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- ABSTRACT

A fully conforming, displacement type finité element of rec-
tangular shape is developed and applied to the solution of fectangular
plates in bending. The transverse deflection 1is represented by a poly-
nomial expression which includes terms up to degrée'eight. Six‘deflection
pafameters, the displacement and its first and second derivatives, are
specified at each corner - gifing a total of 24 degrees of freedom for
the element. This element is shown to be generally more accurate for
'aynhmic problems than previously available elements.

The assumed deflection polynomial is-sﬁch that the rectangular
element conforms with a triangular element. Then a cqmbination of rect—.

- angular ahd triangular elements is capable of describing arbitrarily shaped
boundary configurations. The accuracy of‘various combinations of the two

. types cf elements ié fested by anélysing the free vibrations of plates with
a rectangular énd siﬁple non-rectangular geometry.

Subéequehtly, a combination of ihese‘elements is used to deter-
mine the dynamic.Characteristics.of a box with a sloping rooff The accuracy
of the theoretical natural frequencies and mode shapes is checked.by

comparing them with experimental values.
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NOTATION

_Structural Properties
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XY,2

X,Y,2
E',n,w}

mass/area

some standard length
acceleration due to gravity .
Young's modulus

Poisson' ratio.

thickness

cross sectional moment of inertia

Et> '
— flexural rigidity

12(1-v7)
transverse displacement

overall mass matrix
element mass matrix
constrained overall mass matrix

overall stiffness matrix |

- element stiffness matrix

constrained overall stiffness matrix

transformation matrix

rotation matrix

wavelehgth

global co-ordinate system

local co-ordinate systems




Subscript‘sf

¢ . constrained
e element

X,y partial derivative with respect to x and y respectively

{1} vector matrix

. square matrix




_CHAPTER 1

Introduction

The prdspect of supersonic passenger transport services has
resulted in concern with the effects of sonic boom on people and buildings.
(A sonic boom is the pressure disturbance observed on the ground when an

aircraft flies overhead at a speed greater than that of sound). Informa-

tion regarding these effects would be invaluable‘invthe prevention of damage -

to buildings and the reduction of annoyance to people withinvthe bUildings.
To gain such knowledge from full scaletests is expensive and causes
annoyance to the general publié. In an atfempt to utilize other methods,.
Popplewell (1) successfully embloyedvfwo éimulatioh techniques —’6ne
experimental and the other mathematical - to determine the response 6f.a
iflatfroofed structure to é sonic boqm.. The mathematical approach, how-
evef, is much more flexible aé structural changes,‘which mightube in-
corporated at the design stége, can be accomodatedbeasily.

In-the'interest of extendiﬁg the mathématical methéd to.more
familiar structural geometries, the dynamic characteristics of a box-
type structure with 3 51oping roof are investigated. The theoretical .
frequencies and mode shapes are evaiuated and compared to experimental
results. |

The experimental model was constructed of Perspex and dynamic
characteristics determined by using harmonic excitation.

The mathematical model employed the finite element displacement
method. In the application of this method, it is assumed that the |
structure is composed of a grid,of_interconnected elements with ‘knOWn
maSS:andfstiffness characieriétics. Using similar assumptions as
reference 1, the free Vibrations of a three dimensional structure may be
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reduced, under certain boundary constralnts to a complex shaped flat
plate undergoing flexual vibrations.

| Trlangular, unlike rectangular f1n1te elements, can reallst1cally
approx1mate such complicated boundary geometrles but they suffer from the
disadvantage that their orientation can ‘have a significantfeffect on
-accuracy. 'Coner et al (10) compare previouslyvarailable.rectangular_and_v
triangular plate-bendingrelements and conclude'that their conferming |
triangular element NRCD is super1or (Conformlty in thlS context means

‘ that transverse dlsplacements and slopes are cont1nuous between elements)
However, a conformlng rectangular element, UMS, 1s developed in this thesis
and shown to be better than NRCD for dynamic problems UM6 has the addltlon-
~al advantage that it conforms with NRCD so that a comb1nat1on of these two
‘elements is capable of descrlblng 1rregu1arly shaped boundarles, but the
combination is- only useful if it is more accurate than usrngitrlangular'
-elemente alene. This is demonetrated tq be the case;for the partiCular ex-
amples of a rectangular and a cantilevered triangular plate in bending.

Then the eombination is shown'to give satisfactoryjagreement with ex-

perimental data for the free vibrations of a box with a sloping roefg




* CHAPTER 2

2.0 ;' Introduction

' Cver its 1ong period of development, the finite element dis-
placement method has proved to be a powerful technique for the dynamic
“and static analy51s of structures. In this method a structure is re-
presented by an assembly of elements each having an appropriate mass and
stiffness. Muich recent research has been-undertaken to generate element
properties more accurately with increesingly sophisticated'fonns of the
assumed displacement-distribution within an element. ‘To assess the re-
lative accuracy of different approximations, a rectengular simply-support-
ed plate is often considered,as exact solutions are well,known.

. A survey of various approximations for triangular and rectangular ,
plate bending elements was presented by Cowper et al. (10). It was |
suggested that confomity is a. desirable property of these elements pro-
viding fields of strain are represented accurately. Conformity in this
context means that,only transverse displacements and slopes are con-

“tinuous between elements. Bogner et al . (16),;But1in and Leokie'(18)

and later Mason (3) go one step further by imposing total compatibility

between rectangular elements. Compatibility implies that the unknown
displacements and derivatives are not only continuous at nodal points but
- - also along'common'edges between elements. Hence, the deflection, its.
first derivatives and twist are continuous for a 16 degree-of -freedom
rectangular element and, additionally, curvatures are continuous for

24 degrees of freedom. -Subsequently, Cowper et al (10) developed. a

different displacement function for a conforming triangular element

(NRCD) which proved superior to elements previously available.



However, a conforming rectangular element; UM6, is formulated

in this paper and shown to be better than NRCD for dynamic problenms.

- UM6 has the addltlonal advantage that it conformis with NRCD so that a
canbination of these two elements can. be used to describe camplex bound-
~.ary shapes. A study of various ratios of the mmber of rectangular to
trlangular elements is presented for the partlcular examples of a

smply-supported rectangular and a cantllevered trlangular plate in bendlng.

2.1 - A Conforming Combina'tion of Rect'angular‘and Triangular Elements. )

a The form of the displacement appro_ximation for UM6 is based
on the algebraic polynomial used for NRCD. This polynomial has a (iuihtic
and cubic variation of deflection and normal slope respectively along
.any edge in the edgewise co-ordinate. To ensure contiﬁnity of displace-
 ments and slopes between elements having a common edge (conformity), the
coefficients must be determined uniquely by quantities at the terminal -
nodal points.. These reqliire'ments are satisfied by using six"defleetion
parameters at each nodal point. For M6 to.com:Eom with NRCD, it must
have the same variations along edges and.identiuk:al parameters at coinci—.
dent nodal points. These parameters are the transverse deflect.io'n and its
i.’:c‘irst and second deriyatives (w, W}C )” wxx" ny, wyy) - a total of

18 and 24 degrees of freedom for the triangle amnd rectangle respectively.
Then the six coefficients of the quintic polynamial are fixed uniquely
by the deflection, edgewise slope and edgewise cufvatufe at each of two .
terminai nodal points. SiJnilai'ly, the cubic is defined uniquely by the
normal slope and the .twist at each of the temminal points.

Using the local co-ordinate axis shown in Figure 1(a), the

~displacement approximation satisfying the deflection and normal slope

conditions along any edge of the rectangle can be written as -
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Terms up to order eight are present within the rectangular element but
‘quintic deflection variations exist along edges. Bracketed terms in
the above expression are required to satisfy the cubic normal slopé
conditions.

The 24 generalised displacements for rectangular element UM6

are assembled into a column vector {w;} whose transpose is

1’wkl’Wyf‘wxxl’wxyl’wyyl’wé"” Waeesy Wyenod) (2)

A{wi}T - W
where subscripts 1, 2, 3 and 4 refer to the numbered nodal points in

Figure 1(a). Using equation (1), each term in ﬁ@l} can be expressed

in terms of the a; to give
WY =T A
B} =T A} e

-I is a 24 x 24 matrix and {A} is a column vector of the
twenty four polypomial_cogffig%gnts aps gy Bzye-eBoye The determinant

of T has the value -3.160494 (ab)go; it is only'zero when the area

of the rectangular element vanishes. Hence, T is not singular in practi-.

cal situations so that from equation (3),



wr=tley S

- In derlvmg an 1dent1cal relatlonshlp to (4) for triangular
element NRCD, three unknowns have to be elxmlnated from the general
quintic polyno_mlal assumed for the deformatlon. Agaln it is achleved
by"stipulating that the normal slope has a cubic _,Variation along element
boundaries. Thus the temm x4y is omitted ‘to satisfy‘ the slop'e condition .
along edge - y=0- resultmg in the twenty term polynomlal expressmn
shown in Figure 1(b). Two further coefficients have to be elnnlnated as
the triangle has only elghteen generalized dlsplacements correspondlng to
six dlsplacements at each of its three nodal pomts. The slope condltlon
- along edges P1P3 and P2P3 in F;gure 1(b) produces two equations to
detemine the ex‘traneous coefficients in terms of the remainder. Then
Cowper et al are able to invert a 20 x-20 T mattix and reduce the size

of the inverse by omitting the last two columns. ThlS results in an in- .
verse matrix which is consistent with the twenty coeff1c1ents and
eighteen generalized displacements contained in vectors correspondlng
to {A} and '{Wl} respectively. | |

In the following _'section, mass and stiffness matrices are
derived for the rectangulai* element in an identical mannei‘ used. by
Cowper et al for their element Differences in detail occui* because
of the dlssnnllarlty of shape between the trlangle and rectangle
. Consequently, 1nt_egra_ls over element areas require different limits and
a more direct approach can be used to impose normal slope conditions
on the rectangles: dlsplacement approximation. Closed-form expresslons
are obtained in both cases which allow the entti.es of the matrices to be
N generated automatically within the computer. Then a system's equations
of motion are derived in such a way- that the total energy is stationary.

6




2.2 Generation of Element Mass and Stiffness Matrices

The stiffness and mass matrices of elements UM6 and NRCD are
obtained by considering the strain and kinetic energy of a uniform iso-
tropicvplate'in bending. Classical theory gives

_1 2 2 2 |
U, —vﬁ-D J {w T wyy + vakxwyy +2(1 v)wxy} dA, (5)
Ag |
as the strain energy of an element, D is the flexuralrigidity, v is

Poisson's ratio and A is the area of the element. The only difference

in the following derivation and that of reference(Ifjis caused by areas

e

discontinuity of the variation of vy at vertex P, in Figure 1(b),

the integration for NRCD 1is taken as the sum of the integrals over

triangles PlQP3 and QPZPS' Typical 1imits ére then 0 <x <a

0 f_y'jpc(l - x/a) for QP,Ps. Limits for UM6- in Figure 1(a) on the

other hand can be written simply as -a/2 <x < a/2 and -b/2 <y < b/2.
Reference(10) shows that if the approximate deformation over the

triangular element is written in the form

wix,y) = I axly’ o (6)
1 .

then a typical temm f w}zcx‘dAe in the strain energy equation (5) may be
A .

written as ©
) ] - ] — , — |
J W dA, = II aiaj ﬁnfnjﬁni 1)(mj l)PQni + m 4, ng + nj)} (7)
A 1] :
e
where

(8)

Fm,n) = & @™ - o)™ nint/m o+ 0+ 2)0 .

A of the triangular and rectangulai elements being different. Due to the




F0110w1ng the same procedure, equatlons (6) and" (7) remain valld for o
- UM6 and equation (8) takes the form |

0 either m.or n even

Fn,n) - @
’ a?“*lb‘?"l/(z’“*n mn  m and n both odd . . 4, -

Other terms in equation (5) are evaluated in a smllar manner and then

comblned to g1ve U, in the quadratlc form

U, = 7D {a} k {a}. ’ A.‘(710)1A

A typical component kij of matrix 1_< is givem by

- kij = mimj (mi - 1)(mj - 1) F(mi + mj - 4, ni, + nj)__+'l-
-ninj(ni'— 1)(nj —t ;I.) F(m:.L + mj, n.i + nj -4) +.
{2(1 - \))m_imjninj_ + minj (mi - 1) i(nj - })«+

J J

m..ni(mj,- (n; - D} Flmy +m, - 2, ng + n; - 2) o (‘11)
for both NRCD and UM6. Combining equations (4) and (10) produces

(o=
]

ip {'v_:ﬂT K fwd N o oaw
where

K=abhler? | R € )
Kl has to be transformed now form local (x,y) to global co-ordinates

X,Y). E‘mploylng the well known relatlons

wx=wxcose+stme

- 2 . 2
wm_—vsoccos e+wXY25mecose+_wYYsln 3]

etc. n . | S (14




- where 6 is the angle between the x and X axes, gives 5 1 B s

Aw b= R{w} . R £
R is the rotation matrix contalnlng ’crlgonometrlc functlons ‘of
6.'. It depends only upon an element's orientation with respect to the

global' axes. Using equations (12), (13) and (15), Ue 1}5{ given by

'where
k= RT @PKTHR S an

is the form'of the eiement stiffness matrix in the global co-ordinate :
system for both NRCD and UM6.
The mass matrices for both elements are derlved 1n the same way

as the stiffness matrices. Consider the kinetic energy of an element

wzptfwsze | L S @as)

Ae

3
]
o =

where p and t are the den51ty and- thlclcn.ess of the plate respect-

“ivelyand w 1is the circular frequency for smusmdally time-dependent

vibrations. It can be shown that mass matrix M, corresponding to K,

-

takes the form
=’ @ h e R, o | a9
'Ihe'eomponents of | ‘m are determined from
mlJ = F(mi + mj, hi + nj) o | B (20)
forvboth NRCD end UMG ahd m'i and nl are fche e@ohents in equa.tionl '(6) . )

-
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The total energy E for. the free transverse motion of a uni-

'fbrm plate is obta1ned by summlng ‘the strain and kinetic energies over
'allfelements.. Apply;ng compatlblllty condlthns at each of the nodal
. points gives |

B = K- 2 M ). o @1

K and M are the overall stiffness'and’mass matrices, respeetively, for
the plate-and w} 1is the displacement vector Which contains'alluthe
possible nodal displacements Equat1on (21) is valld for any combination |
of rectangular and triangular elements prov1d1ng care is exerc1sed in
applylng compatibility condltlons |

Some of the nodal dlsplacements must be constralned to zero in |
.order to include the plate%;edge conditions. Only dlsplacement constralntsk
can be applied directly to equation (21) whieh 1eads-to some disagree-
ment in published 1lteratnre (3) wnether displacements'corresponding to
force boundary conditions should be employed. To facilitate the com-
parison with the bulk of previously published work, force as well as
kinematic boundary conditions are used in this thesis for simply-supported

and fully fixed edges but not for free edges. Thus,'fot example, the

nommal curvature as well as displacement and edgewise slope and curvature

are‘constrainsd to be zero at nodal points on a simply-supported edge.
Details of other edge conditions are well known and need no further
comment. Then quadratic energy matrix (21) can be partitioned and
redueediqi size to produce

2

K, - 28 MT {w ) . (22)

where {Wé} is the vector containing only the non-zero nodal displace-

.10



ments. K'\'énd ,M ~are the constrained stiffness and mass matrices,

respectlvely, for the plate
Having constralned the matrices, the energy is made statlonary
by dlfferentlatlng equatlon (22) with Tespect to each of the nodal

: d1splacements in turn and equat;ng_lt to zero. This procedure~g1ves the

required equétions_of motion as
‘[DK. - thM]{ 1} ={0} S | 23
[D XK. - ptw M] {w} = {0}, S : (23)

‘For non-Singular.-KE, “the above équation may bevreducéd to the standard

eigenvalue'problem.

where
-_ -«1' ‘ . . . B .t R
S. = KE. ME and A D/ptw - | | (25)

Using double prec151on arlthmetrlc throughout, eigenvalue
problem (24) 1s solved using the QR method - detalls of which are glven‘
.by Wilklnson (16) . The solutions give the required natural frequenc1es

and the dlsplacements of the constrained system.

‘Mode shapes of the original system are obtained by relnsertlng

the zero nodal displacement constraints.

23 Discussion of Results

The natural frequencies and normal modes of a plate with side

1engths in the ratio 40 to 27 were determined using various assemblages
of UM6, Cowper et al's triangular‘element NRCD.and Mason's réétangular
- elements. Figure 2 shows the arrangements for the two support conditions

~ considered; all edgés'were either simply-supported or fully fixed. The

11



complete_plate’was’idealized with N identically dimensioned elements.

stdvéhtage _was takehvof symnetry abeut the plate's non-diagonal axés so that
only.a quarter of the plate need be considered *ith symmetry'cénsfrainrs.
imposed on appropriate boundaries. This simplification‘reduces the eigen-
value problem_(?4j to about a quarter of the size of the original
"problem’with a corresﬁénding.reduction in éomputer'storage requiréments.
| By considering two arrangements (shéwn in Fiéure 2 as 'P' and
"Q') Cowper et al showed that the orieniation'of NRCD has a significant
-;'effect'on accufacy~for static broblems. This point is invéstigated for
dynamic cases using the same afrangements.. |
" Natural frequencies computed'with the different elements ére

vcompared‘initially-in Bigﬁre 3 for the simply Suppqrted—plate, since fhe
‘exact solution for this boundary condition is well known. The percentage

error in this figure is defined as

(approx1mate value - exact value) x 1005 = - S o @2e)
exact value _ . _

It is seen that UM6 generally gives the most accurate natural
frequencies for a given nﬁmber of elements. Exceﬁtions 6ccur when nine
or fewer elements are used to determine the highef frequencieé. Although
Mason!s 24 degree-of—freedcm element is most accurate in these cases, |
UM6 always produces least error in the first two natural frequencies.
Figure 3 also shows that the orientation of NRCD can be significant for
_bdynamic problems when only eight elements idealiée the plate. As for
the static case, Q is superior to the P patternm. ere is very little
difference between the two arrangements for a larger’nﬁmber of elements
 but, surprisingly, the P is then consistently better than the Q pattern.

The computed natural frequehcies of UM6 converge towards their

1z




theoretical values far more quickly with an increasing number of elements

.‘than correSpondlng frequencles calculated with the other elements. Mason s

element although relatlvely accurate for a small number of elements

- has the worst rate of convergence.l |

A comparison on the basis of number of elements alone is un-

" fair to the trlangular elements as two triangles can constitute one
rectangular element with both systems having the same degrees of freedom.
Hence it may be argued that a better basis for comparlson is. the total
constralned degrees of freedom of the complete structure, as ‘this number
_ g1vesva measure of computational effort and storage‘requirements. ‘Here
Aconstrained degrees of freedom is the difference between the total

degrees of.freedom of the structure and the mumber of boundary constraints.

~ Using constrained degrees of freedom, the only variation from previous

' observatlons is that the difference in the characterlstl convergence rates

- produced by UM6 and NRCD is not so marked although UM6's is still the
best. |

Also given in Figure'j(a)are the limits on the errors of the
first‘ten'natural frequencies obtained for a given number of constrained:
degrees‘of freedom;With‘Mason's 16 degree-of-freedom rectangular element.
It is seen that a larger number of the 16 degree-of-freedom element is
superior to- the use of the element with 24 generalized'displacements -a
fact noted by the various originators of these elements...H0wever a similar

comparison shows it is preferable to use UM6.

13




The»preCise accuracy of a calculated mode shape is difficult to

assess and to present. 'The.aecuracy of a natural frequency, however, gives
~ some indication of that of the associated mode shape. Por simply-'
supported edge conditions, the mode shapes should be double sine (or

cosine) waves.. Using at least 82 constrained degrees of freedom, the

~ computed nodal displacements, slopes and second derivatives agree w1th.
.'theoretlcal values to at least six, three and two Significant figures,
respectively, for UM6. Corresponding accuracies are reduced generally
'for the other two elements to four, three and one for NRCD and- six, one and
- one significant figure for Mason's element. Thus, for high precision, . =~ -~ 7
it is important to determine accurately high order derivatives (particularly
- the slopes) as well as the displacements. | | | '
Subsequently free vibrations were calculated for the same
plate but with fully fixed edges. 'Since exact 501utions for these edge‘
conditions are not known, computed results were compared with those given
by Warburton (9) and with thosevof Claasen and Thorne (8). These-eom—
parieOns are made in Figure 4 and Table 4 where the percentage variation

is calculated using equation (26), taking respectively Warburton's and

v - -
. Claasen and Thorne's results as 'exact values'. The reference results

are themselves approximate.and‘overestﬁnate the values of the natural
frequencies - explaining the reason for the negative"errors' As for .

the 51mp1y supported case, UM6 and NRCD produce natural frequenc1es Wthh_:
are generally lower than those .of Mason for the 1argest number of con-
strained degrees of freedom considered. All are less than Warburton's
values and, apart from the sixth mode,UM6's are slightly less than those

of Claasen and Thorne. For fully fixed, unlike simply‘supported edges,

Figure 4 indicates that UM6 has the smallest variation from the reference

14



~ values of most of'the-higher'as'well as the lower frequencies for few

constrained aegrees.of freedom. The percentége variations'not'showh in -
these cases ere too 1argevto be plotted in Figure 4.
‘Exact mode shapes are not known for the fully.fixed‘plate.:
Hawever, the‘fundamental mode shapes produced bylall the elements'for this
condition have slightly different normalized displacements along center ’
lines parallel to plateedges . This was first noted by Mason who attri-
buted the phenomenon to the fact that a truly separable solut1on cannot
be obta1ned for a rectangular plate w1th all- edges fully fixed.
| Only those boundary shapes which can be represented exactly
lwith-either rectangular or triangular elements have been considered in
the breceding discussion, There are a greét variety of non-rectangular -
shapes, houever,'which_can be‘approximated reallstically with triangular
but not rectangular'elements alone. Although rectangular element UM6 1s'
vunable, by 1tself to describe complex’ geometrles, it is more accurate
~than triangular element NRCD. Nevertheless, UM6 is conformable with
NRCD so that_ls would seem desirable to use some combination of these
elements when describing irregular boundaries.

To-obtain a 'feel1ng for an optlmum combination, the free

v1brat10ns of the 51mp1y-supported rectangular plate and a simple example
of a complex boundary shape. - a right tr1angular-plate}hav1ng one edge
fully fixed and the other two edges free - are determined using various

- combinations of the two elements. Material properties of the triangular

plate are ‘
Modulus of elasticity E =30x 106 lb/sec2
_ Poisson's ratio’ | . v = 0.3
‘Density : o = .0007381737 slug/in



Thickness | . t=0.061in

' Spanw(distance.of free vertex
~ from the fully fixed edgej‘ o 10 in.
Length of fully fixed edge 10 in.
' Table 1 gives experlmental Valuesv in Hertz of the “triangular '
| plate together with the first ten natural. frequenc1es computed with an.
--increasing number of rectangular to trlangular elements Discrepancies
between the frequenc1es calculated with trlangular elements aloné and
-‘those given in reference(lO)are due to the graV1tat10na1 constant g
'be1ng assigned the more usual value of 386.088 1n/sec2 rather than
' 387 75 1n/sec assumed by Cowper et al. The table shows that as the ratio
of the number of rectangular to triangular elements increases, the computed
. frequenc1es decrease and tend to experlmental values given in reference(Zl)
waever, ‘the difference between extreme computed values for a given fre-
 quency is marglnal for the six lowest modes but becomes progre551vely
more s1gn1f1cant for hlgher frequenc1es. Further, thete is little differ-
ence in corresponding moae shapes obtained using\the—various assemblages.
All give goodiagreement with experimental results.
| Then three different. combinations of UM6 and NRCD in which the
triangular elements are arranged in a "P'" sense along the diagenal of the-
quarter section are used to idealize the 40:27; simply-supported rectangular
.plate.The aSsoCiated bercentage'errot_of the ten lowest natural frequencies
are listed in Table 3 together with the errors produced by the idealiza-
‘tions composed ‘of triangles and rectangles ' alone. For the three different
constrained degrees of freedom, the:accuracy of the combination is always
bounded by those of the triangleslor rectangleS_ alone.
fFor 18 constrained degrees of freedom, the combination usually |
- gives significantly more accurate frequencies than NRCD. This is not only




true fbr the higher modéé but is éléo the cagé for thg lowest modes. The
effect is much less apparent,however, fof the lowest modes with idealisa-
. tions using iarge degreeé of ffeedom; Hence, a cambination of rectangular
and friangular elements should be used whén.few e1ements’orvhigher natural
frequencies are required. It would seem advantageous iﬁ'these cases to |

use a minimum mmber of triangular elements.

2.4  Conclusions '

| A 24 degree of freedom rectangular plate-bending element has
been’fbrmulated which‘proves to be- generally more accuratevtﬁan'previous :
elements for dynamic problems. Hence it is advantageous to use. this
eleﬁent alone if a system's shape can be approximated with rectanglés. '
‘However, there is a great variety of shépeé for which rectangular élements
are ﬁnsﬁitablé. The newiy developedfelement conforms with Cowper et al's.
triangular element‘sb that a‘combinatidn of thé tWo elements can realisti-
cally describe irfegular bouﬁdaries. The greatest benefit of using the
combination in preference to the triangular element alone occurs when few
elements or higher natural frequéncies are required. A minimum number of_:'

triangular elements would seem advisable.in these cases.
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3.0 " Introduction

The development of supersonic commerical aircfaft has led to
mumerous investigations related to the effecté of sonic boom on structures
(19),(20). Full écale tesfs were found fo be expensive -and céused a great
deal of inconvenience to the general public. Therefore, it has been
fbund_adVantageous to use comparatively ¢héap éimulation techniques whiéh )
- localize the annoyance. In referehce (i),.PoppleWell invéStigafed the
dynamié_behaviour of a flat-roofed box which was subjected tqla,simulated ‘
sonic boom. As well aS'fuil'scalé tésts, tw6 simulation téchniques - a
‘smallbscalePerspex model and a mathematical model - wefe used;_ It was
concluded fhat the mathematical model provided valid results and could be
 used~tQ give useful data‘pertaining to structural response to sonic booms.

| The finite element displacement method was used as a basis of
the mathematical model. This technique, unlike the series solution of
Digkinscnland'warbﬁrton (7), was sufficiently flexible to account for
discontinuities like windows in‘thexstructuref '

To simplify the analysis, Popplewell reduced the three ai-
mensional box to a'crossushaped flat plate configuration. |

The appliéation‘of a flat plate analysis to more realistic
building configurations required the description of non-rectangular
boundaries. - The development of UM6 allowed a éonformal.combination
of UM6 and NRCD to accurately represent arbitrary structural shapes.
As.a—conseqﬁence, the flat plate analysié'could be exteﬁded to accomodate
‘more familiar configurations like a housé with.a sloping roof. This
“chapter deals with the.inclusion of a sloping roof on the box-type

structure. The reduction of this structure to a flat plate, required

18




trlangular elements to descrlbe the non-rectangular boundary caused.

- by the sloplng roof. From the prev1ous chapter it was observed that a -
finite element respresentation composed of UM6 and a minimum numwber
of NRCD could describe most accurately:the flat plate configuration.

Due to symmetry, it was possible to consider only one quarter

of the.structure; The natural frequencies and mode shapes were evalua- .
ted using the finite element idealization .of Figure 6 and a comparison -
was made with experimental values obtained for a small scale Perspex -

model.

The effect of the sloping roof,was_discossed relative to the

results for the flat-roofed structure.

3.1 ‘The Mathematical' Model

The structure was assumed to be built from plates, each of which
was perfectly elastlc, homogeneous and isotropic. The transverse displace-
-ment of each plate was considered small compared with the wavelength of
flexual vibrations. In-plane dlsplacements were neglected and acoustlcal
~ coupling between individual faces was assumed to_be negligible. The
base edges.of the box were fixed while remaining edges were_aliowed to

rotate such that joints remained at fixed angles but did not move in

translation. Corner deflections, therefore, were disallowed. If the
corners also were assumed not to twist, the sloping roofed box could
be represented as a flat plate. A finite element idealization of the

plate employed the arrangement shown in Figure 6 . By constraining

_ the displacements of common edges to be the same, differences between

the three dimensional and two dimensional analysis were removed.

19



3.2 - Physical Prop'erties',Natural 'Frequencies and Normal Modes of the

Model Box.

’ To prOV1de a means of determlnlng the va11d1ty of the mathematlcal
' idealiiation, the natural frequenc1es and mode shapes of a small plastlc
model were determlned experlmentally (21). |

‘ A slop1ng roofed model. with the dlmen51ons shown in F1gure 6
was constructed of Perspex and placed in a wooden jig to simulate
vclamped-base'edges Like all plastics, Perspex suffered frem the dis-
"advantages that its physical propertles vary with temperature, humldlty,,
thickness and frequency (1. Strlct control of temperature and humidity -
was 1mp0551b1e so that their varlatlon was minimized as far as p0551ble
by using the same laboratory. |

To determine the.effect of frequency on the value of dynamic

Ybnng's.modulus, the natural frequencies of a cantilevered Perspex beam -
’haying the same thickness as the model were evaldated erperimentally Figure 7.
Details of the standard experimental procedure adopted can be found in
reference (21). Assuming negligible damping, the natural frequencies of
a cantilevered uniform beam with cross sectional area, A, and length, L,are

i given in Bishop and Johnson (17) as -

, EL g0 |
W= (27)
p AR
for the pth mode. Hence
4w2f2 4 |
E = — P [ 41 pAL", o (28)
g Opy) .

The beam functions, xpz, are tabulated in Bishop and Johnson as
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MODE - o ot

1 | - 12.3624
2 ' . 485.519
T 3806.55

4 - | 14617.3

Substituting thebéam'snatu:al frequencies into equation (28)
‘ _gave'the dynamic Young's mo&ulus. |
| _ However, it was found that the Perspex was exﬁrémely'sensitive
to ﬁnni_dity. Consequently valués_ of 'Young's modulus were shoﬁ in Table 5
for two different relative mmidity levels observea during resonance
tégts of the model beam.
| Table © shows the theoretical nétural frequencies of the
: sloﬁing roofed Structuré obtained from'the finite element idealization
shown in Figure 6 . The theoretical frequéncieslagféed reasonabiy with
the expgrimental frequenties. The theoretical results, however, over-
' estimated the experimental values. This could be contributed in scme
part to fhe_relative himidity during the model tests being 91% while thé
Youhgfs modulus values used in the theoretical analysis were calculated
for a relative humidity of 79%. Table 5 indicates that the effect of
decreasing humidity was to increase the natural frequencies (and Young's
modulus) of Perspex. The first sik theoretical mode shapes of the
sloping roofed structure are given in Figure 8 - experimentallresults 
were unavailable at the time. | |

_ Im comparihg the theoretical frequencies of the flat roofed
~structure (2) to those of the~$loping roofed structure, the effect of the
sloping roof was to'increése'the overall stiffness of the structure. This

was due mainly to the constraining effect of the sloping roof'sapex.
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.3.3. | anclusions

The f1n1te element analy51s of a box-type structure has been »

-extended to more compllcated geometrles by u51ng a comblnatlon of rectangular

and trlangular elements. Reasonable agreement has been demonstrated

between the theoretical and experimental natural frequenc1es of a box w1th
a sloplng roof. This gives 1ncrea51ng confidence in the future use of
the theoretical method in determlnlng the response of compllcated structures

to sonic booms‘

It has been found that the main effect of the sloping roof is to

increase the structure's overall stiffness - and, hence, its natural

frequencies.
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GUPTER 4

Conclusions
This chapter reviews brief1y the conclusions presented in

prev1cus chapters.

A new rectangular plate bendlng element, M6, has been develop-

ed and shown to ‘be superior to previously available elements. The element
has the additional advantage that it conforms with an accurate trlangular
element so that a cemblnatlon of the two elements can reallstlcally approx-
. hnateiirrigularly-shaped boundaries. ’For greatest accuracy ,the optimum

combination of the two elements “would seem to be the one which uses a minimum -

mmber of triangular elements.

An optimum combination of rectangular and trlangular elements
is applled to the determination of the freely vibrating characteristics
of a box-type structure with a sloping roof. The resultlng theoretlcal re- .
sults compare favourably with experlmental values obtalned by exciting a
Perspex model harmonlcally This validates the assumptlons used to simplify
the mathemat;cal model. It is shown that the éffect of the sloping roof
is to increase thevmodel's overall stiffness - and, hence, its natural
.frequencies.

The reasonable agreement between theoretical and experimental -

models gives added confidence in u51ng the theoretical model to determine
the response of compllcated structures to sonic booms. This work will be

undertaken in the near future.
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 FREQUENCY (Hz.)
. Experimental
MODE . Results
NUMBER — N\ | ~ Reference
77704 IP7TIITITI | 77777 /'/rr/" boccsrescad 23y
1 © 36.54124 | 36.53947| 36.53897| 36.53895 34.5
2 © 138.9636 | 138.9567 | 138.9550 | 138.9528 " 136.0
3 193.6010 | 193.5815 | 193.5754 | 193.5699- 1900 |
4 - 332.7147 | 332.7060 | 332.6953 | 332.6240  325.0
s | 453.2197 | 453.2150 | 453.0388 | 452.9050 441.0
6 589.2431 | 589.1010 | 589.0678 | 588.6882 " 578.0
7 664.0397 663.8512 | 663.7170 | 662.9144
8 798.0966 | 797.7241 | 796.9290 | 796.3389
9 948.1436 - | 947.2899 | 946.1370 | 944.4312
10 1092.781 | 1092.583 | 1091.741 |1088.801

" Table 2. Natural FrequencieS’df Cantilevered Triangular Plate




PERCENTAGE ERROR IN NATURAL FREQUENCIES
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«026224

56151

1.75478
3.11280

L.67162
796505

12,2900

949459
19.7880

013694
L7779
607637
1.76276
6.94001
Ls 54769
9.03932
146413
18.2945

14,9770

001849

.015254

053796
092325

.156811

»302909

«159548

«740316
«658372

.00027%,
.008651
.023330
063524
.026241
171374

311655
.137561

«337328

.000137
004096
.0024,83

.023585

.013625
.066020

+160690

.Ol7634f

.080119

.000137
.001307

.005704
.009692 -

.Ql7117
.033797

OLL3TL

.024232
+086657

.076978:

.000068
.000953
.002886

.006585

.007823
.019452

.028337
011004

;OA6875

000000 |
-000L,9% |
.000224 |.

.002716

001027 |

.005377
007863
001191

004697
019244, |

‘Table 3.

- Simply--supported Rectangular Plate

439974

Percentage Error Associated with the Ten Lowest Natural Frequencies of the




PERCENTAGE VARIATION IN NATURAL FREQUENCIES
RELATIVE TO VALUES OF CLAASEN.AND THORNE ( 8)
MODE | UMb SKSMP6 | NRCD (Q) | NECD (P)
1 -.17 03 | =16 -7
2 A ST =40 -1
3 -.05 .08 -0 -.02
L =56 -25 | =51 -.53
5 =2l .21 -.06. =09
6 .67 S W36 a7 15
7 =97 -e32 C -.73 -.80
| -.03 .08 .07 .07
9 5 32 | -a -
10 -3 26 | .15 .26

Table 4. Percentage Variation in the Eigenvalues of a 40:27 Clamped

Plate for 170 Constrained Degrees of Freedom. (Equivalent

to 36 Réétangular or 72:Triangular Elements)

50




RELATIVE HUMIDITY | RELATIVE HUMIDITY

5

38% | 795
Frequency (Hz.) |E lb/in? xlO5 Frequency (Hz.) |E 1b/in? x10
w1 | s | 121 | 5.0
or.9 - | 7.5 87.9 1 6.81
263. 7.79 260. 7.61
536. 8.44 ‘ 533;‘ : -8.33

0=0.00492 1b./in’

Thicknessvofvbeam t =0.112 in.-

Table 5. Experimental results for the dynamic Young's modulus
of Perspex. S -

>




NATURAL ~ FREQUENCIES (Hz)
Mode | Theoreticai Experimentai
1 179 17
2 184 178
208 200
4 219 222
5 281
6 297
7 303
8 381
9 401
10 407

Table 6 . Theoretical and Experimental Natural

vFrequencies' of the Sloping Roofed Perspex

| Model
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APPENDIX

THE COMPUTER PROGRAMS

Introduction

FORTRAN subroutines.used to calculate the natural

frequencies and normal modes bf fhé plate'and box with a sloping -
ioof ére listed and discussed briefly. All those subroutines

not developed by the author are omitted as the necessary'speCif-
_’icationé have’been defailed by the respective auxhofs. The-

specifications.in Section 1 give the use of the subroutines;

-quantities passed to the subroutines in the argument list;brief

' detailé of the computatioﬁalgprocedureVand relevant particulars

such as data required and the output from the subroutine. .
Section 2 contains'those frigonOmetric relations which f

are required in‘the imposition of boundary conditions along

edges notialighed‘with the global axes.




~ SECTION 1

Due‘to the limiting storage facilities of the digital

computer,the computer program is divided into three sections. .

The constrained mass and stiffness matrices are placed on disk<

in the first two sections. Then the matrices are téken off disk

in the third section in order to evaluate the natural frequencies

and mode shapes. Figures 9 and 10 illustrate these procedures with the
appropriate flow diagrams. R | |

The formulation of the mass .and Stiffness-matrices
~of the‘triangular element ,NRCD, is identioal to that outlined
in the program listings supplied by National Research Council (10).

The calculation of the mass and stiffness matrices
for the rectangular element,UM6;is given in Chapter 2.

The- order in whieh'matrix elements are stored in element
arrays mu$t be specified. To do this it is only necessary to
‘specify the order in the elemeﬁt diplacement vectors. The eiememts
in thevvectors are grouped so that the nodal displacements for‘
amy ohe node are together} For NRCD and UMﬁ;these displacementS'
are stored in the order w;wx,wy,wkx xy yy Invthe.finite eiement,

1deallzat10n,nodal p01nts are numbered by the programmer so that
the order in a vector is self apparent. The conventlon adopted
for the numberlng system of UM6 is shown in Flgure 1(a) while-
_ NRCD only requires a clockw1se sequence Dlsplacements are stored
for node 1 followed by those of node 2 and node 3 and,in the -

' case of UMb,node 4. The element matrices are transferred to overall’

matrices.




Subroutines developed by Mason(3) and Popplewell (1)

(APPCON and LINDEP) are used to apply boundary constraints of
sides aligned with the global axes. They also form the basis |
of subroutines used for the remaining constraints. Boundary constraints
on oblique edges require the coding of corresponding trigonometric
relations (see Section 2). |
- AQR two _stép eigeﬁvalue subroutine deals adequately
with niatrices of 6rder 96. The reinsertion of constraints into
“the modal _\fector employs the subroutines of Mason(3) and Popplewell

(1) (UNAPP - and UNLIN) as well as subroutines based on these routines.




Start

T _
{ IT-Control program |

. |
k
, ¥ : . — 1 ‘
NRCD-Calculates triangular ‘ UM6-Calculates rectangular.
: element mass and stiff- | element mass and stiff-| A
ness matrices ness matrices |
g T ]

w B
TENSFA-Forms overall
‘mass and stiff-
ness matrices

Loop for each element
mass and stiffness ma-
trices generated and

| stored 1ndependently

APPCON-Applies boundary constralnts at nodes

of edges aligned with global axis

For plate go
directly to

write

A
REMCON-Reorders oblique boundary slope
conditions and box constraints
to account for APPCON : ‘

LPRCON-Reorders oblique second derivative

boundary condltlons to account for
APPCON

ARRANG-Arranges the arrays identifying the
rows and columns of the constraints
‘to accounu for thels 4 removal

¥

LINDEP-Applies oblique slope boundary
~conditions

¥

MULiND-Applies second derivative boundary
condition for one constraint

MULDEP-Applies second derivative boundary
- condition for two constraints

TANT-Applies box constraints

4

Write mass and stiffness matrices and-
all other variables on disk

[ End I

¥
[Eigenvalue determination ]

( Subroutine names given in capitals. )"

Figure 9. Flow Diagram of Computer Program Used for Generation of

Overall Mass and Stiffness Matrices




Start

‘Read vajues from disk

/

PPPP-Determines eigenvalues
and eigenvectors

Fbr plate go

UN-Inserts box constraints
in eigenvectors

to UNAPP

¥

UNLPR-Inserts oblique .boundary constraints
for two constrained second’derivatiVes

y

UNDEP-Inserts oblique boundary constraints
for one constrained second derivative -

- [UNLIN-Inserts oblique boundary
constraints for slopes

o

/

UNAPP-Inserts boundary constraints for
edges aligned with global co-
ordinate system

Y

- Convert eigenvalues to natural
 frequencies (Hz.) and normalize
eigenvectors ’

‘7 . .

Write natural frequency
_and eigenvector

Loop for each natu-
ral frequency

End

Figure 10. Flow Diagram of Computer Program Used for the

Determination of Natural Frequencies and Mode Shapes
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SUBROUTINE UM6

1. Purpose

Calculates the element mass and stiffness matrices
of rectangular element UM6.

2. Argument list

SUBROUTINE UM6(X,Y,LTL,GNU,R,T,SI,CO,NE)
X and Y are the x and y dimensions respectively of

element UM6. LTL is the element number in the grid idealization;

GNU is Poisson's ratio; R and T are the element stiffness and =

mass matrices,respectively,of size (24,24). SI and CO are the

" values of sine and cosine for the angle between the global and
local x axes respectively. NE is the actual number of elements

in the grid idealization. -

3. Method

' The subroutine calculates the element mass and stiff-
. ness matrices of UM6 using formulae (11) and (20). :

4. Other routines used

QUT forms the transformatlon matrix in Table 1. -
- MINV calculates the inverse of the transformation matrix.

v5._Print g
The values of the local X and y dimensions of an element
are prlnted

6. Miscellaneous

This subroutine is used in a loop with subroutine

~ TRNSFA.

SUBROUTINE TRNSFA

1. Puggose

: This subroutlne transfers the mass and stiffness matrlces
of a single element to the overall unconstralned mass and st1ff- e
ness matrices - for the complete system - :

2 Argument list

SUBROUTINE TRNSFA(BKO SM, SK,NGE, IE, KE, KSIZE,N, NSUB; NCORN
NTCOR,KROP1) |



BKO is the overall stiffness or mass matrix(depending
on which is being calculated). It is dimensioned as (KSIZE,KSIZE)
where KSIZE is the total unconstrained degrees of freedom of the
grid idealization. SM and SK are the element mass and stiffness ma-
trices ,respectively,of size (24,24). IE is the number of the ,
element within the grid idealization which is to be transferred
to the overall matrix. KE is the number of elements in the grid
idealization; N always equals 24; NSUB is the number of degrees
of freedom per corner; NCORN is the number of corners of UM6(4); ' e
and NTCOR is the number of corners of NRCD(3). KROP1 is used to S
_determine whether element IE is rectangular or triangular (if
KROP1 is less than IE,then IE is rectangular). NGE is the array
giving the global nodal point numbers of each corner. of of an
element.. -

3. Method
: Element matrices are transferred to the overall matrices.
- Array NGE is used to give the position within the overall matrices
to which element matrices are transferred.

-4. Miscellaneous

This subroutine is used normally in a loop with sub-

- routines UM6 and NRCD. The element mass or stiffness matrix of
an element is calculated in each loop and transferred to the
overall matrix. BKO must be cleared before entering the loop.

SUBROUTINE QUT

1. Purpose
" This subroutine calculates the elements of the trans-
formation matrix T shown in Table 1. S

-  2. Argument list )
"~ SUBROUTINE QUT(Q,A,B)

‘ Q is the transformation matrix with dimension (24,24).
A and B are the x and y dimensions of element UM6 respectively.

.3. Miscellaneous

- QUT is used with ;ubroutine'UMb.



SUBROUTINE BOCOND

1. Puga_osé

Boundary conditions along edges which are not parallel

- to the axes of the global co-ordinate system leads to dependent
nodal displacements and derivatives. This subroutine establishes

the constants within the relationships and identifies the associated
rows and colums in the overall mass and stiffness matrices.

2. Argument list

SUBROUTINE BOCOND(N,TH,CHAN, IPOT, DD ICOT,TAIL,ICOK,
NC,LUT ,MUT , KUT ,MEAT ,NUL,NP)

_ N is the number of nodal pomts which are constrained

- in the oblique orientation. TH is the angle of the oblique edge
orientation with respect to the global x axis. CHAN,DD, and TAIL

- are the three sets of multiplication constants (see Sectlon 2

for more details). IPOT,ICOT, and ICOK identify the rows and
colums to which the relatlonshlps of CHAN,DD, and TAIL are applied.
NC'is the number of constraints applied to the global co- -ordinate
system. MUT,LUT, and KUT are the number of times in which relations
CHAN,DD, and TAIL ,respectively are applied. MEAT and NUL give

“the requlred information regarding the type of oblique boundary
¢ondition to be applied (see Section 2). is the number of

‘nodal points within the grid 1dea11zat10n

3. Method

From Section 2, relationships are established which
correspond to the boundary conditions imposed at nodal points
~ along oblique edges. BOCOND reviews each nodal point with respect
to the code of NUL and MEAT and calculates the associated constants
at the necessary nodal points. If no oblique boundary constralnts are to be
applied, NUL and MEAT are set to zero. _

4. Printing
: The values of LUT, KUT and MUT are prlnted

5. Mlscellaneous

The values of LUT,KUT, and MUT are determlned w1th1n
BOCOND and are used in- subroutlnes LINDEP ,MULIND, MULDEP UNLPR
UNDEP, and UNLIN. .

6 Restrlctlons

ThlS subroutine cannot be used when TH= 0, 90 180 ---
‘In these cases the required constraints can be applled w1th1n
APPCON by maklng the necessary addltlons W1thJ.n MCN.




SUBROUTINE UNDEP

1. Purpose

Reinserts previously imposed boundary condition of
one oblique second derivative into eigenvector VAB.

2. Argument list

| SUBROUTINE UNDEP (CLAP, TPOS, VAB,NP ,NV,MRED , KSIZE, NKIMES,
DD,KS)

CLAP is a working array of dimension KSIZE. IPOS with
dimension (NP,3) contains values which denote the positions of
the boundary constraints to be inserted in VAB. VAB contains
only non-zero nodal displacements in each colum on entry. At
- this stage there are MRED elements in each colum. On exit from
- the subroutine boundary constraints have been reinserted and -
‘there are (MRED+NKIMES) elements per eigenvector. There are NV
~such vectors. DD are the constant terms in the oblique trigonometric
- relationships which are evaluated in subroutine BOCOND. Array
DD has the dimensions (NP,2).

3. .Method '

: Boundary constraints are reinserted in eigenvector

VAB in the IPOS(M,3)th location. The value placed in this location
equals the trigonometric constant DD(M,1) times the element in
~-"p051t10n IPOS(M,1) plus constant DD(M,Z) times the element in .
-pos:Ltlon IPOS(M,2). The procedure is. repeated for M=1,2, ---vNKIMES -

4. Miscellaneous

. ‘The order of subroutines UNLPR,UNLIN,UN, and UNDEP
* within the complete program depends upon the order of. the sub- :
' routlnes MULDEP MULIND LINDEP, and TANT. _

SUBROUTINE UNLPR

1. Purpose

_ Reinserts the previosly imposed boundary conditions . _ ~rt
- of two oblique second derivatives into the eigenvector VAB. . . :

2.. Argument list

|  SUBROUTINE UNLPR (CLAP, IPOS,VAB, NP, NV, MRED, KSIZE ,NKIMES, = ~
TAIL,KS) A o

: CLAP is a working array of order KSIZE. IPOS w1th
~dimension (NP,3) contains values which denote the p051t10ns of the .
boundary constraints to be inserted in VAB. . :



VAB contains only non-zero nodal displacements in each colum

- on entry. At this stage there are MRED numbers in each column.

On exit from the subroutine,the boundary constraints have been
reinserted and there are (MRED+2*NKIMES) elements per eigenvector.
There are NV such vectors. TAIL are the constant terms. in the
oblique trigonometric relationships which are evaluated in BOCOND.
Array TAIL has dimensions (NP,2).

3. Method

The eigenvectors are expanded and the two boundary
~ constraints are reinserted in IPOS(M,2) and IPOS(,3) positions
of eigenvector VAB. These elements respectively equal 1/TAIL(M,1)
and 1/TAIL(M,2) times the element in position IPOS(M,1). The
procedure is repeated M=1,2,---,NKIMES.

4. Miscellaneous

The order of: subroutlnes UNLPR, UN, UNLIN and UNDEP
within the complete program depends upon the order of subroutines
-~ MULDEP ,MULIND,LINDEP, and TANT.

SUBROUTINE UN

1. Purpose
Reinserts the previosly 1mposed box constralnts 1nto
eigenvector VAB. .

2. Argument list

SUBROUTI’\IE UN(VAB, IOT »MSIZE,XS,KUTIME ,NV,MRED, RTH
CLAP ,NTIMES)

10T of dimension (KUTIME 3) contains values which
denote the _positions of the box constraints to be inserted in
VAB. VAB contains in each colum the non-zero nodal displace- -
ments of the box on entry. At this stage there are MRED numbers
~ in each colum. On exit from the subroutine,the box constraints
. have been reinserted and there are (MRED+2*NTIMES) elements

per eigenvector. There are NV such vectors. KUTIME is the number

. of nodal points where oblique boundary constraints are to be
applied.. RTH is the angle which the common edge makes with the

o global x axis. CLAP is a working array of dimension MSIZE. NTIMES

denotes the.number of nodal points to which box constraints
‘must be applied. MSIZE is the unconstrained 51ze of BKO(the
overall mass or stiffness matrix).




3. Method

The box constraints are reinserted using appropriate
trigonometric relations into NV eigenvectors at positions pre-
scribed by IOT. For each insertion,the eigenvector is expanded.

4., Miscellaneous

The order of subroutines UNLPR,UN,UNLIN, and UNDEP
within the complete program depends upon the order of the sub-
routines MULDEP,MULIND,LINDEP, and TANT.

SUBROUTINE IT

1. Purpose

- This is the controlling subroutine for the calculation
- of a system's free response. Rectangular and triangular elements
with six unknowns per corner are used.

2. Argument list

SUBROUTINE IT(X,Y,NUL,MEAT ,NGE,IPOS,I0S,MCN,X1,X2,
X3,Y1 ,Y2,Y3,10T,BKO,C, ICOK, IPOT DD, TAIL CHAN ICOKE ICOT ICOTE
ISIZE ,1U,1C,IZ, IN IH NUM)

’ . BKO is a square array with dimensions (ISIZE,ISIZE)
and is used to store the mass or stiffness matrix. ISIZE-is
) equal to- the system's unconstrained degrees of freedom.
'NGE contains the global nodal points associated with
the corner of each element. X and Y are arrays containing the

- x and y dimensions of the rectangular elements. They are dlmensmned

- .as IZ where.IZ equals the number of elements in the grid. Xi,

X2,X3,Y1,Y2, and Y3 are arrays which contain the x and y co-

.-'_ordlnates of ‘the three corners of the triangular element in

- terms of . its local co- ordlnate system They are dimensioned -

o as IZ '

- , MCN is the array of constralnted global displacements.
These constraints exclude box and oblique boundary constraints.

" IC. is the dimension size of MCN. ICOK,ICOT, and IPOT are the

.- three different oblique boundary constraints. IPOT has dimensions
(IU0,2) and ICOK and -ICOT have dimensions (IU, 3) ,where IU denotes

- the total number of global nodal points requiring oblique boundary

constraints. CHAN,dimensioned as -(IU),DD and TAIL(both dimensioned-

. “as (IU,2)) are the constants associated with the three oblique
. boundary constraints (see Section 2). I0T,dimensioned as (IU 3), :

. contains the box constraints. MEAT and NUL are arrays of size
"~ (IN) and denote the type of obllque boundary condltlon to be
applied at each node. = - :




IN is equal to the number of global nodal points.bNUM,dimensioned
as (IN),contains the global numbers of those rectangular elements
" which have local co-ordinate axes not aligned with the global
axes. '

3, Method

Outlined in Chaptere 2 and 3.

4. Other routines used

BOCOND,NRCD, UM6 , TRNSFA , APPCON, REMCON , LPRCON, ARRANG
LINDEP MULIND, MULDEP and TANT

REMCON LPRCOV BOCOND, LINDEP ,MJLIND,MULDEP, TANT are
not necessary for the rectangular plate analy51s

5. Qutput

Writes the constrained mass and stiffness matrlces
and other important variables on to disk.

SUBROUTINE ARRANG

1. Purpose

_ To impose the boundary and box constraints specified
in Section 2,four subroutines are used(LINDEP,MULDEP,MULIND,
and TANT) ;one for each of the four types of constraints.ARRANG.
renumbers the appropriate rows and colums of the overall mass
and stiffness matrices to account for the order in which the .
four types of constraints are applied. : :

2. Argument list

'SUBROUTINE ARRANG(IPOT ICOT ICOK, IOS,LUT,XuT,MUT, NTIMES
NP, IPOS ICOTE 1COKE,NZZ) .

IPOT, ICOT ICOK, and IOS are arrays which identify those '

TOWS and columns w1th1n the overall matrices which are to be
renunbered. MUT,LUT,KUT, and NTIMES are the respective number

" of times in which each of the four types of constraints are applied.
.. LUT,MUT, and KUT are evaluated in subroutine BOCOND while NTIMES
" - has to. be read into the control program. NP is the number of

global nodal points in the grid idealization. IPOS,ICOTE, and-
- ICOKE are arrays used for working space. NZZ equals the number -
of nodal p01nts with obllque boundary constraints. : -

3. Method
IPOT(l 2) is compared with the values in ICOT ICOK

. and I0S and,if it is less than any of these values the values

contalned in ICOT,




ICOK, and IOS are reduced by one. Then IPOT(1,2) is compared
with all other elements of array IPOT. All elements of higher
value are reduced by one. This is repeated for all values of
IPOT(M,2) M=1,2,--- ,MUT. Following the same procedure,array. ICOT
is compared W1th arrays ICOX and I0S. Finally,ICOK is compared
to IOS using the same procedure outlined above.

4. Printing

IPOT,ICOK,ICOT, and IOS are printed at the beglnnlng
and end of the subroutlne

SUBROUTINE LPRCON-

1. Purpose

. Due to the appllcatlon of non- obllque boundary conditions
contained in MCN,the elements of IOST have to be renumbered.
(IOST contains-: the position of the rows and colums in the overall
- matrices of the complete system which are involved in the second
derivative oblique boundary constraints.)

2. Argument list

SUBROUTINE LPRCON (MCN, IOST,KSIZE,NSIZE,KC,NC,NTIMES)

MCN ‘is the array contai ning those boundary constraints
which can be applied 1mmedlately in the global co-ordinate system.
‘It is dimensioned as KC. NC is equal to KC. NTIMES constitutes
the number of global nodal points to which the particular type of second
derivative boundary condition is to-be applied. IOST defines
the rows and colums involved in the constraint. KSIZE and NSIZE
‘equal the total number of degrees of freedom of the system.
The integers stored in MCN are.in increasing numerical value.

3. -Method

Each element of MCN is compared with the elements
of array IOST. Any element of IOST which has a value greater than
the element in MCN is reduced by one. This -process is repeated
for each element of MCN

- -4, Restrictions

No original element of IOST can be contained in MCN.



SUBROUTINE MULIND

1. Purpose

‘ This subroutine imposes oblique second derivative boundary
conditions on the system's overall matrices for those global
nodal points which have one second derivative constraint.

2. Argument list
SUBROUTINE MULIND (BKO,NSIZE,KSIZE,DD, ICOT ,NTIMES,NKLIME)

BKO is the mass or stiffness matrix with dimension (NSIZE,
NSIZE). KSIZE equals the actual size of matrix BKO on entry
to MULDEP. DD,with dimension (NKLIME,2),is the array. containing
the constants of the trigonometric relationships evolving from
the ‘constraint of one second derivative at a global nodal point
on a oblique edge (see Section 2)ICOT identifies the rows and
colums of matrix BKO to which the trigonometric relations
apply. NP is equal to the number of global nodal points involved
in oblique boundary constraints.

3. Method

The relations in Section 2 are applied to matrix BKO
in order to eliminate dependent nodal displacements. Rows and
colums of BKO,specified by ICOT (NKLIME,3), are multiplied by
DD(NKLIME,1) and DD(NKLIME,2) and added to rows and columns
~ denoted by ICOT (NKLIME, 1) and ICOT (NKLIME,2) respectively.
This is repeated NTIMES. The ICOT (NKLIME, S)th row and colum
are removed from BKO and the matrix size is reduced by one. g

4. Mlscellaneous:

The order in which MULIND,MULDEP,LINDEP, and TANT are
applled is dlctated by subroutlne ARRANG

 SUBROUT INE' MULDEP

1. Purpose

The subroutine 1mposes oblique second derivative boundary
conditions on the system's overall matrices for those global
nodal points whlch have two second derivative constralnts

- 2. Argument 115t

SUBROUTINE MULDEP (BKO,NSIZE ,'KSIZB,TAIL,.ICOK,NP,NKIMES.) -



v BKO is the mass or stiffness matrix with dimension (NSIZE,
NSIZE). KSIZE equals the actual size of matrix BKO on entry
to MULDEP. TAIL,with dimension (NKLIME,2), is'the array containing
the constants of the trigonometric relationships evolving

" from the constraint of two second derivatives at a global nodal

point on an oblique edge (see Section 2),ICOK identifies the
rows and colums of matrix BKO to which the trigonometric relations

apply. NP is equal to the number of global nodal points involved B

in oblique boundary constraints.
3. Method

The relations in Section 2 are applied to matrix BKO
in order to eliminate dependent nodal displacements. Rows and
colums of BKO are specified in ICOK(NP,3) and ICOK(NP,2).
 They are multiplied by TAIL(NP,2) and TAIL(NP,1) respectively
and added to the row and colum of ICOK(NP,1). This procedure
‘is repeated NKIMES. The rows and colums of ICOK(NP,2) and
ICOK(NP,3) are removed from BKO and the matrix size is reduced
by two. ' C

4. Miscellaneous

. The order in which MULIND,MULDEP,LINDEP, and TANT are
applied is dictated by subroutine ARRANG. o

SUBROUTINE TANT

1. Purpose

This subroutine imposes box constraints on the system's
overall mass and stiffness matrices. : _ =

2. Argument list

SUBROUTINE TANT (BKO; KUTIME,MSIZE, IOT ,NTIMES ,RTH,MRED)

BKO is the mass or stiffness matrix with dimension (MSIZE,

MSIZE). RTH is the angle between the x axis of the global co-
ordinate system and the edge where box constraints are to be

- applied. IOT identifies those rows and colums of the matrix

. BKO to which box constraints are to be applied. NTIMES denotes
the number of box constraints to be applied. KUTIME is equal

- to the number of global nodal points involved in the oblique

boundary constraints. MRED is the size of matrix BKO after
box constraints have been applied. '




3, Method

The normal slopes of common oblique edges are equdl.
. The resulting dependent rows and columns in matrix BKO are
eliminated by adding algebraically rows and colums corresponding
to the normal slope of one oblique edge to those corresponding
to its common edge. This procedure is repeated for all global
nodal points on the remalnlng common edges The normal slope
of the oblique edge is obtained by using the trigonometric
relation involving slopes in the global co-ordinate system(equatlons
(14) in Chapter 2). The edgewise slope must be zero for both
common edges in order that the previous assumptions are valid.
Therefore,once the rows and colums of BKO corresponding to the
normal slopes of the oblique common edge are added to those
correspondlng to the normal slope of the other common edge,
it remains to set the rows and colums corresponding to the
oblique slopes(normal and edgeW1se) to zero. This is done simply
by constralnlng both slopes in the global co-ordinate system
to zero. From equation (14) of Chapter 2,the edgewise and normal
slopes are effectively constrained to be zero.

* Thus,rows and colums within BKO corresponding to the
global slopes of points on the oblique common edge are eliminated
and the matrlx size reduced by two. :

4 Miscellaneous

The order in which MULIND,MULDEP,LINDEP, and TANT are
applled is d;ctated by subroutlne ARRANG

5. Restrlctlonsa

' The subroutine cannot be used if RTH=0,90,180,---.
In such cases constraints can be applied as in reference(1l).




S SUBROUTINFE UMG6{X,YsLTL,GNUyR4T,SI4CO, NE)

CEIMPLICIT REAL%S(A~H,0-2), INTEGER{I-N) I
CDIMENSION YY{28,28),Z(28,28),M(28) 4N(28) yMUL (492} "

~ DIMENSION® 3124,24),R(24.24;,T(24,24),5(24,24),FAC(30)

"DIMENSION DINK(&4]

DIMENSION X(NE),Y(NE) :
DATA M/091+09291409392+1+0949392+919095929290+4+94119393+54+541,3/

"DATA N/D30415091,2:0,1492,53,0, 1,2,3,4 O, 2,3,5,1,3, 14934143+5,5/
MUL(1,1)=2)

COMUL(1,2)=21
MUL(2,1) =21

MUL(2,21=22
MUL(3y1)=23

T MULL3,2) =24

901

902

CMULL4,1)=24
SMUL{4,2)=25

FCRMAT{5X,2D15.4)
WRITE(64902) GNUsPNEUC,YMODO,THICKO,YMCD, THICK RHO,PNEU,SI,CO
FORMAT (10F12.4)

CUA=X(LTL)

. B=Y(LTL) S
LU MRITE(6,901) A,B

DINK(1)=3

DINK(2)=A
DINK(3)=8

ST DINK(A) =A

‘D0 799 I1=1,28

DO 799 J=1,28

. 199

Z{I1,J)=0.000
YY{I,J)=0.0D0
DO 60 I=1,24

DO 60 J=1,24
e T{I4J)=0.080 o = - : o _
. Q(1,J)=0,0D0.. e ,N ¢: S

60

R{I1,J)=0.000
S{I,J)=0.0N0
CALL QUT(Q,A,B)

CUR(191)=1.000°
R(2,2)=C0
R13,3)=CO

R{3,2)=-S1
R(2,3)=51
R{4 ,4)=C0%%2

R{5,4)=-S1*CO

CRIU6,4Y=S %2

R{4,5)=2,0D0¥SI*CC

R(5,5)=CO%%2-S [ ¥*
R{655)==2,0D0%SI*CC
R{446)=ST%%2

"R{546)=SI*C0
R{646)=C %2

CALL MINV{Q,24424,DET)
WRITE(6,1180)

DO 61 I=1,24

DO .61 J=1,6

- SUM1=0.000

SUM2=0,0D0

- SUM3=0,0D0




Csumaso.ono
;SUMI SU11+Q(I,K)*R(K\‘J)

‘ 'SUMB SUM3+Q(I K+12)*R(K,J)
T 62 SUM4=SUM4+Q(I, K+18)*R(K'J)

- S{I,J)=SUM1 -~
S{TyJ¥6)=SUM2- T
S{I1,J+12)=SUM3 .~
ST, J+18)=5SUML
WRITE{6,1180)
DO 50 I=1,24
DD 50 J=1,24
01,1 =0.000"
) R{T44)=0. QDo
CWRITE(6,1180) 1 - -
DO 1004 1=5,15,2
DO 1004 J= 5,15 2 o : oo :
Q{IyJ)=( (A% (I~ 4))’(8 #{J=4)))/{(2.0D0%%({I-5)+(J=-5)) )%
A0I=4)E(1-4))) ' LIRS L D R
1004 CONTINUE - mnl
CWRITE(6, 1180).N_m¢,};
DO s1 I=1,28 -
DO 51 J=1,28
MI=M{1)
TTMI=EMIdY
CNI=NCI)
S NIENGSY ‘
YY(IyJ)—Q(MI+NJ+5 NI+NJ+5) . _ o
- YY{Js1)=YY(I,J) _ : .
Z{1,J)=MI%N g (MI=1 )% (MJ= 1)*Q(MI+NJ+1 NI+NJ+5)" ’
14 NI ENJEINT=1 ) (NI=-1 )% QIMI+NJ+5 ,NI+NJ+1 ) S
2+(GNU*(%I*NJ*(MI 11 {NI=1)+MIENTH(MI-1) % (NI=1))
342,0D0%*(1,0D0- GNUI#MIANJENTHNI ) *CIMI+MI+3,NI+NI+3)
Z{Js I)=Z(1,43 ‘
: 51 CCNTIMUE
1170 FORMAT(8D15.4)

S JCLI=MUL{IL L)
SodoL2=MUL(T ,2)
DO 80 J=1,28
Z(J0L1,3)=7Z(JOL1,J)*DINK(I)/2.0D0-2{J0L2,J)*0. 66666666/DINK(I, .
80 YY(JOLI,J)—YY(JOLI,J)‘DINK(I)/Z ooo YY(JCLZ,J)+O 66666666/DINK(I) i
CFORMAT(Y BKO ') T AT AR S , RECTE

.. DO 181 K=J0OL2,28
. IF(K.EQ.28) GO, TO 181
DO 181 LL=1,28
Z(K,LL)=Z{K+1,4LL) : %
181 YY(K,LLISYYIK+1,LL) .
e e e 28 O
Z(L,JOLLY=Z (L, JOLLI*DINK( 1) /2.0D0=Z (L ,JOL2) %0 . 66366666/DINK(I) )
182 YY(L;JOL1)=YY(L,JOLL)*DINK{I)/2.000-YY (L JOL2)*0.66666666/DINK(T)
DO 183 11=J40L2,28
IF(11.EQ.28) GO TC 183
PO 183 JJ=1,28
YY) =YY (I, TI41)
183 20J9,11)=2049,T1+1)
185 CONTINUE




© DO 187 I=1,424

DO 187 J=1,24 . 7
T d) =YY D)
TRUIZJY=ZUI, J)
FORMAT(8D1544)

DO 72 1=1,24
DO 72 J=14+24
“SUM2=0.,0D0
DO 73 K=1,24 EREE T

SUM2= SUM2+S{K,I)*R(K,J)(, o
Q(I,J)=SUM2 e
DO 74 I=1+24
‘DO T& J=1,24
L ISUM3=0,0D0

- . DO 75 K=1,424 ' ER
15 SUM3=SUM3+Q(1, K)*S(K,J) o

CR{IyJ)=SUM3 e
R{J,I)=SUM3
DO 76 I=1,24"

. SUM2=0.0D0 .

DD 77 K=1, 24 -
SUM2=SUM2+S (K, 1) T (K, J)
Q(IrJ)'SU“\Z
DO 78 I1=1,24 _
DD T8 J=1424

. SUM3=0,0D0
DD 79 K=1,24 SR e
SUM3=SUM3+Q(I, KI%S(K,J)

CT(I,J)=SUM3

78 T(J,1)=SUM3
SO RETURN
CEND




’ SUBRDUTINE TRNSFA(BKU,SM SK NGE IE KE KSIZE,
*N,NSUB NCDRN,NTCCR KROPL ¥ N R
IMPLICIT. REAL#8(A-H,0~72) INTEGER(I- N).“

. DIMENSION BKO(KSIZE,KSIZE),SM(Ny, N),
”* " SK{N, N).NGE(KE,NCORN) - L
IF(1E. LT. KROP1) GO TO 2

DO 3 11=1,NTCCR
=TI p0 T3 12=1NTCOR f
4'v¥N3 =NSUB*(NGE(IE,I1)- 1)
- Na= =NSUB* (NGE(IE,12)-1) =
DO 3 Ll=1,NSUB B
poO 3 L2=1,NSUB
LA=L1+N3
e Bo 24NA oo
’ ’I>JlA—L1+(Il 1)*NSUB
. 1IB= = 2+{12-1)Y%NSUB - . :
3 BKO{LA,LB)= BKD(LA:LB)+SK(IA IB)
60 TO 1 ,
‘ 2 CONTINUE
LT D0 40 1= l.NCDRN
DO 4 I2=1,NCORN .
WQN3=NSUB*(NGE(IE,II)—1) :
‘N4=NSUB*(NGE{IE,I2)-1).
DO 4 L1=1,NSUB. ~
DO 4 L2=1,NSUB
LA=L1+N3 o
LB=L2+N4
. IA=L1+(I1-1)*NSUB
. IB=L2+(1I2-1)*NSUB
4 BKO(LA,LB)=BKO(LA,LB)+SK(IA,IB)
1 CONTINUE
T RETURN
- END




SUBROUTINE QUT(Q,A,B) .
CIMPLICIT REAL*S(A—H,O—Z).LNTEGER(I-N)ﬁyf
DIMENSION Q(24424) B R e S

(1.2 oA/ 2. 0D SRR
Q(1,3)=—B/2.0D0 | , o ;
Q{1s4)=(A%%2)/4.0D0
Q(1+5)=A%B/4.0D0
Q{1+6)=(B%*%2)/4.0C0
Q{1,7)==(A%%3)/8.0D0
Q(1,8)=—(B*A%%2)/8.0D0
Q{1,9)=={A%*B*%*2)/8.00D0 , , 5
Q{1410)=-(B%*%3)/8.0D0 : , o
QULo1L )= (A%%4)/1.6D01 N
Q(1,12)=(B*A%%3)/1.6D01 i
Q(Lly13)=((A%%2)%(B%*%2))/1.6D01 ..
Q{1ly14)=(A%*B*%3)/1.6D01 -
Q(1415)=(B*%*4)/1.6001
Q(1,16)==(A%%5)/32.0D0 .
QUL LT == (A%E3 )R (BEX2) )/3,2D01 i mim st
Q{1,18)==( (A%**2)%(8%%3))/3.2D01 . .
Q(1s19)==(B%*%*5)/3,2D001 . S
Q{1920)==( (A%%4 )% (B%%2))/9,6D01 =~ =~ "
QU121 )==( (BX*4)x(A%%2))/9.6D01 |
Q{1922)=((A%%3)%(B%**3))/6.4D01 .
Q(L923)=((A%*5)%(B%*%2))/1.92D002 ' mrn
Q(1,24l-((B**S)*(A**Z))/l 92002
Q(2,2)=1.000 N
Q{2+4)=—A

Q(2+5)=-8/2.0D0
Q(2+7)=0,T75D0%A%%2
Q(2,8)=A%B/2.0D0
Q(2,9)=(B**2)/4.0D0
Q(2,11)==(A%%3)/2.0D0
Q(2,12)=-3.0D0%(B%A%%2) /8.000
Q2413 )==(A%B%%2) /4 .0D0
Q(2,14)=-(B%*%3)/8.000
Q(2516)=5,0D00%(A%**4)/1.6D01 i
Q(2,17)=3, ODO*((A**Z)*(B**Z))/I 6001
Q(2,18)=(A%*B*%3)/8,0D0

Q{2420)=( (A**3)%(B%*%2))/1.2D01
Q(2522)==3,0D0% ( (A*%2)*(B%%3))/3.2D01
Q(2,23)=-5, ODO*((A**4)*(B**2)119.6001
Q(3,3)=1.000

Q(3,5)=-A/2.000

Q(3,6)=-8
Q(348)=(A%%2)/4.0D0
Q(3,9)=A%8/2.0D0
Q(3,10)=3.0D0%(B**2) /4,000
"Q(3,12)=-(A%%3)/8.,0D00
Q{3,13)=~(B%A%%2) /4.000
Q(3,14)==(3.0D0%(A%B*%2)) /8.0D0
Q(3,15)==(B*%3)/2.000
Q(3,17)=(B*A*%3)/8.0D0 o
Q(3,18)=3,0D0%( {A*#2)*(B#*2)) /1, 6001
Q(3,19)=5.000%(B*%4)/1.6D01 ShE T S
Q(3,21)=((A*%2)#(B%%3))/1.2001 R R
Q(3,22)=-3,000%((A**3)*(B**2))/3.2001 . = '




- Q(5413)=A%8

Q(3,24)=-5. 000*((B**4)*(A**2))/9.6001 | - g

QU4 44)=2.000 ety
Q44 7)==3,0D0%A K
Q{4,8)=-B | ey
Q{4411)=3.0D0%A%*%2
Q{4,12)=1.5D0%A%*B
Q(4+13)=0.5D0%B%%2
Ql4416)=-2.5D0%A%%3
Q{4,17)=~0.75D0%A¥B**2
Q(4418)=-0,25D0%B%%*3
Q(4420)==0.5D0% { A%%2 )% (B**%2 )
Q(4,421)=(B**4)/8.0D0
Q(44922)=3.000%(A*B%*%*3)/8.0D0
Q{4,23)=5. ODO*((A**B)*(B**Z,)/loZDOI
Q{4424)=-(B%%5)/1.,6D01 . .
Q{545)=1.0D0 s
Q(548)=-A

Q{5,9)=-8

Q{54912)=0. 75DO*A**2

Q(5414)=0.7500%B%*2
Q(5,17)=-0. 75D0* Bk A%%2
Q{5,18)=~0.75D0*A%B*%2 . S
Q(5,22)=9. ODO*((A**Z)*(B**Z))II 6001
Q(6,61=2.000

Q(6,9)=~A
Q(6,10)=-3,0D0%B
Q(6,13)=0.5D0%A%%2
Q(6,14)=1.5D00%A%B

QU6 ,415) =3, 0DO*B*%2
Q{6417)==0,25D0%*A%*3
QU6418)==0.75D0%BRA%%2
Q(64519)=-2.5D0%B**3
Q(6,20)=(A%%4)/8.0D0 -
Q(6221)==0,5D0% (B*#2 )% (A%%2) |

Q(6522)=3.0D0%{B*A%*3)/8.0D0 ¢ 
/

Q(6,23)=-(A*%5)/1.6D01

Q(6524)=5. ODO*((B**3)*(A**2))/1»200
Q(7,1)=1.0D0
Q(7,2)=—-A/2.0D0
Q(7,3)=B/2.0D0 .
Q(744)=(A%*%*2)/4.0D0 -
Q{745)=-{A%*B)/4.0D0
R(756)={B**2) /4,000
Q(747)=—(A%%3)/8.0D0
Q{7:8)=(B%xA%%2) /8,000
Q{7+9)=—(A%B%*%2) /8,000
Q(7,10)=(B%%3)/8.0D0
Q(7511)=(A%*%4)/1.60D01

Q(7512)=-{B*A%%3) /1.6D01 :
QUT7,13)=((A%%2)%(B%%2))/1.6D01
QU74914)=-{A%BXx*3) /1.6D01
QU7,15)=(B%*4)/1.6001
Q(7+16)=—(A%%5)/3.2001
QU7,17)=—( (A%%3)%(B*%2) )/3.2D01.
QUT7,18)=({A%*2)%(B%%3))/3,2001 * =
Q(7,19)=(B%%5)/3.2001, |
Q(7,20)=( (A%%4) *(B*%2) ) /9.6D01

[




. QU11914)=0.75D0%B%%2

Q(7421)=-{ (A%%*2}*{B%%4) )/F3.6D01 .
Q{7422)==((A%%3)*{B*%3) }/6,4D01
QU7 423)=={ {A%%5)%(B¥%2))}/1.92002 ORI
QU7424)=={(B*%5)%(A%%2)}/1.92D02 - = .
Q{8,2}=1.0D0 I
Q{8y4)=-A

Q{845)=B/2.0D0

Q(847T)=0.75D0%A%%2

Q{8,48)=—0.5D0%A%*B

Q{8,49)=0.25D0%B%%*2

Q(84511)=~0.5D0%A%%]3
Q(8,12)=3.0D0%{B%xA%%2) /8,000
Qi8413)==0.25D0%A%*B¥%2
Q{8,14)=(B%%3}/8.000
Q(8,16)=5.,0D0%(A%%4)/16.0D0

Q(8,17)=3,0D0%( (A*%2)%(B*%2))/1.6D0L .~ = .

Q(8,18)=~(A*B%*3)/8.0D0
Q{8920 )==( (A*%3)%(B*%x2) ) /1. 2D01
Q(8,22)=3.0D0%*( (A%x*2)*(B%*%*3))/3.,2001 -
Q(8,23)=5. ODO*((A**4)*(B**2))l9.600f“
Q(943)=1.000 : e
Q(9,5)==A/2.0D0
Q{(9,6)=B
Q(9,8)=0. ZbDO*A**Z
Q(9,9)=-0.5D0%A%*B
Q(9,10)=0,75D0%B*%2 R
Q(9,12)=={A%%3)/8.0D0 RS RN
Q{9913)=0s25D0%BkA%*%2
Q(9,14)=-3.0D0%(A*B*%2) /8,000
Q(9+15)=0.500%B%*3
Q(9,17)=—{B*A%%3) /8,000 :
Q(9,18)=3.0D0%( {A¥%2)%(B*%2))/1e6DOL i s mwmam
Q(9+19)=5.,0D0%(B**4)/1.6D01
Q{9:21)=—{ (Bx*x3 )% (A%x%¥2))/1.2D01 ~
Q(9,22)==3,0D0%( (A%*3 )%(B*%2))/3.2D01
Q(9924)==5,.0D0% ( (B*x*4 )% (A%%2) ) /9.6D01
Q{10,4)=2.0D0 .
Q(1057)=-3.,0D0%*A
Q{10,8)=8
Q(10,11)=3,.0D0%A%%2 S
Q(10412)==3.0D00%(A*B)/2.0D0
Q(10,13)=0.5D0%B%*%2
Q(10516)==2.5D0%A%*3
Q(10417)=—0.7500%A%B%%*2
Q(10,18)=0,25D0%B%*3
Q({10+20)=0.5D0% (B%%2 )%k { A%%2)
Q{10421)=(B%*%4)/8.0D0
Q(10,22)==3,0D0*(A*B%**3)/8.0D0
Q(10,23)=-5.0D0%( (A%**3 )% (B*%*2)}/1.,2001
Q( 10y24)=(B*%5) /1. 6001‘*
011, 5)~1 0oDo
Q(11,8)=~/
0(1199)38
Q(11,12)=0.75D0%A%*2
Q(l1l,13)=-A%B

Q(11,17)=0.75D0%B*A%%2
Q411,418)==0.75D0%A*B*2




- Q(14511)=0.5D0%A%%3

0(11,22) =9, 0D0%( (A%¥2)#(B¥#2))/1.6001 | P

- Q{12,6)=2.000 ,
Q(12,9)=-A SRR P
Q(12,10)=3.0D0%8B DLty
Q(12413)=0.5D0%A%x2 AR

S Q(12,14)=-1.5D0%A*B
Q(12415)=3.0D0%B%%2
Q(12,17)==0.25D0%A%%3
Q(12,18)=0.75D0%B*A%%2
Q(12,19)=2.5D0%B*%3
Q(12,20)==(A%%4)/8,.0D0
Q(124y21)=-0.5D0% (B*%*2 )% (A%%2)
Q(12,22)=-3.0D0%(B%*A%*%3) /8,000
Q(12,23)=(A%%5)/1.6D01 I
Q(12,24)=—5.0DO*((A**Z)*(B**B))/I,2001 ~
Q(13,1)=1.0D0 B Ny SRR
Q{13,2)=0.5D0%A

Q(13,43)=-0.5D0%B
Q{1344)=0.25D0%A%%2
Q{13,5)=-0,25D0%B*A
Q(1346)=0,25D0%B%x%2
Q{13,7)=(A%%3)/8.000

- Q(13,8)==(B*A%%2)/8.,0D0
Q(13,9)=(A%*B%%2)/8.0D0
Q(13,10)==(B%*%*3)/8.000

QU 13,11)=(A*%4)/1.6D01
Q(13,12)==(B*A%%3)/1.6D01 4
QU13+13)=({A%*2)%(B*%2))/1.6D01
Q(13514)=-(A%B%*%3)/1.6DC1
Q{13,15)=(B**4)/]1,6001
Q{13,16)=(A%*%*5)/3,2D01

QU135 17)=({A%%3)%({B%*%2))/3,2D01
Q{13,18)=—-((A*x2)*(B%%3))/3,2D01
Q(13,19)=~((B*%5))/3,2D01
Q{13,20)=~{ (A%%4 )% (B%%2))/9,.6D01
QU13,21)=((B**4 )% (A%%2))/9.,6D01
Q(13,22)=—( (A%*3)%(B*%3)) /6.4D01
Q13,23 )==((A%%5)%(B%**2))/1.92D02 *
Q{13,24)=—((A%*2)%(B%%5))/1.92D02
Ql{14,2)=1.0D0 TR R
Q{la,4)=A

Q(14,5)=-0.5D0%B
Q{1457)=0,75D0%A%%2
Q(14,8)=-0.500%A%p
Q{14,9) =0, 25D0%B%%2

Q(14412)=-3.0D0%(B*A**2)/8.0D0
Q(14,13)=0.25D0%A%B**2

Q144 14)=—(B%*3)/8.,0D0
Q(14516)=5.000%(A%*%4)/1.6D01
Q145 17)=3,0D0%( (A%#2)%(B%%2) ) /]1.6D01
Q(14518) == (B%*%k3)%A/8,0D0 |
Q(14520) ==( (A**3 )% (B*%2) ) /1 .2001
Q(14422)=-3,0D0%( (A*%2)*(B*%3) ) /3.2D01
Q(14523)=-5,0D0%( (A%%4 )% (B8%*2) ) /9.6001
Q(15,3)=1.0D0 Rt T
Q(1545)=0.500%A
Q(15,6)=-8




Q(15,8)=0s25D0%A%%2
Q(15,9)=-0.5D0%A%B
Q(15,10)=0.75D0%B%%2 o
Q(15,12)=(A%%*3)/8.0D0
Q(15513)==0.25D0%BkA%%2
Q(15,14)=3.0D0%(A*B%*%2)/8.,0D0
Q(15,15)=-0.,500%B%**%3
Q(15,17)=—(B*A%%3)/8.0D0 e
Q{15,18)=3. ODO*((A**ZI*(B**Z))II 6DO1 . .
Q(15,19)=5.0D0% (B¥*4)/1.6001 L
QU15,21)=—((B*%3)*%(A%%2))/1.2D01
Q(15,22)=3.000%( (A*%3)%(B%%2))/3.2D01
Q(15,24) =5, 000*((8**4)*(A**2))/9.6001
Q(16,4)=2.0D0 S ‘ RR
Q{16,7)=3.000%A
Q{164 8)=~
Q(165,11)=3,0D0%A%%2
Q(16412)=-1.5D0%A%B

QU 16513)=0.5D0%B%%2
CQ{16416)=2.5D0%A%*3
Q(16,17)=0.75D0%A%B%%2
Q(16518)=—0.25D0%B%*3
QU16520)=—0.5D0% (A%%2 )% (B*%2)
Q(16421)==(B*%4)/8.0D0
Q(16,22)==3.,000%(A%B%%3)/8.,0D0
Q(16,23)=-5, ODO*((A**S)*(B**Z))II 2001z?
Q(16424)=(B%%5)/1.6D01
0(17+5)=1.0D0 S SO
at17.8)=A S R
Q(17+9)=-8 : . o ;
Q(17512)=0.75D0%A%%2 ' '
Q{17,13)=—A%B
"QU17414)=0.75D0%B%%2 ;
Q(17417)==0.7500%B*AX®2 . .
Q(17,18)=0.75D0%A%B*¥%2
Q(17,22)=9. ODO*((A**Z)*(B**Z))/l 6001
Q{18,6)=2.0D0
Q{18,9)=A ,
"Q{18,10)=-3,0D0%B
Q(18413)=0.5D0%A%%2
" Q(18,14)=-1.5D0*A%*B
Q(18415)=3.,0D0%B**2
"Q{18,17)=0.,25D0%A%*3
Q{185,18)=~0.,75D0%B*A%%2
Q(18919)==2.5D0%B*%3
Q(18,20)={A%%*4)/8.0D0 ey
QU18421)=((B*%2)%(A%%2)) /2, 0D0
Q{18422)=-3.,0D0%{B%A%%*3)/8,0D0.
Q(18,23)=(A%%5) /1.6D01 .
Q(18424)=-5. 000*((3**3)*(A**2))/f“
Q{1941)=1.000
Q(19,2)=A72.000
Q{19,3)=B/2.0D0
Q(1944)=0.25D0%A%%2 C o : ;
Q{19,5)=0s25D0%A%B ' |
Q(19,6)=0.2500%B*%x2 =
Q{19,7)=(A%%3) /8,000
Q(19,8)=(B*A%%2)/8.0D0 .

i
i
BN




- Q(19,9)=(A%B*%*2)/8.0D0

- Q(19410)=(8%%3)/8,0D0

S Q(19911)=(A%%*4)/1.6D01 o
Q{19,12)=(B*A%%3)/1.6D01 .
QU19913)=({A%%2)*(B%%2))/1, 6001
QU19,14)={A%B%**3) /1.,6D01
Q(19515)=(B*%*4)/1.6D01

Q(l9:17)“ ((A**B)*(B**Z))/B 2001
QU19,18)=((A%%2)%(B*%*3))/3.2D01 .
Q{19+19)=(B*%5)/3,2001

QU19,20)={ (A*%4)%(B*%*2))/9.6D01
Q19921 )=( (B**4 )% {A%%2))/9,6D01
Q(19922) =( (A%x%3 )% (B*%3) ) /6,4D01 .
Q(1l9, 23)—((A**5)*(B**2))/1-92002
Q(19124)—((B**S)*(A**Z))/l-92002
Q(2042)=1.0D0

Q(20,4)=A :
Q{20,5)=B/2.0D0

Q{205 7)=0.75D0%A%%2
Q(2048)=0.5D0%A%B
Q(20+9)=0.25D0%B*%2"
Q(20411)=0.5D0%A%%3
Q(20,12)=3.0D0%(B*A%*%2)/8,0D0
Q(20,13)=(A%B%*%2) /4.0D0
Q(20514)=(B%%3) /8,000
Q(204+16)=5.0D0% (A%*%4)/1.6D01

Q(20,17)=3, ODO*( (A%%2 )% (B%x%2) ) /1, 6003

Q(20,18)={A*B%*%3)/8,.0D0
Q(20,20) =({{A%%3 )% (B%*%*2) )/1.2D01
Q(20,522)=3,0D0%( (A%%2)%(B*%3) ) /3, 2001
- Q(20423)=5, ODO*((A**4)*(B**2))/9.6001
Q(21,3)=1.0D0 :
Q{21,5)=A/2.0D0
Q(21+6)=8
Q(2148)=0.25D0%A%%2
Q(2199)=0.500%A%B
Q(21+10)=0,75D0%B*x2
Q(21,12)=(A%*%3)/8.0D0
. Q(21413)=0.25D0*B*A%%2
Q(21,414)=3.0D0%{A*B*%2)/8.,0D0
- Q{21915)=0,5D0%B%*%*3
Q{21417)=(B*A%*3)/8.,0D0

Q(21,18)=3. ODO*((A**Z)*(B**Z))/l.bDOI‘

Q(21,19)=5.0D0%(B%%4)/1.6D01
Q21,210 =((B*%3 )% (A%%2) )/1.2D01
Q(21522)=3.0D0% ( (A*%*3) % (8%%2) )/3,2001
Q(21,24)=5, ODG*((A**Zb*(B**Qb)/G 6001
Q(2244)=2,000
Q(22, 7)=3. ODO*A
Q(22,8)=8 L
Q(22,11)=3.0D0%A%*2
Q(22,12)=1,5D0%A*B
Q(22,13)=0.,500%3%%2
Q(22,16)=2.5D0%A%*3
Q{22417)=0,75D0%A%B%*2
Q(22,18)=0.25D0%B**3
Q(22,20) =00 500% { A%%2 )% (B¥*2)

P e e



Q(22,21) == (B¥%*4)/8.0D0
Q(22+422)=3.0D0%(A%B*%*3) /8,000 g
Q(22923)=5. ODO*((A**3)*(B**2))/1 2001
0(22424)=-(B*%5)/1.6D0L .. .
Q(23,5)=1.0D0 T
Q(23’8)=A
Q(23,9)=8B
Q{23,12)=0.75D0%A%%2
Q(23,13)=A%B
Q{23,14)=0,75D0%B*%2
Q{23417)=0,75D0%B*A%%2
Q(23,18)=0.7500%A%B%%*2
Q(23,22)=9. ODO*((A**Z)*(B**Z))/I 6D01
Q(24,6)=2.0D0 e
Q(24,9)=A
Q(24,10)=3.0D0%8
Q{24,13)=0.5D0%A%%2
Q(24414)=1.5D0%A%B
Q(24,15)=3.,0D0%B%%*2
Q(24417)=0.25D0%A%%3
Q(24518)=0.75D0%B*A%%2
Ql24419)=2.5D0%B%*3
Q{24520)==(A%*%4)/8.0D0 R
Q{24521)=0.5D0%( { AX%2)%(B*%2)) . .%
Q(24,22)=3.000%B* (A**3)/8,000 7
" Q(24923)==(A%%5)/1.6D001
0(24.24) S5e ODO*((A**Z)*(B**B))/I‘200
RETURN
END




SUBROUTINE BOCUND(N:TH:CHAN,IPDT'DD.ICOT.TAIL,ICOK,NC,

 %LUT,MUT,KUT,MEAT,NUL,NP)

<60

33

IMPLICIT REAL#8( A=H,0-2) s INTEGER{I-N)
DOUBLE PRECISIGN DSIN,O0COS '
DIMENSION CHAN(N) sIPOT(N,2) sDD(N+2)»
*TAIL(NoZ)'ICOT(N:B),ICOK(N93)yMEAT(NP)'NUL(NP)
L=1

FORMAT(3110)

DO 31 M=1,N

CHAN(M)=1.0

DO 33 J=1.2

OD(M,J)=1.0D0

CTAIL{M,J)=1.000.

IPOT{(M,yJ)=0 S

- DO 34 JJ=1l43

34
31

18

19

17

ICOT(M,JJ)=0
ICOK(MyJJd)=0

CONTINUE

MUT=0

KUT=0

LUT=0

DO 1 I=1,NP

MMM=1-1

IF(NUL(I).EQ.O0) GO TO 1
IF(NUL(I).EQ.1) GO 7O 18
DIK=-DCOS(TH)/DSIN(TH)

GO TO 17 I R A o
IF(NUL(I)+GT42) GO TO 19 o v e e
DIK={(DSIN(TH)/DCOS({TH)) o B

GO TO 17 .

CONTINUE

GO TO 1

MUT=MUT+1 ;

CHAN{L)=DIK#*CHAN(L)
IPOT (L1 )=MMM*6+2
IPOT(L2)=MMM¥6+3 '
WRITE(6560) IPOT(Ls1)IPOTI{L,2) :
Lol B

CONTINUE

KXK=1

KXKX=1

DO 3 I=1,NP
IF(I.EQ.18) TH=-TH

C MMM=I-1

21

IF(MEAT({I).EQ.0) GO TO 3 |
IF(MEAT(1).G6T.3) GO TO 51
LUT=LUT+1

ICOT(KXKyl)=MMM¥k6+4 .
ICOT{KXK2)=MMM*6+5
TICOT{KXK3)=MMM*6+6 S
WRITE(64+60) ICDT(KXK.l),ICOT(KXK,Z)9ICGT(KXK93)
IF(MEAT(I).GT.1) GO TO 21 S '
_DD(KXK,l)=—DCOS(TH)*DCOS(TH)/(DSIN{TH)*DSIN(TH))*DD(KXK.1)
DD(KXK.2)=2.0DO*DCOS(TH)/DSIN(TH)*DD(KXK.Z! ’
KXK=KXK+1 .

G0 10 3 ' ‘ PRl nE B R
IF(MEAT(I).GT.2) GO TO 22 -ftﬁ**“”* i
DD(KXK¢1)=1.0DO*DD(KXKvb) o




22

51

23

24

25

DD(KXK2)==( (DSIN(TH) *DSINI{TH) - DCOS(TH)*DCOS(TH))/DSIN(TH)*DCDS(

*TH) )XDD(KXK,2)

KXK=KXK+1

GG TO 3

IF{MEAT(I).GT«.3) GO TO 51 .

DD(KXKy 1)=—(DSIN(TH)*DSIN(TH) /(DCOS(TH)*DCOS{TH) ) }*DD(KXKy1)
DD(KXKy2)=(-2. ODO*DSIN(TH)/DCOS(TH))*DD(KXKoZl
KXK=KXK+1

GO T0 3

ICOK(KXKX 1) =MMM*E+4

ICOK({KXKXy2)=MMM*6+5

ICOK(KXKX93)=NMNMM*6+6

WRITE(64+60) ICGK(KXKX,I)1ICGK(KXKX;Z),ICOK(KXKX13)
KUT=KUT+1

IF(MEAT(I).GT.4) GO TO 24

TAIL(KXKXy1)=DSIN(TH) /DCOS{TH)*TAIL(KXKXy1)

TAIL(KXKX, 2)= DSIN(TH)*DSIN(TH)/(DCOS(TH)*DCOS(TH))*TAIL(KXKX,Z) -

KXKX=KXKX+1
G3 T0 3
IF(MEAT(I).GT.5) GO TO 25

TATL(KXKXs1)=2, ODO*DSIN(TH)*DCOS(TH)/(DCUS(TH)*DCOS(TH) DSIN(TH)}$

%XDSIN(TH) J¥TAIL(KXKXs1)

TATL{KXKX2)==1.000%TAIL(KXKXq2)

K XK X=K XK X+ 1

GO TO 3

TAIL(KXKX 1) ==DCOS (TH) /DS IN(THI*TATL (KXKXs1)

TAIL(KXKX,2)= DCOS(TH)*DCDS(TH)/(DSIN(TH)*DSIN(TH))*TAIL(KXKX;Z)
KXKX=KXKX+1 i e R T

CONTINUE

CONTINUE
WRITE(6,60) LUT -
WRITE (6460) KUT.
WRITE(6560) MUT
RE TURN |
END

o

e X y
Y AR




11

10

SUBROUTINE UNDEP(CLAP,IPOS,VAB,NP,NV MRED KSIZE,NKIMES.DDyKS) ’

IMPLICIT REAL*8(A=Hs0-2), INTEGER(I=N)

DIMENSION CLAP(KSIZE)vVAB(KSIZEvKS)vDD(NP,ZDyIPOS(NPyB) ._ '“u

DO 11 N l MRED ‘
CLAP(N)=VAB(N,1I)

D0 23 LLL=1,NKIMES

DO 2 JJ=1,MRED

IF(M.GTWNP) GO TO 2
IF(IPOS(My3).GTedd) GC TO 2
J=JdJ+1

DO 3 L=JJ,MRED
VAB(L+1,I)=CLAP(L)
VAB(JJ+1)=0.0D0
IF(DD(M,2).EQ.0.,0D0) GO TO 7
VAB(JJ,1)=DD(M,2)*VAB(JJ=-1,1)
IF(DD(M,1).EQ.0.0D0) GO TO 9
VAB(JJ,I)= DD(M'I)*VAB(JJ 211)+VAB(JJ01)
MRED=MRED+1 . :
00 8 LL=1,MRED
CLAP(LL)—VAB(LL:I)
M=M-1

GO TO 23

CONTINUE
CONTINUE

M=NK IMES w-‘~,_,t.~ O S0
MRED=MRED-NKIMES . .~ .
MRED=MRED+NK IMES
RETURN | .

¢




11

10

CUBPJUTINF UNLPR{CLAP,IPOS, VAR, NP NV yMRED,KSIZE,NKIMES, TAIL,KS)

IMPLICIT REAL*8({A-H,0- Z),INTEG&R(I =N)

DIMENSION CLAP(KSILE),VAB(KSIZE1KS)7TAIL(NP12)1IPOS(NP

M=NKIMES
DO 1 I=1,NV

DO 11 N=1,MRED

CLAP(N)=VAB (N, 1)

DO 23 LLL=1,NKIMES

DO 2 JJ=1,MRED

IF(M.GT.NP) GO TO 2
IF(IPOS(4,y1).GT.JJ) GO TO 2

J=JJd+1

DO 3 L=J,MRED

VAB(L+2,1)=CLAP(L)

VAB(J+1,1)=0.0

VAB(J,1)=0.0

IF(TAIL(M,2).EQ.0.0D0) GO TO 7
VABLJ+1,1)=(1.0D0/TAIL{My2))%VAB{JUs1)
TF(TATL(M,1).EQ.0.0D0) 6O TO 9
VAB(J,T)=(1. ODO/TAIL(M,I))*VAB(JJ 1)
MRED=MREDN+2

DO 8 LL=1,MRED

CLAP(LL)=VAB(LL,I)

j=M-1

Go 19 23

CONT INUE

CONTINUE

M=NK IMES

MRED=MRED=NK IMES %2

CONTINUE

MRED=MRED+NK IMES %2

RETURN

END




81

- DOUBLE PRECISION DSIN,DCOS

DO 81 J=1,MRED

RETURN -

SUBROUTINE UN(VAB,IOT,MSIlEyKS,KUTIMEpNV,MRED RTH,CLAP NFIMES)
IMPLICIT REAL*8(A-H, U-Z),INTEGER(I-N) ' ot

DIMENSION VABIMSIZEsKS),y IOT(KUTIME 3),CLAP(MSIZE)
DO L I=1,NV

CLAP{J)=VAB(J, L)
DO 2 K=1,NTIMES
LT=I0T(K,2) - : : e R e T L
DO 3 KK=LT,MRED B |
VAB{{KK+2) ,T1)=CLAP(KK) i
VAB(IOT(K,2),1)= —VAB(IOT(K:I)'I)/DSIN(RTH)
VAB(IOT(K3),1)= VAB(IOJ(K,I) I)/DCOS(RTH)
MRED=MRED+2

DO 17 M=1,MRED R e A
CLAP(M)=VAB(M,1) : S . ;
CONTINUE ' : < |
MRED=MRED=-2%*NT.IMES. . ' o i)
CONTINUE : o o o
MRED= MRED+2*NTIMESF

END




SUBRCUTINE LT{X, Y,NUL,MEAT,NGE.XPOS.IOS.4cw.x1,x2,x3 v1,vz;v3.

*#I0T,BKO,Cy - ICOKs IPOT, DD, TAIL,CHAN,ICGKE ICDT;ICDTE,ISIZE:

XIUSIC, IZ 4y INy ITH,NUM) 7

“EMPLICIT ‘REAL*8(A-H, 0-21, INTEGER(I—N)
DOUBLE PRECISION DABS,DSQRTsDSIN,DCOS.

"DIMENSION X(1Z),Y(IZ)yNUL{IN),MEAT{IN) +NGE(IZ,4),10T(IU, 3),
XIPOSLIUL2) 9 10S(TUL2) 9 MCNTIC) o XL ULZ) 9 X2{1Z )y X3{IZ),YI(IZ)yY2112
*Y3(I1Z)yI1COTLIU,3), ICOTELIUS3)ySMI24424) ySK{24524) y ICOKE(TU,2)
 DIMENSION BKO(ISIZE, ISIZE);C(ISIZ:,{SIZE),ICGK(IU92)9IPOT(IU,2
*DD{ 1120y TATL (TU,2) yCHAN{TU) yNUMITZ) :

700 FORMAT(IS5)
711 FORMAT{I5,F10.0)
. READ(54754) NTIMESSNV . ... .

READ(5,754) (10T(1I,41),1= 1,NTIMES) |
READ{59754) .4 (10S{I,d),d= 1,2).1 1,NTIMES)
AU READUSy 754) ANUMLT) yI=1y THY o ooncmniinn i
754 FORMAT{1615)

READ(5,3) KROPL,KROP2,KUTIME
ciorps READ(592) THR9THT9TH . . .
“FORMAT(2F15.0) Himnae s
"READ(5,29) PNEUO,RHO0,YMODO, THICKO
U READ(5929) PNEL, RHO7 YMOD, THICK -
29 FORMAT{4F20.0)

READ(S5,1) NC, {MCN(I),I=1,NC)
READU593).NEJNP,KS . .
READ(5,78) (NUL{I)sI=1,NP} .
READ(5,78) (MEAT{I},I=1,NP)
CWRITE(6,78) (NUL{I)sT=1,NP)

WRITE(6,78) {MEAT{(I),I=1,NP)

g 78 FORMAT(1615) : -

. KC=NC. . .
3 ORWAT(IS/(BIﬁ))
g;KE NE

88 FURMAT(?IS) ‘

READ(552) (X1{I)s1=1,NE) _

o READ(592) AX201) 9 I=LaNE) o i

CREAD(552) (X3(1)4I=1,NE)
©  READ{552) (Y1UI)s1=1,NE)
e READ (5921 (Y2{T) 9 I=1,NE)
READ{542) (Y3({I),I=1,NE)
FCRMAT{8F10.0) :

3 FORMAT(315) R
© MSIZE=NP%6 e ' .
READCSy11) KSI’E,((NGE(I9J)7J 1,4).1 1,Ver
FORMAT ('  TESRING!') : SR
FORMAT(I5/(415))
DD 4 I=1,KSIZE
v~ DO 4 J=1,KSIZE
4 BKO(I,J)=0,0D0
DO 593 I=1,NE
X (1) =0.000
593 Y{I)=0.000
KE=NE
.- NV=10. e,
TN=32.0D0
FM=1.0D0
“FK=1.0D0




' ;23

s TY=DSIN{THT)

. TB=1.000

y Dn 123 I erE

6 FORMAT(2F10.0) . = =0 0 i b i
CALL BOCOND(KUTIME,TH,CHAN, IPOT DD,ICOT,TAIL,ICOK VCyLUTyMUT,KUT,
*MEAT,NULyNP,

T IF(L.EQ.11) KROP1=17

"READ(5,6) X(I)y?iliﬁ
CONTINUE .

CLUSL
DO 5 L=1,NE -
TZ=DCOS(THT)

TA=DSIN{(THR)
TB=DCOS {THR)

e JFLLeEQoe NJM(LU)) GO TO 350 ”,.m.‘.ﬁ

TA=0.0D0

CONTINUE AR
IF(L.NE.NUM(LU}) GO TO 351
LU=LU+1 :

_CONT INUE

" IF{L.EQ.18) KROPL=32

“oIF{LWLTWKROP1) GO TO 743v€v~ ﬂ s T A
CALL NRCD(XI(L),XZ(L),XB(L)le(L)vYZ(L),Y3(L)yPNEU,SKySM,TZ ™

GO T3 744
CALL UMB(XyYsLyPNEU,SK,SM,TA,TB,NE)

CALL TRWSFA(BKJ;SM,SKaNoE LyKE,KSIZE 24'6.4y3yKRDP1

COMNTINUE

s CALL APPCON{(BKO,MCN,MSIZE, NC,MRED,KSIZE)

CALL REMCON(MCN,ICS,KSIZEJMSIZEZKC4NC,KUTIME, CHAN)
CALL REMCUN{MCNy IPOTyKSIZEWMSIZE +KC yNC+KUTIME,CHAN)

. CALL LPRCON(MCN,ICOKsKSTIZE,MSTIZE,KCyNC,KUTIME)

117

CALL LPRCON{MCN,ICOT,KSIZEsMSTIZEJKCoNC,KUTIME)

CALL ARRANGLIPDT, ICDT,ICCK IGS,LUTvKU?:WUTyNTIMES,NP:IPOS,ICOTEv ‘

2% TCOKE ¢ KUT-IME ) b
DO 717 KIL=1,NTIMES
IOT(KIL,2)=10S{KIL,1)
JTOTIKIL,3)=I2S(KIL,2).
CALL | LIVDtP(BKJ,ASIZE,WRtDyCHAN IPDT,MUTyKUTIME)

~ CALL MULIND(BKOsMSIZE,MRED+DODy ICOTyLUT,KUTIME)

SCALL MULDEP(BKOsMSTZESMREDTAIL, ICOKKUTIME,KUTY .
- 153

2778

CALL TANT(BKQOsKUTIME,MSIZE,IO0T,NTIMES,RTHyMRED)
WRITE(6,753) MRED

FORMAT(ILS) :

CHRITE(S) (VCV(I),I I,KC)

DO 778 I=1,MRED,

WRITE(8) (BKO(IyJ)sJ=14MRED)

RETURN ’

END




101
102

103

21
52
110
20
54
111
22
56

115

104

SUBROUTINE ARRANGUIPUT, TCUT » ICCK yTUS Y LUy
*ICOTE, ICOKEysNZZ)
IMPLICIT REAL*8(A-H,0-2), INTEGER{I-N)
DIMENSION IPOT{NZZ4+2),ICOT(NZZ,3)+ICCK(NZZy3)yIPOS(NZZ42}),
%[0S(N2ZZy2) s ICOKE(NZZ,3),ICOTE(NZZ,3)
WRITE(6,203) (({IPOT(IsJ)sJ=1,2),I=1,MUT)
WRITE(645203) {({ICOK(I4J)9Jd=143),1=1,KUT)
WRITE(64203) {({ICOT{I,J)9Jd=1,+3),I=1,LUT)
WRITE(69203) ({IOS(I5d)9d=14+2) 9I1=14NTIMES)
IF{KUT.EQ.Q0) GO T0 101
DO 1 I=1,KUT
DO 1 J=1,3
ICOKE{1,J)=1COK(I,J)
IF{LUT.EQ.0Q0) GO TG 102
PO 3 I=1,LUT
DO 3 J=1,3
ICOTE(I,J)=1ICAT(I,J)
IF(NTIMES.EQ.0) GO 70 103
DO 4 I=1,NTIMES
DG 4 J=1,2
IPOS(1,4)=10S(1,4)
IF(MUT.EQ.O0) GO TO 104
DO 8 K=1,MUT
L=IP0T(K,1)
IF(LUT.EQ.0) GO TO 110
DC 52 I=1,LUT
DD 2 J=1,3
IF(L.GTL.ICOT(I,Jd)) GO TC 2
DO 21 MM=J,3 ' .

ICOTE(I,MM)=ICOTE(I,MM)-1
GO TO 52

CONTINUE

CONTINUE

IF{KUT.EQ.0) GO TO 111

DO 54 I=1,KUT

DO 5 J=1,3
IF{L.GT.ICOK(I,J)) GO TG 5
NO 20 MM=J,3
ICOKE(I MM} =ICOKEl{I,MM)~1
GO TO 54

CONTINUE

CONTINUE .
IF(NTIMES.EQ.Q)} GO TO 115
DO 56 1I=1,NTIMES

DO 6 J=1,2
IF(L.GT.I0S{IsJ)) GO TO 6
DO 22 MM=J,2

IPOS{I +MM)=TIPOS(IsMM)~-1
GO TO 56

CONTINUE

CONTINUE

CONTINUE

IF({K.EQ.1) GO TO 8

KK=K-1

DO 9 LT=1,2
{IPOTIKsLTI=TPOT(K4LT)~-KK
CONTINUE e
CONTINUE

RNUT s MUT Y NT I MED s NFy TFOUSy 7




WRITE(6,4203) ((IPOT(I,J), -112)v
WRITE(65203) ((ICOK{I4d)sd=143),1=1, KUT)
WRITE(6,203) ((ICOT(IsJd) 4= 113) I=1,LUT)

" IF(LUT.EQ.0) GO TO 105

13

11
120
113

12

32

16
17
114

18
10
105

43
40

44
116

49

47
106

DO 10 K=1,LUT

L=ICOT{K,3)

IF(KUT.EQ.0) GO TO 113

DO 120 1=1,KUT

DO 11 J=1,3
IF(L.GT.ICOK({I,J)) GO TC 11
DO 13 LL=J,3

ICOKE(I, LL)—ICUKE(I:LL) -1
GO TO 120

CONTINUE

CONTINUE

IF(NTIMES.EQ.0) GO TO 114
DO 17 I=1,NTIMES

DO 16 J=1,2
IF(L.GT.IOS{I,J)) GO TO 16
DO 32 MM=Js2

IPOS(I yMM)=IPOS{I MM}=1

G0 TO 17

CONTINUE

CONTINUE

CONTINUE

IF{K.EQ.1) GO TC 10

KKK=K-1

DO 18 LT=1,3
ICOTE(K,LT)=ICOTE(KsLT)—KKK
CONTINUE

CONTINUE

LFUD=0

IF{KUT.EQ.0) GO TO 106

DO 47 K=1,KUT

L=ICOK(K,2)

IF(NTIMES.EQ.0) GO TO 116
DO 44 I=1.NTIMES

DO 40 J=1,2
IF(L.GT.IOS{I,d)) GO TO 40
DO 43 MM=J,2
IPOS(I:MM)=IPUS(11MM)‘2

GO TO 44

.CONTINUE

CONTINUE

CONTINUE

IF(K.EQ.1) GO TO 47

DO 49 LT=1,3

ICCKE(K LT )=ICOKE(K,yLT)-K~-LFUD
CONTINUE

LFUD=LFUD+1

CONTINUE

CONTINUE

WRITE(6,203) ({IPDT(I14J)9Jd=142),I=1,MUT)
WRITE(6+203) ((ICOK(IaJ)sd=193)91=1, KUT)

WRITE{6,203) ({ICOT(IsJ)sd= 1:3)1I 1,LUT)

IF{NTIMES.EQ.0) GO TO 107
DO 61 I=1,NTIMES
DO 61 J=1,42

EAES i




61

91
90
107

25
108

19
109

203

10S(14J)=1P0S(I+J)
DO 90 JJJ=1,NTIMES |
LOR=10S(JJJs1) ;

Jo=JJJd+1 |
I£(J0.GT.NTIMES) GO TO 90

DO 91 KKK=JGO,NTIMES
10S(J0,1)=10S(J0s1)-2
105(J0,2)=10S(40,2)=2

CONTINUE

CONT INUE ~

IF({KUT.EQ.0) GO TO 108

DO 25 I=1,KUT

DO 25 J=1,3

ICOK(T 4J)=ICOKE(I4J)

IF(LUT.EQ.0) GO TO 109

DO 19 I=1,LUT

DO 19 J=1:3

ICOT(I,d)=1COTE(I,J)

CONTINUE

WRITE(69203) ({IPOT(IsJ)2d=14+2),1=1,MUT)
WRITE(69203) ({ICOK(I5d)ed=193),1=14KUT)
WRITE(64203) ({ICCT(Isd)sd=1y3),I=1,LUT)

WRITE{64203) ((IOS(IoJ).J=112):I=1,NTIMES)'""

FORMAT(* ICOK*,815)
RETURN
END

HoLer st




SUBROUTINE LPRCON(MCN,IOST'KSIZEyNSIZEvKC

DIMENSION IOSTINTIMES,3) .
DIMENSION MCN(KC) o
J=1 ‘

g

Z=xr- X
oo
Lol o S N

DO 21 NUM=1,NSIZE
IF(L.GT.KC) 60 TO 7
IF(MCN(L).EQ.NUM) GO TO 2
7 IF(K.GT.NTIMES) GO TQ 11
IF(IOST(Ky3) .NE.NUM) GO T0 11
LI0ST(K,3) =y
K=K+1
GO TO 24 '
11 IF(M.GT.NTIMES)GO TO 12
5 IF(IOST(My2) NE.NUM) GO TO 12
10ST(M,2)=y ‘ s e
M=M+1
GO TOo 24
12 TF(N.GT.NTIMES) Gg T0 21
6 IF(IOST(NgI).NE.NUM) GC 70 24
IOST(N,1)=y
N=N+1
GO TO 24

GO T0O 21
24 Jd=J+1}
21 CONTINUE
RETURN
END

sNC,NTIMES)
IMPLICIT REAL#8(A=Hy0~Z), INTEGER( I~N) T e S

s g e e o

[ SR



SUBROUTINE MULIND(BKOyNSIZE, KSIZE:DD:ICOT’NTIME59NKLIME)

IMPLICIT REAL%8{A-H,0-Z), INTEGER(I-N)

DIMENSION BKD(NSIZE,NSIZE)'DD(hKLIMEaZ)'

% ICOT(NKLIME,3),RLEC(2)

DO 2 M=1,NTIMES

IF(NTIMES.EQ.0) GO TO 2

RLEC(1)= DD(M,yl)

RLEC(2)= DD(M,2)

NR=ICOT(M,y1) .

NS=ICOT(M,s2)

NT=ICOT (M, 3)

DO 50 I=1,KSIZE
BKO(NR,I)=BKO(NR,I)+RLEC(1)*BKO{NT,I}

BKO(NS,I)*BKO(NS,I)+RLEC(2)*BKO(NT.I)jﬁ“ﬁ?ﬁ4ﬁ“W*

IF{ NS—-KSIZE ) 550,50
LQ=KSIZE-1

DO 1 J=NT,LQ
BKO(J1)=BKO(J+1,1)
CONTINUE

KQ=KSIZE-1

DO 51 1=1,KSIZE B
BKO(I4NR) BKO(I,NR)+RLEC(1)*BK0(11NT)n«“'

--eKO(x.NS)-BKO(I.N5)+RLEC(2)*BK0(I,NT)5"’”“”*””"’”“ :

IF (NS-KSIZE) 6551451
DO 4 J=NT,KQ
BKO(T,J)=BKO(T,J+1)
CONTINUE 1
KSIZE=KSIZE~-1
CONTINUE
 RETURN

END
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SUBROUTINE MULDEP(BKG'NSIZE'KSIZE’TAIL'ICOK NP!NKIMES) ?

IMPLICIT REAL*8(A-H,0-2)INTEGER(I~N) . SR
DIMENSION BKU(NSIZE'NSIZE) TAIL(NP,Z),ICDK(NPQ3) s
*yRFAC(2) TR cte ,n«,n£ 

DO 2 M=1,NKIMES

IF(NKIMES.EQ.O0) GO TO 2

RFAC({1)=TAIL(M,1)

RFAC(2)=TAILI(M,2)

NR=ICOK(My1)

NS=ICOK(M,2)

NT=ICOK(M,3)

KIL=KSIZE-2

DO 50 1I=1,KSIZE

BKO(NRs I)=BKO{(NR,I)+RFAC{L)%BKO(NS, 1)
BKO(NR,T)=BKG(NRyI)+RFAC{2)*BKO(NT,1) :
IF({KSIZE~NS).LT.0) GO TO 50 : e

DO 1 J=NS,KIL

BKO(Je1)=BKO(J+2,1)

CONTINUE

DO 51 I=1,KSIZE ,
BKO(IyNR)=BKO{IyNRI+RFAC{L)*BKO{I4NS) " Lo
BKO(IyNR )= BKO(IyNR)+RFAC(Z)*BK0(I'NT)‘_-_wa;Q ( SRR
IF(NS—=KSIZE) 9451451 o ) S
DO 12 TI=NS,KIL
BKO(I,1I1)= BKO‘IQII*Z) S g
CONTINUE T
CONTINUE
KSIZE=KSIZE-2
CONTINUE »
RETURN

END
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4

*(I1493))+BKOUK,I0T(I41))

SUBROUTINE TANT(BKU KUTIML'MSIZF.IOT,NTIMES RTH MRED)
IMPLICIT RCAL%8(A-H, 0=Z), INTEGER( I=N)

DOUBLE PRECISICN DSIN,CCOS

DIMENSION BKO(MSIZE, MSIZE) s IOT{UKUTIME,3)

DO 1 I=1,NTIMES

DO 2 K=1,MRED
BKO(K:IDT(I:l))‘-DSIN(RTH)*BKO(K'{QT(I{?)!fDQQS!RTH)#ﬁKQ(K'IOT

LOT=MRED~2
LL=I0T(1,2)
D0 3 J=1,MRED
D0 3 L=LL,LOT .
BKC(JsL)=BKO(JyL+2)

DO 4 K=1.MRED _ N ST R i nm s o
BKD(IOT(I,l),K)-—DSIN(RTHD*BKO(IDT(I,2)oK)*DCGS(RTH)*BKO(IOT(IyB,, :
*1 9 K)+BKO(IOT(I91)4K) o o G e P R
DO 5 J=1,MRED “

DO 5 L=LL,LOT ;
BKC(LyJ)= BKD(L+27J) /
MRED=MRED=-2 =7~
CONTINUE
RETURN -

END




-SECTION 2

In general the boundarles of a system are not parallel

to the global co-ordinate axes. In such cases 1t is convenlent to use

local (§,n) axes and to transform subsequently to the (x,y) co ordlnate

. system shown in Flgure 11, The trigonometric relatlonshlps (together |

w1th the necessary computer codlng) requlred for the transformatlon

: 'of various boundary constraints from one co- ordmate to the other

- are given in this section. = - o

~The computer coding dictates that some value be assigned to
NUL and MEAT for each global nodal point. NUL and MEAT are set zéro
if no oblique slope or second derivative boundary constraint is to

be applied. Otherw;Lse NUL and MEAT are given values dictated by the

: .followmz table.




g

“TRIGONOMETRIC RELATION

cosze

Cos 9_

. , REQUIRED . CONSTANT
'i 1.Slopes. | R :
' = . = E?ie | = -CCSQ- ' =
: W; 0 Wy -w}' sine CHAN(I) Sio6 NUL=2
w.=0 W= W .s..i_‘n_e CHAN(I): §_]T._I_1_9 =1
n X 'y cos8 cosf
2.Second , .
Derivatives ' P , o
W 0 Wyy“nyZ%g'Wmtanze DD(I,1) =-tan®e MEAT= 3
| ' DD(I,2)=-2200
w0 | w =-(_.____.Siﬁ29 ‘C°52-9)w + Dﬁ(l 1)=1.0 I\EAT;Z.
&n yy - sinbcosé xy- ’ . : e
. : DD(I,2)= ]
Yxx o sinze-cosze. '
© sinbcos® =
w0 | s 10 cos6 10
Ym0 ' o 2o Zsine'y | DD(T,1)=- LD | vearr
' : ‘ ' tan™@ .
| DD(1,2)=2 cos®
. siné
W, =0 --cos® TAIL(I,1)= -9
w§€;0 x sin® "xy "2 sind
En 2 o,
: .cos“ 8 i )y COS°O
=W TAIL(I,2)= — MEAT=6
w0 s CTAIL(I,1)= MEAT=5
- W0 ) , _sinbcos®
- W= g— 5RO cos6-sin’6
cos“6-sin“s X _
TAIL(1,2)= 1.0
=0 . |w_=3i0® TAIL (I i)= sin® | \raT=4
nn 0_' XX cos6 "xy ™/ cose
‘o : 2 : sin%e
wkxf_§i§_etw - TAIL(I,2)= —,




