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Abstract

In this thesis, two rather different types of problems were investigated. 

The first was a case of anomalous reactivity in the area of carbohydrate synthesis. 

Hexopyranosides having the galacto configuration (i.e. C-4–OR axial) display

very low SN2 reactivities towards anionic nucleophiles, whereas the

corresponding gluco-configured C-6 sulfonates (C-4–OR equatorial) react at rates

typical of primary centers.  The accepted explanation for this difference involves 

the repulsive interaction of local dipoles in the transition structure of the galacto

compound.  This interaction is thought to destabilize the transition structure, 

making this reaction difficult.  However, there are numerous inconsistencies in 

the application of this simple model (cases where the model fails to predict the

observed behavior).  Thus, a computational project was undertaken to examine six 

model systems of this type.  The energetics and equilibria of the reactants were 

determined, including solvation.  Reaction pathways and kinetics for various 

displacements were computed.  Analyses of the calculated charge densities

allowed for evaluation of any electrostatic interactions.  This study revealed a 

number of important factors affecting the rates of reaction, while clearly showing 

that dipole-dipole interactions are very limited in these systems.

The second project was in the related areas of molecular polarizability and 

vibrational spectroscopy.  Descriptive models have been sought relating the 

structure and connectivity of molecules to their electronic properties.  Researchers

in the areas of non-linear optics and of conducting polymers require a better 

understanding of the effects of structural variations on electronic properties.  The 
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simplest models of molecular polarizability and its derivatives with respect to 

molecular vibrations are grossly inadequate.  The highest-level calculations are 

generally reliable but are not applicable to even moderately sized systems.  Thus 

trends in these properties were investigated for a large series of molecules. 

Calculations were performed at a variety of theoretical levels in order to 

determine the ranges of predicted behavior.  Since these calculations predicted

unusual properties in bicyclo-[1.1.1]-pentane, an experimental project was 

completed on this molecule.  The results of Raman scattering intensity 

experiments on bicyclo-[1.1.1]-pentane allowed for evaluation of the performance

of various computational methods.  More importantly, it allowed for the

confirmation of some qualitative structure/property relationships.

4



General Introduction
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It was proposed that the application of computational chemical methods

combined with other theoretical considerations would provide insight into 

problems of interest in chemistry.  This very general thesis statement is indicative 

of how broadly applicable computational chemistry is today.  Soon after the 

development of quantum mechanics it was stated that, “In so far quantum 

mechanics is correct, chemical questions are problems in applied mathematics”

(Eyring et al. 1944).  Although this is somewhat true, a more accurate statement

might be that “…chemical questions are intractable problems in applied 

mathematics”.

The dynamics of chemical systems are invariably those of the many body 

problem and are therefore not approachable by analytical means.  In spite of this 

immediate limitation, a tremendous amount of progress has been made.

Currently, many sophisticated methods of approximation are in use.  A wide 

range of these methods will be described in the course of this thesis. 

The power of computational chemistry is of course directly linked to the

progress in computing power.  The vast increases in available computing

resources over the past twenty years or so have now made it possible to examine

systems of real chemical interest.  While some of the theoretical foundations for 

quantum chemical calculations have been in place for many years, their 

application without computers is impossible.  This is well-known, and most

people are under the impression that brute-force computing, with faster and faster 

computers, is how advances are made.  Unfortunately the scaling of the most

accurate methods in quantum chemistry is so unfavorable that even if computers
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continue to increase in speed at the current rate, systems of more than six atoms

will still be beyond our capabilities for many years.  Fortunately theoretical

chemists have not sat idly by waiting for better computers to come along.  In fact,

advances in algorithms and computational methodologies have greatly outpaced 

the advances in data storage and raw computation.  In particular, methods for 

calculating the properties of very large matrices have improved dramatically.

Furthermore, while the most accurate (and costly) methods are still important for 

benchmarking purposes, most of the current effort is directed towards improving 

the accuracy of more widely applicable approximate methods.

Granting that it is possible to calculate the energy and physical properties 

of chemical systems to various degrees of accuracy, it is more important to know

how best to direct one’s computational efforts in order to acquire the maximum

insight and “chemical intuition”.  Simply to recover an experimental result, “yes, I 

could predict that your reaction wouldn’t work”, is not enough.  Since one could

never compute the dynamics of every possible reaction combinatorially, then

trends, correlations, and consistent frameworks must be elucidated, and 

continually improved.  It is the role of computational chemistry to probe apparent 

inconsistencies and through various types of analyses provide new understanding 

of observed phenomena.

The richness of chemistry is due to its endless complexity.  Chemistry has 

always been understood in terms of trends and simple models.  The

aforementioned apparent inconsistencies are simply the failures and breakdown of 

models applied beyond their range.  Simple models for chemical behavior are still 
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useful and necessary, as is the recognition of the limits of their applicability.  As

chemists in all areas seek to tune the properties of molecules and materials on an 

atomic basis, increasingly detailed insight is required. 

In this thesis two such models were investigated and dissected, and the 

insight gained was applied to extending the models.  The models described, and 

the chemical physics involved, are so different that this thesis is split into two 

entirely separate sections.  However, in this introduction I hope to convey that this 

diversity is the strength of theoretical chemistry.  While the most appropriate

theoretical methods for investigating different phenomena in chemistry differ 

considerably, there are often some essential similarities.  It is probably easier for a 

theoretical chemist to consider different types of chemistry than it would be for

experimentalists.  It is through interaction with experimentalists that theoretical 

chemists become aware of interesting problems for analysis.  This has certainly 

been the case for me.  The projects may be quite unrelated, but the connection is 

in the approach.  For each question, the appropriate tools of quantum chemistry

were considered.  Model systems were conceived and studied, the behavior 

dissected, and the models extended or discarded.  When models are extended, 

based on the results of theoretical considerations, it is important to plan

experiments designed to test the new models for the most extreme cases of their 

applicability.  This experimentation was a large aspect of the work described in 

the second part of this thesis.  As is often the case, these experiments produced 

data which required theoretical considerations for their interpretation.  This is 
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illustrative of the continuous interplay between theory and experiment, each

supporting the other. 
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Notes on Presentation 

Both of the projects discussed in this thesis were rather lengthy

investigations which included a number of different approaches.  The Raman

intensities project was a continuation of previous work in the Gough research 

group, particularly that of Jason Dwyer. It would have been difficult to imagine

the scope which this study eventually encompassed.  The project went from 

theoretical to experimental and back again.  It began with survey calculations and 

went on to synthesis and recording of spectra, then an anharmonic force-field

analysis was performed and finally inverse-eigenvalue algorithms.  Similarly the 

reactivity study covered much ground and many forms of analysis.

Thus to maintain a reasonable level of continuity, the presentation through 

the main parts of this thesis is similar to that of manuscripts published in these 

areas.  A relatively terse style is used, and some familiarity with theoretical

chemistry is assumed.  This will allow the main focus and direction of the 

research to remain clear.  In order to provide additional information about some of

the methods which are used, but only mentioned in passing in the text, a number

of appendices have been included.  Each of the two parts of the thesis has its own 

set of appendices which describe particular methods in more detail.  Actual 

MathCadTM worksheets have been reproduced to provide explicit examples of 

some of the analysis.  Sample calculations are included for each type of 

calculation.  Overall the relative size of the appendices is quite large.  The 

appendices themselves are not intended to be just simple data tables or references,

but rather, fully developed discussions about each relevant topic.
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Computational Methodologies A: Post-SCF Methods 

The Hartree-Fock self-consistent field (SCF) method is the foundation of 

all the methods used in the work described in this thesis.  For a closed-shell 

system, the Hartree-Fock wavefunction is a variationally optimized single Slater

determinant.  The method is size-extensive and thus allows post-SCF methods

based on the SCF the possibility of remaining so (an expansion of size-extensive 

terms could also be size-extensive). The SCF wavefunction is constructed with 

the assumption that the electrons are independent particles.  Therefore the SCF 

method lacks all electron correlation except Fermi.  All of the higher-level 

methods discussed here make some attempt to describe the electron correlation 

and thus improve upon the SCF wavefunction.  For a closed-shell system with 

only one important electron configuration, the SCF method is surprisingly good. 

When multiple configurations are important, the method can also be extended to

multiconfigurational SCF.  None of the systems described in this thesis required

such an extension.  Under the closed-shell single-configuration conditions (which

are most usual), the SCF method recovers total electronic energies to within about 

1%, and many physical and electronic properties to within about 10%.1  In some

senses, this is a triumph and is a good reflection of the physics of the system.

However, it is not a good reflection of the chemistry of the system.  From a

physics standpoint, to develop the electronic structure of a molecule, and capture 

99% of the total energy is quite good.  However, the chemistry of a system is

determined by very small energy differences, which determine conformer

populations, reaction barriers etc.  Thus the drive in theoretical chemistry is to 
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develop affordable highly accurate methods.  Since the Hartree-Fock method is so 

fundamental, some details of the Fock operator, the orbitals, and the energy are 

listed below.

The Hamiltonian operator is written as:1

pq pqrs
nuc

h
pqrs

e
pqrs

g
pq

E
pq

hnuchghH
2

1
(A1)

where h and g are the one and two electron terms and hnuc is a constant nuclear-

nuclear repulsion term.

The Fock operator is written as:

pq pq i
pq

E
piiq

g
pqii

g
pq

E
pq

VV

Vhf

2
(A2-A3)

Thus the Fock potential V replaces the two-electron part g.  This is an effective

one-electron potential in which each electron interacts with the remaining

electrons through their average density.

The orbital energies are: 

i
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K K
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2
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   (A4-A5) 

As seen explicitly above, this expression assumes that the orbitals are real.  This is 

the most common situation and simplifies the actual computation.  If necessary
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one can test for real to complex instabilities in a wavefunction, and then re-

optimize the wavefunction if such an instability is found. 

The Hartree-Fock energy is the expectation value of the Hamiltonian

operator in the Fock state: HFHHF
HF

E (A6)

This is not the expectation value of the Fock operator.  The HF wavefunction is an 

eigenfunction of the Fock operator, with an eigenvalue equal to the sum of the 

orbital energies.  It is of key importance to recognize that the sum of the orbital 

energies does not equal the total Hartree-Fock energy, but is only the eigenvalue 

of the Fock operator.  The fluctuation potential can be defined as: 

Vg        (A7)

Thus the fluctuation potential is the difference between the two-electron operator 

and the Fock potential.  This allows the Hamiltonian H to be expressed in terms of 

the Fock operator f, the fluctuation potential, and the nuclear repulsion term. 

nuchfH       (A8)

This gives the following expression for the Hartree-Fock energy: 

i

nuciHF hHFHFE 2)0( (A9)

The factor of 2 in front of the orbital energies reflects that for a closed 

shell system, the canonical spin orbitals are doubly occupied.  The superscript (0) 

is to indicate that this formulation can now be considered as the Hartree-Fock

orbital energies corrected to first order in the basis of the Hartree-Fock state by 

the fluctuation potential.  This does not include electron correlation, but 

foreshadows the natural extension to higher order corrections, which do.
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Møller-Plesset Perturbation Theory 

The MP2 method is based on the Hartree-Fock state.  The Hartree-Fock 

energy can be considered to be that of the HF orbital energies corrected to first

order in the fluctuation potential. The MP methods can then be viewed as higher-

order corrections in the fluctuation potential.  It is well known in perturbation 

theory that a first-order wavefunction correction allows determination of the 

second-order energy correction.  In this case the Hartree-Fock energy already uses 

the first-order energy correction with the zeroth-order wavefunction (the HF 

state).  Thus by obtaining the MP1 wavefunction, the MP2 energy may be

computed.  Shown below are the MPn energies through MP2.1

JIBA JIBA

AJBIAIBJ

MP

MP

I

IMP

gg
E

HFHFE

HFfHFE

,

2

)2(

)1(

)0(

    (A10-A12) 

As will be illustrated in more detail shortly, the second-order energy

correction is the expectation value of the fluctuation potential operator using the 

Hartree-Fock and MP1 states.  Expressing the energy terms this way allows the

Hartree-Fock and MP2 energies to be written as: 

nucMPMPMPMP

nucMPMPHF

hEEEE

HFHHFhEEE

)2()1()0(
2

)1()0(

   (A13-A14) 

The second correction to the energy as shown above can be written as: 
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1)2( MPHFEMP      (A15)

It is clear how this arises in terms of a typical perturbation theory 

expansion.  However, since the next post-SCF method to be discussed is the 

coupled-cluster method, this is a good place to introduce excitation operators.

Again, the second quantized form is used to describe wavefunctions.  Introducing 

an excitation operator, the second energy correction can now be written in terms

of the Hartree-Fock state.1

HFTHHFMPHFEMP

)1(

2
)2( 1    (A16) 

The equality of the second and third terms should not imply that the Hamiltonian

and fluctuation operators are equivalent.  The details of some operator

manipulations have been omitted.  This expression shows how the MP1 state is 

constructed from the HF state through an excitation operator: 

HFTMP

)1(

21      (A17)

As will be shown explicitly, this operator populates the virtual orbitals and 

depopulates the occupied orbitals in the same way that creation and annihilation 

operators work on field modes.  The product of operators can be replaced by 

their commutator.  This will not be used here since its usefulness is only seen 

when the MP3 and higher corrections are considered and appear as a series of 

nested commutators.

2TH
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The single and double excitation operators are as follows: 

HF
J

a
B

a
I

a
A

aHF

AB

IJ
IJ

AB

HF
I

a
A

aHF

A

I
I

A

   (A18-A19) 

Thus using the creation and annihilation operators the various singly and doubly 

excited states may be formed.  The single excitation operator above can be seen to 

depopulate orbital I, while populating orbital A.  Higher excitations are performed

the same way.  Excitations higher than single require a restriction on the indices. 

For double excitations, the conditions A>B and I>J ensure that no duplicate states 

are created.

Finally it can be shown how the MP1 state is constructed.  The operator T 

has a subscript 2 denoting that these are double excitations, and a superscript 1, 

indicating that the amplitudes of the created states are derived from first-order

perturbation theory.  Thus the operator is a summation over all double excitations, 

weighted by an amplitude factor. 

JIBA

AIBJ
AB

IJ

JB

JIBA

IA

AB

IJ

HFHaaaaHF

t

aaaatT

,
)1(

,

)1(
)1(

2

   (A20-A21) 

When the operator T is used to create the MP1 state, it becomes clear how

the MP2 energy is obtained.  The higher MP states and energies can also be 

expressed as a set of excitation operators acting on the HF state.  This method
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differs from the coupled-cluster method in that there is always a linear

combination of excitation operators.  This means that the highest excitation is that 

of the highest excitation operator.  Due to the tremendous possible number of 

triple and quadruple excitations, and the complexity of evaluating the higher-

order amplitudes necessary to incorporate them, the higher methods are only 

practical for small numbers of electrons.  The MP2 method scales as the 5th power 

of the number of electrons, while MP3 and MP4 scale as the 6th and 7th powers, 

respectively.1  The MP methods do maintain size-extensivity but they are no 

longer variational.  Their convergence is not guaranteed and is usually oscillatory. 

Despite these considerations, corrections as high as MP4 and even MP5 are 

commonly used and are included in the Gaussian program code.  Since each 

correction beyond HF requires the construction of perturbative wavefunctions, 

this method rapidly becomes uneconomical.  In the research described in this

thesis, the MP2 and MP4 methods were evaluated.  The MP4 method was found 

to be too costly, while the MP2 method showed no advantage over B3LYP for the 

applications considered here.

Coupled-Cluster Theory 

The Coupled-cluster method was the highest level of theory used in the 

research described in this thesis.  It is widely known as one of the most accurate 

theoretical methods available.  Although it is non-variational and scales as the 7th

power of the number of electrons, the coupled-cluster method (specifically 

CCSD(T)), is widely used for benchmarking and the development of new
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methods (DFT).  As with the MP methods, the coupled-cluster method is based on 

the application of excitation operators to an initial Hartree-Fock state.  Thus this 

method again relies on there being only one important electron configuration, 

which is well represented by the Fock state.  In fact, there is an economical

diagnostic calculation that may be run on the HF state, to determine whether or 

not this is correct.2  This prevents the running of a lengthy coupled-cluster 

calculation whose results would be poor.  Most common systems encounter no 

such difficulties, making the method widely useful when a definitive answer is

required.

Within the uncorrelated Hartree-Fock state, the electrons occupy the lower 

energy spin orbitals and don’t interact.  The correlation of electrons (their 

interaction) is reflected in excitations to the virtual orbitals.  Each possible 

excitation has its own amplitude, the probability of this excitation occurring.  As 

more possible excitations are considered, the electron correlation is described

more completely.  In the limit of full-CI, all possible excitations are considered.

In coupled-cluster theory, a truncated set of excitation operators is used to treat 

the excitations.  If the coupled-cluster excitation series were not truncated, it 

would describe the same state as the full-CI.  With truncation, and in contrast to 

the MP series, it will be shown how the CC method incorporates many higher 

excitations indirectly.  This is seen as the reason for its superiority over the MP

and CISD methods.  Without considering the amplitudes, the excitation expansion

may be written for the CC state CC  as: 
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HF
N

i
iC

HFTCC

0
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The C’s in the expansion are the set of excitation operators T, which cause 

excitation to the level of the index of C. 

3

1
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2133
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TTC
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     (A23)

The key to the method is in the truncation.  Looking at C3, one can see three 

mechanisms for triple excitation. The direct triple excitation through T3 is called

the connected excitation, while the product of T1 and T2, and the cube of T1 are 

called disconnected excitations.  Thus the triple and higher excitations may be 

achieved in terms of lower excitation operators.  When the series is truncated, it is

not truncated at a level of excitation; it is truncated at a level of excitation

operator.  Thus the series is still summed over all of the C’s, but including only 

some of the operators.  If, for example, the CCSD method were used, only the T3

term would be omitted from the above expression.  This allows at least some

contribution from all configurations, whereas truncating the excitation level 

directly in a linear expansion (CISD) does not.  Furthermore the method can be 

shown to be size-extensive no matter which truncation level is chosen.1
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The most commonly used coupled-cluster method and the one used in this 

thesis is CCSD(T).  This method is truncated after the double excitation operators 

although higher excitations are still included through the products of the single 

and double operators.  The effect of the connected triple excitations, through the 

triple excitation operator, is included via perturbation theory rather than direct

inclusion of the triples operator.  Fortuitously, the implementation through 

perturbation theory often produces a result closer to that obtained by the full-CI

method than by explicit inclusion of the triples operator (CCSDT).  This accounts 

for the tremendous success of the method relative to its cost (which is still 

extremely high). 

B3LYP

Another very popular method also used here is the hybrid-Density

Functional Theory (DFT) method known as B3LYP.3  Developed in the early 

1990’s by Axel Becke at Queens University in Canada, B3LYP has rapidly 

become one of the most widely used methods in all electronic structure 

calculations.  Density functional theory, like most theoretical methods, has a 

hierarchical structure of methods.  B3LYP uses functionals at what is known as 

the generalized gradient approximation (GGA) level as well as ones at the LDA 

(local density approximation) level.  A functional is a function of a function.  For

example, if the electron density is a function of the nuclear coordinates (as will be

discussed regarding the Born-Oppenheimer approximation), and the energy is a 

function of the density, then the energy can be said to be a functional of the 
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nuclear coordinates.  Implementation is straightforward and is included in most

commercial codes such as Gaussian.  First an HF self-consistent field state is 

computed.  Some exact exchange energy from the HF calculation is incorporated

into the DFT calculation.  Then during the DFT calculation, the density and its 

gradient are evaluated at a large number of points on a grid through space.  The 

fineness of the grid may be specified. An iterative solution is found to a pseudo 

eigenvalue equation, including three functionals of the density and its gradient 

throughout the grid.  The total energy and its gradient with respect to nuclear 

displacements are then computed.  Depending on the type of calculation (e.g. 

geometry optimization) the calculation proceeds just as it would with an HF 

calculation.  The functionals Becke used to replace the Hartree-Fock exchange

energy term are shown below followed by a more detailed explanation:4-6

9188 81.072.0)(2.0)( PW

C

B

X

LDA

X

HF

X

LDA

XCXCX EEEEEEHFE  (A24) 

This method uses the Hartree-Fock method, which lacks correlation, but

then has the exchange-energy term replaced by a term called the exchange-

correlation term.  This is how some account for correlation is introduced.  As can 

be seen in the first term of the above expression, the exchange-correlation is 

added from a local-density approximation functional.  The second term introduces 

some of the Hartree-Fock exchange, while removing some of the LDA exchange. 

The third and fourth terms add a parameterized contribution from two gradient-

based functionals.  The current implementation in Gaussian software is with 

slightly different functionals, but the parameterization is the same.
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The method works quite well, but is deserving of a few qualifying 

comments.  Although there are physical arguments for using these functionals to 

describe the correlation, there are no physical grounds for the specific 

parameterization chosen.  In a sense, the method is semi-empirical, since the 

parameters were chosen in order to obtain the best possible agreement with 

experiment.  Also the capacity for improvement at the GGA level seems to have 

been exhausted.  Becke’s experiments with up to 14 parameterized functionals at

the GGA level have produced no significant improvement over B3LYP.  The next 

level of DFT does appear promising, and as a natural extension to a method that

includes the density and its gradient, meta-GGA’s now include functionals based 

on the Laplacian of the density.  At this time the B3LYP method is usually 

considered to be comparable in performance with the MP2 method, while 

significantly less costly.
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Computational Methodologies B: Basis-Set Superposition Error and Size-

Extensivity

Often in theoretical chemistry it is desirable to calculate the interaction

energy between molecules or fragments.  In this thesis, the energies of the model

sugar compounds were computed separately from those of the chloride atoms.

This is equivalent to considering them to be at infinite separation.  When the 

chloride ion approaches the sugar molecule during the displacement reaction,

there is a real physical interaction between the two systems. Whether attractive or 

repulsive, the computational method should capture this interaction and its 

energy.  Unfortunately, an additional spurious interaction is computed when finite 

basis-sets are used (always).  This non-physical interaction appears to be 

attractive since it always lowers the system energy (for variational

wavefunctions), and is proportional to the distance between systems.  The

interaction energy between two systems A and B might be computed as: 

BABABAINT EEEE )(     (B1)

This is simply the difference between the energy of the complex and that of the 

isolated systems.  The non-physical interaction energy, called basis-set 

superposition error (BSSE), is due to the lack of completeness of the finite basis-

set.7  The basis set is the set of functions generally centered at the nuclei, used to 

describe the electron density.  Depending on the size of the basis set, assuming

that the variational method is used, there will be a difference between the

calculated energy and that which would be reached in the lower limit of a 

complete basis (the Hartree-Fock limit). This is because the functions chosen are 
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not flexible enough to describe the density optimally.  With smaller basis sets this 

difference can be quite large.  When two fragments are brought into proximity the 

functions centered on the nuclei of fragment A begin to overlap with the functions

of fragment B.  This is important in order to describe the density of the total

system and thus capture the real interaction.  However it also means that fragment

A, using the functions of fragment B in addition to its own, may enjoy a larger

and more flexible basis for description of the density of A.  Similarly fragment B 

benefits from the presence of fragment A.  The BSSE energy may be computed

and removed by the method of Boys and Bernardi.7  Their approach is simple; one 

calculates the energy of fragment A as before and compares this with the energy 

of fragment A calculated with the additional functions of fragment B, placed 

where the nuclei of B appear in the complex, but without the nuclear charges. 

These ghost atoms, with their associated functions, allow calculation of the 

spurious lowering of A’s energy by the functions of B.  Similarly one corrects the 

energy of fragment B using the ghost atoms of A.  This correction is known as the 

counterpoise correction.  Due to some early theoretical debates, this is sometimes

called the complete counterpoise correction, in contrast to other proposed 

corrections.

The relative importance of this interaction energy depends on the type of

systems studied.1  For covalent bonding interactions as described in this thesis, the 

effect is relatively small.  When hydrogen-bonding interactions are the dominant

interaction, such as with the water dimer, this effect grows in importance.  BSSE 

could introduce error of more than 80% into the association energy for this 
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system.  For the argon dimer, BSSE could easily far exceed the true interaction 

energy.  One cannot then simply remove the spurious contribution because the 

minimum energy separation distance will also be seriously in error.  Rather, one

must plot the BSSE as a function of distance, and then remove it from the 

computed interatomic potential, leaving the true potential, thus allowing 

identification of the true minimum-energy geometry.  Noble-gas dimers are good 

model systems for these calculations since the true interaction energies are 

extremely small, and yet have been accurately measured by various 

spectroscopies.  Furthermore, when the mechanism of the true attraction is

dispersion forces, then this attraction is an electron correlation effect and cannot 

be recovered by the Hartree-Fock method alone, even at the Hartree-Fock limit.

The BSSE-corrected Hartree-Fock limit potential is repulsive at all distances.

Therefore any noble-gas dimer structures computed by non-correlated methods

are functions of an entirely spurious BSSE interaction.

In practice the magnitude of this effect is dependent on the system studied 

but in general, using the correlation-consistent basis sets (cc-pVXZ; X=2..7), the 

correction decreases by a factor of roughly 2-4 for each increase in the cardinal

(zeta) number.

The importance of using size-extensive computational methods should be 

noted from the outset.  A size-extensive method is one for which the calculated 

energy of a system of two non-interacting fragments would be equal to that of the 

sum of the energies of the individual fragments.  This sounds like an obvious 

property to demand of a computational method but it is not realized by several 
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commonly used methods.  The Hamiltonian of a system of two non-interacting

fragments A and B can be written as:1

BHAHABH      (B2)

Using second-quantization and the wave-operators for creation of the states A and 

B one can write: 

B
E

A
E

AB
E

vacBAvacABAB

vacBB

vacAA

   (B3-B6) 

These operators are applied to the vacuum, or empty Fock state.  Their 

action populates and depopulates the orbitals similarly to the way in which 

creation and annihilation operators act on field modes.  These requirements make

the wavefunction multiplicatively separable, and the energy additively separable.

This is not unlike the Born-Oppenheimer approximation discussed in appendix C, 

where the separability of nuclear and electronic wavefunctions allowed for

product function solutions and added energy contributions.  It is easy to see that 

one cannot even begin to calculate interaction energies with a non-size-extensive 

method.  For example, Hartree-Fock, MPn, and coupled-cluster methods are size-

extensive, while CISD is not.

26



Computational Methodologies C: Atoms In Molecules 

Developed over several decades by Richard Bader, the quantum theory of

atoms in molecules8 is seen by some as simply an alternative way of calculating

atomic populations and therefore charges.  Although it can indeed be used to 

determine atomic charges within a molecule, it is much more than that.  Atoms In 

Molecules (AIM) is a completely rigorous formalism with which a molecule may

be partitioned into proper atomic subsystems.  The method of partitioning a 

molecule into its constituent atoms is such that within each atomic subsystem a 

consistent operator algebra is maintained for all of the typical operators of 

quantum mechanics.  Thus, for example, one might evaluate the energies and

charges for each of the atoms in a molecule.  Many other physical observables are 

commonly treated.  As would be expected, these atomic quantities would sum to 

equal those of the molecular system.  It should be noted that there is a conceptual 

superiority to this method over many others.  Methods of population analysis, 

such as Mulliken’s, partition the electron density in an arbitrary way according to

basis-set-dependent atomic and molecular orbitals.  The AIM partitioning scheme

is often applied to calculated electron densities, but does not rely on them.  That is

to say that the AIM method partitions real systems in real space, and can be 

applied to experimental densities obtained from scattering experiments.

The partitioning scheme is simple.  Within the Born-Oppenheimer

approximation, the electron density is a function of the nuclear coordinates.  For a 

given nuclear configuration, there is a corresponding electron density.  Each point 

in space has an associated density (a scalar value).  Since the electron density is a 
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scalar field, then the gradient field ( )(r ) is a vector field.  Atoms are

partitioned by surfaces of zero-flux through the gradient field.8

0)()( rnr (C1)

Where n(r) is a vector normal to the gradient field contours.

Equation (C1) is simply the equation for a surface which crosses no 

gradient paths and thus separates the molecule into atoms.  This is best shown by 

the example below.  The molecule bicyclo-[1.1.1]-pentane is shown with critical 

points (a), and gradient field paths (b).  It is clear in (b) where the atomic

boundary lines of zero-flux through the gradient field would lie.

a) b)

Figure C1: (a) density critical points (red, yellow, and green), (b) contour plot, 
and gradient field plot of bicyclo-[1.1.1]-pentane.  Slice is in the plane of the 
methylene nuclei. 

Once the molecule has been partitioned into its constituent atoms then the 

properties of the atoms themselves may be considered.  Of primary importance to 
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this investigation is the fact that each atom is the source of a multipole expansion.

Any deviation from a totally symmetric density surrounding any nucleus results in 

a corresponding atomic dipole moment.

The treatment of dipoles within the AIM formalism requires some

explanation.  Although the total molecular energy is recovered simply by 

summing the atomic contributions, the recovery of molecular dipoles is not quite 

as straightforward.  Since the charge is partitioned into atomic basins, then each

“atom” has a net charge (summing to zero for a neutral molecule), and each atom

has an atomic dipole representing asymmetry of charge within the atomic basin. 

Thus, to recover a molecular dipole from atomic charges and dipoles, one adds 

the contribution from the relative positions of the charged nuclear attractors to 

that of the sum of the atomic dipoles. When a dipole is induced by a perturbation 

such as an applied field, or by changes in conformation, there are two possible 

contributions.  Firstly, there is the change in the atomic dipoles representing 

distortion of charge within the basins.  Secondly, there is a change in the charge-

separation term, which includes both transfer of charge across the inter-atomic

boundary, changing the amount of charge being separated, as well as geometry

relaxations which change the distance by which charge is separated.  The charge-

separation contribution to the dipole is directed precisely between the two nuclear 

attractors, while in general the atomic dipole contribution can be in any direction.

29



What follows below are some worksheet examples of calculations

involving the changes in atomic dipoles induced by conformational changes in the 

galacto and gluco model compounds.  The details of this study are in part 1 of this

thesis. These calculations are an example of how AIM might be used.  If 

molecular fragments were repelling each other through electrostatic interactions,

then AIM analysis should reveal the extent of this on an atom-by-atom basis.

Figure C2: Model galacto compound 1TS.  Proposed dipole-dipole interaction is
between bond dipole at C4-OH and that between C6 and the chlorine in the gg

position.  A relatively parallel alignment is found in this structure. Complete
details of this study are found in Part 1 of this thesis.
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Vector analysis of AIM derived atomic properties

Galacto-Fluoro system (low energy tg rotamer)

Cartesian coordinates of nuclear attractors units of bohr 
C4 0.53122106 1.83791717 0.39211464( )

F 0.42397502 2.74003343 2.1300081( )

H5 2.76263308 0.65414661 2.86292133( )

Cl 5.47207978 0.11315015 0.6416103( )

C6 2.82855736 1.40112481 0.94678476( )

Cartesian coordinates of bond critical points between C6-Cl, and C4-F, units of 
bohr
CpClC6 3.9420865 0.7536074 0.2647736( )

CpFC4 0.4974708 2.1373013 0.4709218( )

Atomic dipoles units of electron·bohr 

C6D 0.076834 0.077341 0.101461( )
T

ClD 0.153007 0.084499 0.118789( )
T

FD 0.008517 0.036441 0.114411( )
T

C4D 0.030848 0.172064 0.546468( )
T

Defining normalized vector from C4 to F 

FC4 F C4( )
1

F C4( ) F C4( )
T

Defining normalized vector from H5 to F, this is the direction of the anticipated 
induced dipole, when Cl is rotated up into alignment. The projection of dipoles at 
C4, and F onto this vector will be followed through the rotamers.

FH5 F H5( )
1

F H5( ) F H5( )
T

Defining normalized vector from C6 to Cl 

ClC6 Cl C6( )
1

Cl C6( ) Cl C6( )
T

Establish total magnitude of F atomic dipole 

FD
T

FD 0.120376( )
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Projection of F atomic dipole along C4-F bond 

FC4 FD 0.120245( )

Projection of F atomic dipole along vector from H5 to F, defined above. 

FH5 FD 2.6933412879410
3

Naming the above quantity for calculation of perturbation in higher energy 
rotamers.

Gal2Ftrans FH5 FD

Establish total magnitude of C4 atomic dipole 

C4D
T

C4D 0.5737463675( )

Projection of C4 atomic dipole along C4-F bond 

FC4 C4D 0.5732685( )

Projection of C4 atomic dipole along vector from H5 to F, defined above. 
FH5 C4D 0.01807821211( )

Naming the above quantity for calculation of perturbation in gg rotamer.
Gal2C4trans FH5 C4D

Establish total magnitude of Cl atomic dipole 

ClD
T

ClD 0.21133397638( )

Projection of Cl atomic dipole along C6-Cl bond 
ClC6 ClD 0.20988729807( )

Projection of C4 atomic dipole along vector from H5 to F, defined above. 
FH5 ClD 0.02412629066( )

Establish total magnitude of C6 atomic dipole 

C6D
T

C6D 0.14892759435( )

Projection of C6 atomic dipole along C6-Cl bond 
ClC6 C6D 0.14011233127( )

Projection of C6 atomic dipole along vector from H5 to F, defined above. 
FH5 C6D 0.01952728975( )
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Galacto-Fluoro  (gt rotamer)

Cartesian coordinates of nuclear attractors units of bohr
C4 1.72765232 2.05213808 0.81087222( )

F 1.88477606 3.32687401 1.53946147( )

H4 2.74308667 1.79574958 2.20965735( )

Cl 5.64086887 0.58072023 0.20858362( )

C6 2.86916068 1.40132349 0.23633847( )

Cartesian coordinates of bond critical points between C6-Cl, and C4-F, units of 
bohr
CpClC6 4.043006843 0.5462193814 0.040030549( )

CpFC4 1.77825024 2.480214883 0.00582354( )

Charge transfer (change in charge) relative to low energy tg rotamer. units of
electrons
chtC4 0.002362
chtF 0.000906
chtCl 0.012304

chtC6 0.004224

Atomic dipoles units of electron·bohr 

C6D 0.087631 0.115657 0.040365( )
T

ClD 0.197609 0.093482 0.059917( )
T

FD 0.005382 0.052678 0.112564( )
T

C4D 0.020818 0.277986 0.50478( )
T

Defining normalized vectors as above (it is now H4 which is across from F) 

FC4 F C4( )
1

F C4( ) F C4( )
T

FH4 F H4( )
1

F H4( ) F H4( )
T

ClC6 Cl C6( )
1

Cl C6( ) Cl C6( )
T

Establish total magnitude of F atomic dipole 

FD
T

FD 0.124397( )

Projection of F atomic dipole along C4-F bond 
FC4 FD 0.124164( )
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Projection of F atomic dipole along vector from H4 to F, defined above. 

FH4 FD 6.12219038502 10
3

Naming the above quantity for calculation of perturbation in higher energy 
rotamers.
Gal1Ftrans FH4 FD

Defining and output of projection of charge transfer contribution to induced 
dipole onto H4-F vector.  Charge transfer contribution to dipole can be seen as 
distance from critical point to nuclear attractor, multiplied by change in charge 
" CpFC4 F( ) chtF" This is then projected via dot product with FH4. 

cht21F FH4 CpFC4 F( ) chtF( )
T

cht21F 1.38776005265 10
4

Calculation and output of projection of induced dipole along H4-F normalized
vector, relative to low energy tg rotamer.
Delta21Ftrans Gal1Ftrans cht21F( ) Gal2Ftrans

Delta21Ftrans 3.29007309182 10
3

All other AIM dipole analysis was performed in a completely analogous fashion.
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SN2 reactivity at C-6 in hexopyranose derivatives 

Introduction:

The SN2 displacement may appear to be among the simplest organic

reactions, but recent experimental and theoretical investigations have revealed 

surprising aspects of this ubiquitous process.9, 10  The availability of accurate 

computational methods has made it relatively straightforward to investigate 

rigorously anomalies in reactivity that had previously been interpreted only 

through qualitative descriptions.  A striking example of such an anomaly comes

from synthetic carbohydrate chemistry.

It has been known for many years that C-6 sulfonate derivatives of 

hexopyranosides having the galacto configuration (i.e. C-4–OR axial) display 

very low reactivities towards anionic nucleophiles, whereas the corresponding 

gluco-configured C-6 sulfonates (C-4–OR equatorial) react at rates typical of 

primary centers.11  In a rare example in which galacto- and gluco- compounds

were subjected to a comparative kinetic study, the second-order rate constant for 

the reaction of azide with methyl-2,3,4-tri-O-acetyl-6-O-p-tolylsulfonyl- -D-

glucopyranoside was observed to be 32-fold greater than that for the reaction of

the analogous galactoside.12  In the majority of cases, attempted displacement of a 

C-6 sulfonate from a galactopyranoside fails completely and instead leads to 5,6-

elimination or to the formation of a 3,6-anhydrosugar in competition with the 

expected SN2 product, which is obtained in very low yield.13  This is but one 

illustration of a group of cases in which the rates of SN2 displacement apparently

depend on the relative geometries of remote polar substituents.  While chemists
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have found some ways to minimize these difficulties in practice, these kinetic

anomalies remain fascinating case studies in physical organic chemistry.

In 1969, A.C. Richardson proposed a persuasive qualitative explanation 

for reactivity differences of this type.14  This rationalization assumed that 

differences in reactivity between the axial (galacto) and equatorial (gluco)

configurations were a consequence of the differences in the energies of the 

respective transition structures.  He argued that the transition structure for

displacement would have a geometry in which the scissile C-6–X bond was 

orthogonal to the C-5–O-5 bond, i n order to minimize dipolar repulsion from 

interactions with the endocyclic oxygen. In the absence of a bulky substituent on 

O-4, he suggested that dipole-dipole interactions destabilized the SN2 transition 

structure (Figure 1).  In a transition structure of this type, the developing negative 

charge on the leaving group X– would encounter unfavorable dipolar interactions 

with an axial electronegative group at C-4 (as in the galacto configuration).  In 

the gluco configuration, the equatorial C-4–OR group would not create this 

destabilizing effect.  When O-4 carried a bulky blocking group, the low reactivity

of galacto-configured sulfonates was deemed to have a steric origin.  Richardson 

used a similar dipole rationalization to explain differences in the SN2 reactivities

of O-sulfonate derivatives of the secondary hydroxyl groups in hexopyranosides. 
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Figure 1: Postulated Dipole Interactions in SN2 Displacements at C-6 
in Galactopyranosides.

This steric/dipolar explanation has been nearly universally adopted by the 

carbohydrate community and is incorporated with very little comment into current 

textbooks.15  It continues to be extensively cited and has been applied outside 

carbohydrate chemistry.16  Craig and Brauman have recently restated a version of

this rationale to explain rates of gas-phase SN2 displacements in a series of -

substituted primary n-alkyl chlorides, although they suggested that transition 

structure dipoles enhanced reaction rates.17

Despite its intuitive appeal and the breadth of its applicability, the 

fundamental correctness of the steric/dipole model is not obvious; m oreover, it 

has never been examined in light of modern electronic theory.  Although the 

initial description of the model only addressed reactions of sugars, it is apparent

that the question of its validity has implications for understanding SN2 reactivity

in general. 

This is an ideal model for investigation.  The model is constructed simply

in terms of the molecular structure and is therefore easy to apply.  It is well 
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accepted and widely used, yet there are some known inconsistencies.  For 

example, the tricyclic bis-acetonide a reacts with azide an order of magnitude

more slowly than does the triacetate b,13 while the permethylated tosylate c reacts 

with NaI twice as fast as a (see Figure 2).18

O

OR1
OR2

OR4

R3O

Cl

a)  R1=R 2=R 3=R 4=C(CH 3)2

b)  R1=CH 3, R2=R 3=R 4=Ac

c)  R1=R 2=R 3=R 4=CH 3

Figure 2: Examples of galacto configured compounds with proposed dipole-
dipole interactions illustrated

Such observations are fundamentally inconsistent with a generalized transition 

state dipole effect involving the C4–O fragm ent.  Firstly, this local dipole would 

not differ greatly among various 4-O-alkyl galactose derivatives.  Secondly,

electronegativity considerations suggest that the local C4–OAc dipole in m ore-

reactive b should be greater than the C4–OR dipo le in the unreactive a

Given the inconsistencies of the qualitative model, and the lack of

theoretical data, it was determined to investigate some model systems of this type. 

In the following section I will detail how the theoretical approach was chosen.
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Theoretical methods 

Upon first considering the reactions of the sugar systems, the immediate

questions are the number of atoms and electrons and the type of information

sought.  The simplest molecules containing all of the structure necessary to reflect

Richardson’s hypothesis are composed of about 20 atoms and over 100 electrons. 

In addition, the model is described in terms of structural arrangements of 

functional groups within the molecule as well as their electrostatic interactions. 

Furthermore, reaction rates require accurate relative energies of all relevant

species: reactants, products, and transition structures.  These requirements restrict

the possible approach from both ends.  The systems are too large for the most

accurate and sophisticated methods, yet the requirement for accurate structures,

electronic structures, and relative energies preclude the use of semi-empirical

methods.

The available computing facilities are quite powerful.  The High-

Performance-Computing facility at the University of Manitoba features a Sunfire

6800 computer.  This computer is composed of 20 processors (1050 MHz), 40 GB

memory, and nearly 1 terabyte of disk space.  Although the computer is shared, I 

personally have had continuous access to 8 processors, 25 GB of memory, and 

400 GB of disk space.  Even so, for a benchmark level calculation (e.g. coupled 

cluster with singles, doubles, and perturbative triples, CCSD(T)), it would take 

years to calculate the structure and energy of just one reactant species.  In

contrast, with a typical semi-empirical method such as Austin Model 1 (AM1), 

the structure and energy of a model sugar compound could be computed in less 
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than 1 minute on a desktop PC.  However, of concern for this project is that the 

structures themselves (and therefore the alignments of fragments) are known to be 

unreliable with AM1.  Secondly, the electronic information is quite dubious. 

Finally, the energies obtained are approximate at best and not suitable for kinetics 

studies.  Thus for this project, where electrostatic interactions of molecular 

fragments are important, as are the kinetics, something much higher is necessary. 

Although still in use, AM1 is now widely considered unsuitable for research level 

results.

Based on these considerations, the most accurate affordable ab initio

method was required.  For ab initio methods there are generally two 

considerations: the basis set, and the type of theory.  The basis set is the set of 

functions used to describe the electron orbitals.  Here again there is a compromise

to be reached.  The larger the basis set, the better the description of the electron

density, and the more intensive the calculation.  Fortunately much is known about

the reliability of various basis sets for different applications.  Given the 

requirements of this project and the computers available, it was initially 

determined that the 6-31+G(d,p) basis set should be used.  This is a fairly 

standard medium-size basis set, commonly used for these purposes, with one 

exception.  The + symbol indicates the inclusion of diffuse functions on all heavy 

atoms (those of second row, or higher). These diffuse functions are important for 

the description of longer-range interactions such as the making and breaking of

bonds in transition structures.
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In terms of the level of theory, the foundation of ab initio methods is the 

self-consistent-field or Hartree-Fock method.  Even with a complete basis set, this 

method lacks inclusion of electron correlation.  This often results in poor 

descriptions of electrostatic properties.  All of the higher-level methods used in 

this thesis are based on the Hartree-Fock method, and begin by computing a self-

consistent field.  The most common higher-level methods (Post-SCF, see Comp-

Meth A) which include electron correlation in some way are those of Density 

Functional Theory (DFT)3, Moller-Plesset (MPn, n=2..5),20 and coupled-cluster 

(CCSD(T)).21  As stated previously, the coupled-cluster method is a 

benchmarking method and is too time consuming for this purpose.  The Møller-

Plesset methods are quite good, but are still relatively costly compared with the 

DFT methods.  One such DFT method is B3LYP,3 a hybrid density functional

method.  This method still uses an SCF but then adds contributions from

functionals of the computed electron density.  This method is said to include 

implicitly some electron correlation.  It is generally slightly more accurate than

MP2 for most properties, while remaining only slightly more costly than the basic 

SCF.

Thus, for this project, it was decided to perform all calculations at the

B3LYP/6-31+G(d,p) level.
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Computational Models 

The gluco- and galactopyranose systems under consideration have a 

tremendous number of available conformational minima when all possible

rotations of the hydroxyl groups are considered.  To facilitate the calculations 

tetrahydropyran model structures 1 through 6 (Figure 3) were chosen for this 

study.  In these models, hydrogens replace the C-1, C-2, and C-3 hydroxyl groups 

of the monosaccharides, while the C-4 hydroxyl is preserved or replaced by either 

fluorine or a methoxy group.  The steric environment at C-6 in these simpler

structures will not differ significantly from that in the actual monosaccharide

derivatives and the electronic effects most relevant to the SN2 displacement at C-6

are maintained.

H O

HO
Cl

HO O

H
Cl

1 2

123

4 5

6

H O

F
Cl

F O

H
Cl

3 4

H O

CH3O
Cl

CH3O O

H
Cl

5 6

Figure 3: Tetrahydropyran Model Structures.  Carbon Atoms are designated
using Carbohydrate Numbering. 

While most actual examples of these reactions have employed an aryl- or 

alkylsulfonate leaving group, there are several advantages to using a halide 

identity reaction.  Firstly, there are many fewer degrees of freedom within the 

leaving group itself.  Secondly, the local dipole effect is both simplified and 

accentuated in these structures.  The identity reaction also avoids further 

complications involving differing electronegativities and steric factors.  Chloride 
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ion’s electronegativity (3.0 Pauling, 3.02 Boyd22) is reasonably close to that of a 

methanesulfonate ester group (3.56, calculated using Boyd’s method).

In order to study the activation barrier(s) to the displacement reactions, 

the geometries of the model substrates first had to be determined.  The O-5–C-5–

C-6–Cl torsion (dihedral ) defines three rotamers, conventionally identified as 

gt, tg and gg (Figure 4). 

OO C4

X

C4

X

1(gt)

2(gg)

3(tg)1(tg)2(gt)

3(gg)

Figure 4: Newman projection showing possible positions for chlorine atom, 
ranked as (1) preferred, (2) next  and  (3) least preferred, for galacto (left) 
and gluco (right). (X=OH, F, OMe)

Searches for relevant reactant and transition structure geometries were

undertaken.  Initially, the C-5–C-6 rotamers of the substrates 1 through 6,

including possible intramolecularly hydrogen-bonded species, were identified in a 

series of geometry optimizations.  For 1, 2, 5 and 6, the possibility of 

permutations of hydroxyl or methoxy rotamers at C-4 was also explored. 

Transition structures connecting the rotational minima were also obtained. 

Beginning from these rotational minima, possible reaction coordinates for SN2

displacements were located.  From the SN2 transition structures, the Intrinsic 

Reaction Coordinates (IRC’s)23 were obtained, and the free energy was 

maximized along these paths.
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Corrections for basis set superposition errors (BSSE) were calculated

using the full counterpoise (see Comp-Meth B) method of Boys and Bernardi.7

Since these displacement reactions are typically carried out in DMF

solvent at elevated temperature, the effects of solvation and temperature on the

calculated energy profiles were estimated.  Two solvation models were used (see 

Appendix B).  All the structures and frequencies were recalculated with the

Onsager dipole continuum model and a dielectric constant of 36.71 (chosen for 

DMF at 298 K).  The geometries so obtained were then used to calculate solvated 

energies using the Isodensity Polarized Continuum (IPCM) Model.24  The

vibrations calculated under the Onsager solvation model were retained to provide

free energy corrections to the IPCM energies. 

Boltzmann statistics were applied to the relative free energies to obtain 

rotameric populations.  The thermal contributions to Gibbs free energies were 

calculated at each of three temperatures.  Energies were evaluated at 298, 373 and 

413 K.  Room temperature was included to allow comparison with other 

published results, while 373 and 413 K were chosen to represent realistic reaction 

conditions.  Relative rates of SN2 displacement (galacto/gluco) were calculated

for each of the three pairs of systems. Reaction rates were calculated using the 

free energy maxima along the reaction paths.  The reaction path curvature was 

calculated at the free energy maximum along the IRC (see Appendix D).

Given that the fluoro compounds were anticipated to exhibit the largest 

dipole-dipole interactions of any of the model compounds, they were selected for 

further analysis.  To probe the potential role of dipole-dipole interactions in the
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transition structures, topological analyses of the charge densities were performed

according to the theory of Atoms in Molecules (see Comp-Meth C).8  The full set 

of atomic properties for each atom was obtained from the previously calculated

wavefunctions, using the AIM2000 program.25

To estimate the maximum possible classical dipole-dipole repulsion 

energy in these structures, various hypothetical dipoles of experimental and 

calculated magnitudes were considered. Dipoles derived from AIM analysis for 

the calculated transition structures cannot be used due to their origin dependence 

in charged systems, so model dipoles were used instead.  The experimental dipole 

from hydrogen fluoride and a calculated dipole (B3LYP/6-31+G(d,p)) for 

hydrogen chloride stretched to match the C–Cl distance found in 1TS were

separated by the distances found in the SN2 transition structure 1TS.  The dipoles 

were aligned in parallel and centered at the distance between bond critical points 

of the C4—F and C6—Cl bonds.  Thus, their maximum interaction energy was 

evaluated.

The possible role of dipole-dipole interactions in determining the reactant

rotamer populations was also determined.  We calculated the classical 

electrostatic interactions between idealized local dipoles aligned in parallel and 

separated by the distance between the C–F and C–Cl bond critical points in 1gg.

The magnitudes of the C4–F and C6–Cl dipoles in 1gg obtained from AIM

analysis (see below) as well as the experimental hydrogen fluoride and hydrogen 

chloride dipoles were considered. 
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Results and Discussion

Gas phase calculations located three rotational minima for each

compound, corresponding to the expected staggered conformations.  The

calculated dihedral angles and energies for these rotamers are summarized in 

Tables 1 and 2.  In all of the galacto models, the most stable rotamer was tg,

while the highest-energy rotamer was gg.  In the gluco structures, the preferred

conformation was always gt, while the least stable rotamer was tg.

A search of structures 1 and 2 for low-energy hydroxyl rotamers at C-4 

produced an additional minimum (1gg-h) in which the OH group was rotated to 

form a hydrogen bond with the Cl.  The hydrogen-bonded conformation 1gg-h

was considerably more stable than 1gg, but was still much higher in free energy 

than the 1tg or 1gt rotamers.  A similar search of 5 and 6 for methoxy rotamers at

C-4 produced no additional low-energy structures.  For each C-6 rotamer, the 

methoxy group always preferred a position trans to the C-4—C-5 bond.  Proper

convergence to minima for the methoxy structures was problematic.  The

rotational potentials for the methoxy group at C-4 are quite shallow near the 

global minimum, in some cases necessitating recalculation of force constants at 

every point.

Rotational transition structures were located between the rotamers in 1

through 4.  These are included in Tables 1 and 2.  Due to the convergence 

problems with 5 and 6, and their otherwise typical rotamer energies, they were 

excluded from this analysis.  In all cases, the rotational barriers were sufficiently 
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low that the model systems would be in thermal equilibrium at the temperatures

under consideration. 

Calculations incorporating solvation by DMF produced significant 

changes in the relative rotamer free energies for 1 through 6.

In the axial galacto cases, gt was stabilized considerably at the expense of 

tg, while gg remained a minor constituent.  For the fluoro and methoxy systems,

gt actually became the preferred rotamer.  The hydrogen-bonded geometry 1gg-h

was still a minimum, but 1gg was no longer a stationary point.  This was a

consequence of the computational method, since IPCM solvation energies were 

calculated for geometries obtained using the Onsager spherical model.  With

IPCM solvation, the Onsager transition structure connecting 1gg with 1gg-h fell

below that of 1gg.

In the equatorial gluco cases, solvation affected the tg rotamers differently 

in each system. The hydroxy model 2tg was strongly stabilized, while the fluoro 

model 4tg was only slightly stabilized. The already disfavoured methoxy

compound 6tg (<1% population in the gas phase) was no longer a minimum on 

the rotational surface.  Of all the tg rotamers, 6tg is notable for having the 

smallest dihedral angle , nearly eclipsing the hydrogen at C-5.  With Onsager 

solvation, optimizations beginning at 6tg converged to the 6gt conformation.  The 

gg rotamers were affected to a lesser extent by solvation, and remained well 

populated (>19%) in all cases. 
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Table 1: Calculated Dihedral Angles  (degrees), Free Energies (kcal

mol
298G

-1), and Percentage Populations for Exocyclic Chloromethyl Rotational
Minima and Rotational Transition Structures of Galacto Structures 1, 3, and 
5.

B3LYP/6-31+G(d,p) B3LYP IPCM (DMF) 

Structure 298G %Population 298G %Population

1gt 71.4 0.869 18.00 69.9 0.000 97.05

TS1gt 1tg 116.8 3.414 120.8 5.223

1tg 169.6 0.000 78.03 167.9 2.192 2.40

TS1tg 1gg-h 243.7 5.108 241.6 6.724

1gg-h 293.9 1.765 3.97 294.0 3.064 0.55

TS1gg-h 1gg 300.8 6.148 NA NA

1gg 305.2 5.851 0.004 NA NA NA

TS1gg 1gt 354.4 9.150 353.4 9.352

3gt 70.9 0.917 17.53 69.1 0.408 33.26

TS3gt 3tg 116.1 3.349 117.5 3.971

3tg 169.3 0.000 82.45 170.8 0.000 66.26

TS3tg 3gg 248.8 8.315 246.5 6.473

3gg 301.2 4.900 0.02 301.1 2.921 0.48

TS3gg 3gt 355.5 8.901 356.4 7.803

5gt 72.0 0.949 16.76 69.9 0.000 64.74

5tg 171.0 0.000 83.23 170.2 0.361 35.21

5gg 303.5 5.471 0.008 305.3 4.225 0.05
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Table 2: Calculated Dihedral Angles  (degrees), Free Energies (kcal

mol
298G

-1), and Percentage Populations for Exocyclic Chloromethyl Rotational
Minima and Rotational Transition Structures of Gluco Structures 2, 4, and 6. 

B3LYP/6-31+G(d,p) B3LYP IPCM (DMF) 

Structure
298G %Population 298G %Population

2gt 72.1 0.000 77.09 71.4 0.000 48.36

TS2gt 2tg 125.8 2.948 129.5 2.028

2tg 147.6 1.568 5.46 147.2 0.239 32.30

TS2tg 2gg 223.1 7.683 223.0 7.792

2gg 295.7 0.880 17.44 295.9 0.543 19.35

TS2gg 2gt 359.8 7.437 360.2 6.160

4gt 71.0 0.000 60.66 72.0 0.000 52.39

TS4gt 4tg 128.2 3.420 127.1 2.860

4tg 157.6 2.085 1.80 158.0 1.281 6.03

TS4tg 4gg 225.9 6.351 227.0 6.078

4gg 295.0 0.284 37.54 294.4 0.137 41.58

TS4gg 4gt 360.6 7.180 360.2 6.379

6gt 70.2 0.000 51.69 70.0 0.000 68.71

6tg 142.7 2.391 0.91 NA NA NA

6gg 293.1 0.051 47.39 294.3 0.466 31.29
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SN2 Transition Structures

Transition structures for the SN2 displacements were sought beginning 

from each of the rotational minima of the new systems.  In each model system,

only one SN2 transition structure was found (see Figures 5 and 6).  For the galacto

compounds, these transition structures connect the gg and tg geometries.  For the 

gluco compounds, the transition structures connect the gg and gt rotamers.  Since 

these are identity reactions, they could proceed in either direction.  However, as 

gg is reactive in both systems, we will refer to the chlorine below the ring system

as the nucleophile for discussion purposes.  To facilitate structural comparison

with the reactant rotamers, we identify the O5–C5–C6–Cl torsion angles as LE

and NU,  for the leaving and nucleophilic chlorines, respectively.

Figure 5: Transition structures for identity SN2 displacements of galacto

compounds 1, 3 and 5 in the gas phase and with solvation.

According to the dipole-dipole repulsion model, the Cl-C6-Cl group 

would be expected to be oriented perpendicular to the ring system, in order to 
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avoid repulsive interactions with the ring oxygen, although this would create a 

repulsive interaction with the galacto substituent at C4, destabilizing the TS.  At

first glance, it may appear that galacto compounds 3TS and 5TS are twisted to

avoid a repulsive interaction at C4, while compound 1TS is only prevented from 

twisting by a hydrogen bond.  Interestingly however, with solvation and the 

consequent decrease in the importance of the hydrogen bond in 1TS, LE actually

decreases, with Cl relaxing further from O5 just as in the other cases.  The 

relaxation of the H-bond (gas phase: rH-Cl = 2.066 Å, O-H-Cl = 5.5 ; solvated: rH-Cl

= 2.128 Å, O-H-Cl = 18.0 ) occurs through a torsional motion of the hydroxyl at 

C4.  The SN2 transition structures for reactions of the galacto structures 3 (fluoro)

and 5 (methoxy) do have torsion angles LE for the leaving Cl– inclined

considerably towards O5, and solvation also produced a slight relaxation away 

from O5.
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Figure 6: Transition structures for identity SN2 displacements of gluco

compounds 2, 4 and 6 in the gas phase and with solvation. 

The ClNU—C6—ClLE deflection angles are approximately 150 degrees in 

all systems; there is no exaggeration of this angle in the galacto compounds. Note 

that these angles are typical of calculated transition structures for SN2 identity

reactions involving chloride.19  The dipole-dipole interaction energy is insufficient

to explain the energy difference between the gluco and galacto systems, even for

perfectly aligned dipoles. Because of the ~150 degree deflection angle, this

interaction would be further reduced, and insufficient to drive the torsion towards 

O5.  Therefore the torsion angles in 3TS and 5TS are not attributed to repulsive

dipolar interactions. 

This conformational preference can be correlated with the energies and

rotational potentials of the reactant rotamers (see Table 1).  The orientation of the 
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ClNU—C6—ClLE group shows a strong dependence on the reactant C5-C6 

rotational potentials in both the galacto and gluco systems. One chloride (denoted

here as ClLE) must always occupy the gg position, and is not a determining factor 

in either the galacto or gluco systems.  In 1, the preferred rotamer is gt by a 

significant margin, and the 1TS torsion angle reflects this.  In 3TS and 5TS, NU

is within 15  of that found in the preferred tg rotamers.  In the gluco cases, the tg

rotamer becomes increasingly disfavoured through the systems 2, 4 and 6 (see 

Table 2).  Correspondingly, NU decreases through the transition structures 2TS,

4TS and 6TS (seen in Figure 6) as the ClNU—C6—ClLE group twists increasingly 

into the favored gt reactant rotamer orientations.
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Atoms In Molecules Analysis 

AIM analysis of the charge densities in 3 and 4 affords two different 

insights into the conformational dependence of the total system energies (Details 

of this theory are presented in Computational Methods C).  Firstly, by partitioning

the molecule into its constituent atoms, the energies of each atom can be 

compared through the various rotamers, revealing the changing relative 

contributions to the molecular energies.  In this way, one can ascertain whether 

the chlorine and fluorine atoms in the galacto gg rotamer are perturbing each

other relative to the lower energy rotamers.  Secondly, one can directly observe 

distortions of the charge densities.  If the dipole model were correct, then rotation

at C-6 from a low-energy rotamer into the disfavoured position would induce 

opposing dipoles into both molecular fragments (Figure 7).

Since only subtle differences in atomic properties were anticipated

throughout the various structures, the integration accuracy criteria were stringent.

The atomic volume-integrated Laplacian of the charge density defined as: 

dL )(2
4

1
)( r  ,         where  is an atomic basin                        (1)

vanishes for an exact integration, and can be considered as an error function for 

numerical integrations.27  Integrations were performed in natural coordinates with 

the beta-sphere diameter set at the distance from the nucleus to the nearest critical

point. Absolute and relative integration accuracies were set as low as 1 10-6, and

the integration path as large as 2.5 106, as necessary, to achieve a value for L( )

of less than 3x10-4 for heavy atoms, and 1 10-4 for hydrogens.  These criteria27
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allow recovery of molecular SCF energies to within 0.2 kcal mol-1, and dipoles to 

within 5 10-4 au.  Use of these criteria was essential since the use of default 

criteria results in sufficient accumulated error to misidentify the lowest energy 

rotamer.

O

F

Cl

H

HO

F

Cl
H

H

tg gg

induced

n

Figure 7: Possible Induced Dipoles arising from Conformational Change (see 
Table 4 for results).

Table 3:  Selected Atomic AIM Properties Relative to Low Energy Rotamers: 
Relative Energies (kcal mol-1) and Relative Charges (electrons).

3gt 3tg 3gg** 4gt 4tg** 4gg

Energy -2.04 0 -7.24 0 -1.46 2.22
F

Charge -0.001 0 0.001 0 0.003 0.001

Energy 2.45 0 11.83 0 5.94 -3.20
C4

Charge 0.002 0 0.024 0 0.017 0.000

Energy 3.25 0 8.77 0 -0.71 1.53
C5

Charge 0.008 0 0.012 0 -0.015 -0.001

Energy 2.93 0 10.65 0 5.11 2.31C6
Charge 0.004 0 0.008 0 0.006 0.002

Energy 3.88 0 6.54 0 -1.75 -2.41Cl
Charge 0.012 0 0.040 0 0.009 -0.002

Energy -5.04 0 -5.62 0 5.13 -0.85
O

Charge 0.001 0 0.000 0 0.003 0.000
** High-energy rotamer

55



As seen in Table 3, the net charges on atoms only change by at most a few 

hundredths of an electron. However, the energies of the various atoms undergo 

relatively large changes.  Considering that the ranges of rotamer energies are at 

most about 5 kcal mol-1, it might be surprising that many individual atomic

energies vary by more than twice that much through the rotamers.

The atomic energy changes are not what would be expected from direct 

electrostatic interactions.  For example, in compound 3, going from the preferred 

tg to the high energy gg rotamer, we find the chlorine raised in energy but the 

fluorine lowered.  In compound 4, both the fluorine and chlorine atoms in the

high-energy tg rotamer are lower in energy than in the lowest energy rotamer.

Furthermore, the total system energy changes cannot be recovered from the 

changes in a few “key” atoms.  Energy is redistributed throughout the molecule, 

including hydrogen atoms and more remote heavy atoms.  Some interesting 

patterns in the energy fluctuations are observed, pointing to complex long-range 

interactions.  For example, the ring oxygen is destabilized by ~5 kcal in both 3

and 4, when the chlorine atom is trans to it. These interactions present an

interesting direction for future investigation. 

Table 4: Projection of Induced Dipolesa (a.u.) onto Normalized Cl F

Vectors n  (see Figure 7) 

Atom 3gt 3tg 3gg 3TS 4gt 4tg 4gg 4TS

F -0.003 0.000 0.025 0.041 0.000 0.031 0.004 0.024

C-4 -0.019 0.000 0.069 0.088 0.000 0.106 0.030 -0.007
a Induced dipoles relative to low energy rotamer.
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Finally, we examined the induced dipoles for atoms C4 and F, in the

rotamers of 3 and 4 and in the corresponding transition structures.  The atomic

dipoles of F and C4 are compared through the various structures.  As the 

chloromethyl group is rotated from the lowest energy rotamer into the disfavored 

rotamer, changes in the local dipoles are observed.  Any atomic dipole at F or C4 

induced by this rotation is projected onto a vector in the direction of the

supposedly perturbing chloride atom.  The projections of the induced dipoles onto 

the normalized Cl F vectors n  (shown in Figure 7, and tabulated in Table 4) 

contain both atomic dipole and charge-transfer contributions (see Comp-Meth C).

The latter term is very small, because there is very little transfer between C4 and 

F, and because this contribution is directed precisely along the C4—F bond,

which is nearly orthogonal to the Cl  F vector.  Thus, the dominant contributions 

to the projections of the induced dipoles were the induced atomic dipoles, which 

were very small in all cases.  Analysis of the induced dipoles and the atomic

energies shows that while small dipoles are induced by group alignments, these 

are not correlated with the energy fluctuations and cannot be primary contributors 

to the system energies. 
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Dipole-Dipole Interaction Energy 

Richardson’s model postulated that the rate differences were largely

controlled by the repulsion between parallel dipoles in the transition structures.

At 413 K (boiling point of a typical solvent, dimethylformamide), relative rates

(galacto/gluco) of ca. 0.03–0.05 would indicate that the faster reaction must be 

favored by approximately 2.88–2.46 kcal mol-1.  In many cases in the synthetic 

literature, the relative galacto rates must have been even smaller than this, since

the galacto product could not be isolated in any appreciable yield.15  In our model

systems, the difference in relative electronic energies was over 6.5 kcal mol-1.

The distance between the C4-F and the C6-Cl bond critical points in 3TS is 3.08 

Å.  At this distance, it would require two dipoles of 3.65 debye in perfect 

alignment to account for this energy difference.  With our calculated dipole for 

stretched HCl and the experimental dipole of HF, the interaction energy is only 

2.28 kcal mol-1.  The magnitudes of these model dipoles are greater than those 

that would occur in the carbohydrate systems.  In 3TS where the local dipoles are 

not aligned, and in the presence of solvent, any interaction energies due to dipoles 

would be greatly reduced.  It is therefore highly unlikely that this type of

interaction could explain a substantial portion of the SN2 reactivity differences.

In both the gluco and galacto systems, the disfavoured rotamers are those 

in which the C6–Cl bond is aligned with the C4–F bond.  In the galacto case, this 

is the gg rotamer while in the gluco case it is the tg rotamer.  It seemed

appropriate to determine what the maximum possible repulsion energy might be 

in these systems.  The largest dipole-dipole repulsion found was that using the 
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experimental HF/HCl dipoles arranged according to the distances found in 

systems 3 and 4.  These are larger than our carbohydrate local dipoles derived 

from AIM analysis.  Even with these exaggerated dipoles, the maximum repulsion 

energy was only 1.33 kcal mol-1.  This is far less than the range of rotamer

energies calculated for our model systems 3 and 4.  Clearly, dipole-dipole

repulsion is insufficient to account for the energetic differences among the 

reactant rotamers.

Factors Controlling Relative Rates

The reaction kinetics were modelled at two realistic temperatures (373 K 

and 413 K), with consideration of rotamer populations, reaction barriers, free 

energy barriers and reaction path curvature.  The rates of reactions involving rapid 

pre-equilibria are generally interpreted in terms of Curtin-Hammett/Winstein-

Holness kinetics.  The rates of conversion between the C5–C6 rotamers of 1

through 6 corresponding to our calculated barriers are much greater than the rates 

of SN2 displacement.  In such a situation, the Curtin-Hammett Principle has

sometimes been interpreted to mean that the outcome of the overall process is 

wholly independent of the equilibrium populations, depending only on the relative 

rate constants for the subsequent reaction.  However, this is erroneous, as Seeman

pointed out in his comprehensive 1983 review:28 “the ground state 

conformational preference has a direct (proportional) role” in the final product 

ratios.  The relative rates of rotamer interconversion and SN2 reaction derived 

from our calculations correspond to the “Scheme II” kinetics of the Curtin-

Hammett/Winstein-Holness analysis.  The net rate constant for a reaction given
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these conditions can correctly be expressed as a mole fraction-weighted sum of 

individual rate constants.29

As these are identity reactions, microscopic reversibility dictates that we 

consider nucleophilic approach to both of the rotamers connected through the 

IRC.  Thus, the total reaction rate is the sum of two equal contributions.  When

comparing the total reaction rates between systems, the population of the third 

rotamer, not directly participating in the reaction, becomes important.  Since the 

rotational barriers are much lower than the SN2 barriers, the populations of 

reactive rotamers are constantly maintained.  However, the total reactive

population at any time is only the sum of the two reactive rotamers for each 

system.

The relative rate of SN2 displacement (galacto/gluco) can be written as the

ratio of two sums, the mole-fraction weighted rates for each system.  This 

formulation is equivalent to more conventional expressions in terms of ensemble

average free energies.28  We prefer equation (2) because it provides insight into

the contributions of both the reactant states and the transition state to the overall 

barrier to SN2 reaction.

kRel galacto/gluco =

‡ ‡

( ) ( )

‡ ‡

( ) ( )

G G
Galgg Galtg

RT RTp T e p T e
Galgg Galtg

G G
Glugg Glugt

RT RTp T e p T e
Glugg Glugt

(2)
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Table 5: Mole-Fractions of Reactive Rotamers, Activation Free Energies 
 (kcal mol‡G

-1), Curvature and Reaction Rates in SN2 Identity 

Displacement Reactions of 1 through 6 with Cl– Ion. 

Structure T (K)

Mole-
fraction

of
rotamer

‡G TS
a

Sum of 
reactive
mole-

fractions

Curvatureb

of IRC 
(a.u.)

Net relative
SN2 rate 

galacto/gluco

1gg 0.0133 27.80
1tg 0.0498 28.78

0.0631 1.08

2gg 0.1987 26.92
2gt

373.15

0.4596 27.54
0.6583 4.57

0.020

3gg 0.0119 29.76
3tg 0.6268 32.67

0.6387 513.94

4gg 0.3977 30.27
4gt

373.15

0.5067 30.45
0.9044 1.26

0.062

5gg 0.0020 26.94
5tg 0.3895 30.27

0.3915 505.75

6gg 0.3319 28.64
6gt

373.15

0.6681 29.16
1.0000 2.98

0.061

1gg 0.0185 28.76
1tg 0.0653 29.80

0.0838 1.08

2gg 0.2005 27.88
2gt

413.15

0.4507 28.54
0.6512 4.57

0.031

3gg 0.0169 30.62
3tg 0.6114 33.57

.6283 513.94

4gg 0.3889 31.17
4gt

413.15

0.4975 31.37
.8864 1.26

0.084

5gg 0.0034 27.86
5tg 0.4039 31.17

0.4073 505.75

6gg 0.3394 29.59
6gt

413.15

0.6606 30.14
1.0000 2.98

0.083

a Includes BSSE corrections b effect of curvature not included in rate constant

In Table 5 the relative rates of SN2 displacements for each of the three 

model systems are compared at two temperatures.  The barriers are expressed in

kcal mol-1 from the reactive rotamers.  As seen in Table 3, for hydroxy structures 

1 and 2, the barriers to reaction from the reactive rotamers are slightly higher for

the galacto system.  However, while the barriers do contribute to the low net 

relative rate in this case, the larger effect arises from the rotamer populations.
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The gluco system has a roughly ten-fold larger population of reactive rotamers.

Considering systems 3 through 6 (fluoro and methoxy), we see that the barriers to 

reaction from the gg rotamers are actually lower for the galacto cases.  However, 

this rotamer is not well-populated, and the barriers from the tg rotamers are 

considerably higher.  The total reactive populations are somewhat lower for the

galacto cases, and the wider spread of rotamer energies means that the more

populated rotamers have a larger barrier to overcome.

As expected for SN2 displacement reactions, the maxima in free energy

along the IRC were essentially at the transition structures.  Thus, variationally 

optimizing the transition state produced no change in the calculated rates.  The 

furthest that any variational transition state was found from the transition structure 

was 0.0045 amu1/2 bohr for system 5.  However, it was determined that the

reaction paths for galacto compounds 3 and 5 include massive curvature near the 

transition state.30  In systems of lower dimensionality, a series of trajectory 

calculations using the reaction path Hamiltonian might be performed.  In this

case, we could apply a simple approximation as described by Miller.31  A

multiplicative constant  is calculated from the reaction path curvature.  This 

constant tends to 1 for low curvature, and to 1/2 for high curvature.  This would 

account for a nearly two-fold decrease in rate for the galacto systems 3 and 5.  It 

has been suggested that large reaction path curvature may reduce rates by much

more than this.32  In addition, since the reactions are performed in solvent, a more

correct treatment would include coupling of vibrational modes to the solvent.

Due to the excessive dimensionality of these systems, it would not be practical or 
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accurate to implement these methods.  Which structural features may cause such 

high curvature to arise in these systems is an interesting question for future

research.
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Conclusions

At the outset of the investigation, it was anticipated that if the low

reactivity of galacto- systems could be attributed to a high-energy transition 

structure, then electrostatic contributors to this energy could be identified through 

the partitioning of molecular properties within the AIM formalism.  The complete

set of AIM-derived properties revealed no direct correlation between changes in 

the energies of arbitrarily defined structural fragments and their relative 

configurations.  A thorough analysis of the transition structures revealed no 

significant perturbations.  AIM analysis of the reactant rotamers likewise did not

give any indication that the population differences should be attributed to dipole-

dipole interactions.

The AIM analysis showed that small changes in atomic properties

occurred throughout the molecular structures in the various rotamers and in the 

SN2 transition structures.  The properties of the total system could not readily be 

related to changes in the properties of individual atoms or simple structural 

fragments.  The subtle long-range interactions evidenced by our AIM results point 

towards the possibility of a rich scheme of influences even from somewhat remote

sites.

The maximum possible energy that can be attributed to dipole-dipole 

interactions in these systems has been estimated.  At the distances found in these 

structures, they cannot be the dominant cause of either the difference in reaction

barriers, or the difference in rotamer populations.  Such interactions are clearly 
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only a minor contributor to the reactivity differences between gluco and galacto

systems of this type.

The calculated rotamer populations and the barriers to their 

interconversion are in general accord with several recent experimental and 

theoretical studies of C5–C6 rotamer populations in D-glucopyranose and D-

galactopyranose.33  The order in galactose derivatives typically is Ptg  Pgt > Pgg,

the energies are spread over quite a wide range, and the population of the gg

rotamer depends strongly on substituent and solvent effects.  In contrast, glucose 

derivatives have generally been found to display a relatively narrow range of

rotamer energies, with relative populations Pgg > Pgt > Ptg in most cases.

Significantly, in gluco-configured compounds, the gg rotamer remains well 

populated as substituent groups on other positions are changed, and as solvents

are varied.

These calculations reproduced the spread and qualitative orderings of 

rotamer energies for both the galacto- and gluco- cases, despite the absence of the 

hydroxyl groups at C1, C2 and C3.  In fact, the populations for 4 are remarkably

similar (  3%) to those recently calculated by Hoffmann and Rychlewski for 4-

deoxy-4-fluoro-D-glucopyranose, once their further subdivided results are 

summed into the three C5–C6 rotamer categories.34  It is therefore clear that 

models 1 through 6 were appropriate choices for the question under discussion. 

In the gas phase, the ranges of relative energies calculated for the three

galacto- minima were about 5 kcal mol-1.  The calculated populations of the gg

rotamers in the galacto- models were almost negligible in the gas phase.  Even 
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though solvation stabilized the gg rotamers slightly, and taking into account the 

effect of higher temperatures typical of practical reaction conditions (373 and 

413K), calculated populations of the gg rotamers were never greater than 2%.

This contributes to the low total reactive conformer populations.  In contrast, the 

gluco- model rotamers were all within about 2 kcal mol-1 of one another.  The

reactive conformer populations ranged from about 65% to 100% in the three 

model systems at 413K.  As seen in Table 3, our results do produce low relative 

galacto/gluco rates in agreement with experiments.  However, it is clear that the

low rates are not simply due to a perturbed transition structure in the galacto case.

Obviously, relative barriers will vary to some extent depending on the specific 

systems under study.  These results illustrate the importance of considering the 

energetics of the reactant, and not focusing primarily on stabilizing/destabilizing

features of the transition structure when dealing with conformationally mobile

reactants.  These results show that dipole-dipole interactions in the transition

structures do not determine the relative reactivities in the model SN2 reactions that 

were studied.  Based on the calculated rotamer energies, the reactive rotamers will

be present at a significantly higher equilibrium concentration in the gluco- cases.

The differences in SN2 reaction rates must be attributed to a combination of 

factors including reactant rotamer populations, solvation effects, relative barriers, 

and reaction path curvature.

It may seem unfortunate that such an intuitive way of regarding structural

reactivity relationships must be discarded.  However, the transition structure 

dipole model was essentially a yes/no argument.  It implied that chemists not even
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attempt reactions with certain substrates, which may actually be feasible.

Consideration of the interplay of contributing factors highlighted here may

suggest changes to substituents and leaving groups or modifications to reaction

solvents, which in combination could optimize the reactive rotamer population 

and the reaction barrier.  Clearly, this could be accomplished in many ways, 

including destabilization of the normally dominant conformers.  Experimental

determination of rotamer populations using recently improved NMR methods will 

continue to provide insight into these factors.33a-c, 35  The possible influence of 

reaction path curvature is large, and it provides great insight into reactions that are

much slower than their barriers would indicate.  At present it seems difficult to 

predict a priori how different substituents will influence the curvature. 

The dipole model was also proposed to explain stereochemically-

dependent reactivity differences in displacement reactions at secondary centres.  It 

is in this connection that it has usually been cited outside carbohydrate chemistry.

In these situations, there is much less conformational mobility, and dipolar

arguments may well be more valid.36  Other factors such as differential solvation 

of transition structures, entropic effects, or electronic factors such as

hyperconjugation might also influence reactivity in such cases.  However, given 

the R
–3 distance dependence of dipole-dipole interactions, they could play a much

larger role in vicinal relationships.
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SN2 Reactivity Appendix A: Thermo-Chemistry 

This section deals with the calculation of free-energies and rates of 

reaction within the harmonic approximation, using Conventional Transition State 

Theory.37  Free-energies may be calculated following the vibrational analysis of a

fixed point.  Note that at a fixed point all the gradients vanish and the 3N-6  (3N-5 

for linear systems) normal modes are orthogonal coordinates.  As will be

discussed in detail in Appendix C, vibrational analysis may also be performed at a

point on the IRC path.23  For this, the IRC coordinate must be projected out, 

leaving 3N-7 orthogonal coordinates, each of which may not be orthogonal to the

IRC, and may couple to it. 

Assuming that one is treating a non-linear molecule at a fixed point, then

within the harmonic approximation, there are 3N-6 orthogonal modes with evenly 

spaced vibrational levels.  This has two important consequences when considering

the vibrational thermodynamic partition function.  Firstly, due to orthogonality,

inter-mode coupling is forbidden.  Secondly, the even spacing of the levels allows 

for a tremendous simplification (see equations below) when summing over the 

energy levels.  Below are the complete set of thermodynamic partition functions 

commonly used to compute free-energies of molecular systems.
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Electronic Partition Function 

The electronic partition function can be written as:38
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It can be seen that energy is partitioned into the electronic states according

to their spacing and degeneracy.  In practice, using commercial code such as

Gaussian, the electronic levels are assumed to be widely spaced.  Consequently, 

for a non-degenerate ground-state, by setting the zero of energy at 0, the entire 

electronic partition function can be set to 1. 
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This is the most common way to express the rotational partition function.38

This classical expression is based on the moments of inertia rather than an attempt
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to sum over discrete quantized levels.  This is an especially good approximation

for polyatomic molecules with heavy atoms.  Even for a linear triatomic, with 

light atoms, the error introduced by this classical approach has been shown to be 

less than 1%.

Vibrational Partition Function 
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Using the harmonic approximation, energy is partitioned according to the 

above formulae.38  This expression exploits the even level structure for 

simplification.  At moderate temperature only the lowest vibrational levels will be 

populated, making the true level spacing inconsequential.  At high temperature 

this assumption will cause the predicted behavior to deviate significantly from

that observed.

Following a vibrational analysis, since the nuclear masses and coordinates

determine the moments of inertia, using the above partition functions one may
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calculate the free-energy.  This may be implemented into the following equations

of conventional transition state theory in order to compute rates of reaction. 

Conventional Transition State Theory 
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These equations express the rate (k) in terms of the partition functions of 

the reactants and the transition structure.37  A relative translational motion

(between reactants) partition function is now included (QRel).  Q (at the transition

state or for the reactants) is now a total partition function composed of those 

electronic, vibrational, and rotational functions shown in the previous pages.  This 

model is limited in that it does not account for a possible free-energy bottle-neck 

not at the transition structure.  This possibility, as well as reaction path curvature,

is treated in other appendices.

Below are some examples employing the Boltzmann statistical formula to

calculate populations of molecular conformers at equilibrium.  The free-energies 

have been calculated with Gaussian software using the above partition functions.
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Calculation of Rotamer Populations 

Gluco-Fluoro-Gas-Phase 298K (Model Compound 4)

R 8.314510

i 0 1 2

T 298.15

Define R, and temperature T 
Input free energies from
Gaussian frequency 
calculations. Matrix elements
0, 1 and 2 correspond to 
rotamers gt, tg and gg 
respectively.

G

869.826875

869.82355200

869.82642200

627.5095 4184

 Free-energy is converted

from Hartrees to joules, for 

consistency with RT. 

F A( )
e

G
A

R T

0

2

i

e

G
i

R T

=
Calculate populations from 
Boltzmann formula

% A( ) 100 F A( )

F 0( ) .6065978854200780298
Output mole-fraction amounts 

F 1( ) 1.7965407948703199819 10
-2

F 2( ) .3754367066312287703
Confirm normalization

0

2

A

F A( )

=

1.0000000000000000000

Output rotamer percent populations 
GT

% 0( ) 60.65978854200780298
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TG
% 1( ) 1.796540794870319981

GG
% 2( ) 37.54367066312287703

Thus using Mathcad and the free-energies from Gaussian, it is very 

straightforward to compute the equilibrium populations.  When considering a 

different temperature, one must recalculate the free-energy as this is temperature

dependent.  This does not necessitate a new vibrational analysis as the force 

constants do not depend on temperature.  Using the previous vibrational 

frequency data, the new free-energy is computed trivially by inputting the new 

temperature into the partition functions.  Then the new free-energies are re-

inputted into the Boltzmann formula using the appropriate temperature.

When solvation is included, the procedure is much the same except that 

the free-energies used include the solvation energy.  The details of the solvation 

models are discussed in Appendix B. Below is an example of how solvated

equilibrium populations are calculated at three different temperatures.  Eipcm

refers to the solvated energies of the three rotamers using the IPCM solvation 

model.24  Gcorr298 refers to the free-energy correction applied at 298 K.  The 

free-energy corrections were calculated using the Onsager solvation model, since 

it allows analytical calculation of frequencies.
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Gluco-Fluoro-Solvated (Model Compound 4)

R 8.314510
i 0 1 2

Define three temperatures

T1 298.15

T2 373.15
T3 413.15

Input Solvated IPCM energies from
Gaussian output. Matrix elements 0, 
1 and 2 correspond to gt, tg and gg 
respectively.

Eipcm

869.96007840

869.95768500

869.96013820

627.5095 4184

Input free energy corrections from Gaussian Onsager frequency output. Matrix 
elements 0, 1 and 2 correspond to gt, tg and gg, respectively. Corrections 
calculated at all three temperatures using the "freqchk" utility in Gaussian.

Gcorr298

0.123165

0.122813

0.123443

627.50954184

Gcorr373

.111553

.111131

.111899

627.50954184

Gcorr413

.104944

.104483

.105326

627.50954184

Add free energy corrections 
to IPCM solvation energies

G298 Eipcm Gcorr298
G373 Eipcm Gcorr373
G413 Eipcm Gcorr413
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Calculate populations from Boltzmann formula

F298 A( )
e

G298
A

R T1

0

2

i

e

G298
i

R T1

=

%298 A( ) 100 F298 A( )

F373 A( )
e

G373
A

R T2

0

2

i

e

G373
i

R T2

=

%373 A( ) 100 F373 A( )

F413 A( )
e

G413
A

R T3

0

2

i

e

G413
i

R T3

=

%413 A( ) 100 F413 A( )

Output rotamer percent populations with solvation at 298K 

GT
%298 0( ) 52.39032503850358244

TG
%298 1( ) 6.029460745675074867

GG
%298 2( ) 41.5802142158229268

Output rotamer percent populations with solvation at 373K 
GT
%373 0( ) 50.6719732157830253

TG
%373 1( ) 9.555356222036403250

GG
%373 2( ) 39.7726705621815713
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Output rotamer percent populations with solvation at 413K 
GT
%413 0( ) 49.74992526993950432

TG
%413 1( ) 11.35959821255942910

GG
%413 2( ) 38.8904765175010665

Using the populations of reactants in solution and the barriers to SN2

displacement, one can calculate the relative rates of reaction using the equation

for conventional transition state theory shown above.  In practice, when 

computing relative rates, many factors are cancelled, leaving equation (2) from

Results and Discussion. 

       kRel galacto/gluco =

RT

GluGT
G

eT
GluGT

pRT

GluGG
G

eT
GluGG

p

RT

GalTG
G

eT
GalTG
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p

‡
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This equation was formulated for the identity reactions keeping in mind

the principle of microscopic reversibility.  Thus the numerator and the 

denominator are each the sum of two equal terms.  Therefore, simply to compute

the relative rates, a further simplification is possible.

kRel galacto/gluco =

RT

GluGG
G

eT
GluGG

p

RT

GalGG
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p

RT

GluGG
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This equation no longer includes all of the relevant processes but it will compute

the correct relative rate.  Below is an example of the calculation of the relative 

rates (galacto/gluco) of SN2 displacement.
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Calculation of relative rates of reaction 

Fluoro Gluco compound

Solvated energy of reactive gg rotamer 

GG2ipcm 869.96013820 627.50954184( )

Free energy corrections for gg rotamer at three temperatures

GG2corr

.123443

.111899

.105326

627.5095 4184( )

Free energies of reactive gg rotamer
GG2 GG2ipcm GG2corr

Solvated energy of nucleophilic Cl ion 
Clipcm 460.38458620 627.5095 4184( )

Free energy corrections for nucleophilic Cl ion at three temperatures

Clcorr

0.015023

0.019465

0.021884

627.5095 4184( )

Free energies of nucleophilic Cl ion
GCl Clipcm Clcorr( )

Solvated energy of SN2 transition structure
TSgluipcm 1330.308438

Free energy corrections for SN2 transition structure at three temperatures

TSglucorr

.117234

.103963

.096411

Correction for Basis Set Superposition error 
BSSEGLU 0.0004198

Free energies of SN2 transition structure
TSglu TSgluipcm TSglucorr BSSEGLU( ) 627.5095 4184( )
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Free energy barriers to SN2 reaction for Gluco compound at three temperatures

DeltaGlu TSglu GG2 GCl

Percent population of reactive rotamer for Gluco compound at three temperatures 
41.58021421582292688

39.77267056218157135

38.89047651750106657

Free energy barriers to SN2 reaction for Gluco compound at three temperatures

DeltaGlu

1.19513273629 10
5

1.266415054448 10
5

1.304222250817 10
5

Fluoro Galacto Compound 

Solvated energy of reactive gg rotamer 
GG1ipcm 869.9558297

Free energy corrections for gg rotamer at three temperatures

GG1corr

.123356

.111814

.105245

Free energies of reactive gg rotamer
GG1 GG1ipcm GG1corr( ) 627.5095 4184( )

Note Cl ion data is valid for all reactions and will not be redefined

Solvated energy of SN2 transition structure 

TSgalipcm 1330.305144

Free energy corrections for SN2 transition structure at three temperatures

TSgalcorr

.117294

.103994

.096430

Correction for Basis Set Superposition error

BSSEGAL .0004630
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Free energies of SN2 transition structure

TSgal TSgalipcm TSgalcorr BSSEGAL( ) 627.5095 4184( )

Free energy barriers to SN2 reaction for Galacto compound at three temperatures

DeltaGal TSgal GG1 GCl

Percent population of gg rotamer for Galacto compound at three temperatures
.4789865775550650878

1.191721674635989583

1.685354537606243967

Free energy barriers to SN2 reaction for Galacto compound at three temperatures

DeltaGal

1.17349074187 10
5

1.243959155109 10
5

1.281346271517 10
5

Calculation of relative rates Galacto/Gluco using equation (3) 

GalvsGlu298
.47898657755506508788 e

DeltaGal
0

R T1

41.580214215822926880 e

DeltaGlu
0

R T1

Output of relative rate Galacto/Gluco at 298K

GalvsGlu298 0.02757946255

Calculation of relative rates Galacto/Gluco at 373 K 

GalvsGlu373
1.1917216746359895831 e

DeltaGal
1

R T2

39.772670562181571352 e

DeltaGlu
1

R T2

Output of relative rate Galacto/Gluco at 373K 
GalvsGlu373 0.06179117776
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Calculation of relative rates Galacto/Gluco at 413 K 

GalvsGlu413
1.6853545376062439677 e

DeltaGal
2

R T3

38.890476517501066574 e

DeltaGlu
2

R T3

Output of relative rate Galacto/Gluco at 413K 

GalvsGlu413 0.08434555391
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SN2 Reactivity Appendix B: Solvation Models 

Although the most convenient and rigorous theoretical treatment of 

molecular electronic structure and energy is that of the isolated gas-phase system,

often it is desirable to estimate the effects of solvation.  In practice, most reactions 

in organic chemistry occur in solution.  Thus while certain insights may be

obtained from gas-phase calculations, ultimately for physical organic applications 

the solvent must be considered.  The overwhelming complexity of molecules in 

solution must be appreciated.  The carbohydrate systems discussed in this thesis 

have approximately 60 degrees of freedom, and 100 electrons.  The trade off 

between accuracy and affordability for this system alone has already been

discussed.  DMF is the solvent that is commonly used for reactions of these 

systems.  Each molecule of solvent adds 36 degrees of freedom and 40 electrons 

to the equation.  Even a slightly dilute solution would have at least 200 solvent 

molecules per solute molecule.  Thus an explicit consideration of the solvation 

effects would require the treatment of an extra 7200 degrees of freedom and 8000 

electrons.  This is clearly out of the question as far as an accurate treatment is 

concerned.

The next level down in the hierarchy of solvation modeling would be an 

explicit first solvation shell, surrounded by a continuum model representing the 

average bulk properties of the solvent.39  The first solvation shell is called the

cybotactic region.  It is recognized that through specific interactions between the 

solute and solvent, the properties of the solvent may differ considerably from that 

of the bulk in this region.39  For the carbohydrate systems studied, the real 
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systems have hydroxyl groups at the C1, C2 and C3 positions.  These groups are 

known to hydrogen-bond directly to solvent molecules in an ordered arrangement.

This interaction is strong enough to effect changes in the electronic properties of 

the solvent molecules.  For the systems discussed in this thesis, the anomalous

behavior that was investigated was unrelated to these hydroxyl groups.  Since 

they are present in both sets of systems that were compared, they could be 

judiciously removed.  In the absence of such groups known to interact directly 

with the solvent, the inclusion of an explicit first shell becomes less critical.  This

is very important since inclusion of even one shell of solvent molecules would

reduce the affordable level of theory drastically.

This leaves the lowest levels of solvation modeling, the implicit models.

The use of implicit continuum solvent models should not be viewed as a terrible 

compromise.  As discussed by Cramer and Truhlar in their review of this topic,39

there are some considerable advantages to using an implicit model.  The explicit 

200-molecule system discussed above must have its properties averaged over a 

vast number of configurations in order to reflect the observed behavior.  In 

contrast, the properties used for the continuum model are already those of the 

average bulk behavior.  Thus a sort of dynamic averaging which is extremely

difficult to implement explicitly is already implicit in the model.

The simplest solvation model used was the Onsager spherical cavity

model.40  In this model, the molecule is placed into a spherical cavity whose

radius is determined by first calculating an approximate molecular volume.  An 

appropriate radius is defined as that necessary to enclose the electron density to a
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certain density cut-off value.  Then the molecule is allowed to interact with the 

solvent through its molecular dipole.  Various solvents have been parameterized, 

and interactions are calculated through their dielectric constant and polarizability.

The molecule’s dipole induces in the solvent a dipole determined by the dielectric 

constant and the polarizability of the solvent.  The induced dipole and the 

molecular dipole interact to stabilize the total system.  The equation for the

solvation energy with the Onsager model is:40

1

3
2

12

1
1

3

2

12

1

RR
solv

E (B1)

Thus the energy of solvation is dependent on the radius of the cavity R, the 

dielectric constant of the solvent , and the dipole and polarizability of the solute

(µ and ).  This is an improvement over the now obsolete Born model in which 

the molecule interacts with the solvent only through its net charge.  The Onsager 

model can be thought of as including the next term in the multipole expansion.

From the above expression, it is clear that a molecule with no net dipole, as often 

occurs due to symmetry, will undergo no interaction whatsoever and the

calculated solvation energy will be zero.

The main usefulness of this model lies in its simplicity.  The calculated

solvation energies are too crude to use for conformer populations, but the 

equation is so simple that solvated geometry optimizations may be performed as 

well as solvated frequency calculations for free-energy corrections.  These 

solvated geometries may be used as input for more sophisticated solvation models

with which geometry calculations are not feasible.  The solvated frequencies may
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be retained to provide the vibrational contributions to the free-energy.  These 

were the purposes for which the Onsager model was used in the research

described in this thesis.

It is easy to imagine how the geometry of a molecule with a net dipole is 

varied during a geometry optimization using this model.  Trial variations from the 

gas-phase minimum energy configuration will be retained if they increase the

dipole enough to increase the solvation energy by more than they raise the non-

solvated structural energy.  That is to say, that any variation of the geometry will 

increase the system’s non-solvated energy (since it was a minimum).  This 

variation will be retained if the corresponding change in dipole moment causes a 

net stabilization through the Onsager solvation energy term.  Thus the geometry is 

optimized with the inclusion of this term.  In practice, the changes in geometry

observed with this model are usually relatively small.  Interestingly, molecules

with large dipole derivatives with respect to internal coordinates (those with large

IR absorptions) should exhibit large structural changes with solvation (since the 

dipole changes quickly as the nuclei are moved).  More closely associated with

structural changes due to solvation are those molecules having freely rotating 

fragments in a shallow potential (again with some variation of the dipole 

associated with this movement).  The inclusion of the Onsager solvation energy in

optimizations of one of the carbohydrate systems, (6), was sufficient to destabilize 

one of the rotamers entirely, leaving only two stable minima.

The Isodensity Polarizable Continuum Model (IPCM)24 was the most

sophisticated solvation model used here. In this model the shape of an electron 
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density iso-surface is used instead of a spherical cavity.  While surrounding the

molecule by a polarizable continuum, a new molecular self-consistent-field (SCF) 

is converged.  Then the Isodensity surface corresponding to the new SCF is used 

to define a new cavity.  This process is repeated until the cavity shape is self-

consistent.  The solvation energies obtained with this model are generally

considered to be of sufficient accuracy for quantitative estimates of conformer

populations in solution.  It should be noted that a conceptually superior method

exists (SCIPCM24) in which the solvent field is coupled directly into the SCF 

equations.  At this time, for all of its conceptual superiority, the implementation in 

Gaussian is fraught with numerous problems, making this method unusable.  Thus 

the generally reliable IPCM method was used.
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SN2 Reactivity Appendix C: Variational Transition State Theory

Most electronic structure calculations today are performed with the Born-

Oppenheimer approximation.1  In this approximation, the electronic and nuclear 

wavefunctions are assumed to be separable, which allows product-function 

solutions.  The time-independent Schrödinger equation for a molecule can be 

written as:
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ee
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Where T and V represent the kinetic and potential energy operators, respectively.

Assuming the wavefunctions to be separable allows solutions of the form:

)(),(),( RrRrR       (C2)

This means that electronic wavefunctions are computed for each

configuration of the nuclei and are thus considered to be a function of the nuclear 

configuration.  This is the same as in AIM theory, wherein the electron density 

(arising from the wavefunction solution) is considered to be a function of the

nuclear coordinates.  The nuclear wavefunctions are then calculated as the 

solutions for particles subject to the potential arising from variation of the 

electronic energy with coordinate displacements.

The Morse potential is shown below.  If the electronic energy of a 

diatomic molecule were to follow the Morse potential as the internuclear distance

was varied, then the nuclear wavefunctions could be represented by the energy 

levels shown.  The lowest level possesses the well-known zero-point energy. 
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Figure C1: Morse potential with associated nuclear energy levels 

Figure C2: Illustrative potential energy surface for co-
linear H2F (hypothetical values) 
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In Figure C2 this concept is extended to display a typical reaction surface 

for a co-linear system such as H2F.  Each bond length is displayed on a different 

axis, with the saddle-point between the minima shown with an arrow.

Once the potential surface for a reaction has been obtained, then a choice

of dynamical theory is made.  In the section on thermo-chemistry, the harmonic

potential approximation and the conventional transition state theory were used to

compute rates of reaction for given potentials.  The advantages of the harmonic

approximation for evaluation of the partition functions were also discussed.  The

harmonic approximation can be maintained while still greatly improving on the 

conventional transition state theory.  Recall that with the conventional theory a 

rate is computed using the free energy barrier from the reactants to the transition

structure.   It is worth noting the distinction that the transition structure is the

structure corresponding to the saddle-point in the potential surface, while the

transition state is the highest free energy through which any particular microstate

must pass to reach the product states.  This will be discussed in more detail as the 

variational theories are described.

The main failing of the conventional theory is not a consequence of the

harmonic approximation; in fact one could go beyond the harmonic description in 

the free energy calculation and still use the conventional rate equation.  The main

failing is the assumption that any reactant molecule with sufficient energy to cross 

the saddle-point will do so, irreversibly.  This fails to account for so-called re-

crossing trajectories.37  Reaction trajectories may in fact cross the barrier multiple

times, eventually either continuing on to products or being reflected back to 
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reactants.  Figure C3 below illustrates two reaction trajectories which each pass 

the conventional saddle-point more than once.  In one case the eventual result is

productive, while in the other it is not. 

Figure C3: Energy contour plot showing re-crossing trajectories

The reason that this occurs is that the saddle-point represents the highest

point in the potential, but not necessarily the highest point in the free energy.  If 

one examines the thermodynamic partition functions, then it is clear that they 

might vary along the reaction path.  The moments of inertia are changing and in 

particular, due to the evolving electronic structure as bonds are formed and 

broken, the vibrations change considerably.  Figure C4 shows an illustration of 

how vibrational frequencies might vary along the reaction path.  Although 

hypothetical, this figure is similar to those appearing in the literature.  Following 

the reaction coordinate s from left-to-right in the figure, the highest frequency 
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mode in the starting compound could be related to an N-H stretching mode.  Due 

to a change in the bonding arrangement at this nitrogen center during the reaction, 

this frequency could change considerably.  Thus in general the maximum in free

energy along the reaction path may occur to one side or the other of the potential-

saddle.  In Appendix D the details of the reaction path itself will be discussed.

For this discussion the reaction path will be considered to be the minimum energy 

path between reactants and products, passing through the transition structure.

Reaction coordinate s 

Frequency

Figure C4: Illustration of how vibrational frequencies might 
vary along reaction path

Given that the maximum free energy may not be at the transition structure

and that this is the cause of re-crossing trajectories and an over-estimation of 

reaction rates by the conventional theory, improved theories are desirable.  A 

hierarchy of variational transition state theories has been developed by Donald 

Truhlar at the University of Minnesota.41-44  Only two of them will be described
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here, since only the simplest versions of the theory are easily applied to larger

systems.

Canonical Variational Transition State Theory 

The canonical variational transition state theory proceeds by calculating

ensemble free-energies at the temperature of interest along the reaction path.  By 

maximizing the free energy along the reaction path, the calculated rate is

minimized variationally. This is expressed as:
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where the rate k (canonical rate for a generalized transition state) is calculated as a 

function of temperature T and reaction coordinate s (along the minimum energy 

path MEP).  The free energy bottleneck for the reaction is found by minimizing

the rate along s.  In practice, using commercial code such as Gaussian, the free 

energy is calculated at a series of points along the IRC and then the maximum is

interpolated.  Of course the step-size may be controlled, allowing this to be a very 

good approximation.  This was the level of variational transition state theory used 

in the work described in this thesis.  It is limited in that, with the adiabatic

approximation (that the reaction coordinate involves a smooth, slow change in 

energy, leaving the microstate quantum numbers of each reactant unchanged as 

they proceed along the IRC), the transition state for reactants maintaining an 

excited vibrational state may be higher in energy than that predicted by the

ensemble calculation.
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Micro-Canonical Variational Transition State Theory 

Micro-canonical variational transition state theory was formulated with 

this adiabatic behavior in mind.  For each slice of total energy in the canonical 

ensemble, a generalized transition state is optimized.  A molecule from an 

ensemble at a certain temperature, within a slice of a certain total energy, will 

have rotational and vibrational quantum numbers determined by the partition 

functions.  The energy of each state evolves adiabatically along the IRC as:

   (C5)),,(
int

)(),,( sknGTs
MEP

Vskn
a

V

Where the potential energy V (adiabatic), is a function of vibrational quantum 

numbers n, rotational quantum numbers k, as well as the potential due to the

position s along the MEP.

The net rate is calculated from the rates of each energy slice, each reacting

at its own rate.  Depending on how thin the slices are, this approach can become

extremely complicated.  Usually a compromise is used in which microcanonical

theory is used in slices up to the maximum energy of the adiabatic ground state. 

Since, for the ground state the rotational quantum numbers would be zero, this 

amounts to a vibrational zero-point-corrected potential maximum as seen in the 

following expression.
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Reactants from the ensemble with total energy greater than this zero-point

corrected potential maximum are treated by canonical variational theory.  This 
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hybrid approach (called improved microcanonical variational theory) is seen as a

good compromise between accuracy and complexity.

These methods are still limited in that they do not account for the effects

of tunneling or reaction path curvature.  Accurate tunneling corrections are 

difficult to apply for systems of high dimensionality and are usually most

important at low temperatures.  When the thermal rate is very low, the addition of 

tunneling is more significant.  Since the systems described in this thesis are quite 

large, and the reactions are modeled at relatively high temperature from a

tunneling standpoint, no corrections for tunneling were applied.  Non-adiabatic 

behavior induced by large reaction path curvature is discussed in appendix D. 

Survey of region of configuration space 

During the calculation of the transition structures for the model sugar

compounds it was decided to survey the potential energy associated with 

approach by the chloride nucleophile to both the reactive gluco compound 6 and

the unreactive galacto compound 5.  The results seemed to indicate that the free

energy bottle-neck might lie to one side of the transition structure. This did not 

prove to be the case.  This survey involved holding the geometry of the model

compound fixed at equilibrium and thus did not represent the full dimensionality

of the problem.  System 5 did exhibit large reaction path curvature however.  The 

results of the 3D potential map are included here for completeness, although they 

were omitted from the submitted manuscripts.
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Single-point gas phase total system energies for a truncated conical grid of 

144 points revealed that most trajectories towards 5tg are strongly disfavoured 

relative to trajectories approaching 5gg (Figure C5).  Despite the preference for

5tg over 5gg (~5 kcal mol-1 in the reactant alone), most Cl– approaches to 5tg rise

above the energy of the SN2 transition structure 5TS itself.  Energies higher than 

5TS begin to appear at 6 Å within the cone approaching 5tg.  At a distance of 4 Å, 

the majority of points are higher in energy than 5TS.  Only a few points closest to 

the association complex structure on that side of the reaction profile remain below

the energy of 5TS (by ~10 kcal mol-1).

In contrast, approach to 5gg is unimpeded, with only one point in the 

entire cone higher in energy than 5TS, caused by the steric effect of H-5.  At a

distance of 4 Å, system energies are approximately 16–21 kcal mol-1 lower than 

5TS.  The association complex with 5gg is considerably lower in energy than that 

with 5tg.  The same analysis was also applied to gluco- model 6gg, revealing no 

disfavoured trajectories and relative energies similar to the 5gg case. 
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Figure C5: Single-point total system energies relative to 5TS (kcal mol-1)
for approach to 5gg and 5tg by Cl–.  Color-coded spheres show energies 
for chloride at that position. 
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SN2 Reactivity Appendix D: Intrinsic Reaction Path 

The Intrinsic Reaction Coordinate (IRC)23 is a mathematical construct

used in simplified dynamical theories for calculation of rates of reaction.  Also 

known as the Minimum Energy Path (MEP), it describes the minimum-energy

enthalpic path connecting two minima.  At any point along the reaction coordinate 

all other degrees of freedom are at their minimum possible energy.  Consideration 

of this path may seem unnecessary for use of the conventional transition state 

theory, where rate calculation only requires the energies of the reactants and the 

transition structure.  However the IRC is what establishes the connection of the 

minima by the transition structure.  Without this path one can only say that there 

is a transition structure somewhere between the two minima. It does not preclude

the existence of a second, higher transition structure.  The IRC path can only be 

followed downhill and must be constructed from a transition structure.  When a 

structure is at a minimum, 3N-6 degrees of freedom are minimized.  There is no 

way to determine which hill to climb.

Thus beginning at a transition structure, a vibrational analysis is 

performed.  A true transition structure will have 3N-7 positive curvatures (and 

hence real, positive frequencies), and one negative curvature corresponding to an 

imaginary frequency.  The eigenvectors of the force constant matrix define 3N-6 

vibrational coordinates.  The 3N-6 total vibrational coordinates are orthogonal at 

this point within the harmonic approximation since all gradients vanish.  The 

eigenvector (coordinate) corresponding to the negative eigenvalue (imaginary

frequency) defines the reaction coordinate at this point.  After an infinitesimal
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displacement along the reaction coordinate, the energy derivative with respect to

this one coordinate is no longer zero since the movement is away from the 

stationary point.  Because all the coordinates are orthogonal at the transition 

structure, this infinitesimal displacement along the reaction coordinate leaves the 

other coordinates at their minima.  In theory, the IRC is defined by a series of 

infinitesimal displacements following the steepest descent of the non-zero 

gradient while continuously minimizing the other degrees of freedom in order to 

maintain their zero gradients.  Thus the IRC runs smoothly downhill along the

reaction coordinate from a transition structure to the next minimum.  Then it 

stops.  As mentioned previously, the path cannot be followed uphill.

TS

Min

Figure D1:  IRC connecting a transition structure with
a minimum
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The path is also followed down the other side, ideally connecting the 

transition structure to the products.  If the path were to reach a previously 

unknown minimum, then a search for a missing transition structure must be 

undertaken and the new path followed until a continuous connection has been 

established between reactants and products.

In practice, a small finite step is taken, after which a new vibrational 

analysis is performed.  This updates the force-constant matrix since, due to the 

evolving electronic structure along the path (bond forming and breaking), the 

vibrations change as a function of the path.  Then the coordinate of the reaction

path is projected out before determining the remaining 3N-7 coordinates and 

frequencies.  This is important since, due to the non-zero gradient along the 

reaction coordinate, the reaction coordinate is no longer orthogonal to the other 

3N-7 mutually orthogonal coordinates. Having established the other coordinates, 

due to the finite step size and anharmonicity of the true potential, the structure

must then be minimized with respect to those 3N-7 coordinates.  A series of these 

finite steps is performed until the structure arrives at a minimum.  In theory, by 

definition the force-field should be updated continuously.  In practice, it may not

be computed at each step, but should be done often.

Once the IRC has been established, connecting the reactants with products 

through the transition structure, this information is applied to the dynamic theory. 

In the conventional transition state theory, one simply inputs the energies of the 

reactants and transition structure having excluded the possibility of any higher 

barriers.  Most higher-level dynamical theories short of full reactive scattering 
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simulations rely on the IRC.  As discussed in appendix C, variational transition 

state theories maximize free-energy along the IRC.  During computation of the

IRC, all of the vibrational analyses are retained, allowing evaluation of the free-

energy as a function of s (the position along the reaction path).  This provides the 

necessary information for the variational theories detailed in Appendix C. 

As stated above, the IRC is in general not orthogonal to the other 3N-7 

coordinates (except at a TS, or a minimum).  This means that any mode that is not 

orthogonal to the IRC is coupled to it.  In terms of the variational theories this 

means that the assumption of adiabacity breaks down.  This may be true of some

modes in particular.  As a result, energy that is directed along the reaction path 

may be scattered into these modes.  This can result either in vibrationally excited

products, or possibly in reflection and a loss of reactivity.  This may also account 

for the selective enhancement of reaction rates through specific excitations.

This loss of adiabacity through coupling is defined as reaction path curvature:30
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In these equations F is the total number of vibrational coordinates (3N-6,

or 3N-5 linear).  The curvature   is defined as a function of the position along the 

IRC s.  It is obtained through summation over the couplings to the F-1 (3N-7) 

remaining coordinates.  The coupling element B is defined here for a general 

point in configuration space where any number of gradients may be non-zero.  It 

is simply the inner product of the two coordinates. As discussed above, along the 
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IRC, the F-1 coordinates are orthogonal to each other, making all of the B’s zero 

except for those in the expression for curvature (Bk,F).  Once the couplings have 

been evaluated and the curvature obtained, the choice on how to proceed depends 

on the application.  For simple systems with low dimensionality, the strongly 

coupled coordinates might be included in some trajectory calculations with a 

reduced dimensional reaction path Hamiltonian (reduced by discarding weakly 

coupled modes).  For the systems studied in the work described in this thesis, the 

dimensionality was too high to include any explicit treatment of these results.

However, the theory does provide a qualitative explanation for some of the 

differences in reactivity.
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Introduction

Since the early development of quantum mechanics, efforts have been

made to predict and understand the electronic properties of atoms and molecules. 

At first, quantum mechanical considerations allowed researchers the ability to 

predict certain types of phenomena in a general way. After appreciation of the

type of energy level structure possessed by atoms and molecules, the ideas of 

radiative transitions and spectroscopies followed.  Many advances in 

understanding and predicting new non-classical phenomena were made despite 

the lack of both lasers and computers.  In 1923, following the discovery of 

Compton scattering, Smekal predicted (via second-order perturbation theory) the 

possibility of inelastic scattering of photons from molecules.45a  In 1928 C.V. 

Raman and K.S. Krishnan published their experimental results in Nature.45b  They

had filtered and focused light from the sun through a telescope into a solution of

chloroform, and observed the production of a different wavelength of light.  The 

green light entering the sample gave rise to a yellow secondary light due to 

interaction with the molecular states of the chloroform molecules.  Raman was 

awarded the Nobel Prize and Raman spectroscopy was born.

Figure 1: C.V. Raman
http://www.deltanu.com/tutorial.htm
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At the time, the sometimes-counterintuitive predictions of quantum 

mechanics were being tested as carefully as possible.  This was necessary to 

establish the resilience of the postulates.  Thus the observation of Raman

scattering was an important confirmation of part of the framework of our 

understanding of matter.  Today the predictions of quantum mechanics have been 

confirmed to greater accuracy than those of any other theory.

Raman scattering is understood in terms of details of the molecular states 

and properties.  Now, rather than confirming that quantum mechanics is a good 

description of matter, scattering experiments can be thought of as measurements

of molecular electronic properties.  One of the biggest drives in science today is to

exploit the possible properties of materials.  Researchers in many areas seek to

tune the properties of materials literally atom-by-atom.  Molecular electronics, 

quantum computing, and non-linear optical materials are three areas currently of 

great interest for which a complete understanding of the relationships between 

molecular structure and electronic properties is essential.  Fundamental research is 

required in many areas in order to realize any of these goals.

The best description of the inelastic Raman scattering process is through 

Quantum Electro-Dynamics (QED).46  In this treatment the electromagnetic field 

is quantized as well as the states of the molecule.  Thus a Hamiltonian is 

constructed for the complete molecule-radiation-field system.  This approach is

necessary in order to recover some of the finer details of the physical process.  In 

practice, for chemical-physics applications, most researchers use a semi-classical

description, where the molecule is described quantum mechanically while the 
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field is described classically.  This approach neglects the effect of the molecular 

processes on the field.  Where there are discrepancies between the two models,

QED should be considered as the arbiter.  More will be said about the quantum 

theories of Raman scattering in the appendices.  The semi-classical description is 

generally adequate for most purposes including the processes discussed in this 

thesis.  The reader will notice that the terminology from the two approaches 

becomes somewhat mixed.  It is common to discuss an incident “photon” even 

within the semi-classical description.  This should not cause any confusion, as it 

simply reflects the fact that people are aware that excited field modes are what 

actually interact with the molecule.  This has allowed the process to be understood 

in terms of the electronic properties of the molecule, and its interaction with

applied fields.  The work described in this thesis is in the area of vibrational

Raman scattering.  Thus for the inelastic scattering processes studied, the 

difference in energy between the incident and scattered photons corresponds to 

vibrational state transitions.  Electronic and pure-rotational Raman scattering are 

similar processes but are not considered here. 

Using a semi-classical description, the differential scattering cross-section 

was derived by Placzek as:47
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As seen in the above equation, the scattering intensity depends on the fourth

power of the frequency of the incident photon.  This is followed by a thermal
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population term.  Finally there are two parts to a term describing the polarizability 

derivative with respect to the vibrational modes of the molecule.  The first part 

(isotropic) is the derivative of 1/3 of the trace of the polarizability tensor ( )

with respect to the vibrational coordinates ( mean molecular polarizability).

The second part analogously reflects the anisotropic contribution of the 

polarizability tensor.  It is this combined term that allows insight into the details

of the electronic structure of the molecule, its variation with geometric changes, 

and its response to external fields.  Thus much information can be derived from a 

Raman spectrum.

A quick review of some of the fundamental assumptions that are implicit

in the above equation will illustrate the range of applicability of the semi-classical

approach.  It is assumed that the incident photon is much lower in energy than any 

excited electronic states.  This is the non-resonance assumption that allows the 

intensity expression to be constructed in terms of only the vibrational states, 

neglecting excited electronic states.  Clearly, if the frequency of the incident 

photon were increased into resonance with an electronic state, this expression 

would not apply.  Next are the assumptions of electrical and mechanical

harmonicity.  The above expression is most often used with the normal-mode

coordinates derived from a harmonic force-field.  Also the second and higher 

derivatives of the polarizability are considered to be zero (electrical harmonicity). 

However, unlike the electronic resonance condition, these assumptions do not

limit the model.  One can easily extend the definition of the vibrational coordinate 

to include that of an anharmonic coordinate derived from a higher-order force-
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field analysis.  Similarly the polarizability can be extended, to include higher 

derivatives.  Where the interaction with an external field is concerned, one may

consider the static polarizability (the dipole induced by a static field), or more

realistically the dynamic polarizability (that induced by a dynamic field).  The 

fact that vibrational states for which intensity is recorded are often not accessible

by other spectroscopies makes Raman scattering useful for refining potential 

surfaces.  Thus when fully extended, this model may be used to examine details of 

the anharmonic potential surface and the associated vibrational states, as well as 

the dynamic polarizability and its variation with geometry.

It became clear soon after the Raman process was discovered that different 

types of molecules could produce very different scattering intensities.  This means

that their electronic properties have different field responses and dependencies on 

geometric variations.  Later it became clear that even in a group of similar

molecules such as the saturated hydrocarbons, the influence of subtle structural 

differences could be significant.  It is this observed range of behavior that inspires 

researchers to imagine what properties might be obtained if the right molecular or 

material structures were built.

As will be discussed in more detail in the following sections, these

properties may also be calculated.  This is another area in which the simple

capability of calculating the properties of a particular system does not suffice.

The essentially infinite number of possible molecular and material structures

cannot be considered individually.  The relationships between structure and 

electronic properties must be elucidated and recognized in terms of trends and 
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underlying patterns.  Calculation of polarizabilities, as with the computation of

any molecular properties such as structure and energy, involves the inevitable

trade off between accuracy and cost.  The most accurate methods are too costly to

apply towards systems with enough atoms to exhibit the most unusual behavior. 

Thus it is important to benchmark the lower level, more widely applicable

calculations.  Where lower level calculations hint at certain trends or 

relationships, experimental data must be collected to verify and guide the 

theoretical progress.

The work described in this part of the thesis is a combined theoretical and

experimental investigation into the Raman scattering intensities from saturated

hydrocarbons.  In the next sections I will describe some initial polarizability 

survey calculations.  These low-level ab initio calculations were expected to

reveal trends in the polarizability and its derivatives in these systems.

After the sections describing the survey calculations will be a number of 

sections describing the experimental work performed with bicyclo-[1.1.1]-

pentane, followed by some higher-level theoretical treatments of this system.
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Theoretical Methods 

In choosing the best computational method for a large set of survey 

calculation, previous approaches by other authors were considered.  These

approaches have ranged from empirical and semi-empirical to ab initio.  The bond 

polarizability model,48 for example, is largely empirical and represents the 

polarizability of the molecule as that from an arrangement of polarizable bonds. 

Thus each type of bond in the molecule contributes some additive amount of 

polarizability to the system.  A model with an approximate polarizability ellipsoid

for each bond type (e.g. C-H, C-C, Si-H) would predict that the electronic

properties of any molecule containing these bonds would change by the same

amount with the motion of the same atom type.  This allows for no variation at all 

in recorded intensities due to different structural factors.  The inadequacies of this 

type of crude model have been the motivation for more detailed calculations.

Semi-empirical methods such as AM1 are of no use whatsoever for the

calculation of higher-order electronic properties such as polarizability.  Although 

some semi-empirical methods have been proposed, and purely empirical models

have been used in the past, they suffer the same failing for this application.

Because they make simplified assumptions about the bonding of each type of 

atom, they will never reveal subtle variations in the electronic structure introduced

by unusual bonding arrangements.

Thus ab initio calculations are the best way to proceed.  The problem here 

is that complex structures likely to exhibit the most extreme variations in their

properties have a large number of electrons and nuclei.  Most methods scale quite 
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dramatically in cost relative to the number of electrons, while the number of 

nuclei increases the number of degrees of freedom for a vibrational analysis.  This 

restricts the use of correlated methods for survey calculations.  Yet, a good 

description of the net response of a molecule’s electron density to an external 

field requires electron correlation.49-56  Furthermore, accurate polarizability

calculations are known to require an extensive representation of the polarization 

space.49-53,57  Thus large basis sets augmented with high angular momentum

polarization functions are preferred.  This also increases the computational cost

considerably.  The best approach is therefore a compromise in both basis set and 

method.  This raises the question of the reliability of the calculations.  When

correlation effects are neglected, the absolute magnitude of the results will be 

dubious.  In addition, when smaller basis sets are employed, systematic

deficiencies may arise in the results.  Thus the only possibly fruitful way to 

proceed with survey calculations in these circumstances is to treat one particular

group of molecules.  It is hoped that the deficiencies of the method will be similar

in a relative sense throughout the group.  This does mean that any unusual 

molecules identified by the survey calculation will warrant a more detailed

theoretical study and also experimental confirmation if possible.

The Gough research group was first considering this project in the early to 

mid-1990’s.58-61  The available research computing power at that time was less 

than that of most PC’s today.  A series of basis-set and method evaluation studies 

performed on test sets of molecules indicated that MP2 was the best affordable

method for small systems and that the D95(d,p) basis set was the best compromise
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for hydrocarbons.  This was before the widespread acceptance of the B3LYP 

hybrid-DFT method.  Due to the large number of molecules in the planned study 

set, it was decided to forego the MP2 method for the basic Hartree-Fock SCF 

method.  Thus the survey type polarizability calculations were undertaken using 

the Hartree-Fock method and the D95(d,p) basis set.
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Survey Calculations 

My entry into the Gough research group and participation in this project 

began in 1999 and coincided with the second part of the survey calculations for 

the saturated hydrocarbon project.  The first of the two papers had already been 

published, and calculations for the second set were underway.  I completed the 

calculations for the second paper as well as sought molecular descriptors that 

might correlate with the calculated derivatives.  The presentation here is more

complete since the trends have since been evaluated in even more detail.

However, this project is best described chronologically so I will first describe

some of the experimental observations that motivated this ongoing research. 

The experimental observation that polarizability derivatives with respect

to the internal coordinates of a molecule (intensity parameters) are not readily

transferable motivated further investigation. 

Methane62 / r

C-H 1.26

Ethane63

C-H 1.33

C-C 1.32

Propane64

C-H Me 1.37

C-H ip 1.44

C-H op 1.25

C-C 1.21

Table1: Experimental intensity parameters for Methane
Ethane and Propane (Cm/V x 10-30)
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Insight into the origin of large intensity variations observed even within a

group of similar compounds requires that results be placed into a common 

framework (coordinate system).  Force-field methods are employed to transform

the data into intensity parameters with respect to internal coordinates. This allows 

intensity parameters to be described in terms of the same coordinates used to 

describe the geometries and greatly facilitates the recognition and development of 

structure/intensity relationships.

As seen in Table 1, there is considerable variation in the intensity

parameter for C-H stretching modes alone, especially when one considers that the 

recorded intensity is proportional to the square of this parameter.  The data set is

too small to draw any conclusions but it was noticed that the C-H bonds at the end 

of the chain in propane, oriented in the direction of the length of the molecule (C-

H ip), have a significantly larger intensity parameter.  Those attached to the same

carbons but oriented out-of-plane (C-H op) have values that are quite reduced. 

The methylene hydrogens attached to the central carbon are oriented out-of-plane 

and yet their values are intermediate in this system and higher than the values

found in methane or ethane.  To explore this further as well as to detect any other 

trends, it was decided that the C-H stretching intensity parameters for as large a 

set of molecules as possible should be calculated.65, 66  The set was to include all 

of the straight-chain hydrocarbons out to C15 and also C25, as well as many

ringed, caged, bicyclic, and branched molecules (see Figures 2 and 3).  The goal 

was to include as many unusual bonding arrangements as possible. 

111



Figure 2: Set of molecules (SET 1) considered for C-H intensity parameter
study
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Figure 3: Set 2 molecules studied for C-C and C-H stretches.
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Although it is straightforward to treat just about any molecule or type of 

vibration theoretically, the limitations of the experimental procedures dictate what 

can be confirmed.  It was decided to compute intensity parameters for the type of 

vibration that is amenable to experiment.63, 64  Experimentally, trace (isotropic) 

spectra are chosen because i) there are fewer bands: the derivative of the mean

molecular polarizability, qi is non-zero only for totally symmetric normal

modes; ii) bands are narrow and well resolved: Q branches only; and iii) trace 

scattering intensity parameters obey sum rules upon isotopic substitution: no 

rotational correction is required.  Absolute intensities are then obtained by scaling

relative to N2 as an internal standard.

Based on these experimental considerations, the survey calculations were 

planned to model totally symmetric vibrational modes in internal coordinates.

Procedure:

The geometry of each molecule was optimized at the same level of theory 

(d95(d,p)) as all of the polarizability calculations.  The molecular polarizabilities 

were then calculated using the analytic Coupled-Perturbed-Hartree-Fock (CPHF) 

method.67, 68

As can be seen in Figure 4, this method is reasonably accurate for 

molecular polarizabilities of hydrocarbons in a relative sense.  The actual numbers

could be scaled to produce good agreement with experimental values.  This type 

of performance was essential for the equilibrium molecular polarizabilities before 

numerical derivatives with respect to stretching motions could be obtained. 
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Figure 4: Experimental molecular polarizability vs. calculated with
HF/D95(d,p) Data points correspond to n-alkanes (# of Carbons on x-
axis). Points b, c, d, and f are molecules from Set 2 in Survey 
Calculations.ref

The derivatives of the polarizability with respect to symmetric stretching

motions were calculated numerically by central difference.65, 66  Symmetrically

equivalent bonds were stretched and contracted a distance of r = 0.010 Å. 

rnrr 2

1
     (2)

Thus, from polarizability calculations at these geometries ( + and -) in which n

symmetrically equivalent bonds are stretched or contracted, the first derivative is 

obtained.  The second derivatives of the polarizability tend to be very small.  This

means that polarizability derivatives calculated using formula (1) are very stable

with respect to the numerical step-size.  Tests including step-sizes of 0.001 to 
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0.015 Å have shown very little variation in this range.  This does not exclude the 

possibility that the second derivative could be significant for some molecules.  A

numerical scheme for calculating the second derivative would be: 

2

21

1
2

2

r

eq

n

r

eq

r

eq

rnr
    (3)

This is simply the change in the first derivative obtained from the stretched and 

contracted geometries.  While the second derivatives were not explicitly 

computed using equation (3), the possibility of their being significant was 

discounted in the following way.  The first derivative was first evaluated between 

the equilibrium and the stretched geometry.  Since the stretch was 0.010 Å, the

obtained derivative corresponds to that at the geometry stretched by 0.005 Å (the 

center of the difference).  Next the derivative was evaluated between the 

equilibrium and the contracted geometry.  This corresponds to the equilibrium

geometry contracted by 0.005 Å.  Thus by comparing the first derivative from the 

stretch and from the contraction, any significant difference is the second

derivative (change in first derivative).  The most that any calculated first

derivative changed through the stretching motion in these molecules was less than 

2%.  Thus the step-size was deemed relatively unimportant, and the second 

derivatives were neglected.  The results of these C-H stretching calculations will 

be shown in tables and figures to follow.
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Based on the interesting results and trends observed in the C-H stretching 

calculations from the first set of molecules, a second set of calculations was 

begun.  In this new study, derivatives for C-C stretching vibrations were 

computed for another set of molecules. This set was again chosen for its variety, 

while trying to maintain separability of the internal coordinates.  Some of the 

molecules in the first set had hydrogen atoms bonded to the exterior atoms of a

carbon framework.  These could be selectively stretched without coupling to any 

other coordinates.  The same could not be done for the C-C bonds of the carbon 

skeleton.  In order to extract internal-coordinate polarizability-derivatives for 

some of these structures, one would have to perform a complete force-field and 

polarizability-field analysis.  Using a complete set of derivatives for all the 

normal modes in the molecule, the data could then be transformed into internal 

coordinates using the L-matrix.69  This would have been too computationally

demanding for such a large set.  The second set of molecules was determined to

have enough variety in its bonding arrangements to elucidate trends, while 

maintaining convenient separability of the coordinates.   While primarily

constructed to compute C-C stretches, any C-H bonding arrangements not

included in Set 1, were also computed from this set.  Thus the complete set of data 

includes the C-H stretches from both sets, and the C-C stretches from set 2.
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Survey Calculations: Results and Discussion 

The results of the two sets of survey calculations are reproduced from the

published manuscripts.65, 66  Tables 2 to 4 show the raw data for the C-H stretch. 

Table 2: Polarizability derivatives (C-H) in n-alkanes, methane to
pentadecane (Set 1) 

Table 3: Polarizability derivatives for C-H stretch (Set 1)

118



Table 4: Polarizability derivatives (C-H) for Set 2 

The three tables above list the polarizability derivatives calculated for C-H 

stretching motions in all of the molecules of sets 1 and 2.  Through the n-alkanes 

the in-plane bonds at the ends of the chain are predicted to have increasingly large 

derivatives.  This had already been observed experimentally for propane (see 

introduction).  According to the calculations, this derivative increases non-linearly

with chain length but eventually levels off.  The methylene hydrogens in this 

series exhibit decreasing values with chain length.  This trend also levels off at 

long chain length (see Figure 5). 

Figure 5: Values of polarizability derivatives for C-H stretches in n-
alkanes

/
r

(1
0-3

0 C
m

/V
)

0 2 4 6 8 10 12 14 16
0.9

1.0

1.1

1.2

1.3

1.4
Hip
Hop
Hm1
Hm2
Hm3
Hm4
Hm5
Hm6
Hm7

Number of Carbons

119



Some results from AIM analysis provide a reasonable explanation for the

behavior of the derivatives with the C-H stretches in n-alkanes.  It was found that 

stretching of the terminal C-H bonds provoked a large charge-transfer term

between the terminal carbons when the field was applied down the length of the 

molecule.  This behavior was dependent on the alignment of these bonds with the 

length of the molecule as well as their position at the ends of the chain.  The 

polarizability was found to be sensitive to distortions of bonds in these positions,

hence a large derivative occurred for stretch of the terminal in plane C-H bond. 

The net dipole caused by this charge transfer was opposed by atomic dipoles in 

the interior atoms.  Thus with increasing chain length the damping by the interior 

atoms causes the derivatives to level off (see Figure 5). In contrast, the methylene

hydrogens are oriented away from this molecular axis.  The extent of the charge 

density perpendicular to the length of the molecule is similar throughout the chain 

and is much less than that over the length.  It is also much less sensitive to C-H

stretching motions.  Thus the methylenes have similar, and much smaller, values 

for
CHr

.

Analysis of the C-H stretch data for the other hydrocarbons in sets 1 and 2 

yields some interesting patterns.  In ring systems, such as cyclohexane, the 

equatorial bonds have larger derivatives than the axial, and this trend increases 

with ring size.  This is easily understood by analogy with the n-alkanes.  The

equatorial bonds are aligned with the longer molecular axis, allowing greater 

charge transfer.  This difference in axis length increases with ring size.
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C-H stretching motions that encounter steric hindrance have significantly 

decreased values for their derivatives.  Examples occur in the boat form of 

cyclohexane as well as the gauche conformer of butane.  Where the two 

symmetrically equivalent atoms are brought together, the charge transfer is in the 

same region of space.  This means that the induced dipole (charge x distance) is 

reduced because the distance is reduced. Otherwise this result can be understood 

in terms of the reduced change in molecular volume, which occurs when the 

motion is hindered. 

Figure 6: Boat conformation of cyclohexane 

The largest derivative of polarizability with C-H stretching found 

throughout sets 1 and 2 is that for the bridgehead bonds in bicyclo-[1.1.1]-

pentane.  This can be understood as a superposition of two trends in the intensity 

parameters.  Firstly, bridgehead bonds in general have significantly larger 

derivatives than most other bonds.  This can be related to the results for the n-

alkanes in which the terminal bonds have large derivatives. A bridgehead bond is 
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at the end of three chains, and although it is not perfectly aligned with each chain,

there can be significant charge transfer from along each chain.  Secondly, 

hydrogens attached to carbons with strained bonding arrangements tend to have 

large derivatives.  This can be seen from tetrahedrane through to hexaprismane.

With stretching of the attached hydrogen, the density of the strained carbon atom 

is more easily perturbed.  In bicyclo-[1.1.1]-pentane the bridgehead hydrogens are 

attached to strained carbon atoms, yet there are also  methylene groups between 

them to create polarizable chains. Bicyclo-[2.2.2]-octane has less-strained 

bridgehead carbons.  In addition, the extra methylene groups mean that the C-H 

bonds are in much poorer alignment with the chains.  Tetrahedrane and cubane 

are highly strained but there are no polarizable chains connecting the strained 

carbons.  Also the connecting C-C bonds are not as closely aligned with the C-H 

bonds.  Consequently their C-H derivatives are quite high, based solely on the 

strain factor, but not as high as those in bicyclo-[1.1.1]-pentane.  Bicyclo-[1.1.1]-

pentane also possesses a unique structural factor which may contribute 

significantly.  The distance across the cage between the two non-bonded carbons 

is the shortest non-bonded carbon-carbon distance known for an equilibrium

structure.  This manifests itself in strong through-space interactions between the 

bridgehead carbons.  Extremely strong couplings have been observed in NMR 

spectra of molecules based on this structure.  Thus as well as the other factors

already mentioned, this molecule exhibits direct electronic interactions across the

cage.
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In summary, the trends for derivatives of the polarizability with respect to 

C-H stretching vibrations are as follows:

i) large when at the ends of chains 

ii) large when oriented with longest molecular axis 

iii) very large for bridgehead bonds 

iv) very large when attached to strained carbon atoms 

v) small with steric hindrance

vi) medium with lack of above circumstances for large 

derivatives

vii) total result is a superposition of the influence of the above 

trends

This completes the discussion of the derivatives of the mean molecular

polarizability with respect to C-H stretching motions.  The following reproduced 

tables include the data for the C-C stretches completed for the molecules in Set 2. 
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The derivatives obtained for the C-C stretches in the n-alkanes produced 

another interesting trend.  The derivative for stretching of a C-C bond at any 

given position on the chain increases with the overall length of the molecule.  For

example the value for stretching the bond between carbon numbers 2 and 3 is

larger for nonane than for heptane.  This increase is non-linear at first but then 

levels off.  Figure 7 shows this trend clearly, along with the steep non-linearity of 

the effect. 

Figure 7: Calculated Polarizability derivatives for C-C stretches in n-alkanes.
Legend identifies the two carbons participating in the bond. Numbering
begins at the end of the chain.

Hidden in these data is another trend, that for the values along the chain 

for any particular hydrocarbon, the derivatives for the terminal C-C bond are 

larger than those for the next most interior.  After this depressed value, the values
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towards the center of the molecule increase non-linearly until the maximum is 

reached at the center.  This trend was initially observed with the D95(d,p) basis 

set but was confirmed in 200370 by calculations with the B3LYP/aug-cc-pVDZ 

method.  The results are shown in Figure 8 at both levels of theory for nonane and 

pentadecane and at the D95(d,p) level only for penticosane.  The agreement

between the two methods is surprisingly good.
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Figure 8: Polarizability derivatives for C-C stretches along carbon chains for
C9, C15, and C25.  (A) corresponds to the HF/D95(d,p) method, while (B)
corresponds to the B3LYP/aug-cc-pVDZ method. 

The results for C-C stretches in the other systems in set 2 are shown in 

Table 6.  Calculated values for the strain energy of the carbons involved in the 

bond are included with these intensity parameters.  The carbon strain energy was 

previously found to play a large role in the values for C-H intensity parameters.

While the n-alkanes exhibit interesting trends of their own, some effort was made

to bring order to the other results.  Testing was undertaken for correlations 
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between many molecular properties and the C-C intensity parameters.  Bond 

lengths, atomic populations, charge-densities at bond-critical-points, bond-

ellipticities, atomic-volumes, and strain-energies were all considered.  No 

significant correlations were observed except for that with the strain energies.

Table 6: Polarizability derivatives and strain energies for C-C stretches (Set
2)

The strain energy for hydrocarbons was calculated in the following way:66

i) The molecular energy was calculated at the optimized geometry 

ii) The strain-free energies of the molecular fragments were computed

as:

a. CH3 = 1/2 E(ethane) = -39.6246205 au 
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b. CH2 = 1/2 {[E(propane)-2 x E(CH3)]+[E(cyclohexane)/6]} =

-39.0431489 au 

c. CH = E(isobutene) – [3 x E(CH3)] = -38.4623977 au 

d. Quaternary C = E (neopentane) – [4 x E(CH3)] = -37.8810579 

iii) The difference between the molecular energy and the strain-free

energy was deemed to be the strain-energy 

iv) The total molecular strain-energy was simply averaged into the 

number of carbon atoms in the molecule

Figure 9 shows the rough correlation between the average strain energy

per carbon and the calculated C-C intensity parameters.  This correlation might

have been better if the total strain energy of each molecule could have been 

distributed among the different carbon atoms more systematically.  This could be

accomplished through AIM analysis though at great cost.  An obvious problem 

with this descriptor restrained efforts in this direction.  The C-C intensity

parameters for the prismane series of molecules are different for stretching of the 

two different types of C-C bonds.  Viewing these molecules as two stacked rings, 

the two bond types are: the vertical bonds between rings, and the bonds within the 

rings themselves.  Any description of the carbon atom itself will be the same since 

these bonds originate at the same atom.  Thus no such descriptor can correlate 

well to these results.  This correlation was retained because it is easily and

generally applicable.  It also has the advantage of being roughly estimated without 

any calculations at all.
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Figure 9: Polarizability derivative for C-C stretch
vs. calculated strain energy (see Table 6) 

The problem with trying to associate some properties of the equilibrium

structure with the calculated intensity parameters is a fundamental one.  While it 

would be ideal to identify easily recognizable structural features that correlate to a 

molecule’s dynamic electronic properties, there is an inherent difficulty.  The

intensity parameter is a dynamic property, a measure of the system’s response to 

changes in the structure.  Thus we are actually measuring the change in an

electronic property (polarizability) induced by small changes in the structure.

This will not necessarily correlate to any property of the equilibrium structure.

In spite of this difficulty, many recognizable behavioral trends were 

identified.  Since all of these factors discussed above were found in the results of 

the HF/D95(d,p) method, it remained to confirm that these trends were real, and 

not just artifacts of a deficient method. As mentioned in the theoretical methods

section, the HF/D95(d,p) method lacks electron correlation and suffers from a

limited basis set.  Thus the best candidate for experimental study was chosen from
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sets 1 and 2: bicyclo-[1.1.1]-pentane (Figure 10).  This molecule was by far the 

most interesting molecule in the two sets, from both theoretical and experimental

viewpoints.  From a theoretical standpoint it was interesting since it has two types 

of C-H bonds, one predicted to be the largest intensity parameter known for a C-H 

bond, and the other very ordinary, typical of methylenes in other alkanes.  Thus

this molecule could benchmark the upper range of C-H intensity parameters,

while showing a large contrast within one molecule.  Experimentally this

molecule meets many necessary criteria. For example, it is gas-phase at room 

temperature.  This is important since one requires the response of the isolated 

system in order to compare experimental results with calculations.  The spectra of 

solids do not reflect the type of vibrations treated here.  It is highly symmetric, 

which limits the number of totally symmetric bands recorded.  High-symmetry 

also facilitates the subsequent force-field analysis used to transform the recorded

intensities into the desired internal coordinate intensity parameters.

Figure 10: Bicyclo-[1.1.1]-pentane 

130



From the two sets surveyed, this molecule was thus the most desirable

candidate from which to obtain experimental absolute intensity Raman scattering

spectra.  Although it is quite stable, no companies sell it in any quantity.  While

custom synthesis companies advertise that they will make quantities of virtually

any compound upon request, at least six declined the contract to prepare a sample

of bicyclo-[1.1.1]-pentane.  In the next section I will detail my own efforts to 

prepare a sample of this molecule. 

131



Synthesis of Bicyclo-[1.1.1]-pentane

As mentioned in the previous section, the synthesis of bicyclo-[1.1.1]-

pentane (BCP) was undertaken out of necessity.  It could not be purchased, even

through companies specializing in custom syntheses.  However, in terms of 

experimental candidates, this was by far the most important molecule. 

Furthermore, based on its symmetry and physical properties (e.g. gas-phase at 

room temperature), once obtained it was anticipated to be quite convenient for 

handling and recording of spectra.  Although unavailable, this molecule was not

unknown.  Kenneth Wiberg first reported its synthesis in the 1960’s.71  His

approach was a complicated photochemical procedure which resulted in a number

of products including BCP, though in very poor yield.  This made isolation of a 

highly pure sample very difficult.

My own attempts to synthesize BCP included a few different methods

before a suitable route was established. It should be emphasized that the reaction 

steps used in my procedures were not new, except for some unsuccessful attempts

to produce BCP directly from a dilithio compound.  Since the goal was solely to 

obtain a sample, it was simply a matter of seeking the most efficient literature

preparation.  Soon after some early failed attempts were completed, a review 

article was published detailing much of what is known about these systems

including their synthesis.72  A new approach made it quite straightforward to 

synthesize the related compound [1.1.1]-propellane.73  This compound provides a 

number of routes to derivatives of BCP.  Ironically, although a vast number of 

functionalized bicyclo-[1.1.1]-pentanes were then accessible, the parent 
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hydrocarbon was still the most difficult to obtain.  This system also exhibits some

counterintuitive behavior from a synthesis standpoint.  If one simply adds iodine 

(I2) to a solution of [1.1.1]-propellane in ether, then 1,3-di-iodo-BCP precipitates

out as crystals.74  However, a subsequent attempt to reduce this compound to BCP 

using tri-n-butyl-tin hydride would only reform the propellane.  Ultimately the 

successful procedure required some eleven steps to produce a pure sample of 

BCP.

All efforts to synthesize BCP started with the synthesis of [1.1.1]-

propellane (see scheme 1).  All of the syntheses described here were performed

under inert atmosphere conditions (under Argon).  All glassware was oven baked 

overnight and solvents were freshly distilled in an effort to exclude water from

interfering with the desired chemical processes.  A solution of propellane was 

prepared as follows:73

Br

Br

Cl

Cl

+
CH3

BrMeLi

Scheme 1: Preparation of [1.1.1]-propellane 

i) prepared a solution of 1,1-di-bromo-2,2-di-chloromethyl-

cyclopropane in dry ether 

ii) cooled solution to -420 C

iii) added two equivalents of methyl lithium solution in ether,

dropwise
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iv) allowed solution to warm to room temperature for 1 hour 

v) distilled into flask at -780 C, warmed to -150 C

vi) added excess Mg powder, raised to room temperature

vii) distilled into flask at -780 C 

The first few times this solution was prepared, a small amount of benzene

was added as an internal standard for the NMR spectra.  This allowed the yield for 

a small-scale batch to be estimated at about 60%.  Based on a method described 

by Uwe Bunz in his PhD thesis75, it was decided to attempt a nearly direct 

approach to BCP through formation of 1,3-dilithio-BCP.  The strategy was to 

react the propellane solution with lithium 4,4’-di-t-butylbiphenyl (LiDBB) in a 

solution of refluxing Me20 at -230 C.  The procedure reported by Bunz worked 

reasonably well, although the pink crystals corresponding to the desired dilithio 

compound proved to be extremely sensitive to any amount of air which might find

its way into the system.  Once the crystals were formed, the ether could be 

pumped off until the crystals were dry.  Although any subsequent reactions 

performed by Bunz had involved solvating the crystals in benzene, it was hoped 

that if the dilithio compound could be dissolved in a high boiling solvent, and 

protonated with a high boiling alcohol, then BCP (b.p. 350 C) could easily be 

distilled off.  With this in mind, the crystals were dissolved in 

decahydronaphthalene, which boils at about 1900 C.  Two equivalents of n-

pentanol were added with stirring.  Attempts to distill any BCP into a cold (-1960

C) trap failed.  The crystals did not seem to be very soluble in 
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decahydronaphthalene and no visible change occurred with addition of 1-

pentanol.

Since the dilithio compound had formed very much as described by Bunz, 

it was decided to adopt his methods to at least see if BCP could be produced.  The 

dilithio compound was dried under vacuum, and then solvated with clean 

degassed benzene.  Two equivalents of water were added to protonate the crystals.

The NMR spectra showed that a solution of BCP in benzene had indeed formed,

although a considerable amount of ether was still present.  Thus the desired BCP 

had formed but there was no way to separate it from the ether and benzene.  This 

was encouraging enough to make another attempt with a high boiling solvent.

The dilithio crystals were prepared again and solvated with xylene.  Amyl alcohol 

was added for the protonation.  Again no product could be distilled off.

Since BCP had been successfully synthesized but not isolated, it was

decided to construct a preparatory scale gas-chromatography (GC) apparatus as 

Wiberg had used in his preparation. A 20' copper-tubing column with a 1 cm

internal diameter was wound around a six inch mandrel.  This was then packed 

with column material coated with Carbowax 20M.  This was adapted to an 

analytical GC instrument on loan from Dr. H.D. Gesser.  A mild flash-

volatilization of 1000 C was used with a column temperature of 400 C.  Helium

was used as the carrier gas, thus making it possible to use liquid nitrogen for the 

collection trap.  Test solutions of pentane: ether: benzene were easily separated. 

The pentane and ether were well separated and eluted at about 3 and 4 minutes,

respectively.  These conditions caused a considerable delay (25 minutes) before 
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the benzene came through.  It was thought that heating the column after passage 

of the ether would speed up the benzene elution, although this would necessitate 

additional cooling time before the next injection.  Thus since good separation was 

achieved with the test mixture, it was decided to prepare a large sample of BCP 

and try to collect it.  Several attempts to collect BCP failed despite clear evidence 

that it had been produced.  Even at low temperature the BCP was too easily swept 

from the collection vessel by the carrier gas.  Despite the use of some highly 

efficient collection devices specially constructed by Ian Ward (glass-blower, 

Dept. of Chemistry), no useable amount of BCP could be isolated.  This was 

frustrating since the test mixtures with n-pentane in place of BCP could be 

separated trivially.  There was also some evidence that the BCP was decomposing

during the flash volatilization.

At this time it was realized that Dr. E.W. Della had recently prepared a 

pure sample of BCP for an NMR study.76  His previous work with these systems 

had appeared many times in the literature.77-79  Some e-mail correspondence with 

Dr. Della suggested that the best route to a pure sample was somewhat

roundabout.  He suggested a series of steps which should ultimately result in a 

pure sample of BCP.  The strategy (shown in scheme 2) was to attach various 

bulky substituent groups to the bridgehead positions.  This allowed recovery of a 

non-volatile stable solid at the end of each intermediate step.  These intermediate

compounds were known to be relatively insensitive to oxygen and water.  Finally 

the last bulky group could be removed to produce BCP in the non-volatile tri-n-
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butyl-tin hydride.  Ideally at this stage the pure BCP could be swept into a cold 

collection flask. 
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In practice, most of the steps worked quite well as described in the 

literature.  Yields comparable to those reported by the various authors73, 77-82 were

realized.  The best part of this strategy was that material could be stored at any 

stage while another batch was brought along from the beginning.  Thus while 

losses did eventually diminish the amounts carried through, more could soon be 

added.  The only step to proceed more slowly and in lower yield than expected

was the final one.  Enough of the mono-acid was used to produce 3 ml of BCP 

assuming that the yield was similar to that in the literature.  This was expected to 

occur within 30 minutes.  In actuality, less than 1 ml of BCP was isolated, having 

slowly accumulated over 8 hours.  This is not too surprising since the reaction 

was photochemical and required a bright lamp.  In my procedure, a bright lamp

(500 W) was placed next to the reaction flask.  The literature procedure used a 

300 W lamp, but may have used a special highly reflective reaction chamber.  An 

additional problem arose from sweeping the reaction for so long.  At the end of 8 

hours a small but visible portion of the tin hydride had come over with the BCP. 

This was easily removed through repeated cryo-distillations.  Thus at last a usable 

sample of bicyclo-[1.1.1]-pentane was obtained.  Some additional details are 

found in the supplementary information section.
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Absolute Intensity Raman Spectra of Bicyclo-[1.1.1]-pentane 

Once a sample of pure bicyclo-[1.1.1]-pentane had been prepared, it 

remained to record the Raman spectra. The goal was to derive the experimental

intensity parameters for comparison with those computed at various levels of 

theory.  In particular the internal-coordinate intensity-parameter for stretching of 

the bridgehead C-H bonds was sought for benchmarking.  As discussed 

previously, the survey calculations predicted this to be the largest parameter for

any C-H bond.65  Furthermore, due to the unusual charge density and consequent 

poor agreement between theoretical methods, this has become an important way 

of assessing some high-level theoretical methods.

Experimental Setup 

Given the assumptions under which the semi-classical intensity expression 

was derived (see Introduction), it was important to adhere to the necessary

requirements as much as possible.  The differential scattering cross-section

intensity expression is again shown here for convenience. 
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Foremost is the assumption of non-resonance.  The frequency of the laser 

used in the scattering experiment must not approach resonance with excited 

electronic states of the molecule for this expression to hold.  On the other hand, 

the observed intensity varies with the fourth-power of the laser frequency.  Given 
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that Raman scattering is a very weak process, a higher frequency laser provides 

much more recorded intensity.  The inelastically scattered Raman photons are 

approximately 108 fold less intense than the elastically scattered Rayleigh

photons.  This is illustrated in a perturbation theory treatment, wherein the 

Rayleigh scattering is seen to be a first-order process, while Raman scattering is a 

second-order process.46  For saturated hydrocarbons, the preferred laser source is 

the green line of an Argon ion laser at 514.5 nm (19435 cm-1).  Choosing this 

frequency favors caution with respect to the electronic resonance condition. 

Some researchers have used another line of the Argon ion laser at 488 nm.  This 

line is also far enough from resonance in most saturated hydrocarbons and will 

produce more scattering intensity on a watt per watt basis (about 25%).  However, 

the actual output of the Argon ion laser is much less at this frequency (about 1/3), 

thus limiting any advantage.

When linearly polarized light is used as a scattering source, the above

intensity expression can be split according to the polarization of the scattered light

as follows:63, 64
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Light scattered with polarization parallel to that of the incident photons

contains contributions from both the isotropic and anisotropic parts of the 

polarizability tensor.  The photons with perpendicular polarization contain only a 

contribution from the anisotropic term. This should be seen as very convenient 

when one considers that the desired intensity parameter is derived strictly from

the isotropic term.  By recording the scattered light with each type of polarization 

(using a filter), then subtracting 4/3 of the perpendi cular contribution from the

parallel, the remaining intensity, solely that of the isotropic trace scattering term,

is obtained.

So far it has been decided to use the 514.5 nm line from an Argon ion 

laser and to record the scattering from both orthogonal polarizations.  The next 

consideration is that of recording sufficient intensity and particularly signal-to-

noise ratios.  As mentioned previously, the Raman scattering process is very weak 

in general, and is particularly so from a dilute gas.  This necessitates the use of a

multi-pass setup,83, 84 in which the laser is reflected back and forth many times

through the sample.  Use of a multi-pass setup does indeed greatly enhance the 

scattering process but it also introduces two other concerns.  Firstly, the mirrors

employed to create the multipass do not reflect the light perfectly and the precise

number of passes is difficult to determine.  This means that the intensity of the

laser is slowly decaying with each pass and the total intensity at the focal point is 

not precisely known.  Secondly, the light is reflected from a number of points

along a curved surface.  This means that the polarization direction of the light 

varies slightly through the different passes.  Fortunately geometric considerations 
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have shown that the error introduced into the scattering analysis from the 

deviation in polarization direction is negligible.85  The problem of the unknown 

intensity of the source is overcome through the use of internal standards. 

Typically researchers record gas-phase spectra with an internal standard such as

nitrogen gas.  This allows the recorded intensities to be calibrated with the well-

known intensity of the nitrogen signal.  This also lowers the demands on a 

detection device.  A suitable detector need only provide accurate relative

intensities, since adjustments can be made based on the nitrogen signal.  Based on 

these considerations, the Gough lab’s Raman instrument for recording gas-phase 

spectra consists of the following: 

i) Coherent Innova 200/15-Argon ion laser tuned to a single line at 
514.5 nm

ii) Multi-pass optical arrangement

iii) Small Brewster-angled sample cell 

iv) Spex 14018 -Double-monochromator wavelength selector 

v) RCA-31034 Water-cooled, nitrogen-swept, photomultiplier
detector

The double-monochromator/photomultiplier d etection system does not 

detect lower energy photons as efficiently as it does high-energy photons.  Thus 

the intensities of recorded spectra must be corrected differently over the typical 

wavelength range.  Proper calibration of the instrument was a project in itself for

previous students (Hemant Srivastava and Jason Dwyer).  Standard lamps with 

known emission characteristics (e.g. blackbody) were used for this.  Happily these 

previous efforts have resulted in correction curves in the form of simple
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polynomials which can be applied to spectra.  These correction curves were 

generated separately for incident light of parallel and perpendicular polarization.

Below are the actual correction curves reproduced from a MathCad worksheet. 

Intensity Correction

Parallel
x 4000 3999. 500

A 0.9956735

B 1.395 10
4

C 2.042 10
8

D 1.013 10
11

E 2.737 10
16

parallel x( ) A B x C x
2

D x
3

E x
4

Perpendicular
A 1.006045

B 1.448 10
4

C 5.942 10
8

D 3.9 10
12

E 1.563 10
15

perpendicular x( ) A B x C x
2

D x
3

E x
4

500 1000 1500 2000 2500 3000 3500 4000
1

2

3

parallel x( )

perpendicular x( )

x

MathCad sheet 1: Intensity correction factors

Note that bands recorded at 3000 cm-1 with this instrument receive a 

considerably larger correction than those recorded at 1000 cm-1.  The 
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perpendicularly polarized spectrum receives a slightly larger correction

throughout the wavelength range.  Intensity parameters recorded with this

instrument have been in excellent agreement with those recorded by other labs 

around the world.  The spectrum is obtained by slowly scanning the wavelength 

range and recording the counts of the photomultiplier at each wavelength.  This

process is rather lengthy and must be repeated several times before sufficient 

intensity has been recorded.  To allow the instrument to maintain consistency over 

this extended time, a dust shroud covers the multi-pass setup.  Since a hole allows 

the laser to pass through the shroud into the multipass setup, a positive pressure of 

filtered air is maintained.

Figure 11: Raman multi-pass setup with dust shroud.  The air filter above 
the shroud and some of the optics are visible.  A lens focuses the laser source 
from below into the multi-pass mirrors.
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Figure 12: Multi-pass setup.  Spots are visible on the lower mirror from the 
multiple passes of the laser.  A large lens focuses light from the focal point of
the multipass region into the double-monochromator (off to right).

When the instrument has first been assembled, the nitrogen in air provides

a convenient test.  Since our atmosphere is approximately 80% nitrogen, a strong 

signal from nitrogen can be recorded from the laser multipass operating without a 

sample cell.  The system can be tested using both orientations of the polarization 

filter.  This ensures that the setup is calibrated correctly and will provide data

similar to those of other labs throughout the world. Furthermore, the optics can 

be optimized in terms of the recorded intensity.  There is almost an art to aligning

the tiny mirrors to create the best possible multipass.  Minute adjustments are

made until the number of counts per second from the photomultiplier is
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maximized.  This occurs when a large number of passes are achieved, aligned in 

one plane, and each passing through a focal point at the center.  Next the focusing

mirror which sends the scattered light into the double-monochromator is adjusted 

to capture the maximum amount of signal.  Finally, the double-monochromator is

calibrated using a Ne lamp.  For quick confirmation, a line from the mercury

atoms present in the fluorescent lights in the room can be observed, and also the

signal from nitrogen will appear at the accepted 2330 cm-1.

At this time the sample may be prepared in a sample cell.  Since the

molecules of interest are gasses at room temperature, this is done on a vacuum 

line.  The Gough lab has a special set of high-vacuum lines and mixing flasks 

attached to a pressure gauge and vacuum pumps.  This allows convenient 

handling of gas-phase samples.  Multiple cycles of freeze-pump-thaw are 

employed to degas the sample.  Then the sample gas and any nitrogen standard 

gas are allowed into a mixing flask.  After the gasses have been adequately mixed,

a precise pressure of the gas mixture is allowed into a small sample cell.  The cell 

itself is designed to hold a vacuum for extended periods and to maximize

transmission of laser light in the required frequency range.  This means using 

high-quality Brewster-angled windows of a precise thickness.  Next the Brewster-

angled sample cell is inserted within the multipass optics.  Ideally, the cell should

be oriented such that it does not disturb the passes of the laser, which now must

transmit through the cell with each pass.  In practice, the presence of a cell does 

perturb the laser path somewhat, and can shift the exact position of the focal point

slightly.  This necessitates a re-optimization of the signal with the cell in place.  If
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a partial pressure of nitrogen is present in the cell, the signal from nitrogen at 

2330 cm-1 may still be used; otherwise a str ong band from the sample gas must be

located.

Using a pressure of 143 Torr of pure sample, a series of scans were

recorded for both parallel and perpendicular polarization directions.  Based on the

aperture widths of the double-monochromator (180µ/180µ), which determ ines the

resolution, steps of 1 cm-1 were taken.  This is approximately equal to the 

maximum resolution allowed by the double-monochromator.  Enough scans were 

recorded to total 48 seconds of integrated intensity at each wavenumber point, for 

each polarization.  This allowed a reasonable ratio of signal to noise to be

achieved.  Subtraction of 4/3 tim es the perpendicularly polarized spectrum yields 

the isotropic spectrum necessary to obtain the desired intensity parameters.

In order to compute the absolute intensity of the recorded Raman

spectrum, two mixtures were prepared using nitrogen as an internal standard. 

Mixtures of BCP:N2 of (120.8 : 123.7), and (121.4 : 339.9) Torr were used.  For 

each sample, the intensities of the signal for nitrogen and that of the strongest 

band in the bicyclo-[1.1.1]-pentane spectrum were recorded.  The second mixture

included sufficient nitrogen for the two peaks to be of comparable intensity.

Thus once the absolute intensity of the strongest band was determined, the

intensities of all other bands could be calculated relative to the strongest band

from the pure-compound spectra.
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All of the spectra shown in figures 13 through 22 have been intensity 

corrected using the correction curves shown above.  Figure 13 shows the parallel

polarization spectrum of bicyclo-[1.1.1]-pentane through the entire wavelength 

range.  There are clearly a large number of features, many of them broad and 

overlapped.  Fortunately, computation of the internal coordinate intensity

parameters only requires integration of the trace (or isotropic) spectrum.63, 64  As

discussed above, this spectrum is obtained by subtracting 4/3 of the 

perpendicularly polarized spectrum (anisotropic) from that of the parallel.  In the

isotropic spectrum, only bands corresponding to totally symmetric (A1g) states

will have non-zero intensity.  As will be shown in detail in the following section 

on computation of intensity parameters, bicyclo-[1.1.1]-pentane has 5 

fundamental modes with this symmetry.  Thus one might expect 5 narrow, well-

resolved peaks in the trace spectrum, unless resonantly enhanced higher-order

transitions are found to complicate matters.  Figures 14 and 15 show the C-H

stretching region of the spectrum for the two polarizations in more detail.  Figure

18 shows the isotropic spectrum obtained by subtracting out the anisotropic 

contribution.  While there are only two fundamental C-H stretching motions

anticipated to occur in this region, figure 18 clearly shows 5 peaks.  This is due to 

resonantly enhanced higher-order transitions (combinations and overtones) with 

the correct symmetry. Considerable computational effort was required to

distribute the recorded intensity properly.  The sections on higher-order force-

field methods, resonance interactions, and inverse-eigenvalue algorithms provide 

the details of how this was done. 
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BCP C-H Stretching Region
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Figure 14: Raman scattering spectrum: Bicyclo-[1.1.1]-pentane.  Sample 
pressure 143 Torr, laser power 7.0 watts.  C-H Stretching region with
parallel polarization.
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Figure 15: Raman scattering spectrum: Bicyclo-[1.1.1]-pentane.  Sample 
pressure 143 Torr, laser power 7.0 watts.  C-H Stretching region with
perpendicular polarization.
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The next region of the spectrum to consider is that of the C-C stretch.

Figures 16 and 17 illustrate the parallel and perpendicularly polarized spectra in

the wavenumber range of 1200 to 800 cm-1.  The isotropic spectrum is shown in

figure 19.  Two fundamentals of A1' symmetry are expected to appear in this

region, and except for a very weak additional feature, this is what is recorded.

Finally there is the C-H bending region of the spectrum where the last of 

the five totally symmetric modes is found.  Figure 20 shows both the parallel and 

isotropic spectra.  The transition occurs at 1510 cm-1 but is extremely weak.  This 

is because bending of the methylene hydrogens does little to increase the 

molecular volume and does not involve stretching any bonds.  Thus only a very 

slight change in the polarizability is anticipated.  Furthermore, while symmetry

considerations allow non-zero intensity in the isotropic spectrum, this band has a 

large depolarization ratio (0.73) and therefore most of the intensity is from the 

anisotropic term.  After subtracting out the anisotropic contribution, the remaining

isotropic part is not resolved in terms of signal to noise for a meaningful

integration.  This does not present problems for the analysis since, if this peak has 

less than 2000 integrated counts and up to 100% error, the maximum error for this 

peak is 2000 counts.  This much error is much less than 1% of the counts for the 

most intense C-H stretching bands.
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BCP parallel scattering
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Figure 16: Raman scattering spectrum: Bicyclo-[1.1.1]-pentane.  Sample 
pressure 143 Torr, laser power 7.0 watts.  C-C Stretch/Bend region for 
parallel polarization.
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Figure 17: Raman scattering spectrum: Bicyclo-[1.1.1]-pentane.  Sample 
pressure 143 Torr, laser power 7.0 watts.  C-C Stretch/Bend region with
perpendicular polarization.
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BCP parallel scattering

Mean polarizability scattering
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Figure 18: Raman scattering spectrum: Bicyclo-[1.1.1]-pentane.  Sample 
pressure 143 Torr, laser power 7.0 watts.  C-H Stretching region with
parallel polarization and with 4/3 perpendicular subtracted (mean-
polarizability spectrum, shown in red) 
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Figure 19: Raman scattering spectrum: Bicyclo-[1.1.1]-pentane.  Sample 
pressure 143 Torr, laser power 7.0 watts.  C-C Stretch/Bend region with
parallel polarization and with 4/3 perpendicular subtracted (mean-
polarizability spectrum, shown in red) 
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BCP parallel scattering
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Figure 20: Raman scattering spectrum: Bicyclo-[1.1.1]-pentane.  Sample 
pressure 143 Torr, laser power 7.0 watts.  Parallel and mean polarizability
spectra. Extremely weak band at 1510 cm-1 in parallel spectrum is almost 
unresolved in mean polarizability spectrum (see discussion).

Figures 21 and 22 show the spectra required for the calculation of absolute 

intensities.  Figure 21 shows the most intense peak of the bicyclo-[1.1.1]-pentane 

spectrum, while figure 22 shows the signal from nitrogen.  It becomes evident just 

how intense the peak for the bridgehead stretch is when one considers that there is 

a 2.800 fold excess of N2.  In the following section the data corresponding to

these spectra will be used to derive the experimental intensity parameters.

Since the intensity analysis requires the vibrational frequencies and 

normal mode vectors, the complete set of experimental and calculated frequencies 

is listed in Table 7.  For reasons that are explained in Appendix C, the force-field 

employed to derive the normal coordinates is the non-scaled quadratic field

computed using B3LYP/aug-cc-pVTZ.
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BCP Intensity Correction Spectrum
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Figure 21: Absolute intensity correction spectrum: BCP:N2 121.4 : 339.9 
Torr. Laser power 7.0 watts, parallel polarization. Band corresponds to 
bridgehead stretch in BCP 
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 Figure 22: Absolute intensity correction spectrum: BCP:N2 121.4 : 339.9 
Torr. Laser power 7.0 watts, parallel polarization. Band corresponds to 
signal from nitrogen standard. 
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A1' B3LYP/aug-cc-pVTZ EXPT
1 3089.6 2982a

2 3041.3 2909a

3 1553.0 1509
4 1118.3 1108
5 906.0 900

A2'
6 3093.9 i.a.
7 968.2 i.a.

E'
8 3098.7 2976
9 3035.9 2887
10 1503.2 1456
11 1256.7 1232
12 1115.7 1098
13 897.1 886
14 540.9 540

A1''
15 1003.7 i.a.

A2''
16 3084.1 2976
17 1250.7 1220
18 843.7 832

E''
19 1214.8 n.o.
20 1142.7 n.o.
21 1028.4 1006
22 773.3 770

Table 7: Calculated and observed frequencies (cm-1) for BCP. Mode 
numbering and IR transitions correspond to those reported by Wiberg et 
al.86

a deperturbed frequency (see appendices F and G) 
i.a.: Raman and IR inactive 
n.o.: not observed 

The vibrational frequencies are listed according to their symmetry blocks.

Modes 1-5 are the totally symmetric Raman active modes whose intensities were 

recorded in the above isotropic spectra.  The E' and E'' doubly degenerate modes 

are considered to be symmetric with respect to the x-z plane when the molecule is 

oriented with its principal symmetry axis along the z-axis, and one of the 
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methylene carbons extended out along the x-axis.  For the force-field analyses 

(see Appendices) modes 23-29 are the asymmetric degenerate partners to the E'

modes 8-14.  Similarly modes 30-33 are the asymmetric degenerate partners to 

the E'' modes 19-22. 
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Determination of Intensity Parameters 

Once the spectra have been recorded, intensity corrected, and integrated, 

the absolute intensity of the strongest band is determined by reference to the peak 

corresponding to the nitrogen internal standard.  This is done using the isotropic 

mean polarizability spectra since these are the type of intensity parameters sought.

When the absolute intensity of the strongest band has been established, the other 

peaks become known relative to it.

The trace scattering spectrum is composed only of contributions arising 

from totally symmetric modes (A1').  In a best-case scenario, the peaks will be

well separated and free from anharmonic resonant interactions and the integrated 

intensities can be assigned to the corresponding dimensionless normal modes.  A 

sign ambiguity exists, since these intensities are related to the squares of the 

intensity parameters.  Previously, the ambiguity has been resolved through 

numerical optimization of intensity data over a set of molecular isotopomers,

through which the character of the normal modes varies.63, 64  It has been found 

that polarizability calculations with at least a moderate level of theory will always

predict signs for the intensity parameters in agreement with these optimizations.

If other isotopic data are lacking, one may be guided by theory.  Because the 

isotopic sum rules are poorly obeyed for molecules with large anharmonicities, it 

may be preferable not to use isotopomers but rather an anharmonic force-field. 

Using the best available force-field, the L-matrix is used to transform these 

normal mode intensities into parameters with respect to internal coordinates.

Thus in this best case (no anharmonic resonances), using the L-matrix and the 

158



signs determined by theory, it is only necessary to solve a small, linear system of 

equations to obtain the desired internal coordinate intensity parameters.63, 64

The next level of complexity is encountered when the spectrum is 

disturbed by anharmonic resonances.  When there is only one, totally symmetric

fundamental mode in each region of the spectrum, the treatment of splitting due to 

resonances is still relatively straightforward.  This is true for ethane in which the

C-H stretching mode (A1g) is split into four bands.63  The first level of

approximation is to assign any trace scattering in the region to the fundamental.

This approximation neglects second derivatives of the polarizability that would

provide inherent intensity to the second-order transitions involved in the 

resonance.  Theoretical papers describing calculated Raman intensities often 

compare the results with experimental numbers obtained in this way without 

comment.87  Montero has published formulae derived from perturbation theory 

that may be used to correct intensities for one fundamental mode involved in 

weak or strong resonances.  These formulae require a cubic force field and a 

quadratic polarizability field.62, 88, 89  Often, as with ethane, the inherent intensity

of higher-order transitions is found to be small, indicating that much of the

recorded intensity should be attributed to the fundamental.  In either method, the 

L-matrix transformation to internal coordinates is performed as before. 

More complex resonance interactions require the complete diagonalization 

of a matrix describing the coupling.  This will be described in detail in Appendix

D.  In any case the goal is to distribute the recorded intensity into the fundamental

modes.  Assuming that this has been done (however simple or complicated it may
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have been) the next step is to transform the normal mode intensity parameters into

internal coordinates.  MathCad Sheet 2, below, shows the calculation of normal

mode intensity parameters using the nitrogen internal standard.
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MathCad Sheet 2: Normal mode intensity parameters using nitrogen 
standard
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Following through the calculation in Sheet 2, first the physical constants 

are defined.  Next the temperature, laser frequency, and the various transition 

frequencies are specified.  The expression for the cross-section is then listed.  This

is followed by the same expression explicitly containing the accepted absolute 

isotropic cross-section for nitrogen (40.8 10-36 m2).63, 64  A variable X2 has been 

inserted.  The cross-section used in this equation is that for nitrogen multiplied by 

the relative intensity of the band in question to that of nitrogen.  This is calculated

from the nitrogen reference spectrum where it was found that the largest band for 

BCP at 312000 counts was 8.872 times as strong as that of nitrogen (accounting 

for the differing partial pressures).  The solution for X corresponds to the intensity 

parameter.  In this example the intensity parameter for mode 4 (1107.8 cm-1) is 

computed.  The index of the vectors in Sheet 2 begins at 0.  Thus v3 does

correspond to 1107.8 cm-1.  This is where the sign ambiguity enters.  In 

accordance with the Raman intensity calculation the positive value was retained.

A discrepancy with the magnitude of the solution is immediately apparent

since the experimental values discussed previously with regards to the survey 

calculations are of the order of 10-30 Cm/V.  The result of 1.800 10-41 Cm2/V can 

easily be converted into a result for a normal mode with dimensions of length. 

This transformation is detailed in Appendix C and shown below in Sheet 3.  In 

this transformation the usual conversion factor for dimensionless normal modes to 

mass-weighted normal modes is used as in Appendix C.  The result is then

compensated by the reduced mass to produce normal mode coordinates with units 

of length only. 
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MathCad Sheet 3: Normal mode intensity parameters conversion to normal
mode coordinates with units of length. 

Thus the intensity parameter for normal mode 4 is obtained in the familiar

SI units of x10-30 Cm/V.  The relationship between the forces in millidynes, the 

reduced masses, and the vibrational frequencies is also shown.  The normal mode

intensity parameters for the other modes are obtained in precisely the same way.

The next step is to define five symmetry coordinates and their associated

internal coordinates.  This will include construction of an L-matrix.  This will be 

used for the subsequent transformation into internal coordinate intensity
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parameters, for the final comparison with those computed at various levels of

Figure 2

theory.

3: BCP with atom numbering for description of symmetry 
coordinates

Symmetry Coordinates 

The structure of BCP shown in Figure 23 allows five symmetry 

coordin

rC4H3 + rC 4H4 + rC 5H5 + rC 5H6]

rC3H1 rC3H2)
1/2] H1C3H2 + [(rC 4H3 rC4H4)

1/2] H3C4H4 +
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H1 H2

ates to be defined.

S1  = 2
-1/2·[rC1H7 + rC 2H8]

S2 = 6 -1/2·[rC3H1 + rC 3H2 +

S3 = 6
-1/2·[rC1C3 + rC 2C3 + rC 1C4 + rC 2C4 + rC 1C5 + rC 2C5]

S4 = rC 1C2

S5 = 3
-1/2{[(

        [(rC5H5 rC5H6)
1/2] H5C5H6}
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Just as the five totally symmetric normal modes are numbered as 1

through

artesian displacement

normal mode vectors for the five totally symmetric coordinates are analyzed to

5 in descending order of frequency, the symmetry coordinates are also 

numbered 1 through 5.  Although normal modes 1 and 2 will be shown to include 

large components of symmetry coordinates 1 and 2, no particular relationship 

should be assumed.  The other normal modes require significant contributions 

from all of the symmetry coordinates and thus will not be associated with specific

symmetry coordinates.  Symmetry coordinates 1 and 2 are simply the bridgehead 

and methylene C-H stretching motions, respectively.  Coordinate 3 is the C-C

stretching motion.  It is important to notice that the bridgehead-carbon-to-

bridgehead-carbon distance has its own coordinate (number 4). Thus coordinate 3

is effected by “breathing” out the methylene groups.  This motion extends the C-C

bonds while leaving coordinate 4 unchanged.   Similarly when coordinate 4 is 

effected, the methylene groups must “breathe in” to maintain the C-C distances 

for coordinate 3.  Coordinate 5 is much simpler than it appears.  It is really just

the change in methylene H-C-H angle, weighted by the methylene C-H bond 

length to provide dimensions which include length.  The conventional approach is 

to use the root of the product of the two lengths.  In this case the two lengths are 

the same anyway.  This coordinate is relatively unimportant since it is not one of

the desired intensity parameters.  Clearly these coordinate choices are not unique 

but they do span the D3h configuration-space as required.

Once the coordinates have been defined, the C
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determ

een in Sheet 4, Q1 through Q5 indicate the composition of the normal 

odes in terms of the symmetry coordinates.  Q1 can be seen to contain a large

atrix

for transformation of normal mode intensity parameters into symmetry coordinate

Q1

0.32879343

0.11929042

0.1174605

2.35937802

ine their composition in terms of the symmetry coordinates.  A unit 

normal-mode displacement corresponds to 1 angstrom.  The contribution from

symmetry coordinate 5 must be established from an infinitesimal motion (actually

10-8 angstroms) since this coordinate couples to coordinate 2, due to the length 

weighting.

As s
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MathCad Sheet 4: Normal modes 1-5 in basis of Symmetry coordinates 
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contribution from symmetry coordinate 1 (bridgehead C-H stretch). The L-m

Q2

0.99688417

0.03124262

0.04578931

3.74528831

0.32763122

Q3

0.24280639

0.06114833

0.16198168

90.05528586

0.01549893

Q4

0.0300736

0.06011383

0.73813337

0.81495723

26.97543206

Q5

0.01856254

0.01505446

0.39094933

0.24740131

7.15601052

L

1.03128745

0.32763122

0.01549893

0.0300736

0.01856254

0.32879343

0.99688417

0.24280639

0.06011383

0.01505446

0.11929042

0.03124262

0.06114833

0.73813337

0.39094933

0.1174605

0.04578931

0.16198168

0.81495723

0.24740131

2.35937802

3.74528831

90.05528586

26.97543206

7.15601052

165



parame

0.099923841

0.102594803

0.082734127

ters is also shown.  This is the transpose of the set of vectors Q1 through 

Q5.

Sheet 5 (shown below) shows the result of the transformation into

symmetry coordinate intensity parameters.

MathCad Sheet 5: Calculation of symmetry coordinate intensity parameters 
using L-matrix.
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Once the symmetry coordinate parameters have been obtained as in Sheet 

The intensity parameters computed in Sheet six correspond to the desired 

internal coordinates that make up symmetry coordinates 1 through 5.  Values of 

1.541 and 1.250 (x10-30 Cm/V) were obtained for the bridgehead and methylene

C-H stretches, respectively.

5, the final conversion into internal coordinate parameters is performed.

2.179133582

2

MathCad Sheet 6: Internal coordinate intensity parameters for BCP 

1.54088

3.062117763

6
1.2501

Internal coordinate intensity parameters

units of Cm/V x 10 -30
0.797031928 0.79703

3.245012904
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3

3
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3
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Results and Conclusions 

In this research, the trends in polarizability derivatives and the consequent

Raman scattering intensities have been studied for saturated hydrocarbons.  A 

number of structural factors were identified through a large set of survey 

calculations and the predicted trends were discussed in detail in the sections

entitled Survey calculations, and Survey calculations: Results and discussion.

Bicyclo-[1.1.1]-pentane was found to possess a number of structural

features and physical properties which together make it the most interesting 

molecule of this group.  The two bridgehead C-H bonds, aligned perfectly with 

the principal molecular axis, were predicted to have the largest polarizability

derivative of any hydrocarbon yet studied.65  The other C-H bond type was 

predicted to be quite ordinary in its derivative, thus providing a strong contrast. 

The non-bonded bridgehead C-C distance is the shortest known for an equilibrium

structure.72  The consequent electronic interactions across the cage are very strong

and have been noted in NMR spectra.90-92  This unusual structural arrangement

makes theoretical descriptions of the charge density very difficult.  Electron 

correlation effects take on an increased importance in this system.  The electronic 

wavefunction exhibits instabilities with respect to certain coordinate

displacements.  As a result this molecule offers excellent potential for insight into

the performance of various theoretical methods.

Due to a lack of accurate experimental Raman intensity data, the

development of new theoretical methods has lacked confirmation. While

theoretical methodologies continue to advance with regard to calculation of 
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Raman intensities,87 reliable experimental results are often lacking, or are 

accompanied by large uncertainties.  In other cases, only modest corrections have 

been applied to problems with anharmonic resonances.  Results are reported in 

various formats and force-field transformations are required in order to make

useful comparisons.  For example, theoretical calculations that included the

influence of dynamic polarizabilities on Raman intensities87 could not be verified 

due to uncertainties in the published experimental data.  From the data listed in

that paper, it is not clear that the dynamic polarizability correction is improving 

agreement with experiment; rather, the ag reement appears to be worsened for

some compounds.   The Gough lab’s most accurate results for ethane have been

transformed into the format and units reported by Van Caillie and Amos.87  As

can be seen in Table 8, any of the better functionals, along with the dynamic

correction, produce an excellent agreement with experiment.  These results 

provide an important affirmation of work in this direction.

C2H6 Static Raman scattering activitya Dynamic Raman scattering activitya Exptb Exptc

SCF B3LYP PBEO B97-1 SCF B3LYP PBEO B97-1 514.5 nm 514.5 nm

1 354.11 372.17 368.02 370.21 392.06 420.27 413.81 417.06 360.1 410.37

2 0.34 0.02 0.02 0.02 0.48 0.04 0.02 0.04 2.2 0.0

3 15.33 11.78 10.76 11.78 10.95 13.09 11.83 13.09 16.9 14.55

Table 8: Raman scattering activity of ethane (Å4 amu-1)
a From [87]
b From [ 93] 
c From [63],  and [Murphy, private communication]
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However, the experimental data for bicyclo-[1.1.1]-pentane indicate that 

the dynamic polarizability corrections (Table 9) are in the wrong direction for this 

molecule.

C5H8 SCFa B3LYPb B3LYP (TD)c CCSD(T)d EXPTe

Bridgehead C-H 1.386 1.698 1.826 1.593 1.541

Methylene C-H 1.124 1.347 1.436 1.282 1.250

C-C 1.218 1.104 1.170 --- 1.325

Table 9: Raman trace scattering parameters for bicyclo-[1.1.1]-pentane 
( r 10-30 Cm/V), from theory and experiment 
a HF/D95(d,p), reference 65. 
b B3LYP/aug-cc-pVTZ, (CADPAC6) [94] 
c TDDFT (CADPAC6) [94] 
d CCSD(T)/aug-cc-pVTZ, calculated for this work 
e Experimental values, this work 

This does not vilify the TDDFT method, since the static calculation at the 

same level of theory (B3LYP/aug-cc-pVTZ) shows systematic error.  With this

particular molecule and the B3LYP/aug-cc-pVTZ method, the C-H derivatives are 

overestimated and the C-C derivatives are underestimated while the opposite 

problem occurs with the HF/D95(d,p) method and the simple hydrocarbons. 

Perhaps if a dynamic correction were applied to a high-quality correlated 

calculation such as the coupled-cluster method, it would perform well in this case 

also.  However, the static calculations at the CCSD(T) level are already just

slightly above the experimental values and the dynamic correction usually 

increases the calculated derivatives.  In order to probe this question further some
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calculations were performed on methane. An experimental value exists for the

C-H stretch intensity parameter62 and due to the low number of electrons and high 

symmetry, high-level calculations may be done quickly.  Furthermore the bonding 

arrangement is precisely the preferred tetrahedral orientation, so the density 

should be well described at the triple-zeta basis set level.  All calculations were 

performed using the B3LYP/aug-cc-pVTZ geometry.  The results are shown in

Table 10.

Methane B3LYP B3LYP (TD) CCSD CCSD(T) EXPTa

C-H 1.264 1.338 1.261 1.230 1.26

Table 10: Intensity parameter for methane, Expt and aug-cc-pVTZ basis set 
a Reference [62] 

The experimental value is bracketed by the static B3LYP and CCSD(T) 

calculated values.  The CCSD value allows the importance of including a

perturbative treatment of triple excitations to be estimated.  For methane, the 

triple’s contribution is small and negative.  The worsened agreement with the

experimental value using CCSD(T) is not significant since both are within 

experimental error.  It is immediately apparent that the static B3LYP calculation

performs quite well for saturated hydrocarbons with ordinary charge densities. 

For methane the static calculation produces a result within experimental error.

The dynamic correction increases the value too much, leaving it above the margin

for experimental error.  For ethane, the static value is low (Table 8), while the

dynamic correction overshoots the experimental value.  However, the dynamic

value does remain closer to experiment.  The performance of various DFT 

methods with or without the dynamic correction has recently been reviewed by 
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Neugebauer et. al. in a comparison with some coupled cluster methods.56  Their

results included mostly very small systems such as ammonia and carbon dioxide. 

The saturated hydrocarbons, methane and ethane, were also included.  None of 

the systems considered in their work included unusual charge densities or strong 

correlation effects.  Their conclusion was that the hybrid-DFT methods

(especially B3LYP) worked quite well in predicting Raman intensities (most often 

better than with the dynamic correction).  They also found that, for the CCSD 

method, the results were more strongly dependent on the quality of the basis set. 

A poor quality basis set caused an overestimation of the polarizability derivatives 

that was further increased by a dynamic correction. 

My own results for saturated hydrocarbons indicate that the static B3LYP 

method can provide a reasonable estimate of intensity parameters.  In some cases 

the calculated values are very close to experimental (methane).  However, the 

method is still not entirely reliable and can produce values in considerable error. 

Although this might be expected for an unusual structure such as BCP, it could 

not be anticipated for simple systems such as ethane (see Table 8 above).  When

used with this method, the TDDFT dynamic correction also becomes

unpredictable, since in some systems the results are much worse (methane), while 

in others they are much improved (ethane).  With no way of knowing a priori

how the calculation will perform, the results of any hybrid-DFT calculation with 

or without the dynamic correction must be viewed with caution. 

Static calculations using the CCSD(T) method with a large basis set 

produce excellent values for all systems considered (when compared with data 
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obtained using a 514.5 nm laser line).  The calculated values were always within 

experimental error.  These calculations are considered to be too expensive to 

perform routinely.  It should be noted that in view of the limited experimental

data and the poor reliability of other methods, there are no routine Raman

intensity calculations.  Until all of the trends have been confirmed and 

understood, it is still critical to use benchmark level calculations.  Trends 

observed in systematically erroneous results will only impair understanding.

The use of the coupled-cluster method was particularly important for BCP 

since the experiment itself was complicated by resonances.  When the resonance

interaction matrix was constructed (see Appendix E), certain weak coupling 

mechanisms were neglected.  The strongest Fermi resonance matrix elements

were connected to mode 2.  Also, the Darling-Dennison constant was strongly 

dependent on the deperturbed frequency for mode 2.  The intensity assigned to 

mode 1 was less sensitive to the DD constant and the neglected resonances.  The 

fact that the CCSD(T) calculated values are very close to the experimental ones is 

solid evidence that the resonance treatment and other experimental procedures 

were appropriate.  The calculated intensity parameter for the bridgehead stretch 

(1.593) was only 3.25% higher than experi mental (1.541).  For the methylene 

stretching intensity parameter (derived largely from mode 2), the calculated value 

(1.282) was within 2.50% of experim ent (1.250).  These values are well within 

the tightest margin of experimental error accepted for these types of scattering

experiments (5%). 
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It is encouraging that although it took benchmark level calculations to 

describe the Raman intensities of BCP accurately, the general trends produced

with low-level calculations were confirmed.  The bridgehead stretch intensity

parameter is now the largest known for a saturated hydrocarbon.  The alignment

of the bridgehead C-H bonds with the molecular axis, and position at the ends of

three chains were found to be associated with large derivatives in the survey 

calculations.  These experimental results validate predictions made using the 

trends observed in the survey calculations.

In the following section on future research, some ideas will be presented

on how best to proceed from here.  Many researchers are interested in accurately 

modeling the properties of extended systems, especially those with -conjugation.

These are certainly beyond the reach of the coupled-cluster method.  The work 

presented in this thesis helps to shed light on the relative strengths of the more

affordable methods.
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Future Research 

Now that some of the predicted trends in the influences of structure and 

conformation on polarizability derivatives have been confirmed, the question is

how best to direct future research. Many researchers are interested in the 

electronic properties of extended systems, especially those with -conjugation.

Most systems of interest in the areas of non-linear optics and materials science are 

far too large to treat with the only method found to be consistently reliable, 

coupled-cluster.  Many research groups tend to employ DFT calculations to 

provide insight into their particular systems.  The dynamic corrections are often 

neglected due to computational expense.  Furthermore, problems have been 

identified with the TDDFT method for systems with -conjugation.56  Thus the 

majority of polarizability calculations carried out today on polymers, graphite

sheets and other extended systems are at the BLYP/6-31G or similar level.

The best way to use what has been learned in this study would be to probe 

the specific deficiencies of methods at this level.  Where highly accurate coupled-

cluster wavefunctions can be obtained, they should be dissected and compared

with those computed with lower levels of theory.  In this way, the origins of

specific problems can be identified.  As discussed in the first part of this thesis in

the section on SN2 reactivity, the theory of Atoms In Molecules19 is a useful tool 

for dissecting charge densities.  The Gough research group has published studies 

of AIM analysis of Raman intensities before.  The flow of charge from one 

atomic basin to another induced by applied fields can be obtained from calculated 

wavefunctions at various geometries.  Thus the polarizability derivatives can be 
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recovered in terms of the individual atomic contributions.  Some insights have 

been obtained in the past for straight-chain hydrocarbons up to n-pentane, as well 

as cyclohexane.  These analyses were performed on low-level non-correlated 

wavefunctions (D95**). 

The main difficulty, which arises when this method is applied to BCP, can 

actually be used to advantage.  The problem is that AIM analysis of any set of

calculated wavefunctions will dissect but ultimately recover only the behavior

predicted at that level.  If B3LYP/aug-cc-pVTZ is grossly overestimating the 

value for the C-H stretching derivative, then AIM analysis will provide the atomic

contributions to this overestimation.  BCP has an unusual charge density with a 

correspondingly great variation in the calculated Raman intensities over different 

levels of theory.  Thus if wavefunctions from a wide variety of theoretical 

methods were analyzed, the problems associated with each method could be 

found.  Using the highly accurate CCSD(T) wavefunctions as a guide, one might

determine, for example, that the BLYP method overestimates charge transfer from

carbon atoms.  This sort of direct feedback on method performance could be very 

useful for a researcher trying to understand why a material with promising

theoretical properties behaved slightly differently. 

I propose that a project in this area could consist of: 

i) Computation of wavefunctions for BCP at equilibrium and at 

various stretched geometries using the CCSD(T) method.

ii) Analysis of these wavefunctions for an accurate picture of the 

physical behavior (at least within the static approximation).
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iii) Computation of non-correlated SCF wavefunctions with 

different sets of polarization functions for the same structures 

iv) Computation of wavefunctions using one or two DFT methods

v) Computation of wavefunctions using lower coupled-cluster 

methods (CCS, CCSD)

A complete AIM analysis of these wavefunctions would provide a wealth

of information.  At the SCF level, the results would reveal just how the addition

of polarization functions helps to complete the polarization space.  For the DFT 

methods, the analysis could probe the detailed performance of some different 

functionals.  The idea of parameterizing functionals to reproduce the coupled-

cluster densities has already been put forward.  This could be extended to include 

the best reproduction of response properties.  Finally, the analysis of lower levels 

of the coupled-cluster method could dissect the contribution from excitations of 

each order.  The effect on the polarizability of gradually including more electron

correlation could be evaluated.  This study could also be extended to other small

systems that provoke a wide range in the calculated properties from different 

methods.  It could be used to study systems where the importance of electron 

correlation effects varies.  Appendix B discusses some specific ways to obtain

high-level wavefunctions more quickly. 
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Raman Intensities Appendix A: Modern Computation of Polarizability and 

Raman Intensities

The practical aspects of computation of polarizabilities and Raman

intensities were recently reviewed by the Gough research group for a special 

publication on these topics.70  C. Lupinetti surveyed and summarized the current 

literature, after which K.M. Gough and I wrote a manuscript detailing the current 

state of theoretical and experimental work in these areas.  Much of the focus of 

the article was on the methods used in our laboratory to record and treat 

experimental data.  This included higher-order force-field analyses, and inverse-

eigenvalue algorithms that I found necessary to account for anharmonic

resonances in my study of BCP.  These topics will be discussed in detail in the

other appendices.  Following is a summary of the ab initio computational methods

that are currently in use in the area of Raman intensity calculations as discussed in 

the manuscript.

The rapid developments in computational capability in the last decade

necessitate a reconsideration of the methodology employed in the past and the 

improvements that may be incorporated, given the size and type of molecules that

are commonly investigated.  Numerous basis sets have been developed for the

calculation of electronic properties and in particular, the molecular

polarizability.49-55  The accuracy of calculations can be further refined through 

incorporation of electron correlation, configuration interaction, nuclear 

polarizability, and dynamic rather than static systems.

178



Electronic properties are normally obtained from derivatives (analytical or 

finite difference) calculated at the optimized geometry; however, it has been

argued that experimental geometries yield better results.95, 96  A more rigorous

solution to this problem is to employ a higher-order anharmonic force field to 

obtain geometries within the more realistic anharmonic potential.97-99  The

position expectation values for the nuclei no longer coincide with the potential 

minimum and the molecular electronic properties are slightly altered.100-102  Of far

greater experimental importance are the extreme effects of various resonances that 

frequently complicate recorded spectra.  As will be discussed in appendices E-G, 

calculated higher-order force fields, as well as dipole and polarizability fields, 

yield corrections for resonant “intensity borrowing” from fundamental transitions

by higher-order transitions.98  This correction will be shown to be important for

the comparison of calculated intensities with those recorded experimentally.

There are many options for improving theoretical computations beyond the level 

employed in the past.  Choices include the size of the basis set, addition of diffuse

and/or polarization functions, inclusion of electron correlation, configuration 

interaction, vibrational responses to the applied field, and the choice between 

dynamic and static calculations. 

The importance of adding diffuse and/or polarization functions to basis 

sets is well known and has been explored in many studies.49-56  In general, large

bases with split valence and exponent optimization, diffuse functions, and

polarization functions are known to improve the accuracy of the results.  Diffuse

functions appear to be more important than polarization functions; however, if the 
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latter are optimized for the calculation of electronic properties, the results can be 

as good as those for much larger bases with diffuse functions.  For example, Van 

Caillie and Amos87 found that Sadlej’s polarization functions103 yielded results 

that were just as good for numerous small molecules as those from an augmented

basis set (aug-cc-pVTZ) whether calculated as SCF, or with Density Functional

Theory (DFT) [Generalized Gradient Approximation (GGA), such as B3LYP; or 

Local Density Approximation (LDA)].  Inclusion of electron correlation 

explicitly, through Moller-Plesset perturbation theory or implicitly, with DFT, is 

desirable, but can lead to unexpected anomalies.  With DFT, local field problems

have been identified and improved functionals are now being developed.104, 105

Configuration interaction may be important in some cases but may be

computationally too expensive for molecules with more than a few atoms.106, 107

Nuclear coordinates may enter at several levels.  The polarizability values

may be averaged over the zero-point nuclear displacements.  Additionally, nuclear 

displacements in the presence of an electric field, called vibrational relaxation108

or vibrational polarizability109, may make a significant contribution to the

polarizability in some cases, but the reported values were far from convergence 

with respect to basis set (since only 6-31G* was used).  The contribution to the 

total polarizability is not likely to exceed 2% for our molecules and the effect on 

the derivative is probably minimal.

In the survey studies,65,66 the D95(d,p) basis was used, as its consistency 

for molecular polarizabilities had been established.  However, the results typically

overestimate the derivative for a CC stretch and underestimate that for the CH
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stretch.  The B3LYP functionals, coupled with a large basis set (aug-cc-pVTZ), 

produce r values that are in excellent agreement with experiment for the CH 

and CC stretching modes of propane (Table A1).

C3H8 SCFa B3LYPb EXPTc

In-Plane C-H 1.181 1.401 1.438

Out-of-Plane C-H 1.053 1.240 1.252

Methylene C-H 1.126 1.329 1.366

C-C 1.329 1.186 1.212

C6H12

Equatorial C-H 1.259 1.454 1.33(F)d

Axial C-H 1.021 1.222 1.17(F)d

C-C 1.217 1.110 1.03(F)d

Table A1:  Raman trace scattering parameters for propane, and cyclohexane 
( r 10-30 Cm/V), from theory and experiment. 
a HF/D95(d,p), reference 65. 
b B3LYP/aug-cc-pVTZ, (CADPAC6) [94], calculated for this work 
c Reference 64. 
d Reference 110.  (F) Strongly affected by Fermi resonances (see discussion) 

The B3LYP results for cyclohexane are also much improved over the

HF/D95(d,p), but agreement with experiment is less good.  The bands in 

cyclohexane are strongly perturbed by Fermi resonance and the isotopic sum rules

are not obeyed well.  To resolve this problem, it will be necessary to employ the

higher order force field methods described above.  Overall, the derivative for the 

CH stretch is increased by about 18-20%, while that for the CC is lowered by 
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about 10%, compared with the results from the HF method with the smaller basis 

set.

Possible improvements to the theoretical methods cover a range of 

possibilities.  For the computation of polarizability and polarizability derivatives,

some considerations are more important than others.  Clearly, large basis sets with 

diffuse and polarization functions should always be used, since the improvements

are systematic and do not simply result in a scalable increase in property values.

We have found that for most small to medium molecules, the aug-cc-pVTZ basis 

set provides excellent results.  Furthermore, basis set tests, up to aug-cc-pV5Z on 

small, saturated hydrocarbons, have shown that the vibrational eigenvectors and 

Raman intensities are essentially converged with respect to basis set at the triple

zeta level.

The dynamic correction is an exciting development that appears 

consistently to increase the static values by a few percent.  This often produces 

accuracy within experimental error, but in some instances, worsens agreement

with experiment.  This depends on the system and the method (see Results and 

Conclusions).  Also, this additional correction comes at great computational

expense at this time.  For all but small test cases, given the predictable increase, it 

seems reasonable to accept that the static values may be slightly low.  It would 

certainly not be practical to employ this method for some of the more extended 

systems (such as conducting polymers) currently of interest.  Also it should only 

be applied when the method used is already producing a good description of the 

static field properties.

182



Vibrational relaxation merits some investigation.  While we have not 

found it necessary to include this effect in our calculations to date, there is 

certainly evidence that it could be important in some cases.  Since geometry

optimizations and nuclear forces can now be routinely computed in the presence 

of an applied field (e.g.: Gaussian 200370), it would be useful to perform survey 

calculations to find a molecule exhibiting anomalously large relaxation effects, as 

a candidate for experimental confirmation.

In terms of the level of theory appropriate for Raman intensity 

calculations, most systems of interest to the Gough group are best suited to DFT 

calculations at the GGA level.  While CCSD(T) and similar methods are 

important for benchmarking and comparison purposes for functional 

development, the types of systems in which the most unusual electronic behaviors 

are provoked (anomalous intensities, non-linearities, etc.) are simply too large to 

treat this way.

From the experimental perspective, it has become important to use 

theoretical methods more extensively for the treatment of recorded spectra.  The 

use of isotopomers has been valuable63,64 but anharmonicities limit the 

transferability of intensity parameters and accuracy is reduced when isotope sum 

rules are poorly obeyed.  Sign ambiguities and anharmonic resonances can often 

be resolved through theory.  The next level of accuracy demands that higher-order 

force field methods be employed.  Results for all of the systems considered in this 

thesis, including saturated and unsaturated long chain hydrocarbons, as well as 

others such as those for extended sheets (e.g. the PAH’s), exhibit some
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remarkably similar trends.  Bond length alternation along the system,

accompanied by non-linear increases in polarizability derivatives towards the 

central bonds, finally reaching a linear asymptote, are common themes.  Another 

consistent observation is an “end effect”, where stretches of bonds at the end of a 

chain or at the edge of a sheet produce unusual polarizability derivative values.  A 

wide range of theoretical methods has predicted these effects.  The general trends 

are observed at the HF level with small basis sets (HF/6-31G*), and are 

maintained at various higher levels (e.g.: B3LYP/aug-cc-pVTZ).  A combined

theoretical and experimental probe into the similarities between apparently

categorically different systems is required.  Understanding the mechanisms

behind the non-linear regime and the end effect is the current challenge. 
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Raman Intensities Appendix B: Specific Methods for Numerical 

Polarizability Calculations

The previous appendix dealt with the types of methods commonly used for 

calculation of the polarizabilities of molecules.  Most of these methods employ an 

analytical calculation of vectors using the Coupled-Perturbed Hartree-Fock 

(CPHF) method.  This approach is very convenient for most methods and is the

default method in the Gaussian software.  However, this method cannot be 

applied to all levels of theory, most notably the coupled-cluster method.  The

polarizability for the coupled-cluster methods is actually computed numerically as 

an energy or dipole derivative with respect to an applied field.

f

f

E

f
fE

2

2

2
2

      (B1)

Expression (B1) as given by Bauschlicher is correct to second order.55  If a small

field f is applied (0.001 a.u.), the neglect of higher-order polarizabilities does not 

significantly affect the results.  With the use of small fields the requirement for

numerical accuracy is strict.  In his work, Bauschlicher used these expressions to 

compute molecular polarizabilities. His SCF convergence criteria were 10-8 (this

is now the default in Gaussian).  For calculation of polarizabilities usable for

computation of derivatives of the polarizability, a reasonable convergence is 10-11.

This necessitates only a few more SCF cycles which, for a coupled-cluster

calculation, is a very small percentage of the total calculation.
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When only the polarizability tensor values and not the perturbed wavefunctions

are required, analysis of a system such as BCP can be done in three calculations. 

This simplification is possible firstly because all of the off-diagonal elements are 

zero.  This means that only the xx, yy, and zz components are needed. Secondly,

proper calculation of the yy component, which requires averaging of the results 

obtained for applied fields in each direction, is unnecessary, since the xx 

component is determined from one calculation (the other is equivalent by 

symmetry) and due to the overall symmetry of the molecule, the xx and yy 

components are equal.  Thus, after only the xx has been computed, both are 

known.  For the zz component, the positive and negative directions are related by 

symmetry, so this requires only one more calculation.  Sheet B1 shows how the

polarizabilities were obtained from energies for BCP at equilibrium (EQ) and at 

bridgehead (bh) and methylene (me) C-H contracted geometries.
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MathCad Sheet B1: Numerical polarizability calculations for BCP using 
CCSD(T) energies. 
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As shown in Sheet B1, the energies for a particular geometry are lowered

in the presence of an applied field.  The four matrix elements correspond to no 

applied field, and fields applied in the x, y, and z-directions.  The field induces a 

dipole moment in the molecule that is opposite to the field direction, causing a net 

stabilizing interaction with the field.  The extent to which the energy is lowered, 

also manifested in the magnitude of the induced dipole, is a measure of the 

polarizability.  The importance of well-converged energies is obvious when it is 

realized that the eighth decimal place in the energies determines the second 

decimal place in the polarizabilities.  The application of larger fields would

reduce this sensitivity but would raise the significance of neglected higher-order

polarizabilities.

Calculation of the polarizability at each of the geometries required a 

minimum of three calculations (no field, x-field, and z-field).  The first 

calculation with no applied field can be completed rather quickly.  As stated

previously, the CCSD(T) method scales as N7 with the number of electrons.  This 

is reduced by symmetry.  With such poor scaling, any symmetry that can be used 

results in huge time saving.  An energy calculation for BCP using the full D3h

symmetry tends to run about 5 times more quickly than one with no symmetry (1 

day as opposed to 5 days, using the HPC facility at the U of M).

With an applied field, the symmetry of the wavefunction is generally 

reduced.  This could have meant that most of the calculations would take close to 

5 days each.  An important consideration is that of residual symmetry.  This is a 

lowering but not a complete loss of symmetry.  If the applied field causes a 
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lowering of symmetry to that of an Abelian sub-group of the original symmetry,

then the Gaussian program will use that symmetry.  For example, when a y-field

is applied to BCP, reducing the D3h symmetry to C2V which is the highest Abelian

sub-group of D3h, the calculation will proceed using C2V symmetry.  This is still 

much faster than if no symmetry were used.  However, when a z-field is applied 

to BCP, the symmetry is lowered to C3V.  This is a higher symmetry than C2V, yet 

it is not a sub-group of D3h.  Thus the calculation will proceed without using any

symmetry and be very time consuming.  Also, the wavefunction is not constrained 

to the true symmetry of the system.

Fortunately both problems could be easily overcome by the same solution,

described here.  Consider the z-field perturbation to BCP.  The true symmetry of 

the system becomes C3V.  Keeping in mind that finite stretches of 0.01 Angstrom 

are being applied in computing the polarizability derivatives, a very small

geometric perturbation can be applied.  When one of the bridgehead C-H bonds is 

extended in a positive stretch by 10-6 Angstroms, the symmetry is reduced to C3V.

When the z-field is applied, the wavefunction maintains its C3V symmetry and the 

calculation proceeds using that symmetry.

The geometric perturbation is four-orders of magnitude smaller than the

effects being explored. Furthermore the use of a positive stretch can be shown to 

reduce this even more.  As seen in Sheet B1, a lower energy is manifested as an 

increased polarizability.  By stretching the C-H bond slightly from equilibrium,

the energy is raised, reducing the calculated polarizability.  However, the positive

stretch of the bridgehead bond electronically increases the polarizability.  Thus 
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stretching the bond has two very small effects, one mechanically raising the 

energy (seen as a decrease in polarizability), and the other electronically

increasing the polarizability.  Thus the two effects cancel even within the order in

which they occur, which is four orders lower than the effects being investigated.

This approach can often be adapted to any system of interest providing that there 

is some symmetry.

Another approach that may be used involves replacing one atom by a 

different isotope in the calculation.  This will lower the symmetry without 

adjusting the geometry at all.  Of course, this is not appropriate if the masses are 

important such as with a frequency calculation.
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Raman Intensities Appendix C: Matrix Methods for Quadratic Force-Fields

Bicyclo-[1.1.1]-pentane has 13 atoms and therefore 39 degrees of 

freedom, 33 of those vibrational.  This means that the quadratic force-constant 

matrices for this molecule are 39-dimensional.  After some analysis this can be

reduced to 33.  The eigenvectors corresponding to the 6 zero-eigenvalues of the

mass-weighted force-field are related to rotations and translations.  These can

therefore be discarded during a vibrational analysis.  The methods and concepts 

are completely general although some complexities are introduced by degenerate 

modes.  Because of the generality of the concepts of dimensionless normal modes

and force-constants, some of these concepts will be illustrated using the water

molecule as an example, for simplicity.

The dimensionless normal modes of a molecule are derived from the 

eigenvectors of the mass-weighted force-field.69  In general, the force-field may

not be uniquely determined from the transition energies (spectrum) and thus must

be computed.  For the purposes of Raman intensity analysis the most accurate 

possible eigenvectors are required.  Thus the highest affordable level of electronic 

structure theory should be chosen.  For the BCP project, all of the force-fields 

were calculated at the B3LYP/aug-cc-pVTZ level.  Higher basis sets were also 

tested (up to quintuple zeta) but it was found that the eigenvectors had converged 

with respect to basis set at the triple zeta level.  Some researchers have scaled the 

molecular force-field to produce agreement with all of the experimental

transitions.  This is generally not recommended if there are resonances present 

and a higher-order force-field is to be employed.97  It may be that the best 
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affordable level of theory is predicting the unperturbed frequencies quite well, and 

that scaling is worsening the eigenvectors in an attempt to account for the

resonances.  A good test of the theoretical method is its prediction for transition 

frequencies that are clearly not perturbed by resonances.  If the agreement is good 

for those modes and slightly off in a sensible fashion for the perturbed modes, this 

is an acceptable level of theory.

A brief description of the units and conventions for force-field analysis 

will be followed by a sample analysis using water.  This example is convenient

since the relevant matrices can be displayed explicitly.  Previously, where the 

derivation of the intensity parameters for BCP was illustrated, the composition of

the 5 totally symmetric modes of BCP was described.  The full 39-dimensional 

treatment of BCP is precisely analogous to the 9-dimensional water analysis 

shown here. 

A frequency analysis for deriving the harmonic force-field is generally 

performed at a minimum-energy geometry. This means that the linear forces are 

essentially zero.  Thus the force-constant matrix in the normal mode basis will be 

diagonal.  However, a frequency analysis performed with most commercial 

software such as Gaussian, yields a matrix of dimension 3N corresponding to the 

Cartesian forces.  The quadratic force-constants obtained from a frequency 

analysis are in units of Hartrees per (Bohr)2.  This is equivalent to J/m2 in SI units.

Once they have been mass-weighted this becomes J/m2Kg.  The normal modes

obtained as eigenvectors of the mass-weighted force-field have dimensions of

kg1/2·m.  The eigenvalues can be converted into wavenumbers and correspond to 
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the transition energies.  Six of the eigenvalues should be very close to zero, 

corresponding to the translations and rotations.  The six associated eigenvectors 

describe these motions.  The translations are easily identified since the center of 

mass of the molecule is displaced with respect to theses coordinates.

The eigenvectors of the non-mass-weighted force-field have dimension of 

meters and can be used to create displacements along a normal mode coordinate

in Cartesian coordinates.  Once the normal coordinates are made dimensionless,

the force-constant simply has units of energy.  These can be expressed in 

wavenumbers and for the quadratic constants they are equal to the transition

energies.  This formulation is very convenient when the force-field is extended to 

higher orders.  Due to the dimensionless coordinates, the cubic and quartic 

constants are all expressible in wavenumbers.  This will be shown in Appendix D.

Below is the quadratic force-field analysis for water.  In Sheet C1, the 

dimension of the problem is defined, followed by the necessary physical 

constants.  Next the nuclear positions X are defined followed by the nuclear 

masses M.  The Cartesian force constants are entered as a column vector (not 

shown).  These are then stacked to fill the lower diagonal of a 9x9 matrix.  This is 

then symmetrized and displayed to 3 decimal places as EQ.  This reflects that

these constants are for the equilibrium geometry X.  Planck’s constant is defined 

as h1. 

In Sheet C2 the force constant matrix is mass-weighted and the

eigenvalues are obtained and sorted in ascending order.  Due to the low tolerances 

for the SCF and the CPHF vectors used to compute this sample force-field, the
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first 6 eigenvalues are not precisely zero. The fineness of the integration grid for

hybrid-DFT methods also contributes to this source of error.  This is independent 

of the level of theory and simply reflects the convergence criteria.  The CPHF 

vectors and the SCF for bicyclo-[1.1.1]-pentane were both computed with 

convergences of 10-11.  Also a “veryfine” grid was used for the DFT integrations.

This results in much improved eigenvalues.  A poor-quality force-constant matrix

manifests itself in poor quality eigenvectors.  The center of mass of the molecule 

will move slightly with a poor quality vibrational eigenvector.  Thus the

vibrational coordinates are said to be contaminated with rotations and translations.
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respectively

MathCad Sheet C1: Harmonic force-field for water
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MathCad Sheet C2: Calculation of eigenvectors and vibrational frequencies 
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In Sheet C2 the eigenvectors of the mass-weighted force-field were

obtained and then normalized and renamed.  Thus the p1’s are the mass-weighted

eigenvectors.  The largest eigenvalue supposed to be zero was 37 cm-1.  The six 

eigenvalues, which should have been zero, are set to zero when  is defined as the 

set of vibrational frequencies.

In Sheet C3 the mass-weighting is removed to create a set of Cartesian 

displacement coordinates named as the p’s.  They are then used to compute the 

center of mass displacement with each coordinate.  The last three, which are close

to zero, represent the vibrational coordinates.  When stricter convergence criteria 

were used for BCP, the movements of the center of mass for the vibrational

coordinates were zero to at least 9 decimal places.  The translational coordinates

are easily distinguished by their large values.  The reduced mass of each 

coordinate is also computed and will become significant in the cubic and quartic 

force-field analyses.  Next the Cartesian displacement vectors p7 through p9 are 

displayed.  An example is then shown of the calculation of the geometry for a 

normal-mode displaced structure.  In this example, since the vector is normalized

and carries units of Angstroms, the computed geometry RR corresponds to a net

displacement of 0.01 .
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MathCad Sheet C3: Calculation of reduced masses and a normal-mode 
displaced geometry for water
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Sheet C3 shows how normal coordinates, Q, are related to the Cartesian 

displacements x.  These coordinates can be formally related as: 

k
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k
Mk

n
l

n
Q

n
Qn

k
l

k
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k
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2
1

2
1

      (C1-C2)

These were used to obtain the Cartesian displacements in sheet C3.  The

relationships between dimensionless normal coordinates q, and normal

coordinates Q are: 

r
q

h

r
c

r
Q

r
Q

h

r
c

r
q

2/124

2/124

     (C3-C4)

In Sheet C4, the factor to convert to dimensionless normal mode coordinates is 

applied.  The force constants in wavenumbers corresponding to the dimensionless

normal modes are obtained.  The left and right operation by the eigenvectors of 

the mass-weighted force-field provides the eigenvalue in Hartrees, but with the 

units of length (squared) and mass still included.  Division by hc (Plancks 

constant and the speed of light c) converts the energy from Hartrees into 

wavenumbers (cm-1).  Next the factors under the square-roots are applied.  These

are the conventional conversion factors between normal-mode coordinates, and 

dimensionless normal mode coordinates.
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MathCad Sheet C4: Harmonic force-constants in dimensionless normal 
coordinates for water

Each of the three non-zero force constants is computed in these

dimensionless coordinates, with energy units of wavenumbers.  The values should 

be recognized as the original transition energies.  Some off-diagonal elements are 
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also computed to illustrate that these are indeed zero (this was an equilibrium

geometry).
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Raman Intensities Appendix D: Anharmonic Force-Fields 

The dimensionless normal coordinates q, defined in Appendix C, form a

convenient basis in which to express the molecular potential.  As discussed in 

Appendix C, the linear terms vanish for an equilibrium geometry.  Previously the 

series was truncated at the second-order or harmonic level.  Extension of this

series allows for a more accurate description of the potential, especially when 

overtones, which have greater amplitudes, are considered.  The method can be

extended to any order, although truncation at the fourth to sixth order is most

common.  This approach should be used with caution for systems exhibiting large 

amplitude torsional motions, although it should be noted that excellent results 

have been obtained for methanol.111  There are no such difficulties with BCP 

which is quite rigid.  The molecular potential can be expressed in the normal

mode basis as: 
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The factors of 1/2, 1/6 and 1/24 are used to account for the unrestricted 

summations.  This series, truncated at the fourth-order, was used for the

calculations described in this thesis.  When restricted summations are used, the 

constants themselves must be weighted depending on the number of possible 

permutations of the indices.  This weighting is less convenient to keep track of for

subsequent analyses of resonances for which matrix elements including these 

constants are evaluated.
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Some symmetry restrictions apply to the cubic and quartic constants .

The direct product of the symmetries of the labels r,s,t,(u) must transform as the

totally symmetric representation A1', otherwise the constant is strictly zero.  Also 

any constant with indices that are a permutation of the indices of another constant 

is equal to that other constant.  This follows from consideration of the potential 

surface as a smooth and continuous function, for which the order of multiple

derivatives is unimportant.

BCP is a symmetric top molecule with D3h symmetry.  As such, the

complications of degenerate modes and the associated possibility of vibrational 

angular momenta arise.  When quanta of energy are in the degenerate modes, the

classical vibrational trajectory is in general an ellipse.  This is similar to how 

circularly and elliptically polarized light are defined using two orthogonal 

polarization vectors.  Thus the vibrational states may possess angular momentum.

Complicated summations are generally performed using software. 

SPECTRO 3.0 is a software package that was first developed by Dr. Handy’s 

research group in 1990.112  Dr. Handy was kind enough to provide a free copy of 

his SPECTRO program for the analyses of BCP.  The expression for the total 

vibrational energy shown below is written according to the conventions used by 

the Handy group. The total vibrational energy of a symmetric top molecule 

computed with a quartic force-field can be expressed as: 
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In the above expression s labels the non-degenerate modes, while t labels the 

degenerate ones.  The various anharmonic constants x and g are computed from 

the quartic force-field.

It is important to note that the software and the above expression are used 

to compute the anharmonic energies for the various vibrational states.  Due to the 

inclusion of both mechanical and electrical anharmonicities the intensities of

combination and overtone bands may also be calculated.  However, in this thesis

the purpose of computing an anharmonic force-field was not to calculate the 

energies of particular vibrational states but rather to resolve the resonances which

were found to perturb the C-H stretching region in the Raman spectra.  While the 

SPECTRO program will compute resonance interactions between two states,

more complicated interactions must be diagonalized by hand.  The matrix

elements required for evaluation of resonant interactions are derived from the

cubic and quartic force constants.  Due to the extremely high number of possible 

resonance interactions for BCP, I decided to compute only the cubic and quartic 

constants necessary to resolve the C-H resonant polyad, rather than attempt to

treat the complete set of molecular vibrational states.  This approach focuses on
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the goal of distributing the integrated intensity from the Raman spectra into the 

fundamental modes.  Once the eigenvectors for the C-H polyad were obtained, the 

desired intensity parameters could be computed.

The computation of the cubic and quartic force constants as derivatives of 

the energy with respect to the normal mode coordinates is generally done 

numerically.  Analytic second derivatives are commonly available for many levels 

of theory in the standard electronic structure software packages such as Gaussian.

Methods and algorithms have also been established for analytic third and higher 

derivatives.  These methods are computationally expensive and are not commonly

available.  The most common approach is to compute analytic second derivatives 

at various normal mode displaced geometries ( i).  Numerical estimators provide

the cubic and quartic constants from the changes in the analytic second-order

constants.  The numerical scheme is as follows:100, 102 
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Thus, the changes in the second-order constants Fjk, induced by a displacement

along normal mode i, provide the cubic constants Fijk.  The numerical scheme for

the quartic constants produces only the semi-diagonal terms.  These are the only 

ones required for analysis of resonance interactions to this order.112  Due to the 

small displacement in the denominator (typically 0.01 Angstroms), the quartic 
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constants are generally less numerically stable than the cubic.  This necessitates

strict convergence criteria for the SCF and CPHF vectors (10-11).  Furthermore,

the various permutations of the indices can all be computed and averaged.  The 

variation among the constants prior to averaging provides a measure of the 

numerical accuracy of the constants.  Finally, based on the direct-product of the 

symmetry representations of the mode labels, the constants that should be zero, 

based on symmetry, can be set to zero. This provides another measure of the 

numerical accuracy.  The variations in cubic constants with permuted indices for 

BCP were of the order of 0.02 cm-1.  In view of the numerical scheme, it is not 

surprising that the variations in the quartic constants were about 2 cm-1.

A sample calculation is shown below, again using water as the example.

Since Gaussian03113 can perform this analysis for some simple systems, the 

results will be compared.

Constants r cm-1 Constants rstu cm-1

1 3415.3 1  1  1  1 762.4

2 1692.7 2  1  1  1 -141.2

3 3555.4 2  2  1  1 -240.3

Constants rst
2  2  2  1 144.2

1  1  1 -1680.7 2  2  2  2 -166.5

2  1  1 120.2 3  3  1  1 745.9

2  2  1 197.5 3  3  2  1 -186.4

2  2  2 -229.4 3  3  2  2 -267.5

3  3  1 -1642.3 3  3  3  3 748.9

3  3  2 370.1

Table D1: Output from Gaussian03 of quartic force-field in dimensionless 
normal coordinates for water at B3LYP/3-21G.
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To demonstrate the method, this calculation was performed with a very small

basis set for efficiency.  While not physically accurate, this allows the procedure 

to be illustrated.  Below are shown the MathCad sheets used to compute these

same constants from quadratic force-constants computed at normal mode

displaced (0.01 Angstrom) geometries.
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H
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AMU h1 c
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MathCad Sheet D1: Calculation of quadratic force constants Fii with
conversion to dimensionless coordinates. 
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MathCad Sheet D2: Calculation of some cubic force constants Fijk with
conversion to dimensionless coordinates. 
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The quadratic constants shown in Sheet D1 agree fully with those from the 

Gaussian output.  This is because these forces were computed analytically for the 

equilibrium geometry.  The normal mode vectors operate on the Cartesian force 

matrix to produce the normal mode force constant.  This is then converted into 

units of wavenumbers and scaled to produce the value for the dimensionless

coordinates.  The cubic constants are computed in much the same way, except

that the difference between Cartesian force-fields computed at normal mode

displaced geometries is used.  These values are then divided by the displacement

amount as per the numerical scheme.  The mode was displaced in units of length; 

therefore the final scaling factor for this mode, used for conversion into 

dimensionless coordinates, is compensated by the reduced mass.  Due to the 

default convergence criteria used for these calculations, the agreement between 

the manual displacements and those performed with Gaussian is to within about 2 

cm-1.  This is due to the use of different step sizes rather than variation between 

constants with permuted indices.  To demonstrate the accuracy obtained with the 

default convergence criteria, two elements with permuted indices, that are 

required by symmetry to be zero, are calculated.
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MathCad Sheet D3: Calculation of some cubic force constants with permuted 
indices (zero by symmetry). 
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As seen in Sheet D3, the agreement between permuted indices and the

observation of the symmetry rules is quite good.  Therefore most of the difference 

between these values and those computed automatically through Gaussian can be 

assigned to the different step sizes.  The quartic constants are computed in a 

similar fashion and are shown in Sheet D4. 
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MathCad Sheet D4: Calculation of some quartic force constants Fijkl with
conversion to dimensionless coordinates. 

As seen in Sheet D4, the scaling factor for the displacement mode enters twice

(squared term), and now the energy is divided by the square of the displacement

distance as in the numerical scheme. These numbers and those computed with 

Gaussian, which used different step sizes, agree to within about 4 cm-1.  Elements

that are supposed to vanish by symmetry are now as large as 0.1 cm-1.

The calculation of the cubic and quartic constants for BCP was performed 

in exactly the same way.  The only complication was the initial definition of the 

normal coordinates, which required some adjustment when describing the 

degenerate vibrations. When first produced in MathCad, the orthogonal 

eigenvectors were not constructed according to the conventions of spectroscopy. 

Linear combinations of eigenvectors were used to form normal mode coordinates 

for each of the 11 pairs that were symmetric and anti-symmetric with respect to 

208



the x-z plane.  These are the modes defined at the end of the section on Raman

spectra.  Once these conventional normal mode eigenvectors were constructed, 

the method could proceed as in the water example.  The displaced geometries

were calculated according to these vectors, which were then used as operators.  In

this way, any necessary cubic and quartic constants could be obtained.

Construction of these symmetrized modes can be automated in SPECTRO.  In the 

next appendix (Appendix E) some of the possible resonance interactions will be

considered and matrix elements will be computed.  The off-diagonal elements of 

the interaction matrix will be computed in terms of the anharmonic force

constants.

209



Raman Intensities Appendix E: Anharmonic Resonances 

In order to set up a matrix describing the resonance interactions in BCP

for the C-H stretching polyad, the states which are involved must be determined.

This region (2800-3000 cm-1) contains many possible states.

BCP parallel scattering

Mean polarizability scattering
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Figure E1: Isotropic Raman spectrum for the C-H stretching region. Figure 
is reproduced from section of Raman spectra (Figure 18).

Fortunately, the fact that the spectrum under consideration is that of the 

mean polarizability scattering allows for some simplification.  Only states with a

totally symmetric symmetry representation are allowed intensity in this spectrum.

Only two fundamental transitions with this symmetry appear in the region.  These

are the expected bridgehead and methylene C-H stretching modes.  However, five 

peaks are recorded in the isotropic spectrum.  Wiberg et. al. published a harmonic

force-field analysis of BCP in 1992.86  The frequencies and their assignments are

listed in Table E1. 

210



Assigned Statea Symmetrya Observed Freqa This Study

1 A1' 2978 2979.6

2 A1' 2886 2887.6

2 3 A1' 3020 3022.5

(3+10) E' 2952 2954.5

? ? 2926 2928.6

Table E1: Observed states in C-H stretching region. 
a Wiberg et. al. (1992) reference 86

The assignments by the Wiberg group were made in 1992 without the 

benefit of an isotropic Raman spectrum or an anharmonic force-field.  Thus no 

attempt was made to account for the resonance interactions.  Although the 

combination band (3+10) would be expected to lie in this region, it is of the 

wrong symmetry to appear in the isotropic spectrum.  The overtone at 3020 cm-1

was identified as 2 1 in their manuscript, although this is probably a 

typographical error.  It seems reasonable that the authors had identified it as 2 3,

since the fundamental 3 appears at 1509 cm-1, while 1 occurs at 2978 cm-1.

Otherwise the observed frequencies are in good agreement, given that both groups 

report approximately 1 wavenumber resolution. 

Based on the isotropic spectra that were obtained in the work described in 

this thesis, and my quartic force-field, it was determined that these modes should 

be reassigned.  Considering both one and two quantum transitions, and coupling

mechanisms including Fermi (type I and II), Darling-Dennison as well as 
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rotational and vibrational l-doubling, a list of transitions that might appear in this 

region was created.114-120  The states and their symmetries are listed in Table E2.      

  

 

 

 

 

 

 

Table E2: States, symmetries and couplings for BCP in C-H stretching 
region. F, D-D denote Fermi and Darling-Dennison resonances 
 

As seen in Table E2, states υ1, υ2, 2υ3, and 2υ100 all have the totally 

symmetric A1' symmetry representation.  The fundamental mode υ10 (E') appears 

at 1459 cm-1.  The overtone 2υ10 is split into three states based on the allowed 

vibrational angular momenta (0, ±2).  The state 2υ100 is of A1' symmetry, while 

states 2υ10±2 are of E' symmetry.  The Fermi and Darling-Dennison resonances 

connect υ1 and υ2 with the other A1' states, but provide no mechanism for 

coupling to the E' states.  There is a weak coupling via rotational l-doubling 

between the 2υ100 state and the 2υ10±2 states.  This is the only coupling between 

the states of the two different symmetries.   

For the states of E' symmetry, there are possible Darling-Dennison 

resonances between the 2υ10±2 states and the υ(3+10)±1 state.  The υ(3+10)±1 state 

can in turn couple to the nearby E' states υ8 and υ9 via Fermi and vibrational l-

doubling mechanisms.  There are no direct couplings between 2υ10±2 and υ8 or 
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9 as the Fermi resonance matrix elements will be seen to vanish.  Thus four of 

the five peaks in the isotropic spectrum are directly explained by the states of A1'

symmetry.  These are the peaks at 3022, 2980, 2929, and 2888 wavenumbers.

The fifth peak at 2955 can be assigned as the 2 10±2 states coupled to the 2 100

state and enhanced through coupling to the (3+10)±1 state and through that, 

indirectly to 8 and 9.  Thus through a cascade of resonances, the eigenvector for 

this state (2954 cm-1) could be seen to contain some of the basis-states of A1'

symmetry.

It was decided to treat only the resonances between the four states of A1'

symmetry, and neglect the fifth weak transition.  This overlooks only a small

amount of integrated intensity while reducing the size of the resonance interaction 

matrix from eight-dimensions to four. Also the weak coupling mechanisms such 

as rotational and vibrational l-doubling are more difficult to compute accurately. 

Furthermore, the subsequent implementation of an inverse-eigenvalue algorithm

(Appendix F) is greatly simplified, since the number of possible solutions is 

reduced from 40320 to 24. 

Fermi and Darling-Dennison Resonance Matrix Elements 

As seen in Table E2, states 1 and 2 can couple to states 2 3 and 2 100

through Fermi resonance mechanisms.  States 2 3 and 2 100 are also coupled to 

each other via a Darling-Dennison mechanism.  Thus the 4-dimensional

resonance interaction matrix required a total of five off-diagonal elements; 4 

Fermi type I, and one Darling-Dennison resonance constant.  The possible Fermi
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interactions for a D6h point group have been published118b and also apply to BCP

(D3h).  The applicable interactions are as follows:

Interaction      Vibrational A.M.   Matrix Element 
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nnnnnn
n

v
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(E1-E2)

In the above expressions, the indices n and t label the non-degenerate and 

degenerate modes, respectively.  The first expression applies to the interactions of

1 and 2 with 2 3.  Thus the cubic constants 331 and 332 are used.  The second 

expression describes the interactions of 1 and 2 with 2 100.  In this example

there is no change in vibrational angular momentum ( lt=0).  These interactions

are governed by cubic constants 1,10,10 and 2,10,10.  All of these cubic constants 

are allowed to be non-zero since the direct product of the symmetry

representations for the indices corresponds to that of the totally symmetric A 1'.  In 

contrast, the cubic constant for interaction of 1with (3+10) (denoted 1,3,10),

must be zero since modes 1 and 3 are totally symmetric, while mode 10 is E'.

The Darling-Dennison (DD) constant describing the coupling between 2 3

and 2 100 is denoted K3 3,10 10.  This is not to be confused with 3 3 10 10 although 

K3 3,10 10 does contain a contribution from 3 3 10 10.  The DD interaction involves 

four quanta of energy as opposed to three for the Fermi interactions.  The total 
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change in vibrational angular momentum must be 0 or ±3.  For 2 3 and 2 100 this

is zero and is therefore allowed.  The matrix element given by Mills and Robiette 

is:115
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Thus the Darling-Dennison constant can be computed as:
1010,334

22
K

The general equation for DD constants of the type Kaabb is given by Lehmann

as:118
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This constant can be computed automatically using SPECTRO.  The software 

provides the contribution from each term.  The second term is a rotational

contribution through the zeta matrices whose sum was zero for this interaction in 

BCP.

The non-zero terms were also computed using MathCad to provide more

insight into some of the individual contributions.  It appears that most of the entire 
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DD constant stems from a resonance involving mode 2.  In term three, both 233

and 2 10 10 are large and 4( 10)
2 is very close to ( 2)

2.  Since the total DD 

constant becomes strongly dependant on the values of the frequencies, the 

experimental values were used instead of the calculated ones.  In Appendix F a 

discussion is included about self-consistent DD constants since this constant 

should in fact be computed with the deperturbed frequencies and not the 

experimental ones.

After evaluation of the various interaction constants the resonance matrix

may be set up. 

2 3 1 2 2 100 Expt

2 3 2 3* 8.673 -23.348 17.815 3022.5

1 8.673 1* 0.000 8.967 2979.6

2 -23.348 0.000 2* -24.464 2887.6

2 100 17.815 8.967 -24.464 2 100* 2928.6

Table E3: Resonance interaction matrix (Fermi and Darling-Dennison)
* best calculated/estimated fundamental transition energy (see Appendix F)

The eigenvalues of this interaction matrix should yield the experimental

frequencies (rightmost column).  The eigenvectors are the composition of each

recorded band in the basis of the fundamental states.  Rather than using computed

frequencies as diagonal elements and then comparing the results with the

experimental values, it was decided to solve the inverse-eigenvalue problem for

improved diagonal elements in order to obtain the best possible eigenvectors. 
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After all, the purpose of this resonance analysis was to distribute the recorded

intensity as accurately as possible.  This procedure is discussed in Appendix F. 

It is apparent from the interaction matrix that the strongest couplings are to 

mode 2.  Furthermore, as mentioned previously, the Darling-Dennison constant 

was also strongly dependant on the frequency of mode 2.  The intensity assigned 

to mode 1 is fairly insensitive to the value of the DD constant.  However, the four

states which were neglected in the resonance treatment are coupled much more

strongly to mode 2 than mode 1.  Therefore the intensity parameter obtained for

mode 2 is a good test of the appropriateness of neglecting the additional weaker 

couplings.  Whether or not to solve for a self-consistent DD constant is also

determined by the accuracy of the intensity parameter for mode 2.  A discussion

of these factors in view of the results from some benchmarking level calculations 

is made in the section on conclusions. 
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Raman Intensities Appendix F: Inverse-Eigenvalue Algorithms 

Inverse-eigenvalue algorithms121-123 are numerical methods for solving the 

inverse-eigenvalue problem.  This problem arises when the eigenvalues of a 

matrix are known, but some of the matrix elements are either inaccurately 

determined or unknown.  If inaccurate or approximate values are employed, such

a matrix will produce eigenvalues in poor agreement with the known values.  This 

situation commonly occurs in physical chemistry when the known eigenvalues are 

experimentally observed transitions.  Often the off-diagonal elements of the

matrix (which represent the couplings) are also recorded in the spectrum, or they

might be accurately calculated.  This leaves the deperturbed transitions 

represented by the diagonal elements,  not directly available from the spectrum.

They are often more costly to calculate or may be unknown.  The deperturbed 

transition energies may be desired but usually (as in this thesis) the goal is to

obtain the eigenvectors.  The eigenvectors are necessary for interpretation of the 

spectrum in terms of the basis states.  Clearly this analysis would only be 

necessary in cases of strong mixing where significant intensity has been recorded 

for bands without one dominant basis vector.

Finding the diagonal elements which, when placed into the matrix, will 

produce the experimental eigenvalues is challenging.  For a square matrix of size 

N, there are N equations in N unknowns.  However, these equations may be

highly non-linear, depending on the number of different couplings present.  For 

all but the smallest or most sparse matrices, a numerical method is necessary.  For

vibrational spectroscopy, an inverse-eigenvalue algorithm may be implemented in 
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a scenario with the following conditions.  If a spectrum is complicated by multiple

anharmonic resonances, then a higher-order force-field analysis will determine the 

couplings between the various modes. The resulting resonant polyad must be 

resolved through diagonalization of a matrix describing all of the resonant 

interactions through fourth order.  As discussed in Appendix E, the off-diagonal 

elements (the Fermi and Darling-Dennison interaction constants) are derived from

the cubic and quartic force fields,115, 120 and are known to be accurate even when 

calculated at a relatively moderate level of theory.  The diagonal elements are the 

deperturbed anharmonic frequencies of the involved states.  These are less 

accurately known, since even the initial harmonic frequencies usually require 

scaling.100  Furthermore, in complex cases, many resonant denominators must be

removed.  Ultimately, this causes a breakdown in the perturbative method, and

limits the size of system to which it may be applied.  The eigenvalues of this

resonance interaction matrix should yield the experimentally observed transition

energies, while the eigenvectors provide the composition of each transition in

terms of the fundamentals and combinations or overtones thereof.  This completes

the goal of distributing the observed intensity amongst the fundamental modes.  In 

practice, if the diagonal elements are of poor quality, diagonalization will 

generally not yield particularly good agreement with the observed transition 

frequencies.  Given accurate interaction constants and experimental eigenvalues, 

the inverse-eigenvalue problem may be solved to obtain a set of diagonal 

elements that will produce the observed transitions.124  This approach allows the 

less accurate diagonal elements to be improved empirically in order to obtain 
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improved eigenvectors.  Finally, using the derived eigenvectors, the intensity may

be distributed amongst the fundamentals for transformation into the internal

coordinate intensity parameters as before. 

The complete solution to this problem, in MathCad is presented at the end

of this appendix.  The MathCad sheets contain explanatory documentation,

however the rationale and approach are first discussed here. 

Before implementing any inverse-eigenvalue method, one must decide 

which basis states to include and where to cut off the coupling strength.  This 

determines the order of the problem.  In a complicated molecule such as bicyclo-

[1.1.1]-pentane, the number of possible interactions is staggering.  The types and 

strengths of coupling mechanisms must be considered.  An accurate description of 

the states demands that all of the most important resonant interactions be 

included.  At least Fermi and Darling-Dennison resonances, as well as rotational 

and vibrational l-doubling, should be considered.  Based on molecular symmetry

considerations and the quartic force-field analysis, only Fermi and Darling-

Dennison resonances among a total of four basis states were used for bicyclo-

[1.1.1]-pentane (see Appendix E). 

The method used in this thesis is based on Newton’s method and assumes

that an exact solution exists.  This means that diagonal elements exist that will 

produce the desired eigenvalues.  Only if the off-diagonal elements are also in 

error will this not be true.  Using the notation of T. Luke,123 the problem may be

solved in the following way: 
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i) Set up an n-dimensional matrix A, using the accurate off-

diagonal elements, and zeros for diagonal elements.

ii) Set up a matrix D as a diagonal matrix of the approximate

diagonal values. 

iii) Matrix (A+D) has eigenvalues = ( 1, 2, .. n)
T

iv) Desired eigenvalues are = ( 1, 2, .. n)
T

v) Seek new matrix D such that ||  –  ||2 is a minimum (preferably 

zero)

There are a number of physical constraints which simplify the problem. 

Because the quantities involved describe physical observables, the matrices and

eigenvalues are real.  The first step after the matrices are set up is to apply a

spectral shift.  The average of the desired eigenvalues is subtracted from them

such that:

0
n

n
      (F1)

 This constrains D such that: 

      (F2)0)(DTr

This constraint causes: 

n
n

0       (F3)

Beginning with the approximate values for D, these values are updated at each

iteration.

i
D

i
D

i
D

1      (F4)
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The key to this algorithm is the calculation of D.  Firstly, at each iteration i, the 

eigenvectors of the total matrix (A+Di) are computed. 

    (F5)i
k

X
i
k

i
k

X
i

DA

Next a matrix J is defined with components that are the squares of the 

components (x) of X followed by a transpose.  The squared components of the 

eigenvectors are now the associated probabilities. 

     (F6)
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Now D can be calculated as: 

    (F7)
ii

J
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D

iiDiJ

1

This method is quadratically convergent when an exact solution exists and the 

starting point is close enough.  In practice this method can become unstable, 

particularly if an exact solution does not exist.  In fact J can become singular. 

Thus the preferred method is: 

    (F8))()( iTi
J

i
D

It can be shown that this method will converge.  However, the rate is not

guaranteed and may be slow. This is only a concern for large matrices since it 

was found that, for matrices of order 4-6, a desktop PC could easily run 10,000 

iterations in less than 10 seconds.  As convergence is achieved, the determinant of 

J tends to zero.  If a large number of starting values are tested in an automated
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fashion, then the algorithm can be made to exit if det(J) < .  A suitably small

value for  is chosen depending on the desired level of convergence.

Once the algorithm has been run, it is trivial to reverse the spectral shift, 

once again obtaining eigenvalues in the familiar range.  It should be noted that in

general the possibility exists for a multiplicity of solutions.  If complex solutions

are allowed then there could be up to n! solutions.  For the bicyclo-[1.1.1]-pentane 

system, for which 4 states were included, this corresponds to 24 solutions.  In 

practice with the restriction that the eigenvalues are real, there tend to be only one 

or two.  Furthermore, since the solutions represent the physical states of the 

system, it is generally straightforward to select the solution which corresponds to 

the physically realistic eigenvectors.   If the approximate diagonal elements used 

for D0 are not close enough to allow convergence, or result in convergence to an 

unreasonable solution, then it is desirable to attempt to find all of the real 

solutions.  The use of each possible permutation of the experimentally observed 

eigenvalues as starting points will generally yield the various real solutions.  Note

that for a matrix of dimension 4 this corresponds to 24 permutations, but with 

order 6, there are already 720.  It is not difficult to automate the algorithm itself, 

but it can prove difficult to automate the sorting process.  If a large number of 

solutions are to be examined automatically, then some weight must be assigned to 

the convergence and some to the physical sensibility of the eigenvectors.  If it is 

known in advance that one or two of the transitions should have a large 

component of certain basis vectors, then vectors can be constructed which, when 

multiplied by the computed matrix of eigenvectors, will produce a large value
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when these components are large.  Thus a test function is created, composed of 

the eigenvector test, plus a term that is large if the convergence is good.  After all 

of the permutations have been run through the algorithm, the solution

corresponding to the maximum value of this test function is viewed.  This should 

be the solution which best fits the criteria of good convergence, and physically 

realistic eigenvectors.

For the 4-dimensional problem it is easier to “walk in” the solution.  In 

this method, permutations of the experimental eigenvalues or estimated values are

entered as the diagonal elements, and the eigenvalues and vectors are obtained

immediately without running the algorithm.  The permutation which produces 

realistic eigenvectors, but with eigenvalues different from the experimental

values, is retained.  These values may not be close enough for the algorithm to 

converge to a solution.  However, one can make up intermediate values close to 

those obtained, and in the direction of the desired values.  If the algorithm 

converges to those values, the diagonal elements obtained are used as the starting 

point for the next step.  Slowly, diagonal elements are obtained which produce 

eigenvalues closer and closer to the desired set.  At each step, one must make sure 

that the eigenvectors have not diverged towards a different solution.  If they do,

then one must go back and use smaller steps.  In this fashion, it is relatively 

straightforward to maintain the correct set of eigenvectors (they evolve as well but 

should stay realistic), while adjusting the diagonals toward the solution. 
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Self-Consistent Darling-Dennison Constant 

In the work described in this thesis, an additional complication arose.  The 

Darling-Dennison constant, one of the off-diagonal elements, could be computed 

from the ab initio quartic force-field.  The computation of this constant is 

discussed in appendix E.  However, it should be computed from the deperturbed 

frequencies.  Since this constant describes a resonance interaction, it generally 

tends to depend strongly on the deperturbed frequencies of one or two modes.

The catch is that the deperturbed frequencies that are necessary for calculation of

the Darling-Dennison constant are themselves obtained by diagonalizing the 

interaction matrix, which includes the Darling-Dennison constant.  This apparent 

difficulty is actually rather common in theoretical chemistry.  The Hartree-Fock

equations are a pseudo-eigenvalue problem in which the operator evolves along 

with the eigenfunctions.  Thus the solution obtained after numerous iterations is 

that of the self-consistent-field.  Although no precedent was found for self-

consistent Darling-Dennison constants, this was clearly the correct approach.

Subsequent discussions at the CSC-2003 conference revealed that other 

researchers also make sure to produce self-consistent constants.125  When the

inverse-eigenvalue algorithm is performed using a Darling-Dennison constant

computed from the quartic force-field, a set of deperturbed frequencies are 

obtained.  These are in turn used to compute an improved Darling-Dennison 

constant.  Using the new Darling-Dennison constant, a new set of deperturbed 

frequencies is computed with the algorithm.  The new deperturbed frequencies are 

used to compute a further improved Darling-Dennison constant.  Ultimately the 
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Darling-Dennison constant and the deperturbed frequencies become self-

consistent.  This procedure required about 15 iterations to achieve self-

consistency to three decimal places for the 4-dimensional system describing 

bicyclo-[1.1.1]-pentane.  The convergence was oscillatory in this particular case. 

Fortunately the Darling-Dennison interaction was not so strong as to influence the

convergence of the inverse-eigenvalue algorithm.  If the Darling-Dennison 

changed by too much then this could be a problem.  Although this sounds rather 

complex and almost subjective, it really isn’t.  The inverse-eigenvalue algorithm 

only adjusted the diagonal elements by small amounts to produce agreement.  The

values of the diagonal elements produced, corresponding to overtone transitions,

were very reasonable based on the frequencies of the fundamentals.  Furthermore,

the adjustment of the Darling-Dennison constant was almost an aesthetic touch 

since the distributed intensity values were very insensitive to the value of this 

constant.  In fact, the Darling-Dennison constant could be varied by 25%, and still 

produce less than 0.50% variation in the intensity assigned to the two fundamental

modes in the polyad.

The inverse-eigenvalue algorithm is quite simple and could be

programmed in a number of ways.  Shown below is an example of how this was 

done in MathCad.  This example corresponds to the method in which the 

diagonals were “walked in”.  Thus the estimated diagonal elements shown below 

are already refined, since this example was printed after convergence was 

achieved.
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Inverse Eigenvalue Algorithm 

i 0 1 3

Define matrix A of off-diagonals 

A

0

8.673

23.348

17.815

8.673

0

0

8.967

23.348

0

0

24.464

17.815

8.967

24.464

0

Define experimental eigenvalues 

3022.5

2979.6

2887.6

2928.6

Apply spectral shift

i

i

4

67.925

25.025

66.975

25.975

Permutation of eigenvalues, which produced realistic eigenvectors 

25.025

67.925

25.975

66.975

Refined diagonal elements

D0

54.97874

26.897796

46.817608

35.058928
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D diag D0( )

Construction of Matrix J 
J1 eigenvecs A D( )

J1 J1( )
2

J1 J1
T

eigenvals A D( )

Inverse eigenvalue algorithm including exit command if det(J) becomes small,
signaling convergence. n is the maximum number of iterations. 

inverse n( ) D0 D0

D D

J1 J1

D diag D0( )

eigenvals A D( )

D0 D0 J1
T

J1 eigenvecs A D( )

J1 J1( )
2

J1 J1
T

break J1 10
6

if

t 1 nfor

D0 2954.575

i

i i
2

J1
T

Output includes deperturbed frequencies, re-shifted eigenvalues, sum of square 
differences from experimental eigenvalues (convergence), and matrix of squared 
eigenvectors representing probabilities. 

inverse 12000( )

54.97874

26.897796

46.817608

35.058928

2979.6

3022.5

2928.6

2887.6

0

0.063292

0.930398

0.004556

0.001754

0.829974

0.059486

0.055427

0.055113

0.101644

0.006134

0.29905

0.593172

0.00509

0.003982

0.640966

0.349962

The order of basis states expressed here is:
(2 3) ( 1) ( 2) (2 10)
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Supplementary Information 

The complete set of eigenvectors of the mass-weighted force-field are

listed here for BCP.  The normal modes are those listed in Table 7 at the end of 

the Raman spectra section.  Here the translations and rotations are included 

(modes 34-36, and 37-39 respectively), although they have not been constructed 

in any particular relation to the molecule coordinates since they were not used for 

any analysis.  The vibrational eigenvectors are constructed according to the 

conventions of spectroscopy as discussed for Table 7. 

The geometry is defined in Cartesian coordinates as X below.  Atoms 1-5 

are carbons while atoms 6-13 are hydrogens. 

1 0.000000 0.000000 0.938224

2 0.000000 0.000000 -0.938224

3 0.000000 1.239197 0.000000

4 1.073176 -0.619598 0.000000

5 -1.073176 -0.619598 0.000000

6 0.901553 1.852009 0.000000

X= 7 -0.901553 1.852009 0.000000

8 1.153111 -1.706772 0.000000

9 2.054663 -0.145237 0.000000

10 -2.054663 -0.145237 0.000000

11 -1.153111 -1.706772 0.000000

12 0.000000 0.000000 -2.026812

13 0.000000 0.000000 2.026812
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Frequencies mode 1 mode 2 mode 3 mode 4 mode 5

0.0000 0.000000 0.000000 0.000000 0.000000 0.000000

0.8960 0.000000 0.000000 -0.000001 0.000002 -0.000002

1.0897 -0.197643 -0.052729 -0.098913 0.603353 0.290410

12.7582 0.000000 0.000000 0.000000 0.000000 0.000000

12.7862 0.000000 0.000000 -0.000001 0.000002 -0.000002

14.8306 0.197643 0.052729 0.098913 -0.603353 -0.290410

540.8951 0.000000 0.000000 0.000000 -0.000001 0.000000

540.8981 -0.047706 0.117558 -0.193640 0.198817 -0.490115

773.3130 0.000000 0.000000 0.000000 0.000000 0.000000

773.3131 -0.041325 0.101830 -0.167691 0.172164 -0.424454

843.7057 0.023836 -0.058790 0.096818 -0.099414 0.245057

897.0754 0.000000 0.000000 0.000000 0.000000 0.000000

897.0785 0.041325 -0.101830 0.167691 -0.172164 0.424455

905.9747 0.023836 -0.058790 0.096818 -0.099412 0.245058

968.2267 0.000000 0.000000 0.000000 0.000000 0.000000

1003.6714 0.100247 -0.319086 -0.232035 -0.029840 -0.006749

1028.4003 0.068118 -0.205143 0.300535 0.115191 -0.127855

1028.4006 0.000000 0.000000 0.000000 0.000000 0.000000

1115.6545 -0.100247 0.319086 0.232035 0.029841 0.006749

1115.6555 0.068118 -0.205143 0.300535 0.115193 -0.127854

1118.3158 0.000000 0.000000 0.000000 0.000000 0.000000

1142.7491 0.008865 -0.018119 0.376270 0.114690 -0.107354

1142.7494 -0.120834 0.378983 0.050679 -0.031753 0.069772

1214.7787 0.000000 0.000000 0.000000 0.000000 0.000000

1214.7791 0.109153 -0.337274 0.144246 0.084829 -0.114100

1250.7157 0.052776 -0.173802 -0.351200 -0.083431 0.058081

1256.6953 0.000000 0.000000 0.000000 0.000000 0.000000

1256.6955 -0.109153 0.337275 -0.144246 -0.084830 0.114100

1503.2196 0.052776 -0.173802 -0.351200 -0.083431 0.058082

1503.2212 0.000000 0.000000 0.000000 0.000000 0.000000

1553.0368 -0.008865 0.018119 -0.376271 -0.114689 0.107354

3035.9292 -0.120834 0.378985 0.050679 -0.031753 0.069772

3035.9300 0.000000 0.000000 0.000000 0.000000 0.000000

3041.3445 0.000000 0.000000 0.000000 0.000000 0.000000

3084.0714 0.000000 0.000000 0.000000 0.000005 -0.000002

3089.6428 -0.643005 -0.211344 0.038941 -0.184929 -0.078510

3093.8650 0.000000 0.000000 0.000000 0.000000 0.000000

3098.6811 0.000000 0.000000 0.000000 0.000005 -0.000002

3098.6819 0.643005 0.211344 -0.038941 0.184929 0.078510
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mode 6 mode 7 mode 8 mode 9 mode 10 mode 11 mode 12 mode 13

0.000001 0.000003 0.004211 -0.001761 -0.006319 -0.420959 -0.032341 -0.292756

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000001 0.000000

0.000001 0.000003 0.004211 -0.001761 -0.006319 -0.420959 -0.032341 -0.292756

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 -0.000001 0.000000

0.185645 -0.266817 0.259796 -0.008304 -0.008059 0.148274 0.459590 -0.020621

0.000000 0.000000 0.000000 0.000000 -0.000001 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

-0.092796 0.133409 0.067538 0.130467 -0.184213 0.199230 -0.054345 0.372872

-0.160731 0.231079 0.111040 -0.080118 0.101704 -0.029419 0.296719 -0.227178

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

-0.092797 0.133409 0.067538 0.130467 -0.184214 0.199230 -0.054346 0.372871

0.160733 -0.231079 -0.111039 0.080118 -0.101704 0.029418 -0.296720 0.227177

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

-0.319997 0.146981 -0.450879 0.012220 0.002729 -0.048432 -0.132425 -0.005180

-0.217014 -0.330856 -0.309744 0.009057 -0.013372 0.125686 0.387142 -0.004729

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

-0.319997 0.146981 -0.450879 0.012219 0.002731 -0.048432 -0.132424 -0.005180

0.217014 0.330856 0.309744 -0.009056 0.013375 -0.125686 -0.387141 0.004730

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

-0.027933 -0.360023 0.017634 -0.020164 0.480808 -0.021092 -0.235728 0.102662

0.385533 0.038141 -0.258899 0.495108 0.049704 -0.019330 0.069387 -0.067011

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.347839 0.213039 -0.260786 -0.424913 0.187143 0.090826 0.091105 0.102683

0.168571 -0.292716 -0.121486 -0.224040 -0.432194 -0.076855 -0.138796 -0.057529

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.347844 0.213039 -0.260786 -0.424911 0.187144 0.090826 0.091104 0.102683

-0.168574 0.292716 0.121486 0.224039 0.432196 0.076855 0.138795 0.057529

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

-0.027934 -0.360023 0.017634 -0.020164 0.480810 -0.021092 -0.235729 0.102662

-0.385539 -0.038141 0.258898 -0.495106 -0.049704 0.019330 -0.069387 0.067011

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000002 -0.001776 0.003069 0.000680 0.487981 -0.216761 -0.441029

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000002 -0.001776 0.003069 0.000680 0.487981 -0.216761 -0.441029

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
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mode 14 mode 15 mode 16 mode 17 mode 18 mode 19 mode 20 mode 21

-0.244278 -0.000001 0.000000 0.000001 0.000001 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000002 0.000000 0.321535 0.236472 -0.080037

0.000000 0.000000 -0.201752 -0.205905 0.490501 0.000001 0.000000 0.000000

-0.244278 0.000001 0.000000 -0.000001 -0.000001 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 -0.000002 0.000000 -0.321535 -0.236472 0.080037

0.000000 0.000000 -0.201752 -0.205905 0.490501 0.000001 0.000000 0.000000

0.434850 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.004432 0.330217 -0.219002 -0.265073 0.313306 -0.095896

-0.056260 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.283530 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 -0.000001 0.004432 0.330218 -0.219002 0.132534 -0.156653 0.047948

-0.056260 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

-0.283530 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000001 0.004432 0.330218 -0.219002 0.132535 -0.156654 0.047948

0.308439 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

-0.267240 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.408251 -0.001485 -0.310699 -0.235207 0.309021 -0.321231 0.222480

0.308439 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.267240 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 -0.408251 -0.001485 -0.310700 -0.235206 0.309021 -0.321231 0.222479

0.141694 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.095115 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.408249 -0.001485 -0.310702 -0.235206 -0.320423 -0.163793 -0.395948

-0.088745 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.230462 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 -0.408245 -0.001485 -0.310700 -0.235207 0.011407 0.485023 0.173468

-0.088745 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

-0.230462 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.408245 -0.001485 -0.310701 -0.235207 0.011406 0.485024 0.173468

0.141694 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

-0.095115 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 -0.408249 -0.001485 -0.310702 -0.235207 -0.320424 -0.163792 -0.395948

-0.074579 -0.000006 0.000000 0.000001 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000002 0.000000 0.381606 0.072076 -0.500334

0.000000 0.000000 0.677687 -0.066581 0.146628 0.000000 0.000000 0.000000

-0.074579 0.000006 0.000000 -0.000001 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 -0.000002 0.000000 -0.381606 -0.072076 0.500334

0.000000 0.000000 0.677687 -0.066581 0.146628 0.000000 0.000000 0.000000
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mode 22 mode 23 mode 24 mode 25 mode 26 mode 27 mode 28 mode 29

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.427974 0.004211 0.001761 0.006320 0.420959 0.032346 0.292756 0.244282

0.000000 -0.000017 0.000004 -0.000003 -0.000001 -0.000018 0.000002 -0.000001

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

-0.427974 0.004211 0.001761 0.006320 0.420959 0.032346 0.292756 0.244282

0.000000 0.000017 -0.000004 0.000003 0.000001 0.000018 -0.000002 0.000001

0.000000 -0.000001 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.003427 -0.176734 0.242926 -0.216216 0.225648 -0.504035 0.219960

0.474625 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.111015 0.080110 -0.101706 0.029419 -0.296727 0.227181 -0.283533

0.000000 0.195725 -0.037946 0.066780 -0.165259 -0.288276 -0.110540 -0.271138

-0.237312 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 -0.111014 -0.080110 0.101707 -0.029419 0.296727 -0.227181 0.283533

0.000000 0.195723 -0.037946 0.066780 -0.165259 -0.288276 -0.110540 -0.271138

-0.237313 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 -0.011659 0.476444 0.325719 -0.003546 0.009744 -0.004748 -0.001151

0.000000 -0.011763 0.300808 -0.444386 -0.062633 0.052270 -0.138623 0.067512

0.188940 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.011663 -0.476444 -0.325719 0.003546 -0.009744 0.004748 0.001151

0.000000 -0.011765 0.300808 -0.444386 -0.062633 0.052270 -0.138623 0.067513

0.188940 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.039255 -0.009639 0.262652 0.141470 0.327492 0.057535 -0.363510

0.000000 -0.480334 0.268368 0.033689 -0.035293 -0.051031 -0.030778 -0.099228

0.070986 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 -0.419559 -0.261402 0.119847 -0.045285 -0.258087 0.067002 0.037929

0.000000 -0.201939 -0.136323 -0.259985 0.076624 0.275804 -0.030762 -0.329670

-0.259925 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.419555 0.261401 -0.119848 0.045285 0.258087 -0.067002 -0.037929

0.000000 -0.201937 -0.136323 -0.259987 0.076624 0.275805 -0.030762 -0.329670

-0.259925 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 -0.039255 0.009638 -0.262654 -0.141470 -0.327492 -0.057535 0.363510

0.000000 -0.480329 0.268367 0.033689 -0.035293 -0.051031 -0.030778 -0.099228

0.070986 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

-0.198967 -0.001776 -0.003069 -0.000679 -0.487982 0.216763 0.441028 0.074580

0.000000 -0.000056 0.000018 0.000001 0.000000 0.000005 -0.000001 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.198967 -0.001776 -0.003069 -0.000679 -0.487982 0.216763 0.441028 0.074580

0.000000 0.000056 -0.000018 -0.000001 0.000000 -0.000005 0.000001 0.000000
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mode 30 mode 31 mode 32 mode 33

0.321537 0.236471 -0.080037 0.427973

0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 -0.000001

-0.321537 -0.236471 0.080037 -0.427973

0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 -0.000001

0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000

0.000000 -0.000001 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000

-0.229558 0.271333 -0.083049 0.411038

0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000

0.229556 -0.271333 0.083049 -0.411037

0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000

0.191584 0.374593 0.328749 -0.191052

0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000

-0.191584 -0.374592 -0.328749 0.191052

0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000

0.171827 -0.465492 0.028291 0.259153

0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000

0.363410 -0.090900 0.357054 0.068101

0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000

-0.363408 0.090899 -0.357054 -0.068100

0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000

-0.171825 0.465492 -0.028291 -0.259152

0.381606 0.072074 -0.500333 -0.198969

0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000

-0.381606 -0.072074 0.500333 0.198969

0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000
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Trans1 Trans2 Trans3 Rot1 Rot2 Rot3

0.018974 0.000163 0.419465 -0.059958 -0.384099 0.000730

0.419460 0.000354 -0.018974 0.384102 -0.059958 -0.000130

-0.000008 0.419890 -0.000002 -0.000343 0.000228 0.000000

0.018974 -0.000157 0.419461 0.059959 0.384103 0.000730

0.419460 -0.000338 -0.018974 -0.384102 0.059958 -0.000130

-0.000008 0.419890 -0.000002 -0.000343 0.000228 0.000000

0.018864 0.000003 0.420297 0.000000 0.000002 -0.476428

0.419460 0.000008 -0.018974 0.000000 0.000000 -0.000130

-0.000008 0.419433 -0.000002 -0.507790 0.079440 0.000000

0.019029 0.000003 0.419042 0.000000 0.000002 0.239313

0.419559 0.000008 -0.019701 0.000000 0.000000 0.413111

-0.000008 0.419936 -0.000005 0.321981 0.400085 0.000000

0.019029 0.000003 0.419042 0.000000 0.000002 0.239313

0.419369 0.000008 -0.018247 0.000000 0.000000 -0.413371

-0.000008 0.420302 0.000000 0.184781 -0.478840 0.000000

0.005451 0.000001 0.121922 0.000000 0.000001 -0.206426

0.121584 0.000002 -0.005674 0.000000 0.000000 0.100566

-0.000002 0.121443 -0.000001 -0.203120 0.141373 0.000000

0.005451 0.000001 0.121922 0.000000 0.000001 -0.206426

0.121537 0.000002 -0.005324 0.000000 0.000000 -0.100641

-0.000002 0.121532 0.000000 -0.236528 -0.072643 0.000000

0.005544 0.000001 0.121227 0.000000 0.000001 0.190664

0.121591 0.000002 -0.005725 0.000000 0.000000 0.128617

-0.000002 0.121811 -0.000001 0.223787 0.105234 0.000000

0.005502 0.000001 0.121532 0.000000 0.000001 0.016403

0.121616 0.000002 -0.005901 0.000000 0.000000 0.229227

-0.000002 0.121600 -0.000002 0.055147 0.241174 0.000000

0.005503 0.000001 0.121532 0.000000 0.000001 0.016403

0.121511 0.000002 -0.005096 0.000000 0.000000 -0.229302

-0.000002 0.121803 0.000001 -0.020965 -0.246409 0.000000

0.005541 0.000001 0.121227 0.000000 0.000001 0.190664

0.121533 0.000002 -0.005272 0.000000 0.000000 -0.128692

-0.000002 0.121925 0.000000 0.181083 -0.168332 0.000000

0.005499 -0.000099 0.121561 0.037545 0.240522 0.000212

0.121560 -0.000215 -0.005499 -0.240521 0.037545 -0.000038

-0.000002 0.121685 -0.000001 -0.000099 0.000066 0.000000

0.005499 0.000101 0.121563 -0.037545 -0.240521 0.000212

0.121560 0.000219 -0.005499 0.240521 -0.037545 -0.000038

-0.000002 0.121685 -0.000001 -0.000099 0.000066 0.000000
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Synthesis

What follows is a description of the synthesis of BCP starting from the 

1,3-dicarboxylic acid of BCP.  This is easily prepared following the reviewed 

procedures in Organic Syntheses Vol 77 p250. 

1,3-dimethyl ester: Step 1 

The di-acid (24.6g, 157mmol) was refluxed (10h) in excess (45ml) thionyl 

chloride. This was then evaporated off using a water aspirator. Crude product 

obtained was purified using a Kugelrohr apparatus (120º C/12mmHg). Yield was 

about 90%. 

Step 2: Product from step 1 was slowly added to excess anhydrous MeOH then 

refluxed for 30 mins.  Evaporation of MeOH afforded a quantitative yield of the 

desired 1,3-dimethyl ester. 

Half-ester (1-carboxylic acid,-3-methyl ester) of BCP 

NaOH in MeOH (40ml, 2.5M, 100mmol) was added to the dimethyl ester in THF 

(600ml, .16M, 100mmol) dropwise at RT.  Mixture was stirred overnight, then 

evaporated to dryness (vacuum, no heat).  Water (240ml) was added, then 

extracted with CHCl3.  HCl was added to the aqueous layer to pH 3.  Extractions 

were taken using CHCl3 (4x80ml).  Extracts were dried (MgSO4), then dried

under vacuum. A yield of ~90% of the desired 1-carboxylic acid,-3-methyl ester 

of BCP was obtained. 
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1-carboxylic acid of BCP

The half-ester obtained previously was refluxed in excess thionyl chloride for 10h 

then evaporated to dryness.  The yield was quantitative.  The acid-chloride

product is dissolved in freshly distilled degassed benzene.  One equivalent of N-

hydroxypyridinethione sodium salt was suspended in benzene with 2 equivalents 

of t-butyl thiol and a dash of DMAP (catalyst).  This was refluxed next to a 500W 

tungsten lamp for 1h. After workup the crude product was extracted with hot 

pentane to yield (~60%) the desired mono-acid. 

Barton ester of BCP 

The previously obtained monoacid was dissolved in dry CH2Cl2 (1.0 M). Slightly 

more than one equivalent of hydroxypyridinethione was added under Ar. The 

solution was cooled to 5º C and protected from light.  1 equivalent of DCC was

added with stirring for 1.5h.  Solution was filtered then dried to yield (~90%) the 

desired Barton ester of BCP. 

BCP

All available quantities of the Barton ester of BCP were added to neat tri-n-butyl 

tin hydride. The reaction was gently stirred, and irradiated with a 500W tungsten 

lamp.  The flask was swept with N2, allowing BCP to be collected in a cold (-78º) 

trap. As stated previously, several cryo-distillations were required to remove the 

tri-n-butyl tin hydride that was also swept over. 
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Glossary of Terms

            isotropic polarizability 

0 laser frequency (cm-1)

differential scattering cross-section

a0 Bohr

AIM Atoms In Molecules 

AM1 Austin Model 1 

AMU atomic mass units

aug-cc-pVTZ augmented correlation consistent triple zeta basis set 

B3LYP Becke’s 3 parameter functional (Lee, Yang and Parr) 

BSSE basis set superposition error 

c speed of light 

C Coulomb

CCSD(T) coupled-cluster with singles, doubles, and perturbative triples 

dalphadq
q

dalphadqlength
q

 units of length 

DFT density functional theory 

f field

GGA generalized gradient approximation

h Planck’s constant

H Hartrees

IPCM isodensity polarizable continuum model 



IRC  Intrinsic reaction coordinate 

J  joules 

k  rate 

kb    Boltzmann constant 

LDA  local density approximation 

m  meter 

MEP  minimum energy path 

MP  Moller-Plesset 

NMR  nuclear magnetic resonance 

q  dimensionless normal coordinate 

redmass reduced mass 

SCF  self-consistent field 

SCIPCM self-consistent isodensity polarizable continuum model 

T  temperature 

TDDFT time-dependent density functional theory 

TS  transition structure  

V  Volt 

  anisotropic polarizability 

E  change in energy 

0  permitivity of free space 

  reaction path curvature 

µ  dipole 

  frequency (cm-1)


