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ABSTRACT

R. A. Fisher (1922) defined the concept of the
efficiency of estimators of a parameter 6 e0c R in
terms of limiting Normal distributions. As this
definition entails several deficiencies, one remedy
was to compare the behaviours of the estimators in
the tails of their distributions since any reasonable
estimator should be well-behaved near the true value
of 0 (eg: the Central Limit Theorem). This has led to
the establishment of the Theory of the Probability of
Large Decviations.

For consistent estimator-sequences {Tn}:'f, the

tail probability
a (T ,0,e) = Polim, -8l = €1,

tends to zero as n tends to infinity. Basu (1956)
proposed that the rate at which a, 0 be used as a
measure of the asymptotic behaviour of the estimator.
Since this rate is typically exponential in naturc,
Bahadur (1971) suggested that we compute the exponential

rate of convergence:

— py 1 N
bh(1,0,e) = K&mn+m = log an(Tn,O,a).

-4V -



Fu (1971) showed that for any consistent estimator-

sequence, the exponential rate is bounded above by

B(0,e) = infy{E,slog §%§+%?% sjo-o*| > e},

which is called the Bahadur bound. A theorem by
Chernoff (1952) as modified by Bahadur (1960) 1is
often used to compute the exponential rate in
particular cases.

The M2thod of Maximum Likelihood Estimation
has been shown to possess many desirable properties.
Indeed, the Maximum Likelihood Estimator (mle) does
have a limiting Normal distribution and is Fisher-
efficient. Also, Rao (1961, 1962, 1963) shows that
the mle, 6, is generally favoured among efficient esti-
mators in that 6 has minimum loss of sample information
on O and is thus second-order efficient. This property
is measured in terms of a parameter y?, where y was
named the statistical curvature by Lfron (1975).

In this thesis, we consider a translation invariant
location paramecter 0e¢R. We propose a competitor to
the mle in the form of a Probability Ratio Estimator
(pre), which is defined in §2.1. We show that, subject
to certain regularity conditions on the underlying

distributions, the pre is also sccond-order efficient.



Also, for symmetric densities, the pre is shown to
"dominate' the mle in the sense that the exponential
rate of the pre is optimal for the class of trans-
lation invariant estimators of which the mle is a
member. Some examples are also provided to support

the contention that the pre also dominates when the

symmetry is lacking.

Then, as the local behaviour of the exponential
rates as eg»0 is of especial interest, we felt that
some insight could be provided by the Taylor Series
expansions of the exponential rates. This follows
the work of Fu (1982) who obtained expansions up to
the fourth-degree, which is sufficient for second-
order efficiency comparisons. Since both the mle and
the pre are second-order efficient, we were required
to find expansions up to the sixth-degree in order to
obtain theoretically meaningful differences. Obtaining
these expansions led us to define several constants,
in particular, a parameter, A®, which appears to be
a cubic extension of the quadratic parameter yv?, the
squared- curvature. We then considered several prac-
tical cases, inclﬁding the Logistic and Hyperbolic
Secant distributions, which numerically demonstrate

that, although the mle is sccond-order effient, 1t is

“UA -



unlikely that it is third-order efficient (a concept
that is as yet undefined). We also consider cases
where some of the regularity conditions do not hold.
In the semi-regular casc of a mixture of Normals,
we obtain, through direct computation, results similar
to those in the Logistic case. For the non-regular
Doub le Exponential distribution, the pre still scems
to dominate the mle (in the sense of exponential
rate), although here neither estimator-sequence
appears to be scecond-order efficient (likely due to
the non«rcgularity). An appendix is provided which
gives details of proofs and computations, and provides

some useful reference tables and equations.

-vALL-
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CHAPTER ONE
INTRODUCTION

1.1 Large Sample Theory and Large Deviations

Until fairly recently most statistical estimation
and inference was concerned with small deviations about
the mean. The study of large samples has led to the
Central Limit Theorem (CLT) which basically states that
for a sample of independent observations on a population
with mean 0<e, the sampling distribution of the sample
mean will tend to a Normal Distribution, in the neigh-
bourhood of 6, as the sample size becomes large. In this
way, Fisher (1922) defines the CRITERION OF EFFICIENCY
as being satisfied by all statistics (estimating the same
quantity) which, when derived from large samples tend to
a Normalidistribution with the least possible variance.
Some major limitations are apparent:

1. How large is large? That 1is, how large a sample
size is required before we can apply these large sample
results (such as CLT). This is especially important in-
the tail regions of the probability distribution, awayi

from: 0.



2. llow relevant arc asymptotic results when
dealing with finite sample sizes? How efficient is
an estimator derived from a finite sample? Or, in
another sense, how can we choose between estimators
which satisfy Fisher's Criterion of Lfficiency when
we have finite samples?

3. What do we do in the case of non-Normal
limiting distributions? That is, how can we define
the efficiency of estimators which do not tend to

Normality?

A remedy, in the small sample case, has been to
consider ROBUST PROCEDURES. Here, one deals with tests
and estimators which are not greatly affected by small
changes in the underlying distribution [see lluber (1972,
1977)]. One unfortunate tendency of these procedufcs
is that many of these methods will tend to discard the
observations in the tails of the distribution (''the
outliers"). A recent paper by Stigler (1977) suggests,
however, that in many real data situations, the non-
robust sample mean scems to perform almost as well as
the best robust estimator (of those considered), and
much better than most of the other robust estimators, in
particular, the median, which does quite poorly overall.

This may be partly duc to the fact that many of the robust
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procedures were designed to handle hypothetical situations
which rarely arise in the real world (e.g. the Cauchy and

Double Exponential Distributions).

Another approach to remedy these limitations of
Fisher's definition is to examine the behaviour of the
estimators in the tails of the distribution. This has
led to the foundation of Large Deviation Theory.

Consider a sample S = {Xi} of n observations with
mean 6 and variance o2<e. By the Central Limit Theorem,
in = 7 Xi/n will tend to N(6, o?/n) as n»w. Hence, at a
deviation of ¢/v/n from the mean, we will get a fixed
distribution as no». If, however, we take some fixed
point, 6 + e, the tail of the distribution will get
smaller and smaller as the sample size increases [see
Figure 1.1]. Suppose, we have several "efficient' esti-
mators with distributions tending to N(9, o?/n). Then we
would wish to select the estimator with the fastest rate
of convergence to this limiting Normal distribution.

One way of measuring the rate of this convergence is to
measure the rate at which the tail probability is tending
to zero. This rate is suggested by Basu (1956) as a
measure of the asymptotic accuracy of the statistics, He

calls this rate the concentration. Large Deviation Theory

is then largely concerned with measuring the rate of



' B
9+e//7 % 6+e//§
0+e//3

FicURE 1.1: Convergence to Normality in the small deviation.
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convergence to zero of the tail probability of a statistic.
In general, if Tn is any point estimate of 0, we

have, for a_>0,
n

A = P(r -0 2a). (1.1)

Then, we define:

1. If a, = 0(v/n) then a, is an ordinary or small
deviation. [The notation O(rn) means Otrn)/rn is bounded
and o(rn) means o(rn)/rn + 0 as n+». See Chernoff (1950).]

2. If a = 0(/T56”57H), then a_ is a moderate

deviation, a concept introduced by Rubin § Sethuraman

(1965).
3. If a, = 0(1), then a is a large deviation.
For an introduction to the theory of large and
moderate deviations sece Sethuraman (1970). Some more

advanced theory is provided by Chernoff (1952) and

Bahadur (1971).

1.2 Review of the Literature

The first major result in Large Deviation Theory
was an extension, by Harald Cramér, in 1938, of the
Central Limit Theorem [see Chernoff (1956) or Sethuraman

(1970)], which may be stated as:
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Theorem 1.1 [Cramér, 1938] rLet {Xi} be a random

sample from a distribution with mean 0 and variance

] . tX . ,
0%, and with Ee ~<® in some neighbourhood of t=0.

Ir an>0 and a, = {1}, then

where A(t) is a power series in + which involves

the cumulants of X and converges for small t (called

Lphe Cramér Series).

Chernoff (1956) obtains the result for the important

special case when a, = a=-(c - 8)/o

Theorem 1.2 [Chernoff, 1956] If EetX<Oo for t in

some neighbourhood of zero, and ¢<0, then

P(in < ¢) = p//m(b + 0(1/n)) (1.3)

. . e (% -
\where b>0 and p = Lnét te (x C).

Chernoff (1952, 1956) also obtains the rates of
convergence of the error probabilities 1in testing a
simple hypothesis HO versus a simple alternative Hl’

with a test of the form:

"Reject H,. if Y_ = k_" 1.4
J 0 * n n ( )
where §n = 7 Yi/n is the mean of n independent obser-
vations on a random variable Y where y, = E(YlHO) <

E(Ylﬂl) = y;. For example, the likelihood ratio test

3 :
P((in - 0) /0 < —an) = @(—an/ﬁ)eﬂnan.K&ﬁhkl+0(an)] (1.

2)‘
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is of this form, where Y = log E1(X)/f0(xﬂ- The error

probabilities are then given by;

o, = P(T_> k |1, (1.5)

it

B

N P(in < knlﬂl). (1.6)

Chernoff then notes that the selecction of kn to minimize
the risk with respect to some arbitrary convex loss
function is equivalent to the selection of kn to minimize
the linear combination, Bn + Aan, for some A>0, and he
hence obtéins the result:

-1
, . n
KLmn+m [&nﬁkn (Bn + Aan)] =P, (1.7)

where p is independent of X, and

0 = Lnéuoﬁaﬁul p(a), (1.8)
o{a) = max[mo(a), ml(a)], (1.9)
mo(a) = inf, ELeY T a1, i=0,1. (1.10)

Chernoff then suggests that-log p be considered
as a kind of information measure for a test of hypothesis
bascd on the sums of observations, and hence defines the
relative efficiency of two teéts with indices o and p=*
respectively, as

_ 1og px :
e - Tog 5 (1.11)
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Kallenberg (1982) investigates some of the properties
of "Chernoff's Efficiency'". Then, in particular, for

the likelihood-ratio test,

. o0 t 1-t .
Prp = Ln60<t<l [w(fl(x)) (fo(x)) dx, (1.12)

'where.fo, fl are the densities of X under HO and Hl
‘respectively. "Chernoff's Information" , -log PrR>
is sub-additive in that:

(1) Information on m replications of the same
random variable is wm times the information on one
single observation.

(2) Information on the sum of independent
observations of several random variables is less than

or equal to the sums of the corresponding information,

Chernoff (1956) also considers the test for
which kn is chosen to minimize Bn for a fixed o = oy
and he shows that in this case

. ) n? ‘ .

K&mn+m [Lnﬁkn Bn] = p¥ = ml(UO)f (1.13)
and, fof the likelihood-ratio test, the corresponding
measure of information 1is

. - _fo(x)
~-log P g = /o fO(x) lOg[fIT§T] dx, (1.14)

which is the information measure for the discrimination
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between HO and Hl , as defined by Kullback & Leibler
(1951). The Kullback-Leibler information numbers are
additive and play an important r6le in large deviation
theory. An interesting discussion on the physical

interpretation of Kullback-Leibler information numbers

is given in Hoeffding (1979, §8.12).

In this thesis, we will be concerned mainly with
large deviation theory applied to the problem of esti-
mating a one-dimensional parameter 0c0=R'!. In general,

a large deviation set is any set whose closure does not
contain 6. In this case, the large deviation sets of the

greatest interest arc the tail sets, 06(6), where

D_(0) = {xeR|x <6 - ¢, x 26 + el. (1.15)
The tail probability of an estimator T = {Tn(xl,...,Xn)}
of 6 is then given by an(Tn,G,e),

a (T_,0,6) = P(T (Xy oo X ) € D_(0)). (1.16)

Then, for large samples, we need only be concerned with

estimator-sequences which are consistent for 9, that is,

[

P . .
T Xl,...,Xn) 5 9 as no»», and thus, for which an(Tn,O,e)

n(
tends to zero. As mentioned, the rate at which this
quantity tends to zero has been proposed by Basu (1956) as

measure of the asymptotic performance of an estimator.
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But since in typical cases the tails of the

probability distributions are exponential in nature,

a (T _,0,¢) = o b, 0,e) + o)) (1.17)

Thus, Bahadur (1967, 1971) suggests that we instead

compute the exponential rate of convergence,

00

b(T,0,c) = Lim_ -+ log a (T ,0,€), (1.18)
n n n n .

which is often easier to compute and allows for ecasier
comparisons to be made. Sievers (1978) introduced

the inaccuracy function

/ = r <H-¢ z6- i .
An(Tn,e,e) max_Pe(Tn 9~g), P (Tn O+e) 1, (1.19)

0

which he adapted from a kind of minimax procedure of
Huber (1967, 1972). Correspondingly, he defines the

inaccuracy rate as

. _ . _i .
B(1,06,e) = K&mn = log An(Tn,G,e). (1.20)

-»c0

But, as.both rates depend solely on the rate of conver-
gence of the larger of the two tails, we have b(T,0,¢)
B(T,6,e). We can thus determine the exponential rate

of convergence of the tail probability to zero by either
(1.18) or (1.20), and hence we will refer to cither as

the (exponential) rate. One final note, that although
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b(T,0,e) = B(T,0,e) it is usually not true that the exact
rates are equal (an(Tn,G,e) # An(Tn,G,e)), and also if
two estimators T! and T? have the same exponential rate,

this does not necessarily mean that they will also have

the same exact rates (an(Tl,O,e) # an(TZ,G,e)).

Evaluating the rate b(T,0,e) is generally not an

easy matter. If the estimator ¥ =T (X;, X,, ;X))

g(x) is any transfor-

i

is defined by a sum, ZYi, where Y
mation of X then Chernoff's Theorem (Theorem 1.2) can be
used to obtain the exponential rate. Bﬁhadur (1960, 1971)
adapted the procedure of Chernoff to the problem of esti-
mation, and using exponential centering [see Feller (1969) 1
proved the following general result:

oot

Theorem 1.3 [Bahadur-Chernoff] 1f {Yi} are

independent replicates of a random variable Y,
) . . , tY
with finite moment-generating function, Ee <o,

in some neighbourhood of t=0, and P(Y>0)>0, then

L.im —% log Pe[ZYi > 0] = ~-log p (1.21)

n——)OO

tY
e .

here = ing
L o

This result can *hus be applied to compute the rate
whenever '1‘n is defined by means of a convolution, such as:

1. Sample Mean (g(X) = X/n),
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2. Maximum Likelihood Estimator (mle)
[g(X) = 8/96 log £(x]6)7,

3. Probability Ratio Estimators (pre)
[g(X) = log [f, (X)/f (X)],

4. Huber M-EBEstimators (maximum likelihood-

type estimators).

Other methods to compute rates, under special
sets of conditions, have been given, by Sievers (1969)
and Book (1975) using the moment-generating function of
the estimator; by Killeen, Hlettmansperger and Sievers (1972)
using densities; by Fu (1971, 1975) using monotonic log-
likelihood ratios; by Bahadur (1971) using bounds whose
ratio tend to one. For the discrete (multinomial) case
a method to obtain the exponential rate was given by
Sanov (1957). Also, Efron § Truax (1968) give methods
for computing large, moderate and small deviations for the

exponential family of distributions.

If we are unable to directly compute the exponential
rate, then it would at lcast be desirablé to be able to
bound it. Bahadur (1960, 1967, 1971), in various special
cases, obtains a bound B(6,e) which is generally called

the Bahadur bound, and is defined as:

B(0,e) = L}’lﬁek{:{((ﬂ"*,ﬁ):le - 0% > e}, (1.22)
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where K(0¥,0) is the Kullback-Leibler information

number, in this case given by

K(0%,0) Eeklog 1f(>‘{+é ) . (1.23)

Fu (1971) showed directly that for any
consistent estimator T of 6, and without any con-

ditions on f(x]|0), that

Cim sup_ - log a (T ,0,) < B(0,c). (1.24)

For testing composite hypotheses,'HO: 0By,
Bahadur (196%, 1971) defines the level, Ln(S), of the
test statistic, Tn(S), as the probability of obtaining
as large or a larger value of T as that observed.
Under the alternative hypothesis, H, 0/40,, we would
have Ln(S)+O almost surely. Hence the rate at which the

level tends to zero,

1 1.25
L 1og () = % c(0), (1.25)

Eimnﬁw
is a measure of the asymptotic efficiency of T, for 6.
Here, c(0) is called the exact slope. Bahadur (1967),
under certain restrictions, and Raghavachari (1970) and
Bahadur (1971), without any restrictions, obtain a result
similar to (1.24) for the level:

. 1 . . .
Lim BUP L g log Ln(S) < Lw%fK(O,bo)lwoceo}. (1.206)
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Bahadur (1967) also shows that this upper bound on
the level is attained by the likelihood ratio statistic.

From (1.25), the Bahadur efficiency is defined as
e12(0) = c1(0)/c2(8), : (1-27)
which is equal to limit of Pitman efficiency,

N, (g)
€~>0 N, (E)

= 612(6). (L.ZS)

(i)

Here, Nj(e) is the sample size required to make T,

significant at level e [Bahadur (1971)]. Fu {(1975),
Wieand (1976) and Grooneboom & Oosterhoff (1977) have

also studied the relationship between these efficiencies.

Bahadur (1960, 1967) and Fu (1971, 1973) have

shown that

Kiméupg% Kiméupn%m ~w£2 log an(Tn,O,a)s%I(O).(l.ZQ)

0

with the equality attained for the mle (and others).
Here, I(08) = py0e 1s the Fisher information number.
Bahadur's (1971) approach is fundamentally different
from the others in that he attempts to extend on
Fisher's Criterion of Efficiency by defining the

effective standard deviation, Tg(e), as

PO(ITn ~ 0] 2 e) = P(IN(O,1)] = e/tg(e)).  (1.30)
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With this approach, it is not possible to obtain any
measures of efficiency beyond the sccond-order.

Due to the inadequacy of Tisher's definition,
Rao (1961) defines the criterion of first-order effi-

ciency as being satisfied by all cstimators Tn’ for -

which the Fisher information per unit observation
contained in the statistic, I(Tn;O), tends to the lisher
information in the sample, I(8), for large n. This is

cquivalent to the requirement that the cquality in

(1.29) be achieved, that s, that

Cim o Cim "H%? Log a_(T_,0,0) = % T(0), (1.31)

which is in turn equivalent to the rate cquation,

Kimfwo [B(@,g) - b(T,0,e)]/c? = 0. (1.32)

This criterion of first-order cfficiency is met by the
mle as well as a large class of other "reasonable!
estimators of 0. Rao (1901, 1962, 1963) also definces
the c¢riterion of sccond-order clfficicency as being
attained by all the first-order cfficient estimators
for which the total asymptotic loss in information of

the sample, E is a minimum, where

2 b

i

3 [ £ T0) - r{r .
IZ(T) ((mnvm [nT(0) nI(J.n 0) | {(1.33)

Again, subject to certain regularity conditions, the
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mle is sccond-order efficient [Rao (1961)7. This minimum of
E,(T) is equal to ﬁ;-I(O) where yé is a parameter
which was first infered by Fisher and first evaluated

by Rao (1961, 1962, 1963) as

Yg .. Huwoo - 2U910 t Ho20 _ 1 - (U300 - U11o)2, (1.33)
12 (0) 1°(0)

where the W, 4, are the Fisher moments, defined as

jk
TR Ee[d§d2d§...], | (1.34)
and
d, ~{st/50% £(x|0)}/ £(x]0). (1.35)

Efron (1975, 1978, 1982a, 1982b), Amari (198Za, 1982b),
Madsen (1979) and Kass (1982) investigate the geometry
of the statistical estimation and inference problem in
order to make statistical (and geometrical) interpretations
of the nature of parameter Yo,which Efron has named the
"statistical curvaturce" by showing that the definition
co-incides with the regular mathematical curvature in the
case of "curved exponential" families. Efron (1975,
1982b) goes on to infer that Yé is a measure of the
departure from exponentiality since Yg = 0 if and only
if the underlying distribution is from the exponential

family [see also Madsen (1979)1.
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Fu (1982) has shown that, subject to certain
regularity conditions, where 0 is the location parameter
of a symmetric log-concave density f(x]0), and Tn is
a first-order efficient translation invariant estimator,

Lim g [B(0,e) - b(T,0,e)]/e* = 17(0)v5/8, (1.36)

with equality for the mle. We believe that symmetry

is not required, and that possibly many of the other
restrictions may also be removed so that it may be pos-
sible to define Rao's second-order efficiency by an
equation similar to (1.36). To this end, and in a

manner similar to Hodges & Lehmann (1970) and Kallenberg
(1982) let us define a measure of the difference between
the Bahadur bound and the exponential rate of the statistic
as the Bahadur Divergence. An estimator will be said to

T

be BAHADUR DIVERGENT IN THE k H~DEGREE if there exists

a finite constant Dk>0 such that:

0 r < k
ELm€+O Dr(e) = D, r = k (1.37)
. r > k
where
D_(e) = [B(6,c) - b(T,0,¢)]/e". (1.38)

We will call Dr(e) the (Bahadur) Divergence Function

and D, the Bahadur Divergence.
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Ghosh § Subramanyam (1974) apply the concept
of seccond-order efficiency to multi-parameter family
of exponentials, and Ghosh, Sinha § Wieand (1980)
investigate the second-order efficiency property of
the mle with respect to any arbitrary bounded bowl-
shaped loss (increases from zero as |6-a| increases).

Pfanzagl § Wefelmeyer (1978) attempt to show
that the mle . is "third-order" optimal in the multi-
variate case, although, as the authors themselves note,
their definition of third-order efficiency would only

correspond to Rao's second-order, explaining that:

For properties related to the second term of the
asymptotic expansion of the covariance matrix of an
estimator-sequence, C.R.Rao coined the term "second-
order officiency”. As the asymptotic expansion of the

, . . -1
covariance matrix proceeds in powers of n whereas
the asymptotic expansion of the distribution of a
standardized estimator-sequence proceeds in powers of
-k ) .
n . Hence in our set-up it seems more natural to use
the term "third-order efficiency” for what corresponds

to C.R.Rao's "second-order efficiency”.

We are more inclined to Rao's terminology. Firstly,

what would be the second-order efficiency by Pfanzagl

18.



Page 19.

and would it be possible to construct an estimator-
sequence which is second-order (Pfanzagl) efficient

but not third-order (Pfanzagl) efficient? Also, in
terms of the asymptotic expansion in € of the rates,

we beliecve that the first-order criterion corresponds
to the second-degree term in the expansion, while Rao's
second-order (Pfanzagl's third-order) corresponds to
the fourth-degree term. Hence Pfanzagl's second-order
would correspond to the third-degree term of the expan-
sion. However all the terms of odd degree are very
largely influenced ly the skewness of the underlying
distribution and will generally vanish under symmetry.
Hence only the even terms are used in determining the
efficiency. Indeed we will show that, although in the
general casc the mle is second-order (Rao) efficient,
if is not third-order efficient as it will diverge

from the optimal in the sixth-degree term of the rate
expansion under symmetry, and from the fifth-degree term
under asymmetry [and hence is third- or fourth-order
efficient by Pfanzagl, depending on whether or not the

underlying distribution is symmetric].

Kester (1981) shows that, under fairly weak
regularity conditions, the mle is optimal for expo-

nential families with convex paramecter spaces.
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Ever since R. A. Fisher introduced the Method
of Maximum Likelihood in 1912 {[see Fisher (1922)], and
had shown it to be consistent, asymptotically efficient,
and asymptotically Normal, there have been many attempts
to show the method to be "optimal' and in many instances
the criterion of optimality implied that the method be
maximum likelihood. In time, some statisticians began
to doubt the universal superiority accorded to the mle,
in particular, Kallianpur § Rao (1955), Bahadur (1958),
and Berkson (1980). As we will show, for the simple
problem of estimating the location parameter of a one-
dimensional translation invariant distribution, the mle
may be second-order efficient, but is not third-order
efficient (in general) and certainly not optimal. We
will show thatan optimal estimator among the class of
translation invariant estimators may exist in the form
of probability ratio estimator, and that the mle may be no
better than second-order efficient within this class.
The optimality of probability ratio (likelihood ratio)
estimators have been previously investigated, under other

circumstances by Bahadur (1965) and Krafft § Plachky (1970).

Other important contributions to large deviation

theory, in areas not directly relating to this study,
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include Hoeffding (1965), Groeneboom, Oosterhoff §
Ruymgaart (1979), Bahadur & Zabell (1979), TFu (1980),

Bahadur, Gupta & Zabell (1980).

1.% Formulation of the General Problem

Consider the situation in which we wish to esti-
mate the location parameter, 8eR', of an absolutely
continuous translation invariant distribution, F(x|8),
with corresponding density function f(x]6). Let s =
{xl, Xor weey xn} be a sample of n independent obser-
vations from F(x|0), and C the class of all (consistent)
estimators of 6. Then for e>0, we define the tail prob-

ability of the estimator as

a (T_,0,e) = P@(]Tn - 0| = ), (1.39)

which tends to zero as n»w for all consistent estimator-
sequences {Tn(s)} e C. To measurc the asymptotic beha-

viour of T = {Tn(s)}, we compute the exponential rate,

b(T,8,e) = Lim__ - log a (2 ,0,c), (1.40)

n+© n

which is identically equal to the inaccuracy rate,

Lim —% log max|[P

n-reo

6(Tn26+8), Pe(Tnge—e)]. (1.41)

Then, for all consistent estimator~sequences,{Tn}eC,
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b(T,0,e) < B(0,e) = dinfg, {K(0%, ) :]o-6%]>e}. (1.42)

Tn certain cases, we can construct an estimator-
sequence, T* = {Tg(s)}.e ¢, which will attain the bound,
b(T*,0,e) = B(08,e). In that case, T* is (asymptotically)
exponentially optimal for 6. Note that it may be possible
to construct a non-consistent (i.e.: asymptotically biased)

estimator-sequence T = {%n(s)} ¢ C, for which

. 1 ~ . .
£.4im -~ log Pe[]Tn - 0] = €] > B(9,e), (1.43)

n—-«°

exceeds the Bahadur bound, However if such a sequence is

then corrected for asymptotic bias,

~

TH(s) = T (s) - Lim  [EST (s)-0 1, (1.44)

then the resultant consistent estimator-sequence,
T = {%g(s)} e C, will satisfy (1.42), b(T#,0,e) <
B(6,e). An example of this will be given in §3.1.

In most instances, however, there does not appear
to be any consistent estimator-sequence whose exponential
rate will attain the Bahadur bound. In such a case there
may not be an optimal estimator, or the Bahadur bound
may be too large. We may then consider a smaller class
of estimators for which an optimal estimator-sequence

does exist. In the casc of estimating the location
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parameter of a translation invariant distribution,
there is, in general no optimal estimator-sequence
[only for the exponential family has optimality been
demonstrated by the mle, in Kester (1981)}. Let us
then restrict ourselves to considering the class of
estimators which are translation invariant and con-
sistent for 6, T < ¢. Sievers (1978) obtains an
exponentially optimal sequence of Huber M-Estimates

and hence obtains the optimal rate for T for various
underlying distributions. However, his result is only
valid for symmetric distributions (of which all of his
numerical examples consisted), since under asymmetry
his estimator-sequence is not consistent for 0. In
Chapter 2 we obtain the exponentially optimal rate

for the class T of translation invariant estimators
and obtain the local expansion of this rate about =0
up to the sixth-degree, which we compare with the sixth-
degree expansion of the rate of the mle and the Bahadur

bound. We thereby show that in particular cases,
b(6,0,e) < bT(G,e) < B(6,e), (1.45)

and that the differences between these expansions, up
to the sixth-degree, depend on four paramcters which

we will call the rate coefficients: Yg, N AS, vé.
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CHAPTER TWO

EXPONENTIAL OPTIMALITY FOR THE CLASS OF TRANSLATION

INVARIANT CONSISTENT ESTIMATORS

2.1 Probability Ratio Estimators

We will require that the underlying distribution

be sufficiently smooth and well-behaved, hence we define

the following regularity conditions.

Definition 2.1: A distribution, F(x|0), with

density function f(x|0), will be said to be

a REGULAR DISTRIBUTION if the following condi-

tions are satisfied:

[R1] The density function, f(x|6), is abso-
lutely continuous for all xeR, 0¢R.

[R2] The distribution is translation invariant
for 6: f(x+al|0+a) = f(x|0), for all xeR,
6cR, and each constant a.

[R3] For each fixed e>0, the probability ratio,
cxl|8,ey= £(x|0 + ) / £(x|6 - ), is
strictly increasing in x (or decreasing
in 6, by the translation invariance).

[R4] The moment-generating function of the log-
probability ratio,[%*exp{t~log c(x|o,e)}
exists and 1s finite for some t in the

neighbourhood of 0, and |6 - 0%| < e.



Page 25.

[R5] The density function is strictly

log-concave.

Note that [R3] follows directly from [R5]. The stronger
condition [RS5] is required for Lemma 2.4 § Theorem 2.2 which
give the rate of the mle, but is not required elsewheré.
A distribution which satisfies [R1] through [R4] but not
[R5] will thus be called semi-regular. Ixamples of

regular distributions include the Normal and the Logistic.

Then, for an underlying regular distribution, we
would like to obtain an estimator-secquence, T = {Tn(s)}eT,
which is consistent for 6, translation invariant, and 1is
exponentially optimal in the sense that if 7% = {Tg(s)}eT
is any other translation invariant cstimator-sequence

that is consistent for 0,
b(r*,0,e) < b(T,0,¢e). (2.1)

Therefore it follows that the exponentially optimal
rate for the class T of translation invariant estimators

consistent for 6 is given by the rate of T, namely
br(0,e) = b(T,0,€). (2.2)

Sievers (1978) gives a theorem in which he

identifies such an cstimator-seqguence by taking a
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sequence of Huber (1967) M-estimates. Sievers' (1978)
estimator-sequence, however, is only consistent under
symmetric distributions (a property shared by all of
his illustrative examples). We will apply the Huber
(1967) procedure to obtain a consistent estimator-
sequence which we shall call the Probability Ratio
Estimator (pre).
To construct the probability ratio estimator,

we consider the following artificial "Test of Hypothesis':

il

Ho: Fo(x]0) r(x|6 - €)

(2.3)
Hy: Fp(x]0) = P(x|6 + €),
with probability ratio,
(x| + &) fo(x]0)
c(xlo,e) = F(x |0 ) (% [0) (2.4)
Then, for a sample s = {xl, X ., xn} of n

independent observations from the population F(x]|6),

we define the likelihood ratio for this test as
cn(sle,e) = 1, c(xi|9,a), and the test function:

(2.5)

o (k) = ¢ (k ;s|0,€) =

for each fixed kn (the critical value).
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Now, we arc ready to define our probability
ratio estimator, in reference to the test of hypothesis
that we established. (We use the term probability ratio
estimator rather than likelihood ratio estimator since
the 'test of hypothesis' was artificially constructed
in order to define our estimator and is not an actual
test that we would ever wish to perform; in fact, we
are apparantly 'testing' F(x|e - e) against F(x|6 + ¢)
when we are actually sampling from F(x]|0).) Then, as
0 lies midway between H, and H;, a 'logical' estimate
for 0, corresponding to. the test ¢n(kn), would be to
take the value of 8 at the boundary between H, and Hy,

that is, the critical value of the test, namely,
Tn(kn;slﬁ) = {Gicn(S\O,e)‘r kn}- (2.6)

Since cn(sIG,E) strictly decreases in 0 by [R3}], then
Tn(kn;sle)is well-defined for any fixed kn. How should
we then select the kn? Since we require an estimator-
sequence to be consistent for 6, we will require that the
{k } are such that T _(k ;s\€)~£ 9.
n n'n
It is well known [Chernoff (1954)] that -2 log Cn 

tends to a chi-square distribution with n degrees of

freedom, hence (1/n)log cn(sle,e) degenerates to its mean:
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8,e) » €. log c(X|0,e). (2.7)

0
Hence the estimator Tn(kn;sle) in (2.6) will only be
consistent 1f the kn are such that

1 Lim 1 _ . N
o loa kn T e o log cn(slﬁ,e) = Eelog c(x]o,e). (2.8)

Therefore, define the probability ratio estimator, 0 =

{5n} as (see Figure 2.1):

6 =18 (sle) = {GI%— log ¢ (s[0,e)=u(e)},  (2.9)

where
nie) = Eelog c(X|0,e) = K(9,0-¢)-K(0,0+e) . (2.10)

This estimator-sequence will be consistent and trans-
lation invariant [Fu (1983)]. For symmetric regular

distributions, Sievers (1978) and Fu (1983) have shown

@

to be optimal in exponential rate for the class of

translation invariant consistent cstimators of ©, T.

Sievers (1978) also gives an expression for
the exponential rate of convergence of DE(G) to zero
for his estimator-sequence, However if the underlying

distributien is not symmetric, then this exponential
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Ficure 2,1: Probability Ratio Estimator.
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rate may cxceed the Bdhadur bound as the estimator-
sequence is not consistent [see example in §3.17.
The exponential rate of 0 in the general case is given

by the following theorem:

Theorem 2.1: Tf F(Xl@) is a (semi-) regular
distribution, the probability ratio estimator
0, defined in (2.9) has the exponential rate

of convergence of the tail probability to zero

given by:
b(8,0,e) = - log max{py, o1} (2.11)
where
Po = i”ﬁo<t<1 mente) mo (),
: (2.12)
Lo tu(e) ]
p1 = Ang e m; (-t),

O<t<l
and where U(e) is defined by (2.10) and mi(t)
is the moment-generating function of the log-
probability ratio with respect to Fi(le):

F,
-~ 1

m(t) = E etrlog elx[0,e) o (2.13)
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VProof:
Let us define,
Y = Y(x|0,e) = log c(xl]o,e), (2.
then, the sample mean 1is
T =% (sle,e) = L log c_(s]6,¢) (2
n ! n n e ’
By definition, the exponential rate 1is
b(8,0,e) = Lim L log max{a B} (2
e n+© n ' n’ "n )
where
a_ =P (6 =20+ e),
n 0 n (2
Bn = Pe(en <0 - g)
Then, by the strict monotonicity of §n (by [ R31),
o =P (6 =0 + )
n 0" n
= Pp (0, =2 0) (z.
- (Y .
PFQKYH >z pu(e))
and so, by conditions [R3] and [R4], we can apply the
Bahadur-Chernoff Theorem (Theorem 1.3) to obtain:
1 . tLYy - u(e))
- - / -
- log ol > log S P CFOe
. (2.
. ~-tu (e
= - log LnétZO ule) my (t),

31.

14)

15)

16)

17)

18)

19)
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where mo (t) 1s the Chernoff Information number of (1.12),

no(6) = £y o -, expler1og 220
) (2.20)
= [ £V x| - e Ef(x|o + e)ax.

Then, as 82/9t%{my(t)} > 0, me(t) is convex and continuous
and as mg (0) = me(l) = 1, the infimum of mo(t) will occur
for 0<t<1 and hence the infimum in (2.19) will also occur

on O<t<1. Thus we obtain
1 . ~tu(e)
= log o = log &”60<t<1 e moy (). (2.21)

Similarly for Bn’ we obtailn

1 . tlu(e) - Y
-t - /
= log Bn > log dng, ., EFle
2.22)
_ ; tu(e) ] (
= - log LnéO<t<1 a my (-¢),
where
N e Y - £(x|o + €)
mp (t) = EF1e = EFlexp[t log X0 - 6)]
. (2.23)
= f1+t(xl6 v ) C(xlo - e)dx.
Then, combining these results we get
b(@,e,e) = - log max{py, 011}, (2.24)

where p, and p, are as defined in (2.12).4



Oeu(E)’

and so we need only compute one of po and p;.

D

Remark 2: Under symmetry, is the Sievers' (1978)
ecstimator-sequence and po = Py = mo (%) 1s the Chernoff
Information number, the exponential rate expression

obtained by Sievers (1978).

Remark 3: Although ® has optimal exponential rate for

the class of translation invariant estimators under
symmetric distributions [ Sievers(1978), Fu(l983)], we
believe that it may be optimal for T in the general

case, although we have not yet been able to verify this.

Remark 4: The exponential rates of convergence of the

tail probability to zero for the mle and the pre can
both be determined from a theorem by Rubin & Rukhin
(1982) in which they find the exponential rate for a
general M-estimator: Zi w(x,,0) =0, where w(x,0) 1s a
strictly monotonic function. This monotonicity condi-
tion is the condition [R3] for the pre and [R5] for the

mle.
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2.2 Local Expansion of Exponential Rates about €=0

One of the questions we would like to answer
is: How nearly optimal is the mle? Also, how does the
pre compare with the mle? Then, since we are mostly
concerned with the behaviour of an estimator when € is
small, let us examine the Taylor series expansions of
the Bahadur bound and of the exponential rates of the
mle and pre, in the neighbourhood of e=0. Fu (1982)
obtained expansions of the Bahadur bound and the rate
of the mle up to degree four, which is sufficient to
make second-order efficiency comparisons. The mle has
been shown to hold a favoured position among (first-
order) efficient estimators in that it minimizes the
loss of sample information on 6, and is thereby "second-
order" efficient [Efron (1975)]. However, as we shall
see later, the pre is also second-order efficient.
This is not surprising as it can be shown [Fu (1983)]
that the mle is a limit of probability ratio estimators¥
En(sIS) as e>0. In fact, there arc many estimators
which are second-order efficient. The question is then,
does the mle also hold a favoured position among these
second-order efficient estimators? (i.e.: Is it "third-

order" efficient?) To investigate this we require that

* aActually, the entire class of Probability Ratio-type Estimators,

as defined by (2.0), collapses to the mle.
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the Taylor series expansions be up to degree six, since

as mentioned, the odd degree terms vanish under symmetry.
These higher degree terms are important to differentiate
between the mle and pre and any other second-order effi-
cient estimators, and they may possibly relate to the
concept of third-order efficiéncy in this case. We will
show that, in general, using the criteria of exponential
rates, the mle is not optimal. We will show by the expan-
sions that we obtain, and by illustrative examples, that
for certain distributions, and each €>0, -the mle can be
dominated in exponential rate of convergence of the prob-
ability of the tail setD_(9) by some pre, 5n(sie). This
means that the mle may not be 'third-order' efficient in
the sense of exponential rates, although it may be regarded
as locally "third-order'" efficient in the neighbourhood

of e=0.

As the probability ratio estimator is defined in
terms of Hy and H,, as is itsg' exponential rate, we have
re-written the Bahadur bound and the Oxponentiai rate of
the mlé to correspond, which will make for better and
more.meaningful comparisons. We have thus shifted the
expectations with respect to F(x|0) as in Fu (1982) to

expectations with respect to Fg(x|0) and Fo(x]0). This
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shifting i1s mathematically valid only for translation
invariant location parameter. This means that thesec
Taylor series expansions will be valid only for the
translation invariant location parameter (in fact, 0
is defined only in this instance). This also means
that any conclusions we rTeach concerning third-order
efficiencies, will relate only to a translation invar-
iant location parameter. This should not be too
distressing in that it seems likely that the higher
order efficiencies will depend on the nature of the
parameter of estimation. The sixth-degrece expansions
for the mle are extremely difficult to obtain. Without
the shifting of the expectations the procedure is much

more protracted and becomes practically intractable.

Due to the shifting of the expectations, the
series expressions that we obtain in this case may
result in terms whose coefficients, when expressed
in terms of Fisher moments may differ from those of
Fu (1982), however, they will be mathematically equi-
valent (undef translation invariance). In fact, under
translation invariance, there are certain relationships
that exist between Fisher moments of the same degree

as given by the following lemma.
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e

Lemma 2.1 If F(Xi@) is a regular distribution

with continuous derivative-ratios,
a. ={at/00" £(x]0)}/ £(x]|8), i=1,2,3,.. (2.25)
and finite Fisher moments,

u = EG[d%’dZd];’...] (2.26)

ijk..
of degree i+2j+3k+...., then by the translation

invariance property, certain relationships exist

between moment§ of the same degree:

Degree 3

(A) WUzoo ~ 2U110 = 0,

pegree 4

(B) 2Uyo0 = BHz210 = 0,

(C)  Mai10 = Hozo0 — Hio1 = 0,

Degree 5

(D) 3Usoo - HH310 = O,

(E) Qﬂalo = 2U120 = H2o01 = 0,

(F) Uzo1 - He11 ~ Hioor = 0,
, (2.27)

(G)  Miz20 ~ 2Wo11 = 0,

Degree 6

(H) HWleoo ~ 6Uu10‘: 0,

(I) 3Uy1o - SU220 - Hzoer = 0,

(J) 2Wa20 — 2W111 — Hoszoe = 0,
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(K) 2Usg1 — 2W111 — Hao00:1 = 0,

{
(@}

(L)  Mi11 = Mooz ~ Hoio1

(M)  Hzg01 — Horor ~ Mig0001 = O.

VProof:
It follows directly from integration by parts, for

p21 and p+g>2, that

[ee]

Eglafall = | (e yppeMya epra-t gy
_ et ypiep V) ya
(prg-2) £P7977 |

P S {(P-1>{f(l)}p"2f(2){f(v)}q
ptg-2

-0

fp+q—2
(2.28)

(L) -1, (V) yg-1 _(vtl)
q{f } {f } £ } dx

+
tqg-2

-2 -y Lp-1,g-1
(p-1)Eglal™"a,al] + qEglal”"al " a I

v+l

t

0 + R

Here, the initial term must tend to zero under trans-
lation invariance. Thus, for example, for v=1, (p,q)=(3,0)

(or (2,1) or (1,2)) we obtain (2.274), and so on.A

In order that the Taylor series expansions be
valid, we will require some additional regularity

conditions, in addition to [R1] through [R5]:
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{C1] The density functibn, f(x‘@)? must be at least
six times differentiable, with each such
derivative, f(i)(xle) = ai/aei £f(x|0), being
absolutely continuous and bounded for all x, 0.

[C2] The log-density function,
% = 4(x]|0) = log f(x]0), (2.29)

and the score function,

Po= o) o %—, (2.30)

are both continuous in x for each 0.
[C3] There exists a constant u(f) such that
Pe(i(x|e +g) <0) >0,
. (2.31)
Pe(z(xie - €g) > 0) > 0,
for all 0<e<u(#).
[C4] There exists a second constant v(0), for ecach

u(6), such that the mgt,

eti(xle + €)

V(e,0,e) = Eg ,

(2.32)

exists and is finite for all |&| < v(8) and

le] < u(o).

The Fisher moments are related to the moments of the

score function, as shown by the following lemma:
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Lemma 2.2: ret f(X[@)be any continuous

distribution satisfying conditions [Cl]
through [C47. With the Fisher moments
defined in Lemma 2.1, and the écore
function given by (2.30), we similarly

define the score moments as

. = Ee[hthhé‘...], ' (2.33)

ijk.
where

o= 0 LS D A S T (2.34)

Then, certain relationships exist between the

Mgk, .. and the n, o

(1)
(a) EOQ = Uioo0 = 0,

(2)
(B) Eg¥ ™" = ~Haoo>

- (3)

(c) teﬁ = 2Us90 - SM110>

(4) ! - 3
(D) EOQ = “6Hgoo t+ 12Up10 ~ Mlio1 T SHoz20
(E) EGQFS) = 2Ulgee - 60U3yp + 20W,4, + 30Uy, ~ 10ugy1 ~ SHioous
(r) E@QF6) = =120pg 90 + 360Wy10 ~ 120uz01 ~ 270H,50 + 120H11)

+ 300930 — 10Ugg2 + 30U2g01 = 1OUg101 ~ CUyg001>

(G) Maoo = Veﬁ(i) = Upoo = L(0) (2.35)
(H) MNo20 ~ VGQ(Q) = Uyoo ~ 2M210 t Ho20 T I2(09),
(I) Mooz = VGQ(3> = Wlgoo ~ 121410 t Mzo1 t GUazo

2

. . \
6ly11 * Moo ~ (2U300 Sy1677
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(7) Np19 = Cov “M3g0 * H110 = J(O),

of
1 3
(K) Mio1 = COVGUL( )JL( )] = 2Uyoo~ S3Ha1o0 THio12
| 1) (u ,
(L) Mioor” COUG[&( )’SL( )] = ~Bsootl2Ugy o HHa 017 3U120 10012

(2),Q(3)

(M) mo11 = Covylh ] = ~2Usoot SMyyg ~ Hao173Miz20
+ W1y T I(0)(2Ugp0-3H110)>
- L, (2) () )
(N) TMg101= COVGUL AR BUgoo~18Uyy1otU3 01~ HU111 " Ha001T
15H220-3Mo30 o101 .~ L(0) (Blyoo~121z1 0 4 01+3H020) >
1)
(0) TNjeg = ES{Q( 13 = U390,

(P) TMoig = Ee{g(l)}z{z(2)+1(0)} = ~Uyoo * Hazo T I7(8),

(0) MNi2g = 56{1(1)}{2(2)*‘1(9)}2:11500*211310““11120 +2I(6)J(0),
(2)+I

(R) mNgsq = E6{2

wproof: By expansion and direct application of the definitions.

Here, the principal variance 1s Nyoo = Hago = I(8), the
Fisher information number. An important and frequently
occuring term is the principal covariance, which we will
denote by J(0) = nii10 = H110 - MHioo. We may also be interested

in the normalized form wé = J?(0)/1%(0).

Before we state the Taylor series expansions,
it would be useful to define a number of quantities that
will be encountered in our work. Since these definitions
only reQuire existence of the moments, we nced not confine
ourselves to regular distributions, although their appli-

cation in the non-regular case may differ.

(6)}3:“U6oo+3Uu10“3U2zo+Uoso+3ﬂ0201(9)*ia(e)‘
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Definition 2.2: Foreach underlying distribution

F(x|6) satisfying conditions [Cl] to [C4], and
o . ‘ L
finite moments Wik, and Niig.. 7 with hi as

defined in (2.34), and with I (0) = n,00 = U200,
J(6) = ni1eo = Mir10~M300 , and wg = J?(0)/1°(6),

we define the following constants:

Noogo Ni1o y I(6) hy|?
yi = 17°(0) = IV (0) By
Niio  MNo2o J(0) ha
= (Myoo - g1 * Ho20)/T%(8) .- 1 - wé, (2.36)
1 M2oo0 Nio1
S = T7(m)T(e) (7(6)=0)
Nii1o Not1
1 I(0) h, I(8) h,
= T R s E . -
- 3 ls
1500030 9050y n,| ooy na| (237

==(2Uso0 - SM3z1o + Hao1 + BHizo — Ho11)/IT(0)J(O)

=(2Unoo -~ Sla10 * H101)/I7(0) +(2u300 - BM110) /T(0),

N200 Nio1

w
1

= 17" (0) +3wl8, (2.38)

MNio1 Ngoz

3
= (UPggo - 12410 + MHzgr + 9Ma2g ~ Blyi11 + Hoo2) /I7(6)

__{QUuoo = 3Up1¢ T U101}2 _ w2{2U3oo" 3U110}2.+3(926 ,




Page 43.

3
I(0) hy
A= 17°%(0) ¢ +
° o) n,
] 25 ()Y Nio1o “No11o0 J(0)
I"b(@) . |
T(0) ) {~Nioor No1o1 1(0)

(2.39)

= (5U600‘15Uu1o+4U361+12U220“”U111”2Uo30“U2001+U0101)/13(9)
— (BYygo-Blp1othilyo1)/I7(0)~ 2 wé{(U3oo”3U110)/J(6)
~ (Tis00-16M310+6M201+6M120-2Mo11 " H1001)/T(0)T(0)

= (Uyo0-3Us10+2U101)/I7(0)} - wg{U300/J(6)}.

Now we can proceed with the Taylor series expansions.

First the Bahadur bound:

f;g&m&_zLéj If F(X'O) is a regular distribution,
and the additional condition [Cl] holds, then a
lécal expansion about €=0 for the Bahadur bound
for the consistent estimators of a translation

invariant location parameter, 0, is given by

B(O,e) = minl ) boe/il + o(eM)], (2.40)
=1

+e i=

where the egoefficients bi are given by

b, = -£. £, i-1,0,8,.... (2.41)

Note: This result is valid for translation

invariant location parameter only.

oo
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VProof
By the regularity conditions, the Kullback-Leibler

information, XK(6% 0), is continuous and convex, Hence,
B(0,c) = min{K(6+e,0), K(6-¢,6)1}. (2.42)

Under translation dnvariance,

_ : _r f(x|0)
XK(6-¢,0) = K(8,0+e) = EelOg f—(;""é"z'g‘)—. (2-43)

Then we expand log f(x|0 + e} about £=0, sa that

o i ok |
log £(x|6+e) = §y &7 e’ /il + o(e) (2.44)
i=0
exists for some k>0. Condition [Cl] is sufficient

to guarantee the validity of this expansion to at
least the sixth degree (k=6). By taking the

expectations, we obtain the result

- k , ,
K(8-¢,0) = - ] E 0 el 4 o(eh), (2.45)

Il

Then since K(8+¢,0) K(6-(-¢),0), the lemma follows.A
The method for obtainingwthe expansions of the

rates of che mle and pre is quite-lengchy and tedious,

~and so, these rvesults are given in sections 2.3 and 2.4

respectively.
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2.3 Ixponential Rate of the mle

The exponential rate for the mle can be

obtained by the Bahadur-Chernoff Theorem under

certain regularity conditions. The result is well

known and so is stated as the following lemma without

proof.

riemma 2.4: 11 F(xl@) is a regular distribution

~

and conditions [C2] to [C4] hold, and © is the
maximum likelihood estimator, which is the only

solution of the 1likelihood equation:

n "~
) 9/96 log f(xi[O) = 0, (2.46)

i=1

then the exponential rate of the mle is given

by
~ - _ . * *

b(6,0,e) = log maxips, p%}, (2.47)
where

Pt = nf, o (LD,

(2.48)

ot = Ang, o et(t), |
and

p;(t) = b etz, i=0,1. (2.49)
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Using a method similar to Fu (1982), we will obtain
a local Taylor series expansion of b(0,0,e) up to

degree six as stated in the following theorem.

rleheorem 2.2: Under the conditions of Lemma

2.4, and with the additional condition [Cl],
a local expansion in the neighbourhood of €=0
of the exponential rate of convergence to
zero of the tail probability of the mle, as

stated in Lemma 2.4, is given by

]

>~

b(e,0,e) = mfg{b2€2/2! + bae’ /3!

1B

+ [by - 312(e)yg]e“/4!

+ [bs - 101(9)J(@)66165/5! (2.50)
+ [bs = 151°(0) A

- 1013(6)\)8]66/6! + 0(86)}

Note: This expansion is again valid only for a

translation invariant location parameter.

N

VProof:

Under the regularity conditions, it follows from Lemma

*

1 in Hoeff{ding (1965) that there exists a unique t=1y

which minimizes p5(¢).
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In order to obtain a Taylor series expansion
about €=0 of the exponential rate of the mle as

given by Lemma 2.4, we must expand
po = Anf__, 0o (t). (2.51)

Fu (1973, 1982) has shown that the unique t of

Hoeffding (1965) is of the form
t = Tg(e) = ¢ + 0(e). (2.52)

Hence, let us first expand oo (£) into a double
" Taylor series int and £, as

£+9/36 log f(x]6)
7,

“of

[ee]

©° N ( C)m
Z EO ET{EG(dldm)”ETﬁ }'

m=0 n

ph(t) = E

it

(dm<—e>m/m!>etd1} (2.53)

;

m=0

il

The 4. are the derivative ratios defined in (2.25).
1

By the definition of the Fisher moments (2.20) we get
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pg(t) = 1 + t{"IE“H,ll1062/2!—'1,[10183/3!’!‘11100181‘\/”-!*‘]_,\1000165/5!}

2
t
" 5T{I—U3008+U21o€2/2!~U201€3/3!+Uzoo18”/4!}

3

t
57{U300~Uu00€+ua1052/?!*U30183/3!} (2.54)

iy 5
t 2 . t
+ LN{U’GOO*USOOC"'UNIOE /20} + g[{USOO“UGOOE}

6 6
+ ET{UGOO} + 0(e”)

where I = I(6) = 1,4 1is the Fisher information. As

Tg&ﬂ is of order e, let us write
tg:Tg(e):€+A82/QI+B€3/3!+C€5/4!+D€5/5!+0(85). (2.55)
We-insert (2.55) into (2.54) to obtain ph = o5(ts),

0% =1+{(=2Te? /2143111087 /3 ~upy 016" /U451 00165/51 =611 0016°/6 1)
+(~3ATe% /31464111 08" /41 -104AN1016% /51415411 00,65/61)
+(-LBIE" /U1 +10B11 1067 /5! -20B1y0,€%/6!)
}(—50185/5!+150ul1086/6!) + (-6DIe®/61)}

+ {(Iez/zl—3u3ooeé/3!+6u21os”/u!—1ou20185/5!+15uZ00136/6!)
+(34Ie3/31-124U500€" /1143041, 1 0€%/5!-60A15 4,65 /61) |
+(3A%Te" /! -154% 30 0€% /5144542, 1068 /61) + (UBTe"/u!

~20BU300€° /51 +60BU, 1 0€%/61) + (5CTe%/51-30C1U454006°/6!)
+(10ABI€> /51 -604ABu300e®/6!) + (6DIe/61) + (154CTIe®/6!)
+(108%Te%/6 1)} + {(M30083/3 !~y 0" /U14+101510€%/51-20144,65/61)
(8413006 /U1 =30A10, 9085 /514904151065/61) + (10Bus00€°/5!

“60BLy 008 /61) + (154%05006%/51-904% 0, 0e%/61)

+H(B0ABY300e%/61) + (154%1500%/61) + (15CH500e5/61)) (CONT->)
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+ {(]Jz}oogh/u-!”‘51150085/5!1'15}160066/6!) + (1014111;0085/5!
~60As 0 0E°/61) + (20BUy0E°/61) + (454%U,00e°/61)}
+ {(Us00E°/5!-6100e8/61) + (154Us00e°/61)}

+ {(ugo0e®/61)} + 0(e®). (2.56)
Simplifying, we get

*

Pg =1 - Te¥2! = (2U300-3U110)e°/3! - {(3Myo0-6Ha 1 otHH01)
~3A%T+6A(U300-H110) Je" /4! = {(4lsgo-101510+10M501-5M1001)
'1“10/1(2].11*00*311210%'}1101)‘1014511‘10]3(11300*]1110)}35/5!

(2.57)
- {(5U600—15H1+1o+201i301"1511200i*'GUloool)“15ABUsoo :
4547 (Uu g0 ~Ha10)+154( 31500 -Bla1 0tz 01 U1g01) ~154CT

—1OB?I+QOB( Quqoo—gliZIO‘l‘lllg1)'1'156’(11300"“110)}€6/6! + 0(86) .

Similarly, if we differentiate (2.54) with respect to ¢

N *
and then insert t¢=t,,

6:(1,:) = {“IE'H,[I1023?/2!”U101&3/3!} + {(IE‘?UgO()EZ/Q!’*“EﬂUZ1053/3!
+(ATe?/21-3AU300%/3 )+ (BIe®/30)0} + {(U3008%/2! =31 00e3/31)
1‘(3/1}130083/3!)} + {(111;00&:3/3!)} + (1(83) (2.58)

= (AT+l110-Us00)€7 /20 + (BI-2Wy00+3Ha10-H101)€°/31 + 0(e?)
Hence, setting cach coefficient to zero, we have

A = (U309 - U11§)/I(9) = -J(0)/T(0), (2.59)

B = (2400 - BMa10 + H101)/I(8) = nye1/T(0). (2.60)

The value of ¢ is not needed as the terms containing

¢ will cancel when we insert (2.59) and (2.60) 1into (2.57).
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00 = 1 - Te2/21 = (2Ua00-3M,10)e%/3! - {(3Uyg0-BUp 10t 01)
+33%/1 e /ul - {(Ws09-10U310+10H,01-5U1001)
~10J(2Un00=8Ha10+H101)/T1e%/51 = {(SUgoo-15U410+20U301
~15H2001t6 110001 ) 15T W300/T°+4537 (Myoo-Ha10) /T
~15J(3Us00-6H310% o017 H1001)/IT+10( 21y 0 0-3Mp 10+ U101 )7 /T e’ /6!

+ 0(e®), (2.61)
We expand (2.61) into a logarithmic series,

"109'93 = I(0)e?/2! + (2U300-31110)€°/3! + {(BUy00-6Un1o+iliior)
+3J%/I431% bet /ul + {(4us00-10U310+10Us01-5M1001)
~10J(2Uy00-3U210+ U101 ) /T+10T(2U300-31114) /5!

+ {(5U600-15Uy10+20U301-15Ha001+6H10001)+15T U300/T°
1537 (3Mu00-3Ma10)/T2+10( 2y 003210+ M 01) */T (2.62)
~15T(3Ys00-6H3 10t 4o 01~ M1001) /I+10(21300-31110)7

+15T(3Uy go=BUa1 o+l 01 )+30T3+u58T%e® /61 + 0(e®) .

We write this in terms of the coefficients
of the Bahadur bound, b], = —Eeﬂl(l) , which are given in
Lemma 2.2,

”109'03 = bpe?/2! — bze®/3!l 4+ {bu“312[(Uu00‘2U210+U020)/Iz~1
-J% /1% 1 ety ~ {bg+10TIL (2Us00-5Ma10+ M0 143U 20-Mo11)/TT
+(2Uu00—3U210+U101)/12“(2U300“3U110)/J]}85/5!
+ {b6—1513[(5neoo~15ﬂu1o+4U301+1?U220—“U111“?U030‘U2001
Fo101)/T%=(3u 006Uz 10+ M1 01)/T2=2-T (300311 19) /13

(CoONT-)
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+J( s 00-16Ms10+6Mp 01461120~ 2Hg11-H1001)/I"
% (M9 0-8Ua 104211 01)/L°-T U300 /1% ]

~10T°[ (4lgoo-12My 1 0+ Ha01+9Ma 2061111+ Mg o2) /T
~(2Uy00-3Ma1 0t 01) /T - (2U300-311 1) %/T°
~3J(2Us00-5Us10tH201+3M120 " Ho11) /T +3T(2300-31110)/T°

~33%(2Uy 00-3Ua10tH101) /T 138761 + 0(e®). (2.63)

By Definition 2.2, we get the final result,

~log py = bye2/21 = bye?/3l + (b, - 317 () g le"/u!
~{bs - 101(8)T(0)8,Je®/5! + {bg - 151°(8) A3

- 1013(6)V8}86/6I + 0(e®). (2.64)

Then, to obtain -log p; we can follow the same procedure,
or more simply, use the complementation principle in
that reversing Hy and H; is equivalent to replacing €

with -e, Hence,

-log p} = boe?/21 + bie?/31 + {by, - 3IZ(O)YS}8”/41
+ {bs - 1OI(O)J(@)56}€S/5! + {bg - 15I3(6)A;

- 1013(6)v8}86/61 + 0(eb) . (2.65)

Finally, we combine (2.64) and (2.65), the exponential
rate of the mle is the larger of the two tail probabi-
lities, hence the smaller of the twc expressions above.

This completes the proof.a
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2.4 Exponential Rate of the pre

To expand the exponential rate of the pre,
as given by Theorem 2.1, we use a similar procedure
as was used for the mle.

SN

Theorem 2.3%: I1f F(XIO) is a regular translation

invariant distribution for the location parameter
6 and the additional condition [Cl] holds, then
the exponential rate of convergence of the tail
probability to zero for the pre, as given in
Theorem 2.1, has a local expansién in the neigh-

bourhood of €©=0 given by

il

b(8,8,e) = min{b,e?/21 + bye’/3! (2.66)

e
T

(b, - 312(0)ygje“/4! + bse’/5!

+ [bg - 1513(6)A8]EG/6! + o(e®y 1

VProof:
In this case, the functions to be minimized in (2.12)
are strictly convex functions (under the regularity
Conditions) with the infima in O<t<1. Again, by
‘Hoeffding (1965), there is a unique Ty such that the
minimum value is attained at t,. Under symmetry, Te:%

0

by Sievers (1978), hence in general: TO:TG(E):%+0(€).
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Referring back to Theorem 2.1, we proceed as in

the last section, minimizing

po(t) = EFOet(Y R tpe”s (2.67)
where s=2¢ and W=5(Y -~ u). We cxpand Y as a
Taylor series in €, to obtain
Y = log f(x|6 + e)/f(x]6 - €)
= log f(x|6 + €) - log f(x|0 - ¢)
o i ; i 0 ig 1
- tog] ] PRGN e} oef | LGl Lol
i=0 20~ ) i=0 a6 )
o i o i
= 1og{f(x 0) ¥ 4, ST} - log{f(xl@) yoa, L8 }
i=0 1 1. i=0 1 A

{die + (dp-di)e?/21 + (ds-3d,d,+2d})e’/3!

+ (dy-4d,d;~-3ds+12d5d,-6d1) e /ul + (ds
~5d1dy~10d,d;+30d,d5+20d5d;-60d1d,
+24d3)e®/5! + (dg-6d:1ds-15d,d,+30d5d,
~10d5+30d5+120d,d,d,-270d7d5~120d}d 5
+360d7d,-12043)e®/61} - {-d;e + (d»
~diYe?/21 - (d;-3d,d,+2d1)e?/3] + (ds
~4d,d,-3d5+12d7d,~6d1) e /ul - (ds-5d;d,
~10d,d5+30d,d5+2045d5-60d3d,4+24d})e5/5!

+ (do~6d1ds-15d,d,+30d7d,~1045+30d5+120d 1 dsd

~27042d5-120d3d5+360d d,~12045)e%/61} + o(e®)
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3
= 2d;e + 2(d3-3d,d,+2d)e®/3! + 2(ds-5d,8,-10d,d,

2 2 4 6
4“3Od1d2+20dldg“60d1d2+24d1)85/5I + 0 (66). (2 .68)

Taking the expectations, and using the definition

of Fisher moments (2.26), we obtain pu = u(e) = EGY,

2(2U300731110)€°/3! + 2(2UNs00=60H310+201z01+30U1 0

uo=
~10Ug11-5H1001)€°/5! + 0(e®) (2.69)
=-2bse®/31 — 2bse’/5!1 + o(e®),.
Hence,
W= die + (d;-3d;do+2di4bs)€3/3]0 + (ds-5d,d,~10d,d4

(2.70)
+30d1d3+20d7ds~60d d,+24d5+bs) 5 /51 + o(e®) .
Returning to (2.67) and noting that minimization
with respect to t is equivalent to minimization with
respect to s, we expand p3(s) into a double Taylor

series, in s and e,

po(s) o EFOeSV\I
= ¥ (-e) ™. o (sw) " _ _
- E@{[mzo 4 ]{ngo e )} (2.71)
— 3‘0 OZO s E(a n)(~€)m
- n=0 m=0 ! 6 " m!
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Inserting (2.70) into (2.71) and expanding

up to the sixth degrec in €, we obtain

po(s) = 1 + sEe{~[2di82/2!+4(dla3~3d%d2+29ﬁ+d1b3>e”/u!

+6(d,;dg-5d3d,~10d,d,d;+3045d3+20d3d;-60d4%d,
+24d5+d1bs)e® /611 + [3d;d,e%/3!1+10(d,ds-3d,;d3
+2d3d,+dabs) /511 — [4d,dse"/u!+20(d3-3d,d,d3
12a%ds+dsbs)e®/617 + [5d1dse’/517 ~ [6d;dse®/611}
+ s2E {[afe?/2144(d,d3-3a3d,+2d +drbs) e /! |

4 (6d1d5-30d2d,~120d,d,d3+270d335+1604%d3+10d%
~480d?d2+434d?uob§+20b3td3—3d1d2+2d%)+6d1b5)%§]
- [3d}e?/3!+20(dids-3a3d,+2a5+d3bs) e’ /51 )

+ [6d%d2€“/u!+60(d1d2d3~3d%d§+2dﬁd2+d1d2b3)%;]
~ [-108%dse®/5!1 + [1583d,e%/61 71}

+ s356{[die3/3!+1o(d%d3—3did2+2d%+d%b3)85/5!]

- [4d%e"/ul+60(alds-3d%d,+2a%+d b3 e’ /61 ]

+ [10a3d,e%/5!17 - [20a3dse®/6!1}
+ s“Ee{[dﬁe“/u!+2o(did3~3dﬁd2+2d§«hbg)86/6!]

- [5d5e¢%/5!1 + [15d%d,e%/6! 1}

+ sE {Late®/51] - [6die®/611}

+ sGEe{[dﬁes/Glj} + 0(e®). (2.72)

Taking the expectations, using the definition of the
Fisher moments (2.26), and collecting terms, we get

the following:



po(s) =1+ s[*2I82/21+3ul1083/3!~u(2uq00—3u210+2ulo1)8“/u!

+5(U310-6M12 0+ 1001+ 2Ug11)E /5! = (1Ukg g9=3601y 1
+160U3011180U200-1201111-30H2001+20Mg02+12M10001)e8/61]

+ 52[182/2!—3u300€3/3!+2(4u400—3u210+2u101)€”/u!~10(Eu500
~6U310+3U20172Ib3)e>/51+( 18416 00-3601y10+1600301+90M220
"6OU111*15U2001+10U002+6U1ooo1“1Ob§+60U11ob3)€6/6!]

+ 5330083 /3 ~Ultygoe™/0!14+10( 20 0-2Ma10HMa 01t Is)e5 /5!
~20( 616 00-9Un10+H1301+3U300b3)e’ /6]

+ Sq[Uuoogu/41"5U500€5/5!+5(8U600“9Uu10+4U301+”U300b3/%;J

+ Ss[Usoogs/S!—6IJBOQ€6/6!] + SBA[UGOOEG/BIJ + 0(86). (2.73)

Since the minimum value of p,(t) is attained at ¢=% under
symmetry, we would expect that the minimum is near % in

the general non- symmetric case, hence let,
to=kso=k+Ade+Be’/21+Ce® /34D /ul+Ee® /5140 (e®). (2.74)

We insert (Z.74)info (2.73), which dfter collecting
terms, gives the following:
W
Pozpo(Sg) = 1 + [*IE?‘/QI*(211300“311110)83/3!"(3U1+00—6U210+Lm101)ET
"(2”U500‘60U310+20U201+3OU120‘10U011“5U1001+101b3)%;
~(45U600~ 135Uy 10+60U301+90MU220-6011 111502001 +10M0 02
+6u10001~10b§)86/6!] - [2uA(u300-U110)E"/H1+604(TUs 00
w16u310+6u201+6p120~2u01lwu4001%21b3)86/6!] + [u8AzI§;
~21+O/12(u,}00—3u?‘10+?U101)86/6¥] + [‘_‘960/151}30086/6!]
+ [200ABTe® /517 - [60B(Usg0-M1100€°/51 ] + [3608%Teb/61)

+ [1804CTe®/61] - [120C(Ha00-U1100€°/61] + o(e®). (2.75%)
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Similarly, differentiating (2.73) with respect to s

and inserting (Z.74), and collecting terms, we get

00(se) = [124T+3U110-3Ms001e3/3 1+ 2uBT 1" /ul+0(c") . (2.76)

Hence,
A= (U300 = H110)/4I(8) = =J(6)/41(8), (2.77)

B =o0. (2.78)

Once again, the terms involving ¢ in (2.75) will

cancel when we insert the 4 and B above, This gives

pp = 1 = Te?/21 = (2U300-3U110)6°/3! = [(BUygo-6Uayotilior)
+33%/T7e" /4l - (2410 0-60U310+20Ua0 14301 20~10U011
~511001)+10IbsTe® /5! = [(45Ug00-135Hu10+60M301+%0Ma00
~60U1 117152001+ 10M002-6M10001)+10b3(5U300-F1110)
+15J3U3oo/13"15J2(Uuoo‘3Uélo+?U101)/12‘15J(7U500”16U310

+6U201+6M120-2Uo11-H1001)/T1e®/60 + o(e®),  (2.79)
We expand (2.79) in a logarithmic series to obtain

~log po = Te”/2] + (2U300-3U110)€°/3] + [(3Wy00-6Ha10+ 8 U101)

+3J%/T+3T% 1 /ut + (2Usge-601310+201, 4,301 06
~10Hg11-5H1001)€°/51 + [(U5Ug00-135Uy10+601301
+90Up20-60U1 117 L5U2001+10Hg0216M10001) 15T (11200
~ 31110 )+30T 2+ 15T (31 00 6Ua1 0+ 101 )~ 15T Hs00/T°
~153(7Us500-16M31016M201+6M120-2Mo11"H1001)/T

“‘j.SJ?"(HL;OO'"BUZ10'*‘2“101)/12"}&:6/6! + O(€6) . (?80)
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I'm terms of the coefficients of the Bahadur bound,

bi = ~E62(l), equation (2.80) becomes

~log po= bpe?/2! ~ b3e?/3! + [by-3(1yoo-2M210Ho20)
+3J%/31%1e"/ul ~ Dbse®/5! + [be-15(5Ug 00
= 15Uy 10t 1t L2220 M1 11721030 " H200 1 0101 )
+15T(1300-3U110)+30T°+15T( 3y 00-6Ua 10+ 01)
+15J3U300/13'15J(7U500'16U31o+5U2o1+6U120“2U011

S s ‘
“U1001)/1"15J2(Uu00“3U210+2U101)/12127'+ 0(e®).(2.81)
By Definition 2.2, we then obtain

~log pp= bye®/2! ~ b3e?/3! + [by - 3T2(8)y2le"/u!
) 0 (2.82)
~ bse®/5!  + [bg ~ 1ST°(B)Aj1e®/61 + o(e®).
And, again, we can obtain -log p; by the same procedure
or by replacing ¢ with -¢ in (2.82). This gives
~log p1= bye?/2! + bse?/3! + [by - BIZ(O)YSJE“/u!

(2.83)
+ bge®/50  + [bg ~ 1513(8)k8186/6! + 0(e®),

The theorem follows.a



Thus we have seen that the differences between
the exponential rates of the pre and mle with the
Bahadur bound depend on the rate cocfficients, yé, 66’
Aé, and vé, as defined in Definition 2.2. The rate of
the pre differs from the Bahadur bound only in terms
which depend on Yé and XS, while the rate of the mle
differs from the Bahadur bound in terms of all four
parameters. The parameters 66 and vg, which describe
the divergence of the mle from the pre, are of particular
interest since both these estimator-sequences do exist.

On the other hand, it has not been established as to what
conditions are neccessary in order that the Bahadur bound
be attainable. In the cases where the bound cannot be
attained, it should be possible to improve upon this bound
with an even sharper bound. We have seen that the mle is
optimal and attains the Bahadur bound for the exponential
location family, when yé:O. Also, Madsen (1979) has shown
that yé:O only for the exponcntial family. Theorcms 2.2
and 2.3 seem to suggest'that the Bahadur bound can be
attained only if yé:O (i.e.: exponential family). Thus we
are led to believe that, except for the exponential family,

the Bahadur bound is too large. We therefore make the

following conjectures.
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o

Conjecture 1: The optimal exponential rate

of convergence of the tail probability of any
consistent estimator of a translation invariant
location parameter O should under non-exponential
families be less than the Bahadur bound, with a
fifth-degree expansion given by:

ﬂbc(ﬁ,e) = min{b,e?/2! + bse?/3!
te

+ (by - BI(O)YS)Q“/4! (2.84)

+ bge®/5!1 + 0(e®)}

b

where C is the class of all consistent estimators

ff 0.

This conjecture follows from the fact that B(0,g) =
bC(G,e) > b(a,e,e) and by the second-order efficiency
(1.36), which means that the fourth-degree term's

coefficient can be no larger than that given in (2.84).

-
Conjecture 2: The optimal exponential rate

of convergence of the tail probability of any
consistent estimator of a translation invariant
location parameter 0 should equal to the optimal

exponential rate for the class of translation

C

invariant estimators: b, (B8,e) = bT(O,E).

Pnd
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This conjecture follows from the apparent paradox that
would ensue if the class of optimal estimators is not
translation invariant. If this were the case, then
the exponential rates would not be translation invariant
with 8. This would mean that the optimal class of
estimators would be indexed by 6. To avoid such an
occurrence, we would require the optimal class to have
the same exponential rate for all T, and hence be
translation invariant.

Lastly, we conjecture that the pre is optimal
for T and hence for C as well (by Conjécture 2), in
the general case (beyond symmetry) of a regular trans-

lation invariant population.

—

Conjecture 3: The optimal exponential rate

of convergence to zero of the tail probability
of any consistent estimator of a translation
invariant location parameter, 0, should be

given by the exponential rate of the pre, as

| stated in Theorem 2.l:bc(6,€) = bT(G,E) = h(0,0,c).

This conjecture follows from Conjecture 2 and Remark 3
following Theorem 2.1. Also, by Conjecture 1, the pre
and bc(e,e) would have at least fifth-degree contact

since the expansion of the pre co-incides with the
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expansion of the Bahadur bound in the odd degree terms.

In the next chapter we will look at various
applications of these results under various regular
distributions and observe the behaviour of the rate
coefficients iﬁ order to assess their properties and
-Statistical significance. In Chapter 4 we will examine
some non-regular distributions in which the pre is
shown to dominate the mle, even though the theorems
may not apply and the Taylor series expansions may
not be valid. In these cases, we can still compute
the rate coefficients, although they are not measures
of the differences of the Taylor series expansions.

This may shed some further light on the statistical

interpretation of these quantities, which we will discuss

in Chapter 5.
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CHAPTER THREE

Translation Invariance and Scale Invariance

3.1 Log-Transformation of Scale Invariant Exponentials

In this chapter we would like to examine the
properties of the rate coefficients, yé, 8y Ag, vg,
and investigate some applications. A good place to
begin is with the expcnential family which is generally
well-behaved and tractable. If we consider the general

scale invariant distribution on o,

_ _ P
cpm? P4 1 e m(y/c)

= , 0>0 (3.1
g(y|o) I'(q) P4 o7 )

with p=1; ¢>0; m>o; and if c=1 then v>0, while if

c=% and p is an even integer then Y is defined here

on all of R'. The family defined by (3.1) for suitable
choices of (m,p,q) includes: the Normal (m=%, p=2, g=%,
c=%); the Gamma (m=1, p=1, g=a, c=1); and the Weibull
(m=1, c=1). Then, under a logarithmic transformation,
X = log |Y| and with 0 = log o, we obtain the trans-

lation invariant family, defined by the density

II’lq

£(x1{0) ='£w—~exp{pg(x - By - mep(x B 6)} > (3.2)

I'Cq)
for -w<x<» and -w<f<ew, The graph of the log-transform
of the Normal is given in Figure 3.1. This distri-

bution is log-concave and satisfies all regularity
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conditions. TFor the density function in (3.2), the

probability ratio for the pre is given by,
c(x[O) = f(xle + g)y / f(x|6 - €)
(3.
p(x-0) . -
= expl-2pge + 2me sinh(pe) 1,
and
p(6_-8) ‘
cn(sle) = expl-2npge + 2nge sinh (pe)l (3.
Here Bn = Gn(s) is the mle, which is
n.
~ 1 m »
o (s) = 5 log[¥§ 'Z exp (px ) |- (3.
i=1
The Kullback-Leibler information number is
K(0%, 0) = Eyilog £(x 0%y /f(x]0)
' (3.
= pg(6-0%) - ql1 - e—p(e_G )TJ .

65.

3)

1)

6)

Thus, the Bahadur bound for consistent estimates of 0,

B(0,¢) z.nge*{mo*, 6):]o-0%] > ¢}

Il

- pe
pge - (1 - e P5).

Then, since F(x|6) is a regular distribution, we can

apply Theorems 2.1 to obtain the exponential rate of

(3.

7)

the probability ratio estimator. Tirst, p = EOY’ which
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is given by (2.10), is computed as
o= K(0, 6 - ) - RK(6, 0 + €)
= [-pqe-q(1-eP%)1 - [pge-g(1-e P51 (3.8)
= —-2pge + 2gsinh(pe),
The Chernoff Information is given by
mo (¢) = Ege®”
o e epq(l - 2t)e
T T (g)
~f exp[pq(x~6)+m[(1—t)epg+teﬁp€]ep(Xme)]dx
o 4 pg{1-2t)e '{q) i
= Tlq) © p (nl(1-t)ePEsee P59

ep(1 - 2t)e q (3.9)
(1 - t)eP® 4+ te pt}
We then obtain
0o(t) = e M mg ()
(3.10)

_ [epe—QtSinh(pE)/[(1_t)ep€+te—pej]q.

This quantity attains its minimum when ¢ = TG(E) is
the solution of 9/3t¢ py(t) = 0, which gives
)
T (g) = e 2PE sinh(%pe) /sinh (pe) . (3.11)
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Hence
o :fé}’l,60<t<1 .OO(C) = po('fo(g)).
_ pe .
= explpgqe - 2ge”  sinh(pe)] (3.12)
pe .
= expolpge + g(1 - € )].

Then p, canbe obtained from (3.12) by replacing €

with -¢, or from Remark I of Theorem 2.1,
p; = expl-pge + g(1 - e"pE)]’ (3.13)
and so
b(6,0,e) = —log max{po, p1}
' e (3.14)
= pge = gq(1 - e P%) = B(0,e).

Therefore the pre is optimal for the class of all
consistent estimators of 6. The rate of the mle, as

given in Lemma 2.4, is computed from

log f(x]|0)}

3
* - —~ .
ps(t) Cjoexp{t Y,

F

g -pgqlt - 6)

= P m_
I'(qg) €
[ exp bq(X—6>—mep€(1~pte~p€)ep(x~o)]dX
o nd -pg(t-0) I'(q)
T T(q) © pfmepg(l—pteﬂpg)]q
(3.15)

il

[e™Pt/(1 - pre PHy7°.



The infimum is attained for
e
T (€)= (eP® - 1)/p,
whiCngives

pO :’(’nétzo pO(t) = pO(TO(C))

1

PE

g .

explpge + g(1 - e

And again, we obtain p; by replacing e with -¢,

-pe
p, = expl-pge + g(1 - e Pty

Hence, the rate of the mle is given by

b(0,0,e) = -log max{py, p1}

-pE
pqﬁ-q(1~ep)

It

il

b(9,6,c) = B(O,e).
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(3.10)

(3.17)

(3.18)

(3.19)

Thus, the mle is also optimal for the class of all

consistent estimators of 0, as was proven by Kester

(1981). In fact, if we examine the estimator-sequence

of the probability ratio estimator, Bn = §n

o = {GIC (sle) =k }
n n n
= 8n(s) - % 1og (log kp)/n + 2pqe

2gsinh(pe)

where

1
o log kn > U o= -2pg€ + 2¢gsinh(pe).

(s), .

b,

(3.20)

(3.21)
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~

Therefore, 6 = 8  + ¢
n n

(1), that is, cach pre

estimator-sequence is also asymptotically mle.
Since both the mle and the pre are optimal,

the rate coefficients, yg, Sq s vg, Ag, are all

zero for this regular exponential family.

Sievers (1978) shows that the estimator-

sequence with the fastest exponential rate is a

probability ratio-type estimator where the kn = kn*
are chosen such that a (k_*) = B8 (k_*). Such an
n-n n-'n ‘
estimator-sequence has exponential rate
b(6%,8,c) = Lim___ -% log P (|6 "~ 6] > )
T nre n 0 '"'n
= ink
ARbo oy mgy (&) (3.22)

= glpe coth(pe)-1-log(pe/sinh(pe)) ],

. ~2pe
where the infimum occurs for ¢ = 1/ (1+e 2P )

- 1/2pe,
It can be shown that b(6%,6,c) > B(O;e). lience as

probability ratio-type estimators are related to the
mle, in this case, through (3.20), we can equate thei

two rate equations of the mle to solve for this limit

of the kn*, to get
1 log k. * ~» 0 # u (3.22a)
n n ’

Thérefore, from (3.20) we obtain
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" 1 pe ‘

0 % > p - = SN <A P 3.22b
n p loq[51nh(p€)J ( )

If we then corrcct en* for asymptotic bias, the

corrected estimator-sequence will again be asymp-

totically mle and therefore has exponential rate

equal to the exponential rate of the mle and the

Bahadur bound.

3.2 Duality of Translation and Scale Invariance

The transformation of the last section is
1llustrative of a more general duality fhat exists
between families that are scale invariant and those
which are translation invariant. ELfron § Truax
(1968) have made use of this duaiity to obtain some
results for scale invariant families by making use
of the nice linear properties of the translation
invariant family of exponentials [and which formed
the basis of Efron's (1975) theories concerning
the relationship of the statistical curvature to

the mathematical curvature].

Let h(t) be a non-negative function which will
integrate to unity over the positive reals. Then,

we can define two random variables in terms of h(t):
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1. X which is translation invariant for 0,

and has density function

fixle) = 9 nEe® ), (3.23)

2. Y which is scale invariant for o, and has
density function
glylo) = (1/0)h(y/0). (3.24)

Then, X and Y are implicity related, through h(t),

and will be called Location-Scale Duals (through this

transformation, we can explicitly write X = log Y and
= log o). Let us define the derivative ratios as

e, =07/507 £x]8))/ £(xl0), (3.25)
and

c, =07 /30" glylo)y/ alylo. (3.26)

But since ex_e = y/o through the duality, we get

i i
4 ne) 4 n(v)
a, =dt’ | g =4t : (3.27)
* h(t) |t=e h(t)  |t=y/o

Then we can express both Ei and ¢. in terms of the
d, and hence in terms of cach other, as given in the

following lemma.
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e
Lemma 3.1: Under Location-Scale Duality

with the derivative ratios (, and &, as
i i

defined in (3.25) and (3.26), the following

relationships exist:

it

(A) Cl €1/0,
(B) ©, = (E,- E1)/d?,
(C) 13 = (§3- 8E,+ 281)/0%, (3.28)

(D) Cy = (€u~ 6E3+11€2— 68‘;1)/69’

L, (F) Ts = (§5-1084,+3583-50E,+24E,)/0°.

VProof:

We differcentiate (3.23) to obtain expressions for C,

in terms of the di defined in (3.27), where t:ex~6’
(A 1 o= —-(1+  tdy),
(BY , = (1+ 3:d,+ ¢2d,),
(C) ©3 = -(1+ 7¢d;+ ce?dy, v t3dy), (3.29)
(D) C‘-} = (1'1‘15td1'X‘QS’szdz'i‘lotsd:s"' tudu),
(B) s = -(1+31ed;+2062d,+65¢3dg+15¢%d, +£°dg).
Similarly, we differentiate = (3.24) to obtain

expressions for Ei in terms of the d. defined in

(3.27), where t=vy/0,

(A &y = —(1+ ¢dy) /o,

(B) £, = (2+4¢d,+£2d,) /02,



Page 73.

(C) £33 = -( 6+ 18td,+ 9t*dy+ £3d3) /0%  (3.30)

(D) Ex = ( 20+ 96&d,+ 72¢7dy+ 16t°ds+  t'dy)/o",

(B) Es = -{(120+600td,+600¢%d,+200¢t°d3+25¢ d+t°ds)/0”.
Then, as X% - ¢ = y/0, we can implicity solve (3.29)

for the di and insert these into (3.30) to obtain the

required results.A

The rate coefficients Y;, S kg and vé,

defined in (2.36) to (2.39), were developed as measures

O 2

of the differences between the asymptotic expansions
of the pre and mle with the Bahadur bound in the case
of a translation invariant location parameter from a
regular distribution, however they may still have some
statistical significance in general for any underlying
distribution for which these constants are finite.
Efron (1975) has, in a sense, done this for vy by
defining this parameter as the statistical curvature
and attempting to give 1t certain statistical inter-
pretations. We would like to be able to do the same
for the other rate coefficients, and also to make an
extension of Lfron's interpretations concerning the
nature of the statistical curvature. Hence, it may be
useful to investigate the various relationships that
must exist between the Location-Scale Duals: how do

yg, S A3, v3 relate to yé, § ., A, v o2
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Lemma 3.2: Under the Location-Scale Duality, as

defined by (3.23) and (3.24), the following
relationships exist between the rate coefficients

of 0 and the rate coefficients of 0,

2

(A) Yo = Y§>
(B) 6, = [J(0)8,-31(0)y{1/[I(0)-1(6) 1,
‘ (3.31)
(c) vo = vi+ [18I(G)ng3J(8)(3yé+366)]/I2(6),
3 _ 3 . 2 : 2; 2 (0
QP) AG = Ae + [ 51(6)y6+2J(6)(3y6 260)]/1 (0).

VProof:
By applying Lemma 3.1, we obtain the relationships

between the Fisher moments of ¢ and 9,

i
{

(B) paool0) = Egf = EE1/0% = 1p00(0)/0%,

:13/03 = Ugoo(e)/(}?’,

1

Ll 95

(B) usoolo) = Lt

i

H

= Ef
£

(C) H110(0) Er gy =E(E18,-83)/0% = [u110(0)-U200(8)1/0°,

(D) 1,11,\00(0) = ECL{ = EEL{/Ou = Uuoo(@)/Ou,
(B) no10(0) = Egig, =E(ETE,-E3)/0" = [uy10(8)-na00(0)1/0",
(F) Wooo(o) = EC% = E(E%“Q&gﬁg‘%)/ﬁu = [Uozo(a)‘QUH0(6)’*‘11200(9)]/0'“,~

(G) ui101(0) =C(E1E5-88,8,1287)/0% = [hyo1(0)-3p1,0(0) 421, 00(0) /0%,

|
™
Y
—
Y
w

i
Iaa]
VY
RN
il

(H) USOO(G) ngl)/(jb = ]JSOO(G)/OS,

(I) usi1p(0)

i

Crdc, =C(E3E,-89)/0% = THa10(0) - Muao(0)1/0",

(J) 1201(0) = Erigs =L(E3E5-387E,4283)/0° = [uy01(0)-31p10(8)+2500(0)1/0°,
(K) wiz20(0) = Egig3 =E(E,E5-2878, £3)/0°% = [1y20(0)-2151,4(0) ’*'Usoo(@)]/US,
(L) }-10.11(0) = Bgary =E(5,83-3E5-815515818,-285)/0°

= T 11(0)=81020(0) U101 (0)+51110(0)=21500(0)]1/0°,
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(M) U1001(0) = EC1Ty = E(E1£4-6E1E3+118,8,-683)/0°
= [1y001(0) 61y 01(0) 11Ny 0(B8) B, g(0)1/0°,
(1) erq(G) = Fr§ = FES/0% = 1g40(0)/0°%, (3.32)
(0) Mu10(0) = ECig,= E(E}E,-E37)/0° = [y 10(0)-Usq0(0) /0%,
(P) M3o1(0) = Crigs= E(€%€3“3§%§2+?§§)/06 = [U301(9)“3U31o(o)+?Uuoo(O)]/06,
(Q) Woaolo) = Frirh= E(ETE5-287821 £3)/0® = tU2zo(0)“?U310(0)+ Ui 0(6)1/0%,
(R) p111(0) = ECy0aCs = E(E189E45-38183-E1E5+5E8FE,-283)/0°
| = [Hl11(6)”3U1zo(9)"H201(0)+5U210(9)’2U300(9>]/6&
(S) Mosolo) = Eg} = E(E3-38,85+3878,-61)/0°
= [hp30(0)=81120(08)+31p10(0)~1390(0)1/0%,
(T) Wooa(o) = FEch = E(ER+9EF+UET-6E,85-12818,+1E163)/0°
= {UO02(6)+9u020(6)+uuz00(0)‘6u011(O)~12u110(6)+4u101(9)]/0%
(U) Wa001(0) = ECigy, = E(£38,~683E5+1187E,-681)/0®
=10y 001 (0)6U 01 (B)+11151 (0D ~6Blz04(0)1/0°,
(V) Mo101(0) = EColu = E(EpE,-6E85+11E3 -5 18, 165185-17E18,16E1)/0°
= [u0101(6)~6u011(6)+11UO2(6)~u1001(6)+6u101(0)~17ul10(6)+6uZ00(6)]/06,
(W) Uio0001(0) =CL1gs5 = E(E Eg-1081E, 13581657508, E,+2081) /0°
= [plOOO1(O)~1Ou1001(6)+35u101(6)—SOU110(6)+2Muz00(6)]/66.
Then we also have

and

T (o)

U2 00(8)/0% = T(0) /0% (3.33)

H200(0) s

li

H110(0) = H3q0(0)

f

(3.34)
== [Ul1O(G)“U?_O0(0):]/(53"1130()(0)/03 = [J(O)*‘I((‘)):]/Os .
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The results of the lemma can thus be obtained by
inserting these cquations in (3.32) into the definitions,

(2.36) to (2.39).4A

Some brief comments concerning Lemma 3.2 can be
stated. TPirst, we sce that the statistical curvature

is invariant under the logarithmic transformation [as

3

“established by Efron (1975)]. Also, mé,yé,ée,kg,ve

are all translation invariant and all of the rate
coefficients (for 6 and o) are scale invariant since
cach has been normalized and 1is unitlesé, Hence the
rate coefficients for 6 are invariant under any linear
transformation. Furthermore, we can write YS, from the

definition, as

Vo= (U bev T - cou (&, ©))/T?(0)
0 _ 8 ¢] B ¢ i

(3.35)
= [1 - {Conn(h, 2)¥21Cv2(8),
where the coefficient of variation for 9 is
" e L
cv(g) = YV 8 /-T(0) = -(Mg20)/MNo10 - (3.36)

0 .

Let us now consider the statistical curvature.
It follows directly from (3.35) that yg is invariant
under linear transformations and also that yé must be
non-negative and cqual to zero if and only if )

is a constant, or linear in 2 (i.e. & = a + b, where
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a and b are constant in X). This 'linearity' in X
is satisfied if and only if the underlying distri-

bution is from the exponential family,

77.

£(x]0) = expld(0)B(x) + C(x) + D(O)], (3.37)

In a similar manner, we have defined J(0)
as the covariance between & and % and hence J(o) = 0
if 9 is constant in Y, which means that the underlying
distribution is from the exponential scale family
[as in (3.37), but with A(8)=0}. Then from (3.34),
it follows that J(0) = I(8) for the corresponding
translation dual, hence J(0) is a kind of measure of
"'scale- information' in this instance. Also, since
J(0) is defined in terms of the odd Fisher moments,
J(0)=0 for any symmetric translation family and, again
by (3.34), J(o) = -I(0)/o for the scale dual of this
family. Let us now examine the behaviour of these
various parameters under a variety of regular distri-
butions. First we consider the logistic distribution,
an example of non-optimality in which the mle is shown
to be no better than second-order efficient in the

sense of Rao.
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3.3 Logistic Distribution

To illustrate a case of non-optimality, let

us consider the logistic distribution,

e~(x—®)

£(x|0) = ysech?[ X287 = Ry Gy

2

, (3.38)

[1+e 172

—_oo<x<oo, ;oo<e<oo .

This distribution is not in the exponential family,

but it does have a scale dual of the form,

glylo) = o/(c + y)?, y>0, 050, (3.39)
In this case the Bahadur bound and the rate of the
mle are well known:

B(0,e) = e - 2 + 2¢/(e® - 1), (3.40)

00

eﬂtf expl2t/(1+e

— 00

~X+0+€

b(g,e,e):—log in ) 1dF (x]6). (3.41)

f
Y20

1henﬂeen is the unique solution of
n

n = Z 2/{1 t e
1 v

1=

—(xi + 0 )

n } (3.42)
By symmetry, t:Te(s):% and =0 and so the rate of pre,
which is the optimal rate for the class of translation

invariant estimators is given by
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[eo]

bT(O,s) = -log f YE(x]0 - e)E(x[0 + ) dx

-

= ~Jlog 4f sech(§:gi£)sech(§:2 )dx

x-0-¢
— "lOg j‘ ftanh( 2"“‘) tcnh(-—ﬁ"““)}dx
sinh €

x-0+¢ X - 6 €
= ~log 2loq{cosh(—~«w~) / osh( ﬂ

4sinh ¢
= -logl(e - (-g))/2sinh €]
= loglsinh ¢/¢1, (3.43)

by making use of (4.5.45) and (4. 5.79) of Abramowitz §
Stegun (1964). Direct comparison of these rates is not
possible, parficularly as the rate of the mle (3.41) is
not known in closed form and can only be cbtained by
numerical integration, as has been done by Sievers (1978).
Even graphs of these rates show very little difference
between the three curves, which may not be too unusual
when we consider that the logistic is very nearly Normal,
except in the tails, and hence we might expect 'near'-
Optimality [ Sievers' graph of the ratio of the rate of the
mle to the optimal rate is almost constant at one] .

Hence in order to make any meaningful comparisons,
especially when ¢ is small, we should examine the Taylor
series expansions, which we can cbtain from Lemma 2.3 and

Theorems 2.2 and 2.3, which give the following scries:
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B(0,e) = €%/6 - €"/360 + ¢®/15120 + o0(e®), (3.44)
bT(9r€> = e£2/6 - ¢*/180 + £°/2835 + 0(e®), (3.45)

b(6,0,e) = €?/6 - ¢"/180+31e%/113400 + o0 (e®). (3.46)

The expansions for the Bahadur bound and the optimal
translation invariant rate can also be obtained by
direct expansion of (3.40) and (3.43). Hence, from

the above, we have the strict inequality for ¢ near 0,

b(a,ﬁ,s) < bT(G,e) < B{(9,e). (3.47)

Thus the mle is second-order efficient but not third-
order efficient since it is dominated by the pre in

the sixth-degree term. Also, the pre is optimal among
the class of translation invariant estimators consistent
for 6, but it may not be optimal among the class of

all consistent estimators since its rate does not

attain the Bahadur bound. Indeed, from the second-order
efficiency of the mle and pre, it would follow that

there can be no estimator-sequence which will attain the
bound since the fourth-degree term can be no smaller

than that of the mle and pre, and hence the Bahadur bound
is too large in this case. Thus the probability ratio
estimators may be optimal for the class of ali consistent
estimators as we have not been able to find any estimator-

sequence with a larger exponential rate.
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The rate coefficients for the logistic distribution

and its scale dual are given in Table 3.1 following.

TaBLE 3,1: Rate Coefficients

Co-efficient | w? y? § v? A3
Logistic 0 1/5 0% 27/175 -13/35
Scale Dual 3 1/5 3/5 1917/175 92/35
Here the Fisher information number is I(8) = 1/3. Since

the logistic is symmetric, the coefficient Geis not

defined and is thus given a value of 0 (%).

In this case, we also decided to compute the
exponential rates and the Bahadur bound directly from
the definitions by numerical integration and optimiza-
tion, as is done for the mixture of Normals in Chapter
Four. The computer programs in §6.2 were modified for
the logistic distribution and simplified somewhat (due
to the symmetry). We then numerically computed the
rates for a variety of values of ¢ and produced the
graph in Figure 3.2. We also computed the Bahadur
Divergence Function of degree 2,3,4,5, and 6, for the
pre, mle, and the mle relative to the pre, which is

in this case optimal for the class ol translation

invariant consistent estimators, hence we label "ML/T".
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CONVERGENCE

RATE

EXPONENTTIAL

Value of ¢

FIGURE 3.2 Exponential Rates of Convergence of pre and

mle and Bahadur bound for the Logistic.
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The Divergence Functions arc graphed in ligures 3.3
through 3.7. For cach graph a logarithmic spacing

is used for e in order to spread out the graphs and
bring out detail. IFigure 3.3 has the Divergence
Functions of degree 2, which shows that all three
graphs tend to zero as € tends to zero, which is
characteristic of all first-order efficient estimators.
Also we note that the mle has a much higher graph than
the pre, which would indicate that the pre appears to
be more efficient, especially for € in the range of
about 1 to 100. The Divergence Functions of degree 3
(Figure 3.4) have similar graphs except that the
difference between the mle and pre 1s less pronounced.
This is to be expected since for the symmetric logistic,
the odd-degree terms in any expansion will vanish, and
hence play no role in determining cfficiencies. Since
both the mle and pre are second-order efficient, theilr
fourth-degree Divergence Functions should tend to a

4

be seen in Figure 3.5. 1In this case, the divergence

constant value, D = 12(6)yé/8 = 0.002778, which can

function of the mle relative to the pre tends to zecro
as ¢ tends to zero, which indicates that the mle has

fourth-degree contact in exponential rate, near zero,
with the class of translation invariant consistent

estimators for 0.
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Fieure 3,3: Bahadur Divergence of degree 2 for Logistic.
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0.001-
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0.1

Value of ¢

Ficure 3.,5: Bahadur Divergence of degree 4 for lLogistic.
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The Divergence Tunctions of degree 5 in l'igure 3.0,

are similar but with the graphs for the mle and pre

now tending to «, as would be expected from (1.37).
Here we see that the mle also has fifth degree

contact with 7. However in Figure 3.7, we sec that
the mle is divergent in degree 6 from the class of
translation invariant consistent estimators, where

D (ML/T) = I3(6)\)é./l2 = 7.9365(10)°. In this way

it is felt that the mle would be at least third-order
efficient amoung the class of translation invariant
consistent estimators of 6(in this instance), although
possibly not among all estimators. As we stated, third
order efficiency is as yet undefined, although we

infer that any definition consistent with Rao (1961)
should somehow relate to the Bahadur Divergence of
degree 6, just as the first- and second-order efficien-
cies relate to the Bahadur Divergence of degrees 2

and 4 respectively. Again, the odd-degree Divergence
Functions are discounted as they will tend to be largely
influenced by the skewness of the underlying distribu-
tion, and are thus of little use in determining the

relative efficiencies.
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3.4 Other Regular Distributions

3.4.1 General Exponential Family

Consider the general exponential family of
(3.2), for which 1(0)=¢gp? and J(0)=-gp’=-pI(0).
Here, p 1s a pure scale parameter and g is a pure
shape parameter. However, the normalized coefficient
wé=J2(6)/I3(O):1/q is a pure shape measure since it
depends only on ¢g. Indeed, the coefficient of skew-
ness for this population is B,(0)=92(g)/V3(q), which
tends to 1/q:mg as g becomes large (where yY(x) is the
digammakfunction: P(x)=9/3x log I'(x)).

3.4.2 Hyperbolic Secant Distribution
To make usc of the Location-Scale Duality
to find suitably smooth regular distributions, we

tricd the Hyperbolic Secant Distribution, where

h(t) = e 2F gech 4t / log 4, (3.48)
and, hence, we get the regular distribution:

] 3 X0 —e* 0 ]

f(x|0) = exp(x-0-e Y/s1log 2-[1+e Iy, (3.49)

as- graphed in Figure 3.8. The exponential rates can
not be computed directly in this case, but they can
be cecvaluated for various ¢ by numerical integration.
However, the differences between the rates apvear to

be no larger than the integration bias, and so, the
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rates are almost all the same (i.e. the mle and pre
are almost optimal). This near-optimality is mainly
due to the extremely small statistical curvature,

Yg:[6K1K2+4K1K3~12K%(K1+1)~3K§]/12K?
= ,009228601,

(3.50)

where Ki:ilmpﬁﬂj/log 2, and w(j) is related to the
Reimann Zeta Function [sece pages 807-811 of Abramowitz
& Stegun (1964)]. Computation of the Fisher moments
is given in Appendix 6.1. Here the Fisher information
is I(0) = k; = 1.18656911 and J(0) = Lk, = 1.3006511

and so wg = 4.0504431.

We also generated 1000 samples of various sizes
in order to estimate the rates of the mle and pre.
Again, the two rates were almost identical in every
case, and a plot of this common value of the rate of
the mle and pre, suitably normalized by the value of ¢,
1s given in Figure 3.9. As can be scen, very large
sample sizes are required before the rates are within

range of their 'theoretical' limits.

As direct computation of the exponential rates
is not possible and the numerical integration and the
Monte Carlo study suggest that the rates are all nearly

equal, due to the extremely small statistical curvature,
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..

LOG, 0

FIGure 3.9: Estimated Rates of Convergence based on the
generation of 1000 samples from the distri-
bution in Figure 3.8.
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us with only the methods of §2.2-§2.4
he relationships between the rates.
4 we compute the Fisher moments as

lowing table:

2 Fisher moments of the

Hyperb

olic Secant Distribution

Hooo = Ky = 1.18657
Hizog = ~-Ko = -2.601
Hizo = -%Kp = -1.30
Unogo = (3Kg+2K53)/2

Ho1o = (3K,+2K3)/3
Hior = Ky = 1.18657

Hozo = (-3K{+3K,+2K

1]

Usgg = (10K4+3K,)/3 60.98493

30 Maro = (10K3+3Ky)/U = 45,73870

065 Uoo1 = (12K,+6K3+K,)/6 = 19.01017

= 12.09963  Uiyp0 = (-3K,+6K3+2K,)/3 = 36.23361
= 8.06642 Hop1 = (-3K,+6K4+2K,)/6 = 18.11680

(15K,-Ky)/6 = 0.89337

11

Hio01

3)/3 = 6.87983

Then we obtain the fifth order rate coefficient,

GO = ~(6KiK,y + 2Kg3 + Kyu)/6K K, = -3.09841, (3.51)
and the Bahadur bound ~coefficients, bi = —Eez(ll
(A) b2 = Hopo = Ky = 1.18657,
(B) b3 = “2U300+3U110 = 1’2K2 = 1.30065,
(3.52)
(C) bu = OUyoo-12Uy 0t 1+3Mg00 = K = 1.18657,
(D) bs = -24s500160U3,0-20H201-301,20+100g,1+50; 001

-(15ky - K4)/6 = -0.89337.
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Then since bs is positive, the 'minimums' in the rate
expressions occur for -e, hence,
B(0,e) = 0.59328e”-0.21678¢+0.0u0uue"+0.007u1e540(e%) , (3.53)
b(0,0,e) = 0.59328e%-0.21678e°+0.04782e"*+0.00714e5+0 (%) , (3.54)
A
b(6,6,e) =0.593286%-0.21678c3+0.04782¢%-0.39104e5+0 (%) . (3.55)
Hence we have, strictly,

B(O,e) > b(g,G,e) > b(g,e,e). (3.50)

For a numerical comparison, Table 3.4 gives the values
of the rates, as computed by these expansions, for
selected (small) values of e, with some indication of

the order of the accuracy.

TABLE 3.4: Numerical Comparison of Rates

B B9,e) _____ b(9,0,e) ____ b(®,0,e) Brror _
0.50 1.24545(10)" 1.24444(10) " 1.11991(10) " 1077
0.20 2.20784(10)? 2.20759(10)7? 2.19483(10) " 107"
0.10 5.72104(10)° 5.72088(10)° 5.71689 (10)° 107°
0.05 1.45641(107° 1.45640(10)° 1.45628(10)° 107
0.02 2.35586(10)" 2.35585(10)" 2.35584(10) " 107°

0.01 5.91117(10)° 5.91117(10)°° 5.91117(10)° 10
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3.4.3 One parameter Normal
Consider the Normal family where the standard

. . . - k
deviation is some power of the mean: N(6,0"), where

1

f=-%log(218%)-x?/20%4x/0% 1oy so% 72,

(3.5

¥
~1
S’

~Then, this distribution is in the exponential family
only when k=0 (location, symmetric) or k=1 (scale).
For other values of k the distribution is not of the
exponential family and 6 is neither a pure location

nor a pure scale parameter. Then

k

T(8) = 1/0° + k?/202, (3.58)

J(0) = -2k/0%" 1 _ k2(k41)/207, (3.59)
and,

Y2 o= k2(e-1)7/021% (0) 8%, (3.60)

Hence, as expected yé:o only for the two exponential
family memwbers, when k=0,1. We also note that J(6)=0
only for the symmetric location family (k=0), while

for k=1, fhe exponential scale family member, we

get J(0) = ~-21I(0) /0. The multiplier '2' likely arises

from the fact that the scale of X is in quadratic units.
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The exponential scale distribution, N(6,0), is not

scale invariant,

L -x2/20 +x-0/2 .
h(x]6) =72~——i;r“(;ex/" x=0/2 (3.61)
and has location dual, for z = log x and u = %log 0,
1 Z=H__Hy2 -
g(z]u) = Tor expl (z-u)-%(ea —e" )], (3.62)
which is not translation invariant. Here, I(p)
= oM 4 LY = -J(u) and mi = 1/T(u). All of the rate

coefficients, for both 6 and u, are zero. for this non-
regular distribution. We might also examine the scale

invariant distribution for k=2, N(6,062),

1 -x2/20%4x/0~}% ;
75*1}' 0 e X / X/@ 2, (5.63)

h(x|0) =

which, however is not exponential family, but does have

a location dual which is a regular distribution,
1 V- 2 - ,
g(ylw) = 75= expl (y-w)-%(e’ F-1)21. (3.64)

The rate cocfficients for this regular distribution

and its scale dual (3.063) are give in the table below.

TaplE 3.5: Rate Coefficients

Coefficient. | w? ‘ v? S v3 A3

6 (Scale) 100/27 2/27 2/15 64 /27 -40/729

u (Location) 49/27 2/27 2/21 20 /27 ~94/729
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CHAPTER FOUR
EXAMPLES UNDER NON- REGULAR DISTRIBUTIONS

4,1 Mixtures of Normals

In our search for distributions which are
sufficiently 'smooth', but which are non-exponential
and not symmetric, we decided on Normal mixtures.
Unfortunately, it seems that all such mixtures will
satisfy all of the regularity conditions except [R5],
which is needed only for the rate of the mle. As it
turns out, the rate of the mle cannot be obtained from

Lemma 2.4, which we show in §4.1.2.

4.1.1 Symmetry about 6
Consider the mixture of the two Normals with

common mean 6, but with scale ¢ and ro respectively,

il

g(x]0) N(e, g%y,

(4.1)

h(x]|8) N(o, r?c?),

i

and with mixture coefficient p, we have MNP(O, r),
£(x|0) = pg(x]8) + (1 - p)h(x|6). (4.2)

Then, if we denote the maximum likelihood estimators

of 0 with respect to g, h and f as Gq, Gh and 6(:6f)

respectively; then, we have, in this case,

98.
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A A A n
6, =6 =0_ =X = ) X /n. (4.3)

Then, the moment- generating function of X is,

eet+%02t2 th+%r202t2

() = p + (1 - p) (4.4)

m
X
Hence; the moment-generating function for X is

S22 2 222 21N
[peﬁt/n4o t°/2n T (1Np)eet/n4r o°t°/2n ]
(4.5)
n—keet+Fk+(n*k)r2]ozt2/2n2

m}'z(t) =
n
D S R
| = 2o(x)p (1-p)
And so the distribution of the mle is Normal mixture,

A

n 2
6 v ) <2>pk<1~p>n‘kN[e, 5*—('@1515—62]- (4.6)
k=0 n’

Thus, we can obtain the tail probability directly,

~

_ _ _ 2 n, k n-k — 7"
P =P(|0-0]|ze)=2 7§ (,)p (1-p) A (4.7)
k=0

n

We have applied (4.7) directly to approximate
the exponential rate of the mle by computing ~%log Pn
for n=2,u4,8,16,....,etc. until we obtain a convergent
sequence. No approximations were made to (4.7), with
the Normal tails computed by a partial fraction metﬁod
[ see Weiss (1981)]. Also, as these sequences were
converging from above, a lower 'bound' for the rate
was obtained by extrapolating the differences by a
geometric series, which gave a new sequence which

converges from below, and gives some idea of precision.
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The computer program is given in appendix 6.2. As

a numerical example, consider p=% and r=2, which is
graphed in Figure 4.1. Tor e=%, for example, the
convergent scquence, obtained by successive doubling
of n is given below in Table 4.1. We will denote

the 'estimate' of the exponential rate of the mle

as bn(a) = -% log Pn, and the geometric extrapolation

by bg(e).

TapLe 4,1: Exponential Rates of Convergence

R« S B e b LO)  BE(O)
2 6.28154(10) " 232485 -
4 5.13255(10) " 166745 —
8 3.64937(10)"" 126004 .059602
16 2.04146(10)"" .099 308 048568
32 7.37330(10)7" 081478 045628
64  1.16081(10) " 069626 046122
128 3.62931(10) " 061885 047313
256 4.65276(10) L0569 56 048311
512 1.03312(10) 053903 L0489 39
1024 7.02078(10)""" 052064 049274
2048 4.52212(10) "° 050981 049435
4096 2.63421(10) " 050357 049508
8192 1.25910(10) "7° 050003 049540
16384 4.06407(10) °°° 049806 049554
32768 5.97900(10) " °° 04969 6 049560
65536 1.82932(10) " *H° 049636 049563
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We see that bn(G) seems to be converging to

some value between 0.049563

and 0.049636.

Hence the

cxponential rate for the mle is approximately 0.0496,

compared with a value of 0.057233 for the Bahadur

bound and 0.056623 for the probability ratio estimator.

Both values have

been obtained through numerical

integration of the rates as given by (2.42) and

Theorem 2.1 (computer program for this also given in

Appendix 6.2).

A summary table of the rates for

selected values of e is given below in Table 4.2,

and plotted in Figure 4.2.

TABLE 4.72: Comparison of Rates for MN, (0,2)
2

e b (8) ____b
0.1 .0026708

0.2 .0089653

0.5 .049636

1.0 .193821

2.0 .724378

3.0 1.51370
4.0 2.52304
5.0 5.73898

10. 13.19453

13.

A

.049563
.1930665
.723205
.51334
. 52267

.737672

19304

13.

_______ b(0,0,0) __b@®
.008
.0496
.19 37
L7273
.5134
.5227

. 738

193

13.

b(0,0,) _ B(0,€) _
.002306 .002307
009202 .009218
.056623 .057233
L215247 .223677
.750053  .822717
52199  1.65945
.52603 2.66282
74127 3.84726
19307 13.25945
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FIGURE U4,2: Approximate Exponential Rates for MN, (0,2),
- Y



Page 104,

We note that for large values of e, the
rate of the mle and pre are closer to each other than
to the Bahadur bound. This is likely because both
estimators are second-order efficient and not 'optimal!'
(in the sense that they do not attain the Bahadur bound) .
On the other hand, for small values of e, the rate of
the pre is closer to the Bahadur bound than to the rate
of the mle, which would seem to indicate that the mle
is not optimal within the class of translation invariant

estimators (for which the pre is optimal).

4.1.2 Non-symmetry
Now let us consider a mixture in which the mean

of the second distribution is shifted by a distance a,

g(x|8) = N8 , o?),
(4.8)
h(x|6) = N(o+a, r2c?)
and so the mixture, which we denote MNp(a, ry is
f(x|8) = pg(x]8) + (1 - p)h(x]|e). (4.9)

~Once again, we will denote the mle's of g, h and f

as Gg, eh and O(=Of) respectively, where in this case
og = X = zi X, /n (4.10)
b, = X ~ a, (4.11)
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and,

6 > 6. > 0. . ' (4.12)

Let us consider the unbiased sample mean estimator,
a"*‘_:}‘( - (1- pla. (4.13)

Then, since the mle from each Normal is related to
the sample mean, the mle for this mixture should,
at least, be asymptotically equivalent, that is
o - er Lo, (4.14)
so that, proceeding as in §4.1.1, the distribution
of 6% and hence of 6f 1s approximately

2 .
8 o § (MpFi-p) P N fn(p-Kys, ELOZKITT o) g g0y
k=0 & n n?

Thus , we can use (4.15) to compute the exponential

rate of the mle, as before. As a numerical examnle,
the mixture with p=%, a=2, and r=2, which is graphed
in Figure 4.2, has the exponential rates as given in

Tablile 4.3, which follows.
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TagLe L,3%: Exponential Rates for My, (2,2)

e b(0,0,6) b(6,68,e) ____B(8,e) _____ Lemma 2.4
0.1 L0015% .0020553 .0020564 .0020533
0.2 . .000% ‘ .0081082 .0081260 .0081092
0.5 .034 .048135 .048798 .048207
1.0 .129 .17183 .18080 173272
2.0 .476 .53181 60725 .53861
3.0 1.014 1.02068 1.16307 .98006
10.0 10.818 10.81901 10.87824 9.45403

(* Very approximate, convergence is very slow)

The last column of Table 4.3 is the value of the
exponential rate for the mle as given by the Bahadur-
Chernoff Theorem in Lemma 2.4. We note that these
values are quite different from the rates computed
by (4.15), and that for e<3, they excced the rate of
of the pre. Similar results were obtained under
Symmétry; whén the pre is optimal for the class of
translation invariant estimators to which- they both
belong." Hence»Lemmé 2.4 does not appear to hold.

Note also that the rate of the mle as computed
from (4.15) by summing terms, may be subject to greater
error when the probabilities are small, which together
with the fact that the convergence is very slow for
small e, makes the table entries b(é,@,a) very appro-
ximate indeed (and not really comparable with the other

columns, for small ¢).
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4.2 Double Exponential Distribution

The Double Exponential Distribution,

- _ -ix - 0] mo<x <o,
£(x|0) = e , << (4.16)

does not satisfy all of the regularity conditions
of Chapter 2, and, in particular, the mle is not
the unique solution of the likelihood equation.

The mle, Qn = mad{xj, XQ,...,Axn}, has exponential

rate, determined by Bahadur (1971, Example 6.1),
b(0,0,e) = -L log e S(2 - e ). (4.17)

The Bahadur bound is easily determined and well known,
B(O,e) = e ® he - 1. (4.18)

The distribution is suitably smooth so that Theorem
2.1 will still hold, so that the exponential rate of
the probability ratio estimator, which is also the
optimal rate for the class of translation invariant
estimators, consistent for 0, is given by Theorem 2.1,

as obtained by Sievers (1978),
b (0,e) = b(6,0,c) = ~log(1l + e). (4.19)

By symmetry, all of the Fisher moment of odd order
are zero, but since [ C1] to [C4] fail to hold, the

Taylor series expansions of §2,2-§2.4 are not valid.
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However, each of the above rate expressions can be

expanded directly into Taylor series,

b(o,0,e) = e?/2! - 1e%/3! + 1e*/ul + o(e"), (4.20)
'bT<e,e> = e?/20 - 2e%/31 + ee"/ul + o(e*), (4.21)
B(0,e) = e*/21 - 3e?/31 + 13e*/u! + o(e*). (4.22)

Therefore, for small e,
b(6,0,e) < bT(B,e) < B(6,e), (4.23)

as in the case of the logistic distribution. One
interesting point is that although the distribution
is symmetric and the odd-order Fisher moments all
vanish, the odd-degree terms of the above Taylor
series do not vanish. This means that for this

non- regular distribution, the mle is not second-order
efficient, and possibly, the pre is also not second-
order efficient as we do not know what the maximum
attainable rate will be in this case, assumming again
that the Bahadur bound is too large and that there

1s no estimator-sequence whose exponential rate will

achieve this bound.
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CHAPTER FIVE
CONCLUSIONS AND EXTENSIONS

5.1 Statistical Curvature

Efron (1975, 1978), Madsen.(1979), Amari (1982a,
1982b), Kass (1982) and others have investigated the
geometry of the statistical distributions and demon-
strated the relationship of statistical curvature to
the mathematical curvature. Efron (1975) and Madsen
(1979) have shown that the exponential family is
statistically 'linear' and has curvature zero, y; = 0.
Consequently Yg measures the extent to which score
function departs from linearity, which is also a
measure of how much the underlying distribution departs
from the exponential family. Tfron (1975) goes on
to infer that yé also measures the loss in information
on the mle 8, since 8 is optimal only for the exponential
family. However the mle is just one member of a large
class of estimators for which this 'loss of information'
is measured by yé. Indeed among all 'efficient' (by
Fisher) estimators, the definition by Rao (1961) of second-
order efficiency (which led to the definition of yg)
was satisfied by a large class of estimators which includes
the mle, and in the case of translation invariance, the

pre as well. However, attributes such as 'loss of
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information', 'departure from cxponentiallity' or
"efficiency' cannot be adequately characterized by

a single measure. Thus, YS is only the first of a
sequence of such measures. We will wish to define
other such measures, neasures which will relate to

the higher order efficiences. With this consideration
in mind, we defined the higher order rate coefficients,

§ A2, and v?}. 1In particular, A3 appears to be a

6> "8’ 0 0
kind of third-order extension of the squared curvature.
Let ué return to the specific case of translation -
invariance under a regular distribution. Both the mle
and the pre are second-order efficient, which is shown
by the fact that their exponential rates co-incide up
to the fourth-degree term, i.e. the term involving yé.
However, in general for regular distributions, the pre
but not the mle dominates and may be optimal for the
class of translation invariant estimators of which both
are members. This is demonstrated in . .the case of the
Logistic distribution and the Hyperbélic Secant distribution

(and numerically for the Normal mixtures) in that
b(6,0,e) > b(0,0,e), (5.1)

strictly. This suggests that the prominant place

accorded to the mle may be unjustified. It is optimal for
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exponential family, but only for the exponential
family. Also, the mle has been singled out by Rao
(1961, etc) and others, by showing that the mle

has a favored place among (first-order) efficient
estimators in that it has the minimum loss of sample
information and is hence, by this definition, second-
order efficient. However, we have shown by (5.1)

that the mle is not favored among the second-order
efficient estimators in that the mle is clearly
dominated by the pre in these instances. Indeed, the
Taylor series expansions of §2.2-52.4, and with the
actual application in the case of the Hyperbolic
Secant distribution, demonstrate that if we define
third-order efficiency in terms of the exponential
rates of convergence, then among all of the second-
order efficient estimators, the mle cannot be third-
order efficient. Also, as the pre has only been shown
to be optimal for the class of translation invariant
estimators, and since B(8,c) > b(@,o,e), and differ in
the fourth- and sixth-degree terms, it follows that
the pre may not be third-order efficient either. If
we refer to the Conjecture 3 in Chapter Two, however,
we do believe that, in this case, the pre is third-
order efficient, and in fact, optimal for all consistent
estimators, not just the translation invariant class

under symmetric distributions.
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tHence, in this one instance, we have shown
the mle to be non-optimal and not cven third-order
efficient, and we believe that the pre may in this
case be third-order efficient and optimal. On the
other hand, the mle is optimal for the exponential
family. In general, it may be possible that there is
no one estimator which is universally best. Intuitively,
we feel that the class of second-order efficient
estimators is partially ordered with no dominant

estimator-sequence.

5.2 Significance of the Rate Coefficients.

The special properties of the statistical
curvature, yé, by which it remains unaffected by
transformation,‘allow us to interpret Y; the same
way regardless of the nature of the parameter 0,
whether it is a location parameter, a scale parameter,
shape parameter, or whatever. Indeed, we have seen
that y; characterizes the efficiency of all second-
order efficient estimators. We would like to be
able to define other parameters which would charac-
terize the higher order efficiencies as well. This
may not be as easily accomplished, as is evidenced
by Lemma 3.2 which relates the rate cocfficients

of Location-scale Duals. This lemma suggests that
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any measure characterizing the efficiency beyond the
second-order may depend on the nature of the paramecter
6. This would undoubtably increase the complexity of
the situation, but should not really be too surprising.
Basically,y;, being the first rate coefficient, is

a kind of 'linear' or 'steady-state' component of the
efficiency, measuring the amount of departure or
curvature from the 'linear' exponential family for
which yg:O. Going beyond this 'linearity', the
interpretation and significance of the parameters we
define could depend on the nature of 9.

In Chapter Two we defined several parameters
with specific applicdation to the problem of a trans-
lation ihvariantlloca%ion parameter 0 of a regular
distribution. The divergence of the mle from the

3

g while the difference
J

pre is characterized by 66 and v
of the pre from the Bahadur bound depends on Yg and
Ag (see Definition 2.2). By our coniecture of_the
optimality of the pre, and by the definition of Rao,
it appears that yg and A; are in a sense 'corrections'
to the Bahadur bound which appears to be too large.
Refering to the definitions (2.36) and (2.39),
2
I(6) h,

yé = Tk (8)E, , (5.2)
J(0) h,
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3
1(0) hy
=TT, (5.3)
J(6) h,
2J0(0) ’ Nigio “No11o0 J(0)
+ I75(9) ,
I(0)){n1o01 Not1o1 1(9)

we sece that Ag has two parts:

1. A cubic generalization of the quadratic in
YS’ which involves only the fifst two derivatives of
the log-density function, £ = log f(x]09).

2. A 'correction' term involving the covariances
between the vector of the first two derivatives (Q, i),

dnd the vector of the next two derivatives (2(3), Q(u)).

Judging by this definition and its application,
we may give a similar dinterpretation to Ag as Yé’ in that
yg is a kind of quadratic distance measure, while Ag
1s cubic distance. Indeed, by our conjecture, yg and
Ag are the quadatic and cubic corrections to the Bahadur
bound corresponding to the second- and third-order

efficiencies.,

It would also seem that 8, and vg, the parameters
defined on the mle, may not have as wide an interpretation,
however we note that their definitions bear some striking

similarities to the previous. For instance, (2.37), the
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definition of 60,

1 E HO ey (5.4)
s - . L , 5.4
0 I4(0)J(0) GIJ(Q) ho J(0) hy

is similar to that of yg and the first term of Ag,
except that it involves the mean of the cross-product

I(0) h,

of which is a function of (1, i) and a

J(0) h,
similar determinant, in this case a function of (%, 2(36.
This kind of a cross-product is due to the fact that 6g
corresponds to the fifth-degree term in the difference
of the exponential rates,vwhéreas Yé and Aé correspond

to even degree terms. By the alternate definition of

ée in terms of the covariances of the score function,

1 Nooo Nio1 -
S = TV T(0) (5.5)
Niio No11

The matrix here is similar to yé and the matrix in

the second term of A3, but involves the covariances of

6’
(b, )x(h, ¢%0) rather than (i, i)x(i, 8) or (&, i)«

(2(3), Q(qb. Similarly, in terms of covarianceS;

) s N2oo Nito
Yo = I °(0) , : (5.6)

Nito MNo2o
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and,
3 . N2oo Nio1 )
= I +
vi=I7"(p) -3, (5.7)
Nio1 Noo2
Again, v} contains two parts:

0
1. A covariance matrix of (4, z<35x(i,gf3))’

similar to the cross-product matrices in YS, §, and X;.

0

2. A 'correction' term involving 60.

Similarities éf definition aside, these terms
are somewhat more difficult to interpref (for general
distributions). How do we interpret their values in
the non-regular case, or even the semi-regular case, as
with the mixtures of Normals, when the Taylor expansions
of the mle are not valid and hence 66 and vg are in this
case not measures of the divergence of the mle from
the pre? Indeed, as we vary the parameters of the
Normal mixtures, we are able to vary S from positive
through negative values, while the actual fifth-degree
divergence of the mle relative to the pre remains

positive.

5.3 Conclusions

The major conclusions to be drawn from this

investigation are the following:
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1. The Maximum lLikelihood Estimator is second-
order efficient but optimal only for the exponential
family. In the case of translation invariant location
parameter of a regular distribution, the mle is shown
to be not even third-order efficient.

2. Por translation invariant lccation parameter
of a regular distribution, the Probability Ratio
Estimator may be optimal for the class of translation
invariant estimators, which includes the mle; and
the pre may, in fact, be optimal for the class of all
consistent estimators.

3. The differences of the exponential rates
depend on c¢oefficients YS’ Sq Ag and vg, of which
A; appears to be a fhird—order extension of the squared
Sﬁatistical curvature, Yé.

4. For non-exponential families, the Bahadur
bound appears to be too large in that it does not
appear possible to construct a consistent estimator-
sequence whose exponential rate will attain this
bound. The 'corrections' necessary to make the bound

attainable depend on a sequence of parameters, which

EY,....; where £" is

we believe begin with Yé, PN o o

8 b

as yet undefined.
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5.4 Extensions

There are still some aspects of our investi-
gation that require some additional probing. As
well, other extensions to our work are suggested.

The following list of problems, of varying complexity,
are among those inspired by this investigation:

(A) Similar studies under other family restrictions,
such as scale invariance.

(B) To prove (or disprove),in general, Point #3
of §5.3 and prove (or disprove) that Aé,is the third-
order extension of the statistical curvature, regardless
of the nature of 9.

(C) Further inVestigate the nature and the
properties of A},

(D) Along the same lines as Problem (A), to
define third-order efficiency and its relationship to A;.

(E) Refering to Point #4 of §5.3, to define Eg
and conduct investigations similar to those proposed
for Ag above.

(F) To prove (or disprove), in general, the
assertion in Point #4 of §5.3, and to obtain the
corrected upper bound, B¥(0,e) < B(0,¢).

(G) To show that B*(0,e) is attainable and to

construct such an optimal estimator-scquence.
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(H) Failing (F) and (G), to construct optimal
estimator- sequences in restricted cases, such as:
(i) Show that B*(0,eg) = bT(e,e) as
has been conjectured.
(ii) Obtain bS (0,e) and show that
B*(o,e) = bS(O,e) where S,  is the class of
scale invariant estimators consistent for the

pure scale parameter o.

Some of these problems may not be soluble and
indeed further investigation may make some obsolete
and create new problems, as is often the casc with
rescarch. However, it seems appropriate to conclude
this investigation at this point with the above 1list

of possible further investigations.
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APPENDICES

6.1 Computation of Fisher moments

In this appendix we give the details involving

the compution of the Fisher moments of the distributions

in Chapter 3: the Logistic distribution, the general

exponential location family, the one-parameter Normal

distribution, and the Hyperbolic Secant distribution.

6.1.1 Logistic Distribution (§3.3)

Then,

Let us reparametrize, to make integration casier,
g=F(xle) = 1+ "X Oy71 (6.1)
the derivatives, in terms of g are

(A) £(x|0) =-§ =-(g2 - g),
3 D

(Cc) £

(x]0) = -(2g - 1)g =-(2g°-3g%+q),

(2) (x]0) = ~(692 - 69 + 1)

(6.2)

il

-(6g"-12g°+7g%-q),

() £ (x[6) = -(249° - 36q9% + l4g - 1)¢

i

~(24g°-60g*+50g°3-15g2+q),

I

(m) £ (x]0) = -(1209"-240g°+150g%-30g+1)¢

~(1200°-360g°+390g"*~180g°+31g2~g),

I

It

(F) £ (x]8) = -(7209°-1800g"+15609°~540g%+62g-1)g-

and, the integral of a polynomial in g can be evaluated

from the following:

o 1 kt1 {1
[ g ar(x|e) = [ ¢ dg = S—} = . (6.3)
-0 O b
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The derivative ratios are then,

(A) dy = 2g - 1,

(B) d» = 6g* - 6§ + 1,

(C) ds = 24g® -~ 369% + l4g -1, (6.4)
(D) dy = 120g"-240g°+150g%+30g~1,

(E) ds = 720¢°~1800g"“+1560g°~540g%+62g-1.

And so, by symmetry all the odd order moments are

zero, thus,

(A) Va0 = Eg(4g”~4g+l) = 4/3 - 4/2 + 1 = 1/3,
(B) Hugo = Ee(leg“—32g3+24g2~8g+1)
= 16/5-32/4+24/3-8/2+1 = 1/5,
(C) a1 = EO(24g”~48g3+34g2~10g+l)
= 24/5-48/4+34/3-10/2+1 = 2/15,
(D) wio1= E (48g"-96g°+64g*~16g+1)
= 48/5-96/4+64/3-16/2+1 = -1/15,
(E) Wozo = E_(36g"~72g°+48g”~12g+1) (6.5)
= 36/5-72/4+48/3~-12/2+1 = 1/5,
(F) Weoo = EO(64g6~l92g5+240g”—l60q3+6Og2—129+1)
= 64/7-192/6+240/5-160/4+60/3~12/2+1 = 1/7,
(G) wwro= £, (96g°~288g°+352g"-224g°+78g”~14g+1)
= 96/7-288/6+352/5-224/4+78/3~14/2+1 = 4/35,
(H) M3o1 = E@(l92q6—576g5+688g“—4l6g3+132g2—20q+l)

= 192/7~-576/6+688/5-416/4+132/3-20/2+1 = 1/35,
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(I) Uopo = EG(144g6~432g5+516g”—312g3+100g2~16g+1)

= 144/7-432/6+516/5-312/4+100/3~16/2+1 = 11/105,

(J) = E (288g°~864g°+1008g"-576g°+166g°-22g+1)
= 288/7-864/6+1008/5-576/4+166/3-22/2+1 = 8/105,
(K) Hoso = E (2169°-648g°+7569"~432g°+126g2-18g+1)

= 216/7-648/6+756/5-432/4+126/3-18/2+1 = 2/35,

i

(L) wWooz= E (5769°-1728g°+1968g"~1056g°+268g2-28g+1)

= 576/7-1728/6+1968/5~1056/4+268/3-28/2+1 = 23/105,
(M) Upgo,= E,(4809°-14409g°+1680g"~960g°+274g*-34g+1)

= 480/7-1440/6+1680/5-960/4+274/3~34/2+1 = ~2/21
(N) mor01= E(720g°-2160g°+2460g"-1320g°+336g2-36g+1)

= 720/7-2160/6+2460/5-1320/4+336/3-36/2+1 = ~1/7,
(0) Mio001= £, (14409°-4320g°+4920g"~2640g°+664g°~64g+1)

= 1440/7—4320/6+4920/5—2640/4+664/3—64/2+l = 1/21,
Similarly, for the scale dual of the logistic (3.39),
h=1-7r(ylo) = ¢/(c + y), (6.6)

and so, differentiating by o, with h = (h - h?)/o,

(A) f£(y|lo) = h?/o,

® £ (v]o) = 2nfi/ = h?/0% = (h? - 2n%)/0%
(©) £2 (y]o) = (2h - 6h?2)H/6% - 2(h® - 20 /g2

= (6h" - 4h%)/0°, (6.7)
) £ (y]o) = (24h7 - 12h2)0/06° - 3(6R* — 4n?), g

= (18h" - 24h°)/c"
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il

il

(120h® - 96h°)/0%,

(720n°

i
!

i
1

(600h*® 720h7) /0%,

and, again, the integral of any polynomial in h can

be determined from the following:

<0

— €O

Then, the

(A)
(B)
(C)
(D)
(E)

x 1k i 1 )
[ n ar(ylo) = g hodh = 5| % T (6.8)
derivative ratios are
d;y = (1L - 2h)/0,
d, = (6h? - 4h)/o?,
ds = (18h? - 24h3%)/c3, (6.9)
dy = (120h* - 96h%)/c",
ds = (600h"* - 720n°%)/0%.

And hence the Fisher moments of the scale dusl of the

logistic are as follows:

()
(B)
(C)
(D)

Haoo =

U3o0 =

Hito

Huoo

it

Il

E, (L-4h+4n?)/o? = (1-4/2+4/3)/0* = 1/30%,

(1-6/2+12/3-8/4) /¢

i

E, (1-6h+12h*~-8h°) /0

i

E, (~4h+14h*-12h%) /0 (-4/2+14/3-12/4) /0
E, (1~8h+24h*~32h°+16h") /0"

(1-8/2+24/3--32/4+16/5)/c"* = 1/50",

(72h? - 120n")h/c* - 4(18h* - 24h%)/c%

1l

480n")Yh/0% - 5(120h% - 96h%)/0"



(F)

(G)

(H)

(1)

(J)

(K)

(L)

(M)

(N)

(P)
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il

Ho1o EO(~4h1+22h2—40h3+24h“)/c“

= (-4/2+22/3-40/4+24/5) /0" = 2/150",
Hoog = 50(16h2—48h3+36h“)/a”

= (16/3-48/4+36/5) /0" = 8/150",
Mio1 = E_(18h°-60h>+48h") /0"

= (18/3-60/4+48/5)/c" = 3/50"%,
Hsoo = E_(1-10h+40h*-80n’+80h"~32h")/0°

= (1-10/2+40/3-80/4+80/5-32/6)/0° = 0,
U31g = EG(—4h+30h2—84h3+104h”~48h5)/05

= (~4/2+30/3-84/4+104/5-48/6)/c° = -1/50°%,
Mao1 = E_(18h?-96h°+168h"*~96h°)/0°

= (18/3-96/4+168/5-96/6)/0° = -2/505,

Hizo = E_(16h”-80h°+132h"-72h%) /0"

= (16/3-80/4+132/5-72/6) /0% = -4/150°%,
H1001= EO(—96h3+312h“—240h5)/05 (6.10)
= (-96/4+312/5-240/6)/0° = -8/50°,

Uopy = EO(~72h3+204h“—l44h5)/05

= (~72/4+204/5-144/6)/0° = -6/50°%,
Meoo = E_(1-12h+60h?-160h°+240h"~192h°+64h")/c®

= (1-12/2+60/3-160/4+240/5-192/6+64/7) /0% = 1/70¢°5,
Uy1g = EG(~4h+38h2~l44h3+272h”—256h5+96h6)/06

= (-4/2+38/3-144/4+272/5-256/6+96/7)/0% = 4/350°,
U3gy = EU(l8h2—132h3+36Oh”—432h5+l92h6)/06

= (18/3-132/4+360/5-432/6+192/7)/c° = 3/7¢5,
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Q) H220= E_(16h*-112h°+292h"-336n°+144h°%) /o®

= (16/3-112/4+4292/5-336/6+144/7)/0°% = 32/1050°,
(R) Wi = E_(-72h°+348h"*-552h°+288h°) /c°®

= (~72/4+348/5~552/6+288/7)/0° = 26/3505,
() woso= € _(-64h°+288h"~432h°+216h%) /0°

= (-64/4+288/5-432/6+216/7)/0°% = 16/350°,
(T) Mooz = E_(324h"~864h°+576h°) /c*

= (324/5-864/6+576/7)/0° = 108/350°,
(U) woro1= E_(384h"-1056h°+720n°) /0"

= (384/5-1056/6+720/7)/¢® = 128/350°,
(V) nz2001= E_(-96h*+504h"~864h°+480h°®) /0®

= (-96/4+504/5-864/6+480/7) /0% = 48/3505,

(W) H10001= Eg(600h”—l920h5+l440h6)/06

i

= (600/5-1920/6+1440/7)/c® 40/70°% .

We could have obtained the above results from (3.32) in
Lemma 3.2, and the Fisher moments of the original
distribution (6.5). Note, however, that this scale
dual is not translation invariant and hence Lemma 2.1
does not apply to the above moments (6.10), although it
does apply to the moments of the original translation
invariant logistic distribution (6.5). Note also

that the rate coefficients as given in Table 3.1 can
be computed directly from the above moments (6.10), or

by applying Lemma 3.2.
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And

2 General Exponential Family (§3.4.1)

. v (x-0
Let us reparametrize as t:me[( ), then

f(XIO) = p mt epq(x—e)—mep(xue)

I'(q)

= ptqe—t/F(q).

so diffentiating by 6, with E=~pt, we get

(n) £(xl0) = pat?™t - e iy

-t
Pl - ge” /T(q),

(B) f(x]0)

il

It

ptIe? - (2g+1)t + g2le ST (q).

" Then, integrating a polynomial in t,

[oe] oQ

[ tF ar(x]e) = [ 5 pe9e™Yrig) ax

-0 - 00

= [ t tq_lemt/F(q) dt
0

'(g+k) _
Tia)

Hence, the derivative ratios are

And

(t - CI)P,

il

(p) d,

(B) 4, (€% - (2g+1)t + ¢”)p”.

so, the Fisher information is

I(8) = sze(tz - 2gt + ¢?)

2

= p°lalq+1) - 2¢% + q?1 = gp?
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(6.11)

(6.12)

P grtT = g2t - e - 1t e i)

(6.13)

= g(g+1)(g+2)...(g+k=-1).

(6.14)

(6.15)
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Then, the third-order Fisher moments are

(A) Uz = p3Ee £3-3¢t?+3¢%t~q?®

= p3[q(q+1)(q+2)—3q2(q+1)+3q3~q3] = 2¢qp°,
(6.16)
(B) pi10 = p3Ee t3=(3g+1)t%+g(3gt1)t—q?

= pa[q(q+1)(q+2)—(3q+1)q(q+1)+(3q+1)q2—q3] = gqp°’

Therefore, the 'scale-information' is

J(0) = U110 ~ Hseo = gqp’ - 2qp° = -qp?,
(6.17)

wi = J?(0)/1%(0) = ¢%p°/q’p® = 1/q. | -

The higher order Fisher moments are not required,

since for this underlying exponential family the

other rate coefficients will all be zero.

Now to obtain the coefficient of skewness, we
require the central moments y, and p;. To obtain these

we first find the moments about the location,

£, = Eg(x - )7
B {: (x-@)i ?(ZTGPQ(X~6)_mep(X—G) dx
= ém (%log z)i F’Z’Z) 2971 4y (6.18)
B @_(i;"? {)m (Log 2) 27 %™ 4
- %:(«%"? —~?—jmq>/mq},

dq



Hence,

£, = @w~—~§g (I(q)/m?)

— 1 q . :
= %Tg%(F(q)/mq - T(g)/m? log m)

= %(f(q)/F(q) ~ log m)

= %(w<q> - log m),

where y(x) is the digamma function,

px) = =2 log T(x) = F(x)/T(x).
Also,
Pl 7

&, = T(q) gaz(F(Q)/mq)

-2
T

il

I

and so, the population variance is

U = &, - gf

= (q)/p?.
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(6.19)

(6.20)

qa . .
= p_z;m.)* (F(Q)/mq~?r(q)/mq‘log m + F(q)/mq‘log?"m)

(6.21)

p AT (g)/T(q) = 2F(q)/T(q) log m +{log m}?)

th(q.)(q) + Y2(q) - 29(gl)log m + {log m}?),

(6.22)
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Similarly,

,—3 q 33
- _p m' q

~3 q(r b .
_p mifT(a) [T(9) P 1002, ~ LDy s
= F(q){ e -3 g log m +3 e log©a g og - m
) . (6.23)
Tl P AfCa) e o0 }
- {I’(q) ST(qyted m Pipcgylogim - logm

= P*%J(q)+3@(q)w(q)+w3(q)*3[¢(q¥ﬁw2(g)]loq m

+3y(g)log?’m -~ logim).
Then, the third central moment is
Ws = E3- 8818 + 267 = ((q)/p% (6.24)
Therefore, the coefficient of skewness is
Bi= ui/ud = ¥2(q)/9%(q) . (6.25)

Then from page 260 of Abramowitz & Stegun (1964),

&(x) vol/x o4+ o(l/x)
(6.26)

Vix) v -1/x% + 0(1/x%),
for large x, and so, as g+,

Br v (-1/¢™)? + (1/q)® = 1/q. (6.27)
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6.1.3 Hyperbolic Secant Distribution (§3.4.2)
In this case, to make the computations easier

let us use a double re-parametrization,

x - 6
g = e ’
_ (6.28)
h=1/(1 + e 9y,
and the derivatives, with respect to 0,
. X - 0
g = -e = -9,
. (6.29)
h=ge 9/(1L +e 92 = g2 - n)
Therefore,
(x-0) - x=0 _ xX-0
£(x]0) = e ©  Jllog 2-(1 + e © )]
_ _ (6.30)
= cge 9/(1 + 79 = cg(1 - n),
where ¢ = 1/log 2. Then, the derivatives in o,
(1) _ . .
() £77 (x][0) = clg(l - h) - ghl
(6.31)

= cl-g(1l - h) + g°(h - h*) ],

cl-g{ (1-h)-2g (h-h?) }+{g+g? (1-2h) }h]

i

) £2) (x]6)
= clg(1l-h)=-3g” (h-h?)-g®(h-3h%+2n%) ],

(c) £¥

(x]6) = clg{(1~-h)-6g(h-h?)-3g? (h-3h2+2h?)}
-{(g+3g?(1-2h)+g? (1-6h+6h?) }h ]
= ¢cl-g(1-h)+7g% (h-h*)+6g® (h-3h?%+2h?)

+g" (h-7h?+12h°%~6h") 1 |
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(0) £ (x]0) = c[-&{ (1-h)-1dg (h-h?)-18g? (h-3h?
+2h%) ~4g% (h-7h?+12h3-6h") }
+{g+79% (1-2h) +6g° (1-6h+6h?)
+g"* (1-14h+36h%~24h3%) }h]
= c[g(1l-h)=15g2 (h~h?)~25g3 (h-3h2+2h?)
-10g"* (h-7h?+12h%-6h") ~g5 (h-15h2

+50h%-60h"*+24n5%) 7 ,

i

(£) £%) (x]0) = el§{(1-h)-30g(h-h?)=75g (h-3h%+2h°)
~40g?® (h~7h?+12h°%~6h"*) -5g" (h-15hH2
+50h3-60h"+24h%)} = {g+15g? (1-2h)
+25¢g° (1-6h+6h?)+10g" (1-14h+36h?
=24n%) +g% (1-30h+150h2-240n3+120h") }H]

= cl[~g(1-h)+31g? (h-h?}+90g? (h-3h?+2h?)

+65g"* (h-7h%+12h%-6h") +15g° (h-15h?2
+50h3-60h"*+24h°®) +g® (h-31h2+180h3

-390h"*~360n%) ] .

And hence the derivative ratios are

(A) dy = -{1 - ghl,

(B) d, = [1 - 3gh - g?h + 2g°h?7],

(C) d3 = ~[1-7gh~6g*h+12g°h?*-g3h+6g°h’~69°h®] ,(6.32)

(D) dy = [1-15gh-25g°h+50g*h?~10g°h+60g°h2-60g°h?
~g"h+14g*h*~36g*h°+24g"h" ],

(E) ds = -[1-31gh~90g”h+180g°h?-65g°h+390g°h?+390g°%h?

~15g*h+210g"h?-540g"h3+360g " h*~g h+30g5h?2

~-150g9°h3+2404°h"*~120g°hn°] .
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. m, n
Then, we also need the mean of g h  for n<m,

€ = Eggmhn = [ g™n" dar(x|0)

w m+1, n \

= [ cg” "h"(l - h) dx

= [ cg™n" (1 - n) dg
0

= f cgme"gdg/(l + e~g)n
0
o (6.33)

= [ cg'e"ag/(1 + &)™
0

(e

) C{"%gme(nﬂl)g(l + %)
0

+%f [mgm~1+(n~1)gm]e(n_i)gdg/(l + eg)n}
0
1-
= .

+ (n~1)£m - 1.

1,n-1 1

S0, from (23.2.8) of Abramowitz § Stegun (1964), p807,

- _ [ _.m g
K= gmo = g cg dg/ (1 + e”)
= c¥(m+1)01+2” ™IT (m+1) (6.34)

= mln(mt1)/log 2,

where %(x) is the Reimann Zeta function and w(x) is
the sum of the alternating series corresponding to ¥ (x).
We can then define each Emn in terms of kK, as in the

following table.



Eus

Eny
Eou

>

€65

1l

TapLE 6,1
Ko = 1
4K3
(1 + xy)

(10K3 + 3Kky)
(UK +6K, 5K 3)

(146K 1+, ticg)

(15K, +30K 3+ 32 Ky +3K5) €ss

(6K1+30K,+35k 3+%% Ky,

6
+tEKs) &g

e & in terms of «,
mil 1

E21 = 2K,
ESI = OKy
Ei2 = (3ky + 3xy)

EGZ = (15Kq + 3K5)

553 = (1OK2+1OK3+%KQ)

ESH =

1

It

€31
61
Euz
€33
€63

3K,

6K s

(6o + 2€3)

(1 + 3Ky + ky)

(20K 3+15K, +2K5 )

(5K +15K,+ 22K 3+ 3K 5)

(1+10k 1+ 3210, + 28 K5 ticy )

. :
(1+15K 1+ 2Pk + 22k s+ 3 Ky k)

Then from (6.32), and using Table 6.1 to simplify,

(A)

(B)

(c)

(D)

H200 = E6C1i = Ee (l - gh)2
= E (1 - 2gh + g”h?%)
=1 - 2800 B =1 - 2 4+ (1 4 Ky) = Ky
U3gqg = Eed% = ~Eg (1 - gh) 3
= *Ee(l - 3gh + 3g%h? - g°®nh?)
= 1 - 3@11 + 3&22 - €33 = 1—3+3(1+K1)“(1f3K1+K2) = =Ko

Wit = Eedldz

= -E,(1-4gh-g’h+5g’h*+g°h?~2g°h°?)

= 1 - hEyy - Eaq + 585, + &35 - 2844

= 1-U-2k 4501+ ) +H( 3K +3K, ) - 2( 143K +K )

Hygo = Eed? =

i

_ L
Eq (L - gh)

1 - uE1y + 6820 - UE33 + &y

= —Ee(l~gh)(l~3gh~g2h+2g2h2)

= -3k,

LT-046 (14K ) =B (143K 4K )+ (146K + 3K+ ) = 31y + Kg o



(E)

(1)

(G)

(H)

(1)

(J)

H21o0

Hio01

Hoz20

Hsoo0

U310

Hizo
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= 1-5811-89119802+28 3,78 53-8y 3128,y

1-5-2k 1 +9( 1+ J+2( 3K 143K, ) = 7( 143K 1 +K5 )

~(UK Kt ) H2( 16K H A, 1K) = Ky + 3K,
1-8811-6821-851+198224128324842-18833-6E4 34684y
1-8-12K1~3K2+19(1+K1 )+ 12( 3K +3K )+( 6K +2K 3)

~18( 143K 1 +K, ) =B (UK | +6K 2 + 5K 5 ) +6 (146K, + 1Ak, k) = Ky,
1768117285 1+1385246832+842-12833-U8y 3184y
1—6—4K1+13(1+K1)+6(3K1+§K2)+(6K2+2K3)~12(1+3K1

+Kp )~ HK  +6K p + 313 ) H (146K 1+ 210+ 3) =~k +Kp 5K 35
~145811-10852+10833-58, 4 +E55

~1+5-10( 141 )+ 10 (143K, 4K, ) -5 (1+6K 1+ 22K +K 5)
+(1+10Kk 1+ 22, 129K 5 40, ) = Sk + Ky s (6.35)
14681 148, 11085238 3,416 33438, 3-9E 4 -E5, 42855
~146+2k =14 (14K 1) =3( 3K+ 3K, ) +16 (143K +K5 ) +3 (4K,

F6K 3K 3) =9 (146K 3 K, +0 5 ) ~ (5K +15K 0+ 53K 54 By, )
+F2(1H10K 1+ 32K, 422K 3 HKy ) = SK3 + 2Ky »

"I TE 4285171985588 35,4258 53-8, 91108, 3-16E 4y

853 UEsytUEgs = ~1+7+4Kk~19(1+K ) -8(3K 1 +5K o)

+25( 143K 14K ) = (6K 42K 3 ) +10 (MK} +6K, + 5K 3 ) =16 (146K

+ oo kg ) H (10K, +10K 3+ 3Ky ) =4 ( 5K 1 +15K o+ £ g4 2Ky, )

+0(1+10K,+ 32K 125K 54Ky ) = <Ky + 2K + 3Ky >



Page 136.

1l

(K) a1 —1+9E11+6€21~27€22+€31*18&32+37633~?£42

1884 3-2uEy 4, +E53-6E5, 6855

t

"1+9+12K1—27(1+K1)+3K2*18(3K1+3K2)+37(1+3K1
K2 ) =2( 6Ky +2K 3) +18( 1y +6K o+ 5K 5 )~ 2L (146K,

11 5 55
+"2"K2+K3)+(10K2‘f’j_0|‘<3’1‘3l<1*)—6( 5]{1'{—15}(2-‘}._6__!(3
+2K”)+6(1+1OK1+%;K2+%3K3+K4) = 2Ky, + K3 + £Ky s

(L) Woiq “1+1081 147821735802+ 313183245683 39845

It

U284 3-U28 04 -850 +8E53-1885,+12E 5 5

~1H104 20K =35 (14K ) +3K, - 31( 3K 5K, ) +56 (143K,

[}

2 ) =9 (BK2+2K 3 ) +1U2 (UK 1 +6K+ 35 ) ~42( 146k,

H

+%%K2+K3)‘(10K3+§Kq)+8(1OK2+1OK3+%Kq)“18(5K1_

+15K2+§§K3+2K4)+12(1+1OK1+%§K2+2§K3+Kq)

It

1 1
“zK2 f Kzt gKy o,

~1+16€11+25€21*65622+1O€31~85£32+110533+Eq1

1

(M) Hi901

”24€42+965u3—8”€q4“€52+14€53“36554+24€55

i

"1+16+50K;~65( 14K 1) +30K,-85( 3k +3K, ) +110( 143K,
T2 )t 5~ 24 (6K +2K 3 ) +96 (LK 1 +6K o + 5K 3 ) -8B (146K

l%Kz-mg)—(1OK3+§|<;+)+11+(1OK2+1O»<3+§|<1,)~36(5|<1

+
+15K2+§§K3+%Kq)+24(1+1OK1+§§K2+2§K3+K4)

5 1
= 2K2 - Ky -
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6.1.4 One parameter Normal (§3.4.3)

To compute the rate co-efficients for the
one parameter Normal, N(e,ek), it seems to be easier
to compute the log-density moments, nijk’ rather than
the Fisher moments (which can then always be obtained

through TLemma 2.2). First we can make use of the well

known moments of the N(u,o?),

(A EX = pn = 8

b

(B) Ex* = u? + ¢% = 82 + of

' . (6.36)
(C) Ex® = u® + 3uc? = 03 4 36k+1,
(D) Ex" = u* + 6u%0? + 30% = 0% + go<t2 , 392k

Therefore the log-density and its derivatives in 6 are

(A) L=-%log(2me’)-x2/20%x/0% 1 %0k 2

k+1

(B) f=-k/20+kx%/20" " (k-1)x%/0% 1 (k-2) /0205 % (6.37)

(C) B=x/20%-x(kt1)x? /20" 24k (k-1)x/6% . (k-2) (k-1) /20,
Hence, the Fisher information is

Ho2oo = EL2 = ~E%
= —[k/262~k(k+1)/262—k(k+1)/26k+2k(k~1)/26k
~(k=2)(k=1)/20%7 (6.38)

= k279202 + 1/06%.



And, the
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'scale-information' is

J(0)

i

COUG(Q, ) = EOKZ

2k+3 2k+2

EX* +k(k-1)(2k+1)/26 Ex?®

2k+1 k+3

~k?(k+1)/40

k(3k2%2-8k+2)/20 EX* 4+ k?(k+2)/40 Ex?2

(k=1)(k-2)(2k+1)/20°% EX = (k-1)(k-2)2 /492K 1

k+1 k+2

k2 (x-2)/u40 - k2/u0% - k(k -1)/20 EX

~2k/0% " L kP (kv1y /003, ' (6.39)

Hence for the exponential family members, J(08)=0 for

k=0 (exponential translation family) and J(0)=-21(9)/6 for

k=1 (exponential scale family). Also,

E 42

0

and so

Noz2o

Hence, the

2
Yo

i

H

)

L

17675 4 sk? /652 4 (axtiuxtiok?)/uet (6.40)

EOEZ - aoo =uk?/e%te K*(k+1)%/20%,  (6.41)

tatistical curvature is

T(0)nag0 = J*(6)1/1°(0)

) (6.42)
k2(k-1)2/021°% (0) g5t

H

which is zero only if k=0 or k=1, the only two values of

k for which the distribution is of the exponential

family.
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6.2 Computer programs in BASIC

A1l computations were done on a Commodore PET
2001-32K micro-computer with algorithms written in
BASIC. Since only computations and no simulation
was involved, the 9-significant digit precision of
the micro-computer was considered sufficient. Some
of the programs were also tested on a mainframe
computer (in FORTRAN) and yielded outpﬁt in double
precision which was identical in the 9-significant
digits of the micro—computér. As there was no printer
for the micro-computer, all output and program listings
had to be reported manually. The major programs are

thus listed below.

6.2.1 Direct Computation of the Exponential Rates

The following BASIC pfogram computes the Bahadur
bound and the exponential rates of the pre and mle
directly from the definitions (2.42), Theorem 2.1 and
Lemma 2.4. The program as presented considers the
mixtures of Nbrmals of Chapter 5, but can easily be
modified for any other underlying distribution by

changing the defining subroutine at line 140, and

modifying other lines as necessary (such as 5 to 15).



10

15

17

20

25

30
32
35
40
45

50

55
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DIM TM(5), TP(5), T(5), ML(5), PR(5), M(22),
BB(6), CC(6), DD(6) |

DATA .25, .45, .5, .55, .75

INPUT "P,A,R";P,A,R: Q=1-P: L2=SOR(2*7): R2=R*R:
LR=LOG (R2)

DEF FNS(Z)=-2%%/2:LO=LOG(Q/R) : LP=LOG (P)

DEF FNP (Z)=INT(1000000*Z+.5)/1000000: DEF FNC(Z)=
INT (ABS (.5-SGN(Z)))

X0=INT (A~9.3*R)-1: IF X0>-10 THEN X0=-10

X1=INT (A+9.3*R)+1: IF X1l< 10 THEN X1l=.10

INPUT "DX";DX: C=DX/L2: INPUT "MOMENTS";IT:
IF IT=1 THEN GOSUB 200 |

INPUT "E,PRECISION";E,I: SR=10+(-T)

FOR I=1 TO 5: READ TP (I): TM(I)=2*E*TP(I): NEXT:
INPUT "DP,DM,RO";DP,DM, RO

INPUT "T";IT: IF IT=1 THEN FOR I=1 TO 5:
INPUT "PR,ML";TP(I),TM(I): NEXT

K0=0: K1=0: RESTORE: FOR I=1 TO 5: ML (I)=0:
PR(I)=0: NEXT

FOR X=X0 TO X1 STEP DX: GOSUB 140: FX=EXP (L) :
K0=KO0+FX* (L-10) : K1=K1+FX* (L-L1) |

FOR I=1 TO 5: ML(I)=ML(I)+EXP (LO+TM(I)*D1+DM)

PR(I)=PR(I)+EXP (LO-TP(I)* (RO-LL+L0)+DP): NEXT T,DX

KO0=C*K0: K1=C*K1l: RT=K0-Kl: PRINT "K-L =" KO0,Kl:

PRINT "RT =" RT: IF A=0 OR R=1 THEN RT=0
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60 FOR I=1 TO 5: ML (I)=C*ML(T): PR(I)=C*PR(I)*
EXP (TP (I)* (RO-RT)): NEXT

65 D=DP: PRINT "PRE": FOR I=1 TO 5: M(I)=PR(I):
T(I)=TP(I): PRINT T(I) TAB(8); D-LOG(M(I)): NEXT

70 DEF FNE(Z)=EXP(LO—Z*(RT—L1+LO)+D): GOSUB 100

75 D=DM: PRINT "MLE": FOR I=1 TO 5: M(I)=ML(I):
T(Ij=TM(I): PRINT T(I) TAB(8); D-LOG(M(I)): NEXT

80 DEF FNE (Z)=EXP (LO+Z*D1+D): GOSUB 100

98 GO TO 25

99 END

With the subroutines to compute the Normal mixtures

as follows:

140 z=X: GOSUB 160: L=LN: DI1=X*EXP (LA-L)+ (X~A)*
EXP (LB-L) /R2
145 7Z=X+E: GOSUB 160: LO=LN: Z=X-E: COSUB 160:
L1=LN: RETURN
160 LA=FNS(Z)+LP: LB=FNS((Z-A)/R)+LO: IF LA-LB>20
THEN LN=LA: RETURN
165 LN=LB+LOG (1+EXP (LA-LB) ) : RETURN
170 LA=-1000: S=FNC(ZX): IF ZX<>0 THEN LA=LG+LOG (ABS (ZX))
175 LB=-900: SY=FNC(2Y): IF %Y<>0 THEN LB=LH+LOG (ABS (2Y))
180 IF LA-LB>20 THEN LN=LA: RETURN
185 IF S=SY THEN GOSUB 165: RETURN
190 IF LA>LB THEN LN=LA+LOG(1-EXP (LB~LA)): RETURN

195 $=8v: LN=LB+LOG (1-EXP (LA~LB) ) : RETURN
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Subroutine to evaluate the infimum of the p(¢)
in the rate expressions of the pre and mle, using
a trisection method to obtain the optimum value of

a convex or concave curve for a closed interval:

100 IF M(3)< M(2) THEN T(1)=T(2): M(1)=M(2)

105 IF M(3)< M(4) THEN T(5)=T(4): M(5)=M(4)

110 IF M(3)<=M(2) THEN T(5)=T(3): M(5)=M(3):
T(3)=T(2): M(3)=M(2)

115 IF M(3)<=M(4) THEN T(1)=T(3): M(1)=M(3):
T(3)=T(4): M(3)=M(4) |

120 T(2)=.2%T(1)+.8*T(3): T(4)=.8%T(3)+.2%T(5)

122 DT=ABS (LOG(M(3))/LOG(M(1)))+ABS (LOG(M(3))/LOG(M(5)))

124 PRINT D-LOG (M(3)) DT: IF DT<SR THEN RETURN

125 M(2)=0: M(4)=0: FOR X=X0 TO X1 STEP DX: GOSUB 140

130 M(2)=M(2)+FNE(T(2)): M(4)=M(4)+FNE (T (4)): NEXT

135 M(2)=C*M(2): M(4)=C*M(4): GO TO 100
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6.2.2 Computation of Fisher moments

Here we give the subroutine to compute the
Fisher moments up to the sixth-degree, which are
then used to obtain the coefficients of the Taylor
series expansions of the Bahadur bound and the rates
of the pre and mle, as given in £§2.2-§2.4. This -
program is given for the Normal mixtures and requires

the subroutines beginning at line 160 in §6.2.1

200 FOR X=X0 TO X1 STEP DX: Z=X: GOSUB 160:
LG=LA-LN: LH=LB-LN: L=LN

205 PRINT FNP(X) TAB(12) FNP(EXP (LN)/L2) TAB(25) LN

210 X2=X*X: XA=(X~A)/R2: A2=XA* (X-A)

215 72X=X: ZY=XA: GOSUB 170: D1=LN: Gl=S: LH=LH-LR

218 7ZX=X2~1: ZY=A2-1: GOSUB 170: D2=LN: G2=S |

220 ZX=X*(X2-3): ZY=XA* (A2-3): GOSUB 170: D3=LN:
G3=S: LH=LH-LR

222 7X=X2%(X2-6)+3: ZY=A2*(A2-6)+3: COSUB 170: DA=TN: G4=S

225 ZX=X*(X2*(X2-10)+15): ZY=xa* (A2* (A2-10)+15): GOSUB 170

227 M(22)=M(22)+(-1) + (GL+8) *EXP (L 4+D1+LN)

230 J=0: FOR S=2 TO 6: FOR Td=0 TO £/5: S3-S-4%14

235 FOR I3=0 TO S3/2-1: S$2=83-3*T3

240 FOR I2=0 to S$2/2: I1=S2-2%I2: IF I2=S*S/4 GO TO 250

245 M{J)=M(J)+ (~1) 4 (I1*GL+T2*G2+I3*G3+T4*C4) *
EXP(L+Il*Dl+IZ*D2+I3*D3+I4*D4); J=J+1

250 NEXT 12, I3, I4, S, X
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260
265
270
275

280

285
290
295

300

310

315

320
325

330

Page

FOR TI=0 TO 22: M(I)=C*M(I): IF ABS(M(I))<1E~9
THEN M(I)=0

NEXT: I=M(0): J=M(2)=M(1l): PRINT "I ="T1"J ="J
I2=T*T: T3=I*I2: K=J*J/I3:K1=2%M(3)-3*M(4)+M(6) :
K2=3*M(3)-6*M(4)+4*M(6)

K3=M(3)-2*M(4)+M(5) : K4=K2-K1-M(6)

L1=2*M(7)~5*M(8)+3*M(9)+M(10)~-M(11)
L2=T7*M(7)~16*M(8)+6*M(9)+6*M(10)-2*M(11)-M(12)

L3=4*M(7)-10*M(8)+1L0*M(10)~5*M(12)

M1=5%M(13) =15%M(L14)+12%M (15)~2%M(16) +4*M(17)
~4*M(18) =M (20) +M(21)

M2=4*M(13) ~12%M (L14) +9%M (15) +4*M (17) ~6%M (18)+M (19)

M3=5*%M(13) ~15*M (14)+20*M (17) ~15%M (20) +6*M(22)

B3=-3*J-M(1): KO=K1/I2: G=K3/I2-1-K: D4=T2%G/8
IF J<>0 THEN J1=B3/J: J2=3+J1l: J3=(K4/I+L2/J) /I
~J1-J2: D=L1/I/J-J1+K0: D=-D

L= (M1/I-K2) /I2-2+K* (J3+K*J2) : D3=I3*1,/48

144,

N=M2/I3-KO*KO-K* (J1*J1-3*D): D2=I3*N/72: D1l=I*J*D/12

BB(2)=I/2: CC(2)=BB(2): DD(2)=BB(2): BB (3)=B3/6:
CC(3)=BB(3): DD(3)=BB(3)

BB (4)=K2/24+K3/8: CC(4)=BB(4)~D4: DD (4)=CC(4)

BB (5)=(L1+L3/10)/12: CC(5)=BB(5): DD(5)=BB(5)~-DL

BB (6)=M1/48+ (M2+M3/10) /72: CC(6)=BB(6)-D3:

DD(6)=CC(6)-D2
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6.2.3 Exponential Rate of mle

For the mixure of Normals, the rate of the mle
cannot be obtained from Lemma 2.4. Below is given
the program for computing the rate directly, as

described in §4.71:

5 INPUT "P,A,R";P,AA,R: NC=.5*LOG(2*7) : R2=R*R:
LP=LOG(P) : LQ=LOG(1-P): LR=LP-LQ
- 10 DIM T(50): LT=LOG(10): INPUT "E,N";E,N: DO=1
15 DV=R2-1: AN=AA/N: MN=P*AA: LC=N*LQ: V=N*R2:
FOR K=0 TO N: SEzN/SQR(V)
20 Z=SE* (E+MN) : GOSUB 400: LO=L
25 7Z=SE* (E-MN): GOSUB 400: Ll=L: IF L1>L0 THEN
L=L0:L0=L1l:Ll=IL
30 IF K=0 THEN PO=LC+LO: P1=LC+Ll: GO TO 40
35 PO=PO+LOG (L+EXP (LC+L0O-P0) )
38 P1=P1+LOG (1+EXP (LC+L1-P1)): IF K=N GO TO 45
40 MN=MN-AN: V=V-DV: LC=LCHLR+LOG ( (N-K) /(K+1))
45 NEXT: PRINT "N ="N: PRINT "P0O ="EXP (P0) TAR(20)
"P1 ="EXP(P1)
46 IF PO<Pl THEN PN=PO: P0=él: P1=PN
47 PN=PO+LOG (1+EXP (P1-PC) )
48 IF PN>-75 THEN PRINT "PN ="EXP(PN): GO TO 50
49 EN=INT(PN/LT): PRINT "PN ="EXP (PN-EN*LT) "E"EN

50 AN=PN/N: T(I)=AN: T=TI+1: D=DA-AN: RN:D/D0O: DO=D
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This last part of the mainline computes a lower

bound by geometric extrapolation. In the computation,

as we keep doubling n, we obtain a sequence which seens
to converge from above (eventually). Hence, the sequence
of consecutive differences is converging to zero from
above. If r is the ratio of the nth pair of consecutive
differences, we can extrapolate the series of differences
to infinity by approximating the unknown series for i>n
by a geometric series with ratio ro Our lower bound is

then the last term plus the sum of the series.

50 AN=PN/N: T(I)=AN: I=TI+1: D=DA-AN: RN?D/DC: D0O=D: DA;AN
55 D=RN*D: AN=AN-D
60 IF D/AN>1E-10 GO TO 55
65 PRINT "GEOMETRIC EXTRAPOLATION ="AN; TAB(30)
"RN ="RN
70 PRINT "UPPER BOUND ="DA
80 N=2*M: GO TO 15

99 END
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To compute the Standard Normal probabilities, a

method using expansions of the Normal probability

integral into continued fractions was used [see

Weiss (1981) for description of method]. Two

continued fraction expansions are needed: one which

converges rapidly for large deviates and one for

small deviates.

Stegun (1964)1].

400

402

405

410

415

100

105

110

115

120

200

205

210

215

220

IF 2=0 THEN L=-1L0OG(2): RETURN

T=%: IF Z<(Q THEN T=-7

F26.2.14 § 26.2.15 of Abramowitz §

IF<T 2.75 THEN GOSUB 200: GO 'TO 415

GOSUB 100

IF Z2<0 THEN L=LOG(l-EXP(L)): RETURN

Al=0: Bl=1l: A=1: B=T: J=1

A0=Al: BO=Bl: Al=A: Bl=B: L=A/B

A=T*A1+J*A0: B=T*Bl+J*B0: J=J+1:

IF L*B/A<>1 GO TO 105

L=LOG(A/B) ~NC-T*T/2: RETURN

Al=0: Bl=l: A=T: B=1: J=1: S=-1:

AO0=Al: BO=Bl: Al=A: Bl=B: L=A/B:

IF B>1E30 GO TO 120

X=T*T

M=2%J+1

A=M*AL+S*T*X*A0: B=M*Bl+S*J*X*B0: J=J+1: S=-S:

IF ABS(B)>1E30 GO TO 220

IF L*B/A<>1 GO TO 205

L=LOG(.5~A/B*EXP (-NC-X/2)) : RETURN

Notes: Returns log ¢(x). NC = .5*%log(2*n) is defined

in the mainline (line 5).
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