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ABSTR{CT

Through the use of remote sensing technology, researchers are able to monitor
inaccessible regions common to the Canadian A¡ctic. Parks Canada currently receives
GEOCOMP-n 1O-day composite AVHRR imagery from the Manitoba Remote Sensing
Centre. The federal agency is using the data to develop methods for monitoring various
ecosystem variables within protected areas located throughout northern Canada. This
study, located in Tuktut Nogait National Park (TNNP), Norlhwest Territories, uses

GEOCOMP-n imagery to monitor the timing of four key growing season events during
the 1999 to 2001 period. The specific objectives ofthe study were:

1. To determine which vegetation index is best suited for use with
AVHRR data in the TNNP study area,

2. To describe the characteristics ofbasic components ofthe
GEOCOMP-n data set for TNNP, and

3. To produce unbiased estimates ofkey timing events in the Arctic
growing season using GEOCOMP-n data

Using both quantitative and qualitative critería, field data were analyzed to assess

four vegetation indices. The normalized difference vegetation index (NDVI) was
determined to be the most appropriate vegetation inder for use in this study. Aìl
vegetation indices tested were found to be acceptable predictors of photosynthetic
biomass and percent cover, but the NDVI proved to have a stronger ability to suppress
the influence ofbackground noise. A qualitative assessment reaffirmed these findings,
by demonstrating a history ofperformance and ease ofuse in other studies.

Through an examination of GEOCOMP-n data characteristics, as they pertain to
the TNNP stufly area, extremely high solar zenith angles were found to be causing
inaccurate NDVI values during the end of October. Examination of the data also
demonstrated that sensor zenith angles were relatively high before and after the growing
season, when a large portion ofthe composites were covered by snow and cloud. In
addition, acquisition dates were found to have a pooled distribution within most
composites. lf was determined that this pooled distribution was the result ofcloud covers
and the nature ofthe compositing procedure.

A time-series of the GEOCOMP-n NDVI data was used to estimate the timing of
four key events in the Arctic growing season: the onset, end, and length ofgreenness, and
the maximum NDVI. Spatial analysis of each metric revealed the presence of a
significant southwest-to-northeast trend in the evolution ofthe metrics, excluding the date
of maximum NDVL Spatial analysis also established that the timing of these events was
dependent upon the dominant vegetation type in the jmmediate area. The fiming of key
vegetation events corresponded closely to the mean air teinperature recorded at a weather
reporting station located centrally within TNNP.
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CHAPTER 1 - INTRODUCTION

1.I. INTRODUCTION

A 1988 amendment to the National Parks Àct declared the maintenance of

ecological integrity the highest priority in the protection ofCanada's national parks

(Parks Canada, 1998). Achieving thís goal depends on effective monitoring ofthe

ecological processes at work within and around these regions. Effective monitoring

requires consistent, reliable and timely information. Satellite remote sensing meets these

requirements, and is therefore a valuable tool to maintaining ecological integrity of

protected lands.

Monitoring programs, which rely on ground-based data collection, may observe

diminishing returns on collection effort. In arctic ecosystems, where research and travel

costs are prohìbitive, ground-based monitoring is even less suitable, Remote sensing, and

particularly the Advanced Very High Resolution Radiometer (A\aHRR) deployed on the

National Oceanic and Atrnospheric Administration (NOAA) series of polar-orbiting

satellites, is widely used for the purposes ofregional and global monitoring ofterrestrial

vegetation (e.g. Goward et a1..1994; Gutman, 1991). The A\TIRR collects medium and

coarse resolution imagery in five spectral bands at least once per day, and is available at a

reJatively low cost.

Since 1992, the Manitoba Remote Sensing Centre (MRSC) has produced 10-day

AVHRR composite images for the Canada Centre for Remote Sensing (CCRS).

Composites were originally processed by the Geocoding and Compositing System

(GEOCOMP) (Roberlson et a1., 1992) In 2000, the next generation of GEOCOMP,

GEOCOMP-n, was put to use operationally. Parks Canada currently uses GEOCOMP-n



data for ecological monitoring in northern national parks (McCanny, 1999, Wilmshurst et

aI.,2001;Wihnshurst ef al.,2OO2). Similar data have been used effectively for many

years to monitor American northern national parks (Markon, 1994).

The primary drawback of multi-day composites in comparison to daily A\IHRR

imagery is a reduced temporal resolution. This is particularly problematic for studies

attempting to ìdentifli the precise timing of events' In this sense, there is a need to

develop methods that regain the information left out ofthe multi-day composites.

1.2. PURPOSE & OBJECTIWS

The purpose ofthis thesis is to develop a method to monitor the precise timing of

hey events in the A¡ctic growing season using a single vegetation index derived from

GEOCOMP-n AVHRR composite satellite imagery. Basic phenological metrics such as

onset and end ofgreenness, duration of greenness and date of maximum greenness are

determined for Tuktut Nogait National Park, Northwest Territories, for the 1999, 2000

and 2001 growing seasons. The final product provides not only a method to determine

such measurements, but also a measure ofthe current status ofvegetation in Tuktut

Nogait National Park against which future measurements can be compared. This

corresponds closely to the objective ofParks Canada: to learn more about how A\aHRR

data can be used to monitor Canada's National Parks. The specific objectives ofthis

thesis are:

1. To determine w'hich vegetation index is best suited for use with A\aHRR

data in this study area.



2. To describe the characteristics ofthe basic components ofthe

GEOCOMP-n data set for Tuktut Nogait National Park

3. To produce unbiased estimates of key timing events in the Arctic growing

season using GEOCOMP-n data.

1.3. SIGNIF'ICÄNCE OF THE STUDY

This study develops a method to monitor the precise tirning ofkey events in the

growìng season. The frnal product provides not only a method to determine such

measurements, but also contributes to the knowledge base on the curfent status ofthe

vegetation of Tuktut Nogait National Park (Tl\Ì\P) ImpoÉant management decisions are

based on the best information available. Increasing the quantity and quality of

information park managers are able to attain, provides the opportunity to make more

informed decisions.

Research shows that climate change is affecting the TNNP region (Foster, 1 989)

Higher temperatures and greater precipitation are expected consequences of current

climatic trends (Betts et al.,2O0O). When these consequences are experienced on

regional scales they have been shown to increase rates ofvegetative population growth

(Carlsson and Callaghan, 1994), change net primary productivity (Plochl and Cramer,

1995) and cause longer growing seasons (Bliss and Matveyeva, 1992; Oechel and

Billings, 1992; Shaver and Kummerow, 1992). Such changes at the global scale have

been shown to produce the same effects (Post and Stenseth, 1999) Monitoring the

timing ofkey events in an arctic growing season aids in the identifrcation and description

of climate change on both a regional and global scale (Randerson et al , 1999)



Also, this research provides the opportunity to monitor migration routes Arctic

vegetation provides the only food source for many mammals permanently residing in,

andlor passing through the study area. Travel routes of migratory species, such as the

barren-ground caribou, may follow the green-up ofthe local vegetation (Van der Wal et

al., 2000). Monitoring the progression ofthe growing season may provide the ability to

remotely monitor the migration ol such mam¡nals.

1.4. THESIS OUTLINE

This thesis is divided into 5 chapters. The hrst chapter outlines the topic and

presents the oþjectives ofthe research. The second chapter reviews the relevant scientific

literature related to the research presented in this thesis. Chapter 3 explains the

methodology ofthe research in order to achieve the research objectives. The loufth

chapter presents the research results and associated discussion. The thesis wraps up in

Chapter 5 with a summary ofthe research, conclusions and recommendations.



CHAPTER 2 - BACKGROUND

Chapter 2 discusses the relevant background information in three major sections.

The firsf section discusses the optical remote sensing ofvegetation, and includes

descriptions ofthe science of rnonitoring vegetation with remote sensing, as well as the

various uses ofoptical remote sensing data for vegetation applications. The second

section provides a description ofthe various vegetation indices used in this study. The

third section discusses the monitoring ofplant phenology. Emphasis in the third section

is placed on tl1e use of remote sensing and abiotic deterrninants ofphenology.

2.T. OPTICAL REMOTE SENSING OF TERRESTRIAL VEGETATION

Different objects interact with solar energy in different ways. ErTergy, at any

particular wavelength, is reflected, absorbed or transmitted when it contacts an object.

Energy that is not absorbed or transmitted is reflected. Optical remote sensing

technologies measure the amount ofenergy reflected in the visible and near-infrared

(NlR) portions of the electromagnetic spectrum (EMS). Reflectance characteristics of

green leaves makes optical remote sensing ideal for rnonitoring vegetation canopies.

2.1.1. Spect14l Reflectance of Green Vegetation

Green vegetation is unlike other com¡non terrestrial surfaces, such as bare soil and

water, in the way it interacts with visible and NIR energy (Figure 2.1.). The typical

reflectance pattern ofhealthy, green vegetation is low in the visible portion (0.4 - 0.7

pm) and high in the NIR portion (0.7 1.3 ¡rm) of the EMS. In contrast, bare soil reflects



less visible and NIR light than vegetation and water absorbs almost all optical light,

resulting ín low reflectance throughout.

In the visible portion of the EMS, reflectance from green vegetation is low due to

the high amount ofred and blue energy absorbed by chlorophytl in the leaves (Woolley,

1971). The green appearance of healthy vegetation results from the low amount ofgreen

light absorption relatìve to red and blue light absorption. Within the NIR portion, healthy

vegetation ref'lects a relatively large amount of NIR energy. High reflectance of NIR

energy is the result ofthe cellular structure within the leaves of healthy vegetation

(Woolley, 1971). The signal reaching the senso¡ is also influenced by surfaces other than

vegetatíon.

Bare Soil

E
Green Vegelalion

0.4 0.6 0.8 1.0 t.2 l..t

Wavelerglh (prn)

Figure 2. 1. Typical spectral reflectance in the visible and NIR portions of the EMS for
common terrestrial surfaces.



2.1.2. Signal Interference

Observing terrestrial surfaces from a remote location (i.e. a satellite sensor) is an

effective method for monitoring green vegetation. However, the non-vegetated

background such as soil and non-photosynthetic portions ofplants and atmospheric

conditions also influence the signal. Such influences must be accounted for in order to

accurately despribe vegetation conditions from remote observations.

2. L 2.1. Non-l1egetafed Background Influences

Non-vegetated background influences are derived from the soil under the

vegetation canopy as well as non-photosynthetic portions ofthe vegetation. These

influences rnay be separated into two categories: spectral effects and brightness effects

(Elvidge and Lyon, 1985). Spectral influences result lrom the porlion of energy that is

scattered or transmitted towards the soil background, providing irradiance to an area that

would otherwise be in shadow. Though part ofthe írradiance will be absorbed by the

soil, another po(ion of it will be reflected back to the sensor, and may be interpreted as

having come from the vegetation canopy. Such effects are generally consistent over shof

spans of time, but variable over space.

Brightness influences are caused by variations in soil type and soil rnoisture

conditions. Such influences are variable over short periods oftime and space, making

correction difficult. For exanrple, a rain event would cause a large change in soil

brightness overa short period oftime. In such cases, the change in soil moisture may

appear to be a change in vegefation cover. Optical satellite data may be misinterpreted if

the user is una\ afe ola recent rain event.



2. 1.2.2. Ofher Bockground htfltrences

There are irnportant background effecls other than soil that influence reflectance

signals. Standing water and vegetation litter are the most common influences ìn this

group. Hope et al. (1993) feported that tussock tundra communities with standing water

had simitar vegetation index values to tussock tundra comn]unities with higher biomass

and no standing water. In arctic communities where poor drainage can lead to the

accumulation of standing water, this effect may cause the overestjmation ofvegetation

over large areas.

Colwell (1974) noted that non-photosynthetic plant components such as stalks,

limbs and leaflitter are strong determinants ofthe reflectance from a vegetated surface

In the A¡ctic. while stocks and lirnbs are lirnited relative to mid-latitude vegetation

canopies, non-photosynthetic leaves may remain on the plant or on the ground for

multiple growing seasons. It has been reported however, that vegetation indices correlate

better with total biomass than green biomass (Shippert et al., 1995).

2. L 2.3. AÍntospheric lrtJ'hrcnces

Particles in the atmosphere also influence the signal reaching the sensor.

Atmospheric particles absorb and scatter portions ofvisible and NIR light. The

absorption of energy causes a reduction in signal strength. Scattering can either increase

or decrease the signal, depending on directional characteristics. Atmospheric influences

are generally wavelength dependant. That is, the smaller, visible wavelengths are

affected more than the longer, NIR wavelengths Correcting for atmospheric influences

is difficult, given the inconsistent effects of atmospheric particles. Without appiying



proper corrections, the accurate descriptions ofvegetation conditions may be disrupted.

(Goward et al , 1991).

2.I.3. NOAA-AVIIRR

The AVHRR was first flown on the TIROS-N meteorological satellite in 1978.

Originally, the AVHRR was desigr.red with 4 channels (0.55 - 0.9 ¡rm; 0.73 - 1.I ¡rm; 3.5

- 3.9 ¡-Lm; and 10.5 - 11.5 ¡-Lm), which were configured for meteorological-based research.

TIROS-N was followed by the NOA"{ series of satellites.

The NOAA series of meteorological satellites operate in a near-polar, sun-

synchronous orbit. The altitude of the orbit ranges frorn 833-870 [<m. The AVHR&

which ìs carried on the NOAA satellites, currently collects data in 6 spectral bands (0.58

- 0.68; 0.725 - 1 1¡Lm, 158 - 164 pm; 3 55 - 3 93 ¡-Lrn; 10.3 - 113 ¡im; and 115-12.5

prm) with 1O-bit radiometric resolution. The AVHRR scans at angles up to 55.4 degrees

offnadir, which permits view zenith angles to reach 68.9 degrees and a swath width of

2894 km Ground resolution varies from 1 1 x L l km at nadir to 2.1 x 6.9 krn at scene

edges.

There are three types of A\¡HRR data: High Resolution Picture Transmission

(HRPT), Local A¡ea Coverage (LAC), and Global Area Coverage (GAC) (Kidwell,

1998). HRPT data are full resolution data transmitted to a ground station as they are

collected. LAC data are also full resolution data, but as they are collected, they are

recorded on onboard tapes and subsequently transmitted to a ground station during the

next overpass. GAC data are low-resolution images (4trn) that provide global coverage

¡ecorded on tapes for subsequent transmission to ground stations-



Since the launch of NOAA -6 in'1979, the AVTIRR has been used for

meteorological and terrestrial applications. The NOAA-6 A\IHRR was the first in the

series to confine the Channel 1 to fhe upper portíon ofthe visible spectrum. Channel 1

was narrowed from 0.55 0.9 ¡rm to 0.58 - 0.68 pm in order to increase the ability ofthe

AVHRR to monitor snow covers (Tucker, 1996). In addition, the narrowing ofChannel i

made daily satellite-based vegetation monitoring possible. Since the change to Channel 1

there has been a continuous expansion ofknowledge concerning the uses of AVHRR for

land applications such as lorest frre monitoring, crop yield prediction, primary

productivity r4odeling and land cover mapping.

2. l. 3. l. I,.oresl ]ii re Moniloring

A\{HRR imagery has proven valuable for lorest fire management. Leblon et al.

(2001) found a strong correlation bet\¡/een AVHRR spectral variables and fìre weather

index variables fol coniferous forest stands, allowing for the generation offorest fire risk

maps. AVHRR data can also be used to map the locations, and areal extent, offires (e.g.

Remmel and Perera, 2001;Barbosa etal.,1999; Kasischke et al., 1993).

2.1.3.2. Crop Yield þ)stintation

Agricultural research also benefits fi'om the A\TIRR Crop yields may be

accurately predicted months before harvest based on information from the AVHRR.

A\T{RR data have been used for operational crop yield estimates in Canada (Hochheim

and Barber, 1998; Bullock, 1992), fhe United States (Hayes and Decker, 1996), Europe



(Vossen, 1996; Quarmby et al., 1993;Benedetti and Rossini, 1993), and Africa (e g

Maselli and Rçmbold, 2001; Unganai and Kogan, 1998)

2..1. 3. 3. Primtu'1t ProducliviDr Modeling

A\{HRR data have been used on several occasions to monitor and map terrestrial

primary production O'Brien (2001) successfutly mapped terrestrial net primary

productivity (NPP) using vegetation indices determined from AVHRR. Satellite-based

vegetation indices were relafed to the fraction of photosynthetically active radiation that

is absorbed by the vegetation canopy and to autotrophic respiration Box et al (1989)

and Fung et al. (1986) used a diflerent method to map NPP. ìn these studies, A\'HRR

data are correlated with measurements of atmospheric COz. Improvements in modeling

NPP from AVHRR have allowed the mappillg of productivity in many ecologically

diverse regionp.

2. t.3.1. Latnl Curer Moppirtg

Mapping the distribution olland cover types at regional and global scales is often

accornplished by classifying AVHRR imagery. Using visible, NIR and infrared bands of

imagery, many different regions have been mapped at coarse scales (e g Walker, 1999,

Lathrop and Bognar, 1994, Loveland et al., 1991). Cihlar and Beaubien (1999) classified

the land cover ofCanada into 29 different types at a ground resolution of 1 km2

Mapping large areas with A\{HRR imagery is oÍÌen aided by supplementary digital data

conceruing elevation and climate. Using surlace temperature derived frorn AVHRR data



may improve çlassification when used in combination with A\IHRR spectral data to map

land cover (Wen and Tateishi, 2001; Lambin and Ehrlich, 1995)

2.1.3.5. Lintirafions cf Atr'HRR l)ata

While AVHRR imagery is a proven asset to many monitoring programs, it does

have limitations. Cloud cover imposes the primary limitation. Clouds obscure

approximately hallofthe Earth's surface every day (Tarpley et al., 1984). Clouds are

visible to sensors ofvisible and NIR energy. Their presence prevents the acquisition of

optical information from the surface beneath.

Limitations are also imposed by the sensor viewing geometry. AVHRR sensor

zenith angles can exceed 68 degrees, imposing problems on píxels at scene edges.

Problems include lesser geometric accuracy, increased atmospheric attenuation and lower

spatial resolution. The topic ofsensor zenith angles is examined closely in section 3.4.2.

2. 1. 3. 6, hnage (' ottrposi l ing

The most effective way around the limitations of AVHRR irnagery is through

image compositing (Holben, 1986). Image compositing is defined by Goward et al.

(1991) as a "procedure in which geographically registered data sets collected over a

sequential pe|iod of time, are compared and the maximum or minimum of a defined

measurement (e.g. NDVI, sensor zenith angle) is selected to represent the conditions

observed during that tine period".

A composite is constructed on a pixel-by-pixel basis by con,paring the value at a

given location to all other values at the same location. The maximum (or minimum,



depending on the criterion) value is selected and inse(ed into the composite at the

appropriate location. Composites are generally based on marimum NDVI or minimum

sensor zenith angle. The effect of maximum NDVI composites is to reduce the

proportion ofan image that is affected by atmospheric influences (Huefe and Jackson,

1992). Maximum NDVI composites have also been shown to minimize the effects of

high sensor and solar angles and directional surface reflectance differences (Holben,

1986). Minimum sensor zenith angle composites reduce the directional effects on the

imagery by selecting pixels that are acquired closest to nadir. However, less directional

effects are accomplished at the expense olincreasing residual cloud cover and increasing

the fiequency of sharp edges beTween images frorn adjacent orbits (Cihlar and Huang,

1994). All composites sacrifìce temporal resolution in orderto produce the final image.

2.2. WGETATION INDICES

Healthy vegetation typically displays a large difference in reflectance values

between the visible and NIR wavelengths. As vegetation senesces or is stressed in some

way, the reflectance signal changes. The typical response is for the difference between

the visible reflectance and the NIR reflectance to shrink. Researchers are able to use this

relationship to formulate vegetation indices that measure the amount, and overall

abundance and health, ofa vegetation cover. The indices can also measure how these

properties change over space and time. Vegetation indices can be used to monitor both

individual veggtation types (e.g. Vogelmann and Moss, 1993) and n.rixed vegetation

covers (e.g. Yin and Williams, 1997). Measurements can occur over a shoft (e.g. Tucker,

1979) or long time period (e.g. Jano et al., 1998). It is important to note, however, that



since vegetation indices require the amount ofmeasured reflectance in the visible and

NIR energy bands, values only represent a general view ofthe vegetation characteristics.

Visible and NIR reflectances (and as a result, vegetation index values) are a function of

the many different characteristics ofvegetation (e.g. species composition, structural

properties), non-vegetated surfaces (e.g. water, bare soil), landscape features (e.g. slope

and aspect ofthe land), atmospheric influences and sensor characteristics.

The foundation for the formulation ofvegetation indices was laid by Jordan

(1969), who showed that the ratio between NIR and visible energy could provide

information regarding the leaf-area index ofa forest canopy. Advancement since

Jordan's finding has seen the development ofmany different vegetation indices (see

Bannari ( 1995) for a complete inventory and discussion of vegetation indices).

Vegetation indices are often put into one of two categories: distance-based and slope-

based.

2.2,1. Distance-based Vegetation Indices

Distance-based vegetation indices rneasure the amount and health of a vegetation

canopy by determining the Euclidian distance between any vegetated pirel and the bare

soil line (Figure 2.2.) The bare soil line represents the reflectance ofall bare soil pixels

for all degrees of soil brightness. It is deterÌrined by plotting bare ground pixels in

visible and NIR space and determining the equation ofthe line that best represents the

relatíonship. By using the distance ofa vegetated pixel from the soil line, rather than

strictly the two-dimensional position olthe pixel, changing soil brightness conditions are

accounted for, Distance-based vegetation indices assume that vegetation isolines run

l+



parallel to each other. All pixels on the same isoline have similar vegetation

characteristics, but may have different brightness conditions ¡epresented by differenl

positions on the same isoline. Distance-based vegetation indices tend to be more

computationally complex than their slope-based counterparts.
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Figvre 2.2. A diagram showing the theory of distance-based
vegetation indices. Vegetation chaÌacteristics are assessed
by measuring the Euclidean distance from the vegetated

ixel to the soil line.

Richardson and Weigand (1977) developed the Perpendicular Vegetation Index

(PVI) as a way to monitor vegetation development where variable soil brightness is a

problem. The PVI is given by the equation:



Qr)

Where (LEG.,, ¡tZG,,") is the candidate vegetation pixel, (SOIL,,¡" SOn',".) is the point

on the bare soil line nearest the candidate vegetation pixel.

High PVI values represent pixels displaced furthest from the bare soil line in a

positive direction, and thus high density, healthy vegetation. Lesser vegetation density

results in lower, but still positive PVI values. Water-frlled pixels have negative PVI

values, and fall below the bare soil line.

Results of experiments using the PVI have been mixed. Elvidge and Lyon (1985)

reported that the PVI was the best among all vegetation indices tested for reducing the

influence ofnoise from non-vegetated backgrounds. However, Baret and Guyot (1991)

conclude that the PVI is dramatically affected by variations in soil optical properties,

particularly for low vegetation densities. An unsuccessful attempt was made to improve

the PVI for its treatment ofvariable soil conditions by adding a correction lactor (Sanden

et al., 1996).

The P\rI is also computationally complex relative to most other vegetation

indices To ease this problem, Richardson and Weigand (1917) also developed the

Weighted Diffprence Vegetation Index (WD@. The WDVI calculation is as follows.

li7)17 =.1'+ ¡7¡ - ¡ tt (2 2)



Where: N1R - reflectance in the NIR Channel and l'1S: reflectance in the visible

Channel; and ¡' is the slope of the bare soil line.

The effect of weighting the NIR reflectance with the slope ofthe soil line is that

the response attributed to soil reflectance is minimized, and the response due to the

vegetation is maximized. WDVI values gteater than zero indicate the presence of

vegetation, while values less than zero represent water. The \ DVI was shown to be

relatively unaffected by varying soil brightness conditions, but it is also insensitive to low

amounts ofvegetation (Qi et al., 1994), which causes a problem for its use in arctic

environments. The WD\T and PVI are functionally equivalent vegetation indices (Perry

and Lautenshlager, I 984).

2.2.2. SIope-based Vegetation Indices

Slope-based vegetation indices graphically display different vegetation conditions

with isolines having different slopes and diverging from the origin (Figure 2'3') The

slope of isolines increase with higher amounts ofvegetation. For example, a vegetated

pixel has a particular vl-value (Figure 2.3. point A). lfthe soil brightness conditions

were to change, tbe pixel would theoretically shift along the same isoline. As a result,

slope-based vegetation indices are thought to account for such influences. Pixels with a

greater amount ofvegetation would fall on an isoline with a higher slope (Figure 2 3.

point B). A1l isolines would meet at the origin.

t'7
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Figure 2.3. A diagram showing the theory ofslope-based vegetation indices. The slope of
vegetation isolines increase with greater amounts of healthy vegetation. Points falling on
the same isoline have similar characteristics. but are viewed under different soil

ightness conditìons

Slope-based vegetation indices are determined by computing ratios of NIR a¡d

visible reflectances (or radiances). The use of a ratio of NIRto visible light was first

proposed by Jordan (1969) who used it to determine leaf area index for tropical rain
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forest canopies. The simple ratio (SR), as it is known, is defined by the following

equation:

(2 3)

Whe¡e: N1À = reflectance in the NIR Channel and I'7S: reflectance in the visible

Channel.

The normalized difference vegetation index (ì,{DVI) was developed to make use

ofthe first Landsat satellite in the early 1970s (Rouse ef al.,1973). The NDVI is defined

by the followi¡rg equationl

vDr.1 _ \t|tì -11,5
Àm + I'-7,t

(2 4)

Where: l/14 is reflectance in the NIR Chamrel; and I¡lS : reflectance in the visible

Channel.

The NDVI is the most commonly used vegetation index in the scientific

community. ND\¡I values range from I to +1; negative values generally signify the

presence ofwater and positive values signif, vegetation. The NDVI has been shown to

relate very well to actual and potential evapotranspiration rates in Canada (Cihlar et al.,

1991) and biomass and leafarea index in Alaska (Shippert er al., 1995). It has also been

used successfully as an input band for image classification and mapping ofarctic

vegetation typps (Stow et al., 2000).

19



The normalization provided by dividing the difference by the sum is used to

reduce sun angle differences and atmospheric attenuation. Atmospheric influences,

however, are reported to influence NDVI values (Singh and Saull, 1988, Groten, 1 993;

Karnieli et al., 2001). The magnitude ofthe influence increases with decreasing cover

proportions (Hansen, 1991) Variable soil background also influences the NDVI signal.

Darker or wetter soil backgrounds tend to cause an increase in NDVI (Todd and Hoffer,

1998, Huete et al., 1985), which leads to serious problems for interpretation and

characterizatiqn of vegetation covers.

2.2.3. Accou4ting for Soil Background

To reduce the influences of variable background effects, efforts have been aimed

at modirying the NDVI equation. The soil adjusted vegetation index (SAVI) was the first

ratio-based VI that attempted to account for the influences of soil background (Huete,

1988) The SAVI incorporates a constant soil adjustment factor into the equation for the

NDVI fo account for variable background effects:

s.lll = \711-l7s 
^(r+¿).\7R + I7,! +¿

(2 s)

Where: 1y'1À - reflectance in the NIR channel; L7S: reflectance in the visible clrannel.

and 1- is the soil adjustment factor.

The soil adjustment factor is set between 0 and L It varies with the amount of

soil that is visible to the sensor. Higher proporlions ofvegetation cover results in less

visible soil background and a lower soil adjustment factor. A higher soil adjustment



factor is required when percent vegetation cover is low and large amounts ofsoil are

visible. using a soil adjustment factor of 0.5, soil background noise was minimized when

viewing broad-leaf cotton ând narrow-leaf grass (Huete, 1988).

The characteristics ofvegetation isolines were examined by Huete et al. (19S5). It

was determined that isolines are not parallel and meet in negative space rather than at the

origin (Figure 2.4.). The soil adjustment factor accounts for the actual position of isoline

convergence at the origin.
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Although initial results were prornising, setting of the soil adjustment factor

presented two major problems. First, one soil adjustrnent factor is used for an entire

image. This is a problem when vegetation cover varies significantly across an image.

Second, substantial knowledge ofthe study area is required before the appropriate soil

adjustment factor can be determined.

The modified soil adjusted vegetation index (MSAVI) was proposed in response

to the shortcomings of the SAVI (Qi et al., 1994). Two variations of the MSAVI were

proposed, however both use a soil adjustment factor. Tl.re benefit of the MSAVIs is that

no previous knowledge ofthe study area is required. Also, the soil adjustment factor is

determìned for the user, rather than by the user, and is variable over space. The MSAVII

is defined by the equation:

,trslttr = \,4 I7s 
^¡*¡-¡' .\7rR+l75+1.

Where: N1A : reflectance in the NIR Channel and I75': reflectance in the visible

Channel.; and Z is determined by the equation:

L - Ì-2vNDVI*WDM

(2 6)

(2 7)

Where. NDVI is calculated using equation 2.4; WDVI is calculated using equation 2.2,

and / is the slope ofthe bare soil line.



The equation for MSAVI¡ (2.6) is identical to the equation for the SAVI (2.5)

The difference lies with the determination ofthe soil adjustment fâctor. The soil

adjustment factor of the MSAVI¡ is based on the product of NDVI and WDVI. Although

the NDVI and WDVI are sensitive to soil background, they have opposite responses

(Figure 2.5). Fo¡ identical vegetation amounts, the NDVI is higher for da¡ke¡

backgrounds than for lighter backgrounds, while the WDVI is lower given dark

background conditions (Qi et al., 1994).
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Figure 2.5. Different responses of NDVI and WDVI to soil moisture changes (From Qi et

al.,1994). NDVI increased with darker soil background conditions, whereas WDVI
increases with brighter soil background conditions.



The MSAVI: determines the soil adjustment factor iteratively and is detern.rined using the

following equations:

vsAt.r 2,, - #T*î-. (1 + ¿,, ) (2 8)

Where: y'y'1R - reflectance in the NIR Channel and l7S - reflectance in the visible

Channel; ¡r is the iteration; and I is the soil adjustment factor.

In the fìrst iteration, Z is any number between 0 and I determined by a random number

generator. A value for MSAVI2 is determined and it is then used to determine I using the

following equation:

(2 e)

With each iteration there is an improvement to both MSAMz and Z. Iterations continue

until no further improvement is possible. At this point, the iferations stop and the

MSAVI, is finalized. The equation lor MSAVIz (2 8) is identical to those for the

MSA\41 (2 6) and the SA\¡I (2.5) with the difference found in the determination of the

soil adjustment factor.

2.3. MONITORING REGIONAL PHENOLOGY

Implications ofplant phenology are important to climate change, and climate

modeling studies (Schwartz, 1992). For the r¡ost part, phenological research has focused

on individual plants or plant species, monitored at frne scales (e.g. Pop et al., 2000,



Wagner and Reichegger, 1997; Junttita and Robberecht, 1993). However, with the

development of remote sensing technologies, phenology can be monitored on regional

and global scales. In the mid-1980s, several studies laid the foundation for the use of

A\'TIRR for monitoring the progression of vegetative seasons (Tucker et al ,1985;

Justice et al., i985, Townshend et al., 1987).

Though initial results were encouraging, two substantial limitations were

identifred. First, persistent clouds contaminate scenes such that they are not useful for

analysis ofterrestrial vegetation studies. Generating maximum-value composites reduces

the cloud contamination problem, but does not eliminate it (Schwaftz and Reed, 1999;

Clhlar, 1996; Reed et al., 1994). Compositing also reduces the temporal resolution of

satellite data (Holben, 1986). hr the case of A\'¡HRR data, temporal resolution is usually

reduced frorn one-day to 1O-, 15- or 3O-days. Reduced ternporal resolution may lead to

the precise timing of an event being missed (Reed et al, 1994; Schwartz and Reed, 1999).

Second, limitations were imposed on analysis ol satellite data by a lack ofproper

radiometric calibration techniques In recent years, significant progress has been made

addressing this issue (e.g. Rao and Chen, 1999; Rao and Chen, 1996, Cihlar and Teillet,

1995) As a result, sensor effects are currently a less significant problem.

The mid-1990s saw a renewal in interest of time-series A\IHRR data lor

vegetation studies. Reed et al. (1994) were the first to develop measures ofphenological

events solely with satellite-based observations. The study derived several phenological

metrics for the conterminous United States using bi-weekly (15-day) composites of

A\IHRR imagery. The key events determined were the onset and end of the growing

season. The methodology for determining these metrics cornpared the actual NDVI time-



series to a tirne-lagged moving average of the NDVI time-series. The point where the

actual time-series deviates from the time-lagged moving average indicated a significant

trend change that was interpreted as the onset olthe growing season. The end ofthe

growing season was determined in a similar manner; the difference being the time-series

were analyzed in reverse chronological order.

The methodology developed by Reed et al. (1994) has been used numerous times

since it was first proposed. Schwartz and Reed (1997) usedthe methodology in

conjunction with climate station data. They found that 95 percent of satellite-derived

events were within 1 bi-weekly composite period of those predicted with a surface model

Markon (2001) used the methodology to documenf the phenological record ofAlaska

between 1991 and 1997. He concluded that the methodology is rnore effrcient, and more

effective, than ground-based studies for monitoring regional phenology.

An alternative method for mapping the timing of key growing season events with

A\IHRR composite data was presented by Markon et al. (1995). The study determined

the composite during which an NDVI threshold was crossed for the whole of Alaska. In

this way, onsef, end and length ofthe green season were determined. However, this

methodology contains significant limitations. First, using a single NDVI threshold where

vegetation type varies over space is inappropriate (Sparling, 2001; Chen et al., 2000;

Schwartz and Reed, 1997). The NDVI value signiôring the onset of the growing season

is different than the value signifying tbe end to the growing season. Also, onset and end

values vary from year-to-year (Chen et al., 2000).

All of the above-mentioned methods involving bi-weekly composites are unable fo

assess change between years. Using data with low temporal resolution to map timing
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evsnts would be made more effective if interpolation was used to monitor the ground

between the cornposites.

2.3.1, Abiotic Factors Affecting Phenology

Phenological processes can vary in terms of timing frorn one species to anothet.

Abiotic factors also have a major influence on plant phenology. Air temperature and

precipitation are the two obvious abiotic determinants ofphenology. In higher latitudes,

snow and snowmelt patterns also have an influence. The use of climate records alone can

be used to detect phenological events such as spring onset (Schwartz, 1990).

In the Central Great Plains region, NDVI trends have a strong east-west gradient.

The same gradient is evident in average precipitation for the region (Wang et al., 2O0l).

Average temperature is also positively related to ND\¡I, but the correlation is weaker than

it is between average precipitation and NDVI (Wang et al., 2001).

The trend ofNDVl is increasing in arctic environments (Tucker et al., 2001;

Myneni et al..,1997). Increased NDVI coincides with an íncrease in winter and spring

temperatures in high latitudes (Rigor et al., 2000; Oechel et al., 2000). Others have

reported that temperature appears to be more important than other abiotic factors in

influencing arctic vegetation growth (Pop et al., 2000, Schultz and Halpert, 1993). High

latitude regions, more than mid- and low- latitude regions, have high NDVltemperature

correlations (Shultz and Halpen, 1995).

Precipitation is less a determining factor because melting snow and sub-suface ice

provide the majority of spring moisture. Additionally, a limited active soil layer results



in pooling ofwater at the surface. Thus, rnoisture is available for plant growth long after

a precipitation eveut.

2.4. CIIAPTER SUMMARY

This chapter provided a general background on the theories and methodologies

used in this thesis. Collecting optical data with the A\¡HRR provides information at

moderate ground resolutions. A\¡HRR spectral data can be convefted into several

vegetation indices. Vegetation indices provide the ability to monitor terrestrial vegetation

from a remote location. Examining the temporal pattern ofvegetation indices for a given

region allows for the identification of several phenological metr.ics. The abitity to

monitor the progression ofvegetative seasons provides a greater amount ofinfon¡ation

on which to base ir,rportant management decisions. The following chapter presents a

detailed description ofthe methodologies this study ernploys to determine the

phenological characte¡istics of Tuktut Nogait National Park.



CHAPTER 3 - RESEARCH METHODS

This chapter will íntroduce the area of study and discuss the methods used to

address the objectives presented in chapter 1. The methods section ofthis chapter is

further separated into four sections (1) field sampling procedures; (2) assessment and

comparison of vegetation indices; (3) description of GEOCOMP-n 10-day composite

A\TIRR satellite imagery; and, (4) the determination of relevant phenological metrìcs,

which also includes a presentation ofthe methods for data preprocessing and model

validation.

3.T. STUDY A,REA

The study area for this research was comprised within the physical boundaries of

Tuktut Nogait National Park, Northwest Territories, Canada (Figrrre 3.1.). Tuktut Nogait

National Park (TNNP) is Canada's fìfth largest national park, spanning 16340km2 The

park is located in the Inuvialuit Settlement Region, and was established in 1996 to protect

an area representative of the Tundra Hills Natural Region. TNNP was also established to

preserve the calving grounds ofthe Bluenose caribou herd, and to encourage a greater

understanding of the Inuvialuit cultural heritage. The hamlet ofPaulatuuq is the nearest

settlement, located roughly 35 km west of TNNP.





lrom other northern Canadian regions by the alternation ofcyclonic and anticyclonic

activity of air rnasses (Maxwell, i981).

3.1.2, Geology

The geology of the region has been summarized by Zoltai et al. (1992), Balkwill

and Yorath (1970), and Yorath et al. (1966) The following description is based on these

works.

The study area is primarily contained within the Brock Upland Physiographic

Division, characterized by Paleozoic and Mesozoic sediments exposed sporadically at

lower elevations and Precambrian sedimentary and intrusive rocks in higher reaches

Glacial landforms are completely absent from the highest elevations of the Melville

Hills. In the central portion ofTNNP, glacial deposits are present, though quantities are

small and distribution is sparse. Sur{icial deposits also indicate that parts ofthe Melville

Hills escaped glaciation during the Pleist ocene (Zolfai et a1.,1992). A high number of

drumlins and oversized stream channels indicate recent glaciation in the northern,

western and southern regions of TNNP.

Surlace materials are generally non-calcareous loarny till, with calcareous

materials presÇnt in relatively small pockets in the far north and far south portions of

TNNP. Soits in the study area are mainly Turbic Cryosols, with Static Cryosols limited

to areas with glaciofluvial parent material. Peat is limited to a few thin deposits, rarely

exceeding 1 m, generally found in poorly drained depressions.

The climate creates conditions for pennafrost to occur under all land surfaces

The thickness of the permafrost is estimated to reach several hundred meters (Zoltai et



al.,1992). The thickness ofthe active layer varies with ground material. It is generally

thickest in bedrock and dry, coarse soils, where it reaches I m. Well-drained loamy soils

thaw to a depth between 65 and 80 cm. Poorly drained, peaty soils have the thinnest

active layer at approximately 40 cm.

3.1.3. Hydrolpgy

There are 3 major rivers within TNNP: the Hornaday, Brock and Roscoe. The

Hornaday River and its tributaries drain the majority ofthe study area. Its headwaters are

located south of TNNP. From there, the Hornaday River flows 3 50 km in a nofthwest

direction where it drains into Darnley Bay. The Little Hornaday drains the southern

pofiion of TNNP and is the largest tributary of the Hornaday River. The Brock River,

which originates in the central region of TNNP, also drains into Darnley Bay. The

Roscoe River drains the northeastern portion of TNNP, and is a more gentle, meandering

river that empties into the Amundsen Gulf

Sma[[ lakes and ponds are abundant in TNNP; the vast majority of which are less

than I kmz. The Melville Hills region is unique in that small lakes are relatively

uncommon - more evidence that recent glaciations did not affect this regìon. The largest

lake fully contained within TNNP is Cache Lake at approximately l0 km2.

3.1.4. Fauna

Relatively little is known about the abundance, distribution, and ecology of most

animal species both in, and around, the study area. Zoltai eT al. (1992) confirmed the

study area is home to 22 mammal species, and that it is likely visited by an additional 18



species fiom the adjacent forest and marine ecosystems. The most notable mammal

within TNNP is the Barren-ground caribou (Rtrngifer tarantht.s groenlandictt,s) of fhe

Bluenose herd. The Hornaday, Brock and Roscoe rivers outline the border for the

traditional calving grounds ofthe herd.

Three mammal species identified on the Committee on the Status of Endangered

Wildlife in Canada (COSEWIC) list of sensitive species make their home in TNNP

(Government of Northwest Teritories, 2000). These arc fhe Grizzly Bear ((lr,sus arclo.s),

the Polar Bear ({l martimus) and the Tundra Shrew (.9oler tundraensis).

With an admittedly srnall sampling effot, Zoltai et al. (1992) also confrrmed rhe

occurrence of81 bird species, not including species expected, but not observed, in coastal

areas. Of the 8l species of birds observedby Zoltai and his research partners, l4 are

recognized as sensitive or at risk by COSEWIC These include: the Northern Pintail

(Anas acutcr), Common Eider (Sontateria ntolissima), King Eider (fi. ,spectahihs),

Oldsquaw (Cløngrla hyentaå.s), Surf Scoter (Melanitta.fu.scø), White-winged Scoter (M.

.fusca), GoldenEagle (Aquila chrysttetos), Peregrine Falcon (l'alco peregrin us), Rock

Ptarmigan (Lagopus nnúu,s), Lesser Yellowlegs (1i'inga.flavipe.s), Buff-breasted

Sandpiper (I'r¡ngites subnrficolr.r), Short-eared Owl (Asio.fl.anrøeas), American Pipit

Ønthus rubesçezrs) and Harris Sparrow (Zonotrichia guerula).

Twenty-one fish species have been captured in or near the stucly area (Zoltai ef a1..

1992). Four species were captured during freld-research including the Arctic greyling

(T'h¡tmallus arclicus), At'ctic flounders (Liopsetta glacialls), Lake Trout (Salvenlinus

nannycrrsh) and Arctic charr (5'. alpinus). Cornmercial fisheries operating in the area

from 1968 to 1986 depleted fish stocks, paÍicularly those ofthe A¡ctic charr. Steps are



now being taken to ensure the long-terrn sustainability ofthe stock (Deparlment of

Fisheries and Oceans, 1999).

3.1.5. Flora

Tuktut Nogait National Park is a floristically diverse area relative to similar

regions. The diversity is linked to the fact that a portion of the park escaped the rnost

recerrt glaciation (Zol|ai el al., 1992). Four inventories ofthe vegetation have been taken

in the region (Zoltai et a|.,1992; Cody et al., 1992; Scotter and Vitt, 1992, Thompson and

Scotter, 1992) The TNNP region is horne to 103 species ofbryophy'tes, 158 species of

lichen and 263 faxa ofvascular plants (Zoltai er a|.,1992). Species distribution is

determined by local elevation and exposure differences.

Five broad vegetation types were identified for the purposes ofthis thesís: Barren,

Sparsely Vegetated, Sedge Meadow, Dwarf Shrub Tundra and Tussock Tundra (Figure

3.2.). Classification is based primarily on temporal growth patterns rather than species

composition. As a result, the quantity ofclasses is limited and the species variability

within each class is large.







3. 1. 5. 2. Sparse ly'l/e ge / aled

The Sparsely Vegetated class is sirnilar to the Barren class, but is characterized by

greater vegetation cover. lt can be considered equivalent to the Dwarl Shrub-Herb-Sedge

class (Zoltai et al.,1992), Polar Deserts (Gold and Bliss, 1995) and Dry Prostrate-Shrub

Tundra (Muller et al., i999). Vegetation cover varies from 10 to 50 percent, but rock and

bare ground are the most common land cover (Figure 3.4. A and B). Dwarf shrubs are

the dominant vegetation type (Figure 3.4. C), with Dryas integrifolia as the most

widespread species.

3.1.5.3. Sedge Me adow

The Sedge Meadow vegetation type is the most comlllon ofthe land cover classes

within TNNP. Vegetation cover varies between 50 and 100 percent, and the n.rost

common vegetation type within the Sedge Meadow cover is graminoid (Figure 3.5.).

Dominant species are Eriophontnt anp¡usfifoliunt and Carex aqualilis. This vegetation

class is often separated into two different classes, based on soil moisture conditions: Wet

Sedge Meadow and Mesic Meadow. Wet Sedge Meadow is consistently identified in

arctic communities (e.g. Miller er al., 1916, Shaver and Chapin, 1991; Zoltai et a1.,1992),

and is fou¡rd in rnore moist regions. Mesic Sedge Meadow is also described as Herb-

Nadum (Zoltai et al., 1992) and Moist Graminoid, Prostrate Shrub Tundra (Muller et al.,

1999). Greater proportions of dwa¡l shrubs and bare ground occur in areas where mesic

or dry condilions dominate.







3.L5.L Tussock 'lìndra

The Tussock Tundra is tbe highest productivity vegetation type within TNNP

(O'Brien, 2001). Local topographic variation is up to 3Ocm (Figure 3.6. A). Species

dominating this vegetation type are Eriopholufl rtagincrlum, Salu arclica and Sphagnunr

,pp. Graminoid cover dominates, while srnaller proportions of dwarf shrubs and mosses

are found (Figure 3.6. B) Standing water may also be found in inter-tussock areas, but

is often hidden beneath the vegetation canopy (Figure 3.6. C). Similar descriptions of

Tussock Tundra are commonly provided (e.g. Muller el a1.,1999; Grogan and Chapin,

2000; Bliss 1981).

3.I .5.5. Dttar f Sltntb Ttndra

The final vegetation class lound in TNNP is Dwarl Shrub Tundra. This is the

least common vegetation type within TNNP. It resembles the Dwarf Shrub-Herb-Sedge

and High Shrub classes described by ZoItai et al. (1992) and Moist Low Shrub Tundra

described by Muller et a1., ( 1999). Common species include¿upinus araicus, Cassiope

leÍrdgo ct (Figure 3.7. A and B). Dwarlshrubs are most common, along with moderate

amounts of graminoid, moss and bare ground (Figure 3.7. C).







3.2, FIE-LD SAMPLING

Fíeld studies were conducted lrorn 08-July-2000 to 10-August-2000. A total ol

18 sample sites, each I km2, were surveyed. The location of sarnple sites was limited to

the western, northwestern and northeastern portions ofthe park Selection of sites was

generally limited to areas within walking distance (< l0 km) of the three base camps ([1]

68'53'N, 122" 49'1N; [2] 69' 16'N, 122'58W; [3] 69'22'N, 121'24'W) (Figure 3.8.)

However, four ofthe sample sites were accessed by helicopter. These were sites 5,1 1,I 2

and 13 (Figure 3.8.). Effor1s were made to select sites representative ofa variety of land

cover types, alrd to survey locations with little topographic variation and minimal surface

water.

3.2.1. Sampling Procedure

A systematic sampling procedure was used within each site (Figure 3.9.). Each

site contained 9 sample plots measuring 30 m x 30 m. Within each sarnple plot there

were 5 1 m x I m sample quadrats. The lowerleft corner oleach sample plot was

located with a hand-held GPS unit. Sample sites were then marked using a measuring

tape and conpass. Data collection commenced after each sample quadrat was located

and marked.
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Figure 3.8. Sample site and base camp locations within TNNP. Note: Sample
sites 9 and l0 do not exist.
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Figure 3.9 Diagram ofthe sampling procedure employed for data collection. Sample
sites were designed to describe areas represented by A\/HRR imagery, Sample plots
were designed to describe areas represented by Landsat TM imagery; and all data was
collected at the samole ouadrat scale.





3.3. VEGETATION INDEX ASSESSNIENT

The vast majority olvegetation indices have been developed and tested using

vegetation commonly located in low- to midlatitude regions (e.g Rouse et a\.,1973

Richardson and Weigand, 1979; Huete, 1988). Theuse ofvegetation indices inthe

Arctic has been questioned (Rees et al., 1998). Reasons for skepticism include the build-

up of melt water early in the growing season (Box et al., 1989) and the large spectral

differences between arctic vegetation types (Rees et al., 1998). An assessment of several

vegetation indices was performed to determine the single vegetation index most

appropriate for TNNP. Four vegetation indices were selected for thìs analysis: the

WDVI, NDVI, MSA\4r and MSAVIz. The assessment was based on both quantitative

and qualitative criteria.

3.3.1. Quantifative Assessment

Measures ofspectral reflectance were collected at each sample quadrat. For each

cl.rannel, the average offive consecutive measurements was recorded. Radiometer bands

did not perfectly correspond to A\¡HRR bands (Figure 3.11,). To ensure the closest

possible correspondence between the radiometer and the A\¡HRR, the mean of

radiometer Channels 2 (520-600 nm) and 3 (630-690 nm) was used as the visible

reflectance. NIR reflectance was taken directly from Channel 4 (760-900 nm) ofthe

radiometer.

The WDVI, NDVI, MSAVIT and MSAVI2 were calculated using equations 2.2,

2.4,2.6 and 2.8, respectively. The vegetation indices were compared to corresponding

measurements of photosynthetic biomass and estimates ofpercent cover. The indices

+t



were analyzed for their ability to predict these two photoslnthetic variables, and the

degree to which each was influenced by background noise.

3.3.1. L Relating Vegetation Indices to Photosynthetic Variables

The first porlion of the quantitative assessment established a measure of

ecological significance for each vegetation index. Above ground green biomass was

harvested from selected sample quadrats (n:37). Eleven of the samples were dried a¡d

massed in the field. The remaining samples were shipped to Winnipeg, and frozen until

they could be processed. The frozen samples were massed, and three 10 percent sub-

50-

t)?ical spectral refl ectance
ofhealthy vegetatjon

f¡(-)
z
F
Qgj¡g.
r¡
¿.

0-

AVHRR
1

-

23
ñfSR 5 Rad¡'rmeter 

- 
-

4

500 600 700 800 900

WAVELENGTH (nm)
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samples were taken. The three sub-samples were separated into green and non-green

components and subsequently dried and massed The mean ofthe sub-samples was

multiplied by 10 to determine the dried photosynthetic biomass of the full sample.

Regression analysis was used to determine the degree to which each vegetation index

could predict photosynthetic biomass.

Additionally, visual estimates ofpercent cover were compared fo each vegetation

index. Regression analysis was used to determine which vegetafion index was the best

predictor of pgrcent cover.

3.3.1.2. hrfluence o.f Backgrcntd Notse

The influence ofbackground noise was established by determining the vegetation

signal-to-noise (SN) ratio using radiometer measurement ofreflectance (Qi et al , 1994;

Elvidge and Lyon, 1985). The data set was divided into groups of similar percent cover

at 10 percent intervals. For each group, the mean vegetation index value was compared

to the background noise using the following equation:

(31)

where W : the mean vegetation index value and õ = standard deviation ofvegetation

index values

^. t 1
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3.3.2. Qualit4tive Assessment

Several considerations were rnade in underlaking the qualitative assessment ofthe

four vegetation indices. The qualitative assessment considered ifthe particular

vegetation index was produced by the GEOCOMP-n system. If the vegetation index was

not produced by GEOCOMP-n, then it was essential that it could be easily generated

fror¡ the AVHRR data that are available through GEOCOMP-n. The frnal step

considered the degree to which the particular vegetation index was used and accepted as a

measure ol tundra vegetation.

3.4. GEOCOMP-n SATELLITE DATA CIIARACTERISTICS

Since 1992, the Manitoba Remote Sensing Centre (MRSC) has produced 1O-day

AVHRR composite images lor the Canada Centre for Remote Sensing (CCRS). The data

were originally processed by the Geocoding and Compositing System (GEOCOMP)

(Robertson et a1.,1992). Since 2000, the next generation ofthe system - GEOCOMP-n

has been used by the MRSC. GEOCOMP-n registers the imagery to an equal area map

projection. The delault projection is Lambert Conic Conformal, though a wide variety of

projections are supported. Alt pixels are resampled to I km2. Geometric accuracy of

GEOCOMP-n data has been shown to be within one pixel (Czajkowski et al., 1.997;

CCRS, 1999). A full description of the GEOCOMP-n system characteristics is provided

by Adair ef al. (2002).

Inclusion of pixels in the final GEOCOMP-n composites can be selected based on

maximum NDVI or minimum sensor zenith angles. Composites used in this study are

based on maximum NDVI. The ¡esult of maximum NDVI composites is generally an



image with thç least possible cloud or atmospheric contamination lor a lO-day period.

Briel descriptions of the GEOCOMP-n data used in this study are provided below.

3,4.1. Band I)escriptions

The original GEOCOMP system produced the following bands of data. top-of-

atmosphere (TOA) radiance in the five A\{HRR channels, NDVi con.rputed frorn TOA

reflectance, pixel acquisition dates, solar zenith angles, sensor zenith angles and relative

azimuth angles. HigherJevel products such as leaf area inder and surlace temperature

were also gengrated. The GEOCOMP-n system produces the data provided by the

original systern, as well as many other higher level products including: TOA reflectance

corrected for atmospheric effectsr or atmospheric and bi-directional effects2; two fraction

of photosynthetically active radiation products; three absorbed photosynthetically active

radiation products and photosynthetically active radiatíon surface albedo. Cihlar et al.

(2002) provide thorough descriptions of all higherJevel GEOCOMP-n products.

The current research uses only the basic products provided by the original

GEOCOMP system. Actual bands of data used are descríbed in Table 3.1.

Table 3.1. GEOCOMP-n bands used in this study (Adapted from Adair ef al ,2002)

Band Identifier MeasurementUnits Description
BOI RATOA
BO2 RATOA

Wnìi/sr/þnì Calibrated TOA radiânce irì Bând ¡

Wmr/sr/¡rm
NDVI_RETOA Unitless
SATELLITE ZENITH Degrees
SIJN_ZENITH Degrees

Calibrated TOA radiance in Bând 2'
ND\4 compuled frorn TOA reflectance
Sensor zenith angle
Solar zenilh angle

REL DATE Davs Davs srnce 01 Januâ.!' I 970

Calib¡ation rnethocl is explailed ur Section 3.4.2.I
"- NllVl is scaled suclÌ llÌat values a¡e ilrtcge¡s ¡anging tÌon 0 to 20000 (rather thall rcal rÌutÌ]be¡s lìoûÌ -l to 1)-

I Atmospheric correcliol'ì is accomplished using tlìe Sinplified Method lor Atn.tospheric Correction
(SN[AC) see: Ralunan a¡d Dcdieu. 1994.

r Atmospheric and bi-directional correction is âccorüplislì€d using tlic bi-directional reflection ¡efleclance
dlstribution (BRDF) correclion seei Roujean et a1.- 1992.
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The dçcision to avoid using higher-level products was based on two factors. First,

the basic data are available frorn the early 1990s, and it was impoftant to permit the

application ofmethods developed here to the earlier data. Second, it was important to

avoid the corrected bands of GEOCOMP-n imagery based on a lack ofconfidence in the

data. The SMAC and BRDF corrected bands contain signifìcant errors due to the use of

incorrect input coeffrcients (G. Fedosejevs, pers. comm. 2001). While the CCRS is

working to correct these errors, time constraints did not permit the use of higher-level

products in this study

3.4.2. Sensor Zenith Angle Distribution

The sensor zenith angle refers to the angle between the satellite and a line

perpendicular to the earth at a pixel's center (Figure 3.12.) ldeally, sensor zenith angles

are less than 45'. When sensor zenith angles are greater than 45', geometúc accuracy as

well as correspondence between composites and the raw imagery rnay be compromised

(Czajkowski eT al., 1997). Pirels acquired with high zenith angles are fufihest frorn the

sensor, and as a result, are influenced by more atmosphere than pixels close to nadir.

They also have reduced spatial resolution cornpared to pixels acquired closer to nadir.

Spatìal resolution is approximately 1. 1 r 1. 1 km at nadir as opposed Io 2.4 x 6.9 kn at

scene edges.



nadir
AVHRR

Figure 3.12. Sensor zenith angles describe the angle
between the satellite and a line perpendicular to the earth at
a pixel's center

Different vegetation indices show different responses to changes in sensor zenìtl

angle. Values of NDVI are smallest with higher sensor zenith angles, and are also

influenced by the direction at which the surface is being viewed. The SAVI, on the other

hand, is positively related to sensor zenith angles and is independent of viewing direction

(Huete et a1.,1992).

Raw data values in the sensor zenith angles band range from 0 to 9000. Values

were converted to degrees by dividing the raw numbers by 100. Frequencies were

extracted from the sensor zenith angle data layers for each composite period. The

frequencies were grouped into the following categories: less than l5o, less than 30o, less

than 45", less than 60', and greater than or equal to 60o. Sensor zenith angles differ from

solar zenith angles and have different effects on the imagery.
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3,4.3. Solar Zenith Angle Distribution

Solar zenitli angles describe the angle between the sun and a line perpendicular to

the earth at a pixel's center (Figure 3.13.). Changes in solar zenith angles may result in

changes in vegetation index values, particularly in the Arctic, where vegetation covers are

usually incomplete. Large solar zenith angles limit the amount ofdirect light reaching

the soil. Without background influences, reflectance from vegetation dominates resulting

in higher vegetation index values (Kimes et al., 1985; Huete, 1987). These effects

change with vegetation cover densíties, because the amount ofground directly

illuminated depends on the amount of vegetation that covers the soil (Jasinski, 1990) As

a result, changes in solar zenith angles impact vegetation index values less when

vegetation cover is higlt. This is because the amount of shaded ground is relatively

stable.

Raw solar zenith angle values range from 0 to 9000. Raw values were converted

to degrees by dividing the raw numbers by 100. The mean, rninimum and maximum

solar zenith angles were extracted for each composite.

5J
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Figure 3.13. Solar zenith angles describe the angle between the sun
and a line to the earth at a pixel's center.

3.4.4. Acquisition Dates

GEOCOMP-n images for this region are processed from the beginning of April

through the end of October. For each image, the relative dates band was examined.

Values in the relative dates band represent the number of days since 01-January-1970

(CCRS, 1999). In this study, relative dates were converted to julian dates to permit

simple comparisons between years (see Appendix II for dating conventions).

Frequencies ofeach acquisition date were determined from thejulian dates layers.

Examining the distribution ofpixel acquisition dates provides definitive information on

the data in two ways. First, it shows temporal biases inlerent in the data. Second, it

demonstrates how representative each composite image is of the time period under



consideration. It may also be possible to infer the general distribution ofcloud cover

during the composite period from acquisition dates.

It was expected that the pixel acquisition dates would be biased towards the peak

ofthe growing season. That is, during the green-up portion ofthe season pixel

acquisition dates will tend to be later in the 10-day window, while during the green-down

poftion of the season, they will tend towards earlier dates. This bias results from the

compositing criterion that selects the highest NDVI during a parlicular time period.

Given cloud-free conditions, the highest NDVI will be found closest to the peak of the

growing season.

3.5. MAPPING TEMPORAL GREEN SEASON METRICS

The final objective ofthis thesis was to develop methods to use vegetation

indices, derived from A\IHRR composite data, to monitor the timing of key events

related to the growing season in TNNP. Preprocessing ofthe satellite data rnust be

perlormed to ensure high quality data are used in the analysis Following data

preprocessing, the analysis ofthe timing ofkey growing season events was undeftaken

and verified with supplernentary ð,ata.

3.5.1. Image Algebra

Image algebra is used in many ofthe following sections. Image algebra creates a

new image by perlorming mathematical operations on the cell values of an existing image

(or images). Images can be transformed by another image, or by a constant (Figure 3.14.



A and B). Boolean logic can also be performed on images using similar techniques

(Figure 3.14. C).

3,5,2. Data Preprocessing

Performing certain preprocessing steps reduced the possibility of errors resulting

from the use of satellite imagery. The preprocessing steps performed during the course of

this study addressed errors caused by using data from different satellites QTIOAA-14 and

NOAA-16) and residual cloud and atmospheric attenuation.
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Figure 3.14. Examples of image algebra using mathematical operators (A and B) and
Boolean oDerators
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3. 5. 2. l. Rctdi ome I ri c C alibrati on

Data from 1999 and 2000 were collected by the NOAA-14 A\TIRR. Data from

2001 data were collected by the NOAA-I6 AVHRR. It was irrperative that the different

data sets be compatible with each other. This requires that data be radiometric calibrated

to account fpr differences in measurements resulting from the use ofdifferent sensors for

data collection

The orbits of the NOAA satellites carrying the AVHRRs were designed to cross

the equator at the same time each day to ensure consistent scene íllumination. However,

the satellite orbits have been shown to drift over time causing changing illumination

conditions (Price, 1991) This creates problems when comparing time series data over

several years Additionally, A\¡HRR Channels 1 and 2 have been shown to degrade in

orbit (e.9. Roa and Chen, 1995; Brest and Rossow, 1992).

Radiornetric calibration established a relationship between radiant energy

reaching the sensor and the actual recorded values. Without on-board calibration

capabilities for Channel I and Channel 2, the user of A\IHRR data is responsible for

radiometric calibration. However, using pre-launch calibration coefficients, provided by

NOAA, may cause significant errors in the calculatior.r of vegetation indices (Che and

Price, 1992). GEOCOMP-n converts the raw data to TOA radiance using the piecewise

Linear (PWL) calibration technique (Teillet and Holben, 1994) as recornmended by

CCRS. The radiometric calibration from digital signal level to ¡adiance units is

accomplished using the loìJowing equarion:

, (o¡ -o¡)
'¡ = 

c¡ (3 2)
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Where: Z: radiance (Wm2/sr/pm), D - digital signal level; O- calibration offset

coeffrcient (counts); G: calibration gain coeffrcient (counts / (Wm2/sr/¡rm)) and I refers

to AVHRR Channel I or 2.

Radiance values, Z, are then scaled to a

and offset coeffrcients are determined using the

G¡.ct =.1¡d + B¡

O¡-,j =C¡,,1 +D¡

fixed 1O-bit output scale. Calibration gain

following equationsì

(3 3)

(3 4)

Where: d - the number of days since the launch of the particular salelhte, G¡,d arrcl Oi¿ are

gain and offset coefficients on day z/, I refers to AVI'IRR Channel 1 or 2 and { B, C, and

D are Channel dependent coefficients derived from radiometric analysis ofknown ground

targets (Cihlar and Teillet, 1995) (Table 3.2.). The GEOCOMP-n system perf'ornrs

radiometric çalibration on the data prior to distlibution to clients.



Table 3.2. Coefficients used by GEOCOMP-n to calibrate A\,T{RR optical data

Coefiìcient Channel l Channel 2

NOAA, 14

1999
A
B
C
IJ

-1.209F-04
1587
0

41

-3 714E-05
I 883

0

41

NOAA 14

2000
A
B
C

D

-1.249F-04
1.639
0

41

-3.8378-05
1.946
0

41

2001 (low radiance) Raw counts <:495 Raw counts <:504

NOAA 16

A

B
C
D

ioôi iLigr' i"ái"*ài ü;;";"t' '¿çj

0

3 653
0

3 8.5

0

5.920
0

?1,2
Raw counts >504

0

2.01.1

0

342.8

A
B
C
D

0

1.250
0

339.7

3. 5. 2. 2. lleduci ng C loud ('r¡n tant i nal ion

Maximum-value composifing intends to eliminate the presence of all cloud cover,

however, signifrcant cloud cover may remain in the frnal images when cloud cover

persists throughout the composite period (Holben, 1986, Reed et al., 1994 Schwartz and

Reed, 1999). To address this, residual cloud contamination was identified and the effects

were removed from the vegetation index and relative dates values prior to undertaking the

femporal analysis.

To reduce the Íìequency of cloud-contaminated pixels, a Channel 1 cloud

masking procedure was used. Thick clouds are strong reflectors of visible energy. A



threshold value of250 (in 10-bjt digital counts) was set for Channel 1 to find latent cloud

contamination. The threshold was based on the examination ofChannel 1 bistograms of

daily A\IHRR imagery lor days having significant cloud cover. The threshold value was

set high in order to reduce the occurrence offalse cloud identification. The drawback to

this decision was that thin clouds would often be missed

To identify pixels with a thinner cloud cover, a supplementary line-smoothing

algorithm was applied to the vegetation index time-series data. The algorithm identified

pixels that were erroneously low by cornparing the vegetation index value to the values in

the previous apd subsequent composites. Pixels with uncharacteristically low vegetation

index values were determined to be cloud-contaminated.

Clouds were identifìed at locations where there was a significant trend change in

the time-series. That is, where the time-series saw a reduction in NDVI of at least 0.05

when the fime-series was previously increasing. The time-series on either side ofthe

peak ofthe growing season were examined separately. The portion ofthe growing

season after the peak was examined in reverse chronological order so the same algorithm

could be used for both halves offhe growing season.

3.5.2.2.1. Adjusting the Vegetation Inder Tirne-Series

Pixels identified as contaminated were replaced by the average ofvegetation

index values on either side ofthe contaminated pixels in the time series using the

following equ4tion:

(17¡*1+lI¡-1.1
'f 2 )

(3 5)
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Where. I7: the vegetation inder value; and I : composite under examlnatlon

3.5.2.2-2. Adjusting the Relative Dates Layer

Using the above method to remove cloud cover has the unwanted effect of

rendering corresponding dates values incorrect. As a result, all pixels that needed

adjustments made to the vegetation index values also required corresponding adjustments

to the relative acquisition dates. JuSt as the vegetation index values were adjusted to the

mean olthe two surrounding values. The dates layer is changed using the following

equation:

ntn., -( ?lt!,t-!2trF¡ t) (i b)
't, 2 )

Where: DAIE: relative acquisition date; and I -' composite under examination

3.5.3. Determining the Timing of Key Growing Season Events

After all data issues were addressed, the primary objective ofthis study was

attended to: tq estimate the timing olkey growing season events using satellite-derived

vegetation index time-series data. Specific key growing season events examined were the

onsel, end, length and peak ofthe greelì season (Table 3.3.). The timing ofsuch evelÌts

and how they can be observed in remotely sensed data was the focus
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Table 3 3. The four temporal metrics observed from GEOCOMP-n data in this study

TEMPORAL METRIC INTERPRETATION
Onset of Greel Seasor Date First da.y of detectable photos¡nthesis
End of G¡een Season Dale Finâl dal' of detectâble photoslnthesis
Length of Green Seâson Range benveen Onsel Dâte and End Datc
Date of Ma\lmun'r Greenness Dar on $lrich the qreatcst veqetation inde\ is delected

3.5.3.1. Onsel atd llnd of Green Sea,son l)ates

This study employs Reed et al.'s (1994) method for detecting phenological

metrics. This method has been used successfully on several occasions in many different

ecosystems (Reed et al.,1994 Schwartz and Reed, 1999; Chen et al., 2000). The

approach, adapted from autoregressive moving average rnodels (Poole, 1974), compares

the vegetation index time-series to a moving average ofthe same time-series to detect

deviations from the trend. A significant trend change, indicating the onset or end of

greenness, is occurring at the point where the actual time-series crosses the moving

average time-series (Reed et aL,1994). To detect the onset ofthe green season, the first

step calculates the moving average (or predicted) time-series using the following equation

for each composite:

(3 7)

Where. 1= the composite period; f: the predicted vegetation index value; )l: actual

vegetation index-value for composite period l; and v, = the nurnber ofvegetation indices

included in the time series.

The choice of r'r is impofiant as it determines the sensitivity of the test. Higher v,

values detect more general changes while using a lower l makes the test detect small



changes that may not necessarily be indicative of changes in vegetation condition (Reed

et a'.,1994). Selection ofw must also not be so high as to allow data from the previous

growing season to affect the average (Hoff, 1983) A trial and eÚor method was used to

find the appropriate w for this study. This value was determined to be 8, but it should be

noted that using any value lrom 6 - 10 would have produced nearly identical results

It was also necessary to create additional data points before and after the

GEOCOMP-n data collection period in order to allow the analysis of 8 vegetation index

values. Building conposites from eristing daily A\¡HRR imagery was not an option

because snow cover made georeferencing impossible. Instead, vegetation index values

from the April 1 composite (April 11 in 1999) were used to represent the values in the

four composites prior to April L The seven composites after October were constructed

using the final vegetation index values from the last usable image lor each year

Determining the date on which the actual time-series crosses the predicted tirne-

series first requires the determination ofthe composite in which the two time-series cross

Next, the calculation ofthe slope and intercept ofthe respective time-series segments

under consideration is necessary (Figure 3.15.). The slope and intercept ofeach line is

determined using the following equations, respectively

"LOPEr.i=( IIITE¡.¡ D.l'l'Ey.¡,1

lI,¡-17"-i 1 (3 8)

/À'Z-r I = 07y.¡ - (,SLOPE¡.¡* D,4TEy.¡))+G¡ (3 e)



Where: x : the time series under consideration þredicted or actual); SZOPE: the slope

of the line; i : the composite period under consideration; vl : the vegetation index from

composite i; DATE: The acquisition date fiom composite l; G = a mask showing the

location ofpixels the actual time series crossed the predicted time series during

composite i; and INT = the intercept of the line'

r/t
\

AMJJAS

Actual Vegetation Index Time Series

Predicted Vegetation lndex Time Series

DÀT8,,,.1 D DATE.,,

JULIAN DATES

Figure 3.15. Al example ofthe slope and intercept calculation ofeach time-series

segment to determine the day on which a significant trend change occurred. Where: x :
the time series under consideration þredicted or actual); PRED : the predicted time-

series; ICZ: the actual time-serie s; SLOPE = the slope of the line; i : the composite

period rmder consideration; VI : the vegeturion index from composite i; DATE = the

ãcquisition date from composite i; D = the day on which a significant trend change

occursl and 1NZ = the intercept ofthe line.



The next step determines precisely when the lines cross using the following

equation.

,t,-(
SLOPEo,¡ - SLOPE p.¡

IN? p.i - INTo.i
(3 10)

Where D : the date on which the lines cross (onset or end); I - the composite under

consideration; ¿/ denotes the actual vegetation index time-series; andp denotes the

predicted vegetation index time-series.

The end ofthe green season is determined using the methods developed for

detecting the onset ofthe green season; the only difference being that several variables

were determined in reverse chronological order. The predicted tirne-series is calculated

using the following equation:

); - (-\'r +-\-/+l +-\'¡a2 +...+-\-¿a(rj, t))/l'

Slope and intercepts are also calculated in reverse order such that

St t)Pt:'- ¡ -( --!- ''' ''' ' l-"'' fD.lrE¡.¡ D.tTEr., 1) '

1l?,..1 = 0 /_ï.¡ - (,SLOPEy.¡ a D.'l'l Ey.¡))+ G¡

(31i)

(3.12)

(3 13)



The onset and end ofgreen season maps were then used to determine the total

length ofthe green season for each pixel.

3-5.3.2. Lenglh ctf ()reen Sea,son

The length ofthe green season metric represents the number ofcontinuous days

between the growing season onsst and end. The end ofgreen season date is subtracted

from the onset ofgreen season date to determine the total length ofthe green season:

LE\:GTH - I;:\tD o\tsFT (i 14)

'V'/here. LI')NGTH is an image of green season length, ð1y'D is the map of end of green

season dates; and O.¡r'.SðZ is the map of green season onset dates.

3.5.3.3. Dale of Mcxintunt Greenness

Unlike determination ofonset and end ofthe growing season there is no

interpolation used in the determination ofdate of maximum greenness maps. The nature

of the construction process of maximum-value GEOCOMP-n images dictates that the

yearly maximum index should be included in one of the composites. Cloud

contamination may hide the actual date of maximum greennessr but no interpolation

technique can circumvent th.is problem.

The date of maximum greenness was determined by completing the following

steps. (l) the maximum vegetation index value was determined lor each pixel during the

course ofthe growing season; (2) for each composite, a mask was rnade olpixels in



which the maximum vegetation jndex value was found during that particular composite

period; (3) these masks were then rnultiplied by the corresponding dates layers. Results

of the image multiplication were maps showing the date of maximum vegetation index

value for each composite. (4) The final step combined the date of maximum vegetation

índex for each composite into a single map. When all maps were generated, spatial and

temporal trends were detennined for eacli metric and the entire model was veiified with

supplementary data.

3.5.3.1. Sparial atd 1Þmporal T'ends

Spatial and multi-year temporal trends were assessed for the study area. Spatial

trends were assessed by looking for directional and land cover-based differences. Values

for each metric were extracted at I km intervals along south-north, west-east and

southwest-northeast transects within the map area (Figure 3.16.). Values were plotted

over space and trends were considered significant if the slope ofthe line was statistically

different from zero with ap-value less than 0.05. Additionally, a sample of250 random

points was extracted from each metric. Each metric was assessed for differences among

land cover types with analysis of variance (ANOVA) tests. Post-hoc a pairwise rnultiple

comparison test determined which means were significantly different (a: 0.05) than each

other using the Tukey's honestly significant difference test.
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'[r
Figure 3.16. Location oftransects for spatial trend analysis. (A) west-east; (B) south-
north; (C) southwest-noftheast.

Temporal trends were assessed by plotting the mean value ofeach metric over the

three-year period. Given that the study is limited to three years, the statistical calculation

oftrends was not undertaken. Instead, t¡ends were described without calculating

stâtistics.

3.5.4. Model Validation

Model validation was required to verifi' that satellite-derived growing season

metrics are representative of the actual events. The validation was performed in two

steps. The first step determined if linear interpolation was indicative of the actual pattern

of the vegetation index over a short period of time. The second validation step compared

the satellite-derived phenological metrics to climate data within the study area.



3. 5. -1. I. Linear lttl erpolal i on

Linear interpolation was used throughout the research, based on the assumption

that vegetation index values have a simple linear relationship with time over a 1O-day

period. Linear and second-order polynomial interpolations were compared to verifiz this

assumption.

Daily AVHRR data were available for 1999 and 2000. A Channel 1 cloud-

masking algorithm was applied and pixels with lengthy periods (at least 10 days) of

cloud-fi-ee conditions were identifred. The vegetation index response at these locations

was plotted against time and the linear and polynomial regressions were calculated.

Root-mean-square (RMS) deviations of the residuals were compared to identifo the most

appropriate relationship.

3.5.1.2. llalidaling Evenî Timing u,ilh (llimale Dala

Field research for this study was not undertaken at either end ofthe growing

season. Additionally, many climate stations in the vicinity are missing too much data to

construct a rneteorological-based phenological classification against which the satellite-

derived metrics could be compared. lnstead, a single climate station within the study area

was used to assess general findings. Daily mean temperatures were compared to the

vegetation index time-series to assess the findings of satellite-derived onset, peak and end

ofthe green season metrics. Air temperature has been shown to be closely associated

with the timing of green season events (White et al.. 1997). The availability of data

limited the assessment to 1999 and 2000, the first two years of the study.



3.6. CHAPTER SUMMARY

This chapter explained the research methods employed to meet the research

objectives. To effectively map the timing ofkey phenological events, a vegetation index

suited to rnonitoring arctic vegetation must be identified. Four vegetafion indices were

tested for their ability to determine percent cover and photosynthetic biomass, and limit

the influence olbackground noise. lt was also necessary to examine the characteristics of

the primary data source for this study * GEOCOMP-n A\IÉIRR imagery. GEOCOMP-n

data were examined to determine the typical satellite and sensor zenith angles and

acquisition dates for each composite. Finally, the satellite data were converted to the

appropriate vegetation index and analyzed. Analyses were designed to identif,' key

phenological events within the GEOCOMP-n data set for the years 1999-2001.

Phenological events ofinterest in this study were the date ofgreen season onset and end,

the length ofthe green season and the date of maximum greenness. The following

chapter presents the results olthe analyses and a discussion ofthese results.
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CHAPTER 4 - RESULTS

This chapter addresses the objectives ofthe study outlined in Chapter 1. The

objectives are addressed individuaily in three sections. The first section answers the

question "which vegetation index is best suited for analysis of arctic vegetation using

AVHRR data?". Addressing this question includes a quantitative assessment ofthe

ability ofeach vegetation index to predict photosynthetic biomass and percent cover, and

to lirnit the influence ofbackground noise. It also entails the use ofa qualitative

assessment to determine other practical considerations. The second section determines

the basic characteristics of GEOCOMP-n data for the study area. This is accomplished

by observing the distribution of sensor zenith angles, solar zenith angles and data

acquisition dates. The third section is concerned with estimating the timing ofkey events

in the Arctic growing season using GEOCOMP-n data. Before these estimators could be

developed, the data required adjustment to account lor the influence ofcloud cover and

data errors. Once these were accounted for, estimators, or green season metrics. were

developed by examining the NDVI tirne series for significant changes that represented

changes in the growing season. The third section ofthis chapter also includes an

examination ofspatial and temporal trends in the green season metrics as well as a

r alidation of the methodology.

4.1. \'EGETATION INDEX ASSESSMENT

Four vegetation indices were examined tkough both a quantitative and

qualitative approach. These include the WDVI, NDVI, MSAVIT and MSAVI:.



4.1.1. Quantitafive Assessment

Three quantitative tests were conducted. First, a regression analysis was used to

determine which vegetation index is the best predictor of photosynthetic biomass. The

{indings of the regression analysis suggest that all vegetation indices tested show very

similar relationships to photosynthetic biomass (Figure 4.1.). Specific results ofthe

analysis show that r-square values range from of 0.705 for the two MSAVIs, to 0.61 9 for

the NDVI. The r-square value for the WDVI was 0.695.

Second, regression analysis was conducted to the ability ofeach vegetation index

to predict values of percent vegetation cover. The findings demonstrate that the

relationship between vegetation index values and percent cover estimates are similar

among the indices, but differ flom the results conceming photosl'nthetic biomass. Values

y=107.71x-5.3695

I = 0.619
p < 0.001

l
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= 317 .02x - 5.6562 .
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l

Figure 4.1. Regression between photosynthetic biomass and a) NDVI, b) WDVI, c)
MSAVIT, and d) MSAVIz
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of the NDVI had the highest correspondence to percent cover, as characterized by an r-

square of 0.762 (Figure 4.2.). The MSAVI: and MSAVII also performed well, having r-

square values of 0.744 and 0.741, respectively. The WDVI was found to have the lowest

r-square value among the various vegetation indices.

ln summary, all vegetation indices were determined to predict percent cover more

effectively than photosynthetic biomass. This suggests that vegetation indices describe

total biomass befier than they do green biomass, since percent cover estimates were based

on all components of the plant, as opposed to only the green leaves as was the case with

photosynthetic biomass measurements.

124

100

9eo

ã60

20

0

a)

124

100

,9eo

!60
d, 40

20

0

rc)

Figure 4.2. Regression between percent cover and a) NDVI, b) WDVI, c) MSAVIT, and
d) MSAVI
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vegetation indices in an area dominated by sagebrush communities and/or juniper stands

and found SN ratios lor the NDVI and WDVI approached 10 and 12, respectively. Qi et

al. (1994) examined cotfon canopies and found SN ratio values greater than 40 for the

NDVI and SAVI, and greater than 30 for the WDVI. Greater background noise and

lower vegetation inder values are produced in the Arctic because ofthe less complete

vegetation canopies. Midlatitude vegetation provides a more complete cover, reducing

the amount of soil visible to the sensor. Large variations in SN ratio values result from

different dominant vegetation types between studies.

4.1.2, Qualitative Assessment

The qualitative assessment provided different insights into the utility ofthe four

vegetation indices. Two indices were eliminated from further consideration, in spite of

their showing in the quantitative tests. Both the MSAVIT and \ DVl require the

calculation ofa bare soil line. The need to recalculate the bare soil line would

significantly increase the amount of time required to estìmate the timing ofkey events in

the growing season. Additionally, the AVHRR data do not provide the necessary spatial

resolution to make reliable determinations ofthe bare soil line. This single shortcoming

generated enough concern to eliminate both the MSAVIT and WDVI frorn further

consideration. Of the two remaining indices, only the NDVI is available in the

GEOCOMP-n data set. Although the MSAVI2 can be produced with reflectance data

from tbe Channel I and Channel 2 composites, this would dramatically add to the nurnber

of steps used in further analysis. Finally, the MSAVI2 has not been tested and validated
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as widely as the NTDVI. The NDVI is, by far, the most widely used and accepted

remotely-based measurement of vegetation characteristics.

4,1.3. Vegetation Index Assessment Summary

The vegetation index assessment was designed to determine, using multiple

crìteria, the single index best suited for this study. Based on both the quantitative and

qualitative assessments, the NDVI was selected as the most appropriate vegetation index

lor the purposes ofthis study. Though it was the weakest predictor of photosynthetic

biomass, the NDVI was the strongest predictor ofpercent cover and had the highest

overall SN ratio. The qualitative criteria eliminated the WDVI and MSAVIT due to their

requirements for calculating a bare soil line. The MSAVI2 is not produced by the

GEOCOMP-n system nor is it widely accepted or used in the scientific literature The

NDVI is produced by GEOCOMP-n and has been the most commonly employed

vegetation index since it was developed. Based on these finding, the NDVI was selected

for use in this study. This selection led to the next step: determining general

characteristics and biases inherent in the GEOCOMP-n data.

4.2. GEOCOMP-n DATA CHARACTERISTICS

Understanding the nature ofthe data is important, as it alerts the user to biases,

errors, and weaknesses in the data set. For the purpose olthis study three features ofthe

data were examined: the dis¡'ibution of sensor zenith angles, solar zenith argles and

acquisition dates.



4,2.1, Sensor Zenith Angles

Sensor zenith angles describe the angle lrom which the surface is observed by the

satellite sensor. Low sensor zenith angles were desired in order to maximize spatial

resolution, and geometric accuracy. Low sensor zenith angles also minimize interference

by atrnospheric particles. Sensor zenith angles for the TNNP region are described for

each year ofthis study.

1.2.l.L Sensor Zenilh Angle Dislributir¡tt - 1999

Sensor zenith angles for 1999 are summarized in Table 4.1. In the early and late

months of the 1999 datã set, sensor zenith angles tended to be very high. Greater than 83

percent ofthe sensor zenith angles in the May I composite were at least 60 degrees off

nadir. Most sensor zenith angles were less than 60 degrees during the majority ofthe

growing season (mid-June to late September). Nearly 60 percent ofviewing angles were

less than 3 0 degrees for the eleven composites from June l0 to September 21 . High

zenitlr angles increased in frequency again towards the encl ofthe \999 data set. Fewer

than halfofall pixels in the two October composites were collected with view angles less

than 60 degrees.
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Table 4. L Breakdown of sensor zenith angles for each composite in 1999 (values are
percentages).

Month Comoos¡te <150
Acquis¡tion Angles

<300 <45' <600 600+

April

May

July

August

September

Octoþer

NO DATA

0.01
1 .65

0.75
13.58
68.32
78.57
70.36
55.75

69.51

80.08
7 4.91

69.17
95.01
99.14
69,84
0.20

NO DATA

0401
0411
0421
0501
051 1

o521
0601

0611

0621
0701

07't1

0721
0801

0811

0821
0901
0911

092',1

1001
1011
1021

0.00
0.00
0.00
0.01

0.0'1

6.28
JJ.¿¿

4.84
17.38

31.60
2.41
9.35

71 .10

49.09
9.90

41 .94

0.40
0.01

0.23
0.14
0.01

0.01
U¿5
9.05

67 .19
50.3 3

bJ.J5
41 .44

50.78
76.48
71 .81

63.44

90,85
38.23
0.07
7.55

53.54
68.86
16.54

92.31

52.64
67.54
99.05
99.18
oo 7l

97 .76

99.78
98.54
s7 .57
98.59
98.82
99.82
86.03
30,59
48.00

46.46
31 .14

83.46
7.69

47 .36

32.46
0.95
0.82
0.29

0.22
1 .46

1 .41

1.18
0.1 8

13.97

69.41
52.00

'1,2.1.2. Sensor Ze ilh Angle DisÍt'ibuÍion - 2000

Sensor zenith angles lor 2000 are sumÌnarized in Table 4.2. Results were similar'

to those seen in 1999, high angles at the beginning and end ofthe data set with low to

medium angles during the majority of the growing season. A dramatic switch from high

to low sensor zenith angles was obsened between the composites ofJune 1 and June 11.

In the June 1 composite, over 94 percent ofscan angles were greater than 60 degrees. In

the next composite period, June I l, almost 80 percent of angle values were less than l5

degrees. A similar transition was found at the end ofthe growing season. During the

September 21 composite sensor zenith angles were predominantly less than 60 degrees.



By the October I composite, nearly 71 percent ofpixels were acquired at sensor zenith

angles greater than 60 degrees.

Table4.2. Breakdown of sensor zenith angles for each composite in 2000 (values are
percentages)

Month composite <15o
Acquisition Angles

<300 <450 <600 60'+

April

May

June

July

August

September

October

0401
0411
0421
0501
0511

0521

0601

061 I
0621
0701
0711
0721
0801

081 1

0821
0901

0911

0921

1001
10't 1

1021

0.01
0.00
0.08
0.29
0.00
0.01

2.4'l
78.52
14.16

59.68
11 .92

22.34
70.32
2.50
28.20
o t5

22.73
0.89
1.38

28.03
1.88

0.04
0.00
0.08
0.43
0.00
4.7 5

4.33
84.92
63.79
67 .48
zt.+o
25.20
7 5.52
43.63
74.18
,t)'7.)

oo.c I

1.93

1.75
36.40
42.91

0.16
0.'11

0.20
12.44
2.50
20.16
4.35

õO. UÕ

87 .20
72.02
40.98
62.00
82.56
86.44
94.49
98.96
81 .01

29.10
L59

59_86

99.1 I

38.46
14.89

17 .34

39.18
36.34
75.02
þoo

96.71

99.05
98.50
85.04
90.59
98.53
98.59
98.1 3

99.58
96.50
99.70
29.05
72.45
99.80

61 .54
85.11

82.66
60.82
uó Þo

24.98
94.34
3.29
0.95
1 .50

14.96
L41
1 .47
't .4'l

1 .87

0.42
J.5U

0.30
70.95
27 .55
0.20

1.2.1.3. Settsor Zenilh Angle fii.strihution - 2001

Sensor zenith angles for 2001 are summarized in Table 4.3. Results from the

2001 data set were similar to those from the previous two years. However, there was a

slight variation in the early portions ofthe 2001 data set. angles tended to be slightly

lower in 2001 than in previous years. Also, the transition, from high to low angles at the

start ofthe growing season, and from low to high angles at the end ofthe growing season,

occurred more gradually in 2001 than in the previous two years.



Table 4.3. Breakdown ofsensor zenith angles for each composite in 2001 (values are
percentages).

Month Composite <15o <30"
Acquisition Angles

<450 <600 60o+

April

May

June

Augusl

September

October

July

0401
0411
0421
0501
051 I
0521
0601

0611

0621

070'l
0711
072'l
0801
0811

0821

0901
0911

0921
1001
1011
'1o21

0.00
0.00
0.00
0.00
0.06
1 .10

4.56
19.0r

10.12
4.03
15.64

9.12
13.70

0.59
76.64
zó.oo
88.70
0.01
0.00
0.48

0_00

0.05
0.14
0.07
0.38
3.24

11 .21

19.01

61 .73

29.66

46.83
30.62
48.07
45.78

89.92
87.63
91.35
0.1 3

0.00
1 .61

0.03
0.13
L41
16.23
0.98

'1 0.18
40 _34

1 9.01

7 4.46
7 5.35

66.78
61.85
58.51
94.99
96.1 7

98.35
91.61

1 .76
4.54
5.7'l

100.00
86_42

100.00
100.00
42.97
62.72
91.68
100.00
97.90
84.34
94.43
97.63
s7 .15

1 00.00
99.16
99.77
98.51

98.77
72.10
43.20
25.74

0.00

0.00
0.00
57.03

8.32
0.00
2.10
t J.oo
5.57

2.85
0.00
0.84
0.23
1 .49

27 .90
56.80
7 4.26

1.2.L1. Sen,çor Zenith Ang:le Dislrihulion Sunnnary

The AVHRR is unique with respect to its ability to view 55 degrees offnadir.

This ability provides the user wìth high temporaI resolution, but also provides challenges

in that the spatial resolution is reduced in pixels acquired at high sensor zenith angles.

Pixels viewed at nadir have a nominal ground resolution of approxirnately 1 km2.

Alternatively, spatial resolution at scene edges can reach 15 km'z(2.4 km X 6.5 km).

Sensor zenith angles in this data set were typically low enough to avoid

significant concern. In 1999 and 2001, sensor zenith angles were low throughout the

green season. In 2000, sensor zenith angles were somewhat high in the first June

composite resulting in lower than ideal spatial resolution conditions. The ¡esult was that



the NDVI values for each pirel were derived from reflectances acquired over a larger

ground area, resulting in less precise reflectance measureÍnents. Imprecise reflectance

measurements could cause the incorrect identification ofonset, or it could hide the onset

from the AVHRR, in particular pixels.

There were predictable transitions from high to low angles at the beginning ofthe

growing season and from low to high angles at the end ofthe growing season.

Examination of daily A\{HRR imagery for these transition periods showed that the

compositing process selected cloud or snow before and after the growing season. The

high zenith angles for these composites suggest that NDVI values for snow and cloud

increase with sensor zenith angles. Low sensor zenith angles during the growing season

indicated that NDVI values for vegetation are highest given low to medium viewing

angles.

4.2.2. Solar Zenith Angles

Solar zenith angles describe the angle at which the sun is located relative to the

observed surface at the time ofthe measurement. Solar zenith angles are dependent upon

day-of-year and time-of-day. They also vary as a function of latitude (given the relatively

small size ofthe study area such variations were minimal). Solar zenith angles are

summarized for each year in the data set in Table 4.4.

General patterns are similar in all three years ofthe data set. At the start ofthe

data collection period solar zenith angles are relatively high, declíning over time until the

commencement of summer. At this point, solar zenith angles began to increase - a trend

that continued through the end ofthe data collection period, The composite with the
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lowest mean solar zenith angle was slightly variable between years, but always occurred

near the summer solstice.

Table 4.4. Solar zenith angle summary for each composite. Values represent angles

in degrees.

naontn I

l\¡tN o 59 54 52 49 47 4s 45 45 45 46 4A 50 s3 56 60 64 68 72 76 E

r\rAX { oo o+ 58 56 59 s7 s7 s4 57 58 sB 61 67 66 7g 76 79 a+ at f;
MEAN ' eo st s4 s0 49 49 so 47 49 49 s2 53 58 58 63 6t 72 76 ü

2000

vonrr. I Apr¡t I t"u I lun" l ru'y I nugust I september I o",on",

<D cr q)êêê
MIN 60 58 54 51 49 46 Æ 45 45 45 47 4A 51 53 57 60 64 69 72 76 80

MAX 71 70 62 64 6'1 61 59 56 58 58 59 60 62 65 71 72 78 ü 84 88 93

MEAN 64 61 56 53 51 49 47 50 50 50 49 51 56 59 63 64 71 74 75 A4 92

2001rrrtltl
¡.¡onln I Apr¡l I lvtay I June I July I Augul I september I october

o-Nttçç êec

1999tttlllapril I lt4ay I June I July I August I september I october

+rf<rõÔô

MrN 65 59 57 53 49 47 Æ 45 45 45 Æ 4A 50 54 56 61 64 68 72 77 80

t\¡AX 72 67 63 61 58 57 53 50 55 54 57 58 62 60 68 70 74 76 80 84 88

|\,4EAN 70 61 62 59 54 52 49 4A 46 4A 49 50 53 57 57 62 65 70 77 82 86

The lowest mean solar zenith angles in both 1999 and 2001 were found in the

June 2l composite. During the 2000 summer, mean solar zenith angles reached their

Iowest point in the June I composite, and subsequently increased slightly in the June 1l

composite and remained steady for the following 2 composites before declining slightly

ín the July 11 composite. During late September or early October ofeach year, solar

zenith angles began to exceed 80 degrees. Mean values typically reached 80 degrees one

or two composites after the maximum values did.

Maximum solar zenith angles in the data set are found at the end ofthe data

collectìon period in each year. Mean solar zenith angles exceeded 90 degrees during data

83



collection in the October 21, 2000 composite image

no direct radiation to the surface being viewed from

1.2.2.l. Solar Zenith Angles Summary

In this situation, the sun provided

the satellite.

Mean solar zenith angles for the TNNP data set \À,/ere below 65 degrees until the

final few composites. As a result, the effects of solar zenith angles were minimal for the

bulk of the growing season. Solar zenith angles did not dramatically affect NDVI values

untjl the final composite periods, at which time they so large that a large jump in mean

NDVI values within TNNP was observed (Figure 4.4.).

Results suggest that solar zenith angles greater than 80 degrees caused severe

errors in the calculation of NDVL Markon (1999) found a similar effect with a

composite-AVHRR data set in Alaska. Erroneously high NDVI values would have

caused an incorrect estimation ofthe predicted time-series used for determining the end

ofthe green season metric. To prevent this error, solar zenith angles greater than 80

degrees were masked and replaced with the average ofNDVI values from pixels that

were not masked. Additionally, the October 21 cornposites were completely removed

from the calculation ofpredicted time-series values.

8-f
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4.2.3, Acquisition Dates

GEOCOMP-I composites were based on AVHRR imagery from 01 April to 31

october. unspecified problems in the 1999 data set made the April 1 composite and the

October 21 composite unavailable (J. Leger, pers. comm. 2000). Compositing periods

a¡e built with l0- or 11-day intervals (11 days for the third composite in months having

31 days).

Many phenologically driven studies have used multi-temporal composites without

concern for the date on which each pixel was acquired (e.g. Markon et al., 1995). For the

purpose of this study acquisition dates were determined to be an impofant consideration

given that more p¡ecise measurements were required. Knowledge of the acquisition dates
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also provided information regarding how representative a composite was ofthe entire l0-

day period. A l0-day composite is best represented when an equal proportion of pixels

are acquired from each date within the period. Acquísition dates summaries for each year

are presented below.

1.2.3.1. AcquisiÍio DaÍes - 1999

The distribution ofpixel acquisition dates for each 1999 composite is shown in

Figure 4.5. Key points in the figure are as follows:

The June I I and July I composites show the distribution ofacquisition

dates that was expected during the green-up portion ofthe growing season.

That is, high frequencies at the end of the cornposite, when NDVI is at its

highest relative to other dates in the same composite.

There is a very low frequency of pixels acquired at the end ofthe June 21

and the beginning ofthe July 1 composite, indicating the presence ofa

persistent cloud cover during that particular time period. The same pattern

is seen when the July l1 and July 21 composites are compared

In the green-down portion olthe season, the expected distributions are

seen in the August 21 and September I 1 composites. That is, high

frequencies of pixels acquired early in the composite period.

The September I and September 21 composites show the signs ofa short-

lived cloud cover at the beginning ofeach composite period, as seen in the

lack ofpixels acquired on the first day in the composites.



. In 1999 none of the composites were found to be good representations of

an enti¡e 1O-day period (i.e. an equal number ofpixels were not acquired

from each day).
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4.2.3.2. Acquisition Dates - 2000

Similar to 1999, a pooling of acquisition dates was found in most ofthe 2000

composites. There were, however, some composites in the 2000 data set that were found

to be more representative ofthe entire 10-day period (Figure 4.6.). For example, the

May1, May 2i, and July 11 composites are somewhat representative of their respective



10-day periods

following:

The distribution ofacquisilion dates for this period displayed the

The June 1 composite was mostly covered with clouds; a pattern that may

have persisted into the June 1 1 composite. An examination of daily

AVHRR images verified this suggestion.

The distribution ofacquisition dates in the August 1 composite had a

bimodal pattem. Since most of the park was at its peak during the Augusl

1 composite, the bimodal pattem suggested persistent cloud cover for

much of the composite with a short, cloud-free window over a few small

areas in the second and third days (August 2-3). Again, by looking at

daily images it was possible to verify a break in the cloud during this

period.

3

E

Figure 4.6. Distribution of GEOCOMP-n acquisition dates in 2000
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Figure 4.6. Distribution of GEOCOMP-n acquisition dates in 2000 (continued)

1.2.3.3. Acquisition Ddtes - 2001

Similar to the previous two years, poorly distributed acquisition dates dominate

the 200I composites ([''igure 4.7.). Notable characteristics of acquisition dates in the

2001 GEOCOMP-n data set include the following:

' There was evidence of extensive cloud cover th¡ough much ofthe suÍlmer

¡ The May 21-June 11, July 1, August 11 and September 1 composites all

show the influence of clouds in the distribution ofacquisition dates.
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Figure 4.7. Distribution of GEOCOMP-n acquisition dates in 2001 (continued)

4. 2. 3. 4. Acquisítion Dales Summary

Actual acquisition dates were often pooled within the composites. The pooling of

acquisition dates occurred for two reasons. First, a persistent cloud cover dwing the first



(last) week ofa composite period causes the acquisition dates to be pooled in the later

(earlier) dates Second, during the green-up portion ofthe growing season, higher NDVI

values occurred during later dates; the opposite was true for the green-down portion.

Composites truly representative of the entire composite period were not found during this

three-year study. However, the pooled distribution ofacquisition dates suggests that

cloud-contaminated pixels were excluded from the final composites. That ís, the final

composites contained high-quality, cloud-free data wherever it was possible.

4.3. MAPPING TEMPORAL GR"EEN SEASON METRICS

Removing flaws in the data prior to analysis was necessary to ascertain the most

reliable information frorn the A\¡HRR satellite data. Following preprocessing of the data

set, the dates of onset and end of greenness, the length of green season, and the date ol

maximum NDVI were determined for each year (1999-2001) in TNNP. Each of these

green season metrics was then examined for spatial and temporal trends, and the

methodology was evaluated.

4.3.1. Data Preprocessing - Removal of Cloud Contamination

The primary reason for using maximum-NDVl composites was to r¡inirnize the

effects of clouds in the irnagery. However, when clouds contaminated a pixel for an

entire compositing period - l0- or 1l- days in this case * the effect ofclouds remained in

the composite image. Two cloud masking procedures were employed to locate pixels

that remained contaminated: a Channel I threshold-based procedure, and by locating

certain trend changes in the NDVI time series. Cloud-filled pixels were removed from
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the data set and replaced with interpolated values for the NDVI and relative dates bands

of GEOCOMP-n data.

1.3. L l. Cloud ldenltficaliort

Initially, all composites were searched for residual clouds. A challenge in this

process, however, was that the Channel 1 cloud masking procedure could not distinguish

between cloud cover and snow or ice, and therefore was incorrectly masking too many

pixels. This was particularly problematic given that the study area is covered in snow and

ice through May and the early part of June (Phillips, 1990). The same problem was

experienced in the Septernber and October cornposites. For that reason, cloud masking

was limited to the composites between May 11 and August 21, and the Channel I cloud

masking procedure was not used until the June i0 composite each yeat.

While cloud masking identified residual cloud in every composite, the overall

proportion of clouds remaining after compositing was low. With the exception of one

composite per year, residual cloud propoftions were well below 10 percent (see Table

4.5.). While little cloud was identified using two different detection methods, the

thresholds selected were designed such that some residual cloud may have gone

undetected. All attempts were made to keep the false identifrcation ofclouds to a

minimum. The decision to use insensitive cloud detecting thresholds was often evident in

the temporal analysis (See section 4.3-2.).



Table 4.5. Percentage of cloud-contaminated pixels after cornpositing.
Month COMPOSITE 1999 2000 2001

[/ay
0511

0521

0601

061 1

0621

07 01

0711

0721

0801

081 1

0821

<1 o/o

5%
<1 Vo

<1 Yo

<1 o/o

1%
7Va

<1 o/o

15 o/o

I a/o

<1 o/o

1va
1 o/o

4 o/o

3%
14%
1 o/o

<1 a/o

2%
6%
5ak
5Yo

<1 a/o

1 o/"

<1 o/o

11 "/"
<1 o/o

3 o/o

<1 o/o

<1 o/o

<1 o/o

<1 o/o

<1 o/o

J uly

August

Cloud contamination was consistent across the three years. There was at least a

small portion of cloud-contaminated pixeis in all composifes examined. The highest

amount of residual cloud contamination was I 5 percent found in the August 1, I 999

composite. Respective maxitnum residual cloud covers were 14 and 11 percent for 2000

and 2001 . The pixels identifred as cloud contaminated required corrections to the NDVI

and relative dates values.

1.3.1.2. Adiusting L'egelation Index Vafues

To correct for cloud contaminated NDVI values the incorrect values were

replaced by the mean ofthe NDVI values from the previous and subsequent composites.

Adjustments to NDVI values in all thee years are generally small (Tâble 4.6.). The

minimum NDVI adjustment was 0.05 for all but the May 11 composites in 1999 and

2000. In the May 11, 1999 composite, only 2 pixels were identified as cloud-

contaminated. Both had exceedingly low original NDVI values and the adjustment was

consequently high- Minimum adjustments in the remaining composites were equal

()()



because the seçond cloud identification algorithm required a minimum decline in NDVI

of0.05 to be recognized as cloud-contaminated Mean adjustments were relatively

consistent fhroughout the three years. Composites with relatively high mean adjustments

resulted from very few cloud contaminated pixels or several large adjustments required

because of data errors rather than clouds. The exception was the June 1 1, 2001

composite, which had a high mean adjustment as well as a large number olcloud-

contaminated pixels. Standard deviations are generally low. Again, abnormally high

standard deviations exist where very lew pixels required adjustments and where several

very large adjustments were required to repair data errors. The adjustments performed

on the vegetation jndex values needed to be reflected in the dates layer.



Table 4.6. NDVI adjustments as a part of cloud contamination correction.

1999

I r,rr 1 n"*ur"' 
I

Composite È4.¡a)Éô¡êFe¡C)Éc.¡ra' V i \ê \Þ \t F_ lt t-- Cê aê aê

MIN t.0t 0.05 0 05 0 05

MAX 1.02 1.02 0.13 1.51

MEAN 1.02 0.07 0.07 0.07

sr DEV 0 003 0.09 0.0 r 0.13

0.05 0.0_5 0.05 0.05 0.05 0.05 0.05

0.17 0.12 0.19 0.+9 0.15 0.41 0.5

0.06 0.07 0.07 0.07 0.07 0.06 0.08

0.01 0.01 0 02 0.02 0.02 0.01 0.08

2000

Augustro"u. 
I

Composite

Junc

Èô¡êÈêloÈôtÇÈa¡ta v> \â \â \Þ l_- l_- t" oc aô cê

MIN 0.06 0.05 0.05 0.05

MAX 0.20 0.16 0.26 0.11

MEAN 0.ì2 0.07 0.08 0.06

sT DEV 0.04 0.02 0.02 0.0r

0.05 0.05 0.05 0.05 0.05 0.05 0.05

0.1'7 0.22 0.57 0.52 1.ll 0.51 0.17

0.07 0.07 0.16 0.08 0.08 0 08 0.06

0.0 r 0.03 0.13 0.03 0.I0 0.03 0.02

2001

ruontr' 
I

Composire

July

r<è¡êFô¡AÈê¡CÈc¡.a) tî¿ \c \.) \9 t'r tr t- û Ø aÊ

MIN
MAX

MEAN
ST DEV

0.05 0.0-5

0.09 0.60

0.06 0.1,1

00r 012

0.05 0.05

0. 15 0.57

0.08 0.12

00:ì 0lt

0.05 0.05

0.70 0.08

0.06 0.07

002 001

0.05 0.05

0.l l 0.l5
0.07 0.07

00:ì 002

0.05 0.05 0.05

0.2'7 0.66 0.70

0 09 0 08 0.07

003 009 003

-1.3.1.3. Adjustittg llelative DaÍes Lhhrcs

Since values from both the NDVI band and the relative dates band were used to

determine the precise timing ofevents, it was necessary to adjust the relative dates values

that correspond with the adjustments made to the NDVI values. A summary of



adjustments to relative dates values is provided in Table 4.7. All adjustr¡ents are less

than l0 days, indicating that cloud was never lound to contaminate the same pixel for two

straight composite periods. In all but the June I l, 2001 composíte, there were negative

and positive adjustments made to relative dates values. When all composites are

considered, the average adjustment was less than 1 day Despite the average, there were

many large adjustments made to relative dates values. Without such adjustments, the

maps of timing events would have been less accurate.

Table 4.7 . Relative date adjustment as part of cloud contamination
correction.

1999

Morrh 
]

rl
L\,tar Junc I ;uh I'11 l,

Èôì€)Èè¡cÈêìoaaSEt5553

rrl llt
Month I Mar Junc L Julr I Augustttltll

rieleÉê¡eÈa¡<)Èrê¡!(-r9ççç\\Ì9!F9e
-7

8

-1.:i

I

Junc Julr AugustLt"tt
a)Éa¡eÈô¡C)Éa¡\Oç\êr-r-l'tæØCÞ

August

6û

MIN -1 -4 -5 -8

MAX3958
MEAN L00 5.72 -0.66 -2.'71

-3 -8 -6 -8 -8

9:1 881
5.52 -:t.+l 2.75 -l.62 0.37

2000

-8 -5

89
l.tl 0 95

MtN -+ -4

M-dx 3 7

MEAN 1.1 I 0.98

IMônÎh Mav
I

-6

8

5.29

-6 -5 -'7 -6 -7 -7 -9

8659695
3.65 0.88 0.65 -1.98 -1 22 r.66 -5.1,2

2001

MJN

MAX
MEAN

-9 -5

39
2.5 4.5

6

-0.2

-5 -8 1-8
8293
0.:l -i.0 5.1 -1.8

-6 -j -5 -3

859',7
t.3 0.5 1.5 3.5



4.3.2. Determining the Timing of Key Growing Season Events

The ability to map the precise timing ofkey growing season events is a

requirement for future research ofthe effects of a changing climate on arctic ecosystems.

The timing of four growing season events were mapped for three years in TNNP: the

onset, end, and length of greenness, as well as the marimum NDVI Each map increases

the understanding of current conditions within TNNP.

-1.3.2.I. Green Sea.gon Onset

onset of the green season describes when the vegetation has enough density to be

detected from satellite sensors notwithstanding background influences from soil,

vegetation litter from previous years, standing water and snow. The date ofgreen season

onset in the study area for 1999 occurs on julian day 144 (May 24) (Figure 4.8.). The

general pattern of green-up began in the west, and gradually moved east. within TNNP,

green season onset occurred over a period of46 days (frorn May 24 through July 8)

(Figure 4.9.). Initial signs ofgreenness occuned along the Darnley Bay coast, the

western portion of the map area and along the Hornaday River valley. There was also

early onset detected along a band near the northern border ofTNNP a pattern not

detected in the next two years. This pattern was attributed, through examination ofthe

daily AVHRR imagery, to the presence of cloud in the northem TNNP region. The cloud

cover had a higher NDVI than the ground surface at this time. As a result, the cloud-

frlled pixel was included in the cornposite and subsequently caused a large enoughjump

in the time series to be detecfed as new growth. There are three distinct areas that begin



green-up relatively late A crescent-shaped area in the northern portion oITNNP abuts

the band of very early onset. Late onset is also visible in the Melville Hills region in

center of TNNP, and east of TNNP between the park boundary and the eastern limits of

the map area.

Similar to 1999, fhe 2000 green season onset began on julian day 144 (May 23)

Initial greening occurred on the southern coast of Darnley Bay and jn the southwest

corner ofthe rnap area (Figure 4.10.). There were a few patches ofonset in the center of

the map area, which appear to have been caused by cloud rather than actual vegetation

growth. Detected onset within these patches is unexpectedly early compared to

surrounding onset dates. There was relatively little new growth until day 1 59 (June 8)

when the frequency ofnew growth jumps, and contirues to íncrease until day 164 (June

13) when new growth is at its peak (Figure 4.11.) By this time, the Hornaday River

valley, the westefn poftion ofthe map area as well as a large portion ofland east of

TNNP have experienced green season onset. The onset period wraps up along the coast,

within a large crescent-shaped area in the northern portion of TNNP and in the higher

elevations of the Melville Hills region. cloud cover thaf went undetected by two cloud-

screening methods influenced the determination ofgreen season onset, resulting in the

pafchy appearance to the 2000 green season onset map,
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In contrast to 1999, the green down in 2000 had an obvious northeast-to-

southwest directional component to it (Figure 4.16.). Green down began in the northeast

portion ofTNNP as well as east ofthe park on dayjulian 249 (September 5). Green

down spread in a southwest direction tkough the map area and concluded south and

southwest of TNNP. The bulk of the green season had ended before julian day 294

(October 20), however, the green season in less than halfofone percent of all pixels did

not conclude until between julian days 301 and 304 (October 27 and30).

The histogram ofgreen season end dates also shows the pattern ofgreen down

(Figure 4.17.). The first peak in the histogram falls between julian days 249 and 270

(Septernber 5 and 26). This peak is representative ofthe initial green down in the

noftheast portion ofTNNP. The second peak falls betweenjulian day 271 and 280

(September 27 and October 6). Most ofthe green down occurred within this 1O-day

window. The end ofthe green season occurred over all but the noftheast corner ofTNNP

during this perìod. The final peak occurs after julian day 281 (October 7). This final

peak is representative ofthe end ofgreenness south and southeast of TNNP.

The green down in 2001 shows a pattern that is similar to that in 2000, though less

distinct (Figure 4.18.). The end ofthe green season in 2001 also began in the northeast

corner ofTNNP and ended in the southwest. However, the pattern is more irregular than

that found in 2000.

The histogram of2001 green season end dates is negatively skewed (Figure

4.19.). The green-down has a long, slow build up until day 267 (September 24). The

peak ofthe green down occurred on day 271 (September 28), and was followed by a

quick decline.
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The green season lasted between 58 and 148 days in 2000 (Figure 4.22.). All

values less than 78 (and some above) were found to be the effects of mired pixels located

at the edge ofwater bodies. There is a general pattern showing a lengthening ofthe green

season from northeast to southwest. The shortest green season is found in the barren

areas of the Melville Hills, in the northeast portion of TNNP as well as to the east of the

park boundary near the Amundsen Gulf coast. The green season lasts between 105 and

120 days in the majority of pirels. Long green seasons were found in the dwarf shrub

dominated areas along the Danrley Bay coast and south and west of TNNP

The 2000 histogram ofgreen season length values shows a more gradual increase

in frequencies to the unambiguous peak at 112 days and a more dramatic drop offover

the r.rext 18 days (Figure 4.23.). A very limited number of pixels had green seasons

exceeding 130 days. The length ofthe green season had similar cha¡acteristics in 2001.
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The green season lasted at least 61 days and up to 145 days in 2001 (Figure

4.24.). Nl pixels with green seasons less than 72 days were identified as being mixed

pixels near water bodies. A short growing season is found in the Melville Hills and in the

northeast corner of TNNP, though the total area is smaller than it was in 2000. Most of

the map area has length values between 95 ar'd 120 days. Areas wìth longer green

seasons were found along the Darnley Bay coast and west of the TNNP boundary.

The histograrn ofgreen season length shows a small peak at 82 days (Figure

4.25.). This first peak represents the pafticularly short green season in the northeast

portion ofTNNP. The more distinct peak ofthe histogram occurs at 105 days after which

the histogram declines until it ends at 145 days.
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1.3.2.-1. Peuk of lhe Green Season

The day on which the NDVI peaked varied dramatically between years ln 1999,

greater than 60 percent ofpixels reached their peak ND\¡I values during a two-day period

inthe August I composite (Figure 4.26. ând Figure 4.27.). Though no strong spatial

patterns emerge, the southern region appears to have earlier dates of maximum NDVI

than do northern regions.

Dates of maximum NDVI in 2000 were more spread out than in 1999 (Figure

4.28. and Figure 4.29.). The histogram in Figure 4.29.has several peaks, representative

of the acquisition dates within each composite. The progression of maximum ND\4

appears to begin in the south and end in the middle, with intennediate dates found in the

r.rorth, along the Amundsen Gulf.

The majority of marimum NDVI dates in 2001 were spread out in a manner

similar to the 2000 green season (Figure 4.30. and Figure 4.31.). Most maximum NDVI

values occurred during the August 1 or August 1i composite. No strong pattern was

evident in the Date of Maximum NDVI rnap.
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4. 3. 2. 5. Three-Year Averoges

Data from the three growing seasons were combined to produce average maps for

each green season metric in the TNNP region (Figures 4.32. - 4.35.). Averaging the

maps reduced the noise found in the yearly maps and allowed patterns to emerge much

more strongly. The areas with the longest green seasons were generally located in the

western portion ofthe map area dominated by higher productivity vegetation

communitìes. The short green seasons were found ín the east in areas dominated by low

productivity vegetation communities. Histograms of average values maps show a more

normal distribution than did the yearly maps (Figures 4.36. - 4.39.). Determining the

average green season length reduced the influence ofseasonal climatic variations that

was evident in the yearly histograms.
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J.3.2.6. Spotial artd 1'emporul Trends

Green season metrics were assessed for spatial and multi-year temporal trends in

the TNNP region. The first method for eramining spatial trends looked at values for each

average green season metric along eleven transects running in three directions: west to

east (transects 1 through 4), south to north (transects 5 through 7) and southwest to

northeast (transects 6 through 1 1).

West-to-east trends in the green season metrics (Table 4.8.) can be summarized as

follows:

Date ofonset increased in an easterly direction, indicating that onset was

first experienced in the west and progressed east.

Ending dates decreased in an easterly direction, indicating that the end of

greenness was experíenced first in the east and progressed west.

Green season lengths also decreased ín an easterly direction, indicating

that and green seasons were longer in the west than they were in the east.

There was no significant west-to-east trend in the date ofpeak NDVI.

Tâble .1.8. West to east trerds for eaclì green season netdc

TRANSECT ONSET DATE ENDING DATE LENGTH PEAK DATE

1

2

3

4

!= 0.13x+ 161" y= -0.28x+ 286"

R2=0.26 É=030
Y= 0.10x+ 156* y= -0.06x+ 280*

R2=0.70 É=0.27

J¡= 0.05x+ 162. y=-0.07x+282*
R2=0.41 R2=0.49

f = 0.03x + 163. y= -0.11x + 286*

É=0.16 R2=0.60

y=-0.35x+123*
É=0.55

Y= -0.15x + 124*

R'?=0.60

y=-0.12x+120.
R2 =0.58

y=-0-03x+123-
R2=0.54

y = 0.05x + 214
#=0.04

y=0.05x+210
R'?=0.10

y=-Q.01x+218
R2<0.01

y=-0.02x+215
É=0.01

* slope ¡s signifÌcantly d¡fferent than 0 (p < 0.001)



South{o-noth trends in the green season rnetrics (Table 4.9.) can be summarized

as follows:

¡ Onset dates increased in a south-to-north direction only along transect 5

Onset dates along transects 6 and 7 did not trend in a south-to-nor-th

direction.

. Aiong two ofthe three transects (transects 6 and 7), the length ofthe green

season was shorter in the nor-th than in the south.

¡ Two transects (transects 5 and 7) showed significant, but opposite' south-

to-nofth trends to the end ofthe green season The trend was positive

along transect 5 because the north end of this transect ends in the area

along the Darnley Bay coast that typically has longer green seasons than

the rest ofthe map area.

' There was no significant south-to-north trend found in the date ofpeak

NDVI.

Table 4.9. Soutlì 10 nortlì tre[ds lor caclì green season Inetric.

TRANSECT ONSET DATE ENDING DATE LENGTH PEAK DATE

Ã y=0.06\+ 159- y=O.O6x+275" y=-0.02x+118 y= -0o1x+2'16
O R2=0.33 R2=0.06 R2=0.01 R2.O.O1

^ 
y= -O.O-lx +.165 y=O.O?x+277 y=0.02x+112" y= -0.01x + ?17

O R2=0.02 É=o.oT R'?=0.06 É=0.01
y= -O.O1x+ 167 /= -0.05x+ 270* y= 0.05x+ 102" y= -0.Q2x + 219

| É.o.ot d=0.2s É=0.26 É=0.02
* slope is signifìcantly different ihan 0 (p < 0.001)
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Southwest-to-noftheast trends in the green season metrics (TaÌrle 4.10.) can be

summarized as follows:

. Onset ofthe green season occurred first in the southwest ofthe map area

and progresses in a northeast dìrection.

. The end ofthe green season progressed in the opposite direction,

beginning in the northeast and ending in the southwest.

. The green season had a trend of decreasing length in a noftheasterly

direction.

. A significant trend in dates ofpeak NDVI was found along one southeast-

to-northeast transect (transect l1), indicating that along this transect, the

date of maximurn NDVI declined in a northeasterly direction

Table 4.10. SoutlNvest to norllìeast trends for eaclì grcen season metric

TRANSECT ONSET DATE ENDING DATE LENGTH PEAK DATE

y= O.11x+ 171" y= -0.08x+ 274" y=-0.19x+ 103" y= -0.O3x+217

R2=0.62 R'?=0.38 R2=0.67 R2=0.03

.ì J¡=0.03x +170- != -0j6x+ 262* y=-0.16x+ 90" y= 0.05x+ 214
Y F=0.1a É=0.27 #=0.51 É=0.06

At\ y= 0.03x + 170. y=-0.06x+271' y= -0.09x+ 101" y=-Q.02x+218
I U R2=0.36 #=0.32 R'?=0.47 #=0.02

4 A y=O.O4x+17O* y=-0.11x+268" y=-0.13x+ 99* y=-9.OSx+218*
ll R2--o 36 R,=0.23 R2=0.53 R2=0.15

t slope is significantly different than 0 (p < 0.001)

The spatial nature ofgreen season metrics was also assessed by examining how

each metric varied by dominant vegetatiotl type. The land cover map was examined to

locate AVHRR pixels dominated by a single vegetation type (greater than 90 percent of

the pirel belonged to the same cover type). Values for each metric were extracted at the

sites of these pure pixels, and one-way analysis of variance (ANOVA) was used to test

between cover type differences.
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The typical values for each metric within each vegetation cover class are shown tn

Figure 4,40. Values showed differences between vegetation types for onset ofgreen

season dates (ANOVA' l'':60.43,n:420,p < 0.001), endof green season dates

(ANOVAt F: 115.86, n: 420, p < 0.001), Iengh of green season (ANOVA, F:125 05'

n:420,p < 0 001), but not date of peakNDVI (ANOVA, F:2-07, n:420,p- 0 08)

ANOVA posrhoc tests showed that most, but not all, green season metrics were

unique for each cover type. Table 4.11. identifies which cover types had significantly

different mean metric values. All bivariate comparisons result in significant differences

for the onset and length metrics. With respect to the end ofgreen season, values for

Dwarf Shrub Tundra-dominated regions do not differ from those in Mesic Meadow or

Tussoclç Tundr.a regions. However, there is a significant difference between end ofgreen

season dates between Mesic Meadow and Tussock Tundra regions There were no

significant vegetation-dependent differences in the date of maximum NDVI metric

A notable pattern emerged in the green season netrics whereby the higher

productivity vegetation types typically had longer growing season (earlier onset dates and

later ending dates). An exception to this pattern was found in the dwarf shrub tundra

type, which actually had the longest growing seasons DwaIf shrub vegetation has the

advantage ofthe woody component that is already established when the growing season

begins in the spring. All other vegetation types must grow from nothing each spring,

causing a longer time peliod between which growth actually begins and the satellite

sensor can detect the growth.
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The rnethodology employed in this study measured relatìve changes in the NDVI

time-series. Vegetation needed to be dense enough to be detected above all background

influences. A high productivity locatíon was able to reach the required density before a

low productivity location, notwithstanding the fact that actual growing seasons may have

begun at the same time This type ofbias is undesirable, but unavoidable. It is also

minimized with the method presented here relative to a threshold-based method of

detecting key events that is currently used by Parks Canada (Wilmshurst et al., 2001;

Wilmshurst et al., 2002). White spatial biases exist, the methods employed in this study

do not limit the ability to monitor change over time, as the spatial distribution of

vegetation types is not likely to dramatically change at the scale of AVHRR pixels from

year-to-year.

Given that green season metrics were only calculated for three different years,

femporal trends were not assessed quantitatively. The green season experienced a slight

increase in onset dates (Figure 4.41.4), and a large increase in ending dates (Figure

4.41.8). Later onsets and earlier ends to the green seasons combined to cause shofter

green seasons from year-to-year (Figure 4.41.C). The date of maximum NDVI has no

consistent pattern between 1999 and 2001 (Figure 4.41.D) If data from previous years

are available, it could be added to this data set, permitting a more efFective assessment of

temporal trends in the green season of TNNP.
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within TNNP. a) onset ofthe green season, b) end ofthe green season, c) length of the green
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4,3.3. Summary of Mapping Temporal Green Season Metrics

Using NDVI from GEOCOMP-n satellite data, it was possible to observe the

timing offour key green season events in the TNNP region. The onset ofthe green

season generally occurred in the early or middle portion ofJune. Green seasons lasted

three and a hallto four months aud ended in the later stages of September or early

October. The date of maximum NDVI was the most variable metric throughout the three

years and was also the only metric to consistently show no spatial trends. Temporal

trends appear to show declining growing seasons, which conflicts with some studies (e.g.

Tucker et al., 2001) and agrees with others (Wilmshurst et al.,2002).
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4.3.4. Validation

Validation of this study centers on two issues. First, the method used to

interpolate values is assessed by comparing it with an alternative method. Second,

climate data are used to determine ifthere were large errors in the methodology.

1. 3. 1. l. InÍerpolol i on

This study makes the assumption that the relationship between NDVI and time is

linear. This assumption is used to interpolate NDVI values hidden by clouds and to make

subsequent adjustments to the relative dates values. This assumption is also used to

determine when segments ofthe predicted and actual time series cross. In order to test

the validity of this assumption, the RMS errors for a titne series of NDVI values were

determined with linear and quadratic equations.

Overall, errors under the assumption of linearity were only slightly lower (approximately

I percent) than for a quadratic assumption (Figure 4.42.). The difference between tlle

two interpolation methods is not statistically significant (p: 0.152). Using a polynomial

relationship would not noticeably improve interpolated NDVI values. Quadratic

interpolation would provide no benefit and linear interpolation allows simpler

calculations and is better suited given the temporal resolution of GEOCOMP-n imagery.

As a result, employing linear interpolation was determined to be the most appropriate for

this resealch.
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J.3.1.2. Contparing Derived Metrics \4/ith Weather l)ata

While there are eleven climate reporting stations within 200 km of TNNP, only

one, the Tuktut Nogait station, was able to provide data for verification ofthe satellite-

based observations for the 1999 and 2000 growing seasons. The data provided by this

station were limited to averages of hourly or daily temperatures, with missing

observations from 12 June 1999 to 13 July 1999 and 24 September 1999 to 05 October

1999 The Tuktut Nogait climate statioÌl is centrally located in TNNP at 69. 15'N, 122.

22W . The ability of an incomplete data set fi-om a single climate station to verify green

season metrics over the 44000 km2 map area is limited. It can, however, provide a

general view ofthe agreement between daily temperature and green season metrics.

The average of all daily mean air temperatures for each composite period is

presented in Figure 4.43. Darly mean temperatures in 1999 reached 0'C, slightly before



they did in 2000. This pattern was reflected in the onset ofgreen season dates for each

year. Average onset in TNNP occurred on julian day 165 (June 14) in 1999 and julian

day 166.2 (June l5) in 2000. The remaining metrics showed the same correspondence

with air temperature. The average date ofgreen season end in TNNP occurs on julian

day 285 9 (October 13) in 1999 and julian day 273.9 (October 1) in 2000 Air

temperatures drop below 0'C at the climate station approximately 12 days later in 1999

than they did in 2000. With respect to the ìength ofgreen seasons, mean daily aìr

temperatures remained above 0'C for approxirnately 11.5 composites (eight 1O-day and

three 11-day composites) during 1999 sumÍner; nearly identical to the 120 8 days the

average green season lasted in TNNP. The 2000 green season lasted an average of \07.7

days, whìle average daily temperatures remained above 0'C f'or slightly more than 9.5

composites - approximately 100 days. Average dates of maximum NDVI were

approximately 06-August and 27-September in 1999 and 2000, respectively. Daily mean

temperatures reached their maximum during the August I composite in 1999 and

September 21 in2000, corresponding with the date of maximum NDVI metric. Overall,

daily mean temperatures corresponded to the satellite-derived green season metrics very

well, though greater spatial and temporal coverage by weather stations would have

provided a more thorough evaluation ofthe green season metrics.
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4.4. CHAPTER SUMMARY

The ability to precisely map several key growing season events using NDVI time'

series data from 10-day AVHRR composites is an important tool that can be used to

monitor Canada's national parks in a cost effective and timely manner. The NDVI was

determined to be the vegetation index best-suited to this study. It was determined to be at

least as effective as other vegetation indices for predicting green biomass and percent

cover and for reducing the influence of variable soil backgrounds. It was also the only

index provided in the GEOCOMP-n data set. The GEOCOMP-n data set was influenced

only slightly by high sensor zenith angles, particularly during the main portion of the
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growing season. Solar zenith angles above 80 degrees caused a significant increase in

NDVI values and were subsequently masked from further analyses. As well, acquisition

dates were found to often show pooled distributions caused by the compositing process

and/or clouds, which limited the number of composites that effectively represented a

particular 10-day period. Finally, four temporal green season metrics were determined

for TNNP using the NDVI time-series from fhe GEOCOMP-n data set. Strong south-to-

north and southwest-to-northeast trends were found in the onset, end and length ofgreen

season metrics. The satellite-derived metrics were found to be accurate, based on a

comparison ofeach metric to daily temperature data from a weather station located inside

TNNP. The methods for calculating key green season metrics are suitable for use in all

of Canada's national parks. The greatest benefit to this type of information will come

when and if these methods are employed over a longer time period. While the metrics

may not represent the absolute changes they were designed for, they undoubtedly

represent relative changes. So long as a consistent methodology is used to derive green

season metrics, multi-year comparisons will be valid. This research provides managers

ofparks and other protected areas with an added piece of information on which to base

important decisions.
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CHAPTER 5 - SUM]VIARY & CONCLUSIONS

The primary purpose ofthis study was to use vegetation inder data lrom

GEOCOMP-n A\aHRR 1O-day composites to monitor the precise timing of key growing

season events in Tuktut Nogait National Park. The following sections revisit the original

objectives ofthe study outlìned in Chapter 1, and provide key conclusions on the same.

5.1. ADDRESSING STUDY OBJECTIVES

5.1.1. Ohjective 1: To rletern ine which yegetation inder is best suited.-for use with

AWRR døta in this stuþ aret

Based on several criteria, the NDVI was determined to be the vegetation index

best suited for the study. The vegetation index selected needed to be a robust measure of

vegetation characteristics, minimize the impact of soil noise and satisfl' several

qualitative requirements related to ease ofuse. Results ofthe quantitative analysis were

as follows:

. All vegetation indices tested showed similar relationships to percent cover,

but the NDVI had the highest r-square value.

' The NDVI proved to reduce the influence ofbackground noise most

eflectively.

¡ All vegetation indices tested showed similar relationshìps to

photosynthetic biomass, but the NDVI had the lowest r-square value.
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It was determined that a strong performance in predicting percent cover, and ability to

reduce the influence ofbacl<ground noise, outweighed the weaker performance in

predicting photosynthetic biomass.

Results ofthe qualitative analysis supported the quantitative findings. Results

were as follows.

' The NDVI required the least complicated calculations, and was delivered

as an image band by the GEOCOMP-n system.

. Out of all vegetation indices eramined, the NDVI is the most accepted and

widely used.

Based on all fìnding outlined above, the NDVI was determined to be Ìnost appropriate

vegetation index for use with AVHRR in the TNNP study area.

5.1.2. Ohjectfue 2: To descrihe tlte cho.racteristics of the basic conrponenfs of fhe

GEOCOMP-t rlata set.for Tu.ktut Nogait National Purk.

The second objective olthis study required an analysis, and description, ofthree

specific GEOCOMP-n system componentsi sensor zenith angles, solar zenith angles and

acquisition dates. Examination ofthese characteristics revealed the following:

. Sensor zenith angles were highest when pixels were snow-filled

Typically, both before and after the green season, sensor zenith angles

were found to be relatively high. Relatively low angles were found during

the growing season.

. Solar zenith angles were rose and fell along seasonal timelines. Angles

were found to be extremely high during the end ofOctober, resulting in



excessively high NDVI values. Sufficient evidence was found to support

the masking ofpixels acquired with solar zenith angles greater than 80

degrees.

' Acqujsition dates were generally pooled within each composite. The

pooling ofacquisition dates is an inherent effect ofthe compositing

process, and is caused by two factors: the selection of pixels closest to the

peak ofthe growing season, and the presence ofcloud cover which

obscures the surface from the sensor.

It was important to be aware of the characteristics of the GEOCOMP-n data prior

to tracking the pattern ofthe green season. Aside frorr the high sensor zenith angles

found at the end of October, no data characteristics presented signifrcant problems for the

analysis.

5.1.3. Obiective 3: To produce unbiasetl estinmtes of key timing etents in the Arctic

growing season using GEOCOMP-n dntrt

Estimating the timing of key growing season events is another step in the work of

Parks Canada to improve and expand the program ofecosystem monitoring with the use

of GEOCOMP-n satellite data. GEOCOMP-n data proved to be an eflective tool for

estimating the timing offour signìficant greer season events Linear interpolation was

used to regain the information lost during compositing, thereby allowing for precise

estimates. Key findings regarding the timing of key evenis in TNNP include.



. Onset ofthe green season generally began in the southwest' gradually

moving towards the northeast. Average onset dates in TNNP increase

fromjulian day 165 (June 14) in 1999 to julian day 167 (June 16) in 2001

. End ofthe green season generally began in the northeast and progressed

towards the southwest. Average end ofthe green season dates decrease

from julian day 286 (October I 3) in 1999 to julian day 272 (September 29)

in 2001 .

' The green season was longest along the southern Darnley Bay coast, and

shortest ì the nofiheast portion of TNNP and in the Melville Hills region

Average green season lengths in TNNP declined from 121 days in 1999 to

105 days in 2001

. The date of maximum NDVI generalty showed no signifrcant directional

patterns. The average date of maximum NDVI in TNNP ranged from a

minimum ofjulian day 208 (July 27) in 2000 to a maximum oljulian day

225 (August 13) in 2001.

. Onset, end and Ienglh ofthe green season metrics all showed significant

differences between dominant vegetation types

. Green seasou metrics corresponded closely to daily temperature data in

1999 and 2000. No climate data were available for 2001.

Based on the above, it was deterrnined that GEOCOMP-n provides useful

information to monitoring the temporal patterns ofthe green season As such, it is a

useful tool fo¡ use in ecological rnonitoring.
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5.2. RECOMMENDATIONS

Based on the lessons ofthe research process, as well as the overall findings ofthe

study, the following recommendations are put forth as a means to improve ecological

monitoring in the TNNP area, and elsewhere in northern Canada:

1. Make use of the higherJevel data available from the GEOCOMP-n system.

Faulty input coefficients have been corected by the CCRS. Employing the

BRDF-corrected NDVI would decrease the magnitude of atmospheric and

directional effects on the imagery. The correct coeffrcients will be applicable to

all AVHRR data for the TNNP region and should be used to improve the quality

of archived data.

2. Investment in improvements to weather reporting stations within TNNP, and all

national parks Of the 12 weather stations located in or near TNNP, only one had

gathered suffrcient data to be useful for this study. One possibility would be for

Parks Canada to consider taking over responsibility for maintaining weather

stations within national parks.

3. Expand the scope ofthe research. There is an abundance of daily and composite

AVHRR data that can be processed and analyzed using the methodologies

presented here. These methodofogies should be applied to data that have been

archived for TNNP and other national parks within Canada. Continued research

and monitoring, which focuses on both temporal and spatial characteristics of

flora and fauna and the surfaces upon which they live, is the only way to measure



the impact of policies and prograrns put in place at the governmental level to

maintain ecological integrìty in protected areas.
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APPENDIX II - DATING CONVENTIONS

-õoMPosITE DATE. JULIAN DATES*

ID 1999,2001 2ooo

0,+11 A¡ril ll-April 20 101 ll0 102-1ll
0421 April 21 - April 30 11 1 120 ltz - 12 r

0-501 Ma!. 1-Mâl'10 121 130 122-131
051l
0521
060!
061I
0621
0701
071I
o'121

Ma\ 1l - Ma-v 20
Ma1 2l - Ma¡-' 31

Junel-Jure10
June1l-June20
Junc 21 - Ju e 30
Julyl-Jul1 10

Julr' 11 - Julv 20

July 2l - Jul-v 3 1

l3t - ll0
141 - t51
152 - t6l
162 , r7l
172 181

182 , 191

192 ,201
202 - 212
213 - 222

233 - 213

132 - l;tt
142 - 152
153 - 162
16i - 1't2
173 - 182
183 - 192
r93 - 202
203 - 2t3
2L4 - 223
221 - 233
231 - 241

255 - 261

0801 August I - August 10

261 -213 265 - 2'7+

21+ 283 2',75 28t
284 293 28s 294

1021 october 21 - October 31 291 304 295 :i05

- J"trar dâ\'s in-2000 difier from those in 1999 and 2001 because 2000 rvas a leap Jear'

0811
0821
0901
0911
0921
lû01
l0l 1

August 11 - August 20

Au$rst 21 - August 3 1

Septernber 1 - Septetnber 10

Septenìber 11 SePteurber 20

SepteÌnber 2l Septctnber 30

October I - Oclober l0
October 1l - October 20

2tt - 253 215 - 251
2)+ - ¿O)

18,1




