A Formal Model of a Financial Audit System

John Akinlabi Akinyemi

A thesis
presented to the University of Manitoba
in partial fulfilment of the
requirements for the degree of
Master of Science
in
Computer Science

Winnipeg, Manitoba, Canada, 2006

(©John Akinlabi Akinyemi 2006



THE UNIVERSITY OF MANITOBA
FACULTY OF GRADUATE STUDIES
EE 3

COPYRIGHT PERMISSION
A Formal Model of a Financial Audit System

BY

John Akinlabi Akinyemi

A Thesis/Practicum submitted to the Faculty of Graduate Studies of The University of
Manitoba in partial fulfillment of the requirement of the degree

OF
MASTER OF SCIENCE

John Akinlabi Akinyemi © 2006

Permission has been granted to the Library of the University of Manitoba to lend or sell copies of
this thesis/practicum, to the National Library of Canada to microfilm this thesis and to lend or sell
copies of the film, and to University Microfilms Inc. to publish an abstract of this thesis/practicum.

This reproduction or copy of this thesis has been made available by authority of the copyright
owner solely for the purpose of private study and research, and may only be reproduced and copied
as permitted by copyright laws or with express written authorization from the copyright owner.



Abstract

This thesis presents a formal model of a financial audit system, as well as an architecture
and a classification of concepts and relationships in a financial audit system. The formal
model uses the Unified Modeling Language to describe the financial audit system, and
Predicate Logic to provide a formal specification for the requirements of the system.
Finally, a prototype implementation of a financial audit system specified using Predicate
Logic is presented, as it is used to collect financial audit data. This prototype uses a
similar method as that used for collecting audit and administrative data in major operating

systems.

il



List of Publications

1. John A. Akinyemi, Sylvanus A. Ehikioya, and Bamidele Ola. “Formalizing a Fi-
nancial Audit System Requirements.” Special Issue on Computer Auditing Journal.

Communications of the ICISA Vol.7, No.2, Fall 2005.

2. John A. Akinyemi and Sylvanus A. Ehikioya. “A Formal Specification of a Finan-
cial Audit System.” In 3rd International Conference on Computer Science, Soft-
ware Engineering, Information Technology, e-Business, and Applications (CSITeA04),
Cairo, Egypt. (Accepted: December, 2004).

3. John A. Akinyemi, Sylvanus A. Ehikioya, Femi G. Olumofin, and Chima Adiele.
“An Ontology and Knowledge Representation of a Financial Audit System.” In Pro-
ceedings of the IASTED International Conference on Knowledge Sharing and Col-
laborative Engineering (KSCE 2004 ), St. Thomas, Virgin Islands, USA, November
22-24, 2004, pp. 207-212.

4. John A. Akinyemi and Sylvanus A. Ehikioya. “A Predicate Logic Foundation
for Financial Audit Systems.” In Proceedings of the 8th IASTED International
Conference on Software Engineering and Applications (SEA 2004), Cambridge,
MA, USA, November 9-11, 2004, pp. 339-344.

il



Dedication

To the glory of God, for divine provisions of all my physical, emotional, and spiritual
needs during this program. Also, for providing me the necessary courage to keep going

despite very challenging difficulties.

v



Acknowledgements

I want to thank my advisors Dr. Sylvanus A. Ehikioya and Dr. Dean Jin for providing
guidance and support during the completion of this thesis. I also express my sincere
gratitude to Dr. Janet Morrill of the Accounting and Finance Department, University of
Manitoba, Dr. Parimala Thulasiraman and Dr. John Anderson of the Computer Science
Department, University of Manitoba for their valuable time spent in reading my thesis
and being part of my examination committee. Others who provided assistance are Dr.

Neil Arnason and Dr. Christel Kemke.

Also, I would like to thank the University of Manitoba, the Computer Science Depart-
ment and the entire staff of the Computer Science Department for the opportunity and all

resources provided for my research.

In addition, I would like to convey my gratitude to all my friends especially Dr. Olan-
rewaju Ojo and Mr. Ola Bamidele and my pastors: Pastor Tokunbo Okunnu and his
family, Pastor (Dr.) Akindele Odeshi and his family and Pastor Gideon Kpotsi Nekou and
his family for their support and kindness during this program. May the Lord bless you
abundantly, amen. Sincere appreciation goes to the following additional people: David
Allenotor, Femi Olumofin, Idowu Oduntan, Pastor Ikechukwu Isinguzo, Dr. and Mrs.

Moses Owolabi, Christopher Iyogun and his family, Tope Owoeye and Dr. Thomas Imeh

A%



A Formal Model of a Financial Audit System vi

Nathaniel. A big thank you also goes to all my other friends too numerous to mention

here.

Special thanks go to my brother and friend, Mr. Akanni Ibukun Akinyemi and his
family, you are indeed one in a billion. Thank you for all your support and encourage-
ments even when it became very tough. I acknowledge all the previous contributions by
my late mother Late (Mrs.) Elizabeth Olaide Akinyemi. A big thank you to Olusegun
Aminu, Late (Mrs.) Margaret Titilayo Aminu and Late (Mrs.) Victoria Oyinlola Alonge

(nee Akinyemi).

This thesis would have been practically impossible without the support, understand-
ing, and sacrifices from my dearest sweetheart and lovely wife Elizabeth Olabisi and my
precious baby Toluwanimi Shalom. You are so precious to me and I will always remember

that you have a major stake in this academic achievement. Thank you very much.



Contents

2

1 Introduction 1
1.1 Benefits of a Financial Audit System . . . . . .. ... ... ... .... 5
1.2 Problem Statementand Goals . . . . . .. .. .. ... ... ... 6
1.3 Formal Specifications in the Financial Audit System . . . . . .. ... .. 7
1.4 Theoretical Foundation of Financial Auditing . . . . .. ... ... ... 7

1.4.1 Management Assertions . . . . . . . .. ... 8
1.42 AuditObjectives . . . . . . . ... e 9
143 AuditAnalysis . . . .. .. ... e 10
1.4.4 Computer Assisted Audit Approaches . . . ... ... .. .... 10
1.4.5 Electronic AuditEvidence . . . . . . ... ... ... ... .. 11
1.5 Organizationof thisThesis . . . . .. ... ... ... ... ....... 12
1.6 Conclusions . . . . . . o v vt e 13
Auditing Concepts, UML, and Predicate Logic 14
2.1 Auditing Concepts . . . . . ..o e 14

vii



A Formal Model of a Financial Audit System

2.1.1 Audit Models and Simulations . . . ... ... ........
2.1.2  Audit Requirements and Specifications . . . ... ... ...
2.1.3  Audit Approaches in Computer Systems . . . . . .. ... ..
2.1.4  Audit Analysis Software and Tools . . . . ... ... .. ..
2.1.5 FocusofthisThesis . .. .. ... ... ...........
2.2 Unified Modeling Language . . . .. ... ... ... ........
2.2.1 Syntax and Semantics of UML Diagrams . . . . ... .. ..
2.3 Predicate Logic Specification Language . . . . ... ... ... ...
2.3.1 Reasoning and Inference Ability of Predicate Logic . . . . . .
2.3.2 Syntax of Predicate Logic . . . ... ... ... .. .....
2.3.3 Semantics of Predicate Logic . . . . . .. ... ... .. ...
2.4 Terminology Used inthis Thesis . . . . .. ... ... ... .....

2.5 Conclusions . . . . . . . e e e e e e

3 A Formal Model of a Financial Audit System

3.1 Architecture of a Financial AuditSystem . . .. ... ... ... ..

3.2 Classification and Model Description of a Financial Audit System

3.3 Requirements of a Financial AuditSystem . . . . ... ... ... ..
3.4 Overview of the FormalModel . . . . . .. .. .. ... ... ....
3.5 UML Model of a Financial Audit System . ... ...........

351 UseCaseDiagrams . . . . . .. ... .. ... ... .....

viii

15

15

16

17

18

18

20

25

26

27

29

32

34

36

36

37



A Formal Model of a Financial Audit System ix

352 ClassDiagrams . . . . . . . . ... ... 47
3.5.3 ActivityDiagrams . . .. ... ... L 52
3.54 Statechart Diagrams . . . .. ... ... ... ... ....... 54
3.5.,5 Collaboration Diagrams . . . . ... ... ... ......... 57
3.6 Predicate Logic Specifications of a Financial Audit System . . . . . . .. 69
3.6.1 Informal Definitions of Terms and Symbols . . . . ... ... .. 69
3.6.2 Formal Definitions of Terms and Symbols . . . . . . .. ... .. 73

3.7 Requirements of a Financial Audit System and their Specifications with

Predicate Logic . . . . . ... ... .. ... 92

3.7.1 Accountability Requirements and Specifications . ... ... .. 92

3.7.2 Security Requirements and Specifications . . . . . ... ... .. 95

3.7.3 Transaction Monitoring Requirements and Specifications . . . . . 98

3.7.4 Event Logging Requirements and Specifications . ... .. ... 99

3.7.5 Reporting Requirements and Specifications . . . . ... ... .. 101

3.8 Consistency Checking . . . ... .. ... . ... o o 103
39 Conclusions . . . . . . . L e 106
4 Financial Audit System Prototype Implementation 108
4.1 A Strategy for Collecting Financial AuditData . . . ... ... ... .. 108
4.2 Implementation Details of the Prototype Application . . . .. ... ... 111

4.2.1 Implementation of Accountability Requirements in Section 3.7.1 . 111



A Formal Model of a Financial Audit System X

4.2.2 Implementation of Security Requirements in Section 3.7.2 . . . . 112

4.2.3 Implementation of Transaction Monitoring Requirements in Sec-

tion3.73 . ... 113
4.2.4 Implementation of Event Logging Requirements in Section 3.7.4 . 114
4.2.5 Implementation of Reporting Requirements in Section 3.7.5 . . . 115

4.3 Relationship of the Prototype Implementation with Formal Specifications

inSection 3.7 . . . .. 122

44 Conclusions . . . . . . .. e e e 124

5 Conclusions and Future Work 125
5.1 Conclusions . . . . . . . .. e 125

5.2 Summary of Contributions . . . . ... ... ... ... ... ... .. 126

5.3 Limitationof this Thesis . . . .. .. ... ... ... ... ....... 127
54 FutureWork . . . . . . e 127
5.4.1 Knowledge-based financial auditsystem . . . . . ... ... ... 127

5.4.2 Formal verification of the dynamic (temporal) characterization of

afinancial auditsystem . . . . . . .. .. ... ... ..., 128

5.5 Conclusions . . . . v v v e e e e e e e e e e e e 129



List of Tables

3.1 Variables of a Financial Audit System Predicate Logic Specifications . . . 69

3.2 Predicates: FAS Predicate Logic Specifications . . . ... ... ... .. 75

Xi



List of Figures

2.1 Use Case Diagram Symbols . . . .. .. ... ... ... .. ...... 23
22 ClassDiagram Symbols. . . . . . .. ... .. . oL 23
2.3 Statechart Diagram Symbols . . . . . ... .. .. oL, 24
2.4 Collaboration Diagram Symbols . . . . ... ... ... ... ... ... 24
3.1 Architecture of a Financial Audit System [AEOQAO4] . . ... ... ... 39
3.2 Classification of a Financial Audit System [AEOA04] . . . . . ... ... 40
3.3 Use Case of a Business Transaction in a Financial System . . . . . . . .. 45
3.4 Use Case of Processing a Financial Transaction . . .. ... ... . ... 45
3.5 Use Case of Auditing a Financial Transaction . . . ... ... ... ... 46
3.6 Class Diagram of a Financial System . . . . . . .. ... ... ...... 50
3.7 Class Diagram of a Financial System Payment Process . . . . ... ... 51
3.8 Class Diagram of a Financial Audit System . . . ... ... .. ... .. 60
3.9 Activity Diagram of a Financial System . . . . .. ... ... ...... 61
3.10 Activity Diagram of a Financial Audit System . . . . . . ... ... ... 62

Xii



A Formal Model of a Financial Audit System

3.11

3.12

3.13

3.14

3.15

3.16

4.1

4.2

4.3

4.4

4.5

4.6

Financial Audit System Event Monitoring Statechart Diagram . . . . . .
Financial Audit System Transaction Authorization Statechart Diagram . .
Financial Audit System Payment Confirmation Statechart Diagram . . . .
Financial Audit System Data Encryption Statechart Diagram . . . . . . .
Financial Audit System Exception Review Statechart Diagram . . . . . .

Collaboration Diagram of a Financial Audit System . . . . . . ... . ..

Sample Transaction Processing Screen Shot . . . . . .. ... ... ...
Payment and Receipt Vouchers for a Sample Financial Transaction . . . .
Auditors’ Actions Audit Reporting Screenshots . . . . . .. ... .. ..
Periodical AuditReporting . . . . . . ... ... ... oL
User Access AuditReporting . . . . . . . . .. ... ... ...,

User Name AuditReporting . . . . ... ... ... ... ........

Xiii

63

64

65

66

67

68

116

117



Chapter 1

Introduction

According to the American Accounting Association (AAA) [AAA73], auditing is defined

as:

“a systematic process of objectively obtaining and evaluating evidence re-
garding assertions about economic actions and events to ascertain the degree
of correspondence between those assertions and established criteria and com-

municating the result to interested users.”

Financial auditing entails collection, analysis, and reporting of financial-related data for
the purpose of detecting and preventing errors, exceptions, and fraud in the financial sys-
tem. Effects of errors, exceptions, and fraud in a financial system range from loss of
money, customer dissatisfaction, loss of jobs, to a complete collapse of business. Finan-
cial auditing is crucial because it provides a means for ascertaining user accountability,
system monitoring, exception detection, and fraud prevention in the financial system. Au-
dit data are captured and stored in an audit log (event log / audit trail), depicting an eviden-

tial document for financial transactions. Audit analysis (a process of testing and verifying



CHAPTER 1. INTRODUCTION 2

a selected sample of financial transactions for correctness, completeness, accuracy, com-
pliance, and reliability [SA66, TH83]) performed on an audit log reveals exceptions and

€ITOoIS.

Financial systems record millions of transactions daily. Though the dollar value is
difficult to estimate, Medjahed er al. [MBB*03] forecast the e-commerce market alone
to be valued at US$ 8.5 trillion by year 2005. Whether electronic or manual, financial

transaction is a continuous activity.

The overwhelming volume and value of financial transactions warrants a careful and
error-free process of monitoring and auditing. Auditing financial transaction has become
complex [Kos04]. The advent and general acceptance of computer and electronic systems
make auditing of payment systems more complex than auditing a purely manual system
of just cash and cheque transactions. Financial transactions are crucial to individuals and
organizations. Therefore, there is need for clients and stakeholders in the financial system
to trust the system [Kos04, Mer03, Rez04]. A thorough auditing of financial systems
through an accurate review and monitoring of all financial transactions will achieve a good
level of correctness [Koc79], and will allow people to have confidence in the reliability

and accuracy of financial systems.

According to Koskivaara [Kos04], a lot of big companies such as WorldCom, Xerox,
Enron, Parmalat, and Siebel Systems have problems with their financial auditing systems.
These problems have permitted audit data manipulation. In the case of Enron, for exam-
ple, this had very serious consequences that lead to the collapse of the company, loss of
thousands of jobs, and economic implications for the energy sector. Recently, the busi-
ness world has called for a reassessment of the current audit system [Kos04, Mer03]. Dy-
namism in business communities encourages expansion, growth, mergers, acquisitions,
and organizational changes that require an update to audit systems. In some cases, a com-

plete redesign of the audit system is necessary. Failure to proactively re-evaluate the audit



CHAPTER 1. INTRODUCTION 3

models and incorporate necessary changes into the auditing processes of these organiza-
tions / companies may expose them to fraud and other related problems associated with

financial transactions.

Processes for manual review and monitoring of financial transactions have been in
existence for a long time. Auditors manually crosscheck source documents of transac-
tions (paper vouchers — documentary and evidential records of financial transactions) with
transaction journals. However, according to Akinyemi and Ehikioya [AE0O4], manual and

informally designed audit systems suffer from the following problems:

e Incorrect and incomplete design. Manual and informally designed systems may
suffer from design flaws due to design incompleteness and errors that exist in some
aspects of the system. Hence, it becomes difficult to ascertain the validity, reliabil-
ity, and accuracy of the incorrectly and incompletely designed systems. This flaw
may lead to the repudiation of financial transactions [CICA03], whenever there is a

dispute.

e Manual auditing is inadequate to cope with the volume of financial transactions.
The manual audit system is unable to keep pace with the volume of transactions in
online transaction processing and electronic commerce transaction environments.
Hence, sensitive and potentially fraudulent transactions could pass through the fi-
nancial system without being properly audited. This problem could lead to mone-

tary loss.

e [nconsistencies in the documentation of audit data and evidential documents in
financial audit systems. Some evidential documents are either misplaced, defaced,
illegible, destroyed, shredded, or mishandled. This problem leads to misleading and
wrong inferences. As aresult, managerial decisions based on inconsistent audit data

are sub-optimal.



CHAPTER 1. INTRODUCTION 4

o Non-enforcement of security and control measures due to lack of audit trail. This
problem causes an abuse of the financial system, and gives a chance to hackers and
fraudsters to carry out fraudulent and malicious financial transactions unnoticed. In

the manual audit system, it is difficult to ascertain who does what, and when.

e Breach of information confidentiality. Manual systems can not completely shield
confidential information from unauthorized access and use. Manual and informally
designed systems can not guarantee the safety of all confidential data in the financial
system. Hence, there is a potential for unauthorized access and use of financial data

by hackers, fraudsters, and competitors.

o Difficulty in audit information retrieval, reporting, and analysis. Manual and infor-
mally designed systems usually tolerate ‘open issues’ (yet to be resolved problems).
Due to the sensitivity and enormity of problems associated with financial systems,
open issues are too risky to be allowed in a financial audit system. The informa-
tion and reports in a manual audit system have the tendency to be inconsistent, as
well as take too long to generate. These problems encourage the distortion of audit

information and reports.

e Auditing as a dynamic process. As businesses evolve through growth, acquisitions,
mergers, organizational and operational changes, and personnel changes, new trans-
action types and procedures become necessary. Failure to implement the necessary
changes in the audit procedure in a timely and correct fashion can threaten the con-

tinued existence of a business.

A careful and error-free process monitoring and transactions auditing system is nec-
essary. The system must ensure correctness and completeness in financial transactions

through auditing.



CHAPTER 1. INTRODUCTION 5

1.1 Benefits of a Financial Audit System

According to the Canadian Institute of Chartered Accountants (CICA) [CICAO03], “Elec-
tronic exchange of business documents has become commonplace.” Also, electronic com-
merce and online purchase of products have made selling across countries and continents
be easier. Small, medium, and large companies perform trading activities across bor-
ders. The available forms of heterogeneous modes of payments, conversion of different
currencies, and other intricacies associated with these heterogeneous modes of payments
pose a major challenge to the accuracy, reliability, and validity of financial transactions.
Therefore, there is a need to audit financial transactions. Audits verify and ascertain the
accuracy, reliability, and validity of all financial transactions. Some of the benefits of a

financial audit system (FAS) are:

1. Audit systems establish trust among all stakeholders in a financial system. Each
stakeholder relies on a good audit process that detects errors and other forms of
related exceptions that are associated with financial transactions. The audit system

facilitates a notion of trust among stakeholders in a financial system.

2. A good and accurate audit system assists auditors in performing audit functions, as

well as increases the productivity of auditors.

3. Auditing is a major tool that can instill accountability, and eliminate fraudulent
malpractices. All transactions are verified and ascertained correct or otherwise by

the audit system.

4. A good audit process and the audit of auditors and their activities will prevent fi-

nancial loss.



CHAPTER 1. INTRODUCTION 6

1.2 Problem Statement and Goals

This thesis is an attempt to research and possibly provide some solutions to some iden-
tified problems in financial auditing. First, the thesis will focus on the identification of
some requirements of a financial audit system, as well as the provision of a formal speci-

fication for the requirements that are identified.

Secondly, this thesis will provide a model for a financial audit system. The design
of the financial audit system model will be based on formal specifications. Finally, the
thesis will provide an implementation of a subset of the design and model of the financial
audit system. This prototype implementation will demonstrate the practicability of imple-
menting a financial audit system based on formal specification of financial audit system
requirements. The implementation provides an opportunity to explore data capture for

the financial audit system.

The goals of this thesis include a provision of an easy to understand visual descriptive
model of a financial audit system. An audit system is the entire system that obtains and
evaluates audit data, supporting all aspects of the auditing process. Also, this thesis will
provide formal logic-based specifications and a design of the requirements of a financial
‘audit system. Finally, this thesis will provide an implementation of a financial audit data
collection (logging — an audit logging system is the part of an audit system that collects
and stores audit data) system that is based on the formal specifications of the requirements

of a financial audit system.

The thesis achieves these goals by providing a visual and descriptive model of a FAS
with an architecture of a FAS, a classification of entities / objects in the FAS, as well as
associations and relationships among entities / objects in a FAS. Also, this thesis provides
a description of some requirements that are necessary for financial transaction audit work,

as well as a formal logic based specification for these requirements. This thesis achieves



CHAPTER 1. INTRODUCTION 7

the final goal by providing a prototype implementation of a financial audit data logging

technique that is based on the formal logic specifications.

1.3 Formal Specifications in the Financial Audit System

Due to the complexities associated with auditing online financial systems, audit processes
become highly technical and require knowledgeable people to perform audit functions.
The complexities in the audit processes partly stem from an ambiguous and unclear un-
derstanding of concepts, relationships, and communications that exist among financial
audit system entities. Ambiguity in the meaning of concepts and the relationships that
exist among them can be eliminated with the use of formal methods. Formal methods

rely on mathematical notations to provide precision in the design of systems.

A number of benefits can be realized through the use of an approach based on formal

specifications for modeling software systems:

—_

. It provides an easy, clear, and understandable abstract representation of the system.
2. It eliminates ambiguities in the design of software systems.
3. It eliminates design incompleteness and incorrectness.

4. It eliminates contradictions in the system design.

[

. It provides a verifiable design of a system.

1.4 Theoretical Foundation of Financial Auditing

Auditing entails the collection and analysis of audit evidence to ascertain conformance

with established criteria and communicating the result to interested users [AAA73, TH83].



CHAPTER 1. INTRODUCTION 8

Skinner and Anderson [SA66] describe the two components of financial auditing: bal-
ance sheet audits and current audits (transaction-related audit). A balance sheet audit
is the year-end verification of asset and liability balances in the financial statements of
companies. A current audit (also referred to as a day-to-day audit of transactions) is the
verification of the correctness of individual transactions recorded daily in the financial

system [RS84].

Arens et al. [ALLS00] describe the objectives of an audit based on whether a conclu-
sion is being expressed on a balance sheet item or a transaction. The transaction-related
audit objectives are required for transactions audit, while the balance-related audit objec-
tives are required for balance sheet audit. Although the two audit objectives are closely

related, they are somewhat different.

1.4.1 Management Assertions

Audit work evaluates audit evidences regarding assertions to ascertain conformance with
established criteria [AAA73, TH83]. According to Arens et al. [ALLS00], assertions
describe “implied or expressed representations by management about classes of transac-
tions and related accounts in the financial statements.” Management provides assertions

for each class of accounts in both the transaction and account balances.

Paragraph 5300.17 of the Canadian Institute of Chartered Accountants (CICA) [CICA03]
CICA Handbook classifies management assertions into seven categories. These categories
are: existence (of assets and liabilities), occurence (of revenue and income), complete-
ness (inclusion of all relevant transactions), valuation (of assets and liabilities), measure-
ment (of revenues and expenses), ownership (of assets rights and liability obligations),
and statement presentation (relating to disclosures in the classification and description of

items in the financial statement).



CHAPTER 1. INTRODUCTION 9
1.4.2 Audit Objectives

Primarily, auditing determines whether management assertions about financial statements
are justified by accomplishing certain established objectives [ALLS00]. These audit ob-
jectives provide a guideline to assist auditors in collecting adequate audit evidence for au-
dit work. The transaction-related audit has the following objectives: occurrence (whether
recorded transactions actually occured), completeness (whether all relevant transactions
were recorded), accuracy (whether correct amounts of recorded transactions were recorded
and stated), classification (whether transactions included in client’s records were properly
classified), timing (whether transactions were recorded on the correct dates), and posting
and summarization (whether recorded transactions were updated to the master files and

correctly summarized).

Likewise, objectives of a balance-related audit include: existence (whether all amounts
included in the financial statement actually exist), completeness (whether all amounts that
should be included have been included), valuation (whether assets were included at their
realizable values), accuracy (whether amounts included were stated at correct amounts),
classification (whether amounts included in client’s listing were properly classified), cuz-
off (whether transactions near the balance sheet date were recorded in the proper period),
detail tie-in (whether transaction details sum to the master files amounts and subsidiary
records agree with the total in the account balance in the general ledger), rights and obli-
gations (whether assets were owned, and whether liabilities were obligations), and pre-
sentation and disclosure (whether account balances and related disclosure requirements

were properly presented in the financial statements).

It is essential for auditors to gather adequate and appropriate audit evidences to sup-
port management assertions in the financial statement before commencing the audit work.
Arens et al. [ALLS00] describe the four phases of an audit work. These phases include:

the planning and designing of an audit approach, performance of tests of controls, per-



CHAPTER 1. INTRODUCTION 10

formance of analytical procedures and tests of details of balances, and completion of the

audit and issuance of auditor’s report.

1.4.3 Audit Analysis

According to Ricketts and Sorkin [RS84], analytical review methods consist of ratio
analysis, trend analysis, simple linear regression tests, simple comparisons, common-
size statements, time series analysis, and financial modeling. Likewise, quantitative ap-
proaches include price-level-adjusted time series analysis, economic order quantity mod-
els, sensitivity analysis, simulations, present value analysis, and quantitative risk assess-

ment models.

According to Lemon er al. [LAL87], techniques of analyzing transaction audit data
include: analytical review procedures, tests of transactions, review of transactions with
affiliates and interplant accounts, analysis of account balances, direct testing of balance
sheet accounts, and tests of allocations. Audit analysis of current transactions is crucial
because it largely influences the correctness and completeness of balance sheet audit anal-
ysis. As a consequence, collecting correct and complete audit data is very important in

ensuring the validity of both transaction and balance sheet audits.

1.4.4 Computer Assisted Audit Approaches

Audit systems are either computer-based or manual. Computer-based audit systems are
either continuous or periodic. A continuous audit system can provide real-time audit
information because it has access to all relevant data on a real-time basis, whereas a
periodic audit system can be achieved on a regular time interval only because the audit
system does not have access to relevant data on a real-time basis. A manual audit system

is only periodic. The Canadian Institute of Chartered Accountants (CICA) [CICAO3]



CHAPTER 1. INTRODUCTION 11

details problems associated with using computer-based audit data collection mechanisms
as audit evidential documents. Some of these problems are: difficulty in establishing
proof of origin of electronic data, difficulty in detecting alterations of electronic data,
difficulty of establishing authorized information, availability and accessibility of audit
data, and difficulty in issuing appropriate and reliable electronic signatures. Despite all the
challenges associated with computer-based and electronic evidence collection for audit
purposes, it has become a widely used technique for electronic transactions in online,

e-commerce, and mobile (m-commerce) financial transactions.

1.4.5 Electronic Audit Evidence

According to CICA [CICAOQ3], electronic audit evidence may take various forms such as
text, image, audio or video. They define electronic audit evidence as the “information cre-
ated, transmitted, processed, recorded, and / or maintained electronically that supports the
content of an audit report.” Accounting records, such as electronic invoices and receipts

are forms of electronic audit evidence.

Guidelines for security, application, and general control measures that are relevant
for electronic audit evidence are also outlined by CICA [CICAO03]. These control mea-
sures include: (i.) segregation of incompatible duties and access controls, (ii.) retention,
archiving, accessibility and destruction of electronic documents and data, (iii.) encryp-
tion, electronic signatures and digital certificates, (iv.) management and audit trails, (v.)
controls relating to information authentication, (vi.) controls relating to information in-
tegrity, (vii.) non repudiation controls, (viii.) information authorization controls, (ix.)
data availability controls, and (x.) information confidentiality controls. Also, since audit
evidence obtained directly from the source by auditors are more reliable than evidence
obtained from third parties [CICAQ3], it is imperative for auditors to have an independent

means for collecting audit data.



CHAPTER 1. INTRODUCTION 12

The model in this thesis provides a means to assist auditors by programming criteria
relating to audit objectives, so that each transaction can be analyzed against the criteria.
Also, the selection of audit data is based on the criteria that satisfies audit objectives

before they are analyzed by auditors.

The financial audit system in this thesis can provide data to auditors in order to per-
form certain analyses as described in Section 1.4.3. Finally, this model can screen for
control objectives required and is suitable for providing evidences for financial audit sys-

tem and electronic transactions.

1.5 Organization of this Thesis

This thesis is significant for the following reasons: it provides an easy to understand
visual description and model of a financial audit system; it identifies and provides a formal
specification for the requirements of a financial audit system; it provides a design of the
financial audit system based on the formal specification, and it implements a subset of the

design to demonstrate the practicability of this concept.

The remainder of this thesis is organized as follows. Chapter 2 presents auditing
concepts related to this thesis work and background information on both the modeling
language (UML) and the formal specification language (Predicate logic) used in this the-
sis. Chapter 3 presents a formal model of a financial audit system, as well as a description
of a financial audit system with an architecture, a classification, and some requirements of
a financial audit system. Chapter 4 describes a prototype implementation of the financial

audit system. Chapter 5 concludes the thesis, and describes future work.



CHAPTER 1. INTRODUCTION 13

1.6 Conclusions

This chapter introduced the concept of financial auditing in general. The need for good
financial audit systems, and problems that arise through the use of manually and infor-
mally designed financial audit systems were outlined. The need for formal specifications
for financial audit systems was presented. A theoretical foundation for financial auditing
was provided detailing the objectives of audit work and the significance of management
assertions. Finally, electronic audit evidence was described as it relates to financial audit-
ing.

The next chapter presents auditing concepts that are related to this thesis work and
background information on the modeling and formal specification languages that are used

in this thesis.



Chapter 2

Auditing Concepts, UML, and Predicate
Logic

This chapter presents auditing concepts; structures and descriptions of UML modeling
language and the syntax and semantics of Predicate logic formal language as they apply
to this thesis. These auditing concepts are based on related work in the areas of both

financial and computer systems auditing.

2.1 Auditing Concepts

In this section, the audit concepts that are related to this thesis are outlined. They are
grouped into the following categories: audit models and simulations, audit requirements
and specifications, audit approaches in computer systems, and audit analysis software and

tools.

14



CHAPTER 2. AUDITING CONCEPTS, UML, AND PREDICATE LOGIC 15
2.1.1 Audit Models and Simulations

Rezaee er al. [RESO1] propose a system of continuous auditing; a system that entails se-
lecting, monitoring, and analyzing electronic financial transaction data. Their model uses
Extensible Business Reporting Language (XBRL), a standardized electronic language for
business reporting. The continuous auditing model describes a system that continuously

prepares, publishes, extracts and examines financial information for auditing systems.

Similarly, Yu er al. [YYCOO] provide two auditing process models for evidence col-
lection and validation in an electronic commerce auditing context. The models are the
Periodical Auditing Process Model (PAPM) and the Continuous Auditing Process Model
(CAPM). The PAPM facilitates periodic auditing of electronic transactions either annu-
ally or semi-annually. CAPM is a real-time transaction monitoring system that can detect

exceptions and notify auditors of the occurrence of an exception.

Rezaee ef al. [RESO1] focus on audit data analysis, while Yu ez al. [YYCO00] empha-
size detection and notification of exceptions in e-commerce data to auditors. This thesis
concentrates on the collection of financial audit data, not just in the e-commerce system
context. Nevertheless, I use their idea of online and continuous methods in [RESO1]

and [Y'YCOO0] to facilitate the collection of financial audit data.

2.1.2 Audit Requirements and Specifications

OpenGroup [TOG98] developed the Distributed Audit Service (XDAS) that defines re-
quirements and specifications for generic and online security audit services. The XDAS
is an elaborate research effort that defines and models a generic audit system, segregating
audit functions into global and local levels. XDAS uses several application programming
interfaces (APIs) to define abstract specifications of how to extract relevant audit criteria

from applications. XDAS allows an analysis application to configure event pre-selection



CHAPTER 2. AUDITING CONCEPTS, UML, AND PREDICATE LOGIC 16

criteria. The application then analyzes the criteria before triggering applicable actions.

XDAS provides specifications for some operations that are generic, but relevant for
security audits; for example, XDAS provides specifications for system sign-on, and ini-
tiation and termination of communication sessions between systems and components in
a security audit framework. Furthermore, XDAS specifications define APIs for several
security audit related operations, such as an API to submit events to XDAS by applica-
tions, an API to read records from an XDAS audit trail, and an API to configure event

pre-selection criteria for event submission to XDAS, and so on.

The research work by OpenGroup [TOG98] is focused on providing specifications
for a generic audit system, based on APIs that are structured in a programming language
format. However, this thesis focuses specifically on financial transactions audit systems.
The specifications in this thesis are based on logic formalisms, and are not suited for a
particular class of programming languages. My logic-based specifications are suited for
any type of programming language, rather than the programming language based APIs in

XDAS.

2.1.3 Audit Approaches in Computer Systems

Operating systems have built-in logging systems for security and diagnostic purposes.
Examples of computer audit data collection systems built into operating systems are Sys-
log in UNIX®), and Event Viewer in Microsoft® Windows operating systems. Syslog is
a central system message logging facility standard on all modern UNIX®) systems. The
Event Viewer in Microsoft® Windows operating system logs system, application, and

security events that are related to the operating system and some of its applications.

The logging system in an operating system is system based, and it is designed for col-

lecting data that are required for system-related activities. Similarly, the logging system



CHAPTER 2. AUDITING CONCEPTS, UML, AND PREDICATE LOGIC 17

in operating systems is dependent on the designers of the operating system. The logging
system in this thesis is designed to be incorporated into financial applications without
any additional input from the designers of operating systems. Logging modules in an
operating system track system-based events, while the logging system in this thesis tracks
relevant application data in the financial auditing systems, solely for financial audit pur-
poses. Nevertheless, the work in this thesis uses a data collection technique that is similar
to the techniques used in Syslog and Event Viewer to collect application-based financial

audit data.

2.1.4 Audit Analysis Software and Tools

Several commercially available audit analysis tools and software applications exist, and
they are used by financial auditors. A notable audit data analysis software tool is Audit
Command Language (ACL) [Wil83]. Structured Query Language (SQL) [DD97] is a
query language for generating audit information from databases. Although the focus
of this thesis is not on audit data analysis, it is worthwhile to mention that SQL and
ACL approaches for analyzing audit data use a similar method to query the database of
financial audit data and retrieve audit information from the prototype implementation of

the financial audit system in this thesis.

Dalal [Dal05] presents the principle of nanoscience (a microscopic analysis) to ex-
tract trends and patterns from audit data. This approach was used to detect a currency
counterfeiting fraud. It is based on extracting implicit patterns and trends from a database
of financial transactions by conducting a “data-churning exercise” (application of spe-
cialized analysis) that identifies and detects anomalies. According to Dalal [Dal05], the
auditor used queries (data sort, duplicates, gaps, and data filter) on audit data to detect

anomalies and subsequently prevent further fraudulent activities.

In this thesis, a method similar to [Dal05] is used to extract trends and patterns from an



CHAPTER 2. AUDITING CONCEPTS, UML, AND PREDICATE LOGIC 18

audit log in the prototype. However, the goal here is different from [Dal05]. Dalal [Dal05]
used their method to detect anomalies. The prototype implementation in this thesis uses
the same method to verify whether the process of logging audit data satisfies the require-

ments as well as the formal specifications of a financial audit system.

2.1.5 Focus of this Thesis

Some of the previous literature [Koc79, TOG98, YYCO00] present models of audit sys-
tems. OpenGroup [TOG98] provides a means for specifying some requirements for a
generic audit system. Syslog and Microsoft® Windows Event Viewer are suitable for
achieving their auditing purposes in their respective operating systems. None of the previ-
ous related work provides a means for modeling and formally specifying a financial trans-
action audit system based on the Unified Modeling Language (UML) [Oes02, RTB99] and
symbolic formal logic. This thesis provides a financial audit system model using UML
and Predicate Logic [HR02, vEK76]. It also demonstrates a financial audit data collection
technique that is based on approaches used in operating systems for collecting data for

system audit and administration purposes.

2.2 Unified Modeling Language
According to Rumbaugh ef al., UML is:

“a general-purpose visual modeling language that is used to specify, visual-

ize, construct, and document the artifacts of a software system.” [RIB99]

UML uses notations to capture, and provide descriptions and characteristics of a system.

This characterization assists in the software development life cycle of the system. UML



CHAPTER 2. AUDITING CONCEPTS, UML, AND PREDICATE LOGIC 19

supports modeling all the software design and development stages by providing static,
dynamic, and organizational / implementation views of both simple and complex software

artifacts. The benefits of using UML to model software artifacts [RIB99] include:

1. Presentation of a visual, and easy to understand model of the software system.
2. Domain independence.

3. The provision of a unified notation for model constructs from the requirements

specifications to the deployment of the software, and

4. The semantic connotations of UML constructs.

UML models discrete systems, such as software systems, using views and diagrams.
A view is a subset of a UML model of a system. It describes just one aspect of the system,
employing one or two kinds of diagrams to provide visual descriptions of the concepts in
each view. UML views include the static, use case, implementation, deployment, state
machine, activity, interaction, and model management views. UML diagrams include the
Class, Use Case, Component, Deployment, Statechart, Activity, Sequence, and Collabo-

ration diagrams.

The static behavioural view of UML provides a structure for entities in a model. Soft-
ware entities and their characteristics are clearly identified through relationships, associa-
tions (aggregation, composition, links, and bidirectionality), generalizations, inheritance,
classification, dependencies, and constraints in the model. Static views of UML con-
sist of the Use Case and Class diagrams. UML also has dynamic behavioural views.
These dynamic views provide temporal and evolving characteristics of entities, showing
behaviours when specific actions act on them. Transitions and communications among
cooperative objects in a model can be shown. The dynamic view consists of Object, Stat-

echart, Activity, Sequence, and Collaboration diagrams. The organizational view of UML



CHAPTER 2. AUDITING CONCEPTS, UML, AND PREDICATE LOGIC 20

models software components into smaller pieces of packages that establish a grouping of
run-time software entities into components. The organizational views are the Component

and Deployment diagrams.

2.2.1 Syntax and Semantics of UML Diagrams

This section presents the syntax and semantics of UML diagrams that are used in this
thesis. These diagrams are the Use Case, Class, Activity, Statechart, and Collaboration

diagrams.

Use Case Diagrams

Use case diagrams are used to describe high-level entities and processes on systems.
These entities are referred to as actors, while the processes are referred to as use cases.
A Use Case diagram shows the use case view of a system as seen by users that interact
with the system. Figure 2.1 shows symbols that are used for drawing use case diagrams.
The communication association represents the flow of messages and interactions between

actors and use cases, while the system boundary provides a boundary for the system.

Class Diagrams

A class diagram is a pictorial representation of the generalizations, inheritance, associa-
tions, dependencies, relationships, interfaces, and collaborations of classes in a system.

Figure 2.2 shows symbols that are used for drawing class diagrams.

A class is an entity of a system that has attributes and can perform certain operations
(methods). Generalization, also referred to as inheritance describes the “is-a” relation-

ship between a parent class and a child class. For example, considering a case of two



CHAPTER 2. AUDITING CONCEPTS, UML, AND PREDICATE LOGIC 21

classes person and student, we say “student is-a person” denotes student class inherits
the properties of person class. Aggregation describes the consists-of relationship, i.e., a
whole / part relationship where the whole contains the part, whereas a part can not con-
tain the whole. Composition is a form of aggregation that is strictly bound, for example,
there is a composition relationship between a computer and its processing unit, whereas
there is only an aggregation relationship between a computer and a floppy drive. A com-
puter without a processing unit ceases to be a computer, whereas a computer without a
floppy drive remains a computer. Dependency shows a relationship between two entities
in which one entity depends on the other entity. A link depicts an association between two

entities, and a binary association describes an association between exactly two classes.

Statechart Diagrams

Statechart diagrams are used to model dynamic behavioural views of a system. Statechart
diagrams capture and provide isolated views of an object showing the initial state, its re-
active actions to events, and transitions to a new state. Statecharts are UML representation
of a State Machine. Figure 2.3 shows a list of symbols that are used to draw Statechart

diagrams.

A state (the state of an object) depicts the characteristic condition (properties or val-
ues) of object attributes whenever it satisfies some conditions, performs some activities,
or waits for some events. The initial state indicates the beginning of the State Machine,

while the final state indicates the end.

The decision box allows the construction of the “if-then-else” language construct. A
transition is a directed (ordered) arrow that indicates an entity and its transition from one
state to the other. A fork transition represents a complex transition in which one source
state is replaced by two or more target states, resulting in an increase in the number of
active states. A join transition in a state machine shows which two or more states combine

to yield one resulting state.



CHAPTER 2. AUDITING CONCEPTS, UML, AND PREDICATE LOGIC 22
Activity Diagrams

Symbols that are used in the Activity diagram are similar to the ones used for constructing
Statechart diagrams. However, a transition in Statecharts is referred to as control flow in

Activity diagrams.

Collaboration Diagrams

Collaboration diagrams model the dynamic interaction of objects and their associations
with other objects in a system. A Collaboration diagram uses links to represent the asso-
ciations between objects, as well as ordered numbers to specify the sequence of messages
between all the system objects. Figure 2.4 presents a list of symbols that are used for

drawing Collaboration diagrams.

A classifier role is a slot that describes the role played by a participating entity in a
collaboration. An association role connects two classifier roles within a collaboration, as

well as represents an association between two classifiers in a collaborating system.



CHAPTER 2. AUDITING CONCEPTS, UML, AND PREDICATE LOGIC 23

Communicatlion association

System boundary

e SO ey

Use Case

Figure 2.1: Use Case Diagram Symbols

Class Dependency — —— - — e o — P
End? End?2
Generalization > Link
-End1 -End2
. 1 Binary
Composilion < association | .

-Endg2 <Endt

Figure 2.2: Class Diagram Symbols



CHAPTER 2. AUDITING CONCEPTS, UML, AND PREDICATE LOGIC 24

Initial State .

Final State ©

Decision <>

Transition (Fork)

Transition (Join)

Transion =~ ————>> m
Note ‘

Figure 2.3: Statechart Diagram Symbols

Classifier role

Association

role

Note

SN

-

Figure 2.4: Collaboration Diagram Symbols



CHAPTER 2. AUDITING CONCEPTS, UML, AND PREDICATE LOGIC 25

2.3 Predicate Logic Specification Language

Predicate Logic is a specification language that uses predicates, functions, variables, con-
stants, connectives, quantifiers, terms, and sentences to represent knowledge. The syntax,
semantics and inference rules of predicate logic is based on a well-formed formal lan-

guage construct.

Definitions:

e A predicate is a function whose co-domain is the set of Boolean logical constants

{TRUE, FALSE}.

e A function is a rule for deriving a value, say v, from another value, say w. Value w

is called the argument and value v is the corresponding result.
e A variable is a symbol or name that represents a value.
e A constant is a value that does not change.

e Connectives are logical operators that connect atomic statements into more complex

statements. These connectives are described in Section 2.3.2.

e Quantifiers are operators that specify for which values of a variable a formula is
true. The universal quantifier (V) means “for all values”, existential quantifier (3)
means “there exists some value”, and the unique existential quantifier (3;) means

“there exists a unique (one and only one) value”.

e A term is a part of speech representing something, but which is not true or false in

its own right, for example “man”.

e Atomic formula or sentence is a predicate name followed by a list of variables such

as P(z, y), where P is a predicate name, and z and y are variables.



CHAPTER 2. AUDITING CONCEPTS, UML, AND PREDICATE LOGIC 26

e Predicate logic sentences are built up from atomic sentences. An atomic sentence
is a predicate name followed by a list of arguments / terms. Complex sentences use

connectives and quantifiers on atomic sentences.

e A premise refers to a formula or sentence that is considered TRUE in the domain of

discourse.

e An inference or conclusion is a fact that is deduced from certain premises.

2.3.1 Reasoning and Inference Ability of Predicate Logic

Predicate logic aids reasoning about propositional connectives and quantifications. Con-

sider an example from Luger and Stubblefield [LS98]:

isa are
Socrates man / all men mortal

In this example, we can assert two premises, namely:
Premise 1: All men are mortal.
Premise 2: Socrates is a man.

From Premises 1 and 2, we can infer that Socrates is mortal. Predicate logic has the
ability to represent complex sentences (facts) in a domain of discourse, as well as infer
/ derive new facts from previous ones (premises). Predicate logic guarantees the validity
of inference(s) / conclusion(s) that are based on previously established facts. In this case,
the facts are the two premises. The reasoning capability of Predicate logic deduces a
connection between Premise 1 and Premise 2. In this way, Predicate logic implicitly
derives a new rule that is based on the two previous premises, which is man belongs to all

mern.



CHAPTER 2. AUDITING CONCEPTS, UML, AND PREDICATE LOGIC 27

Informally, this inference is derived through a sequence of different substitutions as

shown below:

1. All men are mortal — Premise 1

2. Socrates is a man — Premise 2

(98]

. Man belongs to all men — Derived from 1 and 2

4. Socrates belongs to all men — Derived from 2 and 3

n

. Socrates is mortal - Derived from 1 and 4

2.3.2 Syntax of Predicate Logic

The syntax of Predicate logic consists of logical symbols, variables, constants, and other
symbols. The following tables describe the syntax of Predicate logic language used in

this thesis.

Logical Symbols:

Symbol | Meaning Usage

- negation (“NOT”) unary connective
A conjunction (“AND”) binary connective
\Y% disjunction (“OR”) binary connective
= implication (“IMPLIES”) binary connective
&= consequence (“FOLLOWS FROM”) binary connective
& equivalence (=) binary connective
v universal quantifier (“FOR ALL”) quantifier

3 existential quantifier (“THERE EXISTS”) | quantifier




CHAPTER 2. AUDITING CONCEPTS, UML, AND PREDICATE LOGIC 28

Variables and Constants:

Symbol Meaning | Usage
Ty Yy 2y variable | variable
Socrates, a, ... | constant | constant
Other Symbols:
Symbol Meaning Usage
fig,h symbols Function symbols

X, Y, MORTAL | symbols Predicate symbols

, comma used to separate symbols
colon such that symbol

() parenthesis | brackets symbol

= equals equality symbol

A combination of logical alphabets, variables and constants, and other symbols produces
well-formed formulae (wff), which are constructed using the following rules:
1. TRUE and FALSE are wfifs.

2. Each propositional constant (i.e., specific proposition), and each propositional vari-

able (i.e., a variable representing propositions) are wifs.
3. Each atomic formula (i.e., a specific predicate with variables) is a wif.
4. If A, B, and C are wifs, then so are = A, (AAB), (AVDB), (A=B), and (A < B).

5. If z is a variable (representing objects of the universe of discourse), and A is a wif,

then so are Vz A and Jdz A.



CHAPTER 2. AUDITING CONCEPTS, UML, AND PREDICATE LOGIC 29
2.3.3 Semantics of Predicate Logic

Semantics of Predicate logic formulae is derived through an “Interpretation” of the for-
mulae. Interpretation assigns symbols of the Predicate logic language to entities of the
domain being specified. The Interpretation specifies enough premises that can be used to
make an inference whether a Predicate logic formulae is TRUE or FALSE. The Interpreta-
tion uses an interpretation function which does a mapping of the Predicate logic language
to entities of the domain. An Interpretation function determines the semantics of Predi-

cate logic formulae.

An Example:

In this example:

1. Paul is a student that studies Computer Science (CS).

2. Smith is a professor that teaches Paul.

Let:

e D represent a non-empty domain (universe of discourse),

c represent the set of constants in the domain,

v represent the set of variables in the domain,

e f represent the set of functions in the domain,



CHAPTER 2. AUDITING CONCEPTS, UML, AND PREDICATE LOGIC

e P represent the set of Predicates in the domain, and

e [ represent the Interpretation function in the domain.

Formally, the Interpretation (/) is defined thus [Fro86]:

e /(f) C D™ — D (for an n—ary function)

e [(P) C D™ (for an n—ary predicate)
The Predicate logic language has the following definitions:

e Predicates: Teaches and Studies.
e Variables: x,v, z
e Functions: student-of, professor-of

e Constants: Paul, Smith, CS

Also, the structure of the domain is detailed below:

e Domain objects: Paul Williams, Dr. Ian Smith, and Computer Science.

e Relations: student, professor.

Interpretation of the Example

1. Interpretation of the Predicate Logic constants:

30



CHAPTER 2. AUDITING CONCEPTS, UML, AND PREDICATE LOGIC 31

e [(Paul) = Paul Williams
e /(Smith) = Dr. Ian Smith

e J(CS) = Computer Science
2. Interpretation of the Predicate Logic functions:

e J(student-of) C student-of(Smith) — Paul

e [(professor-of) C professor-of(Paul) — Smith
3. Interpretation of the Predicate Logic predicates:

e [(Teaches) C professor

o J(Studies) C student

Variables of a Predicate logic language use the concept of Valuation [Fro86] to assign
values to variables. According to Frost [Fro86], a valuation is a value assignment function
which assigns entities of a relational structure to variables of the associated language.
These values are domain objects. If v denotes the valuation / value assignment of a

Predicate logic language, then the valuation definitions below are valid.

e v(x) = Paul Williams
¢ v(y) = Dr. lan Smith, and

e v(z) = Computer Science



CHAPTER 2. AUDITING CONCEPTS, UML, AND PREDICATE LOGIC 32

2.4 Terminology Used in this Thesis

Formalizing the specifications of a system requires a precise, and unambiguous descrip-
tion of the terms that are used in the specifications. However, for the sake of clarity,
formal methods require some informal (verbose) definitions of some of the terms used
in the formal specifications. This thesis uses a lot of terms, and these terms are formally
defined in Chapter 3. This section presents some verbose descriptions and definitions of
terms and concepts that are used to capture the formal specifications in the system. These

descriptions are presented below:
e An audit report is a report that provides audit information.

e An auditor is a person that performs audit functions.

e A customer is a person that initiates, instructs, or receives payments through a fi-

nancial system.

e A processor is a person that is authorized by a financial system to process financial

transactions.

e An authorizer is a person that authorizes financial transactions, processed by pro-

CesSOrs.
e A payer is an agent that requests a financial transaction.
e A receiver is an agent that ultimately receives proceeds of a financial transaction.

e An initiator is an agent that gives instruction to financial systems to process a fi-

nancial transaction.

e A voucher is a documentary evidence of a financial transaction.



CHAPTER 2. AUDITING CONCEPTS, UML, AND PREDICATE LOGIC 33

A beneficiary is a receiver of funds from a financial transaction.

A transaction is a transfer of funds from a payer to a receiver through a financial

system.
High-valued transaction is a transaction with a pre-determined high monetary value.
Transaction detail is the content and description of a financial transaction.

Audit log is an electronically stored documentary evidence and transaction detail of

financial transactions.

Audit trigger is a financial transaction pre-condition that raises a warning flag that

alerts for an immediate action.

A user is a person that is authorized to perform assigned functions in a financial

system.
An audit log user is a user that performs audit functions.
Duty is a specific function that is assigned to a financial system user.

Idle user is a user that leaves the financial system software unattended for a certain

pre-defined period.

Transaction status is the state of a financial transaction, such as complete, incom-

plete, failed, or successful transactions.

Transaction monitoring is the process of logging transaction details, user informa-

tion, user actions, user activities, and the status of financial transactions.
Activity is the combination of all operations of a user in the financial system.

Action is a specific unit of user activity in the financial system.



CHAPTER 2. AUDITING CONCEPTS, UML, AND PREDICATE LOGIC 34

e Transaction activity is the user activity in relation to a transaction.
e Data is financial data, or a unit of record in the financial system.
e Huge volume data is a large-sized data.

e Encryption utility is a subsystem in the financial audit system that encrypts audit

data.

e Decryption utility is a subsystem in the financial audit system that decrypts audit

data.

e User identification is a piece of information / data that uniquely identifies financial

system users.

e User password is a secret sequence of characters used to authenticate users in a

financial system.
e Sign-on attempts is a users’ effort to gain access into the financial system.
o Successful sign-on attempt is a user sign-on attempt that is successful.
e Fuiled sign-on attempt is a user sign-on attempt that fails.
e Complete transaction is a transaction that is successfully concluded.

o Incomplete transaction is a transaction that either fails / aborts or is suspended /

stopped.

2.5 Conclusions

This chapter presented auditing concepts and research directly related to the thesis in

the areas of audit models and simulations, audit requirements and specifications, audit



CHAPTER 2. AUDITING CONCEPTS, UML, AND PREDICATE LOGIC 35

approaches in Computer systems, and audit analysis software and tools. The tools (UML
and Predicate logic) that are used for formal specifications in the thesis were described.
This description covered the syntax and semantics of both UML and Predicate logic.
Verbose definitions of the terms used to formalize the specifications in the thesis were

outlined.

In the next chapter, I present a formal model of a financial audit system. I use the
UML modeling language to provide a visual model of a financial audit system. I also
provide the requirements of a financial audit system as well as formal specifications of

these requirements with Predicate logic specifications language.



Chapter 3

A Formal Model of a Financial Audit

System

This chapter presents a formal model of a financial audit system. This formal model is
based on UML and Predicate logic formal specifications language. However, the chapter
begins by providing a description of a financial audit system that is based on an architec-

ture, a classification, and the requirements of a financial audit system.

3.1 Architecture of a Financial Audit System

Figure 3.1 shows an architecture of the financial audit system that is described in this the-
sis. The architecture shows three main components: (i.) financial transaction customers,
(ii.) financial system, and (iii.) financial audit system. These components interact cooper-
atively to facilitate financial transactions. The goal of a financial transaction is the transfer
of funds from one entity (customers of a financial system) to another. A customer initiates

a transaction, and the financial system implements the actual transfer from a payer to a

36



CHAPTER 3. A FORMAL MODEL OF A FINANCIAL AUDIT SYSTEM 37

receiver. The financial system consists of a transaction processing system, a transaction
verification mechanism, a transaction execution mechanism, and a transaction database.

An audit log is an important part of the transaction database.

The financial audit system consists of subsystems that implement event monitoring,
transaction auditing, and audit information retrieval. It is important that the transaction
auditing subsystem interacts with the audit log in the transaction database. The transac-
tion auditing aspect of the architecture intelligently cooperates with the audit information

retrieval subsystem.

3.2 Classification and Model Description of a Financial

Audit System

Figure 3.2 shows a hierarchical classification of concepts and their relationships in the
financial audit system. The classification shows the “is-a” subsumption property, and

¢«

the “is-part-of” composition property in the FAS. The relation “is-a” indicates that an
entity is a subset of the upper level entity, whereas the “is-part-of ” relation indicates that
the upper level entity is strictly bound by the combination of all lower level entities. The
absence of any lower level entity in the “is-part-of ” relationship renders the upper level

object incomplete.

There is a “is-part-of” relation between some concepts in a FAS and the financial
system, for example, a financial system is incomplete without any of these four con-
cepts: user, customer, transaction, and audit system. Also, other concepts (audit module,
encryption utility, and de-encryption utility) have an is-part-of relation with the audit sys-
tem. Other types of relationships between the concepts in a FAS include uses, has, and

so on. Audit user has the relation uses with the audit system (audit user uses the audit



CHAPTER 3. A FORMAL MODEL OF A FINANCIAL AUDIT SYSTEM 38

system), and audit system has relation has with the audit log (audit system has an audit
log).

The audit log looks after recording user action, activity, and transaction details. A
transaction has both transaction details, and evidential documents. An initiator initi-
ates transactions, a processor processes the transaction, and an authorizer authorizes the

transaction. Date and time are part of transaction details.

The receipt voucher and payment voucher are evidential documents in the financial
transaction system. A customer is an agent; also, a user of a financial system is an agent.
The user has action and activity. The user consists of the audit and non-audit users. The
processor, and authorizer are non-audit users. The report generator, report analyst, and
audit log custodians are audit users. The initiator, payer, and receiver are customers, and

the payer pays the receiver.



CHAPTER 3. A FORMAL MODEL OF A FINANCIAL AUDIT SYSTEM 39

Financial Transaction Customer

" N\
A Transfers Fund to B
-
i
|
[
Customer A | Customer B |
T 1
A initiates [ B receives
Transaction y v Payment
B
-|IE Transaction
S Verification
Financial Traction
Processing System v
Transaction
Execution

\ Financial System

Financial Audit System

Event

A

>

| Monitoring

. | Transaction

Transaction
Database

C
Audit Log

~—

A

Auditing

Y
Auidt
Information
Retrieval

Figure 3.1: Architecture of a Financial Audit System [AEOA04]



CHAPTER 3. A FORMAL MODEL OF A FINANCIAL AUDIT SYSTEM

l Financial System

is-part-of

l Customer

Processor

{ Transaction I Audit System
has

is-a is-a
has is-a
. 5 e Audit Log
Activity é initiates
0
<
(o 1 [*
Action .
Evidential
pays Document
Transaction
l l Details
Audit Non-Audit Voucher |
User User
. is-a
i 52 authorizes
5-a
' 1

Authorizer

processes

Receipt P
Voucher Voucher

ayment

uses

is-part-of

Audit
Module

e 8

logs

is-part-of

Encryption
utility
De-encryption
utility

Report

Generator]

Report

Analyst

Audit-Log
Custodian

logs

Figure 3.2: Classification of a Financial Audit System [AEOAQ4]




CHAPTER 3. A FORMAL MODEL OF A FINANCIAL AUDIT SYSTEM 41

3.3 Requirements of a Financial Audit System

The exchange of goods and services requires payments. Payments are financial trans-
actions carried out using cash, cheques, debit or credit cards. Despite the continuous
flow of financial transactions, there is need to ensure the correctness of all financial data.
The financial system is responsible for ensuring the correctness of individual transactions.
Part of this process involves affixing electronic time (e-Time) stamps on relevant financial

transactions system activities for the purpose of auditing.

Accurate documentation of financial records and timely retrieval of information are
crucial factors in financial transactions management. To achieve the required accuracy
and consistency of data, the financial transactions’ evidential documents should be perma-
nent records. Unfortunately, paper vouchers (a form of evidential documentation) loose
value as they pass from hand to hand and age. Similarly, due to inappropriate filing and
mishandling of paper vouchers, vital evidential documents are mutilated. The audit sys-
tem must capture and maintain transaction details and activity logs of both processed and
failed transaction data [AEO4]. The audit system must preserve evidential documents by
maintaining a log of relevant transactions and activities [AE04]. The preserved log of
transactions and activity data will significantly aid managerial decision making in both

the financial and financial audit systems.

Financial transactions require security and control. An audit system can achieve ac-
countability through the implementation of functional rights and systems authorization
limits. The audit system should capture and log user activities on the system; hence,
the system should keep an account [Mer03] for who does what, where, when, why, and
how. Some financial data require a high level of confidentiality. The incorporation of data
encryption into the audit system will achieve a good level of information confidential-
ity [AEO4]. The data encryption module should restrict access, while the activity log will

monitor activities on such confidential data.



CHAPTER 3. A FORMAL MODEL OF A FINANCIAL AUDIT SYSTEM 42

The mode and manner of reporting and retrieval of audit information in the financial
audit system is very important. It is essential that audit reporting is easy to generate
and analyze as well as done timely. Audit information generated by different auditors
based on the same audit work should be consistent, since the system generates all relevant

information and reports from the same data source.

The safety of historical financial transactions data is paramount, as it can serve as
evidential documentation. The audit system should eliminate physical movements of
audit papers from desk to desk. The use of electronic documents (payment and receipt
voucher e-Documents) should leverage the information sharing capabilities of computer
technology. In this way, all required processes can use e-Documents to review, verify,
and monitor the process of initiating, processing, and finalizing the process of making

and receiving payments.

3.4 Overview of the Formal Model

A model is an abstract representation of real world software artifacts. Dutra [Dut02] de-
scribes a model as a surrogate of real life applications. Models can be visually represented
for easier understanding, or based on rigorous mathematical principles for a concise de-
scription of the semantics in the domain of discourse. Modeling financial audit systems
requires a modeling language that can succinctly represent the different characteristics of

a financial audit system in its entirety.

A model simplifies huge and complex systems into easier, more focused, and under-
standable units that can be separately analyzed. It decomposes a complex system into
more readable, clearer, and simpler systems. Understanding the individual smaller units
increases the understanding of the bigger and complex system. Modeling and decompo-

sition of systems enables reuse as well as extensibility of complex systems.



CHAPTER 3. A FORMAL MODEL OF A FINANCIAL AUDIT SYSTEM 43

3.5 UML Model of a Financial Audit System

The UML model of a financial audit system in this thesis is captured with static, use case,
state machine, activity, and interaction views. These views are captured and represented

with the Class, Use Case, Statechart, Activity, and Collaboration diagrams that follow.

3.5.1 Use Case Diagrams

This section presents use case diagrams of a financial audit system. These use case dia-
grams are categorized into the financial payment use case, financial transaction processing

use case, and financial transaction auditing use case.
Financial Payment Use Case

Figure 3.3 shows a high-level interaction of a Payer and a Receiver with the financial sys-
tem. Actor Payer interacts with the financial system through the use case Make Payment,
while another actor (Receiver) interacts with the financial system through the Receive

Payment use case.

The Make Payment use case represents the entire set of activities that are involved
when a Payer requests to make a payment through the financial system. Also, the Receive
Payment use case represents the entire set of processes that are involved whenever the

beneficiary receives a payment.
Financial Transaction Processing Use Case

Figure 3.4 shows the interaction of a Processor and an Authorizer with the financial sys-

tem. The Processor interacts with the financial system through the Process Transaction



CHAPTER 3. A FORMAL MODEL OF A FINANCIAL AUDIT SYSTEM 44

use case, and the Authorizer interacts with the system through the Authorize Transaction

use case.

The Process Transaction use case is a high-level representation of all that happens
whenever a Processor receives a payment / transfer request, and executes the payment
instruction. The Authorize Transaction use case denotes the activities of an Authorizer

whenever there is an authorization request.

Financial Transaction Auditing Use Case

Figure 3.5 shows the interactions and actions of an Auditor within the financial system.
An auditor interacts with the financial system through use cases Monitor Financial &
User Activities, Prevent Financial Loss, Ensure Transaction Log, Review Transaction

Log, Detect Exceptions, Investigate Exceptions, and Correct Exceptions.

The Prevent Financial Loss use case represents the primary goal of an auditor, and all
activities that an auditor does in order to prevent financial loss. The Monitor Financial
& User Activities use case depicts a high-level interaction of an auditor with the financial
system in order to monitor both financial and user related activities. The Ensure Transac-
tion Log describes the duty of a financial auditor in ascertaining that financial transactions
are being logged for subsequent auditing / review with the Review Transaction Log use
case. The Detect Exception use case represents the aspect of an auditor’s function in de-
tecting exceptions that exist in financial transactions. The Investigate Exceptions use case
describes what an auditor does whenever an exception is detected. The Correct Excep-
tions use case represents further action to be taken in order to correct an exception and

prevent it from happening again.



CHAPTER 3. A FORMAL MODEL OF A FINANCIAL AUDIT SYSTEM

Payment & Receipt

Payer

Make Payment

@

Receive Payment

bt

A

Receiver

Figure 3.3: Use Case of a Business Transaction in a Financial System

Q

Processing & Authorization

Process

A

Processor

Transaction

Authorize

Q

Transaction

uo

A

Authorizer

Figure 3.4: Use Case of Processing a Financial Transaction

45



CHAPTER 3. A FORMAL MODEL OF A FINANCIAL AUDIT SYSTEM

Auditor

Figure 3.5: Use Case of Auditing a Financial Transaction

Monitor Financial
& User Activities

Prevent
Financial Loss

Ensure
Transaction Log

Review
Transaction Log

Detect
Exceptions

Investigate
Exceptions

Correct
Exceptions

46



CHAPTER 3. A FORMAL MODEL OF A FINANCIAL AUDIT SYSTEM 47

3.5.2 Class Diagrams

This section presents class diagrams that describe a financial audit system. These class
diagrams are categorized into the financial system class diagram, payment processing

class diagram, and financial audit system class diagram.

Financial System Class Diagram

Figure 3.6 shows a financial system class diagram. The class diagram represents a col-
lection of subclasses in a financial system, as well as their attributes and the operations
that they perform. The financial system class has attributes name, type and database.
These attributes depict that a financial system is identified by its name, the type (there
are several types of financial systems, for example, banking, e-commerce, m-commerce,
brokerage, insurance, and so on), and a database (a financial system stores its financial

data in a database).

Operations in a financial system include transfer of fund, i.e., TransferFund() (which
encompasses several activities that result in the transfer of fund from one source to an-
other, for example, withdrawing money from a bank account in the form of cash with-
drawal, or making a payment from one bank account to another), maintaining deposits
in form of savings, i.e., SaveFund() (for example, making a cash deposit into a bank ac-
count), processing transactions, i.e., ProcessTransaction(), and transaction auditing, i.e.,

AuditTransaction().

The financial system class diagram consists of other subclasses, namely Processor,
Transaction, Audit System, and Authorizer classes. The class diagram has a composition
relationship with these subclasses. The Processor class describes attributes and opera-
tions of a processor. These attributes include the Name, IdentificationNumber, user func-

tion (Function), and access rights (AccessRight). Operations of the Processor subclass



CHAPTER 3. A FORMAL MODEL OF A FINANCIAL AUDIT SYSTEM 48

include: ProofTransaction() (a pre-verification of the quality and validity of a payment
request, for example, a cheque that is not signed can be detected at this stage by this op-
eration), RejectTransaction() (rejecting a payment request that lacks enough details, for
example, a cheque without a signature is rejected from being paid), ProcessTransaction()
(the actual processing / implementation of a payment request, for example, processing a
monthly pre-authorized payment request from a bank account to another account in an-
other bank), and SeekAuthorization() (seeking an authorization for a transaction that re-
quires additional level of approval, for example, when a withdrawal that exceeds the limit

of a particular customer of a bank is requested, an additional authorization is required.)

The Transaction class describes attributes and operations of a transaction. A transac-
tion has attributes Payer, Receiver, Amount, Description (other payment details) and Mode
(cash, cheques, debit or credit cards, and so on.) Operations on a transaction include Suc-
ceed() (a successful transaction), Fail() (a failed transaction), Abort() (an aborted transac-
tion), TimeOut() (a transaction that timed out due to inactivity), Incomplete() (an incom-

plete transaction), and Complete() (a completed transaction.)

The Audit System class has both the Name and Type attributes. Operations on the
Audit System class include MonitorEvent() (checking and keeping track of the activities
in a financial system for audit purposes), LogEvent() (a detailed logging of activities in
a financial system that is used for audit purposes), DetectException() (discovering the
existence of an exception or a deviation that contravenes the rules and procedures in a
financial system), AnalyzeEventLog() (breaking down the whole audit log into simpler
parts for a scientific study in order to discover exceptions to the rules and procedures in a
financial system), and EncryptEventLog() (encoding the audit log of a financial audit sys-
tem.) Finally, the Authorizer class has attributes Name, IdentificationNumber, Function,
and AccessRight. Operations on the Authorizer class include ProofTransaction(), Reject-

Transaction(), and AuthorizeTransaction() (justifying and approving the processing of a



CHAPTER 3. A FORMAL MODEL OF A FINANCIAL AUDIT SYSTEM 49

financial transaction that requires an additional control from an authorizer.)

Payment Processing Class Diagram

Figure 3.7 shows the Financial System Payment Process class diagram. This class dia-
gram describes relationships that exist between the Payer class and the Financial System
class, as well as between the Financial System class and the Receiver class. The class
diagram consists of the Payer class, the Receiver class, and the Financial System class.
The payer class has the “instructs” relationship with the financial system. The “instructs”
relationship describes the process of giving an instruction to a financial system to carry
out a financial transaction on behalf of the Payer. The Financial System class has the
“pays” relationship with the Receiver class. The “pays” relationship describes the action
of a financial system that makes a transfer of money to a Receiver on behalf of a Payer.
This class diagram describes the concept that a payer gives a financial system an instruc-
tion to transfer funds to a receiver. Also, it describes that a financial system ultimately

pays the requested fund to the receiver.

The Payer class has Name, BirthDate, and IdentificationNumber attributes, as well
as the following operations: InitiatePayment() (facilitating the beginning of a payment),
AcknowledgeReceipt() (admitting and disclosing the receipt of some amount of money),
MakeComplainy() (formally expressing a dissatisfaction about a financial transaction),
and PaymentDetails() (providing a detailed description of all the parameters that collec-
tively constitute a financial transaction, for example, payment details of the beneficiary of

the transfer.)

The Financial System class has been previously described in the Financial System
class diagram. The Receiver class has attributes Name, Address, and Identification-
Number, as well as operations ReceivePayment(), AcknowledgeReceipt(), and MakeCom-

plaint().



CHAPTER 3. A FORMAL MODEL OF A FINANCIAL AUDIT SYSTEM

Financial System

+Name : String
+Type : String
-Database : String

#TransferFund() : Double
#SaveFund() : Long

#ProcessTransaction() : Boolean

#AuditTransaction() : Boolean

consists of

A

50

Processor

Transaction

Audit System

Authorizer

+Name : String
#ldentificationNumber : Long
-Function : String
#AccessRight : String

-Payer : String
-Receiver : String
-Amount : Double
-Description : String

+ProofTransaction()
+RejectTransaction()
+ProcessTransaction()
+SeekAuthorization()

+Mode : String

-Name : String
-Type : Object

+Succeed() : Boolean
+Fail() : Boolean
+Abort() : Boolean

+TimeOut() : Boolean
+Incomplete() : Boolean
+Complete() : Boolean

#MonitorEvent() : Boolean
#L.ogEvent() : Boolean
#DetectException() : Boolean
#AnalyzeEventLog() : Boolean
#EncryptEventLog() : Boolean

+Name : String
#ldentificationNumber : Long
-Function : String
#AccessRight : String

+ProofTransaction()
+RejectTransaction()
+Authorize Transaction()

Figure 3.6: Class Diagram of a Financial System



CHAPTER 3. A FORMAL MODEL OF A FINANCIAL AUDIT SYSTEM

Payer

+Name : String
+BirthDate : Date
#ldentificationNumber : Long

instructs
R

Financial System

+Name : String
+Type : String
-Database : String

-InitiatePayment() : Boolean
-AcknowledgeReceipt() : Boolean
+MakeComplaint() : Boolean
-PaymentDetails() : Object

#TransferFund() : Double
#SaveFund() : Long
#ProcessTransaction() : Boolean
#AuditTransaction() : Boolean

pays

51

Receiver

-Name : String
-Address : String
#ldentificationNumber : Long

-ReceivePayment() : Boolean
-AcknowledgeReceipt() : Boolean
+MakeComplaint() : Boolean

Figure 3.7: Class Diagram of a Financial System Payment Process



CHAPTER 3. A FORMAL MODEL OF A FINANCIAL AUDIT SYSTEM 52
Financial Audit System Class Diagram

Figure 3.8 shows the Financial Audit System class diagram, and depicts the Audit System
class as a composition of Event Log, Exception Trigger, Exception Handler, and Event
Analyzer classes. This class diagram describes associations and relationships that exist in
a financial audit system. The Exception Handler class has the “initiates” association with
the Exception Action class. This association indicates that the Exception Handler class
will initiate the (Exception Action) required whenever an exception occurs in the audit

system.

Attributes and operations of the Audit System class have been previously described.
Attributes of the Event Log class are Name and Type, and its operations include: Record()
(an event log keeps a record / logs the details of a financial transaction), Encrypt() (event
log encrypts the data in an audit log), FlagException (the event log raises a caution /
warning flag / message whenever an exception occurs in the audit log), Review (event
log is reviewed / analyzed regularly), Report (exceptions in an audit log are reported),
Backup (the event log is backed up regularly to ensure the safety of audit log), and Archive
operation (data of a certain age on the audit log is archived for timely retrieval of audit

information from the audit log).

The Exception Trigger class works in conjunction with the Event Log class to detect
exceptions. It works with the Exception Handler class to handle exceptions. The Event
Analyzer class associates with the Event Log to provide an analysis for the data in an audit

log. Finally, the Exceprion Action class operates to resolve and terminate exceptions.

3.5.3 Activity Diagrams

This section presents activity diagrams of a financial audit system. These activity dia-

grams are categorized into the financial system activity diagram, and financial audit sys-



CHAPTER 3. A FORMAL MODEL OF A FINANCIAL AUDIT SYSTEM 53

tem activity diagram.

Financial System Activity Diagram

The activity diagram in Figure 3.9 shows a logical flow of activities in a financial trans-
action system. These activities start when a Payer initiates a payment process, and it
ends when the after-service auditing is done (after the financial system pays the Re-
ceiver) as shown in Figure 3.7. The activity diagram shows several activities which in-
clude: Event Monitoring, Transaction Initiation, Transaction Verification, concurrent and
synchronized activities (User ID Verification and Password Authentication), User Rights
Granting, Transaction Processing, Transaction Authorization, Payment Voucher Genera-
tion, Fund Transfer, Receipt Voucher Generation, Exception Handling, and After-Service

Auditing.

The flow of these activities commences from the Event Monitoring activity to the
Transaction Initiation, which leads to Transaction Verification activity. Processing the
transaction requires the operations of a processor, therefore the concurrent activities of
verifying User ID and authenticating the user Password. In case the user signon is unsuc-
cessful, the flow of activities either ends or loops back in order to do user signon operation
again. A successful signon activity leads to granting functional rights for the user, and
subsequent processing of the transaction. If an exception occurs, Exception Handling
activity is triggered, otherwise the transaction processing either requires an authorization
or it is successfully done. Thereafter, the after-service auditing activity is initiated, and
it encapsulates a series of other coordinated activities (these activities are described in

Figure 3.10).



CHAPTER 3. A FORMAL MODEL OF A FINANCIAL AUDIT SYSTEM 54

Financial Audit System Activity Diagram

The activity diagram in Figure 3.10 shows detailed after-service auditing activities. The
audit system concurrently does user verification and password authentication, and syn-
chronizes the two activities. Thereafter, the system grants users their functional rights.
The audit user specifies a range of time to be audited, and the system produces the data in

an unencrypted form. The audit user analyzes the data, and produces an audit report.

The Audit Data Reporting activity generates several informative audit reports, namely
Payer Audit Report, Receiver Audit Report, Processor Audit Report, and Other Audit
Reports (customized to suit each situation). The Exception Investigation and Exception

Resolution activities handle all exceptions that the audit reports reveal.

3.5.4 Statechart Diagrams

This section presents statechart diagrams that describe dynamic and temporal situations
that occur in the financial audit system model. Actions that cause state transitions and
the composition of new states resulting from transitions due to temporal activities are
outlined. These statecharts capture and describe transitions and state changes in the dy-
namic aspects of the financial audit system. They are categorized into event monitoring,

authorization, payment confirmation, data encryption, and exception review statecharts.
Event Monitoring Statechart

Figure 3.11 shows the event monitoring statechart diagram. This statechart describes the
events that occur based on actions that take place in the event monitoring of a financial
audit system. The Payment Initiation transition causes a state change from the Event

Monitor Inactivity state to Event Monitor Activity state. From here the state changes back



CHAPTER 3. A FORMAL MODEL OF A FINANCIAL AUDIT SYSTEM 55

to Event Monitor Inactivity on transition Payment Ends, a situation that happens when a

payment is accomplished.

Payment Processing (No exception in payment criteria) recursively transits the Event
Monitor Activity state back to itself, and when the Payment Ends transition is accom-
plished, the state changes to the Event Monitor Inactivity state. The Payment Processing
(Exception in payment criteria) transition causes a state change from Event Monitor Ac-
tivity to Exception Handler Activity state. This is a financial transaction which cannot
be completed due to an invalid condition. This occurs when one of the payment criteria
is compromized (for example, an attempt to overdraw the bank account of a company
or individual.) Exception Resolution transits the Exception Handler Activity state to the
Exception Handler Inactivity state. At this time, Payment Processing (post exception res-
olution) causes a state change from the Exception Handler Inactivity state back to the
Event Monitor Activity state. The Payment Ends transition changes the Event Monitor
Activity state to Event Monitor Inactivity. Payment Process Termination transits the state

machine to the terminal Final State.

Transaction Authorization Statechart

The transaction authorization statechart diagram is shown in Figure 3.12. This statechart
presents the states and transitions that occur in the transaction authorization aspect of
both the financial system and financial audit system. In this statechart diagram, transition
Authorization Request causes the Authorizer Inactivity state to change to the Authorizer

Activity state.

If there is an exception, such as when there is an attempt to overdraw the bank ac-
count of a company, then the Exception Exists transitions the Authorizer Activity state to
the Exception Handler Activity state. In the absence of an exception, the No Exception

transition changes the Authorizer Activity state to Payment Made state. The Payment Ends



CHAPTER 3. A FORMAL MODEL OF A FINANCIAL AUDIT SYSTEM 56

transition either transits the Payment Made state into the Authorizer Activity state (i.e. if
Another Authorization Request is received), or Authorizer Inactivity state (i.e. if Autho-
rization Terminates transition occurs.) Finally, No Authorization Request transitions on

the Authorizer Inactivity state leads to the Final State.

Payment Confirmation Statechart

The payment confirmation process statechart for the financial audit system is shown in
Figure 3.13. This statechart describes the dynamic behavior related to the payment con-
firmation aspect of a financial system and financial audit system. The Generate Pay-
ment Voucher transition changes the Payment Made state to Payment Confirmation state.
Transition Generate Receipt Voucher changes the Payment Confirmation state to Receipt

Confirmation.

The Review Transaction transition changes both the Payment Confirmation and Re-
ceipt Confirmation states to the Transaction Auditing state. From here the Audit Ends

transition leads to the Final State.

Note that the audit information forwarded to Transaction Auditing differs depending
on whether the Review Transaction transition is taken from Payment Confirmation state

or Receipt Confirmation state.

Data Encryption Statechart

Figure 3.14 shows the data encryption statechart diagram. This statechart presents the
states and transitions that cause state changes in the data encryption aspect of a financial
audit system. Initially, the Event Monitor Activity state occurs. Audit Data Logging Starts
changes the Event Monitor Activity state to Data Encryption Activity. When Audit Data

Logging Ends, the Data Encryption Inactivity state is reached.



CHAPTER 3. A FORMAL MODEL OF A FINANCIAL AUDIT SYSTEM 57

Another transition, Logging Auditor Actions returns the system to the Event Monitor
Activity state. When Event Monitoring Ends transition is triggered, the Final State is

reached.
Exception Review Statechart

The exception review process statechart diagram is shown in Figure 3.15. This statechart
describes the states and transitions that cause state changes in the exception review aspect
of a financial audit system. Auditing begins when an Audit Information Request tran-
sition changes the Auditing Inactivity state to Auditing Activity state. When Audit Data
Is Available, it transitions the Auditing Active state to Audit Information Analysis state.
An exception at this time will (through Audit Exceptions) transition Audit Information
Analysis to Exception Review state. The Final State is reached if No Audit Exceptions are

present.

The Audit Action Recommendation transitions the Exception Review state to the Audit
Action Implementation state. Finally, the Audit Action Implementation Ends transition

leads the Audit Action Implementation state to the Final State.

3.5.5 Collaboration Diagrams

Collaboration diagrams show systems of objects that cooperatively work together to achieve
a common purpose. Collaboration diagrams show behavioural interactions among several

constituent objects in a system, and how they exchange messages amongst themselves.
Financial Audit System Collaboration Diagram

Figure 3.16 is a collaboration diagram that shows an interaction among objects in the fi-

nancial audit system. The classifier roles in the system are Payer, Processor, SoftwareApp



CHAPTER 3. A FORMAL MODEL OF A FINANCIAL AUDIT SYSTEM 58

(software application), Receiver, Authorizer, AuditLog, Auditor, AuditReport, and Man-

agement (managerial decision making process in a financial system).

The Payer and Receiver classifier roles belong to Persons. The Processor, Authorizer,
SoftwareApp, and Management belong to the Financial System. The Auditor and Audit
Log belong to the Audit System. Finally, the Audit Report classifier role belongs to the
Management Information System (MIS). This is a system that helps in making manage-
rial decisions with the use of Information Technology. The SoftwareApp represents the
entire software components (user interface and the database) of a financial system includ-
ing audit data. The association roles are presented with ordered numbers. A list of the

association roles in the collaboration diagram and their meanings is presented below:

1 initiatesPayment() — when a Payer initiates payment in the financial system, the

payment instruction subsequently gets to the processor. This represents an action

between a Payer and a Processor.

o 2.1 logsAuditData() — the Processor inputs financial data, while the audit system
logs transactions details into an audit log — this represents an action between a

Processor and the AuditLog.

o 2.2 storesProcessDetails() — the financial software application / database stores de-
tails of financial transactions — this represents an action between the Processor and

the SoftwareApp (software application.)

o 2.3 requestsAuthorization() — whenever a transaction requires an authorization, and
a Processor requests for the authorization — this represents an action between a

Processor and an Authorizer.

o 2.4 confirmsAuthorization() — the system provides a confirmation for an authoriza-

tion — this represents an action between a Processor and an Authorizer.



CHAPTER 3. A FORMAL MODEL OF A FINANCIAL AUDIT SYSTEM 59

e 3.1 logsAuditData() — the audit system logs the authorization details of the transac-

tion — an action between an Authorizer and the AuditLog.

e 3.2 storesAuthDetails() — the financial software application / database stores details
of the transaction authorization — an action between an Authorizer and the Soft-

wareApp.

e 4 finalizePayment() — the financial system finalizes a payment. The Receiver gets

the value of the transaction — an action between a Receiver and the SoftwareApp.

o 5.1 queriesAuditData() — an Auditor queries the AuditLog for audit data — an action

between an Auditor and the AuditLog.

e 5.2 analyzesAuditData()— an Auditor analyzes an audit data — an action between an

Auditor and the AuditLog.

e 5.3 generatesAuditReport() — an Auditor generates an audit report — an action be-

tween an Auditor and the AuditReport.

o 6.1 usesAuditReport() — the Management uses the audit report for managerial deci-

sions — an action between the Management and the AuditReport.

o 6.2 makesFinancialDecisions()-the Management uses the audit report for financial-

related decisions — an action between the Management and the AuditReport.

e 6.3 makesSecurityDecisions() — the Management uses the audit report for security-

related decisions — an action between the Management and the AuditReport.



CHAPTER 3. A FORMAL MODEL OF A FINANCIAL AUDIT SYSTEM

Audit System

-Name : String
-Type : Object

#MonitorEvent() : Boolean
#_ogEvent() : Boolean
#DetectException() : Boolean
#AnalyzeEventlog() : Boolean

#EncryptEventLog() : Boolean

consists of

60

Event Log

-Name : String
-Type : Object

#Record() : Boolean
#Encryp!() : Boolean

-Review() : Boolean
-Report() : Boolean

+Backup() : Boolean
+Archive() : Boolean

Exception Trigger Exception Handler Event Analyzer
#Name : String #Name : String -Name : String
#ExceptionlD : Long #ExceptionlD : Long -Type : Object
-Type : String +DetermineException() : Object -Analysis Method

-FlagException() : Boolean

+RecordException() : String
+ReportException() : Object
+CallExceptionHandler() : Object

+AnalyzeException() : String

+CallExceptionAction() : Object

-Frequency : Date
-Data Sampling Tech : Object

initiates

Exception Action

+Record() : Boolean

+Encrypt() : Boolean
+Backup() : Boolean
+Analyze() : Boolean
+Review() : Boolean
+Report() : Boolean

+Archive() : Boolean

tName : String
+Type : Object
ExceptioniD : Long
Action : Object

LResolveException() : Boolean

- TerminateException() : Boolean

Figure 3.8: Class Diagram of a Financial Audit System



CHAPTER 3. A FORMAL MODEL OF A FINANCIAL AUDIT SYSTEM

Evert Monitoring

Transaclion miliatiorg

Transaclion Verification <

(iJs&r D VeriﬂcatiorD Gasswom AuthenticatiorD

Yes
; ‘ inue?
User Rights Granting p& Yes X No Co:mnuet
ser Rights Granting &
Sign-on
i/ Successful?
Transaction Processing 2 o

Any

Exception? fo i
)i}’ Authorization
Required?
e - i = (Transaclion Aulhorizationj
Exception Handlin ( Yes N
1% 9 No
i
Exception
Resolved? Yos :/ Processing
B No \\Successful?
\iJYes
No (Paymen! Voucher Generation}

Fund Transfer

[Rcceim Voucher Generation)

i
A
i After-Service Audiling

Y End

}\/:.m

.

Figure 3.9: Activity Diagram of a Financial System

61



CHAPTER 3. A FORMAL MODEL OF A FINANCIAL AUDIT SYSTEM

System Logon -~ Auditor

——

/ ..
/ N
(User 1D Veriﬁcation) LPassword Authenticationj

Yos

R
Ty

\iz inue?
Yes No Continue?

Sign-on
Successful?

G\ner-Service Audiling Inilialion)« },'- Audit Data Generation

Audit Data Decryption

(User Rights Granting}(

| U

NG

_,,/'“'“”‘7 ~ T

.
o & \\ \\_:_:k
(Payer Audit Reporl) Geceiver Audiit Reporq (Processor Audit Report) [Other Audit Reporis)

i
-‘ﬂ"\"\ __..»—”“/
\ ’/.w-
X 44/
N/
. ISRV | Yes Any
i Investigali & '
i Exception gation } 7 Excoption?
( ™
Exceplion Resolulion
P 2s0lu No
{J/
A\
@
End

Figure 3.10: Activity Diagram of a Financial Audit System

62



CHAPTER 3. A FORMAL MODEL OF A FINANCIAL AUDIT SYSTEM 63

Initial
State
Payment
Ends
Final
State

Exception
Resolution

Figure 3.11: Financial Audit System Event Monitoring Statechart Diagram



CHAPTER 3. A FORMAL MODEL OF A FINANCIAL AUDIT SYSTEM 64

Initial Authorization
State Request
./,>(Authorizer inactivity J

Authorization
Terminates

Authorizer Active

L
5 No
Exceptions

No
Authorization

Request
Payment Ends

Final

State Exception

is resolved

Exception handler is activated

Figure 3.12: Financial Audit System Transaction Authorization Statechart Diagram



CHAPTER 3. A FORMAL MODEL OF A FINANCIAL AUDIT SYSTEM 65

Generate Payment
Voucher

Payment Confirmation j

Review

.. Transaction
Initial

State

Audit
Ends

Final @

State

Receipt Confirmation

Figure 3.13: Financial Audit System Payment Confirmation Statechart Diagram



CHAPTER 3. A FORMAL MODEL OF A FINANCIAL AUDIT SYSTEM 66

Initial
State Event Monitor is Active

Logging
Auditor Actions

(Data Encryption is Inactive

Figure 3.14: Financial Audit System Data Encryption Statechart Diagram



CHAPTER 3. A FORMAL MODEL OF A FINANCIAL AUDIT SYSTEM 67

Initial
State

No Audit
Exceptions

Audit
Exceptions

Figure 3.15: Financial Audit System Exception Review Statechart Diagram



CHAPTER 3. A FORMAL MODEL OF A FINANCIAL AUDIT SYSTEM 68

1. initiatesPayment() Processor: Financial 2.2 storesProcessDetails() SoftwareApp: Finangial
IPager: Person { P> tem |

A

System

finalizePayment()

4.

i e

———— 1 3.1 logsAuditData() . |Authorizer: Financial
| - ] l 1 o System
5.1 queriesAuditData()
5.2 analyzesAuditData()
tor Audit Svet ] =|.—t-—.—-——1;&1usesAudif/?enort() Management: Financial
T iAudiBeoot WIS _J System

5.3 generateAuditReport()

6.2 makesFinancialDecisions()
6.3 makesSecurityDecisions()

Figure 3.16: Collaboration Diagram of a Financial Audit System



CHAPTER 3. A FORMAL MODEL OF A FINANCIAL AUDIT SYSTEM 69

3.6 Predicate Logic Specifications of a Financial Audit

System

This section presents a formal specification of the requirements of a financial audit system
in predicate logic language. In order to aid the understanding of the formal specifications,
informal definitions of the terms and symbols I use are provided first. This is followed by

formal definitions of the terms and symbols.

3.6.1 Informal Definitions of Terms and Symbols

Informal descriptions of the terms used in the predicate logic specifications in this thesis
are outlined below. For each term, the meaning and an explanation / description of the
term is provided.

Variables:
Table 3.1: Variables of a Financial Audit System Predicate
Logic Specifications
Term Meaning Description
ac Action An atomic unit of user activity in the financial system.
ana Audit Analysis of audit log.
Analysis
ay Authorizer A person that verifies the quality of financial transactions
processed by processors.
av Activity A combination of all operations of a user in a financial
system.
a Unauthorized  Unauthorized access to a resource in a financial system.

Access
continued on next page



CHAPTER 3. A FORMAL MODEL OF A FINANCIAL AUDIT SYSTEM 70

Table 3.1 — continued from previous page

| Term Meaning Description |
ctry  Additional The process of an authorizer verifying some high-valued
Control transactions prior to completing the transaction process-
ing.
d Duty(ies) Specific function(s) assigned to a user.
dar Decryption Decryption module that decrypts audit log data for subse-
Module quent analysis.
data  Data Units of financial records.
datay Huge Volume Large volume (count) of the record of transactions in a
financial audit log.
date  Date The date of a financial transaction.
e Encryption Encryption module that encrypts the data in an audit log.
Module
f Signon The count of a user sign-on attempts into a financial sys-
Attempts tem.
1 Initiator An agent that initiates a financial transaction.
[ Log Audit log / trail of financial transactions.
la Log Access Logging of user access into a financial system.
ly Log Usage Logging the usage of a financial system.
P Payer An agent that provides the money to be transferred in a
financial transaction.
pid Payer Id Payer identification symbol.

continued on next page



CHAPTER 3. A FORMAL MODEL OF A FINANCIAL AUDIT SYSTEM 71

Table 3.1 — continued from previous page

| Term Meaning Description
pr Processor A person that is authorized to process financial transac-
tions.
pU Payment A documentary evidence of financial transactions, given
Voucher to an initiator or a payer that is involved in a financial
transaction.
pwd  UserPassword User secret password.
r Receiver An agent that ultimately receives money through the fi-
nancial transaction.
rid Receiver Id Receiver identification symbol.
TPt Reporting Report of the result of an audit work.
TV Receipt A documentary evidence of financial transactions, given
Voucher to a receiver that is involved in a financial transaction.
Sp Failed Signon  Failed logon attempt into a financial system.
Ss Successful Successful logon attempt into a financial system.
Signon
st Status Status of a financial transaction.
sysa  System User access into a financial system.
Access
sysy  System Usage Usage of the financial system by a user.
td Transaction Specific details / properties of a financial transaction.
Details
tdc Complete Details of transactions that are completed.
Transaction

continued on next page



CHAPTER 3. A FORMAL MODEL OF A FINANCIAL AUDIT SYSTEM

Table 3.1 — continued from previous page

72

| Term Meaning Description
td; Incomplete Details of transactions that are incomplete (incomplete
Transaction transaction.)
tg Pre-defined Pre-defined triggers that initiate certain audit processes.
Audit Triggers
time  Time The time of a financial transaction.
time; Idle Time The duration of time a user stays idle on a financial sys-
tem.
tx Transaction Transfer of fund from one person (a payer) to another per-
son (a receiver.)
try High-Valued  Financial transactions that involve a high monetary value
Transactions as previously described by the financial organization.
U User A person that is authorized to perform assigned functions
in a financial system.
Ua Audit Log A person that is authorized to perform audit functions in
User a financial audit system.
uN Non-Audit A person that is not authorized to perform audit functions
Log User in a financial audit system.
uid User Id User identification symbol.
[ Unauthorized  Unauthorized usage of a resource in a financial system.

Use




CHAPTER 3. A FORMAL MODEL OF A FINANCIAL AUDIT SYSTEM 73
3.6.2 Formal Definitions of Terms and Symbols

In this section, I present formal definitions and descriptions of the terms, symbols, con-
stants, functions, and predicates that are used in the predicate logic specifications in this

thesis.

Constants:

These are predicate logic terms that do not change because their values are fixed.

Constant | Meaning Data Type
timeo Permissible system idle time Numeric
fr Permissible signon fail attempts | Numeric

Functions:

These are relations between the elements of a set in a domain. They are used for deriving

a value from another.

Function | Usage Meaning

Monitor monitor(z,y) | « monitors y. For this system, 2’ = z"y; where z
represents a current state of an audit log, y represents
a new audit data, and 2’ represents a new state of the
audit log (with the new audit data appended to the

current audit log).

Number of | numberof(z) | number of z (a count of the number of objects in ).




CHAPTER 3. A FORMAL MODEL OF A FINANCIAL AUDIT SYSTEM 74

Predicates:

These are functions whose co-domain is the set of Boolean logical constants {TRUE,

FALSE}. Predicate logic functions used in this thesis are specified in the following format:

Predicate Symbol: The name given to a predicate function. For example, Initiated.

e Arity: The number of terms in the predicate logic formula. For example, the arity

of Initiated(z,y) is 2 (there are two variables x and y).

e Atomic Sentence: The usage of a predicate logic formula. For example, Initiated(z, y)

is a predicate logic atomic sentence.

Meaning / Description: A description of the predicate logic atomic sentences, and

their meanings.



CHAPTER 3. A FORMAL MODEL OF A FINANCIAL AUDIT SYSTEM

Table 3.2: Predicates: FAS Predicate Logic Specifications

75

Initiated

Predicate Atomic Sentence / | Meaning / Description
Symbol Usage
« is initiated by y, where « represents a finan-
cial transaction, and y represents an initiator
of a financial transaction; the arity is 2, and
Initiated(z,y). we say, “transaction z is initiated by initiator

»

y.
Formally,
Ve y : Initiated(z,y) = (y # 0)
Az # 0) A (Vz : Initiated(z, z) =

(y = 2))

continued on next page



CHAPTER 3. A FORMAL MODEL OF A FINANCIAL AUDIT SYSTEM

Table 3.2 — continued from previous page

76

Predicate Usage / Atomic | Meaning / Description

Symbol Sentence
x has a unique gy, where =z €
{Payer, Receiver, User}, and y € {Payer
id, Receiver id, User id}. The arity is 2,
and we could say, for example,

Unique Unique(z,y). 1. “Payer z has a unique Payer id ",

2. “Receiver = has a unique Receiver id

y”, and

3. “User z has a unique User id y”.
Formally,
Vz dyy : Unique(z,y) =
@#0) Ay #0)A
(Vz ¢ 0 : Unique(z, z) =
(v = 2))

continued on next page



CHAPTER 3. A FORMAL MODEL OF A FINANCIAL AUDIT SYSTEM

Table 3.2 — continued from previous page

77

Predicate Usage / Atomic | Meaning / Description

Symbol Sentence
z has a minimum number of vy,
where =z €  Transaction, and
] € {Payer, Receiver, Payment
voucher, Receipt wvoucher}.  The arity

Minimum | Minimum(z,y). is 2, and we could say “transaction = has a

minimum number of Payer y, Receiver v,
Payment voucher y, and Receipt voucher
y”. This minimum number is 1. Also, see
Section 3.2 for a description of the ‘has’
relationship.

Formally,

VzIy : Minimum(z,y) =
z¢BAy ¢ DA
(Ilyl 2 1) A (2 has y)

continued on next page



CHAPTER 3. A FORMAL MODEL OF A FINANCIAL AUDIT SYSTEM 78

Table 3.2 — continued from previous page

Predicate Usage / Atomic | Meaning / Description
Symbol Sentence
High-valued transaction z, processed by ,
is verified by z, where x = {High-Valued
Verified Verified(z,y,z). | Transaction}, y = Processor, and z =

Authorizer. The arity is 3.
Formally,
Yoy, z : Verified(z,y,z) = z # 0 A
y#ONz#DN(y # 2)

continued on next page



CHAPTER 3. A FORMAL MODEL OF A FINANCIAL AUDIT SYSTEM

Table 3.2 — continued from previous page

79

Predicate Usage / Atomic | Meaning / Description
Symbol Sentence
z has a known y, where z € {Transaction,
Activity}, and y € {Date, Time, User id}.
The arity is 2, and we could say, for example,
1. “Transaction = has a known Date y,
Known Known(z,y).

Time y, and User id y”, and

2. “Activity = has a known Date y, Time

y, and User id y”.

Formally,

Vz3y : Known(z,y) =
(@ #0) A (y # 0)

continued on next page



CHAPTER 3. A FORMAL MODEL OF A FINANCIAL AUDIT SYSTEM

Table 3.2 — continued from previous page

80

Predicate Usage / Atomic | Meaning / Description
Symbol Sentence
z is logged into y, where z = Activities, and
y = Audit log; the arity is 2, and we say “Ac-
Log Log(z,y). tivities z is logged into Audit log y”.
Formally,
Vzdy : Log(z,y) =
c#ONYy#0NY =y'z
z has y, where z = User, and y € {Duties,
Activities}. The arity is 2, and we could say,
for example,
Has Has(z,y). ,
1. “User z has Duties y”, and
2. “User z has Activities y”.
Formally,
Vody : Has(z,y) =z # 0Ny # 0

continued on next page



CHAPTER 3. A FORMAL MODEL OF A FINANCIAL AUDIT SYSTEM

Table 3.2 — continued from previous page

g1

Predicate Usage / Atomic | Meaning / Description

Symbol Sentence
z is documented into y, where z € {Date,
Time, Transaction details}, and y =
Audit log. The arity is 1, z is a bound vari-
able, y is a free variable, and we could say,

Documented | Documented(z). for example,

1. “Date z is documented”,
2. “Time z is documented”, and
3. “Transaction details z 1s documented”.

Formally,
Vz3y : Documented(z) =

s 0Ny =y'z

continued on next page



CHAPTER 3. A FORMAL MODEL OF A FINANCIAL AUDIT SYSTEM

Table 3.2 — continued from previous page

82

Predicate Usage / Atomic | Meaning / Description

Symbol Sentence
z is identified by y, where z € {Payer,
Receiver, User}, and y € {Payer id,
Receiver id, User id}. The arity is 2, and
we could say, for example,

Identified | Identified(z,y).

1. “Payer z is identified by Payer id y”,

2. “Receiver z is identified by Receiver id

y”, and
3. “User z is identified by User id y”.

Formally,
Vz3iy : Identified(z,y) =
(z#0) A (y#0) A
(Vz # 0 : Identified(z, z) =
(y=2))

continued on next page



CHAPTER 3. A FORMAL MODEL OF A FINANCIAL AUDIT SYSTEM

Table 3.2 — continued from previous page

33

Predicate

Symbol

Usage / Atomic

Sentence

Meaning / Description

Protected

Protected(z,y).

z is protected from y, where z € { Audit log,
Audit triggers, Audit analysis}, and y =
{Unauthorized user}. The arity is 2, and

we could say, for example,

1. “Audit log z is protected from Unau-

thorized user y”,

2. “Audit trigger x is protected from |

Unauthorized user 4, and

3. “Audit analysis z is protected from

Unauthorized user y”.

Formally,
Vz,y : Protected(z,y) =
c# DNy #DA
(=3y : = Protected(z,y))

continued on next page



CHAPTER 3. A FORMAL MODEL OF A FINANCIAL AUDIT SYSTEM

Table 3.2 — continued from previous page

84

Predicate Usage / Atomic | Meaning / Description
Symbol Sentence
x i1s denied y, where x = User, and y €
{System access, System usage}. The arity
is 2, and we could say, for example,
1. “User z is denied System access y”,
Denied Denied(z,y).

and
2. “User z is denied System usage .

Formally,
Vz,y : Denied(z,y) =
zE£OANYy A DA
Vz—3y : ~Denied(z,y)

continued on next page



CHAPTER 3. A FORMAL MODEL OF A FINANCIAL AUDIT SYSTEM

Table 3.2 — continued from previous page

85

Predicate

Symbol

Usage / Atomic

Sentence

Meaning / Description

Segregated

Segregated(z,y, z).

Duties z of Audit users y is segregated from
Duties z of Non-Audit users z, where z =
Duties, y = Audit users, and z = Non—
Audit users. Segregation describes the mu-
tual exclusivity of the duties of audit and non-
audit users. The arity is 3.

Formally,

Yy, z3z : Segregated(z,y, z) =
cE£ONy#DNzF# DA
(Vz : Has(y,x) # Has(z,))

continued on next page



CHAPTER 3. A FORMAL MODEL OF A FINANCIAL AUDIT SYSTEM

Table 3.2 — continued from previous page

86

Predicate Usage / Atomic | Meaning / Description

Symbol Sentence
z is encrypted by y, where z = { Audit data
in an audit log}, and y = {Encryption
module}; the arity is 2, and we say “Audit

Encrypted | Encrypted(z,y). data in an audit log z is encrypted by an En-

cryption module y”.
Formally,
vz 3y : Encrypted(z,y) =
z# DAy #OA
—dz : =Encrypted(z,y)

continued on next page



CHAPTER 3. A FORMAL MODEL OF A FINANCIAL AUDIT SYSTEM

Table 3.2 — continued from previous page

&7

Predicate Usage / Atomic | Meaning / Description

Symbol Sentence
z is decrypted by y, where z = {Audit
data extracted for analysis}, and y =
{ Decryption module}; the arity is 2, and we

Decrypted Decrypted(z,y). say “Audit data extracted for analysis z is de-

crypted by a Decryption module 3.
Formally,
Vzdy : Decrypted(z,y) =
TEOANYy# DA
-3z . ~Decrypted(z, y)

continued on next page



CHAPTER 3. A FORMAL MODEL OF A FINANCIAL AUDIT SYSTEM

Table 3.2 — continued from previous page

88

Predicate

Symbol

Usage / Atomic

Sentence

Meaning / Description

Logof f

Logof f(z).

x is logged off, where z = User, system idle
time t € Time, permissible system idle time
Timer € Time, y € Authorized access,
and z € Authorized usage; the arity is 1,
and we say “User z is logged off””. This pred-
icate evaluates to T'RUE when the system
idle time exceeds the permissible time thresh-
old that is set for the system to idle. Also, the
User z will be denied both system access and
system usage.

Formally,

Vz : Logof f(z) =
tVy, z : Denied(z,y) A
Denied(z,z) ANz # 0 A
t>Timer Ay #DAz#£0

continued on next page



CHAPTER 3. A FORMAL MODEL OF A FINANCIAL AUDIT SYSTEM 89
Table 3.2 — continued from previous page
Predicate Usage / Atomic | Meaning / Description
Symbol Sentence
x is transparent to y, where z = {Audit
transaction data monitoring activities},
and y = User. The predicate T'ransparent
is valid iff (if and only if) User y is not aware
of z, and the monitoring activities x does not
Transparent | Transparent(z,y). | usurp too much of system resources to impact

on the performance of the financial system.
The arity is 2, and we say “Audit transaction
data monitoring activities z 1s transparent to
User y”.
Formally,
VzVy : Transparent(z,y) =
TEDANYyA#DA

-Jy : =Transparent(z,y)

continued on next page



CHAPTER 3. A FORMAL MODEL OF A FINANCIAL AUDIT SYSTEM

Table 3.2 — continued from previous page

90

Predicate

Symbol

Usage / Atomic

Sentence

Meaning / Description

Report

Report(z,y).

z reports y, where z = { Audit report}, and
y € {User id, Transaction details, Success-
ful user signon, Failed user signon, Com-
pleted transaction details, Incomplete trans-
action details}. The arity is 2, and the predi-
cate Report describes the classification of au-
dit reporting in a FAS. For example, an audi-
tor might require audit information based on
several criteria. Audit reporting criteria iden-
tified in this thesis include user identification
audit report. In this case, we say “Audit re-
port x reports User id y”, meaning that the
audit report query is based on user identifica-
tion. Similarly, the Audit report = can provide
audit information that based on Transaction
details y, Successful user signon y, Failed
user signon y, Completed transaction details
vy, and Incomplete transaction details y. For-
mally,
Vy3z : Report(z,y) =y # 0Nz #0

continued on next page



CHAPTER 3. A FORMAL MODEL OF A FINANCIAL AUDIT SYSTEM 91

Table 3.2 — continued from previous page

Predicate

Symbol

Usage / Atomic

Sentence

Meaning / Description

Analyzed

Analyzed(z,y).

z is analyzed by y, where © = {Decrypted
audit data}, and y = Auditor. The predicate
Analyzed describes the analysis of audit in-
formation / reports by auditors. This analysis
can only be done on decrypted audit informa-
tion / reports. The arity is 2, and we say “De-
crypted audit data z is analyzed by Auditor
y”. Any data that is not decrypted (i.e. —x)
can not be analyzed by Auditor y.

Formally,

Vzdy : Analyzed(z,y) =
cEONYy#0OA
(Analyzed(—z,y) = FALSE)




CHAPTER 3. A FORMAL MODEL OF A FINANCIAL AUDIT SYSTEM 92
3.7 Requirements of a Financial Audit System and their

Specifications with Predicate Logic

So far I have formally outlined the terms and symbols I use to specify a financial audit
system. Now, I will use them to specify the system. These requirements are catego-
rized into accountability, security, transaction monitoring, event logging, and reporting

requirements. This categorization follows from [AE04], [CICAQ3], and [TOG98].

3.7.1 Accountability Requirements and Specifications

An audit system should be able to clearly provide information about who uses the system,
when the system was used, and what the system was used for. All these are captured in
accountability requirements. These accountability requirements and their formal specifi-

cations are expressed as follows:

Accountability Requirement 1: For every transaction, there is one and only one

initiator [AE04]:
Viz 3y : Initiated(tx, 1)

where 3; indicates a unique (one and only one) existential quantification.

Every financial transaction requires an initiator. This initiator can be a payer, a receiver,
or a third party to both the payer and the receiver of the payment. For example, a payer

initiates the payment for a transaction in a grocery store by going to pay for items bought



CHAPTER 3. A FORMAL MODEL OF A FINANCIAL AUDIT SYSTEM 93

at the checkout counter. A receiver initiates the payment for a service in a pre-authorized
payment arrangement. For example, a banking service establishes an automatic and peri-
odical service charges that are deducted from customers chequing accounts. A third party
initiates a payment whenever a collections agent (or a similar body) initiates or requests a
payment from a party on behalf of another party. For example, an agent for an insurance
company that requests insurance premium payment from a person on behalf of an insur-

ance company is an initiator.

Accountability Requirement 2: For every transaction, there is at least one payer
and one receiver [AE04]:
Viz 3p,r : Minimum(tz,p) A Minimum(tz,r) A

numberof(p) > 0 A numberof(r) >0

Every financial transaction entails a transfer of funds from one source to a destination.

Accountability Requirement 3: Every transaction has at least one payment, and

one receipt voucher [AE04, CICA03]:
Y tzdpv, rv : Minimum(tz, pv) A Minimum(tz,mv) A
numberof(pv) > 0 A numberof(rv) > 0
For example, in a transaction that entails the transfer of money from an employer to an

employee, the pay stub that companies and organizations give to employees represents a

payment voucher for the company, as well as a receipt voucher for the employee.



CHAPTER 3. A FORMAL MODEL OF A FINANCIAL AUDIT SYSTEM 94

Accountability Requirement 4: Each payer and beneficiary is unique, and uniquely
identified [AE04]:
Vp Vr : Unique(p, pid) A Unique(r, rid) A
Identified(p, pid) A Identified(r, rid)
Uniqueness is a very important factor that eliminates discrepancies and fraudulent situ-
ations in a financial transaction. An example of a uniquely identified beneficiary can be
seen in an organization that employs two people with the same name in different depart-
ments with differing levels of compensation. In this situation, the organization can use an
employee identification number to uniquely identify each of the employees. An example
of a uniquely identified payer can be seen when the two employees with the same name
prepare and send their respective tax information to the Canada Revenue Agency (CRA,
the agency responsible for administering tax laws in Canada.) In this case, the CRA will
be able to distinguish the two people by uniquely identifying them with their social insur-

ance numbers.

Accountability Requirement 5: For every transaction, the date and the time are

known and documented [AE(04, CICA03, TOGY8]:

Vtx Idate, time : Known(tz, date) A Known(tz,time) A

Documented(date) A Documented(time)

Accountability Requirement 6: For every transaction, transaction details are known

and documented [AE04, CICA03, TOG98]:

Viz 3td : Known(tz,td) A Documented(td)



CHAPTER 3. A FORMAL MODEL OF A FINANCIAL AUDIT SYSTEM 95

Accountability Requirement 7: For transactions that require other agents (proces-
sors and authorizers), the processor and the authorizer are uniquely identified, and

the date and time of their actions are known and documented [AE04, CICA03]:

Ytz : Jpr, au = Unique(pr, prid) A Unique(au, auid) A
Identified(pr, prid) A Identified(au, auid) A
Known(ac, date) A Known(ac, time) A

Documented(date) A Documented(time)

This requirement emphasizes the non-repudiation requirement of a financial transaction.
An example is the case of a person that requires a large sum of cash advance from a
credit card through a teller in a bank. The teller (processor of the transaction) processes
the transaction; however, the teller requires an authorization from a supervisor before the
transaction can be completed due to the value of money involved. The banking software
that is used to carry out this transaction will log the user identification numbers of both the
teller and the supervisor (acting here as an authorizer) as other agents that were involved
in this particular transaction. The information about the users that is logged in this case is
different from a situation where the person involved uses an automatic bank machine for
the cash advance. In this situation, other agents are not involved in the completion of the

transaction.

3.7.2 Security Requirements and Specifications

Security requirements provide a safety framework for a financial system. The process of
ascertaining safety requires a good level of control through access and usage restrictions

and authorizations. Security requirements and their formal specifications for the financial



CHAPTER 3. A FORMAL MODEL OF A FINANCIAL AUDIT SYSTEM 96

audit system are expressed as follows:

Security Requirement 1: For all high-valued transactions, an additional control
must be satisfied. For example, at least two agents (a processor, and an authorizer)

must verify a high-value transaction [AE04, CICA03]:

Vizy dctrs Apr, au : Verified(txy, pr, au)

Security Requirement 2: Audit logs must be protected from unauthorized access

and use [AE04, CICA03, TOG98]:
vl : 3@, = Protected(l,a) A Protected(l, )

Computer systems that contain audit information and logs are protected from unautho-
rized access and usage physically through the use of a safe and locked location and
logically through the use of software as a means for establishing and enforcing access

restrictions.

Security Requirement 3: Protection of pre-defined audit triggers from unauthorized

access and use [AE04, CICA03, TOG98]:
Vtg : 3a, T = Protected(tg,a) A\ Protected(tg, )

This requirement is critical to avoid a situation where an audit ‘red flag’ is fraudulently
suppressed. An unauthorized access or usage of pre-defined audit triggers could result in
a situation where a red flag (a caution that is programmed into the system) is suppressed.
A suppressed red flag could subsequently be exploited by fraudsters to carry out fraudu-

lent transactions.



CHAPTER 3. A FORMAL MODEL OF A FINANCIAL AUDIT SYSTEM 97

Security Requirement 4: Protection of audit analysis from unauthorized access and

use [AE04, CICA03, TOG9I8]:
Yana : 3a,u = Protected(ana, @) A Protected(ana, )

Unauthorized access or usage of audit analysis could result in a situation that suppresses
the accurate analysis of a fraudulent transaction. A misleading audit analysis could result

into poor decisions that could have a serious negative impact on the organization affected.

Security Requirement 5: Several failed attempts lead to service denial [AE04, TOG98]:
VfvYu: (f> fp) = Denied(u, sysa) A Denied(u, sysy)

When the count of a user’s consecutive failed signon attempts to the financial system
reaches a maximum threshold number, the signon attempt is considered fraudulent. The
user is denied access into the system until the signon identification is reset by a supe-
rior officer. This requirement prevents unauthorized access into the system. Also, user
identification that consistently requires a reset could be a likely target for fraudsters and

hackers.

Security Requirement 6: Segregation of duties related to audit log [AE04, CICA03,
TOGIS].

VuVd : Has(u,d) = Segregated(d)

Functions for audit log users, report generators, audit log analysts, and custodians of audit

log (backup engineers, audit log database administrators) must be kept separate.



CHAPTER 3. A FORMAL MODEL OF A FINANCIAL AUDIT SYSTEM 98

Security Requirement 7: Maintaining and protecting the log recording audit-log

user activity [AE04, CICA03, TOGI8]:
Vu Vav : Has(u,av) A Log(av,l) == Protected(l, @) N\ Protected(l,7)

This is a crucial requirement for preventing inappropriate and fraudulent use of audit
data. It also protects the results of audit analysis carried out by auditors. A detailed log
of actions and activities of auditors makes the work of auditors subject to another level
of scrutiny. This is especially relevant to the shareholders of an organization. It prevents
fraudulent collaboration between management staff in an organization and the internal
and external auditors. Inappropriate misrepresentation of financial records and auditor

analysis is not possible when the actions of auditors are recorded.

Security Requirement 8: Idle users are automatically logged off [AE04]:
Yu : (Ftimer A (timey > timeo)) = Logof f(u)

This requirement prevents unauthorized access and usage of the financial system. When
a user session is left unattended for a pre-defined period, the system logs off the user,

preventing others from accessing the system.

3.7.3 Transaction Monitoring Requirements and Specifications

The process of providing audit information requires a mechanism for collecting data that
is relevant for audit purposes. In this case, an audit logging system is required to create
audit data from transaction data. An audit system requires a transparent view of financial
transactions processes. Transaction monitoring requirements provide this transparency

and are expressed as follows:



CHAPTER 3. A FORMAL MODEL OF A FINANCIAL AUDIT SYSTEM 99

Transaction Monitoring Requirement 1: The system shall document the transaction

details for all transactions [AE04, CICA03, TOG98]:
Vix 3, td : Log(td,l) < I' =1"td

Transaction details include the initiator of the transaction, all users linked with the trans-
action, date and time stamps for all actions on the transaction, and the status of the trans-

action (complete, incomplete, successful, or fail.)

Transaction Monitoring Requirement 2: Transaction monitoring is transparent to

users [AE04]:
Viz 3l : Transparent(monitor(l,tx), u)

This requirement prevents the monitoring and logging of audit data from having any ma-

jor impact on the efficiency of processing transactions in the financial system.

Transaction Monitoring Requirement 3: Users that are not audit log users cannot

access or use audit logs [AE04, CICA03]:

Vuy Vi : Jlogaccess, logusage => Protected(l, uyn) A
Denied(uy,logaccess) A Denied(un, logusage)
3.7.4 Event Logging Requirements and Specifications

Event logging requirements describe details and properties of audit data that are being

captured and logged into an audit log. The safety of audit data requires a process that



CHAPTER 3. A FORMAL MODEL OF A FINANCIAL AUDIT SYSTEM 100

makes it unreadable by unauthorized persons. Also, the safety of user’s identity and pass-
word is crucial, and should be shielded from every other users of the financial system
and the audit log. These event logging requirements and their formal specifications are

presented as follows:

Event Logging Requirement 1: The event log captures all information about ac-
tivities related to the audit log [AE04, CICA03]:
Vav 3l : Log(av,l) =" = "av

This includes information on who accessed the audit data, when this access was granted,
what data was accessed and where the access occured. Capturing this information is
essential to guard against the repudiation of a financial transaction using an audit log.
This requirement aids the investigation of suspicious transactions and satisfies the non-

repudiation requirement of a financial transaction.

Event Logging Requirement 2: The audit log is capable of storing a huge volume

of data [AE04]:

Vdatag 3l : Log(datay,!)

Event Logging Requirement 3: The encryption module encrypts all data in the

log [AE04, CICA03]:

Vdata : Log(data,l) = ey : Encrypted(data, epr)



CHAPTER 3. A FORMAL MODEL OF A FINANCIAL AUDIT SYSTEM 101
Event Logging Requirement 4: The de-encryption module de-encrypts audit data
that are selected for analysis [AE04, CICA03]:

VdataVu, : Analyzed(data,us) == 3dy : Decrypted(data, das)

Event Logging Requirement 5: Event logs do not log user passwords [AE04]:
VI Vpwd : Log(—pwd,l) =1 =

This requirement prevents audit log users from having unauthorized access to passwords

of other users.

3.7.5 Reporting Requirements and Specifications

The result of an audit should be reported in a usable manner. Providing a large amount of
audit data without narrowing it into a small, useful report could result in insufficient audit
work. Audit reporting requirements provide a focus for audit work. These audit reporting

requirements and their formal specifications are expressed as follows:

Reporting Requirement 1: The audit report includes user identification [AE04]:
Yrpt Yuid : Report(rpt, uid)

This requirement makes a quick audit of a suspicious user possible, allowing auditors
to focus on the actions and activities of a particular user of the financial system over a

specific period.



CHAPTER 3. A FORMAL MODEL OF A FINANCIAL AUDIT SYSTEM 102

Reporting Requirement 2: Audit report includes details of sequentially evolving

transaction activities [AE04, CICA03]:
Vrpt Vid : Report(rpt, td)

This requirement provides audit information that is based on a particular suspicious trans-
action. The transaction details, users, agents, and all other facts associated with the trans-

action are provided to permit an accurate analysis of the transaction by auditors.

Reporting Requirement 3: The audit report includes successful and failed signon

attempts [AE04]:
Vrpt : dsg, sp = Report(rpt, ss) A Report(rpt, sp)

This requirement provides audit information for user signon attempts. An example of
the usage of this requirement is the investigation of why a user began to consistently fail
signon attempts. This is a probable security issue that could reveal an attempt by hackers
to gain unauthorized access into the financial system through the fraudulent use of an ex-

isting user identification.

Reporting Requirement 4: The audit report includes details of both complete and

incomplete transactions [AE04]:
Vrpt : Ftdeg,td; = Report(rpt, tdc) N Report(rpt, tdy)

This requirement provides audit information for both completed and incomplete transac-
tions. This is especially useful for audit analysis of incomplete transactions. Consider
the case of a merchant who provides an online (e-commerce) shopping service. Several

incomplete transactions in the audit analysis warrant further investigation. This investi-



CHAPTER 3. A FORMAL MODEL OF A FINANCIAL AUDIT SYSTEM 103

gation can reveal a malfunctioning module in the checkout system. It may indicate an

attempt by credit card fraudsters to defraud the organization and the credit card owner.

3.8 Consistency Checking

According to Frost [Fro86], the validity of any proposition that a formal system accepts
depends on the result obtained from a “Consistency Checking” exercise performed on the
proposition. The consistency checking looks for a contradiction between the set of facts
in the system and the proposition being verified. If there is a contradiction between a fact
and the proposition, then the proposition cannot be accepted because it is inconsistent
with an already established fact. Otherwise, the proposition is acceptable by the system.
This concept is referred to as decidability. For example, according to Frost [Fro86], the
following set of assertions (S2) is inconsistent:

S2 = {Jan is NOT a woman,
Jan i1s a woman AND Jan is tall}

This is because,

(a) Jan 1s NOT a woman is equivalent to
Jan 1s a woman = FALSE

(b) Jan 1s a woman AND Jan is tall is equivalent to
{Jan is a woman = TRUE,
Jan is tall = TRUE}

The Predicate logic specifications in this thesis will aid the financial audit system herein.
It will perform a consistency checking exercise on any proposition brought to the system.

In order to ascertain the manner in which the set of rules in the requirement specification



CHAPTER 3. A FORMAL MODEL OF A FINANCIAL AUDIT SYSTEM 104

will carry out a consistency check in the system, I provide some propositions and their

consistency checks as follows:

e Proposition 1: A transfer request without an initiator. Formally, we say,
Jtz : ~Fi = (numberof(i) = 0)
Proposition 1 contradicts Accountability Requirement 1. Therefore, it resolves to

FALSFE because it is inconsistent with Accountability Requirement 1.

e Proposition 2: A transaction that does not state a ecerver for its funds. Formally,

we say,
tz : =Ir = (numberof(r) =0)
Proposition 2 contradicts Accountability Requirement 2. Therefore, it resolves to
FALSE because it is inconsistent with Accountability Requirement 2.
e Proposition 3: A transaction has no Payment V oucher. Formally, we say,
dtz : ~Ipv => (numberof(pv) = 0)
Proposition 3 contradicts Accountability Requirement 3. Therefore, it resolves to
FALSFE because it is inconsistent with Accountability Requirement 3.
e Proposition 4: A transaction cannot uniquely identify its Payer. Formally, we say,
Jtz : —~I1p => ~Unique(-p, pid)

Proposition 4 contradicts Accountability Requirement 4. Therefore, it resolves to

FALSF because it is inconsistent with Accountability Requirement 4.



CHAPTER 3. A FORMAL MODEL OF A FINANCIAL AUDIT SYSTEM 105

e Proposition 5: The date and time of a transaction are unknown and undocumented.

Formally, we say,

Itz : ~Known(tz,date) A =Known(tz,time) A

~Documented(date) A =Documented(time)
Proposition 5 contradicts Accountability Requirement 5. Therefore, it resolves to

FALSE because it is inconsistent with Accountability Requirement 5.

e Proposition 6: An audit system cannot provide a report based on User ID. For-

mally, we say,
Jrpt, wid : —~Report(rpt, uid)
Proposition 6 contradicts Reporting Requirement 1. Therefore, it resolvesto FALSE
because it is inconsistent with Reporting Requirement 1.
e Proposition 7: An audit system report cannot provide a sequentially evolving details
of a transaction. Formally, we say,
Jrpt3td : = Report(rpt, td)
Proposition 7 contradicts Reporting Requirement 2. Therefore, it resolves to FALSE
because it is inconsistent with Reporting Requirement 2.
e Proposition 8: An audit system cannot provide a report of either successful or failed
transactions. Formally, we say,
Jrpt : ~Report(rpt, ss) V ~Report(rpt, sg)

Proposition 8 contradicts Reporting Requirement 3. Therefore, it resolvesto FALSE

because it is inconsistent with Reporting Requirement 3.



CHAPTER 3. A FORMAL MODEL OF A FINANCIAL AUDIT SYSTEM 106

e Proposition 9: An audit system cannot provide a report of either completed or in-

complete transactions. Formally, we say,
Jrpt : =Report(rpt,tde) V —~Report(rpt, tdr)

Proposition 9 contradicts Reporting Requirement 4. Therefore, it resolves to FALSE

because it is inconsistent with Reporting Requirement 4.

3.9 Conclusions

In this chapter, I provided formal specifications and a model for a financial audit system.
An architecture, a classification of entities and concepts, and the requirements of a finan-
cial audit system were presented. An overview of the formal model was presented using
static, use case, state machine, activity, and interaction views of the UML as captured and

represented by UML diagrams.

The chapter presented both informal and formal definitions for all terms used in the
specifications. Formal specifications for the requirements of a financial audit system us-
ing the Predicate logic specification language were outlined. These specifications were
further clarified with examples that outline the use of the formal specifications described
in the chapter. I carried out a consistency checking exercise on some propositions. I
leveraged the decidability property of Predicate logic to determine their truth values and
whether they are acceptable by the financial audit system or not. I also explained how the

formal specifications will determine inconsistencies in these propositions.

In the next chapter, I provide an implementation of a financial audit system proto-

type. This prototype demonstrates a strategy for collecting audit data (based on formal



CHAPTER 3. A FORMAL MODEL OF A FINANCIAL AUDIT SYSTEM 107

specifications in this chapter) in a financial system.



Chapter 4

Financial Audit System Prototype

Implementation

In the previous chapter, I modelled and formally specified the non-technical and technical
requirements for a financial audit system. In this chapter, I demonstrate the successful

implementation of a prototype of a financial audit system.

I start by citing a strategy for collecting financial audit data. Using this strategy, the
prototype implementation is shown to satisfy the requirements for accountability, security,

transaction monitoring, event logging and reporting established for the auditing system.

4.1 A Strategy for Collecting Financial Audit Data

In this section, I provide an implementation of a financial system prototype that incorpo-
rates the audit data collection techniques outlined in this thesis. The prototype performs

the basic activities that are necessary in a financial system, and incorporates a logging

108



CHAPTER 4. FINANCIAL AUDIT SYSTEM PROTOTYPE IMPLEMENTATION 109

sub-system that records relevant audit data in a Microsoft® SQL Server™ 2000 database.
Visual Basic .NET framework [Bal02] was used to provide the user interface implemen-

tation.

The prototype implementation for the financial system and corresponding audit sub-

system is based on the following assumptions:

e A financial transaction is the transfer of funds (i.e., money) from entity A to entity

B through a financial system.

o The following actors / entities exist in the financial system: payer, receiver / bene-

ficiary, financial system operators — processor and authorizer, and auditors.

e The prototype financial system is able to process financial transactions (make / re-

ceive payments) and audit transactions.

e The financial system has operational capabilities to allow user creation (for both au-
dit and non-audit users), uniquely identifies users, assigns functional rights to users,
creates dummy passwords for users, modifies functional rights for users, deletes
users from the system, allows users to change their passwords, and facilitates the

processing of financial transactions.

e The audit aspect of the system has capabilities to collect audit data and extract audit

information in the following categories:

1. User audit. The ability to provide audit information that describes the creation
of users in the financial system, assignment of functional rights to users, mod-

ification of functional rights for users, and deletion of users from the system.



CHAPTER 4. FINANCIAL AUDIT SYSTEM PROTOTYPE IMPLEMENTATION 110

2. Periodic transaction audit. The ability to provide financial audit information

that describes a sequence of transactions over a specified period.

3. Successful sign-on audit. The ability to provide audit information that records

the date and time that users successfully sign-on into the financial system.

4. Failed sign-on audit. The ability to provide audit information that describes
users that could not sign-on into the financial system. This information can be
used to detect attempts by unauthorized users to gain access to the financial

system.

5. Completed transaction audit. The ability to provide audit information that

describes transactions that are successfully completed.

6. Incomplete transaction audit. The ability to provide audit information that
describes transactions that could not be successfully completed. This infor-

mation can be used to detect transactions that encounter problems.

7. Audit of the actions of auditors. The ability to provide audit information that
describes the activities of auditors in a financial system. It is advisable to have

a monitoring system that provides audit trails for actions of auditors.

8. Audit of user access and activities. The ability to provide audit information
that describes the sign-on, sign-off, and usage of the financial system by its
users. This can be used to achieve a good level of accountability for individ-
ual users, and it can prevent repudiation of financial transactions in cases of

disputes.

The prototype implementation of the financial audit system provides a log of all relevant

actions, and activities in the financial system. Also, the audit system provides detailed



CHAPTER 4. FINANCIAL AUDIT SYSTEM PROTOTYPE IMPLEMENTATION 111

information retrieval and reporting options to ascertain the correctness of the log sys-
tem. This electronic logging system can be used to provide evidential documents in the

financial audit system.

4.2 Implementation Details of the Prototype Application

An experimental evaluation of the financial audit data collection strategy was done. Some
of the queries and results of the queries are presented in Figures 4.3, 4.4, and 4.5. This
prototype implementation of a financial audit system is built upon the formal specifica-

tions of the requirements for a financial audit system presented in Section 3.7.

Figures 4.1 to 4.5 present screen shots from the prototype implementation of the fi-
nancial audit system in this thesis. Figure 4.1 shows a screen shot of a typical financial
transaction. This sample transaction indicates that on February 08, 2004 a payer (Jim
Black) purchased a used car valued at $3,500.00 from a receiver (Ken Cook). The cor-
responding payment and receipt vouchers in Figure 4.2 indicate the time (/6:57:16) and
date (08/02/2004) of the transaction, as well as the status of the transaction (both the

payment and the receipt of funds were successfully carried out.)

The sections that follow provide examples and explanations of the prototype imple-
mentation as it relates to the audit requirements described in Section 3.7.
4.2.1 Implementation of Accountability Requirements in Section 3.7.1

The sample transaction shown in Figure 4.1 satisfies the Accountability Requirements

stated in 3.7.1 as follows:



CHAPTER 4. FINANCIAL AUDIT SYSTEM PROTOTYPE IMPLEMENTATION 112

1. Accountability Requirement 1: The payer (Jim Black) is the unique initiator.
2. Accountability Requirement 2: Jim Black is the payer, and Ken Cook is the receiver.

3. Accountability Requirement 3: Figure 4.2 shows the payment and the receipt vouch-

€IS,

4. Accountability Requirement 4: The payer (Jim Black) is uniquely identified by his

name, and the receiver (Ken Cook) is equally identified uniquely by his name.

5. Accountability Requirement 5: The date (“08/02/2004”), and the time (*16:57:16”)

of the transaction are known and documented in the system.

6. Accountability Requirement 6: The transaction details, i.e., the value of 3,500.00,
and the description of the transaction (“Purchase — Used car”) are known and doc-

umented in the system.

7. Accountability Requirement 7: This does not apply since no agent was involved in

the transaction.

4.2.2 Implementation of Security Requirements in Section 3.7.2

Figure 4.3 shows two screen shots of information related to auditor actions. Figure 4.3(a)
shows an audit query criteria entry screen. This screen allows a stakeholder (for example,
shareholders of a company or a business owner) to enter start and end dates for auditor
monitoring. Figure 4.3(b) shows the result of a sample query. It lists the auditor name,
date and time they accessed the financial system, the activity they carried out, a descrip-

tion for the audit and the status of each audit. This satisfies the Security Requirement 7



CHAPTER 4. FINANCIAL AUDIT SYSTEM PROTOTYPE IMPLEMENTATION 113

outlined in Section 3.7.2, because details of auditor activities are maintained in the audit

log.

Although the Auditors’ Actions Audit Report in this case is from January 01, 2004 to
February 07, 2004, this screen shot shows a part of the audit information and activities of
only one audit user (named “Auditor”) on February 07, 2004. The audit report indicates
that on February 07, 2004, audit user Auditor performed a successful “Fail Sign-On Au-
dit” for the period from January 01, 2604 to February 07, 2004, a “Periodic Audit” for the
period from January 01, 2004 to February 07, 2004, an “Auditors Audit” for the period
from January 01, 2004 to February 07, 2004, a “User Audit” on the user named “auditor”
(three times), another “Periodic Audit” for the period from January 01, 2004 to February
07, 2004, another “Fail Sign-On Audit” for the period from January 01, 2004 to February
07, 2004 (two times), and a “Complete Tran Audit” (a completed transactions audit) for
the period from January 01, 2004 to February 07, 2004. The details in this report allows
the identification of trends which can be of use in determining what activities are being

performed by auditors in a financial audit system.

4.2.3 Implementation of Transaction Monitoring Requirements in

Section 3.7.3

Figure 4.4 shows the prototype implementation of the Transaction Monitoring Require-
ment 1 outlined in Section 3.7.3. The system documents transaction details by providing
the name of users, date of transaction, the payer, the receiver, the value of transaction, the

status of the transaction, and information for the authorizers involved in the transaction.

The Periodical Audit reporting screen shot shown in Figure 4.4(a) shows an entry of



CHAPTER 4. FINANCIAL AUDIT SYSTEM PROTOTYPE IMPLEMENTATION 114

audit query criteria. This criteria provides audit information over a period of time, for
example, from January 01, 2004 to February 07, 2004. Figure 4.4(b) shows the result of
the query. The Periodical Audit report provides detailed audit data which includes signon

failure, successful signon, successful transfer, exit, failed transfer, and so on.

In addition, the report shows transactions that the system could not accept, but which
can be useful for extracting a trend in the system. For example, an attempt to transfer a

negative value would be shown.

4.2.4 TImplementation of Event Logging Requirements in Section 3.7.4

Figures 4.3, 4.4, and 4.5 provide audit information that satisfies the Event Logging Re-
quirement 1 outlined in Section 3.7.4. Each figure includes information on who accessed
the audit data, when this access was granted, what data was accessed and where the access
occured. In addition, Figures 4.3 and 4.5 indicate the activity and description of trans-
actions and Figure 4.4 indicates the transaction details (for example, payer, receiver and

value) for each transaction.

Figure 4.5 shows activities that relate to an attempt to, or the successful creation,
modification, or deletion of users or their functional rights in the system. In Figure 4.5(b),
we see that on February 04, 2004, user Authorizer attempted to delete another user mabisi
from the system. The deletion attempt failed twice. In the same figure on February 06,
2004, the user Authorizer successfully deleted user JohnDoe from the system. Also, the

password for user Authorizer was successfully changed on February 06, 2004.



CHAPTER 4. FINANCIAL AUDIT SYSTEM PROTOTYPE IMPLEMENTATION 115
4.2.5 Implementation of Reporting Requirements in Section 3.7.5

Figures 4.3, 4.4, and 4.5 provide audit information that satisfy the Reporting Require-
ments outlined in Section 3.7.5. The Reporting Requirement 1 is satisfied in Figures 4.3, 4.4,
and 4.5 by the Name. Reporting Requirements 2 and 3 are satisfied in Figure 4.4. Finally,
Reporting Requirement 4 is satisfied in Figures 4.3, 4.4, and 4.5 where both complete and

incomplete transactions are shown.



CHAPTER 4. FINANCIAL AUDIT SYSTEM PROTOTYPE IMPLEMENTATION 116

Figure 4.1: Sample Transaction Processing Screen Shot



CHAPTER 4. FINANCIAL AUDIT SYSTEM PROTOTYPE IMPLEMENTATION 117

(8/02/2004 16:57:16

PavmentVoucherfordim Black

Receiver:  KenCook
Value:  3.500.00
Description:  Purchase - Used car

Status:  Transfer Successful

08/02/2004 16:57.16

Receipt¥oucherfor Ken Cook

Payer:  JimBlack
Valus: 350000
Description.  Purchase - Used car

Status:  Transfer Successful

Close

Figure 4.2: Payment and Receipt Vouchers for a Sample Financial Transaction



CHAPTER 4. FINANCIAL AUDIT SYSTEM PROTOTYPE IMPLEMENTATION 118

Stgtus

(a) Auditors’ Actions Audit Report (Query Input Screen)

Name Date & Time Activily ; Description Status
Auditor 0770272004 Fail Sign-On Audit From 01/01/2004 to 07/02/ Suecessful
_ Auditor 07/02/2004 Periodic Audit From 01/01/2004 te 07/02/2004 Successful
. Audior 0770272004 Auditors Audit From 0170172004 to 07/02/2004 Successful
__Auditor 07/02/2004 User Audit auditor Suecessful
_Auditor 07702/2004 User Audit auditor Successful
__:Auditor - 07702/2004 User Audit auditor Successful
_Auditor 0770272004 Periodic Audit Fiom 01/01/2004 to 07/02/2004 Suceessful
~ Auditor 0770272004 Fall Sign-On Audit From 01/01/2004 10 07/02/2004 Successful
_Auditor 07702/2004 Fait Sign-On Audit From 01/01/2004 to 07/02/2004 Successful
cAuditor 0770272004 Complete Tran Audit From 01/01/2004 to 07/02/2004 Successful

(b) Auditors’ Actions Audit Report (Result Qutput Screen)

Figure 4.3: Auditors’ Actions Audit Reporting Screenshots



CHAPTER 4. FINANCIAL AUDIT SYSTEM PROTOTYPE IMPLEMENTATION 119

Dated

ol 2

Proceru e ¢ £z

dbenizet CREReAEY 4 ey Sugeadin S

s ok ¥ feudiy ¢ 4 L Hiz o
v GR 2 feadtt : SuplinSumendid  {ad
fasflon KR e reds 1¥:3 {raaly
SHOLELIR BOEA el e 25 4 Sunlinbusceutd  {odt]
e $ (0 {2 Teaickes Sravionsd
B BAADAER ; S ; Traenter Faled

ET ¥ e dr i) g ; Tranctecfaled

Fuseeyae SRS Jeaiclor Faded

FPrcerze AR

i iy

(b) Periodical Audit Report (Result Output Screen)

Figure 4.4: Periodical Audit Reporting



CHAPTER 4. FINANCIAL AUDIT SYSTEM PROTOTYPE IMPLEMENTATION 120

004

S - PRl

L
s
A

el
o
o

Mg
Al
Buthorces
Fithecizet
ytherioe
Atheeer

teer Acgest Fi

[Oate b Tine
AH27004
B4/0272004
A2
RT3
0402080504

o A trgen 017012304

vy
e
o

o

Delele User
Delete Yeer
Uelete Uy
Fazsword Charge
Delete Usar

SR

e

, .
. .

TR e
S

.

e

w0d

TR

- Descrigtion
raabist
rashist
JoteDon
Abanices
rosbizt

Eahise
Falue
Suscusdd
Suronsshi

SR

=

R

R e s

S
e R
AN
G

L
R

o

(b) User Access Audit Report (Result Output Screen)

Figure 4.5: User Access Audit Reporting



CHAPTER 4. FINANCIAL AUDIT SYSTEM PROTOTYPE IMPLEMENTATION 121

.

i Date & Time :  Slatus
04/02/2004 Sign-On Successiul
) 04/02/2084 Exit
auditor 0B/0272004 Sign-On Successiul
_HAuditor 08/02/2004 Exit
auditor 0£/02/2004 Sign-On Successiul
Auditor 06/02/2004 Ext
auditor 06/02/2004 Sign-0n Succsssiul
iAuditer 06/02/2004 £t
_jaudtor 06/02/2004 Sign-On Successiul
_jaudior 06/02/2004 Sign-On Successiul
| auditor 06/02/2004 SigreDn Succeselul
Al A5HP/2004 Sic 3 o6l

(b) User Name Audit Report (Result Output Screen)

Figure 4.6: User Name Audit Reporting



CHAPTER 4. FINANCIAL AUDIT SYSTEM PROTOTYPE IMPLEMENTATION 122
4.3 Relationship of the Prototype Implementation with

Formal Specifications in Section 3.7

So far, I have provided a formal specification of the requirements of a financial audit
system and a prototype implementation of the system. Major highlights in this thesis are
related to how the system can assist auditors perform audit functions and how stakeholders
in a financial system (for example, shareholders of a company) can utilize the system to

their advantage.

A descriptive usage of the system as it relates to auditors is expressed as follows:

1. The system provides a means that assist auditors to extract audit data independently
and solely for audit purposes. This satisfies Transaction Monitoring Requirement

1.

2. The periodical audit report as shown in Figure 4.4(b) provides useful audit infor-
mation as they are sequentially processed. Any suspicious transaction detail can
be further investigated in detail. This report is an implementation of Reporting

Requirement 2 and Accountability Requirements 5 and 6.

3. Audit report based on user name as shown in Figure 4.6(b) assists in providing
detailed investigation on transactions that relate to a particular transaction under

audit scrutiny. This report is an implementation of Reporting Requirement 1.

4. User access audit report as shown in Figure 4.5(b) provides user actions that re-

late to the creation, modification and deletion of users. An auditor can review this



CHAPTER 4. FINANCIAL AUDIT SYSTEM PROTOTYPE IMPLEMENTATION 123

report to ascertain the assigned duties of a financial user at a given time under in-
vestigation. This report also provides information whether a user right was changed
or manipulated to carry out an unauthorized transaction that would not have been

possible with the authorized user rights and functions in the financial system.

Usage of the system as it applies to stakeholders in a financial system is expressed as

follows:

1. A shareholder can utilize the audit report in Figure 4.3(b) to review all successful
audit exercises within a certain period. In this case, any audit report that is omitted
can be flagged for subsequent auditing. This satisfies Reporting Requirement 3 and

Security Requirement 7.

2. The report in Figure 4.3(b) provides a description of each of the audit exercises
shown. A review of this description by a stakeholder may reveal a concealment
in the description of each audit exercise. For example, consider a situation where
auditors were supposed to carry out an audit exercise starting from January 01, 2004
to February 10, 2004. Instead, they performed the audit between January 01, 2004
to February 07, 2004. A stakeholder will be able to flag this omission because it
might be a fraudulent non-disclosure or misrepresentation of facts. This satisfies

Reporting Requirement 4 and Event Logging Requirement 1.

3. The audit report based on user name as shown in Figure 4.6(b) can be used to
provide detailed information about the financial audit system. This information
can relate to the activity of a suspicious user in the financial system. This satisfies

Reporting Requirement 1 and Transaction Monitoring Requirement 1.



CHAPTER 4. FINANCIAL AUDIT SYSTEM PROTOTYPE IMPLEMENTATION 124

4.4 Conclusions

In this chapter I have provided a strategy for collecting audit information in a financial
system. I also demonstrate a prototype implementation of a financial audit system based
on the formal specifications and requirements described in Section 3.7. Screen shots
of the prototype implementation were presented that demonstrate satisfaction of the ac-
countability, security, transaction monitoring, event logging and reporting requirements

outlined in Section 3.7.

Based on the results obtained (as shown in Figures 4.3, 4.4, 4.5, and 4.6), the audit data
collection approach explored in this thesis provides audit information from the audit log.
The prototype implementation demonstrates the use of formal methods in the evolution

and implementation of software systems.

In the next chapter, I conclude this thesis and provide a road map for future work.



Chapter 5

Conclusions and Future Work

This chapter concludes the thesis, provides a summary of its contributions, and describes
the limitations encountered during the implementation of its concepts. A road map of

future work is also presented.

5.1 Conclusions

This thesis presented the use of formal specifications in the design and implementation
of a financial audit system. Chapter 1 discussed the benefits and problems associated
with financial audit systems, the suitability of formal methods in the domain, a theoret-
ical foundation for financial auditing, and the need for electronic evidential documents.
Chapter 2 presented related work in the area of financial audit systems, as well as some
other background information about UML and the Predicate logic specification language.
Chapter 3 presented an architecture, a classification, a model description, a set of require-

ments for a financial audit system, and outlined the use of formal methods in modeling a

125



CHAPTER 5. CONCLUSIONS AND FUTURE WORK 126

financial audit system with UML and the Predicate logic specifications language. Chapter
4 provided a demonstration of a financial audit data collection strategy based on the for-
mal specifications of financial audit system requirements described in Chapter 3. Screen

shots and explanations of the implementation details of the system were presented.

5.2 Summary of Contributions

This thesis explored the financial system and financial audit system problem domains.
It leveraged two broad research areas to exploit the modeling capabilities of Computer
Science techniques using (i.) the principles of software engineering, and (ii.) formal

methods that are generally suitable for providing semantic precision in models.

The contributions of this thesis include:

e providing an architecture and a classification of a financial audit system,

e providing visual descriptions and a model of a financial audit system with UML

diagrams,

e providing formal specifications of a financial audit system requirements with Pred-

icate logic, and

e implementing a prototype of a financial audit system based on formal specifica-
tion and modeling techniques, suitable for audit purposes through the collection of

financial audit data.



CHAPTER 5. CONCLUSIONS AND FUTURE WORK 127

5.3 Limitation of this Thesis

This thesis did not implement all the financial audit system requirements previously
stated. However, the implementation herein covers the main goal of this thesis. The
emphasis is on providing a record of transaction details as it relates to financial auditing.
This record should assist auditors in performing financial audit functions. Also, the record

should assist stakeholders to review the work of their auditors.

Due to the sensitive nature of real-life financial data, the synthetic data in the audit
database was not collected from a real-life financial system database. Also, the volume of
transactions that were captured, and subsequently reported was minimal. Although this
does not have any impact on the overall and specific goals of this thesis, it is of note that a
significant increase in the size of the audit log could impact on the response time it takes

the audit system to extract audit information.

5.4 Future Work

The use of financial systems is universal. This thesis focused on one aspect of financial
systems (mainly auditing.) The restricted scope of this thesis makes further work in this
area necessary. The following section provides brief descriptions of areas that require

further research.

5.4.1 Knowledge-based financial audit system

It is desirable that ‘non-technical’ stakeholders in the financial system can have addi-

tional insights into financial audit work. This will encourage an audit of the activities



CHAPTER 5. CONCLUSIONS AND FUTURE WORK 128

of auditors by business owners (shareholders). There is a possibility that an ontology-
driven knowledge-based system can be coupled into a financial audit system, with the
knowledge base providing implicit / hidden knowledge in a ‘non-technical’ manner. It
is hoped that current research in knowledge engineering (specifically, the PowerLoom™
[CMR199] knowledge representation environment) can assist in this regard. In addition,
if the knowledge base is ontology-driven, it is equally hoped that the knowledge base will
be suitable for heterogeneous financial audit systems. Finally, the addition of a natural
language processing module to the knowledge base would be expected to facilitate easier

natural language interaction of ‘non-technical’ users with the knowledge base.

5.4.2 Formal verification of the dynamic (temporal) characterization

of a financial audit system

Specifying the temporal aspects of a financial audit system is essential. Due to the chang-
ing nature of states as a result of several actions happening concurrently, it is important
to know that the specifications of dynamic properties are not conflicting, and that they
do not result into a continuous loop that can make the system reach an unstable state. It
is hoped that Temporal Logic of Actions (TLA) [Lam94], and its specification language
(TLA+) [Lam02] can provide a formal specification for the temporal aspects of a finan-
cial audit system (as described with Statecharts in this thesis). The TLC [YML99] could
then be used to perform model checking on the TLA specifications. Model checking the
specifications will ensure that all the various states are generated, and all paths reaching
and exiting each state are calculated. This would allow all conflicts among the states in

the system to be revealed and subsequently corrected.



CHAPTER 5. CONCLUSIONS AND FUTURE WORK 129

5.5 Conclusions

I have provided a formal-based financial audit system using the UML modeling language
and Predicate logic formal specifications language. I also discussed how the formal spec-
ifications can be used to carry out a consistency check on propositions meant for the
system. It is desirable to know what extent this method will suit a relatively large, and
real-life database of a financial audit system. It is my hope that the approach outlined
in this thesis will be utilized by financial auditors and other stakeholders to ensure finan-
cial systems maintain integrity in the operations they perform and the information they

provide.



Bibliography

[AEO4]

[AEOAO4]

[ALLSO00]

[AAAT3]

[Bal02]

[CMR199]

[Dal05]

[DD97]

John A. Akinyemi and Sylvanus A. Ehikioya. A Predicate Logic Foundation
for Financial Audit Systems. In 8th IASTED International Conference on
Software Engineering and Applications (SEA 2004), pages 339-344, Cam-
bridge, MA, USA, November 2004.

John A. Akinyemi, Sylvanus A. Ehikioya, Femi G. Olumofin, and Chima
Adiele. An Ontology and Knowledge Representation of a Financial Audit
System. In IASTED International Conference on Knowledge Sharing and
Collaborative Engineering (KSCE 2004), pages 207-212, St. Thomas, Virgin
Islands, USA, November 2004.

Alvin J. Arens, James K. Loebbecke, W. Morley Lemon, and Ingrid B.
Splettstoesser. Auditing and Other Assurance Services. Prentice Hall, 8th
edition, 2000.

American Accounting Association. A Statement of Basic Auditing Concepts.
American Accounting Association, Sarasota, FL,, USA, 1973.

Francesco Balena. Programming Microsoft Visual Basic .NET. Microsoft
Press, 2002.

H. Chalupsky, R. McGregor, T. Russ, D. Moriarty, and
E. Melz. PowerLoom™ Knowledge Representation System.
Technical — Report, University of Southern California, 1999,
http://www.isi.edu/isd/LOOM/PowerLoom.

Chetan Dalal. Foiled by Nanoscience. The Institute of Internal Auditors,
8(1), April 2005. http://www.theiia.org/itaudit/.

C. J. Date and Hugh Darwen. A Guide to SQL Standard, 4th Edition.
Addison-Wesley, 1997.

130



BIBLIOGRAPHY 131

[Dut02]

[Fro86]

[HRO2]

[Koc79]

[Kos04]

[LAL87]

[Lam94]

[LamO2]

[LS98]

[MBB*03]

[Mer03]

[CICAOQ3]

[Oes02]

[RESO1]

M. Dutra. Ontologies for Web Services. Technical Report, Object Manage-
ment Group, 2002. http://www.omg.org.

Richard A Frost. Introduction to Knowledge Base Systems. Macmillan Pub-
lishing Co., Inc., Indianapolis, IN, USA, 1986.

H. Hamburger and D. Richards. Logic Language Models for Computer Sci-
ence. Prentice Hall International, 2002.

Harvey S. Koch. On-Line Computer Auditing. In ACM/CSC-ER Proceedings
of the 1979 Annual International Conference, page 191, 1979.

Eija Koskivaara. Artificial Neural Networks in Analytical Review Proce-
dures. Managerial Auditing Journal, 19(2), 2004.

W. Morley Lemon, Alvin A. Arens, and James K. Loabbecke. Auditing: An
Integrated Approach. Prentice Hall Canada Inc., 4th edition, 1987.

Leslie Lamport. The Temporal Logic of Actions. ACM Transactions on
Programming Languages and Systems, 16(3):872-923, May 199%4.

Leslie Lamport. Specifying Systems: The TLA+ Language and Tools for
Hardware and Software Engineers. Addison-Wesley, 2002.

George F. Luger and William A. Stubblefield. Artificial Intelligence — Struc-
tures and Strategies for Complex Problem Solving. Addison-Wesley, 3rd edi-
tion, 1998.

Brahim Medjahed, Boualem Benatallah, Athman Bouguettayal, Anne H. H.
Ngu, and Ahmed K. Elmagarmid. Business-to-Business Interactions: Issues
and Enabling Technologies. The International Journal on Very Large Data
Bases (VLDB), 12(1):59-85, May 2003.

Rebecca T. Mercuri. On Auditing Audit Trails. Communications of the ACM
Journal, 46(1):17-20, 2003.

The Canadian Institute of Chartered Accountants. Electronic Audit Evidence.
The Canadian Institute of Chartered Accountants, 2003.

Bernd Oestereich. Developing Software with UML — Object-Oriented Anal-
ysis and Design in Practice. Addison-Wesley, 2nd edition, 2002.

Zabihollah Rezaee, Rick Elam, and Ahmad Sharbatoghlie. Continuous Au-
diting: The Audit of the Future. Managerial Accounting Journal, 16(3):150—
158, March 2001.



BIBLIOGRAPHY 132

[Rez04]

[RIB99]

[RS84]

[SA66]

[TH83]

[VEK76]

[Wil83]

[TOG98]

[YML99]

[YYCO00]

Zabihollah Rezaee. Restoring Public Trust in the Accounting Profession by
Developing Anti-Fraud Education, Programs, and Auditing. Managerial Au-
diting Journal, 19(1), 2004.

James Rumbaugh, Ivar Jacobson, and Grady Booch. The Unified Modeling
Language Reference Manual. Addison-Wesley, 1999.

Donald E. Ricketts and Horton L. Sorkin. Quantitative Techniques for Inter-
nal Auditing. Institute of Internal Auditors, Inc., Research Report Number
27, 1984.

R. M. Skinner and R. J. Anderson. Analytical Auditing. Sir Isaac Pitman
(Canada) Limited, 1966.

C. William Thomas and Emerson O. Henke. Auditing: Theory and Practice.
Kent Publishing Company, 1983.

Maarten H. van Emden and Robert A. Kowalski. The Semantics of Predicate
Logic as a Programming Language. Communications of the ACM Journal,
23(4):733-742, 1976.

H.J. Will. ACL: A Language Specific for Auditors. Communications of the
ACM Journal, 26(5):356-361, 1983.

Distributed Audit Service (XDAS). Preliminary Specification. Technical Re-
port ISBN: 1-85912-139-Document Number: P441, The Open Group, Jan-
uary 1998. www.opengroup.org/publications/catalog/p441.htm. Accessed
on October 07, 2003.

Yuan Yu, Panagiotis Manolios, and Leslie Lamport. Model Checking TLA +
Specifications. In Conference on Correct Hardware Design and Verification
Methods, pages 54—66, 1999.

Chien-Chih Yu, Hung-Chao Yu, and Chi-Chun Chou. The Impacts of Elec-
tronic Commerce on Auditing Practices: An Auditing Process Model for Evi-
dence Collection and Validation. International Journal on Intelligent Systems
in Accounting, Finance and Management, 9(3):195-216, September 2000.



