies equation (3.7) will be a discounted cost optimal policy.

Our objective is to find an optimal policy that gives the minimum long-term average

cost. We show that there exists a long-term average cost stationary policy within our MDP

and that it is the limit of the discounted cost optimal policy.

Proposition 2

There exists a finite non-negative function M such that hβ(i, j, e) ≥ −M for (i, j, e) ∈ S and

β ∈ (0, 1).

Proof of Proposition 2

We prove this by showing that there exists a subset of phase vectors E ′(i, j, s) ⊂ E, for each

state s = (i, j, e) ∈ S, such that the discounted cost function vβ(i, j, e) is non-decreasing in

i and j, with a phase transition to the next phase vector e′ ∈ E ′(i, j, s).

We therefore prove this by mathematical induction using the following steps given in the

Value Iteration Algorithm [73]:

vβ,n(i, j, en) = min
a∈Ai,j,en

{c(i, j, en, a(s))

+ β
∑

k,l,en−1

pk,1en,en−1
pl,2en,en−1

vβ,n−1((i− a(s))+ + k, (j − a(s))+ + l, en−1))},

(i, j, en) ∈ S, en−1 ∈ E (3.8)

The starting value when n = 0 is vβ,0(i, j, e0) = 0, for every state (i, j, e0). Therefore,

vβ,n(i, j, en) is non-deceasing in i and j for every phase vector en ∈ E for n = 0.

Let vβ,n−1(i, j, en−1) be non-deceasing in the n− 1 iteration, and select an optimal action

a ∈ Ai+1,j,en , from (3.8), such that,
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vβ,n(i+ 1, j, en) = c(i+ 1, j, en, a(s))

+ β
∑

k,l,en−1

pk,1(en,en−1)
pl,2(en,en−1)

vβ,n−1((i+ 1− a(s))+ + k, (j − a(s))+ + l, en−1)) (3.9)

By taking the same action, a(s), for the state (i, j, e′n), we obtain the following expression,

as derived from (3.8):

vβ,n(i, j, e′n) ≤ c(i, j, e′n, a(s))

+ β
∑

k,l,en−1

pk,1(e′n,en−1)
pl,2(e′n,en−1)

vβ,n−1((i+ 1− a(s))+ + k, (j − a(s))+ + l, en−1))

e′n ∈ E ′ ⊂ E (3.10)

Since equation (3.10) is still valid when a(s) = i+ 1 > j, a(s) 6= Ai,j,en , we conclude that

our initial assumption, vβ,n−1(i, j, e
′
n) is non-deceasing in i. We then investigate the case

where en = e′n, and resolve that c(i, j, en, a(s)) is also non-deceasing in i. Therefore, using

the equation in (3.1), we derive the following inequality from (3.9) and (3.10):

vβ,n(i+ 1, j, en)− vβ,n(i, j, en) ≥ c(i+ 1, j, en, a(s))− c(i, j, en, a(s))

+ β
∑
k,l,en

pk,1(en,en−1)
pl,2(en,en−1)

{vβ,n−1((i+ 1− a(s))+ + k, (j − a(s))+ + l, en−1))

− vβ,n−1((i+ 1− a(s))+ + k, (j − a(s))+ + l, en−1))} (3.11)

Therefore, given that e′n ∈ E ′ ⊂ E
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vβ,n(i+ 1, j, en)− vβ,n(i, j, e′n) ≥ c(i+ 1, j, en, a(s))− c(i, j, e′n, a(s))

+ β
∑
k,l,en

pk,1(en,en−1)
pl,2(en,en−1)

vβ,n−1((i+ 1− a(s))+ + k, (j − a(s))+ + l, en−1))

− β
∑
k,l,e′n

pk,1(e′n,en−1)
pl,2(e′n,en−1)

vβ,n−1((i+ 1− a(s))+ + k, (j − a(s))+ + l, en−1)) (3.12)

Therefore, there exists a subset of phase vectors E ′ ⊂ E for each phase (i, j, e) in each

state s = (i, j, e) ∈ S, such that the discounted cost function vβ(i, j, e) is non-decreasing in

i for fixed j with a phase transition to the phase vector e′ ∈ E ′(i, j, s).

We can similarly prove the above for j with fixed i. Therefore, we conclude that there

exists a subset of phase vectors E ′(i, j, s) ⊂ E for each state s = (i, j, e) ∈ S, such that the

discounted cost function vβ(i, j, e) is non-decreasing in i and j.

It is important to note that for every action taken in each state, it is our expectation

that we will go in to a state which will result in the minimum cost. This shows that in the

worst case there exists at least one phase vector for the next state that will make the cost

function non-decreasing in i and j.

Proposition 3

The MPD has a stationary policy that induces an irreducible and ergodic Markov chain with

a finite average cost.

Proof of Proposition 3

To prove this, we consider a policy θ where every packet in each queue is transmitted at

every state. Under this policy the state transition probability is defined by:
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p(i,j,ex)(k,l,ey) = pk,1(ex,ey)
pl,2(ex,ey) (3.13)

Where p1,1ex,ey , p0,1ex,ey , p1,2ex,ey and p0,2ex,ey are represented by tα , T , wγ, and W .

We then derive the transition matrix P for this Markov chain p(i,j,ex)(k,l,ey) by showing

that each level (i, j) of the matrix P represents the transition probabilities of the number of

packets in each queue:

P =



(0, 0) (0, 1) (1, 0) (1, 1)

(0, 0) T ⊗W T ⊗ wγ tα⊗W tα⊗ wγ

(0, 1) T ⊗W T ⊗ wγ tα⊗W tα⊗ wγ

(1, 0) T ⊗W T ⊗ wγ tα⊗W tα⊗ wγ

(1, 1) T ⊗W T ⊗ wγ tα⊗W tα⊗ wγ


(3.14)

Therefore, the Markov chain p(i,j,ex)(k,l,ey) is irreducible and ergodic.

Given that the stationary vector of this Markov chain is πi,j,e, the transition matrix P

is stochastic, and that the relationship is true
∑

i,j,e πi,j,e = 1. Then the long-term average

cost of this Markov chain is given by,

g(θ) =
∑

(i,j,e)∈S

π(i,j,e) max(i, j)

= ct(
∑
e

tα⊗ wγ · 1 +
∑
e

tα⊗W · 1 +
∑
e

T ⊗ wγ · 1) <∞
(3.15)

Therefore, the average cost of this policy is finite.
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3.4 Convexity of the Problem

In this section we prove that our problem is convex under the sufficient conditions so that

it is guaranteed to have a global solution when we apply the Gradient Descent Optimiza-

tion Algorithm. According to [75] a vector function is convex if it abides by the following

definition:

Definition: Convexity of a function

A real valued function f : Z3 → R is defined to be convex in i if and only if f(i+ 1, j, k)−

f(i, j, k) is non decreasing in i and similarly f is defined to be convex in j if and only if

f(i, j + 1, k)− f(i, j, k) is non decreasing in j and f is defined to be convex in k if and only

if f(i, j, k + 1)− f(i, j, k) is non decreasing in k [75].

Proposition 4

For ch ≥ ct/2, the discounted cost function vβ(i, j, e) is convex in i and j.

Proof of Proposition 4

We prove this by using the steps given in the Value Iteration Algorithm for the discounted

cost function,

vβ,n(i, j, e) = min
a(s)∈Ai,j,e

{cta(s) + ch[(i− a(s))+ + (j − a(s))+]}

+ β
∑

k,l,enext

pk,1e,enext
pl,2e,enext

vβ,n−1((i− a(s))+ + k, (j − a(s))+ + l, enext) (3.16)

The first step of the value iteration when n = 0 is vβ,0(i, j, e) = 0, for every state (i, j, e).

Therefore, vβ,n(i, j, e) is convex in i and j for n = 0.
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We then assume that vβ,n−1(i, j, e) is convex in i and j, so that the function fn−1(i, j, e) =∑
k,l,enext

pk,1e,enext
pl,2e,enext

vβ,n−1(i+ k, j + l) is also convex in i and j. We now rewrite (3.16) as,

vβ,n(i, j, e) = min
a(s)∈Ai,j,e

{cta(s) + gn−1((i− a(s))+, (j − a(s)), e)} (3.17)

Where, gn−1(i, j, e) = ch(i+ j) +βfn−1(i, j, e). Since ch(i+ j) and fn−1(i, j, e) are convex

in i and j, gn−1(i, j, e) is also convex in i and j.

From Lemma 1 in [57] we can state the following:

If gn−1(i, j, e) is convex in i and j, and if

min{gn−1(1, 0, e) − gn−1(0, 0, e), ct}min{gn−1(0, 1, e) − gn−1(0, 0, e), ct} ≥ ct (3.18)

Then ct > 0, min
a(s)∈Ai,j,e

{cta(s) + gn−1((i− a(s))+, (j − a(s)), e)} is convex in i and j.

Since we have proved in Proposition 2 that vβ,n−1(i, j, e) is non-decreasing in i and j at

every stage of the Value Iteration Algorithm, we can state the following:

gn−1(1, 0, e)− gn−1(0, 0, e) = ch + β
∑

k,l,enext

pk,1e,enext
pl,2e,enext

(vβ,n−1(k + 1, l, enext)

− vβ,n−1(k, l + 1, enext)) ≥ ch (3.19)

gn−1(0, 1, e)− gn−1(0, 0, e) = ch + β
∑

k,l,enext

pk,1e,enext
pl,2e,enext

(vβ,n−1(k + 1, l, enext)

− vβ,n−1(k, l + 1, enext)) ≥ ch (3.20)
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From (3.19) and (3.20) the condition to satisfy (3.18) is,

2ch + 2β
∑

k,l,enext

pk,1e,enext
pl,2e,enext

(vβ,n−1(k + 1, l, enext)− vβ,n−1(k, l + 1, enext)) ≥ ct (3.21)

Therefore, we conclude that under the sufficient condition ch ≥ ct/2, the discounted cost

function vβ(i, j, e) is convex in i and j.

3.5 Optimal Threshold Policy

In this section we prove that the optimal waiting policy for our transmission vs waiting

problem is a threshold based policy dependent on the current phase vector of the arrival

function.

Theorem 2

For ch ≥ ct, (a) there exists two thresholds Lβ1,e, L
β
2,e ≥ 0, for each queue that are dependent

on the current phase vector e = (b, d) of the arrival functions, such that the optimal action

in state (i, j, e) ∈ S, in β-discounted cost problem, is given by:

a∗(i, j, e) = min(i, j) + (i−min(i, j)− Lβ1,e)+ + (j −min(i, j)− Lβ2,e) (3.22)

(b) There is an average cost optimal policy θ(L∗1,e, L
∗
2,e), such that θ(Lβ1,e, L

β
2,e)→ θ(L∗1,e, L

∗
2,e)

as β → 1, where θ(Lβ1,e, L
β
2,e) is the β-discounted cost optimal policy described in (3.22).

Proof

a(s) ∈ Ai,j,e = min(i, j), · · · ,max(i, j) can be written as a(s) = max(i, j) − (i − a(s))+ −

(j − a(s))+. Substituting a(s) in c(i, j, e, a(s)) given in (3.1), we can rearrange the equation
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for vβ(i, j, e) for every state (i, j, e) ∈ S as follows:

vβ(i, j, e) = ct max(i, j) + ch(tb + wd) + min
a(s)∈Ai,j,e

{−(ct − ch)[(i− a(s))+ + (j − a(s))+]

+
∑

k,l,enext

pk,1e,enext
pl,2en,enext

vβ,n−1((i− a(s))+ + k, (j − a(s))+ + l, enext))} (3.23)

From Proposition 4, vβ(i, j, e) is convex in i and j.

Therefore, the function f(i, j, e) =
∑

k,l,enext
pk,1e,enext

pl,2en,enext
vβ,n−1(i + k, j + l, enext)) is

convex in i and j, and −(ct − ch)(i+ j) is also convex in i and j.

We now rewrite equation (3.23) as follows:

vβ(i, j, e) = ct max(i, j) + ch(tb + wd) + min
a∈Ai,j,e

{g((i− a(s))+, (j − a(s))+, e)} (3.24)

Where g(i, j, e) = −(ct − ch)(i+ j) + βf(i, j, e) and is convex in i and j.

We then consider the case i ≥ j, so that the equation (3.24) can be written as,

vβ(i, j, e) = ct max(i, j) + ch(tb + wd) + min
a(s)∈{j,...,i}

g(i− a(s), 0, e)

= ct max(i, j) + ch(tb + wd) + min
b∈{0,...,i−j}

g1(b, e)

(3.25)

Where b = i− a(s), and g1(b, e) = g(b, 0, e).

Let Lβ1,e = argmin{g1(b, e) : b ≥ 0} be a global minimum of g1(b, e) for phase vector

e = (b, d), then the minimum g1(b, e) for a given phase vector e is:

b∗(i, j, e) =

 i− j if 0 ≤ i− j < Lβ1,e

Lβ1,e if i− j ≥ Lβ1,e
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The optimal action in state (i, j, e) is given by:

a∗(i, j, e) = i− b∗(i, j, e) =

 j if 0 ≤ i− j < Lβ1,e

i− Lβ1,e if i− j ≥ Lβ1,e

Similarly, it can be proven for the case i ≤ j that there exists a threshold Lβ2,e for the

arrival phase vector e such that the optimal action in state (i, j, e) is given by:

a∗(i, j, e) = i− b∗(i, j, e) =

 i if 0 ≤ j − i < Lβ2,e

j − Lβ2,e if j − i ≥ Lβ2,e

This proves that there exists an optimal threshold policy for each queue, that is dependent

on the current arrival phase vector, which minimizes the β discounted average cost function.

Given the above we have proven Theorem 2 (a), and Theorem 2 (b) which is implied by

Theorem 1 (b), proven in section 3.4.

The intuition behind this multi-threshold policy can be explained by examining the be-

haviour of phase type distribution. When the data packets are arriving according to phase

type distribution, the packet arrival probability changes according to the current phase of

the arrival function, and as the system goes from one state to other, the arrival phase also

changes so does the arrival probabilities at each queue. In other words at each time unit the

arrival rates of the two nodes changes therefore to control the waiting policy the threshold

levels at each queue changes.

3.6 Special Case of Systems with Unobservable Arrival Phase

In some cases the current phase of arrival is not observable. In these situations we cannot

take the optimal action without first knowing the current phase or, more specifically in our

case, determining the threshold policy. This is a common problem associated with phase type
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distribution that has not received due attention in the literature. Therefore, in this chapter

we provide an approximation method for determining the current phase vector for systems

with unobservable arrival phases. This method relies on selecting the relevant threshold

probabilistically, according to the approximated phase of the arrival function.

We consider a phase type arrival at queue 1, defined by parameters (α, T ), where the

initial vector α is defined as:

α = {α1, α2, · · · , αn1} (3.26)

When the phase is not observable, we derive the following in order to find the long-term

probability of the system being in a given phase:

α∗ = α∗(T + tα) = {α∗1, α∗2, · · · , α∗n1
} (3.27)

For queue 2, the arrival function is defined by parameters (γ,W ), where the initial vector

γ is defined as:

γ = {γ1, γ2, · · · , γn} (3.28)

Similar to queue 1, when the phase is not observable, the long-term probability of the

system being in a given phase, for a given state, we derive the following:

γ∗ = γ∗(W + wγ) = {γ∗1 , γ∗2 , · · · , γ∗n2
} (3.29)

Therefore, the probability of the approximated phase vector e being {s1, s2}, where 1 ≤

s1 ≤ n1 and 1 ≤ s2 ≤ n2, is given by:

Pr(es1,s2) = α∗s1γ
∗
s2

(3.30)
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Given that,

Lβ1,e = {L1
e1
, L1

e2
, · · · , L1

en1n2
} (3.31)

and,

Lβ2,e = {L2
e1
, L2

e2
, · · · , L2

en1n2
} (3.32)

are the sets of optimal threshold values for phase vector e ∈ E for queue 1 and queue 2,

we probabilistically select two threshold values L∗β1,e and L∗β2,e, according to the probability of

the system being at the current phase vector Pr(es1,s2).
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Chapter 4

Discrete Time Markov Chain to Solve

for the Optimal Thresholds

Using the MDP, we proved in Chapter 3 that the optimal waiting policy for our problem

is to use a threshold-based policy. However, solving the optimal threshold policy using

the MDP is not feasible due to the infinite horizon nature of the problem. Therefore we

present in this chapter a novel queuing theoretic model to solve the optimal threshold policy

numerically. More specifically we develop a two-ended, FIFO PH/PH/1 push out, queuing

model, to numerically determine the solutions to our optimal threshold policy. Our goal is

to implement our threshold-based policy so as to minimize the total cost. Since this cost is

equal to the total cost of waiting plus the total cost of transmission, we need to obtain the

waiting time that each packet spends within a queue and the number of packets waiting.

Since recording the individual age of every packet would make the state-space too large, we

instead present a method to calculate the age of each packet. We note that each packet

in the queue will eventually become the HoL packet before leaving the queue. If we record

the age of the HoL packet and the time that the HoL packet leaves the queue then use this

information in conjunction with, the inter-arrival times of each packet, we can calculate the

individual age of every packet. There are two ways for the HoL packet to leave the queue.
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New Packet Arrival

Push out

Queue 1 Buffer Full Queue 2 Buffer Empty
No Packet arrival 

New Packet Arrival

Coded Packet

Queue 1 Buffer Full Queue 2 Buffer Empty
New Packet arrival HoL

HoL

Figure 4.1: Proposed Two Ended PH/PH/1 Queue: Push-out Senario

The first way, as shown in Figure 4.1, is for the packet to be coded and served upon the

arrival of a pairing packet in the other queue. The second way is for the packet to be pushed

out of the queue upon meeting the waiting threshold. According to the best of our knowledge

this is the first time that a method for analyzing the waiting times is used in a PH/PH/1

push out queueing model.

We then show how our DTMC model can be reducible to a level dependant QBD structure

for efficient computing of the stationary vector. We then solve for this DTMC using the level

dependant QBD structure in order to find the stationary distribution. Using the stationary

distribution we then calculate the probability distribution of the age of each packet and

the number of packets in the queues. Next, we derive the total cost by calculating the

transmission and waiting costs. Finally, we present a GDA to solve for the optimal thresholds

which minimizes the total cost.

4.1 Arrival Process

The arrival of data packets to each queue is modelled as a discrete time phase-type arrival

function. The arrival process of queue 1 is defined by the parameters (α, T ) with n1 number

of states. Similarly, the arrival process of queue 2 is defined by parameters (γ,W ) and n2
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New Packet Arrival

Push out

Queue 1 Buffer Full Queue 2 Buffer Empty
No Packet arrival 

New Packet Arrival

Coded Packet

Queue 1 Buffer Full Queue 2 Buffer Empty
New Packet arrival HoL

HoL

Figure 4.2: Proposed Two Ended PH/PH/1 Queue: Coded Packet Transmission

number of states.

The long-term average arrival probability of queue 1 can be found by,

p = α∗t (4.1)

where α∗ = α∗(T + tα)

Similarly, the long-term average arrival probability of queue 2 can be found by,

q = γ∗w (4.2)

where γ∗ = γ∗(W + wγ)

4.2 Service Process

Let us assume that both queues are empty when the system is initialized. If there are packet

arrivals at both queues during a particular time unit, then both packets can be paired, coded

together, and transmitted within one time unit. In the case where there is a packet arrival

at only one queue, we wait for a packet arrival at the other queue so that both packets can

be coded together. Then, it is clear that the service process of one queue is equivalent to the
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arrival process of the other queue, i.e., the service process is also a phase type distribution. In

the case where a packet does not arrive in the other queue by the time the waiting threshold

is reached, then we transmit the packet uncoded to avoid further delay. Similarly, if the

current phase vector is e and the number of packets waiting in queue k k = {1, 2} exceeds

the threshold Lk,e, then the packets waiting in queue k are transmitted uncoded.

4.3 Discrete Time Markov Chain

We derive the DTMC shown in (4.3) to model the system. As this is a discrete time queueing

model, we need to define the order of events happening within a time unit. We define one

time unit such that arrivals occur at the beginning of the time unit and packet transmission

at the end of the time unit. It is important to note that this order does not affect the steady

state performance of the system.

Please note that we are recycling the previously used variables i, n, k, l to refer new set

of parameters in this chapter.

This is a five dimensional DTMC therefore in order to model this system we need to

record 5 variables in the DTMC: The number of packets waiting in each queue, the current

arrival phase of each queue, the age of the HoL packets, and the phase of the HoL packet

when it arrived. Therefore, the state space of the DTMC given by (4.3) is (n, i, s1, ss, s2),

where

• n is the number of packets in the non-empty queue (Note that one queue is always

empty when the other queue is growing with waiting packets for a coding opportunity).

We denote the number of waiting packets in queue 1 with positive numbers and that

of queue 2 with negative numbers.

• i is the age of the HoL packet of the non-empty queue.
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P =



L2,en∗ · · · L2,e1 · · · −2 −1 0 1 2 · · · L1,e1 · · · L1,en∗

L2,en∗ A
L2,en∗
0 A

L2,en∗
1 · · · A

L2,en∗
n2−1

...
...

...
...

...
L2,e1 A

L2,e1

0 A
L2,e1

1 · · · A
L2,e1

n2−1

.

..
. . .

. . .
. . .

−2 A−2
−1 A−2

0 A−2
1

−1 A−1
−1 A−1

0 A−1
1

0 A0
−1 A0

0 A0
1

1 A1
−1 A1

0 A1
1

2 A2
−1 A2

0 A2
1

...
. . .

. . .
. . .

L1,e1 A
L1,e1
−(n1+1)

· · · A
L1,e1
−1 A

L1,e1
0

...
...

...
...

...

L1,en∗ A
L1,en∗
−(n1+1)

· · · A
L1,en∗
0 A

L1,en∗
0


(4.3)

• s1 (1 < s1 ≤ n1) and s2 (1 < s2 ≤ n2) are the phases of arrival processes of queue 1

and queue 2 respectively.

• ss is the phase of the HoL packet of the non-empty queue, where 1 < ss ≤ n1 if queue

1 is non-empty and 1 < ss ≤ n2 if queue 2 is non empty.

• n∗ = en1en2

Each level n of the Markov chain represents the number of packets waiting in the waiting

queues and each level has sub levels in it to represent the age of the HoL packet of the

non-empty queue.

Note that when n = 0 both queues are empty and hence there is no need to use ss at

level 0. In this case i = 0 and the state space reduces to (s1, s2).

Now we derive the elements of the DTMC as follows. Staying in the level 0 after a

transition is defined by A0
0. This happens when there are no arrivals to any queue or when

there are arrivals to both queues then they are coded together and transmitted at the same

time unit. In this situation the age of queues remains at zero,
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A0
0 =

( 0

0 T ⊗W + tα⊗ wγ
)

(4.4)

Transition from level 0 to 1 happens when there is an arrival to queue 1 but not to queue

2; the packet arriving at queue 1 waits for a coding opportunity. The age of queue 1 now

becomes 1. This is denoted by A0
1. The transition from level 0 to 1 introduces the new state

ss to the state space at level 1. ss is the phase of the HoL packet of the waiting queue (which

is queue 1 in this case). There is only one packet waiting in this situation therefore ss = s1.

This is represented by Z1.

A0
1 =

( 1 2 3 · · ·

0 Z1 ⊗W 0 0 · · ·
)

(4.5)

where,

Z1 = X1 ⊗ ZR1 +X2 ⊗ ZR1 + ...Xi ⊗ ZRi
+ ...+Xn1 ⊗ ZRn1

, (4.6)

ZRi
is a row vector of zeros of length n2

1 and the i2th element is one

and,

[X1, X2, ..., Xk, ..., Xn1 ] = tα (4.7)

Similarly a transition from level 0 to −1 happens when there is an arrival to queue 2 but

not to queue 1. This situation is denoted by A0
−1,

A0
−1 =

( 1 2 3 · · ·

0 T ⊗ Z−1 0 0 · · ·
)

(4.8)

where

Z−1 = F1 ⊗ ZL1 + F2 ⊗ ZL2 + ...Fi ⊗ ZLi
+ ...+ Fn2ZLn2

(4.9)
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ZLi
is a row vector of zeros of length n2

2 and the i2th element is one,

and,

[F1, F2, ..., Fk, ..., Fn2 ] = wγ (4.10)

Staying in the level 1 after a transition is denoted by A1
0. Here there is only one packet

in the queue and that packet’s age can be increased by one level with no arrivals to both

queues. Note that the phase of HoL packet(the only packet in this case) is unchanged in this

situation. This is represented by I. When there are arrivals to both queues, the HoL packet

in queue 1 gets served with the new arrival to queue 2. The age of queue 1 becomes the age

of new packet which is 1 after the next transition. Now the new HoL packet is the packet

that just arrived to queue 1 therefore the phase ss which was equal to s1 will now change

according to the phase changes of the arrival to queue 1. This is represented by T̄ which is

the normalized matrix of tα such that T̄1 = T̄ . T̄ can be found by dividing each element in

each row of tα by the sum of the elements in that row.

A1
0 =



1 2 3 · · · · · ·

1 tα⊗ T̄ ⊗ wγ T ⊗ I ⊗W 0 0 0

2 tα⊗ T̄ ⊗ wγ 0 T ⊗ I ⊗W 0 0

3 tα⊗ T̄ ⊗ wγ 0 0 T ⊗ I ⊗W 0

...
...

...
...

. . .
...


(4.11)

A1
−1 represents the transition from level 1 to 0. This happens when there is an arrival to

queue 2 but not to queue 1. In this situation the only packet waiting in queue 1 gets served

with an arrival to queue 2. In this transition the phase ss disappears at level 0 as defined

by the Kronecker product with 1, where 1 is a column vector of ones with length n1.
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A1
−1 =



0

1 T ⊗ 1⊗ wγ

2 T ⊗ 1⊗ wγ

3 T ⊗ 1⊗ wγ
...

...


(4.12)

An1 represents the transition from level n to n+ 1. This happens when there is an arrival

to queue 1 but not to queue 2. Queue 2 is waiting for a coding opportunity therefore the

age of queue 1 is incremented by one. As there is no arrival to queue 2 the phase of the HoL

packet is unchanged.

An1 =



n+ 1 n+ 2 n+ 3 · · ·

n tα⊗ I ⊗W 0 0 0

n+ 1 0 tα⊗ I ⊗W 0 0

n+ 2 0 0 tα⊗ I ⊗W 0

... 0 0 0
. . .


(4.13)

Staying at the same level n after a transition is defined by An0 .

An0 =



n n+ 1 n+ 2 · · · · · ·

n B1 C0 0 0 0

n+ 1 B2 C1 C0 0 0

n+ 2 B3 C2 C1 C0 · · ·
...

...
...

...
...

. . .


(4.14)

Here Bl represents the following situation: there are arrivals to both queues and there

was no packet arrival to queue 1 during the next l− 1 time units after the arrival of the HoL

packet. The age of queue 1 now becomes n which is now the age of the next packet after the
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HoL packet.

Bl = tα⊗ T l−1 ⊗ wγ (4.15)

Cl represents the situation in which there is more than one packet waiting in queue 1.

There are arrivals to both queues and the HoL packet of queue 1 is coded and transmitted

with the arriving packet to queue 2. There was a packet arrival to queue 1 l time units after

the HoL packet. This packet now becomes the HoL packet. Therefore the age of queue 1 is

now decremented by l − 1.

Cl = tα⊗ T l−1tα⊗ wγ (4.16)

C0 represents the situation where there is a packet waiting in queue 1 and there is no

arrival to any queue. Therefore the age of the queue 1 is incremented by one. In this case

the phase of the HoL packet of queue 1 is not changed.

C0 = T ⊗ I ⊗W (4.17)

Transition from level n to n− 1 happens when there is an arrival to queue 2 but not to

queue 1. This is defined by An−1,

An−1 =



n− 1 n n+ 1 n+ 2 · · ·

n J1 0 0 0 · · ·

n+ 1 J2 H1 0 0 · · ·

n+ 2 J3 H2 H1 0 · · ·

n+ 3 J4 H3 H2 H1 · · ·
...

...
...

...
...

. . .


(4.18)

Here, Jl and Hl are defined in a similar manner to Bl and Cl respectively.
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Jl = T ⊗ T l−1 ⊗ wγ (4.19)

Hl = T ⊗ T l−1tα⊗ wγ (4.20)

The derivations of the remaining elements of the DTMC are given in the Appendix.

4.4 Solving the Discrete Time Markov Chain

To solve this Markov chain we approximate it by a finite state Markov chain by limiting

the age of waiting packets to a finite value so that the sum of stationary probability values

beyond that is negligibly small. This a realistic assumption as the age of the waiting packets

are controlled by the waiting thresholds of each queue which prevents packets to be delayed

for a prolonged time.

In order to fit this Markov chain into a known structure we block it in to different regions

so that it gives a QBD structure. Figure 4.3 shows a simplified version of the Markov chain

for given threshold values to demonstrate how fragmenting it into blocks can make a QBD

structure. With this block structure we have a new set of composite levels 0 to L1. So

we label these blocks as B
(level)
0 , B

(level)
1 and B

(level)
−1 . However this QBD structure is level

dependant. So we have to solve it by a recursive approach.
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Figure 4.3: Level Dependant QBD Structure

The stationary vector x = {x0, · · · , xn, · · · , xL1}

xn = xn−1R
(n) (4.21)

where R(n) is the expected number of visits from level n− 1 to n.

R(n) = B
(n−1)
1 (I − U (n))−1 (4.22)

U (n) = B
(n)
0 +B

(n)
1 (I − U (n+1))−1B

(n+1)
−1 (4.23)

U (n) represents the transition probabilities from level n to level n before a visit to level

n− 1.

(I − U (n))−1B
(n)
−1 records the first passage probability from level n to level (n− 1).

The boundary condition U (L1) is given by,

U (L1) = B
(L1)
0 (4.24)
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After finding U (n) for all the levels, we can find all R(n) values for 0 < n ≤ L1. Now

if we know the stationary vector x0 of level 0 we can find the complete stationary vector

x = {x0, · · · , xn, · · · , xL1} for all the levels as follows.

xn = x0
∏

1≤k≤n

R(k) (4.25)

x0 = x0(B
(0)
0 +R(1)B

(0)
1 ) (4.26)

normalized by , x0
∑

n≥0
∏

1≤k≤nR
(k)1 = 1

This gives us the stationary vector x = {x0, · · · , xn, · · · , xL1} which can be now decom-

posed in to the original levels {−L2,en∗ , · · · , L1,en∗}. Note that the stationary vector is five

dimensional according to our state space definition.

Once we find the stationary vector x, we can calculate the average waiting time W by,

W =
∑
i

|i|y(i) (4.27)

where y(i) is the age distribution of packets that can be found by summing up all sta-

tionary probabilities of different phases and levels of each age,

y(i) =


∑

n,s1,ss,s2
x(n, i, s1, ss, s2) , i 6= 0∑

s1,s2
x0(s1, s2) , i = 0

(4.28)

The average number of transmissions can be found by the sum of the product of the

stationary vector of each level with the probability of packet transmission events at that

level,

Y = x(0, 0)(αt⊗ γw)1 +
∑L1,e1−1

n=1

∑
i x(n, i)((T ⊗ I ⊗ γw)1)

+
∑−L2,e1+1

n=−1
∑

i x(n, i)((αt⊗ I ⊗W )1)

+
∑

i,e x(L1,e, i)1 +
∑

i,e x(−L2,e, i)1

(4.29)
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where,

x(n, i) =

 {x(n, i, 0, 0, 0), ...,x(n, i, s1, ss, s2), ...,x(n, i, n1 − 1, n1 − 1, n2 − 1)} , n > 0

{x(n, i, 0, 0, 0), ...,x(n, i, s1, ss, s2), ...,x(n, i, n1 − 1, n2 − 1, n2 − 1)} , n < 0

(4.30)

The total average cost per given threshold values can be found by,

c(L1,e, L2,e, e) = chW + ctY (4.31)

where ch is the holding cost per packet per time unit and ct is the transmission cost per

packet.

Our objective is to find the thresholds L1,e and L2,e for all phase vectors e to minimize

the total average cost.

{L1,e, L2,e} = argmin
L1,e,L2,e

c(L1,e, L2,e, e) (4.32)

4.5 Finding the Optimal Solution Using a Gradient Descent Al-

gorithm

We have proven that our optimization problem is convex given the sufficient condition of

ch > ct/2. Therefore, we use a GDA 1) to obtain the global optimal solution. In the case

that ch < ct/2, using GDA 1 is not guaranteed to produce the global optimal solution for

the threshold policy. However, in our analysis every case we tested where ch < ct/2, the

problem was convex, and thus the GDA 1 provided the global optimal solution.

Therefore we make the assumption that the problem is convex for all values of ch/ct in the

absence of a counter example to suggest otherwise. However, in the Numerical Results section

of this thesis, we show that our solution is most efficient in terms of total cost for all regions

of ch/ct compared to other policies. The values of the function need to be calculated for
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different L1,e, L2,e values at each phase vector e, by generating the DTMC given in (4.3) and

finding the stationary vector. Since the minimum cost is dependent on the threshold values

L1,e, L2,e, we use The Gradient Descent Algorithm 1 to solve this minimization problem. The

algorithm starts from the origin L1,e = 0, L2,e = 0. For every phase vector e a search is over

one axis using a Gradient Descent Search while values on the other axis remain fixed. This

search is run iteratively by resuming from the previous stopping point on each axis. The

iterations continue until the minimum point is found for each phase vector e. Here, m is the

gradient of the cost function at the given point and α is a parameter which can be adjusted

increase the rate of convergence. The value selected for α defines the step size dmαe for

searching. If α is too large then the step sizes will be too big and the minimum point may

be skipped during the search. However if α is too small, the step size will be too close to

unity level which defeats the purpose of using the algorithm. Therefore, a good step size is

chosen in accordance with the system characteristics.
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Algorithm 1 Finds the Minimum Cost
L1,e ← 0, L2,e,min←∞
for doe ∈ (s1, s2) :

loopL2,e : Similar to LoopL1,e . L2,e changes instead of L1,e. L1,e and e are fixed at
previously assigned values

loopL1,e :
m← C(L1,e,L2,e,e) − C(L1,e+1,L2,e,e)

if m > 1 then
L1,e ← L1,e + dmαe
if min ≥ C(L1,e,L2,e,e) then

min← C(L1,e,L2,e,e)

else
L1,e ← L1,e − dmαe
BREAK loopL1,e

end if
goto loopL1,e

else
if m < 1 then

L1,e ← L1,e − 1
if min ≥ C(L1,e,L2,e,e) then

min← C(L1,e,L2,e,e)

else
L1,e ← L1,e + 1
BREAK loopL1,e

end if
goto loopT1

else
if m = 0 then

min← C(L1,e,L2,e,e)

BREAK loopL1,e

end if
end if

end if
end loop

end loop
end for
return min, L1,e, L1,e
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Chapter 5

Numerical Results

In this chapter, we investigate the behaviour of our system by analyzing the numerical results

obtained by using the proposed model.

We start by defining the arrival functions used to generate the results. To do this, we

created test phase type function matrices, Arrival 1, Arrival 2, Arrival 3 and Arrival 4,

whose outputs are different long-term arrival probabilities. We then used these test phase

type arrival functions to generate our numerical results.

Arrival 1:

α = [0.5, 0.5], T =

 0.5 0.3

0.2 0.6

 .
Arrival 2:

α = [0.5, 0.5], T =

 0.25 0.35

0.25 0.55

 .
Arrival 3:
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α = [0.5, 0.5], T =

 0.1 0.2

0.3 0.4

 .
Arrival 4:

α = [0.5, 0.5], T =

 0.22 0.45

0.25 0.13

 .
We plot the probability distribution of the number of waiting packets in each queue as

shown in Figure. 5.1. Here, both queues have a fixed threshold, L = 10, and the long term

arrival probability of Queue 1 > Queue 2. We then observe how each queue builds up with

packet arrivals and transmissions. Note that the graphs have been plotted using continuous

line graphs (as opposed to discrete) to avoid appearing cluttered. Figure 5.1 shows us how

the queue with a higher arrival rate will have more packets waiting than the queue sending

packets at a slower rate.

Figure 5.3 reveals how the average number of transmissions per time unit decreases when

the waiting threshold size of each queue increases. Note that the transmission rate is 0.4

packets per time unit when the threshold levels are set to zero, and that this rate is equivalent

to the case where there is no buffering of packets.

We observe that the rate of packet transmissions will converge to the rate of the arrival

function with the greatest average long-term arrival probability. The reason for this is that

the packets in the queue with the lower arrival rate are more likely to find packets in the

other queue with the higher arrival rate for coding. As the excess packets in the queue

with the higher arrival rate are transmitted un-coded, the transmission rate converges to

the rate of the queue of the higher arrival rate. As the buffer size increases, the average

number of transmissions converges to the rate of the arrival function with the greatest

average long-term arrival probability. The reason for this is when we have larger buffers, the
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packets are able to wait long enough to have the maximum number of coding opportunities.

In Figure 5.2 we show how the average waiting time increases as we increase the waiting

thresholds of each queue. Therefore as the buffer size increases, the waiting time increases.

However as demonstrated in Figure. 5.3 as the buffer size increases, the average number

of transmissions decreases. These two trends demonstrate the trade-off between waiting

vs. transmission. Our objective is to find the optimal point that minimizes both the total

waiting and transmission costs. To do this we generate and compare numerical results for

the optimal total cost according to the following four policies :

Method 1: Multi-Threshold Policy

This is the phase dependent threshold policy we have proposed for phase type arrivals. Each

queue has a waiting threshold dependent on the current phase vector of the arrival function.

We expect this policy to be optimal.

Method 2: Probabilistic Threshold Policy

In the case where the arrival phase is not observable, we present this policy to probabilistically

select the waiting policy.

Method 3: No-Waiting Policy

Under this policy, the access point transmits all the packets at every time unit without

delaying. If there are packets coming from both nodes the access point will code them, but

will immediately transmit any packets that are unable to find a coding opportunity. Note

that this policy is expected to be effective when the holding cost ch is high.
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Method 4: One-Sided Waiting Policy

This policy is based on the long term probability of packet arrivals to queues 1 and 2

respectively. Under this policy, upon transmission of coded packets, all the remaining packets

in the queue with the higher arrival probability are sent un-coded. This is the policy that

can achieve the highest coding opportunities without the system being unstable since the

highest rate of coded packets cannot be more than the rate of the arrival function with the

lowest average long-term arrival probability. This is similar to the policy proposed in [39]

Method 5: Geomatric Approximation

In this policy we take the mean of the arrivals and consider it as a Geomatric arrival and

use the single threhold policy proposed in [57]

Since the latter four policies are specific threshold policies, we expect that they will

not perform better than our multi-threshold policy which we have proven to be optimal.

To demonstrate this, we will investigate the efficiency of these threshold-specific policies in

comparison to our proposed policy.

In addition to using results obtained from our proposed model, we also present the results

from a simulation of our proposed model. Within MATLAB we simulated the two queues

under phase type arrivals as well as the coded and un-coded packet transmissions as packets

arrive. By storing the age of each waiting pack we calculated the total cost of the system.

We show that our simulation-based results verify the analytical results generated from our

queuing model.

Next, we present our numerical results to compare the long-run minimum average costs

of our system model under different arrivals. We compare the average costs of the policies

normalized by the transmission cost ct over different possible values of ch/ct.

From our numerical results we observe that the phase dependent multi-threshold pol-

icy achieves the lowest average cost when compared to methods 2, 3 and 4, as shown in
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Figures 5.5. Both the Multi-Threshold Policy and the One-Sided Waiting Policy converge

at extremely low ch/ct ratios. This is because when the holding cost ch is very low, both

policies have a large enough waiting thresholds to achieve the maximum coding opportu-

nities. The Approximated Threshold Policy shows slightly higher cost when compared to

these two policies at extremely low ch/ct because it chooses the threshold probabilistically

when the phase is not observable. Since there is lack of information about the current phase,

this policy cannot present the optimal decision. Figure 5.4 shows a comparison between

our proposed threshold method vs the Geomatric approximation method. The Geomatric

approximation of the mean of the arrivals gives higher cost compared to the multi-threshold

and probabilistic threshold methods. The reason for this is, we do not take the arrival phase

into account when deciding the thresholds using the mean of the arrivals. The arrival prob-

abilities in Phase type distributions depend on the current phase, therefore considering the

current phase for determining the threshold policy helps us to make better decisions com-

pared to Geomatric approximation where we only consider the over all mean of the arrivals

to decide the thresholds.

At extremely high ch/ct ratios, both the Multi-Threshold Policy and the Approximated

Threshold Policy converge to the cost given by the No-Waiting Policy. The reason for this

is that at very high holding costs, transmitting packets with little to no waiting time is cost-

effective due to the relatively high holding costs. When the difference between the long-term

arrival probabilities of each queue increases, both the Multi-Threshold and Probabilistic

Threshold policies show significant cost reduction within a lager range of ch/ct. This is

because when the difference between rates of packet arrival increases, storing packets in a

buffer can increase the probability of having more coding opportunities. Furthermore, when

the two queues have nearly the same packet arrivals rates, there is a high probability of

packet pair formation for coding with less waiting. Waiting longer would only be beneficial

when the holding cost is relatively low.
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Another important parameter for our system is the Coding Ratio which represents the

efficiency of each policy at generating network coding opportunities. The Coding Ratio is

defined as the long-run proportion of coded packets divided by the total number packet

transmissions. Figure 5.6 present the Coding Ratio attained by each policy over different

values of ch/ct . From these figures, we observe that the coding ratio of the Multi-Threshold

Policy and the Approximated Threshold Policy are consistently between the coding ratios

of the No-Waiting Policy and the One-Sided Waiting Policy. The No-Waiting Policy has

the lowest Coding Ratio since it never holds a packet to wait for a possible network coding

opportunity. The One-Sided Waiting Policy consistently gives the maximum Coding Ratio

as it can achieve the most coding opportunities in a stable system. Any policy that has

a longer waiting policy than the One-Sided Waiting Policy may result in a case with an

infinite buffering of packets and thus an unstable system. Since the maximum Coding Ratio

is correlated with a higher waiting cost, and the minimum coding ration is correlated with

increased transmission cost, the optimal policy must lie between these two limits. As the

ch/ct decreases, the Coding Ratio of the Multi-Threshold Policy converges to the Coding-

Ratio of the One-Sided Waiting Policy. This is because when the holding cost is very low, it

most efficient for the system to wait until the maximum number of coding opportunities is

achieved. Similarly, when ch/ct is very high, the Coding Ratio of the Multi-Threshold Policy

converges to the Coding Ratio of the No-Waiting Policy, which is the minimum Coding

Ratio. This is because when the holding cost is very high, it is cost-effective to transmit

packets un-coded than waiting for coding opportunities.
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Chapter 6

Conclusion and Future Work

We have analyzed the Waiting vs. Transmission trade-off in Opportunistic Network-Coding

in the context of a two-way relay wireless access point with phase-type packet arrivals. For

our analysis we developed an MDP model to find an optimal waiting policy that minimizes

the total long-term average cost. We proved the existence of an average-cost optimal policy

within our MDP model, and that our problem was convex under sufficient conditions. Then,

using the Steps of Value Iterations Algorithm for the MDP, we proved that the nature of the

global optimal solution is a threshold-based policy, which defines a separate threshold for each

phase vector of phase-type arrival functions within each queue. For the case of unobservable

arrival phases, we introduced a technique to probabilistically predict the arrival phase vector

in order to determine a threshold policy.

Due to the difficulty of using this MDP to numerically solve for the optimal solution, we

developed a novel FIFO PH/PH/1 two-ended DTMC to model this system and efficiently

calculate the optimal solution using a gradient descent algorithm. Using a technique that

records the age of the HoL packet and the time that it leaves the queue, we presented a

novel technique to keep track of the age and the number of waiting packet in the two ended

push-out queue. We then showed how this DTMC can be reducible to a level dependant

QBD structure to compute the stationary vector, and then calculate the total transmission
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and waiting costs.

Using the numerical results generated for several test arrivals, we showed that our pro-

posed multi-threshold policy is most effective at minimizing the total cost for all the ranges

of the normalized packet holding cost, ch/ct. Furthermore, we compared the performance of

our threshold policy with the One-Sided Waiting Policy (the policy with the highest Coding

Ratio within a stable system) and also with No-Waiting Policy, (the policy with the lowest

Coding Ratio within a stable system) which will always transmit unpaired packets without

waiting.

From our numerical results we conclude when the arrival is observable that the Multi-

Threshold Policy performs better than the other waiting policies in all situations. However,

the No-Waiting and One-Sided Waiting policies provide the nearly same performance as the

Multi-Threshold Policy in two different operating regions. Whereas the One-Sided waiting

policy performs near-optimally when the normalized holding cost ch/ct is very small, the

No-Waiting Policy performs near-optimally when the normalized holding cost ch/ct is very

large. These policies are especially attractive within their respective regions due to their

simplicity and ease of implementation. Therefore, at the extremes of a very large normalized

holding cost ch/ct, and very small normalized holding cost one should select the No-Waiting

and One-Sided policies, respectively. Using this approach would eliminate the need for

additional resources for the computation of the Multi-Threshold Policy. However, for all

other values of ch/ct our Multi-Threshold Policy should be used to minimize the average

total cost. In the case that the arrival phase is not observable our Approximated Threshold

Policy should be used for all other values of ch/ct.

6.1 Possible Future Extensions

A possible future extension of our work is to apply our Multi-Threshold Policy to a star

network topology as opposed to our two-way relay Access Point topology.
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To extend the work to more than 2 nodes one could develop a star network protocol based

on Time Division Multiple Access (TDMA). For example, consider a traditional wireless star

network with a single antenna communicating with nodes using TDMA. It takes N TDMA

time slots to collect data from N nodes and another N time slots to switch the collected

data to the intended destinations.

M1

M2

M3M4

M5

Figure 6.1: TDMA Wireless Start Network

Sync R1 R2 R3 RN T1 T2 T3  TN

Receiving Transmission

Sync R1 R2 R3 RN T1 T2  TM

Receiving Transmission

Figure 6.2: Time Slot Arrangement of One TDMA Cycle

We can introduce network coding to this and reduce the number of time slots required

for transmission. For example if M1 communicates with M2, and M3 communicates with
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M4, we need to utilize four transmission timeslots to switch packets from M1 to M2, M1 to

M2, M3 to M4 and M4 to M3 but we can do the same communication by transmitting two

coded packets M1 ⊕M2 and M3 ⊕M4 using only two time slots. We can see that network

coding can reduce the number of TDMA time slots M(M < N) (Figure 6.3) in a wireless

star network..

Sync R1 R2 R3 RN T1 T2 T3  TN

Receiving Transmission

Sync R1 R2 R3 RN T1 T2  TM

Receiving Transmission

Figure 6.3: Reduced transmittion time slots with network coding

M1 to M2 M1 to M3 MN to MN-1

M2 to M1 M3 to M1 MN-1 to MN

Figure 6.4: Proposed New Data Queues Pairs in the AP

The AP creates pairs of packets based on the source and the destinations of packets, then

codes them and transmits. It can maintain queues according to flow information. There are

N(N − 1) queues for each source destination, pairs M1 to M2, M1 to M3, M1 to M4, etc.,

as shown in Figure 6.4. However, finding an optimal waiting policy for the access point to

optimize the total cost will be a challenging problem.

During each TDMA cycle, each N nodes in the star network can generate data packets

according phase type distributions and transmit to one or more of the N − 1 destination
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nodes via the AP. Thus these needs to be buffered at the AP upon their arrival based on

their arrival and destination nodes so that they can be paired for network coding. Since

some of these packets can be coded together, we can save the number of TDMA time slots

required for transmissions and reduce the length of the overall TDMA frame the all network

throughput. The graph in Figure. 6.5 shows a simple test case simulation where every node

always transmits a data packet to a randomly selected destination node during every TDMA

frame. Based on their source and destination nodes the data packets together at the AP

and transmitted as coded packets. The simulation was run for 30 nodes and shows how

changing M (the number of transmission time slots) in the TDMA frame can increase the

overall network throughput.
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Figure 6.5: Network Throughput vs M (N=30).

In a more practical setting these nodes generate data packets according to a general

arrival function which can be modelled using discrete phase type distribution and it might be

advantageous for some packets what cannot be paired during the same TDMA to be delayed

for a coding opportunity. The optimal waiting policy for these packets can be dependent on
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a number of parameters such as, the number of packets waiting in each queue, the age of the

waiting packets, the arrival functions of each nodes, and the QoS requirements etc. And also

once packets have been paired for coding, there should be a transmission scheduling algorithm

to determine the priority of the packets to be allocated to the available TDMA time slots.

Therefore, one can use extend the work de presented for optimal waiting policy and develop

an optimal waiting and scheduling policy to minimise the total cost of communication in a

star network topology.
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Appendix A

Derivation of the rest of the DTMC

in (4.3)

A−i1 =



−(i− 1) −i −(i+ 1) −(i+ 2) · · ·

−i J̄1 0 0 · · ·

−(i+ 1) J̄2 H̄1 0 0 · · ·

−(i+ 2) J̄3 H2 H̄1 0 · · ·

−(i+ 3) J̄4 H3 H̄2 H̄1 · · ·
...

...
...

...
...

. . .


(A.1)

A−i0 =



−i −(i+ 1) −(i+ 2) −(i+ 3) · · ·

−i B̄1 C̄0 0 0 0

−(i+ 1) B̄2 C̄1 C̄0 0 0

−(i+ 2) B̄3 C̄2 C̄1 C̄0 0

...
...

...
...

...
. . .


(A.2)
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A−i−1 =



−(i+ 1) −(i+ 2) −(i+ 3) · · ·

−i wγ ⊗ I ⊗ T 0 0 0

−(i+ 1) 0 wγ ⊗ I ⊗ T 0 0

... 0 0 γ ⊗ I ⊗ T 0

0 0 0
. . .


(A.3)

Where,

J̄l = tα⊗W l−1 ⊗W (A.4)

H̄l = tα⊗W l−1wγ ⊗W (A.5)

V̄l = (tα + T )⊗W l−1wγ ⊗W (A.6)

X̄l = (tα + T )⊗W l−1 ⊗W (A.7)

B̄l = tα⊗W l−1 ⊗ wγ (A.8)

C̄l = tα⊗W l−1wγ ⊗ wγ (A.9)

C̄0 = T ⊗ I ⊗W (A.10)

The matrices, A
L1,e1
0 · · ·AL1,e1

−(n1+1) · · ·A
L1,en1
0 · · ·AL1,en1

−(n1+1) andA
L2,e1
0 · · ·AL2,e1

(n1+1) · · ·A
L2,en2
0 · · ·AL2,en2

(n2+1)

represents the transmissions when the waiting thresholds hit while waiting. If the number of
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waiting packets exceeds the threshold we transmit all the excess packets encoded, so these

elements can be defined using a similar approach we took to define the previous elements

the only difference is when a threshold is met the next transition level is determined by the

threshold value corresponding to current phase vector.
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