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Abstract

With the rapid adoption of fifth-generation (5G) communication systems and the increasing

data demand per device, communication traffic is soaring to reach unprecedented numbers

in the upcoming years. Moreover, the traffic is often unevenly distributed across frequency

bands and base stations, thereby resulting in a degradation of the network throughput and

user experience. Thus, load balancing has become a key technique to adjust the traffic load

by offloading users from overloaded cells to less crowded neighboring ones.

In this thesis, we study multi-objective reinforcement learning (MORL) and meta re-

inforcement learning (meta-RL) for load balancing to learn highly customized policies for

different trade-offs between network performance metrics. We begin with a thorough review

of existing load balancing literature to motivate the need for better algorithms that can fur-

ther improve the network performance and the user’s quality of service (QoS). Specifically,

we emphasize the importance of a multi-objective approach to solve the load balancing prob-

lem since network providers aim to simultaneously optimize multiple conflicting objectives

by adjusting the load balancing parameters. Using MORL, we formulate communication

load balancing as a multi-objective control problem where the agent seeks to find opti-

mal policies depending on possible trade-offs between the network performance indicators.

Motivated by the dynamic nature of wireless networks, we propose a practical algorithm

based on meta-RL concepts to compute a general load balancing policy capable of rapidly

adjusting to new trade-offs. Indeed, the learned meta-policy can be fine-tuned for given

preferences using fewer samples and gradient steps. We further enhance the generalization

and adaptation of our proposed meta-RL solution using policy distillation techniques. To

showcase the effectiveness of our framework, experiments are conducted based on real-world

traffic scenarios. Our results show that our load balancing framework can: i) significantly

outperform the existing rule-based load balancing methods ii) achieve better performance

than single-objective solutions iii) compute better Pareto front approximations compared to
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several MORL baselines and iv) quickly adapt to new unseen objectives.

To conclude, we analyze the limitations of the proposed solutions and we discuss several

future promising directions for multi-objective load balancing.
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Chapter 1

Introduction

1.1 Overview and Motivation

The future wireless generations are expected to accommodate a significant increase in the

number of connected devices including mobile devices such as smartphones, tablets, and

laptops and other types of devices such as sensors and smart home devices. An upsurge

of high data rate applications has also been recorded: mobile data traffic is expected to

increase by a factor of five to reach 237 exabytes per month by 2026, and 77% of this

traffic is related to video data usage [4]. Furthermore, the traffic distribution is subject to

spatio-temporal fluctuations due to heterogeneity and the high mobility of the connected

devices [4, 5]. Indeed, more crowded areas, like office buildings, demand a higher amount of

resources during the daytime.

To ensure a good service, network operators are looking for creative solutions to address

these difficulties. For instance, network densification has recently been adopted to boost the

system capacity and connectivity and address the spatial disparities in traffic distribution [6].

Either by deploying more evolved NodeBs (eNBs) or placing smaller base stations, the signal

quality can be improved in high-traffic areas. However, without careful user association
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Chapter 1. Introduction

schemes, the load distribution will become unbalanced. Faced with these challenges, network

operators risk not meeting users’ QoS requirements and the expected network efficiency. To

provide reliable and low-latency communications, there is a pressing need for more efficient

management of network resources.

To address the mentioned challenges, self-organizing networks (SON), in Long Term

Evolution (LTE) systems, enable the automation of several operational tasks related to the

configuration, optimization, and healing of the network [7]. In this context, load balancing is

considered as one of the key technologies enabling a better regulation of the network traffic

load. Load balancing mechanisms adjust the load distribution by offloading user equipment

(UE) units from crowded eNBs or frequency bands to less loaded ones (see Fig 1.1). Conse-

quently, the network’s overall performance can be improved through more efficient resource

utilization and better coverage for edge users. Traditionally, the load balancing parameters

are manually set by the operator, which is a time-consuming and costly task. Mobility ro-

bustness optimization and mobility load balancing enable the automatic adjustment of the

mobility parameters to account for the dynamic channel conditions and different mobility

patterns. In this thesis, we will focus on mobility load balancing for two types of UEs:

load-based handover (HO) for connected UEs and cell re-selection for idle UEs. Incorrect

adjustment of the HO and re-selection parameters (i.e event thresholds and/or offsets) engen-

der a degradation in the user experience and network performance due to offloading failures

(early or late triggering) and ping-pong effects. As an example, incorrect HO parameters

may lead to a prolonged connection to a non-optimal eNB. Furthermore, the cell re-selection

and HO parameters should be aligned to avoid potential congestion when idle UEs become

connected. A more detailed explanation of the different HO and cell re-selection parameters

is provided in Section 3.2.

In this work, we will focus on two categories of load balancing algorithms: rule-based

and reinforcement learning (RL) based methods. Rule-based algorithms present a predefined

set of rules for adjusting the load balancing parameters. These rules rely on adding (or

3



Chapter 1. Introduction

Figure 1.1: Illustration of load balancing between eNBs (left) and frequency bands (right)

decreasing) a fixed [8, 9] or an adaptive [10–13] step size to the mobility parameters based

on traffic load measurements and signal conditions. These reactive approaches have proved

that load balancing results in a more balanced traffic distribution and a better network

performance. However, they are tailored to specific network settings and require expert

knowledge to define the adjustment rules.

Recently, RL methods have shown great success in solving complex and high-dimensional

control problems. In this context, RL-based solutions are proposed where an agent learns

a load balancing strategy based on interactions with its network environment. Using RL

techniques for load balancing is not new since several tabular Q-learning algorithms are

designed for HO management (e.g., [14, 15]). Recently, deep RL techniques are adopted

to learn load balancing policies in different network architectures such as ultra-dense 5G

networks [16], device-to-device networks [17, 18], mobile millimeter-wave networks [19]. In

this thesis, we focus on the second family of load balancing methods which is RL-based

methods.

The aforementioned RL-based load balancing solutions are single-objective solutions since

only one metric (e.g., throughput) or a fixed combination of network key performance indica-

tors (KPIs) is optimized. The drawbacks of such approaches are: i) in real-world situations,

these KPIs are often conflicting such that one fixed preference cannot cover all the possible
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Chapter 1. Introduction

trade-offs ii) the desired KPI weighting may vary across eNBs on which the solution will be

deployed and iii) the objective preferences for the deployment network may not be known

before training. This motivates the design of a multi-objective load balancing method. We

propose to use MORL to learn a set of control policies depending on the selected objective

preferences. Different algorithms exist to solve MORL problems (see Section 1.2 for a lit-

erature review), meta-RL [20–22] has been recently adopted to learn a general policy that

can quickly adapt to new trade-offs between objectives [23]. To the best of our knowledge,

this is the first attempt to use a meta multi-objective RL method for communication load

balancing. We aim to learn a generalized load balancing policy from multiple objective

preferences which can be used as model initialization to quickly adapt to changes in the

KPI importance weights. Fast adaption to new preferences is a key benefit of the proposed

method, since learning a new reliable control policy from scratch typically requires a large

number of interactions [24].

1.2 Related Work

1.2.1 Load Balancing for Wireless Communication

This section presents an overview of previous work on load balancing by distinguishing two

main categories: rule-based and RL-based methods.

Rule-Based methods

As mentioned above, rule-based algorithms hand-design a set of update rules for the HO/cell

re-selection parameters. For HO management, most of the previous work considers the

adjustment of the cell individual offset based on the load measurements and/or the signal

strength. For instance, the authors in [8] propose to adjust the cell individual offset by

adding or subtracting a fixed step size. Another work [9] presents a rule-based algorithm

5



Chapter 1. Introduction

for downlink LTE networks taking into consideration non-adjacent neighboring cells. The

drawback of these methods is they do not adapt to changes in the system due to their fixed

step size. This is why other studies introduce adaptive rule-based algorithms. In these

works [10, 11], the step size is dynamically adapted considering the load difference between

cells and/or the signal strength condition. Another line of work [12] proposes an adaptive

approach to determine the threshold for overloaded cells instead of using a fixed one. All the

aforementioned works are intended for UEs in radio resource control (RRC) connected state

where load balancing is mainly performed through HO. Load balancing for RRC idle UEs

has attracted less attention. Cell re-selection is studied in [13] where an adaptive algorithm

is proposed to adjust the re-selection parameters without harming the HO performance.

RL-based methods

Due to the increasing heterogeneity and high mobility of connected devices, RL-based meth-

ods gained more attention since designing hand-tailored rules cannot cover all possible cir-

cumstances encountered in real-world scenarios. Specifically, (deep) RL has been largely

adopted to dynamically adjust the load balancing parameters. Through interactions with

the environment, the RL agent can incorporate knowledge about the network in its decision

process. Indeed, earlier work by Muñoz et al. [14, 25] proposes a fuzzy Q-learning approach

that self-tunes the parameters of fuzzy logic controllers [26]. Dynamic programming [27] is

applied to learn a policy that chooses the optimal step size for the adjustment of different

HO parameters under different load conditions [15,28,29]. More recently, Attiah et al. apply

deep Q-learning to automatically adjust the cell offsets and maximize the throughput and/or

resource block utilization [30]. Similarly, the joint optimization of the HO offsets and the base

station transmission power using a value-based RL method has also been proposed [31]. In

a similar vein, several endeavors applied deep RL for load balancing in different propagation

environments and network architectures [16–19,32].
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Chapter 1. Introduction

1.2.2 Multi-Objective Reinforcement Learning

MORL is an extension of the classic RL framework where the agent aims to maximize

multiple conflicting objectives [33, 34]. Previous work on MORL problems can be classified

into three approaches. The first is to combine the objectives into a single scalar value using

prefixed weights and to train a policy that maximizes the weighted sum [35, 36]. However,

this scalarization approach has three major shortcomings: i) domain-specific expertise is

necessary to set the objective weights ii) one specific set of preferences that covers different

real-world circumstances is hard to find and iii) the objective preferences are not known

before learning. This is why, the other MORL approaches focus on learning optimal policies

without fixing the objective weights.

The second category of MORL algorithms compute non-dominated or Pareto optimal

solutions. One approach is to randomly initialize a set of policies and optimize using convex

combinations of the single-objective gradients in the policy parameter space [37]. Another

line of work decomposes the multi-objective problem into sub-problems that are collabora-

tively solved using a neighborhood-based parameter-transfer strategy [38]. A manifold-based

policy search method is introduced to generate a continuous approximation of the Pareto

front [39]. Although these methods provide comprehensive algorithms to estimate Pareto

solutions, they have a high computational complexity. Finally, the third category of MORL

methods relies on learning a meta-policy that can be adapted to different preferences. This

approach has been applied to solve continuous control problems [23]. In this thesis, we resort

to this approach to solve load balancing problems in real-world scenarios.

1.3 Publications and Achievements

The list of my academic achievements is summarized in Table 1.1. The content of this thesis

includes material from the first work entitled “Multi-Objective Load Balancing for Multi-
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Chapter 1. Introduction

Band Downlink Cellular Networks:A Meta-Reinforcement Learning Approach“. In addition,

the introductory background on RL in chapter 2 is based on the second work “Single and

Multi-Agent Deep Reinforcement Learning for AI-enabled Wireless Networks: A Tutorial“.

Table 1.1: Summary of publications and achievements

1. A. Feriani, D. Wu, Y.T. Xu, J. Li, S. Jang, E. Hossain, X. Liu and G. Dudek,

“Multi-Objective Load Balancing for Multi-Band Downlink Cellular Networks: A

Meta-Reinforcement Learning Approach,” submitted to IEEE Journal on Selected

Areas in Communications.

2. A. Feriani and E. Hossain, “Single and Multi-Agent Deep Reinforcement Learning

for AI-enabled Wireless Networks: A Tutorial,” IEEE Communications Surveys &

Tutorials.

3. A. Feriani, A. Refaey and E. Hossain, “Tracking Pandemics: a MEC-enabled IoT

EcosysTem with Learning Capability,” IEEE Internet of Things Magazine.

1.4 Thesis Organization

The organization of this thesis is as follows:

• Chapter 2 presents an overview of the relevant background on RL, MORL and meta-RL;

• Chapter 3 proposes a multi-objective solution for the load balancing problem based on

meta-RL. Moreover, we extend the proposed framework using policy distillation to improve

its generalization and adaptability;

• Chapter 4 concludes the thesis while pointing out future research directions.
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Chapter 2

Background

In this chapter, we introduce preliminaries about the different techniques applied in this

thesis. We start by presenting the fundamentals of deep RL, followed by MORL and its

associated algorithms. Finally, we provide a brief overview of meta-RL concepts.

2.1 Deep Reinforcement Learning

2.1.1 Markov Decision Process

RL involves an agent interacting with an environment to solve a sequential decision-making

problem, often modeled as Markov Decision Process (MDP) [27]. An MDP is defined as

a tuple (S,A,P ,R, γ, ρ0) where S and A are the state and the action spaces respectively.

Here, P : S × A × S → [0, 1] is the probability of transiting from a state s to a state s′

after executing an action a; R : S × A 7→ R is the reward function that defines the agent’s

immediate reward for executing an action a at a state s; γ ∈ [0, 1] is a discount factor and

ρ0 : S → [0, 1] is the initial state distribution of the environment.

Given a state s, the agent takes an action a transiting the environment to a new state s′

given by P(·|s, a). The agent aims to find a policy π that maximizes its expected return r̂

9



Chapter 2. Background

defined as the expected sum of discounted rewards over time:

r̂ = E

[
∞∑
t=0

γtR(s, a)

∣∣∣∣∣ a ∼ π(·|s), s0 ∼ ρ0

]
.

Under a given policy π, we can define the state-dependent value function as the expected

accumulative rewards staring from any given state s:

V π(s) = E

[
∞∑
t=0

γtR(st, at)

∣∣∣∣∣ at ∼ π(·|st), s0 = s

]
.

The state-action value function specifies the value of taking an action a at a given state s

and following the policy π thereafter. It is expressed as follows:

Qπ(s, a) = E

[
∞∑
t=0

γtR(st, at)

∣∣∣∣∣ at ∼ π(·|st), s0 = s, a0 = a

]
.

In this thesis, the agent’s goal is to learn a deterministic policy to automatically adjust

the load balancing parameters such that the network performance metrics are maximized.

In what follows, we overview a category of model-free RL algorithms called policy-based

methods that will be used in subsequent chapters. We refer the reader to [40] for a detailed

overview of different RL algorithms.

2.1.2 Policy-Based Algorithms

Policy-based methods aim to directly learn a parameterized policy πθ, where θ are the policy

parameters, by maximizing the agent’s expected long-term reward J as in

J(θ) = E

[
∞∑
t=0

γtR(st, at)

∣∣∣∣∣s0 ∼ ρ0, at ∼ πθ, st+1 ∼ P(st, at)

]
, (2.1)

In Policy Gradient (PG) methods [41], the optimal parameters θ∗ are learned by performing

gradient ascent on the objective J . Using the PG theorem [41], the policy gradients are

expressed as in (2.2) and estimated using trajectories τ = {(st, at, rt)}Tt=0 collected under the

10



Chapter 2. Background

current policy:

∇θJ(θ) = Eτ

[
H∑
t=0

∇ log πθ(at|st)Qθ(st, at)

]
, (2.2)

where H refers to the episode horizon. For the rest of this chapter, we replace Qπθ by Qθ

for brevity. To estimate the Qθ function in Eq. 2.2, several methods are proposed. The

REINFORCE algorithm [42] uses the rewards-to-go defined as
∑T

k=tR(sk, ak). The major

caveats of the REINFORCE algorithm are i) that it is well-defined for episodic problems

only and ii) it suffers from high gradient variance. To overcome these challenges, actor-critic

methods learn an approximation of Qθ. The learned Qθ, often called critic, reduces the

variance of the gradient estimates but introduces bias. Generalized Advantage Estimation

(GAE) [43] is proposed to reduce this bias based on the idea of n-step returns [27]. In what

follows, we will briefly summarize the algorithms used in the implementation of our solution.

PG algorithms suffer from sample inefficiency since only one gradient update is performed

using the collected trajectories τ . Besides, they are sensitive to the choice of the learning rate

since it affects the training performance and can alter the state visitation distribution. This

motivates the Trust Region Policy Optimization (TRPO) method [44] where the following

constrained optimization problem is solved at each iteration:

θk+1 = arg max
θ

L(θ) = Es∼ρθk ,a∼πθk

[
πθ(a|s)
πθk(a|s)

Aθk(s, a)

]
(2.3)

s.t. Es∼ρθk [DKL(πθk(.|s)||πθ(.|s))] ≤ δ, (2.4)

where ρθ = ρπθ refer to the state-visitation distribution induced by πθ, δ is the trust region

radius which controls how much the policy is allowed to change per iteration and DKL is

the Kullback–Leibler divergence. The original formulation of the TRPO algorithm uses

the natural gradients [45] as descent direction and a second-order Taylor expansion of the

constraint, thereby yielding to the following policy update rule:

θk+1 = θk +

√
2 δ

∇θLT (θ)F−1 ∇θL(θ)
F−1 ∇θL(θ), (2.5)
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where I refers to the Fisher information matrix. To avoid the expensive inversion of the

Fisher matrix, a practical implementation based on the conjugate gradient method [46] is

proposed in the original paper. In a similar vein, Proximal Policy Optimization (PPO) [47]

algorithm solves the same optimization problem as TRPO but proposes a simpler formulation

by introducing a new surrogate loss function:

LPPO(θ) = min
θ

[
πθ(a|s)
πθk(a|s)

Aθk(s, a), clip

(
πθ(a|s)
πθk(a|s)

, 1− δ, 1 + δ

)
Aθk(s, a)

]
,

where “clip” is a function used to keep the value of the ratio πθ(a|s)
πθk (a|s) between 1− δ and 1 + δ

to penalize the new policy if it gets far from the old policy.

2.2 Multi-Objective Reinforcement Learning

The aforementioned single-agent RL framework aims to solve sequential decision-making

problems where the agent’s actions are evaluated using a single, scalar reward function. In

several wireless communication problems, it is possible to construct a scalar reward function,

e.g., beamforming optimization problem where the agent aims to maximize the sum-rate of

the users. However, several other problems are inherently formulated using multiple, often

conflicting objectives, e.g., the task offloading problem in a mobile edge computing system,

the agent should minimize the latency while maximizing the energy efficiency. In this context,

MORL is a more suitable tool to solve control problems where multiple conflicting objectives

are optimized.

2.2.1 Multi-Objective Markov Decision Process

An MORL problem is formulated as a Multi-Objective Markov Decision Process (MOMDP)

which is an extension of the MDP framework. Formally, an MOMDP is presented by a tuple

(S,A,P ,R, γ, ρ0) where S,A,P , γ and ρ0 are as defined in Section 2.1.1. The reward func-

tion R : S ×A 7→ Rm returns a vector of m rewards, corresponding to each objective, where
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m is the total number of objectives. Hence, for a given policy π, the expected discounted

return is defined as Jπ = [Jπ1 , . . . , J
π
m] where

Jπi = E

[
T∑
t=0

γtRi(st, at)

∣∣∣∣∣s0 ∼ ρ0, at ∼ π, st+1 ∼ P(st, at)

]
, (2.6)

Maximizing the expected discounted return Jπ involves finding policies optimal with respect

to (w.r.t) all the objectives by solving the following optimization problem:

max
π

Jπ = max
π

[Jπ1 , . . . , J
π
m]

To compute the optimal policies for the problem above, we resort to multi-objective opti-

mization (MOO) that we will describe in the next section.

2.2.2 Multi-Objective Optimization

MOO tackles the simultaneous optimization of multiple, possibly conflicting objectives. For-

mally, an MOO problem is formulated as

max
π

F(π) = max[F1(π), . . . , Fm(π)],

where Fi(·) represents the ith objective function. In the MORL problem defined in Eq. 2.6,

the ith objective function corresponds to the expected discounted return for ith objective,

i.e., Fi(π) = Jπi . When the objectives Fi are conflicting, a unique optimal solution cannot be

computed since it can either maximize one of the objectives or achieve a trade-off between

them. Therefore, MORL algorithms seek to compute a set of control policies that are optimal

for different trade-offs between the objectives. To evaluate the optimality of the agent

policies, the concept of dominance is often adopted to identify the set of non-dominated

solutions:

Definition 1. A policy π strictly-dominates another policy π′ if it has higher values in all

the objectives and a strictly higher value in at least one objective [48]. That is to say:

π > π′ ⇐⇒ ∀i, Fi(π) ≥ Fi(π
′) ∧ ∃i, Fi(π) > Fi(π

′). (2.7)
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A policy π is said to be Pareto optimal or non-dominated if it is not strictly-dominated by

any other policy. Furthermore, a policy π weakly-dominates another policy π′ (i.e., π ≥ π′)

if it verifies:

∀i, Fi(π) ≥ Fi(π
′).

Definition 2. The Pareto front F is the image of the set of the Pareto optimal policies in

the objective space [34]:

F = {F (π) | ∃! π′, π′ > π} . (2.8)

In Fig. 2.1, we illustrate an example of the Pareto dominance and Pareto front concepts

for a two objective setting. The policy C in Fig. 2.1(a) is dominated by the policies A and

B. However, A and B do not dominate each other. To construct the Pareto front, all the

dominated solutions (marked in gray in 2.1(b)) are discarded and only the non-dominated

policies are included (marked in black in 2.1(b)). For real-world problems, it is not plausible

to compute the exact Pareto front. Therefore, MOO aims to obtain the set of solutions that

best approximates the optimal Pareto front. In the next section, we will detail different

MORL algorithms to approximate the Pareto front.

(a) Pareto dominance. (b) Pareto front

Figure 2.1: Illustration of Pareto dominance and Pareto front concepts [1]
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2.2.3 Algorithms

There are three distinct approaches to solve MORL problems: single-policy (e.g., [35, 36]),

multiple-policy (e.g., [37–39]) and meta-policy (e.g., [23]) methods which we discussed here-

after to put our contribution in a proper perspective.

Single-policy approaches: This family converts the MOMDP to an MDP by applying a

scalarization function [49] and solve the resulted MDP using traditional RL methods.

Definition 3. A scalarization function f converts a vector of multiple objectives F (π) to a

scalar value given a weight vector or a preference ω:

Fω(π) = f(F (π),ω). (2.9)

A common choice of the scalarization function f is the linear scalarization function where

the weighted-sum of the objectives’ values and a non-negative weight vector ω is calculated

as follows

Fω(π) = ω · F (π). (2.10)

Each weight ωi corresponds to the relative importance of each objective Fi. The drawbacks

of the scalarization approach are four-fold [50]: i) it is not always feasible to know the exact

preference vector before the learning phase, ii) the selection of an exact preference vector

requires expert and accurate knowledge of the problem, iii) a single weight vector may not

cover all possible trade-offs between the objectives, especially in problems characterized with

high variability such as wireless communication problems and iv) the linear scalarization

approach cannot find policies in the non-convex region of the Pareto front because it only

computes a convex combination of the objectives. This motivates other methods to solve

MOMDPs where no specific weight vector is known in advance.

Multi-policy approaches: This category of methods aim to learn multiple non-dominated

policies at once to approximate the Pareto front. Since the computation of the exact Pareto

15



Chapter 2. Background

front is often intractable, there are metrics to measure the quality of the approximated Pareto

front. The most well-known metric is called the hypervolume indicator [51] which quantifies

the uniformity of the solution distribution.

Definition 4. Given a reference point q ∈ Rm, the hypervolume indicator H(F) measures

the region weakly-dominated by F and bounded by q, i.e.:

H(F) = Λ({z ∈ Rm | ∃p ∈ F : p ≥ z ≥ q} , (2.11)

where Λ(.) is the Lebesgue measure.

𝐹1

𝐹2

Pareto front

reference point

Pareto approximation

Figure 2.2: Illustration of the hypervolume indicator in 2-objective space : the area (shaded)

dominated by the Pareto front approximation and dominating the reference point. Inspired

from [2]

Meta-policy approaches: This is the third and last category of MORL solutions. It

consists in learning a general policy or a meta-policy that can quickly adapt to new trade-offs

between the objectives [23]. By randomly sampling tasks from a given distribution over the

objective preferences, the agent learns a meta-policy to maximize the performance on these

training tasks. This approach does not explicitly approximate the Pareto set. Alternatively,
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the meta-policy is finetuned for different preferences for a number of iterations to compute

the Pareto front. The work in this thesis falls into this category where we propose the first

meta-based MORL solution to solve the multi-objective load balancing problem in wireless

communication systems.

2.3 Meta-Reinforcement Learning

Data efficiency is one of the core challenges of real-world deployment of RL algorithms [52].

Indeed, an RL algorithm, especially an on-policy method, requires a dramatic number of

interactions to converge to an optimal solution. In contrast, humans can learn to perform

new tasks with a limited amount of samples since they rely on their past experiences to

successfully learn new skills. Is it possible to design an RL algorithm that can leverage

knowledge from previous experiences to rapidly generalize to new/unseen tasks with few

training examples? This is the motivation behind the meta-learning or the “learning to

learn” paradigm [20,21].

In traditional RL, the agent aims to solve one MDP. However, in meta-RL, the agent

learns a meta-policy that solves multiple tasks from a given distribution. The key objective

is to generalize over a distribution of tasks and not a distribution of data instances sampled

from a specific task. Formally, the learning procedure involves two steps and two task sets:

the meta-training during which the agent is trained on a set of meta-training tasks Ttrain
and meta-testing or finetuning where the agent is evaluated on a set of test tasks Ttest. The

train and test task sets are assumed to be drawn from the same distribution p(T ). Each task

Ti is an MDP given by (S,A,Pi,Ri, γ). Note that the tasks can have different dynamics

and reward functions. We assume that each task Ti has training and validation datasets

Di = {Dtraini ,Dvali }. In the context of RL, these datasets are the collected trajectories in the

environment governed by the task MDP.

Let θ be the parameters of the meta-policy. The goal for each task is to learn task-
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specific parameters θi = Alg(θ,Dtraini ) starting from θ using Dtraini such that the task loss Li
on the validation set Dvali is minimized. In this work, we will focus on one class of meta-RL

algorithms which is gradient-based methods. The training phase of these methods can be

formulated as a bi-level optimization problem [53] as follows:

θ∗meta =

outer-level︷ ︸︸ ︷
arg min

θ
L(θ), (2.12)

in which L(θ) =
1

|Ttrain|

|Ttrain|∑
i=1

Li

Alg(θ,Dtraini )︸ ︷︷ ︸
inner-level

,Dvali

 .

Model Agnostic Meta Learning (MAML) [22] is a well-known gradient-based meta-RL al-

gorithm where the inner-level is solved using one (or multiple) gradient descent step(s) as

follows:

θi = Alg(θ,Dtraini ) = θ − β∇θ Li(θ,Dtraini ). (2.13)

where β is a learning rate.

In the meta-testing phase, the trained meta-policy πθ can be finetuned to tasks Ti ∈ Ttest
by solving the inner-level problem using (2.13). The key objective is to learn a good model

initialization that can be quickly adapted to new tasks with few gradient steps and performs

well on the testing tasks.
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Chapter 3

Communication Load Balancing via

Meta Multi-Objective Reinforcement

Learning

Load balancing has emerged as a critical technique to deal with spatio-temporal load fluctua-

tions by ensuring a more efficient and even resource allocation. This chapter proposes a new

load balancing solution based on MORL and meta-RL techniques. The main contributions

are as follows:

• We propose a novel RL-based load balancing framework that simultaneously maximizes

conflicting network KPIs without using prefixed preferences. To this end, we first formulate

the load balancing problem as an MOMDP to handle different trade-offs between the KPIs;

• To solve the underlying MOMDP problem, we opted for a meta-RL based algorithm. This

choice is motivated by the data efficiency of this approach enabling the quick adaptation

to new trade-offs using few environment interactions and gradient steps;

• We modify and extend the vanilla meta-training loop and propose a new technique based
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on policy distillation to guide the meta-policy learning process and improve its general-

ization for different traffic scenarios;

• We demonstrate the effectiveness of our framework on realistic traffic scenarios. Our

solution i) outperforms existing rule-based and single-objective load balancing methods,

ii) computes better Pareto front approximations compared to several mutli-policy MORL

algorithms, and iii) quickly adapts to new trade-offs.

The rest of the chapter is organized as follows: the system model is presented in Section

3.1. Section 3.2 briefly introduces the considered load balancing control mechanisms. In

Section 3.3, the problem formulation of the MOMDP is described. The proposed meta

multi-objective framework for load balancing is detailed in Section 3.4. Finally, we provide

a detailed description of the experimental setup in Section 3.5, followed by an exhaustive

numerical results in Section 3.6.

3.1 System Model

3.1.1 Network Topology

We consider a multi-band downlink Orthogonal Frequency Division Multiplexing (OFDM)

network modeled as a regular grid following a hexagonal layout. It consists of M macro-

sites, equipped with M macro-eNBs with inter-site distance D. Each macro-site is three-fold

sectorized and each sector operates on Nc frequency bands.

Each user is served by one cell Ci,j,b where i, j and b are the eNB, the sector and the

frequency band respectively. Both the frequency bands and bandwidths are homogeneous

for the whole network, meaning that Ci,j,b has the same carrier frequency and bandwidth for

any sector j ∈ [3] and any eNB i ∈ [M ]. Each geographic macro-site operates 3 ×Nc cells.

We denote by C the total number of cells in the network. Figure 3.1 depicts an example of

the considered network layout.
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In this chapter, we restrict our study to the downlink while considering co-channel in-

terference based on varying traffic demand per area. It is assumed that the time is slotted

in Transmission Time Intervals (TTIs) of a fixed duration where at most one user can be

served over each sub-carrier.

Figure 3.1: Hexagonal macro-cell with inter-site distance D layout, M = 7 macro-sites and

Nc = 4 frequencies, per sector. UEs are uniformly distributed.

3.1.2 Propagation Model

The macro-sites deploy directional antennas with a two-dimensional radiation pattern. As

in [3], the antenna gain is expressed as

G(ψ, ϕ) = −min {GH(ψ) +GV (ϕ), Gm} , (3.1)
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where ψ and ϕ are the azimuth and elevation angles between the transmitter and receive

antennas, respectively, computed using geometric locations. GH and GV refer to the hori-

zontal and vertical antenna patterns defined in [3] and Gm is the maximum attenuation. We

assume the UEs have antennas with omni-directional radiation pattern with 0 dBi antenna

gain. Thus, the total received power, in dBm, for a user u served by a cell c = Ci,j,b is defined

as

P rx
c,u = P tx

c +Gc,u − Ld + Xσ − Lp, (3.2)

where P tx
c is the transmitted power in dBm, Gc,u is the antenna gain, Ld is the path loss in

dB, Xσ is the shadow fading parameter modeled as a zero-mean Gaussian random variable

with a standard deviation σ in dB and Lp is the penetration loss measured in dB. The path

loss is given by

Ld = Ld0 + 10 · ν · log10

(
d

d0

)
, (3.3)

where Ld0 is the free-space reference path loss at a distance d0, ν is the path-loss exponent,

d is the distance between the UE and its serving cell c in Km.

3.1.3 Traffic Model and Scheduling

To estimate the cell load in terms of utilized resources, we assume a file transfer protocol

traffic model [3] where users request a sequence of file transfers separated by a reading time

(see Fig. 3.2). The latter consists of the time between two successive file transfers. During

the reading time, the user is considered inactive. The reading time is modeled as a Poisson

process with mean λ and the file size is fixed to L bits.

In OFDM systems, orthogonal resource allocation is adopted within a cell such that users in

the same cell are allocated non-overlapping resources. Thus, there is no intra-cell interference.

We assume that each cell c has N tot
c physical resource blocks (PRBs) to be scheduled per
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Figure 3.2: Traffic generation model per user according to [3]

TTI. Proportional Fair scheduling algorithm is implemented to provide an optimal trade-

off between throughput and fairness [54]. The key idea of the proportional fair scheduler

is to allocate resources to the UEs according to their proportional fairness value. Given

the described traffic model and scheduling algorithm, we can characterize the signal to

interference and noise ratio (SINR) and estimate the load of each cell.

3.1.4 SINR and Load Estimation

As mentioned above, orthogonal resource allocation is assumed within a given cell, thereby

intra-cell interference does not occur. To compute the inter-cell interference, we introduce

the vector X = [X1, . . . , XC ]T such that each element Xc′ ∈ {0, 1} indicates if the cell c′ is

causing interference on a specific resource unit (i.e., PRB) used by the cell c during data

transmission to a user u. Note that we only consider interfering cells operating on the same

carrier frequency as the cell c. Thus, the SINR at the user u, served by a cell c, is expressed

as follows:

γc,u =
P rx
c,u∑

c′ 6=c P
rx
c′,u ·Xc′ +N0

, (3.4)

where N0 is the additive white Gaussian noise power in dBm. Therefore, the required PRBs

to meet the demand of the user u is

Nu =
Ru

B log2 (1 + γc,u)
, (3.5)
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where B is the bandwidth of one PRB and Ru is the required data rate by the user u.

Consequently, the total cell load, measured in terms of PRBs, is given by

ρc =

∑
u∈Uc Nu

N tot
c

, (3.6)

where Uc is the set of scheduled users in cell c. Using this definition of the cell load, it is

straightforward to observe that the higher the resource block utilization ratio is, the more

crowded the cell is. When a cell c completely utilizes its available resources (ρc close to 1),

its users will either experience low throughput or their connections can be dropped. Thus,

load balancing can improve the network resource utilization by offloading UEs from the cells

experiencing high load to other under-loaded cells.

3.2 Load Balancing Mechanisms

In LTE, UEs can be in one of the two RRC states : RRC idle or RRC connected. RRC

idle UEs perform neighboring cell measurements and cell re-selections while monitoring a

paging channel to detect incoming calls. When a UE switches to an RRC connected state, it

becomes able to send and receive data from the network, measure channel quality, and report

neighboring cell measurements, measurement reports, and feedback information. Amongst

the measurements reported by RRC connected UEs, Reference Signal Receive Power (RSRP)

and Reference Signal Receive Quality (RSRQ) are key quantities used in LTE for HO trig-

gering events [55]. We further consider two types of RRC connected UEs: active UEs are

UEs undergoing data reception or transfer. Otherwise, the UEs are considered inactive. As

mentioned before, during inter-file arrival time, the UEs are considered inactive. It is pos-

sible to switch from an RRC connected state to an RRC idle state. If the inter-file arrival

time is larger than a given inactivity time, the state of the UE changes from inactive to idle.

Two types of HO/cell re-selection can be triggered: intra-frequency where the UE moves

from one sector to another without changing the serving frequency band, and inter-frequency
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which consists in changing the UE’s serving frequency band and possibly the serving sector

depending on the user mobility (see Fig. 3.1). In this work, we will focus on inter-frequency

load balancing instead of intra-frequency since the former is preferred when i) a strong

interference exists, the intra-frequency load balancing will not help because the UE will suffer

from the same level of interference and ii) the serving frequency suffers from a coverage hole.

For the rest of the thesis, we denote by c and t the indices of the serving and target cells of

a given UE, respectively, and M refers to the RSRP/RSRQ measurements.

3.2.1 Idle Model Load Balancing (IMLB)

When a UE is in idle mode, it needs to select which cell to camp on. The objective of IMLB or

cell re-selection is to guarantee that the UE camps on the best cell in terms of radio conditions

measured by the RSRP or RSRQ (see 3GPP TS 38.304 for more details). In multi-band

LTE systems, frequency bands have different priorities and inter-frequency cell re-selection

consists in redirecting the UEs to the highest priority frequency band available. Indeed, it is

possible to indicate a specific priority for an idle UE through the RRC Connection Release

message.

Formally, IMLB is triggered when the load of the current serving cell exceeds a given

threshold T IMLB
c and the target neighboring cell t is selected such that:

Mt > Oc,t,

where Oc,t is a re-selection offset between the two cells. Once the target cell is selected, its

re-selection priority is set to the maximum value. Thus, when the idle UE connects to the

network, it will be associated with the selected cell. Consequently, adjusting the re-selection

offsets helps redistribute the idle UEs and avoid future congestion when they are activated.
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3.2.2 Connected Mode Load Balancing (CULB)

In the RRC connected mode, the UEs are constantly measuring the channel quality between

their serving and neighboring cells. Based on these measurement reports, congested cells

can redirect UEs to other less-loaded cells through HO to achieve better service quality.

When the reported RSRP and/or RSRQ measurements satisfy certain event conditions, HO

is triggered. In this work, we will consider inter-frequency HO triggered by A2 and A5 events.

A2 event signals if the channel quality of the serving cell c drops below a certain threshold

and A5 event is satisfied when the channel quality of the serving cell c drops below a threshold

and the channel quality of a neighboring cell t becomes better than a threshold [55]. The

A2 event when triggered identify the overloaded cells and A5 event is used for the selection

of the HO target cell. In LTE, these conditions are defined as follows

A2 : Mc < TA2 , (3.7)

A5 : Mc < T 1
A5

and Mt > T 2
A5
, (3.8)

where TAi are event-specific thresholds that define the HO parameters. Decreasing the TA2

and T 1
A5

thresholds will result in offloading more UEs from cell c to cell t. This is why tuning

these parameters is crucial to avoid early or late handover and engender link failures.

3.3 Problem Formulation

In this section, we start by defining the network performance metrics that represent the

objectives in our multi-objective load balancing formulation. To further motivate the ne-

cessity of a multi-objective solution for the load balancing problem, we provide a use case

to demonstrate the conflict between the considered network KPIs. Afterward, we detail the

MOMDP design including the states, actions, and reward functions.

26



Chapter 3. Communication Load Balancing via Meta Multi-Objective Reinforcement
Learning

3.3.1 Network Performance Metrics

Minimum throughput (Tmin) measures the minimum throughput across cells. By max-

imizing the Tmin objective, we seek to improve the throughput of the cell with the lowest

throughput. Unlike other RL-based load balancing work, this max-min formulation ensures a

fair load balancing policy [56]. Maximizing the sum throughput may result in an undesirable

offloading decision where the cell with the worst throughput is sacrificed (see the motivating

example below).

Tmin = min
c∈C

Tc
∆t
, (3.9)

where Tc is the estimated value of the total throughput of the cell c measured in megabits

per second during a fixed interval of time ∆t;

Standard deviation of the throughput (Tstd) measures the performance gap and the

resource unbalance between the cells. To achieve an even distribution of the resources, Tstd

should be minimized.

Tstd =

√√√√ 1

C

∑
c∈C

(
Tc
∆t
− T̄

)2

, (3.10)

where T̄ is the average throughput over all cells.

Although both KPIs are constructed to improve the user experience, they can be conflict-

ing. To showcase this conflict, consider the example of one sector with fours cells of different

coverage ranges as illustrated in Fig. 3.3. When most of the UEs reside far from the eNB

and can only connect to the two cells with the largest coverage area (cells 3 and 4), these two

cells will have low throughput, while the other cells (1 and 2) with smaller coverage can have

high throughput (Fig. 3.3-a). On one hand, maximizing the Tmin objective only will result

in offloading users from cell 4 to cell 3 (Fig. 3.3-b). On the other hand, a naive solution to

minimize the Tstd objective will relieve one of the low throughput cells, e.g., cell 3, by moving
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Figure 3.3: An example of the trade-off between the Tmin and Tstd objectives.

most of its UEs to cell 4 (Fig. 3.3-c). This will increase the throughput of cell 3, but it will

also make cell 4 more congested, thereby decreasing the Tmin metric. Finding a solution

that can simultaneously improve Tmin and reduce Tstd is challenging, which highlights the

importance of a multi-objective solution.

Consequently, we propose the following multi-objective load balancing problem:

maximize

[
Tmin,

1

Tstd

]
(3.11)

s.t.
∑
u∈Uc

Nu ≤ N tot
c , ∀ c ∈ [C].

3.3.2 MOMDP Formulation

We now propose the following MOMDP formulation for the load problem (3.11):

• State: The state contains i) the number of active UEs per cell, ii) traffic load for each

cell ρc, and iii) the throughput per cell Tc. Thus, the state space is continuous and its

dimension is 3C;
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• Action: We simultaneously control IMLB and CMLB parameters. Thus, the action is a

vector of re-selection/HO parameters Oc,t, T
1
A5
, T 2

A5
and TA2 as introduced in Section 3.2;

• Reward: We focus on the two objectives defined in Eqs. 3.9 and 3.10. Since these

metrics have different scales, we constructed scaled reward functions for each performance

indicator. Ri is the reward for the i−th objective to optimize

R1 =
1

4.9
Tmin

R2 =
1

2.4 · (1 + Tstd)
.

To select the scaling coefficients in the reward functions R1 and R2, we perform a grid

search over multiple possible scaling factors. We pick the coefficients that result in the

best performance in terms of reward.

3.4 Proposed Solution

After formalizing the load balancing problem as MOMDP, we can readily apply the MORL

algorithms detailed in Section 2.2.3. We decided to adopt an approach based on meta-RL

since our goal is not only to find Pareto-optimal policies but to quickly adapt to new trade-

offs between the objectives. Load balancing is a challenging real-world problem especially

due to the constant changes in the wireless environment, user mobility, and traffic patterns.

Consequently, the trade-offs between the objectives need to vary to accommodate these

changes, hence the importance of the rapid adaptation in the design of our multi-objective

load balancing framework.

3.4.1 Meta-RL for Load Balancing

Our first solution is a gradient-based meta-RL framework inspired from the MAML algorithm

As explained in chapter 2, the training process of MAML interleaves two optimization steps
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as depicted in Fig. 3.4: i) a task adaptation phase where a number of policies are learned

starting from the meta-policy parameters, ii) a meta-adaptation phase that adjusts the

meta-parameters using trajectories sampled from the adapted policies. These two steps are

repeated for a fixed number of meta-iterations Nmeta [22].

Figure 3.4: Multi-objective load balancing solution based on meta-RL. θk denotes the meta-

parameters at a given meta-iteration k.

Once the training is finished, the meta-policy can be used as initialization and finetuned

for a number of gradient steps to approximate the Pareto front. We will call this step as the

finetuning phase. In addition, the meta-policy is an efficient starting point to quickly learn

optimal solutions for new tasks or preferences. In the literature, different nomenclatures are

attributed to the two steps of the meta-training. In this work, we opted for task adaptation

to refer to the inner-level problem and meta-adaptation for the outer-level optimization

problem. Algorithm 1 summarizes the steps of our solution.
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Algorithm 1 Meta-RL for Multi-Objective Load Balancing

1: Input: p(ω): the preferences distribution, Nmeta: number of meta-iterations, N : number

of tasks per meta-iteration, K: number of trajectories sampled per task.

2: Initialize meta-policy πθ randomly or using θPD

3: for t = 0, ..., Nmeta do

4: Task Adaptation

5: Sample N preference vectors ωi ∼ p(ω);

6: for each weight vector ωi do

7: Sample K trajectories Dtraini using the meta-policy πθ

8: Estimate ∇θ Li(θ,ωi) using Dtraini

9: Compute the adapted parameters θi using (3.13)

10: Collect trajectories Dvali using the adapted policies πθi in Ti
11: end for

12: Meta Adaptation

13: Update meta-policy with Dvali and ωi using (3.14)

14: end for

15: Finetuning: Fine-tune the meta-policy for a number of iterations using (3.13) to ap-

proximate the Pareto front.

Task Adaptation

In this phase, N preference vectors are randomly sampled from a specific distribution p(ω)

such that each weight element ωj is positive and
∑m

j=0 ωj = 1. Note that each preference ωi

corresponds to a task Ti where the reward function is given by
∑

i ωiRi. In the rest of the

thesis, we will use the terms preference and task interchangeably.

For each task, a policy is updated for a limited number of gradient steps using the meta-

parameters θ as initialization.
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The objective is to minimize the following inner loss Li

Li(θ,ωi) = −E(st,at)∼πθ

[ H∑
t=0

ω>i (r̂i(st, at)−Vi(st))

]
, (3.12)

where r̂ is the return and Vi is the estimated value function for the task Ti. To estimate

the gradients of the inner loss in 3.12, trajectory data Dtraini is collected for each task Ti
by following the meta-policy πθ in the corresponding MDP. The task-specific policies θi are

updated using one or more gradient steps as follows

θi 7→ θi − β ∇θ Li(θ;ωi), (3.13)

where β is the step size for the task adaptation phase.

Meta-Adaptation

The meta-learner aggregates trajectories Dvali sampled using the obtained policies from the

previous step and adjusts the meta-policy parameters θ by differentiating through the adap-

tation phase to minimize the task-specific errors as in:

θ 7→ θ − η ∇θ

N∑
i=1

Li(θi;ωi), (3.14)

where η is the step size for the meta-adaptation phase. Note that the gradients in (3.14)

are estimated using the datasets Dvali (see Fig. 3.4). The meta-policy, learned using multiple

trade-offs, will have an inductive bias that will enable the fast adaptation to new tasks similar

to the ones used during training.

3.4.2 Meta-RL and Policy Distillation for Load Balancing

Learning a general meta-policy can be challenging due to multiple reasons. First, the task

adaptation step explained above requires collecting multiple trajectories for each task. Gen-

erally, the number of these trajectories is limited to ensure rapid adaptation with few samples.
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Further, θ and θi have the same parameter space which could be in the order of millions in

deep neural networks. In addition, learning one initial condition for a large family of tasks,

such as in our case, is not trivial.

To account for these challenges, we propose to combine policy distillation and meta-RL.

Policy distillation combines the knowledge from different tasks into a single policy that can

be used as task-specific prior to warm-start the meta-training. This will help to i) get better

task-specific policies with few samples since we assume that some of the preferences en-

countered during the task adaptation phase can be similar to the tasks used during policy

distillation, ii) explore the parameter space more efficiently in both optimization steps.

Figure 3.5: Multi-objective load balancing solution based on meta-RL and policy distillation.

θk denotes the meta-parameters at a given meta-iteration k.

As depicted in Fig. 3.5, our second solution consists of two stages. The policy distillation

stage starts by selecting p 6= N preferences {ω1, . . . ,ωp} and training p task-specific policies
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for each weight vector to maximum performance. We will refer to these task-specific policies

as teachers. Next, the trained teachers Ei are used to collect trajectories which will be saved

in separate memory buffers. The distilled policy πθPD
is learned to match the teachers’ state-

dependent action probability distributions πθEi by minimizing the Kullback-Leibler (KL)

divergence as follows:

LKL(θPD, s) =
∑
a∈A

πθEi (a|s) log

(
πθEi (a|s)
πθPD(a|s)

)
.

The second stage of this solution is the meta-policy training starting from the distilled

parameters θPD. The same learning procedure as in the meta-RL solution is followed.

3.5 Experimental Setup

3.5.1 Simulator

Our experiments are conducted using a proprietary System Level Simulator (SLS), which

emulates traffic for 4G/5G communication networks based on real-world data. The simula-

tion layout is as illustrated in Fig. 3.1. Each sector operates on four frequency bands, leading

to 12 cells in each macro-site. We follow the same setting as in [57] and focus on balancing

the load between different frequency bands for the first sector.

Initially, UEs are uniformly distributed across the cells. These devices are either static

or undergo a random motion with a fixed velocity which is set to 3 m/s. As explained in

Section 3.1, we assume a file transfer protocol traffic model, as in 3GPPP TR.36814, where

each UE downloads a file with exponentially distributed reading time. The size of the file and

the mean of the reading time distribution are time-dependent and aligned with the traffic

patterns in the real world. Table 3.1 lists the simulation parameters.

34



Chapter 3. Communication Load Balancing via Meta Multi-Objective Reinforcement
Learning

Table 3.1: Simulation parameters

Parameters Values

Inter-site distance D 500 m

Path-loss 128.1 + 37.6 log10(d)

# of frequency bands 4

Bandwidth 20, 10, 5, 10 MHz

Number of RBs N tot 100, 50, 25, 50

Penetration loss 20 dB

Std dev. of shadowing σ 8 dB

Transmit power pt 46, 46, 46, 49 dBm

Traffic model File Transfer Protocol

Scheduler Proportional Fair

File size [0.5, 2]Mbytes

Inter-file arrival mean λ [10, 320] ms

UE velocity 3 m/s

UE mobility model Static/random motion

Thermal noise −174 dBm/Hz

∆t 60 min

3.5.2 Baselines

We consider two families of baselines summarized in Table 3.2. The first one is the single-

policy load balancing algorithms that include rule-based and single-objective RL-based meth-

ods. The second one is multi-policy algorithms allowing the comparison of the Pareto

front approximation. A detailed description of the baseline algorithms is provided in Ap-

pendix A.1.
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Table 3.2: Selected baselines

Baselines Description

Single-policy

No LB no load balancing

Rule-based LB (RuleLB) [57] uses fixed thresholds for all traffic scenarios

Adaptive LB (Adaptive) [11] adapts the load balancing parameters based

on the cells’ load measurements

RL-based LB (RL) trains an RL-based policy from scratch

starting from a random initialization

Multi-policy

Radial Algorithm (RA) [37] samples a set of weights and runs RL to op-

timize a policy for each weight

Random Selection (RS) uses a random selection strategy that uni-

formly sample weights in each iteration

Pareto-Following Algorithm (PFA) [37] samples a set of weights and policies and

gradually finetune the weight associated

with each policy to cover the whole Pareto

front

3.5.3 Model Details and Hyperparameter Settings

Our MAML implementation is based on that of Deleu [58]. The meta-policy network has

three hidden layers of 256 units each. Vanilla policy gradient algorithm (REINFORCE) [59]

is implemented to compute gradient updates in the task adaptation (i.e., Eq. 3.13), and

TRPO [44] is used for the meta-adaptation (i.e., Eq. 3.14). Similar to the work by Fin

36



Chapter 3. Communication Load Balancing via Meta Multi-Objective Reinforcement
Learning

et al. [22], the value function, used in both task and meta-adaptation phases, is a linear

feature model fitted separately for each task. The learning rate β is set to 0.1 during the

meta-training and 0.003 for the finetuning phase. The episode length is H = 24 time steps.

Only N = 5 tasks are used in each meta-iteration and, for each task, K = 10 trajectories are

sampled. The preferences are sampled from a Gaussian distribution restricted to be positive

and L1-normalized. The meta-policy is trained for Nmeta = 500 iterations.

For the policy distillation stage, the teacher and student models have the same architec-

ture as the meta-policy. In our experiments, we trained p = 3 expert policies using PPO [47].

The preferences used for policy distillation are set such that the weight on the Tmin decreases

(i.e ω1 = 0.8, 0.5, 0.2). We found that training the distilled policy for too long on the source

tasks harms the knowledge transfer to the meta-policy. This can be explained by the fact that

the distilled policy is over-fitted on source tasks. Hence, we train the distilled policy for 10

epochs on only 10 episodes for each teacher. More information about the hyper-parameters

is provided in Appendix A.2.

3.5.4 Traffic Scenarios

The proposed framework is evaluated on different traffic scenarios corresponding to different

UE settings (e.g., number and distribution per cell) and wireless environment parameters

(e.g., reading time, file size). These conditions are used by SLS to mimic the entire commu-

nication chain between the transmitter (i.e., eNB) and the receiver (i.e., UE).

In this thesis, we consider two scenarios characterized by low and high traffic conditions

as depicted in Fig. 3.6. The fourth cell in the high scenario has higher active UEs and

the highest load ratio compared to the other cells. Hence, this cell can benefit from load

balancing to evenly distribute the UEs across the other cells.

Furthermore, we examine the daily traffic pattern in terms of the number of active UEs,

cell throughput, and percentage of used PRBs by running the rule-based baseline. From
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Figure 3.6: Average traffic over one day for one sector for different traffic scenarios: (Left)

Average active UEs per cell. (Center) Average throughput per cell. (Right) Average cell

load ratio.

Fig. 3.7, we can observe the temporal variations in the traffic and recognize a surge in

network utilization, generally starting from 9 am. This is not surprising since most of the

users are active during the daytime. Note that each traffic scenario is characterized by

different peak hours. Load balancing is mostly needed during such peaks to prevent link

failures and service disconnection.

Now, we examine the status of each cell. A congested cell is characterized by a high num-

ber of active UEs, low throughput, and a high PRB utilization percentage. From Fig. 3.7(a),

for the low traffic scenario, the cell loads are comparable except for peak hours where cell

1 undergoes a sharp increase in the number of UEs and a considerable drop in through-

put. This results in a decrease in the Tmin objective. Whereas, for the high traffic scenario

(Fig. 3.7(b)), we observe that cell 4 has the lowest throughput and the highest PRB uti-

lization compared to the other cells. In addition, we notice that the high traffic scenario is

characterized by a large percentage of used PRBs compared to the low traffic case. Indeed,

the percentage of used PRBs, in the high traffic scenario, is above 50% for most of the high
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(a) Low traffic (b) High traffic

Figure 3.7: Illustration of the daily traffic pattern for each traffic scenario

utilization hours and reaches 100% for cell 4. However, all the cells in the low traffic scenario

use less than 60% of their available resources.

3.6 Numerical Results and Discussion

In this section, we study the performance of our proposed solutions and compare them

to several baselines. We will denote our vanilla meta-RL solution by MeMo-LB and our

augmented meta-RL solution with policy distillation by MeMoPD-LB.

3.6.1 Meta-policy Performance

In this section, we examine the performance of the meta-policy without further finetuning

and compare it with the rule-based load balancing approaches. We only compare with

the rule-based methods since they compute the same parameters regardless of the selected

preferences. Note that since the meta-policy is not task dependent, its performance cannot be

directly compared with RL-based methods since they are trained with a specific preference.
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The results in Table 3.3 show that load balancing has a major impact on improving

the network performance compared to the case where no load balancing is applied. Further-

more, Table 3.3 demonstrates that our proposed solutions outperform the classical rule-based

methods on both KPIs. The meta-policy of MeMo-LB achieves a relative improvement of

10% (31%) and 19% (13%) on the Tmin and Tstd objectives over the rule-based baseline for

the low (high) traffic scenario. This means that MeMo-LB can simultaneously improve

the throughput of the worst cell while maintaining a balanced load distribution. For the

high traffic scenario, a greater improvement is achieved on Tmin compared to the low traffic

scenario, which proves that the impact of load balancing depends on the traffic distribution.

Augmenting our MeMo-LB with policy distillation (MeMoPD-LB) improves the perfor-

mance on both traffic scenarios. A further improvement of 1.7% and 4.1% on the Tmin and

Tstd KPIs is obtained for the high traffic scenario and 1.5% increase on Tmin for low traffic

scenario. Hence, the knowledge transfer through policy distillation improves the generaliza-

tion of the meta-policy. This observation is consistent with other work on the impact of

knowledge distillation on multi-task learning [60].

No LB RuleLB Adapative MeMo-LB MeMoPD-LB

Low
Tmin 5.10 5.40 5.43 5.92 6.01

Tstd 4.19 4.34 4.05 3.53 3.56

High
Tmin 1.73 1.80 1.95 2.35 2.39

Tstd 5.89 4.48 4.33 3.90 3.74

Table 3.3: Evaluation of our methods and baseline algorithms on both traffic scenarios.
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3.6.2 Comparison with Single-Policy Methods

In this section, both our methods are compared to single-objective RL methods. In addition

to the network KPIs, we consider the average scalarized rewards Ravg as an evaluation metric.

Given a preference vector ω, the scalarized reward is given by R = ω1 · R1 + ω2 · R2, where

R1 and R2 are defined in Section 3.4. The evaluation process starts by sampling N test

(a) Low Traffic (b) High Traffic

Figure 3.8: Average relative improvement w.r.t. RuleLB baseline for both performance

metrics and the scalarized reward across different preferences. Error bars show one standard

deviation. Note that the adaptive method yields identical performance metrics across runs.

preferences uniformly in [0, 1] with a step of 0.1. Then, the meta-policy is finetuned using

Eq. 2.13 to compute a policy for each test preference. The number of finetuning steps is

limited to 300 gradient updates. To ensure a fair comparison, the RL baseline is also trained

for the same number of gradient steps but starting from a random initialization instead of

starting from the meta-policy.

As shown in Fig. 3.8, MeMo-LB and MeMoPD-LB significantly outperform the adaptive

and the RL baselines on both traffic scenarios. Our results also demonstrate the superiority

of the learning-based load balancing compared to the rule-based ones. By interacting with
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the system, the agent can incorporate knowledge about the network to achieve a better

performance. Compared with the RL baseline, using the meta-learning approach enables us

to improve the network performance with a great margin. This confirms that the learned

meta-policy is a better initialization than the random one [22]. Further, our results highlight

the advantage of a multi-objective solution over a single-objective one.

3.6.3 Comparison with Multi-Policy Methods

In this section, we investigate Pareto front approximations computed by our methods and

different multiple-policy MORL baselines. To do so, we sample 300 preferences evenly dis-

tributed in [0, 1] and finetuned the meta-policy up to 300 gradient steps. Our objective is

to assess how well the policies approximate the true Pareto front, and how rapidly these

policies are computed. We start by examining the hypervolume indicator to measure the

Table 3.4: The hypervolume indicator for our solutions and baseline algorithms on both

traffic scenario. The best number is in bold.

Method MeMoPD-LB MeMo-LB RA RS PFA

Low 0.92 0.82 0.76 0.67 0.75

High 2.09 1.67 1.53 1.65 1.63

quality of the computed Pareto fronts. As a reference point, we chose the performance of the

No LB baseline because it represents the lowest performance possible. The results in Table

3.4 demonstrate that our methods outperform all baselines on both traffic scenarios. For the

high traffic scenario, MeMo-LB achieves a Pareto front that is comparable to other MORL

baselines. However, MeMoPD-LB surpasses the baselines and MeMo-LB with an importance

margin. This proves again that knowledge transfer between tasks has a significant impact

on the improvement of the Pareto solutions.
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(a) Low traffic (b) High traffic

Figure 3.9: Pareto front approximation comparison for both traffic scenarios.

Figures 3.9(a) and 3.9(b) illustrate the Pareto fronts for both traffic scenarios. Recall

that the Tmin objective is maximized while the Tstd objective is minimized. Thus, the best

solutions are situated in the bottom right corner of the graphs. The RS baseline has the

lowest performance compared to the other methods and MeMoPD-LB results in Pareto

optimal solutions that strictly dominate all other solutions.

For the low traffic scenario (Fig. 3.9(a)), the RA and the PFA algorithms are able to find

solutions that cover different regions of the Pareto front. Although RA and MeMo-LB find

the same number of non-dominated solutions (Fig. 3.10(a)), the Pareto solutions computed

by MeMo-LB dominate the one found by RA, thereby yielding in a better Pareto front. Also,

we see that MeMoPD-LB finds more non-dominated solutions for this traffic scenario, which

will produce a denser Pareto front.

Regarding the high traffic scenario, we observe that the performance of MeMo-LB is

comparable to the PFA baseline and both these methods compute Pareto solutions that

cover only a part of the Pareto front. Hence, MeMo-LB encounters difficulties in more

complex tasks which emphasize the importance of our second proposed solution MeMoPD-
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LB. Indeed, MeMoPD-LB computes a better quality Pareto front than MeMo-LB with the

same number of solutions (see Fig. 3.10(b)). Also, the Pareto solutions of MeMoPD-LB are

better distributed across the Pareto front than the other methods.

(a) Low traffic (b) High Traffic

Figure 3.10: The number of non-dominated solutions found by different methods.

3.6.4 On the Impact of Policy Distillation

In the previous sections, we showcased the advantage of using a distilled policy as a task-

specific starting point for the meta-training. In this part, we put more emphasis on this

contribution and further highlight its superiority compared to the original meta-training

process.

We start by studying the data efficiency of our approach. We plot the progress of the

hypervolume indicator as a function of the number of finetuning steps. As observed in

Figs. 3.11(a) and 3.11(b), our proposed methods achieve the same performance as the best

MORL baseline after a few finetuning steps. It is seen that with policy distillation, the

quality of the Pareto front keeps improving with more gradient steps, which is not the case

for the MeMo-LB framework. With policy distillation, MeMoPD-LB can achieve better per-
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(a) Low traffic (b) High traffic

Figure 3.11: The improvements of the hypervolume indicator (y-axis) w.r.t the number of

finetuning gradient steps (x-axis). The dotted lines denote the final hypervolume of the

Pareto front estimated by the MORL baselines.

forming solutions with fewer samples and gradient steps than MeMo-LB. Consequently, our

MeMoPD-LB solution is more data efficient than MeMo-LB thanks to knowledge transfer.

Figure 3.12: The number of policies achieving higher scalarized rewards given a weight vector

Additionally, we investigate the adaptation capabilities of both methods by comparing
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the performance of 300 individual policies at the end of the finetuning phase. We count the

number of policies that outperform the other method in terms of scalarized rewards. As

shown in Fig. 3.12, MeMoPD-LB outperforms MeMo-LB by finding better policies with the

same number of samples and gradient steps for more than 90% of the preferences.

To summarize, the policy distillation extension has the following advantages compared

to the original meta-training process:

• Higher quality Pareto front approximations, hence better improvement on the different

objectives;

• Better sample efficiency since better performance is achieved with fewer data and

gradient steps;

• Faster adaptation for individual trade-offs.
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Conclusion

In this thesis, we have investigated the application of MORL to learn multi-objective load bal-

ancing control policies. We advocated a meta-learning approach where a general parametrized

policy is learned that can be adapted to new preferences with fewer samples and gradient

steps. The two meta-learning solutions introduced here demonstrated that the meta-learning

framework can be applied to complex, high-dimensional, and real-world control problems

even with a limited number of samples and tasks. Our experimental results confirmed that

the multi-objective approach is more effective to improve the wireless network performance

than single-policy approaches. Furthermore, we showcased that policy distillation can help

improve the generalization of the meta-policy by providing a task-specific starting point for

the meta-training.

Below, we point out several important future directions that can be further investigated

to enable the real-world deployment of our proposed solution.

Data Collection: In all our experiments, we used a system-level simulator to mimic real-

world traffic scenarios. Although this simulator provides us with data as close to real network

data as possible, this comes with a high computational cost. The more complex the traffic

scenario is, the slower the trajectory collection becomes. Therefore, it will be valuable
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to design benchmark environments that are relevant, challenging, and yet computationally

feasible. A recent attempt [61] has proposed a differentiable simulator for cellular radio

access networks that significantly speeds up the network simulation compared to existing

ones.

Overcoming under-fitting: Since our proposed solution is based on meta-learning, it in-

herits the challenges faced by the base meta-learning algorithm [62]. Namely, the MAML

method relies on policy-gradient algorithms known for their sample inefficiency. Conse-

quently, such methods require more samples and environment interactions to achieve their

best performance. In our experiments, we limited the number of tasks and sampled trajec-

tories for each task, thereby during the adaptation phase, it may not be possible to achieve

good performance on each task. Using distilled policy as an adaptation starting point has sig-

nificantly improved the general performance of the meta-policy. Other knowledge transfer or

continual learning techniques can be explored to speed up the two steps of the meta-training

loop and avoid under-fitting.

Robustness and Safety: Since our aim is to build solutions for a real-world problem, a

natural continuation of this work is to investigate and mitigate the robustness and safety

challenges related to meta-learning and RL in general. Amongst these challenges is the

robustness against adversarial attacks. As an example, the authors in [63] developed specific

attacks to manipulate the training data used by the meta-learners and showcased a significant

drop in performance due to such attacks. Furthermore, meta-learning algorithms are known

to generalize well to tasks that are similar to the ones observed in the training. However,

real-world applications experience unexpected changes and perturbations in the environment

and system dynamics. For instance, wireless networks are characterized by high variability,

especially due to the mobility of the end-users. Hence, developing learning algorithms robust

to uncertainties, noise as well as distributional shift is still an open research problem and a

promising future direction.

Multi-agent load balancing: We proposed solutions for multi-objective load balancing for
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a single sector. Another promising direction is to extend this work to a multi-agent control

problem. For instance, eNBs can cooperate together via communication or other coordina-

tion mechanisms to avoid potential problems related to load balancing such as interference.
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Experimental Setup Details

A.1 Baselines

This section is dedicated to provide more details for the baseline methods listed in Table 3.2.

A.1.1 Single Objective Baselines

The first baseline is the rule-based algorithm which is currently deployed in the real network.

This is why the reported relative improvements are computed w.r.t this baseline. We also

consider the adaptive rule-based algorithm which is an improved version of the rule-based

baseline. For the RL baseline, we follow the common procedure as in previous work [22,64].

Rule-Based Load Balancing: It relies on fixed control parameters. These values are set

by the operator based on prior knowledge of the network traffic. For the whole episode, the

prefixed values do not change.

Adaptive Rule-Based Load Balancing [11]: It adjusts the load balancing parameters

based on the load differences between the neighboring cells. We measure the cell load in terms

of resource block utilization ratio. For pairwise parameters such as Oc,t (see Section 3.2), the
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load difference is computed between each cell pair (c, t). For individual cell parameters like

TA2 , T
1
A5

and T 2
A5

(see Section 3.2), the load difference is measured as the difference between

the load of cell c and the mean load of its neighboring cells. For simplicity, we refer to the

load difference as ρdiff and the re-selection or HO parameters by X. If the load difference

ρdiff surpasses a given threshold ρth, the load balancing parameters are updated by adding

or subtracting an adaptive step-size ∆ as follows:

Xm+1 =


Xm −∆; ρdiff > ρth

Xm + ∆; ρdiff < −ρth

Xm; |ρdiff| ≤ ρth.

(A.1)

The adaptive step-size ∆ is modeled as a power function of the load difference such that

when the difference between cells increases, the step size becomes higher:

∆ =
(ρdiff − ρth)n

1− ρth

(Xmax −Xps) +Xps, (A.2)

where Xmax is the maximum value for the parameter X and Xps is the minimal step size. In

our experiments, we used ρth = 0.25, n = 1, and Xps = 1 dB. The Algorithm 2 summarizes

the adaptive rule-based algorithm considered in this work.

Algorithm 2 Adaptive Rule-Based Load Balancing

1: Input: ρth: load difference threshold, n: power for the step-size update, H: episode

length

2: Initialize load balancing parameters: Oc,n, TA2 , T
1
A5

and T 2
A5

3: for t = 0, ..., H do

4: Compute the step size ∆ as in Eq. A.2

5: Update the load balancing parameters using Eq. A.1

6: end for

7: Output: Updated load balancing parameters
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A.1.2 Multi-Objective Baselines

All the considered MORL baselines follow an evolutionary learning process. It starts with

a warm-up stage where N policies are randomly initialized and N evenly distributed non-

negative weights. For a specific number of iterations Mw, each policy-weight pair (or task)

is optimized via the multi-objective policy gradient (MOPG) algorithm [2] described in

Algorithm 3. The obtained policies after the warm-up stage correspond to the first generation

of the evolutionary algorithm. Afterward, the evolutionary stage starts. Each generation

N policy-weight pairs are selected using a specific task selection procedure. The selected

tasks are trained by MOPG for a specific number of iterations to generate new (or offspring)

policies that will be added to the policy population. The Pareto set is constructed by storing

all non-dominated intermediate policies. The evolutionary stage terminates when the total

number of environment steps is achieved. Our implementation is based on the one provided

in [2]. The different MORL baselines only differ in the task selection procedure:

• RA: in each generation, the policies are replaced by their offspring policies. The

sampled weights do not change;

• RS: in each generation, new policies and weight vectors are randomly sampled;

• PFA: similar to RA, the policy in each generation is replaced by its offspring. However,

the weights are changed with a fixed step size to cover all the Pareto front.
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Algorithm 3 Evolutionary Multi-Objective RL

1: Input: N : Number of policies/weights, Mw: Number of warm-up iterations, Me: Num-

ber of iteration of the evolutionary stage, Nmax: total number of env steps

2: Initialize policy population, the Pareto set F

3: Warm-up Stage

4: Randomly generate N policy-weight pairs {(πi,ωi)}Ni=0

5: For each pair, run MOPG for Mw iterations and obtain the updated policy

6: Update the policy population and the Pareto set F

7: Evolutionary Stage

8: while env steps < Nmax do

9: Select N policy-weight pairs using a selection function

10: Run MOPG for Me iterations and obtain the offspring policies

11: Update the policy population and the Pareto set F

12: end while

13: Output: Approximated Pareto set F
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A.2 Training Details

For all learning-based baselines (single and multi-objective methods), the policy is a three-

layer neural network. Each hidden layer has 256 units and activated with tanh function. For

our meta-RL based methods, we used shared parameters including the

• N : the number of sampled preferences in each meta-iteration;

• K: the number of trajectories sampled for each task;

• Nmeta: the total number of meta-iterations;

• grad steps: the number of gradient steps in the adaptation phase;

• β: the task adaptation learning rate;

• TRPO: all other hyperparameters for the TRPO algorithm

The optimization of the meta-policy is based on the TRPO algorithm, for which we report

all training parameters in Table A.2. The shared hyperparamters of the MAML algorithm

are summarized in Table A.1.

For the policy distillation, each teacher policy is trained using PPO. Our implementation

is based on the open-source codebase [65] and the training parameters are summarized in

Table A.4.

Regarding the multi-objective baselines, they are trained for the same number of total

environment steps as our meta-policy. Knowing that each episode has 24 steps, the total

environment steps can be computed using the information in Table A.1. Each meta-iteration

involves 2 · grad steps · (N · K · 24) environment steps. The 2 factor comes from the fact

that we collected trajectories for both training and validation steps. We used the same PPO

hyperparameters as in A.4 for all the MORL baselines except for the number of environments

that we restricted to 4 to have the equivalent number of environment steps as for the meta-

training. For all the experiments, we set N = 6, Mw = 200, Me = 20 and Nmax = 200000.
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Parameter Value

N 5

K 10

Nmeta 500

β 0.1

grad steps 1

Table A.1: MAML hyperparameters

Parameter Value

KL-divergence limit δ 0.01

Conjugate Gradient iterations 10

Damping coefficient 1e-5

Line search max steps 15

Backtracking coefficient 0.8

Discount factor γ 0.97

GAE λ 0.95

Table A.2: TRPO parameters

Table A.3: Hyperparamters for the training of our proposed solutions

Parameter Value

Time-steps per actor batch 24

Number of environments 10

Learning rate 0.0003

Discount factor γ 0.97

GAE λ 0.95

Clip range 0.15

Number of epoch 10

Entropy coefficient 0.0

Value loss coefficient 0.5

Table A.4: PPO parameters for policy distillation
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