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Abstract

Fully Homomorphic Encryption (FHE) is one of the most promising technologies

for privacy protection as it allows an arbitrary number of function computations over

encrypted data. However, the computational cost of these FHE systems limits their

widespread applications. In this thesis, our objective is to improve the performance

of FHE schemes by designing efficient parallel frameworks. In particular, we choose

Torus Fully Homomorphic Encryption (TFHE) [1] as it offers exact results for an

infinite number of boolean gate (e.g., AND, XOR) evaluations. We first extend the

gate operations to algebraic circuits such as addition, multiplication, and their vec-

tor and matrix equivalents. Secondly, we consider the multi-core CPUs to improve

the efficiency of both the gate and the arithmetic operations. Finally, we port the

TFHE to the Graphics Processing Units (GPU) and device novel optimizations for

boolean and arithmetic circuits employing the multitude of cores. We also experi-

mentally analyze both the CPU and GPU parallel frameworks for different numeric

representations (16 to 32-bit). Our GPU implementation outperforms the existing

technique [1], and it achieves a speedup of 20× for any 32-bit boolean operation and

14.5× for multiplications.
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Chapter 1

Introduction

Fully Homomorphic Encryption (FHE) [1, 2, 3] have attracted attention in modern

cryptography research. FHE cryptosystems provide strong security guarantee and

can compute an infinite number of operations on the encrypted data. Due to the

emergence of various data-oriented applications [4, 5, 6] on sensitive data, the idea

of computing under encryption has recently gained momentum. FHE is the ideal

cryptographic tool that addresses this privacy concern by enabling computation on

encrypted data.

Motivating Applications. The advent and proliferation of machine learning tech-

niques and their applications in recent years have been remarkable. The usage and

accuracy of such methods have surpassed the state of the art solutions in manifolds.

We can attribute three components behind this improvement: a) better algorithms,

b) big data and c) efficient hardware (H/W) enabled parallelism. With the increase

of cloud services, several service providers (e.g., Google Prediction API [7], Microsoft

Azure Machine Learning [8], GraphLab [9] etc.) have combined the three attributes

1



2 Chapter 1: Introduction

to facilitate machine learning as a service.

In these services, users outsource their data to the cloud server to build a machine

learning model. However, data outsourcing exposes the sensitive data to the cloud

service provider and thus susceptible to privacy attacks by the employee at the service

provider [10]. FHE schemes are practical for such use cases as these schemes facilitate

computation on encrypted data. Using FHE, a data owner can encrypt the sensitive

data before outsourcing it to the server, and also the server can execute the required

machine learning algorithm for data analysis.

1.1 Current Techniques

Based on the computational power, the homomorphic encryption schemes can

be divided into three major categories: Partially, Somewhat, and Fully Homomor-

phic Encryption schemes. Partially Homomorphic schemes only support one type of

operation (e.g., addition or multiplication) for any number of time. For example,

RSA [11] is a multiplicative homomorphic scheme. While important, these schemes

are not useful in performing arbitrary computations on encrypted data. Hence, the

above mentioned motivating applications cannot be realized by partially homomor-

phic schemes.

Somewhat Homomorphic Encryption (SWHE) schemes are more powerful than

partially homomorphic encryption schemes. These schemes support both addition and

multiplication operations on encrypted data, but for a limited (pre-defined) number of

times. In addition, these schemes are relatively efficient (see Table 1.1 for comparison)

and therefore are practical for certain applications. However, even these schemes
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require complex parameterization and are not powerful enough for more complicated

operations such as deep learning.

Fully Homomorphic Encryption schemes support both addition and multiplication

operations for an arbitrary number of times. This property allows computing any

function on the encrypted data. Both SWHE and FHE use the Learning with Error

(LWE) paradigm, where an error is introduced with the ciphertext value to guarantee

security [12]. This error grows with each operation (especially multiplication) and

causes incorrect decryption after a certain number of operations. Therefore, this error

needs to be minimized to support arbitrary computation. The process of reducing

the error is called Bootstrapping. FHE employs bootstrapping after a certain number

of operations resulting in higher computation overhead, while SWHE provides faster

execution time by limiting/pre-defining the number of operations on the encrypted

data.
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Chapter 1: Introduction 5

The above discussion provides an intuition about the applications of different HE

schemes. That is, SWHE is better suited for the applications where the computa-

tional depth is shallow and known (/fixed) prior to the computations. However, these

schemes are not suitable for applications that require arbitrary depth like deep learn-

ing. In order to compute complicated functions like deep learning, the researchers have

proposed alternative models that require the existence of a third party [18, 19, 20].

The aim is to minimize the propagated error without executing the costly bootstrap-

ping procedure for SWHE schemes. However, such an assumption (i.e., the existence

of a trusted third party) is not always easy to fulfill. In this thesis, we assume that the

computational entity (e.g., cloud server) is standalone, and we show that parallelism

can be used to lower the cost of FHE instead of relaxing the security assumptions for

the computation model.

1.1.1 Why TFHE?

Since the inception of FHE by Gentry [21], there has been notable advancements

towards its asymptotic performance [22, 23, 24]. There have been several attempts

on faster and more efficient FHE schemes [25, 26, 27], which are pivotal to this work

(Section 3 for details). Among the schemes, Torus Fully Homomorphic Encryption

(TFHE) [1] is one of the most renowned FHE scheme that meets the expectation of

arbitrary depth of circuits with faster bootstrapping technique. TFHE also incurs

lower storage requirement compared to the other encryption schemes (Table 1.1).

The plaintext message space is binary in TFHE. Hence, the computations are based

solely on boolean gates, and each gate operation entails a bootstrapping procedure
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in gate bootstrapping mode.

1.1.2 Why GPU?

FHE schemes are based on the Learning With Error (LWE) paradigm and its

variant. Each plaintext is encrypted using a polynomial, and it is represented by

vectors. As a result, most of the computations are based on vector operations that

are highly parallelizable.

Graphics Processing Units (GPUs) offer a large number of computing cores (in

thousands compared to CPUs). These cores can be utilized to compute parallel

vectors operations. However, GPUs have some limitations as their global memory is

fixed (8 to 16 GB) and have a reduced computing power compared to any CPU core.

Based on the computations in FHE and the working principle of GPU, our observation

is that if the cores are utilized properly, we can execute FHE computations efficiently.

Due to the binary plaintext space of TFHE, the computations are basically boolean

gate operations. Therefore, to take the advantage of GPU in higher level circuits (ad-

dition, multiplication, vector, matrix), it demands the implementation at the gate

level using GPU first. Hence, our construction starts with the gate level parallelism

in GPU. Additionally, the availability of a large number of cores facilitates paral-

lel gate operations. That is, parallel execution of different gate operations. Thus,

we move gradually to the parallelization of higher level computations like addition,

multiplication, vector, and matrix operations. These operations consequently can be

used in other higher level computations (e.g., logistic regression, deep learning).
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Table 1.2: A comparison of the execution times (in seconds) of our CPU and GPU

parallel framework for 32-bit numbers. The length of the vectors for vector addition

is 32. The computation times for the matrix multiplication (16× 16) are in minutes.

Gate Op.
Addition Multiplication

Regular Vector Regular Matrix

TFHE [1] 1.40 7.04 224.31 489.93 8717.89

CPU-Parallel 0.50 7.04 77.18 174.54 2514.34

GPU-Parallel 0.07 1.99 11.22 33.93 186.23

1.2 Contributions

We summarize the contributions of this thesis below.

• The existing TFHE implementation offers encryption functions and boolean

gate operations such as AND, OR, and XOR. In this thesis, we use these boolean

gates to construct higher level algebraic circuits such as addition and multipli-

cation. The circuits are constructed sequentially to measure the runtime of the

existing method (TFHE).

• We utilize CPU-level parallelism in the circuit construction to exploit computa-

tional resources available in the multi-core machines. To take the advantage of

the available resources (cores), we adapt the sequential circuits and incorporate

parallelism at the CPU-level. Experimental results demonstrate the advantage

of higher level circuit construction using multi-threading over the naive sequen-

tial implementation.

• The primary contribution of this thesis is to port TFHE homomorphic oper-
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ations to GPU. We have re-implemented the basic gates (i.e., AND, XOR)

using the GPU framework, and used novel optimization techniques such as

bit coalescing (coalescing the ciphertexts in contiguous memory), compound

gate (multiple gate computation in parallel), and tree-based vector addition

to implement the higher level algebraic circuits (addition and multiplication).

Note that without these optimization techniques, the GPU-based solution does

not yield a faster solution. The code is readily available at GitHub (https:

//github.com/tmp1370/tmpProject).

• We have done extensive experiments to compare the computation time of the

existing sequential TFHE [1] with the proposed CPU-based and GPU-based

parallel implementations. As shown in the Table 1.2, our proposed GPU-based

method is more than 14.4× and 46.81× faster than the existing technique for

the multiplication and the matrix multiplication operations, respectively.

• We evaluated and analyzed the performance of our constructions with exist-

ing GPU-based TFHE frameworks, namely, cuFHE [15] and NuFHE [16]. We

also benchmarked with Cingulata [17] (a CPU-based compiler toolchain for run-

ning C++ programs over encrypted data using TFHE), where our framework

outperforms in arithmetic circuit computation as well.

• The approximation of non-linear functions (used in machine learning algo-

rithms) over encrypted data is another novel contribution of the thesis. We

compared the approximation error with existing proposals.

• We employed our GPU accelerated framework to carry out logistic regression

https://github.com/tmp1370/tmpProject
https://github.com/tmp1370/tmpProject
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on Parkinson’s disease data (available at UCI-repository [28]) and analyzed the

execution time with [29]. Besides, we take the leverage of binary gate operations

for binary inputs and discuss the construction as well.

1.3 Organization

The rest of the thesis is organized as follows.

• Chapter 2 discusses necessary background materials utilized in different meth-

ods proposed in this thesis.

• Chapter 3 presents some current works related to this thesis.

• Chapter 4 describes our proposed parallel frameworks using CPU and GPU.

• Chapter 5 presents the non-linear function approximation over encrypted data.

Then, it describes the logistic regression as an application of our proposed GPU-

parallel frameworks.

• Chapter 6 presents a detailed experimental as well as benchmarking analyses of

the proposed framework.

• Finally, Chapter 7 concludes the thesis.



Chapter 2

Preliminaries

In this chapter, we describe the required background briefly. Table 2.1 lists the

notations used in the thesis.

2.1 Torus FHE (TFHE)

In this work, we closely investigate a Fully Homomorphic Encryption (FHE)

scheme, Torus FHE (TFHE) [1] (incremental to [25]). In TFHE, the plain and ci-

phertexts are defined over a real torus T = R/Z, a set of real numbers modulo 1.

The ciphertexts are constructed on the Learning with Errors (LWE) [12] represented

as Torus LWE (TLWE) where an error term (drawn from Gaussian distribution χ)

is added with each ciphertext. For a given dimension m ≥ 1 (key size), secret key

−→
S ∈ Bm (m-bit binary vector), and error e ∈ χ, an LWE sample is defined as (

−→
A ,B)

where
−→
A ∈ Tm s. t.

−→
A is a vector of torus coefficients of length m (key size) and

each element Ai is drawn from the uniform distribution over T. The other part B is

10
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Table 2.1: Notations used throughout the thesis

Notation Description

A ∈ Zr×c Integer matrix of dimension r × c
−→
A ∈ Z` Integer vector of length `

A ∈ Z ⊂ Bn Integer number of n-bits

ai ∈ B Binary bit at position i

Ln LWE sample vector of length n

A′ One’s complement of Integer A

n, m Bit size and Secret key size

, � Parallel and Left Shift operation

∧ , |, ⊕ Binary AND, OR and XOR operation

defined as:

B =
−→
A ·
−→
S + e (2.1)

The error term (e) in LWE sample grows and propagates with the number of

computations (e.g., addition, multiplication). Therefore, bootstrapping is introduced

to decrypt and re-encrypt the ciphertexts under encryption to maintain the data

integrity/proper decryption. Figure 4.2 illustrates a schematic diagram of a gate

computation (e.g., ∧ ) in TFHE.

TFHE considers binary bits as plaintext and generates LWE samples as cipher-

texts. Hence, LWE sample computations in ciphertext are analogous to binary bit

computations in plaintext. As a binary vector represents an integer number, an LWE

sample vector (Ln) can represent an encrypted integer. For example, an n-bit integer
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becomes n-LWE sample after encryption. Thus, the boolean gate operations of an

addition circuit between two n-bit numbers correspond to the similar operations on

LWE samples of encrypted numbers. Throughout this thesis, we use bit and LWE

sample interchangeably.

TFHE Properties: For our parallel framework, we choose TFHE for the following

reasons:

• Fast and Exact Bootstrapping. TFHE provided the fastest bootstrapping

technique (≈ 0.1s) as claimed in [1] in 2016. Some recent encryption schemes

[2, 30] (and their implementations) propose faster bootstrapping and FHE com-

putations in general. However, they do not have exact bootstrapping and larger

ciphertext size.

• Encryption Size. TFHE requires lower storage for the encrypted data com-

pared to the other FHE schemes. For example, one 32-bit encrypted integer

require storage in terms of Kilobytes, whereas the other schemes may need a

few Megabytes. This difference is further discussed in Section 3.

• Boolean Gate Operation. TFHE also uses boolean/logical gates (AND, XOR,

etc.), which can be employed to construct algebraic operations. Furthermore,

these binary bits can be operated in parallel if their computations are indepen-

dent of each other.

Existing Implementation: The current TFHE implementation comes with the

basic cryptographic functions (i.e., encryption, decryption, etc.) and all binary gate

operations. Although the gates are computed somewhat sequentially in the original
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implementation [1], the underlying architecture uses Advanced Vector Extensions

(AVX) [14]. AVX (or more refined AVX2) is an extension to x86 instruction set

from Intel. It facilitates parallel vector operations in CPU. For example, we need to

compute
−→
R =

−→
P +

−→
Q where

−→
P ,
−→
Q and

−→
R are vectors of numbers (Z`). To compute

−→
R using x86 instruction set, we need ` additions one by one (sequentially). However,

AVX2 facilitates instructions to execute ` additions in parallel, providing a noticeable

speedup.

Furthermore, the bootstrapping procedure requires expensive Fast Fourier Trans-

form (FFT) operations (O(n log n)). The existing implementation uses the Fastest

Fourier Transform in the West (FFTW) [31] which inherently uses AVX (if avail-

able). Despite the AVX usage, the existing TFHE implementation computes multiple

boolean gates in sequential manner.

2.2 Parallelism

In this work, we employ and analyze two structurally different but conceptually

similar parallel frameworks described below:

2.2.1 Hardware Parallelism

Our CPU Parallel framework utilizes the cores and existing resources (i.e., Vec-

tor Extensions) readily available in a typical computing machines. We exploit these

parallel components on CPUs as we breakdown each algebraic computation into in-

dependent parts and distribute them among the available resources.

However, one major drawback of the CPU framework is the limited number of
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available cores. Contemporary desktop computers come with 4 to 8 cores containing

a maximum of 16 threads. There have been multiple attempts [32] to use a large

number of CPUs collectively for parallel operations, whereas we show that single

GPU is equivalent (and better performing) for most FHE operations.

In contrast to CPUs, GPU Parallel framework offers a significant number of cores

(/threads) available solely from the hardware. Thus, the expense of increasing cores

with multiple CPUs is reduced by integrating one GPU. For example, our GPU

hardware consisted 40, 960 cores [33] compared to a regular Intel i7 machine with 8

cores. More details on the GPU architecture are in Section 2.3.

This difference in available cores has granted much-needed parallelism in every

prevailing deep learning frameworks, speeding up the training process for massive

datasets. However, two major shortcomings in employing GPUs are—a) limited global

memory and b) communication time through PCIe. For example, we employed a GPU

with only 8 GB fixed global memory. Thus, we considered these issues along with

some others when designing the proposed framework.

2.2.2 Software Parallelism

Data-level Parallelism traditionally means the execution of one operation over all

existing data. Data parallel paradigm is also known as Single Instruction Multiple

Data (SIMD) model [34] where multiple threads execute the same operations for dif-

ferent data. Figure 2.1a illustrates this data parallelism where each thread computes

the same operation (
−→
R =

−→
P +

−→
Q where

−→
P ,
−→
Q,
−→
R ∈ Z`) on different data. It is

important to note that both CPU and GPU support such parallelism.
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Figure 2.1: Data-level and task-level parallelism architecture. Arrows and oval shapes

represent threads and tasks, resp.

Task-level Parallelism, on the contrary, can handle different computations on the

same/different data. In Figure 2.1b, we illustrate this paradigm where the compu-

tation of Task3 (t3) depends on Task1 (t1) and Task2 (t2). However, t1 and t2 are

independent of each other and can be executed in parallel. Hence, two threads are

used to compute them in parallel and only then t3 is executed. Although CPUs

support task-level parallelism, GPUs lack this feature. Therefore, in our framework,

we provide a construction of compound gate (Section 4.2.1) which is analogous to

task-level parallelism.

2.3 GPU Architecture

2.3.1 Computational Hierarchy

A Graphics Processing Unit (GPU) consists of a scalable array of multithreaded

streaming multiprocessors (SMs). For example, our GPU for the experiments, Nvidia
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L1 SMEM CMEM

SM-1
Registers

L1 SMEM CMEM
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Global	Memory

Figure 2.2: GPU memory hierarchy.

GTX 1080 has 20 SMs where SM contained 2048 individual threads. Threads are

grouped into blocks, and the blocks are grouped to form Grids. Threads in the blocks

are split into warps (32 threads) in the same SM.

For the computational unit, the GPU includes 128 CUDA (Compute Unified De-

vice Architecture) cores per SM. Each core execution unit has one float, and one

integer compute processor.

2.3.2 Memory Hierarchy

SMs can run in parallel with different instructions. However, all the threads of

a respective SM execute the same instruction simultaneously. Therefore, GPUs are

called Single Instruction Multiple Data (SIMD) machines. Besides having a large

number of threads, the GPU memory system also consists of a wide variety of memo-

ries for the underlying computations. Architecturally, we divide the memory system

into five categories: a) register, b) cache, c) shared, d) constant, and e) global. Fig-

ure 2.2 portrays the memory categories and their organization. We present a brief

discussion on the memory categories.

Register. Registers are the fastest and smallest among all memories. Registers are

private to the threads.
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Cache. GPUs facilitate two levels of caches, namely: L1 cache and L2 cache. In

terms of latency, the L1 cache is below the registers. Each SM is equipped with

private L1 cache. On the contrary, the L2 cache is with latency more than the L1

cached and shared by all SMs.

Shared Memory. Being on the SM chip, shared memory has higher bandwidth and

much lower latency than the global memory. It has much lower memory space and

lacks volatility.Like L1 caches, shared memory is private to SMs as well, but public

to the threads inside the respective SMs.

Constant Memory. The constant memory resides in the device memory and is

cached in the constant cache. Each SM has its own constant memory. Constant

memory increases the cache hit for constant variables.

Global Memory. Global memory is the largest (Table 2.2) among all memory

categories, yet the slowest and non-persistent. One major limitation of the global

memory is that it is fixed, while the main memory can be changed for the CPUs.

Computational and Memory Hierarchy Coordination

The coordination between computation and memory hierarchy is a crucial aspect

to take the advantage of both faster memory and parallelism. Each thread has private

local variable storage known as registers. Threads inside the same block can access

the shared memory, constant memory, and L1 cache. The memories for one block is

inaccessible by others inside the same SM. The number of grids can be at most the

number of global memory, and the global memory is shareable from all SMs.

Bit Coalescing (Section 6.1.2) discusses the unification of LWE-samples. Hence,
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(a) CPU architecture
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C.Unit
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(b) GPU architecture

Figure 2.3: A schematic illustration of CPU (a) and GPU (b) architecture. Unit and

Cn represents a control unit and a core in GPU, respectively. Figure (b) illustrates

an SM construction

for a sufficiently large n-bit (LWE-sample) coalescing, the memory requirement ex-

ceeds the existing shared memory. Therefore, the current GPU construction uses

the global memory (the slowest).

The rest of the computations use registers to store the thread specific local vari-

ables, and shared memory to share the data among the threads.

2.3.3 Architectural Differences with CPU

We present the differences of CPU and GPU architecture in terms of following

metrices:

Number of Cores Modern CPUs consist of a small number of independent cores

and thus confine the scopes of parallelism. GPUs, on the other hand, have an array

of SM, where each SM possesses a large number of cores. For example, in Figure 2.3,

the CPU comprises of 4 independent cores, while the GPU consists of N SMs with
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Table 2.2: A comparison between Intel(R) Core™ i7-2600 and Nvidia GTX 1080

configurations

CPU GPU

Clock Speed 3.40 GHz 1734 MHz

Main Memory 16 GB 8 GB

L1 Cache 256 KB 48 KB

L2 cache 256 KB 2048 KB

L3 cache 8192 KB ×

Physical Threads 8 40,960

n cuda cores in each SM. Thus, GPUs offer more parallel computing power for any

computation.

Computation Complexity. Although GPUs provide more scopes of parallelism,

GPU cores lack the computational power with respect to CPU. CPU cores have higher

clock rate (3.40GHz) than GPU (1734 MHz) as showed Table 2.2. Moreover, CPU

cores are capable of executing complex instruction of small data. On the contrary,

GPU core is simple, typically consists of an execution unit of integers and float num-

bers [35].

Memory Space Table 2.2 provides the storage capacity of different types of memory

in the machines. Additionally, a unique aspect of CPUs is that the main memory

can be modified on the H/W. GPUs lack this facility as every device is shipped with

fixed size memory. This creates additional complexities like memory exhaustion while

computing with large dataset/models.
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Number of Threads In modern desktop machines, the number of physical threads is

equal to the number of cores. However, hyperthreading technology virtually doubles

the number of threads. Thus, the CPUs can have virtual threads twice the number

of cores. GPUs, on the contrary, provide thousands of cores. In GTX 1080, the total

number of threads is 40, 960. Therefore, the GPU is faster in data parallel algorithms.

2.4 Sequential Framework

Arithmetic computations on ciphertexts (i.e., additions, multiplications) can be

devised from boolean gates (i.e., ∧ , ⊕ ). Here, we present a brief overview of the

sequential arithmetic circuit constructions using boolean gates.

2.4.1 Addition

A 1-bit full adder circuit takes two inputs along with a carry bit to compute the

sum and a new carry that propagates to the next bit’s addition. Therefore, in a

full adder, we have three inputs as ai, bi and ci−1, where i denotes the bit position.

Here, the addition of bit a1 and b1 in A,B ∈ Bn requires the carry bit from a0 and

b0. This serial dependency enforces the addition operation to be sequential for n-bit

numbers [36, 37].

2.4.2 Multiplication
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Algorithm 1 Naive Multiplication
Input: A, B ∈ Bn

Output: C ∈ B2n

1: C ← 0

2: temp← 0

3: for i← 0 to n− 1 do

4: for j ← 0 to n− 1 do

5: tempj ← aj ∧ bi //subscripts represent bits

6: end for

7: temp← temp� i

8: C ← C +temp

9: end for

10: return C

Naive Approach

For two n-bit numbers A,B ∈ Z ⊂ Bn, we multiply (AND) the number A with

each bit bi of B, resulting in n numbers, where each number is of n-bits. Then, these

numbers are left shifted by i bits (multiplied by 2i) individually resulting in [n, 2n]-

bit numbers. Finally, we accumulate (reduce by addition) these n shifted numbers

using the addition operation. Algorithm 1 demonstrates the textbook multiplication

algorithm with O(n2) complexity, which can be performed in parallel (details on

Section 4.1.2 and 4.2.2).

Karatsuba Algorithm
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Algorithm 2 Karatsuba Multiplication [38]

Input: X, Y ∈ Bn

Output: Z ∈ B2n

1: if n < n0 then

2: return BaseMultiplication(X, Y)

3: end if

4: k ← n/2

5: X0 ← X mod 2k

6: Y0 ← Y mod 2k

7: X1 ← X/2k

8: Y1 ← Y/2k

9: Z0 ← KaratsubaMultiply(X0, Y0)

10: Z1 ← KaratsubaMultiply(X1, Y1)

11: Z2 ← KaratsubaMultiply(X0 + Y0, X1 + Y1)

12: return Z ← Z0 + (Z2 - Z1 - Z0) 2n + (Z1)2
2n

We also consider the divide-and-conquer Karatsuba’s algorithm for its time com-

plexity O(nlog3) [38]. The idea relies on dividing the n-bit inputs and performing

smaller multiplications. For example, for two n-bit inputs, Karatsuba’s algorithm

splits them into four smaller numbers (n/2-bit size) and replaces the original mul-

tiplication by additions and multiplications on the smaller numbers (Line 12 of Al-

gorithm 2). It is noteworthy that we will utilize our parallel vector operations for

further optimizations with respect to this algorithm.
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Related Works

The chapter discusses some of the related works on FHE and the non-linear func-

tion approximation.

3.1 Homomorphic Encryption

We now further discuss Table 1.1 that presents a comparative analysis of the dif-

ferent homomorphic crypto schemes and their features. These popular frameworks

are relevant to our work, and we discuss the commonality and difference while seeking

to compare them on the same settings. Evaluating all these frameworks are challeng-

ing due to their complex and dissimilar parameterization. Therefore, there are some

recent developments towards standardizing the available HE schemes [39].

We are differentiating the Homomorphic Encryption (HE) schemes based on their

number representation: a) bit-wise, b) modular and c) approximate. Note that these

schemes can be categorized differently based on theoretical results [40, 41]. It is

23
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noteworthy that such categorization is solely for analytical purpose whereas there are

different theoretical categorization available [40, 41].

Bitwise Encryption usually takes the bit representation of any number and encrypts

accordingly. The computations are also done bit-wise as each bit can be considered

independent from another. This bit-wise representation is crucial for our parallel

framework as it offers less dependency between bits which we can operate in parallel.

Furthermore, it provides faster bootstrapping and smaller ciphertext size, which can

be easily tailored for the fixed memory GPUs. This concept is formalized and named

as GSW [42] around 2013, and it was later improved in subsequent works [25, 1, 43].

Modular Encryption schemes utilize a fixed modulus q which denotes the size

of the ciphertexts. There have been many developments [44, 45] in this direction

as they offer a reasonable execution time as shown in Table 1.1. The addition and

multiplication execution times from FV-NFLlib [26] and SEAL [3] show the difference

as they are much faster compared to our GPU-based parallel framework.

However, these schemes do a trade-off between the bootstrapping and the effi-

ciency as they are often designated as somewhat homomorphic encryption. Here, in

most cases, the number of computations or the level of multiplications are predefined

as there is no procedure for noise reduction via bootstrapping. Decryption is per-

formed after the desired computation. Furthermore, the encrypted data evidently

suffers from larger ciphertexts as the value of q is intentionally picked from large

numbers.

For example, we selected the ciphertext modulus of 250 and 881 bits for FV-

NFLlib [26] and SEAL [3], respectively. The polynomial degrees (d) were chosen 13
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and 15 for the two frameworks as it was required to comply with the targeted bit

security to populate Table 1.1. It is noteworthy that smaller q and d will result in

faster runtime and smaller ciphertexts, but they will limit the number of computations

as well. Therefore, this modular representation requires the developer to fix the

number of homomorphic operations, which limits the use cases and incurs complex

parameterization.

Approximate Number representations are recently proposed by Cheon et al. (CKKS

[46]) in 2017. These schemes also provide efficient Single Instruction Multiple Data

(SIMD) [34] operations similar to the modular representations as mentioned above.

However, they have an inexact but efficient bootstrapping mechanism which can be

applied in less precision-demanding applications. The cryptosystem also incurs larger

ciphertexts (7MB) similar to the modular approach as we tested it for q = 1050 and

d = 15.

We did not discuss HELib [27], which is the first and cornerstone to all HE imple-

mentations. This is due to its cryptosystem BGV [45] that is enhanced and utilized

by the other modular HE schemes (such as SEAL [3]). We enlist the available cryp-

tosystems in Table 1.1.

One of the goals of this work is to parallelize an FHE scheme. Most of the HE

schemes that follow modular encryption are either somewhat or adopt inexact boot-

strapping. Additionally, their expansion after encryption also requires more memory.

Therefore, we choose the bitwise and bootstrappable encryption scheme TFHE.

Hardware Solutions are less studied and employed to increase the efficiency of FHE

computations. Since the formulation of FHE [21] with ideal lattices, most of the effi-
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ciency improvements are considered from the standpoint of asymptotic runtimes. A

few approaches considered the incorporation of existing multiprocessors (e.g., GPU)

or FPGAs [47] to achieve faster homomorphic operation. Dai and Sunar ported an-

other scheme LTV [48] to GPU-based implementation [49, 50]. LTV is a variant of

HE that performs a limited number of operations on a given ciphertext. Moreover, in

their implementation, they offload the vector operations in GPU incurring communi-

cation between CPU (host) and GPU (device). For faster polynomial multiplication

they used SchnhageStrassen algorithm [51] which implicitly uses Fast Fourier trans-

forms. None of these works address the problem of parallelizing the FHE schemes,

which is the main theme of the thesis.

cuFHE, a CUDA-accelerated FHE Library, was released in 2018 [15]. cuFHE takes

advantage of the streaming multiprocessors for gate computations. However, their im-

plementation did not consider the sequential gate computations in arithmetic circuits,

where the gate operations can not be parallelized. Soon after cuFHE, NuFHE, an-

other GPU accelerated TFHE came out in 2018 [16]. Like cuFHE, NuFHE focuses

on gate-level optimization, while our focus is on arithmetic circuit optimization.

3.2 Non-linear Function Computation

The non-linear function circuit computations are more complex than the arith-

metic ones. Hence, it requires different measures. Here, we discuss some of the related

works on approximations based on interaction among the servers and data owners.

• In Interactive protocols, the servers communicate among themselves, some-

times, even with the data owner/s, to compute the non-linear functions. Or-
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landi et al. [52] proposed their model based on the interaction with the data

owner to compute the non-linear functions. DeepSecure [53] and Gazzle [19] use

two-party computation [54] architecture for non-linear function approximation.

• Non-interactive Protocol, on the contrary, approximates the non-linear func-

tions in a standalone server. CryptoNet [55] discussed the concept of the ap-

proximation while computing the functions. Later, Hesamifard et al. proposed

CryptoDL [20, 56] using Chebyshev Polynomial form of interpolation [57] to

approximate the non-linear functions.

In this thesis, we propose an approximation of non-linear functions in a non-

interactive fashion. Our novelty in the approximation is the integration of the en-

crypted comparison circuit that reduces the error to a great extent considering the

error incurred by Hesamifard et al. in [20, 56].
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Proposed Frameworks

4.1 CPU-based Parallel Framework

We propose a CPU parallel framework (CPU ) which utilizes multiple cores avail-

able in typical commodity computers. Notably, we utilize the existing TFHE imple-

mentation which comes with an extensive usage of AVX2 (discussed in Section 2.1)

available in each core. Therefore, our multi-core implementations have inherently

used such optimizations as we exhaustively employ every resource on a given CPU.

4.1.1 Addition

Figure 4.1 illustrates the bitwise addition operation considered in our CPU frame-

work. Here, any resultant bit ri depends on its previous ci−1 bit. In other words, there

is a serial dependency between the adjacent bits, which restricts us from incorporating

any data-level parallelism in the addition circuit construction.

However, it is possible to exploit some task-level parallelism where two different

28
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Figure 4.1: Bitwise addition of two n-bit numbers A and B. Each box represents

a bit. ai, bi are ith-bit of A and B, where ci and ri represent carry and resultant of

ith-bit, resp.

threads execute the XOR ( ⊕ ) and AND ( ∧ ) operations (Figure 4.1), simultaneously.

We observed that the time required to perform such task distribution between two

threads is higher than executing them serially. This is partially due to the costly

thread operations and eventual serial dependency of the results. Therefore, we did

not employ this technique for CPUs whereas employed an alternative for GPUs (see

Section 4.2).

4.1.2 Multiplication

Out of the three major operations (AND, left shift, and accumulation as men-

tioned in Section 2.4.2), the AND and left shifts (Line 3 – 6 in Algorithm 1) can be

executed in parallel. For example, for any two 16-bit numbers A, B (∈ B16), and four

available threads, we divide the AND and left shift operation among four different

threads. That is, Thread 0, 1, 2, and 3 compute simultaneously on the bit positions

0−3, 4−7, 8−11, 12−15, respectively. Such distribution of workload among different
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threads is known as the work sharing principle.

The accumulation operation, on the contary, is demanding as it requires n (for

n-bit multiplication) additions. The accumulation operation adds and stores values

to the same variable, which makes it atomic. Therefore, all threads performing the

previous AND and left shift have to wait for such accumulation which is termed as

global thread synchronization [58]. Given that it is computationally expensive, we do

not employ this technique in any parallel framework.

We utilized a custom reduction operation in OpenMP [58], which uses the global

shared memory (in CPU) to store (and add) the in-between results. This customized

reduction foresees additions of any results upon completion and facilitates a perfor-

mance gain by avoiding the global thread synchronization.

We utilized the reduction operation in OpenMP [58] which uses the global shared

memory (in CPU) to store (and add) the in-between results. Since we are adding

ciphertexts (LWE Samples), we implemented a custom reduction function solely to

avoid the global thread synchronization. This resulted in much better performance

compared to the naive approach of waiting on all threads to complete their individual

tasks.

4.1.3 Vector operations

To compute the vector operations (addition, multiplication) efficiently, we dis-

tribute the work into multiple threads (work sharing). For example,
−→
A ,
−→
B , and

−→
C ∈ Z` are three vectors of length `, where

−→
C =

−→
A +

−→
B , and each element Ai,

Bi, or Ci are n-bit integers. Given that the computation of each position of
−→
C is
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independent. Therefore, in a multi threaded machine, we can share the work among

different threads. For vector multiplication, we take similar measure for work sharing

as well. (see Section 6 for experimental results).

4.1.4 Matrix operations

Matrix Addition: Matrix addition is a series of addition operations between the

elements (analogous to a number or an encrypted number) of two matrices. The

elements have to be from the same position of the matrices, and the addition opera-

tions between them are independent of each other. Therefore, we divide the matrices

row-wise and divide the additions to different threads, where each thread operates on

different positions.

Matrix Multiplication: Multiplication over the matrices is a bit more complicated

than addition. It consists of both multiplications and additions.

X×Y =

X00Y00 +X01Y10 X00Y01 +X01Y11

X10Y00 +X11Y10 X10Y00 +X11Y10

 (4.1)

Equation 4.1 provides a schematic computation of a 2× 2 matrix multiplication. In-

specting the calculation of the resultant matrix, we highlight three major observations

on the parallelism of matrix multiplication.

• Each element of the resultant matrix is independent.

• All multiplication operations are independent.

• The addition operation is accumulation operation.
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For example, the computations of the first element (X00Y00+X01Y10) do not depend on

other elements of the resultant matrix. The multiplication operations (X00Y00, X01Y10)

in the computation are independent as well (same for other indices). The computa-

tion for rank 2 × 2 end with an addition operation. However, for rank 3 (> 2), the

computation for the first index becomes

[X×Y]00 = X00Y00 +X01Y10 +X02Y20

, where all the multiplication results are accumulated (reduced by addition). We

address the incorporation of parallelism in such accumulation in Section 4.2.2.

The small and limited number of cores is a limitation while distributing such

matrix operation for CPU . Hence, we only take the first observation into account

and employ each core to compute the results for the CPU-based parallel framework.

For example, the X0i and Yi0 are sent to one core to compute the (XY)00 of the

resulting matrix.

4.2 GPU-based Parallel Framework

In this section, we first present three generalized techniques to introduce GPU

parallelism (GPU ) for any FHE computations. Then, we adopt them to implement

and optimize the arithmetic operations.
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Figure 4.2: Arbitrary operation (e.g., AND) between two bits, where the vector opera-

tions are done inside the GPU. BS, KS key represent bootstrapping and key switching

keys, respectively

4.2.1 Proposed Optimization Techniques

Parallel TFHE Construction

We depict the boolean circuit computation (gate level) in Figure 4.2. Here, each

LWE sample (ciphertext) comprises of two variables namely
−→
A and B, where

−→
A is

defined as a vector. It is noteworthy that
−→
A is a vector of 32-bit integers with a

length of the key size (m) allowing much lower memory size compared to other FHE

implementations (further discussed in Section 3). In our parallel TFHE construction,

we only store
−→
A on the GPU’s global memory.

In addition to performing all vector operations inside the GPU, we use NVIDIA

CUDA FFT library (cuFFT) for FFT operations instead of the existing libraries. We
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Figure 4.3: Coalescing n-LWE samples (ciphertexts) for n-bits (plaintext)

utilized the parallel batching technique from cuFFT to support multiple FFT opera-

tions simultaneously. However, cuFFT also limits such parallel number of batches. It

keeps the batches in an asynchronous launch queue, and processes a certain number

of batches in parallel. This number of parallel batches solely depends on the hardware

capacity and specifications [33].

Bit Coalescing (BC)

Bit Coalescing combines n LWE samples in a contiguous memory to represent the

corresponding n-encrypted bits together. The encryption of a n-bit number, X ∈ Bn

requires n-LWE samples (ciphertext), and each sample contains a vector of length

m. In BC construction, instead of treating the vectors of ciphertexts separately, we

coalesce them altogether (dimension 1×mn) as illustrated in Figure 4.3.

Thus, instead of computing the same homomorphic operation n times sequen-

tially, we compute them in parallel. Consequentially, we found that homomorphic

computations using BC reduce the execution time for larger n.

The intuition behind such construction is to increase parallelism by increasing the
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� ∧ ��

�

Figure 4.4: Compound gate construction with two input bits (a and b) and two output

bits (a ∧ b and a⊕ b)

vector length in a contiguous memory. Coalescing the vector increases vector length

and thus, we incorporate more threads to achieve maximum parallelization and less

execution time. The effect of such efficiency is evident in Section 6.2.

Compound Gate

While adding two numbers A,B ∈ Bn, we can optimize the underlying boolean

circuit further by proposing a new gate structure— Compound Gate. These gates are

a hybrid of multiple gates, which takes the same two inputs as an ordinary boolean

gate but outputs two different outputs based on the instructions. The motivation

behind this novel gate structure comes from the addition circuit. For R = A + B

s. t. R ∈ Bn+1, we compute ri and ci with the following equations:

ri = ai ⊕ bi ⊕ ci−1 (4.2)

ci = ai ∧ bi | (ai ⊕ bi) ∧ ci−1 (4.3)

Here, ri, ai, bi, and ci denotes ith-bit of R,A,B, and the carry bit, respectively. Fig-

ure 4.1 also illustrates this computation for an n-bit addition.

While computing the equations 4.2, and 4.3, we observe that AND ( ∧ ) and XOR
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(⊕ ) are computed on the same input bits. These operations are independent of each

other, and it is reasonable to combine them into a single gate, which then can be

computed in parallel. We name these gates as compound gate. Figure 4.4 portrays

the concept of a compound gate circuit for performing a ∧ b, a ⊕ b, simultaneously.

Thus, a⊕ b and a ∧ b from equation 4.2 and 4.3 can be computed as,

s, c = a⊕ b, a ∧ b︸ ︷︷ ︸
CONCAT

Here, the outputs of s =a ∧ b and c =a ⊕ b are concatenated. The compound gate

construction is analogous to the task-level parallelism in CPU, where one thread

performs ∧ , while another thread performs ⊕ .

In GPU , the compound gate operations are flexible as ∧ or ⊕ can be replaced

with any other logic gates. Furthermore, the structure is extensible up to n-bits input

and 2n-bits output.

4.2.2 Algebraic Circuits on GPU

Addition

Bitwise Addition (GPU1): From the addition circuit in Section 4.1.1, we did

not find any data-level parallelism. However, we noticed the presence of task-level

parallelism for AND and XOR as mentioned in the compound gate construction. Hence,

we incorporated the compound gate to construct the bitwise addition circuit. We also

implemented the vector addition circuits using GPU1 to support complex circuits such

as multiplications (Section 4.2.2).

Number-wise Addition (GPUn): In algorithm 3, we present another addition
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Algorithm 3 Number-wise Addition
Input: A, B ∈ Bn

Output: R ∈ Bn+1

1: R ← A

2: for i← 0 to n− 1 do

3: Carry ← R ∧ B

4: R ← R ⊕ B

5: B ← Carry � 1

6: end for

7: return R

technique that encapsulates the bitwise addition capturing the efficiency proposed by

bit coalescing (Section 4.2.1). Here, we operate on the whole number instead of one

bit (in bitwise addition) and reduce the number of operations from equation 4.2 and

4.3.

We can also utilize the compound gates to perform R ∧B and R⊕B in parallel.

However, the number-wise representation will increase the ciphertext size for BC

whereas bitwise operations will only consider a single bit. Therefore, operating on

larger n-bit numbers (n > 24) can be detrimental as it will surpass such optimizations

(more details on Section 6).

Multiplication

Naive Approach: The multiplication operation of the framework adopts the paral-

lel computation of the first two operations: ∧ and �, resulting in n-numbers (LWE
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Figure 4.5: Accumulating LWE samples in parallel using a tree based reduction for

n = 8 where Lijs are added in parallel

sample vectors in ciphertext) ranging over [n, 2n]-bits. We need to accumulate these

numbers which cannot be distributed among the GPU threads. Furthermore, it of-

fers another sequential bottleneck while adding and storing the results in the same

memory location (for + = operation). Therefore, this serial addition will increase

the execution time. In the framework, we optimize the operation by introducing a

tree-based approach.

In this approach, we divide n-numbers (LWE sample vectors) into two n/2 vectors

and perform an addition operation that results in n/2 outputs. We again distribute

the resultant vectors between two n/4 vectors and add them. The process repeats

until we get a single value. Eventually, the tree-based approach requires log n steps

for the accumulation.

We illustrate the tree-based accumulation approach in Figure 4.5 for n = 8, where
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all the ciphertexts underwent ∧ and � in parallel, and waited for addition. Here,

Lij represents the LWE samples (encrypted numbers), i is the level, and j denotes

the position.

Likewise vector additions, we integrated vector multiplications in the framework.

More interestingly, we used both vector additions and multiplications in Karatsuba’s

Algorithm which we describe next.

Karatsuba Multiplication: We include Karatsuba’s Algorithm in our framework to

achieve further efficiency while performing multiplications. However, this algorithm

requires vector operations (addition and multiplication) and tests the efficacy of these

components. We were required to modify the original Algorithm 2 to introduce the

vector operations and rewrite the computations in Line 9 – 12 as:

〈Temp0, T emp1〉 = 〈X0, X1〉+ 〈Y0, Y1〉

〈Z0, Z1, Z2〉 = 〈X0, X1, T emp0〉 · 〈Y0, Y1, T emp1〉

〈Temp0, T emp1〉 = 〈Z2, Z1〉+ 〈1, Z0〉

Z2 = Temp0 + (Temp1)
′

In the above equations, X0, X1, Y0, Y1, Z0, Z1, and Z2 are taken from the algorithm.

〈. . .〉 and · are used to denote concatenated vectors and dot product, respectively. For

example, in the first equation, Temp0 and Temp1 store the addition of X0, Y0 and

X1, Y1, respectively.

It is noteworthy that in the CPU framework, we utilized task-level parallelism

to perform these vector operations as described in Section 4.1.
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Vector and Matrix Operations

Vector and Matrix Addition: The vector addition is a pointwise addition of the

elements at their respective position. The underlying addition operation incorporates

bitwise addition. Since the operation propagates bit by bit, we combine the bit from

the numbers (to be added) and compute them in parallel. For example, in a vector

addition of length `, we combine all the bits for the required bit position and compute

the result in parallel.

Matrix addition also performs pointwise additions between the matrix elements.

Hence, matrices represented in a row-major vector format corresponds to a vector

addition operation. Therefore, we simply convert the matrices into row-major and

add them utilizing the parallel vector addition.

Vector and Matrix Multiplication: Analogous or additions, vector multiplica-

tions are also a pointwise operation. Here, we compute the AND and left shift op-

erations in parallel and accumulate the values in a tree-based approach as described

in regular multiplications (Section 4.2.2).

Unlike matrix addition, its multiplication is more complicated as it requires more

computations. Section 4.1.4 presents a schematic computation for a 2 × 2 matrix

and discusses the scopes of parallelism while computing it. Notably, for two n-ranked

squared (for brevity) matrix multiplication, we require n3 multiplication operations.

One way to do this is to separate all the multipliers and multiplicands into two

vectors and perform parallel vector operation. For example, in a square matrix of

rank 16, each vector length for multiplication will be 4096. Furthermore, for each 16-

bit vector components (matrix elements), the computation raises to 4096×16×16-bits
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computation for parallel multiplication.

Therefore, multiplying these large vectors will require a hefty amount of GPU

memory which we need to avoid. It will also require a large number of threads

both for computing and storing the LWE samples. Although, the exiting thread can

be reused sequentially, the problem is severe for the fixed GPU memory constraint.

Therefore, matrix multiplications on larger dimensions can essentially run out of GPU

memory.

Therefore, we consider a different technique to solve the issue— Cannon’s Algo-

rithm [59]. Algorithm 4 illustrates the computations involved in Cannon’s algorithm.

One disadvantage of the algorithm is the presence of a sequential block (Line 6 in

Algorithm 4). Instead of computing all multiplications in parallel, it propagates in

cycles consisting of multiplication, addition and shifting the matrix elements.

For each cycles of the algorithm, we first perform the multiplication operation

in parallel (Line 9) exploiting the vector multiplications. Later, we compute the

addition on the computed data, which also takes advantage of the parallel vector

additions. Lastly, we shift the elements’ positions for the next round, as mentioned

in the algorithm.
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Algorithm 4 Cannon’s Algorithm [59]

Input: X, Y ∈ Zd×d

Output: Z ∈ Zd×d

1: Z ← 0

2: for i← 0 to d− 1 do

3: left-rotate row i of X by i

4: up-rotate column i of Y by i

5: end for

6: for k ← 0 to d− 1 do

7: for i← 0 to d− 1 do

8: for j ← 0 to d− 1 do

9: Z[i, j]← Z[i, j] + X[i, j]Y[i, j]

10: end for

11: end for

12: left-rotate of each row of X by 1

13: up-rotate of each row of Y by 1

14: end for

15: return Z
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Regression Analysis

5.1 Logistic Regression

Logistic Regression is a well known and widely used binary classifier algorithm.

The algorithm takes attributes of an instance as input, computes their characteristics

on a combination, and generates a probability of classification. In this thesis, we

consider the Parkinson dataset(D) [60] with u-instances, where each instance
−→
Di has

v-attributes. Here,
−→
Di is a vector of numbers and represented as,

−→
Di = (D0

i , D
1
i , D

2
i , . . . , D

v−1
i )

where Dj
i represents jth attribute of ith instance. Gi represents the ground truth of

−→
Di. The following equation represents the Logistic Regression,

Prob(Gi = 1|
−→
Di

T−→
W ) = σ(

−→
Di

T−→
W ) = 1/(1 + e−

−→
Di

T−→
W ) (5.1)

where,
−→
W is the weight vector and σ is the sigmoid function. While training the

regression model, we learn and optimize the model parameters (weights)
−→
W from the

43
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error. The error is the Euclidean distance between the ground truth and trained

classification as follows.

Ei = (Gtrain −Gi)
2/2 (5.2)

During training, we update the model parameters as follows,

W j
i = W j

i + α
dE

dDi

(5.3)

where, α is the learning parameter, and dE
dD

is the derivative of the error (E) with

respect to input instance (Di).

Linear regression is another machine learning technique, widely studied in liter-

ature. Linear regression predicts continuous values (house rent, forecast), while the

logistic regression predicts categories (class levels). However, they are very similar in

terms of computations. Logistic regression uses the sigmoid (σ(
−→
Di

T−→
W )) function in

Equation 5.1 to convert the value between 0 and 1, while the linear regression does

not use σ.

Modifications

The current TFHE framework [1] does not support floating-point numbers and

division operations. Hence, we modify the regression computations and introduce the

following changes.

• For a specific attribute we scale up the number by a factor of tens, to get integer

values. We adapt such scaling up from [29].

• We scale up the class values by a factor of 1024. Therefore, the class labels

become 0 or 1024. This also gives us a wide range of values similar to the
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floating point number between 0 and 1. For the upper limit, we use 1024 to

take advantage of bit manipulations.

• In Equation 5.3, we take the reciprocal of the learning rate (α) [29].

• Most importantly, we approximate the non-linear sigmoid function, as it can

not be modified (details in Section 5.5).

The rest of the chapter discusses the building blocks (Lagrange Interpolation Form,

MINMAX computation) for the proposed approximation techniques.

5.2 Mathematical Functions

The activation functions used in machine learning algorithms usually fall under

the following categories.

a) Non-linear Function

Definition 5.2.1. A linear function (f) satisfies following criteria for ∀x, y and

β ∈ R

f(x+ y) = f(x) + f(y)

f(βx) = βf(x)

Non-linear functions, on the contrary, do not satisfy the mentioned criteria.

Therefore, except the identity function (f(x) = x), most of the activation func-

tions are non-linear functions.

b) Continuous Functions
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Definition 5.2.2. A function f is said to be continuous at x = a if f(a) is

defined and limx→a f(x) = f(a). For example, sigmoid function,

σ(x) =
1

1 + e−x
(5.4)

Other activation functions that fall in this categories are identity function and

tanh function.

c) Piecewise Functions

Definition 5.2.3. A piecewise function has more than one formula to define

output at different ranges, e.g., Rectified Linear Unit (ReLU) function.

ReLU(x) =


x if x ≥ 0

0 if x < 0

(5.5)

Besides ReLU, binary step function, min-max function are the well known piece-

wise activation functions in machine learning literature.

d) Piecewise Linear Functions The piecewise linear functions are a special kind

of piecewise functions, where all the formula are linear functions.

5.3 Lagrange Interpolation Form

Polynomial interpolation is one of the applications of Lagrange Interpolating Poly-

nomial. It approximates any polynomial P (x) of degree ≤ (d−1) that passes through

the d points [61].
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Definition 5.3.1. For a given set S of d points,

S = {(xi, yi) | i < d ∧ ∀ i, j < d ∧ i 6= j, xi 6= xj}

The Lagrange Polynomial Interpolation is defined as,

P (x) =
d−1∑
i=0

yiPi(x) (5.6)

where,

Pi(x) =
d−1∏
j=0
j 6=i

x− xj
xi − xj

Thus, for any d-degree non-linear function approximation, we choose d+1 points and

compute the approximation using Equation 5.6.

In our construction, we first break the equation into pieces and approximate the

non-linear parts among them to fit the equation curve. Section 5.5 discusses the

piecewise approximation concept in detail.

5.4 MINMAX Computation and Comparators

Unlike other F/HE libraries, TFHE comes with an encrypted bitwise comparator:

MUX. The MUX operator takes three binary inputs a, b and c, and outputs one bit

(either b or c) based on the a.

MUX(a, b, c) = a ? b : c

The existing TFHE library provides an implementation of the MINMAX function

for unsigned numbers. We extend the algorithm for signed MINMAX computation.

Algorithm 5 presents our proposed signed MINMAX computation. We furthermore,
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Algorithm 5 Minimum of two Signed Encrypted Numbers
Input: A, B ∈ Bn

Output: R ∈ Bn+1

1: C ← A == B // A XNOR B

2: t0 ← 0 //t0, a single bit

3: for i← 0 to n− 1 do

4: t0 = ci ? t0 : ai //ith-bit of C and A

5: end for

6: t0 ← cn−1 ? t0 :∼ t0 //check for signed numbers

7: R ← t0 ? B : A

8: return R

incorporate two following types of vector operations. It is important to note that we

implement MUX operation, MINMAX computation, along with the vector MINMAX

computations employing GPU to maximize the use of hardware resources to reduce

the computation time.

• κ-output from κ-pairs: First, we compute κ-MINMAX operations over the

κ-pair of numbers in parallel. We assemble the bits that are subject to a single

operation and execute them together. For example, to execute Line 1, 4, and

6 in Algorithm 5, we collate all the bits at that stages and execute them in

parallel.

• MINMAX of κ-numbers: The second MINMAX vector operation is to find

the minimum (maximum) from a vector of encrypted numbers.This operation

usually requires κ-sequential comparisons. However, our construction performs
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the k-comparison in log n sequential comparisons in a tree-based approach.

First, we divide κ-encrypted numbers into two vectors of length κ/2 and find the

vector of minimum/maximum encrypted numbers using the MINMAX opera-

tion with κ/2 output. We continue the same process of dividing and computing

until we get one value. Figure 4.5 depicts similar tree-based approach. In the

figure, instead of addition, we perform MINMAX operation.

5.5 Activation Function Approximation

The widely used activation functions in machine learning algorithms are non-

linear, e.g., sigmoid, tanh. While approximating, we take the leverage of the com-

parator (available in TFHE) and the MINMAX function. In the construction, we

first break the non-linear functions into piece-wise continuous functions on some in-

terval and approximate each function separately. Below we present the proposed

approximations of sigmoid and tanh as those are the most used activation functions.

5.5.1 Sigmoid Approximation

Figure 5.1 illustrates the sigmoid function that converts any input value to [0, 1].

From the plot, we observe that we can break the sigmoid curve into three separate

continuous pieces. The ranges are a) [−∞,−4), b) [−4, 4], and c) (4,−∞]. Thus, the
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Figure 5.1: Sigmoid (σ) activation function. The dashed red lines indicates intervals

of the divided segments

new piecewise sigmoid function (σp) from Equation 5.4 becomes,

σp(x) =



0 if x < −4

σ(x) if − 4 ≤ x ≤ 4

1 if x > 4

(5.7)

The σp(x) still has a complex construction of σ(x) for the range [−4, 4]. Hence,

we approximate the region using Lagrange Interpolation polynomial. For a given set

of points,

Sσ = {(x, σp(x)) | −4 ≤ x ≤ 4}

we compute the interpolation polynomial in the Lagrange form for degree 1, 2 and

3. We analyze the error for each degree of approximation in Section 6.8 and use the

Degree 1 approximation because of comparatively equivalent error and less compu-
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Figure 5.2: tanh activation function. The dashed red lines indicates intervals of the

divided segments

tational depth. Therefore, the Equation 5.7 becomes,

σpL(x) =



0 if x < −4

0.125x+ 0.50 if − 4 ≤ x ≤ 4

1 if x > 4

(5.8)

Ciphertexts, unlike plaintext comparison, does not provide true (1) or, false (0).

Hence, we need to generalize Equation 5.8 as,

σpL(x) = min(1,max(0, x)� 3 + 0.5) (5.9)

Here, � denotes the right shift operation.

5.5.2 tanh Approximation

tanh function converts any input to [−1, 1] and is defined as

tanh(x) =
ex − e−x

ex + e−x
(5.10)
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Observing the plot in Figure 5.2 we divide the tanh function into three regions namely,

a) [−∞,−2), b) [−2, 2], and c) (2,−∞] from the . Thus, the tanh piecewise approx-

imation formulation becomes,

tanhp(x) =



−1 if x < −2

tanh(x) if − 2 ≤ x ≤ 2

1 if x > 2

(5.11)

Like σp, the approximation equation tanhp for the region [-2, 2] using Lagrange

Interpolation Form becomes,

tanhpL(x) =



−1 if x < −2

x/2 if − 2 ≤ x ≤ 2

1 if x > 2

(5.12)

And the tanh approximation on ciphertexts is,

tanhpL(x) = min(1,max(−1, x)� 1) (5.13)

5.6 Logistic Regression in GPU || framework

The logistic regression model generation (training) phase consists of dot products

of each instance (
−→
Di) in the dataset and the weight vector (

−→
W ) (Equation 5.1). In

a dot product, first, the vectors (
−→
Di

T
and
−→
W ) are multiplied component-wise (i.e.,

vector multiplication), and later, the multiplied outputs are accumulated (reduced by

sum). For the component-wise multiplication, we use our proposed vector multipli-

cation, and for the accumulation, we re-used the tree-based approach (discussed in

Section 4.2.2). Figure 5.3 illustrates the parallel dot product approach.
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Figure 5.3: Parallel Dot Product computation (
−→
Di

T−→
W ). The first computation is the

parallel vector multiplication, and the second part is the tree-based accumulation

This computation is similar to Linear Regression techniques. However, the only

difference is the sigmoid (σ(
−→
Di

T−→
W ). We use the approximation technique discussed

in the previous section. The current framework supports model training one instance

at a time i.e., supported batch size is 1.



Chapter 6

Experimental Analysis

6.1 Comparison Metrics

We used the same machine to analyze all the three (sequential, CPU , GPU

) frameworks. The experimental environment included an Intel(R) Core™ i7-2600

CPU having 16 GB system memory with a GPU: NVIDIA GeForce GTX 1080 (8

GB memory) [33]. The CPU and GPU comprise of 8 and 40, 960 hardware threads,

respectively.

We use two metrics for the comparison among the frameworks. One is the execu-

tion time (/wall clock) for any operations, and the other one is the speedup:

Speedup =
Tseq
Tpar

where, Tseq and Tpar are the time taken to compute the sequential and the paral-

lel algorithm, respectively. In the following discussions, we gradually analyze the

complicated arithmetic circuits using the best results from the foregoing analysis.

For analyzing the approximation error, we used mean squared error (MSE). MSE

54
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Figure 6.1: Execution time to compute n-bit boolean gate (AND) computation in three

different frameworks

assesses the quality of approximation functions based on the mean of the squared

error for each data point approximation. It is defined as,

MSE =
1

t

t∑
i=0

(θ̂ − θ)2

Here, θ̂, θ, and t are approximate value, ideal value, and sample size respectively.

6.2 GPU-accelerated TFHE

First, we discuss our performance over boolean gate operations, which are the

building blocks of any computation under encryption. Figure 6.1 depicts the execution

time difference between the sequential, CPU and GPU framework for 4, . . . , 32-

bits. The sequential AND operation takes a minimum of 0.22s (4-bit), and the runtime

linearly increases to 1.4s for 32-bits.
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In the GPU framework, bit coalescing facilitates storing LWE samples in con-

tiguous memory and takes advantage of available vector operations. Thus, it helps to

reduce the execution time from 0.22− 1.4s to 0.02− 0.06s for 4 to 32-bits. Here, for

32-bits, our techniques provide a 20× speedup. Similar parallelism is available in the

CPU framework as we divide the number of bits to the available threads. However,

the execution time increases for CPU framework since there is only a limited number

of available threads. This limited number of threads is one of the primary motivations

behind utilizing GPU in stead of CPU.

Then, we further scrutinize the execution time by dividing gate operations into

three major components—a) Bootstrapping, b) Key Switching, and c) Miscellaneous.

We selected these three as they are the most time-consuming operations and fairly

generalizable to other HE schemes. Table 6.1 shows the difference in execution time

between the sequential and the GPU for {2, 4 . . . , 32}-bits.

We further investigated the performance of bootstrapping in GPU while per-

forming the gate operations. Our FFT library, cuFFT operates in batches for incor-

porating parallelism. However, the number of batches to be executed in parallel is

limited, and solely depends on the hardware specification. It can operate a certain

number of batches at once and other batches are kept in a queue. Hence, a sequen-

tial overhead is incurred for a large number of batches that eventually increases the

execution time.

Under the same environmental settings, we benchmark the existing GPU-frameworks

of TFHE, cuFHE, and NuFHE. Although the GPU framework outperforms NuFHE

for different bit sizes (Figure 6.2), the performance degrades for larger bit sizes with re-
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Figure 6.2: Execution time comparison for n-bit boolean gate (AND) with existing

GPU-accelerated frameworks

spect to cuFHE. cuFHE implementation focuses more on the gate level optimization,

while our focus lies on arithmetic circuit computations. Later, we provide perfor-

mance analysis on the arithmetic circuits, where our framework outruns the existing

ones.

6.3 Compound Gate Analysis

We utilized compound gates to improve the execution time for additions or mul-

tiplications as described in Section 4.2.1. Since, the other existing frameworks do not

provide such optimization techniques (for arithmetic circuits), we benchmark with our

single gate and compound gate computations. Figure 6.3 illustrates the performance

of one compound gate over its counterpart, 2-single gates sequential computation.
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Figure 6.3: Performance of compound gates against 2-single gate operations for dif-

ferent bit sizes (n)

We performed several operations for different the number of bits (1, 4, . . . , 32) on the

X-axis, and Y-axis represents the execution time. It is noteworthy that a 32-bit com-

pound gate will have two 32-bit inputs and output two 32-bits as well. Here, bit

coalescing is the reason behind the improvement as it takes only 0.02s for one com-

pound gate, compared to 0.04s on performing 2-Single gates sequentially. However,

Figure 6.3 shows an interesting trend in execution time between 2-single gate and

a compound gate computation. The gap favoring the compound gates tends to get

narrower for a higher number of bits. For example, the speedup for 1-bit happens to

be
0.04

0.02
= 2. However, this speedup reduces to 1.01 for 32-bits. The reason behind

this diminishing performance gap is the asynchronous launch queue of GPU.

As mentioned in Section 4.2.1, we use batch execution of cuFFT. The number

of batches to execute in parallel depends on the asynchronous launch queue of GPU

resulting in delaying FFT for large number batches (for larger bit sizes), ultimately
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Table 6.2: Execution time (in seconds) required for adding two n-bit numbers, where

GPUn and GPU1 represent the number-wise addition and bitwise addition, respec-

tively

Frameworks 16-bit 24-bit 32-bit

Sequential 3.51 5.23 7.04

CPU 3.51 5.23 7.04

GPUn 0.94 2.55 4.44

GPU1 0.98 1.47 1.99

cuFHE 1.00 1.51 2.03

NuFHE 2.92 3.56 4.16

Cingulata 1.10 1.63 2.16

affecting the speedup. Nevertheless, the analysis shows that the 1-bit compound gate

is the most efficient, and we employ in the following operations.

6.4 Addition

Table 6.2 presents a comparative analysis of the execution times (in seconds)

for the addition operation of 16, 24, 32-bit encrypted numbers. In the analysis, we

consider our three frameworks: sequential (Section 2.4.1), CPU (Section 4.1.1), and

GPU (Section 4.2.2) and benchmark with cuFHE, NuFHE and Cingulata. Besides,

we discuss the performance of two GPU-based addition operations for GPU: GPUn

(number-wise addition) and GPU1 (bit by bit addition).
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Table 6.2 demonstrates that GPUn performs better than the sequential and CPU

circuit. The GPUn provides a 3.72× speedup for 16-bits whereas for 32-bit it is

1.58×. However, with respect to GPU1 , GPUn performs better only for 16-bit

addition, and declines for larger bits. For 24 and 32-bit addition, GPU1 performs

around 2× better than GPUn . This is an important observation as it reveals which

algorithm to choose between GPU1 and GPUn .

Although, both the addition operations (GPUn and GPU1 ) utilize compound

gate, they differ in the number of input bit sizes (n for GPUn and 1 for GPU1 ).

Since the compound gate performs better for smaller number of bits (Section 6.3),

the bitwise addition performs better than the number-wise addition for 24/32-bit

operations. Hence, we utilize bitwise addition for building other circuits.

cuFHE and NuFHE do not provide arithmetic circuits in their library. Therefore,

we implemented addition circuits on their work and carried out experiments on them.

Additionally, we considered Cingulata (a compiler toolchain for computing over en-

crypted data using TFHE) and compared the execution time. Table 6.2 summarizes

all the results, where we found our proposed addition circuit (GPU1 ) outperforming

others.

We further experimented on the vector addition operation adopting the bitwise

addition and demonstrate the runtime analysis in Table 6.3. Analogous to the regular

additions, the performance improvement on our vector addition is also noticeable. The

framework scales by taking similar execution time for smaller vector lengths ` ≤ 8.

However, the execution time increases for larger vectors as they involve more parallel

bit computations, and consequently, increase the batch size of cuFFT operations.
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Table 6.3: Execution time (in seconds) taken to add vectors of different length (`)

16-bit 32-bit

` Seq. CPU GPU Seq. CPU GPU

4 13.98 5.07 1.27 28.05 10.02 2.56

8 27.86 9.96 1.78 56.01 19.29 3.58

16 55.66 19.65 2.82 111.3 38.77 5.70

32 111.32 38.99 5.41 224.31 77.18 11.22

The difference is demonstrated on 32-bit vector additions with ` = 32 which takes

almost twice the time from ` = 16. However, for ` ≤ 8, the executions times do not

indicate such trend for both 16 or 32-bits.

In Section 6.3 we have discussed this issue and Figure 6.3 also aligns with evidence

as we found out that the larger batch size for FFT on GPUs adversely effects the

speedup, e.g.` = 32 will reqiure more FFT batches compared to ` = 16 as we get a

slight increase in execution time. We did not include other frameworks in Table 6.3,

since the GPU performed better comparing to the others in Table 6.2.

6.5 Multiplication

The multiplication operation uses a sequential accumulation (reduce by addition)

operation. Instead, we use a tree-based vector addition approach (discussed in Sec-

tion 4.2.2) and gain a significant speedup. Table 6.4 portrays the execution times for

the multiplication operations using the frameworks.
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Table 6.4: Naive and Karatsuba Multiplication runtime comparison (in seconds) for

16, 24, and 32-bit numbers with existing frameworks

Frameworks 16-bit 24-bit 32-bit

Naive

Sequential 120.64 273.82 489.94

CPU 52.77 101.22 174.54

GPU 11.16 22.08 33.99

cuFHE 32.75 74.21 132.23

NuFHE 47.72 105.48 186.00

Cingulata 11.50 27.04 50.69

Karatsuba

CPU 54.76 - 177.04

GPU 7.6708 - 24.62

For CPU multiplications, we employed all available threads on the machine.

Like the addition circuit performance, here GPU outperforms the sequential cir-

cuits and CPU operations by a factor of ≈ 11 and ≈ 14.5, respectively for 32-bit

multiplication.

Like the addition analysis, we implemented the multiplication circuit on cuFHE

and NuFHE as well. Table 6.4 summarizes the result and comparison with respect

to cuFHE, NuFHE, and Cingulata. The result provides evidence of the outstanding

performance of our GPU framework. It is important to note that the performance

increase with the increase in the number of bits. The reason behind the improvement
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Table 6.5: Execution time (in minutes) taken to multiply vectors of different length

(`)

16-bit 32-bit

` Seq. CPU GPU Seq. CPU GPU

4 8.13 3.25 0.41 32.56 12.15 1.61

8 16.29 6.17 0.75 65.12 23.48 2.96

16 32.62 11.93 1.40 130.31 46.39 5.62

32 65.15 23.58 2.68 260.52 92.44 10.79

is the tree-based addition technique for the reduction operation and computing all

the gate operations by coalescing the bits together.

Similar to the vector additions, we analyze vector multiplications available in our

framework and present a comparison among the frameworks in Table 6.5. We found

out an increase in execution time for a certain length (e.g., ` = 32 on 16-bit or ` = 4

on 32-bit), which is similar to the issue in vector addition as discussed in Section 6.4.

Therefore, the vector operations from ` ≤ 16 can be sequentially added to compute

arbitrary vector operations. For example, we can use two ` = 16 vector multiplication

to compute ` = 32 multiplication resulting around 11 mins. In the vector analysis, we

did not add the computations over the other frameworks since our existing framework

surpassed their achievements for a single multiplications.
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Table 6.6: Matrix multiplication execution time (in minutes)

Dimension Sequential CPU GPU

2× 2 17.07 10.62 0.86

4× 4 136.68 47.78 5.90

8× 8 1090.12 351.82 43.95

16× 16 8717.89 2514.34 186.23

6.6 Karatsuba Multiplication

In Table 6.4, we provide execution time for 16 and 24-bit Karatsuba multiplication

over encrypted numbers as well. In the CPU construction of the algorithm, the

execution time does not improvement, rather it increases slightly.

We observed that for both 16 and 32-bit multiplication, Karatsuba outperforms

naive GPU multiplication algorithm on GPU by 1.50 times. Notably, Karatsuba

multiplication can also be considered a complex and compound arithmetic operation

as it comprises of both addition, multiplication, and vector operations. However, the

CPU framework did not provide such difference in performance as it took more

time for the fork-and-join threads required by the divide and conquer algorithm.

6.7 Matrix operations

From Section 4.2.2, it is evident that the vector addition represents matrix addi-

tions as both operations are done point-wise. Therefore, Table 6.3 can be extended to

represent the execution time for the matrix additions, where ` becomes the number of
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elements of the matrices. Table 6.6 enlists the matrix multiplication execution time

for different dimensions using Algorithm 4. For a 16 × 16 matrix, GPU achieves

a ≈ 48× and ≈ 15× speedup compared to the sequential and CPU approach,

respectively.

6.8 Approximation Error

6.8.1 Sigmoid Approximation

The thesis discusses the approximation of non-linear activation functions using

piecewise and Lagrange polynomial approximation (Section 5.5). In addition to the

existing approach of Hesamifard et al. , we consider Taylor [62] and Bernstein [63]

polynomial approximations as well. The experiment covers the domain [−1000, 1000]

and uses MSE for the error analysis. Here, the reference for the error calculation is

the sigmoid function.

Table 6.7 exhibits a noticeable improvement of the proposed piecewise approx-

imation comparing with [56] and Taylor approximation. Bernstein polynomial, on

the other hand, incurs similar error to the Lagrange, except it possesses a larger

computation depth.

We also analyze the approximation error incurred by the piecewise Lagrange poly-

nomial for degrees 1, 2 and 3 (Table 6.7). In terms of MSE, the order is Degree 3,

Degree 1, and Degree 2. On the contrary, the computational depth of Degree1 is

the lowest (one shift and one addition). Therefore, we choose the Degree1 form for

sigmoid approximation.
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Table 6.7: Sigmoid Approximation comparison on different approximation models.

The experimental domain includes all the data points in [−1000, 1000]. The error

metric is Mean Square Error (MSE)

Name Deg. Polynomial MSE

Proposed Approximations (Piecewise)

Lagrange

1 0.125x+ 0.50 3.47e-05

2 0.02x2 + 0.18x+ 0.432 1.58e-04

3 0.21x− 0.006x3 + 0.5 1.73e-06

Taylor 3 - 0.0005x3 + 0.25x+ 0.5 4.05e-04

Bernstein 3

x3/(exp(−1) + 1)− (x− 1)3/2+

(3x(x− 1)2)/(exp(−1/3) + 1)−

(3x2(t− 1))/(exp(−2/3) + 1)

6.60e-05

Hesamifard et al. Approximation [20]

Chebyshev

Method 1

3 −(8.60e− 10)x3 + (1.33e− 17)x2 + 0.001x+ 0.499 0.06

5 (2.07e− 15)x5 − (5.32e− 23)x4 + 0.001x+ 0.499 0.72

Chebyshev

Method 2

3 −(4.80e− 10)x3 − (7.08e− 16)x2 + 0.0009x+ 0.5 0.05

5 (6.65e− 16)x5 + (9.37e− 21)x4 + 0.001 ∗ x+ 0.5 0.20

6.8.2 tanh Approximation

Table 6.8 presents an error analysis of the piecewise Lagrange approximation for

tanh. We considered the approximation polynomials up to Degree 3. The order of

the polynomials for the approximation error is Degree 1, Degree 2,and Degree 3.
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Table 6.8: Comparison of Lagrange polynomial approximation for tanh function for

different degrees

Deg. Polynomial MSE

1 0.5x 6.97e− 05

2 0.16x2 + 0.74x− 0.13 5.35e− 04

3 0.09x3 − 0.85x 0.0061

Since the order for the computational depth is the same as well, we use the Degree 1

polynomial for tanh approximation.

6.9 Logistic Regression

We use Parkinson’s Disease data [28] to experiments on our logistic regression

framework. The dataset consists of 195 observations, with 22 attributes for each ob-

servation. We compare our proposed linear and logistic regression with the proposed

linear regression proposed in [29] and summarize the results in Table 6.9. The re-

sult portrays the superlative performance of FV-based CPU-parallel linear regression

performance. The TFHE-based computation could not beat even using GPU, for

binary data as well. The reason is the bootstrapping time at each gate operation

in TFHE. Nevertheless, since TFHE can perform arbitrary depths of computations,

such schemes are beneficial for heavily computing algorithms like Deep Learning.
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Table 6.9: Regression Analysis comparison between FV and TFHE GPU || frame-

works

Models
Ciphertext

Size (MB)

Execution Time (min)

Numerical

Attributes

Binary

Attributes

Linear Regression

(FV CPU )

587.90 10.01 10.01

Linear Regression

(TFHE GPU )

5.99 184.95 42.66

Logistic Regression

(TFHE GPU )

5.99 189.24 46.77

6.10 Summary of Experimental Results

The experimental analysis of the frameworks on arithmetic operations can be

summarized as follows:

• Our proposed GPU framework outperforms existing ones in arithmetic com-

putation. However, it lags in gate level operations in comparison with cuFHE.

• By integrating the comparison circuit, we reduce the approximation error com-

pared to the existing techniques.

• Finally, GPU-accelerated TFHE, as expected, could not beat the performance

of Somewhat/leveled HE due to the bootstrapping operation.
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Conclusion

This chapter first summarizes the thesis and then discusses some frequently asked

questions. Finally, it concludes with future directions.

7.1 Summary

In this thesis, we constructed the algebraic circuits for FHE, which can be utilized

by arbitrary complex operations. Furthermore, we explored the CPU-level parallelism

for improving the execution time of the underlying FHE computations. Our notable

contribution is the proposed GPU-level parallel framework that utilizes novel opti-

mizations such as bit coalescing, compound gate, and tree-based vector accumulation.

Experimental results show that the proposed method is around 20 times faster than

the existing technique for computing boolean gates and multiplications (Table 1.2).

70
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7.2 Discussion

How does the CP/GPU hardware affect the performance?

The hardware specification plays a vital role in the execution time of the proposed

frameworks. CP/GPUs with more cores and higher clock speeds are supposed to

provide better speedups as they vary in floating point operation per cycle, memory

size and access speeds. However, our experiments include machines with a modest

configuration (< 700$ GPU).

Is the proposed framework sufficient to implement any machine learning

model?

In this thesis, we show how to implement boolean gates properly using GPUs to

gain performance improvement. We then show how to compute addition, multiplica-

tion, and matrix operations using the proposed framework. Further investigations on

complicated usecases such as secure machine learning [64, 65] were excluded as they

can utilize our framework for computing encrypted data. Note that we have imple-

mented a fully homomorphic encryption scheme. Hence, any user-defined computable

function can be implemented using our framework.

How to achieve application level parallelism with the proposed framework?

We acknowledge that there are always scopes of application level parallelism which

does not require parallel circuit constructions. For example, we can distribute the rows

and columns of a matrix for parallel multiplications and discard the performance im-

provement from individual multiplications itself. However, our proposed frameworks

do not discard but adheres such parallelism as it conjuncts any computations as long

as they fit the H/W memory.
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For GPU framework, how do we compute on encrypted data larger than

the fixed GPU memory?

The fixed GPU memories and their variations in access speeds are limitations for

any GPU application. Similar problems also occur in deep learning while handling

larger datasets. The solution includes batching the data or using multiple GPUs.

Our proposed framework can also avail such solutions as it can easily be extended to

accommodate larger ciphertexts.

Can we utilize the computation capacity of CPUs and GPUs concurrently?

In our approach, CPU and GPU frameworks exhaust their resources (CP/GPU)

separately and sit idle unless mentioned otherwise. Taking advantage of both re-

sources can be an interesting future direction as it depends on the application. For

example, with task-level parallelism in Figure 2.1, CPU computes Task 1 while GPU

computes Task 2. Here, CP/GPU that finishes first needs to wait for the other before

proceeding to Task 3. However, such waiting time will increase the overall execu-

tion time and needs to be proportionate for the optimal performance. It can also

be employed for the aforementioned memory issue as we can split the computations

between CPU and GPU for larger ciphertexts.

How can we achieve further speedup on both frameworks?

On the CPU framework, we have attempted most H/W or S/W level optimizations

to the best of our knowledge. However, our GPU framework partially relied on the

global GPU memory, which is slower than its counterparts. This is critical as different

device memories offer variant read/write speeds. Notably, shared memory (L1) is the

fastest memory after register (see Appendix for details). Our implementation uses a
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combination of shared and global memory due to the ciphertext size. In the future,

we would like to utilize only the shared memory, which is much smaller but should

provide better speedup compared to the current approach.

How the bit security level would affect the reported speedup?

The current framework is analogous to the existing implementation of TFHE [66] pro-

viding 110-bit security which might not be sufficient for some applications. However,

our GPU framework can accommodate any change for the desired bit security level.

Nevertheless, such change will change the execution times as well. For example, any

less security level than 110-bits will result in faster execution and likewise for a higher

bit security. We will include and analyze the speedup for the dynamic bit security

levels in future.

7.3 Future Works

The following are some interesting directions for future works.

• Adapting deep learning algorithms is an extension of the current framework.

Moreover, the computational depth requirement of deep learning algorithms

matches the features of TFHE. Therefore, we plan to implement deep learning

algorithms using the proposed framework.

• The use of multiple GPUs can reduce the execution time in some cases, e.g.,

large vector and matrix operations. We can distribute the input among GPUs

and collect the results at the end of computations. Such shared computing

might introduce a delay for communications and waiting in the execution time.
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Thus, for concurrent computations, we intend to introduce multiple GPUs and

analyze the performance.
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