A PROGRAMMED MODEL TOR A PROVINCTAL
INPUT/OUTPUT TABLIE

```
A Mnesis
Presented To the Faculty of the Department of Economics
University of Manitoba
```

In Partial Fulfiniment
of the Requirements for the Degree
Master of Arts
by
James Hugh Duncan Smeaton
September, 3966

ABSTRACT

This thesis is presented to the Faculty of Arts, Department of Economics, in partial fulfillment for the Degree of Master of Arts.

The theme is the development of a procedure whereby a relatively inexpensive, highly aggregated provincial input/output table can be formed. It is directed toward the Economist, by whom it is assumed, the table would be compiled. The compiler is also assumed to have little or no knowledge of computer procedure, and the method by which the data is transformed to a table format by the computer is given in step-by-step layman's terms.

Chapter I gives an Introduction to the study and a layman's perspective of the input/output model. The model actually used is developed and rationalized in Chapter II. The sources and methods of gathering the raw data for the table are considered in Chapter IV and is meant as essential reading for the execution of the step-bystep procedure of Chapter IV. Chapter IV contains the detailed procedure for registering the data and arranging for and executing the computer program. Finally, Chapter V reviews the thesis and considers subsequent procedures.

There are three appendices connected with the topic. The first is a note on the historical evolution of the input/output discipline up to and including the early works of Leontief. The second contains the two basic programs referred to in Chapter IV and the last appendix describes the procedure for converting the program from Fortran II to Fortran IV - a revision necessary for executing the program on the IBM 360 line of computers.

Understanding the theory of Input/Output Analysis is a necessary but not sufficient condition of being able to actually compile such a table. Knowledge must be had not only of data sources but also of the procedure and variations on the basic model appropriate to the data available. The purpose of this paper is to outline an input/output model appropriate to provincial availability of data and to present a computerized method of compiling the required tables.

The author is indebted to the Manitoba Economic Consultative Board for the opportunity of working on such a project, and in particular for the guidance and direction of Dr. M. Cormack, Senior Economist of the Board. The experimental method of compiling the interindustry section of the Manitoba input/output table was undoubtedly the least expensive approach in the light of the circumstances although a guideline such as this paper represents would have made the task considerably easier. The emphasis in the paper then is on procedure tempered by experience rather than by theory.

The author appreciates the guidance given to him in regard to this paper by Dr. Cormack, Dr. Chen (Economics Dept. - University of Manitoba) and, not the least, his wife, whose sense of urgency caused the thesis to be completed.

TABLE OR CONTENTS

CHAPMER PACE
I. TNTRODUCMON 1
Object and Method ot Attack I
A Layman's Peaspective 5
II. THE BASLC MODEL 16
Data Cathering Methods 26
The Accounting Stacture and Aggregation 19
Producers Vexsus Pumenesen Prices 26
Imports - Exports 31
Survey of Possible Uses 36
III。 TME BASTC SOURCES OR DATA 44
Classification Scheme 44
Aggregation of Establishments 46
Some Observations 49
Commodity Classification 51
Industrial Classiricetion 53
rmpores 57
IV. THE COMPUTRR PROCRAM 58
The Computer 58
Imput/Output Media 59
Fortran 60
The Input/Output Drogram 62
Preparing the Data 63
Object-Requirement Sheets 68
Deck Description 97
CMAPTER PAOE
V. CONCIUSTON 108
Review 108
Inversion 110
Iiterature Survay 114
BIBLZOGRAPHY. 116
APPENDLX 125

INTRODUCAION

Imput/output analysis is a means whereby the economy can be looked at as an equilibrium of micro-relationships. Taken purely as an accounting framework, it is a method of categorizing and delineating the components of the economy; taken as an economic model, it is a means of tracing and quantifying total effects from a given effect. In the first sense, input/output analysis can be termed "descriptive"; in tine second, "predictive" and this distinction will be maintained throughout this paper.

The input/output accounting framework is based on two identities namely that a sector of the economy has its outputs equal to its inputs (in value terms), and that its output is equal to the uses, both industrial and final, to which it is put. The economy is thus divided into sectors in such a way as to be convenient for measurement and subsequent use. The manufacturing industry sectors normally form the bulk of an input/output table and it is this aspect with which this papur is concerned. Other sectors such as final demand categories, primary goods categories and non-manufacturing incustries are treated only in passing.

In an economic sense, the substantive assumption whereby predictions can be made, is that certain quantity (not vajue) relationships hold constant when considered as a proportion oi output. In particular, it is assumed that "produced" inputs axe a constant proportion of the using sectors output. In the base year calculations of these input proportions, or coefficients, it is assumed the vaiue relationships
reflect the quantity relationships. In a strict sense, when a "prediction" is made from these calculations, the price effect should be eliminated in order to maintain the "quantity" relationships ${ }^{(1)}$.

This paper is designed as a "handbook" for compiling a basic input/output table and in particular in collecting data and arranging it in the proper forms for the interindustry part of the table. It is written not only for the compiler but also for anyone concerned with such a project. To this end, the chapters can be looked at as a number of papers in themselves:

I - Introduction
The remainder of this chapter is directed toward the layman and is concerned with basic concepts. The compiler himself could begin at Chapter II with no loss in continuity.

II - The Accounting Framework
The model is developed in the light of available information on a provincial basis. Aggregation, transportation and trade margins, and imports, are the main points of consideration, and the model developed is reflected in the computer program of Chapter IV. The usefullness of input/output analysis is also considered. The economist considering an input/output project in the provincial context might read this to advantage; the compiler might again omit this chapter although it would probably be
(1) See page 16
useful in putting "work-flow" of the project, in its perspective.

III - The Data Sources
The suggested sources of data are considered in detail and a method of recording data is outlined. This, together with the next chapter is the compilers "handbook".

IV - The Computer Program
In developing this chapter, the assumption was made that the compiler is not, and need not be, a computer programmer. The procedure outlined in for the compiler in order to set up the data, and the program in such a way as to allow a computer operator to "run" the program directly. Included are procedure instructions for the operator as well. Emphasis is on establishing a working relationship between the compiler and the computer centre. Once the model and the data sources are accepted, the need for developing a program itself is eliminated. V - Conclusion

A procedure is outlined for developing the "inverse" a.s given both by direct inversion and by the power series approximation. Methods for deriving the model of Chapter II are considered and the procedure is gone over once again. Useful references are considered briefly.

The thesis itself is based on the "hindsight" view the author has had in working on such a project for M.E.C.B. The initial data (DATA I of Chapter IV) was entered on 10,000 keynole cards with certain information coded on holes on the perimeter of each card. The method of sorting and arranging the data - by hand - proved inefficient
in view of the availability of computer processing and the low cost of IBM cards. Again, more than twenty computer programs were developed, on an ad hoc basis, many of which proved redundant and inefficient. The program outlined in Chapter IV and V are composite programs designed for simplicity and compactness. Hopefully the compiler need know nothing more than what is outlined in Chapter IV in order to arrange the procedures with the computer centre.

The much discussed problems of joint products and secondary products have not been discussed in the paper because they have been "assumed" away in the light of the high degree of aggregation of the square (invertable) matrix. If greater detail is required or if the above problem is bothersome, the alternate Industry by Industry table (see Chapter III - section 3) may be desired. The cost of such a table would probably be considerably higher.

The remainder of this Chapter is taken up with developing the Model in basic, laymans terms.

THE LAYMAN'S PERSPECTIVE

Interindustry analysis is a relatively new field of economics. As the name would suggest, a study of this nature inquires into the interrelationships among the various productive sectors of the economy. Input/output analysis is a somewhat broader term in that the relationships of the productive with the non-productive sectors of the economy may be considered. On the model or accounting system used to display such information, the sectors (usually industry groupings) are delineated according to "likeness" of input structure.

Two basic uses of this approach to economic accounting should be made from the outset; input/output analysis can be used for either predictive or descriptive purposes, and only the former requires the traditional homogeneity-substitution assumptions. In a descriptive sense, an input/output table could be used for:
i) a method of presenting detailed statistics;
ii) a means of checking other sources of statistics;
iii) a basis for international and interregional comparisons of economic and technological structures;
iv) a data format useful for "Marketing Analysis" information. "What products in what proportion would be required to produce a given product and where, if at all, would these be available?"

In the traditional, predictive usages, an input/output table can be mathmatically manipulated so as to indicate the direct and "feedback" effects of a given change in a parameter. More precisely, such predictive uses might be:
i) tracing the total effect on resources, including laboux, and on industry output, of a change in final demand (hereafter referred to as final demand);
ii) tracing the effect of a change in a production coefficient of a given industry resulting from a change in technology, a substitition for certain input(s) (say steel replacing wood) or a change in the labour-capital content of output;
iii) tracing the effects of taxing certain commodities or resources or determining change in tax revenues as a result in change (projected) in final demand via population increase, taste changes, etc.;
iv) tracing the total effects of import replacement, of export campaigns and of resource scarcity;
v) analyzing price shifts as a result of changes in the various items mentioned above.

All of the uses outlined above will be considered in detail in the next chapter. The remainder of this chapter will be taken up with the make-up of the accounting framework and with a brief consideration of the historical development of this type of analysis.

The Accounting Framework
The basic identity on which the input/output accounting framework is based is that the total production of a sector is distributed to:
i) other sectors which "consume" this output in making their own products; and
ii) final demand sectors which include private consumption, government consumption and exports. business investment.

Let

$$
\begin{aligned}
x_{i j}= & \text { Total dollar value of product from sector " } i \text { " } \\
& \text { used in production by sector " } j \text { "; } \\
y_{i}= & \text { Final (autonomous) demand for the production of } \\
& \text { sector "i" measured as a dollar amount; } \\
x_{i}= & \text { Total dollar amount of domestic production of } \\
& \text { sector " } i \text { "; }
\end{aligned}
$$

The identity, then, is:

$$
x_{i} \quad=x_{i 1}+x_{i 2} \ldots \ldots \ldots x_{i j} \ldots x_{i n}+y_{i} \ldots \ldots \ldots(I-1)
$$

or

$$
x_{i}=\sum_{j=1}^{n} x_{i j}+y_{i}
$$

Thus, if industry " i " were the Steel Industry, then the identity states that the total production of steel is exactly equal to the sum of its uses. Note that the variable $x_{i j}(j=1)$ is included and represents the amount of steel the industry uses to produce steel. This may or may not be a zero amount. The users of steel for further production were divided up into " n " sectors where the magnitude of " n " may vary according to convenience.

A series of such equations can then be laid out:

$$
\begin{aligned}
& X_{1}=X_{11}+X_{12} \ldots \ldots+X_{1 j} \ldots \ldots X_{1 n}+Y_{i} \\
& X_{i}=X_{i l}+X_{i 2} \ldots \ldots+X_{i j} \ldots X_{i n}+Y_{i} \\
& X_{m}=x_{m l}+x_{m 2} \ldots \ldots+x_{m j} \ldots \ldots x_{m n}+Y_{m}
\end{aligned}
$$

where $j=1 \ldots n$ as before and $\quad i=1 \ldots m$

$$
n \frac{<}{y} m
$$

Note that no requirement is made that the number of sectors delineated in columns (the " j "s) need be equal to the number of sectors delineated in rows (the "i"s). If $n \neq m$ then normally the k row sector is not the same as the $k^{\text {th }}$ column sector.

These equations can now be looked at in a different way. In the above layout, they were regarded as a series of rows. They can now be looked at as a series of columns where, given a column, the "j"th one, the vector of X values for that column represents the dollar value of inputs into that $\left(j^{\text {th }}\right)$ sector.
$X_{1 j}$
${ }^{\mathrm{X}}{ }_{2 j}$
-
$X_{i j}$
X
mj
Where $X_{i j}$ represents the amount of input from row sector " i " used by column sector " j ". But these inputs are only the "produced" inputs; there are other inputs which go into the production process which are example. Let V_{j} represent the dollar total amount of these primary (non-produced) inputs into the $j^{\text {th }}$ sector. This leads to the second
identity of an input/output table, namely, that total production equals the sum of the inputs, for each producing sector.

Let

$$
x_{j}=\text { total production of the } j^{\text {th }} \text { column sector. }
$$

Then

$$
x_{j}=x_{i j}+x_{2 j} \ldots \ldots .+x_{i j} \ldots \ldots x_{m j}+v_{j} \ldots \ldots \ldots(I-3)
$$

or

$$
x_{j}=\sum_{i=1}^{m} x_{i j}+V_{j}
$$

Making, now, the usual assumption that the complete domestic economy is represented, it follows that any productive entity will be represented (in aggregated or disaggregated form) by both a column and a row. Whereas the steel industry was previously classified as the $i^{\text {th }}$ row sector, it would now also have to be represented either in the same form (" j th" column $=$ the $S t e e l$ Industry) or in aggregated form (" $j^{\text {th" }}$ column $=$ the Metal Industry) or in disaggregated form (" $j^{\text {th" }}$ column $=$ cold rolling Steel Mills and " k th" column $=$ other steel Industries). As a matter of emperical convenience, most input/output tables begin as a rectangular table where the row sectors represent commodity detail and the column sectors represent industry detail in which case, in the above notations, $m>n$. A table in this form is commonly used for the "descriptive" uses outlined above; for "predictive" purposes which require an"inverse" table, a square table must be built. A square table could be made from a commodity by industry tables (as outlined above) by:
i) aggregating commodity, row sectors into industry, row sectors;
ii) making the industry row sectors correspond to the industry
column sectors (the $k^{\text {th }}$ row industry must correspond with the $k^{\text {th }}$ column industry).

This now completes the discussion of the table as far as a descriptive framework is required. Thus for descriptive purposes, the accounting scheme is built on the following identities:

$$
x_{i}=\sum_{j=1}^{n} x_{i j}+y_{j}
$$

$$
x_{j}=\sum_{i=1}^{m} x_{i j}+v_{j}
$$

$n \geqslant m$

The magnitude of n and m varies according to the degree of detail desired and the degree of detail available. A convenient tabular format would be:

Primary Inputs $V_{I} \quad V_{j} \quad V_{n}$
Total Output $x_{i}^{\prime \prime} \quad x_{j}^{\prime} \quad x_{n}^{*}$

$$
x_{i}=\sum_{j=1}^{n} a_{i j} X_{j}+Y_{i}(i=1 \ldots \ldots . . n) \ldots \ldots \ldots(I-\ldots \ldots \ldots(5)
$$

and

$$
x_{j}=\sum_{i=1}^{n} \quad a_{i j} X_{i}+v_{j}\left(j=1 \ldots \ldots . n^{n}\right) \ldots \ldots \ldots \text { (I) }
$$

where
m now equals n and the former is dropped.
A convenient tabular format would now be:

where now
$x_{1}^{\prime}=x_{1}$
$X_{j}=X_{i} \quad(i=j)$
$X_{n}=X_{n}$
and the prime is dropped.
The individual $a_{i j}$ embody the economic law unique to input/ output analysis. For predictive uses of input/output, the basic assumption made is that the $a_{i j}$'s are fixed over the time period considered. Any deviations from this assumption is regarded as a deviation from the norm; these matters are treated in detail in the next two chapters.

The basic predictive ability can now be shown with the help of matrix algebra and the use of superscripts - a "o" indicating a base year measurement and a "," indicating prediction year measurement.

Then let

$$
\left.\begin{array}{cccccc}
1 & 0 & 0 & \ldots & \ldots & 0 \\
0 & 1 & 0 & \ldots & \ldots & 0 \\
& =\quad & 0 & 1 & \ldots & \ldots
\end{array}\right) 0 \quad \text { n rows and } n \text { columns }
$$

By (I - 5)

$$
\begin{aligned}
& X^{\circ}=A^{\circ} X^{\circ}+Y^{\circ} \\
& X^{0}-A^{0} X^{\circ}=Y^{0} \\
&\left(I-A^{\circ}\right) X^{\circ}=Y^{\circ} \\
& X^{\circ}=\left(I-A^{0}\right)^{-1} Y^{0}
\end{aligned}
$$

Now if $A^{\circ}=A^{\prime}$ then, $X=A^{\prime}+X^{\prime}$ $X^{\prime}=A^{0} X+Y^{0}$
$\therefore X=\left(I-A^{\circ}\right)^{-1} V^{0}$
..... (I - 8)
Equation ($I-8$) is no longer an identity; A° does not equal A by definition. Thus, given a derived A° matrix, based on base year data, and if Y^{\prime} and X^{\prime} are definitionally equivalent to their base yeax counterparts, then given Y^{\prime} or X^{\prime}, the other can be solved for by ($I-8)^{\prime}$.

The usual solution required is the prediction of total output needed (X^{\prime}) to support a bill of final demand Y^{\prime}. By use of the inverse, not only are the direct requirements computed but also the indirect consumptions needed for the direct requirements. This can be nicely illustrated by assuming a final demand bill of unity and solving ($\left.I-A^{\circ}\right)^{\prime}$ by the Leontie \hat{i}-Cornfield expansion.

Üsing

$$
\begin{aligned}
& X^{\prime}=\left(I-A^{0}\right)^{-1} Y^{\prime} \\
&=\left(I-A^{0}\right)^{-I} \text { because } Y^{\prime} \text { assumed }=(I-9) \\
&(I) \\
&(I) \\
&(\vdots) \\
&(\vdots) \\
&(n)
\end{aligned}
$$

Now

$$
\left(I-A^{0}\right)^{-1}=I+A+A^{2}+A^{3} \cdots
$$

where the right hand side converges if: A/:0 (3) which is here assumed, then for a projected increase in demand

[^0]of 1 unit \hat{f} or the prociuction of each sector, the resultant required increase in production will be the sum of the above terms.

Thus, I (identity matrix), represents the production supplied directly to final demand.

A represents the amounts supplied to the suppliers of final demaind.
A^{2} represents the amounts supplied to the suppiiers of the suppliers of final demand and so on.

A concrete example may make this clear. Assume a three sector economy:

	Food	Machines	other
Food	$a_{11}=.3$	$a_{12}=.6$	$a_{13}=.1$
Machines	$a_{21}=.5$	$a_{22}=.1$	$a_{23}=.1$
Other	$a_{21}=.1$	$a_{32}=.2$	$a_{33}=.6$

Where for example for every dollar's worth of food, 30 cents of Food, 50 cents of Machines and 10 cents of Other is required. Postulating an increase in final demand of $\$ 1.00$ for Food, $\$ 1.00$ for Machines and $\$ 1.00$ for Other, the net requirements would be

Although for expositary purposes, the power series $\left(I+A+A^{2}+A^{3} \ldots\right)$ has been used here, a number of actual inversion techniques may be used. In some cases, certain properties of the A matrix may be used for computational simplicity. (4)

The constancy of A° over other periods is usually assumed if A° represents technological (physical) coefficients. Since A° is normally developed from value figures, a deflation of A^{O} by a price index (if available) would strengthén the constancy assumption. Indeed, in reference (11), the author sfows that $a_{i j}=f\left(\bar{a}_{i j}, \frac{P_{i}}{P_{j}}\right)$ where

Japan has used this type of relationship, weighting P_{i} / P_{j} according to a price index and has found that indeed $\bar{a}_{i j}$ is more stable than $a_{i j}{ }^{\circ}$

In the next chapter, these accounting relationships are gone into in some detail and are looked at in view of data availability. The historical development of input/output analysis is traced in Appendix "A"。
(4) See Chapter V below.
(5) See Reference (27).

CHAPTER II

THE BASIC MODEL

This chapter is concerned with the type of model the data gathered will allow. The possible methods of coefficient determination are first considered, then a number of common problems are analyzed, and certain models are developed in the light of available information. Finally, the typical uses of input/output analysis are considered in some detail.

Data Gathering Methods

The emperical data used in estimating the production coefficients can be compiled in a number of ways:

1. The coefficients can be formed from a sample of value flows of inputs and outputs for each industry. To this end, the Industrial Census Forms on file with the Provincial Government can be used. Most of these forms will give a commodity breakdown of input and output flows over a given year for each SIC ${ }^{(1)}$ industry. An individual form corresponds with an Establishment ${ }^{(2)}$ classified to an industry, and these establishments can be aggregated (by commodity categories) for an industry sample. The production coefficient can then be formed for each industry by summing up all outputs and
(1) SIC stands for "Standard Industrial Classification" a D.B.S. code for industries - the basic manual (47)
(2) Establishment is defined by D.B.S. although the meaning enjoys international acceptance. An Establishment is the smallest section of a firm which keeps its own accounts.
dividing this into the sum of input values of each commodity. Usually only a selection of establishments are available for each industry and furthermore many entries on the available forms may be inaccurate or not filled out at all. In any case, most tables are compiled by this method..
2. Data on the distribution of the output of the various commodities (or industries) can be used to fill the cells of the value table. Here the row vectors are estimated, the column vectors (cost structures) following as a matter of definition. Due to lack of detail in regard to destination of commodities (or industry outputs) this method is only used as a check on method (1) above, if at all. A case in point is the use of such a procedure by Irving stone ${ }^{(3)}$ in developing his Social Accounting Matrix (SAM). A matrix of the distribution of output's is compiled as well as cost structure matrix, and the two are mathematically averaged out.
3. Industry experts can be used to estimate the input coefficients directly. This would be done on the basis of engineering and technological studies and native experience. The feasibility of such an approach is normally not considered, although it is used for checking the reasonableness of data as well as for estimating certain non-manufacturing sectors -- e.g. mining.

[^1]4. Dorfman, Samuelson and Solow (4) present another method whereby a correlation analysis is run on final demand and corresponding output vectors from different time periods, and the inverse coefficients are directly estimated. The row input coefficients are then estimated by:
$$
A=I-\left(I-A^{-1}\right)^{-1}
$$

Unfortunately, the requirements that:
(a) the observed bill of final demands vary significantly and independently; and
(b) that there are at least more observations than there are divisions of final demand;
require the almost impossible condition of fine commodity breakdown and a large number of observations. In that output/demand data sets are at best available on a quarterly basis, the latter condition would require a number of years of observations, yet this would cast doubt on the constancy of the computed coefficient. The author has been unable to find reference to a practical use made of this approach.

The argument for using the first procedure as outlined above is based on the easy availability of the required data although it has the added advantage that the Hawkins-Simon ${ }^{(5)}$ conditions for resolvability are satisfied. These conditions require that for any industry, a unit of its output will not require, as input, a unit of the same output or more, either directly or indirectly. These conditions can safely be assumed to hold given that lack of profit would eliminate such industries
(4) See Dorfman, Samuelson and Solow, (6), Chapter 12
(5) See Hawkins and Simon, (26) and Hawkins (25)
and that this would be reflected in the emperical sample. On a provincial basis then, it would appear that the best procedure would be to:

1. Aggregate input data (maintaining 3-digit $\operatorname{SCC}^{(6)}$ detail) and output data (in total), into industry categories.
2. Assuming that the resulting value figures represent a true picture of the proportional breakdown of inputs, forming the coefficients by dividing each input value figure by the corresponding total output value figure.

This procedure will be treated in detail in Chapter III, Part I.

The Accounting Structure and Aggregation
Let

$$
\begin{aligned}
\mathrm{Y}= & \text { a column vector of final (autonomous) demand, with } \mathrm{n} \\
& \text { industry divisions. } \\
\mathrm{X}_{\mathrm{ij}}= & \text { the value of input from industry (comnodity) i to } \\
& \text { industry } j \text {, or in other terms, the value of output } \\
& \text { from industry (commodity) i used by industry } j . \\
\mathrm{V}_{\mathrm{j}}= & \text { value of labour used by industry } j . \\
\mathrm{W}_{\mathrm{j}}= & \text { value of all non-labour primary factors used by } \\
& \text { industry } j .
\end{aligned}
$$

Let inputs into an industry be shown as a column vector and the distribution of outputs of an industry as a row vector.
(6) SCC stands for Standard Commodity Classification - a D.B.S. code for commodities - the basic manuals are (44, 45, 46)

Then, the following equations hold:

$$
\begin{aligned}
x_{11}+x_{i 2}+\ldots \ldots+x_{i j}+\ldots \ldots+x_{i n}+y_{i} & =x_{i} \\
& \ldots \ldots(I I-1)
\end{aligned}
$$

and

$$
\begin{array}{r}
x_{1 j}+x_{2 j}+\ldots \ldots+x_{i j}+\ldots \ldots+x_{m j}+V_{j}+W_{j}=X_{j} \\
\ldots \ldots(I I-2)
\end{array}
$$

and

$$
\ldots . .(I I-3)
$$

The above equations would allow the compilation of a commodity by industry table from the Industrial. Census Forms. A preliminary step, however, is required to aggregate the individual Establishment (one per form) into the corresponding industry category. The basic assumption made is that the cost structure of an industry is a simple average of the component Establishment cost structures.

Thus

$$
\begin{aligned}
& x_{1 j}=x_{1 j}^{\prime}+x_{l j}^{2}+\ldots+x_{1 j}^{k} \\
& x_{2 j} \\
& \vdots \\
& x_{i j}=x_{i j}^{\prime}+x_{i j}^{2}+\ldots \ldots+x_{i j}^{k} \\
& \vdots \\
& x_{m j} \\
& \vdots \\
& V_{j} \\
& \vdots \\
& w_{j}=W_{j}^{\prime}+w_{j}^{2}+\ldots .+w_{j}^{k}
\end{aligned}
$$

$$
\begin{aligned}
& a_{i j}=\frac{X_{i j}}{X_{j}} \\
& i=1, \ldots \ldots n \\
& j=1, \ldots \ldots m
\end{aligned}
$$

where the superscripts represent an individual establishment, there being k of them for this particular $j^{\text {th }}$ industry. A given column of the right hand side above, would represent value data from one form. The output value figures from the k establishments would be summed and divided into the composite value input figures in order to calculate the "average" input coefficients for that industry.

The resultant commodity by industry table of coefficients (or value) may be of particular interest to market analysts in that it gives a commodity breakdown of inputs for each industry.

The commodities and industry can be conveniently aggregated into Major Groups with the result that a number of tables can be derived from the basic commodity by industry one. These are:

Major Group by Industry
Commodity by Major Group
Major Group by Major Group
The last table is perhaps the most important in that it fulfills the requirement for inversion, of equal rows and columns.

Commodity to Major Groups: (7) Unlike the problem of assigning Industries to Major Groups, commodities do not by definition belong to particular Major Groups. It was found that less ambiguity arose if the SCC commodities were assigned directly to Major Groups rather than being first assigned to Industries and then to Major Groups. Commodity input coefficients can be conveniently aggregated into Major Group input coefficients by simple summation. Thus, given a unique assignment of a
(7) Major Group is an SIC defined category by which Industries with like outputs are grouped
commodity to a Major Group, the following holds:
Let the following commodities be assigned to Major Group 8:
Commodity in row 10
Commodity in row 11
Commodity in row 12
Then

$$
a_{8, j}=a_{10, j}+a_{11, j}+a_{12, j}
$$

$$
j=1, \ldots n
$$

where the coefficients on the left hand side are not correspondingly subscripted to the ones on the right hand side. This formula can be expressed in value terms:

$$
\frac{x_{8, j}}{x_{j}}=a_{8, j}=\frac{x_{10, j}}{x_{j}}+\frac{x_{11, j}}{x_{j}}+\frac{x_{12, j}}{x_{j}}
$$

which shows that if the inputs were measured in value terms, the composite $X_{8, j}$ would still equal the simple sum of $X_{10, j}, X_{11, j}$ and $X_{12, j}{ }^{\circ}$

Industry to Major Group: The aggregation of Industry columns into Major Group columns is not as simple as the above. Although the Industries by SIC definition belong uniqueify to a Major Group, the individual industries must be weighted in $\begin{gathered}\text { order of their importance. }\end{gathered}$ Thus, if one used simple summation, as abovie, then:

$$
a_{i, 8}=a_{i, 10}+a_{i, 11}+a_{i, 12}
$$

but when put in value terms, the $X_{i, 8}$ composite would not equal the individual $X_{i, 10}+X_{i, 11}+X_{i, 12}$.

Thus,

$$
\frac{X_{i, 8}}{X_{8}}=\frac{X_{i, 10}}{X_{10}}+\frac{X_{i, 11}}{X_{111}}+\frac{X_{i, 12}}{X_{12}}
$$

which expresses the last equation only in expanded terms, would disallow

$$
X_{i, 8}=x_{i, 10}+X_{i, 11}+X_{i, 12}
$$

unless $X_{8}=X_{10}=X_{11}=X_{12}$, which is normally not the case.
Before considering the theoretical aspects of aggregation, let it suffice here that it has been found convenient to weight the coefficients by the proportion of Major Group output that the individual industry's output forms. Thus:

If we make

$$
\begin{aligned}
a_{i, 8}= & a_{i, 10}\left(\frac{x_{10}}{x_{10}+x_{11}+x_{12}}\right)+a_{i, 11}\left\{\frac{x_{11}}{x_{10}+x_{11}+x_{12}}\right\} \\
& +a_{i, 12}\left(\frac{x_{12}}{x_{10}+x_{11}+x_{12}}\right)
\end{aligned}
$$

then $a_{i, 8}=\frac{X_{i, 10}}{X_{10}+X_{11}+X_{12}}+\frac{X_{i, 11}}{X_{10}+X_{11}+X_{12}}+\frac{X_{i, 12}}{X_{10}+X_{11}+X_{12}}$
This shows that if the total output of the Major Group equals the simple sum of the total outputs of the industries, then the composite value of inputs will equal the corresponding sum of the input values for each industry when calculated from the coefficients.

The aggregation of these Industries into Major Groups has been done on the assumption that either I) their input structures are the same. (By definition their outputs are similar and, therefore, their input structures are usually similar as well), or 2) that any change in output is distributed proportionately between the component industries even though they may have different input structures.

Any practical input-output table will be expressed in terms of rows and columns which represent aggregation of "ideal" divisions. This "ideal" which is normally taken to represent unique commodity divisions, cannot be attained in a practical sense because accounts of business are not normally available. In Canada, for instance, the D.B.S. Census Form is used for registering industrial information, there being one form per Establishment. An Establishment by definition is the smailest accounting sector of a firm, yet these Establishments themselves produce more than one commodity as a rule. As far as a "predictive" input-output table based on such a fine commodity detail is concerned, the assumption of no input substitution would certainly not hold. Thus, the criterion on aggregation must be something other than that it be a reflection of the "ideal" dissaggregated model. The accepted criterion has become "for all possible variations in final demand, the total output, when aggregated from the original sectors, should be equal to the total output of the aggregated sectors".

This "acceptable" requirement can be met if:

1. aggregation is made of sectors having equal input coefficients -the Chenery-Clarke ${ }^{(9)}$ case of horizontal integration; or
2. aggregation is made of sectors whose outputs change in proportion -- the Chenery-Clarke ${ }^{(10)}$ case of vertical integration.
(8) See Fei, J. (18)
(9) See Chenery, H. B., and Clarke, P. H. (5), Chapter 12
(10) op. cit.

A number of articles have been written on the question of aggregation, the more interesting of which are -- Ara, K. (13), Theil, H. (40), and Fei, J. (18) gives a concise, precise account of the potential error involved in aggregation and disaggregation in regard to the inverse, and Fei (18) shows that the conditions of "acceptability" can be met if the column sums of the component column of an aggregated sector are equal -- i.e. if the proportion that primary (non-produced) commodities form of the total output of each of the original sectors are equal.

In drawing up a provincial table, it appears convenient to aggregate both row and column sectors of the basic commodity by industry table in SIC defined Major Groups because:

1. The grouping is standard and coincides closely with the U.N. International Standard Industrial Classification (I.S.I.C.) ;
2. The grouping is defined by D.B.S. in regard to industries on the basis of similarity of output and consequently similarity of input structure;
3. The number of sectors involved is convenient, there being 20 manufacturing sectors \pm any changes;
4. The commodity detail formed on the Census Forms can be conveniently categorized in Major Groups.

Certain of the Major Groups may be aggregated or disaggregated; this is considered below in Chapter III.

In the model developed in the next section, the Industries are aggregated into the corresponding Major Grep by weighting the coefficients according to the proportion of Group output each Industry output is comprised.

The conditions of "acceptability" are met by the assumption that the resultant output levels of a Major Group, by computation of the "inverse" and a bill of final demand, equal the simple sums of the Industry output level that would result in inverting an Industry by Industry table. Granted that the above assumption is unlikely to hold very strictly, a consolation lies in the fact that by definition the input structures are close to being the same.

The following discussion of common problems of input-output tables is cursory in that references $5,7,8,11,41$ are to the point and cover them thoroughly. The U.N. handbook (41) is the most up-to-date and gives a good account under all headings.

Producers vs. Purchase Prices

Computing input/output coefficients on the basis of census data requires a decision as to valuation of inputs and outputs. The D.B.S. Census Forms stipulate to the reporting firms that inputs are to be registered in "purchasers" prices while outputs are to be registered in "producers" prices.
"Producers" price valuation corresponds with F.O.B. valuation: the commodities are valued at factory cost and do not include subsequent "margins" (transportation costs, wholesale and retail trade margins, and net indirect taxes).
"Purchasers" price valuation is simply the "producers" price valuation with these margins added on.

An input/output table measured in purchasers prices would show inputs inclusive of margins and a row sector to indicate margins added on to a producers (column) output.

Thus, if:

$$
\begin{aligned}
X_{i j}^{\prime}= & \text { the input from the } i^{\text {th }} \text { sector to the } j^{\text {th }} \text { sector valued } \\
& \text { at what the } j^{\text {th }} \text { sector pays }\left(=\text { what the } i^{\text {th }}\right. \text { sector } \\
& \text { receives }+ \text { margins; } \\
M_{j}^{\prime}= & \text { the margins added on to the } j^{\text {th }} \text { sectors output to show } \\
& \text { it at purchasers prices; } \\
X_{j}^{\prime}= & \text { the output value of the } j^{\text {th }} \text { sector inclusive of margins; }
\end{aligned}
$$

then

$$
\begin{array}{ll}
\sum_{j=1}^{n} x_{i j}^{\prime}+y_{i}^{\prime}=x_{i}^{\prime} & \\
\sum_{j=1}^{n} x_{i j}^{\prime}+M_{j}^{\prime}+v_{j}^{\prime}=x_{j}^{\prime} & \\
a_{i j}^{\prime}=\frac{x_{i j}^{\prime}}{x_{j}^{\prime}} & \ldots \ldots(\text { II }-4) \\
& \\
\therefore A^{\prime} X^{\prime}+Y^{\prime}=x^{\prime} & \ldots \ldots(\text { II }-6)
\end{array}
$$

A table measured in producers prices would show inputs at F.O.B. prices -- i.e. exclusive of margins and the margins input row measures margins paid for each of the inputs by the purchasing industry.

Thus, if:
$X_{i j}=$ the input from the $i^{\text {th }}$ sector to the $j^{\text {th }}$ sector valued at what the $i^{\text {th }}$ sector receives;
$M_{j}=$ the margins paid by the $j^{\text {th }}$ sector to obtain the required inputs;
$X_{j}=$ output of the $j^{\text {th }}$ sector valued at F.O.B. prices;
thent

$$
\begin{aligned}
& \sum_{j=1}^{n} x_{i j}+Y_{i}=X_{i} \\
& \sum_{i=1}^{n} x_{i j}+M_{j}+V_{j}=x_{j}(I I-8) \\
& a_{i j}=\frac{x_{i j}}{X_{j}} \\
& \ldots(I I-9) \\
& \therefore A X+Y=X
\end{aligned}
$$

Note that in the above case (II - ll), if a bill of final demand is given (normally at purchasers price valuation), then the margins must be subtracted before multiplying by the inverse for the resultant output levels. Given Y^{\prime}, one must estimate the margin M_{y} in order to use (II - 11).

Thus,

$$
\mathrm{Y}=\mathrm{Y}^{\prime}-\mathrm{M}_{\mathrm{y}}
$$

and from (II - 11)

$$
X=(I-A)^{-1}\left(Y^{\prime}-M_{y}\right)
$$

$$
\ldots .(I I-12)
$$

The differences between a purchasers as compared to a producers valuation system can be illustrated by the following:

1. Purchasers Prices: Marketing costs are double counted, first as inputs to a sector from the marketing cost sector and second as part of the value of output of that producing sector;

Producers Prices: Marketing costs are only singly counted -as inputs to the purchasing industry.
2. Purchasers Prices: Marketing costs are distributed along each row such that if these costs vary from cell to cell in a given row, and if output distribution along a row changed, the value of production may change even though actual production does not;

Producers Prices: The above effect will be absent because no marketing costs are distributed along the rows.
3. Purchasers Prices: Marketing costs are assumed to vary with the output structure of a sector but output structure, over time, is regarded as relatively unstable;

Producers Prices: Marketing costs are assumed to vary with the input structure of a sector, which is regarded as a more stable relationship than the output structure.
4. Purchasers Price: A table compiled on this basis of valuation involves less additional work in that inputs are already registered in purchasers prices (re D.B.S. Census Forms), and only the margins in sector aggregate need be computed to being output valuation from producers prices (as registered on Forms) to purchasers, prices;

Producers Prices: Compiling a table under this system of valuation would require an estimate on margins for each cell if (as in the case of Census Forms), the input value figures are in purchasers prices.

It would appear then that items 1,2 and 3 above give the advantage to producers prices to such a degree as to overbalance the disadvantage as outlined in 4 . Indeed, the United Nations has recommended ${ }^{(11)}$ standardizing all basic input/output tables in producers prices.
(11) See United Nations, (41), Chapter 2, Section V.

A combination of producers and purchasers prices can be used which allows compilation direct from the Census Forms. As before, the prime is used to denote valuation at purchasers prices while unprimed variables are valued at producers prices. Then:

$$
\begin{align*}
& \sum_{j=1}^{n} x_{i j}^{\prime}+y_{i}^{\prime}-M_{i}=X_{i} \tag{II-13}\\
& \sum_{i=1}^{n} x_{i j}^{\prime}+V_{j}=X_{j} \\
& a^{\prime \prime}=\frac{X_{i j}^{\prime}}{X_{j}} \\
& \therefore \mathrm{~A}^{\prime \prime} \mathrm{X}+\mathrm{Y}^{\prime}-\mathrm{M}=\mathrm{X} \\
& X=\left(I-A^{\prime \prime}\right) \cdot\left(Y^{\prime}-M\right) \\
& \text {..... (II - 14) } \\
& \text {..... (II - 15) } \\
& \text {..... (II - 16) }
\end{align*}
$$

where

$$
\begin{aligned}
& \mathrm{A}^{\prime \prime} \text { is defined by (II - } 15 \text {) } \\
& \mathrm{Y}^{\prime}=\text { bill of final demand inclusive of margins } \\
& \mathrm{M}=\text { margins - by row }
\end{aligned}
$$

The drawback to using (II - 16) is that margins are assumed autonomous yet at the same time are assumed proportional to output (through $A^{\prime \prime}$). This last problem can be got around if M is measured, and assumed, as a constant proportion of output. Thus:
If $B_{i}=\frac{M_{i}}{X_{i}}=\frac{M_{i}}{X_{j}} \quad \quad i=j \quad \ldots(I I-17)$
and $\quad M_{i}=B_{i} X_{i}$
$\mathrm{M}=\mathrm{BX}$
where B is a diagonal matrix of the form

B_{1}	0	0	$\ldots \ldots \ldots$	0	
0	B_{2}	0			
0	0	\ddots			
\vdots			B_{i}		
\vdots				\ddots	
0	\ldots	\ldots	$\ldots \ldots$	\ldots	B_{n}

then

$$
\begin{aligned}
& A^{\prime \prime} X+Y^{\prime}-B X=X \\
& A^{\prime \prime} X-B X-X=-Y^{\prime} \\
& Y^{\prime}=X+B X-A^{\prime \prime} X \\
& Y^{\prime}=\left(I+B-A^{\prime \prime}\right) X \\
& \therefore X=\left(I-A^{\prime \prime}+B\right)^{-1} Y^{\prime}
\end{aligned}
$$

..... (II - 18)

Note that in the above model, all the disadvantages (and advantages) of the purchasers price system are present, with the exception of the double counting of margins aspect. Also, the resultant outputs are measured in producers prices not. purchasers prices.

Imports-Exports

In input/output analysis, it is generally assumed that exports are autonomously determined (by extra-national considerations) and at least are not a function of domestic output. Normally then, exports are measured as part of final demand and do not enter in the compilation of the basic table. Thus:

$$
A=\left(a_{i j}\right) \text { are formed from } X_{i j} \text { and } X_{j}
$$

and

$$
\begin{aligned}
X= & \text { is predicted in other than base year computations from the } \\
& \text { parameter } A \text { and the exogenous variable } Y \text { via } \\
X= & (I-A)^{-1} Y
\end{aligned}
$$

> Exports can now be considered as an exogenous variable by $E X_{i}=$ exports of output of $i^{\text {th }}$ sector
then

$$
X=(I-A)^{-1} \quad(Y+E X)
$$

Imports, on the other hand, are normally regarded as a function of the output of the corresponding sector although a distinction is made between competitive imports and non-competitive imports. Competitive imports are those commodities which are also produced domestically whoreas non-competitive imports are those commodities which do not even have close substitutes produced domestically -- e.g. mangoes.

As registered on the industrial Census Forms, input items are inclusive of imports and no ready distinction between domestic and imported inputs can be made. Output items are, of course, produced domestically only. An initial compilation then would be of the form

Y,
\vdots
\vdots
\vdots
Y_{m} X^{t}
\vdots
\vdots
\vdots
X_{m}^{t}
$\frac{V_{1}}{} \frac{V_{n}}{x^{0}} \ldots \ldots \ldots \cdot x_{n}^{o}$

The row output totals $X_{i}^{t}, \quad i=I, \ldots n$, represent total requirements -- i.e. domestic production, pius input imports plus imports for final demand. In order to make these compatible with the column totals (domestic production), the total values of sector imports must either be subtracted from the row totals or added to the column totals. Considering this in model form:

Let

$$
\begin{aligned}
M_{i}^{I} & =\text { imports used for inputs } \\
M_{i}^{y} & =\text { imports used by final demand } \\
M_{i}^{t}= & i=1, \ldots n \\
Y_{i}^{t}= & \text { total imports } \\
X^{o}= & \text { domestic production } \\
X^{t}= & \text { domestic production plus all imports } \\
& i . e . X^{t}=X^{o}+M^{I}+M^{y}
\end{aligned}
$$

Now if the input coefficients are formed directly from the data found on the Census Forms, then:

$$
\begin{align*}
& A^{\prime \prime}=\frac{X_{i j}^{t}}{X_{j}^{o}} \\
& \text {..... (II - 19) } \\
& \sum_{j=1}^{n} X_{i j}^{t}+Y_{i}+M_{i}^{y}=X_{i}^{t} \\
& \ldots \therefore(I I-20) \\
& \sum_{i=1}^{m} x_{i j}^{t}+V_{j}+M_{j}^{t}=X_{j}^{t} \tag{II-2I}
\end{align*}
$$

Taking ($I I^{-}-20$) and adding $\left(-M_{i}^{I}\right)$ to both sides then

$$
\sum_{j} X_{i j}^{t}+Y_{i}+M_{i}^{y}-M_{i}^{I}=X_{i}^{t}-M_{i}^{I}
$$

or

$$
\sum_{j} X_{i j}^{t}+Y_{i}-M_{i}^{I}=X_{i}^{t}-M_{i}^{I}-M_{i}^{y}=X_{D}
$$

and combining (II - 19) with (II - 20)

$$
\begin{equation*}
A_{j}^{A_{i j}^{\prime \prime}} X_{i}^{o}+Y_{i}-M_{i}^{I}=X_{i}^{D} \tag{II-22}
\end{equation*}
$$

Assuming aggregation based on section I above, then

$$
\begin{equation*}
X^{D}=\left(I-A^{\prime \prime-1} \quad\left(Y-M^{I}\right)\right. \tag{II-23}
\end{equation*}
$$

But here, as in (II - 16), an item is included in both the autonomous section as well as the endogenous section (A) of the balance equations. This can be got around by forming a coefficient C such that:

$$
\begin{aligned}
& C_{i}= \frac{M_{i}^{(1,3)}}{X_{i}^{D}} \\
& \text { output of the } i^{\text {th }} \text { industry. }
\end{aligned}
$$

or $M^{I}=C X$
where M^{I} and X are column vectors and C is a diagonal matrix of coefficients, then

$$
\begin{align*}
& A^{\prime \prime} X^{D}+Y^{t}-C X^{D}=X^{D}+M^{y} \\
& \therefore X^{D}=\left(I-A^{\prime \prime}+C\right)^{-1}\left(Y^{t}-M^{y}\right) \tag{II-24}
\end{align*}
$$

or

$$
X^{D}=\left(I-A^{\prime \prime}+C\right)^{-1}\left(Y^{D}\right)
$$

$$
(I I-25)
$$

As for the question of non-competing imports, they are best distributed along a separate row and are treated as primary commodities (non-produced). Only if an interregional model was desired (see (1) and (5)) would the non-competing imports be possibly included in the "invertible" part of the table. Pitts and Sawyer consider the overall question of imports in some detail - see (33).
(13) This arrangement introduces the assumption that the input imports are a constant proportion of output.

On the basis of the above considerations then, the suggested provincial model based on the D.B.S. Census Forms, becomes:

$$
X=(I-A+B+C)^{-1} Y^{D} \quad \ldots .(I I-26)
$$

where

$$
\begin{aligned}
& A=\frac{X_{i j}^{\prime}}{X_{j}} \quad X_{i j}^{\prime}=\text { input from } i \text { to } j \text { measured at } \\
& \text { purchasers prices and reflecting } \\
& \text { the simple sum of domestic production } \\
& \text { and imports of } i \text { going to } j \text {. } \\
& X_{j}=\text { total domestic production of } j, \\
& \text { at producers prices. } \\
& X=\cdot\left(X_{j}\right) \\
& I=\text { unit matrix - identity matrix } \\
& B=\text { a diagonal matrix with the } i^{\text {th }} \text { element in the diagonal } \\
& \text { (i }{ }^{\text {th }} \text { row, } i^{\text {th }} \text { column), showing the proportion margins are } \\
& \text { of output valuation along a row sector of the total } \\
& \text { output of that } i^{\text {th }} \text { row. } \\
& C=\text { a diagonal matrix with the } i^{\text {th }} \text { element in the diagonal } \\
& \text { (} i^{\text {th }} \text { row, } i^{\text {th }} \text { column), showing the proportion that the } \\
& \text { input imports into the } i^{\text {th }} \text { row are of the total output of } \\
& \text { that row. } \\
& Y^{D}=\text { final demand for domestic output. } \\
& \text { Of course, } Y^{D} \text { is interchangeable with } Y^{t}-M^{y} \text {. }
\end{aligned}
$$

Survey of Possible Uses

The following is a brief account of common uses to which an input/output table can be put. These uses are under the headings:

1. Marketing Analysis
2. Resource Base Studies
3. Statistical Checks
4. Import Replacement Studies
5. Taxation Studies
6. Price Relationships
7. Coefficient Tracing

Reference is made to the information needed in the light of the suggested model (II - 26).

1. Marketing Analysis

The basic, most detailed, non-inverted table could be of considerable use to market research people, both government and private. Working directly from the Census Forms, the most detailed table would be rectangular, listing commodities in three-digit detail (SCC classes) down the columns, and industries with four-digit detail (SIC Industries) along the rows. From such a table, an idea of the cost structure of a given industry could be obtained, or, by the same token, the distribution pattern of a given commodity class over the industries. Again, although detail would be lost in "squaring up" the table, the inverse would give an idea of what industries and resources would be "strained" given an increase in the production of a given industry.
2. Resource Base Studies

The inverse can be used to obtain resultant production levels from stipulated bills of final demand by:

$$
X^{k}=(I-A)^{-1}\left(Y^{k}+E X^{k}\right) \quad \ldots . .(I I-27)
$$

where k'signifies a "set" of observations

$$
\begin{aligned}
& Y^{k}=\text { predicted, } k^{t h} \text {, set of final demands } \\
& X^{k}=\text { computed production levels implicit in } X^{k} \text { via }(I-A)^{-1}
\end{aligned}
$$ The computed X^{k} can then be used to find the different requirements placed on the primary (non-produced or base resource) commodities through:

$$
\begin{equation*}
A M T_{i}^{k}=\sum_{j=1}^{n} V_{i j} X_{j}^{k} \tag{II-28}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mathrm{V}_{i j} \text { is the amount (value) of the } i^{\text {th }} \text { primary commodity used } \\
& \text { per dollar of output of sector } j . \\
& \mathrm{AMT}_{i} \mathrm{k}= \text { resultant amount of the } i^{\text {th }} \text { primary commodity } \\
& \text { required to accommodate the } k^{\text {th }} \text { postulated bill of } \\
& \text { final demand. }
\end{aligned}
$$

A direct formulation of $(I I-28)$ would be

$$
A M T_{i}^{k}=V(I-A)^{-1}\left(Y^{k}+E X^{k}\right)
$$

where $V=$ the row vector $\left(V_{i j}\right)$
$j=1$
3. Statistical Checks

One of the more common uses to which national input/output tables may be put is in revealing "gaps and redundancies" in national accounts, foreign trade statistics and employment and similar compilations. The table may serve both as a quantitative check and as qualitative check on the suitability of existing classificatory schemes. In that a provincial table may be the only source for such statistics on a regional basis, the checking function is lost.
4. Import Replacement Studies

In predicting future output levels on the basis of postulated future demands, a substantial amount of induced import requirements may arise. Such information may be of value to provincial governments in suggesting areas for encouragement of industrial development. One must temper any such results with the fact that import data on a provincial basis is normally very sparse and of ten inaccurate due to lack of proper data. In the relatively compact import model developed above (see (II - 26)) an additional problem arises in the fact that the model by incorporating the " B " coefficients assumes that the row distribution of input imports is a fixed proportion of the output for that sector. In any case the model can be used to determine input import requirements (final demand imports are assumed exogenous) by:

$$
M^{I}=B X
$$

where

$$
X=(I-A)^{-1} Y
$$

5. Taxation Studies

Direct taxes imposed on factor services are not usually included directly in an input/output table although they can be predicted from the model by first determining the requisite amount (value) of factor services for a given bill of final demand. The incidence of a sales tax could be usefully analyzed in this sense although if the table were looked at in terms of prices (see next section), information could be found in regard to resultant price changes. In terms of the model, a total tax bill could be determined by:

$$
\text { BILL }=P_{1} X
$$

where

$$
\begin{aligned}
\mathrm{P}_{1}= & \text { row vector of taxes (as a percentage) imposed on each } \\
& \text { of the sectors. }
\end{aligned}
$$

and
$X=$ the column vector of total outputs computed from $X=(I-A)^{-1} Y$

BILL = a scalar, value quantity
Personal income taxes could be computed from BILL $=P_{2} \cdot A M T$ where
$P_{2}=$ the incidence of personal income tax in terms of a scalar percentage (average tax as a percent of income), OR a diagonal matrix of taxes imposed -- as a percentage of output differentiated by sectors.

AMT $=$ the amount of labour computed via (II - 28) which would be a scalar and would correspond with the scalar P_{2} or a vector of the labour requirements differentiated by sectors:

$$
\mathrm{AMT}_{\mathrm{j}}=\mathrm{V}_{\mathrm{i} j} \mathrm{X}_{\mathrm{j}} \quad \quad \mathrm{j}=1, \ldots \mathrm{n}
$$

In either case, BILL is a scalar quantity. This particular use of an input/output table may be most useful in a provincial framework where the interindustry schema represents the only approach for determining total (direct and indirect) effects.

6. Price Relationships

If the cost structures of industries are looked at as a series of price-quantity relationships, one can set up a model to determine relative prices from the input coefficients. Thus, if:

$$
\begin{aligned}
A_{j}^{v} & =\frac{v_{j}}{X_{j}} \\
v_{j} & =P_{j} X_{j}-\sum_{i=1}^{n} a_{i j} p_{i} x_{j}
\end{aligned}
$$

dividing through by X_{j}

$$
\frac{V_{j}}{X_{j}}=p_{j}-\sum_{i=1}^{n} a_{i j} P_{i}
$$

then

$$
\begin{aligned}
& A^{v}=P-A^{t} P \\
& \therefore P=\left(I-A^{t}\right)^{-1} A^{v}
\end{aligned}
$$

where
$A^{t}=$ transpose of A
$\mathbf{P}=$ price vector related to sector outputs

It can be seen from (II - 29) that once the input coefficients and the value added proportions of output are given, prices (relative) are fixed. If the A^{V}. (value added as proportion of corresponding. outputs) can be assumed constant over different levels of output, then prices can be determined independently ${ }^{\text {of }}$ output levels. If the A^{V} can not be assumed fixed over a range of output levels, then the price equation (II - 29) must be "tied-in" with the quantity equation (II - 26). Yamada ${ }^{(14)}$ has done this conveniently by adding two more sets of equations, one showing the demand for a sector's output as a simple linear function of price and the other showing quantity produced as a simple linear function of price.

The crucial variable in such price equations is the hidden one of profit levels, a problem assumed away heretofore. Equation (II,-29) only holds if the sum of costs indicated exactly equals the revenue. On the grounds that most prices are fixed by non-competitive factors over a considerable range, it would appear doubtful that attempting price analysis thro ugh (II - 29) would be worthwhile. In any case, the model developed above can be used for determining such price variables, the only additional data needed being the value-added-per-output coefficients.

[^2]
7. Coefficient Trace

Having once computed the cell members of the inverse $(I-A)^{-1}$, it may be useful to trace the effect of a change in one (or more) of the original A coefficients on the inverse. There may be some doubt as to a given coefficient -- say, technological studies suggest it is too high -- in, which case it would be useful to know how significant this margin of error might be. Again, the object might be given a postulated change in technique substitution, labour-capital switch, to find what the net effect on the inverse, and hence on computed production levels. Tracing the effects of such changes requires a re-calculation of the inverse although the author has outlined and programmed a method in Chapter IV which calculates the net change itself, to any required degree of accuracy via the Leontief-Cornfield ${ }^{(15)}$ multiplier process. Having once determined the net effect on the inverse, the matrix of such net changes may be used in equations (II - 26), (II - 28) and (II - 29) to show that net resultant effects on the output levels, resource requirements and other computed variables.
(15) Represented by $I+A+A^{2} \ldots \ldots$, The approximation of $(I-A)^{-1}$

It is helpful to have a good idea of the uses to which an input/ output table can be put before compiling it although, for a provincial model, one would be hard pressed to accommodate the United Nations' suggestion that "the particular applications of input/output analysis govern the preparation of the statistical table of transactions". (16) It has been argued here that the availability of data severely restricts the type of table formed, and that the more feasible provincial approach is to build up the table -- rectangular -- to square -- to including non-manufacturing sectors -- keeping as much detail as convenient and adjusting the basic table later, to suit specific purposes.

In passing, it is useful to note that while an "open model" (autonomous final demand from households) has been assumed, a "closed model" may be useful in determining employment changes. If it is postulated that certain sector (s) are stimulated, then the resultant effects on employment (via (II - 28) can be thought of as putting a further demand for consumption goods and, in turn, further stimulating employment. This sensitivity of final demand to employment can be introduced into the model by including the household sector in the body of the table where the output is labour (distributed along the $n+1$ row) and the inputs are final demand goods (down the $n+l^{\text {th }}$ column). Inverting this augmented matrix -- assuming that the proportional breakdown of consumption goods per unit of income is fixed -- allows the determination of these consumption multiplier effects. Given an increase in autonomous final demand -- now restricted to non-household consumption -- one is able to compute the augmented (17) effect on production levels.

[^3]
In the next chapter, the possible sources of information for compiling the basic table are considered.

CHAPTER III.

THE BASIC SOURCES OF DATA

In any input/output study but those of the most ambitious scale, industry and commodity classificatory schemas are set by the available data format. In the case of a provincial table using the D.B.S. Census Forms for base year data, the Standard Industrial Classification (SIC) is used in the coding of industries. Commodity detail entered on these forms does not necessarily coincide with any set classification although the guideline for setting up the form's entries was the Standard Commodity Classification (SCC). As a consequence, input (and output) entries on these forms can be conveniently coded to an SCC category. In this chapter, the emphasis will be on these sources of data and how the proposed model is adapted to availability of such information.

Although it is possible to use the Census Forms -- or even direct data gathering -- and reclassify the contents according to some arbitrary scheme, the original SIC framework in conjunction with SCC coding of detail is recommended for the provincial model under consideration because:

1. Substantial (read costly) effort would be required to keep the number of divisions down and yet satisfy the homogeneity constraints of the predictive input/output model.
2. The SIC and SCC is common to other data gathering agencies both of government and private industry. Thus, the presentation of input/output information in these standardized formats can more readily be interpreted by these agencies.
3. The SIC is a classificatory system whereby industries with like outputs and hence like inputs, are grouped together, satisfying (at least in degree) the homogeneity assumption of input/output analysis.
4. A ready-made aggregation of industries into Major Groups is "available, each industry being uniquely assigned to one of these Major Groups by definition. The SCC commodity Groups (three-digit) can also be conveniently assigned to the SIC Major Group categories.

The formation of a basic commodity by industry table within the above framework, and using the D.B.S. Industrial Census Forms, requires only two basic judgements: the SCC commodity Groups must be assigned to input detail on the basis of the given description and these commodity Groups must be assigned to the SIC Major Groups.

In the initial compilation of the table then, it is suggested that the columnar divisions be based on the four-digitt SIC industries and that in the subsequent, more aggregated table, these industries be taken into the SIC Major Group divisions. Again, it is suggested that the row divisions be made on the basis of SCC three-digit commodity Groups and this requires the compiler to assign each input entry to one (in some cases, more) of these Groups. In the aggregation of these commodity Groups, it is suggested that these be directly assigned to SIC Major Groups rather than an attempt being made at assigning them first to SIC Industries and then Major Groups. It was found, in working with the Manitoba compilation, that three-digit commodity detail could not be unambiguously assigned to an industry. Indeed, some commodities could not even be unambiguously assigned to a Major Group -- e.g. packaging.

If the above classificatory scheme is used together with the Census Forms, four tables can be compiled, namely:

1. ROWS $=$ SCC COMMODITY GROUPS

COLS $=$ SIC INDUSTRIES
2. ROWS $=$ SIC MAJOR GROUPS

COLS. $=$ SIC INDUSTRIES
3. ROWS $=$ SCC COMMODITY GROUPS

COLS $=$ SIC MAJOR GROUPS
4. ROWS $=$ SIC MAJOR GROUPS

COLS. $=$ SIC MAJOR GROUPS
In that the columns must be compatible with the rows in order that a table be inverted, the basic "predictive" input/output table is 4. above. The initial table, and the one most useful in the "descriptive" sense is l. above. A certain aggregation of the Census Form data is required, however, before Table 1 is obtained, and is, described below.

Aggregation of Establishments:

The SIC manual ${ }^{(1)}$ describes, or rather defines, an Establishment as the smallest business entity that maintains a set of business accounts (profit/loss, etc.). Each Establishment in the country is uniquely categorized in an Industry, and as such, is sent a Census Form to be completed. After the initial coding of the entries to SCC categories, as described above, the data would take the form.

[^4]Industry
$\begin{array}{llllll}\text { Establishment } & 1 & 2 & 3 & 4\end{array}$
Commodity

1013
123

1030
1

051

$x_{12}^{\prime} X_{12}^{2}$

The Establishments have been distinguished by superscripts. By definition the Establishments under a given Industry have similar outputs and on this basis it is assumed that the input structures are similar. In order to form Table 1 above, one could compute Establishment coefficients and then form an average of each for the Industry Input coefficient. Thus:

$$
a_{11}=\frac{x_{11}}{x_{1}^{\prime}+x_{2}}+x_{3}^{3}+x_{4}^{4}=\left(\frac{x_{11}^{\prime}}{\left(x_{1}^{\prime}\right.}+\frac{x_{11}^{2}}{x_{2}^{2}}+\frac{x_{11}^{3}}{x_{3}^{3}}+\frac{x_{11}^{4}}{x_{4}^{4}}\right) / 4
$$

The Industry coefficients are computed in a slightly different manner in the computer program of Chapter IV.

Each $X_{i j}^{k}$ is entered on the basic data cards but the Establishment coefficients are by-passed. Each $X_{i j}^{k}$ is summed over k as is the column totals X_{j}^{k}. The industry coefficient is then computed by:

$$
a_{i j}^{J}=\sum_{k=1}^{1} x_{i j}^{k} / \sum_{k=1}^{1} x_{j}^{i}
$$

$L=$ number of Establishments under Industry j.

Working in this manner, Establishment identity is not required to be maintained although the basic deck (DATA I) does so, in order to allow checking and removal of inaccurate or unreasonable data from selected Establishments. Actually, the computer program does compute Establishment coefficients but only for checking, and they are not used again in
the compilation. The revised basic deck of cards (DATA II) which is simply the original, with unwanted Establishments "weeded out" is fed into another program and the basic commodity by industry table is output in the following form:

and
$m>n$ normally
Tables 2, 3 and 4 are derived from Table 1 above with the additional of the following information:
l. List of assignments of Commodity Groups to Major Groups.
2. List of assignments of Industries to Major Groups.
3. List of weights to be given to individual Industries for aggregation into Major Groups.

Of the above, 1) must be formed by the compiler, 2) follows by SIC definition, and 3) is computed in the program. The next chapter considers the form and procedure for obtaining this information in detail.

Abstract

The author would like to emphaticalhy suggest here that great effort be taken to assign the Census Form bntries to commodity Groups carefully. Changing one of these classifications after, say, the Major Group by Major Group has been compiled is tantamount to redoing

 the whole compilation.Some Relevant Observations
Every Establishment is required, by law, to fill out the Census Forms, for return to the Dominion Bureau of Statistics. These Establishments are requested though not required to send a form to the Provincial Government and the latter receives roughly a 60% coverage (2). Of these, many will have to be eliminated due to obviously innaccurate content or in some cases, lack of content. The Forms relating to some Industries eg. the clothing industry, do not require input detail and as a consequence are useless for input/output work. In general, of the three types of Census Forms - Long, Medium and Short, only the latter lacks input detail. The aspect of "confidentiality" should also be considered in compilation. The law requires that no statistics arising out of the Census Forms be published if they are given on an Industry where only three or fewer Establishments are defined, or again, if one Establishment accounts for 60% or over of the value of that Industries output. On a provincial basis, this can create a problem although not in regard to the "predictive", Major Group by Major Group table. Concerning any of the "Industry" tables (Tables 1 and 2 above) distribution may have to be limited to government agencies or else the relevent Industries must be aggregated into other Industries.

It is hoped that in the future, the quality and quantity of such Industrial information will be improved. Indeed, if the provincial "compiler" were to have access to the DBS commodity cards, which are
(2) That is, the provincial files have only a 60% coverage of the potential measured by the output totals of the forms on hand as compared to the overall output total.
distinguishable by province, not only would the amount of data be improved, but the form entries would already be clasṣified to commodity Groups and be compatible with the national compilation at that. According to . Gigantes and Robb ${ }^{(3)}$, the Bureau is considering relabelling the entries on the Census Forms to coincide'with the standard Commodity Classification (SCC).

Gigantes and Pitts ${ }^{(4)}$ have argued that the model should not be decided on until the basic data has been compiled. This allows flexibility in accounting for joint products and secondary products. Their model differs from the one outlined in the last chapter in that the square table compiled (corresponding to Major Group by Major Group) is an Industry by Industry table. In deriving such a table the problem of secondary and joint products must be considered carefully because an Industry in many cases produces products that are in the main, produced by another Industry (s). Because the" predictive" table suggested in the last chapter has a high level of aggregation - Major Group by Major Group - this problem can be assumed away. The drawback is that the assumption of constant cost structure falls down because within a Major Group, many products are produced and if a demand change in traced, by way of the inverse (II - 26) it must be assumed that the component products are "demanded" in the same proportiors as they were in the base period, as expressed in the weighting system of section 1 , Chapter II.
(3) See Gigantes, T. and Robb, M., (19), page 14
(4) See Gigantes, T. and Pitts, P., (20), Introduction

The author feels justified in suggesting such an assumption because:

1. The final demand vector used for prediction will still be in the aggregate form (Major Group) divisions such that although Industry detail (changes in output) cannot be obtained, the broad movement should be reflected.
2. The Criterion for aggregating Industries into Major Groups, according to the SIC, is similarity of products, and hence similarity of cost structure of the component Industries of a Major Group tends to offset the effects of differential demand.

Actually, if one desires to pursue the Gigantes-Pitts method, the data is available from the computer program with addition of the procedure outlined in Appendix "C" (the "Make" matrix). Following this procedure, the row commodity Groups need not be assigned to Major Groups; they are assigned to Industries directly through the model using "Make" and "Use" matrices. Irving stone also uses this method - ref. (39). Whereas the basic data is available from the program of Chapter IV and Appendix " C ", it is left up to the compiler to combine the "Make" and "Use" matrices to develop the Industry by Industry table - ref. (20).

Commodity Classification

The Canadian "Standard Commodity Classification" is to be found in three basic volumes published by the Dominion Bureau of Statistics. Volume I (44) expresses the classification in ordered code form. This comprehensive classification is made up of:

5	Sections
82	Divisions
498	Groups
5,634	Classes

The basic data cards have each entry from the Census Forms coded to the Group level of detail; these Groups, in turn, belong by definition to a Division and a Section. Volume II (45) is a classified index containing a list under each Class, of commodities which typically belong to it. Volume III (46), perhaps the most useful in the original compilation, lists commodities in alphabetical order with their assigned code following. This is the largest of the manuals in that many commodities are listed more than once -- e.g. "sugar, maple," and "maple sugar".

Commodities are classified according to principal component or, where convenient, according to use. In the last case, such a classification prevents large n.e.s. ${ }^{(5)}$ grouping but at the same time is at odds with the "predictive" input/output requirement of input homogeneity.

The five basic Sections of the SCC are:

1. Live Animals
2. Food, Feed, Beverages and Tobacco
3. Crude Materials, Inedible
4. Fabricated Materials, Inedible
5. End Products, Inedible

The distinction between 3,4 and 5 is not that of vertical levels of production, as the introduction to Volume III (46) is at pains to point out. A commodity is part of Section 3, if the only operation done on it is cleaning and preparing for transit. The distinction between Sections 4 and 5 is not clear-cut although the working principle is that if a commodity loses its identity in another use, it is part of Section 4, and if it retains its identity in use, it is part of Section 5 .

[^5]In finer detail, these Sections are broken down into 82 commodity Divisions, as indicated by the first two digits of the code, and 498 commodity Groups, indicated by the first three digits of the code. It is to this last level of detail that the Census Form entries are coded in order to be accepted by the program of Chapter IV. In that a commodity Group. tends to encompass those Cl asses to which an entry (from the Form) could as easily be categorized as another, much ambiguity of coding drops away if the commadities are only distinguished at the three-digit level.

Certain entries on the Census Forms cannot be classified by the SCC, and in view of the fact that there is no " 99 " Division, it is suggested that, at least initially, the following arbitrary classification be followed:

99-1 Work done by others
99-2 Office supplies and expenses
99-3 . Other services
99-4 Not elsewhere specified (n.e.s.) \quad.
99-5 Wages
99-6 Salaries

99-9 Must be kept a null "Group" in that the computer program requires this code for termination.

In the next chapter, a suggested format and procedure is given for registering such data.

Industrial Classification
The Canadian "Standard Industrial Classification (SIC) is to be found in the D.B.S. publication (47). In regard to the Manufacturing Section only, the levels of detail are: 20 Major Groups, Industries given by a four-digit code and a varying number of Establishments (6) within each Industry is given. Each Industrial Census

Form represents an Establishment which often, but not necessarily represents a firm, and is assigned to an Industry by the D.B.S. according to its principal product. An input/output table coded according to the SIC can be used for international comparisons in that the SIC was designed to accommodate the U.N. scheme, ISIC. ${ }^{7}$).

The heading on the Census Forms have the Establishment name and address (printed), the four-digit Industry code to which it belongs, a provincial code, a "within province" area code and an Establishment code number. Unfortunately, the Establishment identification code may be duplicated with a province, for a given Industry: the D.B.S. has subdivided the provinces into areas within which, and only within which, the assigned establishment number is unique. Thus, the Establishment identity is best maintained on the data deck by using the area code as well as the Establishment number. Appendix " D " contains a sample Census Form on which is indicated the location of the above information.

The Census Form itself can be looked at as a number of basic sections:

1. Inventories - "Stock-on-hand" is listed for the beginning and the end of the reporting year -- with varying degrees of detail.
2. Fuel and Electricity - Again, with varying degrees of detail.
3. Inputs - Some forms -- e.g. the Chemical Industry -- are very detailed (>200 entries) whereas others -- e.g. the Clothing Industry -- show only the sum of the inputs. In the latter case, recourse must be made to supplementary data for determining the cost structure.
(7)

See U. N. (42)
4. Outputs - Most forms show considerable commodity detail ($) 100$ entries) although for the basic program only the sum is needed.
5. Wages and Salaries - Usually the two are distinguished on the Form, and the degree of detail is standara.
6. Other Accounting Information - Taxes, office expenses, capital expenditures, etc. follow (on the Form) the input' and output sums -- such information may be subsequently useful and it is suggested that it be recorded on "supplementary" cards as per Chapter IV.

The Census Forms are also classified according to size. Thexe are three basic sizes known as Long, Medium and Short Forms, respectively, although the degree of detail in a given size may vary from Industry to Industry. In general, the Short Form data is not used in compiling the table because of lack of input detail, although in the initial basic data cards, all Establishments (and hence, Forms) are registered.

The SIC was revised in 1960 although Census Forms are normally available dating back to 1950. The Industrial Census Forms can be found on file with a provincial government department; in Manitoba's case, with the Department of Industry and Commerce. Descriptions of revisions, including the 1960 revision, the code itself and Major Group assignments can be found in the basic manual. (8)

The Major Groups, which form the basis of the suggested final aggregation of the table, are groupings of Industries with like products. There are 20 Manufacturing Major Groups defined in the SIC:
8. See References (45, (46) and (47).

1. Food and Beverage Industries
2. Tobacco Products Industries
3. Rubber Industries
4. Leather Industries
5. Textile Industries
6. Knitting Mills
7. Clothing Industries
8. Wood Industries
9. Furniture and Fixtures Ind.
10. Paper and Allied Industries
11. Printing, Publishing and Allied
12. Primary Metal Industries Ind.
13. Metal Fabricating Industries
14. Machinery Industries
15. Transportation Equipment Industries
16. Electrical Products Industries
17. Non-Metallic Mineral Products Ind.
18. Petroleum and Coal Products Ind.
19. Chemical and Chemical Products Ind.
20. Miscellaneous Mfg. Industries

In the case of a given province, this particular division may not be appropriate. In Manitoba, for instance, the output value of the Industries included in Major Group 2, and again in Major Group 3, is less than $\$ 5 \mathrm{M}$. whereas that of Major Group 1 is $\$ 125 \mathrm{M}$. In this case, it is convenient to subdivide Major Group 1 into, say, Meat Products, Dairy Products, Grain Mill Products, and Other Food Processors. By the same token, Major Group 2 and Major Group 3 could be combined.

The SIC Major Groups can also be added to, to include other convenient sectors of the economy such as

Petroleum Mining
Metal Mining
Non-Metal Mining
Crops
Livestock
The Major Groups form that part of the table which is subjected to "feedback" and, as such, is the part which is inverted. Other sectors can be added on as rows, to represent "non-produced" inputs such as labour, profits, depreciation, land, taxes, non-competing imports.

There are no readily available sources of data on imports on a provincial breakdown. In the case of the Manitoba study, the base year coincided with a study on Import Replacement done for COMEF (9) from which the C matrix of (II - 25) was estimated. Lacking this, access would have to be made to way-bill documents of transportation companies for data on commodity description and destination; an ambitious task. It is left to the user to determine the method and source for determining these Imports. It is important to keep in mind that distinction must be made between input imports and final demand imports, and again, between competing and non-competing imports.

In the next chapter, the computer program is described together with a step-by-step procedure for incorporating the data considered above into the model considered in Chapter II.
9. Committee on Manitoba's Economic Future, Government of Manitoba,

THE COMPUTER PROGRAM

This chapter is concerned with the actual procedure, step-by-step, used in compiling the basic tables. In the following section, the computer and how it is used is briefly discussed. The next section, labelled section I, gives the detailed method of putting the required data in "computer acceptable" form. Section II describes the data and programs required under the headings of the desired outputs. Operator sheets under each object section are for the computer operator as a guide for input card sequences and for any subsequent program revisions. Section III gives a concise description of the card decks involved. The diagrams found at the end of the chapter are referred to in the text.

The Computer
A computer is a "sequence controlled calculator" (l) which, in the course of pursuing this function, serves as a temporary storage of information, a selector of sequences to follow, and a producer of answers in various forms. Instructions are "fed into" the computer, then data is "fed in", and after the computer has executed the instructions on the data, the answers, or "computed" data is "fed out" or Outputed. This is diagrammatically represented on pagel03, Diag. I. The computer "thinks" only in a discrete sense in that any decisions made by it are based on given information (quantified) and/or computed information.

The use to which the computer is put in the program outlined here is a data processing function - a transformation of data with only simple calculations involved.

1. Berkeley, E. C.; Giant Brains, Science Editions Inc., New York, 1961.

Certain cardinal rules in computer input preparation should be stressed here. In considering instructions and data, the machine takes things quite literally. If, say, a variable name is entered as P I M \emptyset, and, if later in the program, it is accidentally replaced by $P I M O$, the computer cannot take the common sense view that the programmer meant I instead of one and \emptyset instead of zero. Again, if the computer is instructed to accept data on the first ten columns of a series of cards, and if the data, in fact, is mispunched on the third card such that it extends into the first eleven columns, only the first ten columns are read, even though to the naked eye this would appear absurd. In other words, instructions and data must be entered exactly as specified.

Geometric symbols are used to illustrate program procedures without having to consider detail. The symbols are defined on page 104 Diag. II, as based on the standard I.B.M. template, with a few convenient revisions.

Input/Output Media
Both instructions and input data are entered into the computer on I.B.M. 5081 cards. Output is either on the same type of card and/or on a printer (typewriter with continuous paper flow). The 5081 cards have 12 rows, 10 of which are numbered, and 80 columns - see Diag. III. Each column can register an alphanumeric ${ }^{(2)}$ symbol; for instance, 80 digits could be entered on the card. Normally, what is entered in the form of punched holes in body of the card, is also printed in a single line along the top of the card. It is important to keep any series of cards - called a "deck" in its proper - normally original - order; this is especially true of any program deck where the computer considers the sequence of instructions as indicated by the sequence of cards.
2. Arabit numerals, letters and special characters.

Fortran: The computer cannot be made to understand English; there are too many possible interpretations of meaning for many words, which require a human "intuition" to distinguish. As a consequence, the programs, at least those considered in this chapter, are written in an English-like language called FORTRAN which the computer can be made to understand.. The question of the advantages and disadvantages of other languages and of how the computer accepts FORTRAN need not be gone into here. The input/output programs written are, in the basic FORTRAN II which can normally be used on pre-1966 computers. The I.B.M. 360 line of computers required a slightly modified version, and these changes are outlined in Appendix " C ". It is advisable that any adjustments of this nature be left to a computer programmer.

Fortran instructions can be mastered fairly easily although it is suggested that the Economist qua Economist need go no further than being able to establish a professional rapport with the computer people. To this end, one could consider the following aspects of Fortran.

1. Programs are written on coding sheets where each line represents one card. The first six columns are used for line (statement) reference.
2. The computer is told to accept data by a READ statement which stipulates the statement number which describes the layout of the data (FØRMAT) and the list of variables to be read -- e.g.

READ 100, NUMBER
100 FØRMAT (layout)
3. The computer is told to output data by

PUNCH 100, (list of variables) - for cards
PRINT 100, (list of variables) - for printer
4. The sequence of statements followed by the computer corresponds to the sequence of lines on the coding sheet unless the following "branch" statements are come across
$G \varnothing T \varnothing$ (Statement number)
IF (Variable to be tested) statement numbers branched

- to conditional on test.

5. Repetitive operations, a series of lines or statements can be repeated by using a $D \not \varnothing$ statement.-- e.g.

$$
10 \quad \mathrm{D} \varnothing \quad 100 \quad I=1, J
$$

$\begin{array}{ll}\vdots & \vdots \\ \vdots & \vdots \\ 100 & \vdots\end{array}$
Here statements 10 to 100 are done with I set consecutively (from 1 to J).
6. Arithmetic symbols are:

$$
\begin{aligned}
A-B & \text { minus, or subtract } B \text { from } A \\
A+B & \text { plus, or add } B \text { to } A \\
A * B & \text { multiply } B \text { by } A \\
& A / B
\end{aligned} \quad \text { divide } A \text { by } B \begin{aligned}
& A=A+B
\end{aligned} \quad \begin{aligned}
& \text { what was in } A \text { is replaced by } A+B \text { (does not } \\
& \\
& \\
& \text { mean equal) }
\end{aligned}
$$

A simple program to read three data cards and output three cards on which is the product of the two numbers on the input cards is given in Diag. IV。

Three basic program decks are used for computing the input/output tables. These are labelled as follows:

SIFT
TABL
INVERT.
In this chapter only SIFT and TABL are considered. SIPT does a sexies of operations on the basic row data in preparation for input into TABL which is a composite program designed to output the various non-inverted tables. INVERT is essentially a progiam for inverting the Major Group by Major Group Table and is considerecl in the last chapter.

The procedure suggested is that the compiler oversees the coding of the Census Forms and the transferrence of this data to I.B.M. data coding forms, according to the layout described in Section I of this chapter. These forms are then given. to a card-puncher -- usually at the computer centre -- who would make up the basic data deck, labelled DATA I. The compiler would then give the DATA I deck or any computed deck plus required control cards to the computer centre as per requiement sheets of Section II. Section II is indexed by the Output required and gives step-by-step instructions for working with the computer operator. Section III gives a complete description of all program and input/output decks as well as control cards used. SIFT and TABL are listed in Appendix "B".

SECTION I

PREPARING THE DATA

A. DATA I - This deck is the one which registers the entry information from the Census Forms. Each card contains the Industry code, the Establishment number and "code" number and four entries. The procedure to be followed is:

1. Obtain the manufacturing Census Forms and pencil in - the SCC assignment to each entry. Also keep a list of the 4-digit Industry code (see diagram VI) and assign a unique Establishment number to each form.
2. Transfer the information on the coded forms to the IBM data coding form (diagram $V)^{(1)}$. Each line on these sheets represent a card and following layout is convenient.

Columns
$1-4 \quad$ SIC
$5-7$
EST.
8
Code
9-11
SCC
12-20 Value
21-26 Quantity
$27-29$
SCC
30-38
Value
$39-44$
Quantity
(1) These forms are available at the computer centre.

$45-47$	SCC
$48-56$	Value
$57-62$	Quantity
$63-65$	SCC
$66-74$	Value
$75-80$	Quantity

The code for column 7 should be according to the following:
$\underline{\text { Code }}^{(2)}=0 \quad$ Input card - all fields filled
1 " $"$ - last field empty
2 " " - two last fields empty
3 " $"$ - three last fields empty
4 . " " - no inputs
5 Output card- all fields filled
6 " " - last field empty
7 " " - two last fields empty
8 " " - three last fields empty
9 " " - no output
3. Place the completed coding sheets with a card puncher in order for a card deck to be made up from them. Label the resultant deck with a marker pen, as DATA I, and keep it together with an elastic band.
(2) The "fields"referredto are the sets of 17 columns used for each form entry.
B. SELECT: This deck simply lists the Establishments one wishes to eliminate from the DATA I deck in order to remove unreasonable or inaccurate data. Once the decision has been made as to which ones should be removed, the SIC number with corresponding Establishment number should be listed on the I.B.M. data coding forms (Diag. V) in the following way - starting at Column 1 , write in the four-digit industry code, leave a blank, two-digit Establishment code, leave a blank, next Industry code, etc. The procedure then is:

1. Run DATA I on SIFT to obtain COEF I (p. 69) and on the basis of COEF I, select the Establishments to be removed.
2. List the SIC code and corresponding Establishment code as per above.
3. Have the cards punched.
4. Label SELECT and put a rubber band around the deck.
C. SCC - MGRP ASS : This deck shows the Major Group assignments for each of the listed commodities. The procedure is:
5. Using only those SCC's listed on the SCC - LIST deck (see p. 73) assign each one to a Major Group, on the basis of the description for each SCC code, as found in the Manual (ref. (44)).
6. Register these assignments on the coding forms (Diag. V), starting at the first column of every card, as:

SCC code, three columns
a blank colunn
Major Group assignment, two columns
two blank columns
and repeat until the 80 colums are filled, for each card.
3. Have the coding forms punched out into a card deck, and label SCC - MGRP ASS and put a rubber band around the deck.
D. SIC - MGRP ASS : This deck shows which Major Group each Industry belongs to. The assignment is given in the SIC Manual (47), if that code is followed, although another Major Group code may bo devised if desired. The procedure here is:

1. Using the EST LIST deck (see p.73) assign each SIC code to a Major Group.
2. Enter each SIC with its corresponding Major Group assignment onto the coding forms (Diag. V), starting at Column 1 , by

SIC, four columns one blank column Major Group Assignment, two columns one blank column and repeat for all 80 columns, for each card.

SECTION II

OBJECT - REQUIREMENT SHEETS

The following sheets axe categorized by the computer output desired. The description of the decks referred is to be found in Section III (p. 97). Under each object heading there are four sheets:

1. The object deck and the corresponding required decks and control cards are listed.
2. A simple flow diagram of the object-requirement as described on the previous sheet.
3. An instruction sheet for the computer operator.
4. A more detailed flow diagram of the actual program for use by a programmer for any subsequent revisions.

SHEET 1

Object: COEF I

Requirements: DATA I . SIFT
CONTROL I

Procedure: Give the computer operator Sheet 3 (page 71) and the three requirement decks.

Program is written in FORTRAN II and is labelled SIFT

Program, as it stands requires appxoximately 40,000 bytes.

To run, the decks given to you should be in the following order

SIFT

CONTROL I

DATA I
"The missing pages ... 72, 76, 80, 84, 88, 90, 92, 96, 102, 114, 115, 124, were removed from all copies of the thesis as these were in effect more in the nature of work sheets rather than part of the thesis itself". - Extract from a letter dated January 3, 1967 from the University of Manitoba to the National Library.

Object: COEF II and SCC LIST and EST LIST

Requirements: SELECT SIFT
DATA I
CONTROL II

Procedure: Give the computex operator sheet 3 (p.75) and the four requirement decks.

SHEET 3

Program is written in FORTRAN II and is labelled SIFT

Program requires approximately 40,000 bytes. To run, the decks given to you should be in the following order. SIFT

CONTROL II

SELECT

DATA I
"The missing pages ... 72, 76, 80, 84, 88, 90, 92, 96, 102, 114, 115, 124, were removed from all copies of the thesis as these were in effect more in the nature of work sheets rather than part of the thesis itself"。 - Extract from a letter dated January 3, 1967 from the University of Manitoba to the National Library.

SHEET I

Object: •WEIGHTS

Requirements: COEF II TABL
SIC MGRP ASS

- SCC LIST

CONTROL V

Procedure: Give the computer operator Sheet 3 (p .79) and the five requirement decks.

SHEET 3

Program is written in FORTRAN II and is labelled TABL

Program requires approximately 80,000 bytes.
To run, the decks given to you should be in the following order.
TABL
CONTROL V
SCC LIST
SIC MGRP ASS
COEF II
"The missing pages ... $72,76,80,84,88,90,92,96,102$, 114, 115,124 , were removed from all copies of the thesis as these were in effect more in the nature of work sheets rather than part of the thesis itself ${ }^{H}$. - Extract from a letter dated January 3, 1967 from the University of Manitoba to the National Library.

SHEET 1

```
Object: SCC x SIC TABLE
Requirements: SCC LIST
    TABL
    SELECT
    DATA I
    CONTROL VI
```

Procedure: Give the computer operator sheet 3 (p.83) and the four requirement decks.

Program is written in FORTRAN II and is labelled TABL.
Program requires approximately 80,000 bytes.
To run, the decks given to you should be in the following order:

TABL
CONTROL VII
SCC LIST
SELECT
DATA I
"The missing pages ... 72, 76, 80, 84, 88, 90, 92, 96, 102, $114,115,124$, were removed from all copies of the thesis as these were in effect more in the nature of work sheets rather than part of the thesis itself". - Extract from a letter dated January 3, 1967 from the University of Manitoba to the Nationel Library.

Object: MGRP x SIC TABLE

Requirements:
SCC MGRP ASS
TABL
SCC x SIC TABLE
CONTROL VII

Procedure: Give the computer operator Sheet $3(p .87)$ and the four requirement decks.

Program is written in FORTRAN II and is labelled TABL.

Program requires approximately 80,000 bytes.
To run, the decks given to you should be in the following order.

TABL

CONTROL VII

SCC MGRP ASS

SCC x SIC TABLE
"The missing pages ... 72, 76, 80, 84, 88, 90, 92, 96, 102, 114, 115, 124, were removed from all copies of the theses as these were in effect more in the nature of work sheets rather than part of the thesis itself". - Extract from a letter dated January 3, 1967 from the University of Manitoba to the National Library.

SHEET 1

Object: SCC x MGRP TABLE

Requirements: WEIGHTS . TABL
SIC MGRP ASS
SCC x SIC TABLE
CONTROL VIII

Procedure: Give the computer operator sheet 3 (p.91) and the four requirement decks.
"The missing pages ... $72,76,80,84,88,90,92,96,102$, 114, 115, 124, were removed from all copies of the theses as these were in effect more in the nature of work sheets rather than part of the thesis itself". - Extract from . letter dated January 3, 1967 from the University of Manitoba to the National Library。

SHEET 3

Program is written in FORTRAN II and is labelled TABL.

Program requires approximately 80,000 bytes.
To run, the decks given to you should be in the following order.

TABL

CONTROL VIII

SIC MGRP ASS

WEIGHTS

SCC x SIC TABLE
"The missing pages ... 72, 76, 80, 84, 88, 90, 92, 96, 102, 114, 115, 124, were removed from all copies of the theses as these were in effect more in the nature of work sheets rather then part of the thesis itself". - Extract from a letter dated January 3, 1967 from the University of Manitoba to the National Library.

SHEET 1

Object: MGRP x MGRP TABLE

Requirements: SIC MGRP ASS TABL
WEIGHTS
MGRP x SIC TABLE
CONTROL IX

Procedure: Give the computer operator sheet 3 (p .95) and the f ive requirement decks.

SHEET 3

Program is written in FORTRAN II and is labelled TABL.

Program requires approximately 80,000 bytes.
To run, the decks given to you should be in the following order. TABI CONTROL IX

SIC MGRP ASS

WEIGHTS

MGRP x SIC TABLE
"The missing pages ... $72,76,80,84,88,90,92,96,102$, 114 , 115,124 , were removed from all copies of the theses as these were in effect more in the nature of work sheets rather than part of the thesis itself". - Extract from a letter dated January 3, 1967 from the University of Manitoba to the National Library.

DECK DESCRIPTION

DATA I
Register inputs and outputs from the Census Forms. Each card has the first eight columns reserved for form (establishment) identification. The Industry code is found in the first four columns, the Establishment code in the next three, and the eighth column is reserved for a code which indicates whether the entries in the columns that follow are inputs or outputs. The entries have three parts, the SCC code, the value figure and the quantity figure. Each entry uses 18 columns $(3+8+7)$ and although the card may not be filled, normally it has 4 entries registered on it ($4 \times 18=72+8$ (identification cds.) $=80$) . This deck will be the largest and will probably involve 2,000 to 4,000 cards.

COEF I
Is an output deck from the SIFT program and lists for each Establishment, the proportion that each input forms of output (value terms) by unduplicated SCC code. It also shows the output proportions and the value of output. The deck is designed in a self-explanatory way and the column by column content need not be considered.

SELECT
Is formed from on the basis of inspecting COEF I and choosing Establishments which contain unreasonable or inaccurate data. Each such Establishment is registered in column groups of eight, where
the first four columns contain the Industry code, the next three, the Establishment code, followed by a blank. Thus there can be 10 such Establishments registexed per card。

COEF II
Is an output deck from SIFT program and is derived from COEF I and SEIECT. Thus, it corresponds exactly to COEF I except that the undesired Establishments are not included.

SCC LIST
Again an output from SIFT, using DATA I and simply lists the unduplicated SCC codes which have been entered on DATA I. These three-digit codes are outputed in ascending numerial order as 20 groups of the 3 column code and a blank.

EST LIST
Lists are unduplicated SIC codes from DATA, in ascending order, one per card, together with the number of Establishments associated with it. On each card, the first four columns are the SIC code, followed by three blank columns and the three column number of Establishments. This deck is outputed from SIFT using DATA I.

WEIGHTS
Is an output deck from the TABL program, using COEF II (or I), and the SIC MGRP ASS. These weights have on it the weights to be applied to the industry coefficients when aggregated into Major Groups. In turn, it is used as input into TABL in order to obtain the SCC x MGRP and the MGRP x MGRP tables. The information is registered on each card in eight groups of sixteen, where the first four columns indicate
the Industry, two blank columns, two columns indicating the assigned Major Group, two blank columns, five columns for the weights (first column for the decimal, next four for the numbers) and finally a blank column.
SIC MGRP ASS

A small deck indicating the Major Group to which each Industry is assigned. Each Industry is entered, with its Major Group assignment in ten groups of eight columns, on each card. In each group, the Industry is registered on the first four columns, a blank column, the Major Group on the next two columns and finally another blank column.

SCC MGRP ASS
As above except a list of the commodity codes and the corresponding Major Group to which they have been assigned. Information is entered onto each card in ten groups of eight columns; where the first three columns indicate the three-digit commodity code, a blank column, the corresponding Major Group assignment in two columns and finally two blank columns.

SCC x SIC TABLE
Is the commodity by Industry tables outputed by the TABL program which aggregates the Establishment coefficients of COEF II (or I). There are nine Industry columns on each card such that the table is outputed including all commodity rows (one row $=$ one card) for each group, of nine Industries. For each such group, there is an Industry code title card followed by the $S C C$ rows and the corresponding Industry coefficients. If a printout is made from this.deck where blank cards
are added for spacing purposes, care must be taken to remove these cards and leave the deck in the condition it was outputed in, in order to use it as input to obtain the other tables.

MGRP x SIC TABLE
Is a deck identical to the above table except that the commodity rows have been aggregated into Major Group Rows. It is outputed from the TABL program using the SCC x SIC TABLE and the SCC MGRP ASS deck.

SCC x MGRP TABLE
Another outputed table from the TABL program, this time using the SCC x SIC TABLE and the WEIGHTS deck. It is identical to the SCC X SIC TABLE except that the groups of nine columns are now Major Groups and the title cards indicate the Major Groups rather than the Industries.

MGRP x MGRP TABLE
Is a deck outputed from the TABL program using MGRP x SIC TABLE and the WEIGHTS deck. This is the "final" deck which by having corresponding rows and columns is suitable for inversion. Once the deck is obtained it is suggested that it be printed-out and then copied by pencil, onto columnar paper where non-manufacturing sectors can be added at the compilers convenience. Rather than use the deck as input into the INVERT program of the next Chapter, it is suggested that the table be repunched according to directions in the next Chapter, from the columnar pads.

CONTROL CARDS

These cards are used simply to indicate to the computer what

```
it is going to receive in the way of input data and jn tum what is
desired as output. The function and layout on each card is listed
below. Only columns 5 to lo need be reserved for the infommtion
the computer requires, the othex colums may be used for any descrip-
tion the compiler or progsmmow seca fit to onter on tho eore (the
computer ignores these other colums). For convenience, the columns
5 to 10 are referred to as the "code zone", in the following.
CONTROL I - for obtaining COEP I-- punch I. in code zone.
CONTROL IT - fOr obtaining COM IT, SCC ITST and EST LIST --
    Punch 2. in code zone.
CONTROL V - for obtaining WETGMRS -- punch 5. in code zone.
CONTROL VI - PON Obtaining SCC x SIC TABLE -- punch 6. in code zone.
CONMROL VII - for obtainimg MGRP x SIC TABLE -- punch 7. in code zone.
CONMROL VIII - for obtaining SCC x MGRP TABLE -- punch 8. in code zone.
CONTROL IX - for obtaining MGRP x MGRP TABLE -- punch 9. in code zone.
```

"The missing pages ... 72, 76, 80, 84, 88, 90, 92, 96, 102, $114,115,124$, were removed from all copies of the theses as these were in effect more in the nature of work sheets rather than part of the thesis itself". - Extract from a letter dated January 3, 1967 from the University of Manitoba to the National Library.

DTAGRAM II

STOTMSS JAMHO MOTA
II WVQDVIa

* A standard card form, IBM electro 888157, is available for punching source statements from this form.
80 COLUMN DATASHEET

CMAPTER V

CONCLUSION

Review
The argument of the thesis has been that an inexpensive input/ output table, compiled on a provincial basis, may conveniently be built up from D.B.S. Census Forms and SCC and SIC classification schemes. Further, it has been argued that many routing problems (secondary and joint products) can be ignored if the predictive, invertable table (MGRP x MGRP) is of a high level of aggregation. The more detailed Industry by Industry square table is possible from the data, but involves the routing problems as well as the problem of assigning commodities to Industries (rather than to Major Groups - a less ambiguous task).

Chapter I was an introduction to the thesis as well as considering some basic economic concepts involved in input/output analysis. In particular, the concept of "sectorizing" the economy and tracing "feedbacks" was discussed.

In Chapter II, the basic suggested model was considered and a rationale given for its use in terms of data availability. The manner of including imports and trade margins was considered and a composite model taking these factors into account was developed. Finally, some possible uses of such a model were discussed in a general sense.

Chapter III assumed the use of the model developed in the previous chaptex and considered data sources, coding problems and
two different tables available from this data. Emphasis was on existing classification schemes and readily available sources of data.

Chapter V outlined the step-by-step procedures for gathering the data and using a computer to arrange the tabular displays of the desired layouts of this data. It was assumed that the compiler was not familiar with computer operations and computer programming. • Again, it was assumed that the computer operator, card punchers and programmers were not familiar either with the economics of input/ output or even with the model used.

In this final chapter, a brief survey has been taken of what has been done after which follows a discussion of preparaing the MGRP x MGRP table for inversion and procedures for inversion itself.

Adding sectors onto MGRP x MGRP TABLE
Whereas as the column sectors only include the Manufacturing Major Groups - by definition of Industry - the colum sectors are in terms of Major Group but may include Non-Manufacturing Major Groups. In Chapter III, it was suggested that "non-manufactured" commodities (rows) be classified to special Major Groups such as Crops, Livestock, Metal Mining, etc. If this format has been followed, and if, as was suggested in Chapter IV, the MGRP x MGRP table has been entered on a columnar pad, then the task remains of "squaring up" the sector by determining the cost structures of these special Groups. In this tabular form, the compiler can also enter any non-invertable sectors such as final demand and primary factors (labour, etc.) in as fine
degree of detail as desired. In preparation for inversion, however, these added sectors should be omitted.

Subsequent Programming

The inversion programs are only outlined in this chapter in the light of the fact that by this time, the compiler should be able to program it himself or at least be able to explain the situation to a professional programmer. Also, the size and desired layout of the table can be specifically stipulated and any desired adjustment can be easily accommodated if the procedure is only "sketched".

Inversion
The inversion of a matrix is a common procedure in computer work and the particular computer centre may best advise on which developed or "canned" program to use in the light of the requirements. "Canned" programs are previously developed and tested programs which only require instructions as to how to read in the data. If such a program were to be used, the compiler would discuss the arrangement of the table on punched cards and have it subsequently put on these punched cards. The computer centre would then take over and supply the inversion in both printout and punched card forms.

Inversion in a direct sense, however, may involve considerable "round-off" errors. The reader is directed to reference (8) by Christ, C. on this matter, and if he deems the level of error to be significant, he may prefer to use the power series approximation.

$$
(I-A)^{-1}=I+A+A^{2} \ldots(V-I)
$$

A program for computing this is outlined on page 112. The series
may be taken out to as high a power as is desired. A simple test on the accuracy is to multiply the approximate inverse by the original (I - A) matrix, and the degree to which the product differs from the identity matrix I is indicative of the error involved.

This follows from the mathematical relationship:

$$
(I-A)(I-A)^{-1}=I
$$

The author would also like to mention here a method of inverting a matrix of any net changes in coefficients of A. It is assumed that the basic inversion $(I-A)^{-1}$ has been computed. Although it is valid, the usefulness of such a "short-cut" has not been satisfactorily determined and it is left to the compilex/programmer to make this judgement. The procedure for developing such a program is outlined on page 113 and is based on the following formula.

Let $A *=$ a matrix the dimensions of A, with O's in every cell except the desired changes where the net change is entered in the proper cell.
$\left((I-A)^{-1}\right)^{*}=$ the net effect of such changes on the inversion $(I-A)^{-1}$

Then

$$
\begin{equation*}
\left((I-A)^{-I}\right)^{*}=I+A^{*}+A A^{*}+\left(A A^{*}\right) A^{*}+\left(A A^{*} A^{*}\right) A^{*} \ldots \tag{V-2}
\end{equation*}
$$

If it is desired to compute the inverse according to (V-1), the following procedure can be used. Successive powers of "A" are accumulated to any degree desired, and added to the Identity Matrix; the result is an approximation to $(I-A)^{-1}$. The input required is the " A " matrix and some indication of how far (to what power) the expansion should be carried. A basic flowchart for such a program is:

The procedure here is similar to that on page 112 except that a dummy matrix is set up (call it "DUM") which has the dimension of Matrix " A " with zeroes in all cells except for the pastulated changes. The suggested program is outlined in the following flowchart:

"The missing pages ... '72, 76, 80, 84, 88, 90, 92, 96, 102, $114,115,124$, were removed from all copies of the theses as these were in effect more in the nature of work sheets rather than part of the thesis itself". - Extract from a letter dated January 3, 1967 from the University of Manitoba to the National Library.

1. BARNA, T. - Structural Interdependence and Economic Development. New York: Macmillan Co., 1963. 365 pp.
2. CARTER, H.O. and MARTIN, W.E. - A Ca'lifornia Interindustry Analysis Emphasizing Agriculture - Part I The Input/Output Model and Results. University of California, 1962. 80 pp .
3. CAVES, $\dot{\text { R. E. and HOLTON, R. H. - The Canadian Economy - }}$ Cambridge, Mass: Harvard University Press, 1959. 660 pp.
4. CEIR, Inc. What If, Industrial, promotional publication.
5. CHENERY, H.B. and CLARK, P.G. - Interindustry Economics. New York: John Wiley and Sons, 1959. 340 pp. CLARK P.G. - See Chenery, H.B.
6. DORFMAN, R., SAMUELSON, P.A. and SOLOW, R.M. - Linear Programming and Economic Analysis. New York: McGraw-Hill Co., 1958.
7. LEONTIEF, W. - The Structure of the American Economy

1919-1929. Cambridge, Mass: Harvard University Press, 1941.

MARTIN, W. E. - See Carter, H. O.
8. NATIONAL BUREAU OF ECONOMIC RESEARCH - Studies in Income and

Wealth. Volume 18: Input/Output Analysis: An Appraisal. Princeton, New York: Princeton University Press, 1955. 370 pp.
9. NATIONAL BUREAU OF ECONOMIC RESEARCH - Studies in Income and Wealth. Volume 25: Input, Output and Productivity Measurement. Princeton, New York: Princeton University Press, 1961. 480 pp.

SAMUELSON, P.A. - See Dorfman, R.

SOLOW, R. M. - See Dorfman, R.
10. WHITTAKER, E. - Schools and Streams of Economic Thought Chicago, Illinois: Rand McNally \& Co. 1960. 420 pp.
11. YAMADA, I. - Theory and Application of Interindustry Analysis Tokyo, Japan: Dai Nippon Printing Co., 1961. 260 pp.
13. ARKA, K. - "The Aggregation Problem in Input/Output Analysis" - Econometrica - Volume 27, 1959. p. 257 .
14. BERGER, W.J. and SAIBEL, E. - "Power Series Inversion of the Leontief Matrix" - Econometrica - Volume 25, 1957. p. 154.
15. BERMER, L.S. - "Book Review of Interindustry Analysis by Chenery, H.B. and Clark, P.G." - Econometrica Volume 29, 1961.
16. BRIGGS, F.E.A. - "On Problems of Estimation in Leontief Models" Econometrica - Volume 25, 1957.
17. CORMACK, M. - "An Input/Output Model and Framework of Social Accounts for the Manitoba Economy." Unpublished manuscript. Manitoba Economic Consultative Board, 1965.
18. FEI, J. - "A Fundamental Theorem for the Aggregation Problem of Input/Output Analysis" - Econometrica Volume 24, 1956. p. 400
19. GIGANTES, T. and ROBB, M. - "The Standard Commodity Classification", Dominion Bureau of Statistics, Ottawa, 1963, 20 pp . (Unpublished manuscript)
20. GIGANTES, T. and PITT, P. - "An Integrated Input/Output Framework and Some Related Analytical Models" Paper given before C.P.S.A. Conference on Statistics, UBC, June 1965.
21. GHOSH, A. - "Input/Output Analysis With Substantially Independent Groups of Industries." Econometrica - Volume 28, 1960. p. 88
22. GOLDMAN, M.R., MARIMONT, M.L. and VACCARA, B.N. - "The Interindustry Structure of the United States:

A Report on the 1958 Input/Output Study."
Survey of Current Business - November, 1964. pp. 10-30.
23. GROSE, R.N. - "Book Review of Interindustry Economic Studies: A Comprehensive Bibliography on Interindustry Research by Riley, V. and Allen, R.L." Econometrica - Volume 25, 1957. p. 191
24. HATANAKA, M. - "Book Review of Input Analysis: An Appraisal by the National Bureau of Economic Research." Econometrica - Volume 24, 1956.
25. HAWKINS, D. - "Some Conditions of Macroeconomic Stability" Econometrica - Volume 16, 1948. pp. 309-322.
26. HAWKINS, D. and SIMON, H.A. - "Note: Some Conditions of Macroeconomic Stability." - Econometrica - Volume 17, 1949. pp. 245-248.
27. IZIMOTO, H. - "Note on Input/Output Analysis: Differences Between the Repercussion Effects in Physical Terms and in Value Terms." - Econometrica - Volume 28, 1960.
28. KROSE, T. - "Solutions of Saddle Value Problems by Differential Equations." - Econometrica - Volume 24, 1956. 59 pp.

MARIMONT, - See Goldman, M.R.

MATZUEUSKI - See Pitt, P.
29. MCKENZIE, L. - "An Elementary Analysis of the Leontief System" Econometrica - Volume 25, 1957. 456 pp.
30. MCMANUS, M. - "On Hatanaka's Note on Consolidation." Econometrica - Volume 24, 1956. 482 pp.
31. MURTBY, V.N. - "A Review of Input/Output Analysis" India Journal - Volume 8, 1960.

PITTS, P. - See Gigantes.
32. PITTS, P.; MATUSZEWSKI, T.I.; and SAWYER, J.A. - "Alternative Treatments of Imports in Input/Output Models: A Canadian Study." Journal of the Royal Statistical Society. - Volume 126, Part 3, 1963. pp. 410-432.
33. ROSENBLATT, D. - "On Linear Models and the Graphs of Minkowski - Leontief Matrics" - Econometrica Volume 24, 1957. p. 325

RABB	$-\quad$ See Gigantes
SAIBEL	$-\quad$ See Berger, W. J.

34. SAMUELSON, P.A. - "An Extension of the Lechatelier Principle" Econometrica - Volume 28, 1960. 368 pp.

SAWYER - See Pitts, P.
SIMON - See Hawkins, D.
35. SOLOW, R. - "On the Structure of Linear Models" Econometrica - Volume 20, 1952. pp. 29-46
36. SOLOW, R. - "Book Review of Elements of Pure Economics by Walrus" - Econometrica - Volume 24, 1956. 87.pp
37. STONE, R. and BROWN, A. - "A Programme for Growth". The M.I.T. Press, Cambridge, Mass., 1962. pp. 90 - Volume I.
38. STONE, R. and BROWN, A. - "Input/Output Relations, 1954-1966"

Volume II of "A Programme for Growth" (above).
39. STONE, R. and BROWN, A. - "A Social Accounting Matrix for 1960"

Volume III of "A Programme for Growth" (above)
40. THIEL, H. - "Linear Aggregation in Input/Output Analysis" Econometrica - Volume 25, 1957. 111 pp.
41. Department of Economic and Social Affairs, Statistical Office of the United Nations - Input/Output Bibliography, 1960-63. United Nations. New York, 1966. Statistical Papers, Series M. No. 39. pp. 159
42. Department of Economic and Social Affairs, Statistical Office of the United Nations, Problems of Input/Output Tables and Analysis. United Nations, New York, 1966. Studies in Methods. Series F. No. 14. pp. 160
43. UNITED STATES DEPARTMENT OF COMMERCE - "Industry Appendix I to Input/Output Study - 1958." November, 1964.
44. STANDARD COMMODITY CLASSIFICATION MANUAL, VOLUME I: THE CLASSIFICATION. D.B.S. Publication 12-502. pp. 212
45. STANDARD COMMODITY CLASSIFICATION, VOLUME II: CLASSIFIED INDEX. D.B.S. Publication 12-515, pp. 439
46. STANDARD COMMODITY CLASSIFICATION MANUAL, VOLUME III: ALPHABETIC INDEX. D.B.S. Publication 12-516. pp. 400
47. STANDARD INDUSTRIAL CLASSIFICATION MANUAL. D.B.S. Publication 12-501. pp. 287

VACCARA - See Goldman, M.R.
"The missing pages ... 72, 76, 80, 84, 88, 90, 92, 96, 102, 114 , 115, 124, were removed from all copies of the theses as these were in effect more in the nature of work sheets rather than part of the thesis itself". - Extract from a letter dated January 3, 1967 from the University of Manitoba to the National Library。

Mistorical Develomment
In most input/output matings, the physiocadts are crodided With having first "ciscoverod" the secback on indirect efrects of production, Walras is cxedtud with hoving, at least theoneticaly, used "reedback" in a general equilfowm model, and icontien whth having given the Wamasian system suaticiont trimming as to make it emperically workable.

Prion to the Phystocnats, Robhomes was sudied more as an Art than a Science, the Scholastacs having lept the sumject closely associated with ethics and religious doctrine. The Mecontinsts and othen pre-physiocratic writems studied Economics as a Science only in a restricted sense-foxetgh trade for example, and worked ont relationships through "cascade"(I) mather than "Peedbacir" effects. The Physiocrats and, in parthoular, Guesnay with his "Tabuleau Bconomique" considered these "feedback" offects but in the rather misleading framework of sterile vs. productive employments, and in tems of "advances" flowing interdependently between thece broad classes of economic infe. It would appear that their paecursing of input/output analysis was Imited to thein using inteaction and eedback as a viable framewonk for considering economic woxkings.

Economics as a science, arter the Physiocrats, fell into two fairly distinct camps, that of micno and macro relationships. It was not until Walras that a mexo view of the economy as an aggacgation of micro relationships, was thought posstble Coumot, a predecessor of Walras, is found referring emplicitiy to a Walrasian system, namely

[^6]that "stimuiation in procuction in ono secton will stmulate procuction in supplymg sectors in (evon dimmishing) atroles"(2) but he dismissed this approach off hond with wh remaki that it would be impossible to enumerate such relationthips.

Leon Walxas is genemalyy regmaded as the father of genowal equilibxium。 in his "Eicmends de Politique Economique Pure"(3) , he prescnted what he considered wes a (xo) solvable and ompericalyy measurcable system by constocring the economy as an equilibrim of micro relationshtps. As Friodman pomes dut, this system required the measurement of utilities, or, mone mecisely, the assumption that individuals preference functions wowe acittive. Commentators (a), this author has studied, regma Wamus" tatonement on "groping" procoss as simply begging the question. Tr any case, the Walrasian system was expaessed in tems of four sets of equations, the correspondence to the modem input/cutput tabies of which should be obvious:

1. An equation fow ench pochuced consumex good showing the quantity produced as a function of prices of production factors and the praces of othex consmon goode.
2. An equation fow each factor of production showing the total. supply of that factox as divided into its various uses.
3. A cost equation tor each consumer goods showing the cost of the various factox services making it up.
4. An identity equation expressing the equilibrium condition the cost of a commodity unit is equal to its selling price. Of the above equations, (4) corresponds to ($\bar{I}-2$) and (1) roughly corresponds to (I - I).

The two "extra" equations are necessary because the Walrasian purports to determine more variables under more rigid conditions than does the Leontief adaptation. A case in point is the fact that Leontief, unlike Walras, did not require his model to work within a fixed supply of primary factors. The exogenous variables in the Walrasian system then were:

1. consumer tastes and preferences
2. available supplies of factor services
3. production techniques
which, by way of the four sets of equations, determined the endogenous variables:
4. prices of finished goods
5. prices of production factors
6. quantities of finished goods produced.

In the Leontief system, the relative system of prices can be determined given the quantities of output the quantities of output can be determined if relative prices are assumed fixed, whereas in the Walrasian model, both are simultaneously determined by virtue of a greater number of equations.

The prices and quantities can be mutually determined if other equations are added: Yamada (5) does this concisely by assuming demand as a simple linear function of prices.

Abstract

W. W. Zeontien is commaly resarded as the fathor of Tmput/ In "Mhe Stmucture of the Amentan Beonomy 1010-1929" is used woday With only minow modification Gost of wich Leontiof made hamselt in stiosequent editions). He developed the theory as a Rescaren Associate of the Nationaj Burcau of Ecomonic Rosomach (U.S.), a post he relinguished in 1931 in order to conduot statistioal compilation within his newly devised framework. This moxt was completed by 1989 and was published under the above tiohe in 184. The book has morgone two subsequent revisions, the firret produced in 1951, the second in 2965.

The accounting system he developed was based on the Walmasian

 production framework with the adateion of certain stmplifying assumptions in orier to allow statistical vanation of the relevant variables. Leontief, as Walras, assumed a "closod" model where the household sectox"s consumption of goods was regended as fixed in regard to the proportion that each type of sood (soctoc) constitutea of total tinal demand. In his second edition, Leonden changed this and workod with an "open" model where the fimal demam ball was regarded as a colum vector of exogenous veriables. Leontade as Walras, assmacd thot imputs were a fixed proportion of outht over time although it has been shown (6) that in Leonthen"s conct this was an unecessamity stmict assumption. In contemporary tabios. fixed production coefficionts can theoretically be replaced by a 2 bocar function of output or oven a non-linear function (along the thes of b. Cobb-Douglas function), but this procedure is seldon folzowed bockuse of the mathematical complexity.the burdensome increase in cmputations, whe the great incroase in necessary data. Contemporam tables nowmany differ wom tho

Leontief original in a number of omnor ways:

1. Labour was Leontict's onty pramary (non-procheed) comodity - comesponding of Y of (2 - 2). Mow thoxe are often betwen five and won of such sectoes.
2. Leontici's inclus on of tho Hollowing factors have boen dropped from smpu/output pobzes:
(a) procucrivity frococ - the "A"; of (A -2) bolow.
(b) specific savings-mavestment factor - the " $\mathrm{B}^{\prime \prime}$ s of (A -2) belom.
(c) overain sovinge-mvostment acton - the " C "s of (A-2) below。
3. Leontief's treatmont of ximal domand as fixod in regand to sector demand in relation to total i nommaly y dropped. Domenan, Samueison and Solun (7) point out that this approach can still be usoful it appoatnate projections on changes In employment resulting from, say taxation, are desired. Leontien's bock is divided into three sections; the wirst being a discusstion of the basic aceomting adationships, the second a "Walrasian" delineation of the model and the third a description of the results of applying the model to the American economy of 1919 and 1929. In the tirst part he considens the relationship of double entry bookkeeping to the model, the relationship of his model to othor models, and the question of homogenesty requanements on sector selection. He
takes note of the absence. in his tramowork, of the sectore or 1) dastribution charges, wholosale and xotail; 2) banking and Amanco expenses; 3) all mon-xais wonsportation chargos; and
4) the income expenciture cocomts of aly publie bocies. In the lighe of greater availability of deta and the increased importance of these itens, most input/onput tables inolude those olomonts in one fom or another. Leontat, in thas section, also considers the importance of imports to tho modet. the cistinction betweon competitive and non-competitive imports, amd the difference between static and dynamic systems.

In the second section, the zmpat/output balance identitios axe discussod. Minese hom a cioso comesponcence to ($1-1,2,4$ above. The first set of equations capress, th physical tems, the fact that a sector"s total output is gqual to the sum of its uses. The second set expresses, in dollar value temes, the tact the value of inputs Ento a sectox equals the value of that sector's output. This is watten as:

$$
\frac{x_{j} P_{j}}{B_{j} B}+x_{i=1} \quad x_{j} \quad p_{i} \quad 0 \quad \ldots \ldots .(A-1)
$$

where

$$
\begin{aligned}
B_{j}= & a \text { saving-investment coenficient (weight) wiane to the } \\
& " j{ }^{\prime \prime} \text { th secton. } \\
B= & \text { a saving-investment coenficient (weight) comon to ahn } \\
& \text { sectors - menhecting intenest rate, etc. }
\end{aligned}
$$

As was pointed out betone, the E, and B did not tum out to be usefuh parancters.

The thind set of equations experes the technical structume of an industry and comespond to (x-4).

Hene

$\ldots \ldots . . .(A-2)$
$A_{j}=a$ prowativity compicient (wemge)
Agotng the A, has bern droped becanse of difitanlty of measuremont and lack of stanility.

A significant featum is that whore is no autonomous final demand sectoz(s) and only one promory sector (labour). By those three sets of equations, the outpurs and prices are completely determined and the economy is in a "stathonary" state. Unate the questions asked of imputfoupput anaysis in todayis context, montiox considexed the central object of his wort - apart fron the ciescriptive comparisons of the 1919-1920 production structures - the expression of changes in prices and quantitaes th tems of changhg "aju"s.

Whe Leontief model has been discussed above with the object of suggesting the evolution of tho disctpline as well as putting the original model in a modera menmatation.

The programs "SIFT" and "TABL" are written in FORTRAN II, a language which can be understood by most pre-1965 computers. If it is required that these programs be run on the $\mathrm{S} / 360$ I.B.M. line of computers, the language must be translated to FORTRAN IV. Care has been taken in developing "SIFT" and "TABL" to make most statements compatible to both languages - such as spacing $G \emptyset T \emptyset$ statements. The input/output statements, however, must be changed, along with a number of corresponding FøRMAT statements. Thus:

1. FøRTRAN II READ 100, X, Y, Z

List of variables
Statement number of FøRMAT
. F FØRTRAN IV
2. FØRTRAN II

WRITE	$100, \mathrm{X}, \mathrm{Y}, \mathrm{Z}$
or PUNCH	$100, \mathrm{X}, \mathrm{Y}, \mathrm{Z}$
or PRINT	$100, \mathrm{X}, \mathrm{Y}, \mathrm{Z}$

FØRTRAN IV WRITE $(3,100) \mathrm{X}, \mathrm{Y}, \mathrm{Z}$
Output Device reference number statement number of FøRMAT
Note: No comma after bracket
3. FØRTRAN II FØRMAT (7 H to SAMPLE)

Number of spaces for field of literal constant
Hollerith field indicator Iiteral constant

FØRTRAN IV FØRMAT ('to SAMPLE')
literal constant
No need to count spaces - quote marks define field.
C SIFT PROGRAM FOR COEF I, COEF II,SCC LIST, SIC LIST SIF
DIMENSION ISCC(4),VAL(4),QUAN(4),IT1(200),IT2(500)9IT3(200),IT4(20 SIF
10) 9IT5 (200) 9T4 (200) 9T5 (200) SIF
$M 1=1$
$M 2=1$
$M 3=1$
$M_{4}=1$
$M 5=0$
$M 6=1$
$M 7=0$
$S \cup M=0.0$
DO $1 \quad I=1,200$
ITI(I) $=0$
IT3(I) $=0$
IT4(I) $=0$
IT5(1) $=0$
$T 4(I)=0.0$
$1 T 5(I)=0.0$
READ CONTROL CARD
READ 1000, ARK
1000 FORMAT (F5.0)
MARK $=$ ARK
GO TO (100, $800,100,100)$, MARK
READING BASIC DATA
100 READ $1001, I S I C, I E S T, I C O D E,(I S C C(J), \operatorname{VAL}(J), \operatorname{QUAN}(J), J=1,4)$
1001 FORMAT (I49I39I1,4(I39F9.0.F6.0))
IF(ISIC-9999)101,500,500
101 GO TO (301,102,201,104), MARK
102 ITTT=(ISIC*1000)+IEST
DO $103 \mathrm{I}=1 . \mathrm{MA}$
IF(IT2(J)-ITTT)103.100,103
103 CONTINUE
104 DO $105 \mathrm{I}=1, \mathrm{MI}$
IF(ISIC-ITI(I))105,106,105
105 CONTINUE
ITI(MI) = ISIC
GO TO 200
106 IT3(I) $=\mathrm{IT} 3(\mathrm{I})+1$
LISTING OF INDUSTRIES ABOVE, LISTING OF COMMODITIES BELOW
200 GO TO (301,201,201,100), MARK
$20100203 \mathrm{~J}=1,4$
DO $202 \quad \mathrm{I}=1$, M2
IF(ISCC(J)-IT2(I))202,203.202
202 CONTINUE
IT2(M2) = ISCC(J)
$M 2=M 2+1$
203 CONTINUE
ACCUMULATION OF INPUTS AND OUTPUTS BY SCC
SIF
300 GO TO (301,301,100,100), MARK
301 M5 = 4-I CODE

```
    IF(M5)400,901,302 SIF
    302 IF (M7)303,303,500 SIF
    303 DO 306 J=1,M5 SIF
    DO 305 I=1,M4
    IF(IT4(I)-ISCC(J))305,304,305 SIF
    304T4(I)=T4(I)+VAL(J) SIF
    GO TO 306
    305 CONTINUE
    IT4(M4)=ISCC(J)
    T4(M4)=VAL(J)
    M4=M4+1
    306 CONT INUE
    GO TO 100
    400 M5=M5+5
    IF(M5)902,902,401
    401 DO 404 J=1,M5
    DO 403 I=1,M6
    IF(IT5(I)-ISCC(J))403,402,403
    402 T5(I)=T5(I)+VAL(J)
    SUM=SUM+VAL(J)
    GO TO 404
    4 0 3 ~ C O N T ~ I N U E ~
    IT5(MG)=1SCC(J)
    T5(M6)=VAL(J)
    M6=M6+1
    404 CONTINUE
    MT=1
    GO TO 100
    FORMING COEFS FROM VALUES SIF
    500 GO TO (513,600,700,600),MARK
    M6=M6-1
    M4=M4-1
    DO 501 I=1gM6
    501 T5(I)=T5(I)/SUM
    DO 502 I=1,M4
    502 T4(I)=T4(I)/SUM
    SORTING AND PUNCHING INPUTS AND OUTPUTS
    LX=0
    MOM=M4-1
    503 DO 505 I=1,MOM
    IF(IT4(I+1)-IT4(I))504,505,505
    504 LXT=IT4(I)
    CXT=T4(I)
    IT4(I)=IT4(I+1)
    T4(I)=T4(I+1)
    IT4(I+1)=LXT
    T4(I+1)=CXT
    LX=1
    5 0 5 ~ C O N T I N U E ~
    IF(LX)507,507,506
    506 LX=0
    GO TO 503
    507 PUNCH 1002,ISIC,IEST,MM,(I4(I),T4(I),I=1,M4)
1002 FORMAT (14,I3,I1,6(1X,I3,IX,F705))
    M7 =0
    LX=0
    MOM=M6-1
512 DO 509 I=1,MOM SIF
```

```
    IF(IT5(I+1)-IT5(I))508,509,509
    508 LXT=IT5(I)
    CXT=T5(I)
    IT5(I)=IT5(+1)
    ITS(I+1)=LXT
    T5(I+1)=CXT
    LX=1
    5 0 9 ~ C O N T I N U E
    IF(LX)511,511,510
    510 LX=0
    GO TO 512
    511 PUNCH 1002,ISIC,IEST,M7,(IT5(I),T5(I),I=1,M6)
    M7=2
    PUNCH 1003,ISIC,IEST,M7,SUM
1003 FORMAT (I4,IO,II,IOX,FIO.1)
    M7=0
    M4=1
    M6=1
    IF(ISIC-9999)303,900,303
    SORTING AND PUNCHING INDUSTRY LIST
    600 MI=M1-1
    MOM=M1-1
    LX=0
    6 0 1 ~ D O ~ 6 0 3 ~ I = 1 , M O M ~
    IF(ITI(I+1)-IT1(I))602,603,603
    602 LXT=ITI(I)
    IXT=IT3(I)
    ITI(I)=ITI(I+1)
    IT3(I)=IT3(I+1)
    ITl(I+1)=LXT
    IT3(I+1)=IXT
    LX=1
    6 0 3 \text { CONTINUE}
    IF(LX)604,605,601
    604 LX=0
    GO TO 601
    605 PUNCH 1005,M1
1005 FORMAT (20H NO. OF INOUSTRIES I5)
    PUNCH 1006,(ITI(J),IT3(J),J=1,M1)
1006 FORMAT (8(215))
    GO TO (700,900,900,700),MARK
    700 M2=M2-1
        LX=0
        MOM=M2-1
    701 DO 703 I=19MOM
        IF(IT2(I+1)-IT2(I))702,703,703
    702 LXT=IT2(I)
        IT2(I)=IT2(I+1) SIF
        IT2(I+1)=LXT
        LX=1
    703 CONTINUE
    IF(LX)705,705,704
    704 LX=0
    GO TO 701
    7 0 5 ~ P U N C H ~ 1 0 0 7 , M 2
1007 FORMAT (21H NO. OF COMMOOITIES I5)
    PUNCH 1008,(IT2(J),J=1,M2)
1008 FORMAT (1615)
\(700 \mathrm{M} 2=\mathrm{M} 2-1\)
LX=0
MOM \(=\) M2-1
701 DO \(703 \mathrm{I}=1 \mathrm{MOM}\) SIF
IF(IT2(I+1)-IT2(I) \(702,703,703\) SIF
702 LXT=IT2(1)
IT2(I)=IT2(I+1) SIF
IT2 2 It 1 ) \(=\) LXT SIF
LX=1 SIF
703 CONTINUE SIF
\(704 \mathrm{LX}=0\) SIF
GO TO 701
```

GO TO 900
SIF
800 DO 801 I=1,500 SIF
801 IT2(I)=0
READ 1009,A
SIF
1009 FORMAT (F5.0)
MA=A
DO 802 I=1,MA
READ 1010,ISIO,IESO
1010 FORMAT (2I5)
IF(ISIO-9999)802,100,800
802 IT2(I)=ISIO*1000+IESO
900 CALL EXIT
901 M7=0
PUNCH 1011,ISIC
SIF
SIF
1011 FORMAT (20H NO INPUT FOR IND. I5)
GO TO 100
902 M7=0
PUNCH 1012,ISIC
1012 FORMAT (21H NO OUTPUT FOR IND. I5)
GO TO 100
END
IF

```

```

201 READ 1012,NSIC,M7,(ISCCT(I),PROPT(I)gI=1,6) TAB
IF(NSIC-9999)202,210,210
TAB
202 IF(M7-1)201,203,201
203 IF(NSIC-ISICT(K))206,207:204
204 K=K+1
IF(K-9)205,210,210
205 ISICT(K)=NSIC
GO TO 207
206 ISICT(K)=NSIC
207 DO 209 I=1,6
DO 208 J=1,NOSCC
IF(ISCCT(I)-ISCC(J))208,209,208
208 CONTINUE
209 TABLE (J,K)=PROPT(I)
GO TO 201
210 PUNCH 1013,(ISICT(I),I=1,K)
DO 211 I=1,NOSCC
N1=ISCC(I)
211 PUNCH 1014,N1g(TABLE(I,J),J=1,K)
K=1
IF(NSIC-9999)205,901,901
COEF III
READ 1010,NOSCC
READ 1011,(ISCC(I),I=1,NOSCC
300 TABLE (I, 1)=0.0
NI=9999
301 READ 1020,NSIC,M7,(ISCCT(I),PROPT(I),I=1,6)
IF(NSIC-9999)
302 IF (M7-1)301,303,309
303 IF(NSIC-N1)304,305,304
304 N1=NSIC
305 DO 308 I=1,6
DO 307 J=19NOSCC
IF (ISCC(J)-ISCCT(I))307,306,307
306 TABLE (J,1)=TABLE(J,1)+PROPT(I)
GO TO 308
307 CONTINUE
308 CONTINUE
GO TO 301
309 I=1
DO 311 J=1,NOSCC
IF(TABLE(Jgl))311,311,310
310 SUM(I)=TABLE(J,1)
MGRP(I)=ISCC(I)
I=I+1
3 1 1 ~ C O N T I N U E
TSUM=
DO 312 J=1,I
312\operatorname{SUM}(J)=SUM(J)/TSUM
PUNCH 1021(N1,(MGRP(J),SUM(J),J=1,I)
PUNCH 1022,NI,SUM
DO 313 J=1,NOSCC
313 TABLE(I,I)=0.0
GO TO 301
MGRP BY SIC
READ 1030,NOASS
TAB

```
```

 READ 103I,(MGRP(I),I=IgNOASS)}\mathrm{ TAB
 DO 400 I=1.2 TAB
 DO 400 J=1.9
 400 TABLE (J,J)=0.0
 401 READ 1013.ISICT
 PUNCH 1013,ISICT
 I= I
 402 READ 1014,N1,(TABLE(1,J),J=1,9)
IF(N1-99)403,410,410
403 IF(I-NOASS)404,407,407
404 IF(MGRP(I)-MGRP(I+1))407,405,407
4 0 5 ~ R E A D ~ 1 0 1 4 , N 1 , (T A B L E (2 , J) , J = 1 , 9)
DO 406 J=199
406 TABLE(1,J)=TABLE(1,J)+TABLE(2,J)
I= I+1
GO TO 403
407 NI=MGRP(I)
PUNCH 1014,N1,(TABLE(1,J),J=1,9)
DO 408 J=1,9
TABLE (1,J)=0.0
408 TABLE (2,J)=0.0
I=I+I
IF(I-NOASS)402,401,901
40 CALL EXIT
C MGRP BY MGRP
READ 1005,NOSIC
DO 500 J=1,NOSIC
READ 1004,II,MM,PP,SS
ISIC(I)=II
MGRP(I)=MM
500 PROP(I)=PP
K=1
501 DO 504 I=2,NOSIC TAB
IF(MGRP(I)-MGRP(I-1))502,503.502
502 K=K+1
503 MGRP(I)=K TAB
504 CONTINUE
505 READ 1013,ISICT
DO 509 I=1,9
DO 508 J=1,NOSIC
IF (ISIC(J)-ISICT(I))508,506,508
505 ISICT(I)=MGRP(J)
507 ITEMP(I)=J
GO TO 509
508 CONTINUE
509 CONTINUE
DO 510 I=19K
READ 1014,N1,(TEMP(J),J=1,9)
DO 510 J=1.9
J=ISICT(J)
JJL=ITEMP(J)
510 TABLE(I,JL)=TABLE(I,JL)+(TEMP(J)*PROP(JJL))
IF(JJL-NOSIC)505,511,511
511 LLL=1
KKK=9
512 DO 513 I=1,K
513 PUNCH 1014,Ig(TABLE(I,J),J=LLL,KKK)
IF(KKK-K)514,516,516
DO 400 I=1,2 TAB
502 K=K+1 TAB
TAB
TAB

```
514 LLL=LLL+9 TAB
        \(K K K=K K K+9\)
    IF (KKK-K)512,515,515
TAB
TAB
\(515 K K K=K\)
GO TO 512 TAB
516 CALL EXIT
    END
TAB
TAB
TAB
TAB```


[^0]:    (2) Partial information on each of $Y$ and $X$ will allow remaining values to be solved for - See Chapter II, p. 35.
    (3) See Chapter V.

[^1]:    (3)

    See Irving Stone ( 39 ), Chapter II

[^2]:    (14) See Yamada, (11), Chapter I

[^3]:    (16) See United Nations, (42)
    (17) See Dorfman, Samuelson and Solow (6)

[^4]:    (1) See D.B.S.
    (47)

[^5]:    (5) N.E.S. - not elsewhere specified.

[^6]:    (1) This type of effect can be visualized as a logic tree.

