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ABSTRACT

Through the use of remote sensing technology, researchers are able 10 momfor
inaccessible regions common to the Canadian Arctic. Parks Canada currently receives
GEOCOMP-n 10-day composite AVHRR imagery from the Manitoba Remote Sensing
Centre. The federal agency is using the data to develop methods for monitoring various
ecosystem variables within protected areas located throughout northern Canada. This
study, located in Tuktut Nogait National Park (TNNP), Northwest Territories, uses
GEOCOMP-n imagery to monitor the timing of four key growing season events during
the 1999 to 2001 period. The specific objectives of the study were:

1. To determine which vegetation index is best suited for use with
AVHRR data in the TNNP study area,
2. To describe the characteristics of basic components of the

GEQCOMP-n data set for TNNP, and
To produce unbiased estimates of key timing events in the Arctic
growing season using GEOCOMP-n data.

(PR

Using both quantitative and qualitative criteria, field data were analyzed to assess
four vegetation indices. The normalized difference vegetation index (NDVI) was
determined to be the most appropriate vegetation index for use in this study. All
vegetation indices tested were found to be acceptable predictors of photosynthetic
btomass and percent cover, but the NDVI proved to have a stronger ability to suppress
the influence of background noise. A qualitative assessment reaffirmed these findings,
by demonstrating a history of performance and ease of use in other studies.

Through an examination of GEOCOMP-n data characteristics, as they pertain to
the TNNP study area, extremely high solar zenith angles were found to be causing
inaccurate NDVI values during the end of October. Examination of the data also
demonstrated that sensor zenith angles were relatively high before and after the growing
season, when a large portion of the composites were covered by snow and cloud. In
addition, acquisition dates were found to have a pooled distribution within most
composites. It was determined that this pooled distribution was the result of cloud covers
and the nature of the compositing procedure.

A time-series of the GEOCOMP-n NDVI data was used to estimate the timing of
four key events in the Arctic growing season: the onset, end, and length of greenness, and
the maximum NDVI. Spatial analysis of each metric revealed the presence of a
significant southwest-to-northeast trend in the evolution of the metrics, excluding the date
of maximum NDVI. Spatial analysis also established that the timing of these events was
dependent upon the dominant vegetation type in the immediate area. The timing of key
vegetation events corresponded closely to the mean air temperature recorded at a weather
reporting statipn located centrally within TNNP.

ii
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CHAPTER 1 - INTRODUCTION

1.1. INTRODUCTION

A 1988 amendment to the National Parks Act declared the maintenance of
ecological integrity the highest priority in the protection of Canada’s national parks
(Parks Canada, 1998). Achieving this goal depends on effective monitoring of the
ecological processes at work within and around these regions. Effective monitoring
requires consistent, reliable and timely information. Satellite remote sensing meets these
requirements, and is therefore a valuable tool to maintaining ecological integrity of
protected lands.

Monitoring programs, which rely on ground-based data collection, may observe
diminishing returns on collection effort. In arctic ecosystems, where research and travel
costs are prohibitive, ground-based monitoring is even less suitable. Remote sensing, and
particularly the Advanced Very High Resolution Radiometer (AVHRR) deployed on the
National Oceanic and Atmospheric Administration (NOAA) series of polar-orbiting
satellites, is widely used for the purposes of regional and global monitoring of terrestrial
vegetation (e.g. Goward et al., 1994; Gutman, 1991). The AVHRR collects medium and
coarse resolution imagery in five spectral bands at least once per day, and is available at a
relatively low cost.

Since 1992, the Manitoba Remote Sensing Centre (MRSC) has produced 10-day
AVHRR composite images for the Canada Centre for Remote Sensing (CCRS).
Composites were originally processed by the Geocoding and Compositing System
(GEOCOMP) (Robertson et al., 1992). In 2000, the next generation of GEOCOMP,

GEOCOMP-n, was put to use operationally. Parks Canada currently uses GEOCOMP-n



data for ecological monitoring in northern national parks (McCanny, 1999; Wilmshurst et
al.. 2001; Wilmshurst et al., 2002). Similar data have been used effectively for many
years to monitor American northern national parks (Markon, 1994).

The primary drawback of multi-day composites in comparison to daily AVHRR
imagery is a reduced temporal resolution. This is particularly problematic for studies
attempting to identify the precise timing of events. In this sense, there is a need to

develop methads that regain the information left out of the multi-day composites.

1.2. PURPOSE & OBJECTIVES
The purpose of this thesis is {0 develop a method to monitor the precise timing of

key events in the Arctic growing season using a single vegetation index derived from
GEOCOMP-n AVHRR composite satellite imagery. Basic phenological metrics such as
onset and end of greenness, duration of greenness and date of maximum greenness are
determined for Tuktut Nogait National Park, Northwest Territories, for the 1999, 2000
and 2001 growing seasons. The final product provides not only a method to determine
such measurements, but also a measure of the current status of vegetation in Tuktut
Nogait National Park against which future measurements can be compared. This
corresponds closely to the objective of Parks Canada: to learn more about how AVHRR
data can be used to monitor Canada’s National Parks. The specific objectives of this
thesis are:

1. To determine which vegetation index is best suited for use with AVHRR

data in this study area.
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2. To describe the characteristics of the basic components of the
GEOCOMP-n data set for Tuktut Nogait National Park.

To produce unbiased estimates of key timing events in the Arctic growing

L2

season using GEOCOMP-n data.

1.3. SIGNIFICANCE OF THE STUDY

This study develops a method to monitor the precise timing of key events in the
growing season. The final product provides not only a method to determine such
measurements, but also contributes to the knowledge base on the current status of the
vegetation of Tuktut Nogait National Park (TNNP). Important management decisions are
based on the best information available. Increasing the quantity and quality of
information park managers are able to attain, provides the opportunity to make more
informed decisions.

Research shows that climate change is affecting the TNNP region (Foster, 1989).
Higher temperatures and greater precipitation are expected consequences of current
climatic trends (Betts et al, 2000). When these consequences are experienced on
regional scales they have been shown to increase rates of vegetative population growth
(Carlsson and Callaghan, 1994), change net primary productivity (Ploch! and Cramer,
1995) and cause longer growing seasons (Bliss and Matveyeva, 1992; Oechel and
Billings, 1992; Shaver and Kummerow, 1992). Such changes at the global scale have
been shown to produce the same effects (Post and Stenseth, 1999). Monitoring the
timing of key events in an arctic growing season aids in the identification and description

of climate change on both a regional and global scale (Randerson et al., 1999).

')



Also, this research provides the opportunity to monitor migration routes. Arctic
vegetation provides the only food source for many mammals permanently residing n,
and/or passing through the study area. Travel routes of migratory species, such as the
barren-ground caribou, may follow the green-up of the local vegetation (Van der Wal et
al., 2000). Monitoring the progression of the growing season may provide the ability to

remotely monitor the migration of such mammals.

1.4, THESIS OUTLINE

This thesis is divided into 5 chapters. The first chapter outlines the topic and
presents the objectives of the research. The second chapter reviews the relevant scientific
literature related to the research presented in this thesis. Chapter 3 explains the
methodology of the research in order to achieve the research objectives. The fourth
chapter presents the research results and associated discussion. The thesis wraps up in

Chapter 5 with a summary of the research, conclusions and recommendations.



CHAPTER 2 — BACKGROUND

Chapter 2 discusses the relevant background information in three major sections.
The first section discusses the optical remote sensing of vegetation, and includes
descriptions of the science of monitoring vegetation with remote sensing, as well as the
various uses of optical remote sensing data for vegetation applications. The second
section provides a description of the various vegetation indices used in this study. The
third section discusses the monitoring of plant phenology. Emphasis in the third section

1s placed on the use of remote sensing and abiotic determinants of phenology.

2.1. OPTICAL REMOTE SENSING OF TERRESTRIAL VEGETATION
Different objects interact with solar energy in different ways. Energy, at any
particular wavelength, is reflected, absorbed or transmitted when it contacts an object.
Energy that is not absorbed or transmitted is reflected. Optical remote sensing
technologies measure the amount of energy reflected in the visible and near-infrared
(NIR) portions of the electromagnetic spectrum (EMS). Reflectance characteristics of

green leaves makes optical remote sensing ideal for monitoring vegetation canopies.

2.1.1. Spectral Reflectance of Green Vegetation

Green vegetation is unlike other common terrestrial surfaces, such as bare soil and
water, in the way it interacts with visible and NIR energy (Figure 2.1.). The typical
reflectance pattern of healthy, green vegetation is low in the visible portion (0.4 — 0.7

pm) and high in the NIR portion (0.7 — 1.3 ym) of the EMS. In contrast, bare soil reflects

th



less visible and NIR light than vegetation and water absorbs almost all optical light,

resulting in low reflectance throughout.

30
* Bare Soil

40~
3
= .
T Green Vegetation
T 20
a4

10—

.- e Water
0 T T T T T
0.4 0.6 0.8 1.0 1.2 1.4
Wavelength (i)

Figure 2.1, Typical spectral reflectance in the visible and NIR portions of the EMS for
common terrestrial surfaces.

In the visible portion of the EMS, reflectance from green vegetation is low due to
the high amount of red and blue energy absorbed by chlorophyll in the leaves (Woolley,
1971). The green appearance of healthy vegetation results from the low amount of green
light absorption relative to red and blue light absorption. Within the NIR portion, healthy
vegetation reflects a relatively large amount of NIR energy. High reflectance of NIR
energy is the result of the cellular structure within the leaves of healthy vegetation

(Woolley, 1971). The signal reaching the sensor is also influenced by surfaces other than

vegetation.
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2.1.2. Signal Interference

Observing terrestrial surfaces from a remote location (i.e. a satellite sensor) is an
effective method for monitoring green vegetation. However, the non-vegetated
background such as soil and non-photosynthetic portions of plants and atmospheric
conditions also influence the signal. Such influences must be accounted for in order to

accurately describe vegetation conditions from remote observations.

2.1.2.1. Non-Vegetated Background Influences

Non-vegetated background influences are derived from the soil under the
vegetation canopy as well as non-photosynthetic portions of the vegetation. These
influences may be separated into two categories: spectral effects and brightness effects
(Elvidge and Lyon, 1985). Spectral influences result from the portion of energy that is
scattered or transmitted towards the soil background, providing irradiance to an area that
would otherwise be in shadow. Though part of the irradiance will be absorbed by the
soil, another portion of it will be reflected back to the sensor, and may be interpreted as
having come from the vegetation canopy. Such effects are generally consistent over short
spans of time, but variable over space.

Brightness influences are caused by variations in soil type and soil moisture
conditions. Such influences are variable over short periods of time and space, making
correction difficult. For example, a rain event would cause a large change in soil
brightness over a short period of time. In such cases, the change in soil moisture may
appear to be a change in vegetation cover. Optical satellite data may be misinterpreted if

the user i1s unaware of a recent rain event.



2.1.2.2. Other Background Influences

There are important background effects other than soil that influence reflectance
signals. Standing water and vegetation litter are the most common influences in this
group. Hope et al. (1993) reported that tussock tundra communities with standing water
had similar vegetation index values to tussock tundra communities with higher biomass
and no standing water. In arctic communities where poor drainage can lead to the
accumulation of standing water, this effect may cause the overestimation of vegetation
over large areas.

Colwell (1974) noted that non-photosynthetic plant components such as stalks,
limbs and leaf litter are strong determinants of the reflectance from a vegetated surface.
In the Arctic, while stocks and limbs are limited relative to mid-latitude vegetation
canopies, non-photosynthetic leaves may remain on the plant or on the ground for
multiple growing seasons. Tt has been reported however, that vegetation indices correlate

better with total biomass than green biomass {Shippert et al., 1995).

2.1.2.3. Atmospheric Influences

Particles in the atmosphere also influence the signal reaching the sensor.
Atmospheric particles absorb and scatter portions of visible and NIR light. The
absorption of energy causes a reduction in signal strength. Scattering can either increase
or decrease the signal, depending on directional characteristics. Atmospheric influences
are generally wavelength dependant. That is, the smaller, visible wavelengths are
affected more than the longer, NIR wavelengths Correcting for atmospheric influences

is difficult, given the inconsistent effects of atmospheric particles. Without applying



proper corrections, the accurate descriptions of vegetation conditions may be disrupted.

(Goward et al., 1991).

2.1.3. NOAA-AVHRR

The AVHRR was first flown on the TIROS-N meteorological satellite in 1978.
Origmally, the AVHRR was designed with 4 channels (0.55-0.9 um; 0.73 - 1.1 um; 3.5
- 3.9 um; and 10.5 - 11.5 um), which were configured for meteorological-based research.
TIROS-N was followed by the NOAA series of satellites.

The NOAA series of meteorological satellites operate in a near-polar, sun-
synchronous orbit. The altitude of the orbit ranges from 833-870 km. The AVHRR,
which is carried on the NOAA satellites, currently collects data in 6 spectral bands (0.58
~ 0,68, 0.725-1.11um; 1.58-1.64 um; 3.55-3.93 um; 103 -113 um;and 11.5-12.5
pum) with 10-bit radiometric resolution. The AVHRR scans at angles up to 55.4 degrees
off nadir, which permits view zenith angles to reach 68.9 degrees and a swath width of
2894 km. Ground resolution varies from 1.1 x 1.1 km at nadir to 2.4 x 6.9 km at scene
edges.

There are three types of AVHRR data: High Resolution Picture Transmission
(HRPT), Local Area Coverage (LAC), and Global Area Coverage (GAC) (Kidwell,
1998). HRPT data are full resolution data transmitted to a ground station as they are
collected. 1.AC data are also full resolution data, but as they are collected, they are
recorded on onboard tapes and subsequently transmitted to a ground station during the
next overpass. GAC data are low-resolution images (4km) that provide global coverage

recorded on tapes for subsequent transmission to ground stations.
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Since the launch of NOAA-6 in 1979, the AVHRR has been used for
meteorotogical and terrestrial applications. The NOAA-6 AVHRR was the first in the
series to confine the Channel 1 to the upper portion of the visible spectrum. Channel 1
was narrowed from 0,55 — 0.9 um to 0.58 — 0.68 um in order to increase the ability of the
AVHRR to monitor snow covers (Tucker, 1996). In addition, the narrowing of Channel 1
made daily satellite-based vegetation monitoring possible. Since the change to Channel 1
there has been a continuous expansion of knowledge concerning the uses of AVHRR for
tand applications such as forest fire monitoring, crop yield prediction, primary

productivity modeling and land cover mapping.

2.1.3.1. Forest Fire Monitoring

AVHRR imagery has proven valuable for forest fire management. Leblon et al.
(2001) found a strong correlation between AVHRR spectral variables and fire weather
index variables for coniferous forest stands, allowing for the generation of forest fire risk
maps. AVHRR data can also be used to map the locations, and areal extent, of fires (e.g.

Remmel and Perera, 2001; Barbosa et al., 1999, Kasischke et al., 1993),

2.1.3.2. Crop Yield Lstimation

Agricultural research also benefits from the AVHRR. Crop yields may be
accurately predicted months before harvest based on information from the AVHRR.
AVHRR data have been used for operational crop vield estimates in Canada (Hochheim

and Barber, 1998; Bullock, 1992), the United States (Hayes and Decker, 1996), Europe
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(Vossen, 1996; Quarmby et al., 1993; Benedetti and Rossini, 1993), and Africa (e.g.

Maselli and Rembold, 2001; Unganai and Kogan, 1998).

2.1.3.3. Primary Productivity Modeling

AVHRR data have been used on several occasions to monitor and map terrestrial
primary production, O’Brien (2001) successfully mapped terrestrial net primary
productivity (NPP) using vegetation indices determined from AVHRR. Satellite-based
vegetation indices were related to the fraction of photosynthetically active radiation that
is absorbed by the vegetation canopy and to autotrophic respiration. Box et al. (1989)
and Fung et al. (1986) used a different method to map NPP. In these studies, AVHRR
data are correlated with measurements of atmospheric CO;. Improvements in modeling
NPP from AVHRR have allowed the mapping of productivity in many ecologically

diverse regions.

2.1.3.4. Land (Cover Mapping

Mapping the distribution of land cover types at regional and global scales is often
accomplished by classifying AVHRR imagery. Using visible, NIR and infrared bands of
imagery, many different regions have been mapped at coarse scales (e.g. Walker, 1999,
Lathrop and Bognar, 1994; Loveland et al., 1991). Cihlar and Beaubien (1999} classified
the land cover of Canada into 29 different types at a ground resolution of 1 km®.
Mapping large areas with AVHRR imagery is often aided by supplementary digital data

concerning elevation and climate. Using surface temperature derived from AVHRR data
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may improve ¢lassification when used in combination with AVHRR spectral data to map

land cover (Wen and Tateishi, 2001; Lambin and Ehrlich, 1995).

2.1.3.3. Limitations of AVHRR Data

While AVHRR imagery is a proven asset to many monitoring programs, it does
have limitations. Cloud cover imposes the primary limitation. Clouds obscure
approximately half of the Earth’s surface every day (Tarpley et al., 1984). Clouds are
visibie to sensors of visible and NIR energy. Their presence prevents the acquisition of
optical information from the surface beneath.

Limitations are also imposed by the sensor viewing geometry, AVHRR sensor
zenith angles can exceed 68 degrees; imposing problems on pixels at scene edges.
Problems include lesser geometric accuracy, increased atmospheric attenuation and lower

spatial resolution. The topic of sensor zenith angles is examined closely in section 3.4.2.

2.1.3.6. Image Composiling

The most effective way around the limitations of AVHRR 1magery is through
image compositing (Holben, 1986). Image compositing is defined by Goward et al.
(1991) as a “procedure in which geographically registered data sets collected over a
sequential period of time, are compared and the maximum or minimum of a defined
measurement {e.g. NDVI, sensor zenith angle) is selected to represent the conditions
observed during that time period”.

A composite is constructed on a pixel-by-pixel basis by comparing the value at a

given location to all other values at the same location. The maximum (or minimum,
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depending on the criterion) value is selected and inserted into the composite at the
appropriate location. Composites are generally based on maximum NDVI or minimum
sensor zenith angle. The effect of maximum NDVI composites is to reduce the
proportion of an image that is atfected by atmospheric influences (Huete and Jackson,
1992). Maximum NDVI composites have also been shown to minimize the effects of
high sensor and solar angles and directional surface reflectance differences (Holben,
1986). Minimum sensor zenith angle composites reduce the directional effects on the
imagery by selecting pixels that are acquired closest to nadir. However, less directional
effects are accomplished at the expense of increasing residual cloud cover and increasing
the frequency of sharp edges between images from adjacent orbits (Cihlar and Huang,

1994). All composites sacrifice temporal resolution in order to produce the final image.

2.2. VEGETATION INDICES

Healthy vegetation typically displays a large difference in reflectance values
between the visible and NIR wavelengths. As vegetation senesces or is stressed in some
way, the reflectance signal changes. The typical response is for the difference between
the visible reflectance and the NIR reflectance to shrink. Researchers are able to use this
relationship to formulate vegetation indices that measure the amount, and overall
abundance and health, of a vegetation cover. The indices can also measure how these
properties change over space and time. Vegetation indices can be used to monitor both
individual vegetation types (e.g. Vogelmann and Moss, 1993) and mixed vegetation
covers (e.g. Yin and Williams, 1997). Measurements can occur over a short (e.g. Tucker,

1979) or long time period (e.g. Jano et al., 1998). It is important to note, however, that
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since vegetation indices require the amount of measured reflectance in the visible and
NIR energy bands, values only represent a general view of the vegetation characteristics.
Visible and NIR reflectances (and as a result, vegetation index values) are a function of
the many different characteristics of vegetation (e.g. species composition, structural
properties), non-vegetated surfaces (e.g. water, bare soil), landscape features {e.g. slope
and aspect of the land), atmospheric influences and sensor characteristics.

The foundation for the formulation of vegetation indices was laid by Jordan
(1969), who showed that the ratio between NIR and visible energy could provide
information regarding the leaf-area index of a forest canopy. Advancement since
Jordan’s finding has seen the development of many different vegetation indices (see
Bannari (1995) for a complete inventory and discussion of vegetation indices).
Vegetation indices are often put into one of two categories: distance-based and slope-

based.

2.2.1. Distance-based Vegetation Indices

Distance-based vegetation indices measure the amount and health of a vegetation
canopy by determining the Euclidian distance between any vegetated pixel and the bare
soil line (Figure 2.2.). The bare soil line represents the reflectance of all bare soil pixels
for all degrees of soil brightness. It is determined by plotting bare ground pixels in
visible and NIR space and determining the equation of the line that best represents the
relationship. By using the distance of a vegetated pixel from the soil line, rather than
strictly the two-dimensional position of the pixel, changing soil brightness conditions are

accounted for, Distance-based vegetation indices assume that vegetation isolines run
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parallel to each other. All pixels on the same isoline have similar vegetation
characteristics, but may have different brightness conditions represented by different
positions on the same isoline. Distance-based vegetation indices tend to be more

computationally complex than their slope-based counterparts.

Vegetated Pixel 2
(VEGyin VEGus) - RN
. X

LA S

VISIBLE REFLECTANCE

NIR REFLECTANCE

Figure 2.2. A diagram showing the theory of distance-based
vegetation indices. Vegetation characteristics are assessed
by measuring the Euclidean distance from the vegetated
pixel to the soil line.

Richardson and Weigand (1977) developed the Perpendicular Vegetation Index
(PVI) as a way to monitor vegetation development where variable soil brightness is a

problem. The PV1is given by the equation:
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Pl = \/&OIL\?ES ~VEGuyi5)? +(SOIL sy ~VEG sy )2 (2.1)

Where: (VEG,;,, VEG.;5) is the candidate vegetation pixel, (SOIL..;, SOIL.) is the point
on the bare soil line nearest the candidate vegetation pixel.

High PV1 values represent pixels displaced furthest from the bare soil line in a
positive direction, and thus high density, healthy vegetation. Lesser vegetation density
results in lower, but still positive PVT values. Water-filled pixels have negative PVI
values, and fall below the bare soil line.

Results of experiments using the PV have been mixed. Elvidge and Lyon (1985}
reported that the PVI was the best among all vegetation indices tested for reducing the
influence of noise from non-vegetated backgrounds. However, Baret and Guyot {1991)
conclude that the PV1 is dramatically affected by variations in soil optical properties,
particularly for low vegetation densities. An unsuccessful attempt was made fo improve
the PV for its treatment of variable soil conditions by adding a correction factor (Sanden
et al., 1996).

The PV1 is also computationally complex relative to most other vegetation
indices. To ease this problem, Richardson and Weigand (1977) also developed the

Weighted Difference Vegetation Index (WDVI). The WDVI caiculation is as follows:

WDIT = y* NIR - 11§ (2.2)
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Where: NIR = reflectance in the NIR Channel and VIS = reflectance in the visible
Channel; and y is the slope of the bare soil line.

The effect of weighting the NIR reflectance with the slope of the soil line 1s that
the response attributed to soil reflectance is minimized, and the response due to the
vegetation is maximized. WDVI values greater than zero indicate the presence of
vegetation, while values less than zero represent water. The WDVI was shown to be
relatively unaffected by varying soil brightness conditions, but it s also insensitive to low
amounts of vegetation (Qi et al., 1994), which causes a problem for its use in arctic
environments. The WDVI and PV1 are functionally equivalent vegetation indices (Perry

and Lautenshlager, 1984).

2.2.2. Slope-hased Vegetation Indices

Slope-based vegetation indices graphically display different vegetation conditions
with isolines having different slopes and diverging from the origin (Figure 2.3.). The
slope of isolines increase with higher amounts of vegetation. For example, a vegetated
pixel has a particular VI-value (Figure 2.3. point A). If the soil brightness conditions
were to change, the pixel would theoretically shift along the same isoline. As a result,
slope-based vegetation indices are thought to account for such influences. Pixels with a
greater amount of vegetation would fall on an isoline with a higher slope (Figure 2.3

point B). All isolines would meet at the origin.
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Figure 2.3. A diagram showing the theory of slope-based vegetation indices. The slope of
vegetation isolines increase with greater amounts of healthy vegetation. Points falling on
the same isoline have similar characteristics, but are viewed under different soil
brightness conditions

Slope-based vegetation indices are determined by computing ratios of NIR and
visible reflectances (or radiances). The use of a ratio of NIR to visible light was first

proposed by Jordan (1969) who used it to determine leaf area index for tropical rain
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forest canopies. The simple ratio (SR), as it is known, is defined by the following

equation:
NIR

SR=— 2.3
VIS (2.3)

Where: N/R = reflectance in the NIR Channel and J'78 = reflectance in the visible
Channel.

The normalized difference vegetation index (NDVI) was developed to make use
of the first Landsat satellite in the early 1970s (Rouse et al., 1973). The NDV1 is defined

by the following equation:

_ NIR-VIS

NDIFT = ore————
NR+VIS

2.4)

Where: NIR is reflectance in the NIR Channel; and V78 = reflectance in the visible
Channel.

The NDVTI is the most commonly used vegetation index in the scientific
community. NDVI values range from 1 to +1; negative values generally signify the
presence of water and positive values signify vegetation. The NDVT has been shown to
relate very well to actual and potential evapotranspiration rates in Canada (Cihlar et al.,
1991) and biomass and leaf area index in Alaska (Shippert et al., 1995). 1t has also been
used successfully as an input band for image classification and mapping of arctic

vegetation types (Stow et al., 2000).
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The normalization provided by dividing the difference by the sum is used to
reduce sun angle differences and atmospheric attenuation. Atmospheric influences,
however, are reported to influence NDVI values (Singh and Saull, 1988; Groten, 1993;
Karnieli et al., 2001). The magnitude of the influence increases with decreasing cover
proportions (Hansen, 1991). Variable soil background also influences the NDVI signal.
Darker or wetter soil backgrounds tend to cause an increase in NDVI (Todd and Hoffer
1998; Huete et al., 1985), which leads to serious problems for interpretation and

characterizatign of vegetation covers.

2.2.3. Accounting for Soil Background

To reduce the influences of variable background effects, efforts have been aimed

at modifying the NDVI equation. The soil adjusted vegetation index (SAVI) was the first

ratio-based VI that attempted to account for the influences of soil background (Huete,

1988). The SAVI incorporates a constant soil adjustment factor into the equation for the

NDVTI to account for variable background effects:

Sayy = —IRZVIS (t+1)
NIR+VIS + 1

(2.5)
Where: N/R = reflectance in the NIR channel; VIS = reflectance in the visible channel:
and L 1s the soil adjustment factor.

The soil adjustment factor is set between 0 and 1. It varies with the amount of
soil that is visible to the sensor. Higher proportions of vegetation cover results in less

visible soil background and a lower soil adjustment factor. A higher soil adjustment
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factor is required when percent vegetation cover is low and large amounts of soil are
visible. Using a soil adjustment factor of 0.5, soil background noise was minimized when
viewing broad-leaf cotton and narrow-leaf grass (Huete, 1988).

The characteristics of vegetation isolines were examined by Huete et al. (1985). It
was determined that isolines are not parallel and meet in negative space rather than at the
origin (Figare 2.4.). The soil adjustment factor accounts for the actual position of isoline

convergence at the origin,

Higher Biomass Lower Biomass
(high vegetation — {low vegetation
index values) index values)

Bare Soil

i

NIR REFLECTANCE

§\ VISIBLE REFLECTANCE

Figure 2.4. A diagram showing the theoretical vegetation isolines for soil adjusted
vegetation indices (Adapted from Huete, 1988). Similar to slope-based vegetation
indices, though vegetation isolines converge in negative space rather than at the origin.
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Although initial results were promising, setting of the soil adjustment factor
presented two major problems. First, one soil adjustment factor is used for an entire
image. This is a problem when vegetation cover varies significantly across an image.
Second, substantial knowledge of the study area is required before the appropriate soil
adjustment factor can be determined.

The modified soil adjusted vegetation index (MSAVI) was proposed in response
to the shortcomings of the SAVI (Qi et al,, 1994). Two variations of the MSAVI were
proposed, however both use a soil adjustment factor. The benefit of the MSAVIs is that
no previous knowledge of the study area is required. Also, the soil adjustment factor is
determined for the user, rather than by the user, and is variable over space. The MSAVI

1s defined by the equation:

NIR-VIS

MSAVT =TS
V= NRTvis 41

x{1+1) (2.6)

Where: NIR = reflectance in the NIR Channel and 7S = reflectance in the visible

Channel.; and L is determined by the equation:

L = 1-2yNDVI*WDVI (2.7)

Where: NDV1 is calculated using equation 2.4; WDVI is calculated using equation 2.2;

and y is the slope of the bare soil fine.
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The equation for MSAVI, (2.6) is identical to the equation for the SAVI(2.5).
The difference lies with the determination of the soil adjustment factor. The soil
adjustment factor of the MSAVI, is based on the product of NDVIand WDVIL. Although
the NDVI and WDVI are sensitive to soil background, they have opposite responses
(Figure 2.5). For identical vegetation amounts, the NDVI is higher for darker
backgrounds than for lighter backgrounds, while the WDVI is lower given dark

background conditions (Qi et al., 1994).

1.0

VEGETATION INDICES

....................... Bright Soils

R Dark Soils
0.0
0 20 40 60 80 100

% VEGETATION COVER

Figure 2.5. Different responses of NDVI and WDVI to soil moisture changes (From Qi et
al., 1994). NDVI increased with darker soil background conditions, whereas WDVI
increases with brighter soil background conditions.
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The MSAVI; determines the soil adjustment factor iteratively and is determined using the

following equations:

NIR -VIS

MSATTy =
2n T NRTVIS+1 -

x{1+ 7L, ) (2.8)

Where: NIR = reflectance in the NIR Channel and F75 = reflectance in the visible
Channel; # s the iteration; and L is the soil adjustment factor.

In the first iteration, £ 1s any number between 0 and 1 determined by a random number
generator. A value for MSAVI; is determined and it is then used to determine /. using the

following equation:

Ly=1-MSATTo, (2.9

With each iteration there 1s an improvement to both MSAVI, and L. lterations continue
until no further improvement is possible. At this point, the iterations stop and the
MSAVI; is finalized. The equation for MSAVI; (2.8) is identical to those for the
MSAVI; (2.6) and the SAVI (2.5) with the difference found in the determination of the

soil adjustment factor.

2.3. MONITORING REGIONAL PHENOLOGY
Implications of plant phenology are important to chmate change, and climate
modeling studies (Schwartz, 1992). For the most part, phenological research has focused

on individual plants or plant species, monitored at fine scales (e.g. Pop et al., 2000;

24



Wagner and Reichegger, 1997; junttila and Robberecht, 1993). However, with the
development of remote sensing technologies, phenology can be monitored on regional
and global scales. In the mid-1980s, several studies laid the foundation for the use of
AVHRR for monitoring the progression of vegetative seasons (Tucker et al,, 1985;
Justice et al., 1985, Townshend et al., 1987).

Though initial results were encouraging, two substantial limitations were
identified. First, persistent clouds contaminate scenes such that they are not useful for
analysis of terrestrial vegetation studies. Generating maximum-value composites reduces
the cloud contamination problem, but does not eliminate it (Schwartz and Reed, 1999,
Cihlar, 1996; Reed et al., 1994). Compositing also reduces the temporal resolution of
satellite data (Holben, 1986). In the case of AVHRR data, temporal resolution is usually
reduced from one-day to 10-, 15- or 30-days. Reduced temporal resolution may lead to
the precise timing of an event being missed (Reed et al, 1994; Schwartz and Reed, 1999).

Second, limitations were imposed on analysis of satellite data by a lack of proper
radiometric calibration techniques. In recent years, significant progress has been made
addressing this issue (e.g. Rao and Chen, 1999; Rao and Chen, 1996, Cihlar and Teillet,
1995). As a result, sensor effects are currently a less significant problem.

The mid-1990s saw a renewal in interest of time-series AVHRR data for
vegetation studies. Reed et al. (1994) were the first to develop measures of phenological
events solely with satellite-based observations. The study derived several phenological
metrics for the conterminous United States using bi-weekly (15-day) composites of
AVHRR imagery. The key events determined were the onset and end of the growing

season. The methodology for determining these metrics compared the actual NDVI time-



series to a ttime-lagged moving average of the NDVI time-series. The point where the
actual time-series deviates from the time-lagged moving average indicated a significant
trend change that was interpreted as the onset of the growing season. The end of the
growing season was determined in a similar manner; the difference being the time-series
were analyzed in reverse chronological order.

The methodology developed by Reed et al. {1994) has been used numerous times
since 1t was first proposed. Schwartz and Reed (1997) used the methodology in
conjunction with climate station data. They found that 95 percent of satellite-derived
events were within 1 bi-weekly composite period of those predicted with a surface model.
Markon (2001) used the methodology to document the phenological record of Alaska
between 1991 and 1997. He concluded that the methodology is more efficient, and more
effective, than ground-based studies for monitoring regional phenology.

An alternative method for mapping the timing of key growing season events with
AVHRR composite data was presented by Markon et al. (1995). The study determined
the composite during which an NDV] threshold was crossed for the whole of Alaska. In
this way, onset, end and length of the green season were determined. However, this
methodology contains significant limitations. First, using a single NDVI threshold where
vegetation type varies over space Is inappropriate (Sparling, 2001; Chen et al., 2000;
Schwartz and Reed, 1997). The NDVI value signifying the onset of the growing season
is different than the value signifying the end to the growing season. Also, onset and end
values vary from year-to-year (Chen et al., 2000).

All of the above-mentioned methods involving bi-weekly composites are unable to

assess change between years. Using data with low temporal resolution to map timing
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events would be made more effective if interpolation was used to monitor the ground

between the composites.

2.3.1. Abiotic Factors Affecting Phenology

Phenological processes can vary in terms of timing from one species to another.
Abiotic factors also have a major influence on plant phenology. Air temperature and
precipitation are the two obvious abiotic determinants of phenology. In higher latitudes,
snow and snowmelt patterns also have an influence. The use of climate records alone can
be used to detect phenological events such as spring onset (Schwartz, 1990).

In the Central Great Plains region, NDVI trends have a strong east-west gradient.
The same gradient is evident in average precipitation for the region (Wang et al., 2001).
Average temperature is also positively related to NDVI, but the correlation is weaker than
it is between average precipitation and NDVI (Wang et al , 2001).

The trend of NDV] is increasing in arctic environments {Tucker et al., 2001;
Myneni et al., 1997). Increased NDVI coincides with an increase in winter and spring
temperatures i high latitudes (Rigor et al., 2000; Oechel et al., 2000). Others have
reported that temperature appears to be more important than other abiotic factors in
influencing arctic vegetation growth (Pop et al., 2000, Schultz and Halpert, 1993). High
latitude regions, more than mid- and low- latitude regions, have high NDVI-temperature
correlations (Shultz and Halpert, 1995).

Precipitation is less a determining factor because melting snow and sub-surface ice

provide the majority of spring moisture. Additionally, a limited active soil layer results
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in pooling of water at the surface. Thus, moisture is available for plant growth long after

a precipitation event,

2.4. CHAPTER SUMMARY

This chapter provided a general background on the theories and methodologies
used in this thesis. Collecting optical data with the AVHRR provides information at
moderate ground resolutions, AVHRR spectral data can be converted into several
vegetation indices. Vegetation indices provide the ability to monitor terrestrial vegetation
from a remote location. Examining the temporal pattern of vegetation indices for a given
region allows for the identification of several phenological metrics. The ability to
monitor the progression of vegetative seasons provides a greater amount of information
on which to base important management decisions. The following chapter presents a
detailed description of the methodologies this study employs to determine the

phenological characteristics of Tuktut Nogait National Park.
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CHAPTER 3 — RESEARCH METHODS

This chapter will introduce the area of study and discuss the methods used to
address the objectives presented in Chapter 1. The methods section of this chapter is
further separated into four sections: (1) field sampling procedures; (2) assessment and
comparison of vegetation indices; (3) description of GEOCOMP-n 10-day composite
AVHRR satellite imagery; and, (4) the determination of relevant phenological metrics,
which also includes a presentation of the methods for data preprocessing and model

validation.

3.1. STUDY AREA

The study area for this research was comprised within the physical boundaries of
Tuktut Nogait National Park, Northwest Territories, Canada (Figure 3.1.). Tuktut Nogait
National Park (TNNP) is Canada’s fifth largest national park, spanning 16340km*. The
park is located in the Inuvialuit Settlement Region, and was established in 1996 to protect
an area representative of the Tundra Hills Natural Region. TNNP was also established to
preserve the calving grounds of the Bluenose caribou herd, and to encourage a greater
understanding of the Inuvialuit cultural heritage. The hamlet of Paulatuug is the nearest

settlement, located roughly 33 km west of TNNP.
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Figure 3.1. Tuktut Nogait National Park, Northwest Territories, Canada. The
location of the study area.

3.1.1. Climate

In the coastal regions of TNNP, maritime air masses moving in from the west are
the main climatic influence. In the southern portion of TNNP, conditions are more
characteristic of a continental climate (Zoltai et al., 1992). Long, cold winters and short,
cool summers are the norm. Mean daily temperatures range from —27.6°C in January to
7.4°C in July (Zoltai et al., 1992). Annual precipitation totals average 181.5 mm and the

persistent snow cover exists up to 250 days per year (Phillips, 1990). The climate varies
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from other northern Canadian regions by the alternation of cyclonic and anticyclonic

activity of air masses (Maxwell, 1981).

3.1.2. Geology

The geology of the region has been summarized by Zoltai et al. (1992), Balkwill
and Yorath (1970), and Yorath et al. (1966). The following description is based on these
works,

The study area is primarily contained within the Brock Upland Physiographic
Division, characterized by Paleozoic and Mesozoic sediments exposed sporadically at
lower elevations and Precambrian sedimentary and intrusive rocks in higher reaches.

Glacial landforms are completely absent from the highest elevations of the Melville
Hills. In the central portion of TNNP, glacial deposits are present, though quantities are
small and distribution is sparse. Surficial deposits also indicate that parts of the Melville
Hills escaped glaciation during the Pleistocene (Zoltai et al., 1992). A high number of
drumlins and oversized stream channels indicate recent glaciation in the northern,
western and southern regions of TNNP.

Surface materials are generally non-calcareous loamy till, with calcareous
materials present in relatively small pockets in the far north and far south portions of
TNNP. Soils in the study area are mainly Turbic Cryosols, with Static Cryosols limited
to areas with glaciofluvial parent material. Peat is limited to a few thin deposits, rarely
exceeding 1 m, generally found in poorly drained depressions.

The climate creates conditions for permafrost to occur under all land surfaces.

The thickness of the permafrost is estimated to reach several hundred meters (Zoltai et



al., 1992). The thickness of the active layer varies with ground material. It is generally
thickest in bedrock and dry, coarse soils, where it reaches 1 m. Well-drained loamy soils
thaw to a depth between 65 and 80 cm. Poorly drained, peaty soils have the thinnest

active layer at approximately 40 cm.

3.1.3. Hydrolpgy

There are 3 major rivers within TNNP: the Hornaday, Brock and Roscoe. The
Hornaday River and its tributaries drain the majority of the study area. Its headwaters are
focated south of TNNP. From there, the Hornaday River flows 350 km in a northwest
direction where it drains into Darnley Bay. The Little Hornaday drains the southern
portion of TNNP and is the largest tributary of the Hornaday River. The Brock River,
which originates in the central region of TNNP, also drains into Darnley Bay. The
Roscoe River drains the northeastern portion of TNNP, and is a more gentle, meandering
river that empties into the Amundsen Gulf.

Small lakes and ponds are abundant in TNNP; the vast majority of which are less
than 1 km®. The Melville Hills region is unique in that small lakes are relatively
uncommon — more evidence that recent glaciations did not affect this region. The largest

lake fully contained within TNNP is Cache Lake at approximately 10 km?,

3.1.4. Fauna
Relatively little is known about the abundance, distribution, and ecology of most
animal species both in, and around, the study area. Zoltai et al. (1992) confirmed the

study area is home to 22 mammal species, and that it is likely visited by an additional 18



species from the adjacent forest and marine ecosystems. The most notable mammal
within TNNP 15 the Barren-ground caribou (Rangifer tarandus groenlandicus) of the
Bluenose herd. The Hornaday, Brock and Roscoe rivers outline the border for the
traditional calving grounds of the herd.

Three mammal species identified on the Committee on the Status of Endangered
Wildlife in Canada (COSEWIC) list of sensitive species make their home in TNNP
(Government of Northwest Territories, 2000). These are the Grizzly Bear (Ursus arctos),
the Polar Bear ({/. martimus) and the Tundra Shrew (Sorex tundraensis).

With an admittedly small sampling effort, Zoltai et al. (1992) also confirmed the
occurrence of 81 bird species, not including species expected, but not observed, in coastal
areas. Of the 81 species of birds observed by Zoltai and his research partners, 14 are
recognized as sensitive or at risk by COSEWIC. These include: the Northern Pintail
(Aras acuia), Common Eider (Somateria molissima), King Eider (S. speciabilis),
Oldsquaw (Clangula hyemalis), Surf Scoter (Melanitta fusca), White-winged Scoter (M.
fusca), Golden Eagle (4quila chrysaetos), Peregrine Falcon (Falco peregrinus), Rock
Ptarmigan (Lagopus mutus), Lesser Yellowlegs (7ringa flavipes), Buff-breasted
Sandpiper (Tryngites subruficollis), Short-eared Owl (4sio flammeus), American Pipit
(Anthus rubescens) and Harris Sparrow (Zonotrichia guerula).

Twenty-one fish species have been captured in or near the study area (Zoltai et al.,
1992). Four species were captured during field-research including the Arctic greyling
(Thymallus arcticus), Arctic flounders (Liopsetta glacialis), Lake Trout (Salvenlinus
namaycush) and Arctic charr (5. alpinus). Commercial fisheries operating in the area

from 1968 to 1986 depleted fish stocks, particularly those of the Arctic charr. Steps are



now being taken to ensure the long-term sustainability of the stock (Department of

Fisheries and Oceans, 1999).

3.1.5. Flora

Tuktut Nogait National Park is a floristically diverse area relative to similar
regions. The diversity is linked to the fact that a portion of the park escaped the most
recent glaciation (Zoltai et al., 1992). Four inventories of the vegetation have been taken
in the region (Zoltai et al., 1992; Cody et al., 1992; Scotter and Vitt, 1992; Thompson and
Scotter, 1992). The TNNP region is home to 103 species of bryophytes, 158 species of
lichen and 263 taxa of vascular plants (Zoltai et al,, 1992). Species distribution is
determined by local elevation and exposure differences.

Five broad vegetation types were identified for the purposes of this thesis: Barren,
Sparsely Vegetated, Sedge Meadow, Dwarf Shrub Tundra and Tussock Tundra (Figure
3.2.). Classification is based primarily on temporal growth patterns rather than species
composition. As a result, the quantity of classes is limited and the species variability

within each class is farge.
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Figure 3.2. Land cover of Tuktut Nogait National Park. Modified from original
classification by O’Brien (2001).

3.1.5.1. Barren

The ground cover of the Barren vegetation type is composed mainly of rock, with
small amounts of lichens and dwarf shrubs (Figure 3.3. A and B). Bouldery terrain
dominates and vegetation cover is less than 10 percent (Figure 3.3. C). The barren type
corresponds to other classifications such as Rock-Lichen (Zoltai et al., 1992), Polar Semi-

Desert (Bliss et al., 1973) Polar Desert (Bliss and Gold, 1999; Bliss et al., 1994).
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Figure 3.3. Landscap (A) and Veead ) views and composition (C) of the Barren
vegetation type.
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3.1.5.2. Sparsely Vegetated

The Sparsely Vegetated class is similar to the Barren class, but is characterized by
greater vegetation cover. It can be considered equivalent to the Dwarf Shrub-Herb-Sedge
class (Zoltai et al., 1992), Polar Deserts (Gold and Bliss, 1995) and Dry Prostrate-Shrub
Tundra (Muller et al., 1999). Vegetation cover varies from 10 to 50 percent, but rock and
bare ground are the most common land cover (Figure 3.4. A and B). Dwarf shrubs are
the dominant vegetation type (Figure 3.4. C), with Dryas integrifolia as the most

widespread species.

3.1.5.3. Sedge Meadow

The Sedge Meadow vegetation type is the most common of the land cover classes
within TNNP. Vegetation cover varies between 50 and 100 percent, and the most
common vegetation type within the Sedge Meadow cover is graminoid (Figure 3.5.).
Dormunant species are Eriophorum angustifolium and Carex aquatilis. This vegetation
class is often separated into two different classes, based on soil moisture conditions: Wet
Sedge Meadow and Mesic Meadow. Wet Sedge Meadow is consistently identified in
arctic communities (e.g. Miller et al., 1976; Shaver and Chapin, 1991; Zoltai et al., 1992),
and is found in more moist regions. Mesic Sedge Meadow is also described as Herb-
Nadum (Zoltai et al., 1992) and Moist Graminoid, Prostrate Shrub Tundra (Muller et al.,
1999). Greater proportions of dwarf shrubs and bare ground occur in areas where mesic

or dry conditions dominate.
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Figure 3.4. Landscape () and overhead (B) iews as well as composition (C) of the
Sparsely Vegetated vegetation type.
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Figure 3.5. Landscape (A) and overhead (B) views as well as composition (C) of the
Sedge Meadow vegetation type.
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3.1.5.4. Tussock Tundra

The Tussock Tundra is the highest productivity vegetation type within TNNP
(O’Brien, 2001). Local topographic variation is up to 30cm (Figure 3.6. A). Species
dominating this vegetation type are Eriophorum vaginatum, Salix arctica and Sphagmim
spp. Graminoid cover dominates, while smaller proportions of dwarf shrubs and mosses
are found (Figure 3.6. B). Standing water may also be found in inter-tussock areas, but
is often hidden beneath the vegetation canopy (Figure 3.6. C). Similar descriptions of
Tussock Tundra are commonly provided (e.g. Muller et al., 1999; Grogan and Chapin,

2000; Bliss 1981).

3.1.5.5. Dwarf Shrub Tundra

The final vegetation class found in TNNP is Dwart Shrub Tundra. This is the
least common vegetation type within TNNP. 1t resembles the Dwarf Shrub-Herb-Sedge
and High Shrub classes described by Zoltai et al. {1992} and Moist Low Shrub Tundra
described by Muller et al., (1999). Common species include Lupirnus arciicus, Cassiope
tetragona (Figure 3.7. A and B). Dwarf shrubs are most common, along with moderate

amounts of graminoid, moss and bare ground (Figure 3.7. C).
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Figure 3.6. La;dscap (A) and overhead (B) views as well as composition (C) of the
Tussock Tundra vegetation type.
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Fig 3.7. Landscape‘(A) and overhead (B) views as well as composition (C) of the
Dwarf Shrub Tundra vegetation type.
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3.2, FIELD SAMPLING

Field studies were conducted from 08-July-2000 to 10-August-2000. A total of
18 sample sites, each 1 km”, were surveyed. The location of sample sites was limited to
the western, northwestern and northeastern portions of the park. Selection of sites was
generally limited to areas within walking distance (< 10 km) of the three base camps ([1]
68° 53°N, 122°49°W; [2] 69° 16°N, 122° 58W; [3]1 69° 22°N, 121° 24°W) (Figure 3.8.).
However, four of the sample sites were accessed by helicopter. These were sites 5,11,12
and 13 (Figure 3.8.). Efforts were made to select sites representative of a variety of land
cover types, and to survey locations with little topographic variation and minimal surface

water.

3.2.1. Sampling Procedure

A systematic sampling procedure was used within each site (Figure 3.9.). Each
site contained 9 sample plots measuring 30 m x 30 m. Within each sample plot there
were 5 - 1 mx 1 m sample quadrats. The lower-left corner of each sample plot was
located with a hand-held GPS unit. Sample sites were then marked using a measuring
tape and compass. Data collection commenced after each sample quadrat was located

and marked.
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Figure 3.8. Sample site and base camp locations within TNNP. Note: Sample
sites 9 and 10 do not exist.
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Data collection at each sample quadrat consisted of visual estimates of percent
cover, slope, aspect and soil conditions, as well as overhead digital photographs and
surface reflectance measurements. Overhead digital photographs were taken from an
approximate height of 2 m (Figure 3.10A.). Surface reflectance measurements were
collected using a Cropscan MSR 5 radiometer (Cropscan Inc, 2002) (Figure 3.10B). The
radiometer measured reflectance in 5 spectral bands (450-520 nm 520-600 nm 630-690
nm 760-900 nm 1550-1750 nm). Finally, green vegetation from 2 to 3 sample quadrats
within each sample site was harvested by hand (n=37). Data summaries for each sample
quadrat are presented in Appendix I. Data collected in the field were used primarily to

determine which vegetation index is best suited to this study.

Figure 3.10. Data collection m
photographs; B: radiometric measurements). Photographs by
| Ryan Brook.
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3.3. VEGETATION INDEX ASSESSMENT

The vast majority of vegetation indices have been developed and tested using
vegetation commonly located in low- to mid-latitude regions (e.g. Rouse et al., 1973;
Richardson and Weigand, 1979, Huete, 1988). The use of vegetation indices in the
Arctic has been questioned (Rees et al., 1998). Reasons for skepticism include the build-
up of melt water early in the growing season (Box et al., 1989) and the large spectral
differences between arctic vegetation types (Rees et al., 1998). An assessment of several
vegetation indices was performed to determine the single vegetation index most
appropriate for TNNP. Four vegetation indices were selected for this analysis: the
WDVI, NDVI, MSAV]; and MSAVI;. The assessment was based on both quantitative

and qualitative criteria.

3.3.1. Quantitative Assessment

Measures of spectral reflectance were collected at each sample quadrat. For each
channel, the average of five consecutive measurements was recorded. Radiometer bands
did not perfectly correspond to AVHRR bands (Figure 3.11.). To ensure the closest
possible correspondence between the radiometer and the AVHRR, the mean of
radiometer Channels 2 (520-600 nm) and 3 (630-690 nm) was used as the visible
reflectance. NIR reflectance was taken directly from Channel 4 (760-900 nm) of the
radiometer.

The WDVI, NDVI, MSAVI, and MSAVI, were calculated using equations 2.2,
2.4, 2.6 and 2.8, respectively. The vegetation indices were compared to corresponding

measurements of photosynthetic biomass and estimates of percent cover. The indices
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were analyzed for their ability to predict these two photosynthetic variables, and the

degree to which each was influenced by background noise.
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Figure 3.11. Respective bandwidths for the AVHRR and the Cropscan MSRS5

Radiometer in the visible and NIR wavelengths.

3.3.1.1. Relating Vegetation Indices to Photosynthetic Variables

The first portion of the quantitative assessment established a measure of
ecological significance for each vegetation index. Above ground green biomass was
harvested from selected sample quadrats (n=37). Eleven of the samples were dried and
massed in the field. The remaining samples were shipped to Winnipeg, and frozen until
they could be processed. The frozen samples were massed, and three 10 percent sub-
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samples were taken. The three sub-samples were separated into green and non-green
components and subsequently dried and massed. The mean of the sub-samples was
multiplied by 10 to determine the dried photosynthetic biomass of the full sample.
Regression analysis was used to determine the degree to which each vegetation index
could predict photosynthetic biomass.

Additionally, visual estimates of percent cover were compared to each vegetation
index. Regression analysis was used to determine which vegetation index was the best

predictor of percent cover.

3.3.1.2. Influence of Background Noise

The influence of background noise was established by determining the vegetation
signal-to-noise (SN) ratio using radiometer measurement of reflectance (Qi et al., 1994,
Elvidge and Lyon, 1985). The data set was divided into groups of similar percent cover
at 10 percent intervals. For each group, the mean vegetation index value was compared

to the backgraund noise using the following equation:

T
SN =-2 (3.1)

where: 7 = the mean vegetation index value and ¢ = standard deviation of vegetation

index values.
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3.3.2. Qualitative Assessment

Several considerations were made in undertaking the gualitative assessment of the
four vegetation indices. The qualitative assessment considered if the particular
vegetation index was produced by the GEOCOMP-n system. If the vegetation index was
not produced by GEOCOMP-n, then it was essential that it could be easily generated
from the AVHRR data that are available through GEOCOMP-n. The final step
considered the degree to which the particular vegetation index was used and accepted as a

measure of tundra vegetation.

3.4. GEOCOMP-n SATELLITE DATA CHARACTERISTICS

Since 1992, the Manitoba Remote Sensing Centre (MRSC) has produced 10-day
AVHRR composite images for the Canada Centre for Remote Sensing (CCRS). The data
were originally processed by the Geocoding and Compositing System (GEOCOMP)
(Robertson et al., 1992). Since 2000, the next generation of the system — GEOCOMP-n —
has been used by the MRSC. GEOCOMP-n registers the imagery to an equal area map
projection. The default projection is Lambert Conic Conformal, though a wide variety of
projections are supported. All pixels are resampled to 1 km®. Geometric accuracy of
GEOCOMP-n data has been shown to be within one pixel (Czajkowski et al., 1997,
CCRS, 1999). A full description of the GEOCOMP-n system characteristics is provided
by Adair et al. (2002).

Inclusion of pixels in the final GEOCOMP-n composites can be selected based on
maximum NDVI or minimum sensor zenith angles. Composites used in this study are

based on maximum NDVI. The result of maximum NDVI composites is generally an
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image with the least possible cloud or atmospheric contamination for a 10-day period.

Brief descriptions of the GEQCOMP-n data used in this study are provided below.

3.4.1. Band Descriptions

The original GEOCOMP system produced the following bands of data: top-of-
atmosphere (TOA) radiance in the five AVHRR channels, NDVTI computed from TOA
reflectance, pixel acquisition dates, solar zenith angles, sensor zenith angles and relative
azimuth angles. Higher-level products such as leaf area index and surface temperature
were also generated. The GEOCOMP-n system produces the data provided by the
q_riginal system, as well as many other higher level products including: TOA reflectance
corrected for atmospheric effects’ or atmospheric and bi-directional effects’; two fraction
of photosynthetically active radiation products; three absorbed photosynthetically active
radiation products and photosynthetically active radiation surface albedo. Cihlar et al.
(2002) provide thorough descriptions of all higher-level GEOCOMP-n products.

The current research uses only the basic products provided by the original

GEOCOMP system. Actual bands of data used are described in Table 3.1.

Table 3.1. GEOCOMP-n bands used in this study (Adapted from Adair et al., 2002).

Band Identifier Measurement Units  Description

B01 RATOA W/ /sr/um Calibrated TOA radiance in Band 1
B02_RATOA W/m/st/um Calibrated TOA radiance in Band 2°
NDVI_RETOA Unitless NDVI computed from TOA reflectance”
SATELLITE ZENITH Degrees Sensor zenith angle

SUN _ZENITH Degrees Solar zenith angle

REL DATE Dayvs Days since ] January 1970

-~ o
Calibration method is explained in Section 3.4.2.1.
NDV1 is scaled such that values are integers ranging from 0 to 20000 (rather than real numbers from -1 to 1)

! Atmospheric correction is accomplished using the Simplified Method for Atmospheric Correction
(SMAC) see: Ralunan and Dedieu, 1994,

* Atmospheric and bi-directional correction is accomplished using the bi-directional reflection reflectance
distribution (BRDF) correction see: Rowjean et al., 1992,

Lh
—



The decision to avoid using higher-level products was based on two factors. First,
the basic data are available from the early 1990s, and it was important to permit the
application of methods developed here to the earlier data. Second, it was important to
avoid the corrected bands of GEOCOMP-n imagery based on a lack of confidence in the
data. The SMAC and BRDF corrected bands contain significant errors due to the use of
incorrect input coefficients (G. Fedosejevs, pers. comm. 2001). While the CCRS is
working to correct these errors, time constraints did not permit the use of higher-level

products in this study.

3.4.2. Sensor Zenith Angle Distribution

The sensor zenith angle refers to the angle between the satellite and a line
perpendicular to the earth at a pixel’s center (Figure 3.12.). Ideally, sensor zenith angles
are less than 45°. When sensor zenith angles are greater than 45°, geometric accuracy as
well as correspondence between composites and the raw imagery may be compromised
(Czajkowski et al., 1997). Pixels acquired with high zenith angles are furthest from the
sensor, and as a result, are influenced by more atmosphere than pixels close to nadir.
They also have reduced spatial resolution compared to pixels acquired closer to nadir.
Spatial resolution is approximately 1.1 x 1.1 km at nadir as opposed to 2.4 x 6.9 km at

scene edges.

L
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Figure 3.12. Sensor zenith angles describe the angle
between the satellite and a line perpendicular to the earth at
a pixel’s center

Different vegetation indices show different responses to changes in sensor zenith
angle. Values of NDVI are smallest with higher sensor zenith angles, and are also
influenced by the direction at which the surface is being viewed. The SAVI, on the other
hand, is positively related to sensor zenith angles and is independent of viewing direction
(Huete et al., 1992).

Raw data values in the sensor zenith angles band range from 0 to 9000. Values
were converled to degrees by dividing the raw numbers by 100. Frequencies were
extracted from the sensor zenith angle data layers for each composite period. The
frequencies were grouped into the following categories: less than 15°, less than 30°, less
than 45°, less than 60°, and greater than or equal to 60°. Sensor zenith angles differ from

solar zenith angles and have different effects on the imagery.
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3.4.3. Solar Zenith Angle Distribution

Solar zenith angles describe the angle between the sun and a line perpendicular to
the earth at a pixel’s center (Figure 3.13.). Changes in solar zenith angles may result in
changes in vegetation index values, particularly in the Arctic, where vegetation covers are
usually incomplete. Large solar zenith angles limit the amount of direct light reaching
the soil. Without background influences, reflectance from vegetation dominates resuiting
in higher vegetation index values (Kimes et al., 1985; Huete, 1987). These effects
change with vegetation cover densities, because the amount of ground directly
illuminated depends on the amount of vegetation that covers the soil (Jasinski, 1990). As
a result, changes in solar zenith angles impact vegetation index values less when
vegetation cover is high. This is because the amount of shaded ground is relatively
stable.

Raw solar zenith angle values range from 0 to 9000. Raw values were converted
to degrees by dividing the raw numbers by 100. The mean, minimum and maximum

solar zenith angles were extracted for each composite.
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Figure 3.13. Solar zenith angles describe the angle between the sun
and a line perpendicular to the earth at a pixel’s center.

3.4.4. Acquisition Dates

GEOCOMP-n images for this region are processed from the beginning of April
through the end of October. For each image, the relative dates band was examined.
Values in the relative dates band represent the number of days since 01-January-1970
(CCRS, 1999). In this study, relative dates were converted to julian dates to permit
simple comparisons between years (see Appendix II for dating conventions).
Frequencies of each acquisition date were determined from the julian dates layers.
Examining the distribution of pixel acquisition dates provides definitive information on
the data in two ways. First, it shows temporal biases inherent in the data. Second, it

demonstrates how representative each composite image is of the time period under
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constderation. It may also be possible to infer the general distribution of cloud cover
during the composite period from acquisition dates.

It was expected that the pixel acquisition dates would be biased towards the peak
of the growing season. That is, during the green-up portion of the season pixel
acquisition dates will tend to be later in the 10-day window, while during the green-down
portion of the season, they will tend towards earlier dates. This bias results from the
compositing criterion that selects the highest NDVI during a particular time period.
Given cloud-free conditions, the highest NDVI will be found closest to the peak of the

growing season.

3.5. MAPPING TEMPORAL GREEN SEASON METRICS

The final objective of this thesis was to develop methods to use vegetation
indices, derived from AVHRR composite data, to monitor the timing of key events
related to the growing season in TNNP. Preprocessing of the satellite data must be
performed to ensure high quality data are used in the analysis. Following data
preprocessing, the analysis of the timing of key growing season events was undertaken

and verified with supplementary data.

3.5.1. Image Algebra
Image algebra is used in many of the following sections. Image algebra creates a
new image by performing mathematical operations on the cell values of an existing image

(or images). Images can be transformed by another image, or by a constant (Figure 3.14.



A and B). Boolean logic can also be performed on images using similar techniques

(Figure 3.14. C).

Al e s 5404 ]3| 4 6 {5 |9 |9
2 0o f 5|5 l 6 1712 |1 $ 17176
301 e o ! 6 | s[5 s | 9|65 |s
20411} 403 |1 ] 617|212

DYyl e 3|3 |9 | 8
210 |5 |s a1 2717

| JR—
311100 | 2 Tl s 322
2 4 1 1 4 6 3 3

Olal 1|9 |2 T|T|T]|F 4L 119 | o
212 ] 6 |4 FlTi{TI|F ol 21|60
o o0 | 4|4 X F|lT|F |F — ol o] oo
o | 4 | 3 |1 FlT|T (T 0| 4 |3 |1

Figure 3.14. Examples of image algebra using mathematical operators (A and B) and
Boolean operators (C).

3.5.2. Data Preprocessing

Performing certain preprocessing steps reduced the possibility of errors resulting
from the use of satellite imagery. The preprocessing steps performed during the course of
this study addressed errors caused by using data from different satellites (NOAA-14 and

NOAA-16) and residual cloud and atmospheric attenuation.
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3.5.2.1. Radiometric Calibration

Data from 1999 and 2000 were collected by the NOAA-14 AVHRR. Data from
2001 data were collected by the NOAA-16 AVHRR. It was imperative that the different
data sets be compatible with each other. This requires that data be radiometric calibrated
to account for differences in measurements resulting from the use of different sensors for
data collection,

The orbits of the NOAA satellites carrying the AVHRRs were designed to cross
the equator at the same time each day to ensure consistent scene illumination. However,
the satellite orbits have been shown to drift over time causing changing illumination
conditions (Price, 1991). This creates problems when comparing time series data over
several years. Additionally, AVHRR Channels 1 and 2 have been shown to degrade in
orbit (e.g. Roa and Chen, 1995; Brest and Rossow, 1992).

Radiometric calibration established a relationship between radiant energy
reaching the sensor and the actual recorded values. Without on-board calibration
capabilities for Channel 1 and Channel 2, the user of AVHRR data is responsible for
radiometric calibration. However, using pre-launch calibration coefficients, provided by
NOAA, may cause significant errors in the calculation of vegetation indices (Che and
Price, 1992). GEOCOMP-n converts the raw data to TOA radiance using the Piecewise
Linear (PWL) calibration technique (Teillet and Holben, 1994) as recommended by
CCRS. The radiometric calibration from digital signal level to radiance units is

accomplished using the following equation:



Where: L = radiance (W/m?*/st/um), D = digital signal level; (= calibration offset
coefficient (counts);, G = calibration gain coefficient (counts / (W/m*/sr/um)) and 7 refers
to AVHRR Channel 1 or 2.

Radiance values, 7, are then scaled to a fixed 10-bit output scale. Calibration gain

and offset coeflicients are determined using the following equations:

Gjg =-id + B (3.3)

Of,d =Cjd + Dy (34)

Where: d = the number of days since the launch of the particular satellite; ;4 and O; ; are
gain and offset coeflicients on day d, i refers to AVHRR Channel 1 or 2 and A, B, C, and
D are Channel dependent coefficients derived from radiometric analysis of known ground
targets (Cihlar and Teillet, 1995) (Table 3.2.). The GEOCOMP-n system performs

radiometric calibration on the data prior to distribution to clients.
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Table 3.2. Coeflicients used by GEOCOMP-n to calibrate AVHRR optical data.

Coefficient Channel ] Channel 2

1999

A -1.209E-04 «3.714E-05
NOAA-I4 4 1.587 1.883

C 0 0

D 4] 41

2000

A -1.249E-04 -3.837E-05
NOAA—I4 1.639 1.946

C 0 0

D 41 41

2001 (low radiance) Raw counts <=495 Raw counts <=504

A 0 0

B 3.653 5.920

C 0 0
NOAA-16 D . 385 3719

2001 (high radiance) Raw counts >495 Raw counts >504

A 0 0

B 1.250 2.011

C 0 0

D 339.7 3428

3.5.2.2. Reducing Cloud Contamination

Maximum-value compositing intends to eliminate the presence of all cloud cover,
however, significant cloud cover may remain in the final images when cloud cover
persists throughout the composite period (Holben, 1986; Reed et al., 1994, Schwartz and
Reed, 1999). To address this, residual cloud contamination was identified and the effects
were removed from the vegetation index and relative dates values prior to undertaking the
temporal analysis.

To reduce the frequency of cloud-contaminated pixels, a Channel 1 cloud

masking procedure was used. Thick clouds are strong reflectors of visible energy. A
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threshold value of 250 (in 10-bit digital counts) was set for Channel 1 to find latent cloud
contamination. The threshold was based on the examination of Channel 1 histograms of

daily AVHRR imagery for days having significant cloud cover. The threshold value was

set high in order to reduce the occurrence of false cloud identification. The drawback to

this decision was that thin clouds would often be missed.

To identify pixels with a thinner cloud cover, a supplementary line-smoothing
algorithm was applied to the vegetation index time-series data. The algorithm identified
pixels that were erroneously low by comparing the vegetation index value to the values in
the previous and subsequent composites. Pixels with uncharacteristically low vegetation
index values were determined to be cloud-contaminated.

Clouds were identified at locations where there was a significant trend change in
the time-series. That 1s, where the time-series saw a reduction in NDVI of at least 0.05
when the time-series was previously increasing. The time-series on either side of the
peak of the growing season were examined separately. The portion of the growing
season after the peak was examined in reverse chronological order so the same algorithm

could be used for both halves of the growing season.

3.5.2.2.1. Adjusting the Vegetation Index Time-Series
Pixels identified as contamiated were replaced by the average of vegetation
index values on either side of the contaminated pixels in the time series using the

following equation:

IT; o
If; :[ JI-!-];;]I 1] (35)
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Where: 17 = the vegetation index value; and / = composite under examination.

3.5.2.2.2. Adjusting the Relative Dates Layer

Using the above method to remove cloud cover has the unwanted effect of
rendering corresponding dates values incorrect. As a result, all pixels that needed
adjustments made to the vegetation index values also required corresponding adjustments
1o the relative acquisition dates. Just as the vegetation index values were adjusted to the
mean of the two surrounding values. The dates layer is changed using the following

equation:

DATE; 1 + DATE,
D‘mr_:[ 4 fz+}2 j 1]

3.5.3. Determining the Timing of Key Growing Season Events

After all data issues were addressed, the primary objective of this study was
attended to: tq estimate the timing of key growing season events using satellite-derived
vegetation index time-series data. Specific key growing season events examined were the
onset, end, length and peak of the green season (Table 3.3.). The timing of such events

and how they can be observed in remotely sensed data was the focus.
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Table 3.3, The four temporal metrics observed from GEOCOMP-n data in this study.

TEMPORAL METRIC INTERPRETATION

Onset of Green Season Date First day of detectable photosynthesis

End of Green Season Date Final day of detectable photosvnthesis

Length of Green Season Range between Onset Date and End Dale

Date of Maximum Greenness Dayv on which the greatest vegetation index is detected

3.5.3.1. Onset and End of Green Season Dales

This study employs Reed et al.’s (1994} method for detecting phenological
metrics. This method has been used successfully on several occasions in many different
ecosystems (Reed et al., 1994; Schwartz and Reed, 1999, Chen et al., 2000). The
approach, adapted from autoregressive moving average models (Poole, 1974), compares
the vegetation index time-series to a moving average of the same time-series to detect
deviations from the trend. A significant trend change, indicating the onset or end of
greenness, is occurring at the point where the actual time-series crosses the moving
average time-series (Reed et al., 1994). To detect the onset of the green season, the first
step calculates the moving average (or predicted) time-series using the following equation

for each composite:

=+ + X+ + Vo) /w (3.7)

Where: 7 = the composite period, ¥ = the predicted vegetation index value; X = actual
vegetation index-value for composite period ¢; and w = the number of vegetation indices
included in the time series.

The choice of w is important as it determines the sensitivity of the test. Higher w

values detect more general changes while using a lower w makes the test detect small



changes that may not necessarily be indicative of changes m vegetation condition (Reed
et al., 1994), Selection of w must also not be so high as to allow data from the previous
growing season to affect the average (Hoff, 1983). A trial and error method was used to
find the appropriate w for this study. This value was determined to be 8, but it should be
noted that using any value from 6 — 10 would have produced nearly identical results.

It was also necessary to create additional data points before and after the
GEOCOMP-n data collection period in order to allow the analysis of 8 vegetation index
values. Building composites from existing daily AVHRR imagery was not an option
because snow cover made georeferencing impossible. Instead, vegetation index values
from the April 1 composite (April 11 in 1999) were used to represent the values in the
four composites prior to April 1. The seven composites after October were constructed
using the final vegetation index values from the last usable image for each year.

Determining the date on which the actual time-series crosses the predicted time-
series first requires the determination of the composite in which the two time-series cross.
Next, the calculation of the slope and intercept of the respective time-series segments
under consideration is necessary (Figare 3.15.). The slope and intercept of each line is

determined using the following equations, respectively:

P
SLOPE, i = Xl X‘:.‘F! jl *G; (3 8)
| DATEy; —DATEx -
INTy = (T j ~(SLOPEy j ¥ DATEx j))*G; (3.9)
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Where: x = the time series under consideration (predicted or actual); SLOPE = the slope
of the line; i = the composite period under consideration; V7 = the vegetation index from
composite i; DATE = the acquisition date from composite i; G = a mask showing the
focation of pixels the actual time series crossed the predicted time series during

composite #; and /NT = the intercept of the line.

N
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. \ — Predicted Vegetation Index Time Series
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Figure 3.15. An example of the slope and intercept calculation of each time-series
segment to determine the day on which a significant trend change occurred. Where: x =
the time series under consideration (predicted or actual); PRED = the predicted time-
series; ACT = the actual time-series; SLOPE = the slope of the line; i = the composite
period under consideration; V7= the vegetation index from composite i; DATE = the
acquisition date from composite #; D = the day on which a significant trend change
occurs; and INT = the intercept of the line.
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The next step determines precisely when the lines cross using the following

equation:

Dj =

INT i —INT, 5
[ pi ~INTq i (3.10)

SLOPE, ; ~SLOPE p ;

Where D = the date on which the lines cross (onset or end); 7 = the composite under
consideration; ¢ denotes the actual vegetation index time-series; and p denotes the
predicted vegetation index time-series.

The end of the green season is determined using the methods developed for
detecting the onset of the green season; the only difference being that several variables
were determined in reverse chronological order. The predicted time-series is calculated

using the following equation:
)r = (-YI ‘{"-\’f,;,l 'f',\vr,i,.z ++AXVI+(|1'_I))/31' (3 ] ].)

Slope and intercepts are also calculated in reverse order such that:

My Vi

SLOPE,. ; = R i S Ve (3.12)
7 DATE, - DATE, ;|

INTy; =0T j ~(SLOPEy j * DATEy ¥ G, (3.13)
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The onset and end of green season maps were then used to determine the total

length of the green season for each pixel.

3.3.3.2. Length of Green Season
The length of the green season metric represents the number of continuous days
between the growing season onset and end. The end of green season date is subtracted

from the onset of green season date to determine the total Jength of the green season:

LENGTH = END — ONSET (3.14)

Where: LENGTH is an image of green season length; ZNID is the map of end of green

season dates; and ONSET is the map of green season onset dates.

3.3.3.3. Date of Maxinum Greenness

Unlike determination of onset and end of the growmg season there is no
interpolation used in the determination of date of maximum greenness maps. The nature
of the construction process of maximum-value GEOCOMP-n images dictates that the
yearly maximum index should be included in one of the composites. Cloud
contamination may hide the actual date of maximum greenness, but no interpolation
technique can circumvent this problem.

The date of maximum greenness was determined by completing the following
steps: (1) the maximum vegetation index value was determined for each pixel during the

course of the growing season; (2) for each composite, a mask was made of pixels in
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which the maximum vegetation index value was found during that particular composite
period; (3) these masks were then multiplied by the corresponding dates layers. Results
of the image multiplication were maps showing the date of maximum vegetation index

value for each composite. (4) The final step combined the date of maximum vegetation
index for each composite into a single map. When all maps were generated, spatial and
temporal trends were determined for each metric and the entire model was verified with

supplementary data.

3.3.3.4. Spatial and Temporal Trends

Spatial and multi-year temporal trends were assessed for the study area. Spatial
trends were assessed by looking for directional and land cover-based differences. Values
for each metric were extracted at 1 km intervals along south-north, west-east and
southwest-northeast transects within the map area (Figure 3.16.). Values were plotted
over space and trends were considered significant if the slope of the line was statistically
different from zero with a p-value less than 0.05. Additionally, a sample of 250 random
points was extracted from each metric. Each metric was assessed for differences among
land cover types with analysis of variance (ANOVA) tests. Post-hoc a pairwise multiple
comparison test determined which means were significantly different (a = 0.05) than each

other using the Tukey’s honestly significant difference test.
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Figure 3.16. Location of transects for spatial trend analysis. (A) west-east; (B) south-
north; (C) southwest-northeast.

Temporal trends were assessed by plotting the mean value of each metric over the
three-year period. Given that the study is limited to three years, the statistical calculation
of trends was not undertaken. Instead, trends were described without calculating

statistics.

3.5.4. Model Validation

Model validation was required to verify that satellite-derived growing season
metrics are representative of the actual events. The validation was performed in two
steps. The first step determined if linear interpolation was indicative of the actual pattern
of the vegetation index over a short period of time. The second validation step compared

the satellite-derived phenological metrics to climate data within the study area.
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3.5.4.1. Linear Interpolation

Linear interpolation was used throughout the research, based on the assumption
that vegetation index values have a simple linear relationship with time over a 10-day
period. Linear and second-order polynomial interpolations were compared to verify this
assumption.

Daily AVHRR data were available for 1999 and 2000. A Channel 1 cloud-
masking algorithm was applied and pixels with lengthy periods (at least 10 days) of
cloud-free conditions were identified. The vegetation index response at these locations
was plotted against time and the linear and polynomial regressions were calculated.
Root-mean-square (RMS) deviations of the residuals were compared to identify the most

appropriate relationship.

3.5.4.2. Validating Event Timing with Climate Data

Field research for this study was not undertaken at either end of the growing
season. Additionally, many climate stations in the vicinity are missing too much data to
construct a meteorological-based phenological classification against which the satellite-
derived metrics could be compared. Instead, a single climate station within the study area
was used to assess general findings. Daily mean temperatures were compared to the
vegetation index time-series to assess the findings of satellite-derived onset, peak and end
of the green season metrics. Air temperature has been shown to be closely associated
with the timing of green season events (White et al., 1997). The availability of data

himited the assessment to 1999 and 2000, the first two years of the study.
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3.6. CHAPTER SUMMARY

This chapter explained the research methods employed to meet the research
objectives. To effectively map the timing of key phenological events, a vegetation index
suited to monitoring arctic vegetation must be identified. Four vegetation indices were
tested for their ability to determine percent cover and photosynthetic biomass, and limit
the influence of background noise. It was also necessary to examine the characteristics of
the primary data source for this study - GEOCOMP-n AVHRR imagery. GEOCOMP-n
data were examined to determine the typical satellite and sensor zenith angles and
acquisition dates for each composite. Finally, the satellite data were converted to the
appropriate vegetation index and analyzed. Analyses were designed to identify key
phenological events within the GEOCOMP-n data set for the years 1999-2001.
Phenological events of interest in this study were the date of green season onset and end,

the length of the green season and the date of maximum greenness. The following

chapter presents the results of the analyses and a discussion of these results.
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CHAPTER 4 — RESULTS

This chapter addresses the objectives of the study outlined in Chapter 1. The
objectives are addressed individually in three sections. The first section answers the
question “which vegetation index is best suited for analysis of arctic vegetation using
AVHRR data?”. Addressing this question includes a quantitative assessment of the
ability of each vegetation index to predict photosynthetic biomass and percent cover, and
to himit the influence of background noise. Tt also entails the use of a qualitative
assessment to determine other practical considerations. The second section determines
the basic characteristics of GEOCOMP-n data for the study area. This is accomplished
by observing the distribution of sensor zenith angles, solar zenith angles and data
acquisition dates. The third section is concerned with estimating the timing of key events
in the Arctic growing season using GEOCOMP-n data. Before these estimators could be
developed, the data required adjustment to account for the influence of cloud cover and
data errors. Once these were accounted for, estimators, or green season metrics, were
developed by examining the NDVT time series for significant changes that represented
changes in the growing season. The third section of this chapter also includes an
examination of spatial and temporal trends in the green season metrics as well as a

validation of the methodology.

4.1. VEGETATION INDEX ASSESSMENT
Four vegetation indices were examined through both a quantitative and

qualitative approach. These include the WDVI, NDVI, MSAVI, and MSAVI,.
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4.1.1, Quantitative Assessment

Three quantitative tests were conducted. First, a regression analysis was used to
determine which vegetation index is the best predictor of photosynthetic biomass. The
findings of the regression analysis suggest that all vegetation indices tested show very
similar relationships to photosynthetic biomass (Figure 4.1.). Specific results of the
analysis show that r-square values range from of 0.705 for the two MSAVIs, to 0.619 for

the NDVI. The r-square value for the WDVI was 0.695.
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Figure 4.1. Regression between photosynthetic biomass and a) NDVI, b) WDVI,;)
MSAV],, and d) MSAV];

Second, regression analysis was conducted to the ability of each vegetation index
to predict values of percent vegetation cover. The findings demonstrate that the
relationship between vegetation index values and percent cover estimates are similar

among the indices, but differ from the results concerning photosynthetic biomass. Values
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of the NDVT had the highest correspondence to percent cover, as characterized by an r-

square of 0.762 (Figure 4.2.). The MSAVI; and MSAVI; also performed well, having r-

square values of 0.744 and 0.741, respectively. The WDVI was found to have the lowest

r-square value among the various vegetation indices.
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Figure 4.2. Regression between percent cover and a) NDVI, b) WDVI, ¢) MSAVI,, and

d) MSAVI,

In summary, all vegetation indices were determined to predict percent cover more

effectively than photosynthetic biomass. This suggests that vegetation indices describe

total biomass better than they do green biomass, since percent cover estimates were based

on all components of the plant, as opposed to only the green leaves as was the case with

photosynthetic biomass measurements.
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Third, the SN ratio was used to assess the influence of background noise on
vegetation indices. The results of the analysis were similar for the WDVI, MSAVI, and
MSAVI, throughout the percent cover gradient (Figure 4.3.). Where cover proportions
were less than 50 percent, the WDVI was better able to minimize the influence of
background noise than the other vegetation indices. However, SN ratios for the WDVI
declined as percent cover increased. The MSAVI; and MSAVI, had relatively stable SN
ratios throughout the percent cover gradient. Compared to the vegetation indices tested
here, the NDVT had substantially different SN ratio values at most percent cover
intervals. The SN ratios for the NDVI show a positive correlation to percent cover; a

relationship not found with the other vegetation indices.
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Figure 4.3. SN ratio values for four vegetation indices.

Relative to other vegetation communities, SN ratio values found in TNNP were

substantially lower for all levels of percent cover. Elvidge and Lyon (1985) compared
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vegetation indices m an area dominated by sagebrush communities and/or juniper stands
and found SN ratios for the NDVI and WDV1 approached 10 and 12, respectively, Qi et
al. (1994) examined cotton canopies and found SN ratio values greater than 40 for the
NDVI and SAVI, and greater than 30 for the WDVI. Greater background noise and
lower vegetation index values are produced in the Arctic because of the less complete
vegetation canopies. Mid-latitude vegetation provides a more complete cover, reducing
the amount of soil visible to the sensor. Large variations in SN ratio values result from

different dominant vegetation types between studies.

4.1.2, Qualitative Assessment

The qualitative assessment provided different insights into the utility of the four
vegetation indices. Two indices were eliminated from further consideration, in spite of
their showing in the quantitative tests. Both the MSAVI]; and WDVI require the
calculation of a bare soil line. The need to recalculate the bare soil line would
significantly increase the amount of time required to estimate the timing of key events in
the growing season. Additionally, the AVHRR data do not provide the necessary spatial
resolution to make reliable determinations of the bare soil line. This single shortcoming
generated enough concern to eliminate both the MSAVI, and WDVI from further
consideration. Of the two remaining indices, only the NDV1 is available in the
GEOCOMP-n data set. Although the MSAVI, can be produced with reflectance data
from the Channel 1 and Channel 2 composites, this would dramatically add to the number

of steps used in further analysis. Finally, the MSAVI; has not been tested and validated
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as widely as the NDVIL. The NDVl is, by far, the most widely used and accepted

remotely-based measurement of vegetation characteristics.

4.1.3. Vegetation Index Assessment Summary

The vegetation index assessment was designed to determine, using multiple
criteria, the single index best suited for this study. Based on both the quantitative and
qualitative assessments, the NDVI was selected as the most appropriate vegetation index
for the purposes of this study. Though it was the weakest predictor of photosynthetic
biomass, the NDVI was the strongest predictor of percent cover and had the highest
overall SN ratio. The qualitative criteria eliminated the WDVI and MSAVI,; due to their
requirements for calculating a bare soil hne. The MSAVI; is not produced by the
GEOCOMP-n system nor is it widely accepted or used in the scientific literature. The
NDVI is produced by GEOCOMP-n and has been the most commonly employed
vegetation index since it was developed. Based on these finding, the NDV1 was selected
for use in this study. This selection led to the next step: determining general

characteristics and biases inherent in the GEOCOMP-n data.

4.2. GEOCOMP-n DATA CHARACTERISTICS

Understanding the nature of the data is important, as it alerts the user to biases,
errors, and weaknesses in the data set. For the purpose of this study three features of the
data were examined: the distribution of sensor zenith angles, solar zenith angles and

acquisition dates.
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4.2.1. Sensor Zenith Angles

Sensor zenith angles describe the angle from which the surface is observed by the
satellite sensor. Low sensor zenith angles were desired in order to maximize spatial
resolution, and geometric accuracy. Low sensor zenith angles also minimize interference
by atmospheric particles. Sensor zenith angles for the TNNP region are described for

each year of this study.

4.2.1.1. Sensor Zenith Angle Distribution - 1999

Sensor zenith angles for 1999 are summarized in Table 4.1. In the early and late
months of the 1999 data set, sensor zenith angles tended to be very high. Greater than 83
percent of the sensor zenith angles in the May I composite were at least 60 degrees off
nadir. Most sensor zenith angles were less than 60 degrees during the majority of the
growing season (mid-June to late September). Nearly 60 percent of viewing angles were
less than 30 degrees for the eleven composites from June 10 to September 21. High
zenith angles increased in frequency again towards the end of the 1999 data set. Fewer
than half of all pixels in the two October composites were collected with view angles less

than 60 degrees.
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Table 4.1. Breakdown of sensor zenith angles for each composite in 1999 (values are

percentages).
Acquisition Angles
Month Composite <15° <30° <45° <60° 60°+
0401 NO DATA
April 0411 0.00 0.23 3.24 53.54 46.46
0421 0.00 0.14 0.23 68.86 3114
0501 0.00 0.01 0.01 16.54 83.46
May 0511 0.01 0.01 1.65 892.31 7.69
0521 0.01 0.25 0.75 52.64 47.36
0601 6.28 8.05 13.58 67.54 32.45
June 0611 53.22 67.19 68.32 99.05 0.95
0621 4.84 50.33 78.57 99.18 6.82
0701 17.38 63.35 70.36 99.71 0.29
July 0711 31.60 41.44 5575 97.76 2.24
o721 2.41 50.78 69.51 99.78 0.22
0801 9.35 76.48 30.08 98.54 1.46
August 0811 71.10 71.81 74.91 97.57 243
0821 49.09 63.44 69.17 98.59 1.41
0901 9.90 42.38 95.01 98.82 1.18
September (911 41.94 90.85 09.14 99.82 0.18
0921 0.40 38.23 69.84 86.03 13.97
1001 0.1 0.07 0.20 30.58 69.41
October 1011 373 7.55 17.02 48.00 52.00
1021 NO DATA

4.2.1.2. Sensor Zenith Angle Distribution - 2000

Sensor zenith angles for 2000 are summarized in Table 4.2. Results were similar

to those seen in 1999; high angles at the beginning and end of the data set with low to

medium angles during the majority of the growing season. A dramatic switch from high

to low sensor zenith angles was observed between the composites of June 1 and June 11.

In the June 1 composite, over 94 percent of scan angles were greater than 60 degrees. In

the next composite period, June 11, almost 80 percent of angle values were less than 15

degrees. A similar transition was found at the end of the growing season. During the

September 21 composite sensor zenith angles were predominantly less than 60 degrees.
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By the October 1 composite, nearly 71 percent of pixels were acquired at sensor zenith

angles greater than 60 degrees.

Table 4.2. Breakdown of sensor zenith angles for each composite in 2000 (values are

percentages).
Acquisition Angles

Month Composite <15° <30° <45° <60° 60°+
0401 0.01 0.04 0.16 38.46 61.54

April 0411 0.00 0.00 0.1 14.89 85.11
0421 0.08 0.08 0.20 17.34 82.66
0501 0.29 0.43 12.44 39.18 60.82
May 0511 0.00 0.0¢ 2.50 36.34 63.66
0521 .01 475 20.186 75.02 24.98
0601 2.41 4.33 4.35 566 94.34

June 0611 78.52 84.62 88.08 95.71 3.29
0621 14.16 63.79 87.20 95.05 0.95

0701 59.68 67.48 72.02 98.50 1.50
July 0711 11.92 21.48 4088 85.04 14.96
0721 22.34 25.20 62.00 90.59 9.41

0801 70.32 75.52 82.56 88.53 1.47

August 0811 2.50 43.63 86.44 98.59 1.41
0821 28.20 74.18 94 .49 88.13 1.87

0901 6.13 3272 98.96 99.58 0.42

September 0911 2273 66.51 81.01 96.50 3.50
0921 0.89 1.93 29.10 99.70 0.30
1001 1.38 1.75 8.59 29.05 70.95
October 1011 28.03 36.40 59.86 72.45 27.55
1021 1.88 42.91 99.18 99.80 0.20

4.2.1.3. Sensor Zenith Angle Distribution - 2001

Sensor zenith angles for 2001 are summarized in Table 4.3. Results from the

2001 data set were similar to those from the previous two years. However, there was a

slight variation in the early portions of the 2001 data set: angles tended to be slightly

Jower in 2001 than in previous years. Also, the transition, from high to low angles at the

start of the growing season, and from low to high angles at the end of the growing season,

occurred more gradually in 2001 than in the previous two years.
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Table 4.3, Breakdown of sensor zenith angles for each composite i 2001 (values are
percentages).

Acquisition Angles

Month Composite <15° <30° <45° <60° 60°+
0401 0.00 0.00 0.03 100.00 0.00

April 0411 0.00 0.05 0.13 86.42 13.58
0421 0.00 0.14 9.41 100.00 0.00

0501 0.60 0.07 16.23 100.00 0.00

May 0511 0.06 0.38 0.98 42.97 57.03
0521 1.10 3.24 10.18 62.72 37.28

0601 4.56 11.214 40.34 91.68 8.32

June 0611 19.01 18.01 19.01 100.00 0.00
0621 54 .21 81.73 74.46 97.90 2.10

0701 1012 29.66 75.35 84.34 15.66

July o711 4.03 2342 82.27 94.43 5.57
o721 15.64 46.83 66.78 97.63 2.37

0801 9.12 30.62 61.85 97.15 2.85

August 0811 13.70 48.07 58.51 100.00 0.00
0821 0.59 45.78 94 .99 90.16 0.84

0901 76.84 89.92 96.17 99.77 0.23

September 0911 23.66 87.63 98.35 98.51 1.49
0921 88.70 91.35 91.61 98.77 1.23

1001 0.01 0.13 1.78 72.10 27.90

October 1011 0.00 0.00 4.54 43.20 56.80
1021 0.48 1.61 5.71 25.74 74.26

4.2.1.4. Sensor Zenith Angle Distribution Summary

The AVHRR is unique with respect to its ability to view 55 degrees off nadir.
This ability provides the user with high temporal resolution, but also provides challenges
in that the spatial resolution is reduced in pixels acquired at high sensor zenith angles.
Pixels viewed at nadir have a nominal ground resolution of approximately 1 km?.
Alternatively, spatial resolution at scene edges can reach 15 km® (2.4 km X 6.5 km).

Sensor zenith angles in this data set were typically low enough to avoid
significant concern. In 1999 and 2001, sensor zenith angles were low throughout the
green season. In 2000, sensor zenith angles were somewhat high in the first June

composite resulting in lower than ideal spatial resolution conditions. The result was that



the NDVT values for each pixel were derived from reflectances acquired over a larger
ground area, resulting in less precise reflectance measurements. Imprecise reflectance
measurements could cause the incorrect identification of onset, or it could hide the onset
from the AVHRR, in particular pixels.

There were predictable transitions from high to low angles at the beginning of the
growing season and from low to high angles at the end of the growing season.
Examination of daily AVHRR imagery for these transition periods showed that the
compositing process selected cloud or snow before and after the growing season. The
high zenith angles for these composites suggest that NDVI values for snow and cloud
increase with sensor zenith angles. Low sensor zenith angles during the growing season
indicated that NDVI values for vegetation are highest given low to medium viewing

angles.

4.2.2. Solar Zenith Angles

Solar zenith angles describe the angle at which the sun is located relative to the
observed surface at the time of the measurement. Solar zenith angles are dependent upon
day-of-year and time-of-day. They also vary as a function of latitude (given the relatively
small size of the study area such variations were mimmal). Solar zenith angles are
summarized for each year in the data set in Table 4.4.

General patterns are similar in all three years of the data set. At the start of the
data collection period solar zenith angles are relatively high, declining over time until the
commencement of summer. At this point, solar zenith angles began to increase — a trend

that continued through the end of the data collection period. The composite with the
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lowest mean solar zenith angle was slightly variable between years, but always occurred

near the summer solstice.

Table 4.4. Solar zenith angle summary for each composite. Values represent angles
in degrees.

1999

Month ! April I May [ June | July | August l September | QOctober

- - - - - - - o = b - - ™~ - - - - - - - -

(=] b o~ = - (] = - (2] o - o™ (=] - o™ 1= =~ ot =] ™ o

-+ - - uw g (e o©o 0 (1= [ [ g b= oo 0 o« =z 2] =1] = (=] [

[ Q =] (=] = = = o (] o (=] L] < 2 L= (=] [~ = - ™ -

MIN s 59 54 52 49 47 45 45 45 45 45 48 50 53 56 60 64 68 72 76 s

MAX % 66 64 58 56 59 57 57 54 57 58 58 61 67 668 73 76 79 84 8 g

o«

MEAN = B0 57 54 50 49 49 50 47 49 49 52 53 58 586 63 67 72 76 81

2000

Month April May June July August September October

= - - — - - - - - - - - - - - v - - - -~ -

= ~— oF < - ol (=] bl o™ o hal o~ (=] - of = — (] = b o

- < =t w0 (2] i w [T ©w T - e (=] =] =] 5 [~ 2] = = (=]

= < (=] (=] =] (=] o (=3 = p=] (=] o (=] (=] [—] (=] =] = - - bl

MIN 60 58 54 51 49 46 46 45 45 45 47 48 51 53 57 80 64 69 72 76 80

MAX 71 70 B2 64 61 61 59 56 586 58 59 680 62 65 71 72 78 81 84 88 93

MEAN 64 61 56 53 51 43 47 50 50 50 49 5% 56 59 63 64 71 74 75 84 892
2001

Month April May June July August September October

- — - -— - e b L bl v g - - - - - - b - - -

=3 hnd o = bl o™ o - o8 o - o™ (=] - o = by o (=] by o

- <t <t Ered 1] n o o o I~ i~ - oo ] =] <o o & (=] (=] =
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MIN 85 59 57 53 49 47 46 45 45 45 46 48 50 54 56 61 64 68 V2 V7 80

MAX 72 67 63 81 88 &7 53 30 55 54 57 58 62 60 6B 70 74 Y6 80 84 88

MEAN 70 61 62 59 54 52 490 48 46 48 49 S50 53 57 57 62 65 70 77 82 86

The lowest mean solar zenith angles mn both 1999 and 2001 were found in the
June 21 composite. During the 2000 summer, mean solar zenith angles reached their
lowest point in the June 1 composite, and subsequently increased slightly in the June 11
composite and remained steady for the following 2 composites before declining slightly
in the July 11 composite. During late September or early October of each year, solar
zenith angles began to exceed 80 degrees. Mean values typically reached 80 degrees one
or two composites after the maximum values did.

Maximum solar zenith angles in the data set are found at the end of the data

collection period in each year. Mean solar zenith angles exceeded 90 degrees during data



collection in the October 21, 2000 composite image. In this situation, the sun provided

no direct radiation to the surface being viewed from the satellite.

4.2.2.1. Solar Zenith Angles Summary

Mean solar zenith angles for the TNNP data set were below 65 degrees until the
final few composites. As a result, the effects of solar zenith angles were minimal for the
bulk of the growing season. Solar zenith angles did not dramatically affect NDVT values
until the final composite periods, at which time they so large that a large jump in mean
NDVI values within TNNP was observed (Figure 4.4.).

Results suggest that solar zenith angles greater than 80 degrees caused severe
errors in the calculation of NDVI. Markon (1999) found a similar effect with a
composite-AVHRR data set in Alaska. Erroneously high NDV1 values would have
caused an incorrect estimation of the predicted time-series used for determining the end
of the green season metric. To prevent this error, solar zenith angles greater than 80
degrees were masked and replaced with the average of NDVI values from pixels that
were not masked. Additionally, the October 21 composites were completely removed

from the calculation of predicted time-series values.

84



16000 -

=~ 4~ 2001 ——t=2000

S ;
S 15000
=1
o
£ 14000
3
< 13000
5
o
= 12000
Q
8 .‘
i 11000
&)
10000
9000 e
TYYBLYBEBRTRNIBEEBEHIEE S
April May June July August  September = October
Composite

Figure 4.4. High NDVI values caused by high solar zenith angles in the final two
composites. NDVT values increased more dramatically in 2000 than in 2001 because of
substantially higher mean solar zenith angles.

4.2.3. Acquisition Dates

GEOCOMP-n composites were based on AVHRR imagery from 01 April to 31
October. Unspecified problems in the 1999 data set made the April 1 composite and the
October 21 composite unavailable (J. Leger, pers. comm. 2000). Compositing periods
are built with 10- or 11-day intervals (11 days for the third composite in months having
31 days).

Many phenologically driven studies have used multi-temporal composites without
concern for the date on which each pixel was acquired (e.g. Markon et al., 1995). For the
purpose of this study acquisition dates were determined to be an important consideration

given that more precise measurements were required. Knowledge of the acquisition dates
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also provided information regarding how representative a composite was of the entire 10-
day period. A 10-day composite is best represented when an equal proportion of pixels
are acquired from each date within the period. Acquisition dates summaries for each year

are presented below.

4.2.3.1. Acquisifion Dates - 1999
The distribution of pixel acquisition dates for each 1999 composite is shown in
Figure 4.5. Key points in the figure are as follows:

= The June 11 and July 1 composites show the distribution of acquisition
dates that was expected during the green-up portion of the growing season.
That 1s, high frequencies at the end of the composite, when NDV1 s at its
highest relative to other dates in the same composite.

»  There is a very low frequency of pixels acquired at the end of the June 21
and the beginning of the July I composite, indicating the presence of a
persistent cloud cover during that particular time period. The same pattern
is seen when the July 11 and July 21 composites are compared.

* In the green-down portion of the season, the expected distributions are
seen in the August 21 and September 11 composites. That is, high
frequencies of pixels acquired early in the composite period.

*= The September | and September 21 composites show the signs of a short-
lived cloud cover at the beginning of each composite period, as seen in the

lack of pixels acquired on the first day in the composites.
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= In 1999 none of the composites were found to be good representations of

an entire 10-day period (i.e. an equal number of pixels were not acquired

from each day).
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Figure 4.5. Distribution of GEOCOMP-n acquisition dates in 1999
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Figure 4.5. Distribution of GEOCOMP-n acquisition dates in 1999 (continued)
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Figure 4.5. Distribution of GEOCOMP-n acquisition dates in 1999 (continued)

4.2.3.2, Acquisition Dates - 2000

Similar to 1999, a pooling of acquisition dates was found in most of the 2000
composites. There were, however, some composites in the 2000 data set that were found
to be more representative of the entire 10-day period (Figure 4.6.). For example, the

May1, May 21, and July 11 composites are somewhat representative of their respective
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10-day periods. The distribution of acquisition dates for this period displayed the
following:
*  The June 1 composite was mostly covered with clouds; a pattern that may
have persisted into the June 11 composite. An examination of daily
AVHRR images verified this suggestion.
® The distribution of acquisition dates in the August 1 composite had a
bimodal pattern. Since most of the park was at its peak during the August
1 composite, the bimodal pattern suggested persistent cloud cover for
much of the composite with a short, cloud-free window over a few small
areas in the second and third days (August 2-3). Again, by looking at

daily images it was possible to verify a break in the cloud during this

period.
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Figure 4.6. Distribution of GEOCOMP-n acquisition dates in 2000

30



9000 - April 24 8000 - May 1

,,,,,
4000
iy
g
2 anco L
E]
o
i
2000 -
1000
aQ
1
8000 4
8000 -
7000
6000
z T so00
o @
] ]
g 5 4000
[t [
1 2 3 4 5 B 7 8 9 10 1 2 3 E 5 6 7 8 F- I T B
Composite Day Compasite Day
5000 June 1 12000 — - o dung 11
B000
1 10000 -—
7000 -
500D 8000
E w00 &
: ;oo
g 4ot @
I I &
3000 4000
2000
2000
1000
0 : - ! 0
1 2 3 4 5 & 7 g g 10 1 2 k|
Composita Bay
7000 - June 21
e — 7000
s000 - . BH00 e
5000 ——
& 4000 &
g -
3 S 000 -—-
g o
2 3000 +—— e
w e
3000 +—
200
T 1000 -
ol
3 4 5 5 7 8 ] 0 1 2 3

Compasite Day

Figure 4.6. Distribution of GEOCOMP-n acquisition dates in 2000 (continued)

91




5000

July 11

4000

Frequency
s
g

2 3 4 5 bl 7 8 9
Compasite Bay
August 1

Freguancy
g

August 21

5000

4000

Frequency

2 3 4 5 8 7 8 8 10
Composite Day
September 11

7000 45

Frequenty

SEENEE

2 3 4 5 g 7 8 9
Composite Day

July 21

12000
10000
8000
iy
&
5 6000
2
.2
b
4000
2000
: Ty
o - + -
2 3 a 5 8 7 [ s 1w m
Composite Day
5 . August 11
B0C |
oy
g
g BOOD -
T
o
fre
4000 5o B —
o ) ; asatzizs| ‘
2 3 a 5 & 7 B [ 10
Composite Day
12060 September 1
oy
H
=2
o
a
I
H 3 4 [ 6 7 8 [ 10
Composite Day
14000 September 21
12000
T 8000 -— = -
g
&
2
g
2 e000 |
4000 | —
el IR £ = 15 e
o : > - '
2 3 4 5 [ 7 3 ] n

Composite Day

Figure 4.6. Distribution of GEOCOMP-n acquisition dates in 2000 (continued)




12000 - October 1 6600 - Cctober 11
10000 000
5000 4 4000 |
g £
g oo £ 3000
= o
& g
i H &
2000 - 1000
0} : R v g o ] ‘ ,
1 2 3 4 5 8 7 8 ] 0 1 2 3 4 5 g ¥ & 8 0
Compaosite Day Composite Day
October 21
12000 -
15300 4 -
8000 |-
2 s00o
g
]
i
K -
2000
LER 1

1 2 3 4 5 6 7 8 8w oM
Composita Day

Figure 4.6. Distribution of GEOCOMP-n acquisition dates in 2000 (continued)

4.2.3.3. Acquisition Dates - 2001
Similar to the previous two years, poorly distributed acquisition dates dominate
the 2001 composites (Figure 4.7.). Notable characteristics of acquisition dates in the
2001 GEOCOMP-n data set include the following:
» There was evidence of extensive cloud cover through much of the surnmer.
= The May 21-June 11, July 1, August 11 and September 1 composites all

show the influence of clouds in the distribution of acquisition dates.
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Figure 4.7. Distribution of GEOCOMP-n acquisition dates in 2001
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Figure 4.7. Distnibution of GEOCOMP-n acquisition dates in 2001 (continued})

4.2.3.4. Acquisition Dates Summary
Actual acquisition dates were often pooled within the composites. The pooling of

acquisition dates occurred for two reasons. First, a persistent cloud cover during the first
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(last) week of a composite period causes the acquisition dates to be pooled in the later
(earlier) dates. Second, during the green-up portion of the growing season, higher NDVI
values occurred during later dates; the opposite was true for the green-down portion.
Composites truly representative of the entire composite period were not found during this
three-year study. However, the pooled distribution of acquisition dates suggests that
cloud-contaminated pixels were excluded from the final composites. That is, the final

composites contained high-quality, cloud-free data wherever it was possible.

4.3. MAPPING TEMPORAL GREEN SEASON METRICS

Removing flaws in the data prior to analysis was necessary to ascertain the most
reliable information from the AVHRR satellite data. Following preprocessing of the data
set, the dates of onset and end of greenness, the length of green season, and the date of
maximum NDVI were determined for each year (1999-2001) in TNNP. Each of these
green season metrics was then examined for spatial and temporal trends, and the

methodology was evaluated.

4.3.1. Data Preprocessing — Removal of Cloud Contamination

The primary reason for using maximum-NDVI composites was to minimize the
effects of clouds in the imagery. However, when clouds contaminated a pixel for an
entire compositing period — 10- or 11- days in this case - the effect of clouds remained in
the composite image. Two cloud masking procedures were employed to locate pixels
that remained contaminated: a Channel 1 threshold-based procedure; and by locating

certain trend changes in the NDVI time series. Cloud-filled pixels were removed from
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the data set and replaced with interpolated values for the NDVI and relative dates bands

of GEQCOMP-n data.

4.3.1.1. Cloud Identification

Initially, all composites were searched for residual clouds. A challenge in this
process, however, was that the Channel 1 cloud masking procedure could not distinguish
between cloud cover and snow or ice, and therefore was incorrectly masking too many
pixels. This was particularly problematic given that the study area is covered in snow and
ice through May and the early part of June (Phillips, 1990). The same problem was
experienced in the September and October composites. For that reason, cloud masking
was limited to the composites between May 11 and August 21, and the Channel 1 cloud
masking procedure was not used until the June 10 composite each year.

While cloud masking identified residual cloud in every composite, the overall
proportion of clouds remaining after compositing was low. With the exception of one
composite per year, residual cloud proportions were well below 10 percent {see Table
4.5.). While little cloud was identified using two different detection methods, the
thresholds selected were designed such that some residual cloud may have gone
undetected. All attempts were made to keep the false identification of clouds to a
minimum. The decision to use insensitive cloud detecting thresholds was often evident in

the temporal analysis (See section 4.3.2.).
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Table 4.5. Percentage of cloud-contaminated pixels after compositing.

Month COMPOSITE 1999 20600 2001
May 0511 <1 % 1 % <1 %

0521 5% 1% 1 %

0601 <1% 4% <1 %

June 0611 <1% 3% 11 %

0621 <1% 14 % <1 %

0701 1% 1% 3%

July 0711 7% <1 % <1 %

0721 <1 % 2% <1 %

0801 15 % 6 % <1 %

August 03811 1% 5% <1 %
0821 <1% 5% <1 %

Cloud contamination was consistent across the three years. There was at least a
small portion of cloud-contaminated pixels in all composites examined. The highest
amount of residual cloud contamination was 15 percent found in the August 1, 1999
composite. Respective maximum residual cloud covers were 14 and 11 percent for 2000
and 2001. The pixels identified as cloud contaminated required corrections to the NDVI

and relative dates values.

4.3.1.2. Adjusting Vegetation Index Values

To correct for cloud contaminated NDVI values the incorrect values were
replaced by the mean of the NDVI values from the previous and subsequent composites.
Adjustments to NDVT values in all three years are generally small (Table 4.6.). The
minimum NDVI adjustment was 0.05 for all but the May 11 composites in 1999 and
2000, Inthe May 11, 1999 composite, only 2 pixels were identified as cloud-
contaminated. Both had exceedingly low original NDVI values and the adjustment was

consequently high. Minimum adjustments in the remaining composites were equal
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because the second cloud identification algorithm required a minimum decline in NDVI
of 0.05 to be recognized as cloud-contaminated. Mean adjustments were relatively
consistent throughout the three years. Composites with relatively high mean adjustments
resulted from very few cloud contaminated pixels or several large adjustments required
because of data errors rather than clouds. The exception was the June 11, 2001
composite, which had a high mean adjustment as well as a large number of cloud-
contaminated pixels. Standard deviations are generally low. Again, abnormally high
standard deviations exist where very few pixels required adjustments and where several
very large adjustments were required to repair data errors.  The adjustments performed

on the vegetation index values needed to be reflected in the dates layer.
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Table 4.6. NDVI adjustments as a part of cloud contamination correction.

1999
Month May 1 June July August
Composite 7 & 3 > 2 £ o~ = & x %
o [— [— =2 = = = = = = =

MIN 1.1 005 003 605 003 005 005 005 005 0053 0.03
MAX 102 102 013 151 017 012 019 049 015 041 05
MEAN 102 007 007 007 006 007 007 007 0607 006 .08
STDEV 0.003 009 001 013 001 001 002 002 002 001 008

2000
Month May ’ June July August
B - — p— Lt - — — — 1: Ty o]
Composite 17 in & = 2 B = = ® 0» &
[~ = [— [ = = = & - o =

MIN 0.06 0.05 005 005 005 0063 005 0.05 005 005 005
MAX 0.20 016 026 011 017 022 0357 032 111 051 077
MEAN 0.12 0.07 008 006 007 007 016 008 008 008 006
STDEV 004 002 002 001 006 003 013 0603 010 0603 002

2001
Month May 1 June July August
: vy — — — — ] - — e ] —
Composite ¢ @& 8 B €& &8 g & 8 2 &
(=3 = = = = o o [ o - —

MIN 0.05 005 0605 005 005 005 005 005 005 005 0.05
MAX 0.11 015 009 060 015 057 070 008 027 066 070
MEAN 007 007 006 014 008 012 0606 007 009 008 007
STDEV 0.03 002 0001 612 003 011 002 001 003 009 0403

4.3.1.3. Adjusting Relative Dates Values
Since values from both the NDVT band and the relative dates band were used to
determine the precise timing of events, it was necessary to adjust the relative dates values

that correspond with the adjustments made to the NDVI values. A summary of
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adjustments to relative dates values is provided in Table 4.7. All adjustments are less
than 10 days, indicating that cloud was never found to contaminate the same pixel for two
straight composite periods. In all but the June 11, 2001 composite, there were negative
and positive adjustments made to relative dates values. When all composites are
considered, the average adjustment was less than 1 day. Despite the average, there were
many large adjustments made to relative dates values. Without such adjustments, the

maps of timing events would have been less accurate.

Table 4.7. Relative date adjustment as part of cloud contamination

correction.
1999
Month May ‘ June t July l August i
- o -] — el — — - — — -
— o~ - - [} = — 1 = T o
uy i -3 = b - - £~ XK o XK
= = o = = = o = = = =
MIN -1 -4 -5 -8 -3 -8 -6 -8 -8 -8 -3
MAX 3 9 3 8 9 4 8 8 7 8 9

MEAN 1.00 3572 066 277 532 441 275 -162 037 111 095

2000
Month May 1 June l July l August l
- y— Ll Lt — — — - — R} e
Yol o = o [} &= v [ = e [}
[ #] wy o = = [ T~ £~ &L - o
(=] = = = = &= = (=] (=] - =

MIN -4 4 6 -7 -6 7 6 a1 -
9 6 9

5
8 065 -198 -1.22 166 -5.12

[ VY

MEAN 111 098 329 -13 365 0.

2001
Month May { June { July L Aungust t
— ] — oy o — — — — —
— [l = - ol = — =~ = ™ ol
i ¢} i o B e [ -~ e~ >z o e}
=~ =1 = [ = = = = ==/ =1 =
MIN -3 -3 -8 1 -8 -6 -3 -3 -3 -9 -3
MAX 6 8 2 9 3 8 3 3 9
MEAN 02 03 -30 37 -18 13 05 135 35 -25 43
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4.3.2. Determining the Timing of Key Growing Season Events

The ability to map the precise timing of key growing season events isa
requirement for future research of the effects of a changing climate on arctic ecosystems.
The timing of four growing season events were mapped for three years in TNNP: the
onset, end, and length of greenness, as well as the maximum NDVL Each map increases

the understanding of current conditions within TNNP.

4.3.2.1. Green Season Onset

Onset of the green season describes when the vegetation has enough density to be
detected from satellite sensors notwithstanding background influences from soil,
vegetation litter from previous years, standing water and snow. The date of green season
onset in the study area for 1999 occurs on julian day 144 (May 24) (Figure 4.8.). The
general pattern of green-up began in the west, and gradually moved east. Within TNNP,
green season onset occurred over a period of 46 days (from May 24 through July 8}
(Figure 4.9.). Initial signs of greenness occurred along the Darnley Bay coast, the
western portion of the map area and along the Hornaday River valley. There was also
early onset detected along a band near the northern border of TNNP — a pattern not
detected in the next two years. This pattern was attributed, through examination of the
daily AVHRR imagery, to the presence of cloud in the northern TNNP region. The cloud
cover had a higher NDVI than the ground surface at this time. Asa result, the cloud-
filled pixel was included in the composite and subsequently caused a large enough jump

in the time series to be detected as new growth. There are three distinct areas that begin



green-up relatively late. A crescent-shaped area in the northern portion of TNNP abuts
the band of very early onset. Late onset is also visible in the Melville Hills region in
center of TNNP, and east of TNNP between the park boundary and the eastern limits of
the map area.

Similar to 1999, the 2000 green season onset began on julian day 144 (May 23).
Initial greening occurred on the southern coast of Darnley Bay and in the southwest
corner of the map area (Figure 4.10.). There were a few patches of onset in the center of
the map area, which appear to have been caused by cloud rather than actual vegetation
growth. Detected onset within these patches is unexpectedly early compared to
surrounding onset dates. There was relatively little new growth until day 159 (June 8)
when the frequency of new growth jumps, and continues to increase until day 164 (June
13) when new growth is at its peak (Figure 4.11.) By this time, the Hornaday River
valley, the western portion of the map area as well as a large portion of land east of
TNNP have experienced green season onset. The onset period wraps up along the coast,
within a large crescent-shaped area in the northern portion of TNNP and in the higher
elevations of the Melville Hills region. Cloud cover that went undetected by two cloud-
screening methods influenced the determination of green season onset, resulting in the

patchy appearance to the 2000 green season onset map.
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Figure 4.8. Onset of the Green Season - 1999




69°N

68°N

Figure 4.10. Onset of the Green Season - 2000

Julian Days
133

149

165

181

197

Bl vater
N

0 15 30
I -

kilometers

BOOQ e - S ——
5000 |

4000 |

3000 |

frequency

2000 |

Onset (julian days)

Figure 4.11. Distribution of green season onset
dates in 2000

106



The onset period in 2001 began 11 days earlier than in the two previous years,
commencing on day 133 (May 13) (Figure 4.12.). Despite the earlier initiation of
vegetation growth, the peak of the onset occurred a week later than in 1999 and 2000, on
day 171 (June 20) — the results of a relatively slow acceleration of onset and a negatively
skewed histogram of onset dates (Figure 4.13.). The 2001 onset occurs in three steps.
The first step occurs from day 133 to day 156 (May 13 to June 5). This first step is
concentrated in the Darnley Bay coastal region. The second step lasts from day 157 to
day 163 (June 6 to June 12). This portion of the onset extends the growth along the
Darnley Bay coast north to the Amundsen Gulf, as well onset occurs along the west and
Hornaday valley regions. The final step in the histogram occurs from day 164 to day 190
(June 13 to July 9). This final portion lasted nearly one month, occurring first in the
south before moving on to the east. The same crescent-shaped area found during the
1999 onset period is visible in the 2001 onset map.

Analysis of daily AVHRR imagery pointed out a small number of cases in which
clouds were causing false detection of green season onset. The NDVI of the cloud was
high enough to be interpreted as green season onset. The method for detecting the onset
of the green season was overly sensitive in a few other cases as well. However, a change
to the methodology to make it less sensitive was not warranted, as it would have created a

situation where onset could go undetected.
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4.3.2.2. End of the Green Season

The end of the green season represents the point at which the AVHRR no longer
senses the presence of vegetation. The pattern to the end of the green season of 1999 was
erratic (Figure 4.14.). Generally, the end of greenness began in the east and progressed
west, though early end patches existed adjacent to late ending patches throughout the map
area. The lack of pattern in the 1999 end of green season map was the result of residual
cloud contamination.

The histogram of end dates also displays the irregular green-down in 1999
(Figure 4.15.). The first sign of the end of the growing season occurs on julian day 255
(September 12). The frequency of pixels where photosynthesis has ceased remains very
low for roughly two weeks, until approximately day 272 (September 29) when the
frequency begins to rapidly increase to a peak on day 276 (October 3). From the peak to
the final day of green down, frequencies jump from high to low. The final three days of
the green down actually see a relatively high frequency of pixels in which the green

season ends.
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Figure 4.14. End of the Green Season - 1999
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In contrast to 1999, the green down in 2000 had an obvious northeast-to-
southwest directional component to it (Figure 4.16.). Green down began in the northeast
portion of TNNP as well as east of the park on day julian 249 (September 5). Green
down spread in a southwest direction through the map area and concluded south and
southwest of TNNP. The bulk of the green season had ended before julian day 294
(October 20), however, the green season in less than half of one percent of all pixels did
not conclude until between julian days 301 and 304 (October 27 and 30).

The histogram of green season end dates also shows the pattern of green down
(Figure 4.17.). The first peak in the histogram falls between julian days 249 and 270
(September 5 and 26). This peak is representative of the initial green down in the
northeast portion of TNNP. The second peak falls between julian day 271 and 280
(September 27 and October 6). Most of the green down occurred within this 10-day
window. The end of the green season occurred over all but the northeast corner of TNNP
during this period. The final peak occurs after julian day 281 (October 7). This final
peak is representative of the end of greenness south and southeast of TNNP.

The green down in 2001 shows a pattern that is similar to that in 2000, though less
distinct (Figure 4.18.). The end of the green season in 2001 also began in the northeast
corner of TNNP and ended in the southwest. However, the pattern is more irregular than
that found in 2000.

The histogram of 2001 green season end dates is negatively skewed (Figure
4,19.). The green-down has a long, slow build up until day 267 (September 24). The
peak of the green down occurred on day 271 (September 28), and was followed by a

quick decline.
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Figure 4.18. End of the Green Season - 2001
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4.3.2.3. Length of the Green Season

The length of the green season was determined with the maps of onset and end of
the green season presented above, and was influenced by each equally. The 1999 season
lasted from 60 to a maximum of 156 days (Figure 4.20.), though all pixels with length
values less than 90 were found at the edge of water bodies and all values exceeding 150
were found in the area where the onset was misidentified as the result of clouds. The
shortest green season was found in the barren regions of the Melville Hills, the eastern
region of the map area and along the ridges to the east and west of the Hornaday River
valley. The areas of relatively long green seasons were found along the Darnley Bay
coast, as well as south and west of TNNP. The patchy appearance to the length values
was the result of the same appearance in the end of green season map. The general trend,
however, appears to show longer growing seasons in the west than in the east.

Examination of the histogram of green season length shows very few pixels at the
short end of the green season (Figure 4.21.). The vast majority of pixels display growing
seasons between 100 and 150 days. The histogram is also relatively flat and short
compared to the 2000 and 2001 growing seasons (see below), suggesting the green

season length in 1999 was uncharacteristically widely spread.
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The green season lasted between 58 and 148 days in 2000 (Figure 4.22.). All
values less than 78 {and some above) were found to be the effects of mixed pixels located
at the edge of water bodies. There is a general pattern showing a lengthening of the green
season from northeast to southwest. The shortest green season is found in the barren
areas of the Melville Hills, in the northeast portion of TNNP as well as to the east of the
park boundary near the Amundsen Gulf coast. The green season lasts between 105 and
120 days in the majority of pixels. Long green seasons were found in the dwarf shrub
dominated areas along the Darnley Bay coast and south and west of TNNP.

The 2000 histogram of green season length values shows a more gradual increase
in frequencies to the unambiguous peak at 112 days and a more dramatic drop off over
the next 18 days (Figure 4.23.). A very limited number of pixels had green seasons

exceeding 130 days. The length of the green season had similar characteristics in 2001.
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Figure 4.22. Length of the Green Season - 2000

Days
70

35

100

145

160

B water
N

9 15 36
P

kilometers

2500

2000

1500

frequency

1000

500

Figure 4.23. Distribution of green season lengths in
2000

117



The green season lasted at least 61 days and up to 145 days in 2001 (Figure
4.24.). All pixels with green seasons less than 72 days were identified as being mixed
pixels near water bodies. A short growing season is found in the Melville Hills and in the
northeast corner of TNNP, though the total area is smaller than it was in 2000. Most of
the map area has length values between 95 and 120 days. Areas with longer green
seasons were found along the Darnley Bay coast and west of the TNNP boundary.

The histogram of green season length shows a small peak at 82 days (Figure
4,25,). This first peak represents the particularly short green season in the northeast
portion of TNNP. The more distinct peak of the histogram occurs at 105 days after which

the histogram declines until it ends at 145 days.
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4.3.2.4. Peak of the Green Season

The day on which the NDVI peaked varied dramatically between years. In 1999,
greater than 60 percent of pixels reached their peak NDVI values during a two-day period
in the August 1 composite (Figure 4.26. and Figure 4.27.). Though no strong spatial
patterns emerge, the southern region appears to have earlier dates of maximum NDVI
than do northern regions.

Dates of maximum NDVI in 2000 were more spread out than in 1999 (Figure
4.28. and Figure 4.29.). The histogram in Figure 4.29. has several peaks, representative
of the acquisition dates within each composite. The progression of maximum NDVI
appears to begin in the south and end in the middle, with intermediate dates found m the
north, along the Amundsen Gulf.

The majority of maximum NDVT dates in 2001 were spread out in a manner
similar to the 2000 green season (Figure 4.30. and Figure 4.31.). Most maximum NDVI
values occurred during the August 1 or August 11 composite. No strong pattern was

evident in the Date of Maximum NDVI map.



69°N

68°N

Lambert Conformal Conic Projection

Julian Days
185

200

230

245

4

6 15 3n
IR

kilometers

121

|
4
1200¢
10000
8000
8000

frequency

4000

2000

[=]
-~
o~

u Q w3 v o 0 (=] w (=] 0
2 8 o o s &8 84 B @ ¥ %
-~ — o~ ™~ o~ o~ o o™~ o™~ o o~

Date of Maximum NDVE {Jultan days)
Figure 4.27. Distribution of dates of maximum
NDVIin 1999




68°N

69°N

Lambert Conformal Conic Projection

Figure 4.28. Date of Maximum NDVI in 2000
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Figure 4.30. Date of Maximum NDVI in 2001
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4.3.2.3. Three-Year Averages

Data from the three growing seasons were combined to produce average maps for
each green season metric in the TNINP region (Figures 4.32. — 4.35.). Averaging the
maps reduced the noise found in the yearly maps and allowed patterns to emerge much
more strongly. The areas with the longest green seasons were generally located in the
western portion of the map area dominated by higher productivity vegetation
communities. The short green seasons were found in the east in areas dominated by low
productivity vegetation communities. Histograms of average values maps show a more
normal distribution than did the vearly maps (Figures 4.36. — 4.39.). Determining the
average green season length reduced the influence of seasonal climatic variations that

was evident in the vearly histograms.
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4.3.2.6. Spatial and Temporal Trends

Green season metrics were assessed for spatial and multi-year temporal trends in
the TNNP region. The first method for examining spatial trends looked at values for each
average green season metric along eleven transects running in three directions: west to
east (transects 1 through 4), south to north (transects 3 through 7) and southwest to
northeast (transects 6 through 11).

West-to-east trends in the green season metrics (Table 4.8.) can be summarized as

follows:

Date of onset increased in an easterly direction, indicating that onset was

first expertenced in the west and progressed east.

= Ending dates decreased in an easterly direction, indicating that the end of
greenness was experienced first in the east and progressed west.

= Green season lengths also decreased in an easterly direction, indicating

that and green seasons were longer in the west than they were in the east.

= There was no significant west-to-east trend in the date of peak NDVIL.

Table 4.8, West to east trends for each green season metric.

TRANSECT ONSETDATE  ENDING DATE LENGTH PEAK DATE

1 y=0.13x+ 161* y=-028x+ 286* y=-035x+ 123* y=0.05x+ 214
R?*=0.26 R*=0.30 R’=0.55 R’=0.04

2 y=0.10x + 156 y=-0.06x + 280* y=-0.15x + 124* y=0.05x+ 210
R*=0.70 R*=0.27 R?=0.60 R’=0.10

3 y=005x+ 162% y=-007x+ 282" y=-0.12x+ 120 y=-0.01x+218
R?=0.41 R*=0.49 R*=0.58 R?<0.01

4 y=0.03x+163* y=-0.11x+286* y=-0.03x+ 123* y=-0.02x+ 215
R?=0,16 R*=0.60 R?=0.54 R?=0.01

* slope is significantly different than 0 {p < 0.001)
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South-to-north trends in the green season metrics (Table 4,9.) can be summarized

as follows:
s Onset dates increased in a south-to-north direction only along transect 5.
Onset dates along transects 6 and 7 did not trend in a south-to-north

direction.

»  Along two of the three transects (transects 6 and 7), the length of the green

season was shorter in the north than in the south.

»  Two transects (transects 5 and 7) showed significant, but opposite, south-

to-north trends to the end of the green season. The trend was positive
along transect 5 because the north end of this transect ends in the area
along the Darnley Bay coast that typically has longer green seasons than
the rest of the map area.

»  There was no significant south-to-north trend found in the date of peak

NDVL

Table 4.9. South to north trends for cach green season metric.

TRANSECT ONSETDATE  ENDING DATE LENGTH PEAK DATE
5 y=0.06x + 159* y=006x+275" y=-002x+118 y=-0.01x+216
R*=0.33 R*=0.06 R?=0.01 R?<0.01
6 y=-001x+165 y=002x+277 y=002x+112* y=-001x+217
R?=0.02 R*=0.07 R*=0.06 R*=0.01
7 y=-001x+ 167 y=-0.05x+270* y=0.05x+102* y=-0.02x+219
R?<0.01 R*=0.29 R?=0.26 R?=0.02

* slope is significantly different than 0 (p < 0.001)
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Southwest-to-northeast trends in the green season metrics (Table 4.10.) can be
summarized as follows:

= Onset of the green season occurred first in the southwest of the map area
and progresses in a northeast direction.

= The end of the green season progressed in the opposite direction,
beginning in the northeast and ending in the southwest.

= The green season had a trend of decreasing length in a northeasterly
direction.

» A significant trend in dates of peak NDVI was found along one southeast-
to-northeast transect (transect 11), indicating that along this transect, the

date of maximum NDVI declined in a northeasterly direction.

Table 4.10. Southwest fo northeast trends for each green season melric.

TRANSECT ONSETDATE  ENDING DATE LENGTH PEAK DATE

8 y=011x+171* y=-0.08x+274* y=-0.19x+103* y=-0.03x + 217
R*=0.62 R?=0.38 R’=0.67 R*=0.03

9 y=0.03x+ 170" y=-0.16x + 262* y=-0.16x+96* y=0.05x+214
R’=0.14 R°=0.27 R*=0.51 R’=0.06

10 y=0.03x+170* y=-0.06x+271* y=-0.00x+101* y=-0.02x+218
R’=0.36 R’=0.32 R*=0.47 R*=0.02

11 y=0.04x + 170* y=-0.11x + 268* y=-013x+99* y=-0.05x + 218"
R?=0.36 R?=0.23 R?=0.53 R?=0.15

* slope is significantly different than 0 (p < 0.001)

The spatial nature of green season metrics was also assessed by examining how
each metric varied by dominant vegetation type. The land cover map was examined to
locate AVHRR pixels dominated by a single vegetation type (greater than 90 percent of
the pixel belonged to the same cover type). Values for each metric were extracted at the
sites of these pure pixels, and one-way analysis of variance (ANOVA) was used to test

between cover type differences.
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The typical values for each metric within each vegetation cover class are shown in
Figure 4.40. Values showed differences between vegetation types for onset of green
season dates (ANOVA, /= 60.43, n =420, p <0.001), end of green season dates
(ANOVA, F = 11586, n = 420, p <0.001), length of green season (ANOVA, F=125.05,
1 =420, p < 0.001), but not date of peak NDVI (ANOVA, ['=2.07, n =420, p = 0.08).

ANOVA post-hoc tests showed that most, but not all, green season metrics were
unique for each cover type. Table 4.11. identifies which cover types had significantly
different mean metric values. All bivariate comparisons result in significant differences
for the onset and length metrics. With respect to the end of green season, values for
Dwarf Shrub Tundra-dominated regions do not differ from those in Mesic Meadow or
Tussock Tundra regions. However, there is a significant difference between end of green
season dates between Mesic Meadow and Tussock Tundra regions. There were no
significant vegetation-dependent differences in the date of maximum NDVI metric.

A notable pattern emerged in the green season metrics whereby the higher
productivity vegetation types typically had longer growing season (earlier onset dates and
later ending dates). An exception to this pattern was found in the dwarf shrub tundra
type, which actually had the longest growing seasons. Dwarf shrub vegetation has the
advantage of the woody component that is already established when the growing season
begins in the spring. All other vegetation types must grow from nothing each spring,
causing a longer time period between which growth actually begins and the satellite

sensor can detect the growth.
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Figure 4.40. Boxplots showing the different green season metric values among vegetation
classes (BRN = Barren; DST = Dwarf Shrub Tundra; SM = Sedge Meadow; SPV =
Sparsely Vegetated, TT = Tussock Tundra.

Table 4.11. Significant bivariate differences for each green season metric
ONSET END LENGTH MAX NDVI
Z = > Z = > Z > Z >
n = = = =
§ 8356855685855 E88%s55%¢E
BRN _ ¥ % * _ * * % & R * * * * R
DsT - * - * - % * -
MM - * - * # - * -
S5PV - * - * - * -
TT - - - -

* mean metric values are significantly different at the 0.05 level




The methodology employed in this study measured relative changes in the NDVI
time-series. Vegetation needed to be dense enough to be detected above all background
influences. A high productivity location was able to reach the required density before a
low productivity location, notwithstanding the fact that actual growing seasons may have
begun at the same time. This type of bias is undesirable, but unavoidable. It is also
minimized with the method presented here relative to a threshold-based method of
detecting key events that is currently used by Parks Canada (Wilmshurst et al., 2001,
Wilmshurst et al., 2002). While spatial biases exist, the methods employed in this study
do not limit the ability to monitor change over time, as the spatial distribution of
vegetation types is not likely to dramatically change at the scale of AVHRR pixels from
year-to-year.

Given that green season metrics were only calculated for three different years,
temporal trends were not assessed quantitatively. The green season experienced a slight
increase in onset dates (Figure 4.41.A), and a large increase in ending dates (Figure
4.41.B). Later onsets and earlier ends to the green seasons combined to cause shorter
green seasons from year-to-year (Figure 4.41.C). The date of maximum NDVTI has no
consistent pattern between 1999 and 2001 (Figure 4.41.D). If data from previous years
are available, it could be added to this data set, permitting a more effective assessment of

temporal trends in the green season of TNNP.
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4.3.3. Summary of Mapping Temporal Green Season Metrics

Using NDVI from GEOCOMP-n satellite data, it was possible to observe the
timing of four key green season events in the TNNP region. The onset of the green
season generally occurred in the early or middle portion of June. Green seasons lasted
three and a half to four months and ended in the later stages of September or early
October. The date of maximum NDVI was the most variable metric throughout the three
years and was also the only metric to consistently show no spatial trends. Temporal
trends appear to show declining growing seasons, which conflicts with some studies (e.g.

Tucker et al., 2001) and agrees with others (Wilmshurst et al., 2002).




4.3.4. Validatien
Validation of this study centers on two issues. First, the method used to
interpolate values is assessed by comparing it with an alternative method. Second,

climate data are used to determine if there were large errors in the methodology.

4.3.4.1. Interpolation

This study makes the assumption that the relationship between NDVI and time is
linear. This assumption is used to interpolate NDVT values hidden by clouds and to make
subsequent adjustments to the relative dates values. This assumption is also used to
determine when segments of the predicted and actual time series cross, In order to test
the validity of this assumption, the RMS errors for a time series of NDVI values were
determined with linear and quadratic equations.
Overall, errors under the assumption of linearity were only slightly lower (approximately
1 percent) than for a quadratic assumption (Figure 4.42.). The difference between the
two interpolation methods is not statistically significant (p = 0.152). Using a polynomial
relationship would not noticeably improve interpolated NDVI values. Quadratic
interpolation would provide no benefit and linear interpolation allows simpler
calculations and is better suited given the temporal resolution of GEOCOMP-n imagery.
As a result, employing linear interpolation was determined to be the most appropriate for

this research.
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Figure 4.42. Boxplots comparing linear interpolation to quadratic interpolation.

4.3.4.2. Comparing Derived Metrics With Weather Data

While there are eleven climate reporting stations within 200 km of TNNP, only
one, the Tuktut Nogait station, was able to provide data for verification of the satellite-
based observations for the 1999 and 2000 growing seasons. The data provided by this
station were limited to averages of hourly or daily temperatures, with missing
observations from 12 June 1999 to 13 July 1999 and 24 September 1999 to 05 October
1999, The Tuktut Nogait climate station is centrally located in TNNP at 69° 15°N, 122°
22W. The ability of an incomplete data set from a single climate station to verify green
season metrics over the 44000 km” map area is limited. If can, however, provide a
general view of the agreement between daily temperature and green season metrics,

The average of all daily mean air temperatures for each composite period is

presented in Figure 4.43. Daily mean temperatures in 1999 reached 0°C, slightly before
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they did in 2000. This pattern was reflected in the onset of .green season dates for each
year. Average onset in TNNP occurred on julian day 165 (June 14) in 1999 and julian
day 166.2 (June 15)in 2000. The remaining metrics showed the same correspondence
with air temperature. The average date of green season end in TNNP occurs on julian
day 285.9 (October 13) in 1999 and julian day 273.9 (October 1) in 2000. Air
temperatures drop below 0°C at the climate station approximately 12 days later in 1999
than they did in 2000. With respect to the length of green seasons, mean daily air
temperatures remained above 0°C for approximately 11.5 composites (eight 10-day and
three 11-day composites) during 1999 summer; nearly identical to the 120.8 days the
average green season lasted in TNNP. The 2000 green season lasted an average of 107.7
days, while average daily temperatures remained above 0°C for slightly more than 9.5
composites — approximately 100 days. Average dates of maximum NDVI were
approximately 06-August and 27-September in 1999 and 2000, respectively. Daily mean
temperatures reached their maximum during the August 1 composite in 1999 and
September 21 in 2000, corresponding with the date of maximum NDVI metric. Overall,
daily mean temperatures corresponded to the satellite-derived green season metrics very
well, though greater spatial and temporal coverage by weather stations would have

provided a more thorough evaluation of the green season metrics.
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Figure 4.43. Average daily temperature for each composite in 1999 and 2000.

4.4. CHAPTER SUMMARY

The ability to precisely map several key growing season events using NDVI time-
series data from 10-day AVHRR composites is an important tool that can be used to
monitor Canada’s national parks in a cost effective and timely manner. The NDVI was
determined to be the vegetation index best-suited to this study. It was determined to be at
least as effective as other vegetation indices for predicting green biomass and percent
cover and for reducing the influence of variable soil backgrounds. It was also the only
index provided in the GEOCOMP-n data set. The GEOCOMP-n data set was influenced

only slightly by high sensor zenith angles, particularly during the main portion of the
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growing season. Solar zenith angles above 80 degrees caused a significant increase in
NDVI values and were subsequently masked from further analyses. As well, acquisition
dates were found to often show pooled distributions caused by the compositing process
and/or clouds, which limited the number of composites that effectively represented a
particular 10-day period. Finally, four temporal green season metrics were determined
for TNNP using the NDVI time-series from the GEOCOMP-n data set. Strong south-to-
north and southwest-to-northeast trends were found in the onset, end and length of green
season metrics. The satellite-derived metrics were found to be accurate, based on a
comparison of each metric to daily temperature data from a weather station located inside
TNNP. The methods for calculating key green season metrics are suitable for use in all
of Canada’s national parks. The greatest benefit to this type of information will come
when and 1f these methods are employed over a longer time period. While the metrics
may not represent the absolute changes they were designed for, they undoubtedly
represent relative changes. So long as a consistent methodology is used to derive green
season metrics, multi-year comparisons will be valid. This research provides managers
of parks and other protected areas with an added piece of information on which to base

important decisions.
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CHAPTER 5 — SUMMARY & CONCLUSIONS

The primary purpose of this study was to use vegetation index data from
GEOCOMP-n AVHRR 10-day composites to monitor the precise timing of key growing
season events in Tuktut Nogait National Park. The following sections revisit the original

objectives of the study outlined in Chapter 1, and provide key conclusions on the same.

5.1. ADDRESSING STUDY OBJECTIVES

5.1.1. Objective 1: To determine which vegetation index is best suited for use with
AVHRR data in this study area.

Based on several criteria, the NDVI was determined to be the vegetation index
best suited for the study. The vegetation index selected needed to be a robust measure of
vegetation characteristics, minimize the impact of soil noise and satisfy several
qualitative requirements related to ease of use. Results of the quantitative analysis were
as follows:

»  All vegetation indices tested showed similar relationships to percent cover,
but the NDVT had the highest r-square value.

* The NDVI proved to reduce the influence of background noise most
effectively.

* Al vegetation indices tested showed similar relationships to

photosynthetic biomass, but the NDVI had the lowest r-square value.
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It was determined that a strong performance in predicting percent cover, and ability to
reduce the influence of background noise, outweighed the weaker performance in
predicting photosynthetic biomass.
Results of the qualitative analysis supported the quantitative findings. Results
were as follows:
s The NDVI required the least complicated calculations, and was delivered
as an image band by the GEOCOMP-n system,
®  Qut of all vegetation indices examined, the NDVT is the most accepted and
widely used.
Based on all finding outlined above, the NDVI was determined to be most appropriate

vegetation index for use with AVHRR in the TNNP study area.

5.1.2. Objective 2: To describe the characteristics of the basic components of the
GEOCOMP-n data set for Tuktut Nogait National Park.

The second objective of this study required an analysis, and description, of three
specific GEOCOMP-n system components: sensor zenith angles, solar zenith angles and
acquisition dates. Examination of these characteristics revealed the following;

* Sensor zenith angles were highest when pixels were snow-filled.
Typically, both before and after the green season, sensor zenith angles
were found to be relatively high. Relatively low angles were found during
the growing season.

»  Solar zenith angles were rose and fell along seasonal timelines. Angles

were found to be extremely high during the end of October, resulting in
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excessively high NDVI values.  Sufficient evidence was found to support
the masking of pixels acquired with solar zenith angles greater than 80
degrees.
= Acquisition dates were generally pooled within each composite. The
pooling of acquisition dates is an inherent effect of the compositing
process, and is caused by two factors: the selection of pixels closest to the
peak of the growing season, and the presence of cloud cover which
obscures the surface from the sensor.
It was important to be aware of the characteristics of the GEOCOMP-n data prior
to tracking the pattern of the green season. Aside from the high sensor zenith angles
found at the end of October, no data characteristics presented significant problems for the

analysis.

5.1.3. Objective 3: To produce unbiased estimates of key timing events in the Arctic
growing season using GEQCOMP-n data.

Estimating the timing of key growing season events is another step in the work of
Parks Canada to improve and expand the program of ecosystem monitoring with the use
of GEOCOMP-n satellite data. GEOCOMP-n data proved to be an effective tool for
estimating the timing of four significant green season events. Linear interpolation was
used to regain the information lost during compositing, thereby allowing for precise

estimates. Key findings regarding the timing of key events in TNNP include:



= Onset of the green season generally began in the southwest, gradually
moving towards the northeast. Average onset dates in TNNP increase
from julian day 165 (June 14) in 1999 to julian day 167 (June 16) in 2001.

= End of the green season generally began in the northeast and progressed
towards the southwest. Average end of the green season dates decrease
from julian day 286 (October 13) in 1999 to julian day 272 (September 29)
in 2001.

= The green season was longest along the southern Darnley Bay coast, and
shortest in the northeast portion of TNNP and in the Melville Hills region.
Average green season lengths in TNNP declined from 121 days in 1999 to
105 days in 2001,

» The date of maximum NDVI generally showed no significant directional
patterns. The average date of maximum NDVI in TNNP ranged from a
minimum of julian day 208 (July 27) in 2000 to a maximum of julian day
225 (August 13} in 2001.

= Onset, end and length of the green season metrics all showed significant
differences between dominant vegetation types.

= (reen season metrics corresponded closely to daily temperature data in
1999 and 2000. No climate data were available for 2001.

Rased on the above, it was determined that GEOCOMP-n provides useful
information to monitoring the temporal patterns of the green season. As such, it isa

useful tool for use in ecological monitoring.
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5.2. RECOMMENDATIONS

Based on the lessons of the research process, as well as the overall findings of the

study, the following recommendations are put forth as a means to improve ecological

monitoring in the TNNP area, and elsewhere in northern Canada:

I.

)

Make use of the higher-level data available from the GEOCOMP-n system.
Faulty input coefficients have been corrected by the CCRS. Employing the
BRDF-corrected NDVI would decrease the magnitude of atmospheric and
directional effects on the imagery. The correct coefficients will be applicable to
all AVHRR data for the TNNP region and should be used to improve the quality
of archived data.

Investment in improvements to weather reporting stations within TNNP, and all
national parks. Of the 12 weather stations located in or near TNNP, only one had
gathered sufficient data to be useful for this study. One possibility would be for
Parks Canada to consider taking over responsibility for maintaining weather

stations within national parks.

. Expand the scope of the research. There is an abundance of daily and composite

AVHRR data that can be processed and analyzed using the methodologies
presented here. These methodologies should be applied to data that have been
archived for TNNP and other national parks within Canada. Continued research
and monitoring, which focuses on both temporal and spatial characteristics of

flora and fauna and the surfaces upon which they live, is the only way to measure
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the impact of policies and programs put in place at the governmental level to

maintain ecological integrity in protected areas.
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2282 8/og/oo| 15 SE SPV | 20 80 S5 1% 0 0 10 70 0 D |568 786 925 165 212|028 008 0412 012
2983 8/0B/OD| 15 SE SPV | 40 60 10 25 5 0 15 45 0O 0 1486 684 728 202 242|047 013 o021 0.22
2284 B/OBMOO| 15 SE SPV | B0 40 15 40 2 3 25 15 0 C | 455 644 637 214 267|054 015 025 026
2285 B/OB/OO| 10 SE SPV | 5 S50 15 30 5 0 S 4 0 0 | 477 709 706 215 243,051 015 024 0724
2291 8/08/00| 15 NE SM | 4 855 25 20 O 0 40 15 0 0 | 599 8BS0 955 27.3% 28.26| 048 0.18 027 028
2292 go@i00l 10 NE O SM 45 55 15 3¢ O G 20 35 0 0 | 4090 627 586 2893 2422 066 023 037 039
2293 8/08/00|) 10 NE SM | 90 10 20 85 O =) 5 5 0 0 | 361 602 537 2055 2358, 069 024 040 041
2294 B/OB/OO. 5 NE SM [ 8 38 5 25 0 10 a 35 0 D | 376 576 589 2488 2105|062 018 03t 0.32
2295 B/OBOO| 10 E SM j100 0 70 20 O 10 G Q ¢ 0 | 355 589 548 2056 1842|069 024 039 041
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APPENDIX Il — DATING CONVENTIONS

COMPOSITE

JULIAN DATES*

DATES
1D 1999, 2001 2000
0401 April T - April 10 91 - 100 92 - 101
0411 April 11 — April 20 101-110 102 - 111
0421 April 21 — April 30 111 - 120 112 - 121
0501 May 1 - May 10 121 -130 122 - 131
0511 May 11 — May 20 131 — 140 132 - 141
0521 May 21 — May 31 141 - 151 142 - 132
0601 June 1 — June 10 132 - 161 153 - 162
0611 June 11 — June 20 162 - 171 163 - 172
0621 June 21 — June 30 172 - 181 173 - 182
0701 July 1 - July 10 182 - 191 183 - 192
0711 July 11 = July 20 192 - 201 193 - 202
0721 July 21 — July 31 202 -212 203 -213
0801 Angust 1 — August 10 213 -222 214 -223
0811 August 11 — August 20 223 -232 224 - 233
0821 Angust 21 - Angust 31 233 -243 234 - 244
0901 September 1 — September 10 244 - 253 245 - 254
0911 September 11 — September 20 254 - 2063 255 - 2064
0921 September 21 — September 30 264 -273 263 - 274
1001 October 1 — October 10 274 - 283 275284
1011 October 11 - Gctober 20 284 — 293 285-294
1021 QOgctober 21 — October 31 294 — 304 295 - 305

* Julian days in 2000 differ from those in 1999 and 2001 because 2000 was a leap year,
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