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Abstract

In this thesis, three categories of problems in Exact Combinatorial Coverings are
discussed. All the coverings are minimal, in the sense that they use the fewest blocks
possible; they also have specific restrictions imposed on them. The first category of
covering requires that all pairs of elements from a v-set be covered exactly once. To
eliminate the trivial case of generating a covering by taking all the elements and placing
them in a single long block, we restrict the length of the longest block to be less than or
equal to v-1, where v is the number of elements involved. The second category of
covering problem examined involves covering all triples exactly once; as with the
coverings of pairs, the length of the longest block is restricted to be less than or equal to
v-1. In the third category, all pairs must be covered exactly twice; again, the length of
the longest block is restricted to be less than or equal to v-1. For these bicoverings, a
computer algorithm is employed for many of the results. In the final chapter of the
thesis, a discussion is given of the number of non-isomorphic solutions for the classical
covering problem for N(2,4,9).
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Chapter I
1.1 Entroduction

Combinatorics is basically the study of finite sets, and most of the problems
encountered fall into three major categories. The first category is the discussion of
existence: can a structure be created that satisfies certain specified conditions. The
second category is more numerical: if a structure exists, how many sets of elements (or
blocks) are required in order to create the structure. Finally, we have the third
category, that of determining the number of non-isomorphic structures satisfying a
given set of conditions.

In this thesis, we shall be studying structures that satisfy certain minimal conditions and
that consequently must exist. Most of our discussion will be concerned with problems
of the second category, namely, the determination of how many subsets are required to
create the structures we are studying. However, in the final chapter, we will include a
discussion of a problem from the third category and will discuss the number of non-
isomorphic solutions to a particular covering problem.

1.2 General Combinatorial Background

Balanced Incomplete Block Designs (BIBDs) were introduced by Frank Yates in 1935,
and have been widely studied since then, both for their practical applications and their
mathematical properties. They are significant tools in statistical analysis, and have been
employed in communication theory; they are related to many combinatorial designs
such as error correcting codes and Latin squares.

Covering and packing designs are a generalization of Balanced Incomplete Block
Designs; in these designs, we drop the requirement for exactness and permit repetition
of pairs in a covering and omission of pairs in a packing. Consideration of these
Systems as designs was first made explicit by Stanton, Kalbfleisch, and Mullin in [51],
although various earlier papers had discussed these structures without emphasizing
their design properties (see, for example, [23], [52], [40]). Since that time, a great deal
of further work has been done by Mills, Mullin, Rees, Stanton, Stinson, Vanstone, and
others.



In this thesis, we shall basically be discussing exact coverings (which are also exact
packings). In order to meet the condition of exactness for every possible situation, it
will be necessary to permit more than one block size in our covering designs. This
approach first appeared in a 1948 paper by Erdoés and de Bruijn, but no further
developments took place for some time. Woodall [67] obtained an important inequality
in 1968, and Stanton and Kalbfleisch [53] obtained a different inequality (1972) that
subsumes the Erdos - de Bruijn result. Since that time, there have been many
developments by various authors; these will be indicated in appropriate places during
our discussion.

The general structure of this thesis will now be described. In Chapter II, we shall give
a brief outline of the structures to be discussed and we shall give definitions of the
various structures. The early definitions will deal with the classical background of the
subject, and then we will present the generalizations which we shall be discussing.
Some of these definitions will be repeated in later chapters in order to make the
presentation simpler to follow without excessive referencing to Chapter II.

In Chapter III, we discuss exact covering designs where every pair must occur exactly
once. These designs are the analogues of Balanced Incomplete Block Designs, and are
of interest in Graph Theory as well as Combinatorics (cf. the various papers by Rees).
In Chapter IV, we extend the discussion to the case where every triple occurs exactly
once; the resulting designs are the natural generalization of the Steiner Systems
S(3,k,v) introduced by Witt [66].

In Chapter V, we introduce the concept of a bicovering in which every pair occurs
exactly twice. Much of the discussion of this case is carried out by means of a
computational study, and the algorithm employed is given in an Appendix, along with
various numerical results.

Finally, in Chapter VI, we do a study of the number of non-isomorphic solutions of
two particular covering problems.

1.3 References
Many of the results obtained in this thesis hai//e already been published in various

Jjournals during the last several years. The basic step forward was the introduction of
pair-coverings with restricted largest block length (Allston, Stanton, and Cowan [3]);
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this work is described in section 3.2. The work of section 3.3 appeared in Allston and
Stanton ([7] and [8]).

The discussion in section 4.2 dealing with exact coverings of triples with specified
longest block length appeared in Allston and Stanton [6]. The discussion of the two
important special cases involving 20 or 21 elements appeared in Allston, Stanton, and
Cowan ([1] and [2]). The results of section 4.7 are due to Allston, Stanton, and
Wirmani-Prasad [9]. The discussion of section 4.8 is taken from Allston, Stanton, and
Rogers [10].

The material in Chapter V has not yet appeared in print. The body of Chapter VI
appeared in Allston, Stanton, and Wallis [4], although we here present a modified
version which incorporates a correction found by Bate and van Rees [13].



Chapter II
2.1 Definition of the D and N Functions

Suppose that we have a set V consisting of v elements, denoted by the integers
1,2,3,... ,v. Suppose also that we have a family F of k-subsets selected from these
v elements (k is normally taken to be less than v, since the case k = v is trivial).
Now consider all the t-subsets of V.

If F has the property that all t-subsets of V occur at least A times in F, then we say
that we have a covering, and that the family F is a A-covering of all t-sets. The
most interesting coverings are those which have a minimal property, that is, the
cardinality of F, or [F|, is as small as possible; if we are dealing with such a minimal
family, we denote this minimum cardinality by the symbol Ny (t,k,v). The case A =
1 is particularly important, and we normally consider this case unless otherwise
stated; in this particular case, we omit the subscript altogether and simply write
N(t,k,v). Some authors use the symbol C(t,k,v) for the covering number.

On the other hand, if the family F is selected to have the property that no t-subset
occurs more than A times, then we say that we have a packing, and the family F is
called a A-packing of all t-sets. Again, it is natural to restrict attention to those
particular packings that are maximal, that is, that have IFl as large as possible. We
use the symbol D (t,k,v) to denote this maximum cardinality. Again, we normally
take A = 1, unless otherwise stated, and we write D(t,k,v) in this case.

It is trivial, but very important, to note the results for t = 1, that is, when we are
covering or packing all single elements. For this case, we immediately have

D(Lkv) =LZ| and N(Lkv) =l <l

This relationship allows us to obtain a well known bound on the numbers N and D;
we call this the Fisher Bound, since it is obtained by counting the elements
appearing in the blocks of the covering family F in two ways, in exactly the same
way that the usual relationship bk = vr is derived for Balanced Incomplete Block
Designs.



Write down all the blocks in a covering family F; then each block contains k
elements, and the number of blocks is N(t,k,v). Consequently, the number of
elements in the covering array is just kN(tk,v). Now, look at the blocks
containing a particular element x; since all t-sets containing X must occur, X must
occur with every (t-1)-set formed from the v elements, and these (t-1)-sets must
appear in the (k-1)-sets that occur with x. Hence, the frequency of x is at least
N(t-1,k-1,v-1), and this is true for each of the v elements x. Hence, the number of
elements in the array is at least vN(t-1,k-1,v-1). Putting these two facts together,
we have

kN(tk,v) =2 vN(t-1,k-1,v-1).

This recursive relation is best employed as it stands. If t = 2, we can derive the
slightly weaker form of the covering bound as

Nk 2[ £ 117

An exactly similar discussion can be carried out for the packing bound; we again
write down all the blocks in a packing family F. Since there are D(t,k,v) blocks of
length k, the number of elements in the packing array is simply kD(t,k,v). Now
look at the blocks containing a particular element x; x can not occur with a (t-1)-set
more than once in the (k-1)-sets which appear with x. Consequently, x can not
appear in more than D(t-1,k-1,v-1) blocks, and it may appear in fewer blocks.
Since there are v possibilities for the element x, the number of elements in the array
is at most equal to vD(t-1,k-1,v-1), and we obtain the recursive relationship

N

kD(tk,v) < vD(t-1,k-1,v-1).
This equation yields the packing bound for t = 2 in the usual form as

D) <L L 1.

We conclude this section by describing results that have been obtained for packings
and coverings with small values of v and k.

The results for N(2,3,v) were given by Fort and Hedlund [23]; for a much simpler
presentation, along with the results for D(2,3,v), see Stanton and Rogers [56],
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where the results are phrased in terms of the defect graph of a packing and the
excess graph of a covering. The packing bound is achieved for all values of v,
except when v is congruent to 5 (mod 6); in this latter case, the maximal packing
design has a number of blocks one less than the bound. Similarly, one finds that
the covering bound is always achievable.

The results for N(2,4,v) are summed up in two papers by Mills [29,30]. With the
aid of a considerable amount of computation, it is shown that the bound is always
achieved except for v = 7,9,10 (when one extra block is needed), and for v = 19
(when two extra blocks are needed). The results for D(2,4,v) are summarized in
Brouwer [17]. The numbers 8,9,10,11,17,19, are exceptions; for all other values,
the result is that the bound is met for v not congruent to 7 or 10 (mod 12), and the
bound, less one, is met for v congruent to 7 or 10 (mod 12). For v =9 and 17, the
packing number is the bound, less one; for v = 8,10,11,17, the packing number is
the bound, less two; for v = 19, the packing number is the bound, less 3.

It is worth noting that Brouwer's paper contains an especially useful result about
the cases v congruent to 7 or 10 (mod 12). In this case, all pairs are exactly covered
once by a single block of size 7 and a collection of blocks of size 4.

2.2 Exact Covering and Packing Systems

Supppose that we start with a variety set comprising v elements denoted by the integers
1,2,3, ..., v; let t be an integer less than v. We define an exact or perfect covering of
t-sets to be a selection of subsets formed from the variety set such that each subset is
proper, and such that each t-set occurs exactly A times. For example, if v=17, t = 2,
and A = 3, then the following family of subsets is a perfect covering.

1236, 2347, 3451, 4562, 5673, 6714, 7125, + 21 pairs 12,13,14, ... , 56,57,67.

Another perfect covering would be provided by taking the first 7 sets in the above
family (the quadruples) and repeating them to give a covering in 14 sets.

Not a great deal of work has been done on coverings with A > 1, and we shall only
consider the case A = 1 in this section. With A = 1, there are two trivial solutions. We
exclude the trivial case when all elements are placed in a single set {1,2,3, ... ,v}.
However, there is also always the trivial (but important) solution where we take a
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covering family made up of all possible t-sets. However, in order to have interesting
covering families to study, we need further restrictions. Three particular kinds of
coverings have been studied in considerable detail (cf. the survey given in [45]).

(1) If we impose the restriction that all sets in the covering family have the same
cardinality k, we are dealing with Steiner Systems S(t.k,v); see, for example, [66] as
well as section 2.3. Steiner Systems are particularly symmetric and fascinating, but
only a dozen or so are known with t > 3. For t = 2, the Steiner Systems S(2,k,v) are
just the well known Balanced Incomplete Block Designs, about which there is a very
large literature. However, even in the case of Balanced Incomplete Block Designs, it
frequently happens that an appropriate design does not exist. For example, if we take
v = 11, then there are 55 pairs from an 11-set; if we are going to cover these pairs by
blocks of equal size k (with k > 2), then k(k-1)/2 must divide 55. But 55 is not
divisible by 3, or 6, or 10, or 15, or 21, or 28. This illustration emphasizes the fact
that, if we are going to have a perfect covering family, then some of the block sizes will
generally have to be different from one another.

(2) We might restrict the covering family by permitting two distinct block sizes in the
covering family. As an example, let v=12 and t = 3. Then a perfect covering of
triples can be displayed as follows; take A = {123,456} and B=A + 6 as two
disjoint sextuples. Define a 1-factorization of A (see [50], for example) as follows.

Fi=1{12), 34), (56)), F, = ((1,3),2.5),4,6)), F3 = {(1,4), 3.5), 2,6)},
Fy ={(15), 249, 3.6)}, Fs=((1,6), 2.3), 4,5)).

Also, define a 1-factorization of B by taking sets G; = F; + 6. Then it is €asy to see that
We can construct a perfect covering family by taking the 2 sets A and B, together with
the 45 quadruples formed by taking every pair from F; with every pair from G; (this
gives 9 quadruples for any fixed i, and i may take on the values 1,2,3,4,5).

(3) Another restriction on the covering family that leads to problems of extreme interest
is to demand that the family have minimal cardinality. This leads to the introduction of
the concept of a g-covering. A g-covering is a covering family such that no other
covering family has smaller cardinality; we denote the minimal cardinality by g(1,t;v).
For example, it can be shown that the family just constructed in the previous paragraph
is minimal forv=12 and t = 3; thus g(1,3;12) = 45, as shown in [48]. An example of
a non-minimal family for v = 12 and t = 3 would be provided by taking the set



C= {1,2,3,4,5,6,7,8,9,10,11}, and the 55 triples of the form {c,d,12}, where ¢ and
d are elements of C; this would be a perfect covering in 56 sets.

We shall discuss g-coverings of pairs (t = 2) and of triples (t = 3). Only a few results
are known for t > 3, largely because progress depends heavily on a knowledge of
Steiner Systems.

2.3 Steiner Systems and t-designs

A Steiner System is a particular exact covering in which every t-set occurs exactly once
in a collection of k-sets taken from a v-set. Such a Steiner System is denoted by the
symbol S(t,k,v), and the number of blocks in the system is easily found as

_ V(v-1)(v-2)...(v-t+1)
~ kk-1)(k-2)...(k-t+1)’

1S(t.k,v)l

If we consider a Generalized Steiner System in which each t-set occurs A, times, we use
the notation Sy (tk,v); these Generalized Steiner Systems are often called t-designs,
although the term is unfortunate because it does not emphasize their relationship with
the classical Steiner Systems.

If t = 2, a Generalized Steiner System Sj (t,k,v) is just an ordinary BIBD with

parameter set (v,b,r,k,A); the usual Balanced Incomplete Block Design relations
immediately show thatr = AMv-1)/(k-1) and b = Av(v-1)/k(k-1).

There are many tables of BIBDs; the earliest was produced by Fisher and Yates in their
Statistical Tables for Biological, Agricultural, and Medical Research [22].

2.4 g-Coverings

The minimal number of incomplete blocks made up of elements from a v-set in such a
way that every U-set occurs exactly A times in the blocks selected is designated by
g(A.1;v).  Almost all results will deal with the particular case A = 1. Erdos and
de Bruijn showed [18] that g(1,2;v) = v and that this minimum is always given by a
near-pencil, that is, by one block of length v - 1 plus v - 1 pairs. Exceptionally, the



minimum is also attained if v = k2-k+1 and a geometry of k points per line exists; then
the geometry covers all pairs by v lines comprising k points each.

Allston, Stanton, and Cowan, in [3], introduced the quantity g(A,1;v); this is the
minimal number of blocks required to cover all H-sets exactly A times, given that the
largest block in the covering has length k. It is clear that g(A,1;v) is just the minimum
value of the quantity g®(A,1;v) when we allow k to range over all possible values
from ptov-1.

If we set A = 1, various bounds have been obtained. For example, Woodall [67]
showed that

(2.4.1) g2 1+ vk (}jl)(l ) Z_(L_i_jz-)')

where k is the size of a block in the covering set (henceforth, we shall always use k as
the size of the largest block in the covering set). Stanton and Kalbfleisch [53] showed
that

(2.4.2) g=1+

k-u+2 ( k

v-p+1 \W- 1) vh

And it is trivial, by a counting argument, to obtain the Combinatorial Bound

(o)
(2.4.3) g2+
(w)
A stronger bound was obtained by Stinson [61] and it will be introduced in Chapter II
along with a later bound due to Rees [36] and Rees and Stinson [38].



Chapter IIT

3.1 Coverings of Pairs; the Numbers g(1,2;v)

We first mention that perfect pair coverings, that is, families that cover all pairs exactly
once, also appear in the literature under the name of finite linear spaces or under the
name of pairwise balanced designs. We prefer the first and third of these three terms.
Pairwise balanced designs also subsume the well known Balanced Incomplete Block
Designs (BIBDs); these are just pairwise balanced designs for which only a single
block size is involved.

As we have already stated, one of the first results on perfect pair-coverings was given
in 1948 by de Bruijn and Erdos [18]. They proved that the cardinality of the minimal
covering family is g(1,2;v) = v. Furthermore, they showed that this minimum could
always be achieved by taking one block C containing all elements of the v-set except v,
and then taking all pairs {c,v}, where c ranges over the v - 1 elements of C (this
configuration is often called a near-pencil). In the special case thatv=k?-k + 1,and a
finite geometry exists (that is, k - 1 is a prime power), then the finite geometry provides
a second minimal covering in v sets, and those v sets all contain precisely k elements
(this second type of minimum, of course, can only occur if v is an integer selected
from the set {7, 13, 21, 31, 57, 73, 91, ...}; it is just a Balanced Incomplete Block
Design with parameters (v,b,r,k,A), where v=b=k2-k + 1,r=k, A = 1).

Actually, it is not too illuminating to consider the number g. In [3], the quantity
g®)(1,2;v) was introduced; this is the minimum size of a covering family that contains
at least one block of length k but no block of larger size. Henceforth, in this chapter,
we shall normally write g(v) for g(1,2;v), and we shall write g®(v) for g®)(1,2;v). We
thus see that the quantity g(v) is rather accidental; it is just the global minimum for the
quantity g&)(v). We shall now provide a summary of developments in the theory,
phrasing the results in terms of g(K)(v), since results appear more simple and direct in
this context.

We have already referred to the important step forward taken by Woodall [67] in 1968;

Woodall established a general bound for any t. In the special case when t = 2,
Woodall's result specializes to
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g0 > w=14 RGkveD)

We call W the Woodall bound.

Stanton and Kalbfleisch [53] used a variance method to obtain a bound which,
specialized to the case t = 2, becomes

k2(v-k)
(v-1)

g®wy=>1+

We call this quantity SK. If we make a graph of the function SK, we obtain a
particularly simple proof of the Erdos-de Bruijn result (see [48] or [49]). Of course, we
should also mention the combinatorial bound C; for small values of k, it is extremely
useful to note that

N

v(v-1
k(k-1)

gl 2=

The combinatorial bound obviously gives the exact result for k = 2.

There are many open questions for particular values of k and v. However, a great deal
of progress has now been made. In Section 3.2, we will give the results that we
obtained in [3], where it was shown that the Woodall Bound gave the exact value for
g®)(v) as long as k > (v-1)/2 and v does not have the form 4m+1 (the latter case was
handled in [55]). This basically means that the combinatorial bound C holds
(approximately) from k equal to 2 until k reaches a value in the neighbourhood of v;
the SK bound then holds, approximately, from k in the neighbourhood of Vv to k in
the neighbourhood of v/2; then the bound W holds exactly when k exceeds v/2 (special
consideration is needed at the transitional points where we change from one bound to
another). It thus becomes of importance to see just how close gK)(v) is to the bound
SK.

In [43], it was pointed out that the bound SK is exact when all other blocks meet the
block of length k and when they form a resolvable balanced incomplete block design.
A very important extension of this result was given by Stinson in [61]; Stinson defined
s to be the greatest integer in the quantity (v-1)/k, and showed that

(v-k)(2sk-v+k+1)

g0 2 1+
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We call this bound S (the Stinson bound). It is an improvement over the SK bound,
except when SK is exact. Furthermore, if S is integral, then S is exact if and only if all
blocks meet the base block of length k and form a resolvable pairwise balanced design
with block sizes s and s+1. It is possible to give a particularly straightforward account
of the behaviour of the Stinson bound, and we now proceed to do this.

Suppose that we consider all the blocks of the covering with the exception of the base
block of length k. We say that there are b; blocks of length i (in a block of length i,

there may be i points not on the base block, or there may be one point on the base block
and i-1 points not on the base block). Then, we may write

(3.1.1) g®(v) - 1= g-1 (for short) = by + by + by + bs + ...
We now count all pairs not in the base block and find:

(3.1.2)

v(v-1)  k(k-1
QL KD by 4 3by+ 6bs + 10bs + .

Now let the points in the base block be called 1 G =123,..k), and let bij denote the
number of blocks of length i through point j. Clearly,
i (i-l)bij =v-k, for all i;

thus we have X; J (i-l)bij = k(v-k). However, we must not forget the blocks that do
not meet the base block; suppose that b, denotes the number of blocks of length i that
do not meet the base block; then X; (i-1)b;g = €, where € is a non-negative integer.
Adding all of these expressions together gives us our third equation:

(3.1.3) k(v-k) + & = by + 2b3 + 3by + 4bs + ...

We now multiply these equations by the quantities s(s+1)/2, 1, and -(s+1),
respectively, and add the three equations. This has the effect of eliminating the terms in
bg;1 and b, to leave the result

(3.1.4) s(s+1)(g-1) + (v2-v+k2-k) = 2(s+1)k(v-k) + 2e(s+1) + 2P,

where P is the non-negative integer
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bs+ bgy3 + 3(bg_1+bgia) + 6(bg.o+bgys) + ...

Then we find
_ (v-k)(2sk-v+k+1) _ZE 2P
3.1.5) g-1= sG+D) + S + .S—(g:T)-

Equation (3.1.5) gives the Stinson Bound when we ignore the last two terms, which
are certainly non-negative.

It is easy to see that the optimal value for s, in Equation (3.1.5), is the greatest integer
in (v-1)/k; suppose that we assign that particular value to s.

Now consider s = 1 (that is, k lies between v/2 and v). The Stinson bound thus
becomes the Woodall bound W and we have

(3.1.6) g

1= QRICKVED | e 4 by + 3bs 4 6bg + . = (W-1) 4 26 + P,

Equation (3.1.6) immediately gives us the

THEOREM. The Woodall Bound can only be achieved if all blocks meet the long block
of length k (that is, e=0) and if all the other blocks have lengths 2 and 3 (thus the other
blocks fall into resolution classes with blocks of lengths 1 and 2 hanging on to the
points of the base block).

That the Woodall bound is actually achieved in this region will be shown by a
straightforward construction in Section 3.2 (cf. [3]).

We now turn our attention to the case when s = 2 in Equation (3.1.5); this is when k
lies bewteen v/3 and v/2. Equation (3.1.5) can then be written in the form

(by+b

3 5)+b6+

(3.1.7) g=1+(—v-'£)-(56ﬁ’+—12+8+§-=8+8+

Now the Stinson bound may not be integral, but we see that it can not be achieved (in
the nearest-integer sense) unless € = 0 (recall that € is an integer). Thus, we have the
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THEOREM. When s = 2 (that is, k lies between vI3 and v/2 ), the Stinson Bound is only
attained if all blocks meet the base block.

However, we can go further; the numerator (v-k)(Sk-v+1) is an even integer, and so
the quantity P/3 = (by+bs)/3 can only assume the values 0/3, 1/3, or 2/3. Thus we

have the

THEOREM. If the Stinson Bound is met with s = 2, then all blocks must have lengths 3
and 4, except that there may be one or two exceptional blocks with lengths 2 or 5.

It is relatively easy to specify when these rogue blocks appear. We let k = 6t+a, and let
v = 2k+6u-+b; then one can carry out the requisite algebra and find

. X, X
(3.1.8) by+bs =3y (@) -5

where X = (a+b)(3a+1-b) and y denotes the ceiling function. Of course, in any
particular case, it is probably easier to carry out the specific elimination that led to
Equation (3.1.5).

For example, let us consider v = 24 and k = 8;thena=2,b=2and by+bs =2. In
general, we find that, for X = 0, 2, 4 (mod 6), respectively, then by+bs =0, 2, 1,
respectively.

We should add that the procedure used in obtaining Equation (5) is equally useful for
other values of s. If s = 3 (that is, k lies between v/4 and v/3), then we get

_ (v-B(k-v+l) 2e P
(3.1.9) g-l—- ———'1-2—-—+ 3 +-6-.

From this equation, we can deduce easily that € = 0 if the Stinson bound is met;
furthermore, one can get a quantitive limitation on the number of rogue blocks in this
case. However, this result is only a special case of a much more general theorem. Let
us return to Equation (3.1.5), with s having its optimal value. If the Stinson bound is
to be met, it is clear that 2¢/s can not exceed unity; hence the maximum length of any
block disjoint from the base block is s/2 when s is even and (s+1)/2 when s is odd.
This shows that the disjoint blocks are relatively "short", in order to keep down the
value of &. On the other hand, let us look at the quantity P and let us suppose that there
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is a block of length (s+1)-z disjoint from the base block. It will contribute an amount
(z+1)z/2 to P and an amount (s-z) to e. The total contribution from this one disjoint
block will thus be

(z+)z  2(s-z)  z2 - z(2s+1) + 2s(s+1)
s(s+1) T T s T s(s+1)

This quadratic function starts at the value 2 when z = 0 and decreases to the value
(s2+s+2)/(s?+s), which is always greater than 1, for z = s-1, that is, for block length 2.
We thus see that any block disjoint from the base block must contribute more than one
unit to Equation (3.1.5), and thence we obtain the following result.

THEOREM. If the Stinson Bound is to be met, in the nearest-integer sense, then all
blocks must meet the base block of length k.

Recently, a further strengthening of the Stinson bound has been achieved. Rolf Rees
[36], in his doctoral dissertation, was able to obtain a bound R that is, in some cases,
stronger than S; if the bound R is exact, then all blocks must meet the base block of
length k and they must have block sizes equal to s, s+1, or s+2. The exact properties
of the R bound are rather complicated, but are described in detail by Rees and Stinson
[38]; we will simply note that, if T is defined to be the residue of (v-k), modulo s, then

(v-K)(2k(s-1+1/s)-v+k+1) +2kT(1-/s)
R=1+ .
(32—s+2'c)

Tables have now been produced giving the values of g®)(v) for most small v and k: in
particular, [7] and [8] give the results for all v < 22 except in the cases v = 17,18, and
19, with k = 4. The case k =4 is discussed, for all other values of v, in [57]. The
value for g)(17) is quoted in [58); see also [58], [46], [59]1,[11]. A few initial results
for the case k = 5 are given in [5]. Buskens, Rees, Stanton, and Stinson, have
extended the census of g&)(v) up to v = 31 (with a number of blanks). However, the
next natural range of values, 32<v<57, presents many opportunities for discovery of
exotic designs.

Rees [36] has given constructions for the cases v = 2k+2, 2k+3, and 2k+4 (see also

[20]). The case v = 2k+1 was already given in [3] and [55]. A special instance of the
case v = 2k+7 appears in [20].
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3.2 The Quantity g(k)(1,2;v)

3.2.1 Introduction. If we specialize the Woodall, Stanton-Kalbfleisch, and
Combinatorial Bounds to the case W = 2, we have the lower bounds in the form

(3.2.1) 'w=1+%§@bvu)

2
(3.2.2) SK=1+£§%9

_v(v-1)
3.2.3) C= kD) -

It was shown (see [48], or, for more detail, [49]) that the Stanton-Kalbfleisch bound
(3.2.2) easily produces the Erdés-de Bruijn Theorem.

In this section, we employ the numbers

g®(1,2;v) = g®(v)
as the cardinality of the minimal family of sets that covers all pairs, given that the
elements are from a v-set and that the size of the longest block in a covering family is k.

When the argument v is obvious, we simply write g(®,

As an example, suppose that we take v = 13; then we can construct the following table.
The values gk)(1,2;13) for k > 6 will be justified later in the section. Note that

W=1 +%(13-k)(k-4) ,

k2(13-k)
- 12 ’

SK=1+

C= 156

k(k-1)



k gk W___SK C
13 1 1 1 1
12 13 13 13 2
11 22 22 22 2
10 28 28 26 2
9 31 31 28 3
8 31 31 28 3
7 28 28 26 4
6 24 22 22 6
5 19 13 18 8
4 13 1 13 13
3 26 <0 9 26
2 78 <0 5 78

For k =2, 3, 4, the values follow from using the set of all pairs; from using the triple
system on 13 elements; and from using the projective geometry on 13 elements.

3.2.2 The Construction of a Covering System for Large k. Suppose that k
=V - 2q; then the Woodall bound is

W=1+a@v-60+1) .
Now take a complete 1-factorization of the 2a: points not contained in the block of
length k. Form triples by associating all pairs in any 1-factor with the same point in the
block of length k (this can be done so long as the number of 1-factors, which is 20-1,

is not greater then v-2ar). Use all pairs not contained in the block of length k or in the
triples. Then the total number of blocks is

1+ Qa-Dao + (;) - (V"ga)- o20-1)3
=1+ a2v-60+1) = W.
The condition 20-1 < v-20 simplifies to
a < (v+1)/4.

Thus k = v-(v+1)/2 = (v-1)/2, and we have
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THEOREM 3.2.2.1. If v-k is even, then the Woodall bound gives g(¥) for k = (v-1)/2.

For v-k odd, we need a different factorization of the pairs on the v-k = 20+1 points.
The easiest way to get a complete 1-factorization of an even number of points (take 8 as
an example) is to place 1 at the centre of a circle formed by the other 7 points, as shown
in Figure 3.2.1.

Figure 3.2.1: 1-Factorization of Kg

The first 1-factor is found by taking (1,2) and the three perpendicular chords, as
shown. The other 1-factors are found by rotating this 1-factor about 1.

Similarly, if there is an odd number of points, say 7, we can place them on the
circumference of a circle with centre 0.

Figure 3.2.2
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The first "1-factor" is found by taking "1", joining O to 1, and taking the chords
perpendicular to (0,1). By rotation, we get 7 generalized 1-factors.

Now we make a construction analogous to that in Theorem 3.2.2.1. We form triples
by taking all pairs in a 1-factor and adjoining the same point from the k-block. This is
possible so long as
20+1 < v-Q2o+l)
that is, so long as
o< (v-2)/4 ,
or

k2v-(v-2)2-1=v/2 .

The number of pairs needed to cover all pairs is now found as

(\2/) i (v-220c-1) - 3a2o+1)

= 2vol-802-60+v-1.
So the total number of blocks is this number increased by 1+0(2a+1), thatis,
2vO-6024v-50, .

But we easily calculate that

20

1
W=14+ 2+ (3v-60-3-v+1)

=1+ Qo+1)(v-3a-1)

= 20v-602+v-50.

We thus have
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THEOREM 3.2.2.2. If v-k is odd, then the Woodall bound gives g(k) for k > v/2.
These two theorems are easily merged into

THEOREM 3.2.2.3. Ifv = 1 (mod 4), the Woodall bound holds for k > (v-1)/2;
otherwise, the Woodall bound holds for all k > (v-1)/2. Thus, for k in these ranges,
we have gk) = 1 + (v-k)(3k-v+1)/2.

Actually, we can go a bit farther. If we use (2.1) and (2.2) from [49], it follows that,
with t = 2, the Woodall bound W is only attainable if

2 (50

A0)

where A(0) is the set of blocks disjoint to the block of length k, {k;} is the set of
lengths for these blocks. Thus, we have the result that all other blocks meet the longest
block. Furthermore, it is also required that

>0

A(l)

and this shows that the blocks meeting the longest block in 1 point (all others) have
cardinalities 2 or 3. Thus we have

THEOREM 3.2.2.4. The only configurations producing the bound W are those using
pairs and triples, as described earlier in this section.

3.2.3 The Values k = 2 and 3. It is trivial to note that

@=(3).

Also, it is clear that g3) is obtained by taking as many triples as possible; now this
number (see, for example, [52]) is
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where [x] denotes the greatest integer not exceeding x, and o is the congruence class of
v, modulo 5. It follows that we can state

THEOREM 3.2.3.1. The value of g(?) is G), and the value of g(3) is

(3)-2 [% ["Z—lﬂ + 28,5 .

It is useful to record gB®) according to the form of v. We give two alternative forms.

v o) e

6t 612+t v(v+1)/6
6t+1 612+t v(v-1)/6
6t+2 612+5t+1 v(v+1)/6
6t+3 6t2+5t+1 v(v-1)/6
6t+4 6t249t+4 (v2+v+4)/6
6t+5 6t249t+6 (v2-v+16)/6

Using the results proved so far, we can fill in the following table.

KN 2 4 5 6 7 8 9 10 11 12
2 |1 3 6 10 15 21 28 36 45 55 66
3 4 7 7 12 12 19 21 26
4 1 5 8§ 10 11 12% 12% (3% 3%
5 1 6 10 13 15 16 16 18*
6 1 7 12 16 19 21 22
7 1 8 14 19 23 26
8 9 16 22 27
9 1 10 18 25

10 1 11 20
11 1 12
12 1

Table 3.2.1. g®(v)for2<v<12
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The starred values do not follow from our theorems; rather we need some easy
Lemmata.

LEMMA 3.2.3.2. g(4)(9) = I2.
PROOF. The SK bound is 11; also it is clear that

1234 189 368 269 459 35
1567 258 478 379 27 46

provides a cover in 12 blocks.
If a pairs, b triples, ¢ quadruples, provide a cover in 11 blocks, then
a+b+c=11, a+3b+6c=36.

It follows that 2b + 5¢ = 25, and we have one of 3 cases:

(D) c=5,b=0,a=6;

) c=3,b=5,a=3;

3) c=1,b=10,a=0;
Case (1) is impossible, since D(2,4,9) = 3. Case (2) is not possible since we get 1234,
1567, 4789; then we can not have 5 triples. Case (3) is impossible since the quadruple
1234 leaves 5 symbols to go with 1, and hence the use of triples only is impossible.
Indeed, Lemma 3.2.3.2 generalizes trivially to the result.
LEMMA 3.2.3.3. Ifv = 22, then g(K)(v) > 2+t (23).
PROOF. ltis clear that

gDy = 22-4 > 241

by using Theorem 3.2.2.3. Also, the counting bound shows that

2(12-1
gOw) > %—D-)-: 2+t.
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Finally, the SK bound gives

(t+1)2(t2-t-1)

g(t"l‘l)(v) 2 1 + t2—1 )

that 1s,

2

't':T .

gt+D(v) > 241 -

This shows that g(t+1)(v) > t2+t for t > 3, and the result for t = 3 follows from Lemma
3.2.3.2.

The general result then follows from the shape of the bounding curve
k2(v-k) L K2k

SK =1+ = 14+

between k = t+1 and k = t2-2.

LEMMA 3.2.3.4. g4(10) = 12.

PROOF. The SK bound is 12, and the cover
1234 258 26T 279
1567 369 378 468
189T 47T 459 35T

is trivially obtained.

LEMMA 3.2.3.5. g(¥)(11) = 13.

PROOF. Again, the SK bound is 13. Simply take an affine geometry on 9 points,
adjoin T and E to two resolution classes, and add the pair {T,E}.

LEMMA 3.2.3.6. g(4)(12) = 13.

-23-



PROOF. The SK bound of 13 is achieved by deleting a single point from the 13-point
geometry.

For g(3)(12), matters are slightly more complicated; it is easy to get the SK bound of 17
and the construction

12345 T62 E63 V64
16789 T73 E74 V75
ITEV T84 E85 V82

T95 E92 V93

along with pairs 65, 72, 83, 94, shows that g(3)(12) < 19.
Now blocks 12345, 6789T, imply at least 2 + 25 = 27 blocks. Blocks 12345, 16789,
imply at least 3 + 16 = 19 blocks. So there can be only one block of length 5 if
g(®)(12) <19. Let this block be B = {89TEV}. Then use a pairs, b triples, ¢
quadruples, and we have

a+b+c=16+d (d=0orl),

a+ 3b + 6¢ = 56.

Then 2b + 5¢ =40 - d, and we have cases:

(1) d=0; c¢c=6, b=5 a=5
2) d=0; c¢=4, b=10, a=2
3 d=1; c¢c=7, b=2, a=8
4) d=1; c¢=5 b=7 a=5
5) d=1; c¢=3, b=12, a=2.

Now no quadruple is disjoint to B, or we would have at least 2 + 20 = 22 blocks. If
there is at most one quadruple through any point of B, then ¢ < 5; also, if 2 quadruples
pass through one point in B, we find that only 3 more are possible. This rules out
Cases (1) and (3).

In Case (4), our 5 quadruples use up 5 triples from A = {1, 2, ..., 7}. So we can only

get triples by using an element from B with a pair from A; since only21-15=6 pairs
are available, we can not meet the requirement b = 7.
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In Case (2), we only need 4 quadruples. This leaves 9 pairs free in A; but, even using
all of them, we can not get 10 triples. Hence, we need only consider the case

a=2,b=12,c¢=3,d=1.

This can only occur if 3 triples from A are used for quadruples and the other 12 pairs
from A are used to form triples. Then each point in B must occur with 3 or 1 points
from A; hence the distribution of lines through the points of B is 3 (1 quadruple, 2
triples), 2 (1 pair, 3 triples). We may form the blocks:

89TEV, 8123,
845, 867,
9146, 925, 937.

If we now take T157, T24, T36, then we are forced to have E1 and V1. Triples E26,
E35, E47 are available; so are V27, V34, V56. Thus we have achieved a construction
and established

LEMMA 3.2.3.7. gl5)(12) = I8.

3.2.4 The Case v = 13. It will be useful to give a slight strengthening of the SK
bound before we complete the table in section 3.2.1.

From the derivation in [49], we see that the SK bound comes from using a positive
variance and omitting the set Ag. Thus we have

LEMMA 3.2.4.1. If the SK bound is an integer and if it gives the exact value of g(*),
then all other blocks meet the block of length k and all of these other blocks have the
same length t.

Indeed, it follows at once that these other blocks form a BIBD with 1 + k(t-2) varieties,
block size t-1, A = 1, and this BIBD is resolvable into k resolution classes. It further

follows that t-1 divides k-1.

There are 3 obvious cases in which the bound is exact. If t = 2, then v = k+1 and we
have a near-pencil, If t =k, then v = k2-k+1 and we have a projective geometry (in
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appropriate cases). If t =3, and v = 4m+3, then k = (v-1)/2 = 2m+1, and we have one
of the cases covered earlier.

However, if v = 4m+1, k = (v-1)/2 = 2m, we have SK = 1+(v2-a)/8. This is an
integer, but the 2m+1 points not in the long blocks can not be partitioned into pairs to
form triples. Thus Lemma 3.2.4.1 gives us

LEMMA 3.2.4.2. If v = 4m+1, k = 2m, then the number of blocks strictly exceeds the
bound 1 + (v2-1)/8.

Now consider g(3)(13). The SK bound gives g()(13) = 18. An easy construction

o 1234, 05678, o 9TEV
159 25T 35E 45V
16T 26E 36V 469
17E 27V 379 47T
18V 289 38T 48E

shows that g(®)(13) < 19.

If g0)(13) = 18, we first note that any other block must meet the initial base block
B = {0 1234}. For using the exact relation (2.5) from [49], we find that the number

of blocks is at least

200
1
12 - 7 (a0+3b0+6c0+10d0)

1+

where there are ag blocks of length 2 disjoint from the base block, by blocks of length
3, etc. (of course, it is clear cop=dp=0). Evenag=1, by =0, gives a bound of 19.
So we find that all blocks meet the base block.

If there is a second block of length 5, we can immediately form at least 3 + 16 = 19
blocks. So take a pairs, b triples, ¢ quadruples, with

a+b+c=17

a+ 3b+ 6c = 68.
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Then 2b + 5¢ = 51, whence we find:

There can be at most 2 quadruples through any point on B. From this, we find there is
no distribution of pairs and triples to points of B that works in Case (1) or Case 2).
Hence we have

LEMMA 3.2.4.3. g0)(13) = 19.

We now move to the case k = 6 and use Lemma 3.2.4.2 to give the bound of 23.
Actually g(®)(13) = 24; this is a special case of the result

g@(a+1) =222 +a+ 1 +[a/2]
which is established in Mullin, Stanton, Stinson [55]

3.2.5 Values of g(k)(v) which are near v. Let us return to section 3.2.1. and
plot g®)(v)

RO
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Ignoring the case when k = v, which is trivial, we note that g&) is usually much greater
than v. Indeed, we can prove

THEOREM 3.2.5.1. Ifv = 2+r+1+e, where 0 <e <2t+2, and if g(F)(v) > v, then (with
a few small exceptions)

g®(v) > 243t+1
unless k = t+1.

PROOF. From the shape of the graph of gk)(v), it is clear that we need only consider
thecasesk =v-2, k=t k = t+1, k = t+2.

For k = v-2, we have
g =2v-4 = 2£242t-2+2e = 243t+1 + (2-t-3+2e).
Now g®) > t243t+1 for t= 3. The only exception is for t = 2; there g(5)(7) = 10.

For k = t+1, we use SK and have

t24+¢

&) (v) >
gom=1 T Prtre

(t+1)2

N A44+28+(e+1)t2+2et+e

=1
t2+t+e

=1+t2+t+62(i1-)- :
t2+t+e

Fork =t + 2, we have

(t+2)2(t2+e-1)

x)
g&i(v) 21+ Drire

=1+ +3t+"—
t2+t+e
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Clearly, the only exceptions that can occur are for e=0 (t = 2, 3, 4, 5),
e=1(=2,3,4), e=2 (t=2, 3).

For k = t, we use the C bound and have

(2+t+]1+e)(t2+t+e)

g®(v) > )

(4e+6)t+(e2+e)
t2-t '

=t2+3t+2e+5+

Thus we have g)(v) > 2+3t+1 unless t and e have certain small values, so long as
k#t+1.

Corollary. ifv = P+t+1+e, k = t+1, g*)(v) < 2+21+1, then the number of blocks of
length t+1 is at least (t+1)(t+2)/2.

PROOF. The worst case is when all other blocks have length t. With obvious
meanings for x and y, we have

x+y = t242t+1-a
(t+Dx+(t-Dty = (2+t+14+e)(124t+e) .
Then 2tx = (2+t+1+e)(2+t+e) - (12-t)(t24+2t+1-2)
= 3+(3+2e+a)? + (2+2e-a)t+e2+e.

Thus x > % (2+3t+2), evenfora=¢€ =0.

3.3 A Census of Values of g(k)(v)

3.3.1 Introduction. We now wish to extend the table of gK)(v) as far as v = 21.
In addition to the Combinatorial Bound, the Woodall Bound, and the Stanton-
Kalbfleisch Bound, we shall use the Stinson bound
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S=1+ 52_71:-(23k-v+k+1), where s = | (v-1)/k].

We refer to [43] for a detailed description of the behaviour of g&)(v) in various regions.
Roughly, g > C from k = 2 to about v, equality holding for BIBDs; from v to v/2
(roughly), g > SK, with equality for certain resolvable designs (the amount by which g
exceeds SK is frequently determined by S); from v/2to v, g = W (except for a few
trivial exceptions), as described in Section 3.2.

kw 13 14 15 16 17 18 19 20 21

2 78 91 105 120 136 153 171 190 210
3 26 35 35 46 48 57 57 70 70
4 13 20 20 20 31 35 39 39
5 19 19 20 20 20 21 21 21 21
6 24 25 25 26 27 28 28 29 29
7 28 29 29 32 33 34 35 36 36
8 31 34 36 37 39 40 43 43 45
9 31 36 40 43 45 46 46 50 51
10 28 35 41 46 50 53 55 56 59
11 22 31 39 46 52 57 61 64 66
12 13 24 34 43 51 58 64 69 73
13 1 14 26 37 47 56 64 71 77
14 1 15 28 40 51 61 70 78
15 1 16 30 43 55 66 76
16 1 17 32 46 59 71
17 1 18 34 49 63
18 1 19 36 52
19 1 20 38
20 1 21
21 1

Table 3.3.1 g(v) for 13 < v <21

In the above table, we have collected a great many values for g (v) that we have
accumulated. The table indicates many patterns, and provides useful grist for more
general results; also, the methods indicated in building up the table are instructive. We
indicate how the results are obtained, giving sufficient detail to enable duplication. It
has been simpler to work with k decreasing for purposes of the exposition.
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3.3.2 The Larger k Values, k 2 9. For k > 10 in the table, g®)(v) = W in all
cases. For k = 10, g®)(v) = W except for g0)(21); this latter value is a special case of
g@m)(4m+1), as determined in [55].

For k =9, we find g®)(21) = 51, using the Stinson bound S. Indeed S = 51; hence,
using [61], we know that g(®)(21) = 51 if and only if all blocks have lengths s+1 and
s+2 (here s = 2) and fall into 9 resolution classes. If there are a quadruples, b triples,
then a + b = 50, 3a + b = 66, whence a = 8, b = 42. It is then easy to apply a hill-
climbing algorithm (by hand, in a case this small) to provide the design

123 147 15 16 18 1t le lv 19
456 25e 24 2v 27 28 2t 29 26
789 3901 3e 37 3v 34 38 36 35
tev 68v 69 48 4e 57 49 4t 4v
7v 5t 59 6e 5v 58 7t
8t 9e 6t 9v 67 7e 8e

Here, we use 1, 2, ..., 9, t, e, v to denote the 12 points not on the long block; the
points of the long block are Aj, Ay, ..., Ag, and correspond to the preceding 8

resolutions. Thus, we have blocks

A1123, A1456, vees A2147, A225€, FO A315, A324, ..y €IC.
For g()(20), we use the S bound to give g(®(20) > 49. Suppose, if possible, that
£0)(20) = 49. Then the largest other block has length 6 (a sextuple not meeting the
long block produces a need for at least 2 + 9(6) blocks; a sextuple meeting the long
block requires at least 2+2+8(5) = 44 blocks). Suppose that the numbers of sextuples,
quintuples, quadruples, triples, and pairs are s, f, q, t, p, respectively; that the numbers

Aj(=1,..9) ares;, f;, q;, t;, pj; that the numbers disjoint from the long block are
$0s .. Po- Then we have the following relations.

s+f+q+t+p =48
15s + 10f+ 69 +3t+p =190-36 =154

5s;+ 4fj+3q; + 2t;+p; =11(31>0)
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580 +4fp +3qg9 + 2ty +pg =0
Add the Iast set of equations to give
Ss+4f +3q+2t+p=99.

We then deduce

14s+9f + 5q + 2t =106

4s+3f+2q+t =51;
by subtraction,
6s +3f+q<4.

It follows that s = 0 (no sextuples).
Iff=q=1,thent+p=46,3t+p=138; hence t =46, p = 0.

This is impossible, since there are 11 elements in 9 resolution classes and thus
q+p=9.

Iff=1, q=0, the solution for t is non-integral, Thus f = 0.

In order to have t integral, ¢ must be even. For f = q =0, we find t + p = 48,
3t+p =154 (p negative); similarly, q = 2 gives t + p =46, 3t+ p = 142, and this
forces t = 48 (contradiction). Finally, q = 4 produces t = 43, p = 1; this is rejected,
since q + p must be 9 or more.

Thus, we have proved that g(®(20) > 49. We now show that the correct value is 50.
Using the previous notation, we obtain analogous equations as follows.

s+f+q+t+p =49,

I5s + 10f+ 6q + 3t+p =154,
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Ss+4f +3q+2t+p =99,
Thence, we deduce
6s+3f+q<5.

Again, s = 0. If f = 1, then q = 0, 1, 2. The only possibilities are f = 1, q =2,
t=43,p=3;f=1,q9=0,t=48, p=0. Both are rejected on considering the value of
q +p. We thus have s = f =0, whence g < 5. Now 5q + 2t = 105, whence q is odd.
Ifq=1,t=50;if q=3,t=45,p =1 (reject on basis of q + p). Hence the only
possibility is q = 5, t = 40, p = 4. If this design is possible, each resolution must
contain exactly one pair or one quadruple.

Let each resolution contain a pair and 5 triples (R of these) or a quadruple and 3 triples
(S of these). Clearly, R+ S =9, R =5,S =4. It is then easy to use hill-climbing
(again, a hand algorithm suffices) to produce the following 9 resolutions.

123 456 789 14t 25e 2 5 1 4
47 19 15 217 16 18 17 24 le
58 28 26 3e 37 35 29 39 2t
6t 3t 34 59 48 49 36 5t 38
O9¢ Te te 68 9t 7t 4de 67 57

6e 8t 8e 69

We have learned that Rees [37] has obtained a family of designs giving g@m+D(4m+4);
this family will include the (9,20) case.

3.3.3 The Values of g(®)(v). We first find g(8)(20) since it is the simplest. The
S bound is 43, and thus we know that, if this bound is obtained, a design with only
triples and quadruples is required. If there are a quadruples and b triples, a + b = 42,
3a + b = 66; thence a = 12, b = 30. Also, there must be R, S, T, of the quadruple-
triple patterns (4,0), (2,3), and (0,6). ThenR +S + T=8,4R +2S =12,3S + 6T =
30; whence (R,S,T) = (0,6,2) or (1,4,3) or (2,2,4) or (3,0,5). Clearly, the last case is
the most straightforward, and a hill-climbing algorithm (manual, of course) produces
the following 8 resolutions
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123 147 159 16 18 1t le lv
456 25e 24v 29% 2t 27 28 26
789 39t 38e¢ 3v 36 35 34 37
tev¥ 68v 67t 4de 49 438 5t 4t
57 Sv 6e 69 58*
8t 7e 9v Tv Oe¢

Thus g®)(20) = 43. Furthermore, if we adjoin h to the starred blocks and three pairs
(Aj,h) to the other 3 resolutions (i = 3,6,7), we at once have the corollary that
g®)(21) <43 + 3 = 46 (the S bound is 45). Note that the above array is corrected
from that appearing in [7], where the spacing of the fourth row needs movin g to the left
and the addition of two pairs.

Let us now consider g(8)(19), where the S bound is 42. Clearly, we can get 43 blocks
by deleting one point from the design just obtained; so we only need consider the
possibility that g(8)(19) = 42. As pointed out in [8], a design can actually be

constructed on 42 elements.

For g(®)(18), we can delete 2 points from the design on 20 elements to give an upper
bound of 42; the Stinson bound is 40. Proceed as above, if g =40.

s+f+q+t+p =39,
15s + 10f + 6q + 3t +p = 125,
Ss+4f +3q+2t+p = 80.
Thence
14s + 9f + 5q + 2t = 86,
4s+3f+2q+t =41,
6s+3f+q <4

The only possibilities are f=q=1,t=36,p=1,andq=4,t=33,p=2.
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Iff=q=1,t=36,p=1, consider the quadruple, triple and singleton (using only the
ten points not on the long block). There must be a point (of the ten) that lies on nine
pairs (impossible, since there are only 8 resolutions). If q =4, t = 33, p=2,letoy, B;
vi =1, ..., 10) be the frequency with which i appears in triples, pairs, singletons;
then o + B; + Yi = 8, 20 + B; = 9. The only solutions are (3.,3,2), 2,5,1), (1,7,0),
and we assume there are R, S, T, of each pattern. Then R+S+T = 10, 3R+2S+T = 12,
3R+5S+7T = 66, 2T+S = 2; the solutions are (1,0,9) and (0,2,8). The (1,0,9)
solution would give a point, say 10, in two singletons; deletion of this point would give
g®)(17) < 38; so this is impossible. But the (0,2,8) solution can be achieved by using
blocks 9,5,6; 9; 9,7,8; 9,0; 9,1; 9,2; 9,3; 9.4 in the design given in example 3.1
of [55]. Hence g(®)(18) =40. The complete design is

012 9 034 90*

38 0 25 45

47 23 16 36

956 14 978 27
58 18
67

91 92 93 94
50 60 70 80
28 13 24 17
37* 4 8* 15% 2 6%
46 57 68 35

We note that adjunction of t to the starred blocks, together with the addition of a
singleton t to each of the first three resolutions, would produce a covering for v = 19,
k =&, in 43 blocks.

Since g@)(v) = W for v < 15 and g®)(17) = 39, from [55], we need merely consider
g®)(21). We have already displayed a solution in 46 blocks, and so must now consider
the possibility that g(®(21) = 45.

We need to let u be the number of septuples. Then

u+s+f+q+t+p =44,

2lu+ 155+ 10f+6q+3t+p = 182,
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6u+3Ss+4f+3q+2t+p = 104.
Proceeding as usual, we find
10u + 6s + 3f + q < 18.

Now u < 1; but if there is a 7-set, then it meets the 8-set and the other points and must
lie on a second 7-set; hence u = 0. Then we can sieve the solutions and find there are
no solutions except for s = 0; the (f,q,t,p) solutions are then (2,12,30,0), (1,15,27,1),
and (0,8,24,2). The last is easily achieved by taking a different solution to the earlier
g®)(20) = 43. Use the semi-cyclic solution displayed.

134 245 356 467 578 689 16 18
79t 8te 9ev tv1 el?2 v23 4e 6¢
26 37 48 59 61t 7¢ 29 49
5 e* 6 v* 7 1* 8 2% 9 3% t4*  Tv 27
8v 91 t2 e3 v4 15 5t Sv

38 3t

Now adjoin h to the six starred blocks and a singleton h to each of the last two
resolutions. This achieves the bound and shows that g®)(21) = 45.

3.3.4 The Case k = 7. Here we have g =W for v =13, 14, 15. We need to
discuss the cases 16 <v <21,

First, we calculate the bound S for v = 21 and find it to be 36 (integrally). So a
solution (s = 2) may exist in triples and quadruples (numbers a and b, respectively).
Then a + b = 35, 3a + 6b = 189, whence a =7, b = 28. Let x and y of each pass
through any point on the long block; then 2x + 3y =14, and (x,y) = (1,4) or (4,2) or
(7,0). If there are R, S, T, of each pattern, then R+S+T = 7, 4R+2S = 28,
R+48+7T =7. Thus R = 7; each resolution contains 4 triples and a pair. Obviously,
the only solution (cf. [43] for v = 22) is to take the 7 resolutions of a resolvable Steiner
Triple System on 15 points, and then to delete one element. Thus g(7(21) = 36.

For g(7)(20), ths S bound is 36. Hence we need merely delete an element from the
design just obtained.
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For g(7)(19), the bound S is 35; this can be achieved by deleting 2 elements that form a
pair in a resolution of the solution for g(7)(21). An alternative solution is cyclic and is
provided by

159 134 245 356 467 578 689
26t 79t 8te 9ev tvl el?2 v23

28 39 4t S5e 6v 71
37e¢ 6e 7v 81 92 t3 e4
48v S5v 61 72 83 94 t5

For g(7)(18), the bound S is 34 and is integrally exact. So we must seek 7 resolutions
(s = 2) into triples and pairs. We geta + b =33, 3a + 6b = 132; thusa =22, b =11.
From 2x + 3y = 11, we get (x,y) = (1,3) or (4,1). Taking R and S of each pattern, we
find R+S =7, R+4S =22, 3R +S = 11. Thus R =2, S = 5. From this
information, a hill-climbing algorithm provides the following design.

123 147 159 26t 48t 67e¢ 38e

456 25e 28 le 16 18 It
789 39t 36 37 27 29 24
te 68 4e 49 35 34 57

7t 58 9e S5t 69

Thus g(7)(18) = 34.

For g(7)(17), the bound S is 33, and we can find a design in 33 blocks. Proceed as
before, with the usual notation.

s+f+q+t+p =32,
15s + 10f + 6q + 3t +p = 115,
Ss+4f+3q+2t+p =70.

Then we find 6s + 3f+ q < 7.

Nows=q=1givest+p=30,3t+p=94, t =32 (impossible). Ands=1,q=0,
gives t+p = 31, 3t + p = 100 (again impossible).
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Hence 3f + g <7. Itis easy to sieve possibilities and find that the only solutions occur
for (f,q,t.p) = (1,4,27,0) and (0,7,24,1). The first solution is impossible (every point
must lie on an even number of quadruples; hence abed is a quadruple, we need axxx,
bxxx, cxxx, dxxx, at least). In the second solution, we write w + 2x + 3y = 10 and
suppose that there are R of pattern (1,0,3), S of pattern (1,3,1), T of pattern (0,5,0), U
of pattern (0,2,2). Then R+S+T+U = 7, R+S = 1, 3§4+5T+2U = 24, 3R+S+2U = 7.
Then (R,S,T,U) = (1,0,2,4) or (0,1,3,3). Selecting the latter pattern, we easily
construct a design as follows.

15 12 17 138 239 19t 678
2t 34 28 459 57t 246 14
36 56 35 27 16 37 25
47 79 4t 6t 48 58 3t
89 8t 69 9

We can delete 9 from the last resolution to leave g(7)(16) < 32. To prove 32 is the
value, we must exclude the bound S = 31. The usual argument gives, in this latter
case,

f+q+t+p =30,
I0f+6q+3t+p =99,
4 +3q+2t+p > 63.

We deduce that 3f + q < 3. The only solution is f = 0, q=3,t=27,p =0, and this
does not provide enough quadruples to cover each resolution; thus g(M(16) = 32.
(Alternatively, we could note that S = 31 exactly; then we easily deduce a = 27,b =23,
since only quadruples and triples are allowed if the bound is exact).

3.3.5 The Case k = 6. If k = 6, the bound is 29; this can easily be achieved,
using a method that has general application. Take the geometry on 31 points generated
cyclically by (1,5,11,24,25,27). Delete points 5,11,24,25,27, to give 30 blocks
covering 26 points; then delete 6,12,26,28, to give 29 blocks covering 22 points.
Deleting one further point establishes that g©)(21) = 29.

Continuing the above process, we delete 8,14,30, to show that g(0)(19) < 28. In this
case, the bound is 27 (integrally). However, s = 3 and so there would have to be a
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quadruples, b quintuples, with a + b = 26, 6a + 10b = 156. This would require a = 26,
b = 0, and the resolutions can not be packed (13 is not a multiple of 3); thus
g6)(19) = 28.

Another deletion shows that g(®)(18) < 28. Again, the bound is exactly 27 (s = 2); so
there may be a solution with a triples, b quadruples, a + b = 26, 3a + 6b = 138. Then
a=6, b =20. Consider the 6 pairs and 20 triples in the resolutions; any single
element occurs with 11 others and so must be in a pair. Thus the pairs involve all 12
elements and thus form a resolution. So the configuration involves just the 6 pairs and
20 triples of an STS on 13 points with one point deleted. It is well known that this
system can not be resolved [26].

Finally, returning to the design on 19 elements, delete 17 and 23 to give g6)(17) =27
(the bound here is 27). Delete point 29 to give g(6)(16) = 26 (the bound is integrally 26
- and our design naturally ends up with a 6-set, 1 249 12 19, and 10 quadruples, 15
triples).

There remains to determine whether g(6)(20) can equal 28. We set up the usual
equations (there can be no other 6-set).

f+q+t+p =27,
10f+6q +3t+p =175,
4f +3q+2t+p = 84.

It follows that 3f + q < 24. Using a sieve on the solutions, we find there are none;
hence g(0)(20) = 29.

The three lowest values for k = 6 are now immediate. The value g0)(13) = 24 is given
in both [55] and [3]. The value g(6)(15) = 25 follows since the bound is 25, and we
find there must be 18 quadruples and 6 triples. The resolutions are easily found as

123 456 789 147 258 369
49 18 16 26 19 15
57 29 24 38 34 27
68 37 35 59 67 48
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Deletion of one element gives g(6)(14) < 25. However, the bound is 24, and so we
must consider

f+q+t+p =23,
10f+6q+3t+p =176,
4 +3q+2t+p > 48.

A contradiction results at once. We get 3f + g < 3 with solution f=0, q =3, t= 19,

p =1; there are not enough quadruples and pairs to cover all points. Thus
g(®)(14) = 25.

3.3.6 The Case k = 5. This case is simple. For g(5)(13) = 19, see [3]. For the
values from 14 to 21, the bounds are 19, 20, 20, 20, 21, 21, 21, 21. All of these can
be achieved by starting from the geometry on 21 points. Generate it by (0 1 4 14 16).
First, delete points 0, 1, 4, 14, to show that the bound is met for 20, 19, 18, 17. Then
delete 2, 5, 15, to give the results for 16, 15, 14, The last value g®)(14) = 19 is
exactly integrally equal to the bound, a fact which mirrors the nature of the design (9
triples and 9 quadruples, besides the remaining block 16, 17, 20, 9, 11).

This case of a geometry can be discussed in general. For instance, consider
g®(ky-k+1-d), where d < k. Then

2 _ -
s = Ll-‘—l%l—d-J = l_k—l-dk—l | = k- 2. The bound is

2 -
1+ %{_—%‘5{% (2k(k-2)-(k2-2k-d))

2. -
14+ (k=-2k+1-d)

YR (k2-2k+d)
d(d-1)

— 2 Yoo )

=1+k%k D)

We thus see that the bound verifies that the best results occur by deletion for d up to k.
The discussion for d > k is more complicated.
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3.3.7 The Cases k < 5. For k = 2, the values are just the binomial coefficients

(g) For k = 3, they are just the pair-packing numbers, increased by the pair defect

(see [56]). For k = 4, all values are known (see [57]) except the values for v = 17, 18,
19. We fill in g*)(17) = 31 from [63].

3.3.8 The Values for v = 22. We have most of the values between v = 22 and v
= 32, which is the next natural limit. Since v = 22 is just past the bound for PG(2,4),
the behaviour is particularly interesting and we include the values here

k  gl2) k  g®22)
2 231 11 67
3 85 12 76
4 42 13 82
5 25 14 85
6 29 15 85
7 36 16 82
8 46 17 76
9 53 18 67
10 59 19 55
20 40
21 22
22 1

The values for k 2 11 are given by W; the values for 2, 3, 4, are given by C, [56],
and [57]. For k = 10, the bound § is given as 59, and there is a solution in 10
resolutions of triples and pairs, namely,

123 14 15 16 17 18 19 1t le v
456 25 26 24 28 29 27 2e  2v 2t
789 36 34 35 39 37 38 3v 3t 3e
tev 7t 7e 7v 4t de 4v 47 48 49
8e 8v 8t 5e 5v 5t 58 59 57
9v 9t 9¢ 6v 6t 6e 69 67 68

For k =9, S is likewise exactly 53 and we need 9 resolutions into 13 triples and 39
pairs. Hill-climbing produced the following solution.
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123

456

789
te
vh

58h
19
24
37
6e
tv

14t

28¢

69v
35
7h

9th
le
25
3v
48
67

15h
26
34
O9e¢
8v
7t

27v
16
39
4h
S5e
8t

36t
18
2h
49
57
ev

17
2t
4v
59
68

3eh

47¢

lv
29
38
5t
6h

Fork =8, S = 46; the key here is to look at g(®)(23), where § = 46 exactly. A solution
fork =8, v =23, in triples and pairs is given by the following 8 resolutions.

123 26f 3vf 68v  19v 2vh 18f 7tf
456 9ti 69e 141 37e 59f 34t 249
789 47v  48h 57h 6th 36i 25e 8ei
tev l1wh 15¢ ef 4f 8t 9h 3h
hfi 358 271 2t 5i de 67 16

39 28 17 vi S5v

This array can be derived from PG(2,7) by generating PG(2,7) cyclically from the
initial block (1,6,7,9,19,38,42,49) and then retaining the block (53,1,2,4,33,37,44)
and the 15 points 3, 7, 8, 9, 15, 22, 28, 30, 35, 43, 47, 49, 55, 56, 57. Deletion of a
single point now produces a solution for g(8)(22). The value g(M(22) comes from the
resolutions of an STS on 15 elements (see [43]). For g(6)(22), the bound is exactly 29
and may be achieved by deleting 5 collinear points ABCDE from the 32-point geometry
and then deleting 4 further points GHJK where GHJIK are on a line through A.
Finally, g(3)(22) = 30 (delete 3 points from the BIBD on 25 points, as in [5]).
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34 The Case k =4 and k = 5

3.4.1 Values for g)(v). In this section, we record the values of g(*)(v) from
[57]. Complete results were given there for all v with the exception of v =17, 18, and
19. We note that the value of g@)(19) has now been established as 35 in [46]. Also,
g(4)(17) =31 (cf. [58], [59], [11D).

v g@(v) exceptions

12t- 1 1262 4+ ¢

12t 1212 + ¢

12t+1 1262 + ¢

12t +2 122+ 7t + 1

12t+3 1222 + 7t + 1

12t +4 122+ 7t + 1

12t+5 122+ 13t + 4 g(5) =5, g®17) =31
12t+ 6 122 + 13t + 4 g@(6) = 8, g)(18) not known
12t +7 122 + 13t + 7 g®(7) = 10, g®(19) = 35
12t + 8 12t2 + 19t + 8 g®@®) =11

12t+9 1262 + 19t + 8 g9 =12

12t + 10 1262 + 19t + 11 g@(10) =12

The values for g (v) are largely undetermined. Allston and Stanton [5] have obtained
partial results along the lines of [57], and we give these here.

3.4.2 A bound on g(5)(v). We let g; (i = 2,3,4,5) represent the number of blocks
of length i in an exact covering. Then the total number of blocks in the coverin gis

E=8+E83+ 8 +gs.
If X denotes a summation over all g blocks, then we have
]l =g,
2(ki-4)(ki-5) = 6gp + 23

= 3(k? - 9k; + 20)
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= 2ki(k;-1) - 8Zk; + 20g
where k; represent the g block lengths. Furthermore,
Xkik; - 1) = v(v-1)
The frequency 1j of any element is at least [ (v—1)/4]; hence
Zki=Zry=v[(v-1)/4] +e,

where € 2 0. Combine these results, and we obtain

682 +2g3 = v(v-1) - 8v [ (v-1)/4] - 8¢ + 20g,

that is,

8= 507 (682 + 285 + 8¢ +v(8 [(v-1yy]— v 3. D},

Since g, g3, and € are non-negative, we have

THEOREM 3.4.1. For an exact covering with at least one block of size 5, but no longer
block, then

g2 55 B[ (v-1)4]- v + 1),

It is well known that Balanced Incomplete Block Designs with parameters
(20t + 1, 20¢2 + ¢, 5¢, 5, 1)

and

(20t + 5, 202 + 9t + 1, 5¢ + 1,5 1)

for these designs.
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3.4.3 The Cases of an Exact Bound. Suppose that we use go(v) to denote the
integer bound in Theorem 3.4.1. Then it is easy to calculate the following table of

go) =[v@ [ (v-1)/47- v + 1) /201

v go(v)
20t-2,20t-1,20t, 20t + 1 20t2 +t
20t+2,20t +3,20t + 4, 20t + 5 20t2 + 9t + 1
20t + 6,20t + 7,20t + 8, 20t + 9 202 + 17t + 4

20t + 10, 20t + 11, 20t + 12,20t + 13  20t2+25t+ 8
20t + 14,20t + 15,20t + 16, 20t + 17 20t2+ 33t + 14

Now deletion of points (one, two, or three) from the BIBDs on 20t + 5 or on 20t + 1
points achieves the bound gy(v). Consequently, we have

THEOREM 3.4.2. The quantity g(5)(v) is given by 8o(v) for v congruent to -2, -1, 0, 1,
2, 3,4, 5, modulo 20.

We can also use gy(v) to throw light on the behaviour of D(2,5,v), which is the
maximum number of quintuples from v elements with no repeated pair (the packing
number).

Clearly, D(2,5,v) = g®)(v) = go(v) for v =1 or 5, modulo 20. Forv = 0 or 4, modulo
20, we substitute in the exact relation

£ =g (622 + 223 + 82 + VB[ (v-1/4]- v + 1)),

and obtain gy = g3 =& =0. This shows that the exact coverings contain only blocks of
lengths 4 and 5 and that every element has the same frequency; it follows that the
blocks of length 4 are all disjoint and thus we have established the well known result
that the optimal packing for v = 0 or 4 (modulo 20) occurs by taking BIBDs for v = 1
or 5 (modulo 20) and deleting a single point. This process produces the value of
g®)(v) and D(2,5,v).

For v=-1 or 3 (modulo 20), the situation is similar; for v = 20t + 3, we have

-45-



20g = (20t2 + 9t + 1)20
=6gy + 2g3 + 8¢ + (20t + 3)(20t + 6).
Hence, 6g5 + 2g3 + 8¢ = 2. Thus g3 = 1, and it follows that the optimal packing
involves a single block of length 3, with all frequencies again equal to 5t + 1. The
configuration is derived from and extendible to the relevant BIBD.
Forv =20t - 1, we have
20g = (202 +1)20
= 6gp +2g3 + 8e + (20t - 1)(20t + 2).
It follows again that g3 = 2, and the same conclusion holds for v = 20t + 3.
For v = 20t + 2, we obtain
2002062+ 9t + 1) = 6gy + 2g3 + 8¢ + (20t + 2)(20t + 7);
thus 6gy + 2g3 + 8¢ = 6. Similarly, for v =20t - 2,
2002012 + t) = 6gy + 2g3 + 8 + (20t - 2)(20t + 3);
again, 6g; + 2g3 + 8¢ = 6. In either case, we find g, = 1, g3=0,0rgy=0,g3=3. In

both situations, € = 0, and Tj = [ (V-l)/4-l. Again, we find that we have an optimal

packing derived by deleting three points from a BIBD (the two situations correspond to
the cases when the three deleted points lie in one block, giving g7 = 1, or lie in three
blocks, giving gz = 3). We thus have

THEOREM 3.4.3. The optimal configurations for exact coverings of v = 20t + a points

with blocks of sizes 2, 3,4, 5 (-2 <a <5) occur if and only zf the design is a punctured
BIBD with 0, 1, 2, or 3 points removed.

- 46 -



Figure 3.4.1.

3.4.4 An Improved Bound for g(5) in the Cases v = 9, 13, 17 (modulo
20). Consider v = 20t + 9; then it is well known that

D(2,5,v) < L(20t + 9)(5t + 2)/5] = 2062 + 17t + 3.

If this bound were achievable, the defect graph (consisting of all pairs not used) would
contain

(*°%" %) - 10002+ 176+ 3) =6

edges. Since every vertex in the defect graph has a valence divisible by 4, this is
impossible. Consequently,

D(2, 5,20t +9) <20t2 + 17t + 2.

If D2, 5, 20t + 9) = 20t2 + 17t + 2, the sum of the valencies would be 2(16) =32. A
vertex of valence 8 would require a minimum of 9 vertices in the graph; hence the graph
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contained 8 vertices of valence 4. Such a graph needs 16 Ky's to cover it; if Kj's are
allowed, at least 5 K3's and a K3 would be needed (this is purely on count; actually
such a configuration is not achievable); finally, if K4's are allowed, one needs at least
two Ky4's and four Ky's (any vertex used in a K4 must have an attached K,). This last
configuration is easily achieved (see Figure 3.4.1) and so we have

LEMMA 3.4.1. IfD(2, 5,20t + 9) = 2012 + 17t + 2, and if the maximum number of
Ks's is used, then g(5) 2202 + 17t + 8.

However, there are two possibilities: either D(2, 5, 20t + 9) < 20t2 + 17t + 2, or one
does not use the maximal number of K5's. Both these cases can be treated together.

If, for either reason, the number of Ks's used is 20t2 + 17t + 1, then the defect graph
contains 26 edges and has a valence sum of 52. It follows that it has vertices of
degrees 4 and 8, the distribution pattern being (13,0), (11,1), (9,2), (7,3), or (8,4). If
only Ky's are used, we need 26 of them; if K3's are used we need at least 9 blocks; if
one K4 is used, we need at least 8 blocks (again, we do not consider achievability of
configurations). If three Ky's are used, 8 edges remain; this would require at least one
edge left over at each vertex) that the configuration is not achievable. So at least 7 more
blocks would be needed, and the total is again at least 20t2 + 17t + 8.

If the number of Ks's used is 202 + 17t, then the defect graph contains 36 edges; not

more than 18 vertices, and the allowable valencies are 4, 8, 12. We want to show that
8 blocks or more are needed to cover it. Clearly, K4's are required; indeed, if only 4
Ky's are used, then at least 4 K3's are needed, and the total would be 8. Six Ky's is

impossible, since it would require all vertices to have valence 12 (no edges left over),
and this can not occur with 36 edges. If five K4's could be used, there would be six

lines left over and they would have to be in triangles; but that would mean no vertices
of valence 4 (impossible). So again, we have g9 >20t2 + 17t + 8.

Finally, if 20t + 17t - x K4's are used, then the defect graph has 36 + 10x edges. For
x 2 3, even the use of K4's for all blocks requires 6 + (2 + x) blocks or more. If x =

2 (56 edges), at least 11 blocks are needed. Thus we obtain

THEOREM 3.4.4. Forv =20t +9,g05) 2 202 + 17t + 8 = gy + 4.
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The discussion for v = 20t + 17, where the bound on D(2,5,v) is 20t2 +33t + 13, and
the defect graph has 6, 16, 26, ... vertices, is exactly the same. Consequently, we can
state

THEOREM 3.4.5. Forv =20t + 17, g(5) > 202 + 131 + 18 = gy + 4.

The situation is only slightly different for v = 20t + 13. The bound on
D(2, 5, 20t + 13) is 20t2 + 25t + 7; for this many quintuples, there would be a defect
graph of 8 edges, but it can not be achieved. Hence, we must first consider the
possibility of using 20t2 + 25t + 6 quintuples with a defect graph of 18 edges (all
valencies 4) and 9 vertices. If all K3's are used, one needs 6 (achievable; cf. Figure
3.4.2). If a K4 is used, the remaining 12 edges can not be covered by 4 triangles. If
two Ky4's are used (the maximum allowable), again four Ko's (and more) are forced.
Thus we have

Figure 3.4.2

LEMMA 3.4.2. If2012 + 25t + 6 quintuples are used, then g(>) > 202 + 25t + 12 = g
+ 4.
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If the defect graph has 28 edges (20t2 + 25t + 5 quintuples), then all vertices have
valencies 4 and 8 (distribution patterns (14,0), (12,1), (10,2), (8,3), or (6,4)).
Certainly, the covering can not be achieved with less than 10 blocks if one uses no
Ky4's. Three Ky's require 18 edges; the remaining 10 require at least 4 blocks. Four

K4's still need at least 4 more blocks. In any case, we find g > g, + 4.

The discussion for 38 edges is even easier; even 6 K4's require 8 blocks and so, again,
we need at least gy + 4. For more than 38 edges, there is no problem. Hence, we
obtain

THEOREM 3.4.6. Forv =20t + 13,80) 2 2012 + 25t + 12 = gy + 4.
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Chapter IV
4.1 Coverings of Triples; the Numbers g(1,3;v)

4.1.1 Introduction. In this chapter, we deal with the case t = 3, that is, we are
looking at the covering of triples. We shall now write g(v) to mean g(1,3;v); similarly
g®)(v) will designate g&)(1,3;v), that is, the minimal cardinality of a covering family
that includes a block of length k but no block of larger size.

For t = 3, the Combinatorial Bound is given by
C = v(v-1)(v-2)/k(k-1)(k-2).
The SK Bound is given by the expression
SK =1 + k(k-1)2(v-k)/2(v-2),
and the Woodall Bound W is given by
W =1+ k(v-k)(3k-v-1)/4.
Also, if s denotes the greatest integer in (v-2)/(k-1), the Stinson Bound is given by
S =1 + k(v-k)(2s(k-1)-v+k+1)/2s(s+1).

The over-all behaviour of gk)(v) is described in [6], where a table of values is given for
v up to 26; the C bound predominates for small k, and then the SK or S bound takes
over. Finally, the W bound is exact (after being increased by a small perturbation
factor) in the range between v/2 and v (the "long block” case).

A survey up to 1985 of progress in the g (v) problem is found in [8]; the values of
g(&)(v), for most of the values in the range v < 26, appear in [53], [2], [1], and [48].
These papers also introduced the hypothesis, established in some instances, that
minimal families were to be found by puncturing Steiner systems, especially inversive
planes. (A punctured Steiner System is merely one from which one or more points have
been deleted.) This hypothesis was established in [34], where Hartman, Mullin, and
Stinson proved that g(v) is basically a step function. If we have v = g2+1, where q is a
prime power, then the inversive planes S(3, q+1, g2+1) actually give the value of g;
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furthermore, this value of q(q2+1) is also the minimum when v = q2+1-, where o is
small relative to q (for an exact formulation of the permissible size of o, we refer to

[34D).

4.1.2 Known Results. It will be convenient to depart briefly from historical
order; a very useful result can be found in [53], namely,

THEOREM 4.1.1. Let x be an integer, 0 <x <k. Let B be a block (set in the cover)
containing k elements (in applications, B will almost always be the longest block), and
let A(j) be the set consisting of all blocks that intersect block B in j elements. Then

20 ()1
where the k; are the other block lengths.

PROOEF. Count the occurrences of sets of t varieties of which exactly x are in B; there
are

GO (%)
of these sets, each occuring A times.

However, a block of length k;j in A(j) contains j varieties from B, k;-j not in B. So we
select x varieties in B in (i) ways and select the other t-x in (lt{_‘g) ways. We get the
result by multiplying these two numbers, summing over the blocks of A(j), and finally
summing over j.

By taking A = 1 in Theorem 4.1.1, one deduces that

3OO

7 AQ)

Then no t-set is repeated, and A(j) is null for j > t. The basic equality, when written for
x =t-1 and x = t-2 gives
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2 2 (W)= (Do,

®
IDWEIIROIES

A

g

In the first equation, j must equal t-1; thus we have
4.12.1) > (ki'{”) - () v
A(t-1)

In the second equation, j = t-1 or t-2, and subtract from the second; we obtain

@122 D, D) (ki;“) Y (ki‘,fz) - (5 .

At-1) A(t-2)

Multiply the first equation by t-1, and subtract from the second; we obtain

1) Z {(ki;ﬂxki-;ﬂ)} . Z (ki-;uz)

A(t-1) A(t-2)

(-G ()

The second sum on the left-hand side is non-negative; thus
ki-t+1 ki-t+1 )} < k v-k-1
- (TN < k() (—-—— 1).
A(t-l){( 2 ) ( 1 (t 1) 2(k-t4+2)

The left hand side is

Z (ki-t+1)(ki-t-2) Z (k;-t)(k;-t-1)2
2 - 2
A(t-1) A(t-1)
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- {591
- 2 (kiz")- a(t-1)

A(t-1)

where a(t-1) = [A(t-1)I. This produces the result
k-t -k-1
a(t-1) > (z g )+ (v- k)(t 1)( 22]k t+2))

But the number of blocks is certainly at least 1 + a(t-1), and we have

THEOREM 4.1.2. (Woodall [67]). If there is a block of length k in a (1,t;v) cover, then
the total number of blocks is at least

1+ (vk) (tlfl)@ ] i(—‘iq-lfﬁl—z)) .

However, this identity can be improved; for brevity, set a = a(t-1) and b = (v-k) (tl_(1>
Then (4.1.2.1) and (4.1.2.2) can be rewritten as

(4.1.2.3) Eki = (t-Da+b ,

-1 2 ki-t+2 k-1, t1
(4.1.2.4) —2-2 (ki -k (2t—1)+t(t-1)) + %}( it ) = S b

where unspecified summations refer to the set A(t-1).

If we denote the second summation in (4.1.2.4) by S, we have

Z K = Kﬁé +(2t DYk - tt-a.

Now, if 'k denotes the average value of the k; in A(t-1), then
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> (ki- k)2= zk -ak2>0 .

Thus we have the usual variance inequality that aZkl2 - (Zk;)2 2 0. This becomes

v-k-1  2aS

abi - TT

+ a2(t-1)(2t-1) + ab(2t-1)

- a2t(t-1)a2(t-1)2 - 2ab(t-1) - b2>0.
The coefficient of a2 is (t-1)(2t-1) - t(t-1) - (t-1)2 = 0; hence

Vt+]. 2 ZaS
b{kt+2+2t 1 -2t+2} b ———1—>0

v-t+1 b2 4 2aS
kt+2“ 1

(4.1.2.5) ab

In some cases, it is useful to retain the form (4.1.2.5); however, if we omit the term
involving S, we immediately have

b(k—t+2) k-t+2 / k
A2 T =Vl (t—l) (v-k) .

Since the number of blocks is again greater than or equal to 1+a, we have obtained

THEOREM 4.1.3. (Stanton-Kalbfleisch [53]). Under the hypothesis of Theorem
4.1.2, the total number of blocks is at least

it () 00

Theorem 4.1.3 is especially useful for smaller values of k. In particular, it allows a
direct proof of the Erdds - de Bruijn Theorem [18].

THEOREM 4.1.4. (Erdds - de Bruijn). The covering number g(1,2,v) is equal to v.

PROOF. By Theorem 4.1.3.
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K2
g(1,2;v) =21 + '\'/':T(V’k)
Consider the function
k2
hkv)=1+ ﬁ(v—k) -v

Then

(v-1) h(k,v) = v-1+k2v-k3-v2+v
= - (v2-2+k2)v+k3+1)
= - (v-(k+1))(v-(k2-k+1))

If v=k+ 1 (that is, k = v-1), then h(v-1,v) = 0. This value can be achieved by taking
a block

12..(v-1)
and blocks (v,i) as i ranges from 1 to v-1.
If v > k+1, then h(k,v) is positive so long as v < k2-k+1 (that is, we get a larger family
than we do for v = k+1). When v = k2-k+1 (which occurs when there is a finite
geometry with k points per line), we again achieve a situation where we have exactly v

blocks (this time, all of equal size).

Finally, if v > k2-k+1, we have the blocks all of size at most k; so v blocks can cover at

most v(lz() pairs. But

Ky  viok1 vk | v(v-1)
"(2) =T 2 T3 <773 >

and so not all pairs are covered.

Theorem 4.1.4 has shown that g(1,2;v) = v and has also shown there are either one or
two minimal families in this case.
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4.2 Exact Coverings of Triples (k large)

4.2.1 Introduction. In [3], we introduced gK)(A,t;v); this was the covering
number under the restriction that there was a block of size k but no block of size greater
than k. Clearly,

ghtv)= min g®OQRv)

t<k<v-1

It thus appears that the behaviour of g(K) (A,t;v) is more fundamental than that of
g\ t;v).

Indeed, the value of g(1,3;v) is almost an accident; it depends on whether the minimum
for small k is less than the functional value fork =v - 1.

4.2.2 The behaviour of g(1,3;v) for large k. For convenience, we list the
four general bounds for g(1,3;v). These are as follows (in any case that a bound is

non-integral, we must take the next integer above).

The Combinatorial Bound is

v (v-1) (v-2)
4.2.2.1) C =m

The Stanton-Kalbfleisch Bound (cf. [53] and [49]) is
(4222) sK=1+52(5) &b,
The Woodall Bound (cf. [67] and [49]) is

4.2.2.3) W =1+ (v-k) (12() (1 - '22(1%1%

It is useful to write W in the form

(v-kk(3k-v-1)
(4.2.2.4) W =1+ . .
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In addition, there is a bound due to D. R. Stinson which improves (4.2.2.3). For this
bound, one needs to determine s = L(v—2) / (k-l)_l. The bound then takes the form (cf.

[61])

_14 Rk v-2
(4.2.2.5) s =1+5ey (2 (é&+1- k&)'

Just as in the case t =2, the bound C predominates for small k.. Then the SK bound
takes over, and finally the W bound predominates. We give a table for the case v = 16
(this is a value of v large enough to be typical).

Table 4.2.1: Lower bounds for g ®)(1,3;16)

k C SK W S
3 560

4 140

5 56 27 28
6 28 55 16 56
7 82 64 85
8 113 113 113
9 159

10 196

11 221

12 229

13 216

14 176

15 106

16 1

It is easy to deduce from (4.2.2.3) and (4.2.2.4) that W = SK so long as
v/i2 <k <v-1
(the equality occurs if and only if v/2 = k = v-1). In this section, we show that, with

the exception of small perturbations, g®) (1,3;v) is equal to the bound W in this range;
a more precise statement will be given later.
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4.2.3 An improvement on the bound W. We first note that there are three
trivial cases in which the bound W is exact.

(@) Clearly,ifk =v,then W =1 and the bound is exact (usually we exclude -
k =v as a possibility).

(b) Ifk =v-1,then
(v-1)(v-2)
5=

W =1+
But, if k =v - 1, then we need this single long block plus all triples made up
of the remaining element taken with every pair from the long block. So the
value is

ge013v=1+(%) =w .

(¢) Ifk =v -2,andif viseven, then

W =14+ 202007

We need to take the single long block and make quadruples consisting of the two
elements not in this long block together with a set of disjoint pairs from the long block;
we also need triples consisting of an element not from the long block together with all
pairs from the long block not previously used. Thus we have

(v

L2428 g,

gkD(13v) =1+

+2

where we employ the well known fact that the elements of the long block have (v - 3)
I-factors. Simplifying, we find that, in this case,

g®k2(13:v) =1+ V—Z?‘- (2v-T) = W.

Henceforth, we exclude cases (a), (b), and (c). We now refer to [49] and quote the
result
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SO ()1

3

proved there in Theorem 1 (the k; are the various block lengths). By placing A = 1,
writing x =t- 1 and x =t - 2, and combining the equations, it was shown there that

«-1) Z(ki—t +1; (it-2) | z(ki_; +2)

A1) A(t-2)

+ (-0 (<) (1 . -Z-E-IEI_kt_-li-Z-)‘)= 0.

Here X A(n) denotes the summation over all blocks which meet the longest block in n

elements. This equation can be written as

423.1) (t-1) Z (kj-t +1 )2(ki—t -2)
A(t-1)

+ z (ki; :2)+ (t-1) (W-1) = 0.

A(t-2)

Now putt =3 to give

4.2.32) 2 % (5_9_2@1_5) + % (klz 1) +2(W-1) = 0.

The first term can be written as

@233 2 {2 (5)- % 1} -2 (%) 20,

AQ) AQ)

where we write o; to denote the number of blocks which meet the long block in i

elements.
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Also, since W is a bound, we can write
(4.2.3.4) g®3v)=1+0g+0a;+0y=W+¢,

where € denotes the excess over the bound W. When we substitute (4.2.3.3) and
(4.2.3.4) into (4.2.3.2), we obtain

4.2.35) 2 Z (kf23) 20, + ‘.

A®

(kiz’l) + 20 + 0ty + 0y - €) = 0.

Divide by 2 and simplify to obtain

4.236)  e=ag+oq+ 2 (k12-3)+ %Z (ki2-1)

A(2) A

We might remark that analogous formulae hold for t = 2 and t = 4. For reference, we
record these as

(4.23.7) =0+ Z (131) .

and

AQG) A(2)

Now, suppose that there are 3 or more elements not in the long block; they must occur

in a block, and it will meet the long block in 0, 1, or 2 elements. If it meets the long
block in O elements, then ¢ > 0; if it meets the long block in 1 element, then o > 0; if

it meets the long block in 2 elements, then k; = 5 and Z (kiz' 3) > 0. In any case,
AQ)

we have € > 0.

If there are 2 elements not in the long block and if k =v -2 is odd, then there must be
a triple which meets the long block in exactly one element; again 0 >0, and so € > 0.
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Our conclusion can be stated as

THEOREM 4.2.1. For g(k)(1,3;v), we have

Furthermore,Ifk =vork=v-1ork=v-2 (v even) then
g®(1,3;v) =W.
In all other cases, we have € > 0 and g*(13,v ) 2W + 1.

We shall see that this result can not be sharpened, since the bound W + 1 is attained in
many cases.

4.2.4 The case of a long block of even length. We first recall the well
known fact that a graph K;, possesses (2a - 1) disjoint 1-factors (cf., for example,
[50]). Thus the pairs from K¢ can be split into K,'s as follows.

12, 34, 56 13, 25, 46
16, 23, 45 15, 24, 36
14, 26, 35

This splitting is called a 1-factorization. It is useful to consider 1-factorizations of
K9a-1 as well. In this case, a 1-factor consists of Ky's and a single K;; no K; can be
repeated. Thus, Ky, 1 has (2a - 1) 1-factors (again, cf. [50]); for example, the splitting
for K5 is simply

12, 34,5 13,25, 4 23,45, 1
15, 24,3 14, 35,2

These results on 1-factors will be useful in the next constructions.

First consider the case that k is even. The remaining points form a set of v - k
elements. Suppose first that v - k is also even. Form a block of length v - k which is
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disjoint from the long block (clearly, v -k <v /2 for this to be possible). We also take
v -k > 2, by virtue of the result of Theorem 4.2.1 when v - k = 2.

Form quadruples by taking the Cartesian product of all 1-factors from the (v - k) points
with (v - k - 1) 1-factors from the k points. The number of these is

k

-k
27 kD,

Now form triples by taking the elements from the set of (v - k) points with the
remaining (k - 1) - (v - k - 1) 1-factors from the k points. The number of these is

(v-k)-lzf- 2K - v).

All triples have now been accounted for, and the number of blocks is

k(v-k) (3k-v-1)
4

2+ % (v-k) (v-k-1+4k-2v) =2 + =W+ 1.

Since, by Theorem 4.2.1, we can not do better, we obtain

THEOREM 4.2.2. Ifv/2 <k <v-2,andifk andv - k are even, then

(4.2.4.1) g®(1,3:v) = W + 1 =2  SERGkVD)

COROLLARY 4.2.2.1. The bound W + 1 can only be achieved in the way indicated
(v - k elements in a single disjoint block ).

PROOF. This is immediate from (4.2.3.6), since oy must be zero (otherwise

o + %Z(klzl) > 1, and oy must be zero (otherwise, since v - k= 4, k; > 6 and we
A(l)

would have Z(kf) > 1). Then o = 1, and we have our result.
A(2)

We now consider the case that k is even and v - k is odd, and we employ a similar
construction. The number of quadruples formed by taking all 1-factors from the

(v - k) points with (v - k) 1-factors from the k points is
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v-k+1
2

% (v-k).

The number of triples formed by taking elements from the (v - k) points with the
remaining (k- 1) - (v -k) =2k -v-1) 1-factors is

-12‘- (v-k) (2k-v-1).

So the total number of blocks is

2 +§ (v-k) (v-k+1+2(2k-v-1)) =2 + k(V-k)(jk-v-l)

=W +1.
This gives us
THEOREM 4.2.3. Ifv/2 <k <v-2,andif kis even and v - k is odd, then
(4.2.4.2) gk(1,3v)=W+1.

COROLLARY 4.2.3.1. The bound W + I can only be achieved by placing all v - k
elements not in the long block in a single disjoint block.

PROOF. This follows as for Corollary 4.2.2.1.

4.2.5 The case of a long block of odd length. The situation when k is odd
is somewhat different in that, whereas € = 1 for k even, we find that € > 1 for k odd.

This basically stems from the result of the following lemma.

LEMMA 4.2.5.1 If AB represents any pair of points from the v - k points not in the
long block and if k is odd, then there is at least one block containing AB that intersects
the long block in a single point.

PROOF: AB must occur with each element from the long block; the intersections of

blocks containing AB with the long block can contain only 1 element or 2 elements; and
intersections can not all contain 2 elements, since k is odd.
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Now let us illustrate what happens in a couple of cases. Suppose that v -k =3. If
the pairs AB, AC, BC, all appear in separate blocks (triples), then they contribute
€ =3(1.5) = 4.5. On the other hand, if there is a single block ABC meeting the long
block in a point, thene =1 + 1.5 = 2.5.

As a more complicated illustration, let v - k = 10 and suppose that the blocks ABCD,
AEFG, AHKL, BEH, CFK, DGL, DEK, BFL, CGH, CEL, DFH, BGH, all meet the
long block in single points. Their contribution to € is

69

3 .9
2+5 () +53) =

as opposed to 45 + 45/2 = 135/2 if the pairs had all been in separate blocks. However,
one block ABCDEFGHKL only contributes 1 + 45/2 = 47/2 to the excess. We are thus
led to

LEMMA 4.2.5.2. The minimal contribution to the excess from the fact that every pair
of points not in the long block must occur in a block meeting the long block in a single

.. I1fv-k
point is 1 +-2-( 5 )

Proof. As in the last example, let the v - k points be pair-covered by a set of blocks of
length my, my, ..., m;. Then

2. (5)- (%)

Each block of length m;, extends to a block of length m; + 1 by meeting the long block
in a single point; so the total contribution to the excess is

5 ) (3 =2 (%)

On the other hand, if all v - k points are put in a block of length (v - k + 1), then the
contribution to the excess is only

1 +%— (Vék).
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Clearly, this is the best we can do. Also, weneedv -k + 1 <k, thatis, k> (v + 1)/2.
Lemma 4.2.5.2 immediately gives us

THEOREM 4.2.4. If(v+ 1)I2 £k <v -2, and if k is odd, then

1 vk
g(k)(1,3;v) SW+1+ 5 (VZ )

COROLLARY 4.2.4.1. Under these conditions,

g®)(1,3;v) < 24

(v-k) (k-1) (3k-v+1)
y .

We shall now show that this bound is actually attained for k odd in the range
(v+1)/2<k <v -2

First, let k be odd and let v - k be even. In addition to the two blocks of lengths k and
v - k + 1, we require the following.

(@ (k-1) (v-k) triples containing the point A which lies on both blocks and

also containing one point from each block.
(b) 3(v-K)3k-1)(v-k-1) quadruples formed by taking the Cartesian product

of all one-factors from the (v - k) points (less A in the long block).
() (v- k)%(k - 1)(2k - v - 1) triples formed by combining the v - k points not in

the long block with the remaining 1-factors of the (k - 1) points (less A) in the
long block.

The total number of these blocks, which cover all triples on the v points, is

2+ QDD (44 gty 4 aev2)

94 (v-k)(k- 13(3k—v+1) ‘

Since this is the bound in Corollary 4.2.4.1, we can do no better and thus have shown
that the bound is attained.
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The construction for k odd and v - k 0odd is similar, although the counts differ. We
have two blocks intersecting in (A), together with the following blocks:

(@ (k-1)(v-Kk) triples as before

(b) %(v -k + 1)%(1( - 1)(v - k) blocks (some are quadruples and some are triples)

formed by taking the Cartesian product of 1-factors.
) v-k (k;) (2k - v - 2) triples formed by taking single elements with 1-factors

from the k - 1 points different from the A on the long block.
The total number of blocks then is given by

2 + 8O 4 ) i) + 20200v-2))

_ 2 0B Ge]) Glevil)

as before. These two calculations establish

THEOREM 4.2.5. If (v+ 1) /2 <k <v -2, and if k is odd, then

N (v-k)(k-1)(3k-v+1)
(4.2.5.1) g®(1,3;v) = 2 + ) .

COROLLARY 4.2.5.1. For the minimal configuration giving

oy o (v )(k-1)(3k-v+1)
g®(1,3;v) =2 + - ,

we must have two blocks of lengths k and v - k + 1 intersecting in a single point; the
other blocks are triples or quadruples .

PROOF. Any other configuration would give (by Lemma 4.2.5.2) a contribution to the
excess that would push the value over the stated lower bound.

4.3 An Upper Bound for g(1,3;v)

4.3.1 Introduction. We now derive an upper bound for g(1,3;v). The proof
depends upon the following result.

-67 -



LEMMA 4.3.1. Letv>u+ 1. Then
g(1,u;v-1) < g(1,u;v)

PROOF. Begin with a minimal (1,u;v) design. Since u<v-1 and A=1, no set of v-2
varieties occurs more than once. Hence the (1,u;v) design contains at most one block
of length v-1. Now delete one variety from every block containing it. If the (1,u;v)
design contains a block of length v-1, the variety deleted must belong to that block.
There remain v-1 varieties arranged in g(1,u;v) blocks of length at most v-2, with every
set of varieties occuring in one block. The theorem follows.

NOTE. We shall show that g(1,3;7) = g(1,3;8), so that it is possible to have equality in
Lemma 4.3.1.

THEOREM 4.3.1. Let p be the smallest prime or prime power exceeding \v. Then
g(1,3;v) < p(p2+1)
PROOF. By hypothesis, v<p2+1, and hence, by Lemma 4.3.1,
g(1,3;v) < g(1,3;p%+1) .
But Witt [66] has proved the existence of a Steiner system S(3,p+1,p2+1). This is an

arrangement of p2+1 varieties in p(p2+1) blocks of length p+1, with each triple
occuring exactly once. Therefore,

g(1,3;p2+1) < p(p2+1)
and the theorem is established.

Theorem 3 of Woodall [67] gives

8(1.3) 2 e {Vav-7 - 3}

If v = p2+1 where p is a prime or prime power, the ratio of the bounds in Theorem
4.3.1 and Woodall tends to one. (Their difference tends to infinity.)
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Thus, if p is a prime or prime power,

lim EL3P%D
p(p+1)
p->oo

It would thus appear that the bound given in Theorem 4.3.1 is of the right order of
magnitude. |

It is of some interest to determine the values of v for which Theorem 4.3.1 gives a
better bound than 1 + (Vél) (long block + pairs selected from the long block) (call
this the LBP bound). By Bertrand's Theorem, if x is any real number greater than 1,

then there exists a prime between x and 2x. Hence there exists a prime between vv and
2+/v. The bound given by Theorem 4.3.1 is

p(p2+1) < 24v(dv+1)

This is easily shown to be less than 1+(v-1)(v-2)/2 when v>289. The LBP Bound and
the bound from Theorem 4.3.1 may be calculated and compared for each v < 289, with
the following result.

LEMMA 4.3.2. The only values of v for which the LBP Bound gives as good a bound
as Theorem 4.3.1 arev=4,5, ..., 9, 11, 12, 13, and 27.

In the next section, we show that g(1,3;v) = 1 + (v-1)(v-2)/2 for v =4, 5, 6, and 9,
and that g(1,3;v) < 1+(v-1)(v-2)/2 for v=17, 8, 12, and 13. Although taking a block of
v-1 varieties together with the v-1 pairs involving the vth variety is minimal for all v,

the similar (block of v-1 varieties, together with (V;) triples containing the vth

element) construction is best for only a few small values of v. We summarize these
results as follows:

THEOREM 4.3.2. The (1 ,3,5v) design described above is minimal forv = 4, 5, 6, and
9. It is not minimal for any other values of v.

4.3.2 Results for Small v. We conclude this section with a detailed discussion
of minimal (1,3;v) designs for small v.
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v =4. Only triples are allowed, and each triple must occur. Hence g(1,3;4) =4. The
unique minimal (1,3;4) design consists of all four triples.

v=35. Blocks of lengths 3 and 4 are allowed. Since no triple is repeated, there is at
most one block of four, and then there must be (g) - ( g) = 6 triples. Hence

g(1,3;5) =7, and the unique minimal (1,3;5) design consists of a block of four and six
triples.

v =6. If a block of length 5 is used, there will be (g) ; (g) = 10 triples, for a total of

11 blocks. If only triples are used, 20 blocks are required. The maximum number of
blocks of four with no repeated triples is 3, and there must be (g) - 3( g) = § triples,

for a total of 11 blocks. Thus g(1,3;6) = 11. There are two minimal (1,3;6) designs,
one consisting of a block of five and ten triples, the other consisting of three blocks of
four and eight triples.

v =7. If a block of length six is used, there will be (g) - (g) = 15 triples, for a total

of 16 blocks. If a block of length five is used, there must be at least 19 blocks by
Woodall. It was shown in [52] that the maximum number of quadruples with no
repeated triple is 7. Such a set of 7 quadruples is essentially unique, and may be
obtained by deleting all blocks containing one variety in the unique Steiner quadruple

system S(3,4,8). We must now add (;) - 7(;1) =7 triples, for a total of 14 blocks.

Therefore, g(1,3;7) = 14, and the unique minimal (1,3;7) design consists of seven
quadruples and seven triples.

v = 8. If blocks of lengths seven, six, or five are used, there must be at least 22 blocks
by using Woodall's bound. There exists a unique Steiner quadruple system S(3,4:8)
with 14 blocks containing each triple once. Hence g(1,3;8) = 14, and the unique
minimal design is the Steiner system S(3,4,8).

v=9. A block of length 8 and (g) = 28 triples give a (1,3;9) design with 29 blocks.

We shall show that this design is minimal and unique. By Theorem 4 from [53], any
other design with 29 or fewer blocks can have no block length greater than 5. The
maximum number of quadruples with no repeated triple is 18 from [52]. If no blocks

of length 5 are used, we require at least 9\ - 18 - 12 triples, for a total of 30
3/ 3
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blocks. Hence a minimal design not containing a block of § contains at least one block
of 5. Since no triple is repeated, there are at most three blocks of 5.

Now letr, s, and t be the numbers of blocks of length 5, 4, and 3. respectively. Then
the total number of blocks is

r+s+t=g

and the number of triples which they contain is

Kh+4s+t=(§)=84

Subtracting the first of these equations from the second gives

Or+3s=84-¢g
and hence g is divisible by 3. But for k = 5, Woodall gives g(1,3;9) = 26. Hence a
minimal design which contains a block of length 5 must have 27 blocks. This

possibility was ruled out in [53].

v=10. A Steiner quadruple system S(3,4,10) provides a (1,3;10) design with 30

—— T

blocks, so that g( 1,3;10) < 30. Now Woodall implies that every block in a minimal
design has length at most 5. If we denote the numbers of blocks 5,4, and 3, byr,s,
and t, respectively, we obtain as before

r+s+t=g
10r+4s+t=(5) = 120
so that the number of blocks is divisible by 3. But Lemma 4.3.1 gives
£(1,3;10) = g(1,3;9) = 29

Hence any design with a block of length 5 contains at least 30 blocks, and
g(1,3;10) = 30.
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Furthermore, suppose that there exists a (1,3;v) design with 30 blocks which contain a
block of length 5. Then it must also contain a triple (1,2,3), say. Delete this triple, and
delete variety 1 from all blocks containing it. This gives a (1,3;9) design with 29
blocks consisting of blocks of lengths 5, 4, 3. This contradicts the above results for
v=0. It fpows that g(1,3;10) = 30, and that any minimal (1,3;10) design is a Steiner
system S(3,4;10).

v=11. The value of g(1,3;11) is the first difficult result for small v; it was determined
in Allston, Stanton, and Wirmani-Prasad [9], and we give an account of the
construction in Section 4.7.

v = 12. From the LBP Bound, we obtain g(1,3;12) < 56. We improve this bound to
give g(1,3;12) < 47 by beginning with two disjoint blocks of length 6, say B = (1, 2,
3,4,5 6)and B = (7, 8,9, 10, 11, 12). Now we form 45 quadruples, each

containing two varieties from B and two from B ; the result is a set of 47 blocks

containing each triple once. Stanton and Dirksen [48] showed that this design is
minimal.

v =22 Witt proved the existence of a Steiner system $(3,6,22). It contains 77 blocks
of six, with each triple occuring once. Hence £(1,3;22) < 77. Also, by Theorem 4
from [53], any (1,3;22) design containing a block of length 7 or more must have more
than 77 blocks. It follows that g(1,3;22) = 77, and that the only minimal (1,3;22)
design is the Steiner System S(3,6;22).

4.4 The Cases v = 20 and v = 21

4.4.1 Introduction. In Section 4.3, we showed that g2(1,3;q2+1) < q(q?+1) when
q is a prime power; this result merely made use of the Steiner Systems (inversive
geometries) S(3,g+1,g%+1). These inversive geometries are really the "smallest"
Steiner Systems S(3,k,v) in a certain sense.

For example, suppose there exists an S(3,k,v); then it contains S(2,k-1,v-1), and this
last system is a BIBD. Suppose, if possible, that v < (k-1)2+1, (that is, that v is

smaller than for an inversive geometry). Then

v =k2-2k+2-8, where § > 0.
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The contained design
S(2.k-1,k2-2k+1-8)
contains b blocks and has replication number r, where

_ (2 2%kH+1-5)(k2-2k-8)  k2-2k-§ P
= k-1)(k-2) D % B AR

b

Since r is integral, we have § = m(k-2), where m is an integer. Butr > k-1 (Fisher's
Inequality), and so

k-m>k-1.

It follows that m = 1, and the Steiner System S(2,k-1,k2-2k+1-5) is a symmetric
BIBD with 8 = k-2. Thus we are are dealing with the symmetric BIBD given by
S(2,k-1,k2-3k+3), and it is contained in the Steiner System

S(3,k,k2-3k+4).

Since the number of blocks in this system is

(-3 ) (k2 3k B)(k2-3k+2)  (k2-3k+4)(k2-3k+3)
k(k-D)(k-2) = k ’

it follows at once that k divides 12. Since k > 3, we see that k = 4, 6, or 12; thus the
only Steiner Systems S(3,k,v) for which v is smaller than k2+1, its value for an
inversive plane, are S(3,4,8), $(3,6,22), and 3(3,12,112); of course, the existence of
the last system is hypothetical.

4.4.2 The Problem for v=21. Because of the almost unique character of
5(3,6,22), as pointed out in the introduction, it is of interest to determine g(1,3;21).
Clearly, since g is a non-decreasing function, g(1,3;21) <77 (the value for v = 22).

First, we apply the Stanton-Kalbfleisch inequality for k =7; the result produces at least

94 blocks, and so the minimal design for v = 21 can contain no block of length greater
than 6. Furthermore, even if all blocks had length 6, we should need at least
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blocks. So we may assume g(1,3;21) = 67 + m (m > 0). Clearly m < 10.

= 66.5

Suppose now that the minimal design includes a triples, b quadruples, ¢ quintuples, d
sextuples. Then we have

a+b+c+d=67+m
a+4b + 10c + 20d = 1330.
Thus
19a +16b + 10c = 10 + 20m
10a + 10b + 10c < 10 + 20m
a+b+c<1+2m.
It follows that
d=67+m-a-b-c,
d=>66 - m.
Now d consists of sextuples on 21 elements; thus d can not exceed the packing number
D(@3,6,21), where D(t,k,v) is the maximum number of k-sets from a v-set with the
property that no repeated t-set occurs.
Clearly, D(1,4,19) = 4. By standard packing theory, D(2,5,20) <20/5x 4 = 16, and
this bound can be achieved by using a Euclidean geometry on 16 points. Also,
D(3,6,21)<21/6x 16 = 56, and this bound can be achieved by taking the 56 blocks

of an S(3,6,22) that do not contain a specific symbol. Thus we have d < 56.

We now deduce that
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But m was at most 10; hence m = 10, and we have established that g(1,3;21) =77.

4.4.3 The Design for v=21. The determination of m in the last subsection
automatically givesa=b =0, ¢ = 21,d =56. We thus have a minimal design of 21
quintuplets and 56 sextuplets. Suppose that we now denote the frequency of a pair ij

by £(,j); clearly, f(i,j) <19/ 3, that is f(i,j) < 6.

Now let g; be the number of occurrences of ij in 5-blocks, and let > be the number of
occurrences of ij in 6-blocks. It follows that

g1 + g2 = f(i,)),
3g; +4gy =19.
Now f(i,j) = 5, and we find that the only solutions are:
Case 1: g7 =1, g =4 Case2: g; =5, gr=1.

Let us now suppose there are U pairs (i,j) of the first type and V pairs (i,j) of the
second type. Then

U+V= (%21) = 210,

U + 5V = number of pairs in the 5-blocks

=21(3) = 21

It follows that U = 210, that is, all pairs occur exactly once in the twenty-one
5-blocks. This establishes

THEOREM 4.4.1. The twenty-one 5-blocks in the minimal design for g(1,3,;21) forma
unique configuration, namely, the 21-point projective geomerry, PG(24).
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It is then trivial to adjoin a symbol o to these 21 blocks and obtain a design on 22
varieties with 77 blocks of length 6, that is, an S(3,6,22). Our conclusion is

THEOREM 4.4.2. Not only is g(1,3;21) = 77, but the 77 blocks of the minimal
configuration are Jound by taking a Steiner System $(3,6,22 ) and deleting one
symbol.

444 The Case v = 20; Preliminaries. The result for g(1,3;20) is
considerably more difficult and we shall now discuss it. We shall need various
packing numbers D(t,k,v). It is trivial that D(1,4,18) = 4. Also, using the usual
packing inequality,

D(2,5,19) < -15—9D(1,4,18); hence D(2,5,19) < 15.

If any symbol has frequency 4, we can write blocks
12345, 16789, 110111213, 1141516 17.

Then 18 and 19, but no other symbols, can have frequency 4; hence there are at most
12 blocks in this case.

If no symbol has frequency 4, we have the packing number <3 x 19/ 5; this produces
a bound of 11.
Symbols, we have D(2,5,19) = 12.
Finally, D(3,6,20) < 20(12) / 6 = 40.
But the bound of 40 can be attained by taking the Steiner System S(3,6,22) and
deleting the blocks containing 2 specific symbols to leave 77 - 2(21) + 5 = 40 blocks.

Hence, D(3,6,20) = 40.

Finally, we apply the Stanton-Kalbfleisch Inequality with v = 20, k = 7, to see that a
(1,3;20) family must contain

1+(3) 13 5= 92 blocks
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if there is a block of size 7 in the family. Hence £(1,3;20), must be attained for a
family with largest block size not exceeding 6.

4.4.5

(5)

-(*65_ = 57 shows that we may set g(1,3;20) = 57 + ¢ (e =2 0). Now let a, b,c,d,
3

Blocks in a (1,3;20) Family. The Combinatorial Bound of

be the number of blocks of sizes 3, 4, 5, 6. We have

a+b+c+d=57+¢
a+4b + 10c + 20d = 1140,
Thus
19a + 16b + 10c = 20e
a+b+c<2e,
d257+e-2e=57-e¢.
But d is as most 40, and so e is at least 17.

We now write d = 40 - f, e=17+h.. Our equations then become

at+b+c=34+f+h
a+4b + 10c = 340 + 20f.
Then 9a + 6b = 10h - 10f, or 10h = 10f + 9a + 6b.
Now g(1,3;20) < 8(1,3;22) =77; hence h < 3. We tabulate all solutions.

1. h=0,c=34,d=40
2. h=1,¢=36,d=39."
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h=2,¢=38 d=38.
h=3,¢=40,d=137.
h=3,b=35¢c=32 d=40.
h=3,a=b=2¢=33,d=40

AN N AW

Now suppose that there is a symbol that appears only in the 5-blocks (r times) and in
the 6-blocks (s times). Then it occurs with all 171 pairs on the other 19 symbols; hence

6r+10s =171, a contradiction.

So no symbol can appear only in 5-blocks and 6-blocks. This rules out Cases 1-4, and
establishes

THEOREM 4.4.3. The number 8(1,3,20) is equal to 77.
Actually, we can go further; in Case 6, there are atmost3+3+4+4=14 symbols in
the 4 short blocks. This means that there exists a symbol appearing only in 5-blocks

and 6-blocks; since we have seen that that is impossible, we have

THEOREM 4.4.4. The minimal (1,3;20) Jamily comprises five 4-blocks, thirty-two
5-blocks, forty 6-blocks. '

4.4.6 Structure of the Minimal Family. There are only 20 places in the five 4-
blocks. Hence, all 20 symbols appear there (otherwise, some symbols would appear
only in 5-blocks and 6-blocks).
Counting pairs as before, we have
3+6r+10s =171,
3r+ 5s = 84.
Take the 4-blocks as

1234, 5678, 9101112, 13141516, 17 18 19 20.

Let us consider a pair like (1,2); it appears with 16 other symbols. Say it appears in x
of the 5-blocks, y of the 6-blocks. Then 3x + 4y = 16, and x = 0, y=4;orx =4,
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y=1. We suppose that P pairs have a 0-4 distribution and Q pairs have a 4-1
distribution.

Furthermore, if we look at a pair like (1,5), we may suppose it appears in x of the
5-blocks and y of the 6-blocks. Then 3x + 4y =18,andx =6,y =0 (S pairs) or
x =2,y =3 (T pairs).

NowP+Q=30,S + T = 190. Also, the number of pairs in the 5-blocks = 320 =
4Q + 6S + 2T; the number of pairs in the 6-blocks = 600 = 4P + Q +3T.

Solving, we getQ+S=0,P=30, T = 160. This gives us

THEOREM 4.4.5. All pairs occuring in the 4-blocks occur 0 times in the 5 -blocks, 4
times in the 6-blocks. The pairs not occuring in the 4-blocks occur twice in the 5-
blocks, thrice in the 6-blocks.

Now we can find the r and s values; suppose we take a symbol such as 1. It occurs in
pairs 12, 13, 14, appearing only in 6-blocks; these pairs have a total frequency of
3(4) = 12, and they must all appear in distinct blocks. Thus we have s = 12, and
consequently r = 8. This gives the expected result that each element appears with the
same frequency.

By employing Theorem 4.4.5, we may take the first 5-block as 1 5 9 13 17; call this
block B, and let B meet b; of the other 5-blocks in i elements (i=0, 1, 2). Then

b0+b1 +b2=31, b1+2b2=35, b2= 10.
Thus, we see that B (and, indeed, any 5-block) meets fifteen 5-blocks in 1 element, ten

5-blocks in 2 elements, and is disjoint from six 5-blocks. Now write the blocks in 2
sets, By and B, (dots denote elements other than 1, 5,9, 13, 17).

.., 1., 1.. I'5., 19.,113.., 117 ..
5., 5., 5.. 59.., 513..,517.., 913 ..
9., 9., 9.. 917 ..., 13 17 ....

13 ..., 13 ..., 13 ... Six blocks disjoint from 1 5 9 13 17

17 .., 17 ..., 17 ..

1591317
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The pairs that do not occur in the 4-blocks must occur in By and B,. We show that
they must appear exactly once in B and once in B,.

First, we note that the set of 6-blocks contains 30 blocks oftheform15..,15 s
15.,19..,19 -« 19 .., etc. (10 sets of pairs from 1, 5, 9, 13, 17); call these
blocks Bj. There is also a set By4 of 10 blocks disjoint from the set {1,5,9, 13, 17}.

Now we ask whether there can be a repeated pair in By, Ifitis a pair like 1a, then la
can not appear in B,. But all triples 1a5, 1a9, 1a13, 1al17, must occur. So they appear
inB3. Thisisa contradiction, since the frequency of 1a in Bjyisonly 3.

If the pair ab is repeated in B 1> Suppose it appears as lab and as 5ab. Then ab must
occur 3 times in B3, The only blocks in which it may occur have the form 9 13 ...,
917 ..., and 13 17 ..., and the occurrence of ab leads to a repeated triple.

We have thus established

THEOREM 4.4.6. The set B (and hence the set By as well) contains a single
occurrence of all pairs not appearing in the 4-blocks.

4.4.7 Identification of the Design. We now can identify the design by
adjunction. Let Y and Z be two new symbols; adjoin YZ to the 4-blocks, thus giving
all triples containing YZ. Then adjoin Y to all blocks in B 1» Z to all blocks in B,. The

triples Y ... either occur in the augmented 4-blocks or in the augmented 5-blocks, in
virtue of Theorems 4.4.5 and 4.4.6, Similarly, all triples containing Z occur. And the
triples not containing YZ were given by the original design.

We have thus shown that the augmented design is a Steiner System S(3,6,22) and
have established

THEOREM 4.4.7. The minimal set covering all triples on 20 elements is Jound by
deleting two elements from a Steiner System 8(3,6,22) on 22 elements.

Thus g(1,3;v) is constant for v = 20, 21, 22; as v increases, this step-function
behaviour becomes typical of the behaviour of g.
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4.5 Results on Inversive Planes
In this section, we include the results by Mullin et al [34] showing that g(1,3,q2+1) =
q3 + q for all prime powers q, and that the minimal configurations are inversive planes
of order q. They also show that for q24, o 20, the value of g(1,3,q2- @) is
q3 +q, when o is small relative to q.
THEOREM 4.5.1. (Mullin, Hartman, and Stinson) [34]. For any prime power q=3,
g(1,3,62+1) = ¢3+q

and the minimal configuration is an inversive plane.

THEOREM 4.5.2. (Mullin, Hartman, and Stinson ) [34]. Let q be a prime power such
that q 24 and let o be any positive integer satisfying the inequalities

q23(02-a)2, o <q-5+12/(q+3)
Then g(1,3,¢°+1-0) = g3+q.

These results establish that g(1,3;17) = 68 and that g(1,3;25) = 8(1,3;26) = 130 (one
simply uses the inversive plane S$(3,5,17) and the inversive plane S(3,6,26).

4.6 Table of g(k)(v) for small values of v
In this section, we make use of the results obtained to tabulate g®(1,3;v) for v up to
12. In forming Table 4.6.1, we have used the obvious fact that, for k = 4, we take

D(3,4,v) quadruples plus as many triples as are needed. Since the packing number
D(3,4,v) is known for all v (cf. [52], [14], [41]); in our table, the second row is merely

pE4v + { (3) - 49D3.4m) }
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Table 4.6.1. g®)(1,3;v) for 3 <v < 12,

<
W
n
W

6 7 8 9 10 11 12

k
3 1 4 10 20 35 56 84 120 165 220
4 1 7 11 14 14 30 30 60 67
5 1 11 20 26 30 42% 45 *
6 1 16 28 38 44 47 47
7 1 22 41 56 68 77
8 1 29 53 74 90
9 1 37 87 98
10 1 46 86
11 1 56
12 1

This fact, with the results of the earlier sections, gives all the entries except two marked
with asterisks.

LEMMA 4.6.1. g(5)(1,3:10) = 42.

PROOF. Clearly 42 is a lower bound since we can take two disjoint blocks of length 5.
Each has five disjoint near 1-factors, and the Cartesian product of the 1-factors contains
3(3) - 1 = 8 blocks (drop the block of length 2). Thus

86X(1,3;10) <2 + 5(8) = 42.

Now let the long block be 12345 and the other points be A, B, C,D, E. We must
cover A, B,C,D, E by 10 blocks, 7 blocks, or 1 block (see the third column of the
table). We have already dealt with one block ABCDE (it must be disjoint).

If the cover is 10 triples of the form ABC, they must meet the long block in 0, 1, or 2
elements. An intersection of 0 or 2 contributes 1 to the value of € of equation 4.2.3.6,

whereas an intersection of 1 contributes 2.5. However, Lemma 4.2.5.1 and the fact

that a pair-covering of 5 elements contains at least 4 triples (such as ABC, ADE, BDE,
CDE) guarantees that € is at least 6(1) + 4(2.5) = 16. Hence, since W = 26, we can not

obtain a value less that 42 in this way.

-82.-



If the cover is ABCD, EAB, EAC, EAD, EBC, EBD, ECD, and if the pair-covering is
made up of the six triples, then these contribute a minimum of 6(2.5) and ABCD
contributes a minimum of 1. Again, we can not get a value less than 42.

Finally, let the cover be ABCD, EAB, EAC, EAD, EBC, EBD, ECD, and suppose the
pair covering is ABCD, EAB, ECD. Then these blocks contribute to E an amount at
least 4 + 2(2.5) + 4(1) = 13. However, Lemma 4.2.5.1 guarantees that AB and CD
meet the long block in an odd number of unit intersections; hence there are two triples
ABX and CDX at least, and they contribute another 2(1.5) = 3 units to €. Hence,

again, in this case, we can do no better that 42. This completes the demonstration of
the lemma.

4.7 Discussion of g(1,3;11)
4.7.1 Introduction. The number g(k)(1,3;l 1), which we abbreviate in this section
to g&), is the minimal number of blocks needed to cover all 165 triples from an 11-set
exactly, using a block of length k but no longer block; it has been given in [6] for all
k#35. Since g =g(1,3;11) is the minimum value of gk, and since g(10) = 46, the

determination of g requires finding whether or not g3 < 46.

If gi (i = 3,4,5) represents the number of blocks of length i in a minimal g(5) cover,
then

g3+t 84+8=g
g3+ 4g4 + 10g5 = 165.
As in [53], we deduce that 3(gq +3g5) =165 - g; consequently, g is a multiple of 3.

Our main tool will be two results from Section 4.4. We state these in a slightly
different form for application to the present case.

THEOREM 4.7.1. The number g can be written as
g=W+eg,

where W is the Woodall bound
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W=1+(v-k) (15 (1 ; "‘k‘l)

2(k-1)
and € 20. The value of € is

E=00+ 0] ++ 29 (kiz' 3) +%21 (kIZ' 1).

Here we are using a base block 123...k, the ki are the lengths of the other g - 1
blocks, o; is the number of blocks meeting the base block in i points, 2; denotes
summation over the o; blocks meeting the base block in i points (i=0,1,2).

We also make use of the following lemma from Section 4.4.

LEMMA 4.7.1. If k is odd, then there exists at least one block containing the pair AB
that meets the base block in a single point, for every choice of AB among the v - k
elements not in the base block (more generally, the number of such blocks containing
AB is odd).

It will be convenient to denote the base block as 12345 and the other six points as
A,B,C,D,E, F. We note that, fork = 5, W = 23.5.

4.7.2 Coverings of the points not in the base block. Suppose we define gij
to be the number of blocks (other than the base block) that have length i and meet the
base block in j points. If we let A denote any point not on the base block and 1 denote
any point on the base block, then we can make the following table in which we record
numbers of blocks and their types.

£30 :AAAA g4 :AAAA £50 :AAAAA
€31 :AAl  gq1:AAA1 £51 :AAAA1 (4.7.2.1)
g32 :All g42 :AA1l g5 :AAALI

The row sums are just ag, o1, a2, and the column sums are just g3, g4, and
g5-1. Wecan immediately write down the following relations:
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€30 + 841 + g52 + 4840 + 4g51 + 10g50 = 20
g31 +3g41 + 6g51 + 2g49 + 6g52 =175 (4.7.2.1)
g32 + 2847 + 3g52 = 60

One may combine these equations to give the result

§=43.5+ 1.5(g31 + g41) - 3(g40 + 3g50) (4.7.2.2)
but it is more illuminating to use Theorem 4.7.1, which gives us

€=830 840 + 850 + 1.5831 +2.58471 + 4g51 + g5 (4.7.2.3)

We now split the discussion into 3 cases, according as the triples from A, B, C, D,
E, F, are covered by using a quintuple, are covered using only triples, or are covered
using quadruples and triples.
Case 1.
850 =1, g40=1g51=0.
Then g3+ g41 + 852 = 10,

and we compute

e=g3o+ 1+ 1.5g31 +2.5g41 + g59

=1+ (g30 + g41 + g52) + 1.5(g31 + g47)

=11+ 1.5(g31 + g47)

If the block of length 5 is ABCDE, then the ten "diagonal” blocks appearing in the
830 + 841 + g5 blocks are FAB, FAC, FAD, FAE, FBC, FBD, FBE, FCD, FCE,

FDE. Now we know that every one of the 15 pairs from A, ..., F, must occur at least
once in the g37 + g4 blocks. There are 10 pairs not involving F, and so, if x of them
appear in the g4; blocks, then 10 - x must appear in the g3 blocks. Hence,
831+ 841210, €226, g 249.5.
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We have thus ruled out this case as a possibility for a minimum configuration.

Case 2. gs0 = g0 = gs1 = 0, that is, all triples from A,...,F, appear in the
£30 *+ 841 + 852 = 20 diagonal blocks.

We have
€=g30 + 1.5g31 + 2.5841 + g5
=20 + 1.5(g31 + g41)
The 15 pairs from A, ..., F must be covered in the 831 + g41 blocks. The most
efficient covering is ABC, ADE, FBD, FCE, AF, BE, CD, and hence g31t+ 84127,

€230.5, g 2 54. So we may reject this case.

Case 3. g50 =0, gg0 + g51 < 3 (the maximal number of 4-sets is given by ABCD,
ABEF, CDEF, since the packing number D (3,4,6) = 3). In Case 3, we have

€= 830+ 840 + 1.5g371 +2.5g41 +4g51 + g5
= (830 + 841 + 852) + 1.5(g31 + 841) + g0 + 451

Case 3A.1

840=1,850=0; g30+g41 +gsp =16,

€=1+16 + 1.5(g31 + g47).
As in the preceding case, g31+84127; €227.5,g =51.
Case 3A.2

840=0, g51=1; g3+ g41 + g5 = 16,

€=4+16 + 1.5(g3; + g41).
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In this case, there is a block of the form ABCDI1. However, the nine pairs AE, AF,
BE, BF, CE, CF, DE, DF, EF must all occur in the g3; + g41 blocks; the best we can

do is AEF, BEF, CFEF, DEF for a total of 4 (actually, one could strengthen this result
to 5 by using the fact that any pair must occur an odd number of times). Hence e > 26,
g 2495
Case 3B.1

840=2851=0, g30+g41+g5p=12

€=2+12 + 1.5(g31 + g47).
As before, g31 + 841 27,e224.5, g 248.
Case 3B.2

840=1=gs1, 830+ &41 + g5 = 12,

8=5+12+Lﬂ%1+&ﬂ.
Asin Case 3A.2, g31 + g4 24, g 246.5,
Case 3B.3

840=0, 851 =2, g30+ 841 + 852 =12,

€=8+ 12 + 1.5(g31 + g47).
We have blocks ABCD 1 and ABEF 2; hence the g31 * 841 blocks must cover the pairs
CE, CF, DE, DF, and this requires at least 2 blocks (again, we could strengthen this to
3). Hence € 2 23, g >46.5
Case 3C.1

840=3,851=0, g30+g4 +g52=8,

€=3+8+ 1.5(g31 + g47) = 11 + 1.5(7),
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g =45,
Case 3C.2
840=2,851=1, g30+g1+g5 =S8,
€=2+4+8+ 1.5(g31 + g41) = 20,
g 243.5.
Case 3C.3
840=1,851=2, g30+g;+g50 =8,
e=1+8+8+1.5(g31+g41)220,
g 2435
Case 3C4
840=0,851=3, g30+g1+g5 =8,
€=12+8+ 1.5(g37 + g49).
In this case, we have blocks ABCDI1, ABEF2, CDEF3; so € > 20, g 243.5.

Thus, we conclude that, if g <406, then g =45 (since g must be a multiple of 3). We
thus have g, + 385 =40, =45-235 = 21.5, and one of the four cases (3C) must

hold. We summarize this result as

THEOREM 4.7.2. If g(1,3;11) < 46, then 8(1,3,11) = 45, and the six points not on the
base block are covered by 3 quadruples and 8 triples.

4.7.3 Investigation of the three-quadruple cases. In Case 3C.4, we have
blocks ABCD1, ABEF2, CDEF3; also 831 + 841 = 1. But AB, DE, and EF must
occur an odd number of times and so must all occur again in the g3; + g4y blocks. This

is an immediate contradiction.
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Now consider Case 3C.3 with blocks CDEF, ABCDI1, ABEF2. We also have
831 + g41 = 3. The pairs CE, CF, DE, DF, must occur in the g31 + 841 blocks.
Since they can not appear in a triple, g31 =4 and we have a contradiction (note also that
AB must appear again).

In Case 3C.2, we have blocks ABEF, CDEF, and ABCDI; here 831+ 841 =5. The
available triples are ACE, ACF, ADE, ADF, BCE, BCF, BDE, BDF, and the
831 + 841 blocks must cover the 9 pairs AE, AF, BE, BF, CE, CF, DE, DF, EF.
Clearly, we can cover only two pairs with any available triple; thus g3; = 1 and
g41 =4. Without loss of generality we may use triples ACE, ACF, BDE, BDF : the
pair is EF . Now use Equations (4.7.2.1) to give 2g45 + 6gsy = 62, g39 + 2845 +
3gs2 = 60; it easily follows that g3, + g42 =29. Also, the g3( + g5, blocks contain
ADE, ADF, BCE, BCF .

We now look at occurrences of number pairs ij in the last row (the 832 + 840 + 859
blocks). The pairs 23, 24, 25, 34, 35, 45, must appear in at least 3 blocks (with 3
pairs from A, ..., F, or with a triple, a pair, and a singleton); the pairs 12, 13, 14, 15,
must appear in at least 4 blocks (with a triple and 3 singletons, or with 2 pairs and 2
singletons from A, ..., F ). This gives a total of 4(4) + 6(3) = 34 blocks needed;
however, even if 252 = 4, using all available triples ADE, ADF, BCE, BCF (with
g30 = 0), we have only 33 blocks. So this case is rejected.

Finally, in Case 3C.1, we have blocks ABCD, ABEF, CDEF . Also, g31 + g41 =7,
hence g31 =3, g41 =4 (the optimal case). But the only triples available are ACE, ACF,
ADE, ADF, BCE, BCF, BDE, BDF. Without loss of generality, we take triples ACE,
ADF, BCF, BDE, in the g41 blocks; then, we must take pairs AB, CD, EF, in the £31
blocks. This leaves triples ACF, ADE, BDF, BCE, to appear in the g3 + 852 blocks.
As in Case 3C.2, we substitute in Equations (4.7.2.1) to obtain g32 + 842 = 30.

Now consider occurrences of the 15 letter pairs with the numbers. Every letter pair
occurs with one single number (the g3; and g41 blocks) and two number pairs. Also,
the blocks ACE, ADF, BCF, BDE, all have unit intersections with one another.
Suppose, if possible, that ACE 1 and ADF 1 are blocks. Then our pair occurrences can
be taken as follows:

-89.-



AC 1 23 45 AD 1 - -
AE 1 24 35 AF 1 - -
CE 1 - - DE 1 - -

No completion is possible since all 1-factors 23 45, 24 35, 25 34 with AD and AF
lead to contradictions. Thus we may start the table for AB, AC, ... as follows.

AB BC 3 CE 1
AC 1, 23, 45 BD 4 CF 3
AD 2 BE 4 DE 4
AE 1, 24, 35 BF 3 DF 2
AF 2 CD EF

Now put in the 1-factors 14, 35; 15, 34; 13, 45; this can be done in only one way.
Thus we are forced to AD 2, 14, 35; AF 2,13,45; DF 2, 15, 34. Similarly, all other
pairings are forced as in the following table.

AB 5, 12,34 BC 3, 14,25 CE 1, 25,34
AC 1, 23, 45 BD 4, 15,23 CF 3,45,12
AD 2, 14, 35 BE 4, 25,13 DE 4, 35,12
AE 1, 24,35 BF 3, '15, 24 DF 2, 15,34
AF 2, 13,45 (D 5, 24,13 EF 5, 23,14

We note that this pair table proves the existence of four blocks AAA 11, namely,
ACF45, ADE35, BCE25. Our conclusion can be stated as

THEOREM 4.7.3. There is a unique exact covering of all triples on 11 elements given
by the following array.

12345 baseblock

ACF45
ABS
ADE35 D5
EF5
BCE25
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ABCD
ABEF } £40

CDEF
A15 D25 Y
ACE1 A25 D45
ADF2 B35 EI5
BCR3 [ &4 B45 45 [ E2
BDEA4 Cl5 F25
C35 F35

ABI2 BCl4 CE34 Y
AB34 BD23 CFI2
AC23 BEI3 DEI2
ADI4 BR24 DF4 [ &2
AE24 CD24 EF23
AF13 CDI3 EF14 -

It is clear (delete element 5) that this array is an extension of a Steiner System S(3.,4,10)
on 30 blocks. We state this result as

THEOREM 4.7.4. The unique exact covering of all triples on 11 elements is an
extension of the Steiner System S(3,4,10).

4.8 Computation of g(6)(1,3;13)
4.8.1 Introduction. We use a notation similar to that used in Section 4.7. In this

section, gij will denote the number of blocks of length i that contain j elements from the
base block 123456. We may also immediately write

g®13)=W +¢

where the Woodall bound W is 43. We can also write down the four relations
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830 + 841 + 852 + 4(8401851+862) + 10(gs50+861) + 20g¢ = 35,

831+ 2842 + 3841 + 685y + 6g51 + 1286, + 10gg; = 126,

832 + 2842 + 3g59 + 6ggp = 105,

€= 830 T 841+ 852+ 840 + 850 *+ 60 + 4851 + 6861 + 3g6p + 1.5(231+247)

4.8.2 The Cases of All Triples and of a Sextuple. We split the discussion
into various cases, depending on how the points not in the base block are distributed.

Case 1. The triples from A, B, C,D, E, F, G (the seven points not in the base block)
are all covered by triples. Then

830+ 841 + 850 =35, €278, g >78.
So this case does not provide a minimal design.
Case 2. There is a block ABCDEEF, that is, g60=1. Asaresult,
£50 = 840 = 861 = &51 = 62 = 0. Then
830 + 841 +gs5p = 15,
€=1+15+1.5(g31+g47)
The least possible value for g will be 59, achieved with 831 =841 =0. Then
842 + 3gs5) = 63,
832 + 2847 + 3gsp = 105.
Thence

832 + 849 = 42.

Now, the g3g + g41 + g5 blocks must contain the 15 triples
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GAB, GAC, GAD, GAE, GAF, GBC, GBD
GBF, GCD, GCE, GCF, GDE, GDF, GEF

Now, the g5, blocks GXXij have f(A) < 3 for all A; thus €52 <3(6)+2 =9. Hence
£42 263-27= 36.

It follows that the only distributions are

832 842 852
6 36 9
3 39 8
0 42 7

Now a number pair 1j may occur with various letter patterns. However, all of these
patterns involve a singleton (X) except for the pattern (XXX)(XX)(XX), of which
there can be at most gs52. Consequently, the number of singletons is at least
15 - g5p 2 6. It follows that 832 =6, 842 = 36, g55 = 9. We conclude that f(A) =3
for all ij in the blocks GXXij; also gz = 6.

This block distribution can be achieved uniquely. Up to isomorphism, we may take

GAB12 GBE35 GCF15
GAC34 GBF46 GDE 14
GADS56 GCE26 GDF23

The only possible 842 blocks are found by taking letter pairs with number pairs as

follows.
AB: 36, 45 BF: 16, 24 CF: 24, 36
AC: 16,25 BF: 13, 25 DE: 25, 36
AD: 13,24 CE: 13, 45 DF: 16, 45
as well as

AE: 46, 15, 23 BD: 34, 26, 15
AF: 35, 26, 14 CD: 12, 35, 46
BC: 56, 14, 23 EF: 12, 34, 56
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Finally, one needs the g30 blocks, GAE, GAF, GBC, GBD, GCD, GEF, and the g32
blocks G13, G16, G24, G25, G36, G45.

This configuration gives, on deletion of G, the familiar 47-block minimal system of 2
disjoint sextuples and 45 quadruples on 12 elements (cf. [48]).

4.8.3 Case of a Quintuple or a Quadruple. We now consider the case
860 =0, g50 + g61 = 1 (that is, there is a block of length 5).

Case 3(a). g0 =0, g50=1, gg; = 0.
Case 3(b). g50=0, g50=0, gg; = 1.
For both subcases, we have
& =80 * 841 *+ 852 *+ 1.5(g31+841) + £40 + £50 + 4851 + 6261 + 32
851+ 840 + 862 < 2.
Hence, since
830 + 841 * 852 + 4(840+g51+860) = 25,

we have

830 + 841+ 8522 17.
Thus € 2 17 + gs + 4ggy > 18.
Thus g > 61.
So Case 3 does not provide a minimum.
Case 4. ggp = g50 = g51 = 0, but we have

840 + 851 + g2 > 0.

Now we know that D(3,4,7) = 7; hence
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a0+ 8&1+gn=p<T.
Furthermore,
830 T 841 + 852 + 4(g40+851+862) = 35.
Then
€=830 + 841+ 852 + 1.5(g31+841) + 840 + 4857 + g6y
2 (830+841%852) + (240+851+E60)
=35-4p+p=35-3p.
But a minimum must have g=43+e278 - 3p.

Hence, the minimum would be 57, and we would need

830+ 841 +g52=17,
840+ 851+ 862 =7,
831+ 841=0, g51 =gg =0.

Then, we deduce

ga0 =7,

842 + 3850 = 63,

g32 + 2842 + 3gsp = 105,
832 + g4 = 42.

But €50 <7, 849 <42, imply that g5 =1, 840 = 42.

Hence, any pair ij must occur with one triple and two pairs (since g37 = 0). This
requirement can not be met.
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4.8.4 Conclusion. We summarize these results as a Theorem.

THEOREM 4.8.1. The value of 8(6)(13) is 59, and the minimal design contains 2
disjoint 6-blocks, 9 blocks of length 5, 36 blocks of length 4, and 12 blocks of length
3. The element not in the 2 blocks of length 6 occurs in all the blocks of length 5 and
all the blocks of length 3. The design is an extension of the minimal g(1,3,12 ) design
Jormed by 2 disjoint 6-sets and the Cartesian products of their five 1-factors.
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Chapter V

5.1 Preliminaries

In this Chapter, we will be dealing with an algorithm to investigate some exact
bicoverings, that is, exact coverings in which each pair must occur exactly twice.
This problem is considerably more difficult because we do not have the usual
inequalities (they are developed under the hypothesis that A = 1). The main general

result available is a remarkable theorem that has been proved by Ryser; this theorem
answers a fundamental question about the behaviour of exact coverings when A is

equal to 2. We quote the theorem from [39].

THEOREM (Ryser). Let S = {ay, ay, ..., At be an m-set and let §;, S, ..., S, be
n subsets of S. In this configuration we assume that each S; and S With i #J
intersect in exactly A elements of S. We also assume that n > 1,A 21, and that the
number of elements in each S; is greater than A. Then the configuration has m > n
and if equality holds, the configuration satisfies one of the Jollowing two
requirements:

1) Each of the replication numbers of the configuration equals a positive
integer k and each S; is a k-subset of S.

2) The configuration has exactly two distinct replication numbers r; and ry,
and these numbers satisfy

rp+rp=n+l1.

For application, this form of the theorem is not convenient. If we think of the
Ryser design as given in an incidence matrix form, we can obtain a dual theorem by
interchanging the role of rows and columns in the matrix. For our purposes, the
dual form of Ryser's Theorem is required.

DUAL OF RYSER'S THEOREM. Let aj, ..., ay, be v elements and let {B;, By, ...,
By} be b blocks. We assume that a; and a; (i # j) occur together exactly A times.
We also assume thatv > 1, A > 1, and that each element occurs more than 1 times.
Then the design has b >v and equality holds if and only if the design satisfies one
of the following requirements.
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1) Each of the blocks of the design contains k elements and each point occurs k

times; thus we have a Balanced Incomplete Block Design with parameters
(v.k,2).

2) The design has exactly two block sizes k 1 and ky and these numbers satisfy

the relation
/C] -+ kz =v+ 1.

Ryser has also discussed Case 2 (he calls the designs in Case 2 by the name A-designs)
for A =2 and has established the following result.

RYSER'S THEOREM FOR A = 2. Let A be the incidence matrix of a A-design with 2
= 2 on n elements. Then, apart Jrom row and column permutations, A is given by
the following array.

1 001111
' 111100
1 11001 1
0101010
01 00101
0011001
001 0110

The net result of Ryser's work, in the dual form, is that an exact covering for A = 2
has b 2v and that b can only be equal to v if we have

‘Case 1) A Balanced Incomplete Block Design with parameters

v=1+ %k(k-l); k: 2.

Case 2) v =7 and there are 3 blocks containing 5 elements and 4 blocks
containing 3 elements.
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5.2 A Computational Example

We shall be using a computer algorithm to obtain exact bicoverings for small v. To
illustrate the algorithm, we shall discuss a small example in complete detail.

Let b; be the number of blocks of length i in an exact covering. We illustrate our
algorithm for v = 8. Since Ryser's Theorem guarantees b > 8, we must first tryb=9
and have

by + b3+ by +bs+bg+by=09,

by + 3b3 + 6by + 10bs + 15bg + 21by = 2 (g) = 56.

Then 2b3 + 5b4 + 9b5 + 14b6 + 20b7 =47.

The possible value for b; are stored as block vectors (by, b3, ..., by). A simple
Diophantine sieving produces

o
N
o
w
g
o
n
o
(=)
o
~3J

ONP—*UJHOUJNNHALANHWUIN-&UI
NOWHNU:OUJNU\OOH-&NO-&NF—*
MAMO-&HUJOUJONHMN»—‘O»—‘OH
NthHNNwOHHOOHNwOHO
OOOOHHHHN[\)NUJOOOOP—‘HO
OOOOOOOOOOOOP—*H)——*H*—‘HN

For each specific block vector, we define distribution vectors (ag, a3, ag, as, ag, a7); a;
gives the number of times that any particular element appears in blocks of length j.
Clearly, we have
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a + 233 + 334 + 48.5 + 536 + 6&7 = 2(7) =14,
Itis trivial that a; < b;.

For example, the first block vector (5,1,1,0,0,2) has distribution vectors

VWS
OO
—_—o o
ccoo
ccoo
— N

We now assign frequencies to these distribution vectors, Thus, there are f; elements
with distribution (0,1,0,0,0,2), fy with distribution (2,0,0,0,0,2), f3 with distribution
(3,1,1,0,0,1), and fy with distribution (5,0,1,0,0,1). The following equations hold.
We normally omit the first equation, since it is dependent on the others.

fl +f2 + f3 + f4 = 8

2 4265 + fs + £ =2)=14
f3 + f4 = 1(4) =4
fi + f3 = 13)=3
2 + 3f3 + Sty = 5(2)=10
In general, we reduce these equations to row echelon form,
In this case,
f; - Iy =25
1) + f; =425
3 + £ =05
0 =35

Clearly, this system of equations has no integral solution.

This discussion eliminates the first block vector. We tabulate the results for the
remaining block vectors, (When we program the algorithm, we omit all those entries in
the block vector that are ZEr0.)

Block Vector 2 (4,2,0,1,1,1) has distribution vectors

- 100 -



W RARANNOW—

The frequency equations are

fl + f2 + f3

f 1 + f2
f3
fl + 2f3
f. 1 + 3f2
In row echelon form
fy
15)
f3

PO -

+f4
+f4

+ f4
+2f4

fy

Coocoocooo

+

+

+

H»—AO)—-U-—H—-AOO

fs +

fs

4f5 -+

fs

HFmO0OO

2f
4f

Since f4 can not be less than zero, this case is ruled out.

Block Vector 3 (2,4,1,0,1,1) has distribution vectors

PFINONO -

The frequency equations are

f1+f2+f3

POoLVWLAN—~O

+f4

O)—Ar—aoor—no»—n

+

Coocoococoo

f5
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+ f7
+ f7
-+ 2f7

+f7

- 2f,
+2f7
+ f7

OO D i i

+ fg
+ fg
+ fg
+3f8
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fl -+ f2 -+
fl + f3 -+
f2 + 2f3 +4f4 + 3f5 +

f2 + f3 + 2f5

In row echelon form

f -
f2 +
f3 +

fs

These equations have the following solutions:

i f  f5 £ f
4 1 0 1 0 1
3 2 1 1 0 0
32 0 2 0 0
3 2 0 1 1 1
2 3 1 1 1 0

fs
fs
3t

COOO

Block vector 4 (5,0,0,3,0,1) has distribution vectors

0 0 0 2
4 0 0 1
2 0 0 3

The frequency equations are

fl + f2 = 7
2y + fp +3f3 =15
4y +2f5 =10

In row echelon form
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OO =
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f3 = 1

Block Vector 5 (3,2,1,2,0,1) has distribution vectors

0 0 0 2 0 1
1 0 1 1 0 1
0 2 0 1 0 1
2 1 0 1 0 1
1 2 1 0 0 1
3 1 1 0 0 1
1 1 1 2 0 0
3 0 1 2 0 0
2 2 0 2 0 0
3 2 1 1 0 0
The frequency equations are
fl -+ f2 + f3 + f4 -+ f5 + f6
2 + £ + 5 + £ + 207 +2fg
fz + f5 -+ f6 -+ f7 -+ fg
2f3 -+ f4 +2f5 -+ f6 + f7
f2 + 2f4 -+ f5 + 3f6 + f7 +3f8
In row echelon form
f; -t - 1
f2 -+ f6 -+ f7
f3 + f7 - fg
f4 + f6 + fg
f5 + f8

These equations have the following solutions:
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+ 2f9
+2fy
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+ f9

+1f10
+ fIO
+2f10
+3f10
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+f10
+f10
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f10

OO0 OO OO —

OO0 —~TOO—OO~O

COVO OO —~miOO—OO—OO

N~ ON—ONANN— == OOD

HrH A OO O OODODOOOOO

HrrAA A At T O OO OO0

COO 100 DO ODDOOO

O NO—NO—OON — NN

O~ AN~ NNO— N NN N <t on

TN TN TN N

Block Vector 6 (1,4,2,1,0,1) has distribution vectors

Hr A - OO O

CODDOOOOO

A OO0~ — O

—FON—O N~

O AN NN <F

HOO—OO—O

The frequency equations are

>~ ¥ 0
oo
o
(g
+
o5 o
+ +
o? P
N
+ +
ol
l_l
T
+ +
P o
(@]
+ +
& &
+ +
o et
Yt Y Gy

=12

+ 26y +4fs + 2fg + 3fy +4fg

2, + f3

In row echelon form
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+ f5 + £y + fg
f5 + f7 +f8

These equations have the following solutions:

f3 15) f3
2 2 2
1 3 2
1 3 3
2 3 2

SO O
SO
SO M
OO0

Block Vector 7 (2,1,5,0,0,1) has distribution vectors

NONO

The frequency equations are

fl + fz
2f1 +2f2 + 4f3 + 4f4
fl + f3
2, + 26y

In row echelon form

£, -y
f2 + f4

f3 + f4

0

Ot O
A ANN
ocooo
SOoCO

=-3.5

Obviously, these equations have no solutions.

Block Vector 8 (5,0,1,0,3,0) has distribution vectors

1
4

0 1 0 2
0 0 0 2
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The frequency equations are

2, +2f, = 18
£ = 4
£, +4f, = 10

In row echelon form

£ =8.67
f, =0.33
0 =4.67

Clearly, there are no solutions to these equations.

Block Vector 9 (4,0,2,1,2,0) has distribution vectors

ARWNAE—O

The frequency equations are
2f1 +2f2 + 2f3 + f4
fl + f4
f2 + f4

f2 + 4f3 + 2f4

In row echelon form

f1

f4

There are no solutions to these equations (f3 < 0).

SO0

+f5

+ 2f5
+ 3f5

- f5
+f5

+ f5

0
1
0
1
2
2
+ f6
-+ 2f6
+ 4f6
- f6
+ 2f6
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Block Vector 10 (1,5,0,1,2,0) has distribution vectors

0 0 0 1 2
0 2 0 0 2
1 2 0 1 1
1 4 0 0 1
0 5 0 1 0
The frequency equations are
207 +26, + f3 o+ = 12
f1 -+ f3 + f5 = 5
2f2 + 2f3 -+ 4f4 +5f5 = 15
f3 + f4 = 2
In row echelon form
fy -fg o= 2
fz + f5 = 3
f3 + f5 2
f4 = 1

These equations have the following solutions

N
— W
O = N
— et
BN O

Block Vector 11 (2,2,3,0,2,0) has distribution vectors

N ONO M
DN~ O=NO
W N WOO
SOCCOoOOoOOoOO
QO = N NN

The frequency equations are
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2f1 +2f2 + 2f3 + f4 + f5 + f6

fi + 3y +2f5 + Ay
2f2 + f3 f5 + 2f6
fy + 263 + fs + 26

In row echelon form
1 - f5 - 2fg

f3 f5 + 2f6
f4 + f5 + f6

These equations have the following solutions:

WNN—=O
NN NN
OO O M
[\S NS RESRIL NN
OO O

SO~ OO

+
+

+

3t
2,
f7

3t

2f7
2f;

—OOoOOoOO

Block Vector 12 (2,3,0,3,1,0) has distribution vectors

1 0 0
1 2 0
0 1 0
2 0 0
0 3 0
2 2 0
The frequency equations are
fl + f2
2f1 + f2 + 3f3 + 3f4 +2f5 -+ 2f6
2, + f3 +3f5 + 2fg
fl + f2 + 2f4 + 2f6

In row echelon form

NN WW— N

- 108 -

SOOO—

15

AN N O

COOOOoOO



£ - fs - fg = 3
f2 + f5 + f6 = 3

f3 + f5 = 3

f4 + f6 = -1

There are no solutions to these equations (neither f4 nor fg is negative).

Block Vector 13 (3,0,3,2,1,0) has distribution vectors

1 0 0 2 1 0
2 0 1 1 1 0
0 0 3 0 1 0
3 0 2 0 1 0
0 0 2 2 0 0
3 0 1 2 0 0
1 0 3 1 0 0

The frequency equations are
fl + f2 -+ f3 -+ f4 = 6
2f1 + f2 +2f5 -+ 2f6 + f7 =10
f2 + 3f3 + 2f4 +2f5 + f6 + 3f7 =12
f1 +2f + 3fy + 3fg + f7 =6

In row echelon form

f 1 - f5 - f6 - f7 = 2
f2 +2f5 -+ 2f6 -+ f7 = 2
f3 - fs = 2
f4 + f6 -+ f7 = 2

3 0 2 2 1 0 0
2 2 2 2 0 0 0
3 0 3 1 0 1 0
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Block Vector 14 (0,5,1,2,1,0) has distribution vectors

0 1 1 1 1
0 3 1 0 1
0 3 0 2 0
0 5 0 1 0
The frequency equations are
fl + f2 = 6
f1 + 2f3 + f4 =10
fl + f2 = 4
fl +3f2 + 3f3 + 5f4 =15
In row echelon form
f - f4 =5.14
: f2 -+ f4 =(.86
f3 -+ f4 =243

0 =-2

Clearly, there are no solutions to these equations.

Block Vector 15 (1,2,4,1,1,0) has distribution vectors

HOORRO~O
B P DN Ot O DN bt
WhNWNWO
COM OO
OO O i =t pm

The frequency equations are
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f1 +fH + f3 + f4

fl + fz

f;

f1 426
f

+ 3f3 -+ 2f4

+ f4
+f4

In row echelon form

f

N AWWH

RO OO

LW -

+ f5
+3f5

fs

—_OO O

+ f6
+ 2f6
+ 2f6
- f, 6
+ f6
+ f6

fs fe

ok ok ped
OO =M

+ 4f7
+ f7
- f7
+ f7
+ f7
f7
1
0
1
0
0

Block Vector 16 (3,1,0,5,0,0) has distribution vectors

0
2

The frequency equations are

3, +36
f1
2f,

In row echelon form

f

=5.33

3

=-2.33

1
0
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Clearly, there are no solutions to these equations.

Block Vector 17 (1,3,1,4,0,0) has distribution vectors

0 1 0 3
1 1 1 2
0 3 0 2
1 3 1 1
The frequency equations are
3f1 +2f2 + 2f3 + f4 =20
iy} + f4, = 4
fl -+ f2 + 3f3 + 3f4 = 9
In row echelon form
f1 - £, =371
f2 + f4 = 4
f + f4 =043
0 =2

Clearly, there are no solutions to these equations.

Block Vector 18 (2,0,4,3,0,0) has distribution vectors

2 0 0 3
0 0 2 2
1 0 3 1
2 0 4 0
The frequency equations are
3f1 +2f2 -+ f3 =15
2f2 + 3f3 + 4f4 =16
2f1 + f3 + 2f4 = 4
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In row echelon form

£ =1
1)) - fy =5
f3 + 2f4 = 2

These equations have the following solutions

Block Vector 19 (0,2,5,2,0,0) has distribution vectors

0 0 2 2 0
0 2 2 1 0
0 1 4 0 0

OSOOo

The frequency equations are

2f1 + f2 = 10
2 +2f, +4f3 = 20
2f2 + f3 = 6

In row echelon form

fl =

It is clear from this example that many of the block vectors are easily eliminated.
However, in the cases where there are solutions for the frequency equations, we need
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to give further rules for elimination of solutions. The first such restriction comes from
consideration of the pair table that we describe in the next section.

5.3 The Pair Count Table

Suppose, for a given block vector, that there are r distribution vectors (ajy, ..., ajq
wherei=1,2,..,rand s =v - 1). Suppose further that two elements of our design
occur with distribution vectors i and j respectively. Clearly, it is possible to have i = j.
Then the number of pairs formed by these two elements in the kth block is given by

Max((), ax + ajk - bk)

We now define

pij = % Max(O, Qg + ajk - bk)

These quantities pjj are printed out in a pair count table. It is clear that, if p;j is greater

than 2, then the ith and jth distribution vectors can not occur together. As a special
case, we note that p;; > 2 implies that the ith distribution vector has frequency either 0

or 1.
As an illustration of the power of the pair count table, we look at block vector 5 from
the example of the last section. There are 10 distribution vectors and so the pair count

table is of size 10 by 10.

Block Vector 5 (3,2,1,2,0,1) has distribution vectors

WNWRRE WA NO =D
NNO—~,N=,NOO
= O rd = et = OO = O
COOOOCODOOOOQO

RPINNNOO =~ N
OO OO ke = i b

The pair count table is obtained in the following form
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The frequency equations had 16 solutions, which we repeat.

f1 1) f3 f4 f5 fs f; fg fo f10
4 0 0 0 1 1 2 0 0 0
3 1 1 0 1 1 1 0 0 0
2 2 2 0 1 1 0 0 0 0
3 1 0 1 1 0 2 0 0 0
2 2 1 1 1 0 1 0 0 0
1 3 2 1 1 0 0 0 0 0
4 0 0 0O 0 0 3 1 0 0
3 1 1 0 0 0 2 1 0 0
3 2 0 0 0 0 2 0 1 0
4 1 0 0 0 0 2 0 0 1
2 2 2 0 0 0 1 1 0 0
2 3 1 0 0 0 1 0 1 0
3 2 1 0 0 0 1 0 0 1
1 3 3 0 0 0 0 1 0 0
1 4 2 0 0 0 0 0 1 0
2 3 2 0 0 0 0 0 0 1

We now note that pj; = 3. Consequently, we can reject all solutions in which f; is
greater than 1. This eliminates all solutions except solutions number 6, number 14, and
number 15. Solution 6 is (1,3,2,1,1,0,0,0,0,0) and it is eliminated because p33 and
P35 are both greater than 2. Solution 14 is (1,3,3,0,0,0,0,1,0,0), and it is eliminated
because p33 > 2. Finally, solution 15 is (1,4,2,0,0,0,0,0,1,0), and it is eliminated
because p33 and p3g are both greater than 2.

This illustration shows how effective the pair count table can be in quickly eliminating
possible solutions.
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5.4 Statistics on Some Program Runs

A program was written which uses the algorithms described in sections 5.2 and 5.3.
We shall now discuss the output from several runs of this program which is listed in
Appendix A.

Each computer listing is divided into cases. Within each case, the following
information is always displayed:

- Case number;

- Block vector;

- Distribution vectors;

- Pair count table;

- System of equations generated from distribution vectors;
- System of equations in row echelon form;

- Column pointer vector.

The column pointer vector is used to keep track of the original order of the columns.
This is required since the row echelon algorithm employed will interchange columns.

The remainder of the output for the case depends on the characteristics of the system of

equations. The block vector can immediately be rejected if any of the following
conditions on the row echelon form of the system of equations is met:

- LHS is positive - RHS is negative;

- Left hand side of equation equals 0 while the right hand side does not;
o]
- LHS is all integral - RHS is not.

If the block vector is not rejected, the system of equations is converted from real
numbers to integers (for increased processing speed). This new system is displayed
along with upper bounds for each column.

The number of solutions is displayed, along with each solution. If the solution can be
rejected by the pair count method (Condition B), this information is also displayed.

Finally, if any solutions are not rejected, a message is displayed indicating which
solutions should be examined manually.

As a sample of output, a complete listing for the case g(9) = 11 is given in Appendix B.

5.4.1 Case of g(8) = 9.
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Number of Block Vectors 19
Total Number of Cases remaining after (A) 10
Subcases Remaining after Pair Count Method (B) 2

5.4.2 Case of g(9) = 10.
Number of Block Vectors 47

Total Number of Cases remaining after (A) 33
Subcases Remaining after Pair Count Method (B) 25

5.4.3 Case of g(9) = 11.

Number of Block Vectors 54
Total Number of Cases remaining after (A) 38
Subcases Remaining after Pair Count Method (B) 84
5.4.4 Case of g(10) = 11.

Number of Block Vectors 110
Total Number of Cases remaining after (A) 77
Subcases Remaining after Pair Count Method (B) 123
5.4.5 Case of g(11) = 11.

Number of Block Vectors 203

Total Number of Cases remaining after (A) 122
Subcases Remaining after Pair Count Method (B) 107

5.5 The Multi-pair Criterion

A great many subcases are automatically rejected by the program, using either the row
echelon criteria or the pair-count criterion. The remaining cases can usually be removed

using the following "multi-pair criterion".

Suppose we have a block vector with entries by, bs, ..., b, (many of these may be |
zero). A typical "case” consists of t frequencies fy, f, ..., f;, each f; being associated
with a distribution vector ajy, a;3, ..., aj.. Pick any f; (the larger f; are best). Let F; be
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the set of these f; elements; we note that there are fja;s elements in the blocks of length
s. We write

fjajs = qgbg + T

This means that we get the minimal number of F;-pairs by using rg blocks with qg+1
elements and by - 1 blocks with qg elements. The total number of Fj-pairs is thus at

least
% () een(3))

where the summation is over s = 2 to s = r. This number can not exceed the total

number of F;-pairs. Hence
Z ds { bs(qs‘ 1)+2rs } < fi(fi" 1)

For example, in Case 75 (#14) of the g(10) = 11, we have

*)

by=6 bs =3 by =2
fi=4 1 1 2
fr=5 2 2 1
fy=1 4 1 1

Consider the four elements given by f; =4. Then

flag =4 =006 + 4
flag=4 =103 +1
f1a7=8=462+0

The summation is thus

0+%{am+2}+%{xm+o}=1a

Since this summation should be < 12, the case is rejected.
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For later cases, one could put (*) into the program; however, one would not employ it
unless the case survived both the various row-echelon criteria and the pair-count
criterion. Future research will concentrate on this improvement to the algorithm.

5.6 Summary

The program considered the case g(8) =9 and provided a solution given by the set of
blocks
12
12
2357
2368
2458
2467
13456
13478
15678

When element 8 is deleted, the result is a set of 7 blocks covering the pairs on 7
elements (the exceptional Ryser solution, not the Fano Gemoetry).

No solutions were produced when the case is g(9) = 10.

Single solutions were obtained in the cases g(9) = 11, g(10) = 11 and g(11)=11. The
last solution is merely the familiar BIBD (11, 11, 5, 5, 2) generated by the initial block
(1,2, 3,5, 8). The solution for 10 elements is found by deleting 1 element to leave 5
blocks of length 4 and 6 blocks of length 5. The solution for g(9) = 11 can be obtained
from the BIBD by deleting two elements to leave 2 blocks of lengh 3, 6 blocks of
length 4 and 3 blocks of length 5.
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Chapter VI

6.1 Introduction

We begin with some general remarks taken from Allston, Buskens, and Stanton [12].
Determination of the number of non-isomorphic Balanced Incomplete Block Designs
with a given parameter set (v,b,r,k,A) is a problem of considerable importance and
even greater difficulty. Probably the case that has been most studied is that of a Steiner
Triple System (15, 35, 7, 3, 1); cf. Fisher [21], Mathon and Rosa [28]. It is well
known that there are eighty possible solutions for this set of design parameters, and the
different designs are a fruitful source of examples and constructions. Since [21], there
have been various papers devoted to similar problems in Balanced Incomplete Block
Designs on a small number of varieties; cf., for example, [15], [16], [24], [54].

Stanton, Kalbfleisch, and Mullin [51] discussed the more general concept of a covering
design; in such a design, every variety pair occurs at least once and we normally
impose a minimality condition by demanding that the cardinality of the design be as
small as possible. It is clear that, in a covering design, we may have to permit the
repetition of a small number of pairs in order to ensure that all pairs do appear. The
analogue of the BIBD identity bk =rv is the inequality

k N(t,k,v) 2 v N(t-1, k-1, v-1),

where N(t,k,v) is the minimum cardinality of a family of k-sets that cover every t-set
from a given set of v elements (t <k <v). In this chapter, we shall only be concerned
with pair coverings by sets of size 4, that is, the design will contain N(2,4,v) blocks.
It is well known (see, for example, Mills [30], [35]) that, provided v is not contained in
the set {7, 9, 10, 19}, then

N@24v) =V (v-1)/3) 141,
For various general results on covering designs, we refer to [51].
Relatively little has been done in considering the number of non-isomorphic solutions
for covering designs. The case of quadruples on 9 symbols (one of the four exceptional

cases) was discussed in [4]; see also [13] for a small correction. Other results for small
values are given in [35] and [42]. In this paper, we wish to consider the analogue of the
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case discussed in Fisher's 1940 paper; we have a variety set of 15 elements, but we
wish to determine the number of designs that cover all pairs (minimally) by quadruples.
Since N(2,4,15) = 19, we shall have a total of 19 quadruples in the design.

In a certain sense, 15 seems to be about the break point for manageable designs. If we
look at the case of triples and take v less than 15, then the discussion is relatively
simple. For example, if v is equal to 4, then N =3, and the unique design may be taken
as 123, 124, 134, with 3 repeated pairs. If v = 5, then N = 4, and the unique design
may be taken as 123, 145, 245, 345, with 2 repeated pairs. ¥ v = 6, then N = 6, and
the unique design may be taken as 123, 145, 126, 245, 346, 356, with 3 repeated
pairs. It is well known that there are unique solutions for the case v = 7 (the Fano
geometry generated cyclically from the block 124) and for v = 9 (the affine geometry
found by deleting points 0, 1, 3, 9, from the projective geometry on 13 points
generated cyclically from the block 0139). There are two solutions for v = 13 (both are
given in Marshall Hall's book or in [28]). We have already noted that there are 80
solutions for v equal to 15. For v greater than 15, the number of solutions climbs
astronomically; the number for v = 19 is not known, but Stinson and Seah [64] have
shown that the number of triple sytems S(2,3,19) that satisfy the additional very
powerful constraint that they contain both a subsystem $(2,3,7) and a subsystem
8(2,3,9) is 13,529 (the number containing a subsystem S(2,3,9) is 244,457). The total
number of systems on 19 points is well into the millions (cf. [62], where 2,395,687 are
found, and where it is estimated that the total number is of the order of 109).

6.2 The N(2,4,9) Designs

6.2.1 Introduction. The superstructure of modern design theory can be said to
stem from the pioneer work of Fisher and Yates in their Statistical Tables (1963) [22].
They were among the first to stress the value of Balanced Incomplete Block Designs,
and Fisher, in a fundamental paper (1940) [21], discussed the number of non-
isomorphic balanced incomplete block designs with parameter set (15,35,7,3,1).
Stanton, Kalbfleisch, and Mullin (1970) [51] discussed the more general concept of
covering designs in which every pair appears at least once and the cardinality of the
design is as small as possible. We shall here be concerned with the number N@24,v),
which is the cardinality of a minimal design in which a set of quadruples covers all
pairs from {1, 2, ..., v}; this number is well known to be equal to

Lw) =l $1 511
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for all values of v except v =7, 9, 10, 19; see, for example, Mills (1972) [29]. For
these four exceptional values, one has:

N(7) =1+L(7) =35,
N® =1+L0O) =8,
N(10) =1+L(10) =9,
N(19) =2 +1(19) = 31.

Various general results on covering designs were given by Stanton, Kalbfleisch, and
Mullin (1970) [51]. In this section, we restrict our attention to the three 2-4-v designs
for which N(v) = 1 + L(v), that is, we consider the exceptional values 7, 9, 10.

We begin by retracing familiar ground and considering the possibility of the equation
N(2,4,9) =7. If we let 1; denote the frequency of element i, then Zr; = 28, and we
deduce that rg =4, 1; =3 (i < 9). Since every pair must occur, we see that there must
be one repeated pair containing i (i # 9) and four repeated pairs containing 9. Hence a
covering design may be taken as containing repeated pairs 91, 92, 93, 94, 56, 78. The
design consists of two sets of blocks: set A comprises four blocks containing 9, and set
B comprises three blocks not containing 9. Also, A contains two each of 1,2,3,4, and
one each of 5,6,7,8. In set B, we can not have a block 1234; since there are exactly
three blocks, there must be a block of the form 125X. This forces set A to take the
form 91XX, 91XX, 92XX, 92XX; there is then no place for symbol 5 in set A. Thus,
we see that the equation N(2,4,9) = 7 is impossible; hence, a covering design on nine
symbols must contain at least eight blocks.

6.2.2 Covering Designs with Eight Blocks and High Frequency. We

now determine all solution sets for the equation N(2,4,9) = 8. Clearly, the equation
bk =32 implies that the frequencies of the nine elements obey the equation Xr; = 32.

Thus, we have seven cases, the unspecified r; being all equal to 3:

Case 1. 19 =8.

Case 2. 19=7,13=4.

Case 3. 19=6,13=5.

Case 4. 19 =6,13 =17 =4.

Case 5. rg=1g3=5,17=4.
Case 6. 19 =35,13 =17 =1¢ = 4.
Case 7. tg=13=17=Tg=15=4.
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In this section, we consider the first five cases. Our discussion involves a series of
lemmata.

LEMMA 6.2.1. Case 1 is impossible.

PROOF. Each block contains the symbol 9; the other 24 symbols generate 8(3) = 24
pairs only. But we need the 28 pairs from the remaining 8 elements.

LEMMA 6.2.2. Case 2 is impossible.

PROOF. In this case, the 28 pairs on 1,2,...,8, must fit into one 4-block and seven
3-blocks. But such a configuration can accommodate only 6 + 7(3) = 27 pairs.

LEMMA 6.2.3. Case 3 is impossible.

PROOF. Place 9 in the first six blocks; then 8 may occur in 0, 1, or 2 of the last two
blocks. In these three cases, there remains space for 20, 19, or 18 pairs from the
symbols 1,2,...,7. However, space for 21 pairs is needed.

LEMMA 6.2.4. In case 4, a single solution exists.

PROOF. If 9 occurs in By,...,Bg, and 8 occurs in B; and Bg, then we have room for
only 20 pairs from 1,...,7.

By the symmetry of 7 and 8, we may now assume three possibilities:

(A) 7 and 8 each occur once in B; and Bg,

(B) 7 occurs once in By, 8 occurs in neither B4 nor Bg,

(¢) 7 and 8 do not occur in B7 and Bg.
Case (A). If 7 and 8 both occur in B+, the pair 78 can occur 0,1,2, or 3 times in the
first six blocks. The first two possibilities provide space for only 13 and 14 pairs from
1,2,...,6 but 15 are required. The third possibility gives blocks 987X, 987X, 98XX,

97XX, 9XXX, 9XXX, 78XX, XXXX, and there is exactly space for the needed 15
pairs; hence no pairs from 1,2,...,6, can be repeated, and this is impossible. Finally,
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the last possibility leads to blocks 987X, 987X, 987X, 9XXX, 9XXX, 9XXX,
78XX, XXXX, and we have only five places in which the six symbols 1,2,...,6, can
appear with 7; this is again impossible.

Hence, we must have 7 in B, 8 in Bg. In order to have space for 15 pairs from

1,...,6, we must have blocks
987X, 987X, 987X, 9XXX, 9XXX, 9XXX, 7XXX, 8XXX.
These immediately lead to
9871, 9872, 9873, 9XXX, 9XXX, 9XXX, 7456, 8456.
and the schema can not be completed.
Case (B). We start from
9XXX, 9XXX, 98XX, 98XX, 98XX, 98XX, 7XXX, XXXX.

Exactly one symbol c is repeated with 8, since there are only 8 spaces for 1,2,3,...,6,7.
This repeated symbol ¢ must occur with six others, and hence has frequency 4. Hence
¢ =7, and the skeleton takes the form

97XX, 9XXX, 9871, 9872, 9834, 9856, TXXX, XXXX.

There are only 15 places for the pairs on 1,2,...,6, and so there are no repeats; thus we
may assign the eighth block to be 1235. The pairs 14 and 16 must occur together,
since 1; = 3. Hence B, is 9146 or B; is 7146. In either case, we need pairs 24, 26,

36, 45, and these will not fit into the skeleton.

Case (O). Asin Case (B), we are forced to have 7 repeated with 8, and we have the
skeleton

97XX, 97XX, 9871, 9872, 9834, 9856, XXXX, XXXX.

The symbols 3, 4, 5, 6, must occur in B; and By, with 7. Hence, B; and Bg must
contain both 1 and 2; since all pairs occur, no other pairs from 1,...,6 can be repeated.
Thus, up to an isomorphism, we can give the solution
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9735, 9746, 9871, 9872, 9834, 9856, 1236, 1245.

This can be described as 9871, 9872, and the combination of 97, 98, and 12 with the
1-factors of a 1-factorization of {3,4,5,6}.

LEMMA 6.2.5. There is only one solution in Case 5.
PROOF. There must be 2, 3, 4, or 5 pairs 98.

If 98 occurs twice, there is only space for 20 pairs on 1,...,7. If 98 occurs thrice, let
the design be

9XXX, 9XXX, 8XXX, 98XX, 98XX, 98XX, 1234.
There is no room for repeats among 1,...,7. Hence B1, By, B3, and B4 must contain
two or more symbols from 5, 6, 7. This is not possible, since only three distinct pairs
can be formed from 5, 6, 7.
If 98 occurs five times, we have a skeleton

98XX, 98XX, 98XX, 98XX, 98XX, XXXX, XXXX, XXXX,
and there are two repeats among the pairs on 1,...,7. If 7 occurs four times in
B1,...,Bs, we can not get the six pairs 71,...,76. If 7 occurs three times in B1,...,Bs,
we obtain blocks

9871, 9872, 9873, 98XX, 98XX, 7456, XXXX, XXXX;

but then 9 can not occur with 4, 5, 6.

If 7 occurs once with 98, we have space for only 13 pairs from 1,...,6. Hence we are
forced to the skeleton

987X, 987X, 98XX, 98XX, 98XX, 7XXX, 7XXX, XXXX.

No repeats are permitted from 1,...,6; hence Bg, B7, Bg, can not be completed.
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There remains only the possibility of four pairs 98 in a skeleton
98XX, 98XX, 98XX, 98XX, 9XXX, 8XXX, XXXX, XXXX.

There is only one repeated pair from 1,...,7. If the last two blocks have only one
clement in common, we write them as abcd, aefg. Then, in order to complete Bs and
Bg, we are forced to use at least two repeated pairs. Hence, we must take the last two
blocks in the form abcd, abef. Then pairs ga,...,gf, must be fitted into B1....,Bg; this
requires the frequency of g to be 4, and hence g =7. So we may take the skeleton

9871, 9872, 98XX, 98XX, 9734, 8756, XXXX, XXXX.
Completion is forced as
9871, 9872, 9836, 9845, 9734, 8756, 1235, 1246.

This solution can be written as 9871, 9872, and the combination of 98, 12, and
{97,87} with the 1-factorization of {3,4,5,6}.

6.2.3 The Case of a Single Frequency of 5, Three Frequencies of 4. We
shall establish

LEMMA 6.2.6. Case 6 produces five solutions.

PROOF. Suppose that pair 98 occurs only once. Then symbols 1,2,...,7, occur in 7
triples and a pair. If the pair is not repeated, we need 20 pairs fitted into 7 triples with a
specific pair ab missing; hence, the 7 triples are

aXX, aXX, aXX, bXX, bXX, bXX, XXX.

The 10 pairs on the other 5 symbols can not be accommodated. Hence all 21 pairs
occur in the 7 triples and form the unique Fano geometry. So we must fit the Fano
geometry into the skeleton

9XXX, 9XXX, 9XXX, 9XXX, 9876, 8XXX, 8XXX, 8XXX.

The three lines with 8 can not concur in any point save 6 or 7, or that point would not
occur with 9; for a similar reason, no 3 lines concurring in 1,...,5, can occur with 9.
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We may then have

Case 6A. The three lines concurring in 6 occur with 8. If we use the standard cyclic
representation of the Fano geometry, we obtain

9124, 9235, 9457, 9713, 9876, 8627, 8615, 8634.

Case 6B. The three lines occuring with 8 form a triangle with 6 omitted, 7 being a
vertex:

9346, 9156, 9267, 9235, 9876, 8137, 8457, 8124.

Case 6C. The three lines occuring with 8 form a triangle with 6 omitted, 7 not being a

vertex:
9457, 9672, 9346, 9561, 9876, 8137, 8124, 8235.
Now suppose that 98 occurs twice, and consider the skeleton
IXXX, 9XXX, 9XXX, 98XX, 98XX, 8XXX, 8XXX, XXXX.

If an element of frequency 3 occurs in By, then it must occur in Bg and one further
block, which can not be Bs, and it can occur in no repeats. Hence By, and similarly
Bs, can not contain two elements of frequency 3.

If 7 lies in both B4 and Bs, write these blocks as 987a, 987b. It may be that a and b
both have frequency 3; then we write

9XXX, 9XXX, 9XXX, 987a, 987b, 8XXX, 8XXX, abcd,

and require triples aef, bef, 7ce, 7df; but then pairs cf and de can not be placed. So we
are forced to consider B4 and B5 as 9876, 987b. If the last block contains 4 elements
abed of frequency three, then we need triples 7ae, 7cd; we also need triples 6be, 6XX,
6XX, and there is no room for the missing pairs ce, de, since 6 must occur with a,c,
and d. Consequently, there must be two elements d and e, of frequency three, that do
not lie in B8; this forces five triples
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dXX, dXX, deX, eXX, eXX.

The triple deb is required; hence, the last block contains 6 and we have, omitting 9 and
8, the skeleton

dXX, dXX, deb, eXX, eXX, 6, b, b6.

The missing symbols are a and ¢ (three times), 6 and 7 (twice). So the last block must
be b6ac, and we need pairs 7a, 7c; hence we obtain

d7a, dé6c, deb, e7c, eb6a, 6, b, bbac,
and the complete solution is

8abe, 8d6e, 9876, 987b, 9d7a, 9e7c, 9deb, bbac,
or

8d7a, 8e7c, 9876, 987b, 9d6¢, 9abe, 9deb, bbac.

In the first case, 96 occurs only once and we have a case already obtained. The second
case can be written as

Solution 6D.
9156, 9346, 9245, 9876, 9872, 8147, 8357, 1236.
We must still consider the possible skeleton
9XXX, 9XXX, 9XXX, 9871, 9862, 8XXX, SXXX, 12XX.

If the two elements of frequency three are missing from Bg, they must occur in triples
3XX, 3XX, 34X, 4XX, 4XX, and this is impossible since they must occur with 1 and
2; so the last block is 1234. Then we require the triples 156, 257, 345, 367, 467, and
Bg must be 8345 in order for 8 to meet 3, 4, and 5. There is only one solution, since 3

and 4 must occur with 9 and therefore blocks 9367 and 9467 are required. The
solution is
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Solution 6E.

9367, 9467, 9156, 9871, 9862, 8345, 8257, 1234,
We now summarize Solutions 64, ..., 6E, according to the frequencies of the pairs 98,
97, 96; these are A(1,1,3), B(1,2,4), C(1,3,4), D(2,2,3), E(2,3,4). So the cases are
non-isomorphic.
The case (x,4,4) is impossible; so we need merely consider the cases (3,3,3) and
(3,3,4). The latter case leaves only five places for symbols 1,2....,5, in the first five
blocks, and so 8 can not occur with them all, since the frequency of 98 is 4. So we
consider the skeleton

9XXX, 9XXX, 98XX, 98XX, 98XX, 8XXX, XXXX, XXXX.
If 987 occurs thrice, we have Bj,...,B7, as

987a, 987b, 987¢, 8def, 7def.
Then def must occur with 9,a,b,c, and this impossible.
If we start from

9XXX, 976X, 986X, 987X, 9876.
we obtain

9876, 9861, 9762, 9873, 9XXX, 8245, 7145, 6345,
amd 49 is missing.
If we start from

96XX, 97XX, 986X, 987X, 9876,

then we obtain

9876, 9861, 9872, 9634, 975X, 8345, TXXX, XXXX.
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It is necessary that 3 occurs with 127 and 4 must occur with 127; this is impossible.
Finally, we may have
96XX, 976X, 986X, 987X, 987X.

The X symbols in B,,...,Bs, are all distinct; otherwise the repeated symbol could not
occur with the other 4 symbols of frequency 3. So we have blocks

96XX, 9761, 9862, 9873, 9874, 725X, 815X.
It is necessary that 5 occur in By and 5 must occur with 3 and 4. So we have
965X, 9761, 9862, 9873, 9874, 7235, 815X, XXXX,

and the missing symbols are 3, 4, 4, 2, 1, 6. The missing pairs are 64, 54, 63, 41, 42,
43, 12, 13. Hence we obtain

965X, 9761, 9862, 9873, 9874, 7235, 815X, 136X,
and completion is impossible.
We have thus completed the demonstration that Case 6 gives rise to six solutions.

6.2.4 The Case of All Frequencies 3 or 4. This is the most complex situation;
we prove Lemma 6.2.7.

LEMMA 6.2.7. There are 4 cases withr; = 4, for i > 4, in which there is a repeated pair
of elements with frequencies 3.

PROOF. We have r; = 3 (i <4). Suppose that a pair of these elements is repeated. We
thus have blocks

12ab, 12cd, lefg, 2efg.

Thus e, £, and g have frequency 4 and may be taken as 7, 8, 9.
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If 789 occurs again, then, in order for all pairs to occur involving 7, 8, 9, we need
12ab, 12cd, 1789, 2789, 789X, 7XXX, 8XXX, 9XXX.
The last 4 blocks must be 789a, 7bcd, 8bcd, 9bcd, and we see that ac never occurs.
The last 4 blocks have the form
TXXX, 8XXX, 79XX, 89XX,
then we are forced to take
7bdX, 8acX, 79ac, 89bd.
Use of the permutation (ab)(cd)(78) allows us to complete the solution to
Solution 7A.
1234, 1256, 1789, 2789, 7456, 8356, 7935, 8946.
If the last 4 blocks have the form
79XX, 89XX, 78XX, XXXX,

we obtain blocks 79ac, 89bd; then we need 78ac and 78bd, an impossibility. The only
other possibility is for the last 4 blocks to be

78XX, 78XX, 9XXX, 9XXX.

The possibility 78ab, 78cd, leaves out ac, ad, be, bd and so can not be completed save
as

1234, 1256, 1789, 2789, 7834, 7856, 9356, 9456.
This is solution 7B.

The other possibility is for the blocks to be
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1234, 1256, 1789, 2789, 7835, 7846, 9XXX, 9XXX.
The last 2 blocks must be 936X, 945X, and we need no other pairs.
Solution 7C. 9364, 9453,
Solution 7D. 9364, 9456.
We now must consider the case when no pair from {1,2,3,4} is repeated.
LEMMA 6.2.8. There is one solution to Case 7 with blocks
12XX, 13XX, 14XX, 23XX, 24XX, 34XX, XXXX, XXXX.
PROOF. Write blocks
12XX, 13XX, 14XX, 23XX, 24XX, 34XX, 5678, 5679.
Place 5, 6, 7, with distinct 1-factors to give
126X, 135X, 147X, 237X, 245X, 346X, 5678, 5679.
Then 89 does not occur; so we place 5 and 6 with the same 1-factor
12XX, 1356, 14XX, 23XX, 2456, 34XX, 5678, 5679.
We may place 7 with 14 and 23 to give B3 and B, as
147X, 237X.

We then may take B; as 1289, and are still missing 8, 8, 9, 9; so B6 must be 3489,
There is no loss of generality in completing

Solution 7E.
1289, 1356, 1478, 2379, 2456, 3489, 5678, 5679.

We thus have to consider Case 7 when the blocks have the form
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123X, 1XXX, 2XXX, 3XXX, 14XX, 24XX, 34XX, XXXX.
LEMMA 6.2.9. There is one solution of the form

1235, 1XXX, 2XXX, 3XXX, 14XX, 24XX, 34XX, 6789.
PROOF. If 5 is the repeated symbol with 4, we obtain

1235, 1XXX, 2XXX, 3XXX, 1456, 2457, 3489, 6789.
We then obtain

1235, 1789, 2689, 3567, 1456, 2457, 3489, 6789.
But then 58 and 59 do not occur.
If 5 is not the repeated symbol with 4, we obtain

1235, 1XXX, 2XXX, 3XXX, 1456, 2467, 3489, 6789,
or

1235, 1XXX, 2XXX, 3XXX, 1456, 2478, 3479, 6789.
The first case completes to
Solution 7F. 1789, 2895, 3675,
and the second can not be completed.
LEMMA 6.2.10. There is one solution of the form

1236, 1XXX, 2XXX, 3XXX, 145X, 245X, 34XX, 6789.
PROOF. Bg, Bg, and B can be, up to isomorphism, taken as

1456, 2457, 3489, or as 1457, 2458, 3469.
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The first case gives
1236, 1789, 289X, 357X, 1456, 2457, 3489, 6789.
We are missing 58 and 59; we also miss a 5 and a 6. So we obtain
Solution 7G.
1236, 1789, 2895, 3567, 1456, 2457, 3489, 6789.
The second case gives
1236, 189X, 279X, 3578, 1457, 3458, 3469, 6789.

We need a 5 and a 6 as well as pairs 56 and 59, and this requirement permits no
solution.

LEMMA 6.2.11. There are no solutions of the form
1236, 1XXX, 2XXX, 3XXX, 146X, 246X, 34XX, 6789.
PROOF. The values of Bs, Bg, and B; may be taken in the form
1465, 2467, 3489, or 1467, 2468, 3459.
In the first case, we find By, B3, By, as
1789, 2589, 357X.
and this does not permit r5 to be 5.
In the second case, we find By, B3, By, as
1589, 2579, 3578.

This is not a solution since 56 is absent.
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LEMMA 6.2.12. There are 3 solutions of the form
1236, 1XXX, 2XXX, 3XXX, 147X, 247X, 34XX, 6789.
PROOF. We take Bs, Bg, and B to be

(1) 1475, 2476, 3489, or (2) 1475,2478,3469, or
(3) 1476, 2478, 3459, or (4) 1478, 2479, 3456.

From (1) we obtain By, B3, By, as 1895, 2589, 3576,
and get
Solution 7H.
1236, 1589, 2589, 3567, 1457, 2467, 3489, 6789.
From (2) we obtain B,, B3, By, as
1895, 2596, 3578,
and get
Solution 71I.
1236, 1589, 2569, 3578, 1457, 2478, 3469, 6789.
From (3), we obtain B, B3, By, as
1589, 2596, 3578,
and get
Solution 77.
1236, 1589, 2569, 3578, 1467, 2478, 3459, 6789.

Finally, from (4), we obtain By, B3, By, as
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159X, 258X, 3789.

Now 7 has already occured 4 times and has not appeared with 5; so this case can not be
completed.

Lemma 6.2.12 completes the discussion of the final case, and we have
THEOREM 6.2 1. Up to isomorphism, there are 10 solutions in Case 7.
When we combine Theorem 6.2.1 with Lemmas 6.2.1 to 6.2.6, we obtain

THEOREM 6.2.2. Up to isomorphism, there are seventeen designs satisfying the
equation N(2,4,9) = 8.

We summarize the relationship between the designs given in this section and those
given by Bate and Van Rees in [13].

Design in Design in [13] Permutation from Case X to [13]
this section

Case 4 Type 1 (148369257
Case 5 Type 2 (14925837
Case 6A Type 3 17)(25948)(36)
Case 6B Type 4 (184736259)
Case 6C Type 5 (19925846)(37)
Case 6D Type 6 (1837259)(46)
Case 6E Type 7 (184627359)
Case 7A Type 13 (789)

Case 7B Type 14 (35 4o

Case 7C Type 15 (D)

Case 7D Type 16 3 6)

Case 7E Type 8 BHGD

Case 7G Type 9 (23)(79)

Case 7TH Type 10 (D)

Case 71 Type 12 ¢

Case 7J Type 11 (D

Case 7K Type 17 (1)
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6.2.5 The Cases of 7 and 10 Varieties. For completeness, we include the
relatively easy discussion of the other two cases when N(v) = 1 + L(v). If we have 7
varieties, then Xr; = 20. Now, r7 can not be 5, since that would leave space for 15

pairs on 1, ..., 6, and no repeats would be allowed; but there is no triple system on 6
elements. If r; = 4, we consider the case when rg = 4. The skeleton containing only

3 pairs 76 gives insufficient space for the 10 pairs from 1,...,5; so we must take 4 pairs
76, and immediately obtain the design

7651, 7652, 7653, 7654, 1234,
by assigning the last block as 1234.
Now, suppose that r; = 4 and that no other frequency is 4, that is, the frequencies are
rg=r5=14=13=3,19 =17 =2. Then 1 and 2 can occur only once each with 7, and
we are constrained to the skeleton

T1XX, 72XX, 7XXX, TXXX, 12XX.
Let the last block be 1234; then the design is forced to be

7156, 7256, 7345, 7346, 1234.

Finally, let the frequencies be r; =2, 1; =3 (i > 1). then the first two blocks may be
written 1234, 1567. If no other block intersects either of these in three elements, we
obtain the design

1234, 1567, 2356, 2457, 3467.

If there is a block with a triple intersection, we obtain the last three blocks as 2345,
67XX, 67XX, and the design is completeable to

1234, 1567, 2345, 2567, 3467.
Thus we have

THEOREM 6.2.3. There are four non-isomorphic covering designs on seven elements.

- 137 -



We now consider the case of ten varieties in a design with nine blocks. Suppose that
the maximal frequency of a variety is x; then x(3) + (9-x)6 > 36, and we deduce

LEMMA 6.2.13. The possible frequencies in a 2-4-10 covering design are 3,4,5,6.

If there are two frequencies of 6, then the other eight syrhbols generate 28 pairs. But
the two elements of frequency 6, even if they always occur together, leave space for at
most 24 pairs. Thus we have

LEMMA 6.2.14. The case rjg=rg =06, r; = 3 (i < 9) is impossible.

Now letrjg=6,19 =5,13=4,1; =3 (i < 8). Evenif 9 and 10 always occur together,
we can accommodate at most 26 pairs from 1,...,8; hence, we obtain

LEMMA 6.2.15. Thecaserjy=6,r9=5,rg=4,r; =3 (i < 8) is impossible.

Finally, letrjg = 6,19 =13 =17 =4, 1; = 3 (i < 6). It is possible to have space for 28
pairs in a skeleton with (use T = 10)

TOXX (4 times), TXXX (twice), XXXX (thrice).

But then the four 8s must also appear in the first 6 blocks, and this is impossible since
the symbols 1,2,3,...,8, complete By, By, B3, B4. Thus, we have

LEMMA 6.2.16. Only frequencies 3,4,5 are possible in a 2-4-10 design.

If we suppose there are a elements of frequency 5, b of frequency 4, ¢ of frequency 3,
then

a+b+c=10,
S5a + 4b +3¢ = 36.

then 2a + b = 6, and the only solutions (a,b,c) are (0,6,4), (1,4,5), (2,2,6), (3,0,7).
Take r; =19 = 3. Then we have blocks (use T = 10)

1234, 1567, 189T, 2XXX, 2XXX.
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If B4 and By are 2567, 289T, then the frequencies of 5,...,T, are all forced to be at
least 4. So we are dealing with the (0,6,4) case, and the remaining blocks are

3XXX, 3XXX, 4XXX, 4XXX.
Completion is impossible, and so we may take the first 5 blocks as
1234, 1567, 189T, 2568, 279T.

Again, r5 =16 =19 =17 2 4. Als0, if 1g = 3, we need the block 8347; then completion
is uniquely possible to give the design

1234, 1567, 189T, 2568, 279T, 8347, 3456, 359T, 469T.

On the other hand, if rg # 3, we have r7 and rg both = 4. It follows thata =0, b = 6,
¢ =4, and we have r3 =1, = 3; again, the last four blocks must be

3XXX, 3XXX, 4XXX, 4XXX,
and we have to use symbols 5,6,7,8,9,T, twice. Also we need pairs 59, 5T, 69, 6T,
78. Since symbols 3 and 4 are equivalent, as are 5 and 6, and 9 and T, we may take
the blocks as:
Case 1. 3596, 378T, 456T, 4789;
Case 2. 359X, 36XX, 469X, 45XX.
The second case then must be completed as
359T, 3678, 469T, 4578.
Cases 1 and 2 are isomorphic via the permutation (78)(59)(6T).

We thus have proved

THEOREM 6.2.4. There are two 2-4-10 covering designs.
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Appendix A

This appendix contains the FORTRAN source code for the algorithms described in
Chapter 5. There are two parts to this appendix. The first part is the file
COMMON.INC which contains the global variables used in the program. The second
part is the actual FORTRAN program (BICOVER.FOR) itself.

COMMON.INC

Implicit None

Integer*2 MAX SIZE, LOGFILE

Parameter (MAX SIZE = 50)

Parameter (LOGFILE = 10)

Real*8 TOLERANCE

Parameter (TOLERANCE = 1.0d-6)

Integexr*2 v, ! Number of elements

1 NUM_BLOCKS, ! Number of blocks

1 V_MINUS 1, ! Oft used constant

1 TWO_V_CHOOSE_2, P "

1 TWO_V_MINUS 1, ! "

1 B(MAX SIZE), ! Block Vector

1 A (MAX_SIZE,MAX SIZE), ! Distribution vectors
1 PAIR TABLE (2*MAX SIZE,2*MAX SIZE), ! Pair count
1 NUM CASES, ! Case number of block vector
1 START CASE, ! case number to start at

1 B_PTR(MAX SIZE), ! Pointer and multiplier for B
1 N_CHOOSE_2(2:MAX_SIZE), ! Used frequently

1 TWO_N_CHOOSE_2(2:MAX SIZE),

1 ROWS_A, COLS A, ! # of rows and columns
1 ROWS_EQN, COLS_EQN ! # of rows and columns
Real*8 EQN (MAX_SIZE,2*MAX SIZE)

Integer*2  COL_PTR(2*MAX STZE)

Integer*2  IEQN(MAX SIZE,2*MAX SIZE),
SOLUTIONS (20*MAX_SIZE, 2*MAX SIZE),
NUM_SOLUTIONS,

UPPER (2*MAX_SIZE),

CTR(2*MAX_STZE),

CTR_POS

L S S S

Common V, NUM BLOCKS, V_MINUS 1, TWO_V_CHOOSE_2, TWO_V_MINUS 1,

1 B, A,PAIR TABLE, NUM_CASES,START CASE, B_PTR, N _CHOOSE 2,
1 TWO_N_CHOOSE_2, ROWS_A, COLS_A, ROWS_EQN, COLS_EOQN,

1 EQN, IEQN, SOLUTIONS, NUM SOLUTIONS, UPPER,

1 CTR, CTR_POS, COL PTR



BICOVER.FOR

10

20

Program BICOVER

This program implements the algorithms described in Chapter 5.
This program was designed to run on a DEC VAX computer. With
minor modifications it can run on any computer with a FORTRAN
77 compiler.

Include 'COMMON.INC'

Integer*2 I ! A loop counter
Character*23 TOD ! Time of day

Accept *, V, NUM BLOCKS, START CASE ! Read in start up info

Calculate some useful constants

N_CHOOSE 2(2) =1
TWO_N_CHOOSE 2(2) = 2
Do I = 3, MAX SIZE
N_CHOOSE _2(I) = N_CHOOSE 2(I-1) + I - 1
TWO_N_CHOOSE 2(I) = 2 * N_CHOOSE_2(I)
End Do

V_MINUS 1 =V - 1
TWO_V_MINUS_1 = 2 * V_MINUS_1
TWO_V_CHOOSE_2 = 2 * N_CHOOSE 2 (V)

Open output log and dislpay run information

Open (Unit=LOGFILE, File='G.OUT', Status='NEW',
1 Carriagecontrol='LIST', Recordsize=511)

Call LIBSDATE TIME (TOD) ! Get time of day

Write (LOGFILE,10) V, NUM_BLOCKS, TOD
Format ('Beginning G(',I2,') ="', I2, ' at ',A)

Do the actual processing
Call BLOCK_VECTORS
Call LIB$DATE_TIME(TOD)

Write (LOGFILE,20) TOD
Format (//'Finished at *,A)

Close (Unit=LOGFILE)

End



Subroutine BLOCK VECTORS

This routine generates all possible block vectors, and, one at
a time, processes them

Include '"COMMON.INC'

Integer*2 PTR, BPTR, SUM, I
Logical*1l KEEP_GOING

The B vector contains the block lengths. Initially, we have a
block of length v - 1

PTR = V_MINUS 1
B(PTR) = TWO_V_CHOOSE_2 / N_CHOOSE_2(V_MINUS 1)

KEEP_GOING = .true.
Do While (KEEP_GOING)

Generate upper bounds based on the value of the current
position in the upper bound array (B)

Do BPTR =
SUM = 0
Do I = BPTR+1, V_MINUS 1

SUM = SUM + B(I) * N_CHOOSE 2(I)
End Do
B(BPTR) = (TWO_V_CHOOSE 2 - SUM) / N_CHOOSE 2 (BPTR)
End Do

PTR-1, 3, -1

Assume the rest of the blocks are pairs

SUM = 0
Do I = 3, V_MINUS 1
SUM = SUM + B(I)
End Do
B(2) = NUM BLOCKS - SUM

If the number of blocks is correct, check the pair count

If (B(2) .ge. 0) Then
SUM = 0
Do I = 2, V_MINUS 1
SUM = SUM + B(I) * N_CHOOSE~2(I)
End Do
If (SUM .eq. TWO_V_CHOOSE 2) Then
Call PROCESS_ BLOCK
End If
End If

Recalculate the upper bounds

B(2) =0 ! Clear out number of pairs

PTR = 3

Do While (PTR .le. V_MINUS_1 .and. B(PTR) .eq. 0)
PTR = PTR + 1

End Do



If (PTR .le. V_MINUS_1) Then

B(PTR) = B(PTR) -~ 1
Else
KEEP_GOING = .false.
End If
End Do
Return

End
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Options /Check=Bounds
Subroutine PROCESS_BLOCK

This routine processes a block vector. At this point, the "B"
vector has the correct number of blocks and the correct pair
count. The distribution vectors ("A"™) will be generated.
Include 'COMMON.INC?

Integer*2 I, J, BOUND(MAX SIZE), SIZE_BOUND, SUM

Logical*l KEEP_GOING

Character*4 C_CASE

Display the block vector

NUM CASES = NUM CASES + 1

If (NUM_CASES .lt. START CASE) Return

Write (LOGFILE, 10) NUM_CASES, (I, I=2,V_MINUS 1),

1 (B(I),I=2,V_MINUS 1)

Format (//50('~")/'Case',15//<V-2>('B',I2,3%X)/
1 <6* (V=2)=3>(*'-")/

1 <V-2>(13,3X))

SYSSSETPRN is VAX specific and can be removed without any
adverse side effects. SYS$SETPRN changes the process name
so I can menitor the progress of the execution of the program.

Write (C_CASE, ' (I4)") NUM_CASES
Call SYSS$SSETPRN ('Case ‘' // C_CASE)

Generate upper bounds and process non-zero elements

SIZE_BOUND = 0
Do I = 2, V_MINUS_1
If (B{(I) .ne. 0) Then
SIZE_BOUND = SIZE*BOUND + 1

BOUND(SIZE_BOUND) = B(I)
B_PTR(SIZE BOUND) = I - 1
End If
End Do

Using the upper bounds just generated, generate all possible
distribution vectors. The "A"™ matrix will contain the
distribution vectors. Initially, A is empty.

ROWS_ A = 0
COLS_A = SIZE_BOUND
KEEP_GOING = .true.

Do While (KEEP_GOING)
Sum over (I-1) * BOUND(I)

SUM = 0
Do I = 1, SIZE BOUND



20

30

SUM = SUM + BOUND(I) * B PTR(I)
End Do

If SUM is equal to 2(V-1l), we have a distribution vector.
Copy it to the "A" matrizx.

If (SUM .eq. TWO_V_MINUS 1) Then
ROWS_A = ROWS A + 1
Do I =1, COLS A
A(ROWS_A, I) = BOUND(I)
End Do
End If

We have to adjust the upper bounds. Find the first non-zero
upper bound and decrement it. Then set all previous lower
bounds back to their original values.

I =1
Do While (I .le. SIZE BOUND .and. BOUND (I) .eq. 0)
I =1I+1
End Do
If (I .le. SIZE_BOUND) Then
BOUND (I) = BOUND(I) - 1
Do J = I1-1, 1, -1
BOUND (J) = B(B_PTR(J)+1)
End Do
- Else
KEEP_GOING = .false.
End If
End Do

Display the distribution vectors

Write (LOGFILE, 20) (B_PTR(I)+1l, I = 1, SIZE BOUND),

1 ((A(I1,3),J=1,COLS_A), I=1,ROWS_A)

Format (//'Distribution Vectors'//

1 <SIZEnBOUND>('A‘,IZ,3X)/<6*SIZE_BOUND—3>('—')/
1 (<COLS_A>(I3,3X)))

If (ROWS_A .lt. 1) Then
Write (LOGFILE, 30)
Format (/'No distribution vectors can be generated.')
Else

For each block vector, generate the pair count, the
equations derived from the distribution vectors, put the
equations in row echelon form and attempt to solve them.

Call GENERATE_PAIR_COUNT

Call GENERATE_EQUATIONS

Call ROW_ECHELON

Call PROCESS_EQUATIONS
End If

Return
End
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Subroutine GENERATE_PAIR COUNT
This routine generates the pair count table.

Include "COMMON. INC*®

Integer*2 COMPRESSED B (MAX SIZE), I, J, K, SUM, COUNT

Remove the zero elements from the block vector

I =20
Do J = 2, V_MINUS 1
If (B(J) .ne. 0) Then
I =1+ 1
COMPRESSED_B(I) = B(J)
End If
End Do

Generate pair table

PTij = SUM (Aik + Ajk - # blocks of length k1)
Do I = 1, ROWS A
DO J = I, ROWS_A
SUM = 0
Do K = 1, COLS_A
COUNT = A(I,K) + A(J,K) - COMPRESSED_B (K)
If (COUNT .gt. 0) Then
SUM = SUM + COUNT
End If
End Do
PAIR TABLE(I,J) = SUM
PAIR TABLE(J,I) = SUM
End Do
End Do
Write (LOGFILE, 10) ((PAIR;IABLE(I,J),J=l,ROWS_A), I=1,ROWS_A)

Format (//'Pair Table'//(<ROWS_A>I3))

Return
End



Options /Check=Bounds
Subroutine GENERATE_EQUATIONS

This routine generates the equations to be solved, from the
distribution vectors.

Include ‘COMMON.INCF
Integer*2 1, J, COL POS

Do I =1, COLS A
COL_POS = COLS_ A + 1 - I
Do J = 1, ROWS A
EQN(I,J) = A(J, COL_POS)
End Do
EQN(I, ROWS_A+l) = B(B_PTR(COL_POS)+1) * (B_PTR(COL POS)+1)
End Do

I

ROWS_EQN
COLS_EQN

COLS A
ROWS_A + 1

Write (LOGFILE, 10)
Format (//'Original System of Equations'/)

Call PRINT EQUATIONS

Return
End
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Subroutine PRINT_ EQUATIONS

This routine prints out the equations

Include

'COMMON. INC*

Integexr*2 I, J

Write (LOGFILE, 10)
(<COLS_EQN-1>(F6.2),' = ',F6.2)

Format

Return
End

((EQN(I,J),J=1,COLS~EQN),I=l,ROWS_EQN)



Subroutine ROW_ECHELON
This routine places the equations in row echelon form.
Include ‘'COMMON.INC'

Integer*2 I, J, POSN, K, T _ROWS_EQN
Real*8 MAX ELEMENT, Dabs, T, MULT

Initialize pointer vectors
Do I = 1, COLS_EQN-1
COL_PTR(I) = I
End Do
Work with the minimum number of rows possible
If (ROWS_EQN .1lt. COLS_EQN) Then
T_ROWS_EQN = ROWS_EQN
Else
T_ROWS_EQN = COLS EQN - 1
End If
Process one row at a time
Do I =1, T_ROWS_EQN
Find pivot element
POSN = I

MAX ELEMENT = Dabs (EQN(I,I))
Do J = I+1l, ROWS EQN

If (Dabs(EQN(J,I)) .gt. MAX_ELEMENT) Then
POSN = J
MAX_ELEMENT = Dabs (EQN(J,I))
End If
End Do

Get row containing pivotal element to the current row

If (POSN .ne. I) Then
Do J = I, COLS_EQN
T = EQN(I,J)
EQN(I,J) = EQN (POSN, J)
EQN (POSN,J) = T
End Do

End If

If there is a zero as the pivotal element, try and find a
non-zero element on the current row

If (MAX_ELEMENT .eq. 0.0d0) Then
POSN = I ~
Do J = I+l, COLS_EQN-1
If (Dabs(EQN(I,J)) .gt. MAX ELEMENT) Then
POSN = J



MAX ELEMENT = Dabs (EQN(I,J))
End If
End Do

If we found a non-zero element, switch the columns in
the equation and keep track of this switch in the
pointer vector

If (POSN .ne. I) Then
Do J = 1, ROWS_EQN
T = EQN(J,I)
EQN(J,I) = EQN(J,POSN)
EQN(J,POSN) =T
End Do

Switch column pointer vector

J = COL_PTR(I)
COL_PTR(I) = COL PTR(POSN)
COL_PTR(POSN) = J
End If
End If

Normalize the current row
If (Dabs(EQN(I,I)) .le. TOLERANCE) EQN(I,I) = 0.0d0

If (EQN(I,I) .ne. 1.0d0 .and. EQN(T,I) .ne. 0.0d0) Then
Do J = COLS_EQN, I, -1

EQN(I,J) = EQN(I,J) / EQN(I,I)
If (Dabs(EQN(I,J)) .le. TOLERANCE) EQN{I,J) = 0.0d0
End Do

End If
Zero rows below the current row

Do J = I+1, ROWS_EON
If (EQN(J,I) .ne. 0.0d0 .and. EQN(I,I) .ne. 0.0d0) Then
MULT = EQN(J,I) / EQN(I,I)
Do K = I, COLS_EQN

EQN(J,K) = EQN(J,K) - MULT * EQN(I,X)
If (Dabs(EQN(J,K)) .le. TOLERANCE) EQN(J,K) = 0.0d0
End Do
End If

End Do
Zero rows above the current row

Do J = I-1, 1, -1
If (EQN(J,I) .ne. 0.0d0 .and. EQN(I,I) .ne. 0.0d0) Then
MULT = EQN(J,I) / EQN(I,I)
Do K = I, COLS_EQN

EON(J,K) = EQN(J,K) - MULT * EQN(I,K)
If (Dabs(EQN(J,K)) .le. TOLERANCE) EQN(J,K) = 0.0d0
End Do
End If

End Do
End Do
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Write (LOGFILE, 10)
Format (//'Equations in Row Echelon Form'/)

Call PRINT EQUATIOCNS

Write (LOGFILE, 20) (COL_PTR(I), I=1, COLS_EQN—l)
Format ('Column pointer vector: ', <COLS_EQN-1>I3)

Clean up (remove any accumulated round off error) the equations
Call CLEANUP_EQUATIONS

Return
End
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Subroutine PROCESS EQUATIONS

This routine attempts to reject the system of equations based
on the following three criteria

LHS = 0 RHS
LHS all !'= 0 RHS
LHS all integral RHS

If the equations can not be
solutions

=0
<0
not integral

rejected, generate all possible

Include 'COMMON.INC.'

Logical*l LHS_EQ 0_RHS NE O,

1 LHS GE 0 _RHS LT 0,

1 LHS_INT_RHS NOT INT,
1 FAILED

FAILED = .true.

If (.not. LHS_EQ 0 RHS NE 0() )
If (.not. LHS GE 0 RHS LT 0() )
If (.not. LHS_INT RHS NOT INT() )

Then
Then
Then

Call INTEGERIZE EQUATIONS
Call SOLVE_EQUATIONS

FAILED = .false.
End If

End If
End If
If (FAILED) Then

Write (LOGFILE,10)

Format ('*** Block vector rejected')
End If
Return

End
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Logical Function LHS_EQ 0_RHS NE 0*1 ()

This function examines the equations in EQN for any rows that
have LHS coefficients equal to 0 and RHS not equal to 0.

Include 'COMMON,INC'

Logical*1l LHS_EQ O
Integer*2 I, J

Process equations starting with the last row since this row

will be the first fail this check.

LHS_EQ O RHS NE 0 = .false.
I = ROWS_EQN

Do While (I.ge.l .and. .not.LHS_EQ 0 RHS NE 0)
LHS EQ 0 = .true.
J =1
Do While (J.1t.COLS_EQN .and. LHS EQ 0)
LHS_EQ 0 = EQN(I,J) .eq. 0.0d0

J=J + 1
End Do
LHS_EQ 0_RHS_NE_0 = LHS_EQ 0.and.EQN(I,COLS_EQN)
I =1 -1
End Do

If (LHS_EQ 0_RHS NE 0) Then
Write (LOGFILE, 10) I+l

Format (/'Equation',I3,' has LHS = 0 and RHS != 0')

End If

Return
End

.ne.

0.0d0
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Logical Function LHS_GE 0 RHS_LT 0*1 ()

This function examines the equations for a row whose LHS

coefficients are all >= 0 and whose RHS < 0.
Include '"COMMON.INC'

Logical*l LHS GE_ O
Integer*2 I, J

LHS_GE_O0_RHS LT 0 = .false.
I = ROWS_EQN

Do While (I.ge.l .and. .not.LHS _GE_0 RHS_LT 0)
LHS_GE 0 = .true.
J=1
Do While (J.1t.COLS_EQN .and. LHS_GE 0)
LHS_GE_0 = EQN(I,J) .ge. 0.04d0

J=J+ 1
End Do
LHS_GE_0_RHS_LT 0 = LHS_GE_0.and.EQN(I,COLS EQN)
I=1I-1
End Do

If (LHS_GE_0 RHS_ LT 0) Then
Write (LOGFILE, 10) I + 1

Format (/'Equation',I3,' has LHS >= 0, RHS < 0')

End If

Return
End

L1t

0.0d0
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Logical Function LHS_INT RHS NOT INT*1 ()

This routine examines the eguations for a row whose LHS
coefficients are all integral but RHS is not.

Include 'COMMON.INC?

Logical*l LHS_INT
Integer*2 I, J
Real*8 Dint

LHS_INT_RHS_NOT INT = .false.
I = ROWS_EQN

Do While (I.ge.l .and. .not.LHS INT RHS_NOT INT)
LHS_INT = .true.
J=1
Do While (J.1t.COLS_EQN .and. LHS INT)
LHS_INT = EQN(I,J) .eq. Dint(EQN(I,J))

J = J + 1
End Do
LHS_INT_ RHS NOT_INT = LHS INT .and.
1 (EQN(I,COLS _EQN) .ne. Dint(EQN(I,COLS_EQN)))
I =1I-1
End Do

If (LHS_INT RHS_NOT INT) Then
Write (LOGFILE, 10) I + 1

Format (/'Equation',I3,' has LHS integral,RHS non integral')

End If

Return
End



Subroutine CLEANUP_EQUATIONS
This routine will get rid of any accumulated round off error
Include 'COMMON.INCF

Integer*2 I, J
Integer*4 Jidint

Real*8 CONST, ROUND_AMOUNT
Parameter (CONST = 10000.0d40)

Do I = 1, ROWS_EQN
Do J = 1, COLS _EQN
ROUND_AMOUNT = 0.5d0/CONST

If (EQN(I,J) .lt. 0.0d40) ROUND_AMOUNT = - ROUND_AMOUNT
EQN(I,J) = Jidint((EQN(I,J)+ROUND_AMOUNT)* CONST) / CONST
End Do
End Do
Return

End



Subroutine INTEGERIZE EQUATIONS

This routine will copy the system of equations (currently in
double precision) to an equivalent system (in integer). This
is done so that integer solutions to the system can be
obtained. If the equations have non integral coefficients,
find the 'greatest common divisior' and divide through the
offending equation.

Also, this routine removes any equations that have been
reduced to all zeroes.

Include 'COMMON.INC®
Integer*2 I, J, NUM DELETED
Real*8 GCD_LIST(2*MAX SIZE), GCD, T, Dabs
Logical*1l ALL ZERO
Process one equation at a time
Do I = 1, ROWS_EQN
Set up parameter list for GCD routine
Do J = 1, COLS_EQN
GCD_LIST(J) = Dabs(EQN(I,J))
End Do
T = GCD (GCD_LIST, COLS_EQN)

If (T .ne. 1.0d0) Then
Do J = 1, COLS_EQON

IEQN(I,J) = EQN(I,J) / T
End Do
Else
Do J = 1, COLS_EQN
IEQN(I,J) = EQN(I,J)
End Do
End If
End Do

Remove any all zero rows

NUM DELETED = 0

ALL ZERO = .true.
Do While (ALIL_ZERO)
J =1

Do While (J .le. COLS_EQN .and. ALL ZERO)
ALL ZERO = IEQN(ROWS_EQN,J) .eq. 0
J=J + 1

End Do

If (ALL_ZERO) Then
ROWS_EQN = ROWS_EQN -1
NUM DELETED = NUM _DELETED + 1

End If

End Do

Write (LOGFILE, 10)



10

20

Format (/'Equations to be solved'//)
Call PRINT IEQUATIONS

If (NUM_DELETED .ne. 0) Then

Write (LOGFILE, 20) NUM DELETED

Format (/'There were', 13,' equations deleted.?')
End If

Return
End
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Subroutine PRINT IEQUATIONS
This routine prints out the integer form of the eguations
Include 'COMMON.INC'

Integer*2 1, J

Write (LOGFILE, 10) ((IEQN(I,J),J=1,COLS_EQN),I=1,ROWS_EQN)
Format (<COLS_EQN-1>(I4),' = ',I4)
Return

End



Real Function GCD*8 (LIST, N)

This function will find the GCD of a LIST of N elements

Implicit None

Integer*2 N
Real*8 LIST(N)

Real*8 T
Integexr*2 START, I, J

START = 1
Do While (START .lt. N)

Sort LIST

Do I = START, N-1
Do J = I+l, N
If (LIST(J) .lt. LIST(I)) Then

T = LIST(I)
LIST(I) = LIST(J)
LIST(J) =T
End If
End Do

End Do

Find first non-zero entry

Do While (LIST(START) .eq. 0.0D0 .and. START .le.

START = START + 1
End Do

If the row is all zero, exit with a GCD of 1
If (START .gt. N) Then

GCD = 1

Return
End If

Subtract smallest element from rest

Do I = START+1, N

LIST(I) = LIST(I) - LIST(START)
If (LIST(I) .le. 1.0D-5) Then
LIST(I) = 0.0DO
End If
End Do
End Do
GCD = LIST(N)
Return

End



Subroutine SOLVE EQUATIONS

! This routine will generate all possible solutions to the
! equations.

Include 'COMMON.INC!

Integexr*2 I
Logical *1 EQN OK

! Process trivial case first. Same number of equations and
! variables to solve for. Also ensure that this solution obeys
! the restrictions imposed by the pair count table.

If (ROWS_EQON .eq. COLS_EQN-1) Then
NUM_SOLUTIONS = 1
Do I =1, COLS EQN-1
SOLUTIONS (1,I) = IEQN(I,COLS EQN) / IEQN(I,I)
End Do
Else
NUM_SOLUTIONS = 0
Call CALCULATE_UPPER_BOUNDS

! Set up initial values for solutions

Do I = 1, COLS_EQN—l
CTR(I) = UPPER(I)

End Do

CTR_POS = COLS_EQN - 1

! Keep trying until all counters have reached zero

Do While (CTR_POS .ge. ROWS_EON)
If (EQN_QK(ROWS_EQN)) Then
Call CHECK_REST OF SYSTEM
End If

! Decrement counter(s)

If (CTR(CTR POS) .ne. 0) Then
CTR(CTR_POS) = CTR(CTR POS) - 1
Else
Do While (CTR_POS.ge.ROWS_EQN.and. CTR(CTR POS).eq.0)
CTR_POS = CTR POS - 1

End Do

If (CTR_POS .ge. ROWS_EQN) Then
CTR(CTR_POS) = CIR (CTR_POS) - 1
Do CTR_POS = CTR POS+1, COLS_EQN-1

CTR(CTR_POS) = UPPER (CTR_POS)

End Do
CTR _POS = COLS_EQN - 1

End If

End If
End Do

End If

Call PRINT SOLUTIONS



Return
End
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20

30

40

Subroutine PRINT SOLUTIONS

This routine prints out all possible solutions to the system
of equations. As well, the possible solutions are checked with

the pair table count.
Include 'COMMON.INC'

Integer*2 I,J, K, NUM_GOOD, GOOD (MAX SIZE)
Logical*l BAD

Write (LOGFILE, 10) NUM_SOLUTIONS
Format (//'The number of possible solutions is:',I3/)

NUM_GOOD = 0
Do I = 1, NUM_SOLUTIONS

Write (LOEFILE,ZO) I, (SOLUTIONS(I,J),J=1,COLS EQN-1)

Format (I3,') ',<COLS_EQN-1>(I4))

Check solution against pair count table

BAD = .false.

J =1

Do While (J.1e.COLS_EQN-~1 .and. .not. BAD)
K=1

Do While (K.le.COLS_EQN—l .and. .not. BAD)
If (J. ne. K) Then
BAD = SOLUTIONS(I,J) .ge. 1 .and.

1 SOLUTIONS(I,K) .ge. 1 .and.
1 PAIR TABLE (COL_PTR(J),COL PTR(K)) .gt. 2
Else
BAD = SOLUTIONS(I,J) .ge. 2 .and.
1 PAIR;TABLE(COL_PTR(J),COL_PTR(J)) .gt. 2
End If

If (BAD) Then
Write (LOGFILE, 30) J, K,
1 PAIR TABLE (COL_PTR(J),COL PTR(K))

Format ('Solution rejected.',I3,' and',I3,"

1 I3, ' times together')
Else
K=K+ 1
End If
End Do
J=J + 1
End Do

If (.not.BAD) Then
NUM_GOOD = NUM_GOOD + 1
GOOD (NUM_GOOD) = I

End If

End Do
If (NUM _GOOD .gt. 0) Then

Write (LOGFILE, 40) (GOOD(I),I=1,NUM_GOOD)
Format (/'Check equations: ',<NUM _GOCD>I3)

occur',



End If

Return
End



Subroutine CALCULATE UPPER_BOUNDS

This routine attempts to calculate some upper bounds for
solving the Diophantine system of equations.

Include 'COMMON.INC®

Integer*2 I, J, T
Logical*l ALL ZERO, ALL POS

Assume the worst

Do I =1, COLS_EQN—l
UPPER(I) =V
End Do

Only element on row is on diagonal

Do I = 1, ROWS_EQN
ALL ZERO = .true.
J=1I++1
Do While (J .lt. COLS_EQN .and. ALL_ ZERO)
ALL ZERO = IEQN(I,J) .eg. O

J=J + 1
End Do
If (ALL_ZERO) Then
UPPER(I) = IEQN(I,COLS_EQN)
End If
End Do

All elements are positive, then upper bound is RHS / element

Do I =1, ROWS_EQN
If (UPPER(I) .eq. V) Then

ALL POS = .true.

Jd=1+1

Do While (J .lt. COLS_EQN .and. ALL POS)
ALL POS = IEQN(I,J) .ge. 0
J=J + 1

End Do

If (ALL POS) Then

Set bounds for the entire equation, if there is an
improvement

Do J = I, COLS _EQN-1
If (IEQN(I,J) .ne. 0) Then
T = IEQN(I,COLS EQN) / IEQN(I,J)
If (T .lt. UPPER(J)) Then
UPPER(J) =T
End If
End If
End Do
End If
End If
End Do



Use pair count table. If any element on the pair count table
diagonal is > 2, set the corresponding upper bound to 1.

Do I = 1, COLS EQN-1

If (PAIR_TABLE(COL_PTR(I),COL_PTR(I)) .gt. 2) Then
UPPER(I) = 1
End If
End Do

Write (LOGFILE, 10) (UPPER(I), I=1,COLS_EQN-1)
Format (/'Upper bounds: ',<COLS_EQN-1>(I3))

Return
End



Logical Function EQN_OK*1 (ROW_NUM)

This function ensures that the possible solution being tried
passes the equation specified in ROW_NUM

Include 'COMMON.INC'
Integer*2 ROW_NUM
Integer*2 I, SUM
SUM = 0
Do I = ROW_NUM, COLS_EQN—l
SUM = SUM + IEQN(ROW_NUM,I) * CTR(I)
End Do
EQN _OK = SUM .eq. IEQN (ROW_NUM, COLS_EQN)

Return
End



Subroutine CHECK_REST OF SYSTEM

This routines checks the rest of the system of equations for
validity based on the current counter values.

Include 'COMMON.INC'

Integer*2 I, J, SUM
Logical*l SYSTEM;QK, EQN OK

SYSTEM OK = .true.
I = ROWS_EQN - 1
Do While (SYSTEM OK .and. I .ge. 1)

Calculate what the value of the counter should be for
this equation

SUM = IEQN(I, COLS_EQN)
Do J = I+1, COLS_EQN—l

SUM = SUM - IEQN(I,J) * CTR{J)
End Do

If (SUM .ge. 0 .and. SUM .le. UPPER(I)) Then
If (IEQN(I,I) .eq. 1) Then

CTR(I) = SUM
Else
CTR(I) = SUM / IEQN(I,I)
SYSTEM OK = EQN_OK(I)
End If
I=1I-1
Else
SYSTEM OK = .false.
End If
End Do

If the system is ok, save it for later use

If (SYSTEM OK) Then
NUM_SOLUTIONS = NUM_ SOLUTIONS + 1
Do I = 1, COLS EQN-1
SOLUTIONS(NUM_SOLUTIONS,I) = CTR(I)
End Do
End If

Return
End



Appendix B

Appendix B contains the output of a program run with g(9) = 11.

Beginning G( 9) = 11 at 26-JUN-1989 22:44:54,04

Pair Table

NE DN W
WN NN
U W eEN
YN
oUW

Original System of Equations

2.00 2.00 1.00 1.00 1.00 = 16.00
0.00 0.00 1.00 1.00 0.00 = 4.00
1.00 0.00 1.00 0.00 1.00 = 3.00
0.00 2.00 4.00 6.00 7.00 = 14.00

Equations in Row Echelon Form

1.00 0.00 0.00 0.00 -1.00 = 1.00
0.00 1.00 0.00 0.00 1.00 = 6.00
0.00 0.00 1.00 0.00 1.00 = 4.00
0.00 0.00 0.00 1.00 0.00 = -2.00
Column pointer vector: i 2 3 5 4

Equation 4 has LHS >= (0, RHS < 0
*x* Block vector rejected



3 0 1 1
4 1 0 1
5 1 1 0

Pair Table

2 1 1
i 2 2
1 2 4

Original System of Equations

1.00 1.00 0.00 = 8.00
1.00 0.00 1.00 = 7.00
0.00 1.00 1.00 = 6.00
3.00 4.00 5.00 = 16.00

Equations in Row Echelon Form

1.00 0.00 0.00 = 8.50

0.00 1.00 0.00 = -~-0.50

0.00 0.00 1.00 = -1.50

0.00 0.00 0.00 = 8.00
Column pointer vector: 1 2 3
Equation 4 has LHS = 0 and RHS != 0

*** Block vector rejected



5 0 1 0 1
6 1 0 0 1
3 1 1 1 0
6 0 1 1 0
7 1 0 1 0
Pair Table
3 2 2 1 2 2 1 2
2 2 1 2 3 1 3 4
2 1 3 2 3 2 2 3
i 2 2 5 5 2 5 5
2 3 3 5 7 3 5 7
2 1 2 2 3 3 4 5
1 3 2 5 5 4 7 17
2 4 3 5 7 5 7 9

Original System of Equations

1.00 1.00 1.00 1.00 1.00 0.00 O
1.00 1.00 0.00 0.00 0.00 1.00 1
0.00 0.00 1.00 1.00 0.00 1.00 1
1.00 0.00 1.00 0.00 1.00 1.00 O
0.00 3.00 2.00 5.00 6.00 3.00 6
Equations in Row Echelon Form
1.00 0.00 0.00 0.00 0.00 0.00 -1.
0.00 1.00 0.00 ©0.00 0.00 0.00 1.
0.00 0.00 1.00 0.00 0.00 1.00 1.
0.00 0.00 0.00 1.00 0.00 1.00 1.
0.00 0.00 0.00 0.00 1.00 -1.00 -1.
Column pointer vector: 1 2 3 8 5
Equations to be solved
1 0 0 0 0 0 -1 -1 = 1
0 1 0 0 0 0 1 1 = 5
0 0 1 0 0 1 1 1= 5
0 0 0 1 0 1 1 0 1
0 0 0 0 1 -1 -1 0 -3

Upper bounds: i 5 1 1 1 1 1 1

The number of possible solutions is: 0

.00
.00
.00
.00
.00

00
00
00
00
00
6

7

NP OO

CORMRE

.00
.00
.00
.00
.00

.00
.00
.00
.00
.00

4

> b 0 -3

wWHFEUOomRE

.00
.00
.00
.00
.00

.00
.00
.00
.00
.00



Distribution Vectors

A3

A2

O N

o N

<t ™M

Pair Table

Original System of Equations

.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00
.00

.00
.00

.00

0

0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00

.00 1

1
.00
0

.00
.00

7.00
.00

1

00 2.00 1.00 1.00 0.00 2.00 2.00 2.00

.00 0 2.

.00
.00

.00
.00

.00

1

.00 0.00 2.00 1.00 2.00 2.00 1.00 0.00

1

0.00 1.00 o0
.00

2.00

00
00
10.00

I

1

.00 3.00 2.00 4.00 5.00 0.00 2.00 4.00

1

.00 3.

1
00

.00
00

5.

Equations in Row Echelon Form

0.00 -

.00 0.00

0.00 -1.00 -1.00 -2.00 O

0.00 0.00 0.00
2.

.00
1.00 -1.00

00



0.00 1.00 0.00 0.00
0.00 -1.00 = 2.00

0.00 0.00 1.00 0.00
1.00 2.00 = 2.00

0.00 0.00 0.00 1.00
0.00 0.00 = 2.00

0.00 0.00 0.00 0.00
1.00 1.00 = 1.00

Column pointer vector:

Equations to be solved

1 0 0 0 0 -1
0 1 0 0 0 1
0 0 1 0 0 0
0 0 0 1 0 1
0 0 0 0 1 0
Upper bounds: 9 9 1

0.00 1.

0.00 o.

0.00 1.

1.00 0.

SRR N

00

00

00

¢

OHRE o

The number of possible solutions is: 25

1) 4 1 1 0 1
Solution rejected. 3 and
2) 5 ] 1 0 1
Solution rejected. 3 and
3) 3 2 1 0 1
Solution rejected. 5 and
4) 5 1 0 0 1
Solution rejected. 2 and
5) 3 3 0 0 1
Solution rejected. 7 and
6) 3 2 1 1 1
Solution rejected. 3 and
7) 4 2 0 0 1
Solution rejected. 2 and
8) 4 1 1 1 1
Solution rejected. 2 and
9) 2 3 1 1 1
Solution rejected. 4 and
10) 4 2 0 0 0
Solution rejected. 6 and
11) 5 1 0 0 0
Solution rejected. 6 and
12) 5 1 0 0 0
Solution rejected. 2 and
13) 6 0 0 0 0
Solution rejected. 6 and
14) 3 3 0 0 0
15) 4 2 0 0 0
16) 3 2 1 1 0
Solution rejected. 4 and
17) 3 3 0 1 0
Solution rejected. 4 and
18) 4 1 1 1 0
Solution rejected. 4 and

1 1
7 occur
1 0
8 occur
1 0
6 occur
0 1
8 occur
0 1
S occur
0 1
7 occur
0 0
8 occur
0 0
8 occur
0 0
5 occur
1 1
7 occur
1 1
7 occur
1 0
8 occur
1 0
8 occur

0
times
0
times
1
times
0
times
1
times
0
times
1
times
0
times
1
times
0
times
0
times
0
times
0
times
1
1
0
times
0
times
0
times

HoONNDOoO

1.00 -1.00
1.00 1.00
1.00 1.00
0.00 0.00

8 510 11 12 13

RForopR
N

0 0
together
0 0
together
0 0
together
0 0
together
0 0
together
0 0
together
0 0
together
0 0
together
0 0
together
1 0
together
0 0
together
1 0
together
0 0
together
1 0
0 0
1 0
together
0 1
together
0 0
together

0

0

0

0

0

0

0

0

0

0

1

0

1

0

1

0

0

1

I

It

-1.00 -2.00
1.00 2.00
0.00 0.00
1.00 1.00

N NN



19) 4 2 0
Solution rejected.
20) 3 3 0

21) 4 2 0
Solution rejected.
22) 4 2 0
Solution rejected.
23) 5 1 0
Solution rejected.
24) 2 4 0
Solution rejected.
25) 3 3 0

Solution rejected.

Check equations:

WOoOWOoOWrHWrRWwWoo WO

0

times

times

times

times

times

times

0 0
together
1 0
0 0
together
1 0
together
0 0
together
1 0
together
0 0
together

1 1 1
1 4 0
0 5 1
2 4 1
2 7 0
Pair Table
2 1 1 2 2
1 2 2 2 5
1 2 4 3 5
2 2 3 4 s
2 5 5 6 9

Original System of Equations

1.00 1.00 0.00
1.00 0.00 1.00
1.00 4.00 5.00
1.00 1.00 0.00

Equations in Row Echelon Form

1.00 0.00 0.00
0.00 1.00 0.00
0.00 0.00 1.00

0
0
0

.00
.00
.00

~-1.00
1.00
0.00

1 0 1 0
4 and 6 occur
1 0 0 1
1 0 0 1
7 and 12 occur
1 0 0 0
2 and 8 occur
1 0 0 0
2 and 8 occur
1 0 0 0
4 and 9 occur
1 0 0 0
4 and 9 occur
14 15 20

5 B 6 7
0 0 1
8

1

1

0

0

0

0.00 0.00 =
1.00 0.00 =
4.00 7.00 =
2.00 2.00 =

.00
.00
.00
.00

.00
.00
.00

0

0
1

0

1

0

1




0.00 0.00 0.00 1.00 1.00 = =-2.00
Column pointer vector: 1 2 3 4 5

Equation 4 has LHS >= 0, RHS < 0
*** Block vector reijected

0 2 1 1
2 1 1 1
4 0 1 1
3 3 0 1
5 2 0 1
0 3 2 0
2 2 2 0
4 1 2 0
5 3 1 0
Pair Table
2 1 1 3 2 3 2 1 2
1 1 2 2 3 2 1 2 3
1 2 4 3 5 1 2 4 ¢4
3 2 3 5 6 3 2 3 6
2 3 5 6 7 2 3 4 7
3 2 1 3 2 5 4 3 4
2 1 2 2 3 4 3 3 5
1 2 4 3 4 3 3 5 6
2 3 4 6 7 4 5 6 8

Original System of Equations

1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 = 8.00
1.00 1.00 1.00 0.00 0.00 2.00 2.00 2.00 1.00 = 12.00
2.00 1.00 0.00 3.00 2.00 3.00 2.00 1.00 3.00 = 9.00
0.00 2.00 4.00 3.00 5.00 0.00 2.00 4.00 5.00 = 10.00
Equations in Row Echelon Form
1.00 0.00 0.00 0.00 -1.00 2.00 1.00 0.00 -1.00 = 4.00
0.00 1.00 0.00 0.00 1.00 -1.00 0.00 1.00 2.00 = 7.00
0.00 0.00 1.00 0.00 0.00 1.00 1.00 1.00 0.00 = 1.00
0.00 0.00 0.00 1.00 1.00 -1.00 -=1.00 -1.00 0.00 = -3.00

Column pointer vector: 1 2 9 4 5 6 7 8 3



Equations to be solved

9

Upper bounds:

0

The number of possible solutions is:

7

Case

B 3

B 2

Distribution Vectors

A 3

A 2

—i

[end

o

S OO

—

N N

~ O

— M

Pair Table

Original System of Equations

00

.00 0.00 0.00
.00 0

0
1

.00 1.00 1.00 0.00
.00 0. 0. .00

1
0

1.00 1.00
1.00

.00
.00

00

I

.00

.00

1

00

00

00

1.



1.00 0.00 0.00
0.00 1.00 0.00
0.00 2.00 4.00
Egquations
1.00 0.00 0.00
0.00 1.00 0.00
0.00 0.00 1.00
0.00 0.00 0.00
0.00 0.00 0.00

Column pointer vector:

Equations to be solved

ScSooOoo
COOC KO
OO OO
O OC OO

Upper bounds: 9

P oooo

[

2.
0.
1.

SrPr oo O

00 1.00 1
00 1.00 O
00 3.00 5.

in Row Echelon Form

.00 0.00 -1
.00 0.00 ©
.00 0.00 1
.00 0.00 1
.00 1.00 O
1 2 3

-1 -1 0
0 1 -1

1 0 1

1 1 0

0 0 1

1 1 1 1

.00
.00

00

.00
.00
.00
.00
.00

H O o

The number of possible solutions is:

1) 5 0 0
Solution rejected.
2) 4 1 0
Solution rejected.
3) 4 0 1
4) 5 0 0
5) 4 1 0
6) 5 0 0
Solution rejected.
7) 6 0 0
Solution rejected.
8) 5 1 0

Solution rejected.

Check equations:

3

0
6
1
6
1
0
1
1
7
0
7
1
2

WO ULWoOwWoOrrowo wo

[

.00

.00
.00
.00
.00
.00

OR OMPE

e o N
i

8

2.00 1.
0.00 1
3.00 5.
0.00 -1
1.00 0
1.00 1
0.00 0
1.00 1.

8 91

2

2

1

3

1
0
together
0
together
0
0
0
0
together
1
together
1
together

1 1 2
and 7 occur
1 1 1
and 7 occur
1 0 2
0 0 3
0 0 2
0 0 2
and 9 occur
0 0 2
and 10 occur
0 0 1
and 10 occur

4 5
B 6 B 7
1 0
A6 A 8
1 1

00

.00

00

.00
.00
.00
.00

00

s

H oo N

.00
.00
.00
.00
.00

.00 =
.00
.00

i

10.
.00
12,

= w- NN

00

00

.00
.00
.00
.00
.00



— O N

SN

O

™M N

Pair Table

N

™M N

N

~N

<t

N

—i

Ll

—

o

N M NN

N

—

— N

MANNNNNNNN A

Original System of Equations

1.00

.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
.00 .00 .00 .00 .00 .00 .00 .00 .00

.00

.00
00

0

0

0

0

0

0

0

0

1

-00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 o.
.00 .00 .00 .00 .00 .00 .00 .00 00
0.

.00

00

0.00

0.

1

1

1

1

1

1

1

0

0

00

1.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00
0.00 .00 .00 .00 .00 .00 .00 .00

5.00
.00

1.00

1 1 1 "1.00 0 0

1

0

.00 0.00 0.00 0.00 1.00 1.00 0.00 0.00 1.00 1
.00 00 .00 .00 00 .00 .00 .00

1
.00

.00

.00

.00

It

1

1

1

0.

0

1

1.

1

0



0.00 0.00 2.00 1.00 0.00 1.00 0.00 2.00 1.00 3.00
1.00 3.00 2.00 1.00 0.00 3.00 2.00 3.00 2.00 3.00 =

0.00 1.00 0.00 2.00 4.00 0.00 2.00 1.00 3.00 0.00 2.00
4.00 3.00 0.00 2.00 4.00 1.00 3.00 2.00 4.00 3.00 =

Equations in Row Echelon Form

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -1.00 -1.00 -~

1.00 -1.00 0.00 0.00 0.00 0.00 0.00 -1.00 -1.00 ~-1.00 = 1.00
0.00 1.00 0.00 0.00 0.00 0.00 0.00 -1.00 -1.00 0.00 0.00
0.00 -1.00 0.00 0.00 0.00 =1.00 -1.00 0.00 0.00 -1.00 = 0.00

0.00 0.00 1.00 0.00 0.00 0.00 -1.00 0.00 -1.00 1.00 0.00 -
1.00 0.00 -1.00 -1.00 -2.00 0.00 -1.00 0.00 -1.00 -1.00 = 0.00
0.00 0.00 0.00 1.00 0.00 0.00 1.00 1.00 2.00 0.00 1.00
2.00 2.00 2.00 1.00 2.00 1.06 2.00 1.00 2.00 2.00 = 4.00
0.00 0.00 0.00 0.00 1.00 0.00 *1.00 1.00 1.00 1.00 1.00
1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 = 3.00
0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 = 1.00
Column pointer vector: 1 2 3 4 614 7 8 910 11 12 13 5 15

16 17 18 19 20 21

Equations to be solved

o

o

o

o

It
HOoOWK WS o

Upper bounds: 1121 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1

The number of possible solutions is: 1

1) 1 1 1 2 1 1 1 1 0 0 0 0 0 0 0
0 0 0 0 0
Solution rejected. 5 and 7 occur 3 times together



Distribution Vectors

A2 A 4
1 1
4 0
0 3
3 2
2 3
5 2
4 4

Pair Table

PN RNDN
WUNWRE OGN
WHENNDWRE B

Original System

1.00
1.00
1.00
1.00

O

Equations

1.00
0.00
0.00
0.00

S OO

B WERE NN W

.00
.00
.00
.00

in Row Echelon

.00
.00
.00
.00

6
1
1
0
0
1
1
0
1 2
2 5
2 1
1 3
3 4
4 6
4 ¢

.00
.00
.00
.00

S W oM

0.00
0.00
1.00
0.00

NoOY b DWW e

1.00
0.00
2.00
3.00

.00
.00
.00
.00

R o oo

Column pointer vector:

Equations to be solved

S OO
S OO

Upper bounds:

O OO

2 1
-1 0
-1 -1

1 1

1 12

of Equations

0.00
1.00
3.00
2.00

Form

2.00
=1.00
-1.00

1.00

OB R
I

v E o

.00
.00
.00
.00

.00
.00
.00
.00

7

HNOoO o

e}

5

b O o

O B

.00
.00
.00
.00

.00
.00
.00
.00

6

n

rnn

[1=N

NN ooy

.00
.00
16.
10.

00
00

.00
.00
.00
.00




Distribution Vectors

L e B B

- O o O

O N

™~ ™M N

N ON

< ™M

S N

O OO

— O O

S NN

N 1 <t

Pair Table

Original System of Equations

.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00
.00

.00

.00
.00

0

00 0.00 0.00 0.00 1.00 1.00 1.00 1.00

0.

.00 1

1
.00
0

.00

.00

00
.00

0

00 1.00 1.00 0.00 2.00 1.00 1.00 0.00

2.

0

.00

1.00

2.00

.00
.00

15.00

Il

.00
2

2

00 3.00 2.00 4.00 2.00 4.00 3.00 5.00

1.

1

.00

.00
00

I

.00
0

4

.00

1

2.00

2.00 1.00 0.00 2.00 1.00 1.00 0.00

.00

00

.00

I

.00

2

.00

Equations in Row Echelon Form



1.00 0.00 0.00 0.00
1.00 0.00 = 2.00

0.00 1.00 0.00 0.00
1.00 -1.00 = 4.00

0.00 0.00 1.00 0.00
0.00 1.00 = 0.00

0.00 0.00 0.00 1.00
1.00 0.00 = 2.00

0.00 0.00 0.00 0.00
0.00 1.00 = 1.00

Column pointer vector:

Equations to be solved

1 0 0 0 0 -1
0 1 0 0 0 0
0 0 1 0 0 1
0 0 0 1 0 1
0 0 0 0 1 0
Upper bounds: 9 9 1

.00 -1.
.00 0.
.00
.00

.00

00

00

.00

.00

The number of possible solutions is:

OO HRF WO O

-2.00 2.00
1.00 -1.00
1.00 0.00
1.00 -1.00
0.00 1.00

6 7 8
1 0 -1
-1 0 1
1 1 0
-1 -1 1
1 1 0
1 1 1
6
0 0 0
times toget
0 0 0
times toget
0 0 0
0 0 0
1 0 0
1 0 0
8
1

1.00 1.
0.00 -1.
0.00 1
-1.00 -1.
1.00 1.
9 10 11
0 =
-1 =
1 =
0 =
1 =
9 1
2 0
her
1 0
her
3 0
2 0
3 0
2 0

1) 4 2 0 0 1 0 0
Solution rejected. 5 and 12 occur

2) 3 3 0 1 1 0 0
Solution rejected. 4 and 5 occur

3) 3 2 0 0 0 0 0

4) 2 3 0 1 0 0 0

5) 4 1 0 ] 0 0 0

6) 3 2 0 1 0 0 0
Check equations: 3 4 6
Case 11
B 2 B 3 B 4 B 5 B 6 B 7

5 1 1 3 0 0
Distribution Vectors
A 2 A 3 A 4 A 5 A 8

1 0 0 2 1

0 1 1 1 1

2 0 1 1 1

3 1 0 1 1

5 0 0 1 1

4 1 1 0 1

1 0 1 3 0

2 1 0 3 0

00 0.

00 0.
.00 1.
00 -1
00 1
513
2

4

0

2

1

60

00

00

.00

.00



< M

Pair Table

Original System of Equations

I

1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00
8.00

2.00 1.00 1.00 1.00 1.00 0.00 3.00 3.00 3.00 2.00 2.00

15.00

0.00 1.00 1.00 0.00 0.00 1.00 1.00 0.00 0.00 1.00 1.00

4.00

0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00
3.00

I

0.00 2.00 3.00 5.00 4.00 1.00 2.00 4.00 3.00 5.00

1.00
10.00

Equations in Row Echelon Form

0.00 -1.00 -1.00

.00 0.00

0.00 -1.00 O

1.00 0.00 0.00 ¢0.00
4.00

0.00 -1.00 0.00 -1.00

0.00 -1.00

0.00 1.00 0.00 0.00 0.00

2.00

0.00 0.00 1.00

1.00 -1.00

0.00 0.00 1.00 0.00 0.00 1.00
1.00

0.00 0.00 0.00 1.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00

1.00

0.00 0.00 0.00 0.00 1.00 0.00 0.00 1.00 2.00 1.00 1.00
1.00

9 10 11

8

1

Column pointer vector:

Equations to be solved

oo

Upper bounds:

9



0

The number of possible solutions is:

12

Case

Distribution Vectors

Lo B B

OO

OO NN

N O

MM

—

™

o

S O N

[an]

o

(@]

N NN

N

o

N

~

N

—

™

N ™M

Pair Table



Original System of Equations

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 = 8.00

2.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 2.00
2.00 2.00 2.00 2.00 1.00 1.00 1.00 10.00

6.00 1.00 1.00 0.00 0.00 2.00 2.00 1.00 1.00 0.00 2.00
2.00 1.00 1.00 0.00 2.00 2.00 1.00 8.00

0.00 1.00 0.00 2.00 1.00 1.00 0.00 3.00 2.00 3.00 1.00
0.00 2.00 1.00 3.00 3.00 2.00 3.00 9.00

1.00 0.00 2.00 1.00 3.00 1.00 3.00 0.00 2.00 3.00 0.00
2.00 1.00 3.00 2.00 0.00 2.00 3.00 6.00

I

It

Equations in Row Echelon Form

1.00 0.00 0.00 0.00 0.00 -1.00 -1.00 -1.00 -1.00 -1.00 0.00

0.00 0.00 0.00 0.00 -1.00 -1.00 -1.00 = 0.00

0.00 1.00 0.00 0.00 0.00 1.00 0.00 1.00 0.00 -1.00 -1.00 -
1.00 -1.00 -2.00 -2.00 0.00 -1.00 -2.00 = 4.00

0.00 0.00 1.00 0.00 0.00 1.00 2.00 0.00 1.00 1.00 1.00
1.00 0.00 1.00 0.00 0.00 1.00 1.00 = 2.00

0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 1.00 2.00 1.00
0.00 1.00 1.00 2.00 1.00 1.00 2.00 = 2.00

0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
1.00 1.00 1.00 1.00 1.00 1.00 1.00 = 1.00
Column pointer vector: 1 2 3 411 6 7 8 910 5 12 13 14 15
16 17 18

Equations to be solved

1 ¢ 0 0 6o -1 -1 -1 -1 -1 0 0 0 0 0 -1 -1
-1 = 0

0 1 0 0 0 1 0 1 6 -1 -1 -1 -1 -2 =2 0 -1
-2 = 4

0 0 1 0 0 1 2 0 1 1 1 1 0 1 0 0 1
1= 2

0 0 0 1 0 0 0 1 1 2 1 0 1 1 2 1 1
2 = 2

0 0 0 0 1 0 0 0 0 0 0 1 1 1 1 1 1
1 = 1

Upper bounds: i1 9 2 2 11 1 1 1 1 1 1 1 1 1 1 1 1

The number of possible solutions is: 37

1) 1 4 0 1 1 1 0 0 0 0 1 0 0 0 0
0 0
Sclution rejected. 1 and 11 occur 3 times together

2) 1 3 1 2 1 1 0 0 0 0 0 0 0 0 0
0 0

3) 1 4 0 2 1 0 1 0 0 0 0 0 0 0 0

0 0



4) 1 4 1
0 0
Solution rejected.
5) 1 3 2
0 0
Solution rejected.
6) 1 5 0
0 0
Solution rejected.
7) 1 4 1
0 0
8) 1 5 1
0 0
Solution rejected.
9) 0 5 1
0 0
Solution rejected.
10) 0 4 2
0 0
11) 1 5 0
0 0
Solution rejected.
12) 1 4 0
0 0
13) 1 4 1
0 0
14) 1 5 0
0 0
Solution rejected.
15) 1 5 1
0 0
16) 1 5 0
0 0
17) 1 6 0
0 0
18) 1 5 0
0 0
Solution rejected.
19) 1 4 1
0 0
Solution rejected.
20) 1 4 2
0 0
21) 1 5 1
0 0
Solution rejected.
22) 1 5 0
0 0
23) 1 5 1
0 0
24) 1 6 0
0 0
Solution rejected.
25) 1 6 0
0 0
26) 0 6 0
0 0

Solution rejected.

11

and

and

0 0
11 occur
0 0
8 occur
0 0
11 occur
0 0
0 0
10 occur
0 0
11 occur
0 0
1 0
11 occur
1 0
1 0
1 0
14 occur
1 0
0 1
0 1
0 0
11 occur
0 0
12 occur
0 0
0 0
14 occur
0 0
0 0
0 0
14 occur
0 0
0 0
12 occur

O W

O W

0 1
together
0 0
together
0 1
together
0 0
1 0
together
0 1
together
0 0
0 1
together
0 0
0 0
0 0
together
0 0
0 0
0 0
0 1
together
0 0
together
0 0
0 0
together
0 0
0 0
0 0
together
1 0
0 1
together

0

0

0

0

0

0

0

1

0

1

0

0

1

1

1



27) 0 6 1
0 0

Solution rejected.

28) 0 7 0
0 0

Solution rejected.
29) 1 5 1
0 0
Solution rejected.
30) 1 6 0
1 0
Solution rejected.
31) 0 5 1
0 0

Solution rejected.
32) 0 5 2
0 0

33) 0 6 1
0 0

Solution rejected.
34) 0 6 2
0 0

35) 1 4 2
0 0

36) 1 5 1
1 0

37) 1 ) 1
0 1

Check equations:
37

and

0 0 0 1 0 1 0 0

3 times together
0 0 0 1 0 0 1 0

4 times together
0 0 0 1 0 0 0 0

3 times together
0 0 0 1 0 0 0 0

together
0 0 0 1 0 0 0

o w
o
I.J.
=
©
»

together
0 0 0 0 1 0 0

<o W
o
5.
[0)
[}

0 0 0 0 0 0 1 0

together
0 0 0 0 0 0 1

o w
o
-
2
0]
W

4 2 0
6 1 0
8 0 0

Pair Table

2 3 4
3 4 6
4 6 8

0 0
11 occur
0 0
14 occur
0 0
11 occur
0 0
11 occur
0 0
12 occur
0 0
0 0
14 occur
0 0
0 0
0 0
0 0
7 10 12 13
6 B 7
0 0

Original System of Equations



0.00 O.
2.00 1.
4.00 6.
Equations
1.00 0.
0.00 1.
0.00 0.

00
00
00

in

00
00
00

0.
0.
8.

Row Echelon

-1.

2.
0.

00
00
00

]

00 =
00 =

00

4.
1.
8.

Column pointer vector:

Equation

3 has LHS
*** Block vector rejected

= 0 and RHS

.00
10.
24.

00
00

Form

50
00
00
1 2

3

= 0

Case 14
B 2 B 3
4 0

A2 A 4
2 1
0 3
3 2
0 4
3 3
1 5
4 4

Pair Table

NEENRPNDEHEDN
NWE NN
NN WREIN

W W =N

Gwd W N

Original System

1.00
1.00
1.00
2.00

O WO

Equations

.00
.00
.00
.00

WN O

Ur W N W

NOWwss NN

of Equations

.00
.00
.00
.00

0.00
1.00
4.00
0.00

0.00
1.00
3.00
3.00

in Row Echelon Form

0.00
0.00
5.00
1.00

0.
.00
.00
.00

b O

00 =

([

8.00
5.00
20.00
8.00



1.00
0.00
0.00
0.00

0.00
1.00
0.00
0.00

0.00
0.00
1.00
0.00

B O oo

.00
.00
.00
.00

Column pointer vector:

Equations to be solved

(3w el

Upper bounds:

O OO

O OO

0.
~1.

1.

1.
1

00
00
00
00
2

i

B oo R

.00
.00
.00
.00

4

O b

The number of possible solutions is:

1)

4

0

Check equations:

1

0

0

5

1.00 =

1.00

2.00

1.00
6

]

~J

O b D

.00
.00
.00
.00

OFRMROKREFOROMO

Wbk WwkrEbwWFREROoONR

Pair Table

HFEHERNDNDDND
WHENEFEWN

NN Wws =N
N WWwN e

NWREMNMWORE NWOR

WN RN
UTW N =W

OSORFRPRPFRPRHROOO O

HEwWwwhN

NP N R

OO OO O

NP W

WNWWR

W NN N -



el I Y
N W N
DWW
N W W
WRNNF R
R N
W Wwwu
W W W W
s O W W
GLUT W
oUW

Original System of Equations

1.00 1.00 1.00 1.00 1.00 1.
8.00

1.00 1.00 0.00 0.00 0.00 O.
5.00

1.00 0.00 3.00 2.00 1.00 O.
12.00

1.00 2.00 0.00 1.00 3.00 4.
15.00

0.00 1.00 0.00 1.00 0.00 1.
2.00
Equations in Row Echelon Form

1.00 0.00 0.00 0.00 0.00 -1.
3.00

0.00 1.00 0.00 0.00 ©0.00 1.
2.00

0.00 0.00 1.00 0.00 0.00 O.
2.00

0.00 0.00 0.00 1.00 0.00 O.
1.00

0.00 0.00 0.00 0.00 1.00 1.
1.00
Column pointer vector: 1 2 31

Equations to be solved

1 0 0 0 0 -1 0 1
0 1 0 0 0 1 1 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 1 1
0 0 0 0 1 1 -2 -
Upper bounds: 9 1 1 1 9 1

The number of possible solutions i

1) 4 0 0 0 3 0 1
Solution rejected. 7 and 11 occur
2) 3 1 1 0 3 0 1
Solution rejected. 3 and 7 occur
3) 4 0 1 0 2 1 1
Solution rejected. 3 and 7 occur
4) 3 1 1 0 2 0 0
Solution rejected. 3 and 11 occur
5) 4 0 1 0 2 0 0

00

00

00

00

00

00

00

00

00

oMo

S

3.00 2.00 1.

0.00 1.00 O.

1.00 0.00 1.

1.00 0.00 O.

1.00 1.00 1.

-2.00 -1.00 -1.00 -1.

5 6 7 8 91

-1 -1= 3
1 1 = 2
1 1= 2
1 0= 1
-1 0= 1

11 1 1

11

0 0 0 1
3 times together
0 0 0 0
3 times together
0 0 0 0
3 times together
1 0 0 1
3 times together
0 1 0 1

.00

.00

00

.00

.00

00

00

00

00

0

4

1

1.

.00

.00

.00

.00

.00

.00

.00

.00

00

00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

It

I



Solution rejected.
6) 5 0 0
Solution rejected. 1
7) 4 1 1
Solution rejected.
8) 4 0 1
Solution rejected.
9) 5 0 1
Solution rejected.
10) 4 1 1
Solution rejected.
11) 5 0 1
Solution rejected.

WHWHFWODWODWODODOW

and

and

and

and

and

and

and

11 occur
0 0
11 occur
0 0
10 occur
1 0
11 occur
1 0
10 occur
0 0
11 occur
1 0
11 occur

WO WO WOoOWrRrwowow

times

times

times

times

times

times

times

Pair Table

N e
B W e
WP U W
B W P
Wb WP
W W

Original System of Equations

1.00 1.00 1.00 O.
3.00 2.00 1.00 5.
0.00 1.00 2.00 O.
0.00 1.00 2.00 1.

00
00
00
00

Equations in Row Echelon

1.00 0.00 0.00 O.
0.00 1.00 0.00 oO.
0.00 0.00 1.00 O.

00
00
00

0.00 O
4.00 4
2.00 1
0.00 2
Form
-1.00 -1.
2.00 1.
0.00 0.

.00
.00
.00
.00

00
00
00

I

]

1

[F Y

together
1 1
together
1 0
together
0 1
together
1 0
together
0 1
together
0 1
together

.00

.00

.00

.00

.00

.00

.00



0.00 0.00 0.00 1.00 0.00 1.00 = 0.00
Column pointer vector: 1 2 5 4 3 6

Equations to be solved

1 0 0 0 -1 -1 = 4
0 1 0 0 2 1 = 4
0 0 1 0 0 0 = 1
0 0 0 1 0 1 = 0
Upper bounds: 9 4 1 1 1 1

The number of possible solutions is: 2

1) 5 2 1 0 1 0

Solution rejected. 2 and 5 occur 3 times together
2) 4 4 1 0 0 0

Check equations: 2

Case 17

1 0 1 0 2
2 1 0 0 2
4 0 0 0 2
0 1 1 1 1
2 0 1 1 1
3 1 0 1 1
5 0 0 1 1
5 1 1 0 1
6 1 1 1 0
Pair Table
3 2 2 2 2 1 1 2 2
2 3 2 2 1 2 2 3 3
2 2 4 1 1 2 4 4 4
2 2 1 3 2 2 1 2 3
2 1 1 2 2 1 2 2 4
i 2 2 2 1 2 3 3 5
i 2 4 1 2 3 5 4 6
2 3 4 2 2 3 4 6 7
2 3 4 3 4 5 6 7 9



Original System

.00
.00
.00
.00
.00

P oK OoIN

Equation

.00
.00
.00
.00
.00

OO OO

N OOoON

S

OO OO

.00
.00
.00
.00
.00

B OO OoON

of Equations

.00
.00
.00
.00
.00

O s

.00
.00
.00
.00
.00

N O kR

.00
.00
.00
.00
.00

in Row Echelon Form

.00
.00
.00
.00
.00

ook oo

.00
.00
.00
.00
.00

0
0
0
1
0

.00
.00
.00
.00
.00

Column pointer vector:

1

HoOoOOoOoOo

.00
.00
.00
.00
.00

2

3

WH oK

N SN =

.00
.00
.00
.00
.00

.00
.00
.00
.00
.00

4

oo

~1.
.00
.00
.00
.00

-1

8

.00
.00
.00
.00
.00

00

6

7

RO

O R MO

.00
.00
.00
.00
.00

.00
.00
.00
.00
.00

5

OV O

-1

.00
.00
.00
.00
.00

.00
-1.
.00
.00
.00

00

I

.00
.00
.00
.00
.00

.00
.00
.00
.00
.00

Equation 5 has LHS >= 0, RHS < 0
**% Block vector rejected

0 0 0 1 2
1 0 1 0 2
2 1 0 0 2
4 0 0 0 2
0 0 2 1 1
1 1 1 1 1
3 0 1 1 1
4 1 0 1 1
2 1 2 0 1
4 0 2 0 1
5 1 1 0 1
4 1 2 1 0
Pair Table
3 2 2 2 2 2 2 2 1 1 1 t
2 2 2 2 2 1 1 1 2 2 2 1
2 2 3 3 1 2 1 3 2 2 4 2
2 2 3 5 1 1 3 4 2 4 5 3
2 2 1 1 3 2 2 1 2 2 1 3
2 1 2 1 2 2 1 2 2 1 2 3
2 1 1 3 2 1 2 3 1 3 3 4
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Original System of Equations

2.00 2.00 2.00 2.00 1.00 1.00 1.00 1.00 1.00 1.00
0.00 = 14.00
1.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 0.00 0.00
1.00 = 5.00
0.00 1.00 0.00 0.00 2.00 1.00 1.00 0.00 2.00 2.00
2.00 = 8.00
0.00 0.00 1.00 0.00 0.00 1.00 0.00 1.00 1.00 0.00
1.00 = 3.00
0.00 1.00 2.00 4.00 0.00 1.00 3.00 4.00 2.00 4.00
4.00 = 10.00
Eguations in Row Echelon Form
1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -1.00 -1.00
1.00 = 1.00
0.00 1.00 0.00 0.00 0.00 -1.00 -1.00 -2.00 0.00 0.00
2.00 = 0.00
0.00 0.00 1.00 0.00 0.00 1.00 0.00 1.00 1.00 0.00
1.00 = 3.00
0.00 0.00 0.00 1.00 0.00 0.00 1.00 1.00 0.00 1.00
1.00 = 1.00
0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00
2.00 = 4.00
Column pointer vector: 1 2 3 4 5 6 7 8 910 11 12
Equations to be solved
1 0 0 0 0 0 0 0 -1 -1 -1 -1 = 1
0 1 0 0 o -1 -1 =2 0 0 -1 -2 = 0
0 0 1 0 0 1 0 1 1 0 1 1= 3
0 0 0 1 0 0 1 1 0 1 1 1l = 1
0 0 0 0 1 1 1 1 1 1 1 2 = 4
Upper bounds: 19 1 1 1 3 1 1 1 1 1 1
The number of possible solutions is: 4
1) 1 3 0 1 1 3 0 0 0 0 0 0
2) 1 3 1 0 1 2 1 0 0 0 0 0
3) 1 4 0 0 1 2 0 1 0 0 0 0
4) 1 4 0 0 0 3 1 0 0 0 0 0
Check equations: 1 2 3 4
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Original System
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1.00 0O
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0.00 O
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1.00 ©
0.00 1
0.00 O
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.00
.00
.00
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.00
.00
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B OWdkh P NN
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2
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0
0
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3 1
1 4
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3 5
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of Equations

.00
.00
.00
.00

1.00
1.00
3.00
0.00

Row Echelon
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00
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Column pointer vector:

Equations to be solved

OO O

OO O

O oo

.00
.00
.00
.00

NN

Form
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Upper bounds:

1

The number of possible solutions is:

1) 1

1

Solution rejected.

3

3 and

1

0

Case 20
B 2 B 3
3 3
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Pair Table
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Original System

.00
.00
.00
.00

P oRN
oOMNvON

Equations

.00
.00
.00
.00

N OoON

W NENERE NN R

7
2
2
2
1
1
1
1
1
0
0
1 2
3 2
2 3
1 2
2 1
1 2
3 3
3 4
4 4
4 5

of Equations

.00
.00
.00
.00

1.00
3.00
0.00
1.00

0 0
5 occur
6 7
0 2
1 2
2 1
1 2
3 4
4 3
3 4
4 4
4 5
6 6
6 7
1.00 1.00
2.00 2.00
2.00 1.00
0.00 2.00

in Row Echelon Form

1.00
1.00
3.00
1.00

.00
.00
.00
.00

3 times together

0.00
3.00
3.00
1.00

0.00
3.00
2.00
3.00

i

14.00
12.00
9.00
6.00



1.00 0.00 0.00 0.00 -1.00 -1
0.00 1.00 0.00 0.00 1.00 O
0.00 0.00 1.00 0.00 0.00 1
0.00 0.00 0.00 1.00 1.00 1
Column pointer vector: 1 2 3
Equations to be solved
1 0 0 0 -1 -1 -2 =2
0 1 0 0 1 0 1 0
0 0 1 0 0 1 1 2
0 0 0 1 1 1 1 1
Upper bounds: 9 1 1 1 4 1

The number of possible solutions i

1) 3 1 1 1 3 0 0
2) 4 1 0 1 2 0 1
Solution rejected. 2 and 7 occur
3) 4 0 1 0 4 0 0
4) 4 1 0 0 3 1 0
5) 5 0 0 0 3 0 1
6) 5 1 0 0 2 0 0
Solution rejected. 5 and 9 occur

Check equations: 1 3 4 5
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-2.00 -2.00 -3.00
1.00 0.00 1.00
1.00 2.00 1.00
1.00 1.00 2.00

6 7 8 9 10
-3 0
0 4
2 = 1
2 = 4
11
6
0 0
0 0

times together
0 0

0 0
0 0
1 0

times together

2 0 2
5 0 1
8 ¢ 0

Pair Table

2 1 2
1 2 5
2 5 8

Original System of Equations

2.00 1.00 0.00 = 14.00

-3.00
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I
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2.00 =

o

o

.00
.00
.00
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00
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Equations in Row Echelon Form
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.00
.00
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.00
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2
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1
0

.00
1

.00
Column pointer vector:

Equation
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= 0 and RHS !

3 has LHS

**% Block vector rejected
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Case

Distribution Vectors
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Pair Table
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Original System of Equations

1.00 1.00 1.00 1.00 1.00 1.00 1.00 O.

0.00 0.00 = 7.00

2.00 1.00 1.00 1.00 1.00 0.00 0.00 2.

1.00 1.00 = 12.00

0.00 1.00 0.00 0.00 0.00 1.00 1.00 1.

1.00 1.00 = 5.00

0.00 0.00 2.00 1.00 0.00 2.00 1.00 1.

2.00 1.00 = 6.00

0.00 1.00 1.00 3.00 5.00 2.00 4.00 O.

3.00 5.00 = 10.00

Equations in Row Echelon Form

1.00 0.00 0.00 0.00 0.00 -1.00 -1.00 O.

1.00 -1.00 = 1.00

0.00 1.00 0.00 0.00 0.00 1.00 1.00 O.
0.00 0.00 = 3.00

0.00 0.00 1.00 0.00 0.00 1.00 0.00 -1.
0.00 -1.00 = 1.00

0.00 0.00 0.00 1.00 0.00 0.00 1.00 2.
1.00 2.00 = 2.00

0.00 0.00 0.00 0.00 1.00 0.00 0.00 O.
1.00 1.00 = 2.00
Column pointer vector: 1 2 3 4 8 6 7

Equations to be solved

1 0 0 0 0 -1 -1 0 0 0 0

0 1 0 0 0 1 1 0 0 -1 -1

0 0 1 0 0 1 0 -1 -1 0 -1

0 0 0 1 0 0 1 2 1 1 2

0 0 0 0 1 0 0 0 1 1 1

Upper bounds: 1 9 1 2 1 1 1 1 1 1
The number of possible solutions is: 1

1) 1 4 1 1 1 0 0 0 0 1

Solution rejected. 3 and 10 occur 3 times together
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Pair Table

Original System of Equations

1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00
.00 .00

.00
.00

1
1

.00

.00

.00
00

12.00

0

0

0

00 0.00 0.00 2.00 2.00 2.00

0.

.00 1.

1
.00

.00

1
.00

.00

.00
.00

Il

1

.00 1

1

.00 1.00 1.00 0.00 0.00 1.00 1.00 0.00 1.00 1.00 0.00
.00 .00 .00
0
3.00

.00

.00
00

12.00

0

1

1

.00 1.00 0.00 3.00

4

2.00

00

3.

.00 1.

.00

.00

.00 1.00
.00

.00

It

4

4

0.00 0.00 2.00 1.00 3.00 1.00 3.00 2.00 1.00 3.00 0.00

2.00

00

.00 2.00 3.00

0

Equations in Row Echelon Form

.00 0.00 0.00

0

0.00 -1.00 -1.00 -1.00

.00 0.00 0.00

0

.00
0.00 -1.00 -1.00 -1.00

1.00
0.00

0.00 -1.00 -1.00 0.00 -

0.00

.00

1

.00 1.00 0.00 0.00
.00 0.00 -1.00

.00

.00

2
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6.00 0.00 1.00 0.00 0.00 ©0.00 1.00 0.00 1.00 1.00 -1.00
0.00 -1.00 0.00 0.00 = 0.00
0.00 0.00 0.00 1.00 0.00 1.00 1.00 2.00 1.00 0.00 1.00
1.00 1.00 1.00 2.00 = 4.00
0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00 1.00
1.00 1.00 1.00 1.00 = 2.00
Column pointer vector: 1 2 3 4 9 6 7 8 510 11 12 13 14 15
Equations to be solved
1 0 0 0 6 -1 -1 -1 0 0 0 0 -1 -1 =1 = 1
0 1 0 0 0 1 0 ¢ -1 -1 0 -1 1 0 -1 = 2
0 0 1 0 0 0 1 0 1 1 -1 0 -1 0 0 = 0
0 0 0 1 0 1 1 2 1 0 1 1 1 1 2 = 4
0 0 0 0 1 0 0 0 0 1 1 1 1 1 1 = 2
Upper bounds: 199 1 4 1 1 1 1 1 1 1 1 1 1 1
The number of possible solutions is: 6
1) 1 3 0 2 1 0 0 0 1 0 1 0 0 0 0
2) 1 2 1 3 1 0 0 0 0 0 1 0 0 0 0
3) 1 3 0 3 1 0 0 0 0 0 0 1 0 0 0
4) 1 4 0 1 0 0 0 0 1 0 1 1 0 0 0
Solution rejected. 9 and 12 occur 3 times together
5) 1 3 0 3 0 0 0 0 0 1 1 0 0 0 0
6) 1 3 1 2 0 0 0 0 0 0 1 1 0 0 0
Solution rejected. 11 and 12 occur 3 times together
Check equations: 1 2 3 5
Case 24

1 1 1 1
5 0 1 1
2 2 0 1
6 1 0 1
3 2 1 0
4 3 0 0
Pair Table
2 2 1 2 1 1
2 6 2 6 3 3



e S
W wo N
N W
GO W w
W W
aw ;N

Original System of Equations

1.00 1.00 1.00 1.00 0.00 0.00 = 7.00
1.00 1.00 0.00 0.00 1.00 0.00 = 6.00
1.00 0.00 2.00 1.00 2.00 3.00 = 15.00
1.00 5.00 2.00 6.00 3.00 4.00 = 12.00
Equations in Row Echelon Form
1.00 0.00 0.00 0.00 -1.00 -1.00 = 5.00
0.00 1.00 0.00 0.00 1.00 0.00 = =-1.00
6.00 0.00 1.00 0.00 1.00 1.00 = 3.00
0.00 0.00 0.00 1.00 0.00 1.00 = 2.00
Column pointer vector: 1 2 3 5 4 6

Equation 2 has LHS >= (0, RHS < 0
*** Block vector rejected
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Pair Table

Original System of Equations

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
.00 .00 .00 .00 .00 .00 .00 .00 .00 .00

.00

0

0

0

0

0

0

0

0

0

0

.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
.00 .00 .00 .00 .00 .00 .00 .00

1
.00
.00

0

.00 0

1 1.00 1 1 1

1

1
00
.00

1

I

1.00 1.00
.00 .00

0 0.00 0.00 0.00 2.00 2.00 1.00 1.00
.00 .00 .00 .00 .00

.00

1 0 2 2

1.00 1

.00

2 1

2.00 2
10.00

I

0
00

.00 1.00 1.00 ©0.00 0.00 0.00 0.00 1.00 1.00 0.00 0.00
.00 .00 .00 .00 .00 .00 .00

.00
.00

0 1 1 1

0.00 1.00 1.00 1

0
.00
.00

1

.00 1.00
.00

2
.00

0.00 2.00 1.00 1.00 0.00 1.00 0.00
.00 .00 .00

.00

.00 1

0

1

.00 2

2 2

.00 O

1

2

0.00

.00 1
00
.00

0

.00 3.00 2.00 4.00
00 .00 00

60 1.00 3.00 0.00 2.00 1
.00

2.

0

.00

00
.00

3.

.00 1

3. 4

.00 1.00 3.00 0.00 2.00 4
.00

0

I

Equations in Row Echelon Form



1.00 0.00 0.00 0.00 0.00 0.00 0.00 -1.00 -1.00 -1.00 -1.00 -
2.00 2.00 2.00 2.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00
0.00 = 4.00

0.00 1.00 0.00 0.00 0.00 0.00 -1.00 0.00 -1.00 -1.00 -2.00 -
1.00 1.00 0.00 -1.00 1.00 0.00 ~1.00 -1.00 -1.00 -1.00 -1.00 -
2.00 = 1.00

0.00 0.00 1.00 0.00 0.00 0.00 1.00 1.00 2.00 1.00 2.00
2.00 -1.00 -1.00 0.00 -1.00 0.00 1.00 0.00 1.00 1.00 .00
1.00 = 1.00

0.00 0.00 ©0.00 1.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00
1.00 -1.00 0.00 0.00 0.00 0.00 0.00 21.00 1.00 1.00 .00
1.00 = 0.00

0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 .00
1.00 = 2.00

0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00
1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 0.00 .00
0.00 = 1.00
Column pointer vector: 2 421 6 7 8 910 11 12 13 14 15
16 17 18 19 20 5 22 23
Equations to be solved

1 0 0 0 0 0 0 -1 -1 -1 -1 =2 2 2 2 1 1
1 1 0 0 0 0 = 4

0 1 0 0 0 0 -1 0 -1 -1 -2 -1 1 0 -1 1 0
-1 -1 -1 -1 -1 -2 = 1

0 0 1 0 0 0 1 1 2 1 2 2 -1 -1 0 -1 0
1 0 1 1 1 1= 1

0 0 0 1 0 0 0 0 0 1 1 1 -1 0 0 0 0
0 1 1 1 0 1= 0

0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 1 1
1 1 1 0 1 1= 2

0 0 0 0 0 1 1 1 1 1 1 1 -1 -1 -1 -1 -1
-1 -1 -1 0 0 0 = 1
Upper bounds: $ 1 11 1 1 1 9 1 1 1 1 1 1 1 1 2 1
1 1 1 1 1
The number of possible solutions is: 56

1) 1 1 1 1 0 1 1 1 0 0 0 0 1 1 0
0 0 0 0 0 0 0
Sclution rejected. 2 and 3 occur 3 times together

2) 2 1 0 0 0 1 1 1 0 0 0 0 1 0 0
0 0 0 0 1 0 0
Solution rejected. 2 and 16 occur 3 times together

3) 2 0 1 1 0 1 1 1 0 0 0 0 1 0 0
0 0 0 0 0 0 0
Solution rejected. 4 and 16 occur 3 times together

4) 2 1 0 1 0 1 1 1 0 0 0 0 1 0 0
1 0 0 0 0 0 0
Solution rejected. 2 and 4 occur 3 times together

5) 2 1 1 0 0 1 1 1 0 0 0 0 0 1 0
0 0 0 0 0 0 0
Solution rejected. 2 and 3 occur 3 times together



6) 3 1 0
1 0 0 0 0

Solution rejected.

7) 2 1 0
0 0 0 0 0

Solution rejected.

8) 2 1 1
0 0 0 0 0

Solution rejected.

9) 3 1 0
0 0 0 0 0

Solution rejected.

10) 2 1 1
0 0 0 0 0

Solution rejected.

i) 3 1 1
0 0 0 0 0

Solution rejected.

12) 2 1 0
0 0 0 0 1

Solution rejected.

13) 2 0 1
0 0 0 0 0

Solution rejected.

14) 2 1 0
0 0 0 0 0

Solution rejected.

15) 3 0 0
0 0 0 0 1

Solution rejected.

16) 3 0 0
1 0 0 0 0

Solution rejected.

17) 3 1 0
0 0 1 0 0
18) 3 0 1
0 0 0 0 0
Solution rejected.
19) 3 1 0
1 0 0 0 0
20) 3 1 0
0 0 0 0 0

Solution rejected.

21) 4 0 0
1 0 0 0 0

Solution rejected.

22) 2 1 0
0 0 0 0 0

Solution rejected.

23) 3 0 0
0 0 0 0 0

Solution rejected.

24) 3 1 0
0 0 0 0 0

Solution rejected.

25) 2 1 1
0 0 0 0 0

Solution rejected.
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16 occur

3 occur
1 1

12 occur
1 1

3 occur

14 occur
1 0

14 occur

16 occur
1 0

1 0

16 occur
1 0

17 occur
1 0

4 occur
1 0

16 occur
1 0

16 occur
1 0

3 occur

w = W

w

0 0

together
0 0

together
1 0

together
0 0

together
0 0

together
0 0

together
0 0

together
0 0

together
0 0

together
0 0

together
0 0

together
0 0

0 0

together
0 0

0 0

together
0 0

together
0 0

together
0 0

together
0 0

together
1 0

together

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0



26) 3 0 1
0 0 0 0 0

Solution rejected.

27) 3 1 0
1 0 0 0 0

Solution rejected.

28) 3 1 0
0 0 0 0 0

Solution rejected.

29) 3 1 0
0 0 0 0 0

Solution rejected.

30) 4 0 0
0 0 0 0 0

Solution rejected.

31) 3 1 0
0 0. 0 0 1

Solution rejected.

32) 3 1 0
0 0 0 0 0

Solution rejected.

33) 3 0 1
0 0 0 0 0

Solution rejected.

34) 3 1 1
0 0 0 0 0

Solution rejected.

35) 4 1 0
0 0 0 0 0

Solution rejected.

36) 4 0 1
0 0 0 0 0

Solution rejected.

37) 4 1 0
1 0 0 0 0

Solution rejected.

38) 3 1 0
0 0 0 0 0

Solution rejected.

39) 3 1 0
0 0 0 0 0

Solution rejected.

40) 4 1 0
0 0 0 0 0

Solution rejected.

41) 3 1 1
0 0 0 0 0

Solution rejected.

42) 4 1 0
0 0 0 0 0

Solution rejected.

43) 2 1 0
0 0 0 0 0

Solution rejected.

44) 3 0 0
0 0 0 0 0

Solution rejected.
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1 0

10 occur
1 0

10 occur
1 0

16 occur
1 0

12 occur
1 0

12 occur
1 0

6 occur

16 occur
1 0

3 occur
1 0

12 occur

16 occur

times

times

times

times

times

times

times

times

times

times

times

times

times

times

times

times

times

times

times

1 0
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1 0

together
0 1

together
0 0

together
0 0

together
0 0

together
0 0

together
0 0

together
0 0

together
0 0

together
0 0

together
0 0

together
1 0

together
0 0

together
0 0

together
1 0

together
0 0

together
0 0

together
0 0

together

0

0

1

1

0

0

0

0

0

0

0

0

0

0

0

1

0

0



45) 3 1 0
0 0 0 0 0

Solution rejected.

46) 3 1 0
0 0 0 0 0

Solution rejected.

47) 3 1 0
0 0 0 0 0

Solution rejected.

48) 4 1 0
0 0 0 0 0

Solution rejected.

49) 3 0 0
0 0 0 0 0

Solution rejected.

50) 4 0 0
0 0 0 0 0

Solution rejected.

51) 3 1 0
0 0 0 0 0

Solution rejected.

52) 4 0 0
0 0 0 0 0

Solution rejected.

53) 4 0 0
0 0 0 0 0

Solution rejected.

54) 4 1 0
0 0 0 0 0

Solution rejected.

55) 5 0 0
0 0 0 0 0

Solution rejected.

56) 4 1 0
0 0 0 0 0

Solution rejected.

Check equations:

b =
VOO UOOUIOOUORWOOWOOROOWOHNOONOHNOONOO

17 19

times

times

times

times

times

times

times

times

times

times

times

times

0 0

together
1 0

together
0 0

together
0 0

together
0 0

together
0 0

together
1 0

together
1 0

together
0 0

together
0 0

together
0 0

together
1 0

together

0 0 1
0
and 16 occur
0 0 1
0
and 16 occur
1 0 1
0
and 4 occur
1 0 1
0
and 16 occur
0 0 0
0
and 14 occur
0 0 0
0
and 16 occur
0 0 0
0
and 14 occur
0 0 0
0
and 16 occur
1 0 0
0
and 8 occur
1 0 0
0
and 8 occur
1 0 0
0
and 8 occur
1 0 0
0
and 8 occur
B 6 B 7
1 1
A 6 A7
1 1
1 1
1 1
1 1
0 1
0 1

0

0

0

0

0

0

0

0

0

0

0



S O

O N

o O

< M

.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
.00 0.00 0.00 0.00 0.00 0.00 ©0.00 0.00 0.00 0.00 0.00
.00
00

Original System of Equations
.00

Pair Table

0.00 0.00 0.00
.00 0.00 0.00

1.00 1.00 0.00 0.00 0.00 0.00
.00 1.00 1.00 1.00 1.00 1.00 O

.00 1.
1.00 1
00
.00

.00
.00

0.00 0.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00
.00 1.00 1.00 0.00 0.00 ©0.00 1.00 1.00 1.00

1
00

.00 0
1.00

.00
.00

I

0



0.00 1.00 1.00 0.00 2.00 1.00 0.00 0.00 2.00 2.00 1.00
0.00 2.00 1.00 1.00 0.00 2.00 1.00 1.00 2.00 2.00 1.00
2.00 = 8.00

0.00 1.00 0.00 2.00 0.00 1.00 3.00 2.00 2.00 1.00 3.00
4.00 0.00 2.00 1.00 3.00 2.00 4.00 3.00 3.00 2.00 4.00
4.00 = 12.00

1.00 0.00 2.00 1.00 0.00 1.00 0.00 2.00 0.00 2.00 1.00
2.00 1.00 0.00 2.00 1.00 1.00 0.00 2.00 0.00 2.00 1.00
2.00 = 4.00

Equations in Row Echelon Form

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -1.00 -1.00 ~1.00 -
1.00 1.00 1.00 1.00 1.00 ©0.00 0.00 ©0.00 0.00 0.00 O0.00 -
1.00 = 2.00

0.00 1.060 0.00 0.00 0.00 0.00 -1.00 -2.00 0.00 -1.00 -1.00 -
2.00 1.00 1.00 0.00 0.00 1.00 1.00 0.00 -1.00 -1.00 -1.00 -
1.00 = 2.00

0.00 0.00 1.00 0.00 0.00 0.00 -1.00 0.00 0.00 1.00 0.00
0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00
1.00 = 0.00

0.00 0.00 0.00 1.00 0.00 0.00 2.00 2.00 1.00 1.00 2.00
3.00 -2.00 -1.00 ~-1.00 0.00 -2.00 0.00 0.00 1.00 0.00 1.00
1.00 = 2.00

0.00 0.00 0.00 0.00 1.00 0.00 1.00 1.00 1.00 1.00 1.00
1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 1.00 0.00 0.00
0.00 = 1.00

0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00
0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00 1.00
1.00 = 2.00
Column pointer vector: 1 2 3 4 520 7 8 910 11 12 13 14 15
16 17 18 19 6 21 22 23

Equations to be solved

1 0 0 0 0 0 0 0 -1 -1 -1 -1 1 1 1 1 0
0 0 0 0 0 ~1 = 2

0 1 0 0 0 0 -1 =2 0 -1 -1 -2 1 1 0 0 1
1 0 -1 -1 -1 -1 = 2

0 0 1 0 0 0 -1 0 0 1 0 0 1 0 1 0 1
0 1 0 1 0 1= 0

0 0 0 1 0 0 2 2 1 1 2 3 -2 -1 -1 0 -1
0 0 1 0 1 1= 2

0 0 0 0 1 0 1 1 1 1 1 i -1 -1 -1 -1 -1
-1 -1 1 0 0 0 = 1

0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 1 1
1 1 0 1 1 1 = 2
Upper bounds: ¥ 9 1 9% 1 1 1 1 1 1 1 1 1 2 1 1 1 1

1 8 1 1 1

The number of possible solutions is: 94




Solution rejected.

2) 1 3 0
0 0 0 1 0

Solution rejected.

3) 1 2 0
0 0 0 0 0

Solution rejected.

4) 1 3 1
0 0 0 1 0

Solution rejected.

5) 1 2 1
0 0 0 0 0

Solution rejected.

6) 1 4 0
0 0 0 1 0

Solution rejected.

7) 1 3 0
0 0 0 0 0

Solution rejected.

8) 1 3 1
0 0 0 0 0

Solution rejected.

9) 1 4 4]
0 0 0 1 0

Solution rejected.

10) 1 3 0
0 0 0 0 0

Solution rejected.

11) 1 4 0
0 0 0 0 0

Solution rejected.

12) 1 3 0
0 0 0 2 0

Solution rejected.

13) 1 2 0
0 0 0 1 0

Solution rejected.

14) 1 4 0
0 0 0 2 0

Solution rejected.

15) 1 3 0
0 0 0 1 0

Solution rejected.

16) 1 3 0
0 0 0 0 0

Solution rejected.

17 0 4 0
0 0 0 1 0

Solution rejected.

18) 0 3 0
0 0 0 0 0

Solution rejected.

19) 0 4 0
0 0 0 0 0

Solution rejected.

20) 1 3 0
0 1 0 0 0

Solution rejected.

and

and

and

8 occur
1 1

7 occur
1 1

6 occur
1 1

3 occur
1 1

3 occur
1 1

15 occur

3 occur
1 0

8 occur
1 0

8 occur
1 0

8 occur
1 0

14 occur
1 0

6 occur
1 0

16 occur
1 0

6 occur
0 1

8 occur
0 1

8 occur
0 1

13 occur
0 1

13 occur
0 1

8 occur

times

times

times

times

times

times

times

times

times

times

times

times

times

times

times

times

times

times

times

times

together
0 0

together
0 0

together
0 0

together
0 0

together
0 0

together
0 0

together
0 0

together
0 0

together
0 0

together
0 0

together
0 0

together
0 0

together
0 0

together
0 0

together
0 0

together
0 0

together
0 0

together
0 0

together
0 0

together

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0




21) 0 3 1
0 0 0 0 0

Solution rejected.

22) 0 4 0
0 0 0 0 0

Solution rejected.

23) 1 3 0
1 0 0 0 0

Solution rejected.

24) 1 2 0
0 0 0 1 0

Solution rejected.

25) 1 1 0
0 0 0 0 0

Solution rejected.

26) 1 3 0
0 0 0 1 0

Solution rejected.

27) 1 2 0
0 0 0 0 0

Solution rejected.

28) 1 2 1
0 0 0 1 0

Solution rejected.

29) 1 1 1
0 0 0 0 0

Solution rejected.

30) 1 3 0
0 0 0 1 0

Solution rejected.

31) 1 2 0
0 0 0 0 0

Solution rejected.

32) 1 2 1
0 0 0 0 0

Solution rejected.

33) 1 3 0
0 0 0 0 0

Solution rejected.

34) 1 3 0
0 0 0 1 0

Solution rejected.

35) 1 2 0
0 0 0 0 0

Solution rejected.

36) 1 3 0
0 0 0 0 0

Solution rejected.

37) 1 3 0
0 0 0 1 0

Solution rejected.

38) 1 2 0
0 0 0 0 0

Solution rejected.

39) 1 3 0
0 0 0 0 0

Solution rejected.

VOO UOH JOOUOOUVOHFFOOCOCOMMOOHOOHOMRMMOOFFRORFEPOOUIOR JOOUIONWORMOO-JOOWOO

and

and

and
1
0
and
0
0
and
1
0
and

0 1

8 occur
0 1

8 occur
0 1

8 occur
0 1

14 occur
0 1

9 occur
0 1

16 occur
0 1

9 occur
0 1

3 occur
0 1

3 occur
0 1

15 occur

3 occur
0 1

15 occur
0 1

20 occur
0 1

10 occur
0 1

10 occur
0 1

11 occur
0 1

13 occur
0 1

13 occur

times

times

times

times

times

times

times

times

times

times

times

times

times

times

times

times

times

times

times

0 0

together
0 0

together
0 0

together
0 0

together
0 0

together
0 0

together
0 0

together
0 0

together
0 0

together
0 0

together
0 0

together
0 0

together
0 0

together
1 0

together
1 0

together
1 0

together
0 1

together
0 1

together
0 1

together

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0



40) 1 2 1
0 0 0 0 0

Solution rejected.

41) 1 3 0
0 0 0 0 0

Solution rejected.

42) 1 3 0
0 0 0 0 0

Solution rejected.

43) 0 3 0
0 0 0 2 0

Solution rejected.

44) Y 2 0
0 0 0 1 0

Solution rejected.

45) 0 4 0
0 0 0 2 0

Solution rejected.

46) 0 3 0
0 0 0 1 0

Solution rejected.

47) 1 3 0
0 1 0 2 0

Solution rejected.

48) 1 2 0
0 1 0 1 0

Solution rejected.

49) 1 4 0
0 0 0 1 0

Solution rejected.

50) 1 3 ¢
0 0 0 0 0

Solution rejected.

51) 0 3 1
0 0 0 2 0
52) 0 2 1
0 0 0 1 0
Sclution rejected.
53) 0 4 0
0 0 0 2 0
54) 0 3 0
0 0 0 1 0

Solution rejected.

55) 0 3 1
0 0 0 1 0

Solution rejected.

56) 1 3 0
1 0 C 2 0
57) 1 2 0
1 0 0 1 0

Solution rejected.

58) 1 2 1
0 1 0 1 0

Solution rejected.

59) 1 3 0
0 0 1 1 0

Solution rejected.

0
0
1
0
0
1
0
0
5
1
0
3

1

2
0
5
0
0
7
1
0
5
0
0
7
1
0
4
0
1
7
1
1
5
0
0
1
0
3
0
0
1
C
5
0
0
5
0
0
1
0
5
0
0
1
0
0
5

0
and

0 1

3 occur
0 1

15 occur
0 1

13 occur
0 1

14 occur
0 1

13 occur
0 1

16 occur
0 1

13 occur
0 1

18 occur
0 1

18 occur
0 1

22 occur
0 1

13 occur

20 occur
0 1

3 occur
0 1

20 occur

O w O w o W

oW

times

times

0 1

together
0 1

together
0 0

together
0 0

together
0 0

together
0 0

together
0 0

together
0 0

together
0 0

together
0 0

together
0 0

together
0 0

0 0

together
0 0

0 0

together
0 0

together
0 0

0 0

together
0 0

together
0 0

together

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0




60) 1 4 0
0 0 0 1 1

Solution rejected.

61) 1 3 0
0 0 0 0 1

Solution rejected.

62) 1 3 1
0 0 0 0 0

Solution rejected.

63) 0 4 0
0 0 0 1 0

Solution rejected.

64) 1 3 0
0 1 0 1 0

Solution rejected.

65) 1 4 0
0 0 0 0 0

Solution rejected.

66) 1 3 0
1 0 0 1 0

Solution rejected.

67) 1 4 0
0 0 0 0 1

Solution rejected.

68) 1 3 0
0 0 0 1 0

Solution rejected.

69) 1 2 0
0 0 0 0 0

Solution rejected.

70) 1 3 0
0 0 0 0 0

Solution rejected.

71) 1 3 0
0 0 0 0 0

Solution rejected.

72) 0 4 0
0 0 0 2 0

Solution rejected.

73) 0 3 0
0 0 0 1 0

Solution rejected.

74) 0 4 0
0 0 0 1 0

Solution rejected.

75) 1 3 0
0 1 0 1 0

Solution rejected.

76) 1 4 0
0 0 0 0 0

Solution rejected.

77) 1 2 0
0 0 0 2 0
78) 1 1 0
0 0 0 1 0

Solution rejected.

79) 1 3 0
0 0 0 2 0

2

OCOUVONOKFRFRPRPPFORRODODUUOOUOR OOOHHOOHFOORORFEFOOUIOOUOOMNRPOFRPOOUOOMRMOUOROOO

0 0 1
0

and 21 occur
1 0 1
0

and 21 occur
1 0 1
0

and 3 occur
1 0 1
0

and 20 occur
1 0 1
0

and 15 occur
1 0 1
0

and 15 occur
1 0 1
0

and 20 occur
1 0 1
0

and 21 occur
0 0 0
0

and 8 occur
1 0 0
0

and 8 occur
1 0 0
0

and 8 occur
1 0 0
0

and 8 occur
0 0 0
0

and 20 occur
1 0 0
0

and 20 occur
1 0 0
0

and 20 occur
1 0 0
0

and 8 occur
1 0 0
0

and 8 occur
0 0 0
0
1 0 0
0

and 9 occur
0 0 0
0

times

times

times

times

times

times

times

times

times

times

times

times

times

times

times

times

times

times
1

0

together

0

together

0

together

0

together

0

together

0

together

0

together

0

together

0

together

0

together

0

together

0

together

0

together

0

together

0

together

]

together

0

together

0

0

together

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0



Solution rejected.

80) 1 2 0
0 0 0 1 0

Solution rejected.

81) 1 3 0
0 0 0 2 0
82) 1 2 0
0 0 0 1 0

Solution rejected.

83) 1 3 0
0 0 0 1 0

Solution rejected.

84) 1 3 0
0 0 0 1 0

Solution reijected.

85) 0 3 0
0 0 0 3 0
86) 0 2 0
0 0 0 2 0

Solution rejected.

87) 0 4 0
0 0 0 3 0

Solution rejected.

88) 0 3 0
¢ 0 0 2 0

Solution rejected.

89) 1 3 0
0 1 0 3 0

Solution rejected.

90) 1 2 0
0 1 0 2 0

Solution rejected.

91) 1 4 0
0 0 0 2 0

Solution rejected.

92) 1 3 0
0 0 0 1 0

Solution rejected.

93) 1 3 0
0 1 0 2 0

Solution rejected.

94) 1 4 0
0 0 0 1 0

Solution rejected.

Check equations:

1

4
0
5

1
0
0
1
0
5
0
0
5
0
0
5
1
0
2
0
5
0
0
4
1
0
5
0
0
4
1
0
4
0
1
4
1
1
5
0
0
5
0
1
5

1 0 0
0

and 9 occur
0 0 0
0
1 0 0
0

and 20 occur
1 0 0
0

and 20 occur
1 0 0
0

and 20 occur
0 0 0
0
1 0 0
0

and 20 occur
0 0 0
0

and 16 occur
1 0 0
0

and 20 occur
0 0 0
0

and 18 occur
1 0 0
0

and 18 occur
0 0 0
0

and 22 occur
1 0 0
0

and 20 occur
1 0 0
0

and 20 occur
1 0 0
0

and 20 occur

51 53 56 77 81 85

o W

o W

oW

o W

oW

times

times

times

times

times

times

times

times

times

times

times

times

times

times

together
0 0

together
0 1

0 1

together
0 1

together
0 0

together
0 0

0 0

together
0 0

together
0 0

together
0 0

together
0 0

together
0 0

together
0 0

together
0 0

together
0 0

together

Distribution Vectors

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0




NHFHFWNONKWNO

Pair Table

HE RPN WD W

Original System

HEWNERENRESWN

PFORORHOR OK

WHEOWNNEENO W

1.00 1
1.00 1
1.00 1
1.00 0O
0.00 2
Equations
1.00 O
0.00 1
0.00 O
0.00 O
0.00

Equation

0.
Column pointer vector:

N W PN P

.00
.00
.00
.00
.00

>IN WWhhWwor P

WNhWFRF PR WEMANDN
WWMNONWHERFRNDEN

.00
.00
.00
.00
.00

WHOR R

CORPFPRPROORRE M

WWwWwWwWwhhERHEWN -

= o Wwok

> whwbhweke ow

.00
.00
.00
.00
.00

OOO OO

B Ut W W WD W
G b WWwhwreF -

of Equations

.00
.00
.00
.00
.00

NP Mo
O WHO

in Row Echelon Form

.00
.00
.00
.00

00

3 has LHS >= 0,
*** Block vector rejected

0.00
0.00
1.00
.00
.00

O o

OO OO

.00
.00
.00
.00
.00

.00
.00
.00
.00 -
.00
1 2 3

HFoo oo
HFHOo oM

RHS < O

.00
.00
.00
.00
.00

.00
.00
.00
.00
.00

4

NO WK o

oo

.00
.00
.00
.00
.00

.00
.00
.00
.00
.00

6

wkHNRF o

H RO O

.00
.00
.00
.00
.00

.00
.00
.00
.00
.00

8

B O U oo

S =)

51

.00
.00
.00
.00
.00

.00
.00
.00
.00

00

N oo

HOoOR RO

.00
.00
.00
.00
.00

.00 =
.00
.00
.00
.00 =

i

.00
.00
.00
.00
.00

.00
.00
.00

.00



Distribution Vecto
A 3 A 4 A 6
1 1 1
2 2 0
5 0 0
1 3 1
4 1 1
) 2 0
Pair Table
2 1 1 2 1 0
1 2 2 2 0 2
1 2 5 0 3 4
2 2 0 4 2 2
1 0 3 2 3 3
0 2 4 2 3 5

rs

Original System of Equations

1.00 1.00 1.00
1.00 0.00 0.00
1.00 2.00 0.00
1.00 2.00 5.00

Equations in Row E
1.00 0.00 0.00
0.00 1.00 0.00
0.00 0.00 1.00
0.00 0.00 0.00

0.00
1.00
3.00
1.00

chelon

.00
.00
.00
.00

PO oo

Column pointer vector:

Equations to be so

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
Upper bounds: 9

lved

0.00
1.00
1.00
4.00

NN o o

Form

0.00 -
-1.00
1.00
1.00

R K=

It
NN

.00 =
.00
.00
.00 =

.00
.00
.00
.00

4

The number of possible solutions is:

1) 4 2 1
Solution rejected.
2) 5 1 1
Solution rejected.
3) 5 2 0
Solution rejected.

1
and

and
1
and

GO WkR Wik

0.

0

5 occur
1

6 occur
1

6 occur

7.00
= 6.00
.00

I
I_I
N

.00
.00
.00
.00

own
NN

3

3 times together
4 times together

3 times together



2 0 2 1
3 1 1 1
0 0 4 0
1 1 3 0
4 0 3 0
5 1 2 0
Pair Table
11 2 1 2 2
1 3 1 1 2 4
2 1 4 3 3 2
1 1 3 3 2 3
2 2 3 2 5 5
2 4 2 3 5 6

Original System of Equations

1.00 1.00 0.00 0.00 0.00 0.00 = 7.00
2.00 1.00 4.00 3.00 3.00 2.00 = 20.00
0.00 1.00 0.00 1.00 0.00 1.00 = 4.00
2.00 3.00 0.00 1.00 4.00 5.00 = 10.00
Equations in Row Echelon Form
1.06 0.00 0.00 0.00 -1.00 -1.00 = 3.00
0.00 1.00 0.00 0.00 1.00 1.00 = 4.00
0.00 0.00 1.00 0.00 1.00 0.00 = 4.00
0.00 0.00 0.00 1.00 0.00 1.00 = =-2.00
Column pointer vector: 1 2 3 5 4 6

Equation 4 has LHS >= 0, RHS < 0
**x Block vector rejected



Distribution Vectors

SO N

O N A

- O N

OO O

NN N

NN A

Pair Table

Original System of Equations

.00 1.00 1.00 1.00 1.00 0.00 0.00
00

1
.00

.00 1.00 1.00 1.00
00 00

.00

.00
.00

i

0. 0 0.

0.00 0.
2

00 0.00 3.00 3.00

0.

.00 1.00 1.00 O
.00 .00

1
.00

.00

1
.00
2

.00

.00

00

15.00
2.

2 2 1

2

.00
0

2

2.00 1.00 1.00 0.00

00

1.00 1.00 0.00
.00 .00 00

.00 .00

00

.00
.00

1 2.

1

2.00 2.00
0 0

.00

60 2.00 0.00 2.00

1.

.00 0.00 2.00 2
.00

1
.00

.00 .00

.00

.00

00
.00

.00 2

1

2

.00
0
2.00

1.00 0
2

.00 3.00 1.00 0.00

2

1.00 3.00 2.00 O
.00 3.00 .00

.00 .00

00

00

2

1

.00

0

.00



Equations in Row Echelon Form

1.00 0.00 0.00 0.00 0.00 0.00 0.00 -1.00

0.00 0.00 -1.00 0.00 -1.00 -1.00 = 2.00

0.00 1.00 0.00 0.00 0.00 0.00 -1.00 0.00
0.00 -1.00 0.00 -1.00 0.00 -1.00 = 0.00

0.00 0.00 1.00 0.00 0.00 -1.00 0.00 0.00
1.00 0.00 0.00 -1.00 -1.00 -1.00 = 1.00

0.00 0.00 0.00 1.00 0.00 2.00 2.00 2.00
1.00 1.00 1.00 2.00 2.00 3.00 = 4.00

0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
1.00 1.00 1.00 1.00 1.00 1.00 = 2.00
Column pointer vector: 1 2 3 410 6 7 8
16 17

Equations to be solved

) 0 ’ 1 0 0 0 0 -1 0 0 1 -1 0
) 0 ’ 0 1 0 0 -1 0 0 -1 0o -1 -1
) 0 " 0 0 1 0 2 2 2 3 1 1 1
) 0 ’ 0 0 0 1 0 0 0 0 0 1 1
= 2

Upper bounds: 9 1 1 4 1 1 1 1 1 1 1

The number of possible solutions is: 12

1 3 1 1 0 1 0 1 0 0 1
0

Solution rejected. 2 and 10 occur 3 times together

2) 4 0 1 0 1 0 1 0 0 1
0

Solution rejected. 3 and 7 occur 3 times together

3) 3 1 1 1 1 0 1 0 0 0
0

Solution rejected. 3 and 7 occur 3 times together

4) 4 0 1 0 1 0 0 1 0 1
0

Solution rejected. 3 and 8 occur 3 times together

5) 3 1 1 1 1 0 0 1 0 0 0

0

Solution rejected. 3 and 8 occur 3 times together
6) 4 0 1 1 1 0 0 1 0 0 0

0

Solution rejected. 3 and 8 occur 3 times together
7) 3 0 1 2 1 0 0 0 0 1 0

0

Solution rejected. 5 and 13 occur 3 times together
8) 2 1 1 3 1 0 0 0 0 0 0

0

0

0

0

-1.

9

0

1

3.

0.

00

.00

.00

00

00

-1.00 1.
1.00 -1.
0.00 -1.
1.00 1.
0.00 1.

00

00

00

00

00

511 12 13 14 15

0

0

0

0

0

0

0



Solution rejected.

9) 3 0 1
0
Solution rejected.
10) 4 1 1
0

Solution rejected.

11 4 0 1
0
Solution rejected.
12) 3 1 1
0

Solution rejected.

10
2

13

and 13 occur
1 0 0

and 14 occur
0 0 0

and 8 occur
0 0 0

and 14 occur
0 0 0

and 14 occur

times

times

times

times

times

00 =

00
00

1

00 =

00
00

15.
21.

[ASIE G 1N \V]

Case 31
B 2 B 3 B 4 5 B 6 B 7
0 7 0 3 0 1
Distribution Vectors
A 3 A 5 a7
1 2 1
3 1 1
5 0 1
2 3 0
4 2 0
6 1 0
Pair Table
2 1 1 2 1 0
1 1 2 1 0 2
1 2 4 0 2 4
2 1 0 3 2 2
1 0 2 2 2 3
0 2 4 2 3 5
Original System of Equations
1.00 1.00 1.00 0.00 0.00 O.
2.00 1.00 0.00 3.00 2.00 1.
1.00 3.00 5.00 2.00 4.00 6.
Equations in Row Echelon Form
1.00 0.00 0.00 -1.00 -1.00 -2.
0.00 1.00 0.00 2.00 1.00 2.
0.00 0.00 1.00 0.00 1.00 1.
Column pointer vector: 1 2 4

3

wn

together
0 0
together
0 0
together
1 0
together
0 0
together

.00

00

00

.00

.00

.00

0

0

0

0




Equations to be solved

1 0 0 -1 -1
0 1 0 2 1
0 0 1 0 1
Upper bounds: 9 5

The number of possible solutions is:

NN

8

4 times together

4 times together

3 times together

1) 4 2 1 1
2) 5 1 1 1
Solution rejected. 4
3) "3 4 1 0
4) 4 3 1 0
5) 5 1 0 1
6) 6 0 0 1
Solution rejected. 4
7) 4 3 0 0
8) 5 2 0 0
Solution rejected. 5
Check equations: 1
Case 32
B 2 B 3 B 4 B 5
1 4 3 2
Distribution Vectors
A2 A3 A4 A S
0 1 0 2
0 0 2 1
1 1 1 1
0 3 0 1
1 0 3 0
0 2 2 0
1 3 1 0
0 1 2 2
1 2 1 2
0 4 0 2
1 1 3 1
0 3 2 1
1 4 1 1
1 3 3 0

Palir Table

OO OO OCOOHPE P P =



ONPFEPRWNNRERERRNDNDNDW
NOREPNHFEFRENDMENWRERNDN

NNONDNDNENMRFEWRENRND
NWNOBNKFWNDREWERFN
NN ONDNWWU R WWE
WNRNNNNORENNWNREN -

BB NDNNDWNOB_NWWNRRP
MRNNWWNWORNREENN
WEHEDNWBBWNDNONDNDNREN
Wb Nk WWNO B NHEW

Original System of Equations

1.00

.00 0.

2.00

.00 1.

0.00

.00 1.

1.00

.00 4.

0.00

.00 1.

1.00
00
1.00
00
2.00
00
0.00
00
0.00
00

1.00
0.00 =
1.00
0.00 =
1.00
3.00 =
1.00
3.00
1.00
1.00

]

1.00 1.
7.00
1.00 0.
10.00
0.00 3.
12.00
3.00 0.
12.00
0.00 1.
2.00

00

00

00

00

00

Equations in Row Echelon Form

1.00 0.00 0.00 0.00 0.00
1.00 -1.00 -2.00 = =-1.00
0.00 1.00 0.00 0.00 0.00
0.00 -1.00 0.00 = 3.00
0.00 0.00 1.00 0.00 0.00
0.00 1.00 1.00 = 2.00
0.00 0.00 0.00 1.00 0.00
1.00 1.00 1.00 = 3.00
0.00 0.00 0.00 0.00 1.00
1.00 1.00 1.00 = 2.00
Column pointer vector: 1 2
Equations to be solved
1 0 0 0 0 -1 -1
0 1 0 0 0 1 0
0 0 1 0 0 0 1
0 0 0 1 0 1 1
0 0 0 0 1 0 0
Upper bounds: 1 9 2 1 1

BWNEDNWWNDNON_ONNRE

3

OO

B WWNEDDNDNNNNDNO =

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

MO o

U WWOoadNENDNDNWNDON

The number of possible solutions is: 32

YU WWNDBdWDHNDNDNDO

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

O ok

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

o o

0.

1.

.00

.00

.00

.00

.00

.00

.00

.00

00

00

.00

.00

.00

.00

.00

0.

1.

0.

1.

1.

00

00

1.

.00

.00

.00

.00

.00

.00

.00

.00

.00

00

9 10 11 12 13 14

e =R

=

i

N WD wR



1) 1 2 1
2) 1 2 2
Solution rejected.
3) 1 3 0
Solution rejected.
4) 1 3 1
Solution rejected.
5) 1 2 1
Solution rejected.
6) 0 3 2
Solution rejected.
7) 1 2 2
8) 1 3 1
Solution rejected.
9) 1 3 0
Solution rejected.
10) 0 4 1
Solution rejected.
11 1 3 1
Solution rejected.
12) 1 4 0
Solution rejected.
13) 1 3 1
Solution rejected.
14) 1 4 0
Solution rejected.
15) 1 3 0
Solution rejected.
16) 0 4 1
Solution rejected.
17) 1 3 1
18) 1 4 0

Solution rejected.

19) 1 3 1

Solution rejected.

20) 1 3 2

Solution rejected.

21) 1 4 1

Solution rejected.

22) 0 5 0

Solution rejected.

23) 1 4 0

Solution rejected.

24) 1 4 0

Solution rejected.

25) 1 4 1

Solution rejected.

26) 1 5 0

Solution rejected.

27) 1 3 1

Solution rejected.

28) 1 4 0

Solution rejected.

29) 0 4 2

Solution rejected.

30) 0 5 1

Solution rejected.

31) 1 4 1

HF B R BRRPHEHRERRPBORORRE SR BRRPEOROMMBIME® R MMOKMOBMODRELARRERERARRLIREREREPRPORKMEBEOR

1
1
and
and
and

and

and

and

and

and

and

and

and

and

and

and

and

and

and

and

and

and

and

and

and

and

and

and

and
0

2 0
2 0
10 occur
1 1
7 occur
1 1
10 occur
1 0
10 occur
1 0
10 occur
1 0
1 0
13 occur
0 1
10 occur
0 1
7 occur
0 1
7 occur
0 1
7 occur
2 0
10 occur
1 1
10 occur
1 0
10 occur
1 0
10 occur
1 0
1 0
13 occur
1 0
10 occur
1 0
10 occur
1 0
10 occur
0 1
7 occur
0 1
7 occur
0 1
10 occur
0 1
10 occur
0 1
10 occur
0 0
10 occur
0 0
10 occur
0 0
10 occur
0 0
10 occur
0 0

O ODBOUWHWHWOWOWOWOWOWOWOWOWODOmMOWRPRWOWOWOWOWOWHWOOMODWRERPWOWOWOO

1

0
times
times
times

times

times

times

times

times

times

times

times

times

times

times

times

times

times

times

times

times

times

times

times

times

times

times

times

0

0
1

together

0

together

1

together

1

together

1

together

0
0

together

1

together

1

together

0

together

0

together

1

together

1

together

1

together

1

together

0
0

together

1

together

1

together

1

together

1

together

0

together

1

together

1

together

1

together

1

together

1

together

1

together

1

together

1

0
0

0

0

0

0

0
0

0

0

0

0

0

0

0

0

0
0

1

0

0

0

0

1

0

0

0

0

0

4]

0

0
0

0

0

0

0

1
0

0

0

1

0

0

0

0

0

1
0

0

1

0

0

1

0

1

0

1

0

1

0

0



Solution rejected.

32)

1

4

1

Solution rejected.

Check equations:

1

1 and 10 occur

1

4 and 13 occur

7

0

17

0

0

3 times together

0

3 times together

0

0

0

NHRFONRREO

Pair Table

OR R MMEBENN
NONHWRE WN

POMKOROKO

NNORFRENKRE -

WNhNODNDWRE

W NDWR N

NDNWDNDWOoO

Original System

.00
.00
.00
.00
.00

OO N

el S S

Equations

.00
.00
.00
.00
.00

OO OO

.00
.00
.00
.00
.00

in

0.00
1.00
0.

0.00
0.

00

00

= o Wwo e

WNNNDNON

of Equations

.00
.00
.00
.00
.00

Bl N W NN OoO S OFPRPRPOO KK

NENDOE

U WN WD NO

.00
.00
.00
.00
.00

Row Echelon

SO HrHrHOoOOo

.00
.00
.00
.00
.00
Column pointer vector:

O OO O

.00
.00
.00
.00
.00

C OO

O OO

.00
.00
.00
.00
.00

Form

.00
.00
.00
.00
.00

2

W o

.00
.00
.00
.00
.00

.00
.00
.00
.00
.00

7

5

H O U o o

OO

.00
.00
.00
.00
.00

.00
.00
.00
.00
.00

6

4

= OO

OO

.00
.00
.00
.00
.00

.00
.00
.00
.00
.00

8

1

W NN W

.00
.00
.00
.00
.00

.00
.00
.00
.20
.20



Egquation 5 has LHS = 0 and RHS != 0
*** Block vector rejected

Pair Table

2 1
1 2

Original System of Equations

1.00 0.00 = 7.00
2.00 4.00 = 28.00
2.00 2.00 = 9.00

Equations in Row Echelon Form

1.00 0.00 = 7.00

0.00 1.00 = 3.50

0.00 0.00 = -12.00
Column pointer vector: 1 2
Equation 3 has LHS = 0 and RHS != 0

*%% Block vector rejected



Pair Table

2 1 2
1 1 3
2 3 6

Original System of Equations

3.00 2.00 2.00 = 24.00
0.00 1.00 0.00 = 4.00
1.00 3.00 6.00 = 12.00

Equations in Row Echelon Form

1.00 0.00 0.00 = 6.00

0.00 1.00 0.00 = 4.00

0.00 0.00 1.00 = -1.00
Column pointer vector: 1 2 3

Equation 3 has LHS >= 0, RHS < 0
*x* Block vector rejected

1 0 0 3
2 0 1 2
0 2 0 2
3 1 0 2
1 2 1 1
4 1 1 1
5 2 0 1
Pair Table
32 2 2 1 1 2
2 2 1 1 1 2 2
2 1 3 2 2 1 2
2 1 2 2 1 2 4
11 2 1 3 2 3
1 2 1 2 2 4 5



Original System of Equations

3.00
0.00
0.00
1.00

NO N

Equations

1.00 0.
0.00 1.
0.00 0.
0.00 0.

.00
.00
.00
.00

in

00
00
00
00

2.00
0.00
2.00
0.00

2.00
0.00
1.00
3.00

Row Echelon

0.00
0.00
1.00
0.00

0.00
0.00
0.00
1.00

Column pointer vector:

Equations to be solved

[=NeNenn s
SO o

Upper boun

(=N N el e

ds:

Moo o

O
O

.00
.00
.00
.00

N e

Form

-1.00
1.00
1.00
0.00

N

oK

.00
.00
.00
.00

.00
.00
.00
.00

4

OB 1o

The number of possible solutions is:

5

NN o

NO O K

.00
.00
.00
.00

6

.00 =
.00
.00
.00

OO

.00
.00
.00
.00

.00
.00
.00
.00

Case 37
B 2 B 3
2 5

NHEENMNONDO K
GCowdhworo

Pair Table

HOHOORKFHO

OHRKENDDDNDNDW



HE R ODWNDW
NP B HEDD D
WHRNWRS N W
WWE RN RE RN
mWHWRWRE W
D WN RN

NUTWWWH P
O NU B WWwN

Original System of Equations

3.00 2.00 2.00
0.00 1.00 1.00
0.00 1.00 0.00
1.00 0.00 2.00

2.00
0.00
3.00
0.00

2.00
0.00
2.00
2.00

W

Equations in Row Echelon Form

1.00 0.00 0.00
0.00 1.00 0.00
0.00 0.00 1.00

0.00 0.00 ©0.00
Column pointer vec

Eguations to be so

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
Upper bounds: 1

0.00
0.00
0.00
1.00
tor:
lved
0 -1
-1 0
1 1
1 1
9 1

0.00 ~
-1.00
1.00
1.00
1 2 3

R =l

!
R

I
e

i

.00
.00
.00
.00

.00
.00
.00
.00

4

The number of possible solutions is:

1) 0 4 1
Solution rejected.
2) 1 3 1
Solution rejected.
3) 1 4 0
Solution rejected.
4) 1 4 1
Solution rejected.
5) 1 5 0

Solution rejected.

1
and
0
and
1
and
0
and
1
and

HERERPNODEREDNDRFEWOOW

0 0
5 occur
1 0
3 occur
1 0
5 occur
0 1
3 occur

WO WO WO WO Wo

.00
.00
.00
.00

o

-1.00
-1.00
1.00
2.00
5 6

NN Wo

5

times

times

times

times

times

-1.00

7

.00 =
.00
.00
.00 =

!

N = o

Il

8

together
together
together
together

together

18.
.00
15.
.00

BN W o

00

00

.00
.00
.00
.00



Distribution Vectors

WWwHENONWE O K

Pair Table

P NRFERRRENDWNDDNDW
NHFRPNNNREREREDNDIND

NRrMNMORFREDNOKH OO

WHRPRRPBNDN RN

W WP Wb NEREW

WNNWWOKKNO

S WNRPREPE&SWNDEN

Original System

3.00 2
0.00 2
0.00 0
1.00 0
Equations
1.00 O
0.00 1
0.00 0
0.00 ©

.00
.00
.00
.00

N

SN WWWERE =N

O REEFEFRNNDNDNDNDW

bl NN WHE W N

G WWRNWNE P

A WA NDWWR =N
CON G UL b b bW

of Equations

.00
.00
.00
.00

W oK N

.00
.00
.00
.00

2.00
0.00
2.00
2.00

in Row Echelon Form

.00
.00
.00
.00

0.
0.
1.
0.

00
00
00
00

0
0
0
1

.00
.00
.00
.00

Column pointer wvector:

Equations to be solved

OO O

Upper bounds:

O OO

O OO

o oo

0.00
-1.00
2.00
0.00

oONO K

oW

O

.00
.00
.00
.00

.00
.00
.00
.00

4

O

NO WE

HoRR

.00
.00
.00

.00
.00
.00
.00

[ N Ny

OoON O

.00
.00
.00

.00
.00
.00
.00

8

o0 WwWo

wHF N

o P

91

.00
.00
.00

.00
.00
.00

00

W Wo

R NOoN

.00 =
.00
.00
.00

[

.00 =
.00
.00
.00

I

18.
12.
.00
.00

[ WV N o)

00
00

.00
.00
.00
.00



The number of possible solutions is: 6

1)
2)
3)
4)
5)
6)

OO
W W e W
oYU N W
coococoo
OO MR
cor OO
coococoo
OO ORO
cooo0Oo
coocoocoo

Check equations: 1 2 3 4 5 6

Pair Table

10
0 2

Original System of Equations

2.00 1.00 = 18.00
0.00 1.00 4.00
3.00 4.00 = 21.00

Equations in Row Echelon Form

1.00 0.00 = 10.20

0.00 1.00 = -2.40

0.00 0.00 = 6.40
Column pointer vector: 1 2
Equation 3 has LHS = 0 and RHS != 0

**%* Block vector rejected



Distribution Vectors

NANANANAAAAOCODO

A OO NN AMOMNN

HOMNHOMNNCHM

ONONHMHAOMONN

Pair Table

Original System of Equations

1.00 1.00 1.00 0.00 0.00 0.00

.00 2.00 2.00 2.00 1.00

12.00

I

1.00 1.00 0.00 0.00 2.00 2.00 1.00 1.00 3.00 3.00 2.00

15.00

1.00 0.00 3.00 2.00 1.00 0.00 3.00 2.00 2.00 1.00 3.00

9.00

0.00 2.00 0.00 2.00 1.00 3.00 1.00 3.00 0.00 2.00 2.00

6.00

Equations in Row Echelon Form

0.00 -1.00 -1.00 -2.00 -1.00 -1.00 -2.00

1.00 0.00 0.00 0.00

3.00

0.00 1.00 0.00 0.00 0.50 1.50 0.50 1.50 1.00 1.00 1.00 =

3.00

0.00 0.00 1.00 0.00 0.00 0.00 1.00 1.00 1.00 0.00 1.00 =

0.00

0.00 ©0.00 0.00 1.00 0.50 0.50 0.50 0.50 0.00 1.00 1.00 =

3.00

4 10 11

8

1

Column pointer vector:



Equations to be solved

o W

9

Upper bounds:

4

The number of possible solutions is:

4
5

1)

2)
Solution rejected.

3 times together

4 and 10 occur

3
4

3)

4)

1

Check equations:

41

Case

Distribution Vectors

NANNAAAAAOO

O ONNHHON

ONrH 1 ONHNMNM

NOMOOHO AL NNM

Pair Table



Original System of Equations

2.00 2.00 2.00 1.00 1.00 1.00 1.00 1.00 O
1.00 0.00 0.00 2.00 2.00 1.00 1.00 0.00 2
0.00 2.00 1.00 1.00 0.00 2.00 1.00 3.00 2
2.00 0.00 3.00 0.00 3.00 1.00 4.00 2.00 2
Equations in Row Echelon Form
1.00 0.00 0.00 0.00 0.00 -1.00 -1.00 -2.00 -2.
0.00 1.00 0.00 0.00 -1.00 0.00 -1.00 0.00 -1.
0.00 0.00 1.00 0.00 1.00 1.00 2.00 2.00 2.
0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 2.
Column pointer vector: i 2 3 4 5 6 7 8 91
Equations to be solved
1 0 0 0 6 -1 -1 -2 -2 -3 = -2
0 1 0 0 -1 0 -1 0 -1 -1 = 1
0 0 1 0 1 1 2 2 2 3 = 4
0 0 0 1 1 1 1 1 2 2 = 6
Upper bounds: g 1.1 66 1 4 1 1 1 1
The number of possible solutions is: 4
1) 1 1 1 4 0 1 0 1 0 0
Solution rejected. 1 and 3 occur 3 times together
2) 1 1 1 3 0 3 0 0 0 0
Solution rejected. 1 and 3 occur 3 times together
3) 2 1 0 3 0 2 0 1 0 0
Solution rejected. 2 and 8 occur 3 times together
4) 2 1 0 2 0 4 0 0 0 0
Check equations: 4
Case 42

.00
.00
.00
.00

00
00
00
00
0

W W o

-3.
-1.
.00
.00

.00
.00
.00
.00

00
00

12

12

.00
10.
.00
.00

00

.00
.00
.00
.00



HORROROR
BN D W N R
FoOROKRORO

Pair Table

O KHNRERRERPRLNDNDDNDDDN
NDONWNNNNDNDNON
NMNNODWNHFHRFRFEWNDN
NNWOHEERENDNNDNWENDDND
NMNWNONNF WNE NN

Original System

2.00 2.00 2.
0.00 = 12.00
1.00 0.00 O.
1.00 10.00
0.00 1.00 O.
1.00 = 4.00
1.00 1.00 3.
4.00 = 15.00
0.00 1.00 O.
1.00 = 2.00

2 1

1 1

1 1

0 1

0 1

2 0

2 0

1 0
1 11 2 1
2 2 2 3 2
1 2 3 4 0
2 1 1 0 3
1 2 0 2 3
1 0 2 2 2
0 2 2 4 2
2 2 4 4 2
2 4 4 6 3
2 2 2 3 4
2 3 3 4 3
2 3 4 5 4

of Equations

00 1.00 1.00
00 2.00 2.00
00 1.00 0.00
00 0.00 1.00

00 0.00 1.00

Equations in Row Echelon Form

1.00 0.00 0.00 0.00 0.00
3.00 = =2.00

0.00 1.00 0.00 0.00 0.00
0.00 = 0.00

0.00 0.00 1.00 0.00 0.00
2.00 = 5.00

0.00 0.00 0.00 1.00 0.00
1.00 = 4.00

0.00 0.00 0.00 0.00 1.00
1.00 = 2.00
Column pointer vector: 1 2

Equations to be

solved

U wbkwwNhNDDhDNDOoO R

G T WNNNNNDNO

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00

8

1.00 0.00
0.00 2.00
0.00 1.00
5.00 2.00
1.00 1.00

-2.00 -2.00
0.00 0.00
2.00 1.00
0.00 1.00
1.00 1.00

9 10 11 12

= -2

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00



0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0
Upper bounds: 9

= O oo

O O

o RFR o
o NoOo

P oo

The number of possible solutions is:

1) 3 0 0
2) 2 0 1
3) 3 0 0
4) 3 0 1
Solution rejected.
5) 3 1 0
6) 4 0 0
7) 3 0 0
8) 4 0 0
Solution rejected.
9) 2 1 1
10) 3 0 1
11) 3 0 1
Solution rejected.
12) 3 1 0
Solution rejected.
13) 4 0 0
Solution rejected.
14) 3 0 0
15) 4 0 0
16) 3 0 1

Solution rejected.

17) 3 1 0

Solution rejected.

18) 4 0 0

Solution rejected.

19) 4 0 0

Solution rejected.

20) 4 1 0

Solution rejected.

21) 5 0 0

Solution rejected.

22) 4 0 0

Solution rejected.

23) 3 1 1

Solution reijected.

24) 4 0 1

Solution rejected.

25) 4 1 0

Solution rejected.

26) 4 1 0

Solution rejected.

27) 5 0 0

Solution rejected.

Check equations:

et

'_1
BRSSP REREMAPRP BB OOOCORPEPE IR IR MPOFROFHFORPRWRREMHUUIOFF OOWUVMORIKMO

1

1 4 1
1 3 1
1 3 0
1 3 0
and 10 occur
1 3 0
1 3 0
1 2 1
1 2 0
and 10 occur
1 2 0
1 2 0
1 1 0
and 8 occur
1 1 0
and 11 occur
1 1 0
and 12 occur
0 3 2
0 3 1
0 2 1
and 10 occur
0 2 1
and 11 occur
0 2 1
and 12 occur
0 2 0
and 10 occur
0 2 0
and 11 occur
0 2 0
and 12 occur
0 1 1
and 10 occur
0 1 0
and 10 occur
0 1 0
and 10 occur
0 1 0
and 12 occur
0 0 0
and 10 occur
0 0 0
and 10 occur
2 3 5 6

7

Il

o

BN R

Do
o

27
0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0
times together
0 0 1 0
0 0 0 1
0 0 0 0
0 1 0 0
times together
0 0 1 0
0 0 0 1
0 1 0 0
times together
0 0 1 0
times together
0 0 0 1
times together
0 0 0 0
0 1 0 0
0 1 0 0
times together
0 0 1 0

times together
0 0 0 1
times together
1 1 0 0
times together
0 1 1 0
times together
0 1 0 1
times together
0 1 0 0
times together
0 1 1 0
times together
0 1 0 1
times together
0 0 1 1
times together
0 1 1 0
times together
0 1 0 1
times together

9 10 14 15

N 0O
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Case

Distribution Vectors

S N

O N

O N

O

—

[an)

—

—

< M N

<

o

—

—

N

Pair Table

Original System of Equations

2.00 2.00 2.00 2.00 1.00 1.00 1.00 1.00 1.00 1.00
.00 .00 .00 12.00

00

Il

0

0.00 0
0

0

.00

0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00
.00

.00

.00

.00 1.00
.00 .00

00
00
16.00

0

0

00
2

1.

1

.00 1.00 3.00 3.00 2.00

1

.00 0.00 2.
.00 .00

1

.00

0.00

.00
.00

4

00 2.00 4

3.



1.00 0.00 0.00 1.00 2.00 0.00 2.00 1.00 1.00 0.00 2.00
0.00 1.00 2.00 2.00 1.00 = 6.00

0.00 2.00 0.00 1.00 2.00 1.00 ©0.00 2.00 0.00 2.00 1.00
0.00 1.00 2.00 0.00 2.00 = 4.00

Equations in Row Echelon Form

1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 -1.00 0.00

0.00 0.00 0.00 0.00 -1.00 = 2.00

0.00 1.00 ©€.00 0.00 0.00 0.50 -0.50 0.50 -0.50 0.50 -0.50
0.00 0.00 0.00 -1.00 0.00 = 0.00

0.00 0.00 1.00 0.00 0.00 0.00 -1.00 -1.00 0.00 0.00 -1.00 -
1.00 -1.00 -2.00 -1.00 -1.00 = 0.00

0.00 ©0.00 0.00 1.00 0.00 0.00 1.00 1.00 1.00 1.00 2.00
2.00 1.00 2.00 2.00 2.00 = 4.00

0.00 0.00 0.00 0.00 1.00 0.50 0.50 06.50 0.50 0.50 0.50
0.00 1.00 1.00 1.00 1.00 = 3.00
Column pointer vector: 1 2 3 412 6 7 8 910 11 5 13 14 15
16

Equations to be solved

’ o 2 o o0 0 1 -1 1 -1 1 -1 0 0 0 -2 0=
’ o o 1 o0 ©0 0 -1 -1 0 0 -1 -1 -1 -2 -1 -1 =
° o o o0 1 o0 o 1 1 1 1 2 2 1 2 2 2=
’ o o o ©0 2 1 1 1 1 1 1 0 2 2 2 2=
6

Upper bounds: 1 1 9 4 1 6 1 1 4 1 2 1 1 1 1 1

The number of possible solutions is: 20

1) 1 0 2 0 1 2 1 0 1 0 0 1 0 0 0
Solution rejected. 1 and 7 occur 3 times together

2) 1 0 1 2 1 2 1 0 1 0 0 0 0 0 0
Solution rejected. 1 and 7 occur 3 times together

3) 1 0 2 1 1 2 1 0 0 0 1 0 0 0 0
Solution rejected. 1 and 7 occur 3 times togethex

4) 1 0 2 1 1 1 1 1 1 0 0 0 0 0 0
Solution rejected. 1 and 7 occur 3 times together

5) 1 0 3 0 1 1 1 1 0 0 1 0 0 0 0
Solution rejected. 1 and 7 occur 3 times together

6) 1 0 3 0 1 1 1 0 0 0 0 1 1 0 0
Solution rejected. 1 and 7 occur 3 times together

7) 1 0 2 2 1 1 1 0 0 0 0 0 1 0 0
Solution rejected. 1 and 7 occur 3 times together

8) 1 0 3 1 1 1 1 0 0 0 0 0 0 1 0
Solution rejected. 1 and 7 occur 3 times togetherxr

9) 1 0 3 1 1 0 1 1 0 0 0 0 1 0 0
Solution rejected. 1 and 7 occur 3 times together



10) 1 0 4
Solution rejected.
11) 1 0 1
Solution rejected.
12) 1 0 2
Solution rejected.
13) 1 0 2
Solution rejected.
14) 1 0 2
Solution rejected.
15) 1 0 3
Solution rejected.
16) 1 0 2
Solution rejected.
17) 1 0 3
Solution rejected.
18) 1 0 3
Solution rejected.
19) 1 0 3
Solution rejected.
20) 1 0 4
Solution rejected.

1
and
0
and
0
and
0
and
0
and
0
and
0
and
0
and
0
and
0
and
0
and

HOMOROHOKFRHMRORORRROMMMO

0

7 occur

3

7 occur

3

7 occur

3

7 occur

2

7 occur

2

7 occur

2

7 occur

2

7 occur

2

7 occur

1

7 occur

1

1

1

1

1

1

1

1

1

1

0
times

times
times
times
times
times
times
times
times

times

WO WHWODWOWOWH WHWOWO WO W

times

0 0
together
0 0
together
0 1
together
0 0
together
0 0
together
0 0
together
0 0
together
0 0
together
0 1
together
0 0
together
0 0
together

Pair Table

R ERERON
SN NN
N B o
N s
WN N

Original System of Equations

2.00 2.00 1.00
2.00 0.00 3.00
0.00 3.00 1.00

1.00
1.00
4.00

0.00 =

4.00
2.00

12.00
20.00
12.00

0

0

0

0

0

0

0

0

0

0

0



Equations in Row Echelon Form

1.00 0.00 0.00 -1.00 -1.00 = 1.00
0.00 1.00 0.00 1.00 0.00 = 2.00
0.00 0.00 1.00 1.00 2.00 = 6.00
Column pointer vector: 1 2 3 4 5

Equations to be solved

1 0 0 -1 -1 = 1
0 1 0 1 0 = 2
0 0 1 1 2 = 6

Upper bounds: 9 1 6 1 1
The number of possible solutions is: 2
1) 2 1 5 1 0
Solution rejected. 2 and 4 occur 4 times together

2) 3 1 3 1 1
Solution rejected. 2 and 4 occur 4 times together

1 1 2 1
3 0 2 1
0 0 4 0
2 1 3 0
4 0 3 0
Pair Table
2 1 1 1 1
1 3 1 1 3
T 1 3 2 2
11 2 2 3
1 3 2 3 5

Original System of Equations

1.06 1.00 0.00 0.00 0.00 = 6.00
2.00 2.00 4.00 3.00 3.00 = 25.00



00
.00

Il

.00
.00

0
4

.00
.00

1
2

.00
.00

0
0

.00
.00

0
3

.00

.00

Equations in Row Echelon Form

.00
.00
.00
-1.00

4

0.00 -1.00

.00
.00
.00

0
0
1
0.

.00
.00
.00
.00

0
1
0
0

.00

.00
.00
.00

1
0
1

.00
.00
.00

0
0
1

.00
.00

.00
Column pointer vector:

00

1

4 has LHS >= 0, RHS < 0

Equation

*** Block vector rejected

46

Case

Distribution Vectors

S o N

— N

N

Pair Table



Original System

O COOORRrRONOR
O .

o)

S O
(o) (e}

O .
o

o o
fololol ol o

1.00
6.00
2.00
20.00
0.00
4.00
1.00
9.00
1.00
4.00

1.00 1.00
1.00 1.00
1.00 1.00
2.00 1.00
0.00 2.00

1.

1.

0.

3.

1.

of Equations

00 1
00 0.
00 1
00 3
00 2

Equations in Row Echelon Form

1.

1.

00
0.00
00

0.00
0.00
1.00
2.00
0.00
3.00
0.00
1.00
0.00
3.00

0.00 0.00
0.00 0.00
1.00 0.00
0.00 1.00
0.00 0.00

Column pointer vector:

Equations to be solved

[eNeNoNoN

OO O o

OO H OO

Upper bounds:

\

orooo
HFoooo
o R OM

0.

0.

0.

0.

00 -1
00 0.
00 1
00 1
.00 0.
2 3
1 0
1 -1
1 0
0 1
0 1
1 1

.00

00

.00

.00

.00

.00

00

.00

.00

00

OO

The number of possible solutions is:

1) 2 2 1
Solution rejected.
2) 3 1 1
Solution rejected.

3) 3 2 0
Solution rejected.
4) 4 1 0

Solution rejected.
5) 2 3 1
Solution rejected.
6) 3 2 1
Solution rejected.

VGO U OUNOoOUoWwWwowo

1
and
1
and
1
and
o1
and
1
and
1
and

0 1
7 occur
0 1
7 occur
0 1
9 occur
0 1
9 occur
0 0
8 occur

WO WO WOWOoO Wwo w

.00

0.00

-1.

R ooR

6

1
times

times

times

times

times

times

0.00 O
3.00 3
1.00 0.
0.00 2
1.00 O.
0.00 -1

.00 0.
0.00 1.
1.00 O.
1.00 1.

.00

.00

00

.00

00

.00

00

00

00

00

1

1.

.00

.00

.00

.00

.00

.00

.00

.00

.00

00

8 910 11 12

0 0
together
1 0
together
0 1
together
0 0
together
0 1
together
0 0
together

0

0

0

1

0

1

Wk WwNho

.00

.00

.00

.00

.00

.00

.00

.00

.00

.00



0 1 2 1
3 0 2 1
1 2 1 1
2 3 0 1
1 1 3 0
2 2 2 0
0 4 1 0
3 3 1 0
Pair Table
2 2 1 1 2 1 1 0
2 5 2 3 3 3 0 3
12 1 2 1 0 2 2
1 3 2 4 0 2 3 4
2 3 1 0 3 2 2 2
1 3 0 2 2 2 2 3
1 0 2 3 2 2 4 3
0 3 2 4 2 3 3 5

Original System of Equations

1.00 1.00 1.00 1.00
2.00 2.00 1.00 0.00
1.00 0.00 2.00 3.00
0.00 3.00 1.00 2.00
Equations in Row Echelon
1.00 0.00 0.00 0.00
0.00 1.00 0.00 0.00
0.00 0.00 1.00 0.00
0.00 0.00 0.00 1.00

Column pointer vector:

Equations to be solved

cocor
cor o
or oo
o oo
oNv o
=

Upper bounds: 9 1 6

0.00
3.00
1.00
1.00

Form

-1.00
0.00
2.00
0.00

1 2

3

HNONN

NN O

=

.00
.00
.00
.00

.00
.00
.00
.00

It

5

O b O

.00
.00
.00
.00

.00
.00
.00
.00

6

7

w W+ o

HNON

.00
.00
.00
.00

.00
.00
.00
.00

8

I

.00
.00
.00
.00

.00
.00
.00
.00




The number of possible solutions is:

WHOWOWHFOWRF WO

7

times

times

times

times

times

together

together

together

together

together

1) 4 0 1 1
Solution rejected. 5
2) 5 0 0 1
Solution rejected. 5
3) 3 0 3 1
4) 4 0 2 1
Solution rejected. 7
5) 5 0 0 0
Solution rejected. 5
6) 4 0 2 0
7) 5 0 1 0
Solution rejected. 6
Check equations: 3
Case 48

0 1 2 1
2 1 1 1
4 1 0 1
2 0 3 0
1 2 2 0
4 0 2 0
3 2 1 0
5 2 0 0
Pair Table
2 1 1 2 2 1 1
11 2 1 1 1 1
i 2 4 1 1 3 3
2 1 1 3 2 3 1
2 1 1 2 3 1 2
1 1 3 3 1 4 2
1 1 3 1 2 2 3
1 3 5 2 3 4 5

S U W N U W

Original System of Equations

1.00 1.00 1.00 O.
2.00 1.00 0.00 3.
1.00 1.00 1.00 O.

00
00
00

1 1
7 occur
0 1
7 occur
1 1
0 1
8 occur
2 1
7 occur
2 1
1 1
8 occur
6 7
1 0
0.00 0.00
2.00 2.00
2.00 0.00

0.00
1.00
2.00

0.00
0.00
2.00

I

6.00
15.00
8.00



0.00 2.00 4.00

2.

00

1

.00 4.

Equations in Row Echelon Form

1.00 0.00 0.00
0.00 1.00 0.00
0.00 0.00 1.00
0.00 0.00 0.00

0
0
0
1

.00
.00
.00
.00

Column pointer vector:

Equations to be solved

OO O
O OO
[N Sl el el
o oo

Upper bounds: 9

oo NP

O

-1
2
0
0

.00 -
.00
.00
.00
2 4

o R R

00

.00
.00
.00
.00

5

The number of possible solutions is:

1) 3 2 1
Solution rejected.
2) 2 4 1
Solution rejected.
3) 4 1 1
Solution rejected.
4) 5 0 1
Solution rejected.

3) 3 3 1
Solution rejected.
6) 4 2 1

Solution rejected.

NOoOwWoOwowowr wir

1
and
0
and
1
and
1
and
0
and
0
and

1 0
6 occur
1 0
6 occur
1 1
6 occur
1 0
6 occur
1 1
6 occur

WHWOWHWOWO WO

.00
.00
.00
.00
3 6

O b

NG

6

times

times

times

times

times

times

7

.00 =
.00 =
.00 =
.00 =
8

o NN

together
together
together
together
together

together

PorRrROoOOR KO
M NHENNDOEHO
ENNMNMWEDNDOR

MNNOoOOoORFRFEDNN

COHP PR PR

15.

S

00

.00
.00
.00
.00




<t ™M

Pair Table

Original System of Equations

.00 1.00 1.00 1.00 1.00 1.00 0.00 ©0.00 ©0.00 0.00 0.00

.00

00
.00

.00 1.00 0.00 0.00 2.00 2.00 1.00 1.00 0.00

1

2

.00
.00

10.00

0

i

3.00 5.00

.00

.00

2.00 1

2.00 1.00 3.00 2.00

.00

.00

4.00

20.00

0.00 1.00 0.00 2.00 1.00 2.00 1.00 2.00 0.00 1.00 0.00
6.

2.00

00

.00 1.00 1.00 0.00 0.00 1.00 0.00 1.00 ©€0.00 1.00 1.00
.00

.00

I

0

Equations in Row Echelon Form

0.00 -1.00 -1.00 -

0.00 -1.00

0.00 -1.00

.00 0.00 0.00 0.00

00

.00
.00
-3.00

0

I

1.00 -1.00 0.00 -1.00 -

0.00 -1.00

.00

0

.00

.00 O

0

1

0.00

1.00

1.00 0.00 0.00 1.00 1.00 0.00 1.00 1.00 2.00

.00

0.00
.00

00
.00

.00 1.00 0.00 1.00 1.00 0.00 0.00 0.00 0.00

0

0

.00
.00

.00
.00

.00 0.00 1.00 0.00 0.00 1.00 1.00 1.00 1.00

0

0

.00

.00
Column pointer vector:

.00

9 10 11 12

8

1

Equations to be solved



Upper bounds: 11 5 1 3 1 3 1 1 3 1 1

The number of possible solutions is: 3

1) 1 0 2 0 3 0 3 0 0 0 0 0
2) 1 1 1 0 2 0 3 0 1 0 0 0
Solution rejected. 1 and 2 occur 3 times together
3) 1 0 2 1 2 0 2 0 1 0 0 0
Check equations: 1 3
Case 50

Pair Table

2

Original System of Equations

1.00 = 6.00
3.00 = 36.00
1.00 = 3.00

Equations in Row Echelon Form

1.00 = 12.00

0.00 = -6.00
0.00 = =9.00
Column pointer vector: 1
Equation 3 has LHS = 0 and RHS !'= 0

**x* Block vector rejected



Distribution Vectors

0 0 0 4
1 0 1 3
2 1 0 3
3 1 1 2
Pair Table
2 1 1 0
1 1 0 2
1 0 2 3
0 2 3 5

Original System of Equations

4.00 3.00 3.00 2.00 = 230.00
0.00 1.00 0.00 1.00 = 4.00
0.00 0.00 1.00 1.00 = 3.00
0.00 1.00 2.00 3.00 = 6.00

Equations in Row Echelon Form

1.00 0.00 0.00 -1.00 = 3.75
0.00 1.00 0.00 1.00 = 4.00
0.00 0.00 1.00 1.00 = 1.00
0.00 0.00 0.00 0.00 = 2.00
Column pointer vector: i1 2 3 4

Equation 4 has LHS = 0 and RHS != 0
*** Block vector rejected



Pair Table

O RNNDW
R =N
N ONR N
WRNOM R
W R
TWwNE o

Original System of Equations

4.00 3.00 3.00 2.00 2.00 1.00 = 25.00
0.00 1.00 0.00 2.00 1.00 2.00 = 8.00
0.00 0.00 2.00 1.00 2.00 3.00 = 9.00
0.00 1.00 0.00 ©0.00 1.00 0.00 = 2.00
Equations in Row Echelon Form
1.00 0.00 0.00 0.00 -1.00 -1.00 = 1.00
0.00 1.00 0.00 0.00 1.00 0.00 = 2.00
0.00 0.00 1.00 0.00 1.00 1.00 = 3.00
0.00 0.00 0.00 1.00 0.00 1.00 = 3.00
Column pointer vector: 1 2 3 4 5 ¢
Equations to be solved
1 0 0 0 -1 -1 = 1
0 1 0 0 1 0 = 2
0 0 1 0 1 1= 3
0 0 0 1 0 1= 3
Upper bounds: i 2 3 3 2 1

The number of possible solutions is: 1

1) 1 2 3 3 0 0
Check equations: 1
Case 53



H oo
U N O
O RN W

Pair Table

O RN WS
HoNN W
BEEESENEN
B wWR o
b wkPE o

Original System of Equations

4.00 3.00 2.00 1.00 0.00 = 20.00

0.00 1.00 2.00 4.00 5.00 = 20.00

0.00 1.00 2.00 0.00 1.00 = 4.00
Equations in Row Echelon Form

1.00 0.00 0.00 -1.00 -1.00 = 1.00

0.00 1.00 0.00 2.00 1.00 = 4.00

0.00 0.00 1.00 0.00 1.00 = 4.00
Column pointer vector: i 2 4 3 5

Equations to be solved

1 0 0 -1 -1 = 1

0 1 0 2 1= 4

0 0 1 0 1 = 4
Upper bounds: 1 4 1 2 1

The number of possible solutions is: 0




Pair Table

N W,
O W
DN O
N =N

Original System of Equations

3.00 2.00 1.00 0.00 = 15.00
0.00 2.00 4.00 4.00 24.00
2.00 1.00 0.00 2.00 = 6.00

Equations in Row Echelon Form

1.00 0.00 0.00 -1.00 = -3.00

0.00 1.00 0.00 2.00 = 12.00

0.00 0.00 1.00 0.00 = 0.00
Column pointer vector: 1 2 4 3

Equations to be solved

1 0 0 -1 = -3

0 1 0 2 = 12

0 0 1 0 = 0
Upper bounds: 1 9 1 6

The number of possible solutions is: 2
1) 1 4 0 4

Solution rejected. 1 and 2 occur 3 times together
2) 0 6 0 3

Check equations: 2

Finished at 26-JUN-1989 23:13:23.19



