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Abstract 

 
Multidimension functions frequently appear in Fourier Optics. For example, in a polychromatic 

optical system, one could have three spatial dimensions for space, one dimension for time, and one 

dimension for wavelength. Such systems would require multi-dimension mathematical models that 

could be efficiently analyzed or solved using Tensor Analysis.  

In Fourier Optics, convolution describes light propagation in multidimensional linear shift-

invariant media and image formation in multidimensional linear shift-invariant imaging systems. 

In Tensor Analysis, many tensor operations, including convolution, are well defined in the 

literature. However, in this literature, tensor convolution is defined under three limiting 

assumptions 1) tensors to be convolved must have the same size; 2) tensors are expected to be 

convolved along all its dimensions; 3) tensors to be convolved should represent the same physical 

variables on each of its dimensions. In practice, one could possibly seek convolution along a 

specific subset of physical variables, which would not be well defined by this standard definition 

of tensor convolution.     

In this thesis, to overcome these limitations inherent in the definition of tensor convolution, we 

defined arbitrary mode-n convolution that allows convolution of different size tensors along a 

specific subset of their physical variables. We then applied our novel arbitrary mode-n convolution 

method to simulate three simple multidimensional Fourier Optics problems, i.e., free space 

propagation, diffraction by an aperture, and imaging using a thin lens. We simulated these 

problems using 1) full-sized tensors; 2) Tensor Tucker Decomposition; and 3) Tensor Train 

Decomposition. Our numerical results demonstrated that the Tensor Train approach is most 

efficient in terms of accuracy, storage requirement, and computation time. 

 

 

 

 



iii 
 

Acknowledgments 
 

I would like to express my sincere gratitude to my academic advisor Dr. Sherif Sherif for his 

continuous guidance in both my research and career. His encouragement, advice, feedback, and 

suggestions helped me overcome many difficulties in completing this thesis. I also want to thank 

my examining committee, Dr. Arkady Major and Dr. Christopher Bidinosti, for their time and 

insightful input. My sincere gratitude to my undergraduate advisor, Dr. Waleed Mohammed, and 

my internship supervisor Dr. Raymond C. Rumpf, for their continuous advice and encouragement. 

 

Furthermore, I would like to thank the University of Manitoba for supporting my graduate studies 

via the University of Manitoba Graduate Fellowship (UMGF) and Dr. Gerry Price for his support 

via the Women in Engineering Scholarship. 

 

I would like to sincerely thank my friend Pimrapat Thanusutiyabhorn and acknowledge my late 

friend Dr. Wattamon Srisakuldee for their help and encouragement. I am also very grateful to my 

homestay mother, Alice Reimer, and her family for providing me with a comfortable home where 

I spent most of my research time. Finally, I sincerely thank my beloved family for their continuous 

support and endless love. I dedicate this thesis to my parents, who unconditionally provide their 

best support. 

  



iv 
 

Table of Contents 
Abstract ...................................................................................................................................... ii 

Acknowledgments.................................................................................................................... iii 

1. Introduction ............................................................................................................................ 1 

1.1 Introduction ........................................................................................................................... 1 

1.2 Research Motivation and Objectives ..................................................................................... 2 

1.3 Thesis Contributions and Publications .................................................................................. 3 

1.4 Thesis Outline ....................................................................................................................... 3 

1.5 Notation ................................................................................................................................. 3 

2. Tensor Operations and Decompositions ................................................................................ 5 

2.1 Review of Matrix Operations ................................................................................................ 5 

2.1.1 Kronecker product of matrices ....................................................................................... 6 

2.1.2 Khatri-Rao product of matrices ...................................................................................... 6 

2.1.3 Vectorization of a matrix ................................................................................................ 6 

2.2 Introduction to Multidimensional Arrays .............................................................................. 7 

2.3 Vectorization of a Tensor and Multi-indices ......................................................................... 7 

2.4 The Difference Between Matrices and Second-order Tensors .............................................. 8 

2.5 Tensor Operations ................................................................................................................. 9 

2.5.1 Kronecker Product .......................................................................................................... 9 

2.5.2 Khatri-Rao Product ......................................................................................................... 9 

2.5.3 Hadamard Product ........................................................................................................ 10 

2.5.4 Outer Product ................................................................................................................ 11 

2.5.5 Inner Product and Norm ............................................................................................... 11 

2.5.6 Mode-n Matricization of Tensors ................................................................................. 11 

2.5.7 Mode-n Tensor Product ................................................................................................ 12 

2.5.8 Tensor Contraction ....................................................................................................... 12 

2.5.9 N-D Convolution of Tensors ........................................................................................ 13 

2.5.10 Partial Mode-n Convolution ....................................................................................... 14 

2.6 Tucker Decomposition ........................................................................................................ 14 

2.6.1 Hadamard Product of Tensors Using Tucker Decomposition ...................................... 16 



v 
 

2.6.2 N-D Convolution of Tensors Using Tucker Decomposition ........................................ 16 

2.7 Tensor Networks and Tensor Train Decomposition ........................................................... 17 

2.7.1 Tensors Network and its Graphical Representation ..................................................... 17 

2.7.2 Hierarchical Tucker Decomposition ............................................................................. 17 

2.7.3 Tensor Train Decomposition ........................................................................................ 18 

2.8 Chapter Summary ................................................................................................................ 22 

3. Arbitrary Mode-n Convolution of Physical Tensors ........................................................... 23 

3.1 Motivation for Arbitrary Mode-n Convolution of Physical Tensors .................................. 23 

3.1.1 Arbitrary Mode-n Convolution with Mode Expansion on Tensor Edges .................... 24 

3.1.2 Arbitrary Mode-n Convolution with Mode Expansion Independent of Their Positions
 ............................................................................................................................................... 28 

3.3 General Formulation of Arbitrary Mode-n Convolution of Physical Tensors .................... 31 

3.3.1 Pre-processing Physical Tensors by Artificial Mode Expansion ................................. 31 

3.3.2 Select the Arbitrary Mode-n to Apply Convolution ..................................................... 32 

3.3.3 Arbitrary Mode-n Convolution ..................................................................................... 33 

3.4 Chapter Summary ................................................................................................................ 34 

4. Application of Arbitrary Mode-n Convolution in Tensor-based Optical Problems ............ 35 

4.1 Free Space Optical Propagation and Diffraction under Fresnel Approximation ................ 35 

4.1.1 Free Space Optical Propagation ................................................................................... 35 

4.1.2 Fresnel Number ............................................................................................................ 36 

4.1.3 Light Propagation Through a Pupil function ................................................................ 37 

4.1.4 Simple Diffraction Model with a Pupil Function ......................................................... 37 

4.2 Tensor-Based Formulation of a Diffraction System ........................................................... 39 

4.2.1 Tensor-Based Formulation of a Free Space Propagation ............................................. 39 

4.2.2 Tensor-Based Formulation of Diffraction by an Aperture ........................................... 39 

4.2.3 Formulation of Diffraction by an Aperture using Tucker Decomposition ................... 41 

4.2.4 Formulation of Diffraction by an Aperture using Tensor Train Decomposition ......... 42 

4.3 Numerical Simulation Results ............................................................................................. 42 

4.3.1 Simulation of 3-D Free Space Light Propagation ........................................................ 42 

4.3.2 Simulation of Optical Diffraction by an Aperture ........................................................ 46 

4.3.3 Optical Imaging using a Thin Lens .............................................................................. 49 

4.4 Chapter Summary ................................................................................................................ 51 



vi 
 

5. Conclusions and Future Work ............................................................................................. 52 

5.1 Conclusions ......................................................................................................................... 52 

5.2 Future Work ........................................................................................................................ 52 

References ................................................................................................................................ 54 

Appendix A .............................................................................................................................. 56 

A.1 Artificially expanded tensor order ...................................................................................... 56 

A.1.1 Tucker Decomposition of a Tensor with an Artificially Expanded Order .................. 56 

A.1.2 Tensor Train Decomposition with an Artificially Expanded Order ............................ 56 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vii 
 

List of Figures 

Fig. 2.1. Mode fibers of a three-dimensional tensor....................................................................... 7 

Fig. 2.2. Vectorization of a matrix (above) and a 2nd-order tensor (below) in lexicographic and 

reverse lexicographic ordering....................................................................................... 8 

Fig. 2.3. Kronecker product of 3rd-order tensors............................................................................ 9 

Fig. 2.4. Khatri-Rao (mode-1) product of 3rd-order tensors......................................................... 10 

Fig. 2.5. Partial mode-1 convolution of 2nd-order tensors; the convolving tensors (top); 

convolution on every possible combination (middle); the convolution product 

(bottom)........................................................................................................................ 14 

Fig. 2.6. Tucker decomposition of a three-dimensional tensor..................................................... 14 

Fig. 2.7. Examples of tensor network diagrams............................................................................ 17 

Fig. 2.8. Example of HT decomposition of a 6th-order tensor...................................................... 18 

Fig. 2.9. Tensor network diagrams of (top) 4th order TT/MPS (bottom) 𝑁𝑁thorder TT/MPS....... 19 

Fig. 2.10. The decomposition of an 8th order tensor in (a) Tucker decomposition (b) Hierarchical 

Tucker decomposition (c) tensor train/MPS, blue node represents 3rd or higher order 

tensor, and green node defines 2nd order tensor........................................................... 20 

Fig. 3.1. Network diagram of convolution on x of 𝑓𝑓(𝑢𝑢, 𝑣𝑣, 𝑥𝑥,𝑦𝑦) and ℎ(𝑥𝑥,𝑦𝑦, 𝑧𝑧) using Tensor Train 

Decomposition................................................................................................................ 26 

Fig. 3.2. Slice 𝒮𝒮[: , : ,1,1,1] of different tensor convolutions along x obtained using direct 

computation, TKD, and TT (first row), and their differences (second row).................. 26 

Fig. 3.3. Slice 𝒮𝒮[1,1, : , : ,1] of different tensor convolutions along x obtained using direct 

computation, TKD, and TT (first row), and their differences (second row).................. 27 

Fig. 3.4. Slice 𝒮𝒮[1,1, : ,1, : ] of different tensor convolutions along x obtained using direct 

computation, TKD, and TT (first row), and their differences (second row).................. 27 

Fig. 3.5. Tensor train based arbitrary mode-x convolution on a larger problem size................... 28 



viii 
 

Fig. 3.6. Network diagram of 𝑓𝑓(𝑡𝑡,𝑢𝑢,𝑤𝑤, 𝑥𝑥,𝑦𝑦) and ℎ(𝑡𝑡, 𝑣𝑣,𝑤𝑤, 𝑥𝑥, 𝑦𝑦, 𝑧𝑧) in Tensor Train 

Decomposition and their mode-(𝑡𝑡, 𝑥𝑥) arbitrary convolution.......................................... 29 

Fig. 3.7. Slices of tensor convolutions along u-v (top row) and t-x (bottom row) obtained using 

direct computation (1st column), TKD (2nd column), and TT (3rd column).................... 30 

Fig. 4.1. A 3-D object imaging system with a square aperture..................................................... 37 

Fig. 4.2. A system of free space propagation of a 3-D object onto a 2-D plane of observation... 43 

Fig. 4.3. Our 3-D object and its field distribution along the x-z plane……….............................. 43 

Fig. 4.4. Planes of field distributions in the object at different z distances.................................. 44 

Fig. 4.5. Observed normalized intensities at different planes using direct (1st column) Tucker 

Decomposition (2nd column) Tensor Train (3rd column) approaches............................. 45 

Fig. 4.6. Observed normalized intensities from direct (left) Tucker Decomposition (middle) 

Tensor Train (right) approaches..................................................................................... 45 

Fig. 4.7. A 3-D imaging system with an aperture......................................................................... 46 

Fig. 4.8. Observed normalized intensities from different z distances using direct (1st column) 

Tucker Decomposition (2nd column) Tensor Train (3rd column) approaches................. 48 

Fig. 4.9. Normalized intensity along the x-z axis at the observation region using direct (top) 

Tucker Decomposition (middle) Tensor Train (bottom) approaches............................. 48 

Fig. 4.10. Observed normalized intensities from different z distances using direct (1st column) 

Tucker Decomposition (2nd column) Tensor Train (3rd column) approaches.............. 50 

Fig. 4.11. Normalized intensity along the x-z axis at the observation region using direct (top) 

Tucker Decomposition (middle) Tensor Train (bottom) approaches........................... 50 

Fig. A.1. Tensor network diagrams of artificially expanded 4th-order to 5th-order TT/MPS 

(top) original (middle) expanded on the first and last order (bottom) expanded in 

between the train…………………………………………………………………….. 57 



ix 
 

List of Tables 
Table 1.1. List of mathematical notation.……………..………………………………………..... 3 

Table 2.1. Common matrix products as tensor contractions ……………………...…………..... 13 

Table 2.2. Comparison of storage complexity and tensor format of a 𝑁𝑁𝑡𝑡ℎ-order tensor with 𝐼𝐼 

dimensions and 𝑅𝑅 rank………………………………………………………………. 20 

Table 4.1. Comparison of free space propagation using full-tensor, Tucker Decomposition, and 

Tensor Train approaches.............................................................................................. 46 

Table 4.2. Computation time and error from different approaches…………………………...... 49 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Arbitrary Mode-n Convolution of Tensors with Applications in Optics Pandhittaya Noikorn 

1 
 

1. Introduction 
1.1 Introduction 
Multidimensional functions and signals arise naturally in both forward and inverse optics 

problems. The relationship between the information capacity of an optical system and its degrees 

of freedom, i.e., the number of its temporal, spectral, and spatial variables, is discussed in [1]. 

Computations in such high-dimensional problems could involve impractical computer storage 

requirements, as the number of variables typically scales exponentially with problem size. For 

instance, representing an 𝑁𝑁-dimensional problem with I samples in each dimension would result 

in an array having 𝐼𝐼𝑁𝑁 elements. This issue is often referred to as the curse of dimensionality [2]. 

The use of projection operations and sparse representations could possibly reduce computer 

storage requirements, but they could be limited in their applications. 

The study of multidimensional arrays known as tensors has been a topic of interest since the 19th 

century. Tensors and their different mathematical models could enable the practical analysis of 𝑁𝑁 

dimensional problems. Known applications of tensors are in data analysis [3-4, 15-16], 

psychometrics, quantum mechanics, and signal and image processing [5-6, 14,17]. An important 

term used in tensors is order; an N-dimensional array is referred to as an Nth-order tensor. Another 

important term is a mode which refers to a particular dimension of an N-dimensional array. Since 

tensors could be inherently very large arrays, many tensor decompositions have been developed. 

The most basic tensor decompositions are Canonical Polyadic (CP) and Tucker Decomposition [7-

8]. The CP format represents an arbitrary tensor as a finite linear combination of outer products of 

rank-1 tensors (vectors).  

The Tucker Decomposition format factorizes an Nth order tensor into an Nth order tensor core 

(possibly of smaller size) and N factor matrices. These factor matrices are essentially linear 

transformations applied to the tensor core. Therefore, Tucker Decomposition could be thought of 

as a multilinear transformation of the core tensor. 

Another family of tensor decompositions, known as tensor networks, was developed to further 

improve Tucker Decomposition's ability to address the curse of dimensionality. These tensor 

networks factorize higher-order tensors into a sequence of lower-order tensors. The most 
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fundamental tensor network is the Hierarchical Tucker Decomposition, which recursively 

decomposes higher-order tensors in a binary tree of lower-order tensors [9].  

A particularly simple case of the Hierarchical Tucker Decomposition, one that avoids the need for 

a recursive algorithm to obtain it, is the Tensor Train Decomposition that was introduced in [10]. 

This Tensor Train Decomposition decomposes a high-order tensor into a train-like structure (a 

simple binary tree) consisting of a sequence of 3rd-order tensors. Due to its simplicity and 

efficiency, this Tensor Train Decomposition has been widely used recently.  

1.2 Research Motivation and Objectives 
In Physical Optics, the behavior of both electric and magnetic optical fields is described by 

Maxwell's equations. In Fourier Optics, the behavior of scalar electric fields is described using 

linear operators, mainly Hadamard (element-wise) products and convolutions. However, Fourier 

Optics formulations of optical problems could become impractical for large dimension and/or large 

size problems, as their multidimensional arrays could become very large (computational 

difficulties), and their required multidimensional convolutions could become quite cumbersome 

(analysis difficulties).      

One possible way to overcome these practical difficulties is to formulate Fourier Optics in Terms 

of tensors. However, one important obstacle to developing such Tensor Optics is the definition of 

tensor convolution in the literature on tensors. In this literature, the convolution of any two tensors 

is well defined, but 1) tensors to be convolved are assumed to have the same order; 2) 

corresponding modes of tensors to be convolved are assumed to represent the same physical 

variables; and 3) convolution along every tensor mode (physical dimension) is assumed.  

In this thesis, to overcome the above limitations of this definition of tensor convolution, as found 

in the literature on tensors, we generalize it to allow arbitrary mode-n convolution of physical 

tensors instead of abstract multidimensional arrays. We also develop this new arbitrary mode-n 

convolution further to incorporate tensors in both Tucker Decomposition and Tensor Train 

representations. Finally, to demonstrate the value of our arbitrary mode-n convolution, we apply 

it to simulate three simple Fourier Optics problems, i.e., free space propagation, diffraction by an 

aperture, and imaging using a thin lens as a first step in developing Tensor Optics.      
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1.3 Thesis Contributions and Publications 
• Generalized current tensor convolution of abstract multidimensional arrays to allow 

arbitrary mode-n convolution of physical tensors.  

• Developed arbitrary mode-n convolution of physical tensors further to include Tucker 

Decomposition and Tensor Train representations. 

• Applied our novel arbitrary mode-n convolution to simulate three simple Fourier Optics 

problems as a first step in developing Tensor Optics 

• A manuscript is being prepared for publication in the J. of Optical Society of America – A  

1.4 Thesis Outline 
This thesis is structured as follows: 

• Chapter 2: Review of tensors concepts, operations, and decompositions 

• Chapter 3: Presents our approach for arbitrary mode-n convolution of physical tensors, 

including numerical examples 

• Chapter 4: Application of our arbitrary mode-n Convolution to simulate three simple 

Fourier Optics problems 

• Chapter 5: Conclusions and suggested future work 

1.5 Notation 
The mathematical notation used in this thesis is listed in the table below. 

Notation Description Representation 

 Italic Scalar 

 
Bold small letter Vector 

 Bold capital letter Matrix 

 Script capital letter Tensor 

 Bold script letter Artificially expanded order tensor 

 
 Tucker core tensor 
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Notation Description Representation 

 Matrix with subscript Mode-n matricization of  

 Function vec() Vectorization 

 I and J Tensor physical dimensions 

 R and Q Tensor ranks 

 Indices with bar Multi-index 

 Asterisk Full and mode-n convolution 

 
Operators 

Hadamard and Kronecker product 

 Mode-n Khatri-Rao product 

 Partial mode-n convolution 

Table 1.1. List of mathematical notation 
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2. Tensor Operations and Decompositions 
In this chapter, we review basic tensor definitions, operations and decompositions. It will serve as 

prerequisite information for the following chapters. 

Given a linear equation 

𝑎𝑎𝑖𝑖1𝑥𝑥1 + 𝑎𝑎𝑖𝑖2𝑥𝑥2 + ⋯+ 𝑎𝑎𝑖𝑖𝑁𝑁𝑥𝑥𝑁𝑁 = 𝑏𝑏𝑖𝑖        (2.1) 

If we have multiple equations with the same set of variables xi, we could represent them as a linear 

equation system using vectors and a matrix as 

�
𝑎𝑎1,1 ⋯ 𝑎𝑎1,𝑁𝑁
⋮ ⋱ ⋮

𝑎𝑎𝑁𝑁,1 ⋯ 𝑎𝑎𝑁𝑁,𝑁𝑁

� �
𝑥𝑥1
⋮
𝑥𝑥𝑁𝑁
� = �

𝑏𝑏1
⋮
𝑏𝑏𝑁𝑁
� 

𝐀𝐀𝐀𝐀 = 𝐛𝐛.                     (2.2) 

The above matrix equation only has x as an unknown vector. We will refer to equation 2.1 as a 

one-dimensional problem. If the unknown variable is a matrix X instead, we could represent Eq. 

2.2 as 

�
𝑎𝑎1,1 ⋯ 𝑎𝑎1,𝑁𝑁
⋮ ⋱ ⋮

𝑎𝑎𝑁𝑁,1 ⋯ 𝑎𝑎𝑁𝑁,𝑁𝑁

� �
𝑥𝑥1,1 ⋯ 𝑥𝑥1,𝑁𝑁
⋮ ⋱ ⋮

𝑥𝑥𝑁𝑁,1 ⋯ 𝑥𝑥𝑁𝑁,𝑁𝑁

� �
𝑐𝑐1,1 ⋯ 𝑐𝑐1,𝑁𝑁
⋮ ⋱ ⋮

𝑐𝑐𝑁𝑁,1 ⋯ 𝑐𝑐𝑁𝑁,𝑁𝑁

�
T

= �
𝑏𝑏1,1 ⋯ 𝑏𝑏1,𝑁𝑁
⋮ ⋱ ⋮

𝑏𝑏𝑁𝑁,1 ⋯ 𝑏𝑏𝑁𝑁,𝑁𝑁

�, 

𝐀𝐀𝐀𝐀𝐂𝐂T = 𝐁𝐁                     (2.3) 

where every row of matrix 𝐂𝐂 are weight elements for the corresponding row of the unknown matrix 

X. We note that extending the above linear equations, where the unknowns are either vector (one 

dimension) or a matrix (two dimensions), to three or higher dimensions would be challenging. 

Therefore, we seek a generalized mathematical model for N-dimensional linear problems that are 

represented with linear equations. 

2.1 Review of Matrix Operations 
In this section, we will review matrix operations that will be helpful in understanding the 

following sections.  
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2.1.1 Kronecker product of matrices 
The Kronecker product is commonly used with matrices. Let 𝐗𝐗 ∈ ℝ𝐼𝐼1×𝐼𝐼2  and ∈ ℝ𝐽𝐽1×𝐽𝐽2 , their 

Kronecker product is defined as 

𝐙𝐙 = 𝐗𝐗⨂𝐘𝐘 = �
𝑥𝑥1,1𝐘𝐘 ⋯ 𝑥𝑥1,𝐼𝐼2𝐘𝐘
⋮ ⋱ ⋮

𝑥𝑥𝐼𝐼1,1𝐘𝐘 ⋯ 𝑥𝑥𝐼𝐼1,𝐼𝐼2𝐘𝐘
� ∈ ℝ𝐼𝐼1𝐽𝐽1×𝐼𝐼2𝐽𝐽2.                 (2.4) 

2.1.2 Khatri-Rao product of matrices 
The Khatri-Rao product of matrices could be viewed as a particular case of their Kronecker 

product, where the Kronecker product is only performed on a specific matrix partition. Typically, 

the Khatri-Rao product is performed on columns. Given 𝐗𝐗 ∈ ℝ𝐼𝐼1×𝐾𝐾 with columns xi and 𝐘𝐘 ∈ ℝ𝐽𝐽1×𝐾𝐾 

with columns yi, their Khatri-Rao product is defined as 

𝐙𝐙 = 𝐗𝐗⊙ 𝐘𝐘 = [𝐱𝐱1⨂𝐲𝐲1 ⋯ 𝐱𝐱𝐾𝐾⨂𝐲𝐲𝐾𝐾] ∈ ℝ𝐼𝐼1𝐽𝐽1×𝐾𝐾.      (2.5) 

2.1.3 Vectorization of a matrix 
One way of solving Eq. 2.3 is to convert to a one-dimensional problem. By vectorizing 𝐗𝐗 and 𝐁𝐁, 

Eq. 2.3 could be rewritten as 

(𝐂𝐂⨂𝐀𝐀)vec(𝐗𝐗) = vec(𝐁𝐁)                    (2.6) 

where ⨂ is the Kronecker product of matrices. This matrix vectorization is performed by stacking 

its rows into a single vector. Therefore, the vectorization of 𝐗𝐗 is given by 

vec(𝐗𝐗) = [𝑥𝑥1,1 ⋯ 𝑥𝑥1,𝑁𝑁 𝑥𝑥2,1 ⋯ 𝑥𝑥𝑁𝑁,1 ⋯ 𝑥𝑥𝑁𝑁,𝑁𝑁]T.      (2.7) 

We note that instead of using 𝑖𝑖1, 𝑖𝑖2 to refer to an element in vec(𝐗𝐗), we could use a single index 

𝑖𝑖 = 𝑖𝑖2 + (𝑖𝑖1 − 1)𝑁𝑁. Similarly, B could be vectorized in the same way.  

When describing three dimensional (or higher-dimensional) linear equations with 

multidimensional arrays, one could still use similar vectorizations to transform the higher 

dimensional problem to a one-dimensional problem. However, this vectorization-based approach 

could result in extremely large one-dimensional problems. 
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2.2 Introduction to Multidimensional Arrays 
A tensor is a multidimensional array. Tensors play significant roles in Signal Processing, Machine 

Learning, Computer Vision, and many more applications. An N-D tensor is an N-D array, where 

N is known as the order of the tensor. Therefore, a zero-order tensor is a scalar, a first-order tensor 

is a vector, and a second-order tensor is a matrix. Another important concept in tensor analysis is 

the concept of a tensor mode, i.e., a particular physical dimension of a tensor.  

2.3 Vectorization of a Tensor and Multi-indices 
To represent scalar tensor elements we use different indices to denote each mode. An N-order 

tensor would have N indices, 𝑖𝑖1, 𝑖𝑖2 ⋯ , 𝑖𝑖𝑁𝑁. By fixing all indices except one, we could obtain 

different tensor fibers. For example, a matrix has two modes, rows (mode-2 fibers) and columns 

(mode-1 fibers), and an N-D array has N mode fibers where mode-1 fibers are columns, mode-2 

fibers are rows, etc. Also, by specifying all modes of a tensor except two, we could obtain different 

tensor slices. Different tensor modes and fibers are shown in Fig. 2.1. 

 
Fig. 2.1. Mode fibers of a three-dimensional tensor 

Any N-D tensor can be reshaped into a vector. Such vectorization only requires a single index 

called a multi-index. This multi-index could be defined in two different ways [11-12], where little-

endian (reverse lexicographic ordering) vectorization defines it as 

𝚤𝚤1𝚤𝚤2 ⋯ 𝚤𝚤𝑁𝑁−1𝚤𝚤𝑁𝑁����������������� = 𝑖𝑖1 + (𝑖𝑖2 − 1)𝐼𝐼1 + (𝑖𝑖3 − 1)𝐼𝐼1𝐼𝐼2 + ⋯+ (𝑖𝑖𝑁𝑁 − 1)𝐼𝐼1 ⋯ 𝐼𝐼𝑁𝑁−1,     (2.8) 

and big-endian (lexicographic ordering) defines it as   

𝚤𝚤1𝚤𝚤2 ⋯ 𝚤𝚤𝑁𝑁−1𝚤𝚤𝑁𝑁����������������� = 𝑖𝑖𝑁𝑁 + (𝑖𝑖𝑁𝑁−1 − 1)𝐼𝐼𝑁𝑁 + (𝑖𝑖𝑁𝑁−2 − 1)𝐼𝐼𝑁𝑁𝐼𝐼𝑁𝑁−1 + ⋯+ (𝑖𝑖1 − 1)𝐼𝐼2 ⋯ 𝐼𝐼𝑁𝑁.      (2.9) 
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In this thesis, we will use big-endian notation in all mathematical expressions, and, since most 

computer languages store data in reverse lexicographic ordering, we will use little-endian notation 

in our computer code (see appendix A). We note that the multi-index used to vectorize Eq. 2.6 

follows the big-endian notation. 

Also, multi-indices are directly related to the Kronecker product. Using big-endian notation, one 

could verify that (𝐂𝐂⨂𝐀𝐀)𝚤𝚤1𝚥𝚥1������,𝚤𝚤2𝚥𝚥2������ = 𝑐𝑐𝑖𝑖1,𝑖𝑖2𝑎𝑎𝑗𝑗1,𝑗𝑗2 in Eq. 2.4. On the other hand, using little-endian 

notation, (𝐂𝐂⨂𝐀𝐀)𝚤𝚤1𝚥𝚥1������,𝚤𝚤2𝚥𝚥2������ = 𝑐𝑐𝑖𝑖1,𝑖𝑖2𝑎𝑎𝑗𝑗1,𝑗𝑗2 = (𝐀𝐀⨂L𝐂𝐂) where ⨂L is the Left Kronecker product. For 𝐗𝐗 ∈

ℝ𝐼𝐼1×𝐼𝐼2 and 𝐘𝐘 ∈ ℝ𝐽𝐽1×𝐽𝐽2 the Left Kronecker product is defined as 

𝐗𝐗⨂L𝐘𝐘 = �
𝐗𝐗𝑦𝑦1,1 ⋯ 𝐗𝐗𝑦𝑦1,𝐼𝐼2
⋮ ⋱ ⋮

𝐗𝐗𝑦𝑦𝐼𝐼1,1 ⋯ 𝐗𝐗𝑦𝑦𝐼𝐼1,𝐼𝐼2

� ∈ ℝ𝐼𝐼1𝐽𝐽1×𝐼𝐼2𝐽𝐽2.     (2.10) 

 

2.4 The Difference Between Matrices and Second-order Tensors 

 

Fig. 2.2. Vectorization of a matrix (above) and a 2nd-order tensor (below)  

in lexicographic and reverse lexicographic ordering 
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Matrices and 2nd-order tensors are not always viewed as the same mathematical entities. Matrices 

always denote their rows as mode-1 fibers and their columns as mode-2 fibers (see Fig. 2.2). On 

the other hand, using big-endian notation, tensors’ mode-1 fibers are their columns, and mode-2 

fibers are their rows. 

2.5 Tensor Operations 
In this section, we describe common tensor operations that will be needed to understand the 

following sections. Further reading on other tensor operations could be found in [13].  

2.5.1 Kronecker Product 
As mentioned above, multi-indices (big-endian or little-endian) could be used to obtain the 

Kronecker product. Therefore, the Kronecker product of any two tensors having the same order 

𝒳𝒳 ∈ ℝ𝐼𝐼1×⋯×𝐼𝐼𝑁𝑁 and 𝒴𝒴 ∈ ℝ𝐽𝐽1×⋯×𝐽𝐽𝑁𝑁 is 

𝒵𝒵 = 𝒳𝒳⨂𝒴𝒴 ∈ ℝ𝐼𝐼1𝐽𝐽1×𝐼𝐼2𝐽𝐽2×⋯×𝐼𝐼𝑁𝑁𝐽𝐽𝑁𝑁       (2.11) 

where its scalar entries are given by 

𝑧𝑧𝚤𝚤1𝚥𝚥1������,⋯,𝚤𝚤𝑁𝑁𝚥𝚥𝑁𝑁������� = 𝑥𝑥𝑖𝑖1,⋯,𝑖𝑖𝑁𝑁𝑦𝑦𝑗𝑗1,⋯,𝑗𝑗𝑁𝑁.      (2.12) 

An example of Kronecker Product of  3rd-order tensors is shown in Fig. 2.3. Only a small cube of 

the first tensor represents is shown, while the second tensor is shown as a full tensor. 

 

Fig. 2.3. Kronecker product of 3rd-order tensors 

2.5.2 Khatri-Rao Product 
The mode-n Khatri-Rao product of two tensors is defined as their Kronecker product involving all 

modes, except mode-n. This definition requires that mode-n fibers of both tensors should have the 
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same dimension. Therefore, the mode-n Khatri-Rao of two tensors 𝒳𝒳 ∈ ℝ𝐼𝐼1×⋯×𝐼𝐼𝑛𝑛−1×𝐾𝐾×𝐼𝐼𝑛𝑛+1⋯×𝐼𝐼𝑁𝑁 

and 𝒴𝒴 ∈ ℝ𝐽𝐽1×⋯×𝐽𝐽𝑛𝑛−1×𝐾𝐾×𝐽𝐽𝑛𝑛+1×⋯×𝐽𝐽𝑁𝑁 is defined as 

𝒵𝒵 = 𝒳𝒳⊙𝑛𝑛 𝒴𝒴 ∈ ℝ𝐼𝐼1𝐽𝐽1×⋯×𝐼𝐼𝑛𝑛−1𝐽𝐽𝑛𝑛−1×𝐾𝐾×𝐼𝐼𝑛𝑛+1𝐽𝐽𝑛𝑛+1×⋯×𝐼𝐼𝑁𝑁𝐽𝐽𝑁𝑁    (2.13) 

where 

 𝒵𝒵(: ,⋯ , : ,𝑘𝑘, : ,⋯ , : ) = 𝒳𝒳(: ,⋯ , : , 𝑘𝑘, : ,⋯ , : )⨂𝒴𝒴(: ,⋯ , : ,𝑘𝑘, : ,⋯ , : ).   (2.14) 

An example of Khatri-Rao (mode-1) product of 3rd-order tensors is shown in Fig. 2.4. A small 

cube of the first tensor represents is shown, while the second tensor is shown as three slices along 

modes 2 and 3. 

 

Fig. 2.4. Khatri-Rao (mode-1) product of 3rd-order tensors 

2.5.3 Hadamard Product 
The Hadamard product, i.e., elementwise product, requires that both tensors should be of equal 

order and equal dimension along each mode, i.e., 𝒳𝒳,𝒴𝒴 ∈ ℝ𝐼𝐼1×𝐼𝐼2×⋯×𝐼𝐼𝑁𝑁. Their Hadamard product is 

defined as 

 𝒵𝒵 = 𝒳𝒳⊛𝒴𝒴 ∈ ℝ𝐼𝐼1×𝐼𝐼2×⋯×𝐼𝐼𝑁𝑁      (2.15) 

where its scalar entries are given by 

𝑧𝑧𝑖𝑖1,⋯,𝑖𝑖𝑁𝑁 = 𝑥𝑥𝑖𝑖1,⋯,𝑖𝑖𝑁𝑁𝑦𝑦𝑖𝑖1,⋯,𝑖𝑖𝑁𝑁 .      (2.16) 
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2.5.4 Outer Product 
Given two tensors 𝒳𝒳 ∈ ℝ𝐼𝐼1×⋯×𝐼𝐼𝑁𝑁 and 𝒴𝒴 ∈ ℝ𝐽𝐽1×⋯×𝐽𝐽𝑀𝑀  their outer product is an (𝑁𝑁 + 𝑀𝑀) order 

tensor, 

𝒵𝒵 = 𝒳𝒳 ∘ 𝒴𝒴 ∈ ℝ𝐼𝐼1×𝐼𝐼2×⋯×𝐼𝐼𝑁𝑁×𝐽𝐽1×⋯×𝐽𝐽𝑀𝑀      (2.17) 

with entries 

 𝑧𝑧𝑖𝑖1,⋯,𝑖𝑖𝑁𝑁,𝑗𝑗1,⋯,𝑗𝑗𝑀𝑀 = 𝑥𝑥𝑖𝑖1,⋯,𝑖𝑖𝑁𝑁𝑦𝑦𝑗𝑗1,⋯,𝑗𝑗𝑀𝑀.     (2.18) 

2.5.5 Inner Product and Norm 
The inner product of two tensors 𝒳𝒳,𝒴𝒴 ∈ ℝ𝐼𝐼1×⋯×𝐼𝐼𝑁𝑁 having the same order and dimensions is 

defined as 

〈𝒳𝒳,𝒴𝒴〉 = vec(𝒳𝒳)Tvec(𝒴𝒴) = � �⋯
𝐼𝐼2

𝑖𝑖2=1

𝐼𝐼1

𝑖𝑖1=1

�𝑥𝑥𝑖𝑖1,⋯,𝑖𝑖𝑁𝑁𝑦𝑦𝑖𝑖1,⋯,𝑖𝑖𝑁𝑁

𝐼𝐼𝑁𝑁

𝑖𝑖=1

 .             (2.19) 

 

The norm of a tensor 𝒳𝒳 is defined as ‖𝒳𝒳‖ = 〈𝒳𝒳,𝒳𝒳〉1/2. 

2.5.6 Mode-n Matricization of Tensors 
Sometimes we need to reshape a tensor into a matrix. This process is called matricization, 

unfolding, or flattening. The flattening of a tensor 𝒳𝒳 ∈ ℝ𝐼𝐼1×𝐼𝐼2×⋯×𝐼𝐼𝑁𝑁 into a matrix 𝐗𝐗〈𝑛𝑛〉 ∈

ℝ𝐼𝐼1⋯𝐼𝐼𝑛𝑛×𝐼𝐼𝑛𝑛+1⋯ 𝐼𝐼𝑁𝑁  is called its mode-𝑛𝑛 canonical matricization, where the rows and columns of this 

matrix involve tensor dimensions 𝐼𝐼1 ⋯ 𝐼𝐼𝑛𝑛 and 𝐼𝐼𝑛𝑛+1 ⋯  𝐼𝐼𝑁𝑁, respectively. Formally, mode-𝑛𝑛 

canonical matricization, 𝐗𝐗〈𝑛𝑛〉, is defined as 

�𝐗𝐗〈𝑛𝑛〉�𝚤𝚤1⋯𝚤𝚤𝑛𝑛��������,𝚤𝚤𝑛𝑛+1⋯ 𝚤𝚤𝑁𝑁������������� = 𝑥𝑥𝑖𝑖1,⋯,𝑖𝑖𝑁𝑁 .      (2.20) 

A special case of this mode-n canonical matricization is the mode-n matricization, where a tensor 

𝒳𝒳 ∈ ℝ𝐼𝐼1×𝐼𝐼2×⋯×𝐼𝐼𝑁𝑁 is flattened to 𝐗𝐗(𝑛𝑛) ∈ ℝ𝐼𝐼𝑛𝑛×𝐼𝐼1⋯𝐼𝐼𝑛𝑛−1𝐼𝐼𝑛𝑛+1⋯ 𝐼𝐼𝑁𝑁 defined as 

�𝐗𝐗(𝑛𝑛)�𝑖𝑖𝑛𝑛,𝚤𝚤1⋯𝚤𝚤𝑛𝑛−1𝚤𝚤𝑛𝑛+1⋯ 𝚤𝚤𝑁𝑁������������������������
= 𝑥𝑥𝑖𝑖1,⋯,𝑖𝑖𝑁𝑁       (2.21) 

Let 𝑖𝑖𝑛𝑛 be an index of 𝐼𝐼𝑛𝑛 and 𝑗𝑗 be the multi-index corresponding to 𝐼𝐼1 ⋯ 𝐼𝐼𝑛𝑛−1𝐼𝐼𝑛𝑛+1 ⋯  𝐼𝐼𝑁𝑁 then the 

column index 𝑗𝑗 of the resulting matrix is given by (big-endian notation)  
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𝑗𝑗 = 1 + � (𝑖𝑖𝑝𝑝 − 1)
1

𝑝𝑝=𝑁𝑁;𝑝𝑝≠𝑛𝑛

𝐼𝐼𝑁𝑁 ⋯ 𝐼𝐼𝑛𝑛+1𝐼𝐼𝑛𝑛−1 ⋯ 𝐼𝐼𝑝𝑝 .                               (2.22) 

Similarly, using little-endian notation [14-15] 

𝑗𝑗 = 1 + � (𝑖𝑖𝑝𝑝 − 1)
𝑁𝑁

𝑝𝑝=1;𝑝𝑝≠𝑛𝑛

𝐼𝐼1 ⋯ 𝐼𝐼𝑛𝑛−1𝐼𝐼𝑛𝑛+1 ⋯ 𝐼𝐼𝑝𝑝 .                               (2.23) 

2.5.7 Mode-n Tensor Product 
The mode-n tensor product is a linear transformation, where any tensor mode-n fibers are linearly 

transformed (multiplied) by a matrix. Given tensor 𝒳𝒳 and matrix 𝐀𝐀(n), their mode-n tensor product 

could be obtained from 

𝑦𝑦𝑖𝑖1,…,𝑖𝑖𝑛𝑛−1,𝑗𝑗,𝑖𝑖𝑛𝑛+1,…,𝑖𝑖𝑁𝑁 =  � 𝑥𝑥𝑖𝑖1,…,𝑖𝑖𝑛𝑛,…,𝑖𝑖𝑁𝑁

𝐼𝐼𝑛𝑛

𝑖𝑖𝑛𝑛=1
𝑎𝑎𝑗𝑗×𝑖𝑖𝑛𝑛 .                               (2.24) 

or by unfolding tensor 𝒳𝒳 into a mode-𝑛𝑛 matrix, we could conveniently obtain the required mode-

𝑛𝑛 tensor product as 

𝐘𝐘(𝑛𝑛) = 𝐀𝐀(n)𝐗𝐗(𝑛𝑛).       (2.25) 

Given a tensor 𝒳𝒳 ∈ ℝ𝐼𝐼1×𝐼𝐼2×⋯×𝐼𝐼𝑁𝑁 and matrices 𝐀𝐀(1),⋯ ,𝐀𝐀(N) where 𝐀𝐀(𝑛𝑛) ∈ ℝ𝐽𝐽(𝑛𝑛)×𝐼𝐼𝑛𝑛, a full 

multilinear tensor product 𝒴𝒴 ∈ ℝ𝐼𝐼1×𝐼𝐼2×⋯×𝐼𝐼𝑁𝑁  could be defined as 

𝒴𝒴 = 𝒳𝒳 ×1 𝐀𝐀(1) ×2 𝐀𝐀(2) ⋯×𝑁𝑁 𝐀𝐀(N) 

= �𝒳𝒳;𝐀𝐀(1),𝐀𝐀(2),⋯ ,𝐀𝐀(𝑁𝑁)�.                             (2.26) 

This full multilinear tensor product is closely related to the Tucker Decomposition, described in 

Section 2.6. 

2.5.8 Tensor Contraction 
Tensor contraction is a generalization of the mode-n tensor product. Instead of defining a product 

involving mode-n of one tensor, tensor contraction [11,13] allows us to define a product on two 

modes �𝑚𝑚𝑛𝑛� each belonging to one of the two tensors. Given tensors 𝒳𝒳 ∈ ℝ𝐼𝐼1×𝐼𝐼2×⋯×𝐼𝐼𝑁𝑁 and  𝒴𝒴 ∈

ℝ𝐽𝐽1×𝐽𝐽2×⋯×𝐽𝐽𝑀𝑀 with modes 𝑛𝑛 and 𝑚𝑚 having the same dimensions 𝐼𝐼𝑛𝑛 = 𝐽𝐽𝑚𝑚 , the mode-�𝑚𝑚𝑛𝑛� product 

of these tensors is written as 
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  𝒵𝒵 = 𝒳𝒳 ×𝑛𝑛
𝑚𝑚 𝒴𝒴 ∈ ℝ𝐼𝐼1×⋯×𝐼𝐼𝑛𝑛−1×𝐼𝐼𝑛𝑛+1×⋯×𝐼𝐼𝑁𝑁×𝐽𝐽1×⋯×𝐽𝐽𝑚𝑚−1×𝐽𝐽𝑚𝑚+1×⋯×𝐽𝐽𝑀𝑀 ,     (2.27) 

in which 𝒵𝒵 is a tensor of order (𝑁𝑁 + 𝑀𝑀 − 2) with entries 

𝑧𝑧𝑖𝑖1,…,𝑖𝑖𝑛𝑛−1,𝑖𝑖𝑛𝑛+1,…,𝑖𝑖𝑁𝑁,𝑗𝑗1,…,𝑗𝑗𝑚𝑚−1,𝑗𝑗𝑚𝑚+1,…,𝑗𝑗𝑀𝑀

=  � 𝑥𝑥𝑖𝑖1,…,𝑖𝑖𝑛𝑛−1,𝑖𝑖𝑛𝑛,𝑖𝑖𝑛𝑛+1,…,𝑖𝑖𝑁𝑁

𝐼𝐼𝑛𝑛

𝑖𝑖𝑛𝑛=1
𝑦𝑦𝑗𝑗1,…,𝑗𝑗𝑚𝑚−1,𝑖𝑖𝑛𝑛,𝑗𝑗𝑚𝑚+1,…,𝑗𝑗𝑀𝑀 

.                  (2.28)  

In other words, tensor mode-�𝑚𝑚𝑛𝑛� product could be viewed as an outer product with an inner 

product along modes 𝑚𝑚 and 𝑛𝑛. Mode-n tensor product is a particular case of tensor contraction 

where ×𝑛𝑛 has the same meaning as ×𝑛𝑛
1 . Therefore Eq. 2.26 can be written as 

𝒴𝒴 = 𝒳𝒳 ×1
1 𝐀𝐀(1) ×2

1 𝐀𝐀(2) ⋯×𝑁𝑁
1 𝐀𝐀(N)                (2.29) 

We could write common matrix products as mode-�𝑚𝑚𝑛𝑛� tensor products as shown in Table 2.1. 

Matrix-Vector forms Tensor Contraction forms 

𝐗𝐗𝐗𝐗 𝐗𝐗 ×2
1 𝐘𝐘 

𝐗𝐗𝐘𝐘𝐓𝐓 𝐗𝐗 ×2
2 𝐘𝐘 

〈𝐗𝐗,𝐘𝐘〉 𝐗𝐗 ×1,2
1,2 𝐘𝐘 

𝐗𝐗𝐗𝐗 𝐗𝐗 ×2
1 𝐘𝐘 

Table 2.1. Common matrix products as tensor contractions 

2.5.9 N-D Convolution of Tensors 
It is common to seek the convolution of two multidimension functions along all of their 

dimensions, for example, in three dimension 

 𝑠𝑠(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 𝑓𝑓(𝑥𝑥,𝑦𝑦, 𝑧𝑧) ∗𝑥𝑥,𝑦𝑦,𝑧𝑧 ℎ(𝑥𝑥,𝑦𝑦, 𝑧𝑧) 

= ∑ ∑ ∑ ℎ(𝑥𝑥′,𝑦𝑦′, 𝑧𝑧′)𝑓𝑓(𝑥𝑥 − 𝑥𝑥′, 𝑦𝑦 − 𝑦𝑦′, 𝑧𝑧 − 𝑧𝑧′)𝑧𝑧′𝑦𝑦′𝑥𝑥′ .                (2.30) 

Writing the above equation in tensor form yields 

𝒮𝒮(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) = ∑ ∑ ∑ ℋ(𝑥𝑥′,𝑦𝑦′, 𝑧𝑧′)ℱ(𝑥𝑥 − 𝑥𝑥′,𝑦𝑦 − 𝑦𝑦′, 𝑧𝑧 − 𝑧𝑧′)𝑧𝑧′𝑦𝑦′𝑥𝑥′ .                         (2.31) 
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2.5.10 Partial Mode-n Convolution 
Let 𝒳𝒳 ∈ ℝ𝐼𝐼1×𝐼𝐼2×⋯×𝐼𝐼𝑁𝑁 and 𝒴𝒴 ∈ ℝ𝐽𝐽1×𝐽𝐽2×⋯×𝐽𝐽𝑁𝑁 be two tensors with the same order N. If one is 

interested in obtaining convolutions between every combination of their mode-1 fibers, i.e., 𝒵𝒵 =

𝒳𝒳⊡1 𝒴𝒴 ∈ ℝ(𝐼𝐼1+𝐽𝐽1−1)×𝐼𝐼2𝐽𝐽2×⋯×𝐼𝐼𝑁𝑁𝐽𝐽𝑁𝑁, then this partial mode-1 convolution of the two tensors is given 

by 𝒵𝒵(: , 𝚤𝚤2𝚥𝚥2�����,⋯ , 𝚤𝚤𝑁𝑁𝚥𝚥𝑁𝑁������) = 𝒳𝒳(: , 𝑖𝑖2,⋯ , 𝑖𝑖𝑁𝑁) ∗ 𝒴𝒴(: , 𝑗𝑗2,⋯ , 𝑗𝑗𝑁𝑁) where 𝚤𝚤𝑛𝑛𝚥𝚥𝑛𝑛����� denotes the multi-index. This 

definition of partial convolution is useful when computing the full N-D tensor convolution using 

Tucker Decomposition and Tensor Train representations. 

An example of partial mode-1 convolution of 2nd-order tensors is shown in Fig. 2.5 where tensors 

are represented as mode-1 fibres. 

 

Fig. 2.5. Partial mode-1 convolution of 2nd-order tensors; the convolved tensors 

(top); convolution on every possible combination (middle); the convolution product (bottom) 

2.6 Tucker Decomposition 

  

Fig. 2.6. Tucker decomposition of a three-dimensional tensor 
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Tensor Tucker Decomposition (TKD) [8-9] decomposes a tensor of order N into a core tensor 

(usually smaller than the original tensor) and N factor matrices. Fig. 2.6 shows a 3rd-order tensor 

in the Tucker Decomposition representation. TKD could also be viewed as a full multilinear 

transformation of the core tensor, as described by Eq. 2.26. Mathematically, an N-order tensor 𝒳𝒳 ∈

ℝ𝐼𝐼1×𝐼𝐼2×⋯×𝐼𝐼𝑁𝑁 could be decomposed into a (possibly smaller) core tensor 𝒢𝒢𝒳𝒳 ∈ ℝ𝑅𝑅1×𝑅𝑅2×⋯×𝑅𝑅𝑁𝑁 and 

factor matrices 𝐗𝐗(1),⋯ ,𝐗𝐗(𝑁𝑁) where  𝐗𝐗(𝑛𝑛) ∈ ℝ𝐼𝐼𝑛𝑛×𝑅𝑅𝑛𝑛. This TKD of tensor 𝒳𝒳 could be written as 

𝒳𝒳 ≅ 𝒢𝒢𝒳𝒳 ×1 𝐗𝐗(1) ×2 𝐗𝐗(2) ⋯×𝑁𝑁 𝐗𝐗(N) 

= �𝒢𝒢𝒳𝒳;𝐗𝐗(1),𝐗𝐗(2),⋯ ,𝐗𝐗(𝑁𝑁)�.                 (2.32) 

As mentioned earlier, one could view TKD as a multilinear transform of the core tensor by the 

factor matrices. TKD could also be viewed as a method of tensor compression because when 𝑅𝑅𝑛𝑛 <

𝐼𝐼𝑛𝑛 TKD would decompose the original tensor, in addition to the factor matrices, into a smaller 

tensor core. The values 𝑅𝑅1, 𝑅𝑅2, … 𝑅𝑅𝑁𝑁 are known as the original tensor’s multilinear rank. The most 

popular way to obtain TKD is by using the Alternating Least Squares (ALS) [16] algorithm. 

The TKD of a tensor 𝒳𝒳 can also be represented as the sum of outer products of a set of vectors 

𝒳𝒳 ≅ � �⋯
𝑅𝑅2

𝑟𝑟2=1

𝑅𝑅1

𝑟𝑟1=1

� 𝑔𝑔𝑟𝑟1𝑟𝑟2⋯𝑟𝑟𝑁𝑁�𝐱𝐱𝑟𝑟1
(1) ∘ 𝐱𝐱𝑟𝑟2

(2) ∘ ⋯ ∘ 𝐱𝐱𝑟𝑟𝑁𝑁
(𝑁𝑁)�

𝑅𝑅𝑁𝑁

𝑟𝑟𝑁𝑁=1

 .                         (2.33) 

where 𝐱𝐱𝑟𝑟𝑛𝑛
(𝑛𝑛) are the columns of the factor matrix 𝐗𝐗(𝑛𝑛) = �𝐱𝐱1

(𝑛𝑛), 𝐱𝐱2
(𝑛𝑛), … , 𝐱𝐱𝑅𝑅𝑛𝑛

(𝑛𝑛)�. Other forms of TKD 

using mode-𝑛𝑛 matricized and vectorized tensor forms could be written as  

𝐗𝐗(𝑛𝑛) = 𝐗𝐗(𝑛𝑛)𝐆𝐆(𝑛𝑛)�𝐗𝐗(𝑁𝑁)⨂⋯⨂𝐗𝐗(𝑛𝑛−1)⨂𝐗𝐗(𝑛𝑛+1)⨂⋯⨂𝐗𝐗(1)�T,    (2.34) 

vec(𝒳𝒳) = (𝐗𝐗(𝑁𝑁)⨂⋯⨂𝐗𝐗(1))vec(𝒢𝒢).     (2.35) 

These equations are the multidimensional form of Eq. 2.2 and Eq. 2.4. Typically, the storage 

requires to store an N-dimensional tensor is 𝒪𝒪(𝐼𝐼𝑁𝑁) with TKD it reduces to 𝒪𝒪(𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑅𝑅𝑁𝑁) [7] where 

𝐼𝐼 and 𝑅𝑅 are tensor physical and rank dimensions. 
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2.6.1 Hadamard Product of Tensors Using Tucker Decomposition 
The Hadamard, elementwise, product requires the two tensors to have the same order and 

dimensions along all of its modes. If we have two tensors 𝒳𝒳,𝒴𝒴 ∈ ℝ𝐼𝐼1×𝐼𝐼2×⋯×𝐼𝐼𝑁𝑁 that have Tucker 

decompositions, 𝒳𝒳 = �𝒢𝒢𝒳𝒳;𝐗𝐗(1),𝐗𝐗(2),⋯ ,𝐗𝐗(𝑁𝑁)� and 𝒴𝒴 = �𝒢𝒢𝒴𝒴;𝐘𝐘(1),𝐘𝐘(2),⋯ ,𝐘𝐘(𝑁𝑁)�. Their 

Hadamard product is obtained by 

𝒳𝒳⊛𝒴𝒴 = �𝒢𝒢𝒳𝒳⨂𝒢𝒢𝒴𝒴;𝐗𝐗(1) ⊙1 𝐘𝐘(1),𝐗𝐗(2) ⊙1 𝐘𝐘(2),⋯ ,𝐗𝐗(𝑁𝑁) ⊙1 𝐘𝐘(𝑁𝑁)�.               (2.36) 

The operator ⨂ is the Kronecker product and ⊙1 is the mode-1 Khatri-Rao product. This Khatri-

Rao product requires that its two matrices have the same number of rows. 

 

2.6.2 N-D Convolution of Tensors Using Tucker Decomposition 
In this section, we use an example of convolving three-dimensional functions 𝑓𝑓(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) and 

ℎ(𝑥𝑥,𝑦𝑦, 𝑧𝑧) to demonstrate N-D convolution of tensors using Tucker decomposition. Given the 

Tensor Tucker decompositions of these functions 

ℱ = ⟦𝒢𝒢ℱ;𝐗𝐗ℱ ,𝐘𝐘ℱ ,𝐙𝐙ℱ⟧ and ℋ = ⟦𝒢𝒢ℋ;𝐗𝐗ℋ ,𝐘𝐘ℋ ,𝐙𝐙ℋ⟧                (2.37) 

with ℱ ∈ ℝ𝐼𝐼𝑥𝑥×𝐼𝐼𝑦𝑦×𝐼𝐼𝑧𝑧 ,𝒢𝒢ℱ ∈ ℝ𝑅𝑅𝑥𝑥×𝑅𝑅𝑦𝑦×𝑅𝑅𝑧𝑧 and ℋ ∈ ℝ𝐽𝐽𝑥𝑥×𝐽𝐽𝑦𝑦×𝐽𝐽𝑧𝑧 ,𝒢𝒢ℋ ∈ ℝ𝑄𝑄𝑥𝑥×𝑄𝑄𝑦𝑦×𝑄𝑄𝑧𝑧. The N-D Convolution 

of the two functions in TKD representation is given by 

ℱ ∗ℋ = ⟦𝒢𝒢ℱ⨂𝒢𝒢ℋ;𝐗𝐗ℱ ⊡1 𝐗𝐗ℋ ,𝐘𝐘ℱ ⊡1 𝐘𝐘ℋ ,𝐙𝐙ℱ ⊡1 𝐙𝐙ℋ⟧.               (2.38) 

where ⊡1 is partial mode-1 convolution defined in Section 2.5.10. 

In general, if we have two tensors  𝒳𝒳 ∈ ℝ𝐼𝐼1×𝐼𝐼2×⋯×𝐼𝐼𝑁𝑁 and 𝒴𝒴 ∈ ℝ𝐽𝐽1×𝐽𝐽2×⋯×𝐽𝐽𝑁𝑁 that are represented as 

TKD 

𝒳𝒳 = �𝒢𝒢𝒳𝒳;𝐗𝐗(1),𝐗𝐗(2),⋯ ,𝐗𝐗(𝑁𝑁)� and 𝒴𝒴 = �𝒢𝒢𝒴𝒴;𝐘𝐘(1),𝐘𝐘(2),⋯ ,𝐘𝐘(𝑁𝑁)�.            (2.39) 

A full N-D convolution of these two tensors is obtained by obtaining the Kronecker product of the 

cores, and the partial mode-1 convolution of the corresponding factor matrices. Therefore, 

𝒳𝒳 ∗ 𝒴𝒴 = �𝒢𝒢𝒳𝒳⨂𝒢𝒢𝒴𝒴;𝐗𝐗(1) ⊡1 𝐘𝐘(1),𝐗𝐗(2) ⊡1 𝐘𝐘(2),⋯ ,𝐗𝐗(𝑁𝑁) ⊡1 𝐘𝐘(𝑁𝑁)�.            (2.40) 
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2.7 Tensor Networks and Tensor Train Decomposition 
In this thesis, we will focus on two tensor decompositions: Tucker Decomposition and Tensor 

Train. The Tensor Train decomposition is the simplest case of Hierarchical Tucker (HT) 

decompositions, which in turn are a simpler case of tensor network decompositions. 

2.7.1 Tensors Network and its Graphical Representation 
Similar to Tucker Decomposition, the objective of a Tensor Network (TN) is to decompose a 

higher-order tensor into a network of lower-order tensors. The difference between TKD and TN is 

that TKD has one core tensor while TN has multiple lower-order core tensors.  

Multidimensional arrays are hard to visualize; hence, we could use a tensor network diagram to 

visualize a tensor and its relationship with another tensor. An example of tensor network diagrams 

is shown in Fig. 2.7. A circle or node represents a tensor, and the number of branches is its order. 

Typically, each branch would have its dimension written along with it. 

 

Fig. 2.7. Examples of tensor network diagrams 

2.7.2 Hierarchical Tucker Decomposition 
The Hierarchical Tucker (HT) decomposition introduced in [9] is a well-known tensor network 

framework. The HT decomposition uses a recursive algorithm to decompose a tensor into a binary 

tree of 2nd or 3rd- order core tensors. The example of HT decomposition of a 6th-order tensor is 

shown in Fig. 2.8. Since the highest order of its core tensors is three, the storage requirement for 

the HT decomposition is  𝒪𝒪(𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑁𝑁𝑅𝑅3) [13]. This represents a significant storage reduction 

compared to TKD. 
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Fig. 2.8. Example of HT decomposition of a 6th-order tensor 

The HT Decomposition of the tensor shown in Fig. 2.8 could be written as 

𝒳𝒳 ≅ � � 𝑔𝑔𝑟𝑟123,𝑟𝑟456
(1⋯6) �𝒳𝒳𝑟𝑟123

(123) ∘ 𝒳𝒳𝑟𝑟456
(456)�

𝑅𝑅456

𝑟𝑟456=1

𝑅𝑅123

𝑟𝑟123=1

 ,                              (2.41) 

𝒳𝒳123 ≅ � � 𝑔𝑔𝑟𝑟1,𝑟𝑟23,𝑟𝑟123
(123) �𝐱𝐱𝑟𝑟1

(1) ∘ 𝐗𝐗𝑟𝑟23
(23)�

𝑅𝑅23

𝑟𝑟23=1

𝑅𝑅1

𝑟𝑟1=1

 ,                              (2.42) 

𝒳𝒳456 ≅ � � 𝑔𝑔𝑟𝑟4,𝑟𝑟56,𝑟𝑟456
(456) �𝐱𝐱𝑟𝑟4

(4) ∘ 𝐗𝐗𝑟𝑟56
(56)�

𝑅𝑅56

𝑟𝑟56=1

𝑅𝑅4

𝑟𝑟4=1

 ,                              (2.43) 

𝐗𝐗23 ≅ � � 𝑔𝑔𝑟𝑟2,𝑟𝑟3,𝑟𝑟23
(23) �𝐱𝐱𝑟𝑟2

(2) ∘ 𝐱𝐱𝑟𝑟3
(3)�

𝑅𝑅3

𝑟𝑟3=1

𝑅𝑅2

𝑟𝑟2=1

 ,                              (2.44) 

𝐗𝐗56 ≅ � � 𝑔𝑔𝑟𝑟5,𝑟𝑟6,𝑟𝑟56
(56) �𝐱𝐱𝑟𝑟5

(5) ∘ 𝐱𝐱𝑟𝑟6
(6)�

𝑅𝑅6

𝑟𝑟6=1

𝑅𝑅5

𝑟𝑟5=1

 .                              (2.45) 

2.7.3 Tensor Train Decomposition 
The Tensor Train (TT) decomposition, also known as the linear tensor network, was introduced 

by Oseledet in [10]. It is a particular case of Hierarchical Tucker decomposition, where all the 

tensor cores are connected as a train. Fig. 2.9 shows the tensor network diagram of a Tensor Train 

representation of a 4th-order tensor. The advantage of the TT decomposition over the HT 

decomposition is that the TT decomposition algorithm does not require recursive computations. 
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TT decomposition is purely based on QR and Singular Value Decomposition (SVD); therefore, 

we could easily impose low-rank approximations. A particular case of TT known as the Matrix 

Product State (MPS) decomposes a higher-order tensor into a set of 3rd-order tensor cores and two 

2nd-order tensor cores. Given a tensor 𝒳𝒳 ∈ ℝ𝐼𝐼1×𝐼𝐼2×⋯×𝐼𝐼𝑁𝑁 TT/MPS decomposition is given by 

𝒳𝒳 ≅ 𝐆𝐆(1) ×2
1 𝒢𝒢(2) ×3

1 𝒢𝒢(3) ×3
1 ⋯×3

1 𝒢𝒢(𝑁𝑁−1) ×3
1 𝐆𝐆(N) 

= �𝐆𝐆(1),𝒢𝒢(2),𝒢𝒢(3),⋯ ,𝒢𝒢(𝑁𝑁−1),𝐆𝐆(N)�                 (2.46) 

where 𝒢𝒢(n) ∈ ℝ𝑅𝑅𝑛𝑛−1×𝐼𝐼𝑛𝑛×𝑅𝑅𝑛𝑛+1 for 𝑛𝑛 = 2,3,⋯ ,𝑁𝑁 − 1, 𝐆𝐆(1) ∈ ℝ𝐼𝐼1×𝑅𝑅1 and 𝐆𝐆(N) ∈ ℝ𝑅𝑅𝑁𝑁×𝐼𝐼𝑁𝑁 . The 

𝑅𝑅1,𝑅𝑅2, … ,𝑅𝑅𝑁𝑁−1 are the ranks of these cores. Compared to TKD, the TT framework has a drawback 

as the permutation of the modes affects its core ranks. Another way to mathematically describe TT 

is by using all 3rd-order tensors where the 𝒢𝒢(1) ∈ ℝ1×𝐼𝐼1×𝑅𝑅1 and 𝒢𝒢(N) ∈ ℝ𝑅𝑅𝑁𝑁×𝐼𝐼𝑁𝑁×1 we get 

𝒳𝒳 ≅ 𝒢𝒢(1) ×3
1 𝒢𝒢(2) ×3

1 𝒢𝒢(3) ×3
1 ⋯×3

1 𝒢𝒢(𝑁𝑁−1) ×3
1 𝒢𝒢(N) 

= �𝒢𝒢(1),𝒢𝒢(2),𝒢𝒢(3),⋯ ,𝒢𝒢(𝑁𝑁−1),𝒢𝒢(N)�                 (2.47) 

The benefit of this TT approach is that all modes of the original tensor are represented by mode-2 

of its cores. Therefore, one could define universal operations without concern for the position of 

the core in the train. In this thesis, we will use the convention presented in Eq. 2.47. 

 

Fig. 2.9. Tensor network diagrams of (top) 4th order TT/MPS 

(bottom) 𝑁𝑁thorder TT/MPS 

Also, frequently, a tensor train core is represented as slice matrices given by 𝐆𝐆𝑖𝑖𝑛𝑛
(n) = 𝒢𝒢(𝑛𝑛)(: , 𝑖𝑖𝑛𝑛, : ) ∈

ℝ𝑅𝑅𝑛𝑛−1×1×𝑅𝑅𝑛𝑛+1 for 𝑖𝑖𝑛𝑛 = 1,2, … , 𝐼𝐼𝑁𝑁. 
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In Fig. 2.10, the 8th order tensors have been decomposed into three different structures. The Tucker 

Decomposition shown in (a) has one 8th-order tensor core, leading to massive storage and 

computation requirements. On the contrary, the Tensor Networks shown in (b, c) have several 

lower-order tensors that significantly reduce storage requirements. Unlike TKD and HT, the TT 

decomposition only requires the storage of 𝒪𝒪(𝑁𝑁𝑁𝑁𝑅𝑅2) [10]. 

 

Fig. 2.10. The decomposition of an 8th order tensor in (a) Tucker decomposition  

(b) Hierarchical Tucker decomposition (c) tensor train/MPS, blue node represents 3rd or higher 

order tensor, and green node defines 2nd order tensor 

Tensor Representation Storage Complexity 

Full Tensor 𝒪𝒪(𝐼𝐼𝑁𝑁) 

Tensor in Tucker Decomposition 𝒪𝒪(𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑅𝑅𝑁𝑁) 

Tensor in Hierarchical Tucker Decomposition 𝒪𝒪(𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑁𝑁𝑅𝑅3) 

Tensor in Tensor Train Decomposition (MPS) 𝒪𝒪(𝑁𝑁𝑁𝑁𝑅𝑅2) 

Table 2.2. Comparison of storage complexities of an 𝑁𝑁𝑡𝑡ℎ order tensor with 𝐼𝐼 dimensions and 𝑅𝑅 

ranks using different tensor representations  

2.7.3.1 Hadamard Product of Tensor Train 

Given two tensors with the same order N and same dimensions along all their modes,  𝒳𝒳,𝒴𝒴 ∈

ℝ𝐼𝐼1×𝐼𝐼2×⋯×𝐼𝐼𝑁𝑁 that are decomposed as 

𝒳𝒳 = �𝒢𝒢𝒳𝒳
(1),𝒢𝒢𝒳𝒳

(2),𝒢𝒢𝒳𝒳
(3),⋯ ,𝒢𝒢𝒳𝒳

(𝑁𝑁−1),𝒢𝒢𝒳𝒳
(N)� and 𝒴𝒴 = �𝒢𝒢𝒴𝒴

(1),𝒢𝒢𝒴𝒴
(2),𝒢𝒢𝒴𝒴

(3),⋯ ,𝒢𝒢𝒴𝒴
(𝑁𝑁−1),𝒢𝒢𝒴𝒴

(N)�  (2.48) 
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The Hadamard product of their two tensor trains [10,17] is given by 

𝒵𝒵 = 𝒳𝒳⊛𝒴𝒴 = �𝒢𝒢𝒵𝒵
(1),𝒢𝒢𝒵𝒵

(2),𝒢𝒢𝒵𝒵
(3),⋯ ,𝒢𝒢𝒵𝒵

(N)�                           (2.49) 

where 𝒢𝒢𝒵𝒵
(𝑛𝑛) = 𝒢𝒢𝒳𝒳

(𝑛𝑛) ⊙2 𝒢𝒢𝒴𝒴
(𝑛𝑛) ∈ ℝ𝑅𝑅𝑛𝑛−1𝑅𝑅𝑛𝑛−1×𝐼𝐼𝑛𝑛×𝑅𝑅𝑛𝑛+1𝑅𝑅𝑛𝑛+1 with 𝑅𝑅0 = 𝑅𝑅𝑁𝑁 = 1 and ⊙2 is the mode-2 

Khatri-Rao product. We note that mode-𝑛𝑛 Khatri-Rao products could be described using 

Kronecker products of slice cores  

𝐆𝐆𝒵𝒵𝑖𝑖𝑛𝑛
(𝑛𝑛) = 𝒢𝒢𝒵𝒵

(𝑛𝑛)(: , 𝑖𝑖𝑛𝑛, : ) = 𝐆𝐆𝒳𝒳𝑖𝑖𝑛𝑛
(𝑛𝑛)⨂𝐆𝐆𝒴𝒴𝑖𝑖𝑛𝑛

(𝑛𝑛) = 𝒢𝒢𝒳𝒳
(𝑛𝑛)(: , 𝑖𝑖𝑛𝑛, : )⨂𝒢𝒢𝒴𝒴

(𝑛𝑛)(: , 𝑖𝑖𝑛𝑛, : )     (2.50) 

for 𝑖𝑖𝑛𝑛 = 1,2, … , 𝐼𝐼𝑁𝑁. 

2.7.3.2 N-D Convolution of Tensor Train 
Suppose we have TT decompositions of functions 𝑓𝑓(𝑥𝑥,𝑦𝑦, 𝑧𝑧) and ℎ(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) given as 

ℱ = ⟦𝒳𝒳ℱ ,𝒴𝒴ℱ ,𝒵𝒵ℱ⟧ and ℋ = ⟦𝒳𝒳ℋ ,𝒴𝒴ℋ ,𝒵𝒵ℋ⟧                (2.51) 

their dimensions are ℱ ∈ ℝ𝐼𝐼𝑥𝑥×𝐼𝐼𝑦𝑦×𝐼𝐼𝑧𝑧 ,𝒳𝒳ℱ ∈ ℝ1×𝐼𝐼𝑥𝑥×𝑅𝑅𝑥𝑥 ,𝒴𝒴ℱ ∈ ℝ𝑅𝑅𝑥𝑥×𝐼𝐼𝑦𝑦×𝑅𝑅𝑦𝑦 ,𝒵𝒵ℱ ∈ ℝ𝑅𝑅𝑦𝑦×𝐼𝐼𝑧𝑧×1 and  ℋ ∈

ℝ𝐽𝐽𝑥𝑥×𝐽𝐽𝑦𝑦×𝐽𝐽𝑧𝑧 ,𝒳𝒳ℋ ∈ ℝ1×𝐽𝐽𝑥𝑥×𝑄𝑄𝑥𝑥 ,𝒴𝒴ℋ ∈ ℝ𝑄𝑄𝑥𝑥×𝐽𝐽𝑦𝑦×𝑄𝑄𝑦𝑦 ,𝒵𝒵ℋ ∈ ℝ𝑄𝑄𝑦𝑦×𝐽𝐽𝑧𝑧×1. Similar to N-D Convolution in 

Tucker Decomposition, we could apply partial convolutions to the physical modes of each pair of 

tensor cores to obtain the final convolution result. This partial convolution should be performed 

on mode-2 fibers, yielding 

ℱ ∗ℋ = ⟦𝒳𝒳ℱ ⊡2 𝒳𝒳ℋ ,𝒴𝒴ℱ ⊡2 𝒴𝒴ℋ ,𝒵𝒵ℱ ⊡2 𝒵𝒵ℋ⟧.                           (2.52) 

where ⊡2 is the mode-2 partial convolution. 

Generally, if we have two tensors  𝒳𝒳 ∈ ℝ𝐼𝐼1×𝐼𝐼2×⋯×𝐼𝐼𝑁𝑁 and 𝒴𝒴 ∈ ℝ𝐽𝐽1×𝐽𝐽2×⋯×𝐽𝐽𝑁𝑁 that are represented as 

Tensor Train representation 

𝒳𝒳 = �𝒳𝒳(1),𝒳𝒳(2),⋯ ,𝒳𝒳(𝑁𝑁)� and 𝒴𝒴 = �𝒴𝒴(1),𝒴𝒴(2),⋯ ,𝒴𝒴(𝑁𝑁)�.         (2.53) 

A full N-D convolution of these two tensors is obtaining by the partial mode-2 convolution of the 

corresponding tensor cores. Therefore, 

𝒳𝒳 ∗ 𝒴𝒴 = �𝒳𝒳(1) ⊡2 𝒴𝒴(1),𝒳𝒳(2) ⊡2 𝒴𝒴(2),⋯ ,𝒳𝒳(𝑁𝑁) ⊡2 𝒴𝒴(𝑁𝑁)�.                    (2.54) 
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2.8 Chapter Summary 
In this chapter, we reviewed tensors including their operations and decompositions. We described 

three tensor decompositions, i.e., Tucker Decompositions, Hierarchical Tucker Decomposition, 

and Tensor Train Decomposition. Tucker Decomposition requires the most storage of 

𝒪𝒪(𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑅𝑅𝑁𝑁) due to a high-order tensor core. The Hierarchical Tucker Decomposition requires 

𝒪𝒪(𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑁𝑁𝑅𝑅3) of storage and a recursive computation algorithm. In comparison, Tensor Train 

decomposition requires the least storage of 𝒪𝒪(𝑁𝑁𝑁𝑁𝑅𝑅2). Therefore, TT is usually most suitable for 

high-dimensional problems. We also described both tensor element-wise product and full N-D 

convolution and their implementation in these tensor decompositions. Practically, we would need 

to apply convolution to some tensor modes but not to others. In the next chapter, we will describe 

our novel approach to tensor convolution along arbitrary tensor modes. 
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3. Arbitrary Mode-n Convolution of Physical Tensors 
 

3.1 Motivation for Arbitrary Mode-n Convolution of Physical 

Tensors 
In the current literature on tensor convolution, tensors to be convolved are viewed as abstract 

mathematical entities. N-D tensor convolution has three assumptions imposed on the tensors to be 

convolved: 1) they have the same order; 2) they represent the same physical variables on their 

corresponding modes; 3) they are to be convolved on every mode.  

Our ultimate long-term research objective is to represent Fourier Optics problems using tensors; 

hence we are interested in imposing physical interpretations on tensors. In this thesis, we refer to 

a tensor with a physical interpretation associated with its modes as a physical tensor.  

In general, convolution of two functions implies convolution along the same physical variable, 

e.g., for f(𝑥𝑥) ∗ ℎ(𝑥𝑥) x would have the same physical interpretation. That is why, given 

multidimensional functions 𝑓𝑓(𝑦𝑦, 𝑧𝑧, 𝑥𝑥) and ℎ(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) with tensor representations, ℱ(𝑦𝑦, 𝑧𝑧, 𝑥𝑥) and 

ℋ(𝑥𝑥,𝑦𝑦, 𝑧𝑧), caution must be taken before applying N-D tensor convolution as their modes are 

ordered differently. 

In the above example, there would be a need to reorder the modes of ℱ(𝑦𝑦, 𝑧𝑧, 𝑥𝑥) and ℋ(𝑥𝑥,𝑦𝑦, 𝑧𝑧) 

before performing tensor convolution. Therefore, tensor mode matching via reordering could be 

occasionally essential for tensor convolution.  

Another problem arises in N-D tensor convolution when we try to convolve, e.g.,  𝑓𝑓(𝑢𝑢, 𝑣𝑣, 𝑥𝑥,𝑦𝑦) 

with ℎ(𝑥𝑥, 𝑦𝑦, 𝑧𝑧), where variables 𝑢𝑢, 𝑣𝑣, and 𝑧𝑧 are absent from the second and first function, 

respectively. To perform such convolution along a specific subset of modes, one would need to 

expand the number of modes of each tensor to include dummy variables instead of the missing 

variables in each tensor. Mode-matching could also be necessary afterward. 
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3.1.1 Arbitrary Mode-n Convolution with Mode Expansion on Tensor Edges 
Often, we only seek to convolve along a specific subset of tensor modes. For example, given two 

functions 𝑓𝑓(𝑢𝑢, 𝑣𝑣, 𝑥𝑥,𝑦𝑦) and ℎ(𝑥𝑥, 𝑦𝑦, 𝑧𝑧). We would like to convolve along x only and obtain the result 

as a function 𝑠𝑠(𝑢𝑢, 𝑣𝑣, 𝑥𝑥,𝑦𝑦, 𝑧𝑧). The two functions have the common variables 𝑥𝑥 and 𝑦𝑦. From a 

physical aspect, 𝑦𝑦 of both functions should have the same sampling rate and size. The direct 

approach for this convolution along x would be 

𝒮𝒮(𝑢𝑢, 𝑣𝑣, 𝑥𝑥, 𝑦𝑦, 𝑧𝑧) = ℱ ∗𝑥𝑥 ℋ = ∑ ℋ(𝑥𝑥′, 𝑦𝑦, 𝑧𝑧)ℱ(𝑢𝑢, 𝑣𝑣, 𝑥𝑥 − 𝑥𝑥′,𝑦𝑦)𝑥𝑥′ .                 (3.1) 

This approach would work well with small problem sizes. However, tensors could be very large; 

thus, arbitrary mode-n convolution using decomposed tensors would be needed. Given the tensor 

Tucker Decomposition of both functions as 

ℱ = ⟦𝒢𝒢ℱ;𝐔𝐔ℱ ,𝐕𝐕ℱ ,𝐗𝐗ℱ ,𝐘𝐘ℱ⟧ and ℋ = ⟦𝒢𝒢ℋ;𝐗𝐗ℋ ,𝐘𝐘ℋ ,𝐙𝐙ℋ⟧.                 (3.2) 

Their dimensions are ℱ ∈ ℝ𝐼𝐼𝑢𝑢×𝐼𝐼𝑣𝑣×𝐼𝐼𝑥𝑥×𝐼𝐼𝑦𝑦 ,𝒢𝒢𝓕𝓕 ∈ ℝ𝑅𝑅𝑢𝑢×𝑅𝑅𝑣𝑣×𝑅𝑅𝑥𝑥×𝑅𝑅𝑦𝑦 and  ℋ ∈ ℝ𝐽𝐽𝑥𝑥×𝐽𝐽𝑦𝑦×𝐽𝐽𝑧𝑧 ,𝒢𝒢ℋ ∈

ℝ𝑄𝑄𝑥𝑥×𝑄𝑄𝑦𝑦×𝑄𝑄𝑧𝑧. Given their Tensor Train Decompositions as well 

ℱ = �𝒰𝒰ℱ ,𝒱𝒱ℱ,𝒳𝒳ℱ ,𝒴𝒴ℱ� and ℋ = ⟦𝒳𝒳ℋ ,𝒴𝒴ℋ ,𝒵𝒵ℋ⟧                  (3.3) 

where ℱ ∈ ℝ𝐼𝐼𝑢𝑢×𝐼𝐼𝑣𝑣×𝐼𝐼𝑥𝑥×𝐼𝐼𝑦𝑦 ,𝒰𝒰ℱ ∈ ℝ1×𝐼𝐼𝑢𝑢×𝑅𝑅𝑢𝑢 ,𝒱𝒱ℱ ∈ ℝ𝑅𝑅𝑢𝑢×𝐼𝐼𝑣𝑣×𝑅𝑅𝑣𝑣 ,𝒳𝒳ℱ ∈ ℝ𝑅𝑅𝑣𝑣×𝐼𝐼𝑥𝑥×𝑅𝑅𝑥𝑥 ,𝒴𝒴ℱ ∈ ℝ𝑅𝑅𝑥𝑥×𝐼𝐼𝑦𝑦×1 and 

ℋ ∈ ℝ𝐽𝐽𝑥𝑥×𝐽𝐽𝑦𝑦×𝐽𝐽𝑧𝑧 ,𝒳𝒳ℋ ∈ ℝ1×𝐽𝐽𝑥𝑥×𝑄𝑄𝑥𝑥 ,𝒴𝒴ℋ ∈ ℝ𝑄𝑄𝑥𝑥×𝐽𝐽𝑦𝑦×𝑄𝑄𝑦𝑦 ,𝒵𝒵ℋ ∈ ℝ𝑄𝑄𝑦𝑦×𝐽𝐽𝑧𝑧×1. We note that the dimension 

of the common-mode y that does not get convolved should be the same, i.e., 𝐼𝐼𝑦𝑦 = 𝐽𝐽𝑦𝑦.  

In this example, one needs to consider three subsets of modes (variables) 

1. The convolved mode, x 

2. The common mode y where convolution is not applied 

3. The uncommon modes, u, v and z 

This thesis presents a tensor convolution method that considers all subsets of modes (variables) 

listed above. Our approach starts with pre-processing the input tensors to satisfy the following 

conditions 

1. Both tensors 𝒳𝒳 and 𝒴𝒴 must have the same order 𝐿𝐿, where 𝐿𝐿 is the number of all distinct 

modes (variables) in both tensors. 
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2. Tensor cores and factor matrices having the same physical interpretation must correspond 

to the same mode in both to be convolved tensors.  

We start this tensor pre-processing first by artificially expanding the order of both tensors (see 

appendix A) to have the same order 

𝓕𝓕 = ⟦𝓖𝓖ℱ;𝐔𝐔ℱ ,𝐕𝐕ℱ ,𝐗𝐗ℱ ,𝐘𝐘ℱ , 1⟧ and 𝓗𝓗 = ⟦𝓖𝓖ℋ; 1,1,𝐗𝐗ℋ ,𝐘𝐘ℋ ,𝐙𝐙ℋ⟧                 (3.4) 

where the last artificially expanded mode of tensors 𝓕𝓕 and 𝓖𝓖ℱ have a dimension of one. Similarly, 

𝓗𝓗 and 𝓖𝓖ℋ have artificially expanded first two modes of dimension one.  

Similarly, artificially enlarging the modes of TT would result in 

𝓕𝓕 = �𝒰𝒰ℱ ,𝒱𝒱ℱ,𝒳𝒳ℱ ,𝒴𝒴ℱ , 1� and 𝓗𝓗 = ⟦1,1,𝒳𝒳ℋ ,𝒴𝒴ℋ ,𝒵𝒵ℋ⟧                  (3.5) 

These steps would conclude our required pre-processing steps. 

 Computing arbitrary mode-n convolution on physical tensors is not as direct as the N-D 

convolution mentioned in the previous chapter. First, we perform mode-n partial convolution on 

the to be convolved mode 𝑥𝑥. Secondly, for the common mode, y, no operations are needed for this 

mode. Therefore, we could write arbitrary mode-n convolution of physical tensors using TKD as 

ℱ ∗𝑥𝑥 ℋ = 𝓕𝓕 ∗𝑥𝑥 𝓗𝓗 

  = ⟦𝓖𝓖ℱ⨂𝓖𝓖ℋ;𝐔𝐔ℱ ,𝐕𝐕ℱ ,𝐗𝐗ℱ ⊡1 𝐗𝐗ℋ ,𝐘𝐘ℱ ⊙1 𝐘𝐘ℋ ,𝐙𝐙ℋ⟧.                   (3.6) 

Similarly, we could write arbitrary mode-n convolution of physical tensors using TT as 

ℱ ∗𝑥𝑥 ℋ = 𝓕𝓕 ∗𝑥𝑥 𝓗𝓗 

  = ⟦𝒰𝒰ℱ ,𝒱𝒱ℱ ,𝒳𝒳ℱ ⊡2 𝒳𝒳ℋ ,𝒴𝒴ℱ ⊙2 𝒴𝒴ℋ ,𝒵𝒵ℋ⟧.                   (3.7) 

Diagram in Fig. 3.1 shows the Tensor Train Decomposition of the original tensors, artficially 

expanded order tensors, and their tensor convolution result. We have validated our results, given 

by Eq. 3.6 and Eq. 3.7 using Matlab tensor toolboxes provided by both Sandia National 

Laboratories and Oseledets. The tensors corresponding to these two functions 𝑓𝑓(𝑢𝑢, 𝑣𝑣, 𝑥𝑥,𝑦𝑦) and 

ℎ(𝑥𝑥,𝑦𝑦, 𝑧𝑧) were generated using random entries. The dimensions of the generated tensors are ℱ ∈

ℝ18×16×20×13 corresponding to 74,880 entries, and ℋ ∈ ℝ19×13×21 corresponding to 5,187 

entries. The common mode y in both tensors had the same dimension equal to 13.  
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Fig. 3.1. Network diagram of convolution on x of 𝑓𝑓(𝑢𝑢, 𝑣𝑣, 𝑥𝑥,𝑦𝑦) and ℎ(𝑥𝑥,𝑦𝑦, 𝑧𝑧) 

using Tensor Train Decomposition 

We computed the tensor convolution along x using three approaches, Eq. 3.1, Eq. 3.6 and Eq. 3.7, 

where its direct computation is given by Eq. 3.1. Our results are shown in Fig. 3.2 to 3.4, where 

the first rows show different slices from the resulting tensor, 𝒮𝒮, using direct computation (1st 

columns), TKD (2nd columns) and TT (3rd columns). The second rows of Fig. 3.2 to 3.4 show the 

corresponding slices from different tensors representing their differences.   

 

Fig. 3.2. Slice 𝒮𝒮[: , : ,1,1,1] of different tensor convolutions along x obtained using direct 

computation, TKD, and TT (first row), and their differences (second row) 
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Fig. 3.3. Slice 𝒮𝒮[1,1, : , : ,1] of different tensor convolutions along x obtained using direct 

computation, TKD, and TT (first row), and their differences (second row) 

 

Fig. 3.4. Slice 𝒮𝒮[1,1, : ,1, : ] of different tensor convolutions along x obtained using direct 

computation, TKD, and TT (first row), and their differences (second row) 

The norm of the tensor containing the differences (error) between the tensor results obtained by 

using direct computation and TKD (computation time 9 sec) is 6.3795 × 10−11. Also, the Tensor 

Train-based tensor results (computation time 0.2674 sec) resulted in a tensor error norm of 

2.0835 × 10−10. Therefore, our results demonstrate that using tensor TKD-based arbitrary mode-

n convolution reduces numerical errors, but it requires significantly longer computation time and 

storage (due to required Kronecker product between tensor cores).  

To confirm these results, we obtained mode-n convolution of tensors of the same order but with 

larger size due to higher mode dimensions, i.e.,  ℱ ∈ ℝ30×62×43×56 and ℋ ∈ ℝ51×56×41 

corresponding to 3,908 GB entries.  

The results shown in Fig. 3.5 were obtained with TT using computer storage of 3.76 GB in 27 

seconds, thereby further confirming our earlier conclusions. 



Arbitrary Mode-n Convolution of Tensors with Applications in Optics Pandhittaya Noikorn 

28 
 

         

 

Fig. 3.5. Tensor train based arbitrary mode-x convolution on a larger problem size 

3.1.2 Arbitrary Mode-n Convolution with Mode Expansion Independent of 

Their Positions 
Given the functions 𝑓𝑓(𝑡𝑡,𝑢𝑢,𝑤𝑤, 𝑥𝑥,𝑦𝑦) and ℎ(𝑡𝑡, 𝑣𝑣,𝑤𝑤, 𝑥𝑥, 𝑦𝑦, 𝑧𝑧). We would like to obtain their  

convolution along both variables 𝑡𝑡 and x. Both functions have the same sampling rate and support 

along modes 𝑤𝑤 and 𝑦𝑦. The direct approach to perform this convolution is to compute 

𝒮𝒮(𝑡𝑡,𝑢𝑢, 𝑣𝑣,𝑤𝑤, 𝑥𝑥,𝑦𝑦, 𝑧𝑧)  = ℱ ∗𝑡𝑡,𝑥𝑥 ℋ 

= ∑ ∑ ℋ(𝑡𝑡 − 𝑡𝑡′, 𝑣𝑣,𝑤𝑤, 𝑥𝑥 − 𝑥𝑥′,𝑦𝑦, 𝑧𝑧)ℱ(𝑡𝑡 − 𝑡𝑡′,𝑢𝑢,𝑤𝑤, 𝑥𝑥 − 𝑥𝑥′,𝑦𝑦)𝑥𝑥′𝑡𝑡′               (3.8) 

to obtain the 7th order tensor.  
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We could also obtain the synthetically order expanded TKD of the two tensors (see appendix A) 

corresponding to these two multidimensional functions, as follows 

𝓕𝓕 = ⟦𝓖𝓖ℱ;𝐓𝐓ℱ ,𝐔𝐔ℱ , 1,𝐖𝐖ℱ ,𝐗𝐗ℱ ,𝐘𝐘ℱ , 1⟧  and 

𝓗𝓗 = ⟦𝓖𝓖ℋ;𝐓𝐓ℋ , 1,𝐕𝐕ℋ ,𝐖𝐖ℋ ,𝐗𝐗ℋ ,𝐘𝐘ℋ ,𝐙𝐙ℋ⟧                           (3.9) 

Similarly, obtaining the synthetically order expanded TT of the two tensors  

𝓕𝓕 = �𝒯𝒯ℱ ,  𝒰𝒰ℱ , 𝐈𝐈𝑣𝑣,𝒲𝒲ℱ,𝒳𝒳ℱ ,𝒴𝒴ℱ , 1� and 𝓗𝓗 = ⟦𝒯𝒯ℋ , 𝐈𝐈𝑢𝑢,𝒱𝒱ℋ ,𝓦𝓦ℋ ,𝒳𝒳ℋ ,𝒴𝒴ℋ ,𝒵𝒵ℋ⟧.                (3.10) 

Fig. 3.6 shows the original tensors, their Tensor Train Decomposition, and the expected tensor 

convolution result.  

We note that we could not directly use the previously developed approach, Eq. 3.7, to obtain the 

required mode-n tensor convolution due to the rank mismatch between the train cores. To 

overcome this problem, a modification could easily be made by applying a Kronecker product 

between the expanded modes such that  𝒰𝒰ℱ⨂𝐈𝐈𝑢𝑢 ∈ ℝ𝑅𝑅𝑡𝑡𝑡𝑡𝑄𝑄𝑡𝑡𝑡𝑡×𝐼𝐼𝑢𝑢×𝑅𝑅𝑢𝑢𝑢𝑢𝑄𝑄𝑡𝑡𝑡𝑡 and 𝐈𝐈𝑣𝑣⨂𝒱𝒱ℋ ∈

ℝ𝑅𝑅𝑢𝑢𝑢𝑢𝑄𝑄𝑡𝑡𝑡𝑡×𝐽𝐽𝑣𝑣×𝑅𝑅𝑢𝑢𝑢𝑢𝑄𝑄𝑣𝑣𝑣𝑣. Notice that at the first and last cores of the train, we could apply 1⨂𝒵𝒵ℋ =

𝒵𝒵ℋ which is the same approach in Eq. 3.7. 

 

Fig. 3.6. Network diagram of 𝑓𝑓(𝑡𝑡,𝑢𝑢,𝑤𝑤, 𝑥𝑥,𝑦𝑦) and ℎ(𝑡𝑡, 𝑣𝑣,𝑤𝑤, 𝑥𝑥, 𝑦𝑦, 𝑧𝑧) in Tensor Train 

Decomposition and their mode-(𝑡𝑡, 𝑥𝑥) arbitrary convolution 
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Therefore, we could write the mode-n tensor convolution in TKD representation as  

ℱ ∗𝑡𝑡,𝑥𝑥 ℋ = 𝓕𝓕 ∗𝑡𝑡,𝑥𝑥 𝓗𝓗 

  = ⟦𝓖𝓖ℱ⨂𝓖𝓖ℋ;𝐓𝐓ℱ ⊡1 𝐓𝐓ℋ ,𝐔𝐔ℱ ,𝐕𝐕ℱ ,𝐖𝐖ℱ ⊙1 𝐖𝐖ℋ ,𝐗𝐗ℱ ⊡1 𝐗𝐗ℋ ,𝐘𝐘ℱ ⊙1 𝐘𝐘ℋ ,𝐙𝐙ℋ⟧         (3.11) 

and in TT representation as  

ℱ ∗𝑡𝑡,𝑥𝑥 ℋ = 𝓕𝓕 ∗𝑡𝑡,𝑥𝑥 𝓗𝓗 

  = ⟦𝒯𝒯ℱ ⊡2 𝒯𝒯ℋ ,𝒰𝒰ℱ⨂𝐈𝐈𝑢𝑢, 𝐈𝐈𝑣𝑣⨂𝒱𝒱ℋ ,𝒲𝒲ℱ ⊙2 𝒲𝒲ℋ ,𝒳𝒳ℱ ⊡2 𝒳𝒳ℋ ,𝒴𝒴ℱ ⊙2 𝒴𝒴ℋ ,𝒵𝒵ℋ⟧.         (3.12) 

We verified these mode-n convolution formulations, Eq. 3.11 and Eq. 3.12, using relatively smaller 

dimension tensors,  ℱ ∈ ℝ6×4×8×9×7 and ℋ ∈ ℝ5×10×8×7×7×5, due to the storage limitations of 

computer we used. In Fig. 3.7, we show different slices from the resulting tensor, 𝒮𝒮, using direct 

computation (1st column), TKD (2nd column) and TT (3rd column). 

The norm of the tensor containing the differences (error) between the tensor results obtained by 

using direct computation and TKD (computation time 39.582  sec) is 7.7985 × 10−11. Also, the 

Tensor Train-based tensor results (computation time 13.0741 sec) resulted in a tensor error norm 

of 3.2507 × 10−10. These results further confirm that TT-based mode-n tensor convolution 

generally results in superior performance (lower computer storage and computation time 

requirements) 

 

Fig. 3.7A. Slices of tensor convolutions along u-v (top row) and t-x (bottom row) obtained using 

direct computation (1st column), TKD (2nd column), and TT (3rd column) 
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Fig. 3.7B.  Slices of tensor convolutions along x-y (top row) and w-y (bottom row) obtained 

using direct computation (1st column), TKD (2nd column), and TT (3rd column) 

3.3 General Formulation of Arbitrary Mode-n Convolution of 

Physical Tensors 
Given two tensors 𝒜𝒜 ∈ ℝ𝐼𝐼1×⋯×𝐼𝐼𝑁𝑁 and ℬ ∈ ℝ𝐼𝐼1×⋯×𝐼𝐼𝑘𝑘×𝐽𝐽𝑘𝑘+1×⋯×𝐽𝐽𝑀𝑀 representing physical variables, 

they could have K modes with the same physical interpretation where 𝐾𝐾 ≤ 𝑁𝑁,𝑀𝑀 ,i.e., 𝐀𝐀(𝑘𝑘) and 

𝐁𝐁(𝑘𝑘) represent the same physical variable in their corresponding functions. The common mode-n 

fibers that are not convolved should have the same sampling rate and support. Their Tucker and 

Tensor Train Decompositions are given by 

 𝒜𝒜 = �𝒢𝒢𝒜𝒜;𝐀𝐀(1),𝐀𝐀(2),⋯ ,𝐀𝐀(𝑁𝑁)� and ℬ = �𝒢𝒢ℬ;𝐁𝐁(1),𝐁𝐁(2),⋯ ,𝐁𝐁(𝑀𝑀)�,               (3.13) 

and 

𝒜𝒜 = �𝒢𝒢𝒜𝒜
(1),𝒢𝒢𝒜𝒜

(2),⋯ ,𝒢𝒢𝒜𝒜
(𝑁𝑁−1),𝒢𝒢𝒜𝒜

(𝑁𝑁)� and ℬ = �𝒢𝒢ℬ
(1),𝒢𝒢ℬ

(2),⋯ ,𝒢𝒢ℬ
(𝑁𝑁−1),𝒢𝒢ℬ

(𝑀𝑀)�,              (3.14) 

respectively. 

3.3.1 Pre-processing Physical Tensors by Artificial Mode Expansion 
First, we need to pre-process the given tensors so that both 𝒜𝒜 and ℬ have the same order, 𝐿𝐿 =

𝑀𝑀 + 𝑁𝑁 − 𝐾𝐾, by artificially expanding the orders of these tensors. To assign mode-n fibers in these 

artificially expanded tensors, we start with the mode-n fibers that are represent the common-mode 

k first, followed by the modes that are unique to both 𝒜𝒜 and ℬ. Denoting all K common physical 

mode-l fibers by using their corresponding physical variables 𝑢𝑢,⋯ , 𝑧𝑧, we could write their TKD 

representations 
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𝓐𝓐 = �𝓖𝓖𝒜𝒜;𝐔𝐔𝒜𝒜 ,⋯ ,𝐙𝐙𝒜𝒜 ,𝐀𝐀(𝐾𝐾+1),⋯ ,𝐀𝐀(𝑁𝑁), 1(𝑁𝑁+1),⋯ , 1(𝐿𝐿)�  

 𝓑𝓑 = �𝓖𝓖ℬ;𝐔𝐔ℬ ,⋯ ,𝐙𝐙ℬ , 1(𝐾𝐾+1),⋯ , 1(𝑁𝑁),𝐁𝐁(𝑁𝑁+1),⋯ ,𝐁𝐁(𝐿𝐿)�                   (3.15) 

where 𝐀𝐀(𝐾𝐾+1),⋯ ,𝐀𝐀(𝑁𝑁) and 𝐁𝐁(𝑁𝑁+1),⋯ ,𝐁𝐁(𝐿𝐿) are the modes that are unique to both 𝒜𝒜 and ℬ, 

respectively. The cores 𝓖𝓖𝒜𝒜 and 𝓖𝓖ℬ have also been expanded where modes 𝑁𝑁 + 1 to 𝐿𝐿 of 𝓖𝓖𝒜𝒜 are 

fibers of length one or scalars as well as modes 𝐾𝐾 + 1 to 𝑁𝑁 of 𝓖𝓖ℬ.  

For the Tensor Train representation, we have 

𝓐𝓐 = �𝒰𝒰𝒜𝒜 ,𝒱𝒱𝒜𝒜 ⋯ ,𝒵𝒵𝒜𝒜 ,𝒢𝒢𝒜𝒜
(𝐾𝐾+1),⋯ ,𝒢𝒢𝒜𝒜

(𝑁𝑁), 1(𝑁𝑁+1),⋯ , 1(𝐿𝐿)�  

𝓑𝓑 = �𝒰𝒰𝐵𝐵,𝒱𝒱ℬ ⋯ ,𝒵𝒵ℬ , 𝐈𝐈(𝐾𝐾+1),⋯ , 𝐈𝐈(𝑁𝑁),𝒢𝒢ℬ
(𝑁𝑁+1),⋯ ,𝒢𝒢ℬ

(𝐿𝐿)�.                (3.16) 

The purpose of assigning the tensor modes this way is to facilitate understanding. However, one 

could constantly reorder the modes as desired. In the Tensor Train format, the core ranks depend 

on this ordering. The most efficient way to pre-process these tensors is to add the required 

expansion modes at the beginning or end of the Tensor Trains (see Eq. 3.21 and Eq. 3.22). In this 

case, all additional cores would be scalars. 

3.3.2 Select the Arbitrary Mode-n to Apply Convolution 
Since mode-k fibers of both tensors must have the same length except for the fibers mode-n that 

will be convolved. Therefore, we denote all the same length fibers with the same variables. The 

equation below assumes that the mode-n physical variable is x. 

For the Tucker Decomposition representation, we have 

𝓐𝓐 = �𝓖𝓖𝒜𝒜;𝐔𝐔,⋯ ,𝐗𝐗𝒜𝒜 ,⋯ ,𝐙𝐙,𝐀𝐀(𝐾𝐾+1),⋯ ,𝐀𝐀(𝑁𝑁), 1(𝑁𝑁+1),⋯ , 1(𝐿𝐿)�  

 𝓑𝓑 = �𝓖𝓖ℬ;𝐔𝐔,⋯ ,𝐗𝐗ℬ,⋯ ,𝐙𝐙, 1(𝐾𝐾+1),⋯ , 1(𝑁𝑁),𝐁𝐁(𝑁𝑁+1),⋯ ,𝐁𝐁(𝐿𝐿)�                  (3.17) 

For the Tensor Train representation, we have 

𝓐𝓐 = �𝒰𝒰,𝒱𝒱,⋯ ,𝒳𝒳𝒜𝒜 ,⋯ ,𝒵𝒵,𝒢𝒢𝒜𝒜
(𝐾𝐾+1),⋯ ,𝒢𝒢𝒜𝒜

(𝑁𝑁), 1(𝑁𝑁+1),⋯ , 1(𝐿𝐿)�  

 𝓑𝓑 = �𝒰𝒰,𝒱𝒱,⋯ ,𝒳𝒳ℬ ,⋯ ,𝒵𝒵, 𝐈𝐈(𝐾𝐾+1),⋯ , 𝐈𝐈(𝑁𝑁),𝒢𝒢ℬ
(𝑁𝑁+1),⋯ ,𝒢𝒢ℬ

(𝐿𝐿)�                  (3.18) 
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3.3.3 Arbitrary Mode-n Convolution 
After the performing the pre-processing steps above, the arbitrary mode-n convolution for two 

tensors, represented by their Tucker Decompositions, could be written as 

𝒜𝒜 ∗𝑛𝑛 ℬ = �𝓖𝓖𝒜𝒜⨂𝓖𝓖ℬ;𝐔𝐔⊙1 𝐔𝐔,⋯ ,𝐗𝐗𝒜𝒜 ⊡1 𝐗𝐗ℬ,⋯ ,𝐙𝐙⊙1 𝐙𝐙,𝐀𝐀(𝐾𝐾+1),⋯ ,𝐀𝐀(𝑁𝑁),𝐁𝐁(𝑁𝑁+1),⋯ ,𝐁𝐁(𝐿𝐿)�. 

                           (3.19) 

Similarly, the arbitrary mode-n Convolution using Tensor Train representation could be written 

as  

𝒜𝒜 ∗𝑛𝑛 ℬ = ⟦𝒰𝒰 ⊙2 𝒰𝒰,𝒱𝒱 ⊙2 𝒱𝒱,⋯ ,𝒳𝒳𝒜𝒜 ⊡2 𝒳𝒳ℬ ,⋯ ,𝒵𝒵 ⊙2 𝒵𝒵, 

𝒢𝒢𝒜𝒜
(𝐾𝐾+1)⨂𝐈𝐈(𝐾𝐾+1),⋯ ,𝒢𝒢𝒜𝒜

(𝑁𝑁)⨂𝐈𝐈(𝑁𝑁),𝒢𝒢ℬ
(𝑁𝑁+1),⋯ ,𝒢𝒢ℬ

(𝐿𝐿)�.                 (3.20) 

where ⨂ is Kronecker product, ⊙𝑛𝑛 is the mode-n Khatri-Rao product and ⊡𝑛𝑛 is the partial mode-

n convolution.  

To reduce computer storage and computation time, we could reorder the Tensor Train 

representation such that 

𝓐𝓐 = �𝒢𝒢𝒜𝒜
(1),⋯ ,𝒢𝒢𝒜𝒜

(𝑁𝑁−𝐾𝐾)𝒰𝒰,𝒱𝒱,⋯ ,𝒳𝒳𝒜𝒜 ,⋯ ,𝒵𝒵, 1(𝑁𝑁+1),⋯ , 1(𝐿𝐿)�  

 𝓑𝓑 = �1(1),⋯ , 1(𝑁𝑁−𝐾𝐾),𝒰𝒰,𝒱𝒱,⋯ ,𝒳𝒳ℬ ,⋯ ,𝒵𝒵,𝒢𝒢ℬ
(𝑁𝑁+1),⋯ ,𝒢𝒢ℬ

(𝐿𝐿)�                  (3.21) 

Which would result in arbitrary mode-n tensor convolution given by 

𝒜𝒜 ∗𝑛𝑛 ℬ = �𝒢𝒢𝒜𝒜
(1),⋯ ,𝒢𝒢𝒜𝒜

(𝑁𝑁−𝐾𝐾),𝒰𝒰⊙2 𝒰𝒰,𝒱𝒱 ⊙2 𝒱𝒱,⋯ ,𝒳𝒳𝒜𝒜 ⊡2 𝒳𝒳ℬ ,⋯ ,𝒵𝒵 ⊙2 𝒵𝒵,𝒢𝒢ℬ
(𝑁𝑁+1),⋯ ,𝒢𝒢ℬ

(𝐿𝐿)�.         

(3.22) 

The above expression is an arbitrary convolution only on mode-n. We could also trivially modify 

it to simultaneously convolve along multiple modes.  
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3.4 Chapter Summary 
In this chapter, we developed new mathematical formulations for arbitrary mode-n tensor 

convolution that allows convolution of different size tensors along a specific subset of their 

physical variables. We formulated our arbitrary mode-n tensor convolution in both Tucker and 

Tensor Train decompositions. In the next chapter, we apply our novel arbitrary mode-n 

convolution method to simulate three simple multidimensional Fourier Optics problems, i.e., free 

space propagation, diffraction by an aperture, and imaging using a thin lens. 
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4. Application of Arbitrary Mode-n Convolution in 

Tensor-based Optical Problems 
 

In this chapter, we simulated three simple Fourier Optics systems; free space propagation, 

diffraction through an aperture, and imaging using a thin lens. We formulated these systems and 

simulated them using our tensor-based formulations developed in the previous chapter. Our 

problem formulations and simulations require N-D tensor convolutions, artificially expanding 

tensor orders, Hadamard products and arbitrary mode-n convolutions that we either presented or 

developed in previous chapters. 

 

4.1 Free Space Optical Propagation and Diffraction under Fresnel 

Approximation 

4.1.1 Free Space Optical Propagation 
Free space propagation in the near-field can be computed using the Fresnel approximation [19]. 

A spherical wave is generated at point 𝑈𝑈(𝜉𝜉, 𝜂𝜂,𝜓𝜓) and observed at another point 𝑈𝑈(𝑥𝑥,𝑦𝑦, 𝑧𝑧) as 

defined by 

𝑈𝑈(𝑥𝑥, 𝑦𝑦, 𝑧𝑧)  = � 𝑈𝑈(𝜉𝜉, 𝜂𝜂,𝜓𝜓)
𝑒𝑒𝑗𝑗𝑗𝑗(𝑧𝑧−𝜓𝜓)

𝑗𝑗𝑗𝑗(𝑧𝑧 − 𝜓𝜓)
𝑒𝑒𝑗𝑗

𝑘𝑘
2(𝑧𝑧−𝜓𝜓)�(𝑥𝑥−𝜉𝜉)2+(𝑦𝑦−𝜂𝜂)2�

∞

−∞
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 .           (4.1) 

The above equation can also be written in a convolution form as 

𝑈𝑈(𝑥𝑥,𝑦𝑦, 𝑧𝑧)  = � 𝑈𝑈(𝜉𝜉, 𝜂𝜂,𝜓𝜓)ℎ(𝑥𝑥 − 𝜉𝜉, 𝑦𝑦 − 𝜂𝜂, 𝑧𝑧 − 𝜓𝜓)
∞

−∞
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

 = 𝑈𝑈(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) ∗𝑥𝑥,𝑦𝑦,𝑧𝑧 ℎ(𝑥𝑥,𝑦𝑦, 𝑧𝑧)          (4.2) 

where the convolution kernel, impulse response of free space propagation, is 

ℎ(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 𝑒𝑒𝑗𝑗𝑘𝑘𝑘𝑘

𝑗𝑗𝑗𝑗𝑗𝑗
𝑒𝑒𝑗𝑗

𝑘𝑘
2𝑧𝑧�𝑥𝑥

2+𝑦𝑦2�.        (4.3) 

The intensity of the wave 𝑈𝑈(𝑥𝑥,𝑦𝑦, 𝑧𝑧) is obtained by 
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𝐼𝐼(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = |𝑈𝑈(𝑥𝑥,𝑦𝑦, 𝑧𝑧)|2.        (4.4) 

In the particular case where 𝑧𝑧 and 𝜓𝜓 are fixed, the free space propagation becomes a two-

dimensional convolution 

𝑈𝑈(𝑥𝑥,𝑦𝑦)  =
𝑒𝑒𝑗𝑗𝑗𝑗(𝑧𝑧−𝜓𝜓)

𝑗𝑗𝑗𝑗(𝑧𝑧 − 𝜓𝜓)
� 𝑈𝑈(𝜉𝜉, 𝜂𝜂)𝑒𝑒𝑗𝑗

𝑘𝑘
2(𝑧𝑧−𝜓𝜓)�(𝑥𝑥−𝜉𝜉)2+(𝑦𝑦−𝜂𝜂)2�

∞

−∞
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

= � 𝑈𝑈(𝜉𝜉, 𝜂𝜂)ℎ(𝑥𝑥 − 𝜉𝜉, 𝑦𝑦 − 𝜂𝜂)
∞

−∞
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

= 𝑈𝑈(𝑥𝑥,𝑦𝑦) ∗𝑥𝑥,𝑦𝑦 ℎ(𝑥𝑥,𝑦𝑦).         (4.5) 

4.1.2 Fresnel Number 
The diffraction described in this chapter uses the paraxial approximation which is the same 

approximation as the Fresnel approximation [20]. This approximation is valid when optical 

spherical waves could be approximated as paraboloidal waves. In this case, the free space 

propagation system is required to satisfy the following condition 

(𝑧𝑧 − 𝜓𝜓)3 =
𝜋𝜋

4𝜆𝜆
[(𝑥𝑥 − 𝜉𝜉)2 + (𝑦𝑦 − 𝜂𝜂)2]𝑚𝑚𝑚𝑚𝑚𝑚

2  .                              (4.6) 

A typical way to determine whether the scalar optical field is a paraboloidal wave or could be 

further approximated as a plane wave is by using the Fresnel number. In an optical system with 

source wavelength 𝜆𝜆, an aperture width 2𝑎𝑎, and observed at 𝐿𝐿 distance away, the Fresnel number 

is given by 

𝐹𝐹 =
𝑎𝑎2

𝐿𝐿𝐿𝐿
 

 
.                                                          (4.7) 

When 𝐹𝐹 ∼ 1 or 𝐹𝐹 > 1, the optical field is propagating in the near-field and has a paraboloidal 

wavefront; hence, equations in the previous section can be used to approximate this system. On 

the other hand, when 𝐹𝐹 < 1, the optical field is propagating in the far-field and has a planar 

wavefront. This propagation is a special case of Fresnel diffraction, where its quadratic phase 

factor is assumed to be unity. Therefore, Eq. 4.1 could be approximated using a Fourier Transform. 

This approximation is called Fraunhofer diffraction. 
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4.1.3 Light Propagation Through a Pupil function 
The presence of a pupil function 𝑃𝑃(𝑥𝑥,𝑦𝑦) located at a fixed distance 𝑧𝑧 from a propagating light 

distribution would introduce a change in both its amplitude and phase. The relation between the 

optical field 𝑈𝑈(𝑥𝑥,𝑦𝑦) right before the aperture, located at 𝑧𝑧, and the field 𝑈𝑈(𝑢𝑢, 𝑣𝑣,𝑤𝑤) observed at 

distance w from the aperture is given by 

𝑈𝑈(𝑢𝑢, 𝑣𝑣,𝑤𝑤) =
𝑒𝑒𝑗𝑗𝑗𝑗(𝑤𝑤−𝑧𝑧)

𝑗𝑗𝑗𝑗(𝑤𝑤 − 𝑧𝑧)� 𝑃𝑃(𝑥𝑥,𝑦𝑦)𝑈𝑈(𝑥𝑥,𝑦𝑦)𝑒𝑒𝑗𝑗
𝑘𝑘

2(𝑤𝑤−𝑧𝑧)�(𝑢𝑢−𝑥𝑥)2+(𝑣𝑣−𝑦𝑦)2�
∞

−∞
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

= [𝑈𝑈(𝑥𝑥,𝑦𝑦)𝑃𝑃(𝑥𝑥,𝑦𝑦)]. ∗𝑢𝑢,𝑣𝑣 ℎ(𝑢𝑢, 𝑣𝑣)         (4.8) 

In other words, the observed field is obtained by convolving the impulse response of propagation 

with the product the input wave 𝑈𝑈(𝑥𝑥, 𝑦𝑦) and the pupil function 𝑃𝑃(𝑥𝑥, 𝑦𝑦). Similar to a clear aperture, 

a thin lens could be viewed as another form of a pupil phase function 

𝑃𝑃(𝑥𝑥,𝑦𝑦) = exp �−𝑗𝑗 𝑘𝑘
2𝑓𝑓

(𝑥𝑥2 + 𝑦𝑦2)�        (4.9) 

where 𝑓𝑓 is lens focal length. 

4.1.4 Simple Diffraction Model with a Pupil Function 
Let an optical system have a three-dimensional object 𝑈𝑈(𝜉𝜉, 𝜂𝜂,𝜓𝜓), a two-dimensional pupil function 

𝑃𝑃(𝑥𝑥, 𝑦𝑦) at fixed distance 𝑧𝑧, and an observation region 𝑈𝑈(𝑢𝑢, 𝑣𝑣,𝑤𝑤). This system’s diagram is shown 

in Fig. 4.1, with a square pupil function.  

 

Fig. 4.1. A 3-D object imaging system with a square aperture 

We could divide light propagation through this system into three stages: propagation from the 

object to the pupil, transmission through the aperture, and propagation from the aperture to the 
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observation plane. In the first stage, light propagates from all points (𝜉𝜉, 𝜂𝜂,𝜓𝜓) to points (𝑥𝑥, 𝑦𝑦) at a 

fixed distance 𝑧𝑧 right before the aperture: 

𝑈𝑈(𝑥𝑥,𝑦𝑦)  = � 𝑈𝑈(𝜉𝜉, 𝜂𝜂,𝜓𝜓)
𝑒𝑒𝑗𝑗𝑗𝑗(𝑧𝑧−𝜓𝜓)

𝑗𝑗𝑗𝑗(𝑧𝑧 − 𝜓𝜓)
𝑒𝑒𝑗𝑗

𝑘𝑘
2(𝑧𝑧−𝜓𝜓)�(𝑥𝑥−𝜉𝜉)2+(𝑦𝑦−𝜂𝜂)2�

∞

−∞
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 .       (4.10) 

In the second stage, light is transmitted through the aperture, giving 

𝑈𝑈′(𝑥𝑥,𝑦𝑦)  = 𝑃𝑃(𝑥𝑥,𝑦𝑦)𝑈𝑈(𝑥𝑥,𝑦𝑦).      (4.11) 

Since 𝑧𝑧 is fixed, this equation will be effectively two-dimensional.  

In the final stage, light propagates from the aperture to the observation plane yields 

𝑈𝑈(𝑢𝑢, 𝑣𝑣,𝑤𝑤)  =
𝑒𝑒𝑗𝑗𝑗𝑗(𝑤𝑤−𝑧𝑧)

𝑗𝑗𝑗𝑗(𝑤𝑤 − 𝑧𝑧)
� 𝑈𝑈′(𝑥𝑥, 𝑦𝑦)

∞

−∞
𝑒𝑒𝑗𝑗

𝑘𝑘
2(𝑤𝑤−𝑧𝑧)�(𝑢𝑢−𝑥𝑥)2+(𝑣𝑣−𝑦𝑦)2�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 .     (4.12) 

By combining the equations of all propagation stages, we obtain 

𝑈𝑈(𝑢𝑢, 𝑣𝑣,𝑤𝑤) = 

=
𝑒𝑒𝑗𝑗𝑗𝑗(𝑤𝑤−𝑧𝑧)

𝑗𝑗𝑗𝑗(𝑤𝑤 − 𝑧𝑧)� ��
𝑒𝑒𝑗𝑗𝑗𝑗(𝑧𝑧−𝜓𝜓)

𝑗𝑗𝑗𝑗(𝑧𝑧 − 𝜓𝜓)𝑈𝑈
(𝜉𝜉, 𝜂𝜂,𝜓𝜓)𝑒𝑒𝑗𝑗

𝑘𝑘
2(𝑧𝑧−𝜓𝜓)�(𝑥𝑥−𝜉𝜉)2+(𝑦𝑦−𝜂𝜂)2�

∞

−∞
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�

∞

−∞
 

𝑃𝑃(𝑥𝑥,𝑦𝑦)𝑒𝑒𝑗𝑗
𝑘𝑘

2(𝑤𝑤−𝑧𝑧)�(𝑢𝑢−𝑥𝑥)2+(𝑣𝑣−𝑦𝑦)2�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

=
𝑒𝑒𝑗𝑗𝑗𝑗(𝑤𝑤−𝑧𝑧)

𝑗𝑗𝑗𝑗(𝑤𝑤 − 𝑧𝑧)��
𝑒𝑒𝑗𝑗𝑗𝑗(𝑧𝑧−𝜓𝜓)

𝑗𝑗𝑗𝑗(𝑧𝑧 − 𝜓𝜓)𝑈𝑈
(𝜉𝜉, 𝜂𝜂,𝜓𝜓)𝑒𝑒𝑗𝑗

𝑘𝑘
2(𝑧𝑧−𝜓𝜓)�(𝑥𝑥−𝜉𝜉)2+(𝑦𝑦−𝜂𝜂)2�

∞

−∞
 

𝑃𝑃(𝑥𝑥,𝑦𝑦)𝑒𝑒𝑗𝑗
𝑘𝑘

2(𝑤𝑤−𝑧𝑧)�(𝑢𝑢−𝑥𝑥)2+(𝑣𝑣−𝑦𝑦)2�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑.     (4.13) 

The above equation is complicated because of the multiple integrals. Alternatively, we could use 

convolution operations to simplify Eq. 4.13, yielding 

𝑈𝑈(𝑢𝑢, 𝑣𝑣,𝑤𝑤) = �[𝑈𝑈(𝑥𝑥, 𝑦𝑦, 𝑧𝑧)𝑃𝑃(𝑥𝑥,𝑦𝑦)] ∗𝑥𝑥,𝑦𝑦,𝑧𝑧 ℎ(𝑥𝑥,𝑦𝑦, 𝑧𝑧)� ∗𝑥𝑥,𝑦𝑦 ℎ(𝑢𝑢, 𝑣𝑣,𝑤𝑤).   (4.14) 

Since 𝑧𝑧 is fixed, the last convolution in Eq. 4.14,  ∗𝑥𝑥,𝑦𝑦, is two-dimensional using multiple kernels 

ℎ of Eq. 4.3, where each kernel has a different propagation distance of (𝑤𝑤 − 𝑧𝑧).  
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4.2 Tensor-Based Formulation of a Diffraction System  

4.2.1 Tensor-Based Formulation of a Free Space Propagation 
Let the object’s optical field be 𝑈𝑈(𝜉𝜉, 𝜂𝜂,𝜓𝜓) and the 3-D observed field be 𝑈𝑈(𝑢𝑢, 𝑣𝑣,𝑤𝑤) be described 

by the tensors  𝒰𝒰𝑜𝑜𝑜𝑜𝑜𝑜 ,𝒰𝒰𝑜𝑜𝑜𝑜𝑜𝑜. From Eq. 4.2, 𝒰𝒰𝑜𝑜𝑜𝑜𝑜𝑜 can be obtained from convolution between 𝒰𝒰𝑜𝑜𝑜𝑜𝑜𝑜 

and impulse response ℋ𝑜𝑜𝑜𝑜𝑜𝑜⟶𝑜𝑜𝑜𝑜𝑜𝑜.  

We could rewrite Eq. 4.2 in tensor form as an N-D convolution, yielding 

𝒰𝒰𝑜𝑜𝑜𝑜𝑜𝑜 = 𝒰𝒰𝑜𝑜𝑜𝑜𝑜𝑜 ∗𝑥𝑥,𝑦𝑦,𝑧𝑧 ℋ𝑜𝑜𝑜𝑜𝑜𝑜⟶𝑜𝑜𝑜𝑜𝑜𝑜.      (4.15) 

Given the Tucker Decomposition of  𝒰𝒰𝑜𝑜𝑜𝑜𝑜𝑜 and ℋ𝑜𝑜𝑜𝑜𝑜𝑜⟶𝑜𝑜𝑜𝑜𝑜𝑜 as 

𝒰𝒰𝑜𝑜𝑜𝑜𝑜𝑜 = �𝒢𝒢𝒰𝒰𝑜𝑜𝑜𝑜𝑜𝑜; 𝛏𝛏,𝛈𝛈,𝛙𝛙 � and ℋ𝑜𝑜𝑜𝑜𝑜𝑜⟶𝑜𝑜𝑜𝑜𝑜𝑜 = �𝒢𝒢ℋ𝑜𝑜𝑜𝑜𝑜𝑜⟶𝑜𝑜𝑜𝑜𝑜𝑜;𝐔𝐔,𝐕𝐕,𝐖𝐖 �    (4.16) 

we could obtain the observed field by 

𝒰𝒰𝑜𝑜𝑜𝑜𝑜𝑜 = 𝒰𝒰𝑜𝑜𝑜𝑜𝑜𝑜 ∗𝑢𝑢,𝑣𝑣,𝑤𝑤 ℋ𝑜𝑜𝑜𝑜𝑜𝑜⟶𝑜𝑜𝑜𝑜𝑜𝑜 

   = �𝒢𝒢𝒰𝒰𝑜𝑜𝑜𝑜𝑜𝑜⨂𝒢𝒢ℋ𝑜𝑜𝑜𝑜𝑜𝑜⟶𝑜𝑜𝑜𝑜𝑜𝑜; 𝛏𝛏 ⊡1 𝐔𝐔,𝛈𝛈⊡1 𝐕𝐕,𝛙𝛙⊡1 𝐖𝐖 �.    (4.17) 

Similarly, let the Tensor Train decomposition of 𝒰𝒰𝑜𝑜𝑜𝑜𝑜𝑜 and ℋ𝑜𝑜𝑜𝑜𝑜𝑜⟶𝑜𝑜𝑜𝑜𝑜𝑜 be 

𝒰𝒰𝑜𝑜𝑜𝑜𝑜𝑜 = �ξ, η,ψ � and ℋ𝑜𝑜𝑜𝑜𝑜𝑜⟶𝑜𝑜𝑜𝑜𝑜𝑜 = ⟦𝒰𝒰,𝒱𝒱,𝒲𝒲 ⟧,     (4.18) 

the tensor observed light is then given as 

𝒰𝒰𝑜𝑜𝑜𝑜𝑜𝑜 = 𝒰𝒰𝑜𝑜𝑜𝑜𝑜𝑜 ∗𝑢𝑢,𝑣𝑣,𝑤𝑤 ℋ𝑜𝑜𝑜𝑜𝑜𝑜⟶𝑜𝑜𝑜𝑜𝑜𝑜 

 = �ξ ⊡2 𝒳𝒳, η⊡2 𝒴𝒴,ψ⊡2 𝒵𝒵 �.     (4.19) 

4.2.2 Tensor-Based Formulation of Diffraction by an Aperture 
There are three-stages of light propagation in this example. We start by denoting the object’s 

optical field 𝑈𝑈(𝜉𝜉, 𝜂𝜂,𝜓𝜓), optical field at the pupil 𝑈𝑈(𝑥𝑥,𝑦𝑦, 𝑧𝑧) and output optical field 𝑈𝑈(𝑢𝑢, 𝑣𝑣,𝑤𝑤) as 

𝒰𝒰𝑜𝑜𝑜𝑜𝑜𝑜 ,𝒰𝒰𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 and 𝒰𝒰𝑜𝑜𝑜𝑜𝑜𝑜. The first stage of propagation from the object to the pupil is obtained by 

an N-D convolution described in the previous section as 

𝒰𝒰𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝒰𝒰𝑜𝑜𝑜𝑜𝑜𝑜 ∗𝑥𝑥,𝑦𝑦,𝑧𝑧 ℋ𝑜𝑜𝑜𝑜𝑜𝑜⟶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝                   (4.20) 
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where  

ℋ𝑜𝑜𝑜𝑜𝑜𝑜⟶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑒𝑒𝑗𝑗𝑗𝑗𝒛𝒛

𝑗𝑗𝑗𝑗𝒛𝒛
𝑒𝑒𝑗𝑗

𝑘𝑘
2𝒛𝒛�𝐱𝐱

2+𝐲𝐲2�      (4.21) 

is an impulse response tensor with different propagating distances 𝑧𝑧 − 𝜓𝜓 in the third mode. Since 

wave 𝒰𝒰𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 is at a fixed distance 𝑧𝑧, summing all the optical fields would result in the total field 

at the distance 𝑧𝑧. Therefore, we sum 𝒰𝒰𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 over the third mode, yielding 𝐔𝐔𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, a 2nd order tensor. 

The second propagation stage is when the field is transmitted through the aperture, which is 

described as a Hadamard product 

𝐔𝐔′𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝐏𝐏⊛𝐔𝐔𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝.       (4.22) 

Lastly, the third system stage is the propagation from the pupil to the observation region 

𝒰𝒰𝑜𝑜𝑜𝑜𝑜𝑜 = 𝐔𝐔′𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ∗𝑢𝑢,𝑣𝑣 ℋ𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝⟶𝑜𝑜𝑜𝑜𝑜𝑜.      (4.23) 

This stage required an arbitrary mode-1,2 convolution since 𝒰𝒰𝑜𝑜𝑜𝑜𝑜𝑜 is a 3rd-order tensor with mode 

𝑢𝑢, 𝑣𝑣,𝑤𝑤; however, the convolution is along modes 𝑢𝑢, 𝑣𝑣 only. In addition, 𝐔𝐔′𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 is a 2nd-order 

tensor, so one would need to artificially expand its order (see Appendix A) before applying the 

convolution. Combining all three stages gives 

𝒰𝒰𝑜𝑜𝑜𝑜𝑜𝑜 = �𝐏𝐏⊛��𝒰𝒰𝑜𝑜𝑜𝑜𝑜𝑜 ∗𝑥𝑥,𝑦𝑦,𝑧𝑧 ℋ𝑜𝑜𝑜𝑜𝑜𝑜⟶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�
𝑧𝑧

� ∗𝑢𝑢,𝑣𝑣 ℋ𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝⟶𝑜𝑜𝑜𝑜𝑜𝑜 .                  (4.24) 

The intensity distribution is 

ℐ𝑜𝑜𝑜𝑜𝑜𝑜  = |𝒰𝒰𝑜𝑜𝑜𝑜𝑜𝑜|2 

= ��𝐏𝐏⊛��𝒰𝒰𝑜𝑜𝑜𝑜𝑜𝑜 ∗𝑥𝑥,𝑦𝑦,𝑧𝑧 ℋ𝑜𝑜𝑜𝑜𝑜𝑜⟶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�
𝑧𝑧

� ∗𝑢𝑢,𝑣𝑣 ℋ𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝⟶𝑜𝑜𝑜𝑜𝑜𝑜� 

��𝐏𝐏⊛��𝒰𝒰𝑜𝑜𝑜𝑜𝑜𝑜 ∗𝑥𝑥,𝑦𝑦,𝑧𝑧 ℋ𝑜𝑜𝑜𝑜𝑜𝑜⟶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�
𝑧𝑧

� ∗𝑢𝑢,𝑣𝑣 ℋ𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝⟶𝑜𝑜𝑜𝑜𝑜𝑜�
H

 

              (4.25) 

where (⋅)H denoted conjugate transpose or Hermitian transpose. 
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4.2.3 Formulation of Diffraction by an Aperture using Tucker Decomposition 
Given the Tucker Decomposition of 𝒰𝒰𝑜𝑜𝑜𝑜𝑜𝑜, 𝒰𝒰𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  and 𝒰𝒰𝑜𝑜𝑜𝑜𝑜𝑜 as  

𝒰𝒰𝑜𝑜𝑜𝑜𝑜𝑜 = �𝒢𝒢𝒰𝒰𝑜𝑜𝑜𝑜𝑜𝑜; 𝛏𝛏,𝛈𝛈,𝛙𝛙 �, 𝒰𝒰𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = �𝒢𝒢𝒰𝒰𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝;𝐗𝐗,𝐘𝐘,𝐙𝐙 � and 𝒰𝒰𝑜𝑜𝑜𝑜𝑜𝑜 = �𝒢𝒢𝒰𝒰𝑜𝑜𝑜𝑜𝑜𝑜;𝐔𝐔,𝐕𝐕,𝐖𝐖 �.   (4.26) 

The convolution kernels are decomposed as 

ℋ𝑜𝑜𝑜𝑜𝑜𝑜⟶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = �𝒢𝒢ℋ𝑜𝑜𝑜𝑜𝑜𝑜⟶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝;𝐗𝐗,𝐘𝐘,𝐙𝐙 � and ℋ𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝⟶𝑜𝑜𝑜𝑜𝑜𝑜 = �𝒢𝒢ℋ𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝⟶𝑜𝑜𝑜𝑜𝑜𝑜;𝐔𝐔,𝐕𝐕,𝐖𝐖 �. (4.27) 

Lastly, the pupil function or aperture is 

𝐏𝐏 = �𝐆𝐆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝;𝐗𝐗,𝐘𝐘 �.      (4.28) 

Then Eq. 4.20 can be written as 

𝒰𝒰𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝒰𝒰𝑜𝑜𝑜𝑜𝑜𝑜 ∗𝑥𝑥,𝑦𝑦,𝑧𝑧 ℋ𝑜𝑜𝑜𝑜𝑜𝑜⟶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = �𝒢𝒢𝒰𝒰𝑜𝑜𝑜𝑜𝑜𝑜⨂𝒢𝒢ℋ𝑜𝑜𝑜𝑜𝑜𝑜⟶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝; 𝛏𝛏 ⊡1 𝐗𝐗,𝛈𝛈⊡1 𝐘𝐘,𝛙𝛙⊡1 𝐙𝐙 �.   

(4.29) 

an N-D convolution. We then sum the tensor 𝒰𝒰𝑝𝑝 over the third mode to obtain total waves at the 

aperture. The second stage, Eq. 4.22, is 

𝐔𝐔′
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝐏𝐏⊛𝐔𝐔𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 

= �𝐆𝐆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝⨂𝐆𝐆𝐔𝐔𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝;𝐗𝐗⨀1𝐗𝐗,𝐘𝐘⨀1𝐘𝐘 �.     

= �𝐆𝐆𝐔𝐔′𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝;𝐗𝐗,𝐘𝐘 �.        (4.30) 

Lastly, Eq. 4.23 uses arbitrary mode-1,2 convolution and artificially expands tensor 𝐔𝐔′
𝑝𝑝 order 

gives 

𝒰𝒰𝑜𝑜𝑜𝑜𝑜𝑜  = 𝐔𝐔′
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ∗𝑢𝑢,𝑣𝑣 ℋ𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝⟶𝑜𝑜𝑜𝑜𝑜𝑜 

                             = �𝓖𝓖𝐔𝐔′𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝⨂𝒢𝒢ℋ𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝⟶𝑜𝑜𝑜𝑜𝑜𝑜;𝐗𝐗⊡1 𝐔𝐔,𝐘𝐘⊡1 𝐕𝐕,𝐖𝐖ℋ𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝⟶𝑜𝑜𝑜𝑜𝑜𝑜  �    (4.31) 

where 𝓖𝓖𝐔𝐔′𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ∈ ℂ
𝐼𝐼𝑥𝑥×𝐼𝐼𝑦𝑦×1. 
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4.2.4 Formulation of Diffraction by an Aperture using Tensor Train 

Decomposition 
Given Tensor Train decomposition of 𝒰𝒰𝑜𝑜𝑜𝑜𝑜𝑜, 𝒰𝒰𝑝𝑝  and 𝒰𝒰𝑜𝑜𝑜𝑜𝑜𝑜 as  

𝒰𝒰𝑜𝑜𝑜𝑜𝑜𝑜 = �ξ, η,ψ �, 𝒰𝒰𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = ⟦𝒳𝒳,𝒴𝒴,𝒵𝒵 ⟧ and 𝒰𝒰𝑜𝑜𝑜𝑜𝑜𝑜 = ⟦𝒰𝒰,𝒱𝒱,𝒲𝒲 ⟧.    (4.32) 

The convolution kernels are decomposed as 

ℋ𝑜𝑜𝑜𝑜𝑜𝑜⟶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = ⟦𝒳𝒳,𝒴𝒴,𝒵𝒵 ⟧ and ℋ𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝⟶𝑜𝑜𝑜𝑜𝑜𝑜 = ⟦𝒰𝒰,𝒱𝒱,𝒲𝒲 ⟧.   (4.33) 

The pupil function or aperture is 

𝐏𝐏 = ⟦𝒳𝒳,𝒴𝒴 ⟧.       (4.34) 

Then the first stage is an N-D convolution in Eq. 4.20 can be written as 

               𝒰𝒰𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝒰𝒰𝑜𝑜𝑜𝑜𝑜𝑜 ∗𝑥𝑥,𝑦𝑦,𝑧𝑧 ℋ𝑜𝑜𝑜𝑜𝑜𝑜⟶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = �ξ ⊡2 𝒳𝒳, η⊡2 𝒴𝒴,ψ⊡2 𝒵𝒵 �.    (4.35) 

Similar to the TKD approach, the 𝒰𝒰𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 needs to sum over the third mode gives 𝐔𝐔𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝. The 

second stage, Eq. 4.22, is then described as 

                                     𝐔𝐔′𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝐏𝐏⊛𝐔𝐔𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = ⟦𝒳𝒳⨀2𝒳𝒳,𝒴𝒴⨀2𝒴𝒴 ⟧.     (4.36) 

The waves at the image region, using arbitrary mode-1,2 convolution and artificially expanding 

tensor order, Eq. 4.23 is described as 

𝒰𝒰𝑜𝑜𝑜𝑜𝑜𝑜 = 𝐔𝐔′𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ∗𝑢𝑢,𝑣𝑣 ℋ𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝⟶𝑜𝑜𝑜𝑜𝑜𝑜 = �𝒳𝒳 ⊡2 𝒰𝒰,𝒴𝒴⊡2 𝒱𝒱,𝒲𝒲ℋ𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝⟶𝑜𝑜𝑜𝑜𝑜𝑜  �.   (4.37) 

 

4.3 Numerical Simulation Results 

4.3.1 Simulation of 3-D Free Space Light Propagation  
In this example, we propagated a three-dimensional object 𝑈𝑈(𝜉𝜉, 𝜂𝜂,𝜓𝜓) to a two-dimensional screen 

at 𝑈𝑈(𝑥𝑥,𝑦𝑦, 0) where 𝜓𝜓 < 0. Using Eq. 4.15, we obtain 

𝒰𝒰𝑜𝑜𝑜𝑜𝑜𝑜 = 𝒰𝒰𝑜𝑜𝑜𝑜𝑜𝑜 ∗𝑥𝑥,𝑦𝑦,𝑧𝑧 ℋ𝑜𝑜𝑜𝑜𝑜𝑜⟶𝑜𝑜𝑜𝑜𝑜𝑜      (4.38) 
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where mode-3 of the convolution kernel contains a different propagation length of −𝜓𝜓. This setup 

is shown in Fig 4.2. Three methods have been compared, the direct i.e., full-tensor, the Tucker 

Decomposition, and the Tensor Train approach. We have used tensor MATLAB toolboxes from 

Sandia National Laboratories and Oseledets. The object 𝒰𝒰𝑜𝑜𝑜𝑜𝑜𝑜 ∈ ℂ𝐼𝐼𝑥𝑥×𝐼𝐼𝑦𝑦×𝐼𝐼𝑧𝑧  are complex electric 

fields pre-defined using the Finite-Difference Frequency-Domain method to compute the plane 

waves' behavior in a three-dimensional object.  

 

Fig. 4.2. A system of free space propagation of a 3-D object onto a 2-D plane of observation 

The sample object has unity permeability and is homogenous along the y-axis. This object’s 

permittivity and the field distribution along the x-z axes are shown in Fig. 4.3. This object is made 

of glass with a refractive index of 1.56, and it is placed 1.88 cm at 𝑧𝑧 = 0 , i.e., before the 

observation plane.  

 

Fig. 4.3. Our 3-D object and its field distribution along the x-z plane  

Furthermore, Fig. 4.4 shows planes inside the object along x-y axes at different z distances. The 

source wavelength is 100 µm, and the object's half width is 2.87 mm; therefore, the associated  

Fresnel number is 4.4. 

 



Arbitrary Mode-n Convolution of Tensors with Applications in Optics Pandhittaya Noikorn 

44 
 

 

Fig. 4.4. Planes of field distributions in the object at different z distances  

Since convolution of tensors in Tucker representation requires the Kronecker product of tensor 

cores, the computation becomes impractical without rank approximation. The test used rank 

approximations to decompose object tensor of 449x449x99 into smaller tensor cores of 15x15x20. 

The full tensor Kronecker product would require as high as 8.64 PB for complex entries; with the 

decomposition, the storage needed is only 308.99 MB. We had tested to our maximum storage 

capacity at 16 GB (40x40x20); however, the error due to representing the original tensor by a 

Tucker Decomposition is hardly improving. We used these smaller dimensions 15x15x20 for all 

the tensor cores in Tucker Decomposition format. 

After the convolution, the product tensor dimension is 897x897x197, representing a larger space 

in the space domain, as shown in Fig. 4.5 and Fig. 4.6. The 𝒰𝒰𝑜𝑜𝑜𝑜𝑜𝑜(: , : ,1) or the object field's first 

plane will travel the longest distance hence the intensity will significantly drop according to the 

inverse-square law while 𝒰𝒰𝑜𝑜𝑜𝑜𝑜𝑜(: , : ,197) has the highest intensity. Fig. 4.5 shows the intensity 

contribution from different object planes along the propagation direction, and Fig. 4.6 shows the 

observation plane's total intensity at distance z = 0. Our results show that all three methods give 

very similar intensity distributions. 
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Fig. 4.5. Observed normalized intensities contributions at different planes using 

direct (1st column) Tucker Decomposition (2nd column) Tensor Train (3rd column) approaches 

 

Fig. 4.6. Observed normalized intensities from  

direct (left) Tucker Decomposition (middle) Tensor Train (right) approaches 

The error is computed by obtaining the norm of the absolute differences between corresponding 

entries of each decomposition method (Tucker Decomposition and Tensor Train) and the full-

tensor. The observed complex field norm error of Tucker format is 4.7619 in contrast with the 

Tensor Train 7.9477 × 10−11. 

 



Arbitrary Mode-n Convolution of Tensors with Applications in Optics Pandhittaya Noikorn 

46 
 

The computational time of directly computing full tensors is 5 hours, tensor in the Tucker 

representation is 2 minutes, and tensor in the Tensor Train representation is 1 minute. The 

decomposed and reconstructed time is included in the recorded times. The storage needs to store 

output from direct computation is 1.19 GB due to convolution increasing the output size. Tucker 

representation storage is highly dependent on rank approximation; our choice needs 316.17 MB to 

store product core and factor matrices. In the case of 40x40x20, 15.28 GB is required. Lastly, 

Tensor Train needs only 83.36 MB. Comparisons of different approaches using an object having  

449x449x99 samples are shown in Table 4.1. 

Methods 
Compute 

Dimensions 
Complex Field 

Norm Error 
Computational 

Time 

Direct Full - 5 hours 

Tucker Decomposition 15x15x20 4.76 2 minutes 

Tensor Train Full 7.947 × 10−11 1 minute 

Table 4.1. Comparison of free space propagation using full-tensor, Tucker Decomposition, and 

Tensor Train approaches 

4.3.2 Simulation of Optical Diffraction by an Aperture 

 

Fig. 4.7. A 3-D imaging system with an aperture 

We have tested the tensor-based imaging system described in Sections 4.2.2 - 4.2.4, shown on the 

left of Fig. 4.7, which is an extension of the previous numerical example. The observation region 

width is 4 mm along x-y axes or 70% of the object width. A square aperture 𝐏𝐏 has a 2 mm opening 

gap placed at 𝑧𝑧 = 0, as shown on the right of Fig. 4.7. The observation region is 1.5 – 3.5 cm after 

the aperture. 
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Multiple convolutions are computational expensive since the dimensions increase with every 

operation. Suppose that ℋ𝑜𝑜𝑜𝑜𝑜𝑜⟶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℂ𝐽𝐽𝑥𝑥×𝐽𝐽𝑦𝑦×𝐽𝐽𝑧𝑧; in the first step, the computation requires 3-D 

convolution of tensors. Thus, the product will have dimensions of 𝐼𝐼𝑥𝑥 + 𝐽𝐽𝑥𝑥 − 1 × 𝐼𝐼𝑦𝑦 + 𝐽𝐽𝑦𝑦 − 1 ×

𝐼𝐼𝑧𝑧 + 𝐽𝐽𝑧𝑧 − 1. The second step involved the sum along mode-3 and Hadamard product; the tensor 

order is reduced by one, and the dimensions become 𝐼𝐼𝑥𝑥 + 𝐽𝐽𝑥𝑥 − 1 × 𝐼𝐼𝑦𝑦 + 𝐽𝐽𝑦𝑦 − 1. The last step is 

another convolution; suppose that ℋ𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝⟶𝑜𝑜𝑜𝑜𝑜𝑜ℂ𝐾𝐾𝑥𝑥×𝐾𝐾𝑦𝑦×𝐾𝐾𝑧𝑧 then the final product dimensions are 

𝐼𝐼𝑥𝑥 + 𝐽𝐽𝑥𝑥 + 𝐾𝐾𝑥𝑥 − 2 × 𝐼𝐼𝑦𝑦 + 𝐽𝐽𝑦𝑦 + 𝐾𝐾𝑦𝑦 − 2 × 𝐾𝐾𝑧𝑧. Due to storage limitations, we reduced the observation 

region by cropping the convolution product along the x-y axis to a smaller dimension 𝑆𝑆𝑥𝑥 × 𝑆𝑆𝑦𝑦 ×

𝐾𝐾𝑧𝑧 where 𝑆𝑆𝑥𝑥 = 0.7 ∗ 𝐼𝐼𝑥𝑥, 𝑆𝑆𝑦𝑦 = 0.7 ∗ 𝐼𝐼𝑦𝑦. 

The first propagation from the object to the aperture is shown in Fig. 4.6. Then the field is 

multiplied (Hadamard product) by the aperture, resulting in only the field distributions in the 

opening gap being passed. The last step is two-dimensional field propagation after the aperture to 

different distances z at the observation regions using arbitrary mode-1,2 convolution described in 

Eq. 4.23 in full-tensor, Eq. 4.31 in Tucker Decomposition, in Eq. 4.37 for Tensor Train 

representations. 

The normalized intensities along the x-y axes in the observation region with different distances z 

are shown in Fig. 4.8. Similarly, the normalized intensities along the x-z axes in the observation 

region using different approaches are shown in Fig. 4.9.  The normalized intensity distributions 

obtained using the direct and Tensor Train approaches give similar results. However, the Tucker 

Decomposition approach has significant error due to computational limitations that resulted in a  

reduction in the core tensor size through rank approximation. The error has accumulated from the 

decomposition of each entry since the first propagation and results in a high field error at the 

observation region. 
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Fig. 4.8. Observed normalized intensities from different z distances using  

direct (1st column) Tucker Decomposition (2nd column) Tensor Train (3rd column) approaches 

 

Fig. 4.9. Normalized intensity along the x-z axis at the observation region using  

direct (top) Tucker Decomposition (middle) Tensor Train (bottom) approaches 
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𝝀𝝀𝒔𝒔𝒔𝒔𝒔𝒔 

(µm) 

Object 

Dimension 
Method 

Time  

(H:MM: SS) 

Complex Field 

Norm Error 

150 299 × 299 × 70 

Direct 0:35:38 - 

Tucker Decomposition 0:00:23 1.9165 × 10−4 

Tensor Train 0:00:04 4.2106 × 10−15 

120 375 × 375 × 85 

Direct 3:25:34 - 

Tucker Decomposition 0:01:20 3.6169 × 10−3 

Tensor Train 0:00:10 1.4068 × 10−14 

100 449 × 449 × 99 

Direct 5:04:15 - 

Tucker Decomposition 0:02:26 9.3051 × 10−3 

Tensor Train 0:01:44 1.1237 × 10−13 

Table 4.2. Computation time and error from different approaches 

The norm error (norm of pointwise differences) of complex field distribution and computation 

time are presented in Table 4.2. The tests are conducted in the same machine with various problem 

sizes, where the times are included from the first propagation in the previous example. The second 

propagation used significantly less time than the N-D Convolution in the first propagation. For the 

object dimension 449 × 449 × 99, direct computation spent 32.4 seconds, and both 

Decomposition approaches consume 3 seconds. 

 

4.3.3 Optical Imaging using a Thin Lens 
In the previous section, the observed image is out of focus; we fix it by adding a lens with a focal 

length of 2 cm instead of an aperture. The first propagation is the same in Section 4.3.1; after that, 

the wave passes the lens and propagates to the observation region at 1.5 – 2.65 cm from the lens. 

The observed intensity is shown in Fig. 4.10 and Fig. 4.11. Similar to the previous example, images 

observed at a further distance have lesser intensity than those closer to the lens. The image 

observed at 2 cm is in focus and noticeably resembles the object. 
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Fig. 4.10. Observed normalized intensities from different z distances using  

direct (1st column) Tucker Decomposition (2nd column) Tensor Train (3rd column) approaches 

 

Fig. 4.11. Normalized intensity along the x-z axis at the observation region using  

direct (top) Tucker Decomposition (middle) Tensor Train (bottom) approaches 
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Comparing images from three different approaches, the direct and the Tensor Train approach 

results are indistinguishable. However, the Tucker Decomposition approach shows a noticeable 

error. This is because our computationally limited Tucker Decomposition approach resulted in a 

low rank core tensor. 

The pupil function changes from binaries (aperture) into complex numbers (phase), resulting in 

longer computation time. Full-tensor computation, Tucker and Tensor Train approaches consume 

58, 5, and 3.4 seconds, respectively, for the second propagation. The norm error (norm of pointwise 

differences) of complex field at the observed region between full-tensor and Tucker 

Decomposition computation is 0.014719. Conversely, the norm error between full-tensor and 

Tensor Train computation is 4.7574 × 10−13. 

In the previous chapter, we showed that Tucker Decomposition suffers less from round-off error 

without rank approximation. However, in practical with limited storage, the rank approximation is 

unavoidable. For Optical Problems, accuracy is essential; thus, with storage limitations, the Tucker 

Decomposition approach is unsuitable. 

 

4.4 Chapter Summary 
In this chapter, we simulated three simple Fourier Optics systems; free space propagation, 

diffraction through an aperture, and imaging using a thin lens. We formulated these systems and 

simulated them using our tensor-based formulations developed in the previous chapter. Our 

problem formulations and simulations require N-D tensor convolutions, artificially expanding 

tensor orders, Hadamard products and arbitrary mode-n convolutions that we either presented or 

developed in previous chapters. Our results showed that Tensor Train required the least 

computational time and computer storage while obtaining results with an excellent norm of error. 
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5. Conclusions and Future Work 
5.1 Conclusions 
Fourier Optics generally involve multidimensional functions that could require prohibitive 

computational resources to either simulate or manipulate. In this thesis, to address this 

computational complexity, we introduced tensors analysis as an efficient way to linearly process 

multidimensional functions. Typical operations in Fourier Optics are convolution and Hadamard 

products. In this thesis, we focused on tensor convolutions. This operation has been well defined 

in the tensor literature; however, three assumptions are made on the tensors to be convolved; 1) 

both tensors must have the same order; 2) corresponding modes of tensors represent the same 

physical variables; 3) the convolution is applied along every mode. These assumptions would 

make it difficult to use in physical Fourier Optics problems. We overcome these by generalizing 

this N-D tensor convolution to allow arbitrary mode-n convolutions. 

We started by imposing a physical interpretation to tensors, and then formulated a novel approach 

for arbitrary mode-n convolution of physical tensors using three different tensor representations: 

full-tensor, Tucker Decomposition, and Tensor Train Decomposition. Lastly, we simulated three 

simple Fourier Optics systems; free space propagation, diffraction through an aperture, and 

imaging using a thin lens. We formulated these systems and simulated them using our tensor-based 

formulations developed in the previous chapter. Our problem formulations and simulations require 

N-D tensor convolutions, artificially expanding tensor orders, Hadamard products and arbitrary 

mode-n convolutions that we either presented or developed in previous chapters. Our results 

showed that Tensor Train, compared to using full-tensor representation or Tucker Decomposition, 

required the least computational time and computer storage while obtaining results with an 

excellent norm of error. 

 

5.2 Future Work 
This thesis addressed the possibilities and advantages of solving Fourier Optics problems using 

tensor analysis. We intend to extend our research to develop Tensor Optics in the Tensor Train 

representation in order to reduce computation complexities of both forward and inverse problems. 

Tensor Optics would possibly allow us to analyze full-wave optical propagation in large 
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inhomogeneous media, e.g., tissue. One possible way to further overcome the curse of 

dimensionality inherent in solving large size optical problems is to use sparse signal (tensor) 

representations. 
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Appendix A 
 

A.1 Artificially expanded tensor order 

A.1.1 Tucker Decomposition of a Tensor with an Artificially Expanded Order 
If we wish to broaden the tensor 𝒳𝒳 to a new tensor with (𝑁𝑁 + 1)-order, we could add another 

order with dimension 1 to both the tensor 𝒳𝒳 and its core which gives 𝒳𝒳 ∈ ℝ𝐼𝐼1×𝐼𝐼2×⋯×𝐼𝐼𝑁𝑁×𝐼𝐼𝑁𝑁+1 ∈

ℝ𝐼𝐼1×𝐼𝐼2×⋯×𝐼𝐼𝑁𝑁×1 and 𝒢𝒢𝒳𝒳 ∈ ℝ𝑅𝑅1×𝑅𝑅2×⋯×𝑅𝑅𝑁𝑁×𝑅𝑅𝑁𝑁+1 ∈ ℝ𝑅𝑅1×𝑅𝑅2×⋯×𝑅𝑅𝑁𝑁×1.  

 𝒳𝒳 = �𝒢𝒢𝒳𝒳;𝐗𝐗(1),𝐗𝐗(2),⋯ ,𝐗𝐗(𝑁𝑁),𝐗𝐗(𝑁𝑁+1)�.                             (A.1) 

The factor matrices of order 1 to N are the same; however, the (𝑁𝑁 + 1)-order factor matrix is 

𝐗𝐗(𝑁𝑁+1) ∈ ℝ𝐼𝐼𝑁𝑁+1×𝑅𝑅𝑁𝑁+1 ∈ ℝ1×1 a scalar. This scalar will be one in case of no scaling in the (𝑁𝑁 + 1) 

mode. Therefore, we can rewrite the above equation as 

𝓧𝓧 = �𝓖𝓖𝒳𝒳;𝐗𝐗(1),𝐗𝐗(2),⋯ ,𝐗𝐗(𝑁𝑁), 1�.                  (A.2) 

We will use a bolded tensor to denote an artificially expanded tensor. The artificially expanding 

could also occur in any arbitrary mode-𝑛𝑛. 

 

A.1.2 Tensor Train Decomposition with an Artificially Expanded Order 
Similar to the approach discussed above for TKD. We could artificially expand the order of 𝒳𝒳 ∈

ℝ𝐼𝐼1×𝐼𝐼2×⋯×𝐼𝐼𝑁𝑁 in tensor train format to have (𝑁𝑁 + 1)-order as 

𝒳𝒳 ≅ 𝒢𝒢(1) ×3
1 𝒢𝒢(2) ×3

1 𝒢𝒢(3) ×3
1 ⋯×3

1 𝒢𝒢(𝑁𝑁) ×3
1 𝒢𝒢(N+1) 

= �𝒢𝒢(1),𝒢𝒢(2),𝒢𝒢(3),⋯ ,𝒢𝒢(𝑁𝑁),𝒢𝒢(N+1)�                  (A.3) 

However, unlike TKD, TT is a train. Thus, the order of the core 𝒢𝒢(𝑛𝑛) varies depending on its 

position on the train. There are two cases to be considered 

1. Expanding the first or last of the tensor train cores 

2. Expanding between the tensor train cores 
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The first case is when we add a dimension before 𝒢𝒢(1) ∈ ℝ1×𝐼𝐼1×𝑅𝑅1 or after matrix 𝒢𝒢(𝑁𝑁) ∈

ℝ𝑅𝑅𝑁𝑁−1×𝐼𝐼𝑁𝑁×1. We could add ranks 𝑅𝑅0 in 𝒢𝒢(1) and 𝑅𝑅𝑁𝑁 in 𝒢𝒢(𝑁𝑁) instead of dimension one, then add a 

tensor 𝒢𝒢(0) or 𝒢𝒢(𝑁𝑁+1) ∈ ℝ1×1 at the edge of the train, this will always make the new order just a 

scalar. The expansion is straightforward and will not change the number of elements in the train. 

𝓧𝓧 ≅ 1 ×3
1 𝒢𝒢(1) ×3

1 𝒢𝒢(2) ×3
1 𝒢𝒢(3) ×3

1 ⋯×3
1 𝒢𝒢(𝑁𝑁) ×3

1 1 

= �1,𝒢𝒢(1),𝒢𝒢(2),⋯ ,𝒢𝒢(𝑁𝑁), 1�                           (A.4) 

The second case is a little more complicated. We would like to add a dimension at mode-𝑛𝑛. The 

new order has to be a 3rd-order tensor 𝒢𝒢(𝑛𝑛) ∈ ℝ𝑅𝑅𝑛𝑛−1×1×𝑅𝑅𝑛𝑛 and the dimension 𝑅𝑅 has to match with 

its neighbors. We could obtain 𝑅𝑅𝑛𝑛−1 easily from the previous core 𝒢𝒢(𝑛𝑛−1) and we know that 

𝒢𝒢(𝑛𝑛+1) ∈ ℝ𝑅𝑅𝑛𝑛×𝐼𝐼𝑛𝑛+1×𝑅𝑅𝑛𝑛+1. Consider the original tensor 𝒳𝒳, then 𝑅𝑅𝑛𝑛 has to be equal to 𝑅𝑅𝑛𝑛−1 in order 

to preserve the information. In other words, 𝒢𝒢(𝑛𝑛) is a square matrix.  

𝓧𝓧 ≅ 𝒢𝒢(1) ×2
1 𝒢𝒢(2) ×3

1 ⋯×3
1 𝒢𝒢(𝑛𝑛−1) ×3

1 𝒢𝒢(𝑛𝑛) ×3
1 𝒢𝒢(𝑛𝑛+1) ⋯×3

1 𝒢𝒢(N)                              (A.5) 

 

Fig. A.1. Tensor network diagrams of artificially expanded 4th-order to 5th-order TT/MPS 

(top) original (middle) expanded on the first and last order  

(bottom) expanded in between the train 

An identity matrix is used so that the mode product would not change the neighbor tensor core 

elements hence 𝒢𝒢(𝑛𝑛) = 𝐈𝐈(𝑛𝑛) ∈ ℝ𝑅𝑅𝑛𝑛−1×1×𝑅𝑅𝑛𝑛−1. We get 
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𝓧𝓧 ≅ 𝒢𝒢(1) ×2
1 𝒢𝒢(2) ×3

1 ⋯×3
1 𝒢𝒢(𝑛𝑛−1) ×3

1 𝐈𝐈(𝑛𝑛) ×3
1 𝒢𝒢(𝑛𝑛+1) ⋯×3

1 𝒢𝒢(N)                 

= �𝒢𝒢(1),𝒢𝒢(2),⋯ ,𝒢𝒢(𝑛𝑛−1), 𝐈𝐈(𝑛𝑛),𝒢𝒢(𝑛𝑛+1) ⋯ ,𝒢𝒢(𝑁𝑁),𝒢𝒢(N)�                 (A.6) 

Fig. A.1 shows tensor network diagram of the original 4th-order tensor in Tensor Train 

representation, expansion an extra order on the edges of the train, and expansion in between the 

train. 
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