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ABSTRACT

A theoretical investigation is made of the rela-
tion between radiated power and reactional torque of both
infinitely long line sources and dipole antennas. Since the
reactional torque is caused by interaction between at least
two sources, arrangements of two line sources or two dipoles
are usually considered. The advantage of adding more sources
to the configuration is discussed. A possible influence of
a supporting structure approximated by a circular cylinder
is examined. Comparison is made between the torgue efficiency
of antennas close to a conducting cylinder and the torgue
efficiency of antennas close to a dielectric cylinder. Lastly,
it is shown that a three dipole turnstile antenna can be used

to produce torque in an arbitrary direction,
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where E is the energy received per second, ¢ the velocity of
light and f the reflectivity power of the surface that var-
ies from O for a black surface to 1 for a perfectly reflec-

ting one, Similar results were obtained also by E., F, Nichols

and ¢. F. #u1l(3) in 1902,

A slightly different approach was employed by
R, A, Beth(LL> in 1935, He used a beam of elliptically polar-
ized light incident on a doubly refracting plate that al-
tered its polarization into a linear one, In this set up-.the
direction of the electric field was no longer parallel to the
electric displacement vector and hence was not perpendicular
to the direction of propagation in the crystal, which re-

sulted in a torque on the plate,

In the theoretical work accompanying the above
mentioned experiments, it has been affirmed that torque is
inversely proportional to the frequency used, It is there-
fore understandable, that although most of the experiments
were done at visible light frequencies, the first attempts
to employ radiation pressure were for centimeter waves. In
1949 N, Carrara and P. Lombardini(g) reported measurments of
torque at 3.2 cm wavelength using 50 W mean power. Torque
was of the order of 10“3 dyne-cm as was expected, but apart

from this more exact results were not obtained. Independent
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With the beginning of spaceflights, the guestion of the mo-
mentum possessed by electromagnetic waves again became DO~
lar, In 1963 a theoretical investigation was made of the
reactional torgue on radiating dipole antenna The possibi-
lities of using it to stabilize a space vehicle were SUg-
gested by P. Bruscaglioni., A, Consortini and &, Torsldo di

Francia® ', They considered three ways of applyving elect

magnetic radiation to the spacesh
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the antenna is placed on

tically polarized waves

b) the antenna situated on the vehicle is rece iving radiation
from a ground station

¢) the torque is caused by . simvultaneous radistion by both

the ground antenna and the vehicle antenna,

They showed that while the first method produces adequate



torague to offset the usual disturbances in space using rea-
sonable power {(about 5 kW), the other two methods would need

. g .. . ,
more than 10~ kW +o achleve the same result,

Tn 1966 reactional torgue was experimentally
] . . ] : {
demonstrated on a lcop torgue-antenna by N
The difference between the theoretical estimation and the
actual torque obtained was about 20%, which could "be-at~
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tributed to the approximations in the theory inasmuch as

The preceding experiments and proposals had
one thing in common: thev all dealt with an antenna lo-

cated in free Jw@ce("g or as in the work of P. Bruscag-

-

lioni, A. Consortini and G. Toraldo di Francia, with

turnstile antenna dimensions much larger than the space
vehicle on which it was mounted, (See fig., 1)
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Tt may be of practical interest to examine the
behaviour of antennas mounted on vehicles of comparable or
larger size. As a starting point in chapter IIL, two infi-
nitely long line sources are chosen, allowing us to reduce
the problem to two dimensions. The second part of this chap-
ter expands the problem to a larger number of line sources
evenly distributed on a cylindrical surface. The respective
power and torque relations are examined and compared. Since
the power is not constant for the individual configurations,

the relative value of torque/power ratio is always calculated.

In chapter IV, to simulate the presence of tThe
spaceship, either a conducting or a dielectric cylinder is
added to the configuration of two line sources (fig. 2).
Both the power and the torque efficiency can thus be in-
creased or decreased, depending on the spacial angle and

the length of the holding arms of the antennas.

Tn chapter V the next step 1s taken to consider
dipoles close to a cylinder of great length (fig. 3). This
is a more practical case since many spaceships are using
dipole antennas for various purposes. If the cylinder is
removed this configuration is identical with a beam radiator

(

described by Chute 7>° (Appendix)
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The possibility of producing torgque about an ar-

bitrary axis is the topic of chapter VI. The turnstile an-

(7)
(6)

tenna described by Chute and P, Bruscaglioni,; A. Consortini

and G, Toraldo di Francia is modified by the addition of a
third dipole. The desired direction of torque is obtained by

varying the phases of the dipoles,



TT. REACTIONAL TORQUE OF ELECTROMAGNETIC FIEIDS

"To every action there is always opposed an equal
reaction" states Newton's third law of motion. In other words,
bringing it closer to our problem, the energy that is radiated
by an antenna is counterbalanced by a reactive force acting

on the antenna.

Before we can proceed to consider concrete ar-
rangements of the antennas, it would be useful to develop
and clarify the concept of a reactional torque., In general,
the radiation pressure (or force) is directly linked to the

linear momentum flow exhibited by the electromagnetic waves:

_ mech (1)

where F ig the force,
G is the linear momentun
and t is time.
Similarly the torque T is associated with the angular momentum
T through the relationship
aL,

mech (2)

T =3

Let ug first consider volume charge and current

distributions in an external electromagnetic field. The total



force on all the particles throughout the volume V is:

5% + (T x B), av

El

|
o

Eaf

E ig the electric field intensity,

B is the magnetic field density,

the volume charge distribution is &= div D
and the current distribution is J = curl H - 5%
In the equations (4) and (5)

T is the magnetic field intensity

D is the electric field density

Substituting (1), (&) and (5) into

Then writing

!
i

(3)

(3) gives

(6)

= D _ S 5.5 .5 x 2B
}3x5tmE}JC(BXD)-i-DX;TJC
it becomes
— p r
dG | I P — = —
mech . C(§F x B) av = _ (E.divD - B x curl H -
at v &t i)

- D x curl E) dav

(7)



The integrand on the righthand side of the equation (7) can

be identified as a divergence of the Maxwell stress tensor:

(8)

1)
]
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+
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=
=]
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&

(T is defined as a unit second rank tensor)

Therefore

aa re roo

—Heeh | 9(F x B) av = | aiv § av
v v i

Now

j div § a¥ = ¢ S.n dA

v A

where A is a closed surface that encloses the volume V,

The integration and derivation on the lefthand side of equation
(7) are interchangeable in the fixed frame of reference:

4 r
§
3

S—%g(ﬁxﬁ) av

Substituting back we obtain:

a

)

mech |, 5
at T it

r
D x B) av = i%}’“ﬁ aa (9)

<

This is the law of conservation of linear momentum,



The angular momentum may alsc be defined as

"the moment of linear momentum®:

!
1
il
>

mech (10)
where r is the position vector of the point in which the angular
momentum with respect to the origin is calculated. Accord-

ingly the law of conservation of angular momentum has the form

F n

[Py S [seGamavelsstn
dt(r X Gmech) -+ 3 ﬁ r x (D x B) &V —‘§ T x .0 dA
Since
SFxF )=9 -7 (11)
dt mech dt -
it follows that
N s [ _
T:j)rxfg'endA—-g—{jrx(DXB)dV (12)

A v

We are interested in the steady state mechanical reaction on
the radiating source. Consequently from the steady state con-

ditions the time average of

|or

T r x (D x B) av

Qan
S —

is zero.
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Hence +the real time averaged torque exerted on the antenna is:

~

Re ‘é T xS ,n dA (13)
A

I
o L

av

where * denotes the conjugate.

Expression 9.0 may be consldered as a stress

transmitted across the surface of normal Es Stratton(B)

proves that

85 = ey (B.0).E - SEAT + 1= (B.0).5 - 5~ 5.0 (14)

1f E and B are oscillating functions,; the time average of

gT.n = %<§TH and eq. (13) can be rewritten as

PN

! 2

A e € et —_ —
Re é r x Qeo(Eun)eE - —% (B .n).B - L Bz,nj
A

e-ﬁ’*‘ X
%MO 4

=1

i
o) e

L=

(15)
Tn the above expression the integration is taken over any

closed surface A, Let A be a spherical surface extending

dA

to infinity, then T and n have the same direction, T is reduced

+o

Re r X geo(ﬁreﬁ)eﬁ + L (5°.%).5 ] aa (16)

=l
It
] L
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In many of the following cases the surface of the
integration AC is going to be cylindrical. The final form of
the result is identical with (16), only n and r are replaced

by a, and E,respectively, and we get

P
Tl e | B e (ELE)E ¢ (55.5).5] a (17)
B 2 j‘ P "0 Tt Ko Cp et c
c
Generally the power radiated is
r
p=L1 R o @xT)na (18)
A

For the spherical surface n = Er and for the cylindrical

surface n = 2 e

Equations (16), (17) and (18) will enable us to
£ind the torgue and the power required to produce it, once
the radiated fields are known, In the following chapters
attention is paid primarily to derive the fields and then,
using the above equations, to calculate the torque, power

and their ratio.
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III. TWO - DIMENSIONAL RADTATION

There has been a great deal of attention con-
centrated on investigation of torgue due to two radiating
dipoles(é)’(7) while the line sources were not discussed
as often, It seems to be an advantage to include the two,
three and four line sources configurations into the topic
of this paper, as it will make the interactions between the

individual sources that cause torgue more apparent.

The line sources are assumed to be parallel with
the z = axis in our system of coordinates; the current dis-
tributions along the lines are uniform, i.e. do not depend
on z; For this reason the problem is reduced to a two -~ di=-
mensional one, In the following, first fields of one line
source are derived and the result is used to obtain the re-
actional torque and power of two line sources configuration.
The third part of this section then generalizes the problem
for any number of line sowces equlspaced on a cylindrical

surface,
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TIT - 1. Radiation field of a line sSource

The line source is located at point P (fig. 4).
Its position is given by b and ¢Oe The current distribution
has magnitude I and changes sinusoidally with time at a
frequency w. The radiation field 1s given by the wave func-
tion(iO)
Y=g 5§ (elp - b 1) (19)

or using the addition theorem for Hankel functions it becomes

L - ( 2> P 3 ! ) 1 ~

= hZ: cjn (k) J_(ko) exp [in($ - ¢y)] p<b
N~ A2 . ! RN N

ﬁ% ﬁE~gQ(kb> hé )(kfﬂ exp{ln(ﬁz- @O)é ;3,»b

\

where Héz) ig the Hankel function of the second kind of order

n and Jn is the Bessgel function.

y
P/
/
//
/ \
/ (E/////%? \
/ R \i G
/ T 170 i
L. t i
0 X

Fig, # - A current filament in free space



P "7,
i K—-—kzl Z—: 2820 (10) T (xp) explin(d - 5] e<b
> ’ed¢>nm,qfn ntoo P 7 0 r
cT e ;
z ~ Tew - . (21)
0 o @ o o
- T~k L. 7 (xb) H(2>(kv~) exp in(c - 0.)} >b
eO{WQ n{;_rmn n F Pl ‘ e i
<o (2) ‘
i o . . ~ _ . /_/{ - :/ )
s | 1p r;@n H P (kb) 7 (k) exp[in@ - 50]  p<b
H = 3 = \ -
Pooped o (22)
LS = emy w(2) Loncd — A -
{ @5 éélcon un(kb) HY (ky) exp in(¢ - Vb)} o7b
< (2)
S 2 (%o [sn(d = Y] e
| 5 Z;_ ~‘Hn (kb) Jn(kf) expiln(f ?D)J e<b
M é’i*'{f J n"ug—} o
BT g (2) e
‘ ¢ i kI (2 - s (b .
LI nL:"mJn(kb) Y (kp) exp[ln(g 5,%,0)} pb

where Jﬁ(kp) and Hﬁ<2>(kp) denote the derivatives with respect

to the argument of the Bessel and Hankel functions, respectively,

To produce torque at least two line sources are
necessary., Thus we proceed to find the field components due

to two line sources,



ITT - 2. Two 1line sources

Consider now two line sources positioned as shown
in fig. 5. The sources are assumed to be infinitely long and
infinitely thin uniform filaments positioned at a distance b
from the point of reference. Let us further assume that they
are held in place by the supporting arms that are firmly fixed
in their mutual position but can freely rotate about the axis
going through the point of reference and parallel to the line
sources. Finally it is assumed that these supporting arms do
not influence the resulting fields; 1l.e. reflection from them
is negligible. The currents I, and 12 are equal in magnitude

but have a phase difference ¥ .

¥

(@]

Fig, 5 - Two current filaments in free space
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1, =1
I, =1 exp(iy)

-The total wave function is given by a linear superposition

of the individual ones in the form:

| f%,zi Héz)(kb) J,(kp) exp(ing) 1+
11 == '
+ exp(iy - in@o)] f)(};
Viotal V1 * V2= < (24)
Ei}_" Z Jn(kb) ngz)(k{@‘} exp(iné) bl +
n=-co
N + exp(iy - ingy) | p>0b

Similarly the field components are given by:

7 oo
| k4T

- EL D w3 ) 5 (k) exp(ing) [1
e OQL) A== je} n I p 7 L
+-m®(iywin%)l pP<b
B =By Bt (25a)
1“T 2 T
e Zjn(kb) H{Z) (k) exp(ing) [1 +
é +emﬂhﬁ~i@%)} F>b



- 19 -

e

o
ﬁL.gg;x? Hﬁz)(kb) Jn(kFO exp(ingﬁ (i +

I3 ) L
+ exp(iy - ind,)| p<b
| ]
H = H + H = % (25b)
p Pl P2 o 5
_l__ (2) > 3 ,)’ I
5 E n Jn(Kb) H2 "7 (kp) exp(in®) [1 +
i e OO
4 +emﬂiy—jnéﬂ] ?>b
g oo (2)
.}.’.‘:_I_ 2 ' s /
- 13 g;;@fn (kb) Jn(kg) exp(lnp) [1 +
+ exp(iy - ingb)} oD
H, = Hy, + H,, = < (25c¢)
@ 21 02 ve) (2)
. ‘ ' .k.l_ T 2 P s A
- T ;2:,3n(kb> H% (k?J exp(ln%J [1 +
N== 00
_ + exp(iy = infb{} oD

In carrying out the integration indicated in Sec., IT
eq. (17)s the cylindrical surface AC degenerates to a closed
contour C in the x - y plane and the torgue per unit length
is then understood. The contour C, as indicated in fig., § is
a circle about the origin and has‘a radius ©. The limits of
integration are obviously 0 and 27 . The equation for torque

is now
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o7

= 1 = r =t = 1w == 1

T =73 Reg o x éeO(E .2 ).E + i (B .a ).B ] ao (26)
;0 O

which Ffurther reduces to:
i 227

- R R TP

T=3a, 5 Re Ny hipr{:@dgé (27)

(notice that the first part of the integrand of eqg. (26) is

% # o= —
0, since E ,a2 =E a .a = 0 )
2 z 2o

The expression for fields at o>b has to be substituted into

(27). Thus we obtains:

o k1% &

po= =Lt > 0 [5,(0)]7 [1+ cos(y - ndy)]
N=-=o0
. Re{%— H;(kf;} Hlfl(z)(kjo)} (28)
Usage of
g 3

1 *(2) (2) oL 2
Re 5; T Hy T (kp) HY (k}p)j}~ " ke
in equation (28) gives

1 12 o=

S - /
T = ¢ > n [Jni(kb)_iz [1 + cos() = ndy)] (29)

i
i
8

or, if summation from 0 to o is used
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2 0
Fol . o >
LZ = =7 siny ;{: n En sin n@o[ﬁn(kb)} (304a)

=0

where én =1 forn =0

2 forn £ 0

il

From now on symbol T instead of TZ will be used as the torque

has only z=component.

The equation (29) demonstrates that the torque
carried by the cylindrical waves, which are radiated by two
line sources, is independent of the position at which it is
calculated (provided that P7>b) and is a function of the

arrangement of the line sources only.

The time average power radiated per unit length
by the two sources is found from eq. (18). As in the torgue

calculation, the integration path is along C in fig. 5. The

power 1is

[2ﬁ‘
p=-Llre| oEI ag (31)
B 2 j ol Tz P '

and after substitution of equations (25a) and (25b) for EZ

and H_ and carrying out the integration it becomes:

9]

12

o
P = %*EB”} Re{ i nZZ_ [3,(x0)] [1 + cos(y - ndy)] Hr’l(z)(kj@)a

£y

. H (k;@)} (32)
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Since

Co L (2) oy e (2)
Reé 1 H (kf) Hm (kﬁ) ‘ Tio

.

A
%:_2_

we arrive at the expression for the power in a form

2 o h
P = %Eiiégé;oiJn(kb)]z [1 + cos(y - n@O)] (33)

or, if summation form O to oo 1is used

2.2 &
— k. I -~ i 2 r ) A DN
P = 460 gg% tnLJn(kb)]’ (1 + cos ng, coo‘}} (34)

An additional examination of (30) shows a de-

-

pendency of the torque on the phase difference 3 of the two
sources and their mutual position angle éoa If both currents
are in phase ()Y = 0) the torque vanishes, while power will

fluctuate depending on the position angle ¢05

e
k212 ~

. . 2 ;
P = he&i)é;' én[Jﬁ(kb)l (1 + cos npy)

If both sources are brought together at the same place,

¢ = 0. and the above equation reduces %o

2,
272 Pl W

ZEOQ) 2

i =




C}O
3 - 2._/.,‘ 2__,2.
(since ZZ: € {Jn(kb)} = 1 and k7 = W g €O)°

n=0 o

This is the same as power radiated by one current filament

that has current of magnitude 2I.

Evidently from (302 )the maximum torgue is obtained

for vy = 7/2, In this case

M. 12 i
< r :
T =5 2 n g, sin ngy [7 (kb)) (300)
=
HoleJ
P o= ’q

From the above equations the expression for the torque can

be rewrlitten as

o0
S ; s LT
T==7P Zg: n € sin Q%OLJn(kb)

72
5 ] (35)
i n=0
o
. . , ~ . i 2
Assigning M = égb n éns1n n?oign(kb)i we get
M o= w% (36)

Let ug define d as a direct distance between the

two sources. Then, from fig. 6,

d = 2b sin(Z,/2)
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that Is:
o! b /
= Sln(QO/Z)

(37)

Fig.

6 - Illustration of the

X

arrangement of two line sources

where » = 27/k is the wavelength of the radiated field.

As we move one of the antennas around the im-

aginary cylindrical surface, the torque/ power ratio changes

from negative to positive values almost periodically.

Taking +he case of y — ﬁyz,we see that M = 0 for f}'o = 0

both antennas are at the same position) and for G = T
70

At O

= T +the force which arises due to the interference

between the two antennas is directed through the point of

reference, causing the torque to equal zero. Fig. 7 shows

torque/power vs length/wavelength dependence for different
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Fig. 8 = Torque/power ratio of two line sources in free space
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lengths of the holding arms. Up to kb = 1.92 there is only

one zero crossing which i1s due to the above mentioned con-
dition of ¢O = %, As kb increases further, the largest pos-
sible value of d/» for given kb moves upward and the curve

has 2 or more zerc crossings, the first of which always occurs
at d/7\: 0.61, the second at 1.12, etc. However, the peak of
the curve always lies between d/x = 0 and &/ )X= 0.61. From
approximately kb = 5 the maximum does not change the position,

occlring always at d/x = 0.29,

Generally speaking, torque is directly proportional

to the length of the arm the force is acting upon:

Fig.10 - Torgue

In this case the relation gets more complicated by the fact
that the force itself depends on the length of the arm. Nev~

ertheless it can be maintained that the torgue is proportional
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to the length of the arms as is apparent from fig. 9. The pro-

portionality is approximately true for kb = 5,

Fig. 11 shows the torgue dependency on the length
of the arm for constant position angle and phase shift of T/2,
Here again the torgque changes from positive to negative val-
ues; frequency of these changes as well as magnitude at the
peaks of the curve depend on the position angle. As the angle
gets smaller, the frequency decreases and the maxima are higher,

Thisg is already apparent from figures 7 and 8,

Similarly, plotting torqgue vs position angle
(fig, 12 and 13);we see that torque is'O at éO = T as is
obvious from eq. (35). The number of additional zeros de-
pends on the distance of the antennas from the origin. In
fig., 13 curve is drawn to connect the maxima of the individual
curves for different kb's and to make the increase of torque

with the distance from the reference point more clear.

It can be expected that additional line ‘sources
will increase the torque produced. This would be an advantage

only if we satisfy the condition:

T P
S (38)
2 2
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Fig., 12 -~ Reactional torque of two line sources in free

space
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Fig., 13 - Reactional torgue of two line sources in free

space
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In (38) notation T2 and P2 for torque and power produced by
two sources, and Tm and Pm for torque and power produced by

m sources is used.

To what degree it can be achieved is discussed in the

coming section III - 3,



IIT - 3. Line sources equispaced on surface of a cylinder

Consider m line sources that are equispaced on
a surface of a circular cylinder. The sources are fixed in

their mutual positions, but able to rotate about the axis of

the cylinder,
y
3 "
. Ve P
S ; 2
' // L Ii ; 0
/”; - ._/v y
P , 0
/f////‘” ':i
| \“\g\ ‘‘‘‘‘‘‘‘ ] I X
| [T —
om=1)2, Tn-1
O B
Ly
Fig., 14 - Line sources equispaced on surface of a cylinder

Let the currents 119 css s g Im_QaveEHlarbitrary

phase with respect to I located as shown in fig. 14,

I
1

n I eXp(iyi)

1
]

5= T exp(iy,)

se o8 0



Ij = T exp(igj) (39)
I,.4 = I exp(lym_i)

Then, by superposition:

yf: ? }é oo +'¢%m1 (40)

That is, using (19) and (20)

Ig_ (2 . /
¥7= EE-%;@ €n Jn(kb) Hngkg) {cos ng + exp(iyi) cos n(? mg%) +
+ eoee exp(iyﬁ_l) cos bﬁ» (m - 1)¢O]}
or
I & o (2)
= 77 EZ: ZE: H, (ko) exp(iypml) cos[né - (p - 1)&01
n=0 p=1
(41)
It follows, since §%~= 0 4 that
E}Q=E¢:HZ=O
oo m
2
- (2) [T

E = O ;g% ;i;éh J,, (kb) H (xp) exp(lyp 1) cos[ ng - (p - 1) o |

(b2)
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i
W

L o om
; kI 0 (2 . / /
B¢ = - 75 pa- gi;éﬂ Jn(kb) Hn( >(k§) eXP(lXpm1> cos[n@ - (p = 1)@02
o (43)
42 . . ! r
H = - '"'*Lé,o Z }; n ¢, Jn(,kb) r[_é )(1{)0) exp(l\é/pmi) sm[n}ﬁ - (p = 1)_{@0
Ji n=0 p=i (44) :

which, similarly as in the case of two line sources, leads +to

u I2 O m m
7 = ‘%;”‘Zgi :Z_ ZZ: n €, [Jn(kb)]2 sin néo(p - q).

3 / - N
«sin (¥ p-1 dg~1 ) (45)
For m = 2 and - Y =T/2 eq. (45) reduces to (30b).
Y1 = Yo

The power radiated, using eq, (31) is:

P = )

#OIZ m
n q-1

199 m
3 Z;: ZE: zz:éhiﬁn(kb)}z cos n@b(p - §) cos (Xp~1 -y

p=1 g=1
(46)

o

Once again, for m = 2 and Vi = Vg = /2 we obtain eq. (32).

From equations (45) and (46) it is relatively

eaqy to calculate torgue and power for a reasonable number



of current filaments., In the following derivations m is

equaled to 3 and later on to 4,

IIT - 3,1. Three line sources

Substituting m = 3 into equations (45) and (46)

we obtains

2 ; 3 3
Mol - S . |
= —3 ;;% %;; 2;; n €n{dn(kb)]2 sin ng,(p- q) sin (Xp—l - §q~1)
(47)
Wl o 3 3 ’ 3
P = /08 Z{% ZE; Z{% En J (kxb) J cos np,(p - q) cos (Xp=1 &\gq—1>
n= p: q=

(48)

From fig. 15 we have ¢O = 120°

Fig., 15 ~ I,

- Configuration of three line sources in free space



By expanding (47) and (L48) and adding up the appropriate

terme we obtain:

A
Fol ; 2 [ s 20Ty sy ‘| )

TB': —— . n o€, [Jn(kb)] 331n(—§— 51n(gi) + 81n(y2 - }1) +

+ sin(E%ﬁ5 sin(yzz} (49)

5 00

‘ #QI G r 2 nT )
PB = 5 ;;% én {Jn(kb)i {3 + 2008(—§~0 {cos(yl) + cos(y2 -

- gl)} + Zcos(égﬂ) cos(yz)} (50)

Let us take a closer look at these two equations.

Both of them contain terms which result from the interaction
between the individual sources. In eq. (49) the first term
ig due to the interaction between source 1 and source 2, the
csecond term to 2 and 3 and the third term to 3 and 1. AllL
three of them are consistent with eg. (30a) obtained in Sec.
ITI - 2 for two line sources, if we substitute the corresponding
values for y and éom The expression for power does not come
from a simple addition of the individual interactions as is
the case in the torque equation. However, here as well, the

390 R

terms dueYthe interactions are clearly separated, and, disre-

garding the constants, are in agreement with (34).



To help simplify the analysis, assume fixed phases

of +the three antennas. An obvious choice in this case is:

y, = 120°
Yo = 210°
Then
- 2 2
3 2; . nJt s 20%

Ty = % Mol n=1 noey @h(kb)] sin( 3 ) sin (3 ) (51)

" 12 \3
5 _ 0 , o 27 2Ty, o 2,207
93 = T %;1 én L‘Jn(kb)} |2sin (3 Y+ sin“( 3 ] (52)
Now
Sinz(pg) _ {’O fOl" n = 09 3; 69 99 a8 5

37 7

1% otherwise

and

0 fOI‘l’l:: Og 39 69 99 o6 2
\% otherwise
Therefore we can wrilte

ay N -7
2(1’1-() an(Zglﬂ)
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and the torque and power equationsg are:

3
]

= 0.5625 poT° >0 gy [7,(k0)] (53)
n=
n#3s
a} —
= 0.5625  \T7w Zl ¢ [7,0m)] 2 (54)
Nne=
n#3s

where 8 = 132535000

J
|

From (30a) and (33) for two line sources placed

it

120° appart we get:

O

0
2 12 2 . N
T, = 0,02165 usI n e |J (kb)i® £ sin(=%=) (55)
2 For £ n 7,00 5 3
in which
+1 fOI‘l’l'—"lg Ll”g 79 109 s 8 ¢
% sin(ggi) =j~ 1 forn =2, 5, 8, 115 o0

O fOI‘l’l=Og 39 69 99 e o8

(This form has been chosen for an easier comparison with’ €53))
The power in this case 1is:

P, = 0.25 fLOlzwj (56)



We can now see that

@

Py = 2,25 P, > e, [3,(x0) ] (57)

n=0

n#3s

In view of

N

2
 [3a0000]% = 1

=
i
O

we can assess that

M

12
. [Jnu«:b)j <1

O

=
n#3s

and therefore

PB <« 2.25 P2 (58)
Similarly
T3>»12,6 T, (59)

This makes the gain in torque at least 1.15 times greater

than the gain in power.

. XFige (17) shows the relative values of Ei ;
T T P
§§ and ; versus the length of the arm. (TgaX ithhe
2 2
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maximum torgue for the fixed value of kb. The angle ¢O is
not necessarily a constant in this case). It is apparent,
that torque/power ratio can be more significantly improved
by an addition of a third antenna than by rearranging the
two antenna configuration, although this improvement is

very slight for some values of kb,
The above discussed resultslead us to an opinion
that an additional antenna will further improve the torque

efficiency.

I1IT - 3,2, Four line sources

. sin(}fp_ﬂ1 - gq_l} (60)

0 by
LT - .
Py = /08 > ) €, [7,(60)] % cos ndy (0 - a)

. cos(gp_1 -y (61)

From fig, 16 it is apparent that this time éo = T/2



!
<. 90°
) v o
12 . I
Fig. 16 13

After the expansion and a little manipulation

5 @
Mol ™ T . TN T .
T), =~ /’1 n €n [Jn(kb)]z sin %%)§131n§l + 81n32 +
n= -
+ sin(g’3 - yg)} + sin(zgi) sin?B} (62)
ol @5 2 ( Tt
94 = T nzogn [Jn(kb)] ﬁz + cos(jf [cosgl + cosy2 +
+ cos(g3 - gz)} + cos{(n¥) [cosg% + cos()f’3 - yl)]+
nd ]
+ cos( 5 ) cosgBj' (63)

If we want to keep the phase constant, we may choose;
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Y, = T/2
L.]“ /
)= T
Y2

Yy = 37/ 2

It reduces (62) and (63) to:

1), = pol” ;;1 ne  [7 (x0)]? sin’ (2 (64)
>
P, .—_,u,ozzwg_:_é e, 7,02 [1 - (-1)"] (65)

In eqg. (64) sin(%%) takes on O and + 1 values, Evidently

sinB(%f) = sin(%?%a Then

2
TL!, = inI

Ve

ne  [7 (kb)) 2 sjm,(-f—gE (66)

i
[ty

n

This form makes it easy to compare it with the relationship

obtained in Sec. III - 2.eq.(30b)for two line sources, placed

/

9 4= /2 apart:
12 =
luO Y \ 2 . nTr
=T L né, [, (x0)] % sin(5h) (67)
Clearly - =+, . .. e -

(68)
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wola

1 - three line sources, VY = 12009 ¢;= 120°
2 - two line sources, the maximum T/P ratio

for given kb

3 - two line sources, Y= 90°, é7= 90°
4 - two line sources, y = 900, 0, = 120°
5 = four line sources, Y = 9009 ?% = 900

Fig, 17 - Torgue/power ratio of two, three and four sources

configurations in free space
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As to the power relations:

=

P = =g ajji:

U T o0 —
ko 52
2 & [Tn0m)]
F-IZQ)CE
Py = 02 ;i% € [Jn(kb)]2 1 - (-1)7] < bp,

It can be safely stated that the gain in torque surpasses the
gain in power and thus makes this arrangement more efficient
than the 2 line sources., However, from fig.(17) the comparison
with the 3 line sources arrangement reveals that torque effi-

ciency decreases for the values of kb greater than 0.9,

For a general case the torgque and power relations
given by (45) and (46) are in too complicated a form to be
discussed here, It would be necessary to reduce the equations
for each specific case of given m as was done for m = 3 and
m = 4, Tt can be reasonably expected from what was Jjust shown
that for some of m > 4 the torque will increase more rapidly
than the power, thus making these line sources arrangements

more desiraeble than 2 line sources ones.,

In the following section the line sources are
placed close to a cylinder. We are going to consider the
two line sources configurations only. For m > 2 the calcu-
lations would follow the same steps, with the only differ-
ence of using equations (42) through (44) as an incident

field,
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IV, LINE SOURCES AT THE PRESENCE OF A CYLINDER

In practice antennas are usually supported by a
construction., To acount for the effect of such an obstacle
two cases are considered 1in this chapter: two line sources
close to a conducting cylinder, and, in the second section,

two line sources close to a dielectric cylinder.

Fig. 18 -~ Arrangement of two line sources close to a conducting

cylinder
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IV = 1, ILine sources and an infinite conducting cylinder,

As in Sec, III - 2 the same presuppositions are
imposed on the line sources and the supporting arms. The

cylinder itself is assumed to be conducting with an infinite

conductivity. The currents are uniformly distributed along

the lines. Thelr phase difference is .

I, =1

I, =1 exp(iy)

The incident wave function and fields are given by equations
(24) through (27). The total wave function is the sum of the
- incident and scattered wave functions; the scattered wave

function itself has the form:

o0
Voo = ﬁ%'zz:. Ay HAZ)(kb) HQZ)(KP> exp(ing) [1 + exp(iy - ingd)]
n==co .

(69)

Then

Yiotal = ?&nc * Ve =

o
. 2 ;
=T 2 [T, 0kp) + AnH(Z)(k?)] Héz)(kb) exp(ing) .

T==co n

I
!

. [1 + exp(ig - in@o)] ?*<b
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o0
Vit = 15 2 [7200) + 0, 12000 ] (B () exp(ing) .

, [1 + QXP(iX - inéo)}

P
V
(o

(70)

Congtant An is found from the boundary conditions on the

cylinder and is equal to:

Jn(ka) (1)
A = = NP 71
n Héz (ka)
The electromagnetic field outside of the cylinder for o> b
is:e
EO = Ep} = HZ = 0
2 ng (2) (2)
— k I T 2 2 Ie) » 3
RS YA [7, (kb) + A H (kv)] H! (kp) exp(ing) .
. [1 + exp(iy - in?o)] (72)
- (2) (2)
1 - 2 2 .
Hp = ﬂ?522: n J (kb) + An Hn (kb)] Hn (kp) exp(lnp) .
; N=e=00
. [1 + exp(iy - in?o)} (73)
KL S (2) (2)
1 </
, = Ez [5 (ko) + A K (b)) H %) (kp) exp(ing) .

. [i + exp(iy - inéoﬂ (7h)
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By a similar procedure as in Sec. III -~ 2 and using equatilons

(17) and (31), the torque and the power are obtaineds

(9]
Ko )
—774 81n(y) €, n Sln(npo K, K, (75)
n=0
©
Zi_ 1 + cos(n@ ) cos(y )] K, K; (76)
where
Jn(&a) (2)
K, = J,(kb) - ;TQT?E*; H, " (kb) (77)
Ly a
In the case y = /2
12 <&
P . o '
%+ EZ% €, n 81n(n¢o) K, K, (78)
n T2 2
Pt & L
P —_— u/ Z_ én l\.n _an (79)
n=0
so that
. ;i@ €, n 51n(n¢0) K, &;
M = CL}ID- = == (80)
K
ﬁ;b en 'n ‘m

The power radiated is given by eq. (79). Comparing
it with eq. (34b) we see that the term in the front of the

summation is actually power radiated by the two.line sources
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in a free space. Since the phase difference is Yy = /2, there
is no modification of power due to the influence of one source

on the other one and the summation term

o0

£ € K, K,
can be fully attributed to the presence of the cylinder., The
relative value of the power vs the distance of the antenna
from the reference point is plotted in fig., (19). As the cyl-
inder diameter increases, the maximum power attains higher
values. The maximum lies at about (kb - ka) = 1,9, If the

distance of the line sources from the cylinder gets very large,

the influence of the cylinder becomes negligible,

By placing the sources close to a conducting cyl-
inder the torque/power ratio is affected only slightly, as
can be seen from the comparison of fig. (8) and fig.'s (20)
through (23). The maximum ratio is again at about d/x = 0,29,
If the antennas are placed very close to the cylinder ( (kb -
- ka) = 2) , the most apparent difference is a shift of the
first zero of the curve towards a larger relative distance
as in fig, (23) for ka = 8 and kb = 10 or in fig. (22) for
ka = 4 and kb = 5. The deviations in the maximum torqgue for
some kb's and ka's are shown in fig, (9). There is no obvious

pattern in the changes, except that the deviations (in both
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Fig, 20 =~ Torque/power ratio of two line sources close 1o

a conducting cylinder
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16 4
ka=2 kb=25

14 1

12 1
Icb=20
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Fig. 21 - Torque/power ratio of two line sources close to

a conducting cylinder



16 4

ka=4L
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Fig. 22 - Torque/power ratio of two line sources close to

a conducting cylinder
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Fig. 23 - Torque/power ratio of two line sources close to

a conducting cylinder
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Fig., 24 - Reactional torque of two line sources close to

a conducting cylinder
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kb=10
"1 /
7 e
P =6, 08
6

vl

Fig. 25 -~ Torque/power ratio of the line sources close to
a conducting cylinder; cylinder radius 1s the inde~

pendent variable



Fig, 26 =~ Torque of two line sources close to a conducting
cylinders cylinder radius 1s the independent

variable
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directions) tend to get larger for larger cylinders,

The curves showing the dependency of the torgue
on the mutual position angle ﬁo of the antennas are in fig.
(24), There is no substantial change from the case of the

line sources without any cylinder nearby. .

If the distance of the sources from origin is kept
constant and the radius of the cylinder is gradually increased
from 0 to b, sets of curves of fig.'s (25) and (26) are ob=
tained. At a = b both power and torque are equal 0. Maximum
torque (as well as the maximum torque/power ratio) is higher
if the sources are placed closer together., However, to achieve

the maximum, a cylinder of larger radius is then required,

It has been shown that a supporting construction
which can be approximated by a conducting cylinder does not
significantly influence the torque/power ratio, The situation
may be different if dielectric materials for the supports are
used. To account for this possibility a dielectric cylinder,
instead of the conducting one, is introduced into the config=-

uration in the following section IV - 2,
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IV = 2, Line sources and an infinite dielectric cvlinder,

Suitable dielectric materials often enhance
power efficlency of antennas, Although the configuration
that is investigated is somewhat different from the usually
presented problems, we can expect the effect on the torque/po-
wer ratio be more pronounced than it was in the conducting

cylinder case.

The configuration is identical as in the previous
section in the case of the conducting cylinder, The permlittiv-
ity of the dielectric cylinder is €q the wave number is kdc

We assume the permeability to be that of the free space Mo

o

Fig. 27 - Arrangement of two line sources close to a dielectric

cylinder
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The current distributions along the line sources are:

I, =1

]
i

o = T exp(iy)

The incident and scattered wave functions are given by:

o9
1}i*é’jl_“_r’lc - i o (81>
s ZmJ () 12 (xp) exp(ind) [1 + exp(iy - indp)] o>
CO
A 2_ o HF 00) exp(ing) (1 + exp(iy - indy)]
> / |
(82)

The transmitted wave function inside of the cylinder:

yV Ef-E:: D J (k b) eXD(ln@) [1 + exp(i iy - ipﬁo)] (83)

N0

From the boundary conditions at o= a

H, = H, . + H
@, tr $yinc Dy8C
D = = . - E
7,tr ~ Tz,inc 7,SC

the constants Crl and Dn are:



' (ka) J (k a) - ked Jn(ka) Jﬁ(kda)

€
6, = 12 ) 2278 2 (o)
gk H) (ka) I (k a) kéan<kda) HY (ka)
K% 7 (xa) 5% (ka) - g (xa) 1 (?)(xa)
_ (2) n n n n
Dp= o Hy (kb) (2) ' (1 = T - (2)
d edk Hp, (ka) Jn(ﬂda) - kéOJn(kda) hn (ka)

(85)

The electric and magnetic fields outside of the cylinder for

© > b are:

B, = Bg = H, =0
2 o0
B = K1 ;z: H(Z J) [J (kb) + C, l exp(an) [1 + exp(iy - ing
z 4eom; — ;
N=w- oo
o) (86)
H, = > n H(2 (xp) [J_(x0) + c_| exp(ing) [1 +
/ l@ Y
; I n==co
+ exp(iy - inéo)] (87)
o0
_ . kI (2) . pad . ]
o= - ag £ TR0 [5_(kb) + C_] exp(ing) [1 + exp(iy - ind,)

(88)

It follows that:

I ,
T = sin(y) ZE: n € sin(n?o) [Jn(kb) + Cn]g (89)

o)

J



- &L -
5
MOI w >
~—E~— [1 + cos(n@o) oos(g)] [Jn(kb) + Cn] (90)
In the case y = W/2

2 OO

Fol ,
T = —-%——nz n e sin(ng,) [Jn(kb) + cn}z (91)
i I%w B
}
P = “Q'IT‘ Zo €, [T, (kb) + cn]z (92)
n=
and
e
N P (’_ T2
%;Dn én Sln(n?O) LJn(kb) + an
M= e > (93)
L en [9,(kb) + C_]

The expressions for power and torque show simi-
larity with those obtained for the conducting cylinder. It
has been already established (eq. (34b)) that

pOIZQ)
I

is the power radiated by two line sources with a phase dif-

ference y = /2, Then the term

8

2 [ ‘f

i
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is due to the influence of the dielectric cylinder. As in
the conducting cylinder case this effect becomes negligible

if the distance of the antennas from the cylinder is large

(see fig., (19)).

The most remarkable change of the torque/power
ratio can be noticed when the line sources are close to the
cylinder. In fig. (28) there is a small deformation of the
curve for kb = 1.5, Relative permittivity of the cylinder
is 2 in this case., The irregularity becomes more visible if

relative permittivity increases to 5 as shown in fig. (29).

The dependence of the torque/power ratio,for
kb = 1.5 and relative permittivity equal 5, on the spacial
angle between the sources is shown in fig. (30). The curve
here lost its characteristic shape. As kb increases (assuming
that ka stays constant), the distortion is smoothed out and
the shape of the curve becomes similar to those given in

figures (12) and (24).

Looking over the results of chapters III and IV
we can conclude that the supporting constructions which are
close to the radiating current Ffilaments will enhance the
torque efficiency, if they are suitably arranged. Also, as

we have expected, the use of dielectric materials for the
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Fig, 28 - Torque/power ratio of two line sources close to

a dielectric cylinder
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Fig, 29 = Torque/power ratio of two line sources close to

a dielectric cylinder



- 68 -

kb=3

=
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Fig, 30 - Torgue/power ratio of two line sources close +o

a dielectric cylinder
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construction helps to increase torque (comparing to torque

obtained if conducting supports are used),

Infinite line sources are not easily approximated
by real antennas. That is why a more practical investigation
would concentrate on radiating dipoles. The following chapters
discuss dipoles close to a conducting cylinder (chapter V)
and a possibility of producing torque in an arbitrary direc-

tion (chapter VI).
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V. DIPOLES IN THE PRESENCE OF AN INFINITE CONDUCTING

CYLINDER

So far in the problems discussed the sources of
cylindrical waves were used. In this section we will consider
the sources of the spherical waves., For that reason eq. (16)

will be used for the calculation of torque:

T=Lre ¢ Tx[e,(F.0).E+1 (F.0).5]a (16)
2 0 M
where A is a spherical surface, the radius of which goes to

infinity; also n = E; .

The mutual arrangement of the two dipoles and of
the cylinder is analogous to that of the line sources and the
cylinder. Both dipoles are in the x - y plane, parallel to
the axis of the cylinder. The distance from the cylinder axis
is equal for both dipoles and denoted "b*, The arms holding

the dipoles are making angle ¢Oe (See fig. 31)

Since the boundary of the problem is a cylinder,
we will express the incident field in terms of the cylindrical
wave functions, The wave function, due to the first dipole

in the position shown in fig. 31, is given Dby:
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dipole 1

dipole 2

Fig, 31 - Arrangement of two dipoles close to a conducting

cylinder
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oo
-] - 2 el - > ~ 2 .
717 %%’i H(() )(@E,ﬁv - &) exp(iaz) ao , A= (kP ?)l/2
T where of is an eigenvalue in the z-direction.

Using the addition theorem

| nJ (B3p) HéZ)st) exp(ing) exp(iaz) da  p<b
'?«7[[ = <j} - s (o)

I / ;

L JnQQb) H£2>(ﬁ?) exp(ing) exp(iaz) da 0>b

fe.od
~ oo
- Al 5 % v 30 r(2> 7 [ Vo T - s e
BT | L P TR Ep) BT (ED) exp[in(y -2 ,)] exp(iaz) ¢o
‘“‘3\::/3' o<t
PP
V2 = re (95)
0[S 10) 52 (50) sxnlin(y - & 1] oxn(ime o
gers g%f;lﬂﬂm)ﬂn Qﬁ)eﬁﬂﬂﬂf~yoh‘wph&w d
| n==
L e o»b

The incident wave function is created by superposition of

both individual ones:

o
[ ©
[ 5% |{exp(ioz) aa E exp(ind) H(?)(3v) 7 (30)
8{5\).&_ i ”s' - =< I n £ nY ;f‘ e
o [1 + exp(iy - inéo)éf' 0 <D
B - f
Yine =7 < o) (96)
f AL | fexp(iaz) d@\é exp(ind) H(Z)(%@) J_(3D)
8:51 i\\_ n:...oc - ]f’ N / n ¢ @
-
. gl + exp(iy - inéo)}g o>b
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The reflected field is then:

r =22
- — El § - » . - 4 /’i’ 7 ( 2 ) re) ( 2 ) [y
%%ef = g5r § éexp(laz) dox é;wm?xp(ln?) A HY (5o) H, (o) .
§ (. T
N
. [1 + exp(iy - igﬁO)] (97)
where

JnQEa)

Bl (98)
n Hr(lz)(;ﬁa)

A

From the total wave function for o>»b

3 w; T 2) Faars I 2
eXp(lnggw) Hr(l (p;) Kn(ﬁ) .

- AL [gexp(iﬁz) da

i =~
et )
o [1 + exp(iy - in?o)]; (99)

the corresponding electric and magnetic fields are found:

oo
™ a0
11 r S o (2) s
E =-g57 | iotexp(ioz) da exp(ing) /3 HY (Zo) .
ﬁ B 0 J e N

R - )
c K (8) [1 + exp(iy - ingy) ]y (100)

Tl ’ e . ) \/ .y o s
E, = &= e exp(icz) dor 2 n exp(ing) H (80) K 3 .
2 8Te oW % 1 £ ny n

. R
. {1 + exp(iy = inpy) | ¢ (101)
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oo ~

i oo
1 ir.2 . RN . P o
EZ = - g %}fzﬁ exp(icz) dot / exp(ing) Hé )Qgg) Kn(g) .
» 0 U N==o0
. [l + exp(iy - in?o)]j (102)
cO N
p o
- Il e S~y ~ A - L4 f’i ’ ( 2 ) Py s In)
HO = 8@}! ) exp(ioz) 4o .; n exp(lnp) HY qu) hn(“>
J e == i
. [1 + exp(ig - in?O)ééf (103)
o0 -
[A Qo \
H,& = Q%E¢ {zexp(iovz) do ; exp(ind) H}(z’egﬁ) K_(3) .
> EL 11 femeo 7 n n-
\J{ 52
- O

. ii + exp(iy - info)}} (104)

o

H =0

The above expressions are for the fields at o > Db, KnQﬁ) ig

defined as:

In(B2) (2)

- e
H(Z);%a) n
n i

3) = J_(3
K, (3) = J_(8b)

(3Db) (105)

The Hankel functions of the second kind and their derivatives

for the far field are approximated by:

n ¢ Bp—>o0
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The approximations are substituted into (100) through (104)

and by interchanging the order of the summation and inte-

gration we can write:

(s 9]
F oo o LIl | 2 exp(=-iT/4) exp{im(é + T/2)] [1 +
g Bleyw {hp N=w=co ’
+ exp(iy - in;%O)} I, (106)
_ o0
LIl 2 (3 5/ E sl 4+ /2]
Eﬁ = BTe 0 %ﬁ? exp(i7/L) nzwm? exp[ln(? + 7/2) | [1 +
+ exp(iy - 1@50)112 (107)
. oo
Il ¥ 2 - E T ¢ [
E — s e “5 — S M L!/ 1 + E; 2 .L +
z BKEOaségg exp (17/4) nzﬂafkplln( / )] -
+ exp(iy = 1H¢O)EIB (108)
—_— @
i) =g |2 exp(iT/8) ) noexp[in@ + T/2)] [1+
0 = B | T 1 oexpiing
+ exp(iy = inco)]14 (109)
11 4.2 . N N T B
Hy = 555 | o5 exp(~iT/4) ) exp[in(p + T/2)] [1 +
L n=e=0
(110)

+ exp(iy - inéo)]IS

where



| N—
et
=
—
<
[ )
p—
o
N

exp{i(az ~fgp)f?<

[ AS——-
fo——
N

N
o

p—

exp[i(oz «/gﬁ)‘

]
N
11
8}
Gy

2) do

exp []_ (ctg = 33) § Kn (

e)ip [;L (5_}'LZ e / ¢S I«xn (/,; ) aod

o1/2 . N

1_5 = Z, /3 / exp ;'l (g - /3 J) J hl’l (‘/d) 4ot
|
e

To evaluate the integrals L through 159 use a substitution:

Z = T Cosé& ol= Kk cos ded = - k sin® dx
o =1 sing A=k sin¥
1

The limits of the integrals will change accordingly:

Im Im | TH+iw

Re ; Re

~ 0 0 el 0 v
o - plane X = plane
-1C0

Fig. 32 - Contour of inte- Fig. 33 - Contour of integration

gration in a-plane in X~plane
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The integration path will have shape as shown in fig. (33).

Rewriting the integrals I1 through 15 we get:

p-ico
I, = - f k5/2 cosy sinB/Zx‘ exp [1kr cos(& +t%)EKp(k sinx) dx
:“+ ico
A =ioo
i - -l
I, = = 'k)/z COS?isinl/Zzi exp{ikr cos {2+ )] K (k sinx) dx
Jtico
=i
Iy = - / k5/2 sin5/2x,exp[ikr cos( &+ )] K, (k sinX) 8%
Jiric
[~
IQ = “f kl/z sinl/%iexpgﬁkr cos{®@ +:%)] Kn(k ginX) dX
J+ico
(i
I, = - ,k3/2 sinB/?xexp [ikr cos(e + x)] K (k sinx) dX
J;T*&- i

The asymptotic values of these integrals

for the far field is found by the "method of steepest

descent"a(lz)
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Setting

£{X) = cos(& +X) (111)

= - gin(® +X) = 0 (112)

Condition (112) gives a series of acceptable points:

~
i
s
=
1}
@©

o= Oy 19 29 39 e e o

from which the point for n = 0 is chosen, so that

Using eq. (4) given by Jones(lz) on p. 445 we finally haves:

r 11/2
2 2 . 2 : . .
11 = |- 5= k5/ cos@ 51n3/ Kn(k sin®) exp(-ikr)
y (113)
- 11/2
2 o1/ o .
I, = |- ;;r k3/ cos@ sin / An(k sind) exp(-ikr)
(114)
1 —-j; Jiwjl/é kS/Z sin5/2@ K_(k sin®) exp(-ikr) (115)
37 ikr - A A PA=L
- 11/2
- 2 . - . . .
Iy === Ty k1/2 81n1/2@ hn(k sind) exp(-ikr) (116)
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[ 11/2
T = ulu 2 13/2 5103/ 2¢ K_(k sind) exp(-ikr) (117)

By substitution of (113) through (117) into (106) through (110)

we get the approximate expressions for the far fields in

formss
D
E — i1{2Il - ( -k_ ) 0 . I \ }'. (If N/Z)]
‘0 B e m‘(;(;‘f exXp(=1¥r,) COSzy slhnu nizwooexp jin O + 0 o
. K (k sing) [1 + exp(iy - ingdy)] (118)
o0
.o _ikTI1 <y COSE N\ . -
By = o 5 exp(-ikr) = ) 1 exp[in(p + i/2)].
; e qor N== o
. X, (k sing) [1 + exp(iy - inéo)] (119)
oo

2
. = ikTI1 3 T . 2/_1 . 4 T 17¢ 1
E, = Eﬁgg;f exp(=ikr) sin“s ézwifp[;n(? + i/2)] K, (k sin®) .

. [1 + exp(iy - inéO)] (120)

oo
— iIl o3 ; 4 ¢ \78 e 3 Fa
HQ = - g2 exp(-ikr) ;;-a? exp[ln(? + 7/2)] K, (k sin®) .

. [1 + exp(iy = in?O)J (121)
oo
.kIl . . I e ! a7 R . .
H, = - lﬁﬁ7 exp(=ikr) sin@ g;_qjxpéln(@ -+ ﬁ/2>} Kn(k sing) .

. [1 + exp(iy - ind,) ] (122)



Kp(k siné), similarly as in (105) stands for

Jn(ka siné)

Hr(lz)(kb sin®)  (123)

K (k sin8) = J_(kb sin8) =
0 n Hr(lg)(ka 5in®)

From equation (16) the components of Ttorgue in

/ - 3
£y ¢ and z directions are found:

Lyl
el
1 f ) . * .. % P
?3 = -3 Re 5 j g}COS(?[EO(E?Slnu + Ezcosu) hé +
' “07 0 -
+ o H%Hrsing] r°sing ag > ap (124)
Fote g BT Toay ar \ /
27
1 \ I
Té = 3 ijﬁ /m{cosv [é (P ‘Sing + B cos@;Ep + “OéP%?J+
4 L * i - PP
+ 81nu/{eo(ﬁps1n9 + EzcosQ) EZ]} T 81n@d@ das (125)
T2
T = i Re sin® <( siné + E%COSG) E, +
z = 2 f | SolBpsing + &) 4
0“ 0
3 ; )
H Hszn9§ rzoln@ dp a9 (126)

P

The relations for the electric and magnetic
flelds are substituted, and as in the previous chapters
the integration over the range of ¢ is:

27
f 0 n#m

-
; exp[l(n - m)®1 dﬁz 4
20 oL oar n=m



After the indicated operations are carried throughs,

we find:

3.2.2 =
k-T71 i
! 8ﬁu>eo =0
@
2.2.2
- N 27
T;Q‘j“er Lnil

Let us define

T

f(sin@) cos® 42

.
|

\.JO

an integral J as

:
f sin @ cos@[Kn(r Sin@ﬂz ae
]
0 (127)
[151w9 cog?[K_(r sin@)] < d¢
J h ) " ’
0 (128)
i
2 n
( 51nJ@§Kn(r sin@)@z as
] L !
0 (129)
(130)

f(sing) is a sultably regular function on the interval (0, 7).

Since

° ~ - 2 — ~ 0\
siné = sin(7 - &)
and
cosB = « cos(7 - &)
we can also write

f(sin@) = flsin(W -9 )]

Generally the integration can be divided in the following
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manner:
N o
| - <A

J = | f(sin®) cos8 49 + [ f(sind) cosb 4¢ (131)
Y0 JT/2

Now in the second part on the righthand side of (131) let

<

—

fft
W2

It

The

are

SQ‘—H

We

is

=77 - so that

0
f(sing) cosH dO = —J flsin(7 =€) cos(l ~©) 4@ =
W2

i
i

JVZ
!
|

f(sind) cosé 4% (132)

follows that

integrals contalned in the equations (127) and (128)

of the same nature, therefore

have only one component of torgue lefts the torgue magnitude

then given by eqg., (129).



- 8L -

T

O
W372,2 .
D o= & —LZ_]-_._ > n €I’1 SinBQ gKn(r Sil’lg)gz as (138)
BT we =0 Y0 )
Qo e
32,2 ~— [ A
P = %ﬁ%g;— /€, } sin’9 (K, (x sin@)]% 4o (139)
P00 n=0 Jo '
Power radiated by two dipoles is given by
3.2.2
P = k-I71

WQ@O

The reduction of equation (139) if ka = 0 leads to the same
expression. The relative value of power for V = T/2 is shown
in fig. 32. As the distance of the dipoles from the cylinder
increases; the influence of the cylinder decrases; for large
values of kb the value of power is that of the two dipcles in

free space,

The torque/power ratio curves retain the same
character as 1t was in the case of the line sources - see
fig.,'s (33) and (34). From Chute(7> the approximate value

of the torque/power ratio of two dipoles in free space is

i)

=0 476 kbCOS(QO/Z) (140)

O

{ e~ . I
{see Appendlix)
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To calculate the radiated power we will start
from eg. (18). Decomposition of the fields into their com-
ponents in the cylindrical coordinates will change the form

of eq., (18) to:

2 . * . L R - PR
J r~sind [— EZH¢Slnw + (%@Hé - géH@) cosé 4o @&
0 (134)

By the same procedure as for the torque calculations we get

o T

,322 ! .
_ ko11” Z <(v - nd e T« in0) 12 go
P = 8Wéou7 nznogl o+ cou(y nyo)]Jﬁ sin-ég [hn(r sin®) = d¢
0 (135)

Replacing the summation from -00 to ¢0 in eqg.'s (129) and

(135) by the summation from 0 tow yields:

0 ry(“
T = 52_;£_ siny £ n &y f sin’e [k (r sina)]z ae (136)
87 e n=0 Jo v n -
3,202 N r
P = k E (1 + cosy cos neo )1 sinsg [n (r sin® ]2
»ue =0 n 0

"0 (137)

For the special case of phase difference y= T/2

torgue and power are given by:

\"f)
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This value was obtained fory =

34 for éo = 5,08 radians, kb =
T - g L
5 0,6L9<ﬁ

If we substitute &, and kb in

I. 1
5= 0.55 =

Sy
W

Considering the approximations

the agreement is good,

/2, 4/ = 1/4, From the fig,

1.4 we obtain

(141)

(140):

{1k2)

Chute used in his derivations,

In the actual applications, control of only torque

magnitude would hinder any effective attempts of stabilizing

a space vehicle, since the direction of disturbing torque is

unpredictable., We will consider a production of torgue in an

arbitrary direction in the following chapter VI.
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Fig. 34 -~ Power radiated by two dipoles close to a

conducting cylinder
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6 ka=1
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Fig, 35 - Torque/power ratio of two dipoles close to

a conducting cylinder
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Pig. 36 - Torgue/power ratio of two dipoles close %o

a conducting cylinder
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VI, TORQUE IN AN ARBITRARY DIRECTION

The arrangements of the sources in the previous
chapters were such that the only non-zero component of torque
was in the z - direction. It is neverthless possible, by
choosing the proper type and configuration of antennas, to
produce torque in an arbitrary direction. To show this, we
will go back to an antenna located in a free space. The ex-
tension to the cases of antennas placed near a supporting

element can be carried out similarly.

Most of the works discussing the torgue caused
by the antenna radiation start with an investigation of a
turnstile antenna. The relation between the radiated power

and the reactive torque 1s usually given by:
Lp (143)

torque being perpendicular to the plane in which the antenna

1ies, ()0 (7) (see rig. 35)

By adding a third dipole and changing the phase
and the magnitude of the currents and the spacial angles
of the dipoles, torque inan arbitrary direction can be pro-

duced.
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Fig. 37 -~ Turnstile antenna
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Fig. 38 - Three crossed dipoles



The configuration of fig. 36 is considered,

O

SN

currents of the individual dipoles ares

Ii = 1

I,=1 exp(iy)
I, = I exp(iv)
3

The

The vector magnetic potentials due to each dipole separately

are given Dby:

L T exp(=-ikr)

i Ilz

— 0 . .
A, = Iy exp(iy = ikr)

_ pOIT
A3 = on exp(iv - ikr)

From fig. 36 we see that

I, =1 (&, cosg + a, sin%, )

I, =1 (a, cosg, + 2 sing,)

T. =T (4 cos & cost, + a_ cos¥®
3 (a, cos§ o3 T %y BP0

The total magnetic potential is a superposition of the

individual ones:

(14h)

(145)

(146)

(147)
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+
=|
+
|

k=4 (148)

)

Tts components in r, & and ¢ directions are:

Poll ) ro. . /. . [ e
A = T exp(-lkr)?\31nc écos(y - gl) + exp(ly) COS(? - 52)] +

+ exp(iy) [COS%’ sin® cos(é - §3) - sin¢ cos@]l}(149)

BoIl . / 0 [ / . . I
A = T exp(=1kr)<Lcos- cos(@ - §1) +oexp(1y) cos(y - ;2)] +

T
i

: 3
+ exp(iv) cosf cosfd cos(p - ?B} -~ sint sin®%], (150)
< )

WS

HoIl : , ,
- 4 . ’ e ?:»: - (:' : \}’} 4 !,\9 - ’//,\
Aé = exp(-ikr) E‘Sln(/\1 @) + exp(iy) Sln(pz ;f> +

+ exp(iy) cosf& sin({f3 - é) ] (151)

The magnetic and electric fields are obtained from

the relation

B = rot A (152)

and from Maxwell equation

— 1 -
E = &= rot B (153)
leO%O
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Usage of eq. (152) gives the components of the magnetic

field:

P 0 11 . 1 . . e / . . e /
B, = T exp(-ikr) (F + ik) [sin(f, - ¢) + exp(iy) sin(S, - 2) +

+ exp(iv) cos§ sin(§3 - 2)] ' (154)
. 1, D 4 iy
Bé = - T exp(=ikr) (f + ik) | cos?® cos(§1 - D) exp(iy)
., cos? cos(l, - é} + exp(iV) [cos¥ cose cos(§ -¢) -
A2 ; L 2 3 /

- sin¥ sing] ; (155)

From eq. (153) the components of the electric field are

derived:

E_ = - ALl exp(-ikr) (% + ik) (Sin@ cos(§1 - &) +
r 2Mule T S '
0
+ exp(iy) siné cos(§j2 - ﬁ) + exp(iv) [sin§ cos®@  +
o+ cosg cos(f’;3 - é) siné?] } (156)
N B S i e 2 X _ sk ) -
E, = Fiioe o7 exp(=-ikr) (k 2 i r).10056 cos (5 %) +



+ exp(iy) cos? cos(§2 - é) + exp(iv) [cosg cos 9 cos(g‘f3 -

- sin;’ sin 9 l} (157)

iTl 2 1

7

/

E¢ = - e (k7 - 55 -1 %) [sin(§1 »ji) + exp(iy) sin(&, —iﬁ) +

LY0s
vt EOI’ r

+ exp(iv) cosf sin(§3 - é)} exp(~ikr) (158)

/

Torque is given by eq. (16). From it the components in r, &

and ¢ directions are:

TK‘ = 0
~T 2T
6'\*O r2 3 . 9 L ! A
T, = -7 Re J r’ sinf E. E, dp d° (159)
0+~0

i
7= 22 g 3 sind EE. dd 49 (160)
é — 2 e T 9 I]/ \
: Jo

or, since the cartesian coordinates are more descriptive:

ELOI‘

3 rW[QT
X 2

Re
o J
Y0~ 0

/ .
(sinf cos® cosp E_ Eg +

b

+ sind sing E_ E ) d¢ de (161)

) =
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A~ 24“
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T = Re (-~ sin? cos?® sging E_ E, +
O -

y 2 r o
0 ,
+ sinf cos¢ E; E_) do d° (162)
eor3 -wf(z} , ) | .
TZ = =3 Re | sin®¢ Er E{é d¢ 4o (163)
“0~0

After the substitution of equations (154) through

(158) into the relations above, we obtain:

T, = 6T@?e sing sin 5, sinVy + sing sin 5, sin(v - VY)
° (164)
1?2 . . .
T = = =gt [s1n§ cos T siny + sing cos &, sin(y =Y )
y 61?’2 . s 1 g 22 2
o (165)
T = kBI l 5 (”‘ bl ) Sy = 3 ( & = ) Ry
z T2 [sin(§, - §;) siny + cost sin(54 - §) siny +
(S8 EO -
+ cost Sil’l(?j3 *E?z) sin(Y - y)} (166)

The position of the first dipole will be used as a reference;
hence we will assign o= 0. Now

3
6?[%3 O / i
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I, = - P 81n§ [31nxf + cos T, sin(y ~;/)} (168)
Ly O
3.2, 2

. S S g S e 2o ) = o ;

T, = - pro [ sin 5, siny + cosg sin ;B siny +

(e
+ cos§’sin(§3 ~4§2) sin(V - y)] (169)

From eq. 15, power radiated by this type of antenna is:

T 2T
P=1i1Rre | | r°sind (B, Hy - Hy By) df a8 (170)
Jo Jo '
which gives:
31242
k-1 717713 * 8 - - W
P = E@eg {2 + cos§2 cosy -+ cos; cos;3 cos o+
+ cosy cos(l, = &) cos(y - V) + 2 coszf] (171)
5 53 7 o2 8 5 -

The simplest arrangement of the dipoles is shown
in fig. 35. That means that £= T/2, [, = %/2, The resulting
7 £

torgue and power are then:

12157

T, o= o sin(v -y) (172)
Eluse
0
3.2.2
T = - E:%Elm sinV (173)
Y 6TuSe
1 372 2
7= - Bl giny (174)
6w e :

0



P = Ttme (175)

From eq.'s (172) through (174) it can be seen that

the z component of the torgue is due to the interaction of

the two dipoles in the x = y plane (y is the phase difference
between dipole 1 and dipole 2). This result is in agreement
with those given by F. S. Chute(g) and P. Bruscaglionl, A,
Consortini and G, Toraldo di Francia(é) for two dipole turn-
stile antenna., Also, comparing (174) to the expressions ob-
tained in the preceeding chapters for the line sources and

the dipoles in the presence of an infinite cylinder, there

is +the same sinusoidal dependence on the phase difference Y o
Tt is worthwhile to point out that the value of the z component
of torgue will not change if the third dipole is completely
removed., However, this act would result in the elimination

of the other two components given by (172) and (173). The x
component arises from the interaction between dipole 2 and 3
and Ty ig due to the interaction between 1 and 3. It is
“therefore obvious that the direction of torgue can be changed
by adjusting the mutual phase differences between the currents

in the individual dipoles.

To find the torque/power ratio we need to find

the magnitude of torque. It is defined by:



T = (124 124 22 )L/2 (176)

if the expressions for TX s Ty and TZ are substituted, the

torque magnitude has

3.2,2
St N [sinz(v - )+ Sinzv o+ sinzgkll/z (177)
6ﬁﬁ)60 ’
Then
M o= %% {sinz(v - ) + sin21/+ sinZy}l/z (178)

In the folowing case the currents are mutually

O

shifted 120°, i.e0 V= 120°, v = 240°, The torque/power ratio

is the same as for the two dipole turnstile antenna:

= (179)

vl
I
E e

Tt is also the maximum ratio that can be obtained for the

discussed set up.

<
i

N
I

Another arrangement is for example = T/2,

v
{

it follows that

= 0.9428 & (180)

e
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A little different approach would keep the phase differences

| O . s . -
constant, say v = 1200§ V= 2407 , leaving the position

angle variable,
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VIT, CONCLUSTON

The object of this thesis was to find the relation
between reactional torgue and radiated power of antenna con-
configurations, both in free space and close to a supporting
element, Also attention was paid to the possibility of produ-

cing torgue about an arbitrary axis,

It was found that a supporting structure,simulated
by a circular cylinder in this investigation, may under certain
conditions enhance the torque efficiency of the antenna. At
the same time, the power efficlency stays unaffected or decreases.
This effect is stronger in the case of the dielectric cylinder.
Torgque and power of the dipole antennas close to a conducting
cylinder display similar behaviour to torque and power produ-
ced by the line sources. This becomes important if the usage
of dipole antennas for control of the attitude of a spaceship
is considered. In any case, as the available power on a space-
ship and the size of the antennas used for communication and
other purposes increase, the reactional torque may be the
cause of undesired disturbances which should be taken into

accountd.



APPENDIX

A BEAN RADIATOR(?)

Congider an antenna consisting of two Hertz ele-
ments separated by a distance /4. The phase difference of

the elements is T/2.

z
e £
‘y :
/b P ;
P
0

Figa B - 1

At a point P at a large distance from the antenna
the field vectors due to each element are eqgual in magnitude

and have the same direction, but they are out of phase by

)

_ % + 20, (B - 1)
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where Ar = %E& - r,

The total field at P can be found by a superposition of the

field vectors of the individual elements. Since the vectors

are out of phase by the anglex , the total field is propor-

tional to 2 cos(®/2). The elements are arranged to be par-

allel to the z - axis., Hence

£
G
!
|

= i sind cos(%) exp(~ikr)

ju
1
5 ps

7 Eg

Now

- - :

I

AT = 0 cos = % sin® cos
- In / L - I
Therefore,
A= 35 (1 + sin® cos¢ )
The field is nows
- A

. N T s I\ .
E, =3 siné cos[z(l + sinf COSg)J exp(-ikr)

g

(B - 2)

(B - 3)

(B - 4)



The force acting on the antenna 1s given by:

) | E.
F=-LtpRe | ExHAS = ~=-Re | a, —E 4s
2c T 2c ° r n 9
S S
or, in the spherical components:
5
F. = - A 5 Sinzg cosz[ﬁki + sin® cosé)] 4s (B - 5)
r 2 J 2 s LL 7
g 7
F“—:FA:O

Decomposition of Fr to x and y components gives:

20 A7
P | . b ;. , s
Fo= é%g | 8in”8@ cosg s1n(%81n§’cos¢) ag da¢ (B - 6)
i b}‘ H ; /
-0 Y0
F_=0
N

where P ig the radiated power,

The double integral in (B - 6) is evaluated by expanding the

term
sin(%'sing cosﬁ)

in infinite series and integrating term by term. Hence
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28 %

R T o ad g2 7t P

i 1 ”:4_1’1 v/ ‘/AW 1] =y .ne IP 1 @ = 'TL—'_ - “ s e e
|| s cospsin(z si coo¢) ag dag T 50 *+ 5280
700 (8 - 7)

The sum of first six terms gives an approximate value 3.9905.

If we substitute this in eq. (B = 6), force acting

on the antenna is found as

p
FY = 0. 476 Py (B - 8)

s

Imagine now that the point of reference is not on
the line connecting the two dipoles, but shifted by a distance

d in the negative y = direction (see fig. B - 2).

iT -
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The torgue produced in this manner is:

~

I o .
— 't_.Q. — X4 gb.. /:._..Q. o
T = Fxb cos 5 = 0,476 = cos 5 (B - 9)
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