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ABSTRACT

hasecl on cubic spline functions are de-

veloped for use in the solution of hounCarv value problens

formulateC as integral eqlrations. Trvo-dirnensional (uni-varÍ-

ate) and three-<Jir¡ensional (hi-varÍate) element eonfÍpr!ra-

tions are Cef ined. The three-diTnenslonal element is 13n ex-

tension of the Coons patch technicl ue of surface modelling.

TrnplementatÍon of GalerkÍn's me thod of integral eouatj.on so-

lution usÍng the clevelope,i splj.ne elenents is cliser.rsserl .

creen's funct ion singula ritv arising on the clouhle surfaee

integral is rigorouslv treated. A technior.re of incorDorat-

ing the sinf'ularities of so!rrce rìensíty due to peorretrical

f eatures j.nto the solution by util izi.ng. r¡orìif Íed spì ine ex-

pansion functions is presented. cases of elcctrostatic ancl

tirne-harrnonic problems that involve hornopeneous and inliono-

geneotrs meclÍa are considered with alternative aDDroaches to

proirlem forrnulatj.on. Comparisons are rqade rvitl'r the classieal

point rnatclrÍng rnethod an¿ v,'ith previous

usinf\ Laf ran-the Roundary Eler¡ent I'l etho<l

prrlse expansíon

ÍrnplementatÍons of
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CHAPTER I

INTRODUCT]ON

The Boundary Element Method (BEM) has been shown to be an

effective approach to the solution of boundary value problems formulated

in terms of íntegral equatÍorr" 
(t'2' 3' 4). rts application, usÍng

Lagrangian elements, has led to accurate soluËions for many electro-

static and time-harmonic electromagnetic fíeld problems. The Lagrangian (*)

element methodology r¡ias demonstrated to be superior to the classical
(s)

moment method implementation using pulse-expansion and poínt--

matching, in a number of instances. Increased stability and a signíficant

reduction in the number of unknov¡ns required to solve a given problem

ü7ere among Íts merits.

This v¡ork has set out to further ímprove upon the capabilities

of the BEll. The methodology that is developed here incorporates tr.ro

major features that are fundamental in bringing about that improvement:

Í) the spline formulation is utilÍzed to guarantee high-fidelity

geometric modelling without adding to the number of unknowns;

ii) furthermore, the number of unknovms ís reduced due to the fact

Ëhat, wiÈh the scheme developed here, all nodes used in element

definitíon are shared by a large number of elements.

This reductíon in the number of unknor¡ns is a satisfactory develop-

ment in the direetion indÍcated by Lean:

(*) See Chapters 2 and 3 for formal definitíons of the Èerms "Lagrangian",ttsplinett, etc.. .
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"The main drawback of the presenË (i.e. Lagrangian) interpolation
scheme, not really felt in two dímensions, is the requirement for more
unkno¡,¿-ns for increasing orders of interpolatíon. For up to a linear
variation, this scheme is definitely víab1e since all nodes are shared
by at least Èwo or more elements. Succeedíng orders need Ínterior
nodes vrhose data contribute Ëo this one element on1y. Hence: âny
algorithm that al1ows the usage of Ínformatíon from exterior nodes,
especially for high-order interpolation, and yet remaÍn suffíciently
flexible for general application, would be advantageous for three-
dimensíonal problems." (1, p. 118, emphasis added.)

It is the authorts contention that the spline element methodology

responds precisely to thís requirement.

Also invesÈigated is the aoproach to a fundamental problem

inherent to numerical solutíon methods of Íntegral equations wíth

kernels that have íntegrable singularities withÍn the domain of inte-

gration. htrile tradiÈional methods range

poÍnt altogether (e.g. (6)

highly geometry-dependent

), to handlíng

. (7) (8).(e.9. , )

from i-gnoring the singular

it analytíca1ly, which is

, a problem-independent and

rigorous approach is provided by numerical treatment. This rvork contains

the ímplementation, in the context of spline elements, of such a

techníque, origínaIly developed for Lagrangian elements (1).

The issue of approxímating source variations that tend to infínity

in the vÍcinity of surface normal discontínuities, i.e. corners or

edges, has also been one that requires particular attention, The present

work addresses that problem by properly modifying the spline basis

functions that approximate the solutÍon. In cases where the behavior

of sources is known, this knowledge is imposed directly upon the solution,

the solution then reflecting the expected behavior exactly. Lrrhere such
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knowledge is not analytically available, one has the capability to

experiment with various modes of singular behavior imposed on the

sources and to determine a configuratíon that best satisfies the problem

requirements.

The remainÍng portion of this chapter presents an overview of

the BEM in general.

The second chapter considers Lagrangían, Hermitian and sp1Íne

interpolati-on, as alternative approaches to the finite-element solution

of boundary integral equations. Together with the pulse expansion

technique, these methods are seen to be follorving a conceptual successÍon

in the directÍon of increased fidelity ín mode1lÍng geometry and sources,

decreased number of unknor¿ns necessary to achieve such modelling, and

íncreased computational overhead. It has been claimed (e.g. (9)) that

generally, the latter feature renders the utilízation of higher-order

schemes (of which the spline element approach is an instance) unnecessarill'

onerous. One of our goals ís to shov¡ that proper algori-thmic develop-

ment overcomes that disadvantage. In many applicatíons, the increased

computation tíme per element is compensated by decreased total number

of unknowns. This results in reduced overall cost in rel-atíon to lower

order methods that produce comparable results,

The thÍrd chapter is devoted to the derivation and implementatíon
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of the spline elements as the fundamental feature of this rvork. The

Er^ro-dimensional uni-variate spline elements are derived as a linear

combination of four cubic splíne basis functions. The three-dimensional

bí-variate ones are implemented using the Coon's Patch concept (10)

commonly used in computer aided E,eometric d,esign and surface mode11Íng.

Some algebraic modifications yield the representation used Ín all three-

dimensional applications throughout this work.

The fourth chapter considers Greenls function and source singu-

larities ín the spline element context. Gaussian quadratuEe integratíon

formulas derived for specific implementations are discussed. The

usage of modified splines that cater for expected singularÍties of the

source distribution are also consídered in that chapter.

Chapter V consists of an exposition of various elecÈromagnetic

field problems solved wíth the BEM using spline elements. Two- and

three-dimensional geometries in electrostatíc and tíme-harmonic problems,

that involve homogenous and piecewise inhomogenous medj-a, are treated. (*)

C*) In this work, the terms t'two-tt and ttthree-dimensionalft refer to
problem formulaEion' A problem ínvariant along one spatial dimensíon
would be formulaÈed as two-dimensíonal, The terms ltuni-varíatertand
f'bi-variate" refer to the boundary paranetrízation. The contour of
a two-dimensional regíon would be uni-variate, whereas a three-dimen-
sional region would be bounded by a bí-variate surface.Hence, two-
dimensional boundary element,s are uní-varíate, and three-dirnensional
ones are bi-variaËe,



5-

1.1 The Boundary Element Method (BBf)

{{*' t'l r') ds (r' ) ds (r) = r

Many problems of engineering can be expressed as an íntegral

equation of the form (*):

{r<{rlr')f(r')ds(r')--Àf(r) - g(r). (1.1)

If the kernel K(rlr') is square-integrable, i.e. if

(r .2)

has a fínite va1ue, then (1.1) ís a Fredhofm Integral Equation,

and has a unique solution for f(r), (tt) 
Oro.rided that ÀÍs not

an eigenvalue and if g(r) has a finite norm, i.e.

( 1.3)

For the solution of this problem, thís implemenËaËíon of the

BEll enËails an applicatíon of Galerlcinrs technique rvÍ-th

isoparametric elements. Both geometric varíab1es - r, s(r)

and sources - f(r) - are represented as linear combinatj-ons

of subsectional polynomic basis functions of the same order
(r2, I3).

0n an element, i, among the total of I'1 elements, the relevant

value, Q, - posítion or source, vector or scalar - is represented

as a function of simplex position, f as:

(*) The case when À=0 has also been solved numericatly (cf. Ch.5
and Lean (1)), but lacks theoretical support (11).
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c,. (q) 0..
lJ lJ (i.4)

In this generalfzed expres$ioR, { represents the positíon

over the simplex (standard) element and as such, it may be a

scalar (one-dimensional boundary element) or a tv/o-entry vector

(two-dimensional boundary element). o. represents the "shape

functions" i.e. basÍs functions defined over the standard

element and used to interpolate from 0.. to Õ, at any ooint,

f, over the ifth element. The number of shape functions, N,

is a characteristic of the particular interpolation scheme.

In general, the Õ.. do not correspond to actual physical

values of Õ at some node points and this constitutes one of the

major differences of this work from previous approaches(I'7).

(See þpendix . )

SolutÍon of the integral equation (1.1) with positive-definite

self-adjoint Fredholm operators has been analyzed extensively.

Míkhlin (t4) nr" given Èhe proof that the approximate sofutíon

constructed by the Galerkin method converges in the mean to tlle

exact solution of thís equation, íf the system of basis functions

Ís complete (--t) ín the sense of convergence in the mean. (*ri-)

The RayleÍgh-Ritz variational technique of solution, whÍch,

in instances where the Fredholm operator ís positíve-bounded-
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below (t(rx*) , generates a system of linear equatÍons identical

to those produced by the Galerkin technique (14) hr" b..r,

extensively used in the context of problems formulated as

integral equations and partial differential equations

. (1s) (16)(e.g. '-'' , '--'). In case of non-self-adjoint operators

(i.e. those that have anon-syumetríc kernel) as well, the

Galerkin technique results in a díscretized equatíon that

corresponds to a minímÍzed energy functional defined by

Èhe Rayleigh-Ritz techníque (i7).

Galerkinfs method proceeds by expressíng both the posiËíon,

r or rr, and the unknown function, f(r), in terms of expansion

(*) i.e. any function in the domain of the operator
t2

f{r(r)} = /r(rlt')r(r')dr' - Àf (r)
f1

can be approximated to withín an arbitrary precision, Ín the
mean, by a linear combination of a finite number of basis
functíons.

(**) The sequence frr(r) converges in the mean to f(r) as n+æ if

IG (r)-f(r))2¿f¡rO, where Q denotes the domain of
0n
the functions f' and f.

(***) A s1lrnetric operator f is positive-bounded-below if for
any function f , in Í.Es d.omain, <f {f }, f>sY I lf l It where V

is a positive consËant.
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functions in the form of (I.4). Sumrnarizing (1.1) as

f{f(r')} = g(r), (1.5)

thi-s produces

f{r6x.(E)f..}= e(L^.(E) rij), (r.6)
j = fJ r-J -j= 

tJ

for all i, f;i<M, Norv, ínner products r¿íth the testing

functions - same as the expansion functíons, ctj are performed

to get

<f { I a.(E) trj} ok(E))=(g(Ici.,(6)rii),Iau(6)>
j=l J - k=r j=1 J rJ'k=l k'-'

(i .7 )
for 1<í4f. The inner product is defined as:

(u, v) = "[u(r).v(r)ds(r)
J

(i.8)

where sis the same as Ín (1.1). The operator, l, is linear
( r4)' ' , and upon extractÍon of the unknor¡rns , trj, (1.7)

represents a system of linear equations in the form:

S f = b. (1.e)

ff there are P dÍstinct f1-i and corresponding ti¡,, th"tr f

is a vector containíng these P f... in any selected order;

b is a vector of P entries comprising the contribution of the

right-hand-side of (1.7) to each r.. in the same order as the frr;
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and g is a dense P'*P square matrix r+hose entries S 
O 

correspond

to the inner product of the contributíon of the integral operator,

f {.} at the q'th f.., with the shape function associated wÍth

the ptth f...^ r-J

The entry S _ is computed as:-pq

g = L I u rã) /r(r(E)lt'(E'))o^(E')ds'(r'(6')) ds(r(€))Pq i e. P-- s q.-
t

(1, 10)

Ín which the summation runs over all elements, ej_ connected

.rhto the p+'+.global vertex; cp represents the shape function

associated with the local vertex in e. that maps to global

vertex, pice represents the shape functíon assocÍated with the

local vertex ín any element encountered during the Ínternal

integratíon that maps to g1oba1 vertex, q. The inner integration,

arísing from the Fredholm operator, is performed over primed

variables, and the outer one, the inner product integration, is

over un-prímed varíabl-es.

Gauss quadrature for*,r1". ( lB) are used throughout for j-nte-

gration; parametric order of quadrature being used to control

precísion. Generation and utilizatíon of specially weighted

formulae will be considered in Chapter 4, be1ow.

c1ear1y, a number of choices for the basís functionsr 0. exists.

This choice is fundamental to the operation of the solution
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procedure. A particular class among the possible basis

functions is the subject of the next chapter.
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CHAPTER I]

SPLINE APPROXIMATION

2.L The Interpolation Problem

The use of pulses and pÍecewise linear functions ís a coûìnon

theoretical tool of approximation of functions with the inherent

requirement of step sizes convergíng to zero. The study of the

ways by which Èhis requirement could be relaxed or completely

removed, through the use of higher-order polynomials, can be

said to have started with a fundamental paper by Scho"rrb.tg(1).

The main developments, however, have occurred in the 1960rs,

and reported ín the works of Ahlberg, Nilson arrd Walsh(2),
(3) ^ (L\ . (5)Greville '"', DeBoor''' and SchulLz'-', among many others.

Piecewíse Lagrangían, HermÍte and splÍne interpolation schemes

will be consj-dered below, within the context of boundary

elemenË configurations applicable to the BEM.

Lagrangian Interpolation

Consider the following uní-varíate interpolation problem:

, - l\'t

Given {x., trl]r, find a g(x) defined on [*r, **J,

such that

g(*i) = fí, for 1 = 1, ..., N. (2.I)

The Lagrangian solutÍon to this problem can be formed as

where

N
g(x) = Ð .f .,Q,.(x)a=I 1 a

[.(x) = * (*-*.)/ (x. - x.),t jlt J r- J

ifi
that is, fitting an NrËh order (N - I'st degree) polynomial

Ëo the N given points.

(2.2)

(2.3)
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That the Lagrange interpolation procedure may fail to

converge as N increases is a well-known result of Runge 
(5) 

1'*¡.

A piecewise-Lagrangían solution is also possible and is

more practical. 0n each subj-nterval Ixi, xi+k] , i represent-

ing the beginning node of the subintervalo a unique polynomial

of order K + I can be found such that

P_. ( 4,,) = f, ,, for j = 0, ..., K.r r_+J a+-l
(2 ,4)

Taking K = I, the set of first degree polynomials P. (x) ,

each defined on [*i, *i+1] to satisfy

P.(x.) = f .l_l-a

ti(*i*l) = tr*,

2_1(*) E.g. given that g(*i) ( (10x.-5)-+1) ', 0jxr!1
i = l, ..., N, the Lagrange interpolaÈion procedure
diverges for N -+ -.

(2. s)

are cal1ed the t'linear fj-nite-element functionst', or the

piecewise linear solution of the given problem.

Letrs choose to represent an arbÍtrary first degree polynomial

as a linear combination of tv¡o 1ínearly independent basis

functions cr1 and oz, defíned for 0<{<1 as:

q (E) = E

a.2 ( 6) =l-5. (2.6)
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Clearly, no\^/, the índependent variable can be represented as:

x(Ð="iol(Ð+xr*ror(Ð

where i = I .., N-1, denotes the element number,

and our piecewíse linear solutÍon to the problem, as

(2.7)

Pi(ã) = fior(E) + f .+rcI2G). (2.8)

Thus, (2.6) is the definition of a Linear Lagrangían

Finite Element directly usable in the BEI4 as outlined in section

1. l, above.

Piecewise Herrnite interpolation

Pose the interpolatíon problem as follows:

N

Given {x_., f-, ft.} ._,, í.e. 2N independent constraÍnts,a- 1' a a=l-

find a g(x) defined on [xr, x*l such that

e(x.) = f .-al-

and d g(x)l = f i, for í = 1, ...N. (2.9)
dx x=x,

l-

If the solution satisfies the additíonal requíremenË that

it is once continuously differentiable on *1, *N , and on each

[xr, xr*rl, 1<í5N-i, it ís a cubic polynomial, then it ís called

a piecewise cubic Hermite interpolant.

If such interpolants had to be used in the BEM procedure,

we v¿ould define the Hermite basís h-(x), h'.(x) , such that:
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h. (x.) = ô..l- J r-J

,.1q hi(x)l =0
dx x=x.

J

,l

h-. (x.) = 0r-J

dh'-. (")l---- =ô=,,for 1<i,i<N. (2.10)
;__ l- ' x=x.r ]-J 'oxJ-

Then, the interpolating function would be expressed

N

e(x) = I (f=h. (x) + f r_. h'. (x)) (2.i1)
l_I l_ l_a=r

Similar to the paLh followed in the Lagrangian case,

Ilermite interpolation functions'--can be represenËed as a linear

combination of the following four linearly independent basÍs

funetions (Fig. 2.L):

o, (6) = (E-Dz QE + r)

ar(Ð=E2G-2E)

or(E)=(g-Ð82

ao(6) = (t - E)zE for o!E!l, (2.12)

which satisfy the stipulatíons of (2.I0).
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Now, our solutíon g(x), given in (2.II), can be expressed

AS

ci(g) = fi o1(E) + fi*Io2(6) + rt, o3(g) + r'.*roo({), (2.i.3)

for each interval (í.e. element) *rÍ*1*r*r, guaranteeing

that the required condition, (2.9) is satisfied. Hence

(2.t2¡ defínes cubic Hermite elements to be used in the

BEM algorithm, if desired.

I^Iorth noting here, is that r^iith this approach, problem

geometry definition woul-d have to include position, x. r âs

well as Èhe variation dx I at the nodes. For realÍstic
dã x=x.-I

problems, this may become quite unnecessary and cumbersome

especially from the viewpoint of a user. i^laËson 
(6) nr"

reported an implementati-on admitting the inconvenience of

applying the Galerkin scheme. Hence, it is necessary to

avoid having to specify slope information explicitly, buË keep

the facilíty to ensure slope continuity at nodes. Splines

seem to address boLh requirements.

_C_"bic spline interpo

Splines provide an interpolation procedure that yields smoother

results than either Lagrange or Hermj-te schemes v¡ith less input
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volume in comparison to the 2N independent constraints of the

latter.

To construct the splíne interpolant to N poÍnts, let

JJ . ÌN ctt>g, f .j-'i=I, f l, fN Ì be given; i.e. N + 2 independent

constraints. The cubic spline, S(x), that satisfies these

constraints has the following properties:

i) S("i) = fi for i = 1, ..., N,

s'(xl) = f '1,

s'(åt) = f 'N,

ii) S(Ðis twice continuously differentíable over

( x1, 5o) '

iii) S(x) Ís a cubic polynomial over each (xrrxr*r) ,

lsífN-l.
Existence and Uníqueness theor.* (5),

Let h(x) be a Hermite inEerpolation function; i.e. rePresent..

able as in (2.11). For given numbers fi = h(ä-), i = 1,..., N, -

and f', = än(*) l*=*r, f 'N = ån,"., lx=xN, rhere exisrs exacrly

one set of number" f i =$*fr(*llx=x., for í= 2, ..., N - 1,

such that h(x) is twice continuously differentiable over
(xr, xro) 

.
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Stated differently, among many Hermite interpolants with

arbitrary derivatives at the interíor nodes, there Ís only

one that is second order continuous, i.e. is a spline, and

satisfies the end poínt derivatÍve conditions.

Instead of the end-derÍvatives, trt and f*t, other constrainis

for instance the fact that tr" = tr" = 0 may also be given,

and this constituÈes a well=defined. procedure as well (2) . In

fact, the spline interpolant, S(x), constructed under this

latter constraint satÍsfies the mj-nimum-curvature property,

i.e. among all functíons, f(x) r¡hich satisfy the interpolation

condition f(x.) = f. and have continuous second derÍvaËíves
l_ l_

on (*1, \)r S(x) mi-nimizes the integt"t, (5)

(2, L4)

To construct the cubÍc spline interpolant, define the

cubic B-spline basis as: (Fig. 2.2)

{, ls"(*) l' d*,

- .J(x-x, n) ,L_L

x(x.
- 1-¿

Y (v(v"i-2-'--"i- I

-3 (x-x . -, ) 
3+3 (x-*. *, ) 

2+: (x-xi_ 
I )+I , *i_ t5*5*i

v (v(v'-i-'^-'^i+l

- (x-xi 
, ) 

3+: (x-xi+l) 2-¡ (*-*.+i )+1 , x1a15x1xi..2

0, X, , ^(x. (2.L5)
11- L_
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Figure 2.2 The B-spline basis function

For the spscial case of a uniform mesh

resËriction will be lífted automatically in

the conditi-ons of Table 2.I are va1id.

with size h, (thÍs

the next chapter)



x.
J-¿

and
others

x.
l-L

X.
J

*j*t * j+2
and
others

B. (x)
J

0 t 4 I 0

B' j (x 0 3lh 0 -3/h 0

B t'. (x
J

0 6/h2 -12/h' 6/h2 0

- ¿5-

Table 2.1 B-spline conditions at nodes

N+1
Then if we 1et S(i) = I V=8, (x), r¡re must ensure that

¡=g J J

N+lt', = r' (*i) 
,lo 

u, u', ("r)

N+1tr' = r' (x*) = 
,lo 

u: u': (\)

N+1
f- = S (*.) = I V= B. (x_.), í = 1, ..., N. (2.I8)a r- j=o J J r-

(2. L6)

(2.t7)
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If , a1 ternatively, \^/e have f ,t' = f*" = 0 gíven, the

following two stÍpulations shoufd replace (2.16) and

(2.17).

N+i
f :'t = S'' (x.) : I V. gj.' (x,) = 0 Q.L9)r t j=o ' 

J r

N+l
f'l =S"(x--)= IV. Bj'(x..)=0. (2.20)-N - N', j=oj i N'

(2.16) , (2.17) and (2.18) , or (2.18), (2.19) and (2.20)

comprise a set of N*2 linear equations of the form

1g= ! (2'21)

T
'.,.'here v = (VO Vf ... VrO V*1 )^'

- .- I .Tf = (fr fl ...f* fñ )-, or

f = (o f, f,, o)T, and
tl\

B= 3/. O -3/. 0nn
I410

0141
L41
3lh o -rl*J, o,



B= u/n' -r2/h2

-25-

u/n'

1

0

0

t

I

4

4

I

L4

6/h2 -r2/h2

I

6/.21 .h_t

Because of the structure of the system (2.21) ' a solution
(2, 5)exr-sr,s , and can be computed easily with a Gaussian

Elimínation procedure for banded matrices.

The t'shape-functiont' expressíon for cubic splines in the

form of (1.4), i.e. directly usable by the BEM, wí1l be

derived in Chapter III.

)) r
The extensÍon of Lagrange,

polation procedures to the case

is achieved as follows:

Hermite, and spline Ínter-

of two independent varíables

of

For bi-linear Lagrange interpolatíon, the counterpart

the shape functions depicted in (2-6) can be defined

(e.g.tu)r,

0 t(E,n) = (1{) (l-n)

a r(E,n) = 6( 1-n)

ar(6,n) =6 n

o q(E,r) =(t-E)n, oi6,nst. (2,22)
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The expression
4

Õ(6,n) = I Õ_.o, (6,n)
J_ l_a=I

then maps the unít-square simplex into

lateral defíned by forrr vertices (Ffg.

(2 .23)

a global quadrí-

2.3) .

A similar extension to the bi-variate domain exists

for Hermite interpolation as well (5). 
I^le shall, however,

immediately pass to bícubic splines which constitute the

starting point of our three-dimensíona1 (bí-variate) boundary

elements.

(o, t) (t , l)

(o o) (t.o)

_ SIMPLEX _

Éu

_ GLOBAL _

-9"€ü"-9ì3_:_ Lagrangian bi-lí_near rnapping from a square simplex,
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The original extension of the cubic spline idea to ti¡o

dimensions \,ùas due to G. Birkhoff and C. l"noor (8)

r¿ho fet C- (x), i = 0, l, ..., M, M+l be cubÍc splinea

functions such that

M

f(x) = | ,tr.r(x) + ri co(x) + f'McM+l(x) (2.24)
a=l

satisfies f(x.) = f. for i = I, ..., M,

f' (xr) = fj , and

f '(x") = fli ,

and D.(x), j = 0, l, ..., N, N * I be similar functions,

such that e(*) = J e, D. (x) * s.'D (x) + e--'D
j=i ¡ J tsI 'o \^'/ T uN 'N+l(*' 

(2'25)

satÍsfies g(*j) = Bj for j = 1, ..., N,

gt (xt) = gi , and

g' (x*) = e, ,

for given f ., i = 1, ..., M, to', tor', g¡, j = l, ..., N, go',

and BOOI .

Then, Ehe function
MN

u(x,y) = I I a_., c. (x) D. (v) Q.260
i=t j=I aJ 1 J

can be uniquely constructed such that it has continuous

second derivatives f or X, (X(\,,y, (y(y,,,
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and â_.,= U(x,ryr), i=lr..,rì1, j=lr,.,rN,
r-'l ' L" J' '

I

"if.= ft{J(xr,vU)o i=l)., r¡M¡ k=0,N*l,

",-,= lu(x,-,y,), k=0,M+l , j=I,,..,N,t(l dx k" J' '
'-! -a-.= fu;;U(x=,y,), i=0,Ií*1, j=0,N+1. (2.27)rJ oxoy r J

Hence, given the values at all mesh-points, and the partial

derivatives at the boundary mesh-points, plus the cross-

derivatives at the four corners, the bícubÍc sp1íne Ínter-

polant is uniquely defíned. Furthermoreramong all functions

v¡hose fourth derívatives exist, U(x,y) minimizes

^42^22II(W) dxdy + /(++) ds (2.28)ox oY ds

r¿here R indicates integration over the region

Ixr, x*l x [V'l* J and E denotes integratíon over the boundary

of R, with ðS signifying the tangentíal derívarive. This,

again, is the ttsmoothest" interpolation property.

BicubÍc splines have been extensively used in surface modelling,

design and computer graphics. A recent bibliographic work
(e) provides an exhaustive survey of publicatíons in the

area until míd-1981. Major developments that have been
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ínfluential Ín our implementation include the idea of
ttsurface ínterpolation from curve networks" first introduced

by cotaor, (10) 
and later ful1y urifized by Riesenfeld (11),

and the idea of Coon's patch formulatíor, (t'). The term

"transfínite interpolation" was used (13) to describe the

general class of interpolaËion schemes which, unlike classical

methods r^rhích match a function at a finite number of gíven

points, match the multi-variate function to be approximated,

at a non-denumerable (transfinÍte) number of points. That

is, not points but curves are interpolated. The Coonts patch

is a specíal case of transfinite interpolatíon.

2.2. I. The Coons Parch

Our aim is to construct a one-to-one rnapping of the unit

square (bi-variate simplex) to a given three-dimensional

surface to be approximated. As noted above, interpolation

can proceed from given points alone, or, better yet, from

curves known to 1ie on that surface. Assume thaË four

boundary curves of t.he surface to be interpolated are given

as F0 (n), Fi (n), rO (6), r'r (E) (Fígure 2.4),

and the four corners, p00, p0l_, pIO, pl1,

LIe wish Ëo construct a vector-valued function,

P(E,n) such that

P(0,0) = P00

P(0,1) = POt

P(1,0) = P10

P(1,1) = Pl1
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FO (rt )

Fo(€ )

Fl(27)

Figure 2,4, A Coons Patch,

Ft(€)
,<
"/€, P(f ,q )
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P(0,rì) =F0 (n)

P( i,n) 
= 
Fl (n)

P(9,0) =F0 (E)

P(q,l) =Fl (E). ( ) ?ql

Let ß0 and ßI be two functions defined on the interval

[ 0,1] that have the cardínality properties:

ßo(o) = 1, ßo(t) = o

ßl (o) = o, ß1 ( 1) = t. (2.30)

Now, if we define

C(6,n) = ß0(g) @(rr)POO + ß0 (g)Ê1(n)Pot

+ßi (E ) ß0(n)P10 +ßr € ) ßi(¡)P11, (2 .3r)

C(E,n) ínterpolates to the four given coïners. For instance,

rnith the simple choice

rc(E)=i-q
ß1(E) = ã, (2.32)

il is identical to the bi-linear Lagrangian element defíned

by (2.22) and (2.23).

But, in addition, \^/e define
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E(E,n) = ßo (E) F0 (¡) + ßl (6) rt (n)

+ ß0 (n) F0 1E; + ßt (n) Fi (6),

which interpolates to the four boundary curves,

the general Coons Patch:

P(E,n) = E(g,n) - C(6,n) . (2.34)

By símple evaluatÍon at f, = 0 or I and/or n = 0 or l,

with only the condition (2.30) imposed on ßO and ß1, it is

clear that P(6,n) thus constructed satisfies (2.2Ð. Stated

in words, E(Er¡) maps each edge of the simplex to the corres-

ponding edge of the surface to be interpolated; but as the

"effectt' of each boundary ís ttweightedtt through the functions

ß0 and pl . and ís added to the whole, Èhe corners v/here t\,ro

boundaries meet are added twice - thus the subtracti_on of

c(E,n) .

Note that the only eondition ímposed on the so-called

blending functions, $0 and ß1, so far, vrere the cardínality

conditions, (2.30).

As further stipulations are ímposed on these functions,

the Coons Patch defined in (2.34) can accomodate the crucÍaI

requirements of continuiËy at edges and smoothness. In

particular, choosíng spline functions that satisfy (2,30)

Ëogether with:

(2 .33)

and form
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ß"0(0) = ß"1(0) = ß"0(l) = ß"1(1) = 0, (2.35)

(2.34) represenÈs a second-derivaËíve continuous mapping of the

square simplex to the g1oba1 surface patch. Cotdor, (i4)

has proven that the spline-blended interpolant, p(E,n),

to a bi-variate function F(E,n) with given univariate boundary

curves F(0,n), F(1,n), F(q,0) and F(8,1), sarisfies rhe

inequality

llF(E,rì)-p(E,n)ll:¿.llaB r(E,n)ll e.36)
^_4^ 4dg dn

provided that the fourth derivative with respect to either

variable exists. In this expression, A is some constant

independent of F, and the L2 - ,rorrn

ll

llr{6,n)ll^= r'otF(E,n)1'ogon (2.37)
to

is implied. In fact, if ínterpolation from a network of

curves, and not the unít square, is implemented, the upper

bound on the error norm is o¡ O(trB), where h denotes the

mesh size that the curve network depicts.

. One last step j-n the,directíon of the three-dimensional

cubic spline boundary element relates to the recognition

of the fact that the boundary curves used in the Coons
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Leaf blank to correct

numbering
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Patch expression, ín our applicatíon, can not be explicitly

avaílable. rn case of surface modeling, positional information

is available, and in the case of sources, node values are

sought for. Hence, the boundary curves as well are obtained

via unÍvariate cubic splÍne interpolation. That is, in

describing a three-dimensional surface element, first,

the boundaries (which correspond to [ = 0, E = l, n = 0

and ¡ = 1 edges of the simplex) are interpolated from specí-

fied points using the procedure outlined in section 2.I.3,

above, and then, the Coons Patch based on these boundaries

is obtained. Gordon 
(t4) n"" shown that this procedure,

again implemented on a mesh of specified points which are

ínterpolated, fÍrst, to boundary curves, and then to a

surface, converges of order O(n4), as the mesh sÍze, h,

is reduced.
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CHAPTER III

THE BEM WITH CUBIC SPLINE ELEMENTS

3.1 Tr¿o-dimensional spline elements

Consider the uni-variate B-spline basis function defined as in

(2.15) , Ín which

B-(x.) =(4 if j = i,r_J 
I

1r ir j=Í*r,,l
I

[0 otherwise;

B.(x) = O for'x)x..^ and'x<r - ,.. ¿ -*i -z'

and B-(x) is twice continuously differentiable (Fíg. 2.2).
l-

The expression

.4
IP(x) =6.l,vi*i_zBt*i_z (x), forxrfx!*i+', Í= 1 ,N-l, (3.1)

J=I

is said to represent a B-spline curve controlled by the vertices

V,,, .. C1early, the condítionL+J-t

1

ã (Ur_f + 4 V. * Ur*r) = Pi, for i = 1, ..., N (3.2)

guarantees that such a curve passes through, i.e. interpolates

to any number, N, of points P.. Vertj-ces Vo and VN+l that (3.2)

calls for can be arbitrarily located.

Due to the nature of the basis functions used in this linear

combínation, the resulting curve is:

i) a cubic polynomial in each Ínterval X,',( >l fx=, j = 2,...,Nil-1- - J'
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and

ii) second-derívative continuous for all x, xrsxÍx*.

llithín the interval x.(x(xi+', only the four basis functions

included in expression (3.1) are non-zero (Fig. 3.1). Hence,

that expressÍon can be used to defÍne a mapping from the simplex

P,i I to g1oba1 space Itr,tr*l ] Íf x. = 0 and *i+l = 1.

Thus, the summation

L
IP(E) =;La. (g) v.,. ^ (3.3)
o,_, J L-fJ-¿
J-r

where

ot (6) = E3* 382 - 36+ I

- />\ ^.3 ..2 , to2 (E)=JE -bt' +4

o3 \t,) = -Jt, + 382 + 3F, +l

(3.4)

defínes a uní-variate boundary element for 0Íq51,

PrSP(E)SP+.r. rn (3.3), the B-splíne conrrol verrices,
I ]-TI

V.,. ^ are equívalent to the 0-. in expression (1.4). (*)r+J-¿ 'iJ

(*) See Appendix.

a

0,, (t) = t+'
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_+f
L.¡

Figure 3;1. The four cubic spline shape functions on arÌ element

In the application of the BEM, the element definition, (3.3),

ís used in the discretízation of the integral equation to be solved.

As noted in section 1.1, thís calls for the evaluation of a boundary

integral along an Íncremental vector, dl (Fíg. 3,2),



O-E
SIMPLEX

GLOBAL

Figu.re 3 ,2-, The two-dimensional boundary element mappj¡rg.
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Applyíng expression (3.3)

requires the computation of

dEu +-x
ãv;f dLudq -y

Explícitly stated,

P(6,n) = ß0 (c)F0(Ê)+ßl (q)Fl (õ)+ß0

=Pooßo (6) ßo (n) -Por ßo (6 ) ß1

to the position, r, evaluating

(3.5)

(3.6)

(E)Fo (n)+ß1(E)Fl (n)

(n) -pt0ß1 (E) ß0 (n) -p1 lß i (g) ßr (n)

(3.7)

dl =g
dq

and the

is:

íncremental length, or Jacobian of transformation,

J=

In this evaluation, both the x-component and the

y-component of the position vector, T, ís expressed in the

form of (3.3) .

3.2 Three-dimensional spline elements

is a Coons patch, as defined above in Section 2.2, that blends

the four boundary curves F0(6), FI(E), F0(n), Fl(n) by rneans of

Ëhe blending functions ß0(.) and ß1(.) (Fie. 2.4). It can

easily be shov¡n that the bÍ-variate surface defíned this way

contains the boundary curves, and is second-derivative continuous

in the [- and ¡- directions, as long as the boundary curves

themselves are continuous.
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To verify this statement, consider Fig. 3.3, v/here Èr^/o

adjacent patches are depicted. Let the two patch equations

be given as

h (6,rt) = F0(€)ß0(n) + Fl(E)ßl(n) + F0(n)ß0(g) + F-l(n)ß1(E)

- P1ß0(6) ß0(n) - P2ß1(E) ß0(n)-p3ßI (q) ß1 (¡)-Paß0(6) ß1 (n)

and

P z(E,n) = rr (6) ß0(¡)+F2(E) ß1(¡)+F2(n) ß0(6)+F3(n) ß1 (6)

-P4ß0(g) ß0(¡)-r3ß1 (E) ß0(n)-p6ß1 (g) ßi (n)-psß0( t) ß1 (n) .

(3.8)

(3.e)

P, (€,1)t
€

f (€, 1)

'Fí€use- 3.3.. Continuity of the Coons Patch.
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Now examíne partial derívatives at patch edges:

(3.i0)

?l = F2t (n=0)ß0(E)+F3'(n=o)ßi(6). (3.1r)
an I g=q

n=0

So, as P0' (rl=1) = F2' (n=O) ( 3 .I2)

and FIt(¡=1) = F3'(n=O) due to the assumed continuity

of the boundary curves from patch to patch,

untf = F0' (n=r)ß0(E) + Fi'(¡=1)ßi(E),'ã; I,

l=1

i.e. fÍrst derivative contÍnuity is preserved over the boundary.

Similarly, for the second derívatives,

?

' 
tt I = F0,,(t=1)ß0(6)+¡,i"(n=t)ßr(E) (3.14)

a n'lE=E
l=I

and

âPrt âP"l

-'I 
= 

--I 'â¡ 16=g an I E=6
rì= I t=0

n"' l = F2"(n=1) ß0(E) + F3"(n=1) ß1 (g)
ãn' le=¿

l]=0

(3.13)

(3. ts¡
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thus, preserving

âtP, I

â n' lo,
rì= I

l=1

o 
"l = F2t(n=1)ßo'(E) + F3'(n=0)ßi'(E)----:=t- -dndqri,=q

rr=0

Sot

= à2p"1
a n2lE=q

rr=0

a2R r â2P,,'t
ânaE l6=E ânâ[ | 6=qrì=1 n=0

(3. i6)

(3.I7)

(3. r8)

(3. re)

based on the assumption that, in turn, the boundary curves

are second-derivative continuous over patch edges.

The cross-derivatives can also be tested for continuity;

vLz:

a2pr 
| = FO'(n=r) ß0',(q) + Ft ' (n=i) ßi'(g)

â¡ä[l [=g

í.e., the cross-derívatives are also continuous over patch

boundaríes. In particular, the cross-derivalíves vanish at

oatch corners, a fact clearly seen by substj-tutittg E = 0 or

E = l in (3.17) or (3.18). The "pseudo-f1ats" thus introduced

violate neíther interpolatory, nor conÈinuity stipulations; nor
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have they caused any numerícally detectable mis-representation

(see Appendix, and Chapter 5.)

Even though up Ëo this po'int we have shov¡n that the Coonf s

Patch expression (3.2¡ provídes the means for a second-derívative-

continuous surface representaËion, we stí11 have to obtain

an expression of the form of (1.4) to be used ín the BBf

implementation.

Each of Ëhe .'four edges of the paÈch can be represented

in the form of (3,3), ín terms of four B-splíne vertices, Vi,

and four uni-variate B-spline shape fuictíons, oí. At each

corner of the patch, a paír of edge curves intersect, which

means that a relatíonshíp of the form

P*r, = vi * 4vi*t + vi+2 = uj * ouj*, * 
'j*, 

(3' 20)

should hold for the patch corners symbolized by urr = 00, 01,

10, and 11, with the V.'s and V.rs representing the vertices

of the t\,ro intersecËing edges.

Thus, when (3.3) is substituted into (3.7) for each

edge of the surface elemenË, we have 16 vertíces, 4 controllÍng

each edge; plus 4 corner points, Prr,; i.e. p00, pOI, p10 and pll.

But using the 8 relationships suumarízed in (3.20),8 of these

vertices and points can be eliminated. That elinínaÈion, clearly
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not uníque. But keeping the corner points in the expression

preferred - retaíníng syrnmetry, '

The resulting bi-varíaLe boundary element definition

the form:

P(6,n)
L2
I V.A, (E,l)

¡=1 J J

has

I
6

(3 .2r)

where .{ are the bi-varíate B-spline shape functions which
J

íncorporate the uni-variate shape functions associated with

the f our boundaríes, as r,¡ell as the blending f unctÍons ín

expression (3.7). Here, Uj are Ëhe bi-variate B-spline control

vertices. VI , VU correspond to uní-variate B-spline

vertíces of the boundary curves (i.e. the V.*. _Z in expression

(3.3)), and V' Y' are the corner points of the patch.

The obvious advantage brought about by this approach is

that a bi-cubic polynomic approximatíon is obtaÍned, ensurÍng

second-derivative continuity over boundaries, by means of

only 12 coeffícíents - ín contrast to the 16 arbitrary coefficients

that a classical bícubíc approximation of the form,
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a^
JJir-

P(E,n) = I I ".,6Jnoj=Ok=g J K
(3.22)

would require. The only price that is paid is vanishing

cross-derivatives at patch corners, as mentioned earlier,

The explicit expressions, after eliminatÍon and re-

arranging, for the bi-varíate B-spline shape functions are:

Ar (E,n)

Az (E,n)

A¡ (Ç,n)

4,. (6,n)

As (E,n)

As (6,n)

Az (6,n)

Aa (ç,n)

Ag (Ç,n)

Ar o (4,n)

ar (E) ß0(n) -

aq(6) Bo(n) +

ar (E) ß1(n) -

4
15

1

I5

4

l5

az(6) ßo(n) o*o'<et ßo(n)

02(E) ßo(n) - * ",,r, ßo(n)

oz(6) 81(n) o * ortri ß1(n)

a,-(6) Bl(n) * å orcrl ßr(n) -

ar (n) Bo(c) - f, a, (n) ß0(6) +

aq(n) ßo(r) o å orfnl Bo(c) -

ar(n) 81(e) * # ortnl ß1(6) -

aq(n) ß1(6) * * orinl ß1(E) -

-ßo(r) ßo(n) * # or<t> ßo(n)

* # o'(nl ß0(6)

-ßo(q,) ßt(n) * # orrt¡ ßr(n)

* # o,<nl ß0(c)

-ß1(4) Bo(n) o # or<cl Bo(n)

* # o'(n) ß1(c)

f, a,(e ) ß1(n)

å ",,n, ßo(Ë)

* o,,n, ßo(i)

S a,(n) ß1(i)

* o,,n, ß1(t)

- * o"" ßo(n)

- É o"n' ßo(L)

- $ o: {e ) ß1(n)

- * "r(n) ßo(¡)

- * o, (c) ßo(n)

- * o',n, ß1(ç)

Ar r (6,n)
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-.-+

FÍgure 3r4, Cubic spline blending functions.
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= -81(6) 81(n) o # orfÒ ß1(n)

* # or(nl ßl(Ç)

_6
15

6-15

az (1) ß1 (n)

az (n) ß1 (C) ,

(3, 23)

in which the uni-variate B-spline shape functions, a. (")

are the same as in (3.4). The blending functíons, ß0(.)

and ß1("), shovm in Fig. 3.4 are defined, Ín turn, as cubic

splines:

- Blending functions -

€or rl
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u 0Í1<r/3

As in the two-dimensional case with uni-variate boundaries,

integration called for by the BEM has Lo be performed with

respect to an incremental area vector, d", which is (Fig. 3.5):

ds = drlx dr2 ß.2s)

The incremental vectors in the Ëwo unÍ-varÍate directíons

can be obtained from (3.2I) , and represented in the Cartesian

co-ordínate system as:

* å,-r' + 6)

and |'= ]ct , o< 4<L/3l"
B1(ç) l= |ç-s+e3+8162-z7E+3) , L/3<ç<2/3I'

L 
= f,czte' - 81ç' + s16 - 2r), 2/3: 6 : 1 . (3.1.1\

a'r(6)=*aEû+*oEa+3¿gr (3.26)dgxdÇydqz

r- âv ðzand drz(n) = f an 'î+ i* dnû + i3 dnî G.zj)iJn x orr y an onû,

The Jacobian of transformation, then, which is equal to the

magnitude of fhe incremental area vector, is
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.r =ldq G) " d'z (n) 

|

tT=/ MEr '* þlrr' + 'Iqrr'

are the minors ofin which M..
1J

(3.28)

(3.29)å-

âx _ry ðz
âE aE ag

âx _Ða. àz
ân ân ân

taken along the last ro\"i.

SIMPLEX

GLOBAL

nl

L

=-@e--iìS.!- The three=dÍmensional boundary element mapping.
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Although they furnish the basis for an efficient boundary

element methodology, the particular schemes of cubic spline

element definition developed here do not guarantee a uni-valent

mapping from the símplex to a global element. An Ínvestigation

of the uni-varÍare (expressions (3.3) and (3.4)) and bi-variare

((3.2i) and J.23) )cubic spline elements reveals that anomalous

mappings that correspond to a vanÍshing Jacobian of transforma-

tion (given in (3.6) and (3.28)) may result from disrorted

gJ-obal element configurarions (Fig. 3.6). An algorithm thar

would generate a uní-val-ent mapping for all configuratíons

seems to be impossible to design (i). Thus, using heavíly

distorted elements would rísk improper operation of this

algoríthm (Fig. 3.6), which is the case for most iso-parametríc
. (2)

scnemes

3.3 aj-VUti¿ "feorith*t
elements for sources.

The original stimulation for the development of cubic

spline boundary elements r^ras centered on the need to achíeve

a high degree of fidelity in modeling problem geometries.

Especially in regard to precise evaluation of actual boundary

sources and near*field affects, absence of spurious creases

and cusps is crucial. Step-function appoximation or even

higher-order Lagrangian schemes do not generally guarantee

smooth connection of elements (e'g' 3, P' 45, fÍgure 2'10)

Splines, on Ëhe other hand, effectively remove this hindrance.
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Figure 3.6, Anomalies of the cubic spline mappíng.
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With the aim of modelling problem geometries "smoothly"

whí1e keeping the source representation as simple as possible,

a hybrid algorithm was ímplemented and tested: no longer an

iso-parametric scheme (where geometry and sources are mocìe11ed

to the same order of polynomic approximation), this consists

of a cubic spline boundary element confÍguration for the

geometry, and Lagrangian elements for the sources. The

basis functions used for expansÍon and testing in the

Galerkin scheme (see section I.1) were a1l Lagrangian,

of selectable polynomic orders. Details of the BEM

implementatíon of Lagrangian elements are to be found in
(4) (s) (6)

, , , etc.

Results obtained frorn this test will be presented in

Chapter V and comparisons r¿i1f be dravm against the solution

of identíca1 problems with the BEM usíng.çubic splines for

both geometry and sources.
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CHAPTER IV

TREATMENT OF SINGULAR]TIES

Two fundamental problems that have to be addressed by the

BEM will be discussed in this chapter: (í) evaluatíon of the

díagonal entries of the system matrix in equation (1.9) when the

integration kernel has a singular point within the domain of

integration, and (ii) approximation of the solution function

vrhen it has a finite number of singularities wíthin the domain

of approximation, by a finite number of polynomic or "modified

polynomic" basis functíons.

4.L Kernel singularity

The basic equation that the BEI{ has to solve was given above

AS:

"lr (rlr') f (r') ds (r') - Àf (r) = g (r),
S

(r.1)

and the condiÈions for the existence of a unique solution

for arbítrary g(r) were sËated in (1.2) and (1.3), namely

that the kernel of integration, K(rlrt) be square-integrable

over S, and that the right-hand-side, or the "excilation"

be bounded. Furthermore, it was stated that À should not

be an eigenvalue of the operator, i.e.

/r (rlr') f (r') ds (r') - Àf (r) = Q (4.1)
S

should have only the trivíal solution,

f (r) = 0. (4.2)
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In most applications relating to electromagnetic field

problems, the kernel has a singularíty when the source-

point, r', coincides with the field-point, r. Ke11og 
(I)

has extensively discussed the integrability of these kernels

and the existence of princíple-value integrals of singular

integrands.

Specifically, iÈ

kernel has the for-m

has been shovm that (2' 3) rf the

K(r lr ') = , 0< \k m/2 (4.3)

where the domain of íntegration, S, is a bounded surface

in (m + l)-dimensional Euclidean space, with A(rlr') a

bounded function, and R, the Euclidean distance between the

points r and r', then (1.I) is a Fredholm equation, i.e.

K(rlr') is square-Íntegrable. The same is true for a

IogarÍthmic kernel (.4), i.e. íf the kernel has the form

K(rlr')=A(rlr')lnR , (4,4)

in two-dimensÍonal- space. In fact, it Ís true that (3)

even when O<V<m with everything else the same as stated

for (4.3), the Fredholm theory still applíes although the

kernel ís no longer square-integrable; i.e. (1.1) has a

uníque solutíon. Such equations are saíd to possess a

weak singularity.
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applications of the BEM investigated withÍn

this work, integration kernels were either

(4.3) or (4.4), or asymprorically approaching

A number of approaches have been reported in relation

to the particular method of catering for the effects of

such "integrable" singularities ín the solution scheme.

The most popular schemes utilize analytical evaluation

of the singular integral. Either the method of "subtractÍon

and addÍtion" of the singular term and then evaluating the

singular Íntegral over a planar domain (5t6), or the technique

of "dividing out, the singular term (7) fr"" been used.

The former scheme has been successfully implemented and

produced accurate results over curved geometries, coupled

wíth a local planarízation and parametrizatj.on scheme in

the vícinity of the síngular point. In the simpler and

more classical instance of using a pulse-expansion scheme,

analytic inÈegration is even more straight forward as the

function to be approximated, being assumed constant over

an element, does not effect the integrand (8) 
.

More recently, a purely numerical scheme which has the

advantages of being problem-independent and not requiring

planarízation has been developed. That technique, descríbed



(9) ín the context

dimensional spaces,

in the cubic spline

fo1lows.

Gaussian

evaluate all

(1.7). That

gíves rise to the

include w(x) = 1,

are formulas for

w(x) = ln

quadrature integration (

integrals depicted in the

is, the formula

bN
.l w(x)f (x)dx= I A.f (x.)
a i=ra a

r0)' is utr-Irzed to

discretized equation
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of Lagrangian elements in two- and three-

is easily exLendable for application

environment An outline of the technique

(4.5)

is applied Ín which N denotes the pre-set order of quadrature,

and x- and A_. signify evaluation points and weights, respectively.tl-

w(x) stands for the weightÍng function which characterizes

the particular quadrature formula being used. For a specific

choice of w(x), a particular set of orthogonal polynomÍals

are generated using the Gram -Schmidt orthogonaÌízation

procedure, whose real root", *i, and corresponding weights,

4., mini-mize the error incurred ín (4.5). In fact, if f (x)

is polynomic of order If, MlN, then (4.5) is exact. The

general form

w(x) = (l-x)v (t+x)u ; v,u >-1 (4 .6)

family of Gauss-Jacobi polynomials whích

the Gauss-Legendre weight. Also available

l"l. (4.7)
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In computation of tn', the general entry of Ëhe syst.em

matrix in the BEM, the followíng integraL, given in (I.10),

has to be evaluated:

S =LIa (E)/x(rlr')o_({')dsrds. (4.8)pq ieiP s q'

Llhen the inner and outer (ttsourcett and ttobservationtt)

integration elements coincide, evaluation of the integration

kernel becomes problematic. As noted above, an integrable

singularity is encountered, and has to be properly tackled.

The cases of two- and three-dimensional problems are similarly

dealt-with; but the particularities of the element configura-

tions warrant separate consíderation.

4. 1.1 Two-dimensíonal probl-ems

The element whose contribution over itself Ís to be computed is

bisected about p,,the Gauss quadrature poínt of the outer

integral (Fig. 4.1). A quadrature scheme that ís weighted wírh

the dominant behavior of the singular kernel is selected. For

Ëwo-dimensional problems invariant along the axial dímension,

usually the kernel is logarithmic, or approaches logarithmic

behavíor for small arguments; hence a logarithmically weighted

quadrature formula is used for singularity treatment. The

quadrature points and weights thus generated are transformed by

rr, E 
*=p (1 - 6) ; 0g5p , and

rz, E*=(1 - p)E + p; pgSt ,

(4,9)

(4,10)
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position the quadrature poinEs so that p Ís approached

both sides logarithmically. Scaling the respective weights

(1-p) and p ensures that the original formula gÍven(10) for

will be valid now

N

l"l f (x) dx = f l-f (xr)
i=1

for

N

1n lx-p lrt 1"¡ax A.f 1(x. ),
a= -L

N
1n lx-p lt2 ç"¡a" = _-t, 

R.f 2 (xr),
I-I

(4.11)

o<p< I (4,12)

(4.13)

1

-,f ln
0

and

B
0

t

-T
p

The functions that are sampled resemble:

r, (6î) =-!-GJoi-G4Ð
ç X-ñ

1n{Þit v I
1--p

oo Ce i) ¡-r I lrrl

t
f." (Ei\

- "l-'
k(rlr'(EI)) ,-- _ * '- "orEf) l.r I lrrl .

1tr{ l--c-i- 1-p

Chain rule of integral calculus ís being used, víz:

/r(e) dg = Ir{s{x)¡ $f; dx, (4,r4)

In summary, the contribution to the system matrix of an

element over itself is computed by bisecting the element about

each Gauss quadrature point of the outer Íntegral, and addíng

the contributions to the inner íntegral of the t\,/o portions
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thus forrned. Samplíng the íntegral at the bisection point ís

thus avoided, and furthermore, as a properly weighted quadrature

formula is used at this stage, hígh precision is achieved.

4. L.2 Thjee-dimensional problems

The self-element is partitioned into four triangles (Fig. 4.1)

about the quadrature point of the outer íntegral. To obtaín

the sampling locatíons over the four partitions, a bi-variate

quadrature formula generated by the product rule over a símplex

unit square (bottom of Fig. 4.I) is utilized. That square j-s

fírst transformed to a simplex triangle by collapsing the {=}

edge via the transformation

T1: E* = E

r* = rì (1-E) (4.15)

Inlhere l't andf* represent the co-ordínate system on the simplex

triangle. The Jacobian of transformation for TI is:

lrt I

*
_a_q _a_q

ðE ân

rjn dn;-; ;-dq dn
t:

0

(t-El

= (1-E) (4. i6)

The second step consists in transforming the simplex triangle

to each of the four portíons of the unit square representing

the global element. The collapsed, 6n = 1, point has to

correspond to the síngular point, (*p, yn). The following

linear transformations are utilízed:
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*Tzt. s = (¡_ - I) g + I
'o*v=(y -1)E -n +l'-p

lrrt I = (i-xn), (4.17)

-**
Tzz: u=xE +n

p
*v = (y - 1)g + 1-P

Irrrl = (r-yo),

i¡Trai u = x Ep-
**

V=Yt +l"P'

lrr.l = x ,
P

*;!T2a:u=(x_-l)E -n +l
P

v=vË'P'
t-tlrzql = Y-.

P

(4. l8)

(4.19)

(4 .20)

... And the final transformation involves going from the square

bí-variate simplex to the global element through the cubic spline

element mapping, described in section 3.2 above.

Gauss quadrature sampling is performed, rloÞI , on the

following expression, again using the chain rule of integral

calculus:

f(Et, ni) = t(rlr')dq(u',rr')lrr I lTâ{l l.tl

ín whích
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rt = t' (ut, v'), via transformation I.il, G.22)

ut = ut (E , n )

**vt = v (8, n ) via transformatíon Tzr, T2z,

T23 or T24, (4.23)

and
J.J

E = E (8., n.)l_ l_
.L J.

n = | (8., n.) via transformation T1. (4.2+¡-l 'l

While it ís possible, at this juncture, to utilize a

weighted quadrature scheme reflecting the form of the

singularity, the fact that transformation Tl regulari-zes

the kernel behavíor by introducing the (I-q) factor on the

numerator removes that necessity.

The fo1lowÍng numerical test cases illustrate the procedure

and provÍde an estimate on the accuracy i-nvo1ved.

E.g. (i) K(rlr') = I for all r and rr,

J(u, v) = I for all u, v, i.e. integrating the constant

unity function over the unit square (Fíg. 4.2r)

Using two-point quadrature, samplÍng locations and weíghts are
(10, p.100).

xr = 0.2113, y1 = 0.2113, w1, = 0.25

X2 = 0.2II3, y2 = 0.7887 1 w2 = 0.25

x3 = 0.7887, y2 = 0.2II3, Ìr3 = 0.25

xq = 0.7887 s Y2 = 0.7887 ¡ üI4 = 0.25, (4.25)
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The integrals over the respective triangular portions

(see (4.2I)) are:

l+

11 = | J/s (i-E-) * 0.25 = 0.7887 o (0.7881 + O.7BB7 + O.2lt3 +-a
a=I

0.2113) * 0.25 = 0.7887 * 0.5

and similarly,

Iz = 0.2II3'" 0.5, 13 = 0.2113'r 0.5,

Thus,

I = II. = (0.7887 + 0.2113 + O.2lI3 +
l_

(4 .26)

Lj = 0.7887 * 0.5, (4.27)

0.7887) * 0.5 = 1.0, (4.28)

which is exactly equal to the volume of the unit cube, as

expected.

U"f 
(x,y)dxdy = ¡

Figure 4.2 rnËegratíon of the unity function over the uniË square
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E.g. (ií) K(rlr') = rr', lvhere r' = (u', V'),

J(urv) = I everywhere, í.e. integrating a unit

ramp function over the unit square (Fj.g. 4.3). Again usíng

two-poinË quadrature over the simplex,

For 11, lrl I = (i - xo) = 0.7887

u=t_o.7gg7r,E.

11 = ur lTzr I (t-å ) w * urlrar I (L-Ez)w * u,lrr, 
I

(I-ãs)w * ua lrrt l(I-8,-) = 0.7887tr0.25'"(0.7887,r0.8333 +

O.2Il3't0.3778) x2 = 0.2907 , (4.29)

f ot 12, ltrrl = (l-yp) = 0.7887

u = 0.2IL3E + n (1-6).

Iz = lrrr l* ( (t-Er ) (O.2I13å, + r[ (1-å ) ) +

(I-Ez) (0.2Ir3Ez + \z(I-Ez) ) +

(1-Es) (0.2II36¡ n¡ (1-6¡) ) +

(t - 6+)(O.Zlt3[r* + ¡a (t-€q) ) )

= 0.1592, (4.30)

for I3, lfrrl = *p = 0.2113

u = 0 .2II3E.

I s = lrr 3 lw( l-ã ) o.2It3á + ( l-Ez) 0.21I3 EÐ),2

= 0.0074, (4.31)

and for Iq, lfrul = yp = 0.2113

(x -t)6-n(1-E)+t'p

- 1 - n(l-E¡-0.78878.

L* = 0.2113*0.25( (l-Er ) i-ru (1-ã ) - 0.7887â * l-tz(I-Ez)

-0.788782 + (I-6s) 1-ns(I-6¡)-0.7887{s + t-n+(t-6,-)-0.788184

= 0.04266. (4.32)
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the integrals over the four

, (4.30), (4.31) and (4.32),

II. = 0.5
l-

exact as expected.

triangular portions,

(4.33)

I

2rïo"
(x,y) dxdy

-*- +-
,/ 

",
__ __v

/

Figure 4.3 Integration of the unj-t ramp over the unit square.
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E-.8, (iii) Lastly, the integration kernel of many three-dirnensional

problems,

K(rlr')=¡;$t =# G,34)
too'

with the singular point, ro at (0,2113,0.2IL3), will be numerically

integrated over a unit-square region, As the integration region

coincídes with the simplex square, we have a uníty Jacobian of

transformation.

Árralytical integratíon is possible for thís flat patch,

and using the expression given by Jeng, (6'p'28) 
\¡re geE

I = 3,0317 4

for the exact value of the integral,

(4 .3s)

A two-point quadrature integratíon results in

I = 3.1508,

and a three-point scheme produces the value

(4.36)

I = 3.0028. (4 ,37 )

These results represent 47" and less than 17" error,

respectively. As most of the three-dimensional problems to be

considered below involve a similar integration kernel, this

example can be considered as a measure of the degree of accuracy

of handlíng the Greenrs function singularity ín those applicatíons.
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Source singularítj-es due to geometry

Singularities occurring at sharp edges in electromagnetics

have been the subject of research for a long tíme. In one of the

earlíer works, Lord n"yt.igt (11) investigated the behavior of

electromagnetic fields at edges and studied the síngular behavior

of the component normal to the edge. In the 1940's, Bouwkamp

(I2) 
and Meixn.r (1:) 

developed the "edge-condítion" which states

that the electromagnetíc energy densíty must be integrable over

any finíte domain even if this domain contains singularÍties

of the electromagnetíc field; that is, the electromagnetic energy

in any finite domain must be finÍte. Meixnerts report (14) in

1954 further developed the area and summarized the principles

of fíeld behavÍor in the proximity of dielectric and conducting

wedges of arbitrary angle. He proved that the components of B

and fl fíe1ds parallel to the edge are finite, and deríved the

functional dependence of the magnitudes of the normal components

on the distance from the edge tip and the wedge angle. Quite a

while later, Hurd (15' t6) and J. B. Andersen & V. V. Solodukhov
(I7) *o¿ified Meixner's principles and showed that whí1e Meixnerrs

results hold for the electrostatic case of a perfect conductor,

his basic assumptions are questionable for the case of a pene-

trable body in a dynamic field. The particular problem of
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electromagnetic scattering from a

by the latter researchers will be

numerical results presented.

díelectríc wedge, investigated

further consídered below, and

After Meixner, Jones (18) 
and Braunbek (19) established the

principle that the diffraction field of electromagnetic r¡/aves

ín the vicinity of plane-screen corners of arbítrary ängle can

be found by solving Laplacers equation - r¿ithout having to modify

Mej-xner t s ttedge-conditiontt.

With regard to the numerÍcal solution of elliptic partial

differential equations for singular fields, the v¡orks by Motz

(20), l"h*"' (21) 
and wait & Mitchelr Q2) signified an importanr

evolution. The former work used a Finite Difference operator

modified to cater for the irregular behavior around the síngularity;

Lehman's work re1íed on finding the asymptotic behavior around

the edge ana1ytica11y, and utilized expansion functions reflect-

ing that form as the basis for the solution that is sought for;

the latter study utilizes bilinear basÍs functions similar to

those considered above in section 2.2n supplemented by the

addition of singular functions of the form of expected fÍe1d

behavior. I,trait and Mitchell also successfully implemented a

finite-element mesh refinement step to further improve convergence.

Later treatises on the subject include Prof. G. Birkhoffrs
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paper (23) in which numerous speciar purpose finite elements

are developed to cater f.or a number of different parLial diff-

erential equation problems, maÍn1y involving nuclear reactor

physics. A more general treatment by Kondrar'"u (24) 
develops

the form of the singularity for a rather wide class of ellÍptic

problems.

Also developed later were algorithms for deriving special

purpose ínterpolatory schemes particularly applicable to modeling

singular behavior (25) 
.

Methods based on conformal mappings 
(26) 

, which seem to

restrict the scope of applicability, have produced highly

reliabl-e results where appropriate mappings were available.

Especially suited to integral equation formulations, these methods

can be used even when problem geometry cannot be dírectly

transformed, but the síngular behavior approaches that of a

standard transformable configuration. The only drawback on

this accounË appears Ëo be the necessity of analytical treatment

prior to numerical solution.

A different approach has been followed by Ying Lung-An

(27) 
^n¿ 

rhut"her (28) independently. I^lhi1e posing a problem

of nomenclature, (ttinfinite similar" as opposed to ttinfinÍ,tesimalt')
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Yingrs method seems highly innovatíve: in the neighborhood of

the singularity, a countable infinity of mutually similar triangu-

1ar elements are placed, and the resulting system maËrix is

computed by an algorithm that makes use of infinite matrix

series computed as a function of their eigenvalues which are

proven to lie within the unit circle (23) 
-

The najor forms of singularity of sources that we sha1l

be dealing wíth can be examined vía a simple consideration of

the governing Laplace or Helmholtz equations (30).

0

Figure 4.4 T\uo-dimensional wedge geometry
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Restricting our attention to variation in two dimensions

on1y, Laplacets equation

v2Õ=o

is separable ín cylindrical co-ordínates, r and 0

(FÍe. 4.4):

,ðto _-âo a2o = o, (4.38)t-ði, + tât + æt

j-ts solution being

(4.37)

(4 .3e)

(4.40)

(4 .4r)

(4 .42)

Õ(r,0) = R(r)V(0),

with

,d2R dR
r---:--T * r -:- - s2R = 0

clr - dr

and

d2ry + S2ry = 0.--:=,
do-

The general solution i-s the sum of all linearly índependent

solutions,

0(r,g) = I (a rssinsO + b rscossO)-S 
S

summation extending over all real s thaÈ satisfy the boundary

conditions.

E.g. If given Õ = 0 at 0 = 0 and 0 = cx,

then

æ¡r
0(r,O) =. I- aur d"irëI O. (4.43)

k=l "

or, if given Õ = O at O = 0 and P= 0 at O = 0,
ân
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- tJ -

then

: (k+r,)! ,. ., . ',r^Õ (r,0) = I a,-r *sin(k+%)-€,
k=oK u

etc...

(4 .44)

To ensure regular behavior of Õ at r=0 (Meixnerts condition),

only k>0 ís possible. But still, when û,)lT, the leadíng term

of the derivative (i.e. electrj-c field inrensiry) will ben-L3n
singular, of order r o I for the first example, and ,, rõ - t)

for the second.

A similar look at the Helmholtz equation,

v2Õ + ÀÕ = o (4 .4s)

reveals that the general solution r¿í11 have the form:

Õ(r,O) = IJ"<ñ'? I (a"cos sO * b"sin sO ) (4.46)

summed over all real s Ëhat satisfy given boundary conditions.

Again, s>0 to have finite potential at the origin, but the

I - f singularity exists for 1o¡¡ frequency fields with boundary
0,

conditions as ín Èhe first example.

In fhis work, such singularíties are incorporated into Ëhe

numerical solution via a technique that can be said to follow

the line of researchers like Motz, Lehman, Wait and MÍtchell.

The expected form of the singularity ís additively imposed on

the basi.s functions of the solution around the singular position.
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4.2.1,. T\uo-dimensional elements

Assume that the source function, f(r) is expected to vary

f(r) '+ I (4 .47 )

when r-+ro, denotíng the singular position, and v<1 is the

order of the singularity. For the case of a uni-variate boundary,

i.e. a two-dimensíonal problem, let the singular position

correspond to the E = I point on the simplex, without losing

generalíty.

The constraints Lhat delíneate the behavior of the modífied

shape functions, then, are:

(i) The value, slope and curvature of each of the new shape

functions should match the original trnon-singular" function

as {-+0; and

(ii) As 6*1, each ner¿ shape function should eiLher behave as

(1 - E)! ' or vanish'

Using an additíve modification scheme, the "singular shape

functionstt are thus constructed as:

J¿

or (6) = g +38 -36 + I (unchanged),
2

az,z,+(E) =([-1)(a[ +bE+")*= G.4B)
(t-E) "



-77 -

wiËh

tu--J

b=c*v

a = b+6* a{#u f or o.2,

c=0

b=v-3

a = b-3+ agq for o,3, and

c=1

b=c*V

a=1.*v(\¡l-])a = D * 2 for 0a (Figure 4.5). (4.4g)

The fact that the requíred constraints are satisfied can be

verified directly through substiÈution and differentiation.

The modified shape functions for the case of an element

r,rith singular source behavior at E = 0 can be obtained f rom

those constructed above by replacing I with (i - 6) and making

use of symmefry. That is, for singularity at E = 0, the

modified functions will be:
3

s,*(6) = 6 (unchanged),

0r,2,3=(-Ð (ãr-' +uE+ã¡+t (4.50)
q

with Ëhe values of ã, t, ã for o.¡ , d2, o3 the same as those

of a, b, c for o. ,o3, andd,2 in (4,49), respectively.
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shape functions for singularity at l=7,Figure 4.5. Modified
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As element definitions are thus selectively modified for cases

involving singular behavior of sources, the numerical quadraEure scheme

applied in the evaluation of integrals may also require alteration.

The Gauss-Legendre scheme (section 4.1.1.) with a weight function of

unity may no longer provide sufficient precision in the integration

of an integrand varying singularly. Table 4.1 presents the results

of a test involving Èhe integration of the four modified shape functions

by two separate numerical schemes. Obviously, the higher the order

of síngularity, the greater the extent to which a Gauss quadrature

scheme that reflects the sÍngular form is needed to remaÍn r'?ithin

acceptable precÍsion. Four-point quadrature vras used for numerical

integration. The symbols stand for:

11 = IGE +36 _38+1)dE
0

,,
,r, r, u = f, (E-i)(a[ + bE + 11 * 

,f* 
oe (4.s1)

with a, b, c as given in (4.49). Approximate integratíon was based

on the formulas (10) 
'

Gauss-Legendre (4 points): If(ÐdE = I A=f(6,) (4.52)
o i=l l- -1

Gauss-Jacobi (4 points) , { n+pc( 
E) dE =._IArs(Er) (4. s3)

in which e(6) = f(E). (l-E)v,

with A. and 6. pre-specified.
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Table 4.1. Quadrature integration of modified spline shape functions

Integrand
Exa c t.

Value
Gauss-Legendre

Value Error
Gaus s-Ja cobÍ

Value Error
Order of

Singularity (J)

tt

tz

r
Ĵ

t,
.+

0.25

3. 00 78

2 .257 8

0. 5078

0.25

2.98r .89'A

2.23r r.r9z

0 .497 4 2.042

0.25

3. 0075 0 .0r"Á

2.2562 0.072

0.508s 0.r42

r/4

rt

,z

I
3̂

I,
4

0.2s

3.148r

2.398r

0.648r5

0.25

3.0940 r .s8%

2 . 34 40 2 .07'Á

0. 5940 3 .542

0.25

3.r478 0.01"Á

2.3961 0.087.

0.649r 0.r47,

r/3

rt

,2

r.
J

I,
4

0.25

3.5938

2.8438

1.0938

0.25

3 .4 5 .397"

2 .6s 6 .69"/.

0.9 17.72

0.25

3.5934 0 .0r"Á

2.8412 0.092

r.0952 0.r32

r/2
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At this juncture varíous issues have to be confronted:

i) A general purpose BEM algorithm must be capable of utiliz-

ing different Gauss quadrature schemes at different stages of

operation. Similar to invoking a logarithmícal1y r^reighted

formula for the treatment of kernel singularity (see sectÍon

4.I.I), a Gauss-Jacobi formula should be substituted for the

Gauss-Legendre quadrature when singularities due to geometric

features vrarranË such a measure.

ií) Furthermore, the \,üeighted quadrature for kernel singularity

and the one for t'geometrict' sÍngularity will have to be used Ín

conjunction. Evaluation of the t'self-elementt' contribution to

the system matrix for an element possessing a singular end

point would requÍre such operatíon.

iii) Lastly, with the stípulations presented up to this point,

an element that has singular source behavior at both ends would

require "doubly-modified" shape funcËions. Our straightforward

response to this issue has been that such configurations sha11

not be allowed. That is, uni-varÍate elements wÍth singular

source behavior at both ends are not permitted; problem model

has to contain at least Èwo adjoining elements between two

locations of singularity. Thus an element can have a singularity

aË either Èhe f= 1 point or the E = 0 point, but not both.

Consíderation of issues (i) and (ii), which become even

more complicated for bi-variate elemenËs (see Sectíon 4.2.2
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below), can be the subject of further research. Our response

has been that as opposed to selective use of Gauss-Jacobi

formulas as problem singularities require, increased overall

orders of Gauss-Legendre quadrature will be preferred. The

practical sÍtuation where a number of different orders of si-ngu-

larity have to be imposed on the solution (e.g. different

angular edges on a metallic body such as a ship, etc.) precludes

the possibilíty of generating the weighted formulas necessary

to cater for each and every distincË behavior type. Increased

order of Gauss-Legendre quadrature, on the other hand, improves

precision wiÈhout having to resort to speciaTi-zation. Moreover,

"double-modificatíon" rìecessíty, alluded to as issue (ii) above,

is thus removed.

A general conclusion is, then, that hÍgher quadrature orders

will be necessary for the sol-utíon of problems with singular

corners or edges, in comparison to those with smooth geomeËries.

4.2.2. Three-dimensional elements.

Extension of the "modified spline" idea Èo the bi-variate

case is fairly straíghtforward. 0n1y one edge in each dírection

is permitted to acquire singular behavior. The uni-variate shape

functíons, oi, that occur in expressiuns (3.3) are replaced by

appropriately modífied functions described in section 4.2.I

above. This can be done only in one direction, for an edge
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singularity, or in both directions,

corner (Fig. 4,6).

representing a three-dimensional

t- eOge singulority

Figure 4.6 Three-dimensional geometríc singularities.

For computation of integrals, s possible approach would have

been Èo generate, in addition to bi-variate Gauss-Legendre

quadrature, suitably weighted bi-variate quadrature formulae

for sÍngular behavior on one or both direcÈions, and use the

appropriate rule for integration over each element. For problems

that involve only one type of singularity, ê.g. only one 90"

rnetallÍc edge, thís would have procured high accuracy with

a low number of unknov¡ns, and low quadrature orders. This approach
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ís suggested but not elaborated upon (31, t') 
, in the simílar

context of modified bicubic finite elements. rn the lnstance

of the general "rea1-1ife" problem, however, the solution

scheme may have to cater for numerous different types of singu-

larities. ht¡i1e utilízing shape functions modified to suit the

special behavior over each síngular element requires only trivial

computational burden, havÍng to generate quadrature for¡nufae

to cater for the inlegration of each and every distinct form

may become overly arduous.

A realistÍcal approach is to prefer the more rigorous

technique of weighted quadrature generation for problems that

Ínvolve only one kind of singular behavior, but to resort to

increased orders of bi-variate Gauss-Legendre quadrature (i.e.

unweighted formulae) for the general case.

Three-dimensÍonal problems are inherently much larger, both

in terms of requÍred computer storage and computational time,

Ëhan their two-dimensional counterparts. This fundamental aspect

further complícates the treatment of singularities - and provides

further reason for the preference for less elaborate and time-

consuming alpriÈhmic efforÈs, as J-ong as the attaÍnab1e accuracy

ís not sacrificed.

Possibilities of a block-oriented implementation of the BEM
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will be discussed later. Such an approach seems to provide the

ansv/er, in certain cases, to the enigma of being able to cater

for a v¡ide varíety of special cases and remaining wíthin the

realm of as broad a generalíty as possible. Handling a large

spectrum of singular behavior is an integral part of that

requiremenÈ of general applicability.



-86-

4.3 References

(1) Ke11ogg, O. D., Foundatíons of Potential Theory, Dover

Publications, 1953.

(2) Mikhlin, S. G., Integral Equations, Pergamon press, L964.

(3) Zabreyko, P. P., et.al., Inregral Equarions. : a Ielglerìre

text, Noordhoff International PublishÍng, 19f5,

(4) Jaswon, M. 4., "Integral equation methods in potential

theory - I", Proceedings of the Royal Society j¡f London,

A275, pp. 23-32, 1963.

(5) McDonald, B. H., Constrained Variational Solution of Field

Problems, Ph.D. DíssertatÍon, University of Manitoba, )975.

(6) Jeng, G. Isoparametric Finite-Efernent Boundary Integral

Solution of Three-Dímensional Fields, Ph.D. Díssertation,

University of Manitoba, 7971.

(7) AcÈon, F. S., Numerical Methods that !J.lE, Harper & Row,

1970.

(B) Harríngton, R. F., Field Computation by Moment Melhods,

ReprÍnted by R. F. Harrington; R. D. 2, West Lake Road,

Cazenovia, N. Y. 13035, 1,968.

(9) Lean, M. H., Electromagnetic Field Solution with the Boundary

Element Method, Ph.D. Díssertation, University of Manítoba,

1981.

(10) SËroud, A. H. and Secrest, D., GaussÍan Quadrature Formulas,

PrenÈice-Hall Inc., 7966,



-87 -

(11) Lord Rayleigh, Scienrific papers, vo1. IV, p. 288, i903.

(r2) Bouwkamp, c. J., "A note on singularities occurring at sharp

edges in electromagnetic diffraction theory", physica

AIIr no. 7, pp. 467-474, 1946.

(13) Meixner, J., "Die Kantenbedingung Ín der Theorie der

Beugung electrornagnet:'-cher [^le1len an vollkommen 1eÍtenden

ebenen Schirmentr, Annalen der physik, vo1. 6, no. 6, pp.

1-9, 1949.

(14) MeÍxner, J., "The behavior of electromagnetic fields at

edges", New York University Institute of Mathematical

Scíences, DÍvision of Electromagnetic Research, Report

No . El"1-7 2, New York, 1952.

(15) Hurd, R. 4., "The Edge Condition in ElecËromagnetÍcs",

IEEE Trans. on Antennas and Propagation, Succinct papers,

January 1976, pp. 70-73.

(16) Hurd, R. A. "0n Meixner's edge condition for dielectrÍc

wedgestt, Canadian Journal of Physics, vo1. 55, no. 22,

pp. 1970-1977, 1977 .

(17) Andersen, J. B. and Solodukhov, V. V., "FÍeld Behavj-or

near a dielectríc Wedgett, IEEE Trans. on Antennas and

Propagation, voJ-. AP-26r Do. 4, pp. 598-602, 1978.

(18) Jones, D. S., "Diffraction by an edge and by a corner",

uarterlv Journal of Ì.{echanics and Applied lrfathematics,

vol. V, pp. 363-378, 1952.



-88-

(19) Braunbek, W., "On the diffraction field near a plane-screen

cornerrr, IRE Trans, Antennas and Propagation, vo1. AP-A,

pp. 219-223, 1956.

(20) l{otz, H., "The treatment of singularities in relaxation

methods", Quarterly of Applied Mathematics, vol. 4, pp.

(2r)

37r-317, 1946.

Lehman, R. S., "Developments at an Analytic

Solutions of E11Íptic Partial Differential

Journal of Mathematics and Mechanics, vo1.

Corner of

bquat].ons,

8, no. 5, pp.

727-760, 1959.

(22) Wait, R., and Mitche11, A. R., "Corner Singularities

E1líptic Problems by Finite Element Methods", Journal

l-n

of

Computational Physics, vol. 8, pp. 45-52, 1971.

(23) Birkhoff, G., "Angular Singularities of Eltiptíc Problems",

Journal of Approximatíon Theorv, vol. 6, pp. 215-230, 1972.

(24) Kondratrev, V. A.., "Boundary problems for ellipÈic equatíons

with conical or angular points", Transactions of Lhe

Eoscow MathematÍcal Societv, vol. 77, pp. 105-128, 1968.

(25) Hughes, T.J.R. and Akin, J. 8., "Techniques for developing

special fÍnÍte element shape functions with particular

reference Ëo síngularitiesr', International Journal for

Numerical Methods ín Engineering, vol. 15, pp. 733-151, 1980.

(26) Shafai, L., "An ímproved integral equation for the numerical

solution of two-dimensional diffraction problems", Canadian

Journal of Physics, vol. 48, pp. 954-963, 7970



-89-

(27) YÍng Lung-an, "The Infinite Sinilar Element Method for

Calculating Stress Intensity Factors", Scientia Sinica,

vol. 2I, no. 1, pp. 19-43, 1979.

(28) Tharcher, R. W., "The Use of InfinÍte Grid Refínements ar

SÍngularitíes in the Solution of Laplace's Equation",

Numerical Mathematics, vo1. 25, pp. I63-I90, I916.

(29) Han Hou-de and Ying Long-an, "An Iterative Method in the

Infinite Element", Department of Mathematics and Mechanics

Pekíng University, I980.

(30) Decreton, M. C., Treatment of Síngularities Ín the Finite

Element Method, M.Sc. Thesis, University of Manitoba, I912.

(3i; BÍrkhoff, G. and Fix, G.J., "Higher-order Linear Finite

Element Methods", Report to the U.S. Atomic Energy Commission

and The Office of Naval Research, 1974.

(32) Fix, G. J., eÈ. a1, "On the Use of Singular Functions with

Finite Element Approximations", Journal of Computatíonal

I¡Jgire, vol. 13, pp. 209-228, 7973. .



CHAPTER V

APPLICATIONS

In this chapter, implementation of the BElf with cubic spline

elements will be discussed for numerous problems of electromagnetic

field theory. Electrostatic field problems that involve the solu-

tion of Laplace's or Poíssonrs equation under DirÍchlet and./or

Neumann boundary conditions, and time-harmonic problems of the

solution of the Helmholtz equaEion will constitute the two major

categories that will be considered.

Alternative approaches avaÍ1able for the purpose of arriving

at an Íntegral equatÍon formulatíon of the boundary-va1ue problems

under consideratíon will be first sunnnarized ån general terms, and

later, for each application, one approach will be followed.

Fígure 5.1. Two-dimensional problem configuration
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5. 1. Alternative formulations.

The governing equation for the Dirichlet problem (Fig. 5.1.) is:

V2O (x, y) = 0 for (x, y) e R (s.t¡

under Ëhe constraint that

Õ(x, y) = g(x, y) for (x, y) eC. (5.2¡

If we let (*) (1)

r=x*iy

the function Õ(x, y) which is harmonic in the simply connected

domain, R, can be regarded as the real part of a certain analytic

function, t!(r) whích has no singular points inside R. The solution

entails fínding ú(r). Now leË

r!(r)=q[$$o'' (s .4)

which is a Cauchy-type integral in whích U (r') will- be assumed a

real function. Determination of this unknov¡n density function,

U (r') will complete our solution.

If the point r in (5.4) tends towards a certain point, s,

on Èhe boundary C from insíde R, by the Cauchy integral principle

we have:

ü(s)=t¿U(s)+ t,fU(r')dr,. (5.5)
2nj C rr-s

TakÍng the real part of (5.5),

Zu(s) + 1 Im{,| u (r') dr'} = g(s) (5.6)
n cF-s

because

Re{U(s)} = Õ(s), (s.7)

(t() The classical argument that follows Ís essentíally two dimensional
as Ít relies on the Èheory of functíons of a single complex variable.
This way, problems formulated in t,wo spatíal dimensions only are
rigorously solved. In cases where the siurplification due to invaríance



-92-

as specified earlier. But since U (r') is assumed rea1,

tu(s) + t ,iU (r') IrTr ,- dt' . = g(s) ,
zn c tr'-sJ

The integrati-on kernel being

r* { ;9*}= rm {d(1n(r'-s) )}

in which

rt-s

can be substituted. But then,

Im {d(ln(r'-s) )

= lt'-slej0

Ì = rm {¿(r'Ir'-"¡"jol}

(s.8)

(s.9)

(5.12)

(s.13)

(s.1s)

this integration

second kínd

d0

which, in turn Ís (referring to Fig

d0= â0
31'

From Èhe Cauchy-Riemann relations, notrù,

AO = âlnlr'-s
ð1 t A"t

. s. t),
d1'

in which nr denotes the outward dÍrected normal to the boundary

curve, C. Thus, if we define,

G(s,r') = - t 1nlt'-"I (5'14)
2II

we have

i*{ dT' }=-2n F. dl'r'-s ' dn'

As long as the boundary,

kernel i-s continuous and

integral equation:

has continuous curvature,

fact, we have the Fredholm

C,

ín

in one dimension is absent, the more "physical" approach of potential-
due-to-a-sourceo to be consÍdered laterr mâY be more direct,
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Lu(s)-Iv(t')*,dl'=e(s) (s.16)
CO'

the solution of which will directly lead us, through (5.4) and (5.1¡

to our unknov¡n function, Õ(x, y).

Equation (5.I6) is termed the double-1ayer potential formulation

of the Dirichlet problem. It can be directly obtaÍned by considering

the electrostatic potential Õ(r) at a point r, due to a unit dipole

oriented along nt, located at rf, and summing up the effects of a

continuous dístribution, U (s), of such dipoles. EquatÍng the effect

at the boundary Ëo the given boundary potential, B(s), directly

yields equatíon (5. l6) .

An alternative formulation would resuft from the consideration

of the potential due to a simple-layer of sources: the potential

aÈ r due to a point source at rtis given in two-dimensional

Cartesian space by:

ô (r) = - I l-nlt'-rl
2II.

(s.i7)

íf the strength of the point source is ao ir free space. A distri-

bution, o(s), of such charges over a contour, C gÍves rise to a

potential

0(r) = -l / o(r')1r,lr'-rl¿t'. (5.18)
znc

In particular, at the boundary, this reduces to

g(s) = - t Isj')tnlr'-sldt', (5.t9)
2TT. C



The formulation based on a simple-1ayer source distrÍbution

for the Neumann problem can be obtained from direct differentiation

of (5.18). The normal derivative of the potential at an observation

poínt, r, along the outward-directed boundary normal, n, can be

represented by:

âÕ (r) = -l Io(r') ô tnlr'-rlat' (s.2r)
ân 2II C ðn

as long as the observation point along the no.rmal does not 1ie on

the boundary. I^/hen it does, however, it can be shown by a para11e1

argument Èo the development of the doubfe-layer formulation for

the potentÍal, that there is a discontinuÍty equal to the value of

the source distributÍon. That is,
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which, with the previous definition of the function, G, is

Io(r' )G(s,r') d1' = B(s),
C

which is a Fredholm integral equatÍon of the first kind.

SjL (s) - _ê_Q. 
(s) = o(s)

an- ân+

(s.20)

(s.24)

ã0 (s),= "fo(rr)âc (s,rr)dr' - t¿o(s) (5.22)
a"-rcân

if s is approached from the outside of C (í.e. against the orÍentation

of n, ) and

âO (s) = _f o(r')âG (r,r')dr'+ tro(s) (5.23)
A"-Cã"

if the boundary is approached from the inside. Thus,

representing the jump in Ëhe value of the normal derivative of the

símple-1ayer potential. Obviously, for a given

âÕ (s) = h(s) $.25)
ã;
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at either side of the boundary, (5.22) or (5.23) constítutes the

integral equation formulation of the Neumann problem. Once the

o(s) is determined, any potential

Õ(r) = Io(r' )G(r,r')dr'+0
CO

Õ beÍng an arbitrary constant, will be a solution.o"

(5 .26)

A Èhird alternative formulation is provÍded by the applicatíon

of Greents Theorem, and is, in facÈ, equivalent to the superposition of

the simpl-e-layer and double-la]¡er formulations outlined above.

For the solution of Laplacers equation, (5.1), in the configuratÍon

of Fig. 5.I, consider the Greenrs function that satisfies

V2C (r,r') = -ô(r-r') (s .27 )

where 6 denotes the Dirac del-ta functÍon. WrítinS (5.1) in terms of

source coordinates, r', multÍplying it by G(r,r') and (5.27) byÕ(r'),

and subtracting the latter from the former gives:

G(r,r')V2 Õ(r') - O(r')V2 G(r,r') =Õ(r')ô(r-r'). (5.28)

Integrating this expressíon over Ehe t$7o-dimensÍonaI domain over which

(5.1) is to be solved, we obtain:

/ ic(r,r')V20 (r') - o(r')V2c(r,r')] ¿"' =fÕ (r) if rcR, (5.29)
R (O orherwise,

by defínítion of the Dirac delta functíon. Now, invoking
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Greents theorem, r,/e obtain the equivalent boundary-íntegral formulation:

I{ c(r,r') âö (r') - Õ(r')âG (r,r') } d1' =;O1r) Íf reR, (5.30)
C ân' ân' tO otherwise ,

in which nt Ís the normar directed outwards, dlt denotes Íntegration

along the contour c, for source co-ordinates; and r denotes any obser-

vation point inside R. When r is on the boundary, C, due to the

stípulation that

,fÕ(r') ð (r-r') dl' = % Õ(r) if re C, (5.31)
C

r,¡e have

I { c(r,r') ðÕ (r') - 0(r') ãG (r,r')} dt' = 4þ G) ,c an' ãñ'
reC. (5.32)

Hence, this formulation can be summarized as:

0(r) = y,/1c1r,r')âÕ (r')-Õ(r')âG (r,r')Ì ar' (5.33)
a ðl' ðn'

in which

y ={o ir r I R,

I

lIifreR,rdC,and
[, ,, r e c.

In particular, for the Dirichlet case when Õ(r), reC is given,

the Fredholm equatÍon:

.fc(r,r')e, (r')¿1' =þ(r ) + ,fÕ(r') ãG (r,r,)d1, (5.34)
C ðn' ' C ân'

represents the problem.
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All consideration above was devoted to the two dimensional problem

configuration of Fig. 5.1. The Greenrs function was defined earlier

óÞ.

G(r,rt)

Similar arguments ho1d, and

dimensional space, with

G(r rrt)

=-t hlr'-r|.
2II.

the f or¡nu1at ions are

(s.14)

valid for three-

and boundary integrals taken over

(5.3s)

surfaces instead of lines

=1
4II

I
F:¡-
Íncrement a1

The fact that .the

position of simple and

formulation of (5.30) represents direct suoer-

double-Iayer potentÍa1s is clear when the term

Õi =,fc(rlr')âÕ (r')dI'
C ân'

is identified as the simple-layer potential due to a density

o(s) = ÐÕ (s), and the term
ân

ôz = I-Q (r') âc (r,r')dl'
C ãn'

(s.36)

(s. 37 )

u (s)=-Õ(s).

ís continuous

(s), hence

is recognized the double-layer potential due to a density

As the boundary is approached, the simple-layer potential

but the double-layer potential has a discontinuity of ra 
V

the boundary relation (5.32) follows when reC.

Of these three alternative formulations, the sÍmp1e-layer

that results in eqtn. (5.20) seems to provide the most straightforward

and least costly approach to the Dirichlet problem. It is advanta¡¡eous
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over the double-1ayer formulation of equation (5.I6) insofar as computa-

Ëional savings are incurred by the absence of Èhe extra term in the

equation. The classical preference (1'2) for Fredholm's second kind

equations

proper treatment

i11-conditioned

equations (3 
'4) .

that involve that term is un\^rarranted as

of kernel síngularities lead the way to

system matrices in Fredholmrs first kind

long as

avoiding

int egral

Greenrs Theorem formulation, while yielding accurale results

in terms of potentials directly, without the introduction of inter-

mediate source terms, requÍres special logic to determine region

topologies and nodify the equations to be used to obtain unknowns

in different regions. Furthermore, as (5.34) illustrates, the excita-

tion term requires more computational effort. Thís latter formulation

on the oËher hand, results ín a block-structured system maÈríx for

multi-region problems as the equation entaí1s integration over one

closed region a1one. This feature may be a definite advantage

especially in multi-medía problems, especially íf a block-oriented

1ínear equation solution scheme is avaílable for use.

The Neumann problem, being Ehe dual of the Dirichlet problem

posed in terms.of a simple-layer distribution, provides an instance

where a double-1ayer formulatÍon would be implemented. The excÍtation

term is straightforward , and the integration kernel identical to

the free-space Green's function for the simple-1ayer formulation of

the Dirichlet case. The resulting integral equation is identícal
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to (5 .20) , but to obtain the potential field, further efforts are

necessary. The Greenrs Theorem alternatÍve Ín this case requÍres

a similar effort in setting up the integral equation, but produces

surface potentials directly.

5.2 Electrostatic field problems

5.2. I. Para11e1 plate capacitor

The infinite slriD capacitor probl-em constitutes the first

test of the developed methodology. The half strÍp length and

half plate separation were taken as unÍty (see Fig. 5.2). The

exact capacitance for thís confíguration i, tno* (5) as 18.72

pF/m. The charge accumulation on the plates is expect"¿ (6, p'569)

to vary as:

o (r) -+
s

a--lm*

I
7,

(s.38)

2m

l_, V

Figure 5.2 The Parallel plate capacitor.
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The positive quadrant x> 0, y> 0 was modelled using quarter-

synmetry, with *1 volt imposed on the y=l plate. The Fredholm

first-kind equation for the plate charge can be written for this

configuration as

I
1 ,f o (x') G (x,11*',1)dx' = 1 (5.39)
eo 0

in which a modified Greents functÍon that incorporates problem

symmetry is utilized:

G(x,yl*',1)=--!-rnf lZ (5.40)

To solve thís problem, 3 unÍ-varíate boundary elementsr(*)

involvÍng 6 unknov¡ns, Irere used along a half -plate of the

capacÍtor. The BEM with spline elements was applied, with an

edge singularity of I , in which U = 0.5, imposed on the shape
Ur

functions over the edge element.

Capacitance \./as calculated from the total energy, E,

(. - ')Ê

v-z
(s. 41 )

Here, as in the other electrostatic field applications, the

capacitance, or twice the energy content divided by the square

of the applied constant potential, vras computed as a simple

vector dot product:

(*) See Appendix for an exemplary straight-line elernent..
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Remembering that Èhe basic equation to be solved has the

form (sectíon I. 1) :

.fÉ, Ltg = <9, 0> (5 .42)

and the solution, o ís the expansion coefficient vector for the

charge dístribution, the product of the ríght-hand-side of

this equation and its solution gives nothing but

because of the linearíty of the integration operation. But by

definition, this last term Ís twice the electrostatÍc energy

stored in the capacÍ-tor. Hence, to determine the capacítance

once the charge distribution has been ascertained, lJe use:

d..g,o, = ,fo(s)g(s)ds
S

T
^ O- . (9, 0.)
vt --7-

(s.43)

(s .44)

that is the dot product of the right-hand-síde and the solution

of the system equation, divided by the constant applied potential

difference, squared,

The resulÈs for the capacitance values are presented in

Table 5.1, and the computed charge distribution is compared wÍth

the analytical predictíon in Figure 5.3.
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*2m+

Go
Eo
=o()

N
II
5
zI
k
J
f

=(J
C)
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(9
É.

-()

300

200

roo

I

Tõ5 exoct (normolized)

o: compuled

o
o.or o.o2 0.o3 oo4 o.os

(m)DI SÏANCE FROM EDGE

Figure 5. 3. Charge accumulation on the para11e1 plate capacitor.
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The accuracy of these results, especially with regard to

the computed charge distribution, should be compared against

those obÈained by earlier researchers.

McDonald, êt. a1. (7) t"ootted similar accuracy Ín capaci-

tances and "medium-range" field values with eÍther 50 pulses or

5 unknov¡ns (4 pulses) and one singular functÍon. Lean 
(4) 

næ

obtaíned a smooth singular behavior of charges usíng fourth order

LagrangÍan elements with five unknov¡ns and a singular term.

The results we have obtained, again wíth six unknov,¡ns including

the singularity term, show a good match of the-charge distri-

bution r¡iÈh analytic predíction.

InEegraEion
quadrature order

CapacÍtance
(pF)

4

5

6

B

18. 78
18.7 52
18 .7 37
1B.7rB

Table 5.I. Para1le1 plate capacitance as computed
by the BEM with cubic splines, 6 unknowns,
_J,
r-2 singularity imposed.
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5.2.2. Coaxial capacitor

The only difference beÈween the solutÍon scheme applied

for this problem and that used for the para11el plate capacitor

was thaË quarter-symmetry was not utí1ized here. In spite of

circular geometry, the small size of the problem permitted the

solution of the complete problem wÍthin a configuration that

involved only 16 unknov¡ns - 4 per quadrant (Fig. 5.4).

Figure 5.4. The coaxial capacitor
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The exact value of the capacitance for unit length of this

configuratÍon is 80.259 pF.

(s. 4s)

For soluEion, the equation

1:,fo(s') c(s,sr) ds' = g(s)
"uc

was used wiËh 6 denoting conductor contourst

G (r ,r') = -r* ln I r-r' [ , ( 5,46)

and

(5./+7)

Two different algorithms were Ínvoked for solution:

one that utilized the spline element methodology for geometry

modeling as well as source approximaËion and the t'hybríd"

algorithm that res.tricted spline usage to geometric interpolation

on1y, and applied the LagrangÍan element techníque for source

representation. Quarter symmetry \,ras implemenÈed in the latter

approach. The hypothesis being tested was that the use of

cubic spline shape functions for source modelling introduces

too much overhead in comparison to lower-order methods such as

pulse or Lagrangian polynomic expansÍ-on.

The results obtained by the two algorithms are presented

in Table 5.2.

gls¡ = f t on the inner conductor,
I
I

L0 on the outer conductor.
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As the table shows, computational results do not indicate

an advantage of the "hybrid" method over the "pure" spline approach.

Comparable execution times (regarding symmetry) are required to

reach solutíons of comparable accuracy. ff anything, considering

the empirical rule that computation tíme varies almost as the

square of the number of elements, the "pure" splÍne algorithm

that takes roughly four times as long as the "hybrid" are which

is using a quarter of the number of unknowns, seems to be

preferable (*). Furthermore, the algorithmic simplicity of

not having to process ttro different classes of shape functions

is enj oyed.

5.2.3. Rectangular infinite cylinder

ln solving the exterior Dirichlet problem in tr¡o-dimensional

space, the free-space Greenrs function ís modified as:

G(r,r') = - I lnlt-t'l+ 1 lnln-r'l (5.48)
2lL 2n

where R is a fixed dístant point, to ensure that potential is

regular as that ¡g_fs¡elgg point ís approached. I{ithout thÍs

precaution, of course, the condÍtion of vanishing potential

when r increases would be violated.

(*) Timíng comparÍsons between Ëhe Lagrange and Spline BEI'I methodol-
ogíes will be presented in secEion 5.3.5 for the more substantial
application of three dimensional electromagnetic scattering .
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Using the simple layer formulation, again both the

tthybridt' and t'purett algorithms were used, and comparisons dravm.

In addition, a "pure" spline algorithm that imposed the expected

I
-- t1s singularity of the charge density on the expansion functions
r

\ras tested on this problem. Tables 5.3 and 5.4 summarize the

results of these tv/o tests, respectively.

IntegratÍon
quadraÈure
order

_1 11
r'l'singularity
imposed ?

eneïgy
func t iona 1

2

3

4

5

B

J

6

8

No

No

No

No

No

Yes

Yes

Yes

7 .852

7.850

7.849

7 .848

7.848

7 .834

7.833

7.833

Table 5.3. Stored energy for the square cylinder problem
as computed wírh síngular expansÍon functíons.



In
te

gr
at

io
n

qu
ad

ra
tu

re
r 
rd

er

lfe
th

od
 ( 

*)

[,L
]'n

im
]-

ze
d

fu
nc

tio
na

l
va

lu
e

l/R
 (

**
)

2

B
S

P

R
el

at
iv

e
ex

ec
ut

lo
n

tim
e 

(r
c*

*;

7 
. 
85

19

H
rN

=
4

( 
*:

t:k
:t 

)

("
,)

 
B

S
P

: 
B

E
M

 w
ith

 c
ub

ic
 s

pl
ín

es
, 

no
 s

ym
m

et
ry

, 
12

 u
nk

no
ür

ns
.

H
: 

H
yb

rid
, 

se
e 

T
ab

le
 5

.2
.

(*
t')

 
C

/R
: 

T
he

 r
at

io
 

of
 c

ha
rg

e 
ac

cu
m

ul
at

io
n 

at
 t

he
 c

or
ne

r 
to

 t
ha

t 
at

 t
he

 m
íd

dl
e.

(:
t:t

:t)
 

T
he

 r
at

ío
 

of
 e

la
ps

ed
 C

P
U

 ti
m

e 
to

 t
he

 s
ho

rt
es

t 
su

ch
 t

im
e 

on
 t

hi
s 

ta
bl

e.
F

or
 t

hi
s 

pr
ob

le
m

, 
1=

0.
41

 s
ec

. 
C

P
U

 w
ith

 t
he

 W
A

T
F

IV
 s

of
rw

ar
e 

on
 r

he
 A

m
da

hl
 4

70
/v

7.

(;
<

/r
*:

t)
 T

he
 r

es
ul

ts
 

fo
r 

th
is

 
ca

se
 r

^r
er

e 
co

m
pl

et
el

y 
un

re
lia

bl
e 

du
e 

to
 t

he
 i

na
bi

lit
y 

of
 t

he
lo

w
 o

r:
de

r 
qu

ad
ra

tu
re

 s
ch

em
e 

to
 c

at
er

 f
or

 
th

e 
hÍ

gh
 o

rd
er

 í
nt

er
po

la
to

ry
 

po
ly

no
m

ia
l.

T
ab

le
 5

.4
. 

S
ol

ut
io

n 
of

 t
he

 s
qu

ar
e 

c;
,r

lin
de

r 
pr

ob
le

m
 w

ith
 t

w
o 

al
go

rit
hm

s.

5 
.5

4

r.
39

n.
 a

.

3

B
S

P

n.
 a

.

7.
84

97

n.
 a

.

H
,N

=
4

5.
13

7.
92

33

I 
.8

5

B
S

P

2.
4

7.
84

87

l .
05

4

H
,N

=
3

5.
r7

7.
84

99

2.
39

H
,N

=
{

3.
22

7 
.8

66
9

I

5

B
S

P

t.2
5

7.
84

82

I 
.0

7

H
 r

N
=

4

5.
16

7.
84

99

2.
90

6

B
S

P

3 
.0

5

7.
84

75

1.
22

H
rN

=
4

5.
14

7.
84

89

4.
93

2.
89

r 
.4

4



G
-o
Eo
:fo()

N
'o
5
zI
k
J
f
:)(J
(J

UJ(9
E
.L(J

t.5

r.o

o.5

- 110 -

ooo5 0.o I

DISTANCE FROIV1

# exoct

co lcu loted

(norrnolized )

o

o
o otS

EDGE (m)
o.o2

Figure 5.5. Charge

square

accumulat ion

cylinder.

on an ínfínite conducÈing



- 111 =

There is an indication of the smooth interpolatíon property

of splínes in Table 5,4: A quadrature order of 2, implying linear

approximation of íntegrands, is not sufficient to integrate a

Lagrangian cubic (N=4) polynouría1, which presumably introduces

spurious undulations, whereas a cubic spline is integrated faírIy we]1.,

The spline shape functions utílízed to prepare Table 5.4 dLd

not contain the added singular terrn; as such, the charge accumulation

ould noË be accurately approximated at edges. The ratio of the edge

accumulatíon to the density aË the center, however, ís a good Índicator

of perfornìance - the sp1íne algorithrn consistently produces hÍgher

ratios than Èhe hybrid algoríthm that approximates sources by IagrangÍan

polynomials.

Also evident from Table 5,4 is the fact that modellÍng sources

with splines does not necessarily increase computatíonaI overhead in

comparison to Lagrangian polynornic approxiuratíon, In fact, the B-sp1Íne

algorithm working over the complete geometry never took four times

as long as the hybrid algoritlun that rras rnakÍng use of symmetry to

solve a four Lfmes smaller model of the problem.

'

Figure 5,5 shows the charge densit.y as computed by the B-spline

algorithn with shape functlons nodified by the added sÍngular term.

ï.Ihile the asymptot.ic form of the singularity ís closely reproduced,

Èowards the center of the sldes of the square, the density deviates

from the r-l/3 curve, possibly indicatíng the effect of the opposite

edge.



5 .2.4.

-rtz-
Polarizability of a dielectric cylinder

The potential problem for a homogenous dÍelectric object

immersed in an incident electrostatÍc field in free space provides

an example of a Fredholm second kind integral equation obtained

via the Greenrs Theorem formulatÍon outlined in section 5.1.

*z

Figure 5.6 Díelectric cylÍnder in an incidenÈ field

Consider the geometry of Fig. 5.6. Let 0¡and øz

represent t.he potential inside and outside the dielectric, respec-

tively. Let Õ= be the incident or unperturbed fie1d.-l-

We can write

É¡
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Or = e + Õ./<
a

(5 .4e)

and

Õz=Õ+Õ.
1

(s. s0)

rvhere K represents the dielectric constant of the object, and

Õ stands for the !g¡tq$e!-ign potential, or rhe porenrial srem-

ming from the induced dipoles. Now, we can invoke the formulation

in (5.33) for both the inside and ourside (i.e. rhe region

bounded by the dielectric and a cylinder wÍth infinite radius)

regions, and eliminate Õ1 and Õ2 in terms of Õ and Õ.:

Õ. (r)
Õ(r) = 

-i'-' 
- rc- I / O(r') +, dl' for r inside R, (5.51)

KKcdn

and

Õ(r) = Õ- (r) - ( K -l) /4'(t')!q dt' for r ourside R. (5.52)I c 
'3r',r

Letting r approach the boundary on both sides, we obtain, as in

eq.n (5.32),

Õ-.(r) = r*1 @(r)+(rc-1) / Õ(r')âc dt', (5.53)
a-- 2 C &r'

in which

G(r,r') = - 1 lnlt-t'l (5.54)
2n

in two-dimensional space, as usual.
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Once equation (5.53) is solved for Õ(r), the boundary

potential, the 4þgþ_IglgÉ of the body can be evaluared from
(8).

in

rt

p = (K-1) eo "f0(r') ô'dt'
C

which fi' denotes the unit normal

. PolarizabilitÍes are defíned

(s. ss)

vector at the source poÍnt,
(8) as the dipole moment

(s.s6)

magnítudes for the Ëwo orthogonal incidence directions.

This problem

Eyges and Gianino (

,Tt) =

has

10)

been solved by Meí and Van Bfadel 
(9) 

and

among others. It has particular signífi-

cance in low frequency scattering problems. The former work

has used the classícal pulse expansion - point matching meËhod

with "typically 80" unknovo-ns, and the latter has devised a method

that can be ca1led Fourier expansÍon-point matching which relies

on analytic approximaËions and a 2x2 system of equations. Mei

and Van Bladelrs solution provides the boundary potentials and

polarízabilities whereas Eyges and Gianino restrict their attention

to polarizabilities, i.e. not near but fs fields.

A point of detail for this application involves the inte-

gration kernel of equation (5.53). We have

âGÃ-r (r
dn

1

,II-F;ì-t
ñ"j-Íl

which is no longer logarithmic. Hence, for the evaluation of

the integral when the source and observation elements coincide
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(see section 4.1.1, above), Èhe bÍsection technique Ís

sufficient without having to resort to utilization of a logarith-

mically weighted Gauss Quadrature formufa, as the form of the

singularity is smoother than both logarithmic, and, of course,

-l_ behavior. The regular Gauss-Legendre scheme yields sufficient
r

precision.

The surface potentials, oblained rvith l2 unknov¿ns on1y,

and polarizabilities are presented in FÍgures 5.7 and 5.8.

comparisons with Mei and van Bladelrs results are provided on1-v,

firsÈly because, as noted earlier, Eyges. and Gíanino do not proceed

from surface potentials at all, and secondry because their results

for polarizabilities, beíng approximations geared for the far

fÍe1ds a1one, are not any more precise than obtained here for

any of the instances.

5.2.5. Conducting Sphere

The Dirichlet problem in three-dimensional space for a

perfectly conducting charged object constitutes the subject of

this and next subsections.

The equation

.fo(s')G(s,sr) ds' = g(s)
S

(s.s7)

G(r,r') = #o T'-rî

with

(s. s8)
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is the Fredholrn fÍrst kind equation based on the simple-layer

source representation, o(s), applicable to the problem.

g(s) = 1.0 was imposed; symmetry vras not used.

Recovered surface potentials, computed as

Õ(r) = ,fo (s')G(r,s')ds'
S

(s.s9)

after o(s) Ís solved for, interior potentials, and the evaluated

capacitance of the sphere is presenÈed in Table 5.5. The exact

vafue of the capacitance is knov¡n to be 4l,es, or 11I.2626 pF,

for the unit sphere.

lIode1 Particulars (*)
\] NG NGS

I Surface potentiafs(v
@ll

In t er Íor
potentía1 (v)

Capaci t ance
(pF)

T2

44

34

44

62

52

5

3

4

4

4

4

2

2

2

2

2

J

15'^g 4

.97

.981 2

.9942

.9935

.993

.9982

.96

.96

.94

.90

.96

.96

9994 oo

ao

.997

.999

.999

.9997

.0000

I .0000

108.084

II0 .229

r08.71

II0 . O'27

t10.344

110.373

11 224

(*) :

N : Total number of unknovrns, in the last applÍcation, l/gth
symmetry was used.

NG : Integration quadrature order

NGS: Integration quadrature order used in treating kernel singularit¡'

Table 5.5. Results of the Dirichlet problem for the conducting sphere.
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One immediate observation from Table 5.5 is that the order

of Gauss quadrature used in treating kernel singularities

correlates with the accuracy obtained ín the evaluated capaciËance.

The fact that the Ínterior potentials are closer to the exact

value of 1.0 than the surface potentials ís due to the discrepancy

introduced Ín geometric model1íng. Also worth noting is that a

comparison of equator and pole potentials reveals the relative

weakness of that particular geometríc model at the poles. The

particular representation using 34, 44 or 62 unknowns \das one

in whÍch the quadrilateral elements were "col1apsed" at the poles,

becoming three-dimensional triangular patches. The I2-unknov¡n

model, on the other hand, did not have this disadvantage and

disprays rather remarkable accuracy consideríng the reduction

in computational effort - one-and-a-half unknov¡ns per spherical

octant !

5.2.6. Conducting cube

The scheme of imposing expected singular behavior of boundarl'

sources on expansion functj-ons was put to test in a three-dimen-

sional- case for the problem of the conducting cube.

The upper- and lower-bounds for the capacítance have been

calculated respectively ir, (11) 
"r,¿ 

(12) 
, and reproduced in (8)

72.88 <C<74.27. (s.60)
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Two algoríthms , with and without sÍngularly_modifÍed

expansion functíons were applied for the problem. Neither the

results gÍven in (8), nor the BEM wíth un-modífied Lagrangian

elements applied by Lean (4) for the same problem claim accurate

computation of surface charges. The charge profile that we have

calculated is presented in Figure 5.9. Analytical results

for the ch'arge density are not available. we have imposed the

1 behavior which is known for the 90o conducting edge, on-17j
r
each of the 12 edges of the cube. The behavior at the three-

dimensíonal corners is thus approximated by the spline blending

operation (see secÈions 2.2 and 3,2, above) applied to uni_

variate I behavior in the two orthogonal dírections on each-T71
t

face. The capacitance figures computed by the modifÍed and un-

rnorlified spline meÈhod, as well as those reported (4) for the

Lagrangian case can be found in Table 5.6.

Table 5.6 demonstrates the utirity of the modified

expansion function scheme in cutting dor^m Èhe number of unknor¡ns

necessary to achieve a certain degree of accuracy. Also obvious

is the fact that the inherent magnitude of three dimensional

problems warrant utilÍzation of synrnetry whenever possÍble.



Model Partículars (*¡

Type N NG NcS

Capacitance (pF)

s3242
s3242

s6*842
L 7nB 4 : 4

L 37;,8 4 4

L 31*B 4 4

-r22-

72.28

72.7 8

72.90

72.94

73.13

73.t9

Splines, no singular modification

Splines wíth singular elements

Lagrangian, without singular modific"tior, 
(4' P'62)

Total number of unknov¡ns, NG: ÍntegratÍon quadrature,
NGS: quadraÈure for singularity treatment.

Table 5.6. CapacÍÈance of the conducting cube.

(*) NS:

c.

L:

\Ì.
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5.2.7. Mu1Ëip1y inhomogeneous media

The rnixed-boundary condition electrostatic

with ¡nu1tÍp1e piecewise inhomogeneities will be

this subsection. A general problem geometry is

Figure 5.10. Using the appropriate Íntegration

function) and integration procedure will ensure

in two- or three-dimensíonal space.

potential problern

considered in

depicted in

kernel (Greenrs

applicability

sl

Kt h3 \L

D=SIUS+ , N=52USs

S =SlU SzU SsU S+ U It U IzU 13

I = ItU IzU Is

Figure 5.10. A multi-media configuration.
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Based on a simple-1ayer representation of sources, potential

anywhere can be written as:

ö(r) = .fo(s')G(r,s')ds', (5.61)
S

wíth a properly evaluated o(s), and S as in Fig. 5.10. In

two-dimensional space, the Greents function wÍ11- be:

G(r,r') = - I lnlt-t'1, (5.62)
2n

and Íntegration wíl1 be over all contours in the problem; the

three-dimensional Green's function will be:

G(r,rr) = 1 1 ,
4n Er;Ïf (s .6 3)

and, surface integrals will be evaluated over all boundaries.

For boundaries on which a Dírichlet potential is specified,

r,/e can write:

,l o(s')G(s,s')ds' = g(s), seD
c

(s.64)

where s takes on values on the Dirichlet boundary on1y, and

íntegration covers all boundaries.

Similarly, the boundaries on which a Neumann condition is

prescribed will give rise to the equation:

,to(s'l$f ",s')ds ' 4 :-ro(s) = h(s), seN (5.65)
sdn
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in which consistent normal vector definitions have been assumed.

Equation (5.65) follows from direct differenriarion of (5.61)

as explained above (see sectíon 5.1).

0n interfaces betvreen t\ro regions with differing charac-

teristics, signified by r. and Kr: two conditions should hold:

fÍrst, potential across the interface should be continuous.

Thís condition is automatically satisfied due to the adopted

representation (5.61). Second, the normal component of the

dísplacement vector (currenÈ density in case of conductors)

should be continuous. That is, (with reference to Fig. 5.10):

K- AÕ *K. AÕ = Q (5.66)
'4.,. ' an.1J

This constraint can be written for seli, as:

K-{ / o(s') E (",s,) * }o(s)} +À ^ ðn' ¿-t-

"i{{o(s')E(",s,)* to{")}=o (s.67)-srrjL

whích, upon rearranging, and notíng that :

äG=-âG
!otí otj

produces the equation:

(s.68)

(r_.-r=),fo(s')âG (s,s')ds'+ (r.+r.)o(s) = 0 (5.69)r- J s an. 1 J
i2

to be enforced with appropriate indices i and j for all seI.
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Equations (5.64), (5.65) and (5.69) constitute a coupled

system in terms of the unknov¡n, o(s), the fÍctítious t'source

distribution" over the boundaries. The BEM dÍscretization and

solutíon technique can be applÍed to this system, resulting in

a dense matrix equation.

fn general, an equation of type (5.64) depicts a conductor

boundary at specified potentíal, one of type (5.65) with homo-

genous right-hand-side rvould signify a perfect insulator, and

(5.69 ) represents a dÍelectric-dÍelectrÍc interface.

Implementation of a sÍmílar approach has been reported (13)

f or a po\.rer insulator problem possessing rotational- symmetry.

A drawback of thís approach, however,

dense system rnatrix that Ít yields. As all

entail couplÍng of all boundary elements of the s.vstem, a classical

has to be invoked."full-síze" linear equatÍon solutíon scheme

Especially for three-di¡nensíonal problems that do not possess

symmetry (e.g. an analysis of ground electrode energy dissipation

over piecewise Ín homog,enous earth strata with irregular geo-

metríes), to achÍeve acceptable precision of results, fairly

large systems of linear equations may become unavoidable

in spíte of the savings broughÈ about by implementing a boundar,r'-

integral-equation technÍque as opposed to the classical finite-

element or finite difference methods of solving partial differ-

ential equations.

seems to be in the

three inÈegrations
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An alternative may be discovered by investigating an approach

that would yield a block-sparse matrix which would be amenable to

more efficient solution schemes that have been proposed (14). 
The

Greents Theorem formulation discussed above (sec. 5.1) should

lead towards that route.

5.3. Time-harmonic problems

Scattering and diffractÍon of sinusoidal electromagnetic

waves by conducting or dielectric objects has been the subject

of a large volume of research in the last decades. Classical

partial differential equation solutíons in terms of cylindrical,

spherical or spherÍodal wave functions (t5) 
n"r.r" been ividely

applied where problem geometries can be suitably classified.

Low frequency approximations leadíng to po\,rer series solutíons
(16)

have been studied, and the particular case of "smal-l sphere"

scatteringr or r"-¿1S:g¡ scaËtering (Il) .rn be said to have been

the starting point of the interest ín the area. HÍgh frequency

asymptotic solutions have also been popular, leadíng the way

to the technique of Physical optics, PO, (18) rti."h is based on

the assumption that for small wavelengËhs, global geometry of the

scatterer loses iuportance ín deterrnining the 1oca1 nature

of induced sources; each poínt on the scatterer reflects as if it

r,Jere on an Ínfinite tangent plane aÈ the point of reflection.

The GeometrÍcaI Optícs approximation, whích may be consídered

a refined version of the same approach, incorporates the global

geometry ínformation to the results of the PO approximatior, (i9).
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ïntegral equation formulation of scatterÍng problems have

also been classically popular (15 
' L7 ' 18), 

b,-,a numerical methods

which permitted their solutions in arbitrarily shaped domains

did not achieve thej-r current popularity until the late 1960's.

The moment method, and its particular pulse expansion-point

matching form was established in the West as a fundamental

tool in the solulion of electromagnetÍc scattering problems

especially after the publicatíon of R. F. Harrington's now classical
. (20)

monograph Since then, a multitude of specialized problems

have been tackled wÍth that tool and accurate solutions have

been obtaíned.

Until recently, moment-method solution of two-dimensional

problems involved pulse expansíon, and three-dimensional ones,

wire-grid representation of solid surfaces (2I) . Even flat-

patch approximations seem to be a relatively novel approach

(22) (4)
BEM applications have introduced iso-parametric

curved elements to these models.

Our goal in studying a narrow selectíon of electromagnetÍc

scattering problems has been to examine the improvements that

can be introduced in terms of reduced computational costs and

increased solution precision via the use of the BEM in general,

and the cubic splíne element methodology in particular.
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5.3. 1. Conducting circular infinite cylinder

Assuml-ng a time variation of the fot* "j't, th" fundamental

Maxwell Equations for a time-harmonic electromagnetic field are:

_Vx¡=jrrUfl

VxH=joe¡+J (5.70)

where 3 represents the volume distrÍbutÍon of electric currents.

Restricting our attention to TM fields, E and J vectors will be

confined to the axíal direction only. Then, (5.70) will 1ead,

in a homogenous, anÍsotropic region, to:

Vzn +k2E = jt,lJ

where

n=CE(x,y)
z

H = û H (x,y),
z

in the Cartesian co-ordinate system, and

k = u/ty = 2nl^.

The solutíon to (5.71), a Helmholtz equatíon, can

structed ín terms of G(rrrt), the response to a point

in two-dimensional space, i.e. an infinite filament of
( 1B)curlenE ,

(s.7r)

(s.72)

(s.73)

be con-

s our ce

unity

(s .7 4)

(s.7s)

order zero.

in which the characteristic ímpedance ís given by:

G(r,r') = -krì H^(2)ltlr-r'l),-;-- o
4

n =fu /e)\

denotes the second kind Hankel function of"t¿ tto 
(2)
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Iigure 5.11. Cross section of a cylindrical scatterer.
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The scattered field due the induced surface currents,

J_(s) will be the sum of the contribution of all filamentary
z

sources over the problem geometry (Fig. 5.11), i.e.

Es (r) =,1.1 (s')c(r,s')ds'.
" sz

(5 .7 6)

For a conducting cylíndrícal body, the scattered fie1d,

Es, at the boundary, C, is exactly equal to the negative of the

incÍdent field, Et, so that the net total f fl"t¿ vanishes. Thus,

Ea (r) = - /¡ (r')G(r,r')dl', for rec, (5.17)
" c"

Ís the Fredholm first kind integral equation formulation of the

prob 1ern.

In this applícatÍon, attention is focused on TM incidence

and an E-field representation is used, but the TE case can

easily be catered for in terms of the H-field, in a similar

fashion.

The results obtained for the solution of (5.77 ) with the

BEM with cubic splines (BSP) for the case of a unit-radius

circular cylinder are presented in this subsection. Comparisons

are given for a pulse expansion-point matching (PTlf) solution

of the same case. The tests were performed for medium-low and

high frequencies, namely ka = 1.05 and ka = 5.24, corresponding

to 50 MHz and 250 lü12 respectively. The PTM procedure outlined
( ?o\by Harrington t-"' was used.

A polynomic approximaÈion of the Hankel function (23) 
".,

utilized throughout.
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BSP/CIRC/KÁ=1.05/8E1 BSP/CltC/K¡=I.05/6L:

z-

! E=,

(a) (b)

PTil/ CLRC /K¿= I . 05 /60E1

c'

Figure 5.12. Scatterlng f"rcm conducting circular cylÍnder,

1ow frequency. (a)Radar cross section, BEl.l; (b) Surf ace

.rrtt"n, density, BElf; (c)tadar cross section, poÍnt matching;

(d)Surface current density, point matching.
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Figure. 5.13. Scattering from conducting circular cylinder, high frequency.

(a)Radar cross section, BBf; (b)Surface currents, BEI;

(c)Radar cross section, point untching; (d)Surface currentsrPTii.
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Resul-Ès in Figures 5,12 and 5.13 show that the PTI'Í resul-ts

and those of the BSP agree quite t¡e1l for the lower frequency.

At the higher frequency, the 8 elements of the BSP modelr Lê-

presenting an element size of 0,66À, do not seem to be sufficient

for accurate surface field computaÈion,

A model wíth more elements would greatly ímprove accuracy

at the higher frequency, as will be demonstrated in the next

subsec tion.

5.3.2. Conducting rectangular infinite cylinder

Moment meËhod solutions based on boundary integral relations

for the problem of scatterÍng from conductors, especially for the

case of elliptÍc and square cylinders v¡ere reported by Mei and

Van BladeI (24) 
and A¡dreasen (25) in two well-kno,^.n and Ínteresting

papers, certain points in the former being the subject of some

(26),
dlsput e

The issue of edge singularity of the current density, or

the magnetic field for TM incidence, v/as tackled in those works

by usíng a large number of pulses especially in the proximÍty
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of the edge, and ensuring that the integrand is not sampled

right at the edge but "evenly on either side of ít".

(27 )Shatai developed a conformal mappÍng technique

whereby the field singularity is directly incorporated, vÍa

the transformation of the scatterer surface to the unit circle,

to the integral equation to be solved. A non-singular function

is then sampled, and the coefficients involved in the transfor-

mation relate the surface current thus computed to the actual

physical behavÍor.

Our approach to the problem of edge singularíty of the surface

fields has been Èo modify the basÍs of approximation to reflect

the expected form of the singularity (see section 4.2, above).

A I form of behavior Ís expected 
(28), 

and the factor u in
-i73
T

the expressions (4.48) and (4.49) is chosen as L) = I/1.

Paral1e1 to the solution for the circular cylinder, pulse expansion

- point matching (PTM) solutions with a relatively large number

of approximating pulses are compared with the BSP results (Figures

5.14 and 5. t5).

Obviously, the results are in agreemenÈ with those reported

in the literature for the lower frequency and radar cross section

!_rJ__ _ (24,25,26, 27)computations The PTM, however, breaks dor^'n
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(a)Radar cross section, BEI'I; (b) Surface current density, BFI;

(c)Radar cross section, point matching; (d)Surface current

densify, point matching.
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at the upper frequency range, especially for the surface sources

- demonstrating the need for an even higher number of unknowns

to model the problem. The singular behavíor of surface sources

is seen to be very comfortably reproduced by the modifÍed spline

model, with a relatively 1ow number of unknov¡ns. The total

circumferential length of the square is 8 meters. At the higher

frequency of 250 l{H2, the wavelength being À = I.196 m, this

represent s 6.7 wavelengths. A total of 16 ef ements r,rere used,

Ímplying an average element length of 0.42)., or an eysrgge

sampling dÍstance at  -point Gauss quadrature, of 0.1À. The

PTM model, on the other hand represents a samplÍng distance of

only 0.028À. Accepted standards for reliable far-field results

alone are Ín the viciníty of 0.17À (2I' p'346). 
The accuracy

of the near-field computations at the cost of sampling at every

0.1À demonstrate the efficiency of the BEM.

5 . 3. 3. Dielectric circular infinite cylínder

The smooth circular diel-ectríc cylinder immersed in an

incident plane TM wave in free space will be the subject of this

subsection, and the square cylinder involving the problematic

"wedge-scaËtering" issue wí11 be considered next.

The moment-method solutÍon of a two-dimensional surface-

integral formulation of the problem was reported in 1965 Q9) 
.

Lrhile that approach possessed the abí1ity to cater for inhomogenous

bodies, it suffered relatively high computational- costs. The
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alternative, unÍmoment method 
(30), proposed by K. Mei in this

context, is similar to the wÍdely applicable t'mutual-constraint"

technique of McDonald and l,lexler (31' 32) . A boundary integral

equation may also be derived, as long as the dielectric is

homogenous, thus effectively reducing problem dimensions. A

general three-dimensional derivation was presented firstby Poggio&MÍller
(33). Applicatíons have been reporred in G4) , 

(35), 
and 

(:o;.

Morita has improved the technique ß7) to overcome the difficultv

posed when the excitation is at a resonant frequency of the

interior. His Extended Boundary Condition technique is essentially

an extension of the approach put forward by WaEeruran 
(38) for the

problem of conducting cy1índers.

Starting from the Hel-mholtz equatÍon, (5.71), the Greenrs

Theorem formulation (5.33) may be invoked for the axial component

of the electríc field:

which is valid for two regions: one, for r ínterior to the

dÍelectric body, in which case

(s. 78)

G- (r,r') = -ir12)1rlr-r'l) $.ts)L;t)
L+

v¡ith

k= w [t¡t; (s.80)

and the second, for r exterior to it, ín which case
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Gu(r,r') - 
ï 

r.(2) (ko lt-t' l) (s.8i)

with

ko=o /-elf,l. (s.82)

The rotal field is, E (r) = rlftl + Es(r), Í.e. the sum of rhezzz
incÍdent and scattered fields. Enforcing the continuity of the

tangential E and normal I t=efl fields, and writing (5.7g)

when r approaches the surface, we have the two coupled integral

equations:

E-1 (s) = % E-(s) + /{c^(=,r')9 (s,)-E_(r,)ãG"(s,s,)}as, (5.83)z z" a'e' ' 'a'l ,ðr.,;.

o = ,8,(s)-/{G- (s,r')ðE, {s')-E- 1"'¡aci(s,s,)}¿s' (5.g4)L^!Z (' 
ant ðr-,t

for s located on the boundary, c. Here G. and G. are as defíned

Ín (5.79) through (5.82). The incidenr field Ís given by

v,rr{r) = Eo exp(-jko*). (s.8s)

The solution of (5.83) and (5.84) direcrly gives the surface

fields, a fact which demonstrates an advantage of Èhe Greents

Theorem forrnulation, as remarked earlier.

The analytical expression in terms of Bessel and Hankel

functions for scatterecì surface fields is (tB, p '26I).

{€
Es=ri-n""jnoz'n

with

(s.86)
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eJ,' (ka) /e^kaJrr(ka)-Jr.,' (k,.a) /k^aJ- (k^:) 
,

eJ_'(ka) /e kal (ka)-H*i (k a) /k aH \') (k a)rtonnoono
(s.87)

in which eand ee denote the permittivity of the dielectric

and free space, respectively, and k and ko signify the wave

number in dielectríc and free space, respectively, as in (5.g0)

and (5.82).

The numerical solution of (5.83) and (5.84) was obrained,

for the case of the circular cylinder, with 16 cubic spline

boundary elements over the cylinder. Hankel functions of order

zero and one, as called for by the G(.) ."a ffr.l terms, were

approximated by polynomials Q3) . The results for varÍous dÍelectric

and frequency combinatíons are presented and compared to the

exact values in Figure 5.16.

The results are def initely satÍ_sf acËory. Ilhen the model

starts showing signs of deteríoration at ko=5,0 and e=2,5, the

propagatíon consËant in the dielectric is k=7.905, implyÍng

a circumferential length of. 7,905À.

,75 are particularly useful

the solution technology for

will be considered next.

tn

the

5.3.4. Díelectric square infinite cy1Índer

Meixnerrs well knov¡n work (28), cited above, presents an ín-

depth Èreatise of the problem of field síngularity at a common
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dielectric wedges (Fie. s.17).

Figure 5.17 DielectrÍc wedge configuration

Considering a díelectríc wedge in free

theory predicts that when H Ís parallel to

field components E- and E, behave r, rt-1,rQ
positive solution of

space, Ileixner t s

the edge, the electric

where t is the lowest

sintII (s. 88)
e+c sin t (Õo-li)

In 1970, Hurd (39) 
observed that

If e # e ¡ and OslO,II ,2II , there always exists a solution

of (5.88) such that 0<t<1, meaníng that the Electric field

is singular at r = 0, and

c -c o=+

a)
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due to the symmetry of (5.88)

Õs and 2ll-Õo dísplay the same

to consider the case when e/e

Assumíng that 06<lI, then, the

approaches

in e and eo, wedge angles of

singularity. He then vTent on

9 becomes very large.

smallest root of (5.88)

t = r1/(2il-00) (s.89)

which gives the correct singularity for a perfecÈ1y conduct-

ing wedge (see section 4.2), but means that a wedge of Õe

with e/e6 very small has the same discontinuity, due to

syrnmetry. But it is knov¡n, by exact solutÍons (e' g' 40)

that a perfectly conducting wedge of angle ós>JI does not

have a field singularity. Thus, Meixnerrs theory which

predicts singularity for hÍgh-dielectric constants but

non-singular behavior for perfect conductors \..ras put to

quest ion.

Bach Andersen and V. Solodukhor, 
(4t) studied the same

íssue, and demonstrated that obtaining conductor behavior by

letting e -+ æ ís often correct, but not always - when e/ee

is infÍnite, equation (5.88) which is derived on the assumpËion

that fÍelds inside the dielectric are non-vaníshing, ceases to

app1y. Thus, they proved that permeable wedges of angle 0e>II

have a singularíty of the E-fie1d whereas perfectly conducting

wedges of the same angle do not. Upon further analysis of

Meixner's theory, they also showed that r¡híle those results hold

for the electrostatic case and for perfect conductors, ín time-
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varying configurations, Meíxnerts síngularity predictions do not

hold for dielectric wedges.

rn Èhe light of this briefly summarized controversy around

the dielectric edge singularity topic, we have attempted a solu-

tÍon of the dielectrÍc square cylinder scattering problem without

modifyíng our polynomic spline basis. To determine field behavior

at edges, a relatively large number of elements v/ere packed into

their vicinity. Resul-ts obtained by the computer program for

Ëhe TE incidence case are presented in Figure 5r18,

our results Índicate locally discontinuous peaks at both

edges. Andersen and solodukhov used a smal-l-radius-of-curvature

approximatíon for edges, and reported similar peaks at the

lateral edges, but noE at the edge of incidence. Their numerical

computations showed that the fÍelds tend to zero there (Fig. 5.19),

similar Èo the expectation in case of electrostatics. They were

aÈ a 1oss, however, to explain the deviatÍon from the electrostatic

behavior that their results demonstrated.

It can be concluded Èhat, as Andersen and Solodukhov have

also stated, the behavior of electromagnetic fields of higher

frequencies in the vicinÍty of dielectric edges is not necessarily
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as predicted for the erectrostatic case. rt is likely that locaf

singularities exist in the vicÍnity of perfect edges, but approxi-

matíons that involve even very small radii of curvature may

suppress the peaks - which would explain the discrepancy between

Andersen and Solodukhovts results and ours. The degree of agree-

ment between our numerical results and the exact values for the

case of the smooth circular dÍelectric cylinder leads us to

believe that the singular behavior at both edges, predicred by

our program, reflects a close .approximatíon of Èhe phenomenorr.

5. 3. 5. ConductÍng sphere

Comprehensi-ve analytÍca1 soluÈions to the problem of

electromagnetic scattering from a conducting sphere are available
(42¡' , and the results for various frequencies provide a classical

test for any numerical procedure for the soluÈion of three-

dimensíona1 scattering problems.

Maxwellfs equations (5.70) in a divergenceless region, gíve

rise to the vector Helmholtz equatíons:
)-

VxVxE-k-E = 0

V*VxH-k2H = 0

A scalar free-space Greents funcËion,

VxVxGâ-t2câ={(r-r')â (s.e2)

and (5.91) ,

Invoking the

(s. eo)

(s . 91)

G, that satisfies

can be utilized

â denotes a unit

to construct

vector ín an

the solution to (5.90)

arbitrary direction.
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vector form of Greenrs theoren (*), v/e can obtain

r(r)"5 =yI{ ¡(r')*V*c(r,s')â-c(r,s')âxVxE(s')}.â¿s (5.93)
S

símilar to the scalar formulation sunmarized in (5.33), with the

same definition of y in terms of the position, r.

(5.93) holds for the tt fi"f¿ as we11, and applicatÍon of rhe

proper boundary conditions on (5.93) or íts counterpart for the

magnetic field results in an Electríc Fíeld Integral EquatÍon

(EFIE) or a Magnetic Field Integral Equation (MFIE), respectively.

Tradítional preference has generally been (33) for the MFIE

in smooth-surface problems, and for the EFIE in thin cylindrical

configurations.

Enforcing the condition Èhat at the conductor boundary, Èhe

normal magnetic and tangential- electric fields should vanish, i.e.

ñ'H1r¡ = g,

¡ -i.
fixE(r) = 0, for reS, (5.94)

and leÈting Y = -2 on S, (5.93) and its H-field counrerparr

lead to the MFIE:

(*) /{Ã"Vxvxã-¡.vxVxa}¿v =,i{BxVxÃ-Ãxvxs}" ds
VS

in which Ã and B rr" vector functions of position with con-
tinuous first and second derivatives within and on S, r¡here S

is the boundary of V.
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Figure 5.20-. Geonetry for three-dimensional scattering problems.
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ñ x,rJ(s') x V'G(s,s')ds' ->iG) = -n*uif"l
S

in which

and

(s.9s)

(5.e6)

(s.e7)

and VtG(s,st)

, G. Explicitly,

J(s) A
âxH (s )

represents the equivalent surface currents,

denotes Ëhe gradient of the scalar function

G(r,rr ) = e-jk I r-r' I (s. e8)

l(r*julr-r' l)û, (s.ee)

4lT lr-r' I

and

V'G(r,r') = I e-jklr-r'
4nF:¡lz

(5.95) is a Fredholm integral equation

in terms of the equivalent surface current,

leads to the scattered field through:

H" (r)=,fJ(s')*V'G(r,s')ds'.
S

in which the unit vector, û, is given by:

^ (r-r' )u = t----------;--t- .r lr-r'l

v,G(r,r,) * ¡r. "jkltl .jkûr'r' ^
4-ffiT--

(s.100)

of the second kind,

i(r). Its solurion

(s . 101)

To compute far-fíeld quantities, phase terms can be neglected

which results in

where only the r-l a.r* of the bÍnomiat expansíon of

(s. i02)



-152-

(r-r')+lrl-(T"T')
I'l

has been retained for r))rt.

(s.103)

(s. r04)

The radar cross-section, defined as:

o = 1im 4r,, idÏ 
^t-* ---- l¡t l2 '

can thus be computed as:

o = r lr¡r.r¡(=') x û*)"jk"'t'dr,12. (5. r05)+ns r

The computations have been carried out for a plane wave

with unit E magnítude, incident at an arbitrary specified angle

AS

"t(r) 
= 1û, .-jÊ't (5. 106)-nn

in which û. denotes the unit vector in the magnetic field dírection,h

and Ê is the unÍt vector in the propagation directíon (Fig. 5.20).

The magnitude is scaled dorun by n, the intrinsic impedance of

free-space.

The surface fields and scattering cross section for a uniL

sphere in a línearly-po1arízeð. TEM wave of unit H-field magnitude,

and f = 80.9 MH , as computed by the BEM with cubic splinez

bivariate elements, arepresented in Fig. 5.2L. An 8-element

model of the compleËe sphere using only 12 unknovms in the
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discretized BEM model was utilized. A 3-dimensional cartesian

vector form of (5.95) in this case resulted in a 36 x 36 system

of equations to arrive at the solution in 49.5 cpu seconds (,^)

wÍthout using symmetry. A classical moment method approach to

the same problem would typically require a linear equation set

of the order of 264 x 264 to 360 x 360 without using syrnmetry
(43), or 33 x 33 to 45 x 45 íf I/8 symmetry can be catered for.

In comparison to the Lagrangian element implementation of

the BEM 
(4) 

"" we1l, splines have introduced noticeable savings

in this problem: similar accuracy in terms of the far-fields

vras reported at the same frequency and the same configuration,

with a 38-node model requiring a LI4 x 114 system that took 200

cpu seconds (*) for solution. To achieve accurate surface

sources, improved geometrical modelling was recornmended. Considering

the relative cheapness of this particular spline model, the results

presented in Figure 5,21 together with Èhose of Lean(4), ,t" quite

encouraging i

5.3.6. Conducting cube

Prevíous work on electromagnetic scattering from a conducting

cube is not readily available. The closesÈ topics of recent

interest seem to be that of scattering from a thÍn plate (44'45),

and from three dimensional objects possessing rotational symmetry

(*) On the University of Manitoba Andahl 470/V7 system using
ForËran H software.
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(45). Poggio and Miller's relevant articre (33), presents the

applicable theory, but their solution technique of wire-grid

modelling or flat patch approximation of sources have not been

applied to the particular instance of the cube.

In our view, the aspect of the problem which makes it

highly "un-appealing" is the edge singularities it involves and

the immense amount of unknor,,¡ns that would be required to model

the irregular behavior of surface sources, due mainly to the

effect of the singularities.

Having demonstrated the reliable operation of the BEM with

three-dirnensíona1 cubÍc spline elements in the case of electro-

magnetic scâttering from a conductíng sphere, \¡re applied that

methodology to the case of the conducting cube. As verÍfíed by

a number of researchers (39' 4l), 
""r*ner's 

edge conditÍon (28)

holds for the perfectly conducting edge immersed in a time-

varying electromagnetic field. Thus, the I form of síngu-
tul

larity was Ímposed on the appropriate shape functions over each

element bordering an edge. 54 rectangular elements over the

surface (an array of 3 x 3 on each face) were used, giving rise

to 56 unknor¿ns with three degrees of freedom each; i.e. a 168 x

168 system of linear equations r^¡as solved. Fígure 5.22 presents

the results for linearly-polarized plane-wave incidence perpen-

dicular to the center of a face at a frequency of ka = 2.0, in

which'a'denotes half the length of an edge of the cube.
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CHAPTER VI

CONCLUSION

The goal of this work was to investigate the viability of a ne\^/

methodology of solving boundary value problems posed ín integral equation

form. It involved a novel boundary elemenË discretization scheme with

uni-variate and bi-variate elements in two- and three-dimensional space.

Galerkin's technique of solutíon was adopted as the standard approach.

The overall technique \¡;as applied to a wide spectrum of electromagnetic

field problems in order to demonstrate its meríts and establ-ish the

shortcomings.

The first general conclusion is one Èhat was expected: cubic

splines provide an effective tool for surface modellÍng - a fact that

has long been established (1) in the area of computer aided desÍgn and

manufacÈuring. Contrary to the surface desígn area, horvever, the boundary

element implementation involved a representatíon of unknor"'n electro-

magnetic surface sources and their mathematical recovery. As such,

reformulation of the surface representation techniques oríginal1y geared

to an trinput-onlytt operatíon was necessary. In other words, surface

design involves accurate representatíon and reproduction of user-

specified information, whereas the boundary element method has to address

the additional requírement of evaluating unknovrn functÍonal behavior, and

the ensuing algebraic symbolísm has to be amenable to manipul-ation within

the discretization and solution algoríthrns. The uni-variate and bi-

variate cubic spline elements developed ín Chapter III and summarÍ-zed

in the expressions (3.3) and (3.21), respectively, respond to these

stipulations.
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In particular, the three-dimensional cubic spline element is an

effective ínstrument that ensures curvature continuity (unless otherwise

required), and high-fidelÍty modelling with a minimum of support

ínformation. The most stríking illustration of these features is provided

for the case of a sphere modelled with only 12 unknowns to achíeve

hígh1y acceptable results in the electrostatic Dirichlet and electro-

magnetic plane-wave scattering problems (subsections 5. 2. 5 and 5. 3. 5) .

As the problem size is reduced and geomeLry simplified, the advantage

of splines over earlier tools such as pulse or LagrangÍan-polynomial

approximation dininishes. In most t\ro-dimensional problems, while a

definite advantage over the classíca1 pulse expansion technique ís

enjoyed in terms of the size of the discrete equation system and precision

of results, comparable accuracy has been achieved with Lagrangian

elements. The results and comparisons presented for the parallel

plate and coaxial capacÍtors and Ínfiníte díelectric cy1índers reÍnforce

this observatÍon.

The fundamental improvement that the spline methodology procures,

in comparison to the Lagrangian interpolatíon scheme, relates to the

fact that as interpolation order is increased in Ëhe latter approach,some of

the added nodes are associated only with one elenent, whereas with the

cubic spline element methodology devised in this work, all unknowns

(or vertices) are shared by a large number of not even necessarÍly

adjacent elements(:t).This fact accounts for the notable savings demonstrated

in the three-dimensional problems - a justification of Ëhe preference

for Èhe communal over the private !

(*) See þpendix.
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A second conclusion relates to the use of a t'modifíed spline"

basÍs to approximate functions which rnanifest singular behavior. This

implementation involved algorÍthmic modificatÍon of the expansion

functions used for source approximation to reflect the expected form

of singularity. As much as it is a generally applicable scheme, this

is still an ad hoc approach and there is much room for further work on

the subject. The following issues have to be addressed: i{hat should

be done when the form of the singularity is not knovm a priori? How

does the utilization of a "modified" i.e. non-polynomic basis affect the

convergence and general validity of the Galerkin scheme, origÍna1ly
(2)proven for non-si-ngular basis functions only? Furthermore, the

algorÍthmic problem of dealing with the Greenrs function and expansion

function singularities concurrently in terms of quadrature Íntegration

can be studied in depth. Our approach to this latter íssue involved

utí1izíng a quadrature scheme that catered for the Greents function

singularity explicitly and rígorously, while the expansÍon function

singularity was relegated to an ordinary Gauss-Legendre quadrature

formula, noting that increased quadrature orders rdere necessitated.

Our observation has been (cf. the problem of the three-dÍrnensional

conducting cube) that even when the exact form of the singularity of

sources vuas not knov¡n, use of expansion functions that contaíned some

singularity helped to achieve physically plausible results. Hitherto

unexplored subject of singular field behavior in three-dimensional wedges

and tips can be probed with this tool. Note, a1so, that the variatíonaf

functional, related to minimized energy content of the system, vTas

signíficantly less in the case with singular expansion functions in
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comparison to that comPuted with a polynomic basis alone, in the problem

of the conducting square cylinder - demonstrating better approximation

of the phenomena. I{hen Ëhe form of the singularity \ras knor,¡n, (e.g.

the para11e1 plate capacitor) solution accuracy was very high. Thus,

despite the unanswered questions raised above, the technique of basis

modification v¡as shovm to be viable. The particular scheme (expressÍons

(4.48), (4.49) and (4.50)) of adding a singular rerm ro one end of rhe

element while preserving spline behavior elsewhere can be said to have

been generally successful.

An important area of relevant future research has to do with the

structure of the system of linear equations that the BEM gives rÍse to.

It is well knor'm that the Finite Element Method of partial differentíal

equation solution yields sparse matrices, and a banded matrix can be

obtained if specÍal care is taken in numbering the elements and the
/a\

nodes \J''. The BEM, on the other hand, usually produces a dense matrix.

Especially if the símp1e- or double-layer distribution formulations

(cf. sec. 5.1) are followed, an ordinary f.actorízation scheme seems to

be the only relatively effícient vray to solve the linear equation system

that is produced. The Greenrs Theorem formulation, restricting each

íntegral to one closed (may be bounded by the "surface at infinit)¡")

region on1y, seems to be an exception. The equaËions per region

will be dense, but the sysËem matrix in the case of a multiregÍon problem

will be block-sparse. The equations will be coupled only at common

interfaces. Wexler (3) t"" indicated the applicabÍlity of the method

of Diakoptics to such field problems. BuL a BEM program that Íncorporates

this feature is stil1 a goal of the future, whose realization will
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possíbly be rewarding not only to its proponenËs in the area of electro-

magnetic fields, but also in a broad spectrum of engineering disciplines

that are concerned with the analysis of large systems.

The progressive Numerical Method (4) is another candidate for
effícient solution of large-scale block-structured systems wíth a

properly designed essentially iterative algorithm.

To sum up, the cubic spline methodology has been shov¡n to be a

reliabfe approach in the Ímplementation of the BEM. In many real-

lÍfe cases two-dimensional or symmetric models involve a degree of

simplification, and the capability of tackling the three-dimensionaf

actual problem itself is ínvaluab1e. The cubic spline technique,

cutting dovrn computational overhead by reducing the necessary information

support, and ensuring high-fidelity geometrícal modelling, ís seen as

a key feature Ín the solution of many real engineering problerns.
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Appendix A

EXAMPLES OF CUBIC SPLINE ELEMENTS

A. 1 TI.IO.DIMENS IONAL ( UNT-VARIATE ) ELEMENTS .

ttr v= o,(t).
ì=1 J J

P(0),

P(1).

DefÍnÍtÍon: P(E) =

Ends of element: Pt =

Pz

'A.1.1

Vt

T/'2

v3

Ytr =

D='t
P='2

(2,I)

(1,1)

(0,1)

(-1,t)

Vt + 4Uz

Yz + 4V:

(1,1)

(0,t)

A straÍght-1Íne element.

+

+

v.
J

Y4

V2

FÍgure A.l. A straíght-1ine element.
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curved two-dÍmensÍonal element.A"1.2

V- =I

Yz =

V¡=
ft

4

Þ-'1
p-'2

(0,1)

(-t,o)

(1.5,0)

(0,1.5)

(-1.5,0)

(0,-1.5)

vt + 4Yz +

Yz + 4Ug +

v3

V¿

Figure !"2" A curved two-dÍmensional element

circular quadrant.

approximâ t e
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circle model,Ao l 3 The sÍmplest

Vl = (1.5,0)

!Z = (0n1.5)

V: = (-1.5,0)

Y+ = (0,-1.5)

Vertices of elements:

element vertices Ir Pz

I

2

J

4

v¿ ur 'z v:

vi Yz vg Y4

Yz v3 v4 vl

V3 Yq vt Yz

(1,0)

(0,1)

(-1,0)

(0,-t)

(0,1)

(-r,0)
(0,-1)

(1,0)

Figure 4.å. A circle rnodel.
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model "Aolo4 A squâre

Vt = Y2 = V3 =

!+ = V5 = V6

Yl = Vg = V9 =

vto = Vrr = Ytz

(1,1)

(-t,t)
(-1,-t)

= (1,_1)

Elements are defÍned

cyclÍca1 fashíon, i.e.

(Vlt , Y12 , Vl , Y2 )

similar to the circular example, in a

(vt , Y2 , V3 , Y4) for element llI,

for element lfII, etc.

V7,Vg,V9

JL
element'tr2-

\ {"lement 
#l

element 
#lZ

FÍgure A.4. Boundary elements for a square cylinder.



A.2 THREE-DIMENS IONAL

DefÍnitíon: P( E,n ) =

- t7g -

(BI-VARIATE) ELEMENTS
T2
I v. A.(E.n).:-r J J

-l-r

Corners of element: P00 = P(0r0)

Pl0 = p(1,0)

vg , P01

vtt , Pll

P(0,1) = VtO

= p(t,t) = vlz

A.2 "t
\I'1

\I=,2

vg=
tt 

-
4

17

)
\/'6

\/'7

\/'8
\/'9
\/-'10
\7-'11

vtz =

4 planar sqúare

(-lr0rl)

(2,0r1)

(-1,1,1)

(2r1rl)

(0r-1,1)

(0,2r1)

(1r-l,l)

(1,2,1)

(0,0,1) = P00

(0,1,1) = P0l

(1,0,i) = P10

(1,1,1) = Pll
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A.2.2 The l2-v ertex sphere urodel.

Vt = (0,0r1.5)

YZ = (0r0,-1.5)

V3 = (1.5r0,0)

Y4 = (0,1"5r0)

VS = (-1.5r0r0)

Ve = (0,-1.5,0)

Y7 = (0r0rI)

VB = (0,0,-I)

V9 = (I,0r0)

Vl0 = (0rI,0)

Vlt = (-1,0r0)

vt2 = (0,-1r0)

element definÍng vertex numbers

I

2

3

4

5

6

7

8

5 2 6 2 7 7 6 5 7 7 9 i0

6 2 3 2 7 7 3 6 7 7 10 1l

3 2 4 2 7 7 4 3 7 7 11 12

4 2 5 2 7 7 5 4 7 7 L2 9

t 5 I 6 6 5 I B 9 i0 8 B

1 6 1 3 3 6 B I 10 ll 8 8

1 3 I 4 4 3 8 B l1 12 B B

r 4 I 5 5 4 I 8 12 9 8 8

The sphere roodel is presented in Figure 4.6 "
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Figure A"g. The l2-vertexr S-element cubic sp1Íne model of

a sphere,

V5 Vz


