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A B S T R A C T  

Assessments of landscape connectivity are increasingly required in natural resource 

management.  Understanding how landscape structure affects the movement and 

dispersal of animals may be essential for ensuring the long-term persistence of species of 

conservation concern. Functional connectivity models describing how features on the 

landscape influence animal movement behaviour have been produced in two different 

ways.  The resistance surface models landscape connectivity as its inverse, the resistance 

to movement and dispersal, while the landscape graph represents landscape connectivity 

by describing the relationships among resource patches.  Both methods have limitations 

that make them less effective for modelling highly-mobile and wide-ranging species such 

as ungulates and carnivores. This thesis develops a method called grains of connectivity 

that combines the continuous representation of landscape connectivity provided by 

resistance surfaces and the scalability provided by landscape graphs to create a flexible 

modelling framework for these species.    

 

The first half of the thesis reviews the conceptual origins of the grains of connectivity 

method and examines its properties using simulated landscapes.  In the second half, 

empirical evidence of movement and dispersal in a boreal woodland caribou (Rangifer 

tarandus caribou) population is used to validate functional connectivity hypotheses 

generated using the method.  Connectivity for caribou at the temporal scale of 

generations is examined using a landscape genetics approach, while connectivity at the 

seasonal scale is assessed using the distribution of caribou telemetry locations.  
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Grains of connectivity may be most useful for study systems where animals are not found 

exclusively in well-defined resource patches and there is uncertainty in the behavioural 

parameters influencing movement and dispersal. Additionally, the scalability of the 

analysis can be used to selectively remove spatial heterogeneity that may be uncorrelated 

with movement and dispersal giving an improved description of the pattern affecting the 

landscape connectivity process. 

  



  v 

A C K N O W L E D G E M E N T S  

Micheline Manseau has been an outstanding advisor, mentor, collaborator and colleague.  

She has offered me the freedom and the confidence to explore my interests, and has 

supported me in this at every step.  This is a great gift to give, and I thank her for sharing 

her work, her time, and her vision with me.   

 

Much of what is in this document stands squarely on the shoulders of research by 

Micheline, Paul Wilson and Andrew Fall, and I am indebted to them for these essential 

building blocks, and for their collaborations on various chapters.  I thank my committee 

which includes Micheline, Paul, Andrew and Michele Piercey-Normore for their 

considerable commitment of time over the last four years and in preparation for my 

defense.  In addition, the contributions of Daniel Fortin, Professor at Université Laval, as 

external examiner are much appreciated.  I also want to recognize Daniel, Paul and 

Andrew for travelling to attend the defense.  Their presence in person made the event 

especially enjoyable and rewarding. 

 

Fellow students Pete Hettinga and Jean Polfus have both been fabulous colleagues and 

generously opened their doors for a frequent out-of-town guest.  I'd also like to 

acknowledge Maria Arlt, Sones Keobouasone and Dalia Naguib at the Natural Resources 

Institute, Kent Whaley and Dale Cross at Manitoba Conservation, and Karen Smith, 

Laura Thompson, Marina Kerr and Cornelya Kleutsch at Trent University for their 

assistance and collaboration in various ways.  



  vi 

 

I thank for their scholarship and fellowship support the Natural Sciences and Engineering 

Research Council, the University of Manitoba, and the Prince Albert Model Forest.  The 

caribou data used in this thesis are the product of technical and field contributions by 

many people including Al Arsenault, Dan Frandsen,  Fiona Moreland,  Gigi Pittoello, and 

Tim Trottier.  The collection of these data  was supported by Saskatchewan Environment 

Wildlife Fund, Prince Albert National Park and Weyerhaeuser Inc. 

 

Finally, as much as this is my Ph. D., it also belongs to my family:  Jenny, Leo and 

Sasha, thank you all!   

  



  vii 

 

 

 

 

 

 

 

To  

Florence Woolner and Jenny Morrow 

 

for 

their conspiracy and trickery  



  viii 

  



  ix 

T A B L E  O F  C O N T E N T S  

1. Introduction ........................................................................................................... 1 

1.1. Context ................................................................................................................. 1 

1.2. Resistance surfaces and landscape graphs ........................................................... 2 

1.3. Towards a continuous and scalable approach ...................................................... 9 

1.4. Thesis organization ............................................................................................ 11 

1.5. Appendices ......................................................................................................... 15 

1.6. References .......................................................................................................... 16 

2. Patch-based graphs of landscape connectivity:  a guide to construction, 

analysis and application for conservation......................................................... 23 

2.1. Abstract .............................................................................................................. 24 

2.2. Introduction ........................................................................................................ 25 

2.3. Methods .............................................................................................................. 29 

2.4. Graph construction ............................................................................................. 31 

2.5. Measuring connectivity from the graph ............................................................. 47 

2.6. Conservation applications .................................................................................. 49 

2.7. Evaluating graph predictions with empirical data .............................................. 60 

2.8. Concluding remarks ........................................................................................... 63 

2.9. Acknowledgements ............................................................................................ 65 

2.10. Author contributions ....................................................................................... 65 

2.11. References ...................................................................................................... 66 



  x 

3. Scaling landscape connectivity:  comparing new and existing methods for 

measuring effective distance at multiple spatial grains ................................... 75 

3.1. Abstract .............................................................................................................. 76 

3.2. Introduction ........................................................................................................ 77 

3.3. Methods .............................................................................................................. 84 

3.4. Results ................................................................................................................ 91 

3.5. Discussion .......................................................................................................... 95 

3.6. Acknowledgements .......................................................................................... 104 

3.7. Author contributions ........................................................................................ 104 

3.8. Appendices ....................................................................................................... 104 

3.9. References ........................................................................................................ 115 

4. Grains of connectivity:  analysis at multiple spatial scales in landscape 

genetics ............................................................................................................... 119 

4.1. Abstract ............................................................................................................ 120 

4.2. Introduction ...................................................................................................... 121 

4.3. Materials and methods ..................................................................................... 125 

4.4. Results .............................................................................................................. 140 

4.5. Discussion ........................................................................................................ 150 

4.6. Conclusion ........................................................................................................ 157 

4.7. Acknowledgements .......................................................................................... 157 

4.8. Author contributions ........................................................................................ 157 

4.9. Appendices ....................................................................................................... 158 

4.10. References .................................................................................................... 162 



  xi 

5. Exploring the dimensions of functional grain:  testing patch and resistance 

models of landscape connectivity across spatial and seasonal scales ........... 171 

5.1. Abstract ............................................................................................................ 172 

5.2. Introduction ...................................................................................................... 174 

5.3. Methods ............................................................................................................ 179 

5.4. Results .............................................................................................................. 190 

5.5. Discussion ........................................................................................................ 199 

5.6. Conclusion ........................................................................................................ 205 

5.7. Author contributions ........................................................................................ 206 

5.8. References ........................................................................................................ 207 

6. Conclusion ......................................................................................................... 213 

6.1. A continuous and scalable approach ................................................................ 213 

6.2. Recommendations for natural resource management ...................................... 216 

6.3. Applications of grains of connectivity in a broad range of study systems ....... 221 

6.4. Boreal woodland caribou ................................................................................. 223 

6.5. Future research directions ................................................................................ 224 

6.6. References ........................................................................................................ 228 

Appendix A-1  GRAINSCAPE:  an R package for grains of connectivity and 

minimum planar graph analyses of landscape connectivity ..................................... 233 

Appendix A- 2 ALLELEMATCH:  an R package for identifying unique multilocus 

genotypes where genotyping error and missing data may be present ..................... 237 



  xii 

 

L I S T  O F  T A B L E S  

Table 2-1.  Chronological and alphabetical listing of studies included in the review with 

actual or hypothetical focal species and approximate study area. ........................ 30 

Table 2-2.  Variations in the construction of patch-based graphs. .................................... 32 

Table 2-3.  Seven decisions in patch-based graph construction. ...................................... 44 

Table 2-4.  Three categories of metrics available to measure connectivity from a patch-

based graph. .......................................................................................................... 48 

Table 2-5.  Conservation questions asked by studies reviewed. ....................................... 50 

Table 4-1.  Overview of IBR hypotheses. ....................................................................... 141 

Appendix 4.1.  Parameters used to generate five resistance surfaces. ............................ 159 

Appendix 4-2.   Results for selected grains of connectivity models. .............................. 160 

Appendix 4-3.  Results for grid models for five resistance surfaces tested. ................... 161 

Table 5-1.  Parameters used to generate the matrix model landscape resistance surface.

............................................................................................................................. 187 

  



  xiii 

L I S T  O F  F I G U R E S  

Figure 1-1.  Two methods for mapping and modelling functional connectivity. ............... 3 

Figure 1-2.  Thresholding a landscape graph to define connected regions at different 

scales. ...................................................................................................................... 5 

Figure 1-3.  Raster cells are conceptually the same as patches in a landscape graph. ........ 7 

Figure 1-4.  Using a patch-based landscape graph model to achieve a continuous 

representation of landscape connectivity. ............................................................. 10 

Figure 2-1.  Illustration of key terms in patch-based graphs. ........................................... 27 

Figure 2-2.  Examples of graph construction. ................................................................... 34 

Figure 3-1.  Changing the analysis grain by areal methods. ............................................. 79 

Figure 3-2.  Changing the analysis grain using grains of connectivity, a method that 

describes functional grain. .................................................................................... 81 

Figure 3-3.  Two approaches to find effective distances from a resistance surface. ........ 83 

Figure 3-4.  Treatment 1. .................................................................................................. 87 

Figure 3-5.  Treatment 2. .................................................................................................. 88 

Figure 3-6.  Treatment 3. .................................................................................................. 89 

Figure 3-7.  Effects of manipulating the resistance value of the radial feature. ............... 94 

Appendix 3-1.  Producing grains of connectivity models and finding the grains of 

connectivity network distance............................................................................. 106 

Appendix 3-2.  Illustration of minimum planar graph and grains of connectivity 

modelling at four selected resistance thresholds (for Treatment 1). ................... 109 



  xiv 

Appendix 3-3.  Illustration of minimum planar graph and grains of connectivity 

modelling at four selected resistance thresholds (for Treatment 2). ................... 111 

Appendix 3-4.  Illustration of minimum planar graph and grains of connectivity 

modelling at four selected resistance thresholds (for Treatment 3). ................... 113 

Figure 4-1.  Habitat map for woodland caribou in the Smoothsone-Wapeweka range, 

Saskatchewan, Canada. ....................................................................................... 128 

Figure 4-3.  Producing multiple grains of connectivity using a thresholding approach. 133 

Figure 4-4.  Producing IBR hypotheses from grains of connectivity. ............................ 134 

Figure 4-5.  The spatial characteristics of Voronoi polygons. ........................................ 142 

Figure 4-6.  Partial Mantel test results. ........................................................................... 144 

Figure 5-1.  Three ways of producing hypothetical functional grains using the grains of 

connectivity method. ........................................................................................... 182 

Figure 5-2.  Sampling distribution and landscape features in the Smoothstone-Wapaweka 

woodland caribou range in Saskatchewan, Canada. ........................................... 186 

Figure 5-3.  Expected polygon area (EPA) provides a consistent way to compare models 

at the same spatial grain. ..................................................................................... 191 

Figure 5-4.  Tests of three types of functional grain models in three seasons using a 

random functional grain null hypothesis. ............................................................ 194 

Figure 5-5.  A secondary test of the three types of functional grain models in three 

seasons using a random points null hypothesis................................................... 197 

 



1 

1. Introduction 

I N T R O D U C T I O N  

1.1. Context 

Understanding how and why animals are distributed in space remains a fundamental 

question in ecology (Begon et al. 2005).  Landscape connectivity extends this spatial 

question into the temporal realm:  how can animals be distributed in space?  What, if 

anything, may limit or encourage their movement?  Natural resource managers are 

increasingly asking such questions in the course of their work (Freemark et al. 2002, 

Crooks and Sanjayan 2006).   Can landscape change and habitat fragmentation disrupt the 

ability of animals to move (Epps et al. 2007, Jordan et al. 2007, Saura and Pascual-Hortal 

2007, Schwartz et al. 2009)?  Can corridors, or a network of protected areas, facilitate 

movement (Chetkiewicz et al. 2006, Sawyer et al. 2011)?  How can biosecurity risks 

associated with the spread of pests, pathogens and invasive species be reduced 

(Margosian et al. 2009, Etherington 2012)?  Are animals able to migrate in response to 

climate change (Heller and Zavaleta 2009)? 

 

According to the widely-cited definition, landscape connectivity is "the degree to which 

landscape facilitates or impedes the movement among resource patches" (Taylor et al. 

1993).  It is the landscape, its features and their configuration with respect to resources, 

that will determine how or if animals will be able to change their distribution in space.  It 

follows that in order to make predictions about this landscape for management purposes, 

or explain how its configuration has influenced ecological  

processes, a map is needed  to identify the landscape features that may be important.   
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There is now consensus that such a map should not only describe landscape structure, but 

should also represent an animal’s anticipated response to that structure (Goodwin 2003, 

Bélisle 2005, Kindlmann and Burel 2008).  Functional connectivity, as this has been 

called, imposes a model of animal behaviour and interprets the landscape structure from 

the perspective of this model.  In other words, it creates a map describing how an animal 

is likely to respond to a specific landscape configuration.  Others have referred to this 

phenomenon as the perception of spatial heterogeneity by an animal, or  how an animal 

“sees” and experiences the landscape structure (Baguette and Van Dyck 2007).  

 

1.2. Resistance surfaces and landscape graphs 

There are two distinct ways of producing functional connectivity maps (Fig. 1-1).   

Resistance surfaces describe landscape connectivity as its inverse, the resistance to 

movement and dispersal (Sawyer et al. 2011, Zeller et al. 2012). Typically these maps 

represent the degree to which landscape features contribute to this resistance by 

influencing animal behaviour and fitness  (Fig. 1-1, a; Spear et al. 2010). The surface can 

be used to represent the landscape connectivity between any two points on the landscape 

as an effective distance using one of several metrics, of which least-cost path distance is 

the best-known example (Adriaensen et al. 2003, McRae et al. 2008, Pinto and Keitt 

2009).   
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Figure 1-1.  Two methods for mapping and modelling functional connectivity.   

(a) Resistance surfaces describe the inverse of landscape connectivity, the 

resistance to movement and dispersal;  (b) Landscape graphs describe the 

relationships between resource patches. 



4 

A second class of functional connectivity model, the landscape graph, was developed to 

understand the connectivity relationships among resource patches (Cantwell and Forman 

1993, Urban and Keitt 2001, Urban et al. 2009).  These models have been preferred for 

organisms that are restricted to the resource patches such as amphibians in wetlands, or 

arboreal mammals inhabiting forested islands in agricultural fields (e.g. Bodin et al. 2006, 

Fortuna et al. 2006).  The resulting maps are spatial representations of a mathematical 

graph or network, where patches are graph nodes, and potential paths for dispersal among 

patches are the graph links (Fig. 1-1, b; Fall et al. 2007, Dale and Fortin 2010).  In their 

simplest form only a single behavioural parameter is required for these models:  the 

maximum distance an animal is likely to disperse (Urban and Keitt 2001).  However, 

models have been built with many more parameters, notably, in combination with the 

first type of connectivity model, the resistance surface, where least-cost paths are used to 

describe the dispersal paths among patches (e.g. Bunn et al. 2000, O'Brien et al. 2006, 

Jantz and Goetz 2008, Ziółkowska et al. 2012). 

 

Resistance surfaces and landscape graphs, either alone or in combination, provide a 

flexible modelling framework for mapping the potential for future connectivity, or 

understanding how landscape has shaped past movement and dispersal.  However, both 

methods have intrinsic limitations.  Conceptually, landscape graphs make the most sense 

for organisms where the patch is easily defined, or has a high probability of use, and the 

landscape outside the patch, called the matrix, contains the structural features that reduce 

landscape connectivity (Urban and Keitt 2001, Urban et al. 2009).  Many systems of 
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Figure 1-2.  Thresholding a landscape graph to define connected regions at different 

scales.  

Links represent the potential connections between patches.  (a, b, c) As the link 

threshold value increases, longer links are added, resulting in larger connected 

regions.  Thresholding is described in greater detail in Chapter 2.  The dimensions 

of this square landscape are 400 distance units. 
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 interest, however, are not this simple.  Natural resource managers may wish to 

understand landscape connectivity for large terrestrial mammals, such as ungulates or 

carnivores, where the patch dependency concept can make little sense (Cushman et al. 

2006, Epps et al. 2007, Schwartz et al. 2009). 

 

For these species, researchers have turned instead to resistance surfaces (Sawyer et al. 

2011, Zeller et al. 2012).  Here, the resource patch is not given any special importance 

and, if it makes sense to model it at all, is represented with a low resistance (e.g. 

Schwartz et al. 2009).  As the word surface implies, landscape connectivity is understood 

as a continuous property, that, unlike in a landscape graph, can be modelled from or to 

any point on the landscape; animals need not be found exclusively in any one discrete 

feature (like a pond or forest fragment) for the model to make sense.  This property takes 

care of the patch dependency limitation, but at the same time dispenses with an additional 

property of landscape graphs that may be critical for accurate modelling. 

 

A useful property of landscape graphs is that they can be scaled to represent an increasing 

potential for landscape connectivity (Bunn et al. 2000, Brooks 2006, O'Brien et al. 2006, 

Treml et al. 2008).  This process has been called thresholding, where resource patches are 

connected and understood to represent a single meta-patch (or in graph-theoretic terms a 

component) when the length of the links connecting patches is below a threshold value 

(Fig. 1-2).  Building a landscape graph at successive threshold values has been called a 

scalar analysis of landscape connectivity (Brooks 2003), and can be used to control for 

the uncertainty in the maximum amount of dispersal an animal may exhibit.  Each time 
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Figure 1-3.  Raster cells are conceptually the same as patches in a landscape graph. 

 Both the cell and the patch define a region of high connectivity. (a, b) According 

to each model, locations P and Q are connected and are therefore effectively at the 

same location.  Locations P and R are not connected in either model, implying 

that movement and dispersal between these locations will come at some cost to 

the animal. 
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the graph is built at a larger threshold value, it describes a state in which there is more 

landscape connectivity, and as more patches are connected into components, the size of 

the connected regions on the landscape also increases (Fig.1- 2, bottom).   

 

Resistance surfaces, on the other hand, have largely been used to model landscape 

connectivity at only one scale (Anderson et al. 2010).  Rasters are the data structure 

universally used, and the scale of landscape connectivity described is given by the 

resolution or the grain of the data (Sawyer et al. 2011, Zeller et al. 2012).  Fig. 1-3 

demonstrates how a single raster cell is conceptually the same as a patch, or a component 

of connected patches on a landscape graph:  both define a region of the map that is highly 

connected.  It is therefore possible to scale landscape connectivity on a resistance surface 

by reducing the resolution of a raster (Anderson et al. 2010, Cushman and Landguth 

2010).  The larger cell sizes that result imply that more of the landscape is connected.  In 

practice, however, this type of scaling has seldom been done, perhaps because coarsening 

the grain of the raster also results in a loss of other information about landscape structure 

that may be pertinent to connectivity.  

 

Both landscape graphs and resistance surfaces, then, are similar in that they define areas 

of high landscape connectivity, and describe a functional response to landscape structure 

between these areas of high connectivity.  But they differ fundamentally in how they can 

be scaled, in the shapes and sizes of the regions of high connectivity they describe, and in 

their continuous representation of the landscape. 
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1.3. Towards a continuous and scalable approach 

O’Brien et al. (2006) were perhaps the first to recognize the potential for using landscape 

graphs to model a continuous landscape connectivity process.  In their woodland caribou 

study they built a landscape graph where patches were a vegetation feature selected by 

caribou.  Because animals were not found exclusively in these patch types, they extended 

the definition of the patch by buffering it.  Therefore the patch was understood to stand in 

for a larger region of the landscape, and in the model became an anchor for the 

connectivity process.  The result was a model of landscape connectivity where more 

points on the landscape surface could be studied (Fig. 1-4, a, b).  Because the model was 

a landscape graph it could also be scaled to describe higher amounts of connectivity, and 

as in other landscape graphs, scaling implied that multiple regions containing patches 

could be connected. 

 

In this thesis, I develop a way of modelling landscape connectivity that extends the 

buffered patch concept of O’Brien et al. (2006) such that all areas of the landscape 

surface are defined for the landscape connectivity process (Fig.1- 4, c).  Here, the 

landscape is understood as a continuous1 but irregular tessellation, much like a resistance 

surface, where cells are polygons with large areas and variable shapes.  On this 

tessellation, each polygon represents a high connectivity region centred on a focal patch 

or focal location, and the relationships among these regions are modelled using a 

landscape graph.  I call this method grains of connectivity because each tessellation is a 

scale-dependent representation (i.e. a grain) of functional connectivity.  In effect, this  

                                                      
1Here, and throughout the term continuous suggests that the entire landscape surface is defined for the 
landscape connectivity process (i.e. movement can be modelled to or from any point on the surface).  This 
wording is not intended to imply that these models are continuous functions in the mathematical sense.   
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Figure 1-4.  Using a patch-based landscape graph model to achieve a continuous 

representation of landscape connectivity.  

 (a) As originally described (e.g. Urban & Keitt, 2001), connectivity on landscape 

graphs is only defined for animals that are restricted to patches;  (b) O'Brien et al. 

(2006) used buffered patches to model connectivity for animals that may be found 

on or near patches.  This increases continuity, but areas of the landscape can still be 

undefined for modelling connectivity relationships;  (c) Grains of connectivity 

achieves continuous coverage of the landscape using a Voronoi tessellation which 

describes a region of proximity surrounding the patch.  Grains of connectivity are 

explained in detail in Chapters 3, 4 and 5. 
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combines the continuous modelling of resistance surfaces, with the scalability of 

landscape graphs.  This key contribution provides a means of representing landscape 

connectivity for study systems where evidence for patch dependency is weak or non-

existent, and there is high uncertainty surrounding the behavioural parameters influencing 

movement and dispersal. Additionally, as I show in this thesis, the scalability of the 

analysis allows spatial heterogeneity that may be uncorrelated with movement and 

dispersal to be selectively removed, potentially giving an improved description of the 

structure affecting landscape connectivity.  The overall goal of this work is to explore and 

test the grains of connectivity method for modelling functional connectivity in highly-

mobile and wide-ranging terrestrial species, characterized by home ranges that are larger 

than the grain of available landscape data. 

 

1.4. Thesis organization 

The first half of the thesis is devoted to describing the mechanics of the grains of 

connectivity method and identifying its properties while the remainder applies the 

method to map and test functional connectivity hypotheses.  The applied work focuses on 

a boreal woodland caribou (Rangifer tarandus caribou) population in central 

Saskatchewan, Canada.  This ecotype of caribou is classified as threatened in Canada 

(Species At Risk Act; Government of Canada, 2003), and the Smoothstone-Wapeweka 

range, studied here, has been declared a population that is unlikely to be self-sustaining 

and at risk of extirpation (Environment Canada 2011a, b).  Demographic indicators 

confirm that the population is under stress (Arsenault and Manseau 2011), and evidence 

for habitat fragmentation caused by natural and anthropogenic disturbance is plentiful 
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(Arlt and Manseau 2011).  Although empirical support for caribou conservation measures 

is of great interest (Environment Canada 2011b), woodland caribou are not a convenient 

model organism to study functional connectivity: they occupy extensive landscapes at 

low density, they are highly mobile, and observations of movement and dispersal are 

costly to obtain.  However, the challenges are similar in many other large terrestrial 

mammals of conservation concern, making this study system an excellent opportunity to 

demonstrate approaches to modelling that are directly relevant to natural resource 

managers. 

 

The four research chapters in the thesis are written to stand alone as publications and 

each has its own specific audience and purpose.  They are united in demonstrating the 

potential of grains of connectivity, and related methods, to address applied questions of 

landscape connectivity.  Additionally, two chapters (Chapters 3 and 5) begin to develop a 

secondary theme.  In these I motivate the concept of functional grain, originally 

expressed by Baguette & Van Dyck (2007), to serve as a generic term for the scale-

dependent pattern influencing the landscape connectivity process.  In this schema, the 

theoretical construct is the functional grain, and grains of connectivity is one method that 

can be used to identify this pattern. 

 

An introduction to each of the four chapters follows, indicating the ways in which they 

contribute to the thematic whole. 
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1.4.1. Chapter two 

This chapter, entitled Patch-based graphs of landscape connectivity: a guide to 

construction, analysis and application for conservation (now published in Biological 

Conservation, vol. 144, pp. 44-55), is a literature review for landscape graphs modelling.  

The paper surveys numerous variants of this modelling approach, including the minimum 

planar graph (Fall et al. 2007), that is used in grains of connectivity.  This chapter 

primarily serves as context for the methods that are used in subsequent chapters, and 

explains how they may be advantageous for conservation and natural resource 

management. 

 

1.4.2. Chapter three 

The contribution of this chapter, entitled Scaling landscape connectivity: comparing new 

and existing methods for measuring effective distance at multiple spatial grains (in peer 

review), is an introduction to the properties of the grains of connectivity method.  It 

demonstrates how the method works, and tests its effectiveness using simulated 

functional connectivity hypotheses intended to be representative of a highly-mobile 

terrestrial species.  The paper introduces the concept of functional grain as the grain of 

the landscape connectivity process, and explores the comparative accuracy of grains of 

connectivity versus the spatial scaling of a raster resistance surface for representing this 

functional grain.   
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1.4.3. Chapter four  

A major focus of research in the field of landscape genetics is the influence of reduced 

landscape connectivity on genetic variation (Manel et al. 2003, Balkenhol et al. 2009, 

Storfer et al. 2010).  This paper, entitled Grains of connectivity: analysis at multiple 

spatial scales in landscape genetics (now published in Molecular Ecology, vol. 21, pp. 

3996–4009), is intended for this audience.  This is the first of two chapters that use 

empirical data to assess functional connectivity hypotheses for boreal woodland caribou 

in central Saskatchewan.  Genetic similarity among pairs of individual caribou is used as 

a proxy for dispersal and gene flow over multiple generations, making this a test of the 

cumulative effects of functional connectivity over long temporal scales.  The potential of 

scaling to remove spatial heterogeneity that may be uncorrelated with movement and 

dispersal is also explored. 

 

1.4.4. Chapter five  

The effects of functional connectivity on animal movement and dispersal may also be 

evident at shorter temporal scales, such as those captured using seasonal observations of 

animal distribution.  The chapter, entitled Exploring the dimensions of functional grain: 

testing patch and resistance models of landscape connectivity across spatial and 

seasonal scales, is a direct extension of the work of O'Brien et al. (2006) to the grains of 

connectivity framework.  Telemetry locations from caribou in central Saskatchewan are 

used to test the correspondence between animal distribution and functional connectivity 

hypotheses.  The concept of functional grain is further developed as describing regions of 

high connectivity defined by the configuration of resource patches, the resistance of 
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landscape features or both.  This paper also introduces a variant method called lattice 

grains of connectivity that is intended as a generalized way of producing scalable, 

continuous surfaces for landscape connectivity modelling. 

 

1.5. Appendices 

Two appendices are provided describing software developed to support the analyses in 

this thesis.  The first is an abstract describing the grainscape package for R,  the software 

used to implement grains of connectivity analyses in Chapters 3, 4 and 5.  The second is 

an abstract describing the allelematch package for R (the publication describing the 

software is available in Molecular Ecology Resources, vol. 12, pp. 771-778).  The 

allelematch package is used in Chapter 4 to identify unique multilocus genotypes in a 

collection obtained by non-invasive sampling of caribou fecal pellets.   
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2.1. Abstract 

Graph theory has become a popular tool for modelling the functional connectivity of 

landscapes.  We conduct a review of studies that use graph theory to model connectivity 

among patches of habitat (patch-based graphs), with the intention of identifying typical 

research questions and their associated graph construction and analysis methods.  We 

identify and examine nine questions of conservation importance that can be answered 

with these types of graph models, discussing appropriate applications of these questions 

and presenting a guide for using graph methods to answer them.  We also investigate how 

the connectivity predictions of patch-based graphs have been assessed and emphasize the 

importance of empirical evaluation.  Our findings identify commonality among diverse 

approaches and methodological gaps with an aim to improve application and to help the 

integration of graph theory and ecological analysis. 
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2.2. Introduction 

Maintaining connectivity and mitigating the fragmentation of habitat may be critical for 

landscape processes such as gene flow, dispersal, and natural ranging behaviour (Crooks 

and Sanjayan 2006).   Conversely, species invasion, and the spread of pests and 

pathogens are processes that can be managed by reducing connectivity (Minor and Urban 

2008).  

 

Connectivity has consequently emerged as a conservation priority, with management 

targets including specific connectivity recommendations (Freemark et al. 2002).  To 

support these goals, recent studies have emphasized analyses based on graph theory (also 

known as network analysis) for modeling the functional response of a target species to 

landscape pattern (patch size, shape, location).  Graph-based landscape models are 

appealing because they provide a spatial representation that can be examined in relation 

to land use activities, and offer a well-developed mathematical framework for quantifying 

the impacts of management decisions for landscape connectivity (Urban et al. 2009). 

 

Although graph theory is a relative newcomer to landscape ecology, it has been widely 

used for diverse applications in natural and social sciences, where the resulting models 

are variously called graphs or networks.  There are several distinct uses of graph theory 

for landscape modelling (for review see Urban et al. 2009).  Graphs have been used to 

represent spatial relationships among patches of habitat (Urban and Keitt 2001) and 

among individuals on landscapes (Fortuna et al. 2008) for focal species.  Graphs have 

also been used to model the connectivity among habitat reserves, permitting an 
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assessment of conservation strategies for multiple species (Fuller et al. 2006).  A fourth 

and most distinct use of graph theory is to produce raster models of landscapes where 

connectivity is examined at the scale of a single raster cell (Adriaensen et al. 2003, 

Drielsma et al. 2007, McRae et al. 2008, Pinto and Keitt 2009).  These four approaches 

are unified in their use of graph theory to represent connectivity on landscapes, but they 

differ in their analysis goals, and in particular, what landscape features and ecological 

processes the structural elements of the graph represent.   

 

Here, we focus on only one form of landscape graph; graphs that model the relationships 

among patches of habitat.  We refer to these as “patch-based graphs” for clarity.  In these 

models, patches of habitat defined for a focal species (Fig. 2-1, a) are distinguished from 

the matrix (Fig. 2-1, b) and serve as the nodes (also called vertices; Fig. 2-1, c).  The 

connections among nodes, called links (also called edges; Fig. 2-1, d) suggest the 

potential for movement or dispersal of a focal species.  In the most common application 

of patch-based graphs, links represent the geographic distance between nodes, and nodes 

are connected by links only when this distance is below some ecologically-relevant 

movement threshold for the organism.  Groups of connected nodes are called components 

(Fig. 2-1, e), and these imply that an organism inhabiting any node (i.e. patch) within the 

component can potentially move or disperse to any other node in the same component.  

Nodes that have no links to other nodes are also considered to be components (Fig. 2-1, 

c).  A compartment is another term for a group of connected nodes but typically more 

stringent criteria for group membership apply (e.g. a high density of links among nodes 

as shown in Fig. 2-1, f).  For more formal definitions and discussions of graph properties 



27 

 

Figure 2-1.  Illustration of key terms in patch-based graphs.  

 (a) Patch – the focal habitat on the landscape; (b) Matrix – the landscape 

excluding the patches, shown here as a stippled surface and a solid-coloured river;  

(c) Node – the graph element used to represent the patch;  (d) Link – the graph 

element used to represent the connectivity relationship between patches;  (e) 

Components – groups of nodes connected by links; (f) Compartment – a group of 

nodes identified according to some criterion; this compartment has been identified 

based on the density of links among nodes, and is part of a larger component.  (g) 

Cut-node – a node which, if removed, would disconnect a component; (h) Cut-

link – a link which, if removed, would disconnect a component. 
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 we direct the reader to introductions that have appeared in the landscape ecology 

literature (Urban and Keitt 2001, Bodin and Norberg 2007, Fall et al. 2007, Estrada and 

Bodin 2008, Minor and Urban 2008). 

 

In most cases patch-based graphs are models of functional connectivity because their 

links represent a functional response of the organism to the landscape; that is, the links 

are not interpreted as structural features of the landscape or as corridors, but rather as 

representing the connections among patches as the organism might experience them.  

They can be further classed as models of potential connectivity because the predictions of 

the graph have not been tested with observations of organism movement.  Although 

empirical measurements of species dispersal or movement may be used as parameters to 

build the graph, actual connectivity (sensu Calabrese and Fagan 2004), or evidence of 

movement of the focal species in reference to the landscape, is typically not incorporated 

a priori.  A growing number of studies, however, have evaluated the potential 

connectivity predictions of patch-based models using empirical data from the landscape 

under study (Brooks 2006, O'Brien et al. 2006, Awade and Metzger 2008, Neel 2008, 

Andersson and Bodin 2009, Minor et al. 2009).   

 

To guide researchers and managers who may wish to use patch-based graphs, we feel a 

comprehensive and detailed review of methodology is essential.  In a recent review 

Urban et al. (2009) have taken on this challenge in broad terms, motivating the use of 

graph theory for landscape connectivity and reviewing existing and promising 

applications for all forms of landscape graphs.  However, there remains a need to connect 
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specific conservation questions with appropriate methods.   Here, we aim to complement 

Urban et al. (2009) by narrowing the scope of our review to patch-based graphs, the most 

widely published and best developed form of landscape graphs, and by concentrating on 

the key decisions in both graph construction and connectivity analysis required to answer 

questions of conservation interest.  From this review, we develop a guide to the use of 

these graphs for achieving conservation research objectives.  We also examine how the 

predictions of these models have been assessed.    

 

2.3.  Methods 

We reviewed publications that presented patch-based graphs in order to identify a range 

of conservation questions and the methods used to address them.  To find candidate 

papers, we searched titles, keywords and abstracts in the ISI Web of Knowledge 

database, using the following keywords in various combinations:  connectivity, graph, 

network, landscape, patch, functional connectivity, and habitat connectivity.  We focused 

on the period following the publication of Urban and Keitt (2001), and its empirical 

counterpart (Bunn et al., 2000), as we see these as key early contributions in the 

development of patch-based graphs.   

 

From the candidate papers, we selected only research papers, theoretical papers, and 

reviews that presented models of landscapes where nodes were patches of habitat defined 

for actual or hypothetical focal species.  We added the requirement that the paper present 

at least one graph of a real landscape in order to exclude publications that were strictly 

theoretical.  Any additional references cited by authors of these papers that met our 
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Table 2-1.  Chronological and alphabetical listing of studies included in the review 

with actual or hypothetical focal species and approximate study area. 

 

  

No. Study Focal Species Study Area 

1 Kininmonth et al. (2010) Unspecified coral reef species Great Barrier Reef, Australia 

2 Lookingbill et al. (2010) Sciurus niger cinereus Delmarva fox squirrel Delmarva Peninsula, Eastern USA. 

3 Minor et al. (2009) 208 species of vascular plant Washington County, Maryland, USA 

4 Vasas et al. (2009) Eight species of Carabid beetle Bereg Plain, Hungary and Ukraine 

5 Andersson & Bodin (2009) Eleven species of songbird Greater metropolitan Stockholm, Sweden 

6 Margosian et al. (2009) Unspecified pests and pathogens of four crops Continental USA 

7 Awade & Metzger (2008) Two species of songbird São Paulo State, Brazil 

8 Estrada & Bodin (2008) Lemur catta Ring-tailed lemur Androy region, Madagascar 

9 Jantz & Goetz (2008) Unspecified terrestrial animals Maine to North Carolina, USA 

10 Minor & Urban (2008) Unspecified songbirds North Carolina Piedmont, USA 

11 Neel (2008) Astragalus albens Cushenbury milkvetch San Bernardino Mtns., California, USA 

12 Pascual-Hortal & Saura (2008) Tetrao urogallus Capercaillie Catalonia, Spain  

13 Rayfield et al. (2008) Martes americana American marten South-central Quebec, Canada  

14 Treml et al. (2008) Unspecified corals Reefs, Tropical Pacific Ocean 

15 Bodin & Norberg (2007) Lemur catta Ring-tailed lemur Androy region, Madagascar 

16 Fall et al. (2007) Rangifer tarandus caribou Woodland caribou Central Manitoba, Canada  

17 Jordan et al. (2007) Eight species of Carabid beetle Bereg Plain, Hungary and Ukraine 

18 Minor & Urban (2007) Hylocichla mustelina Wood thrush Wake Country, North Carolina, USA 

19 Pascual-Hortal & Saura (2007) Unspecified wildlife animal species Three randomly chosen landscapes, Spain 

20 Saura & Pascual-Hortal (2007) Accipiter gentilis Goshawk Catalonia, Spain 

21 Schick and Lindley (2007) Oncorhynchus tshawytscha Chinook salmon Central valley, California, USA 

22 Sutherland et al. (2007) Strix occidentalis caurina Northern spotted owl Southern British Columbia, Canada 

23 Bodin et al. (2006) Lemur catta Ring-tailed lemur Androy region, Madagascar  

24 Brooks (2006) Two species: fungal pathogen; salamander  Two areas: 20 x 11m plot; Eastern USA   

25 Fortuna et al. (2006) Unspecified amphibians Doñana National Park, Spain 

26 O'Brien et al. (2006) Rangifer tarandus caribou Woodland caribou Manitoba, Canada  

27 Estrada-Pena (2005) Ixodes ricinus Tick Rioja, Spain  

28 Jordan et al. (2003) Pholidoptera transsyvanica Bush cricket Aggtelek Karst, Hungary  

29 Urban & Keitt (2001) Strix occidentalis lucida Mexican spotted owl South-western USA 

30 Bunn et al. (2000) Two species: small mammal; small songbird Coastal Plain, North Carolina, USA 
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criteria were also added.  Our discussion references thirty studies that present patch-based 

graphs of real landscapes (Table 2-1).  In all cases but one (Sutherland et al. 2007) the 

sources of the selected papers were peer-reviewed journals.   

 

Methods for graph construction used by authors are presented first (Section 2.4), 

followed by a summary of approaches used for measuring connectivity from the graph 

(Section 2.5).  We classify studies that use each method in tables, and opt to highlight a 

small number of illustrative examples in the text.  Conservation applications of these 

methods, organized by research question, are then discussed (Section 2.6).  We conclude 

by reviewing studies that use actual connectivity data to evaluate graph predictions 

(Section 2.7). 

 

2.4. Graph construction 

Building the graph requires decisions about which landscape features the nodes represent, 

and which ecological processes the links characterize (Table 2-2).  Further, the rule used 

to assemble the graph (i.e. determining which nodes are connected to one another) must 

also be considered.  In all cases, the graph construction variants chosen will depend on 

analysis goals, knowledge of the focal species, and available data for model 

parameterization. We review construction issues related to nodes, links, and graph 

assembly, and conclude by summarizing the key decisions in landscape graph 

construction.   
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Table 2-2.  Variations in the construction of patch-based graphs.  

 Numbers refer to studies in Table 2-1. 

 
Node geometry  

Point 1, 2, 3, 4, 8, 10, 14, 15, 17, 21, 23, 24, 25, 27, 
28, 29, 30 

Two-dimensional 5, 6, 7, 9, 11, 12, 13, 16, 18, 19, 20, 22, 26 

Link representation and geometry  
Euclidean geometry  

Distance 2, 3, 5, 10, 11, 12, 13, 14, 17, 18, 24, 25, 29 
Dispersal model 1, 2, 7, 8, 14, 15, 19, 20, 23, 30 
Flux/Function of node weights 6, 13, 18, 27, 30 
Corridor quality 4, 17 

Least cost path geometry  
Distance 9, 16, 22, 26, 30 

Structural geometry  
Distance 28 
Dispersal model 21 
Corridor quality 28 

Link types  

Unweighted-undirected 2, 3, 5, 7, 8, 10, 11, 12, 14, 15, 16, 19, 22, 23, 
24, 25, 26, 28 

Weighted-undirected 4, 6, 7, 9, 13, 17, 19, 20, 27, 28, 29, 30 
Unweighted-directed 8, 25 
Weighted-directed 1, 8, 14, 18, 21 

Graph assembly  
No graph approximation used 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 17, 18, 

19, 20, 23, 25, 30 
Graph approximations  

Minimum planar graph 13, 16, 22, 26 

Minimum spanning tree 29, 30 
Relative neighbourhood network 27 

Graph models structural features 4, 21, 28 
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2.4.1. Node definition 

In some study systems it is straightforward to identify habitat patches for use as nodes in 

the graph (Fig. 2-1, A).  Forested patches in a Madagascar agricultural landscape that are 

habitat for ring-tailed lemurs are simple to identify because the transition between patch 

and matrix is distinct and the matrix is uniformly uninhabitable (Bodin et al. 2006).  

Woodland caribou in Manitoba, Canada, on the other hand, use a variety of forest types 

with differing frequencies, presenting a variable surface of habitat preference (O'Brien et 

al. 2006, Koper and Manseau 2009). 

 

Under both scenarios, nodes can be defined based on the probability that the patch 

represented by the node is used as habitat.  Where observations of the organism on the 

landscape suggest there is a high probability that certain patches are habitat, node 

definition has been justified qualitatively (e.g. ring-tailed lemurs; Bodin et al. 2006).   

When evidence suggests that the landscape is not strictly dichotomous between habitat 

and matrix, which is the case for many large and highly mobile mammals (Boyce and 

McDonald 1999) , or there is uncertainty about which patch types constitute habitat, a 

quantitative approach is appropriate.  In such cases nodes have been defined using 

combinations of environmental variables (e.g. Pascual-Hortal and Saura 2007, Saura and 

Pascual-Hortal 2007), or using resource selection functions to identify patches with the 

highest probability of use (e.g. O'Brien et al. 2006).   
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Figure 2-2.  Examples of graph construction.   

(A) Node definition on a landscape; patches are unshaded; stippled areas and solid-

coloured river show habitat variation in the matrix;  (B) Graph with unweighted 

undirected links, point node geometry, links representing relationships between 

patch centroids, assembled at a link threshold;  (C) Same as B with two-

dimensional node geometry, links representing relationships between patch 

boundaries;  (D) Same as B with weighted undirected links;  (E) Same as B with 

unweighted directed links, all arcs unidirectional;  (F) Same as B with weighted 

directed links, some arcs bidirectional; (G) Same as B, showing the complete graph 

without link thresholding;  (H) Same as B showing minimum planar graph 

approximation of the complete graph without thresholding;  (I)  “Spatial graph” –  

same as C with links representing least-cost paths between patch boundaries, 

assembled using minimum planar graph approximation of the complete graph 

without link thresholding (see A for the resistance surface used to model least cost 

paths, where darker shading indicates greater cost to movement); (J-L) A link 

thresholding experiment demonstrated for the complete graph presented in G, 

showing a different link threshold value in each figure. 
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Figure 2-2.  Cont'd. 
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2.4.2. Node geometry 

Nodes can be points, typically at the centroid of the patch (Fig. 2-1, B; Table 2-2), or 

have two-dimensional geometry (Fig. 2-1, C; Table 2-2).  Using patch centroids may bias 

the spatial location of nodes, for example, when patches tend to be elongate in shape, or 

inter-patch distances are small relative to patch dimensions.  Two-dimensional node 

geometry (Fig. 2-1, C), although computationally expensive, permits greater accuracy 

because distances between nodes can be calculated between patch boundaries rather than 

patch centroids (Minor and Urban 2007).  Using centroid-to-centroid measures of 

connectivity means that movement within a patch is equally weighted with movement 

outside a patch.  At certain scales the node geometry selected will become irrelevant.  For 

example, reef patches in the Tropical Pacific are much smaller in size than vast stretches 

of ocean that separate them, making point nodes satisfactory (Treml et al. 2008).  Spotted 

owl nesting and home range patches in a forest matrix, however, are sufficiently close 

and irregularly shaped that two-dimensional node geometry was needed (Sutherland et al. 

2007).  It should be noted that graphs may be plotted using point nodes even though links 

have been determined assuming two-dimensional node geometry (i.e. as the distance 

between patch boundaries). 

 

2.4.3. Node weights 

Node weights (also known as node attributes) are typically superimposed on the graph 

after it has been built to be used as variables in graph connectivity metrics.  Weights 

describe properties of patches such as area, population size, occupancy, and habitat 

quality.  Node weights seldom influence the links, except where links represent flux as a 



37 

 function of the weights at adjacent nodes (e.g. Schick and Lindley 2007).  In most cases, 

node weights are supplementary variables.  For example, the sum of patch areas in a 

graph component provided a measure of the total area of habitat functionally available to 

two rainforest bird species (Awade and Metzger 2008).  In most published examples the 

node weights are used to include additional ecological information when describing 

connectivity.  This is in contrast to node geometry which impacts directly on connectivity 

and is selected to improve the specification of the links.  For this reason, a graph with 

point node geometry and nodes weighted by patch area is distinct from a graph with two-

dimensional node geometry where node weights are not used. 

 

2.4.4. Link representation and geometry 

The presence of a link between two nodes implies that the nodes are connected.  To 

decide whether or not two nodes should be connected (the process of graph assembly; see 

Section 2.4.6) some empirical measure describing the strength of the connection between 

nodes is needed.  A suitable measure may describe a resistance to animal movement or 

dispersal such as geographic distance or alternatively the amount of movement or 

dispersal expected under some model (e.g. probability of dispersal or flux).  We call these 

measures the link representation (i.e. the biological or landscape property that underlies 

the link).  In most cases the link representation is calculated as some function of the 

distance between nodes.  This requires that consideration is also given to what we call the 

link geometry (i.e. whether the distance used to calculate the link representation is 

obtained from a Euclidean or a non-linear path). 
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Three types of link geometry have been used in published studies (Table 2-2).  Euclidean 

link geometry makes the fewest assumptions (i.e. that on average the movement of the 

focal species can be described by the most direct route).  Euclidean geometry has been 

applied to birds, insects, and plants, or where the model assumes the matrix is 

uninhabitable or homogeneous and should be traversed in the most direct manner (e.g. 

Jordan et al. 2007, Neel 2008, Andersson and Bodin 2009).  We describe studies as using 

structural link geometry (Table 2-2) where nodes are connected by existing, typically 

non-linear, corridors on the landscape.  This approach has been used infrequently, but 

may be useful where the focal species moves exclusively using easily distinguished 

structural features, such as rivers or hedgerows (e.g. Jordan et al. 2003, Schick and 

Lindley 2007).  

 

Least-cost path geometry is an appropriate choice where the routes followed by the focal 

species are likely to be non-linear (e.g. influenced by different cover types and features), 

such as is the case for many terrestrial mammals (Adriaensen et al. 2003, Coulon et al. 

2004) .  A disadvantage is that intensive parameterization is required to produce a 

resistance surface (Spear et al. 2010), presenting practical challenges, in addition to the 

introduction of error.   For certain species, however, the use of least-cost paths may better 

capture the connectivity relationships among nodes.  For example, in a landscape where a 

barrier separates two nodes, least-cost path geometry may describe a link going around 

the obstruction, while Euclidean geometry may describe a link directly crossing the 

obstruction.  In the latter case, the distance represented by the link may overestimate the 

degree to which the two nodes are connected for the organism (Adriaensen et al. 2003).  
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Typically, least-cost paths are summarized using an effective distance which describes 

the cost of following the path, and structural geometry is summarized using the total 

length of the path (e.g. Schick and Lindley 2007, Sutherland et al. 2007, Jantz and Goetz 

2008). 

 

In most published studies the Euclidean distance, effective distance, or the length of the 

path is used as the link representation (i.e. as the magnitude of the connection between 

nodes).  Where more information is available about connectivity, the link representation 

can potentially be improved by using a dispersal model.  Dispersal models produce a 

probability of dispersal between adjacent nodes by incorporating theoretical assumptions 

about organism movement (e.g. Treml et al. 2008).  The probability of dispersal, rather 

than the distance, is then used as the link representation.  Dispersal models typically also 

include some measure of distance, but we classify them separately in Table 2-2 because 

distance is combined with other variables representing properties of the landscape or the 

focal species (e.g. Schick and Lindley 2007, Treml et al. 2008).  Fluxes are another type 

of link representation where dispersal models are combined with node weights, such as 

patch area, to improve the estimate.  In several cases, links have represented some other 

function of geographic distance and node weights.  For example, links in a graph 

describing connectivity for maize pests and pathogens were a function of Euclidean 

distance and the densities of maize at adjacent nodes (Margosian et al. 2009).   

 

Where two-dimensional nodes are used, links can also be given spatial endpoints where 

they intersect with the node boundary (O'Brien et al. 2006, Fall et al. 2007).  The choice 
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of these endpoints can be made such that the Euclidean or least-cost path between nodes 

is determined from a specific point on node boundaries, which can potentially be used to 

improve the accuracy of the link representation.   

 

2.4.5. Link types 

Links may or may not have a weight attribute assigned to them (Figs. 2-2, B, D; Table 2-

2).  When weight attributes are used, they are typically the magnitude of the link 

representation (e.g.. Euclidean distance, effective distance, length of the path, or 

probability of dispersal).  In unweighted graphs, the link representation is used in graph 

construction rather than appearing explicitly as an attribute in the graph.  For example, 

many unweighted graphs are constructed using a link threshold rule where nodes are 

connected if the distance between them is smaller than a threshold value (see Section 

2.4.6).  Weighted graphs can also be constructed using such a rule, but differ from 

unweighted graphs by adding information about the strength of the connection rather than 

simply representing the presence or absence of a connection. The decision to use weight 

attributes is made on the basis of how connectivity will be measured from the graph (i.e. 

if the metric used will incorporate weight attributes explicitly; see Section 2.5).  It  may 

also be useful to construct an unweighted graph based on one link representation and then 

overlay a second variable as a weight attribute.  A graph for Carabid beetles, for example, 

was built using links representing Euclidean distance between patches and analyzed using 

weights describing the quality of the landscape corridor suggested by each link (Jordan et 

al. 2007).  
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Links may also describe directional connectivity, in which case they are referred to as 

arcs (Figs. 2-2, E, F).  Arcs representing amphibian migration from temporary to 

perennially flooded ponds in Spain were not weighted (Fortuna et al. 2006), while the 

arcs representing the pelagic drift of coral larvae in the Tropical Pacific were signed and 

weighted using a dispersal model that incorporated surface ocean current velocity (Treml 

et al. 2008). 

 

2.4.6. Assembling the graph 

Assembling the graph is the final step in graph construction, and there are several 

variations possible.  The most common approach is to create a complete graph (Fig. 2-1, 

G; Table 2-2), which has links between every pair of nodes.  Alternatively, 

approximations of this complete graph can be used, such as the minimum planar graph 

(see below; Fig. 2-1, H; Table 2-2). In most cases, this initial graph should be subjected 

to a link threshold rule, where links are removed that represent a value beyond some 

ecologically determined threshold (e.g. greater than the largest observed dispersal 

distance for the focal species, or below some probability of dispersal). The link-

thresholded graph can also be assembled directly to avoid creating the complete graph. 

For example, forest patches inhabited by coal tits were linked if the Euclidean distance 

between their boundaries was less than an empirically determined daily movement 

threshold distance (e.g. Andersson and Bodin 2009).   

 

Complete graphs (Fig. 2-2, G; Table 2-2) contain the maximum information and path 

alternatives for a given set of nodes, but at a cost of having to represent and process 
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potentially large numbers of links.  The minimum planar graph (Fig. 2-2, H; Table 2-2) 

has been used to approximate the complete graph, summarizing much of the information 

in the complete graph using many fewer links (Keil and Gutwin 1992, Fall et al. 2007).  

Assembly proceeds by tesselating the landscape into a set of convex Voronoi polygons 

with the nodes at the centre of each polygon (Okabe et al. 2000).  Links connect nodes in 

adjacent polygons, producing a graph where links do not cross one another (i.e. the graph 

is planar).  This results in a simpler graph that is computationally efficient for landscapes 

of many nodes and can be more easily visualized on a map (Fall et al. 2007), but the 

absence of links between non-adjacent patches may limit some analysis methods (e.g. 

some patch removal experiments) and must be taken into account during interpretation of 

results.   

 

Although not a requirement, minimum planar graphs typically have been built using two 

dimensional nodes and non-linear least cost path link geometry; a collection of properties 

that have been called "Spatial Graphs" (Fig 2I; Fall et al. 2007).  In Spatial Graphs, the 

geometry of the patch boundary and the relative positions of neighbouring patch 

boundaries together determine the endpoints of the links.  Spatial Graphs also add the 

feature that the endpoints of the links have spatial coordinates rather than terminating 

arbitrarily in adjacent patches.   

 

The minimum spanning tree (Table 2-2) has been used as an approximation of the 

underlying backbone of connectivity, and does so by identifying links that connect all 

nodes with minimum total link length (Fall et al. 2007).  This form of graph appeared in 
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initial work (e.g. Bunn et al. 2000, Urban and Keitt 2001), but its absence in more recent 

work may reflect a consensus that it may capture insufficient information for use in 

ecological connectivity analysis.  Minimum spanning tree graphs, by definition, do not 

retain the alternate movement pathways.   

 

Where structural link geometry is used (Table 2-2), graph assembly simply models the 

network of structural features that actually connects patches on the landscape (Urban et 

al. 2009).   Rivers provide an intuitive example of this.  For example, a graph describing 

chinook salmon connectivity among river basins in Central Valley, California, was built 

to represent the drainage network (Schick and Lindley 2007).   

 

2.4.7. Key decisions in graph construction 

In Table 2-3, we summarize seven key decisions in landscape graph construction, 

focusing on the most widely used construction variants.  Typical indications for the use 

of each construction variant are given with reference to compatibility with the study 

system and proposed analyses.  Node and link geometry, the choice of link representation 

and the rule used to assemble the graph will all influence the topology of the graph.  The 

degree to which these choices may affect landscape connectivity conclusions, however, 

has not been comprehensively studied  (see however Estrada and Bodin 2008).  Node and 

link weights (i.e. attributes), as typically applied, will not affect graph topology. A 

decision to include these is indicated by the metric used to measure connectivity from the 

graph, which is, in turn, suggested by the research question of interest.  Finally, the  
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Table 2-3.  Seven decisions in patch-based graph construction. 

 Construction variant Typical indications for use of construction variant 
  

1.  Choose node geometry: 
 

 (a) Point node geometry  Centroids adequately represent spatial arrangement of 
patches 
 

  (b) Two-dimensional node 
geometry 

 Centroids poorly represent the spatial arrangement of 
patches 
 

 Scale of study is such that defining links from patch 
boundary-to-boundary is necessary to correct bias in 
the centroid-to-centroid distance 

 
    
  

2.  Choose node weights: 
 

 (a) Node weights not applied  Analysis focuses on the topological arrangement of 
connected patches  

 Connectivity metrics do not incorporate patch 
variables 
 

 (b) Node weights applied  Analysis considers biological or landscape properties 
of groups of connected patches, in addition to their 
topological arrangement 

 Connectivity metrics are used or developed that 
incorporate population or landscape variables from 
patches 

  
3.  Choose link geometry: 
 

 (a) Euclidean link geometry  Matrix is essentially uniform for focal species 
 Movement of focal species is, on average, 

summarized by the most direct route 
 

 (b) Least-cost path link 
geometry 

 Matrix is not uniform for focal species 
 Movement of focal species is, on average, 

summarized by the least-costly route. 
 Data is available to parameterize the resistance 

surface used to calculate least-cost paths 
 

 (c) Structural link geometry  Focal species moves using landscape features 
apparent to human observers 
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Table 2-3.  Cont'd. 

 Construction variant Typical indications for use of construction variant 
  

4.  Choose link representation: 
 

 (a) Distance link representation  Probability of movement is adequately modelled using 
geographic distance, or costs which represent 
geographic distance (e.g. effective distance) 

 
 (b) Dispersal model link 

representation 
 Probability of movement modelling is improved using 

organism, population or landscape variables that 
predict dispersal as a function of distance 

 Data is available to parameterize a dispersal model 
 

 (c) Flux link representation  Probability of movement modelling is improved using 
population or landscape variables from adjacent 
patches as a function of distance 

 Node weights are applied 
    
  

5.  Choose link types: 
 

 (a) Unweighted, undirected links 
 

 Connectivity metrics used measure the presence or 
absence of connections among patches 
 

 (b) Weighted, undirected links 
 

 Connectivity metrics used incorporate link attributes 
describing the strength of the connection among 
patches 

 Graph is built using one link representation, and a 
second variable is superimposed for analysis purposes  

 
 (c) Unweighted, uni- or 

bidirectional links (arcs) 
 

 Connectivity metrics used incorporate the direction of 
the arc(s) between patches 
 

 (d) Weighted, uni- or 
bidirectional links (arcs) 
 

 Connectivity metrics used incorporate the direction 
and strength of the flows described by arc(s) between 
patches 

 Graph is built using one link representation, and a 
second link representation is superimposed for 
analysis purposes  
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Table 2-3.  Cont'd. 

 
 Construction variant Typical indications for use of construction variant 
  

6.  Choose graph approximation: 
 

 (a) No graph approximation; 
 

 Generally applicable 
 

 (b) Graph approximation is used  Approximation of complete graph is desired for map-
making and visualization or because a large number of 
nodes makes the complete graph intractable for 
analysis 

 Graph approximations will not compromise the 
analysis (as noted in Section 2.6) 

  
7.  Choose link thresholding: 
 

 (a) Graph assembled at one, 
several or many link 
thresholds 
 

 Generally applicable 
 

 (b) No link thresholding  Weighted and/or directed link attributes are used 
 Connectivity metrics incorporate link weights and/or 

directions 
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decision to assemble the graph at one or many link thresholds is determined by analysis 

goals (see Section 2.6). 

 

2.5. Measuring connectivity from the graph 

Building a graph with attention to node definition, node geometry, link representation and 

graph assembly decisions can produce an informative tool that requires no further work; a 

map visualization of the graph and the spatial configuration of habitat it describes can be 

sufficient for many planning exercises (see Section 2.6.1).  Typically, however, further 

analyses are needed to quantify the connectivity of the graph  in order to select from 

multiple alternative models, or describe and test properties of the graph that are not 

apparent on visualization.   

 

Graph metrics (Table 2-4) are required to quantify the connectivity of the graph and can 

be broadly classified into: (a) those that assess connectivity for the entire graph; (b) those 

that assess connectivity by measuring the properties of groups of nodes, such as graph 

components; and, (c) those that assess connectivity for single nodes.  Metrics for the 

entire graph or groups of nodes can also be developed by summing or averaging single 

node connectivity metrics across the relevant nodes.   Depending on the metric used, it is 

possible to reference node (i.e. patch) attributes for measuring the connectivity of groups 

of nodes.  For example, summing the area of all patches in a component uses a node 

weight for this purpose (e.g. Awade and Metzger 2008), or reporting the average link 

weight across the entire graph can be used to summarize connectivity at a landscape scale 

(e.g. Rayfield et al. 2008).  Equally, patches may be valued for their contribution to 
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Table 2-4.  Three categories of metrics available to measure connectivity from a 

patch-based graph.   

A sampling of the simplest metrics used among the papers reviewed is presented to 

illustrate key differences among categories.  Numbers refer to studies in Table 2-1 that 

use this metric. 

 
(a) Measure connectivity for the entire graph   
 

Number of components A count of the number of 
components in a graph 
 

6, 10, 11, 14, 19, 30 

Mean link weight The sum of all link weight 
attributes in the graph divided by 
the number of links in the graph 
 

1, 13, 14 

(b) Measure connectivity for groups of connected nodes 
 

Number of nodes in largest component A count of the number of nodes in 
the largest component 
 

10, 14 

Total patch area in a component The sum of the patch area node 
attributes for all nodes in a 
component 
 

5, 6, 7 

(c) Measure connectivity for single nodes 
 

Degree (Indegree / Outdegree) The number of links incident on a 
node; or in a graph with directed 
links the number of incoming or 
outgoing arcs incident on a node 
 

8, 9, 17, 18, 21, 28 

Betweenness centrality The proportion of all shortest paths 
between all nodes on the graph that 
pass through a node 
 

1, 2, 8, 9, 15, 18 
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 landscape scale connectivity, which can be assessed using node removal experiments 

that examine the change in connectivity across the entire graph (see Section 2.6.6). 

 

Selecting a graph metric presents a challenge to researchers; we counted more than forty 

metrics among the studies reviewed.  As a general rule, we suggest choosing the category 

of metric appropriate for the analysis and then comparing the results from multiple 

metrics within that category.  We offer appropriate categories of metric for each 

conservation question discussed in Section 2.6.  For some questions, researchers may find 

it useful to assign node or link weights and develop their own metrics incorporating this 

information.  In one example from Carabids, the number of nodes (or order) in the largest 

graph component, is combined with demographic data associated with each node to 

produce an estimate of metapopulation size (Jordan et al. 2007). 

 

2.6. Conservation applications 

We identified nine conservation-related research questions that have been asked using 

patch-based graphs (Table 2-5).  These research questions are all ultimately concerned 

with describing landscape connectivity and do this by exploring different properties of 

the graph.  It is also critical to assess the role that connectivity plays in the spatial 

structuring of the species of interest, which we address in Section 2.7.  For each of the 

nine questions, we suggest potential applications, approaches for answering the question, 

and limitations of these approaches. We also note analyses where certain graph 

construction options are more or less suitable. 
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Table 2-5.  Conservation questions asked by studies reviewed.   

Numbers refer to studies in Table 2-1. 

 
Which areas of the landscape are connected? 
            Identification of functionally connected components 

2, 3, 5, 6, 7, 8, 
9, 10, 11, 12, 
13, 14, 15, 16, 
21, 22, 23, 26, 
27, 28, 29, 30 

  
Which areas of the landscape are highly connected? 15 

Identification of community structure compartments  
  

What are the critical thresholds at which the landscape is aggregated? 
            Link thresholding experiments 

6, 14, 16, 24, 
26, 29, 30 

  
What are the implications of the network topology for connectivity? 1, 2, 10, 24, 25 

Assessment of the node-degree distribution  
  

How does connectivity differ between graphs? 
            Comparison of graphs using various approaches 

6, 14, 19, 22, 
25, 26, 30 

  
Which patches are important for connectivity? 
            Patch prioritization using node metrics or node removal 
            experiments 

2, 8, 9, 11, 12, 
14, 15, 17, 18, 
19, 20, 21, 25, 
28 

  
Which patches are important as sources and which as sinks? 14, 18, 21, 25 

Patch prioritization using node metrics or node removal experiments  
  

What types of patches are important for connectivity? 
          Node removal experiments 

8, 21, 27, 29, 
30 

  
Which connections among patches are important for connectivity? 1, 2, 4, 17, 28 

Corridor prioritization using link removal or insertion experiments 
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2.6.1. Which areas of the landscape are connected? 

Landscape planning for species of concern requires detailed knowledge of the amount 

and quality of habitat as well as the connectivity or spatial configuration of that habitat 

(Fahrig 2001, 2002).  While not sufficient in itself for landscape planning purposes, a 

map depicting the spatial configuration of habitat can be an important contribution to the 

decision process.  For example, roads, which may present a strong barrier to connectivity 

for many mammals (Balkenhol and Waits 2009), can be routed such that they avoid 

disrupting regions that are essential for maintaining connectivity.  Consultations for new 

reserves or protected areas might draw boundaries around highly connected regions of 

habitat, or alternately around poorly connected regions of the landscape that are critical 

corridors (Briers 2002, Fall et al. 2007).  In forest management planning, maps can direct 

harvesting to avoid impact on species at risk and GIS layers describing connectivity can 

be incorporated into dynamic harvest models (e.g. Sutherland et al. 2007, Rayfield et al. 

2008). 

 

Producing an informative map for management begins with assembling the graph using 

one link threshold representing the best available information on movement or dispersal 

for the focal species.  For distance link representations, this amounts to plotting only 

those links that are less than the threshold.  The resulting map will show connected 

groups of patches, or components (e.g. Figs. 2-2, J, K, L), and this can be used to visually 

highlight candidate areas for restoration where connectivity is poor or non-existent. 
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Maps showing graphs built at additional link thresholds can serve other conservation 

objectives.  Because the exact maximum movement or dispersal distance for an organism 

may never be known (Bunn et al. 2000, Bowman et al. 2002), an upper and lower 

estimate of this threshold value can be used to produce two maps to guide decisions.  A 

range of threshold values for movement or dispersal can also be used to depict 

connectivity hypotheses at different temporal scales, such as for daily foraging, dispersal, 

or seasonal migration, although caution is appropriate because the parameters used for 

node definition and link representation may also vary, requiring construction of a new 

graph. 

 

In association with these maps, it may also be valuable to present measures of functional 

connectivity.  Metrics associated with groups of nodes and with the entire graph will be 

most useful.  For example, the total patch area in each component (e.g. Awade and 

Metzger 2008), or the mean patch area of all components in the graph (e.g. expected 

cluster size; O'Brien et al. 2006), are simple but informative metrics for landscape 

planning.   

 

Where map visualization to identify the spatial extent and configuration of  components 

is of primary interest, we recommend complete graph approximations such as the 

minimum planar graph (Fig. 2-2, H) or, if there is sufficient data for parameterization, 

Spatial Graphs, which maintain connection of graph elements and the geographic 

landscape (Fig. 2-2, I;  see Section 2.4.6).  When approximations are not used, maps may 

have many intersecting links that can obscure landscape features and make the map 
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difficult to interpret for planning purposes (Fall et al. 2007).  When map visualization to 

identify areas with a high density of links is of interest, however, approximations should 

not be used, and researchers should consider a more formal identification of these highly 

connected regions of the landscape (see Section 2.6.2). 

 

2.6.2. Which areas of the landscape are highly connected? 

This is an extension of the previous question that may also be valuable for landscape 

planning.  The delineation of “highly connected” rather than “connected” areas of the 

landscape can be achieved by finding community structure in the graph and using this to 

define compartments (e.g. Fig. 2-1, f).   Community structure algorithms (e.g. Girvan and 

Newman 2002) can identify groups of nodes that are more densely connected and, 

depending on the criteria used, can exclude the weakly connected areas of the landscape 

represented by cut-nodes and cut-links (Fig. 2-1, g, h). 

 

Finding compartments based on community structure may be valuable in landscapes that 

are generally well connected for the focal species, because such compartments are 

sensitive to the degree of connectivity (Bodin and Norberg 2007).  Maps of 

compartments can then be depicted in a graph assembled at a certain link threshold (e.g. 

Bodin and Norberg 2007).  However, work is still required to explore the ecological 

interpretations of the available community structure methods, and researchers must also 

give consideration to the appropriate level of community structure to report (Girvan and 

Newman 2002, Bodin and Norberg 2007).  The use of graph approximations will not be 

informative, because these will remove links in highly connected areas of the graph.   
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2.6.3. What are the critical thresholds at which the landscape is aggregated? 

Where landscapes are becoming heavily fragmented, it may be important to evaluate the 

potential resilience of a species to the loss of connectivity (e.g. Bunn et al. 2000).  Where 

species invasion or the spread of pest and pathogens is a concern, connectivity risk 

assessment may also be pertinent (e.g. Margosian et al. 2009).  One approach is to 

identify a critical link threshold at which the landscape generally becomes disconnected 

for the focal species.  For example, in a graph using distance link representation, a 

species that has a maximum movement or dispersal distance above a critical threshold 

experiences much of the landscape as connected, while a species that falls below this 

threshold will have its movement inhibited by disconnected habitat.  This information can 

be used to determine if habitat restoration is required to improve connectivity, or for 

invasive species, pests and pathogens, if steps must be taken to mitigate spread.  A map 

can also be made at this link threshold  (see Section 2.6.1) and used to suggest specific 

steps to achieve these conservation goals. 

 

Critical link thresholds at which there are large changes in connectivity can be 

determined using a link thresholding experiment (one form of link thinning or removal) 

(e.g. Figs. 2-2, J-L).  The graph is assembled at an ordered series of link threshold values, 

and a connectivity metric is assessed for the entire graph, or for groups of nodes at each 

step (Urban and Keitt 2001).  In many examples, slow increases in the connectivity 

metric as the link threshold increases are punctuated by rapid increases near key 

thresholds, reaching a plateau as most nodes in the graph become connected (e.g. Bunn et 
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al. 2000, Urban and Keitt 2001, Brooks 2006, O'Brien et al. 2006).  The critical link 

thresholds can then be determined mathematically as the points associated with rapid 

connectivity increases (Brooks 2006).    

 

2.6.4. What are the implications of the network topology for connectivity? 

This conservation question offers a second approach to determine resilience and risks 

associated with connectivity by describing the topology of the entire graph (or network).  

Among the papers reviewed, network topology has been chiefly described by determining 

the frequency distribution of node degree (Table 2-4), a metric describing the number of 

links incident on a node.  Starting with a graph assembled at a link threshold value of 

ecological interest, the node degree distribution of the graph is compared to simulated 

distributions representing random, scale-free and other network types (e.g. Brooks 2006, 

Fortuna et al. 2006, Minor and Urban 2008).  Evidence that a network exhibits scale-free 

characteristics, for example, suggests that connectivity is dependent on a small number of 

highly-connected hub patches and it, therefore, has a low resilience to the loss of these 

hub patches and is more susceptible to species invasion and disease spread (Minor and 

Urban 2008).  Graph approximations must be used carefully here as they may eliminate 

the topological complexity that is being assessed. 

 

This approach may be valuable for preliminary assessments of resilience and risk where 

spatially-explicit conclusions are not required.  For example, a graph describing a pond 

network demonstrated that connectivity for amphibians with limited dispersal distance 

was robust to the loss of ephemeral ponds (Fortuna et al. 2006).   
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2.6.5. How does connectivity differ between graphs?  

Patch-based graph comparison has not been the subject of any focused attention, but it 

may be a promising avenue for future research.  Comparison of graphs for multiple 

species can be used to assess relative risks associated with species invasion and disease 

spread (e.g. Margosian et al. 2009).  A series of graph construction treatments where link 

representation, link weights, or node weights are varied can also be used to explore how 

differences in ecological parameters affect connectivity (e.g. Fortuna et al. 2006, Treml et 

al. 2008).  Graphs describing connectivity in the past and in the present can be compared 

to assess the impact of landscape change (e.g. O'Brien et al. 2006) and evaluate the 

success of landscape restoration efforts.  Equally, planned or potential changes to land 

use or land cover such as road construction or natural and human disturbances can be 

represented on a graph and compared to the present configuration (e.g. Sutherland et al. 

2007).  Comparing graphs for multiple landscapes may also be helpful for assessing 

potential landscapes for species reintroduction, for triage cases, and for site comparisons 

in environmental impact assessments. 

 

The comparison of different link thresholds for a single landscape is not typically the 

focus, because in this case we expect, a priori, connectivity to change with link threshold 

value.  Rather, graph comparison will be of interest where the parameters used to 

construct each graph are different (e.g. graphs are of several landscapes, or graphs 

explore different hypotheses for a single landscape).  Comparing graphs can be done 

using one, or preferably several, graph metrics that describe connectivity for the entire 
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graph (e.g. Margosian et al. 2009).  Comparisons of node-degree distributions (Section 

2.6.4; Fortuna et al. 2006) for different graphs have been used, as has the comparison of 

critical link thresholds (Section 2.6.3; e.g. Bunn et al. 2000, O'Brien et al. 2006).   New 

approaches may also be found in other disciplines where graph comparison is well-

developed (e.g. cospectrality of graphs used for pattern recognition; Wilson and Zhu 

2008). 

 

2.6.6. Which patches are important for connectivity?  

When nodes are well-defined and distinct from the matrix and there is a high probability 

that the patches represented by nodes are used as habitat (see Section 2.4.1), finding 

nodes that are important for landscape-scale connectivity may have several applications.  

For a species of concern, patches which play an important connectivity role can be 

identified and given conservation priority (e.g. Pascual-Hortal and Saura 2008) or 

selected for a protected area network (e.g. Minor and Urban 2008).  For invasive species, 

pests and pathogens, these patches could be removed to interrupt spread (e.g. Estrada-

Pena 2005).   

 

Identifying patches with high connectivity importance has been termed patch 

prioritization (Pascual-Hortal and Saura 2007), and has been done in two ways.  In the 

first approach, node metrics (e.g. Table 2-4) are determined for each node on the graph, 

and high scoring nodes are given high priority.  For example, the betweenness centralities 

of nodes representing forested roadless areas in Maine and New Hampshire, U.S.A., were 

used to identify a corridor suitable for terrestrial wildlife (Jantz and Goetz 2008).   
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In the second approach, node removal experiments are performed where the node and its 

associated links are removed from the graph, and the change in value of a metric for the 

entire graph is determined.  The node is then returned to the graph and the process is 

repeated.  Nodes that cause large reductions in the total connectivity of the graph are 

prioritized.  A node removal experiment for ticks in Rioja, Spain identified habitat 

patches that lowered the total traversability of the landscape, a result which could be 

applied to limit their spread (Estrada-Pena 2005).   

 

Using node weights is often informative in patch prioritization.  Metrics that incorporate 

the value of node weights can be used to combine other ecological parameters with 

connectivity.  For example, using patch area as a node weight in a node removal analysis 

has been used to create a habitat availability metric that incorporates connectivity 

(Pascual-Hortal and Saura 2006).  Because alternate pathways may not be present, graph 

approximations should be used with caution in removal experiments.  Finally, ranking the 

importance of a patch for connectivity using several methods is recommended in order to 

seek a consensus (e.g. Minor and Urban 2008). 

 

2.6.7. Which patches are important as sources and which as sinks? 

The goal in this question is also the identification of priority patches for a conservation 

response (see Section 2.6.6), but the emphasis is on source and sink attributes of those 

patches.  Where species recovery is a concern, important source patches can be identified 

as candidates for restoration or conservation (Schick and Lindley 2007, Treml et al. 
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2008).  To capture directional connectivity, graphs must be constructed with directed 

links (arcs) and link representation may require heavy parameterization to produce 

informative directional estimates (e.g. Schick and Lindley 2007, Treml et al. 2008; but 

see Fortuna et al 2006).  Node based metrics and node removal are also appropriate, 

using metrics that summarize the net effect of arcs at each node (e.g. node strength; 

Schick and Lindley 2007), or across the graph (e.g. population independence; Schick and 

Lindley 2007). 

 

2.6.8. What types of patches are important for connectivity?  

Sometimes it may be useful to identify the general characteristics of priority patches (see 

Section 2.6.6); to generate rules of thumb that can be applied in other systems where 

studies are not feasible (e.g. Estrada-Pena 2005, Schick and Lindley 2007).  To do this, a 

subset of nodes is selected according to a criterion of conservation importance.  Patches 

that have high node-based connectivity values, are spatially remote, have extreme node 

weights, or are randomly chosen, may be removed sequentially and the impact on the 

connectivity of the entire graph determined.  This approach is similar to node removal, 

except that nodes are not returned to the graph at each repetition.  For example, the 

removal of patches that had a high connectivity (assessed using a single node 

connectivity metric) caused a faster change in overall connectivity for chinook salmon 

than the removal of random patches or patches with high population sizes, suggesting that 

these types of patches should be prioritized for restoration (Schick and Lindley 2007). 
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2.6.9. Which connections among patches are important for connectivity? 

Where links can be readily translated into structural features of the landscape, a corridor 

prioritization can help identify links of management interest. Links representing potential 

corridors that have a high priority can be selected for restoration or conservation (e.g. 

Jordan et al. 2003, Jordan et al. 2007, Vasas et al. 2009).  The effect of inserting links 

into the graph can also be determined to assess alternative corridor construction or 

restoration scenarios (e.g. Jordan et al. 2007).  The analysis is similar to a node removal 

exercise (see Section 2.6.6); links are removed or inserted and the change in an entire 

graph connectivity metric recorded. 

 

2.7. Evaluating graph predictions with empirical data 

Patch-based graphs can be compelling conservation tools.  This is, in part, because they 

describe connectivity with a picture that is intuitive and easy to interpret (Urban et al. 

2009).  Without empirical evaluation of their predictions, however, these models remain 

elaborate suppositions that managers may feel reluctant to use given the costly and often 

controversial decisions they face.  Improving confidence in a model requires testing its 

predictions with actual connectivity data obtained from the landscape (Urban et al. 2009).   

 

Tests using patch-based graph models have begun to appear, but much work remains to 

articulate a general approach to this problem.  The most common method is to assemble 

the graph at one or many link thresholds of ecological significance and measure the 

association of the study organism with the graph components.  This has been done using 

presence/absence, abundance, and telemetry data.  For example, the predictions of a 
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graph describing forested patches in a park in Maryland, USA were assessed using partial 

Mantel tests, which showed that network distance between patches (a metric which 

incorporates the component structure of the graph) better explained species compositions 

than the Euclidean distance between patches (Minor et al. 2009).  Coal tits in an urban 

landscape in Stockholm, Sweden were significantly present in components of a graph 

model built at a link threshold of 50 m (Andersson and Bodin 2009).   The R2 value from 

simple linear regressions of abundance against total component area were used to select 

the better of two link threshold graphs for songbirds in Brazilian Atlantic rainforest 

(Awade and Metzger 2008).  And, for graphs built at certain link thresholds, woodland 

caribou telemetry points were significantly closer to larger components when compared 

to random locations, suggesting caribou select larger areas of functionally connected 

habitat at these thresholds (O'Brien et al. 2006).   

 

Spatial autocorrelation in genetic data has also been used to test the predictions of a 

patch-based graph, and this has been termed scale matching.  In the only example we 

found of this approach, the genetic neighbourhood, a measure describing the scale at 

which gene flow is operating, determined for a plant pathogen and a salamander, matched 

the critical link thresholds of landscape aggregation for these species (Section 2.6.3; 

Brooks 2006).  This result suggests that dispersal and subsequent gene flow are 

happening over an area of approximately the same size as an average component on a 

patch-based graph.   
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The association of the study organism with the patch rather than with the component has 

been used in one test of a patch-based graph.  For the endangered plant Astragalus 

albens, patches with a higher importance for connectivity, determined in a node removal 

experiment, also had significantly higher indices of genetic diversity.  Graph models built 

at link thresholds above that expected for gene flow in this plant did not demonstrate this 

significant relationship (Neel 2008).  

 

Genetic approaches, in general, may be a promising way forward.  Obtaining genetic data 

at a landscape scale has become feasible in many study systems; recent advances in non-

invasive genetic sampling (i.e. of hair and fecal material), for example, now enable the 

collection of large sample sizes for wildlife (e.g. Solberg et al. 2006, Ball et al. 2010).  

The use of genetic data to test landscape connectivity models is a major focus of 

landscape genetics (Manel et al. 2003), where other landscape graph approaches, 

particularly raster-based graphs (Adriaensen et al. 2003, McRae et al. 2008), have been 

used to examine how landscape features facilitate or resist gene flow (e.g. Coulon et al. 

2004, Cushman et al. 2006).  For patch-based graphs, the association of genetic 

observations with graph components or compartments is a potential approach (see 

Chapter 4).  For example, if poor connectivity is presenting resistance to dispersal and 

ultimately to gene flow we might expect individuals sampled in the same component to 

have more similar genotypes than individuals sampled in separate components.   
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2.8. Concluding remarks 

We have reviewed how patch-based graphs have been used to investigate landscape 

connectivity for conservation applications.  When connectivity among reserves rather 

than patches is of interest (e.g. Fuller et al. 2006), many of the graph construction and 

analysis techniques reviewed here will apply.  However, landscape models of 

connectivity where nodes represent a single raster cell (e.g. Adriaensen et al. 2003, 

McRae et al. 2008) are not interchangeable.  Although it is possible to incorporate these 

landscape models into patch-based graphs (e.g. least-cost path link geometry; Section 

2.3.4), their primary goal is to represent connectivity between two points on a landscape.  

Patch and matrix are not distinguished explicitly, but rather through the parameterization 

of the raster cells; i.e. habitat is assigned a low resistance, while inhospitable areas of the 

landscape are assigned a high resistance.  Raster-based models on their own have chiefly 

been used to investigate barriers or facilitators, such as roads and topography, to actual 

connectivity on a landscape (e.g. Cushman et al. 2006).   

 

The software to construct and analyse patch-based graphs requires development to make 

these tools accessible to researchers and practitioners.  We counted only three publicly 

accessible patch-based graph specific software packages among the papers we reviewed 

and these can together only perform a subset of the construction variants and analyses we 

have described.  The packages are Conefor Sensinode (Saura and Torne 2009; available 

at http://www.conefor.org/), SELES (Fall and Fall 2001; available at http://seles.info/) 

and JMatrixNet (available at http://www.ecology.su.se/jmatrixnet/).   In many cases, 

authors have developed their own tools or repurposed others for patch-based graphs (e.g. 
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Margosian et al. 2009).  We feel a comprehensive software package is now essential; it 

should provide the capacity to extract one-dimensional and two-dimensional node and 

link information from landscape rasters, incorporate a wide selection of graph 

construction variants and metrics, as well as perform analyses such as link thresholding 

and node removal experiments.  For extension analyses, graphs should be exportable in 

formats compatible with standard graph analysis software such as the igraph library for R 

and Python (Csardi and Nepusz 2006), Ucinet (Borgatti et al. 2002), and Pajek (Batagelj 

and Mrvar 2004).   

 

Perhaps the most exciting contribution of patch-based graphs is the broad range of 

possibilities that the toolkit presents for ecological connectivity analysis.  Indeed, there 

are many graph and network analysis techniques available, as yet unused in the context of 

patch-based graphs, which can only broaden the utility of the approach.   We note that no 

two studies have constructed patch-based graphs in the same way, and despite this 

apparent complexity, the meaning of the models remains intuitive and their predictions 

visually accessible.  We see these qualities as critical for engaging stakeholders and other 

non-specialists if graphs are used to support the decision-making process.  In particular, 

using patch-based graphs to combine connectivity with information on the amount and 

quality of habitat (e.g. as node weights) summarizes several important ecological 

properties of the landscape, that are essential for conservation decisions (Pascual-Hortal 

and Saura 2007), in a way that can be effectively communicated.  As a final caveat, we 

urge those using patch-based graphs in a decision-making process to assess the relative 

importance of conserving connectivity compared to, for example, conservation decisions 
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based only on the amount and quality of habitat.  This remains an important area for 

further theoretical and empirical consideration (Hodgson et al. 2009, Saura and Rubio 

2010). 
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3.1. Abstract  

Landscape connectivity can be measured between two point locations using an effective 

distance.  Typically, raster models of landscape resistance are used to calculate these 

metrics.  Because organisms may perceive landscape heterogeneity at different scales (i.e. 

functional grains), using a raster with too fine or too coarse a spatial grain (i.e. analysis 

grain) may lead to biased estimates of effective distance.  We adopted a simulation 

approach where the true functional grain and effective distance were defined and these 

were used to test the accuracy of three types of effective distance metric:  least-cost paths, 

circuit theory resistance, and grains of connectivity, a new method that we introduce 

which uses an irregular tessellation of the resistance surface to coarsen the landscape data 

while also respecting landscape structure.  We found that matching functional and 

analysis grain sizes led to the highest accuracy when measuring effective distance, 

affirming the importance of multiscale analysis.  The use of areal approaches, such as cell 

aggregation or moving windows  to achieve this match, did not generally improve 

accuracy over analysis at the base grain of the landscape data.  Our grains of connectivity 

method correctly described coarse functional grains and found the true effective distance 

with high accuracy.  A key advantage of our new method is the potential to scale 

landscape data to achieve a spatially-explicit description of the pattern influencing 

landscape connectivity.  Appendices are provided that demonstrate the construction of 

grains of connectivity models and how they can be used to calculate effective distance.   
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3.2. Introduction 

Estimates of landscape connectivity are frequently required in landscape ecology and 

helpful for  the conservation and management of fragmented landscapes (e.g. Baguette 

and Van Dyck 2007, Beier et al. 2009, Urban et al. 2009, Sawyer et al. 2011, Luque et al. 

2012).  Much work in landscape genetics also relies on models of landscape connectivity, 

where the reduction in, or absence of, landscape connectivity can be used to explain 

patterns in gene flow and genetic similarity (e.g. Cushman et al. 2006, Schwartz et al. 

2009, Shirk et al. 2010, Storfer et al. 2010).   

 

Landscape connectivity is often understood as a functional response of an organism to 

landscape structure (Calabrese and Fagan 2004).  Because organisms perceive spatial 

heterogeneity on landscapes at different functional grains (Baguette and Van Dyck 2007) 

estimates of connectivity must also consider the scale at which the heterogeneity, or 

pattern, affecting connectivity is measured.  In order to respect the fundamental 

dependencies between scale, pattern and process (Wiens 1989, Levin 1992, Wu 2004), 

the pattern (how the landscape is connected) must be described at the same scale as the 

process (how organisms move and disperse).  Failure to match these scales can produce 

incorrect conclusions about how or if the landscape is functionally connected for the 

species of interest (Cushman and Landguth 2010).   

 

However, identifying the correct functional grain remains a challenge, and requires 

difficult to acquire empirical estimates of perceptual range and dispersal capability 

(Baguette and Van Dyck 2007).  For example, highly-mobile terrestrial organisms, such 
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as large mammals, are likely to perceive landscapes and to disperse at relatively coarse 

functional grains.  Woodland caribou, a large ungulate, has been shown to select for 

connected areas of habitat between 20 km2 and 100 km2 in area (O'Brien et al. 2006).  

Potentially, for mobile species, the functional grain could be orders of magnitude larger 

than the grain of the landscape data.  The fine-grained variation found on remotely-

sensed landcover maps, in these cases, may not be important for the movement and 

dispersal process, and can be rather a kind of noise that can obscure the coarser patterns 

in landscape features influential for connectivity (Anderson et al. 2010).   

 

One approach for removing the noise and revealing the pattern is to coarsen the spatial 

grain of the landcover raster (Anderson et al. 2010).  Scaling of rasters has been done 

using areal methods where cells are aggregated to reduce resolution, or variation is 

smoothed using a moving window (e.g. Cushman and Landguth 2010).  These steps can 

typically retain key landscape features when the optimal grain is not too much coarser 

than the grain of the original raster (e.g. Fig. 3-1, a, b).  However, when the grain 

required is orders of magnitude coarser than the original grain (e.g. Fig. 3-1, c, d), as it 

may need to be for mobile species, areal methods may obscure or eliminate small 

footprint features influential for connectivity, such as roads and rivers.  In addition, there 

is a practical upper limit to the grain area using these approaches, with very coarse grains 

resulting in the loss of nearly all information about the landscape (Fig. 3-1, d). 
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Figure 3-1.  Changing the analysis grain by areal methods.   

This can retain information about landscape structure when the change in grain 

area is relatively small (a and b).  When grain size changes by orders of 

magnitude nearly all information about the landscape is lost (c and d).  The effects 

of changing the grain using a modal cell aggregation rule are shown. 
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Patch-based landscape graphs (Urban and Keitt 2001, Fall et al. 2007, Galpern et al. 

2011) provide an alternative approach to scaling.  These methods can be used to 

aggregate habitat patches at different thresholds of dispersal ability (scalar analysis; 

Brooks 2003), essentially describing the landscape at a series of functional grains rather 

than areal grains (Bunn et al. 2000, O'Brien et al. 2006, Margosian et al. 2009). Here, we 

introduce a method that extends patch-based graphs by  modelling the relationships 

among regions of the landscape.  This method, called grains of connectivity, uses a 

Voronoi tessellation of a landscape raster to find polygons describing regions of 

proximity around habitat patches (Okabe et al. 2000, O'Brien et al. 2006, Fall et al. 2007).  

These Voronoi polygons are analogous to the cells in a typical raster, but unlike grid cells 

they can vary in shape and area in order to represent functionally connected regions of 

the landscape (Fig. 3-2).  Like areal scaling, the grains of connectivity method coarsens 

the grain of a raster, and filters out landscape features that do not impact the relationships 

between adjacent polygons.  Importantly, it can also scale to much larger grains than 

areal methods, which may be essential for describing pattern influencing connectivity for 

highly mobile organisms.  Please see Appendices 3-1 to 3-4 for an overview of minimum 

planar graph and grains of connectivity modelling (see also Galpern et al. 2012). 

 

When landscape connectivity is measured between two point locations, it has been called 

an effective distance (Adriaensen et al. 2003).  Distances calculated using least-cost paths 

first appeared (Adriaensen et al. 2003), followed by methods that consider multiple paths 

simultaneously (e.g. circuit theory resistance distance, conditional minimum transit cost; 

McRae et al. 2008, Pinto and Keitt 2009).   In all cases, distances are determined by 
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Figure 3-2.  Changing the analysis grain using grains of connectivity, a method that 

describes functional grain.   

This can retain information about landscape structure  at much larger grain areas, 

correctly representing small footprint features such as the river.  Grain is changed 

using a Voronoi tessellation (b) of a resistance surface (a) and by producing a 

landscape graph of patches (c and d).  This method is explained further in the text.  
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 producing a cost or resistance surface which parameterizes the effects of landscape 

features on movement and dispersal (Fig. 3-3, a).  These surfaces are typically raster 

grids, and effective distance is calculated by adopting a graph-based representation of the 

relationships among raster cells and finding a path between cells containing the point 

locations using a random-walk or Djikstra's algorithm (Fig. 3-3, b; Dijkstra 1959, 

Adriaensen et al. 2003, McRae et al. 2008).  An effective distance can be measured from 

a grain of connectivity in an analogous manner. For example, we find a network distance 

as the shortest distance between Voronoi polygons containing the point locations (Fig. 3-

3, c).  In this way grains of connectivity provides a scalar landscape graphs extension of 

least-cost paths; this network distance is essentially a least-cost path through a much 

coarser and irregular grain, and the distance separating polygons is itself an effective 

distance measured on the original raster grid (see Appendices 3-1 to 3-4). 

 

3.2.1. Objectives 

In any of these measures of effective distance, if the measurement grain is mismatched 

with the functional grain, we should expect metrics to incorporate some amount of error 

(Cushman and Landguth 2010).  Our objective in this paper is to compare the accuracy of 

three types of effective distance metrics:  the grains of connectivity method, least-cost 

paths and circuit theory-derived resistances.  Using artificial land cover rasters, we ask if 

these methods are capable of correctly measuring pattern in landscape resistance that we 

simulated to operate at grains that were much coarser than, or similar to, the original 

raster.  We also examine the effect of changing the grain size, using both areal and grains 
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Figure 3-3.  Two approaches to find effective distances from a resistance surface. 

A surface describing the resistance of landscape features (a).  Raster-based 

methods such as least-cost paths (b) are affected by fine-grained variation.  

Shortest network distances calculated using a grain of connectivity have many 

fewer steps (c), and potentially can filter out fine-grained variation that may 

contribute to error when measuring effective distance 
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 of connectivity approaches, and explore the sensitivity of our conclusions to resistance 

parameterization. 

 

3.3. Methods 

We tested a new method, called grains of connectivity, that can be used to find effective 

distances between point locations.  We determined these distances by first building a 

minimum planar graph (MPG), a patch-based landscape graph that models landscape 

connectivity using least-cost paths between focal high-quality habitat patches (Fall et al. 

2007, Urban et al. 2009, Galpern et al. 2011).  We then used the complement of the 

MPG, a Voronoi tessellation of the patches in the graph (Okabe et al. 2000, Fall et al. 

2007), to describe regions of proximity in resistance units around those patches (e.g. 

polygons in Fig. 3-2, c).  Tessellations at different scales (i.e. spatial grains) were 

achieved by  thresholding the MPG at varying maximum amounts of least-cost path 

distance (e.g. Fig. 3-2, b, c, d; Brooks 2003).  We describe these tessellations as grains of 

connectivity.  A grains of connectivity graph was then built by finding the mean least-

cost path distance between patches in each Voronoi polygon and using this to weight 

links (Fig. 3-3, c).  Finally, the effective distance between two locations was the shortest 

network distance on the grains of connectivity graph between polygons containing those 

locations.  Appendices 3-1 to 3-4 provide a detailed presentation of grains of connectivity 

and the grains of connectivity network distance. 

 

To explore the performance of the grains of connectivity network distance and two other 

effective distance metrics, we constructed artificial landscapes with three different 
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patterns, and analyzed them at multiple spatial scales.  For each pattern we defined how a 

hypothetical organism might perceive the landscape, and declared this the functional 

grain.  We then tested whether least-cost paths, circuit theory resistance distance, and 

grains of connectivity network distance (Adriaensen et al. 2003, McRae et al. 2008) were 

able to accurately describe this functional grain when measured at a series of grain sizes.    

 

We began by simulating a patchy landscape 400 x 400 cells in dimension with four cover 

classes (algorithm as in Rayfield et al. 2010). Circular high-quality habitat patches were 

then superimposed on the landscape in either a regular or irregular pattern depending on 

the treatment.  A resistance value (equal to 1, 2, 3, 4 or 5) was assigned to each of these 

five cover classes, with high-quality habitat assigned the lowest resistance (i.e. 1).   

 

For the first artificial landscape (treatment 1) we positioned high-quality patches in a 

regular pattern and superimposed an additional landscape feature, a radial structure, that 

divided the landscape into three regions (Fig. 3-4, right).  The resistance value of this 

feature was initially set to 20.  We proposed a hypothetical organism that could move 

freely within these regions but experienced resistance to movement and dispersal only 

when crossing the arms of the radial structure.  Each arm of the structure had a different 

thickness, meaning that these regions of the landscape differed from one another in their 

relative proximity.  A correct representation of the connectivity on this landscape for this 

hypothetical organism would produce ranked pairwise distances shown in Fig. 3-4 (centre 

bottom) for the six sampling locations shown in Fig. 3-4 (A to F).  Such a matrix implies 

that the resistance associated with the land cover on the map is essentially noise and that 
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the radial feature, a pattern that is evident at a broad extent, defines the shape and size of 

the functional grain influencing connectivity. 

 

In a second landscape (treatment 2), rather than adding a structure, we created pattern 

through the irregular placement of  high-quality habitat patches (Fig. 3-5, right).  Here we 

proposed an organism that could move freely within each of the four regions of the map, 

but experienced resistance to movement only when moving among these regions.  We 

proposed that resistance due to all landscape features within these regions was essentially 

noise, and that the connectivity relationships among these regions would be 

approximately proportional to their proximity in Euclidean space (i.e. that resistance to 

movement is lowest when moving horizontally between regions, intermediate when 

moving vertically, and highest when moving diagonally.)  Thus the four regions of the 

map, each containing a cluster of high-quality habitat, defined the shape and extent of the 

functional grain.  The expected effective distance matrix given these hypothetical 

conditions and eight sampling locations (Fig. 3-5, A to H) is given by the ranked pairwise 

distances (Fig. 3-5, centre bottom).  The goal in this treatment was to examine  landscape 

pattern in patch spatial configuration and whether it could be captured by the effective 

distance metrics. 

 

In  a third landscape (treatment 3) we used only the regular placement of high-quality 

habitat patches and proposed an organism that experienced landscape resistance at the 

grain of the original raster (Fig. 3-6, right).  In this case we used the least-cost path 

distances among six locations (Fig. 3-6, A to F) to create the expected effective distance  
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Figure 3-4.  Treatment 1.  

Effective distances measured using grains of connectivity (GOC) are most 

accurate at capturing a functional grain (i.e. a pattern affecting connectivity) that 

is coarser than the raster grain when the pattern has been created by an influential 

small footprint feature.  (Left) Accuracy of effective distance methods of 

describing the expected effective distances at a range of analysis grains.  (Centre 

top) The shape and configuration of Voronoi polygons at the most accurate GOC 

analysis grain.  (Centre bottom) The expected effective distances given the 

landscape pattern and the proposed functional grain.  (Right) The resistance 

surface used in this treatment.  Darker shading indicates a higher resistance to 

movement and dispersal. 



  88 

 

  

Figure 3-5.  Treatment 2.  

Effective distances measured using grains of connectivity (GOC) are most 

accurate at capturing a functional grain (i.e. a pattern affecting connectivity) that 

is coarser than the raster grain when the pattern created by the spatial 

configuration of high-quality habitat patches.  See Fig. 3-4 caption for explanation 

of sub-figures. 
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Figure 3-6.  Treatment 3.  

Effective distances measured at fine grains are most accurate at capturing a 

functional grain (i.e a pattern affecting connectivity) that is at the same grain as 

the raster.  The pattern is created by the land cover at the raster grain.  See Fig. 3-

4 caption for explanation of sub-figures. 

 

 

 

. 
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matrix (Fig. 3-6, centre bottom).  Because we were comparing against least-cost paths, 

we did not examine circuit theory resistance distances for this case. The purpose of this 

treatment was to examine if effective distances calculated at grains coarser than the 

pattern of interest could correctly capture pattern evident at fine grains. 

 

For each of these landscape treatments we manipulated the grain of measurement using 

four different methods.  For rasters we used moving windows at seven different grain 

sizes to smooth variation. Moving windows were applied with both a mean (win.mean) 

and a modal function (win.modal).  We also produced lower resolution rasters at eight 

different grains using a modal cell aggregation rule (aggr).  For these areal methods the 

upper grain size used was that where only two classes of feature remained on the raster.  

Grains of connectivity were determined for each landscape at threshold intervals of 1 

resistance unit, and those that produced different grains were retained.  The upper grain 

size was where the landscape was divided into two polygons. 

 

We found pairwise least-cost path distances (LCP) and circuit theory resistance distances 

(RES) for the specified sampling locations at each raster grain as well as at the grain of 

the original raster (base).  We also found the grains of connectivity network distance 

(GOC) for each grain of connectivity. 

 

Finally, to understand how the parameterization of landscape features affects conclusions, 

we used the first landscape (treatment 1) and assigned one of ten levels of resistance (5, 

10, 15, 20, 25, 50, 100, 200, 400, or 800) to the radial structure.  We examined accuracy 
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at identifying the correct effective distances using least-cost paths and circuit theory 

resistance methods for the base grain, and for the grains of connectivity method at all 

grains.  

 

In all cases we measured the accuracy of the effective distance metric using a rank 

correlation (Spearman's r) between the actual and expected effective distances for each 

pair of sampling locations.  We depicted the grain of connectivity with the highest 

accuracy (Best GOC) by plotting the outline of each Voronoi polygon at that grain.   

 

All analyses were conducted in R 2.14.1 (R Development Core Team 2012).  Landscape 

simulation and the areal manipulations of grain size on raster grids were done using the 

raster package (Hijmans and van Etten 2011).  Grains of connectivity and the grains of 

connectivity network distances were determined using the grainscape package (Galpern 

et al., in prep.).  Least-cost path and circuit theory resistance distances were calculated 

using the gdistance package (van Etten 2010). 

 

3.4. Results 

 

3.4.1. Accuracy at identifying functional grain 

The highest accuracies were found where the grain used to measure the effective 

distance, the analysis grain, matched the functional grain.  In treatments 1 and 2 (Figs. 3-

4 and 3-5, left) the functional grain, or pattern influencing connectivity, was the division 

of the landscape into three or four regions.  The GOC method found these functional 
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grains (Best GOC) as well as the resistance associated with moving between these 

regions, and accurately reproduced the expected effective distances among the reference 

locations.   In treatment 1, the most accurate GOC grain (Best GOC; Fig. 3-4, centre top) 

showed more than the expected three regions because there are insufficient sampling 

points to differentiate between this grain and one with fewer polygons.  Perfect accuracy 

is achieved, however, because the sampling points are grouped together correctly and the 

proximities of these three regions are as expected.  In treatment 2 the most accurate GOC 

grain (Best GOC; Fig 3-5, centre top) does not completely capture the four expected 

regions, and finds five instead, indicating that the GOC effective distances are subject to 

some amount of error.  In treatment 3 (Fig. 3-6, left), the proposed functional grain was 

many times smaller, and defined as the area of a single raster cell.  In this case the pattern 

was created by the land cover features on the artificial landscape, and the expected 

effective distances were the accumulated resistance of least-cost paths at this grain.  

Using grains of connectivity, in treatment 3, where the smallest possible analysis grain 

was about 2500 times greater in area than the proposed functional grain (Best GOC; Fig. 

3-6, centre top), produced less accurate results than using least-cost paths at most grain 

size and scaling methods.   

 

3.4.2. Effects of changing analysis grain 

Changing the analysis grain using an areal approach yielded relatively small differences 

in the accuracy of effective distance.  In treatment 1 (Fig. 3-4, left)  the use of a modal 

moving window (win.mean) where the most frequent cell value in the neighbourhood is 

assigned to the window, improved accuracy at coarse analysis grains.  In treatment 2 
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(Fig. 3-5, left) a mean moving window (win.mean) also improved accuracy at coarse 

analysis grains.  In treatment 3 (Fig. 3-6, left) all areal methods to increase analysis grain 

size resulted in poorer accuracy than the base grain, although the effect on accuracy was 

small (Fig. 3-6, left).  Finally, the accuracy of GOC reached its maximum as the analysis 

grain approached the expected functional grain size (Figs. 3-4 to 3-6, left), but the 

approach was not monotonic on either side of this maximum, exhibiting a threshold 

response instead.  In treatment 3, the accuracy of GOC fell as the mismatch between the 

functional grain and the analysis grain became extreme (Fig.3-6, left). 

 

3.4.3. Effects of changing resistance value 

When the resistance value assigned to the radial feature in treatment 1 was manipulated, 

the three types of effective distance metric performed differently (Fig. 3-7).  GOC 

showed a threshold response, finding the best analysis grain to describe the pattern when 

the resistance of the radial feature exceeded a minimum (resistance=20; Fig. 3-7).  LCP 

measured at the base analysis grain (LCP.base)  showed an asymptotic response, where 

the effective distance metric performed with increasing accuracy as the resistance value 

increased, and nearly matched the accuracy of GOC when this value was set above 200 

units (Fig. 3-7).  RES measured at the base analysis grain (RES.base) achieved an 

intermediate maximum in accuracy, but declined as the resistance value increased (Fig. 3-

7). 
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Figure 3-7.  Effects of manipulating the resistance value of the radial feature. 

The accuracy of effective distances measured using grains of connectivity (Best 

GOC) is least sensitive to the resistance value assigned to the radial structure 

(treatment 1).  Effective distances calculated using least-cost paths (LCP.base) can 

also accurately describe the pattern, but require the resistance value of the radial 

structure to be set much higher.  Resistance distances calculated using circuit 

theory (RES.base) performed less accurately than either of the other two methods. 

 

 

. 
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3.4.4. Relative accuracy of effective distance metrics 

LCP and GOC metrics generally performed more accurately than RES in treatments 1 

and 2 where the functional grain was much coarser than the analysis grain.  We did not 

test RES in treatment 3 where the functional grain was the same as the grain of the 

landscape data, because LCP was used to define the expected distances. 

 

3.5. Discussion 

Our simulations assumed that there is an optimal spatial grain at which an organism 

perceives landscape pattern during movement and dispersal (i.e. a functional grain for 

landscape connectivity).    We conjectured that if the analysis grain does not correspond 

to this functional grain, measures of landscape connectivity (e.g. effective distances that 

describe landscape resistance to movement) will be biased because they will incorporate 

too much or too little spatial heterogeneity.  By defining a correct functional grain for a 

hypothetical organism we asked if effective distance measured using least-cost paths 

(Adriaensen et al. 2003), circuit theory resistance (McRae et al. 2008), or a method we 

introduced called grains of connectivity, could find the true landscape resistance to 

movement this organism would experience.   

 

3.5.1. Matching analysis and functional grains 

Using three simulated landscapes we found that effective distance metrics were most 

accurate when the analysis grain matched the hypothesized functional grain.  This was 

true both when the functional grain was the same grain as the landscape data, and when it 

was much coarser than the landscape data.  These results support the expectation that the 
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scales of pattern measurement and ecological process should be comparable to ensure 

accurate conclusions (Wiens 1989, Wu 2004, Anderson et al. 2010).  In a similar exercise 

Cushman & Landguth (2010) found that using an analysis grain finer than the functional 

grain (in this case simulated using a stochastic gene flow simulation) had a relatively 

small effect on accuracy.  Our results also found a small reduction in accuracy when 

using too fine an analysis grain.  However, in qualitative terms, the effect of 

underestimating the grain size is more significant.  Had we conducted an analysis at the 

finest grain we might have concluded that landscape features were influencing 

connectivity between all locations, and overlooked the potentially important observation 

that certain pairs of locations are effectively at the same location in terms of their 

connectivity (e.g, locations with a zero rank expected effective distance in Figs. 3-4, 3-5).  

We would have missed the high connectivity, and therefore negligible landscape 

resistance, associated with moving between these points even though the two locations 

are not superimposed; in other words, we would have failed to recognize the role of 

spatial configuration in landscape connectivity. 

 

Increasing the analysis grain should better approximate these conditions, because using a 

larger grain area creates larger homogeneous regions; i.e. by increasing the size of the 

raster cell, simplifying landscape heterogeneity, or both (e.g. Figs. 3-1, 3-2).  However, 

we found that increasing the analysis grain using areal approaches such as cell 

aggregation rules or moving windows yielded no consistent improvement when the 

functional grain was coarse.  Using too coarse an analysis grain has been cited as a 

potential pitfall in least-cost path analysis because it may miss important landscape 
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variation affecting connectivity (Chetkiewicz et al. 2006, Beier et al. 2009, Sawyer et al. 

2011).  In contrast to these predictions, we found that using the coarsest analysis grain 

achievable by an areal approach produced a relatively small reduction in accuracy when 

the functional grain was much finer.  

 

Areal approaches simplify variation in a uniform manner and are therefore arbitrary with 

respect to landscape pattern (e.g. Fig. 3-1).  Where the landscape heterogeneity affecting 

connectivity is a continuous variable, such as elevation or moisture, it is possible that this 

simplification could approximate the correct functional grain. However, if the relevant 

landscape heterogeneity is discrete, such as topographic features, patches of cover 

vegetation, or human disturbance, an orthogonal approach is very likely to obscure 

pattern.  Ungulates, for example, may perceive their landscape in terms of the avoidance 

of roads and buildings (Coulon et al. 2008, Polfus et al. 2011).  These are discrete small 

footprint features that are likely to be eliminated when the map is rendered at a 

sufficiently coarse grain to reduce other variation (e.g. in vegetation features) that is 

potentially unimportant. 

 

The grains of connectivity approach to increasing the analysis grain can overcome the 

orthogonal limitations of areal approaches.  Using this method we produced analysis 

grains that described the locations of small footprint features on the base grain (e.g. Fig. 

3-4, centre top; polygon boundaries) as well as areas containing landscape variation 

unimportant for connectivity (e.g. Figs. 3-4, 3-5, centre top; polygon regions).  Grains of 

connectivity were also highly accurate at finding coarse functional grains.  This 
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underlines the potential of the method to differentially smooth heterogeneity, a process 

which is governed by the resistance value that is assigned to landscape features (see 

Appendix 3-1).   

 

3.5.2. Resistance parameterization 

In least-cost path or circuit theory based analyses, the assignment of resistance values has 

been shown to influence conclusions, and sensitivity analyses have been strongly 

recommended (Beier et al. 2009, Rayfield et al. 2010, Spear et al. 2010, Sawyer et al. 

2011).  We have shown that the grains of connectivity method is less sensitive to the 

assignment of resistance values than other methods.  The threshold response to increasing 

the resistance of the radial feature suggested that there was a narrower range in parameter 

values over which accuracy is variable compared to other methods (Fig. 3-7; Best GOC).  

It is important to note that the "best" grain of connectivity on which this observation is 

based requires testing multiple grains and using some criterion to select an optimal one.   

 

Although there may be less sensitivity if such a multiscale approach is used, the shape of 

Voronoi polygons is still reliant on the relative resistances assigned to features.  

Therefore calls to ensure that resistance parameters are correctly estimated using 

justifiable means, and that parameters reflect the costs of movement and dispersal, do still 

apply (e.g. Spear et al. 2010).  In addition, it appears that the differences between 

resistance values need not be large to capture the relevant functional grain.  This has the 

potential to further improve accuracy because high contrasts in resistance values, at least 
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in analyses that use least-cost paths, have been shown to increase sensitivity (Rayfield et 

al. 2010). 

 

Our results also support the conclusion that least-cost path and circuit theory-based 

analyses are sensitive the magnitude of resistance assigned to certain features (Rayfield et 

al. 2010, Sawyer et al. 2011).  Interestingly, in the single treatment we examined, 

increasing the resistance value improved results for least-cost paths, implying that by 

selectively assigning a high resistance to a feature it is possible to render variation in 

other features relatively unimportant for the effective distance.  The absence of 

alternative paths around the radial feature are likely causing this result (i.e. paths between 

different regions of the landscape must cross the feature, and therefore all paths between 

regions have a much higher effective distance than paths within a region).  

 

In disturbed landscapes it may be common for there to be no alternative to crossing a 

high resistance feature.  In a landscape genetic study of mountains goats, for example, a 

resistance surface was used where roads and high elevations were assigned high 

resistances (> 10 000 units) effectively creating a network of barriers.  The authors of this 

study found that effective distances measured using circuit theory explained genetic 

relatedness (Shirk et al. 2010).  It is possible that these results were influenced by these 

high resistance features, where effective distances across them were orders of magnitude 

larger than other distances, making the cost of crossing other features relatively 

unimportant.   
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Assigning high resistances to certain features and using fine-grained landscape data may 

be one way to model areas of high connectivity because it can potentially smooth out 

unimportant variation, but this requires a priori identification of these features.  In cases 

where there are no obvious high resistance features, or the amount of resistance may be a 

cumulative effect of multiple features, this approach will likely be unsuccessful.  A key 

contribution of grains of connectivity is defining these high resistance, low connectivity, 

regions. The Voronoi polygon in a grain of connectivity represents a region where 

resistance is below a certain threshold and, for the purposes of measuring effective 

distance, any features within this region are ignored (Appendices 3-1 to 3-4; Fig. 3-3, b).  

A transition across a Voronoi polygon boundary therefore represents a resistance higher 

than the threshold amount, and its value combines information from multiple landscape 

features that may be affecting movement between the polygons.  Thus, the boundaries of 

the polygons can be understood as meta-features that represent low connectivity and 

resistance to movement.  In some cases these meta-features may correspond spatially to 

actual features (e.g. the radial features in Fig. 3-4, right), and in others to the reduced 

connectivity created by combinations of landscape features (e.g. Fig. 3-5, right). 

 

3.5.3. Circuit theory at coarse functional grains 

In our simulations, the circuit theory resistance metric was less accurate than the least-

cost path metric in the two treatments where comparison was possible.  The potential of 

circuit theory to model multiple movement pathways in ways that least-cost paths cannot 

is compelling; in certain landscape configurations, circuit theory identifies greater 

connectivity between locations than least-cost paths because it considers multiple 
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alternative routes in parallel (McRae et al. 2008).  It could be argued that the landscape 

dominated by a radial feature (Fig. 3-4) is, therefore, not a fair test of circuit theory 

because alternative paths around the barrier do not exist.  However there is no such 

limitation in Fig. 3-5, and yet in both cases the method performed less accurately.  We 

caution that this poorer performance may only extend to identifying patterns at coarse 

grains relative to the landscape data, and because of our study design we were unable to 

meaningfully measure the accuracy of circuit theory at finer grains (see Methods).  These 

results, however, suggest that further investigation is warranted to understand the 

landscape conditions where circuit theory is more or less suitable than  least-cost paths.   

 

3.5.4. Study limitations 

Conducting stochastic simulations, by using multiple random landscapes with controlled 

properties for example, would help confirm the generality of the conclusions we have 

drawn.  Instead, we have adopted a case study approach in order to better focus on the 

properties of these metrics and illustrate their relative performance.  Therefore the 

possibility that some of our conclusions are specific to the scenarios we have illustrated 

should be considered, and accuracy differences among least-cost paths and circuit theory 

metrics may potentially be within sampling error.  Additionally, in two treatments we 

modelled functional grains that were coarser than the grain that could be achieved using 

areal scaling methods.  We therefore did not test the performance of areal scaling 

methods for functional grains of comparable area.  However, the orthogonality 

limitations of areal scaling and the likelihood that that landscape pattern in discrete 
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feature classes will be obscured  (see above) suggest that there will be limits to the 

accuracy of these approaches. 

 

3.5.5. Applications 

Although we have demonstrated that mismatching the grain of analysis and the functional 

grain is important for accuracy, our results also demonstrated that using least-cost path 

analysis at the finest grain could still be very accurate.  In all landscapes we studied, the 

rank order of effective distances remained highly correlated with the expected pattern 

across a broad range of analysis grains.  This implies that using a standard least-cost path 

approach may yield fair approximations of the correct effective distance no matter the 

functional grain at which the organism perceives spatial heterogeneity.  In landscape 

genetics studies, then, where the objective is to correlate effective distance measures of 

landscape resistance to genetic distance (e.g. Cushman et al. 2006, Schwartz et al. 2009, 

Shirk et al. 2010), using least-cost paths at the finest grain may capture a large proportion 

of the variation in landscape resistance, and therefore could be used to provide evidence 

of landscape influence on gene flow. We note, however, that in a woodland caribou 

landscape genetic study we found that coarse grains of connectivity, and not fine-grained 

rasters, produced conclusive evidence of landscape influence of gene flow (Galpern et al. 

2012), suggesting that other factors, such as the strength of the spatial genetic structure, 

may also play a role. 

 

Even in cases where the finest analysis grain may be adequate for correlative purposes, 

measuring landscape connectivity at multiple scales could still help highlight the causal 
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mechanisms of resistance.  Consider the high degree of accuracy possible when using 

grains of connectivity (e.g. Figs. 3-4, 3-5).  In these cases there existed a grain of 

connectivity that very closely depicted the simulated functional grain and described the 

effective distance among locations.  The Voronoi polygons produced by this method 

provide a spatially-explicit description of landscape pattern creating resistance, a tool that 

is potentially more useful than the relative influence of landscape features that can be 

obtained by testing a fine-grained resistance surface (e.g. Schwartz et al. 2009).  For 

example, at the finest grain we would have overlooked the importance of the spatial 

configuration to landscape connectivity, and we may have incorrectly concluded that 

certain landscape features were presenting resistance (see above).   

 

We foresee great potential for multiscale analyses, such as grains of connectivity, that 

attempt to model the functional grain influencing movement and dispersal.  As with other 

methods of measuring landscape connectivity, finding ways to test these models using 

empirical evidence of movement and dispersal, and applying more powerful approaches 

to identify supported grains, will remain important (Jaquiéry et al. 2011, Sawyer et al. 

2011, Galpern et al. 2012). 

 

3.5.6. Conclusions 

We demonstrated that matching the analysis grain with the functional grain (i.e. the 

perception of landscape heterogeneity for a hypothetical organism) can improve accuracy 

in effective distance measurements.  Using areal approaches to change the grain and find 

this match was not accurate when the functional grain was coarse relative to the 
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landscape data. Although these methods smooth variation, they do so uniformly, which at 

coarse grain sizes obscures pattern.  Grains of connectivity, a multiscaled approach that 

describes regions of proximity and the relationships among these regions, can coarsen 

landscape data without obscuring pattern.  We found that this method could accurately 

depict the functional grain pattern and represent this in effective distance measurements.   

A key advantage of a multiscaled analysis may be the potential to achieve a spatially-

explicit description of the pattern influencing landscape connectivity. 
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3.8. Appendices 

 

Appendix 3-1  

Producing grains of connectivity models and finding the grains of connectivity network 

distance. 
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Appendix 3-2   

Illustration of minimum planar graph and grains of connectivity modelling at four 

selected resistance thresholds (for Treatment 1). 

 

Appendix 3-3  

Illustration of minimum planar graph and grains of connectivity modelling at four 

selected resistance thresholds (for Treatment 2). 

 

Appendix 3-4  

Illustration of minimum planar graph and grains of connectivity modelling at four 

selected resistance thresholds (for Treatment 3). 
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Appendix 3-1.  Producing grains of connectivity models and finding the grains of 

connectivity network distance. 

The following figures describe eight steps in the production of a grains of 

connectivity model, and then demonstrate how it is used to find the effective 

distance between two locations.  The land cover raster used in Treatment 1 is 

shown here.  The process begins by finding the minimum planar graph (MPG).  

Then, a grain of connectivity and a grain of connectivity graph (GOC graph) is 

found.  Finally, a shortest path algorithm is used to find a network distance through 

the GOC graph. 
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Appendix 3-1.  Cont'd. 
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Appendix 3-1.  Cont'd. 
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Appendix 3-2.  Illustration of minimum planar graph and grains of connectivity 

modelling at four selected resistance thresholds (for Treatment 1). 

Four resistance thresholds (0, 97, 118 and 139 resistance units) were selected to 

illustrate the production of a minimum planar graph (MPG), grain of connectivity, 

and a grains of connectivity graph (GOC graph) at different grain sizes.  Note how 

that as resistance threshold increases, grain size also increases.  In addition, the 

shortest path between two locations is also a function of the grain size/resistance 

threshold used. 
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Appendix 3-2.  Cont'd.  
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Appendix 3-3.  Illustration of minimum planar graph and grains of connectivity 

modelling at four selected resistance thresholds (for Treatment 2). 

Four resistance thresholds (0, 100, 139 and 199 resistance units) were selected to 

illustrate the production of a minimum planar graph (MPG), grain of connectivity, 

and a grains of connectivity graph (GOC graph) at different grain sizes.  Note how 

that as resistance threshold increases, grain size also increases.  In addition, the 

shortest path between two locations is also a function of the grain size/resistance 

threshold used. 
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Appendix 3-3.  Cont'd. 
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Appendix 3-4.  Illustration of minimum planar graph and grains of connectivity 

modelling at four selected resistance thresholds (for Treatment 3). 

Four resistance thresholds (0, 93, 97 and 102 resistance units) were selected to 

illustrate the production of a minimum planar graph (MPG), grain of connectivity, 

and a grains of connectivity graph (GOC graph) at different grain sizes.  Note how 

that as resistance threshold increases, grain size also increases.  In addition, the 

shortest path between two locations is also a function of the grain size/resistance 

threshold used. 
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Appendix 3-4.  Cont'd. 
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4.1. Abstract 

Landscape genetic analyses are typically conducted at one spatial scale.  Considering 

multiple scales may be essential for identifying landscape features influencing gene flow.  

We examined landscape connectivity for woodland caribou (Rangifer tarandus caribou) 

at multiple spatial scales using a new approach based on landscape graphs that creates a 

Voronoi tessellation of the landscape.  To illustrate the potential of the method, we 

generated 5 resistance surfaces to explain how landscape pattern may influence gene flow 

across the range of this population.  We tested each resistance surface at the spatial grain 

typical of landscape genetic studies (200 m grid squares).  We then used our method to 

produce up to 127 additional grains for each resistance surface.  We applied a causal 

modelling framework with partial Mantel tests, where evidence of landscape resistance is 

tested against an alternative hypothesis of isolation-by-distance, and found statistically 

significant support for landscape resistance to gene flow in 89 of the 507 spatial grains 

examined. We found evidence that major roads as well as the cumulative effects of 

natural and anthropogenic disturbance may be contributing to the genetic structure.  

Using only the original grid raster yielded no evidence for landscape resistance to gene 

flow.  Our results show that using multiple spatial grains can reveal landscape influences 

on genetic structure that may be overlooked with a single grain, and suggest that 

coarsening the grain of landcover data may be appropriate for highly-mobile species.  

Grains of connectivity and related analyses have potential landscape genetic applications 

in a broad range of systems. 
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4.2. Introduction 

Landscape genetics is an emerging field with the goal of understanding how landscape 

influences genetic variation (Balkenhol et al. 2009, Storfer et al. 2010). Where habitat 

loss and fragmentation have occurred, landscape connectivity may also be reduced, 

presenting risks for the maintenance of genetic variation and for population persistence 

(Lynch et al. 1995, Crnokrak and Roff 1999, Crooks and Sanjayan 2006).  The restriction 

of dispersal and gene flow makes small and isolated populations susceptible to the loss of 

genetic variation through genetic drift (Keyghobadi 2007).   

 

The central importance of scale has long been recognized in ecology, where identifying a 

relationship between pattern and process may depend on the scale at which the pattern is 

described (Wiens 1989, Levin 1992, Wu 2004).  In landscape genetics, pattern that may 

influence connectivity, and therefore gene flow, may only be identifiable at certain scales 

of analysis (Anderson et al. 2010, Cushman and Landguth 2010a).  Work on western 

toads, for example, has shown that variation in landcover variables measured at fine 

spatial scales, in combination with variation in topographic variables measured at coarse 

scales may collectively influence landscape genetic relationships  (Murphy et al. 2010).   

Because of the importance of matching the scales of pattern and process, and the 

potential for incorrectly attributing the factors influencing gene flow, analyzing 

connectivity at multiple scales may be essential (Anderson et al. 2010, Cushman and 

Landguth 2010a).  
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A common method for describing connectivity in landscape genetics begins by 

representing the landscape as a raster, a regular grid of pixels where each is assigned a 

resistance for the landscape feature it represents.  The resistance value for each pixel is 

the hypothesized reduction in gene flow associated with the landscape feature, and can be 

thought of as a surrogate measure for a reduction in landscape connectivity.  From this 

resistance (or cost) surface, the effective distance for gene flow between two locations on 

the landscape can be calculated using least-cost paths or circuit theory, where the 

locations may represent groups or single individuals (Adriaensen et al. 2003, McRae et 

al. 2008, Pinto and Keitt 2009).   

 

A modification of this method has been proposed to describe landscape pattern at 

multiple spatial scales (e.g. Anderson et al. 2010).  By varying the spatial grain of 

analysis (sensu Dungan et al. 2002) of the grid raster, for example, by averaging 

resistance values using moving windows or by resampling rasters to larger pixel sizes 

(McRae et al. 2008, Cushman and Landguth 2010a), it may be possible to exclude local 

variation in landscape pattern that is unimportant for gene flow.  A recent formal 

evaluation of scale issues in landscape genetics suggests that conducting analyses at a 

finer spatial grain than that at which gene flow operates may increase power to detect 

landscape influences on genetic structure (Cushman and Landguth 2010a).  These authors 

found that changing the thematic resolution of the raster (i.e. the intervals at which 

environmental variability is described) had a greater effect than changing the spatial 

grain.   While these results compellingly suggest the reduced importance of spatial grain, 

these simulations did not examine gene flow processes operating at spatial grains widely 



  123 

divergent from those at which the pattern was measured.  There is, as yet, no evidence 

that using the finest-grained data available is adequate if gene flow responds to pattern at 

grains that are coarser by orders of magnitude (i.e. if the grain of the phenomenon is 

many times coarser than the grain of the analysis).  For this reason, multiscale analysis 

may still be appropriate for achieving a match between the scale of landscape pattern 

description and the gene flow process it is being used to understand. 

 

In the case of highly mobile terrestrial mammals, where dispersal is likely to occur over 

large distances, gene flow processes might be expected to respond to pattern at much 

coarser grains than for species with more limited dispersal capability.  In other words, 

gene flow may be more influenced by patterns evident at broader extents than by fine-

grained variation in landscape features.  It is possible to test this assertion by using a 

raster resistance surface where each pixel describes an area several kilometres in radius.  

A grain this coarse would reduce unimportant variation in landcover or topographic 

variables by averaging out local detail, for example, but it may also obscure or incorrectly 

render the pattern in small footprint features that might have a high impact, such as roads 

and rivers.  Therefore, a method that can coarsen the grain while retaining some pattern 

from the original grain may be helpful. 

 

Here we propose changing the grain of analysis not by areal means (e.g. McRae et al. 

2008, Cushman and Landguth 2010a), but by identifying patterns in functional landscape 

connectivity for the focal species.  The product is a series of related models, where each 

is analogous to a raster resistance surface, but has a unique grain reflecting a functional 
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connectivity hypothesis.  Because the grain describes patterns in connectivity, sets of 

features that reduce connectivity can be identified.  The method used to produce these 

grains comes from the patch-based landscape graphs tradition where landscape 

connectivity is modelled by building graphs (also called networks) describing the 

resistance to movement or dispersal between patches of habitat (Urban and Keitt 2001, 

Fall et al. 2007, Galpern et al. 2011).  Our method then divides the landscape into regions 

representing connected groups of patches in this graph to produce a tessellation, where 

each polygon in the tessellation represents many pixels of the original raster.  The 

polygons describe areas of connectivity for the organism within which we hypothesize 

gene flow will occur.  By systematically changing how we produce the underlying graph, 

a process called thresholding (e.g. O'Brien et al. 2006), many grains of connectivity can 

be examined.   

 

We illustrate our method using genetic data for a population of boreal woodland caribou 

(Rangifer tarandus caribou) in central Canada.  We begin by hypothesizing a series of 

alternative explanations for landscape resistance in the form of 200 m pixel radius grid 

rasters, and then test each of these rasters at multiple grains of connectivity.   We test 

each hypothesis against an alternative hypothesis of isolation-by-distance using a causal 

modelling framework with partial Mantel tests (Cushman et al. 2006, Shirk et al. 2010).  

In addition, we contrast our results with those that would have been obtained at the 

spatial grain of the original raster.  Our primary goal is to demonstrate a method for 

testing landscape genetic hypotheses at multiple spatial grains, and to explore the 

properties of this method using current analytical and inferential approaches in the field. 
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4.3. Materials and methods 

Boreal woodland caribou are designated as threatened under Canada’s Species at Risk 

Act (Government of Canada, 2003).  The Smoothstone-Wapeweka caribou population 

occupies a 25,000 km2 range (approx.; centred at 54o 17’ N, 105o 31’ W) within the 

Boreal Plains ecozone in central Saskatchewan, Canada.  A recent investigation of 

population genetic structure including genotypes from this caribou range, as well as the 

neighbouring province of Manitoba, found no evidence of distinct genetic populations 

within the study area (Ball et al. 2010).  However, accumulating evidence suggests the 

population is under stress. A mark-recapture study using genetic markers estimated that 

there are 154 animals in the western half of the study area, and the population is in 

demographic decline (Rettie and Messier 1998, Arsenault and Manseau 2011, Hettinga et 

al. 2012). Animals in this population are typically characterized as sedentary, and 

telemetry observations (1992 to 1995 and 2004 to 2008) of adult females reveal home 

ranges have become increasingly restricted (Minimum convex polygon: mean = 221 km2, 

sd = 145, n = 23; Arsenault & Manseau, 2011).   

 

4.3.1. Noninvasive genetic sampling and genotyping 

We conducted noninvasive sampling of fecal pellets in the winters of 2007 and 2008 by 

flying linear transects spaced 3 km apart to achieve systematic coverage of the study area. 

The helicopter stopped to collect samples where recent caribou activity was evident in the 

snow.  DNA was extracted from the tissue present in the outer mucosal layer of each 

sample, quantified and normalized through dilution and then genotyped at 10 
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microsatellite loci (BM848, BM888, BMS1788, MAP2C, RT5, RT6, RT7, RT9, RT24 

and RT30; Bishop et al. 1994, Wilson et al. 1997, Cronin et al. 2005) following an 

existing protocol (Ball et al. 2007, Ball et al. 2010).  Because tissue is sampled directly 

from the mucosal coat during winter sampling, there is high quality and quantity DNA 

available (Ball et al. 2007, Ball et al. 2010) reducing the challenges typically associated 

with fecal DNA profiling (e.g. Waits and Paetkau 2005).  Profiles were scored by at least 

two observers to ensure an interpretation consistent with previously determined scoring 

guidelines. Because individuals are typically sampled multiple times in this protocol, we 

used the ALLELEMATCH package for R, a genotype matching and clustering tool, to 

validate profiles and remove duplicate profiles (Galpern et al. 2012).  Identical profiles 

were those that matched at 18 out of 20 alleles and had match probabilities below a 

threshold of 0.0001 (Psib; Woods et al. 1999).   Samples with identical profiles were 

identified as validated for their genotype and culled to remove duplication.  Any unique 

individuals were profiled a second time to confirm the genotype.  We sampled a random 

subset of 10% of the samples and re-profiled them to estimate an error rate (see Hettinga 

et al. 2012).  For additional genotyping information please see Ball et al. (2010) which 

included a subset of the population under study.  For subsequent landscape genetic 

analyses we found the genetic distances between all pairs of the remaining profiles using 

the proportion of shared alleles metric (Dps; Bowcock et al. 1994, Shirk et al. 2010). 

 

4.3.2. Resistance surfaces 

We developed a map describing landcover, roads, as well as sites of other natural and 

anthropogenic disturbances in the manner described by Arlt & Manseau (2011) for an 
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overlapping study area.   This map, rasterized at 200 m pixel radius, served as the basis of 

subsequent steps (Fig. 4-1).  We next built a series of surfaces describing hypothesized 

resistance to gene flow for landscape features on this map (e.g. Cushman et al. 2006).   

Because finding appropriate and empirically-supported resistance values for each feature 

can be challenging (Shirk et al. 2010, Spear et al. 2010), we combined several strategies.  

We estimated resistance to gene flow for vegetation features using GPS telemetry 

observations from eighteen adult female caribou collared in the study area during 2004-

2008 (Arlt 2009).  Resistance values were the inverse of the odds ratio from a generalized 

estimating equation model describing the probability of caribou occurrence in a 

vegetation feature relative to a reference high quality habitat feature (O'Brien et al. 2006, 

Koper and Manseau 2009).  We selected mature jack pine dominated stands as the 

reference feature because this resource was the most limited of the candidate high quality 

mature coniferous habitats.  Resistance values for a provincial highway, minor forestry 

roads, gravel roads, cut blocks, lakes and rivers could not be determined empirically 

because caribou were seldom observed in association with these features.  Cut blocks and 

minor forestry tracks were assigned the same resistance value as that determined for 

young coniferous stands as these features are similar in physiognomy, and lakes and 

rivers were assigned a relatively high value (100) because resource selection function 

analyses suggest that caribou avoid these features (O'Brien et al. 2006, Arlt 2009, Koper 

and Manseau 2009).  In order to thoroughly explore the effect of major roads (gravel 

roads and provincial highway) we adopted an experimental approach where resistance 

values were assigned to one of five levels: no resistance to gene flow (resistance=1); 

equivalent to the largest vegetation feature (resistance=10); equivalent to the largest 
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Figure 4-1.  Habitat map for woodland caribou in the Smoothsone-Wapeweka 

range, Saskatchewan, Canada. 

Habitat map (top) and four maps highlighting distinctive sets of landscape 

features from the habitat map (bottom). 
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 natural feature (resistance=100); or, greater than the largest natural feature 

(resistance=200, 400).  We produced five grid raster resistance surfaces that differed only 

in terms of this  major roads resistance value (Appendix 4-1).  

 

4.3.3. Analysis at multiple scales 

We examined each resistance surface at its original grid grain (sensu Dungan et al. 2002) 

and at additional grains by further processing of the surface.  These additional grains 

were determined by patterns of landscape connectivity rather than pixel radius, and were 

composed of polygons that were heterogeneous in area and shape.   

 

To produce these additional grains we developed a method based on patch-based 

landscape graphs (Urban and Keitt 2001, Fall et al. 2007, Galpern et al. 2011).  In 

landscape graphs, patches of habitat are identified and a network is constructed 

describing the potential connections among patches.  Our method adds two steps:  (1) we 

tessellate the landscape into regions that contain connected groups of patches; and (2) we 

build a new graph of the resistance relationships among these regions.  We call a given 

tessellation of the landscape a grain of connectivity because the polygons in the 

tessellation describe a hypothesized region of proximity for the organism within which 

there is high connectivity and, therefore, negligible resistance to gene flow.  In contrast to 

typical landscape graphs, we model connectivity relationships among regions of the 

landscape rather than patches, a difference that allows us to model organisms that are not 

restricted to a certain patch class, but may select for that class.   
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To help describe the method, we applied it to an artificial 400 x 400 pixel landscape with 

five feature classes (Figs. 4-2 to 4-4).  First, we produced a resistance surface from the 

raster landcover data in which each feature class was assigned a resistance value (Fig. 4-

2, a).  Second, we identified patches of one feature class as the focal patches (Fig. 4-2, b).   

Third, we created a Voronoi tessellation of the resistance surface where Voronoi 

polygons describe a region of proximity in resistance units from the perimeter of each 

focal patch (Fig. 4-2, c).  This process is a generalization of the Voronoi tessellation (e.g. 

Okabe et al. 2000) for two-dimensional objects, where distance is measured in terms of 

resistance units and the generators are two-dimensional patches rather than points.  

Fourth, we extracted the minimum planar graph (Fig. 4-2, d), a simplified landscape 

graph model that approximates all potential connections with many fewer links (Fall et al. 

2007).  The minimum planar graph we used is a form of "Spatial Graph" where potential 

connections among focal patches are described by least-cost paths between the 

boundaries of those patches through the original raster resistance surface.   Fifth, we 

superimposed the minimum planar graph on the Voronoi tessellation to create a new 

graph (Fig. 4-2, e), where each graph node represented a Voronoi polygon, and the link 

weights of the minimum planar graph (least-cost path lengths) served as link weights in 

the new graph. 

 

To produce multiple grains of connectivity, we adopted a thresholding (or scalar) 

approach (Brooks 2003).  If polygons were separated by graph links with weights less 

than or equal to a maximum amount of resistance (the resistance threshold) they were 

combined to produce larger polygons (Fig. 4-3).  If two or more links were collapsed into 
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Figure 4-2.  Producing the finest grain of connectivity.  

Beginning with a grid raster resistance surface (a) where pixels representing 

landscape features are each assigned a resistance value, identify focal habitat 

patches (b) to serve as the nodes of the graph. Using these two-dimensional node 

patches and the resistance surface perform a Voronoi tessellation (c) to produce a 

minimum planar graph (d) where links between nodes are least-cost paths between 

the perimeters of node patches. Finally create a new graph (e) where each node 

represents an entire Voronoi polygon from c and links have the accumulated 

resistance of the corresponding least-cost path link in d.  This final graph shows the 

finest grain of connectivity possible for this resistance surface using these focal 

patches. 
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Figure 4-2.  Cont'd. 
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Figure 4-3.  Producing multiple grains of connectivity using a thresholding 

approach.  

The graph of Voronoi polygons (a) reproduced from Fig. 4-1, e is simplified by 

combining Voronoi polygons that are separated by a maximum or threshold 

resistance (b and c). A larger value for the link threshold produces a coarser 

spatial grain. Where two or more links are collapsed into one, the new resistance 

assigned to that link is the mean resistance of the original links (see sample link 

weight calculations below figure).  
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Figure 4-4.  Producing IBR hypotheses from grains of connectivity.   

The landscape resistance between pairs of sampling locations changes with grain 

(a, b and c). The accumulated resistance between locations is the length of the 

shortest path between the polygons containing these locations (e.g. arrows). Note 

that in some cases (b and c) sampling locations may be grouped in the same 

polygon resulting in zero-length paths.  
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Figure 4-4.  Cont'd. 
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one by the combination of polygons, the new link was assigned the mean weight of the 

collapsed links.  At the coarsest grain of connectivity shown (Fig. 4-3, c), the model 

assumes a negligible resistance to  gene flow inside the two polygons, while gene flow 

between the polygons will face resistance proportional to the mean of two links on the 

original graph (Fig. 4-3, a, i1 and i2).  In this example (Fig. 4-3, c), these links represent 

the cost of crossing the highest resistance feature (a river) on the original raster resistance 

surface (Fig. 4-2, a). 

 

Finally, we found the accumulated landscape resistance between sampling locations of 

individuals (Fig. 4-4) in a manner analogous to finding the least-cost paths between 

sampling locations on a  grid raster.  Typical implementations of least-cost path analysis 

represent the grid raster as a graph where each pixel is a node that is connected to its 

eight neighbours.  These methods use Dijkstra's algorithm to return the length of the 

shortest path through this graph (Dijkstra 1959).  Our method adopted the same approach, 

although unlike typical least-cost path implementations, our graphs have many fewer 

links and nodes that are not connected symmetrically to all neighbours.  As a result of the 

thresholding, the accumulated resistance between pairs of sampling locations also varied 

(Fig. 4-4).  Samples collected in the same polygon were considered to be at the same 

spatial location for the purposes of testing resistance to gene flow.  For this reason, grains 

where all sampling locations fall in the same polygon were not testable because there is 

no hypothesized resistance to gene flow (i.e. all shortest path distances between 

individuals were zero).   
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To model grains of connectivity for woodland caribou on the Saskatchewan landcover 

map, we chose mature jack pine dominated stands as the focal patches in our landscape 

graphs.  Our rationale for using this feature class was the same as for selecting the 

reference feature in our generalized estimating equation models (see above).  We chose 

resistance thresholds to ensure a broad range of patterns were available for testing; small 

intervals were used to capture pattern at lower thresholds of connectivity where 

vegetation patterns are likely to be more influential (resistance thresholds < 950 units; 10 

unit interval), while higher thresholds were spaced at larger intervals because trials of the 

method indicate that patterns tend to become more stable at successive thresholds 

(resistance thresholds > 1000 units; 100 unit interval). All analysis steps were completed 

in R 2.13.1 (R Development Core Team 2012), using the grainscape package for R 

(Galpern et al., in prep.).  Graph and spatial analysis routines in grainscape depend on the 

packages gdistance, igraph, sp and raster (Pebesma and Bivand 2005, Csardi and Nepusz 

2006, van Etten 2010, Hijmans and van Etten 2011), as well as the software package 

SELES (Fall and Fall 2001).   For the accumulated resistance between sampling locations 

on the original grid rasters we used the R package gdistance (van Etten 2010).   

 

4.3.4. Assessment of IBR hypotheses 

To make inferences about landscape influences on spatial genetic structure, we used both 

grid and grains of connectivity models to find the accumulated landscape resistance 

between the sampling locations of all pairs of individuals.  These pairwise resistances 

form an isolation-by-landscape-resistance hypothesis (IBR), and typically, isolation-by-

distance (IBD; Wright 1943) is used as an alternative hypothesis (e.g. Cushman et al. 
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2006, Shirk et al. 2010).  We measured IBD in a manner that reflected the grain of the 

IBR hypothesis.  For grains of connectivity, IBD hypotheses were the Euclidean 

distances between the centroids of polygons containing the sampling locations of pairs of 

caribou.  This enabled a measurement of geographic distance at the same spatial grain as 

landscape resistance.  For the grid models, the IBD hypothesis was the Euclidean 

distance between point sampling locations.  

 

We elected to examine IBR and IBD between individuals rather than groups of 

individuals because simulations indicate that this approach has more power to detect 

subtle gradients in genetic structure (Cushman and Landguth 2010b).  Genetic distances, 

IBR and IBD hypotheses among pairs of individuals were produced as symmetrical 

distance (or dissimilarity) matrices for all grid and grains of connectivity models.  

Matrices for all grains and hypotheses were the same dimension (i.e. contained pairwise 

genetic, landscape resistance, or geographic distances for all individuals in the study).  

We followed a causal modelling framework with partial Mantel tests (Cushman et al. 

2006).  We used pairs of partial Mantel tests with 104 permutations of the residuals from 

a null regression model (zt 1.1; Bonnet and Van de Peer 2002) to test the influence of the 

two hypotheses on genetic distance.  The strongest support for an IBR hypothesis was 

indicated when IBR significantly explained genetic distance with IBD partialled out 

(Genetic ~ IBR | IBD, rP > 0, P < 0.05) and IBD was non-significant with IBR partialled 

out (Genetic ~ IBD | IBR, P >= 0.05).  We interpreted cases where IBR and IBD were 

both significant as confounding the role of the two biological explanations and, therefore, 

as being inconclusive about the resistance hypothesis.  Cases where only IBD was 
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supported, or where neither IBR nor IBD were supported, suggested that landscape 

pattern at that grain was not important for gene flow.  

 

4.3.5. Interpretation of IBR hypotheses 

To demonstrate the properties of the grains of connectivity method, we selected a single 

grain for visualization from each of the five resistance surfaces where only the IBR 

hypothesis was supported.  In each case we chose the grain that produced the highest 

partial Mantel statistic for the IBR hypothesis.  We produced maps showing the polygons 

at these selected grains of connectivity to illustrate how the method has simplified the 

resistance surface through changes to the size and shape of the polygons.   

 

We also further examined all grains of connectivity and the original grid rasters on which 

they were based to determine which features were most influential for least-cost paths at 

different grains, and to demonstrate, in general, how changing the grain influences 

resistance.  To find the most influential features at a grain of connectivity, we recorded 

the landscape features traversed by the least-cost paths retained when calculating the 

resistance between polygons (e.g. to find Fig. 4-3, c, k1 we examined the least-cost paths 

from Fig. 4-2, d used to estimate Fig. 4-3, a, i1 and i4).   We then calculated the 

resistance-weighted proportional contribution of sets of landscape features in these links 

(sets given in Appendix 4-1, italics) to the total accumulated resistance between 

polygons.  For the original grid resistance surfaces on which these grains were based, we 

performed a comparable calculation, using the resistance-weighted proportional 

contribution of feature classes on the raster as a measure of influence. 
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4.4. Results 

 

4.4.1. Genotyping 

Screening of profiles (N=166) indicated that many were duplicates.  Sibling probability 

of identity for this data set was 9.7 x 10-5. We identified and removed six profiles with 

single allele dropouts by comparing these to other perfectly matching profiles in a 

clustering procedure.  We found 95 unique individuals, 43 of which had been sampled 2 

to 5 times each.  Six individuals sampled at more than one site were assigned to the site 

of their first chronological observation.  For these individuals the number of alleles per 

locus ranged from 7 to 14, and heterozygosity at each locus from 0.46 to 0.88.   Data 

were available for individuals at 37 sampling sites. 

 

4.4.2. Assessment of IBR hypotheses 

We tested 507 IBR hypotheses, five of these were the original grid raster resistance 

surfaces (Table 4-1).   These surfaces consisted of 815 400 cells 0.04 km2 in area.  The 

grains of connectivity exhibited complex variation in the spatial characteristics of the 

tessellations as the resistance threshold changed (Fig. 4-5). The number of polygons in 

these hypotheses varied from 25 to 2366, mean polygon areas varied from 11.8 km2 to 

1115.1 km2 and maximum polygon areas varied from 265.5 km2 to 22 417.4 km2. 
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Table 4-1.  Overview of IBR hypotheses.   

(a) Summary data on hypotheses tested;  (b) Results of causal modelling of these 

hypotheses, giving the number of hypotheses in each causal modelling category.  

 

 

 
Grid 

Grains of 
connectivity

(a) IBR hypotheses tested   

Resistance surfaces  5 5 

Grains per surface 1 80 to 1271 

Total hypotheses 5 502 

(b) Causal modelling2   

IBR only supported 0 89 

IBD only supported 0 48 

IBR and IBD supported 5 0 

Neither IBR nor IBD supported 0 365 
 

1Grains of connectivity were not testable when all sampling locations fell in one polygon 
 
2Support for causal models tested at an alpha level of 0.05 using partial Mantel tests with 
104 permutations. 
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Figure 4-5.  The spatial characteristics of Voronoi polygons. 

The count and area of polygons in a grain of connectivity is determined both by 

the resistance threshold and the underlying resistance surface upon which the 

grain of connectivity is based. 
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Simple Mantel correlations between genetic distances and IBD hypotheses varied with 

the grain (r=0.22 for 5 grids; rmean=0.18, rsd=0.05, for 502 grains of connectivity; P < 

0.0001).   Log transforming the IBD hypothesis did not improve the correlation (r=0.17 

for grids; rmean=0.14, rsd=0.04 for grains of connectivity; P < 0.0001).  IBR and IBD 

hypotheses, however, were highly correlated (rmean=0.79, rsd=0.002 for grids; rmean=0.93, 

rsd=0.03  for grains of connectivity; P < 0.0001).   

 

We found the strongest support for IBR in 89 of the grains of connectivity hypotheses 

(Table 4-1; Fig. 4-6; IBR only supported).  In these cases, polygons in the tessellations 

were many times larger in areal terms than the cell sizes typically used in grid rasters (see 

Appendix 4-2). The remaining grains of connectivity IBR hypotheses were not significant 

when tested against a corresponding IBD hypothesis (Table 4-1; Fig. 4-6;  IBD only 

supported; Neither IBR nor IBD supported). All five grid hypotheses were confounded 

with IBD preventing a conclusion about the role of landscape pattern at these grains (Fig. 

4-6; IBR and IBD supported; see Appendix 4-3).  

 

4.4.3. Interpretation of supported IBR hypotheses 

Grains of connectivity IBR hypotheses based on four of the five original grid resistance 

surfaces were supported in the causal modelling framework (Fig. 4-6; IBR only 

supported; also see Appendix 4-2).  However, interpreting results using only the 

resistance parameters of the original grid can be misleading because landscape resistance 

distances for grains of connectivity models are determined by the links between polygons 

and the resistance associated with any given link combines the  
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Figure 4-6.  Partial Mantel test results. 

Results demonstrate the high variability in explanatory power of the IBR 

hypotheses based on grains of connectivity (GOC; right) compared to those based 

on the original grid rasters (Grid; left).  Rows show resistance surfaces that are 

identical except for the resistance assigned to major roads.  Eighty-nine hypotheses 

based on four of five resistance surfaces show evidence of isolation-by-landscape-

resistance in a causal modelling framework (IBR only). Circles and letters (A, B, C, 

D) indicate significant grains of connectivity hypotheses that meet the criteria for 

further examination (see text) and these grains have been visualized (maps at right).  

Red points on maps are sampling locations. 
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Figure 4-6.  Cont'd. 
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resistance of multiple types of features (Figs. 4-3, 4-4).  In addition, sampling locations 

falling within a polygon have, by definition, zero landscape resistance distances among 

them.  This means that the shape, size and location of polygons (i.e. spatial configuration) 

may also influence results by defining which sampling locations are connected without 

resistance.  Therefore, in our interpretation we consider both the spatial configuration of 

polygons and the multiple features creating resistance between polygons. 

 

We explored these using four grains of connectivity that met the criteria for selection 

noted in Methods (Fig. 4-6, A, B, C, D; see Appendix 4-2).  Among these selected grains 

we found two distinct spatial configurations.  The first described a highly-connected 

landscape with sampling locations in two polygons (Fig. 4-6; A; major roads=1).  This 

pattern produced a significant but relatively weak partial correlation with genetic distance 

(rP=0.0308; Appendix 4-2).  The introduction of a higher roads resistance to the 

underlying resistance surface produced a second distinct spatial configuration with many 

more polygons (Fig. 4-6, B, C, D; major roads >= 100).  This pattern produced a stronger 

partial correlation with genetic distance (max rP=0.1140).  Although the three selected 

configurations were similar in these cases, the resistance threshold associated with the 

configurations was different.  Notably, higher resistance thresholds appeared to improve 

the partial Mantel statistic (Fig. 4-6, B, C, D). 

 

We used influence plots (Fig. 4-7) to explore the landscape features represented in the 

resistance between polygons.  Again, two patterns emerged in the four selected cases.  In 

the first pattern (Fig. 4-7, A) links between polygons had approximately equal  
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Figure 4-7.  The influence of landscape features on the resistance among polygons 

varies with  grain and resistance surface.  

Sets of landscape features are those depicted in Fig. 4-1 (bottom).   Left panel 

shows influence for the original grid rasters (Grid), and right panel for connectivity 

models derived from that grid (GOC).  Rows show resistance surfaces that are 

identical except for the resistance assigned to major roads.  Vertical lines with 

labels (A, B, C, D) indicate the resistance threshold of the four significant grains of 

connectivity that met the criteria for further examination (see text).  
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Figure 4-7.  Cont'd. 
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contributions from disturbance features such as minor forestry tracks, cut blocks and 

early-successional vegetation, as well as from hospitable coniferous features.  This is a 

case where the cumulative effect of multiple low resistance features is structuring the 

resistance between polygons.  In the second pattern (Figs. 4-7, B, C, D), major roads 

contributed the largest proportion of resistance to the links, implying that resistance to 

gene flow between polygons is dominated by these features  

 

4.4.4. Comparison of grid and grains of connectivity IBR hypotheses 

Changing the grain of analysis using grains of connectivity produced relatively high 

variability among IBR hypotheses (Fig. 4-6, rP, GOC).  In contrast, analyses at the scale 

of the original grid raster resulted in nearly identical explanations of genetic structure, 

despite large differences in the resistance values assigned to major roads (Fig. 4-6, rP, 

Grid; see Appendix 4-3).   A probable cause of this low variability is that other features 

that were not manipulated were dominant; i.e. the influence of major roads on the 

resistance surface was sufficiently low that these features did not have much effect on the 

length of least-cost paths.  Indeed, influence plots (Fig. 4-7, Grid) indicated that water 

features, and not roads, contributed the majority of the resistance on the grid 

representations of the landscape.  Therefore, least-cost paths on these grids would tend to 

avoid lakes more, on average, than they would any other feature.  Examining these same 

surfaces using grains of connectivity, however, showed that using much coarser grains 

introduced variability by reducing the influence of some landscape features, and 

increasing the influence of others (Fig. 4-7, GOC).  The change of grain produced this 

variation, in part, because the least-cost paths between the areas of high connectivity (i.e. 
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the polygons) also changed.  For example (Fig. 4-7, major roads = 400) resistance 

between two sampling locations is, on average, more influenced by roads when grains of 

connectivity are used than when the original grid is used.  Also, water features that are 

dominant on the grid, have very low influence at all grains of connectivity.  These results 

suggest that using grains of connectivity effectively accomplishes a re-parameterization 

of the grid resistance surface, in some cases increasing, and in others decreasing, the 

influence of features for connectivity.  

 

4.5. Discussion 

We analyzed landscape pattern and its effect on gene flow using both grid rasters and 

grains of connectivity to determine shortest paths between pairs of animals.  We found 

evidence of landscape resistance to gene flow operating at a range of spatial grains many 

times coarser than the original landscape raster, suggesting that the landscape patterns 

influencing gene flow in this woodland caribou population are operating at very broad 

extents.  We found no evidence of landscape resistance to gene flow that could be 

separated from geographic distance using the original landscape raster.  Our results 

reinforce the value of examining pattern at multiple spatial scales, and particularly for 

wide-ranging organisms like woodland caribou, the possibility that pattern may be 

resolved using units hundreds of square kilometres in area. 

 

4.5.1. Grains of connectivity  

Examination of pattern at multiple scales remains an important challenge in ecology, and 

methods for decomposing pattern generated by phenomena operating at multiple spatial 
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scales such that its scale-specific effect can be quantified continues to be the focus of 

active research (Levin 1992, Keitt and Urban 2005, Bolliger et al. 2007, Anderson et al. 

2010).  We have shown that by varying the resistance threshold it is possible to test 

multiple grains of connectivity representing a variety of scale-specific patterns.  This is in 

contrast to the grid raster approach at a single grain, where the hypotheses we tested 

produced virtually identical results despite differing widely in the parameterization of a 

landscape feature.  We also found that different resistance surface parameterizations can 

converge on similar conclusions when examined at different scales (e.g. Fig. 4-6., B, C, 

D).  Importantly, this finding suggests that using a multiscaled approach may be able to 

reduce the sensitivity of results to the parameterization of resistance features, an effect 

that has received extensive commentary (e.g. Rayfield et al. 2010, Spear et al. 2010).   

 

Our findings underline that researchers must also give careful consideration to the grain 

of analysis, and test multiple grains because the optimal grain for capturing pattern will 

likely never be known a priori.  For wide ranging organisms in particular, where the 

process of gene flow may occur over broad extents, some spatial simplification of the 

landscape data may be required to smooth out unimportant variation, and highlight the 

pattern driving the process.  Analysis at multiple grains may also be necessary to account 

for uncertainty in a species' perception of its environment (e.g. Sawyer et al. 2011).    

 

An important contribution of the grains of connectivity approach is the potential to 

improve this match between the scale of landscape pattern and the process of gene flow.  

Rather than describing the dominant cover in a region of the landscape, the polygons in a 
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grain of connectivity directly describe the pattern, or spatial configuration of landscape 

features, that may influence gene flow.  These polygons identify regions of the landscape 

thought to have high connectivity, with resistance among polygons modelled in a way 

that is analogous to typical least-cost path or circuit theory applications (e.g. Cushman et 

al. 2006, Schwartz et al. 2009).  Our approach achieves a coarser representation of the 

landscape than has typically been used in landscape genetics and therefore an omission of 

features that may be unimportant.  A coarser representation also has the potential to 

compensate for the spatial uncertainty in sampling locations caused by organisms with 

large home ranges (e.g. Graves et al. 2012) which can potentially bias the connectivity 

estimates.  

 

Coarser grains are achieved by increasing the resistance threshold, which also increases 

the area of polygons.  However, this is more flexible than increasing the grain of analysis 

by an areal approach (Anderson et al. 2010, Cushman and Landguth 2010a).  Resampling 

or smoothing with moving windows may be useful for evaluating higher order pattern in 

landcover types, or in continuous landscape features such as topography, but these are 

less likely to capture landscape pattern associated with small footprint features that occur 

over a large spatial extent, such as the roads and cut blocks in this study.  In contrast, 

small footprint features contribute to the pattern in our approach when their spatial 

location and resistance are such that they will influence connectivity.  Although the 

spatial grain may be coarser than the original raster and therefore some variation has been 

smoothed out, all the feature classes on the original raster are still represented insofar as 

they contribute to the links between polygons.  Further investigation using simulated 
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genetic data is needed to understand the comparative efficiency of grains of connectivity 

and areal scaling of raster grids at capturing gene flow operating at a broad range of grain 

sizes. 

 

The method used for testing grains of connectivity is similar to  an existing landscape 

genetic approach.  Isolation-by-barrier (IBB) hypotheses have been used by some authors 

to test the influence of specific features like roads, rivers, and valleys on gene flow (e.g. 

Cushman et al. 2006, Shirk et al. 2010).  These models produce a similarly structured 

distance matrix that also contains information about spatial configuration at coarse 

grains; sampling locations on one side of a barrier are assigned zero distances, while 

those separated by one or more barriers are assigned a non-zero distance.  Our approach 

differs in that the polygon boundary describes the approximate location of the "barrier" 

(which can be understood as the absence of high connectivity), and the distance 

separating locations on either side of a polygon boundary are the resistances of landscape 

features that must be traversed to enter the polygon.  Grains of connectivity essentially 

provides a systematic way of producing a series of related IBB hypotheses, where the 

threshold parameter gives the minimum resistance to gene flow associated with this 

"barrier".  In contrast to existing uses of IBB hypotheses, the identification of these 

"barriers" is based on a functional connectivity hypothesis rather than on the assignment 

of a resistance value to features thought to be important (e.g. Shirk et al. 2010). 
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4.5.2. Potential applications 

Grains of connectivity may be advantageous for modelling biological phenomena that 

operate at spatial grains that are much coarser than the grain of landscape features 

represented on typical landcover and remotely-sensed maps.  However, as a general 

approach for coarsening the grain of landscape data, the method may also be suitable for 

modelling phenomena that operate at finer grains (e.g. dispersal for less mobile species, 

or those that are more influenced by patterns in vegetation).  Equally, the method will 

work for organisms that are restricted to certain patch types, or exist in discrete 

populations.  In this study we defined the focal patch in our landscape graph model (e.g. 

Fig. 4-2, b)  in terms of its selection by caribou and not because caribou are found 

exclusively in these features.  The focal patch could easily be defined in other ways that 

are relevant for the study system (see for review Galpern et al. 2011).  For example, in an 

amphibian landscape genetic study, wetlands may be suitable as focal patches in the 

landscape graph, and the grains of connectivity might be shown using nodes and links, 

rather than as Voronoi polygons, in order to represent the regions of high connectivity in 

a meaningful way for the species (e.g. as Fig. 4-2, d, rather than its equivalent Fig. 4-2, 

e).   

 

Grains of connectivity  is just one application of patch-based landscape graph modelling 

to landscape genetics.  We can foresee partitioning the resistance surface using other 

scalable properties of patch-based graphs, such as network community structure (e.g. 

Bodin and Norberg 2007). Much potential still remains for using patch-based graph 

models to understand landscape influences on gene flow (Galpern et al. 2011). 
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4.5.3. Limitations of the analysis 

Improving statistical methods in landscape genetics is a central task, and additional work 

is needed to develop a powerful and accurate approach (Jaquiéry et al. 2011).  A concern 

with the causal modelling framework we adopted is that there is no means of ranking the 

many hypotheses in terms of their relative support (Shirk et al. 2010).  Partial Mantel 

tests used in the framework remain controversial, and suffer from a lack of statistical 

power as well as a tendency to underestimate the variation explained by landscape 

resistance (Legendre and Fortin 2010).  While using partial Mantel tests is appropriate 

when hypotheses must be formulated using distances (Legendre and Fortin 2010), and 

studying landscape resistance at the among-individual level with these tests has been 

shown to be effective (e.g. Cushman and Landguth 2010b), using  multiple statistical 

methods may be a more robust approach to confirm conclusions (e.g. Jaquiéry et al. 

2011).  

 

There is also an increased probability of type I error resulting from the 507 hypothesis 

tests we conducted.  Because each hypothesis described spatial configurations that are 

difficult to define a priori, we feel that this large number of tests was required to 

systematically examine contrasting explanations for gene flow.  Approaches to select a 

subset of grains to test are certainly warranted, however, and remain an important area for 

future research.   

 



  156 

We used metrics that model the movement pathways of organisms as the minimum-

weight path through a graph (e.g. least-cost paths, Fig. 4-2, d, links; shortest paths 

between polygons, Fig. 4-4).  These approaches can be criticized for failing to capture 

multiple movement pathways that are apparent to organisms, and circuit theory has been 

proposed to address this concern (McRae et al. 2008).  We foresee that grains of 

connectivity could equally incorporate circuit theory principles; for example, by applying 

random walk algorithms when finding link lengths on the minimum planar graph, and 

determining the resistance between polygons. 

 

Some of the features we reported to have influenced gene flow (e.g. roads, disturbance 

features) have appeared within the last 40 years (Arlt and Manseau 2011), which may be 

insufficient time for genetic drift to have created the observed genetic structure, even 

under an extreme scenario of no gene flow among regions of the landscape.  Genetic drift 

is both a function of the number of generations elapsed and the effective population size 

(Nei and Chakravarti 1977).  While we were not able to estimate effective population 

size, the woodland caribou in this population are few in number (see Methods).  

Combined with telemetry evidence that these caribou have limited home ranges (see 

Methods), we find it plausible that population size and rates of gene flow could be 

sufficiently low for drift to have produced a measurable effect. Accumulating evidence 

suggests woodland caribou avoid roads of any size, as well as forests in early 

successional stages, which may be the mechanism behind the reduced dispersal and gene 

flow our results imply (Koper and Manseau 2009, Polfus et al. 2011).  
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4.6. Conclusion 

We examined the effects of landscape connectivity on gene flow in a multiscale analysis.  

Using this approach we identified landscape influences on spatial genetic structure that 

would have been missed if analysis had been conducted only at the spatial grain of a grid 

raster.  Our results underline the importance of multiple grains of spatial analysis, and 

suggest that further investigation of spatial grains hundreds of square kilometres in size 

may be appropriate for highly-mobile species.  Grains of connectivity, and related patch-

based landscape graphs methods, hold much promise for multiscale modelling in 

landscape genetics. 
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4.9. Appendices 

 

Appendix 4-1 

Parameters used to generate five resistance surfaces.   

 

Appendix 4-2 

Results for selected grains of connectivity models.    

 

Appendix 4-3 

Results for grid models for five resistance surfaces tested.  
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Appendix 4.1.  Parameters used to generate five resistance surfaces.   

 

Landscape feature Resistance value 

Hospitable landcover 

Jack pine dominated, mature 1.00 

Treed muskeg 1.00 

Jack pine, black spruce, mature 1.14 

Spruce, mature 1.38 

Black spruce, larch, mature 1.54 

Disturbance landcover 

Mixedwood 2.86 

Conifer, intermediate 4.25 

Hardwood 4.96 

Conifer, young and recent burn 10.39 

Cut blocks1 10.39 

Minor roads (Forestry tracks)1  10 

Water 

Open water1 100 

Open muskeg 4.59 

Roads 

Major roads (Gravel roads and highway)1,2  1, 10, 100, 200, 400 
 

1Resistance values were not estimable (see text). 

2Five resistance surfaces were produced differing only in this parameter (see text). 
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Appendix 4-2.   Results for selected grains of connectivity models.    

The table shows one IBR only grain of connectivity model for each resistance 

surface (the model with the highest IBR | IBD partial Mantel statistic; see text).  

These models were selected for further examination (see Figs. 4-6 and 4-7). 

 

 
 

 
 

  Paired partial mantel tests 

Major 
roads 

(resistance 
units) 

Label 
on 

Figures 
4-6 and 

4-7 

Resistance 
threshold1 

(resistance 
units) 

Mean 
polygon 

area 
(km2) 

Polygon 
count 

 
IBR | IBD 

rP 
IBR | IBD 

P 
IBD | IBR 

rP 
IBD | IBR 

P 

1 A 720 422.4 66 

 

0.0309 0.0308 -0.0261 0.0528 

10 — — — — 

 

No IBR only model 

100 B 810 224.8 124 

 

0.0802 <0.0001 -0.0112 0.2580 

200 C 1200 324.2 86 

 

0.0956 <0.0001 -0.0210 0.1060 

400 D 1600 464.6 60 

 

0.1140 <0.0001 -0.0294 0.0532 

       
 

1Minimum path distance possible for any transition between two polygons;  i.e. the minimum 
resistance of crossing a polygon boundary 
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Appendix 4-3.  Results for grid models for five resistance surfaces tested.   

No grid model produced an IBR only hypothesis.  In all cases both IBR and IBD 

were supported in the causal modelling framework. 

 

  Paired partial mantel tests 

Major roads 
(resistance 

units) 
 

IBR | IBD 
rP 

IBR | IBD 
P 

IBD | IBR 
rP 

IBD | IBR 
P 

1 
 

0.0532 0.0026 0.0954 <0.0001 

10 
 

0.0491 0.0038 0.0967 <0.0001 

100 
 

0.0513 0.0030 0.0962 <0.0001 

200 
 

0.0514 0.0027 0.0962 <0.0001 

400 
 

0.0513 0.0032 0.0963 <0.0001 
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5.1. Abstract 

Modelling how organisms perceive heterogeneity in landscape structure may be essential 

for understanding landscape connectivity.  Aggregations of patches that animals perceive 

as high quality, or regions of the landscape that present low fitness costs to movement, 

create a spatial pattern that we describe as a functional grain.  If animals are responding 

to this pattern, they may be distributed in larger more connected regions of the landscape.  

The response to landscape features may also be seasonally-dependent, varying with life 

history stage.  We used telemetry observations from a woodland caribou population 

(Rangifer tarandus caribou) in three seasons, and tested hypothetical functional grains 

defined by the spatial configuration of patches (patch only), by landscape resistance to 

movement (matrix only), and by a combination of the two (patch + matrix).  We 

developed a measure of fit that describes caribou distribution with respect to larger more 

connected regions in the grain, and used this to ask:  (1) are seasonal caribou locations 

consistent with a random functional grain, implying that landscape connectivity has not 

shaped their distribution? and (2) given a functional grain model, are seasonal caribou 

locations distributed in larger connected regions than random points, implying that 

caribou are responding in some measure to the shape, size, and location of the connected 

regions.  We found significant support for functional grains defined by a matrix model,  

in both late winter and summer seasons, where the resistance of landscape features such 

as roads and highways are the most influential features.  Grains defined only by patch 

spatial configuration fit the data no better than random grains, underlining the importance 

of landscape resistance for connectivity in highly-mobile organisms such as caribou.  We 

found the least support for functional grains during the calving season, where caribou 
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may be moving to predator-safe locations without regard to landscape configuration.  The 

grains of connectivity approach that we applied to create hypothetical functional grains 

provides a flexible means for modelling the functional response of organisms to 

heterogeneity at multiple spatial scales, and therefore for achieving a closer match 

between landscape pattern and the process it is being used to understand. 
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5.2. Introduction 

Landscape connectivity continues to be of wide interest to ecologists and land managers 

(Urban et al. 2009, Sawyer et al. 2011). Knowledge of how landscape features affect the 

movement and dispersal of organisms may be critical for addressing the impacts of 

habitat fragmentation (Fischer and Lindenmayer 2007), preventing the spread of 

pathogens and invasives (Margosian et al. 2009), building protected area networks 

(Minor and Lookingbill 2010), and facilitating migratory responses to climate change 

(Heller and Zavaleta 2009).   

 

Exploring how organisms perceive heterogeneity is an essential step in modelling 

movements on landscapes (Anderson et al. 2010).  Animals may perceive landscapes at a 

certain functional grain (Baguette and Van Dyck 2007).  The concept of functional grain 

implies that movements that are finer than a certain spatial grain are by-products of other 

routine behaviours such as foraging or predator avoidance, and therefore present no 

additional fitness or energetic costs.  Conversely, movements that are coarser than this 

spatial grain represent a fitness cost to the organism (e.g. because they may interrupt 

routine behaviours, or increase predator exposure).  It is at this coarser movement scale 

that dispersal and landscape connectivity comes into play: where the movement of 

organisms engaging in cost-minimizing behaviour is influenced by the spatial 

configuration of habitat and the resistance of features in the matrix.   

 

In this paper, we adopt a similar, but scalable, concept of functional grain. We understand 

the functional grain as the grain at which landscape connectivity operates: as an 



  175 
 

interaction between landscape structure and animal perception.  Just as functional 

connectivity is the interaction between structural connectivity and animal response to that 

structure (Calabrese and Fagan 2004), functional grain represents the interaction between 

spatial grain and animal response to structure perceived at that grain.  Functional grains 

are therefore scale-dependent representations of functional connectivity.  In spatial terms, 

a functional grain corresponds to a pattern consisting of regions of relatively high 

connectivity, where the boundaries of these regions are associated with landscape 

structure perceived as costly by an organism.   A functional grain therefore defines a set 

of regions of high connectivity within which movements are not costly and where 

landscape heterogeneity, such as the configuration and resistance of features, are not 

influencing movement.   

 

Elsewhere, in landscape genetics, this idea has been presented as the "grain of the 

landscape connectivity process," where the emphasis has been on ensuring that landscape 

connectivity is described at a spatial grain of comparable area to that of the process, in 

order to achieve accuracy in measurement (Anderson et al. 2010, Cushman and Landguth 

2010).  In either terminology, representing a functional grain, or the grain of the process, 

requires some approach that can highlight landscape heterogeneity that an organism may 

perceive as costly.  Defining this perception, however, is challenging as this requires 

behavioural evidence (e.g. the maximum distance over which dispersal is likely to occur) 

and a description of the fitness costs an organism experiences during movement, both of 

which may prove difficult or impossible to obtain (Bunn et al. 2000, Baguette and Van 

Dyck 2007).   
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An alternative approach is to identify a landscape pattern, and then ask if this pattern fits 

empirical evidence of the process (e.g. O'Brien et al. 2006, Anderson et al. 2010, 

Cushman and Landguth 2010, Galpern et al. 2012).  If animals are responding to a 

functional grain, given sufficient time, this may influence gene flow, resulting in patterns 

of genetic similarity consistent with the grain (Galpern et al. 2012).  Equally, over shorter 

time scales, organisms may respond to functional grain patterns in their distribution, and 

we might expect organisms to select larger, more connected, regions of the landscape 

described by the grain (O'Brien et al. 2006).   

 

Testing these questions requires a method for generating hypothetical functional grains.  

One approach is to scale landscape resistance surfaces by increasing the size of the spatial 

grain (e.g. Anderson et al. 2010, Cushman and Landguth 2010).  Resistance surfaces are 

typically in raster format and they model the inverse of landscape connectivity: the 

resistance of the landscape to movement and dispersal (McRae et al. 2008, Sawyer et al. 

2011).  In these models, the raster cell can be understood as the region of high 

connectivity in the functional grain, and the value assigned to each cell is the amount of 

resistance that must be overcome to move out of this region (e.g. Galpern and Manseau 

2012).  As raster data is upscaled, the size of the cell increases, and so does the region of 

high connectivity.   This type of areal scaling has the secondary effect of simplifying the 

raster, and therefore removing spatial heterogeneity that may be uncorrelated with 

movement and dispersal (Anderson et al. 2010).  However, such simplification may be 

arbitrary with respect to the landscape, and can obscure small footprint features that are 
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influential in structuring the functional grain and are therefore important for a 

connectivity assessment (Galpern and Manseau 2012). 

 

Here, we adopt another method to identify hypothetical functional grains that can 

accommodate pattern consisting of discrete features (O'Brien et al. 2006, Galpern et al. 

2011, Galpern et al. 2012).  Grains of connectivity can flexibly identify regions of high 

connectivity on a resistance surface and model the resistances among them by using 

landscape graphs methods (Galpern and Manseau 2012, Galpern et al. 2012).   A 

common assumption of landscape graph modelling is the requirement that organisms are 

restricted to well-defined habitat patches except during dispersal (Urban and Keitt 2001, 

Galpern et al. 2011).  Grains of connectivity extends this approach to make it suitable for 

highly mobile organisms where habitat may be better described as a probability region 

than an identifiable patch (Galpern and Manseau 2012, Galpern et al. 2012).  Rather than 

modelling patches exclusively, the method finds a region of proximity in the vicinity of a 

focal patch or a focal location.  This region is found using a Voronoi tessellation and the 

resulting Voronoi polygons describe proximity in landscape resistance units.  

 

A powerful property of grains of connectivity, and of landscape graphs, is their 

scalability (Brooks 2003).  All landscape graph methods can depict landscape 

connectivity at different scales by thresholding the graph at a maximum expected 

dispersal distance for the organism, sometimes called a gap-crossing distance (Bunn et al. 

2000, Urban and Keitt 2001, Brooks 2003).  This permits a multiscale analysis that can 

accommodate uncertainty in this movement distance, a challenging parameter to obtain in 
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many species (Bunn et al. 2000).  In grains of connectivity, because the graph represents 

polygons in a tessellation, multiscale analysis also increases the size of the regions of 

high connectivity by combining polygons.  This has the secondary effect of selectively 

removing spatial heterogeneity:  features are removed if they create less resistance than a 

threshold amount, where resistance is measured cumulatively and radiating outwards 

from the focal patch or focal location used to structure the tessellation (Galpern and 

Manseau 2012). 

 

Organisms may also have changing perceptions of spatial heterogeneity at different 

stages of their life history.  If this is true, testing the importance of landscape connectivity 

at different temporal scales would require a dynamic definition of functional grain.  For 

example, during juvenile dispersal organisms may have evolved a maximum movement 

threshold or gap crossing distance (Baguette and Van Dyck 2007), but during other stages 

it is conceivable that movement may have a lower maximum threshold, or instead be a 

response to landscape composition such as habitat area or quality.  The scalability of 

grains of connectivity is useful in this regard, as the method can also accommodate 

uncertainty associated with the maximum movement distance at different life history 

stages (Bunn et al. 2000).   

 

Here, we use grains of connectivity to model hypothetical functional grains for the 

threatened boreal woodland caribou (Rangifer tarandus caribou) at multiple spatial 

scales.  By altering how grains of connectivity models are produced, we create 

hypotheses describing landscape connectivity as the spatial configuration of patches, as 
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the resistance of landscape features, or as a combination of both, and then test the 

predictions of these models at three different temporal extents.  We investigate whether 

caribou are distributed on the landscape in a manner that reflects these hypothetical 

functional grains using telemetry data collected in three behaviourally-defined seasons.  

Specifically, we ask two questions:  (1) are seasonal caribou locations consistent with a 

random functional grain, implying that landscape connectivity has not shaped their 

distribution? and (2) given a functional grain model, are seasonal caribou locations 

distributed in larger connected regions than random points, implying that caribou are 

responding in some measure to the shape, size, and location of the connected regions?  

Using the three types of models, we also investigate the influence of patch spatial 

configuration and landscape resistance for these conclusions. 

 

5.3. Methods 

Boreal woodland caribou have been assigned a threatened designation under Canada's 

Species at Risk Act (Government of Canada 2003).  The Smoothstone-Wapeweka caribou 

population in central Saskatchewan, Canada (approx. 25,000 km2 range; centred at 54o 

17’ N, 105o 31’ W)  is in demographic decline, and the landscape has been highly 

fragmented by forest harvesting activities (Arlt and Manseau 2011, Arsenault and 

Manseau 2011, Galpern et al. 2012).  The sensitivity of woodland caribou to 

anthropogenic disturbance has been well-documented (e.g. Dyer et al. 2001, Polfus et al. 

2011).  Telemetry evidence indicates a restriction in the average home ranges of animals 

over a 16 year period (Arsenault and Manseau 2011) and landscape genetic studies 



  180 
 

suggest that natural and anthropogenic disturbance may be influencing genetic structure 

by reducing rates of gene flow within the population (Galpern et al. 2012).    

 

Seventeen adult female caribou were collared in the study area in 2005 and 2006 using 

Lotek GPS collars (Lotek Wireless Inc., 115 Pony Drive, Newmarket, Ontario).  

Locations were recorded every 4 h and grouped according to seasons defined by 

movement rates calculated from the data (Dyke 2008).  We used points during the late 

winter season (16 January-27 March 2005 to 2008) to assess landscape connectivity 

models at a time where deep snows often restrict movement and habitat selection is 

strongest (Brown et al. 2007, Koper and Manseau 2009).  Points during the calving (29 

April – 7 June 2005 to 2008) and summer seasons (7 July – 12 August 2005 to 2008) 

were used to assess our models at two additional temporal extents where female caribou 

may prioritize predator avoidance when calves are at heel (Rettie and Messier 2001).   

The number of locations per animal ranged from 368 to 1391 in late winter, 132 to 826 

during calving, and 125 to 662 during summer.  These data were used to characterize the 

distribution of animals during three seasons. 

 

5.3.1. Modelling landscape connectivity at multiple spatial scales 

We produced landscape connectivity models representing three ways in which caribou 

may perceive landscape heterogeneity:  (1) a model describing patch spatial configuration 

(patch model); (2) a model describing both patch spatial configuration and the resistance 

of landscape features (patch + matrix model); and, (3) a model describing the resistance 

of landscape features (matrix model).  We used a grains of connectivity approach 
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(Galpern and Manseau 2012, Galpern et al. 2012) to create hypothetical functional grains 

from these models at a range of spatial scales.  Grains of connectivity is similar to patch-

based landscape graph modelling, and creates a Voronoi tessellation of the landscape 

(Okabe et al. 2000, Urban and Keitt 2001, Fall et al. 2007, Galpern et al. 2011) that can 

potentially represent features that are influential for connectivity, while removing those 

that may be less influential (Galpern and Manseau 2012).   

 

We illustrate this approach using an artificial landscape (Fig. 5-1).  For models 

examining patch spatial configuration, the process begins with a raster resistance surface 

describing the location of focal patches (Fig. 5-1, a, unshaded regions), which are 

typically spatially rare habitat of high importance for the organism.  The remainder of the 

landscape (Fig. 5-1, a, shaded) is assigned a resistance value of 1, implying that 

landscape resistance is equivalent to geographic distance (patch model; Fig. 5-1, a-d).  To 

capture the effects of landscape features in the matrix between patches, a raster resistance 

surface can be included (patch and matrix model; Fig. 5-1, e-h), describing both the 

locations of the focal patches, and the relative resistance to connectivity imposed by 

landscape features (darker regions indicate higher resistance; Fig. 5-1, e).  

 

In either case, a minimum planar graph (MPG) is extracted (Fig. 5-1, b, f).  This is a 

network model that approximates the connectivity relationships between all pairs of 

patches using links that describe the Euclidean distance or, alternatively, the least-cost 

distance, associated with movement and dispersal between patches (Fall et al. 2007).  The 
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Figure 5-1.  Three ways of producing hypothetical functional grains using the grains 

of connectivity method.   

(a to d) Modelling landscape connectivity as the spatial configuration of patches 

(patch only): (a) landscape raster showing locations of focal patches (unshaded 

regions); (b) minimum planar graph (MPG) is extracted modelling the connectivity 

relationships among these patches, and when the resistance of landscape between 

patches is set to 1 (shaded), the links represent geographic distances between patch 

perimeters;  (c) grain of connectivity (GOC), a tessellation describing regions of 

proximity around these patches, is also produced when extracting the MPG.  (d) 

multiple spatial grains are found by thresholding the MPG at different maximum 

movement distances (links) and combining polygons from the GOC.  (e to h) 

Including information about resistance to movement in the landscape (patch + 

matrix):  (e) same as a, with resistance of other landscape features included (darker 

shades indicate higher resistance);  (f) same as b, with links as effective distance of 

least-cost paths between patch perimeters;  (g) same as c, with regions of proximity 

around patches in resistance units:  (h) same as d, with thresholding at different 

amounts of effective distance.  (i to l) Excluding information about patch spatial 

configuration (matrix only):  (i) same as e, with a lattice of focal points 

superimposed;  (j) same as f, with links as effective distance between focal points; 

(k) same as g, with regions of proximity around focal points (called a lattice GOC 

model);  (l) same as h.  
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Figure 5-1.  Cont'd. 
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complement of the MPG is a tessellation that divides the landscape into regions of 

proximity around the focal patches (Fig. 5-1, c, g).  This is done using a generalization of  

the Voronoi tessellation (Okabe et al. 2000, Fall et al. 2007) for two-dimensional 

generators that we call a grain of connectivity (GOC).  When a non-uniform resistance 

surface is used, the tessellation describes proximity in resistance units (Fig. 5-1, g) rather 

than geographic distance units (Fig. 5-1, e) leading to differences in the shape and extent 

of the polygons that make up the tessellation.  Finally, to analyze connectivity at multiple 

grain sizes, the GOC is simplified (Fig. 5-1, d, h) using a scalar approach (Brooks 2003) 

that thresholds the MPG according to a maximum link weight in geographic or least-cost 

distance units that can be understood as a maximum movement threshold required for 

two patches to be connected (Bunn et al. 2000, Urban et al. 2009).  Polygons in the GOC 

are combined to reflect the structure of the MPG at a given threshold.  A polygon 

therefore describes a region of high connectivity, and a polygon boundary represents the 

approximate locations of sets of features that may collectively impose resistance to 

movement.  We used these polygons to define the spatial extent of landscape that is 

effectively homogeneous for connectivity (i.e. as a hypothetical functional grain). We 

have described grains of connectivity with additional detail elsewhere (Galpern and 

Manseau 2012, Galpern et al. 2012). 

 

We introduced a third application of the GOC technique to investigate the role of 

landscape configuration at multiple spatial grains without also explicitly modelling patch 

spatial configuration (matrix model; Fig. 5-1, i to l).   Lattice GOC finds the connectivity 

relationships for a lattice of focal points superimposed on the raster resistance surface 
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(Fig. 5-1, i).  It extracts and thresholds a GOC model in an identical manner, except these 

systematically positioned focal points replace focal patches on the raster.  

 

To model the Saskatchewan landscape for caribou we used a landscape map (Fig. 5-2) 

and a resistance surface (Table 5-1) previously shown to influence gene flow in this 

population at several spatial grains (Galpern et al. 2012).  We restricted our modelling to 

a focal extent chosen to circumscribe the 100% minimum convex polygon of telemetry 

locations (Fig. 5-2, a).  Mature jack pine, a spatially rare vegetation feature selected by 

caribou (Koper and Manseau 2009) was used as the focal patch type in the patch models 

(Fig. 5-2, b).  For all three model types, we produced grains of connectivity at 150 

resistance thresholds. Focal points in the lattice GOC model were separated with a radius 

of 3600 m. To enable a standard comparison between models we derived a new 

connectivity metric identical in form to the expected cluster size (ECS; O'Brien et al. 

2006, Fall et al. 2007).  We found the expected polygon area (EPA) for a given grain and 

model as 

௚ܣܲܧ = 	∑ ܣ௝ଶ௠௝ୀଵܣܲ  

where there are m polygons in a grain,  PAj is area of the polygon j at grain g, and the 

total landscape area is given by A.  EPA describes the size of the polygon into which a 

randomly selected point is expected to fall.  It can be understood both as a central 

tendency in grain size and as a metric of connectivity for an entire landscape.  To reduce 

the number of grains tested, we selected grains for further analysis based on their EPA, 

retaining for each model between 6 and 12 grains that were approximately evenly spaced  
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Figure 5-2.  Sampling distribution and landscape features in the Smoothstone-

Wapaweka woodland caribou range in Saskatchewan, Canada. 

 (a) Home ranges (100% minimum convex polygon) for seventeen female caribou 

used in this study.  (b) Simplified landcover data used to determine locations of 

focal patches and the matrix model of landscape resistance. 
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Table 5-1.  Parameters used to generate the matrix model landscape resistance 

surface. 

 

Landscape feature Resistance value 

Jack pine dominated, mature1 1.00 

Treed muskeg 1.00 

Jack pine, black spruce, mature 1.14 

Spruce, mature 1.38 

Black spruce, larch, mature 1.54 

Mixedwood 2.86 

Conifer, intermediate 4.25 

Open muskeg 4.59 

Hardwood 4.96 

Minor roads (Forestry tracks)  10 

Conifer, young and recent burn 10.39 

Cut blocks 10.39 

Open water 100 

Major roads (Gravel roads and highway)  400 

 

1Feature class used for focal patches 

  



  188 
 

in their EPA up to a maximum EPA of 400 km2, above which the focal extent was 

generally dominated by a large polygon. 

5.3.2. Testing model predictions 

First, we asked whether seasonal caribou points were distributed in a manner that was 

consistent with a random functional grain (i.e. a pattern where ecological correlates of 

landscape connectivity such as patch spatial configuration and matrix resistance were not 

included).  To make this null model we produced Voronoi tessellations (Okabe et al. 

2000), by distributing point generators randomly within the focal extent (Fig. 5-2, a) 

where the resulting Voronoi polygons were clipped by the extent.   Random tessellations 

at different grain sizes were produced by varying the number of generators, allowing the 

shape, size, and location of the polygons, and consequently EPA, to vary randomly.  We 

used 35 treatments each with a different number of generators (20 to 450), and for each 

treatment we found a distribution of 100 random tessellations for a total of 3500 random 

functional grains.  To assess whether seasonal caribou points were distributed in a 

manner consistent with these random functional grain models, or alternatively, consistent 

with a non-random patch, matrix or patch + matrix model, we found the point mean 

polygon area (ݐ݊݅݋݌	ܣܲതതതത) for a given grain and model as 

തതതത௚ܣܲ	ݐ݊݅݋݌ = 	∑ ௜௡௜ୀଵ݊ܣܲ  

where there are n points, and PAi is area of the polygon containing point i at grain g.  

Evidence against a null model and support for an alternate at a given grain was found by 

comparing the ݐ݊݅݋݌	ܣܲതതതത for the alternate model to a bin of random functional grains with 

an EPA of ±25 km2 of the alternate.  Statistical significance was recorded where  ݐ݊݅݋݌	ܣܲതതതത for the alternate was greater than that for 95% of the random functional grains 
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in the bin.  Because we were unable to control the distribution of EPA for the random 

grains, bins could not contain a constant number of random grains. 

 

Second, as an alternative way of testing the fit of the data to a given model, we asked 

whether seasonal caribou locations were more consistent with the predictions of the 

model, than were random points on the landscape.  We defined the fit of the model as 

evidence of caribou locations in larger polygons on average than random points.  To do 

this, we compared the actual locations with 100 sets of random points of equal size 

(O'Brien et al. 2006) distributed within the focal extent (Fig. 5-2, a) on habitat types 

(Table 5-1) in proportion to their use of that habitat.  We again used the point mean 

polygon area (ݐ݊݅݋݌	ܣܲതതതത) as a means of comparison, but instead calculated it for different 

sets of points.  Evidence that seasonal location data fit a given model was declared where 

the ݐ݊݅݋݌	ܣܲതതതത for the seasonal locations was greater than that for 95 of the 100 sets of 

random points.  

 

All steps were completed using R 2.14.1 (R Development Core Team 2012).  We used 

our own grainscape package to find grains of connectivity (v0.1; Galpern et al, in prep), 

as well as deldir igraph, and raster packages to perform point Voronoi tessellation, graph 

and spatial analyses respectively (Csardi and Nepusz 2006, Hijmans and van Etten 2011).  

The extraction of the MPG was done by grainscape using SELES v3.4 software (Fall and 

Fall 2001) that is bundled with the package. 
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5.4. Results 

5.4.1. Modelling landscape connectivity at multiple spatial scales 

In landscape graph and grains of connectivity modelling the resistance threshold 

expresses a theoretical maximum movement distance  for the organism.  In patch only 

models this resistance threshold is equivalent to a geographic distance separating patches, 

while in other models the threshold is an effective distance (Adriaensen et al. 2003).  This 

is the model parameter that we manipulated to investigate the role of connectivity at 

multiple spatial scales (Bunn et al. 2000, O'Brien et al. 2006, Urban et al. 2009).  When 

this value is increased, more focal patches or points on the landscape become connected, 

which has the effect of producing larger regions of high connectivity (i.e. larger 

polygons).  The relationship between threshold and the expected polygon area (EPA; Fig. 

5-3) is an increasing function, although the correlation between these variables depends 

on the landscape structure.  Fewer polygons with larger areas also implies the amount of 

spatial heterogeneity described by the functional grain decreases. 

 

 Fig. 5-3 (top) illustrates that the resistance threshold is not a consistent means of 

describing the connectivity or spatial heterogeneity implied by a functional grain when 

multiple models are being compared.  Similar values of EPA, a connectivity and spatial 

scaling metric, are described at very different thresholds depending on the model (Fig. 5-

3, a, b, c).  This is partly because threshold is only comparable with reference to a 

standard set of graph nodes used to build the MPG (i.e. Fig. 5-1, b, f, j), and this set of 

nodes differs depending on whether patches or a lattice of points is used in the model.    

When the three models were examined at the same EPA, they described generally similar  
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Figure 5-3.  Expected polygon area (EPA) provides a consistent way to compare 

models at the same spatial grain.   

EPA is a measure describing the coarseness of the functional grain or alternatively 

the expected area of a region of high connectivity.  Increasing the resistance 

threshold, a graph parameter that specifies the maximum dispersal distance for two 

locations on the landscape to be connected, also causes an increase in EPA, 

demonstrating how the area of this region and maximum movement are related.   (a, 

b, c) When EPA is held constant, the three types of landscape connectivity model 

(patch only, patch + matrix, matrix only), and a random functional grain model 

representing the absence of landscape connectivity, differ in the shape, size and 

location of the polygons that describe the hypothetical functional grain.  EPA is 

used in this study to compare models with one another, and with random models, as 

it provides a consistent means of describing both the spatial heterogeneity of a 

model and the landscape connectivity it implies. 
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Figure 5-3.  Cont'd. 
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sets of polygons (Fig. 5-3, a, b, c).  Differences in the count, shape, and size distribution 

of those polygons among the models are a consequence of how landscape heterogeneity 

is incorporated in each case.  Three examples of random functional grains, however, 

indicate very different counts, shapes and size distributions (Fig. 5-3, random) from the 

models at the same EPA, demonstrating that this null hypothesis controls for spatial grain 

size but not for polygon count, shape or location. 

 

5.4.2. Testing model predictions 

By comparing against random functional grains, we found evidence that caribou are 

responding to the connectivity of their landscape at a range of functional grains.  We 

found that the point mean polygon area (ݐ݊݅݋݌	ܣܲതതതത), an index of how large the polygon 

(or region of high connectivity) is on average for all caribou locations, was never 

significantly higher than the random expectation when only a patch model was used (Fig. 

5-4, patch only).  In other words, the shapes and locations of polygons produced using 

only patch spatial configuration are no more informative than using a random tessellation 

to explain caribou distribution.   

 

The introduction of a matrix model of landscape resistance changed these results, and led 

to several significant grains when using late winter and summer seasonal locations (Fig. 

5-4, patch + matrix).  The removal of the influence of patch spatial configuration in the 

model, produced a still broader range of significant grains overall (Fig. 5-4, matrix only).  

The largest deviations from the random expectation appeared in the matrix only model 

for late winter and summer locations, suggesting that the functional grain pattern 
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Figure 5-4.  Tests of three types of functional grain models in three seasons using a 

random functional grain null hypothesis.  

Significant functional grains (P < 0.05) indicate where caribou seasonal locations 

fit the functional grain better than random functional grains.  Uncertainty in caribou 

perception of spatial heterogeneity is controlled by testing multiple functional grain 

sizes (levels of EPA).  The fit of a functional grain to the seasonal locations at a 

given grain size is given by ݐ݊݅݋݌	ܣܲതതതത.  Significance is declared where observed fits 

are greater than 95% of the random functional grain fits at an equivalent EPA (± 

25km2).  At all grain sizes, functional grains based only on patch spatial 

configuration (patch only) provide no fit improvement over random tessellations.  

Overall, there is the least support for functional grains during the calving season. 
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Figure 5-4.  Cont'd. 
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 produced by our landscape resistance model (Table 5-1) is most aligned with the 

distribution of caribou during these seasons.  Generally, these results emphasize that the 

patterns in connectivity produced by landscape resistance may be more important than  

pattern produced by patch spatial configuration, at least during these seasons.  Caribou 

use of the landscape during calving may not be well explained by any of our functional 

grain models, with only two significant grains showing relatively small deviations from 

the random expectation (Fig. 5-4, matrix only, calving).   

 

Using sets of random points asks whether caribou are using larger polygons in a given set 

than would be expected at random.  This is in contrast to using random functional grains, 

which asks if a functional grain is better aligned with the data than a random set of 

polygons.  Because there is no base standard of comparison, a random points null 

hypothesis is not useful for evaluating the relative performance of the models, and, 

instead, we use it as a secondary test of whether or not a model is consistent with the 

data.  We found evidence that caribou were using significantly larger polygons than 

randomly distributed points in nearly all grains tested, regardless of model or season (Fig. 

5-5).  An exception to this pattern was observed with summer seasonal locations and a 

patch only model.  Here, we found significant evidence that caribou may be selecting 

smaller polygons than expected under this model, allowing us to conclude that this model 

is a poor fit to the data (Fig. 5-5, patch only, summer). 

 

The ݐ݊݅݋݌	ܣܲതതതത for the two null hypotheses was closely aligned across spatial scales 

(results not shown), but the spread was not.  Random points produced a much smaller 
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Figure 5-5.  A secondary test of the three types of functional grain models in three 

seasons using a random points null hypothesis.  

 Significant functional grains (P < 0.05) indicate where caribou seasonal locations 

fit the functional grain better than sets of random points.  Uncertainty in caribou 

perception of spatial heterogeneity is controlled by testing multiple functional grain 

sizes (levels of EPA).  The fit of a functional grain to either the seasonal locations 

or random points at a given grain size is given by ݐ݊݅݋݌	ܣܲതതതത.  Significance is 

declared where observed fits are greater than 95 of 100 random sets of points.  In 

most cases, caribou are found in larger, more connected regions of a given 

functional grain than would be expected at random. This test is less informative as 

it does not indicate whether these larger polygons are larger than might be expected 

in a random tessellation of a similar grain size. 
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Figure 5-5.  Cont'd. 
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 null distribution leading to the declaration of more significant grains.  However, the 

grains and models giving the largest deviations from random, and therefore the strongest 

support for a functional grain, were similar using both null hypotheses.  

 

5.5. Discussion 

Our results demonstrate that landscape connectivity can be modelled and tested as the 

response of an organism to a connected area of the landscape.  In the functional grain 

approach that we have adopted, landscapes are divided into areas of high connectivity 

shaped by a combination of landscape structure and how the organism perceives that 

structure.  We validated hypothetical functional grains using telemetry locations and 

found that caribou were  responding to functional grain patterns in at least two of three 

behaviourally-defined seasons, by selecting larger, more connected, areas of the 

landscape than would be expected at random.   

 

Despite the considerable attention that has been paid to landscape connectivity, there are 

relatively few examples where landscape connectivity hypotheses have been tested 

empirically (Galpern et al. 2011, Sawyer et al. 2011).  Much of the validation work has 

been in landscape genetics where landscape connectivity is often modelled as a least-cost 

or circuit theory resistance distance and tested against genetic evidence of dispersal (Epps 

et al. 2007, McRae et al. 2008, Schwartz et al. 2009, Wasserman et al. 2010).  The least-

cost approach has also been applied to presence-absence and telemetry data (Beazley et 

al. 2005, Chetkiewicz and Boyce 2009, Cushman and Lewis 2010, Richard and 

Armstrong 2010), however in all cases the emphasis  has been on understanding how a 
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reduction in landscape connectivity between points on the landscape can explain the 

observed data. 

 

Patch-based landscape graphs have been used to turn the question around, and instead 

report evidence of connectivity as an association of organisms with highly connected 

regions. Patterns of presence-absence (Andersson and Bodin 2009, Awade et al. 2012). 

the abundance of organisms (Awade and Metzger 2008), and the distribution of telemetry 

locations (O'Brien et al. 2006) in association with components of connected patches have 

been used to validate these models.  We have taken a similar approach, although instead 

of components of patches we have shown a response to components of Voronoi 

polygons.  This important difference has allowed us represent more information about 

landscape structure than normally appears in a patch-based landscape graph.  In 

particular, the landscape resistance surface (matrix), if included, not only influences 

which focal locations are connected at certain thresholds, it also affects the shapes of the 

polygons in the tessellation.  Also, the use of regions rather than patches relaxes the 

assumption that the model organism will be found exclusively in one type of habitat. 

Patch habitat, if it is used in the model, becomes instead an  anchor for landscape 

configuration (e.g. a feature for which proximity may be important). 

 

To understand the influence of our modelling decisions, we explored the role of patch 

spatial configuration and landscape resistance in defining the shape of these polygons.  A 

key finding was that functional grains based on only a patch model were generally poor 

predictors of the distribution of caribou; in other words, that the configuration of habitat 
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patches may not be influential for landscape connectivity.    However, landscape 

configuration, as described by landscape resistance surface (matrix), appears to be an 

important influence for connectivity in our data.  These results are supported by 

individual-based simulations of dispersal, which have shown landscape configuration 

defined using landscape resistance, rather than  habitat area, has a significant effect on 

genetic differentiation (Cushman et al. 2012).  For caribou, and possibly other mobile 

species with lower patch dependence, these observations underline the importance of 

using resistance surfaces, either on their own, or as part of a patch-based graph. 

 

Modelling and testing of landscape connectivity at multiple spatial scales may be 

essential because using too coarse a spatial grain can miss important ecological correlates 

of the process (Sawyer et al. 2011).  Equally, using too fine a spatial grain may reduce 

accuracy by incorporating landscape noise that is unimportant for connectivity (Anderson 

et al. 2010, Cushman and Landguth 2010, Galpern and Manseau 2012).  Here, we 

adopted a multiscale approach, allowing uncertainty about the appropriate grain size, or 

its correlate, the maximum movement threshold, to have limited impact on our 

conclusions.  In practice, this means that the conservation actions based on these results 

will also incorporate this uncertainty, as the true dimensions of the functional grain may 

be difficult or impossible to measure directly (Bunn et al. 2000).  Although statistical 

significance generally remained constant across functional grain sizes, implying a degree 

of scale independence, the deviation from the random expectation did not, suggesting that 

a more sophisticated approach for model selection may be useful for narrowing the range 

of supported grain sizes.    
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The only clear evidence of spatial scale dependence in our results was found at the 

smallest grain size tested.  Functional grains of this scale could not be distinguished from 

random functional grains (Fig. 5-4).  Importantly, this implies that upscaling remotely-

sensed landscape data to spatial grains that are many times larger may be appropriate for 

highly-mobile wildlife like caribou.  We have drawn the same conclusion using genetic 

data for this study system, where we found evidence of landscape structure influencing 

gene flow at grains thousands of times coarser in area than the map data (Galpern et al. 

2012).  Overall, these parallels suggest that the grain of the process for landscape 

connectivity – or in our terms, the functional grain – is likely very coarse relative to map 

data for highly mobile species like caribou, and the possibility of bias introduced by 

including too much landscape heterogeneity should be investigated.  

 

We also found evidence of a seasonal dependence in our results, suggesting that the 

dimensions of functional grain may be defined both in space and in time.  The reasons for 

these differences may be landscape-related. For example, the resistance of features and 

how they are perceived by caribou may be dynamic, changing perhaps in synchrony with 

vegetation phenology, seasonal variation in highway traffic volume, or snow, water and 

ice conditions (e.g. Rettie and Messier 2000, Dyer et al. 2001, Brown et al. 2007, Polfus 

et al. 2011).  As a result our landscape resistance model may be incorrectly optimized for 

the calving period, where we found the least evidence for a non-random distribution of 

caribou with respect to functional grain.  Alternatively, it may be that functional grain or 

landscape connectivity in general is not important during this stage of life history.  
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Calving may be a time of year where females select habitat primarily to minimize 

predator exposure and improve access to high quality forage when calves are at heel 

(Rettie and Messier 2001).  The females that we collared may be moving to predator-safe 

locations (e.g. islands) and traditional calving areas without regard to the configuration of 

the landscape. 

 

Although our results support landscape resistance as an influence on landscape 

connectivity, we have not tested the implications of the parameters in this model.  In our 

approach, the relative resistance values of landscape features affects the shape of the 

Voronoi polygons, and the magnitude of these parameters affects which parts of the 

landscape are connected at a given scale (Fig. 5-1, g, h, k l).  In other applications of 

resistance surfaces, incorrect parameterization of landscape features has been noted to 

strongly influence conclusions, and sensitivity analyses have been proposed to address 

this (Sawyer et al. 2011).  However, we have shown elsewhere that multiscale analysis 

can compensate for this sensitivity, in part, because differently parameterized models can 

produce identical conclusions when they are examined at a range of scales (Galpern et al. 

2012).  

 

Highways and major forestry roads received the highest resistance value in our matrix 

model (Table 5-1), implying that they have an important role in structuring the shapes 

and the sizes of the polygons in the functional grain.  Our results indicated that caribou 

may be selecting larger regions than would be expected at random, where the pattern of 

roads on the landscape is at least partly responsible for defining the size of these regions.  
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Roads also appear to play a role in the genetic differences among caribou on this 

landscape (Galpern et al. 2012), and we find it plausible that they should also influence 

animal movement and dispersal at the shorter temporal extents that can be discerned from 

telemetry data.  Avoidance of roads and other anthropogenic activities has been widely 

demonstrated in caribou and other ungulates (Dyer et al. 2001, Polfus et al. 2011), 

supporting the high resistance value assigned to these features.   

 

Finally, we introduced a new approach to scaling landscapes and identifying functional 

grains that borrows from patch-based graphs. Lattice GOC is a variant of grains of 

connectivity where identifying an appropriate patch type in the model is not necessary, 

and instead functional grains are identified based only on patterns in the resistance 

surface.  Patches are an influential parameter in a patch-based graph or GOC model and 

their replacement with a systematically positioned lattice of focal points both simplifies 

models and reduces uncertainty associated with focal patch identification.  Patches can 

still be represented in the model as lower resistance features; as can be seen in both 

heuristic (Fig. 5-1, h, l) and real landscapes (Fig. 5-3, a, b, c) patches still influence the 

shape of the functional grain, but to a lesser extent.   A valuable contribution of this form 

of spatial scaling, over alternatives such as areal scaling using cell aggregation or moving 

windows (Cushman and Landguth 2010), is that much larger spatial grain sizes can be 

achieved without obscuring features that may be functionally important to caribou 

(Galpern and Manseau 2012).  Lattice GOC, because it requires only a landscape 

resistance surface as input, is a straightforward way to perform spatial scaling that may 

be particularly useful for landscape genetic studies, where resistance surface models have 
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been favoured for testing connectivity across broad extents of time and space (e.g. Epps 

et al. 2007, Schwartz et al. 2009).    

 

5.6. Conclusion 

We modelled hypothetical functional grains that give spatially-explicit descriptions of 

how caribou may perceive landscape heterogeneity, and asked if animals were 

responding to these patterns by selecting larger, more connected areas within the pattern.  

When a model of landscape resistance, approximating the fitness costs of dispersal, was 

used to define the functional grain pattern, we found evidence of non-random distribution 

of caribou.  However, describing landscape connectivity as only the spatial configuration 

of patches produced functional grains with similar fits to the data as random patterns, 

underlining the influence of the landscape outside patches for connectivity.  We also 

found that support for functional grains in caribou appears to be a seasonal phenomenon, 

and that regions of high connectivity may have large areas with respect to the grain of 

remotely-sensed landscape data.   Describing hypothetical functional grains using a 

grains of connectivity approach provides an alternative way to model landscape 

connectivity that may be particularly useful for highly mobile organisms like caribou.  A 

key advantage is the flexibility to scale landscape heterogeneity and the response of 

organisms to that heterogeneity in order to better match landscape pattern and evidence 

of the process. 

 



  206 
 

5.7. Author contributions 

Both authors were involved in the conceptual development of this paper.  P. G. conducted 

analyses and wrote the manuscript.  M. M. contributed landscape and telemetry data, and 

commented on several versions of the manuscript.  



  207 
 

5.8. References 

Adriaensen, F., J.P. Chardon, G. De Blust, E. Swinnen, S. Villalba, H. Gulinck, and E. 

Matthysen. (2003). The application of 'least-cost' modelling as a functional 

landscape model. Landscape and Urban Planning 64:233-247. 

Anderson, C., B.K. Epperson, M.-J. Fortin, R. Holderegger, P. James, M.S. Rosenberg, 

K. Scribner, and S. Spear. (2010). Considering spatial and temporal scale in 

landscape-genetic studies of gene flow. Molecular Ecology 19:3565-3575. 

Andersson, E. and O. Bodin. (2009). Practical tool for landscape planning? An empirical 

investigation of network based models of habitat fragmentation. Ecography 

32:123-132. 

Arlt, M.L. and M. Manseau. (2011). Historical changes in caribou distribution and land 

cover in and around Prince Albert National Park:  land management implications. 

Rangifer Special Issue No. 19:17-32. 

Arsenault, A.A. and M. Manseau. (2011). Land management strategies for the recovery 

of boreal woodland caribou in central Saskatchewan. Rangifer Special Issue No. 

19:33-48. 

Awade, M., D. Boscolo, and J.P. Metzger. (2012). Using binary and probabilistic habitat 

availability indices derived from graph theory to model bird occurrence in 

fragmented forests. Landscape Ecology:1-14. 

Awade, M. and J.P. Metzger. (2008). Using gap-crossing capacity to evaluate functional 

connectivity of two Atlantic rainforest birds and their response to fragmentation. 

Austral Ecology 33:863-871. 



  208 
 

Baguette, M. and H. Van Dyck. (2007). Landscape connectivity and animal behavior: 

functional grain as a key determinant for dispersal. Landscape Ecology 22:1117-

1129. 

Beazley, K., L. Smandych, T. Snaith, F. MacKinnon, P. Austen-Smith Jr, and P. Duinker. 

(2005). Biodiversity considerations in conservation system planning: map-based 

approach for Nova Scotia, Canada. Ecological Applications 15:2192-2208. 

Brooks, C.P. (2003). A scalar analysis of landscape connectivity. Oikos 102:433-439. 

Brown, G.S., W.J. Rettie, R.J. Brooks, and F.F. Mallory. (2007). Predicting the impacts 

of forest management on woodland caribou habitat suitability in black spruce 

boreal forest. Forest Ecology and Management 245:137-147. 

Bunn, A.G., D.L. Urban, and T.H. Keitt. (2000). Landscape connectivity: A conservation 

application of graph theory. Journal of Environmental Management 59:265-278. 

Calabrese, J.M. and W.F. Fagan. (2004). A comparison-shopper's guide to connectivity 

metrics. Frontiers in Ecology and the Environment 2:529-536. 

Chetkiewicz, C.L.B. and M.S. Boyce. (2009). Use of resource selection functions to 

identify conservation corridors. Journal of Applied Ecology 46:1036-1047. 

Csardi, G. and T. Nepusz. (2006). The igraph software package for complex network 

research. InterJournal Complex Systems 1695. 

Cushman, S.A. and E.L. Landguth. (2010). Scale dependent inference in landscape 

genetics. Landscape Ecology 25:967-979. 

Cushman, S.A. and J.S. Lewis. (2010). Movement behavior explains genetic 

differentiation in American black bears. Landscape Ecology 25:1613-1625. 



  209 
 

Cushman, S.A., A. Shirk, and E.L. Landguth. (2012). Separating the effects of habitat 

area, fragmentation and matrix resistance on genetic differentiation in complex 

landscapes. Landscape Ecology:1-12. 

Dyer, S.J., J.P. O'Neill, S.M. Wasel, and S. Boutin. (2001). Avoidance of industrial 

development by woodland caribou. Journal of Wildlife Management 65:531-542. 

Dyke, C. (2008). Characterization of woodland caribou (Rangifer tarandus caribou) 

calving habitat in the boreal plains and boreal shield ecozones of Manitoba and 

Saskatchewan. . M. Sc. Thesis. University of Manitoba. 

Epps, C.W., J.D. Wehausen, V.C. Bleich, S.G. Torres, and J.S. Brashares. (2007). 

Optimizing dispersal and corridor models using landscape genetics. Journal of 

Applied Ecology 44:714-724. 

Fall, A. and J. Fall. (2001). A domain-specific language for models of landscape 

dynamics. Ecological Modelling 141:1-18. 

Fall, A., M.-J. Fortin, M. Manseau, and D. O'Brien. (2007). Spatial graphs: Principles and 

applications for habitat connectivity. Ecosystems 10:448-461. 

Fischer, J. and D.B. Lindenmayer. (2007). Landscape modification and habitat 

fragmentation: a synthesis. Global Ecology and Biogeography 16:265-280. 

Galpern, P. and M. Manseau. (2012). Scaling landscape connectivity: comparing new and 

existing methods for measuring effective distance at multiple spatial grains.  In 

review. 

Galpern, P., M. Manseau, and A. Fall. (2011). Patch-based graphs of landscape 

connectivity: A guide to construction, analysis and application for conservation. 

Biological Conservation 144:44-55. 



  210 
 

Galpern, P., M. Manseau, and P. Wilson. (2012). Grains of connectivity:  analysis at 

multiple spatial scales in landscape genetics. Molecular Ecology In press. 

Heller, N.E. and E.S. Zavaleta. (2009). Biodiversity management in the face of climate 

change: a review of 22 years of recommendations. Biological Conservation 

142:14-32. 

Hijmans, R.J. and J. van Etten. (2011). raster: Geographic analysis and modeling with 

raster data. R package version 1.9-58. 

Koper, N. and M. Manseau. (2009). Generalized estimating equations and generalized 

linear mixed-effects models for modelling resource selection. Journal of Applied 

Ecology 46:590-599. 

Margosian, M.L., K.A. Garrett, J.M.S. Hutchinson, and K.A. With. (2009). Connectivity 

of the American Agricultural Landscape: Assessing the National Risk of Crop 

Pest and Disease Spread. Bioscience 59:141-151. 

McRae, B.H., B.G. Dickson, T.H. Keitt, and V.B. Shah. (2008). Using circuit theory to 

model connectivity in ecology, evolution, and conservation. Ecology 89:2712-

2724. 

Minor, E.S. and T.R. Lookingbill. (2010). A Multiscale Network Analysis of Protected-

Area Connectivity for Mammals in the United States. Conservation Biology 

24:1549-1558. 

O'Brien, D., M. Manseau, A. Fall, and M.J. Fortin. (2006). Testing the importance of 

spatial configuration of winter habitat for woodland caribou: An application of 

graph theory. Biological Conservation 130:70-83. 



  211 
 

Okabe, A., B. Boots, K. Sugihara, and S.N. Chiu. (2000). Spatial tessellations:  Concepts 

and applications of Voronoi diagrams. 2nd ed. Wiley, Chichester. 

Polfus, J.L., M. Hebblewhite, and K. Heinemeyer. (2011). Identifying indirect habitat 

loss and avoidance of human infrastructure by northern mountain woodland 

caribou. Biological Conservation 144:2637-2646. 

R Development Core Team. (2012). R: A Language and Environment for Statistical 

Computing. Vienna, Austria. 

Rettie, W.J. and F. Messier. (2000). Hierarchical habitat selection by woodland caribou: 

its relationship to limiting factors. Ecography 23:466-478. 

Rettie, W.J. and F. Messier. (2001). Range use and movement rates of woodland caribou 

in Saskatchewan. Canadian Journal of Zoology 79:1933-1940. 

Richard, Y. and D.P. Armstrong. (2010). Cost distance modelling of landscape 

connectivity and gap‐crossing ability using radio‐tracking data. Journal of 

Applied Ecology 47:603-610. 

Sawyer, S.C., C.W. Epps, and J.S. Brashares. (2011). Placing linkages among fragmented 

habitats: do least-cost models reflect how animals use landscapes? Journal of 

Applied Ecology 48:668-678. 

Schwartz, M.K., J.P. Copeland, N.J. Anderson, J.R. Squires, R.M. Inman, K.S. 

McKelvey, K.L. Pilgrim, L.P. Waits, and S.A. Cushman. (2009). Wolverine gene 

flow across a narrow climatic niche. Ecology 90:3222-3232. 

Urban, D. and T. Keitt. (2001). Landscape connectivity: A graph-theoretic perspective. 

Ecology 82:1205-1218. 



  212 
 

Urban, D.L., E.S. Minor, E.A. Treml, and R.S. Schick. (2009). Graph models of habitat 

mosaics. Ecology Letters 12:260-273. 

Wasserman, T.N., S.A. Cushman, M.K. Schwartz, and D.O. Wallin. (2010). Spatial 

scaling and multi-model inference in landscape genetics: Martes americana in 

northern Idaho. Landscape Ecology 25:1601-1612. 

 

 

 



  213 
 

6. Conclusion 

C O N C L U S I O N  

6.1. A continuous and scalable approach 

This thesis has been concerned with identifying the landscape structure that influences 

movement and dispersal in order to produce functional connectivity assessments of 

landscapes.  I have hypothesized that, for highly-mobile mammals such as boreal 

woodland caribou, much of the spatial heterogeneity on a remotely-sensed map is 

essentially noise that may not affect movement and dispersal.  Interpreting evidence of 

connectivity or predicting future connectivity, then, may require simplification of 

landscape data to highlight the pattern in landscape structure that is influencing the 

process.  The thesis presents a method for upscaling, and therefore for simplifying, the 

landscape data, intended to retain pattern that may be functionally important for 

connectivity.  

 

Grains of connectivity begins with the observation that if animals are able to move and 

disperse over greater distances, more resources required by the animal may become 

accessible and, consequently, more of the landscape area becomes functionally-connected 

and available to them.  As this functionally-connected region grows in size, the area of 

the landscape influencing movement and dispersal decreases in proportion.  In the graph-

theoretic terminology of Chapter 2:  adding graph links creates larger components 

implying a more connected landscape, and having fewer isolated nodes means less of the 

landscape area is presenting resistance to connectivity.   
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This simple relationship can be used to let increases in a functional scalar (the maximum 

movement or dispersal threshold) coarsen the spatial grain of landscape data and, 

therefore, to simplify it in a way that reflects function.  Achieving this duality between 

function and spatial grain requires understanding the landscape not as a series of 

discontinuous patches, but rather as a continuous tessellation, where each polygon in the 

tessellation describes a region of proximity.   

 

Regions of proximity have been defined in this thesis using ecological variables in 

several different ways (see Chapter 5), but in all cases have relied on a generalization of 

the Voronoi tessellation proposed by Fall et al. (2007).   These authors use this 

tessellation to make a type of landscape graph called the minimum planar graph (see 

Chapter 2), advantageous because the number of links in the graph grows linearly rather 

than exponentially as nodes are added.  The Voronoi tessellation plays two separate roles 

in a grains of connectivity model:  it defines the topology of the graph, and it offers the 

ability to represent connectivity relationships among a continuous set of ecologically-

defined regions.  It is this second use of the tessellation that makes grains of connectivity 

distinctive from other landscape graph or minimum planar graph applications.  In two 

chapters I have adopted the term functional grain (sensu Baguette and Van Dyck 2007) to 

describe the ecological concept underlying this set of regions (Chapters 3 and 5). 

 

All landscape graph methods have the flexibility to model at multiple scales, 

accommodating uncertainty about the maximum amount of movement and dispersal an 

animal can exhibit.  In grains of connectivity, the relationship between the distance scalar 
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and spatial grain means that scaling has the added benefit of accommodating uncertainty 

about which elements of landscape structure are influencing connectivity.  This property 

may be particularly important when  a resistance surface is used to define the regions of 

proximity, making results less sensitive to the assignment of resistance parameters (see 

Chapters 3 and 4).   

 

Typically, resistance surfaces and not landscape graphs have been used to represent 

continuous connectivity relationships for highly-mobile and wide-ranging species (e.g. 

Cushman et al. 2006, Schwartz et al. 2009).  These models can also be scaled to coarsen 

spatial grain, and therefore to accommodate uncertainty about landscape structure 

(Anderson et al. 2010, Cushman and Landguth 2010), but this type of scaling is 

orthogonal in nature and less likely to reflect the influential pattern (see Chapter 3).  

Grains of connectivity, however, outperforms resistance surfaces in terms of accuracy 

(Chapter 3) and in reporting evidence of an effect of landscape connectivity on dispersal 

(Chapter 4), which may reflect its strength at highlighting the landscape structure that 

matters. 

 

In summary, grains of connectivity offers a continuous and scalable approach to 

modelling landscape connectivity.  The flexibility of the method may be useful for 

identifying the landscape pattern influencing connectivity in many species of 

conservation interest:  it relaxes the patch dependency of landscape graphs while using 

the scalability of these models to accommodate uncertainty in functional parameters such 

as dispersal distances and the resistances of features. 
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In the remaining sections, I first frame the key findings of this thesis as a series of 

recommendations for natural resource management.  Second, I discuss how grains of 

connectivity methods may be applied to a variety of management questions.  Third, I 

review how several findings may be relevant for boreal woodland caribou research.   . 

Finally, I present future research directions.   

 

6.2. Recommendations for natural resource management 

The implicit goal in much of this thesis has been to improve the quality of connectivity 

model predictions for natural resource management.  In this section, I review how the 

main conclusions can be applied by researchers and practitioners studying highly-mobile 

and wide-ranging terrestrial species. 

 

6.2.1. Model landscape connectivity at multiple scales 

Multiscale analysis may be essential for addressing uncertainty about the scales at which 

ecological processes operate (Wiens 1989, Levin 1992).  Results from this thesis 

underline the importance of doing this when modelling landscape connectivity.  

Significant evidence of a functional connectivity hypothesis explaining dispersal and 

subsequent gene flow was found at spatial grains that were orders of magnitude coarser 

than raster landscape data (Chapter 4).  Equally, functional connectivity hypotheses did 

not significantly differ from random hypotheses for explaining the distribution of animals 

at the finest spatial grains tested (Chapter 5).  Also, in both of these tests, evidence for 

connectivity shaping ecological processes was not uniformly strong or significant across 
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scales, suggesting that conducting analyses at a single scale that is mismatched with the 

connectivity process could lead to incorrect conclusions. 

 

Applying this recommendation requires identifying a series of candidate spatial grain 

sizes, or alternatively maximum movement thresholds; at a minimum an upper and lower 

limit should be identified.  Modelling a corridor to connect protected areas, a frequent 

application of landscape connectivity analysis (Chetkiewicz et al. 2006), could use the 

grains of connectivity graph (see Chapters 3 and 4) constructed at these scales to find  a 

shortest path between the areas.  The spread of corridor paths could be entered into the 

planning process for evaluation. 

 

Identifying the types of landscape features that influence movement and dispersal, 

important both for parameterizing models to map functional connectivity and for 

developing management policy (Sawyer et al. 2011), will also benefit from a multiscale 

approach.  In these cases, uncertainty about the importance of features for creating 

resistance (e.g. the parameter values on a resistance surface) may influence conclusions 

(e.g. Spear et al. 2010, Zeller et al. 2012).  Chapters 3 and 4 offer evidence that 

differences in resistance parameterization can lead to comparable conclusions when 

examined at multiple scales.  Because the limits of this effect require further exploration, 

a robust approach when drawing conclusions about features is to report and compare 

results across several contrasting scales. 
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6.2.2. Select a scaling method that is appropriate for the landscape data 

Following recommendations by Anderson et al. (2010), researchers studying animals 

with home range sizes larger than the spatial grain of the landscape data should begin 

with the finest resolution data available and scale up.  Grains of connectivity may be 

helpful for upscaling landscape data consisting of discrete features (e.g. landcover data) 

because it can retain features that are influential in a functional connectivity hypothesis 

(Chapters 3 and 4).  Methods such as aggregation can also be used to reduce the grain 

size, but these are likely to obscure small features at coarse grains, such as roads and 

rivers, that may be influential out of proportion to their footprint (Chapters 3 and 4).  In 

cases where the landscape features hypothesized to be most influential can be represented 

by one or more continuous variables (e.g. slope, temperature, primary productivity), 

scaling methods such as aggregation or moving windows may be preferable because of 

their orthogonality, and therefore, their parsimony.   

 

6.2.3.  Validate landscape connectivity models using a relevant temporal scale 

Validation of the model input parameters, such as determining the maximum movement 

and dispersal threshold or confirming that resistance values for features represent their 

true fitness costs, may be challenging or impossible in natural systems (Bunn et al. 2000, 

Spear et al. 2010).  An alternative, and the one favoured in this thesis, is to ask if the 

predictions of a functional connectivity hypothesis are supported by empirical evidence 

of movement and dispersal obtained from the same landscape.   
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Much work in landscape genetics is organized around this goal (e.g. Chapter 4; Cushman 

et al. 2006, Epps et al. 2007, Schwartz et al. 2009).  The temporal extent of the empirical 

evidence is generational, with genetic relationships among animals representing the 

cumulative effects of dispersal over multiple generations.  This may be the most 

informative temporal scale to assess when managing populations to ensure long-term 

persistence.  Alternatively, when managing to ensure animals have seasonal access to a 

required resource, finer-scaled movement data may be more appropriate (e.g. Richard and 

Armstrong 2010). 

 

Results in this thesis show that qualitatively, the pattern of influential features and the 

spatial scales at which they were significant, are comparable using movement data at two 

distinct temporal extents.  For example, late winter telemetry points (Chapter 5) and 

genetic similarity data (Chapter 4) for a caribou population both indicated support for the 

same model at a similar range of grain sizes.  While this observation suggests that testing 

models may not require attention to the temporal extent of the corroborating data, there 

was also evidence of the opposite.  Telemetry points from the calving season did not, 

generally, support the model (Chapter 5).   

 

A robust solution, then, is to ensure that the movement data used to test the model 

matches the question of management interest.  If connectivity is being modelled to build 

a corridor, then it may best be validated using genetic data that can capture the long time 

frames over which the corridor is to be effective.  Equally, when the goal is managing 

access to a resource required seasonally, or at one stage in life history, models could be 
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validated with direct evidence of individual movement, such as telemetry data (e.g. 

Chapter 5; Richard and Armstrong 2010).   

 

6.2.4. Ask if a resource patch concept is meaningful 

Before selecting a modelling strategy, researchers should consider if a resource patch 

concept is essential, a structuring influence, or largely irrelevant to the study system.  

Representing landscape connectivity using the spatial configuration of resource patches 

may be most meaningful for organisms that are restricted to, or dependent on, a certain 

habitat type (Urban and Keitt 2001, Urban et al. 2009).  For others, including many 

highly-mobile and wide ranging terrestrial species, a resource selection paradigm maybe 

more meaningful, where habitat is better understood as a probability surface (e.g. O'Brien 

et al. 2006, Koper and Manseau 2009).  In these cases, the patch concept may still be 

relevant as an "anchor" habitat for which proximity is important.  In woodland caribou, 

for example, the mature jack pine patches used as the focal habitat in grains of 

connectivity models (Chapters 4 and 5) may be used as shelter for predator avoidance 

(Brown et al. 2007), making these features an important structuring influence.  

It is also possible that the spatial configuration of a particular resource is not meaningful 

at all for connectivity, and it is uniquely the pattern of resistance presented by landscape 

features that is influential for movement and dispersal.  Lattice grains of connectivity 

may be useful in these cases; it replaces patches with a lattice of focal points, 

superimposed on a resistance surface at a finer grain than that expected to influence 

landscape connectivity (Chapter 5).  This is a non-orthogonal and functional approach to 
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scaling resistance surfaces that theoretically can be used to replace any current 

application of these models. 

 

6.3. Applications of grains of connectivity in a broad range of study systems 

This thesis has focused on a landscape modelling method intended for terrestrial 

organisms that are highly-mobile; or more precisely, for organisms that: (1) have a home 

range area exceeding the grain area of available map data and (2) are likely to face 

resistance to movement created by landscape features occurring between regions of 

higher quality habitat.   Many ungulates and carnivores of management interest fall into 

this category, for example.  These specifications, however, are not restrictive, and there 

are other systems of interest where patch-based or lattice grains of connectivity may 

prove useful (see also Section 4.5.2). 

 

Mammal or reptile species that might not be considered "highly-mobile" can have home 

range areas that exceed the grain of relevant land cover data (Turner et al. 1969, Harestad 

and Bunnel 1979, Christian and Waldschmidt 1984, Lindstedt et al. 1986).   In these 

cases, the scalability of the patch-based grains of connectivity approach may prove 

advantageous for the same reasons as it does for highly-mobile species:  it can be used to 

progressively remove variation on the land cover map that is potentially unimportant for 

movement and dispersal.  For less mobile species, it is possible that raster-based 

resistance surface modelling will provide a good enough approximation given that the 

relevant grains may not be much larger in area than a raster cell.  However, patch-based 

grains of connectivity allows researchers to explicitly model the patch relationships, 



  222 
 

which may improve models for species with obligate relationships to particular sites or 

land cover types (e.g. lemurs; Bodin et al. 2006).  In the same way, the potential for 

movement and dispersal of certain amphibian species could be modelled using wetlands 

or other water bodies as patches (e.g. Fortuna et al. 2006). 

 

Plant species that rely on terrestrial animals for pollination or seed dispersal (e.g. Howe 

and Smallwood 1982, Carthew and Goldingay 1997) can also be modelled using grains of 

connectivity.  Multiscale analyses provides a means of accommodating uncertainty both 

in the functional response of the pollinating or dispersing animal to landscape features 

and in which species are responsible.  The potential for animal pollination from known 

source locations, for example, could be visualized using one or a series of grains, and the 

resulting maps used to assess risks for rare and endangered plants. The lattice approach 

may be helpful for plant species with environmental tolerances that are too narrow to be 

discernible using landscape-scale data, eliminating the need to identify patches inhabited 

by both the plant and animal species in question.    Equally, assessing risks and mitigating 

the spread of pests and pathogens with terrestrial animal hosts can be approached in the 

same manner.  Diseases of veterinary interest, such as bovine tuberculosis, chronic 

wasting disease and anthrax that can be spread by ungulates (Schmitt et al. 1997, Dragon 

et al. 1999, Habib et al. 2011), could be managed by mapping polygons in a lattice grain 

of connectivity where the risk of infection is highest, given known disease loci. 

 

However, for species where connectivity is largely determined by an abiotic process 

(such as wind pollination or water dispersal of larvae) and for volant animals (such as 
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insects, birds and bats) grains of connectivity models may be misleading.  In these cases 

other variants of landscape graphs that do not explicitly model the landscape surface 

outside the resource patch may be more suitable (see Chapter 2).  Grains of connectivity, 

then, may be most useful where connectivity is a function of an animal behaviour 

influenced by the composition and configuration of landscape features outside the 

resource patch. 

 

6.4. Boreal woodland caribou 

The animals have been bystanders in this thesis, serving as a model system rather than as 

the objects of interest (Chapters 4 and 5).  However, there is urgent need for empirical 

work to support the recent federal initiative, Recovery Strategy for the Woodland 

Caribou, Boreal Population (Environment Canada 2011).  This document acknowledges 

the importance of connectivity among ranges, and proposes that certain populations 

should be prioritized for recovery because their geographic position serves as an essential 

link for the entire distribution of caribou.  The grains of connectivity method could be 

applied at these broad extents to determine if landscape between the core areas of 

neighbouring ranges can provide a corridor.  One approach may be to use a parameter set 

validated using genetic data (e.g. Chapter 4). 

 

Chapters 4 and 5 presented evidence that highways and major forestry roads may be a 

structuring influence on movement and dispersal at two temporal extents.  These 

observations do not imply that roads serve as barriers to movement, but rather as features 

that reduce the potential for movement and dispersal.  Nor will all roads serve equally in 
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this way.  The essence of grains of connectivity used to demonstrate these effects, is that 

a feature will influence movement and dispersal only when its position with respect to 

other features accumulates a total amount of resistance. Observations of caribou at 

roadsides (K. Whaley, personal communication) therefore should not immediately refute 

these conclusions. Replication of this study in other caribou landscapes, combined with 

the use of additional genetic markers to improve resolution of movement, is required to 

confirm the importance of linear features for caribou connectivity. 

 

Finally, suggestive evidence that telemetry and genetic data can produce the same 

conclusions about landscape connectivity for caribou (Section 6.2.3) should be viewed 

cautiously.  These results may reveal only that disturbances in this range have had a 

particularly strong impact:  they have restricted movement at a seasonal as well as 

dispersal scales, and because of a small effective population size, the reduction in gene 

flow has produced a detectable genetic signal.  Individual-based simulations (e.g. 

CDPOP; Landguth and Cushman 2010) may help to identify when movement data 

representing different temporal extents can be used interchangeably. 

 

6.5. Future research directions 

6.5.1. Functional grain 

I have adopted the term functional grain to describe the scale-dependent pattern 

influencing functional connectivity (Chapters 3 and 5).  The concept of functional grain 

was originally presented by Baguette and Van Dyck (2007) as follows: 
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When the landscape grain is smaller than the perceptual range of the individual, 
there is no real difference between movements within and between habitats; 
dispersal occurs as a by-product of routine, explorative movement. [...] Contrarily, 
if the grain of resources is larger than the perceptual range of the animal, dispersal 
bears larger costs for the individual: as searching time increased, predation or 
other mortality risks, and deferred costs become higher. According to this 
hypothesis, the spatial scale determining the functional landscape grain depends 
on the perceptual range of the individuals, which itself may vary according to 
landscape structure and configuration (pp. 1122-1123).  
 

 

Here, functional grain can be understood as an interaction between the grain of the 

resources (or the landscape structure) and the perceptual range of an animal.  A landscape 

can be understood to be connected for an animal when the perceptual range is coarser 

than the grain at which habitat is distributed.  Equally, if the perceptual range is finer than 

the grain of habitat distribution, costly dispersal behaviour is required, meaning that 

landscape connectivity is effectively reduced (Baguette and Van Dyck 2007).  

 

I have presented functional grain as the ecological pattern of interest when modelling 

landscape connectivity at multiple scales.  Others have described this as the grain of the 

process (e.g. Cushman and Landguth 2010). In spatial terms, functional grain is a pattern 

of high connectivity areas, where the boundaries of these areas represent regions of lower 

connectivity (cell boundaries in a raster model, and the boundaries of Voronoi polygons 

in a grains of connectivity model).    The functional grain concept also helps demonstrate 

how the goals of grains of connectivity and areal scaling methods (such as aggregation or 

moving windows) are aligned:  both attempt to describe this pattern in different ways.  In 

the first case, by modelling it directly, and in the second case by approximating it.  

Finally, another way to understand this pattern is as a set of ecological neighbourhoods 
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(Addicott et al. 1987).  According to this concept, ecological neighbourhoods for an 

organism are defined by an ecological process, a time scale, and the organism's activity 

during this time.  

 

Additional work is needed to articulate a more comprehensive definition of functional 

grain and demonstrate its properties.  The idea may have heuristic value for connecting 

the concepts of scale, landscape pattern, and the ecological mechanisms that are 

responsible for landscape connectivity. 

 

6.5.2. Model selection 

The phenomenological approach, where functional connectivity models are proposed and 

tested against evidence of movement or dispersal, is unsatisfactory without some method 

to compare model fit.  For testing genetic data, the available inferential methods are 

controversial and work in this area remains at the leading edge of research (Legendre and 

Fortin 2010, Guillot and Rousset 2011, Jaquiéry et al. 2011).  A model selection 

procedure has been applied in some cases (e.g. Pavlacky et al. 2009, Garroway et al. 

2011), but no single approach has emerged that combines a robust assessment of the role 

landscape resistance plays over and above geographic distance (e.g. IBD; Wright 1943) 

while enabling a comparison among models.  One way forward may be to represent 

dispersal and subsequent gene flow, not as a genetic distance relationship, but as a spatial 

distribution of alleles.  This change may allow analyses from spatial ecology that can be 

used with generalized linear modeling and model selection procedures (e.g. spatial 

eigenfunctions; Griffith and Peres-Neto 2006).  
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For telemetry data, model selection has been successfully used to differentiate among 

resistance surfaces using a case-control design where actual movement steps are 

compared to random ones (Richard and Armstrong 2010).  With either type of data, 

however, the inclusion of scale as a model parameter will rapidly increase the number of 

models to be compared.  The a priori selection of relevant scales to reduce the number 

tested will be important in this regard (Chapter 4).  

 

6.5.3. Is modelling landscape connectivity important for natural resource 

management? 

As a final caveat to this thesis, and as a matter for future research, the question of 

whether any of this matters is serious and relevant.  For example, Hodgson et al. (2009) 

have argued that connectivity is strongly influenced by habitat area and quality, and that 

connectivity objectives can be achieved by managing for these properties instead of 

connectivity.  Habitat area and quality may be easier to measure and conceptualize, and 

consequently simpler to manage than connectivity from both a policy and practical 

perspective.  Simulations are one way to examine the relationships between habitat area, 

quality and connectivity.  Exploring these at multiple spatial scales may be essential.  
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Abstract 

Landscape connectivity modelling to understand the movement and dispersal of 

organisms has been done using raster resistance surfaces and landscape graph methods.  

Grains of connectivity (GOC) models combine elements of both approaches to produce a 

continuous and scalable tool that can be applied in a variety of study systems.  The 

GRAINSCAPE package for R implements grains of connectivity analyses.  It accepts raster-

based resistance surfaces as input and returns raster, vector and graph-based data 

structures to represent connectivity at multiple scales.  These outputs can be further 

analyzed in R or exported in other formats.  Effective distances describing connectivity 

between geographic locations can be determined at multiple scales; such analyses can 

contribute to corridor identification, landscape genetics, as well as other connectivity 

assessments.  Minimum planar graph (MPG; Fall et al. 2007) models of resource patches 

on landscapes can also be generated using the software.  SELES software (Fall and Fall 

2001) is distributed with the package, and is used to produce the MPG and perform a 

generalization of the Voronoi tessellation used in GOC models.  Routines also depend on 

the SP, RASTER, RGEOS and IGRAPH packages which are automatically installed as required 

(Pebesma and Bivand 2005, Csardi and Nepusz 2006, Hijmans and van Etten 2011, 

Bivand and Rundel 2012).  GRAINSCAPE is currently only available for Windows-based 

platforms, and can be downloaded from the R-Forge repository at https://r-forge.r-

project.org/projects/grainscape/.  
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Abstract 

We present ALLELEMATCH, an R package to automate the identification of unique 

multilocus genotypes in data sets where the number of individuals is unknown, and where 

genotyping error and missing data may be present.  Such conditions commonly occur in 

noninvasive sampling protocols.   Output from the software enables a comparison of 

unique genotypes and their matches, and facilitates the review of differences among 

profiles.  The software has a variety of applications in molecular ecology, and may be 

valuable where a large number of samples must be processed, unique genotypes 

identified, and repeated observations made over space and time.  We used simulations to 

assess the performance of ALLELEMATCH and found that it can reliably and accurately 

determine the correct number of unique genotypes (±3%) across a broad range of data set 

properties.   We found that the software performs with highest accuracy when genotyping 

error is below 4%.  The R package is available from the Comprehensive R Archive 

Network (http://cran.r-project.org/).  Supplementary documentation and tutorials are 

provided. 

 


