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Ahstnact

In this thesis, three categories of problems in Exact Combinatorial Coverings are

discussed. All the coverings are minimal, in the sense that they use the fewest blocks
possible; they also have specific restrictions imposed on them. The first category of
covering requires that all pairs of elements from a v-set be covered exactly once. To
eliminate the trivial case of generating a covering by taking all the elements and placing
them in a single long block, we restrict the length of the longest block to be less than or
equal to v-1, where v is the number of elements involved. The second category of
covering problem examined involves covering all triples exactly once; as with the
coverings of pairs, the length of the longest block is restricted to be less than or equal to
v-1. In the third category, all pairs must be covered exactly twice; again, the length of
the longest block is restricted to be less than or equal to v-1. For these bicoverings, a

computer algorithm is employed for many of the results. In the final chapter of the

thesis, a discussion is given of the number of non-isomorphic solutions for the classical
covering problem for N(2,4,9).
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C&aapÉen" ã

n.l ImÉroductÍon

Combinatorics is basically the study of finite sets, and most of the problems
encountered fall into three major categories. The first category is the d.iscussion ofexistence: can a sÛucture be created that satisfies certain specified conditions. The
second category is more numerical: if a structure exists, how many sets of elements (or
blocks) are required in order to create the structure. Finally, we have the third
category' that of determining the number of non-isomorphic sfructures satisfying agiven set of conditions.

In this thesis, we shall be studying süllctures that satisfy certain minimal conditions and
that consequently must exist. Most of our discussion will be concerned with problems
of the second category' namely, the determination of how many subsets are required to
create the structures we are studying. However, in the final chapter, we wiil include a
discussion of a problem from the third category and will discuss the number of non-
isomorphic solutions to a particular covering problem.

n "Z Genenal Cornbinatorial Backgnound

Balanced Incomplete Block Designs (BIBDs) were inrroduced by Frank yates in 1935,
and have been widely studied since then, both for their practical applications and their
mathematical properties. They are significant tools in statistical analysis, and have been
employed in communication theory; they are related to many combinatorial designs
such as error correcting codes and Latin squares.

Covering and packing designs are a gener alization of Balanced Incomplete Block
Designs; in these designs, we drop the requirement for exactness and permit repetition
of pairs in a covering and' omission of pairs in a packing. consideration of these
systems as designs was first made explicit by stanton, Kalbfleisch, and Mullin in [51],although various earlier papers had discussed these structures without emphasizing
their design properries (see, for exampre, ï231,l52l,t40l). since rhar rime, a great deal
of further work has been done by Mills, Muriin, Rees, stanton, stinson, vanstone, and
others.
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In this thesis, we shall basically be discussing exact coverings (which are also exact
packings)' In order to meet the condition of exactness for every possible situation, itwill be necessary to permit more than one block size in our covering designs. This
approach first appeared in a r94g paper by Erdös and de Bruijn, but no further
developments took place for some time. woodall [67] obtained an important inequa_lity
in 1968, and Stanton and Kalbfleisch [53] obtained a different inequali ty (1972) that
subsumes the Erdös - de Bruijn result. Since that time, there have been many
developments by various authors; these will be indicated in appropriate places during
our discussion.

The general structure of this thesis will now be described. In chapter II, we shall give
a brief outline of the structures to be discussed and we shall give definitions of the
various srructures' The early definitions will deal with the classical background of rhe
subject, and then we will present the generalizations which we shali be discussing.
Some of these definitions will be repeated in later chapters in order to make the
presentation simpler to follow without excessive referencing to chapter II.

In chapter III, we discuss exact covering designs where every pair must occur exactly
once' These designs are the analogues of Balanced Incomplete Block Designs, and are
of interest in Graph rheory as well as combinatorics (cf. the various papers by Rees).
In chapter IV, we extend the discussion to the case where every triple occurs exactly
once; the resulting designs are the natural generalization of the Steiner systems
S(3,k,v) introduced by Witt [66].

In chapter v, we introduce the concept of a bicovering in which every pair occurs
exactly twice' Much of the discussion of this case is carried out by means of a
computational study, and the aigorithm employed is given in an Appendix, along with
va¡iou s numerical results.

Finally, in chapter vI, we do a study of the number of non-isomorphic solutions of
two particular covering problems.

t"3 Ref,enences

Many of the results obtained in this thesis have already been published in various
journals during the last several yeaÍs. The basic step forward was the introduction of
pair-coverings with restricted largest block length (Allston, Stanton, and Cowan [3]);

n
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this work is described in section 3.2. The work of section 3.3 appeared in Allston and
Stanton (t7l and t8l).

The discussion in section 4.2 dealing with exact coverings of triples with specified
longest block length appeared in Allston and Stanton t6l. The discussion of the two
important special cases involving 20 or 21 elements appeared in Allston, Stanton, and
Cowan ([1] and [2]). The results of section 4.7 are due to Allston, Sranron, and
Wirmani-Prasad [9]. The discussion of section 4.8 is taken from Allston, Stanton, and
Rogers [10].

The material in Chapter V has not yet appeared in print. The body of Chapter VI
appeared in Allston, Stanton, and Wallis [4], although we here present a modified
version which incorporates a coffection found by Bate and van Rees [i3].
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CåaapÉen Xã

2.î Ðefinitiom of fhe Ð and N F unctioxls

Suppose that we have a set V consisting of v elements, denoted by the integers
7,2,3,-.. ,v. Suppose also that we have a family F of k-subsets selected from these
v elements (k is normaliy taken to be less than v, since the case k = v is trivial).
Now consider all the t-subsets of V.

If F has the property that all t-subsets of V occur at least ì. times in F, then we say
that we have a covering, and that the family F is a l"-covering of all t-sets. The
most interesting coverings are those which have a minimal propefly, that is, the
cardinality of F, or lFl, is as small as possible; if we are dealing with such a minimal
family, we denore this minimum cardinality by the symbol N1(t,k,v). The case l, =
1 is particularly important, and we normally consider this case unless otherwise
stated; in this particular case, we omit the subscript altogether and simply write
N(t,k,v). some authors use the symbol c(t,k,v) for the covering number.

On the other hand, if the family F is selected to have the property that no t-subset
occurs more than ì" times, then we say that we have a packing, and the family F is
called a À-packing of all t-sets. Again, it is natural to restrict attention to those
particular packings that are maximal, that is, that have lFl as large as possible. We
use the symbol D¡(t,k,v) to denote this maximum cardinality. Again, we normally
take l" = 1, unless otherwise stated, and we write D(t,k,v) in this case.

It is trivial, but very important, to note the results for t = 1, that is, when we are
covering or packing all single elements. For this case, we immediately have

D(1,k,v) = Ltj and N(1,k,") = [Ë-l.

This relationship allows us to obtain a well known bound on the numbers N and D;
we call this the Fisher Bound, since it is obtained by counting the elements
appearing in the blocks of the covering family F in two ways, in exactly rhe same
way that the usual relationship bk = vr is derived for Balanced Incomplete Block
Designs.
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Write down all the blocks in a covering family F; then each block contains k
elements, and the number of blocks is N(t,k,v). consequently, the number of
elements in the covering array is just kN(t,k,v). Now, look at the blocks
containing a particulff element x; since all t-sets containing x must occur, x must
occur with every (t-l)-set formed from the v elements, and these (t-l)-sets must
appeil in the (k-l)-sets that occur with x. Hence, the frequency of x is at least
N(t-1,k-1,v-1), and this is true for each of the v elements x. Hence, the number of
elements in the array is at least vN(t-l,k-1,v-1). puning these two facts together,
we have

kN(t,k,v) > vN(t-1,k-1,v-1).

This ¡ecursive relation is best employed as it stands. If t = 2, we can derive the
slightly weaker form of the covering bound as

N(2,k,v) 
= 

I- Ët Ë+l I

An exactly similar discussion can be carried out for the packing bound; we again
write down all the blocks in a packing famity F. since there are D(t,k,v) blocks of
length k, the number of elements in the packing array is simply kD(t,k,v). Now
look at the blocks containing a particular element x; x can not occur with a (t-l)-set
more than once in the (k-l)-sets which appeil with x. Consequently, x can not
appear in more than D(t-1,k-1,v-1) blocks, and it may appear in fewer blocks.
Since there are v possibilities for the element x, the number of elements in the array
is at most equal to vD(t-1,k-1,v-1), and we obtain the recursive relationship

kD(t,k,v) < vD(t-1,k-1,v-1).

This equation yields the packing bound for r = 2 in the usual form as

D(2,k,v) 
= 

L ËL Ëil L

Vy'e conclude this section by describing results that have been obtained for packings
and coverings with small values of v and k.

The results for N(2,3,v) were given by Forr and Lledlun d, t23l; for a much simpler
presentation, along with the results for D(2,3,v), see Stanton and Rogers [56],
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where the results are phrased in terms of the defect graph of a packing and the
excess graph of a covering. The packing bound is achieved for all values of v,
except when v is congruent to 5 (mod 6); in this latter case, the maximal packing
design has a number of blocks one less than the bound. Similarly, one finds that
the covering bound is always achievable.

The results for N(2,4,v) are summed up in two papers by Mills [zg,3o]. with the
aid of a considerable amount of computation, it is shown that the bound is always
achieved except for v = 7,9,70 (when one extra block is needed), and for v = 19

(when two extra blocks are needed). The results for D(2,4,v) are summarized, in
Brouwer [17]. The numbers 8,9,10,1 r,r7,r9, are exceptions; for all other values,
the result is that the bound is met for v not congruent to 7 or 10 (mod I2), and, the
bound, less one, is met for v congruent to 7 or 10 (mod 12). For v = 9 and l':., the
packing number is the bound, less one; for v = 8,10,11,17, the packing number is
the bound, less two; for v : 19, the packing number is the bound, less 3.

It is worth noting that Brouwer's paper contains an especially useful result about
the cases v congment to 7 or 10 (mod l2).In this case, alt pairs are exactly covered
once by a single block of size 7 and a collection of blocks of size 4.

2"2 Exact Covering and Faching Systems

Supppose that we start with a variety set comprising v elements denoted by the integers
1',2,3,... , vi let t be an integer less than v. We define an exact or perfect covering of
t-sets to be a selection of subsets formed from the variety set such that each subset is
proper, and such that each t-set occurs exactly î" times. For example, if v :7, t = Z,

and l" = 3, then the following family of subsets is a perfect covering.

1236,2347,3451, 4562, 5673, 6714,7I25, + 21 pairs IZ,l3,l4, ... , 56,57,67.

Another perfect covering would be provided by taking the first 7 sets in the above
family (the quadruples) and repeating rhem to give a covering in 14 sets.

Not a great deal of work has been done on coverings with l" > 1, and we shall only
consider the case l" = 1 in this section. With l. = 1, there are two trivial solutions. We
exclude the trivial case when all elements are placed in a single set {1,2,3,... ,v}.
However, there is also always the trivial (but important) solution where we take a
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covering family made up of ali possible t-sets. However, in order to have interesting
covering families to study, we need further restrictions. Th¡ee particular kinds of
coverings have been studied in considerable deøit (cf. the survey given in taSl).

(i) If we impose the restriction that all sets in the covering family have the same
cardinality k, we are dealing with steiner systems s(t,k,v); see, for exampre, [66] aswell as section 2.3. Steiner systems are particularly symmeric and fascinating, but
only a dozen or so are known with t > 3. For t = 2, the steiner systems s(2,k,v) arejust the well known Balanced Incomplete Block Designs, about which there is a very
large literature. However, even in the case of Balanced Incomplete Block Designs, it
frequently happens that an appropriate design does not exist. For example, if we take
v = 11' then there are 55 pairs from an 1l-set; if we are going to cover these pairs by
blocks of equal size k (with k > 2), then k(k_l)/2 must divide 55. But 55 is not
divisible by 3, or 6, or 10, or 15, or 2r, or 28. This illustration emphasizes the fact
that, if we a're going to have a perfect covering family, then some of the block sizes will
generally have to be different from one another.

(2) we might restrict the covering family by permitting rwo distinct block sizes in the
covering family. As an example, let v = 72 and, t = 3. Then a perfect covering of
triples can be displayed as follows; take A = { 1,2,3,4,5,6} and B = A + 6 as two
disjoint sextuples' Define a L-factonzation of A (see [50], for example) as follows.

Fr = {(7,2), (3,4), (5,6)}, F2 = {(I,3),(2,5),(4,6)}, F¡ = { (I,4), (3,5), (2,6)},
F+ = {(1,5), (2,4), (3,6)}, F5 = {(1,6), (2,3), (4,5)}.

Also, define a 1-factori zatonof B by taking sets Gi = Fi * 6. Then it is easy ro see rhat
we can construct a perfect covering family by taking the 2 sets A and B, together with
the 45 quadruples formed by taking every pair from F¡ wirh every pair from G¡ (this
gives 9 quadruples for any fixed i, and i may take on the varues r,2,3,4,5).

(3) Another restriction on the covering famity that leads to problems of extreme interest
is to demand that the famiiy have minimal cardinality. This leads to the introduction of
the concept of a g-covering. A g-covering is a covering family such that no other
covering family has smaller cardinality; we denore the minimal cardinality by g(1,t;v).
For example, it can be shown that the family just constructed in the previous paragraph
is minimal for v = 12 and.t = 3; thus g(1,3;IZ)= 45, as shown in [4g]. An example of
a non-minimal family for v = 12 and t = 3 wourd be provided by taking rhe ser
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C - {1,2,3,4,5,6,7,9,9,10,11 }, and the 55 triples of the form {c,d, lZ}, where c and
d are elements of c; this would be a perfect covering in 56 sets.

we shall discuss g-coverings of pairs (t = 2) and of triples (t = 3). only a few resulrs
are known for t > 3, largely because progress depends heavily on a knowledge of
Steiner Systems.

2.3 Steimen Systerns and É-desígns

A Steiner system is a particula¡ exact covering in which every t-set occurs exactly once
in a collection of k-sets taken from a v-set. such a steiner System is denoted by the
symbol s(t,k,v), and the number of blocks in the sysrem is easily found as

lS(t,k,v)l =ffi
If we consider a Generahzedsteiner system in which each t-set occurs l, times, we use
the notation S1(t,k,v); these Generalized Steiner Systems are often called t-designs,
although the term is unfortunate because it does not emphasize their relationship with
the classical Steiner Systems.

If t = 2, a Generalized, steiner system s1(t,k,v) is just an ordinary BIBD with
parameter set (v,b,r,k,î"); the usual Balanced Incomplete Block Design relations
immediately show rhar r = î"(v-1)/(k_1) and b = l"v(v_l)lk(k_1).

There are many tables of BIBDs; the earliest was produced by Fisher and yates in their
statistical Tables for Biological, Agricuhural, and Medical Research [22].

2"4 g-Coverimgs

The minimal number of incomplete blocks made up of elements from a v-set in such a
way that every p-set occurs exactly l. times in the blocks selected is designated by
g(À,p;v). Almost all results will deal with the particular case À -- 1. Erdös and
de Bruijn showed [18] that g(1,2;v) = V ând that this minimum is always given by a
near-pencil, that is, by one biock of rength v - I prus v - 1 pairs. Exceptionally, the
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minimum is also attained if v = k2-k+1 and a geometry of k points per line exists; then
the geometry covers all pairs by v lines comprising k points each.

Ailston, stanton, and cowan, in [3], introduced the quantit, g(k)(].,p;v); this is the
minimal number of blocks required to cover all p-sets exactly î, times, given that rhe
largest block in the covering has length k. It is clear that g(À,p;v) is jusr the minimum
value of the quantity gG)(À,p;v) when we allow k to range over ali possible values
fromptov-1.

If we set 1. = 1, various bounds have been obtained. For exampie, woodall 167l
showed that

¡ k ., t- v-k-l \
s > 1 + r'-tl [p_r.)[' rr,_t .Ð)

(2.4.r)

where k is the size of a block in the covering set (henceforth, we shall always use k as
the size of the largest block in the covering ser). Sranron and Kalbfleisch [53] showed
that

(2.4.2)

And it is trivial, by a counting argument, to obtain the combinatorial Bound

(2.4.3)

A stronger bound was obtained by Stinson t61l and it will be introduced in Chapter trI
along with a larer bound due ro Rees t36l and Rees and stinson i3gl.

k-u+2 r ks>1+ffi(ult)r'-ur

,, (Ð
"-6)
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CåaapËen XKã

3"X- Coventngs of Fains; the N¿¡ra-rbens g(î,2;v)

We first mention that perfect pair coverings, that is, families that cover all pairs exactly
once, also appear in the literature under the name of finite linear spaces or under the
name of pairwise balanced designs. We prefer the fîrst and third of these three terms.
Pairwise balanced designs also subsume the well known Balanced Incomplete Block
Designs (BIBDs); these are just pairwise balanced designs for which only a single
block size is involved.

As we have already stated, one of the first results on perfect pair-coverings was given
in 1948 by de Bruijn and Erdös [18]. They proved that the cardinality of the minimal
covering family is g(1,2;v) = v. Furtherrnore, they showed that this minimum could
always be achieved by taking one block C containing all elements of the v-set except v,
and then taking all pairs {c,v}, where c ranges over the v - 1 elements of C (this
configuration is often called a near-pencil). In the special case that v =P - k + 1, and a
finite geometry exists (that is, k - 1 is a prime power), then the finite geometry provides
a second minimal covering in v sets, and those v sets all contain precisely k elements
(this second type of minimum, of course, can only occur if v is an integer selected
from the set {7, 13,2I,3I,57,73,91,...}; it is just a Balanced Incomplete Block
Design with parameters (v,b,r,k,À), where v = b = k 2- k + 1, r = k, À, = 1).

Actually, it is not too illuminating to consider the number g. In [3], the quantiry
g(k)qt,2;v) was introduced; this is the minimum size of a covering family that contains
at least one block of length k but no block of iarger size. Henceforth, in this chapter,
we shall normally write g(v) for g(1,2;v), and we shall write gß)1v) for gß)1i,2;v).'we
thus see that the quantity g(v) is rather accidental; it is just the global minimum for the
quantity gG)(v). We shall now provide a summary of developments in rhe rheory,
phrasing the results in terms of g(k)1v¡, since results appear more simple and direct in
this context.

We have already referred to the important step fonvard taken by Woodall [67] in 1968;

Woodall established a general bound for any t. In the special case when t = 2,
'Woodall's result specializes to

- 10-



o(k)r,,,1 > \x/-.' -(v-kX3k-v+l)

We call V/ the Woodall bound.

Stanton and Kalbfleisch [53] used
specialized to the case t = 2, becomes

a variance method to obtain a bound which,

,(k)qv)> 1+*#

we call this quantity sK. If we make a graph of the function sK, we obtain aparticularly simpre proof of the Erdös-de Bruijn resulr (see [4g] or [49]). of course, we
should also mention the combinatorial bound c; for small values of k, it is extremely
useful to note that

r(k)1v))c= ffi+Ì

The combinatorial bound obviousry gives the exact resurt for k = 2.

There are many open questions for particular values of k and v. However, a great dealof progress has now been made. In section 3.2, we will give the results that we
obtained in [3], where it was shown that the woodall Bound gave the exact value forg(t)(v) as long as k > (v-1)/2 and v does nor have the form 4m+1 (the latter case washandled in t55l)' This basically means that the combinarorial bound c holds
(approximately) from k equal to 2 until k reaches a value in the neighbourhood of fi;the sK bound then holds, approximatery, from k in the neighbourhood of 

^/T 
to k in

the neighbourhood of v/2: then the bound w holds exacrly when k exceeds v/2 (special
consideration is needed at the transitional points where we change from one bound to
another)' It thus becomes of importance to see just how close g(t)(v) is to the bound
SK.

rn [43]' it was pointed out that the bound sK is exacr when ali other blocks meet the
biock of length k and when they form a resolvable balanced incomplete block design.
A very important extension of this resulr was given by stinson in t61l; stinson defined
s to be the greatest integer in the quantity (v_l)/k, and showed that

, (v-kX2sk-v+k+1)ï-
s(s+1)

gtk)qv¡ > 1
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We call this bound S (the Stinson bound). It is an improvement over the SK bound,
except when SK is exact. Furthermore, if S is integral, then S is exact if and only if ali
blocks meet the base block of length k and form a resolvable pairwise balanced design
with block sizes s and s+1. It is possible to give a particularly straightforward account
of the behaviour of the Stinson bound, and we now proceed to d,o this.

Suppose that we consider aii the blocks of the covering with the exception of the base
block of length k. We say that there are b¡ blocks of length i (in a block of length i,
there may be i points not on the base block, or there may be one point on the base block
and i-l points not on the base block). Then, we may write

(3.1.1) g(n)(v) - 1 = B-1 (for short) =bz*b3 + ba + b5 +...

We now count all pairs not in the base block and find:

(3't'2) gU ry =bz*3b3 + 6ba + 10b5 + ...

Now let the points in the base block be called j 0 = 1,2,3,...,k), and let b¡¡ denote the
number of blocks of length i through point j. Clearly,

ti (i-1)bij = v-k, for all i;

thus we have X¡¡ (i-1)bij = k(v-k). However, we musr not forger the blocks that do
not meet the base block; suppose that b¡6 denotes the number of blocks of length i rhat
do not meet the base block; then >i (i-1)bi0 = €, where e is a non-negative integer.
Adding all of these expressions together gives us our thfud equation:

(3.1.3) k(v-k) + e =bz+ 2b3 + 3ba + 4b5 + ...

v/e now multiply these equations by the quanriries s(s+1)/2, 1, and -(s+1),
respectively, and add the three equations. This has the effect of eliminating the terms in
b5a1 and bsa2 to leave the result

(3.1.4) s(s+l)(g-1) + (v2-v+k2-k) = 2(s+1)k(v-k) + 2e(s+1) + 2p,

where P is the non-negative integer
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b. + b.*3 + 3(br_1+bs+4) + 6(br_2+b.*S) + ...

Then we fïnd

Equation (3.1.5) gives the Stinson Bound when we ignore the last two teûns, which
are certainly non-negative.

It is easy to see that the optimal value for s, in Equation (3.1.5), is the greatest integer
in (v-1)/k; suppose that we assign that particular value to s.

Now consider s = 1 (that is, k lies between v/2 and v). The Stinson bound thus
becomes the Woodatl bound V/ and we have

(3'1.6)8-1=ry+2e+ba+3b5+6b6+.''-(w-1)+2¿+P.

Equation (3.1.6) immediately gives us the

THEOREM. TheWoodall Bound can only be achíeved íf all blocks meet the long block
of length k (that is, e=0) and if alt rhe other blocks have lengths 2 and 3 (thus rhe other
blocks fall into resolutíon classes with blocks of lengths I and 2 hanging on to the
poínts of the base block).

That the v/oodall bound is actually achieved in this region will be shown by a
straighforward consrrucrion in Section 3.2 (cf. t3l).

we now turn our attention to the case when s = 2 in Equation (3.1.5); this is when k
lies bewteenv/3 andv/z. Equanon (3.1.5) can rhen be written in the form

Now the Stinson bound may not be integral, but we see that it can not be achieved (in
the nearest-integer sense) unless e = 0 (recall that e is an integer). Thus, we have the
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TIüOREM. When s = 2 (that is, k lies betweenvl3 and vl2), the Stìnson Bound ís only
attained if all blocks meet the base block.

However, we can go further; the numerator (v-k)(5k-v+1) is an even integer, and so
the quantity P/3 = (b2+b)/3 can only assume the values 0/3, l/3, or 2/3. Thus we
have the

TIüOREM. If the Sttnson Bound ís met with s = 2, then all blocks must have lengths 3
and 4, except that there may be one or two exceptionnl blocks wtth lengths 2 or 5 .

It is relatively easy to specify when these rogue blocks appear. We let k = 6t+a, and let
v = 2k+6u+b; then one can carry out the requisite algebra and find

(3.1.8) b2+b5=3\t(å6) -ä

where ¡ = (a+b)(3a+1-b) and ry denotes the ceiling function. Of course, in any
particular case, it is probably easier to carry out the specific elimination that led to
Equation (3.1.5).

For example, let us considerv =24 and k = 8; then a=2,b =z and b2+b5 =2. rn
general, we find that, for X = 0, 2,4 (mod.6), respectively, then b2+b5 =0,2, r,
respectively.

We should add that the procedure used in obtaining Equation (5) is equally useful for
other values of s. If s = 3 (that is, k lies between v/4 andv/3), then we get

(3.1.e) " &-k\0k-v+1) 2e P
T 

-T7.
Þ-12ro

From this equation, we can deduce easily that € = 0 if the Stinson bound is met;
furthermore, one can get a quantitive limitation on the number of rogue blocks in this
case. However, this result is only a special case of a much more general theorem. Let
us return to Equation (3.1.5), with s having its optimal value. If the Stinson bound is
to be met, it is clear that2e/s can not exceed unity; hence the maximum length of any
block disjoint from the base block is s/2 when s is even and (s+1)/2 when s is odd.
This shows that the disjoint blocks are relatively "short", in order to keep down the
value of e. On the other hand, iet us iook at the quantity P and let us suppose that there
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z2-z(2s+1)+2s(s+1)
s(s+1)

is a block of length (s+l)-z disjoint from the base block. It will conrribure an amounr
(z+I)z/2 to P and an amount (s-z) to e. The total contribution from this one disjoint
block will thus be

(z+l)z , 2(s-z)

-

s(s+l)' s

This quadratic function starts at the value 2 when z = 0 and decreases to the value
(s2+s+2)/(s2+s), which is always greater than 1, for z = s- 1, that is, for block Iength Z.
We thus see that any block disjoint from the base block must contribute more than one
unit to Equation (3.1.5), and thence we obtain the following result.

THEOREM. If the Stinson Bound is to be met, in the nearest-ínteger sense, then all
blocl<s must meet the base block of length k.

Recently, a further strengthening of the Stinson bound has been achieved. Rolf Rees
[36]' in his doctoral dissertation, was able to obtain a bound R that is, in some cases,
stronger than S; if the bound R is exact, then all blocks must meet the base block of
length k and they must have block sizes equal to s, s+l, or s+2. The exact properties
of the R bound are rather complicated, but are described in detail by Rees and Stinson
[38]; we will simply note that, if t is defined to be the residue of (v-k), modulo s, then

Þ _ r r (v-kX2k(s-1+t/s)-v+k+t) +2kt(t-Vs)tt=l
(s2-s+2r)

Tables have now been produced giving the values of gG)1v¡ for mosr small v and k; in
particular, [7] and [8] give the results for all v <Z2except in the cases v = 17,1g, and
19, with k = 4. The case k = 4 is discussed, for all other values of v, in [57]. The
valuerorg(a)1tz¡isquoredin[58];seealso[5g],[46],[59],[11].Afewinitialresulrs
for the case k = 5 are given in t5]. Buskens, Rees, Stanton, and stinson, have
extended the census of gG)(v¡ up to v = 31 (with a number of blanks). However, rhe
next natuÍal range of values, 32<v<57, presents many opportunities for discovery of
exotic designs.

Rees [36] has given constructions for the cases v = 2k+2,2k+3, and.Zk+4 (see also
t20l). The case v = 2k+1 was already given in [3] and [55]. A special insrance of the
case v =2k+7 appears in [20].
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3"2 T'Éae Qaramtåty g(k)(1,2;v)

3.2"n' lntnoduction. If we specialize the 'Woodall, Stanton-Kalbfleisch, and
Combinatorial Bounds to the case p =2,wehave the lower bounds in the form

(3.2.r) W=1.+(3k-v+1)

(3.2.2) SK=1.#

(3.2.3) 
"= ffi+ì.

It was shown (see [48], or, for more detail,[49]) that the Stanton-Kalbfleisch bound
(3.2.2) easily produces the Erdös-de Bruijn Theorem.

In this section, we employ the numbers

g(k)qt,2;v) = g(k)qv¡

as the cardinality of the minimal family of sets that covers all pairs, given that the
elements are from a v-set and that the size of the longest block in a covering family is k.
V/hen the argument v is obvious, we simply write gG).

As an example, suppose that we take v = 13; then we can construct the following table.
The values gß)(r,2;13) for k > 6 will be justified later in the section. Note thar

w= 1*|rr-r.ltk-4),

SK=1*W,

r-_ 156
'- k(k-l) '
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k-sG) w sK c
13 1111
121313132
112222222
102828262
93131283
83131283
72828264
62422226
51913188
4r3tt3l3
326<0926
278<0578

For k = 2,3,4, the values follow from using the set of all pairs; from using the triple
system on 13 elements; and from using the projective geometry on 13 elements.

3.2.2 The Construction of a Covering System for tr-arge k. suppose that k
=v - 2d; then the V/oodall bound is

W=1+a(2v-6o+1).

Now take a complete l-factonzation of the 2u points not contained in the block of
length k. Form triples by associating all pairs in any l-factor with the same point in the
block of length k (this can be done so long as the number of 1-factors, which is 2g-1,
is not greater then v-2cr). Use all pairs not contained in the block of length k or in the
triples. Then the iotal number of blocks is

1 + (2cr-l)cr. (;) (-i")- uea-t)3

= 1+ u(2v-6u+l) =W.

The condition 2cr-1 <v-Zasimplifies to

a < (v+l)/4.

Thus k > v-(v+7)/2 = (v-7)/2, and we have

t7-



TsnonEtt 3.2.2.r. If v-k is even, then the woodall bound gives g&) ¡or k > (v-t)12.

For v-k odd, we need a different factorization of the pairs on the v-k = Zu+l points.
The easiest way to get a complete l-factorization of an even number of points (take 8 as

an example) is to place 1 at the centre of a circle formed by the other 7 points, as shown
in Figure 3.2.I.

Figure 3.2.L: l-Factoizarion of Kg

The first l-factor is found by taking (1,2) and the three perpendicular chords, as

shown. The other l-factors are found by rotating this l-factor about 1.

Similarly, if there is an odd number of points, say 7, we can place them on the
circumference of a circle with centre 0.

Figure 3.2.2

P1
I

I

6

I
6o

4
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The first "l-factor" is found by taking "1", joining 0 to 1, and taking the chords
perpendicular to (0,1). By rotation, we get 7 generalized l-factors.

Now we make a construction analogous to that in Theorem 3.2.2.7. We form rriples
by taking all pairs in a 1-factor and adjoining the same point from the k-block. This is
possible so long as

2u+1, < v-(2cr+1) ,

that is, so long as

u < (v-2)/4 ,

k > v-(v-2)/2-1 :v/2 .

The number of pairs needed to cover all pairs is now found as

(;) ('i')-3a(2u+t)

= 2va-8a2-6cr+v-1.

So the total number of blocks is this number increased by 1+a(2cr+1), that is,

2va-6a2+v-5a .

But we easily calculate that

w = 1 *'T'(3v-6u-3-v+1)

= 1 + (2a+1)(v-3ø-i)

= Zav-6a2+v-5cr.

We thus have
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THEOREM 3.2.2.2. If v-k is odd, then thewoodall bound gives g&) for k 2v12.

These two theorems are easily merged into

THEOREM 3.2.2.3. If v = I (mod 4), the woodall bound hold.s for k > (v-I)t2;
otherwise, the Woodall bound holds for all k > (v-1)12. Thus, for k ín these ranges,
we have g&) = I + (v-k)(3k-v+I)12.

Actually, we can go a bit farther. If we use (2.1) and (2.2) from [49], itfollows that,
with t = 2, the V/oodall bound V/ is only attainable if

ä(b)=',
where A(0) is the set of blocks disjoint to the block of length k, {ki} is the set of
lengths for these blocks. Thus, we have the result that all other blocks meet the iongesr
block. Furthermore, it is also required that

ä(or')=0,
and this shows that the blocks meeting the longest block in 1 point (all others) have
cardinalities 2 or 3. Thus we have

TIüOREM 3.2.2.4. The only confígurations producing the boundW are those using
pairs and triples, as described earlier in this section.

3.2.3 The Values k = 2 and 3. It is trivial to note that

sQ) = ti)
Also, it is clear that g(3) is obtained by taking as many triples as possible; now this
number (see, for example, [52]) is

D(2,3,v) = [ä [+]]_u*,

-20-



where [x] denotes the greatest integer not exceeding x, and cx is the congruence class of
v, modulo 5. It follows that we can state

THEoREM 3.2.3.I. The vatue of gØ U {i}, and the vatue of gß) ¡,

(;)'lä[4,]l +zôos

It is useful to record g(3) according to the form of v. We give two altemative forms.

o(3)b'"(3)Þ

6t

6t+i
6t+2

6t+3

6t+4

6t+5

6&+t

6P+t

6t+5t+7
6t2+5*I
6t2+9t+4

6t2+9t+6

v(v+1)/6

v(v-1)/6

v(v+1)/6

v(v-t)/6
(vz+v+4)/6

(v2-v+16)16

using the results proved so far, we can fill in the following table.

2

J

4

5

6

7

8

9

10

11

T2

6

4

1

10

6

5

1

15

7

I
6

1

2T

7

10

10

7

1

28

12

11

T3

72

8

1

36

T2

12*

15

t6
14

9

1

45

t9

12*

T6

t9
79

16

10

1

55

21

13*

16

2T

23

22

18

11

1

66

26

13*

1g*
aa
LL

26

27

25

20

12

1

Table 3.2.1. g(t)(v) for 2 < v < IZ
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The starred values do not follow from our theorems; rather we need some easy
Lemmata.

LEMMA 3.2.3.2. g@¡95 = tZ.

PROoF. The SK bound is 11; also it is clear that

1234 189 368 269 459 35

1567 258 478 379 27 46

provides a cover in 12 blocks.

If a pairs, b triples, c quadruples, provide a cover in 11 blocks, then

a+b+c=11, a+3b+6c=36

It foilows thatZb + 5c = 25, and we have one of 3 cases:

(1) c=5,b=0,a=6;
(2) c=3,b=5, a=3;
(3) c=1,b=10,a=0;

Case (1) is impossible, since D(2,4,9) = 3. Case (2) is not possible since we get 1234,
1567,4789; then we can not have 5 triptes. Case (3) is impossible since the quadruple
1234leaves 5 symbols to go with 1, and hence the use of triples only is impossible.

Indeed, Lemma 3.2.3.2 generalizes trivialty to the resuit.

LEMMA 3.2.3.3. If v = P, then g&)e) >P+t ft>3).

PRooF. It is clear that

tf&-Ðçv¡ =2P-4> t2+t

by using Theorem 3.2.2.3. Also, the counting bound shows that

g(t)(v) rW=tz+t.

-22-



Finally, the SK bound gives

that is,

n(r+lXv) t, * (t+1)?(tz-t-t)¿, \'/-^ p_l ,

sK=1.#= 1+w

,(t+t)(v) > t2+t k

This shows that g(t+i)1v) > t2+t for t > 3, and the result for t = 3 follows from Lemma
3.2.3.2.

The general result then follows from the shape of the bounding Çurve

between k = t+l and k = t2-2.

Lsrr¿l,l¿, 3.2.3.4. g@¡tg¡ = tz.

PROOF. The SK bound is 12, and the cover

t234 258 26T 279

1567 369 378 468

189T 47'r 459 357

is triviatly obtained.

LEurre 3.2.3.5. g@¡il¡ = t3.

PRooF. Again, the sK bound is 13. Simply take an affine geomerry on 9 poinrs,
adjoin T and E to two resolution classes, and add the pair {T,E}.

LEMMA 3.2.3.6. g@¡lZS = t3.
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PRooF. The SK bound of 13 is achieved by deleting a single point from the 13-point
geomelry.

For g(5)qtz), matters are slightly more complicated; it is easy ro ger the SK bound of 17
and the construction

12345 T62 F,63 V&,
16789 W3 874 V75
ITEV T84 885 V82

T95 F;92 V93

along with pairs 65,72, 83,94, shows that g(5)1tZ) < 19.

Now blocks 12345, 6789T, imply ar leasr 2 + 25 = 2j blocks. Blocks 12345, 16lg9,
imply at least 3 + 16 = 19 blocks. So there can be only one block of length 5 if
9(5)(12) < 19. Let this block be B = [89TEV]. Then use a pairs, b rriples, c
quadruples, and we have

a+b+c=16+d (d=0or1),

a+3b+6c=56.

Then 2b + 5c = 40 - d, and we have cases:

(1) d=0; c=6, b=5, a=5
(2) d=0; ç=4, b=10, a=2
(3) d=1; c='7, b=2, a=8
(4) d=1; c=5, b='7, a=5
(5) d=1; c=3, b=72, a=2.

Now no quadruple is disjoint to B, or we would have at least 2 + 20 = 22 blocks. If
there is at most one quadruple through any point of B, then c < 5; also, if 2 quadruples
pass through one point in B, we find that only 3 more are possible. This rules out
Cases (1) and (3).

In case (4), our 5 quadruples use up 5 triples from A = {1,2,...,7}. so we can only
get triples by using an element from B with a pair from A; since anly 21- 15 = 6 pairs
are available, we can not meet the requirementb =7.

-24-



In Case (2), we only need 4 quadruples. This leaves 9 pairs free in A; but, even using
all of them, we can not get 10 triples. Hence, we need only consider the case

a=2,b=12,c=3,d= l.

This can only occur if 3 triples from A are used for quadruples and the other 12 pairs
from A are used to form triples. Then each point in B must occur with 3 or 1 points
from A; hence the distribution of lines through the poinrs of B is 3 (1 quadruple, 2
triples), 2 (l pair,3 triples). We may form the blocks:

ggTEV, 9123,

945,967,
9146,925,937.

If we now takeTl57,T24,T36, then we are forced to have E1 and vi. TriplesE26,
835,847 are available; so neY27, V34, V56. Thus we have achieved a construction
and established

LEMMA 3.2.3.7. g6)(12) = 18.

3.2.4 The Case v = L3. It wilt be useful to give a slight srrengrhening of the SK
bound before we complete the table in section 3.2.1.

From the derivation in [49], we see that the SK bound comes from using a positive
variance and omitting the set 46. Thus we have

LEMMA 3.2.4.I. If the SK bound is an ínteger and if it gives the exact value of g&),
then all other blocks meet the btock of length k and all of these other blocks have the
same length t.

Indeed, it follows at once that these other blocks form a BIBD with 1 + k(t-2) varieties,
block size t-1, l. = 1, and this BIBD is resolvable into k resolution classes. It further
follows that r-1 divides k-1.

There are 3 obvious cases in which the bound is exact. If t = Z, then v = k+1 and we
have a near-pencil, If t = k, then v = k2-k+1 and we have a projective geometry (in
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appropriate cases). If t = 3, and v = 4m+3,then k = (v-I)/z = 2m*l,and we have one
of the cases covered earlier.

However, if v = 4m+1, v= (v-l)/z =zm, we have SK = l+(vz-a)/g. This is an
integer, but the 2m+l points not in the long blocks can not be partitioned into pairs to
form triples. Thus Lemma 3.2.4.I gives us

Lpn¿ue 3.2.4.2. If v = 4m+ I , k = 2m, then the number of blocks strtctly exceeds the
bound I + ¡v2-I¡t8.

Now consider g(5)1t3). The SK bound gives 9(5)113) > 1g. An easy consrrucrion

*1234, *5679, _STEV
r59 25T 358 45V
16T 268 36V 469

r7E ztY 379 477
18V 289 38T 488

shows that g(s)1i3) < 19.

If g(s)1tl¡ = 18, we first note that any other block musr meer the initial base block
B = {- L2341. For using the exact relation (2.5) from [49], we find that the number
of blocks is at least

200

12 - î(as+3be+6cs+10d6)

where there are a¡ blocks of length 2 disjoint from the base block, bg blocks of length
3, etc. (of course, it is clear c0 = d0 = 0). Even â0 = 1, b0 = 0, gives a bound of 19.

So we find that all blocks meet rhe base block.

If there is a second block of length 5, we can immediately form at least 3 + 16 = 19

blocks. So take a pairs, b triples, c quadruples, with

a+b+c=77

a+3b+6c=68.
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Then 2b + 5c = 51, whence we find:

(1) b=3, c=9, a=5
(2) b=8, Ç=J, a=2

There can be at most 2 quadruples through any point on B. From this, we find there is
no distribution of pairs and triples to points of B that works in Case (1) or Case (2).
Hence we have

LEMMA 3.2.4.3. 86)(13) = 19.

We now move to the case k = 6 and use Lemma3.2.4.2 to give the bound of 23.
Actually 9(6)(13) = 24; this is a special case of the result

g(2a)ç+a+l) = 2&+ a + 1 +l alZl

which is established in Mullin, Srânron, Stinson [55]

3.2.5 Values of g(k)1v¡ which are near v. Let us rerurn io section 3.2.1. and,
plot gG)qv¡

"G)ò
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Ignoring the case when k = v, which is trivial, we note that gß) is usually much grearer
than v. Indeed, we can prove

TIßOREM 3.2.5.7. If v =t2+t+I+e,where0 <e s2t+2,andif g&)¡r¡ >v,then(wíth
afew small exceptions)

gG)(v) > t2+3*l

unless k = t*1.

PRooF. From the shape of the graph of gG)1v¡, it is clear that we need only consider
the cases k = v-2,k = t, k = t*l, k = trL.

For k = v-2, we have

g(k) = 2v -4 = 2t2+2ç2+2e = t2+3t+I + (&-t-3+2e).

Now g(k) > P+3t+I for t > 3. The only exception is for t = 2; thereg(5)17¡ = 10.

For k = t*l, we use SK and have

_ .,, (+2t3+(e+1)t2+2et+e

t +tJ€

=t+t2*r*#.U.
tL+t+e

gß)(v).t*ffi

g(t)(v) >r*#(t+r¡z

Fork=tt2,wehave

= r + P+ 3t + 
(t+-4Xe-4) 

.
t¿+t+e
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Clearly, the only exceptions that can occur are for e=0 (t = 2,3,4,5),
e = | (t=2,3, 4), e=2 (t=2, 3).

For k = t, we use the C bound and have

g(r)(v)=9#f@

=t2+3t+2e+5+
(4e+6)t+(e2+e)

t¿-t

Thus we have gG)(v¡ > t2+3t+1 unless t and e have certain small values, so long as

k + t+1.

Corollary. if v = û+*I+e, k = t*], g(k)¡v) < P+2*1, then the number of blocks of
length t+l is at least (t+l)(t+2)/2.

PROOF. The worst case is when all other blocks have length t. V/ith obvious
meanings for x and y, we have

x*Y = P+2t+1-a

(t+ 1)x+(t- 1)ty = (t2+t+i +e)( tz+t+e)

Then 2tx = (t2+t+1+e)(t2+t+e) - ft2ift2+2t+i-a)

= t3+(3+2e+a)t2 + (2+2e-a)t+e2+e.

Thusx al{t *lr*2), evenfora=e=0.

3.3 A Census of Values of g(k)(v)

3.3.f. Introduction. We now wish to extend the table of g(k)1v¡ as far as v = 21.
In addition to the Combinatorial Bound, the Woodall Bound, and the Stanton-
Kalbfleisch Bound, we shall use the Stinson bound
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S = 1 + $ lzrt-u+k+1), where, = L(u-t)¡t.1.sz+s

We refer to l43l for a detailed description of the behaviour of gG)(v) in various regions.
Roughly, g > c from k = 2 to abour {î, equality holding for BIBDs; from ",lv n v/2
(roughiy), g > SK, with equality for certain resolvable designs (the amount by which g
exceeds SK is frequently determined by S); fromv/2 to v, g = W (except for a few
trivial exceptions), as described in Section 3.2.

KV

2

J

4

5

6

7

8

9

10

11

T2

13

74

15

t6
I7
18

19

20

21

t3
78

26

t3
t9
24

28

3r

31

28

22

13

1

t4
9I
35

20

t9
25

29

34

36

35

3t
24

t4
1

15

105

35

20

20

25

29

36

40

4I
39

34

26

15

1

16

120

46

20

20

26

32

37

43

46

46

43

37

28

t6
1

77

136

48

3l
20

27

JJ

39

45

50

52

51

47

40

30

T7

1

18

153

57

2T

28

34

40

46

53

57

58

56

51

43

32

18

1

t9
t7I
57

35

21

28

35

43

46

55

61

64

64

6T

55

46

34

T9

1

20 2t
190 2r0
70 70

39 39

2t 2t
29 29

36 36

43 45

50 51

56 59

64 66

69 73

77 77

70 78

66 76

59 7L

49 63

36 52

20 38

r21
1

Table 3.3.1 gG)1v) for 13 <v <21

In the above table, we have collected a great many values for g(k)qv¡ that we have
accumulated. The table indicates many patterns, and provides useful grist for more
general results; also, the methods indicated in building up the table are instructive. V/e
indicate how the results are obtained, giving sufficient detail to enable duplication. It
has been simpler to work with k decreasing for purposes of the exposition.
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3.3,2 The Larger [r Vatues, k > 9. For k > 10 in the rable, g(t)(v) = W in all
cases. For k = 16, gG)(v) = w except for g(10)1zt); this later value is a special case of
t(2m)14m+1), as determined in [55].

Fork = 9, we find 9(9)121) > 51, using the Stinson bound s. Indeed s = 51; hence,
using [6i], we know that g(9)(Zt) = 51 if and only if all blocks have lengths s+l and
s+2 (here s = 2) and fall into 9 resolution classes. If there are a quadruples, b triples,
then a + b = 50,3a +b = 66, whence a = 8, b=42. Itis then easy to apply a hill-
climbing algorithm (by hand, in a case this small) to provide the design

123
456
789
tev

t47
25e
39t
68v

15
24
5e
69
7v
8t

76
2v
37
48
5t
9e

18
27
3v
4e
s9
6t

1t
28
34
57
6e
9v

1e

2t
38
49
5v
67

1v 19
29 26
36 35
4t 4v
58 7t
7e 8e

Here, we use l, 2, ..., 9, t, e, v to denote the 12 points not on the long block; the
points of the long block are 41, A2,...,49, and correspond to the preceding 8

resolutions. Thus, we have blocks

Arl23, A1456,..., A2I47, A225e,...,4315, A324,..., erc.

ror 9(9)120), we use the s bound to give 9(9)(20) >- 49. suppose, if possible, that

9(9)(20) = 49. Then the iargest other block has length 6 (a sextuple not meering rhe

long block produces a need for at least 2 + 9(6) blocks; a sextuple meering the long
block requires at least 2+2+8(5) = 44 blocks). Suppose rhar the numbers of sexruples,
quintuples, quadruples, triples, and pairs are s, f, e, t, p, respectively; that the numbers
Ai (i = 1, ..., 9) are si, f¡, Q¡, t¡, pi; that the numbers disjoint from the iong block are

s0, ... p0. Then we have the following relations.

s+f+q+t+p =48

15s + 10f+ 6q+ 3t+p = 190 -36=154

5s¡ + 4f¡ + 3q + Zti+ pi = 11 (i > 0)
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5sg+4fg+3qg+2r0+p0 >0

Add the last ser of equations to give

5s+4f+3q+2t+p>99.

We then deduce

14s + 9f + 5q+ 2t = 106

4s+3f +}q+r >51;

by subtraction,

6s+3f+q<4.

It follows that s = 0 (no sextuples).

Iff=e = 1, then t +p - 46,3t*p = 138; hence t=46,p =0.

This is impossible, since there are 11 elements in 9 resolution classes and thus
q + p > 9.

If f = 1, g = 0, the solution for t is non-integral, Thus f = 0.

In orderto have t integral, qmust beeven. Forf = q= 0, we find t *p = 4g,
3t+p =154 (p negative); simitarly,g.=2 gives t * p = 46,3t*p= 142, and this
forcest=48 (contradiction). Finally,q=4producost= 43,p- 1; thisisrejected,
since q + p must be 9 or more.

Thus, we have proved ttrat 9(9)ç20) > 49. We now show that the correct value is 50.

using the previous notation, we obtain analogous equations as follows.

s+f+q+r+p -49,

15s+10f+6q+3t+p =154,

-32-



5s+4f+3q+2t+p >99.

Thence, we deduce

6s+3f+q<5.

Again, s = 0. If f = 1, then q=0, 1,2. Theonlypossibiiities aref =I,g=2,
t=43,p = 3; f = 1, g = 0, t = 48, p =0. Both are rejectedon considering the value of
q +p. we thus have s = f = 0, whence q < 5. Now 5q +2t= 105, whence q is odd.
If q= 1,t=50; if e=3, t=45,p = 1(rejectonbasisof q+p). Hencetheonly
possibility is q = 5, t = 40, p = 4. If this design is possible, each resolution must
contain exactly one pair or one quadruple.

Let each resolution contain a pair and 5 triples (R of these) or a quadruple and 3 triples
(S of these). Clearly, R+ S =9, R=5, S =4. Itistheneasyrousehill-climbing
(again, a hand algorithm suffices) to produce the following 9 resoiutions.

123
47
58
6t
9e

456
19
28
3t
7e

7 89
15

26
34
te

L4t
27
3e
59
68

25e
16
37
48
9t

2

18

35
49
7t
6e

5

t7
29
36
4e
8t

T4
24 1e

39 2t
5t 38
67 57
8 e 69

We have learned that Rees [37] has obtained a family of designs giving tQn+r)(4m+4);
this family will include the (9,20) case.

3.3.3 The Values of g(8)1v¡. \ù/e first find 9(8)120) since it is the simplest. The
S bound is 43, and thus we know that, if this bound is obtained, a design with only
triples and quadruples is required. If there are a quadruples and b triples, a + b = 42,
3a + b = 66; thence a = 12, b = 30. Also, there must be R, S, T, of the quadruple-
triplepatterns (4,0), (2,3), and (0,6). ThenR+S +T= 8,4R+25 = 12,35 +6T=
30; whence (R,S,T) = (0,6,2) or (1,4,3) or (2,2,4) or (3,0,5). Clearly, the last case is
the most straightforwa¡d, and a hill-climbing algorithm (manual, of course) produces
the following 8 resolutions
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I23 747* 159 t6 18 lt 1e lv
456 25e 24v 29* Zt 27 Zg 26
789 39t 38e 3v 36* 35 34 37
tev* 68v 67t 4e 49 48 5t 4t

57 5v 6e 69 58*
8t 7e 9v iv 9e

Thus g(8)qz0) = 43. Furthermore, if we adjoin h to the starred blocks and three pairs
(Ai,h) to the other 3 resolutions (i = 3,6,7), $/e at once have the corollary that

9(8)(21) < 43 + 3 = 46 (the S bound is 45). Note that the above array is correcred
from that appearing in [7], where the spacing of the fourth row needs moving to the left
and the addition of two pairs.

Let us now consider 9(8)119¡, where the s boun d.is 42. clearly, we can get 43 blocks
by deleting one point from the design just obtained; so we only need consider the
possibility that g(8)1t9) = 42. As pointed our in [8], a design can acrually be
constructed on ð¡2 elements.

For g(8)1t8), we can delete 2 points from the design on 20 elemenrs to give an upper
bound of 42;the Stinson bound is 40. Proceed as above, if g = 49.

s+f+q+t+p =39,

15s+ 10f+6q+3t+p =125,

5s+4f+3q+2t+p >80.

14s+9f+5q+2t =86,

4s+3f +2q+t >41,

6s+3f+q <4.

The only possibilities are f = e = 1, t = 36,p = 1, and q = 4, t= 33,p =2.
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Iff=g=1,t=36,p=l,considerthequadruple,tripleandsingleton(usingonlythe
ten points not on the long block). There must be a point (of the ten) that lies on nine
pairs (impossible, since there are only 8 resolutions). If g_ = 4, t : 33, p = 2, iet ø¡, B;,
yi (i = 1,..., 10) be the frequency with which i appears in tripies, pairs, singletons;
then cr¡ + Þi + yi = 8, 2ui+ Fi = 9. The onry sorutions are (3,3,2), (2,5,r), (1,7,0),
and we assume there are R, s, T, of each pattern. Then R+s+T = 10, 3R+2s+T = 12,
3R+5s+7T = 66,2T+s = 2: the sorurions are (1,0,9) and (0,2,g). The (1,0,9)
solution would give a point, say 10, in two singletons; deletion of this point would give
g(8)(17) < 38; so this is impossible. But the (0,2,8) solurion can be achieved by using
blocks 9,5,6: 9; 9,7,8: 9,0; 9,I; 9,2; 9,3; 9,4;inthe design given in example 3.1
of [55]. Hence g(8)(18) = 40. The complete design is

0t2
38
47
956

9

0

23
14
58
67

92
60
t3
4g*
57

034 g0x

25 45
16 36

97 8 27
18

9t
50
28
37x
46

93 94
70 80
24 17
1 5* 26*
68 3s

We note that adjunction of t to the starred blocks, together with the addition of a
singleton t to each of the first three resolutions, would produce a covering for v = 19,
k = 8, in 43 blocks.

Since g(8)(v) = W for v < 15 and g(8)1t7) = ?¡9, from [55], we need merely consider

9(8)(21). 
'We 

have already displayed a solution in 46 blocks, and so must now consider
the possibility that gG)(21) = 45.

We need to let u be the number of septuples. Then

u+s+f+q+t+p - 44,

2lu+ 15s+ 10f+6q+3t+p = I82,
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6u+5s +4f +3q+2t+p > 104.

Proceeding as usual, we find

10u+6s+3f+q<18.

Now u < 1; but if there is a 7-set, then it meets the 8-set and the other points and must
lie on a second 7-set; hence u = 0. Then we can sieve the solutions and find there are
no solutions except for s :0; the (f,q,t,p) solutions a-re then (2,12,30,0), (1,15,27,1),
and (0,8,24,2). T};,e last is easily achieved by taking a different solution ro the earlier
9(8)(20) = 43. Use the semi-cyclic solution displayed.

134
79t
26
5ex
8v

245
8te
37
6v*
9T

356
9ev
48
7l*
t2

467
tv 1

59
82*
e3

57 8

e12
6t

93*
v4

689 16 18
v23 4e 6e
7e 29 49
t4* 7v 27
15 5t 5v

3 8 3t

Now adjoin h to the six starred blocks and a singleton h to each of the last two
resolutions. This achieves the bound and shows that g(8)qZt) = 45.

3.3.4 The Case k=7. Here we haveg =Wforv= 13, 14, 15. We need to
discuss the cases 76<v <21.

First, we calculate the bound S for v = 2l and. find it to be 36 (integralty). So a
solution (s = 2) may exist in triples and quadruples (numbers a and b, respectively).
Then a + b = 35, 3a+ 6b = 189, whence a = 7,b = 2g. Let x and y of each pass
through any point on rhe long block; rhen Zx + 3y = 14, and (x,y) = (1,4) or (4,2) or
(7'0). If there are R, s, T, of each pattern, then R+s+'f = 7, 4R+2s - zg,
R+4S+7T = 7. Thus R = 7; each resolution contains 4 triples and a pair. Obviously,
the only solution (cf. [a3] for v = 22) is to take the 7 resolutions of a resolvable Steiner
Triple system on 15 points, and then to delete one erement. Thus gØ1zt¡:la.

For 9(7)120), ths S bound is 36. Hence we need merely delete an element from the
design just obtained.
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For g0)1t9), the bound S is 35; this can be achieved by deleting 2 elements that form a
pair in a resolution of the solution for gØçZt¡. An alternarive solution is cyclic and is
provided by

i59
26t

37e
48v

134
79t
28
6e
5v

245
8te
39
7v
6T

159
28
36
4e
7t

356
9ev
4t
81
72

26t
1e

37
49
58

467
tv 1

5e
92
83

s78 689
el2 v23
6v 71
t3 e4
94 t5

For g0)1t8), the bound S is 34 and,is integrally exact. So we musr seek 7 resolutions
(s = 2) into triples andpairs. we get a +b = 33, 3ia+ 6b= 132; thus a=22,b = 11.
From 2x + 3y = 11, we ger (x,y) = (1,3) or (4,1). Taking R and S of each patern, we
findR+S =7,R+ 4s=22,3R+s = 11. ThusR=2,s =5. Fromthis
information, a hill-climbing algorithm provides rhe following design.

123
456
789
te

147
25e
39t
68

48t
t6
27
35
9e

67e 38e
18 lt
29 24
34 57
51 69

Thus gØ118) = 34.

For g(7)qt7), the bound S is 33, and

before, with the usual notation.

we can find a design in 33 blocks. proceed as

s+f+q+t+p =32,

15s+10f+6q+3t+p -115,

5s+4f+3q+Zt+p >70.

Then we find 6s + 3f + qS7.

Now s=q= l givest+p-30,3t*p= 94,t=32 (impossible). Ands= 1,e=0,
gives t *p = 31, 3t*p = 100 (again impossible).
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Hence 3f + q <7. Itis easy to sieve possibilities and find that the only solutions occur
for (f,q,t,p) = (r,4,2'r,0) and, (0,7,24,1). The first solution is impossibre (every point
must lie on an even number of quadruples; hence abcd is a quadruple, we need axxx,
bxxx, cxxx' dxxx, at least). In the second sorution, we write w + zx + 3y = 10 and
suppose that there are R of pattern (1,0,3), s of pattern (1,3,1), T of pattern (0,5,0), u
of pattern (0,2,2). Then R+S+T+U = 7, R+S = 1, 3S+5T +2IJ = 24, 3R+S+ 2Il = 7.
Then (R,s,T,u) : (1,0,2,4) or (0, r,3,3). selecting the ratter pattern, we easily
construct a design as follows.

15

2t
36
47
89

t2
34
56
79
8t

17
28
35
4t
69

138
459
z7
6t

239
57 t
I6
48

I9t 67 B

246 14
37 25
5 8 3t

9

we can delete 9 from the rast resorurion ro reave gØe6) < 32. To prove 32 is the
value, we must exclude the bound S = 31. The usual argument gives, in this latter
case,

f+q+t+p = 30,

10f+ 6q + 3t +p = 99,

4f +3q+2t+p >63.

We deduce that 3f + q < 3. The oniy solution is f = 0, e = 3, t =27,p= 0, and this
does not provide enough quadruples to cover each resolution; thus g(7)qt 6) = 32.
(Alternatively, we could note that s = 31 exactly; then we easily deduce a = 27,b = 3,
since only quadrupres and tripres are ailowed if the bound is exact).

3'3'5 The Case k = 6. If k = 6, the bound is 29; this can easiiy be achieved,
using a method that has general application. Take the geometry on 31 points generated
cyclically by (1,5,11,24,25,27). Delete points 5,1I,24,25,27, to give 30 blocks
covering 26 points; then delete 6,12,26,2g, to give 29 blocks covering 22 points.
Deleting one furrher point establishes that g6)ç2t) = 29.

continuing the above process, v¡e delete g,l4sa, to show that 9(6)1t9 ) < zg. In this
case, the bound is 27 (integrally). However, s = 3 and so there would have to be a
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quadruples, b quintuples, with a* b = 26,6a+ 10b = 156. This wouldrequire a=26,
b = 0, and the resolutions can not be packed (13 is not a multiple of 3); thus
9(6)(19) = 28.

Another deletion shows that 9(0)118) < zg. Again, the bound is exactly 27 (s = 2); so
theremay be asolutionwith atriples, bquadruples, a+ b=26,3a+ 6b = 13g. Then
a = 6' b = 20. Consider the 6 pairs and 20 triptes in the resolutions; any single
element occurs with 11 others and so must be in a pair. Thus the pairs involve all 12
elements and thus form a resoiution. So the configuration involves just the 6 pairs and
20 triples of an STS on 13 points with one point deleted. It is well known rhat rhis
system can nor be resolved [26].

Finally, returning ro rhe design on i9 elemenrs, delete 17 and,23 to give g,5)çt7¡ : z7
(the bound here is 27). DeIete point 29 to give 9(6)(16) -- 26 (thebound is inregrally 26
and our design naturally ends up with a 6-set, I z 4 g lz lg, and 10 quadruples, 15
triples).

There remains to determine whether 9(6)1zO¡ can equal 28. We set up rhe usual
equations (there can be no other 6-seQ.

f+q+t+p -27,

10f+6q+3t+p =175,

4f +3q+Zt+p > 94.

It follows that 3f + q < 24. Using a sieve on the solutions, we find there are none;
hence 96)ç29¡ = zS.

The three lowest values for k = 6 are now immediate. The value g(6)(13) = 24 is given
in both [55] and [3]. The value 9(6)(15) = 25 follows since the bound is 25, and we
find there must be 18 quadruples and 6 triples. The resolutions are easily found as

123
49
57
68

456
i8
29
37

7 89
16
24
35

t4l
26
38
59

2s8 369
19 15
34 27
6,'7 /1 Av, Îu
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Deletion of one element gives 9(6)114) <25.
must consider

However, the bound is 24, and so we

f+q+t+p =23,

10f+6q+3t+p =76,

4f+3q+2r.+p >48.

A contradiction results at once. we get 3f + q < 3 with solution f = 0, e = 3, t = 19,
p = 1; there are not enough quadruples and pairs to cover all points. Thus
9(6)(14) = 25.

3.3.6 The Case k = 5. This case is simple. For g(5)çt3) = 19, see [3]. For rhe
values from 14 to 21, the bounds are 19, 20,20, z0, zr, zr, zr, zr. Allof these can
be achieved by starting from the geometry onZlpoints. Generare it by (0 I 41416).
First, delete points 0,1,4, 14, to show that the bound is met for 20,19, 1g, 17. Then
delete 2, 5, 75, to give the results for 16, 15, 14, The last value g(5)(14) = 19 is
exactly integrally equal to the bound, a fact which mirrors the nature of the design (9
triples and 9 quadruples, besides the remaining block 16, 17 ,20, g, rr).

This case of a geometry can be discussed in general. For instance, consider
g(k)qtr-t<+1-d), where d < k. Then

s = Lk2-k;t1-dJ = Lr-r-{ll =k - 2. The bound is

1 + ffi+ (2k(k-2)-(k z-2k-d))

= 1+ 
g#(k2-2k+d)

_ 1 , t3 t- d(d_l)_ ì _r K__K_EGÐ.

We thus see that the bound verifies that the best results occur by deletion for d up to k.
The discussion for d > k is more complicated.
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3'3'7 T'he Cases ß( < 5" For k = 2, the values are just the binomial coefficients

(i). t- k = 3, they are just the pair-packing numbers, increased by the pair defect
(see [56]). For k = 4, all values are known (see [57]) except the values for v = Ij, Ig,
19. We f,rll in g@QD = 31 from [63].

3.3.E The Values for v - 22. We have most of the values between v = 22 and v
= 32, which is the next natural limit. Since v = 22 is just past the bound for pG(2,4),
the behaviour is particularly interesting and we include the values here

The values for k > 11 are given by W; the values for
and [57]. For k - 10, the bound S is given as 59,
resolutions of triples and pairs, namely,

sG)22)

67

76

82

85

85

82

76

67

55

40

22

1

2, 3, 4, are given by C, [56],
and there is a solution in 10

1t
2e
JV
47
s8
69

le lv
2v 2t
3t 3e
48 49
59 57
67 68

k

2

J

4

5

6

7

I
9

10

k

11

72

T3

T4

15

T6

t7
18

t9
20

21

22

s@Q2)

23r
85

42

25

29

36

46

53

59

r23
456
789
tev

14
25
36
7t
8e
9v

15
26
34
7e
8v
9t

T6

24
35
7v
8t
9e

T7

28
39
4t
5e
6v

18
29
37
4e
5v
6t

t9
27
38
4v
5r
6e

For k = 9, S is likewise exactly 53 and we need 9 resolutions into 13 triples and39
pairs. Hill-climbing produced the following solution.
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723
456
789
te
Vh

l4t
28e
69v
35
7h

15h
26
34
9e
8v
7r

27v
16
39
4h
5e
8t

3 6't

18

2h
49
57
ev

3eh 47 e

17 1v
2t 29
4v 38
59 5t
68 6h

2vh
59f
36i
8t
4e
t7

18f 7tf
3 4t 249
25e 8ei
th 3h
67 16
vi 5v

58h 9th
19 1e

24 25
37 3 v
6e 48
tv 67

For k = 8, S = 46: thekey here is to look at g$)çz3¡,where S = 46 exactly. A solution
for k = 8, v = 23, in triples and pairs is given by the following g resolutions.

723
456
789
tev
hfi

26f
9ti
47v
1wh
3s8

3vf
69e
48h
15t
27i

68v
74í
57h
ef
2t
39

19v
37e
6th
4f
5i
28

This array can be derived from pG(2,7)by generaring p}(2,j) cyclically from the
initial block (7,6,7,9,r9,38,42,49) and then retaining the brock (s3,r,2,4,33,37,44)
and the 15 points 3,7, B, g, 15, 22,2g,30, 35, 43, 47, 49, 55, 56, 57. Deretion of a
single point now produces a solution for gß)çzz). The varue gØez) comes from the
resolutions of an STS on 15 elemenrs (see [43]). For 9'Í)çZZ), the bound is exactly 29
and may be achieved by deleting 5 collinearpoints ABCDE from the 32-point geomeu'
and then deleting 4 further points GHJK where GHJK are on a line through A.
Finally, g(5)QÐ = 30 (derete 3 points from rhe BIBD onzlpoints, as in [5]).
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3"4 The Case tr< - 4 amd k = S

3'4.r- values fon g(a)1v¡. In this secrion, we record the vaiues of g(a)(v) from
[57]' Complete resuits were given there for all v with the exception of v = 17,1g, and
19' v/e note that the value or g(+)(te¡ has now been established as 35 in [46]. Also,
g(4)e7) = 3t (cf. [58], [59], I11l).

g(+)(v) exceptions

lZt- |
l2t
72t+ I
72t+ 2
12t+3
I2t+ 4

72t+ 5
72t+ 6
I2t+7
IZt+ 8

lZt+ 9
L2t+ I0

I2t2 + t
I2t2 + t
12t2 + t
l2P +7t + I
I2t2+7t+l
LZt2+7t+I
12t2 + 73t+ 4
l2t2+73t+4
12& + 73t+7
l2t2+19t+8
l2t2+19t+8
72P+19t+11

g(4)(5) = 5, g(a)(17) = 31

9(4)(6) = 8, g(a)(l8) not known
g(4)e) = 10, g(4)(19) = 35
g(a)qg¡ = 11

sØ)19¡ = 12

gØ)çtg¡ = 12

=xG?_

The values for g(5)1v¡ are largely undetermined. Allston and Stanton [5] have obtained
panial results along the rines of [57], and we give these here.

3.4.2 A bound on g(s)1v¡. We let
of length i in an exact covering. Then

g= g2 + 93 + Eq+ gs.

If Ð denotes a summation over all g blocks, then we have

El =9,

>(ki-4xki-5) = 69z+ 2g3

OL. r ,)Â\
¿t\l t Lw)

Bi (i = 2,3,4,5) represent the number of blocks
the total number of blocks in the covering is

-43



= ¿ki(ki_l) _ gIk¡ + Z0g

where k¡ represent the g brock rengths. Furthermore,

tki(ki-1)=v(v_1)

The frequenc! r¡ of any elemenr is at least l&_Dt+f;hence

Xki-Xr¡=yl(v-Ð/+f+e,

where € > 0. Combine these results, and we obtain

6gz + 2g3 = v(v_1) _ avle_D/q-l_ se + 20g,

that is,

s = # {6ez + Zss +8e + v(8 I e-t)A)j- v + t)}.

Since Ez,83, and e are non_negative, we have

TIIEoREM 3.4.I. FI
block, then 

)r an exacî covering with at least one btock of size S, but no longer

s> åßl(v-t)t+ì-v+r).

It is well known that Balanced Incompiete Block Designs with parameters

(20t + l, Z0t2 + t, 5t, 5, 1)

and

(20t + 5,20t2 + 9t + 1, 5t + 1, 5, 1)

exist for all t > 1 (the second exists trivially for t = 1). Tire bound is, of course, exacrfor these designs.
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3'4'3 The Cases of an Exact Eound. Suppose that we use gg(v) to denote the
integer bound in Theorem 3.4.1. Then it is easy to calculate the following table of

gs(v) = [v(S [(v-t) laf - v + r) / 20f.

V 8o(v)

20t - 2,20t- I,20t,20t + I 20t2 +t
20t+2,20t +3,20t+ 4,20t+ 5 20t2 +9t + I
20t+ 6,20t +7,20t+ 8,20t +9 20t2 + l7t+ 4
20t+ 70,20t + Il,20t+ lZ,20t+ 13 20t2 +25t +g
20t+ 14,20t+ 15,Z}t+ 16,20t+ 17 20p +33t+ 14

Now deletion of points (one, two, or three) from the BIBDs on 20t + 5 or on 20t +
points achieves the bound go(v). Consequently, we have

THEOREM 3.4.2. The quanrí¡y g(s)e) is given by 96þ) for v congruent to -2, -1, 0, I,
2,3,4,5, modulo 20.

we can also use g6(v) to throw light on the behaviour of D(2,5,v), which is the
maximum number of quintuples from v elements with no repeated pair (the packing
number).

Clearly, D(2,5,v) = g(s)qv) = gO(v) forv= 1or5, modulo 20. Forv= 0 or4, modulo
20,we substitute in the exact relation

1

s = ñ {6sz + 2sz + 8e + v(8 I Q-Dt+1- v + 1)},

and obtain E2= E3 = € = 0. This shows that the exact coverings contain only blocks of
iengths 4 and 5 and that every element has the same frequency; it follows that the
blocks of length 4 are alI disjoint and thus we have established the well known resulr
that the optimal packing for v = 0 or 4 (modulo 20) occurs by taking BIBDs for v : 1

or 5 (modulo 20) and deleting a single point. This process produces the value of
g(5)(v) and D(2,5,v).

For v = -1 or 3 (modulo 20), the situation is similar; for v = 2at + 3,we have
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20g=(20t2+gt+t)20

=6g2+2gz + 8e + (20t+3)(20t+ 6).

Hence, 6gZ + 2gl + 8e = 2. Thus 93 = 1, and it follows that the optimal packing
involves a single block of length 3, with all frequencies again equal to 5t + 1. The
configuration is derived from and extendibie to the rerevant BIBD.

For v =20t - 1, we have

20g=(20t2+)20

= 692 + 293 + 8e + (20t - l)(20t + 2).

It follows again that 93 = 2, and the same conclusion holds for v = 20t + 3.

For v = 20t + 2, we obtain

20Q0tz + 9t + l) = 6gz + 2g3+ 8e + (20t + 2)(20t + 7);

thus 692 + 2g3 + 8e = 6. Similarly, for v = Z}t - Z,

20(20¡2 +t)= 6gz+2gz+ 8e+(20t -2)(20t+3);

again, 6gz+ 2gl +8e = 6. In eithercase, we find 92 = 1, 93 = 0, or Ez: 0,g3 = 3. In
both situations, e = 0, and rt = [(u-t)/+]. Again, we find that we have an optimai
packing derived by deleting three points from a BIBD (the two siruations correspond to
the cases when the three deleted points lie in one block, giving gz= l, or lie in three
blocks, giving gE = 3). We thus have

TIIEOREM 3.4.3. The optimal configuratíons for exact coverings of v = 20t + a points
with blocl<s of sízes 2, 3,4, 5 (-2 s a s 5) occur if and only if the design ís a punctured
BIBD with 0, 1,2, or 3 points removed.
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Figure 3.4.L.

3.4.4 An Improved Bound for g(s) ¡¡ the Cases v = 9, L3, î7 (modulo
20). Consider v = 20t + 9: then it is well known that

D(2,5,v) < L(ZOI + 9X5t + z)/il =20t2 + t7t + 3.

If this bound were achievable, the defect graph (consisting of all pairs not used) would
contain

('o'; e) - rorzo P + r7t+ 3) = 6

edges. Since every vertex in the defect graph has a valence divisible by 4, this is
impossible. Consequently,

D(2, 5,20r + 9) < 20:2 + t7t + Z.

If D(2, 5,20t + 9) = 20t2 + 77t + 2, the sum of the valencies would be 2(16) = 32. A
vertex of valence I would require a minimum of 9 vertices in the graph; hence the graph
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contained 8 vertices of valence 4. Such a graph needs 16 K2's to cover it; if K3's are

allowed, at least 5 K3's and a K2 would be needed (this is purely on count; actually
such a configuration is not achievable); finally, if K4's are allowed, one needs at least

two I(4's and four K2's (any vertex used in a K4 must have an attached K2). This last

configuration is easily achieved (see Figure 3.4.I) and so we have

LEMMA 3.4.1. If D(2, 5, 20t + 9) = 20P + I7t + 2, and if the maxímum number of
K5's is used, then g6) >20F + l7t + 8.

However, there are two possibilities: either D(2, 5,20t + 9) < 20'2 + l|t + 2, or one
does not use the maximal number of K5's. Both these cases can be treated together.

If, for either reason, the number of K5's used is 20P + l7t + 1, then the defect graph

contains 26 edges and has a valence sum of 52. It follows that it has vertices of
degrees 4 and 8, the disrribution pamern being (13,0), (11,1), (g,Z), (7,3), or (8,4). If
only K2's are used, we need 26 of them; if K3's are used we need at least 9 blocks; if
one K4 is used, we need at least 8 blocks (again, we do not consider achievability of
configurations). If three K4's ate used, 8 edges remain; this would require at least one

edge left over at each vertex) that the configuration is not achievable. So at least 7 more
blocks would be needed, and the total is again atheast20P + 17t + 8.

If the number of K5's used is 20tz + 17t, then the defect graph contains 36 edges; not
more than 18 vertices, and the allowable valencies are 4,8, 12. We want to show that
8 blocks or more are needed to cover it. Clearly, K4's are required; indeed, if only 4
K4's are used, then at least 4 K3's are needed, and the total would be 8. Six K4's is
impossible, since it would require all vertices to have valence 12 (no edges left over),
and this can not occur with 36 edges. If five K4's could be used, there would be six
lines left over and they would have to be in triangles; but that would mean no vertices
of valence 4 (impossible). So again, we have g(5) > 20t2 + 17t + 8.

Finally, ir 20P + 17t - x K5's are used, then the defect graph has 36 + 10x edges. For
x ) 3, even the use of K4's for all blocks requires 6 + (2 + x) blocks or more. If x =
2 (56 edges), at least 11 blocks are needed. Thus we obtain

THEoREM 3.4.4. Forv=20t+ 9,96) > 20P + I7t +d = g0+4.
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The discussion for v = 20t + 17, where the bound on D(2,5,v) is z\P +33t + 13, and

the defect graph has 6, 16,26,... vertices, is exactly the same. consequently, we can

stâte

TIIEoREM 3.4.5. Forv = 20t + 17, 96) > 20P + I3t + lg = g0 + 4.

The situation is only slightly differenr for v = 20t + 13. The bound on
D(2,5,20t+ 13) is 20tP + 25t + 7;1or this many quintuples, there would be a defecr
graph of 8 edges, but it can not be achieved. Hence, we must first consider the
possibility of using 20Û+25t+6 quintuples with a defect graph of 18 edges (all
valencies 4) and 9 vertices. If all K3's are used, one needs 6 (achievable; cf. Figure
3.4.2). If a Ka is used, the remaining 12 edges can not be covered by 4 triangles. If
two K4's are used (the maximum allowable), again four K2's (and more) are forced.

Thus we have

Figure 3.4.2

LEMMA 3.4.2. If20p + 25t + 6 quínruples are used, then g6) > 20F + 25t + 12 = g0

+4.
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If the defect graph has 28 edges (20lP + 25t + 5 quintuples), then all vertices have

valencies 4 and 8 (distribution patterns (14,0), (I2,1), (10,2), (8,3), or (6,4)).
Certainly, the covering can not be achieved with less than 10 blocks if one uses no
K4's. Three K4's require 18 edges; the remaining 10 require at least 4 blocks. Four
K4's still need at least 4 more blocks. In any case, we find g(5) > g0 + 4.

The discussion for 38 edges is even easier; even 6 K4's reeuire 8 blocks and so, agun,
we need at least g0 + 4. For more than 38 edges, there is no problem. Hence, we

obtain

THSoRENI3.4.6. Forv=20t+ 13,96) > 20P +25t+ 12 = g0+4.
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C&aap8en ÃV

4"L Coverüx'ags of Tnåp[es; É[ee Num¡hens g(tr_,3;v)

4.L"'i' nntroduction. In this chapter, we deal with the case t = 3, that is, we are

looking at the covering of triples. We shall now write g(v) to mean g(1,3;v); simitarly
g(t)(v) will designate gG)11,3;v), that is, the minimal cardinality of a covering family
that includes a block of length k but no block of larger size.

For t = 3, the Combinatorial Bound is given by

C = v(v-1Xv-2)lk(k- 1)(k-2).

The SK Bound is given by the expression

sK = 1 + k(k- 1)2(v -k)/2(v-2),

and the Woodalt Bound W is given by

W = 1 + k(v-k)(3k-v-I)l+.

Also, if s denotes the greatest integer n (v-2)/(k-1), the Stinson Bound is given by

S = 1 + k(v-k)(2s(k-1)-v+k+1)/2s(s+1).

The over-all behaviour of gß)(v¡ is described in [6], where a table of values is given for
v up to 26; the C bound predominates for small k, and then the SK or S bound takes

over. Finally, the W bound is exact (after being increased by a small perturbation

factor) in the range between vlZ and v (the "long block" case).

A survey up to 1985 of progress in the g(t)(v) problem is found in [8]; the values of
g(k)(v), for most of the values in the range v 126, appear in [53], l2l,lll, and [48].
These papers also introduced the hypothesis, established in some instances, that
minimal families were to be found by puncturing Steiner systems, especially inversive
planes. (A punctured Steiner System is merely one from which one or more points have

been deleted.) This hypothesis was established in [34], where Hartman, Mullin, and

Stinson proved that g(v) is basically a step function. If we have y = q2+1, where q is a
prime power, then the inversive planes S(3, q+1, qz+l) actually give the value of g;
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furthermore, this value of q(q2+1) is also the minimum when v = qz+I-o. where cr is
small relative to q (for an exact formulation of the permissible size of c[, we refer to

l34l).

4.n'"2 Known Results. It will be convenient to depart briefly from historical
order; a very useful result can be found in [53], namely,

THEOREM 4.1.1. Let x be an integer, 0 
-< 

x S k. Let B be a block (set ín the cover)
containíng k elements (in applicatíons, B will almost always be the longest block), and
let A(j) be the set consisttng of all blocks that intersect block B in j elements. Then

p t*l ä f*l = ^ü)G.f) ,

where the k¡ are the other block lengths.

PRooF. Count the occurrences of sets of t varieties of which exactly -r are in B; there

afe

G)(i.f)
of these sets, each occuring ì" times.

However, a block of length kl in AO contains j varieties from B, k¡j not in B. So we

select x varieties in B in (i) *urt and select the other r-x in (i,J) ways. 'we get the

result by multiplying these two numbers, summing over the blocks of A(j), and finally
summing over j.

By taking ì" = 1 in Theorem 4.LJ, one deduces that

Then no t-set is repeated, and AO is null for j 2 t. The basic equality, when written for
x = t-1 and x = t-2 gives
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ä ffi {,t') (-f) = (å) (v-k),

In the flrst equation, j must equal t-1; thus we have

(4tzr) 
Æ,f i.t) = (å)(v-k) .

In the second equation, j = t-l or t-2, and subtract from the second; we obtain

(4.r.2.2\

Multiply the first equation by t-1, and subtract from the second; we obtain

c, rr å 
rif, 

j.'f'i.') . 
^ä,(-,îr)

=(åX"f) (å)u')("io)

=('-o)(å)(o++- ru'))

The second sum on the left-hand side is non-negative; thus

The left hand side is

^ä,r';.') 
(*'-î1))= ru-r.r(å)(rffi 1)

5' ft¡-t+1)(ki-t-2) V (ti-Ð(t i-t-t)Z
A(r-i) A(r-1) L
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=oä,fl') 'Ì

= X f-lf - a(t-l) ,

A(t-l)\ " /

where a(t-l) : lA(t-1)1. This produces the result

a(t- 1) > 

^è,(*å') 

* r"-rr(å)(' rffib-)

But the number of blocks is certainly at least 1 + a(t-1), and we have

TIIEOREM 4.1.2. (woodall t67l). If thereis ablockof lengthkina(I,t;v) cover,then
the total number of blocks is at least

1+(v-k)(å)('2ffi.t

However, this identity can be improved; for brevity, set a = a(t-1) and b = ("-k)(å)
Then (4.I.2.i) and (4.I.2.2) can be rewriten as

(4.t.2.3) It t = (t-l)a+b ,

(4.t.2.4) +X (oi o,(2t-1)+t(t-rl) + 

^ä,(-';.) 
= +oç$ ,

where unspecified summations refer to the set A(t-1).

If we denote the second summation in (4.I.2.4) by S, we have

.2 v-k-1 . 25q = ffib - ä+ (2t-1)fk1 - t(t-l)a.

Now, if E denotes the average value of the k¡ in A(t-1), then
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I, (ki - u)z=>ul-at'2>o

Thus we have the usual variance inequality that ^>:q 
(Eki)2 > 0. This becomes

. v-k-l 2aS
ab ffi # + a2çt-t¡1zt-1) + ab(Zt-t)

- a2t(t-1)&(t-t¡z - zab(t-t) - b2 > 0 .

The coefficient of & ¡s G-t)(Zt-i) - (t-1) - (t-t¡z = 0; hence

"r{ffi + 2t-t - zt+zl- 6z - 
2a=s 

2 s,

"b# > b2+#(4.r.2.s)

In some cases, it is useful to retain the form (4.I.2.5); however, if we omit the term
involving S, we immediately have

"=H=#(å)(v-k)
Since the number of blocks is again greater than or equal to 1+a, we have obtained

THEOREM 4.1.3. (stanton-Kalbfleisch ts3l). under the hypothesís of rheorem
4.1.2, the total number of blocks is at least

t*ffi(å)(v-k)

Theorem 4.1.3 is especially useful for smaller values of k. In particular, it allows a
direct proof of the Erdös - de Bruijn Theorem [18].

THEOREM 4.r.4. (Erdös - de Bruijn). The covering number g(l ,2;v) ís equal to v.

PRooF. By Theorem 4.1.3.
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g(1,2;v)> 1 + Sf"-ul

Consider the function

h(k,v) = 1 + $Cr-ol - "

(v-1) h(k,v) = v-1+k2v-k3-v2+v

= - qv2-(Z+k2)v+k3+1)

: - (v-(k+1)Xv-(k2-k+1))

If v =k+ 1(thatis,k =v-1), then h(v-l,v) =0. Thisvaluecanbeachievedbytaking
a block

1 2... (v-1)

and blocks (v,i) as i ranges from 1 ro v-1.

If v > k+1, then h(k,v) is positive so long as v < k2-k+1 (that is, we get a larger family
than we do for v = k+1). When v = k2-k+1 (which occurs when there is a finire
geometry with k points per line), we again achieve a situation where we have exactly v
blocks (this time, all of equal size).

Finaily, if v > k2-k+1, we have the blocks all of size at most k; so v blocks can cover at

-ost u(5) pairs. Bur

"G) = ry_ v(k2-k).$J),

and so not all pairs are covered.

Theorem 4.1.4 has shown that g(7,2;v) = v and has also shown there are either one or
two minimal families in this case.
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4.2 Exact Covenimgs of T'nåples (k åange)

4.2.L {ntroduction. In [3], we introduced gG)1],,t;v); this was rhe covering
number under the restriction that there was a block of size k but no block of size greater

than k. Clearly,

g(À',t;v) = min gG)(À t;v)
t<k<v-l

It thus appears that the behaviour of g(k) (}",t;v) is more fundamental than that of
g(À,t;v).

Indeed, the value of g(1,3;v) is almost an accident; it depends on whether the minimum
for small k is less than the functional value for k : v - 1.

4.2.2 The behaviour of g(1,3;v) for large k. For convenience, we list the
four general bounds for g(1,3;v). These are as follows (in any case that a bound is
non-integral, we must take the next integer above).

The Combinatorial Bound is

(4.2.2.1) ^ v (v-1) (v-2)t-=ffipl

The Stanton-Kalbfleisch Bound (cf. [53] and [49]) is

(4.2.2.2) SK = 1 .#(5) r" ol.

The V/oodall Bound (cf. [67] and [49]) is

(4.2.2.3) w = 1+ (v-k) (i) (t #ù
It is useful to write W in the form

(4.2.2.4) 'W =1*(v-k)k(3k-v-1)'
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In addition, there is a bound due to D. R. Stinson which improves (4.2.2.3). For this
bound, one needs to determine s = L("-Z) / (k-1)1. The bound then takes the form (cf.

t61l)

(4.2.2.s) s =1.ffi (5) (2,. t tsù

Just as in the case t = 2, the bound C predominates for small k.. Then the SK bound
takes over, and finally the V/ bound predominates. Vy'e give a table for the case v = 16

(this is a value of v large enough to be typical).

Table 4.2.I: Lower bounds for g G)1i,3;t6¡

KCSKWS
3 560

4 140

5s62728
628551656
7826485
8 113 1.r3 113

9 159

10 196

11 221

t2 229

13 216

L4 T76

15 106

t6 1

It is easy to deduce from (4.2.2.3) and (4.2.2.4) that W > SK so long as

v/23k <v-1.

(the equality occurs if and only if v/2 = k = v-1). In this section, we show that, with
the exception of small perturbations, g(k) (1,3;v) is equal to the bound W in this range;

a moÍe precise statement will be given later.

-58-



4.2.3 An improvernent on the bound W" We first note rhat there are three
trivial cases in which the bound W is exact.

(a) Clearly, if k = v , then Vy' = 1 and the bound is exact (usually we exclude
k=v âsapossibility).

(b) Ifk =v-1,then
W=1o(v-1)-(v-2)Il2

But, if k = v - 1, then we need this single long block plus all triples made up

of the remaining element taken with every pair from the long block. So the

value is

gß-r)11,3;v) = 1 + (';t) = gy'

(c) If k = y - 2, and if v is even, then

w = 1 .z&Af"-z)-.

We need to take the single long block and make quadruples consisting of the two
elements not in this long block together with a set of disjoint pairs from the long block;
we also need triples consisting of an element not from the long block together with all
pairs from the long block not previously used. Thus we have

g(k-1)(1,3;v) = 1 + +. z9(v-4),

where we employ the well known fact that the elements of the long block have (v - 3)

1-factors. Simplifying, we find that, in this case,

,{k-2)11,3;v) = 1 + Ç eu-r) = W.

Henceforth, we exclude cases (a), (b), and (c). We now refer to [49] and quote the
result

-59-



x(l)X (i'l)='(Íx'-f)
: eõr

proved there in Theorem 1 (the k¡ are the various block lengths). By placing 7v = l,
writing x = t - 1 and x = t - Z,and combining the equations, it was shown there that

u',XW.U(t"r.')
A(r-1) A(r-2)'

+ (t-l)(v-kr (,1,) (r - nffi)= o.

Here I41n¡ denotes the summation over all blocks which meet the longest block in n
elements. This equation can be written as

Ç (ki-t +1) (ki-t -2)(4.2.3.1) (t -r) fu z
A(r-1)

. 
ã, (5'i')+ (t-1) (v/-t¡ = e

Nowputt =3togive

(4.2.3.2) ,YGry. X ¡;t)+2(w-i)=s.AQ) A(1) \ '/

The first tenn can be written as

(4233) ,{Y(-t,) ã1}= ' X (-1,) -2az
f 
arzl

where we write oi to denote the number of blocks which meet the long block in i
elements.
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Also, since W is a bound, we can write

(4.2.3.4) g G)1i,3;v) = 1 +cr6+cr1 * dz=W+Ê,

where e denotes the excess over the bound W. V/hen we substitute (4.2.3.3) and

(4.2.3.4) into (4.2.3.2), we obtain

(4.2.3.s) ,X (-t') - 2c,2 +X (-lt) + 2(c.s* cr1 * c,c2 - e) = Q.

AØ A(t)

Divide by 2 and simplify to obtain

(4.2.3.6) r=o(0*c{,1 *ä (-tr).å& (-lt)

We might remark that analogous formulae hold for t = 2 and t = 4. For reference, we

record these as

(4237) E=cro.ä (t).ä(-tr)

and

(4.2.3.8) Ê = cr' * cr1 * o, * X (-5-). å X, (;')
A(Ð \ '/ Aa)

Now, suppose that there are 3 or more elements not in the long block; they must occur

in a block, and it will meet the long block in 0, 1, or 2 elements. If it meets the long
block in 0 elements, then qo > 0; if it meets the long block in 1 element, then cr1 > 0; if
it meets the long block in 2 elemenrs, rhen ki = 5 unO f ( ot ') t O. In any case,

A(2)

wehavee>0.

If there are 2 elements not in the long block and if k = v -2 is odd, then there must be

a riple which meets the long block in exactly one element; again ü1 ) 0, and so e > 0.
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Our conclusion can be stated as

THEOREM 4.2.L For g(k)¡1,3;v), we have

Ê = cro * cr1 * 
ffi t-tr).+X (-lt)

Furthermore,lf k=vork=v - I ork=v -2 (v even) then

g(k)(1,3;v) ='W.

In all other cases, we have e > 0 and g&)¡l ,3 ;v ) >W + I .

We shall see that this result can not be sharpened, since the bound V/ + 1 is attained in
many cases.

4.2.4 The case of a long block of even length. We first recall the well
known fact that a graph K2u possesses (2a - 1) disjoint l-factors (cf., for example,

t50l). Thus the pairs from K6 can be spiit inro K2's as follows.

12,34,56 13,25,46
16,23,45 15,24,36
14,26,35

This splitting is called a l-factorization. It is useful to consider l-factonzations of
Kzu-t as well. In this case, a l-factor consists of K2's and a single K1l no K1 can be

repeated. Thus, K2u-1 has (2a - l) l-factors (again, cf. [50]); for example, rhe splitting
for K5 is simply

12,34,5 13,25,4 23,45, I
15,24,3 14,35,2

These results on l-factors will be useful in the next constructions.

First consider the case that k is even. The remaining points form a set of v - k
elements. Supposefirst thatv - kis also even. Form ablock of lengthv - k which is
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disjoint from the long biock (clearly, v - k < v /2for this to be possible). We also take

v - k > 2,by virtueof the result of Theorem 4.2.L when v - k = Z.

Form quadruples by taking the Cartesian product of all l-facrors from rhe (v - k) points
with (v - k - 1) l-factors from the k points. The number of these is

k v.L
; T (v-k-l)'

Now form triples by taking the elements from the set of (v - k) poinrs with the
remaining (k - 1) - (v - k - 1) l-factors from the k points. The number of these is

(v-k)\fru-u¡.

All triples have now been accounted for, and the number of blocks is

, **(v-k) (v-k- t+4k-2v) - 2 *-rr*El Í¡tt*:D = w + 1.

Since, by Theorem 4.2.1, we can not do better, we obtain

THEoREM 4.2.2. If v /2 Sk Sv -2,andìf kandv - kare even,then

(4.2.4.1) g(k)11,3;v)=W+ I=2+ry

CoRoLLARv 4.2.2.I. The bound W + I can only be achieved in the way índtcated
(v - k elements in a single disjoínt block ).

PRooF. This is immediate from (4.2.3.6), since cr1 musr be zero (otherwise

c.t+ïX(k,,t) > 1, andcr2musr bezero(otherwise, sincev-k>4,ki >6andwe
A(1)

would have X(kt') t 1). Then o0 = 1, and we have our result.
A(2)

V/e now consider the case that k is even and v - k is odd, and we employ a similar
construction. The number of quadruples formed by taking all l-factors from the
(v - k) points with (v - k) l-facrors from the k points is
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,ry(v-k)
The number of triples formed by taking elements from the (v - k) points with the
remaining (k - 1) - (v -k) = (2k- v - 1) l-factors is

k
7 (v-k) (2k-v-1).

So the total number of blocks is

, *Í (v-k) (v-k+ r+2(2k-v-t)) = 2. k(=k)f;kÐ

=W + 1.

This gives us

THEoREM 4.2.3. If v /2 <k Sv -2, andíf kis evenandv - kis odd,then

(4.2.4.2) g(k)¡1,3;v ) =W + l.

coRot-lepv 4.2.3.1. The bound w + I can only be achíeved by placing aII v - k
elements not tn the long block in a single disjoint block.

PRooF. This follows as for Corollary 4.2.2.I.

4.2.5 The case of a long block of odd length. The situation when k is odd
is somewhat different in that, whereas e = 1 for k even, we find that e > 1 for k odd.

This basically stems from the result of the following lemma.

LEMMA 4.2.5J IÍ AB represents any pair of points from the v - k poínts not in the

long block and if k is odd, then there is at least one block containing AB that intersects

the long block in a síngle point.

PRoOr': AB must occur with each element from the long block; the intersections of
blocks containing AB with the long block can contain only 1 element or 2 elements; and

intersections can noi all contain 2 elements, since k is odd.
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Now let us illustrate what happens in a couple of cases. Suppose that v - k = 3. If
the pairs AB, AC, BC, all appear in separate blocks (triples), then they contribute
e = 3(1.5) = 4.5. On the other hand, if there is a single block ABC meeting the long
block in a point, then e = 1 + I.5 = 2.5.

As a more complicated illustration, let v - k = 10 and suppose that the blocks ABCD,
AEFG, AHKL, BEH, CFK, DGL, DEK, BFL, CGH, CEL, DFFI, BGH, A1I MCCI thE

long block in single points. Their contribution to e is

n +| 6) *TG) =+,

as opposed to 45 + 4512 = 135/2 if the pairs had all been in separate blocks. However,
one block ABCDEFGHKL only contributes | + 45/2 = 4712 to the excess. We are thus

led to

Lptr¿lr,la 4.2.5.2. The minimal contibution to the excess from the fact that every patr
of points not in the long block must occur in a block meeting the long block ín a single

poÌnrís t +t{"1)

Proof. As in the last example, Iet the v - k points be pair-covered by a set of blocks of
length Tr71, rrr2,..., mr. Then

X(î)= ("*)

Each block of length mi, extends to a block of length m¡ + 1 by meeting the long block

in a single point; so the total contribution to the excess is

,*+x Ë) =,*+("f)

On the other hand, if all v - k points are put in a block of length (v - k + 1), then the

contribution to the excess is only

t . + ("to)
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Clearly, this is the best we can do. Also, we needv - k + 1 < k, that is, k > (v + I)/2.
Lemma 4.2.5.2 immediately gives us

THEoREM 4.2.4. If (v + I)12 < k lv - 2, and if k is odd, then

g(k)11,3;v) < w + t . å ("f)

CORoLLARY 4.2.4.1. Under these conditions,

We shall now show that this bound is actually attained for k odd in the range

(v+1)/2sk<v -2.

First, let k be odd and let v - k be even. In addition to the two blocks of lengths k and

v - k + 1, we require the following.

(a) (k - 1) (v - k ) triples containing the point A which lies on both blocks and

also containing one point from each block.
(b) !C" - tl Nt - f¡1v - k - 1) quadruples formedby taking the Cartesian product

of all one-factors from the (v - k) points (less A in the long block).
(c) (v - k)Nk - 1X2k - v - 1) triples formed by combining the v - kpoints notin

the long block with the remaining l-factors of the (k - 1) points (less A) in the

long block.

The total number of these blocks, which cover all triples on the v points, is

., - (v-k ) (k-1) ,L, 4 .4+(v-k-i)+(4k-2v-2)|

. , (v-k)(k-1X3k-v+1)
4

Since this is the bound in Corollary 4.2.4.1, we can do no better and thus have shown

that the bound is anained.
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The construction for k odd and v - k odd is similar, although rhe counrs differ. V/e
have two blocks intersecting in (A), together with the foltowing blocks:

(a) (k - 1) (v - k) triples as before
(b) l" - k + r¡Nk - 1Xv - k) blocks (some are quadruples and some are triples)

formed by taking the Cartesian producr of 1-factors.

(c) (v - k) {or') çZU - v - 2) triples formed by taking single elemenrs with l-factors

from the k - 1 points different from the A on the long block.

The total number of blocks then is given by

z + {4 + (v-k+r ) +z(zk-v-z)l

_., (v-k) (k-1) (3k-v+1)
4'

as before. These two calculations establish

THEoREM 4.2.5. If (v + 1) t2 <k sv -2,andif kis odd,then

(4.2.5.D g(k)1t,3;v) =2+ (v-kXk-Q(3k-v+1).

ConorLARv 4.2.5.1. For the minimal configuration giving

g(k)qt,3;v)=2 *W,

we must have two blocks of lengths k and v - k + I intersectíng in a single poínt; the

other blocks are triples or quadruples .

Pnoop. Any other configuration would give (by Lemma 4.2.5.2) a contribution ro rhe

excess that would push the value over the stated lower bound.

4"3 An Uppen' Bo¡.xxrd fon g(1,3;v)

4.3.1 Xntroduction. Vy'e now derive an upper bound for g(1,3;v). The proof
depends upon the following result.
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LEMMA 4.3.1. Letv )u+ l. Then

g(1,u;v-1) < g(1,u;v)

PRooF. Begin with a minimai (i,u;v) design. since u<v-1 and À=1, no set of v-2
varieties occurs more than once. Hence the (1,u;v) design contains at most one block
of length v-1. Now delete one variety from every block containing it. If the (l,u;v)
design contains a block of length v-1, the variety deleted must belong to thar block.
There remain v-1 varieties arranged in g(l,u;v) blocks of length at most v-2, with every
set of varieties occuring in one block. The theorem follows.

NorE. v/e shall show that g(1,3;7) = g(1,3;8), so that it is possible to have equaiity in
Lemma 4.3.I.

THEoREM 4.3.r. Let p be the smallest prime or prime power exceeding {i. Then

g(1,3;v) < p(p2+1)

PROOF. By hypothesis, vSp2+1, and hence, by Lemma 4.3.1,

g(1,3;v) < g(1,3;p2+1) .

But Win [66] has proved the existence of a Steiner sysrem S(3,p+1,p2+1). This is an

arrangement of p2+1 varieties in p(p2+1) blocks of length p+1, with each triple
occuring exactly once. Therefore,

g(I,3;p2+1) < p(p2+1)

and the theorem is established.

Theorem 3 of V/oodall [67] gives

g(1,3;v) 
= #3 {"{av= - z}

If v = p2+i where p is a prime or prime power, the ratio of the bounds in Theorem

4.3.I andV/oodall tends to one. (Their difference tends to infrnity.)
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Thus, if p is a prime or prime power,

lim

p->æ

It would thus appear that the bound given in Theorem 4.3.1 is of the right order of
magnitude.

It is of some interest to determine the values of v for which Theorem 4.3.1 gives a

better bound than 1 . (";t) (tong block + pairs selecred from the long block) (call

this the LBP bound). By Bertrand's Theorem, if x is any real number greater than 1,

then there exists a prime between x and 2x. Hence there exists a prime between fi and
2fi. ttre bound given by Theorem 4.3.1 is

p(p2+1) < 2fi(4v+1)

This is easily shown to be less than 1+(v-1)(v-2)12 when v>289. The LBp Bound and

the bound from Theorem 4.3.I may be calculated and compared for each v < 289, with
the following result.

Lptvtlr¡e 4.3.2. The only values of v for which the LBP Bound gives as good a bound
as Theorem 4.3.I are v = 4, 5, ..., 9, ll, 72, 13, and 27 .

In the next section, we show that g(1,3;v) = 1 + (v-1Xv-2)/2for v = 4,5,6, and 9,

and that g(1,3;v) < 1+(v-1)(v-2)/21or v = J ,8, 72, and 13. Although taking a block of
v-1 varieties together with the v-1 pairs involving the vth variety is minimal for all v,

the similar (block of v-1 varieties, together *ith (";t) triples containing the vth

element) construction is best for only a few small values of v. 'We summarize these

results as follows:

THEOREM 4.3.2. The (1,3;v) design described above is minimal for v - 4, 5, 6, and
9. It is not minimalfor any other values of v.

4.3.2 Results for Small v. We conclude this section with a detailed discussion
of minimal (1,3;v) designs for small v.
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v = 4. Only triples are allowed, and each triple must occur. Hence g(I,3:4) = 4. The
unique minimal (I,3;4) design consists of all four triples.

v = 5. Blocks of lengths 3 and 4 are allowed. Since no triple is repeated, there is at

most one block of four, and then there musr O" (;) ( i) = 6 triptes. Hence

g(i,3;5) =7, and the unique minimal (1,3;5) design consists of a block of four and six
triples.

v = 6. If a block of length 5 is used, there will * (3) (;) = 10 triples, for a total of

11 blocks. If only triples are used, 20 blocks are required. The maximum number of
blocks of four with no repeated triples is 3, and rhere musr * (3) ,(i) = 8 triples,

for a total of 11 biocks. Thus g(1,3;6) = 11. There are two minimal (1,3;6) designs,
one consisting of a block of five and ten triples, the other consisting of three blocks of
four and eight triples.

v =7.If ablockof lengthsixisused, therewill* (l) (3) = 15 triples, for a rorat

of 16 blocks. If a block of length five is used, there must be at leasr 19 blocks by
Woodall. It was shown in [52] that the maximum number of quadruples with no
repeated triple is 7. Such a set of 7 quadruples is essentiaily unique, and may be

obtained by deleting all blocks containing one variety in the unique Steiner quadruple

system 5(3,4,8). Vy'e must now add (l) t(i) = 7 riples, for a total of I4btocks.

Therefore, g(r,3:7) = 14, and the unique minimal (1,3;7) design consisrs of seven
quadruples and seven triples.

v = 8. If blocks of lengths seven, six, or five are used, there must be at least 22 blocks
by using Woodall's bound. There exists a unique Steiner quadruple system 5(3,4;8)
with 14 blocks containing each tripie once. Hence g(1,3;8) - 14, and the unique
minimal design is the Steiner system S(3,4,8).

v = 9. A block of length 8 and (å) = 28 triples give a (1,3;9) design with 29 blocks.

We shall show that this design is minimal and unique. By Theorem 4 from [53], any

other design with 29 or fewer blocks can have no block length grearer than 5. The
maximum number of quadruples with no repeated triple is 18 from L521. If no blocks

of length 5 are used, we require at least (3) tt(1) = 12 tnptes, for a totat of 30
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blocks' Hence a minimal design not containing a block of g contains ar leasr one blockof 5. since no tripre is repeated, there are atmost th-ree blocks of 5.

Now let r, s, and t be the numbers of blocks of length 5, 4, and3. respectivery. Thenthe total number of blocks is

r*s*t=g

and the number of triples which they contain is

1or + 4s *, = (!) = a+.

subtracting the first of these equations from the second gives

9r+3s=94_g

and hence g is divisibte by 3. But for k = 5, woodalr gives g(1,3 ;9) > 26. Hence aminimal design which contains a block of length 5 musr have 27 blocks. Thispossibility was ruled out in [53].

v = 10' A steiner quadruple sysrem s(3,4,10) provides a (1,3;10) design with 30blocks, so thar g(1,3;10) < 30. Now woodail implies rhat every block in a minimal
design has length at most 5. If we denote the numbers of blocks 5, 4, and 3, by r, s,and t, respectively, we obtain as before

r+s+t=g

1or+4s.r=(to) =t2o

so that the number of brocks is divisibte by 3. But Lemma 4.3.1 gives

Hence any design with a

g(1,3;10) = 33.

g(1,3; 10) > g(1,3 :9) = 29

block of length 5 contains ar least 30 blocks,
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Furthermore' suppose that there exists a (1,3;v) design with 30 blocks which contain ablock of length 5' Then it must also contain a triple (r,z,3),say. Delete this triple, anddelete variety 1 from alr brocks conraining ir. This gives a (r,3;9)design with 29
blo^cks consisting of blocks of lengths 5, 4,3. This contradicts the above results forv=9' It follows that g(1,3;10) = 30, and that any minimal (1,3;r0) design is a sreinersystem S(3,4;10).

v = 1 1' The value of g(1,3;11) is the first difficult result for smail v; it was determinedin Allston, stanton, and wirmani-prasad [9], and we give an account of theconstruction in Section 4.7.

v = 72. From the LBp Bound, we obtain g1,3;r2) < 56. we improve this bound togive g(1,3; 12) < 47_by beginning with two disjoint blocks of rength 6, say B = (r, 2,3' 4' 5' 6) and E- = (7, g, q, to, rr, rz). Now we form 45 quadrupres, eachcontaining two varieties from B and two from Ï.; the result is a set of 47 blocks
containing each triple once. stanton and Dirksen [4g] showed that this design isminimal.

v = 22' witt proved the existence of a steiner system s(3,6,22). It contains 77 blocksof six, with each tripre occuring once. Hence g(r,3;22) < 77. Also, by Theorem 4from [53]' any (7,3;22) design containing a block of length 7 or more must have morethan 77 blocks. It follows that g(1,3; ZZ) = 77 , and. that the only minim al (I,3;22)
design is the Steiner Sysrem S(3,6;22).

4.4 The Cas€s v = 20 and v = Zj.

4.4.1' Introduction. In Section 4.3, we showed that g(1,3;q2+l) <q(q2+1) whenq is a prime power; this result merely made use of the steiner systems (inversive
geometries) s(3,q+1,q2+r). These inversive geometries are reany the ,,sma¡est,,
Steiner Systems S(3,k,v) in a certain sense.

For example, suppose there exists an s(3,k,v); then it contains s(2,k-1,v-1), and thislast system is a BIBD. Suppose, if possible, that v < (k_1)2+1, (that is, that v issmaller than for an inversive geometry). Then

v = k2-2k+2-ô, where ð > 0.
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The contained design

S(2,k_1,k2_2k+1_ô)

contains b blocks and has replication number r, where

o _(k2-zt<+t-ôXk2-2k-Ð - _kz-zk-õ ,_ ô=6t=Ë=k-Ð.

Since r is integrar, we have ô = mG-2), where m is an integer. But r > k_l (Fisher,s
Inequality), and so

k-m > k-1.

It follows that m = 1, and the steiner System s(2,k-1,k2_2k+1_ô) is a symmetricBIBD with ô = k-2. Thus we are aÍe dearing with the symmetric BIBD given by
S(2,k-1,k2-3k+3), and it is contained in the Steiner System

s(3,k,k2_3k+4).

Since the number of blocks in this system is

(t2-3t+¿) G2-gt+ Ð.*23k+Ð_ _ G2_3t<+4) G2_3k+3)@=Ë
it follows at once that k divides 12. since k > 3, we see that k = 4,6, or r2;thus theonly Steiner Systems S(3,k,v) for which v is sma[er than kz+r,its value for an
inversive plane, are s(3,4,g), s(3,6,22), and s(3,12,1 r2); otcourse, the existence of
the last system is hypothetical.

4'4'2 The Froblern for v=2L. Because of the almost unique character of
s(3'6,22), as pointed out in the introduction, it is of interest to determin e g(r,3;21).
clearly, since g is a non-decreasing function, g(1,3;2r) < 77 (thevaiue ror v = 2z).

First' we apply the stanton-Kalbfleisch inequality for k =7; theresult produces at least
94 biocks, and so the minimal design for v = 27 cancontain no block of length grearer
than 6. Furthermore, even if all blocks had length 6, we shourd need at least
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/21\
\¡/

Ts)- 
= Õó')

blocks. So we may assum e g(I,3;Zl) = 67 +m (m > 0). Ctearly m < 10.

suppose now that the minimar design includes a ffiples, b quadrupres, c quintuples, dsextuples. Then we have

a+b+c+d=67+m

a+4b + 10c +20d= 1330.

Thus

19a+16b+10c=10+20m

10a+10b+10c<10+20m

a+b+c<7+2m.

It follows that

d=67+m_a_b_c,

d>66_m.

Now d consists of sextuples on 21 elements; thus d can not exceed the packing numberD(3,6,21), where D(t,k,v) is the maximum number of k-sets from a v_set with theproperty that no repeated t_set occurs.

clearly, D(i,4,19) = 4. By standard packing rheory, D(2,5,2a) < 20 / 5 x 4 =16, andthis bound can be achieved by using a Eucridean geometry on 16 points. Also,D(3'6'2r) < 2r /6 x 16 = 56, and this bound can be achieved by taking the 56 brocksof an s(3,6,22) thatdo not contain a specific symbol. Thus we have d < 56.

Vy'e now deduce that
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66_m<56,

m>10.

But m was at most 10; hence m = 10, and we have estabrished that 9(1,3;21) =77.

4'4'3 The Ðesign for v=Zf'. The determination of m in the last subsectionautomaticallygives a=b =0, c = 2r,d=56. we thushaveaminimardesignof 21quintuplets and 56 sextuprets. suppose that we now denote the frequency of a pair ijby f(ij); clearly, f(ij) < 79 / 3,that is f(ij) s 6.

Now let 91 be the number of occur¡ences of ij in S-blocks, and let g2be the number ofoccu.rrences of ij in 6_blocks. It follows that

ú+Ez=f(ij),

3gr + 4gz= 19.

Now f(ij) ) 5, and we find that the only solutions are:

Case 1: 91 = 1, E2= 4 Case 2: 91 = 5, Ez= 7.

Let us now suppose there a¡e u pairs (ij) of the firsr rype and v pairs (ii) of thesecond type. Then

u+v =(t;)=2r0,

U + 5V = number of pairs in the 5_blocks

=r, (t) = 2ro.

that is, all pairs occur exactly once in the twenty_one

TttEoREM 4.4.r. The nuenty-one S-brocr<s in the minímar designfor g(I ,3 ;21) form aunique configuratíon, namery, the 2I-potnt projective geometry, pG(2,4).

It follows that U = Zl0,
S-blocks. This establishes
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rt is then trivial to adjoin a symbol - to these 2l blocks and obtain a design on 22varieties with 77 blocks of rength 6, thatis, an S(3,6 ,22). ourconcrusion is

THEOREM 4'4'2' Not onry is 9(1,3;21) = 77, but the 77 brocks of the mínimal
'rrlr:"T-íon arefound bv takíng a srciner sysrem s(3,6,22) and deterìng one

Fretrirninaries. The result for 9(1,3;20) is
we shall now discuss it. We shall need various
trivial that D(1,4,18) = 4. Also, using the usual

4.4.4 The Case v = Z0;
considerably more difficult and
packing numbers D(t,k,v). It is
packing inequality,

D(2,5,1g) 
= f O1r,+,1g); hence D(2,5,19) < 15.

If any symbol has frequen cy 4, wecan write blocks

12345, 7679g, 110177273,

Then 18 and 19, but no other symbors, can have frequ ency  ;hence there are at most12 blocks in this case.

ïåî::î?i_rras 
freque ncy 4, we have the packing number < 3 x le / 5; this produces

Since 12 btocks can be obtained from the 2l-point geomerry containing 2 specificsymbols, we have D(2,5,1g) = 12.

Finally, D(3,6,20) < 20(lZ) / 6 = 40.

But the bound of 40 can be attained by taking the steiner system s(3,6,22) and.deleting the brocks containing 2 specific symbors ro reave 77 - 2(21)+ 5 = 40 biocks.Hence, D(3,6,20) = 40.

Finally, we appry the stanton-Karbfleisch Inequarity with v = 20, k = 7,ro see that a(1,3;20) family musr conrain

, . (l) t, *= e2 blocks

I 14 15 16 17.
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if there is a block of size 7 in the fam'y. Hence g(r,3;20),must be attained for afamily with largest block size nor exceeding 6.

4'4's Exocrrs in a G,3;20) Faxniry. The combinatoriar Bound of
/20\
\¡/
fi = 57 shows that we may set 9(1,3;20) = 57 + e (e > 0). Now ler a, b, c, d,\¡l
be the number of blocks of sizes 3, 4, 5,6. We have

a+b+c+d= 57 +e

a+4b + 10c +20d,=1140,

Thus

l9a+ 16b + 10c = 20e

a+b+c12e,

d>57+e_2e=57_e.

But d is as most 40, and so e is at least 17.

We now write d = 40 _ f, e = 17 +h.. Our equations then become

a+b+c=34+f+h

a+ 4b + 10c =340 +20f.

Then 9a + 6b = 10h - 101 or 10h = 10f+ 9a + 6b.

Now g(1,3;20) < g(r,3:22) =77;henceh < 3. we tabulate ail solutions.

1. h=0, c=34,d=40
2. h=l,c=j6,d=39.-
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3. h=2,c=3g,d=3g.
4. h=3, c=40,d.=37.
5. h=3,b=5, c=32,d=40.
6. h=3, a=b= 2,c=33,d=40.

Now suppose that there is a symbol that appears only in the S-blocks (r times) and inthe 6-blocks (s times)' Then it occurs with all 171 pairs on rhe orher 19 symbols; hence

6r + 10s = 17 I,a contradiction.

so no symbol can appeff only in S-blocks and 6-blocks. This rules out cases 1-4, and.establishes

TmoREM 4.4.3. The number g(I ,3;20) is equal to 77.

Actually, we can go further; in case 6, there ale atmost3 +3+4+ 4=14 symbors inthe 4 short blocks' This means that there exists a symbol appearing only in S-blocksand 6-blocksr since we have seen that that is impossible, we have

THE.REM 4.4-4- The mtnímar (1,3;20) famíry compríses ftve 4_brocks, thirty_two
5 -blocks , forty 6-btocks.

4'4'6 structure of the Minimal Family. There are only 20 places in rhe five 4-blocks. Hence, ar 20 symbors appear there (otherwise, some symbors would appearonly in 5-blocks and 6_blocks).

Counting pairs as before, we have

3+6r+10s=I7I,

3r+5s=94.

Take the 4-blocks as

1 23 4, 5 67 g, g 70 11 12, 13 14 15 16, 17 1g rg 20.

Let us consider a pair rike (1,2); it appears v¡ith 16 other symbors. say it appears in xof the 5-blocks, y of the 6-blocks. Then 3x + 4y = 16, and * = 0, y = 4:orx =4,
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y = 1. We suppose that p pairs have
distribution.

a 0-4 distribution and e pairs have a 4_l

Furthermore, if we look at a pair like
5-blocks and y of the 6-blocks. Then
x=2, y = 3 (T pairs).

(1,5), we may suppose it appears in x of the
3x + 4y - 18, and x = 6, y= 0 (S pairs) or

NowP+Q= 30, s +T= r90. Also, thenumberof pairsin the5_blocks =320=4Q + 6s +2T: the numberof pairs in the 6-blocks = 600 = 4p + e + 3T.

Solving, we gete + S = 0, p = 30, T= 160. This gives us

THEOREM 4'4'5' AII paírs occuring in the 4-blocks occur 0 times ín the 5-blocks, 4
times ín the 6-blocks. The pairs not occuring in the 4-blocks occur twice in the s-
blocks, thrice tn the 6-blocks.

Now we can find the r and s values; suppose we take a symbol such as 1. It occurs inpairs 12, 13, 14, appearing only in 6-brocks; these pairs have a totar frequency of3(4) = 72, and they must alr appear in distinct blocks. Thus we have s = 12, and
consequently r = 8' This gives the expected result that each element appears with the
same frequency.

By employing Theorem 4-4-5, we may take the fìrst S-block as 1 5 g 1317; call thisblock B, and let B meet b¡ of the other 5-brocks in i erements (i = 0, 1, 2). Then

b6+b1 +b2-31, b1+2b2=JJ, bZ=10.

Thus, we see that B (and, indeed, any 5-block) meets fifteen 5-blocks in 1 element, ten
5-blocks in 2 elements, and is disjoint from six S-blocks. Now write the blocks in 2sets, 81 and B2 (dots denote elements other than r, 5, g, 13, r7).

1 ..., 1 ..., 1 ...
5 ..., 5 ..., 5 ...
9 ..., 9 ..., 9 ...

13 ..., 73 ..., 13 ...
17 ..., 17 ..., 77 ...

1591317

1 5 ..., 7 g ...,1 13 ..., 1 17 ...
5 g ..., 5 i3 ..., 5 17 ..., g 13 ...
9 77 ..., 13 77 ....
Six blocks disjoint from 1 5 g 13 17
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The pairs that do not occur in the 4-btocks must occur in B1 and 82. ü/e show thatthey must appeff exactly once in B1 and once in 82.

First, we note that the set of 6-blocks contains 30 blocks of the form 1 5 ..., 1 5 ...,15 ..., 7 9 ..., I g ..., 1g ..., etc. (10 sets of pairs from I,5, g, 13, I7):call theseblocks83' Thereisalsoaset84of l0blocksdisjointfromtheset {1, 5,g,13,17}.

Now we ask whether there can be a repeated pair in 81. If it is a pair like la, then lacan not appear in 82. But all triples 7a5,Lag, rar3, ra77, must occur. so they appearin 83. This is a contradiction, since the frequency of 1a in B3 is only 3.

If the pair ab is repeated in 81, suppose it appears as lab and as 5ab. Then ab mustoccur 3 times in 83. The only blocks in which it may occur have the form 9 i3 ...,9 77 .-., and 13 17 ..-, and the occurrence of ab leads to a repeated triple.

We have thus established

THEOREM 4.4.6. The set B1 (and hence the set B2 as weil) contains a singre
occu,rrence of all paírs tØt appearing in the 4_btocl<s.

4.4.1 rdentification of the Ðesign. we now can identify the design byadjunction. Let y and zbe two new symbors; adjoin yz rcthe 4_brocks, rhus givingall triples containing Yz. Thenadjoin Y to all blocks in 81, zto allblocks in 82. The
triples Y "' either occur in the augmented 4-blocks or in the augmented 5-blocks, invirtue of rheorem s 4.4.5 and, 4.4.6. Similarly, all triples containing z occur. And thetriples not containingyZwere given by the original design.

we have thus shown that the augmented design is a steiner system s(3,6,22) andhave esablished

THEOREM 4'4'7 ' The minimal set covering all típles on 20 elements is found. bydeletíng two elements from a steiner system s(3,6,22) on 22 erements.

Thus g(1,3;v) is constant for v - 20,21,22; as v increases, this step_function
behaviour becomes typical of the behaviour of g.
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4.5 R.esults om {¡avensåve Flaraes

In this section, we include the results by Mullin et al [34] showing that g(1,3,q2+r¡ =
q3 + q for all prime powers q, and that the minimal configurations are inversive planes
of order q. They also show that for q ) 4, a ) 0, the value of g(i,3,q2 _ 6¡) is
q3 + q, when o is small relative to q.

TIIEOREM 4.5.1. (Mulrín, Hartman, and stínson) t341. For any prime power q 2 3,

g(1,3,q2+7) = q3+q

and the mínímnl configuration is an inversive plane.

THEOREM 4.5.2. (Mullin, Hartman, and stinson) t341. Let q be a prime power such
that q 24 and let abe any positive integer satísfiing the ínequalities

q> 3(u2-{/2, a < q-5+t2/(q+3)

Then g(1,3,q2+l-a) = q3+q.

These results esrablish that g(1,3;17) = 6g and that g(1,3:25) = 9(I,3;26) = 130 (one
simply uses the inversive plane s(3,5,17) and the inversive plane s(3,6,26).

4"6 Table of g(k)(v) fon sxnalÃ values of v

In this section, we make use of the results obtained to tabulate gG)çt,3;v) for v up to
72. In forming Table 4.6.7, we have used the obvious fact that, fork = 4, we take
D(3,4,v) quadruples plus as many triples as are needed. Since the packing number
D(3,4,v) is known for all v (cf. [52], ll4l, Vll); in our rable, rhe second row is merely

D(3,4,v) "+ { (ä) - aDe,a,v)}
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Table 4.6.1. gG)(l,3;v) for 3 < v < t2.

4s6789

10

7

1

J

4

5

6

7

8

9

10

11

72

20

11

11

I

35

14

20

16

1

56

14

26

28

22

1

84 120

30 30

30 42*

38 44

41 56

29 53

r37
1

i65 220

60 67

45 àr

47 47

68 77

74 90

87 98

46 86

156

This fact' with the results of the earlier sections, gives all the entries except two ma¡kedwith asterisks.

LEMMA 4.6.1. 96)¡1,3;10¡ = 42.

PRooF' clearly 42 is alower bound since we can rake two disjoint blocks of length 5.Each has five disjoint neff l-factors, and the cartesian product of the 1-factors contains3(3) - I = I blocks (drop the block of length 2). Thus

g(s)(i,3;10) < 2 + 5(g) = 42.

Now let the rong brock be 12345 and the other points be A, B, c, D, E. we mustcover A' B, c, D, E by 10 blocks, 7 blocks, or 1 block (see the third column of thetable). we have arready dealt with one brock ABCDE (it must be disjoint).

If the cover is 10 tripres of the form ABC, they must meet the rong block in 0, 1, or 2elements' An intersection of 0 or 2contributes 1 to the value of e of equation 4.2.3.6,whereas an intersection of 1 contributes 2.5. However, Lemma 4.2.5.1 and the factthat a pair-covering of 5 elements contains at reast 4 triples (such as ABC, ADE, BDE,CDE) guaranrees that e is at least 6(1) + 4(2.5)= 16. Hìnce, since W = 26,we can norobtain a value less that 42 in this way.
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If the cover is ABCD, EAB, EAC, EAD, EBC, EBD, ECD, and if the pair-covering is
made up of the six triples, then these contribute a minimum of 6(2.5) and ABCD
contributes a minimum of 1. Again, we can not get a value less than 42.

Finaliy, let the cover be ABCD, EAB, EAC, EAD, EBC, EBD, ECD, and suppose the
pair covering is ABCD, EAB, ECD. Then these blocks contribute to E an amounr ar
least 4 + 2(2-5) + 4(r) = 13. However, Lemma 4.2.s.1 guarantees that AB and cD
meet the long block in an odd number of unit intersections; hence there are two triples
ABX and CDX ar least, and they contribute another Z(I.5) = 3 units to e. Hence,
again, in this case' we can do no better that 42. This completes the demonstration of
the lemma.

4"7 Ðtscussion of g(f.,3;ltr)

4'7'1 trntroduction. The number gß)1t,3;11), which we abbreviate in this section
to gß), is the minimal number of blocks needed to cover all 165 triples from an 11-set
exactly, using a block of length k but no longer block; it has been given in [6] for all
k ;¿ 5. Since g = g(i,3;1 1) is the minimum value of g(k), and since g(10) = 46, the
determination of g requires finding whether or not g(5) < 46.

If g¡ (i = 3,4,5) represenrs the number of blocks of length i in a minimal g(5) cover,
then

8z+Eq*95=9,

gz+ 49+ + 1095 = 165.

As in [53], we deduce that 3(ga + 3gs) = 165 - g; consequenrly, g is a multiple of 3.

Our main tool will be two results from Secti on 4.4. We state these in a siightiy
different form for application to the present case.

TIIEOREM 4.7.1. The number g can be written as

g=W+€,

where W is the Woodall bound
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w=1+(v-k)(Ð(t v-k-i IM)
and e 2 0. The value of e is

€ = Go * cr1 * *Ðr {kr;t} *lrr(ott t)

Here we are using a base brock r23..-k, the k¡are the lengths of the other g_ 1blocks' o¡ is the number of blocks meeting the base block in i points, X¡ denotes
summation over the a¡ brocks meeting the base brock in i points (i = 0,7,2).

We also make use of the following lemma from Sectio n 4.4.

LEMMA 4'7 '1' If k ís od.d, then there exlsts at least one block contatning the pair ABthat meets the base btock ín a stngre poínt, for every choice of AB among the v _ kelements not [n the base block (more generally, the number of such blocks containing
AB is odd).

It will be convenient to denote the base block as l2345and the other six points asA, B, C, D, E, F. We note that, for k = 5, W = 23.5.

4'7.2 coverings of the points not in the base brock. Suppose we define g¡¡
to be the number of blocks (other than the base biock) that have length i and meet the
base block in j points. If we let A denote any point nor on the base block and 1 denore
any point on the base block, then we can make the folrowing table in which we record
numbers of blocks and their types.

[936 :AAAA

Jrr, :AA1

L932 'ar 
r

946 :AAAA g5g :AAAAA

941 :AAA1 951 :AAAA1

942 :AAll 1SZ:AAA11

(4.7.2.1)

The row sums are just og, dl,d2, and the column sums are just 93, 94, and.
95 - 1. we can immediatery write down the fo[owing relations:
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+ g4l + g5Z + 4940 + 4g;l + 10g5g =

+ 3941 + 695 I + 2g4Z+ 6g52 = 75

+ 2gq2 + 3952 = gQ

One may combine these equations to give the result

E=43.5 + 1.5(g31 + E+ù - 3(g+o+ 3gso)

but it is more illuminating to use Theorem 4.7.r,which gives us

( ezo

k;
20

(4.7.2.1)

(4.7.2.2)

e = 930 + B¿O + BSO + 1.5g¡r + 2.5ga1+ 4gSt + gSz (4.7.2.3)

We now split the discussion into 3 cases, according as the triples from A, B, C, D,
E, F, ate covered by using a quintuple, are covered using only triples, or are covered
using quadruples and triples.

Case 1.

g5o = r, E+o = g5l = 0.

Then g¡O + gqt + g5z= 10,

and we compute

e = g30 + 1 + 1.5ggr + 2.5ga1 + g1z

: 1 + (ggO + gqt + gSù + 1.5(g:r + g¿l)

= 11 + 1.5(g:r + g¿r)

If the block of length 5 is ABCDE, then the ten "diagonal" blocks appearing in the
ggO + E+t + g52 blocks are FAB, FAC, FAD, FAE, FBC, FBD, FBE, FCD, FCE,
FDE. Now we know that every one of the 15 pairs from A, ..., F, must occur at least
once in the g31 + g41 blocks. There are 10 pairs not involving F, and so, if x of rhem
appeu in the g41 blocks, then 10 - x musr appear in the g3i blocks. Hence,
g:r + g¿l > 10, e> 26, g >49.5.
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We have thus ruled out this case as a possibitity for a minimum configuration.

Case 2. g50 = 840 = g51 = 0, that is, all triples from A,...,F, appear in the
g¡O + g+t + EsZ = 20 diagonal blocks.

Vy'e have

e = g30 + 1.5931 + 2.5ga1+ ESZ

= 20 + 1.5(g¡r + gqù

The i5 pairs from A, ..., F must be covered in the g:t + g41 blocks. The most
efficient covering is ABC, ADE, FBD, FCE, AF, BE, cD, and hence ggt + E4r>_J,
e > 30.5, g > 54. So we may reject this case.

case 3' g50 = 0, g¿0 + gst < 3 (the maximar number of 4-sets is given by ABCD,
ABEF, CDEF, since the packing number D (3,4,6) = 3). In Case 3, we have

€ = 930 + 940+ 1.5931 + 2.5ga1 + 4gSt + g5z

= (ggO + g¿r + gsù + 1.5(g¡r + g+r) + g40 + 4gst.

Case 34.1

940= 7, g5Z= 0: ggO + Eq + EsZ= 16,

€=1+16+1.5(g3r+g¿r).

As in the preceding case, EZt + gq> 7; e> 27.5, g > 51.

Case 34.2

940 = 0, g51 = 1; g:O + Eq + gS2= 16,

e=4+ 16+ 1.5(g3r +g¿t).
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In this case, there is a block of the form ABCDI. However, the nine pairs AE, AF,
BE, BF, cE, cF, DE, DF, EF must alr occur in the ggl + g4i brocks; the best we can
do is AEF, BEF, CEF, DEF for a total of 4 (actually, one could strengthen this result
to 5 by using the fact that any pair must occur an odd number of times). Hence e > 26,
g > 49.5

Case 38.1

940 = 2, g5I = 0, g¡O + g4l + g5Z= 12

e=2+IZ+1.5(gr +B+r).

As before, g¡i + gq27,e) 24.5, g >4g.

Case 38.2

E4o= 1 = g5l, g¡o + Eq + g5z= 12,

€=5+12+1.5(g¡r+g¿l).

As in Case 34.2, g3l + g+r ) 4, g >46.5,

Case 38.3

g40 = 0, 85r =2, g30 + gq + g5Z= 72,

€=8+12+1.5(gr+g¿i).

We have blocks ABCD 1 and ABEF 2; hence the g31 + g41 blocks musr cover the pairs
CE, CF, DE, DF, and this requires at least 2 blocks (again, we could strengthen this to
3). Hence e) 23, g >46.5

Case 3C.i

840 = 3, g5l = o, ggo + g+t * Esz = B,

€= 3 + 8 + 1.5(931 + gqì> 11 + t.5(7),
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g>45.

Case 3C.2

E4o = 2, E5t = 7, g3o + gqt + g5z = g,

e =2 + 4 + 8 + 1.5(g¡i + 94) > 20,

g > 43.5.

Case 3C.3

g4o= l, gst=2, gEo + gqt+ gsz=g,

r = 1 + 8 + 8 + 1.5(ggr + g4)> 20,

g > 43.5

Case 3C.4

g4o = 0, g5t = 3, gEo + Eql + Esz= g,

E=72+8+i.5(gEr+g¿r).

In this case, we have blocks ABCD', ABEF2, CDEF3; so e ) 20, g > 43.5.

Thus, we conclude that, if g < 46, then g = 45 (since g must be a multipte of 3). Wethus have gq + 38s = 40, e = 45 - 23.5 = 27.5, and,one of the four cases (3c) must
hold. V/e summarize this result as

THEOREM 4.7.2. If g(1,3;Il) < 46, then g(I,3,II) = 45, andthe sixpoints not on the
base block are covered by 3 quadruples and g tiples.

4.7.3 rnvestigation of the three-quadrupre cases. In case 3c.4, we have
blocks ABCDI, ABEF2, CDEF3; also g31 * E4t= 1. BurAB, DE, andEF must
occur an odd number of times and so must ali occui- againin the g:t + g41 blocks. This
is an immediate contradiction.
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Now consider case 3c.3 with blocks CDEF, ABCDI, ABEF2. we also have
ggt + E+t = 3. The pairs CE, CF, DE, DF, must occur in the g:t + g41 blocks.
Since they can not appeff in a triple, g3t = 4 and we have a contradiction (note also that
AB must appeff again).

In Case 3C.2, we have blocks ABEF, CDEF, and ABCDI; here g:t + E t:5. The
available triples are ACE, ACF, ADE, ADF, BCE, BCF, BDE, BDF, and theg¡i + ga1 blocks must cover the 9 pairs AE, AF, BE, BF, cE, cF, DE, DF, EF.
clearly, we can cover only two pairs with any available triple; thus g3i = l and
E4r = 4. v/ithout loss of generality we may use triples ACE, ACF, BDE, BDF : the
pair is EF . Now use Equations (4.7.2.1) to give 2g+z + 6gsz = 62, gzz + 2942 +
3gsz = 60; it easily follows that g32 + E+z = 29. Also, the 936 + gsz blocks conrain
ADE, ADF, BCE, BCF .

we now look at occurrences of number pairs ij in the rast row (the 92 + EA.z + Esz
blocks). The pairs 23,24,25,34,35, 45, must appear in at least 3 blocks (with 3
pairs from A, .'., F, or with a tripre, a pair, and a singreton); the pairs Lz, 13, 14, 15,
must appeff in at least 4 blocks (with a triple and 3 singletons, or with 2 pairs and, Z
singietons from A, ..., F ). This gives a total of 4(4) + 6(3) = 34 blocks needed;
however, even if g5z = 4, using alr available triples ADE, ADF, BCE, BCF (with
930 = 0), we have only 33 blocks. So this case is rejected.

Finally, in case 3c.1, we have blocks ABCD, ABEF, CDEF . Arso, ggt + g4t =7:
hence g3t = 3, gq = 4 (the optimal case). But the only triples available a¡e ACE, ACF,
ADE, ADF, BCE, BCF, BDE, BDF. without ross of generality, we take triples ACE,
ADF, BCF, BDE , in the g41 brocks; then, we must take pairs AB, cD, EF, in the 931
blocks. This leaves triples ACF, ADE, BDF, BCE, ro appeff in the g:o + g52 blocks.
As in Case 3C.2, we substitute in Equations (4.7.2.1) to obtai n gzz* gqz= 30.

Now consider occurrences of the 15 letter pairs with the numbers. Every letter pair
occurs with one single number (the 93i and g41 brocks) and two number pairs. Also,
the blocks ACE, ADF, BCF, BDE, all have unit intersections with one another.
Suppose, if possible, that ACE 1 and ADF I are biocks. Then our pair occurrences can
be taken as follows:
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12345
12435
1-

1

1

1

No completion is possible since all l-facrors 23 45,24 35,25 34 with AD and AF
lead to conradictions. Thus we may start the table for AB, AC, ... as follows.

AD

AF

DE

AC

AE

CE

AB

AC 1,23, 45

AD2
AE 1,24, 35

AFz

CEl
CF3
DE4
DF2
EF

cE 1,25,34
cF 3, 45,12
DE 4,35,12
DF 2,75,34
EF 5,23, T4

BC3
BD4
BE4
BF3
CD

Now put in the l-factors L4,35; 15,34; 13,45: this can be done in only one way.
Thus we are forced to AD 2,14,35; AF 2,13,45; DF 2,15,34. Simila¡ly, all other
pairings are forced as in the following table.

AB 5, 12,34
AC 1 ,23,45
AD 2, 74,35
AE 1,24,35
AF 2, 13,45

BC 3,14,25
BD 4,15,23
BE 4,25, 13

BF 3, 15,24
cD 5,24, 13

We note that this pair table proves the existence of four
ACF45, ADE35, BCE25. Our conclusion can be stated as

blocks AAA 11, namely,

THEOREM 4.7.3. There is a uníque exact covering of all tríples on I I elements given
by thefollowing array.

7 2 3 4 5 baseblock

ACF45

ADE35

BDF15

BCE25

Esz Ezt

AB5 r

CD5 I

EF5 ,J
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ABCD I

ABEF I ,oo
CDEF -J

415

425

835

845

c15

c35

AB12 BC14 CE34

AB34 BD23 CFTZ

AC23 BE13 DE12

AD14 BF24 DF34

AE24 CD24 F,F23

AF13 CD13 EF14

It is clear (delete element 5) that this array is an extension of a Steiner System S(3,4,10)
on 30 blocks. We state this result as

THEOREM 4.7 .4- The unique exact coveríng of att triples on I I elements is an
extension of the Steiner System S(3,4,10).

4"8 Computation of g(6)1tr,3;13)

4.8.X- {ntroduction. We use a notation similar ro rhar used in Section 4.7. In this
section, gi¡ will denote the number of blocks of length i that contain j elements from the
base block 123456. V/e may also immediately write

9(6)(13)=W+€

where the V/oodall bound W is 43. We can also write down the four relations

D25 \
D4s I

Els t
E4s ( æ2

Fzs I

F1js)

ACE1'r

A"F2 
L

BCF3 f s41

BDE4 J

Ì 

Eqz
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g:o + E+t + Esz + 4(g4s+g5fgøù + 10(956+961) + 20966 = 35,

Bgr + 2g+z+3gqt+ 6gSz+ 6gsr + lLgez+ 10961 = 126,

ESz + 2g+z + 3gSz + 6962 = I05,

e = 930 + gq+ gsz+ EqO+ gsO + 960 + 4gst+ 6gA+3gøz+ 1.5(g31+ga1)

4'8'2 T'he Cases of All T'riptes and of' a Sextuple. V/e split the discussion
into various cases' depending on how the points not in the base block are distributed.

case 1. The triples from A, B, c, D, E, F, G (the seven points not in the base btock)
are all covered by triples. Then

g¡O + g+t+ gSZ=35, e> 78, g>79.

So this case does not provide a minimal design.

Case2. There is a block ABCDEF, that is, 960 = 1. As a result,

g5o = g4o = 961 = g5t = E6z= 0. Then

g:O + Eqt+ EsZ= 15,

r=1+15+1.5(g3r+g+r)

The least possible value for g will be 59, achieved with g31 = g4L:0. Then

gqz+ 3952= 63,

Elz+2gqZ+3ESz= I05.

Thence

gZZ + gqZ= 42.

Now, the g3g + gq + g52 blocks must conrain the 15 triples
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GAB, GAC, GAD, GAE, GAF, GBC, GBD
GBF, GCD, GCE, GCF, GDE, GDF, GEF

Now, the g52 blocks GXXü have f(A) < 3 for alt A; rhus g52 < 3(6)+2= 9. Hence
E+22 63 - 27 = 36.

It follows that the only distributions are

Now a number pair ij may occur with various letter patterns. However, all of thesepatterns involve a singreton (X) except for the pa*ern (xxxxxxxxx), of whichthere can be at most g52. consequently, the number of singletons is at least75 - g52> 6. It follows that g32 = 6, g4z= 36, g52 = g. We conclude that f(A) = 3for all ij in the blocks GXXij; also 916 = 6.

This block distribution can be achieved uniquery. up to isomorphism, we may take

GAB 12 GBE 35 GCF 15

GAC 34 GBF 46 GDE 14
GAD 56 GCE 26 GDF 23

The only possible g42 blocks are found by taking letter pairs with number pairs asfollows.

g3z g4z gs2

6369
3398
0427

AB: 36,45
AC:76,25
AD: 73,24

BF: 16,24
BF: 13,25

CE: 13,45

CF: 24,36
DE: 25,36
DF: 16,45

as well as

AE:46,75,23
AF: 35, 26,74
Þ(1. <L 1A 

^.!\-. J\r, I+, LJ

BD: 34, 26,15
CD: 12, 35,46
EF: i2,34,56
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Finally, one needs the 936 brocks, GAE, GAF, GBC, GBD, GCD, GEF, and the g32
blocks G13, G16, GZ4, GZs, G36, G45.

This configuration gives, on deletion of G, the familiar 47-blockminimal system of 2
disjoint sexruples and 45 quadruples on rzelemenrs (cf. tagl).

4.8.3 case of a Quintuple or a euadrupxe. we now consider rhe case
960 = 0, 950 * 961 = 1 (that is, there is a block oflength 5).

Case 3(a). 960 = 0, g50 = 1,961 = 0.

Case 3(b). 960 = 0, gs' = 0, 961 = l.

For both subcases, we have

€ = 930 + gqt + Esz + 1.5(g3r+g+r) + g40+ g50 + 4gst + 6g¡¿ + 3g62,

gSr + gqO+ 962<2.

Hence, since

g3o + Eq + Esz+ 4(gas+g5ûE6z) = 25,

we have

gEO + Eq+ gsz> 17.

Thus e > I7 +gso + 4961 > 18.

Thus g > 61.

So Case 3 does not provide a minimum.

Case 4. 960 = g50 = 961 = 0, but we have

g¿o+gsr+g62>0.

Now we know thatD(3,4,7) =7: hence
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gqO+ BSi + g62=p57.

Furthermore,

8:o + 8q + Esz+ 4(gas+g5f1sz) = 35.

Then

t = 930 + Eqt + gsz+ |.5(g¡gar) + g+o + 4}st + 3gaz

à (gso+B+l +gsù + (B¿o+Bsr +Esz)

=35-4p+p=35-3p.

But a minimum must have g= 43 + e > 7g _ 3p.

Hence, the minimum would be 57,and we would need

8¡o + E+t+ E5z=7,
gqO+ 8Sr + g62=7,
g¡t + E4l= 0, g5t = g62=0.

Then, we deduce

g4o = 7,

Eqz+3852=63,
932+29+z+39sz=105,
EZZ+gqz=42.

But 952 37, gqZ < 42, imply that g52 = 7, E4Z = 42.

Hence, any pair ij must occur with one triple and two pairs (sinc e Esz = 0). This
requirement can not be met.
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4.8.4 Conclusion. We summarize these results as a Theorem.

THE'REM 4'8'1' The value of g@¡1j¡ ís s9, and the mínímal design contaíns 2disjoint 6-blocks, 9 brocks of length 5, 36 brocks of rength 4, and 12 brocks of rengrh3 ' The element not ín the 2 blocks of length 6 occurs in alt the blocks of length s andall the blocks of rength 3. The design is an extension of the mìnimar g(1,3,.12) designformed by 2 disjoínt 6-sets and the cartesian products of theirfive I_factors.
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CåaapÉex" V

5"1 trnenir¡eir¡aries

In this Chapter, we will be dealing with an algorithm to investigate some exact
bicoverings, that is, exact coverings in which each pair must occur exactly twice.
This problem is considerably more difficult because we do not have the usual
inequalities (they are developed under the hypothesis that 1. = 1). The main general
result available is a remarkable theorem that has been proved by Ryser; this theorem
answers a fundamental question about the behaviour of exact coverings when î" is
equal to 2. We quore the rheorem from [39].

THEOREM (Ryser). Let S = {at,a2, ..., ar} be an m_set and let 51,52, ..., Srbe
n subsets of s. In thís configuration we assume that each s¡ and s j with i * j
intersectinexactly Lelements of s. wearso assumethatn> I, L >r,åndthatthe
number of elements in each S¡ is greater than )". Then the configuratÌon has m 2 n
and if equaliry holds, the configuration satisfies one of the followtng two
requirements:

I ) Each of the replication numbers of the confíguration equals a posÌ.tive
integer k and each S¡is a k-subset of S.

2) The configuration has exactly two distinct replication numbers r1 and. 12,
and these numbers satísfi

11 * 12= n+ I.

For application, this form of the theorem is not convenient. If we think of the
Ryser design as given in an incidence matrix form, we can obtain a duai theorem by
interchanging the role of rows and columns in the matrix. For our purposes, the
dual form of Ryser's Theorem is required.

Dual oF RysER's THE.REM. Let a1t ..., a, be v erements and let {Bl, 82, ...,
B6] be b blocks. We assume that a¡ and, a¡ (i #i) occur together exactly L tímes.
We also assume that v > l, L 2 I, an^d that each element occurs more than A times.
Then the desígn has b 2v and equality holds if and onty if the d,esign sarísfíes one
of the followíng requireÌne nts.
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I ) Each of the blocks of the design contaíns k elements and. each point occurs k
times; thus we have a Balanced,Incomplete Block Desígn wíth parameters
(v,k,)") .

2) The design has exactly two block sízes k1 and k2 and. these numbers satisfy
the relation

k1+k2=v*L

Ryser has also discussed case 2 (he calls the designs in Case zby thename ¡.-designs)
for À = 2 andhas established the following result.

RYSER'S TFTEOREM FOR À = 2. Let A be the inc[dence matrix of a )"-design with I
= 2 on n elements. Then, apart from row and corumn permutations, A ís given by
thefollowing array.

1001i 11
1111100
1110011
0101010
0100101
0011001
0010110

The net result of Ryser's work, in the dual form, is that an exact covering for 7u = 2
has b > v and that b can only be equal to v if we have

case 1) A Balanced Incomplete BlockDesign with parameters

v = I * fr6-r¡:k;2.

Case 2) v = 7 and there a¡e 3 blocks containing 5 elements and 4 blocks
containing 3 elements.
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5"2 ,4. Conepufaúio¡ral Exarreple

we shall be using a computer algorithm to obtain exact bicoverings for small v. To
illusfate the algorithm, we shall d.iscuss a small example in complete detail.

Let b¡ be the number of blocks of length i in an exact covering. we illustrate our
algorithm for v = 8. since Ryser's Theorem guarantees b > g, we must first try b = 9
and have

b2+b3 + b4 + b5 + b6 *b7 =9,

b2+ 3b3 + 6ba + 10b5 + 15b6 + 2tbj =t {3) = 56.

Then 2b3+ 5ba + 9b5 + l4b6+20b7 =47.

The possible value for b¡ are stored as block vectors (b2,b2,..., bz). A simpre
Diophantine sieving produces

For each specific block vector, we define distribution vectors (a2, à3, à4, ã5, a6, a,)i a,
gives the number of times that any particular element appears in blocks of length j.
Clearly, we have

b2 b3 ba b5 b6 b7

511002
420111
241011
500301
321201
742101
215001
501030
402120
150120
223020
230310
303210
051210
124110
310500
r31400
204300
025200
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a2 + 2a3 + 3a4 + 4a5+ 5% + 6a7 = Z(7) = 14.

It is trivial that ai < b¡.

For example, the first block vector (5,1,1,0,0,2) has distribution vectors

we now assign frequencies to these distribution vectors. Thus, there are f1 elementswirh distribution (0,1,0,0,0,2),f2 wirh distribution (2,0,0,0,0,2), f3 with distribution(3'1'1,0,0,1), and fa with distriburion (5,0,1,0,0,1). The forowing equaûons hord.we normariy omit the first equadon, since it is dependent on the others.

fl +fz + \ + f4 _g
2ft +2f2 + f3 + f4 = 2(7) = 14

f3 + f4 =l(4)=4f1 + f3 = 1(3)=3
Zfz + 3fz + 5f+ =5(2)=10

In general, we reduce these equations to row echelon form.

In this case,

91ooo2?0000;3_110õísolooi

f4=
f4=
f4=
0=

f2

f1

+

E+

2.5

4.25

0.5

3.s

Clearly, this system of equadons has no integral solution.

This discussion eiiminates the first block vector. rve taburate the resuirs for theremaining block vectors' (-when we progïam the algorithm, we omit ari those entries inthe block vector that are zero.)

Block Vector 2 (4,2,0,I,I,I) has distribution vectors
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11001loooi920ro?ioro+00r0!20oor2ori3rori
1

0
0

The frequency equations are

fl +f2
ft+f2

fi
fl + 3f2

In row echelon form

+ f3 +f+ + f5 + f6

E +rq + rs :t¿
+ 2\ + f+ + 2fa +Zf7

+2fa + 4fs + 4fø +ft

- 16 _2ft
+ f6+2f7
+ f6 +ft

E

1
T

+fS = 6

+fg = 5

+fS = 6

+3fg = I

fB =o
+fg = 5

À¿+

a
--L

+fg = 1

f2

E
f4

f5

Since f4 cannot be less than zero, this case is ruled our.

Block Vector 3 (2,,4,1,0,I,I) has distribution vecrors

The frequency equations are

f5

qo1o111100ii7210ôi
940ooi?3000i93ioiô?210iöl40oio

E + f2 + q +fq +
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fi +fz
fl +f3

f2 + 2\ +4fa
f2+f3

In row echelon form

+fl +fg = 6

+4 = 4
+2h +4fs = 12

+2f7 +fA = 4

-h-f8=2
+\ +fg = 3

+\ = 1

'f:- = 1

+h +fg = 1

+f6
+f
+ 3fa

-f6
+f6
+f

f1f2Efaf5f6Ef8
4i010101
32110001
32020010
32011100
23111000

+ 3fs

+ 2fs

E
f2

E
r4

fs

These equations have the following solutions:

Block vector 4 (5,0,0,3,0,1) has distribution vectors

The frequency equations are

f1+f2=7
2\ + f2 +3f3 =15

4fz +2\ =10

000201
400101
200300

In row echelon form
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!J

f^=)^L

f3 =1

f1

These equations have the solution

flrzE
521

Block Vector 5 (3,2,1,2,0,L) has distribution vectors

The frequency equations are

fl +fz + f3 + fa +fS + f6 = 7
Zft + fz + E + f4 + 2h +2fg +2f9 +fio = 10

fz +fS + f6 + f, +fa +frO = 4
ZfZ + fa +2f5 + f6 + f, +2fg +2frc = 6

f2 + 214 + fs + 3fø + f7 +3fg +Zfg +3f16 = 6

In row echelon form

fl f6 h -flO = 1

f2+f6+h-fg=3
E+f7-f8=z

fa + f6 +fS +fg +fr6 = 1

f5 +fe +fq +ftO :1

These equations have the following solutions:

00020i
101101
020101
210101
121001
311001
111200
301200
220200
321100
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frofsfBh%f5fn-f3f2f1

4000112000
31, 10111000
2220i10000
3101102000
2211i0i000
1321100000
4000003r00
3110002100
3200002010
4100002001
2220001100
23t0001010
3210001001
1330000100
1420000010
2320000001

0
0
0

10110
02010
0r200
t2100
04000
02210
13i10
04200

Block Vector 6 (I,4,2,I,0,I) has distribution vectors

The frequency equations are

f1 +fz + f3 + fa +fS
f1 +fZ
fi +2\ + fa

+ f6 + E

f1 +fa

In row echelon form

f1

12

f3

++
+ZfA+E+Zfg=8

2fz + f3 + Zfa +4f5 + 2fA + 3\ +4fg = 12

=7
=5

a
L

-f8 = i
=3

- q =2

-f6
+f6

-104-



f6+ fj
+f7

These equations have the following solutions:

f1

Block Vector 7 (2,1,5,0,0,1) has distribution vectors

The frequency equations ate

fl +fz
2\ +2f2 + 4\ + 4fa

fl +E
Zfz + 2fa

f4 +fa
+fs

=1
=1fs

2
1

i
2

fsf6Efs

1100
1000
0010
0001

r4

0
i
0
0

f2 f3

22
32
33
32

072001
202001
0t4000
204000

=7
=20
=3
=4

In row echelon form

f1

f2

E

+

+

ft=5
fa:2
f¡ =1.5

0 =-3.5

Obviously, these equations have no solutions.

Block Vector 8 (5,0,1,0,3,0) has distribution vectors

101020
400020
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The frequency equations are

2\ +2f2 = 18

fr=4
fl +4f2 = 10

In row echelon form

fl =8.67
12 =0.33

0 =-4.67

Clearly, there are no solutions to these equations.

Block Vector 9 (4,0,2,I,2,0) has distribution vectors

00012
10102
40002
20111
30201
40210

0
0
0
0
0
0

The frequency equations are

2\ +2f2 +2\ + f4 + fs
ft +fa

f2 + fa +2f5
12 + 4\ + Zfa +3f5

In row echelon form

f1

f2

f3

fa +fs + ZfA

There are no solutions to these equations (fs < 0).

+f6
+ 2fø

+ 4fø

=12
=5
=8
=8

+

f5

fs
=1
=4
=-1
:4

f6
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000120
020020
r20i10
140010
050100

Block Vector 10 (1,5,0,1,2,0) has distribution vecrors

The frequency equations are

Zft +2f2 + q
fi +E

Zfz + 2f3

E

In row echelon form

f1

f2

f3

+fa=12
re- 5t15

+ 4fa +5f5 = 15

+fa=2

_ r- ')L

+fS = 3

+fS = 2

f¡=1

E

0
1

2

fi f2 f3

232
321
410

101020
020020
210020
003010
112010
221010
1,23000

These equations have the following solutions

f4

1

1

1

Block Vector 11 (2,2,3,0,2,0) has distribution vectors
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2ft +2f2 + 2f3
f1

Zfz + f3

fr + 213

In row echelon form

fl
f2

f3

f1 +fz
2ft +fz +3f3

Zfz + f3

fl +fz

In row echelon form

+ fn +f<
-J

+ 31a +2f5
fs

+fs

_ 1.t
- 

L,¿.

+ 3h =12
+2\:6
+ f7 =4

_2fo 3h 
=\

+2fO+2h=2
+f6+2h=4

+f6
+f6
+ 2fø

+ 2fø

-f5

fs

f4 +fs

These equations have the following solutions:

Block Vector 12 (2,3,0,3,I,0) has distribution vectors

The frequency equations are

f516q

000
100
010
200
001

fa

224
213
203
202
202

f3f2f1

0
1

2
2
J

100210
r20110
010300
200300
030200
220200

+ 3fa +2f5
+3f5

+ Zfn

=6
+2fø = 15

+2fe=9
+2fA=4
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-fs
+fs
+fs

There are no solutions to these equations (neither f4 nor f6 is negative).

Block Vector 13 (3,0,3,2,1,0) has distribution vectors

0
0
0
0
0
0
0

The frequency equations a.re

- f6 = 3

+ f6= 3

2
J

+ f6 = -1f4

f3

f2

fl

10021
20111
00301
30201
00220
30r20
10310

fl +fz + E
2ft + fz

f2 + 3f3

fr +2f2

In row echelon form

f1

f2

E

+f^
+2f5

+ Zfa +2f5
+ 3f¡T

+ZfS + f7

+ f6 +3ft
+3fø + E

=6
=10
=12
=6

-16E
+2fø + h
-f6
+ f6+ hfn

12Efaf5f6f7

022100
222000
UJIUIU

-E
+2f5

These equations have the following solutions:

f1

J
2
5
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3121001
4020002

Block Vector 14 (0,5,1,2,1,0) has distribution vectors

The frequency equations are

011110
031010
030200
050100

fl +fz
ft + 2f3
fl +fz
f1 +3fz + 3f3

ln row echelon form

fl
f2

f3

=6
+ fa =10

A+

+5fa =15

-fa
+fna

+fa
0

=5.14

=0.86

=2.43

-_)

Clearly, there are no solutions to these equations.

Block Vector 15 (1,2,4,I,1,0) has distribution vectors

01111
t2011
00301
11201
10310
02210
0t400
12300

0
0
0
0
0
0
0
0

The frequency equations are
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ft +fz + E + fa = 6

f1 +fz +fS + f6 = 5

fi + 3f3 + Zfa +3f5 + 2fø + 4h +3fg = 16

fl +2f2 + fa + 2fø + fj +Zfg = 6

f2 + f4 +fS +fA = 2

In row echelon form

fr f6 E -Zfa = 2

f2 + f6 +fS = 1

E + f6 + \ +fa = 3

fa + h +fs = I
f5 =1

These equations have the foliowing solutions:

flf2\f4fsf6hfs

40101110
302ii100
31201010
40201001
213i1000

Block Vector 16 (3,1,0,5,0,0) has distribution vectors

010300
200300

The frequency equations are

3fr +312 = 25

fl =3
212=6

In row echelon form

fr =5.33
f2 = 3

0 =-2.33
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Clearly, there are no solutions to these equations.

Block Vector 17 (1,3,1,4,0,0) has distribution vectors

The frequency equations are

010300
111200
030200
131100

3fr +2f2 + 2f3
f2

fl +12 +3f3
f2

In row echelon form

fi
f2

f3

fa =20
fa=4

3fn=9
fn=2r

fa =3-7 |
fn =4
f4 =0.43

0 --2

+

+

+

+

+

+

Clearly, there are no solutions to these equations.

Block Vector 18 (2,0,4,3,0,0) has distribution vectors

The frequency equations ale

3\ +2fz + E =15
2fz +3f3 +4f4 =16

2ft + E +2f4 = 4

200300
002200
103r00
204000
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ln row echelon form

fi
f2

E

These equations have the following solutions

fl fz

Block Vector 19 (0,2,5,2,0,0) has distribution vectors

The frequency equations are

II

- fa =5
+2fa = 2

Efa
20
01

15
T6

002200
022i00
0r4000

=4
.,
L

1

Zft + fz
Zft +2f2 + 4f3

Zfz+E

In row echelon form

f1

f2

f3

10

20

6

These equations have the solution

It is clear from this example that many of the block vectors are easily eliminated.
However, in the cases where there are solutions for the frequency equations, we need

flf2E
422
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to give further rules for elimination of solutions. The first such restriction comes from
consideration of the pair table that we describe in the next section.

5"3 The Fain Co¿¡nt Tabtre

Suppose, for a given block vector, that there are r distribution vectors (â¡2, ..., a¡s

wherei = 1,2,...,Í and s =v - 1). Supposefurtherthattwoelements of ourdesign
occur with distribution vectors i and j respectivety. Clearly, it is possible to have i = j.
Then the number of pairs formed by these two elements in the kth block is given by

Max(0, a¡¡ + a¡¡ - br).

We now define

Max(O, ai¡ + a;¡ - bt).

These quantities pi¡ are printed out in a pair count table. It is clear that, if p¡.¡ is greater

than 2, then the ith and jth distribution vectors can not occur together. As a special
case, we note that pü> 2 implies that the ith distribution vector has frequency either 0

or 1.

As an illustration of the power of the pair count table, we look at block vector 5 from
the example of the last section. There are 10 distribution vectors and so the pair count
table is of size 10 by 10.

Block Vector 5 (3,2,1,2,0,1) has distribution vectors

The pair count table is obtained in the following form

pii =I,k

000201
101101
020101
210i01
12100t
3t1001
11t200
30r200
220200
321100
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3222112221
2211232312
2t32322132
2122231333
7232442224
1323452435
22212?3434
2313244645
21332334s5
1223454556

The frequency equations had 16 solutions, which we repeat.

We now note thatptt = 3. Consequently, we can reject all solutions in which f1 is
greater than 1. This eliminates all solutions except solutions number 6, number 14, and.

number 15. Solution 6 is (1,3,2,1,1,0,0,0,0,0) and it is eliminated because p33 and
pg5 ile both greater than2. Solution 14 is (1,3,3,0,0,0,0,1,0,0), and it is eliminated
because py > 2. Finally, solution 15 is (1,4,2,0,0,0,0,0,1,0), and it is eliminated
because p33 and p39 ile both greater than 2.

This illustration shows how effective the pair count table can be in quickly eliminating
possible solutions.

frofsff7f6fsfaf3f2f1

r2000
11000
10000
02000
01000
00000
03100
02100
02010
02001
01100
01010
01001
00100
00010
00001

0
0
0
0
0
0
0
0
0
0

4000
3110
2220
3t01
2211r3214000
3110
3200
4100
2220
23t0
3210r330
1420
2320
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5.4 StaÉistics on So¡aae Frognama R.uns

A program was written which uses the algorithms described in sections 5.2 and 5.3.
V/e shall now discuss the ouþut from several runs of this program which is listed in
Appendix A.

Each computer listing is divided into cases. Within each case, the following
information is always displayed:

- Case number;
- Block vector;
- Distribution vectors;
- Paft count table;
- System of equations generated from distribution vectors;
- System of equations in row echelon form;
- Column pointer vector.

The column pointer vector is used to keep track of the original order of the columns.
This is required since the row echelon algorithm employed will interchange columns.

The remainder of the output for the case depends on the characteristics of the system of
equations. The block vector can immediately be rejected if any of the following
conditions on the row echelon form of the system of equations is met:

¡ - Left hand side of equation equals 0 while the right hand side does not;
(A) j - LHS is positive - RHS is negative;

t - LHS is all inregral - RHS is nor.

If the block vector is not rejected, the system of equations is converted from real
numbers to integers (for increased processing speed). This new system is displayed
along with upper bounds for each column.

The number of solutions is displayed, along with each solution. If the solution can be

rejected by the pair count method (Condition B), this information is also displayed.

Finally, if any solutions are not rejected, a message is displayed indicating which
solutions should be examined manually.

As a sample of output, a complete listing for the case g(9) = 11 is given in Appendix B.

5.4.1 Case of g(8) = 9"
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Number of Block Vectors

Total Number of Cases remaining after (A)
Subcases Remaining afterPair Count Method (B)

5.4.2 Case of g(9) = t0.

Number of Block Vectors

Total Number of Cases remaining after (A)
Subcases Remaining afterPair Count Method (B)

5.4.3 Case of g(9) = 11.

Number of Block Vectors 54
Total Number of Cases remaining after (A) 38

Subcases Remaining after Pair Count Method (B) 84

5.4.4 Case of g(nO) = 1X,.

Number of Block Vectors 110

Total Number of Cases remaining after (A) 77

Subcases Remaining after Pair Count Method (B) 123

5.4.5 Case of g(lX) - 1l.

Number of Block Vectors 203

Total Number of Cases remaining after (A) 122

Subcases Remaining after Pair Count Method (B) 107

5"5 The Multt-pair Cnütenion

A great many subcases are automatically rejected by the program, using either the row
echelon criteria or the pair-count criterion. The remaining cases can usually be removed
using the foilowing "multi-pair criterion".

suppose we have a block vector with entries b2, b3, ..., b, (many of these may be

zero). A typical "case" consists of t frequencies f1, f2, ..., fr, each fi being associated

with a distribution vector â.i2, à73,..., âir. Pick any f¡ (the larger fi are best). Let F¡ be

t9
10

2

47

55

25
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the set of these fi elements; we note that there are fia¡, elements in the blocks of length

s. 'We write

fiais=qrbr+rr.

This means that we get the minimal number of F¡-pairs by using r, blocks with qr+1
elements and b. - r, blocks with q, elements. The total number of F¡-pairs is thus at

least

X { * fi.')+ (bs-Ð (î) } ,

where the summation is over s = 2 to s = r. This numbe can not exceed the total
number of Fi-pairs. Hence

(Ë) X n, { o.,or-1)+2., } < ri(fi-1).

For example, in Case 7 5 (#14) of the g( 10) = 1 1, we have

b3=6 b5=3 b7=2
ft=4112
f2=5 2 2 1

f3=1 4 1 1

Consider the four elements given by f1 = 4. Then

f1a3=4=0ø6+4
f1â5=4=Iø3+I
flã1=8=4ø2+0

The summation is thus

o*T{ ¡tol +z} +}trrt¡+o }= 13.

Since this summation should be < 12, the case is rejected.
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For later cases, one could put (*) into the program; however, one would not employ it
unless the case survived both the various row-echelon criteria and the pair-count
criterion. Future research will concentrate on this improvement to the algorithm.

5"6 Suxnxmany

The program considered the case g(8) = 9 and provided a solution given by the set of
blocks

72
T2

23 57
23 68
2458
2467
r3456
r3478
r5678

When element 8 is deleted, the result is a set of 7 blocks covering the pairs on 7
elements (the exceptional Ryser solution, not the Fano Gemoetry).

No solutions were produced when the case is g(9) = lg.

Single solutions were obtained in the cases g(9) = 11, g(10) = 11 and g(11) = 11. The
last solution is merely the familia¡ BIBD (11, 11, 5, 5, 2) generared by the initial block
(1,2,3,5, 8). The soiution for 10 elements is found by deleting 1 element to leave 5

blocks of length 4 and 6 blocks of length 5. The solution for g(9) = 11 can be obtained
from the BIBD by deleting two elements to leave 2 blocks of lengh 3, 6 blocks of
Iength 4 and 3 blocks of lengrh 5.

-119-



Cåaap6en VK

6"t {mtnoducfiorn

V/e begin with some general remarks taken from Allston, Buskens, and Stanton UZl.
Determination of the number of non-isomorphic Balanced Incomplete Block Designs
with a given parameter set (v,b,r,k,ì") is a problem of considerable importance and

even greater difficulty. Probably the case that has been most studied is that of a Steiner
Triple System (15, 35, 7, 3, 1); cf. Fisher [21], Mathon and Rosa [28]. It is well
known that there are eighty possible solutions for this set of design parameters, and the

different designs are a fruitful source of examples and constructions. Since [21], there

have been various papers devoted to similar problems in Balanced Incomplete Block
Designs on a small number of varieties; cf., for example, [15], [16], [24],1541.

Stanton, Kalbfleisch, and Mullin [51] discussed the more general concept of a covering

design; in such a design, every variety pair occurs at ieast once and we normally
impose a minimality condition by demanding that the cardinality of the design be as

small as possible. It is clear that, in a covering design, we may have to permit the

repetition of a small number of pairs in order to ensure that all pairs do appear. The

analogue of the BIBD identity bk = rv is the inequality

k N(t,k,v) > v N(t-1, k-1, v-1),

where N(t,k,v) is the minimum cardinality of a family of k-sets that cover every t-set

from a given set of v elements (t < k < v). In this chapter, we shall only be concerned

with pair coverings by sets of size 4, that is, the design will contain N(2,4,v) blocks.

It is well known (see, for example, Mills [30], [35]) that, provided v is not contained in
the set {7 ,9, 10, 19}, then

N(2,4,v) = [v[(v- t)/ÐI41.

For various general results on covering designs, we refer to [51].

Relatively little has been done in considering the number of non-isomorphic solutions

for covering designs. The case of quadruples on 9 symbols (one of the four exceptional

cases) was discussed in [4]; see also [13] for a small correction. Other results ior small

values are given in [35] and[42].In this paper, we wish to consider the analogue of the
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case discussed in Fisher's 1940 paper; we have a variety set of 15 elements, but we
wish to determine the number of designs that cover all pairs (minimally) by quadruptes.

Since N(2,4,15) = 19, we shall have a roral of 19 quadruples in the design.

In a certain sense, 15 seems to be about the break point for manageable designs. If we
look at the case of triples and take v less than 15, then the discussion is relatively
simple. For example, if v is equal to 4, then N =3, and the unique design may be taken
as 123, 124, 134, with 3 repeated pairs. If v = 5, then N = 4, and the unique design
may be taken as 123, 145, 245,345, with 2 repeated pairs. If v = 6, then N = 6, and
the unique design may be taken as 123, 145, 126, 245, 346,356, with 3 repeated
pairs. It is well known that there are unique solutions for the case v = 7 (the Fano
geometry generated cyclically from the block 124) and for v = 9 (the affine geomebry

found by deleting points 0, 1, 3, 9, from the projective geometry on 13 points
generated cyclically from the block 0139). There are two solutions for v = 13 (both are

given in Marshall Hall's book or in [28]). V/e have already noted that there are 80

solutions for v equal to 15. For v greater than 15, the number of solutions climbs
astronomically; the number for v = 19 is not known, but Stinson and Seah [64] have
shown that the number of triple sytems 5(2,3,19) that satisfy the additional very
powerful constraint that they contain both a subsystem 5(2,3,7) and a subsystem
s(2,3,9) is 13,529 (the number containing a subsystem s(2,3,9) is 244,457). The total
number of systems on 19 points is well into the millions @f . [62], where 2,395,687 are
found, and where it is estimated that the total number is of the order or 109).

6"2 T'he N(2,4,9) Ilesígns

6.2.n' Introduction. The superstructure of modern design theory can be said to
stem from the pioneer work of Fisher and Yates in their Statistical Tables (1963) 1221.
They were among the first to stress the value of Balanced Incomplete Block Designs,
and Fisher, in a fundamental paper (1940) [21], discussed the number of non-
isomorphic balanced incomplete block designs with parameter set (15,35,7,3,1).
Stanton, Kalbfleisch, and Mullin (1970) [51] discussed the more general concept of
covering designs in which every pair appears at least once and the cardinality of the

design is as small as possible. We shail here be concerned with the number N(2,4,v),
which is the cardinality of a minimal design in which a set of quadruples covers all
pairs from U,2, ..., v); this number is well known to be equal to

L(v) =täf +l I

-tzt-



for all values of v exceptv = 7,9, 10, 19; see, for example, Mills (rg7z) [29]. For
these four exceptional values, one has:

N(7) =l+L(7) =5,
N(9) =1+L(9) =8,
N(10) = 1+L(10) = 9,

N(19) =2+L(19) = 31.

Various general results on covering designs were given by Stanton, Kalbfleisch, and
Mullin (1970) [51]. In this section, we restrict our attention to the three 2-4-v designs
for which N(v) = 1 + L(v), that is, we consider the exceptional varues 7 , g, 10.

We begin by retracing familiar gtound and considering the possibility of the equarion
N(2,4,9) ='1. If we letri denote the frequency of element i, then Ðri=/9, and we
deduce that r9 = 4, Íi = 3 (i < 9). Since every pair must occur, we see that there must

be one repeated pair containing i (i + 9) and four repeated pairs containing 9. Hence a

covering design may be taken as containing repeated pairs 91, 92,93,94, 56,78. The
design consists of two sets of blocks: set A comprises four blocks containing 9, and set

B comprises three blocks not containing 9. Also, A contains two each of 1,2,3,4, and
one each of 5,6,7,8. In set B, we can not have a block 1234: since there are exactly
three blocks, there must be a block of the form 125X. This forces set A to take the
form 91XX, 91xx, 92xx,92xx; there is rhen no place for symbol 5 in set A. Thus,
we see that the equation N(2,4,9) = 7 is impossible; hence, a covering design on nine
symbols must contain at least eight blocks.

6.2.2 covering Ðesigns with Ðight tsxocks and High Frequency. we
now determine all solution sets for the equation N(2,4,9) = g. Clearly, the equation
bk=32 implies that the frequencies of the nine elements obey the equationLri=32.
Thus, we have seven cases, the unspecified r¡ being all equal to 3:

Case 1. 19 = 8.

Case2. Tg=7,rg=4.
Case 3. Tg = 6, rg = 5.

Case 4. Íg = 6,1g = r7 = 4.

Case5. 19=rg=5,r7=4.
Case 6. tg= 5,rg =17 =Í6=4.
Case 7. 19 =rg - T7 =16=15- Q.
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In this section, we consider the first fîve cases. Our discussion involves a series of
lemmata.

LEMMA 6.2.I. Case I is ímposs[ble.

PROOF. Each block contains the symbol 9; the other 24 symbols generate 8(3) = 24
pairs only. But we need the 28 pairs from the remaining 8 elements.

LEl,lvt¿. 6.2.2. Case 2 is tmpossíble.

PRooF. In this case, the 28 pairs on 1,2,...,8, must fit into one 4-block and seven
3-blocks. But such a configuration can accommodate only 6 +7(3) =27 patrs.

LEMMA 6.2.3. Case 3 is impossíble.

PRooF. Place 9 in the first six blocks; then 8 may occur in 0, 1, or 2 of the last two
blocks. In these three cases, there remains space for 20, 19, or 18 pairs from the
symbols I,2,...,7 . However, space lor 2l pairs is needed.

Lpuua 6.2.4. In case 4, a síngle solution exists.

PRooF. If 9 occurs in 81,...,86, and 8 occurs in 87 and Bg, then we have room for
only 20 pairs from 1,...,7.

By the symmetry of 7 and 8, we may now assume three possibilities:

(A) 7 and 8 each occur once in 87 and Bg,

(B) 7 occurs once in 87, 8 occurs in neither 87 nor Bg,

(C) 7 and 8 do not occur in 87 and Bg.

Case (A). If 7 and 8 both occur in B7, the pair 78 can occur 0,1,2, or 3 times in the

first six blocks. The first two possibilities provide space for only i3 and 14 pairs from
1,2,...,6 but 15 are required. The third possibility gives blocks gï7x,9B7x,98xx,
97xx,gxxx, gxxx, 78xx, xxxx, and rhere is exactly space ior rhe needed i5
pairs; hence no pairs fuom r,2,...,6, can be repeated, and this is impossible. Finally,
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the last possibility leads to blocks 987X, 987X, gB7X',9XXX, 9XXX, 9XXX,
78xx, xxxx, and we have only five places in which the six symbols 1,2,...,6, can
appear with 7; this is again impossible.

Hence, we must have 7 in 87, 8 in Bg. In order to have space for 15 pairs from
1,...,6, we must have blocks

987X, 987X,987X,gXXX, gXXX, gXXX, 7XXX, 8XXX.

These immediately lead to

987 1, 9972, 9973, gxxx, gxxx, gxxx, 7 456, 9456.

and the schema can not be completed.

Case (B). V/e start from

9XXX, 9XXX, 98XX, 98XX, 98XX, 98XX, 7X){X, XXXX.

Exactly one symbol c is repeated with 8, since there are only 8 spaces for r,2,3,...,6,7.
This repeated symbol c must occur with six others, and hence has frequency 4. Hence
c =7, and the skeleton takes the form

97XX, 9XXX, gg7I, 9972, 9934, 9956, 7XXX, XXXX.

There are only 15 places for the pairs on I,2,...,6, and so there are no repeats; thus we
may assign the eighth block to be 7235. The pairs i4 and 16 musr occur togerher,
since ri = 3. Hence B2 is 9146 or B7 is 7146. In either case, we need pairs 24,26,
36,45, and these will not fit into the skeleton.

Case (C). As in Case (B), we are forced to have 7 repeated with 8, and we have the

skeleton

97XX, g7XX, gg7l, 9972, 9934, 9956, XXXX, XXXX.

The symbols 3, 4, 5, 6, must occur in B1 and F.2, with7. Hence, B7 and Bg must

contain both 1 and2:' since all pairs occur, no other pairs from 1,...,6 can be repeated.

Thus, up to an isomorphism, we can give the solution
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9735, 9746, gg7l,9972,9934,9956, 1236, 1245.

This can be described as 987i, 9872, and the combination of 97,98, and 12 with the
l-factors of a l-factorization of {3,4,5,6}.

LEMMA 6.2.5. There is only one solution in Case 5.

PROOF. There must be 2,3, 4, or 5 pairs 98.

If 98 occurs twice, there is only space for20 pairs on 1,...,7. If 98 occurs thrice, let
the design be

gXXX, gXXX, 8XXX, 98XX, 98XX, 98XX, 1234.

There is no room for repeats among 1,...,7. Hence 81, 82, 83, and B4 must contain
two or more symbols from 5,6,7. This is not possible, since only three distinct pairs
can be formed from 5, 6, 7.

If 98 occurs five times, we have a skeleton

98XX, 98XX, 98XX, 98XX, 98XX, XXXX, XXXX, XXXX,

and there are two repeats among the pairs on 1,...,7. If 7 occurs four times in
81,...,85, we can not get the six pairs 71,...,76. If 7 occurs three times in B1,...,85,
we obtain blocks

987l,9872,9973, ggXX, ggXX,7456, XXXX, XXXX;

but then 9 can not occur with 4, 5, 6.

If 7 occurs once with 98, we have space for only 13 pairs from 1,...,6. Hence we are

forced to the skeleton

987X, 987X,98XX, 98XX, 98XX, 7XXX, 7XXX, XXXX.

No repeats are permitted from 7,...,6; hence 86, 87, Bg, cân not be compieted.
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There remains only the possibility of four pairs 98 in a skeleton

98XX, 98XX, 98XX, 98XX, gXXX, 8XXX, XXXX, XXXX.

There is only one repeated pair from 1,...,7. If the last two blocks have only one
element in common, we write them as abcd, aefg. Then, in order to complete B5 and
86, we are forced to use at least two repeated pairs. Hence, we must take the last two
blocks in the form abcd, abef. Then pairs ga,...,gf, must be fitted into 81,...,86; this

requires the frequency of g to be 4, and hence E=7. So we may take the skeleton

9871,9972,99xx, ggxx, 9734,9756, XXXX, XXXX.

Completion is forced as

987 l, 9972, 9936, 9945, 9734, g7 56, 1235, 1246.

This solution can be written as 9871, 9872, and the combination of 98, 12, and

{97,87} with the L-factonzation of {3,4,5,61.

6.2.3 The case of a single Frequency of 5, Three Frequencies of 4. we
shall establish

LEMMA 6.2.6. Case 6 produces five solutíons.

PRooF. suppose that pair 98 occurs only once. Then symbols r,2,...,7, occur in 7
triples and a pair. If the pair is not repeated, we need 20 pairs fitted into 7 triples with a
specific pair ab missing; hence, the 7 triples are

aXX, aXX, aXX, bXX, bXX, bXX, XXX.

The 10 pairs on the other 5 symbols can not be accommodated. Hence all 21 pairs
occur in the 7 triples and form the unique Fano geometry. So we must fit the Fano
geometry into the skeleton

9XXX, gXXX, 9XXX, 9XXX, 9876,8XXX, 8XXX, 8XXX.

The three lines with 8 can not concur in any point save 6 or 7, or that point would not
occur with 9; for a similar reason, no 3 lines concurring in 1,...,5, can occur with 9.
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We may then have

Case 64. The three lines concurring in 6 occur with 8. If we use the standard cyclic
representation of the Fano geometry, we obtain

9124, 9235, 9457, 97 13, gg7 6, 9627, 9615, 9634.

Case 68. The three lines occuring with 8 form a triangle with 6 omitted, 7 being a

vertex:

9346, 9156, 9267 , 9235, 9976, gl37 , 9457 , 9124.

Case 6C. The three lines occuring with 8 form a triangle with 6 omitted, 7 not being a

vertex:

9457 , 9672,9346, 9561,9976, 9737, 9724, 9235.

Now suppose that 98 occurs twice, and consider the skeleton

9XXX, 9XXX, gXXX, 98XX, 98XX, 8XXX, 8XXX, XXXX.

If an element of frequency 3 occurs in 84, then it must occur in Bg and one further
block, which can not be 85, and it can occur in no repeats. Hence 84, and similarly
85, can not contain two elements of frequency 3.

If 7 lies in both 84 and 85, write these blocks as 987a, 987b. It may be that a and b
both have frequency 3; then we write

9XXX, 9XXX, 9XXX, 987a, 987b, 8XXX, BXXX, abcd,

and require triples aef, bef, 7ce,7df; but then pairs cf and de can not be placed. So we
are forced to consider 84 and 85 as 9876,987b. If the last block contains 4 elements
abcd of frequency three, then we need triples 7ae,7cd; we also need triples 6be, 6XX,
6XX, and there is no room for the missing pairs ce, de, since 6 must occur with a, c,
and d. Consequentiy, there must be iwo elements d and e, of frequency three, that do
not lie in B8; this forces five tripies
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dXX, dXX, deX, eXX, eXX.

The triple deb is required; hence, the last block contains 6 and we have, omitting 9 and
8, the skeleton

dXX, dXX, deb, eXX, eXX, 6, b, b6.

The missing symbols are a and c (three times), 6 and 7 (twice). So the last block must
be b6ac, and we need pairs 7a,7c; hence we obtain

d7a, d6c, deb, e7c, e6a,6, b, b6ac,

and the complete solution is

8a6e, 8d6c , 987 6, 987b, 9d7 a, 9e7 c,9deb, b6ac,

8d7 a, 8e7 c, 987 6, 987b, 9d6c,9a6e, 9deb, b6ac.

In the first case, 96 occurs only once and we have a case already obtained. The second
case can be written as

Solution 6D.

9156, 9346,9245, 9976, 9972, 9147, 9357 , 1236.

V/e must still consider the possible skeleton

gXXX, 9XXX, 9XXX, 9871,9862,8XXX, 8XXX, 12XX.

If the two elements of frequency three are missing from 83, they must occur in triples
3xx, 3xx, 34x, xx,4xx, and this is impossible since they must occur with 1 and
2; so the last block 1s 1234. Then we require the triples 156,257,345,367, 467 , and,

B6 must be 8345 in order for 8 to meet 3, 4, and 5. There is only one solution, since 3

and 4 must occur with 9 and therefore blocks 9367 and 9467 are required. The
solution is
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Solution 68.

9367, 9467, 9756, gg7 l, 9862, 9345, 9257, 7234,

We now summarize Solutions 64, ..., 6E, according to the frequencies of the pairs 98,
97,96; these are A(1,1,3), B(1,2,4), C(1,3,4),D(2,2,3),8(2,3,4). So rhe cases are
non-isomorphic.

The case (x,4,4) is impossible; so we need merely consider the cases (3,3,3) and
(3,3,4). The latter case leaves only five places for symbols 1,2,...,5, in the first five
blocks, and so 8 can not occur with them all, since the frequency of 98 is 4. So we
consider the skeleton

9XXX, gXXX, 98XX, 98XX, 98XX, 8XXX, XXXX, XXXX.

If 987 occurs thrice, we have 83,...,87, âS

987 a, 987b, 987 c, 8def, 7def.

Then def must occur with 9,a,b,c, and this impossible.

If we start from

gXXX, g76X, gg6x, gg7x,9976.

we obtain

987 6, 9861, 97 62, gg7 3, 9XXX, 9245, 7 t45, 6345,

amd 49 is missing.

If we start from

96XX, g7XX, gg6x, gg7x,9976,

then we obtain

9876,9861, 9872, 9634, 975X, 9345,7XXX, XXXX.
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It is necessary that 3 occurs with 127 ffid 4 must occur wth L27; this is impossible.

Finally, we may have

g6xx, 976x, gg6x, gg7x,gg7x.

The X symbols in 82,...,85, are all distinct; otherwise the repeated symbol could not
occur with the other 4 symbols of frequency 3. so we have blocks

g6xx, 9761, 9962, 9973, 9974,725X,915X.

It is necessary that 5 occur in B1 and 5 must occur with 3 and,4. So we have

965X, 976r,9962,9973, gg74,7235, gi5X, XXXX,

and the missing symbols are 3, 4,4,2,1, 6. The missing pairs are 64, 54, 63,4!, 42,
43,12,13. Hence we obtain

965X, 9761, 9962, 9973, gg7 4, 7235, g15X, 136X,

and completion is impossible.

We have thus completed the demonstration that Case 6 gives rise to six solutions.

6.2.4 The Case of AII Fnequencies 3 or 4. This is the most complex situation;
we prove Lemma 6.2.7.

Lpvn¿e6.2.7. Thereare4caseswithr¡=4,fori>4,tnwhíchthereisarepeatedpair
of elements withfrequencies 3.

PRooF. Vy'e have ri = 3 (i < 4). Suppose that a pair of these elemenrs is iepeated. We
thus have blocks

I2ab, I}cd, lefg,2efg.

Thus e, f, and g have frequency 4 andmay be taken as 7, 8, 9.
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rf 189 occurs again, then, in order for all pairs to occur involving 7, B,g,we need

72ab, lZcd, 7789,2789,789X,7XXX, 8XXX, 9XXX.

The last 4 blocks must be 789a,7bcd,8bcd, 9bcd, and we see that ac never occurs.

The last 4 blocks have the form

7XXX, 8XXX, 79XX,89XX,

then we are forced to take

7bdx, 8acX, 79ac,89bd.

use of the permutation (ab)(cdx7s) aliows us ro complete the solution to

Solution 74.

1234, 7256, t7 gg, 2799, 7 456, 9356, 7935, 9946.

If the last 4 blocks have the form

79XX,89XX, 78XX, XXXX,

we obtain blocks 79ac,89bd; then we need 78ac and 78bd, an impossibility. The only
other possibility is for the last 4 blocks to be

78XX, 78XX, 9XXX, gXXX.

The possibility 78ab, 78cd, leaves out ac, ad, bc, bd and so can not be completed save

AS

1234, 1256, 17 gg, 27 gg, 7 934, 7 956, 9356, 9456.

This is solution 78.

The other possibility is for the blocks to be
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1234, 1256, l7gg,27gg,7935,7946, 9XXX, 9XXX.

The last 2 blocks must be 936X,945X, and we need no other pairs.

Solutiori 7C. 9364, 9453.

Solution 7D. 9364, 9456.

We now must consider the case when no pair from { I,2,3,41is repeated.

LEMMA 6.2.8. There is one solutíon to Case 7 with blocks

12XX, 13XX, T4XX,23XX,24XX,34XX, XXXX, XXXX.

PRooF. V/rite blocks

IZXX, 13XX, 14XX, 23XX,24XX,34XX, 5679, 5679.

Place 5,6,7, with distinct l-factors to give

126X, 135X, r47X, 237X, 245X, 346X, 567 g, 5679.

Then 89 does not occuq so we place 5 and 6 with the same l-factor

rzxx, 1356, 14X){, 23){X,2456,34){X, 5679, 5679.

We may placeT with 14 and23 to give B3 and B4 as

t47X, 237X.

'we then may take Bi as 1289, and are still missing 8, 8, 9, 9; so B6 must be 3489.
There is no loss of generality in completing

Solution 7E.

1289, 1356, 7479,2379,2456,3499, 5679, 5679.

'We 
thus have to consider CaseT when the blocks have the form
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723X, 1XXX, zx){yÐ3XXX, 14XX, 24XX, 34X'X, XXXX.

LEMMA 6.2.9. There is one solution of theform

1235, 1XXX, ZXXX,3XXX, l4XX,24XX,34XX, 6199.

PRooF. If 5 is the repeated symbol with 4, we obtain

1235, IXXX, zXX){,3XXX, 1456, 2457, 3499, 6799.

V/e then obtain

1235, 17 gg, 2699,,3567, I 456, 2457, 3499, 67 gg .

But then 58 and 59 do not occur.

If 5 is not the repeated symbol with 4, we obtain

1235, 1XXX, 2XXX,3XXX, 1456, 2467, 3499, 67g9,

or

1235, 1XXX, 2XXX, 3XXX, 1456, 2479, 3479, 6199.

The first case completes to

Soiution 7F. 7789, 2895, 3675,

and the second can not be completed.

LEMMA 6.2.10. There is one solution of theform

1236, IXXX, ZXXX,3XXX, 145X, 245X,34XX, 6lg9.

PROOF. 85, 86, and 87 can be, up to isomorphism, taken as

1456, 2457, 3489, or as 7457, 2458, 3469.
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The first case gives

1236, 1799, zggx, 357X, 1456, 2457, 3499, 6799.

We are missing 58 and 59; we also miss a 5 and a 6. So we obtain

Solution 7G.

1236, L7gg, 2995, 3567, 1456, 2457, 3499, 67 gg.

The second case gives

1236, 1ggx, 279X,3579, 1457,3459,3469, 6799.

We need a 5 and a 6 as well as pairs 56 and 59, and this requirement permits no
solution.

LEMMA 6.2.11. There a,re no solutions of theform

1236, IXXX, ZXXX,3XXX, 746X, 246X, 34X'X', 67g9.

PROOF. The values of 85, 86, and 87 ma! be taken in the form

1465, 2467, 3489, or 1467, 2468, 3459.

In the first case, we find 82,83,84, as

t799,2599,357X.

and this does not permit 15 to be 5.

In the second case, we find 82, 83, 84, âS

1599, 2579,3579.

This is not a solution since 56 is absent.
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LEMMA 6.2.12. There are 3 solutions of the form

1236, 1XXX, zXX)(,3XXX, I47X, 247X, 34XX, 6799.

PROOF. We take 85, 86, and 87 to be

(1) I475,2476,3489, or (2) I475,2478,3469, or
(3) 1476,2478,3459, or (4) 1478,2479,3456.

From (1) we obtain 82,83,84, as 1895, 2589,3576,

and get

Solution 7H.

7236, 1599, 2599, 3567, 7457, 2467, 3499, 6799.

From (2) we obtain 82,83,84, âs

1995,2596,3579,

and get

Solution 7I.

7236, 1599, 2569, 357 g, 1457, 247 g, 3469, 67 gg.

From (3), we obtain 82,83,84, âS

1599,2596,3579,

and get

Solution 7J.

7236, 1599, 2569,3579, 1467,2479,3459, 6799.

Finally, from (4), we obtain 82,83,84, âs
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159X, 259yt,3799.

Now 7 has already occured 4 times and has not appeared with 5; so this case can not be

completed.

Lemma 6.2.72 completes the discussion of the final case, and we have

TIIEOREM 6.21. up to ísomorphtsm, there are I0 solutions Ìn case 7.

When we combine Theorem 6.2.1 with Lemmas 6.2.I to 6.2.6,we obtain

THEOREM 6.2.2. Up to isomorphism, there are seventeen designs satisfyíng the
equatïonN(2,4,9) = $.

We summarize the relationship between the designs given in this secrion and those
given by Bate and Van Rees in [i3].

Design in Design in [13] Permutation from Case X to [13]
this section

Case4 Typel (1 48369)(257)
Case5 Type2 (149255)(37)
Case 6A Type 3 (t 7) (2 5 9 4 8) (3 6)

Case6B Type4 (1 84736259)
Case 6C Type 5 (r 9) (2 5 8 4 6) (3 7)
Case6D Type6 (i837259)(46)
Case 6E Type7 (1 8 4 627 3 5 9)
Case 7A Type 13 (7 8 9)

Case 7B Type 14 (3 5) (4 6)

Case 7C Type 15 (1)

Case 7D Type 16 (3 6)

Case 7E Type 8 (3 4) (5 7)

Case 7G Type 9 (2 3) (7 9)

Case 7H Type 10 (i)
Case 7I Type 72 (1)

Case 7J Type i 1 (1)

Case 7K Type 17 (1)
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6.2.5 The Cases of'7 and l0 Varietíes. For completeness, we include the
relatively easy discussion of the other two cases when N(v) = 1 + L(v). If we have 7
varieties, then )r¡ : 20. Now , 17 cln not be 5, since that would leave space for 15

pairs on l, ..., 6, and no repeats would be allowed; but there is no triple system on 6
elements. If r7 = 4, we consider the case when Í6 = 4. The skeleton containing only
3 pairs 76 gives insufficient space for the 10 pairs from 1,...,5; so we must take 4 pairs
76, and immediately obtain the design

7 651, 7 652, 7 653, 7 654, 1234,

by assigning the last block as 1234.

Now, suppose that r7 = 4 and that no other frequency is 4, that is, the frequencies are

16 =15 -t4= 13 = 3, Íz=rr=2. Then 1 and 2can occuronly once each with 7,and
we are constrained to the skeleton

7lxx, 72xx,7XXX, 7XXX, 12XX.

Let the last block be 1234; then rhe design is forced to be

7 156, 7256, 7345, 7346, 1234.

Finally, let the frequencies be 11 = 2, ri = 3 (i > 1). then the first two blocks may be

written 1234, 1567 . If no other block intersects either of these in three elements, we
obtain the design

1234, 1567, 2356, 2457, 3467 .

If there is a block with a triple intersection, we obtain the last three blocks as 2345,
67XX,67XX, and the design is completeable to

1234, 1567, 2345, 2567, 3467 .

Thus we have

TIIEOREM 6.2.3.There are four non-ísomorphic coveríng designs on seven elements.
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We now consider the case of ten varieties in a design with nine blocks. Suppose that
the maximal frequency of a variety is x; then x(3) + (9-x)6 > 36, and we deduce

LEMMA 6.2.13. The possiblefrequencies in a 24-10 covering design are 3,4,5,6.

If there are two frequencies of 6, then the other eight symbols generate 28 pairs. But
the two elements of frequency 6, even if they always occur together, leave space for at
most 24 pairs. Thus we have

LEMMA 6.2.14. The case rl0 = rg = 6, ri= 3 (i < 9) is tmpossíble.

Now letÍ10 = 6,19 =5, fg=4,ri = 3 (i < 8). Evenif 9 and 10 always occurtogether,
we can accommodate at most 26 pairs from 1,...,8; hence, we obtain

LEMMA 6.2.15. The case rt7 = 6, rg = 5, rg = 4, ri = 3 (í < 8) is ímpossible.

Finally, iet r1g :6,Í9 - rg = 17 = 4, fi = 3 (i < 6). It is possible to have space for 28

pairs in a skeleton with (use T = 10)

T9XX (4 times), TXXX (twice), XXXX (thrice).

But then the four 8s must also appear in the first 6 blocks, and this is impossible since
the symbols 1,2,3,...,8, complete B1, 82, B3,B+. Thus, we have

LEMMA 6.2.16. Only frequencies 3,4,5 are possible in a 24-10 d,esign.

If we suppose there are a elements of frequency 5, b of frequency 4, c of frequency 3,

then

a+b+c=10,
5a + 4b +3c = 36.

then2a + b = 6, and the only solutions (a,b,c) are (0,6,4), (I,4,5), (2,2,6), (3,0,7).

Take 11 =rZ= 3. Then we have blocks (use T = 10)

1234, 1567, 1ggT, ZXXX, ZXXX.

-138-



If B4 and B5 are 2567,289T, then the frequencies of 5,...,T, are all forced to be at
least 4. so we are dealing with the (0,6,4) case, and the remaining blocks are

3XXX, 3XXX, 4XXX,4XXX.

Completion is impossible, and so we may take the frst 5 blocks as

t234, 1567, 1ggT, 2569,279T.

Again, 15 = 16 = 19 = 11 2 4. Also, if rg = 3, we need the block 8347; then completion
is uniquely possible to give the design

1234, 1567, 1ggT, 2569, 279T, 9347, 3456, 359T, 469T.

on the other hand, if rg + 3, we have 17 and rg both > 4. It follows that a = 0, b = 6,
ç = 4, and we have 13 =t4:3; again, the last four blocks must be

3XXX, 3XXX, 4XXX, 4XXX,

and we have to use symbols 5,6,7,8,9,T, twice. Also we need pairs 59, 5T, 69, 6T,
78. Since symbols 3 and 4 are equivalent, as are 5 and 6, and 9 and T, we may take
the blocks as:

Case 1. 3596,378T,456T,4789;

Case 2. 359X, 36XX, 469X,45XX.

The second case then must be completed as

359T, 3679,469T,4579.

Cases I and} are isomorphic via the permuration (78)(59X6T).

We thus have proved

THEOREM 6.2.4. There are two 2-4-10 covering designs.
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Appendix ,4

This appendix contains the FORTRAN source code for the algorithms described in
Chapter 5. There are two parts to this appendix. The first part is the file
COMMON.INC which contains the global variables used in the program. The second
part is the actual FORTRAN program (BICOVER.FOR) itself.

COMMON.TNC

fmplicit None

Integer*2 M-A,X_SIZE, LOGFILE
Parameter (MAX_SIZE : 50)
Parameter (LOGFILE : l_0)
Real*8 TOLERÀNCE
Parameter (TOLERÀ,NCE : 1.0d-6)

Integer*2 V I
1
1

t_

1
1

1

1

1

1

t_

t_

t_

1

1

NUM_BLOCKS,
V_MTNUS_1,
TWO_V_CHOOSE 2l
TWO_V_MINUS_1.
B (MAX_SIZE) ,

Number of elements
Number of bl-ocks
Oft used constant

ll rr tt

lt tl

A(MÂX STZE.M.AX STZE).
Block Vector
Distribution vectors

PAIR_TABLE (2*MAX_SAZEt ?*MAX_SIZE), I pair count
NUM_CASES, ! Case number of bl_ock vector
START_CASE, ! case number Lo start at
B_PTR(MAX_SIZE)f I pointer and mult.iplier for B
N_CHOOSE_2 (2 :MAX_SIZE) | ! Used frequentt-y
TVüO_N_CHOOSE_2 ( 2 : MAX_SI zE ),
ROWS_A, COLS_A, ! # of rows and col_umns
ROV{S_EQN, COLS EQN ! # of rows and, columns

Real-*8 EQN (MÀX_ST.ZET Z*MAX SIZE)
Integer*2 COL_PTR(2*MAX STZE)

Integer* 2
1

1

1

l_

1

Common
1

1

1
1

ÏEQN (MÀX_SIZF,t 2*MAX_SIZE) ,
SoLUTTONS (20*MAX_SrZE, 2*MAX_SrzE) .
NUM_SOLUTTONS /
UPPER(2*MAX_SIZE),
cTR (2*MAX_SIzE) ,
CTR POS

vf NUI{_BLOCKST V_MINUS_1, TWO_V_CHOOSE_2/ TWO_V_MTNUS_1/
BI A'PATR_TABLE, NUM_CASES, START-CASE, B_PTR, N_CHOOSE_2/
TWO_N_CHOOSE_2, ROWS_A/ COLS_AÍ ROWS_EQN, COLS_EQN|
EQN. IEQN, SOLUTIONS, NUM_SOLUTIONST UppER/
cTR, CTR POS, COL PTR



tsNCOVER.F'OR.

Program BICOVER

! This program imprements the algorithms described in chapter 5.

I This program was designed to run on a DEc vAX computer. with
! minor modifications it can run on any comput.er wíth a FORTRAN
! 77 compiler.

Incl-ude ' COMMON. f NC t

Integ'er*2 I !Aloopcounter
Character*23 TOD I Time of day

Accept *. Vt NUM_BLOCKS, START_CASE ! Read in start up info

! Calculate some useful_ constants

N_CHOOSE_2 (2) : 1
ÎWO_N_CHOOSE_2(2) : 2
DoI:3rMÀX_S]ZE

N_CHOOSE_2 (I) : N_CHOOSE_2 ,I-I) + r - 1
lWO N CHOOSE 2(I) :2 * N CHOOSE 2(r)

End Do

V_MINUS_1 :V-l_
TWO_V_MINUS_I_ : 2 * V_MINUS_1
TI^7O_V_CHOOSE_2 : 2 x N_CHOOSE_2(V)

! Open output. 1og and dislpay run information

Open (Unit:LOGFILE, Fii-e:'G.OUT', Status:'NEVùr,
1 Carriagecontrol-:tLfST¡, Recordsíze:511)

Ca]l LIB$DATE_TIME (TOD) ! Get rime of day

write (LOGFILErl0) Vt NUM_BLOCKS/ TOD
l-0 Format('Beginning G(,,f2,T) ,, 12, r at ',A)

! Do the actual processing

Cal]. BLOCK_VECTORS

Cal1 LIB$DATE_TIME (ToD)

write (LOGFILE,20) TOD
20 Format (/ /,rínished at ',A)

Cl-ose (Unit:LOGFILE)

End



Subroutine BLOCK_VECTORS

I This routine g'enerates all possibl-e block vectors, and, one at
! a time, processes them

Include tCOMMON. INC'

Int.eger*2 PTR, BPTR/ SUM/ T

Logical*1 KEBP_GOING

! The B vector contains the block J-engths. InitíalJ_y, we have a
! block of Ìength v - 1

PTR : V_MINUS_1
B(prR) : rvùo_v_cHoosE_2 / ¡¡_cHOOsE_2 (V_MTNUS_1)

KEEP_GOING : .true.
Do Whíle (KEEP_GOING)

Generate upper bounds based on the value of the current
positíon in the upper bound array (B)

Do BPTR : PTR-1¡ 3r -1
SUM:O
DoI=BPTR+I,V_MINUS_I

suM : suM + B(I) * N CHOOSE 2G)
End Do
B(BPTR) : (T!{O v CHOOSE 2 - SUM) / N CHooSE 2(BprR)

End Do

Assume the rest of the bl-ocks are pairs

SUM:0
DoI:3rV_MINUS_I

SUM:SUM+B(I)
End Do
B(2):NUM_BLOCKS-SUM

If the numlcer of blocks is correct, check the pair count

If (B(2) .ge. 0) Then
SUM:0
DoI:2,V_MINUS_1

SUM : SUM + B(I) * N CHOOSE 2 (I)
End Do
If (SUM .eq. TüIO_V_CHOOSE_2) Then

Cal-l PROCESS BLOCK
End rf

End rf

Recalculate the upper bounds

B(2) : 0 ! Cfear out number of paírs
PTR:3
Do Whil-e (PTR . le. V_Ì.,1INUS_1 . and. B (PTR) . eq. 0 )

PTR:PTR+1
End Do



rf (PTR . l-e . V_MINUS_1 ) Then
B(PTR) : B(PTR) - 1

Else
KEEP_GOING : .fal_se.

End If
End Do

Return
End



Options,/Check:Bounds
Subroutine PROCESS_BLOCK

! This rout.ine processes a block vector. At this point, the trBr,
I vector has the correct number of bl-ocks and the correct pair
! count. The distribution vectors ("A", wil-r be generated.

Include TCOMMON.INC'

Integer*2 It J, BOUND(MAX SrzE). sIzE BOUND, SUM
Logical*1 KEEP cOINc
Character*4 C_CASE

! Display the block vect.or

NUM_CASES : NUM-CASES + 1

If (NUM_CASES .l_t. START_CASE) Ret.urn

v'Irite (LoGFILE, 10) NUM_CASES, (I , I:2,V MTNUS 1).
1 (B (f' ,r:2,v MINUS 1)

10 Format (/ /50 ('-') /îCase,ltS/ /<v-2>(tBt t12,3X) /1 <6* (v-2) -3> ('-') /
1 <v-2> (r3,3x) )

! sYS$sETpRN is vAX specific and can be removed without anyI adverse side effects. sys$sETpRN chang-es the process name! so r can monitor the progress of the execution of the program.

write (c_cASE,, (t4)') NUM CASES
CalI SYS$SETPRN (,Case ' 7/ c CASE)

I Generate upper bounds and. process non-zero elements

SIZE_BOUND = 0
ñnr-t VMINUSlLl

If (B(I) .ne. 0) Then
SIZE_BOUND : SIZE_BOUND + 1
BOUND(SIZE_BOUND) : B(I)
B_PTR(SIZEBOUND):I-1

End rf
End Do

! using the upper bound.s just generated, g-enerate all possi-ble
! distribution vectors. The "A" matrix wiÌr contain the
I distribution vectors. Initially, A is empty.

ROWS_A = 0

COLS_A : SIZE_BOUND

KEEP_GOING : .true.
Do While (KEEP GO]NG)

Sum over (I-1) * BOUND(I)

b utv.l : u

DoI:1¡ SIZE_BOUND



SUM : SUM + BOUND(I) * B PTR(T)
End Do

rf suM is equal Lo 2(v-r), we have a distribution vector.
Copy it to the "A', matrix.

If (SUM .eq. TWO_V_MINUS_1) Then
ROWS_A:ROWS_A+1
DoT:lrCOLS_A

A(ROWS_A/ I) : BOUND(I)
End Do

End If

!ùe have to adjust the upper bounds. Find. the first non-zero
upper bound and decrement it. Then set al-l- previous lower
bounds back to their original values.

r-f
Do Whife (I .Ie. SIZE BOUND .and. BOUND(r) .eg. O)

ï:I+1
End Do
I f (r . .Le . ST ZE_BOUND ) Then

BoUND (I) : B9UND (I) - 1
Do J : I-1r 7, -1

BOUND (J) : B (B PTR (J) +1)
End Do

. Else
KEEP_GOING : .false.

End If
End Do

I Display the distribution vectors

write (LocFrLE. 20) (B_PTR(T)+1, Í : 1, srzE_BouND)/
l- ( (A (I. J) , J:I , COLS A) . I:1 , ROWS A)

20 Format (/ /,oistribution iectors, / /
1 <SIZE BOUND> (t At t12,3X) /<6*5IZE BOUND -3> (, -, ) /1 (<coLS_A> (r3¿ 3x) ) )

If (RO!ùS_A . l_t . t_ ) Then
write (LocFILE, 30)

30 Format (/'wo dist.ribution vectors can be generated.')
El_se

For each bl_ock vector, generate the pair count, the
equations derived from the distribution vectors, put the
equations in row echefon form and. attempt to solve them.

CaIl GENER.A,TE PATR COUNT
CAI1 GENERÀTEìQUAFTONS
Call- ROW_ECHELON
Cal-I PROCESS EQUATIONS

!.;n(l tf

Return
End



Subroutine GENERATE_PAIR_COUNT

I This routine generates the pair count tab1e.

Include TCOMMON. fNC'

Integer*2 COMPRESSED_B(MAX_SIZE) | L, Jt K, SUM/ COUNT

I Remove the zero elements from the block vector

I:0
DoJ:2tV_MINUS_1

If (B (J) . ne. 0 ) Then
r:T+1
COMPRESSED-B(I) : B(J)

End If
End Do

! Generate pair table

! PTij : SUM (Aik + Ajk - # bLocks of lengrh kI)

DoI:IrROWSA
DOJ:t,nOWS_a

SUM:0
DoK:1¡COLSA

COUNT : A(i.X) + A(J.K) - CoMPRESSED B(K)
rf (COUNT .gL. 0) Then

SUM:SUM+COUNT
End If

End Do
PAIR_TABLE(l,J) : SUM
PAÏR_TABLE (,Jr I) : SU¡'t

End Do
End Do

write (LocFïLE, 10) ( (PAIR_TABLE (r.J),J:lrROWS_A), T:1,RowS*A)
10 Format (/ /,pair Table' // (<ROVíS A>t3) )

Return
End



Optj-ons /Check=Bounds
Subrout.ine GENERATE_EQUATIONS

! This routine generates the eguations to be sorved, from the! distribution vectors.

Include TCOMMON. INCt

fnteg-er*2 I, Jt COL_POS

DoI:1¡COLSA
cor,Pos:õolsA+1-r
DoJ:1¡ROWS-A

EQN(I,J) : A(J. COL_POS)
End Do
EQN(r, ROWS_A+1) : e (B_PTR(COT,_poS)+t_) * (B pTR(COL pOS) +1)

End Do

ROWS_EQN = COLS A
COLS_EQN:ROWS-A+1

write (LocFILE, 10)
10 Format ( / / ' Oríginat System of Equations r ,/ )

CaIl PRÏNT EQUAT]oNS

Return
End



Subrout.ine PRfNT EQUATIONS

! This routine prints out the equations

Include TCOMMON.INCt

Integer*2 I, J

write (LocFrLE, 10 ) ( (EQN (r, J) ,.I:1, CoLS_EQN) , r:1, ROWS EQN)
10 Format (<COLS_EQN-1> (F6 .2) ,, : , ,86.2)

Return
End



Subroutine ROW_ECHELON

I This routine pJ-aces the equations in row echelon form.

fnclude 'COMMON. INC¡

fnteger*2 I, Jt POSN, Kt T_ROWS EeN
ReaI*8 MAX_ELEMENTT Dabs, T¿ I4ULT

I Initial_ize pointer vectors

DoI:1¡COLS_EQN-1
COT,_PTR(T) : I

End Do

I inlork h/ith the minimum number of rows possible

If (ROWS_EQN .lt. COLS EeN) Then
T_ROWS_EQN : ROWS_EeN

EIse
T_ROWS_EQN : COLS EeN - 1

End If

I Process one row at a time

Doï:1¡T_ROWS_EQN

Find pivot element

POSN : r
MAX_ELEMENT : Dabs (EeN(r, r) )
DoJ:ï*1¿ ROWS_EQN

rf (Dabs(EQN(J.T)) .gt. MAX_ELEMENT) Then
POSN : cT

MAX ELEMENT : Dabs (EeN(J/I) )
End If

End Do

Get row containíng pivotal efement to the current row

If (POSN .ne. I) Then
DoJ:ITCOLS_EQN

I = EQN(I,J)
EQN(I,J) : EQN(POSN,J)
EQN (POSNT J) : I

End Do

End If

Tf there is a zero as the pivotal el-emenL, try and. find a
non-zero e]ement on the current ror^r

rf (MA,X_ELEMENT .eq. 0.0d0) rhen
POSN : T

Do J : r*1¡ COLS EeN-1
If (Dabs(EeN(r,J)) .gr. MAX ELEMENT) Then

POSN : J



I

:

!

MAX_ELEMENT : Dabs(EeN(I,J) )
End If

End Do

If we found a non-zero element, switch the col-umns in
the equation and keep track of this switch in the
pointer vect.or

If (POSN .ne. I) Then
Do J : 1, ROV\IS EQN

T : EQN(J, I)
EQN(J¡I) : EeN(,f,POSN)
EQN(J,POSN) : T

End Do

Sr"ritch column pointer vector

J: COr_PrR(I)
COL_PTR(I) : COL_PTR(POSN)
COL_PTR(POSN) : J

End If
End If

Normalize t.he current row

If (Dabs(EQN(I,I)) .le. TOLERÀNCE) EeN(r,r) : 0.0d0

If (EQN(I,I) .ne. 1.0d0.and. EeN(l,T) .ne.0.0d0) Then
Do J : COLS_EQN, It -1

EQN(r,J) : EQN(r,J) / EQN(r,r)
Tf (Dabs(EQN(IrJ) ) .te. TOLERå,NCE) EeN(T,J) = 0.0d0

End Do
End rf

Zero rows below the current rout

DoJ:I*1¡ ROI{S_EQN
If (EQN(J,I) .ne. 0.0d0 .and. EeN(f/T) .ne. 0.0d0) ?hen

MULT : EQN(J,r) / nQu(r,r)
Do K : f¡ COLS EeN

EQN (J, K) : EQN (J, K) - MULT * EeN (r/ K)
If (Dabs (EQN (J, K) ) .le. TOLERANCE) EeN (J, K) : 0. OdO

End Do
End If

End Do

Zero rows above the current ror^r

Do J : f-1, It -1
If (EQN(J, I) .ne. 0.0d0 .and. EeN(Ir r) .ne. 0.0d0) Then

MULT : EQN(J/I) / eQw(r,r)
DoK:f,COLS_EQN

EQN(JrK) : EQN(J,K) - MULT * EeN(I.K)
If (Dabs (EQN (J, K) ) .1e. TOLERå,NCE) EeN (J, K) : 0 . 0d0

End Do
End If

End Do
End Do



wríte (LOGFILET 10)
10 Format (//'nquations in Row Echelon Form¡/)

Cal]. PRTNT_EQUATIONS

vùrite (LOGFILE, 20) (COr,_pTR(I), r:It COLS_EQN-1)
20 Format ('Column pointer vãctor: r,(COLS EeN-1>I3)

I C]ean up (remove any accumulated round off error) the equations

Ca].J- CLEANUP EQUATToNS

Return
End



Subroutine PROCESS EQUATIONS

! This routine attempts to reject the system of equations based
! on the following three critería
!

! LHS : 0 RHS !: 0
I r.HS all !: 0 RHS < 0

! LHS aIJ- integra] RHS not integ-ral-
!

! If the equations can not be rejected, g.enerate all possibÌe
I sol-utions

Include TCOMMON. INC. t

Logícal-*1 LHS EQ_0_RHS_NE_0 r
1 LHS GE O RHS LT O,
1 LHS-rNr nHS Ñor-rwr,
]- FAIÏED 

_

FAÏLED = .True.
. If (.not. LHS_EO_0_RHS_NE_0O ) Then

If (.not. LHS_GE_0_RHS_LT_0O ) Then
lf (.not. LHS INr RHS NOr ÏNTO ) Then

call rNTEeenrzn sQuerîoNs
CA]-I SOLVE_EQUAF]ONS
FAILED : .false.

End If
End If

End rf

If (FAILED) Then
vrtrite (LocFILE, 10 )

10 Format ('*** Block vector reject.ed')
End Tf

Ret.urn
End



Logical Function LHS_EQ_0_RHS_NE_0*1 o

I This function examines the equations in EeN for any rows that
! have LHS coefficients equal to 0 and RHS not equal to 0.

Tncl-ude I COMMON. INC'

T,ogical*1 LHS_EQ_0
Integer*2 I I J

! Process equations starting with the rast row since this row
! will- be the first fail this check.

LHS_EQ_0_RHS_NE_0 : .fal_se.
I = RoWS_EQN

Do whil-e (I . ge. 1- . and. . not . LHS Ee 0 RHS NE 0 )

LHS EQ_O : .true.
J:1
Do while (J.lt.CoLS EeN .and. LHS Ee 0)

LHS EQ_0 : EQN(I¡i) .eq. 0.0d0
J:J+1

End Do
LHS_EQ_0_RHS_NE_0 : LHS_EQ 0.and.EeN(r,COLS EeN) .ne. 0. OdOï=r-1

End Do

If (LHS_EQ_0_RHS_NE_0) Then
write (LocFrLE/ 10) I+1

l-0 Format(/'Equationr,13,' has LHS : 0 and RHS l: 0')
End rf

Return
End



Logical Function LHS_GE_0_RHS_LT_0*1 o

I This function examines the equations for a row whose LHS
! coefficients are a1l ): 0 and whose RHS < 0.

ïncfude tCOMMON. INCt

Logical*l LHS GE 0

Int.eger*2 T. i

IHS_GE_O_RHS_LT_O : .fAfSC.
ï : ROWS_EQN

Do While (I.ge.1 .and. .not.LHS GE 0 RHS LT 0)
LHS_GE_O : .true.
J:1
Do Vùhile (J.1r.COLS EeN.and. LHS GE 0)

LHS_GE_O: EeN(I,J) .ge. 0.0d0
J:.I+1

End Do
LHS_GE_0_RHS_LT_0 : LHS cE 0 . and,. EeN (r, COLS EeN) . l_t. 0 . 0d0
ï:I-1

End Do

If (LHS_GE_0_RHS_LT_0) Then
write (LoGFILE, l_0) I + l-

1-0 Format(/'Equationt,13,r has LHS ): 0¡ RHS < 0r)
End If

Return
End



Logical Function LHS_INT_RHS_NOT_INT*1 o

! This routine examines the equations for a row whose LHS
! coefficients are al-l- integral but RHS ís not.

Incl-ude I COMMON. INC I

Loqical*1 LHS INT
Integ'er*2 I, J
Real*8 Dint

LHS_INT_RHS_NOT_INT : .false.
I : ROWS_EQN

Do While (I.ge.1 .and. .not.LHS INT RHS NOT INT)
LHS_INT : .Irue.
u-f
Do Whil-e ( J. l_t . COLS_EQN . and. LHS_INT )

LHS_INT : EeN(T,J) .eq. Dinr (EeN(r/J) )

J=J+1
End Do
LHS_TNT RHS NOT INT : LHS INT .and.

1 (EON (i, COiS eõr.i) . ne. ninr (eQ¡¡ (r, coLS EQN) ) )
f,-J_-_L

End Do

If (LHS_INT_RHS_NOT_INT) Then
write(LOGFILE,10) I+1

10 Format(/'Equation',13,t has LHS integra]-rRHS non integral-')
End If

Return
End



SubrouLine CLEANUP_EQUATIONS

This routine will get. rid. of any accumufated, round. off error
Incl-ude I COMMON. INC I

Integer*2 I I J
Integer*4 Jidint

ReaI*8 CONST. ROUND_AMOUNT
Parameter (CONST : 10000.0d0)

DoI:1¡ROWS_EQN
Do J : 1r COLS EQN

ROUND_A.I{OUNT : O. 5dO/CONST
rf (EQN(I,J) .l-t. 0.0d0) ROUND AMOUNT: - RoUND AMOUNT
EQN (T, J) : JidiNT ( (EQN (T, J) +ROUND AMOUNT) * CONSF) / CONST

End Do
End Do

Return
End



Subrout ine INTEGERI ZE_EQUAT T ONS

I This routine will copy the system of equations (currentry in
I double precision) to an equivalent system (in integer) . This
! is done so that integ-er solutions to the system can be
! obtained. If the equations have non integral coefficients.
! find the rg-reatest common divisíort and d,ivide through the
! of fending equat.ion.
!

! Also, this routine removes any eguations that have been
! reduced to al-l zeroes.

ïnclude TCOMMON-TNCr

Integer*2 I, Jt NUM_DELETED
Real*8 GCD_LIST(2*MAX SIZE), cCDr Tt Dabs
Logl_cal-x1 ALL_ZERO

! Process one equation at a t.ime

Dof:1,ROWS_EQN

Set up parameter i-ist for GCD routine

Do J : 1¿ COLS EQN
GCD_LIST (J) : Dabs (EQN ( I, .l) )

End Do

T : GCD (GCD_LISTT COLS EQN)
If (r .ne. l_.0d0) Then

DoJ:lrCOLS_EQN
IEQN(T.J) :EeN(r,J) /r

End Do
EIse

DoJ:1,COLS_EQN
ïEQN (If J) : EQN (I. J)

End Do
End If

End Do

I Remove any al-l- zero rows

NUM_DELETED : O

ALL_ZERO : .true.
Do WhiJ-e (ALL_ZERO)

r-1u-f

Do while (J .Ìe. COLS_EQN .and. ALL_ZERO)
ALT, zERo : IEQN(RoWS EQN/J) .eq. O

U-U1A

End Do
Tf (ALL_ZERO) Then

ROWS_EQN:ROWS_EQN-1
NUM_DELETED : NUM_DELETED + 1

End If
End Do

Write (LOGFILET 10)



l- 0 Format ( / ' Equations to be solved.' /,/ )

Ca]-f PRTNT_IEQUATIONS

If (NUM_DELETED .ne. 0) Then
write (LoGFILE, 20) NUM DELETED

20 Format(/'There weret , 13, r equations del_eted.')
End Tf

ReLurn
End



Subroutine PRINT_IEQUATIONS

! This routine prints out the integer form of the equations

ïncl-ude TCOMMON.fNC'

Tnteger*2 I, J

write (LocFrLEr l_0) ( (IEQN(I,J),J:1,CoLS_EQN) ,I:1 rROVüS EQN)
10 FormaL (<COLS_EQN-1> (I4) , ' , ,14)

Return
End



Real Function GCD*8 (LTST/ N)

I This funct.ion will find the GCD of a Lrsr of N efements

Implicit None

Integer*2 N
ReaI*8 LIST (N)

Real*8 T
Integer*2 START/ Ir .l

START : 1

Do Whil-e (START .l-t. N)

Sort LIST

DoI:START,N-1
DoJ:If1¡N

Tf (LIST (J) . lt. LISr (T ) ) rhen
T : L]ST(I)
LTST (I) : LIST (.1)
LrsT (J) : r

End rf
End Do

End Do

Find first non-zero entry

Do Whil-e (LIST (START) . eq. 0. 0D0 . and. START .Ie. N)
START:START+1

End Do

If t.he row is aII zero, exit wit.h a GCD of 1

If (START .gt. N) Then
GCD:1
Return

End Tf

Subtract smal-Lest. el-ement from rest

Dof:START+1,N
LIST(I) : LIST(I) - LIS'(START)
rf (LIST(I) .l_e. 1.0D-5) Then

LIST(I) : 0-0D0
End If

End Do

End Do

GCD : LTST (N)

Return
End



Subroutine SOLVE_EQUATIONS

! This routine will generate afl possible sol-utions to the
I equations.

fnclude TCOMMON. INCt

fnteger*2 f
Logical *1 EQN_OK

I Process trivial- case first. same number of equations and
! variabtes to solve for. Also ensure that this solution obeys
I t.he restrictions imposed by the pair count table.

If (ROWS_EQN .eq. COLS_EQN-1) Then
NUM_SOLUTIONS : 1
Do r : 1¡ COLS EeN-1

SOLUTIONS(1/I) : IEeN(rrCOLS EeN) / rnel¡(r,r)
End Do

El_ se
NUM_SOLUTIONS : 0
CaI1 CALCULAIE_UPPER_BoUNDS

I Set up initial values for solutions

DoI:1¡COLS_EQN-1
CTR(I) : UPPER(I)

End Do
CTR POS : COLS EQN - 1

Keep trying until all counters have reached, zero

Do Whj-l-e (CTR_POS .ge. ROWS_EQN)
If (EQN_OK(ROWS_EQN) ) rhen

Ca]-I CHECK REST OF SYSTEM
End rf

Decrement counter (s)

If (CTR(CTR_POS) .ne. 0) Then
cTR(CTR_POS) : CTR(CTR POS) - 1

Else
Do whi.Le (CTR_POS . ge . ROWS_EQN. and . CTR (CrR_pOS ) . eq. 0 )

CTR_POS:CTR_POS-1
End Do
I f (CTR_POS . ge . ROII]S_EQN) Then

cTR(CTR-POS) : CTR(CTR_POS) - 1
Do CTR POS : CTR pOS+1f COLS EeN-l

CTR(CTR_POS) : UppsR(CTR_FOS)
End Do
CTR_POS:COLS_EeN-1

End rf
End rf

End Do
End If

Call- PRrNT SOLUTIONS



Return
End



Subroutine PRINT_SOLUTIONS

I this routine prínts out all possibre solutions to the system
! of equatíons. Às werr, the possibte solutions are checked. with
I the pair table count.

Include TCOMMON. INCt

fnteger*2 frJ, Kt NUM_GOOD, GOOD(MAX_SIZE)
Logical*1- BAD

write (LocFILE, 10) NUM_SOLUTTONS
10 Format(//,flne number of possibl_e solutions is;,,a3/)

NUM_GOOD : 0

Do f : 1¡ NUM SOLUTIONS
write (LocFrLE/20) r. (SOLUTTONS(r,J) ,J:I,COLS EQN-1)

20 Format (I3, ') ' , <COLS EeN-l> (I4) )

Check solution against pair count tabl_e

BAD : .false.
J:1
Do WhíIe (J. J-e. COLS EQN-1 . and. . not . BAD)

K:l_
Do whiÌe (K.le.COLS_EQN-I- .and. .not. BAD)

If (¡. ne. K) Then
BAD : SOLUTIONS ( r, J) . ge . l- . and.

SOLUTf ONS (r, K) . ge . l- . and.
PAIR_TABLE (COL_PTR (J) , COr, PrR (K) ) .st . 2

Else
BAD : SOLUTIONS (IrJ) .gie. 2 .and.

PAIR_TABLE (COT,_PTR (J) , COL_PTR (J) ) .St. 2
End lf
If (BAD) Then

write (LocFtLEf 30) J, R,
PAIR TABLE (COL PTR(J),COL PTR(K) )

Format ('Solution rejected. , . f3, ' and,, I3, t occurt .
13, ' times toget.hert )

Else
K:K+1

End If
End Do
U_UTA

End Do

If (.not.BAD) Then
NUM_GOOD:NUM_GOOD+l-
GOOD (NUM_GOOD) = I

End If

End Do

If (NUM_GOOD .gt. 0) Then
write (LocFtLEr 40) (GOOD (r) , r:1,NUM_GOOD)

40 Format(/'Check equations: tr(NUM GOOD>I3)

JU



End If

Return
End



Subroutine CALCULATE_UPPER_BOUNDS

! This routine attempts to cal-curate some upper bounds for
I sofvíng the Diophant.ine system of equations.

Incl-ude I COMMON. INC t

Integer*2 I, Jt T
Logical*1 ALr, 2¡P9, ALL_POS

I Assume the worst

DoI:1¡COLS_EQN-I_
UPPER(l) : V

End Do

! Only element on row is on diagonal

DoI:1¡ROWS_EQN
.A,LT, ZERO : .true.
,J:I+1
Do Whife (J .It.. COLS_EQN .and. ALT, ZERO)

ALT. ZERO : IEQN(I,J) .Eq. O

.f:J+1
End Do
If (ALr, ZERO) Then

UPPER(T) : IEQN(I,COLS EeN)
End If

End Do

! All elements are posit.ive, then upper bound is RHS / element

DoI:1¡ROWS_EQN
If (UPPER(I) .eq. V) rhen

ALï, POS : .true.
J:I+1
Do While (J .1t.. COLS EeN .and. ALL_POS)

ALL_POS : IEeN(I,J) .ge. 0

U_UT1
End Do
If (ALL pOS ) rhen

Set bounds for the entire equationr if there is an
improvement.

Do J : Ir COLS EQN-1
ff (IEQN(I,J) .ne. 0) Then

T : IEQN(ITCOLS EQN) / IEQN(I,J)
Tf (t .l-t.. UPPER (J) ) Then

UPPER(J) : T
End If

End If
End Do

End rf
End Tf

End Do



! use pair count tabl-e. rf any element on the pair count tabl_e! diag:onal is > 2, set the corresponding-upper bound to 1.

DoI:1¡COLS_EQN-I
If (PAIR_TABLE(COr, prR(r).COT,_prR(T)) .gr. 2) Then

UPPER(I) :1
End Tf

End Do

write (LocFILE, 10) (uppER(I), r:1,co],S EQN-l_)
10 Format(/'Upper bounds:,,(COLS EeN-1>(I3) )

Return
End



Logical- Function EQN_OK*1 (ROW_NUM)

This function ensures that the possible solution
passes the equation specified in ROW NUM

Incl-ude t COMMON. INC '

Integer*2 ROW_NUM

ïnteger*2 f, SUM

SUM:0
Do I : ROW_NUM' COLS_EQN-I

SUM : SUM + IEQN (ROVü_NUM, I) * CTR (I)
End Do

EQN_OK : SUM .eq. IEQN(ROW_NUM' COIS EeN)

Return
End

being tried



Subroutine CHECK REST OF SYSTEM

! This rout.ines checks the rest of the system of equations for
! validity based on the current counLer values.

ïncl-ude t COMMON. ïNC t

Integer*2 I, J, SUM
Logical*1 SYSTEM OK/ EQN OK

SYSTEM_OK : . true.
I:ROWS_EQN-1
Do Whil-e (SYSTEM_OK .and. I .ge. 1)

Calcul-ate what the value of the counter shoul-d be for
this equation

SUM : IEQN(I, COLS_EQN)
DoJ:T*1¡ COLS_EQN-1

SUM: SUM - TEQN(T,J) * CTR(J)
End Do

If (SUt't .ge. 0 .and. SUM .te. UppER(r)) Then
If (IEQN(I.I) .eq. 1) Then

CTR(]) : SUM
Else

clR(r) : SU¡¿ / ÏEQN(T,r)
SYSTEM OK : EON OK(I)

End If
ï:I-1

Else
SYSTEM OK : .fal_se.

End If
End Do

I If the system is ok, save it for later use

lf (SYSTEM_OK) Then
NUM_SOLUTTONS : NUM_SOLUTIONS + 1
Do I : 1¡ COLS EQN-1

SOLUTIONS (NUM SOLUTIONS,I) : CTR(I)
End Do

End If

Return
End



Appendåx ts

Appendix B contains the output of a program run with g(9) = 11.

Begínning G( 9) :11 at 26-JUN-1989 22:,44:,54.04

Case

B2

1

B3 B4 B5 B6 B'1 B8

Distribution Vectors

A2 A3 A4 A8

0
.)

4

6
'7

1

0

1
n

1

0

0

1

1

0

2
2
1

1

1

Pair Tabl-e

322
221
¿IJ
124
LJJ

Original System of

2.00 2.00 1.00
0.00 0.00 1.00
1.00 0.00 1.00
0.00 2.00 4.00

Equations

1.00 r_.00 : 16.00
1.00 0.00 : 4.00
0.00 1.00 : 3.00
6.00 7.00: 14.00

72
23
45
66
oö

Equations in Row Echelon

1.00 0.00 0.00 0.00
0.00 1.00 0.00 0.00
0.00 0.00 1.00 0.00
0.00 0.00 0.00 1.00

Column pointer vector:

Form

-1.00: 1.00
1.00 : 6.00
1.00 : 4.00
0.00: -2.00

L2354
Equation 4 has LHS ): 0¡ RHS < 0*** Block vector rejected



Case

B2

2

B3 B4 Dq B6 B7 B8

Di-stribution Vectors

A2 A6 A7 A8

Pair Tabfe

2r1
\22
t24

Orig-inal- Syst.em of Equations

1.00 1.00 0.00: 8.00
1.00 0.00 l_.00: 7.00
0. 00 l_.00 l_.00 : 6.00
3.00 4.00 5.00: l_6.00

Equations in Row Echeton Form

1.00 0.00 0.00 : 8.s0
0.00 r_.00 0.00: -0.s0
0.00 0.00 1.00 : -1.50
0.00 0.00 0.00 : 8.00

Co1umn pointer vect.or: 1 2 3

Equation 4 has LHS : 0 and RHS l: 0*** Bfock vector rejected

3011
41_01
s110

Case 3

B2 B3 B4 B5 B6 B7 B8

Distribution Vectors

A2 A4 A5 A7 A8

0r-011
30011
2Ll_01



Pair Tabte

Orig'j-nal System of Equations

1.00 1.00 1.00 1.00 l_.00 0.00 0.00 0.00 : 8.001.00 1.00 0.00 0.00 0.00 1.00 1.00 1.00 : 7.00
0.00 0.00 1.00 1.00 0.00 1.00 l_.00 0.00 : 5.001.00 0.00 l-.00 0.00 1.00 1.00 0.00 1.00: 4.00
0.00 3.00 2.00 5.00 6.00 3.00 6.00 7.00 : 14.00

Equations in Row Echelon Form

r_.00 0.00 0.00 0.00 0.00 0.00 -1.00 -1.00 : 1.00
0.00 1.00 0.00 0.00 0.00 0.00 1.00 1.00 : 5.000.00 0.00 i_.00 0.00 0.00 1.00 1.00 1.00 : s.00
0.00 0.00 0.00 1.00 0.00 1.00 1.00 0.00 : 1_00
0.00 0.00 0.00 0.00 l_.00 -t_.00 -1.00 0.00 : -3.00Columnpointervector: 1 2 3 I 5 6 j 4

Equations to be sol-ved

1 0 0 0 0 0 -t- -1 : 1
0 r_ 0 0 0 0 1 1: s
0 0 1 0 0 1 1 1: 5
0 0 0 1 0 t- 1 0: 1
0 0 0 0 1 -1 -1 0: -3

Upper bounds: 1 5 1 1 1 1 1 1

The number of possible sol-utions is: 0

Case 4

B2 B3 B4 B5 B6 B'7 B8

50101
61001
31110
601-10
7l.010

322722r2
22L23t_34
21"323223
L2255255
2335'735'7
2L223345
13255471
24357579



Distribution Vectors

A2 A3 A4 A7 AB

Pair Ïable

22))
))?1
2231ô.¿ltJ

2r23
L213
l_l_32
l_343
2213
t11a !z
2r32
7222
1,242

2
1

2
?

4

2
4

4

2
2
4

2
4

1
2
1

3
2
e

5
3
2
2
2
3

l_

1

3
2
4

3
4

6

2
2
4

3
4

1

3
4

3
4
trJ

6
I
2
3
4

5
6

2
2
1

3
2
J
2
2
5

4

3
4

3

0011_1
r-1011
30011_
11201
30201
22101
41101_
52001
022r0
2721,0
4021_0
32110
511-10

2
1

t_

2
2
a

2
?

4

3
4

3
4

2

1

3

2
4
a

4

4
?

4

6
4

6

1

2
2
2
2
2
3
5
4

3
4

4

5

1

2
4

2
4
aJ
4

6
3
4

6
q

6

1.00 1".00

0.00 0.00

1.00 1.00

2.00 1.00

2.00 4.00

0.00 0.00 0.00

1.00 1.00 1.00

2.00 2.00 2.00

2.00 1.00 0.00

0.00 2.00 4.00

Originat System of Equations

r_.00 1.00 l_.00 1.00 l_.00
0.00 0.00 : 8.00

1.00 1.00 l_.00 0.00 0.00
r_.00 l_.00 : 7.00

1.00 0.00 0.00 2.00 2.00
1.00 1.00 : 8.00

0.00 l_.00 0.00 1.00 0.00
2.00 1.00 = 6.00

0.00 1.00 3.00 1.00 3.00
3.00 s.00 : 10.00

r_.00

0.00

0.00

2-00

s.00

Equations in Row Echelon Form

1 .00 0.00 0.00 0.00 0.00 -1.00 -1.00 _2.00
1.00 -1.00: 2.00

0.00 0.00 0.00 -



0.00 1.00 0.00 0.00
0.00 -1.00 : 2-OO

0.00 0.00 l_.00 0.001.00 2.00 : 2.OO
0.00 0.00 0.00 l_.000.00 0.00 : 2.00
0.00 0.00 0.00 0.001.00 1.00 : 1.00

Column pointer vector:

Equations to be solved

0.00 1.00

0.00 0.00

0.00 1.00

1.00 0.00

1234

0.00 1.00

1.00 1.00

1.00 1.00

0.00 0.00

9678

-1.00 -1.00 -2.00

1.00 1.00 2.00

1.00 0.00 0.00

0.00 1.00 1.OO

510111273

100
010
001_
000
000

Upper bounds:

0-1-1
010
001
0l_1
100

9111

-2000-1
1-1-1-20
11I21
11000
0011_l_

111111

0

0

0

t_

n

r-z

u: ¿
t_f-t

The number of possible sol_utions is: 25

l-) 4 1_ 1 0 1 t_ t_ o 0 0 0 0 0SoLution rejected. 3 and T occur 3 times toqether2) s 0 l_ 0 t_ t_ 0 l_ 0 õ-= o 0 0Solution rejected. 3 and g occur 4 times tog,ether3) 3 2 1 0 1 1 0 0 1 0 o 0 0SoJ-ution rejected. 5 and. 6 occur 3 times togrether4)5100101_100000
Solution rejected. 2 and g occur 3 times togethers) 3 3 0 0 1 0 1 0 1 0 0 0 0Solution rejected. 7 and 9 occur 4 times together6) 3 2 1 1 1 0 1 0 0 0 0 o 0Sofution rejected. 3 and 7 occur 3 times togrether7) 4 2 0 0 1 0 0 1 1 0 0 0 0Solution rejected. 2 and. g occur 3 times together8) 4 1_ 1 1 1 0 0 1 0 0 o 0 0So.l-ut.ion rejected. 2 and g occur 3 times together9) 2 3 1 1 1 0 0 0 1 0 0 0 0Solution rejected. 4 and 5 occur 3 times togetherL0) 4 2 0 0 0 1 1 0 0 1 0 0 0Solution rejected. 6 and ? occur 3 times together11)51000i_t_000010
Sol-ution rejected. 6 and ? occur 3 times together12)510001_0101_000
Solution rejected. 2 and g occur 3 times togetherr_3) 6 0 0 0 0 1 0 1 0 0 o 1 0Solution rejected.. 6 and g occur 5 times together14) 3 3 0 0 0 1 0 0 t_ 1 o 0 0l_5) 4 2 0 0 o 1 0 0 1 0 0 1 016)3211_010001_000
Solution rejected.. 4 and 6 occur 3 tímes tog-etherr7) 3 3 0 1 0 1 0 0 0 0 r 0 0Solution reject.ed. 4 and. 6 occur 3 times together18) 4 L 1 1 0 1 0 0 0 0 0 1 0SoÌution rejected. 4 and. 6 occur 3 times Logether



19) 420
Solution rejected.

3
4

30
20

Sol-ution rejected.
22)420

SoJ-ution rejected..
23)510

Sol-ution re jected.
24)240

Solution rejected.
2s) 330

Solution rejected.

Check equations:

101_0
4 and 6 occur
1001_
1001
7 and 12 occur
1000
2 and 8 occur
1000
2 and 8 occur
l_000
4 and 9 occur
t_000
4 and 9 occur

14 15 20

000001
3 times t.ogether
001_000
000010
3 times together
101_000
3 times together
100010
3 times together
011_000
3 times together
010010
3 times together

20)
2r)

Case 5

B2 B3 B4 B5 B6 B7 B8

Distribution Vectors

A2 A3 A7 A8

Pair Tab1e

Original System of Equations

l_l_11
7401
0510
241_0
2700

27r22
r2225
I2435
22346
25569

1.00 1.00 0.00
1.00 0.00 l_.00
1.00 4.00 5.00
1.00 1.00 0.00

0.00 0.00: 8.00
1.00 0.00 = 7.00
4.00 7.00 : 2r.00
2.00 2.00 = 4.00

Equations in Row Echelon Form

r_.00 0.00 0.00 0.00 _1.00: 6.000.00 1.00 0.00 0.00 1.00 : 2.000.00 0.00 l-.00 0.00 0.00 = 3.00



0.00 0.00 0.00 t_. o0 1.00 : _2.00
Column pointer vecLor: L Z 3 4 5

Equation 4 has LHS ): 0¡ RHS < 0*** Block vector reject.ed

B2

6

B3 B4 B5 B6 B7 B8

Distribution Vectors

A2 A3 A6 A8

0

2
4

3

5
0

2
4

5

2
1

0

3
2
3
2
1

3

1-

1
1

U

0

2
2
2
L

1

1

1

1

i_

0
tt

0

0

Pair Tab1e

2
1

1

3
2
3
2
t_

2

1

1

2
2
3
2
1

2
)J

t_

2
4

3
q

l_

2

4

4

a

3
5

6

2
aJ

6

2

3
5
6
7

2

4

7

3
2

1
2J

2
5
4

3
4

2
t_

2
2
3
4

3
3

5

1

2

4

3
4

3

3

5
6

2

4

6
7

4

5
6

I

Original System of Equations

r_.00 1.00 1.00
r_.00 1.00 1.00
2.00 1.00 0.00
0.00 2.00 4.00

1.00 1.00 0.00 0.00 0.00 0.00: 8.000.00 0.00 2.00 2.00 2.00 1.00 : 12.oo3.00 2.00 3.00 2.00 t_.00 3.00 : 9.003.00 s.00 0.00 2.00 4.00 5.00: 10.00

Equat.ions in Row Echelon Form

1.00 0.00 0.00 0.00 -1.00 2-oo 1.00 0.00 _1.00 : 4.000.00 i_.00 0.00 0.00 1.00 -1.00 0.00 1.00 2.oo : ?.000.00 0.00 1.00 0.00 0.00 1.00 1.00 l_.00 0.00 : 1.000.00 0.00 0.00 l_.00 l-.00 _1.00 _1.00 _l_.00 0.00 : _3.00
Col-umn pointer vector: r29456783



Equations to be sol_ved

100
0t_0
001
000

n -1 a 14!

01-1 0
0011
l_ t_ -1 -1

0 -1 : 4
r ¿: /
1^rv-a

-1 0: -3

Upper bounds:

The number of possibfe solutions Ís:

Case

B2

7

B3 B4 B5 B6 B7 B8

Distribution Vectors

A2 A3 A5 A6 A8

0

2
4

1

3
5
t_

J
É
J

6

Pair lab.Le

2
2
2
2
1

1
2
2
1
t_

2
3
2
1

2
2
')

l_

3

2
2
4

1

2
4
1

2
4

4

2
t_

1
3
2
2
2
2
l_

3

1

2
2

2
2
3
2
1

3
5

1

2
4

2
J
E
J

l_

3
4

6

2
2
t_

2
.)

l_

4

3
3
4

2
1
2

2
1

3
3
3
4
5

1

3
4

1
aJ

4

3
4

6
7

Original System of Equations

l_

3
4

3
q

6
4
q

'7

9

r_.00 1.00 1.00
0.00 0.00 0.00

0111
101_1
001-1
0201
1101
0101
r210
0210
1110
r200

r_.00 t_.00 l_.00
r".00 i_.00 1.00

0.00 0.00 0.00
r..00 l_.00 1.00

0.00: 8.00
0.00: 6.00



Equations in Row Echel_on Form

1.00 0.00 0.00 0.00
0.00 1.00 0.00 0.00
0.00 0.00 1.00 0.00
0.00 0.00 0.00 1_.00
0.00 0.00 0.00 0.00

Col-umn pointer vector:

Equat.ions to be solved

-1.00 0.00 -1.00
i_.00 -1.00 0.00
0.00 1.00 1.00
1.00 0.00 0.00
0.00 l_.00 1.00't 6 5 I 9 10

1.00 0.00 0.00
0.00 t-.00 0.00
0.00 2.00 4.00

2.00 1.00 1.00
0.00 1.00 0.00
1.00 3.00 5.00

2.00 2.00 1. 00
1.00 0.00 1.00
1.00 3.00 5.00

2.00 : 10.00
1.00 : 3.00
6.00: 72.00

-2.00: 2.00
0.00 : 2.00
1.00 : 1.00
1.00 : 3.00
1.00 : 1.00

0.00 -1.00
0.00 0.00
0.00 1.00
0.00 1.00
1.00 0.00

r234

Upper bounds:

The number of possible sotutions is:
1) s 0 0 0 1

Sol-ution rejected. 6 and
2)41_01_1

Solution rejected. 6 and
3) 4 0 1 1 1
4)50000
5) 4 1 0 1 0
6) s 0 0 1 0

Sol-ution re jected. 7 and
7) 6 0 0 0 o

0 -1 -2:
-1 0 0:

11r¿fa-

0 0 1:
111-r¡r-

2
2

l-

3
1

72000
7 occur 3 times together
11_000

7 occur 3 times together
02000
031_00
02100
02010

9 occur 3 times tog.ether
02001

10000
01000
001_00
00010
00001

-1 -l_
01
10
l_1
00

solution rejected- 7 and 10 occur 5 times together8) s t_ 0 t- 0 0 1 0 0 t-Solution rejected. 2 and 10 occur 3 times toget.her

Check eguat.ions: 3 4 5

Case

B2

I

B3 B4 B5 B6 B7 B8

Distribution Vectors

A2 A3 A4 A5 A6 À8



l_

0

2
4
n

2
1
?

0

2
4

3
0

2
4

1
J

2
4
3

0
a

1

0

1

0

2

1

3
2
l_

3
2
i_

0
?

2
3
2
3

1

0

0

0

l_

1

0

0

1
1
1

0

t-

1

1

0
n

1
l_

1

0

0

0

0

1

1
1

1

0

0

0

0

1

1

1

1
1

0

0

1-

1

1
1

l_

0

0

0

0

0

0

0

0

1

1

1

1
1

t_

1

0

1

1

1

t_

1

1

1

1

1

1

t_

1

0

0

0

0

0

0

0

0

fal-r 'l'abJ.e

32222222271
23223221.722
22322712132
22224711221
2 3 2 4 613 2 41_ 3221_1i_332232
221_13332322
272L2223232
21124232422
72321323254
1,2273222243
i-313s242434
11334223444
222rr222132
221_13227221
231352424J.3
2r322213232
21224r22322
r23232:-2243
132351-32334
1t_223333444

1122222
3122311
132r132
3311_322
5413524
taa.õ. L¿¿¿1
422241,2
232L232
441,2423
3432132
442L322
6513523
5622334
1_243343
3233533
5335735
2343354
343354s
4443444
5s34645
5544545

111-Ô-zJ.l_

322
aaa
LJ¿

?q1
JJJ

2r3
133
'>a)LLJ

)2À
LJ5

434
344
¿qq

455
434
344
465
444
455
565
6'76
567

Original System of Equations

1'00 1-00 1-00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.001.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 : B.0o1'00 1.00 1-00 1.00 1.00 0-00 0.00 0.00 0.00 0.00 0.000.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 : 6.001.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 0.00 0.000.00 0.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 1.00: 5.000'00 1.00 0-00 0.00 0.00 1.00 1.00 0.00 0.00 1.00 1.001.00 0.00 1.00 1.00 1.00 0.00 0.00 1.00 l_.00 1.00: 4.00



0.00 0.00 2.00 1.00 0.001.00 3.00 2.OO 1.00 0.000.00 1.00 0.00 2.OO 4.004.00 3.00 0.00 2.00 4.00

1.00 0.00 2.00 1.00 3.00 2.003.00 2.00 3.00 2.OO 3.00 : 9.000.00 2.00 1.00 3.00 0.00 2.OO1.00 3.00 2.00 4.00 3.00 : 8.00

Equations in Row Echelon Form

l_.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 _1.00 _1.00 _1.00 -1.00 0.00 0.00 0.00 0.00 0.00 _1.00 _1.00 _1.00 : 1.000'00 1'00 0-00 0.00 0.00 0.00 0-00 -1.00 -1.00 0.00 0.000.00 -1.00 0.00 0.00 0.00 _1.00 _1.00 0.00 0.00 _1.00 : 0.000.00 0.00 1.00 0.00 0.00 0.00 _1.00 o.oo _r.oo 1.00 0.00 _1'00 0'00 -r-'00 -1'00 -2.00 0-00 -1.00 0.00 -1.00 -1.00 = 0.000.00 0.00 0.00 l_.00 0.00 0.00 1.00 1.00 2.OO 0.00 1.002.00 2.00 2.OO 1.00 2.oo 1.00 2.OO l_.00 2.OO 2.00: 4.000.00 0.00 0.00 0.00 1.00 0.00 .t-.00 1.00 1.00 1. 00 1.001.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 : 3.000.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.000.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 = 1.00col-umnpoinrervect.or: 1 2 3 4 61,4 j B'g"ioii"ir-r= s1516 r'7 18 19 20 2r

Equations to be sol_ved

1000
0 -1 -1 -1:0100
-1 0 0 -1:001_0
-1 0 -1 -1:0001
21a.- 4Z-

0000
0 0 0 t_:

0000
1 1 1 1:
Upper bounds: l_

i-i-1

0000

00-1-1

0-l-0-1

0112

0111-

L000

000
10-1

012
J-l.1

000

000

0 0 -1

-l- -2 0

121

000
111

0

0

0

1

0

0

0

4

l_
aJ

0

1

1

-1 0

-l_ 0

0-1
?t

10

00

The number of possibl_e solutions j_s:

L) l_ 1 7 2 1 1 100000
Solutj-on rejected. 5 and 7 occur

0

3 times together

Case 9

B2 B3 B4 B5 B6 B1 B8
05



Distribution Vectors

A2 A4 A6 A8

Pair Tabl_e

Original System of Equations

1111
401_1
0301
3201_
2310
5210
4400

2211_:-21
25132s3
1132213
l_322134
722L344
2s13466
1334467

10002
0100-1
0010_1
00011

1.00 1.00 1.00
r..00 1.00 0.00
r-.00 0.00 3.00
1.00 4.00 0.00

Equations j-n Row Echelon Form

L.00 0.00 0.00 0.o0 2.00 1.00 _1.00: 6.000.00 1.00 0.00 0.00 _t_.00 0.00 1.00 : 0.000.00 0.00 i..00 0.00 -1.00 _1.00 1.00 = 2.000.00 0.00 0.00 1.00 1.00 1.00 0.00 : 1.00Columnpointervector: 1 2 3 7 5 6 4

Equat.ions to be solved.

1.00 0.00 0.00 0.00 : 8.000.00 1.00 1.00 0.00 : 6.002.00 3. 00 2.oo 4. 00 : 16. O03.00 2.00 5.00 4.00 : 10.00

^1vf-

-1 1:
1 0:

6

0

2
1

Upper bounds:

The number of possibl_e solutions is:

Case 10



B2 Þ? B4 B6 8.7 B8

Distribution Vectors

A2 A3 A4 A6 A8

1

0
a

1

0

2
1

l_

0

2

1

0

2

0

2
t_

1

J
2
4

2
4

3
5
5

4

t_

0

0

2
1

1

0
a

1

1

0

2
a

1

1
1

0

0

0

0

1

1
1

1

0

0

Pair Table

2
2
3
2
1

2
1

2
1
¿

t_

1
2

2
2
2
1

1

l_

2
1
2
t_

J
2

1

3
a

4

2
1
?

2
2
1

3
l_

2

2
1
2
3
2
J

1

2
l_

2
t-

3

3

l_

1

1

2
2
1

3
1
2
1

3
4

3

2
1

3
3
1

3
3
2
1

2
J

4

1

2
2
1

3
3
4
1

3
3
4

4

4

2

1

2

2
1

2
1
?

3

3
3
4

4

Original System of Equations

1

1

t_

1

1

1

l-

0

0

0

0

0

0

1

2
l_

1

2
1

3
3
4
)J
5
q

4

a

1

3
2
1

2

3
3
4

5
4

5

1
a
J

3
1

J

3
4

J
5
q

o

5

5

1

2
1
?J

4

3
4
4
q

4

5
'7

6

2
1
2
3
3
4

4

4

4

5
5

6

7

1.00 1.00 1.00 0.00 0.00 0.00 0.00

2

1.00 l_.00
0.00 0.00:

r_.00 l-.00
0.00 0.00:

1.00 0.00
2.00 2.00 :

0.00 2.00
5.00 4.00:

1.00 0.00
0.00 2.00:

1.00 t-.00
8.00

1.00 0.00
6.00

0.00 2.00
8.00

1.00 1.00
15.00
2.00 t-.00

4.00

0.00 0.00

r_.00 0.00 2-00 1.00 1.00

2.00 4.00 3.00

1.00 0.00 2.00

0.00

1.00 0.00

J. UU

1.00

1.00 1.00 1.00 1.00

3.00 2.00 4.00

0.00 2.00 1.00

Equations in Row Echel-on Form



1.00 0.00 0.00 0.00 0.00 -l_.00 -2.00 2.oo 1.00 1.00 0.00 _
1.00 0.00: 2.00

0.00 1.00 0.00 0.00 0.00 0. o0 1.00 _1.00 0. o0 _1.00 0.001.00 -l_.00 : 4.00
0.00 0.00 1.00 0.00 0.00 1.00 1.00 0.00 0.00 1.00 1.000.00 1.00: 0.00
0.00 0.00 0.00 1.00 0.00 1.00 1.00 _1.00 _1.00 _1.00 _1.00

1.00 0.00: 2.00
0.00 0.00 0.00 0.00 1_.00 0.00 0.00 1.00 1.00 1.00 1.00

0. 00 r_. 00 : 1-.00
Columnpointervector: 1 2 3 4IZ 6 j I 91011 513
Equat.ions to be solved

t_ 0 0 0 0 -1 -2 2 I l_ 0 _1 0: 2
0 1 0 0 0 0 1 -l_ 0 -l_ 0 1 -1 : 40 0 l_ 0 0 1 1 0 0 1 t_ 0 1: o0 0 0 1 0 1 1 -1 -1 -1 -l- 1 0: 20 0 0 0 1 0 0 1 l_ 1 1 0 l-: 1

Upper boundsz 9 9 1 1 1 l_ 1 1 1 l_ j- 9 L

The number of possibte sotutions is: 6

1) 4 2 0 0 1 0 0 0 0 0 o 2 0
Solution rejected. 5 and, 12 occur 4 times together2)33011_0000001-0
Solution rejected. 4 and 5 occur 3 times together3) 3 2 0 0 0 0 0 1 0 0 0 3 04)2301000100020

s) 4 1 0 0 0 0 0 0 1 0 0 3 06)3201000010020

Check equat.ions: 3 4 5 6

Case 1l-

B2 B3 B4 B5 B6 B'] B8

5113001

Distribution Vectors

A2 A3 A4 A5 A8

r_0021
011_11
20111
31011
50011
4tl_01
10130
21,030



40030
31r20
s01,20

Pair Table

21-112L222L2
l_3221_322721
1,22r3321,21,3
r21344r2323
2L346s2353s
r_334561_234s
222L2r43334
221,23234434
21235334646
r2t23433445
2]-335544651

Original System of Equations

1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 _-

8.00
2.00 1.00 1.00 1.00 1.00 0.00 3.00 3.00 3.00 2.oo 2.oo :

15.00
0.00 1.00 1.00 0.00 0.00 1.00 1.00 0.00 0.00 1.00 1.00 :

4.00
0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 :

3.00
1.00 0.00 2.00 3.00 5.00 4.00 1.00 2.00 4.00 3.00 s.o0:

10.00

Equations in Row Echelon Form

1.00 0.00 0.00 0.00 0.00 -1.00 0.00 0.00 0.00 -1.00 _1.00 :
4.00

0.00 1.00 0.00 0.00 0.00 0.00 -l-.00 0.00 -1.00 0.00 -1.00 :
2-00

0.00 0.00 l-.00 0.00 0.00 l-.00 1.00 -1.00 0.00 0.00 1.00 =
r_.00

0.00 0.00 0.00 1.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 :
1.00

0.00 0.00 0.00 0.00 1.00 0.00 0.00 1.00 t_.00 1.00 1.00 :
1.00
Columnpointervector: 1 2 3 4 7 6 5 I 91011
Equations to be soJ-ved

i_ 0 0 0 0 -1 0 0 0 -l_ -1 : 4
0 1 0 0 0 0 -1 0 -1 0 -1: 2
0 0 1 0 0 1 1 -1 0 0 1: 1
0 0 0 1 0 1 1 1 1 1 1: 1
0 0 0 0 1 0 0 1 1 1 1: 1

Upper bounds: 9 1 9 l- 1 1 l- 1 1 1 l_



The number of possible solutions is:

Case

B2

T2

B3 B4 B5 B6 B7 BB

Dist ribut.ion Vectors

A2 A3 A4 A5 A8

1

0

2
1

3
1

0

2
?

0

2
t_

J

2
n

2
?

0

1

0

2
1
l-
0

3
2
3
t-

0

2
1

3
2
3

0

1_

1

0

0

2
2
1

1

0

2
2
1

1-

U
a

2
1

2
1

t_

1
1

0

0

0

0

0

2
2
2
2
2
t-

l-

1

1
1
t-

1

1
1

1

1

1

1

0

0

0

0
n

0

0

0

Pair Table

3
2
2
2
3
t-
?

1
t_

2
2
.)

2
J

2
t-

1

2

2
1
1

1

t_

2
2

2
1

2

2
2
1

t-

2
2

1

1

2
1
2
1
?

2
4

1

2

3
2
3
l_

2

1

2
2

2

I
1

2

2
1

2

3
a

4

1

1

2
2
3
2
l_
IJ

?

1

3

2
4
a

4

2
?

5
1
aJ

2

4
4

l-

2
4

l_

2
2
1

2
3
4

3
2
3
2

2
1

2

1
aJ

2
3

2
2
4

2
4

4

6

2
4

4

2
4

2
4

2

2
4

4

1

2
1

3
2
J
2

4

3
4

2
1

2
t-

3

4

3

3

l-
1

2
2
3
2
4

3
)J
trJ

l_

2
1

2

3

3
4

2
2
3

4

5

3
4

4

5
1

1

2
3
4

5
3
4

6

2

2
2
1

1
2

2

2
1

i_

4

4

3
J
3

4

3

3

2
2

3
1
?

2
4

1

2
2

4

5
3

5
J

4

4

2
1

l_

2
2
l_

2
2
1

3
?
?

3
?

4

4

3
4

3
1

3
2
4
2

4

1

2
4

3
5
3
5
5
3
4
5

2
2
2
3
4

1

2

3
3
trJ
9J

3
4

5
6
4

4

6

1

2
1

2
l_

3
2
4

3
3
4
)J
4
)J
4

5
4

4

1
1

2
1

2
2
4

3

3
4

3
4

3
4
4

4

4

5

2
1

2
)J
4
?

4

3
4

6

3
4

4

5
6
4

5
6



Original System of Equations

r_.00 1.00 1.00 1.00 t-.00 1.00 1.00 1.00 1.00 1.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 : 8.00

2.00 r_.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 2.oo
2.00 2.00 2.00 2.00 1.00 1.00 1.00 : 10.00

0.00 1.00 1.00 0.00 0.00 2-00 2.00 l_.00 1.00 0.00 2.00
2.00 1.00 t_.00 0.00 2.00 2.00 l_.00 : 8.00

0.00 r-.00 0.00 2.00 1.00 1.00 0.00 3.00 2.00 3.00 1.00
0.00 2.00 t_.00 3.00 3.00 2.00 3.00: 9.00

1.00 0.00 2.00 1.00 3.00 1.00 3.00 0.00 2.00 3.00 0.00
2.00 1.00 3.00 2.00 0.00 2.00 3.00: 6.00

Equations in Row Echel-on Form

1.00 0.00 0.00 0.00 0.00 -1_.00 -t_.00 -1.00 -t_.00 -1.00 0.00
0.00 0.00 0.00 0.00 -1.00 -1.00 -l_.00 : 0.00

0.00 r_.00 0.00 0.00 0.00 1.00 0.00 1.00 0.00 -1.00 -t_.00 -
1.00 -1 .00 -2.00 -2.00 0.00 -1 .00 -2.00 : 4.00

0.00 0.00 1.00 0.00 0.00 t_.00 2.00 0.00 t_.00 1.00 1.00
1.00 0.00 1.00 0.00 0.00 1.00 l_.00 : 2.00

0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 1.00 2.oo 1.00
0.00 1.00 1.00 2.00 l_.00 1.00 2.00 : 2.00

0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
1.00 1.00 1.00 1.00 1.00 1.00 1.00 : 1.00
Columnpointervector: 1 2 3 411 6 1 I 910 5i,2 131415
l_6 17 18

Equations to be solved

1 0 0 0 0 -1 -1 -1 -1 -1 0 0 0 0 0 -1 -1
-1 : 0

0 r_ 0 0 0 1 0 1 0 -1 -1 -1 -1 -2 -2 0 -1-À-z - q

0010012011_1101001
1_ôa-L

000r-0001a21011211
a-a

00001000000111111
1: 1

Upper bounds: 1 9 2 2 I 1 1 1 1 1 1 1 1 1 1 1 1 l_

The number of possibl-e so-Iutions is: 3'7

1) 7 4 0 1 t_ 1 0 0 0 0 t_ 0 0 0 0 0

00
Solution rejected. l- and 11 occur 3 times together

2)13L21l-0000000000
00

3) r 4 0 2 1 0 1 0 0 0 0 0 0 0 0 0
00



4)L410100100100000
00
Sol-ution rejected. 1 and 11 occur 3 times tog-ether

5) 1 3 2 r 1 0 0 l_ 0 0 0 0 0 0 0 000
Sol-ution rejected. 4 and I occur 3 times tog-ether

6) 1 5 0 0 1 0 0 0 1 0 t- 0 0 0 0 o00
Solution rejected. l- and, 11 occur 3 times together

7) L 4 1 1 1 0 0 0 1 0 0 0 0 0 0 000
8) 1 5 1 0 1 0 0 0 0 1 0 0 0 0 0 000

Solution rejected. 3 and 10 occur 3 times together
9) 0 s 1 l_ 1 0 0 0 0 0 1 0 0 0 0 000

Sol-ution rejected. 3 and 11 occur 3 times together
10) 0 4 2 2 1 0 0 0 0 0 0 0 0 o o 000
11) 1 s 0 0 0 1 0 0 0 0 1 0 1 0 0 000

So1ut.ion rejected. 1 and 11 occur 3 times together
12)r402010000010000

00
13) 1, 4 1 1 0 1 0 0 0 0 0 0 1 0 0 000
L4) 1 5 0 l_ 0 l_ 0 0 0 0 0 0 0 1 0 000

Solution rejected. 1 and 14 occur 3 times together
15) 1 5 l- 0 0 1 0 0 0 0 0 0 0 0 1 000
r-6) 1 5 0 1 0 0 1 0 0 0 0 0 1 0 0 000
[t) 1 6 0 0 0 0 1 0 0 0 0 0 o 0 1 000
18) 1 5 0 0 0 0 0 1 0 0 l_ t_ 0 0 0 000

Solution rejected. 1 and 11 occur 3 times together
19) t 4 1 1 0 0 0 t_ 0 0 0 t_ 0 0 0 000

Solution rejected. 3 and 1-2 occur 3 times tog-ether
20) 1, 4 2 0 0 0 0 l_ 0 0 0 0 1 0 0 000
23")1510000100000100

00
Sol-ution rejected. 1 and 14 occur 3 times tog'ether
22)1s01000010010000

00
23)1510000010001000

00
24)r600000010000100

00
Solution reject.ed. 1 and 14 occur 3 times together
25r. 1_ 6 0 0 0 0 0 0 0 l_ 0 1 o 0 0 000
26)060100000011-0000

00
Solution reject.ed. 11 and l-2 occur 3 times together



27) 0 6 1
00
Solution rejected.
28)070

00
Sol-ution rejected.
29)151

00
Sol-ution rejected.
30) r 6 0r_0

Solution rejected.
31) 0 s 1

00
Sol-utíon rejected.
32)0s2

00
33) 0 6 1

00
Solution rejected.
34) 0 6 2

00
3s)L42

00
36)151

10
37) 1 6 1

01

Check equations:

0000

3 and 1l- occur
0000

11 and 14 occur
0000

1 and 1l- occur
0000

1 and l-1 occur
2000

3 and 72 occur

3 and 14 occur
0000

1000

r_000

0000

00010
3 times together
00010

4 times together
00010

3 tímes together
00010

3 times together
00001

3 times together
00000

00000

3 times together
00000

00000

00000

00000

1000

0100

r-000
1000

0

0

0

0

0

0

0

0

10

0r_
00

00

Case 13

B2 B3

1 L0 12 13 1s 1,6 r7 20 22 23 25 32 34 35 36

B4 B6 B7 B8

Distribution Vectors

A3 A5 A8

Pair Tabl-e

234
346
468

Original- System of Equations

420
610
800



0.00 0.00 0.00 : 8.00
2.00 1.00 0.00: 10.00
4.00 6.00 8.00: 24.00

Equations in Row Echelon Form

1.00 0.00 -1.00 : 4. s0
0.00 1.00 2.00 : 1.00
0.00 0.00 0.00 : 8.00

Column pointer vector: 1 2

Equation 3 has LHS : 0 and RHS l: 0*** Block vector rejected

Case

B2

I4

Þ? B4 Þtr B6 B7 BB

Distribution Vectors

A2 A4 A5 AB

Pair TabÌe

2
1
2
1
a

1
2

1

2
1

2
1

3
2

2
1

3
1
a

2
4

Original System of Equations

1.00 1.00 1.00 0.00
1.00 0.00 0.00 1.00
1.00 3.00 2.00 4.00
2.00 0.00 3.00 0.00

2711
0301
3201
0410
331_0
1500
4400

121,2
a12a
.LJ¿

r224
4343
3435
4355
3557

0.00 0.00
1.00 0.00
3.00 5.00
3.00 1.00

0.00 : 8.00
0.00: s.00
4.00 : 20.00
4.00: 8.00

Equations in Row Echelon Form



1.00 0.00 0.00 0.00 0.00 -1.00 -l_.00 : 4.00
0.00 1.00 0.00 0.00 -1.00 0.00 -1.00 : 4.00
0.00 0.00 1.00 0.00 1.00 1.00 2.00 : 0.00
0.00 0.00 0.00 1.00 1.00 1.00 1.00 : 1.00

Col-umn poj-nter vector: 1 2 3 4 5 6 7

Equations to be solved

r_ 0 0 0 0 -l_ -1 : 4

0 1 0 0 -1 0 -1= 4
0 0 1 0 l- 1 2: 0

0 0 0 1 1 l- 1: 1

Upper bounds: 9 9 7 1 1 1 l-

The number of possible soÌutions is: 1

1) 4 4 0 1 0 0 0

Check equations: 1

Case 15

B2 B3 B4 B5 B6 B7 B8

1531001

Distribution Vectors

A2 A3 A4 A5 A8

Pair Table

011-11
\201_1
00301
i_r_201
03101
74001
r_1310
032]-0
1_41_10
r_3300
0s200

222r1_12r111
23L2r_32L312
21432132132
r2337231132
11212311223
13L235:-2434



223311_53343
1127L233334
13112433544
11332343455
L2223434456

Original System of Equations

1.00 1.00 1.00 1.00 1.00 t_.00 0.00 0.00 0.00 0.00 0.00 =
8.00

1.00 1.00 0.00 0.00 0.00 0.00 1.00 l_.00 1.00 0.00 0.00 :
5.00

1.00 0.00 3.00 2.00 1.00 0.00 3.00 2.00 1.00 s.00 2.oo:
t2 .00

1.00 2-00 0.00 1.00 3.00 4.00 1.00 3.00 4.00 3.00 s.0o :
1s.00

0.00 r_.00 0.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00:
2.00

Equatj-ons in Row Echelon Form

1.00 0.00 0.00 0.00 0.00 -1.00 0.00 1.00 0.00 -l_.00 -1.00 :
3.00

0.00 1.00 0.00 0.00 0.00 1.00 1.00 0.00 1.00 1.00 1.00 :
2 .00

0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 1.00 1.00:
2 .00

0.00 0.00 0.00 1.00 0.00 0.00 l-.00 1.00 1.00 1.00 0.00:
1.00

0.00 0.00 0.00 0.00 1.00 r.00 -2.00 -1.00 -1.00 -1. o0 0.00 :
1.00
Col-umnpointervector: 1 2 31-I 5 6 7 I 910 4

Equations to be solved

1 0 0 0 0 -1 0 1 0 -1 -1: 3
0 1 0 0 0 t- 1 0 1 1 1: 2
0 0 1 0 0 0 t_ 0 0 1_ 1: 2
0 0 0 1 0 0 1 1 1 1- 0: 1
0 0 0 0 1 1 -Z -1 -l- -1 0: 1

Upper bounds: 9 1 1 L 9 L 1 1 1 1 1

The number of possible solutions is: 11

l-) 4 0 0 0 3 0 1 0 0 0 l_

SoÌution rejected. 7 and 11 occur 3 times tog.ether
2)3r-103010000

Sol-ution rejected. 3 and 7 occur 3 times together
3) 4 0 r_ 0 2 1_ 1 0 0 0 0

Solution rejected. 3 and 7 occur 3 times together
4)31102001001

Solution reject.ed. 3 and 11 occur 3 t.imes together
5)40r_020001_01



Solution rejected. 3 and 11 occur 3 times together
6) 5 0 0 0 2 0 0 0 0 1 1

Solution rejected. 10 and 11 occur 3 times together
7) 4 1 1 0 2 0 0 0 0 1 0

Solution rejected. 3 and l-0 occur 3 times together
8) 4 0 1 0 1 t_ 0 1 0 0 1

Solution rejected. 3 and 1l- occur 3 times together
9) s 0 1 0 1 1 0 0 0 1 0

Sol-ution rejected. 3 and 10 occur 3 times together
10) 4 1, 1 1 t_ 0 0 0 0 0 1

Soi-ution rejected. 3 and 1l- occur 3 times tog-ether
11) 5 0 1 t- 0 1 0 0 0 0 1

Solution rejected. 3 and l-l- occur 3 times toget.her

Case 16

B2 B3 B4 B5 B6 B '7 B8

2260001_

Distribution Vectors

A2 A3 A4 A8

Pair Table

l_1I211
113111
135123
2L]-434
t_12343
113434

Original System of Equations

1.00 r_.00 1.00 0.00 0.00 0.00: 8.00
3.00 2.00 1.00 5.00 4.00 4.00: 24.00
0.00 1.00 2.00 0.00 2.00 1.00 : 6.00
0.00 1.00 2.00 l_.00 0.00 2.00 : 4.00

Equations in Row Echelon Form

r_.00 0.00 0.00 0.00 -1.00 -1.00: 4.00
0.00 1.00 0.00 0.00 2.00 1-.00 : 4.00
0.00 0.00 1.00 0.00 0.00 0.00 : 1.00

003i_
1t_21,
2211
l_050
0240
21,40



0.00 0.00 0.00 1.00 0.00 1.00 : 0.00
Columnpointervector: 1 2 5 4 3 6

Equations to be sol-ved

r_00
010
001
000

Upper bounds:

4
4

1

0

The number of possíble solut.ions is:

1) 521-010
Sol-ution rejected. 2 ano. 5 occur

2) 441000
Check equations:

0 -r_
02
00
l_0

94

-a -
1:

1-

l_1

2

3 times together

Case 1,'1

B2 B3 B4 B5 B6 B7 B8

Distributíon Vectors

A2 A3 A4 A6 A'7

Pair Table

3222
alaa
LJLZ

2241_
2213
21,L2
1222
1_24]-
)?a)
a)^aLJAJ

r-0102
2L002
40002
01111
20111
31011_
50011
51101_
611i_0

2r722
1_2233
12444
22r23
¿t¿24
L2335
23546
23467
45679



Original System of Equations

2.00 2. 00 2.00
0.00 0.00 0.00
r_.00 0.00 0.00
0.00 1.00 0.00
1.00 2.00 4.00

1.00 1.00
1.00 r..00
1.00 1.00
1.00 0.00
0.00 2.00

1.00 1.00
1.00 1.00
0.00 0.00
1.00 0.00
3.00 5.00

1.00 0.00 : 14.00
0.00 1.00 : 6.00
1.00 1.00 : 4.00
l-.00 1.00 : 3.00
5.00 6.00 : 12.00

Equations in Row Echelon Form

r_.00 0.00 0.00 0.00
0.00 1.00 0.00 0.00
0.00 0.00 1.00 0.00
0.00 0.00 0.00 t-.00
0.00 0.00 0.00 0.00

Column pointer vector:

Equation 5 has LHS ): 0, RHS < 0
*** Block vector rejected

0.00 -1.00 -1.00 0.00 -1.00 : 0.00
0.00 0.00 -1.00 -1.00 -1.00 : -1.00
0.00 1.00 2.00 1.00 1.00: 6.00
0.00 1.00 1.00 t_.00 1.00 : 6.00
l_.00 0.00 0.00 0.00 1.00 : -2.00

1-23486759

Case

B2

18

B3 B4 B5 B6 8.7 BB

Distribution Vectors

A2 A3 A4 A5 A'7

0

1
a

4

0

t_

3
4

2
4
5

4

0

0

1

U

0

1

0

1

l_

0

1

1

Pair Table

012
t_02
002
002
271
111
111
0l_1
201
20r-
101-
2L0

322222221111
22222111222r
22331,2132242
22351_1342453
22113221221-3
2r21,22722L23
2r1321,231_334



2L3412352355
1-222221,23344
L2242]-333555
1_245r2354566
r-12333454567

Original System of Equations

2.00 2.00 2.00 2.00 1.00 1.00 t-.00 1.00 1.00 1.00 1.00
0.00 : 14.00

r-.00 0.00 0.00 0.00 1.00 1.00 1.00 t_.00 0.00 0.00 0.00
1.00 : s.00

0.00 1.00 0.00 0.00 2.00 1.00 1.00 0.00 2.00 2.00 1.00
2.00 : 8.00

0.00 0.00 1.00 0.00 0.00 1.00 0.00 1_.00 1.00 0.00 1.00
1.00 : 3.00

0. 00 1 .00 2.00 4. 00 0. 00 t_. 00 3.00 4. 00 2.00 4.00 s. 00
4.00 : 10.00

Equations in Row Echelon Form

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -l_.00 -1.00 -1.00 -
r_. 00 : r_.00

0.00 r_.00 0.00 0.00 0.00 -1.00 -1.00 -2.00 0.00 0.00 -1.00 -
2-00 : 0.00

0.00 0.00 r_.00 0.00 0.00 1.00 0.00 1.00 1.00 0.00 1.00
1.00 : 3.00

0.00 0.00 0.00 1.00 0.00 0.00 1.00 t_.00 0.00 1.00 1.00
1.00 : 1.00

0.00 0.00 0.00 0.00 1.00 1.00 l_.00 1.00 1.00 1.00 1.00
2.00 : 4.00
ColumnpointervecLor: 1 2 3 4 5 6 7 I 9101,112

Equations to be solved

1 0 0 0 0 0 0 0 -1 -1 -l- -1 : 1

0 1 0 0 0 -1 -1 -2 0 0 -1 -2= 0
0 0 1 0 0 1 0 1 1 0 1 1: 3
0 0 0 l- 0 0 l- 1 0 l- 1 1: 1
0 0 0 0 l- 1 1 1 1 1 a 2: 4

Upper bounds: 1 9 1 1 1 3 1 1 1 1 1 l-

The number of possibfe solutions is: 4

r_) 1 3 0 1 1 3 0 0 0 0 0 0
2lr_31072100000
3) 1, 4 0 0 r 2 0 t_ 0 0 0 0
4)740003100000

Check equations: l- 2 3 4



Case 19

B2 B3 B4 B5 B6 B7 B8

2601020

Distribution Vectors

A2 A3 A5 A7

Pair Tab1e

Original System of Equations

2.00 2-00 2.00 1.00 1.00 1.00 l-.00 0.00 0.00 : t_4.00
r_.00 0.00 0.00 1.00 1.00 0.00 0. 00 1. 00 t_. 00 : 5.00
0.00 2.00 t-.00 3.00 2.00 5.00 4.00 6.00 5.00 : 18.00
0.00 0.00 2.00 0.00 2.00 0.00 2.00 0.00 2.00: 4.00

Equat.ions in Row Echelon Form

1.00 0.00 0.00 0.00 0.00 -1.00 -1.00 -1.00 -1.00 : 1.00
0.00 1.00 0.00 0.00 -1.00 1.00 0.00 0.00 -1.00 : 2.00
0.00 0.00 1.00 0.00 1.00 0.00 l-.00 0.00 1.00: 2.00
0.00 0.00 0.00 i_.00 1.00 1.00 1.00 2.00 2.00 : 4.00

Columnpointervector: 1 2 3 4 5 6'7 I 9

Equations to be sol-ved

1 0 0 0 0 -1 -1 -1 -1: 1

0 1 0 0 -r_ 1 0 0 -1 : 2
0 0 r- 0 1 0 1 0 1: 2
0 0 0 r_ 1 1 ! 2 2: 4

0072
0202
2L02
03r-1
221-l_
0501
2401
0610
2510

322227111
2221_L2721
2241,31312
2L111,2r43
2L3131_234
t21_2L4354
t_13123445
1-2L435476
i_12344567



Upper bounds: 1 9 1 4 L 1 1 1 1

The number of possible sol-utions is: 1

1) r_ 3 r_ 3 1 0 0 0 0
Sol-ution rejected. 3 and 5 occur 3 times together

Case 20

B2 B3 B4 B5 B6 B7 B8

3330020

Distribution Vectors

A2 A3 A4 A7

Pair Table

Original System of Equations

2.00 2.00 2.00 r_.00 1.00 t_.00 1.00 1.00 0.00 0.00 : 14.00
1.00 0.00 0.00 3.00 2.00 2.00 1.00 1.00 3.00 3.00: 12.00
0.00 2.00 1.00 0.00 2.00 1.00 3.00 2.00 3.00 2.00: 9.00
r_.00 0.00 2.00 1.00 0.00 2.00 1.00 3.00 l_.00 3.00 : 6.00

Equat.ions in Row Echel-on Form

l_0L2
0202
2L02
1031
0221
2I2I
1311
32i_1
1330
?2?n

22221_11212
232t2r322r
22311.22312
2113221,234
1-21-221,2]-43
11221,21,234
132]-213344
2232L23445
r2r-3434466
2I24344567



r-.00 0.00 0.00 0.00 -t_.00 -1 .00 -2.00 -2.00 -3.00 -3.00 : 0.00
0.00 r_.00 0.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 : 4.00
0.00 0.00 1.00 0.00 0.00 l-.00 1.00 2-00 1.00 2.00: 1.00
0.00 0.00 0.00 1.00 1.00 l_.00 1.00 t_.00 2.00 2.00 : 4.00

Col-umnpointervector: 1 2 3 4 5 6'7 8 910

Equations to be solved

i_ 0 0 0 -1 -1 -2 -2 -3 -3: 0
0 1 0 0 1 0 1 0 1 0: 4
0 0 1 0 0 1 I 2 I 2: 1
0 0 0 l- 1 l- 1 1 2 2: 4

Upper bounds: 9 i- 1 I 4 1 1 1 L l_

The number of possible solutions is: 6

1) 3 r- 1 r_ 3 0 0 0 0 0

2)41"01201000
Sol-ution rejected. 2 and 7 occur 3 times Logether

3) 4 0 r_ 0 4 0 0 0 0 0
4) 4 r 0 0 3 l_ 0 0 0 0

5) s 0 0 0 3 0 1 0 0 0

6) s 1 0 0 2 0 0 0 t_ 0
Solution rejected. 5 and 9 occur 4 times together

Check equations: 1 3 4 5

Case 2I

B2 B3 B4 B5 B6 B7 B8

0810020

Distribution Vectors

A3 A4 A7

Pair Table

Original System of Equations

2.00 r_.00 0.00: t_4.00

202
501
800

2L2
1-25
258



0.00 0.00 0.00 : 4.00
2.00 5.00 8.00 : 24.00

Equations in Row Echelon Form

1.00 0.00 -1.00 : s.75
0.00 1.00 2.00: 2.s0
0.00 0.00 0.00: 4.00

Column pointer vector: 1 2

Equation 3 has LHS : 0 and RHS !: 0*** Block vector rejected

B4 B5 B6 B7 BB

Case

B2

22

B3

Distríbution Vectors

A2 A3 A5 A6 A'1

Pair Tab1e

00021
r-0111_
t20l_1
31011
50011_
221_01
4]-t_01
01r20
20:J.20
22020
41_020
321r_0
5111_0

322221,r222211
2211222221\12
2132232213222
2L22423t-r2323
2224635133535
L2323442r2234
1-22354s122345
2221121_333232
2211312332324
21-32322324434
2723523234545
t_122334323445
t223545244ss6



Original System of Equations

r_.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00
0.00 0.00: 7.00

2.00 l_.00 t_.00 1.00 1.00 0.00 0.00 2.oo 2.00 2.oo 2.001.00 r_.00 : 1"2.00
0.00 1.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 0.00 0.001.00 1.00 : 5.00
0.00 0.00 2.00 1.00 0.00 2.00 l_.00 1.00 0.00 2.00 1.002.00 1.00 : 6.00
0.00 1.00 l_.00 3.00 s.00 2.00 4.00 0.00 2.00 2.oo 4.00

3.00 s.00 : l_0.00

Equatíons in Row Echelon Form

r-.00 0.00 0.00 0.00 0.00 -1.00 -i_.00 0.00 0.00 0.00 0.00 _
1.00 -1.00 : 1.00

0.00 r_.00 0.00 0.00 0.00 1.00 1.00 0.00 0.00 -1.00 -1.000.00 0.00 : 3.00
0.00 0.00 1.00 0.00 0.00 1.00 0.00 -1.00 -1.00 0.00 -1.00

0.00 -1.00 : t_.00
0.00 0.00 0.00 1.00 0.00 0.00 1.00 2.00 1.00 1.00 2.00

1.00 2.00: 2.00
0.00 0.00 0.00 0.00 l-.00 0.00 0.00 0.00 1.oo 1.00 1.00

1.00 1.00 : 2.00
Columnpointervector: 1 2 3 4 I 6 i 5 910111-213

Equations to be solved

1 0 0 0 0 -1 -1 0 0 0 0 -1 -1: 1
0 r_ 0 0 0 l_ 1 0 0 -1 -1 0 0: 3
0 0 1 0 0 1 0 -1 -1 0 -1 0 -1 : l_

0 0 0 1 0 0 1- 2 l_ 1 2 7 2: 2
0 0 0 0 1 0 0 0 1 1 1 1 1: 2

Upper bounds: 1 9 1 2 1, l- 1 l_ 1 1 l- 1 1

The number of possibl-e sol-utions is: 1

1) t 4 l_ t_ 1 0 0 0 0 1 0 0 0
Sol-ut.ion rejected. 3 and 10 occur 3 times together

Case 23

B2 B3 B4 B5 B6 B'7 B8

341021,0

Distríbution Vectors

A2 A3 A4 A6 A7



0

0

2
t_

3
1
?
a

1

J
0

2
0

2
J

0

1
n

2
1
3
2
4

1

0

3
2
4

3
4

0

1
1

0

0

1

1

0

1

t_

0

0

1

t_

0

2

1

1
1

t_

0

0

0

2

2
2
2

I
1

1

1

l_

1

t_

1
1
1

1

0

0

0
n

0

0

0

Paír Tabl-e

?

2
2
2
2
t_

1

1

2
2
2
2
1

t_

l_

2
2
2
t_

1

2
a

2
2

2
1

1
a

l_

1

2
2
3
1

3
2
4

2
2
4
1
a

1
2
2

2
1

1

1

2
2
2

3
1

2
2

l_

2
l_

3

2

l_

3
2
4

2

4

4

2
4

1

3
1

2
4

1

2
2

2
az

4

4

4

l_

2
2
l-

4
?

4

1

2
4

2
4

4
q

5
2

4
1

2

4

5

1

2
2

3
4

4
5

6
1

2
2

4

4
6

2
2
2

l_

2
1

2

l_
)J
4

2
2

3
2
3

Original System of Equations

1.00 1.00 1.00 1.00
0.00 0.00 0.00 0.00 :

2.00 r_.00 1.00 1.00
2-00 r_.00 t-.00 1.00 :

0.00 1.00 1.00 0.00
0.00 r-.00 1.00 0.00:

0.00 l_.00 0.00 2.00
2-00 4.00 3.00 4.00 :

0.00 0.00 2.00 1.00
2.00 0.00 2.00 3.00 :

1
2
1

2
t_

4
J

4

3
2
4

5
4

4

t_

1

2

1

2
3
4

4

2
4

J

3
4
4
5

t_

1

2
3
4

4
q

6

3
4
4

5
4

5
1

r_.00 1.00 0.00 0.00 0.00

0.00 0.00 2.00 2.00 2.00

2
2
4

2
4

2
4

2
4

6
2
4

2
4
4

2
1

1

2
1

2

1

J
2

2
4

3
4

3
4

2
i_

2
1

3
l-

2
3
t

4

3

3
3

5

1.00 1.00
7.00

1.00 0.00
L2 .00
0.00 1.00
4.00

1.00 3.00
L2 .00
3.00 1.00

6.00

1.00 0.00 1.00

2.00 4.00 1_00

r_.00 0.00

0.00 3.00

Equations in Row Echelon Form

1.00 0.00 0.00 0.00
0.00 -1.00 -1.00 -l_.00 :

0.00 1.00 0.00 0.00
1.00 l-.00 0.00 -l-.00 =

0.00 -1.00 -1.00 -1.00 0.00 0.00 0.00

3.00 2.00 1.00 3.00 0.00

1.00
0.00 1.00

2 .00
0.00 0.00 -1.00 -l_.00 0.00 -



0.00 0.00 1.00 0.00
0.00 -1.00 0.00 0.00 :

0.00 0.00 0.00 t-.00
1.00 r_.00 1.00 2.00:

0.00 0.00 0.00 0.00
1.00 1.00 1.00 1.00:
Column pointer vector:

Equations to be solved

0.00 0.00
0.00

0.00 r_.00
4.00

1.00 0.00
2.00

1t?a

r_.00 0.00

1.00 2.00

0.00 0.00

9678

1.00 1.00 -1.00

1.00 0.00 1.00

0.00 1.00 1.00

51011l.2]-31415

100
010
00r_
000
000

Upper bounds:

0-1-1
010
001
011
100

9747

1í
-r -a -

u -f -0 0:
lô-!¿-

1 1:

0

0

l_

0

-r_ 0

0 -r_
01
2I
00

00
-1 0

1-1
01
11

0-1
-t_ t-

0 -r_
11
11

1
2
0

4

2

The number of possibl-e solutions is: 6

01010
00010
00001
01011
3 times together
00110
00011
3 times together

1)
2)
3)
4)

1

1

1
1

302L00
21,3100
303100
401000

0

0

0

0

00
00
00
00

00
00

Solution rejected. 9 and 12 occur
l-
1

303000
312000

Sol-ution rejected. 11 and 12 occur

Check equations: 1 2 3 5

s)
6)

0

0

Case

B2

24

B3 B4 B5 ub B.I B8

Distribution Vectors

A2 A5 A6 A7

1
5

2
6

3
4

1

0
a

1

2
3

l-
l-
0

0

1

0

1

1
1

1

0

0

Pair Table

2

2
2

6

1
2

2

6

1

J
1

3



1
2
t_

1

2
6

3
3

2
3
1_

2

3
7

3
5

1
3
2
aJ

2
5
?

5

OrÍginal System of Equations

1.00 1.00 1.00
r_.00 r_.00 0.00
r_.00 0.00 2.00
1.00 s.00 2.00

1.00 0.00
0.00 1.00
1.00 2.00
6.00 3.00

0.00: 7.00
0.00 : 6.00
3.00 : r_5.00
4.00 = 12.00

Equations Ín Row Echefon Form

1. 00 0. 00 0.00 0.00 -1.00 -1.00 : s.00
0.00 1.00 0.00 0.00 1 .00 0.00 : -l-.000.00 0.00 1.00 0.00 1.00 t_.00: 3.00
0.00 0.00 0.00 t-.00 0.00 1.00 : 2-00

Col-umnpointervector: 1 2 3 5 4 6

Equation 2 has LHS ): 0. RHS < 0*** Bfock vector rejected

Case

B2

25

B3 B4 B5 B6 B.I B8

Distribution Vectors

A2 A3 A4 A5 A 6 A'1

l-001_11
011011
201_011
1_2001_1
310011_
010201-
200201
t_t_1101
30r_t_01_
220i_01
41,0101
321-001_
001,21_0
110210
300210
0211_l_0
2r1110
401_110
320110
42101-0



1

3
4

2
1

2

Pair Tabl-e

2
a

2
2
2
2
2
1

1

t_

2
l_

2
2
2
1
t-

2
1
a

l_

1

2

3
3
?

2
1

1

2
2
2

1

3
2
l_

1
?

2
2
2
3
2

1

l-

2
3
?

2
3
1

1
2
?

1
?

3
2
1
2
2
2
4

2
4

1_

2
2

a

?

2
4

3
2
1

2
1
?

3
3
1

2
1
?

2
2
3
4

2
1

3

2
l_

1

2
1
?

3
2
2

2
a

2
2
a

2
1
1

2
t_

2

3

1

2
2
2

1
2
2
2
2
2
2
3
2
1

1

2
l_

2
1

3
9J

2
3

1

2

3
1_

3
2

3
2
4

2
4

4

2
l_

1

2
4

2
4

2

4

4

l_

2
1

3
3
?

2
2
2
J

4
4

1

2
2
2
1
2
3
4

3

5

1
?

3
3
4

2
2
J
4

4
q

6

1
1
2
3
3
4

4

6

3
4

5

2
2
2
1
1
a

2
2
2
1

1
1

4

3
aJ

aJ

3
2
2
3
3
2

2
1_

1
a

1
2
?

1

1

2
2
1

3
3
?

?

2
3

3
?

3
2
4

2
1

2
1

3
2
J

t_

?

2
4

2
3
3
5
2
3
5
4

4

2

4

5

1

3
2

3
2
2
1

2
t_

a

1

3
3
3
2
4

3
2

3
4
4

3
?

I
2
2
2
2
1

1
1

2
1

2
3

3
2

3
3
2
4

3
5
3
3
4

2
2
4

2

4

t-

3
2
4

2
4

4

3
3
5

2
4

6

4

6
J
E
J

5

1

2
2

3
4

2
2
1

2
3
4

4

2
3
4
?J
)J
4

5
6
3
4

6

2
J
4

4

5
1

2
3
4

4

5
6
2

3
4
4

5
6

6
I
4
q

6

1

2
1

2

1
3
2

J

2

3
3
3
3
ãJ

2
4

3
3

3
4

5
4

5

1

1

2

1

2
2

3
2
4

3
4

4

3
2
4

3

3
5
4

5
4

5

6

2
1

2

3
4

3
4

3
4

5

6

5
2
4

5

3
4

5
6

6
5
6

8

1

1

0

2
2
J
3
4
1

2
1

?

4
4

1
1

3
2
2
4

4

5
1

2
4

2
2

2

2
1

1

1
r)

3

3
2
3
2
4
2
2
2
?

1

1

2
2
2
?

4

0

0

0

0

0

0

a

1
?

4
a

4
2
4

4
q

5
1

2
4

1

2
4

4

5
3
4

o

Original- System of Equations

1.00 1.00 1.00 1.00 t_.00 1.00 1.00 1.00 1.00 1.00 1.00
r-.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00: 7.00

1.00 1.00 t_.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 1.00 r-.00 l_.00 1.00 t_.00 1.00 1.00 1.00 0.00 0.00
0.00 = 6.00

1.00 0.00 0.00 0.00 0.00 2.00 2.00 1.00 1.00 1.00 1.00
0.00 2.00 2.00 2.00 1.00 1.00 1.00 1.00 0.00 2.00 2.00
2.00: r_0.00

0.00 1_.00 1.00 0.00 0.00 0.00 0.00 1.00 l_.00 0.00 0.00
i_.00 1.00 0.00 0.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00
0.00 : 4.00

0.00 1.00 0.00 2.00 1.00 1.00 0.00 1.00 0.00 2.00 1.00
2.00 0.00 1.00 0.00 2.00 1.00 0.00 2.00 2.00 2.00 l-.00
2.00 : 6.00

r_.00 0.00 2.00 1.00 3.00 0.00 2.00 t_.00 3.00 2.00 4.00
3.00 0.00 1.00 3.00 0.00 2.00 4.00 3.00 4.00 1.00 3.00
4.00 : 8.00

Equations in Row Echelon Form



1.00 0.00 0.00 0.00 0.00 0.00 0.00 -1.00 -t_.00 -1.00 -1.00 -2.00 2.00 2.00 2.00 1.00 l-.00 t_.00 1.00 0.00 0.00 0.00
0.00 : 4.00

0.00 1_.00 0.00 0.00 0.00 0.00 -1.00 0.00 -1.00 -1 .00 -2.00 -1.00 1.00 0.00 -1.00 1.00 0.00 -1.00 -i_.00 -1.00 -1.00 -1.00 -
2.00 : 1.00

0.00 0.00 1.00 0.00 0.00 0.00 1.00 t-.00 2.00 1.00 2.00
2.00 -1.00 -1.00 0.00 -1.00 0.00 1.00 0.00 1.00 1.00 1.00
1.00 : 1.00

0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 l-.00 1.00
1.00 -1.00 0.00 0.00 0.00 0.00 0.00 1_.00 1.00 1.00 0.00
1.00 : 0.00

0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 r-.00 r_.00 1.00 1.00 1.00 1.00 t_.00 1.00 0.00 1. 00
1.00 : 2-00

0.00 0.00 0.00 0.00 0.00 1.00 l-.00 1.00 1.00 1.00 1.00
1.00 -r-.00 -1.00 -1.00 -1.00 -1.00 -t-.00 -1.00 -1.00 0.00 0.00
0.00: 1.00
Columnpoint.ervector: 1 2 3 421 6 7 8 910 1,L12 13 14 15
16 L'7 r8 19 20 5 22 23

Equations to be solved

1000000-1 -1--1 -1 -22221, 1
r_ 1 0 0 0 0: 4

010000-1 0-l_-1 -2-l_10-1 10
-1 -1 -',1 -1 _1 _a - 1

001000112r22-1-10-10
1 0 1 1 1 1: 1

000100000111-l_0000
0 1 1 1 0 l-: 0

0000100000001111-1
1 1 l- 0 1 1: 2

0000011111_11_-1 -1 -1 -1 -1
-r_ -1 -1 0 0 0: 1

Upper bounds: 9 1 1 1 1 1 1 9 1 l_ 1 l- l- 1 1 1- 2 1
1l_111

The number of possible solutions is: 56

1) 1 1 1 1 0 1 t- 1 0 0 0 0 1 1 0 0
0000000
SolutÍon rejected. 2 and 3 occur 3 times together

2)2r0001_1100001001
00001_00
Solution rejected. 2 and 16 occur 3 times together

3) 2 0 1 1- 0 1 1 1 0 0 0 0 1 0 0 1
0000000
Solution rejected. 4 and 16 occur 3 times together

4)2r01_011100001000
1000000
Solut.ion rejected. 2 and 4 occur 3 times Logether

5) 2 L 1 0 0 1 r_ 1 0 0 0 0 0 t_ 0 1
0000000
Sol-ution rejected. 2 and 3 occur 3 Limes toqether



6) 3 1 0 0 0 1 1 1 0 0 0 0 0 0 0 1

1000000
Solution rejected. 2 and 16 occur 3 times together

7) 2 t 0 1 0 1 1 0 1 0 0 0 1 0 0 1

0000000
Sol-ution rejected. 2 and 4 occur 3 times together

8) 2 r 1 0 0 r" r- 0 0 1 0 0 1 0 0 1

0000000
Solution reject.ed. 2 and 3 occur 3 times together

9) 3 r- 0 0 0 r_ 1_ 0 0 0 0 1 1 0 0 1

0000000
Solution rejected. 2 and 12 occur 3 times together
10) 2 1" 1 1 1 1 1 0 0 0 0 0 l_ 0 0 0

0000000
Solution rejected. 2 and 3 occur 3 times together
11) 3 r_ r_ 0 r_ r_ r_ 0 0 0 0 0 0 0 0 1

0000000
SoÌution rejected. 2 and 3 occur 3 times together
a2)21_00010200001100

0000r-00
Sol-ut.ion rejected. l-3 and l-4 occur 3 times together
13)20110r_0200001100

0000000
Sofution rejected. 13 and 14 occur 3 times together
a4)2t01010200001010

0000000
Solution rejected. 2 and 4 occur 3 times together
15) 3 0 0 0 0 1 0 2 0 0 0 0 1 0 0 1

0000100
Solution rejected. 13 and 16 occur 3 times together
16) 3 0 0 r_ 0 r_ 0 2 0 0 0 0 1 0 0 0

r_000000
Solution rejected. 13 and 17 occur 3 times together
t'7) 3 1 0 0 0 1 0 2 0 0 0 0 1 0 0 0

0010000
18) 3 0 r_ 0 0 1 0 2 0 0 0 0 0 1 0 1

0000000
Sofution reject.ed. 14 and 16 occur 3 times together
19) 3 1 0 0 0 1 0 2 0 0 0 0 0 1 0 0

r_000000
20) 3 r_ 0 0 0 r- 0 2 0 0 0 0 0 0 1 1

0000000
Solut.ion rejected. 2 and l-6 occur 3 times together
2r)4000010200000001

1000000
Solution rejected. 16 and 17 occur 3 times together
22)2r01-010110001100

0000000
Sol-ution rejected. 2 and 4 occur 3 times together
23)30010r_0110001001

0000000
Solution rejected. 4 and 16 occur 3 times together
24) 3 1 0 0 0 1 0 r_ r_ 0 0 0 0 r- 0 1

0000000
Sol-ution rejected. 2 and 16 occur 3 times t.ogether
25) 2 r r- 0 0 r_ 0 1 0 1 0 0 1 1 0 0

0000000
Solution rejected. 2 and 3 occur 3 Limes together



26) 3 0 1 0 0 1 0 1 0 r- 0 0 l_ 0 0 1

0000000
Solution rejected. 6 and l-0 occur 3 times together
27) 3 1 0 0 0 1 0 1 0 1 0 0 1 0 0 0

1000000
Solut.ion rejected. 6 and 10 occur 3 times together
28) 3 1 0 0 0 r- 0 r_ 0 0 1 0 1 0 0 1

0000000
Solution rejected. 2 and 16 occur 3 times tog,ether
29)3100010100011100

0000000
Sol-ution rejected. 2 and 12 occur 3 times together
30) 4 0 0 0 0 1 0 r_ 0 0 0 1 1 0 0 1

0000000
Solution rejected. 8 and 12 occ¿r 3 times together
3r_) 3 1 0 0 1 1 0 1 0 0 0 0 1 0 0 0

0000100
Solution rejected. 5 and 6 occur 3 tímes together
32) 3 r_ 0 1 0 r- 0 1 0 0 0 0 1 0 0 0

00000r_0
Solution rejected. 2 and 4 occur 3 times together
33) 3 0 1 1 1 1 0 1 0 0 0 0 r_ 0 0 0

0000000
Solution rejected. 5 and 6 occur 3 times together
34) 3 r- i. 0 1 1 0 1 0 0 0 0 0 1 0 0

0000000
Sol-ution rejected. 2 and 3 occur 3 times together
35) 4 1, 0 0 0 1 0 1 0 0 0 0 0 0 0 1

00000i_0
Solution rejected. 2 and l-6 occur 3 times together
36) 4 0 1 0 1 1 0 1 0 0 0 0 0 0 0 1

0000000
Solution rejected. 5 and 6 occur 3 times together
3'7) 4 7 0 0 1 1 0 r_ 0 0 0 0 0 0 0 0

1000000
Solution rejected. 5 and 6 occur 3 times together
38) 3 1 0 0 0 r- 0 0 1 1 0 0 r_ 0 0 1

0000000
Solut.ion rejected. 2 and 16 occur 3 times tog-ether
39) 3 I 0 1 1 1 0 0 r_ 0 0 0 r- 0 0 0

0000000
Solution rejected. 2 and 4 occur 3 times together
40) 4 L 0 0 r- 1 0 0 r- 0 0 0 0 0 0 1

0000000
Solution rejected. 2 and 16 occur 3 times together
41) 3 r- 1 0 r- 1 0 0 0 1 0 0 1 0 0 0

0000000
Solution rejected. 2 and 3 occur 3 times together
42) 4 L 0 0 1 r- 0 0 0 0 0 1 r- 0 0 0

0000000
Sol-ution rejected. 2 and 12 occur 3 times together
43)2L01_00r200001100

0000000
So1ut.ion rejected. 2 and 4 occur 3 times together
44)300100l.200001001

0000000
Sol-ution reject.ed. 4 and 16 occur 3 times tog:ether



45) 3 1 0 0 0 0 r 2 0 0 0 0 0 1 0 1
0000000
Solution rejected. 2 and l-6 occur 3 times together
46) 3 1_ 0 0 0 0 r- 1- 0 1 0 0 1 0 0 1

0000000
Sol-ution rejected. 2 and 16 occur 3 times together
47',) 3 1 0 r_ 1 0 1 r_ 0 0 0 0 1 0 0 0

0000000
Solution rejected. 2 and 4 occur 3 times together
48) 4 r 0 0 1 0 1 1_ 0 0 0 0 0 0 0 1

0000000
Sol-ution rejected. 2 and 16 occur 3 times together
49t3001000300001100

0000000
Solution rejected. 13 and 14 occur 3 times together
s0) 4 0 0 0 0 0 0 3 0 0 0 0 0 l- 0 1

0000000
Sol-ution rejected. 14 and 16 occur 3 times together
51) 3 1 0 0 0 0 0 2 0 1 0 0 1 1 0 0

0000000
Solution rejected. 13 and l-4 occur 3 times together
s2)4000000201001001

0000000
Solution rejected. l-3 and 16 occur 3 times together
53) 4 0 0 1 1 0 0 2 0 0 0 0 1 0 0 0

0000000
Solut.ion rejected. 5 and 8 occur 3 times tog-ether
s4) 4 L 0 0 1 0 0 2 0 0 0 0 0 1 0 0

0000000
Sol-ution rejected. 5 and 8 occur 3 times together
5s) s 0 0 0 1 0 0 2 0 0 0 0 0 0 0 1

0000000
Solution rejected. 5 and 8 occur 3 times together
56) 4 t 0 0 r_ 0 0 1 0 1 0 0 r_ 0 0 0

0000000
Solution rejected. 5 and I occur 3 times tog-ether

Check equations:. 11 79

Case 26

B2 B3 B4 B5 B6 B7 B8

2421"110

Distribut.ion Vect.ors

A2 A3 A4 A5 A6 A7

t_00111
011011_
20101r_
L2001r_
002L0r"
111101_
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OriginaÌ System of Equations

r_.00 1.00 1.00
1.00 0.00 0.00
0.00 : 7.00

1.00 r_.00 1.00
0.00 1.00 1.00
0.00 : 6.00

1.00 0.00 0.00
0.00 1.00 1.00
0.00 = s.00

1.00 r-.00 1.00
0.00 0.00 0.00

1.00 0.00 0.00
1.00 1.00 r_.00

0.00 1.00 1.00
1.00 1.00 0.00
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0.00 0.00
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0.00 0.00

1.00 1.00 1.00
0.00 0.00 0.00
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0.00 1.00 1.00 0.00 2.00 1.00 0.00 0.00 2.oo 2.oo 1.00
0.00 2.00 1.00 1.00 0.00 2.00 i_.00 1.00 2.00 2.oo 1.00
2.00 : 8.00

0.00 1.00 0.00 2.00 0.00 1.00 3.00 2.00 2.00 1.00 3.00
4.00 0.00 2.00 1.00 3.00 2.00 4.00 3.00 3.00 2.00 4.00
4.00 : 12.00

1.00 0.00 2.00 1.00 0.00 1.00 0.00 2.00 0.00 2.oo 1.00
2-00 1.00 0.00 2.00 1.00 1.00 0.00 2.00 0.00 2.oo 1.00
2-00: 4.00

Equations in Row Echelon Form

1-.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -1.00 -1.00 -1.00 _
1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 -
1.00 : 2.00

0.00 r_.00 0.00 0.00 0.00 0.00 -1.00 -2.00 0.00 -1.00 -1.00 -2.00 r-.00 1.00 0.00 0.00 1.00 l-.00 0.00 -1.00 -1.00 -1.00 -
r_.00 : 2.00

0.00 0.00 1.00 0.00 0.00 0.00 -1.00 0.00 0.00 1.00 0.00
0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00
1.00 : 0.00

0.00 0.00 0.00 1.00 0.00 0.00 2.00 2.00 1.00 1.00 2.00
3.00 -2.00 -1_.00 -t_.00 0.00 -1.00 0.00 0.00 t_.00 0.00 1.00
1.00 : 2.00

0.00 0.00 0.00 0.00 1.00 0.00 t-.00 1.00 1.00 1.00 1.00
1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -l_.00 1.00 0.00 0.00
0.00 : 1.00

0.00 0.00 0.00 0.00 0.00 t-.00 0.00 0.00 0.00 0.00 0.00
0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00 1.00
1.00 : 2.00
Columnpointervector: 1 2 3 4 520't I910 1_1 12 13 l_4 15
1-6 1_7 18 19 6 21, 22 23

Equations t.o be solved

10000000-1 -1 -1 -1 111_t-0
0 0 0 0 0 -1 - 2

0 r_ 0 0 0 0 -1 -2 0 -1 -1 -2 1 1 0 0 1
1 0 -1 -l- -l- -1 : 2

0 0 1 0 0 0 -1 0 0 l_ 0 0 1 0 1 0 1
0 r_ 0 1 0 1: 0

0 0 0 l- 0 0 2 2 1 l_ 2 3 -2 -1 -1 0 -10 0 1 0 1 l_: 2
0 0 0 0 1 0 1 1 1 1 1 1 -1 -1 -1 -1 -1

-l- -1 1 0 0 0: 1

00000100000011111
1 1 0 l- 1 l-: 2

Upper bounds: 1 9 1 9 1 1 1 1 1 1 1 1 l_ 2 I 1 1 1
1,9r_11

The number of possíbl-e sol-ut.ions is: 94

1) 1_ 4 0 0 0 l_ t_ t_ 0 0 0 0 1 0 0 0
0000000



Solution rejected.
2)130

0001_0
Solution rejected.

3) 7 2 0

00000
Solution rejected.

4)131
00010
Solution rejected.

5) t 2 1
00000
So-l-ution rejected.

6) 7 4 0

00010
Solution rejected.

7) 1- 3 0
00000
Sol-ution rejected.

8) 1 3 1
00000
Solution rejected.

9) 7 4 0
00010
Sol-ution rejected.
10) 1 3 0

00000
Solution rejected.
11) L 4 0

00000
Sol-ution reject.ed.
t2')130

00020
Sol-ut.ion rejected.
L3) r 2 0

00010
Sol-ution rejected.
14)r40

00020
Solution rejected.
1_5) r_ 3 0

0001-0
Solution rejected.
r-6) 1 3 0

00000
Solution rejected.
r7) 0 4 0

0001-0
Solution rejected.
18) 0 3 0

00000
Sol-ut.ion rejected.
19) 0 4 0

00000
Solution rejected.
20)130

01000
Solution rejected.

1 and
10
00
6 and
2I
00
5 and
00
00
1 and
11
00
1 and
00
00
1 and
t-1
00
1 and
01
00
1 and
00
00
1 and
t_1
00
1 and
01
00
1 and
l_0
00
6 and
21,
00
5 and
00
00
6 and
l_ i_

00
5 and
00
00
1 and
00
00
7 and
1i_
00
5 and
01
00
5 and
0r-
00
1 and

I occur
l-1

7 occur
11

6 occur
11

3 occur
l_ l_

3 occur
1l_

15 occur
l-1

15 occur
11

3 occur
10

I occur
10

I occur
10

8 occur
10

14 occur
10

6 occur
10

16 occur
10

6 occur
01

8 occur
01

8 occur
01

13 occur
0r_

13 occur
0r_

I occur

3 t.imes toget.her
00000

3 times together
00000

3 times together
00000

3 times toget.her
00000

3 times tog'ether
00000

3 times together
00000

3 times together
00000

3 times together
10000

3 times together
r_0000
3 times together
r_0000
3 times together
00000

3 times together
00000

3 t.imes together
00000

3 times together
00000

3 times tog-ether
1_1000

3 tj-mes Logether
10000

3 times tog,et.her
10000

3 times together
10000

3 times together
10000

3 times together



21) 0 3 1 0 r, 0 l_ t- 0 0 0 0 0 2 0 0
0000000
Sol-ution re¡ected. 3 and 8 occur 3 times together
22) 0 4 0 0 r_ 0 1 1_ 0 0 0 0 0 1 1 0

0000000
Solution rejected. 7 and I occur 3 times tog-ether
23lr_300101100000100

1000000
Solutíon rejected. 1 and 8 occur 3 times together
24)]-20100r_010001100

0001000
Sofution rejected. 13 and 14 occur 3 times together
2s) r_ 1_ 0 2 r- 0 r_ 0 1 0 0 0 1 1 0 0

0000000
Solut.ion rejected. 5 and 9 occur 3 times together
26) r_ 3 0 0 0 0 r_ 0 1 0 0 0 1 0 0 1

000r_000
Solution rejected. 7 and l-6 occur 3 times together
27) 1_ 2 0 1 1 0 t_ 0 1 0 0 0 1 0 0 1

0000000
Solution rejected. 5 and 9 occur 3 times together
28)L2r_0001010000200

0001000
Solution rejected. 1 and 3 occur 3 times toqether
29) 1 1 r- 1 1 0 1 0 l- 0 0 0 0 2 0 0

0000000
Solution rejected. 1 and 3 occur 3 times together
30) 1 3 0 0 0 0 1 0 r_ 0 0 0 0 1 1 0

000r_000
So1ut.ion rejected. i- and 15 occur 3 times together
31) r 2 0 1 r_ 0 1 0 r_ 0 0 0 0 l_ 1 0

0000000
Sol-ution reject.ed. 1 and l-5 occur 3 times together
32) 1- 2 r_ 0 1 0 1 0 l_ 0 0 0 0 1 0 t_

0000000
Solution rejected. 1 and 3 occur 3 times together
33) r- 3 0 0 r_ 0 r_ 0 1 0 0 0 '0 0 1 1

0000000
Sol-ution rejected. 1 and L5 occur 3 times tog-ether
34) 1 3 0 0 0 0 1 0 0 1 0 0 o 2 0 0

0001000
SoÌution reject.ed. 10 and 20 occur 3 times together
35) 1 2 0 r_ 1 0 1 0 0 1 0 0 0 2 0 0

0000000
Solution rejected. 5 and 10 occur 3 times together
36) r_ 3 0 0 1 0 r- 0 0 r_ 0 0 0 1 0 1

0000000
Solution rejected. 5 and 10 occur 3 times together
37) 1 3 0 0 0 0 1 0 0 0 1 0 1 1 0 0

0001000
Solut.ion rejected. 7 and 1l- occur 3 times together
38) r 2 0 r- 1 0 1 0 0 0 1 0 1 r- 0 0

0000000
Sol-ution rejected. 5 and 13 occur 3 times t.ogether
39) 1 3 0 0 1 0 1 0 0 0 1_ 0 r- 0 0 r-

0000000
Solution rejected. 5 and L3 occur 3 times together



40) t 2 1 0 1 0 1 0 0 0 l- 0 0 2 0 0
0000000
Solution rejected- 1 and 3 occur 3 times together
41) 1 3 0 0 1 0 l_ 0 0 0 1 0 0 1 l_ 0

0000000
Solution rejected. 1 and 15 occur 3 times together
42)1300101_000011100

0000000
Solution rejected. 5 and 13 occur 3 times tog'ether
43) 0 3 0 1 0 0 1 0 0 0 0 0 l_ 1 o 0

0002000
Sol-ution rejected. 13 and 14 occur 3 times Logether
44',) 0 2 0 2 l_ 0 1 0 0 0 0 0 1 t- 0 0

0001000
Solution rejected. 5 and 13 occur 3 times together
4s) 0 4 0 0 0 0 l_ 0 0 0 0 0 t_ 0 0 t_

0002000
Solution rejected. 7 and l-6 occur 3 times together
46) 0 3 0 1 1 0 l_ 0 0 0 0 0 l_ 0 0 t_

0001000
Solutíon rejected. 5 and 13 occur 3 times together
47) 1 3 0 0 0 0 1 0 0 0 0 0 1 0 0 0

0102000
Sol-ution rejected. 7 and 18 occur 3 times togebher
48) L 2 0 1 t- 0 1 0 0 0 0 0 1_ 0 0 0

0101000
Solution rejected. 4 and 18 occur 3 times together
49) L 4 0 0 0 0 t_ 0 0 0 0 0 l_ 0 0 0

0001010
Solution rejected. 7 and 22 occur 4 times together
50) 1 3 0 t- 1 0 1 0 0 0 0 0 1 0 0 0

0000010
Solut.ion rejected. 5 and 13 occur 3 tj-mes together
51) 0 3 1 0 0 0 1 0 0 0 0 0 0 2 0 0

0002000
52)0211101000000200

000r_000
Sol-ution rejected. 3 and 4 occur 3 times together
53) 0 4 0 0 0 0 1 0 0 0 0 0 0 1 1 0

0002000
s4) 0 3 0 r_ r- 0 1 0 0 0 0 0 0 1 l- 0

0001000
Sol-ution rejected. 5 and 20 occur 3 times together
55) 0 3 1 0 1 0 1 0 0 0 0 0 0 1 0 1

0001000
Solution rejected. 5 and 20 occur 3 times together
56) 1 3 0 0 0 0 1 0 0 0 0 0 0 1 0 0

1002000
57) L 2 0 1 t_ 0 1 0 0 0 0 0 0 1 0 0

r-001000
So1ut.ion rejected. 5 and 20 occur 3 times t.ogether
58) I 2 1 0 t_ 0 1 0 0 0 0 0 0 l_ 0 0

010r_000
Solution rejected. 1 and 3 occur 3 times together
59) 1 3 0 0 t_ 0 t_ 0 0 0 0 0 0 t 0 0

00r-1000
Solution rejected. 5 and 20 occur 3 times together



60) L 4 0 0 0 0 1_ 0 0 0 0 0 0 1 0 0

000r_r_00
Solution rejected. 20 and 21 occur 3 times together
61) r- 3 0 1 r- 0 1 0 0 0 0 0 0 r_ 0 0

0000100
Sofution rejected. 5 and 21 occur 3 times together
62) r_ 3 r_ 0 1 0 1 0 0 0 0 0 0 1 0 0

0000010
Solution rejected. 1 and 3 occur 3 times together
63) 0 4 0 0 1 0 1 0 0 0 0 0 0 0 1 1

000r.000
Solution rejected. 5 and 20 occur 3 times tog:ether
64)1300101_000000010

0101000
Sol-ution rejected. 1 and 15 occur 3 times together
6s) 1 4 0 0 r- 0 1 0 0 0 0 0 0 0 1 0

0000010
Solution rejected. 1 and 15 occur 3 times toqether
66)1300101000000001

1001000
Solution reject.ed. 5 and 20 occur 3 times together
61) 7 4 0 0 1 0 1 0 0 0 0 0 0 0 0 r-

0000r_00
Solution rejected. 5 and 21 occur 3 times together
68) 1 3 0 0 0 0 0 1 t- 0 0 0 0 2 0 0

000r-000
Solution rejected. 1 and 8 occur 3 times together
69)12011001r_0000200

0000000
Sol-ution rejected. 1 and 8 occur 3 times together't0\ 1_ 3 0 0 r- 0 0 1 1 0 0 0 0 1 0 1

0000000
Solution rejected. 1 and 8 occur 3 times together
7r) 1 3 0 0 1 0 0 1 0 0 1 0 0 2 0 0

0000000
Sol-ution rejected. 1 and 8 occur 3 times together
72) 0 4 0 0 0 0 0 r_ 0 0 0 0 0 2 0 0

0002000
Solution rejected. 8 and 20 occur 3 times together
73) 0 3 0 1 1 0 0 1 0 0 0 0 0 2 0 0

000r_000
Solut.ion rejected. 5 and 20 occur 3 times together
74) 0 4 0 0 r_ 0 0 1 0 0 0 0 0 1 0 1

000r_000
Solution rejected. 5 and 20 occur 3 times together
75) 1 3 0 0 r- 0 0 r_ 0 0 0 0 0 1 0 0

0101000
Sol-ution rejected. 1 and 8 occur 3 times together
76) 1, 4 0 0 r_ 0 0 1 0 0 0 0 0 1 0 0

00000r_0
Sol-ut.ion rejected. 1 and I occur 3 times together'77) 1, 2 0 r_ 0 0 0 0 1 0 0 0 0 2 0 0

0002000
78) 1 r_ 0 2 1 0 0 0 1 0 0 0 0 2 0 0

000r_000
Solut.ion rejected. 5 and 9 occur 3 times together
79) r- 3 0 0 0 0 0 0 1 0 0 0 0 1 0 1

0002000



Sol-ution rejected. 14 and 16 occur 3 times together
80) t 2 0 r_ 1 0 0 0 1 0 0 0 0 1 0 1

0001000
Solution rejected. 5 and 9 occur 3 times together
81) 1 3 0 0 0 0 0 0 0 0 t_ 0 0 2 0 0

0002000
82) 1" 2 0 1 l_ 0 0 0 0 0 1 0 0 2 0 0

0001_000
Sol-ution rejected. 5 and 20 occur 3 times tog'ether
83) 1 3 0 0 1_ 0 0 0 0 0 l- 0 0 1 0 1

000r_000
Sol-ution rejected. 5 and 20 occur 3 times together
84) 1 3 0 0 1 0 0 0 0 0 0 1 0 2 0 0

0001000
Solution rejected. 5 and 20 occur 3 times together
85) 0 3 0 1 0 0 0 0 0 0 0 0 0 2 0 0

0003000
86) 0 2 0 2 1 0 0 0 0 0 0 0 0 2 0 0

0002000
Solution rejected. 5 and 20 occur 3 times together
87) 0 4 0 0 0 0 0 0 0 0 0 0 0 1 0 l-

0003000
Sol-ution rejected. l-4 and l-6 occur 3 times together
88) 0 3 0 1 1 0 0 0 0 0 0 0 0 1 0 1

0002000
Solution rejected. 5 and 20 occur 3 times together
89) 1 3 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0103000
Sol-ution rejected. 14 and l-8 occur 3 times together
90) L 2 0 r_ 1 0 0 0 0 0 0 0 0 l_ 0 0

0102000
Solution rejected. 4 and 18 occur 3 times together
9t_) L 4 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0002010
Solution rejected. 14 and 22 occur 3 times together
92) r_ 3 0 r_ r_ 0 0 0 0 0 0 0 0 1 0 0

0001010
Solution rejected. 5 and 20 occur 3 times together
93) 1 3 0 0 1 0 0 0 0 0 0 0 0 0 0 1

0102000
Solution rejected. 5 and 20 occur 3 times together
94) 1, 4 0 0 1 0 0 0 0 0 0 0 0 0 0 1

0001_0r_0
Sol-ution rejected. 5 and 20 occur 3 times together

Check eguat.ions: 51 53 56 77 8l- 85

Case 27

B2 B3 B4 B5 B6 B7 B8

31501r_0

Distribution Vectors



AI A4 Abl\I

Pair Table

Original- System of Equations

01111
201-11_
31011
10301
21,201_
0131_0
2031_0
31_21,0
10500
2r400

3231221211
234L21,2311_
3462423513
1l-2211_i_132
224t311323
2L21132233
1_231L23333
2351323534
1l-13233354
1132333445

1.00 r_.00 1.00 1.00
1_.00 1.00 r_.00 0.00
1.00 r_.00 0.00 3.00
r_.00 0.00 1.00 0.00
0.00 2.00 3.00 1.00

1.00 0.00
0.00 r_.00
2.00 3.00
1.00 1.00
2.00 0.00

0.00 0.00
r_.00 r-.00
3.00 2.00
0.00 1.00
2.00 3.00

0.00 0.00 : 7.00
0.00 0.00: 6.00
5.00 4.00: 20.00
0.00 1.00 : 3.00
1.00 2.00 -- 6.00

Equat.ions in Row Echel-on Form

1.00 0.00 0.00 0.00
0.00 1.00 0.00 0.00
0.00 0.00 1.00 0.00
0.00 0.00 0.00 1.00
0.00 0.00 0.00 0.00

Column pointer vector:

Equation 3 has LHS >: 0¡ RHS < 0
r<r<* þlqsþ vector rejected

0.00 1.00 0.00 0.00 0.00 0.00 : 4.00
0.00 0.00 1.00 0.00 -1.00 -1.00 : 3.00
0.00 0.00 0.00 1.00 1.00 1.00 : -l_.00
0.00 -1.00 -1.00 -r_.00 1.00 0.00 : 1.00
1.00 l-.00 1.00 1.00 0.00 1.00 : 2.00

L 2 3 4 9 6 7 I510

Case

B2

28

B3 ÞA B5 B6 B7 B8



Distribution Vectors

A3 A4 A6 A7

Pair Table

Original System of Equations

1.00 1.00 1.00 0.00 0.00 0.00 : 7.00
r_.00 0.00 0.00 1.00 1.00 0.00 : 6.00
1.00 2-00 0.00 3.00 1.00 2.00: 12.00
r_.00 2.00 s.00 1.00 4.00 5.00: 18.00

Equations in Row Echelon Form

1.00 0.00 0.00 0.00 0.00 -1.00 : 4.00
0.00 r..00 0.00 0.00 -l-.00 0.00 : 1.00
0.00 0.00 1.00 0.00 1.00 1.00: 2.00
0.00 0.00 0.00 t_.00 1.00 1.00 : 2.00

Col-umnpointervector: 1 2 3 4 5 6

Equat.j-ons to be solved.

1 0 0 0 0 -1 : 4
0 1 0 0 -l_ 0: l_

0 0 1 0 1 1: 2
0 0 0 r_ 1 t_: 2

Upper bounds: 9 9 l- 1 1 l-

îhe number of possibl-e soi-utíons is: 3

1) 4 2 1 1 1 0

Solution rejected. 3 and 5 occur 3 t.imes together
2)s1r_1_01

Sol-ution rejected. 3 and 6 occur 4 times tog-ether
3)s2001-l_

Solution rejected. 5 and 6 occur 3 times togiether

l_11_1
2201
5001_
r_31_0
4L10
5200

21,r21_0
I22202
r25034
220422
103233
02423s



Case

B2

29

B3 B4 B5 B 6 B'1 B8

Distribution Vectors

A2 A4 A5 A7

2
?

0

L
4
q

0

1

0

1

0

1

2

1

4

2

1

1

0

0

0

0

Pair Table

Original System of Equations

112L22
L31l_24
214332
113323
aa)aEE.¿J'JJ
242356

Equations in Row Echelon Form

1.00 0.00 0.00 0.00 -1.00
0.00 1.00 0.00 0.00 1.00
0.00 0.00 l_.00 0.00 1.00
0.00 0.00 0.00 1.00 0.00

Col-umn pointer vector: 1 2

Equat.ion 4 has LHS ): 0, RHS <*** Bfock vector reject.ed

r_.00 r_.00 0.00
2.00 1.00 4.00
0.00 1.00 0.00
2.00 3.00 0.00

0.00 0.00
3.00 3.00
1.00 0.00
1.00 4.00

0.00 : 7.00
2.00 : 20.00
1.00 : 4.00
5.00 : 10.00

-1.00 : 3.00
r_.00 : 4.00
0.00 : 4.00
1.00 : -2.00

3546

0

Case

B2

30

B3 B4 ÌJ5 B6 B'I B8



Distribution Vectors

A2 A3 A4 A5 A"7

0

2
0

1
?

2
0
2
?

t_

0

2
0

2
1

J

2

t_

0

0

1

0

2
2
1

2
0

2
1
1
0

2
l_

2

0

0
2
1

l_

0

2
2

l_

t_

0

0

2
2
1

t_

2

2
2
t_

1

t-

1

0

0

0
?

a
J

2
2
2
2
t_

1
l_

1

1

1
1

1-

1

1

0

0

0

0

0

0

0
n

Pair Table

2
2
l_

t-

1

2
2
l_

2
2
3
2
1

t_

2
1

1

2
3
1
t_

3
2
1
2
?

2
2

3
1

2
1

3
1

1

t_

2
2

1

3

2
a

1

1

2
a

1

1

2

1

t_

2
1
2
2
3
2
J
1

2
t_

1_

l-
1

1

2

1
3
a

2
4

3
2
4

4

2
1

3
l_

1
2J

3

2
2
1

2
3
4

3
3
5

1
)J
3
1

1

2

J

3

2
l-

3
J

2
3
5
4
4

1

2
1

2
?

2
4

1

2
?

2
4
)J
4

4

5
l-

1

1

2
3
2
3
4

2
J
2

3
4
q

4

5

6

1

2
3

2

3
3
4
5

2
2
2
1

2
1

1

l_

1
?

3
3

3
?

2
3
2

3
2
l_

2
1

3
2
t_

2

5
4

3
2

4

3
3

2
3
1

t_

3
3

1

1
)J
3
4

4

2

3
3
4

3

1

t_

2
1
l_

t_

3
2
2
?

3
2
3

3
2
3

1

2
2
1

3
t_

2
3
3

3
2
3
3
4

2
4

3

2
1

l_

1

1

2
?

2
3
2
4
)J
?

2

3

3
3

1

3
1_

1_

?J

3
2
?

4
)J
3
4

2
4

3
4
4

1
1

2
2

)J
4

4

5
2
J
3

3

3
?

4

5

1.00 0.00 0.00

0.00 3.00 3.00

1.00 1.00 0.00

2.00 0.00 2.00

Original System of Equations

r_.00 1.00 r_.00 r_.00 1.00 1.00
0.00 0.00 0.00 0.00 0.00 0.00:

2-00 2.00 r-.00 1.00 1.00 1.00
3.00 2-00 2.00 2.00 2.00 1.00:

0.00 0.00 2.00 1.00 t.00 0.00
0.00 2.00 2.00 1.00 1.00 2.00:

1.00 0.00 0.00 1.00 0.00 2.00
1.00 1.00 0.00 2-00 1.00 2.00:

0.00 2.00 0.00 1.00 3.00 2.00
2.00 0.00 2.00 1.00 3.00 2.00:

1.00 r_.00
7.00

0.00 0.00
15.00
2.00 2.00

8.00
2-00 1.00
6.00

0.00 2.00
6.00

3.00 r-.00 0.00



Equations in Row Echelon Form

1.00 0.00 0.00 0.00 0.00 0.00 0.00 -1.00 _1.00 _1.00 1.000.00 0.00 -1.00 0.00 -1.00 -1.00: 2.OO
0.00 1.00 0.00 0.00 0.00 0.00 -l-.00 0.00 0.00 1.00 _1.0o

0.00 -1.00 0.00 -1.00 0.00 -l_.00 : 0.00
0.00 0.00 1.00 0.00 0.00 -1.00 0.00 0.00 -1.00 0.00 _1.00 _

1.00 0.00 0.00 -1.00 -1.00 -l-.00 : 1.00
0. 00 0.00 0.00 t_. 00 0.00 2.00 2.oo 2.00 3. 00 1. 00 1. 001.00 1.00 1.00 2.00 2.00 3.00: 4.00
0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 1.001.00 1.00 1.00 1.00 1.00 1.00 : 2.00

Columnpointervector: 1 2 3 4l_0 6 i I 9 5IIlZ 131415
1-6 r7

Equations to be solved

r-000000-1 -1 -1 100-1 0_1 _1_
a

0 1 0 0 0 0 -l- 0 0 1 -1 0 -1 0 _l_ o _1

00100-1 00-t_0-1 -l_00_1 _1 _1
1

00010222311111223
00001000001111_111

-z

Upper bounds: 9 1 1 4 t 1 1 1 1 1 1 1 1 l_ 1 1 1

The number of possible solutions is: Iz

1) 3 1 1 0 1 0 1 0 0 1 0 0 1- 0 0 0
0

Solution rejected. 2 and,10 occur 3 times together
2) 4 0 1 0 l_ 0 l_ 0 0 1 0 0 0 t- 0 0

0

Solution rejected. 3 and 7 occur 3 times together
3) 3 r_ l_ t- 1 0 1_ 0 0 0 0 0 0 1 0 0

0

Solution rejected. 3 and 7 occur 3 tímes together
4)4010100101_001_000

0

Solution reject.ed. 3 and 8 occur 3 times together
5) 3 1 1 1 1 0 0 1 0 0 0 0 t_ 0 0 0

0

Sol-ution rejected. 3 and I occur 3 times toget.her
6) 4 0 1 1 1 0 0 1 0 0 0 0 0 1 0 0

0

Solution rejected. 3 and 8 occur 3 times together
7) 3 0 1, 2 1 0 0 0 0 1 0 0 1 0 0 0

0

Sol-ution rejected. 5 and 13 occur 3 times together
B) 2 1 1 3 1 0 0 0 0 0 0 0 1 0 0 0

0



Solution rejected. 5 and 13 occur 3 times together
9) 3 0 1 3 1 0 0 0 0 0 0 0 o 1 0 0

0

Solution rejected. 5 and 14 occur 3 times together
10) 4 1, 1 0 0 0 0 1 0 0 0 0 1 1 0 0

0

Solution rejected. 3 and 8 occur 3 t.imes together
r_1) 4 0 1 1 0 0 0 0 0 1 0 0 l_ 1 o o

0

Solution rejected. 10 and 14 occur 3 times togiether
12)31L2000000001100

0

Solution rejected. 13 and l-4 occur 3 t.imes together

Case 31

B2 B3 B4 B5 B6 B7 B8

0'703010

Distribution Vectors

A3 A5 A7

Pair Tabl-e

21,1,21_0
1i_2L02
a24024
21,0322
r_02223
024235

Original System of Equat.ions

1.00 i-.00 t_.00 0.00 0.00 0.00 : 7.00
2.00 1.00 0.00 3.00 2.00 1.00 : t_5.00
1.00 3.00 5.00 2.00 4.00 6.00: 2L.00

Equations Ín Row Echelon Form

1.00 0.00 0.00 -1.00 -1 .00 -2.00 : 2.00
0.00 1_.00 0.00 2.00 t_.00 2.00: 5.00
0.00 0.00 1.00 0.00 1.00 1.00 : 2.00

Columnpointervect.or: 1 2 4 3 5 6

721_
311
501
230
420
6r0



Equations to be solved

0

1
0

0

0

1

Upper bounds:

t-

0

0

-1 -1
21
01

95

_a
a

1

L

-tr
-a

The number of possible solutions Ís:

l_) 421110
2)sr_1101

Sol-ution rejected. 4 and 6 occur
3) 3 4 r 0 1 0
4)431001
s) s 1 0 r_ 2 0

6) 6 0 0 1 1 1

Solutíon rejected. 4 and 6 occur
7) 4 3 0 0 2 0

8) s 2 0 0 r_ 1

Solution rejected. 5 and 6 occur

Check equations: 1 3 4 5 7

4 times tog-ether

4 times together

3 t.imes together

Case 32

B2 B3 B4 B5 B6 B7 BB

Distribution Vectors

A2 A3 A4 A5 A7

0l_021
0021,r-
t_1111
03011
r_0301
02201
131_01
01220
1-2L20
04020
11310
032r0
]-4110
13300

Pair Tab.l-e



32221_1t22311_20
221132L2112L02
2L21312L222022
2r13r231240232
1331-5332204224
r2L2322r022223
11233240232244
22112L03233222
27222022343243
31240233462453
1-2204223324234
t_1022222242334
202322424s3355
02224342334456

Original System of Equations

1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 : 7.00

2.00 r..00 1.00 1.00 0.00 0.00 0.00 2.00 2.00 2.oo 1.00
r_.00 1.00 0.00 : t_0.00

0.00 2-00 1.00 0.00 3.00 2.00 1.00 2.00 t_.00 0.00 3.002.00 1.00 3.00: 12.00
1.00 0.00 1.00 3.00 0.00 2-00 3.00 1.00 2.00 4.00 1.00

3.00 4.00 3.00 : 12.00
0.00 0.00 1.00 0.00 1.00 0.00 t-.00 0.00 1.00 0.00 1.00

0.00 r_.00 1.00 : 2.00

Equations in Row Echelon Form

1.00 0.00 0.00 0.00 0.00 -1.00 -l-.00 -1.00 0.00 0.00 -1.00 -1.00 -1 -00 -2.00 : -1.00
0.00 r_.00 0.00 0.00 0.00 1.00 0.00 1.00 -l-.00 -1.00 0.00

0.00 -1.00 0.00 : 3.00
0.00 0.00 1.00 0.00 0.00 0.00 1.00 1.00 1.00 0.00 1.00

0.00 1.00 r-.00 : 2.00
0.00 0.00 0.00 1.00 0.00 1.00 1.00 0.00 0.00 t-.00 0.00

1.00 r_.00 t-.00 : 3.00
0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 1.00 1.00

1.00 1.00 r-.00 : 2.00
Columnpointervector: 1 2 3 4 I 6 7 5 910ILIZ 1314

Equations to be solved

1 0 0 0 0 -l- -1 -1 0 0 -1 -1 -l- -2: -10 1 0 0 0 1 0 1 -1 -1 0 0 -1 0: 3
0 0 1 0 0 0 1 1 1 0 l- 0 1 1: 2
0 0 0 1 0 1 1 0 0 l- 0 1 1 1: 3
0 0 0 0 1 0 0 0 t- 1 1 1 l- 1: 2

Upper bounds: l- I 2 1 1 3 l_ 1 1 1 l_ 1 l_ 1

The number of possibl-e sol-ut.ions is: 32



1) 7 2 1 r_ 1_ 2 0 0 1 0 0 0 0 0

2)L220L2000r_0000
Solution rejected. 1 and l-0 occur 3 times together

3) 1 3 0 r_ r_ 1 1 0 r_ 0 0 0 0 0

Solution reject.ed. 4 and 7 occur 3 times togiether
4)13r-01110010000

Sol-ution rejected. 1 and 10 occur 3 times together
5) I 2 1 1 1 1 0 r- 0 1 0 0 0 0

Solut.j-on rejected. 1 and 10 occur 3 times together
6) 0 3 2 r 1 r_ 0 0 0 1 0 0 0 0

Sol-ution reject.ed. 4 and l-0 occur 4 times together
7l r 2 2 r 1 1 0 0 0 0 0 1 0 0

8) r. 3 r_ r_ r_ 1_ 0 0 0 0 0 0 r_ 0

Solution rejected. 4 and 13 occur 3 times tog:ether
9) 1 3 0 r. 1 0 1 1 0 1 0 0 0 0

Solution rejected. 1 and 10 occur 3 times tog-ether
10)041r.101001_0000

Solution rejected. 4 and 7 occur 3 times toqether
11) r_ 3 1 1 1 0 1 0 0 0 0 1 0 0

Solution reject.ed. 4 and 7 occur 3 times together
r2rr4011010000010

Solution rejected. 4 and 7 occur 3 times t.ogether
13) 1 3 1 0 0 2 0 0 r_ 1 0 0 0 0

Solution rejected. l- and 10 occur 3 times together
14)]-40001r_0r_10000

Sol-ution rejected. 1 and 10 occur 3 times together
r_5) 1 3 0 r_ 0 1 0 r_ 1 r- 0 0 0 0

Solution rejected. 1 and 10 occur 3 times together
l_6) 0 4 1 1 0 1 0 0 1 1 0 0 0 0

Solution rejected. 4 and 10 occur 4 t.imes together
r'7) 1 3 r_ r_ 0 1 0 0 1 0 0 1 0 0

18) r 4 0 1 0 1 0 0 r. 0 0 0 1 0

Solution rejected. 4 and 13 occur 3 times together
19) 1 3 1 1 0 1 0 0 0 1 r- 0 0 0

Solution rejected. 1 and 10 occur 3 times together
20)13200100010100

Solution rejected. 1 and 10 occur 3 times togeLher
2r)74100100010010

Solution rejected. 1 and 10 occur 3 times together
22)0s0r-0010r_l-0000

Solution rejected. 4 and 7 occur 3 times together
23)r401001-0100100

Solution rejected. 4 and 7 occur 3 times Log-ether
24)L4010010011000

Solution rejecLed. 1 and 10 occur 3 times together
25)r4100010010100

Solution rejected. 1 and 10 occur 3 times together
26)15000010010010

Sofution rejected. 1 and 10 occur 3 times togeLher
27) r_ 3 r_ 1 0 0 0 r_ 0 1 0 l- 0 0

Solution rejected. 1 and 10 occur 3 times together
28)r40r_000i-01001-0

Solution rejected. 1 and 10 occur 3 tímes together
29)042L0000010100

Solutíon rejected. 4 and 10 occur 4 tímes together
30) 0 s 1 1 0 0 0 0 0 l- 0 0 1 0

Sotution reject.ed. 4 and 10 occur 4 times tog:ether
31) 1 4 r- 1 0 0 0 0 0 l- 0 0 0 1



Solution rejected. 1 and 10 occur 3 t.imes together
32)].4110000000110

Sol-ution rejected. 4 and 13 occur 3 times together

Check equations: 1 7 t'7

Case 33

B2 B3 B4 B5 B6 B7 B8

21,61-010

Di st.ribution Vect.ors

A2 A3 A4 A5 A?

Pair Table

Origj-na1 System of Equations

1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 : 7.00
1.00 r_.00 0.00 0.00 1.00 1.00 0.00 0.00 : 5.00
2.00 r-.00 3.00 2.00 4.00 3.00 5.00 4.00: 24.00
0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 : 3.00
0.00 r_.00 1.00 2.00 0.00 t_.00 1.00 2.00 : 4.00

Equations in Row Echelon Form

l_.00 0.00 0.00 0.00 t_.00 0.00 -t-.00 -1.00 : 2.oo
0.00 r-. 00 0.00 0. 00 0.00 1_.00 1.00 l_.00 : 3. 00
0.00 0.00 r-.00 0.00 -1.00 -1.00 1.00 0.00 : 2.00
0.00 0.00 0.00 l_.00 t_.00 1.00 0.00 1.00 : 2.20
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 : -3.20Columnpointervector: 1 2 3 7 5 6 4 I

002r1
l_1111
10301_
2r201
0041,0
r-1310
r_0s00
21_400

221_11_110
2313]-202
111,21022
13240223
l_1103232
1_2022223
t_0223244
02232345



Equat.ion 5 has LHS : 0 and RHS !: 0*** Bfock vector rejected

Case 34

B2 B3 B4 B5 B6 B7 DO

Distribution Vectors

A3 A4 A7

Pair Table

2L
1-2

Original System of Equations

1.00 0.00 : 7.00
2.00 4.00 : 28.00
2.00 2.00 : 9. 00

Equations ín Row Echelon Form

r-.00 0.00 : 7.00
0.00 1.00 : 3.s0
0.00 0.00 : -12.00

Col-umn pointer vector: l- 2

Equation 3 has LHS : 0 and RHS !: 0*** Block vector rejected

221_
240

Case

B¿

atr

B3 B4 B5 B6 B'7 BB

Distribution Vectors

A2 A4 A6



312
602

Pair Tabl-e

2
1
2

l-

1
)J

Original

3.00
0.00
1.00

2
3
6

System of Equations

2.00 2.00: 24.00
r-.00 0.00: 4.00
3.00 6.00 : 1,2.00

Equations in Row Echel-on Form

1.00 0.00 0.00 : 6.00
0.00 1.00 0.00: 4.00
0.00 0.00 1.00: -1.00

Col-umn pointer vector: 1 2 3

Equation 3 has LHS >: 0r RHS < 0*** Block vector rejected

Case 36

B2 B3 B4 B5 B6 B1 BB

Distribution Vectors

A2 A4 A5 A6

1
2
0
2J

1

4

5

0

0

2
1

2
1

2

0

1

0

0

1

l_

0

2
2
2
1

t_

1

Pair Tabl-e

3
2
2
z
t_

1

22
27
13
L2
72
21-

2

l_

2
2

l_

2

l-

t-

2
l_

?

2

1

2
l_

2
2
4

2

2
2
4
?

5



Original System of Equations

3.00 2.00 2.00
0.00 1.00 0.00
0.00 0.00 2.00
r-.00 2.00 0.00

2.00 1.00
0.00 r_.00
1.00 2.00
3.00 1.00

r_.00 1.00 : 18.00
1.00 0.00: 5.00
1.00 2.00: 8.00
4.00 5.00 : 10.00

Equatíons in Row Echel-on Form

1.00 0.00 0.00 0.00 -1.00 -1.00 -1.00 : 0.00
0.00 1.00 0.00 0.00 1.00 1.00 0.00 : s.00
0.00 0.00 1.00 0.00 1.00 0.00 0.00 : 4.00
0.00 0.00 0.00 1.00 0.00 1.00 2.00 : 0.00

Cofumn pointer vector:

Equations Lo be solved

123456-t

1000
0r_00
001-0
0001

-1 -l_
11
l_0
01

-1 : 0

^-trv-J
0: 4

2: 0

Upper bounds:

The number of possibl-e sol_utions is:

Case

B2

37

B3 B4 B5 B6 B7 B8

Distribution Vect.ors

A2 A3 A5 A6

1

0

2
0

2
t_

l-

2

n

1
0

3
2
)J
q

5

o?
72
I2
02
02
11
0t-
10

Pair Tabte



32323r_r-1
22211_112
324]-3213
2LL21t-33
3r_3r_3134
1l_21_L235
L1r-33356
r2334568

Orig'inal Syst.em of Equations

3.00 2.00 2.00 2.00 2.00 1.00 1.00 0.00: 1_8.00
0.00 1.00 1.00 0.00 0.00 1.00 0.00 t_.00: 5.00
0.00 1.00 0.00 3.00 2.00 3.00 5.00 s.00 : 1s.00
1.00 0.00 2.00 0.00 2.00 1.00 1.00 2.00 : 4.00

Equations in Row Echelon Form

r_.00 0.00 0.00 0.00 0.00 -l_.00 -t_ .00 -2.00 : 0.00
0.00 1.00 0.00 0.00 -1.00 0.00 -1.00 -1.00: 3.00
0.00 0.00 1.00 0.00 1.00 1.00 1.00 2.00: 2.00
0.00 0.00 0.00 1.00 1.00 1.00 2.00 2.00: 4.00

Columnpointervector: 1 2 3 4 5 6 1 I
Equations to be solved

l- 0 0 0 0 -1 -1 -2: 0

0 1 0 0 -1 0 -1 -1: 3
0 0 1 0 1 1 1, 2: 2
0 0 0 r- 1 l_ 2 2: 4

Upper bounds: 1 9 L 4 I 2 I 1

The number of possibl-e solutions is: 5

r_) 0 4 1 3 1 0 0 0

Solution rejected. 3 and 5 occur 3 t.imes together
2)13130100

Sol-ution rejected. 1 and 3 occur 3 times together
3) 7 4 0 2 1 1 0 0

Solution rejected. 1 and 5 occur 3 times together
4)1_4L2001_0

Solut.ion reject.ed. 1 and 3 occur 3 tímes together
s) r- 5 0 1 1 0 1 0

Solution rejected. 1 and 5 occur 3 times together

Case 38

B2 B3 B4 B5 B6 B7 B8

3230300



Distribution Vectors

A2 A3 A4 A6

Pair Table

Original- System of Equations

3.00 2.00 2.00 2.00 2.00 l_.00 t_.00 l_.00 l_.00 0.00: 18.00
0.00 2.00 1.00 r-. 00 0. 00 3. 00 3. 00 2.00 2.00 3. 00 : 12. 00
0.00 0.00 1.00 0.00 2.00 1.00 0.00 2.00 1.00 2.00: 6.00
1.00 0.00 r_.00 3.00 2.00 0.00 2.00 1.00 3.00 3.00 : 6.00

Equations in Row Echelon Form

1.00 0.00 0.00 0.00 0.00 -1.00 -1.00 -1.00 -1.00 -2.00: 0.00
0.00 1.00 0.00 0.00 -i-.00 1.00 1.00 0.00 0.00 0.00 : 3.00
0.00 0.00 r-.00 0.00 2.00 1.00 0.00 2.00 1.00 2.00 : 6.00
0.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 1.00 1.00 : 0.00

Col-umnpointervector: 1 2 3 4 5 6 7 I 9l-0

Equations to be solved

i_ 0 0 0 0 -1 -1 -1 -1 -2: 0

0 1 0 0 -1 r_ 1 0 0 0: 3
0 0 1 0 2 t 0 2 1 2: 6
0 0 0 1 0 0 1 0 1 l-: 0

Upper bounds: 1 9 6 1 1 1 1 1 1 1

1003
0022
111-2
30L2
2202
0131
2031
3-22L
312t
3230

322321, 112L
2211L221,1,2
2Lt221,1_11-3
312431_3134
2L234rr234
1-211133324
1213134245
1111232335
2713324346
1-234445568



The number of possible solutions is: 6

r_) 1 3 3 0 r_ 1 0 0 0 0

2)L420100100
3) 0 4 4 0 1 0 0 0 0 0

4)L250010000
s) 1 3 4 0 0 0 0 1 0 0

6')0360000000

Check equations: 1 2 3 4 5 6

Case 39

B2 B3 B4 B5 B6 B7 B8

0710300

Distribution Vectors

A3 A4 A6

Pair Table

r_0
02

Original System of Equations

2.00 1.00: 18.00
0.00 1.00: 4.00
3.00 4.00 : 21.00

Equations in Row Echelon Form

l_.00 0.00: r0.20
0.00 1.00 : -2.40
0.00 0.00 : 6.40

Column pointer vector: 1 2

Equation 3 has LHS : 0 and RHS !: 0*** Bfock vecLor rejected

Case 40

B2 B3 B4 B5 B6 B7 B8

302
41, 1

3303200



Distribution Vectors

A2 A3 A5 A6

Pair Tab1e

223211_2I1r-1
23231313r21
32542]-432:-3
2344r_334113
t-12L1211_222
13r_32413243
2743r_133323
1334r_334234
11212232434
1-21-l_2423344
t_1332334445

Original System of Equations

2-00 2.00 2.00 2.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00:
\2-00

1.00 i_.00 0.00 0.00 2.00 2.00 r-.00 1-.00 3.00 3.00 2.00 --
15.00

r_.00 0.00 3.00 2.00 1.00 0.00 3.00 2.00 2.00 1.00 3.00:
9.00

0.00 2.00 0.00 2.00 1.00 3.00 r_.00 3.00 0.00 2.00 2.00 :
6.00

Equations in Row Echelon Form

1.00 0.00 0.00 0.00 0.00 -1.00 -1 .00 -2.00 -1.00 -1 .00 -2.00 :
3_00

0.00 1.00 0.00 0.00 0.50 1.50 0.50 1.50 1.00 r_.00 1.00 :
3.00

0.00 0.00 1.00 0.00 0.00 0.00 1.00 1.00 1.00 0.00 1.00 :
0.00

0.00 0.00 0.00 1.00 0.50 0.50 0.s0 0.s0 0.00 1.00 1.00:
3.00
Cofumnpointervect.or: 1 2 3 9 5 6 7 8 410 1i-

011-2
20L2
0302
2202
1-12r
302r
1311
3211
0230
2L30
2320



Equations to be solved

1 0 0 0 0 -1 -1 -2 -1 -1 -2: 3
0 2 0 0 1 3 1 3 2 2 2: 6
0 0 1 0 0 0 1 1 1 0 1: 0
0 0 0 2 1 1 1 1 0 2 2: 6

Upper bounds: 9 l- 1 1- 6 1 I 1 1 1 1

The number of possible solutions is: 4

1) 4 0 0 1 3 1 0 0 0 0 0
2)s0011r_00010

Solution rejected. 4 and 10 occur 3 t.imes together
3) 3 0 0 0 6 0 0 0 0 0 0

4)40004000010
Check equations: L 3 4

Case 4I

B2 B3 B4 B5 B6 B'7 B8

4032200

Distribution Vect.ors

A2 A4 A5 A6

Pair Table

2072
0202
3102
012r
3021,
tzt-1
4rt-1
230r-
2220
3310

22323r_3r_1r_
232L]-2r_3L2
324L3r_4313
2LL2271122
3l_324r4133
1_211111222
3141"4L4334
r_331L23324
11r2323234
1-232324445



Original System of Equations

2-00 2.00 2.00 1.00 1.00 1.00 1.00 r_.00 0.00 0.00: 72.00
1.00 0.00 0.00 2-00 2.00 r-.00 1.00 0.00 2.00 1.00: 10.00
0.00 2.00 r-.00 r-.00 0.00 2.00 1.00 3.00 2-00 3.00: L2.00
2.00 0.00 3.00 0.00 3.00 1.00 4.00 2.00 2.00 3.00 : 8.00

Equations in Row Echelon Form

1.00 0.00 0.00 0.00 0.00 -1.00 -1.a0 -2.00 -2.00 -3.00: -2-00
0.00 L.00 0.00 0.00 -1.00 0.00 -1.00 0.00 -1.00 -1.00 : 1.00
0.00 0.00 1.00 0.00 r-.00 r_.00 2.00 2-00 2-00 3.00 : 4.00
0.00 0.00 0.00 1.00 r_.00 r_.00 r_.00 1.00 2-00 2.00: 6.00

Cofumnpoint.ervector: 1 2 3 4 5 6'7 I 910

Equatíons to be solved

1 0 0 0 0 -1 -1 -2 -2 -3: -2
0 1 0 0 -1 0 -1 0 -1 -1: 1

0 0 1 0 1 1 2 2 2 3: 4

0 0 0 l- l- 1 1 1 2 2: 6

Upper bounds: 9 1 1 6 I 4 I 1 1 1-

The number of possíble sol-utions is: 4

r_) r_ 1 L 4 0 r_ 0 r_ 0 0

Solution rejected. l- and 3 occur 3 times together
2)r_1r_3030000

So1utíon rejected. 1 and 3 occur 3 times tog-ether
3) 2 L 0 3 0 2 0 1 0 0

Solution rejected. 2 and 8 occur 3 times together
4)2].02040000

Check equatíons: 4

Case 42

B2 B3 B4 B5 B6 B7 B8

15r2200

Distribution Vectors

A2 A3 A4 A5 A6

0r_012
tl_1_02
03002
00L21



11021
0211_1
130r_1
04101
15001
t2120
04020
]-4t_10

Pair Table

222221"112]-10
242222223202
223r_11234022
22r_322110322
221_231202322
L21-2r_1022222
r22r20224233
1,23102244234
234022446345
L20332223434
102222334354
022222345445

Original System of Ëquations

2.00 2.00 2.00 1.00 1.00 r-.00 1.00 1.00 1.00 0.00 0.00
0.00 : t2.00

1.00 0.00 0.00 2.00 2.00 1.00 1.00 0.00 0.00 2.00 2.00
1.00 : r_0.00

0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00
1.00 : 4.00

1. 00 r_.00 3.00 0.00 r_.00 2.00 3. 00 4.00 5. 00 2 -00 4. 00
4.00 : l-5.00

0.00 r-.00 0.00 0.00 r_.00 0.00 r_.00 0.00 r_.00 1.00 0.00
1.00: 2-00

Equations in Row Echefon Form

1.00 0.00 0.00 0.00 0.00 -1.00 -r-.00 -2.00 -2.00 -2.00 -2.00 -
3.00 : -2.00

0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -1.00
0.00 : 0.00

0.00 0.00 1.00 0.00 0.00 1.00 1.00 2.00 2.00 1.00 2.00
2.00 : 5.00

0.00 0.00 0.00 1.00 0.00 r_.00 0.00 i_.00 0.00 1.00 1.00
1_00 : 4.00

0.00 0.00 0.00 0.00 1.00 0.00 1-.00 0.00 1.00 1.00 1.00
1.00 : 2-00
Columnpointervector: 1 2 3 4 5 6'1 I 9101L1-2

Equations to be solved

r_ 0 0 0 0 -r_ -L -2 -2 -2 -2 -3: -2



Upper bounds:

The number of

l-) 3 0 0

2)20r
3) 3 0 0

4)301
Sol-ution rejected.

s) 3 1 0

6) 4 0 0

7) 3 0 0

8) 4 0 0

Sol-ution rejected.
9) 2 1, 1

10) 3 0 1

11) 3 0 1

Solut.ion rejected.
12)310

Solution rejected.
13) 4 0 0

Solution rejected.
14) 3 0 0
15) 4 0 0

r_6) 3 0 r_

Solution rejected.
17) 3 1 0

Sol-ution rejected.
18) 4 0 0

Solution rejected.
19) 4 0 0

Sol-ution rejected.
20)410

Solution rejected.
2r)s00

Sol-ution rejected.
22)400

Solut.ion rejected.
23')311

Solution rejected.
24)40r_

Solution rejected.
25)41,0

Solution rejected.
26)4r0

Sol-ution rejected.
2'7) 5 0 0

Sol-ution rejected.

Check equaLions:

possible sol-utions is: 27

-1
2
l-

1

I

0--
z-
1-

f-

1

00000
00000
01_000
00100
3 times tog,ether
00010
00001
10000
10100
3 times together
00010
00001
10100
3 t.imes together
10010
3 times together
1000r_
4 times together
00000
00100
00r_00
3 times together
00010
3 times together
0000i_
3 t.imes together
01100
3 times together
00r_10
3 t.ímes together
0010i_
4 times together
10100
3 times together
00110
3 times together
00101
3 times together
000r_1
4 times together
10110
3 times together
101_01
3 times together

9101415

0r_00000000
001_001122L
000r_010101
000010101-1

0

5
4
2

01
11
11
01
5 and
01
01
L1
01
5 and
11
11
l_1
3 and
l_1
I and
l-1
8 and
10
00
10
4 and
10
7 and
l_0
7 and
1_0
4 and
00

10 and
00

10 and
r_0
4 and
r_0
4 and
r-0
4 and
t-0

11 and
1_0
4 and
10
4 and

41_
31
30
30

10 occur
30
30
2L
20

10 occur
a^LV

20
10

8 occur
10

l-l- occur
10

12 occur
?,
3r_
2L

10 occur
2L

11 occur
2L

12 occur
20

l- 0 occur
20

11 occur
20

l-2 occur
11

10 occur
10

l- 0 occur
r_0

l-0 occur
10

12 occur
00

L0 occur
00

10 occur



Case

B2

43

B3 B4 B5 B6 B7 B8

Distribution Vectors

A2 A3 A4 A5 À6

0

2
0

1

2
1_

0

2
0

2
l_

0

1

2
n

2

1

0

0

1

2
0

2
1

1

0

2

0

t-

2
2
1

0
0

2
1

0

2
l_

1
?

3
2
4

3
2
4
4

1

1

0

0

0

1
1
t-

0

0
n

1
l_

l_

0

0

2
2
2
2
a

1
1

l_

1

l_

t-

0

0

0

0

0

Pair Table

3

3
2
2
?

2

2
1

1

2
1

l_

2
1
0

J

5
2
3
4

3
2
4

1

3
2
1

2
J
0

2

2

2
2
2
l_

t_

t_

2
2
1

2

1

U

2
2

2
3
2
2
4

l_

2
2
1

2
2
1

0

2
2
a

3
4
2
4

6
2
?

4

2
3
4

0
a

4

2
aJ

2

3
L
1
2
1

1

2
l-
?

0

3
2

2
2
3

3
2
t_

2
3
1

3
2
l_

0

2

2
2
3

2

a

4

t_

2
4

2
2
IJ

0

2

2
2
2
4

2
3

1

1

2
1

2
1

1

0

2
2
2
3
2
2

4

3

1

J

2
2
3
2
0

2
2
4

2
3

3
3
)J
q

Original- System of Equations

2.00 2.00 2.00 2.00 2.00
0.00 0.00 0.00 0.00 0.00:

1.00 1.00 0.00 0.00 0.00
r_.00 r_.00 r_.00 0.00 0.00 :

0.00 0.00 2.00 1.00 0.00
4.00 3.00 2-00 4.00 4.00 =

t_

0

2
2
2
2
3
2

4

3
4

4

4

4

6

5

U

2
2
2

3

3
2

3
3
5
4

4

4

5
5
6

1.00 1.00 t_.00 1.00

1.00 0.00 0.00 0.00

a

2
t_

a

4

0

2
2
2
2
2
2
a

3
4

4

1

1

2
t_

0

3
2
2
3
3
2
5

4

3
4
4

1
a

1

0

2
2
2
2
2
3
2
4

3
4

4
4

2
3
0

2
4

2
3
4

2
3
3
3
4

5
4

5

1.00 1.00
12 .00
1.00 1.00
s.00

2.00 1.00
r_6.00

1.00 3.00 3.00 2.00



1.00 0.00 0.00 1.00 2.00 0.00 2.00 1.00 1.00 0.00 2.00
0.00 r-.00 2.00 2.00 1.00: 6.00

0.00 2.00 0.00 1.00 2.00 1.00 0.00 2.00 0.00 2.00 1.00
0.00 1.00 2.00 0.00 2-00: 4.00

Equations in Row Echelon Form

r_.00 0.00 0.00 0.00 0.00 0.00 r_.00 0.00 0.00 -1.00 0.00
0.00 0.00 0.00 0.00 -1.00 : 2-00

0.00 1.00 0.00 0.00 0.00 0.50 -0.50 0.50 -0. s0 0. s0 -0.50
0.00 0.00 0.00 -1.00 0.00 : 0.00

0.00 0.00 r_.00 0.00 0.00 0.00 -1.00 -l-.00 0.00 0.00 -1.00 -
r_.00 -1 .00 -2.00 -1.00 -1.00 : 0.00

0.00 0.00 0.00 r_.00 0.00 0.00 1.00 1.00 1.00 l-.00 2.00
2.00 1.00 2.00 2-00 2.00 -- 4.00

0.00 0.00 0.00 0.00 1.00 0.50 0.50 0.s0 0.s0 0.s0 0.50
0.00 1.00 i-.00 1.00 r_. 00 : 3.00
Cofumnpointervector: 1 2 3 412 6 7 8 910 1-1 5l-3 1-4 15
Ie)

Equations to be solved

r- 0 0 0 0 0 1 0 0 -1 0 0 0 0 0 -1 :
2

0 2 0 0 0 1 -1 1 -l- r- -1 0 0 0 -2 0:
0

0 0 l- 0 0 0 -l- -1 0 0 -1 -1 -1 -2 -1 -1 :
0

0 0 0 1 0 0 1 1 1 1- 2 2 1- 2 2 2:
4

0 0 0 0 2 r 1 1 1 l- 1 0 2 2 2 2:
6

Upper bounds: 1 1 9 4 L 6 l- L 4 I 2 1 1 l- l- l-

The number of possible soÌutions is: 20

1) r_ 0 2 0 L 2 r_ 0 1 0 0 1 0 0 0 0

Solution rejected. 1 and 7 occur 3 times together
2)10r2r2r-010000000

Sol-utíon rejected. 1 and 7 occur 3 times tog-ether
3) 1 0 2 1, r 2 1 0 0 0 1 0 0 0 0 0

Sol-ution rejected. 1 and 7 occur 3 times together
4)102t1r-111-0000000

Solution rejected. 1 and 7 occur 3 times together
5)1030111-l-00100000

Solution rejected. 1 and 7 occur 3 times together
6) 1 0 3 0 1 1 1 0 0 0 0 1 l- 0 0 0

Solution rejected. l- and 7 occur 3 times together
7) r- 0 2 2 1 1 1 0 0 0 0 0 1 0 0 0

Solution rejected. 1 and 7 occur 3 tímes toqether
8) 1 0 3 1 r- 1 1 0 0 0 0 0 0 1 0 0

Solution rejecLed. 1 and 7 occur 3 times together
9) 1 0 3 1 l- 0 1 1 0 0 0 0 1 0 0 0

Sol-ution rejected. 1 and 7 occur 3 times together



r_0) r_ 0 4 0 r_ 0 r_ 1 0 0 0 0 0 1 0 0

Solution rejected. 1 and 7 occur 3 times tog-ether
11) 1 0 1 1 0 3 1 0 2 0 0 0 0 0 0 0

Solution rejected. 1 and 7 occur 3 times together
t2)1020031010r_00000

Solution rejected. 1 and 7 occur 3 times toqether
r_3) 1 0 2 r 0 3 1 0 0 0 0 0 0 0 r_ 0

Solution rejected. 1 and 7 occur 3 times together
1,4) 1 0 2 0 0 2 r- r- 2 0 0 0 0 0 0 0

Sol-ution rejected. 1 and 7 occur 3 times together
1s) 1 0 3 0 0 2 1 1 0 0 0 0 0 0 1 0

Solution rejected. 1 and 7 occur 3 times together
16) 1 0 2 L 0 2 t- 0 1- 0 0 0 l- 0 0 0

Solution rejected. I and 7 occur 3 times togiether
17) r_ 0 3 0 0 2 1 0 1 0 0 0 0 1 0 0

Solution rejected. 1 and 7 occur 3 times togrether
18) 1 0 3 0 0 2 r- 0 0 0 1 0 1 0 0 0

Sofution reject.ed. 1 and 7 occur 3 times together
19) 1 0 3 0 0 1 1 1 1 0 0 0 1 0 0 0

Solution rejected. 1 and 7 occur 3 times together
20) r- 0 4 0 0 1 l- 0 0 0 0 0 1 1 0 0

Sol-ution reject.ed. 1 and 7 occur 3 times togiether

Case 44

B2 B3 B4 B5 B6 B7 B8

0450200

Distribution Vectors

A3 A4 A6

Palr l_'able

22111
24741
t_1112
I4142
r_r_223

Original System of Equations

2.00 2.00 r_.00 r-.00 0.00 : L2.00
2.00 0.00 3.00 1.00 4.00 : 20.00
0.00 3.00 1.00 4.00 2-00 : 1-2.00

022
302
131
4Lt-
240



Equatíons in Row Echelon Form

1.00 0.00 0.00 -1.00 -1.00 : r_.00
0.00 1.00 0.00 1.00 0.00 : 2.00
0.00 0.00 1.00 1.00 2.00 : 6.00

Columnpointervector: 1 2 3 4 5

EquaLions to be sol-ved

1 0 0 -1 -1: 1

0 1 0 1 0: 2
0 0 r_ 1 2: 6

Upper bounds: 9 l- 6 1 l-

The number of possibl-e solutions ís: 2

1) 2 t 5 1 0

Solution rejected. 2 and 4 occur 4 times together
2)31311

Solution rejected. 2 and 4 occur 4 t.imes tog'et.her

Case 45

B2 B3 B4 B5 B6 B'7 B8

4]-0s100

Distribution Vect.ors

A2 A3 A5 A6

Pair Tabl-e

2]-111
13r_r_3
1_r_322
r. 1223
l_3235

Original Syst.em of Equatj-ons

1.00 r_.00 0.00 0.00 0.00 : 6.00
2 -00 2 -00 4. 00 3. 00 3.00 : 2s.00

1121-
302r
0040
2L30
4030



1.00 0.00 0.00
1.00 3.00 0.00

1.00 0.00 : 3.00
2.00 4.00 : 8.00

Equations in Row Echefon Form

1_.00 0.00 0.00 0.00 -1.00 : 4.00
0.00 1.00 0.00 0.00 r-.00 : 2.00
0.00 0.00 r-.00 0.00 0.00: 4.00
0.00 0.00 0.00 r-.00 1.00 : -1.00

Columnpoíntervector: 1 2 3 4 5

Equation 4 has LHS ): 0r RHS < 0*** Bfock vector rejected

B4 B5 B6 B'7 B8

Case

B2

46

B3

00L21
11021_
021_l_1
2r1l-t_
l-3011
23101
00040
10130
02030
2r030
L21"20
23020

21221222111_0
11t22321L202
21-3234111022
22243s120223
L2334sr_02224
234557022345
221110433322
2LL202332322
r_i_r_022323223
120223332424
l-02224222223
^aaaAEaaa^?trV L ¿ J' A J L 4 J I J J

Distribution Vectors

A2 A3 A4 A5 A6

Paar'lab-Le



Original System of

r_.00 1.00 1.00
0.00 : 6.00

2.00 2.00 1.00
2-00 : 20.00

1.00 0.00 r_.00
0.00 : 4.00

0.00 1.00 2.00
3.00 : 9.00

0.00 1.00 0.00
2-00 : 4.00

Equat.ions in

1.00 0.00
2-00 : 0.00

0.00 r_.00
rì ôrì : ) 

^^0.00 0.00
1_.00 : 3.00

0.00 0.00
1.00 : 1.00

0.00 0.00
1.00 : 3.00

Equations

1.00 1_.00 1.00

r_.00 1.00 0.00

1.00 0.00 r_.00

1.00 3.00 3.00

2.00 1.00 2.00

0.00 0.00

4.00 3.00

0.00 1.00

0.00 0.00

0.00 r_.00

-r_.00 0.00

1.00 -r-.00

1.00 0.00

0.00 r_.00

0.00 1.00

0.00 0.00 0.00

3.00 3.00 2.00

0.00 0.00 r_.00

2.00 1.00 2.00

0.00 2.00 1.00

-1.00 -1.00 -1.00

0.00 0.00 -1.00

1.00 0.00 1.00

0.00 1.00 1.00

1.00 1.00 1.00

9LOII12

0

2

3
1

3

Row Echelon

0.00 0.00

0.00 0.00

1_.00 0.00

0.00 r_.00

0.00 0.00

Form

0.00 -1.00

0.00 0.00

0.00 1.00

0.00 1.00

1.00 0.00

1234Cofumn pointer vector:

Equations to be sol-ved

Upper bounds:

0-r_-1 0

00r_-1
01r_0
0t_01
1001
91111

1Ô_
-a -L -
-1 0=

lírt-
II_
al-

1111

6

1r-000
3 times together
01100
3 times together
01010
3 times together
0r-00r-
3 t.imes tog:ether
0r_010
3 times together
0100r_
3 times together

r_0
01
00
00
00

-1 -1
00
10
01
11_

0

0

1

0

0

0

0

0

1
0

The number of possibl-e sol-uLions is:

l_) 2 2 r_ 0 1 0 1

Solution rejected. 3 and 7 occur
2)311-0101

Solution rejected. 3 and 7 occur
3) 3 2 0 0 1 0 1

Solution rejected. 5 and 9 occur
4)41,00101

Solution rejected. 5 and 9 occur
s)23r_0r_00

Solution rejected. 5 and 9 occur
6) 3 2 1 0 1 0 0

Sol-ution rejected. 5 and 9 occur

Case 47



B2 B3 B4 B5 B6 B7 B8

3043100

Distribution Vectors

A2 A4 A5 A6

Pair Tabl-e

Origínal System of Equations

r_.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 : 6.00
2.00 2.00 r-.00 0.00 3.00 2.00 1.00 l-.00 : 1-5.00
1.00 0.00 2.00 3.00 1.00 2.00 4.00 3.00 : 16.00
0.00 3.00 1.00 2.00 r-.00 2.00 0.00 3.00 : 6.00

Equations in Row Echelon Form

r-.00 0.00 0.00 0.00 -1.00 -t-.00 -t- .00 -2.00 : 1.00
0.00 r-.00 0.00 0.00 0.00 0.00 -t-.00 0.00 : -1.00
0.00 0.00 r-.00 0.00 2.00 1.00 2.00 2.00 : 6.00
0.00 0.00 0.00 r_.00 0.00 t-.00 1.00 1.00 : 3.00

Columnpointervector: l- 2 3 5 4 6 7 I

Equat.ions to be solved

1 0 0 0 -1 -l- -1 -2: l-

0 l- 0 0 0 0 -1 0: -l-
0 0 1 0 2 t 2 2: 6

0 0 0 1 0 1 1 1: 3

Upper bounds: 9 1 6 1 l- 3 1 1

012r
302r
1-21_1
2301
1t_30
2220
0410
3310

22112r10
25233303
r2r2l_022
r-3240234
23r_03222
13022223
10232243
0324233s



The number of possibl-e solutíons is: 7

1) 4 0 1 1 l_ 1_ 1 0

Solutj-on reject.ed. 5 and 7 occur 3 times together
2)50011011

Solution rejected. 5 and 7 occur 3 times together
3) 3 0 3 1 0 1 l- 0

4)402L00r_r_
Solution rejected. 7 and 8 occur 3 times togiether

5) 5 0 0 0 1- 2 1 0

Solution rejected. 5 and 7 occur 3 tímes together
6)40200210
'7l' 5 0 r. 0 0 1 1 1

Solution rejected. 6 and 8 occur 3 times together

Check equations: 3 6

Case 48

B2 B3 B4 B5 B6 B'7 B8

0s23100

Distribution Vectors

A3 A4 A5 A6

Pair Tabl-e

2L1-22r11
112r1113
r2411335
2L132312
2]-]-23123
11331424
1r_312235
1352345'7

Original System of Equations

i_.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 : 6.00
2.00 r..00 0.00 3.00 2.00 2.00 l-.00 0.00: 1s.00
1.00 1.00 1.00 0.00 2.00 0.00 2.00 2.00 : 8.00

0r_21
2]11
4r01
2030
r220
4020
3210
s200



0. 00 2.00 4.00 2.00

Equations in Row Echel-on

1.00 0.00 0.00 0.00
0.00 1.00 0.00 0.00
0.00 0.00 1.00 0.00
0.00 0.00 0.00 1.00

Column pointer vector:

Equations to be solved

r-.00 4.00 3.00 5.00 : 15.00

Form

-1.00 -1.00 -1.00 -2.00 : r_.00
2.00 1.00 1.00 2.00: s.00
0.00 1.00 0.00 0.00 : 2-00
0.00 0.00 1.00 1.00 : 1.00

L2453678

r_00
010
00r_
000

Upper bounds:

-a -L
t2
00
11

1t_1

0 -1
02
00
l_0

95

-1
t-

1

0

1

-a
-tr
-z
_I

The number of possible solutions is:

r_)321r_1100
Solution rejected. 3 and 6 occur 3 times together

2)24r.r-0r-00
Solution rejected. 3 and 6 occur 3 times together

3)4Lr-0r-110
Solution rejected. 3 and 6 occur 3 times together

4)50101101
Solution rejected. 3 and 6 occur 3 Limes togiether

5) 3 3 1 0 0 1 1 0

Solution rejected. 3 and 6 occur 3 times together
6) 4 2 r_ 0 0 1 0 1

Solution rejected. 2 and 8 occur 3 times together

Case

B2 B4

49

Þ? B5 B6 B7 B8

Distribution Vectors

A2 A3 A4 A5 A6

001-21
11_021
102L1
02111
01301
1,220r_
01220
1,2120



004]0
11310
10500
02400

Pair Table

33221_t-221110
3433r_3241-211
2321"1"21_21131
2313232301L2
t-1_L2220121-33
132324131_233
221-20r-2321_22
242313351322
l-r-r-02121-3243
1211r2132243
113133224464
01r233223345

Original System of Equat.ions

r-.00 r-.00 r-.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00
0.00: 6.00

2-00 2.00 1.00 1.00 0.00 0.00 2-00 2.00 1.00 1.00 0.00
0.00 : 10.00

1.00 0.00 2.00 1.00 3.00 2.00 2.00 1.00 4.00 3.00 5.00
4.00: 20.00

0.00 1.00 0.00 2-00 1.00 2.00 1.00 2.00 0.00 1.00 0.00
2.00 : 6.00

0.00 r-.00 1_.00 0.00 0.00 r_.00 0.00 1.00 0.00 1.00 1.00
0.00 : 2.00

Equations in Row Echelon Form

r-.00 0.00 0.00 0.00 0.00 -1.00 0.00 -r_.00 0.00 -1.00 -1.00 -
1.00: r_.00

0.00 r_.00 0.00 0.00 0.00 0.00 -r-.00 r-.00 -r_.00 0.00 -1.00 -
1.00: -3.00

0.00 0.00 1.00 0.00 0.00 1.00 1.00 0.00 1.00 r_.00 2.00
i_.00 : 5.00

0.00 0.00 0.00 1.00 0.00 1.00 1.00 0.00 0.00 0.00 0.00
r_.00 : 3.00

0.00 0.00 0.00 0.00 r_.00 0.00 0.00 1.00 r_.00 1.00 1.00
r_.00 : 3.00
Col-umnpoint.ervector: l- 2 3 4'l 6 5 I 910 I1 12

Equations to be sol-ved

1 0 0 0 0 -1 0 -r. 0 -1 -1 -1 : 1

0 t_ 0 0 0 0 -1 1 -t- 0 -1 -1 : -3
0 0 i- 0 0 1 1 0 l- 1 2 1-: 5
0 0 0 1 0 r_ 1 0 0 0 0 1: 3
0 0 0 0 1 0 0 1 1 l- 1 l-: 3



Upper bounds: l- 1 5 1 3 1 3 1 1 3 1 1

The number of possibl-e sol-utíons is: 3

1) r- 0 2 0 3 0 3 0 0 0 0 0

2)r_1102030r_000
Solut.j-on rejected. 1 and 2 occur 3 times together

3) 1 0 2 r 2 0 2 0 r_ 0 0 0

Check equations: l- 3

Case 50

B2 B3 B4 B5 B6 B7 B8

0r_90r-00

Distribution Vectors

A3 A4 A6

13r_

Pair Table

2

Original System of Equations

1_.00 : 6.00
3.00 : 36.00
1.00 : 3.00

Equat.ions in Row Echel-on Form

1.00 : 1-2-00
0.00 : -6.00
0.00 : -9.00

Column pointer vector: 1

Equation 3 has LHS : 0 and RHS !: 0
*** Block vector rejected

Case 5l-

B2 B3 B4 B5 B6 B7 B8

31L6000



Distribution Vectors

A2 A3 A4 A5

0
1
2
1

0

0

1

l_

n

l_

n

t_

4

3
3
2

Pair Table

2
l-
l-

0

1

1

0

2

1

0

2
?

0

2
3
5

Original System of

4.00 3.00 3.00
0.00 1.00 0.00
0.00 0.00 r-.00
0.00 r_.00 2.00

Equations

2.00 : 30.00
1.00 : 4.00
1.00 : 3.00
3.00 : 6.00

Equations in Row Echel-on Form

r_.00 0.00 0.00 -1.00 : 3.75
0.00 1.00 0.00 r-.00 : 4.00
0.00 0.00 1.00 r_.00 : 1.00
0.00 0.00 0.00 0.00: 2.00

Columnpointervector: 1 2 3 4

Equation 4 has LHS : 0 and RHS !: 0
*** Block vector rejected

Case 52

B2 B3 B4 B5 B6 B7 B 8

Díst ribut.ion Vectors

A2 A3 A4 A5

0004
1013
0203
01_22
1,272
032r



Pair Table

Original System of Equations

322L10
2211_1r-
2120L2
1l-0213
r-11123
0l-233s

Equations in Row Echel-on Form

1.00 0.00 0.00 0.00
0.00 1.00 0.00 0.00
0.00 0.00 1-.00 0.00
0.00 0.00 0.00 r_.00

Column pointer vector:

Equations to be solved

1

0

0

0

0

1

0

0

0

0

t-

0

0

0

0

1

2.00 2.00 1.00 : 25-00
2.00 r-.00 2-00 : 8.00
1.00 2.00 3.00 : 9.00
0.00 1.00 0.00 = 2.00

-1.00 -1.00 : 1.00
l_.00 0.00: 2.00
1.00 1.00: 3.00
0.00 1.00: 3.00

L23456

4.00 3.00 3.00
0.00 1.00 0.00
0.00 0.00 2.00
0.00 1.00 0.00

1
2
3

3

Upper bounds:

The number of possible solutions j-s:

Check equations:

-1 -1:
1 0:
l_ l_:
0 1=

1)

Case

B2

q?

B3 B4 B5 B 6 B'7 B8

Distribution Vectors

A2 A4 A5



0

t_

2
0

1

0

1
2

4
trJ

Pair Tabl-e

4

2
1

0

4

2
1

0

t-

0

1

3
4

0

l-

4

5

Original System of Equations

4.00 3.00 2.00 r-.00 0.00 : 20.00
0.00 1.00 2.00 4.00 5.00 : 20.00
0.00 r-.00 2.00 0.00 l-.00 : 4.00

Equations in Row Echelon Form

1.00 0.00 0.00 -1.00 -l-.00 : 1.00
0.00 1.00 0.00 2.00 1.00 : 4.00
0.00 0.00 1.00 0.00 1.00 : 4.00

Columnpointervector: 1 2 4 3 5

Equations to be solved

5¿
22
22
01
13

1
0

0

1

4

4

Upper bounds:

The number of possible sofutions is:

0

1

0

0

0

1

-f -f -
¿I:

^tut-

Case 54

B2 B3 B4 B5 B6 B7 B8

Distribution VecLors

A3 A4 A5

2
1

0
a

?
a



041_
240

Pair Tabl-e

53L2
3101
t_022
2L24

Original System of Equations

3.00 2.00 1.00 0.00 : 1s.00
0.00 2.00 4.00 4.00 : 24.00
2.04 1.00 0.00 2.00 -- 6.00

Equations in Row Echel-on Form

1.00 0.00 0.00 -1.00 : -3.00
0.00 1.00 0.00 2.00: 12.00
0.00 0.00 r_.00 0.00 : 0.00

Co1umn pointer vector: l- 2 4 3

Equations to be solved

1 0 0 -1: -3
0 1 0 2: 12
0 0 1 0: 0

Upper bounds: 1 9 1 6

The number of possibl-e solut.ions is: 2

1) r 4 0 4

Sol-ution reject.ed. 1 and 2 occur 3 times together
2)0603

Check equations:. 2

Finished at. 26-JUN-1989 23:73:23.L9


