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I 

 

Abstract 

Following the studies of natural frequency based damage detection methods, an advanced 

technique for damage detection and localization in beam-type structures using a vibration 

characteristic tuning procedure is developed by an optimal design of piezoelectric materials. 

Piezoelectric sensors and actuators are mounted on the surface of the host beam to generate 

excitations for the tuning via a feedback process. The excitations induced by the piezoelectric 

effect are used to magnify the effect of the damage on the change of the natural frequencies of the 

damaged structure to realize the high detection sensitivity. Based on the vibration characteristic 

tuning procedure, a scan-tuning methodology for damage detection and localization is proposed. 

From analytical simulations, both crack and delamination damage in the beams are detected and 

located with over 20% change in the natural frequencies. Finite element method (FEM) 

simulations are conducted to verify the effectiveness of the proposed methodology. 
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1. Introduction 

1.1 Background 

Damages, such as cracks, delamination and corrosions, are usually inevitable in engineering 

structures during their daily operations especially in the overstressed areas. Severe accidents may 

be caused by stress concentration and propagation of the damages. Therefore, structure health 

monitoring (SHM), a developed discipline, has attracted considerable attention in recent decades. 

It is generally accepted that the broad range of techniques in SHM can be classified into four levels 

as follows [1]: 

 Level 1: Determination that damage is present in the structure; 

 Level 2: Determination of the geometric location of the damage; 

 Level 3: Quantification of the severity of the damage; 

 Level 4: Prediction of the remaining service life of the structure. 

Focusing on the levels 1-3, vibration-based damage detection has been commonly used for 

structural health monitoring and was first applied in the late 1970s [2, 3]. Because of the simple 

measurement of the natural frequencies, natural frequency based methods have been thoroughly 

studied for a long while. With the change of the structural stiffness or mass when a damage occurs 

and propagates, the natural frequencies are supposed to be altered, which can be monitored by only 

one single sensor. However, the limitations and shortcomings [4] of the natural frequency based 

methods are obvious. The greatest problem for this type of methods is the low sensitivity on small 

damages. Besides, the uniqueness of the detection results remains to be proven. Thus, new 

techniques are necessary to further develop the natural frequency based methods rather than 
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making a direct comparison between the measured natural frequencies from the monitored 

structure and the healthy structure. 

Recently, the smart materials are widely employed for SHM to provide richer data for analysis. 

Among those materials, piezoelectric materials are one of the commonest type of smart materials 

to realize the effective control on the smart structures. Piezoelectric materials are able to generate 

electrical charge under mechanical force, and vice versa. Owing such a unique characteristic, 

piezoelectric materials have been widely used as sensors and actuators in engineering structures 

[5-8]. Nevertheless, the use of piezoelectric materials for active control in damage identification 

is limited. 

To apply the piezoelectric materials for the damage identification to monitored structures, the 

piezoelectric layers or patches are usually mounted on the surface or embedded in the host 

structures to realize the active control on the host structure [9]. The damage effect on the natural 

frequencies of the structure is expected to be magnified with decent control process. In this thesis, 

the mechanism of the active control process for beam damage detection coupled with piezoelectric 

materials is proposed. The optimal size and placement of the piezoelectric materials are also 

discussed. In addition, inspired by the proposed mechanism, a scan vibration tuning methodology 

for damage identification is studied on cracked beams and delaminated beams. A finite element 

model is provided to verify this methodology as well. 
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1.2 Literature review 

In this section, the literature review of previous studies is conducted. The classification of the 

vibration based damage identification methods is firstly listed. Focusing on the natural frequency 

based method, the pros and cons of the previous research are discussed, followed by the review of 

the applications of piezoelectric materials in damage identification.  

1.2.1 Classification of vibration based damage identification methods 

In the past decades, various vibration testing techniques have been developed for damage 

identification. According to Carden and Fanning’s review[2], the previous damage identification 

approaches based on the vibration characteristics can be categorized as Fig. 1-1. There is no 

absolutely optimal method using vibration data for damage detection. The selection of the 

detection methods usually depends on the type of damage and the type of the monitored structure. 

A brief review on current mainstream methods with typical research outcomes are summarized. 

 Natural Frequency Based Methods 

Damages induce a decrease in structural stiffness or mass, leading to reduction of the structural 

natural frequencies. With simple measurement, the damage may be detected by the frequency shift. 

Its potential in damage localization and quantification is also found [10, 11]. The detailed review 

of natural frequency based methods is shown in the following section. 

 Mode Shape Based Methods 

The damages may be identified by the comparison on measured mode shapes or mode shape 

curvatures [12-15].  Many modal analysis techniques are available for the mode shapes extraction 

from time-domain signals [16, 17]. However, the uncertainty of the mode shape based methods is 
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also doubted by many researchers due to the complicated formulations and the requirement of 

measured data from various locations of the structure. Such uncertainty also exists in other 

methods that use complex formulations, such as operational deflection shape based methods and 

modal energy based methods[2].  

 Operational deflection shape based methods 

Operational Deflection Shapes (ODS) analysis provide visualization of the vibration patterns (e.g. 

displacement and velocity) of the structure under a specific structural loading[18]. With the FEM 

simulations and experimental study, Waldron [19] successfully detected a 10% crack of a fixed-

fixed beam under excitations from piezoelectric actuators by using a scanning laser Doppler 

vibrometer. The high sensitivity of ODS based damage detection methods is also verified by later 

research[20, 21].  

 Modal Strain Energy based methods 

Modal strain energy is also considered as a damage-sensitive feature to identify the structural 

damages. The modal strain energy in beam-type or plate-type structures, can be calculated from 

mode shape curvature[2, 22]. The previous works generally focused on 1-D strain methods [23-

25]. The universality of the methods utilizing modal strain energy remains to be doubted. 

 Statistical Methods 

In Farrar and Doebling’s opinion [26], vibration based damage detection problem is basically one 

of the statistic pattern recognition. To improve the state of the art of vibration based damage 

detection, the non-model based pattern recognition methods are in demand. Although this type of 

methods can efficiently detect the structural damages by only the statistical techniques without 
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building a complex numerical model [27-30], it lack the ability of damage localization and 

quantification. 

1.2.2 Natural frequency based methods in damage identification 

As a highly feasible technique, natural frequency based methods have been well studied for the 

past few years. Dating back to 1970s’, the change of natural frequencies was initially studied to 

determine the damage in structures. Adams and Cawley [31] found the damage effect on the natural 

frequencies of longitudinal vibration. In 1990s’, numerous researchers [32, 33] attempted to utilize 

the natural frequencies to detect the damage in multiple types of structures. The damage was 

determined by comparing the natural frequencies of the damaged structure with the healthy one. 

The location and severity of the damage were also studied through processing the frequency data. 

However, the detection sensitivity of the early studies is relatively low (less than 3% of natural 

frequency shift). For the practical measurement, at least 5% change in frequency is required for 

damage detection with confidence[34]. The uncertainty of the uniqueness of the detection result 

from natural frequency change is also doubted by Salawu[4]. 

In recent years, Zhong et al. [35] proposed a new approach based on auxiliary mass spatial probing 

using spectral centre correction method (SCCM) for damage detection. Accurate natural 

frequency, amplitude and phase were provided by SCCM to detect the crack damage in beam-type 

structures. The noise was also considered in vibration response from numerical simulations. 

However, the proposed approach is based on FEM simulation without theoretical explanation. It 

is not reasonable to verify the effectiveness of the approach by studying only one case of the crack 

location. 
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Wang [36] introduced a study on natural-frequency-based structural damage identification of steel 

transmission tower. A typical 110 kV self-supporting steel transmission tower was studied based 

on the 3D finite element model. However, a single damage in the structure induce fairly slight 

change in the low orders of natural frequencies for damage detection. The expansion of the case 

study to other types of structures was not discussed either. 

Wang and Li [37] also developed a new method, iterative modal strain energy (IMSE) method, for 

damage localization and severity estimation requiring only the lower natural frequencies. Multi-

damage scenarios in free beam structure and a plane frame structure were investigated by the FEM 

simulations. The experimental study further verified the effectiveness of the proposed method. 

However, the noise interruption during the measurement has not been discussed. The reliability of 

the proposed method in practical cases under environmental noise was not proven.  

In 2014, Chao et al. [38] published a systematic method for damage assessment, including damage 

localization and damage quantification using output-only measurement. The practicability was 

verified by a finite element model and an experiment on a 6-story steel frame structure with 

different depths of member cut. Although the simulation results correctly assess the structural 

damage, the complexed algorithm derived from the natural frequencies increased the uncertainty 

of the method, while the measurement sensitivity of the modal frequencies was not enhanced either. 

Negru1 et al. [39] presented their research on Natural frequency changes due to damage in 

composite beams. From numerical simulations, a unique curve representing the frequency change 

of transverse modes in respect to damage depth exists was shown. But again, the frequency change 

due to the damage did not reach the requirement for practical measurement. 
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In summary, the presence of the structural damage must change the natural frequencies of the 

structure to some extent. The simple measurement and limited number of sensors requirement 

make natural frequency based methods highly feasible. Nevertheless, the shortcomings of the 

traditional natural frequency based methods without active control are observable. The biggest 

problem is that the structural damage effect on the change of natural frequencies is usually tiny, 

while measurement of frequencies is extremely sensitive to the environmental noise. In this case, 

small damage might be ignored while only observing the natural frequencies. Another limitation 

is that identified damage from the change of natural frequencies is not definitely unique, which 

may cause the detection results ill-posed [4, 22]. Hence the damage location cannot be accurately 

and correctly recognized merely by the natural frequency changes.   

1.2.3 The use of piezoelectric materials in damage identification 

Smart materials have been widely use in smart structures for various purposes in SHM. Commonly 

used smart materials include piezoelectric materials, electro-rheological fluids, shape-memory 

materials, magnetostrictive materials, electrostrictive materials and thermal materials [40]. 

Because of the low cost, easy installation and unique piezoelectric effect, piezoelectric materials 

have become the top choice in numerous applications, for instance, structural damage repair [6, 7, 

41, 42]. Nevertheless, the previous applications of piezoelectric materials in damage detection are 

mostly performed by finite element models or experiments, while the explanations of the theory 

are inadequate. The expansion of the use of piezoelectric materials in damage detection is hence 

restricted. 

According to the reviewed literatures, the applications of piezoelectric materials in damage 

identification were relatively limited. Even for the piezoelectric materials used in the damage 

identification, mostly they are individually functioned as sensors or actuators. As early researchers 
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who utilized piezoelectric materials in this field, Islam and Craig [43] described a method for 

damage detection in composite structures by embedded piezoelectric sensors and actuators. The 

backpropagation neural network models were developed to predict the delamination size and 

location. Although this method revealed a huge potential from the piezoelectric materials in 

damage detection, still, the variation in natural frequencies due to the damage is too tiny for 

measurement in real applications. The neural network also produced uncertainty of the proposed 

method. Investigations based on the similar idea were also done by other researchers [44-47] to 

show the possibility to build up a damage identification system with the piezoelectric materials, 

but the common issues like the uniqueness of the results and the interference of the noise have not 

been solved.  

De Vera et al. [48] suggested a frequency-based method based on self-sensing piezoelectric on 

damage detection. The bridge electronic circuit for self-sensing and the control process were 

illustrated. By exciting the structure at different frequencies and analyzing its response, the feature 

of the damage in the structure was detected. The damage was obtained by machining a hole with 

different sizes. The temperature changes influence was also studied to more accurately determine 

the damage. However, the damage effect was insignificant in low order natural frequencies, and 

the theoretical dynamic model has not been established. The localization of the damage could not 

be determined by the proposed method either. 

In 2002, Su et al.[49] proposed an identification approach for delamination locating in laminated 

composites based on wave propagation. Distributed piezoelectric transducers were employed to 

generate and monitor the ultrasonic Lamb wave with narrowband frequency. The diagnostic 

system was explained in details and verified by quasi-isotropic CF/EP composite laminates, but 

further discussion of the delamination evaluation was required. Liu et al. [50] further investigated 
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the design of PZT actuator/sensor, which were employed to generate the lamb wave for damage 

detection. 

More recently, in 2006, Hadjigeorgiou et al. [51] reported their research about shape control and 

damage identification. Piezoelectric patches were employed as actuators to provide the control 

forces. The damage identification problem was solved by the static data from beam deformation 

on finite element models. Optimal design of the piezoelectric actuators was conducted through the 

genetic optimization. The damage identification results were significant based on the numerical 

simulations. However, the precise measurement of the deformation of the beam requires numerous 

vibration sensors or laser vibrometer. Hence, the cost of the proposed method would be much 

higher than the natural frequency based method. Besides, the accuracy of the deflection 

measurement is also hard to be guaranteed, which may lead to incorrect damage prediction. 

Jiang et al. [52, 53] proposed another scheme that utilizes the piezoelectric transducer circuitry 

with tunable inductance to enrich the frequency-shift data. By tuning the inductance, the variation 

of the vibration response can be characterized more completely and accurately. An iterative 

second-order perturbation-based algorithm in conjunction with an optimization scheme was also 

developed to figure out the frequency shift due to the structural damage occurrence. Following this 

scheme, Zhao et al. [54] bought an improvement  of the proposed methodology with a statistical 

damage identification algorithm which was formulated to minimize the uncertainty and noise 

effect. Based on the FEM simulations, the damage-induced frequency shift was enhanced by 

piezoelectric transducer circuitry. However, lacking of theoretical model, the practicality of the 

mentioned methods remains to be investigated. 

Yang et al. [55] presented an experimental study of damage localization on an aluminum plate 

specimen. An array of nine PZT impedance transducers were subjected to electric actuation so as 
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to generate the electromechanical admittance. The damage location was located from the root 

mean square deviation value. Further study was needed to conduct the optimal design of the PZT 

placement and apply on other types of structures.  

Bhalla et al. [56] proposed an advanced technique, the dynamic strain approach, for damage 

diagnosis of tensegrity structures by means of the piezoelectric materials. The damage was 

localized using changes in natural frequencies observed from experimental observations. It was 

proved that the dynamic strain approach is very expedient and sensitive for tensegrity structures. 

The damage locations were determined on the element number instead of the exact position. 

Further study of the proposed technique is required for damage detection in other structures. 

Providakis et al.  [57] tentatively detected the damages in the reinforcement bars of reinforced 

concrete members using piezoelectric materials. An integration approach based on both 

electromechanical admittance methodology and guided wave propagation technique was 

employed to identify the damages, which were reflected by the diameter reduction. The 

comparative results of the evaluated FFT admittance of the piezoelectric sensor between the 

healthy condition of the steel bar and the examined damaged states were very promising. The 

potential of the proposed technique in other types of structures or materials was not discussed yet. 

Overall, the damage identification sensitivity was obviously enhanced by means of piezoelectric 

materials, but there has been no detailed theoretical model proposed to clearly describe the 

mechanisms of the damage detection sensitivity enhancement on continuous beam structures from 

the mechanical point of view. Therefore, the feasibility and efficiency are still pending to be 

verified. Meanwhile, the piezoelectric materials in the previous studies were individually 

performed as sensors or actuators, without producing feedback excitations. The unique 

piezoelectric effect has not been fully utilized in applications of damage identification. 
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1.3 Research objectives 

From the literature review, the natural frequency based methods for damage identification were 

readily accessible, but insensitive to general damages. With the use of piezoelectric materials, the 

damage effect on the natural frequencies shift was enhanced to some extent. However, 

piezoelectric materials in most of the applications acted as only an individual sensor or actuator 

without any feedback control. Besides, most of the studies about damage identification coupled 

with piezoelectric materials are based on FEM simulations and experiments that cannot clearly 

explain the mechanism of the detection process.  

In this thesis, a natural frequency based crack detection technique coupled with the piezoelectric 

materials on beam-type structures is proposed. Piezoelectric layers are applied on the surface of 

the host beams to generate the feedback control so as to magnify the crack effect on the natural 

frequencies. A theoretical model is provided to reveal the principle of the proposed technique with 

the feedback control process. Following this idea, a scan vibration tuning methodology by using 

multiple piezoelectric patches is proposed to detect and locate the damages in beam-type structures. 

Both the crack and delamination are effectively identified by the proposed methodology. 
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Fig. 1-1 Classification of vibration based damage identification approaches. 
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2. Basic of theoretical models 

In this chapter, the basic of theoretical models of the damaged beams coupled with piezoelectric 

layers/ patches are provided. The continuous models of a vibrating beam is proposed first. Then 

the piezoelectric effect and damage effect on the beam model are explained. Both crack and 

delamination are taken into consideration as structural damages. Based on the provided 

formulations, the methodologies for damage detection and identification are presented with 

detailed theoretical models in the following chapters. 

2.1 Model of a vibrating beam 

Based on Euler-Bernoulli theory, the dynamic equation of a free-vibration beam can be written as 

 

4 2

1 1

4 2

( , ) ( , )
0

w x t w x t
EI bh

x t


 
 

 
, (2-1) 

where E is the Young’s modulus of the host beam; ρ is the density of the host; b is the width of the 

host beam; h is the thickness of the host beam; I is the moment of inertia of the host beam given 

by

3

12

bh
I  ; and w(x, t) is the displacement of the beam in the transverse direction, which can be 

expressed as follows for a certain vibration mode, 

      , w x t W x T t , (2-2) 

where W(x) is the vibration mode shape function, and T(t) is the time function. 

The vibration mode shape function can be usually solved as 

 1 2 3 4( ) cos sin cosh sinh ,W x C x C x C x C x         (2-3) 

where C1-4 are natural constants, β is real constants related with the natural frequency of the beam 

given by 
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

  24
bh

EI
,  (2-4) 

where ω is the natural frequency of the beam. 

Substituting the vibration mode shape function and the expression of the piezoelectricity induced 

bending moments into the according boundary conditions and continuity conditions of the beam 

leads to a couple of linear equations. The vibration characteristics of the beam, including the 

natural frequencies, are solved from the eigenvalue problem on Matlab. The detailed vibration 

solutions of the damaged beam coupled with piezoelectric materials are illustrated in theoretical 

models of the later chapters. 

2.2 Model of piezoelectric effect 

To figure out the dynamic response of the piezoelectric coupled beams, the effect of the 

piezoelectric sensor and actuator is supposed to determined first. The piezoelectric layers or 

patches are affixed on the surface of the thin cantilever beams to generate feedback vibration 

characteristic tuning excitations. The linear piezoelectric constitutive equations are listed in 

Appendix A. The simplified expression of the electrical charge generated on the surface of the 

piezoelectric sensor due to the bending of the host beam is given as[7, 58] 

when piezoelectric layers/ patches are applied on the lower surface of the host beam: 
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when piezoelectric layers/ patches are applied on both surfaces of the host beam: 
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where e31 is piezoelectric constant, 𝑏𝑠 is the width of the piezoelectric sensor patch, L1 and L2 are 

the distances from the fixed end of the beam to the left and right ends of the piezoelectric layers 

respectively. Thus the output voltage of the piezoelectric sensor can be written as [7, 59] 

when piezoelectric layers/ patches are applied on the lower surface of the host beam: 
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when piezoelectric layers/ patches are applied on both surfaces of the host beam: 
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where 𝐶𝑣 is the electrical capacity of the piezoelectric sensors, and '  v
v

s

C
C

b
 is electrical capacity 

per unit width of the piezoelectric sensors.  

The voltage gathered from piezoelectric sensor is subsequently amplified with a designated 

feedback gain, g, which is a key factor in the tuning process. The piezoelectric actuator is then 

imposed by the amplified voltage given by 

when piezoelectric layers/ patches are applied on the lower surface of the host beam: 
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when piezoelectric layers/ patches are applied on both surfaces of the host beam: 
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The shear force, S, generated at the interface between the piezoelectric actuator and the host beam 

can be written as [7, 60] 

 ,
 


31

1

a
a

Ehb
d V

S
h

  (2-11) 

where 𝑏𝑎  is the width of the piezoelectric actuators, 𝜓  is given as 𝐸𝐻/𝐸𝑝ℎ1 , 𝑑31  is the 

piezoelectric charge of the piezoelectric layers, and 𝛼 = 6 when the host beam is considered as a 

bar under bending. A bending moment is hence induced by the shear force at the both ends of the 

piezoelectric actuator. The bending moment can be obtained by 

when piezoelectric layers/ patches are applied on the lower surface of the host beam: 

 1S
2

e

h h
M


 ,  (2-12) 

when piezoelectric layers/ patches are applied on both surfaces of the host beam: 

  
 

  
 

e

h
M S h12

2
.  (2-13) 

It is noteworthy that the exact voltage of the piezoelectric sensors and actuators will not be obtained 

from the simulations, because the tuning process is eventually applied to each vibration mode 

shape, which has no definite amplitude, to realize the vibration mode shape tuning. In general, a 

higher amplitude of free vibration response and a larger curvature at the area covered by the 

piezoelectric materials lead to a higher voltage output from the piezoelectric sensor. However, no 

matter what the vibration amplitude and output voltage from the sensor are, the gain factor will be 

the same. 
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2.3 Model of a damage 

Both the crack and delamination may create discontinuity on the vibration characteristics of the 

beam. When a crack occurs at the x=Lc of the beam, a slope discontinuity is generated at the crack 

position given by [41, 61]: 

 
'' |

cx LLw   , (2-14) 

where Θ  is a function derived from fracture mechanics and Castigliano’s theorem [61],   
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   (2-15) 

where d is the depth of the crack, and 𝛷1(𝜉) equals to 1 for isotropic materials. 

Rather than generating a slope discontinuity, the delamination separates the delaminated part of 

the beam into the upper and lower sections. The continuity conditions of the beam are hence altered 

by the delamination. The boundary conditions and the continuity conditions of the beams with a 

specific type of damage are discussed in chapter 3, 4 and 5. 
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3. Crack detection of beams by a vibration characteristics tuning 

technique through an optimal design of piezoelectric layers 

In this chapter, an advanced technique for crack detection in beam structures using a vibration 

characteristic tuning procedure is developed by an optimal design of piezoelectric materials to 

realize increased frequency-shifts in beams to efficiently magnify the crack effect for the detection 

purpose. The tuning process is developed to diminish the environment effect, while increasing the 

sensitivity of the damage detection. A theoretical model is developed to reveal the principle of 

damage detection with the tuning process.  

3.1 Theoretical models 

In this section, the vibration characteristic tuning process in damage detection based on the 

vibration natural frequencies and mode shapes is explained. Detailed theoretical models are 

proposed to calculate the changes in natural frequencies of the beams with and without tuning to 

demonstrate the applicability of the proposed technique.  

Fig. 3-1 shows a flow chart that briefly describes the tuning process for damage detection. The 

electric charge and voltage on the piezoelectric sensor that is proportional to the overall curvature 

in the area covered by the senor is obtained first for the feedback process. Then, the piezoelectric 

actuator is used to generate a feedback bending moment to the host beam based on the voltage 

from the sensor thereby changing the local stiffness of the beam section covered by the 

piezoelectric actuator. With different gains applied to the voltage from the sensor, variable size 

and location of the piezoelectric actuator, the vibration mode shapes of the beam are hence altered 

to achieve a tuning purpose.  
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By the vibration characteristic tuning process illustrated by Fig. 3-1, the effect of damage 

occurrence on the change of the vibration characteristics including vibration mode shapes and 

natural frequencies will be significantly enhanced, leading to a better damage detection compared 

with the one without tuning. 

To describe the vibration characteristic tuning process, two beams attached with piezoelectric 

layers are prepared as shown in Fig. 3-2, of which one is intact and the other is damaged. A pair 

of piezoelectric layers composed of both piezoelectric sensor and actuator layers are bonded on 

the upper and lower surfaces of the host beam. The poling directions of the piezoelectric sensor 

and actuator are the same. The piezoelectric layers are assumed to be perfectly bounded to the 

beam. For engineering structures, most of the damages (e.g., the welding defect because of the 

strain concentration at the heat affect zone) appear at the joint positions, and most of the joint 

positions are known in advance. In this paper, it is assumed that the crack is located at the fixed 

end of the beam to show the effectiveness of the proposed technique first. In Fig. 3-2, L denotes 

the length of the host beam, and L1 and L2 are the distances from the fixed end to the left and right 

ends of the piezoelectric layers, respectively, h is the height of the host beam, and h1 is the 

thickness of the piezoelectric layers.  

As indicated in Fig. 3-2, the beam is separated into three sections, and only the 2nd section of the 

beam is covered by piezoelectric layer. The equations of motion for the beam in vibration can be 

derived from Eq. (2-1) as   
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,  (3-1) 

where E and Ep are the Young’s modulus of the host beam and the piezoelectric layer, respectively; 

ρ and ρp are the densities of the host beam and piezoelectric layer, respectively; b is the width of 

the host beam and the piezoelectric layer; I is the moment of inertia of the host beam (

3

12

bh
I  ); 

Ip is the moment of inertia of the piezoelectric layers ( 1 1( / 2 )pI hbh h h  ); and w(x, t) is the 

displacement of the beam in the transverse direction. 

In this case, the vibration mode shape functions of the three beam sections can be obtained from 

Eq. (2-2) [7, 62]: 
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where C1-12 are the natural  constants, 𝛽1  and 𝛽2  are real constants related with the natural 

frequency of the beam (
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), and 𝜔 is the natural frequency 
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For the piezoelectric coupled cracked cantilevered beam, its four boundary conditions and eight 

continuity conditions [41] can be given as follows:  
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Substituting Eqs. (2-2), (2-12), (2-14) and (3-2) into the boundary conditions and continuity 

conditions, Eq. (3-3), leads to 

 [
 
 
 
 
 
 
 
 
 
 
 
 
 
𝑟11 𝑟13

𝑟21 𝑟22 𝑟23 𝑟24

𝑟39 𝑟3,10 𝑟3,11 𝑟3,12

𝑟49 𝑟4,10 𝑟4,11 𝑟4,12
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= 0, 

(3-4) 

where rij (i=1,2,…,12; j=1,2,…,12)  are the coefficients of C, and the unfilled elements of [R] 

indicate value of zero. 

For nonzero solutions of C1-16, the vibration characteristics of the beam can be derived from the 

following eigne-value problem: 

det[R]=0.                                                                (3-5) 
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From the preceding eigen-value problem with numerical calculations on Matlab, the nth natural 

frequencies of the piezoelectric coupled beam with and without crack, 𝜔′
𝑛,ℎ

 and 𝜔′
𝑛,𝑑

 (n=1, 2, 

3, …, ∞), and the associated nth vibration mode can be solved. 

To verify the effectiveness of the proposed technique on damage detection at other locations of the 

structure, another simulation is conducted, assuming that the crack occurs at the middle of the 

beam (Lc=0.5m) with the same dimensions given in Table 3-1. Instead of putting a piezoelectric 

patch at the middle of the beam along its length direction, two pairs of piezoelectric patches are 

attached each from the fixed end to L1’=0.495m and from L2’=0.505m to the free end. In this case, 

the beam is separated into 4 sections as shown in Fig. 3-3. Thus, the equations of motion become 
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Accordingly, the boundary conditions and continuous conditions are given as 
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By the same calculation process, the change of the natural frequencies due to existence of the 

middle crack can be obtained by the vibration tuning using the piezoelectric patches.  

It is noted that, when the feedback gain, g, is set as zero, the beam is considered to have no tuning 

effect. The tuning with certain feedback gain (g>0) is supposed to lead to better damage detection 

effect via tuning of the vibration characteristics of the beam. Detailed results comparing the 

damage detection effects with and without tuning will be given in the following section. 

 

 

 



 

25 

 

3.2 Simulations and discussions 

Numerical simulations based on the proposed theoretical approach are presented in this section. 

The improvement in damage detection sensitivity is achieved by the active vibration characteristic 

tuning. Table 3-1 lists the material properties and geometry of the cracked beams with the 

piezoelectric layers that are used in the simulation.  

Table 3-2 shows the results of the changes in natural frequencies of the beam without the tuning 

process when the feedback gain, g, is set to be zero, with a crack located at the fixed end of the 

beam. The depth of the crack is 0.004 m, which is 40 % of the thickness of the host beam 

(d=0.004m). It can be seen that the largest change in natural frequencies occurs in the 1st natural 

frequency. Therefore, the results for the 1st natural frequency are considered for the case when the 

crack is at the fixed end. From Table 3-2, it is also noted that the changes in the 1st natural 

frequency is only 3.37 %, even if the crack is located at the fixed end of the cantilever. Such a 

sensitivity cannot satisfy the damage detection requirements with inevitable noises.  

Fig. 3-4 shows the percent difference of the 1st natural frequency between the intact and cracked 

beams with the same tuning process and piezoelectric effect for L1=0.02m and L2=0.81m. With an 

increase in the gain factor from 0 to 40, the change in the 1st natural frequency rises rapidly from 

4 to 10 %. Then, the change in the natural frequency grows slowly to 10.5 % when the gain factor 

increases from 40 to 160. With the increment of the gain factor larger than 160, the local stiffness 

of the beam section covered by the piezoelectric actuator keeps increasing, but the effect of the 

local stiffness growth on the damage detection sensitivity enhancement is no longer significant. 

From Fig. 3-4, it is concluded that the vibration characteristic tuning with a proper gain factor 

leads to better damage detection as the natural frequency change becomes more significant. 
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In addition, the geometric properties of the piezoelectric layers are studied and optimally defined 

to reveal the influence of the location and size of the piezoelectric layers on the detection sensitivity. 

To achieve a higher detection sensitivity, the largest curvature of the mode shape is supposed to 

be at the crack position, which will magnify the changes in associated natural frequencies due to 

the crack existence. Fig. 3-5 shows the relationship between the change in the 1st natural frequency 

due to the crack occurrence and the location of the piezoelectric layer with the same tuning process 

(g=160). The length of the piezoelectric layer is 0.79 m, and a fixed gain factor, g=160, is applied. 

It is seen that the change in natural frequency induced by the crack increases from 4.5 to 12.3 %, 

when the position of the left end of the piezoelectric layers, L1, moves from 0.185 to 0.005 m. The 

effect of the crack existence on the change in natural frequency becomes more significant when 

the piezoelectric layers get closer to the crack position. In consideration of the installation of the 

piezoelectric layers, L1 is defined as 0.01 m rather than the exact fixed end of the cantilever. 

Furthermore, to find out the optimal size of the piezoelectric layers, simulations with 6 different 

values of L2 are conducted, while L1 is fixed at 0.01 m. Fig. 3-6 shows the change in the 1st natural 

frequency due to the crack existence versus the length of the piezoelectric layers, when the location 

of the piezoelectric layer and the gain factor are fixed at L1=0.01 m and g=160, respectively. The 

result reveals that, while the length of the piezoelectric layer, L2- L1, is altered from 0.29 to 0.49 

m, the change in the 1st natural frequency surges from 11 to 18%. Then the frequency change due 

to the crack existence drops to 11.5 %, when the length L2- L1 increases to 0.49 from 0.79 m. 

Clearly, the optimal length of the piezoelectric layer leading to the most significant frequency 

change (18 %) in the presence of the crack through the tuning process is L2=0.5 m. 

By the optimal design of the piezoelectric layers, another simulation of the cantilevered beam with 

a small crack (a=0.002 m, 20% of the thickness of the beam) at the fixed end is studied. As shown 
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in Fig. 3-7, the change in the 1st natural frequency is lower than 1 % for the case with no vibration 

tuning. After imposing the vibration tuning on the beam, the change of 1st natural frequency is up 

to 5.6 % when the gain factor is larger than 160. Consequently, the effectiveness of the proposed 

technique in detecting small damages is verified.  

When the crack is located at the middle of the cantilevered beam, the piezoelectric patches are 

placed close to the crack, from the fixed end of the beam to L1’, and from L2’ to the free end of the 

beam. Fig. 3-8 shows the difference of the 1st and 2nd frequencies between the intact and cracked 

beams with vibration tuning. It is seen that when the gain factor changes from 0 to 200, the changes 

in the 1st and 2nd natural frequencies due to the crack existence are increased from 0.50 and 2.16 % 

to 3.61 and 9.5 %, respectively. Clearly, the damage detection sensitivity is significantly enhanced 

by the vibration characteristic tuning process, even when the crack is located at the middle of the 

beam. The variation of the 2nd natural frequency shows a clearer detection result, since the largest 

curvature is distributed closer to the crack position in the 2nd vibration mode shape of the beam. 

3.3 Summary 

An optimally designed vibration characteristic tuning technique is presented to greatly improve 

the sensitivity of damage detection based on the changes in natural frequencies. The bending 

moments induced by the inverse piezoelectric effect of the piezoelectric actuators are utilized to 

tune the vibration natural frequencies and mode shapes so as to magnify the changes in the natural 

frequencies due to the damage existence. A theoretical model is developed to reveal the basic 

principle of sensitivity enhancement of the proposed damage detection technique. With an optimal 

design of the piezoelectric sensors and actuators with the dimension of L1=0.01m and L2=0.5m, 

the changes in the 1st natural frequency due to the damage existence is found to increase from 3.3 

to 18 % under the same tuning process with a gain factor of 160 by numerical simulations. The 
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technique is also found to be efficient for detecting the crack located at different positions of the 

beam with proper placement of the piezoelectric sensors and actuators. Overall, the vibration 

characteristic tuning crack detection is promising for the structural health monitoring with an 

increased sensitivity than the traditional methods with no tuning.  
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Table 3-1 Geometric and material properties for numerical simulations 

Parameter Host beam (aluminum) Piezoelectric layers 

Young’s modulus (N m-2)  E=69×109 Ep=78×109 

Mass density (kg m-3) ρ=2.8×103 ρp=7.5×103 

e31 (C/m2)  - -2.8 

d31 (C/N) - -1.28×10-10 

Cv (nF)  - 2.633 for a piezoelectric patch 

with dimensions of 

0.01m×0.79m×0.0003m 

L (m) 1 - 

L1 (m) 0.01, 0.03, 0.05 - 

L2 (m) 0.3, 0.4, …, 0.8 - 

L1’ (m) 0.495 - 

L2’ (m) 0.505 - 

Lc (m) 0, 0.5 - 

h (m) 0.01 - 

h1 (m) - 0.0003 

b (m) 0.02 - 

bs (m) - 0.01 

ba (m) - 0.01 

d (m) 0.004 - 
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Table 3-2 Difference in natural frequencies for healthy and cracked beams in traditional method 

 1st order 2nd order 3rd order 

Healthy beam (Hz) 8.02 50.26 140.72 

Cracked beam (Hz) 7.75 48.61 136.33 

Percentage of 

variation (%) 

3.37 3.29 3.12 
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Fig. 3-1 Procedure of vibration characteristic tuning. 
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Fig. 3-2 Cantilevered beams with and without a crack at the fixed end. 

 

 

Fig. 3-3 Cantilevered beams with and without a crack at the middle. 
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Fig. 3-4 Difference of the 1st natural frequency between the cracked and intact beams with 

vibration characteristic tuning versus gain factor for d=0.004m, L1=0.02m and L2 =0.81m. 
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Fig. 3-5 Variation in 1st nature frequency due to a crack (d=0.004m) versus location of the 

piezoelectric layer with certain length, L2-L1=0.79 m, and a fixed gain factor, g=160. 
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Fig. 3-6 Change in 1st nature frequency due to a crack (d=0.004m) versus length of the 

piezoelectric layer located at a fixed location, L1=0.01m, with a fixed gain factor, g=160. 
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Fig. 3-7 Difference in the 1st natural frequency between cracked and intact beams with vibration 

characteristic tuning versus gain factor for d=0.002m, L1=0.005m and L2 =0.5m. 
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Fig. 3-8 Changes in 1st and 2nd natural frequency due to a crack at the midspan for different gain 

factors. 
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4. Crack identification through a scan-tuning process using 

piezoelectric materials 

In this chapter, a scan vibration tuning methodology is proposed for crack damage identification 

in beam-type structures, including the steps of detection and localization. This methodology 

resolves the shortcoming of low sensitivity measurement of natural frequencies based damage 

detection methods by utilizing the merits of active feedback control by means of the piezoelectric 

materials. Piezoelectric sensors and actuators are mounted on the surface of the host beam 

synchronously to generate the feedback bending excitations by applying certain gain on the voltage 

output from the piezoelectric sensors. The stiffness of the original beam is adjusted by the feedback 

excitations, and the mode shapes and natural frequencies are tuned accordingly. To fulfill the scan-

tuning process, each pair of sensor and actuator is activated and controlled individually one by one. 

When the piezoelectric actuator at the crack position is activated, and the ones at other positions 

are shut off, the mode shapes of the beam is supposed to be noticeably altered along with the 

change of its natural frequency due to the crack occurrence. Through the scan-tuning process by 

activating the piezoelectric actuator at different positions and adjusting the gain, the crack 

existence and location can be learned from the measured natural frequencies change compared 

with the healthy beam. A finite element model is established to verify the effectiveness of the 

proposed methodology. 
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4.1 Theoretical model 

In this section, the scan-tuning process of the proposed methodology for crack identification by 

measuring the vibration natural frequency change is first explained. Detailed theoretical models 

are subsequently developed to calculate the changes in natural frequencies of the beam due to the 

crack with and without the vibration tuning, respectively. 

As shown in Fig. 4-1, the crack identification methodology is realized through a scan vibration 

tuning process. The coefficients, g and n, are defined at the beginning, while g is the gain applied 

to the voltage output of the sensor, and the amplified voltage will be imposed on the actuator to 

realize the feedback excitation. n indicates that the nth couple of piezoelectric sensor and actuator 

from the fixed end of the cantilever beam is subjected to the feedback tuning. To realize the scan-

tuning on a whole beam, n is usually set to start as 1. The couples of piezoelectric patches are then 

activated one by one to generate feedback bending moments at different locations of the beams. 

When the bending moment is applied at the position where the crack occurs, the local stiffness of 

the beam is supposed to be  noticeably altered through the feedback tuning process, which leads 

to more significant change on the natural frequencies of the beam due to the crack [63, 64].  

Therefore, the crack can be detected and localized at the same time by comparing the natural 

frequencies, when the feedback bending moment is applied at different locations of the beams 

through the scan vibration tuning process. The severity of the crack can be also learned from the 

amount of the natural frequency change through numerical simulations. 

To describe the scan vibration tuning process, a cracked cantilever beam coupled with 

piezoelectric materials is prepared as shown in Fig. 4-2, with the total length L, width b, thickness 

H, density p and Young’s modulus E. Piezoelectric sensor and actuator patches are bonded in pairs 

on the lower surface of the host beam to realize the feedback vibration tuning. Each piezoelectric 
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patch has the same length a, thickness h1, density ρp and Young’s modulus Ep. bs and ba are the 

width of the piezoelectric sensor and actuator, respectively. A healthy beam with the same 

dimensions and material properties is also provided for the comparison with the cracked one. It is 

noted that the poling direction of the piezoelectric sensor is opposite to the one of piezoelectric 

actuator. 

According to Eq. (2-1), the dynamic equation of the beam fully covered by piezoelectric sensor 

and actuator patches can be written as 

 

4 2

4 2

( , ) ( , )
( ) ' ' 0,

w x t w x t
EI m

x t

 
 

 
  (4-1) 

where 𝑤(𝑥, 𝑡) is the dynamic vibration deflection of the beam.  m’ and (EI)’ are the equivalent 

mass and the flexural rigidity of the cantilever covered by piezoelectric patches given by  

 

1

3 3 3 3

1 1 1 1

' ( ),  

( ) ( ) ( ) ( )
( ) ' ( ),

24 24

p s a

P s a

m hb h b b

h h h h h h h h
EI E b E b b

   

        
     

   

  (4-2) 

As shown from Fig. 4-2, the crack is located at the position with Lc away from the fixed end of the 

beam. The feedback voltage is applied to the piezoelectric actuator individually from the fixed end 

to the free end of the beam to altered its local stiffness at different locations and realize the scan 

tuning process. Hence, only one pair of piezoelectric patches are activated each time, and the 

cracked beam is simply separated into 4 sections by the activated piezoelectric sensor and actuator 

pair and the position of the crack. The modelling process of the healthy beam is the same, while 

the crack depth is regarded as zero. Depending on Eq. (2-2), the mode shape functions of the 4 

beam sections, Wi(x), are given by (1 4i   ) 
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where C1-16 are the unknown constants, 𝛽 is real constant related with the natural frequency of the 

structure given by 
 

2
4

'

'

m

EI
   ,   is the natural frequency of the beam, L1 and L2 are the 

distance from the fixed end of the beam to the left and right ends of the activated piezoelectric 

actuator, respectively. La, Lb and Lc are the positions along the length direction of the beam. 

Depending on the placement of the active piezoelectric sensor and actuator patches and the position 

of the crack, the definitions of La, Lb and Lc are listed in Table 4-1.  

The boundary conditions and continuity conditions of the beam coupled with piezoelectric patches 

are listed in Appendix B. The piezoelectric induced bending moments are imposed into the 

continuity conditions at both ends of the activated piezoelectric actuators. Substituting Eqs. (2-2), 

(2-13), (2-14) and (4-3) into boundary conditions and continuity conditions illustrated by Eqs. (B-

1) to (B-3) leads to 16 linear equations, from which the nth natural frequencies of the beam under 

the vibration tuning, ,'n h  and ,'n d  (n=1, 2, 3,…, ∞), can be solved by the Eigen value problem. 

Based on the magnified crack effect on the natural frequencies change through the scan vibration 

tuning process, the existence and of the crack can be learned. Detailed crack identification results 

and discussions are given in the next section. 
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4.2 Numerical simulations and discussions 

Numerical Simulations based on the theoretical model are conducted in this section. Damage 

identification to the crack with different severity located at different locations of the beam is 

realized by the proposed methodology. Mechanism of the scan vibration tuning techniques are 

discussed and explained through simulation results. Table 4-2 lists the dimensions and material 

properties of the host beam and the piezoelectric patches used in the simulations. 

Table 4-3 shows the results of the changes in the first three natural frequencies of the beam without 

the scan-tuning process when the feedback gain, g, is set to be zero, with a crack located at the 

center of the beam (x=0.32m). The depth of the crack, d, is 0.0012 m, which is 40 % of the 

thickness of the host beam. However, it is noted that the largest change in the first three natural 

frequencies (the 2nd natural frequency) is only 0.89 %. Such a sensitivity cannot satisfy the damage 

detection requirements with inevitable noises. The damage location cannot be learned directly 

from the natural frequencies change either. 

To find a suitable gain for the scan vibration tuning process with better detection sensitivity, the 

effect of the gain applied to the voltage output of the piezoelectric sensor on the natural frequency 

change due to the crack is drawn in Fig. 4-3. The gain increases from -8.5 to 8.5, while the crack 

with depth of 40% of the thickness of the beam (d=0.0012m) is located at Lc=0.32m (around the 

middle of the beam). Previous study indicates that higher detection sensitivity can be achieved [63, 

64], when the piezoelectric actuator is located closer to the damage. The piezoelectric actuator 

close to the crack at L1=0.32m is hence activated to tune the vibration characteristics of the beam. 

In Fig. 4-3, it is found that the change in natural frequencies due to the crack becomes even poorer 

when the gain is negative. With positive gain, it is seen that the gain increment leads to the 

sensitivity enhancements on damage detection with more obvious changes for all three natural 
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frequencies. However, this increment of the change of the 3rd natural frequency with the gain 

increment is less obvious compared with 1st and 2nd one. The reason of this phenomenon is related 

with the crack location and natural vibration mode shapes and will be explained in the following 

discussions.  

To study the scan vibration tuning for both crack detection and localization, Fig. 4-4 displays the 

detection results of the change in the first three beam natural frequencies due to the crack, when 

the piezoelectric actuators located at different positions of the beam are activated. The feedback 

gain is fixed at 8.5, and the same crack located at the middle of the host beam (Lc=0.32m, 

d=0.0012m) is used. From Fig. 4-4, it can be found that the percent changes are 22%, 25%, 2% in 

the first three natural frequencies, respectively, compared with ones of the healthy beam, when the 

sixth piezoelectric (L1=0.31m) actuator is activated. When piezoelectric actuators at other locations 

are activated, the natural frequency changes are not obvious (less than 2%). Figs. 4-5 (a), (b) and 

(c) show the first three mode shapes of the beam, while the piezoelectric actuators at different 

locations are activated. It is seen that the vibration tuning changes the natural vibration mode 

shapes of the beam and enlarges the slop discontinuity at the crack position obviously, when the 

piezoelectric actuator closed to the crack is activated by the feedback voltage, leading to more 

obvious natural frequency change and higher crack detection sensitivity. Through the scan 

vibration tuning process, the crack at any position of the beam can be effectively detected and 

localized with the notification of obvious natural frequency change. Moreover, for the case of the 

middle crack of the beam, it is found that the changes of the 1st and 2nd natural frequencies with 

L1=0.31m clearly reveal the existence as well as the location of the damage. However, the change 

in the 3rd natural frequency is insignificant for damage detection or localization. Similar 

phenomenon can be found in Fig. 4-5 (c) with insignificant change of the 3rd natural vibration 
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mode shape even if the piezoelectric actuator close to the crack is active. To explain the difference 

of detection sensitivity in different modes, the non-dimensional curvature distributions of the first 

three natural mode shapes of the beam are plotted in Fig. 4-6. It is noted that very small curvature 

is distributed at the middle of the beam in the 3rd mode, which leads to minor slope difference on 

both sides of the crack. From Eqs. (2-6), (2-8), (2-10), (2-11) and (2-13), the feedback excitation 

is proportional to the slope difference between both sides of the piezoelectric sensor. Therefore, 

even if the piezoelectric actuator patch located at the crack is activated, the feedback excitation 

corresponding to the 3rd mode is relatively weak due to the lack of slope difference between two 

sides of the piezoelectric sensor and the small voltage output from the sensor. From the results 

shown in Figs. 4-4 to 4-6, it can be concluded that the scan vibration tuning process can effectively 

detect and locate the crack damage by amplify the natural frequencies changes due to the crack, 

but sensitivity for different natural modes can vary depending on the position of the crack and the 

mode shapes.   

The results of the case when a crack appears close to the fixed end of the cantilever (Lc=0.05m) 

are then provided in Fig. 4-7. The depth of the crack stays at 40% of the thickness of the host beam 

(d=0.0012m). In this case, as shown in the Fig. 4-7, the appearance of the crack contributes 24% 

to the shift of the first natural frequency while the gain is 8. However, the crack effect makes tiny 

difference to the 2nd and 3rd natural frequencies. As a further illustration for the cases of different 

locations of the crack, more simulation results are plotted in Fig. 4-8, where the gain is set as g=8. 

The distance between the fixed end of the cantilever beam and the crack (Lc) changes from 0.05m 

to 0.59m. To show the optimal detection results, only the scan-tuning results with the largest 

natural frequency changes, when the piezoelectric actuators close to the crack positions are 

activated, are given. It is found that the 1st natural frequency change of the beam reflects the most 
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significant crack effect among the first three natural frequencies, when distance between the crack 

and the fixed end is 0.05m to 0.29m. When the crack is located at 0.29m to 0.47m away from the 

fixed end, the 2nd natural frequency change is the optimal characteristic for detection. The 3rd 

natural frequency change is the most effective one for the detection of the crack situated close to 

the free end of the cantilever beam ( 0.47cL m ). 

The damage identification results for the cases with different crack depth are plotted in Fig. 4-9 to 

study the effect of the crack size on the detection sensitivity. The crack location and the gain factor 

are fixed as the former case ( 0.32cL m , g=8.5). The piezoelectric actuator close to the crack 

(L1=0.31) is activated. Corresponding with the increase of the crack depth from 0% to 40% of the 

beam thickness (0 to 0.0012 m), the changes in the first three natural frequency keep increasing 

showing the higher detection sensitivity. The sensitivity enhancements in the first three natural 

frequencies display a similar trend as the ones in Fig. 4-3. Specifically, the change of the 2nd natural 

frequency shows the most significant sensitivity (up to 25% with 40% crack depth percentage of 

the beam thickness) in damage identification due to the crack located at the middle of the beam. It 

can be explained in the same way by looking at Fig. 4-5 (b) and Fig. 4-6 that with large curvature 

distribution at the middle section of the beam, the feedback excitation and vibration tuning effect 

corresponding to the 2nd mode is more significant compared with the ones of other modes, which 

leads to more obvious change in 2nd natural frequency due to the crack and better damage detection 

sensitivity. From the given simulation results, we can recognize the potential of the crack depth 

quantification by using the proposed methodology as well. After the crack is located, and the gain 

is fixed, the crack depth can be learned reversely from the natural frequency change for the damage 

evaluation aim. 
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4.3 Finite element method simulations 

The scan-tuning crack identification is an improved damage monitoring methodology of the 

vibration characteristic tuning crack detection. To better verify the effectiveness of the proposed 

methodology of scan-tuning on beam-type structures, a finite element model is developed on 

ANSYS 16.0. The dimensions and material properties of the finite element beam model is based 

on Table 4-2. Beam 188 elements are employed to mesh the cantilever beam model. As shown in 

Fig. 4-10, A crack located at x=0.32m is presented by the reduction of the height of the beam 

section properties. To better reveal the natural frequencies of the beam from the vibration response, 

two initial forces are applied on the beam at x=0.298m (Fz1=30N) and x=0.598m (Fz2=-10N). The 

initial forces are deleted after 0.2 seconds (t=0.2s), and the transient analysis of the free vibration 

of the beam is subsequently initiated. According to Eq. (2-13), a couple of feedback bending 

moments are imposed on both sides of the activated piezoelectric patches due to the piezoelectric 

effect. The gain factor, g, during the transient analysis is defined as 8.5 for the comparison with 

numerical simulations in Matlab. The data of the nodal displacement on z-axis direction is recorded 

and processed by fast Fourier transform (FFT) to draw the frequency spectrum. 

Figs. 4-11 (a) and (b) display the frequency spectrums of both the healthy beam and cracked beam 

with and without using scan-tuning method. The natural frequencies are extracted and listed in 

Table 4-4 and Table 4-5, respectively. From Table 4-4, it can be seen that the crack effect is 

extremely weak in all the three natural frequencies in traditional frequency-based detection method 

with the highest natural frequency change of only 2.56% for the 2nd vibration mode. On the other 

hand, as shown in Table 4-5, with the scan-tuning process, the first two natural frequencies of both 

the healthy beam and the cracked beam are decreased, but the difference in the 1st and 2nd natural 

frequencies between both beams significantly surges to 20.83% and 24.63% respectively. The 



 

46 

 

vibration tuning barely changes the 3rd natural frequencies of both beams. The overall results from 

the transient analysis based on FEM simulations are similar to the ones from numerical simulations, 

while the 2nd natural frequency is the most sensitive parameter for the detection on the crack at the 

middle of cantilever beam via scan-tuning method. The effectiveness of the proposed methodology 

is hence proven by the FEM simulations. 

4.4 Summary 

A damage identification methodology for beam-type structures by the use of piezoelectric 

materials is proposed. The piezoelectric sensors and actuators are employed to generate the 

feedback excitations to change the local stiffness so that to alter the mode shape of the beam. The 

scan vibration tuning process is realized through the activation of each pair of piezoelectric sensor 

and piezoelectric actuator individually over the surface of the host beam. By studying the natural 

frequency change compared with the healthy beam under the same scan-tuning process, the 

damage in the host beam can be identified. A detailed theoretical model is established to realize 

the damage identification with the scan vibration tuning, and numerical simulations based on the 

model are conducted. Cracks at different positions of the beam can be effectively detected and 

located by the proposed methodology. With the scan-tuning, the crack at the center and the fixed 

end of the beam can lead up to 25% change in the natural frequencies of the beam. It is also found 

that the damage detection sensitivity with different natural frequencies and vibration modes could 

vary depending on the position of the crack and the mode shapes. The damages close to the position 

with highest curvature of a specific order natural vibration mode shape are easier to be detected 

with higher sensitivity and more significant natural frequency change. The detection of the crack 

at certain position but with different depth is also discussed, and the potential of damage 
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quantification through this methodology is recognized. The damage detection and localization 

process is also verified to be efficient by the FEM simulations. 
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Table 4-1 The definition of the La, Lb and Lc 

Relationship between the 

locations of the activated 

actuator and the crack 

2 cL L  1 2 & c cL L L L   1 cL L  

aL  1L  1L  cL  

bL  2L  cL  1L  

cL  cL  2L  2L  
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Table 4-2 Geometric and material properties for numerical simulations 

Parameter Host beam (aluminum) Piezoelectric patches 

Young’s modulus (N m-2)  E=69×109 Ep=78×109 

Mass density (kg m-3) ρ=2.8×103 ρp=7.5×103 

e31 (C m-2)  - -2.8 

d31 (C N-1) - -1.28×10-10 

Cv (nF)  - 0.643 for a piezoelectric 

patch with dimensions of 

0.01m×0.06m×0.00035m 

L (m) 0.62 - 

L1 (m) 0.01, 0.07,…, 0.55 - 

L2 (m) L1+ lp - 

Lc (m) 0.05,0.32 - 

h (m) 0.003 - 

h1 (m) - 0.00035 

b (m) 0.02 - 

bs (m) - 0.01 

ba (m) - 0.01 

d (m) 0 (healthy beam) 

0.0012 (damaged beam) 

- 

lp (m) - 0.06 
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Table 4-3 Difference in natural frequencies for healthy and cracked beams (Lc=0.32m, 

d=0.012m) 

  1st order 2nd order 3rd order 

Healthy beam (Hz)  6.56 41.06 114.97 

Cracked beam (Hz) 6.54 40.70 114.94 

Percentage of 

variation (%) 

0.24 0.89 0.03 

 

 

Table 4-4 Difference in natural frequencies of healthy and cracked beams in FEM simulation 

without vibration tuning 

  1st order 2nd order 3rd order 

Healthy beam (Hz) 6.25 39.00 105.5 

Cracked beam (Hz) 6.25 38.00 105.25 

Percentage of 

variation (%) 

0 2.56 0.24 
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Table 4-5 Difference in natural frequencies of healthy and cracked beams in FEM simulation 

with vibration tuning at appropriate position 

  1st order 2nd order 3rd order 

Healthy beam (Hz) 6.00 33.50 106.00 

Cracked beam (Hz) 4.75 24.25 105.5 

Percentage of 

variation (%) 

20.83 24.63 0.47 
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Fig. 4-1 Procedure of scan vibration tuning method. 
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Fig. 4-2 Physical model of a cracked cantilever beam coupled with piezoelectric patches. 

 

 

Fig. 4-3 The change in the natural frequencies of the cantilever beam due to the crack effect with 

different gain under the scan-tuning, where the values for Lc=0.32 m, L1=0.31m, d=0.0012m. 
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Fig. 4-4 The change in the natural frequencies of the cantilever beam due to the crack effect 

under the scan-tuning, where the values for Lc=0.32 m, d=0.0012m and g=8.5. 

 

 



 

55 

 

 

 

Fig. 4-5 Mode shapes of the cantilever beam with the activation of the piezoelectric actuator with 

different locations, where the values for Lc=0.32 m, d=0.0012m and g=8.5. 
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Fig. 4-5 Continued. 
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Fig. 4-6 The non-dimensional curvature distribution of the healthy cantilever beam without 

tuning. 
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Fig. 4-7 The change in the natural frequencies of the cantilever beam due to the crack effect with 

different depth of the crack under the scan-tuning, where the values for Lc=0.32 m, d=0.0012, g=8. 
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Fig. 4-8 The change in the natural frequencies of the cantilever beam due to the crack effect with 

different locations of the crack under the feedback excitation of the piezoelectric actuator that is 

close to the crack, where the values for a=0.0012m and g=8. 
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Fig. 4-9 The changes in the natural frequencies of the cantilever beam due to the crack with 

different depth under the scan-tuning with the fixed values of Lc =0.32 m, L1=0.31m, g=8.5. 
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Fig. 4-10 Finite element model of a cantilever beam with a crack at Lc=0.32m 

 

 

 

Crack 
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(a) 

 

(b) 

Fig. 4-11 Frequency spectrums of FEM simulations (a) without vibration tuning and (b) with 

vibration tuning at appropriate position  
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5. Delamination identification through a scan-tuning process 

using piezoelectric materials 

In this chapter, the scan vibration tuning methodology coupled with piezoelectric materials is 

applied in delamination identification in beam-type structures. Similarly, the damage effect on the 

structure natural frequencies is magnified through the tuning process. Piezoelectric sensors and 

actuators on both surfaces of the host beam to generate the feedback bending excitations. Through 

the scan-tuning process by activating the piezoelectric actuator at different positions with decent 

gain, the delamination existence and location can be determined by the natural frequencies 

compared with the healthy beam. 

5.1 Theoretical model 

In this section, the overall flow of the scanning vibration tuning process in delamination 

identification is explained first. The first three natural frequencies of the tested structures are 

utilized to evaluate the delamination damage, including the determination of the existence, location 

and the size of the delamination. The theoretical models are subsequently proposed in details to 

calculate the damage effect on the natural frequencies. 

Fig. 5-1 shows the physical model of a delaminated cantilever beam covered by piezoelectric 

patches. Following the same strategy in chapter 4, the expression of the dynamic equation of the 

piezoelectric coupled beam is can be expressed same as Eq. (4-1). To analyze the dynamic 

response of delaminated beam under the piezoelectric effect, the beam is supposed to be separated 

into certain number, N, of sections, according to the relative location between the activated 

piezoelectric patches and the delamination area. The vibration solutions of each section are listed 

as below: 
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  (5-1) 

where C1-N are the unknown constants, 𝛽 is real constant related with the natural frequency of the 

structure given by 
 

2
4

'

'

m

EI
   , and   is the natural frequency of the beam. The expressions 

of m’ and EI’ are referred to Eq. (4-2). 

Five cases regarding the relative location between the activated piezoelectric patches and the 

delamination area of the beam are considered. The length of the delamination is assumed to be 

greatly larger than the length of a single piezoelectric patch. The boundary and continuity 

conditions of each case are shown as Appendix C. 

Substituting Eqs. (2-2), (2-13), (2-14) and (5-1) into boundary conditions and continuity conditions 

illustrated by Eqs. (C-1) to (C-5) and Figs. C-1 to C-5, the nth natural frequencies of the beam 

under the vibration tuning, 𝜔′
𝑛,ℎ

 and 𝜔′
𝑛,𝑑

 (n=1, 2, 3,…, ∞), can be solved by the Eigen value 

problem. By learning the delamination effect on the change of the natural frequencies compared 

to the healthy structure, the existence and size of the delamination can be determined. Detailed 

simulation results and discussions are presented in the next section. 

5.2 Simulations and discussions 

In this section, simulations based on the theoretical model are realized numerically. Two cases 

with different positions of the delamination in beam structure are considered, while one is located 

at the middle of the cantilever beam, and the other one is close to the fixed end. The percentage 
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change of the first three natural frequencies of both the healthy beam and the delaminated beam 

after scan-tuning are calculated. Effects of the size of the attached piezoelectric patches on 

delamination identification are also discussed. It is assumed that there is no gap between the two 

laminated section of the beam, and the required parameters for simulation are listed at Table 5-1. 

Table 5-2 shows the results of the changes in natural frequencies of the beam without the scan 

vibration tuning process, with a delamination distributed at 0.22m<x<0.32m. The thickness of the 

beam is separated by the delamination into two sections with hd1=0.002m and hd2=0.001m 

respectively. It can be seen that the largest change in natural frequencies occurs in the 2nd natural 

frequency. The sensitivity with over 17% change of the 2nd natural frequency is high enough for 

the delamination detection. Another delamination with different size and location is also detected 

by the natural frequencies change as shown in Table 5-3. However, the location of the delamination 

distribution cannot be learned merely from the frequency change.  

To enhance the sensitivity of the proposed method, proper gain of the amplifier is required. 

Previous study indicate that larger gain of the amplifier leads to more obvious change in the natural 

frequencies of the structure due to the damage. In consideration of the structural stability, when 

the delamination region ranges from x=0.25m to x=0.35m, and the gain factor, g, is set as 6. The 

height of the upper and lower delaminated section of the beam is 0.002 m and 0.001 m respectively. 

Fig. 5-2 displays the detection results of the change in the first three beam natural frequencies due 

to the existence of the delamination with different size of the piezoelectric patches. From Fig. 5-2, 

it is found that the maximal percentage changes are 20%, 32% and 7% in the first three natural 

frequencies respectively, where a = 0.06. It is noted that with the vibration tuning, the delamination 

detection sensitivity with 32% change of the 2nd natural frequency of the beam due to the 

delamination is much higher than the case without vibration tuning (only 17% change of the 2nd 
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natural frequency). In addition, the damage effect on the 1st and the 2nd natural frequencies is much 

more significant than the 3rd one under scan vibration tuning. It is because the delamination induces 

stiffness reduction of the beam section and changes its curvature distribution as the crack does. 

However, little curvature is distributed on the middle section of the 3rd vibration mode shape, 

which leads to minor slope difference between both sides of the piezoelectric patches in the 

delamination region, as well as weak feedback excitation on the beam for damage detection. 

Overall, the existence of the middle delamination can be easily detected from frequency variation 

by the scan vibration tuning when lp= 0.06m, but the location of the delamination cannot be 

accurately predicted. From Fig. 5-2, obvious damage effect on the natural frequencies is shown, 

when the fourth, fifth and sixth couple of piezoelectric patches are activated, pointing out that the 

delamination is roughly located within 0.19m<x<0.37m, which does not accurately match the 

exact delamination region (0.22m<x<0.32m).  

To better locate the delamination region, Figs. 5-2 and 5-3 display the detection results in natural 

frequencies change due to the delamination through scan vibration tuning to the same host beam, 

but the length of each discrete piezoelectric patches, lp, is shorten into 0.03m and 0.01m 

respectively. The scan-tuning process with both sizes of the piezoelectric patches can detect the 

existence of the delamination with over 25% change in the 2nd natural frequency. Regarding the 

ability of delamination localization, as shown in Fig. 5-2 and 5-3, the delamination region is 

expected to lie within the range of 0.22m<x<0.34m and 0.22m<x<0.32m respectively. It is found 

that with shorter length of the piezoelectric patches, the delamination region is supposed to be 

more accurately located. 

To further illustrate the effectiveness of the scan vibration tuning, another cantilever beam with 

different delamination region is also studied. The delamination region is close to the fixed end, 
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initiating at x=0.10m and ends at x=0.15m. Unlike the detection results for the delamination 

located at the middle section of the beam, as shown in Fig. 5-4, the 1st natural frequency shows the 

highest sensitivity, up to 21.45% change, of the detection on the delamination around the fixed 

end of the beam. The 3rd natural frequency comes the second with 8.86% change. Both the 1st and 

the 3rd natural frequencies are able to predict the delamination location correctly. On the contrary, 

the delamination effect on the 2nd natural frequency is extremely weak, with less than 1% change. 

This phenomenon is also attributed to the limited curvature distribution at the delamination region 

in the specific mode shape of the beam.  

5.3 Summary 

A scan vibration tuning process by the use of piezoelectric materials is applied to detect and locate 

the delamination inside the beam-type structures. The piezoelectric sensor patches and actuator 

patches are attached in pairs on both sides of the beams to generate the feedback excitations and 

magnify the delamination effect on structure natural frequencies changes. The scan vibration 

tuning process is realized by the activation of each pair of piezoelectric patches individually with 

a feedback tuning process throughout the beam. The natural frequency change compared with the 

healthy beam also under scan vibration tuning is then studied from the free vibration response. 

From the numerical simulations, delamination at the center or around the fixed end of the beam 

can be detected with over 20% shift in specific natural frequencies. Optimal design of the size of 

the piezoelectric patches is also studied to reach more accurate locating of the delamination. 

Overall, the proposed methodology is effective on beam delamination identification from the 

theoretical study with great potential for the application on other types of structures as well. 
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Table 5-1 Geometric and material properties for numerical simulations 

Parameter Host beam (aluminum) Piezoelectric patches 

Young’s modulus (N m-2)  E=69×109 Ep=78×109 

Mass density (kg m-3) ρ=2.8×103 ρp=7.5×103 

e31 (C m-2)  - -2.8 

d31 (C N-1) - -1.28×10-10 

Cv (nF)  - 0.643 for a piezoelectric 

patch with dimensions of 

0.01m×0.06m×0.00035m 

L (m) 0.62 - 

L1 (m) 0.01, 0.02, …, 0.60 (lp=0.01) 

0.01, 0.04, …, 0.58 (lp=0.03) 

0.01, 0.07, …, 0.55 (lp=0.06) 

- 

L2 (m) L1+ lp - 

Ld1 (m) 0.10, 0.22 - 

Ld2 (m) 0.15, 0.32 - 

h (m) 0.003 - 

h1 (m) - 0.00035 

hd1 (m) 0.002 - 

hd2 (m) 0.001 - 

b (m) 0.02 - 

bs (m) - 0.01 

ba (m) - 0.01 

lp (m) - 0.01, 0.03, 0.06 
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Table 5-2 Difference in natural frequencies for heathy and delaminated beams without vibration 

tuning (Ld1=0.22m, Ld2=0.32m) 

  1st order 2nd order 3rd order 

Healthy beam (Hz)  6.41 40.25 112.70 

Delaminated beam (Hz) 5.78 33.31 105.98 

Percentage of variation 

(%) 

9.93 17.24 5.96 

 

 

Table 5-3 Difference in natural frequencies for healthy and delaminated beams without vibration 

tuning (Ld1=0.10m, Ld2=0.15m) 

  1st order 2nd order 3rd order 

Healthy beam (Hz) 6.41 40.25 112.70 

Delaminated beam (Hz) 5.52 40.09 107.67 

Percentage of variation 

(%) 

13.90 0.34 4.47 
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Fig. 5-1 Physical model of a delaminated cantilever beam coupled with piezoelectric patches 

 

 

Fig. 5-2 The change in the natural frequencies of the cantilever beam due to the delamination 

effect under the scan-tuning, where the values for Ld1=0.22m, Ld2=0.32m, lp=0.06m and g=6. 
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Fig. 5-3 The change in the natural frequencies of the cantilever beam due to the delamination 

effect under the scan-tuning, where the values for for Ld1=0.22m, Ld2=0.32m, lp=0.03m and g=6. 
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Fig. 5-4 The change in the natural frequencies of the cantilever beam due to the delamination 

effect under the scan-tuning, where the values for Ld1=0.22m, Ld2=0.32m, lp=0.01m and g=6. 
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Fig. 5-5 The change in the natural frequencies of the cantilever beam due to the delamination 

effect under the scan-tuning, where the values for Ld1=0.10m, Ld2=0.15m, lp=0.01m and g=6. 
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6. Conclusions and future works 

In this thesis, focusing on natural frequency based methods, the development of vibration based 

damage detection is reviewed first. The review of the applications of piezoelectric materials in 

damage identification is followed. It is found that the natural frequencies of the structure may be 

easily extracted from the vibration response, but they are insensitive to damage occurrence. To 

improve the sensitivity of damage detection, an optimally designed vibration characteristic tuning 

technique coupled with piezoelectric materials is proposed. The feedback bending moments 

induced by the piezoelectric sensors and actuators are utilized to tune the vibration characteristics 

of the structure including the vibration mode shapes and natural frequencies. The damage effect 

on the change of natural frequencies is hence significantly enhanced for damage detection. 

Following the proposed technique, a scan-tuning methodology is developed for damage detection 

and localization in beam-type structures. Different types of damages (crack and delamination) in 

beams are studied numerically to reveal the universality of the methodology.   

The main contribution of this research is to propose alternative natural frequency based methods 

for damage identification on engineering structures. By the use of piezoelectric materials, an 

advanced vibration characteristic tuning technique is developed to diminish the environment effect 

so as to increase the sensitivity of the damage detection. From the numerical simulations (both 

analytical and FEM), following findings and conclusions can be made. 

I. A detailed theoretical model is provided to reveal the principle of the vibration 

characteristic tuning process by piezoelectric materials.  
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II. High sensitivity for crack detection is realized via the proposed technique. From the 

analytical simulations, the change in the 1st natural frequency due to the fix-end crack 

existence in a cantilever beam is found to increase from 3.3% to 18 % under the tuning 

process. 

III. The optimal design of the size and placement of the piezoelectric layers is conducted to 

achieve higher sensitivity for damage detection. 

IV. As an extended study of the proposed technique, the scan-tuning methodology is designed 

to not only detect but also locate the damage in beams based on the natural frequency shift. 

With over 20% change in the natural frequencies, both the crack and delamination damages 

in beams are efficiently detected and located through the scan-tuning process. 

V. Parameter study of the crack depth and the amplifier gain is demonstrated to optimize the 

scan-tuning process. 

VI. A finite element model is constructed to verify the effectiveness of the scan-tuning 

methodology for crack detection and localization. 

VII. The length of the piezoelectric patches for scan-tuning is optimally designed to estimate 

the more accurate location of the damage. 

Overall, the detection and localization of damages in beam-type structures (e.g. crack and 

delamination) are realized by utilizing the piezoelectric materials depending on numerical 

simulations. 

The research work is still on the preliminary stage. Major future research is to conduct a series of 

experiments to verify the feasibility of the proposed techniques and methods. The selection of the 

voltage amplifier is critical since the signal from the piezoelectric sensor is extremely susceptible 

to the noise. In addition, the Level 3 of SHM, which is the quantification of the severity of the 
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damage, will be further studied through the proposed technique. Lastly, the potential of the 

proposed methods for damage identification to other types of structures, such as plates and frames, 

is also noted. Further studies on different structures are required to build up a complete damage 

monitoring system. 
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Appendix A Linear piezoelectric constitutive equations (LPCE) 

The standard form of the piezoelectric constitutive equations [65] can be written in four different 

forms as: 

Strain-Charge form: 

  E
ij ijkl kl kij kS s T d E   (A-1)   

   D
i ikl kl ik kD d T E                                                            (A-2)   

Strain-Voltage form: 

  D
ij ijkl kl kij kS s T g D                                                     (A-3)  

    T
i ikl kl ik kE g T D                                                    (A-4)  

Stress-Voltage form: 

  D
ij ijkl kl kij kT c S h D                                                       (A-5) 

    S
i ikl kl ik kE h S D                                                     (A-6)  

Stress-Charge form: 

  E
ij ijkl kl kij kT c S e E                                                      (A-7) 

   S
i ikl kl ij kD e S E                                                        (A-8) 

where the meanings and units of the symbols are listed in Table A-1. 
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Table A-1 List of symbols and their units 

Symbol Units Physical Meaning 

ijT  
2

N

m
   

stress components 

ijS  
m

m
 

strain components 

iE  
N

C
 

electric field components 

iD  
2

C

m
 

electric charge density displacement components 

E
ijkls  

2m

N
 

compliance coefficients 

E
ijklc  

2

N

m
 

stiffness coefficients 

 S
ij  F

m
 

electric permittivity 

kijd  C

N
 

piezoelectric coupling coefficients for Strain-Charge form 

ikle  
2

C

m
 

piezoelectric coupling coefficients for Stress-Charge form 

iklg  
2m

C
 

piezoelectric coupling coefficients for Strain-Voltage form 

iklh  
N

C
 

piezoelectric coupling coefficients for Stress-Voltage form 
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Appendix B Boundary and continuity conditions of beams under 

scan vibration tuning for crack identification 

I. Boundary and continuity conditions of crack beams if 2 cL L : 

1
1

1 2
1 1 2

2 2 3 3

1 2 1 2

2 2 3 3

32
2 2 3

2 32 3

3 32 2

2 2 3 3

3 4
3 4

0 : 0, 0 ;

: , ,

( ) ' ( ) ' , ( ) ' ( ) ' ;

: , ,

( ) ' ( ) ' , ( ) ' ( ) ' ;

: , (

e

e

c

w
x w

x

w dw
x L w w

x x

w w w w
EI M EI EI EI

x x x x

ww
x L w w

x x

w ww w
EI EI M EI EI

x x x x

w w
x L w w Wi

x x



  




  

 

   
  

   


  

 

  
  

   

 
   

 

3 4

2 32 3

3 34 4

2 2 3 3

2 3

4 4

2 3

); ( ),

( ) ' ( ) ' , ( ) ' ( ) ' ;

: 0, 0.

w w
th crack Without crack

x x

w ww w
EI EI EI EI

x x x x

w w
x L

x x

 


 

  
 

   

 
  

 

 (B-1) 

 

 

 

 

 

 

 



 

87 

 

II. Boundary and continuity conditions of crack beams if 1 2and  c cL L L L  : 
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III. Boundary and continuity conditions of crack beams if 1 cL L : 
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Appendix C Boundary and continuity conditions of beams under 

scan vibration tuning for delamination identification 

I. Boundary and continuity conditions of delaminated beams if 2 1dL L  as shown in Fig. C-

1: 
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II. Boundary and continuity conditions of delaminated beams if 1 1 2 1 and  d dL L L L   as 

shown in Fig. C-2: 
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III. Boundary and continuity conditions of delaminated beams if 1 1 2 2d d and L L L L   as 

shown in Fig. C-3: 
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IV. Boundary and continuity conditions of delaminated beams if 1 2 2 2d d and L L L L   as 

shown in Fig. C-4: 
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V. Boundary and continuity conditions of delaminated beams if 1 2dL L  as shown in Fig. C-

5: 
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Activated 
piezoelectric patches 

   

 

 
 

Fig. C-1 Physical model of a delaminated beam coupled with piezoelectric patches when L2<Ld1 

 

Activated 
piezoelectric patches 

  

 

 

 

 
 

Fig. C-2 Physical model of a delaminated beam coupled with piezoelectric patches when L1<Ld1 

and L2>Ld1 

 

Activated 
piezoelectric patches 

 

 

 

 

 

 

 
 

Fig. C-3 Physical model of a delaminated beam coupled with piezoelectric patches when L1>Ld1 

and L2<Ld2  
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Activated 
piezoelectric patches 

 

 

 

 

 
  

Fig. C-4 Physical model of a delaminated beam coupled with piezoelectric patches when L1<Ld2 

and L2>Ld2 

 

Activated 
piezoelectric patches 

 

 

 
   

Fig. C-5 Physical model of a delaminated beam coupled with piezoelectric patches when L1>Ld2 
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