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,ÁJSTRA,CT

the obiect of thÍs thesis was to investigate the following two

proble¡ns in forced nonlinear feedback systems:

1) Are any approxirnation methods avail-abl-e for determining

which periodi-c solution will occur for a given set of initial con-

ditions of the systern?

2) Can tr¡o subharnonics exÍst simultaneously in the system?

Several new techniques for the stuff of nonlinear syst,ems are e>plained

and investigated for application to the above problems.

ft was coneluded frorn the investigation that a nwnerical sol-ution

of the nonlinear differential eo¡ration was the only method available

for determining which periodic solution r.¡ould result for a given set of

initial condi-tions. The investigation also prored that two subharmonics

ca.n exi-st simultaneously in a nonlinear feedback system.



PRff'ACE

Ttre obJect of thls thesis r¡as to fÍnd. if there are any method.s

available for d.etermining ¡,¡hich of the possible period.lc solutions

¡1111- occur for a given set of lnitlal condltions 1n a foreed nonlÍaear

feed.back system. 0n1y feedback systems whieh can be red.uced. to a

for^n having one noaliaear elenent 1n the forr¿arTd path are consldered..

Aa ansr¿er was also sought to the question: caa two subharmonics exlst
slrnrltaneous\r in a aonlinear feed.baek system? An exact solution of
the nonlinear d.lfferentlal equatlon is requlred. for both of these ques-

tloas. However, the ans$¡ers to these problems vere sougþt mainly by

o.e\ü approximatlon techniques for nonlinear systems. Sinee the old.er

method.s, sueh as the perturbatlon method., are not generally suited. to
the aaalysls of feed.back systens, they uere avoid.ed. unless they were

found. to be partieularly useful.

In Chapter I a short d-lscussion oa the d.ifferences betweea the

response of llnear and. nonl-lnear systems 1s given" Chapter 2 d.eals with
the problem of d.etermlnlng the perlod.ie osclllation resultiag from a

glven set of inltlal coad-itlons. Hayashi's rnethod for d.etermlnlng the

transient response of foreed. nonlinear systems is given 1n d.etail vith
an example. Slnce not too much success was achieved. in d.eterminlng the

perlod.ic responae resultlng from a glven set of inltfal- eond.ltions, it
was d.ecid.ed. to sinrplify the problem by d.etermlning regfons, in the fnput

amplitud.e versus lnput frequency plane, ln which a given subharmonle

oscil-latioo could exist. Chapter J cLeals hrlth this problem and. in parti-
cular presents Old.enburgerrs stabilÍty criterion for subhannonic oscillations.
Ia Chapter 4 the speeial case of relay systems 1s consid.ered., ancl GllLe's

method. for determining regioas in which a subharmonlc oscillatloa can exist
is given. Chapter I d.lscusses the problen of the sluultaneous oeeurrence

of t¡ro subharnonlcs. The posslbiLtty of prod.uclng a trlple-input d.escriblag
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function for the stud.y of thls phenomenon is eonsid.ered.. An approxl-

matlon nethocl by Atherton for the response of a nonlinearity to multiple

i.nputs by the use of a mod.ifiecL nonJ.inearity concept 1s considered ln

Chapter 6 for lts possibte appllcetlou to subharmonic oscil-Lat1ons.

Chapter J conslsts of a d.lscussion of the approximation method.s that

have been consid.ered. and. on the çork done in ansvrering the original
probl.ems.
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CHAHTER 1

INTRODUCTION

trrlhen a perlod.ic force ls applied. to a llnear system, the re-
sulting response is obtained by a superposltion of the transient and.

steady state components. The former is due to the free oselllatfons
of the system, while the latter 1s related. to the forced. osclllatlon
vhlch arlse from the aetlon of the exbernal force. Since the free
osc1llatÍon ls normally d.ariped. out after a sufficiently long period. of
ti.me, only the forced. oscillatlon having the same frequency as that of
the external force vould be observed.. fhus, as far as liaear systens

are concerned., the forced. oselllation is uniquely d.etermlned. once the

system and. the erternal force are given, aad, it is not affected. by the

lnltial cond.itlons of the system. In nonllnear systems the theorem of
superposftion no longer applies and. the system ean possess a vide variety
of period.le oscillatlons in adclition to those srhich have the sane period

as the exbernal force" The response of a system ls terrned. subharmonic

1f its frequency is a proper ratlonal fractÍon (t.e" L/2, f/2"..1/n) of
the forelng fuoction frequeney, and. it fs calIed. the subhannonie of ord.er

n.

Although much work has been d.one on subharmonlcs, the problem ean

not be consld.ered. solved.. The ted.lous solution by the perturbatlon,
I

lteratloa (7)-, or sinllar method.s results in Iltt]-e better und.erstand.ing

of the subharmonic behavlor, and ls not suited. to the ana\rsls of the

perfornaace of feed.back systems. New approxinatlon method.s are constantty

being sougþt.

I
TÌre bracketed. nunbers refer to referenee in the biblÍography.



TLre purpose of this thesls 'was to examine the teehaiques avaÍl-

able for the analysis of subharmonic osciJ-latlons ln nonllnear feed.back

systems to determine:

(f) For a glven set of inltlal cond.itlons of the system,

ean one pred.Íct which arnong a variety of posslble

perlods the output of the system will exhiblt?

(Z) Can the output of the system eonsist of tvo or

more subhar¡aonics slmultaneous\r?

A method. d.eveloped. by ilayashl for seeond-oztler nonlinear systems

ç1LL be used. to stucly the subharmonÍc transient response. Sface not

Buch success was achieved. io thel,.stucly of the transieat response, 1t

was d.eelded. to d.fvid.e the fnput arplltud.e versus lnput frequeney plane

iato reglons ia which a glvea subharmonic can and. cannot exlst" Ihis
problem is studied by a ¡nethod. d.eveloped. by Old.enburger for the stability
of subharmonfc oscillatloas. A method. by Gille for relay systems is
stud.led. with the viev of extend.iag the method. to more general piecewise-

linear systems.

The problem of tvo subharmonÍcs existlng sÍmultaneously is analysed,

and the possibillty of the use of a trÍple-iaput d.escribfng functlon to

study this pheoomenon is consld.ered.. A methotL d.eveloped. by Atherton for

d.ete¡¡mlning the response of a aonlLnearity to several lnputs is preseated.

The use of this method. to study the sinultaneous occurrence of tvo sub-

harmonlcs Ís consld.ered..

2



CHAPTER 2

TRANSIENT RESPONSE OF A NONLTNEAR FMBACK SYSTEM

For a slnusoid.al iaput of glven magnltud-e aad. frequency, often

a number of period.ic solutions are posslbJ.e ln some nonlinear feed.baek

systems, The one that wilL be excited. d.epend.s on the lnitlal coad.ltlons

of the systen. A method. for studying the transient response of a non-

linear seeond-ord.er d.ifferential equation has been d.eveloped. by ifayashi

and. w111 be consid.ered. here.

2.1 EAYASHIIS METHOD

R cos(nwot+$) c(t)

r (t)

Flgure 2.1

Nonlinear Feed-back System

Consid.er the feed.back system shown 1n FÍgure 2.I. From this
system the follos¡1ng nonlinear d.ifferential equation can be d.erived.I.

ë(t)+ o e(r) + K f(€): È(t) + oË(t) : cos ( nwrt ) 1z.r)2

Itre notation e (t) d.enotes a d.erivatlve of the fuactlon vith respect

to the parameter lnsid.e the brackets.

The letter r,¡ 1g used. throughout this texb 1n place of the Greek

symbol omega, u/ .

*rt B



1¡here

Nov neking the following change in the time scale

-r = ,ft

then equatioa 2.I becomes

2B= -nR
-1O=taa*

o=-Ø

€(r.)= x sin(r)

Hayashi then stated. that

I^I may be approximated. by

w = n/(l-az)

(t o u2 /[rl"?ÐL/e
(r/nvr)

e (rl+qe(T)+l<,-f(e¡ = S çes(nr)qq
fhe equation has now been put Ínto the form of the equation

Hayashi lnvestigated. for subharmonlc oscillatioas. Hayeshi assumed that

the coefficient of the e ( r ) term, afvr, ltas a comparatÍve\r small

quantity" For an odd. symmetrÍc nonlinearity Hayashl approximated. the

stead.y-state solutlon of equatlon 2"2 fot the subharmonic of order n

by

Ttris approxlmatioa is sald.

Iinearity ls small, but is

from linearlty ls large.

Hayashl uses equatlon 2.J as a basis for his study of the transient

response of subharmonic oseillations. He assumed the transient solutfon

of equation 2"2 to be

e (z) = x('r)sin(-r ) * y(r )cos(r ) + Ìr cos(n'r ) (2"5)

At the equillbrilun polnts x(r) and y(r) are,eonstants. Therefore,

i(r ) and y(^r ) are zero at the equillbrlun points.

+ y eos(r ) * t[ cos(ar) (a.:)

Mand.elstam and Papalexi (fT) nave shown that

(2. h)

to be legltimate ln the case when the non-

a good. approximatlon even when the d.eparture

(z.z)



Equatlon 2.J was then substituted into equatloa 2.2. If x( r )

and. y( r ) are assumed. to be slowJy varying functioas, then i( r ) and-

i(- ) are small and. nay be omitted. in the resulting equation" TLre sine

and. coslne terms of the resultÍag equatfon were tben rearranged into

groups accord.ing to their frequency" For this equation to be satlsfied

at all tlmes the coefflcleat of any slnusoid.al component on the left

hand. sld.e of the equatloa must be set equal to the eoefficient of the

identical sinusoidal component of the right hand. sid.e of the equatlon.

fhus, the equation can be red.uced. to a number of simultaneous nonlinear

equations fron vhich the sinusoldal terms can be elimfnated-.

Slnce the subharmonic of order n is of main lnterest, lt was asflrmed.

that the solution of the simultaneous equations resulting from the sine (r )

the cosine ('r ) terms vas a good approxlmation to the simultaneous solutloa

of the entire set of equations. From these two equatioas, two equations

of the followlng form were d.erived:

ay/ar = fr(xryrrvr) = Y(xry)

axfar = f"(xtrt*r) = x(xry)

oscll].atlon occurs when:

ay/ar =dx/dr =Q

time, caa norù be elimlnated. lf equation 2"'l ís

2,6

!yM__ ry_ y(x.y)
ax/a-r d.x - x(*ry)

Q"a)

(z"t)

(e.B)

d.ivlded

A stead.y state

nhe parameter,

lnto equation

Consider

linearity in the

a nonlinear feed.back

fo::ç¡arrù path - see

(z.g)

The problem has aov been red.uced. to the plotting of a state-

space to d.etermine the equilibrÍr.rm points of equation 2"2.

2.2. AIü E](.AMPIE

systen lncorporating a cubic non-

Elgure 2.2, page B.



Hayashirs method. was applied. for the one-third. subharmonic for

this system. ILre equation for the system can be wrÍtten in the for-m of

equation 2.2, vLzz

e rr) + ectl/w ¡ E'çtt/(towt) = B cos (3ir) (2. ro)

Fquatlon 2.J was substituted. lnto equatlon z.LOt and then Ï( r ) and Ï( r )

were assumed. to be small enough to be onitted. from the resulting equation.

From the coefficients of the sine ( r ) and cosine ( r ) conponents in the

equati-on, the foJ-lowing tr^ro equations vere derived..

2i+i/*=y -x/w 1tzywz *w(y2-*2) * y3 * y*21 /(traoz)

+ v2)1¡¡t+o9rz)

(2. u)
(z"tz)

(2. 13 )

(2. rh)

From equation 2.1I aad 2.L2, ay/at and. d.x/d.^r can be solved for. Íhen,

with the aid. of a d-igital computer, a state-p1ane can be plotted. by cal-

culatlng d.y/ax for specifled. x and y.

The state-plane vas plotted for an iaput magnltude of 4 and. fre-

qlrency of 18 r?s - see Graph 2.I, page 9. From tbis graph it can be seen

that there are three stable equilibrium polnts for the oae-thlrd- sub-

harmonic. The three equilibrium points are approxlmately 120 d.egrees

apart on a ctrcle of radius 22.5.

The system l,ras sirmrlated- on an analogue eomputer - see Figure 2.1+ -

to ci-etemrine experimentally the initlal eond-ftions Ì¡hich result ln a

subharnonlc response. It should. be noted. that the inltlal eonditlons

by the l{ayashi method. are not the same as the initial cond.itions set on

the analogue computer:

j'hr'4i = x * y/w - 3?;,:cwz -àryl{ * *(*2

€(o) = R cos (Ø¡ - C(o) - yfo) + ìyy'

Note that: e(t)l*-5 w e (-t) l-=o*

d (t)lr=; - 3w R s;n (ç) - i(o)
Therefore dfrlf__; -3 R sin(O)-_crc)/w = X(o) + yrol
It i,ras assumed that sinee þ was sma1l (approximately J d.egrees), the tert

3n sin(Ø) could be neglected. Since \r7, approximately 9R/8, ls approxinateJy



equal to R eos(/), i-t r.¡as assuned. that the tr¡o cancel one another in
eguation 2.L3" The equations2.lJ and.2.t4 ean nor,¡ be r,rrÍtten ia the

form

J(o)=-c(o)
X(o): - yrot- 

+ulr="_
Slnce there Ìras no information available about y(o), for comparlson

puryoses it r.¡as assumed. that y(o) could. also be omitted- from the equatlon.

The regions of initial eond.itions which gave rise to the one-third. sub-

ha:monic r¡ere d.etermlned ex¡rerimentalJy and. plotted. as -c(o) versus

-¿(o)þ- see Graph 2.2, page 10 - for conparison i^¡ith the state-p1aae

obtained. by Hayashirs method..

Comparison of Graphs 2.1 and.2.2 shor,r that although the two graphs

agree in baslc form, the two d.iffer quite substantlally Ín d.etaiIs. fhe

amplitud.e of the subhannoaic r.¡as found erqperlmentalJy to be approximateJy

2J as compared- to 22.) by Hayashits method." Ttrus, the stead.y state

approximation to the solutloa of Hayashirs equation appears to give

reasonable results.

2.3 DïSCUSSIoN 0F HAYASHI'S METHOD

Hayashl's method. t¡¡as the onJy method. found. which cou1d. be used. to
determlae which perlod.ic solutlon a set of inltial cond.itlons wou1d. pro-

iluce. However, the nethod. can not be consid.ered. very satisfactory for
the follor¡ing reasoas:

(f) Hayashirs method. is IÍnited. to second.-orrler aonlinear systems.

(a) fhe amount of r+ork associated vith the use of Hayashlts method.

makes the method of little use for a d.etalled. ana\rsis of a system. The

eomplexÍty of the equatlons for Y(xry) and X(*ry) rapidly increases as

the por,rer of the equatlon for the nonlinearity 1s increased.. The plotting
of the state-plaae is very time consuming, and. it ùust be replotted. if any

Y

(z.ts)

(2. 16)
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of the system para.neters, such as frequency, are changed-. For alr the
work that is required., the method. appears, from Graph z"r arrd 2.2, to
give results that are aot very aceurate.

(S) The initial conditfons given by Hayashi's nethod are not the
trrre initial cond.itlons of the system. As seen by the example assumptions

must be mad.e to find. a d.irect relation betr¡reen the two.

(4) Tbe method. can onþ be used. for systems qhich have just one

possible subharmonic. Although the method. could. be applied. to systems

with nore than one subharmonic, the results r+ould be meaningless slnee

any given state-plane would neglect th,e rest of the subharmonlcs. The

lnd.1vld.uaI state-planes could. not be superimposed. on one another eince

there vould. be no way of d.eterminiag vhich plane applied. for a glven

initial- cor¡d.itÍono

Ttre problem of d.eteruining the period.ie solutlons of a feed.baek

systen for a given set of initÍal cond.itions appears to require an

exact solution of the nonlinear d.lfferent1al equatlon for the system.

T'he d.ifferentlal equation could be solved. by one of the m:merfcal technlques
given by cugninghar (7), but the methods are not sulted- to a generar

analysis of a feed.baek system. Tlre method. would. require a d.igital computer,

and. lt l¡ou-ld. be necessary to solve the equation every time a change in
one of the parameters of the system vas nade.

IT



CHAPI'ER 3

REGIONS OF SUBHARMONIC RESPONSE OF A FEMBACK

SYSTEM CONTAINING ONE STNGLE.VALUÐ NONLINEART.TY

The problem of d.eter-mlning regÍ.ons, on the input amplitud.e versus

iaput frequeacy plane, ia vblch the subharmonic of ord.er n exists, for
a general single-va1ued., od.d.-function nonlinearity wÍI1 be eonsid.ered in
thls chapter" A method outl-lned. by ordenburger (11) ror the study of
subharmonie oscillations wilJ- be investlgated. here.

3.I TIÌE PROBLmif

$r the use of the perturbation method- or i-teration proced.ure, the

regions in which a subharmonic may exÍst caa be d.etermined. from the

differentiar equation for the system" However, alr constants - such as

gains and. tine constants - must be specified. for the systen before either
of these method-s can be used." Ttris proced.ure is not suited. to the stud.y

of feedback systems since Í-t generalþ gives no information on the

stabillty of the soluti.on or the effect of varying one of the parameters

of the system. In add.ition these method.s are generally rather tlme con-

suming ar:d make assumptions about the equation - such as that the systen

is quasl-linear - which may or may not be completely valid.. For the above

reasons a more general proced.ure was d.esired..

3. 2 oIÐENBURGER'S METHoD

l

OutBut of the Nonlinear Element: This method. is restricted. to feed.-

Or"n "" alued., od.d.-function nonlinear element

see Figure 3.I.
Consid.er a nonlinear element r,¡ith an input xl as shown in Figure J.l

lrhere

and

x, is A sin ((i."t) * Ø) + B sin (r+t)

k is an od.d. integer

L2
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where

and.

A s¡n ( KwTt 6¡

B s¡n(wl) xzft)

Figure 3.1

Od.d - F\rnction Nonlinearity

The output of the nonlinear element x, (t) can be written as a functioa

of the input x. (t) using the integral representation of R:iee (tZ). Thus

x¿ -- !-0,,u) exp ( j ux,)du (:. a)

j is FT
F'(¡u) is the Fourler transform of the nonlinear lnput-output-

function f(x- ).I
By the use of equations J.l aad J.2 the folloving equati-ons are d.erived. in

Appendix A, vhere G.,(urw) and. Gr(urw) are the portions of *J=e erp(¡uxr)
to -r

whlch contributen*ihe the sine and. cosine tezms respeetively of the fund-a-

mental component in the output.

G, (u,w) :j {å€,, (-1)"1 ( Aùl f".-,(Bu)-4**,( Bu)l cos(ne)} (¡.s)

G.(u,w):j{ 
"Ë 

." (-1t.'J^(Au)ll*-, (Br) * I**,(Bu)lsin(ne)} (¡.1+)

where ,f . (u) is the Bessel function of ord-er i and. mod.ulus u.
1

and € is the Neumann factor
n

-Ltt.=O
- 2 , n = 1: 2, 3.....

By the use of these ex¡rressions the fund.amental parL of the output may be

i,rritten as (see Append.ix A):

Þ6(x.)ç:I-f,ru) G,(u,w) s¡n(wl)du o!'Fc¡r) Gr(v,w) cos (wT) du (S. ¡)

Thus, Oldenburger has suceeed.ed. in obtaining an ex¡rressi-on for the

output of the aonlinearity with tvo harmonically related. inputs.

13



Equilibrium Polnts and Stabillty CriterÍon: Having obtained a

method. for d.eter¡nining the output of the nonlinearity, Old.enburger nolr

consid.ers the problem of d.etermining equilibrium polnts and. the stabflity
of the equil-ibrium poÍnts.

Conslder a system as shororn in Figure J.2 Íneorporating a single-
qnd o lineqr element

valued., odd-function nonlinear element,^possessing a transfer function C(jt^¡).

In the follor+ing the assumption that only the subharnonie appears in the

output l¡ill be lmplieit. Thus the characteristic of the linear elemen.t must

be that of a low-pass fi-lter, and. only the conponent of the output of the

nonlinearity at the subharmonic frequency need. be consld.ered,.

A s¡n(Kwr s in (wl)

Figure 3.2

Feed.back System

The output of the nonlinearlty can be represented by a compl-ex number

B', vlth real and. imaginary parts Re Bt and Im Br respectively, vhere the

magnitude of B' is 8", and. ïaä-r[Im¡'/nee'] is ø. Now

ReB

Im B'

To sustain a

relation must hold:

is l-f,ru) G, (u,w) du (S.O)

js f-r,:ùGz(u,w)du (s.z)

continuous oscillation of f-requeaey v the following

B'= -B/G(iû (¡.A)

vhere B' 1s a function of B, A, ø, and. the parameters of ihe nonlinear

element. Solutioas of equation 3.8 can be found. graphÍcalJ¡r from inter-

sections of curves representing B' and. n/C(¡r,¡) plotted. on the complex plane.

B'r¡n(wt*o)
GQw)

14



lÍot alt intersections represent stable solutions and. thus use wiII be nade

of the incremental Nyquist d.iagram (f3) ana equivalent linearization about

a point to d.etermine the stability of the oscillation at the equilibriuo

points. This method. is ex¡rlained. more completeJy in Append.ix B.

3.3 DISCUSSïON OF OLpENBURGER'S METHOD

Old.enburger gave a very complicated proced.ure for d.etermining the

output of the nonlinear elenent subiect to an input consistfng of two

harmonically related sinusoids" Hor'rever, to detevmine equillbriun points

he assumed that only the subharrnonic appeared. at the output of the systen

d.ue to the filterlng action of the linear block. Tlrerefore, he on\r eon-

sid.ered. the subharmonÍe component at the output of the nonlinearity. fhis

is basically a descrlblng function approach to the problem and. could- have

been handled. by ltrestrs d.ual-input deseribing function (14). The subharmonic

output by Old"eaburgerrs method. llas an infinite series of very complex

integrals involving Bessel functions" In general these integrals are very

d.lfficul-t to evaluate.

Ttre stabillty criterfon is an extension of Ioebts criterion for the

stability of limit cycles in autonomous systems. TLrÍs eriterlon states

that Íf the veetor product ft/a* x áÑ/au ,

r,¡here: I) d-G/dw is the vector lyÍne in the d.ireetion of increasing

frequency along the Nyquist locus of the linear elements at

the equilibriun point.

2) áì/¿n is the vector lying 1n the direction of increasing

amplitud.e along the critical locus at theequlllbrium polnt.

is out of the Þager the oscillation is stable. fhis is only an approximate

stability criterloa for small disturbances in the system.

3.I+ EXA}4PLE USING THE DUAL-INPIII DESCRTBTNG FINVCTIOU

Consid.er the feedbaek systen shol¡n in Figure J.2, page 14, lvhere the

nonlinearity is å¡roo and. the lÍaear block is lo/(s(s+r))' Assume, as

L5



Oldenburger d.ld., that the output of the system consists of

subharmonie. Then,

xr(t) is A cos(3*t + Ø) *s cos(r^¡t)

The d.escribing function for the subharmonic component j-s:

D.F. = 3.{ (zt? * ¡2) * a¡uilVuoo

only tbe l/J

(s" g)

(¡. ro)

Note that for a eonstant A and. B this forms a circle as f is varied. throu.gh

J6O d-egrees. To d.etermlne equilibrium points plot the critlcal loci, vhich

are also cÍrcles, ana G(¡v) on the complex plane - see Graph J.1.
The direction ln which the veetor Ñ/ae lies at the equilibrfun polnts

must be deterrnined- in ord-er to apply Ioebrs stabillty criterion. fhe vector

must point 1n the d.irectlon that the equillbrlum point would. move on the

d.escribing function locus if B r¿¡as increased j.ncrementally in magnitud.e"

Therefore, the phase relatÍon betr¡een A and. B should. not ehange. This r¡¡ou1d.

Índ.icate that the d.lrection to move at the equilibrium point is perpend.icular

to the cun/e of constant B. By applying loebrs stabillty crlterloa to
Graph J.1, it can be seen that any equilibriun point to the left of its
locirs center is stable whlIe those to the right are unstable.

By using the above fact, it canbe seen from Graph 3"I¡ pagel7, that

a stable subharmonic begins at an input frequency of 2.3 eps r.rlth an amplitud.e

of eighteen, Ttrere is no upper limit at r.rhich frequency the subharmonic

l¡lLl no longer be stable.

The system vas sinulated. on an analogue eomputer and. 1t r"ras found that
the pred.icted. and. the aetual results agree close\r for the higher frequency

range - see Graph J.2, page 18. The lower frequency range d.Íd. not agree with
the predlcted. values very elosely; the subharmonlc oscill¡.tloa became un-

stable at 1.2 cps., not 2. J eps. as pred.icted." This d.iserepancy can be ex-

plained. by the fact that at the loç¡er frequencies the output contained. a

rather large component at the forcing frequency. T'be input to the system

and. the forclng function frequency component of the lnput to the nonlinearlty
are not the same due to the forcing funetion frequency component fed. back

16
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from the output of the system. Thus, the ind.icated. equllibrlum point was

not a valid- equillbrium point for the assumed. lnput to the system.

3.5 coNcrusIoNs

Although Oldenburgerrs method. appears to be a new approach to the

problen of subharmonic oscillatlons, closer lnspection reveals that it is
based on trqo well-knol¡n nonlinear technlques; the d-ual-lnput descrlblag

function and. Ioebls stability criteri.on.

The main d.rar,¡back of Old"enburgerrs method. is the amount of d.ata vhich

rrust be hand.led. for d.etermining equilibrium poÍ.nts by the d.ual-input

d-escribing function method.. To be strietly correct in d.etermining the

equilibrium points for a gi.ven lnput, the input frequency component which

is fed back to the lnput of the nonllnearity from the output of the system

must be taken into account. Although this correction can be made for each

equlllbrlun poi-nt, it requires a great d.ea1 of vork. Due to the low-pass

characteristic of the linear elements, this correctlon is often small and

may be omitted..

Old-enburger's stability criterion provid.es a very useful method for
d-eterulning the regions in which subharmonic oscillatlons exists. The

regions are not strictly correct if the assumption that only the subharrnonic

exlsts at the output is mad.e. Hovever, the flexibility of the method. to

changes in the linear elements makes the nethod. very attractive for feed.baek

systems"

TLre paper by Old"enburger ean be criticized. for presentlng a useful

id.ea in a complicated. form, ad.d.Íng nothing to the original idea, which could-

have been ex¡llained. using conventional technlques associated- i,¡1th feed.baek

systems.

L9



CHAPTM 4

SUBHASX{ONIC REFPONS$ 0F RELAY. CONTROL SYSTÐ4q

TO STNUSOIDAL INzuIS

In this chapter a method., d.eveloped by GiILe (4), for determinlng

regioas 1n whieh subharmonic oseillations are possible 1n relay feed.-

back systems, is studied, Although most of thls l^rork has beea d-one by

Gil-J.e and. his assocÍ.ates, a paper by Fteishman (5) lnvestlgating the

same sub jeet suggests GiILe I s method.. These method-s wilL be stud"ied. with

the thought of exbend.ing then to more general pieeewlse-linear systens.

h. r ¡'r.ntsntr4AN's METHoD

Consider a feed.back systen which has a

as shorro 1n Figure l+" 1. Assume the relay is
d.ead zone and. no hysterési.s.

Ro cos (r,;¡t +

r (t)

relay 1n the fo::'warrl path

s¡rmmetric vith negllglble

c (t)

Flgure l+.l-

Nonllnear System Contalning a Relay in The

Fonrarrl Path

The relay characteristic 1s given by:

m(t)=¡ x)o

= -bx(ô

From the linear block the foJ-lowlng equation can be obtained.:

rm(t) = r,(c)

20
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x(t) = xa(t) + xr(t) (l+"¡)

Novr equation 4.2 ean be written as follor,¡s since t(x) i%cllinear operatlon.

r,(x") + t(xr) + Kb ssn(x) = t(r) (4"4)

Therefore, one possibJ.e solutlon to equation 4.1+ can be written as

r,(x") = -Kb sen(x) (t+"t)

r,(xr)= L(r) (l+.6)

From equation lr.6 obviously there results:

xr(t) = r(t) = Rocos(wrt +l)

1n wbich f,(c) ls a llaear operatÍon on c(t) vhich can

C(s). Th.e foIlor,¡iag equation caa be d.erived for the

t(x) + Ift sen(x) = f,(r)

Assn¡oe that x(t) eonsists of trqo components, vLzz

Gille's nethod essentlalJ¡r beglns

The method. d.oes not go through the above

be d.ete::nined. from

system:

(4" e)

('+.2)

where Flelshmanrs method end.ed-"

argument but resorts to a graphical

It is d.eslred. to find. the foreed. perlod.ic solutÍons for equatÍon

h.2; tnerefore *r(t) must be period.ic with a perlod of Z:frfwr, If xr(t)
is to be perlodic, the relay must commutate at parbicular values of xr(t)
which are d.etermined. by the period. of the osçillation. The problem is
not,¡ red.uced. to solving equatlons 4.5 and- 4" 6 und.er the constraint that the

relay eommutates at the points d.etermined. by equation 4" J for period.ic

solutions tor x (t)"
a.

The method. may easlþ be extend.ed. to subharmonle osclllations by

requiring that the perlod. or x"(t) Ue ennfvr, where n, an lnteger, fs

the ord.er of the subharmonic solution.

Fleishman then proceed.ed. to solve equations 4.5 anA 4.6, but hfs

teehnlque'r¡as to find. particular solutÍons for the system being eonsid.ered."

l+.2 GIr¡,n'g MEÎHOD

2t



argument whlch is essentlalJy the sarne.

Consid.er the sane system as Fleishman d.oes - see Flgure 4"1, page 20.

The follor¡ing d.iscueslon r¡i1l start l¡ith the equatlons d.eveloped. by

Fleishman instead. of the beginning of the graphical argument of Gtlle. Ttre

point that Flelshman appears to have missed. is that an id.entlcal equation

to equatlon 4.1 beuld. have been obtained. if the system had been autonomoue.

Period.ic oseÍllations for this autonomous system can be determlned. by the

weIL knoç¡n Hamel locus method. (6).

Figure \.2, page ?3, shows the Hamel loeus for the linear bloek

shoura in Figure 4.1. A].so sholrn ln Figure lr.2 1s the path s(t) tfrat ttre
autonomous systen 1s assumed to traverse if the relay conmutated. at polnt

A" Ilre time requfred. for the system to traverse the curr'e s(t) to polnt B,

after having commutated. at point A, 1s f /w, second.s.

The Ha¡nel locus gives all the posslble solutioas to equatlon 4.5,

ït 1s now necessary to make the relay commutate sueh that the commutation

points assumed. in d.erivlng the Hanel locus occu-r for the forced. system.

Note that at a flxed. instant of time, say for t = ot then:

x(o)

*(o)

x (o)
¿1

f (o)
a

cos (d)

srn(l)

+R
o

-R
o

which is a closed- path in the i , x plane as f is varied. through 360"

see Flgure 4"3, page 23. By proper ehoiee of unlts for x, this closed.

path is a circle.
As can be seen from Figure l$.3, x(t) iatersects the commutatfon llne

tr¿ice - at C and. D. Therefore 1t is possible to get the relay to commutate

at the point A on the Hamel locus. Onee the relay has conrutated., x(t) is
Just the sum of s(t) ana Ro cos (wrt + /) and 1s represented by the path

P, shown in Flgure 4.J.

It should be noted from Figure 4.3 that ualess Ro ls equal to or

greater than xo the relay cannot be mad.e to commutate at point A, and. no

22
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forced. period.lc osclllation exÍsts in the systen. For an input greater

thaa x - see Figure 4"3 - there are two points at vhÍch the relay may
o

commutate, indicatlng that two amplitud.es for the oscillation are possible

in the system. Tsypkin (f5) nas shown that the smal-].er arnplitude of oscilla-
tlon 1s unstable. ïf the input is larger than the minimum atl-owable

amplitud.e, Ff, an intersection r'rith the conmutation J.ine can always be

obtained. by ad.justlag the phase of the 1nput" F, ean be d.etermined. as a

funetlon of frequency and. plotted. on input nagnitud.e versus the logarithm

of the input freguency axes thus d.ivid.ing the plane lnto two regions:

F < F- in whÍch no forced. osell-latioas are possibl-e and. F ) F^ in whichf -f -

forced. oscillatlons may exist - see Figure 4.h., page?6.

1Ìre method- ean easlly be erbend-ed. to d.etermine the reglons in which

the subharmonic of order n is possibl-e. Flelshmants equatÍon stlll applies

but ncrç¡ the perioa ot xu.(t) fs exafwr. Hovever, the Hamel, Iocus is
grad.uated. in frequency and- is Índ-epend.ent of the frequency of the lnput"

For an input frequency Ì¡f, the point on the ÌIamel locus at r,¡hich the relay

must commutate is the point at the frequency ,r/o. fhe argument tþen pro-

ceed.s in exact\r the same manner as for the foreed. oseillations to lnsure

that the relay comuutates at this point. Since the Hamel locus has not

changed., the minimum lnput amplltud.e to prod.uce a forced. oseillatlon at a

frequency w' is the same as for prod.ucing, for an input of frequency nrúrr

a subharmonic of order n. Therefore the curr¡e of Fo for the subhamonÍc

of ord.er n iS the same as for the forced oscillatlon except shiftetL log(n)

to the right - 6ee Graph \.2, page ?8.

Gillets method. can be erbend.ed. to relays which have either ÌSrsteresis

or d.ead. zone (B) or r¡hieh are asJmnetrlc (!)" In the case l¡hère the relay

is asSrmnretrlc or has d.ead zone the method. becomes much nore d.lfficult"

h.3 eN E:GI{PLE

Consid.er the control system shol¡rr 1n Figure 4. !. It was assuned. that
the relay was s)rumetric with negligible d.ead zone and. a hysteresis wid.th of

0,h. The equations for the Hamel locus are
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From these equations the Hamel locus can

T'he mininr¡m input amplitud.e to prod.uce a

x--'l/ào-Tanh(

x = - Tanh (x/x)

¡ /x)

be d.ravn - see Graph 4. 1, page 2 7.

forced. oseill¿tioa is

Ff = lx(wr)+o.21 (4. B)

where x(r^) is the value of x on the Hamel loeus in the third. guad.rant'f'
rvhich prod.uees an osclllat1on at a freguency lrf . Graph 4.2 shorr¡s the

currre of F, versus fo8(wr) to prod.uce forced. oscfLlations fn the system.

To d.eterrnlne similar curves for a subharnonlc of order n the cul:\¡e for the

forced oscfllatiouls was shlfted. IoS(n) to the rÍght - see Graph \.2, page?8.

l+" 4 ctrrn, s sECor{D coNDrrroN FoR TI{E

ÐCTSTENCE OF A SUBEAM{ONTC OSCTITATTON

Gillef s second. cond.ition for the exfstence of a subharrnonic oscil-lation
wiJ-l further lÍmlt the region in r,¡hich a subhamonlc wllJ. ex1st, but the

exaet reg:ions ¡qhieh are ellminated. are ciifficult to d.etermfne. TLre secoad.

cond.itLon 1s that the locus Por whlch is the sum of *"(t) ana xr(t), nust

not lntersect the corunutation llne wlthin a half-per1od.. Gllle refers to
thís cond.ition as "premature commutatlon". TLre possibil.lty of this can

best be seen by an example.

Consid.er a relay system in l¡hich the linear elements have the Ha¡nel

locus shorvn ln Ftgure 4.6. Assume that a subharmonic osclllatlon of ord.er n

exists in the system. From Figure l+.6 it can be seen that ultlmatel¡r P*

appears to arrlve at the correct point, D, to ingure the existeaee of
the subharmonic. However, before thls P. intersects the commutation lÍne
at E which. vould. eause the relay to commutate at this polnt. Once the relay
had commutated., the assumed. solution for x"(t) from equation h.5 vouLd cease

to apply and. the comnutation polnt D.ryould- never occur.
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Locus

Commutatlon Íllthin Half -Period.

A d.etailed. stud.y of this cond.itlon is not easy as it requires know-

Ied.ge of the exact shape of the locus Po which can be very eomplicated..

One general conclusion can be arrived at by stud¡riag Figure 4.6. Slnce the

input frequency 1s v, and. the frequency of the n-th-orrd.er subharmonic is
v ^/o, in the sarne tlme interval n times as mar\y revolutions are performed.f'
by the vector representing the lnput than the vector representfne x"(t).
Thus, a eommutatioa withln a half-period. 1s most likeþ to occur r,rhen the

following cond.itlons are net slmultaneous\r: the ord.er n of the subharmonic

is high, and. the r^r, and. wr/n points d.o not l-ie too far from eaeh other on

the Hanel locus. For the ease of a regular systen the second. cond.ftlon

genera$r occrrrs for hfgh frequencies.

4.5 ÐmENSION OF GITJ.TI'S METHoD TO A MOBE GEI'IERAL

PIECEIIISE - T,INEAR SYSTU\,I

Slnce Gillers method. is so easy to appl¡ 1t is d.eslrable to see

ff the method- can be exbend.ed. to a nore general piecevlse-Iinear, non-

linearity. For a relay system the input to the relay affects on\y the

conmutation points, thus, the Ínput has no effect on the output except Ín
so far as 1t changes the relay commutation pointe. For a general noa-

linearity, a change in the input to the nonlinearity 'would. imed.ÍateIy

change the output of the system. Ttrerefore, the autononous response of

HAME L

*Þ

¡
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the general piecewise-Linear

to d.etermÍne the response of

I+"6 DISCUSSION

system ean not be subtracted- from the iaput

the forced. system.

Gilte assumed. that a necessary and. sufficient cond.itlon for the

existence of a subharmonie oscÍLlation 1s that there are no eommutations

of the relay betr.¡een the half period. conrmutations" Al-I of GiILe's articles
starbed. fron this assumption, and. they proved that this was a sufficient
cond.ltion. However, the id.ea that this is a necessary coad.ition was never

questioned.. No other paper has been found. investigatlng this cond.ition,

and. a d.lreet solution of the equations, assumiq.g this type of oseillation,
appears impossible for even the simplest systen. Correspond.ence vith
J. Paquet, one of G111ets co-workers, lnd-icates that theyhave proved that

this type of oscillation was possible in the case ¡,¡here the relay was

aslnnmetric. A paper deallng with this subject will be published in the

sprlng, ïIhen this paper is publlshed- lt may be found. that subharmonic

oseillations are possi-ble in regions 1n vhleh Gillers method. ind.icates none

are possible.

ûbherv¡1se Gillers method- can:rnot be critlcÍzed. much in that it pre-

d.icts large regions in whlch no subharmonies are possible. Although the

methcd. d.oes not d.ivicie the plane into regions where subharmonics exist
and d.o not exist, it d.oes give a good. id.ea of the regions in whieh a sub-

harmonlc is most l1ke1y to occur. ïf a table of Hamel loei is available,

the effect of changing the linear elements is not d.Ífficult to d.eterrnlne.

Unfortunately, it d-oes not seem that the method. can be exbend-ed" tc more

general piecewise-l1near systems"
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CHAHIER 5

SIMIJLTANEOUS OCCURREIICE OF T'[^IO SUBHABMONICS

The problem of d-etennlning whether two or more subharmonic oscill-
ations can exist slmultaneous\r in a nonlinear feed.back system 1s oon-

sid.ered. in this chapter. The possibiltty of extend.ing, to d.ea1 r+ith

th:is problem, oae of the method.s for d.etermining the existence of sub-

harmonic osclllations in aonlÍnear feed.back systems 'wiJ.l- be consid.ered..

5.I Tm PROBLm{

Most feed.back control systems, IÍnear or nonlinear, have l-j-near

elements which act as low-pass fÍlters" The filtering out of the higher

frequency components tend-s to prod.uce aa output that is close to sinusoid.al,

as ls assumed. by the d.escribing function method., Thus, a subharrnonic re-
sponse ln a system often appears quite sinusoid.al at the output of the

system. Eo\orever, the output eontains all the har"monics of the subharmonie,

tro natter how snall they are, since the nonlinearity is respond.ing at the

subharmonic frequency. If the system is respond.ing at the one-ninth sub-

harmonlc, assunfng an od.d.-functlon ûonJ.lnearity, the third. har¡nonlc of the

one-ninth subharmonie wiIL generally also be preseat at the output of the

system. Fhe third. harmonie of the one-ninth subharmonic ls the one-third.

subharmonic, ind-icating that two harmonically related. subharmoaics oscfll-
ations can exist slrultaneousJ;¡ in some systems.

fbe problem thus red.uces to that of d.etermÍnlng whether t¡¡o sub-

harmonics which are not harmonicalJy reJ.ated. can exist simultaneously.

T\¿o subharmonics are eoasid-ered. to be non-ha:rnonieally related- lf the bigher

frequency subharmonlc is not a harmonic of the Ior.¡er frequency subharmonic,

for example the one-third. and one-fifbh subharrnonics. Consid.er the feed.back

systen shor¡n 1n FÍgure !.1. Assu¡ne that the output consists of tvro sub-

harmoaics, viz: the l/m and. Lfn subhårmonlc. Ttre output is therefore a
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period.ic osciJ-J.atlon vith a frequeacy of wfma, or it can be consi¿ere¿ to
be a I/mn subharmonlc osc1llation. The feed.back loop returns this output
to the input of the non-]inearity; therefore x(t) must be period.ic.ç.rith

the same frequency as the output. TLre output of the nonlinear{ty consists
of a component at the fund.a¡nental frequency, the frequency of the }/ma

subharmoaic, and" all the harmonics of this componeat. The onþ way the
given output of the system can oceur for the g:iven iaput to the nonlinearltyr
ls lf the magnitud.e of the fund.anental frequency componeat in the output
of the nonllnearÍty is zero" fhus, the oecurrenee of two non-harmonlca1ly

related subharmonies is 4'* the special case of a subharmonic osclllatlon
in i^rhÍch the output of the nonLinear element hag no eomponent at the
fund.arnental frequeney of the output of the system.

R cos(wt+ B cos (wt/m+ F)
C co s (wt/n t Y)

Figure 5.1

Feed-back System

5. 2 POLYiVoMIAL NoNTJNEARIÍY

At first glance it appears that the problem of the sinultaneous
gccurrence of t¡.ro non-harmonlcally related. subharmoaics cou]d. be hand.led.

by a trlple-Ínput d.escribing f\.i.nction. fmmed.iateJy one tend.s to rejeet
thÍs approach as a poor one because of the anount of d.ata it would. be

necessary to hand.le. Ttre d.escribing funetlon l¡ould. be a funetioa of five
paraneters. Another objectlon to this method- Ís that given a possfble

equllibrfum point 1n a plane in rn¡hich some of the parameters of the
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d-escriblng function are fixed. it is necessary to check that this same

equilibrium point exists 1n the other planes vhere tbese parameters are

afJ-owed- to vary" Thls correlatlon of equilibrium points is dlfficult to

d-o evea for the dual-input describing fuaction where the d.escribing

function j.s a function of only three parameters. ït vas thls problem that

mad"e Old-enburger (tt) assume that only the subharmonic existed. at the out-

put of the systen.

The triple-input deseriblng funetioa approach vould- fail if the

condition, that the output of the aonlinearity contains no component at the

frequency of the period-1c input to it, is not taken lnto account. There-

fore, lt vould- be necessary to take a Fourier ana\rsis of the output to

determiae the magnitud.e of the v/mn frequency compoaent. If this component

vas not zero then the resulting d.escribing function for the assumed. values

of the parameters of the Ínput r,¡ould be lnapplicable. For a polynomÍal non-

linearity an equation can be deterrnined for the l/mn subharmonlc component

present in the output and can be set to zero.

For example assr¡me that

r (x) is x5 (:. r)
x ls R cos(r+ o.) + B cos(t/S * I + c eosî/5 + y) (¡.a)

Fquation J.2 is substituted. into equatioa l. I, and. by the proper algebralc

manipulation the one-fifteenth subharmonlc compoaent 1s d.eterrolned.. The

one-fifteenth subharmonie is:
,nr/rj= 5 Bc {tCc e2 eos(ez-B) + zc?s cos(ep-37) * 4 c3 

"o" 
(zy-ø) *

6nec 
"o" 

(z? * zy - a) * lr c2R 
"ou 

(o-p-¡z) + t2 n2c cos(e7-p)l cos ( /t>) *
[6cs2 sin(ez-Þ) + zczs sia(2Þ - 3ù + hc3si-n(zt-ù + 6nnc sin(eÊ +zy - q,)

* 4c2R sin(a-g-3 y) + rz n2c "to(zy-ùl "ro( /rl)]
The slne and eosiae components irust slmultaneously be zero to prod.uce a zero

one-flfteenth subharmonic. ObvlousJy this condition eould only be obtained.

by trial and error or by some numerical method..
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ïf a triple-input d.escribing function method. was attempted., a

Fourier analysis of the output of the non-linearity by a numerical- method.

vould. be required." A d.lgital corrputer rvould be essential to perform these

calculations. Some sort of stability criteria vould. he necessary to d-e-

termine if the solutloa couId. exist 1n the system. Possibly Oldeaburgerrs

stability crlterion could. be used., but 1t rn¡oufd require the d.escribing

functioa loci and. not just one isolated. equillbrlum polnt.

5.3 PIECEI{ISE LTNEAR SYSTm{

The general piecewise-lÍnear feed.back system could be haadled. in the

same maÊner as the polynomial aoaliaearity q¡sten" A numerlcal method.

vou1d" stiII be required. to caleulate the trlpj-e-iaput d.escribing function.

Hovever, the relay system is a rather special piecewise-llaear system and.

will be coasidered here.

The only way the output of the relay can have a zero fund.amental

component ls lf the relay has commutatlon points betveen half period.s. The

exÍstence of these "premature comnutation" points violates the assunption

by Gille, therefore his method. is not applfcable to this problem. As pre-

viously mentioned., Paquet has ind"icated. that a period.ic osclllatlon vith
commutatlon poÍnts betr,¡een half period.s 1s possible for relay systems con-

talning an aslmmetric relay. Hornrever, this paper has not been publlshed. yet.

It was suggested. that the problem be attempted. from the opposfte

d.irection. Ihat is, determine a relay output that has a fund.aneatal com-

ponent of zero magnitud.e, and. from this synthesize a relay feed-back system

which vi1l prod.uce this relay output" By performÍng a Fourier analysis

of the output of the relay the magnltud.es and. phases of the tl¡o subharmonlc

conponents, vhich are assurned. to exist at the output of the system, can be

caleulated. A lcn*-pass fÍlter vith the largest cut:off rate practical can

be eonnected. 1a series wlth the relay to filter out alJ- the h:igher harmonics

in the relay output. The magnitud.es and phases of the tr¡o subharronics at

the output of the filter can be calculated since they are known at the input
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to the filter" It nor¡ remains to calculate a linear block which r,¡111

produce the calculated. output rnrhen the output of the filter 1s passed

through it.

5.,1+ ATTM4FTÐ SYI\M]TESTS OF A RELAY SYSTM{ EXUTBITING THE S]MULTANEOUS

OCCIIRRENCE OF Ti(Ip NON-IIAaMONICALI:Y _REI,AT4 SUBHARMONI CS

Ïn general, only subhannonics of od.d.-order wÍl-I exist in a feed.back

system r,¡hich incorporates a s)mmetrical nonlinearity. Hor,rever, certain
systems vhich contain only symnetrical nonlinearitles can exhiblt stable

subharmonics of even ozrd.er (f6)"

It tras assumed that for the system being synthesized, incorporatiag
a symmetrical relay, one or both of the non-harmonicalJy related. subharmonÍcs

l¡ere of even-ord.er. Due to the even-order subhazmonic compoaents, the input
to the reray, x(t), is neither an odd-funetion, x(-^r) does not equar -x(r),
aor an antiperiodic function, x( r ) d.oes aot equal -x(-r + T /z) vhere T is
the perioð of the input to the relay. Therefore, in general a d.. c. component

wilJ. exist in the system. ftre input to the relay has the form

x(r-) = D+A cos(-r+a) +B cos(fr*Ê) +c cos(z a r¡ (l.S)

l¡here m is an even integer and. n is either an od.d. or an even integer. Ttre

locations of the zero crossings, the relay comrmrtation points, of this
equation are functions of six ind.epend.ent varlables. Since, Ín geaeral, for
the givea input the output of the reray has no halt-period. symmetry, each

commutatlon point in the time inten¡al o < f < T yfeld.s one lnd.epend-ent

equatlon for d.etermlnlag the lnput to the relay"

If it is assuned- that the relay output has tr^¡o commutation points per

period., then it is lmpossible for the relay output to have f\¡nd.anental com-

ponent of zero magnitud.e - see Append.Íx D. A perlod.ic relay output caa

not be constructed. vith an od.d. number of commutations per perid. - see

Figure 1.2. For a relay output rvith four commutatior: poiats per half period,

it appears that 1t is possible for the output of the relay to have a fund.a-

mental conponeat of zero magnitud.e - see Append,lx D. Hovever no actual relay

output was found. l¡hich had. a f\rnd.amental conponent of zero magnitud.e.
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+f)

Figure 5.2

Rela;r Output with T'hree Commutations per Period.

It was d.eclded- to assume that the output of the system eontained sub-

harmonics of od.d.-ord.er. The input to the relay le then an antiperiod.ic

functlon - see Append.ix D - therefore only od.d. harmonies of the fund.amental

frequeney exist at the output of the relay. Since the input to the relay

is an antlperiod.ic function, an Índ.ependent equation for the calculatlon

of the magnitud.es and phases of the lnput components is obtained at each

commutation polnt ln the lntenral o ( ^f < T/2" fhe input to the relay has

the form

x(1)=Alcos('r+d)+ I cos(^r +P)+c cos(I +z)l (i.4)
AmAn

where m and n are od.d. iategers. In this equation there are flve lnd.epend.ent

variables r,¡hich d.etennlne the location of the relay commutation points.

A relay output r,rith an even number of comnutatloa points per half-

period cannot be an aatiperÍod.lc f\rnctlon; therefore an even aumber of

commutation polats per half perÍod. cannot occur for the assumed. output. A

relay output which has one commutatÍon polnt per half-period. and is an

antiperiod.lc functíon, ls the trivial ease of a s¡mmetrlcal square 'wave, and.

1t cannot have a zero fundamental componeat. It vas found. that a relay

output r,¡ith three commutation points per half-period. could not have a

fund.amental component of zero nagnÍtud.e - see Append.ix D. By trial and.

error, a relay output with five eommutatioûs per half-period r,¡as construeted.

whlch had. a fund-amental component of zero magaitud.e - see Append.lx D.

If it is assumed. that the output of the system consists of the thid.

and. fifth ord.er subhartonlcs, the input to the relay has the form
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By the use of thls equatlon and the eonstructed. relay output r.¡hich has a

fur:darnental component of zet'o tnagnitud.e, five ind.epend.ent nonlinear equations

can be d.erived. for x(r). These five equatlons must be solved simultaneously

to d.etermine the five ind.epend.ent variables 1n equatioa 5.j. once the

variables in equatioa 5.5. have been d.etermined., x('r) must be ehecked to be

sure that Ít has no other eormutation points. The number of zero crossings

that x(rr) has is not at all apparent and. it is a function of the.relative
magnitud.es of the subhannonÍcs. The solution of the five sj.multaneous

equations from the commutation points r,¡ould be d.lfficult requiring a numerical

technique sinee aIL of the equations are nonliaear.

The low-pass filter connected. in series rqith the retay vould. be

d.esigned. to pass the tr¡o subhannonics and. to effeetively block all the higher
frequency eomponents in the output of the relay. The 'br.ro subhar-monies eom-

ponents at the output of the chosen filter eould. then be d.etermined.. Since

the lnput to the llnear block is aoç¡ knov¡a and. the output of the system has

been caleulated. previousSy, the gain aad. phase-shift of the two subharmonic

components being passed- through the liaear block ean be d.etermined.. From

these galns and. phase-shifts, four ind.epend.ent equations can be d.erived. for
the linear block; however, the equations are nonlinear. A form for the

llnear block vhich r¡ou1d possib\y satisfy the required. gain and. phase-shift

cond.ltions eourd. be d.eterrnlned. from a rough Nyquist locus plot. fhe

solutfon of the four simultaneous nonliaear equations for the gains and.

time constants of the linear block vould. require a numerical teehnique.

Although the original id.ea has merit, the aetual calculatlons that
result involve a great d.ea1 of work. The solution obtained. would. satisf!
the d.ifferential equatlon but l¡ou1d. in no r,ray indieate if the sotutj-on r¿as

stable and. couJ.d., therefore, be obtained. experimental\r,

x(r) = ¿ lcos(7+ o) + B cos('r + Ê) +

A3
g.

å
eos(-r + T)l

5
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5"5 CoNCLUSToNS

T\ro subhantonics can exist sÍnrultaneously in a feed.back system if
they are har¡nonÍcalJy related.. Theoretically two apparently non-harmonlcalþ

related. subharmonics can exist at the output of the system. However, this
is just the special case of the output of the nonlinearity containlng no

component at the fund.amental frequency of the period.ic iaput to the aon-

linearity. ltrhether or not this type of oscillation could actually exlst ls
d.ifficult to determine since the problen appears to require a d.lreet solution

of the nonlinear equatlon or the use of a triple-input d.escribing function

whleh r¡ou1d- require a vast amount of work to obtaia the d.esired. resLrlts.

Another objectlon to the triple-lnput d.escribing funetion method. is that

the method. assumes that only two subharrnonies exist in the output. Iiovever,

the higher harmonice of the output of the n@nlinearity are al-so present, and.

they may not be effeetively fii-tered- by the liaear elements since their
frequeneies are not much greater than the frequencies of the tr,¡o subharmonics.

The ld.ea of synthesizing a relay system from a relay output r.rith a

fundamental componeat of zero magnitud.e r^¡ould result 1a a formld.able a¡rount

of work vlth no guarantee that the d.esired. osciLlation cou1d. be obseryed.

experlmentally"
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CHAPTER 6

ATMRTON IS MODTFTÐ NONLTNEAR CHARACTERTSTICS

Atherton has d-eveloped. a method., whieh is presented. here, for
obtaining the response of a nonlinearity to several uncorreLated. lnputs.

By makiag certain approximatÍons, the concept of a mod.ified. nonlinearity
1s then introd.uced." To d.etermlne the response of a particular input x,

the nonlinear eharacteristic is flrst mod.lfied in turn by each of the

lnput signals; then the input x is applied. to this mod.ified. characteristic.
TÌle applicatÍon of this concept to subharmonic oscillations is Ínvestigated..

6.T nnspoNsE oF NoNLTNEAR cHARAcTERTSTTc TO SEVERAL INPUTS

Consider a single-valued. nonlinearity with several uncorrelated

inputs, Flgure 6.I. An output component origlnating from one of these

inputs d.epends on, among other factors, not onþ the magnitud.e of this
partlcular input but al.so the magnitud.e of all other inputs. Ad.d.itional

output terms are present besld-es these fuadamental components, such as

harmonÍcs and. cross-mod.ulation pncducts. For a system wÍth tr¡o inputs the

transforn nethod. (fB) may be used. to evaluate the various output terms;

but, 1n general, the e>ryressions are very complex. Solutions using the

sarne technique for more than tr,¡o lnputs appear virbually impossible.

Figure 6.1

I'lultiple Input Nonlinearity
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TLre autocorrelation fuoction of a

component A eos (wt + l) rras a periodic
signal containing a perlod.Íc

2
component A- cos (wr). By stud.ing

2
the autocorrelation funetion of a signal, the amplÏtud.e of the period.ic

components of the signal (f) can be d.etertiaed..

It can be shol¡n (f) tnat the autocorrelatioa funetion V ( I ) of

the output of a nonlinearity n(x) naving an input eonsisting of two un-

correlated. sinusoid-al components of amplitud.es A and. B is givea by

v ?r)= å" å E,, f., oå., tos (s,wAT) cos(s¿wB'r)

where E is the l[eurnann factors a-'
and o ar-t, = I ) N(iw) Jc (Ar¡)Jc (wr) a',¡

nf 4- or oz

vhere w(¡r) is the Laplaee transform of the nonlinearity n(x).

.f. (m) is the Bessel fuactlon of ord.er i and- mod.ulus m.
l-

ríhen the input consists of a slnusoÍd.al signal, x = A eos(vt), to-
gether r,¡ith Gaussian noise y of r.m.s. magnitud.e cf and- autocorrelation

function ó(¡), equation 6.1 becomes

V (.r) = Ë Ë E, D(1* Ø\n cos (swr)
s=o x=o -Kl-

d.." = + t'NC¡*, {jwrKexp l-o'w/?¿sl T,(Aw) dwòK ?¡r J-*'

Alternativefy (2) the coefficientsr o*Or may be obtained. from the

erçresslon

ôrsK= t 5. t'nr**y.r Hy(y/a)f cxTnlr(x)!(y)dx dy

where

T is the Chebyshev polynomlal of ord.er s.
s

I| is the Hermite poJ;rnomial of order k.

r(x) is the amplitud.e probability-d.ensity d.istrlbution of the

sinusoidal input signal.

g(f) is the araplltude probability-d.ensity dlstribution of the Gaussian

input signal.

where

(6.r)

(6.2)

(6"s )

(6.1T)

(6"5)



The use of the equatlon 6"5 ts generally to be preferred- as Ít nay be

exbend.ed. for use with more than two ieput signals and. signals possessing

other than sinusoid.al and. Gaussian amplitud.e probability d.ensÍty d.is-

tributions" Moreover, the use of equation 6. ) shcrvs how the varlous out-
put terøs are fcrmed. 1f the integral is eonsld.ered. to be d.ivid.ed. into tr^¡o

separate integrals"

h(Y,s)=

c(sx =

or alternatively

n(Y,K)= J n(V+y) HK(ytq)grytdy

ô{sr = -+ i-n(x,K)T"(x/Ðro)¿x
These equations shov that the evaluation of oSK may be consid.ered.

as a tr¡o-stage process in which the nonlinearity ls flrst mod.ified. by one

input signal, and- then the response of the mod.ified. nonlinearity to the

other input signal is d.eternined.. In equatÍoa 6.7a, n(Zrk) is referred.

to as the I=mod.ified. nonlinearity.

Ïn a quasil-inear analysis, alJ- the output terms from the nonlinearity
except those given by the coefficfeot" *Ol md ol., assuming tl'ro lnputs,

are neglected.. Th.e "0"-mod.ified. characteristic for other than sinusofd.al

and. Gaussian input signals can be evaluated. from the er¡rression

n(7,o) = J- o(zro) p(u)au

where p(u) is the amplitude probàittta"-uensity distrlbution of the signal.

As previously stated, exbension of equation 6.5 to n input signals

is possible, in r,¡hich case n Íntegrals are involved. to d.etermine the gain

of a speeific input.

For an exemple of an on-off characteristic mod.ified. by a sinusoid. of
peak anrylitud.e A see Append.ix C.

x) T" (x/e) r(x) dx

s) H* (y/òg(y)dJ

Atherton extend.s the mod.ified characteristic
nonlinearities which have characteristlcs that are

of the input sÍgnal.

(6"6a)

(6"6a)

(6.t")

(6"rc)

(6.8)

concept to d.ouble-valued

ind.epend.ent of the forn

LlBR,tf,y

L
o.K

Ji,"*

J n(y.
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6. A oTscusSTON oF TIIE MODI¡'TÐ NoNLTNEARITy METHoD

Ttre mod.ified. nonl-inear characteristle method. is an approximation

method-; aad., like nost approximation method.s, its accuracy Ís d.ifficult
to d.etermine. The "O"-mod-ified- characteristic concept neglects all the

compoaents 1n the output which result from cross-mod.ulation prod.ucts.

ïn ord.er to determine CxO, "d oIO a numerical method. is necessary

to evaluate the integrals since, in general, the mod"ified. characterÍstic

is avaiJ-able only in graphical. or very coruplex anal¡rbic form"

Tt can be shor'rn (f9) tfrat a signal containing a sinusoidal com-

ponent r,iith a phase shif t, A eos (*t * /) , nas an autocorrelatlon f\rnetlon

vhich contalns a period.ic conponerft, Ê cos(lrr), rortrieh has no phase-shift.

Thus, the autoeorrelation functior- of?u signal contafns no information on the

phase relationship of the eomponents of the si-gnaI. Therefore, the phase-

shift of a slgnal through a nonlinearity can not be d.etermined.. This 1s a

serious d.rat¡back ln feed.back systems since it prevents the d.etermination of
oscillations in a closed. loop.

Atherbon gives an example of an on-off nonlinearity in r.¡hich he uses

hls method- to calculate the phase shift through the nonlinearity. However,

for a mod.ified. on-off nonlinear characterÍstic, it was found. that a sinusoid-al

slgnat created. an "operating range" on the mod.ified. relay eharaeterlstic -

see Append.ix C. Rather arbitrarily he speaks of the relay connutating at the

end. of tbe operating range. Ee then d.etermines the phase of the signal A cos(d)

which vill cause the relay to comnutate" fhis phase angle is then consid.ered.

to be the phase-shift through the nonlinearity of the sinusoid.al signal

beiag appJ.led. to the mod.ified. charaeterlstic. Whether or not the concept

of the relay comnutating at the end. of the "operating range" has any meanlng

is d.ifficult to d.etermine. I{owever, for a more general nonlinearlty the

coneept of comnutating at the end- of aa "operating range" has no meaning,

and. coi¡ld. not be used. to d.etermine the phase shift of the sinusold"al slgnal

being passed. through the nonlinearity.
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6" 3 cowcr,usloms

determining
Athertonrs method. ças presented. as a means ofnêe{eæmi:*6 the re-'

sponse of a single-valued. nonlinearity with several inputs. Hovever, Atherton

never takes lnto account the "phase-shift" of the inputs when passed- through

the nonlÍnearity" ïn effect, Atherbon replaees the nonlinearity by a real-
vaLued. gain for eaeh input. The phase-shift of the subhannonic through the

nonlinearity is essential to d.etenmlne if the subharmonic can be sustalned. around.

the closed. loop. This fact eliminates this method. for the stud.y of subharmonics

in feed.back systemsn

Tbe mod.lfied. nonlinearity concept is useful for a quantitatlve stud.y

of a nonlinear system with more than one input" The effect of the other

inputs on the gaÍn of the nonlinearity for one of the inputs can rough-ly be

d.etenníned. by examlning the mod.lfied. eharaeteristie.

In the quasillnear aaalysis, assumed- by AtherLon, al.l higher harmonics

and. cross-mod.ulatÍon prod.ucts are assumed. negligible. Tkris in effect red.uces

Atherbonrs method. to a describing functioa approach to the problem" Since the

ealcuLatj-on of the gain of the nonlinearity for a partieular input requÍres

a m:merical i.ntegratÍon, and- the method. In no way takes into account the

phases of the inputs or the components of the output of the nonllnearlty, no

great advantage can be seen to the use of this method. over a multiple-input

d.escribfng function. Athertonrs method has, however, the advantage that the

inputs to the nonlinearlty d.o not have to be sinusoid.al, but they must be

uncorrelated."
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CHAPTER 7

DÏSCUSSION A}üD CONCLUSIONS

In general Ít can be said. that the results of this thesis are

rather aegative both for the nei.i teehniques for the ana!¡sis of subharmonic

oseillations in nonlinear feedback systems, and. the orlginal problems beÍng

lnvestigated.. The techniques for the analysis of subharuonÍe oseillations
tend. to be of very limited. application or are just mod.lfications of the d.ual-

input d.escribÍ ng f\rnctlon.

fhe stud.y of the transient response of, a nonlinear system caa be

consid"ered. a failure. Hayashirs method. is too limlted. Ín applicatlon, being

applicable only to second--ord.er nonlÍnear systems r+lth onþ one possible

subharmonlc oscillatloa, and. it requÍ.res too much ¡+ork to pJ.ot the state-
plane for results r¡hich are of questionable accuracy. The onþ apparent

solution to the problem of d"etermining the transient response appears to be o

numerÍcal solution of the nonllnear d.ifferential equatlon, but the resulting
rvork would. be excessive.

Tire d.ivid.ing of the input anplitud.e versus input frequency plane into
reglons ln vhich a given subhar-monlc may or may not exist can be aceompllshed.

by Old.enburgerf s method." For a given input the frequency range crqer r,¡hleh

a stable subharmonie exists can be d-etermined. by Old.enburgerrs method..

Althougþ Old.enburgerfs stabitlty criterion is a very useful one for feed.back

systems, his arbicle makes it appear that his id-eas are completely original.
In effect, OJdenburgerrs method. 1s just the d.ual-input d.escribing function
method. used" to d.etermine the subharmonic equillbriun points, and. the

stabillty of theseequilibrium poÍnts d.etermÍaed. by an exbension of Ioebrs

stability eriterion to subharnonie oscillations. No justification can be

seen for Old.enburgerfs method for d.etermining the output of the nonllnearity
si.nce his method. gave the output in a very compllcated. form involving an

infinite series" Trhe same lnforrnation could. b.ave been obtaÍned. from a d.ual-
:,lnput d.escriblng function for the nonlinearity since Old.enburger assumed-

that the linear elements filter out all the coruponents of the output of the

nonlinearity except the subharmonic. The vast amount of d.ata that nrust be
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üanipulated. when uslng a d-uaI-input d.escribing functlon appears to be the

major d.rar.¡-baek of Old-enburgerr s method..

GiLLers method., for d.eterminlng the regi-ons of subharronie oscill-
ations 1n the input amplitud.e versus lnput freguency plane for relay systens,

is a neßr technique for the stud.y of subharmonic oscillations in nonlinear

systems. Ur¡fortunately it does not seem that the method. can be extend.ed.

to more general piecewÍse-linear systems. the method. aetually only pre-

d.lcts regions vhere a given subharmonic cannot occur or is most I1keIy to

occur. The coneept of "premature commutatlont' J.lmlts the usefulness of

the results obtaÍned. by Gille's method. fhe only criticism of Gillers
method. is that he assumes that subharmonic oscillations are on1¡r posslble

if the relay has one commutatíon per half period." This fact Tras never

questioneð in any of GiJ.3-ers articles, but Paquet has said. that subharmonic

oscillations with more than one commutation per half period. are possible ln
systems r^rith an asymmetric relay.

The problem of the simultaneous oecurrence of ti,¡o subharmonics 1n a

nonlinear feed.back system has been answered. theoreticalJy. Since the system

is nonlinear, alJ- the harmonics of the subharmonic oscil-lations are present

in the system, and. some of these harmonics may al.so be subharmonics of the

input. Thus tr,¡o harmonÍcalJy related. subharmonics can exist simultaneously

in a nonlinear system. The ease of two "non-harrlonlcalJ¡rtt related. sub-

barmonlcs occurs vhen the output of the nonllnearity has no component at the

fund.a¡nental frequency of the perlod.ic subharmoaic response of the systen.

Whether or not this ty¡re of oseillation can exlst is very d.ifficult to

d.etermine theoretically. A triple -input d.escriblng function appears to

require the manipuLatlon of too much d-ata to be of any use.

Although Atherbonrs mod.ified. nonlinear characterlstie appears as though

it ruould. be very useful for the stud.y of the si-multaneous oecurrence of

several subha:mionics, the method. is of llttle use for the stud-y of feed.baek

systems. The method- conrpletely neglects the phase-shift of the inputs 'ç¡hen

passed. through the nonllnearity. The aonlinearity is repJ.aced. by a real-

valued. gain for each input; thus it is of no use for harmonically related.
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inputs in feed.back systems. The mod.ified. nonliaear characteristic is only

u-sed. as a üleans of d.eterminÍng the gain of a partieular input to the non-

J.lnearity in the presence of other inputs. It d-oes not gÍve the time re-

sponse of the nonlinearity resulting from the multiple iaputs. The aetual

gain of a given input requires the evaluatj.on of an integral r¿hich contains

this mod.ified. nonliaear characteristlc. Generalþ a nune::ical technique is
requlred to evaluate this integral,

In conclusion it may be said. that the Ínvestigatlon of subharmonic

oscillations stlLl requires the "grind.ing-out" of solutions. The d-ual-ínput

d.eseribing function technique is probabþ the best method. available for the

stud.y of the subharmonlc perforrnance of feed.back systems although it requires

the manipulation of a large amount of d.ata.
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APPENDÏX A

DERIVATION OF EQUATIONS 3.3, 3.4 Ai\p 3.5

consid.er equation J.2 for the output of the single-varued-

od.d. -function noolinearj.ty"

*z = f "(i,r) 
urqp( juxr)au (a. r)

r,¡ith *t= Asin(tcrat+Bsin(vt) (¿"e)

If f (xr) is an od.d.-function of xrr thea F(ju) wi1l be an odd.

flrnction of u. substituting equation 4.2 into equation A. l prod.uces

no-X.: )_-l- t¡u) exp(¡uAsin (Kwt t þ)) exp(jrlB sin(wl))du (a.3)

fa (ZO) Ít is shovn that the e>çonential nay be expaad.ed as

expIj u s¡n(e)]= cos (u sin(+)) + j sin (u sin (o))

- F"€. Ji, (u) cos(¿ne) " ?¡ å J.nn,(u) sin((rn+1)a) (4.4)

where J. (")]i: Bessel f\:netion of order i and.t-"
mod.ulus u

€ is the Neuilann factor
n

=LtlI=o

- 2, n = 1, 2, J.oon"o

rf the prod.uct of the two erqponentials 1n equation A.J is d.efined

as G(urw) then:

G(u,w): exp IluA sin(KwI*e)] exp (j uB sin (wT))

Ti:-1s may be etçand.ed. accorrd.ing to eqnation A.lt to ¡nield
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G(u,w)= i å €n T.. (Au) cos IZn(Kwt+ ø) * 2:å 4^,,(Au) sin f (an+r)

(Kwt+rrfÌ {åe," J]-(Bu) cos (?rn(wt)) + ?iå" d-,,( Bu)sin [tam*r)wt]] (A'5)

As the functi-on f(iu) is odd, only those parts of equation 4"5

r¡l,ich are odd. contribute tov¡ards the integral of equatíon 4"3, Thus,

the odd porbion of G(u,w) n'ray be defined as Godd (tr*) and is given

AS

G,,r(u,w)= a;{å i .n [^(Au) q-.,(Bu) cos [ ?n(Kwt+Øl sin [(an +1)rvtl

-å å€"L-(Bu) {n.,(Au) cos(Zmwt) sin[(ân+r)( Kwt+ 9¡l (n'6)

Only the f\rndamental component in the output of the nonli-near

elenent ís of interest, Thus, after expanding the trigonometric pro-

ducts those terms contributing towards the fundamental are exbracted

to yield

Gr(u,w): j i."(-1)"4(Au) {,**,(Bu) s¡n (wt-nØ)

-Ë .^ (-t )" I (Au) \*-, (Bu) s ih (wt + nø) (A.7)

where Cr(u,w) is the portion of Go.¿(u,w) contributing to the fundamental

ourput " rhe porrio,, cs(', iÍl ;;"uiåi-Ji"*tYi.,J îïi Jt#':l'î:i;';f "'Jl¿

the latter giving the cosine component,o These are given by

G,(v,w): j{"Ë"€,(-l)"*' 4(Au)[ 4..-,(Bu)-l^*r(Bu)] cos (nÐI (4.8)

G.(u,w)=jtå, ..(-1)"*' l(Au)[l*r(Bu)+ J,,n.,(Bu)] sin(nø)] (4.9)
Bv the use of
€æ these expressions, the fundamental part of the output may be

written as

(x.)r: IiC:u) G,(4w) sin(wt)d"+[]rr¡u)G.(u,w) cos (wt)du (n'ro)

where (*e)f js the fundamental component of the output"

This is the desired result.
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APPEND]X B

E QU TVA],E ÀTI -III{EART 
Z AT ÏOJ .4rc],IT -A, 

Pq]JTT

Oldenburger determj-nes the stability of the equilibrium points

by the use of the j¡cremental Nyquist diagram and equlvalent lineari-

zation about a poi-nt, This method assumes that at ar¡y equilibriun

point the system is linear for incremental disturbances in the system.

Thus, the criterion only indicates lhe stability of the system for

small disturba¡ees, and the effect of a large disturbance i¡r the systenr

can not be predicted"

The method requires a Nyquist locus G(j*) for the li¡ear elements,

and the critical- locus U(n) for the nonlinearity. The critical locus

ru(n) is a plot of -V(¿escribing function) as a function of the magnltude,

E,of the input to the nonlinearity. Equilibrium points for the system

occur at the intersection of the two curves, Figure B,J-.

Fígure 8,1

Li¡earÍzation about Equilibriun Point

Now consider equilibriun point B; assume the s¡rstem behaves as

linear systen, in a¡ i¡tcremental region around the equi-librium point"
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Assume also that E increases incrementally due to a disturbancee The

equilibrir:m point would move along I\I(A) in the direction of increasing

Eo However, this moves theequilibriurn point into the interior of the

ItTyquist l-ocus indicating thet the oscillation would increase in amplitude"

The íncrease j¡ a.mplitude would move the equilibrium point furbher fro¡n

B, thus it is conclu-ded that thÍs equilibriun point is unstable.

Nov¡ exanrining the equilibrium point A it can be seen that an in-

cremental íncrease Ín E would rnove the equilibriuin point away from the

interior of the Nyquist locus" Thus, the oscill-aLion would tend to die

out, decreasing the magnitude of E and moving t,he equilibrium point back

to .4," This indicates the oscillation is stable for small disturbances,

Oldenburger (t3 ) gives a mathemat,ical justifica.tion of the above

argument. For determining the stability of limit cycles i¡ autonomous

systems this stability criterj-on is known as Loebls criterion" Hor,rever,

it should be noted that this stability criterion only applies for smal1

disturbances in the system and is, even then, only approxirnate,
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APPEND$ C

CAIIIILATI0N 0F jrrE I\'IOIIFIED CIüRAIIEIIISTïC FOR A OIII-OFF

CHARACTERTSTIC SUBJECT TO A SINUSOTDAL ]IYPUT

Consider the si-nusoid A cos(r^rb) as an input to the on-off

characteristic n(x) r^¡here

n(x)=¡ x>o

=-þ x<o

The rr0rr - rnodified nonlinearity is given by equation

n(ï,o) = J-{"**¡ p(x) ax (c.r)

For a si¡rusoid the amp1itrrAJ p"oU*bility-density distribution, p(x),is

p(x)=t/r(f- *2) -A{x<A
=o lxl >A

where x is Acos(wb)

Now if -A si TÉ+ Ar. then the output of the relay i.s

n(T+x) = -h (T + x) < o

= h (ï+x)zo
r^¡here the relay commutates at x = -\^, Equati-on C,I can now be evaluated.

;a ¡A -€n(T,o)= [_Cr'todx+J. qh)¿¡ + J' f,-¿\. + I t'"Odx
--A n¿¡z-¡¿) :y Í (A.-x') '¡

thus n (v,o): *3h. sin-l (Y/A ) -A - Y < A
1t

Now if ï> A, then

n(T+x) = -h xs-T

= +h x>-ï
n(to)= S*cn,odr+ J*n.odx+ J^#, + J-h,od.

n(Tro) = +h

5L
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Similarly ror T< A

n(T,o) = -h

Therefore

n(Tro)

The

to *A for

rr0rr -Modjiied On-Off Characteristic

sinusoidal input has produced an rroperatiqg rangett

another Ínput to the relay.

ï< -A

lrl. A

Y>A

is' the original characteristic

is the characteristic modified

sinusoid of peak amplitude A

from -A

=-þ

=2hT
=h

-'ìsin * T/A

Ian

rrbI

a

by

Figure C,1

,2



APPENDLX D

RIILAY OUIPUT bj-ITFf A FUl{D;\i'{EltlTAI CO}íPO}ENI 0F ZIJRO I'{AGNÏTUDE

Most periodic l,¡avefor¡ns can be represented by . po¡¡ier

series of the fonn

A-6

f(r-) = o + I[t" cos(nvrrr
2 ¡¡=1

the coefficients of the Fouri-er series

foltowing equations
¡T

a_ = ? ) f(r) cos (nw,r-)d.r
nîJo

(Tbn= Z \ r(-)sin(nwrr)dr
TJO

where T is the period of f(r), and w1

) + br, "o"(.rrr )] (D"1)

may be de'r,errnined by the

[ = orLrzrno" (0.2)

tr = 112r3r",, (1,3)

is 2¡r /T.

1) Relav Outnut with Two Gomr,nrta'rions Per Period

Consider the rela¡r output sho,rrn ih Figure D,1" This waveform

has a period of 2x seconds and r,1 is unity,

t(r + zr)

o <Tr<2f

Iisç.-Ð¿
Relay Output lrith Two Co¡nmutations Per Period

The magnitude of the fundamental component of f(^l ) may be

detenoined from the coefficíents a1 and b1 of the Fou¡ier series"
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From equation Ð.2 and D"l these coefficients may be calculated as

follows:

ar = * J*rc') 
*"(r)ar=+[jj."('r)az- l,:*"

= Z ["i"(n)l,lfL

b., = À \'ïCt)sin(-r)a,=f[çJrr,1t¡ut- !'lin¿ f Jo Îf Lro -r

('r) a']

(o.¿o)

C')a-]

(n,5 )

and b1 ntust

=_+[.ou(n)-t]

For a fundamenta]- com'oonent of zerc magnitude, a,

sj¡nultaneously be zerrc, Therefore

ar= g [sin(1)] =o.Y

or = -* [co"(n) - t] = o

(u.6)

(o"z)

The only soluti.on tha.t simul'baneously satisfies equations 0.6 and D.7
zero (modulus ?rr)

is l.ûren ^l .', is^#, Hor¡¡everr f(l) is then a constant d"c" output"
l- ll

Therefore, no relay output with tr'¡o commutations per period existsthat

has a fundarnental component of zero anoplitucle,

Z) nefey-OUtpW '^IrtÀ-Four-ç-o þnq P

Consider the relay output shown in Flgu¡s D.2 which has four

commutations per period.

f (^r)= f (r+Ê¡)
'tr .y

o< T< r..-tr<71t

FiSPre D.2

Relav gutpt&-r+ith @ pgrjglaod

1

Çcr¡
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The coefficients of the fundamental component in the Fourier

series of the period.i-c waveform in Figure D.2 are

a1 = ? [sin(rr) - sin(r2) +
'íL4

br = -? [cos(^[) - cos (fr) + cos(rr) - i]
¿'íL

od¡ u stment of
By properþ a+jus+isg the posüions of the equilibrium points, Ít appears

that a, and b, could be simultaneously set to zero" However, no solutions

r^rere obtained. that had a period of 21ro Therefore, although it appears

as though a fundamental component of zero maghitude is possible for

iiris relay output, none could be forrnd.

3) Relav Output with Three Coramuiations Per Half-Period

Consi,ler the relay shor¡n i-n Figure D.l which has three

commutation points per half-period" The Fourier coefficients for the

fundamental component of the waveform in Figure 0.3 are:

"i"(r3 )]
(0"8)

(¡,9)

(0" 10)

(D.11)

"1 =

br=

t+ [ sin(f )rL r

-t+ [ co" (r', )
Îf

- uin(rr)]

- costtfrl -f ]

fft+?¡)=f(r)
{('r+'n) = -fc'r¡
o<Tr<f, 1T

Re Iqy Output W¡th Three Commutat¡ons pe. Holf - Per iod

For a fun<lamenta.I component of zero magnitude a1 and b1 mrst

be simulanteously zere. Note that a1 is zero if

Fig ure D.3

Tz:Í-Tt
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Substituting lhis into equation 0"11 yiel-rls

bt = -+ [ cos(rr) - cos(Í -r1) -1]

Ttren b, is zero when

T 
'u "ou-Iit7z) = x /z radians

1

f , rs zr/3

A relay output r¡rith these eommutation points is actually a

symmetric, periodic square wave with a frequency of 3 r'p's' Thus,

no rela.y output itrith three commutations per half-period has a funda-

mental conponent of zero magnitude"

4) ReIAv l2utp}t, Eþh -FÛe Ooqry.te.trions Pet -Half--Period

Consicler the relay output shor¡n in Fj-gure D.4 r¿hich has five

commutationsperhalf-period.Thecoefficientsofthefunrlamental

frequency eomponents in Íts Fourier series are:

= È'2 cos (rr) - r]
TfL

a1

b1

ui"(rr)]
cos (ri-4)

+

+

=t* f sin(f ) -.lrL

= -r, l- ,r.t* l'r. ) -

sin(rr)

cos (r2)

sin(f3 ) -
cos(3) -

(0.13)

- i] (n.r4)

f (r+ttr)= fç1¡

r frr-n) = -5(r)
o<I (T¿<'r3<'r'r<T

t

fu:-')

Figure D.l¡

Rel.ay 9r¿tput lrlilh Five eorynJþations PeL Flalf-Pgriod.

B¡'trial and error it was forind. that the equations D.l3 and

D.1.1¡ were simulta¡eously zero for the following set. of commutation

points,

-¿ | cos (\)
ÌíL

)o



-r1

f
¿

.r^
)

tr,

300

70"

ar3"

15ro

501 =

[Qt =

"52 radians

1"22 radians

1.99 radians

.2"65 radians

The coefficients of some of the harmonies of the funclamental rvere

calculated and are Iísted below

Fundamental

3rd Harmonic

5th Harmonic

7th Harrnonic

T¡rus i-t is possible to

per half period which

a, = -4( .ooor3)/T

"r = +4( "06)/¡
a5 = +4("oe)/ï

a7 = +t*("oa3)/T

bt = 4( "oooLÐ)/^n

V = h("3o)/-f

b5 = 4("9o)/-n

b7 = h(.28)/'rr

construct a relay output with five comrnutations

as a firndamentsl component of zero magnÌtud-e.

Function

Consider an input, x(T), to the relay of the form

x(r-) = A cos (-r+o,) + B cos (g+ F) + c cos(r+ y¡ iu.r5)
mn

relotively ¡rime
where m and n are odd"integers.

The input to the relay Ís a periodic function r,rith a period T of Znuni

seconcls. Note that, since m and n are odd integers, ihe product rnn

ís also an odd integer. Consider the input aft'et a half of a period

x(r+n) = A cos(r+mntr+ a) + B cos(I + nrr+ p) + C cos(3'+ mtr+ T)

=Acos[(r+o) +mnn]+Bcosftg-Ê) +n'r]+c cos [(ã.T) +m'r] (0.16)

5T



Eo¡ration D"16 can be rer'¡ritten in'æ the form of equation D.LT by

using the trigonometrie relation

cos (x ty) = cos(x) cos(y) T sin(x) sin(J)

X(-r+rr)= A cos (mn'rr) cos (r+<-¡+ Bcos(h1r) cos(3+,8)+Ccos(mt) cos(1+y) (D"fZ)

Note that since mrn, and mn are odd integers, then

cos(nr) is cos(nzl) = cos(tn.-) = cos("r) = -t
Therefore x(r+r) i* - [t cos(r+ T) * B cos(:+ P) + C cos(J+ ì')]

is-x(^r) 
m n

Therefore x(-r) is an antiperiodic function,

5B
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