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ABSTRACT

The electrostatic field problem of a HV transmission line
insulator chain is solved. The effect of adjacent objects such as tower,
cross arm, ground and line conductors, on the field distribution is taken
into account. The voltage distribution across the insulator chain is ob-
tained and the effect of environmental conducting bodies on the voltage
distribution is discussed.

To analyse the problem, the integral equations are developed
for the field domain that consists of several dielectrics and flioating
electrodes with unknown potential values., Finally, a combination of the
integral equation method and the charge simulation technique is employed
to solve the 3-dimensional non-axisymmetric insulator chain field problem.
The computer programs are developed in general form and can be used for

any 3—-dimensional field problem,
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CHAPTER I

INTRODUCTION

In recent years the rapidly increasing demand for electric
power and vital dependance on its continuity have resulted in maintain-
ing the supply reliability.at a high level. The increase in voltage
level of electric power transmission lines has generated a set of new
reliability considerations for insulation designers. One of these is
the proper choice of the type of insulator unit and chain which should
provide reliable performance of the line.

The behaviour of the insulator chain under normal and adverse
climatic conditions depends on the surface electric stress distribution
on the chain. A non-uniform stress distribution leads to significant
non-uniform atmospheric pollution deposits. This is especially so in
the case of HVDC lines. Due to the unidirectional electric forces of DC
lines the airborne contamination is more significant than in the AC case.
These forces have been shown to predominate over wind forces, and are not
so pronouncéd in the AC case as the time average electric force is zero.
The pollution deposits could cause a drastic reduction in the electric
strength of the insulator chain due to the process of contamination flash-
over. Therefore, from the insulation design point of view, an accurate
knowledge of the electric field distribution along the insulator chain
is important.

Generally, the electrostatic field evaluation due to an insu~
lator chain, requires the solution of Poisson's equation, while meeting

specific boundary conditions. This evaluation can be carriéd out by



applying:
1. analytical methods which yield an exact solution
2. analog methods which are experimental in nature
and 3. numesical methods which provide approximate solutioms.

An exact solution of Poisson's equation can be achieved through
integrating the differential equation. This is accomplished sometimes by
an obvious separation of variables, or by applying a transformation which
makes the variables separable. But in practice, physical systems are
so complex that analytical solutions are extremely difficult or in fact
impossible. Thus, these methods are restricted to a much simpler class
of problems. |

Analog methods have been used extensively, employing electro-
lytic tanks, conducting paper, or resistive networks. But they are in-
accurate, inconvenient, and expensive. Analog methods are also limited
in their application.

Due to the modern achievements in field theory, numerical math-
ematics and computer science, numerical field evaluation has become more
appealing than other methods. During recent years much work has been
carried out to develop different numerical methods and to render them
applicable to practical situations. Because of the variety of numerical
methods available, care must be taken to choose the proper method which
can handle the problem in the best way.

In attempts tc solve the H.V. transmission line insulator
chain field problem, there are basically three difficulties:

1. Extremely complicated imnsulator chain shape;

2. Unbounded space in which the field computation should

be carried out; and



3. The environmental influence on the stress distribution,
such as the effect of tower, cross—arm, conductors, and
ground,

The range of computational features that each numerical method presents
is wide, and it is unlikely that selection of one method without care-~
ful pre—considerations results in a successful field solution. The aim
of this work is to select the most appropriate available numerical method
baéed on the relevant literature and develop the necessary computer pro-
grams for field evaluation of HV insulator chains in its environment.

In Chapter II a short survey of available numerical methods
which have been widely used in the high voltage area is reported. The
advantages, limitations and latest developments of each method is con-
sidered. The integral equation method is selected for computing the
field of the insulator chain. In Chapter III the integral equations for
the electric field calculation in multi-dielectric media are developed.
In Chapter IV the integral equation method is applied to the potential
distribution around a single unit insulator and the 400 kV HVDC line
insulator chain. Chapter V discusses the effect of tower, cross~arm,
ground and conductors on the field distribution of insulator chain. The

conclusions are reported in Chapter VI,



CHAPTER II

A SHORT SURVEY OF NUMERICAL METHODS FOR

ELECTROSTATIC FIELD CALCULATION

2.1 Introduction

This chapter is concerned with the calculation of electro-
static potential and fields for realistic engineering problems. Five
different methods for numerical field evaluation of high voltage appar-
atus are discussed and compared. Based on the characteristics of dif-
ferent methods, the integral equation method is suggested for the elec-

trostatic field calculation of the HV transmission line insulator chain.

2.2 Mathematical Problem

The common mathematical problem to be solved is the determin-
ation of the electrostatic potential ¢(r) and the field E = - Vo
within a 3-dimensional domain V. 1In general form, the presence of space
charge and materials with different permittivity must be taken into

account. In this case the potential satisfies Poisson's equation
Ve {e(x) « V9(@)} +q(x) = 0 (2.1)

where €(r) is the dielectric tensor and q(r) the space charge density.
In many practical cases the dielectric permittivity is a scalar, and
space charge density 1s assumed to be zerc. Thus equation {2.1) reduces

to Laplace's equation

Vi(r) = O (2.2)

4



The conditions satisfied by ¢ on the boundary R are either Dirichlet

boundary conditions

6 = 6 , T on R (2.3)
or Neumann or derivative boundary conditions

noe (8@ - V() = q () (2.4)

where n is the unit normal vector on the boundary, and on each part of
R either the potential distribution or the surface charge distribution

is specified.

2.3 Summary of Computational Methods

Generally, the available numerical methods for electrostatic
field calculation can be classified as:

1. finite difference methods (FDM)

2. finite element methods (FEM)

3. Monte Carlo techniques ({MCT)

4. integral equation techniques (IET)

5. charge simulation methods (CSM)

2.3.1 Finite Difference Method

1=-12
To apply the finite difference method to an interior prob-

lem, it is required that the potential or its normal derivative is known
as boundary conditions. In the finite difference method the solution
consists of the potential values at discrete points regularly spaced
over the whole field region. These values are obtained by replacing
the partial differential equation describing the field by a set of sim-

plified linear equations connecting the potential value of each point



with the potentials at adjacent points. The solution of field problem
reduces to that of a system of simultaneous equations. As the consequence
of the finite-difference approximation, a rather closely spaced grid
points are required to obtain high accuracy. Thus, due to the large num=-
ber of resulting equations, it is not practical (or economical) to solve
the system of equations using techniques involving determination or el-
imination methods. As a result, either relaxation or iteration tech~
niques are often used.

13-15 anables the finite difference

Boundary relaxation technique
method to be used for two-dimensional or axisymmetric three—-dimensional
unbounded field problems. This technique temporarily imposes an artiff
ical boundary around region of interest to convert the problem into aﬁ
interior one. The potengial values on this artificial boundary are al-
tered iteratively until they equal exactly those that would be obtained
were the infinitely extending mesh problem actually solved. The result-
ing solution is independent of the choice of artifical boundary.

The main disadvantage of the finite difference method is the
difficulty that arises during boundary matching via discrete finite
points. This method is not suitable for a medium consisting of several
dielectrics, especially wheq the dielectric-dielectric interfaces and

boundary shapes are complicated. This disadvantage can be overcome

through application of the finite element method.

2.3.2 Finite Element Method

The finite element method has been frequently used especially
in such areas as thermal, mechanical and electrical engineering. This
method has been recognized as being the most powerful and versatile tech-

nique for field computation. It has also been used in electric field
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calculations in high voltage apparatus during recent years The aim
of the finite element method is to approximate the actual solution by us~
ing a finite number of elements in the entire bounded field region. This
can be achieved through establishing a potential approximation function

at each surface element and applying the minimum energy principle. It

can be shown that the solution of equation (2.1) minimizes the functional?®

F = %J Vo  (e(r) ° V¢)dv - f q¢dv - J qpbdR (2.5)
v v R

where R' is the part of boundary on which the boundary conditions hold,
and F is the total energy of the field within the volume V.

In the finite element method the field domain is divided into
M subregions or elements. These elements are usually polyhedra and
their edges define a net with N nodes. The function ¢ is to be ap-

proximated by a function

V() = £,(0) ¥y (2.6)

™=

1

where fi are shape functions. Usually each fi has the following prop-
erties:
1. fi is zero everywhere except within the subregion v,
formed by the elements to which the node i belongs.
2., Across the boundaries of the element LA fi is contin-
uous, and within each element W, fi is a polynomial.
Substituting equation (2.6) in (2.5) gives an approximation

F* to the function F. The minimum of the functional F*%* is defined

by the conditions



= 0 N i = 1,2, «e.., N (2.7)

The conditions described by (2.7) give a system of linear equation

[L] [v] = [R] (2.8)

where [Y] 1is the vector of the unknowns and [R] dis obtained from the
space charge density and boundary conditions described by equations (2.3)
and (2.4). The matrix of coefficeints [L] is a square-matrix, positive
definite and sparse. The solution of equation (2.8) gives a function Y
which approximates the actual potential ¢. The field intensity within

each element m dis given by

n ™ =

ELo= (W) = (-

m wi v fi)m

i=1

Often the shape functions fi's have discontinuous first der-
ivatives. As the maximum size of element tend to zero the computed
approaches to the actual solution ¢, but there are discontinuities in
the field intensity at boundaries. For the same field domain discretiz-
ation more accurate solution can be obtained through employment of shape
function that are complete polynomials of higher degrees? .

The presence of floating electrodes can be allowed by imposing

the condition that the potential on the electrode surface, though unknown

is constant. For nodes i, j, k, ... on this surface

The corresponding equations (2.7) become:



orx arx V5 ams M
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and matrix L remains symmetric and positive definite.

Variation of dielectric constants within the domain V can also
be easily taken into account. The tensor € which is the functional of
equation (2.5) is treated as a function position T and considered to be
constant within each e;ement. Thus, field problem in the domain consist-
ing several dielectrics and complicated boundary shape can be handled.
Generally, implementation of the finite element method requires:

1. Generation of a suitable mesh filling the field domain.

2. Selection of interpolation function, and determination

of element properties.

3. Generation of the linear system (2.8) and its solution.

4, Additional computation, if more information is desired.

For two-dimensional geometries, the mesh can be automatically
generated; in fact an automatic two-dimensional mesh generator has been
developed?”~™2?%®, TFor three-dimensional problems the mesh must be gener—
ated manually, which is a time consuming operation, and usually is an im-
portant source of error. For the case of two—dimensiﬁnal field problems
some developments havebeen made that enables the finite element method
to be used for exterior field problems?*~2?®, Another version of the
finite element method for two-dimensional (or three-dimensional axisym—
metric) for exterior field problem has been introduced, which combines
the charge simulation method with the finite element method?”:2%, 1t
should be mentioned that the main objective of this combination is to use

the advantages of both methods to increase the accuracy of solution.

Despite the efficient techniques for inversion of sparse matrices, the



finite element and the finite difference methods are not often used for
three—~dimensional non-axisymmetric geometries, due to the large number

of equations to be solved.

2.3.3 Monte Carlo Method

d%??3% the field region enclosed by

In the Monte Carlo metho
the specific boundaries is replaced by a mesh, and the differential
equation (2.1) is replaced by the difference equations relating the va-
lues of potential at adjacent points of the mesh. The coefficients in
the difference equations are interpreted as being the probabilities of
transition of a particle from one point to a neighbouring point. This
transition is based on the fixed random-walk method!. The method which
is based on floating random-walk technique® is more efficient than the
fixed randomwalk method. Application of the Monte Carlo method tb
Laplace's equation is based on the fact that the solution to Laplace's

equation, also satisfies the steady-state dif fusion equation®. For a

Laplacian potential ¢(;0) at point ;0 within the field domain, a ser-

ies of random walks is constrained according to the following rules:
1. Each walk starts at rg.

2. The length of the next step for a walk that reaches a

peint r is equal to the distance between r and the

nearest point on the boundary.

3. The direction of each step at each walk is chosen at

random.

4, Each walk terminates when it approaches within some pre-

arranged small distance from the boundary, the nearest
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point on the boundary then being Tr*.

It is found that the average

d(ry) = %Z ¢(?§“) (2.10)
3

is a statistical estimate.of the required ¢(;0) that converges to the
correct value as the number of random walks n increases.

As was the case for the finite element and finite difference
methods, it is assumed that the region is bounded. However, there are
methods which can be used to apply Monte Carlo techniques to unbounded
field problems®®. The most interesting characteristics of the Monte
Carlo methods is that the potential can be computed one point at a time.
Neither a large array of potentials need to be stored in a computer nor
a large number of simultaneous equations need to be solved. In spite of
these advantages over the finite element and finite difference methods,
this method has not often beeﬁ used for one- and two-~dimensional field
problems. In fact, this method requires a considerable time for calcul-
ating the potential at each point. The Monte Carlo method is appealing
for field solution in the subregion of three-dimensional geometries; it
has been shown that as the number of dimensions increase to three, com-
parative computation favours the Monte Carlo method. This method is not

able to handle field problems when floating electrodes with unknown po-

tential values are present.

2.3.4 Integral Equation Technique

Of different numerical methods for solving field problems, the
finite element method has been proved to be the most popular one, largely

because of its relative ease of application. This method has been very
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extensively described in the literature in connection with the bounded
field problems witﬁ prescribed boundary conditions. However, there are
many field problems in which the region of interest occurs outside a de-
fined boundary and extends to infinity, such as the electrostatic field
distribution around a high voltage transmission line insulator chain.
Several attempts have been made to reduce the problem to a finite size
so that it may be readily handled on a digital computer. There include
imposition of artificial boundaries that do not exist. Or applying im-
proved versions of the finite element method or the finite difference
method for unbounded problems which were mentioned eearlier. The prac-
tical difficulties which arise have led to an increasing interest in the
integral equation method®*” %, 1In this method the material parts of the
device are suitably divided and treated as field sources whose magnitudes
are to be computed by solving the corresponding integral equations.

By means of Green's Theorem, the Poisson's equation (2.1) in

the volume V can be expressed in terms of a volume integral plus a sur-

face integral over the surface, which bounds the volume V.

7y = i1 4 L L3 _, 9 1
¢ = 4Te j T dv + 47 J {r on ¢ on (r)}ds (2.11)
v S

where ¢(X) is the potential at point X, gq is the volume charge den-
sity and n is the unit vector normal to the surface S. In the case of
Laplacian potential, the first integral on the right-hand side is zero.
Some additional manipulation yields an expression for the electric poten-
tial which is a surface integral over unknown charges. The integral
equation is obtained by setting the integral equal to the known potential

value of the conductor. The integral equation can then be solved for
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the surface charges by approximating the integral as a sum over small
surface elements with specific charge distribution. The sum is set equal
to the known potential at the center of each surface element. The result
of this discretization process is a sét of linear algebraic equations
which can be solved by standard techniques which is a case of the moment
method®’. Once the charge densities are computed the potential and/or
field vector at any point can be determined.

The integral equation method is appealing because it is not
necessary to compute the potential at points where it is not desired.
Also, the analysis of the problems which are unbounded does not require
additional programming effort which the case for the finite element and
the finite difference methods. Another distinctive characteristic of
integral equs , formulation is that since the unknowrs are surface quanti-
ties, the number of unknowns will be proportional to the surface area of
the region. Thus, for two-dimensional problems, the number of equations
is proportional to the permeter of the finite boundary. It follows that
the matrix equation obtained through discretizing the integral equation
will be of small dimension compared to the matrices obtained for the
finite difference and the finite element methods. It appears that the
computation time for solutions based on the integral equations will be
smaller. Although this conclusion is probably true, it should be recog-
nized that the matrix obtained by the integral equation is dense. As a

%8 useful for accelerating the

result, sparse matrix solution techniques
solution of matrices which can be obtained through application of the
finite element and difference methods can not be used. Thus, the compu~

tation time advantage due to small matrix size may not be as much as

anticipated. Tt should be noted that efforts have been made to accelerate
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the solution of integral equations, constructing matrices larger in
dimension but more sparse39.

Through application of the integral equation method, field
problems in the medium of several dielectrics can be solved. For such
problems two sets of equations should be derived. One set of equations
results from the condition that the potential must be equal to the known
potential values on conductor surfaces. The second set of equations re-
sults from the fact that the normal component of the flux density at the
dielectric-dielectric interfaces must be continuous. TIf floating elec-
trodes with unknown potential values are present, one additional condi-
tion is required. In this case the total charge on each floating elec~-

trode with unknown potential should be known. Often this charge value

is zero. In the next Chapter this method will be described in detail.

2.3.5 Charge Simulation Method

The charge simulation method“’ consists of replacing the surface
charges of each electrode by a set of discrete inner charge distribution,
whose positions and type are predetermined, but the magnitudes are unknown.
The important point is that if some classical charge distribution A£.e.,
ring, line or point charges are chosen, potential and field vector at any
point can be expressed in analytical forms. 1In the case of Laplacian

potential the field vector and potential are given by

¢ (x) L P, (xr) 1y : (2.12)

J

E(T) ~Vo(r) = -3 {vp (?nqj (2.13)
3

where qj represents the unknown magnitude of the charge on the jth
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distribution, and pj(;) is a coefficient that depends on the type of
distribution and the position of field point Tr. The presence of space
charge distribution is represented by a set of charges 9 giving ad~
ditional terms

Zp (r) q
L Tk k

and - i {Vpk(r)}qk

to equations (2.12) and (2.13), respectively.

The potential defined by equation (2.12) satisfies Laplace's
equation everywhere in the field domain. Boundary conditions are imposed
at a set of collocation points ;i on the electrode surfaces. The num-
ber of collocation points on each electrode surface is equal to the num—

ber of simulating charges. These conditions lead to a system of linear

simultaneous equations

[pl [q1 = I[¢] (2.14)

where [p] is the matrix of coefficients, [q] is the column matrix of
unknown charges and [¢] is the column matrix of known potential values
at collocation points.

The matrix equation (2.14) can be solved employing standard
techniques and as the result charge values are obtained. Determining the
value of charges, the potential and/or field vector can be computed at
any point. When floating electrodes with unknown potential values are
present, the matrix equation (2.14) is modified to include the supple-
mentary condition that the sum of simulating charges of each floating

electrode must be equal to zero
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Xq, = 0 (2.15)

The simultaneous solution of equations (2.14) and (2.15) gives the value
of the unknown charges. When the medium consists of several dielectrics,
the polarization charge distribution of each dielectric at the dielectric-
dielectric interfaces is substituted by ficticious simulating charges out-—
side the dielectric. Supélementary conditions expressing the continuity
of the potential and specifying the discontinuity in normal field compon-
ent must be satisfied on each interface between two dielectrics. If D,

and D; are two adjacent dielectrics with scalar permittivities g,

and ¢,
2 op.(r)a, = I p,(r.)q. (2.16
. py(ryla, . pj( 5795 )
Ja1 j2
€1 I m-eVp (r.)g., = €, £ 1 - Vp,(r.)q, (2.17)
1 . PJ i QJ 2 . PJ i q]
i je2
where q, consists all charges except those located inside D,;, and
J1 )
qj , consists of charges except those inside D,. Recently, efforts have
2

been concentrated on developing this method for various geometries and
different types of simulation*!~*’., The significant advantage of charge
simulation method over other numerical field calculation methods is the
relative ease of programming. The disadvantage of this method is that
the location of the charges are difficult to determine analytically.
Therefore, the accuracy of solution is difficult to predict and depends
on personal experience. To some degree this difficulty can be overcome,

applying an optimized charge simulation method“®, which determines the

position of charges in such a way that the simulation error is minimum.
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The charge simulation method has been widely used for the
solution of two- and three-dimensional problems. Compared to the inte-
gral equation method, to achieve similar accuracy, the charge simulation
method requires a larger number of linear equations.

It should be mentioned that for some large and complex gecmet-—
ries it may not be possible to obtain satisfactory solution using only
one method. In such cases a fair combinatién of the foregoing méthods
may be helpful: {.e., the Monte Carlo method or the charge simulation
method can be used to derive a first approximation followed by the finite
element method within some reduced subregion of interest. The choice of
computational method depends on the problem to be solved according to

the criteria set out in Table (2.1).

2.4 Selection of Method for Insulator Chain

The electrostatic field probiem of a single unit insulator is
an unbounded, three~dimensional axisymmetric problem, which must be
solved in a medium of two dielectrics. Due to the complexity of the in-
sulator geometry, application of the finite difference method or the
charge simulation method is not convenient. Also, the Monte Carlo method
is not applicable, because the field problem is unbounded. The integral
equation method or the improved version of the finite element method for
unbounded problems can be used to obtain the required field information,
These two methods can also be employed for the field evaluation of the
insulator chain regardless of the environmental effect on the field dis-
tribution. But, due to the large size of the insulator chain, the di-

' mension of the matrix of coefficients increaseé,thus, some difficulties

may arise regarding the computer memory and computation time., For the
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field calculation of the H.V. transmission insulator chain, when the
effect of adjacent conducting bodies are to be considered, the field is
an unbounded, three-~dimensional and non-symmetric one. In this case the

only method which can be applied is the integral equation method.
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TABLE 2.1: Comparison of numerical methods for
electric field problems

FEM FOM CSM IET MCM
Space charge YES YES YES YES NO
Floating electrodes YES YES YES YES NO
Multi-dielectric Bmmwca YES Difficult YES YES NO
Extend of solution Whole domain Whole domain Whole domain Whole domain Subdomain
Complex boundaries YES Difficult Difficult YES YES
Thin electrode field YES YES NO YES YES
Surface field YES YES YES YES Difficult
Required input data Large Large Small Small Small
Computing resources Large Large Small Small Small
Exterior problems YES YES YES YES NO




CHAPTER III

FIELD CALCULATION FROM THE CHARGE DISTRIBUTION

3.1 Introduction

In this chapter a general solutién of Poisson's equation in
integral form is obtained by employing Green's theorem. A pair of coupled
integral equations are described which can be used to solve for the elec-
tric Laplacian potential and field vector. These integral equations can
be used for the field calculation in a medium composed of a conducting
region with known surface potential and two dielectric regions with scalar
permittivities. Lastly, the relations are expanded for obtaining the
field solution in a medium composed of several dielectrics and conducting
bodies that some of them could be floating electrodes with unknown poten-

tial values.

3.2 Integration of Poisson's Equatio'n55

By means of Green's theorem (Appendix 1) the potential at a
fixed point X within a volume V can be expressed in terms of a volume
integral plus a surface integral over an arbitrary but regular surface
S which encloses volume V, Fig. 3.1. The charge is supposed to be
distributed with a volume density of q(?). The charge distribution is
assumed to be bounded but is an arbitrary function of position. It is
not necessary that the surface S encloses all the charge or even any
of it,. let 0 be an arbitrary origin and X a fixed point of observa-
tion within V. The potential at this point due to the entire charge

distribution is ¢(i). A function ¢ is chosen in such a way so as to

20
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Fig. 3.1 - Application Of Green's Theorem To

Region V
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be a spherically symmetrical solution of Laplace's equation

V&, D - 1 (3.1)

where r 1is the distance from a variable point Y within V to the

fixed point X
1
r = [(x-x")%+ (y - yD)%+ (z - z')?17

This function however fails to satisfy the necessary conditions of con-
tinuity at r = 0. To exclude this singularity, a small sphere of radius
r; is circumscribed about X as a center. Then, the volume V is
bounded externally by S and internally by S;. Within V both ¢ and
Y satisfy the requirements of Green's theorem, furthermore because
is the solution of Laplace's equation Vzw = 0, As the result, Green's
second identity (Appendix 1) can be reduced to
H—V% dv = f L2262 b (3.2)
Vv S+ 5,
As shown, the surface integral should be extended over S and S;. Over
the surface S1 the positive normal direction is directed radially out-
ward from the volume enclosed by S;. Since this is toward volume V,

over S; we have

% _ 3

on or

2 iy _ _ 1 _
and - (;ﬁ = - v2 at r =1,

Since 1) is constant the contribution of the sphere to the right hand

A
siée of (3.2) is
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1 29 1
— — d
- J or ds + vZ J ¢ ds
S S,

If ¢ and 0¢/dr denote mean values of ¢ and 9¢/dr on S; this
contribution is

L2 a3 A2 3

- 4rr] (9¢/dr) + r% 4rrs ¢
and in the limit where r; approaches zero reduces to &4mdp(X). Substi-

tuting this limiting value in (3.2), the potential at point X in the

volume V is

7 = 4L | Ly Lo 13¢ 3 AL
o® = +4Wfr\7¢dv+mj[ TR oS Dlds (3.3)
A S
When the medium is homogeneous V2¢ = -q/e
) =—--L_ | 4 I I 1) 9 (L
o) = 4me J r YV j { r 3n T ¥ gy (Plds (3.4
v S

When the region V bounded by S contains no volume charge

A _ 193¢ 9 1
o(X) = o J [ o + ¢ n (r)]ds (3.5)
S

It is apparent that the surface integrals in equations(3.4) and (3.5) re-
present the contribution to the potential at X of all charges which are
exterior to S. If the values of ¢ and its normal derivatives over S

are known, the potential at any interior point can be determined by inte-
gration. Equation (3.5) can be interpreted as being a solution to Laplace's
equation within V satisfying specific conditions over the boundary.

The integral
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dv

S

6@ = Z—Tlr—é-f
v

is a particular solution of Poisson's equation valid at i, the general
solution can be cbtained by adding the equation (3.5) to the solution of
the homogeneous equation V2¢ = (0. If there are no charges exterior to

S, the surface integral must vanish.

3.3 Derivation of Integral Equations

Figure 3.2 shows the problem to be investigated. Region 1
shows the electrode with known potential, regions 2 and 3 indicate two
homogeneous dielectrics with scalar permittivities €, and €5, respec—
tively. Thus, the only contributing charges in the potential calculation
are the free charges on the electrode surface and polarization charges on
dielectric~dielectric interfaces. 1If this is not the case, then the ef-

fect of volume charges must be taken into account”®. 1In Fig. 3.2 n,

is the unit vector normal to the boundary surface Si of the volume Vi
- + . . . . s e

(Si Sij Sik) The potential ¢i of the ith region satisfies

Laplace's equation
v%i(i) = 0 (3.6)

The solution to equation (3.6) in each region is unique subject to the

boundary conditions listed below

P11 = ¢ = Oig on S;; (known) (3.7)
o1 = ¢3 = dis on S;3 (known) (3.8)
$2 = o3 on Sz3 (3.9)

¢z = 0 at infinity (3.10)
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(3)

Fig. 3.2 = (1) Conductor
(2) Dielectric €,
(3) Dielectric €5
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9¢i/ony = 0 on S; (conducting surface)
(3.11)
and €9 V¢2 e I—l-z = - €3 v¢3 ° ;13 on Syj (3.12)

To solve equation (3.6), first, a function w(i, ?) is introduced
WX, ¥) = 1/@Grm]X - ¥])

where X and Y represent field point and source point locations, res-

pectively. Applying Green's theorem for medium v

J P&, T) » 39, (D) /3n, + ¢, (1) + 3W(E,)/0n, ]ds,
S

i

>

in V

o (X) )
- J i _ + (3.13)
0 ; X out of Vi

Now applying (3.13) for each region and adding the results, while impos-

ing boundary condition (3.7) to (3.12)

f P(X,Y) + 3¢2(Y)/0n; ds

Si2

+ f Y(X,Y) + 363(Y)/dn; ds
Si3

- (1 - §§> f Y(X,Y)9¢3 (Y)/9n3 ds

Sos
61 (X)) ; X din Vi
= < ¢2(X) ;3 X din V» (3.14)
$3(X) 3 X in V3
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The terms (9d¢2/9n1) and (8d3/09n;) on S; and the term
-(1 ~ éf)(8¢3/8n3) on S»3 can be interpreted as the relative free
charge on the conductor-—dielectric surface and relative polarization
charge on the dielectric-dielectric interface, respectively. Thus, the
potential can be recognized to be equal to a summation over all free and
polarization charges across interfaces. As it was assumed, since each
dielectric is homogeneous, there is no volume polarization charge.

The second equation relating the variables of equation (3.14)
can be found by applying the boundary condition given in equation (3.12),
across the dielectric~dielectric interface Sjy3. The electric field

Ei(i) in any region i can be obtained from equation (3.13)

E; X

Ve ¢; (%) (3.15)

= - J wa(i,?) © 3¢2(Y)/9n1 ° ds

Si2

J VIET) © 39s(¥)/m1 ¢ ds

S13

+

€ — - o
1 - Eé) [ VP(X,Y) » 3¢3(¥Y)/9ns ° ds
2 X
S23
where subscript x indicates that derivatives are taken with respect to
the field point X coordinates. Inserting equation (3.15) in the boun-
dary condition (3.12), which implies that the normal displacement vector

at dielectric interfaces is continuocus
- (€3 - €3) j (3¢2(¥)/on;) - vxw(i, e nyds

Y) |
51 -3
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-(€2 = €3) j (3¢5 (¥)/0n1) VXW(X,§) ° n3 ds

813 X=P

+(€2 - €3) _Lim_ J (3¢5 (¥)/dm3) o VURE,Y) ¢ ns ds

Xa =P S23
—e3(1-¢e3/€,) _Lim_ f (33 (¥)/3n3) + VU(X, ) + nz + ds = 0
X3 =P J82
3

(3.16)

where P is on the surface Soz.

If the charge distribution on a surface S 1is continuous the normal der-

ivates of the potential generated by the charge distribution at X ap-

proaches a limit as X approaches point P on the surface, along the

line normal to S from either side®’. 1In equation (3.16) the limits

indicate that point field X approaches to the boundary S,3 from med-
iums 2 and 3, respectively. These two limits for surface S,; are as

shown below

_Lim_ J (303 (Y)/9n3) + V_P(X,Y) « n3 ° ds
X2=P 523 % -

= '% (3¢3(P)/dns) + j (3¢3(Y)/3n3) ‘Vx¢(§,§) ° n3 -+ ds
Sos 5-(=_P

Lim_ J (3¢3(¥)/3n3) = V_P(X,¥) « ns + ds
X3=P 823 X

e Ny ¢ ds

1 - - - -
- - % (24sB)/mg) + l (363D /an3) + V_y(E,7)
X=P

23
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Substituting the limits in (3.16)

- (252 (395 (B) /3ns) - (1-22 f (3¢3(¥)/3n3) * (3Y(X,¥)/0ns)ds

S23

+ J (32 (¥)/3n1) » (BY(X,Y)/on;)ds

Si2
+ j (3¢3(¥)/3n1) = (3W(X,¥)/ons)ds = 0 (3.17)
Si3
where MW(X,Y)/on; = VXW(X,§) __ ® ny

X=P

Two coupled integral equations can be achieved by
1. Choosing the field point X "in equation (3.14) at the
electrode surface S; = S;, + S;3 and imposing the poten-
tial to be equal to the known electrode potential at point
X.
2. Imposing the continuity of normal displacement vector across
the dielectric interface Sj;3, employing equation (3.17).

In both equations the unknowns are the charge values q(Y) which can be

defined as

q@@) = 962(%)/on: , Y on Sp
q(¥) = 363(¥)/on; , Y on Si;
q(¥) = -(l-e3/€2)(33(¥)/3n3) , Y on Sps

Finally, the integral equations can be written as
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o(P) = fq@) « y(P,¥)ds , P on S (3.18)
S
(e2+€3) q(P) = 2(e5-€3) fqo'f) © (W(P,Y)/3n3)ds , P on S,
S (3.19)
where S = 512 + 513 + 823

¢(P) is the known surface potential on S,

3.4 Extension for More Complex Field Domains

Figure 3.3 illustrates a practical configuration of a medium
28
composed of several dielectrics and electrodes with known potential . The
extension of equations (3.18) and (3.19) for such a field domain is

straightforward. 1In such a case, §; 1is the collection of all surfaces

over metallic bodies

Si1 = (S13 + Sy + Sis) + (Sz23 + Say + Sas + Spe)

and S;3; Dbecomes the collection of all dielectric-dielectric interfaces

Sas3 S3y + Sys + Sse

and S S1 + So3

It should be noted that the application of (3.19) requires the approp-
riate pair of dielectric constants to be used for any interfacey

| Figure 3.4 shows a part of HV transmission line insulator chain.
Field evaluation around this chain is to be carried out in a medium of
two dielectrics and several electrodes. All but two of these electrodes
as shown in Fig. 3.4 are floating electrodes with unknown potential val-

ues. Application of the integral equation method for the field computation
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Fig. 3.4 - Field Domain Consisting 0Of
Two Dielectrics And Float-

ing Electrodes .
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of such problems requires an additional boundary condition besides the
boundary conditions (3.7) to (3.12). In this case the total charge on
each floating electrode must be equal to a specific value; often this

charge value is zero

Qi = J q¥) ds = 0 (3.20)

where Si is the total surface of floating electrode 1.
If the field domain consists of one dielectric, equation (3.19)

will be eliminated, which implies that

q®) = 0 s P on Sj;

The application of integral equation in this case reduces to equation
(3.18)

6@ = <

f a(¥@) ¥(P,Y) ds (3.21)
S

where P 1is on the electrode surface. The above equation can also be

derived from superposition of distributed sources.



CHAPTER 1V

APPLICATION OF THE INTEGRAL EQUATION METHOD FOR

THE ELECTROSTATIC FIELD DISTRIBUTION OF AN INSULATOR CHAIN

4.1 Introduction

In this chapter the integral equations 3.18 and 3.19 are further
developed for three-dimensional axisymmetric field problems. The applic-
ation of the moment method for solving the integral equations is described.
The criteria which must be met by the results in order to guarantee the
required accuracy are established. The equipotential lines around a
single unit insulator are plotted and the effect of different parameters
and approximation on the results are discussed. Finally, the field pro-
blem of insulator chains composed of 6 and 21 single unit insulators
are solved. The potential distribution across the chains are calculated

and equipotential lines are illustrated.

%

4.2 Theoretical Aspects

Before proceeding with the discussion of the equations, the
procedures involved in application of the technique for an axisymmetric

problem will be described:

1. All the surfaces of the problem under study will be sub-

divided into a number of axially symmetric subsurfaces.

2. On the subdivisions the free and polarization charge
densities will be assumed constant, but of unknown magni=

tude. Thus, the integral equations 3.18 and 3.19 which

34
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were described earlier can be approximated by a summation.
Each term of the summation can be expressed as a constant
which is a function of the problem geometry and electrical
properties of the dielectrics multiplied by the correspond-

ing unknown charge density.

3. The general form of each term for any axisymmetric pro-
blem can be obtained as an analytical expression, but the
numerical values are found through application of numer-
ical methods. 1In the application of the integral equation
method to the insulator chain field problem, each sub-
surface is assumed to have a constant slope. This approx-
imation is equivalent to considering each subsurface _&sn
to be the lateral surface of a frustum of a cone, as shown
in Fig. 4.1. 1In Fig. 4.1 & is the parametric variable
defining the straight-line approximating the contour with

each segment lying between lnn-1 and an

4, A linear system of equations can be obtained by setting
equations 3.18 equal to the known potential at the center
of each subsurface, on metallic parts, and requiring that
equations 3.19 be satisfied at the center of each subsur-
face on dielectric interfaces.

Hereafter the cylindrical system of coordinates are used and

the position of the field point is represented as
X = (r, z, 6)

and the position of source point is given by
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Y = (¢%, z', 0")
The surface element ds on each subsurface can be written as
ds = 1 ° d8' « 42

where £ is the distance along each surface measured from its bottom
(Fig. 4.1). r 1is the cylindrical coordinate perpendicular to the axis
of symmetry. For any contour segment, the slope is constant, so £ and

r can be described as linear functions of z.

de = f£f(z) dz
r = r(z) (4.1)
ds = r(z) o £(z) - dB' - dz

The separation distance R between the field point X and source point

Y is

R = |X-¥]|

1
[(r cos® - r' cos8")? + (r sinb - ' sin8")? + (z - z')%17 (4.2)

In the case of axisymmetric problems, due to angular symmetry, 6 can be
set equal to zero. So, without loss of generality R may be expressed

as:
1
R = [(r-1'" cos8")? + (r' sin6")% + (z-2")2]? (4.3)
Furthermore, q(Y) is a function of =z
a(¥) = q(2) (4.4)

Substituting equations (4.1), (4.3) and (4.4) in the integral equations
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Fig. 4.1~ Subsection S, (Lateral Surface OF

Frustum Of Cone).

Fig. 4.2~ Three-Eights Rule For Numerical

Integration.
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(3.18) and (3.19) we have

6(r,2) = ;};—f J [a(z") » ©'(z") + £(z")/R1d6" « dz'  (4.5)

z' @t

where r and 2z are on metallic surfaces.

((e2+€3)/2)° q(xr,z) ((e3 - €gp)/4m) J f q(z') = r'(z") ° £(z")

Z' e!

323 [1/R] - dB' - dz?! (4.6)

where r, z are on the dielectric interface.
In both equations (4.5) and (4.6) 6' wvaries from 0 to 2w, and z'

is over each surface in the collection surface taken in succession. 1In

v

27
equation (4.5) the term J g~ can be expressed as (Appendix 2)
0

G(r,r', z,z"') = T ae! = 4 K(s)
s s > . R [(r+r')2+ (Z_Z')Z]%

where K(s) 1is the complete integral of the first kind, and
$?2 = Grr")/[(xr + )% + (z - 2")?]

. 21
In equation (4.6) 53—-[ d6'/R can be expressed as®!:
3
0

I L _ cos(e) [(N)% + r?2 + (z-2")%] E(s) - B? K(s)
ons [) de*/R = 2r [ AB? ]
- Ezzgaé— ° sin(c)]

where E(s) is the complete elliptic integral of the second kind.
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[(x+ 12+ (z - 2')2]2

A ==
B = [(r-1t"%+ (z - z')z]%

angle C 1is shown in Fig. 4.1.

Numerical values of K(s) and E(s) can be found by

1. Application of subroutines available in the‘International
Mathematical and Statistical Library (IMSL),

or 2. Employing a polynomial approximation of K(s) and E(s)

(Appendix 2). In this case, the approximation can be
achieved within 3 x 107° or 2 x 10°% depending on the
approximating polynomial.

It should be noted that the analytical expression of the deriv-

atives in equation (4.6) described as

3 2T del
31:13 j R

2T
V{J de'/R} ° ;1‘3
0

can be obtained by finding the derivatives of the polynomial expression

of the integral.

4.3 Moment Method for the Solution of the Integral Equations

A procedure which reduces an original functional equation to a
matrix equation is called matrix method. The name method of moments has
been given to the procedures for obtaining the matrix equation. Some-
times, the procedures is called approximation technique, but when the
solution converges in the limit this is a misnomer. Consider the deter-

ministic equation

L(q) = v
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where L 1is a linear operator, v is known and q is to be determined.
Let q be expanded in a series of functions q;, 93, 935 e.... in the

domain of L as

qg = Xc¢c q (4.7)

where cn's are constants. For exact solution the above relation is an

infinite summation. For a linear operator L the equation can be writ-
ten as

i c oL (qn) = v (4.8)
It is assumed that a suitable inner product < g, v > has been determined.
Defining a set of weighting functions w;, Wz, W3, ..... and taking the

inner product of equation (4.8) the result is
[t 1la] = [V]

For a nonsingular matrix [L] its inverse exists, and the unknown [q]
can be determined. Usually the integration involves in evaluating the
elements of coefficients matrix [L] 1is difficult to perform in problems
of practical interest. A simple and effective way to obtain the approx-
imate solution is to require that equation (4.7) be satisfied at the dis-
crete points in the region of interest. This procedure is called point
matching method. In terms of the moment method it is equivalent to use
the Dirac delta function as a weighting function. For a more accurate
solution, other techniques such as the subsectional bases method, the
extended operators method, the approximate operators method and pertur-

bation solutions may be appliedsz.



4.4 Single Unit Insulator Field Calculation

The whole surface of insulator unit S is divided into N
subsurfaces so that each of them is the lateral surface of a cone frustum,

designated as ASn (Fig. 4.1).
N = Ny,2 + N3,3 + Np,3

where Ni,3 1s the number of subsurfaces across metallic part

(Pin + Cap) and dielectric ¢ (glass) interface

2
Ni,3 1is the number of subsurfaces across metallic part and

dielectric g; (air) dinterface.

Ny,3 1is the number of subsurfaces at the dielectrics inter-

face.
8192 = Z Asn, lfanl92
n
S1,3 = I Asn’ Ni,2 + 1 <n <Nyj,p + Nijys
n
and So,3 = ZASH, N1,2+N1,3+lfan
n

The surface charge density is approximated as

q(z) = z2Q - hn(z) R 1<n<N (4.9)
n
where hn(z) is defined as
J'l 3 z on AS
h (@) = < LR (4.10)

L Q, ; z on ASm s m # n

The charge representation as in equation (4.9) with hn(z) is defined
as (4.10), introduces a charge discontinuity at the boundary of each

subsurface. As a result, both the potential value and field vector are
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undefined at the lines of discontinuity, However, the expansion function
(4.10) is not the only choice, {.e., triangular charge expansion function
can be used as an alternative. This would cause additional programming
but would result in a continuous function for the surface charge distrib-
ution. It is shown that for engineering problems, expansion function
(4.10) results in acceptable accuracy®*’ 3%,

Considering the foregoing discussions equations (4.5) and (4.1)

can be written as:

d(r,z) = i%-z Qn J r' o £(z') ° G(r,r', z,2'") ¢ dz' (4.11)
z
n

where 1 <n <N and field point (r,z) is on the metallic surfaces

Q(r,z) = ((ez3=€3)/(es+ep)) ° 5%‘2 Qn J r' ¢ £(z")
Az;

9 v 'y 4,0
Smre G(r,r?, z,z%)dz (4.12)

where 1 <n < N and field point is on the dielectric-dielectric inter-
face.

A system of linear algebraic equations for the unknown Qn can
be obtained, imposing (4.11) to be equal to the known electrode potential
at the center of each subsurface on metallic parts, and satisfying (4.12)
at the center of each subsurface across dielectrics interface. The to-
tal number of unknowns is N which corresponds to N1;2 + N;,s on the
electrode surfaces and Nj,3 on dielectrics interface. Representing
the coefficient of charges in equations (4.11) and (4.12) by Lmn’ the

equation can be written as:

¢, = ZL_Q e G13)
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where 1 <n < N
1 <m< Ny, +Nj,3
L = L [ rt s £(z') ¢ G ¢ dz' (4.14)
mmn 4 J °
Az
n
and Qm = i Lmn Qn (4.15)
where 1 <n f N

N1,2+N1,3+l_<_mf_N

L, = ((e3-€2)/21m » (e3+€3)) J r' e f(z') * (3G/dnj) ° dz'
Az?
n (4.16)
Equations (4.13) and (4.15) give the matrix equation
L] [Q] = [¢] (4.17)

where [¢] is the column matrix of surface potentials and zeros.
[Q] 1is the column matrix of unknown surface charge densities.

[L] 1is the matrix of coefficients.

Determining the unknown charge densities the potential and field vector
at any point can be computed. Potential values at any point can be ob-

tained by employing equation (4.13). The field vector can be calculated

by:
E = - Vo
E = - i Qn s V(Lmn) (4.18)

where
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Ve ) = o= [ r' . £(z') ¢ VG o dz' (4.19)

The numerical values of coefficient given by equations (4.14),
(4.16) and (4.19) can be found through application of numerical integra-
tion methods®3. The common numerical integration methods for engineering
application are trapezoidal rule, Simpson's rule, three-eight rule, and
Weddle's rule. It has been experienced Simpson's rule is sufficiently
accurate for most engineering purposes. In this work three—~eight rule
that gives higher precision than Simpson's rule is used. This technique
introduces a cubic through the points (X, £g); eeeee, (X3, f3) Fig,

4.2 and the integral is given by

X3 3
f f(x) * dx = g R(fo + 3£y + 3f, + £3)
X0

This method is exact for cubical polynomials and has the advantage that

it can be applied to an odd number of subintervals.

4.5 Accuracy Criteria

In the integral equation method the accuracy of the results
depends on the number of subsurfaces that approximate the actual surface
and the position of the subsurfaces. Therefore, some criteria must be
established to decide whether the obtained results for each set of sur-
face approximations meet the desired accuracy or not. The following con-

dition can be used as accuracy criteria:

1. The calculated potential on conductors should be equal to
the known conductor potential. In other words, the solution must intro-

duce the metallic surfaces as equipotential surfaces.
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2. The electric field vector is normal to the electrode
surface. As the result the tangential component of the electric field

vector at point on electrodes must be equal to zero.

3. The tangential component of the electric field should be
continuous across any dielectric-dielectric interface. This condition
is the same as the equality of potential values across the interface of
two dielectrics, when potentials are calculated respect to each dielec-

tric.

4. The normal component of the displacement vector is contin-

uous across the dielectric-dielectric boundary.

5. The value of electric potential and the field value and
direction at any interested point should be independent of the surface

approximation.

The conditions 1 to 4 are boundary conditions. The condition

5 is a check which indicates whether the surface approximation is valid.

4.6 Discussion on the Results of Single Insulator Unit

The system of linear equations (4.17) obtained through applica-
tion of the integral equation method, was used for the electrostatic field
calculation of the single unit insulator shown in Fig. 4.3. The field
domain consists of two electrodes (Pin and Cap) and two dielectrics
(air and glass). The potential values of the Pin and Cap are assumed
to be 1 and O per unit. The relative permittivities of the glass
part and air are 5.5 and 1, respectively. The insulator surface was
divided into cone frustum subsurfaces as described earlier., The number
of surface segments were changed in the range from 20 to 45 and the

system of linear equation (4.17) was solved. For any set of calculated
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surface charge values the accuracy criteria 1 to 5 were checked. The
results indicate that the best approximation for the single unit insulator
can be achieved, employing 30 or 31 subsurfaces as shown in Fig. (4.4a)
and (4.4b), respectively. The number of subsurfaces across each part of
the insulator unit are:
- 7 subsurfaces on the cap,
- 6 subsurfaces on the pin,
— 17 and 18 subdivisions across the dielectrics interface for
Figs. (4.4a) and (4.4b), respectively.
Table 4.1 shows the maximum percent potential error, maximum deviation
angle and the maximum percent error of the normal displacement vector for
‘the surface approximation shown in Figs.(4.3a) and (4.4b), where

- Percent potential error = ]calculated potential = actual

potentiall x 100 / (actual potential)

~ The deviation angle is the angle between calculated field

vector and the normal line to the electrode surface.

- Percent error of the normal displacement vector D =
ICalculated normal D in glass - Calculated normal D in

air| x 100 / |Calculated normal D 1in glass.

Due to the‘complexity of the insulator geometry, the boundary
can not be expressed in simple algebraic equations. Thus, the digitizer
tablet of PDP-1] was used to generate the coordinates of the check
points. The check points are distributed across the boundary with a
density of 10 points per unit length in order to check the accuracy j:f~;?
criteria meptioned in (4.5). (The digitizer tablet of PDP-1] is an
analog-to-digital convert & device, which generates and transfers the
X,y coordinates from a drawing to an input computer medium, For the

purpose of this work the coordinates were stored in a magnetic tape and
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Fig. 4.4= Surface Approximation Of An Insulator

Unit With Straight Lines.,
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then transfered to the main program.) The equipotential lines for the
single insulator unit that is approximated as Fig. (4.4b) are shown in
Fig. (4.5).

The computer program is developed in general form and can be
used for the field calculation of any axisymmetric problem with known
electrode potentials in the medium of two dielectrics. Subroutine
LEQTIF was used for the solution of matrix equation (4.17). Subroutine

SMOCON was used to plot equipotential lines.

4.7 Field Calculation of the H.V. Insulator Chains

The electrostatic field calculation of a H.V. insulator chain
by means of the integral equation method follows the same procedures as
described for a single unit insulator, except that the presence of the
floating electrodes must be considered. Thus the matrix equation (4.17)

will consist of the following equations

¢ = ZL_Q (4.13)
n

where - 1

1A
j=]
A
=2

- 1 <m < N1

-~ N1 idis the total number of subsurfaces on the electrodes
with known potential values (N11), plus the electrodes
with unknown potential values (N12). Lmn is given by

equation (4.14)

Q = L Q (4.15)

where - 1 <n<«<N
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- NI+ 1<m<Nl+N2

- N2 1is the total number of subsurfaces across dielectrics

interface.

Lmn is given by equation (4.16)

0 = L Q (3.20)

where - n is the number of subsurfaces on each floating electrode

with unknown potential.
- NI+ N2+ 1<m<NL+ N2+ N3
- N3 ié the total number of floating electrodes.
- Lmn is the surface of each cone ffustum°

The problem unknownsare N = N1 + N2 surface charge densities plus N3
potential values of the floating electrodes. Due to floating electrodes
the matrix of coefficients is not dense as was the case for single insu-

lator problem. The matrix of coefficients is illustrated in Fig. (4.6).

4.7.1 Axisymmetric Insulator Chaim Consisting of 6 Insulator Units

Fig. 4.7 illustrates an insulator chain made of 6 single unit
insulators shown in Fig. 4.3. Potential distribution across the chain
and equipotential lines were determined, applying the integral equation
methods. Insulators number 1 to 5 are approximated with 14 sub-
surfaces and insulator number 6 is approximated with 15 subsurfaces.
WIth the exception of the electrodes at both ends of the’string with
the potentials of 1 and O percent, the rest are floating electrodes

with unknown potentials (N3 = 5). The equipotential lines and voltage
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distribution across the chain are illustrated in Figs. 4,7 and 4.8. The
total computation time is 8.42 seconds, which is the time to solve the
matrix equation and checking the accuracy criteria 1 to 4. The maxi-
mum potential error on the electrodes is =-3.2 percent. The maximum el-
ectric field deviation angle is 16.2 degrees and maximum normal displace-
ment errvor on the dielectrics interface is 6.3 percent. The check
points are distributed across the boundary with the density of 5 points

per unit length.

4.7.2 Axisymmetric Insulator Chain Consisting of 21 Insulator Units

Generally, as the number of insulator units of the chain in-

creases, two major difficulties arise:

1. The number of surface divisions increase with the number
of insulator units. Thus, the number of the elements of
the matrix of coefficients increase in proportion to the
square of the number of the subsurfaces; the computation
time increases in proportion to the cube of the matrix
dimension. Furthermore, the matrix elements which must
be stored in the computer memory is equal to the square of
matrix dimension. Thus, some limitation may arise regard-

ing the computer memory.

2. Practically, increasing the number of surface subdivisions
results in the singularity of the coefficients matrix. As
the matrix of coefficients approaches singularity the error
increase rapidly. Thus, the application of the integral
equation method for the field evaluation of long insulator

chains requires careful surface approximation.
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TABLE 4.1

Potential error
Max. (Percent)

Deviation angle
Max. (degree)

Normal D error
Max. (Percent)

Cap 3.83 10.72 -
Fig. 3.4a Pin 2:67 7o B

Dielectric

Intexrface - B 342

Cap 2.93 8.00 -
Fig. 3.4b Pin 2.70 5.3 -

Dielectric _ - 3.18

Interface
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Figure 4.9 shows the insulator chain of a 400 kv DC line which
is made of 21 insulator units (Fig. 4.3). To calculate the potential
distribution of chain, each insulator unit was approximated with 6 sub-
surfaces which correspond to 2, 3 and 1 subsurfaces for the cap, glass
and the pin, respectively. It was noticed that the effect of polariz-
ation charges on the charge distribution which is far enough is negligible:
L.e., the effect of polarization charges of insulators 1 to 14 on the
charge distribution over insulators 18 to Zi are negligible. This
approximation introduces zero bands in the dense part of the coefficients
matrix (Fig. 4.6). Thus, the required computer memory can effectively be
reduced, also the computation time will be reduced.

The equipotential lines and the voltage distribution across the
insulator chain are illustrated in Figs. 4.9 and 4.10. The total compu-
tation time is about 39 seconds. Due to the rough surface approximation
the potential error and deviation angle are higher compared to the results
obtained for the single unit insulator field problem.

If a more accurate the solution at a specific region around a
long insulator chain is required the foregoing solution can be employed
to determine the potential values of floating electrodes and the charge
values of the insulators which are far from the interested region. In
the next step the insulators which are closed to the pre-specified region
are modelled carefully. Considering the effect of calculated charges the
matrix equation of the system can be obtained, which results in more ac-

curate field quantities.,
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CHAPTER V

FIELD CALCULATION OF A NON-AXISYMMETRIC

H.V. INSULATOR CHAIN

5.1 Introduction

In this chapter, the integral equation method discussed in
Chapters 3 and 4 is developed for the field calculation of a non-axi-
symmetric H.V. transmission line insulator chain. A constant sectorial
surface charge is suggested in order to take into account the non-axi-
symmetric surface charge distribution. Different methods for consider-
ing the effect of conducting bodies around the insulator chain are dis-

cussed. Finally a combination of the integral equation method and the

charge simulation technique is employed for field computation of the in-
sulator chain, with the effects of tower, cross—arm, line conductors and

ground are taken into account. As an example, the insulator chain field

problem of a 400 kV D.C. transmission line is solved. The effects of

conductors, cross—arm, ground plane, and tower on potential distribution

across the insulator chain are discussed.

5.2 Mathematical Model of the Problem

Figure 5.1 shows the front view of a 400 kV D.C. transmission

line. Accurate knowledge of the potential and field distribution along

the insulator chain requires proper mathematical modelling of the problem,

which depends on the geometry. Neglecting the effects of surrounding
metal licparts such as line conductors, tower and cross—arm, results in

an axi-symmetric field problem, which is much easier to evaluate.

60
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However, this evaluation may be in considerable error. Generally, there
are three basic difficulties in the mathematical modelling of a non-axi-

symmetric insulator chain.

1. Complicated geometry of the problem;
2. Unbounded space inside which calculation must be carried
out; and

3. Influence of adjacent conducting bodies with known potential.
The mathematical model must be capable of overcoming these difficulties
within the constraints of practical limitations such as computer memory
and time, without reducing the accuracy of the results.

The effects of conductors, cross-arm, tower, and ground on the
field and potential distribution of the insulator chain, can be taken
into account by employing the charge simulation method and/or image prin-
ciple.

Image Principle: The method of images is useful when it is

desired to find the field arising from an object in the vicinity of con-
ductors of a certain simple shape. For the case shown in Fig. 5.2a,
boundary condition require that the potential along the grounded plane
be zero. This requirement is met if, in the place of conducting surfaces,
an equal and opposite image charge is placed at the mirror image position
of the object with respect to the ground plane. If the plane pctential
is other than zero, the value of this constant potential is simply added
to the potential expression from the main charge and its image to give
the final potential value at any point.

For a charge in the vicinity of the intersection of conducting
planes, as q in the region of AOB Fig. 5.2b, the imaging procedure is

different. In this case, it is necessary to image the images in turn,
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repeating until further images coincide, or all further images are too
far distant from the region to influence the potential. It is possible
to satisfy exactly the required conditions with a finite number of images
only if the angle AUB is an exact multiple of 360°. Except for some
simple geometries such as planes and spheres, one cannot determine the
location and strength of the images. It should be mentioned that in some
cases this difficulty can be overcome by determining a set of simulated

images using an optimization techniquesu.

Charge Simulation Method: The charge simulation method can be

employed to model the tower, cross—arm and line conductors, with fictit-
ious charges. Depending on the dimensions and the geometry, infinite
line charge, finite line charges, point charges, and ring charges, or a
combination of these can be used to model each metallic part. The prin-
ciple of the charge simulation method is described in Chapter II.

For the case under consideration, due to the complexity of the
geometry of the ground object (ground plane + tower + cross-arm) direct
application of charge simulation method is simpler and used to model the
tower, cross—arm and conductors. The effect of the ground plane on the
potential distribution is taken into account by means of imaging the
charges simulating line conductors, tower, and cross—arm, with respect
to ground. The insulator chain is modelled using constant sectorial

charge distributions discussed below.

5.3 Mathematical Model of the Insulator Chain

For the case of the non-axisymmetric field problem, the surface
of the chain can be approximated with lateral cone frustum subsurfaces,

the same as described in Chapter IV for the symmetric case. But, due to
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lack of axial symmetry, the charge density over each subsurface can not
be constant. The charge distribution over each segment can be expressed
as a constant part plus several cosinusoidal (or sinusoidal) harmonics
with unknown peak values, 9;5 as in Fourier analysis. 1In this case
the charge distribution over each segment is a function of the rotation

angle 6 and can be given by

q(®) = I q; ° cos (i8) (5.1)
i
where 0 < i < n

n 1is the total number of harmonics

The value of 9 is not calculated by fulfilling the orthogon-

1
i

ality condition as is the case for Fourier analysis. The q.'s can be
obtained by application of the boundary conditions at the points located
on the subsurface of interest., The total number of these contour points
is (n + 1), which is equal to the number of unknown charges of each
segment.,

An alternative is to divide the lateral cone frustum subsurface
into sectorial segments. The surface charge distribution over each seg-
ment is maintained constant. Therefore, rotational symmetry does not
exist. Figure 5.2c illustrates a radial section across a subsurface of
the insulator chain which is shown with 6 segmental surface charges.
The number of segments can be changed to suit the accuracy required.

In this work, each subsurface is divided into 4 sectors. The
integral equationsfor the insulator chain are described by equations
(3.20), (4.13) and (4.15). For this problem the coefficients Lmn in~

volve incomplete elliptic integrals which can be handled numerically

(Appendix 2).
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5.4 Mathematical Model of the Conductors

The simulation of the charge distribution on the surface of a
conductor by line charges of infinite length.is a known principle for the
electrostatic field evaluation of circular cylinders. Since the line
charge is of infinite length, the quantity to be determined is the charge
per unit length q. The effect of the ground plane is considered by the
image of the infinite line charge with respect to ground. The potential

coefficient of an infinite line charge and its image (Fig. 5.2d) is de-

fined as
L = l/(2 ° T ° E) ° Qn[rz/rl] (5«2)
where r, = [(v+y9)?% + (x - x')z]l/2

i

r [(y - yD2+ (x - x")?2)7?

(x,y7) is the field point location

(x',y') 1is the source point location

The electric field vector E at point (x,y) is given as

E = - Vb (5.3)
E = q/@emee) * [(x-x")/r; - (x-x")/15]1
+q/(2emee) o [(3-y")/t1 - (y-y")/r,13
5.5 Mathematical Model of the Tower and Cross-—Arm

The tower and cross—arm, Fig. 5.1, are modelled with 3 and
2 finite line charges, respectively. The effect of ground plane on the
potential distribution of thesefinite line charges are tgken into account

by their image charges with respect to ground. The potential coefficient
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and the field component of a finite line charge (Fig. 5.2e) at point

(r,z) are given:

L = 1/4me(zp=231) * n [[(z2-2z+A) ° (z,+z+B)]/
[(zy=2+C) ° (z,+2+D)]] (5.4)
E_ = q/4me(za =2 ) * [(zp-2)/r * A~ (z;-2z)/r * C
+ (z1+z)/r * B - (z,+2)/r D]
E, = q/4me(zy ~2z1) = [1/A - 1/C - 1/B + 1/D]

where ¢q is the charge density

A = [r2+ (2, - 2)?]?
B = [r?+ (z; + 2)2]1/2
C = [r?+ (z; - 2)%]7
D = [r?+4 (z, + 2)2]1/2

As mentioned before, the effect of ground on the potential and field dis-
tribution of the insulator chain is taken into account, employing image
charges of the line conductors, cross—arm, and the tower. Calculation
results indicate that for the region in the vicinity of the chain the
effect of ground on the field distribution is not significant. However,

this effect at region close to ground is quite noticeable.
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5.6 Discussion of Results

Curve (a) in Fig. 5.3 illustrates the potential distribution
along the chain when the effect of tower, cross—arm and conductors are
taken into account. Comparison of this curve in Fig. 5.3 with Fig. 4.10
indicates that due to the environmental effects, the potential distribu-
tion across the insulator chain is altered. This effect is especially
more significant for the insulators which are close to the line conduc-
tors. Curve (b) in Fig. 5.3 shows the potential distribution when the
effect of transmission line conductor is neglected. Comparison of curves
(a) and (b) indicates that as the result of the conductor surface charge
distribution, the voltage distribution non-uniformity increases. Curve
(c) in Fig. 5.3 represents the voltage distribution along the chain,
when the cross-arm effect is neglected. Comparison of curve "c¢" with
curve "a" shows that the presence of cross—arm increases the voltage
supported by the insulators at the line end, and decreases the voltage

supported by the insulator at the ground end. The line conductors have

more influence on the voltage supported by the line end units than the

cross—arm. Equipotential lines for this insulator chain in the plane
that passes through the axes of insulator chain and tower are shown

in Fig.5.4 .



Voltage Along Unit -~ % COf Total Voltage

29

26

22

18

14

10

69

AV
i 4 Y

Insulator Kumber

Fig. 5.3 = Voltage Distribution Along

Insulator Chain.



70

Tower End

30%

35%

40%
45%
50%
55%

Line End

25%

Fig.5.4 - ZEquipotential Lines For Ain Insulator
Chain Composed Of 21 Units , In The
Cross=-=arm And Chain Plamec.



71

CHAPTER VI

CONCLUSIONS

6.1 The Numerical Method

1. 1In the present work, it is shown that the integral equation
method has several advantages over other available numerical methods for
the electrostatic field evaluation of HV insulator chains. The integral
equation method reduces the number of linear algebraic equations compared
to other techniques. This results in a smaller computation time. Also,
this method allows the field calculation at any desired point without

extra programming effort.

2. Three coupled integral equations are described which in
principle can be used to solve three-dimensional electrostatic field
problems. 1In general ﬁﬁ:m, the field domain may be composed of conductor-
dielectric boundaries with known and unknown potential values and

dielectric~dielectric boundaries.

3. A combination of the integral equation method and the
charge simulation technique is described which can be used to solve the

electrostatic field problem of un-conventional and complicated geometries,

4. The programs are developed in general form and can be
employed to solve any electrostatic field problem with the boundary con-
ditions described for a H.V. transmission line insulator chain in multi-

dielectric media.
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6.2 Insulator Chains

An integral equation method has been used to solve the three-

dimensional H.V. insulator chain field problem. Such an approach to

R
Vi

solve a problem of this nature ha%APeen reported in the literature this
far. The mathematical model of the imsulator chain, the numerical method
and the developed program can be applied to compute the field and poten-
tial distribution of any H.V. transmission line insulator chain. Further-
more, the chain is considered to be in its real situation, £.e¢., the in-
fluence of all conducting bodies in the vicinity of the chain as well as
the ground effect are taken into account.

The described method can be used to solve the problems related
to the design of insulator unit and chain. Also, it is possible to as-
sess the effect of the design parameters of the insulator chain on the
potential and field distribution, {.e., type of insulator unit and inter-
unit spacing.

It is shown that the tower has not a considerable effect on
potential distribution along the insulator chain. The cross-arm effect
on the voltage of the line end insulators is noticeable. The conductors
have the most significant effect on potential distribution along the
insulator chain, Thé presence of the line conductors introduces about
6% 1increase on the voltage of line end insulator. In summary, one can
obtain a realistic potential distribution along a H.V.D.C. transmission
line insulator chain, considering the effect of conductors and cross-—

arm on the potential distribution.
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6.3 Suggestion for Further Work

Matrices obtained from discretization of the integral equation
are dense. Consequently, in the computation of the field quantities,
one can easily run into problems of insufficient computer memory as well
as of a large computation time. It is possible to overcome this diffic—
ulty by introducing a sort of a block structure to the original matrix.
This is accomplished by an artifical division of given domain into sev-

eral subdomains, which is called artificial partitioning technique.
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APPENDIX 1

Green's Theorem

Let V be a closed region bounded by a regular surface §,

and ¢ and Y be two scalar functions of position which together with

their first and second derivatives are continuous throughout V and on S.

The divergence theorem applied to the vector V¢ gives

f Ve (WV¢) dv = j WVé) » n - ds (A.1)
Vv S .

where n is the normal unit vector. Expanding the divergence, and where
9¢/on 1is the derivative in the direction of the positive normal, we ob-

tain what is called as Green's first identity

I Vg o V¢ dv + j Y2 dv = jap—g—g ds (A.2)
v 4 S

If in particular case Y = ¢ and ¢ be a solution of Laplace's equation

J (V$)? dv = Y(9¢/dn) - ds

\

N —

If the rules of the function ¢ and Y are changed, {.e., the divergence

theorem is applied to ¢Vy

j o —S—f’; ds (A.3)

JV¢°W}°dv+J¢V2wdv
\ v S

Subtracting 3 from 2 a relation between a volume integral and a
surface integral is obtained
24~ 72 - 99 _ 4 3
f WV - oV2¥)dv f W52 - ¢ £5)ds

A S

known as Green's second identity or Green's theoremn.




where

where

K(s)

E(s)

79

APPENDIX 2

27 1
J d6'/[(r-1' cosB')? + (r'sinf')? + (z-2z")2]?
0

1
2

= [2/[(x+1")% + (z-2")217]

. 7/ 2
J do/[1 -8 » sin%¢]

-1/2

w
IS
1

drr'/[(x+1")? + (2 ~2")2?] <1 and 6'=2¢

it

L (/2 3
M/Hr+ﬂ)2+(z—f)ﬁ€]J dé/[1 - 8% - Sin?$]>
Y]

4/[(c+T)2 + (z-2")217] « K(s)

1.
S% o sin?¢]”

/2
K(s) = J do/[1

0
Expansion of K(s) and E(s) in series:

(m/2) = [l + (1/2)% S% + (3/2.4)% s* + (3.5/2.4.6)2 S5 ....]

(m/2) » [1 - (1/2)% 8% = (3/2.4)% « (s*/3) = (3.5/2.4.6)% - (S%/5) ...

Polynomial approximation of K(s) and E(s)

K(s) = [ag + a1 (1-s%) +as (1-s2)2] + [by + b; (1-s2)

+ by (1 -2 n 1/ -s?)) + (s)
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1.3862944 b, = 0.5

where ag =
a3y = 0,1119723 by = 0.1213478
a; = 0.0725296 b, = 0.0288729

le(s)|] < 3x107°

E(s) = [1+4a; (L-s?) +a, (1-:s22]+[(b, (- s?)

+ ba(l - s?)2] ¢ fn (1/(1 - s?)) + e(s)

where a; = 0.4630151 by = 0.2452727
a, = 0.1077812 b, = 0.0412496
le(s)| < 4 x107°

4, Series expansion of incomplete elliptic integrals of the first
and the second kind
K@, ) = 2 CD 8" (¢ (4)

m m
1
= o m
K(¢p, s) = L (2) (-89 (e, (9
m m
where 0 < m < =

0 < ¢ < 72

0 < s <1

to(®) = ¢

ta(¢) = -% (¢ - Sin¢ Cosd)

ty($) = -% (3¢ - Sind Cosd (3 + 2Sin?¢))

N
=

-1

1 . 2m
tom{d) = 5 tz(m_l)((b) = 5m Sin

—1¢ cos¢



