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Abstract

Adecompositionatgoirithmforthedesignofp::actícalmu]-tifevel

combinational- switching circuits composed of two-input NAND gates is de-

veloped. The generalization to two-input gates of any type is, as showno

quitestraightfor:war:d..Thetheoi:eticalbackgr.oundnequiredisp:resented,

andfromthis,anevftheoryoftwo-placedecompositionisdeveloped.The

algonithmiscompar.edwithpreviousalgebr:aic,geometric,anddecomposition

methods. Seve::at sample :results a::e diseussed' and a number of improvements

and extensions ProPosed'
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Introduction

Switching circuit theory ís the study of the mathematical models

of cincuits made up of two-state, or bistable, devices. The term ?swítching

cir"cuitr oniginates r^rith the switch which was the first pr:actícal bistable

device in use. Rail-way signating, and automatic telephone exchanges we:re

the first majoi: applications of switching circuits. Today, switching

ci::cuits ar"e used widely, f::om vending machínes to digital computens' The

compute:r industry has quickly become the langest single user' and has been

r.csnonsíble for^ most of the advances in both design and technology.

Initially, switching eincuíts wene constnucted by the heuristic

application of seveual ad hoc design techniques. The finst mathematical-

model was due to Shannon t36] who used a tr^Io-val-ued Boolean algeb:ra to

descr:ibe the behaviour of r:elay contact networks. Since that tíme, the

use of algebrnaic simplifícation techniques in the design of switching cir"-

cuits has been widely explo::ed. These techniques are the most eommonly

used and we shall pnesent the fundamental methods laten.

A second approach is based on the coi::relation between switching

cir"cuits and mappings of point set geometry. Some positional- notation is

used to i:epnesent the possible configu::ations of the input variables, and

the connesponding functional- value. Topological techniques are then used

to combine cer:tain input configur:ations to achieve a r:educed representation

of the function, and, consequently, a simplified circuit real-ization'

Both these aÞproaches :result in minimal , o]? nea:rly minimal ,

AND/OR cír"cuit r.ealizatíons, and ane quite adequate for r"elay netwonks'

Pnactical circuits composed of electnonic switching elements. gener"alJ-y



have several level-s of gating, and new design techniques must therefore

be devel-oped for the design of circuits of this type.

An efectnonic switching el-ement, on gate, fiâY be viewed as a

btack box with a centain number of inputs, and an output which is some

binany coinbination of the inputs. Gates ar"e chanacter.ized by the Bool-ean

function describing the output in terms of the inputs. The most common

ane the NAND and NOR functions. A muftil-evel cir"cuit constnucted of gates

may thus be viewed as a r.eal-ization of a function as a composition of

seve::al- simpler: functions .

The theony of fi:nctional decomposition has been developed to

handl-e nepnesentations of this form. Much theor.y has been pnesented on

this subject, and sever.al decomposition algorithms for ci::cuít design have

r-^^- ,r^",^r^^nr The ni..incínle pesutt of this thesis is an efficient al-uçËIl gç vEluPgu. r rrç l,|rr¡ef y¿u r

øoi.r'thm for the des'iøn of n'nactical- multil-evel combinatíonal switchino

circuits composed of two-input NAND gates. This algoirithm is shown to be

mone usefuf than previous design techniques.

Chapter 2 íntnoduces the algebnaic appnoaeh using the fundamental-

work of Quine [301, lgl1. An a]-tei:native method lt'111 , which appeans

to nequire l-ess computation, is also pr:esented. In Chapter:3, the cubical

cal-cul-us due to Roth l32l is p::esented. Seve:ral- algorithms based on

thís catcul-us ar.e discussed. These are representatíve of the geometric

annr.oach to the r^^"- ^€ ^'i*^""'.ts. The cubicai- calculus will- al-so formugùJBrr uf çr!guf

the basis of the notation and algor:ithms of subsequent chapter"s. The

disc::epancy between theony and pnaeticat cii:cuit design is discussed in

Chapter 4. The solution to these desígn p::oblems is partially solved

r-.' -- ¡r^a¡-'+lañ due to Su and Nam t3q ] which is the::efo::e incl-uded.Ðy aLL qJËv!r Llrrrr

The theor"y of decomposition is introduced ín Chapter 5. These results
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for.m the basis for the development of our pr:actical desing algo::ithm in

chapten 6. The results of an implementation of this algo:rithm alre pl?e-

sented in chapten 7 and several inte::esting impnovements and futur"e

developments are considered.

The original development of this work is contained in chaptens

6 and ,7 , the preceding chaptei:s being a review of p::evious techniques '

Detail-s of implementation and much of the subsequent wor"k based on these

techniques has been excl-uded as thís discussíon was intended to be a back-

g::ound to the development of our decomposition atgor:ithm. These r"esults

are well- documented in the refel"ences, and in any of several- books on

switching theorY.
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Chapter 2

The Minimization Methods of Quine and Zissos

fntroduction

The co:rrel-ation between expressions of Bool-ean algebr.a and

switching ci:rcuits was pr?esented by Shannon tji)l . Sínce that time,

the use of the algebna in the design of circuits has been the subject

of much resear-ch, and several systematic methods have been developed.

A few definitions are uníversal- to these technicues.

A ?vaniabler ís anv l-owen-case fetten.

A rliter:alr is a vai:iable or a neqatíon of a variable.

Atfundamental fonmular is a conjunction of lite::al-s in which no

vaniab.l-e appears twice. A singl-e liter-al may also be a funda-

mental formul-a.

iv) A tnormal foi:mr is a disiunction of fundamental for"mul-ae. Each

fundamental fo::mul-a in the nonmal- fo::m is called a clause. A

síngle fundamental- fonmula may also be a normal- for-m. (¡ottt

fundamentaf foi:mul-ae and nor.mal- for.ms wil-l be r:epr.esented by

upper-case .l-etters. The context wil-l c1ar.ify which is meant. )

v) A fundamental for:mula, A , is said to tsubsumet another funda-

mental fonmula, B , if , and only if , all the l-iteiral-s of B

are among the l-itenal-s of A

vi) A fundamental fo::mula, A , is called a tpnime implicant? of a

normal-for:m Grif,andonlyif, A implies G, and A sub-

sumes no shonten foirmula which implies G (A fundamental-

formrrla imnlieS a normal fopm if- anfi onlrr if- fhe nô7'mal fOr.m"- )

is tr.ue whenever the fundamental fonmul-a is true. )

-t,

LT)

't]l I



vii) A nor.mal- form is call-ed rdevelopedt if al-l of the variables

the nonmal form aÐDear in each of the clauses. The c.Iauses

a ¿ìeweloncd no?mal fonm ane termed tminter.msl.

Most of the methods which have been developed depend on the

basic r.eseairch of Quine, who has p::esented both a tabul-ar" [Ao1 , and an

algeb::aic method l}'Ll fon determining the símplest nor"mal form replre-

sentation of an expression. Quiners methods ane repnesentative of this

appr"oaeh to the pr"oblem, and ar^e thus pr"esented bel-ow.

Zissos llttl has intnoduced an algeb::aic appnoach to the same

pnoblem which does not fotlow Quiners technique. This method is non-

exhaustive and should i:equine less work than p::evious methods, but this

has not been established. Zissosi method is pi:esented and compar.ed with

the methods of Quine.

in

of

2.

2.r

The Finst Method of Quine

The Detenmination of Pnime Implicants

The inítial specification of the function must be given in

developed nor"mal- fonm. A systematic applícation of the identity

^- , nl - ^AdTðd-N

is then used to find the p::ime inplicants. Each paír of clauses is

examined for- those which differ. by a single negation sign. When such a

oain ís found- the c.ômmcln na'nt of the two clauses is added to the fonmula,-Y*- - -

and the o::íginal c.Lauses ane check ma:rked.

In the exp::essíon pq.r + pqF + p[" , fo:: example, the fundamenta]-

fnnmrr'l:annn:nrl..-r]iffer,.t..'--;.-.ì^-^--+;ra- -t,y- Dy a sl-ngle negaTl-on sl-gn. lne common

ter.m pq is thus added to the formufa to give



,.1 {-
nãn+nnr'+Tra]ô+Tra ' 11

The process is applied iter.ativety uritil no further terms can

be added. The ter-ms which nemain unchecked ai:e the pnime implicants of

the function.

2.2 The Minimal Nonmal Fo::m Equival-ent

The minimaf nor:maf fo:rm equival-ent is the formuJ-a with the

fewesf fei1ms- anr ,.,i+l..i- +L--r- r-ìmitation_ the feweSt fitenafs. It iS...- r *--(l t w -L LItf,Il LI]q L l¡rr¡f Lu urv¡¡ , Llre r

easily shown llll that each tenm of such an expiression is a pirime

imnjìn:nl. ôrr1'n^ 1^-ñ +1.^ø¡€^¡a J^"^'l^^^,1 - +-hillai. tec.hnr'nue fO:l eX-frlrPJJçdrt L. vur¡re) IIdö, L]]e!eILr|C, UeVË¿UPsU q L@U¿o! Lçer¡r¡!\lue

tracting the minimal noirmaf for.m fnom the set of pr.ime implieants of the

function.

The coluinns of this tabfe a:re label-ed with the minterms, and

the rows are label-ed with the p::ime implicants. A ciross is placed at

eaeh row and cofumn intersection for which the mínte:rm subsumes the prime

inplicant. The foltowing r-ules are then used to extr.act the minimal-

nor"mal form:

í) Fon any column which has onJ-y one cl?oss, record the now heading

of the row containing the cr-oss. These prime implicants al?e

essential to r.ep::esent the functíon and ai:e termed the I core I .

ii) Detete fr.om the tabl-e all- nows which satisfy l), and alf the

columns which have c::osses in anv of these l?oI^IS.

iii) If one column has cr.osses only in r:ows which a second co.Iumn

has c::osses, the fatteir cofumn may be del-eted.

iv) Delete any co,l-umn whose clrosses have been l-ost aften ii) and iii).



As an exampl-e, consider the normal- for.m

pqr+pi+pqõtf::+p{nõ

which has the pr:ime implicant table:

Applying ::ule í) and r^ule ii) we obtain the tabl-e below and

a cor.e of pr and pñ

pq.rs pqrs pqrs

pq.

a -11
1-

ps;

qrs

X

Fnom nule iii) either- col-umn l- or" column 2 may be del-eted.

tr{e arbitranily choose col-umn I

Tl aì ?ìs ps;;

pq.

qr

pqs

pnõ

X

X

pqrs pqï's T'l a ?lsra-- pq_r?s pqrs põ¡ð õq."" ps"" T'r a 11S põ"õ pq¡;

pq

ô -r1a-

pñ

nn

;;;_vY"

;;ã

X

X

X

X

X



Fr.om this tabte it is cl-ean the ter-ms ocrã and ;;¡;r1-- rì1*- maY

be covered in any of fou:: T¡rays, and combining these wíth the cor.e, the

simnlest normal fo"nm enuivalents are:

+pq+

fpq+

-f

t

p"

nfìE-

attr-

pi

TI Y1r-

a, t"r-

pqs

n ìôs1--

+nþ+aì'l.+n.s' r- a- ta-

+ nl1 + nî + rì1.'R' r- a- a--

As the number of terms and.l-itenal-s in all foun fo:rms is the same. the::e

is no advantage in using one in prefenence to the othe::s.

Much work has been done toward optimizing and extending Quiners

fundamental- process. Notably, McCluskey t19l has int::oduced a simplífied

notation fo:: the cl-auses, and a systematie appnoach to the generation of

the prime implicants which requi::es fewer compar.isons. McCluskey has

also intnoduced an expanded set of pr.ime implicant tabl-e simpJ-ification

nules which includes the deletion of a prime implicant which at any stage

only has crosses in co.l-umns which ane a.l-.1- cover-ed by a second pnime

implicant.

Fetr^ick 128) has int::oduced a method which, for: any pr:ime

implicant table, yields the entíne set of imedundant normal fonm equiva-

lents. The minimal- form is then easily found. While exact, the method

is not r.eadily progrâammable, and becomes exceedingly lengthy fon a table

with any mone than a few crrosses.

Quinets method has been extended to pr:oblems with ?donrt cai:er

conditions [lTJ , and to the simplification of multiple output functions

t g ] . Improvements to these techniques have been suggested by Pyne and

McCluskey [29J , Ghazala [8 J , Necula [Z7J , Mornea1.e l?Ltf, Luccio

ltî) , and Choudhui:y and Das 141



e The Second Method of Quine

The Generation of the Pnime Impl-icants

Quiners second method [31] also invol-ves the gene::ation of

the ni ime imnlie-.^*^ -*r ^"}-^^^uent extraction of the minima] nonmal-L¡¡ç .U! J¡¡rs f ¡¡¡},rrudll Lù , dllu ò wùEl.l

for.m. The stanting point, howeve::, is any noï.mal foi:m expnession and

the computatíon involved ís gene::ally considerably less. The following

r"ul-es are used to genenate the pr"ime implicants:

i ) Delete the obvious supenfl-uities ; if one of the cl-auses subsumes

another-, it is defeted. Also, a + ãB can be replaced by a + B

and ã t aB can be r"eplaced by ã + g

ií) Add the consensus of two clauses to the expnession.

If two cfauses contain the same va::iable , negated in one and

affínmed in the other, the consensus is the conjunction of the clauses

hrith that vaniabte nemoved. Other.wise. the consensus does not exist.

Fon examol-e. the consensus of abã and ã¡c is bcã

in the

i) and

Rute ii ) is not applied if the consensus subsumes a clause

expr-ession as this woul-d initiate an oscil.Lation between ::ul-e

r?u]e la J .

Tlro nnnnacq continues iter.ativefv untíl- neither. ::ule can be

+L^ ^.-*-^-^-:^* -'^ - r-'^-:..*^+-'^n nf al I fhc nr"imeL]lU CÃIJr',€Ðòf UII aù q UJùJ UrlULf,Urr Vr qlJ Llrç Plrannlied- at which time

r'mn'l r' n an -l-c

3.2 The Minimal Nor"mal Form

fonm.

A dispensing oper.ation is used to extuact the minimal normal-



L^r

Defìnition - A nrime imniicant is disnensable if each minter.m it imnlies...Y.*^..-*^..r**-*^.

ìs imnlied bv at least one other nr.ìme imnlieant

Dispensabfe cl-auses are bracketed. After examining the entine expr-ession,

the unbnacketed terms fonm the col?e. Bnacketed terms which imply the

core ane then del-eted. Gnouos of bi:acketed cl-auses must then be examined

for. joint dispensability.

Definition - A gi:oup of clauses is jointly dispensabl-e if, when the en-

tir.e g::oup is nemoved, each cl-ause in the group implies the i:emaining

expression.

Fo:: example, considen

ps + põ + [t + prs + qr"Ë + pqrt

pl?s subsumes ps and may therefone be deleted, leaving

nq+ns+nt+nlôs+nnìôf'Y'"'.yY'"

The consensus of ps and qrs is pqr which is subsumed by pql?t

ps+ñ;+{t+qnã+pqr"

Reapplying nule ii) gives

ps + ps + qt + qrs + pqr + (::st + pnt)

(nãt + or-t) ar-e ioint'l v disnensab'le as ther¡ wer.e added after the l-ast\¿uL'-y."/glv

application of nul-e i) This is seff-evident as the cl-auses from which

they wer.e fo::med still- appear in the expression. tr^le find that qr6 and

pqr ane individually dispensable. The core is thus simply

ps+¡s+qt

The above method applied to

acrbc+cã+õ¿+ã¡õ



i'1

yields the sol-utions

Hnr^rarran a

abc+cdt

cd+cd+

acfbc+

Kar.nerroh men r¡í clds a

ad+bd+

ad+bd+

cã+õd+

minima.l- solution of

abd

abd

ãtõ

This

tanhn i nrraq nf

n¡n}- l âm 
^in

I lrll nê'q f] ¡qÎ

ac+bc+õ¿+a¡ã

be avoided by using

method.

J.ha nnjma imnl r'a=n{- {-=l-rl aL¡rs P! ¿rlle r¡l¡I,Jauorr L L@Is

4.

¿r 'ì

The Minimization Method of Zissos

Introduction

Zissos and Duncan lt-lt] have pr:esented a method foir finding

the minimal normal foirm of a Boofean function. The p::inciple advantage

is that once a normal for:m equivalent is found, the expl?ession is never

ovnanrla¿l Tha mqfþed has simíl-anities to Quine?s second method in that

the devel-oped norlmal- fonm is not nequí::ed, and the consensus of tenms is

used in the minimization process. Using Zissos? tenminofogy, a normal-

for.m is a sum of pï.oducts expr:ession, and the consensus of two tenms is

-l-har'n nnf r'an;l n¡ndr¡r.f - Thc nrodrlr:f is ontional so I ong as the narent

ter:ms, those tenms from which the piroduct I^Ias formed, remaín in the

expnession.

A simílar method, based on Zissost pneliminally nesearch, has

been deveJ-oped by Knispel- U.bl The latter has also looked at donrt-cane

nnnrlifi¡nq :n¡l l-ha mrr'ìJ-¡'n'lo-arrfnrrf nnnhlam
, !.x¡s
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4.2 The frredundant Expressíon

The first step is to determine an inr"edundant sum of pnoducts

expr"ession of the function.

Defínition - A Boolean expr"ession is said to be inredundant if it con-

+-.:-^ *^ ^^+.' ^* -'l nrÕdllr-fs o11 fae.tor.s : that í S - nr.orìlr.'f s or. fao.tOt'S WhOSeLa¿llò rlu up Ltvlrqr P|uuuuLù u! JavLvlo, t }J|vuuuLù vr rquL

presence do not affect the val-ue of the function.

Initially, the given expression is transformed into sum of

pr-oducts fonm using the distnibutive l-aws of Bool-ean algebr:a [ 6 J

Fon example:

a(¡ + c) + ãb + (ã + b)c = ab + ac + ab + ãc + bc

Let Hl , Tl , T2 , and I be Boolean expr:essions. The

theorem

Theonem 2. I

(Hr + Tl- + I) (H] + T2 + I) = HtT2 + HlTf + r

is used to avoid. the gene::ation of ::edundant tenms. Fo:: example,

dir.ect apptieation of the dist::ibutive 1aw yields

(a + b) (c + 6) = .. + ab + bc + bb

which can be reduced to

ab+bc

Choosing Hl = b, Tl = a, T2 = c, and I = 0, theor-em

2.1 woufd yietd this nesult directly.

The distributive laws, and theonem 2.1 , ane applied untif al-l-

b::ackets have been removed. The identity a"ã = O is used to remove

any tnivial- terms, and the identity A + AB = A to remove te::ms whose
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truth value is implied by another term in the expr.ession.

Once these fir.st orden redundancies have been r:emoved- a

systematic application of the optional pnoducts theor:em

Theor^em 2. 2

ae+ãc=aB+ãc+sc

is used to remove i:edundant terms. The descniption of this technique

is taken from Zissos and Durrcan l+11

Assuming the pnoducts ane arr.anged fr:om l-eft to right in

ascending oi:den of size, pr"oceed as follows:

i) The first. var"iabfe in the first pr.oduct is sefected, and the r-e-

maínder of the expression is scanned fon a product that contains

the complement of the seleeted variable. llhen such a pnoduct is

found, for.m an optional pr:oduct using theorem 2.2 The optional

pnoduct is used to eliminate non-parent pi:oducts and, or, to

¡anl¡na ñ=hôñ+ n¡n¿lrrnl-a Tf = n=nan+ npgdpgt haS been neplaCed,

inse::t the optional product at the beginning of the expr.ession

And reno-+ Tf r-ha an'l-1'onal nrofir:ct has nOt been USed +^ nanlana

a par"ent, it is discanded.

This process is irepeated untíl- al-l first l-evel- optional pnoducts

have been genenated.

ii) The process is :repeated using higher level optional p::oducts.

The foi-l-owing exampl-es demonstr.ate this step.



1-L¡.

Evamn] a ) 1

Exampl-e 2 .2

P=a+ab+bc+abd

b - r'enler:cs narent ab and non-nar.ent be.

=b+a+abd

àd - reol-aces oarent ã5¿

=ãd+b+a

rl - r.anl âaêq nã¡ên+ ou

=d+b+a

P=ab+ãc+5¿+õa
\/
\/
V
bc - discard

=ab+ãc+¡a+õ¿

ad - discai:d

ad - discard



at--r)
Genei:ating higher" l_evel_ optíonal products

P=abrãc+¡a+õ¿

\/ tVI
.tDcl

I\iv

d - replaces pa::ents ¡a and õ¿

=d+ab+ac

The reduction process terminates when eveny optional pr.oduct

has been tried. At this point, the expression is irnedundant.

4.3 The Minimal- Expnessíon

ft does not always fol-Iow that an inredundant expnession is
minimal-. The í::nedundant expression

P=ac+ab+ãc+a¡

is equivalent to

pt = aõ + bc + ãb

and is, therefore' not minimat. A minimization step must be peirfo::med

to ensune a minimal ::esult.

The condition fon a simplification at thís stage can be

d'ï aorr:mmad ao---Ò_



".(

r-;-ll'-i

A necessary cr.iterion for this condition is that thene exist a set of

four: tenms in which:

i) some var"iable, say a , appears ol? can be made to appean, at

.least twice in its tnue fonm. and at least twice in its inver.ted

fonm,

and ii) two othe:: var"iables, say b and c ) ar.e each pnesent at least

onceín their" t::ue form" and at l-east once in thein invei:ted fonm.

r;--1 Þlr -- l
l\ / 

",' f_-,;l r,

/t\

1-";-lr--t

\
\

\/
/

t--_lt--l I-;._lt'"1

ac+ab+ãc+a¡\ \/ I\VI\¡"1\/\lv \l
1\laÐ \/

V

ãc

ff a simplification of thís type is found, the reduction process

ís r"eapplied. The two steps are perfonmed al-ternately, until the mini-

mization crite::ion ís not satisfied. At that tíme. the expressÍon is



bel-ieved be minimal.

complete example fol-fows ;

P=abc+abd+ãõ+äã+¡ã

An examination of the optional pnoducts indicates this expnession

i,r.edundant. trnle thus pnoceed with the minimization step.

P = a-bd -r- abc + a¡ã + ãõ + ãã + ¡ã

P=abdrbcã+ãõ+Ëã

rt was necessany to replace ãã by a¡ã + ãrã ín or"den ro

achieve the connect structut?e. Conditíons foir detecting this structune

and fon pl?open ]itenat substitution ar:e given by Zissos and Duncan.

The r"eduction step is r"eapplied

to

A

fò

The rninimization step

pnession is minimal-.

abã

---H=a¡d.+,bcdtac+bd

CCI - l1ên lãnêq ñahôn+ lì^,1l/sr vrt L uuu

+cã+ãõ+¡¿

.- -;

cannot be appl_ied and as expected, the above ex-
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The vatidity of this minimization criter"ion has not been estab-

lished. Zissos and Duncan have, however, solved several examples

!¡ithout detecting any inadequacíes.

5. Discussion

The principle advantage of Quiners fir.st method is that it is

a str.ictly mechanical procedu:re which, when canried to its conclusion,

wilt yield both the minimal- and near.-minimal nor.mal for.m solutions. A

rnajor" di:awback, howeve::, is the requined specification of the pr.oblem in

developed nor"mal for.m. For some pnoblems, the wo::k involved in finding

the pnime implicants is fantastic.

Quiners second method generally requii:es less wor:k in finding

the pr.ime impl-icarrts. Also, the devel-oped noi:mal- form is not r^equired.

The extr-action of the nesul-t by the dispensing oper"ation does not always

vield a mínimal result- and in øener.a'l - the nr.íme imnl ie.ant tat¡1e of

the finst method ís used.

The use of prime implicants may l-ead to ser-ious pnoblems.

Fnidshai- lJ t has presented the followíng minimum upper bounds on the

nrrmlran nf ^¡¡'ma i -- I .i n ¡-+a¡¡uuuçr' ur P!f rrrç f u+)f f ÇéIt Lù .

Numbei: of Vaniables Numben of P.f.

o

13
öz
JZ

2r8
576

r ÂqR
,r în.ì

'l'ì nnn!!tvvv

z

+
5

7

B

9

l-0
l_ l-
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Certain examples will be encountered which ane formidabl-e even to the

f:qtan n¡mnrrfanqvv¡rrvuLvru.

Zissos has avoíded this pnob.Lem. His method does not gene:rate

:'ll thc nr'ìme r'mn'lr'e:nfs - buf - iJ- wolrld annear.- onlrr those i"enuir.ed fo::¿¡¡+r¿¿vq¡¡Lo, equ

a minimal sol-ution. Sevenal questions stil-I remain unanswered. The

termihiøher or^del ontiona'ì nnorluctf is nowhene defined and it is not

known if thís includes the optional p:roduct of optional pnoducts.

Secondly, no pnovision has been made for the same optional pnoduct being

genenated from different panents, and considenabl-e nedundant computation

coufd occutô. Most impontantly, the validity of the method has not been

establ-ished and the sti:ict minimalitv of the nesul-t cannot be assur:ed.

All thr.ee methods result in no::mal fonm, on sum of produets,

sol-utions. The cincuits deníved di::ectly fr-om these resufts ane impracti-

cal- and must be tr.ansfor"med to NAND or NOR cineuits. Even when this is

done, cer.tain design pi:oblems al?e encounteired. A systematic pnocedure

for obtaininø niractical- NAND cír.cuits fr-om a nolrmaf for-m nesu.l-t wi.l-] be

p:resented in chapter 4.
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Chapte:: 3

The Cubical Cal-cul-us of Roth

1. fntr oduetion

The Harvand Computational- Laboiratory t I I developed a chart

technique for" the simpJ-ification of switching cir.cuits. This was of

I ittle nr.acf ioa j- inteneSt aS the Sol-ution Of an n var.iable nr-obl_em

^r_invol-ved the examination of 2t entnies. A mone compact method was

suggested by Montgomerie t23l , and developed by Vietch lL{oJ and

Kairnaugh llZJ . fn particular, a systematic application of Kannaughts

simplification rul-es always yields a minimaf nor"mal- fonm nesul-t. The

method, unfortunately, does not lend itself to machine computation, and

the wonk invol-ved in manually solving a pnoblem in moi:e than five or"

six variabl-es is tedious and prone to enror:, if not totally impossible.

These methods are geometnic approaches to the Èímplification

pnoblem, and even their modest success seems to indicate that furthen

investigations along this line might pl?ove fr.uitfui-.

Roth L321 has identified the cor"i:elation between Bool-ean

functions and mappings of combinator"ial topofogy. A convenient positional

notation has been developed and operatons consistent with Bootean algebna

have been defined. Among the results which welre presented ane the cubing,

star, and sharp algorithms whích ane equivalent to the wo::k of Quine.

In this chapter, a non-rigoi:ous treatment of the calculus is

presented togethei: with the algorithms mentíoned. This calcul-us for:ms

the basis of the notation and most of the theony of subsequent chaptens.
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2. The Cubical Compl_ex of a Boolean Function

A Boolean function f(arra2r... rân) may be nepr"esented by a

disjunctive normal- form expr"ession, and , in fact, by any one of
severa.l- such exp::essions. The::e is, however, a finite set of clauses

which imply the function, and firom which the above expressíons ane

formed. Thís set is the complex of the function.

Let Qt nepresent the set of al-l- fundamenta.l- cl-auses of n

variables. Each such tenm, T , may be r-epresented by an ordened set
of n symbols {t -t -. -. .r }. tlrt2r. . . ,TnJ , whene ti = f if .i appearls affiirmed

in T , t- - 0 if a. aÐÞeaï.s neøate.l- anrì, -i - j_ rr _ _-r ¡¡çËqLeu, drrLl Li = * if 
"i 

does not

appear. such an n-tuple is te::med a cube. A cube containÍne no *ds

is tenmed a vertex. Ther"e is a one-to-one connespondence between the

fundamental- clauses fonmed fnom n va¡.iabl_es and the set of all

n - co-orôdinate cubes. i^ie associate this set of cubes with on and

therefoi:e tenm it the n-cube.

cleai:ly, the eomprex of a Boor-ean function f of n var.iabr_es

may be i:epr"esented by a subset, denoted K(f ) , of the n_cube. K(f)
is the cubical complex of thê Boo.l-ean function.

Let Zz be the set {o,r} and. ,rn be the ,rah or-der"

cantesían pnoduct of ,2. Let f l. 
" 

*.pping of x onto E , denoted

-if: X + E , where *. 12 and ,. 12. The invei:se mapping f-r(l)
yieldsaset YcX suchthat xey* f(x)=l Ther.eisaone-to_one

nel-atíon between the set of al-l- such .mappíngs and the set of ai-t Boolean

functions of n-va?iables. Also, ther.e is a one-to-one ::el-ation between

the set Y and the set of al-l- minte::ms of a Boo]ean function.



Definition - Two cubes 
"

anri h âr,e onnosed in" "liv

co-or.dinates - denoted a.
I

enrl fha nfhan ênUa]_S ZeTO.

, MI¡g Uf e_.
.L

a /-"

rhïnear l-

ôh Ìr anrr¡ l q nur' ,i equd.-LÈr une,and b.
1

Definition - Two cubes are adjacent if they are opposed in exactly

ônê aô-^nñtnâfê

Two adjacent ver?tices may be expnessed as a cube equal to the

vertices with the opposed co-or"dinate ?epl-aced by an x The vertices

a::e the faces of the cube, and the operation of forming the cube is

ter"med cubing. The minterms colôrlesponding to these vertices may be re-

*r -^^r L-- - ^':*-la tarm anr¡l fn the mínte]"ms wíth the onnosed vaniablePf éçËU Uy é òrlrBas LçL ¡¡¡ çUruql Lv LI¡g ¡llJll LçI ¡rlù WJ L¿¡

removed. Simílarly, two n-dimensional cubes, cubes containing exactly

n xts , which are opposed in one co-ordinate may be represented by an

ï. + l- dimensional cube. The cubine of two cubes over the ith 
"o-oodinate

-'^ ^':*-r-- - -^^-etríe annl icatìon of the theonemfù òarllP¿y d ElculllvLrre ul/rur

Theor"em 3. l-

a.B+fe=e
l- l_

It has been shown by Quine lsof that begínning with the de-

veloped normaf form, the set of all fundamental- cl-auses which imply the

funetiôn mâ\/ he found bv an itenetiwe ann'l ír'.ation of theorem 3.1 It

Æ^l t^.,^ +1--+ -;.. ^-I z - rrv¿¿vwù urrou srven Y = f 
*(1) the cubical complex K(f) may be found

by repetítive cubing operations.

An elementanv co^cvcfe of K(f) is a cube which is not a face

of a higher" onden cube of K(f) The coi?responding ter"m T is a prime

implicant at it implies f , but no other tenm Tr exists such that
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T+T'+f

As K(f) may be detenmined fr"om y , and fr"om this set the

subset of elementary co-cycles may be extracted, the compJ-ex notation is

sufficient to implement the finst method. of Quine. This apptieation was

nnacaníaâ }.r' Þ^{-h 1321 - and in a somewhat differ.ent for.m hr¡ Mr:C1 ¡skcr¡ f?91L u LJ , ur¡u r¡t é òUll¡eWItd.L (IJ-II * __ ..^ -J L_ t J.

The consistency of the cubicat complex notation with the dis-
junctive nor"mal- foi:m has led to the devetopment of a calcul-us. The

pr"incíple r.esul-ts ane pnesented bel-ow.

3. A Calcul-us of Bool_ean Compl_exes

A fundamental opei:ation of the algebra is the conjunctíon of

Bool-ean expiressíons. fn the caÌculus of complexes, thenefone, an inter-

section oper"aton must be defined. The intensection of cubes. denoted

A n b -is defincd hr¡ tha t¡h]o.L@¿9.

q. tt D.
l_ l_

h
a

0Ì

0

I

x

l_

n b.
J-

nb)
n

0ó0

ö11

01x

and the nule:

anb=ó if for:any i, -i

else, a n b - (-r- nb',u2nbrr...,ãn

whene a = (^Ir^2r...ran)

h-rh h hl- .-1 ,-2t...r"nr .

Y

The intersection of the complexes A and B is a complex c

whose member" cubes ar-e co = A. n B. for all- A. e A , and ti e B.
If A repr"esents the Boo.l-ean function f ,, and B r.epresents the Bool-ean

function g , then the inteirsection A n B nepnesents the function

h=f"C
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Consider- the comol-exes :

Ã- Þ-

Thecomplex C=AnB is

which mav be i:educed to

The inteirsection of cubes mav also be used in the detection of

subsumíng ter-ms in a disjunctíve noi:mal form expr"essíon. Recalt that

giVen tef ms T and T^ . T. srrlrqrrmaq T danafo¿ì T e T - onlv-l ¿ '2 -I--2 '
if all the literals of TZ appear in Tt The equivalent cnitenion in

the calculus being a n b = a wher.e a is the cube repr"esenting T.,

and b is the cube irepresenting To The significance of subsuming

tei:ms is that they do not affect the val-ue of the function. Subsuming

cubes are thus removed fr.om a comÐl-ex.

(;. .)(::l)

fil)

(;,,)

4. The_ Cover of a CubÍcal CompLéx

A covei: of a cubical complex

that fon everly ver-tex v c a e A, v

v c b e B, v c a e A The pr.oblem

isasubset B of A such

c R en d nnn rzarqa I rr f¡n :'l 'l

finding a covel? with a minimal

A

cb

of
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number of cubes of highest dimension is a restatement of the synthesis

nnnlr'ì om ¡f flrrina

The mo::e general probl-em which shal-l- be ti:eated is finding a

set C ofcubesof K whichcoverasubcompl-ex L of K If K,C,

and L define Boolean firnctions f , g , and h respectively, then C

isanormal-fonmexpnessionfor g suchthat h+ gà f C isa

K - coveir of L and the ve::tices in (X - l,) ane donrt-cane conditions.

r, I nL^ n.-L:-- Alonnr'thmT. t rrlg uufltB ___o__ _ -__---

The fi::st algonithm due to Roth is a systematic application of

cubing tc find Z tlne set of elementary co-cycles, oir pnime-implicants,

^E w 
^^ ^-*^nfod fhie mefhnd nar':llole fho ôrrr'na-Mnl"lrrql¿ar¡ :'i on¡r'l-hmuI I\ . Ãù çÃj-rs ,-- - yur¡¡v Õ¿BUI'J LllilI .

Rofh does not. however-- introdne.e the nerf ifioncd l-îst tec.hninnes of

Moi:rea.l-e tZ f] Gr"oupings are made by firee variables , those whose

co-ordinate val-ue ís x , and some wor"k is saved. A cr-ude upper bound

of 3n2n+l- single co-or"dinate compar:isons is establ-ished for" a prnoblem

of n vaníab]es. Both methods suffer- fr"om similai: onob]ems: the most

se?ious being the nequii:ed specification of the function as 0-cubes, or"

minter.ms.

4.2 The *-Algor"ithm

Roth has introduced an al-gorithm similan to the second method

Ortr'ne- He'nc the COnSenSUS Of tWo te'nms ís eat:r'valent to the:l-nrOdUCtP

the c.or.r,esnonf in- ^'.L^^ nL-:^ ^TìOdUCt íS defined hr¡ the fahle:Lr¡e uvlrçèl/v¡¡ulr¿Ë ul!çù. f lI¿ù PI vuuuL Jù uçf IIIEU !J L¡¡ç LQlfs.

of

of



h
I

0

I

x

l_

?(:

and the nule;

¿:lþ=þ if ¿.:lþ.=y for.mor.e

than one i

e.Lse a * b = (rÞ(ar'lbr),rf (ar'rb 
2) ,. .. ,rf (arr?'rbr.) )

where {r(0) = 0, Ú(1) = }, i!(x) = x, rþ(y) = x

for. all- i, is degenerate and a ?t b = a n b

subsume thein parents. The following

algorithm is due to DietmeYe:: I b 1

Let C be a given covel' nf a nomnlc¡¿ Kv¿ u vvr¡¡yrvzr

h
I

01À

t_

oyo
ylt

0l-x

The case when a. ?t b. / Y )

Such terms êre ignored as theY

simptified statement of Rothrs

(\
lI)

II)

tlt I

tolt all- cuDes

(c. * C.) torl
Remove all- C,

Continue until

.\ l. :'.'¡ =i_l
b) all C. :l'a

and C. of C if
l

such that C. c C^ e C
K- X, ' kl!"

1-l
J r +1^^- -llf \P , Lrrçrr ouu

{ for all Ci )

ajlþ aresuch
l

. /^ .Ltnat LU.
l l-

ôcO
k

An efficient implementation of this algonithm may be achieved

by irequi::ing that befo::e the algorithm begins, any subsumíng eubes of

C ane r:emoved. Step ii) then only::equíires that the new cube (C. :! C.)1l

be compared with each C,. e C Funthe::, if a Ct is found such that

(C, f, C. ) . C,- , then no more compar"isons need be made' It is also
l-J^

evident that if (C-. 'l C* ) is degenerate, then it may be immediately
-LJ

r^e-iec-red as (C- * C.) = (C. n C.) . C, and (C". :'r C-:) = (C; n C-) c C.IEJççLsu où \".. "i, r-í . -i, _ -i - I | _L ] - ]AIJJ
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Roth has estabr-ished that the above algo::ithm arways yierds
the subset Z of er-ementany co-cycres of K Arthough z is a cover?

of K ' it is unfor"tunately not, in gener"ar, minimar. The cubing.ar-
gorithm is a r.estnicted case of this argorithm as it nequii:es that
(Ci tt C.) - C. , and (ai t C-). C- befone fþo nna.t,,nr- r.o ¡rr_ J I = prouucf, rs aooed to C

This restniction i:equines that the oniginal el_ements of c afl_ be

O-cubes Afthough the nesult is the same, the :T-algo:ríthm genenarly

nequines far less computation.

4.3 The # Extr-action Atgor.ithm

Once z the set of erementai:y eo-cycres of K is found. the
nemaining pnoblem is to extnact a minimal- subset c of Z such that c

covers L The ínitial step is to deter-mine the cubes of Z which ar"e

essentia-l- to the covelr. This set E is termed the set of K-extr.emals

and has the pr"openty that if ai e E then the::e exists at reast one

vertex vcC. suchthat uéC; forany C_,eZ, i/ j Thebasisa-
of this operation is the shar"p pnoduct, d.enoted a # b

Let T- be a nrn¿lrrnff -- tei:m with cubical_ nepresentation a .

A]-so l-et T^ be a nr-odrrr,f tenm r.ênl.êqên+a¿l 1,.,.z - ylvuueL Lç!.* - b The expr"ession h

irepnesented by (a # b) is such that h = tr-, 1r. h , in genenal, is
not a single p::oduct tenm and. is rep::esented by the disjunction of a set
of pr.oduct teirms. Considen

I, = abd and

The resul-t defined by ,, # ,, is

T = hnda



A form of differ"encing

of cubes is defined by

tt aÞd LbcdeJ

a¡¿(¡+crã+ä)

a¡c¿ + aË¿ã

nnan:finn i< fhrr< na¡f¡¡ma¿l

the tabl-e:

Òo
L!.)

The sharo oroduct

-+¿L-l
aa

a. # ¡. = el_1

complex whose

L.\.!......4 )'I'-n

b. ) e {o.ria'

" T2 =

b.
l-

0l-x

eQe

0ee

10Ê el-se

and

1l

l-a .,

l_l-a.,

the rules:
rl 1

aÊD=Q tf

a#b ísthe
t_

LZ

for all- ta. #
l-

fn.¡ enrz r'

fo:: al-1 i

cubes ar:e

For. the above examnle T-1

The #-n'noduct is thus

which defines the como.l-ex

The #-product of a complex

of all- the cubes given by

.: ^ --'--^- 
L--Jò Bf, vËrr JJy l-Oxl-x and T 

Z
Ís grven by x00l-l

l-Ox]-x # x00l-]- = ee.l-e 0

l-01-i-x

l-0xl_0

A = {A, ,A2,. AÌand¡nrrhebconsists,,'n,

(n" # b),(A^ # b).....(A # b)I'2"n

If A has subsuming tenms removed, then the complex A # b has no

subsuming te:rms.
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The f-nrodrre-t of e.omnle.xes A 2 and B = {8.:B^r... rB_ } isL"¿' ',m
given by

A # B = {...{{A # B.}#B^}...#e }12m

Again, if the complex A has subsuming tei:ms r"emoved., then the product

A # B has no subsuming te::ms.

The following distributive and pseudo-commutative pnoperties

were pl?esented by Roth:

(a + b)#c = (a # c) + (b # c) distnibutive

(a # ¡)#c = (a # c)#b pseudo-commutative

It can be shown that Z. e Z is a K-extnemal elementary

co-cycle of K if, and only if,

(... ((.. . ( ((2,#2.)#z^)#...#2, -)#2... )#.. .)#z ¡6]- r '¿ r-I t-+_L n'

This test, by the pseudo-commutative pnoperty of the #-product. is in-

dependent of the ondei:ing of the cubes of Z An exhaustive test of al-l-

the cubes of Z wíII viel-d E the set of K-extnemals.

Once E is found, a minimal- cover for the remaining uncover.ed

cubes of L must be found. An algor"ithm for this process has been

descnibed by Roth. while stil-l utilizing the cal-culus, the method is

based on theory outside the scope of this discussion. Cniter.ion for"

elíminating certain co-cycles fnom consider-ation, and the sol-ution of

cycling problems by br.anching ar.e pnesented. fn this way, the method

ís simíl-an to the pr"ime-impl-icant tabl_e techníques of Quine.

The initial- resul_ts of the cal_cul_us were presented in lZZl
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with funther- devel-opment in t33l Dietmeyer L 6 t has presented a

simpler: formul-ation with emphasis placed on the use of the cal-cufus in

computer" prognams for the design of círcuits.
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Ohen.l-o¡ l-[

Nl) ('r lr'i1l tq hr¡ Fenfnninof rrç uçù¿Blt vI rìÃrr! vf r eur Lù !J I __ -__ _--Ò

1. Intr"oduction

At present, the vast majority of switchíng eircuits ar"e con-

stnucted of sol-id state devices known as gates. Each gate has a fixed

numbei: of binany inputs, and a single output whieh is a binary com-

bination of the inputs. Gates which i:eal-ize the functions NAND and NOR

ane most commonl-v used fo:: sever.al reasons.

Finst, both NAND, and NOR a¡e functionally complete; that ís,

any Boolean functíon can be expr"essed entir-ely in terms of NAND, on NOR

operator:s. Second, the final stage of a NAND, or NOR gate is a tnansistor"

which acts as an amplifier., thus avoiding the sígnal depletion pr.oblems

found in cireuits which use only passive components. Thir.d, several gates

of a single type can be constnucted on a single integnated chip. These

chips ar-e extremely dependabl-e, requir.e .l-itti-e cooling, and ar-e relatívely

inexpensive. A single chip wíth four two-input, thnee thnee-input, two

four-input: or one eight-input NAND gate costs about twenty-five cents

when purchased by the hundned. Finatly, the space and power- requir"ements

are fai: less than what is requii:ed for relay on vacuum tube cir"cuits.

I,tre will i:estr.iet oun díscussion to NAND cincuits. The techníques

developed easily extend to NOR cir^cuits by the pr.inciple of duality. Other

fr¡¡ac nf ¡r'nnr''i+g COUId al_SO be handled bv símilan methofis- hllt Centain) Dsw

al-te::ations woul-d be requir.ed due to the diffenent design pr-oblems en-

countened.
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2. Three-Leve_l_ NAND Cir"cuits

r ^+ T.,rr2rT3r. . . ,T' be fundamental fonmulae. The nonmal for"m

can be newr"itten

T .T .T-l_ -2 ^3

by applying De Mongan?s theorem l6 J . This expnession can be reafized

by a cir"cuit constructed entir:ely of NAND gates.

The negated fundamental formulae, and thein negated conjunction,

can each be neaf ized by a single NAND gate. lrre shafl use the symbol

ð-to&A""- o &¡{t

to ::epresent a NAND gate. The number: of inputs wíIl vany

Fon example, the nonmal- fo::m

aã+bcd+abc+abd

me¡¡ ha r^r¡t'++o-

(aã) (¡ca) (abc) (abd)

cincuit

with its use.

and i:eal-ized by the



Quite often, the

nea.l-ized explicitly within

is used as the inver-uer.

a single-input NAND gate,

JJ

nepate<1 innrrts a?e not availabl-e and must be

the cir-cuit. fn pnaetíce, a single transistor

At the schematic level- this is equívalent to

and we shall ?ênï'esent inventer-S aS

The real-ízation above becomes
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Definition - The tevel- of a NAND ci::cuit is the maximum number" of gates

an input signal must pass thnough in ordei: to ::each the output.

The above cíi:cuit is a thnee-level- NAND cii:cuit" In genenal ,

the NAND cí::cuit r.ealized f::om a normal fonm expression, with at least

one negated va:riable, is a three-levef circuit.

3. Pr"actícal Design Cr¡itei:ia fon NAND Cincuits

NAND ci::cuit design is subject to the criteria cost, fan-in

limit, fan-out l-imit, and response time. Each of these is explained

Detow.
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Most commonly, the cost of a cir.cuit is taken to be directl_y

piroportional to the total- numben of gate inputs within the cincuit.

This is quíte reasonabl-e as a single chip contains either two foun-input.

thnee thr"ee-input, four. two-input, or one eight-input NAND gate. Thus,

no matter" which type is used, the cost of each gate input ís quite neanly

the same. What is not taken into account is the cost of any unused chip

segments. rf seventeen two-input NAND gates wene r"equined, five chíps

would be used, and three gates woul-d be effectivel-v wasted. There is the

possibility that these gates coutd be used in neairby circuits, and even

i f ther¡ ãï,ê nôf tha ¡o l:J-ir¡o'l\¡ or-t 'l -¡+^ ^^^+urv lrvL, smarr gate cost makes them insignificant.

The fan-ín limit is the maximum numben of inputs the langest

gate in the ci::cuit may have. This of counse depends on the resounces

avail-able and ís thei:efor"e a vaniabl-e.

Ther"e is a maximum amount of cu::rent which can be dr:awn fnom a

--+^ ---'+L^"¿ -¡cer'fr'no ifq ¡na¡=l-r'^- -ñ,1 - -'i--:gd.Le warnour arr------Þ *LIOn, anG a ml_n]mum amount of cunnent

necessal?y to dr"ive each of its ínputs. Consequently, the numben of gate

inputs which can be dr-iven by the output of a síngle gate is l_imíted.

The maximum numbe:r al-lowabl-e is the fan-out limit, and once again depends

on the ltesounces avaifabl_e.

Each gate output nequii:es a finite per"iod of time to react to a

change in its inputs. Thís response time is on the ondei: of 15 ns

The ::esponse time of the circuit is thus di::ectly p:ropoi:tíonal to the

l-evel- of the cjr"cuit" Because of the extremely hígh speed of the gates,

response time is not crnitical- and is often lengthened in orde:: to sol-ve

othen design p::oblems.

A good cincuit design thus takes into accourrt fan-in and

fan-out limits while simultaneously minimizing the cost and rîesponse time.
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A technique known as factoÌ"ing is often used in sol-ving fan-in or

fan -nrrt nr.'nh I amq

4. Factor.ins and Cascaded NAND Gates

The most obvious method of solving a fan-in probl-em is demon-

strated by the following diagr.ams:

àzT

i q a¡rri r¡= l ani tn

&N^

A I ochn: i n: 'ì 'l r¡ fÌ-; - *=.' l-.a r.rnr' ++---Þ--- , -nl_s may De wnarren

^ru2" '-r, =
rl--î--ï-r -\.d-d^...d )d .....4LZ m mff n

I

I
I

&

.!J.
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Let two gates in a cincuit be

&z

t-$"

t.-

ll

d\
¿

Ét
,c¿

r

and assume both exceed the fan-in limit. Any subset of the inputs coul-d

be bnought back fi:om each gate, but, cleai:ly, ít would be most advantageous

to use ^Lr^2:...rân 
for both gates as only two additional gates would be

r"equined. Such sharing of common facto::s will g::eatly neduce the cost of

the cir-cuit.

Fan-out p::oblems are solved using cascaded NAND gates. Let the

fan-out timit be p . Two NAND gates can then be used to incnease the

fan-out to 2p - L

(

f¡rr
#p+a

.ç
"¿P-l

C'l pa.nl v - each fan-out

treated sepairately.

,Ë

1-i

pnoblem is independent of the othei:s and must be
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5. The Al_go::ithm of Su and Nam

Su and Nam 1311 have pr"esented an algorithm fon the sol-ution

of fan-in and fan-out pr:oblems in multiple-output mul-tilevel- NAND cir-cuits.
A systematic application of the factoring and. cascaded NAND gates tech-
niques is used. Partícular emphasis has been placed on common facton-
izations, the rargest common factor being used at each stage.

A modified eubical- complex, cai-l-ed a function arlray, is used to
specify the multiple-output function. In a símil-ar. manner to Bar-teers

method t 3 I , a tag ís appended. to each input cube. This tag contains

a single position for. eaeh output function. This positíon is a one if
the fundamentaf fonmul-a ::epi:esented by the cube implies the function, a

zero if it does not, and. the l-etter ?dr if it is a don?t-ca::e condition.
A concise yet complete i:epresentation of sever.al functions is thus achieved.

The first step in the al-gonithm is to appry a method due to
su and Dietmeyen tet3 to find a connection anray whích comptetely

desenibes a nearly minimal- th:ree-level- NAND neal-ization of the mul-tipl-e-
nrrl-nrrJ- Fr'-^+'i^-, This ar.na\r .rônqiql-q nF in^,,r- -vuLPuL f, uru L-LU].I ur r eJ uvr¡u¿u ¿rr¡7uL and OUtpUt pantS . EaCh

r"ow of the input half nepresents a NAND gate r-eal izing the negation of a

fundamental fonmufa, and each col-umn of the output ha]-f ::epi:esents a NAND

gate coll-ecting centain second-l-evel gates to r"ealíze a par"ticul-an function.
The method ínvol-ves a systematic assignment of the donrt-cane conditions

to achieve optimum neduction, and fon some problems may be excessive.

Once the connection a*ay is found, it is used as a shonthand

notation fo' the circuit and. fan-in and fan-out problems ane sor_ved.

dii:ectJ-y fr-om it. The input har-f of the annay is tr"eated fir.st.

The number: of zenos or ones Ín each r.ow ís counted, and for.

those z'ows where this count exceeds the fan-in l-imit, the zenos an¿ ones
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are circled. Then ^ thc nrrmhcr .f zeTos and nimber of ones in each

column is courrted. If the numben of zenos exceeds the fan-out l-imit-
the zer:os ar:e sguaned. ones which violate the fan-out timit ar-e a]so

squar"ed.

Let S be the submatnix of rows of the input ar.nay which have

e-Lements with circJ-es o:: squar?es. The optimum facto:: corcesponds to the

submatirix s t of s which satisfies the conditions:

i ) S t has at least tr^ro r.ot^rs and two co.l_umns .

ii) Sr has only one unique row.

iií) 0f all- St' which satisfy i) and ii) , S' has the largest

figur"e of mer.ít (fU¡ r¡"ou

FM=W-.xN.+lrr^*N^
JI-UU

lf. = input weight
I

W^ = output weight
U

N- = number- of cinc.l-es in Sr
l_

N,., = number. of squai:es in S r
U

wi and wo ar"e predete::mined. A val-ue of one was found to be most

suitabi_e fo:: both.

Once the optimum facton has been found, a ner^r input annay which

nefl-ects this factor-ization must be fo::¡ned.

The factor is necor-ded as a new r-ow added. to the input ar?I.ay.

The co-ordinates which appean in s? assume thein cornesponding values

whil-e all- othens become x . The r"ow is uniquely labeled and nepr?esenrs

a two-level- NAND cascade.

rn addition' a corumn is added to the inout ar?rav- For those

nows which appear in sr , this new column becomes one. Fon al_l othen



! :.r)

rows, it is x. This column is assigned the same label as the ne\^I row,

as it renre-se-nts the NAND cascade as an input var:iable to l-ate:: stages--- ---r -_ -

in the circuit.

Finally, as the inputs of the facto:: have been r:emoved fi:om

thei:: o:riginal positíons, the co-ordinates of the input aruay which

appean in S| ane set to x .

This pnocess prloceeds iteratively until no furthen facto::s

can be found.

The second pa::t of the algorithm is concenned with fan-in and

fan-nrrt nr ob'lems r'n fhe nrrtnlrf ar.r.ar¡. The nlrmher of ones in each column

is counted, and the ones cincl-ed in any column for which this value exceeds

the fan-in limit. Simil-a::lv. the ones in rows for which the numben of

ones exceeds the fan-out limit are squaned. An optimum factoi: is chosen

in the same manner as fon the input amay, except that the conditions of

a síng1e unique irow becomes a single unique column.

Once the facto:: is chosen, a column is added to the output

aullay. This co.l-umn is one fon the nows of the chosen factoi:, and zero

even5rwhe::e else. A unique fabel is used to identify this new cascade.

A :row with ones indicatins the col-umns of S t is added and identified

bv the same label- as the new cofumn. The elements of the output array

which appeair in Sr ane set to d , and the process is r"epeated.

Once all fan-in and fan-out pr"oblems rvhich nesul-t in common

facto:rs have been removed, any iremainíng pr:obl-ems are solved by cascaded

NAND gates.

An example due to Su and Nam i39l will- clarífy the method.

Consideir the connection alînay, and colrresponding thnee-l-evel

NAN|) ninnuif in Figure 4.1- If the outputs, z-t ¡ z.>, ze¡ and 2,, arevsret 
L z o +
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to be reafized using NAND gates with fan-in and fan-out of two, the

br.oken loons ínrìinate fhe nrohlem areas in the circuit.

Penfoi:ming both steps as described above, the optimum input

¡nd nrrf nrrl- f=ntr¡¡g . S: and S: ¡no fnrrn¿l TheSe faCtOf"S lçroefhen' i 0' s!

with the r.esulting circuit are shown in Figu::e 4.2

The connection aui?ay specifying the new cincuit is found as

descr.íbed above. This annay is presented in Figui:e 4.3 The br.oken

loons indic.eJ-e fhe co-o:rdinates affee.ted hrz fheune co-ollcl_naTes _.-_ process.

The circuit r"esul-ting fr:om a complete factonization is pne-

sented in Figune 4.4

Figune 4.5 shows a thnee-levet NAND circuit fon a ttwo out of

fíver checker. This circuit is ltnuet if, and only if, exactly two of

íts ìnnuts âr.e rtruer. A slíshtlr¡ modifÍed e.ii r-.uit \^ias used on the

IBM 7090 computer?.

Figur"e 4.6 shows a mul-til-evel- eincuit found by applying Su

and Namrs algorithm. NAND gates with a fan-in of two and unlimited

fan-out wer"e all-owed. Thís cincuit is slightly morae expensive and,

urtfortunately, much more complicated. A far bette:: mul-til-evel- neal-ization

wili- be pnesented in Chapter. 7

6. Advantages and Disadvantages of the Algo:rithm

The principle advantage is the speed with which the algor"ithm

can be implemented. Su and Nam have pi:esented a ten-input, seven-output

example which was completely factor"ed in 2.4 seconds on a CDC 6400 A

statistical analysis has been penfolrmed on a r"andom sample of seve::al

types of function. Gate count reductions of about 70 to l-l-09o r^rere obtained

using the algor:ithm as opposed to solving each fan-in and fan-out probJ-em
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separately. A finat advantage is that the amount of wonk involved in

mrrlf r'nle-orrfnut nrohl ems is not excessive.¡rru! L rI,re

The pninciple disadvantage of the atgor"ithm is the requirement

+l-+ - ç---.'- ^r. fen-orrt^ nr.obfem exiStS before a faCtor^iZation is per--
Llld.L é Iqll-all t u! f q!¡ vuL t yrvv¿

fo::med. Gates which do no exceed the timits are not consider"ed, and,

the::efor"e, certain factor.izations which woutd further lreduce the cost of

the circuit may be missed. For. example, suppose the fotfowing input a::r'ay

is to be factor.ed with fan-in and fan-out finits of foun and ten

nespectivelv.

-r u2 
"s ,' -4 t5 .6

ò
t

Ir]
x

"3 1010xx

u4xtlx00

u5 lx-Lx01

The optimum facto:: is denoted S t . The row 
"3 

i^Ias not

cincfed as it did not exceed the fan-in limit. St is, howevell, a facton

of .3 and shoutd be removed.

As a fu::ther: example, assume the fan-in limit was incneased

to five. The factor Sr woul-d then be missed altogethe::'

The algonithm is implicitty assuming that all gates which do

not exceed the fan-in l-imit have the same cost. Thís will, in some

jnqf¡nno< 'ìoa¿ l-n ¡zan¡¡ nnsf'l r¡ r,r'.r.nllits: nar.ti'g¡1:nlr¡ ìf the fan-ín fimitLU vs|J uuù L¿J efr vu¿ Lu 5 yqr urvs¿sr +J

is high.

A second disadvantage is that fi:om an algebraic point of view,

the f,actoring of the expnession ::epnesenting the cincuit is sevenely
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rest:ricted. Only product ter-ms may be factoned out, and the negation

of a factor" is never used.

The expnession

ac+ad+bc+bd

is not r.educibl_e by this algonithm. Howeven,

ac+ ad+ bc+ bd= (a+b) (c+ d)

The latter exprâessíon r:equines thr ee two-input NAND gates, while the

fonmen requires four. two-input and a single foun-input gate.

A finat disadvantage is that the input and output arnays ane

factoned independentÌy. The resultíng ci::cuits thus stil_t ar.e of a

two stage nature. The finst is a multitevel- cir"cuit whích neal-izes the

negations of the original fr.mdamental- fonmulae, and the second stage is
a mul-tileve.l- cincuit r"ealizing the outputs.

The algoi:ithm ís simply a systematic way of sol-ving the pnoblems

encounteï'ed in imptementíng norma] fonm solutions as pnactícal cincuits.
Itle shall- see in Chapter" 7 that much better- r-esults ane achíeved. bv a

completely different appr-oach to the entir-e design pr"oblem.
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Olr¡nf an E

Decomposition

l-. Intr"oduction

Deeomnosition is the ne-exnr.ess'ion ofuevvrrrlJvùI Lf vl¿ Jè L]¡É I ç-ç^Pr'çèùf,vr1 vf q ùw I LUr¡IIIé I UrU

n var.iabl-es as a composíte of several functions, each depending on l-ess

than n variabl-es. Fon example, the function

f(a h.n d) = ãrl + bc + ad + bdt."r*/

may be vmitten

f(a,b,c,d) = y(cr(a,b),ß(c,d) )

where Y(4,ß) = o'ß, cl(a,b) = a + b, and ß(c,d) = c f d . Decompositions

wher"e each subfunetion orßryr...,6 can be neal-ized by a pnimitive swítching

nranan+ ¡-^ ^€ ¡articula:: inter"est as thev râeDresent multil-evel- eircuitç¿ç¡¡lsl¡ L o! ç UI Pq! LrçUIqI' II¡ LçL su u uo

r"eal-izations of the or"iginal- function. The pr"oblem is to find the decom-

nosr'tiôn c.ôl1i.esn^-,1 ;-r +¡ r-t-ra rheStr ci:fCuit. Usua'l lv the rhestr cifcUit

is the one with the lowest cost.

Ashenhur-st LL ] has intnoduced a theony of decomposition of

totally specified Bool-ean functions, which has been compiled and extended

by Cur"tis t 5 I Simple disjunctive decomposition fonms the basis of the

Ashenhur"st-Cur.tis theorv .

Let A be the set of n - input variables {rl_ru2,...,ân} ,

andlet f(A) beaBool-s¿¡f¡¡s+ìnn cr'¡zon A cA, and A cA,..À --- u -
where A. n A-. = ö, and A. u A. = A ,fis said to have a simple dis-

^u^u
iune.tr've dee.omno^-'+"^* ':€ -^r ^ñl¡¡ r'f r'ha¡a oxist Boo]ean functions otJ urlu L! vu uçuvrupvòI Ltulr Ir , ql¡u vrrrJ !r , L¡rgr'ç sô

and g such that
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The decomposition is ter"med simple as there is only a single o , and

r.:^-:..*^+-'--^ -^ A. and A,. are disjoint.ufùJur¿uLrvç aù 

^ 
u

Ashenhur.st has presented a criterion fon the existence of a

decomposition fon a given f(A) , and pantition of A This invol-ves

the examination of decomposition char"ts L3^11 Each pantition ís con-

sidered in turn and the set of simple disjunctive decompositions is found.

Partitions wher"e A contains a single var"iable are ignoned as they repne-

sent trivial decompositions equivalent to applying Shannonrs expansion

theor.em l'r^ll

Curtis has pr^esented an elaborate theony for determining complex

disjunctive decompositions f::om the set of símple deeompositions. A com-

nlex rìis-iuncfiwe deonmnosition is of the for"m

f(A) =

wher:e A=4, uA, u
"1 "2

g(a. (4. ) ro^(4. ),.t^rtn2 ,cl*(4. ) r4.. )L 
^. 

Uï

u A- u A and A- . A- .... A^ " andnt uf ^f' ^2' 
' 

^t
A :na mrrf rr:'l 'l r¡ J'i ^ -i ^; ^+uutrJ ufùlUlllL.
- 

,nitially, the A. , A. , ..., 4., associated with the decom-

^I 
- 

^2' 
nk

positions are examined for the maximal sets. A set is maxímal- if it is

not a subset of any othen set. The decomposition is typed acconding to

whether the maximal sets a::e mutually conjoint or mutually disjoint,

fha<a Ìraino tha ^-'lr¡ nnoor'f'r'1r'l-igg. The fUnCtiOnS d.:On:.. .:0- AIìe
LZL

determined fnom their" :respective decomposition char.ts, and the function

o is detei"mìned from these ¿¡fl fr.om the tvne of the decomnosr'tìon.Ò--

Curtis has al-so intnoduced a theory of compfex nondisjunctive

decomposition. In this case, the A.\ ar.e not necessanily mutually dis-,.i
joint. These methods are an extension of the disjunctive case, but the

computation is fan mor.e involved and extiremely lengthy.
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The pr"obtem of partial-ly specified functions has been treated

by Kar"p [13], Kjetker.ud [15], and Hight 1t01. In addition, Ka::p has

looked at multi-valued logic, and the multiple-output p::oblem.

A second independent theory of decornposition has been developed

trr¡ Roth et al [4q] l-q ¡l f 3+1 -..r r¿ *1 The cubical ca]-cul-us isuJ ¡\uLlf çL a! LJJ)) LJ¿J) L.J tJt O¡¡U L¡ ¿1.

used to r.epi:esent functions,and tdonrt-carer conditions are easily handled.

These methods have pr.oven much more gener.al- and are more easily p::og::ammable

than those above.

Because of its more practical applications, we have chosen to

int::oduce decomposition in tenms of the second theory. These resul-ts will

for"m the basis of the algonithm developed in Chapte:r 6 Fon that reason,

emphasis has been placed on the matenial::equi::ed for that development.

Several inter.esting results have been exc.l-uded oir only bniefly mentioned

fon the sake of keeping the fundamental-s of the decomposition theory as

cl-ear- as possible.

2. Boolean Functíons and thein Representations

Consideramapping f;E+Vr, whene E-Vn, and Vn is

the set of al-l- n - tuples of Ots and lrs Each e- e E co::nesponds
a

+^ - .,--i-.,^ ^^-çìorrr.¡fíon nf the BOOI-ean Va::iableS â.:ã^r...râ_ , and.LU O UrIrgUg UUI1J J6U! qLf Vrr Uf Lllç uvvreqrr v u! !LU! 
L Z ll

the mapping f : E t Vl thus determines a unique Boolean function

Et^ t . If E = V" , f(a-r4o:...ra*) is a total- Booleantao1 ,o2)...)aTIl . rr ! - v r I- .Z- - n

function. Otheru¡ise, f(a- oa^,. ..,â., ) is a partial- function, and the' L' ¿' n
nset V" - E constitutes the tdontt-cai:er conditions.

fn Chapten 3, the cubical- complex nepr"esentation of a totaf

Boolean function was presented. The totality was implicitly assumed as

the function was interp::eted as fal-se fo:: any vertex not covened by the
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comp]-ex. We now wish to extend this notation to partial functions.

A par"tial function may be specified by giving a l-ist of min-

tenms, fon which the firnction val-ue is tnue. and a list of minter.ms foi:

which the function val-ue is fal-se. The mintenms which do not appear ín

eithen list ar.e the tdontt-car"ef conditions. The lists of ve::tices

col?responding to these mintenm tists uniquely define cubical complexes

which may be ::eadily found using the cubing algonithm in Chapten 3. Covens

of these complexes may also be obtained. The repr"esentations of these

covers as n - tuples of Ots, lrs, and xls , are termed the 0N and OFF

:nnâ\¡c en¡l:no rlannl-aä î =nÃ C^

Definition - A Boolean function f(ar,ar, . ,-rr) is degenenate if thene

exists a function

-t ^g\ar raôr... ra- r :â_., r ¡.
L ¿ ¿--L I-T..L

- \ - €/-.;a^/ - t\drrdôr.
r1 fz -n

fnrsomcil<i<n.L)

The var:iable "í is

r.edundancy is to for.m Ci and

column r.emoved. If Ci n Ci =

with no nedundant vaniabl-es is

termed tr-edundantr. A simple test fon

Có equal to Ct and Co with the ith

ö , then .i is redundant. A funetion

ter"med rnon-degenenate ? .

3 - J)er-.omnos r't'i on

3.1- Abstnact Decomposition

Let X rY rZ, and ü,1 be

be a subset of the Car"tesian p::oduct X

the fol-l-owing questions anise:

ar.bitrany finite sets, and let E

xY G:-venamapping f :E->Z
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i) Given cr : X + W does thei:e exist a function g : W x Y + Z )

such that

f(x,y) = g(a(x),y) foir al-l (x,y) e E

ii) Underwhat conditions dothene exist o: X+W, and g: trnlx Y-)Z

such that

f (x,y) = g(o(x),y) foi: al-l (x,y) e E

Such a nepr:esentation is cal-l-ed a decomposition of f , and

o iq n¡l larl tho :*^-- ^t !L^ r^-nmnnqr'fr'on
Þ -- ---- rllld-Bv IJJ- Lrlc ucuurrrPuÞf, Lrvrr.

The answel.s to these questions ane based on a compatibility

r.elation between the e]ements of X

Definition - x_. , x- e X ane compatible with r.espect to f (denoted

x, - x. ) if, for all y e Y such that (x_.,y) , (x=ry) e e ,1l

c(-' '-\ - ¡/'., ..\ . nrhon^¡r'qa x is incomnatibl-e with x. (denotedr\Ái:J ) - r \Ã- tJ,/ , 9LI¡çLWJùç, ^i 
rù frlçurr¡yqL 

]

x./x.)i-l

If f(ar,a2,... rân) is a total- function, then compatibility

is an equivalence rel-ation having the pr"openties:

i) a-a nefl-exive

ii) a-b é+ b-a symmet::ic

iii) a-b.b-cà a-c transitive

Hnr^rar¡a¡ ì f Ç( ^.. ,ãnr. . . ,a_ ) is a par:tial function, then compatibilíty4\\¡l '_2r_--r_n,

is a quasi-oirder.ed nel-ation and thus does not have the tnansitive p::operty.

Pr.oofs of the fotlowing pnopositions \^rene presented in t3+]
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r lvIJUèrLrvrl J.f,

Given f and q , as defined above, there exists g such that

f(x,y) = g(a(x),y) for" all- (x,y) e E

r'f - and on'l v if- for" all x. , x. c X .**, r , j _ .- )

cr(x.)=cr(x.)+x.-x.r-lIl

nn anrrr'r¡:lantlr¡

x. I x.4 o(x.) / o(x.)r-ll-l

Pt^ñ 
^a 

I 1ì 
^ñ 

\ -/

If k is the least integei: such that X may be pantitioned

into k classes of mutually compatibl-e elements, then thene exist o

and g such that

f(x,y) = g(a(x),y) for all (x,y) e E

: t ^- I ^- r -- -' c !'i has at least k el-ements .fJ, élru ulrry rr,

These pr"opositions establish necessany and sufficient conditions

foi: the existence of a decomposition, and in par.ticular, a decomposition

wi fh ¡ n'r.edcf c.nmined o¿ .

3.2 Decomposition of Bool-ean Funetions

The special case whene f(ul,u2r...rân) is a Boolean function
0ml-lis such that X c V-, Y . V"', W c V-, Z c Y-, and û( r"epnesents

the t - tunle of Boolean functions (a-.cr^....a. ) It is sufficr'ent to'-'r'-'2'"--'t
consider decompositions of the for.m

f(A) = e(or(a^),or(e^),. . .,ot(AÀ),Au)



r^rhere A - {arru2r...r.r} , and A = A^ u Au )

that any decomposition of a Boo.l-ean function can

nurnber. of decompositions of this type.

If A. n A-. = ô the decomposition is disjunctive. Howeven,Àu
ín A. n 4.. / ô , the decomposition is non-disjunctive, and a minor:

^u
pnoblem arises. Cer.tain vaniabl-es are common to A¡, and O, , and

l,fm>n Thedomain E of f mustbeasubsetof Vn as f has

n - input var.iables. Ther"efo::e, E I X x Y as X . V9 , Y c Vm , and

g+m>n

The pr.obtem is easity sofved by defining ô

that a cube v = {v.:v^:...rv-} has the image {r.rr^,r-2--nr-¿-

p = g + m - n , where A^ n A = {"i,râi^r...r"i }
Lzp

with the function î(n..e ) which is such that if 6

^' u

ïtv, = f(vJ

Let us suppose that a gíven function f(A) is represented by

covers c, = {b' i = L,2,,..,n}, and co = {c' j = L,2,...,m}

We wish to employ piropositions 5.1 and 5.2 for the detection of a

decomposition nel-ative to a given f(A) , and pantition of A . Any cube

b-. e C. or C^ can be divided into a rÀ partr, b-. , and a 'u par"t',r-l-u-tI
b. The co-ondinates of b. are the co-ondinates of b_. cor::espondingir.au^
to vaniables in Al , and the co-or.dinates of b. are the eo-oirdinatestu

of bi col?responding to vaniables in O, The covers Ct and CO al?e

thus rep::esented as

AS

be

))
Hu LJII has shown

comnoserì of a fìnite

--n --g+m: V ->V such

.. . .v .v. .v. .....v.'n- a_' r-' - aL¿p
We can. then deal

. \z-t \z than

^ - r(t 1- \U- - 1\.U. r!. lal'1'1'

^p/\u^ = lLc. .c. ).ll _ a ' -v l. I

^tl

i = l-12r...rnj

^ìI = J-)z)...)mJ
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The foll-owing lemma t3+l is a method foir deter.mining the compatibility

i:elations of the elements of X nel-ative to a given function specified

bv C- and C^-IU

Lemma 5.1

Given ,r^ e V¿ and vi e V[ , Yn y' u if and nnlr¡ if - thei'eu r- , 'I -- --)

ai:e cubes (¡. .b. ) e C. and (c." .c. ) e C^ such that
l-,' 1 I t^- I U

^ u - -u

i) b. nc. lötu lu

íi) eithen b- r v^ and c; . v.r r oF

^ 
-^

c. rv^ and v. ¡v.
JÀ À -

For. example, considei: f (arb rcrd) given by the covelrs Cr and
.L

C^ below. We wish to
U

ct

abcd

br_101-x

b, I x t 0

bS 0 I x x

co

abcd

.l_tlxl

"2 1x0x

"3x00x

detenmine if a decomposition exists fo:: A^ = {a,b} , and Ou = {c,d}

Considen the cubes bt and .l_ Her-e, br_. = l-0 , bl = fx ¡

^uc. = ll- o and c" = xl-. b. n c. =.1-x n xl- = l-l- which is not QI-'LI.J

^uuuThanafnr.a hrr lam¡3 g.l, bt f c-t . Examining all pair:s of cubes, one
-^ *^

fnom each cover, we find all the incompatibil-ities. They ane



5ij

IOfLI

01/rr
0I t' Lx (.i.e. 0L f any vertex covened by the cube l-x)

0Iy'x0

Pronositions 5-l and 5.2 can now be used to determine the natune of the

possible decompositions .

Suppose o(a,b) = a ' b We wish to dete¡míne if g exists

such that

f (arb ,crd) = g(cl( arb ) )erd.)

Since ã' ¡ = a' b, but OL f LO, proposition 5.1- indicates that no

suitabfe g , and a , exist.

As a mor"e gener"al pr.oblem l-et us determine if any g and s

exist such that

f(a,b,c,d) = g(a(a,b),c,d)

Since cx(arb) is Bool-ean, its r"ange is Vf which has two members.

Acco::ding to proposition 5.2 a decomposition exists if, and only if,

X - the domain of o, - c.ân be na"ntitioned into two sets of mutua.Llv e.om-

patible el-ements. The following diagnam shows the elements of X with

l-ines connectíng compatíble pair.s.

ft is clean that a suitable par"tition cannot be found, and thenefor.e no

deeomposition exists.

0

\ \
\

01

li-l0
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Lemma 5.1 only applies in the disjunctive case. fn the non-

rìì qirtnafi\zê.2aê r.ra mrrol- 1--;- , 
^

Lrvu vqoç ws '¡uòL aËo*t Jeal with f which implies that we must

€-'-r Â --, ; fr.nm c anr{ C^ The obvious sol-ution is to simplyr lrru -l dtlu .o I l,ulll .1 drtu 
u

¡anl¡na a=nh nrr\g b. Of C^ A-.1 î l'r¡ r nr'\g With the Co-Ofdinatesru"t!Jee.-

common to bi- and bi appearing twice. Foi: example, if A^ = {arb,cJ
J\

^uand 4.. = {c,d} , the cubelt -

.abcd

.xOtx

woul-d be neplaced by

abccd

x01 lx

Unfoi:tunately, inconsístencies can occur. The cube

abcd

t0xx

woul-d be r.eplaced by

abccd

l0xxx

This cube contains the cubes 1000x , 1011x , 1001x , and 101-0x The

l-atter two cubes ai:e inconsistent as the var.iabl-e c simul-taneously takes

on the va.l-ues I and 0 A eube with q xts in co-oi:dinates conr:espond-

ins to the vai.iabfes of {A., n A.,} must be i:eplaced by 2q cubes represenr-
^u

ino fhe nnnqi qta-l- :o-'i 
-m^-r--LU¡¡ L aòÞIBlr¡lrsll Lù.

fn pr.actice, ô, and ôO are not actually fo::med, but cer-tain

nnlrrmnq nf l' ¡n¿l rì =na +h^,,-L+ ^€ -- -^^^-hiñõ f.n.l-h .in fha ). andev4u¡r¡¡¡o vr "t arf u "o 
qr'ç Lt¡vuËt¡ L vr qù al/pEo|r¡¡Ë !u Lr¡ f ll Ll¡Ë

U pants of each cube.

A--À
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Consider the example above with AÀ = {arb} , and Au = {brcrd}

h nn 'ì nnoan r'nr-anqoctq n aS Qj-x n lxf = ó The fol-lowing incom-"r "l-pu
nafíhì I itìas ¡r'e found

i=3, i=1 0f /fl-

i=3, j=2 jlf II (lt.s. 0f -r0)

Since 00-01, 00-10, and 0l--10 , f canbenewritten

f (a,b ,c rd) - g(a ' b, b ,c rd)

An alternative appnoach to the non-disjunctive case is to ti:eat

the variabl-es of {4. n 4..} as if the¡z wer"e Bool-ean functions of one
^u

vai"i¡ble nr.odue.ed hr¡ some o. Ê (cr-.cr^"....cx ) This r.ed.uces the non--i"'--I'-.2,---,-.t'-

disjunctive case to the disjunctive case.

liÏhen A- = {a.b} . and A = {c.d} . we had the íncomoatibitities
^u-

LOt'IL

0Lt'Lx

0Ifx0

Suppose o,(a,b) = a'b , and o^(a,b) = b By inspecting each incom-
I-'Z

patibilíty we find that pnoposition 5.f is not violated, and the decom-

^^-; +; ^*PUèf Lfvrr

fl: h n d) = olo¿.(arb)rcr^(arb)rcrd)7")"¿ b\_1, 2,

is valid. Thís appr"oach will- be consídered in detai.l- in Chapter'6.

Lemma 5.1- can be applied in two ways:

i) In conjunction with piroposition 5.1 , it can be used to

dafanmina o'irzan, f , A. ,4.. , and (c,¿.rc,¿^r.. ^ I r"r?rofhan - ---:-!-uç Lç! rrrrrrç , Ë! vsrr 
^ 

p L. ,¿. . ,Ut,/ WIIe LIIeI' g exl.¡; Lö

such that

r(A) = c(clt(AÀ),ar(A^),.. .,ot(AÀ),Au)
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orî ii) In conjunction with pr"oposition 5.2

ra+^¡m.'n^ -i,,^- f , A. , and A_. , whether g¡I.!¡¡9'-,..À)_.._..].1

exist such that

it can be used to

and (clr r&2r... roa)

f(A) = e(crr(A^),or(Ru),. ..,ot(AÀ),Au)

The fi::st case is st:raightfoi:wai:d. The incompatibitities of

el-ements of X with r:espect to f ar.e found, and each is checked fon a

r¡r'al=r-r'an nf nh^ñ^er'+r'^n q I ff nO VíOl_atiOn iS fOUnd the deCOmpOSitíOn

is valid.

The second case is mone complex. Let k be the l-east integer

srrr,h fh¡t X the rìomain of n - mAV be nar-titíoned into k cl-asses of" t

mutually compatible elements. Fr.om pnoposition 5.2 , if a decomposition

avr'qf< than l^f fha n=naa nf ¡ nrrn* l'¡-'^ ¡+ l^¡-# L ^l^*^-,, ) q r ¡¡tuù L ¡¡Gvç qu IêdS L J( efetltgifts. AS

ry. reDresents tho r- _ .t-,rnt o (^ r rgn:...:¿¿_) of Boolean functions,.*f "*2,_ _ _,*t

k < 2- ís a necessanv and sufficient condition for the existence of a

decomposition. The deter.mination of k is thus extnemefy impor.tant.

Definition- ScX is a compatible set if eXàx.-x..r_l

Definition - S is a maximal compatibi-e set

T is not a e.omnatible set.

if fo:r any T such that

Tha fr'nqJ- qton r'n rfcfo¡mìnino k is to find the maximal com-

nat'ihle sefs of X Roth and Kann l?'r!1 have nr^esented an aìs^n"r-hmL U'f J

based on the state ileduction technicues fol? secuential- machines due to

R. E. Mil-ten lzZl Once these sets are found the genenal extnaction

al-gorithm of Roth and Wagne:: [35] is used to find the minimum numbei:

of maximal compatibl-e sets l^Ihose union is X . These sets form a covell

X. . X.r'l

ScTcX,
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of

(;!

X which is easily tnansfo:rmed into a par.tition of X by the removal-

el-ements common to other sets.

Roth and Kar.p have also introduced a simplified algor.ithm for:

the case of t = l- This is of intenest as the majority of pnactical

switching el-ements r.eafize a single output function.

A second problem of interest is the case whe::e o is a vertex

function. A ver^tex function is such that cl(v^) I s(v) , whet:e v is

anv other- ventex \r 'iq fo¡mcd the diStinguished ve::tex. The AND, 0R,*"J '0

NAND, and NOR are vertex functions; the EXCLUSIVE OR and MAJORITY a::e not.

Primitive devices constrr.rcted of diodes , vacuum tubes, or tuansistoi:s

normally realize a ventex function. Special techniques for vertex decom-

^^-;+i^ñ h=r'â l'oen develoned bv Roth and Kar.n- and Ba::nar"d and HOlman [ 2 ]PUù I LIUI] llo V ç Uççl¡ Us v ç¿vyçu r\u! y t s

In circuit design, we shall- be concerned with sequences of decom-

positions, each openating on the image of its predecessor. The computation

of these images ís thus an important link in the design plrocess. Roth and

Karp t34,1 have presented an algorithm foi: finding the image of a deeom-

nosífion of the form

r(A) = e(o. (e. ),s^(e. ),. . . ,cx,(n. ),4 )

^'''¿ ^' 
't 

^ u

Tn Chanter,6 a tab'l e llookuo nïrocerìrrr.c is rìewe'l oned for. the case where therrr vrrqy L9! v q Lwfç rvvJ\sy

ct_. ane two-place functions. The wonk invol-ved in computing the image is
I

minimal and the covens determining the image are quite compact.

l-r f1i nnrrit Tlaqì m Al onni thmsa. ulr uuf L vvo¿É¡¿

A switchins circuit is often represented as a black box with

^- I -. +l-^ ; *^,.+^v¡ral Lr¡ç lrrpuLo êDd outputs specified.
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ôLt

V2
Ps

The p:roblem is to constnuct the

pnimitive switching elements of

l(o,,&r¡ ---,e^ )

intenio:: of the black box by intenconnecting

-l' r¡an f \rñê e

The decomposition

f(A) = e(or(A^),oz(Al),.. .,ot(At),Au)

¡enr esents fhe cir.cuit

* (o, ¡ú-z t ù^)
&þ,

"-/)z

Decompositíons ane chosen so that the crr. represent all-owed switching

elements, and a circuit is found by successively decomposing each image

until an imaøe ï,cnnesentins an al-.1-owed switching efement is found. A
ut¡ Lrr qr r¡¡rs5v

sequence of decompositions of this foi:m is termed a total decomposition.

Kat:p, McFan]in, Roth, and tr^lilts [1V] have p::esented an

algor:ithm for. the design of single-output ci::cuits constructed fnom an
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a::bit::ar.y set of pr.imitive logic elements. The cost of the cir"cuit, taken

to be the sum of the costs of the indivídual switching elements, is

minimized. An exhaustive search is made of al-I sequences of decompositions

whose costs ar:e l-ess than a onescribed bound. This bound shrinks as more

economical circuits are found. and the sea:rch ter"minates when al-l- circuits

bel-ow the l-owest cost bound are accounted for.

Cycling is a phenomenon where a new vaniable is equal to:

i) a constant

ii) a pi:ima::y input on its complement

iii) a vai:iabl-e pnoduced by a previous decomposition on the

complement of such a variable.

Cr¡r'lino nê\¡ên r.osul-ts in minimal- ci::cuits and stens wcnc fekcn fo avoid it.

Kanp et al. found that an exhaustive sealrch was not p::actical

for. ni"oblems of more than thr"ee of fou:: var:iables. Methods welle thenefo::e

developed to make the initial círcuit as minimal as possible. At each

stage, as might be expected, the decomposition col?lresponding to the least

expensive building block is chosen. Also, the td - algol?ithmt of

Ashenhunst | 7 ] is used to tnace mone than one sequence of decompositíons

at a time. The choice of the best sequence is thus delayed until- mo:re

information is known. The cir"cuits in figunes 5. i- and 5. 2 aild 5. 3 wer"e

designed using this program.

Figur.e 5.1- is the two out of five checker p::esented in Chapter 4.

This ci:rcuit was or.iginally given in terms of AND, 0R, and NOT gates. lle

have substituted NAND gates to facifitate its compairison to the r-esul-ts

of other. methods. Cl-ean.].v. this result is much betteir than the cir"cuit

F^.,-,1 1--, €-^+^.^-'rouna' Dy racror]-ng.
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Fiøure 5.3 is the initial nrooram desi.øn foi" a fl:ne.tion without- -Þ--

the use of the rd - algonithmt Figure 5.2 is the same function, but

the td - algor.ithmr was used. The impnovement is obvious. fn these

diagr-ams we have pr"esented the dual of the actual pnoblem solved. This

is aøaìn to fae.ilitate c'.omna.nison to othen methods.

Bai:nai:d and Hol-man | 2 I have pi:esented an algo:rithm simil-ar.

to that above. A rapid technique fon detenmining two-place vertex decom-

positions has been developed, but any advantage gained was lost by not

attempting to optimize the initial circuit. For example, figune 5.4

il-l-ustrates thein inítial appnoximatíon to the function of figur^es 5.2

and 5.3 . A r"esult neai:ly identicat to figune 5.2 was found aften con-

sidenabl-e searching which nequined over a minute of CPU time on a KDFS

computer.

fn Chapten 6, an algonithm is developed which combines the

good points of each of the pnevious decomposition algoríthms, while avoid-

íng theiir obvíous shor.tcomings. Emphasís is placed on the speed of com-

putatíon, and on obtaining a nea::ly minimal- ::esult in one pass. The

algonithm is r.estr.icted to two-input NAND gates , but as shown in Chapter. 7,

it is easily extended to multiple-input gates of any type.
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Chapter 6

The Design of NAND Cincuits by Decomposítion

1. fnt:roduction

fn this chapten, the total- deeomposition of a par.tial Bool-ean

function by successive two-place decompositions ís discussed. A theory

of two-place decomposition is devel-oped, and algorithms fon íts efficient

implementation are pnesented. These methods for.m the basis of an heur"istic

totaf decompositíon algorithm specificatty designed to yield an expnessíon

cor?nespondíng to a NAND circuit of neanly minimal cost.

This algonithm has been used in a computer prognam fon the de-

sign of cincuits constnucted of one and two-input NAND gates. The pi:ognam

is bi:iefly descnibed with panticulan emphasis placed upon the techniques

used to eliminate r-edundant computation.

2. Two-Pl-ace Decompositíon Theony

Let F be a many to one mapping of E onto Z , and J_et E

be a subset of vn and z be a subset of vl " whene vm is the set

of al-l- m-tuples (ordered sets of length m ) of zer.os and ones. There

exist sets x and Y such that x is a subset of v2 y is a subset

of V---, and E isasubsetoftheCantesianÐnoduct Xxy If

thene exists a mapping o: X + T¡i , whene W is a subset of V2, and

a rnapping G: ll x Y -> Z such that, fon all (xry) e E, F(x,y) = C(s(x),y)

then F is said to be two-place decomposable.

Cor"r.esponding to F and G a-ne unique Bool_ean funetions

€l- \ -- ) 
-/L 

Lt("1-,-2,. . . ,ân) and g(ba ,b2,.. . ,o*) The mapping o corresponds to
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iho tr^r¡-.|,rn'la n€ BOolean fUnctíons (ct" (c. .e^). ^ ( ^ ^ \\ -*d ther_ _L- ¿ *2t"1 )v2) I ) dlr

decomposition above may be written

f(ar,ar,... rân) = e(cla(arra2), d2(^rru2),a3,. ..,-r)

The term two-pJ-ace decomposition is used sínce crr( ur,a2) and clr(arrar)

=no 
.l-r^¡n-n I =na fr¡¡gtiOnS .

Two-place decompositions ar"e typed accor"ding to the degenenacy

of cr.ì and o., The nesulting types ane:rz

i) degene::ate: Neithe¡. o.l- or o2 is a true two-prace fi:nction.

Conditions will- be found for" which variabl-es ane redundant in

f l: a I I- r*l_r-2 r. . . rulì/ .

ii) simple disjunctive: one of ol and o2 is a constant and the

other a true two-place firnctíon. Decompositions of this type

may be rewnitten in the for.m

f (al_, 
^2'. 

.. ,t r) = B(o. (a, ,u2),-o r. . . ,.r)

whei:e i e {t,2}

iií) simple non-disjunctive: One of ol_ and o2 is a true two-place

function and the othe:: a one-place fu¡rction. The decomoosition

may in this case be r-ewrritten as

f (ar,ar,... ,ân) = g(oi(-t,^2), -i,-3,...,ur,)

'whene i, j e {t,Z)

ív) complex disjunctive: Both o.l_ and o2 are tnue two-place

functions a¡d the form of the decomposition cannot be símplified.

Using the cubic¿l s¿lsrrì rrc : mar-hn¿l foir deteirmining the decom-

position ::el-ative to a given function and two-place pantitíon wil-l- be
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rìa¡¡a'l nna¿l rhô Droblem ôf finrìinø'the sÍmn'l esf en¡ivãlênt ¿c¡omnoqitr'nnv! f,frtul,rl6 Lrl9 ùllltl.rIçù L _y**

wil-l- also be sofved.

3. The Deter.mination of Two-p.l-ace Decompositions

Fnom pnoposition 5.2 a necessary and sufficient condition for

the existence of q, and G is that I,¡ contain at l-east k elements 
"

where X may be par"titioned ínto k cl-asses of mutuallv compatible

elements.

fn the general case, wher.e f(a,,â^0...,a ) is a pantiatl-- z' - n'
function, k is the minimum number of disjoint compatible subsets of X

which foi:m a cover of X Rothts method t:¡*,1 for determining k is

based on an algorithm due to R. E. Mil_ler" lZel fon the reduction of

states in sequential machines. Sever"al sueh algonithms exist and can be

adapted to the pnoblem at hand, but they are geneïaal- in natu::e and a mone

efficient method based on the specific pr.openties of this pnoblem wil-l- be

developed.

3.1- Compatibil-ity Tabl_es and Compatibt_e Sets

The compatibility i:el-ation between the e]ements of x wíth

nespect to a gíven F was defined in the pnevíous chaptern. The following

definitíons alre al-so nequined.

Definition - A compatibl-e set. S c X ,'^ ^,,^L +L^+ c, f s sucn -cnat ton al-l *i , *j a s,

x.-x..r_l

Definition

fon all- T

sets wi.l-.1-

- A compatible set, X is fcr-med m¡wim¡i if :nrì anl" 
"€

.. t ¡rruõ¿¡r¡u¿ rr, ar¡u urrly Il_,

S c T c X, T is not a compatible set. Maximal compatible

denoted Ml-rM2,...,Mir... and the set of al_l_ such sets Mbe
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Definition - Mr c M is a minimum coveb of X if, and only if, each

x-.e X is ín at l-east one M. e Mr and ther.e exists no cover with fewenrJ
òE Lò.

Definition - A compatibility tabl-e T whose irn ::ow and col-umn ane

l-abel-l-ed 
"i is a set of n-tuple repl?esentation of the sets

Q e c Each S. is such that x. e S. if- and onlr¡ if"It"2t".r-fì Í ] f 
¿f,, @ru v¡rry rr,

X. - X. and x. gl S. if. and o-'l-' ;f v .-tr u 
^ ^^-^-+;r. .;r;+.''r-¡l-''ìa--i --j ..j - i --2 ---- -tr!J ¿rt ni, ^j ' n uuurPoLf,u-LfrLy Ld-L)-Le

l's sr¡mmct¡ia and hãô 5 "--i+ ,li r-¡nr'l -ñ ^^hñ-+-'l-"'1.'+.. -:^¡¡urre ur ru q¡¡u rroù d url-L L u-LdBvl¡q¿ oò uurrrfjé L-LUr¿r LJ ¡è o ÞJ rrur,=tf iC and

r.e fl-exÍve r.el-ation .

Definition - The l-owe:: bound L of a set of sets R is such that for

all- Ri, R-, e L, R- I R;, R. I R.., and R-, R. e R .
JfTJ

t¡tre wil-l denote the lower bound of the sets S_.S^ S as LI'2'-n
The use of L ín the dete::mination of k is demonstnated by the fol]ow-
r'¡^ -^-"1+^rr¡Ë r'sù uJ Lò .

Theor.em 6.l-

Ever.y maximal- compatible set in Mt is a subset of some S' e L
I\

Proof

suppose L = {s. os. ,...rs, } and Mt eontains an M. suchr_1- :-2- - r_n j

that *i é M; foir any s , I c s c n Let M-, = {*. ,X- ,...rx. }'s J - I lt 1z' 'Jm

where i li .l-<n<mrlss<n Foreach T) sì musthave-ns-,.

been subsumed by some "i , so *i is compatible with atl- its elements
ST

and must be included as M. is maximal compatibJ-e. Thus, M- is cover-ed.
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tr^le

othen sets of M t

concfude that if

and is nedundant. Mt

Mr is a minimal- covera,

??,

is therefore non-minimal-.

then M. c L for all M. E Mt
l_- l-

It fol-lows immediately that

Corol-fary 6.1.f

Any maximal compatible set which is deducible only fnom some

s. l. L is nedundant in a mínimal cover?.
l

Theo::em 6.2

ff eaeh

iruedundant cover

a
¿ L is a maximal comoatibl-e set. then L is an

e S. e L If x. e S. then x. - x. € x. e S.afar-lal
x. t' x, € x- é S- Initially we show that
lll-l

el-ement if S. is a maximal- comoatibi-e set. that
1'

e L , í I j To pnove x- is dístinguished it'a

there is no S. e L such that
l

Proof

and

Y
l_

f,ù

is

Consider *i

if x. I S. thenla
.:^ - J-'^+:---:^hedJò O UrÞ Lf,rlBufèr

x. é S. . anv S.r-ll
sufficient to show

Considen S. such that x. e S-. . Cleai:ly, S* É S. since
I I a -- I I

S_. e L . S_., S- ane pantially disjoint (they cannot be disjoint since
1 l- -t

J

x. . x. e S. and x., x. e S. ). There exists x, e S., )i é S. sor' I i- a - I I K 1 K l
\- t' x- But x. e S, and S- ís maximal compatible set so x.,- - x+

l\ JKllr-r_
since x. e S. This is a cont::adiction and ít fol-l-ows that x. is-t l- l-

distinguished.

Now each maxima.l- compatible set contains a distinguished

el-ement and tr.iviall-v no set can contain two such ver.tices sínce

x. e S. .
lr_



x. , x. s S. => x. , x. e S. and if S-. , S* e L , then X-., x. arlef i i i ' -r -r a f t' I*JJJ

nof dìstinøuished- Ther.efor.e^ each S. e L is essential- and L is an¡¡v L ulo 
l-

inr-edundant cover.

Conol-l-a::y 6.2 .l

The irn::edundant covel? of theorem 6.2 is al-so minimal . This

fol-lows immediatelv f::om theorems 6.l- and 6. 2

Ciriteirion 6.l-

Pnoof

S. e L is not a maximal compatible set if, and only if, thene
a

exist x- r4-eS, (il:,ilk,7lk) andtwoothersets S-,S^eL
r^l-pq

such that

i) x. e S , x. d S
lpfq

l_l_J x. c b . x, ø ÞK q- K P

and iii) T. - 0 ar.e all satisfied.
t.

(T is the o::iginal compatibility tabfe")

Cleai:ly, if the condítions hol-d, S, is not a maximal compatible

set since T. = Q implies x. t' x.
t, t I k
^

Convensely, suppose S-. ís not a maximal compatible set; then
I

eithe::

i) S-. is a compatibl-e set but not maximal;
a

ii) S- ís not a compatible set.
l-

We conside:r the two possibilities in tu::n.

i) If Si is a compatibl-e set but is not maximal-, there exists
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an M. such that
l

S. c M. c Xi_ l-

Thona 'ic ãn - e M. , )i I S. But x. e M. imnlies x. and'k - "j ' 'Ì - -i l- I '"O--=o ^í - ^k

4- d S_. implies x. f x- Therefore if S. ís a eomnaf ibte ser ifkakiUvç'¿q

is al-so maximal-.

ii) implies there exist x. , x,_ e S- sueh that x. f *lKr_jk
Hence, T- - 0 , and x. Ê S, , ><' d S. Now eíthe:r S e Llk I K - K l

or thei:e is an S" e L such that S" . Sk If S" . Sk then *o r Sk

so T"^ =f =T,. and >q-eS-^. Funther, x. lS_. Similar"ily,
"k oo K u j- T

either S. e L on thene is an S_- e L such that S c S. , x. e SI 1r s ì i s'
x. ésKS

This gives the conditions of the e::iterion.

A gener-al discussion of compatability and compatible sets,

íncluding the above matenial- is given ín lTof

The pr"oblem of pnesent ínterest is the detenmination.of k

when X is a subset of v2 . A str-onger cnitei:ion fo:: the equality of

L and Mr under this condition wii-l- be established.

Definition - A Boolean function f(a, ,a^r... ra*) is degener.ate if thener' z' - n

exists e(brrbrr...,br) = f(ar,ã2,...,ân) wher:e m < n , bi t

^Iru2r...,ân , and Oi I Oi , f ( i < m , I I j < m

fh
I,rre shal-l- denote the q-.. co-ondinate of x-. e X as x.Il_

q
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Theor.em 6.3

rf *i-*j and 1-1'*i'*j'*k'"rtxtv2, and

*i = *-i , then f(ar ra, ¡. . . ,ên) is degenenate.
ã r^
Y!

Pi:oof

x. = X* + 4- = xn as X . V2 Let o, be such thatllKfq "q q q

o(x.)=cx(xj)=*r_, and a(1)=s(x)=L . Conr.espondingto o
qq

is a Boolean function ol("t rãr) = an and by pr"oposition s.2rt

f (ar,ar:. . . ,ân) = g(cxa( arra2) ,aa,. . . ,.r)

-(a a ) \
Yvr¡

f(a : ¡ I .i- {-l-',.- - À^-^^r.olro2r...rdn; as rnus a oegenerate function.

Theonem 6.4

If X . V2 , and S- e L is not maximal- compatibte, then.T

f(arrarr... rân) is a degene:rate function.

Pi:oof

Fnomcr.itenion6.ltheireexist x. o4 eS. (íl-ì^i lklKl
j I k) and S- , S^ e L such thatPq

i)x.eS !x.ésfplq

ii) x e S . >( d. SK q- k p

...\ ñrli )'J'- = Q
l.-k
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S_. , S_ e L ) x c S â x I S.L'PaP'--a'Í

Si,SoeLà5rtn,^¡/Si

"i, x¡r" xn, *a, and a t X But, X. V2 and i, j, and k are

distinct. Thenefo::e *_=A=*g L/tp andeither. p=g, oF

p = j Therefone *j - *g *j / tn and either: q = gr or q = k

Therefore *k - *¿ x. is adjacent to two el-ements in X and. thene thus

existsa q suchthat x. =x. or x- =x - Then,emÂeioo¡+i^
'q jn or *tn = *uo Theorem 6'3 rt sdt'r-s-

fied and r(^Lr^2r.. . rân) is ther.efone degener.ate.

Cnitenion 6.2
c

If X c V- and f(a, ,a^ r. . . ,ä ) i* non-dcocnar.J- .¿- . n. rù r¡vr¡-usgvrrcr.âtO, then Mt - L

Pr-oof

This foll-ows immediately fnom theoi:em 6.4 and cor.ol-l-arv 6.2.r

The deter^mínation of M r when f(a, ,a^ ,. . . ,â_ ) is non_degenerate,L' 2' ' rr'
cand X c V- is straightforward. In general, howeven, this minimum covel?

is not necessarily disjoint and thenefone does not r:epr"esent the par"tition

nequir.ed by piropositíon 5.2

The fol_l-owing method t3ryl can be used to find a minímum

pairtition Mll

Let M. (i = lr...,k) be the maximal- compatible sets of Mt

Detenmine the disjoint sets N. (i = lr...,k) of Mil as foflows:

Nr=M.-L t i-:-
N. = M - lM ^ **) fon each í = 2r...rki _-i .-.i 

,=, 
..j .
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ThÍs method does not, unfortunately, always yíeld the panti-

tion of X which repnesents the simpJ-est deeomposition.

Let Mr - {t, = {oo,lt} , M2 = {to,ot,tt}} By the above

method we obtain Mrr= {N, = ¡oorft} , N. = {ro,or}i The simplestt"2
ñ^ôôjÈl^ -^^i -nenf nf ru oirrog Cf , (a, ,a^) = 0 , andpvùùa!¿ç oÞòJBrrlltcrl L uJ Lt BJ vet 

1 -f 2

oz(^t,^r) = aa1 + ãra, Suppose Mrr - {*r_ = {00} , Nz = {fo,Ol-,tl-}}

which is a valid compatibre partition. Hene a coul-d be assigned so

that ot(.trar) = o , and oZ(-tr^r) = uIr 
^2 

which is mone desínabl_e.

An algor.ithin has been developed which fon x . v2 yields the pai:tition

Mrr cot?respondíng to the simplest decomposition. The denivation begins

by eonsidening the genenal- case whene X c Vn

Leto beamappingof X onto Wro:X+W, whene

X - Vn , and W - Vn . G, conresponds to its n-tuple of Bool-ean

funct:íons {cL (a e ) n (^ - \ * (^ : llrurrçLrvrrù,*faol-r... ron,, *2aole,,. ldnJ t ...r t.[n\Olr... tdn)J

Let F beanon-degenenatemappingof E onto Z) F:E->2, whene

E c X x Y r Y. Vm-n , and Z. vL Pr-oposition S.l- is satisfied

as the maxímum number: of classes of compatíble el-ements in x is the

number of elements in vn Let Mir be a pai:tition of x such that

for" al-l- N. e Mrt , Ní is a compatíble set. we denote the cordinarity of

a set S as tsl

Theonem 6.5

o may be assigned to satísfy propositÍon 5.2 such that ther.e

are m O-nlar-.e functions in {o l" a ) ., cl'_("_r...ra_)} íf,.*1.*l)...)aTI/) - n I- n

and only if, [M"] < 2n-m .

Proof

Assume [M"] < 2n-m .
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+.hIt foll-ows that W contains at most 2t-m elements. Let the k 
Lrl

element of W be the vertex r:epr"esented by the n-place binary numben

k - l- Clear:ly, the finst m positions of every element a::e 0 as the

J-angest number: 2n-m - I requir.es n - m binary digits. The m functions

oí, i = l-, il ¡ are thus constant on O-ptace functions.

Conve:rsel-y, assume ther.e ar.e m O-place functions in

{cr.(a,r...ra-)r...rcr-(a,r...ra-)} and [M"] > 2n-^ . m positíons ofl- I- - n ' ' n I' - n

the binary nepnesentations of the oi ane constant. Thene ai:e at most

^n-m - ^n-m2-- distinct elements ín I,l and as [Mt', t ,'" "' proposition 5.2 cannot

be satisfied.

Cor^ol-lany 6.5.1-

0-'l o

If 2' - < [M"] < 2- then the n-tupJ-e

{o. (a, ¡... qê ),....s (a" ,...,a )} must contain at }east .Q,,cr. which ar.eLL--n"nI--nf
not 0-nl ace functions.

Theorem 6.6

o, may be assígned so that oi ís a l-place function if, and

onlr¡'if- for all x. . x, e S^ e Mlr " x. = ¡1"j,..kv-9."",.'ji 'k.

Pnoof

Assume foi: all x. o )i e S^ e Mrr r x. = x, Let o¿ be such
) K J{, lí ni

that fon all S e Mrt-9"

cx(x.) = x, ; x. . >( e S^
I K J - K y"

xi = xL as x. , 4_ e Sn , and ther"efoi:e: o:(a.râ^)...)a_) = â, jr. I K J¿ r L' 2- 'n r '-a a

= 1-nl¡na frrnnl-r'n¡
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Conver.sely assume oi(.Lr... ,ân) is a l^place function and

*jr. 
'\r'*j 'L t s¿ , fon some Su e Mrt

s(x.,) - o(4-) = w- e l.,l as x. . >( {'--j K q I k t sg As oi(.t,"',an)
is a l-place function, wn = X, and w = 4- which impl_:.Yi li a1 L. which imPlies
*j' = a' This ís a contr"adiction and oi(-l:... rên) cannot be a

rf

l-place function.

Conditions have thus been establ-ished fon when

oi(-t,...rân) e {(or(ar:...,ân),...,orr(-l ,...,arr)} can be assigned as

a ze?o on one-place function.

Definition - If oi(.t ,&2,...,-r) is a true k-place function, the

o:rden of oi(ut ,ã2r.. . ,ân) is k

Definition - The ond.er. of a d.ecomposition

f(a, ,a^r...,a_) = q(o" (-. ". = \ ^ /^'--l_,-2r--.. n, -'. l,_..r-*/r...rom(ulr...r-r)râm+lr...r-rr)

is the sum of the oi:dens of the q.
l_

lire wish to deníve Mrr fnom M r so that the subsequent de-

composition has minimal- onden. At p::esent, we ar^e interested in two-place
decompositions whene n = 2 A method. fo:: the gener.ar case is un.er.

considei:ation.

As x c v2 , the ca'dinar-ity of M' is fess than or" equal to
foun. clear"ry, [M"] = f cannot occun as this implies -f and u2 are

nedundant in f(aurarr...'än) which viol-ates the assumption of non-degeneracy.

The case whene [Mtt] = 4 is a special case where each s. e Mrr contains
only x. e X x. agnees with itserf in both the finst and second.

co-or"dinates and thus, by theonem 6.6 o.l_(-t rar) = a, and o2("trar) = a,
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The decomnositíon in this case is tei^med toiallr¡ i^Ê^ñ^sâ+^ tr^ shallrrr9 uuuvr¡rl/vorurvrr ¿rr Lrfrù uqùg rù Lç!r¡¡gu LULqftJ ugËçt¡çIoug. fYç

tr"eat the remaining cases, [M"f = 2 , and [M"] = 3 , seper.ately.

i) [M"] = 2

By conollar.y 6.5.1- and theorem 6.5 , onê ^f d ^î ^^ can be*f *z

-^^':-^r +^ L^ ^ zêrìô-Tìlae.e firnction and the other. cannot. The one thatoòùf BrIçu LU uE Q âçL V-},rqeç r u¿le

cannot must be a true two-place function as f(a,r...ra_) is non-degenerate.f- n

The minimum orden of a decomposition where []f"] = 2 is ther.efor-e al-so 2

Such decompositíons arle simple disjunctive.

ii) [M"] = 3

By conolla:ry 6.5.1 neithen oI non o2 can be assigned as a

zê'Þô-Dlae.e firnction. At least one must be a two-nlace filnction as

f(a. ,a^ r. . . ,â_ ) is non-degene::ate. The minimum order in this case ís 3L- 2- - n

Theor.em 6.6 pnovides the condition for when one of the functions can be

assígned to be a one-place function. If such is the case, the decomposition

iq cimnlo nnn-dic-ìrrnnti¡¡a Tf Ìrnr^rar¡an hnr-?r ^. and q^ a::e tr.ue-tz

two-place firnctions the decompositíon is complex disjunctive.

A par:tition containing two sets is moire desii:abl-e than a

nar,tìtjon eontainr'no th¡ec- Also. when a nar"fifion Ml? does Contain

thnee sets it is most desinabl-e to have x. = x. for all
I-lq -q

x-., X- e N,- e Mt1, Q = I or 2 The following algorithm is used to findl-'tK

M'?

Al-gonilhm 6.l-

i) If [M'] = 4 , the decomposition is totally degenerate.

ii) If x. V2 , each v-. e v2 , v-. l. x is added to each S- e Mt'r'rl-
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'ìii ) Tf enrr n:ì¡ S,. r S_: e Mr form a covel? of X , set-* --_J r-- 
- J

Mr - {tr. , ti} If thene is more than one pain chose the one

with the f-og""t nurnber of elements in Si n Sj

iv) If foi: anv i S. = {x-.x^.x^} . Mt' = {{x, nx^,x^}, {x,.}}-i---L,--2,--3-,-'L,2'3-'+-

w) Tf fo.n anr¡ i . S. = {x.,x^} and x, = X^ , e = L or 2 )-i'--I"zt--241
qq.

Mlr = {{x..x^} . {x^} , {x,.}}L-2-ó-+
ví) If neither. iv) on v) appfy, then Mrt - Mt .

3,2 The Assignment_ of o

Once Mtr is found o is assigned by forming a one to one

conrespondence between the sets of Mlt and the elements of hI If Mrr

contaíns two sets thei:e are ,!7- = lz nossible mappings, while if(+-2)! Y -- - -- --
ut

[M"] = 3 , ther-e are --=- = 2+ We wish to assign o¿ so that the
(+-gir

o::der^ of the decomposítion is minimal-. As the decompositions are to be

implemented using NAND gates, I^¡e also wish to assign o so that the

NAND expr.ession for each tr.ue two-place d-. has a minimal number of
-1

nna¡=l-¡nc

Fi:rst consider. the case wher"e [M"] = 2 By theoi:em 6.5 )

1-^ ---'i--ed so that o. is a zero-nlace function. The el_ements(I llréy !Ë éòòfBrlsu òu Lr¡qL *l

l-l- and 10 e W ar.e used as the images of the sets of Mrr Cleanly, Mr?

contains a set of three elements and a set with the fou::th element, o::

Mtr contains two sets with two elements in each.

In the fir"st case , ct^ is a ver.tex function; the minimum NAND
z

repnesentation of which conl.esponds to assigning the single vertex the

image lO . In the second case, M" = {{oo,tl} , {0t,10}} , the other'

possibilities leading to degene::at. oL . Hene {OO rff} is assigned

the image 10 and {Ol,tO} is assigned the image 11 d) is the
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excl-usive 0R function which h-as a simplen NAND r:epresentation than the

other nossihi I ifr¡. fhc enuivalcnce function.

V[hen [Mt'] = 3 the assignment of cr is somewhat mone complex.

cl, cannot be assigned so that either oI on o2 is a zero-place function,

brlt- bv theonem 6-6 Íf fn.n all r¿ r¿ c R Ê Mrr . X. = X. then g.,i , ..j " "9, " .. , .,ro _ ^jo _q

may be assigned to be a one-place funetion. Mrr contains 
-orr. 

".t 
of two

el-ements and two sets of a single element each. We denote these sets as

S, = {x. , x^} , S = {x^} , and S = {x,} S- is assiøned. thek 1' 2'' m 3- ' n 4- -k -----*Þ---
image l-1

Suppose xi = X^ By theonem 6.6 , o¿_(a, ra^) may betq,qqt-z'
assigned to be a one-pJ-ace function. S- is assigned the image 00 )

S* is assigned the image 01 if q = f , or the image 10 if q = 2

If *l lxZ for. g=Ior2, Sr, ísassignedtheimage 10, and
qq

S* is assígned the image 0l-
m

The above method has the pr^openty that wheneven possíble

q'-(a.ra^) = a-. ol? s-.(a,ra^) = ã- . Frrr-the¡- ¡¡l''^-^-'^- ^ (' '^) is al- I- '¿ I f. I- '¿ "i ' ¿ufurrç!, wrlçrlËvel' *itolto,

tr.ue two-place function, it is a vei?tex function with the single vertex

having the image 0 The minimality of a decomposítion when *.1_ = *2
qq

depends on which of the two sets of a single e.l-ement is taken to be

S' Minimality is achieved if *_ r S' has fewer. zel?o co-o::dínates

than >L e S-Dm
The l-abeling of the variabl-es of a Bool-ean function is completety

arbitnany. The functíon

f (arra2r. . . ,âi r. . . ,aj ,. . . ,an)

can thus be written

Et - \t.oi roi ro;-ro2r''' roi_l-toi+l_ )'' . )di-.1_roi+.1- ). . . )dTr)
_J
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vra

ìl

¡hove tee.hnr'nr.¡ês --^ +Ì.^*^€^-^ ,,.sed to find a mininal NAND@v vs Lgu¡lrrrYu9è q! ç LrrçI çJvl s u

ápnnmnnqití ¡n n€ E/ ^ ) wittr A1 = a.. ,a. )uçuu¡rrpvùrLrurr ua rao]_ro2r... rofl . 
^

*L,"2,. . .,*i_lr*i+l-r. . . r*j_1,*j+l-r. . .,-n

,?,l

expression

and

4. Total- Two-Pl-ace Decomposition

fdeatty, we wish to find the total decomposition of

f(a.,a^r...,d_) which comesponds to a minimum cost NAND circuit. UsingI' 2' - n

the conventional- multilevel ci::cuit c:.iter.ia we define:

Definítion - The cost of a NAND gate is equal to the number of inputs.

Defínition - The cost of a NAND cíncuÍt is the sum of the costs of the

individual gates.

An exhaustive sea::ch of afl the possíble total decompositions

coul-d be performed 12l Pr.evious authors [iry] have used a .l-exico-

gr.aphic seanch inconpo::ating the smal-lest cost previously found as a

cr.itenion fon eliminating more expensive ci::cuits. The woi:k is reduced

as not every total decomposition is examined in ful-l-. Even with this

refr'nemcnf . thc fr'me renrrr'r'crì fnr a e.omnlete search ís formidable.

Partial seanchs are often used to save computíng time, and consequently

it is ext::emely important that the initial decomposition be ver"y near.ly

minimal.

4.1- The Sel-ection of Decompositions

Ther:e ar:e thnee types of two-place decompositions:

i ) qimnlo rìr'sirlnnir'weLt

.'.'ì ^.:*1 l.:--:,,*^+.'..^Lrl ùiJll+Jrc rrull-uJõJ urrçLrvç

iii I nnmn'lav ¿Tr'--i,,^^{--i-,^L!! / 9urlrP!ç^ uf,Þ J UiU LJ Vg
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A simple disjunctive decomposítion of an n-place Bool-ean function

results in an n - I -place image, while the othei: two types nesul-t in

an n-place image. A comptex disjunctive decomposition, on the other"

h:nâ no.r'iÐôo rn.)1.ê oefr'no fn'imnlement fhan a Sìmnle nOn-rììsi¡nCtíVeè !¡¡¡I/re

decomposition. Choosing decompositions in the or"der- described above will

thus tend to decrease the numbei: of inputs at suceessive stages and l-imit

the r.enrrr' r,cd henflç3¡g.

At a given stage, sevenal decompositions of each type may exist.

Two independent cníter.ia have been tr.ied fon choosing the best decomposition

within the sel-ected tvpe.

i) The decomposition of l-owest cost is chosen.

ií) The decomposition whose inputs have come thnough the fewest

numben of level-s of gatíng is chosen.

The fir.st one obviousl-v stems fnom a desine for a minimum tota]

gating cost. The second, on the othen hand, will- tend to use input

variables and gate outputs as soon as possible. Thís tends to neduce the

number of inputs at each successive stage quíte r.apidly, while al-so r.e-

ducing the greatest numben of gates between the inputs and output. Rather
f¿

sur"pnisingly, cr:itenion 11) has been found, thr-ough testing, to yield a

circuit of lowen cost than the fi::st cr.iterion. Hence the second criteirion

is used.

Once a decomposition is picked the image must be found, and

another decomposition chosen. This pnocess continues iteratively until-

the image is itself a two-place functíon at which time a total- decomposition

has been achieved.
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4.2 Pnactical Modifications

The algorithm was initially implemented as descr.ibed. Seve::al

var.iations were also tested and the foll-owing modifications adopted.

ft was found that a fower overall cost is achieved if a simple

non-disjunctive decomposition is chosen so that the tr.ue two-place function

has the greater. of the two possibfe costs. This corresponds to assigning

oô the simplest sum of p::oducts expression. Seemingly a contnadiction,
z

a theonetical basis for. this ad hoc choice is cuirnently under development.

The case whe:re o. is the excl-usive OR function is of simnle
l 

.,."

disjunctive type. The gating ::equined to imptement it is howeven quite

costly. A minimai- NAND circuit is given be.l-ow:

ãç * *l-

FrG 6. t_ NAND ímplementatíon of excl-usive 0R

The cost of this cincuit is eíght. The level- of gating

of these high values, the method was al-ter:ed so that the

only used when it cannot be avoided.

Cycling is a phenomenon in circuits whe::e the

gate is:

either i) a constant

or ii ) an input var"iabl-e on its complement

or iii) a pr"evious gate output or" its complement

is thnee. Because

exclusive 0R is

nrrfnrrf ¡f :
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The algor:ithm which is used to assign

expnessed in terms of its inputs each o- which
l_

t::ue two-place function. Consider the cincuit

Ha¡c R =

thon R =

Definition -

Iò

ensures that when

acfnallr¡ used is a

,

_dâ Hnwcver.- if the actuaf expression fol? o is inse:rted,
z

a"a^ + â^ = â. This is a cyclic output'
L¿ZZ

It was found by inspection that any decomposition involvíng a

p:revious d.ecompositíon and one of its own inputs feads to redundant

gating. The excl-usion of this type of decomposition has apparently

eliminated the cycling problem, as r¡o further problems have been en-

counte::ed.

In the initial- implementation, a new l-ist of decompositions was

consti:ucted after each image was found. It was noted that certain decom-

posítions fnom the prevíous list neappeared. The possibílíty of choosing

seveïaal- decompositions at each stage became evident '

T,ef ô and 6 ]- a /laaamnnqr'f r'OnS giVen by!çL .1 q¿¡u "o
LL

ôl_, f(A) = c!ot(AÀr),oz(AÀrr,our,

ôr: f(A) = h(Ur,o^r),ßz(A\zr,our,

6, and ô, ar-e independent if O^, n A^r-- Ö , on when

À rhon er'ther o., (4.., ) and ßr (41 ) or- o"(4, ) andY ) -l'-'lf' 'I' \Z' '2 ,.IA.ñA.l
^r n2
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ß^(n. ) may be assigned to be one-ptace functions.
- "2

The significance of independence is that the vaniables requined

fon 6, alre pl?esent in the image of ô. Independence is nefl-exive and
I-

intransitive.

Sever"al- pr-oblems have been examined, and the necur.::ing decom-

positions have been noted. This has l-ed to the fol-lowing conjecture.

Conj ectur.e 6 .1

If {ô-.ô^,....ô i is a set of mutua]lv ìndenendent decom-Lr-2r--'r-m.
nnsÍti ons of fl n \ r^ -^-^nate function withpvùf Lf,vrrù vr r \ n.,/ a IIUI]-UgBçr1ç

f(A) = g(cl, (4. ) ro^(4. ),4- )t ^.r- t nr uf

f(A) = h(ß, (4. ),ß^(4. ) ,4.. )t n2 t n2 v2

f (A ) = k(Y. (A" ) ,Y^ (A. ) ,A-. )'J 
^ 

'2 
^ 

Ummm

then there exists a multiple decomposition whe:re

f(A) = t(o.(4. )ro^(4. )rß.(4. )rß.(4. )r...ry,(4. )ry^(4. ),4..)-L ^- ¿ ^.'r- ^^ z ^^ 
-r 

^ 
-z 

^ 
-u

II2¿mm

and A - A n A n ... n Auu.il^u*
IZIII

Initially, the list of non-total-Iy degene::ate decompositions,

whose À va:riabtes alle not a pr.evious o- and one of its inputs, is con-
l_

stnucted. The best decomposition is chosen and its image found. AnSr
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decompositíons which ane not independent of the chosen decompositíon ane

i:emoved from the Ìist, and the next best decomposition is chosen. Decom-

positions ai:e apolied to the image of the pnevious decomposition. rn

this way, the image of a mul-tiple decomposítion is found. To date no

cor¡nter.-examples to the conjeetu::e have been found.

tt ã TL^ T*--^ rf a Decomnosr'tíonT.9 rlrç ¿luoHg (ra o uç9vllluuÞI Lf L

Algor"ithms fon finding the image of a decomposition have been

pr.esented by G::iesmer and Karp [33], and Dietmeyer" I af . Although

theo::etícally quite useful-, both methods i:equine a great deal- of computa-

tion.

tr^le ar"e only concei:ned with two-place decomposítions, and only

five tnue two-place functions ane al-lowed. There ane only nine possible

sub-cubes for the variables of A1 , and the determínation of the image

of each eube can be perfonmed by a single table lookup. This tabl-e wíl-l

be given in the descniption of the computer pnogram.

Fon decomposition wher.e cI,_. is a zeno-n1 :na firnnrinn
l- -prqçs r urlu Lrull. , 0i l-S

simply ígnoned. This fol-lows ímmediately f::om the theonem

4.1=l-.4=A

and the fact that any function may be exp:ressed in no::ma.l- fonm. rf the

zero-place function is the constant 0 , the a::bítr-ar.y assignment of cx,

woul-d have allowed it to be I , and it can thus be considened :redundant.

If Cf . r'q â nna-n'l¡na frrnnJ-r'nn r-han gilþg1r q. (4" ) = a, Ofi 
*- 

' 
s¡¡vr¡ *i '--¡, , 

i

o. (A- ) = a. . a. e A Again because of the arbiti:ary assignment of cÌI^r'a
r'ra naa¡l ^ñr-' ^^-sider cl-(A. ) = a. This is the case whene a-. appea¡s"i "'À' 1 Í
in the image of the decomposition. obviously, âi is not r-emoved and
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itisnotnecessarSrtoconstnuctoiOnlytÏ.uetwo.placefunctions

need be constnucted, and as this is done by table tookup, very little

nnmnrri:f i nn r's 'nequired.evr¡¡vsese¡ 

,1-, ^-.^ ^.nrìyiq L. and the itt - co-ordinateA special case occu::s when oi(A¡.) = ¿r

of a gíven cube is x . The image of the ti:ue two-place function is also x

However, these *L in the image cube imply that both co-ordinates of A^

in the oniginal cube we:re x , which may not be the case. This p::oblem

is avoided by splitting the cube into two cubes, one with the ith

co-o::dinate I , the othe:: with the ith "o-oodinate 
O The p::ob¡-em does

nota::íseif-i'AÀisired.undantundenthedecomposition.

5. The Computer" Pnogram

Gonofthemethodspi:esentedabovehasbeenwritten

in FORTMN IV for use on an IBM 360/65 computer. Emphasis has been placed

on deve.l onins effinient comDuting techniques, but littl-e olr no optimization
vtr ue v u¿vl/tr¡6 * --__Ò

has been attempted. The methods used are machine independent, although

the machine used has obviously affected thein prog:ramming. The techniques

a:re also independent of the FORTRAN IV language, and could be ímplemented

in any suítable language such as ASSEMBLER, PL/I, BASIC or ALGOL. One

stnict requirement fon an efficient implementation is that a logical AND

of two bit str"ings is avai]able in the chosen p::ogr"amming languages '

5.1 The Representation of Cubic Compl-exes

A method is requíired foir the stoi:age of covelrs of cubical com-

In addition to the stonage requirements, eonsídenation must be

the ease of implementing our methods within the chosen lrep?esen-

plexes.

-ì *¡an l-a

tation.
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Each cube is repr.esented by a bit-str:ing with two bits for"

each co-or:dinate. The coding used is:

ss($e
Û1 eÛ
iú <_? r

]f($x

Aminimumofspaceisr:equi::edforeachcube.]tisadvantageousfo::

each cube to be individually accessibl-e, and thus a fulf word (32 bíts)

is used for. each. The bit st:ring l?eplâesentíng the cube is::ight justi-

fied, and alt unused bits are set to zel?os '

Besides compactness, the princíple advantage is the simplicity

with which the intersection of cubes can be pe:rfo::med. The intersection

of the indívidual co-ondinates of two cubes is represented by the logical

AND of their. full- word repï.esentatíons. If this result contains 00

within the bits atlotted to a single co-ordinate, the entire :result is þ

If it does not, it is the ful-l word i:epnesentation of the intersection of

the cubes. Exampfes witl- iflustnate '

Example 6.1

CUBES BIT STR]NGS

ll-xnl-10=l-l-0 10101-t " l-01-001 = l0l-001

The bit strins::esult is the r:ep::esentation of the nequi:red cube l-l-0*'_Ò -
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Exampl-e 6.2

CUBES BIT STRINGS

l-lxnl-01-=l-01 =0 101-01-l l-001-l-0 = l-0001-0

Bits 3 and 4 al-l-otted to the second co-oi:dinate are both ze::o, and

the r.esult as i:equired is ò

The notation of a cube in a fulf wo::d also faci.l-ítates the

determination of single co-or"dinates, ott subcubes, and the afteration of

the cube or. addition of co-ordinates. The togical AND, or:0R, and integen

divisíon, and multiplícation are used to manipufate the bit strings in

fha renrrr'r,erì manneï,. The use of ar-ithmetic opei:atíons requines that the

sìo-n hif not be rrsed in the r^ennesentation of cubes. Each cube is

the::efore i:estr"icted to a maximum of fífteen co-ordinates.

5.2 P::ognamming Techníques

Although the theor.y was developed using sepa:rate 0N and OFF

covers, the pnognam uses a single function al?l?ay. Each r"ow consists of

a cube and a co-ordinate specifying the corresponding functional- val-ue.

This system was chosen as it wilf ease the transition to Dietmeyer'rs

notation of the muttiple-output pnoblem | ¿ 7 , and is mor"e easily ex-

tended. to mufti-valued logic [Za1 than the two cover" scheme. The

methods are equivafent as the functionat co-or"dinate indicates within

which cover a cube is contained.

Input to the prognam is thus a single airray of Ors , f's )

and xrs which specifies the function to be decomposed. The pirogram

is itenative, each step being a multiple decomposition of the cunnent

function. As each decomposítion is penformed, the NAND cincuit::y
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required to implement it is descr.ibed. The image of each multiple de-

composition becomes the specified function to the next step, and the

Þnocess is:repeated until- the image is a one-place function. A bl-ock

diagr.am of the pnognam is given ín Fig . 6.2

5.3 Detei:mining the List of Decompgsi-!þnq

tr-^h -air of vai:iabl-es is, in tunn, taken to be A, If the!qçI] POIru vq! f@¿so ro, rrr usrr¡,

wa'níables Are a p::evious 0, and one of its inputs, the pai:: is ignoned.r-- --' i -

Othe::wise, the following algoríthm is used to find the simplest decom-

position.

Let C be the specifícation alrnay of the function, and let

c. e C be the itt oor. Denote the co-ordinates of c. corresponding-ia

to A as c- fhose c.orresDonding the A as c. , and the,'l

^ 
ar FAU

functional- vafue co-ondinate as c. A 4 x 4 compatibilíty table T
tf

is initíatly filled with ones as \^Ie assume each pair of vertices is

nnmn:tr'Ïrla rrnf i'l en ineomnaf ibi I':*-- ': ^ r^"-r*-..-**JLy tù fvulru¡

a|-^ñ1fnm h /

Fo:: each c. . c. e Cr' l
i) If c- = c_: , ignone the paiir.tf lf

ii) If c. n c. = Ó , ígnore the Paír;- r-u lu

iii) For. each veï.tex tk 1"iÀ and r¿ I "j^ ""4 tun = tuu = o

Ther-e ar.e 64 possible two-place compatibility tables uniquely

r'¡lanl-r'fiad hrr th^ -.iv-r-rrn]o {T T .T -T -T .I. } The deCom-ruerrur¿lvv !J Lr¡e ù'J-rl-LuPrc at]- ,'l rrl ,'2 ,'2. r'3. t

2-3*4-3-4-4
positions implied by each tabl-e have been determined as descnibed above,
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and the prognam uses the above six-tuple as an index into the list of

these ::esults. In this manner, a gneat deal- of :redundant eomputation

is avoided.

tr rr ^L^^^;*- +Le Besf Der,.omnosítionsJ. T UIMèJI]Ë LIIç !sù L usçVrrrpvè!

The vai"ìables {n -a ^...,a } a}.e uniouelv assoeìated. with."Ir"2t " -T7.

tha r'nnrrf nn-nnrli¡¿teS Of fþg f¡nnf r'nn ânn:r, cna^-'r--:^- cl ^ . .a )urr¡qLçò ur Lrrç rurrçLrvrr er.r.qJ ùl/çUlayrrtB t aO]-rO2, 
n

A is ín tll¡n feken fo ba {^ = } f = ' } f= = 
'} f- = I f. , I,'À ¿ù arr Lt!r¡ Lq¡\çI¡ Lv uç ,o;-r"2¡ r Lolrog, ,. . . r to]_ tont ,\d2)d3I aOn_lrOnJ

Foi: al-l A1 which are not a pr"eviou" o': and onê of r'fs innnfs, a decom-
^ 

- - -r- i "

position is found and, if it is non-totalJ-y degenerate, it is added to the

end of the i-ist of decompositions. The decompositions are chosen as

described above using the fir.st a.l-lowabl-e decomposition encountened.

This ondering tends to ful-fíll sefection criter:íon two. New vaniabl-es

ar.e added to the r:íght end of the function array and by choosing the

finst decomposítion al-l-owed, we tend to use the vaníabl-es ci:eated earliest

in the sequence of decomposítions.

Associated with each vaniabl-e is a check bit. hrhen the l_íst of

decompositions is constructed, each of these bits is set to 0 As

decompositions ane sel-ected, the check bits of redundant vai:iabl-es are

set to I A decomposítion is applicabfe to the image of a previous

decomposition only íf both check bits foir the vaniabl-es of A, alre 0

This is logically equivalent to nemoving dependent decomposítions as

each decomposition ís chosen rbut is much simpl-en to implement.

5.5 Detenmining the Image of a Deeomposition

It was shown that onty the t::ue two-place o_. (4. ) need be
-L^

detenmined explícitly. Any zei:o-place o- aire ígnoned, and one-place
f
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fl :7'ê sìmnlr¡ innrrt \râr''iehles \,rhichs¡ qr u or¡rty!

table used in fínding these images is

need not be :reconstr"ucted. The

-'i r¡an Ïra lnr^r

INPUT SUBCUBE

00 01 0x 10 1l_

FUNCTION

-AB

.
AB

--
AB

AB

ne+Ãs

Each irow of the function al?nay is treated separately as pre-

viously described. Additionaf cubes, I'esulting from the splitting of

cubes r^rith an x in the eo-ordinate specifying an ii:redundant va:riable,

are added to the end of the ar.ray and their images are found as they

alle encountened.

once the image a?ray has been found, subsumed rolis alle re-

moved. An algo::íthm using optíonat pnoducts to reduce the number of

ilows is cun::ently under development. At present ' 
it appealas to yield

solutions,which alre usuall-v ir-nedundant and quite often mínimaf . The

use of such an atgor:ithm reduces the computation involved in finding

'l-Ìra nnmn:f ihi'ì itr¡ f¡bl es at the *^'-* -+-Æ^
---- --- -J '--- rlcÃL ù Laëç '

XXxlx0.l-x
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Chapter' 7

Resu.Lts and Discussion

t. Intr"oduction

The sample p::oblems pnesented bel-ow wene chosen because they

represent the general foi:m of the circuits pnoduced by our algorithm. In

n¡r't'inlll.:r, fhc sxarrples of Chaptens 4 and 5 wene included. This will--_--r - -- -

allow an evaluation of oun algorithm in terms of pirevíous techniques.

In or.der to compa:re algorithms, criteria must be established

which detenmine the ne.l-ative merits of the circuits pnoduced. The pr:inciple

criteria is cost. As before. the cost of a cincuit is taken to be the

total numben of gate inputs, In addition, fan-in, fan-out, superffuous

gating, and response time must also be conside::ed.

Each of the examples bel-ow wilt be evaluated using these criteria

:nrì ¡omn:r"ed f o fhc oi i'-e.¡ri ts nr'.odlrncrì hr¡ nr.ewi olrs techni ntles - Sevei:aluru vvrr¡I,s L¿fç urr "J y-

interestins imorovements and extensions to the atgorithm wifl afso be-"'r- -

considei:ed.

2. Results

Our first example is the two out of fíve checken of figur"e 4.5

Fígune 7.1 shows the cir.cuit nealized by our a.lgorithm. This r-esult, up

t^ ¡nd inn'lrrdr'n- +L^ ^¡#aa ;^ô" *-+^,l ^' -..I ß is eotlivalent tO the*---**-*--9, LILe BdLet; LIeö-LBrrclLt:u u drlu P e ¿u

::esult found by Karp et al lt+1, figuire 5.1 The final gatíng is

some\^rhat simpler due to the fact that we have alfowed the exclusive 0R

function. As befo:re, the i:esult is far^ less expensive than the result

f^rrnâ l'r¡ f¡¡l-arr'n o f r' orr¡o l1 Âf, v u¡¡u !J
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Of pa::ticular Ínte::est in this example, is the fr-equency of

complex disjunctive decompositions. The pains of gates nesulting fi:om

these have been índicated. A method, such as that due to Bai:nar"d and

Holman l2 I , which is restricted to simple decompositions would not

vield anv nesult for this cincuit. This type of decomposition has been

F^r,nzì Èn 1- a ^rr¡'fa ñha\r='ìant or¡an +L^,,-l^ .i+.'^ ^-lr¡ r'hosen When a SìmnlerQuncr Io Ðe q uf Lç p|e vq¿er¡ L ç ve¡r LIluuBl¡ I L Jè uI¡¿J u¡rvùç¡I

decomposition is not available. As was the case with the nesult due to

Kar.n et a'l - oulì cir.cuit is less costly than the circuit actually used on

the IBM 7090 compute:: and has a lower fan-in nequirement.

The exampl_e of figune 7 .2 was included as it nep::esents the

c.l-osest companison found between the decomposition and factoring algo::ithms.

Here the costs were 23 by factoiring, and 20 by decomposition. In al-l other

problems tnied, the difference was for:nd to be gl?eaten. The decomposition

cir"cuit has a lower l-evel- of gating, and hence a faster uesponse time.

Tn addition- the --+.'-- r^"^r ì- more balanced throughout the cincuitrri auur urv¡¡ , urrv lld Lff Ig f C VC r Iù ll¡v! ç uorq¡ruçu L

::anging firom 5 to 6 , whei:eas the l-evel in the factor:ing circuit nanges

from 4 to 7

The gate designated cx in the

example of a factor being utilized both

in Chante.n 4- this ís the main d::awback')

output of the gate ß in the factoring

ac*bc

which could be wnitten

decomnnsi ti on r.esul-t is an

effirmed and neøated. As discussed

nf tha f:nf nr.r'nø annr.oac-h - The

r.esuft is

¡nrf na:'lr'zarl Ìrr¡ -l-l-'o ^:l-r'nnarru ! eqlr Lvv uJ LlfE ée Lrr¡Ë

(a + b)c
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T€ +L.i- ^Ìa-ñ-^ r.rê-nê mede-- the ne^"r+'i-- ^'i-^"ì+ WOUId have a cost of 18 .lf Ifll-bi C:IIdllEe Wçr'e t¡rquv r Lr¡e ! vè ur ufrró e!r uur L

The i:eason why oui: decomposition algorithm did not yield this less costly

cincuit is that a decomposition in the vaniables c and d was chosen

at the fir.st stage. VJhile this was not an optimaf choice hene, extensive

testing has shown that using var-iabtes and gates in decompositions as

soon as possible, geneirally leads to less expensive nesults.

As a final compar:ison to p::evious decomposition algorithms we

have incfuded the example of figune 5.2. Our: i:esult is shown in figur"e 7.3.

Happily, our nesul-t is equivalent to that of Kanp 9t ql, thei:: thnee-input

rrTÂ\Tñ -¡+^ h^.'ñ- r.en.l ae.e¿ì bv the caScade denoted Cr and ß ThiS caSCader\ru\u BdLg lglrrð r'çPloueu uJ L¡¡ç

indicates a method for handfing multiple-input gates which we shal-l discuss

]-ater.. In this example, seve:lal of the decompositions wene of simple non-

disjunctive type. Whil-e pnevious decomposition algo::ithms have r.equired

special techniques foi: decompositions of this type, oun method handles

+l- om -rrr'.l-e qr'mn'ì-' Tn ¡n nnfìm¡'zCfi r'Omnllte1. n'n¡--^-- !L:^ ^L^"t.d feSUlt-- --.^^¡.-Y. -Ln an OpIl-IIl]-¿çu çut¡¡PuLe! y!\JBI'dlll , LIl¿ò ù¡¡vur

in a substantial neduction ín computíng time.

The ci::cuit in figune 7.4 is a r-ealization of the function

which has a minimal disjunctive noi?mal- fonm of

ããã r 6õ¿ + abd + 6cõ + Ë¿e + bõõ + abc + cãõ
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A th:ree-l-evel- NAND real-ization wou]d have a cost of 37 . Our r:esul-t has

a cost of 43. The overniding factor here is the fan-in l-imit ' In our

nesuft this is of course two, but in a thr"ee*Ievel nealization eight

th::ee-input and a single eight-input gateare required. Two-input gates

aïae generally much molle conmonly used'

Two points alle of inte::est. Fir^st, the variabfe b appeans as

a distinct input three times. To date, this has been the highest fan-out

requir:ed. This value is wel-l within the timits set by gate manufacturens.

It thus appealrs, that whil-e we did not treat it as a definite p::oblem, oull

algor ithm does not generate fan-out difficulties. The second point of

inte::est is the computation involved. In using Quiners first method to

find the minimal nor.mal disjunctive fot:m, the pirime implicant tabfe became

cVcl-ic seveilal times, and the computation was quite involved' A reasonably

efficient computer pl?ogram::equined about 6.5 seconds on an IBM 360/65

our test pl?ogl?am, on the other hand, required 3.3 seconds to genenate the

circuít in figu:re 7'.4 fnom a minterm specification'

As a further test of the p::acticality of the algor"ithm, the

function with a minimal- disjunctive normal- foi:m of

a¡ãõ + a¡"" + aõ¿ã + aõd" + Ëcãe + Ëã¿e + ãËcd + ã¡cã + ã¡ãe + ã¡õ¿

was tr:ied. This is another p::oblem which is extnemely involved when

solwed usins Ouiners method. Ou:: r'esult is shown in fígune 7.5 ' Here

the cost is 42 A mínimaf thr-ee-l-evel realization would cost 55 , and

would requine ten four-input and a single ten-input gate' The impr"ovement

is obvious. The computation times wene compa::ab-Le to those above.
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3. Discussion

From these examples, and many others we have tr.ied, it is clear"

that our algorithm nesul-ts in as good, on better, cir.euits than those

f^rrnzl }'.' -î^-'-i^'rc l-anhnr'-rrao Tho nnm-rrfar nnnnTram_ f¡hi'1 e not -i-tSeIf
"J Y- Lçr l,r v5¿ qrrr t wr¡rrç lrv L ¡

optimal-, clear^ly indicates that the algonithm is easíly impJ-emented. The

computation requined is quite acceptable, and shoul-d impnove even furthel?

with an optimized program. fndications alle, however, that still- moi:e

extensive testing is r"equined befoi:e the algor"ithm can be final-ized.

Consider the example ín figure 7.6 . Clearly, the prognam

::esul-t is not acceptable. I'ühat appear.s in this simple example to be mínon

extravagance would l-ead to a gross waste if accumulated ovell a lar-ge ci::cuit.

The problem airises f::om an ovensight in the c::iter.ia used in the sel-ection

of decompositions.

The foll-owing cr:iter.ia are used in the selection of decompositions:

i) choose a simpte disjunctive d.ecomposition befo::e either of

the two other- types;

ii) choose a simple non-disjunctive decomposition befor-e a complex

dis j unctive decomposition ;

iii) wíthin these limits, choose the decomposition whose inputs

have come thnough the l-owest level of gating.

The actual- method of implementing these cniter.ia was discussed in Chapter 6

The oversight involves the case wher.e decompositions of the same type in-

vofve vairiabl-es which have come thnough the same gating .l-evel. Clear"ly,

the decomposition which ::equires the minímum gating should be chosen.

This, however", is not the case, and as shown in figune 7.6 supenfluous

gating is the r.esul-t. Implementing a revised sel-ection algor.ithm would
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r,ênìrii.e fhat the level- of gating th::ough which each vaniable has come

must be ::ecorded. The change in pnog::am logic would be considerable,

hrrf the .imnr.overì results should easily justify this atte::ation.

An extension of particula:r interest is the possible use of

-^+^^.,.'+Ì. - -Ê---in ør.eatêr than two. This may be done in two ways.
Bd.Le5 WILII O fqtl-frl Ër'çeust

First- naititions wher:e A.\ contains more than two var"iabfes coul-d be
) Y*-

consider-ed. Unfor.tunately, it was shown in l20l that when X , the

domain of cr , has more than foun elements, the compatibility techniques

do not always apply.

A mo:re promising approach would be to examine the final- ci::cuit

fnr simnlifications. In thís way, gates o and ß of fígure 7'3 coul-d

be combined to fo:rm the three-input gate of figu::e 5'2 Thís is the

inve:rse of the factoríng technique of Chapter 4 Additional simplifications

may also be possible using the NAND algebra and simplification theonems of

Muzio|zç].Thisappr:oachhasthead.vantagethatdecompositionswillnot

be absor.bed into la::geir decompositions until their own usefulness has been

exhausted.

while NAND gates aïae quite common, gates of othei: types ane

also frequently used. ft woutd thus be useful to have the type of gate

beíng used va::iabl-e. At pi:esent, this only affects the assignment of cr '

Tf hnurerzer,, fhe cost of a decomposition was incorporated into the sefection
rf t rrvvvvYvr ,

=r-n¡jr-¡m i+ r-ee would be affected by the type of gate being used. Both
o!Évr!L¡¡¡rr, f L

of these coufd easily be contr:olled by plrogram input and the algonithm is

thus easity gene::al-ized.

To date, no significant i:esul-ts have been presented on the de-

comnosition of -"r+;-r^ ^,r+^,rr- functions. The problem is to maximize the
ev¡¡¡vvv¡ lllLLl Lf,Prs-vuLyuL

gating common to the real-izations of the outputs. Ka:rp Lt3l has shown
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that considening f : vn * vm is of rittfe use. The most pnomising
approach appears to be to finst find the decompositions of each output
function independently. A subset is then chosen with pr"eference given
to decompositions anising fnom more than one output function. An algor.ithm
fon thisappnoach is cunr:entry under- considenation.

.nce a neasonabre multiple-output atgor.ithm is dever_oped, the
decomposition techniques shour-d pnove ver:y usefur_ in the design of
sequential cincuits. The excitation table of a sequentiar_ switching
cir-cuit pnovides the necessany specífícation of the murtiple_output
function. othe:: possibre apprications are the desÍgn of ce]_ruran rogíc
lzt'1 , and the design of mur-ti-var-ued switching cir.cuits r¿¿f

4. Concl_usion

The pnincipre disadvantage of the decomposition algor"ithm is
the heuristic approach to choosing decompositions. These methods will only
be justified by funthen extensive testing. An inter.esting pr.oblem would.
be the development of a theory for constr.ucting total decompositions fnom
the set of two-place decompositíons. An approach simi1an to that taken
by Cur.tis t 5I might be ti:ied.

Despite this dr^awback, the algorithm has been found to yield
quite ireasonab,r.e cincuíts. The approach to take might possibry be to use
thís argorithm to obtain a good fir.st appr"oximation, and to then apply
simplification nures to imp::ove the cir"cuit. The farring eost of the
ha::dwane is steadily doing away with the need foi: minimar r.esurts. what
is now needed in the fiel-d of logic design ar"e ::apid techniques which ob-
tain ínexpensive pnacticar cincuits. oun algonithm is a good finst step
in this dinection.
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