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ABSTRACT

The object of this thesis was to investigate the following two
problems in forced nonlinear feedback systems:

1) Are any approximation methods available for determining
which periodic solution will occur for a given set of initial con-
ditions of the system?

2) Can two subharmonics exist simulbaneously in the system?
Several new techniques for the study of nonlinear systems are explained
and investigated for application to the above problems,

It was concluded from the investigation that a numerical solution
of the nonlinear differential equation was the only method available
for determining which periodic solution would result for a given set of
initial conditions, The investigation also proved that two subharmonics

can exist simultaneously in a nonlinear feedback system,



PREFACE

The object of this thesis was to find if there are any methods
available for determining which of the possible periodic solutions
will occur for a given set of initial conditions in a forced nonlinear
feedback system. Only feedback systems which can be reduced to a
form having one nonlinear element in the forward path are considered.
An answer was also sought to the question: can two subharmonics exist
simultaneously in a nonlinear feedback system? An exact solution of
the nonlinear differential equation is required for both of these ques-
tions. However, the answers to these problems were sought mainly by
new approximation techniques for nonlinear systems. Since the older
methods, such as the perturbation method, are not generally suited to
the analysis of feedback systems, they were avoided unless they were
found to be particularly useful. |

In Chapter 1 a short discussion on the differences between the
response of linear and nonlinear systems is given. Chapter 2 desls with
the problem of determining the periodic oscillation resulting from a
given set of initial conditions. Hayashi's method for determining the
transient response of forced nonlinear systems is given in detail with
an example. Since not too much success was achieved in determining the
periodic response resulting from a given set of initial conditions, it
was decided to simplify the problem by determining regions, in the input
amplitude versus input frequency plane, in which a given subharmonic
oscillation could exist. Chapter 3 deals with this problem and in parti-
cular presents Oldenburger's stebility criterion for subharmonic oscillations,
In Chapter 4 the special case of relay systems is considered, and Gille's
method for determining regions in which a subharmonic oscillation can exist
is given. Chapter 5 discusses the problem of the simultaneous occurrence

of two subharmonics. The possibility of producing a triple-input describing

ii



function for the study of this phenomenon is considered. An approxi-
mation method by Atherton for the response of a nonlinearity to multiple
inputs by the use of a modified nonlinearity concept is considered in
Chapter 6 for its possible application to subharmonic oscillations.
Chapter 7 consists of a discussion of the approximation methods that
have been considered and on the work done in answering the original

problems.
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CHAPTER 1

INTRODUCTION

When a periodic force is applied to a linear system, the re-
sulting response is obtained by & superposition of the transient and
steady state components. The former is due to the free oscillations
of the system, while the latter is related to the forced oscillation
which arise from the action of the external force. Since the free
oscillation is normally demped out after a sufficiently long period of
time, only the forced oscillation having the same frequency as that of
the external force would be observed. Thus, as far as linear systems
are concerned, the forced oscillation is uniquely determined once the
system and the external force are given, and it is not affected by the
initial conditions of the system. In nonlinear systems the theorem of
superposition no longer applies and the system can possess a wide variety
of periodic oscillations in addition to those which have the same period
as the external force, The response of a system is termed subharmonic
if its frequency is a proper rational fraction (i.e. 1/2, 1/2...1/n) of
the forcing function frequency, and it is called the subharmonic of order
n.

Although much work has been done on subharmonics, the problem can
not be considered solved. The tedious solution by the perturbation,
iteration (7)1, or similar methods results in little better understanding
of the subharmonic behavior, and is not suited to the analysis of the
performance of feedback systems. New approximation methods are constantly

being sought.

1
The bracketed numbers refer to reference in the bibliography.



The purpose of this thesis was to examine the techniques avail-
able for the analysis of subharmonic oscillations in nonlinear feedback
systems to determine:

(1) For a given set of initial conditions of the system,
can one predict which among a variety of possible
periods the output of the system will exhibit?

(2) Can the output of the system consist of two or

more subharmonics simultaneously?

A method developed by Hayashi for second-order nonlinear systems
will be used to study the subharmonic transient response, Since not
much success was achieved in the=study of the transient response, it
was decided to divide the input amplitude versus input frequency plane
into regions in which a given subharmonic can and cannot exist. This
problem is studied by a method developed by Oldenburger for the stability
of subharmonic oscillations. A method by Gille for relay systems is
studied with the view of extending the method to more genersl piecewise-
linear systems.

The problem of two subharmonics existing simultaneously is analysed,
and the possibility of the use of a triple-input describing function to
study this phenomenon is considered. A method developed by Atherton for
determining the response of a nonlinearity to several inputs is presented.
The use of this method to study the simultaneous occurrence of two sub-

harmonics is considered.



CHAPTER 2

TRANSIENT RESPONSE OF A NONLINEAR FEEDBACK SYSTEM

For a sinusoidal input of glven magnitude and frequency, often
a number of periodic solutions are possible in some nonlinear feedback
systems. The one that will be excited depends on the initial conditions
of the system. A method for studying the transient response of a non-
linear second-order differential equation has been developed by Hayashi

and will be considered here.

2,1 HAYASHI'S METHOD

R cos(nwt+@) _ &t K (1)
r(t) . fe S(s+d)
Figure 2,1

Nonlinear Feedback System

Consider the feedback system shown in Figure 2.1, TFrom this

1
gsystem the following nonlinear differential equation can be derived .

E()+ a€M+KFE=FO+ar (= w," B cos(nw,) (2.1)2

The notation € (t) denotes a derivative of the function with respect

to the parameter inside the brackets.

2 The letter w is used throughout this text in place of the Greek

symbol omega, W .



2 2
where B=-nR (1 + ae/[ne‘wf])l/2

Q= tan_l (l/nwf)

g

Now making the following change in the time scale

then equation 2.1 becomes

E(M+ dE(m)+ K fe)= B cos(n™) (2.2)
Wi V@

The equation has now been put into the form of the equation
Hayashi investigated for subharmonic oscillations, Hayashi assumed that
the coefficient of the E€(7) term, a/wf, was &a comparatively small
quantity. For an odd symmetric nonlinearity Hayashi approximated the
steady-state solution of egquation 2.2 for the subharmonic of order n
by

e(m=x sin(7) +y cos(T ) + W cos(n7) (2.3)

Hayashi then stated that Mandelstam and Papalexi (17) have shown that

W may be approximated by
2
W = B/(1-n") (2.4)

This approximation is said to be legitimate in the case when the non-
linearity is small, but is a good approximation even when the departure
from linearity is large.

Hayashi uses equation 2,3 as a basis for his study of the transient
response of subharmonic oscillations., He assumed the transient solution

of equation 2.2 to be

e(7r) = x(v)sin(v) + y(7)cos(r ) + W cos(n) (2.5)

At the equilibrium points x(~) and y(7) are-constants, Therefore,

®(7 ) and y(7 ) are zero at the equilibrium points.



Equation 2.5 was then substituted into equation 2.2, If x(r)
and y(7) are assumed to be slowly varying functions, then X(T ) and
y(~v ) are small and mey be omitted in the resulting equation. The sine
and cosine terms of the resulting equation were then rearranged into
groups according to their frequency. For this equation to be satisfied
at all times the coefficient of any sinusoidal component on the left
hand side of the equation must be set equal to the coefficient of the
identical sinusoidal component of the right hand side of the equstion.
Thus, the equation can be reduced to a number of simultaneous nonlinear
equations from which the sinusoidal terms can be elimingted.

Since the subharmonic of order n is of main interest, it was assumed
that the solution of the simultaneous equations resulting from the sine (v)
the cosine (7T ) terms was a good approximation to the simultaneous solution
of the entire set of equatiocns. From these two equations, two equations

of the following form were derived:

dy/ar Y(x,¥) (2.6)

[}
1

fl(x,y,wf)

ax/dr

fa(x)Y)wf) = X(X;y) (2-7)
A steady state oscillation occurs when:

dy/ar = dax/av =0 (2.8)
The parameter, time, can now be eliminsted if equation 2.7 is divided
into equation 2.6

dy/dr _ & _ Yxy) (2.9)

ax/av dax = X(x,y)

The problem has now been reduced to the plotting of a state-

space to determine the equilibrium points of equation 2.2,

2,2, AN EXAMPLE
Consider a nonlinear feedback system lncorporating a cubic non-

linearity in the forward path ~ see Figure 2.2, page 8.



Hayashi's method was applied for the one-third subharmonic for
this system. The equation for the system can be written in the form of

equation 2.2, viz:
E(T) + €T /W + €M /(low®) = B cos (37) (2.10)

Equation 2.5 was substituted into eguation 2.10, and then X(~) and ¥(-7)
were assumed to be small enough to be omitted from the resulting equation.
From the coefficients of the sine (7 ) and cosine () components in the

equation, the following two equations were derived.

2 X +yw=y -x/w -3[2yw2 + W(yg-xz) + y3 + yx2]/(h0w2) (2.11)
Xfu-2y = x + y/w - 3I2XW2 -2xyW + x(x2 + yz)]/(QOwg) (2.12)

From equetion 2,11 and 2.12, dy/d—Teand dx/d~v cen be solved for. Then,
with the aid of a digital computer, a state-plane can be plotted by cal-
culating dy/dx for specified x and y.

The state-plane was plotted for an input magnitude of 4 and fre-
quency of 18 rps - see Graph 2,1, page 9. From this graph it can be seen
that there are three stable equilibrium points for the one-third sub-
harmonic. The three equilibrium points are approximately 120 degrees
apart on a circle of radius 22.5.

The system was simulated on an analogue computer - see Figure 2.4 -
to determine experimentally the initial conditions which result in a
subharmonic response. It should be noted that the initial conditions
by the Hayashi method are not the same as the initial conditious set on

the analogue computer:

€(o)=R cos(@)-C(0)= y(0) + W (2.13)
Note that: €(t)] = WET|__ .

é(t){tj -3wR sin(¢)-C(0)
Therefore — €(T)| = ~3 R sin(¢)—C(0)/w = X(0) +y(0) (2.1%)
It was assumed that since ¢ was small (approximately 3 degrees), the term

3R sin(@) could be neglected. Since W, approximately 9R/8, is approximately



equal to R cos(@), it was assumed that the two cancel one another in
equation 2,13, The equations2.13 and 2.1% can now be written in the

form
y(o)=-c(o) (2.15)
X(@=—yr-c| (2.16)
w t=o

Since there was no information available about j(o); for comparison
purposes it was assumed that y(o) could also be omitted from the equation.
The regions of initial conditions which gave rise to the one-third sub-
harmonic were determined experimentally and plotted as -c(o) versus
—é(o)&v— see Graph 2.2, page 10 - for comparison with the state-plane
obtained by Hayashi's method,

Compsrison of Graphs 2.1 and 2,2 show that although the two graphs
agree in basic form, the two differ quite substantially in details, The
amplitude of the subharmonic was found experimentally to be approximately
23 as compared to 22.5 by Hayashi's method, Thus, the steady state
approximation to the solution of Hayashl's equation appears to give

reasonable results.

2.3 DISCUSSION OF HAYASHI'S METHOD

Hayashi's method was the only method found which could be used to
determine which periodic solution a set of initial conditions would pro-
duce. However, the method can not be considered very satisfactory for
the following reasons:

(1) Hayashi's method is limited to second-order nonlinear systems,

(2) The amount of work associated with the use of Hayeshi's method
makes the method of little use for a detailed analysis of a system. The
complexity of the equations for Y(x,y) and X(x,y) rapidly increases as
the power of the equation for the nonlinearity is increased. The plotting

of the state-plane is véry time consuming, and it mumst be replotted if any
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of the system paremeters, such as frequency, are changed. TFor all the
work that is required, the method sppears, from Graph 2,1 and 2.2, to
give results that are not very accurate,

(3) The initial conditions given by Hayashi's method are not the
true initial conditions of the system, As seen by the example assumptions
must be made to find a direct relation between the two.

(4)  The method can only be used for systems which have just one
possible subharmonic. Although the method could be applied to systems
with more than one subharmonic, the results would be meaningless since
any given state-plane would neglect the rest of the subharmonics. The
individual state-planes could not be superimposed on one another since
there would be no way of determining which plane applied for a given
initisl condition,

The problem of determining the periodic solutions of a Ffeedback
system for a given set of initial conditions appears to require an
exact solution of the nonlinear differential equation for the system,

The differential equation could be solved by one of the numerical technlques
given by Cunningham (7), but the methods are not suited to a general
analysis of a feedback system. The method would require a digital computer,
and it would be necessary to solve the equation every time a change in

one of the parsmeters of the system was made,

11



CHAPTER 3

REGIONS OF SUBHARMONIC RESPONSE OF A FEEDBACK

SYSTEM CONTAINING ONE SINGLE-VALUED NONLINEARITY

The problem of determining regions, on the input amplitude versus
input frequency plane, in which the subharmonic of order n exists, for
a general single-valued, odd-function nonlinearity will be considered in
this chapter. A method@ outlined by Oldenburger (11) for the study of

subharmonic oscillations will be investigated here.

3.1 THE PROBLEM

By the use of the perturbation method or iteration procedure, the
regions in which a subharmonic may exist can be determined from the
differential equation for the system. However, all constants - such as
gains and time constants - must be specified for the system before either
of these methods can be used. This procedure is not suited to the study
of feedback systems since it generally gives no information on the
stability of the solution or the effect of varying one of the parameters
of the system. In addition these methods are generally rather time con-
suming and meke assumptions about the equation - such as that the system
is quasi-linear - which may or may not be completely valid., TFor the above

regsons a more general procedure was desired.

3.2 OLDENBURGER'S METHOD

Output of the Nonlinear Element: This method is restricted to feed-

back systems incorporating one, single-valued, odd-function nonlinear element -
see Figure 3.1.

Consider a nonlinear element with an input Xl as shown in Figure 3.1

where
x, is A sin ((kwt) + @) + B sin (wt) (3.1)
and k is an odd integer

iz



A sin(Kwt+g) Xal//

B sin(wt) r_/] %, Xz (1)
—

Figure 3.1

0dd - Function Nonlinearity

The output of the nonlinear element x_. (t) can be written as a function

2
of the input xi(t) using the integral representation of Rice (12). Thus

X, = S_ZF(jU) exp{jux,dv ' (3.2)
where j is ]TI~
and F(ju) is the Fourier transform of the nonlinear input-output
function f(xl).
By the use of equations 3.1 and 3.2 the following equations are derived in
Appendix A, wheretoql(u,w) and Gé(u,w) are the portions of-%he—exp(juﬁi)

which contribute ke the sine and cosine terms respectively of the funda-

mental component in the output.
G (uw)=j{ Zen 1) T (AT, (Bu)~T,, (Bulcosnel} (3.3)
Gz(u,w)=1{§, €, 17 T (Al T (BU) + T, (Bulsin(ne)}  (3.1)

where Ji(u) is the Bessel function of order i and modulus u.

and ea is the Neumann factor
=1, n=20
=2, n=l; 2) 3.-...

By the use of these expressions the fundamental part of the output may be

written as (see Appendix A):

(Xz);=S:F(jU) G, (uw) sin(wt)du +S:F(ju) G,(u,w) cos(wt)du (3.5)

Thus, Oldenburger has succeeded in obtaining an expression for the

output of the nonlinearity with two harmonically related inputs.

13



Equilibrium Points and Stability Criterion: Having obtained a

method for determining the output of the nonlinearity, Oldenburger now
considers the problem of determining equilibrium polnts and the stablility
of the equilibrium points.

Consider a system as shown in Figure 3.2 incorporating a single-

and a linear element )

valued, odd-function nonlinear element%possessing a transfer function G(jw).
In the following the assumption that only the subharmonic appears in the
output will be implicit. Thus the characteristic of the linear element must

be that of a low-pass filter, and only the component of the output of the

nonlinearity at the subharmonic frequency need be considered.

A sin(Kwi+ o) X, (t) B'sin(ut -B si |
in( {r\ N.L- sin(wlix) Gljw) B sin(wh)
Figure 3.2

Feedback System

The output of the nonlinearity can be represented by & complex number
B', with real and imaginary parts Re B' and Im B' respectively, where the

o=l .
magnitude of B' is B", and Taf ~[ImB'/ReB'] is a. Now

Re B is §_FGwG, (ywdu (3.6)
Im B is § FGu) G, (v,w)dy (3.7)

To sustain s continuous osclllation of frequency w the following

relation must hold:
B'= ~B/G (jw) (3.8)

where B' 1s a function of B, A, ¢, and the parameters of the nonlinear
element. Solutions of equation 3.8 can be found graphically from inter-

sections of curves representing B' and B/G(jw) plotted on the complex plane,

14



Not all intersections represent stable solutions and thus use will be made
of the incremental Nyquist diagram (13) and equivalent linearization about
a point to determine the stability of the oscillation at the equilibrium

points. This method is explained more completely in Appendix B.

3.3 DISCUSSION OF OLDENBURGER'S METHOD

Oldenburger gave a very complicated procedure for determining the
cutput of the nonlinear element subject to an input consisting of two
harmonically related sinusoids. However, to determine equilibrium points
he assumed that only the subharmonic appeared at the output of the system
due to the filtering action of the linear block. Therefore, he only con-
sidered the subharmonic component at the output of the nonlinearity. This
is basically a describing function approach to the problem and could have
been handled by West's dual-input describing function (14)., The subharmonic
output by Oldenburger's method was an infinite series of very complex
integrals involving Bessel functions, In general these integrals are very
difficult to evaluate.

The stability criterion is an extension of Loeb's criterion for the
stabllity of limit cycles in autonomous systems. This criterion states
that if the vector product dG/dw X dN/4E ,
where: 1) éa/dw is the vector lying in the direction of increasing

frequency along the Nygquist locus of the linear elements at
the equilibrium point.
2) éﬁ/dE is the vector lying in the direction of increasing
amplitude along the critical locus at theequilibrium point.
is out of the page, the oscillation is stable. This is only an approximate

stability criterion for small disturbances in the system.

3.4 EXAMPLE USING THE DUAL-INPUT DESCRIBING FUNCTION

Consider the feedback system shown in Figure 3.2, page 14, where the

nonlinearity is x3/lOO and the linear block is 10/(s(s+l)). Assume, as
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Oldenburger did, that the output of the system consists of only the 1/3

subharmonic, Then,

Xl(t) is A cos(3wt + @) + B cos(wt) (3.9)
The describing function for the subharmonic component is:

D.F. = 3.{ (2% + ¥%) + ABe‘jé}/LLOO (3.10)

Note that for a constant A and B this forms a circle as ¢ is varied through
360 degrees. To determine equilibrium points plot the critical loei, which
are also circles, and G(jw) on the complex plane - see Graph 3.1.

The direction in which the vector éﬁ/dB lies at the equilibrium points
must be determined in order to apply ILoeb's stability criterion. The vector
must point in the direction that the equilibrium point would move on the
describing function locus if B was increased incrementally in magnitude.
Therefore, the phase relation between A and B should not change. This would
indicate that the directicn to move at the equilibrium point is perpendicular
to the curve of constant B. By applying Loeb's stability criterion to
Graph 3.1, it can be seen that any equilibrium point to the left of its
loci's center is stable while those to the right are unstable.

By using the above fact, it can be seen from Graph 3.1, pagell, that
a stable subharmonic begins at an input frequency of 2.3 cps with an amplitude
of eighteen, There is no upper limit at which frequency the subharmonic
will no longer be stable,

The system was simulated on an analogue computer and it was found that
the predicted and the actual results agree closely for the higher frequency
range - see Graph 3.2, pagé 18. The lower frequency range did not agree with
the predicted values very closely; the subharmonic oscillation became un-
stable at 1.2 cps., not 2.3 cps. as predicted. This discrepancy can be ex-
plained by the fact that at the lower frequencies the output contained s
rather large component at the forcing frequency. The input to the systen

and the forcing function frequency component of the input to the nonlinearity
are not the same due to the forcing function frequency component fed back

16
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from the output of the system. Thus, the indicated equilibrium point was

not a valid equilibrium point for the assumed input to the system.

3.5 CONCLUSIONS

Although Oldenburger's method appears to be a new approach to the
problem of subharmonic oscillations, closer inspection reveals that it is
based on two well-known nonlinear techniques; the dual-input describing
function and Loeb's stability criteriocn.

The main drawback of Oldenburger's method is the amount of data which
must be handled for determining equilibrium points by the dual-input
describing function method. To be strictly correct in determining the
equilibrium points for a given input, the input frequency component which
is fed back to the input of the nonlinearity from the output of the system
must be taken into account. Although this correction can be made for each
egquilibrium point, it requires a great deal of work, Due to the low-pass
charscteristic of the linear elements, this correction is often small and
may be omitted.

Oldenburger's stability criterion provides a very useful method for
determining the regions in which subharmonic oscillations exists. The
regions are not strictly correct if the assumption thet only the subharmonic
exists at the output is made. However, the flexibility of the method to
changes in the linear elements makes the method very attractive for feedback
systems,

The paper by Oldenburger can be criticized for presenting a useful
idea in a complicated form, adding nothing to the original idea, which could
have been explained using conventional techniques associated with feedback

systems,
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CHAPTER 4

SUBHARMONIC RESPONSE CF RELAY CONTROL SYSTEMS

TO SINUSOIDAL INPUTS

In this chapter a method, developed by Gille (4), for determining
regions in which subharmonic oscillations are possible in relay feed-
back systems, is studied. Although most of this work has been done by
Gille and his associates, a paper by Fleishman (5) investigating the
same subject suggests Gille's method., These methods will be studied with

the thought of extending them to more general piecewise-linear systems,

k,1 FLEISHMAN'S METHOD

Consider a feedback system which has a relay in the forward path
as shown in Figure 4,1, Assume the relay is symmetric with negligible

dead zone and no hysteresis,

b )
R, cos (wt+ @) 4~ X() }_‘l m(t) G(5)=5(;<H) c(
r(t) - —b

Figure b, 1

Nonlinear System Contalning a Relay in The
Forward Path

The relay characteristic is given by:

m(t) =b x>0

b x<9o

From the linear block the following equation can be obtained:

Kn(t) = L{e) (k.1)

20



in which L(e) is a linear operation on c(t) which can be determined from

G(s). The following equation can be derived for the system:

L(x) + Kb sgn(x) = L(r) (4.2)

Assume that x(t) consists of two components, viz:
x(t) = x (8) + x () (&.3)
a by
a
Now equation 4.2 can be written as follows since L(x) is, linear operation.
L(xa) + L(xf) + Kb sgn(x) = L(r) (k. 4)
Therefore, one possible solution to equation 4.4 can be written as

-Kb sgn(x) (L.5)
L(r) (4.6)

]

L(xa)
L(xf)

it

From equation 4.6 obviously there results:
xf(t) = r(t) = Rocos(wft + @) (5. 7)

It is desired to find the forced periodic solutions for equation
4,2; therefore xa(t) must be periodic with a period of 2’W/wf. If xa(t)
is to be periocdic, the relay must commutate at particular values of xa(t)
which are determined by the period of the oscillation, The problem is
now reduced to solving equations 4.5 and 4,6 under the constraint that the
relay commutates at the points determined by equation 4.5 for periodic
solutions for xa(t).

The method may easily be extended to subharmonic oscillations by
requiring that the period of xa(t) be 21Tn/wf, where n, an integer, is
the order of the subharmonic solution.

Fleishman then proceeded to solve equations 4.5 and 4.6, but his

technique was to find particular solutions for the system being considered,

L,2 GILLE'S METHOD

Gille's method essentially begins where Fleishman's method ended.

The method does not go through the above argument but resorts to a graphical
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argument which is essentially the same.

Consider the seme system as Fleishman does - see Figure 4.1, page 20.
The following discussion will start with the equations developed by
Fleishman instead of the beginning of the graphical argument of Gille. The
point that Fleishman appears to have missed is that an identical equation
to equation 4.5 could have been obtained if the system hed been autonomous.
Periodic oscillations for this autonomous system can be determined by the
well known Hamel locus method (6).

Figure 4,2, page 23, shows the Hamel locus for the linear block
shown in Figure 4.1, Also shown in Figure 4.2 is the path s(t) that the
autonomous system is assumed to traverse if the relay commutated at point
A, The time required for the system to traverse the curve s(t) to point B,
after having commutated at point A, is Tr/wf seconds.

The Hamel locus gives all the possible solutions to equation 4.5,

It is now necessary to make the relay commutate such that the commutation
points assumed in deriving the Hamel locus occur for the forced system.

Note that at a fixed instant of time, say for t = o, then:

x(o)
%x(o0)

xa(o) + Rocos(é)

1]

ia(o) - Rosin(¢)

which is a closed path in the X , x plane as ¢ is varied through 360° -
see Figure 4.3, page 23. By proper choice of units for x, this closed
path is a circle.

As can be seen from Figure 4.3, x(t) intersects the commutation line
twice - at C and D, Therefore it is possible to get the relay to commutate
at the point A on the Hamel locus, Once the relay has commutated, x(t) is
just the sum of s(t) and RO cos wat + ) and is represented by the path
Pf shown in Figure 4.3.

It should be noted from Figure 4.3 that unless RO is equal to or

greater than xo the relay cannot be made to commutate at point A, and no
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forced periodic oscillation exists in the system. For an input greater
than xo - see Figure 4.3 - there are two points at which the relay may
commutate, indicating that two amplitudes for the oscillation are possible
in the system. Tsypkin (15) has shown that the smaller amplitude of oscilla-
tion is unstable. If the input is larger than the minimum allowable
amplitude, Ff, an intersection with the commutation line can always be
obtained by adjusting the phase of the input. Ff can be determined as a
function of frequency and plotted on input magnitude vefsus the logarithm
of the input frequency axes thus dividing the plane into two regions:

F < Ff in which no forced oscillations are possible and F > Ff in which
forced oscillations may exist - see Figure L. k., page 26,

The method can easily be extended to determine the regions in which
the subharmonic of order n is possible., Fleishman's equation still applies
but now the period of xa(t) is 21Tn/wf. However, the Hamel locus is
graduated in frequency and is independent of the frequency of the input.

For an input frequency wf, the point on the Hamel locus at which the relay
must commutate is the point at the freguency wf/n. The argument then pro-
ceeds in exactly the same manner as for the forced oscillations to insure
that the relay commutates at this point. Since the Hamel locus has not
changed, the minimum input amplitude to produce a forced oscillation at a
frequency wf is the same as for producing, for an input of freguency nwf,
a8 subharmonic of order n, Therefore the curve of Fn for the subharmonic

of order n i§ the same as for the forced oscillation except shifted log(n)
to the right - see Graph 4.2, page 28,

Gille's method can be extended to relays which have either hysteresis
or dead zone (8) or which are asymmetric (9). In the case whére the relay

is asymmetric or has dead zone the method becomes much more difficult.
4,3 AN EXAMPLE

Consider the control system shown in Figure 4.5, It was assumed that
the relay was symmetric with negligible dead zone and a hysteresis width of

0.4. The equations for the Hamel locus are
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"
it

- T /2y - Tanh ( 7/2w)

e
i

- Tanh (77 /2w)

From these equations the Hamel locus can be drawn - see Graph h.l, page 271,
The minimum input amplitude to produce a forced oscillation is

F, = lx(wf) + 0.2] (k. 8)
where x(wf) is the value of x on the Hamel locus in the third quadrant
which produces an oscillation at a frequency wf. Graph 4.2 shows the
curve of Ff versus log(wf) to produce forced oscillations in the system,

To determine similar curves for a subharmonic of order n the curve for the

forced oscillations was shifted log(n) to the right - see Graph 4.2, page 28.

L, b GILLE'S SECOND CONDITION FOR THE
EXTSTENCE OF A SUBHARMONIC OSCILLATION

Gille's second condition for the existence of a subharmonic oscillation
will further limit the region in which a subharmonic will exist, but the
exact regions which are eliminated are difficult to determine. The second
condition is that the locus Pn’ which is the sum of xa(t) and xf(t), must
not intersect the commutation line within a half-period. Gille refers to
this condition as "premature commutation"”. The possibility of this can

best be seen by an example,

Consider a relay system in which the linear elements have the Hamel
locus shown in Figure 4,6, Assume that a subharmonic osclllation of order n
exists in the system. From Figure 4.6 it can be seen that ultimately Pn
appears to arrive at the correct point, D, to insure the existence of
the subharmonic. However, before this Pn intersects the commutation line
at E which would cause the relay to commutate at this point. Once the relay
had commutated, the assumed solution for xa(t) from equation 4,5 would cease

to apply and the commutation point D would never occcur,
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Figure 4,6

Commutation Within Half-Period

A detailed study of this condition is not easy as it requires know-
ledge of the exact shape of the locus Pn which can be very complicated.
One general conclusion can be arrived at by studying Figure 4.6, Since the
_input frequency is Wf and the frequency of the n-th-order subharmonic is
wf/n, in the same time interval n times as many revolutions are performed
by the vector representing the input than the vector representing xa(t).
Thus, a commutation within a half-period is most likely to occur when the
following conditions are met simultaneously: the order n of the subharmonic

is high, and the w_ and wf/n points do not lie too far from each other on

f
the Hamel locus. For the case of a regular system the second condition

generally occurs for high frequencies.

i, 5 EXTENSION OF GILLE'S METHOD TO A MORE GENERAL

PIECEWISE-~LINEAR SYSTEM

Since Gille's method is so easy to apply, it is desirable to see
if the method can be extended to a more general piecewise-linear, non-
linearity. For a relay system the input to the relay affects only the
commutation points, thus, the input has no effect on the output except in
so far as it changes the relay commutation points. For a general non-
linearity, a change in the input to the nonlinearity would immediately

change the output of the system. Therefore, the autonomous response of
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the general piecewise-linear system can not be subtracted from the ianput

to determine the response of the forced systenm,

4,6 DISCUSSION

Gille assumed that a necessary and sufficient condition for the
existence of a subharmonic oscillation is that there are no commutations
of the relay between the half period commutations., All of Gille's articles
started from this assumption, and they proved that this was a sufficient
condition. However, the idea that this is a necessary condition was never
quéstioned. No other paper has been found investigating this condition,
and a direct solution of the equations, assuming this type of oscillation,
appears impossible for even the simplest system. Correspondence with
J. Paquet, one of Gille's co-workers, indicates that they have proved that
this type of oscillation was possible in the case where the relay was
asymmetric. A paper dealing with this subject will be published in the
spring, When this paper is published it may be found that subharmonic
oscillations are possible in regions in which Gille's method indicates none
are possible,

Otherwise Gille's method camnnot be criticized much in that it pre-
dicts large regions in which‘no subharmonics are possible. Although the
method does not divide the plane into regions where subharmonics exist
and do not exist, it does give a good idea of the regions in which a sub-
harmonic is most likely to occur, If a table of Hamel loci is available,
the effect of changing the linear elements is not difficult to determine.
Unfortunately, it does not seem that the method can be extended teo more

general piecewise-linear systems.
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CHAPTER 5

SIMULTANEOUS OCCURRENCE OF TWO SUBHARMONICS

The problem of determining whether two or more subharmonic oseill-
ations can exist simultaneously in a noalinear feedback system is con-
sidéred in this chapter, The possibility of extending, to deal with
this problem, one of the methods for determining the existence of sub-

harmonic osclllations in nonlinear feedback systems will be considered.,

5.1 THE PROBLEM

Most feedback control systems, linear or nonlinear, have linear
elements which act as low-pass filters, The filtering out of the higher
frequency components tends to produce an output that is close to sinusoidal,
as 1ls assumed by the describing function method, Thus, a subharmonic re-
sponse in a system often appears quite sinusoidal at the output of the
system. However, the output contains all the harmonics of the subharmonic,
no matter how small they are, since the nonlinearity is responding at the
subharmonic frequency, If the system is responding at the one-ninth sub-
harmonic, assuming an odd-function fonlinearity, the third harmonic of the
one-ninth subharmonic will generally also be present at the output of the
system, The third harmonic of the one-ninth subharmonic is the one-third
subharmonic, indicating that two harmonically related subharmonics oscill-
ations can exist simultaneously in some systems.

The problem thus reduces to that of determining whether two sub-
harmonics which are not harmonically related can exist simultaneocusly.

Two subharmonics are considered to be non-harmonically related if the higher
frequency subharmonic 15 not a harmonic of the lower frequency subharmonic,
for example the one-third and one-fifth subharmonics. Consider the feedback
system shown in Figure 5.1. Assume thet the output consists of two sub-

harmonics, viz: the 1/m and 1/n subharmonic. The output is therefore a
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periodic oscillation with a frequency of w/mn, or it can be considered to
be a l/mn subharmonic oscillation. The feedback loop returns this output
to the input of the non-linearity; therefore x(t) must be periodic with
the same frequency as the output. The output of the nonlinearity consists
of a component at the fundamental frequency, the frequency of the I/mn
subharmonic, and all the harmonics of this component. The only way the
given output of the system can occur for the given input to the nonlinearity
is if the magnitude of the fundamental freguency component in the output
of the nonlinearity is zero., Thus, the occurrence of two non~harmonically
related subharmonics is & the special case of a subharmonic oscillation
in which the output of the nonlinear element has no component at the

fundamental frequency of the output of the system.

R cos(wi+®) =+ x(U) ' B cos(wt/m+B)
- N-L. Les) C cos{wt/n+Y)

Figure 5.1
Feedback System

5.2 POLYNOMTAL NONLINEARITY

At first glance it appears that the problem of the simultaneous
occurrence of two non-harmonically related subharmonics could be handled
by a triple-input describing function. Immediately one tends to reject
this approach as a poor one because of the amount of data it would be
necessary to handle, The describing function would be a Ffunction of five
parameters, Another objection to this method is that given a possible

equilibrium point in a plane in which some of the parameters of the
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describing function are fixed it is necessary to check that this same
equilibrium point exists in the other planes where these parameters are
allowed to vary. This correlation of equilibrium points is difficult to
do even for the dual-input describing function where the describing
function is a function of only three parameters. It was this problem that
made Oldenburger (11) assume that only the subharmonic existed at the out-
put of the system.

The triple-input describing function approach would fail if the
condition, that the output of the nonlinearity contains no component at the
frequency of the periodic input to it, is not taken into account. There-
fore, it would be necessary to take a Fourier analysis of the output to
determine the magnitude of the w/mn frequency component. If this component
was not zero then the resulting describing function for the assumed values
of the parameters of the input would be inapplicable. For a polynomial non-
linearity an equation can be determined for the l/mn subharmonic component

present in the output and can be set to zero.

For example gssume that

>

£(X) is X (5.1)

and X is Recos(T+ @) + B cos(7/3 + B + C cosfr/5 + ) (5.2)

Equation 5.2 is substituted into equation 5.1, and by the proper algebraic
manipulation the one-fifteenth subharmonic component is determined. The
one-fifteenth subharmonic is:

SHl/15 = 5 BC {[60 B2 cos(Qg—B) + 202B cos(26-37)2+ I 03 cos(2y-B) +

6RBC cos(2B + 2y - @) + 4 CR cos (@-B-3y) + 12 R C cos(27-B)] cos( /15) +
[6C B2 sin(2y-B) + 2 C2B sin(28 - 37) + MC3sin(27-B) + 6RBC sin(2p + 2y - Q)
+ ucga sin(o-B-3y) + 12 ch sin(2y-8)] sin( /15)}

The sine and cosine components must simulbtaneously be zero to produce a zero
one-fifteenth subharmonic. Obviously this condition could only be obtained

by trial and error or by some numerical method.
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If a triple-input describing function method was attempted, a
Fourier analysis of the output of the non-linearity by a numerical method
would be required. A digital computer would be essential to perform these
calculations. Some sort of stability criteria would be necessary to de-
termine if the solutlon could exist in the system. Posgsibly Oldenburger's
stability criterion could be used, but it would require the describing

function loci and not just one isclated equilibrium point.

5.3 PIECEWISE LINEAR SYSTEM

The general piecewise-linear feedback system could be handled in the
same manner as the polynomial nonlinearity system., A pumerical method
would still be required to calculate the triple-input describing function.
However, the relsy system is a rather special piecewise-linear system and
will be considered here,

The only way the output of the relay can have a zero fundamental
component is 1if the relay has commutation points between half periods. The
existence of these "premature commutation" points violates the assumption
by Gille, therefore his method is not applicsble to this problem. As pre-
viously mentioned, Paguet has indicated that a periodic oscillation with
commutation points between half periods is possible for relay systems con-
taining an asymmetric relay. However, this paper has not been published yet.

It was suggested that the problem be attempted from the opposite
direction. That 1is, determine a relay output that has a fundamental com-
ponent of zero magnitude, and from this synthesize a relay feedback system
which will produce this relay output. By performing a Fourier analysis
of the output of the relay the magnitudes and phases of the two subharmonic
components, which are assumed to exist at the output of the system, can be
calculated, A low-pass filter with the largest cut-off rate practical can
be connected in series with the relay to filter out all the higher hérmonics
in the relay output. The magnitudes and phases of the two subharmonics at

the output of the filter can be calculated since they are known at the input
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to the filter. It now remains to calculate a linear block which will
produce the calculated output when the output of the filter is passed
through it.

5.4 ATTEMPTED SYNTHESIS OF A RELAY SYSTEM EXHIBITING THE SIMULTANEOUS

OCCURRENCE OF TWO NON-HARMONICALLY RELATED SUBHARMONICS

In general, only subharmonics of odd-order will exist in a Ffeedback
system which incorporates a symmetrical nonlinearity. However, certain
systems which contain only symmetrical nonlinearities can exhibit stable
subharmonics of even order (16).

It was assumed that for the system being synthesized, incorporating
a symmetrical relay, one or both of the non-harmonically related subharmonics
were of even-order, Due to the even-order subharmonic components, the input
to the relay, x(t), is neither an odd-function, x(-¥) does not equal -x(T),
nor an antiperiodic function, x( T ) does not equal -x(7+ T/2) where T is
the period of the input to the relay. Therefore, in general a d.c. component

will exist in the system. The input to the relsy has the form
x(T) =D + A cos(++ @) + B cos( i +B) +C cos(i +7)  (5.3)

where m is an even integer and n is either an odd or an even integer. The
locations of the zero crossings, the relay commutation points, of this
equation are functions of six independent variables. Since, in general, for
the given input the output of the relay has no half-period symmetry, each
commutation point in the time interval o <V < T yields one independent
equation for determining the input to the relay.

If it is assumed that the relay output has two commutation points per
period, then it is impossible for the relay output to have fundamental com-
ponent of zero magnitude - see Appendix D, A periodic relay output can
not be constructed with an odd number of commutations per period - see

Figure 5.2. For a relay output with four commutation points per half period,

it appears that it is possible for the output of the relay to have a funda-

mental component of zero magnitude - see Appendix D. However no actual relay

output was found which had a fundamental component of zero magnitude,
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Figure 5.2
Relay Output with Three Commutations per Period

It was decided to sssume that the output of the system contained sub-~
harmonics of odd-order. The input to the relay is then an antiperiodic
function - see Appendix D - therefore only odd harmonics of the fundamental

frequency exist at the output of the relay. Since the input to the relay

is an antiperiodic function, an independent equation for the calculation
of the magnitudes and phases of the input components is obtained at each
commutation point in the interval o < T < T/2. The input to the relay has
the form

x() = A [cos(T+a) + B cos(T +B) +C cos(T + 7)1 (5.4)

A m A n
where m and n are odd integers. In this equation there are five independent

variables which determine the location of the relay commutation points.

A relay output with an even number of commutation points per half-
period cannot be an antiperiodic function; therefore an even number of
commutation points per half period cannot occur for the assumed output. A
relay output which has one commutation point per half-period and is an
antiperiodic function, is the trivial case of a symmetrical square wave, and
it cannot have a zero fundamental component. It was found that a relay
output with three commutation points per half-periocd could not have a
fundamental component of zero magnitude - see Appendix D. By trial and
error, & relay output with five commutations per half-period was constructed
which had a fundamental component of zero megnitude - see Appendix D,

If it is assumed thet the output of the system consists of the third
and fifth order subharmonics, the input to the relay has the form
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x(T) = A [cos(T+ @) +B cos(x +B) +C cos(x+ 7)] (5.5)
A 3 A 5

By the use of this equation and the constructed relay output which has a
fundamental component of zero magnitude, five independent nonlinear equations
can be derived for x(7). These five equations must be solved simultaneocusly
to determine the five independent variables in equation 5.5. Once the
variables in equation 5.5. have been determined, x(’r) must be checked to be
sure that it has no other commutation points. The number of zero crossings
that x(r) has is not at all apparent and it is a function of the relative
magnitudes of the subharmonics, The solution of the five simultaneous
equations from the commutation points would be difficult requiring a numerical
technique since all of the equations are nonlinear.

The low-pass filter connected in series with the relay would be
designed to pass the two subharmonics and to effectively block all the higher
frequency components in the outﬁut of the relay. The two subharmonics com-
ponents at the output of the chosen filter could then be determined. Since
the inpht to the linear block is now known and the output of the system has
been calculated previously, the gain and phase-shift of the two subharmonic
components being passed through the linear block can be determined. From
these gains and phase-shifts, four independent equations can be derived for
the linear block; however, the equations are nonlinear. A form for the
linear block which would possibly satisfy the required gain and phase-shift
conditions could be determined from a rough Nyquist locus plot, The
solution of the four simultaneous noanlinear equations for the gaias and
time constants of the linear block would require a‘numerical technique.,

Although the original idea has merit, the actual calculations that
result involve a great deal of work. The solution obtained would satisfy
the differential equation but would in no way indicate if the solution was

stable and could, therefore, be obtained experimentally,
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5.5 CONCLUSIONS

Two subharmonics can exist simultaneously in a feedback system if
they are harmonicelly related. Theoretically two apparently non-harmonically
related subharmonics can exist at the output of the system., However, this
is just the special case of the output of the nonlinearity containing no
component at the fundamental frequency of the periodic input to the non-
linearity. Whether or not this type of oscillation could actually exist 1s
difficult to determine since the problem appears to require a direct solution
of the nonlinear equation or the use of a triple-input describing function
which would require a vast amount of work to obtain the desired results.,
Another objection to the triple-input describing function method is that
the method assumes that only two subharmonics exist in the output. However,
the higher harmonics of the output of the nenlinearity are also present, and
they may not be effectively filtered by the linear elements since their
frequencies are not much greater than the fréquencies of the two subharmonics.

The idea of syathesizing a relay system from a relay output with a
fundamental component of zero magnitude would result in a formidable amount
of work with no guarantee that the desired oscillation could be observed

experimentally.
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CHAPTER 6

ATHERTON'S MODIFIED NONLINEAR CHARACTERISTICS

Atherton has developed a method, which is presented here, for
obtaining the response of a nonlinearity to several uncorrelated inputs.
By making certain approximations, the concept of a modified nonlinearity
is then introduced. To determine the response of a particular input x,
the nonlinear characteristic is first modified in turn by each of the
input signals; then the input x is applied to this modified characteristic,

The application of this concept to subbarmonic oscillations is investigated.

6.1 RESPONSE OF NONLINEAR CHARACTERISTIC TO SEVERAL INPUTS

Consider a single-valued nonlinearity with several uncorrelated
inputs, Figure 6.1. An output component originating from one of these
inputs depends on, among other factors, not only the magnitude of this
particular input but also the magnitude of all other inputs, Additional
output terms are present besides these fundamental components, such as
harmonics and cross-modulation products. For a system with two inputs the
transform method (18) may be used to evaluate the various output terms;
but, in general, the expressions are very complex. Solutions using the

same technique for more than two inputs appear virtually impossible.

xx‘ -
w
Figure 6.1

Multiple Input Nonlinearity
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The autocorrelation function of a signal containing a periodic
component A cos (wt + @) has a periodic component g? cos(wt). By studing
the autocorrelation function of a signal, the ampl%tude of the periodic
components of the signal (1) can be determined.

It can be shown (1) that the autocorrelation function ¥ (7T) of
the output of a nonlinearity n(x) having an input consisting of two un-

correlated sinusoidal components of amplitudes A and B is given by

ViT)= 2 SZO E, E,, Xgs, €05 (S, W,T) COS(S;W5T) (6.1)
where ES is the Neumann factor
-]
and X 5,8, = 1 j N(jw) Iq (Aw)JS (Bw) dw (6.2)
2T =00 1 2
where N(jw) is the Laplace transform of the nonlinearity n(x).

Ji(m) is the Besgsel function of order i and modulus m.

When the input consists of a sinusoidal signal, x = A cos(wt), to-
gether with Gaussian noise y of r.m.s. magnitude O and autocorrelation

function é(ﬂ'), equation 6.1 becomes

o0 =) K
v(T)= = I E, i, D (v cos(swm) (6.3)
=0 =Q T
where Otgy T SmN(JW) Gw'expl-o*w® 2551 T, (Aw) dw (6.4)
Alternatively (2) the coefficients, aéK’ may be obtained from the
expression
s = & 5“’5 n(x+y) Hy(y/e) T, Cx/A)r(x)qey) dx dy (6.5)
where

Ts is the Chebyshev polynomial of order s,
Hk is the Hermite polynomial of order k.

r(x) is the amplitude probability-density distribution of the
sinusoidal input signal.

q(y) is the amplitude probability-density distribution of the Gaussian
input signal,
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The use of the equation 6.5 is generally to be preferred as it may be
extended for use with more than two imput signals and signals possessing
other than sinusoidal and Gaussian amplitude probability density dis-
tributions. Moreover, the use of equation 6.5 showé how the various out-
put terms are formed if the integral is considered to be divided into two

separate integrals.

ney,s)= S nY+x) 1o (x/A) rex) dx (6.6a)

o = & g’n(yg Hy (y/o)qay) dy (6.6b)

or alternatively

niy,K)= fmn(Y+y) HK(y/v)q(y)dy (6.72)
s = L e x) ToCx/A) reodx (6.7p)
Cx ~o

These equations show that the evalustion of QEK

as a two-stage process in which the anonlinearity is first modified by one

may be considered

input signal, and then the response of the modified nonlinearity to the
other input signal is determined. In equation 6.7a, n(7,k) is referred
to as the k-modified nonlinearity.

In a gquasilinear analysis, all the output terms from the nonlinearity
except those given by the coefficients abl and QﬁO, assuming two inputs,

are neglected. The "O"-modified characteristic for other than sinusoidal

and Gaussian input signals can be evaluated from the expression

«

n(y,0) = S n{y,u) p(u)au (6.8)

where p(u) is the amplitude proba%inty-density distribution of the signal.

As previously stated, extension of equation 6.5 to n input signals
is possible, in which case n integrals are involved to determine the gain
of a specific input.

~ For an example of an on-off characteristic medified by a sinusoid of

peak amplitude A see Appendix C.

Atherton extends the modified characteristic concept to double-valued

nonlinearities which have characteristics that are independent of the form

of the input signal.
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6.2 DISCUSSION OF THE MODIFIED NONLINEARITY METHOD

The medified nonlinear characteristic method is an approximation
method; and, like most approximation methods, its accuracy is difficult
to determine, The "0"-modified characteristic concept neglects all the
components in the output which result from cross-modulation products.

In order to determine abl and alO a8 numerical method is necessary
to evaluate the integrals since, in general, the modified characteristic
is available only in graphical or very complex analytic form.

It can be shown (19) that a signal containing a sinusoidal com-
ponent with a phase shift, A cos(wt + ¢), has an autocorrelation function
which contains & periodic component, é? cos(w10, which has no phase-shift.
Thus, the autocorrelation function ofga signal contains no information on the
phese relationship of the components of the signal, Therefore, the phase-
shift of a signal through a nonlinearity can not be determined. This is a
serious drawback in feedback systems since it prevents the determination of
oscillations in a closed loop.

Atherton gives an example of an on-off nonlinearity in which he uses
his method to calculate the phase shift through the nonlinearity. However,
for a modified on-off nonlinear characteristic, it was found that a sinusoidal
signal created an "operating range" on the modified relay characteristic -
see Appendix C. Rather arbitrarily he speaks of the relay commutating at the
end of the operating range. He then determines the phase of the signal A cos(d)
which will cause the relay to commutate. This phase angle is then considered
to be the phase-shift through the nonlinearity of the sinusoidal signal
being applied to the modified characteristic. Whether or not the concept
of the relay commutating at the end of the "operating range" has any meaning
is difficult to determine, However, for a more general nonlinearity the
coneept of commutating at the end of an "operating range" has no meaning,
and could not be used to determine the phase shift of the sinusoidal signal

being passed through the nonlinearity.
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6.3 CONCLUSIONS

determining
Atherton's method was presented as a means of ,deberming the re-

sponse of a single-valued nonlinearity with several inputs. However; Atherton
never takes into account the "phase-shift" of the inputs when passed through

the nonlinearity. In effect, Atherton replaces the nonlinearity by a real-
valued gain for each input. The phase-shift of the subharmonic through the
nonlinearity is essential to determine if the subharmonic can be sustained around
the closed loop. This fact eliminates this method for the study of subharmonics
in feedback systems,

The modified nonlinearity concept is useful for a quantitative study
of a nonlinear system with more than one input. The effect of the other
inputs on the gain of the nonlinearity for one of the inputs can roughly be
determined by examining the modified characteristic,

In the gquasilinear analysis, assumed by Atherton, all higher harmonics
and cross-modulation products are assumed negligible, This in effect reduces
Atherton's method to a describing function approach to the problem. Since the
caleculation of the gain of the nonlinearity for a particular input requires
a numerical iantegration, and the method in no way takes into account the
phases of the inputs or the components of the output of the nonlinearity, no
great advantage can be seen to the use of this method over a multiple-input
describing function. Atherton's method has, however, the advantage that the
inputs to the nonlinearity do not have to be sinuscidal, but they must be

uncorrelated.,
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CHAPTER 7

DISCUSSION AND CONCLUSIONS

In general it can be said that the results of this thesis are
rather negative both for the new techniques for the analysis of subharmonic
oscillations in nonlinear feedback systems, and the original problems being
investigated. The techuniques for the analysis of subharmonic osecillations
tend to be of very limited application or are just modifications of the dual-
input describing function.

The study of the transient response of a nonlinear system can be
considered a failure. Hayashi's method is too limited in application, being
applicable only to second-order nonlinear systems with only one possible
subharmonic oscillation, and it requires too much work to plot the state-
plane for results which are of questionable accuracy. The only apparent
solution to the problem of determining the transient response appears to be a
numerical solution of the nonlinear differential equation, but the resulting
work would be execessive,

The dividing of the input amplitude versus input frequency plane into
regions in which a given subharmonic may or may not exist can be accomplished
by Oldenburger's method. For a given input the frequency range over which
a stable subharmonic exists can be determined by Oldenburger's method.
Although Oldenburger's stability criterion is a very useful one for feedback
systems, his article makes it sppear that his ideas are completely original.
In effect, Oldenburger's method is just the duasl-input describing function
method used to determine the subharmonic equilibrium points, and the
stability of theseeguilibrium points determined by an extension of Loeb's
stability criterion to subharmonic oscillations. No justification can be
seen for Oldenburger's method for determining the output of the nonlinearity
since his method gave the output in a very complicated form involving an
infinite series. The same information could have been obtained from a dual-
input describing function for the nonlinearity since Oldenburger assumed
that the linear elements filter out all the components of the ocutput of the

nonlinearity except the subharmonic, The vast amount of data that must be
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manipulated when using a dual-input describing function appears to be the
ma jor draw-back of Oldenburger's method.

Gille's method, for determining the regions of subharmonic oscill-
ations in the input amplitude versus input frequency plane for reley systems,
is a new techunique for the study of subharmonic oscillations in nonlinear
systems. Unfortunately it does not seem that the method can be extended
to more general piecewise-linear systems. The method actually only pre-
dicts regions where a given subharmonic cannot occur or is most likely to
occur., The concept of "premature commutation" limits the usefulness of
the results obtained by Gille's method. The only criticism of Gille's
method is that he assumes that subharmonic oscillations are only possible
if the relay has one commutation per half period. This fact was never
guestioned in any of Gille's artiéles, but Paquet has saild that subharmonic
oscillations with more than one commutation per half périod are possible in
systems with an asymmetric relay.

The problem of the simultaneous occurrence of two subharmonics in a
nonlinear feedback system has been answered theoretically. Since the system
is nonlinear, all the harmonics of the subharmonic oscillations are present
in the system, and some of these harmonics may also be subharmonics of the
input. Thus two harmonically related subharmonics can exist simultaneously
in a nonlinear system. The case of two ''mon-harmonically" related sub-
harmonlcs occurs when the output of the nonlinearity has no component at the
fundamental frequency of the periodic subharmonic response of the system,
Whether or not this type of oscillation can exist is very difficult to
determine theoretically. A triple -input describing function appears to
require the manipulation of too much data to be of any use.

| Although Atherton's modified nonlinear characteristic appears as though
it would be very useful for the study of the simultaneocus occurrence of
several subharmonics, the method is of little use for the study of feedback

systems., The method completely neglects the phase-shift of the inputs when

passed through the nonlinearity., The nonlinearity is replaced by a real-

valued gain for each input; thus it is of no use for harmonically related
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inputs in feedback systems. The modified nonlinear characteristic is only
used as a means of determining the gain of a particular input to the non-
linearity in the presence of other inputs. It does not give the time re-
sponse of the nonlinearity resulting from the'ﬁultiple inputs., The actual
gain of a given input requires the evalustion of an integral which contains
this modified nonlinear characteristic, Generally a numerical technique is
’required to evaluate this integral.

In conclusion it may be said that the investigation of subharmonic
oscillations still requires the "grinding-out" of solutions. The dual-input
describing function technigue is probably the best method available for the
study of the subharmonlc performance of feedback systems although it requires

the manipulation of a large amount of data.
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APPENDIX A

DERIVATION OF EQUATIONS 3.3, 3.4 AND 3.5

Consider equation 3.2 for the output of the single-valued

odd-function nonlinearity.

X

o= 5 Flaw) ex(gux,)au (8.1)

A sin(kwt + B sin(wt) (A.2)

with Xl

Ir f(xl) is an odd-function of x_, then F(ju) will be an odd

lJ

function of u. Substituting equation A.2 into equation A.l produces
X, = S_wl-"(ju) exp(juAsin(Kwt+p)) exp(juBsin(wi)dv (4.3)

In (20) it is shown that the exponential may be expanded as
expjusin(e®]=cos(usin(e)+ | sin(usin(e))

= genln(u) cos(ene) + 2j i Jonn(U) 8in(Gznel)e)  (Ak)

. The
where I (u),is Bessel function of order i and

modulus u
€ is the Neumann factor

=1, n=o0

]
\.l\)
[
l

= l, 2’ 3..ooo¢

If the product of the two exponentials in equation A.3 is defined

as G(u,w) then:
Guw)=expLjul sin(Kwt+o)] exp (juB sin(w1)

This may be expanded according to equation A.L to yield
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G(u,w)= { i €, L (Au) cos2n(Kwt+ g} + 23:.2 T (AW sin[ (2ns+0)
(Kwt+¢)]} {.2.,6"' T, (BU) cos(2miwl) +2J‘§; J;M’I(BU)Sin[(ZMi-l)Wt}} (4,5)
As the function F(ju) is odd, only those parts of equation A.5
which are odd contribute towards the integral of equation A,3, Thus,
the odd portion of G(u,w) may be defined as G aa (u,w) and is given

as

G, (uw =215 3 €, L. (A T__(Bu) cos[2n(Kwt+g)] sin[(2m+1)wt]

mzo hrco

+3 3 e T (Bu) I, (Av) cos(2mwt) sin[(2n+1)( Kwt+ 9)] (4,6)

mro nao AN+

Only the fundamental component in the output of the nonlinear
element is of interest, Thus, after expanding the trigonometric pro-
ducts those terms contributing towards the fundamental are extracted

to yield

Gi(uw)=; 2 e, (-1)"T (AW T, ,(BU) sin(wt-ng)

nK+i

-5 €, -1 T(AN T, (Bv) sin(wtng) (L7)

where Gf(u,w) is the portion of G_44(u,w) contributing to the fundamental
may be split inte two perts G,(u,w) and G,(uy,w),
output, The portion Ge(u,w), the former giving the sine component and
the latter giving the cosine component, These are given by
=) n+l
G,(u,w)=j{§°en(—l) I‘(Au)[J’,,K_1(Bu)—3'hmi(8u)] cos(np)} (A.8)
o n+l
G,(uw)=j{2 €, 1) T (AT, (Bv)+T,, (Bul] sintn®)}  (4.9)
By the use of
Usine these expressions, the fundamental part of the output may be
written as
(x,); = S:f(j”) G,(uw) sin(wt)du + § F(ju) G,(u,w) cos(wt)du  (A.10)
where (%,) ¢ is the fundamental component of the output,

This is the desired result,



APPENDIX B

EQUIVALENT LINEARTZATION ABOUT A POINT

Oldenburger determines the stability of the equilibrium points
by the use of the incremental Nyquist diagram and equivalent lineari-
zation about a point, This method assumes that at any equilibrium
point the system is linear for incremental disturbances in the system,
Thus, the criterion only indicates the stability of the system for
small disturbances, and the effect of a large disturbance in the system
can not be predicted,

The method requires a Nyquist locus G(jw) for the linear elements,
and the critical locus N(E) for the nonlinearity, The critical locus
N(E) is a plot of ~1/(describing function) as a function of the magnitude,
BE,of the input to the nonlinearity, Equilibrium points for the system

occur at the intersection of the two curves, Figure B,1,

Re

Im

Figure B,1

Linearization about Equilibrium Point

Now consider equilibrium point B; assume the system behaves as

a linear system in an incremental region around the equilibrium point.
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Assume also that E increases incrementally due to a disturbance, The
equilibrium point would move along N(E) in the direction of increasing
E, However, this moves theeguilibrium point into the interior of the
Nyquist locus indicating that the oscillation would increase in amplitude,
The increase in amplitude would move the equilibrium point further from
B, thus it is concluded that this equilibrium point is unstable,

Now examining the equilibrium point A it can be seen that an in-
cremental increase in E would move the equilibrium point away from the
interior of the Nyquist locus, Thus, the oscillation would tend to die
out, decreasing the magnitude of ¥ and moving the equilibrium point back
to A, This indicates the oscillation is stable for small disturbances,

Oldenburger (13) gives a mathematical justification of the above
argument, For determining the stability of limit cycles in autonomous
systems this stability criterion is known as Loeb's criterion, However,
it should be noted that this stability criterion only applies for small

disturbances in the system and is, even then, only approximate,
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APPENDIX C

CALCULATION OF THE MODIFIED CHARACTERISTIC FOR A ON-OFF

CHARACTERISTIC SUBJECT TO A SINUSOIDAL INPUT

Consider the sinuscid A cos(wt) as an input to the on-off

characteristic n(x) where

n(x) =h X >0
=-h x<o0
The "O" - modified nonlinearity is given by equation
a(r,0) = § (Fx) p(x) ax (c.1)
For a sinusoid the amplitude probability-density distribution, p(x),is
p(x)=l/Tr(A2—x:2) A = x £ A
=0 Ix| > A
where X is A cos(wt)

Now if =A < Y=+ A, then the output of the relay is
n(Y+x) = <h (Y +x)<o
= h (Y +x)=zo0
where the releiy commutates at x = <Y, Equation C,1 can now be evaluated,

=A -~ A a0
nr,00= § hyodx +§ chldx + § _hdx  + { haOdx
- A m(A:-X*) =Y W (A-X) A

Thus h(Y,O)=+_%__T"1 sin" ' (Y/A) ~-A=sY < A
Now if Y'>A, then
n(¥ +x) = =h x <.
= +h xz= -7

Y ~A A 0
n(Y,0) = -h) O0dx + h.0odx + —hdx + h«0dx
k4 Son -S:)- -_S;,h,(Ai_.xz) SA

n(Y,0) = +h | ¥ > A
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Similarly for Y < A

n(Y,0) = -h
Therefore
n(Y,0) = =h Y < -A
-1
= 2h sin ~ Y/A IYi< A
>
= h Y > A
a
oo N
—~ "a" is the original characteristic
(S)
i‘E‘ b s "o is the characteristic modified by
a sinusoid of peak amplitude A
1 Y/A
Figure C,1

"o _Modified On-Off Characteristic

The sinusoidal input has produced an "operating range" from -A

to +A for another input to the relay,
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APPENDIX D

RELAY QUTPUT WITH A FUNDAMENTAL COMPONENT OF ZERO MAGNITUDE

Most periodic waveforms can be represented by a Fourier

series of the fomm

f(r) = 2o + fi[an cos (nw, 7 ) + b, cos(nW{T')] (D.1)
2 h=1

The coefficients of the Fourier series may be determined by the

following equations

a8, =
n

T
:5 £(v ) cos (nw,T)dr n=o0,1,2,.., (D,2)

+=3f00

i

T
b, = S £(v) sin (mT)dv 0 =1,2,3,... (0.3)

=30

where T is the period of f(7), and wy is 277 /T,

1) Relay Output with Two Gommutations Per Period

Consider the relay output shown ih Figure D,1, This waveform

has a period of 277 seconds and Wy is unity,

1 e ——————

£0v)
f(v) = f(r+ 2m)

v 2w T o<’7‘;<2'l‘f

Figure D,1
Relay Output with Two Commutations Per Period

The magnitude of the fundamental component of £(7) may be

determined from the coefficients ay and by of the Fourier series,
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From equation D,2 and D,3 these coefficients may be calculated as

follows:
U T, rais
ap = 1 5 £(v) cos('r)d“r=g._[$cos(‘,l‘)d‘r - Scos(’r)d‘VJ
T o v o ’rl
= 2 [ sial) ] (D.4)
e
am
b, = 1

-1 S:.”‘f('r) sin(’r)d'r='%[8;‘in(7)dﬂ’m § sin("r)d'r]

° ”

=_T% [ cos(Ty) - 1] (D,5)

For a fundamental component of zero magnitude, a; and by must
simultaneously be zero, Therefore

[sin("l’l)] =0 (D.6)

al=

2ho

o, =-2 [eos(r) - 1] = o (0.7)

The only solution that simultaneously satisfies equations D,6 and D,7
zero (modulus 2m)

is when T, is 2%, However, £f(7T) is then a constant d,c, output,

Therefore, no relay output with two commutations per period existsthat

has a fundamental component of gero amplitude,

2) Relay Output with Four Commutations Per Period

Consider the relay output shown in Figure D,2 which has four

commutations per period,
1

$(m) - f(r)= S (v e2m)

™ e T3 ww g

O<T< T < T3< LN

Figure D,2

Relay Output with Four Commutations per Period
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The coefficients of the fundamental component in the Fourier

series of the periodic waveform in Figure D,2 are

a) = 2 [stn(m) - sin(m) + sin(3)] (0.8)
b, = —% [cos(’\’l) - cos(‘]’z) + cos(TB) - 1] (D.9)

adjustment of
By properis adjusbting the positions of the equilibrium points, it appears

that ay and bl could be simultaneously set to zero, However, no solutions
were obtained that had a period of 2%, Therefore, although it appears

as though a fundamental component of zero maghitude is possible for

this relay output, none could be found,

3) Relay Output with Three Commutations Per Half-Period

Consider the relay shown in Figure D,3 which has three
commutation points per half-period, The Fourier coefficients for the

fundamental component of the waveform in Figure D.3 are:

ay = % [sin('rl) - sin(’TZ)] (b,10)
by = -%Lp_ [cos('rl) - cos(T5) -1] (D,11)

Feo fF(r+em) = ()

2 ~ - > flrem) ==$(m

0=<T, < T, <L

Figure D-3
Relay Ovtput With Three Comwmulations per Half -Period
For a fundamental component of zero magnitude aj and by must

be similanteously zero, Note that a; is zero if

'T’a == ’Tf—'Tl (D,l2)
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Supstituting this into equation D,11 yields
by = -% [ cos(T1) - cos(W =T9) -l] = m% [2 cos(’l’l) - l]
Then b, is zero when

T s cos_l(l/z) = T /3 radians
1

1’2 is 277/3

A relay output with these commutation points is actually a
symmetric, periodic square wave with a frequency of 3 r.,p.s, Thus,
no relay output with three commutations per half-period has a funda-

mental component of zero magnitude,

L) Relay Output With Five Commutations Per Half-Period
Consider the relay output shown in Figure D,4 which has five
commutations per half-period, The coefficients of the fundamental

frequency components in its Fourier series are:

aq =% [sin(”\”l) - sin(T,) + sin(73) - sin(’\i)] (D,13)
by = .'—,;’i[cos(”rl) - cos(T) + cos(’ré) - cos(’Vh) - 1] (D,14)
g
1
o f(r+emw) = £()
=, ¥ = = = 4 T(r-n) = - $(7)
0< T < Ta< Ty < Ty <

-1 I

Figure D.4

Relay Outvut With Five Commutations Per Half-Period

By trial and error it was found that the equations D,13 and
D,1L were simultaneously zero for the following set of commutation

points,
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T, = 30° = .52 radians
72 = 770° = 1,22 radians
’Té = 113° 50' = 1,99 radians
TL = 151° 40' = .2,65 radians

The coefficients of some of the harmonics of the fundamental were

caleulated and are listed below

Fundamental

e
i

-4(,00013)/w by = 4(,00043)/r

1
3rd Harmonic ay = +4,(,06) /1 b3 = 4(,30)/7
5th Harmonic a5 = +#,(,08) /7 by = 4(,90)/
7th Harmonic  ay = +,(,003) /7 by = 4(,28)/7T

Thus it is possible to construct a relay output with five commutations

per half period which as a fundamental component of zero magnitude,

5) Relay Input Composed of Odd-Order Subharmonics is an Antiperiodic

Fynction
Consider an input, x(7), to the relay of the form
x(T) = A cos (vta) + B cos (x+ B} + C cos(T+Y) (D.15)
| relatively Primem §
where m and n are odd,integers,
The input to the relay is a periodic function with a period T of 2mn-
seconds, MNote that, since m and n are odd integers, the product mn
is also an odd integer, Consider the input after a half of a period
x(r+m) = A cos(T+mnm + a) + B cos(T + nu+ ) + C cos(T + mw+ )

m n

= A cos [(T+ a) + mm]+ B cos [(T + p) + mr]+ C cos [(’I +Y) +mw]  (D,16)
, m =

o7



Equation D,16 can be rewritten inse the form of equation D,17 by
using the trigonometric relation
cos (x ty)= cos(x)cos(y) ¥ sin{X) sin(y)

X(r+7)= A cos(mnr) cos (v+x)+ Becos(nm c05(g+/3)+CCOs(m1r) Cos(x+Y) (0.17)
Note that since m,n, and mn are odd integers, then

cos{m™) 5 cos(nm) = cos(mnr) = cos(w) = =1
Therefore x(T+11) is - [A cos(T+ Y) + B cos(xr+ ) + C cos(r+ Y)]
m n
i — x()

Therefore x(7T) is an antiperiodic function,
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