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ABSTRACT

study of the Finite Difference~Time Domain (FDTD) numerical technique, which is

based on the finite—difference solution of the time-dependent Maxwell’s curl equa-
tions and its application to scattering and antenna problems, is done together with a develop-
ment of a general purpose FDTD code. A stability study of the FDTD method is conducted
which involved the effect of the spatial step size of the FDTD lattice, the pulse width of the
excitation plane wave, the distance between the modeled target and the lattice walls, and the
use of different Absorbing Boundary Conditions (ABC) on the FDTD solutions. This study
is also extended to investigate the accuracy and limitations of using non—uniform gridding
inside a FDTD mesh. The FDTD code was then applied to scattering problems of both con-
ducting and dielectric structures, and also included a comparative analysis of three different
FDTD thin wire modeling procedures. Also, using FDTD, a study on the EMP field penetra-
tion into a cavity is done through the computation of the transient response and frequency
content of fields inside a cavity for different aperture and lossy wall configurations. For an-
tenna applications, design curves relating the cross—polarization radiation field levels to the
feed location are obtained for a transmission line—fed rectangular microstrip patch antennas
modelled using the FDTD.

In the application of the FDTD method to scattering problems, the transientresponse
of conducting and dielectric circular cylinders due to a step plane wave is computed and the
correspondence between the transient response and the rise time of the excitation wave is
investigated. The transient response of conducting and dielectric spheres illuminated by a
Gaussian plane wave is also computed using the FDTD method and compared with those
obtained from analytic solution.

Also the field penetration inside a conducting box with an open top illuminated by an
EMP plane wave is computed. The effect of changing the aperture geometry and loading the
box with lossy material on the field magnitude and frequency content inside the box is ana-
lyzed. It is observed that the aperture edges geometry having the smaller edge size perpen-
dicular to the polarization of the incident plane wave resulted in a significant reduction of the
transient field magnitude at the early time in addition to a resonance phenomena. Adding the
absorbing material on the aperture wall reduced the transient field magnitude penetrating in-
side the box cavity, while adding the absorber at the inner walls caused the field resonance to
atienuate at a faster rate.

The performance of different thin wire modeling procedures in the FDTD technique
is investigated, where the current magnitude and phase distribution along thin dipoles are




computed using three modeling procedures. The computed results are compared with those
obtained from the Method of Moments (MoM).

In the applications to antennas, the FDTD method is used to analyze the input and
radiation characteristics of a line fed rectangular microstrip patch antenna and the effect of
the transmission line location along the patch length on the co—polar and cross—polar radi-
ation field levels is investigated for three paich sizes.

if
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Unless otherwise stated, the symbols most commonly used in this thesis have the
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Gradient operator.
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x, ¥, z—component of the magnetic field intensity.
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FDTD time step index.

point location in the space of a FDTD lattice.
FDTD lattice space increment.
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INTRODUCTION

Generally, geometries with complex shapes and material composition constitute a
broad class of important practical problems in electromagnetic engineering. To solve them
one requires the determination of the scattering or antenna parameters obtained from the so-
lution of the respective boundary value problems. Obtaining such parameters, using either
analytic or numerical techniques, will provide an efficient and inexpensive way to analyze
specific electromagnetic problems or to arrive at a final antenna design to be examined ex-
perimentally. In electromagnetic applications, the knowledge of the current distribution on
the body is sufficient to determine other electrical quantities that are important in the analysis

of such applications.

In recent years, the effect of impulsively excited electromagnetic bursts, resulting
from lightning or nuclear bursts, on electronic equipment, devices and installations have
raised the interest in electromagnetic transient field penetration and coupling into structures
that are complex both in shape and physical parameters. Also, the development of the tech-
nology necessary to obtain the transient solution to electromagnetic scattering problems di-
rectly in the time—domain has coincided with a growing interest in wide—band radar design
for high resolution and target—classification cases. The transient response of a specified ob-
ject when illuminated by an incident pulse will provide [1] first, all the information about
the electromagnetic scattering properties of the target over the frequency band defined by
the incident smoothed impulse. Second, the radar cross—section can be obtained from the im-
pulse response by a Fourier transform. Third, the response of the target due to any wave form
can be obtained from the impulse response by a simple convolution procedure. Finally, the
impulse response can provide a better understanding of electromagnetic scattering phenom-

€na.

The analysis of the electromagnetic interaction with such complex structures will be

difficult to achieve analytically since, generally, the geometry of such structures will not
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match with the known orthogonal coordinate systems. In this case the problems will be lim-
ited to structures whose surface coincide with the coordinate surfaces of a separable coordi-

nate system.

Approximate techniques such as the geometrical optics, physical optics, and the Ray-
leigh approximation, which treat scattering and diffraction as local phenomena, are applied

to obtain estimates of the scattered response.

With the advent of digital computer capabilities that can keep track of the geometri-
cal details of a body in addition to any associated numerical computations, developed numer-
ical techniques capable of solving electromagnetic interaction problems are only limited by

the characteristics of the formulation and the storage capability and speed of the computer.

Two different numerical methods can be used to handle such problems. In traditional
methods, the scattering problems are commonly solved in the frequency—domain. In these
methods, the computation of the frequency response of the structure is followed by the Fouri-
er transformation of the response. This means, the frequency—domain data must be generated
at an adequate number of frequencies to enable the Fourier transform computation. The alter-
nate approach is to solve the problem in the time—domain, so that the required time—domain

responses can be generated directly.

Frequency—domain methods provide the response of an object for all angles of inci-
dence at a single frequency, while time—domain methods provide solutions for many fre-
quencies from a single transient calculation resulting from an incident wave arriving from

a particular direction.

Because the frequency—domain techniques have been the traditional way of solving
electromagnetic problems, a large number of general or dedicated numerical codes are al-
ready available. This facilitates the use of frequency—domain codes. However, the radar scat-
tering problems normally deal with objects in free space. Consequently, all numerically effi-
cient codes deal with integral equation formulations that reduce the problem to one that deals
with the unknown field quantities on the object’s surface. Unfortunately, the use of the inte-
gral equation formulations requires the Green’s functions of unbounded regions. This re-
quirement restricts the formulation to conducting or homogeneous objects. Inhomogeneous

objects can also be handled, but will require a volume integral equation, which normally re-

Chapter I



Introduction

quires an excessive computation time. In addition, because integral equations are valid over
the entire surface or volume distribution of the sources, their solution, using a linearization
process, i.e. an application of the moment methods, reduces to a solution of a matrix equa-
tion. The resulting matrix is dense and its size increases with the object size. Consequently,
the method is useful only for small objects, especially when non—conducting or coated con-
ducting objects are to be investigated. This limitation of small object size, with respect to
the wavelength, restricts the accurate computation of the frequency—domain data to low and
intermediate frequencies, and in generating the time—domain data limits their accuracy. Nev-
ertheless, excellent solution techniques and codes are developed that can handle varieties of

object configurations and complexities.

The use of integral equation formulations in the time—domain overcomes the diffi-
culty of generating numerous frequency—domain data for a Fourier transform. However,
they again use the Green’s function of the unbounded regions, and consequently the most
efficient codes that use surface integral equations are restricted to conducting or homoge-
neous objects. For inhomogeneous objects the volume integral equation must be used which

increases computation time.

Another method which is used in the time—domain analysis is the Singularity Expan-
sion Method (SEM) [2]. In SEM the method of moments is employed where the zeroes of
the determinant of the system matrix define the locations of the natural resonances of the
structure in terms of exponentially damped sinusoids, hence using frequency—domain for-
mulations. SEM pole singularities can be also derived directly from its time—domain re-
sponse [3]. This approach can be employed to substantially reduce the computation time,
achieved by extrapolating the time-domain response that has been computed only for earlier

time steps.

Time—domain analysis is also obtained by different techniques that are based on solv-
ing Maxwell’s equations directly in time-domain by the use of finite-difference techniques.
The time—domain Maxwell’s equations represent a more general form than the frequency—
domain Helmholtz equations, which are usually resiricted to solving scattering problems
having time harmonic fields, whereas time—domain approach can handle continuous waves

as well as a single—pulse transient response.
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One technique which have been used recently utilizes the Computational Fluid Dy-
namics (CFD) techniques to solve Maxwell’s equations [4]. This technique, which is re-
ferred to as the time—domain finite—volume (TDFV) , is based on the Riemann integration
method [5]. This technique has been used to solve arange of problems involving electrically
large scatterers, inhomogeneous and layered dielectrics, cavities, frequency dependent ma-

terials, and some canonical radiation problems [6].

A second technique solves Maxwell’s equations in the differential form using the
point-matched finite—element formulation [7]. This formulation allows the use of conform-

ing mesh generation which is adopted in the finite—element technique.

Another scheme is the Transmission Line Method (TLM) [8,9]. This method al-
though a transmission line simulation of Maxwell’s equations, is in essence an explicit time—

domain technique that solves Maxwell’s equations in the differential form.

One last scheme, which is the one adopted in this thesis, solves the differential form
of the time dependent Maxwell’s equations is the Finite Difference—~Time Domain (FDTD)
method. This method applies a simple second—order accurate central-difference approxima-
tions [10] for the space and time derivatives of the electric and magnetic fields directly to
the respective differential operators of the curl equations. This technique is fully explicit and

there is no need to setup or solve a system of linear simultaneous equations.

In Chapter II, the theory and formulation of the FDTD method is presented,as well
as, the mechanism of how the technique operates. A literature survey that summarizes the
advances and the areas of research fields to which the FDTD method has been applied to,

1s also included.

In Chapter I, a stability study involving the FDTD method is done.It included the
use of Absorbing Boundary Conditions (ABC) in truncating the FDTD lattice, and the effect
of the spatial and time step sizes of the lattice on the FDTD solution in both uniform and non—

uniform meshes.

In Chapter IV, the application of the FDTD method to scattering problems is implem-
ented. The transient response of a circular cylinder and a sphere geometry illuminated by

transient pulses is computed for both conducting and dielectric cases, and compared with
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analytical solution in the sphere case. Also in this chapter, the field penetration inside a con-
ducting box with an open top illuminated by an EMP plane wave is computed and the effect
of changing the aperture geometry and loading the box with lossy material on the field mag-
nitude and frequency content inside the conducting box is analyzed. This chapter also inves-
tigates the capability of the FDTD method to model thin conducting wires where different
thin wire modeling procedures are used to compute their corresponding current magnitude

and phase distribution along their lengths.

The application of the FDTD method to antenna analysis is discussed in Chapter V,
where the FDTD technique is used to model and analyze the input and radiation characteris-
tics of a line fed rectangular microstrip patch antenna. The effect of the transmission line lo-
cation along the patch length on the co—polar and cross—polar radiation field pattern levels

is studied, and curves relating cross—polarization levels to feed location are obtained.

Chapter VI includes the conclusions of the work presented and some recommenda-

tions for future work.
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THEORY AND REVIEW OF THE FINITE D1rFERENCE-TIME Doman (FDTD)
METHOD

2.1. Theory and Formuliation

The Finite Difference~Time Domain (FDTD) method is a direct solution of the time—
dependent Maxwell’s curl equations in time—domain by use of finite—difference technique,
It is analogous to existing finite—difference solutions of fluid flow problems encountered in
computational aerodynamics where the numerical model is based on a direct solution of the
corresponding partial differential equation. In FDTD the propagation of an electromagnetic
wave into a volume of space containing a dielectric or a conducting structure or their combi-
nation is being modeled. By time stepping, the incident wave is tracked as it first propagates
to the structure and then interacts with it through current excitation, diffusion, penetration

and diffraction.

2.1.1. FDTD Algorithm Details

The FDTD numerical technique treats the irradiation of the scatterer as an initial val-
ue problem. At 7=0, a plane wave excitation is assumed to be turned on. The propagation of
waves from this source is simulated by solving a finite—difference analog of the time—de-
pendent Maxwell’s equations on a lattice of points including the scatterer. In a region of
space which is source—free constituting of electrical parameters that are independent of time,

Maxwell’s time—dependent curl equations are given by,

& Lyxe
ot 7/
(2.1)
& _1 vxH-ZE
at € €
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where E is the electric field in volts/ meter ; H is the magnetic field in amperes/ meter ; €
is the electrical permitivity in farads/ meter ; |1 is the magnetic permeability in henrys/ meter;
G is the electrical conductivity in mohs/ meter. Assuming isotropic physical parameters,

Maxwell’s equations can be written in the rectangular coordinates (x, y, z) as,

i Il @22
oHy, _ 1|0E, 95,
@ ;| ax 8z (2.2b)
OH, _ 1}8E. 3k )
ot By oy ox (2.2c)
3E, 1 |oH, oH,
= - -2 _gE
3 el ay ez * (2.32)
0E, 1 |8H, oH,
it A _ _oE
3t el oz a7V (2.3b)
3E, 1| oM, oH,
= — | —= — —= —gE
3t e | o " oy z (2.3¢0)

Equations (2.2) and (2.3) are a system of six coupled differential equations which forms the
basis of the FDTD algorithm for electromagnetic wave interactions with general three—di-
mensional objects. Following Yee’s [10] notation of applying a set of finite—difference equa-

tions for the system of (2.2) and (2.3) a space lattice point is denoted as

(Lj,k) = (A ,jA kA ) (2.4)

and any function of space and time as
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F* (@, j, k) = F (iA ,jA kA ,ndt) (2.5)
where A = Ax = Ay = Az is the lattice space increment, 8¢ is the time increment, (i, , k) are

integers denoting the location inside the FDTD lattice, and n is an integer denoting the time

stepping index.

Yee uses the central-difference expressions for the space and time derivatives that

are both second order accurate in A and 9, respectively,

n o FG+L k) - F (-1 )k
oF ;;,j,k) _ (+5,7 )A (i—7,J,) + 0(AD) 26)

n e n+1/20; 1 1y — FU2( G
oF (glt,j,k) _F (z,J,k)atF LB o062 2.7)

To achieve the accuracy of (2.6), and to realize all the space derivatives of (2.2) and (2.3),
Yee positioned the components of E and H about a unit cell of the lattice as shown in Fig.
2.1

Z
Y Efi j k+1)
Foom
X /E Hz(i,j,k+1€/5
Eijk+1) i !
! b Bk | Eirthet
P8 i 8 ..
E E{ij K ] Efij+1,K
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Fig.2.1  Position of the Field Components about a Unit Cell of the Yee Lattice.
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To achieve the accuracy of (2.7), he evaluated E and H at alternate half time steps. The results
of these assumptions is the following system of finite—difference equations! for the systems

of (2.2) and (2.3),
L
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1
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with this system of equations the new value of a field vector component at any lattice point
depends only on its previous value and on the previous values of the components of the other
field vector at adjacent points. Hence, at each time step, the system of equations to update
the field components is fully explicit, so that there is no need for setting up or solving a sys-

tem of linear simultaneous equations.

2.1.2. EM Wave Tracking Proceduire

Figure 2.2 shows the time—domain wave iracking procedure by the FDTD technique
and also summarizes the basic elements of the FDTD space lattice. A region of space con-
taining an arbitrary structure is selected where the field values are to be computed. This re-
gion is bounded by lattice truncation planes that are to be transparent to waves scattered away
from the structure being modeled. The modeling of the structure inside the FDTD lattice is
done by allocating the corresponding physical parameters that characterize the structure at
locations defined by the grid nodes matching with the structure geometry. Initiaily, all the
fields are set to zero within the region. An incident plane wave is assumed to enter the region
at that time. This plane wave will propagate inside the modeled region by implementing the
march—in—time procedure of the finite—difference analog of Maxwell’s curl equations of
(2.8) and (2.9). Time stepping continues as the numerical analogue hits the structure em-
bedded within the sampled region. Waves scattered away from the structures ideally will
propagate through the lattice truncation planes with minimum reflections modeling in this
case an open space region. All eleciromagnetic phenomena such as induction of surface cur-
rents, scattering and multiple scattering, field penetration into cavities are modeled at each
time step by the action of the curl equation analog. Self—consistency of these modeled phe-

nomena is generally assured if their spatial and temporal variations are well resolved by the
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space and time sampling process. Time stepping is continued until the desired late—time
pulse response or steady—state behavior is achieved. No special handling of electromagnetic
boundary conditions at the media interface is required because the curl equations generate
these conditions naturally. In this case, inhomogeneities or fine details of the structure can
be modeled with a maximum resolution of one unit cell. Curved surfaces are, generally, mod-
eled by stepped edge surfaces when using the traditional FDTD meshing procedure, while
at other cases specialized cells that take into account curved surfaces are used. llustration

of such modeling procedures will be presented later in this chapter.

Scattered Wave .
FDTD Lattice

Truncation
//_\ Planes
[]

Unit cell [ /

[ ]

(]

S, 1
e D

ooooooo

Arbitrary Structure
(Scatterer) .~ R e-mmo---

= > Incident Plane Wave

Scattered Wave

Fig.2.2  Plane wave scattering by an arbitrary structure inside a FDTD lattice.
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2.1.3. Numerical Stability

The accuracy of the computed field quantities, as well as, the stability of time step-
ping algorithm in FDTD is very much related to the spatial step A and time step increment
S, respectively. The choice of A and 9t is such that the velocity of the numerical signals in
the FDTD lattice should not be less than the velocity of light in the medium being modeled.

This is satisfied in the following relation,

L
1 1 I

Cmax being the maximum wave phase velocity expected within the model. For a uniformly
grided mesh A = Ax = Ay = Az. To insure the accuracy of the computed spatial derivatives

of the electromagnetic fields, A must be small compared to the smallest wavelength. A value
of A<\ 20[11]is suggested, which will provide an uncertainty in the computed field magni-
tudes to less than+2%. Also A should be small enough to accurately model in detail the object

being modeled.

2.1.4. Numerical Dispersion

Numerical dispersion is also a factor in FDTD modeling that must be accounted to
understand the operation of the algorithm and its accuracy limits. A detailed analysis of this
phenomena is reported in [12] by A. Taflove. The numerical algorithm for Maxwell’s curl
equations represented by the finite—difference equations of (2.8) and (2.9) causes the phase
velocity of the numerical modes in the FDTD lattice to vary with modal wavelength, direc-
tion of propagation, and lattice discritization. Such numerical dispersion can lead to non-

physical phenomena, such as pulse distortion, artificial anisotropy, and pseudorefraction.

When comparing the numerical dispersion relation, and the analytical dispersion re-
lation for a plane wave in a continuous lossless medium, Taflove concluded that the numeri-
cal dispersion in FDTD can be reduced to any desired degree if only a fine—enough FDTD
gridding is used. He also suggested that pulse distortion can be bounded by obtaining the
Fourier spatial frequency spectrum of the desired pulse, and selecting a grid cell size such

that the principle spectral components are resolved with at least 10 cells per wavelength.
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Such grid division will limit the spread of numerical phase velocities of the principle spectral

components to less than 1%, regardless of the wave propagation angle in the grid.

Numerical dispersion can also lead to pseudorefraction of propagating modes if the
cell size inside the FDTD lattice is a function of position inside the lattice. Such variable cell
gridding will also vary the grid resolution of propagating numerical modes, hence perturbing
their modal phase velocity distribution that will lead to nonphysical reflection and refraction
of propagating modes at interfaces of grid regions having different cell sizes. Such a phe-
nomena will be similar to that of physical waves undergoing reflection and refraction at in-
terfaces of dielectric media having different refraction indices. Numerical examples on the

use of non—uniform gridding in a FDTD lattice will be presented later in this thesis.

2.1.5, Lattice Zoning and Plane wave Excitation

The FDTD code developed is based on the formulation explained in [13]. This for-
mulation involves the division of the FDTD lattice space into two distinct regions separated
by rectangular surfaces which serves to connect the fields in each region as shown in Fig.
2.3. Region (1) of the lattice is denoted as the total-field region where all computed field
quantities are comprised of the sum of the incident and the scattered fields. The interacting
structure of interest is embedded inside this region. External to region (1) isregion (2) of the
FDTD lattice and is denoted as the scattered field region. Hereitis assumed that all computed
fields are comprised only of the scattered field. The outer lattice planes bounding region (2)
are the lattice truncation planes where absorbing boundary wall algorithms is to be implem-

ented to simulate free space radiation.

The incident wave, generated along one edge of the surface connecting the two re-
gions, propagates through the total field region and is subtracted out the other end. Therefore
the only components of the E and H fields to reach the scattered volume are those which are

scattered off the scatterer.

The above formulation allows the excitation of plane wave of arbitrary incidence and
polarization, which require very small storage, and does not cause any spurious wave reflec-

tions.
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Fig.2.3  Division of FDTD Lattice into Total-fields and Scatterer—field Regions.

2.1.6. Absorbing Boundary Conditions (ABC)

An important drawback to the FDTD method for the case of open space problems
is the fact that the radiation condition is not implicit, i.e. outgoing waves if left alone, would
not simply disappear of the end of the grid defined by E and H arrays, but would reflect back
into the scattering object as if they had hit a ‘wall’ defined by the edge array. The field at the
lattice truncation planes cannot be computed using the central-differencing approach of
(2.8) and (2.9) due to the absence of known field data outside the lattice truncation. Hence,
an auxiliary lattice truncation condition is necessary. This condition must be consistent with
Maxwell’s equations in that the lattice truncation planes will be transparent to any outgoing

waves scattering away from the modeled structure.

Different approaches to provide ‘soft’ laitice truncation where fields incident on the
boundary walls are absorbed are used. Taylor et al. [14] used space extrapolation, where
fields at nodes located inside the lattice are used to compute the field at the walls. Taflove

and Brodwin [15] used averaged extrapolation. They simulated the propagation of an outgo-
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ing wave from the lattice plane adjacent to the truncation to the lattice plane at the truncation
in a number of time steps corresponding to the propagation delay. Merewether, Kunz and Lee
[16,17] used the far field approximation. Applying the technique on a scattered field FDTD
formulation, they assumed that the fields at the nodes will follow the E = f (¢ - r/c )/r'/?
relation. Enyquist and Majda [18] showed that the required lattice truncation condition is
really a radiation condition in the near field. Mur [13] employed the Enyquist and Majda’s
first and second order absorbing conditions which are the first one and two terms of Pade’s

expansion of the exact absorbing boundary condition.

In this thesis two types of ‘soft’ lattice fruncation algorithm are studied, the averaged
extrapolation algorithm which is further improved using the super—absorbing technique of

[19], and the one-way wave equation procedure used in [13].

2.1.7. Curved Surface Modeling

The FDTD algorithm was originally introduced in cartesian coordinate system
where the differential operators occurring in Maxwell’s equations take their simplest form
than in any other system. The use of orthogonal grids produces very accurate results for cases
when surfaces of the modelled target match with the FDTD grid. Furthermore, when work-
ing with plane waves, cartesian coordinates constitute a natural system where such waves
are expressed, i.e. plane waves are eigenmodes of the wave equation when solved on a carte-
sian grid. This minimizes dispersion and/or anisotropy effects that might be introduced by
the numerical approximation. Also, one major advantage of using the orthogonal in FDTD
algorithm lies in the regularity of the nodal coordinates, where the index numbers of each
mode contain the nodal coordinaties. The non—orthogonal element grid requires the storage
of coordinates of all the nodes, which is demanding on memory, especially for three—dimen-

sional problems.

A major drawback that appears in the exclusive use of rectilinear coordinates is when
the modelled target have curved features. Traditionally, curved surfaces, in an orthogonal
grid, are modelled by °‘staircasing’ Fig. 2.4. This might give poor approximation to the

boundary shape unless very fine discritizations are used.
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1
P
Fig.2.4 ‘staircase’ model of a curved surface in FDTD.

Cavities having curved surfaces will have their resonant frequencies slightly shifted
when modelled using ‘staircasing’ technique [20]. To model curved features of scatterers in
FDTD more accurately R. Holland [21] and M. Fusco [22] derived the FDTD algorithm in
curvilinear coordinates by considering that Maxwell’s equations are vector equations that
are valid in any coordinate system. Others [23], used irregular non—orthogonal grids as the
FDTD lattice mesh to model curved surfaces more smoothly. Such procedure resulted in
more accurate compuiations, as well as, an increase in complexity when compared to the
conventional FDTD algorithm. Recently, a variant of ‘staircasing’ has been developed [24]
[7] where the cartesian mesh in the lattice is retained, and cells that are adjacent to the scatter-
er are deformed to take into account the proper scatterer geometry. In [24] Taflove et al. intro-
duced a modified FDTD cell which is based upon Maxwell’s curl equations in integral form.
Curved surfaces are accounted by incorporating field behavior into contour and surface inte-
grals implementing Ampere’s law and Faraday’s law at selected meshes, and by deforming

contour paths as required to conform surface curvature as shown in Fig. 2.5.

Cangellaris et al. [7] used the Conformal Boundary Element method to model geom-
etries with curved surfaces. This technique is applied in a way that relaxes the large memory
requirement by limiting the irregularly shaped elements to the boundary of the scatterer only.
This procedure can be explained briefly by considering the modeling of a conducting cylin-
der. The cylinder is positioned on a rectangular mesh shown in Fig. 2.6, the cylindrical con-
tour intersects the mesh at points that will be the nodes of zero electric field in a 7M mesh

case where the mesh nodes will be the electric nodes. Then the new conformal cells will be
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]
Fig. 2.5 Cell deformation in vicinity of a curved boundary. (contour integration technique)

those made from nodes on the body contour together with some of the neighboring electric
nodes on the regular mesh. These electric nodes will be used for the computation of the mag-
netic fields near the cylinder’s surface. Other field components needed for the regular algo-
rithm procedure are obtained through either extrapolation or interpolation procedures. In this
case, the uniform rectangular mesh is used everywhere in the computational domain except
at the vicinity of the body contour. Only few variety of quadrilateral elements are needed to

conform to the scatterer geometry.

Fig. 2.6 Conformal Boundary Method for modeling curved surfaces.
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2.2. Literature Surveys

In 1966 K.S. Yee, who originally proposed the FDTD technique, used the FDTD
method to solve Initial Boundary value problems in isotropic media in a 2—dimensional
space. He solved for the scattering of an electromagnetic pulse by a perfectly conducting cyl-
inder [10]. Yee truncated his FDTD lattice with conducting walls which resulted in multiple
scattering to occur. Later Taylor et. al [14] applied Yee’s algorithm to study the scattering
of electromagnetic pulse in a time—varying inhomogeneous media. They used Maxwell’s
equations in the cylindrical coordinate system. Merwether [16] used it to compute transient
currents induced on a metallic body of revolution by an electromagnetic pulse (EMP). Both
latter researchers applied Absorbing Boundary Conditions (ABC) to truncate the FDTD lat-

tice walls.

The FDTD method was also used for closed region problems. Choi and Hoefer [25]
used it to obtain the resonance frequencies of inhomogeneous lossless cavities and the propa-
gation phase constant of various lossless microwave structures. FDTD method was also used
to study a number of waveguide related problems [26,27]. The dispersion behaviour of wa-
veguide—shielded microstrip line was investigated in [28]. Also the study of TE, and TM,

modes in dielectric resonators was done in [29].

The use of FDTD for solving electromagnetic coupling problems has progressed
very rapidly with the advent of computer technology in terms of high speed and large
memory computers. One main application of FDTD is to compute the transient response of
complicated structures illuminated by pulsed plane waves. These transient responses are,
sometimes, obtained to study the effect of lightning or EMP on structures . A bulk of such
applications was done by R. Holland [30] in the development of THREDE code which is
based on a scattered field formulation of FDTD. Additional work was also done to study the
response of slowly dying electromagnetic pulse on complex structures [17,31-33]. These
researchers showed that computations from FDTD were accurate when compared with mea-

sured data.

On other instances the transient response data obtained from FDTD computations

was used to compute steady state information over a wide range of frequencies by the use
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of Fourier transformation. C. Britt [34] computed the Radar Cross—section (RCS) of a circu-
lar cylinder, sphere and other three—dimensional geometries from the FDTD transient re-
sponse computations and using a Gaussian pulse excitation. R. Lubbers et. al. [35] presented
an efficient method to transform FDTD results to the far zone in the time-domain and then
used FFT to obtain the frequency-domain data for number of frequencies. K.S. Yee et. al.
[36] also presented a shceme to extrapolate FDTD calculated scattered fields to the far zone.
The computation of the frequency response data requires the running of the FDTD code for

late times to insure that all resonance phenomena inside the lattice has died.

The same concept in computing the frequency response data from time—domain in-
formation was applied successfully to microstrip structures. K. Mei et. al studied the charac-
teristics of microstrip discontinuities and computed their corresponding dispersion charac-
teristics over a large range of frequencies [37,38]. Sheen et. al. [39] applied the same
technique for the analysis of planar microstrip circuits. Their results were very accurate
when compared with measured data. Microstrip patch antennas were also analyzed in [40].
W. Ko and R. Mittra [41] combined FDTD with Prony’s method in Microstrip circuit analy-
sis to extrapolate the long time record required fo accurate frequency—domain scattering pa-

rameters from a relatively short FDTD time record.

Taflove and Browdwin [15] used a different approach to compute steady—state data.
They used a continuous sinusoidal plane wave excitation that is switched on through out the
FDTD computation. The computation will continue until steady—state fields are reached and
all the fields in the sampling region exhibit a sinusoidal repetition. The field values are ob-
tained by observing the peak positive and negative excursions of the last cycle. Taflove et.
al applied this technique to variety of electromagnetic problems. He studied the electromag-
netic field penetration into complex geometries using FDTD and MoM/FDTD approaches
[42,43]. Taflove and Umashankar proposed the FDTD method as a technique to analyze
electromagnetic scattering of large complex objects and to compute its corresponding RCS
[44-46]. A comparative study between the single freuency excitation and the pulsed excita-

tion for RCS computations using FDTD is done in [47].
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FDTD technique was also used in Biomedical engineering studies. Chen and Gandhi
calculated the electromagnetic absorption in the human tissues. They also computed the cur-

rents induced in an anatomically based model of a human when exposed to EMP [49-51].

The FDTD method was also used for antenna radation applications. Analysis of elec-
tromagnetic of electromagnetic wave radiation from systems containing horn and Microstrip

antennas was done in [52-54].

Although the FDTD method has proven to be a practical and efficient method in ana-
lyzing a wide range of electromagnetic coupling problems, it has some limitations that are
enforced by the use of the Yee cell Fig.—1. Such limitations is the modeling of thin wires and
struts whose radii are smaller than the FDTD Yee cell dimension. Also there is the modeling
of narrow slots and apertures in complex geometries that involves cavities and gaps. A num-
ber of researchers proposed different type of approaches that takes care of such inefficiency
inherent in the Yee cell. Holland and Simpson introduced the “in—cell inductance” concept
to study the EMP coupling to thin struts and wires [55]. Others proposed a thin—slot formal-
ism for the FDTD method [56-59]. Taflove and Umshankar introduced a modified FDTD
cell which is based upon Ampere’s law and Faraday’s law in integral form [60,61]. With such
atechnique, the presence of wires, slots, and curved surfaces can be accounted by incorporat-
ing appropriate field behavior into contour and surface integrals implementing Ampere’s
law and Faraday’s law at selected meshes, and by deforming contour pathes as required to

conform surface curvature.

Complex inhomogenuities were also treated in some applications of the FDTD meth-
od such cases as anisotropic media with the diagonalized or off-diagonalized tensor property
[45]. The propagation of transients in dispersive dielectric media is studied in [62] by using
the FDTD method to solve the time~domain Maxwell’s equations in Debye media [63]. A
frequency—dependent FDTD formulation { (FD)2TD ), where the permittvity, permeability,
and conductivity of a media are assumed to be frequency dependent is developed by extend-
ing the traditional FD'TD formulation to include a discrete time—doamin convolution, which

is efficiently evaluated using recurssion [64,65].
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Areview of the formulation and application of the FDTD method for numerical mod-
eling of EM wave interactions with arbitrary structures has also appeared in the literature
[11,12].
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3.1. Absorbing Boundary Conditions.

In open space problems in FDTD, the lattice truncation planes have to be invisible
to all waves incident on these planes. To obtain such a situation Absorbing Boundary Condi-
tions (ABC) algorithm have to be applied on these truncation planes. In FDTD it is always
the goal to use as minimum number of cells as possible that will economize the computer
requirements for the FDTD implementation. The total number of FDTD cells can be mini-
mized by using the largest possible cell size for target modeling and the minimum number
of cells external to the target. The required number of cells between the target and the absorb-
ing boundary depends on the quality of the absorbing boundary condition used, the size of
the target and its scattering nature, and the size of the cells. A detailed study of ABC is done
in [66,67].

In this work, two types of absorbing boundary conditions are examined. The first
type is the averaged extrapolation algorithm which is a local ABC where only the fields at
the neighboring space and time nodes are needed to estimate the field values lying on the

lattice truncation planes [15]. The procedure is illustrated using the one—dimensional lattice

of Fig. 3.1, for a time—step relation c¢dr = A
F(My =F(M-1) 3.D

equation (3.1) simulates the free—space propagation of the field function F fromthe location
M -1 to the truncation point at M in the one time step which is the numerical propagation
delay imposed by the time—step relation. Equation (3.1) describes an exact absorbing condi-

tion in one—dimension where all waves are absorbed at location M without reflection. To

simulate the truncation of this lattice in an infinite half space of refractive index r (r = ye,;
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€ , istherelative dielectric of the half space medium ) waves inside the lattice will now prop-
agate with a velocity v such that ¢ = r.v. The corresponding time—step relation will be

rv.dt = A implying that the wave will propagate a distance of one spatial step in r time

steps. Hence eq. (3.1) can be written as,

FY(My = F™" (M —1) (3.2)
“" L.
M-172
z
M1 X
8
g GEZ — Hx
:
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Fig. 3.1 One—dimensional lattice, illustrating averaged extrapolation ABC at M.

In this work, this procedure is implemented in two—dimensional and three—dimen-

. . . . cOt . . -
sional free—space, and using a time—step relation — = — which also satisfies the stability

1

A 2

criterion of Yee‘s algorithm eq. (2.10). In this case, oblique incidence is accounted for by
averaging the field values at the FDTD nodes located in the vicinity of the node in question
at the truncation plane as shown in Fig. 3.2. The averaged extrapolation algorithm is consid-

ered to be of first—order ABC.

This absorbing boundary condition is further improved by using the super absorbing
condition [19] which is a predictor—corrector technique. With this technique, the leading er-

ror of the conventional local ABC can be cancelled by a simple algorithm, so that the absorb-
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ing quality of the boundary condition can be greatly improved. It is found that by applying
the same kind of boundary condition on the tangential H field next to the boundary, and com-
paring it with those H values calculated from the difference equation of eq. (2.8) ( the bound-
ary E’s used are obtained from the ABC one time step earlier ), these two H fields will always
have the property that errors contained in them due to the approximation in the ABC will
have opposite signs and magnitudes of a known ratio. Using the corrected values of the H

fields the E fields are updated to more accurate values.

1] ] ]
] ] ]
] ] 0
ABC
(1j+1)
EN0,)) = -31-[ E(1,j+1) + E"X1,j) + E¥(1,j-1)]

04) g @
1§-1

’ - o oo
‘ ; ;
: 0 0
: ; ;

Fig.3.2 Averaged Extrapolation Absorbing Boundary Conditions (two—dimensions).

The second absorbing boundary algorithm examined in this work is based on the
theory of approximate One-way wave equation, which is a partial differential equation
which permits wave propagation only in certain direction. G. Mur [13] introduced a simple
and successful finite difference scheme for implementing the One-way wave equation to

compute field components at the FDTD lattice walls.

Following the explanation in [66,67], the absorbing boundary conditions used are

based on general second—order One—way wave equations. The derivation of these equations

follows from the application of general rational function approximationto v 1—-s° on thein-
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terval [-1,1]. Considering the two—dimensional wave equation in cartesian coordinates,
1
LU = D% + DU ~ =DV =0 (3.3)
c

where DZ, D3 ,and D} denote second partial derivatives with respect to x, y, and ¢, respec-

tively. Factoring the wave operator, L,

LU =L*L"U=20 (3.4
where L™ and L* are defined as,
L~ = D, —-Z-Zi 1-s2, (3.5a)
Lt = D, + D I—g? (3.5b)
c
cD
where, § = 5;3"

Engquist and Majda [18] showed that at a planer boundary at x=0, an application of L™ to
the wave function U, will exactly absorb plane waves incident at any angie which travel in

the —x direction. Hence, applying

LU =0 (3.6)

at x=0 will result in an exact absorbing boundary condition that absorbs waves originating
from the interior of the spatial FDTD domain. The L* operator will function in a similar man-
ner but for waves travelling in the +x direction and hitting the other lattice wall. The presence
of the radical in (3.5a), and (3.5b) prohibits the direct implementation of (3.6) as an absorb-

ing condition for dimensions greater than one.

Algebraic approximation of the radical in (3.5) produce absorbing boundary condi-
tions that can be implemented numerically with finite difference schemes. The resulting
boundary conditions are not exact causing small amount of reflections when waves pass

through the boundary. The substitution for the radical in (3.5), proposed first in [18],
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152 = 1—%.?2 3.7

gives the following absorbing boundary condition, when multiplying by D, , which can be

implemented at the boundary, x=0,

1 c
ng—?Ut;'i'EUyy = 0 (3.,8)

The ABC in [67] works well when the grid truncation boundaries are sufficiently distant so

that the scattered waves hit the boundaries at near normal incidence.

In three—dimensional space eq. (3.8) will be written as,

1

sz—"“
c

c c
Uti+§Uyy+3UZZ = 0 (3.9)

equation (3.8) and (3.9) are used in the FDTD algorithm by substituting U with the corre-

sponding field components and applying ceniral different schemes on the derivatives.

o Numerical Tests:

The FDTD code initially developed, used the averaged extrapolation algorithm of
equation 3.1 as ABC on the lattice truncation planes, and was further improved by using the
super absorbing procedure. The spatial distance between the modeled target inside the
FDTD lattice and the lattice truncation planes affect the performance of the ABC on these
planes. Figures 3.3, 3.4 show the transient response of the conducting sphere introduced ear-

lier. These responses are computed for two lattice sizes (60 X 30 X 60) and (80 x 40 X 80)

and are compared with the Rayleigh—Mei classical solution.

In Fig. 3.3, which is the response at the illuminated pole of the sphere, a minor differ-
ence is observed in the response using either lattice dimensions. On the other hand, Fig. 3.4
shows the shadow region transient response of the sphere. A relatively significant change

is observed between the two lattices computations. This change can be attributed to more
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reflections from the lattice truncation planes, in a region where the incident field is mini-

mum, when using the smaller size lattice.

Location (1)
600 oy e e ..................... ..................... . ..................... .......

Rayleigh-Mei
..... FD-TD (80x40x80)
_______ FD-TD (60x30x60}

....................................................................................................................................

...................................................................................................................

] 0.5 1 1.5 2 2.5 3
Time (nsec)

Fig.3.3  Transient Response of a conducting sphere. ( Averaged Extrapolation ABC)

The “One-Way Wave Equation” ABC procedure of equation 3.9 is also investi-
gated. It is implemented on a TM two—dimensional version of the FDTD code. In addition,
the super absorbing algorithm is also implemented to get an optimum accuracy for the cur-

rent implementation.

To test the new absorbing boundary algorithm the transient response of a conducting
circular cylinder illuminated by a Gaussian shape plane wave is calculated. The data is com-

pared with those computed using the averaged extrapolation algorithm. The circular cylinder

having a radius equals to 27.5cm (22 X Ax) and shown in Fig. 3.5, is mapped into a

100 x 100 FDTD lattice of spatial step size A = .0125m and a time step size 8¢ = é
c

where ¢ is the speed of light.
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The benchmark data is obtained by computing the cylinder transient response in a

200 x 200 FDTD mesh having the same spatial and time step sizes as indicated above. Fig-

ures 3.6 show the transient response of the cylinder at locations indicated in Fig. 3.5. These

results show an improvement in the accuracy achieved by using the * super—absorbing one—

way wave equation ” algorithm as compared to the averaging technique.

500

H, (milliamps/m)
3 8 3
[=] [=] Q

=t
(=4
o

-100

Location (2)

Rayleigh-Mei

: FD-TD $80x40x80

: FD-TD (60x30x60

ESURRRNY | SO | SO RSOOSR SOOI OO OOV
i I f l ¥ I T T T 1

0.5 1 1.5 2 2.5 3

Time insec)

Fig. 3.4 Transient Response of a conducting sphere. ( Averaged Extrapolation ABC)
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Fig.3.5 Geometry of a circular cylinder inside a 2-D FDTD Lattice.
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Fig.3.6

Transient Response of a Conducting Circular Cylinder illuminated by a Gaussian plane
Wave.
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3.2. Grid Size.

As described in the last chapter, FDTD is a direct solution of Maxwell’s time—de-
pendent curl equations. A second—order accuracy is achieved when a central finite—differ-
ence approximation for the space and time derivatives of these equations is used. The stabil-
ity of the time stepping algorithm, and hence the accuracy of the computed field quantities
are related to the spatial step A and the time step increment 8t, respectively. The choice of

these two parameters have to satisfy the stability criterion of (2.10).

The selection of the spatial step A is alsorestricted by the type and the characteristics

of the incident plane wave launched at the target inside the FDTD lattice. It is suggested [11]
that the spatial step A should be at least %”61‘- , where Amin is the wavelength of the highest
frequency having a relatively significant magnitude in the incident plane wave spectrum.

Satisfying such a spatial step requirement will eliminate significantly any distortion
of the incident plane wave form, as well as, any other scattered waves from the target em-
bedded in the FDTD lattice during the time—stepping procedure. The choice of the spatial
step A is also made such that the target in question will be modeled in fine details, enough
to allow all the physical phenomena to occur accurately. One example to such fine modeling
is the case of curved surfaces which is modeled by a stepped edge surface when using the
Yee FDTD unitcell. This cell has to be small enough in size to model the curved surface accu-

rately as shown in Fig. 3.7.

o Numerical Tests:

To illustrate the relation between the accuracy of the FDTD method and the spatial
step A , whichis the size of a cubic unit cell inside a FDTD lattice, the propagation of a Gaus-
sian pulse plane wave is investigated. Figure 3.8 shows snap shots of the electric field com-

ponent inside a uniformly gridded lattice for different values of A . This figure shows the
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Fig. 3.7 Modeling of curved surfaces using the FDTD Yee cell.

A= 0.02m

o
)
1

Electric Field (V/m)
[=}
F-3
I

0 0.5 i 1.5 2 2.5 3
Light-meters

Fig.3.8a Propagation of a Gaussian Pulse in a FDTD lattice for different values of A .
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Fig. 3.8b Propagation of a Gaussian Pulse in a FDTD lattice for different values of A (zoomed in).

dispersion of the Gaussian pulse , as well as, ringing when large values of A are used. Figure

3.9 shows the model of a conducting sphere inside 2 FDTD lattice with spatial step
A = .003m . The transient response of the sphere, illuminated by a Gaussian pulse plane
wave, is computed at locations (1) and (2) on the sphere. A lattice size of (60 X 60 X 60) is
used to model the full sphere, however, at other occasions the sphere symmetry is utilized
and a lattice size of (60 X 30 X 60) is used. Two Gaussian pulse widths are tested for a con-
stant spatial step A . Figures 3.10-3.13 shows the corresponding transient response at loca-
tions indicated on Fig. 3.9 of the sphere model obtained by FDTD method and compared
with the Rayleigh—Mei classical solution of scattering from a sphere. The averaged extrapo-

lation algorithm is used as ABC on the lattice walls.
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InFig. 3.10 an obvious level of distortion in the transient response resulted when the

narrower Gaussian pulse is used as compared to that of Fig. 3.11. A similar phenomena is

observed in Fig. 3.12 as compared to that of Fig. 3.13. Based on the earlier illustration, such

a distortion in the transient response can be attributed to the poor sampling of the narrower

Gaussian pulse as a result of using a spatial step of A = .003m
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Fig.3.9

Sphere model inside a three—dimensional FDTD lattice.
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Transient Response of a conducting sphere: Narrow Gaussian pulse case.

Ef0) = 100Exp((r ~ 2.15 X 107° )/ 0.0625 x 1°) v/m, A = .003m, (60 x 60 X 60)
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Transient Response of a conducting sphere: Wide Gaussian pulse case.

E) = 100Exp((t - 1.52 x 10 )/ 0.1 x 10°) V/m. A = .003m, (60 X 30 X 60)
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Fig.3.12  Transient Response of a conducting sphere: Narrow Gaussian pulse case.
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Fig.3.13  Transient Response of a conducting sphere: Wide Gaussian pulse case.
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3.3. FDTD Grid Characteristics

Most of the electromagnetic civil and military applications involve structures that are
complex in their geometry and their material composition. These geometries may contain
very fine geometric details such as lapped joints and cracks, or they may be coated with a
lossy material to reduce field penetration or RCS of these structures in some applications.
Using FDTD method, different approaches were followed by researchers to model such
structures accurately to include their geometric details. One approach is the use of subcell
modelling techniques, where specialized cells are designed to model accurately the physics
of a specified geometry. Such approach was followed by Taflove et. al. [61] where he used
the Faraday’s law in integral form to model wires, curved surfaces and gaps in conductors
of sizes that are less than the size of a Yee cell inside the FDTD lattice. Demarest {57] used
Babient’s principle in conjunction with the FDTD method to model slots in conducting struc-
tures. He also used Faraday’s and Ampere’s laws in integral form to model thin dielectric

slabs, conductor backed dielectric slabs, and cracks in dielectric structures [68].

In the modeling of lossy structures or conducting structures with lossy coating, some
researchers followed the approach of substituting the lossy material with a surface Imped-
ance Boundary Condition (SIBC) analogue. Maloney [69] developed a SIBC to replace a
lossy dielectric half-space, a line current over a lossy dielectric half space, and wave propa-
gation in parallel plate waveguide with lossy walls. Beggs et. al.[70] implemented a constant
SIBC and a dispersive SIBC that is applicable over a large frequency bandwidth and over
a large range of conductivities to replace lossy dielectric objects. Recently, Maloney and
Smith [71] also presented a subcell model to include thin material sheets in the FDTD meth-
od. This subcell model removed the normal restriction which sets the spatial grid increment
to be at least as small as the smallest geomefric feature in the solution space. On the other

hand others modelied lossy thin sheets by sheet impedances [72,73].

Non-uniform gridding in the FDTD lattice is another procedure used to model struc-
tures with very fine geometric details or structures that contain sharp discontinuities where
the fields become highly non—uniform in the vicinity of the discontinuities. A non—uniform
FDTD mesh, consisting of a coarse and a relatively fine mesh, is an alternative modeling

procedure to using a uniform fine FDTD mesh that will be expensive in terms of computer
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requirements. Kunz and Simpson [74] introduced an expansion technique in conjunction
with the FDTD method to model small local objects. They first calculated the fields in a vol-
ume with a coarse grid, then used spatial and time interpolation of these fields to obtain tan-
gential electric field components on the boundary of a subgridded volume which was ana-
lyzed in a second run. Zivanovic et. al. [75] used a similar procedure but instead of making
two separate calculations, the calculations in the coarse grid are coupled with those in the
fine grid through the use of Maxwell’s equations in a single computer run. Xiao et. al. [76]
analyzed a grading scheme where the mesh size is gradually changing in either the x— or y—di-
rections or in both directions simultaneously. They claim that applying such a non—uniform
gridding, using the traditional FDTD Yee scheme, will result in first order errors in the com-
puted fields. They improved the accuracy of this gridding scheme to second order by analyti-

cal cancellation of the first order error terms.

In the following section a numerical demonstration to investigate the accuracy and
limitations of using non—uniform gridding inside a FDTD mesh. The FDTD code used al-
lows non—uniform gridding along any of the three cartesian coordinate axis in the FDTD lat-
tice [77]. In this investigation, the propagation of a Gaussian pulse plane wave in one— and

three— dimensional FDTD code is done.

3.3.1. One—dimensional Case

The non—uniform gridding procedure is first tested on a one dimensional FDTD al-
gorithm. To insure stability the following inequality is to be satisfied,

8t = 3‘;—?‘- (3.10)

where Ax and 0t are the spatial and time increments, respectively, and ¢ is the speed of light

in free space.

An axis of 100 nodes is considered to investigate the propagation of electromag-

netic wave in one—dimensional FDTD algorithm. Figure 3.14 shows snapshots of a Gaussian
pulse, having a peak value of 100 V/m, atnodes i =15, i =150, and i = 85 along a uni-

formly grid FDTD axis, i being the node index. These snapshots are computed for different

values of time step increment 0¢ and for a spatial step Ax = 0.01m . Itis observed from Fig.
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3.14 that the magnitude of the Gaussian pulse peak varies for different values of d¢, where

the correct magnitude of the Gaussian peak is noted for ¢ = % = 0'205 .

20 —————
0 1 2 3 4 5 6 7 8 9 10
nsec
-  5t=0.007] —

: - T =50
OO Mot t- ............ e b = 1=85

204+
o 1 2 4 5 6 7 8 9 10

nsec
Figure 3.14  Snapshots of a Gaussian pulse inside a uniform grid of a one~dimensional

FDTD axis computed for different values of é¢. (100 nodes axis, Ax = 0.01m)
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In addition, there was no distortion in the pulse shape and the ‘bell’ shape of the

Gaussian pulse is maintained along the FDTD grid for the different time step values used.

A non—uniform grid discritization shown in Fig. 3.15 (grid_1) is considered. In this

case the grid is divided as follows,

Ax =00Im, i =1, 41
Ax = 0.008m, [ =41, 60

Ax = 0.0lm, i =60, 100-
Figures 3.16 show snapshots of the Gaussian pulse at nodes inside the one—dimensional grid
computed for different values of d¢. Correct waveforms resulted also for the time step

or = A = M Unstable solution occurred for ¢ = 0.008/c . Figure 3.17 (grid_2)
c

2c
shows a second example of non—uniform gridding being examined. The 100 nodes axis is

divided symmetrically at i = 50, such that,
Ax =00im, i =1, 20
Ax = 0.01t0 1.0797 X 102m, =20, 50 ataratio / = 0.92611 between adjacent spa-

tial steps. The corresponding snapshots of the Gaussian pulse are shown in Figs. 3.18 com-

puted for different values of d¢. In this case the stability of the solution is restricted by the

smallest spatial step in the grid that also resulted in an increase in the peak values of the wave

o : : 1.2 x 1073 :
forms while maintaining the shape of the Gaussian. Using 6t > ——————— resulted in an
c

unstable solution. Figure 3.19 (grid_3) shows a third example of a non—uniform gridding.
The axis is divided symmetrically at { = 50, such that,

Ax = 001lm, i =1, 20

Ax = 0.01to 0.00511m, i=20, 50 ataratio /! = 0.97716 between adjacent spatial

steps. Figures 3.20 show the snapshots of the Gaussian pulse at nodes on the grid axis com-

puted for different values of d¢. Unstable solution occurred for values of d¢ > 0.006/c .
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Ax =001m, i =1, 41
Ax = 0.008m, i =41, 60
Ax = 0.01m, i =60, 100,

Figure 3.15 A non—uniform grid discritization of a one—dimensional FDTD axis (grid_1).
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The 100 nodes axis is divided symmetrically at i = 50, such that,

Ax = 001m, i =1, 20
Ax = 0.01 — 1.0797 %X 102m, i=20, 50 at a ratio [ = 0.92611 between adjacent

spatial steps.

Figure 3.17 A non—uniform grid discritization of a one—dimensional FDTD axis (grid_2).
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the axis is divided symmetrically at i = 50, such that,
Ax =001lm, i =1, 20

&x = 0.01 = 0.00511m, i=20, 50 ataratio [ = 0.97716 between adjacent spatial

steps.

Figure 3.19 A non—uniform grid discritization of a one—dimensional FDTD axis (grid_3).
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3.3.2. Three—-dimensional Case

The propagation of electromagnetic waves in a three—~dimensional non—uniformly
grid FDTD lattice is also studied. In this case the stability of the time stepping algorithm is
insured by satisfying the following inequality,

o< (vt ) ain

Initially, the propagation of a Gaussian pulse plane wave having a peak magnitude

of 100 V/m propagating along the z — direction is considered. Figure 3.21 shows snapshots

of the Gaussian pulse computed at locations (10, 10, 10), (10, 10, 40), and (10, 10, 70) re-
spectively, inside a uniformly grid FDTD lattice having an array size of (20 X 20 X 80).

A spatial step of A = 0.01m is used in the FDTD mesh. As observed earlier in the one—di-

mensional case the peak value of the Gaussian pulse changes from the correct value

(100 V/m ) while maintaining the ‘bell’ shape for values of d¢ # -%, Unstable solution

occurred for 6¢ > 0.006/c . The second FDTD lattice tested is that of a non—uniform grid-

ding along the z —axis of the lattice. The lattice has the same size as before, the gridding

along the z— axis is as follows,

Az = 001m, k =1, 31

Az =dl, k =31,50

Az = 0.0lm, k =50, 80

Figure 3.22 shows snapshots of the Gaussian pulse for d/ = 0.005m computed for different

values of d¢. The values of d¢ used provided a stable solution but caused the peak value of

the Gaussian pulse to change. Unstable solution occurred for values of d¢ > 0.004/c . Figure

3.23 shows the corresponding Gaussian pulse snapshots for dl = 0.007m computed using

0t > 0.0045/c , using d¢ = 0.005/¢ resulted in an unstable solution. Figure 3.24 shows sim-

ilar computations for dI = 0.008m and for d¢ = 0.005/c¢ resulting in a correct peak value for

the Gaussian pulse.
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Figure 3.21

Snapshots of a Gaussian pulse propagating along the z-axis inside a

uniformly grid FDTD lattice computed for different values of &¢.

[ lattice size (20 % 20 x 80), Ax=Ay=Az=0.01m]
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Snapshots of a Gaussian pulse propagating along the z—axis inside a

non—uniform grid FDTD lattice computed for different values of d¢.

[ lattice size (20 x 20 x 80), dl = 0.005m ]

49 Chapter IIT



Stability Study

140_ ............ RRREE LR LR LR L L SERLTRRELLER SERRELEEILED SEARERRLERLD SRREEREERRLER peeenens
: : : : : : : o (10,10,10)
: AU S . t=0.00as06 .| 2 (01000
E
2 i
x z
[31] :
w20 e ]
0 1 2 3 4 5 6 7 8 ) 10
nsee

Figure 3.23 A Snapshot of a Gaussian pulse propagating along the z-axis inside a

non—uniform grid FDTD lattice computed for different values of é6¢.

[ lattice size (20 % 20 x 80), dI=0.007m ]
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Figure 3.24 A Snapshot of a Gaussian pulse propagating along the z—axis inside a

non—uniform grid FDTD lattice computed for different values of 6.

[ lattice size (20 x 20 x 80), dl=0.008m ]

50 Chapter III



Stability Study

Conclusions

In this section, the propagation of electromagnetic waves in one—dimensional and
three—dimensional FDTD space is investigated. The propagation of a Gaussian pulse wave
in a non—uniform grided FDTD axis is tested for different non—uniform gridding schemes.
To insure stability in the FDTD algorithm, the time step increment has to be chosen to satis-
fy the Courant stability criteria taking into account the smallest spatial step size inside the
FDTD lattice. Different time step increments has been used to study the performance of each

of the FDTD grids. In a uniform grid, it was observed that a Gaussian pulse will propagate

A
without any shape distortion or change in its peak value for 8¢ = PP The pulse peak magni-

tude increased for 8¢ > % and decreased for ¢ < % (A =Ax = Ay = Az, in the 3-di-

mensional case). In the case of a non—uniform grid the choice of d¢is restricted by the size
of the smallest spatial step in the grid. Hence, the choice of d¢ to insure stability might effect
the magnitude values of the pulse, depending on how small is the smallest A relative to the
largest A . It should be noted that although there was a change in the peak magnitude of the
pulse, in a non—uniform grid, the shape of the pulse is maintained with no distortion as it
propagates inside the FDTD lattice. It is expected that for EM problems where the impulse
response of a structure is required, the use of a non—uniform grid will be appropriate, for the
resulting response will be normalized to that of the incident pulse propagating inside the

FDTD Iattice.
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APPLICATION TO SCATTERING PROBLEMS

As described in the literature survey of Chapter II the FDTD numerical method has
been applied to a wide variety of electromagnetic scattering and antenna problems. In this
chapter the FDTD method in two—and three—dimensional space is used to study the transient
response of cylinders and spheres. The transient response of conducting and dielectric circu-
lar cylinders due to a step plane wave is computed and the correspondence between the tran-
sientresponse and the rise time of the excitation wave is investigated. The transient response
of conducting and dielectric spheres illuminated by a Gaussian pulse plane wave is also com-
puted and compared with those obtained from analytic solution. Also in this chapter, the field
penetration inside a conducting box with an open top illuminated by an Electromagnetic
Pulse (EMP) plane wave is computed. The effect of changing the aperture geometry and
loading the box with Iossy material on the field magnitude and frequency content inside the
box is analyzed. Finally, the capability of the FDTD method to model thin conducting wires
of different cross—sections and lengths is studied, where different thin wire modeling proce-

dures are examined.
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4.1. Transient Response of Circular Cylinders

An important simplification of the full three—dimensional FDTD algorithm case is
the assumption that neither the incident plane wave excitation nor the modeled geometry has
any variation in the z—direction (i.e. all partial derivatives with respect to z are equal to zero),
Maxwell’s curl equations egs. (2.2, 2.3) reduces to two decoupled sets of scalar equations.
These decoupled sets, referred to as the transverse magnetic (TM) mode and the transverse
electric (TE) mode, describe two—dimensional wave interaction with objects. The related

equations for each case:

—~TM case ( E,, H,, and Hy)

oH, _ L[ 9E @.12)
dt u\ dy )
o, _ 1195 (4.1b)
a  m\ ox )
o0H
ok _ 1|, . E, (4.1c)
of €\ ox oy
—-TEcase (H,, Ex,and Ey)
E.
0B, _ _1{8H; -0 E, (4.2a)
ot €\ dy
dF
98y _ _l<"’Hz t o Ey) (4.2b)
t €\ ox
dH, _ 1[9E, 3E, 4.20)
dt Ky ay ax )
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Application to Scattering Problems

Recently, the interest in the transient response of complex structures illuminated by
slowly decaying transient pulses, resulting from lightning or nuclear bursts, has increased
with the development of few technologies. These developments include the use of advanced
composite materials which provided less shielding than conventional metallic structures,

and the increased use of low power level semiconductors for circuits.

In the following study the field transient response of both conducting and dielectric
circular cylinders illuminated by a plane wave having a step function waveform in the time—
domain is computed. The choice of such a plane wave is made because of its close similarity
with the EMP resulting from lightning or nuclear bursts which have a fast rise time and a slow
decay in its field magnitude. The conducting cylinder may represent in this case metallic
wires in electric circuits, while dielectric cylinders may represent guiding dielectric struc-
tures such as optical fibers. A two—dimensional space FDTD algorithm will be used to model
the circular cylinders, and the correspondence between the transient response and the rise

time of the excitation wave will be investigated [78].

4.1.1. Results and Discussion

The transient response of a circular cylinder illuminated by a step function plane
wave is computed in a 7M FDTD grid space. The circular cylinder considered, having its

axis parallel to the z—axis, has a radius of 37.5cm and is mapped into 298 X 298 FDTD grid

mesh of spatial step size Ax = Ay = 0.0125m. A time step size of 6¢ = ;ﬂ isused, where
c

¢ the speed of light in free space. Since such a scattering problem is an open space problem,
the walls of the FDTD mesh are terminated with ABC. Thus, the fields scattered away from
the illuminated structure are absorbed with minimal reflections. The algorithm used to im-
plement such ABC is that of the ‘One-Way’ wave equation [13] and it is further improved
using super ABC of [19]. The circular cylinder is mapped into the FDTD mesh where its
curved surface is sampled as a stepped edge surface as shown in Fig. 4.1. The excitation
plane wave used to illuminate the cylinder is a z—polarized plane wave propagating in the

+y-direction. The wave form of the plane wave has a unit step like shape,
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E®) = |1 - Epl-4d]  (v/m)

(4.3)

where different values of A corresponding to different rise times are considered. The result-

ing waveforms are shown in Fig. 4.2.

........

1

+

Figure 4.1 Circular Cylinder in a FDTD mesh.
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i) Conducting Circular Cvlinder.

The conducting surface of the cylinder is simulated by setting the electric fields tan-
gentto that surfaceto zero ( E, . = 0)atall time steps. Anincident plane wave is launched

normally onto the cylinder. Fig. 4.3 shows the propagation of the step like plane wave in the
presence of the conducting cylinder, where the E, field component is plotted at different
time steps. The magnetic field transient response at positions (/) to (5) indicated in Fig. 4.1
are computed for different values of A and are shown in Fig. 4.4. These positions, i.e. (I) to
(5), are located approximately one-half cell from the cylinder surface. At observation points
(/) and (2) in the illuminated region of the cylinder the effect of varying the rise time of the
excitation function can be seen clearly at the early times of the corresponding responses. At
location (7) of the cylinder the field response at the early time rises to approximately twice
the incident field? and then continue with an increasing value exceeding that of the incident
wave. This can be attributed to the incident excitation illuminating continuously the con-

ducting cylinder causing an accumulation of charges on the cylinders surface. Also, impos-
ingthe E,,,. = 0 on the cylinders surface ( infinite conductivity ) contributed to this phe-

nomena as well. In the shadow region of the cylinder (4 & 5 ) the fields on the cylinder are
due to creeping currents launched from the illuminated region, hence, the effect of the rise
time of the incident plane wave is being damped due to radiation as can be seen in the corre-
sponding early time responses. At late times the field magnitude at (3, 4 & 5 ) increased
steadily due to the charge accumulation. Such a situation of continuous increasing field re-

sponse exists only in a case of a step plane wave excitation where infinite energy is available.

2. 2H™ =2Er [5,=2](120%) =53 mA/m
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Figure 42  Waveform of the incident plane wave
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Figure 4.3 Propagation of a plane wave in the presence of a conducting circular

cylinder. (A =1 x 10°); Ax = 0.0125m, ot = ;—A:
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1i) Dielectric Circular Cylinder.

The scattering of a dielectric circular cylinder by a step like plane wave is also con-
sidered. The cylinder is chosen to have an €, = 4. Fig. 4.5 shows the propagation of the
plane wave in the presence of the dielectric cylinder, where the E, field componentis plotted
at different time steps. The magnetic field transient responses, shown in Fig. 4.6, are again
computed for different values of A and at positions indicated in Fig. 4.1. The effect of differ-
ent rise time values A of the excitation function on the early time field response can be seen
clearly at the indicated locations. For A = 5 x 10°, corresponding to the fastest rise time,
aringing behavior occurred at the early time response of the cylinder due to the spatial reso-
lution of the FDTD lattice not being fine enough to sample accurately the higher frequencies
contained inthe A = 5 x 10° excitation pulse spectrum. This ringing behavior can be elimi-
nated by using a spatial step A = A.;, / 20, where A, is the wavelength of the highest

frequency in the incident pulse frequency spectrum. For other values of A the FDTD lattice

spatial resolution was adequately fine. At late times, where the incident pulse reaches a

steady value of E, = 1.0 V/m , the field response atlocations (I & 5 ) reaches a steady value

of Hy = 2.65 mA/m ,and Hy = 0 mA/m atlocation (3 ) as expected. Also, an observation

can be made from the transient responses at observation points (7) and (5). The ringing at

late times are approximately /0ns apart, which is the time needed for a monochromatic pulse

traveling in a medium having an €, = 4 to cross twice the cylinder diameter (1 — 5 — I).

No accumulation of charges is observed since the conductivity o = 0.

The field transient response of a circular cylinder illuminated by a plane wave having
a step function waveform in the time—domain is computed using two—dimensional FDTD
code. Both cases of conducting and dielectric circular cylinders were studied and the corre-
spondence between the transient response and the rise time of the excitation wave at different
observation points on the cylinders surfaces were investigated. An accumulation of charges
causing a steady increase in the field response of the conducting cylinder is related to the

cylinder having infinite conductivity and the excitation wave having infinite energy.

3. Hylyy =—sing ly_ g0 . HI® = L (120 )7 = 2.65 mAfm. = —Hy |s,

o

Hy lzy = —sing ly_gpo . H™ = 0.
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Figure 4.5 Propagation of a plane wave in the presence of a dielectric circular

cylinder,e, =4 . (A =1x 10°); Ax = 0.0125m, ot = Ax

2c
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4.2. Transient Response of a Sphere

In electromagnetic scattering and radar cross section (RCS) computations the geom-
etry of a sphere has been the attractive geometry on which new analytical and numerical
techniques are generally evaluated by considering it as the test geometry that has a closed
form solution. In addition, the similarity between the sphere geometry and several electro-
magnetic applications ( sections of an aircraft and human body, rain drops, . . .) has made

the sphere geometry as the popular choice for electromagnetic analysis.

In this section, the implementation of the FDTD technique in a three—dimensional
space is illustrated by computing the transient fields of a sphere illuminated by a Gaussian
pulse plane wave. The computed responses of a conducting and a dielectric sphere are com-

pared with those obtained from analytical solution.

4.2.1. Results and Discussion

The geometry of the sphere considered has a radius a=6.0cm and is mapped into a
uniform (60 x 60 x 60) FDTD lattice. Figure 4.7 shows the sphere model used by the FDTD
code and is located at the center of the lattice. The Sphere model is 40 cells through the diam-

eter. The spatial dimension of the FDTD cell is set to A = 0.003m , and a time increment of
o = —‘% is used, where ¢ is the speed of light in free space. Figure 4.7 also defines the coordi-

nate system and the incident field polarization used in the FDTD code. The sphere is illumi-
nated by a plane wave of Gaussian field distribution propagating in the z—direction. The tran-
sient response due to the incident pulse is obtained at different observation points on the
sphere structure. To validate the results obtained by the FDTD code, the computed results
are compared with similar results computed using the Rayleigh—Mei solution for a sphere
[79]. It should be noted that the Rayleigh~Mei expressions are in frequency—domain. time—
domain data is obtained using the inverse Fourier Transformation. Applying the convolution
theorem on the Rayleigh—Mei data and on an incident plane wave identical to that used in
the FDTD code the proper transient responses are obtained, this procedure is explained in
Appendix A. The cases of a perfectly conducting and dielectric sphere are considered
[80,81].
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i) Conducting Sphere.

The conducting sphere is illuminated by assigning a very high conductivity
(0 =99 x 10” s/m) at the nodes representing the sphere. Figure 4.8 shows the propagation
of the Gaussian pulse plane wave in the presence of the conducting sphere. The E, field com-
ponent at a plane passing through the middle section of the sphere is plotted for different time

Steps.

Fig. 4.7 FDTD model of a sphere with the incident field and observation -
Points indicated. :

Figure 4.9(a—c) compares the FDTD and the Rayleigh—Mei solutions for the transient tan-

gential magnetic field component at locations on the sphere indicated in Fig. 4.7 showing
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a good agreement between the two procedures. At the illuminated pole (location / ) the field
response reached a peak value of approximately 0.53 A/m which is twice the incident field
value. The response at later time, after the pulse has passed the sphere, is due to the surface
currents on the sphere bouncing back to location (7) with a lower magnitude due to radiation.
The slight disagreement in Fig. 4.9b between the two solutions is due to the location of obser-
vation point (2) in the shadow region of the sphere where the incident field is minimum, and
also due to the simulation of the curved surface of the sphere by a stepped edge surface which

introduced diffracted fields that interfered with the main field computations.

65 Chapter IV



Application to Scattering Problems

t=41 t=61

A0 e R

AR S W

AN B

AN OB . eyl \\\\\\ \\\ \\\\ \\\\\\

AN TR
A A
T

W

AT
A
AR
Wi

T,
R
\\\\\\ “\\\\\i‘\\\ ‘\\\\\
R
Sl

W
“““‘\“

Fig. 4.8 Propagation of a Gaussian pulse plane wave in presence of a
conducting sphere in a FDTD lattice.

[E, (t) = 100Exp ((r - 215 x 10710 / 0.0625 X 10°f v/m, A = 0.003m, ot = 5.ops]
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Fig. 4.9 Transient response of a conducting sphere.

[E. (1) = 100Esp (1 - 152 X 10%) / 01 X 10°) v/m, A = 0.003m, 8¢ = 5.0ps |
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ii) Dielectric Sphere,

The same sphere geometry of Fig. 4.7 is again used but with the physical parameters
as ¢, , # = 1,and o = 0. Figure 4.10 shows the scattering of a Gaussian pulse plane wave

by the dielectric sphere. In this figure the E, field component ata plane in the middle section

of the sphere, with €, = 5.0, is plotted for different time steps. From these surface plots the
penetration of the electromagnetic fields inside the dielectric sphere is at lower speed than
the original pulsein free space. Also, due to the curvelinear geometry of the sphere a focusing
phenomena is observed where a peak value of E, = 200 V/m ( Ei = 100 V/m ) is also ob-
served at time step ¢ = 181. The trapped wave inside the sphere ( after the incident pulse has
passed the sphere ) will keep bouncing back and forth due to the media mismatch at the di-
electric sphere—free space interface. This phenomena is recorded in Fig. 4.11a showing the
field response at location (7). The trapped wave will eventually attenuate due to the radiation
to free space each time the trapped wave hits the dielectric sphere—free space interface. Fig-
ure 4.11(a—c) compares the FDTD and the Rayleigh—Mei solutions for the transient tangen-

tial magnetic field component at locations on the sphere, with €, = 5.0, showing a good

agreement between the two computations.
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Fig. 4.10 Propagation of a Gaussian pulse plane wave in presence of a
dielectric sphere in a FDTD lattice. (¢, = 50, 4, = 1.0, ¢ = 0)
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Fig. 4.11 Transient response of a dielectric sphere. (e, = 5.0, g, = 1.0, ¢ = 0)

[Ec (¢) = 100Bwp (( - 1.52 % 10 ) / 0.1 x 109 v/m, A = 0.003m, &t = 5.0ps |
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The transient response on the surface of a sphere illuminated by a Gaussian pulse
plane wave, is computed for the cases of a conducting and dielectric spheres using the FDTD
method. The results are compared with the analytic solution of Rayleigh and Mei with the
aid of inverse Fourier transformation. A good agreement between the results obtained by the
two methods is observed. The discrepancy in the two solutions observed at the shadow re-
gion of the conducting sphere can be attributed to the simulation of the curved surface of the
sphere by a stepped edge surface which introduced diffracted fields that interfered with the
main field computations. Also, the relatively low magnitude of the incident field in the shad-
ow region allowed fields reflected from the lattice boundary to further degrade the field com-

putation in that region.
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4.3. Study of Transient Field Penetration inside a Conducting Box.

The effect of impulsively excited electromagnetic bursts, resulting from lightning or
man made sources, on electronic equipment, devices and installations have raised the inter-
est in electromagnetic transient response field penetration and coupling into complex struc-
tures. The analysis of electromagnetic interaction with such complex structures is difficult
to achieve analytically since, generally, the geometry of such structures will not match with
the known orthogonal coordinate system. In this case the problems will be limited to struc-

tures whose surface coincide with the coordinate surface of a separable coordinate system.

With the advent of digital computers capabilities that can keep track of the geometri-
cal details of a body in addition to any associated numerical computations, developed numer-
ical techniques capable of solving electromagnetic interaction problems are only limited by
the characteristics of the formulation, the storage capability and speed of the computer. The
problem of the penetration and coupling of electromagnetic energy through apertures has
been studied extensively by many researchers that used both analytic and numerical tech-
niques [82—84] using the Method of Moments (MoM) [85]. The Finite Difference—Time Do-
main (FDTD) numerical technique is also used to study electromagnetic penetration and

coupling problems [42,43,61,98].

In this section the transient electromagnetic field penetration inside a cubic conduct-
ing box with an open top illuminated by a doubly—exponential plane wave is investigated
using the FDTD numerical method. This investigation also involved the study on the effect
of modifying the conducting box aperture, as well as, the addition of absorbing materials on

the transient field inside the box which includes transient and spectral information.

i) Modeling of Structures.

Generally, modelling of structures inside the FDTD lattice is done by allocating the
corresponding physical parameters that characterize the structure at locations defined by the
grid nodes matching with the structure geometry. Structures made up of conducting plane
surfaces are modelled by setting the electric field components lying in these planes to zero

at all times. Open planer surfaces having a small physical thickness are modelled as ‘infinite-
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ly thin’ conducting sheets. Curved surfaces are modelled inside the FDTD lattice either by
a stair case surface or by using techniques that allocate specialized cells to conform with the
surface curvature [7,24]. In the case of inhomogenoeus structures, no special handling of
electromagnetic boundary conditions at the media interface is required, because the curl

equations generate these conditions naturally.

The FDTD method can be used in an efficient way if structures involved have geo-
metrical symmetry. Utilizing such symmetry will reduce the memory storage requirement
that will reduce, in turn, the computation time of the problem. The symmetry conditions
applied inside the FDTD lattice is done by implementing the concept of electric walls
(Etan = 0)or magnetic walls (Hyn = 0 ) as the planes of symmetry in the modeling proce-
dure. The choice of either magnetic or electric walls as symmetry planes will depend on the
polarization of the incident plane wave used to illuminate the modelled target. The character-
istics of the electric and magnetic walls and the procedure to implement them is illustrated

in Fig. 4.12.
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Fig. 4.12a Conditions and procedure for implementing an Electric Wall. (TM, 2—d case)
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Fig. 4.12b Conditions and procedure for implementing a Magnetic Wall. (TM, 2—d case)
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4.3.1. Numerical Results and Discussion

The electromagnetic transient field penetration inside a cubic conducting box with
an open top is studied using the FDTD method. The geometry and dimensions of the con-

ducting box is shown in Fig. 4.13. The box structure is illuminated by an x—polarized plane
wave having a doubly—exponential time distribution, and is propagating in the + &, direc-

tion. The plane wave time distribution is expressed by

Eft) = AVt (&% - ée¥) Volisim 4.4)
where

AV = 9 X 10° V/(m.sec)

a =—-6x% 108 sec!

b =-9 % 108 sec!

Electric Wall
Y
By
% X
- 04m N & 0.2m -
) F o.oszar% () $
--------- ®- - -~ - """".
0.189m ? '
-~ ' 0.2m
---------------- 0.2m ’
0.147m '
@. 1 @ :
L l B 7 @ (34 B
i oo R
0.063m
Fig. 4.13 Geometry of a cubic box with an open top.

77 Chapter IV



Application to Scattering Problems

the corresponding wave form together with its frequency spectrum are shown in Fig. 4.14
The symmetry inherent in the box geometry is utilized and only one—quarter of the box is
modelled inside the FDTD lattice. Considering the polarization of the incident plane wave,
electric and magnetic walls are used as symmetry planes as shown in Fig. 4.13. The conduct-

ing box is mapped with a ‘zero’ wall thickness into a uniform FDTD lattice of

(40 % 40 x 80 ) array size. A spatial increment of A = .02105m, and a time increment
of 0t = é are used. The FDTD lattice zoning procedure of [13] that separates the lattice
c

into total-field and scattered—field regions is adopted.
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B e e et SR
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Fig. 4.14 Wave form and frequency spectrum of the incident excitation plane wave.

(Doubly—Exponential).
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ii) Conducting Box

The E, transient field components are computed at locations inside the conducting
box shown inFig. 4.13. Figure 4.15 shows the E, transientresponse at locations (1), (2) and
(3) inside the box due to the doubly-exponential plane wave illumination. At location (1),
the magnitude of the field response is the largest due to the plane wave x—polarization that
caused higher diffracted field magnitudes to occur at the box edge closer to location (1). Fig-
ure 4.16 shows the frequency response of the field at location (2) obtained using the Discrete
Fourier Transformation (DFT) procedure (Appendix B ). The half wave length resonance

of the conducting box used ( f, = (%) = 0.375GHz ) is also observed in Fig. 4.16.

Our numerical experiment involves the study on the effect of modifying the conduct-
ing box aperture on the transient field penetration inside the box when illuminated by a dou-
bly—exponential plane wave which is similar in wave form to Electromagnetic Pulse (EMP)
resulting from lightning or man made sources. The aperture geometries involvedin this anal-
ysis are shown together with their corresponding dimensions and aperture areas in Fig. 4.17.
The choice of these aperture geometries is based on the knowledge that the main source of
fields inside the conducting box are those due to the diffraction of fields on the box edges.
Hence, the length and orientation of such edges are the variable parameters in this study. In
Fig. 4.17 the modified aperture boxes are denoted by ‘box_a’, ‘box_b’, ‘box_c’, ‘box_d’,

and ‘box_e’ respectively, ‘box’ corresponds to the unmodified aperture conducting box.

Figure 4.18a shows the E; transient field response atlocation (2) inside the conduct-
ing box for different aperture geometries. This figure shows that the field magnitude is re-
duced significantly at the early time of the response especially with ‘box_b’ design corre-
sponding to a smaller aperture area. Although using these aperture geometries has resulted
inreduced transient field magnitude at the early time as compared to ‘box’, they also resulted
inresonance phenomena with different transient field decay rates for each of the box geome-
tries used. ‘box_b’ geometry, which has the smallest aperture area as compared to that of
‘box” and ‘box_a’, resulted in the slowest transient field decay rate. This behavior can be
explained in that the stored energy within ‘box_b’ takes longer time to dissipate in the form

of radiation losses which is the only loss involved in this study. To investigate the effect of
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aperture areas and geometries used on the transient field decay rate inside the boxes, the ti-
me-stepping is continued for a sufficiently long time whereby all field resonance behavior
would have died down. Figure 4.18b shows the E, transient response at observation point
(2) of the box geometries in Fig. 4.18a computed for relatively long time. From these figures
one can observe that the aperture geometries that resulted in the reduction in the magnitude
of the early time field response resulted also in a slower resonant field decay, specifically,

for the ‘box_b’ case.

Using the Discrete Fourier Transformation (DFT), the frequency response at loca-
tion (2) inside the box geometries considered are calculated and are shown in Fig. 4.19.
These plots show that the cubic conducting boxes became more frequency selective with ap-

erture geometry modified.

location (1)
_____ location (2)
_______ location (3)

Ex (Volts/m)

7 T
0 8 10 15 20 25
Time {nsec.)

Fig. 4.15 tansient response inside the conducting cubic box at locations (1), (2), and (3).
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Fig.4.16  Frequency field response of the conducting cubic box at Iocation (2).
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Fig. 4.18a E, transient response inside the conducting boxes of Fig. 4.17 at location (2).
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iii) Addition of Absorber Material,

In this sub—section, the study of field penetration inside a conducting box is extended

to include the effect of adding absorbing material on the walls of the conducting box.

The addition of absorbing material on the inner and outer walls of the conducting box
is another parameter considered to reduce the field magnitude inside the conducting box
[86,37]. The absorber material modeled is that similar to an Eccosorb lossy material used

in anechoic chambers and have the following physical parameters:
€, =10

M = 1.3

Loss Tangent (Tanﬁ) = 0.3

o =(55x 101, Tand)f;  1GHz < f < 30GH:

The absorbing layer is modeled in the FDTD code by setting the corresponding parameters
of the absorber to each cell in the FDTD lattice comprising the absorber geometry with

o = 0.165 s/mfor f = 1GHz . An absorber layer of one FDTD cell (= 2.1cm) is used.

Four cases of the conducting box with an absorber layer on its surfaces are studied.
The first case where an absorber layer is added on the conducting part of the box top as shown
inFig. 20a and isreferred to as ‘absrb_1’ case. The second case is similar to that of ‘absrb_1’
but with the absorber layer covering all the top surface of the conducting box as shown in
Fig. 20b and is referred to a ‘absrb_2’ case. The third case is similar to ‘absrb_1’ case but
with all the inner walls of the conducting box covered with a one cell thick absorber and is
referred to as ‘absrb_3’ case. ‘absrb_4’, which is the fourth case investigated, correspond

to the ‘absrb_2’ case but with the inner walls covered with a one cell thick absorber.
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L

Figure 4.20a Box with absorber material ‘absrb_1’ case
€ =10, g = 13, o0 = 0.165

oo -

Figure 4.20b Box with absorber material ‘absrb_2’ case
€ =10, g, = 13, 0 = 0.165

87 Chapter IV




Application to Scattering Problems

The above four cases are applied to the conducting boxes of modified aperture geom-
etry of Fig. 4.17 . Using the FDTD code the field transient response at location (2) inside the
conducting boxes illuminated by the doubly exponential plane wave of eq. (4.4) is calcu-
lated. Figure 4.21 shows the E, transient field response for the four absorber cases applied
on ‘box_a’ geometry. For the ‘absrb_1’ case, there is no change at early time but it resulted
in a faster decay of the field magnitude, and is decayed even faster when adding absorber
layers at the inner box walls in the ‘absrb_3’ case. Covering all the top side of the conducting
box with an absorber layer, ‘abstb_2’ case, resulted in a significant decrease of the transient
field at early time but resulted in a field resonance behavior at later times. The addition of
absorbers at the inner walls, ‘absrb_4’ case, damped those resonant behavior in a relatively
short duration. The corresponding frequency response for each of the absorber cases is
shown on Fig. 4.22. It is observed that the addition of absorber material resulted in a shift
in the frequency spectrum to lower frequency values. Figure 4.23 shows the E, transient
response at location (2) inside ‘box_b’ for the four absorber cases described earlier. It is ob-
served that for the absorber cases ‘absrb_3" and ‘absrb_4’, corresponding to the addition of
absorber layer on the inner walls of the conducting box, the resonance behavior is damped
in a relatively short time as the fields bounce back and forth on the inner lossy walls of the

conducting box. Figure 4.24 shows the corresponding frequency spectrum of E, transient

field responses inside ‘box_b’ of Fig. 4.23.

Figures4.25,4.27, and 4.29 shows similar computations of the E, transientresponse
at location (2) inside ‘box_c’, ‘box_d’ and ‘box_e’ respectively, for the four absorber cases,
and the corresponding frequency spectrum plots are shown in Figs. 4.26, 4.28, and 4.30 re-
spectively. Similar behavior for the addition of absorbing material is observed, in these box

designs, to that of ‘box_a’ of Figs. 4.21 and 4.22.
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Fig. 4.21 E, transient response at location (2) inside ‘box_a’ for all absorber cases.
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Fig. 4.25 E, transient response at location (2) inside ‘box_c’ for all absorber cases.
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Conclusions

In this section, the Finite Difference~Time Domain numerical technique was used
to calculate and study the transient field response inside a cubic conducting box with an open
top normally illuminated by a doubly-exponential pulse plane wave. The modeling of the
conducting box was done efficiently by using electric and magnetic walls and only one—
quarter of the conducting box geomeiry was modeled. The effect of modifying the conduct-
ing box aperture geometry on the magnitude and frequency content of the transient field
penetration inside the conducting box is studied. Five aperture geometries were considered
where the size and orientation of the aperture edges were the variable parameters involved
in this study. The aperture edges geometry having the smaller edge size perpendicular to the
polarization of the incident plane wave resulted in a significant reduction of the transient
field magnitude at the early time in addition to a resonance phenomena. Also, the conducting
boxes with modified aperture geometries became more frequency selective as compared
with the unmodified aperture conducting box. The addition of absorbing material on the
walls of the conducting box geometries analyzed was also investigated. Adding the absorb-
ing material on the aperture wall reduced the transient field magnitude penetrating inside the
box cavity, while adding the absorber at the inner walls caused the field resonance to attenu-

ate at a faster rate.
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4.4. Thin Wire Modeling

i) Review

The FDTD method has proven to be a successful numerical technique used for solv-
ing a variety of electromagnetic scattering and coupling problems. Using Yee’s cell, Fig. 2.1,
geometries with complex shapes and composition are modeled in a straight forward manner
inside the FDTD space lattice. On the other hand, the Yee cell fails to model thin wire struc-
tures efficiently. In this case, thin wires are modelled by setting the tangential total electric
field to (E., = 0) zero at the wire location leaving no parameter to vary to study the influence
of wire radius on the solution [88]. Such modeling is illustrated in Fig. 4.31. A second ap-
proach to model wires is to set the dimensions of the Yee cell such that the cell area will match
with the cross—sectional area of the wire, or to set the dimension to be equal to the wire diam-
eter as shown in Fig. 4.32. In this manner, relatively accurate results are obtained [89]. How-
ever, this approach will be very expensive in terms of memory storage requirements if com-
posite geometries are involved. Thin wire subcell models [55,61] are alternative approaches
that succeeded in modeling of wires efficiently. Thin wires of radii much smaller than the
FDTD cell size are modelled using the thin wire subcell models. In [55], an ““in—cell induc-
tance > model of the thin wire is developed, the current distribution on the wire is obtained
through the solution of a differential equation for the wire current solved concurrently with
the FDTD time stepping. The wire subcell of [61] uses a Faraday’s law contour integral ap-
proach to obtain a simple modification of the basic FDTD algorithm to properly model the

electromagnetic field near the wire.

Taflove et al. [61] suggested that the extension of FDTD modeling to wires, slots,
and curved surfaces can be achieved by departing from Yee’s original pointwise derivative
interpretation. As shown in Fig. 4.33, their new idea is based upon Ampere’s law and Fara-
day’slaw in integral form implemented on an array of electrically small spatially orthogonal
contours. These contours mesh (intersect) in the manner of links in a chain, providing a geo-
metrical interpretation of the coupling of Ampere’s law and Faraday’s law. This meshing re-
sults in filling of the FDTD modeled space by a three—dimensional chain—link array of inter-
secting orthogonal contours. The presence of wires, slots, and curved surfaces can be

accounted by incorporating appropriate field behavior into the contour and surface integrals
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implementing Ampere’s law and Faraday’s law at selected meshes, and by deforming con-
tour paths as required to conform with surface curvature. The equivalence of this procedure

to the Yee algorithm in free space and its implementation to thin wire modeling is included

in Appendix C.
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Fig. 4.31 Thin wire modeled inside a FDTD lattice by setting g, = ¢ atthe
wire location.

Fig. 4.32 Modeling of a thin wire inside a FDTD lattice
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4.4.1., Numerical Tests

Most of real life scattering application structures are made of composite components
( planer surfaces, boxes, coated surfaces, wires, . . ), and the FDTD method has proven to
be an efficient method in modeling such complex geometries. In this section, the different
approaches used to model thin wires in the FDTD method will be examined. The current
phase and magnitude along thin wires are computed using three of the wire modeling proce-

dures mentioned earlier;

1- Equal—cell area—wire cross—section,

2— Contour integration,

3— Eu, = 0, at wire location.

These current magnitudes are compared with those computed using the Method of Moments
(MoM) adopted by NEC [90].

ii) Infinitely long wire (two—dimensions).

The case of an infinitely long thin wire is considered first. Fig. 4.34 shows the com-
puted circumferential equivalent magnetic field (H,,) near a thin perfectly conducting infi-
nitely long wire illuminated by a Sinusoidal 7M plane wave for a wide range of wire radii
at a distance 4/20 from the center of the wire. H,, is the circumferential magnetic field that
will produce the same wire current obtained by integrating the circumferential magnetic
fields resulting from the FDTD computations as illustrated in Fig. 4.35. H,, is computed
using;

- equal—cell area—wire cross—section,

2— contour integration,

3— exact solution.
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Fig.4.34 H,, circumferential magnetic field atlocation /20 from the center of an infinite

wire.
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TM case
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Fig. 4.35a Procedure to compute H,, at location / from the wire at location (i, j) modeled inside
aFDTD lattice. ( g, = 0 case).

Fig. 4.35b Procedure to compute H,, at location / from the wire at location (7, j) modeled inside
a FDTD lattice. ( equal cell area—wire cross—section case ).
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The exact solution for the #,, of a wire can be obtained using the boundary value

problem solution of the scattering by a conducting cylinder, however, due to the small wire

radii, special handling is required to evaluate the series solution. A cell size of A = -i% iscon-

sidered for the contour integral method. Field values obtained using the contour integral
modeling matched exactly with the exact solution as reported in [61], while the equal cell

area—wire cross—section modeling departed from the exact solution at small radii. On the oth-

er hand, using E., = 0 on the wire modeling, the value of H,,intersect the exact solution

curve at a wire radius value of approximately ¢ = 0.0144 corresponding to a wire radius to
cell width (A = —1%) ratio of % = 0.14 . In [55] a value of % = 0.5 is suggested, correspond-

ing to zeroing the  in—cell inductance ” in the thin wire formalism in the corresponding sub-

cell model.

iii) finite wire (three—dimensions).

Next, wires in three—dimensional space are considered. A perfectly conducting wire
of length L and radius a along the z—direction is illuminated by a TM sinusoidal plane wave.
The magnitude and phase of the current distribution along the wire structure are computed
using the above mentioned modeling procedures and are compared with the MoM solution

for the same wire geometry [91].

AFDTDcellsizeof A = % is used for the cases of E,, = 0 on the wire and the con-

tour integral wire modeling, while a A = é‘a resolution is used in the MoM modeling. Fig-
ures 4.36—4.38 show the magnitude and the phase of the computed current distribution along

the wire structures of radius a = T’(% and lengths L = 14, %A ,and 24 . Figures 4.39-4.41
show similar wire current information but for wire structures of radius a = 2?;—0 . It is ob-

served that for a wireradius ¢ = 5?')—07 both the equal cell area—wire cross—section and the con-

tour integral procedures show fairly accurate values of the current magnitude as compared

with the MoM solution. While for the E,, = 0, on the wire, modeling case less accurate val-
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ues are obtained as compared to the other two procedures. For a wire radius of ¢ = lfTO , both

the equal cell area—wire cross—section and the contour integral wire modeling are fairly in
good agreement with the MoM solution. On the other hand, the E,, = 0 onthe wire modeling

predicted more accurate values for the current magnitude along the wire compared with the

other two FDTD modeling procedures. It should be noted that in this case the wire radius

to the FDTD cell size ratio % = 0.2 isclose to the value obtained from Fig. 4.34 in the two—

dimensional case,
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Fig.4.38 Current magnitude and phase solutions for different FDTD thin wire modeling
procedures and the MoM solution along a2.04 wire (TM illumination ).
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Fig.4.39 Current magnitude and phase solutions for different FDTD thin wire modeling
procedures and the MoM solution along a1.04 wire (TM illumination ).
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Fig.4.40 Current magnitude and phase solutions for different FDTD thin wire modeling
procedures and the MoM solution along a3/24 wire (TM illumination ).
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Fig.4.41 Current magnitude and phase solutions for different FDTD thin wire modeling
procedures and the MoM solution along a2.04 wire (TM illumination ).
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iv) Transient Response of a Wire

The capability of the thin wire modeling procedures in the FDTD method, studied

in this section, to predict transient field and transient response information is also investi-

gated. A half wavelength dipole having aradius a = Ef)’—o along the z—direction is illuminated

by a TM Gaussian shape plane wave, a cell size of A = ;40 is used. Figure 4.42 shows the

current transient response at the midpoint of the dipole. The dipole structure is modelled us-
ing the three wire modeling procedures involved in this study. The equal cell area—wire
cross—section modeling resulted in a larger damping ratio the transient response than the oth-
er two modeling procedures. The corresponding frequency response of the current magni-
tude is obtained from the time information of Fig. 4.42 and is shown in Fig. 4.43. These fre-
quency response plots are compared with that obtained from the MoM solution of an
identical dipole. The MoM frequency data are scaled to include the effect of a Gaussian pulse
excitation. The design frequency of our numerical experiment for this case is 1GHz, and the
Gaussian pulse width used allows accurate current response of up to 2GHz. The resonant
frequency of the dipole predicted by the three wire modeling procedures is very close to that

obtained by the MoM solution.

The performance of different thin wire modeling procedures in the FDTD numerical
technique is investigated. Current and phase magnitudes along thin dipoles are computed
using the equal cell area—wire cross—section, E,, = 0 on wire, and the contour integral mod-
eling procedures. The computed results are compared with those obtained from the MoM
solution. The equal cell area—wire cross—section procedure gave accurate results but was ex-
pensive in memory storage requirements, while the contour integral method provided an ef-

ficient and accurate wire modeling technique.
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Fig.4.43 Frequency current response of time data of Fig. 4.42 compared with the MoM solution.
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The problem of radiation of electromagnetic waves by an antenna in a given environ-
ment is basically that of solving Maxwell’s equations subject to the boundary conditions in-
troduced by both the radiating antenna and its surrounding environment. solving such anten-
na problems have been done widely by using frequency—domain techniques ( MoM, finite
element, etc. .). On the other hand, the FDTD, which is a time—domain technique, has been
used in the analysis of large number of electromagnetic scattering and interaction applica-
tions, as presented in Chapter II, and relatively little has been reported toward applying
FDTD to model antenna radiation. Maloney et. al. [92] used the FDTD method to analyze
radiation by axially symmetric two—dimensional problems, where he modeled cylindrical
and conical monopole antennas. Katz ef. al. [52], also used the FDTD method to model vari-
ous radiating structures that included two— and three—dimensional waveguides, flared
hornes and a two—dimensional parabolic reflector. Tirkas and Balanis [53] used the FDTD
technique to model and predict the radiation pattern of wire and aperture antennas and were

compared with measured radiation patterns.

FDTD modeling has been also extended to provide detailed characterization of mi-
crostrip antennas and circuits, Reinex and Bernard [40] used the FDTD method to analyze
radiation by a microstrip patch. K. Mei et. al. [37,38] used the FDTD to calculate dispersive
characteristics of a typical microstrip on a Gallium Arsenide substrate. A Gaussian pulse ex-
citation is used and the effective dielectric constant and characteristic impedance over a large
range of frequencies is efficiently obtained via Fourier transform of the time—domain field
response. K. Mei ez. al., also [54] applied the FDTD to analyze a small broadband and flared
antenna on a substrate. In [93] an efficient time—domain method based upon the combination
of the FDTD with an appropriate periodic boundary condition, is developed and is success-
fully applied to time—domain characterization of a phased array of tapered slots. The FDTD

method was also applied successfully on microstrip circuits in [39,94, and 95].
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An important aspect of microstrip patch antennas lies in the feeding (exciting) of
these structures. The location and the type of the feeding network will determine what field
modes and polarization are excited by the microstrip structure. Hence, the field levels in the
co—polar and cross—polar radiation patterns of the patch antenna will be directly related to

the location and type of the feeding network.

In this chapter, a rectangular microstrip patch antenna is considered. This patch an-
tenna is excited by using a transmission line of characteristic impedance Z, located at a dis-
tance d from the center of the patch as illustrated in Fig. 5.1. The effect of scanning the trans-
mission line along the patch length on the level of the co—polar and cross—polar radiation

field patterns will be investigated for three rectangular patch dimensions.

|<—5‘

___i______
i

AT~

Characterstic Impedance (Z,)

Fig. 5.1 Rectangular microstrip patch antenna with a transmission line feed.
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5.1. Analysis of a Rectangular Microstrip Patch Antenna.

In this section, the modeling procedure inside the FDTD lattice of the microstrip
structure considered in this investigation will be presented. Also, the procedure followed in

computing the circuit and radiation parameters of the microstrip structure will be discussed.

i) Modelling Procedure.

Figure 5.2 shows the geometry of the rectangular microstrip patch antenna and its
corresponding dimensions and physical parameters considered in this analysis. The patch
ismappedintoa (60 x 95 x 25) FDTD lattice. The upper and side walls of the lattice are trun-
cated with first—order ‘One—Way’ wave equation ABC described in Chapter IT1, while a con-
ducting surface is imposed on the bottom surface of the lattice. Applying ABC on the side
walls of the FDTD lattice will approximate the assumption of an infinite substrate and
ground plane in this analysis. In this case, surface waves propagating inside the substrate will
be absorbed at the lattice walls with no reflection nor diffraction as if the substrate is infinite
in the x—and y—directions. Figure 5.3 demonstrates the modeling procedure of the rectangu-

lar patch together with the excitation transmission line in the FDTD lattice.

The excitation pulse used in this study has been chosen to be a Gaussian pulse. This
choice is based on the Gaussian pulse having a smooth waveform in time, and its Fourier
transform is also a Gaussian pulse centered at zero frequency. These unique properties make
it a perfect choice for investigating the frequency—dependence characteristics of microstrip
structures through the Fourier transform of the pulse response. The Gaussian pulse used in

this investigation has the following expression.

E) = 100 Exp —E(t ~ 100 x 102) / (30 x 10 )]2 V/m) (5.1)

Figure 5.4 shows the Gaussian shape waveform together with its corresponding frequency
spectrum. The choice of the spatial step sizes of Ax, Ay, and Az shown in Fig. 5.3 is done
to model with sufficient accuracy

— the microstrip structure

— the fields in the dielectric substrate and above the patch
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— the frequency response of the microstrip structure up to = 13GHz . ( A, = 30 X Ax , i.e.

the shortest wavelength is modeled approx. by 30 spatial cells ).

= 2865 ( Z, = 49Q, Wheeler's [96] )

w
h

El:“i.SS?mm

Conducting plane

O P
X
AY
fe— . a=2266mm . 5]

| |
!
: b =19.33mm
[

| |

! T

! !

feld = [

l ]

| i

L =29.70mm 2d/a=0.466
— ol W f——
R |1 R
o T X
Fig. 5.2 Geometry and dimensions of a rectangular patch antenna with

a transmission line feed ( 2d/a = 0.466 ).
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5.3 Modeling procedure of the microstrip rectangular patch antenna
inside a FDTD lattice.
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|Ez| (V/im-Hz) (x10°)

Fig. 5.4
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E)) = 100 Exp —[(t - 100 x 102) / (30 x 102 )]2 W/m)

The Gaussian pulse time distribution and its corresponding frequency
spectrum used in the FDTD modeling.
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Initially, all fields in the FDTD lattice are set to zero, the electric field E, is switched
on, with a Gaussian shape variation, below the transmission line in the oxz plane as illus-
trated in Fig. 5.3. The excitation pulse will propagate along the transmission line until it
reaches the transmission line rectangular patch junction where due to the mismatch at this
junction part of the incident pulse will be reflected back to the excitation plane where it will
be absorbed. It should be noted that after the launching of the excitation pulse into the micro-
strip structure, the excitation plane is switched into an absorbing plane. The record of the
incident and reflected response is done at the reference plane indicated in Fig. 5.2 at
L=0.0297m (40AY) from the patch. The transmission line is chosen long enough such that

a separation in time between the incident and the reflected responses is obtained.

Figure 5.5 shows the time variation of E, electric field component at different posi-
tions along the propagation direction just below the transmission line structure. The disper-
sive properties of the microstrip are observed clearly from the distortion of the pulse as it
travels away from the feeding plane. A useful information that can be obtained from the field
response of a transmission line, is the variation of the characteristic impedance Z, with fre-
quency. Wheeler expression of Z, = 50Q presented in [96] is used initially to compute the
corresponding dimensions, w / A, of the transmission line. In our FDTD computations, the
variation of Z, with frequency is obtained via the rati:o of V(w)/I(w).V(w)is the Fourier
transform of the voltage response computed from the line integral of the vertical electric field
under the center of the strip. /(w) is the Fourier transform of the current response defined
as the loop integral of the magnetic field around the metallic strip of the transmission line.
Figure 5.6 shows the spectrum of Z,(®) of the transmission line used in this study agreeing

favorably with the pre designed value of 2,

Figure 5.7 shows three—dimensional plots of the space distribution of the E, field
component in a plane just below the microstrip structure of Fig. 5.3. These plots are for dif-
ferent FDTD time steps showing the propagation of the excitation pulse and its interaction

with the rectangular patch geometry.
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Fig. 5.5 Time variation of E;, at different positions along the direction of
propagation.

100_ ............ e grres ............ R creeeees ...........

80 |

B0 ]
o dii 2= V]

B0 | b
TS N N T T A S R
50.._,.. ............ .. ............ ............ . ........... .

40 b

0 2 4 6 8 10 12 14 16 18 20
GHz

Fig. 5.6 Characteristic impedance Z, of the feeding transmission line.
(e, =25, wh=2.865)

123 Chapter V




Application to Antennas

t=101

=501

Fig. 5.7

t=201

=601

Propagation of the excitation Gaussian pulse on a plane just below the
the microstrip structure at different time steps.
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i) Input Parameters.

An important information can be also obtained from the FDTD computation of the
microstrip structure considered in this work is the return loss (.S7; ) and the input impedance
( Zin ) over arange of frequencies. This information is obtained from the field response data
at the reference plane RR’, Fig. 5.2, at the feeding transmission line. Figure 5.8 shows the
voltage time response at RR showing clearly the incident and reflected responses. In this
case the return loss S;;(®) can be obtained from the following expression via Fourier trans-
formation,

FT { V., 0}

FT [ Vie () } (5:2)

Sn@ ) =

where Vi,.(t) and V,¢(t) are the incident and reflected voltage responses at the feeding line,
respectively. FT correspond to the Fourier transform operator. These voltage responses can
be obtained by ‘windowing’ ( selecting ) the desired response from the response data of Fig.

5.8.

120_ ............. ............. ............ ............ . ............. ............. ............. .............
1 : Incident Pulss : § : : : :
100—. ........ ,. ............ ,. ............. _ ............ .._ ............. _ ............
8O - flordenn s S S e .............
S 60|t e, SRR O FRUUTRUURUNE NSO e, SR :
E - ; : Reflected Response !
8) a0 b ....................................................................
g 7 : :
S ag i e,
> 20 J s :
SO0 e .................................................................
-40 T l T ‘ T | T i T ' T I T l 13 l T "
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
nsec
Fig. 5.8 The voltage response at the feeding transmission line at the reference

plane RR’ (Fig. 5.2).
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The input impedance Z;, of the patch antenna can be calculated from S;; (@) calcula-

tion by transforming the reference plane to the edge of the rectangular patch antenna,

1+ 5™

© 1 - Spe™ :3)

in =

k being the wavenumber on the microstrip, L is the length from the patch to the reference
plane RR'. A value of Z, =49€2 and an effective permitivity of 2.15 are assumed to calculate
Z;,. Figure 5.9 shows the plot of | §;; and Z;,, at the patch antenna of Fig. 5.2 for a range
of frequencies. A good maich is observed at f=4GHz, with Re[Z;,] = 50Q, and Im[Z;,]

= (), respectively.

o 200
i~ 150

i 100

- =100

- -150

=200

Fig. 5.9 Return loss (157 |') and input impedance ( Z;, ) of the rectangular patch.
(2d/a=0466)
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iii) Far-Field Calculations,

The far—field radiation pattern of a microstrip antenna can be obtained with the
FDTD method by applying a flexible and straight forward near—field to far—field transforma-
tion [43]. The near—field information required for such transformation is a natural product
of FDTD computations. The electric ( E ) and the magnetic ( H ) field components inside
the FDTD lattice and lying on a surface S, enclosing a modeled target, Fig. 5.10, will repre-
sent the equivalent magnetic ( J, ¢4 ) and electric (M, ., ) sources on Sp, respectively . Ac-

cording to [97] these quantities are obtained by

Joeg @) =AXH(r) (5.4a)

M,,, () =-AXE({) (5.4b)

where /i is the outward unit normal vector at the surface S,. The E and H field components
represent the scattered or the total field values depending on the FDTD lattice region on
which S, lies in. The far—field will be given by transforming of the equivalent sources of (5.4)

over the free space Green’s function as illustrated in [79].

(E,H) (E,H)
r--="""""—"""—— - .. - )
| (EH) Al A } Al A,
| i i Aand A, have ]
I I [ same medium I
I X I i Characterstics ]
[ I i i |
l ) ! I |
i g : No sources & zero fields :__) .
n
} Scattering targst g S = {
| | | | S
o e J o e J
boundary Joog=NXH M, =-nXE
Original Problem Equivalent Problem external
o Sp.
Fig. 5.10 Electromagnetic equivalence to transform near—field to far—field.
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Forregions A and A4, of Fig. 5.10 having g, and e, as the medium characteristics with wave-

number &, = ZE , and intrinsic impedance 7, = 120z the far—field expressions for 6 and ¢

polarization will be given as,

Eo = (-jkn) | 49 + % (5.52)
. Fy

E¢ = (_]koﬂo) A¢ + '77—‘ (S.Sb)
where
Ap = A, cos8 cosg + A, cosf sing — A, sin@ (5.6a)
Fg = F, cos@ cos¢ + F, cosf sing — F, sin8 (5.6b)
Ag = —A, sing + A, cos¢ (5.6¢)
Fy = ~F, sing + F, cos¢ (5.6d)

and A and F are the magnetic and electric vector potential introduced in [79], respectively.

In the far—field region the vector potentials are given by

Af _ [t T
M"(MHH L[Mj et =5t i, (5.72)

r' cost = (x’ cos¢ + ' s'm¢) sin@ + z' cos@ (5.7b)

where (x', ¥, z’) is the location of the equivalent sources in cartesian coordinates.

In our case, the far—field pattern of the microstrip patch antenna considered is ob-
tained in a siraight forward manner using the procedure described above. In most of the re-
search envolving microstrip patch antennas the sources contributing significantly to the radi-

ation pattern are considered to be locaied on the aperture plane of the patch antenna. Hence,
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only a planer surface located above the patch containing the equivalent sources is considered
in the far-field computations. In this case, surface waves on the substrate along with the
fields diffracted at the finite ground plane edges are neglected. Using the FDTD method three
procedures can be used to compute the far—field radiation pattern of a rectangular patch an-
tenna. Using the modeling procedure of the patch antenna followed in this chapter and de-
scribed earlier the radiation pattern is obtained by considering the equivalent sources located
on a surface that is slightly larger than the patch and is located at three cells above the patch
as illustrated in Fig. 5.11a. A second procedure for calculating the radiation pattern of the
patch, shown in Fig. 5.11b, is to enclose the patch and a portion of the substrate in a rectangu-
lar box whose surfaces will contain the corresponding equivalent sources for the radiation
pattern calculation. In this case, the effect of the surface waves on the radiation pattern are
accounted for. For this procedure, only the fields diffracted at the edges of a finite ground
plane are not accounted for. It should be noted that the ground plane is assumed infinite in
this FDTD modeling of the patch antenna, which is not the case in practice. Figure 5.12
shows the radiation patterns of the patch antenna using the two mentioned procedures. This
Figure shows the effect of neglecting the surface waves on the co—polar pattern at large angle
values (8 < -30°, 8 > 30° ), but more significantly in the cross—polar field patterns. These
patterns are computed at the first and second resonating modes of the patch. The equivalent
sources on the near—field surfaces in frequency—domain were obtained by using DFT ( Ap-

pendix B) from the time—domain data of selected frequencies.
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Fig. 5.11 Procedures to calculate far—field patterns of a microstrip patch antenna

modelled inside a FDTD lattice
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Normalized Eg and E¢ far~field patterns at the first and second resonant
modes of the rectangular patch calculated using the procedures of
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The third procedure to compute the radiation pattern of a rectangular patch antenna
using the FDTD method, is a more realistic procedure but expensive in terms of computer
resources. This procedure envolves considering the real geometry of the patch antenna with
finite substrate and ground plane, Fig. 5.13. In this case, the antenna geometry will be en-
closed in a closed box that contains on its surfaces the equivalent sources for the near—field
to far—field transformation. Such procedure will account for all the physical phenomena con-
tributing to the radiation from the antenna geometry. Such a procedure is considered for fu-

ture work to be done on the analysis of patch antennas.

near-field box
ABC

FDTD lattice

- -’.ad ny

4 "Conducling plane

Q e’
2] -
nx X
Fig. 5.13 A realistic procedure to calculate the farfield patterns of a microstrip

patch antenna modelled inside a FDTD lattice.
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5.2, Results and Discussion.

In this section, the circuit and radiation parameters of the patch antenna of Fig. 5.2
are investigated, and the effect of moving the feeding transmission line along the patch
length a (varying d') on the co—polar and cross—polar radiation field patterns will be studied

using the procedure of Fig. 5.11b.

i) Input parameters

The patch geometry considered is that of Fig. 5.2 where the distance d between the
center of the transmission line and that of the patch will be the varying parameter. Initially,
d is set to zero accounting to a center fed patch, d is then increased till the edge of the trans-
mission line coincided with the patch edge. Figure 5.14 shows plots of return loss (| S;; 1)
and the input impedance Z;,, over a frequency range of 4GHz for incremental values of 2d/a.
In other words, these plots show the amount of energy absorbed by the patch structure rela-
tive to the supplied energy over arange of frequencies. Also, they show the input impedance
Z;» magnitudes along the side a of the rectangular patch. d = 0 feed location, corresponding

to a center fed patch, resulted in a TM,,; mode matched resonance of = 4.6GHz due to length

b of the patch (fm =1/ @bu,e = 4.9GHz> . Forvalues of 2d/a > 0,a matched TM;p mode

of = 3.9GHz due to length a started to appear (fm =1/ Qayu, € = 4.1GHz> , in addition

1
2 2 \2
to aThM;; mode E fu = ( i/ ‘/,u,, e)}( L—}ﬂ + [—z—lgj > = 6.44GHz },as well. Larger values

of 2d / a will result in tuning the feed line to a desirable patch input impedance Z;, to match
the fjo or f;; resonant modes. With the feed transmission line characteristic impedance Z, =
50Q2, Fig. 5.14 shows an improvement in the transmission line—patch matching where a

Re[Z;, | =508, and Im[Z;, ] = 0 is observed for 2d/a = 0.466—0.8 at f = 4GHz.
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ii) Near-Field Calculations

Figure 5.15 shows the near field information on a plane three FDTD cells above the
patch and whose sides are five FDTD cells larger. These plots are generated for f = 4GHz
which is the matched resonance frequency observed from Fig. 5.14. Figure 5.15 shows both

the magnitude and phase of E, and E, field components tangential to the ground plane and

comprising the aperture field for some values of 2d/a corresponding to the feed location
along side a of the rectangular patch.

Initially, for the feed Iocation 2d/a = 0 (center fed) itis observed that E, field components
along side b of the patch are /80° out of phase due to the even symmetry of the patch in the
x—direction. Hence, the far—field produced by these fields will cancel in the broadside direc-

tion of the patch. On the other hand, the E, field components along side a of the patch are

in phase and will add up to give a maximum radiated field in the broad side direction normal
to the patch structure. The corresponding far—field pattern is shown in Fig. 5.16. Moving the
feed along side a of the patch from its center position (d = 0) will distort the symmetry of
the geomeitry causing the E, aperture fields along side b not to cancel in the broad side direc-

tion, hence, both aperture field components E, and E, will contribute to both co—polar and

cross—polar radiation field levels of the rectangular paich. Cross—polarization level will vary
correspondingly as the feed location is varied. Figure 5.15 shows clearly the change in the
aperture field magnitude and phase distribution as the distance d is varied. The correspond-

ing far—field patterns are presented in the next sub—section.
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iii) Far—Field Calculations.

Figure 5.16 shows plots of the radiation gain patterns of the patch antenna computed
for different values of din the ¢ = 0° and 90° planes at f = 4GHz. These patterns were ob-

tained using the procedure of Fig. 5.11b and the following gain expressions,

£ 150 .9) 12

Gain [E, 6 .¢ )] = o (5.82)
i g |2
Gain [E¢ © .¢ )] % 0.¢) (5.8b)
Prad
where
2% R

P = j j U@ ,¢ )sind df dp (5.92)
and

U6 $) = 5] 120 4 )1 + 40 .4 )7 ] (5.9b)

As described earlier, for the case of a center fed patch (d = 0 ) the far—field due to
the E, aperture field component along side b of the patch will cancel in the broadside region,
hence the low field levels in Fig. 5.16 for 2d/a = 0 are attributed to numerical errors, since
theoretically such a microstrip geometry will have a zero cross—polarization field level in the

broadside region of the patch. Fig. 5.16 shows both E, and E, gain patterns in addition to
their phase difference, A® = (£LE, — £ E,)°, between these field components in the ¢ = 0°

and 90° planes of a standard spherical coordinate system.

Itis observed that as the value of 2d/a is increased the gain values of E, and E, field
components change in direct correspondence to the near-field variation observed in Fig.

5.15. For values of 2d/a >0 the E, gain values in the ¢ = 0° plane increased while the E
$

gain values decreased. However, for 0.4 <2d/a < 0.8 both field components maintained a
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slightly constant gain values. The variation in the gain level of the E, and E4 field compo-

nents versus the feed location along side a in the ¢ = 0° and 45° planes is summarized in Fig.
5.17. Figure 5.18(a,b) summarizes the variation of the cross—polar level versus the feed loca-

tion in the ¢ = 0° and 45° planes, as well.

The above analysis on rectangular microstrip paich antenna was conducted on a

patch geomeiry having sides dimensions that are almost equal ( @ = 22.66 m.m., b = 19.33
m.m.)and having a sides size ratio of 1 < % = 1.17 < 1.5 . In the following analysis, rectangular
patches whose sides size ratio are %: 1 (square patch ), and i;-: 1.5 are considered and the

variation of the cross—polar level versus the feed location in the ¢ = 0° and 45° planes will
be computed. The transmission line feeding these patches is identical to the one used earlier.
The patches dimensions are chosen such that a matched resonant frequency of f = 4GHz is

obtained.

First, the square rectangular patch, % =1, 1is considered and having sides dimensions

of a = b = 22.66m.m. Fig 5.19 shows sample plots of the magnitude and phase of the E, and

E, field components tangential to the ground plane and comprising the patch aperture for

values of -2:?- = 0 and 04 corresponding to the feed location along side « of the rectangular

patch. For d = 0 a similar situation to the % = 1.17 patch occurred, where only the fields
along side a of the patch will contribute to the radiated fields in the broadside direction of
the patch. For % = 0.4, corresponding to an asymmetric feed location, side a tangential

eleciric fields components still dominate over the tangential electric field along side b in con-
tributing to the radiated fields in the broadside direction of the patch. This conclusion can

be made by observing Fig. 5.20a showing the cross—polar level versus feed location of the

patch in the ¢ = 0° where the E; gain level increases over the E, gain values as 2 is made
a

larger. This is unlike the aperture field behavior of the % = 1.17 patch where the E, gain

level increased over the E; gain leve] as the feed is moved along side a of the patch as illus-

144 Chapter V



Application to Antennas

trated in Fig. 5.18a. Figure 5.20 shows the cross—polar level versus feed location in the ¢ =

45° of the square paich, as well.
The last rectangular microstrip patch considered in this analysis is that whose sides

ratio is chosen as % = 1.5, where a = 22.66m.m, and b = 15.108m.m. Figure 5.21 shows
again sample computations of the magnitude and phase distribution of the E, and E, field
components comprising the patch aperture fields for values of % = 0 and 0.333 . Again, due

to symmetry for feed location d = 0, only the fields on side a of the patch contributed to the
radiated fields in the broadside direction of the patch, while the radiated fields due to side
b canceled out at the broadside direction. Moving the feed line along side a disturbs the an-
tenna symmetry causing the tangential the tangential electric fields along side b of the patch
to dominated over those along side a as observed in Fig. 5.22a showing the cross—polar level

versus feed location of the considered patch in the ¢ = 0° plane where the E, gain values

increases over the E, gain values as _;151’_ ratio is increased. This behavior is similar to that
of —g- = 1.17 patch but in this case the E, gain magnitude relative to the E, gain magnitude

is larger. Fig. 5.22 shows also the cross—polar level versus feed location of the —Z? = 1.5 patch

in the ¢ =45°, as well.
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Fig. 5.16 Gain patterns of the rectangular patch computed using procedure of
Fig. 5.11b for different transmission line feed location at f = 4GHz.
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iv) Conclusions

In this chapter, the FDTD technique is used to model and analyze the input and radi-
ation characteries of a rectangular microstrip patch antenna. The return loss (1.5;; 1) and the
input impedance ( Z;, ) of the rectangular patch were obtained from the input voltage infor-
mation recorded at the transmission line feeding the rectangular patch. The radiation charac-
teristics were obtained by transforming the equivalent sources obtained from the near—field
data, computed by FDTD, on a surface enclosing the rectangular patch over the free space
Green’s function. Also, the effect of the ransmission line location feeding a rectangular
paich antenna along the patch length on the co—polar and cross—polar radiation field pattern

levels has been studied. Curves relating the gain and cross—polarization field levels to the
feed location were obtained for three patch dimensions, of sides rations %: 1, %: 1.17 , and
% = 1.5. Such curves will provide a useful design guiding information for a predefined gain

and cross—polarization level of rectangular patch antennas of dimensions that are compara-

ble to those considered in this analysis.

155 Chapter V



CONCLUSIONS AND RECOMMENDATIONS

6.1. Conclusions

The Finite Difference-Time Domain, (FDTD), method approximates the Maxwell’s
equations by finite-differences and relates the time—dependent quantities to the spatial com-
ponents of the field vectors. As such, the components of the field vectors are computed di-
rectly and progressively from their adjacent values in the past. Thus, the method does not
require a dense matrix generation and the objects’ local physical constants are used directly
during the computational process. Hence, the FDTD technique is an efficient method of
computing the field vectors in the vicinity of an object at increasing time steps. In this work, a
study of the FDTD numerical technique and its application to scattering and antenna prob-

lems is done together with a development of a general purpose code.

In Chapter III, a stability study has been conducted that involved,

~the effect of the spatial step size A of the lattice on the FDTD solution, showinga A = 4'2'1%

condition for sufficiently accurate solutions, where 4., is the wavelength of the highest fre-

quency existing in the FDTD solution.

~— the distance between the modelled target and the lattice truncation planes,where adequate
distance has to be maintained between the target and the lattice walls allowing the ABC to

perform accurately.

—the use of second—order ABC ( One—Way wave equation eq. 3.9 ) and the first—order ABC(
Averaged Extrapolation eq. 3.1 ), where 2 more accurate but less stable performance was ob-

served for the second—order ABC.

The use of a non—uniform gridding in a FDTD lattice is also investigated by examin-

ing the propagation of a Gaussian pulse plane wave for different non—uniform gridding
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schemes. To insure stability in the FDTD algorithm, the time step increment é: has to be
chosen to satisfy the Courant stability criteria taking into account the smallest spatial step
size inside the FDTD lattice. This choice might effect the magnitude values of the pulse de-
pending on how small is the smallest A relative to the largest A, noting also that although
there was a change in the peak magnitude of the pulse, in a non—uniform grid, the shape of the

pulse is maintained with no distortion as it propagates inside the FDTD lattice.

In Chapter IV, the FDTD method is applied to scattering and field penetration prob-
lems. The transient response of a conducting and dielectric circular cylinders illuminated by
a step like plane wave is computed. In the conducting cylinder case, the effect of using differ-
ent rise time values of the excitation plane wave is observed only in the illuminated region of
the cylinder. The use of a step like plane wave, having infinite energy, as the excitation func-
tion resulted in a steady increase in the magnetic field values on the cylinder’s surface due to
charge accumulation. A completely different response behavior is observed for the case of
the dielectric cylinder. In this case the field values converged to the steady state value of the
incident plane wave. The transientresponse of conducting and dielectric spheres illuminated
by a Gaussian pulse plane wave is also computed using the FDTD method. The computed
responses agreed favorably with the corresponding analytic solution. The curved surfaces of
the cylinder and sphere are modelled by a stepped edge surface inside the rectangular FDTD

lattice.

Also in this chapter, the FDTD technique is used to study the field penetrationinto a
conducting box with an open top illuminated normally by a doubly—exponential puise plane
wave. Using the symmetry of the problem only one—quarter of the conducting box geometry
was modelled. The effect of modifying the conducting box aperture geometry on the magni-
tude and frequency content of the transient field penetrating inside the conducting box is stu-
died. It is observed that the aperture edges geometry having the smaller edge size normal to
the polarization of the incident wave resuited in a significant reduction of the transient field
magnitude at the early time in addition to a resonance phenomena. Adding absorbing materi-
al on the aperture wall reduced the transient field magnitude penetrating inside the box cav-
ity, while adding the absorber at the inner walls caused the field resonance to attenuate at a

faster rate.
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Three different thin wire modeling procedures in the FDTD method were also inves-
tigated, where the current magnitude and phase along thin dipoles of different lengths is com-
puted. The three procedures examined are the equal cell area—wire cross—section, E,, = 0 on

wire, and the contour integral methods.The computed results were compared with those
computed from the MoM solution.The equal cell area—wire cross—section procedure gave
accurate results but was expensive in computer memory requirements, while the contour in-

tegral method provided an efficient and accurate wire modelling technique.

In Chapter V, the use of the FDTD method to antenna analysis is introduced and was
applied specifically to rectangular microstrip patch antennas where the corresponding input
and radiation characteristics are computed and analyzed. The return loss (| S;; 1) and the
input impedance ( Z;, ) of the rectangular patch are obtained from the data recorded at a de-
fined reference plane at the transmission line feeding the patch antenna. The radiation char-
acteristics of the patch antenna are obtained from the near—field data, computed by FDTD, on
a surface enclosing the rectangular patch. The effect of the transmission feed line location

along the patch length on the cross—polarization field level is investigated for three rectangu-

lar patch dimensions of sides ratios, % = 1.0, — = 1.17, and % = 1.5 , and curves relating

i
b
the cross—polarization field level to the feed location are obtained. Keeping the length of side

b of the patch constant and increasing the length of side a switched the polarization direction

of the patch antenna from a y—polarized ( g- = 1.0 ) to x—polarized ( % = 1.5 ) radiator.

6.2. Recommendations
Itisrecommended that further development of the present FDTD code and applying
the FDTD method to other scattering and antenna applications to be done. An improvement

in the present developed FDTD code can involve the following items

e the capability to model curved surfaces accurately without ‘staircase’ approximation.
One way to implement this capability is by using Maxwell’s curl equations in integral
form where the curved surfaces are accounted by incorporating field behavior into con-
tour and surface integrals implementing Ampere’s law and Faraday‘s law at selected
meshes, and by deforming contour paths as required to conform with the surface curva-

ture.
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e investigating the use of more accurate ABC that will model efficiently the free space en-

vironment.

e additional study on the use of non-uniform FDTD lattice to model efficiently complex

geometries.
e the inclusion of Radar Cross Section (RCS) option into the FDTD code.

the work on the last two items is already in progress.

Ii is also recommended to apply the FDTD method to inverse scattering and object
detection applications using incident plane waves at different angles of incidence and polar-
ization®. The FDTD method is also considered to further investigate microstrip patch anten-
nas and to use the modeling procedure of Fig. 5.13 to study the effect of the ground plane
size on the main and backlobes of the corresponding radiation patterns. Analysis of circular
polarized radiators is also recommended to be studied using the FDTD method. Such types

of applications will be studied in the near future.

4. This option is already included in the developed FDTD code.
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TRANSIENT RESPONSE OF A SPHERE

To obtain the transient response of a sphere, the impulse response is first obtained
from the frequency—domain data using the inverse Fourier transform. The frequency—do-
main data is obtained from the Rayleigh-Mei analytical solution of the scattering by a

sphere.

Figure A.1 represents a sphere of radius g illuminated by an x—polarized plane wave

travelling in the z—direction, that is

H;, == e—jkrcos@ (A_l)

=

Fig. A.1 Plane wave incident on a sphere.
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Following the discussion done by Harrington [79, pp. 292], the radial component of the total

electric and magnetic vector potentials for the case of a perfectly conducting sphere can be

written as,
4, = f; cosepg [ avjiter) + b, )] P4 (eos0)
F=t sin¢§; [ adir )+ e, )| 23 s ) (A-2)
where,
S . Ji' (ka ) Jka ) (A-3)
n(n+ 1) HP'(ka ) AP(ka )

J. is the spherical Riccati Bessel function of order n, A% is the spherical Riccati Hankel

function of the second kind and order #, £ is the wave number, and 1 is the intrinsic imped-

ance of the media. The field components are found using Eq. 6-26 of [79]. The sphere surface

currents can be found according to J, = #, x H at 7 = a. The result is

J = ig cosg i . sin@ PY'(cos ) N j Pl(cos@ )
7 (4 ka = 4 f%?)'(ka) sin@ ﬁf,”(ka)
5. <L sing i o Py'(cos@ )  sin@ Py(cosb ) (A4)
¢ % ° ka i n sin® H(nz)t'(ka) ijIf?)(ka)

Pl(cos8 ) being the associated Legendre function of argument cos6 .

For the case of a dielectric sphere the radial vector potentials inside the sphere

(r<a),denoted by —, can be written as,
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cosg z d, f,,(kdr YPY(cos8 )

A =
° n=1
E,
Fr =2 sing 2 e Julkar YPX(cosO ) (A-5)
where
d - _j ed ﬂa
Jeu 1 B2 (g Ykt ) — €0 paliP s )j (e )
IV Ha a, (A—6)

ep = A A A A
Ve APk )i,k ) = €, P (Rt Vit )
where €, and g, are the dielectric constant and permeability of the sphere
The field components are again obtained from (A-S5) using Eq. 6-26 of [79] i.e

1 a4 1 o
H, = —— e —, ~ A7
° = Tsing 3  r or 90 A7)

and
- 2
_ 14 1 PF (A-8)

= - + .
¢ r 96  3rsin@ or op

where 7 = jky = jk, .. Substituting (A-5) in (A~7) and (A-8) we obtain for (r<a )

Jukr ) Picos® ) ﬁ . Gkar ) Pi(cos@ ) (A-9)

__E sm¢
- Z a, sin@ ry,

or ﬂo n=1

and
E, cos¢ 10 € 1, Pl(cos8 ) _
Z d, j (ki YsinG PY(cos8 ) — 177 (7 )_mé? (A-10)

¢
ko i, 7 v

Evaluating (A-9) and (A—-10) at r = a the currents are obtained. Computing the current am-
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plitude at locations specified by (a, 8, ¢ ) on the sphere for a number of frequencies, the

impulse response can be obtained by the inverse Fourier transform.

The inverse Fourier transform of J(w ), the current amplitude at frequency o rad/

sec, is written as

i) =%z-fj(a))e‘f°"dw (A-11)

-

For the case of a plane wave of a non zero pulse width, in our case its the Gaussian pulse

N2
f@)= e“”(?) , the current response becomes

() =%jR(w)e“f”’da) (A-12)

-

where R (w ) =F (w )J (@ ), F (» ) being the Fourier transform of f (¢ ) . Using the discrete
Fourier transform concept ( Appendix B ), the current transient response at location

(a, 6, ¢ ) on the sphere surface will be given by

N
A = | ReD R (1 Aw )eexp (- ndo 1 4) | 22 (A-13)

n=0

where N Aw is the highest frequency at which R (0 ) contains significant energy. If L At

is the greatest value of ¢ at which (¢t ) is desired Aw must be chosen as

7
Ao <——= (A-14)

to prevent aliasing when numerical taking the inverse Fourier transform. In the sphere data
presented in this thesis the Rayleigh-Mei expansion is evaluated up to ka = 22 _ 30 where
c

significant energy is present. The total time duration L Ar is chosen as 2 ns, and L = 600

which provides enough points to plot a smooth curve. Aw is then chosen to satisfy (A—14).
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The Fourier transform of a complex and single—valued function s (¢ ) is defined as

<«

Fw)= }f(t) . e dt (B-1)

where 1 and o are real variables and j is the imaginary unit. If ¢ designates time in seconds,
then @ designates the angular frequency is radians per second ( rad/sec ). The Discrete Four-

ier Transform (DFT) corresponding to eq. (B—1) is obtained by evaluating the integral in

(B-1) at N discrete points [ﬁ,,fn, e fN_l} resulting in a sequence of complex values
{Fo' Fly v w pr} where
N-1
FkAw) =~ At > f, (1 At) . exp (—j k Aw n At) (B-2)
n=0
k=0,1, ..., NF NF; number of desired frequencies.

where f, (n Ay is the discrete time—domain field values ( from FDTD computations), » is

the time step index, N is the total number of discrete time-domain points ( total FDTD time
steps), Aw and Ar are the frequency and time resolutions, respectively, & is the frequency

index, and Fyk Aw ) is the complex quantity providing the magnitude and phase information

at frequency (k Aw ).

Aw is chosen to be consistent with the known sampling theorem. If NAs is the total

time duration then a frequency resolution of Aw < -}—;E is to be used to obtain an alising

free spectrum.
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In our application of the DFT on the time—domain data obtained by the FDTD meth-
od, the Fourier transformation was applied separately after the FDTD running has termi-
nated. However, in obtaining the near—field data of the rectangular paich antenna of Chapter
V, the DFT summation of (B-2) was updated at every FDTD time step and the fields of se-

lected frequencies are stored.

165 Appendix B
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C.1 Equivalence to the Yee Algorithm in Free Space.

Following the demonstration done in [20], FDTD expressions will be developed for
only one field component in Fig. C.1a using the Ampere’s law, and in Fig. C.1b using the

Faraday’s law. The other field components can be obtained in a similar manner.

Applying Ampere’s law along contour Cy in Fig. C.1a, and assuming that the field
value at 2 midpoint of one side of the contour equals the average value of that field compo-

nent along that side, we obtain

if D . s, =§ H . dl, (C.1a)
ot Js, C

g;; f €0E,(i,j, k) dSy = Hx(i,j—1/2,0Ax + Hy(i+1/2,5, Ay
5

— Hy(i,j+1/2,)Ax — Hy(i~1/2,j,)Ay (C.1b)

Now, further assuming that E,(i,j, k) equals the average value of E, over the surface S ;

that Ax = Ay = A ; and that the time derivative can be numerically realized using a central—

difference expression, (C.1b) reduces to

ntles 2y Ene;
coA? | EEZ (l’]’k)ét E7(i,j, k)j - EH?H/Z(Z',]’—I/LI() 3 HZ+1/2(i,j+ 1/2,%)

. H;z+1/2(i+ 1/2,),8) — H§’+1/2(i— 1/2,], k)] A (C.1c)
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where the superscripts indicate field values at time steps n, n+1/2, and n+1. Isolation of
EZ*(i, j, k) on the left side then yields exactly the Yee time—stepping expression for E, for

the free—space case that was obtained directly from implementing the curl H equation with

finite differences.

In an analogous manner, we can apply Faraday’s law along contour C; in Fig. C.1b,

obtaining

d
wfﬂod52=—§ E . d (C.2a)
ot Js, C,

d ., .. . ,

'é;js poH (i, j, k) dSy = — Ex(,j-1/2,k)Ax — Ey(i +1/2,, Ay

+ Ex(i,j+1/2,k)Ax + Ey(i— 1/2,j, k)Ay (C.2b)
W12 s L2
HoA? . {H? (i,),k) 6tH? (z,J,k)J = [E;‘(i,j+ 1/2,k) — EXG,j—1/2,k)

+ B —1/2,5,0) — EXG +1/2,j, k)] A (C.2¢)

Isolation of Hi™/ %(i,j, k) on the left side yields exactly the Yee time—stepping for H, for the

free—space case that was obtained directly from implementing the curl E equation with finite

differences.

C.2 Application to the Thin Wire

To illustrate how the contour integral interpretation permits incorporation of near—
field physics the case of a transverse magnetic (ZM) coupling to a thin wire is considered.
Fig. C.2 illustrates the Faraday’s law contour path used to derive the special FDTD algorithm
for the circumferential magnetic fields immediately adjacent to the wire. Although only

H, is shown, the analysis is easily generalized for the other looping magnetic field compo-

nents.
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Fig. C.1 Examples of spatially orthogonal contours in free space. (a) Ampere’s law for E, .

(b) Faraday’s law for H, .

The following briefly summarizes the assumptions concerning the near—field phys-
ics that are incorporated into the Faraday’s law model. First, the near scattered circumferen-
tial magnetic field components and the near scattered radial electric field components are

assumed to vary as 1/r near the wire, where r is the distance from the wire center. With r
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constrained to be less than 0.1 wavelength at any point in C ( by FDTD spatial resolution

requirements), the 1/r singularity behavior of the scattered Hy, and E, fields is assumed to
dominate the respective incident fields so that the total H, and E, fields also take on the
1/r singularity. Finally, the near total H, and the near total E, fields, evaluated at the z mid-

point of the contour, are assumed to represent the average values of their respective fields
over the full z interval. These assumptions can be concisely summarized by the following

expressions, assumed to apply on and within contour C of Fig. C.2,

s Y B
Hyn,2) = Hy| Sz | == [1+ e @) (C3a)
A
Ex<x, zo % %) = Ex<%,20 + %) . (;—) (C.3b)
E(0.7) = 0 (C.3c)
EJ(A,2) ~ EfA,z0) . [1 +oe. (z—zo)] (C.3d)

where c; and ¢, are arbitrary constants that need not be known.

Using the field expressions of (C.3a)—(C.3d), the Fraday’s law of (C.2a) can be
applied along contour C. In this case the 1/x variationin H, and E, yield natural logarithms.
Also, the linear odd symmetry variation in z assumed for H, and E, integrates out. This

yields the following expression:
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ot
[ 04 20-4) - B4 +%)] - 4n(8) + BX(A, 20
A (C4)
poIn(#)
Thin wire . .
\ Incident field components: £ - Hx (M case)
Ex (% 220 +% ) dl
z =2 + % A T - i C
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Y
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EG 0-2)
L X =Try S%
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Fig.C.2 Faraday’s law contour path for thin—wire model.
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where ry ( assumed to be less than 0.5A ) is the wire radius. Isolation of H;'“/ 2(A/Z, Zp) On

the left side of (C.4) yields the required modified time-stepping relation. This analysis can
be easily generalized to obtain similar time-stepping relations for the other circumferential
magnetic field components immediately adjacent to the wire. It should be noted that no other
magnetic or electric field components in the FDTD space lattice require modified time—step-
ping relations. All other field components are time—stepped using the ordinary free—space

Yee algorithm {10].
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