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AB S T RACT

The electrostatÍc field problem of a HV transmission line

insulaËor chain ís solved. The effect of adjacent objects such as toü/er,

cross arm, ground and line conductors, on the field distribution is taken

ÍnEo account" The voltage distribuËion across the insulator chain is ob-

tained and the effect of environmental conducEing bodies on the volÈage

distribution is discussed.

To analyse the problem, the integral equations are developed

for the field domain that consists of several dielectrics and fioating

electrodes v¿ith unkno¡nm potential values. Finally, a combination of the

inËegral equation method and the charge simulation technique is employed

to solve the 3-dinensional non-axisynmretríc insulator chain field problen.

The compuÈer prograns are devel-oped in general form and can be used for

any 3-dinensional field problem,
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CHAP TER. I

INTRODUCTION

In recent years the rapidly increasing demand for electric

power and viÈal dependance on its continuity have resulted in maintain-

ing the supply relÍabilíty aË a high level. The increase in volrage

level of electric power t.ransmíssion lines has generated a set of new

reliability consíderations for insulation designers" One of these is

the proper choice of the type of insulator unit and chain which should

provide reliable performance of the line.

The behaviour of the insulator chain under normal and adverse

climatic conditions depends on the surface electric stress distríbuÈion

on the chain. A non-uniform stress distribuÈion leads to signífícant

non-uniforü atmospheric pollution deposiËs. This is especially so in

the case of I{VDC lines. Due to the unidirectional electric forces of DC

lines Ehe aírborne contamination is more significanÊ than in the AC case"

These forces have been shown to predominaEe over ruind forces, and are not

so pronounced in the AC case as the time average electríc force is zero.

The pollution deposíts could cause a drastic reduction in the electric

strengËh of the insulaEor chain due to Ehe process of contamination flash-

over. Therefore, from the insulation design point of vieuro afl accurate

knowledge of the electric field distribution along tire insulator chain

i s important.

Generally, the electrostatic field evaluation due to arr insu-

lator chain, requires the solution of Poissonls equation, while meeting

specÍfic boundary conditions, This evaluat.ion can be carried out by
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applyíng

1" annLqÍica.L mefhod¿ v¡hich yield an exacr solurion

2" ana,Log me,th-od¿ which are experimenral i.n nature

and 3. nunS.nica,[- met|9d^t which provide approximate solurions.

An exact solution of Poissonrs equation can be achieved through

integrating the differential equaEion. This is accornplished sometirnes by

an obvious separation of variables, or by applying a transformation which

makes Ëhe variables separable. BuÈ in practice, physical sysEerns are

so complex that analytical soluËions are extremely difficuft or in fact

impossible. Thusr. these methods are restricted to a much siurpler class

of problems"

Analog melhods have been used r:xtensively, employing electro-

lytic tanks, conducting papere or resistive networks. But ihey are in-

accuraEe, inconveniento and expensive. Analog rnethods are also linited

in their application"

Due to the modern achievements in field theoryo numerical math-

ematÍcs and computer science, nutlerical field evaluation has become u¡ore

appealing than other method.s" Ðuring recent years much r,¡ork has been

carried out to develop dífferent numerícal methods and to render them

applicable to practical situations. Because of the variety of numerical

methods available, caÍe must be taken Ëo choose t-he proper method which

can handle the problem in the best r+ay"

In attempts to solve the H"V. transmission line insulator

chain field problem, there are basieally three difficult.ies:

1. Extremely complicaËed insulaË.or chain shape;

2. Unbounded space in which the field computatíon should

be carríed out; and



3" The environmental influence on the stress distribution,

such as the effect of tower, cross-arm, conductors, and

ground.

The range of computational features that each numerical method presents

is wide, and iË is unlikely that selection of one method without care-

ful pre-considerations resulEs in a successful field solution. The aim

of this work is to select the mosË appropriaÈe available numerical method

based on Ëhe relevant literature and develop Ëhe necessary computer pro-

graus for field evaluation of HV insulaËor chains in iÈs envÍronnent.

In Chapter II a shorË survey of available numerical methods

v¡hich have been r,iidely used in the high vclÈage area is reported. The

advanEages, linitations and laLest developments of eaeh method is con-

sidered" The integral equation mechod is selected for computíng the

field of the insulat,or chain" In Chapter III the integral equations for

the electríc field calculation in multi-dielectric media are developed"

In Chapter IV the integral equation roethod is applied to the poËential

distribution around a single unit insulator and the 400 kV HVDC líne

insulator chaín" Chapter V discusses the effect of towern cross*ar:rn,

ground and conducLors on the field distribution of insulator chain. The

conclusions are reported in Chapter VI.



CHAPTER II

A SHORT SURVEY OF NUMERICAL METHODS FOR

ELECTROSTATIC FIELD CALCULATION

2"I InËroduction

This chapter is concerned with the calculation of electro-

static potential and fields for realistíc engineering problems. Five

different methods for numerical field evaluation of high voltage appar-

atus are discussed and compared. Based on Èhe characteristics of dif-

ferenË meEhods, the integral equation method is suggested for Ëhe elec-

trostati-c field calculaEion of the t{\I transmission line insulator chain.

2"2 Mathernatical- Problem

The common mather¡atical problem to be solved is the deterrnin-

aËion of the elecËrosËaÈic potential 0(?) and. rhe field E = - Vö

t¿ithin a 3-dimensional domain v. rn general forn, Ehe presence of space

charge and materials r,¡ith differenË permittivity must be taken into

account." In this case Ëhe pot.enEial satisfies Poissones equation

(2.t)

where e(;) is the d.ielecrric Èensor and q(;) the space charge density"

In many practical cases the dielecEric permittivity is a scalar, and

space charge density is assumed to be zera. Thus equation (2.1) reduces

to Laplacers equation

vt4 (i) = o (2.2)



The conditions satisfied by 0 on the boundary R are either Dirichlet

boundary conditions

o(;) = oR(;) , v on R

or Neumann or derivative boundary conditions

(2 "3)

ñ " (e(i) . vo(;)) = q_(;)
t\

(2.4)

where ; is the unit normal vecE.or on Ehe bound.ary, and on each part of

R either the potential distribution or the surface charge disrribution

is specified,

2.3 Surrmary of Computational Met.hods

Generally, Ëhe available numerical methods for electrostatic

field calculation can be classified as:

1" finite difference rnerhods (FÐ¡,IJ

2. finite element rnethod.s {FEMI

3. Monte Carlo techniques (l,,{CT)

4. integral equation Ëechníques (1ET)

5. charge sinulation methods (CSÅ,f )

2.3"L Finite DÍfference Merhod
I -12

To apply the finite difference method to an interior prob-

len, it. is required that the potenËial or its normal derivatlve is knovm

as boundary conditíons. In rhe finite difference method the solution

consists of the potential values aË discrete points regularly spaced

over the whole field regi-on. These values are obtained by replacing

the partial differential equation describing the field by a set of sím-

plified línear equations connecting the porential value of each point
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with Ëhe potenríals at adjacent points. The solution of fíeld problem

reduces to thai of a system cf simultaneous equations. As the consequence

of the finite-difference approximation, a rather closeJ-y spaced grid

points are required to obtain high accuracy. Thus, due to Èhe large num-

ber of resulting equatÍons, it is not practical (or economical) to solve

the system of equations usíng techrriques Ínvolving determinaËion or e1-

ímination methods" As a result, either relaxaEion or iteration tech-

niques are ofÈen used.

Boundary relaxation techniquel3-1s enables the finite difference

method to be used for two-dimensional or axisyrmetric three-dimensional

unbounded field problems. This technique temporarily ímposes an artíf-

ical boundary arouncl region of interest to convert. the problem into an

interior one. The potenÈial valrres on this artificial boundary are al-

tered it.eraEively until they equal exactly those that. would be obtained

rùere the infinitely extending mesh problem actually solved. The resul-t-

i-ng solution i-s indepenclent of Ëhe choice of artifical boundary.

The main disadvantage of the finite dÍfference method Ís the

difficulty that arises during boundary matching via discreËe finite

points. This rnethod is not srritable for a medium consisEing of several

dielectrics, especiall-y when the dielectric-dielecËric interfaces and

boundary shapes are complicaËed. Thís disadvanËage can be overcome

through application of Ehe finite element method.

2 "3.2 Finite Element Method

The finite element method

in such areas as thermal, mechanical

method has been recognized as being

nique for field computatiori. It has

has been frequently used especially

and electrical engineering. This

the mosE powerful and versatile tech-

also been used in electric field
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calculations in high voltage apparatus during recent yearsl6-1e. The aim

of the finite elemenE meEhod is to approximate the actual solution by us-

ing a finite number of elements in the entíre bounded field region. This

can be achieved through establishing a potential approximation function

at each surface element and applying the minimum energy principle" It

can be shov¡n that the solutíon of equation (2"f) minimizes thre functíonal20

(r) " Vó)dv (2. s)

r¡here RÎ is the part of boundary on which the boundary conditions hold,

and F is the total energy of the field within the volume V"

In the finite element meEhod the field domain is divided into

¡1 subregions or elements. These elements are usually polyti-edra and

their edges define a net \{ith N nodes" The function 0 is to be ap-

proximated by a funcÈion

I
V

-rl
F=*lvo"(e¿J

V

sôdv - | o**o*
R'

(2 "6)

Usually each f, has the follorøing prop-

ü(r)
N

t f.fil r¡.
l- ' 'l

a=I

where f.. are shape functions.
a

erties:

l" f= is zero everywhere except withj.n the
l_

formed by the elements to which Ëhe node

2. Across the boundaries of the elemenE wi,

uous, and ¡+ithin each element toi, f i is

Substituting equation (2.6) in (2.5) gives an

to the function F. The minimum of the functional

the conditions

subregion *i

i belongs,

f.. ís conËin-
I

a polynomial.

approximation

F:t is definedF:t

by



âF*
aú.'l

i = l, 2r.".., N (2.7 )

The conditions descríbed by (2"7) give a sysLem of linear equation

tLl t\rl tRl (2.8)

where tü] is the vector of the unknor¡ns and IR] is obtained from the

space charge density and boundary conditions described by equations (2.3)

and (2.4). The matrix of coefficeints tL] is a square-matrix, positive

definíte and sparse. The solution of equation (2.8) gíves a function ü

which approximates the actual potential 0" The field inÈensity withín

each element m is given by

(-Vü) ='m
N(- r ú.vf.)'l- I mr=I

Often Ehe shape functions fr_t" have discontinuous first der-

ivaEives " As Ëhe maximum size of element tend to zero the computed tl)

approaches to the actual solution ô, but there are discontinuities in

the f ield intensity at bo¡.rndaries. For the same f ield donain discreiiz-

ation üore accurate soluÈion can be obtaíned through employment of shape

function that are complete polynomials of higher degrees2l .

The presence of floating elecErodes can be allowed by imposing

the condition that the potential on the electrode surface, though unknown

is constant. For nodes io jo k, on this surface

.J,,j = ûi ,lrk = üí rþL = þL"

The correspondíng equations (2"7) become:
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-!
aú. '

'l-
-0dr^

4,J,, .'J

9

aüi âF¡" aìlik

âtr. ðür. Aü/.'r 'k 'l

and matrix L remaÍns symmetric and positive definite.

Variation of dielectric constants within the domain V can also

be easily taken into account. The t.ensor e which is the functíonal of

equation (2.5) is treated as a function position ; and considered to be

constarlf: t¿ithin each element. Thus, field problem in the do¡nain consist-

ing several dielectrics and complicated boundary shape can be handled.

Generally, implementation of the finite element method requires:

l" Generation of a suitable mesh filling the field domain.

2. Selection of interpolatíon function, and determination

of element properties.

3" Generation of the linear systen (2.8) and its solution.

4" Additional cornputaËion, if more information is desired..

For two-dímensional geometries, the mesh can be automatícally

generated; in fact an automaËic two-dimensional mesh generator has been

developedzz-23 o For three-dimensíonal problems the uesh must be gener-

ated manually, r,rhich is a tíme consuur-ing operation, and usually is an im-

portant source of error. For the case of two-dimensional fíeld problems

some developments havebeen made that enables the finite element meËhod

to be used for exterior field problems24-26. Another version of the

finite element nethod for trvo-dimensional (or three-dinensional axisym-

metric) for exterior field problern has been inËroduced, which combines

the charge simulation method r'¡iËh the finite element method2T ,28 . rt

should be mentioned that the main objective of this combinat.íon is to use

Ëhe advantages of both methods to increase Ehe accuracy of soluËion"

Despíte the efficienÈ techniques for inversion of sparse matríces, Èhe
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finite element and the finite difference methods are not

three-dirnensional non-axisyrnmetric geometries, due to the

of equaËions to be solved.

The length of

point ; is

nearest point

The dÍrection

random.

Each r,oalk Èerminates ¡^,-hen ít

arranged small dístance from

the next step for a walk that reaches a

equal to the disÈance betrveen 7 and the

on the boundary.

of each sÈep at each v¿alk is chosen at

often used for

large number

approaches within some pre-

Èhe boundary, the nearest

¿"J.J Monte Carlo Method

In the MonEe Carlo method2e'30 the field region enclosed by

the specific boundaries is replaced by a mesh, and the differenËial

equatíon Q"f) is replaced by the difference equations relating the va-

lues of poEential at adjacent points of the mesh. The coefficients in

the difference equations are interpreted as being the probabilities of

transition of a particle from one point to a neighbouring poÍnt. This

transiËion is based on the fixed random-walk mechodl. The method v¡hich

is based on floating random-iqalk technique3l is *ore efficíenË than the

fixed randorü/alk nethod" ApplicaEion of the Monte Carl-o meËhod to

Laplacers equation is based on the fact that the solution to Laplacers

equation, also satisfies the steady-state djf fusion equation32. For a

Laplaeían potential ô(io¡ at point ;0 r¡ithin the field domaino e ser-

ies of random r¿alks is constrained according to Ehe folloruíng rules;

1" Each walk sLarts at rs.

.)

-f.

4"
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point on the boundary then being i*.

It is found ÈhaË the average

ó(ro) 1
n

(2. r0)T Ó (;I).J
J

is a statisÈical estinate of the required ö(ro) Lhat converges to the

correct value as Ehe nr¡mber of randorn r¿alks n increases.

As was the case for Ëhe finiEe elernent. and finite difference

methods, it is assumed thaE the region is bounded" However, Ëhere are

merhods which can be used to apply Monte Carlo Ëechniques to unbounded

field problems33. The most interesting characteristics of the Monte

Carlo methods is that the potential can be compuËed one point at a Èime.

Neither a large axray of potentials need to be st,ored in a computer nor

a large number of símu1Èaneous equaËions need Lo be solved, In spite of

these advanEages over the finite eleuent and finiÈe difference methods,

this method. has noË often been used for one- and tv¡o-dimensional field

problems. In fact, Ëhís meËhod requires a considerable time for calcul-

ating the potenËial at each poinÈ. The Þfonte Carlo method is appealing

for field solution in the subregion of three-dimensional geomecries; it

has been shor,¡n Ehat as Ëhe number of dimensions increase Èo three, com-

paraËíve computaËion favours the Monte Carlo method" This method is not

able to handle field problens when floating electrodes v¡ith unknorün po-

tential values are present"

2"3"4 Isgec:el-Esgelige-Issþigge

Of different nunerical methods for solving fiel_d problems, the

element merhod has been proved to be Ëhe most popular one, largely

of its relative ease of application. This met.hod has been very

finite

because
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extensively described in the literature in connection v¡irh the bounded

fíeld problems with prescribed boundary conditions. Hoi¿ever, there are

many field problems in whích the region of inEerest occurs outside a de-

fined boundary and extends to infinity, such as the electrostatic field

distribution around a high volt.age transrrission line insulator chain.

Several attempts have been made to reduce the problem to a finiEe size

so that it may be readily handled on a digital compuËer. There include

imposition of artificial boundaries that do not exist" or applying im-

proved versions of the finite element method or the finit.e difference

meËhod for unbounded problems which were mentioned eearlier" The prac-

tícal difficulties whÍch arise have led to an increasÍng interest in the

integral equation met.hod.3a-36 . In this meÈhod the material parts of the

device are suítably divided and treaEed as field sources whose magnitudes

are Ëo be computed by solving the corresponding integral equations.

By means of Green?s Theorem, the poissonts equation (2.1) in

the volume V can be expressed in terms of a volume inËegral plus a sur-

face inEegral over ihe surface, which bounds the volume V.

ô (1) dv* -0 lds (2. 11)

r,¡here 0(x) is the potentíal at poinË l, g is the volume charge den-

sity and ; is the unit vector normal to Ehe surfaee S. In the case of

Laplacian potentíal, the fírst integral on the righr-hand side ís zero.

Some additional rnanipulation yields an expression for the electríc poten-

Ëía1 vrhich ís a surface integral over unknown charges " The integral

equation is obtained by setting the integral equal to the knov¡n potential

value of the conductor. The integral equat.ion can then be solved for

1

4re
lglr

V

3 rlrdnr*Jr+#
S
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the surface charges by approximating the integral as a sum over sma1l

surface elements vrith specific charge distribution" The sum is set equal

to the knot¡n poËential at the center of each surface element. The result

of this discretization process is a set of linear algebraic equations

which can be solved by standard techniques which is a case of the moment

method37. Once the charge densities are computed the potential anð.for

field vector at any poinË can be determíned.

The integral equation method is appealing because it is not

necessary to compute the potential at points ¡+here it is not desired.

Also, the analysis of the problems vrhich are unbounded does not require

additional prograroming effort which the case for the finite element and

the finiEe difference methods. Another distinctive characteristic of

integral eçlu6 . formulation is Ëhal since the unknowrb are surface quanti-

ties, the number of unknovms will be proportional to t,he surface area of

the region. Thus, for two-dimensional probleus, Èhe number of equations

is proportional Ëo the perneÈer of the finite boundary. IË folloÞ¡s that

the maËrix equaËion obtained through discretizing the inËegral equation

will be of snall dimension compared to the maËrices obtained for the

finite difference and the finite element methods. It appears that the

computation fime for solutions based on Èhe inËegral equations will be

smaller. Although Ëhis conclusion is probably true, it should be recog-

nízed that the matrix obtained by the integral equation is dense. As a

result, sparse matrix solutíon Ëechniques3s useful for acceleraEing the

solution of matrices which can be obtained through application of rhe

finíte elenenÈ and dlfference methods can noË be used.. Thus, Ëhe compu-

tation time advantage due t.o snaIl matrix síze may noE be as much as

anticipated" It should be noted Èhat efforts have been made Ëo accelerate
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the solution of integral equations, constructing matrices larger in

dimension but more sp".s.39.

Through applicaÈion of the integral equation method, field

problems in the medium of several dielectrics can be solved. For such

problems fvTo sets of equaÈions should be derived. One set of equations

results from Èhe conditíon that the potential must be equal to the knor+n

potentÍal values on conductor surfaces. The second set of equations re-

sults from the fact that the normal component of the flux density at the

dielectric-dielectric inËerfaces must be continuous. If floating elec-

trodes with unknown potential values are present, one additional condi-

tion ís required. In this case Ëhe total charge on each floating elec-

trode with unknolon pocential- should be knov¡n. Often ihis charge value

is zero. In the next Chapter this method will be described in detail.

2.3.s 9þe:es-ltgslslies-YsgIgg

The eharge simulation methoda0 consists of replacing the surface

charges of each electrode by a set of discreEe inner charge distribution,

whose positions and type are predetermined, but the nagnitudes are unknown.

The imporl-ant point is that if some classical charge disEributíon i.e",

ring, line or point charges are chosen, potenEial and field vector at any

poínt can be expressed in analytical forms. rn the case of LaplacÍan

potenËia1 the field vector and potential are gÍven by

0(r) = I p. (r) q.
=J-JJ

s (r) -VÓ (;) {vr, iî¡ }q.

(2 "L2)

(2.r3)

the charge on che j th

- -L
j

where qj represents the unknoron m¡gnitude of
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distribution, and p. (;) is a coefÍicienf that depends on the type of
J

distribution and the positíon of field point ;. The presence of space

charge dístribution is represented by a set of charge" gk giving ad-

ditional terrns

and

r pu(r) qt

- r {vru(î) }qr

to equations (2.L2) and (2"13), respectively.

The potenÈial defined by equation (2"L2) satisfies Laplace's

equation ever¡øhere in the fíeld domain. Boundary conditions are imposed

aÈ a set of collocaEion points i, on the electrode surfaces. The num-

ber of collocation points on each electrode surface is equal to the num*

ber of símulating charges. These eonditions lead to a sysÈem of linear

simultaneous equat.ions

ipl tql IÓ]

r¿here tpl is the matrix

unknor+n charges and t0]

at collocation points"

(2 "L4)

coefficients, Iq] is the colunn matrix of

the colurm matrix of known poËential values

of

is

The matrix equatíon (2"L4) can be solved enploying standard

techniques and as the resulË charge values are obtai-ned. DeEermining the

value of charges, the potential and/or field vector can be computed at

any point. When floating electrodes r¿ith unknov¡n potenË.ial values are

presenË, Ëhe matrix equation (2.L4) is ¡oodified to include rhe supple-

mentary condiËion that the sum of simulating charges of each floating

electrode must be equal to zero
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I q.
JJ

=0 (2.rs)

(2. r6)

(2 "77 )

The simultaneous solution of equations (2"L4) and (2"l,5) gives the value

of the unknown charges. When the medium consists of several dielectrics,

the polarizatíon charge distributj-on of each dielectric at the díelectric-

dielectric interfaces is substituted by ficticious simulating charges out-

side the dielectric. Supplementary conditions expressing the continuity

of the potential and specifying the discontinuity in normal field compon-

ent must be satisfied on each interface between two dielectrics" If D1

and D2 are t\,ro adjacent dielectrics wÍth scalar pernittivities Ê1

ande 2

t-l L
q.-Jl

fiø

r, (rr)c,

"jt

vn, (ir)0,

= r pi (;i)qi
q.

J2

ez 
^L 

- " Vpj iir)r,
o-^'ì c

where q= - consists all charges exsspt those located inside Dr, and
Jr

9= consists of charges except those inside D2" Recently, efforts have'Jz

been concentrated on developíng this method for various geometries and

differenÈ types of simulation+1-47. The sígnificant advantage of charge

si-mr:lation method over other numerícal field calculatíon methods is the

relative ease of prograrnming. The disadvantage of this method is that

the loeation of the charges are difficult to determine analytically"

Therefore, the accuracy of solution Ís difficult to predict and depends

on personal experience" To some degree this difficulty can be overcoule,

applyíng an optimized charge simulation methodaE, which determiries Ehe

posiÈion of charges in such a way that Ëhe simulaËion error is minimum.
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The charge sÍmulation method has been r¡idely used for the

solution of Er'¡o- and three-dimensional problems" Compared to the int.e-

gral equation method, to achieve simílar âccuracy, the charge simulation

method requires a larger number of linear equations"

It should be mentioned that for some large and complex geomet-

ries it may not be possible to obtain satisfactory solution using only

one method" In such cases a fair combination of the foregoing method.s

may be helpful; i.e., the Monte Carlo method or the charge simulation

meËhod can be used to derive a first approximation follorøed by the finite

element roeEhod lvÍthin some reduced subregíon of inEerest. The choice of

computational method depends on the problem to be solved according to

the crireria set our in Table (2.f).

2"4 Selection of MeEhod for Insulator Chaiq

The electrostatic field problsm of a síngle unit insulator is

an unboundedo three-dimensional axisymms¡ric problem" which must be

solved in a nedium of two dielectrics. Due to the complexiiy of the in-

sulator geonetry, application of the finite difference methoci or the

charge simulaÈion met.hod is not convenient. Also, the Monte Carlo method

is noE applicable, because the field problem is unbounded. The inËegral

equation method or the improved version of the finite element method for

unbounded problems can be used to obtain Ehe required fiel-d informat.ion.

These tr,ro methods can also be employed for the fi-eld eval-uat.ion of the

insulator chain regardless of the environmenÈal effect on che field dis-

Èribution. BuË, due to the large size of the insulat.or chain, the di-

mension of the matrix of coefficients increase8rthus, sone dífficulties

may arise regarding the computer memory and computation time. For the
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field calculaÈion of the H.V. transmission insulator chain, v.rhen the

effect of adjacent conducting bodies are to be considered, the field is

an unbounded, three-dimensional and non-symmetric one. In this case the

only method which can be applied is the integral equatÍon method.
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FIELD CALCULATION

CHAPTER III

FROM THE CHARGE DISTRIBUTION

3.1 Introduction

In this chapter a general solutiån of Poissonrs equation in

integral form is obtained by employing Greenrs theorem. A pair of coupled

integral equations are described which can be used to solve for the elec-

tric Laplacian potential and field vector. These integral equations can

be used for the field calculation in a medium composed of a conducting

region with knov¡n surface potential and two dielectric regions with scalar

Pernittivities. Lastly, the relations are expanded for obtaining the

field solution in a medium composed of several dielectrics and conducting

bodies that some of them could be floatíng electrodes with unknor¿n poten-

tial values.

3.2 IntegraEion of Poisson's_ Equatioh55

By means of Greenrs theorem (Appendix 1) the potential at a

::fÍxed point X ruithin a volume V can be expressed in terms of a volume

integral plus a surface integral over an arbitrary but regular surface

S which encloses volume V, Fig" 3.1. The charge is supposed to be

distributed with a volume density of q(y). The charge distribution is

assumed to be bounded but is an arbitrary function of posÍtion. rt is

not necessary that the surface s encloses all the charge or even any

of it,.let 0 be an arbitrary origin and I a fixed point of observa-

tion wíthin

distribution

The potential at this poinÈ due to the entj_re charge

ó (X). A function iþ is chosen in such a way so as to

V.

is

20
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be a spherically syrnmetrical solution of Lapiacers equation

(3. r)

r¿here r is the distance from a variable point Y within V Ëo the

tr-xecl por-nt x

r = [(*-*')2+(y-y')2+ (z-z')r]\

This function however fails Ëo satisfy the necessary condiËions of con-

tinuÍty at r = 0. To exclude this singularity, a small sphere of radius

ï1 is circtrmscribed. about X as a cenÈer. Then, the voluine V is

bounded externally by s and ínternally by si " i^iirhin v borh Q and

U satisfy the requirement.s of Greenrs lheorem" furthermore beeause U

is the soluËion of Laplacels equation vt,l, = 0. As the result., Greenrs

second identity (Appendix 1) can be reduced Ëo

lt fjf o'*u" = J '*ff-o*,*,,u" (s.z)
V S * Sr

As shown, the surface integral should be extended over s and s i " over

the surface S1 the positíve normal direction is direc.ted radially out-

ward from the volume enclosed by s1" Since Ëhis is tol¡ard volume V,

over St v¡e have

a0_âo
A" ðt

and I$rlX = -+ ar Í=11

Since E1 is const.anË the contribution of Èhe sphere to the right hand
Å

L\ siáe or (3.2¡ is
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! a"'l (âo/âr) + 4 +n'i- 611 rí

and in the limit where 11 approaches zero reduces to ¿r0(1). Substi-

tuting this limiting val.ue in (3.2), the porenrial at poinr I in rhe

volt¡me V is

If I and Aó/ar denore mean values of g and EO/ar on 51 rhis

conÈribution is

I,'rlren the medium is homogeneous V'þ = -q/e

*J ffo'.i, Iods
Sr S 1

o(1) = +# I* o'* a,, * f I '- +#* * ¡| rliru" (3.3)
VS

ö(x) =-#f : * " +l I- +#* ó* clrra"
VS

trrlhen the region v bounded by s contains no volurae charge

(3. 4)

o(x) = +,|t-+#o*ficlrru' (3.s)
S

rt is apparent that the surface integrals in equations(3.4) and (3.5) re-

present the contribution to the potential at X of all charges which are

exterior to S" If the values of S and its normal derivarives over S

are knot^m, the potential at any interíor point can be determjned by inte-

gratíon. Equation (3.5) can be interpreted as being a solution Eo Laplacets

equation r¿ithin V satisfying specific condiEions over Ehe bound,ary.

The integrai-



¿4

o (x)

is a particular

soluEion can be

Ëhe homogeneous

S, the surface

1f
- 4re)

V

solution

obtained

equation

integral

Id'
t

of Poissonrs equaËion valid at X, the general

by adding the equation (3.5) ro the solurion of

Vtó = 0. If there are no charges exterior to

mt¡st vanish.

3.3 Derivation of Integral EquaËions

Figure 3"2 shows the problem to be investigated. Region I

shows the el-ectrode with known potential , regions 2 arrð.3 indicate tr{ro

homogeneous dielectrics with scalar permittivÍties e2 and e3, respec-

tively" Thus, the only conEributing charges in the potential calculation

are the free charges on the electrode surface and polarization charges on

dielectric-dielectric ínËerfaces. If this is noÈ the case, then the ef-

fect of volume charges must be Ëaken Ínto accounE4e. In Fig. 3.2 i,

ís the unit vector normal to the boundary surface si of the volume vi

(Si = trj * Srt ). The polential 0i of rhe irh region sarisfies

Laplacer s equation

(3" 6)

is uníque subject to theThe solutíon Eo equation (3"6) in each region

boundary condiÈions listed below

ör þz = ôrs on Slz

on Srs

(knor+n)

(knovrn)

(3 "7)

(3. s)

(s" g)

(3. 1o)

ôr

0z

= 0¡ Qls

_a- 93 on Szs

0e at ínfinity



25

stl

o
"23

ñ'-) (3)

Fig, 3 "2 (1 ) Conductor

(2) Dielectric €,
(3) Dlelec trie € ,
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âQ1/ân1 - 0 on S1 (conducring surface)
(3. rr)

and ez Vôz . ;2 - es Vô: ' ñs on Szg (3.f2)

To solve equation (3"0¡, first, a function rf{i, i¡ is introduced

ú(i, î¡ = L/(+r li - "ll
where X and Y represent field point and source point locations, res-

pectively. Applying Greenrs theorem for medium V,
l_

I

.J f-ú(x,t) . âói(V)/an. + Oi(V) ar1,(x,V)/ân.lds,
S.

l-

(3.13)

Now applying (3.13) for each region and adding the results, while impos-

ing boundary condition (3.7) ro (3"L2)

lO-Cil ; i in v.
__tl_l-

t-
|0 ; X outof V_.

f __
J VCX,V¡ . âQz(l)/ðnr as

srz

r __
+ J ú(x,Y) " ðós (Y) /ânr ds

Sls

î^ I- (1 - -) | rl,(Î,v)ao, (Y)/ân¡ ¿s¿2J
Szs

Io'tÎl ; I in Vrt_= 
i 

0z(x) ; x in Yz

lo'cxl ; i in v¡

(3. 14)
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The Èerms (â02/ôu) and (âQs/ânr) on Sr and the term

-(f - ffi CaO¡/âns) on Szs can be interpreted as Ëhe relative free

charge on the conductor-dielectric surface and relative polarizatíon

charge on the dielectric-dielectric interface, respectively. Thus, the

potential can be recognLzed to be equal to a summation over a1l free and

polarization eharges across interfaces" As it was assumed, since each

dielectric is homogeneous, Ëhere is no volume polarization charge.

The second equation relaÈing the variables of equation (3"14)

can be found by applying the boundary condition gíven in equation (3.12),

across the dielectric-dielectric inËerface Szs " The electric field

E'CXI in any region i can be obtained from equation (3.13)

(1) = - v* oi (x) (3.1s)

vxü(Í,1) " äQr(v)/ânr " ds

vxÚ(l,V) " â0s(Ì)/anr - ds

Vxú (x'Y) ' ð0 r (Y) / Ðna ' ds

vrhere subscript x indicates that derivatives are taken with respect to

the field point x coord.inates. rnserËing equaEíon (3"rs¡ in the boun-

dary condítion (3.I2), which iuplies that che normal displacement vector

aË dielectric interfaces is continuous

E.
1

I

l
Srz

I
l
srs

(1 -+ lsr I¿t I

Szs

It_lx=PI ,,r,
Sre

- (ez - es) (Y)/anr) " v*il(i,1) " ãras
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(3" ro¡

where Þ is on the surface Sz:.

If the charge distribution on a surface S is conËinuous the normal der-

ivates of the potential generated by che charge distribution at. I ap-

proaches a linit as X approaches poínË F on the surface, along the

line normal to S from either sideso. In equation (3.16) the linits

x2=ÞandÍr=F

indicate that point field I approaches to the boundary Szs from med.-

iums 2 and 3, respectively" These two limíts for surface Szs are as

shown below

r
-(ez - r') J (40: (Ì) /ðnr) . v*ú{1,11 l_ _ 

. is ds-sr, lx = Þ

t-4(ez - ..) _Li*= I CaO¡ (y)/ðns) " V*ü(x,y) " n3 ds
Xz=P I

Þ23

t_
-e:(r -es/ez) _Lim_ I Ca03(V)/an3) " vxú(i"y) . i, " ds - o

X.=P J^- Szs

l-f-= ä CUO'(F)/a",) *.J (â0e(y)/ân3)"vx{i(x,l)i_ 
_ ";3. ds

Szs lX=P

(-
Lin I (Aô:(Y)/âng)' VxU(X,y) " ns . ds

X.=P l^

ùzg

= - + (ao,rF) /&tz). 
J,jao3(y)/ân,¡ 

. v*ú(1,v¡lO=U . t, . ds
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Substituting the limirs in (3" 16)

-e+4(a0s(Þ)/ðna) - (r-?, I (aög(Y)/ôns) " (âqr(1,i)/ðns)ds
Szs

r-+ | (a0z (Y)/ânr) . (ôrJr(1,v)/âng)ds
J

Srz

t_+ | (â0s(v)/ðnr) . (âìf(i,v)/âng)ds = 0l
S rs

(3. 17 )

r,rhere arr(Í,1)/an, = V*ü(i,V) l_ _ . o3
tv: D
|,t

Two coupled integral equaËions carr be achieved by

1" Choosing rhe field poinr i it equarion (3"14) ar rhe

elecÈrode surface sr = srz * srs and imposing the poten-

tíal to be equal to Èhe known electrode potential at point

X"

2" Imposing t.he continuity of norrnal dísplacement vector across

the dielectric interface Sz¡ , enploying equaÈion (3. 17) "

In both eçltraËions the unknolr'ns are Ëhe charge values q (V) r¿hich can be

defined as

c (V) = âôz (T) /a"t , i on srz

S(y) - âQ,(î)/anr , y on Srs

c(?) = -(r - es/ez) (E0e (i)/anr) , y on szs

Fina11y, Ëbe integral equaEions can be writËen as
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-(O(P) = lq(V) ",].'(p,l¡a" , Þ on 51
J

S

(ez+e¡) q(F) = 2(e2-e) I otVl . (aú(F,Ì)/âns)ds , Þ on szg
J

S
(3. re)

(3.18)

where S - S12*S13*Szs

0(P) is the known surface potential on 51

3"4 Extension for More Complex Field Domains

Figure 3.3 illustrates a pracEical configuration of a medium
2B

composed of several dielectrics and electrodes with knorm potenÈial . The

extension of equations (3.18) and (3.19) for such a field domain is

straighÈforward. In such a case, Sr is the collection of all surfaces

over retallic bodies

. 
Sr = (Sl¡ -l- Sl+ + Srs) + (Sz¡ * Seq * Szs + Szs)

and Sza becomes Èhe collection of a1t dieleccric-dielectric interfaces

Sze = Saq * S4s * Sse

and $ = 51*S23

rt should be noted rhar the applicarion of (3.19) requires the approp-

riate pair of dielectric constants to be used for any inËerface*

Figure 3"4 shor¿s a part of HV transmission line insulator chain.

Field evaluaËion around this chain is to be carried out in a medium of

two díelect.rics and several electrodes. All but two of these electrodes

as shov¡n in Fig. 3"4 are floating electrodes rviEh unknor¿n potential val-

ues. Applícation of the integral equation meËhod for the field computation
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of such problens requires an additional boundary condition besides the

boundary conditions (3"7) ro (3"72). rn Ehis case the rotal charge on

each floating electrode must be equal to a specifÍc valuei ofren this

charge value is zero

where S, is the total surface of floating electrode i.
l_

If the field domain consists of one dielectric, equaÈion (3.19)

will be eliminated, which irrylies that

q(Þ) = 0 , p on Szs

The application of inËegral equaËion in this case reduces Ëo equation

(3 
" 18)

t-Qi = J e(Y) ds = o

Þ.
].

- 1l -0(Þ) = *lc(Y)Uqr-,i¡asuJ
S

(3.20)

(3. 21)

where Þ iu on the electrode surface. The above equatÍon can also be

derived from superposition of distributed sources.



CHAPTER IV

APPLICATION OF THE INTEGRAL EQUATION METHOD FOR

THE ELECTROSTATIC FIELD DISTRIBUTION OF AN INSULATOR CHAIN

4.I Introduction

In this chapter the integral equaËions 3.18 and 3.19 are further

developed for Èhree-dimensional axisyrnmetric field problems" The applic-

ation of the moment method for solving the integral equations is described"

The criteria ruhich must be rnet by the results in order to guarantee the

required accuracy are established. The equipotential lines around. a

single unit insulaÈor are plotted and the effect of differenË parameters

and approxiuation on the resulÈs are discussed. Finally, the field pro-

blem of insulator chains composed of 6 and 2L single unít insulators

are solved. The poËential distribution across the chains are calculated

and equipotential lines are illustrated.
lt,

4.2 Theoretical Aspects

Before proceeding wíth the discussion of the equations, the

procedures involved in application of the technique for an axisymmetric

problem will be described:

1. All the surfaces of the problem under sËudy v¿ill be sub-

divided into a number of axially syrmetric subsurfaces.

2. On the subdívisíons the free and poLarízaEion charge

densities v¡ill be assumed const.ant, but of unknown magni-

tude. Thus, the integral equations 3.18 and 3.19 nhích

34
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were describec earlier can be approximaEed by a summation.

Each term of the surrmation can be expressed as a constanE

which is a function of the problem geomeÈry and electrical

properties of the dielectrics rnultiplied by the correspond-

ing unknovm charge density.

The general form of each term for any axisymmetric pro-

blem can be obtained as an analytical expression, buË the

numerical values are found through applicaÈion of numer-

ical rnethods" In the application of the integral equaÈion

method fo the insulator chain field problem, each sub-

surface is assumed to have a constant. slope. This approx-

imation is equivalent to consider.ing each subsurface ^&Sn

to be the lateral surface of a frustum of a cone, as shown

in Fig. 4.L. In Fig" 4.1 9" is the parametric variable

defining the straight-line approxi-mating the contour with

each segment lying betrseen 9" , "rd [.r.

4" A linear system of equaEíons c¿Ìr¡. be obtained by setting

equations 3.18 equal to rhe knor^n potential at the center

of each subsurface, on meEallic parts, and requiring Èhat

equations 3.19 be satisfied at the center of each subsur-

face on dielectric interfaces.

Hereafter the cylindrical system of coordinates are used and.

Ëhe posiEion of the field point is represented. as

(r, z, 0)

t
JO

and the posiËion of source point is given by
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y = (rr, zt, 0t)

The surface element ds on each subsurface can be wrirÈen as

ds = r " dOt . d.Q,

where .t is the distance along each surface measured from its bo¡ton

(Fig. 4.f)" r is the cylindrical coordinate perpendicular ro the axis

of symnetry. For any contour segment, the slope is conslant, so g, and

r can be described as linear funcËions of z.

d9" = f. (z) dz

r = r(z)

ds = r(z)"t(z) "dOr.dz

(4. 1)

The separation distance R between the field point X and source point

Yis

R = lx-yl
= [(r cos0 - rr cos0')'+ (r sinO - r'sinOr), + (" - "r)r]4 

(4"2¡

rn the case of axisymmet.ric problems, due to angular syrunetry, 0 can be

set equal Eo zero. so, without loss of generality R may be expressed

as:

R = [(r-r'cos0,)2 + (rr sin0t)2 + (z-zt¡214

Furthermore, S(ç) is a function of z

(4. 3)

q(Y) = q(z) (4.4)

substitutíng equaËions (4.r¡, (4.3) and (4.4) in rhe integral equarions
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(3.18) and (3.19) we have

ô(r,z) = + i I la(zt) " rt(zt) " r(ru)/Rldet " ð2, (4.s)an ) J rY\¡

z' et

r¡here r and z ate on metallic surfaces.

.*trlRl"do, "dz,

G(r,rr, z,zu) = l" ugt = -::------------ I+

Jo -ã-=æK(s)

where K(s) is the comptr-eÈe int.egral of the first kind, and.

52 = (4rr') /l,G * r'), + (" - z, )2 j

rn equarion (4.6) + i" uu'/* can be expressed assr:or,, Jo

-u ftnou,/o = cos(c) ,[(r')2 + r2 + (z - z])21 e (s) - n2 r(s).,
¡ttr jo uv /¡\ 2, t l

- _ -llÉ " sin(c) l

where E(s) is the complete elliptic inregral of the second. kind.

(4"6)

where r, z are on the dielectric interface.

In both equations (4 
" 5) and (4. 6) 0 r varies f rom 0 to 2Tl , and z'

is over each surface in the collection surface Èaken in succession. In

equation (4.5) the rerm ['" + can be expressed as (Appendix 2)
to
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A = [(r*rt)'+(r-tt)']z

!, = [(r-rr)2+ (z-zt)'],

angle C is shown in Fig" 4.L.

Nurnerical values of K(s) and E(s) cpn be found by

1" Application of subroutines avaíIable in the International

MathemaEical and Statistical Library (IMSL),

or 2" Employing a polynomial approxim:Èion of K(s) and E(s)

(Appendix 2). In this case, Èhe approximatíon can be

achieved within 3 x l0-5 or 2 x l0-8 depending on Ëhe

approximating polynomial.

Ir should be noted that Ehe analytical expression of the deriv-

atives in equation (4"6) described as

_L l" + vrfnae,tnr " ñ3âns I-0

can be obEaíned by finding the derivatives of the polynomíal expression

of the íntegral"

4.3 Moment MeÈhod for the SoluEion of the Int.egra1 Equatíons

A procedure which reduces an original functional equation to a

maÈrix equaËion is called matrix meËhod. The name method of moments has

been given to the procedures for obtaining Ehe mat.rix equation. some-

times, Ëhe procedures is called approximation Ëechníque, but when the

solution converges in the linit Ëhis is a uisnouer. Consider the deter-

ministíc equation

L(q) = v
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vihere L is a linear operator,

Let q be expanded in a series

domain of L as

q = Ic o^fl'n

of

is knov¡n and

functions {1,

q is to be determined.

g.z, eg, in the

where c

infinite

ten as

I s are consËants.

sunrmation. For a

For exact solution

linear operator L

(4 "7)

the above relation is an

the equation can be r¿rit-

I c .L(q) = vn-nn

It is assrlmed that a suitable inner product

Defining a sef of weighting funetions r,trt , Ír2,

inner producÈ of equation (4.8) Ëhe result is

(4"e)

g, v ) has been determined.

w3 ¡ and taking the

lL*,1 larrJ = [v*]

For a nonsingular maËrix IL] iËs inverse exists, and the unknor¿n tc]

can be determined. Usually the integration involves in evaluaËing the

elements of coefficients maÈrix IL] is diffícult to perform in problems

of praetical interesÈ. A simple and effective way to obtain Ëhe approx-

imate solution is Èo require Ëhat. equation (4.7) be satisfied aË the dis-

crete points in Ëhe region of inËerest. This procedure is called poin¡

matching method. In terms of the moment method it is equivalenÈ to use

the Dírac delta function as a weighring funcEion. For a more accurate

solut,ion, other techniques such as the subsecÈiona1 bases method, the

extended operaËors method, Ehe approximeÈe operators meËhod and perÈur-

baÈion solutions may be applíeds2.
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4"4 Single UnÍt Insularor Field Calculation

The whole surface of insulator unit S is divided into N

subsurfaces so thaË each of them is the lateral surface of a cone frusËum,

designated as ASr, (Fig. 4.1),

N = Nrrz * Nrr3 * N2rs

where Nr r 3 is the number of subsurfaces across metallic part

(Pin + Cap) and dielectric ez (glass) interface

Nl, g is the number of subsurfaces across metallic part and
:

dielectric er (air) interface.

Nz, g j-s the number of subsurfaces at the dielectrics inter-

f.ace"

Slrz = t AS-, 1( n ( Nlre
II

n

Slrs = IASrr, Nrrz*15rÍNt,z#Nros
n

and S2,3 = IAS_, Nr"z*Nr,g*1<n<N
n

n

The surface charge density is approximated as

C,þ) = tQ- "h_(z) , l<n<N
u. lt

where h (z) is defined asn

(4. e)

(4.10)

The charge represenËation as in equarion (4.9) with hrr(z) is defined

as (4.10), introduces a charge discontinuity at the boundary of each

subsurface. As a result, both Èhe potential value and field vector are

(t i z on AS

h(z) = ¿ n
n 

lo ; z on At, , m # n
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undefíned at the lines of discontinuity. However, the expansion function

(4.10) is not Ehe only choice, í"¿., triangular charge expansion funct.ion

can be used as an alternative" This would cause additional programning

but would result i-n a continuous function for the surface charge distrib-

uÈion. It is shor.rn that for engineering problems, expansion function

(4.10) resulËs in acceptable accuracy3+'3s.

Considering the foregoing discussions equarions (4"5) and (4"1)

can be wriËten as:

electrode surfaces and Nz r:

the coefficient of charges in

equatíon can be wríEten as:

$ = IL O'm ûIn 'nn

" f (z') ' G(rrr?, zrzt) " dzl (4"11)

(x rz) is on the metallic surfaces

r' " f(zt)

(4.r2)

on dielectrics interface. Representing

equaÈions (4"11) and (4"L2) by L__, Ëhe

þ(r,z)

n<N andfield

= lro4Tt 'n
n

I ,,
l

A,z1
n

point

tl"ñrq' 
In nL'
n

r¿here I <

Q(r,z) = ((e s - ez)/Gg +ez))

â

ãfr t{.,rt, zrzt)dzl

where I < n < N and field point is on the dielectric-díelectric inter-

f ace.

A sysËem of linear algebraic equations for the unknov¡n Qn can

be obtained, imposing (4.11) to be equal to the known electrode potential

at the cenËer of each subsurface on metallic parts, and saEisfying (4"L2)

aË the center of each subsurface across dielectrics interface" The to-

ta1 number of unknoums is N rvtrich corresporlds to Nlre * Nrrg on the

(4" 13)
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Írhere 1<n<N

1 Í t ( Nloz * Nr,¡

-fL = + I ,'"f(",),G"dz'rtrl 41ï j
Lz'

n

and O = tL 0Ì inn 'n
n

where 1<n<N

(4 "L4)

(4. 15)

Nrrz * Nrrs * 1 < m < N

(4.16)

Equations (4.f3) and (4.15) give the m¡¡¡ix equation

Itl tal = tol (4"L7)

where I0] Ís the column m¡trix of surface pot.entials and zeros.

la] is the column mâtrix of unknown surface charge densities.

tL] is the marríx of coefficients.

Determining Èhe unknor¡n charge densíties t.he potential and field vecËor

at any point can be computed. Potential values aE any poÍ-nt can be ob-

tained by employing equation (4"13)" The field vector can be cal-culated

by:

E = -VO

Lrr, = ((ee-eù/z¡r. (Ês+rrl) 
J

Lzt
fi

rl . f.(zt) . (ðG/âng) " dzl

E = - f Q . V(L )n Elnn

r'rhere

(4. 18)
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1lV(L__) = + I t' " f(zt) . VG " d.z'nn 4rr j

^"i,

(4"re)

The numerieal values of coefficienË given by equations (4"14),

(4.16) and (4.19) can be found through application of numerical integra-

tion methodss3. The common numerical integration meÈhod.s for engineering

applicatíon are trapezoidal rule, simpsonrs rule, three-eight rule, and

Weddlers rule. It has been experienced Simpsonrs rule is sufficiently

accurate for most engineering purposes. rn this work Ehree-eight rule

that gives higher precision than Sirnpsonrs rule is used. This technique

introduces a cubíc Èhrough the points (xo, fo), ..c.o, (xs, fs) FÍg.

4"2 and the integral is given by

f (x) h(fo+3f1+3f2+f3)

This ueEhod is exact for cubical polynomials and has the advantage that

it can be applied to an odd nurnber of subintervals.

4"s Accuracy_ Criteria

rn the inÈegral equation method Lhe accuracy of Ëhe results

depends on the number of subsurfaces that approximate the actual surface

and Ehe position of the subsurfaces. Therefore, some criËeria must be

establíshed to decide whether the obtained resulËs for each set of sur-

face approxímations meet the desired accuracy or not. The following con-

dition can be used as accuracy criteria:

1" The calculated potential on conductors should be equal to

the knor.rn conductor potential. In other words, the solution must inÊro-

duce the metallic surfaces as equipoËential surfaces"

f"')*n

ô.Jclx=g
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2. The electric field vector is normal Eo the electrode

surface. As the result Ëhe Ëangential component. of the electric field

vecËor at point on electrodes must be equal to zero"

3" The tangential component of the electric fietd should be

continuous across any dielectric-dielectric interface" This condÍËion

is the same as the equality of potential values across the interface of

two dielectrics, when potentials are calculated respecE Ëo each dielec-

Ëric 
"

4. The normal component, of the dísplacement vector is contin-

uous across the díelectric-dielecËric boundary.

5" The value of electríc potenÈial and the field value and

direction aË any interested point should be independent of the surface

approximaËion.

The condiËions I to 4 are boundary condit.ions" The condition

5 is a check r¿hich indicates wheÈher Ëhe surface approximation is valid.

4.6 Discussion on the Results of Single Insulator Unit

The sysÈem of linear equaËions (4.L7) obtained Ëhrough applica-

Èion of the integral equaËion met.hod, was used for the electrosÈatic fÍeld

calculaEion of the single uniË insulaËor shor¿n ín Fig. 4.3" The field

domain consists of Ewo electrodes (Pin and Cap) and t¡vo d.ielectrics

(ai-r and glass) " The potential values of the Pin and Cap are assumed.

to be I and 0 per unit" The relative permittivities of the glass

parÈ and air are 5"5 and 1o respectively" The insulator surface r¡ras

divíded into cone frusturn subsurfaces as described earlier. The number

of surface segments v¡ere changed in the range from 20 Ëo 45 and the

sysËen of linear equation (4.L7) was solved. For any set of calculated
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surface charge yalues the accuracy criteria 1 to 5 were checked. The

results indicaËe that the best approxirnation for Ëhe single unit insulator

can be achieved, employing 30 or 3r subsurfaces as shown ín Fig. (4.4a)

and (4.4b), respectively. The number of subsurfaces across each part of

the insulator unit are:

7 subsurfaces on the cap,

6 subsurfaces on the pin,

17 and 18 subdivisions across the dielectrics interface for

Figs. (4.4a) and (4.4b), respecrively.

Table 4.1 shows the maximum percent potenEial error, maximum deviation

angle and the mnximum percent error of the normal dÍsplacement vector for

the surface approximation shown in Figs.(4"3a) and (4.4b), where

Percent poÈential error = | calculated potentíal - acËual
potentÍall x 100 / (actual potential)

The deviation angle is the angle between calculated field
vector and the normâl line to Ëhe electrode surface.

Percent error of the normal d.isplacement vector õ =

I Calculated normal D in glass - Calculated normal õ in
airl x 100 / lcatcutaËed normal D in glass.

Due Ëo the couplexity of the insulator geomeEry, Ehe boundary

can not be expressed in simple algebraic equations. Thus, Ehe digitízer

tablet of ?Ð?-t I was used t.o generate the coordinaEes of the check

poinËs. The check poinËs are distributed across Ehe boundary with a

density of 10 poínts per uni t length Ín order to check the accuracy

criteria men¿ioned in (4.5)" (The digítLzer tabler of VOP-I f ís an

analog-to-digiËal convert a device, rohich generat.es and transfers Ehe

xry coordinates from a dralring to an input computer medír¡m. For the

PurPose of this work the coordinates Ìdere stored in a magnetic tape and
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Fig" 4.4- Surface .Approxircation Of An Insulator

IInit With Straight lines.
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then transfered to the main progrann. ) The equipotenÈial lines for the

single insulator uniÈ that is approximated as Fig. (4.4b) are shown in

Fíe. (4.s).

The computer program is developed in general for¡o and can be

used for the field calculaËion of any axisynmetric problem with known

electrode potentials in the mediu¡r of two dielectrics. Subroutine

LEØIIF was used for the soluÈion of mâtrix equation (4"17)" Subroutine

SM0C0ñ was used to plor equiporential 1ines"

4.7 Field Calculation of the H.V. Insulator Chains

The electrostatic field calculation of a H.V. insulaÈor chain

by means of the integral equation meEhod follows Ëhe same procedures as

described f.or a single unit insulator, except thar the presence of the

floating electrodes must be considered. Thus the matrix equatíon (4":-7)

vrill consist of the following equaËions

rh=
'm

Iwhere

TL Oûtn 'n
n

Nt is rhe Ëotal nr¡mber of subsurfaces on

¡¡ith known potential values (Nfl) n plus

wiÈh unknor^rn potentíal values (Nl2). L

equation (4.L4)

Í"Íl¡

<m<Nl

(4. 13)

the electrodes

the electrodes

is given by

o
'm

TL OItrn 'n
n

n<N1<r¿here

(4. rs )
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Nl+1<m<N1

N2 is the ÈoEal

interface.

is given by equaËion (4.16)
mn

+N2

number of subsurfaces across dielecËrics

0-r
n

L
mn an

(3. 2o)

on each floating electrodewhere n Ís the number of subsurfaces

with unknohrn potential.

- Nl+N2+15*<Nl+N2+N3

- N3 is the total number of floaring electrodes.

cone frustum"ís the surface of each

The problem unknoumsare N = Nl * N2 surface charge densities plus N3

potenÈial values of che floating elecËrodes. Due to floaÈing elecËrod.es

the natrix of coeffícients is not dense as rras the case for single insu-

laÈor problem" The marríx of coefficients is illustrated in Fig. (4"6).

4 " 7' L 4l}evrygÉr-is-rlsglelsr-gþ1-'-ges!-isttre-eI-g-Iæglcler-geil:
Fig. 4"7 illust.raË.es an insulator chain made of 6 single unit

insulators shoron in Fig. 4.3" Potential distríbution across the chain

and equipotential línes were deËermined, applying the inËegral equation

methods" rnsulators number I to 5 are approximated r,¡ith L4 sub-

surfaces and insulat.or number 6 is approximated \^/ith 15 subsurfaces.

WIth the exceptíon of the elecErodes at both end.s of the string rrith

the poÈentials of I and 0 percent, the rest are floating electrod.es

v¡íth unknown potentials (N3 = 5). The eguipotential lines and volt.age
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distribution across Ehe chain are illustrated in Figs" 4.7 and 4.g. The

toEal couPutaËion time is 8"42 seconds, which is the time to solve the

matrix equation and checki-ng the accuracy criteria I to 4. The ma¡f-

mum potential error on the electrodes is -3"2 percent" The maxiruum el-

ectric field deviation angle is 16.2 degrees and maximum normal displace-

ment error on the dielectrics interface is 6.3 percent" The check

points are distributed across the boundary wiÈh the density of 5 points

per unit length.

4.7 .2 ål1:yg3e!rts*I$sls!er_ç!e1!_geæ_i:ll!e_eI_Zl_Il*le!er_þi!e
Generally, as the number of insulator units of the chain in-

creases, tü/o major difficulties arise:

1. The number of surface divisions increase wiEh Ehe number

of insulator units" Thus, the number of Ehe elements of

t,he maErix of coefficients increase in proport.ion to t.he

square of the number of the subsurfaces; the computation

Ëime increases in proportion to the cube of che maËrix

diuension" Furthermore, the maÈrix elements r¿hich must

be stored Ín the conputer memory is equal to the square of

maÈrix dimensÍon. Thus, some liniration may arise regard-

ing the eomputer memory.

PracËically, increasing the number of surface subdivisions

results ín the singularíty of Ehe coefficients matrix. As

the matrix of coefficíents approaches singularify the error

increase rapidly. Thus, the application of the integral

equatÍon method for the fietd evaluaËion of long insulator

chains requires careful surface approximation"

L"



53

KÌ1

ñ12

N2

N11+l{12+ru2=n- N3t-]

4 "6- I\{atrix Of Coefficients"

Dense Part

Sparse Part

N5 t
L

Fi g"

ffi

N
n Zero ?art



54

LOf"

207,

25/"

10r,

) )7o

4O/'

45/.

50%

60ø

70þ

Fig" 4"7- Equipotential lines !'or A 6 Units

Insulator Chain"



55

o
Þ0
d
.P
r{
o

r{
d€
o
H
(Ff

o
'-ôñ

I

+r
..J
É
;f,
(o
@
o
h
E)

(¡)

þ¡
d€

r-l
o

18

18

16

l-4

72

10

Insulator Number

Fig, 4.8- Voltage ÐistrÍbution Along fnsulator
Chain.

Ground ed End



\otrl

F
ig.3"4a

cap

P
in

F
ig.3"4b

D
ielectric

Int.erf ace

T
A

B
LE

 4"1

P
ot,ential error

M
ax. (P

ercent)

caP

P
in

3. B
3

D
lelectric

Interface

2.67

D
evíatlon angle

M
ax. (degree)

2,93

2.7 0

r0.7 2

7. 01

N
orm

al D
 error

M
ax. (P

ercent)

8.00

8.36

3.42

3. 18



57

Figure 4.9 shoLrs rhe insulaÈor chain of a 400 kv DC line which

is m¡de of 2L insulaËor units CFig" 4.3). To calculate Lhe potential

distribution of chain, each insulator unit was approximated vrith 6 sub-

surfaces r,¡hich correspond to 2u 3 and I subsurfaces for the cap, glass

and the pin, respectively. It was noticed that the effect of polariz-

ation charges on Ehe charge distribution which is far enough is negligÍble;

í.e., the effect of polarization charges of insulaüors 1 to L4 on the

charge distribution over insulators lB to 2l are negligible" This

approxiroation introduces zero bands in the dense part of the coefficients

matrix (Fig. 4.6). Thus, the required computer memory can effectively be

reduced, also the computation tine r¿il1 be reduced.

The equípoEential lines and the voltage distribuEion across the

insulator chain are illustraÈed in Figs" 4.9 and 4.10. The EoEal compu-

tation time is about 39 seconds. Due Ëo the rough surface approximaÈion

the potential error and deviaÈion angle are higher compared to the results

obtained for the single unit insulator field problem.

If a more accuraEe t'Lre solution at a specífic region around a

long insulator chain is required the foregoing solution can be employed

to determÍne the poÈential values of floating electrodes and the charge

values of the insulators which are far from the interested region. In

the next step Ehe insulators which are closed to the pre-specified region

are modelled carefully" Considering the effect of calculated. charges Ëhe

matrix equation of the sysÈen can be obtainedu løhich results in more ac-

curate field quanEities"
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FIELD CALCULAT

H.V.

CHAPTER V

ION OF A NON-AXISYMMETRIC

INSULATOR CHAIN

5.1 Introduction

rn this chapter, the integral equaÈion meËhod discussed in

Chapters 3 and 4 is developed for the field calculation of a non-axi-

syTnñeEric H.V. transmission line insulaËor chain. A consÈant sectorial

surface charge is suggested in order to take into accounÈ, the non-axi-

synrmetric surface charge distribution. DifferenË methods for consid.er-

ing the effect of conducting bodies around the insulator chain are d.is-

cussed. Finally a combinaÈion of the integral equation method and the

charge simulation technique is enployed for field conpuÈation of the Ín-

sulator chain, wíth the effects of Ëor¿er, cross-arn, line conductors and

ground are taken inÈo account. As an example, the insulator chain field

problem of a 400 kV D.C. transmission line is solved. The effects of

conductors, cross-arm, ground plane, and to\^rer on potential distribution

across the insulator chain are discussed.

5.2 Mathernatical Model of the problem

I'igure 5"1 shows the front vier¿ of a 400 kV D.C. transmission

line. Accurate knowledge of the potential and field distribution along

the insulator chain requires proper mathematical modelling of the problem,

which depends on the geometry. NeglecËing the effects of surrounding

neEalliQarËs such as line coriductors, tov/er and cross-arm, resulËs in

an axi-symmetric field problem, which is much easier to evaluate.

60
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However, this evaluation may

are three basic difficultíes

syrrnetric insulator chain.
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in considerable error. Generally, there

the rnathematicai rnodelling of a non-axi-

1. Complicated geometry of the problem;

2" Unbounded space inside r,¡hích calculation must be carried

out; and

3. Influence of adjacent conducting bodies r^¡iEh knor"¡n pot.ential .

The rnathematical model nusË be capable of overcorning these difficulties

within the constraints of practical limítations such as computer memory

and time, without reducÍng the accuraey of. the results.

The effects of conductors, cross-anne tower, and ground on Ëhe

field and potential distribuËion of the insulator chain, can be Ëaken

inÈo account by employing the charge simulation method and/or imnge prin-

ciple.

Igggg_!:f$ip_tg: The merhod of ímages ís useful v¡hen ir is

desired to find the field arising from an object in the viciníty of con-

ductors of a certain simple shape. For the case shown in Fig. 5.2a,

boundary condition requíre that the poËential along the grounded plane

be zero" This requirement is met if, in Ëhe place of conducting surfaces,

an equal and opposiEe image charge is placed aE the mirror inage position

of the object i,rith respect to the ground plane" rf the plane pctential

is other than zero, the value of this constanL potential is simply added

to the potential expression from the main charge and íts irnage to gíve

the final potential value at any point.

For a charge in the vícinity of the int.ersection of conducting

planes, as q in rhe region of A0B rig. 5.2b" the imaging proced.ure is

different. rn this case, it is necessary to image Ëhe images in turn,

be

in
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repeating until further images coincide, or all further irnages are too

far distant from the region to influence the potential. It is possible

to satisfy exactly the required conditions r¿ith a finite number of Ímages

only if the angle A0B is an exact multiple of 360o. Except for some

simple geometries such as planes and spheres, one cannot determine the

location and strength of Ehe irnages. It should be menÈioned that in some

cases this difficulty can be overcome by deternining a seÈ of simulated

images using an optimization techniquesa.

gþgfgg_!lgglg!:91_ygfþg4: The charge simularion merhod can be

enployed to model the tower, cross-arm and line conductors, with fictit-

ious charges" Depending on the dimensions and the geonetry, infinite

line charge, finite line charges, point charges, and ring charges, or a

combination of Èhese can be used to model each metallic part. The prin-

ciple of the charge simulation method is described in chapter rr.

For the case under consideration, due to the complexity of the

geometry of the ground object (ground plane + tower + cross-arm) direct

applicarion of charge simulation method is simpler and used to model Ëhe

tornrerr cross-arm and conductors. The effect of the ground plane on the

potential distrfbution is taken inËo account by rneans of imaging the

charges simulating line conductors, torder, and cross-arn, with respect

to ground. The insulaËor chaÍn is nodelled using const.ant sectorial

charge distributions discussed below.

5.3 Matheroatical Model of the Insulator Chain

For Ëhe case of the non-axisynmetric field problem, the surface

of the chain can be approximated with lateral cone frusËum subsurfaces,

the s¡me as described in Chapter IV for Ëhe syrnmeËric case" But, due to
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lack of axial symmetry, the charge density over each subsurface can not

be constant. The charge distribut.ion over each segment ean be expressed

as a constanÈ Part plus several cosinusoídal (or sinusoidal) harmonics

with unknor^rn peak values, gi¡ ês in Fourier analysis. rn this case

the charge distribution over each segment is a funcËion of the rot.aÈion

angle 0 and can be given by

q(0)

0<

= f nr-'
l_

cos (i0)

i<n

the total number of harmonics

(s"r)

where

]-S

The value of qi is

ality condition as is the case

obtained by application of the

on the subsurface of interest..

is (n + l), rahich is equal to

segment.

not calculated by fulfilling the orËhogon-

for Fourier analysis. The git" can be

boundary conditions at the poínts locaËed

The total number of these contour points

the number of unknown charges of each

An alcernaËive is t.o divide the laÈeral cone frustum subsurface

into sectorial segrnents. The surface eharge disEribution over each seg-

ment is maintained constant. Therefore, rotational syumetry d.oes noÈ

exíst. Figure 5.2c illustrates a radial sect.ion across a subsurface of

the insulator chain whích is shorn¡n v¡ith 6 segmenËal surface charges.

The number of segments can be changed t.o suit. the accuracy required.

In this work, each subsurface is dívided into 4 sectors. The

Íntegral equationsfor the insulator chain are described by equaËions

(3.20) " (4.13) and (4.15). For rhis problem rhe coefficienrs t o, ín-

volve incomplete ellíptic inËegrals which can be handled numerically

(Appendix 2).
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5.4 Mathematical Model of the Conductors

The sirnulation of the charge distribution on the surface of a

conductor by line charges of infinite length is a known principle for the

electrostatic field evaluaËion of circular cylinders. Since the lÍne

charge is of infínite length" the quantity to be determined is the charge

per unit length q. The effect of the ground plane is considered by the

image of the infinite line charge r,rith respect to ground. The potential

coefficient of an infinite line charge and its image (Fig. 5.2d) is de-

fÍned as

r,¡here

L

t2

f1

(x,y)

(xt ,yo )

[(y +

t(v -

is

is

L/ (2 " r " e) " Lnlrz/rtl (s.z¡

(s. 3)

yt)2 + (* - *')'l%

y')2 + (x - 5'¡214

the

the

field point location

sourc.e point locaËion

The electric fíeld vector E at point (x,y) is given as

- ç7a
- - v']J

= q,/(2"r.e) " [(x-x')/rt - (x-x,)/r2

E

E li

ll+ q/ (2'r " e) . [(y -y')/rL - (y -y')lrz

5.5 MaÈhemaËical Model of the Tower and Cross-Arm

The t.ov¡er and cross-arm, Fig. 5.1, are modelled with 3 and

2 finite line charges, respectively. The effect of ground plane on the

PotenËial distribution of thesefinite line charges are E.¿þen into account

by their ímage charges wíth respect to ground" The poËential coefficient
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and the field componenr of a finite líne charge (Fig. 5.2e) at point

(r rz) are given:

L = L/4re(zz-zt) . f.n jkz-z+A)' (zr +z+B)ll

lQt-z*C) " (zz+z+D)ll (5.4)

E, C,/4re(zz-z)'lGz-z)/r " A- (zt-z)/r. C

* (zt+z)/r o B - (22*z)/r " DJ

E - q,/4tr¿(zz-zt) . [L/L - rlc - L/s+ r/D]z

where q is Ehe charge density

A = [r2+(zz-r)']2

g = lrt+ (zt*r]"14

f, = lrr+(zt_òrl4

D = Lr2*(zz+")"J4

As mentioned before, the effect of ground on the potential and field dis-

tribution of the insuraËor chain is taken into account, euploying image

charges of the line conductors, cross-arm, and the tower. CalculaÈion

results índicat.e that for the region in the vicinity of rhe chain the

effect of ground on the field distribution i-s not significanË. Hovrever,

this effect aÈ regíon close Ëo ground is quite noticeable.
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5.6 Discussion of Results

Curve (a) Ín Fig. 5.3 illustrates the potential disrribution

along the chain when the effect of tower, cross-arm and conductors are

taken into account. comparison of this curve in Fig. 5.3 with Fig. 4"10

indicates that due to Ëhe environmental effecEs, the potential distribu-

tion across the insulator chain is altered. This effect is especially

more significant for the insulaËors which are close to the line conduc-

tors. Curve (b) in Fig. 5.3 shorn¡s the potential distribution when the

effect of transmission line conductor is neglected. Comparison of curves

(a) and (b) indicates Ëhat as the resulE of the conductor surface charge

dístribuËion, the voltage distribution non-uniformity increases. Curve

(c) in Fig. 5.3 represents the voltage distribuËion along the chain,

when the cross-arm effecË is neglected. comparison of curve ttctr r¿ith

curve ttatt shows that the presence of cross-arm increases the voltage

supporËed by the insulators at the line end, and decreases the voltage

supported by the insulaÈor at the ground end. The line conductors have

more influence on the voltage supported by the line end units than the

cross-ânn. Equipotentíal lines for this insulator chain in the plane

that. passes through the axes of insulaËor chain and tower are shown

in Fig.5.4
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CHAPTER VI

CONCLUS IONS

6.1 The Numeri-cal Method

l. In the present work, it is shown that the integral equaÈion

method has several advanËages over other available numerícal methods for

the electrosEatic field evaluation of HV insulator chains. The íntegral

equation method reduces the number of linear algebraic equations compared

to other techniques. This results in a smaller computation time. Also,

this metirod allows the fÍeld calculation at any desired point without

extra programming effort.

2. Three coupled integral equations are described which in

princÍple can be used Eo solve three-dimensional electrostatic field

problems. In general õrm, the field domain may be composed of conductor-

díelectric boundarÍes with knor¿n and unknown potential values and

dielectric-dielectríc boundaries.

3. A combination of the integral equation method and the

charge simulation technique is described rvhich can be used. to solve the

electrostatic field problem of un-conventional and complicated geometries.

4. The programs are developed in general form and can be

employed to solve any electrostatic field problem ülith the bound.ary con-

ditions described for a H.V. transmission line insulator chain in multi-

dielectric media.
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6.2 Insulator Chains

An integral equation method has been used to solve the three-

dimensional H"v. insulator chain field problem. such an approach to

solve a problem of this nature has¡,been reported in the literature this

far. The mathematical model of the insulaËor chain, the numerical rnethod

and the developed program can be applied to compute the field and poten-

tial dístribution of any H.V. transmj-ssion line ínsulaEor chain. Further-

more, the chain is considered to be in its real situation, i.Q-., the in-

fluence of all conductíng bodies Ín the vicinity of the chain as well as

the ground effect are taken into account.

The described method can be used Lo solve the problems related

to the design of insulator unit and chain. A1so, it is possible to as-

sess the effect of the design parameters of the insulator chain on the

potential and field dístributíon, i.e., type of insulator unit and. inÈer-

unit spacing.

It is shown Ëhat the tol^Ier has noE a considerable effect on

potential distribution along Èhe insulator chain. The cross-arm effect

on the voltage of the líne end insulators is noticeable. The conduccors

have the most significant effect on potential dístribution along the

insulator chain. The presence of the line conductors introduces about

6"Å inerease on the voltage of line end insulator. rn summary, one can

obtain a realistic potential distribucion along a H.V.D.C. transmission

line insulator chain, consÍdering the effect of conductors and cross-

arm on the potential distribution.
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6.3 Suggestion for Further l^Iork

Matrices obtained from discretization of the integral equation

are dense" consequently, in the cornputation of the field quanËities,

one can easily run into problems of insufficient computer memory as well

as of a large computation time. It is possible to overcome this diffic-

ulty by introducing a sort of a block structure to the original maËrix.

This is accomplished by an artifical dÍvision of given domain into sev-

eral subdomains, rvhich is called artifieial partitioning technique.
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APPENDIX 1

Greents Theorem

Let v be a closed region bounded by a regular surface s,

and 0 and llJ be tr,ro scalar functions of position which together with .
their fírst and second derivatives are contínuous throughout V and on S.

The divergence theorem applied to the vecEor qJVO gives

(A.1)

rvhere n is the normal unit vector. Expanding the divergence, and where

â0/ãn is the derivative in the directíon of the positive normal, we ob-

tain what is called as Greenrs first identity

(A.2)

rf the rules of the funcËion ô and qr are changed" i.2., the divergence

theorem is applíed ro 0Vú

(A"3)

Subtracting 3 from 2 a reLaÈion beEween a volume integral and a

surface integral is obtained

lt
I v " (úv0) dv = | (qrvö) " ã " ¿"JJ
VS

Jtu"vsdv+J,lv'oa' = I*# ds

VVS

rf in particular case rl = 0 and 0 be a solution of Laplacets equation

rtI (vo)' ¿" = | ú(ão/an) " ds)J
VS

f o*'vrl."dv+Jov'ua., = Joffu"VVS

l rro'r- qv2r¡)av = I (u # - o ffra=
VS

knor¿n as Greenrs second identity or Green?s Ëheorem.
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f'" ou'/I(r-r' cosOr )' + (trsing')'+ (z-z'¡212
)o

l.

= tzll(r* r') ' + (" - ", )'l4l ¡ur 
/z 

dO/ [t - s2 . sir,261%
J_r/,

= laltG* r,) 2 + (z - ", )rl4l fn'' of ,[r - s2 . sin261%
Jo

where K(s) f 
/' 

uotlr - s2 " sin2q1%

APPENDIX 2

where 52 = 4rrt /[(r*rr)' + ("-"t)'] < I and 0t = 20

= [4/[(r+t')t + (z-z')'12]. K(s)

Expansion of K(s) and E(s) in series:

K(s) = (n/z) " [t + (L/z)' s2 + (3/2.4)2 su + (3 "5/2"4.6¡2 s6 ..". ]

E(s) = (n/z). [1 - (L/2)'s2 - (3/2.4)t.(sul3) - (3"5/2"4"6)2,(s6/s) "."]

Polynomial approxÍmatíon of K(s) and E(s)

K(s) = [as*a1 (l-s')+^, (t-s2)21 +¡uo+u, (t-s2)

* bz (t - "2)21 !.n (L/(L - "t)) + (s)

,

.f.
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vlhere &s - 1. 3862944 bo = 0"5

b1 = 0" L2L3478

b2 = 0" 0288729

ar = 0" LII9723

az = Q.0725296

le(")l f 3xlo-s

E(s) = [1 + a1 (l - s') + ^, (t - s2)2] +[(¡r (t - s2)

+ b2 (1 - "2) 
2l " 9"n (t/(1 - s2)) + e(s)

where a1 - 0.4630151 b1 = 0.2452727

b2 = 0"04L2496a2 - 0. LO77ïLz

le(")l :4x10-s

4. Series expansio_n of incomplet.e elliptic integrals of the first

and the second kind

1
K(0, s) = t (ù (-st)t {tr*(ô))

m

1
K(O,s) - r ø (-sr)*(rrr(0))

mn

rnrhere0<m:æ

0<0:n/2

C < s2 < 1

to(ô) = 0

rz (0) = i ,f - sinQ cosS)

r+(ó) = $ flO - Sínrþ CosQ (3 + 2sin2þ))

Ezn(ô) = T rr(*-r)(o) -frsir,t*-rp cos6


