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ABSTRACT

Boundary elements based on cubic spline functions are de-
veloped for use in the solution of bhoundarv value problems
formulated as integral equations. Two-dimensionral (uni-vari-
ate) and three-dimensional (hi-variate) element confipura-
tions are defined. The three-dimensional element is an ex-
tension of the Coons patch techniaue of surface modelling.
Implementation of Galerkin’s method of integral ecuation so-
lution wusing the developed spline elements is discussed.
Creen’s function singularity arising on the douhle surface
integral is rigorously treated. A technigue of incorporat-
ing the singularities of source density due to geometrical
features into the solution bv utilizing modified spline ex-
pansion functions is presented. Cases of electrostatic and
time-harmonic problems that involve homoseneovs and inhomo-
geneous media are considered with alternative approaches to
problem formulation. Comparisons are made With the classical
pulse expansion - pognt matching method and with previous
implementations of the Roundary Flement Method using Lagran-

sian elements,
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CHAPTER I

INTRODUCTION

The Boundary Element Method (BEM) has been shown to be an
effective approach to the solution of boundary value problems formulated
. . . (1, 2, 3, 4) o .
in terms of integral equations . 1Its application, using
Lagrangian elements, has led to accurate solutions for many electro-
static and time-harmonic electromagnetic field problems. The Lagrangian (%)
element methodology was demonstrated to be superior to the classical

(5 . . . ) )

moment method implementation using pulse-expansion and point--
matching, in a number of instances. Increased stability and a significant

reduction in the number of unknowns required to solve a given problem

were among its merits.

This work has set out to further improve upon the capabilities
of the BEM. The methodology that is developed here incorporates two
major features that are fundamental in bringing about that improvement:
i) the spline formulation is utilized to guarantee high-fidelity

geometric modelling without adding to the number of unknowns;
ii) furthermore, the number of unknowns is reduced due to the fact

that, with the scheme developed here, all nodes used in element

definition are shared by a large number of elements.

This reduction in the number of unknowns is a satisfactory develop-

ment in the direction indicated by Lean:

(*) See Chapters 2 and 3 for formal definitions of the terms "Lagrangian",
"spline', etc...
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"The main drawback of the present (i.e. Lagrangiam) interpolation
scheme, not really felt in two dimensions, is the requirement for more
unknowns for increasing orders of interpolation. For up to a linear
variation, this scheme is definitely viable since all nodes are shared
by at least two or more elements. Succeeding orders need interior
nodes whose data contribute to this one element only. Hence, any
algorithm that allows the usage of information from exterior nodes,
especially for high-order interpolation, and yet remain sufficiently
flexible for general application, would be advantageous for three-
dimensional problems." (1, p. 118, emphasis added.)

It is the author's contention that the spline element methodology

responds precisely to this requirement.

Also investigated is the approach to a fundamental problem
inherent to numerical solution methods of integral equations with
kernels that have integrable singularities within the domain of inte-
gration. While traditional methods range from ignoring the singular

6
point altogether (e.g. ( )), to handling it analytically, which is

(7).  (8)

highly geometry-dependent (e.g. ), a problem-independent and
rigorous approach is provided by numerical treatment. This work contains

the implementation, in the context of spline elements, of such a

technique, originally developed for Lagrangian elements (1).

The issue of approximating source variations that tend to infinity
in the vicinity of surface normal discontinuities, i.e. corners or
edges, has also been one that requires particular attention. The present
work addresses that problem by properly modifying the spline basis
functions that approximate the solution. 1In cases where the behavior
of sources is known, this knowledge is imposed directly upon the solution,

the solution then reflecting the expected behavior exactly. Where such
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knowledge is not analytically available, one has the capability to
experiment with various modes of singular behavior imposed on the
sources and to determine a configuration that best satisfies the problem

requirements.

The remaining portion of this chapter presents an overview of

the BEM in general.

The second chapter considers Lagrangian, Hermitian and spline
interpolation, as alternative approaches to the finite-element solution
of boundary integral equations. Together with the pulse expansion
technique, these methods are seen to be following a conceptual succession
in the direction of increased fidelity in modelling geometry and sources,
decreased number of unknowns necessary to achieve such modelling, and
increased computational overhead. It has been claimed (e.g. (9)) that
generally, the latter feature renders the utilization of higher-order
schemes (of which the spline element approach is an instance) unnecessarily
onerous. One of our goals is to show that proper algorithmic develop-
ment overcomes that disadvantage. In many applications, the increased
computation time per element is compensated by decreased total number
of unknowns. This results iﬁ reduced overall cost in relation to lower

order methods that produce comparable results.

The third chapter is devoted to the derivation and implementation
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of the spline elements as the fundamental feature of this work., The
two—dimensional uni-variate spline elements are derived as a linear
combination of four cubic spline basis functions. The three-dimensional
. ) . . ' (10)
bi-variate ones are implemented using the Coon's Patch concept
commonly used in computer aided geometric design and surface modelling.

Some algebraic modifications yield the representation used in all three-

dimensional applications throughout this work.

The fourth chapter considers Green's function and source singu-
larities in the spline element context., Gaussian quadratugz integration
formulas derived for specific implementations are discussed. The
usage of modified splines that cater for expected singularities of the

source distribution are also considered in that chapter.

Chapter V consists of an exposition of various electromagnetic
field problems solved with the BEM using spline elements. Two- and
three—-dimensional geometries in electrostatic and time-~harmonic problems,

that involve homogenous and piecewise inhomogenous media, are treated. (¥)

(*) In this work, the terms "two-" and "three~-dimensional refer to
problem formulation, A problem invariant along one spatial dimension
would be formulated as two-dimensional, The terms "uni-variate" and
"bi-variate" refer to the boundary parametrization, The contour of

a two-dimensional region would be uni-variate, whereas a three-dimen-
sional region would be bounded by a bi-variate surface,Hence, two-
dimensional boundary elements are uni-variate, and three-dimensional
ones are bi-variate,
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The Boundary Element Method (BEM)

Many problems of engineering can be expressed as an integral

equation of the form (¥):

éK(r]r')f(r')ds(r')nkf(r) = g(r). (1.1)
If the kernel K(r]r') is square-integrable, i.e. if
ééKz(rIr')ds(r')ds(r) -1 (1.2)

has a finite value, then (l1.1) is a Fredholm Integral Equation,

(11)

and has a unique solution for f(r), provided that Ais not

an eigenvalue and if g(r) has a finite norm, i.e.
2 Y
é(]g(r)] ds(r)) < o . (1.3)

For the soluticn of this problem, this implementation of the
BEM entails an application of Galerkin's technique with
isoparametric elements. Both geometric variables - r, s(r) -

and sources ~ f(r) - are represented as linear combinations

of subsectional polymomic basis functions of the same order

(12, 13)

On an element, i, among the total of M elements, the relevant

value, ¢, - position or source, vector or scalar - is represented

as a function of simplex position, & as:

(*) The case when A=0 has also been solved numerically (cf. Ch.5

and Lean (1)), but lacks theoretical support (11).



21, g) =2 a, (&) 5 (1.4)
for all i, IKi<HM.

In this generalized expfesgion, ¢ represents the position
over the simplex (standard) element and as such, it may be a
scalar (one-dimensional boundary element) or a two-entry vector
(two-dimensional boundary element). qj represents the "shape
functions" i.e. basis functions defined over the standard
element and used to interpolate from @ij to &, at any point,
£, over the i'th element. The number of shape functions, N,

is a characteristic of the particular interpolation scheme.

In general, the @ij do not correspond to actual physical
values of ¢ at some node points and this constitutes one of the
(1,7)

major differences of this work from previous approaches

(See Appendix .)

Solution of the integral equation (1.1) with positive-definite
self-adjoint Fredholm operators has been analyzed extensively.

Mikhlin (%)

has given the proof that the approximate solution
constructed by the Galerkin method converges in the mean to the

exact solution of this equation, if the system of basis functions

is complete (*) in the sense of convergence in the mean. (*%)

The Rayleipgh-Ritz variational technique of solution, which,

in instances where the Fredholm operator is positive-bounded-
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below (**%*), generates a system of linear equations identical

(14)

to those produced by the Galerkin technique has been
extensively used in the context of problems formulated as
integral equations and partial differential equations

(e.g (15), (16)

). In case of non-self-adjoint operators
(i.e. those that have anon-symmetric kernel) as well, the
Galerkin technique results in a discretized equation that
corresponds to a minimized energy functional defined by

the Rayleigh-Ritz technique (17).

Galerkin's method proceeds by expressing both the position,

r or r', and the unknown function, f(r), in terms of expansion

(#¥) 4di.e. any function in the domain of the operator

ry .
T{f(r)} = [R(x|r")E(r")dxr" - A (x)
n
can be approximated to within an arbitrary precision, in the
mean, by a linear combination of a finite number of basis
functions.

(**) The sequence fn(r) converges in the mean to f(r) as n>» if

f(fn(r)—f(r))2d9+0, where ) denotes the domain of
Q

the functions fn and f.
(**%%) A symetric operator [ is positive-beunded-below if for

any function f, in its domain, <I' {f}, £><¥ ||f||® where ¥
is a positive constant.
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functions in the form of (l.4). Summarizing (1.1) as

T{f(r")} = g(r), (1.5)
this produces
N N
FJ{E%.@) £} = eLo, €) 15 (1.6)

for all i, 1~#+<M, Now, inner products with the testing

functions - same as the expansion functions, aj— are performed

to get
N N N N
<T{ I a,) f..}, & a (€E)>=<g(TaE)r..),:a (E)>
j=1 N ke K j=1 3 R K
(1.7)
for 1<i 1. The inner product is defined as:
(1.8)

<u, v> = Su(r).v(r)ds(r)
S

The operator, ', is linear

fij’ (1.7)

where sis the same as in (1.1).
(14) .
, and upon extraction of the unknowns .= ,

represents a system of linear equations in the form:

(1.9)

If there are P distinct fiﬁ and corresponding rij,then_ﬁ

is a vector containing these P fii in any selected order;

b is a vector of P entries comprising the contribution of the

right-hand-side of (1.7) to each rij in the same order as the fij;
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and S is a dense P*P square matrix whose entries S?q correspond

to the inner product of the contribution of the integral operator,
T {.} at the q'th fij; with the shape function associated with
the p'th fij'

The entry Spq is computed as:

= § J up(i) JRGEE) " E"))a_ (E")ds (" (E")) ds(r (€))
i ei S 4
(1,10)

in which the summation runs over all elements, e, connected

to the pth.global vertex; Op represents the shape function
associated with the local vertex in ey that maps to global

vertex, p;®q represents the shape function associated with the
local vertex in any element encountered during the internal
integration that maps to global vertex, q. The inner integration,
arising from the Fredholm operator, is performed over primed
variables, and the outer one, the inner product integration, is
over un-primed variables.

(18)

Gauss quadrature formulae are used throughout for inte-
gration; parametric order of quadrature being used to control

precision. Generation and utilization of specially weighted

formulae will be considered in Chapter 4, below.

Clearly, a number of choices for the basis functions, aj existg,

This choice is fundamental to the operation of the solution
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procedure. A particular class among the possible basis

functions is the subject of the next chapter.
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CHAPTER II

SPLINE APPROXIMATION

The Interpolation Problem

The use of pulses and piecewise linear functions is a common
theoretical tool of approximation of functions with the inherent

requirement of step sizes converging to zero. The study of the

ways by which this requirement could be relaxed or completely

removed, through the use of higher-order polynomials, can be

1)

said to have started with a fundamental paper by Schoenberg

The main developments, however, have occurred in the 1960's,

(2)

b4

and reported in the works of Ahlberg, Nilson and Walsh
(3) (4)

Greville , DeBoor and Schultz(s), among many others.

Piecewise Lagrangian, Hermite and spline interpolation schemes
will be considered below, within the context of boundary

element configurations applicable to the BEM.

Lagrangian Interpolation

Consider the following uni-variate interpolation problem:

. N . R '
Given {Xi, fi%: find a g(x) defined on [Xl’ XN]’

13
such that
= for i = : .
g(x,) = f,, fori =1, ..., N (2.1)
The Lagrangian solution to this problem can be formed as
N
g(x) = §=lfiﬁi{x) (2.2)
where
N
2.(x) = g (x=x.)/ (=, - x,), (2.3)
i : ] i 73 :
j=1
j#i

that is, fitting an N'th order (N - 1'st degree) polynomial

to the N given points.
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That the Lagrange interpolation procedure may fail to

).

converge as N increases is a well-known result of Runge

A piecewise-Lagrangian solution is also possible and is
more practical. On each subinterval [x;, Xj4;] ., 1 represent-—
ing the beginning node of the subinterval, a unique polynomial
of order K + 1 can be found such that

Pi( )y = £ for 3 =0, ..., K. (2.4)

%4 i+j
Taking K = 1, the set of first degree polynomials Pi(x),

each defined on [xi, X, to satisfy

1+l]

P.(x,) = £,
1 1 1

1) = f (2.5)

are called the "linear finite-element functions", or the
piecewise linear solution of the given problem.

Let's choose to represent an arbitrary first degree polynomial
as a linear combination of two linearly independent basis

functions a; and oy, defined for 0<&1 as:

o (&)
ax (&)

g

(2.6)

1l
s
!
n

(*) E.g. given that g(xi) = ( (lei—5)2+1)—l, Qﬁxiﬁl

i=1, ..., N, the Lagrange interpolation procedure
diverges for N » o,
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Clearly, now, the independent variable can be represented as:

x( 9 = xiocl(a + xi+10L2( fa) (2.7)

where i = 1, ..... > N-1, denotes the element number,

and our piecewise linear solution to the problem, as

Pi(é) = fial(E) + fi+la2@)' (2.8)

Thus, (2.6) is the definition of a Linear Lagrangian
Finite Element directly usable in the BEM as outlined in section
1.1, above.

Piecewise Hermite interpolation

Pose the interpolation problem as follows:

N
Given {Xi’ fi’ f'i} i=1° i.e. 2N independent constraints,

find a g(x) defined on [Xl’ xN] such that

[}
-

g(xi)

and g_g(x)|

dx X=X,
i

f'i, for i =1, ...N. (2.9)

If the solution satisfies the additional requirement that

it is once continuously differentiable on , and on each

Xl, XN

[xi, Xi+1]’ 1<i<N-1, it is a cubic polynomial, then it is called

a piecewise cubic Hermite interpolant.

If such interpolants had to be used in the BEM procedure,

we would define the Hermite basis hi(x), h'i(x) , such that:
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14

*Suorlouny SISeQq 91TWISH OIqN) ‘'[°'¢ 24N3L4

141




J
d hy (x)] =0

dx X=X,
3

nlo(x) =0

1 J
1 = . .
%_h i (x)|X=XA sij’ for 1<i, j<N. (2.10)
X N1

Then, the interpolating function would be expressed

as:
N
g(x) =2 (f.h, (x) + f', h',(x)) (2.11)
i=1 t 7 o1
Similar to the path followed in the Lagrangian case,
Hermite interpolation functions can be represented as a linear

combination of the following four linearly independent basis

functions (Fig. 2.1):

0 (8) = (&-17 (£ + D)
2
0 (&) = €7 (3 - 28 )
0 (8) = (£ - 1) £
ua(i) = (1 - E)Zg for 02811, (2.12)

which satisfy the stipulations of (2.10).
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Now, our solution g(x), given in (2.11), can be expressed

as

g; (&) = £,0.(8) + £ 1% @) + f'i 0L3(F;) + f‘-i+la4(£), (2.13)

for each interval (i.e. element) Xi§Xin+l, guaranteeing
that the required condition, (2.9) is satisfied. Hence
(2.12) defines cubic Hermite elements to be used in the

BEM algorithm, if desired.

Worth noting here, is that with this approach, problem
geometry definition would have to include position, x;, as
well as the variation dx| at the nodes. For realistic

d§¢ x=x,
problems, this may become quite unnecessary and cumbersome
especially from the viewpoint of a user. Watson (6) has
reported an implementation admitting the inconvenience of
applying the Galerkin scheme. Hence, it is necessary to
avoid having to specify slope information explicitly, but keep

the facility to ensure slope continuity at nodes. Splines

seem to address both requirements.

Cubic spline interpolation

Splines provide an interpolation procedure that yields smoother

results than either Lagrange or Hermite schemes with less input
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volume in comparison to the 2N independent constraints of the

latter.

To construct the spline interpolant to N points, let

1
f

|
1’ } be given; i.e. N + 2 independent

, N
g £517,0 1 Iy

constraints. The cubic spline, S(x), that satisfies these

constraints has the following properties:

i) S(Xi) = fi fori=1, ..., N,
S'(Xl) = £,
S'(XN) = f'N,

ii) S(®is twice continuously differentiable over
(Xl’ XN)’

iii) S(x) is a cubic polynomial over each (Xi’xi+l> ,
15isN-1.

(5),

Existence and Uniqueness theorem

Let hx) be a Hermite interpolation function; i.e. represent-

able as in (2.11). For given numbers fi = h(}i)’ i=1,..., N,

h(x)|x=k , there exists exactly

d d
v . 4 v o d
and £, dxh(x)lx=xl’ N = i .

d .
one set of numbers f'i = Ekh(x)lx=x,’ fori=2, ..., N-1,
i

such that h(x) is twice continuously differentiable over

(xl, XN)_
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Stated differently, among many Hermite interpolants with
arbitrary derivatives at the interior nodes, there is only
one that is second order continuous, i.e. is a spline, and

satisfies the end point derivative conditions.

1

1
for instance the fact that f " = f " = 0 may also be given,

1 N
()

Instead of the end-derivatives, f

and this constitutes a well=defined procedure as well In
fact, the spline interpolant, S(x), constructed under this

latter constraint satisfies the minimum-curvature property,

i.e. among all functions, f(x) which satisfy the interpolation
condition f(Xi) = fi and have continuous second derivatives
on (Xl, XN), S(X) minimizes the integral:(5>

X2
41 [s"(x)|? ax, (2.14)

To construct the cubic spline interpolant, define the

cubic B-spline basis as: (Fig. 2.2)

B, (x) = (o, .,
) (X‘Xi_2)3’ Xpp XXy
—3(x—xi_l)3+3(x—xi_1)2+3(x—xi_l)+l, xi_lfxixi
3(x—xi)3 - 6(x—xi)2+4, Xy XKL
- (emxy 1)3+3(X‘Xi+1)2‘3(x”xi+1)+1’ ¥ 41Xy
-O, xi+2§x. (2.15)

and fN', other constraints.
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bt e o s . —— —— — —— —— —

Figure 2.2 The B-spline basis function

For the special case of a uniform mesh with size h, (this
restriction will be lifted automatically in the next chapter)

the conditions of Table 2.1 are valid.
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*5-2 *5-1 %5 Fi+1 * 442
and and
others others
Bj(x) 0 1 4 1 0
B'.(x) O 3/h 0 -3/h 0
B" () 0 6/n> | -12/n% 6/n2 0
Table 2.1 B-spline conditions at nodes
N+1
Then if we let S(x) = Z V.B,(x), we must ensure that
j=0
N+1
\ = \ —_ 1] .1
f 1 S (xl) ‘Z Vj B (xl) (2.16)
=0
N+1
1 = -1 = 1 .
£y S (XN) ‘Z v B (XN) (2.17)
j=0
N+1
fi =8 (x,) = Ivy. B, (Xi), i=1, , N. (2.18)
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If, alternatively, we have fl" = fN" = (0 given, the

following two stipulations should replace (2.16) and

(2.17).
N+1 .
I — H — ll = 2. l
fi' S (Xl) JEOVJ Bj (Xl) 0] ( 9)
N+1
£ = g"(x )= Lv. B'(x) =0. (2.20)
N N §=0 ] ( N

(2.16), (2.17) and (2.18), or (2.18), (2.19) and (2.20)

comprise a set of N+2 linear equations of the form

By-=-f (2.21)
where v = (V, V V. V )T
i - 0 "1 'ttt TN L 40
- 1 ¢ T
f_ (f1 fl . fN fN )", or
£= (0 f £ 0)T, and
— l N H
2:= 3/h 0 —3/h 0 .
1 4 1 0
0 1 4 1
1 4 1
i 3/h 0 —B/h, or




.2

2 2 2
B = -
B =6/, 12/, 6/, 0 .
1 4 1 0
0 1 4 1

1 4 1

6/h2 —12/h2 6/h% .

Because of the structure of the system (2.21), a solution

(2, 5)

exists , and can be computed easily with a Gaussian

Elimination procedure for banded matrices.

The ''shape-function'" expression for cubic splines in the
form of (1.4), i.e. directly usable by the BEM, will be

derived in Chapter I1II.

Interpolation of Surfaces

The extension of Lagrange, Hermite, and spline inter-
polation procedures to the case of two independent variables

is achieved as follows:

For bi-linear Lagrange interpolation, the counterpart

of the shape functions depicted in (2.6) can be defined

as (e.g.(®y:
a,E,m = (1-€) (1-n)
a,(E,n) =¢&(1-n)
@ € =&

a,(E,n) =(1-E)n, 0sE,n<l. (2,22)
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The expression

B

®(E,m =L o.a (£,n) (2.23)
. ii
i=1
then maps the unit-square simplex into a global quadri-

lateral defined by four vertices (Fig. 2.3).

A similar extension to the bi-variate domain exists
. . . 5
for Hermite interpolation as well ( ). We shall, however,
immediately pass to bicubic splines which constitute the

starting point of our three-dimensional (bi-variate) boundary

elements.

(0,1 (r,n

7 — SIMPLEX —

{0,0) (,0)

V.

s

— GLOBAL —
¢| ¢2

~Figure-2v3, Lagrangian bi-linear mapping from a square simplex,
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The original extension of the cubic spline idea to two

(8)

dimensions was due to G. Birkhoff and C. DeBoor s
who let Ci(x), i=0,1, ..., M, M+l be cubic spline

functions such that

f(x) = fici(x) + f'l co(x) + f'MCM+1(X) (2.24)

B R

=1

satisfies f(Xi) = fi for i =1, ..., M,

£’ (Xl) = fi , and

V' b = 1
£ (xM) fM s
and Dj(X), j=0,1, ..., N, N+ 1 be similar functions,
N .
—_ 5 t ¥
such that g(x) —jilgj Dj(X) + 5 DO (x) + gy DN+1(X) (2.25)

satisfies g(Xj) = gj for =1, ..., N,
. ‘ 7,
g (xl) gl , and

g' (XN)

Il
oo

for given fi’ i=1, ..., M, £ ' £' gj, i=1, ..., N, g ',

and gM'.

Then, the function

M N
U(x,y) = i ? aij Ci(x) Dj (y) (2.260

can be uniquely constructed such that it has continuous

second derivatives for X <KL Y SISy
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and a..= U(xi,yj), i=1,..¢,M, J=1,,.,sN,

ij
a = —gg;ucxi,yk), i=1,...sM, k=0,N+1,
= g-—U(x ), k=0,M+1, j=1 N
akJ kayJ ’ s s ] 31 v iy
‘82
= 1 j= + . .
aij Bxay L(X.,y ), i=0,M+1, j=0,N+1 (2.27)

Hence, given the values at all mesh-points, and the partial
derivatives at the boundary mesh-points, plus the cross-
derivatives at the four corners, the bicubic spline inter-
polant is uniquely defined. Furthermore,among all functions

whose fourth derivatives exist, U(x,y) minimizes

4 2
II(W) dxdy + f(3 Uy ds (2.28)
R E

where R indicates integration over the region
fxl, XN] X[yl,yN] and E denotes integration over the boundary
of R, with 9S signifying the tangential derivative. This,

again, is the "'smoothest'" interpolation property.

Bicubic splines have been extensively used in surface modelling,
design and computer graphics. A recent bibliographic work
(9)

provides an exhaustive survey of publications in the

area until mid-1981. Major developments that have been
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influential in our implementation include the idea of

"surface interpolation from curve networks" first introduced

by Gordon (10) and later fully utilized by Riesenfeld (11>,
and the idea of Coon's Patch formulation (12). The term
(13)

"transfinite interpolation' was used to describe the
general class of interpolation schemes which, unlike classical
methods which match a function at a finite number of given
points, match the multi-variate function to be approximated,
at a non-denumerable (transfinite) number of points. That

is, not points but curves are interpolated. The Coon's Patch

is a special case of transfinite interpolation.

1. The Coons Patch

Our aim is to construct a one-to-one mapping of the unit
square (bi-variate simplex) to a given three-dimensional
surface to be approximated. As noted above, interpolation
can proceed from given points alone, or, better yet, from
curves known to lie on that surface. Assume that four
boundary curves of the surface to be interpolated are given
as FO (n), F1 (n), FO (&), Fl (§) (Figure 2.4),
and the four cormers, P00, P01, P10, P11,

We wish to construct a vector-valued function,

P(£,n) such that

P(0,0) = POO
P(0,1) = PO1
P(1,0) = P10
P(1,1) = P11
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Figure 2,4, A Coons Patch,
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P(0,n) =FO0 (n)
P(1,n) =F1 ()
P(£,0) =F0 (&)
P(f,1) =F1 (&). (2.29)

Let B0 and Bl be two functions defined on the interval

[0,1] that have the cardinality properties:

Bo(0) =1, £80(1) =0
B1(0) = 0, B1(1l) = 1. (2.30)
Now, if we define
C(&,n) = RO(E) BO(MPOO + RO (&) Fl(n)Pol
+B1(EIBO(M)PLO +B1E )BL(MPILL, (2.31)

C(E,n) interpolates to the four given corners. For instance,
with the simple choice
0 (&)
BL(E)

1 -g
£, (2.32)

it is identical to the bi-linear Lagrangian element defined
by (2.22) and (2.23).

But, in addition, we define
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E(E,m) = BO (&) FO (n) + Bl (&) F1 (n)
+ B0 (n) FO (&) + Bl (n) F1 (&), (2.33)
which interpolates to the four boundary curves, and form

the general Coons Patch:

P(E,n) = E(E,n) - C(E,ﬂ)- (2-34)

By simple evaluation at £ = 0 or 1 and/or n = 0 or 1,

with only the condition (2.30) imposed on B0 and Bl, it is
clear that P({,n) thus constructed satisfies (2.29). Stated
in words, E(£,n) maps each edge of the simplex to the corres-
ponding edge of the surface to be interpolated; but as the
"effect" of each boundary is "weighted" through the functions
g0 and Rl. and is added to the whole, the corners where two

boundaries meet are added twice - thus the subtraction of

cE,n.

Note that the only condition imposed on the so-called

blending functions, £0 and Fl, so far, were the cardinality

conditions, (2.30).

As further stipulations are imposed on these functions,
the Coons Patch defined in (2.34) can accomodate the crucial
requirements of continuity at edges and smoothness. In
particular, choosing spline functions that satisfy (2.30)

together with:
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g"0(0) = g"1(0) = g"0(1) = B"1(1) = 0, (2.35)
(2.34) represents a second-derivative continuous mapping of the
square simplex to the global surface patch. Gordon (14)
has proven that the spline-blended interpolant, P(£,n),

to a bi-variate function F(£,n) with given univariate boundary

curves F(0,n), F(Ll,n), F(£,0) and F(£,1), satisfies the

inequality

' ' 8
[FE) - ] l]a”  FeEm]| (2.36)
8&48n4
provided that the fourth derivative with respect to either
variable exists. In this expression, A is some constant
independent of F, and the L2 ~ norm

11

2
A :
e, m = s7l¥E,n) | agdn (2.37)
(116]
is implied. 1In fact, if interpolation from a network of
curves, and not the unit square, is implemented, the upper
bound on the error norm is of O(h8), where h denotes the

mesh size that the curve network depicts.

One last step in the direction of the three-dimensional
cubic spline boundary element relates to the recognition

of the fact that the boundary curves used in the Coons



- 34 -

Leaf blank to correct

numbering
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Patch expression, in our application, can not be explicitly
available. In case of surface modeling, positional information
is available, and in the case of sources, node values are
sought for. Hence, the boundary curves as well are obtained
via univariate cubic spline interpolation. That is, in
describing a th?ee—dimensional surface element, first,

the boundaries (which correspond to £ =0, £ =1, n=0

and n = 1 edges of the simplex) are interpolated from speci-
fied points using the procedure outlined in section 2.1.3,
above, and then, the Coons Patch based on these boundaries

(14)

is obtained. Gordon has shown that this procedure,
again implemented on a mesh of specified points which are
interpolated, first, to boundary curves, and then to a

surface, converges of order O(ha), as the mesh size, h,

is reduced.
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CHAPTER T1II

THE BEM WITH CUBIC SPLINE ELEMENTS

3.1 Two-dimensional spline elements

Consider the uni-variate B-spline basis function defined as in
(2.15), in which
Bi(xj) =4 if j =1,
1 if j=1x1,
0 otherwise;

Bi(x) = 0 for 'x>x,

and 'x<x,
i+2 -1

-2
and Bi(x) is twice continuously differentiable (Fig. 2.2).
The expression

4
P(x) = 1 r v B (x), for xiixgx_ i=1, ..., N-1, (3.1)

6 j=1 i+j-2 Tit+j-2 i+l’
is said to represent a B-spline curve controlled by the vertices

v Clearly, the condition

i+j-2°

(v,

) =P, fori=1, ..., N (3.2)
i-1 i

1
= + +

6 BV Vin
guarantees that such a curve passes through, i.e. interpolates

to any number, N, of points P_. Vertices V_ and Vi, that (3.2)

calls for can be arbitrarily located.

Due to the nature of the basis functions used in this linear
combination, the resulting curve is:

i) a cubic polynomial in each interval Xj;li b ng, 3= 2,...,N;
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and

ii) second-derivative continuous for all x, x1<x<xw.
b

Within the interval xi<x<x, , only the four basis functions

i+l
included in expression (3.1) are non-zero (Fig. 3.1). Hence,
that expression can be used to define a mapping from the simplex
[0,1] to global space [Pi’Piﬂ] if x5 = 0 and X = 1.

Thus, the summation

P(E) - %jgla © V., (3.3)
where

o, (B = £ +38° - 38+ 1

0, (§) =38 - 687 + 4

ay (&) = —3&3 + 3&2 + 38 +1

o, (O = ¢ (3.4)

defines a uni-variate boundary element for 0<&<I,

PigP(E)sPi+l. In (3.3), the B-spline control vertices,

. ] » *
Vi+j—2 are equivalent to the ¢ij in expression (1.4). (%)

(*) See Appendix,



- 40 -

Figure 371, The four cubic spline shape functions on an element.

In the application of the BEM, the element definition, (3.3),
is used in the discretization of the integral equation to be solved.
As noted in section 1.1, this calls for the evaluation of a boundary

integral along an incremental vector, a1 (Fig. 3.2),
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Figure 3,2, The two-dimensional boundary element mapping.
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Applying expression (3.3) to the position, ;; evaluating

Ei-requires the computation of

- 99X ~ —al ~
d1 dEl + 5t dguy (3.5)

and the incremental length, or Jacobian of transformation,

is:
g= [T, Y (3.6)
5E 5 .
In this evaluation, both the x-component and the

y—component of the position vector, ;; is expressed in the

form of (3.3).

Three-dimensional spline elements

Explicitly stated,
P(E,n) = BO(m)FO(E)+BL(G)FL(B)+B0(E)FO(M)+BL(E)FL(n)

~P00BO (£)BO(N)-PO1RO(E)B1 (n)-P10BL(£)BO(N)~P11R1(E)RL(N)
(3.7)

is a Coons patch, as defined above in Section 2.2, that blends
the four boundary curveés FO(E), F1(&), FO(n), FIl(n) by means of
the blending functions BO(e) and Bl(¢) (Fig. 2.4). It can

easily be shown that the bi-variate surface defined this way

contains the boundary curves, and is second-derivative continuous

in the &~ and n- directions, as long as the boundary curves

themselves are continuous.
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To verify this statement, consider Fig. 3.3, where two
adjacent patches are depicted. Let the two patch equations
be given as
B (&,n) = FO(EBO(N) + FI(E)BL(n) + FO(N)BO(E) + F1(n)BRL(¥)
- P1BO(E)BO(N) - P2B1(&)BO(N)-P3BL(E)BL(N)-P4RO(E)BL(N)

(3.8)
and
P2(&,n) = F1(E)BO(M+F2(E)BL(N)+F2(n) BO(E)+F3(n) BL(E)
-P4B0(E) BO(N)-P3BL(E)BO(N)~-P6RL(E)BL(N)-P5B0(E)BL(N). (3.9)

~Figure 3,3, Continuity of the Coons Patch,
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Now examine partial derivatives at patch edges:

_§§] = F0' (n=1)B0(&) + FI(n=1)BL(E), (3.10)
N Teog

n=1
Fat o E2' (1=0) B0 (E)+F3' (n=0) B1(E) . (3.11)
an

£=¢
n=

So, as FO'(n=1) = F2'(n=0) (3.12)

and Fl'(n=l) F3'(n=0) due to the assumed continuity

of the boundary curves from patch to patch,

8&’ - 8P2
Sﬁ‘£=a an
n=1

(3.13)

=t
n=0

i.e. first derivative continuity is preserved over the boundary.

Similarly, for the second derivatives,

2

3R ' = FO" (n=1)B0(E)+F1"(n=1)B1(E) (3.14)
3 n?le=¢
n=1
and
32}?2 - " _ 1" _
= F2"(n=1)B0O(E) + F3"(n=1)BL1(E) (3.15)
n?
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thus, preserving

2
oh |-y (3.16)
3 n? le=g 3 n?le=¢

n=1 n=0

based on the assumption that, in turn, the boundary curves

are second-derivative continuous over patch edges.

The cross-derivatives can also be tested for continuity;

viz:
2
on = FO'(n=1)B0'(£) + F1'(n=1)BL" (&) (3.17)
ono&l &=¢
n=1
2
9P2|  _ p2r(n=1)80"(E) + F3'(n=0)81" (&) (3.18)
ool E=¢
n=0
so,
azPll =32P2| ; (3.19)
onof |&=£  9no&|&=¢g
n=1 n=0

i.e., the cross~derivatives are also continuous over patch
boundaries. In particular, the cross-derivatives vanish at
patch corners, a fact clearly seen by substituting & = 0 or
£ =11n (3.17) or (3.18). The 'pseudo-flats'" thus introduced

violate neither interpolatory, nor continuity stipulations; nor
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have they caused any numerically detectable mis-representation

(see Appendix, and Chapter 5.)

Even though up to this point we have shown that the Coon's
Patch expression (3.7) provides the means for a second-derivative-
continuous surface representation, we still have to obtain
an expression of the form of (1.4) to be used in the BEM

implementation.

Each of the ~four edges of the patch can be represented
in the form of (3.3), in terms of four B-spline vertices, Vi’
and four uni;variate B-spline shape functions, oy At each
corner of the patch, a pair of edge curves intersect, which
means that a relationship of the form

Pmn = Vi + 4Vi+1 + Vi+2 = Vj + 4vj+l + Vj+2 (3.20)

should hold for the patch corners symbolized by mm = 00, 01,
10, and 11, with the Vi's and Vj's representing the vertices

of the two intersecting edges.

Thus, when (3.3) is substituted into (3.7) for each
edge of the surface element, we have 16 vertices, 4 controlling
each edge; plus 4 corner points, Pmn; i.e. P00, POl, P10 and Pl11.
But using the 8 relationships summarized in (3.20), 8 of these

vertices and points can be eliminated. That elimination, clearly
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is not unique. But keeping the corner points in the expression

is preferred - retaining symmetry. .

The resulting bi-variate boundary element definition

has the form:

. 12
P(E,n) = e LV.AL (g,m) , (3.21)

i=1 J 1]
where % are the bi-variate B-spline shape functions which
incorporate the uni-variate shape functions associated with
the four boundaries, as well as the blending functions in
expression (3.7). Here, Vj are the bi-variate B-spline control

vertices. V ..., V, correspond to uni-variate B-spline

L’ 8

vertices of the boundary curves (i.e. the Vi+j in expression

-2

(3.3)), and Vgs +ees V12 are the corner points of the patch.
The obvious advantage brought about by this approach is

that a bi-cubic polynomic approximation is obtained, ensuring

second-derivative continuity over boundaries, by means of

only 12 coefficients - in contrast to the 16 arbitrary coefficients

that a classical bicubic approximation of the form,
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P(E,mM) = £ ¥ a Ejnk (3.22)

j=ok=0 ¥

would require. The only price that is paid is vanishing

cross—-derivatives at patch corners, as mentioned earlier,

The explicit expressions, after elimination and re-

arranging, for the bi-variate B-spline shape functions are:

AT = @i(2) BO(M) - 35 %2(2) BO(M) + 7= as(z) BO(N)
A2(L,M) = o (D) BO(N) + 55 32(2) BO(M) - 7t @3 (D) BO(N)
As(5,m) = (D) BL(M) - 5 a2(2) BL(M) + 35 as(2) BL(D)
AT = o (D) BL(M + 35 02 () BL(D) - 15 &s(8) BL(n)
As(T,n) = on(n) BO(D) - 35 @2 (M) BO(D) + 75 as(n) BO(L)
Ac(T,m) = ow(n) BO(D) + 15 ax(n) BO(Z) - 7% as(m) BO(2)
AL, = ea(n) BLED) + 15 2 (n) BL(D) - 75 as(n) BL(D)
Ae(T,m) = au(m) BL(D) + <5 ax(n) BL(D) - 75 as(m) EL(D)
24 6
As(T,m) = =BO(D) BOM) + 32 az () BO(M) - 13 @a(Z) BO(M)
+ 2 o, B02) - 73 as(m) BO(E)
2 1(n) - = as(z) BL(N)
Apo(z,n) = =-BO(Z) Bl(n) + 73 @2(2) Bl(M) - 75 @3(Z n
+ 22 0ym) BOD) - 13 2 () B0CD)
= 24 6
An(g,m) = -BL(D) BO() + {5 a3(z) BO(M) - 75 a2 (z) BO(M)

+ 93 02 (M) BL(@) - 75 as(n) BL(D)
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24 6

Ar2(L,n) = =-Bl(r) Bi(n) + 15 23(0) Bl(n) - 3z 2 (2) BL(M)
24
+ 45 o) BL@D) - = w2 () BL(D) ,

(3,23}

in which the uni-variate B-spline shape functions, ai(')

are the same as in (3.4). The blending functions, B0(*)

and B1(*), shown in Fig. 3.4 are defined, in turn, as cubic

splines:

BO(-) Bi(-)

- Blending functions -

Figure 344, Cubic spline blending functions,
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(“%(-C3+6) , 0<z<1/3
BO(Z) § = %(5%3 - 81r% + 277 + 3) » 1/3 <17 <2/3
= %(—27@3 +81z% - 81z +27) , 2/3<r<1
f 1,
and = 5 , 0<7<1/3
BL(L) < = £(-54z° + 81L% - 270+ 3) , 1/3< ¢ <2/3
- 227¢ - 812 + 81T - 21)  , 2/3SC 1. (3.24)

As in the two-dimensional case with uni-variate boundaries,
integration called for by the BEM has to be performed with
respect to an incremental area vector, EE} which is (Fig. 3.5):

ds = dnx dr, (3.25)

The incremental vectors in the two uni-variate directions
can be obtained from (3.21), and represented in the Cartesian

co-ordinate system as:

ar = _§.}.{. N _a.z N E ~
dn (&) 3E dg o* 3E d& uy+ 2E dg . (3.26)
and drp(n) = —2—;5 an a5 ang_+ 22 ang (3.27)
Z

The Jacobian of transformation, then, which is equal to the

magnitude of the incremental area vector, is
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J =ldn (&) x drp (n)]

=/ My 2 Myp? + My,2 (3.28)

in which Mij are the minors of

& by Bz
o 9t o
A= ax  dy 9z (3.29)
on on on
1 1 1

taken along the last row.

SIMPTLTLEXKX

GLOBAL

~Higure 335, The three~dimensional boundary element mapping,
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Although they furnish the basis for an efficient boundary
element methodology, the particular schemes of cubic spline
element definition developed here do not guarantee a uni-valent
mapping from the simplex to-a global element. An investigation
of the Uni-variate (expressions (3.3) and (3.4)) and bi-variate
((3.21) and 3.23))cubic spline elements reveals that anomalous
mappings that correspond to a vanishing Jacobian of transforma-
tion (given in (3.6) and (3.28)) may result from distorted
global element configurations (Fig. 3.6). An algorithm that
would generate a uni-valent mapping for all configurations

by

seems to be impossible to design Thus, using heavily
distorted elements would risk improper operation of this
algorithm (Fig. 3.6), which is the case for most iso-parametric

2)

schemes

A hybrid algorithm: Splines for geometry, Lagrangian

elements for sources. -

The original stimulation for the development of cubic
spline boundary elements was centered on the need to achieve
a high degree of fidelity in modeling problem geometries.
Especially in regard to precise evaluation of actual boundary
sources and near-field affects, absence of spurious creases
and cusps is crucial. Step-function appoximation or even
higher—order Lagrangian schemes do not generally guarantee
(e.g. 3, p. 45, figure 2.10).

smooth connection of elements

Splines, on the other hand, effectively remove this hindrance.
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— é’ PI

° ® ::::;:::, —GLOBAL—
PP
— SIMPLEX — A Pa
(2-D)
UNI-VALENT

77
L] =
3
— SIMPLEX— \

NON-UNI-VALENT

—GLOBAL —

(3-D)

Figure 3.6, Anomalies of the cubic spline mapping.
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With the aim of modelling problem geometries ''smoothly"
while keeping the source representation as simple as possible,
a hybrid algorithm was implemented and tested: no longer an

iso~parametric scheme (where geometry and sources are modelled

to the same order of polynomic approximation), this consists
of a cubic spline boundary element configuration for the
geometry, and Lagrangian elements for the sources. The
basis functions used for expansion and testing in the
Galerkin scheme (see section l.l) were all Lagrangian,

of selectable polynomic orders. Details of the BEM
implementation of Lagrangian elements are to be found in

& 5 ®

Results obtained from this test will be presented in
Chapter V and comparisons will be drawn against the solution
of identical problems with the BEM using cubic splines for

both geometry and sources.
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CHAPTER 1V

TREATMENT OF SINGULARITIES

Two fundamental problems that have to be addressed by the
BEM will be discussed in this chapter: (i) evaluation of the
diagonal entries of the system matrix in equation (1.9) when the
integration kernel has a singular point within the domain of
integration, and (ii) approximation of the solution function
when it has a finite number of singularities within the domain
of approximation, by a finite number of polynomic or "modified

polynomic' basis functions.

Kernel singularity

The basic equation that the BEM has to solve was given above

as:

JR (r]r") £ (r") ds (r') -1 (v) =g (), (1.1)
5

and the conditions for the existence of a unique solution
for arbitrary g(r) were stated in (1.2) and (1.3), namely
that the kernel of integration, K(r|r') be square~integrable
over S, and that the right-hand-side, or the "excitation"
be bounded. Furthermore, it was stated that A should not

be an eigenvalue of the operator, i.e.

JR (x]r') £ (') ds (') - Af (xr) =0 (4.1)
S

should have only the trivial solution,

f (r) = 0. (4.2)
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In most applications relating to electromagnetic field
problems, the kernel has a singularity when the source-
point, r', coincides with the field-point, r. Kellog D
has extensively discussed the integrability of these kernels

and the existence of principle-value integrals of singular

integrands.

Specifically, it has been shown that (2, 3) If the
kernel has the form
A '
K(r|r') = ~££%i—l , 0<Y /2 4.3)

R

where the domain of integration, 8, is a bounded surface
in (m + l)-dimensional Euclidean space, with A(r|r') a
bounded function, and R, the Euclidean distance between the
points r and r', then (1.1) is a Fredholm equation, i.e.
K(r]r') is square-integrable. The same is true for a

(4)

logarithmic kernel i.e. if the kernel has the form

Kx|r') = A(r|r") In R , (4.4)
in two-dimensional space. In fact, it is true that (3)
even when 0<y<m with eﬁerything else the same as stated
for (4.3), the Fredholm theory still applies although the
kernel is no longer square-integrable; d.e. (1.1) has a

unique solution. Such equations are said to possess a

weak singularity.
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In all applications of the BEM investigated within
the scope of this work, integration kernels were either
of the forms (4.3) or (4.4), or asymptotically approaching

those forms.

A number of approaches have been reported in relation
to the particular method of catering for the effects of

such "integrable" singularities in the solution scheme.

The most popular schemes utilize analytical evaluation
of the singular integral. Either the method of '"subtraction
and addition" of the singular term and then evaluating the

(5,6)

singular integral over a planar domain , or the technique

(7)

of "dividing out" the singular term has been used.

The former scheme has been successfully implemented and
produced accurate results over curved geometries, coupled
with a local planarization and parametrization scheme in
the vicinity of the singular point. In the simpler and
more classical instance of using a pulse-expansion scheme,
analytic integration is even more straight forward as the
function to be approximated, being assumed constant over

8

an element, does not effect the integrand

More recently, a purely numerical scheme which has the
advantages of being problem-independent and not requiring

planarization has been developed. That technique, described
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(9

in the context of Lagrangian elements in two- and three-

dimensional spaces, is easily extendable for application

in the cubic spline environment. An outline of the technique
follows.
. . . (10) , P
Gaussian quadrature integration is utilized to

evaluate all integrals depicted in the discretized equation

(1.7). That is, the formula

b N
S w(x)f(x)dx= 2 A f(x.) (4.5)
a i=1 + *

is applied in which N denotes the pre-set order of quadrature,

and X, and Ai signify evaluation points and weights, respectively.
w(x) stands for the weighting function which characterizes

the particular quadrature formula being used. For a specific
choice of w(x), a particular set of orthogonal polynomials

are generated using the Gram -Schmidt orthogonalization

procedure, whose real roots, Xi’ and corresponding weights,

Ai’ minimize the error incurred in (4.5). 1In fact, if f(x)

is polynomic of order M, M<N, then (4.5) is exact. The

general form
w(x) = (1-x)¥ (1+x)Y 5 v,u >-1 (4.6)

gives rise to the family of Gauss-Jacobi polynomials which
include w(x) = 1, the Gauss-~Legendre weight. Also available

are formulas for

w(x) = 1lnl|x]|. (4.7)
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In computation of Spq’ the general entry of the system
matrix in the BEM, the following integral, givem in (1.10),

has to be evaluated:

S._ =2 [o (&fk(x|lra (£')ds'ds. (4.8)
PI i ei P s d

"observation')

When the inner and outer (''source' and
integration elements coincide, evaluation of the integration
kernel becomes problematic. As noted above, an iﬁtegrable
singularity is encountered, and has to be properly tackled.
The cases of two- and three-dimensional problems are similarly

dealt-with; but the particularities of the element configura-

tions warrant separate consideration.

Two-dimensional problems

The element whose contribution over itself is to be computed is
bisected about p,-the Gauss quadrature point of the outer
integral (Fig. 4.1). A quadrature scheme that is weighted with
the dominant behavior of the singular kernel is selected. For
two-dimensional problems invariant along the axial dimension,
usually the kernel is logarithmic, or approaches logarithmic
behavior for small arguments; hence a logarithmically weighted
quadrature formula is used for singularity treatment. The

quadrature points and weights thus generated are transformed by

T,rE%=p( - €); 0gXp , and (4,9)

T,rg*=( - p)E + p; pgxl , (4.10)
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to position the quadrature points so that p is approached

on both sides logarithmically. Scaling the respective weights

by (1-p) and p ensures that the original formula given(lo) for
1 N
=/ In|x| £(x) dx = T A_f(x,) (4.11)
0 . i i
i=1
will be valid now for
N
- lnlx—p]fl(x)dx = XA (.,
0 .4 1 i
i=1
1 N
and =/ In|x-p[f2(x)dx = I A fp(x;), O0<psl.  (4,12)
D i=1

The functions that are sampled resemble:

f 1 (g ;':) =\‘k‘ ('f“ r !‘:(E?{'") )

ln{gg:p 1

1 -p

o €D |]Im

repk
ReEh = KEEED) o @ 1. 4.13)

*

ln{‘R:gi— }
P
Chain rule of integral calculus is being used, viz:

IE(e) dg = SE(g(x) B ax, (4.14)

In summary, the contribution to the system matrix of an
element over itself is computed by bisecting the element about
each Gauss quadrature point of the outer integral, and adding

the contributions to the inner integral of the two portions
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(2-D)

0
T ! X : Quadrature Points
Ty
0,1 (i O : Singular Point
—né ,,71
D 0,0 1,0
(2-D) (3-D)

CATERING FOR KERNEL SINGULARITIES

Figure 4,1,

Catering for kernel singularities,
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thus formed. Sampling the integral at the bisection point is
thus avoided, and furthermore, as a properly weighted quadrature

formula is used at this stage, high precision is achieved.

Three-dimensional problems

The self-element is partitioned into four triangles (Fig. 4.1)

about the quadrature point of the outer integral. To obtain
the sampling locations over the four partitions, a bi-variate
quadrature formula generated by the product rule over a simplex
unit square (bottom of Fig. 4.1) is utilized. That square is
first transformed to a simplex triangle by collapsing the £=1

edge via the transformation

Tl: &% &
n (1-§) (4.15)

n:‘:
Where n* and&* represent the co-ordinate system on the simplex

triangle. The Jacobian of transformation for T1 is:

_|2g g |, - (-
|T1| = E 1 0 (1-8). (4.16)
* *
an’ on -n  (1-%)
3 9

The second step consists in transforming the simplex triangle
to each of the four portions of the unit square representing
the global element. The collapsed, E* = 1, point has to
correspond to the singular point, (xp, yp). The following

linear transformations are utilized:
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Ty @ u=(xp-—l) £+ 1
* *
v=(y_ -1)& -n +1
p
ITo | = (1-x), (4.17)
P
T u = x * + *
22 pE n
v=o(y - 1DE +1
yp g
[T, = (1-y ), (4.18)
T u = X "
23 Pg
V = A+(\
ypﬁ n
T =x , (4.19
! 23] x5 )
* *
T2q2u=(xp—l)£ - T + 1
E*
v =
7p
ITzul = yp' (4.20)

... And the final transformation involves going from the square
bi-variate simplex to the global element through the cubic spline

element mapping, described in section 3.2 above.

Gauss quadrature sampling is performed, no¥ | on the
following expression, again using the chain rule of integral

calculus:
£(gs mp) = k(rfrDe (v |n | 1y ] |9

in which
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r' = r" (u', v'), via transformation ]Jl, (4.22)
u' =o' (€, n)
% *
v' =v (£, n ) via transformation Ty , T2,
Tas or Ty, (4.23)
and
& =& (g, )
nk = n“ (Ei, ni) via transformation T . (4.24)

While it is possible, at this juncture, to utilize a
weighted quadrature scheme reflecting the form of the
singularity, the fact that transformation Tl regularizes
the kernel behavior by introducing the (1-&) factor on the

numerator removes that necessity.

The following numerical test cases illustrate the procedure

and provide an estimate on the accuracy involved.

i}

E.g. (i) K(r|r') 1 for all r and ',

J(u, v) = 1 for all u, v, i.e. integrating the constant
uhity function over the unit square (Fig. 4.2,)
Using two-point quadrature, sampling locations and weights are

(10, p.100),

0.2113, y; = 0.2113, w, = 0.25

xn =
X, = 0.2113, y, = 0.7887, wy, = 0.25
x3 = 0.7887, yo, = 0.2113, w3y = 0.25
xy = 0.7887, y, = 0.7887, wy = 0.25, (4.25)
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The integrals over the respective triangular portions

(see (4.21)) are:

N
L = ¥ J% (1—gi) * 0.25 = 0.7887 * (0.7887 + 0.7887 + 0.2113 +
=1

1

0.2113) *# 0.25 = 0.7887 * 0.5 (4.26)
and similarly,

I, =0.2113 # 0.5, I35 = 0.2113 * 0.5, I, = 0.7887 * 0.5, (4.27)
Thus,

I= ZIi = (0.7887 + 0.2113 + 0.2113 + 0.7887) * 0.5 = 1.0, (4.28)

which is exactly equal to the volume of the unit cube, as

expected.

Af

X

Figure 4.2 Integration of the unity function over the unit square
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E.g. (ii) K(r!r') = u', where r' = (u', v'),
J(u,v) = 1 everywhere, i.e. integrating a unit
ramp function over the unit square (Fig. 4.3). Again using

two-point quadrature over the simplex,
For I, |To | = (1 - x,) = 0.7887
u=1~ 0.7887%¢.
L =u|Ta| (1-) w+ up|Ta | (1-82)w + us|Ty |
(1-E5)w + uulT21|(l—Eu) = 0.7887%0.25%(0.7887%0.8333 -+

0.2113*%0.3778)%2 = 0.2907, (4.29)

ft

for Iy, |Tsa| = (l—yp) 0.7887

u = 0.2113 + n (1-%).

Io = |Toolw ( (1-5)(0.21135+ np (1-§) ) +

(1-£5)(0.2113&; + na(1-&p) ) +

(1-£3) (0.211383 n3 (1-&3) ) +

(1 = £,)(0.21138, + ny (1-&) ) )
= 0.1592, (4.30)
for 13, |To3] = x, = 0.2113

u = 0.2113¢.

Iy = |Tos|w(l-8) 0.21135 + (1-&,) 0.2113E,)%2
= 0.0074, (4.31)

and for I,, |T,y| = y, = 0.2113

u

(Xp - 1) &-n (-8 +1

1 - n(l-£)-0.7887¢.
I, = 0.2113%0.25( (1-§ ) l-np (1-§ ) - 0.7887§ + 1-n,(1-&,)

~-0.7887&; + (1-&3) 1-n3(1-&3)~0.7887&3 + 1-n, (1-£,)-0.7887¢&,

= 0.04266. (4.32)



- 68 -

And adding the integrals over the four triangular portions,
given in (4.29), (4.30), (4.31) and (4.32),
I= ZIi = 0.5 (4.33)

which again, is exact as expected.

Af Y
j;j(;f(x,y)dxdy =|§

Figure 4.3 Integration of the unit ramp over the unit square.
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E.g. (iii) Lastly, the integration kernel of many three~dimensional

problems,

R S 1
KG[r" [ro— r'| /(x'—xo)z+(y'—yo)2

(4,34)

with the singular point, r, at (0,2113,0.,2113), will be numerically
integrated over a unit-square region., As the integration region
coincides with the simplex square, we have a unity Jacobian of
transformation,

Analytical integration is possible for this flat patch,

and using the expression given by Jeng,(6’p'28) we get

I = 3.03174 (4.35)
for the exact value of the integral,
A two-point quadrature integration results in
L= 3.1508; (4.36)
and a three-point scheme produces the value

I = 3,0028, (4,37)

These results represent 47 and less than 1% error,
respectively, As most of the three~dimensional problems to be
considered below involve a similar integration kernel, this
example can be considered as a measure of the degree of accuracy

of handling the Green's function singularity in those applications,
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Source singularities due to geometry

Singularities occurring at sharp edges in electromagnetics
have been the subject of research for a long time. 1In one of the

(11)

earlier works, Lord Rayleigh investigated the behavior of
electromagnetic fields at edges and studied the singular behavior

of the component normal to the edge. In the 1940's, Bouwkamp

(12) (13)

and Meixner developed the "edge-condition" which states
that the electromagnetic energy density must be integrable over
any finite domain even if this domain contains singularities

of the electromagnetic field; that is, the electromagnetic energy

(14) in

in any finite domain must be finite. Meixner's report
1954 further developed the area and summarized the principles

of field behavior in the pfoximity of dielectric and conducting
wedges of arbitrary angle. He proved that the components of E
and H fields parallel to the edge are finite, and derived the
functional dependence of the magnitudes of the normal components
on the distance from the edge tip and the wedge angle. Quite a

(15, 16)

while later, Hurd and J. B. Andersen & V. V. Solodukhov

(17 modified Meixner's principles and showed that while Meixner's
results hold for the electrostatic case of a perfect conductor,

his basic assumptions are questionable for the case of a pene-

trable body in a dynamic field. The particular problem of
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electromagnetic scattering from a dielectric wedge, investigated
by the latter researchers will be further considered below, and

numerical results presented.

(18) (19)

After Meixner, Jones and Braunbek established the
principle that tﬁe diffraction field of electromagnetic waves

in the vicinity of plane-screen corners of arbitrary angle can

be found by solving Laplace's equation -~ without having to modify

Meixner's "edge-condition".

With regard to the numerical solution of elliptic partial
differential equations for singular fields, the works by Motz

(20) (21 1nd Wait & Mitchell (22

, Lehman signified an important
evolution. The former work used a Finite Difference operator
modified to cater for the irregular behavior around the singularity;
Lehman's work relied on finding the asymptotic behavior around

the edge analytically, and utilized expansion functions reflect-
ing that form as the basis for the solution that is sought for;

the latter study utilizes bilinear basis functions similar to

those considered above in section 2.2, supplemented by the

addition of singular functions of the form of expected field

behavior. Wait and Mitchell also successfully implemented a

finite-element mesh refinement step to further improve convergence.

Later treatises on the subject include Prof. G. Birkhoff's
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(23)

paper in which numerous special purpose finite elements
are developed to cater for a number of different partial diff-
erential equation problems, mainly involving nuclear reactor

(24)

physics. A more general treatment by Kondrat'ev develops
the form of the singularity for a rather wide class of elliptic

problems.

Also developed later were algorithms for deriving special
purpose interpolatory schemes particularly applicable to modeling

singular behavior (25>.

(26)

Methods based on conformal mappings , which seem to
restrict the scope of applicability, have produced highly

reliable results where appropriate mappings were available.
Especially suited to integral equation formulations, these methods
can be used even when problem geometry cannot be directly
transformed, but the singular behavior approaches that of a
standard transformable configuration. The only drawback on

this account appears to be the necessity of analytical treatment

prior to numerical solution.

A different approach has been followed by Ying Lung-An

(27) (28)

and Thatcher independently. While posing a problem

of nomenclature, ("infinite similar" as opposed to "infinitesimal'')
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Ying's method seems highly innovative: in the neighborhood of

the singularity, a countable infinity of mutually similar triangu-
lar elements are placed, and the resulting system matrix is
computed by an algorithm that makes use of infinite matrix

series computed as a function of their eigenvalues which are

(23)

proven to lie within the unit circle

The major forms of singularity of sources that we shall

be dealing with can be examined via a simple consideration of

the governing Laplace or Helmholtz equations (30).

Figure 4.4 Two-dimensional wedge geometry
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Restricting our attention to variation in two dimensions
only, Laplace's equation
V2o = 0 (4.37)

is separable in cylindrical co-~ordinates, r and O

(Fig. 4.4):
2 2
290 o 2°d = 0, (4.38)
ez Yoy v 3
its solution being
®(r,0) = R(r)¥(o), (4.39)
with
d?Rr dR
2 arR 2, _
r-d—r—2-+rdr s“R 0 (4.40)
and
d?y + a2y = 0. (4.41)
de?

The general solution is the sum of all linearly independent

solutions,

®(x,8) = I (asrssins@ + bsrscosse) (4.42)

summation extending over all real s that satisfy the boundary
conditions.
E.g. If given ¢ = 0 at © = 0 and O = q,
then
AL

8(r,0) = L a r “sintl 0. (4.43)
k=1 k o

Or, if given @ = 0 at © = 0 and g% =0at0-=ao
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then
© (kb .

® (r,8) =ZIar %sin (k+})—0, (4.44)
k=0 “

etc...

To ensure regular behavior of & at r=0 (Meixner's condition),
only k>0 is possible. But still, when o>, the leading term

electric field intensity) will be

-1 (& -

, for the first example, and . 20,

of the derivative (i.

i3

singular, of order ¢

for the second.

A similar look at the Helmholtz equation,

V20 + 10 = 0 (4.45)
reveals that the general solution will have the form:

o(r,0) = ZJS(JXr ) (ascos s@ + bssin s@) (4.46)

summed over all real s that satisfy given boundary conditions.

Again, s>0 to have finite potential at the origin, but the

g-—vlsingularity exists for low frequency fields with boundary
r

conditions as in the first example.

In this work, such singularities are incorporated into the
numerical solution via a technique that can be said to follow
the line of researchers like Motz, Lehman, Wait and Mitchell.
The expected form of the singularity is additively imposed on

the basis functions of the solution around the singular position.
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Two-dimensional elements

1-28

Assume that the source function, f(r) is expected to vary
as

f(r) 1 (4.47)

when r+ro, denoting the singular position, and V<1l is the
order of the singularity. For the case of a uni-variate boundary,
i.e. a two-dimensional problem, let the singular position

correspond to the § = 1 point on the simplex, without losing

generality.

The constraints that delineate the behavior of the modified
shape functions, then, are:
(1) The value, slope and curvature of each of the new shape
functions should match the.original "non-singular" function
as &0; and

(ii) As &1, each new shape function should either behave as

1
v , or vanish.

Using an additive modification scheme, the "singular shape
functions" are thus constructed as:

3 2
op (&) = & +3E -3E + 1 (unchanged),

2
02 5 w(5) = (E1)(aE +bE+c) + —— (4.48)
a (1-5)
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I

The fact that the required constraints are satisfied can be

verified directly through substitution and differentiation.

with singular source behavior at £ = Q0 can be obtained from
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-3
ctv
b6+ l’%’i}l for oy,
0
v-3
= b-3+ li%ill for a3, and
1
c + v
= b 4 v(vtl)

2

for o, (Figure 4.5).

(4.49)

The modified shape functions for the case of an element

those constructed above by replacing £ with (1 - &) and making

use

of symmetry. That is, for singularity at & = 0, the

modified functions will be:

with the values of E; E; c for oy, 0y, 03 the same as those

of a, B, ¢ for ak,aa, anda, in (4.49), respectively.

3

oy (&) = (unchanged),

o 2 3= (=D (a 82 +b £+ ¢c) +

3 bl

(4.50)
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Figure 4.5. Modified shape functions for singularity at &=1,
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As element definitions are thus selectively modified for cases

involving singular behavior of sources, the numerical quadrature scheme

applied in the evaluation of integrals may also require alteration.

The Gauss-Legendre scheme (section 4.1.1.) with a weight function of

unity may no longer provide sufficient precision in the integration

of an integrand varying singularly. Table 4.1 presents the results

of a test involving the integration of the four modified shape functions

by two separate numerical schemes. Obviously, the higher the order

of singularity, the greater the extent to which a Gauss quadrature

scheme that reflects the singular form is needed to remain within

acceptable precision. Four-point quadrature was used for numerical

integration. The symbols stand for:

1
3 2
L = {(—i + 38 - 3£+ 1) dg

1
2
T, s 4=/ (BD(E +bE+ 1)+ ——
’ : (1-8)

dg (4.51)

b b

with a, b, ¢ as given in (4.49). Approximate integration was based

on the formulas (lO):

1 y
Gauss—Legendre (4 points): {f(g)d& =3 Aif(gi) (4.52)
i=1
1 y
Gauss-Jacobi (4 points): J 1 L)g(“;)dE = ZAig(ﬁ.) (4.53)
° (1-%) i=1 *

in which g(£) = £(&).(1-8)",

with Ai and £i pre-specified.
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Exact Gauss-Legendre Gauss-Jacobi Order of
Integrand Value Value Error Value Error Singularity®©)

T, 0.25 0.25 - 0.25 -

12 3.0078 2.981 .89% 3.0075 01%

13 2.2578 2.231 1.197% 2.2562 .077% 1/4

14 0.5078 0.4974 2.047 0.5085 147

Il 0.25 0.25 - 0.25 -

12 3.1481 3.0940 1.58% 3.1478 01%

13 2.3981 2.3440 2.07% 2.3961 .08% 1/3

14 0.64815 0.5940 3.547% 0.6491 147

Il 0.25 0.25 - 0.25 -

12 3.5938 3.4 5.39% 3.5934 01%

13 2.8438 2.65 6.697 2.8412 .097% 1/2

14 1.0938 0.9 17.77% 1.0952 .13%

Table 4.1. Quadrature integration of

modified spline shape functions
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At this juncture various dissues have to be confronted:
i) A general purpose BEM algorithm must be capable of utiliz-
ing different Gauss quadrature schemes at different stages of
operation. Similar to invoking a logarithmically weighted
formula for the treatment of kernel singularity (see section
4.1.1), a Gauss-Jacobi formula should be substituted for the
Gauss-Legendre quadrature when singularities due to geometric
features warrant such a measure.
ii) Furthermore, the weighted quadrature for kernel singularity
and the one for "geometric" singularity will have to be used in
conjunction. Evaluation of the "self-element" contribution to
the system matrix for an element possessing a singular end
point would require such operation.
iii) Lastly, with the stipulations presented up to this point,
an element that has singular source behavior at both ends would
require "doubly-modified" shape functions. Our straightforward
response to this issue has been that such configurations shall
not be allowed. That is, uni-variate elements with singular
source behavior at both ends are not permitted; problem model
has to contain at least two adjoining elements between two
locations of singularity. Thus an element can have a singularity

at either the &= 1 point or the £ = 0 point, but not both.

Consideration of issues (i) and (ii), which become even

more complicated for bi-variate elements (see Section 4.2.2
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below), can be the subject of further research. Our response
has been that as opposed to selective use of Gauss-Jacobi
formulas as problem singularities require, increased overall
orders of Gauss-Legendre quadrature will be preferred. The
practical situation where a number of different orders of singu-
larity have to be imposed on the solution (e.g. different
angular edges on a metallic body such as a ship, etc.) precludes
the possibility of generating the weighted formulas necessary

to cater for each and every distinct behavior type. Increased
order of Gauss-Legendre quadrature, on the other hand, improves
precision without having to resort to specialization. Moreover,
”double—modification" necessity, alluded to as issue (ii) above,

is thus removed.
A general conclusion is, then, that higher quadrature orders
will be necessary for the solution of problems with singular

corners or edges, in comparison to those with smooth geometries.

4.2.2. Three-dimensional elements.

Extension of the "modified spline" idea to the bi-variate
case is fairly straightforward. Only one edge in each direction
is permitted to acquire singular behavior. The uni-variate shape
functions, o that occur in expressions (3.3) are replaced by
appropriately modified functions described in section 4.2.1

above. This can be done only in one direction, for an edge
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singularity, or in both directions, representing a three-dimensional

corner (Fig. 4.6).

LT

1-— edge singularity

/

Figure 4.6 Three—-dimensional geometric singularities.

For computation of integrals, a. possible approach would have
been to generate, in addition to bi-variate Gauss-Legendre
quadrature, suitably weighted bi-variate quadrature formulae
for singular behavior on one or both directions, and use the
appropriate rule for integration over each element. For problems
that involve only one type of singularity, e.g. only one 90°
metallic edge, this would have procured high accuracy with

a low number of unknowns, and low quadrature orders. This approach
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is suggested but not elaborated upon (31, 32), in the similar

context of modified bicubic finite elements. In the instance

"real-life" problem, however, the solution

of the general
scheme may have to cater for numerous different types of singu-
larities. While utilizing shape functions modified to suit the
special behavior over each singular element requires only trivial
computational burden, having to generate quadrature formulae

to cater for the integration of each and every distinct form

may become overly arduous.

A realistical approach is to prefer the more rigorous
technique of weighted quadrature generation for problems that
involve only one kind of singular behavior, but to resort to
increased orders of bi-variate Gauss-Legendre quadrature (i.e.

unweighted formulae) for the general case.

Three-dimensional problems are inherently much larger, both
in terms of required computer storage and computational time,
than their two-dimensional counterparts. This fundamental aspect
further complicates the treatment of singularities - and provides
further reason for the preference for less elaborate and time-
consuming alg rithmic efforts, as long as the attainable accuracy

is not sacrificed.

Possibilities of a block-oriented implementation of the BEM
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will be discussed later. Such an approach seems to provide the
answer, in certain cases, to the enigma of being able to cater
for a wide variety of special cases and remaining within the
realm of as broad a generality as possible, Handling a large
spectrum of singular behavior is an integral part of that

requirement of general applicability,
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CHAPTER V

APPLICATIONS

In this chapter, implementation of the BEM with cubic spline

elements will be discussed for numerous problems of electromagnetic
field theory. Electrostatic field problems that involve the solu-
tion of Laplace's or Poisson's equation under Dirichlet and/or
Neumann boundary conditions, and time-harmonic problems of the
solution of the Helmholtz equation will constitute the two major

categories that will be considered.

Alternative approaches available for the purpecse of arriving
at an integral equation formulation of the boundary-value problems
under consideration will be first summarized in general terms, and

later, for each application, one approach will be followed.

Figure 5.1. Two-dimensional problem configuration



- 9] -

5.1. Alternative formulationms.

The governing equation for the Dirichlet problem (Fig. 5.1.) is:
V20 (x, y) = 0 for (x, y) € R (5.1)
under the constraint that
d(x, v) = g(x, y) for (x, y) eC. (5.2)
If we let (%) (1)
r =x + jy
the function ®(x, y) which is harmonic in the simply connected
domain, R, can be regarded as the real part of a certain analytic
function, Y(r) which has no singular points inside R. The solution
entails finding Y(r). Now let
b = g / LD gy (5.4)
which is a Cauchy-type integral in which U(r') will be assumed a
real function. Determination of this unknown density function,

p(r') will complete our solution.

If the point r in (5.4) tends towards a certain point, s,
on the boundary C from inside R, by the Cauchy integral principle

we have:

Y(s) = u(s) +

Ju(e") dr'. (5.5)
C

1
2113 r'-s

Taking the real part of (5.5),

Lu(s) + 1 Im{/ p(z") dr'} = g(s) (5.6)
21 Cr'-s
because
Re{{(s)} = &(s), (5.7)

(*) The classical argument that follows is essentially two dimensional
as it relies on the theory of functions of a single complex variable,
This way, problems formulated in two spatial dimensions only are
rigorously solved, In cases where the simplification due to invariance
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as specified earlier. But since u(r') is assumed real,

Lu(s) + 1 fu(r') T {dr' y < g(s), (5.8)
21 C r'-s
The integration kernel being
dr' .
In {v-F= Im {d(n(zr'-s) )} (5.9)
in which
r'-s = ]r'—sIeJe

can be substituted. But then,

Im {d(In(r'-s) )} = Im {d(ln[r'—sleje)}

= df
which, in turn is (referring to Fig. 5.1),

do= 39 d1' (5.12)
a1

From the Cauchy~Riemann relations, now,

99 = dln|r'-s| (5.13)
an'

ﬁ'

in which n' denotes the outward directed normal to the boundary

curve, €. Thus, if we define,

G(s,r") = - 1 In|r'-s| (5.14)
211
we have
: dr' —on OG '
Im{ Si—)=-2 £Z, d1'. (5.15)

As long as the boundary, C, has continuous curvature, this integration
kernel is continuous and in fact, we have the Fredholm second kind

integral equation:

in one dimension is absent, the more "physical' approach of potential~-
due-to-a-source, to be considered later, may be more direct,
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Bus) - Su(r) 42, dl' = g(s) (5.16)
C it}

the solution of which will directly lead us, through (5.4) and (5.7)

to our unknown function, &(x, y).

Equation (5.16) is termed the double-layer potential formulation

of the Dirichlet problem. It can be directly obtained by considering
the electrostatic potential &(r) at a point r, due to a unit dipole
oriented along n', located at r', and summing up the effects of a
continuous distribution, u(s), of such dipoles. Equating the effect
at the boundary to the given boundary potential, g(s), directly

yields equation (5.16).

An alternative formulation would result from the consideration

of the potential due to a simple-layer of sources: the potential

at r due to a point source at r' is given in two-dimensional
Cartesian space by:

o (r) = - 1 1n|r'-r| (5.17)

211

if the strength of the point source is Eg in free space. A distri-
bution, 0(s), of such charges over a contour, C gives rise to a
potential

o(r) = - 1 f o(xr")In|r'-r|d1’. (5.18)
2 C

In particular, at the boundary, this reduces to

Jo(r")1n|r'-s]|dl’, X (5.19)

g(s) = - 1
21 C
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which, with the previous definition of the function, G, is
Jo(r')G(s,r") d1' = g(s), (5.20)
C

which is a Fredholm integral equation of the first kind.

The formulation based on a simple-layer source distribution

for the Neumann problem can be obtained from direct differentiation
of (5.18). The normal derivative of the potential at an observation
point, r, along the outward-directed boundary normal, n, can be
represented by: Ty
3% (r) = - 1 fo(r') 3 1n|r'-r|dl’ (5.21)
an 21 C on
as long as the observation point along the normal does not lie on
the boundary. When it does, however, it can be shown by a parallel
argument to the development of the double-layer formulation for
the potential, that there is a discontinuity equal to the value of

the source distribution. That is,

09 (S)+= Jo(r')9G (s,r')dr' ~ Lo(s) (5.22)
on C on

if s is approached from the outside of C (i.e. against the orientation

of n,) and

9% (s)_ = J o(r")3G (s,r')dr' + 4o(s) (5.23)
on C on

if the boundary is approached from the inside. Thus,

S (s) = 3% (s) = g(s) (5.24)
on- on+

representing the jump in the value of the normal derivative of the
simple-layer potential. Obviously, for a given

9% (s) = h(s) (5.25)
on
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at either side of the boundary, (5.22) or (5.23) constitutes the
integral equation formulation of the Neumann problem. Once the

0(s) is determined, any potential

o(xr) = fo(r")G(r,r')dr’ +®O (5.26)
C

@O being an arbitrary constant, will be a solution.

A third alternative formulation is provided by the application

of Green's Theorem, and is, in fact, equivalent to the superposition of

t he simple-layer and double-laver formulations outlined above.

For the solution of Laplace's equation, (5.1), in the configuration

of Fig. 5.1, consider the Green's function that satisfies

V3G (r,r') = -8(r-r") (5.27)

where & denotes the Dirac delta function. Writing (5.1) in terms of
source coordinates, r', multiplying it by G(r,r') and (5.27) byd(r'),

and subtracting the latter from the former gives:
G(r,r')V2 d(r') - (r")V? G(r,r") =0(r")S(r-r"). (5.28)

Integrating this expression over the two-dimensional domain over which
(5.1) is to be solved, we obtain:
S G, eV (r') - &(r")VZG(r,r")} ds' ={@ (r) if reR, (5.29)
R 0 otherwise,

by definition of the Dirac delta function. Now, invoking
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Green's theorem, we obtain the equivalent boundary-integral formulation:
s y g

J{G(r,r") 30 (r') - ®(r")3G (r,r') }dl' =d(r) if rer, (5.30)
C an'’ on'’ 0 otherwise,
in which n' is the normal directed outwards, dl' denotes integration
along the contour C, for source co-ordinates; and r denotes any obser-
vation point inside R. When r is on the boundary, C, due to the
stipulation that
Jo(r') 8 (xr-r') d1' =% &(r) if recC, (5.31)
C
we have
J{G(r,r") 30 (+') - &(x') 3G (r,r")} d1' =49 (1),
C on' on'
recC. (5.32)

Hence, this formulation can be summarized: as:

O(r) = yJ{G(r,r")3% (r")-®(r")3G (r,r')} di' (5.33)
C on' on'
in which
v ={o0if r ¢ R,

1if r e R, r ¢ C, and
2 if r ¢ C.
In particular, for the Dirichlet case when ®(r), reC is given,

the Fredholm equation:

SG(r,r')80 (r')dl' =20(r ) + fO(r')3G (r,r')dl’ (5.34)
ki) 2 o=
C on C on

represents the problem.
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All consideration above was devoted to the two dimensional problem
configuration of Fig. 5.1. The Green's function was defined earlier

as:

G(r,r') =-1 lnlr'—rl. (5.14)
21

Similar arguments hold, and the formulations are valid for three-

dimensional space, with

G(r,r') = 1 1 (5.35)
and boundary integrals taken over incremental surfaces instead of lines.

The fact that the formulation of (5.30) represents direct super-
position of simple and double-layer potentials is clear when the term
o = SG(r|r")3® (r')d1’ (5.36)
C on'
is identified as the simple-layer potential due to a density
o(s) = 3% (s), and the term
an
¢ = /-0 (r') 3G (r,r')dl’ (5.37)
C on' .
is recognized the double-layer potential due to a density u(s)=-3(s).
As the boundary is approached, the simple-layer potential is continuous
but the double-layer potential has a discontinuity of % u(s), hence

the boundary relation (5.32) follows when reC.

O0f these three alternative formulations, the simple-layer

that results in eq'n. (5.20) seems to provide the most straightforward

and least costly approach to the Dirichlet problem. It is advantageous
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over the double-layer formulation of equation (5.16) insofar as computa-

tional savings are incurred by the absence of the extra term in the

equation. The classical preference (1,2)

for Fredholm's second kind
equations that involve that term is unwarranted as long as
proper treatment of kernel singularities lead the way to avoiding
ill-conditioned system matrices in Fredholm's first kind integral

(3,4)

equations

Green's Theorem formulation, while yielding accurate results
in terms of potentials directly, without the introduction of inter-
mediate source terms, requires special logic to determine region
topologies and modify the equations to be used to obtain unknowns
in different regions. Furthermore, as (5.34) illustrates, the excita-
tion term requires more computational effort. This latter formulation,
on the other hand, results in a block-structured system matrix for
multi-region problems as the equation entails integration over one
closed region alone. This feature may be a definite advantage
especially in multi-media problems, especially if a block-oriented

linear ‘equation solution scheme is available for use.

The Neumann problem, being the dual of the Dirichlet problem
posed in terms.of a simple-layer distribution, provides an instance
where a double-layer formulation would be implemented. The excitation
term is straightforward , and the integration kernel identical to
the free-space Green's function for the simple-layer formulation of

the Dirichlet case. The resulting integral equation is identical
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to (5.20), but to obtain the potential field, further efforts are
necessary. The Green's Theorem alternative in this case requires
a similar effort in setting up the integral equation, but produces

surface potentials directly.

5.2 Electrostatic field problems

5.2.1. Parallel plate capacitor

The infinite strip capacitor problem constitutes the first

test of the developed methodology. The half strip length and

half plate separation were taken as unity (see Fig. 5.2). The
exact capacitance for this configuration is known (3) as 18.72
pF/m. The charge accumulation on the plates is expected (6, p.569)

to vary as:

Os(r) > 1 . (5.38)
T

[t

Ay

‘ <a@—| M ——

V- 1lv

Figure 5.2 The Parallel plate capacitor.
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The positive quadrant x> 0, y> 0 was modelled using quarter-
symmetry, with +1 volt imposed on the y=1 plate. The Fredholm
first-kind equation for the plate charge can be written for this

configuration as

1
1 Jo(@&")G (x,1]x",1)dx" =1 (5.39)
€00

in which a modified Green's function that incorporates problem

symmetry is utilized:

[(x-x") 24 (y-1)?) [(x+x')§+(y-1>§])’/z
[Ge-x") "+ (D) T] [Gebx D)+ (y+1) 7]

G(x,y]x',l) = -1 1n (
21

(5.40)
To solve this problem, 3 uni-variate boundary elements, (*)

involving 6 unknowns, were used along a half-plate of the

- capacitor. The BEM with spline elements was applied, with an

edge singularity of 1 , in which v = 0.5, imposed on the shape

U
r

functions over the edge element.

Capacitance was calculated from the total energy, E,
as:

C = (5.41)

2E.

v?

Here, as in the other electrostatic field applications, the
capacitance, or twice the energy content divided by the square
of the applied constant potential, was computed as a simple

vector dot product:

(*) See Appendix for an exemplary straight-line element,



- 101 -

Remembering that the basic equation to be solved has the

form (section 1.1):
<Tf,a>0 = <g, a> (5.42)

and the solution, 0 is the expansion coefficient vector for the
charge distribution, the product of the right-hand-side of

this equation and its solution gives nothing but

QF.§g,g> = fo(s)g(s)ds (5.43)
S

because of the linearity of the integration operation. But by
definition, this last term is twice the electrostatic energy
stored in the capacitor. Hence, to determine the capacitance

once the charge distribution has been ascertained, we use:

T
=98 & (5.44)

V2

that is the dot product of the right-hand-side and the solution
of the system equation, divided by the constant applied potential

difference, squared,

The results for the capacitance values are presented in
Table 5.1, and the computed charge distribution is compared with

the analytical prediction in Figure 5.3.
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Figure 5.3.
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: r(|3-5 exact {(normalized)

o o: computed

— —
I 1 ] | J

00l 0.02 003 004 005
DISTANCE FROM EDGE (m)

Charge accumulation on the parallel plate capacitor.
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The accuracy of these results, especially with regard to
the computed charge distribution, should be compared against
those obtained by earlier researchers.

(7)

McDonald, et. al. reported similar accuracy in capaci-

tances and '"medium-range" field values with either 50 pulses or

(4)

5 unknowns (4 pulses) and one singular function. Lean has
obtained a smooth singular behavior of charges using fourth order
Lagrangian elements with five unknowns and a singular term.

The results we have obtained, again with six unknowns including

the singularity term, show a good match of the-charge distri-

bution with analytic prediction.

Integration Capacitance
quadrature  order (pF)
4 18.78
5 18.752
6 18.737
8 18.718

Table 5.1. Parallel plate capacitance as computed
by the BEM with cubic splines, 6 unknowns,
'_‘1/
r’ singularity imposed.
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Coaxial capacitor

The only difference between the solution scheme applied

for this

was that

circular

solution

involved

problem and that used for the parallel plate capacitor
quarter-symmetry was not utilized here. 1In spite of
geometry, the small size of the problem permitted the
of the complete problem within a configuration that

only 16 unknowns - 4 per quadrant (Fig. 5.4).

v Ov

=¥

Figure 5.4. The coaxial capacitor
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The exact value of the capacitance for unit length of this

configuration is 80.259 pF.

For solution, the equation
L o(s") c(s,s') ds' = g(s) (5.45)
Eoc

was used with ¢ denoting conductor contours,

G(r,r') = —2%-ln|r—r'| R (5.46)

and
g(s) =41 on the inner conductor, (5.47)

0 on the outer conductor.

Two different algorithms were invoked for solution:
one that utilized the spline element methodology for geometry
modeling as well as source approximation and the "hybrid"
algorithm that restricted spline usage to geometric interpolatidn
only, and applied the Lagrangian element technique for source
representation. Quarter symmetry was implemented in the latter
approach. The hypothesis being tested was that the use of
cubic spline shape functions for source modelling introduces
too much overhead in comparison to lower-order methods such as

pulse or Lagrangian polynomic expansion.

The results obtained by the two algorithms are presented

in Table 5.2.
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As the table shows, computational results do not indicate
an advantage of the "hybrid" method over the "pure' spline approach.
Comparable execution times (regarding symmetry) are required to
reach solutions of comparable accuracy. If anything, considering
the empirical rule that computation time varies almost as the
square of the number of elements, the 'pure' spline algorithm
that takes roughly four times as long as the "hybrid" are which
is using a quarter of the number of unknowns, seems to be
preferable (*). Furthermore, the algorithmic simplicity of
not having to process two different classes of shape functions

is enjoyed.

5.2.3. Rectangular infinite cylinder

In solving the exterior Dirichlet problem in two-dimensional
space, the free-space Green's function is modified as:
G(r,r') = - l__lnlr—r']+ l__ln!R-r" (5.48)
211 20
where R is a fixed distant point, to ensure that potential is
regular as that reference point is approached. Without this

precaution, of course, the condition of vanishing potential

when r increases would be violated.

(*) Timing comparisons between the Lagrange and Spline BEM methodol-
ogies will be presented in section 5.3.5 for the more substantial
application of three dimensional electromagnetic scattering .
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Using the simple layer formulation, again both the
"hybrid" and "pure" algorithms were used, and comparisons drawn.

In addition, a "pure" spline algorithm that imposed the expected

173 singularity of the charge density on the expansion functions
r

was tested on this problem. Tables 5.3 and 5.4 summarize the

results of these two tests, respectively.

Integration ;1/35ingularity energy

quadrature imposed? functional

order
2 No 7.852
3 No 7.850
4 No 7.849
5 No 7.848
8 No 7.848
3 Yes 7.834
6 Yes 7.833
8 Yes 7.833

Table 5.3. Stored energy for the square cylinder problem
as computed with singular expansion functions.
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A
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o o: calculated

fo) O
| I 1 |
0005 00l 0015 002
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Figure 5.5. Charge accumulation on an infinite conducting

square cylinder.
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There is an indication of the smooth interpolation property
of splines in Table 5,4: A quadrature order of 2, implying linear
approximation of integrands, is not sufficient to integrate a
Lagrangian cubic (N=4) polynomial, which presumably introduces

spurious undulations, whereas a cubic spline is integrated fairly well,

The spline shape functions utilized to prepare Table 5.4 did
not contain the added singular term; as such, the charge accumulation
could not be accurately approximated at edges, The ratio of the edge
accumulation tc the density at the center, however, is a good indicator
of performance - the spline algorithm consistently produces higher
ratios than the hybrid algorithm that approximates sources by Lagrangian

polynomials,

Also evident from Table 5,4 is the fact that modelling sources
with splines does not necessarily increase computational overhead in
comparison to Lagrangian polynomic approximation, In fact, the B~spline
algorithm working over the complete geometry never took four times
as long as the hybrid algorithm that was making use of symmetry to

solve a four times smaller model of the problem.

Figure 5,5 shows the charge density as computed by the B-spline
algorithm with shape functions modified by the added singular term.
While the asymptotic form of the singularity is closely reproduced,
towards the center of the sides of the square, the density deviates

1/3

from the r curve, possibly indicating the effect of the opposite

edge,
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5.2.4. Polarizability of a dielectric cylinder

The potential problem for a homogenous dielectric object
immersed in an incident electrostatic field in free space provides
an example of a Fredholm second kind integral equation obtained

via the Green's Theorem formulation outlined in section 5.1.

P

Figure 5.6 Dielectric cylinder in an incident field.

Consider the geometry of Fig. 5.6. Let ¢ and 0,
represent the potential inside and outside the dielectric, respec-
tively. Let @i be the incident or unperturbed field.

We can write
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%)

¢ + @i/K (5.49)

and

b, = & + @i (5.50)

where k represents the dielectric constant of the object, and

® stands for the perturbation potential, or the potential stem-

ming from the induced dipoles. Now, we can invoke the formulation

in (5.33) for both the inside and outside (i.e. the region

bounded by the dielectric and a cylinder with infinite radius)

regions, and eliminate & and ¢, in terms of & and @i:

®i(r)

- 1 . .
o(r) = _k-1 [ (") éﬁ' dl' for r inside R, (5.51)
K K on
C
and
9(r) = ¢, (r) - (k=1) f¢(r")36 dI' for r outside R. (5.52)
C on'

Letting r approach the boundary on both sides, we obtain, as in

eq.n (5.32),

¢ (r) = x+1 &(r)+(k-1) [ &(r')3G d1", (5.53)
+ 2 C on'
in which
G(r,r') = - 1 ln[r—r'] (5.54)
20

in two-dimensional space, as usual.
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Once equation (5.53) is solved for ®(r), the boundary

potential, the dipole moment of the body can be evaluated from

®),

P = (K=1) g fO(r') A'dl" (5.55)
C

in which fi' denotes the unit normal vector at the source point,

' (8)

r' . Polarizabilities are defined as the dipole moment

magnitudes for the two orthogonal incidence directions.

9
This problem has been solved by Mei and Van Bladel (9 and

Eyges and Gianino (10) among others. It has particular signifi-
cance in low frequency scattering problems. The former work

has used the classical pulse expansion - point matching method
with "typically 80" unknowns, and the latter has devised a method
that can be called Fourier expansion—point matching which relies
on analytic approximations and a 2x2 system of equations. Mei
and Van Bladel's solution provides the boundary potentials and

polarizabilities whereas Eyges and Gianino restrict their attention

to polarizabilities, i.e. not near but far fields.

A point of detail for this application involves the inte-

gration kernel of equation (5.53). We have

L ey = o457 ) (5.56)

1
on 20| r~r'

which is no longer logarithmic. Hence, for the evaluation of

the integral when the source and observation elements coincide
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(see section 4.1.1, above), the bisection technique is

sufficient without having to resort to utilization of a logarith-
mically weighted Gauss Quadrature formula, as the form of the
singularity is smoother than both logarithmic, and, of course,

1 behavior. The regular Gauss-Legendre scheme yields sufficient
T

precision.

The surface potentials, obtained with 12 unknowns only,
and polarizabilities are presented in Figures 5.7 and 5.8.
Comparisons with Mei and Van Bladel's results are provided only,
firstly because, as noted earlier, Eyges and Gianino do not proceed
from surface potentials at all, and secoﬁdly because their results
for polarizabilities, being approximations geared for the far
fields alone, are not any more precise than obtained here for

any of the instances.

5.2.5. Conducting Sphere

The Dirichlet problem in three-dimensional space for a
perfectly conducting charged object constitutes the subject of
this and next subsections.

The equation

Jo(s")G(s,s') ds' = g(s) (5.57)

S

with

1 1
4H€0 ]r—r']

G(r,r') = (5.58)



- 118 -

is the Fredholm first kind equation based on the simple-layer
source representation, O(s), applicable to the problem.

g(s) = 1.0 was imposed; symmetry was not used.

Recovered surface potentials, computed as

d(r) = fo (s'")G(r,s')ds" (5.59)
S

after 0(s) is solved for, interior potentials, and the evaluated
capacitance of the sphere is presented in Table 5.5. The exact
value of the capacitance is known to be 4lleg, or 111.2626 pF,

for the unit sphere.

fodel Particulars(*ﬂ Surface potentials(v) interior Capacitance
N NG NGS l at equator | at poles | potential(v) (pF)
12 5 2 .97 .96 .99 108.084
44 3 2 .9872 .96 .997 110.229
34 4 2 .9942 .94 .999 108.71
44 4 2 .9935 .90 .999 110.027
62 4 2 .993 .96 .9997 110. 344
62 4 3 .9982 .96 1.0000 110.373
15%8 4 4 .9994 .99 1.0000 111.224
(*):

N : Total number of unknowns, in the last application, 1/8th

symmetry was used.
NG : Integration quadrature order

NGS: Integration quadrature order used in treating kernel singularity

Table 5.5. Results of the Dirichlet problem for the conducting sphere.
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One immediate observation from Table 5.5 is that the order
of Gauss quadrature used in treating kernel singularities
correlates with the accuracy obtained in the evaluated capacitance.
The fact that the interior potentials are closer to the exact
value of 1.0 than the surface potentials is due to the discrepancy
introduced in geometric modelling. Also worth noting is that a
comparison of equator and pole potentials reveals the relative
weakness of that particular geometric model at the poles. The
particular representation using 34, 44 or 62 unknowns was one
in which the quadrilateral elements were '"collapsed' at the poles,
becoming three-dimensional triangular patches. The 12-unknown
model, on the other hand, did not have this disadvantage and
displays rather remarkable accuracy considering the reduction

in computational effort - one-and-a-half unknowns per spherical

octant!

5.2.6. Conducting cube

The scheme of imposing expected singular behavior of boundary
sources on expansion functions was put to test in a three-dimen-

sional case for the problem of the conducting cube.

The upper- and lower-bounds for the capacitance have been

(1) and (12), and reproduced in (8)

calculated respectively in
as:

72.88 <C<74.27. (5.60)
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Two algorithms » with and without singularly-modified

expansion functions were applied for the problem. Neither the

(8)

results given in , nor the BEM with un-modified Lagrangian

(4)

elements applied by Lean for the same problem claim accurate
computation of surface charges. The charge profile that we have
calculated is presented in Figure 5.9. Analytical results

for the charge density are not available. We have imposed the

1 behavior which is known for the 90° conducting edge, on

1/3
T

each of the 12 edges of the cube. The behavior at the three-
dimensional corners is thus approximated by the spline blending
operation (see sections 2.2 and 3.2, above) applied to uni-

variate 1 behavior in the two orthogbnal directions on each

1/3
Y

face. The capacitance figures computed by the modified and un-
modified spline method, as well as those reported (4) for the

Lagrangian case can be found in Table 5.6.

Table 5.6 demonstrates the utility of the modified
expansion function scheme in cutting down the number of unknowns
necessary to achieve a certain degree of accuracy. Also obvious
is the fact that the inherent magnitude of three dimensional

problems warrant utilization of symmetry whenever possible.
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Model Particulars(¥) Capacitance (pF)
Type N Né NGS
NS 32 4 2 72.28
S 32 4 2 72.78
S 6%8 4 2 72.90
L 7%8 4 4 72.94
L 37%8 4 4 73.13
L 31%8 4 4 73.19
) NS: Splines, no singular modification
S: Splines with singular elements
L: Lagrangian, without singular modification(A’ P-62)
N: Total number of unknowns, NG: integration quadrature,

NGS: quadrature for singularity treatment.

Table 5.6. Capacitance of the conducting cube.
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5.2.7. Multiply inhomogeneous media

The mixed-boundary condition electrostatic
with multiple piecewise inhomogeneities will be
this subsection. A general problem geometry is
Figure 5.10. Using the appropriate integration
function) and integration procedure will ensure

in two~ or three-dimensional space.

potential problem
considered in
depicted in
kernel (Green's

applicability

D=S,US, , N=S,US; I=1,UI,UI,

$=5,US,US;US,UT,U LUI,

Figure 5.10., A multi-media configuration.
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Based on a simple-layer representation of sources, potential
anywhere can be written as:
(r) = fo(s")G(r,s")ds", (5.61)
S
with a properly evaluated 0(s), and S as in Fig. 5.10. 1In

two-dimensional space, the Green's function will be:

G(r,r') = -1 1n|r-r'|, (5.62)

211
and integration will be over all contours in the problem; the
three-dimensional Green's function will be:

G(r,r') =1 1 ,
1

Wh o=t (5.63)

and, surface integrals will be evaluated over all boundaries.

For boundaries on which a Dirichlet potential is specified,
we can write:

J 0(s')G(s,s"')ds' = g(s), seD (5.64)
S

where s takes on values on the Dirichlet boundary only, and

integration covers all boundaries.

Similarly, the boundaries on which a Neumann condition is

prescribed will give rise to the equation:

fo(s')gg(s,s')ds' + %0(s) = h(s), seN (5.65)
S n
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in which consistent normal vector definitions have been assumed.
Equation (5.65) follows from direct differentiation of (5.61)

as explained above (see section 5.1).

On interfaces between two regions with differing charac-
teristics, signified by Ki and Kj’ two conditions should hold:
first, potential across the interface should be continuous.
This condition is automatically satisfied due to the adopted
representation (5.61). Second, the normal component of the
displacement vector (current density in case of conductors)
should be continuous. That is, (with reference to Fig. 5.10):

Kiég +k, 3¢ =0 (5.66)
on, Sy
1 J
This constraint can be written for sel;, as:

k1 éo(S') -:—G— (s,s") + %G(S)} +
n,

h

<0 L ash 36 (5,87 + %—U(s)} =0 (5.67)
S an

which, upon rearranging, and noting that

3G = - 9G
n, on,’ (5.68)
1 3
produces the equation:
(Ki—Kj)fO(s )G (s,s')ds' + (Ki+K,)O(S) =0 (5.69)

S ani 5

to be enforced with appropriate indices i and j for all sel.



- 126 -

Equations (5.64), (5.65) and (5.69) constitute a coupled
system in terms of the unknown, 0(s), the fictitious "source
distribution" over the boundaries. The BEM discretization and
solution technique can be applied to this system, resulting in

a dense matrix equation.

In general, an equation of type (5.64) depicts a conductor
boundary at specified potential, one of type (5.65) with homo-
genous right-hand-side would signify a perfect insulator, and
(5.69) represents a dielectric-dielectric interface.

Implementation of a similar approach has been reported (13)

for a power insulator problem possessing rotational symmetry.

A drawback of this approach, however, seems to be in the
dense system matrix that it yields. As all three integrations
entail coupling ofhall boundary elements of the svstem, a classical
"full-size" linear equation solution scheme has to be invoked.
Especially for three-dimensional problems that do not possess
symmetry (e.g. an analysis of ground electrode energy dissipation
over piecewise in homogenous earth strata with irregular geo-
metries), to achieve acceptable precision of results, fairly
large systems of linear equations may become unavoidable =—
in spite of the savings brought about by implementing a boundary-
integral-equation technique as opposed to the classical finite-
element or finite difference methods of solving partial differ-

ential equations.
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An alternative may be discovered by investigating an approach
that would yield a block-sparse matrix which would be amenable to

(14). The

more efficient solution schemes that have been proposed
Green's Theorem formulation discussed above (sec. 5.1) should

lead towards that route.

5.3. Time-harmonic problems

Scattering and diffraction of sinusoidal electromagnetic
waves by conducting or dielectric objects has been the subject
of a large volume of research in the last decades. Classical

partial differential equation solutions in terms of cylindrical,

(15)

spherical or spheriodal wave functions have been widely

applied where problem geometries can be suitably classified.

Low frequency approximations leading to power series solutions

(16)

1"

have been studied, and the particular case of '"small sphere"

. . . 17 .
scattering, or Rayleigh scattering (17 can be said to have been
the starting point of the imterest in the area. High frequency
asymptotic solutions have also been popular, leading the way

(18) which is based on

to the technique of Physical Optics, PO,
the assumption that for small wavelengths,.global geometry of the
scatterer loses importance in determining the local nature

of induced sources; each point on the scatterer reflects as if it
were on an infinite tangent plane at the point of reflection.

The Geometrical Optics approximation, which may be considered

a refined version of the same approach, incorporates the global

(19)

geometry information to the results of the PO approximation
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Integral equation formulation of scattering problems have
also been classically popular (15, 17, 18), but numerical methods
which permitted their solutions in arbitrarily shaped domains
did not achieve their current popularity until the late 1960's.
The moment method, and its particular pulse expansion-point
matching form was established in the West as a fundamental
tool in the solugion of electromagnetic scattering problems
especially after the publication of R. F. Harrington's now classical
monograph (20). Since then, a multitude of specialized problems

have been tackled with that tool and accurate solutions have

been obtained.

Until recently, moment-method solution of two-dimensional
problems involved pulse expansion, and three-dimensional ones,
. . . . (21)
wire-grid representation of solid surfaces . Even flat-
patch approximations seem to be a relatively novel approach

(22) (4)

. BEM applications have introduced iso-parametric

curved elements to these models.

Our goal in studying a narrow selection of electromagnetic
scattering problems has been to examine the improvements that
can be introduced in terms of reduced computational costs and
increased solution precision via the use of the BEM in general,

and the cubic spline element methodology in particular.
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5.3.1. Conducting circular infinite cylinder

. . . . wt
Assuming a time variation of the form e’ , the fundamental

Maxwell Equations for a time-~harmonic electromagnetic field are:

-V x E jwuﬁ

JweE + J (5.70)

i
1

V x
where J represents the volume distribution of electric currents.
Restricting our attention to TM fields, E and J vectors will be
confined to the axial direction only. Then, (5.70) will lead,

in a homogenous, anisotropic region, to:

VZE + K’E = juuJ (5.71)
where
E=GE (x,y)
V4
H= 8 G5y, (5.72)

in the Cartesian co-ordinate system, and
k = w/ey = 21/A. (5.73)
The sclution to (5.71), a Helmholtz equation, can be con-
structed in terms of G(r,r'), the response to a point source
in two-dimensional space, i.e. an infinite filament of unity

(18)

current

Gr,r") = -kn 8 P (k|r-r']), (5.74)
Z— o}

in which the characteristic impedance is given by:

n =(u/e)1/2 (5.75)
(2)

and Hyg denotes the second kind Hankel function of order zero.
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Figure 5,11, Cross section of a cylindrical scatterer.
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The scattered field due the induced surface currents,
Jz(s) will be the sum of the contribution of all filamentary
sources over the problem geometry (Fig. 5.11), i.e.
ES (r) = JJ (s")G(r,s")ds". (5.76)
z g 2

For a conducting cylindrical body, the scattered field,

ED, at the boundary, C, is exactly equal to the negative of the
incident field, El, so that the net total E field vanishes. Thus,
E' (r) = - JJ (r')G(r,r')dl", for reC, (5.77)
z z
C
is the Fredholm first kind integral equation formulation of the

problem.

In this application, attention is focused on TM incidence
and an E-field representation is used, but the TE case can
easily be catered for in terms of the H-field, in a similar

fashion.

The results obtained for the solution:of (5.77) with the
BEM with cubic splines (BSP) for the case of a unit-radius
circular cylinder are presented in this subsection. Comparisons
are given for a pulse expansion-point matching (PTM) solution
of the same case. The tests were performed for medium-low and
high frequencies, namely ka = 1.05 and ka = 5.24, corresponding

to 50 MHz and 250 MHz respectively. The PTM procedure outlined

(20)

by Harrington was used.

(23)

A polynomic approximation of the Hankel function was

utilized throughout.



- 132 -

€ £
g B
BSP/CIRC/KA=1.05/8E1 oo BSP/CINC/Ks=1.05/8E"
z Z fo
! ¢
2_ :=__ —c
£ s T
Es. 2.- o
o < _ z
z - e - - [ <
- ) T - :" =
B g - L
= .. - oo e i A 90 .20 R 2
@) (b)
PT:/ CIRC/KA=1.05/60E1 ) R
z Lt e
- s e
- c c
) <
[
<
Lot ¢ )
A <
3 C’C/ c
g"ff"’:;:';;::'":c z
fraud :_‘ -
j 1
|
e :
< . e }
Lo Pt £ B RN 44 A4 5o, 8.
R

Figure 5.12, Scattering fom conducting circular cylinder,

low frequency., (a)Radar cross section, BEM; (b)Surface

current density, BEM; (c)Radar cross section, point matching;

(d)Surface current density, point matching.



- 133 -

g ¢
- e o
. I
\ BSP/CIRC/KA=5,24/8E1 - BSP/CIAC/K =5,24/EE2
£ e sl
‘:‘_ =
I‘.” C.—
: e
t |
_ i
1= B
:‘: ' < E c
c - ¢ =
Sé" c - 7 ¢
&=, B e
<o ¢ e ¢ = T
— c . Z .
('V‘ c c
- c
s ¢ ¢ < ‘ H
& == :
. 4
=TT 1200 150 %0 iE e
_ PT/CIRC/KA=5,24/60EL : PTM/CIRC/Ka=5,25 /6021
= © o LA
c
: o .
- ¢
c <
£7- c
=
= ¢
c <.
ot t o ¢ .
o ¢ z
o o
c e c c® c ¢ - B
H c_¢© )
i c c
| | ¢
[~ = b
g z :
= < ©
|
g £ :
T P y P TR TR = sove 60 e _am | af. L

o

(@)

-‘Figure 5,13, Scattering from conducting circular cylinder, high frequency.

{(a2)Radar cross section, BEM; (b)Surface currents, BE!;

(c)Radar cross section, point matching; (d)Surface currents, PTM.



- 134 -

Results in Figures 5,12 and 5.13 show that the PTM results
and those of the BSP agree quite well for the lower frequency,
At the higher frequency, the 8 elements of the BSP model, re-
presenting an element size of 0,66)A, do not seem to be sufficient

for accurate surface field computation,

A model with more elements would greatly improve accuracy
at the higher frequency, as will be demonstrated in the next

subsection,

5.3.2. Conducting rectangular infinite cylinder

Moment method sclutions based on boundary integral relations
for the problem of scattering from conductors, especially for the
case of elliptic and square cylinders were.reported by Mei and

(24) (25)

Van Bladel and Andreasen in two well-known and interesting

papers, certain points in the former being the subject of some

dispute (26).

The issue of edge singularity of the current density, or
the magnetic field for TM incidence, was tackled in those works

by using a large number of pulses especially in the proximity
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of the edge, and ensuring that the integrand is not sampled
right at the edge but "evenly on either side of it".

Shafai (27)

developed a conformal mapping technique
whereby the field singularity is directly incorporated, via

the transformation of the scatterer surface to the unit circle,
to the integral equation to be solved. A non-singular function
is then sampled, and the coefficients involved in the transfor-

mation relate the surface current thus computed to the actual

physical behavior.

Our approach to the problem of edge singularity of the surface
fields has been to modify the basis of épproximation to reflect

the expected form of the singularity (see section 4.2, above).

Al form of behavior is expected (28), and the factor v in

1/3

[a

the expressions (4.48) and (4.49) is chosen as v = 1/3.

Parallel to the solution for the circular cylinder, pulse expansion
- point matching (PTM) sclutions with a relatively large number

of approximating pulses are compared with the BSP results (Figures

5.14 and 5.15).

Obviously, the results are in agreement with those reported

in the literature for the lower frequency and radar cross section

(24, 25, 26, 27)

computations The PTM, however, breaks down
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at the upper frequency range, especially for the surface sources
~ demonstrating the need for an even higher number of unknowns
to model the problem. The singular behavior of surface sources
is seen to be very comfortably reproduced by the modified spline
model, with a relatively low number of unknowns. The total
circumferential length of the square is 8 meters. At the higher
frequency of 250 MHz, the wavelength being A = 1.196 m, this
represents 6.7 wavelengths. A total of 16 elements were used,
implying an average element length of 0.42), or an average
sampling distance at 4-point Gauss quadrature, of (0.1A. The

PTM model, on the other hand represents a sampling distance of

only 0.028\. Accepted standards for reliable far-field results
, P.346)

alone are in the vicinity of 0.17X (21 The accuracy
of the near-field computations at the cost of sampling at every

0. 1A demonstrate the efficiency of the BEM.

5.3.3. Dielectric circular infinite cylinder

The smooth circular dielectric cylinder immersed in an
incident plane TM wave in free space will be the subject of this
subsection, and the square cylinder involving the problematic

"wedge-scattering' issue will be considered next.

The moment-method solution of a two-dimensional surface-
integral formulation of the problem was reported in 1965 (29).

While that approach possessed the ability to cater for inhomogenous

bodies, it suffered relatively high computational costs. The
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(30)

alternative, unimoment method s, proposed by K. Mei in this

context, is similar to the widely applicable "mutual-constraint"

technique of McDonald and Wexler (31, 32)_

A boundary integral
equation may also be derived, as long as the dielectric is

homogenous, thus effectively reducing problem dimensions. A

general three-dimensional derivation was presented firstby Poggio&Miller

(33) (34) (35) (36)

Applications have been reported in and

(37)

Morita has improved the technique to overcome the difficulty
posed when the excitation is at a resonant frequency of the
interior. His Extended Boundary Condition technique is essentially

(38)

an extension of the approach put forward by Waterman for the

problem of conducting cylinders.

Starting from the Helmholtz equation, (5.71), the Green's
Theorem formulation (5.33) may be invoked for the axial component
of the electric field:

E (r) = Yf{G(r,s')EEz(é') - E (s')EE (r,s')l}lds', (5.78)

z S on' z on'

which is valid for two regions: one, for r interior to the

dielectric body, in which case

Gi(r,r') = —%Héz)(k]r—r'l) (5.79)
with
k= w /e (5.80)

and the second, for r exterior to it, in which case
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] ] 2 1]
G (r,x") - 5% HO( )(kolr—r D (5.81)
with
k0=m v Eouo- (5.82)

The total field is, E (r) = El(r) + Es(r), i.e. the sum of the
z z z

incident and scattered fields. Enforcing the continuity of the

tangential E and normal B-(=éE) fields, and writing (5.78)

when r approaches the surface, we have the two coupled integral

equations:
E' (s) =% E (s) + [{C_(s,5M) %% (s")=E (s")Ce(s,s"))ds' (5.83)
V4 z e _~ VA _
C on' on'
0= %Ez(s)—f{Gi(s,s')aEz(s')~E2(s')aGi(s,s')}ds' (5.84)
¢ ES '

for s located on the boundary, C. Here Ge and Gi are as defined

in (5.79) through (5.82). The incident field is given by

i .
E Z(r) = Eo exp(—lkox). (5.85)
The solution of (5.83) and (5.84) directly gives the surface

fields, a fact which demonstrates an advantage of the Green's

Theorem formulation, as remarked earlier.

The analytical expression in terms of Bessel and Hankel

functions for scattered surface fields is (18, p.261):

s -n
E =Y]j ae
z n

-0

jnd (5.86)

with
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EJn'(ka)/€nkaJn(ka)—J?;§%Qa)/EﬂaJn(k?i;'
' —
EJn (ka)/eokaJn(ka) Hn (koa)/koaHn (koa)

an = —Jn(koa)
(5.87)

in which e€and €y denote the permittivity of the dielectric

and free space, respectively, and k and ko signify the wave

number in dielectric and free space, respectively, as in (5.80)

and (5.82).

The numerical solution of (5.83) and (5.84) was obtained,
for the case of the circular cylinder, with 16 cubic spline
boundary elements over the cylinder. Hankel functions of order

9

zero and one, as called for by the G(.) and 5%(.) terms, were

(23). The results for various dielectric

approximated by polynomials
and frequency combinations are presented and compared to the

exact values in Figure 5.16.

The results are definitely satisfactory, When the model
starts showing signs of deterioration at ko=5.0 and €=2.5, the
propagation constant in the dielectric is k=7,905, implying

a circumferential length of 7,905,

The computations for ko=l,75 are particularly useful in
assessing the reliability of the solution technology for the

square cylinder pfoblem which will be considered next.

5.3.4. Dielectric square infinite cylinder

(28)

Meixner's well known work , cited above, presents an in-

depth treatise of the problem of field singularity at a common
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edge between two dielectric wedges (Fig. 5.17).

2T—¢,

Figure 5.17 Dielectric wedge configuration

Considering a dielectric wedge in free space, Meixner's

theory predicts that when H is parallel to the edge, the electric

. t .
field components Er and E¢ behave as r , where t is the lowest
positive solution of

€ -Eo = + sint]l . : (5.88)

€ +¢ sin t(® ~II)
o o

(39)

In 1970, Hurd observed that
a) If ¢# € and $o4#0,0,2I, there always exists a solution
of (5.88) such that 0<t<l, meaning that the Electric field

is singular at r = 0, and
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b) due to the symmetry of (5.88) in € and €,, wedge angles of
®y and 2[I-®y display the same singularity. He then went on
to consider the case when €/€, becomes very large.

Assuming that ¢,<Il, then, the smallest root of (5.88)
approaches

t = II/(27-04) (5.89)
which gives the correct singularity for a perfectly conduct-
ing wedge (see section 4.2), but means that a wedge of &,
with €/€, very small has the same discontinuity, due to

symmetry. But it is known, by exact solutions (e.g.40)

that a perfectly conducting wedge of angle $¢>Il does not

have a field singularity. Thus, Mgixner's theory which
predicts singularity for high-dielectric constants but
non-singular behavior for perfect conductors was put to
question.

(41)

Bach Andersen and V. Solodukhov studied the same
issue, and demonstrated that obtaining conductor behavior by
letting € > » is often correct, but not always - when £/g,

is infinite, equation (5.88) which is derived on the assumption
that fields inside the dielectric are non-vanishing, ceases to
apply. Thus, they proved that permeable wedges of angle ¢>I
have a singularity of the E-field whereas perfectly conducting
wedges of the same angle do not. Upon further analysis of

Meixner's theory, they also showed that while those results hold

for the electrostatic case and for perfect conductors, in time-



- 145 -

varying configurations, Meixner's singularity predictions do not

hold for dielectric wedges.

In the light of this briefly summarized controversy around
the dielectric edge singularity topic, we have attempted a solu-
tion of the dielectric square cylinder scattering problem without
modifying our polynomic spline basis. To determine field behavior
at edges, a relatively large number of elements were packed into
their vicinity. Results obtained by the computer program for

the TE incidence case are presented in Figure 5,18,

Our results indicate locally discontinuous peaks at both
edges. Andersen and Solodukhov used a small-radius-of-curvature
approximation for edges, and reported similar peaks at the
lateral edges, but not at the edge of incidence, Their numerical
computations showed that the fields tend to zero there (Fig. 5.19),
similar to the expectation in case of electrostatics. They were
at a loss, however, to explain the deviation from the electrostatic

behavior that their results demonstrated.

It can be concluded that, as Andersen and Sclodukhov have
also stated, the behavior of electromagnetic fields of higher

frequencies in the vicinity of dielectric edges is not necessarily
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POSITION, P

Figure 5.19. Bach Andersen and Solodukhov's results

for the dielectric square cylinder (41).
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as predicted for the electrostatic case. It is likely that local
singularities exist in the vicinity of perfect edges, but approxi-
mations that inveolve even very small radii of curvature may
suppress the peaks - which would explain the discrepancy between
Andersen and Solodukhov's results and ours. The degree of agree-
ment between our numerical results and the exact values for the
case of the smooth circular dielectric cylinder leads us to
beiieve that the singular behavior at both edges, predicted by

our program, reflects a close .approximation of the phenomenon.

5.3.5. Conducting sphere

Comprehensive analytical solutions to the problem of
electromagnetic scattering from a conducting sphere are available
(42) . . . .

s, and the results for various frequencies provide a classical

test for any numerical procedure for the solution of three-

dimensional scattering problems.

Maxwell's equations (5.70) in a divergenceless region, give
rise to the vector Helmholtz equations:
VxVxT-k’E = 0 (5.90)
VxUxH-k7H = 0 (5.91)
A scalar free-space Green's function, G, that satisfies

VxVxG3 - k°GE = =8 (r-r')4 (5.92)

can be utilized to construct the solution to (5.90) and (5.91),

a denotes a unit vector in an arbitrary direction. Invoking the
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vector form of Green's theorem (*), we can obtain

E(r)+8 =vy/{ E(s'")xVxG(r,s')8-G(r,s" )axVxE(s') }+Ads (5.93)
S

similar to the scalar formulation summarized in (5.33), with the

same definition of y in terms of the position, r.

(5.93) holds for the H field as well, and application of the
proper boundary conditions on (5.93) or its counterpart for the

magnetic field results in an Electric Field Integral Equation

(EFIE) or a Magnetic Field Integral Equation (MFIE), respectively.

(33) for the MFIE

Traditional preference has generally been
in smooth-surface problems, and for the EFIE in thin cylindrical

configurations.

Enforcing the condition that at the conductor boundary, the

normal magnetic and tangential electric fields should vanish, i.e.

AeH(r) 0,
AxE(r) = 0, for res, (5.94)
and letting Y = -2 on S, (5.93) and its H-field counterpart

lead to the MFIE:

(*) S{A+VxVxB-B-VxVxAldv = S{BxVxA-AxVxB}* ds
\Y S

in which A and B are vector functions of position with con-
tinuous first and second derivatives within and on S, where S
is the boundary of V.
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Figure 5.20. Geometry for three-dimensional scattering problems.




- 151 -

A x ST(s') x V'G(s,s")ds' %I (s) = —AxH (s) (5.95)
S
in which
H(r) =8 S(r) + 0 (r), (5.96)
and
J(s) = fixH(s) (5.97)

represents the equivalent surface currents, and V'G(s,s"')

denotes the gradient of the scalar function, G. Explicitly,

oik|r-r']

4T r-r"]

G(r,r') = (5.98)

and

e—jk]r4r

V'G(r,r') = 1 '|(1+jk|r—r'|)ar (5.99)

4 r-r'[?

in which the unit vector, ﬁr is given by:

. (5.100)

(5.95) is a Fredholm integral equation of the second kind,
in terms of the equivalent surface current, J(s). 1Its solution
leads to the scattered field through:

B (r)= SI(s")xV'G(r,s')ds". (5.101)

S

To compute far-field quantities, phase terms can be neglected
which results in
3 kY o' A
Jk{il eJkLr T 3

V'G(r,r") > jk e
41 r

: (5.102)

where only the r—1 term of the binomial expansion of
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(r-r') » |r| - (r°x") (5.103)
r

has been retained for r>>r'.

The radar cross-section, defined as:

" 1mSs 2
o = lim 4lIr? —[%J— . (5.104)
r > ® ]Hl]

can thus be computed as:

— 4 a o 1
o= 1 |/3k@(s") x 6)e T ast |, (5.105)

411 S

The computations have been carried out for a plane wave
with unit E-magnitude, incident at an arbitrary specified angle

as

El(r) - lﬁh e—JRor
n

(5.106)

in which Gh denotes the unit vector in the magnetic field direction,

and R is the unit vector in the propagation direction (Fig. 5.20).

The magnitude is scaled down by n, the intrinsic impedance of

free-space.

The surface fields and scattering cross section for a unit
sphere in a linearly-polarized TEM wave of unit H-field magnitude,
and f = 80.9 MHZ, as computed by the BEM with cubic spline
bivariate elements, are presented in Fig. 5.21. An 8-element

model of the complete sphere using only 12 unknowns in the
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discretized BEM model was utilized. A 3-dimensional Cartesian

vector form of (5.95) in this case resulted in a 36 x 36 system
of equations to arrive at the solution in 49.5 cpu seconds (%)

without using symmetry. A classical moment method approach to

the same problem would typically require a linear equation set

of the order of 264 x 264 to 360 x 360 without using symmetry

(43), or 33 x 33 to 45 x 45 if 1/8 symmetry can be catered for.

In comparison to the Lagrangian element implementation of

the BEM (4)

as well, splines have introduced noticeable savings

in this problem: similar accuracy in terms of the far=fields

was reported at the same frequency and the same configuration,

with a 38-node model requiring a 114 x 114 system that took 200

cpu seconds (%) for solution. To achieve accurate surface

sources, improved geometrical modelling was recommended. Considering
the relative cheapness of this particular spline model, the results
presented in Figure 5,21 together with those of Lean(A), are quite

encouraging.,

5.3.6. Conducting cube

Previous work on electromagnetic scattering from a conducting
cube is not readily available. The closest topics of recent
(44,45)

2

interest seem to be that of scattering from a thin plate

and from three dimensional objects possessing rotational symmetry

(*) On the University of Manitoba Amdahl 470/V7 system using
Fortran H software.
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(45) (33)

Poggio and Miller's relevant article , presents the
applicable theory, but their solution technique of wire-grid

modelling or flat patch approximation of sources have not been

applied to the particular instance of the cube.

In our view, the aspect of the problem which makes it
highly "un-appealing" is the edge singularities it involves and
the immense amount of unknowns that would be required to model
the irregular behavior of surface sources, due mainly to the

effect of the singularities.

Having demonstrated the reliable operation of the BEM with
three-dimensional cubic spline elements in the case of electro-
magnetic scattering from a conducting sphere, we applied that
methodology to the case of the conducting cube. As verified by

(33, 41), Meixner's edge condition (28)

a number of researchers
holds for the perfectly conducting edge immersed in a time-

varying electromagnetic field. Thus, the 1 form of singu-
1/3

r

larity was imposed on the appropriate shape functions over each
element bordering an edge. 54 rectangular elements over the
surface (an array of 3 x 3 on each face) were used, giving rise
to 56 unknowns with three degrees of freedom each; i.e. a 168 x
168 system of linear equations was solved. Figure 5.22 presents
the results for linearly-polarized plane-wave incidence perpen-
dicular to the center of a face at a frequency of ka = 2.0, in

which 'a' denotes half the length of an edge of the cube.



156 -

*Q*¢=Y ‘@29qno 3uTlONpUOd B JO UOTIDAIS SS0ID BUTIDIIEBOS DIIBIS-TY °72¢°C SANIT.[

008l 006Gl ora 06 009 00¢ o0
T _ I I I I

"ou

subjd-3

00l




5.4

(1)

(2)

(3)

(4)

(5)

(6)
(7)

(8)
(9

(10)

(11)

- 157 -

References.

Mikhlin, S. G., Integral Equations, Second Revised Edition,

Pergamon Press, 1964.

Zabreyko, P. P.,, et. al., Integral Equations - a reference text,

Noordhoff International Publishing, 1975.

Jaswon, M. A. and Symm, G. T., Integral Equation Methods in

Potential Theory and Elastostatics, Academic Press, 1977.

Lean, M. H., Electromagnetic Field Solution with the Boundary

Element Method, Ph.D. Dissertation, University of Manitoba, 1981.

Bryant, T. G. and Weiss, J. A., "Parameters of microstrip
transmission lines and of coupled pairs of microstrip lines",

IEEE Trans. Microwave Theory and Techniques, vol. MIT-16,

pp. 1021-1027, 1968.

Jones, D. S., The Theory of Electromagnetism, Pergamon Press, 1964.

McDonald, B., Friedman, M., and Wexler, A., "Variational Solution

of Integral equations', IEEE Trans. Microwave Theory and Techniques,

vol. MIT-22, pp. 237-248, 1974,

Van Bladel, J., Electromagnetic Fields, McGraw-Hill, 1964.

Mei, K., and Van Bladel, J., "Low-frequency Scattering by Rectangular

Cylinders", IEEE Trans. Antennas and Propagation, vol. AP-11,

pp. 52-56, 1963,
Eyges, L., and Gianino, P., "Polarizabilities of Rectangular

Dielectric Cylinders and of a Cube'", IEEE Trans. Antennas and

Propagation, vol. AP-27, pp. 557-560, 1879.

Reitan, D. K., and Higgins, T. J., "Calculation of the Electrical

Capacitance of a Cube", Journal of Applied Physics, vol. 22,

pp. 223-226, 1951.




(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)

- 158 -

Parr, W. E., "Upper and Lower Bounds for the Capacitance of Regular

Solids", Journal of the Society for Industrial Applications of

Mathematics, vol. 9, pp. 334-386, 1961.

Daffe, J., and Olsen, R. G., "An integral equation technique for
solving rotationally symmetric electrostatic problems in conducting

and dielectric material", IEEE Trans Power Apparatus and Systems,

vol. PAS-98, pp. 1609-1615, 1979.

Wexler, A., Perspectives on the solution of Simultaneous Equations,

Report TR79-2, Electrical Engineering Department, University of
Manitoba, 1979.

Mentzer, J. R., Scattering and Diffraction of Radio Waves, Pergamon

Press, 1955.

Kleinman, R. E., "The Rayleigh region", Proceedings of the IEEE,

vol. 53, pp. 848-856, 1965,

Stratton, J. A., Electromagnetic Theory, McGraw-Hill, 1941.

Harrington, R. F., Time-Harmonic Electromagnetic Fields, McGraw-

Hill, 1961.

Kouyoumjian, R. G., An Introduction to Geometrical Optics and the

Geometrical Theory of Diffraction, Antenna and Scattering Theory:

Recent Advances, Vol. I; Short Courses at Ohio State University,

1966.

Harrington, R. F., Field Computation by Moment Methods, Macmillan,

1968.
Miller, E. K., and Poggio, A. J., "Moment-method techniques in
electromagnetics from an applications viewpoint'", in Uslenghi,

P.L.E. (ed.), Electromagnetic Scattering, Academic Press, 1978.




- 159 -

(22) Burke, G. J., and Poggio, A. J.,Numerical Electromagnetic Code

(NEC) - Method of Moments, Part I, Naval Ocean Systems Center,

San Diego, California, 1977.

(23) Abramowitz, M. and Stegun, I. A. (eds.), Handbook of Mathematical

Functions, Dover, 1968,
(24) Mei, K. K., and Van Bladel, J. G., "Scattering by Perfectly-

Conducting Rectangular Cylinders", IEEE Trans. Antennas and

Propagation, vol. AP-11, pp. 185-192, 1963.
(25) Andreasen, M. G., "Scattering from Parallel Metallic Cylinders

with Arbitrary Cross Sections'", IEEE Trans. Antennas and Propagation,

vol. AP-12, pp. 746-754, 1964.
(26) Andreasen, M. G., "Comments on Scattering by Conducting Rectangular

Cylinders'", IEEE Trans. Antennas and Propagation, vol. AP-12,

PP. 235-236, 1964;
Mei, K. K., "Authors reply', ibid., p. 236.
(27) Shafai, L., "An improved integral equation for the numerical

solution of two~dimensional diffraction problems', Canadian Journal

of Physics, vol. 48, pp. 954-963, 1970.
(28) Meixner, J., "The behavior of electromagnetic fields at edges',
New York University Institute of Mathematical Sciences, Division
of Electromagnetic Research, Report No. EM-72, New York, 1952.
(29) Richmond, J. H., "Scattering by a dielectric cylinder of arbitrary

cross section shape'", IEEE Trans. Antennas and Propagation,

vol. AP-13, pp. 334-341, 1965.

(30) Mei, K.K., "Unimoment method of solving antenna and scattering

problems', IEEE Trans. Antennas and Propagation, vol. AP-22,

pp. 760-766, 1974.



- 160 -

(31) McDonald, B. H., and Wexler, A., "Finite element solution of

unbounded field problems', IEEE Trans. Microwave Theory and

Techniques, vol. MIT-20, pp. 841-847, 1972.
(32) McDonald, B. H., and Wexler, A., "Mutually constrained partial
differential, and integral equation field formulations', in

Chari, M.V.K., and Silvester, P,K., (eds.), Finite Elements in

Electrical and Magnetic Field Problems, John Wiley & Sons, 1980.

(33) Poggio, A. J. and Miller, E. K., "Integral Equation Solutions of
Three-dimensional Scattering Problems', in Mittra, R. (ed.)

Computer Techniques for Electromagnetics, Pergamon Press, 1973.

(34) Wu, T. K., and Tsai, L.L., "Numerical Analysis of Electromagnetic

Fields in Biological Tissues", IEEE Proceedings Letters, pp. 1167-

1168, Aug. 1974.
(35) Morita, N., "Surface Integral Representations for Electromagnetic

Scattering from Dielectric Cylinders', IEEE Trans. Antennas and

Propagations, vol. AP-26, pp. 261-266, 1978.

(36) Solodukhov, V. V. and Vasil'ev, E. N., "Diffraction of a plane
electromagnetic wave by a dielectric cylinder of arbitrary cross

section", Soviet Physics - Technical Physics, Vol. 15, pp. 32-36,

1970.
(37) Morita, N., "Resonant Solutions Involved in the Integral Equation
Approach to Scattering from Conducting and Dielectric Cylinders',

IEEE Trans. Antennas and Propagaiion, vol. AP-27, pp. 869-871,

1979.
(38) Waterman, P. C., '"Numerical solution of electromagnetic scattering

problems", Mittra, R. (ed.), Computer Techniques for Electromagnetics,

Pergamon Press, 1973.



- 161 -

(39) Hurd, R. A., "On Meixner's edge condition for dielectric wedges",

Canadian Journal of Physiecs, vol. 55, pp. 1970-71, 1977.

(40) Bowman, J. J., Senior, T.B.A., and Uslenghi, P.L.E., Electromagnetic

and acoustic scattering by simple shapes, North-Holland Publishing

Co., 1969.
(41) Andersen, J. B., and Solodukhov, V.V., "Field Behavior near a

Dielectric Wedge'", IEEE Trans. Antennas and Propagation, vol.
g

AP-26, pp. 598-602, 1978.

(42) King, R.W.P., and Wu, T.T., The Scattering and Diffraction of

Waves, Harvard University Press, 1959.
(43) S. Bilgen, M. H. Lean, A. C. Lee, F. Rahman, L. Shafai, A. Wexler,

Techniques for Improving Computational Efficiency of the Numerical

Electromagnetic Code (NEC), Department of Electrical Engineering

Technical Report TR 80-10, University of Manitoba, 1981.
(44) Singh, J., and Adams, A. T., "A Nonrectangular Patch Model for

Scattering from Surfaces'", IEEE Trans. Antennas and Propagation,

vol. AP-27, pp. 531-534, 1979.
(45) Glisson, A. W., and Wilton, D. R., "Simple and Efficient Numerical
Methods for Problems of Electromagnetic Radiation and Scattering

from Surfaces', IEEE Trans. Antennas and Propagation, vol. AP-28,

pp. 593-603, 1980.



CHAPTER VI

CONCLUSION

The goal of this work was to investigate the viability of a new
methodology of solving boundary value problems posed in integral equation
form. It involved a novel boundary element discretization scheme with
uni-variate and bi-variate elements in two- and three-dimensional space.
Galerkin's technique of solution was adopted as the standard approach.
The overall technique was applied to a wide spectrum of electromagnetic
field problems in order to demonstrate its merits and establish the

shortcomings.

The first general conclusion is one that was expected: cubic
splines provide an effective tool for surface modelling - a fact that

(1)

has long been established in the area of computer aided design and
manufacturing. Contrary to the surface design area, howevéf, the boundary
element implementation ipvolved a representation of unknown electro-
magnetic surface sources and their mathematical recovery. As such,
reformulation of the surface representation techniques originally geared
to an "input-only'" operation was necessary. In other words, surface
design involves accurate representation and reproduction of user-
specified information, whereas the boundary element method has to address
the additional requirement of evaluating unknown functional behavior, and
the ensuing algebraic symbolism has to be amenable to manipulation within
the discretization and solution algorithms. The uni-variate and bi-
variate cubic spline elements developed in Chapter III and summarized

in the expressions (3.3) and (3.21), respectively, respond to these

stipulations.
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In particular, the three-dimensional cubic spline element is an
effective instrument that ensures curvature continuity (unless otherwise
required), and high-fidelity modelling with a minimum of support
information. The most striking illustration of these features is provided
for the case of a sphere modelled with only 12 unknowns to achieve
highly acceptable results in the electrostatic Dirichlet and electro-
magnetic plane-wave scattering problems (subsections 5.2.5 and 5.3.5).

As the problem size is reduced and geometry simplified, the advantage

of splines over earlier tools such as pulse or Lagrangian-polynomial
approximation diminishes. In most two-dimensional problems, while a
definite advantage over the classical pulse expansion technique is

enjoyed in terms of the size of the discrete equation system and precision
of results, comparable accuracy has been achieved with Lagrangian
elements. The results and comparisons presented for the parallel

plate and coaxial capacitors and infinite dielectric cylinders reinforce

this observation.

The fundamental improvement that the spline methodology procures,
in comparison to the Lagrangian interpolation scheme, relates to the
fact that as interpolation order is increased in the latter approach,some of
the added nodes are associated only with one element, whereas with the
cubic spline element methodology devised in this work, all unknowns
(or vertices) are shared by a large number of not even necessarily
adjacent elements (*)This fact accounts for the notable savings demonstrated
in the three-dimensional problems - a justification of the preference

for the communal over the private!

(*) See Appendix.
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A second conclusion relates to the use of a "modified spline"
basis to approximate functions which manifest singular behavior. This
implementation involved algorithmic modification of the expansion
functions used for source approximation to reflect the expected form
of singularity. As much as it is a generally applicable scheme, this
is still an ad hoc approach and there is much room for further work on
the subject. The following issues have to be addressed: What should
be done when the form of the singularity is not known a priori? How
does the utilization of a "modified" i.e. non-polynomic basis affect the
convergence and general validity of the Galerkin scheme, originally
proven (2) for non-singular basis functions only? Furthermore, the

algorithmic problem of dealing with the Green's function and expansion

function singularities concurrently in terms of quadrature integration

can be studied in depth. Our approach to this latter issue involved
utilizing a quadrature scheme that catered for the Green's function
singularity explicitly and rigorously, while the expansion function
singularity was relegated to an ordinary Gauss-Legendre quadrature

formula, noting that increased quadrature orders were necessitated.

Oﬁr observation has been (cf. the problem of the three-dimensional
conducting cube) that even when the exact form of the singularity of
sources was not known, use of expansion functions that contained some
singularity helped to achieve physically plausible results. Hitherto
unexplored subject of singular field behavior in three-dimensional wedges
and tips can be probed with this tool. ©Note, also, that the variational
functional, related to minimized energy content of the system, was

significantly less in the case with singular expansion functions in
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comparison to that computed with a polynomic basis alone, in the problem
of the conducting square cylinder - demonstrating better approximation
of the phenomena. When the form of the singularity was known, (e.g.

the parallel plate capacitor) solution accuracy was very high. Thus,
despite the unanswered questions raised above, the technique of basis
modification was shown to be viable. The particular scheme (expressions
(4.48), (4.49) and (4.50)) of adding a singular term to one end of the
element while preserving spline behavior elsewhere can be said to have

been generally successful.

An important area of relevant future research has to do with the
structure of the system of linear equations that the BEM gives rise to.
It is well known that the Finite Element Method of partial differential
equation solution yields sparse matrices, and a banded matrix can be
obtained if special care is taken in numbering the elements and the

(3)

nodes The BEM, on the other hand, usually produces a dense matrix.
Especially if the simple- or double-layer distribution formulations

(cf. sec. 5.1) are followed, an ordinary factorization scheme seems to
be the only relatively efficient way to solve the line;r equation system
that is produced. The Green's Theorem formulation, restricting each

integral to one closed (may be bounded by the "surface at infinity')

region only, seems to be an exception. The equations per region

will be demse, but the system matrix in the case of a multiregion problem

will be block-sparse. The equations will be coupled only at common

(3)

interfaces. Wexler has indicated the applicability of the method
of Diakoptics to such field problems. But a BEM program that incorporates

this feature is still a goal of the future, whose realization will
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possibly be rewarding not only to its proponents in the area of electro-
magnetic fields, but also in a broad spectrum of engineering disciplines

that are concerned with the analysis of large systems.

The Progressive Numerical Method (4) is another candidate for
efficient solution of large-scale block-structured systems with a

properly designed essentially iterative algorithm.

To sum up, the cubic spline methodology has been shown to be a
reliable approach in the implementation of the BEM. In many real-
life cases two-dimensional or symmetric models involve a degree of
simplification, and the capability of tackling the three-dimensional
actual problem itself is invaluable. The cubic spline technique,
cutting down computational overhead by reducing the necessary information
support, and ensuring high-fidelity geometrical modelling, is seen as

a key feature in the solution of many real engineering problems.
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Appendix A

EXAMPLES OF CUBIC SPLINE ELEMENTS

A.l TWO-DIMENSIONAL (UNI-VARIATE) ELEMENTS.

4
Definition: P(g) = V. oa.(E8).

j=1 J J.
Ends of element: P1 = P(0),

P, = P(1).

"A.l.1 A straight-line element.

v, o= (2,1)
V2 = (1,1)
V3 = (0,1)
V4 = (=1,1)
Pyo= V, + 4V, + Vy = (1,1)
Py = V, + 4V, + V, = (0,1)
AY
2
Vg
X V3 V2 x|
P> Py
: 1 i
- O l 2

Figure A.l. A straight-line element.
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A.l.2 A curved two-dimensional element,
V1 = (1.5,0)
V2 = (0,1.5)
V3 = (=1.5,0)
V4 = (0,-1.5)
Pp =V, + 4V, + Vy.= (0,1)
Py, =V, + 4Vy + V, = (-1,0)
y A
V.
X '2
F)
[
S 2
X
Vg

Figure A.2. A curved two-dimensional element

circular quadrant.,

v
>

approximate
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A.l1.3 The simplest circle model,

v, = (1.5,0)
v, = (0,1.5)
Vy = (-1.5,0)
v, = (0,-1.5)

Vertices of elements:

element vertices Pl P2
1 V4 V1 V2 V3 (1,0) (0,1)
2 V1 V2 V3 V4 (0,1) (=1,0)
3 V2 V3 V4 V1 (-1,0) (0,-1)
4 Va V, VvV, (0,-1) (1,0)

Y4
X Vs
V2 I
)CVh

Figure A.3. A circle model.
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A.l.4 A square model.

v, =V, =V, = (1,1)

v, = Vo=V, = (-1,1)

V) o= Vg = Vg o= (-1,-1)
Vio = Vi1 T Yy = (1,-D)

Elements are defined similar to the circular example, in a
cyclical fashion, i.e. (Vl , V2 s V3 R Vé) for element #1,

(v \Y v, , V2 ) for element #11, etc.

11 * "12 "1

AY
element #2 —\ /—elemem #I
Va4 V5. Vg T V) Vo Vs
1 _-}"\—element#lZ
> X
V7,Ve, Vg VioViVi2

Figure A.4. Boundary elements for a square cylinder.
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A.2 THREE-DIMENSIONAL (BI-VARIATE) ELEMENTS

12
Definition: P(&,n) = T V., A.(E,n).
3=1 J J
Corners of element: PCO = P(0,0) = V9 , PO1 = P(0,1) = V10
P10 = P(1,0) = Vv, , P11 = P(1,1) = V ,
A.2.1 A planar square surface
V, = (-1,0,1)
v, = (2,0,1)
V3 = (~-1,1,1)
VA = (2’1’1)
Ve = (0,-1,1)
Ve = (0,2,1)
Vo o= (1,-1,1)
V8 = (1,2’1)
Vg = (0,0,1) = POO
\Y = (0,1,1) = PO1 ﬂz
to T 00 Vi v
v = (1,0,1) = P10 /< 3
11 o / ,
Id . 7
Vo, = (1,1,1) = P11 . ’
12 ’o o ’
Vs Yb /Vio Ve
R -l =
Ve Vil Vi Ve
X— —— A X
4 e
, z -
/ >
’
/s
/s
V2X V4
X

Figure A.5. A planar square boundary element.
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A.2,2 The 12-vertex sphere model,

v, = (0,0,1.5)
V2 = (0,0,—105)
V3 = (1.5,0,0)

v, = (0,1.5,0)

Ve = (-1.5,0,0)

V6 = (0,-1.5,0)

V7 = (0,0,1)

V8 = (0,0,-1)

V9 = (1,0,0)

V10.= (0,1,0)

V11 = (-1,0,0)

V12 = (0,-1,0)

element defining vertex numbers
1 5 2 6 2 7 7 6 5 7
2 6 2 3 2 7 7 3 6 7
3 3 2 4 2 7 7 4 3 7
4 4 2 5 2 7 7 5 4 7
5 1 5 1 6 6 5 8 8 9
6 1 6 1 3 3 6 8 8 10
7 1 3 1 4 4 3 8 8§ 11
8 1 4 1 5 5 4 8 8 12

The sphere model is presented in Figure A.6.

10

11

12

10

11

12

10

11

12
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X X V2

Figure A.6. The l2-vertex, 8-element cubic spline model of

a sphere.



