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Abstract

This thesis presents a system to display Structural Health Monitoring (SHM) data interactively at

multiple scales that range from milliseconds to years. SHM data is collected from dozens of sensors

hundreds of times per second for years, which produces hundreds of gigabytes of data. Typical ways

of visualizing large SHM datasets produce static plots that take significant time to render. The

system presented in this thesis improves upon standard tools by providing an interactive interface

and a speed-optimized binning algorithm. Using the interface, a user is able to view data collected

from a bridge’s sensors at multiple scales in a web browser. This allows a user to visually inspect

the entire range of their data to detect anomalies, as well as both short and long-term trends. To

render the data, the system uses a binning algorithm to calculate a five-number summary of a range

of data. Those bins are combined, two at a time, to generate increasingly high levels of bins, which

are then rendered as a binned line chart. The chart is rendered using a standard web browser on

both desktop and mobile devices. By using the system, a user can pinch or scroll to zoom the plot,

and drag to pan through time, in order to easily navigate through the data.
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Chapter 1

Introduction

In the area of Structural Health Monitoring (SHM) groups of sensors on bridges gather mea-

surements and can generate large amounts of data. These databases can grow to be hundreds of

gigabytes in size.

Common methods of displaying this data produce plots that are visually cluttered and unin-

formative when viewing large amounts of data. These charts are produced by plotting the data as

points connected by a line, which require that every raw data point is processed in order to produce

the plot. This becomes a very time-intensive process for databases that are hundreds of gigabytes

in size, and makes rendering an interactive display infeasible, especially on a mobile device. The

relationship between the amount of data being represented and the number of data points that are

required to be rendered to the screen is linear, and can be seen in Figure 1.1. As the amount of data

being represented increases, the amount of points rendered to the screen increases proportionately.

Ideally, the number of rendered points would be constant and not increase when the number of

represented points increases. This ideal is shown in Figure 1.1 as a horizontal line. The advantage

to this constant relationship is that any range of data, whether it represent one second, two years,

or any other amount of data, would render in the same amount of time.

A result of being able to render any range of data in the same amount of time is the possibility

of doing quick multi-scale analysis of the SHM data. A user would be able to quickly go between

a zoomed in view and a zoomed out view of the same data to quickly see how trends over different

time intervals relate.

Mobile devices, including tablet computers and smartphones, have the potential to provide

access to data while in the field or away from an office. Leveraging these increasingly available

devices for SHM analysis could allow, for example, an engineer to walk under a bridge and see

a crack in it, then immediately pull out a device to see if there had been any recorded trends in

nearby sensors.

Desktop computers, while being less portable than mobile devices, have the advantages of being

more powerful, and having larger screens. This allows for quicker, more detailed analysis than their

mobile counterparts can provide.

It is for these reasons that targeting both mobile and desktop computers would allow for the

1
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Figure 1.1: Rendering using the proposed method reduces the amount of data required to be
rendered to a constant value. 6000 data points represents 30 seconds of data.

broadest range of SHM data analysis capabilities.

The formal thesis question for the work presented is, “Can a system be designed and built to

represent SHM data on both desktop and mobile devices, for which any range of data chosen to be

represented requires an equal number of points to be rendered to the screen?”

Links to a screencast demonstrating the use of this project and its code can be found in Appendix

A.

1.1 Additional Goals

Two additional goals were established for this project. The first goal stated that the project should

be faster then typical systems where users statically render a chosen range of data from a database

to the screen using standard plotting tools, and the second goal stated that the project should be

open source and flexible, meaning that it would be freely available for anyone to use on most types

of hardware.

2



Chapter 2

Implementation

In order to speed up access times for the data at multiple view scales, the proposed system

separates data into regions called “bins” and then renders them to the screen. The bins of the first

level are made by combining two raw data points and calculating five properties of the pair. The

properties of higher-level bins are calculated by combining the properties of the two bins that are

one level lower which occupy the same time period. Bins from the level of the user’s choosing are

displayed to the screen, where the properties of adjacent bins are connected by lines.

A visual comparison between the display of a typical plotting method and the proposed method

is shown in Figure 2.1. Figure 2.2 shows higher level bins in a five hour range and at this scale

a periodic trend can be seen in the data that has a period of about thirty minutes. The chart in

Figure 2.3 is displaying three days of even higher level bins and has a visible trend with a period

of one day.

Figure 2.1: A comparison between a typical chart of raw data and a binned version of that same
data.

3



Figure 2.2: Users can zoom in and out of the charts to reveal trends in the data. The upper
diagram shows two minutes of data, while the lower diagram shows four and a half hours, centred
around the same region.

Figure 2.3: The result of zooming out to a view of three days of data. Shorter term trends are no
longer visible while daily trends are now visually apparent.

2.1 Data

The data was previously collected using a National Instruments Compact RIO system in the same

manner as described in [4–6]. The strain gauges of the Compact RIO system were attached to

the girders of the bridge, and gave readings in terms of microstrain. The database for this project

contained two and a half years of data, acquired at a rate of 200 samples per second.

4



Chapter 3

Binning Algorithm

To achieve the goal of displaying sensor data over a wide range of time scales (levels of display)

on a mobile system, the data needs to be compressed. For transmission, storage, and for efficiency

of processing on the mobile device, it is not sufficient to simply transmit raw data. Our method

uses a binning algorithm to compress the data in a way that makes it efficient to transfer and

manipulate, and also making it easy to visually identify trends in the data at whichever scale is

being displayed. Additionally, our method was created so that viewing a number of bins requires

the same amount of data to be sent from the server, regardless of the level of those bins. As a

result, low-level data is just as quick to render as high-level data, making it just as fast to view.

Our method is a lossy compression method, meaning that the raw data cannot be reconstructed

from the compressed version. This method starts by combining raw samples by grouping them into

adjacent pairs and calculating five properties of the pair. To generate higher bins, pairs of two bins

from the lower level are combined. An example of calculating the average for bins of level one and

two can be seen in Figure 3.1.

When a pair is binned this way, the maximum, minimum, average, and an approximation of the

first and third quartiles are found for that pair. These 5 properties make up the bin, and were chosen

because they are a standard five-number summary, as described in [8] but with two differences. The

first difference is that the average replaced the median as a measure of the location of the data, and

the second is that the quartiles are an approximation. This modified five-number summary was

chosen because those five properties all share the property of being able to be generated based on

the bin data of any lower level. Because of this, the client can receive a level and calculate all levels

above that for the given data range, without requiring the raw data. This reduces the required

amount of data to be sent between the client and the server, which are described in Chapter 6, and

also speeds up the initial binning process on the server.

5



Figure 3.1: Binning results from level 0 to level 2. Each value is the average of the two values from
the level beneath it.

3.1 Calculation of Properties

The following equations show how the properties of each bin are calculated. property1 and property2

refer to properties of bin 1 and 2 respectively, where property is one of average, q1, q3, minimum,

or maximum. When level 1 is being calculated it uses raw data, so property1 refers to the first of

the two raw values being binned, for any value of property.

3.1.1 Average

The average is calculated from the two lower average values using the following equation.

average =
average1 + average2

2
(3.1)

3.1.2 Maximum

The maximum value is found by applying the max function to the two maximum values from the

lower level bins, as can be seen in the following equation. The max function returns the highest of

its two arguments.

maximum = max(maximum1,maximum2) (3.2)

3.1.3 Minimum

Similarly, the minimum values is found by applying the min function to the two minimum values

from the lower level bins. The following equation is used, where min is a function that returns the

lowest of its two arguments.

6



minimum = min(minimum1,minimum2) (3.3)

3.1.4 First Quartile

The first quartile is found by taking the average of the lowest of the following four values: the

first bin’s first and third quartile, and the second bin’s first and third quartile. Figure 3.2 shows

a graphical representation of this process. The quartiles calculated using the following equation,

where the mintwo function returns the two lowest of its arguments, and the avg function returns

the average value of its two arguments, calculated in the same manner as equation 3.1. q1 and q3

represent the first and third quartiles, and their subscript endings indicate which bin they are from

(for example: q31 is from the first bin).

q1 = avg(mintwo(q11, q31, q12, q32)) (3.4)

3.1.5 Third Quartile

Finally, the third quartile is calculated similarly to the first quartile, but instead of using the lowest

two values it uses the maxtwo function to return the highest two of the four values, which are then

averaged. This can be seen in the following equation.

q3 = avg(maxtwo(q11, q31, q12, q32)) (3.5)

Bin: 1 2 1 and 2 together

q3
q1

Figure 3.2: A graphical representation of calculating approximate quartiles for two examples. The
highest two quartiles are used for q3, and the lowest two are used for q1.
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3.2 Accuracy

The values for the average, maximum, and minimum are accurate, while the quartiles are approx-

imations. The same data values when rearranged in time give different results for the quartiles

approximation. To quantify the accuracy, the algorithm was run on the set of numbers from one

through eight in every permutation. The results for the first quartile were as follows. 82.9% of

results were between the actual first quartile and the average, 8.6% were between the actual first

quartile and the minimum value, and 8.6% were the same as the actual first quartile. Figure 3.3

shows the histogram for the algorithm when used on the test data.

The reason this approximation was chosen over a true quartile was so that any level could be

calculated from the level below it, allowing the client to receive one level, and calculate all levels

above that for the same time range. Although the quartiles are not precise they still allow the user

to visually compare the spread of data for different regions, and thus still provide useful information.

1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00
0

2000

4000

6000

8000

10000
q1
q3
q1 (actual)
q3 (actual)
average

Figure 3.3: The histogram for the approximated q1 and q3 compared to the actual values of q1,
q3, and average. This shows the number of results for each resulting calculation q1 and q3.
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Chapter 4

Display of Binned Data

Multiple plotting methods were considered before the binning display was chosen, one of which

was the Horizon Chart [7]. Figure 4.1 shows four examples of horizon charts, the last of which is

a constantly increasing line. The advantage of horizon charts is that small trends can be easily

distinguished due to the plot being vertically stretched and layered, rather than vertically com-

pressed all in one layer like most charts. Horizon charts can show one property at a time, which is

layered on itself, meaning that if we wanted to show all five properties it would require five charts.

The relationships and distances between those properties would not be clearly distinguishable when

spatially isolated.

0 2 4 6 81 3 5 7 9

0 2 4 6 81 3 5 7 9

0 2 4 6 81 3 5 7 9

0 2 4 6 81 3 5 7 9

Figure 4.1: Examples of Horizon Charts that were considered before Binned Line Charts were
decided upon. Positive values are red, negative values are blue, and the darkness of a colour
represents its magnitude.

To display the binned data, a chart is drawn that is a combination of line and area charts.

Figure 4.2 shows an example of this. The maximum, minimum, and average values are plotted as

line charts, and the quartiles make up the top and bottom of an area chart.

Line and area charts were chosen because they emphasize horizontal trends in the data over

their relation to the other properties of their own bin. A step interpolation was chosen for the line

and area charts rather than a linear, monotonic, or other interpolation because it clearly shows

the boundaries of each bin. That way, as the user adjusts which level they are viewing, and the

granularity and density of the data with it, they can clearly see the width of each bin.

The minimal design was inspired by the works of Edward Tufte [12] [13].

9



Figure 4.2: The maximum values of each bin are connected with blue lines to show trends over
time. Similarly, average and minimum values are connected with red and green lines, respectively.
The inner quartile region between the first and third quartiles is shown as a light-red area.

Tick marks and tick labels are chosen to be at logical intervals depending on the current time

range being viewed. For example, when the time range in view is three minutes, ticks are shown

every ten seconds, and tick labels are shown every thirty seconds. Table 8.2 in Appendix B shows

distances between tick labels and the corresponding distance between tick marks. The smallest

time interval is chosen so that tick labels would be no less than 100 pixels away from each other

when rendered.

Tick labels have a format that was chosen for its unambiguity and visual distinctiveness. The

format of each time unit is different and chosen to be visually distinct. This is done using a

combination of uppercase and lowercase letters and familiar punctuation marks. The day of the

week is included with the date to give context within the week. These formats can be seen in

Table 8.1 in Appendix B.

Ticks labels will always show the highest round unit into which it fits. For example, January

1st, 2012 at midnight will have the label “2012” because it rounds evenly into years, while January

1st, 2012 at 500 milliseconds after midnight will show “500ms” because the smallest unit it rounds

evenly into is milliseconds.

Colours were chosen to be visually distinct, and were tested with an application called Color Or-

acle [9] which simulates the three types of congenital color vision deficiencies. Even with simulated

color vision deficiencies it was easy to distinguish and identify the different lines of the chart.

10



Chapter 5

User Interface

5.1 Web Technologies

The user interface for the application was written using standard web technologies rather than

being written as a native application for each platform. The main advantage of native applications

is speed, which we thought we would be able to achieve using web technologies, and the advantage

of using web technologies is that once written, it would run on any up-to-date device. This means

that our application would need to be written once for the web, rather than once for each operating

system in order to make it compatible.

In reality, each browser has its own bugs and rendering differences, which caused some platform-

specific problems. In the end, simple primitive objects were chosen instead of newer HTML5

elements, and standard layout techniques were chosen instead of newer CSS3 techniques in order

to achieve similar usability on each platform. For example, a custom JavaScript and SVG slider

was created instead of using a range HTML5 input tag, CSS transitions were used instead of the

HTML5 details tag, and CSS floats were used instead of the newer flex boxes.

As a result, the user interface for the application can be viewed in any up-to-date web browser.

HTML was used for document layout, CSS was used for colours and styles, and SVG was used

for chart elements. JavaScript was used for all of the calculations on the client, using the libraries

D3.js [1], Underscore.js [3], Socket.io [11], and FastClick [10].

5.2 Scalable Vector Graphics

Scalable Vector Graphics (SVG) components were used to render the chart elements for a number

of reasons. SVG provides lower-level primitives to work with, such as circles, rectangles, and lines;

and provides fine control of those elements relative to their container, while still being able to be

styled using CSS. Rendering images on the server was not considered due to the large amount

of bandwidth that would be required in order to send every frame to the client. This would be

more data than sending the information once and having the client render the result. Also, if the

client received one image and scaled it as much as it could before requiring a new image, the result

11



would look distorted whereas the arbitrary resolution of SVG elements do not look distorted when

scaled. This could be mitigated by sending higher resolution images to the client, but would, as a

result, increase the amount of data required to be sent. Using an HTML5 canvas instead of SVG

elements was considered but not attempted due to its higher development time resulting from fewer

examples being available and higher coding complexity.

5.3 JavaScript Libraries

Four JavaScript libraries were used in this project. Socket.io was used to send requests and retrieve

data from the server, Underscore.js was used to organize and parse the data, D3.js was used to map

the data to SVG elements and organize them into charts, and FastClick was used to more quickly

respond to user interactions on mobile devices. The relationship between the various libraries can

be seen in Figure 5.1.

FastClick solves the problem of a 300ms delay in action resulting from tapping on iOS and

Android mobile devices. The purpose of the delay is to allow the user time to double-tap, which

resizes the view. For this project, double-tapping is not used since the view port is given a static

size.

Figure 5.1: The relationship between JavaScript libraries on the server and client.
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5.4 Controls

The user interface was designed for full-featured use on both mobile and desktop clients. On a

desktop, a user is able to use common mouse movements, while on a mobile smartphone or tablet

device users can use familiar multi-touch gestures.

The interface supports pinching in order to zoom in and out of the chart, and the user can drag

charts left and right in order to scroll horizontally.

Using a mouse, the user can use their scroll wheel to zoom in and out of the chart, and they

can click and drag left and right in order to scroll the chart horizontally.

As the user navigates the charts, the y− axis changes its scale in order to fit exactly the range

of rendered data. This rendered data is triple that which is visible, as is explained in Section 5.9.

In addition, when the user rotates their mobile screen or resizes their desktop window, the charts

automatically resize to fit the entire horizontal space.

5.5 Slider

The interface contains a single slider that controls all of the charts together. The slider is a vertical

list of numbers corresponding to the bin level, and it has a handle which highlights whichever level it

points to. The slider can be seen at the left in Figure 5.2. The user can control which level is shown

in the charts by dragging the handle until it is beside the corresponding number. Additionally, the

numbers on the slider can also be clicked on to move the handle to that level. By dragging the

slider up and down, the user can very finely control the zoom level of the chart. Whichever level

the handle is pointing to is shown on the charts.

The slider is linked with the charts, so as the user zooms the charts using either the mouse or

multi-touch gestures, the slider moves synchronously. Since the slider moves past the handle, the

user can see as they are zooming precisely when the level will change, giving them an intuitive

understanding of the system.

The slider is restricted to showing levels between zero, which represents the raw data, and

thirty-two, which is higher than the highest bin generated by the system for our data set.
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Figure 5.2: The effect of the handle, which is on the left side of each diagram, can be seen. The
upper diagram shows a handle pointing to level 15. Moving that handle down to 17 (as shown in
the centre diagram) shows bins that are two levels higher. Moving the slider so that the handle
points to level 18 (as shown in the lower diagram) changes the chart to show bins of level 18.
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5.6 Menus

The interface has two menus, both of which are exposed and hidden using toggle buttons. They

are the Edit Menu and the Lines Menu, and are visible in Figure 5.2.

5.6.1 Lines Menu

Figure 5.3 shows the interface with the LinesMenu selected. In this view the user can toggle which

lines are being displayed, as well as the interpolation used to render them.

The user is able to choose any combination of the maximum, minimum, and average lines, as

well as the quartile region. For example, the user could disable all lines except for the average in

order to view periodic variations in the average. This is shown in Figure 5.3. In addition, the user

can display the quartile region as two separate lines instead of an area.

Showing fewer lines can help identify underlying trends in the data. For example, in Figure 5.4

the average lines are isolated, which allows the user to see subtle trends with a period of about

thirty minutes in both charts.

Choosing between step and linear interpolation of the data can also help the user visually identify

trends in the data. To clearly see how the five properties relate within bins, step interpolation is

most useful, and to see trends in steep lines, linear interpolation is better. A comparison is shown

in Figure 5.5. It can be seen that linear interpolation provides less visual distinction between bins,

but in regions with more vertical change those trends become more visually understandable.
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Figure 5.3: With the LinesMenu selected, the user can choose which lines are to be displayed in
the charts. The first diagram shows a chart with only the average lines visible, while the second
diagram shows only the maximum and minimum lines.
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Figure 5.4: Isolating the average lines and quartile regions allow the user to see subtle trends with
more clarity.
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Figure 5.5: The user can choose which interpolation method is used to render the lines. The
first diagram is a typical view, and the second diagram shows the same view, but using linear
interpolation between points instead of the default step interpolation.
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5.6.2 Edit Menu

The Edit Menu allows the user to perform four actions using the overlay shown in Figure 5.6.

They can add charts to the screen, remove charts from the screen, swap the location of two charts,

or combine two adjacent charts.

Each visible chart has a removal button, and each chart that is available for display has an

add button with its name beside it. Clicking an add button adds that chart to the bottom of the

column of visible charts, and clicking a removal button removes the chart and adds its name to

its alphabetical position in the list of available charts below. Clicking a swap button between two

charts swaps the position of those charts.

Clicking the multiply button between two charts combines them to become one chart, wherein

each data point is the result of multiplying the two corresponding points from the charts. The data

for each sensor is first normalized to be between zero and one, so that the result of multiplication

is also between zero and one. The purpose of this view is to see similarities between the two chosen

charts. Trends in both will be amplified by multiplication, and differences will be suppressed. Click-

ing the subtraction button between two charts combines them using subtraction. The lower chart

is subtracted from the higher one. Data is normalized as with multiplication, with an additional

normalization step after the subtraction process has occurred, so that the results are between zero

and one. When a chart that is the combination of two other charts is removed, it splits back into

its two original charts. These charts are shown in Figure 5.7.
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Figure 5.6: The interface with the Edit Menu selected. The charts are non-interactive and are
therefore greyed-out. Add, remove, multiply, subtract, and move buttons are accessible in this
view.

20



Figure 5.7: The top digram shows sensors 19 and 20. The second diagram is the result of combining
those sensors with multiplication, and the third diagram shows the result of subtraction.
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5.7 Visual Aids

To indicate to the user when data is being requested from the server, two forms of visual feedback

are used. A spinner, rotates slowly in the corner of the screen whenever data is being requested

from the server. Additionally, horizontal lines that crawl along the bottom of each chart appear

wherever data is missing from the charts. These can be seen in Figure 5.8.

To give the user a context of the time of the data being displayed, a text label is displayed on the

left above each chart that shows the time at the left-most edge of the chart. It gives the minimum

amount of data necessary to infer the time range of data being displayed, which is determined as

follows. Whenever it is only guaranteed that one of any time unit label on the x− axis is visible,

the time context label will show that time unit.

For example, when the x−axis shows less than two year’s time, it is possible that only one year

label is shown. In this case, the time context will show the current year. But when the user zooms

out so that more than two years are visible, it is a guarantee that two year labels are displayed,

and so the year’s context is not shown in the time context label.

5.8 Temperature and Cloud Cover

Temperature and cloud cover data were taken from Environment Canada’s Historical Climate

Data [2] to give the user the ability to compare the sensors’ data to environmental conditions. As

can be seen in Figure 5.9, cloud cover is shown as dark and light regions in a chart, and temperature

data is shown the same way as sensor data. The sampling frequency of these weather conditions

are one per hour. The cloud cover data provided many possible weather conditions, two of which

were chosen to be displayed as white, and the rest as black. The chosen two were “Clear” and

“Mainly Clear”. Those shown as black include “Cloudy,” “Mostly Cloudy,” “Snow,” and “Fog”,

among others. Cloud cover is displayed as a linear interpolation of points, binned the same way as

the other charts, just displayed as changes of lightness rather than vertical lines.

This cloud cover data allows us to see if direct sunlight has any affect on our sensors. As an

example, in Figure 5.9 we can see that the variation in sensor 18 was much higher on sunny days

than it was on cloudy days.

22



30s05:12 05:13 30s30s05:11 05:14

92

94

96

98

90

2012 Jan Tue 03 05h Girder 18

Lines

Edit

5

6

7

8

9

10

11

12

13

14

Figure 5.8: Two loading indicators are visible. In the top-left an arc slowly rotates, and on each
chart where data has not yet been loaded, lines move across the region whenever data is being
loaded from the visualization server. These are indicated with red arrows.

Figure 5.9: Temperature is rendered using the same type of chart, which is shown in the top chart
of both of these diagrams, while cloud cover is shown as light or dark depending on the amount of
sunlight. Two binning levels are shown for the same time range.
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5.9 Rendering Frequency

To allow for quicker execution when scrolling, more than the required amount of chart is rendered

on each side of the displayed region. Whenever the user gets to the edge of this extended space,

enough additional data is requested from the server to render a space three times the width of the

chart’s displayed range. This allows a buffer of scrolling space before the client needs to request

data from the server again. Figure 5.10 shows a diagram of this.

To reduce the number of times SVG elements are generated, re-rendering only happens when

new data is received from the server, when the user gets to the edge of the buffered region, or when

the chart switches to showing a different level. Whenever the user zooms the data within a level or

scrolls the chart horizontally, the existing SVG elements are moved or stretched instead of being

re-rendered.

Figure 5.10: Whenever a region of size a is displayed in a view, another region is rendered on either
side. When the view moves to within ten percent of the edge of the total rendered region, a new
region is rendered centered around the view.

5.10 Management of Uncertainty

If even a single data point is missing in a bin’s region, that bin will be displayed as missing data.

This is a result of two design decisions. The first design decision is that each level should be able

to be generated using only the level one lower than itself. The second design decision is that each

bin should represent the raw data beneath it will full accuracy. Because of these, if we cannot say

that a bin fully represents the data in its range, then we display it as missing data.

Data that is missing from the database is indicated with a vertical column of grey, as can be

seen in Figure 5.11. If either of the two bins that would combine to make the missing bin are

available on the client, a horizontal dashed line will be displayed at the value of the non-missing

average point as an approximation of the average of the two bins. This is to indicate to the user
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that some information is available in that region, but not all, and allows long-term trends to still

be seen, by showing the approximation of the average.

Figure 5.11: Missing data is shown in two regions with grey rectangles. An approximation of the
average value is available and shown in the rightmost region with a red dashed line.
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Chapter 6

System Architecture

The system consists of three components: the database server, the visualization server, and the

client. The database server stores the raw data arriving from the system (bridge) being monitored,

which is sent by request to the visualization server. The visualization server bins that data and

sends the client both binned and raw data as required by the user’s current level of view. The client

displays the data and allows the user to interact with it. This system architecture can be seen in

Figure 6.1.

Figure 6.1: The architecture of the system. Raw data is stored on the Database Server, and binned
data is stored on the Visualization Server. The Clients connect to the Visualization server over the
Internet.

6.1 Database Server

The database server is a MySQL server, which holds all of the raw data collected from the gauges

on a bridge. This raw data has been gathered and stored by a previous project by sampling the

sensors at 200Hz. A portion of this data was used for the development of the visualization system,

corresponding to a period of nine months, which is roughly 4.7 × 109 samples per sensor.

The database server has one MySQL database for each month. Each of those databases is then
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split into multiple tables of approximately 5 days each, and has one field for each sensor of the

bridge. This database is read-only, so the visualization server cannot modify its data.

6.2 Visualization Server

The visualization server connects to both the database server and the client. Its job is to pre-process

the raw data for ultimate delivery to a client by converting it into binned data. The client connects

to the visualization server using Socket.io, which runs both in the browser and on the server using

Node.js. The JavaScript code used to bin the data is identical for both the client and visualization

server.

The visualization server has a CouchDB database that stores all of the binned data. CouchDB

was chosen for three main reasons. The first reason is that it uses technologies that were already in

use for this project such as JavaScript, JSON (which easily translates to JavaScript objects), and

HTTP. The second reason is that CouchDB makes it easy to add servers in order to serve more

clients through its replication feature. The third reason is that CouchDB emphasized ease of use,

making it quick and easy to learn.

The server first sends a read-only MySQL request to the database server and bins the received

data. The binning process starts by splitting the data into groups of two, as described in Chapter 3

and calculating the five properties for each of those pairs to make level one’s bins. It continues

to calculate bins two and higher using the previous level’s bins, and stores them in the CouchDB

database.

Data is stored in the CouchDB database as a series of documents with unique IDs. Each

document stores one container of 32 bins. The reasons for this are described in Section 6.4. The

ID contains the following pieces of information: the sensor type (girder, temperature), the sensor

number, an abbreviated representation of the property being stored (average, minimum, etc.) the

level of bin, and the time in milliseconds of the beginning of the container.

For purposes of storage efficiency, levels zero through five are not stored in the CouchDB

database. When the client requests them, the server requests the raw data for the requested

section of time from the database server and sends it directly to the client. This is done because

each level stores twice as much data as the level above it. As can be seen in Figure 6.2, level one

contains 2.5 times as much information as the raw data from level zero, and each level above that

contains the amount of the one lower. By not storing levels zero through five in the CouchDB

database the total number of stored data points is at most 7.4× 108 data values, which is just 16%

of the 4.7 × 109 raw data values in our test data set.

The trade-off is that sending level five to the client takes noticeably longer than sending the

equivalent binned data. Sending raw data instead of binned in these cases requires a maximum of
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Figure 6.2: How many data points are generated for each level when there are 1000 points of raw
data.

6.4 times the number of bytes to be sent. It was decided that, since the main intended use-case

for the system is viewing trends over longer periods of time, this struck a balance between client

responsiveness and storage requirement.

The CouchDB database is stored with key values, where each key points to a container. Con-

tainers are described in Section 6.4. The key contains the sensor identifier (consisting of its type

and number), as well as the time value for the container. When the visualization server requests

data from the database, it usually receives either two or three containers, depending on the size of

the client’s screen and their zoom level. This makes querying the database quick, as it only needs

to send a couple of keys to get all the data it needs. The trade-off here is that the client does not

always want the entire container but only needs a section of it, so more than the required amount

of data is received each time.

The visualization server software has been chosen to be able to run on any OSX, Linux, or

Windows system, is open-source, and is available at no cost. These choices have been made to

allow for a maximum amount of freedom in deploying the system.

6.3 Client

The client is any computer or mobile device with an up-to-date web browser. Fluidity of user

interface on mobile devices varies with the processing power of the device, with newer devices

offering the best performance. For details about rendering on the client and the technologies used,

see Chapter 5.

6.4 Containers

To reduce access times on both the client and the server, bins are stored in containers. This way, to

access a specific bin, the container will be selected, and from within it the bin will be chosen. This
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reduces the total number of keys in the data structures, meaning there is less to search through to

find the correct bin. On the server, this translates to fewer Couchdb documents, and on the client

it means JavaScript objects with fewer keys.

A container size of 32 bins was chosen for the following two reasons. The first is that it was

important that the container size be a power of two so that bin containers would align with each

other between levels, just as bins do. The second reason is that an average of approximately 64

bins, are shown on the screen at any given time. This means that one container of 32 bins will

be fetched from the server and used completely, and two or more containers will be fetched and

partially displayed. Had smaller containers been chosen, more of them would be fetched, which

would increase overhead but decrease the number of unused bins. On the other hand, larger

containers would mean less overhead but more unused bins.
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Chapter 7

Conclusions

In answer to this work’s formal thesis question, a system was designed and built to represent

SHM data on both desktop and mobile devices, for which any range of data chosen to be represented

would require an equal number of points to be rendered to the screen. The work presented showed

the implementation of one answer to the thesis question, and achieved the following related goals.

The first goal stated that the project should be faster then typical static rendering tools. As a

result of the compressing binning algorithm, any level of data was able to be accessed in the same

amount of time. Additionally, the interface’s auto-rendering technique further reduced rendering

delays by rendering data before it was requested by the user. The combination of pre-binning and

dynamic user interface allowed this project to meet its goal of being much quicker than standard

plotting methods.

The second goal stated that the project should be open source and flexible, meaning that it

would be freely available for anyone to use on most types of hardware. The source code for this

project was selected to use tools that can run on any major operating system, and were given

an open-source license. The client was also written specifically to be able to run on any system

with an up-to-date web browser, including devices with either a mouse and keyboard or a touch

interface. Through these choices, this project has met its goal of being flexible, allowing for freedom

in deployment and usage of the system.
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Chapter 8

Future Directions

Using this system as a baseline, many additional types of information could be added to give

the user even greater knowledge of their bridge, and there are some technical aspects of the system

that could be experimented with.

Temperature readings from temperature sensors on the bridge could be added to the screen as

their own sensor. This would allow the user to see how their bridge is behaving relative to the air

temperature, or the temperature of the bridge.

Another sensor reading that could be added would be acceleration readings from accelerometers.

This would be able to show vibration data to complement the strain data.

Another area of research that this system could integrate is Bridge Weigh-In-Motion (B-WIM)

data. B-WIM uses strain gauge information to determine the mass of vehicles that are traveling

over the bridge. Adding vehicle masses to the charts would allow the user to gain an intuitive

understanding of the relationship between strain and vehicle mass, as well as displaying how different

girders react to different vehicle masses.

One technical aspect of the system that could be experimented with is the width of each bin.

The current system relies on the sampling rate being constant throughout the data range, and

missing samples have to be dealt with according to the process described in Section 5.10. A

possible alternative method would be to have dynamic bin sizes. This would absorb empty bins,

and the resulting chart would be much cleaner. This may not be desirable though, as knowledge

of the uncertainty about the data would be lost.

A way to dynamically present the current binning information would be to display different bin

levels in different parts of the chart, depending on the underlying details. For instance, high detail

could be shown to the user (lower-level bins) in areas where there is a significant spike in the data,

whereas everywhere else a higher, less data-intensive level could be shown.

Another area of research that this system could benefit from is anomaly detection. This could

take the form of threshold highlighting, where values above a threshold are made visually distinct,

allowing the user to easily skim the diagram for anomalies.

A possibly useful feature that could be added is the ability to compare a sensor with itself

shifted in time. This way a user could more easily see trends from week to week, or day to day.
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One last method of analysis that could be added to the system would be to combine charts

together using mathematical operations beyond the current multiplication and subtraction. These

aggregate charts could show the difference between two sensors’ readings to allow the user to visually

compare the behavior of two parts of a bridge.
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Appendices
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Appendix A: Links

A screencast demonstrating the use of this project can be viewed at http://youtu.be/EaIYcongb-s.

The code for this project is publicly available at https://github.com/MattWoelk/shmotg.
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Appendix B: Format Tables

TIME UNIT FORMAT EXAMPLES

milliseconds XXXms 500ms, 100ms

seconds XXs 05s, 15s

minutes XX:XX 02:46, 12:30

hours XX:00 02:00, 14:00

days ddd X tue 3, wed 4

months Mmm Feb, Mar

years YYYY 2011, 2012

Table 8.1: Formats for tick labels.
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Distance between tick labels Distance between ticks

200 ms 50 ms

500 ms 100 ms

1 s 500 ms

2 s 1 s

5 s 1 s

15 s 5 s

30 s 10 s

1 min 30 s

2 min 1 min

5 min 1 min

15 min 5 min

30 min 10 min

1 h 30 min

3 h 1 h

6 h 3 h

12 h 3 h

1 day 12 h

2 day 1 day

5 day 1 day

10 day 5 day

15 day 5 day

1 month 1 month

2 month 2 month

3 month 3 month

6 month 6 month

1 year 1 year

Table 8.2: Distance between tick labels and corresponding distance between ticks.
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