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Abstract

A decomposition algorithm for the design of practical multilevel
combinational switching circuits composed of two-input NAND gates is de-
veloped. The‘generalization to two—input»gateé of any type is, as shown,
quite straightforward. The theoretical background required is presented,
and from this, a new theory of two-place decomposition is developed. The
algorithm is compared with previous algebraic,_geometric, and decomposition
methods. Several sample results are discussed, and a number of improvements

and extensions proposed.
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Chapter 1

Introduction

Switching circuit theory is the study of the mathematical models
of circuits made up of two-state, or bistable, devices. The term 'switching
circuit' originates with the switch which was the first practical bistable
device in use. Railway signaling, and automatic telephone exchanges were
the fiprst major applications of switching circuits. Today, switching
circuits are used widely, from vending machines to digital computers. The
computer industry has quickly become the largest single user, and has been
responsible for most of the advances in both design and technology.

Initially, switching circuits were constructed by the heuristic
application of several ad hoc design techniques. The first mathematical
model was due to Shannon [36] who used a two-valued Boolean algebra to
describe the behaviour of relay contact networks. Since that time, the
use of algebraic simplification techniques.in the design of switching cir-
cuits has been widely explored. These techniques are the most commonly
used and we shall present the fundamental methods later.

A second approach is based on the correlation between switching
circuits and mappings of point set geometry. Some positional notation is
used to represent the possible configurations of the input variables, and
the corresponding functional value. Topological techniques are then used
to combine certain input configurations to achieve a reduced representation
of the function, and, consequently, a simplified circuit realization.

Both these approaches result in minimal, or nearly minimal,
AND/OR circuit realizations, and are gquite adequate for relay networks.

Practical circuits composed of electronic switching elements generally
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have several levels of gating, and new design techniques must therefore
be developed for the design of circuits of this type.

An electronic switching element, or gate, may be viewed as a
black b&x with a certain number of inputs, and an output which is some
binary combination of the inputs. Gates are characterized by the Boolean
function describing the output in terms of the inputs. The most common
are the NAND and NOR functions. A multilevel circuit constructed of gates
may thus be viewed as a realization of a function as a composition of
several simpler functions.

The fheory of functional decomposition has been developed to
handle representations of this form. Much theory has been presented on
this subject, and several decomposition algorithms for circuit design have
been developed. The principle result of this thesis is an efficient al-
gorithm for the design of practical multilevel combinational switching
circuits composed of two-input NAND gates. This algorithm is shown to be
more useful than previous design techniques.

Chapter 2 introduces the algebraic approach using the fundamental
work of Quine [30], [311. An alternative method [#11 , which appears
to require less computation, is also presented. In Chapter 3, the cubical
calculus due to Roth [32] is presented. Several algorithms based on
this calculus are discussed. These are representative of the geometric
approach to the design of circuits. The cubical calculus will also form
the basis of the notation and algorithms of subsequent chapters. The
discrepancy between theory and practical circuit design is discussed in
Chapter 4. The solution to these design problems is partially solved
by an algorithm due to Su and Nam [39] which is therefore included.

The theory of decomposition is introduced in Chapter 5. These results



form the basis for the development of our practical desing algorithm in
Chapter 6. The results of an implementation of this algorithm are pre-
sented in Chapter 7 and several interesting improvements and future
developments are considered.

The original development of this work is contained in Chapters
6 and 7 , the preceding chapters being a review of previous techniques.
Details of implementation and much of the subsequent work based on these
techniques has been excluded as this discussion was intended to be a back-
~ground to the development of our decomposition algorithm. These results
are well documented in the references, and in any of several books on

switching theory.



Chapter 2

The Minimization Methods of Quine and Zissos

1. Introduction

The correlation between expressions of Boolean algebra and

switching circuits was presented by Shannon [36] . Since that time,

the use of the algebra in the design of circuits has been the subject

of much research, and several systematic methods have been developed.

A few definitions are universal to these techniques.

i)
ii)

iii)

iv)

v)

vi)

A 'variable' is any lower-case letter.

A 'literal' is a variable or a negation of a variable.

A 'fundamental formula' is a conjunction of literals in which no
variable appears twice. A single literal may also be a funda-
mental formula.

A 'normal form' is a disjunction of fundamental formulae. Each
fundamental formula in the normal form is called a clause. A
single fundamental formula may also be a normal form. (Both
fundamental formulae and normal forms will be represented by
upper-case letters. The context will clarify which is meant.)

A fundamental formula, A , is said to 'subsume' another funda-
mental formula, B , if, and only if, all the literals of B
are among the literals of A .

A fundamental formula, A , is called a 'prime implicant' of a
normal form G , if, and only if, A implies G , and A sub-
sumes no shorter formula which implies G . (A fundamental
formula implies a normal form if, and only if, the normal form

is true whenever the fundamental formula is true.)
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vii) A normal form is called 'developed! if all of the variables in
the normal form appear in each of the clauses. The clauses of

a developed normal form are termed 'minterms'.

Most of the methods which have been developed depend on the
basic research of Quine, who has presented both a tabular [30] , and an
algebraic method [34] for determining the simplest normal form repre-
sentation of an expression. Quine's methods are representative of this
approach to the problem, and are thus presented below.

Zissos [#1] has introduced an algebraic approach to the same
problem which does not follow Quine's technigque. This method is non-
exhaustive and should require less work than previous methods, but this
has not been established. Zissos' method is presented and compared with

the methods of Quine.

2. The First Method of Quine

2.1 The Determination of Prime Implicants

The initial specification of the function must be given in
developed normal form. A systematic application of the identity

Aa + Aa = A

is then used to find the prime implicants. Each pair of clauses is
examined for those which differ by a single negation sign. When such a
pair is found, the common part of the two clauses is added to the formula,
and the original clausés are check marked.

In the expression pgr + par + Ear , Tor example, the fundamental
formulae pqr and pgr differ by a single negation sign. The common

term pq is thus added to the formula to give
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pqr + pgr + pqr + pg

The process is applied iteratively until no further terms can
be added. The terms which remain unchecked are the prime implicants of

the function.

2.2 The Minimal Normal Form Equivalent

The minimal normal form equivalent is the formula with the
fewest terms, and, within that limitation, the fewest literals. It is
easily shown [27] that each term of such an expression is a prime
implicant. Quine has, therefore, developed a tabular technique for ex-
tracting the minimal normal form from the set of prime implicants of the
function.

The columns of this table are labeled with the minterms, and
the rows are labeled with the prime implicants. A cross is placed at
each row and column intersection for which the minterm subsumes the prime
implicant. The following rules are then used to extract the minimal
normal form:

i) For any column which has only one cross, record the row heading
of the row containing the cross. These prime implicants are
essential to represent the function and are termed the 'core'.

ii) Delete from the table all rows which satisfy 1), and all the
columns which have crosses in any of these rows.

iii) If one column has crosses only in rows which a second column
has crosses, the latter column may be deleted.

iv) Delete any column whose crosses have been lost after 1i) and iii).



As an example, consider the normal Fform

pqr + pr + pgs + pr + pqrs

which has the prime implicant table:

pars | pars |pars | pars | pqrs | pars | pars | pqrs | pars | pars |pars
Pq X X X X
qr X X X X
pr X X X X
pr X X X X
pgs X X
qrs X X

Applying rule i) and rule 1i) we obtain the table below and

a core of pr and pr .

pql”S pqrg Ea_f’g
Pq X X
qr X X
pas X
qrs X

From rule 1ii) either column 1 or column 2 may be deleted.

We arbitrarily choose column 1 .

pars | pars
Pq X
qr X
Qs X
prs X




——

From this table it is clear the terms pgrs and pqrs may
be covered in any of four ways, and combining these with the core, the

simplest normal form equivalents are:

——.—

pr + pr + pq + DPgs

p% + ﬁr + pg + qrs

pr + pr + gr + pgs

pr + pr + qr + grs

As the number of terms and literals in all four forms is the same, there
is no advantage in using one in preference to the others.

Much work has been done toward optimizing and extending Quine's
fundamental process. Notably, McCluskey [19] has introduced a simplified
notation for the clauses, and a systematic approach to the generation of
the prime implicants which requires fewer comparisons. McCluskey has
also introduced an éxpanded set of prime implicant table simplification
rules which includes the deletion of a prime implicant which at any stage
only has crosses in columns which are all covered by a second prime
implicant.

Petrick [28] has introduced a method which, for any prime
implicant table, yields the entire set of irredundant normal form equiva-
lents. The minimal form is then easily found. While exact, the method
is not readily programmable, and becomes exceedingly lengthy for a table
with any more than a few crosses.

Quine's method has been extended to problems with 'don't carve'
conditions [17] , and to the simplification of multiple output functions
[ 3] . Improvements to these techniques have been suggested by Pyne and
McCluskey [29] , Ghazala [8 ] , Necula [27] , Morreale [24] , Luccio

[43] , and Choudhury and Das [# ]



0

3. The Second Method of Quine

3.1 The Generation of the Prime Implicants

Quine's second method [31] also involves the generation of
the prime implicants, and subsequent extraction - of the minimal normal
form. The starting point; however, is any normal form expression and
the computation involved is generally considerably less. The following

rules are used to generate the prime implicants:

i) Delete the obvious superfluities; if one of the clauses subsumes
another, it is deleted. Also, a + aB can be replaced by a + B ,
and a + aB can be replaced by a+ B

ii) Add the consensus of two clauses to the expression.

If two clauses contain the same variable , negated in one and
affirmed in the other, the consensus is the conjunction of the clauses
with that variable removed. Otherwise, the consensus does not exist.
For example, the consensus of abd and abec is bed .

Rule 1i) 1is not applied if the consensus subsumes a clause
in the expression as this would initiate an oscillation between rule
i) and rule ii)

The process continues iteratively until neither rule can be
applied, at which time  the expression is a disjunction of all the prime

implicants.

3.2 The Minimal Normal Form

A dispensing operation is used to extract the minimal normal

form.
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Definition - A prime implicant is dispensable if each minterm it implies

is implied by at least one other prime implicant.

Dispensable clauses are bracketed. After examining the entire expression,
the unbracketed terms form the core. Bracketed terms which imply the
core are then deleted. Groups of bracketed clauses must then be examined

for joint dispensability.

Definition - A group of clauses is jointly dispensable if, when the en-
tire group is removed, each clause in the group implies the remaining

expression.
For example, consider
ps + 55 + at + prs + qr§ + part
prs subsumes ps and may therefore be deleted, leaving
ps + 55 + at + qr§ + part
The consensus of ps and qrs is pgr which is subsumed by pqrt
ps + §§ + it + qr§ + par
Reapplying rule ii) gives
ps + ps + gt + qrs + pqr + (rst + prt)

(rst + prt) are jointly dispensable as they were added after the last
application of rule i) . This is self-evident as the clauses from which
they were formed still appear in the expression. We find that qrs and

pqr are individually dispensable. The core is thus simply
bs + PS5 + gt
The above method applied to

ac + bc + cd + cd + abe
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yields the solutions

abc + cd + ad + bd + ab
cd + cd + ad + bd + ab

ac + be + cd + cd + abc
However, a Karnaugh map yields a minimal solution of

ac + be + ¢d + abd .

This problem can be avoided by using the prime implicant table

techniques of Quine's first method.

L, The Minimization Method of Zissos

4.1 Introduction

Zissos and Duncan [H1] have presented a method for finding
the minimal normal form of a Boolean function. The principle advantage
is that once a normal form equivalent is found, the expression is never
expanded. The method has similarities to Quine's second method in that
the developed normal form is not required, and the consensus of terms is
used in the minimization process. Using Zissos' terminology, a normal
form is a sum of products expression, and the consensus of two terﬁs is
their optional product. The product is optional so long as the parent
terms, those terms from which the product was formed, remain in the
expression.

A similar method, based on Zissos' preliminary research, has

been developed by Knispel [46] . The latter has also looked at don't-care

conditions, and the multiple-output problem.
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4,2  The Irredundant Expression

The first step is to determine an irredundant sum of products

expression of the function.

Definition - A Boolean expression is said to be irredundant if it con-
tains no optional products or factors, that is, products or factors whose

presence do not affect the value of the function.

Initially, the given expression is transformed into sum of
products form using the distributive laws of Boolean algebra [ 6] .

For example:
a(b + ¢) + a + (2 +b)e =ab + ac + ab + ac + be

Let HI , Tl , T2 , and I be Boclean expressions. The

theorem

Theorem 2.1

(HL + T1 + I) (HL + T2 + I) = HIT2 + HIT1 + I

is used to avoid the generation of redundant terms. For example,

direct application of the distributive law yields
(a +b) (¢ +b) =ac+ ab+be+bb

which can be reduced to

ab + be .

Choosing HlL =b , Tl=a ,T2=c¢c, and I=¢ , theorem
2.1 would yield this result directly.
The distributive laws, and theorem 2.1 , are applied until all

brackets have been removed. The identity aca = 0 1is used to remove

any trivial terms, and the identity A + AB = A +to remove terms whose



truth value is implied by another term in the expression.
Once these first order redundancies have been removed, a

systematic application of the optional products theorem

Theorem 2.2

aB + aC = aB + aC + BC

is used to remove redundant terms. The description of this technique
is taken from Zissos and Duncan [4#1] .

Assuming the products are arranged from left to right in
ascending order of size, proceed as follows:

i) The first variable in the first product is selected, and the re-
mainder of the expression is scanned for a product that contains
the complement of the selected variable. When such a product is
found, form an optional product using theorem 2.2 . The optional
product is used to eliminate non-parent products and, or, to
replace parent products. If a parent product has been replaced,
insert the optional product at the beginniﬁg of the expression
and repeat. If the optional product has not been used to replace
a parent, it is discarded.

This process is repeated until all first level optional products
have been generated.

ii) The process is repeated using higher level optional products.

The following examples demonstrate this step.



Example 2.1

Example 2.2

1

a + ab + be + abd

V

b - replaces parent ab
b + a + abd
V4
ad - replaces parent
ad + b + a
./

d - replaces parent

d+ b+ a

ab + ac + bd + cd
\
bec - discard
ab + ac + bd + cd
ad -~ discard

ab + ac + bd + cd

ad - discard

and non-parent bc

ad
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Generating higher level optional products

P=ab+ ac + ba + ad
be
cd

d - replaces parents bd and cd

= d+ ab + ac

The reduction process terminates when every optional product

has been tried. At this point, the expression is irredundant.

4.3 The Minimal Expression

It does not always follow that an irredundant expression is

minimal. The irredundant expression
P =ac+ ab + ac + ab
is equivalent to
P' = ac + be + ab

and is, therefore, not minimal. A minimization step must be performed
to ensure a minimal result.
The condition for a simplification at this stage can be

diagrammed as
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P1 P2 i P3 Py

) P23

& ,
P2 P3

A necessary criterion for this condition is that there exist a set of

four terms in which:

i) some variable, say a , appears or can be made to appear, at
least twice in its true form, and at least twice in its inverted
form,

and i1) two other variables, say b and ¢ , are each present at least

once in their true form, and at least once in their inverted form.

ac + ab + ac + ab

be

If a simplification of this type is found, the reduction process
is reapplied. The two steps are performed alternately, until the mini-

mization criterion is not satisfied. At that time, the expression is



believed to be minimal.

A complete example follows:
P = abc + abd + ac + ad + bd

An examination of the optional products indicates this expression is

irredundant. We thus proceed with the minimization step.

P = abd + abec + abd + ac + ad + bd

\/

bed

abc

%_‘I
[an

P = abd + bed + ac + bad

It was necessary to replace ad by abd + abd in order to
achieve the correct structure. Conditions for detecting this structure
and for proper literal substitution are given by Zissos and Duncan.

The reduction step is reapplied

abd + bed + ac + bd

NS

cd - replaces parent bed

ae)
|

P = abd + ed + ac + bd

The minimization step cannot be applied and as expected, the above ex-

pression is minimal.
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The validity of this minimization criterion has not been estab-
lished. Zissos and Duncan have, however, solved several examples

without detecting any inadequacies.

5. Discussion

The principle advantage of Quine's first method is that it is
a strictly mechanical procedure which, when carried to its conclusion,
will yield both the minimal and neavr-minimal normal form solutions. A
major drawback, however, is the required specification of the problem in
developed normal form. For some problems, the work involved in finding
the prime implicants is fantastic.

Quine's second method generally requires less work in finding
the prime implicants. Also, the developed normal form is not required.
The extraction of the result by the dispensing operation does not always
yield a minimal result, and in general, the prime implicant table of
the first method is used.

The use of prime implicants may lead to serious problems.
Fridshal [7/ ] has presented the following minimum upper bounds on the

number of prime implicants.

Number of Variables Number of P.I.

2
6

13

32

92

218
576
1,698
4,300
11,000

W oo 3005 Wi

=
o



Certain examples will be encountered which are formidable even to the
faster computers.

Zissos has avoided this problem. His method does not generate
all the prime implicants, but, it would appear, only those required for
a minimal solution. Several questions still remain unanswered. The
termihigher order optional product’ is nowhere defined and it is not
known if this includes the optional product of optional products.
Secondly, no provision has been made for the same optional product being
 generated from different parents, and considerable redundant computation
could occur. Most importantly, the validity of the method has not been
established and the strict minimality of the result cannot be assured.

All three methods result in normal form, or sum of products,
solutions. The circuits derived directly from these results are impracti-
cal and must be transformed to NAND or NOR circuits. Eyen when this is
done, certain design problems are encountered. A systematic procedure
for obtaining practical NAND circuits from a normal form result will be

presented in chapter 4.
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Chapter 3

The Cubical Calculus of Roth

1. Introduction

The Harvard Computational Laboratory [ 9 ] developed a chart
technique for the simplification of switching circuits. This was of
little practical interest as the solution of an n variable problem
involved the examination of 22n entries. A more compact method was
suggested by Montgomerie [231 , and developed by Vietch [#0] and
Karnaugh [22] . In particular, a systématic application of Karnaugh's
simplification rules always yields a minimal normal form result. The
method, unfortunately, does not lend itself to machine computation, and
the work involved in manually solving a problem in more than five or
six variables is tedious and prone to error, if not totally impossible.

These methods are geometric approaches to the simplification
problem, and even their modest success seems to indicate that further
investigations along this line might prove fruitful.

Roth [32] has identified the correlation between Boolean
functions and mappings of combinatorial topology. A convenient positional
notation has been developed and operators consistent with Boolean algebra
have been defined. Among the results which were presented are the cubing,
star, and sharp algorithms which are equivalent to the work of Quine.

In this chapter, a non-rigorous treatment of the calculus is

presented together with the algorithms mentioned. This calculus forms

the basis of the notation and most of the theory of subsequent chapters.



2. The Cubical Complex of a Boolean Function

A Boolean function f(a ,an) may be represented by a

128500 -
disjunctive normal form expression, and » in fact, by “any one of
several such expressions. There is, however, a finite set of clauses
which imply the function, and from which the above expressions are
formed. This set is the complex of the function.

Let Qn represent the set of all fundamental clauses of n
variables. Each such term, T , may be represented by an ordered set

of n symbols '{tl,tQ,...,tn} , where ti =1 if a, appears affirmed

in T , ti =0 if a, appears negated, and ti = x if a, does not

appear. Such an n-tuple is termed a cube. A cube containing no x's

is termed a vertex. There is a one~to-one correspondence between the
fundamental clauses formed from n variables and the set of all
n - co-ordinate cubes. We associate this set of cubes with Qn and
therefore term it the n-cube.

Clearly, the complex of a Boolean function f of n variables
may be represented by a subset, denoted K(f) , of the n-cube, K(f)
is the cubical complex of the Boolean Ffunction.

Let Z, be the set '{Q,l} and 2. be the n'? order

2 2

Cartesian product of % Let £ be a mapping of X onto E , denoted

2
f: X > E , where X E_Zzn and E E_Z2 The inverse mapping f—l(l)
yields a set Y © X such that xe Y= f(x) = 1 . There is a one-to-one

relation between the set of all such mappings and the set of all Boolean
functions of n-variables. Also, there is a one-to-one relation between

the set Y ~and the set of all minterms of a Boolean function.
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Definition - Two cubes, a and b , are opposed in their ith

co-ordinates, denoted a, and bi , 1f one of a, or b. equals one,

1

and the other equals zero.

Definition - Two cubes are adjacent if they are opposed in exactly

one co~ordinate.

Two adjacent vertices may be expressed as a cube equal to the
vertices with the opposed co-ordinate replaced by an x- . The vertices
are the faces of the cube, and the operation of forming the cube is
termed cubing. The minterms corresponding to these vertices may be re-
placed by a single term equal to the minterms with the opposed variable
removed. Similarly, two r-dimensional cubes, cubes containing exactly
r x's , which are opposed in one co-ordinate may be represented by an
r + 1 dimensional cube. The cubing of two cubes over the ith co-ordinate

is simply a geometric application of the theorem

Theorem 3.1

a.B + a.B =B
1 i

It has been shown by Quine [30] that beginning with the de-
veloped normal form, the set of all fundamental clauses which imply the
function may be found by an iterative application of theorem é.l . It
follows that given Y = f”l(l) the cubical complex K(f) may be found
by repetitive cubing operations.

An elementary co-cycle of K(f) 1is a cube which is not a face

of a higher order cube of K(f) . The corresponding term T is a prime

implicant at it implies £ , but no other term T' exists such that
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As K(f) may be determined from Y > and from this set the
subset of elementary co-cycles may be extracted, the complex notation is
sufficient to implement the first method of Quine. This application was
presented by Roth [32] , and in a somewhat different form by McCluskey [197.

The consistency of the cubical complex notation with the dis-
junctive normal form has led to the development of a calculus. The

principle results are presented below.

3. A Calculus of Boolean Complexes

A fundamental operation of the algebra is the conjunction of
Boolean expressions. In the calculus of complexes, therefore, an inter-
section operator must be defined. The intersection of cubes, denoted

a n b,is defined by the table:

b
a. nb
i i
0 1 A and the rule:
0 0 ¢ 0 anb-=¢ if for any i , a; n bi = ¢
a, 11¢ 1 1 else, anb = (al n bl,a2 n b2,. 28 N bn)
x| 0 1 x where a = (al,az,...,an)
b= (By,byseeesb )

The intersection of the complexes A and B is a complex C
whose member cubes are ¢ = Ai n Bj for all Ai e A , and Bj e B .
If A vrepresents the Boolean function f£,, and B represents the Boolean

function g , then the intersection A n B represents the function

h=£f-g.
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Consider the complexes;:

000
x 10
A = 11x B = (
001
0 x x

The complex C = A n B is

1160

001

which may be reduced to

x 10
c<)
001

The intersection of cubes may also be used in the detection of
subsuming terms in a disjunctive normal form expression. Recall that

- given terms Tl and T2 . Tl subsumes T2 , denoted Tl E.TQ , only

if all the literals of T2 appear in Tl . The equivalent criterion in

the calculus being a n b = a where a is the cube representing Tl

and b 1is the cube representing T The significance of subsuming

2
terms is that they do not affect the value of the function. Subsuming

cubes are thus removed from a complex.

4, 'The Cover of a Cubical Complex

A cover of a cubical complex A 1s a subset B of A such

that for every vertex vcaeA , vcbe B, and conversely, for all

vebeB, vecaeA . The problem of finding a cover with a minimal
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number of cubes of highest dimension is a restatement of the synthesis
problem of Quine.

The more general problem which shall be treated is finding a
set € of cubes of K which cover a subcomplex L of K . If K, C ,
and L define Boolean functions f , g , and h respectively, then C
is a normal form expression for g such that h = g2 f . C is a

K - cover of L and the vertices in (K - L) are don't-care conditions.

4.1 The Cubing Algorithm

The first algorithm due to Roth is a systematic application of
cubing tc find Z the set of elementary co-cycles, or prime-implicants,
of K . As expected, this method parallels the Quine-McCluskey algorithm.
Roth does not, however, introduce the partitioned list techniques of
Morreale [24] . Groupings are made by free variables, those whose
co-ordinate value is x , and some work is saved. A crude upper bound
of 3n2n+l single co-ordinate comparisons is established for a problem
of n variables. Both methods suffer from similar problems; the most

serious being the required specification of the function as O-cubes, or

minterms.

4.2 The *-Algorithm

Roth has introduced an algorithm similar to the second method
of Quine. Here the consensus of two terms is equivalent to the *-product

of the corresponding cubes. This product is defined by the table:
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i
a, * b,
* 0 1 A and the rule;
0 0 N 0 a*b=¢ if a, ® b, =y for more
a; 1 y 1 1 than one 1
% 0 1 X else a % b = (W(al"bl),w(aQ"bQ),...,w(an"bn))

where Y(0) 0, p(1) = 1, v(x) = %, ¥(y) = x

The case when a; % bi #y , forall i , is degenerate and a *b=anb
Such terms are ignored as they subsume their parents. The following

simplified statement of Roth's algorithm is due to Dietmeyer 6] .

Let C Dbe a given cover of a complex K .

i) For all cubes Ci and Cj of C if Ci % Cj # ¢ , then add
(C. ¥ C.,) to C.
1 J

ii) Remove all Ck ¢ C such that Ck iC2 eC, k#28.

iii) Continue until

a) C.*%C,=¢ forall C, ,C,eC
i ] 1 J

or b) all C, ®C, # ¢ are such that (C. ®#C.)cC € C
1 ] i 37—k

An efficient implementation of this algorithm may be achieved
by requiring that before the algorithm begins, any subsuming cubes of
C are rvemoved. Step ii) then only requires that the new cube (Ci ® Cj)

be compared with each Ck g C . Further, if a Ck is found such that

(Ci ® Cj) ct¢ then no more comparisons need be made. It is also

k H

evident that if (Ci % Cj) is degenerate, then 1t may be immediately

rejected as (C, *# C,) = (C., nC,) < C, and (c. #C.)=(C, nC.,)cC.
1 ] 1 ] - 1 1 J 1 3~ 3
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Roth has established that the above algorithm always yields
the subset Z of elementary co~-cycles of K , Although Z is a cover
of K , it is unfortunately not, in general, minimal. The cubing al-
~gorithm is a restricted case of this algorithm as it requires that
(C., #C,)>¢C, , and (C, *C.) o C. before the product is added to C .

1 J 1 1 ] ]
This restriction requires that the original elements of C all be
O-cubes . Although the result is the same, the *—algorithm generally

requires far less computation.

4.3 The # Extraction Algorithm

Once Z the set of elementary co-cycles of K is found, the
remaining problem is to extract a minimal subset C of 7% such that C
covers L . The initial step is to determine the cubes of 7 which are
essential to the cover. This set E is termed the set of K-extremals
and has the property that if Ci e E  then there exists at least one
vertex v S.Ci such that v é_Cj for any Cj €2, 1 # 3 . The basis
of this operation is the sharp product, denoted a # b

Let Tl be a product term with cubical rvepresentation a .

Also let T2 be a product term represented by b . The expression h

represented by (a # b) is such that h = Tl"TQ. h , in general, is
not a single product term and is represented by the disjunction of a set

of product terms. Consider

T. = abd and T, = bcde

The result defined by T # T, is



Do
0

-3
~3
1l

abd (bede)

abd (b + c+ d + e)

abed + abde

A form of differencing operation is thus performed. The sharp product

of cubes is defined by the table;

bi
a. # b,
0 1 X and the rules:
0 £ b £ i)a#b=a if a, # b, = ¢ for any i
v, 1 b € € ii)a#b=2¢ if a, # b, = e for all i
X 1 0 € else iii) a # b is the complex whose cubes are
(al,aQ,...,B;}...,an)

for all (a, # b,) e {0,1} .
i i

For the above example Tl is given by 10xlx and T2 is given by x0011 .
The #-product is thus

10x1x # %0011 = egelel

which defines the complex
1011x

10x10

The #-product of a complex A ='{A1,A2,...,An} and a cube b consists

of all the cubes given by

(Al # b),(A2 # b),...,(An # b)

If A has subsuming terms removed, then the complex A # b has no

subsuming terms.



The #-product of complexes A , and B ='{B1,B2,...,Bﬁ} is

~given by

A#B={...{{aA# Bl}#BQ}...#Bm}

Again, if the complex A has subsuming terms removed, then the product
A # B has no subsuming terms.
The following distributive and pseudo-commutative properties

were presented by Roth:

(a+Dbllc=(a#ec)+ (b#c)...... distributive

(a # b)#c

(a # )b ...... pseudo-commutative

It can be shown that Zi € Z 1is a K-extremal elementary

co-cycle of K if, and only if,

(...((...(((Zi#Zl)#ZQ)#...#Zi_l)#Zi+l)#...)#Zn¢¢

This test, by the pseudo-commutative property of the #-product, is in-
dependent of the ordering of the cubes of Z . An exhaustive test of all
the cubes of Z will yield E the set of K-extremals.

Once E is found, a minimal cover for the remaining uncovered
cubes of L must be found. An algorithm for this process has been
described by Roth. While still utilizing the calculus, the method is
based on theory outside the scope of this discussion. Criterion for
eliminating certain co-cycles from consideration, and the solution of
cycling problems by branching are presented. In this way, the method
is similar to the prime-implicant table techniques of Quine.

The initial results of the calculus were presented in [32]



with further development in [33] . Dietmeyer [ 4] has presented a
simpler formulation with emphasis placed on the use of the calculus in

computer programs for the design of circuits.

Ly
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Chapter 4

The Design of NAND Circuits by Factoring

1. Introduction

At present, the vast majority of switching circuits are con-
structed of solid state devices known as gates. Eaéh gate has a fixed
number of binary inputs, and a single output which is a binary com-
bination of the inputs. Gates which realize the functions NAND and NOR
are most commonly used for several reasons.

First, both NAND, and NOR are functionally complete; that is,
any Boolean function can be expressed entirely in terms of NAND, or NOR
operators. Second, the final stage of a NAND, or NOR gate is a transistor
which acts as an amplifier, thus avoiding the signal depletion problems
found in circuits which use only passive components. Third, several gates
of a single type can be constructed on a single integrated chip. These
chips are extremely dependable, require little cooling, and are relatively
inexpensive. A single chip with four two-input, three three-input, two
four-input, ‘or one eight-input NAND gate costs about twenty-five cents
when purchased by the hundred. Finally, the space and power requirements
are far less than what is required for relay or vacuum tube circuits.

We will restrict our discussion to NAND circuits. The techniques
developed easily extend to NOR circuits by the principle of duality. Other
types of circuits could also be handled by similar methods, but certain
alterations would be required due to the different design problems en-

countered.
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2. Three-Level NAND Circuits

Let T.,T,,T,,...,T  be fundamental formulae. The normal form
1°72°73° ’"n

Tl+T2+T3+...+Tn
can be rewritten
Tl ° T2 ° T3 ° ° Tn
by applying De Morgan's theorem [4 ] . This expression can be realized

by a circuit constructed entirely of NAND gates.

The negated fundamental formulae, and their negated conjunction,

can each be realized by a single NAND gate. We shall use the symbol

P/ g——
G, e
o O — oyt Gy v wune ¢ Qepn
i
a"-'_.'
S

to represent a NAND gate.

The number of inputs will vary with its use.

For example, the normal form

ad + bed + abe + abd

may be written

(ad) « (bed) - (abe) - (3bd)

and realized by the circuit
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Quite often, the negated inputs are not available and must be
realized explicitly within the circuit. In practice, a single transistor
is used as the inverter. At the schematic level this is equivalent to

a single-input NAND gate, and we shall represent inverters as

S

The realization above becomes




Definition - The level of a NAND circuit is the maximum number of gates

an input signal must pass through in order to reach the output.

The above circuit is a three-level NAND circuit. In general,
the NAND circuit realized from a normal form expression, with at least

one negated variable, is a three-level circuit.

3. Practical Design Criteria for NAND Circuits

NAND circuit design is subject to the criteria cost, fan-in
limit, fan-out limit, and response time. Each of these is explained

below.

)

[
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Most commonly, the cost of a circuit is taken to be directiy
proportional to the total number of gate inputs within the circuit.
This is quite reasonable as a single chip contains either two four-input,
three three-input, four two-input, or one eight-input NAND gate. Thus,
no matter which type is used, the cost of each gate input is quite nearly
the same. What is not taken into account is the cost of any unused chip
segments. If seventeen two-input NAND gates were required, five chips
would be used, and three gates would be effectively wasted. There is the
possibility that these gates could be used in nearby circuits, and even
if they are not, the relatively small gate cost makes them insignificant.

The fan-in limit is the maximum number of inputs the largest
~gate in the circuit may have. This of course depends on the resources
available and is therefore a variable.

There is a maximum amount of current which can be drawn from a
_ gate without affecting its operation, and a minimum amount of current
necessary to drive each of its inputs. Consequently, the number of gate
inputs which can be driven by the output of a single gate is limited.
The maximum number allowable is the fan-out limit, and once again depends
on the resources available.

Each gate output requires a finite period of time to react to a
change in its inputs. This response time is on the order of 15 ns
The response time of the circuit is thus directly proportional to the
level of the circuit. Because of the extremely high speed of the gates,
response time is not critical and is often lengthened in order to solve
other design problems.

A good circuit design thus takes into account fan-in and

fan-out limits while simultaneously minimizing the cost and response time.



A technique known as factoring is often used in solving fan-in or

fan-out problems.

4. Factoring and Cascaded NAND Gates

The most obvious method of solving a fan-in problem is demon-

strated by the following diagrams:
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‘Algebraically, this may be written




Let two gates in a circuit be
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and assume both exceed the fan-in limit. Any subset of the inputs could
be brought back from each gate, but, clearly, it would be most advantageous
to use L RERREL N for both gates as'only two additional gates would be
required. Such sharing of common factors will greatly reduce the cost of
the circuit.

Fan-out problems are solved using cascaded NAND gates. Let the
fan~out limit be p . Two NAND gates can then be used to increase the

fan-out to 2p - 1 .
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Clearly, each fan-out problem is independent of the others and must be

treated separately.



5. The Algorithm of Su and Nam

Su and Nam [39] have presented an algorithm for the solution
of fan-in and fan-out problems in multiple-output multilevel NAND circuits.
A systematic application of the factoring and cascaded NAND gates tech-
niques is used. Particular emphasis has been placed on common Ffactor-
izations, the largest common factor being used at each stage.

A modified cubical complex, called a function array, is used to
specify the multiple-output function. In a similap manner to Bartee's
method [3 ] , a tag is appended to each input cube. This tag contains
a single position for each output function. This position is a one if
the fundamental formula represented by the cube implies the function, a
zero i1f it does not, and the letter 'd' if it is a don't-care condition.
A concise yet complete representation of several functions is thus achieved.

The first step in the algorithm is to apply a method due to
Su and Dietmeyer [3%] +to find a connection array which completely
describes a nearly minimal three-level NAND realization of the multiple-
output function. This array consists of input and output parts. Each
row of the input half represents a NAND gate realizing the negation of a
fundamental formula, and each column of the output half represents a NAND
. gate collecting certain second-level gates to realize a particular function.
The method involves a systematic assignment of the don't-care conditions
to achieve optimum reduétion, and for some problems may be excessive.

Once the connection array is found, it is used as a shorthand
notation for the circuit and fan-in and fan-out problems are solved
directly from it. The input half of the array is treated first.

The number of zeros or ones in each row is counted, and for

those rows where this count exceeds the fan-in limit, the zeros and ones
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are circled. Then, the number of zeros and number of ones in each
column is counted. If the number of zeros exceeds the fan-out limit,
the zeros are squared. Ones which violate the fan-out limit are also
squared.

Let S be the submatrix of rows of the input array which have
elements with circles or squares. The optimum factor corresponds to the

submatrix S' of 8 which satisfies the conditions:

i) S' has at least two rows and two columns.
ii) 8' has only one unique row.
iii) Of all S" which satisfy i) and ii) » S' has the largest

figure of merit (FM) where

™ = Wi X Ni + WO X NO

W. = input weight
W, = output weight
N. = number of circles in &'

N_ = number of squares in &'

Wi and WO are predetermined. A value of one was found to be most
suitable for both.

Once the optimum factor has been found, a new input array which
reflects this factorization must be formed.

The factor is recorded as a new row added to the input array.
The co-ordinates which appear in S' assume their corresponding values
while all others become =x . The row is uniquely labeled and represents
a two-level NAND cascade.

In addition, a column is added to the input array. For those

rows which appear in S' , this new column becomes one. For all other
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rows, it is x . This column is assigned the same label as the new row,
as it represents the NAND cascade as an input variable to later stages
in the circuit.

Finally, as the inputs of the factor have been removed from
their original positions, the co-ordinates of the input array which
appear in S' are set to x .

This process proceeds iteratively until no further factors
can be found.

The second part of the algorithm is concerned with fan-in and
fan-out problems in the output array. The number of ones in each column
is counted, and the ones circled in any column for which this value exceeds
the fan-in limit. Similarly, the ones in rows for which the number of
ones exceeds the fan-out limit are squared. An optimum factor is chosen
in the same manner as for the input array, except that the conditioﬁs of
a single unique row becomes a single unique column.

Once the factor is chosen, a column is added to the output
array. This column is one for the rows of the chosen factor, and zero
everywhere else. A unique label is used to identify this new cascade.

A row with ones indicating the columns of §8' is added and identified
by the same label as the new column. The elements of the output array
which appear in S' are set to d , and the process is repeated.

Once all fan-in and fan-out problems which result in common
factors have been removed, any remaining problems are solved by cascaded
NAND gates. |

An example due to Su and Nam [39] will clarify the method.

Consider the connection array, and corresponding three-level

NAND circuit, in Figure 4.1 . -IT the outputs, Zys Zos Zgs and z), are
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to be realized using NAND gates with fan-in and fan-out of two, the
broken loops indicate the problem areas in the circuit.

Performing both steps as described above, the optimum input
and output factors, Si and Sé , are found. These factors together
with the resulting circuit are shown in Figure 4.2

The connection array specifying the new circuit is found as
described above. This array is presented in Figure 4.3 . The broken
loops indicate the co-ordinates affected by the process.

The circuit resulting from a complete factorization is pre-
sented in Figure 4.4

Figure 4.5 shows a three-level NAND circuit for a 'two out of
five' checker. This circuit is 'true' if, and only if, exactly two of
its inputs are 'true'. A slightly modified circuit was used on the
IBM 7090 computer.

Figure 4.6 shows a multilevel circuit found by applying Su
and Nam's algorithm. NAND gates with a fan-in of two and unlimited
fan-out were allowed. This circuit is slightly more expensive and,

unfortunately, much more complicated. A far better multilevel realization

will be presented in Chapter 7

6. Advantages and Disadvantages of the Algorithm

The principle advantage is the speed with which the algorithm
can be implemented. Su and Nam have presented a ten-input, seven-output
example which was completely factored in 2.4 seconds on-a CDC 6400 . A
statistical analysis has been performed on a random sample of several
types of function. Gate count reductions of about 70 to 110% were obtained

using the algorithm as opposed to solving each fan-in and fan-out problem
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separately. A final advantage is that the amount of work involved in
multiple-output problems is not excessive.

The principle disadvantage of the algorithm is the requirement
that a fan-in, or fan-out, problem exists before a factorization is per-
formed. Gates which do no exceed the limits are not considered, and,
therefore, certain factorizations which would further reduce the cost of
the circuit may be missed. For example, suppose the following input array

is to be factored with fan-in and fan-out limits of four and ten

respectively.
1
S
4
I S O B TR B -
. T T
3O o o)
el 3@ @1 @ %
[y 3 £
2 a@ f__@__; @ L ®
e, 1 0 1 0 p X
e, X 1 1 b4 0 0
eg 1 p:4 1 X 0 1
The optimum factor is denoted S' . The row e, was not

3

circled as it did not exceed the fan-in limit. S' is, however, a factor
of e, and should be removed.

As a further example, assume the fan-in limit was increased
to five. The factor 8' would then be missed altogether.

The algorithm is implicitly assuming that all gates which do
not exceed the fan-in limit have the same cost. This will, in some
instances, lead to very costly circuits; particularly if thé fan-in limit
is high.

A second disadvantage is that from an algebraic point of view,

the factoring of the expression representing the circuit is severely
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restricted. Only product terms may be factored out, and the negation
of a factor is never used.
The expression

ac + ad + be + bd
is not reducible by this algorithm. However,
ac + ad + bc + bd = (a + b) ¢ (c + d)

The latter expression requires three two-input NAND gates, while the
former requires four two-input and a single four-input gate.

A final disadvantage is that the input and output arrays are
factored independently. The resulting circuits thus still are of a
two stage nature. The first is a multilevel circuit which realizes the
negations of the original fundamental formulae, and the second stage is
a multilevel circuit realizing the outputs.

The algorithm is simply a systematic way of solving the problems
encountered in implementing normal form solutions as practicél circuits.
We shall see in Chapter 7 that much better results are achieved by a

completely different approach to the entire design problem.
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Chapter 5

Decomposition

1. Introduction

Decomposition is the re-expression of a switching function of
n variables as a composite of several functions, each depending on less

than n variables. TFor example, the function

f(a,b,c,d) = ac + bc + ad + bd
may be written
| f(a,b,c.,d) = y(al(a,b),pB(c,d))
where vy(a,B8) = a*B , a(a,b) = a+ b , and B(c,d) = ¢+ d . Decompositions
where each subfunction o,8,y,...,8 can be realized by a primitive switching

element are of particular interest as they represent multilevel circuit
realizations of the original function. The problem is to find the decom-
position corresponding to the 'best' circuit. Usually the 'best' circuit
is the one with the lowest cost.

Ashenhurst [1 ] has introduced a theory of decomposition of
totally specified Boolean functions, which has been compiled and extended
by Curtis [5 ] . Simple disjunctive decomposition forms the basis of the
Ashenhurst-Curtis theory.

Let A be the set of n - input variables '{al,aQ,...,a T,

n

and let f(A) be a Boolean function. Given AA <A, and Au c A,

U AU = A ,fis said to have a simple dis-

A

where A n Au = ¢, and AX

junctive decomposition if, and only if, there exist Boolean functions o
and g such that

£(8) = glalh)),h)



O

W

The decomposition is termed simple as there is only a single o , and
disjunctive as AA and Au are disjoint.

Ashenhurst has presented a criterion for the existence of a
decomposition for a given f(A) , and partition of A . This involves
the examination of decomposition charts [37] . Each partition is con-
sidered in turn and the set of simple disjunctive decompositions is found.
Partitions where A contains a single variable are ignored as they repre-
sent trivial decompositions equivalent to applying Shannon's expansion
theorem [17]

Curtis has presented an elaborate theory for determining complex

disjunctive decompositions from the set of simple decompositions. A com-

plex disjunctive decomposition is of the form

£8) = gloy () D008 ),ee o (&) )80

1 2 t
where A = A U A Uu... UA u A and A, , A , ..., A , and
Mo MoooW AT e
Au are mutually disjoint.
Tnitially, the AA . AX s eees AA associated with the decom-
1 2 k

positions are examined for the maximal sets. A set is maximal if it is
not a subset of any other set. The decomposition is typed according to
whether the maximal sets are mutually conjoint or mutually disjoint,
these being the only possibilities. The functions Gyslipsees,0,  are
determined from their respective decomposition charts, and the function
g 1is determined from these and from the type of the decomposition.
Curtis has also introduced a theory of complex nondisjunctive
decomposition. In this case, the AA. are not necessarily mutually dis-
-7
joint. These methods are an extension of the disjunctive case, but the

computation is far more involved and extremely lengthy.
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The problem of partially specified functions has been treated
by Karp [13]1, Kjelkerud [45], and Hight [i0]. In addition, Karp has
looked at multi-valued logic, and the multiple-output problem.

A second independent theory of decomposition has been developed
by Roth et al [35], [33]1, [3%41, and [2%#]. The cubical calculus is
used to represent functions,and 'don't-care' conditions are easily handled.
These methods have proven much more general and are more easily programmable
than those above.

Because of its more practical applications, we have chosen to
introduce decomposition in terms of the second theory. These results will
form the basis of the algorithm developed in Chapter 6 . For that reason,
emphasis has been placed on the material required for that development.
Several interesting results have been excluded or only briefly mentioned
for the sake of keeping the fundamentals of the decomposition theory as

clear as possible.

2. Boolean Functions and their Representations
. . 1 n n .
Consider a mapping f:E -+ V" , where Ec V' , and V is
the set of all n - tuples of O0's and 1l's . Each e, € E corresponds
to a unique configuration of the Boolean variables al,aQ,.;.,an , and

the mapping £ : E > Vl thus determines a unique Boolean function

a ) is a total Boolean

f(a 29'°'9n

l’a2""’an) . If E=V" . f(al,a
function. Otherwise, f(al,aQ,...,an) is a partial function, and the
set V% - E constitutes the 'don't-care! conditions.

In Chapter 3, the cubical complex representation of a total

Boolean function was presented. The totality was implicitly assumed as

the function was interpreted as false for any vertex not covered by the
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complex. We now wish to extend this notation to partial functions.

A partial function may be specified by giving a list of min-
terms, for which the function value is true, and a list of minterms for
which the function value is false. The minterms which do not appear in
either list are the 'don't-care' conditions. The lists of vertices
corresponding to these minterm lists uniquely define cubical complexes
which may be readily found using the cubing algorithm in Chapter 3. Covers
of these complexes may also be obtained. The representations of these
covers as n - tuples of O's, 1's, and x's , are termed the ON and OFF

arrays, and are denoted Cl and CO

Definition - A Boolean function f(al,aQ,...,an) is degenerate if there

exists a function
<g(al’aQ""’ai—l’ai+l""’an) = f(al,aQ,...,an)

for some i, 1<1i<n.

The variable a, is termed 'vedundant'. A simple test for
redundancy is to form Ci and Cé equal to Cl and CO with the ith
column removed. If Ci n Cé = ¢ , then a; is redundant. A function

with no redundant variables is termed 'non-degenerate’'.

3. Decomposition

3.1 Abstract Decomposition

Let X ,Y , 2, and W be arbitrary finite sets, and let E
be a subset of the Cartesian product X X Y . Given a mapping f : E + Z

the following questions arise:
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i) Given o : X > W does there exist a function g : WXxY > 7 ,
such that

fx,y) = glalx),y) for all (x,y) € E

ii) Under what conditions do there exist o : X > W , and g : Wx Y >3
such that

f(x,y) = glalx),y) for all (x,y) € E

Such a rvepresentation is called a decomposition of f , and
g is called the image of the decomposition.
The answers to these questions are based on a compatibility

relation between the elements of X .

Definition - Xs s xj e X are compatible with respect to £ (denoted

X, ™ xj ) if, for all y e Y such that (xi,y) . (xj,y) e B,
£z, ,y)

f(xj,y) ; otherwise, s is incompatible with xj (denoted

s o+ xj )

a ) 1is a total function, then compatibility

If f(al,aQ,..., 0

is an equivalence relation having the properties:

i) a~a reflexive
ii) a~b & b ~a symmetric
iii) a~b ,b~c=2> a~c transitive
However, 1if f(al,aQ,...,an) is a partial function, then compatibility

is a quasi-~ordered relation and thus does not have the transitive property.

Proofs of the following propositions were presented in [3#] .
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Proposition 5.1

Given f and o , as defined above, there exists g such that

f(x,y) = glalx),y) for all (x,y) ¢ E
if, and only if, for all Xs o xj e X ,
a(xi) = u(xj) = X, ~ X
or equivalently

x, * %, 2 o(x,) # o(x.)
i J 1 J

Proposition 5.2

If Xk is the least integer such that X may be partitioned
into k classes of mutually compatible elements, then there exist «

and g such that
f(x,y) = gla(x),y) for all (x,y) € E

if, and only if, W has at least k elements.

These propositions establish necessary and sufficient conditions
for the existence of a decomposition, and in particular, a decomposition

with a predetermined o

3.2 Decomposition of Boolean Functions

The special case where f(al,a .,an) is a Boolean function

R

is such that X S.Vz , Yevt W E_Vt R/ E_Vl , and & represents

o. ) . It is sufficient to

the t - tuple of Boolean functions (al,aQ,... t

consider decompositions of the form

£(A) = g(al(_A)\)’OLQ(‘A)\)"'"at(‘A)\)’Au)
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where A ='{al,a2,...,an} , and A=A U A}1 , as Hu [41] has shown

that any decomposition of a Boolean function can be composed of a finite

number of decompositions of this type.

If AA n A}J = ¢ the decomposition is disjunctive. However,

in AA n AU # ¢ , the decomposition is non-disjunctive, and a minor

problem arises. Certain variables are common to AA and Au , and

2 +m>n . The domain E of f must be a subset of Vn as £ has

n - input variables. Therefore, E ¢ X xY as XcV , YcV , and

£+ m>n
The problem is easily solved by defining ¢ : V >V such

that a cube v = {v_,v

1 ..,vn} has the image'{vl,VQ,...,v R A

227

p=£&+m-n, where A n Aﬁ ='{ai 285 seeesds } . We can then deal
1 2 8]

with the function f(Ak’Au) which is such that if & : v=>v , then
f(v) = £(v)

Let us suppose that a given function f(A) is represented by

covers Cl = {bi, i=1,2,...,n} , and ¢, ='{cj, = 1,2,...,m}

We wish to employ propositions 5.1 and 5.2 for the detection of a
decomposition relative to a given f(A) , and partition of A . Any cube

bi € Cl or CO can be divided into a 'A part', bi , and a 'u part',
' A

bi . The co-ordinates of bi‘ are the co-ordinates of bi corresponding
U A
to variables in AA , and the co-ordinates of bi are the co-ordinates

u
of bi corresponding to variables in AU . The covers Cl and CO are

thus represented as

(@]
bl
[am)
—
0O
v
[¢]
~
w
]
H
[ -
v
N
>
»
=
et
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The following lemma [3H] is a method for determining the compatibility
relations of the elements of X relative to a given function specified
by Cl and CO

Lemma 5.1

2 L

Given vy € V" and v, € \Y A +* v, if, and only if, there
are cubes (b, ,b, ) e C. and (c.,,c, ) e C. such that
i i 1 A’ ] 0 ;
AoTH ' U
i) b, nec. # ¢
i ]
I U
ii) either b, 2> v and ¢, 2>v, , or
: i, — 0 7, — 1
A A
c., >V and v, 5V
:]A—O :L)\-——l

For example, consider f(a,b,c,d) ~given by the covers C and

CO below. We wish to

Cl CO
a b c d a b c d
bl 1 0 1 X cl 1 1 X 1
b2 1 X 1 0 02 1 X 0 X
b3 0 1 X X 03 X 0 0 X

determine if a decomposition exists for A, = {a,b} , and Au = {c,d}

A
Consider the cubes b and c, . Here, b =10 , b = 1x
1 1 lA lu
¢, =11, and ¢, =x1 . b nc = 1x n x1 = 11 which is not ¢ .
1 1 1 1
A U U u
Therefore by lemma 5.1, bl * ¢y Examining all pairs of cubes, one
A A

from each cover, we find all the incompatibilities. They are



10 # 11
01 + 11
01 # 1x (i.e. Ol # any vertex covered by the cube 1x)

01 # %0

Propositions 5.1 and 5.2 can now be used to determine the nature of the
possible decompositions.

Suppose o(a,b) = a ¢« b . We wish to determine if g exists
such that

£(a,b,c,d) = glala,b),c,d)

Since a * b = a - b , but 01 # 10 , proposition 5.1 indicates that no
suitable g , and o , exist.

As a more general problem let us determine if any g and o
exist such that

f(a,b,c,d) = gla(a,b),c,d)

Since oa(a,b) is Boolean, its range is Vl which has two members.
According to proposition 5.2 a decomposition exists if, and only if,

X , the domain of o , can be partitioned into two sets of mutually com-
patible elements. The following diagram shows the elements of X with

lines connecting compatible pairs.

00 01

10 11

It is clear that a suitable partition cannot be found, and therefore no

decomposition exists.



Lemma 5.1 only applies in the disjunctive case. 1In the non-

disjunctive case we must again deal with f£ which Implies that we must

find 61 and 60 from Cl and CO . The obviqus solution is to simply
replace each cube bi of CO and Cl by a cube with the co~ordinates
common to bix and bi appearing twice. For example, if Ak =.{a,b,c}
and Au = {c,d} , the‘zube
a b c d
x 0 1 x
would be replaced by
AX Au
a b c c d
X 0 1 1 X

Unfortunately, inconsistencies can occur. The cube

would be replaced by

This cube contains the cubes 1000x , 101lx , 1001x , and 1010x . The
latter two cubes are inconsistent as the variable ¢ simultaneously takes

on the values 1 and 0 . A cube with g x's in co-ordinates correspond-
ing to the variables of '{Ak n AU} must be replaced by 2% cubes represent-

ing the consistent assignments.

A

In practice, Cl and CO are not actually formed, but certain

columns of Cl and CO are thought of as appearing both in the A and

1 parts of each cube.



Consider the example above with A, = {a,b} , and A}J = {b,c,d}

A

bl no longer intersects ¢, as 0lx n 1x1
u U

patibilities are found

1}

¢ . The following incom-

i=38, 5=1 01 # 11

i=3, =2 01 # 11  (N.B. 01 ~ 10)
Since 00 ~ 01 , 00~ 10 , and 01 ~ 10 , f can be rewritten
f(a,b,c,d) = gla * b, b,c,d)

An alternative approach to the non-disjunctive case is to treat
the variables of '{AA n Aﬁ} as if they were Boolean functions of one

o.) . This reduces the non-

variable produced by some o, € (al,a2,..., .

disjunctive case to the disjunctive case.
When Ak = {a,b} , and AU = {¢,d} , we had the incompatibilities
10 + 11
01 # 1x

01 # %0

Suppose al(a,b) =a-+b , and @Q(a,b) = b . By inspecting each incom-
patibility we find that proposition 5.1 is not violated, and the decom-
position

f(a,b,c,d) =vg(al(a,b),a2(a,b),c,d)

is valid. This approach will be considered in detail in Chapter 6.

Lemma 5.1 can be applied in two ways:

i) In conjunction with proposition 5.1 , it can be used to

determine, given, f , A, , Au , and (a,,o

& 1 .,ut) whether g exists

5ot
such that

£(A) = g(al(AX)’GQ(AA)D'..°ut(AK)’Au)



or ii) In conjunction with proposition 5.2 , it can be used to

o, )

determine, given £ , A, , and A}J , whether g , and (al,u2,..., .

A
exlst such that

£(8) = glo)(8)),0,(8 )50 0, () ,4)

The first case is straightforward. The incompatibilities of
elements of X with respect to f are found, and each is checked for a
violation of proposition 5.1 . If no violation is found the decomposition
is valid.

The second case is more complex. Let k be the least integer
such that X , the domain of a:, may be partitioned into k classes of
mutually compatible elements. From proposition 5.2 , if a decomposition
exists, then W , the range of d , must have at least k elements. As

,a,) of Boolean functions,

o vrepresents the +t - tuple (al,a2,... .

t . . s A .
k 2 is a necessary and sufficient condition for the existence of a

IN

decomposition. The determination of k is thus extremely important.
Definition - S ¢ X is a compatible set if X xj e X @ X ™ xj

Definition - 8 1is a maximal compatible set if for any T such that

Sc<TcX, T is not a compatible set.

The first step in determining k is to find the maximal com-
patible sets of X . Roth and Karp [3#] have presented an algorithm
based on the state reduction techniques for sequential machines due to
R. E. Miller [22] . Once these sets are found the general extraction
algorithm of Roth and Wagner [35] is used to find the minimum number

of maximal compatible sets whose union is X . These sets form a cover



of ¥ which is easily transformed into a partition of X by the removal
of elements common to other sets.

Roth and Karp have also introduced a simplified algorithm for
the case of t = 1 . This is of interest as the majority of practical
switching elements realize a single output function.

A second problem of interest is the case where o is a vertex
function. A vertex function is such that u(vo) # a(v) , where v 1is
any other vertex. L is termed the distinguished vertex. The AND, OR,
NAND, and NOR are vertex functions; the EXCLUSIVE OR and MAJORITY are not.
Primitive devices constructed of diodes, vacuum tubes, or transistors
normally realize a vertex function. Special techniques for vertex decom-
position have been developed by Roth and Karp, and Barnard and Holman [ 2 ]

In circuit design, we shall be concerned with sequences of decom-
positions, each operating on the image of its predecessor. The computation
of these images is thus an important link in the design process. Roth and

Karp [3#] have presented an algorithm for finding the image of a decom-

position of the form
£(A) :-g(al(Ax)’QQ(AA)""’at(Ak)’Au)

{
In Chapter 6 a table lookup procedure is developed for the case where the
o, are two-place functions. The work involved in computing the image is

minimal and the covers determining the image are quite compact.

4, Circuit Design Algorithms

A switching circuit is often represented as a black box with

only the inputs and outputs spécified.
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The problem is to comstruct the interior of the black box by interconnecting
primitive switching elements of given types.

The decomposition
£(A) :-g(al(AA)’QQ(AA)°'"’at(Ak)’Au)

represents the circuit

e :‘
o 2
Iy
A
o
oy DS S _
/ .
F T '““‘_“5(4'4)0‘2}""/‘"”‘)
o,
6’\-})_1
0»%

Decompositions are chosen so that the o represent allowed switching

elements, and a circuit is found by successively decomposing each image

until an image representing an allowed switching element is found. A

sequence of‘decompositions of this form is termed a total decomposition.
Karp, McFarlin, Roth, and Wilts [1%] have presented an

algorithm for the design of single-output circuits constructed from an
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arbitrary set of primitive logic elements. The cost of the circuit, taken
to be the sum of the costs of the individual switching elements, is
minimized. An exhaustive search is made of all sequences of decompositions
whose costs are less than a prescribed bound. This bound shrinks as more
economical circuits are found, and fhe search terminates when all circuits
below the lowest cost bound are accounted for.
Cycling is a phenomenon where a new variable is equal to:
i) a constant
ii) a primary input or its complement
iii) a variable produced by a previous decomposition or the

complement of such a variable.

Cycling never results in minimal circuits and steps weré taken to avoid it.

Karp et al. found that an exhaustive search was not practical
for problems of more than three of four variables. Methods were therefore
developed to make the initial circuit as minimal as possible. At each
stage, as might be expected, the decomposition corresponding to the least
expensive building block is chosen. Also, the 'd - algorithm' of
Ashenhurst [1 ] is used to trace more than one sequence of decompositions
at a time. The choice of the best sequence is thus delayed until more
information is known. The circuits in figures 5.1 and 5.2 and 5.3 were
designed using this program.

Figure 5.1 is the two out of five checker presented in Chapter 4.
This circuit was originally given in terms of AND, OR, and NOT gates. We
have substituted NAND gates’té facilitate its comparison to the results
of other methods. Clearly, this result is much better than the circult

found by factoring.
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Figure 5.3 is the initial program design for a function without
the use of the 'd - algorithm' . Figure 5.2 is the same function, but
the 'd - algorithm' was used. The improvement is obvious. In these
diagrams we have presented the dual of the actual problem solved. This
is again to facilitate comparison to other methods.

Barnard and Holman [2 ] have presented an algorithm similar
to that above. A rapid technique for determining two-place vertex decom-
positions has been developed, but any advantage gained was lost by not
attempting to optimize the initial circuit. For example, figure 5.4
illustrates their initial approximation to the function of figures 5.2
and 5.3 . A result nearly identical to figure 5.2 was found after con-
siderable searching which required over a minute of CPU fime on a KDF9
computer.

In Chapter 6, an algorithm is developed which combines the
. good points of each of the previous decomposition algorithms, while avoid-
ing their obvious shortcomings. Emphasis is placed on the speed of com-
putation, and on obtaining a nearly minimal result in one pass. The
algorithm is restricted to two-input NAND gates, but as shown in Chapter 7,

it is easily extended to multiple-input gates of any type.
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Chapter 6

The Design of NAND Circuits by Decomposition

1. Introduction

In this chapter, the total decomposition of a partial Boolean
function by successive two-place decompositions is discussed. A theory
of two-place decomposition is developed, and algorithms for its efficient
implementation are presented. These methods form the basis of an heuristic
total decomposition algorithm specifically designed to yield an expression
corresponding to a NAND circuit of nearly minimal cost.

This algorithm has been used in a computer program for the de-
sign of circuits constructed of one and two-input NAND gates. The program
is briefly described with particular emphasis placed upon the techniques

used to eliminate redundant computation.

2. Two-Place Decomposition Theory

Let T be a many to one mapping of E onto Z , and let E
n 1 m o,
be a subset of V' and Z be a subset of V~ , where V is the set
of all m-tuples (ordered sets of length m ) of zeros and ones. There

exist sets X and Y such that X is a subset of V2 , Y 1is a subset

of Vn«2 , and E is a subset of the Cartesian product X x Y . If
there exists a mapping «a: X = W , where W is a subset of V2 , and
a mapping G: W x Y » Z such that, for all (x,y) ¢ E, F(x,y) = G(a(x),y) ,
then F is said to be two-place decomposable.
Corresponding to F and G are unique Boolean functions

f(al,a .,an) and g(bl’bQ""’bm) . The mapping o corresponds to

nsee
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the two-tuple of Boolean functions (ul(cl,c2), a2(cl,02)) , and the

decomposition above may be written

f(al,aQ,...,an) :_g(al(al,aQ), uQ(al,aQ),aB,...,an)

The term two-place decomposition is used since al(al,aQ) and a2(al,a2)

are two-place functions.

Two-place decompositions are typed according to the degeneracy

of oy and o, - The resulting types are:

i) degenerate: Neither a, or a, is a true two-place function.

Conditions will be found for which variables are redundant in

a )

f(al,aQ,..., N

ii) simple disjunctive: One of oy and a, is a constant and the
other a true two-place function. Decompositions of this type

may be rewritten in the form

f(al,aQ,...,an) = g(ai(al,aQ),aB,...,an)

where i e {1,2} .
iii) simple non-disjunctive: One of o, and o, is a true two-place
function and the other a one-place function. The decomposition

may in this case be vewritten as

.,an) :‘g(ai(al,aQ), aj,as,...,a )

f(al,a -

I
‘where i, j e {1,2} .
iv) complex: disjunctive: Both oy and a, are true two-place

functions and the form of the decomposition cannot be simplified.

Using the cubical calculus, a method for determining the decom-

position relative to a given function and two-place partition will be
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developed. The problem of finding the simplest equivalent decomposition

will also be solved.

3. The Determination of Two-Place Decompositions

From proposition 5.2 a necessary and sufficient condition for
the existence of o and G is that W contain at least k elements,
where X may be partitioned into k classes of mutually compatible
elements.

In the general case, where f(al,a ,an) is a partial

EEEE
function, k is the minimum number of disjoint compatible subsets of X
which form a cover of X . Roth's method [3W] for determining k is
based on an algorithm due to R. E. Miller [22] for the veduction of
states in sequential machines. Several such algorithms exist and can be
adapted to the problem at hand, but they are general in nature and a more

efficient method based on the specific properties of this problem will be

developed.

8.1 Compatibility Tables and Compatible Sets

The compatibility relation between the elements of X with
respect to a given I was defined in the previous chapter. The following

definitions are also required.

Definition - A compatible set, S c X , is such that for all X xj € S,

i J
Definition - A compatible set, § < X , is termed maximal if, and only if,

for all T, S<TcX , T is not a compatible set. Maximal compatible

sets will be denoted Ml’M .,Mi,... and the set of all such sets M

IR



Definition - M' ¢ M is a minimum cover of X 1if, and only if, each
XiE X is in at least one Mj e M'" and there exists no cover with Ffewer

sets.

Definition - A compatibility table T whose ith row and column are
labelled Xy is a set of n-tuple representation of the sets

..,Sn . Each Si is such that Xj € Si if, and only if,

X, ™ Xj and xj ¢ Si if, and only if, Xy va Xj . A compatibility table

is symmetric and has a unit diagonal as compatibility is a symmetric and

reflexive relation.

Definition - The lower bound L of a set of sets R is such that for

all Ri’ Rj e L, Ri ¢ Rj’ Rj ¢ Ri’ and Ri’ Rj e R .

We will denote the lower bound of the sets S.,S

1 »S as L

PEREEELM
The use of L in the determination of k is demonstrated by the follow-

ing results.

Theorem 6.1

Every maximal compatible set in M' is a subset of some SK e L

Proof

Suppose L :i{Si ,S se Sy } and M' contains an Mj such

2
that X ¢ Mj forany s , lcsc
s

where jn # is s l<r<m,l<ss<n. Foreach r , S: must have
r

been subsumed by some s, » SO X is compatible with all its elements
s r

and must be included as Mi is maximal compatible. Thus, Mj is covered
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by other sets of M' and is redundant. M' is therefore non-minimal.

We conclude that if M' is a minimal cover, then Mi E.L for all Mi e M'
It follows immediately that

Corollary 6.1.1

Any maximal compatible set which is deducible only from some

sj ¢ L is redundant in a minimal cover.

Theorem 6.2
If each Si e L is a maximal compatible set, then L is an

irredundant cover of X .

Proof

Consider x, € S, e L . If x, € 8. then x, ~x, & x. € S,
i i i 1 i 3 i 7

and if Xj ¢ Si , Tthen xj # xi"éﬁ 3 ¢ Sj . Initially we show that

s is a distinguished element if Si is a maximal compatible set, that

is s ¢ Sj , any Sj elL ,1#73 . To prove X is distinguished it

is sufficient to show there is no Sj e L such that xj € Si

Consider Sj such that xj > Si . Clearly, Sj ¢ Si since

Si e L . Si’ Sj are partially disjoint (they cannot be disjoint since

Zs s xj e Si and Xs s Xj e S. ). There exists X, € Si ) X ¢ Sj so

xk ?x. . But x., e 8, and S, 1is maximal compatible set so xk ~ X,

J J 1 1 ) J
since xj > Si . This is a contradiction and it follows that Xi is
distinguished.

Now each maximal compatible set contains a distinguished

element and trivially no set can contain two such vertices since



X, ,%, €8, = x, ,x,¢e8, adif 8, , S5, el , then x.,, x. are
1 ] 1 1 J J 1 ] i3
not distinguished. Therefore, each Si e L is essential and L is an

irredundant cover.

Corollary 6.2.1

The irredundant cover of theorem 6.2 is also minimal. This

follows immediately from theorems 6.1 and 6.2

Criterion 6.1

Si e L is not a maximal compatible set if, and only if, there

exist Xj > X € Si (i #3,1#%k, 3 #k) and two other sets SP . Sq €
such that
i) . eSS ,x%.¢£8
J P J q
ii) X € Sq > By ¢ Sp
and iii) T, =0 are all satisfied.

Ik
(T is the original compatibility table.)

Proof
Clearly, if the conditions hold, Si is not a maximal compatible
set since T. = 0 implies =x. % X
Iy ] k
Conversely, suppose Si is not a maximal compatible set; then
either

i) Si is a compatible set but not maximal;

ii) S, is not a compatible set.

We consider the two possibilities in turnm.

i) If Si is a compatible set but is not maximal, there exists

L
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an Mj such that

S. ¢ M, ¢ X
i 7 —

. . . M. i . .
There is an X € Mj > X ¢ Si But X, € 3 implies X X and
X £ Si implies Xy * X Therefore if Si is a compatible set, it

is also maximal.

ii) i 1 i . S. h . .
ii) implies there exist xj s X € ; Sue that xj * xk

k

Hence, Tjk =0 , and xj € Sk > X # Sj . Now elther. Sel

then x_ € 8
T

or there is an Sr e L such that Sr c 8 If Sr c S

k k k
so Trk = 1= Tkr and x € Sr . Further, xj ¢ Sr . Similarily,
either S, e L or there is an S_e€ L such that S < S. , x, € S .

J r S ] J S
Xk ¢ Ss

This gives the conditions of the criterion.

A general discussion of compatability and compatible sets,
including the above material is given in [20] .

The problem of present interest is the determination-of k
when X 1is a subset of V2 . A stronger criterion for the equality of

L and M' under this condition will be established.

Definition - A Boolean function f(al,a ,an) is degenerate if there

poee

exists 'g(bl’bQ""’bm) = f(al,a ..,an) where m<n , b, ¢

2°° i

al,aQ,...,an , and bi # bj , 1 £i<m,1<]3<m,

We shall denote the qth co-ordinate of X; € X as X,

q




Theorem 6.3

2
If X, xj and X X, s X Xj > Ky o X, € Xc V', and
X, = Xj , then f(al,az,...,an) is degenerate.
q q
Proof
X. = X, = X, =X as X c V2 . Let a be such that
1 3 2 —
q q q q
u(xi) = a(x.) =x, , and a(xk) =a(x ) = X Corresponding to «
q q

is a Boolean function al(a ,a2) = aq and by proposition 5.2

1

f(al,aQ,...,an) = g(ul(al,az),as,...,an)
= g(aq,as,...,an)
f(al,az,...,an) is thus a degenerate function.

Theorem 6.4
If X S_VQ , and Si € L 1is not maximal compatible, then

f(al,a a_) 1is a degenerate function.

PELERELS
Proof

From criterion 6.1 there exist xj > Xy € Si (1 #3,1#Kk,
j # k) and SP . Sq e L such that

i) x, e S, % ¢ 8
1 P ] q

i3 S S
11)xk€ q,xkﬂ‘ .

iii) T. =0
Ik
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S. , 8 el =>» x e8S ,x ¢8,
i P a 5] a i
C vz
Si . Sq e L > % € S0 % ¢ Si

X, X.,, X
i s j, ‘}< 2

distinct. Therefore Xa = Xb = xz . xk ¢ Sp and either p =& , or

X, »and x e X . But, X E_VQ and 1, j, and k are

P = j . Therefore xj N R xj ¢ Sq and either q = &, or q = k

Theprefore xk ~ x2 . xi is adjacent to two elements in X and there thus

exists a q such that X, = xj or X, =X . Theorem 6.3 is satis-
q q q q

fied and f(al,az,...,an) is therefore degenerate.

Criterion 6.2

If X E_VQ and f(al,a .,an) is non-degenerate, then M' = L .

E
Proof
This follows immediately from theorem 6.4 and corollary 6.2.1 .

The determination of M' when f(a ,an) is non-degenerate,

128500
and X E_VQ is straightforward. In general, however, this minimum cover
is not necessarily disjoint and therefore does not represent the partifion
required by proposition 5.2

The following method [3%#] can be used to find a minimum

partition M"

Let Mi (i = 1,...,k) be the maximal compatible sets of M!
Determine the disjoint sets Ni (i=1,...,k) of M" as follows:

Ny =My

N, =M, - (M, n M,) for each i = 2,00k .
i i i 3
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This method does not, unfortunately, always yield the parti-
tion of X which represents the simplest decomposition.

Let M' :'{Ml = {00,11} , M, = {10,01,11}} . By the above

2

method we obtain M" :’{Nl = {00,11} , N, = {10,01}} . The simplest

possible assignment of o gives al(al,aQ) =0, and

ay(a;,a,) = a a, + a,a, . Suppose M :'{Nl = {00} , N, = {10,01,11}}

1 2

which is a valid compatible partition. Here o could be assigned so

that ul(al,az) =0, and az(al,az) =a ta,. which is more desirable.

An algorithm has been developed which for X E_Vz yields the partition
M"  corresponding to the simplest decomposition. The derivation begins
by considering the general case where X E_Vn

Let o be a mapping of X onto W , a : X+ W , where

X c V" , and W E_Vn . & corresponds to its n-tuple of Boolean

functions {al(al,...,an) . a2(al,...,an) o eees un(al,...,an)}

Let F be a non-degenerate mapping of E onto Z , T : E=+ Z , where
m- 1 .. . . s

EcXxY ,YcV , and Z c V' . Proposition 5.1 is satisfied

as the maximum number of classes of compatible elements in X is the

number of elements in V© . Let M" be a partition of X such that

for all Ni e M" | Ni is a compatible set. We denote the cordinality of

aset S as [S]

Theorem 6.5
o may be assigned to satisfy proposition 5.2 such that there

are m O-place functions in {ul(al,...,an), cees an(a .,an)} if,

100
and only if, [M"] < ot

Proof

Assume [M"] < oh-m .



It follows that W contains at most anm elements. Let the kth

element of W be the vertex represented by the mn-place binary number
k - 1. Clearly, the first m positions of every element are O as the
largest number R | requires n - m binary digits. The m functions
oy i=1, m , are thus constant or O-place functionms.

Conversely, assume there are m O-place functions in

o ( ( } " n-m ‘s

o) al,...,an),...,an al,...,an) and [M"] > 2 . m positions of

the binary representations of the a, are constant. There are at most

n-m

2 distinct elements in W and as [M"] > 2" " proposition 5.2 cannot

be satisfied.

Corollary 6.5.1

g 221 [M"] < 2

L then the n-tuple

o (a,,eeesa ),e..,0 (a .,a )} must contain at least % a. which are
1771 n n n i

100"

not O-place functions.

Theorem 6.6
o may be assigned so that oy is a 1l-place function if, and
s " -
only if, for all Xj > Xy € S2 g MY Xj. X
Proof
Assume for all Xj > ¥y € Sg e M" , x, = x . Let o be such

I k
that for all Sz e M"
a(xj) =X xj » ¥y € Sz
Xj. = xki as Xj » X € 82 , and therefore, ai(al,aQ,...,a ) = a. ,

a l-place function.



Conversely assume a.(a

5 l,...,an) is a 1l~place function and

1A
in 7 in s Ky 5 X € S, » for some S, e M

a(xj) = a(xk) = wq e W as xj > % € S2 . As ui(al,...,an)

is a 1l-place function, w = x. and w_ = X which implies
i3 41 i
This is a contradiction and ui(al,..

X,
i i
l-place function.

.,an) cannot be a

Conditions have thus been established for when
ai(al,...,an) e’{(al(al,...,an),...,an(al,...,an)} can be assigned as

d zero or one-place function.

Definition -~ IFf ai(al,az,...,an) is a true k-place function, the

order of ai(al,a .,an) is k

AR

Definition -~ The order of a decomposition
f(al,aQ,...,an) = q(al(al,...,am),...,um(al,...,am),am+l,...,an)

is the sum of the orders of the ai

We wish to derive M" from M' so that the subsequent de-
composition has minimal order. At present, we are interested in two-place
decompositions where n = 2 . A method for the general case is under
consideration.

As X E.V2 » the cardinality of M" is less than or equal to
four. Clearly, [M"] = 1 cannot occur as this implies a, and a_. are

1 2

redundant in f(a ,an) which violates the assumption of non-degeneracy.

128550 e
The case where [M"] = 4 is a special case where each Si e M" contains

only X; € X . X, agrees with itself in both the first and second

co-ordinates and thus, by theorem 6.6 ul(al,aQ) =a, and a2(al,a2) = a,
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The decomposition in this case is termed totally degenerate. We shall

treat the remaining cases, [M"] =2, and [M"] = 3 , seperately.

i) [M"1 = 2

By corollary 6.5.1 and theorem 6.5 , one of @, or o, can be
assigned to be a zero-place function and the other cannot. The one that
cannot must be a true twosplace function as f(al,...,an) is non—degenerate.

The minimum order of a decomposition where [M"] = 2 is therefore also 2

Such decompositions are simple disjunctive.

ii) [M"] =3

By corollary 6.5.1 mneither @, mor o, can be assigned as a

zero-place function. At least one must be a two-place function as

f(al,a ,an) is non-degenerate. The minimum order in this case is 3 .

goee
Theorem 6.6 provides the condition for when one of the functions can be
assigned to be a one-place function. If such is the case, the decomposition
is simple non-disjunctive. If, however, both oy and a, are true
two-place functions the decomposition is complex disjunctive.

A partition containing two sets is more desirable than a

partition containing three. Also, when a partition M" does contain

three sets it is most desirable to have xi = xj for all

q q
X xj € Nk e M' , g =1or 2 . The following algorithm is used to find
M”

Algorithm 6.1

[

i) If [M']J =14 , the decomposition is totally degenerate.

ii) If X < V2 , each v, € V2 A ¢ X 1s added to each Si e M!
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iii) If any pair S, Sj g M' form a cover of X , set
M! :R[S:.L R Sj} . If there is more than one pair chose the one

with the largest number of elements in Si n S.

J
. ) - L ,
iv) If for any i , 8, = {Xl,x2,x3} , M" = {{Xl,x2,x3}, {X4}}
v) If for any i , 8, = {xl,x2} and %, = x2q , g=11lor 2,

R CENE S IR PR AR R

vi) If neither iv) or v) apply, then M" = M'

3.2 The Assignment of o

Once M" is found a is assigned by forming a one to one

correspondence between the sets of M" and the elements of W . If MY

1
contains two sets there are (ﬂgéﬁ-: 12 possible mappings, while if

[M"] = 3 , there are = 24 ., We wish to assign o so that the

H!
(43}
order of the decomposition is minimal. As the decompositions are to be
implemented using NAND gates, we also wish to assign o so that the
NAND expression for each true two-place oy has a minimal number of
operators.

First consider the case where [M"] = 2 . By theorem 6.5 ,

o may be assigned so that a, 1is a zero-place function. The elements

1
11 and 10 € W are used as the images of the sets of M" . Clearly, M"
contains a set of three elements and a set with the fourth element, or

M" contains two sets with two elements in each.

In the first case, a, 1is a vertex function; the minimum NAND

2
representation of which corresponds to assigning the single vertex the
image 10 . In the second case, M" = {{00,11} , {01,10}} , the other

poésibilities leading to degenerate os . Here {00,11} is assigned

the image 10 and {01,10} is assigned the image 11 . o, is the
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exclusive OR function which has a simpler NAND representation than the
other possibility, the equivalence function.
When [M"] = 8 the assignment of o is somewhat more complex.

o cannot be assigned so that either a, or o, is a zero~place function,

but, by theorem 6.6 , if for all X: xj € Sz g M" | X, = xj then o
q q

may be assigned to be a one-place function. M" contains one set of two
elements and two sets of a single element each. We denote these sets as

Sk = {xl , x2} » 8 = {XS} , and Sn = {xq} . Sk' is assigned the

image 11

1 2
q q

assigned to be a one-place function. S is assigned the image 00 ,

Suppose %, = X, . By theorem 6.6 , aq(él,aQ) may be

n
Sm is assigned the image 01 if q =1 , or the image 10 if q = 2

If Xl 7 %

q
Sm is assigned the image 01 .

5 for g =1o0r 2, Sn is assigned the image 10 , and
q
The above method has the property that whenever possible

ai(al,aQ) =a, or ai(al,aQ) = a, . Further, whenever ai(al,aQ) is a

true two-place function, it is a vertex function with the single vertex

having the image 0 . The minimality of a decomposition when X T X%,

q q
depends on which of the two sets of a single element is taken to be

Sn . Minimality is achieved if X, € Sn has fewer zero co-ordinates
than X € Sm .

The labeling of the variables of a Boolean function is completely
arbitrary. The function

f(al,aQ,...,ai,...,aj,...,an)

can thus be written

»a_)

f(ai’aj°al’a2""’ainl’ai+l""’aj—l’aj+l"" 0
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The above techniques are therefore used to find a minimal NAND expression

of ‘a decomposition of f(al,aQ,...,an) with _AA = ai,aj , and

A = a

. 18 . ,a ,a

9o i—l’ai+l""’aj—l’aj+l"" 1

4, Total Two-Place Decomposition

Ideally, we wish to find the total decomposition of
f(al,aQ,...,an) which corresponds to a minimum cost NAND circuit. Using

the conventional multilevel circuit criteria we define:
Definition - The cost of a NAND gate is equal to the number of inputs.

Definition -~ The cost of a NAND circuit is the sum of the costs of the

individual gates.

An exhaustive search of all the possible total decompositions
could be performed [2 ] . Previous authors [4%] have used a lexico-
~graphic search incorporating the smallest cost previously found as a
criterion for eliminating more expensive circuits. The work is reduced
as not every total decomposition is examined in full. Even with this
refinement, the time required for a complete search is formidable.
Partial searchs are often used to save computing time, and consequently
it is extremely important that the initial decomposition be very nearly

minimal.

4,1 The Selection of Decompositions

There are three types of two-place decompositions:
i) simple disjunctive
ii)  simple non-disjunctive

iii) complex disjunctive



A simple disjunctive decomposition of an n-place Boolean function
results in an n - 1 -place image, while the other two types result in
an n-place image. A complex disjunctive decomposition, on the other
hand, requires more gating to implement than a simple non-disjunctive
decomposition. Choosing decompositions in the order described above will
thus tend to decrease the number of inputs at successive stages and limit
the required hardware.

At a given stage, several decompositions of each type may exist.
Two independent criteria have been tried for choosing the best decomposition
within the selected type.

i) The decomposition of lowest cost is chosen.

ii) The decomposition whose inputs have come through the fewest

number of levels of gating is chosen.

The first one obviously stems from a desire for a minimum total
~gating cost. The second, on the other hand, will tend to use input
variables and gate outputs as soon as possible. This tends to reduce the
number of inputs at each successive stage quite rapidly, while also re-
ducing the greatest number of gates between the inputs and output. Rather
surprisingly, criterion ii) has been found, through testing, to yield a
circuit of lower cost than the first criterion. Hence the second criterion
is used.

Once a decomposition is picked the image must be found, and
another decomposition chosen. This process continues iteratively until
the image is itself a two-~place function at which time a total decomposition

has been achieved.




4,2 Practical Modifications

The algorithm was initially implemented as described. Several
variations were also tested and the following modifications adopted.

It was found that a lower overall cost is achieved if a simple
non-disjunctive decomposition is chosen so that the true two-place function
has the greater of the two possible costs. This corresponds to assigning
o, the simplest sum of products expression. Seemingly a contradiction,

a theoretical basis for this ad hoc choice is currently under development.

The case where o, is the exclusive OR function is of simple

disjunctive type. The gating required to implement it is however quite

costly. A minimal NAND circuit is given below:

::i::)D————';;{r + o b

FIG 6.1 NAND implementation of exclusive OR

[

The cost of this circuit is eight. The level of gating is three. Because
of these high values, the method was altered so that the exclusive OR is
only used when it cannot be avoided.
Cycling is a phenomenon in circuits where the output of a
~gate is:
either 1) a constant
or 1i) an input variable or its éomplement

or 1iii) a previous gate output or its complement
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The algorithm which is used to assign o ensures that when
expressed in terms of its inputs each o which is actually used is a

true two-place function. Consider the circuit

X o]

e Do

aa . However, if the actual expression for o 1is inserted,

Here B 5

then B = aa, *a, = a, - This is a cyclic output.
Tt was found by inspection that any decomposition involving a
previous decomposition and one of its own inputs leads to redundant
- gating. The exclusion of this type of decomposition has apparently
eliminated the cycling problem, as no further problems have been en-
countered.
In the initial implementation, a new list of decompositions was
constructed after each image was found. It was noted that certain decom-
positions from the previous list reappeared. The possibility of choosing

several decompositions at each stage became evident.

Let Gl and 62 be decompositions given by

§.: £(A) = gla (A, ),a, (A, ),A )

1 A Al 27 Al My

§.: £(A) = h(B (A, ),B (A, J,A )

2 1 XQ 2 AQ H,
Definition - § and ¢ are independent.if A, n A, = ¢ , or when
—_— 1 2 Al vAQ

A A

A, n A, # ¢ , then either a. (A
I 1%

) and Bl(AA ) or uQ(AAl) and

1 2



BQ(AA ) may be assigned to be one-~place functions.

2
The significance of independence is that the variables required
for 62 are present in the image of Gl .  Independence is reflexive and
intransitive.

Several problems have been examined, and the recurring decom-

positions have been noted. This has led to the following conjecture.

Conjecture 6.1

r {s ,Gm} is a set of mutually independent decom-

L

positions of f(A) a non-degenerate function with

£(A)

glo, (A, J,a, (A ),A )
: 1 Al 2 Al ul

£(a)

h(B, (A, ),8. (A ),A )
1 AQ 2 AQ u2

£(A) = k(Yl(AKm)’YQ(AXm)’Aum)

then there exists a multiple decomposition where

f(A) = t(a, (A, d,0. (A, J,B (A, JI,B (A, J,...,yv. (A, J,v.(A, ),A)
10 %2 T, T2, I N '

Initially, the list of non-totally degenerate decompositions,
whose A variables are not a previous o and one of its inputs, is con-

structed. The best decomposition is chosen and its image found. Any
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decompositions which are not independent of the chosen decomposition are
removed from the list, and the next best decomposition is chosen. Decom-
positions are applied to the image of the previous decomposition. In
this way, the image of a multiple decomposition is found. To date no

counter-examples to the conjecture have been found.

4.3 The Image of a Decomposition

Algorithms for finding the image of a decomposition have been
presented by Griesmer and Karp [33], and Dietmeyer [ 4]. Although
theoretically quite useful, both methods require a great deal of computa-
tion.

We are only concerned with two-place decompositions, and only
five true two-place functions are allowed. There are only nine possible
sub-cubes for the variables of AA , and the determination of the image
of each cube can be performed by a single table lookup. This table will
be given in the description of the computer program.

For decomposition where o, is a zero-place function, o, is

simply ignored. This follows immediately from the theorem

A 1=1+A=A

and the fact that any function may be expressed in normal form. If the
zero-place function is the constant O , the arbitrary assignment of a
would have allowed it to be 1 , and it can thus be considered redundant.

If oy is a one-place function, then either ui(Ax) =a, or

ai(AA) = Ei » @ € A . Again because of the arbitrary assignment of o

we need only consider ui(AA) = a; . This is the case where a, appears

in the image of the decomposition. Obviously, a; is not removed and
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it is not necessary to construct o, - Only true two-place functions
need be constructed, and as this is done by table lookup, very little
computation is required.

A special case occurs when di(Ak) = a, and the ith - co-ordinate
of a given cube is X . The image of the true two-place function is also x .
However, these x% in the image cube imply that both co-ordinates of AA
in the original cube were X , which may not be the case. This problem
is avoided by splitting the cube into two cubes, one with the ith

co-ordinate 1 , the other with the ith co-ordinate 0 . The problem does

not arise if a; € Ak is redundant under the decomposition.

5. The Computer Program

An implementation of the methods presented above has been written
in FORTRAN IV for use on an IBM 360/65 computer. Emphasis has been placed
on developing efficient computing techniques, but little or no optimization
has been attempted. The methods used are machine independent, although
the machine used has obviously affected their programming. The techniques
are also independent of the FORTRAN IV language, and could be implemented
in any suitable language such as ASSEMBLER, PL/l, BASIC or ALGOL. One
strict requirement for an efficient implementation is that a logical AND

of two bit strings is available in the chosen programming languages.

5.1 The Representation of Cubic Complexes

A method is required for the storage of covers of cubical com-
plexes. In addition to the storage requirements, consideration must be
~given to the ease of implementing our methods within the chosen represens

tation.



D
[

Each cube is represented by a bit-string with two bits for

each co-ordinate. The coding used is:

00 &3 ¢
01 & 0
10 &> 1
11 &> x

A minimum of space is required for each cube. It is advantageous for
cach cube to be individually accessible, and thus a full word (32 bits)
is used for each. The bit string representing the cube is right justi-
fied, and all unused bits are set to zeros.

Besides compactness, the principle advantage is the simplicity
with which the intersection of cubes can be performed. The intersection
of the individual co-ordinates of two cubes is represented by the logical
AND of their full word representations. If this result contains 00
within the bits allotted to a single co-ordinate, the entire result is ¢
If it does not, it is the full word representation of the intersection of

the cubes. Examples will illustrate.

Example 6.1

CUBES BIT STRINGS

1lx n 110 = 110 101011 - 101001 = 101001

The bit string result is the representation of the required cube 110
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Example 6.2

CUBES BIT STRINGS

11x n 101 = 1¢1 = ¢ 101011 ¢ 100110 = 100010

Bits 3 and U4 allotted to the second co-ordinate are both zero, and
the result as required is ¢

The notation of a cube in a full word also facilitates the
determination of single co-ordinates, or subcubes, and the alteration of
the cube or addition of co-ordinates. The logical AND, or OR, and integer
division, and multiplication are used to manipulate the bit strings in
the required manner. The use of arithmetic operations requires that the
sign bit not be used in the representation of cubes. Each cube is

therefore restricted to a maximum of fifteen co-ordinates.

5.2 Programming Techniques

Although the theory was developed using separate ON and OFF
covers, the program uses a single function array. Bach row consists of
a cube and a co-ordinate specifying the corresponding functional value.
This system was chosen as it will ease the transition to Dietmeyer's
notation of the multiple-output problem [ ¢1 , and is more easily ex-
tended to multi-valued logic [26] than the two cover scheme. The
methods are equivalent as the functional co-ordinate indicates within
which cover a cube is contained.

Input to the program is thus a single array of O's , 1's ,
and x's which specifies the function to be decomposed. The program
is iterative, each step being a multiple decomposition of the current

function. As each decomposition is performed, the NAND circuitry
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required to implement it is described. The image of each multiple de-~
composition becomes the specified function to the next step, and the
process is repeated until the image is a one-place function. A block

diagram of the program is given in Fig. 6.2

5.3 Determining the List of Decompositions

Each pair of variables is, in turn, taken to be Al . If the
variables are a previous o, and one of its inputs, the péir is ignored.
Otherwise, the following algorithm is used to find the simplest decom-
position.

Let C be the specification array of the function, and let
éi ¢ C be the ith row. Denote the co-ordinates of cs corresponding
to AA as Cix , those corresponding the A as ¢, and the
functional value co-ordinate as cif . A hoxoy compitibility table T

is initially filled with ones as we assume each pair of vertices is

compatible until an incompatibility is found.

Algorithm 6.2

For each ¢, , c. € C

i
i) If e. = c, , ignore the pair.
i j
£ f
ii) If e¢. nec. =¢ , ignore the pair.
i 3 :
H H
iii) For each vertex Vv, € c. and v, < c, set T. =T =20
k — iy L - Iy kz 'Q'k

There are 6u4 possible two-place compatibility tables uniquely

T T T T T
> 5 2 ) o .
12 13 14 23 24 34

positions implied by each table have been determined as described above,

identified by the six-tuple {T } . The decom-
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and the program uses the above six-tuple as an index into the list of
these results. In this manner, a great deal of redundant computation

is avoided.

5.4 Choosing the Best Decompositions

The variables >{al,a2,...,an} are uniquely associated with
the input co-ordinates of the function array specifying f(al,a2,...,an)
A, is in turn taken to be {al,a2},{al,a3},...,{al,an},{aQ,as},...,{an_l,an} .

For all AA which are not a previous o, and one of its inputs, a decom-
position is found and, if it is non-totally degenerate, it is added to the
end of the list of decompositions. The decompositions are chosen as
described above using the first allowable decomposition encountered.

This ordering tends to fulfill selection criterion two. New variables

are added to the right end of the function array and by choosing the

first decomposition allowed, we tend to use the variables created earliest
in the sequence of decompositions.

Assoclated with each variable is a check bit. When the list of

decompositions is constructed, each of these bits is set to 0 . As

decompositions are selected, the check bits of redundant variables are
set to 1 . A decomposition is applicable to the image of a previous
decomposition only if both check bits for the variables of AA are 0

This is logically equivalent to removing dependent decompositions as

each decomposition is chosen,but is much simpler to implement.

5.5 Determining the Image of a Decomposition

It was shown that only the true two-place o, (Ak) need be

determined explicitly. Any zero-place o, are ignored, and one-place



a, are simply input variables which need not be reconstructed. The

table used in finding these images is given below.

INPUT SUBCUBE
00 01 0ox 10 11 ix x0 x1 XX

FUNCTION
gg. 0 1 X 1 1 1 X 1 X
ig- 1 0 X 1 1 1 1 e b4
X%h 1 1 1 0 1 X X 1 b4
;g- 1 1 1 1 0 p:4 1 b4 p:4
AB + AB 0 1 b4 1 0 X b4 b4 b4

Each row of the function array is treated separately as pre-
viously described. Additional cubes, resulting from the splitting of
cubes with an x in the co-ordinate specifying an irredundant variable,
are added to the end of the array and their images are found as they
are encountered.

Once the image array has been found, subsumed rows are re-
moved. An algorithm using optional products to reduce the number of
rows is currently under development. At present, it appears to yield
solutions:which are usually irredundant and quite often minimal. ‘The
use of such an algorithm reduces the computation involved in finding

the compatibility tables at the next stage.
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Chapter 7

Results and Discussion

1. Introduction

The sample problems presented below were chosen because they
represent the general form of the circuits produced by our algorithm. In
particular, the examples of Chapters 4 and 5 were included. This will
allow an evaluation of our algorithm in terms of previous‘techniques.

In order to compare algorithms, criteria must be estéblished
which determine the relative merits of the circuits produced. The principle
criteria is cost. As before, the cost of a circult 1s taken to be the
total number of gate inputs. In addition, fan-in, fan-out, superfluous
gating, and response time must also be considered.

Each of the examples below will be evaluated using these criteria
and compared to the circuits produced by previous techniques. Several
interesting improvements and extensions to the algorithm will also be

considered.

2. Results

Our first example is the two out of five checker of figure 4.5
Figure 7.1 shows the circuit realized by our algorithm. This result, up
to, and including, the gates designated o and B , is equivalent to the
result found by Karp et al [4#] , figure 5.1 . The final gating is
somewhat simpler due to the fact that we have allowed the exclusive OR
function. As before, the result is far less expensive than the result

found by factoring, figure 4.6
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Of particular interest in this example, is the frequency of
complex disjunctive decompositions. The pairs of gates resulting from
these have been indicated. A method, such as that due to Barnard and
Holman [ 2] , which is restricted to simple decompositions would not
yield any result for this circuit. This type of decomposition has been
found to be quite prevalent even though it is only chosen when a simple
decomposition is not available. As was the case with the result due to
Karp et al , our circuit is less costly than the circuit actually used on
the IBM 7090 computer and has a lower fan-in requirement.

The example of figure 7.2 was included as it represents the
closest comparison found between the decomposition and factoring algorithms.
Here the costs were 23 by factoring, and 20 by decomposition. In all other
problems tried, the difference was found to be greater. The decomposition
circuit has a lower level of gating, and hence a faster response time.

In addition, the gating level is more balanced throughout the circuit
ranging from 5 to 6 , whereas the level in the factoring circuit ranges
from 4 to 7o

The gate designated o in the decomposition result is an
example of a factor being utilized both affirmed and negated. As discussed
in Chapter 4, this is the main drawback of the factoring approach. The
output of the gate B in the factoring result is

ac + be
which could be written
(a + ble

and realized by the gating
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If this change were made, the resulting circuit would have a cost of 18
The reason why our decomposition algorithm did not yield this less costly
circuit is that a decomposition in the variables ¢ and d was chosen
at the first stage. While this was not an optimal choice here, extensive
testing has shown that using variables and gates in decompositions as
soon as possible, generally leads to less expensive results.

As a final comparison to previous decomposition algorithms we
have included the example of figure 5.2. Our result is shown in figure 7.3.
Happily, our result is equivalent to that of Karp et al, their three-input
NAND gate being replaced by the cascade denoted a and B . This cascade
indicates a method for handling multiple-input gates which we shall discuss
later. In this example, several of the decompositions were of simple non-
disjunctive type. While previous decomposition algorithms have required
special techniques for decompositions of this type, our method handles
them quite simply. In an optimized computer program, this should result
in a substantial reduction in computing time.

The circuit in figure 7.4 is a realization of the function

which has a minimal disjunctive normal form of

3cd + bod + abd + bee + Dbde + bce + abe + cde
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A three-level NAND realization would have a cost of 37 . Our result has
a cost of 43. The overriding factor here is the fan-in limit. In our
result this is of course two, but in a three-level realization eight
three-input and a single eight-input gateare required. Two-input gates
are generally much more commonly used.

Two points are of interest. First, the variable b appears as
a distinct input three times. To date, this has been the highest fan-out
required. This value is well within the limits set by gate manufacturers.
It thus appears, that while we did not treat it as a definite problem, our
algorithm does not generate fan-out difficulties. The second point of
interest is the computation involved. In using Quine's first method to
find the minimal normal disjunctive form, the prime implicant table became
cyclic several times, and the computation was quite involved. A reasonably
efficient computer program required about 6.5 seconds on an IBM 360/65
Our test program, on the other hand, required 3.3 seconds to generate the
circuit in figure 7.4 from a minterm specification.

As a fuprther test of the practicality of the algorithm, the

function with a minimal disjunctive normal form of

2bds + abce + acde + acde + bede + bode + abed + abce + abde + abed
was tried. This is another problem which is extremely involved when
solved using Quine's method. Our result is shown in figure 7.5 . Here
the cost is 42 . A minimal three-level realization would cost 55 , and

would require ten four-input and a single ten-input gate. The improvement

is obvious. The computation times were comparable to those above.
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3. Discussion
From these examples, and many others we have tried, it is clear
that our algorithm results in as good, or better, circuits than those
found by previous techniques. The computer program, while not itself
optimal, clearly indicates that the algorithm is easily implemented. The
computation required is quite acceptable, and should improve even further
with an optimized program. Indications are, however, that still more
extensive testing is required before the algorithm can be finalized.
Consider the example in figure 7.6 . Clearly, the program
result i1s not acceptable. What appears in this simple example to be minor
extravagance would lead to a gross waste if accumulated over a large circuit.
The problem arises from an oversight in the criteria used in the selection
of decompositions.
The following criteria are used in the selection of decompositions:
i) choose a simple disjunctive decomposition before.either of
the two other types:
ii) choose a simple non-disjunctive decomposition before a complex
disjunctive decomposition;
iii) within these limits, choose the decomposition whose inputs

have come through the lowest level of gating.

The actual method of implementing these criteria was discussed in Chapter 6
The oversight involves the case where decompositions of the same type in-
volve variables which have come through the same gating level. Clearly,
the decomposition which requires the minimum gating should be chosen.

This, however, is not the case, and as shown in figure 7.6 superfluous

_gating is the result. Implementing a revised selection algorithm would



FIGURE 7.6

G ) COMPUTER PROGRAM

>
%’

MINIMAL RESULT

JIONN
[




[

requive that the level of gating through which each variable has come
must be recorded. The change in program logic would be considerable,
but the improved results should easily justify this alteration.

An extension of particular interest is the possible use of

~gates with a fan-in greater than two. This may be done in two ways.

First, partitions where AA contains more than two variables could be
considered. Unfortunateiy, it was shown in [20] that when X , the
domain of o , has more than four elements, the compatibility techniques
do not always apply.

A more promising approach would be to examine the final circuit
for simplifications. In this way, gates o and B8 of figure 7.3 could
be combined to form the three-input gate of figure 5.2 . This is the
inverse of the factoring technique of Chapter 4 . Additional simplifications
may also be possible using the NAND algebra and simplification theorems of
Muzio [25] . This approach has the advantage that decompositions will not
be absorbed into larger decompositions until their own usefulness has been
exhausted.

While NAND gates are quite common, gates of other types are
also frequently used. It would thus be useful to have the type of gate
being used variable. At present, this only affects the assignment of a .
If, however, the cost of a decomposition was incorporated into the selection
algorithm, it too would be affected by the type of gate being used. Both
of these could easily be controlled by program input and the algorithm is
thus easily generalized.

To date, no significant results have been presented on the de-

composition of multiple-output functions. The problem is to maximize the

~gating common to the realizations of the outputs. Karp [13] has shown
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that considering f : Vi sy is of little use. The most promising

approach appears to be to first find the decompositions of each output
function independently. A subset is then chosen with preference given

to decompositions arising from more than one output function. An algorithm
for thisapproach is currently under consideration.

Once a reasonable multiple-output algorithm is developed, the
decomposition techniques should prove very useful in the design of
sequential circuits. The excitation +table of a sequential switching
circuit provides the necessary specification of the multiple-output
function. Other possible applications are the design of cellular logic

[22] , and the design of multi-valued switching circuits [a2¢] .

L, Conclusion

The principle disadvantage of the decomposition algorithm is
the heuristic approach to choosing decompositions. ' These methods will only
be justified by further extensive testing. An interesting problem would
be the development of a theory for constructing total decompositions from
the set of two-place decompositions. An approach similar to that taken
by Curtis [ 5] might be tried.

Despite this drawback, the algorithm has been found to yield
quite reasonable circuits. The approach to take might possibly be to use
this algorithm to obtain a good first approximation, and to then apply
simplification rules to improve the circuit. The falling cost of the
hardware is steadily doing away with the need for minimal results. What
is now needed in the field of logic design are rapid techniques which ob-
tain inexpensive practical circuits. Oup algorithm is a gobd first step

in this direction.
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