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ABSTRACT

The free oscillations of the perfectly conducting two-sphere geometry are deter-
mined analytically for large sphere separation. That is, asymptotic expressions for the
natural frequencies and natural modes are obtained, correct to first order in inverse
sphere separation. Denoting the sphere radii as a and b, we consider all cases a = b,

a # b, and b = 0, with detailed interpretation of the results.

It is understood that for single-body geometries a free oscillation sustains itself
(except for radiation damping) without sources by currents at ail locations interacting
causally via fields with each other, under coﬁstraints imposed by the continuity equa-
tion, and of course the boundary conditions. A two-body geometry gave us the unique
opportunity to treat each body as a local part of a single "distributed body" to examine
this feedback mechanism in detail, and thereby establish a direct and logical link
between a natural mode and its corresponding natural frequency, with special emphasis

on causality.

We present a theory which links the natural frequencies and natural modes with
those of the single-sphere geometry. There appear to be features unique to the two-
body geometry, for example a basic duplicity in the expected number of free oscilla-
tions, as well as some "anomalous" free oscillations, which are accounted for by sug-

gesting new physical mechanisms.

Although the detailed results are valid only for large sphere separation, this does
not seriously limit the goals of this thesis. Most of the ideas and physical insight
apply for all sphere separations, and represent necessary reading before tackling the

problem by intensely numerical means.
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CHAPTER 1: INTRODUCTION

The singularity expansion method (SEM) was introduced by Baum [5] as a means
of more fully understanding transient electromagnetic scattering phenomena. Basically,
the bilateral Laplace transform of the electromagnetic scattering response contains
singularities attributed to both the excitation (waveform singularities) and the scattering
body itself (object singularities), which characterize its time domain and complex fre-
quency domain (s-plane) behavior [4]. In particular, Marin [15] has shown that for
perfectly conducting finite-size objects in free space the object response has only poles
as singularities in the finite s -plane (a meromorphic function). It may also be singular
at infinity (the addition of an entire function). Application of the inverse Laplace
transform yields the time domain response which, by the Cauchy residue theorem, is a
sum of exponentially damped sinusoids (for first order poles), plus contributions from

an entire function if present (integration at infinity).

The locations of the poles in the s-plane are called natural frequencies; at these
complex frequencies the object can sustain a response without a forcing function.
Alternatively, if forced at such a frequency the object will have an infinite response.
The corresponding field distributions are called natural modes. A natural mode is a
solution of the source free field equations in the presence of the scattering body, that
is, satisfying the appropriate boundary conditions, with suppressed time dependence
governed by its respective natural frequency. A natural mode oscillating at its natural
frequency is referred to as a free oscillation of the scattering body. Notice that the
free oscillations are completely independent of any excitation - they are characteristic
of the scattering body itself. Finding the free oscillations is the first step toward solv-

ing the transient scattering problem via the SEM [4].



After its inception the SEM was applied to several simple perfectly conducting
geometries. For examples, Tesche [16] considered the finite length thin wire, and
Marin [7] considered the ¢-independent electric type free oscillations of the prolate
spheroid for various axial ratios. Over the years many geometries of increasing com-

plexity have been analyzed.

After some experience was gained it became clear that the "possible entire func-
tion" is related to the early-time response before. the scattering body is completely
illuminated by the incident field. Morgan [13] suggests that it is only after the
incident field is past the scattering body (late-time) that the scattered fields will be pro-
duced by the current associated with the free oscillations of the body. Before this time
(early-time) the "driven” response contains, among other terms, a physical optics term.
Heyman and Felsen [14], on the other hand, }ook at the early-time from the point of
view of the geometrical theory of diffraction (GTD), which they merge with a constant
coefficient sum of free oscillations in the late-time. The point is that the early-time
response is highly dependent on the form of the incident excitation field (direction,
polarization, time dependence), whereas the late-time response can be represented as a
constant coefficient sum of free oscillations. Although the coefficients in this sum are
incident field dependent, as determined via SEM, the free oscillations themselves are
not. This is one of the beauties of the SEM. In particular, at any point in space, the
scattering response in the late-time is a sum of exponentially damped sinusoids
corresponding to the set of natural frequencies, which are unique to the particular
scattering body. These natural frequencies can be extracted from a given scattering
response via Prony’s method [17], for example, and then used to identify the scattering
body (with obvious applications in radar target identification [9], remote sensing, et

cetera).



It should be mentioned, however, that most of the energy is contained in the
carly-time scattering response, especially for metallic scattering bodies with low-Q free
oscillations (large surface area to volume ratios promoting rapid radiation damping)
[13]. For instance, this results in practical difficulties in implementing some target
identification schemes due to the low signal to noise ratio (SNR) of the late-time
response [24]. However, there is progress being made in this area. For example,
Chen er al [19] have proposed a new technique they call the ’radar waveform syn-
thesis method’, whereby the waveform of the incident radar pulse is chosen to excite
the target in such a way that the late-time response contains only a single natural fre-
quency. The principle application is in sensitively discriminating the wrong target.
The advantage is that all of the return signal energy is concentrated in one free oscilla-
tion instead of being spread over many. Furthermore, this generally reduces the

bandwidth (and hence noise energy, with appropriate filtering) of the returned signal.

Alternatively, consider periodically exciting the scattering body with a broad-band
pulse, and then arithmetically averaging the responses over a large number of periods
to virtually eliminate the noise (assuming the noise has zero mean) and thus recover
the weak late-time response. Van Blaricum et al/ [23] point out that the standard
deviation of the noise decreases as inverse square root of the number of trials run.
This may be useful for identification of a stationary object buried in a homogeneous
medium, for example. Or if the noise is due to "stray” responses of background objects
(assumed fixed) on a radar range, for example, perhaps a catalog of this noise can be
made in the absence of any intended target, and then later subtracted from the scatter-
ing response of intended target plus background. Thus, the low SNR difficulties are
not insurmountable, and so the practical usefulness of the late-time response, especially

in scattering object identification for which it is ideally suited, is not really diminished.



From a more academic point of view, the early-time and the late-time responses
are duals of each other, especially in the sense of "progressing wave/oscillatory wave"
put forth by Heyman and Felsen [14], and so are equally important, in principle, to a

complete understanding of electromagnetic scattering phenomena.

The advantages of the SEM (for late-time response) over other techniques for
solving transient or broad-band electromagnetic problems are well documented in the
literature. Tesche [16] points out that more traditional methods like time harmonic
analysis followed by Fourier inversion, or direct time domain solution depend on the
incident field at an early stage; changing the incident field parameters means a consid-
erable part of the solution must be recalculated. With the SEM, on the other hand, the
bulk of the work involves determining the free oscillations and so called coupling vec-
tors. Then each natural mode has a fixed coupling vector which, when combined with
the incident field data, yields the coupling, or excitation coefficient for that particular
free oscillation [4]. Thus changes in incident field parameters only affect the last stage
of calculation. In [18] Baum compares several different techniques for transient or
broad-band analysis. In particular, he stresses how rich the SEM is in terms of provid-

ing physical insight into the problem.

It is for all of the aforementioned reasons that we developed an interest in the
analysis of the late-time response of scattering bodies using the SEM. As already
mentioned the SEM has been applied to numerous single-body geometries. The first
application to a two-body geometry was by Umashankar er al [10], who considered
the finite length thin wire parallel to a ground plane (or wire and its image, with
illumination antisymmetric with respect to the symmetry plane). They numerically
generated the natural frequencies over a range of several parameters, but pointed to the

difficulty in interpreting them, and the need for an analytical investigation. A follow-



up paper was published by Shumpert er al [11], which was similar, but allowed for
circumferential variation of the axial current. Riggs et al [20] also considered the
same problem, but varied the conductivity and permittivity of the ground plane. Crow
et al [21] considered perpendicular crossed wires over a perfectly conducting ground
plane. All of these provide limited physical interpretation; we could not find an

analytical treatment of the two-body problem.

We should mention, though, that Riley er al [22] present a general theory com-
bining the SEM with the classical theory of wave propagation in a multiple scattering
environment. Then first derive (via the SEM) an expression for the far field transient
response of a single scattering body to plane wave excitation, and then generalize to
the case of multiple scattering bodies (in the far field of each other) by including not
only the zero order terms (no interaction amongst the scatterers), but also a few higher
order multiple scattering terms. They apply the theory in a statistical form to a ran-
dom distribution of scatterers. This type of analysis is related to one suggested earlier
by Umashankar et o/ [10]: "... one might prefer to treat a two-body problem in the
time domain as a multiple-scattering problem between two single-body scatterers that
have been individually characterized by the singularity expansion method." The point
is that these schemes are really early-time analyses, and highly dependent on the
incident field parameters; they do not consider the free oscillations (global resonances)
of the multiple-body geometry as a whole, which apply in the late-time, and are the
subject of interest in this present investigation.

Clearly, two perfectly conducting spheres is one of the simplest two-finite-body
problems. An important source of difficulty, though, is that the wave equation does
not separate in the bispherical coordinate system (or in any other two-finite-body coor-

dinate system). Thus we must resort to the well known translational addition theorem



for representing one vector spherical wave function in one coordinate system in terms
of those belonging to a translated coordinate system. Bruning and Lo [3] use such a
scheme to solve the problem of time harmonic scattering from two spheres. Their
derivation leads to a set of coupled infinite dimensional matrix equations of the form
Ax = b, which they solve for the unknown x, in principle, by inverting the system
matrix A and multiplying it into the right hand side source column matrix ». In
chapter 2 we derive the corresponding homogeneous form Ax = 0 from the source free
field equations, the solutions of which yield the free oscillations, and are the subject of
the remainder of the thesis. In principle, the natural frequencies occur when the Sys-
tem determinant vanishes, and the corresponding null space is the natural mode(s)

associated with that natural frequency.

Thus the basis goals of the thesis are to determine the free oscillations of two
conducting spheres, for late-time applications as discussed above, and to discover pro-
perties of free oscillations unique to two (or more)-body geometries. Also, a two-body
geometry presents the unique opportunity to treat each body as a local part of a single
"distributed body" to examine in detail the mutual feedback, or coupling mechanisms
that exist between the parts of a single body to sustain the free oscillation (except for
radiation damping) without sources. The separation of the bodies places special
emphasis on causality considerations. The fact that an analytical solution can be deter-
mined only for large sphere separation does not seriously limit these goals because
most of the knowledge gained, by its very nature applies qualitatively to two spheres

with any separation.
Because the geometry is invariant under rotation in ¢ the equations for different
azimuthal number m are not coupled. In chapter 3 we obtain the solution to the

lm | =1 equations for large sphere separation d. First we find the zero order (in



1/d) translation coefficients (section 3.1). By a clever argument we circumvent calcu-
lation of the system matrix determinant, and yet obtain a transcendental equation for
the natural frequencies (section 3.2). We analyze the properties of this equation in the
complex frequency plane and numerically determine the natural frequencies in the limit
d—es. Let the sphere radii be a and b: We consider all cases a = b, a # b, and
b =0, and interpret the results (section 3.3). Then we determine and discuss the
corresponding natural modes, for example symmetry considerations in the case ¢ = b.
In all cases we examine the interaction, or feedback fields that sustain a free oscilla-
tion, which provides a very interesting explanation of the logic behind the natural fre-
quencies in terms of the dynamics of single-sphere scattering (section 3.4). Finally,
we add first order (in 1/d) correction terms to allow finite d, and determine what new

information this provides (section 3.5).

Chapters 4 and 5 have a format similar to chapter 3, but consider cases
lm| =21 and m = 0, respectively. All calculations are done to first order in 1/d.
The emphasis is on the differences with the (now familiar) |m| =1 case. Although
for |m| > 1 the equation structure is only slightly modified, the details of the natural
frequencies and natural modes are of course different. For m = 0 the equation struc-
ture is radically different, for now the electric and magnetic multipoles decouple (no
longer hybrid natural modes). These differences are also reflected in the natural fre-

quencies.

In chapter 6 we collect together the results of chapters 3 to 5 and present a dis-
cussion with conclusions, which contains a wealth of physical interpretation and
insight into the problem. Most importantly we present a theory which links (most of)
the two-sphere natural frequencies and natural modes with those of the single-sphere,

introducing mechanisms apparently unique to multi-body geometries.



CHAPTER 2: FORMULATION OF THE PROBLEM

Consider two perfectly conducting spheres of radii ¢ and b, separated by a dis-
tance ¢, embedded in a homogeneous, linear, and isotropic space, wherein the speed of
propagation of an electromagnetic disturbance is ¢. We are interested in the elec-
tromagnetic fields which can exist in the presence of the spheres after all external
sources of excitation have ceased. Such fields are called free oscillations, or natural
modes [4]. It is well known (see, e.g., Stratton [1]) that, for the single sphere, free
oscillations exist with a time dependence e¥, 5 = Q + iw, that is, an exponentially
damped (€2 < 0) sinusoid of frequency w. We hypothesize that the same is true for the
two sphere problem even if the spheres differ in radius. Thus we seek solenoidal solu-

tions to the homogeneous vector wave equation (suppressed time dependence e*)

(VxVx-kHE(r) =0, s = ike, (2.1)
subject to the boundary condition that the tangential components of the total electric
field vanish on the surface of both spheres.

Following Stratton [1] we construct two linearly independent solenoidal vector
solutions to (2.1), namely

M=V><(r\p)=%VxN

1 2.2)
N:—EVXM

where (V2 + kz)'qj = 0, which in a spherical coordinate system (r,0,0) are the familiar

magnetic and electric multipole fields:



Mk ;r ,0,0) = 2 kr) @ [9 slle Pi*(cosB) — $ BSP{”(cosG)]
in
NGkir 0.0) = # ﬁ;Z;U)(kr) e [(I + 1) P/"(cosB) (2.3)

m A _im o
0 9gP"(cos8) + O e Pj (0058)]

+ 10,1 O] e
kr

where [ =1,2,--- ;s m=~0,-1+1,---,[; and zY =j, n, Y, B® for
J = 1,2, 3, 4 respectively, are spherical Bessel, Neumann, and Hankel functions. Any
solenoidal vector field (over unrestricted angular variables) can be expressed as a linear
combination of the multipole fields of type j =3 and 4. In our case we have no
sources at infinity and homogeneous space (except for the spheres) so that only type

J =4 (outward traveling waves) is acceptable,

In the usual way (see, e.g., Bruning and Lo [2]) we now introduce two coordinate
systems O and O” centered on the spheres A and B, respectively, and related by a
translation d along the z-axis (see Fig. 1). We adopt the convention that a primed
quantity is referred to the O’ system, whereas its unprimed counterpart is referred to
the O system. Thus, the appropriate general solution to (2.1) is

oo !
E=3 ¥ | AEND + AIMSD + BEN'D + BEM (D (2.4)

=1 m=-1

Invoking the boundary conditions will generate a set of simultaneous equations for the

unknown coefficients (the A’s and B ’s).

To facilitate the application of the boundary conditions we need to be able to
express primed quantities in terms of unprimed quantities and vice versa. For exam-
ple, M’{®) is an outward traveling wave originating at O’; in the region r < d, which

includes origin O, it must be expressible in terms of a linear combination of M\EEL) and



sphere B

Fig 1: Geometry of two sphere problem
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N\Sﬁ). Since ¢ = ¢’ only terms with L = m will appear in the sum. Thus we construct

the wranslation formula [2]

w= % [emM@epnNg ] r<a e

v=max (1, [ 1 | )

Applying the curl operator to both sides immediately yields [see (2.2)]

o= 5 [oNQepMB . r<d @)

v=max(1, | m 1)
where the o’s and B’s are called translation coefficients. For translating from the
unprimed to the primed coordinate system we simply exchange primed and unprimed
quantities in (2.5). Bruning and Lo [3] were apparently the first to note that (the parity

of the Legendre functions implies)

m _ v—I 1
a’v,r?z - (—i) a’V’f?;l

, _ (2.6)
A CI VM 1
Hence, for r < d we may write (2.4) as
oo {
E-F 3 | AENG +AlM®
I=1 m=-I
+ 8L 3| wlnNg + plzM | @)

v
v

v Bl 5 oM + NG | }

or its counterpart in the primed coordinate system. Finally, applying the boundary
conditions and using the orthogonality relations amongst the M and N vector functions

over the 0, ¢ space, we arrive at the four coupled homogeneous equations:

~11 -



AFka) AE, =

Aflka) AL =

vaH ]

\-’J’J’I

va +0C BH ]

AF(kb) BE, =

Im

’Vm ’VMA ]

z e

{ >

[ o (2.8)
[

E rvima H
A G, + O PTAL, ]

Afl(kb) B =

where

9, [rh;(z)(kr)}
3, | i)
m =0, x1, 2, -
Lvzmax(l,Iml)

h P )
Jitkr)

Afthry = - . Afltkry=-

Notice that there is no coupling between multipole fields of different azimuthal
number m so we have an independent set of equations for each value of m. The
problem is to find the natural frequencies s = ikc for which (2.8) admits solutions (the
system determinant vanishes), and for each such s find the corresponding set of A and
B coefficients (the system null space), which carries all information about the natural
mode through (2.4). In case of degeneracy more than one natural mode will share the
same natural frequency. Unfortunately it is not possible to obtain an exact solution,
Instead we develop solutions valid for large sphere separation, with the hope that, in

the process, we can still discover the salient features of the coupling mechanism.

~12 -



CHAPTER 3: BASIC PRINCIPLES OF THE SOLUTION

Let us first make some reasonable conjectures about the coupling mechanism.
Suppose that the field around sphere A (excluding the field incident from sphere B) is
oscillating in a superposition of multipole fields (all with the same azimuthal number
m and time dependence e*). Similarly for sphere B. These fields are responsible for
energy incident on their respective opposite spheres, which in turn couples to, or is the
source of excitation for, the original set of multipole fields. In a sense we have mutu-
ally self-sustaining (but exponentially damped due to radiation) oscillations consistent,

of course, with causality and the boundary conditions.

The transverse (to r) components of the multipole fields vanish on the z-axis
ex;:ept in the case | m | =1 [see (2.3) and the Appendix]. Thus, we might expect
that the coupling, as described above, would be strongest in this case, especially for
large sphere separation. For example, two parallel dipoles will couple more strongly
than two coaxial dipoles. Although we shall see that this understanding is incomplete,
particularly in view of causality considerations, it turns out best to consider the

| m | =1 case first, if only for pedagogical reasons.

3.1 Translation Coefficients to Zero Order Approximation

To determine the translation coefficients in (2.5) we first need expressions for
M’ and N’f%; in terms of the unprimed coordinates, valid at least in the neighbor-
hood of sphere A (+" =d, 0 =m, ¢ = ¢). The reason for requiring both the electric

and magnetic multipoles will become apparent shortly.

~13 —



To fix ideas we first consider a zero order approximation, which means that in all
our calculations we neglect terms of order 1/kd or less with respect to terms of order
unity. We demonstrate later that the resulting solution is the correct solution in the
limit as the sphere separation d — oo. Without loss of generality we suppose that the
sphere radii @ and b are of order unity or less. Then, in the vicinity of sphere A, and

to this order of approximation, we can write

M@ =i g+ )W e @ £if) (3.1
vore W i ik ;
where W = > 1d , @nl
N'I(ir)l = iM’I(:ji-)l (3.2)

[see (2.3) and the Appendix]. In view of (2.5) and the orthogonality properties of the

multipole fields, this latter result implies, to this order of approximation,

+

! (3.3)

HH
I+

1 _ ol
1= o

By:
v,
This relation represents an important simplification; we shall see this especially in the

next section.

The circularly polarized uniform plane wave e (£ + if") is a solenoidal solution

to the homogeneous vector wave equation (2.1), and so must be expressible in the

form
e (§ + i) = (Psin® + Ocosd + i) etide ik cosd (3.4)
-5 ot [ mgENg, |
v=1
where
ot =+ I+ D W, CE (3.5)

[see (3.1)] and we have made use of (3.3). Once we determine C\,i we have all the

14 -



translation coefficients by virtue of (3.5), (3.3), and (2.6). To this end we scalarly
multiply both sides of (3.4) by e %, and making use of (2.3) and the well known
expansion

eHreosd — 50 Vv + 1) j(kr) P (cosd), (3.6)

v=0

we have

[

2, iY@2v + 1) j(kr) sin® P (cosB) = + Z cZ

v kr Jylkr) v(v + 1) P} (cos0)(3.7)
v=0

Applying some recurrence relations for the Legendre and spherical Bessel functions we

finally have

e v+ 1)
ct =gyt QVHD 3.8
v : Vv + 1) (3.8)

In summary, for m = *1:

e 21+ 1
oy = i1 E([ : 15 V(v + 1) W (k)
i = s |

a’IVm = (__1)[-—\' l\fm (3'9)

rvm (_1)1—\)[3]"1

)

where we have interchanged the indices / and v for later convenience.

3.2 Solution of the Coupled Equations

First we will cast the coupled equations (2.8) into matrix form. We introduce

new coefficients, which are simply the translation coefficients scaled by the factor Wy,

~15 -



namely, for m = %1,

vm

(72 gy 21+ 1D
Fplit= —— =iV ——ty(v + 1
N TS TR
[Vm
{3
G = W, = "
rvm ( (3.10)
rvm _ ® i — (_I)I—VF v
B
’ m —
ynm — Wl = _*_(1)1 VFI'\;Im

[see (3.9)]. (The double sign will always correspond to the cases m = +1 unless other-
wise noted). Now let us collect the Fj™ coefficients into a matrix F, with row index
{ and column index v. Similarly we form the matrices G, F’, and G’. But (3.10)

immediately implies

G =4+F
F’'=JFJ (3.11)
G’ =—+JFJ

where J = diagonal[l, -1, 1, -1,...]. Notice that J/ commutes with any diagonal matrix
and J2 =7, the identity matrix. Finally, defining the matrix A = diagonal[A,;, A,,q,...],
where n = max (1, | m | )=1 in this case, and collecting the nonzero multipole

coefficients into column matrices the coupled equations (2.8) become

Af(ka) AE = W, F BE +BH)

Al (ka) AH = 2w, F BE £ BH)

AE(b)BE = W, JFT (AE — A } (3.12)
A by BY = W JFT (AE — AH)

If the right hand side of these equations were zero then the first (second) pair of equa-

tions would describe an isolated sphere of radius @ (b). For example, the electric type

16 —



natural modes for the single sphere (radius a) are the electric multipole fields; the set
of natural frequencies are found from the roots of d, [a}z,(z)(ka)} ={. All this is

equivalent to the equation Af (ka) AE = 0.

The coupling structure of (3.12) is much simpler than that of the original (2.8);
we owe this simplification to the approximations which led to (3.3). In particular,

(3.12) immediately implies

AE(ka) AE = £AH (ka) AH
(ka) (ka) } (3.13)

AEkb) BE = —A" (kb) BY,
which delineates the relative amplitudes of electric and magnetic multipole fields
present in the natural mode (or modes) associated with frequency s = ikc; A fn (Bf;l)
is directly proportional to AL (BfL). Thus all natural modes of the two sphere
geometry (at least for |m | =1) are hybrid modes. Of course this is an obvious
consequence of both electric and magnetic coefficients mixing on the right hand side
~of (3.12). We assume (and prove in the next section) that the natural frequencies
never coincide with those of either sphere in isolation so that the A’s can be inverted,

which, since A is diagonal, is a trivial operation.

The right hand side of each equation in (3.12) is a column matrix, whose ele-
ments are exactly in the role of coefficients in a multipole expansion of an incident
field, or excitation (from the opposite sphere). For example, in the first equation we
call WiF a translation (matrix) operator; it transforms the B coefficients (incident
field) into a suitable set of excitation (or coupling) coefficients for sphere A. All of
the geometry and frequency dependence of the translation operators is contained in the

common scale factor
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i e—ikd
wi= Lo (3.14)

[see (3.1)]. In this sense W is a measure of the strength of coupling, depending on
sphere separation and frequency. We shall find that all natural frequencies correspond
to k& in the upper half £ -plane. Thus we uncover the somewhat surprising fact that W,
is dominated by an exponential growrh as d becomes large! A little thought shows
that this is a natural consequence of causality; we will understand its full significance

in the next few sections.

Knowledge of any set of coefficients, say A®, immediately implies the rest
(A7, BE and B¥) through (3.12). Thus we need only consider one set. Suitable sub-

stitutions, involving all four equations in (3.12), yields an equation containing only

AZ | namely,
[1 = [AF(ka)] ' D [AE (ka )}] AF =0, (3.15)
where we have defined
D = (W F T(kb) F T'(ka) (3.16)
T(kry =J [[AE(kr)rl - {A”<kr)r1] (3.172)

= diagonal[l,, (kr), T, 1 (k7),...]

—i (~1)f

Q) = ,
T @Q atn@Q)]

(3.17b)

where, again, n = max(1, [m | ) =1 in this case. We have made use of a Wronskian
relationship for spherical Bessel functions. Notice that the zeros of {#®({) and
9c[ChB(0)] determine the magnetic and electric natural frequencies for the isolated

sphere, respectively. ( I'; will play a significant role in determining the natural
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frequencies).

Being homogeneous, (3.15) has solutions only for those natural frequencies
§ = ikc which cause the determinant of the matrix in parentheses to vanish. An alter-
native to the quite formidable task of calculating the determinant is achieved by writ-

ing (3.15) as

AE = [AE(ka)1' D [AF (ka)] AF (3.18)
which immediately implies

AE = [AE(ka)]7' DV [AP (ka)] AE (3.19)

which must be true for any N € {1, 2, ...}. We have shifted the work of calculating
the determinant to calculating all powers of the matrix D, But this latter task is made

almost trivial when we realize that F can be written in the form if an outer product of

two column matrices U,, and V,, ( [m | =1), namely
F=U,VE, or FY"=U,V,, (3.20)
where
g2+ 1) v
=jt Ll V= + 2
Ull I 17+ 1) vi=1 v(iv+ 1) (3.21)

[see (3.10)]. Then, using (3.20) in (3.16) gives
N 5 N-1
DY = | (W)* xytka) x,(kb) D (3.22)
where the scalar

Xikr) = VI Ty Uy = 3 Uy Vi kr). (3.23)
i=1

Clearly we must have
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W1 (kd)]2 3 (ka) %3 (kb) = 1 (3.24)

which is a transcendental equation that permits us to determine the allowed natural fre-
quencies s = ikc. Notice that (3.24) is independent of which coefficient set we are
solving for [see (3.15)], is symmetric in g and &, and is insensitive to the sign of
m (m ==*1). This latter fact gives rise to a basic two-fold degeneracy: Every m = +1
natural mode has a linearly independent (in fact orthogonal) m = ~1 counterpart, both
sharing the same natural frequency. The study of (3.24) is the subject of the next sec-
tion. In the section following that we solve for the multipole coefficients (and hence

the natural modes).

3.3 Natural Frequencies

We now discuss some properties of the function ;. Combining (3.23), (3.21),

and (3.17b) we have

1
CPE) O [Eh PO

L@ =i ¥ '@+ 1) (325)
I=1

The /™ term in the series (! =1,2,3,..) is an analytic function of { everywhere in
the finite {-plane except at the zeros of A P({) and BCEQh,m(C)], where it has poles.

For any finite {, and / —eo we can use the asymptotic formula

i
W) = i2e %5713— (3.26)

to show that the ratio of the (/ + 1)™ term to the /™ term of the series is of the order
(4/21)* — 0, and hence that the series is absolutely convergent for any finite { not at a

pole of ;. Thus x; is a meromorphic function. These poles of %1 correspond to the
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electric and magnetic natural frequencies of a single isolated sphere and occur only in

the upper half {-plane (left half s -plane).
As £ — 0 the first term in the series dominates, and the limiting form for small

argument is

x1(0) = —i383, (3.27)

revealing a third order zero at the origin. A numerical investigation of (3.25) reveals
only first order zeros, and only in the upper half -plane, interspersed amongst the
poles. These zeros will play an important role in our discussions, First notice that the
zero at the origin is uniquely third order suggesting (correctly) that its physical
significance is different from that of the other (first order) zeros.

%1 has no zeros or poles in the lower half {-plane. Except for some oscillatory
behavior, | X1 | essentially increases monotonically along any radial path from the ori-

gin into the lower half {-plane (or real {-axis).

Finally, we note that
P = D O (3.28)
where the asterisk denotes complex conjugation, implies the following parity property:

%1(=¢") = Q1. (3.29)

That is, the real part of y; is symmetric and the imaginary part antisymmetric with
respect to a reflection in the real {-axis. In particular, the magnitude of %x;, and its

zeros and poles are symmetrically disposed about the imaginary {-axis.

Of course we are still operating under the assumption that our results are correct
only in the limit as the sphere separation d — . It is in this spirit that we now

examine the transcendental equation (3.24). For k in the lower half complex plane
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(W (kd 312 = 0, so that for a solution to exist we need X1(ka )y, (kb) — oo such that
the product is unity. But ,(§) is finite everywhere in the lower finite {-plane. Thus
no modes of oscillation exist for k¥ in the lower half plane (or natural frequency
§ = ikc in the right half plane). This fact is, of course, easy to understand on physical
grouﬁds. With the time dependence e® such a natural frequency would result in the
fields (and thus the energy density at any given point) growing exponentially with the
time, which is clearly unphysical since, by hypothesis, we have no séurces at infinity,

and we also consider the march of time only in the forward direction.

For k real and nonvanishing [W(kd )2 = 0 again, but this time only as 1/(kd)?
since the exponential is of unit magnitude. Again (3.24) admits no solutions. Natural
frequencies with © = 0 (no damping) are reserved for interior (lossless cavity) modes;
experience has shown that any time varying exterior mode must decay due to radia-
tion. An exception to this rule can occur in the case of a perfect dielectric body. (see,

for example, Stratton [1] section 9.23).

Let £ — 0 (and d - o as usual, but such that k<d — 0). Using (3.27) the limit-

9 33

ing form of the left hand side of (3.24) is " 7 (kd )4 — 0. Thus (3.24) cannot be

satisfied for & = 0. This does not mean that no static (electric or magnetic) natural
modes exist, it is simply a manifestation of the tacit assumption k = 0 that we used
when setting up the original equations in chapter 2. The equation structure is different
in the static cases, necessitating a separate treatment. In the electrostatic case, for
example, instead of (2.1) we would write VXE =0 and V:E =0 outside the
spheres. Then E can be derived from the gradient of a scalar potential satisfying the
Laplace equation, et cetera. Then a treatment similar to that followed here could be
used, or the fact that Laplace’s equation is separable in the bi-spherical coordinate

system provides an alternative solution path. Here we shall be concerned only with
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time varying free oscillations. For some discussion about static natural modes in gen-

eral see appendix A of Baum [5].

This leaves only the upper half k-plane, wherein [W(kd)]?> — e so that
X1(ka Yy, (kb) must vanish such that the product is unity. To fix ideas consider first the

case of two identical spheres @ = &. Equation (3.24) becomes
W tkd) 3 lka) = 1, (3.30)

which suggests that we have two sets of solutions: one corresponding to the upper sign
and the other to the lower sign (not to be confused with the cases m = *+1). Since the
problem has a symmetry plane it must possess solutions (the fields or natural modes)
of definite parity: symmetric and/or antisymmetric with respect to reflection in this
plane. We shall see when we solve for the natural modes that the double sign in

(3.30) is in fact the mark of parity. But when d — oo

1

X1(ka) = i——————wl(kd) —

0o (331)

so that the two sets of natural frequencies must coalesce in this limit (but of course the
definite parity of the natural modes is invariant). In this case we have a four-fold

degeneracy: two for m = 1 times two for parity.

The solutions of (3.31) correspond to the natural frequencies s in the left half
plane so that the free oscillations decay exponentially with time, consistent with radia-

tion. Furthermore, the Hankel functions appearing in the expansion (2.4) contain the

—ikr —ike’
e’ e . . .
factors and ——, respectively, so that we have outward traveling partial waves
r r

(or multipoles) which, at any instant of time, have the usual 1/r decay (energy conser-
vation), but are dominated by an exponential growth in amplitude with radial distance

from the spheres. The exponential growth is of course a necessary consequence of
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causality: the fields remote from the spheres are a measure of the fields near the
spheres at an earlier time. Thus the "anomalous” factor W appearing in the coupled
equations (3.12). But we have yet to see in detail how nature allows infinite amplitude

partial waves to be incident on their respective opposite spheres as d — oo,

We know that the zeros of y({) are symmetrically disposed about the imaginary
C-axis, which implies that the natural frequencies occur in complex conjugate pairs, as
expected for any real system. In Fig. 2 we indicate the locations of the natural fre-

quencies in the second quadrant of the normalized s-plane. Here

% s =ika =i (3.32)
where { is a root of %,({) = 0. Also shown for comparison is the set of natural fre-
quéncies (electric and magnetic type) for the single isolated sphere of radius a, where

{ is a oot of | ()] = ee.

We first notice that the two sets are obviously distinct. This may be disturbing
because our intuition may be saying: As the sphere separation increases the coupling
should become less important until in the limit d — oo the free oscillations reduce to
those of two single spheres isolated by distance. Take for example the double har-
monic oscillator studied in quantum mechanics: As the two potential wells separate,
pairs of allowed energies coalesce until the energy spectrum reduces to that of a single
isolated well. (see, for example, Merzbacher [6]). Or perhaps a closer analogy would
be the mutual coupling that exists between any two elements of an antenna array,
which becomes weaker between increasingly separated elements because the field
decays primarily as the inverse of the distance (at sufficiently large element separa-
tion). But as discussed earlier, the free oscillations are exponentially damped in time

causing the mutual coupling to be dominated by an exponential growth as sphere
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separation d increases. The larger the sphere separation, the more important is the
coupling, and so the results in Fig. 2 are not in conflict with intuition. For if the time
dependence did correspond to a single sphere natural frequency then, just as in circuit
theory, that single sphere natural mode (multipole) would resonate with infinite ampli-
tude; the correct combination of multipoles could not exist to satisfy the necessary

boundary conditions.

Let us study the results in Fig. 2 more closely. The natural frequencies tend to
be grouped into so called "layers", typical of most geometries (see almost any litera-
ture on SEM, for example [4]). The first layer lies immediately to the left of, and
almost parallel with the imaginary axis. To the left of this lies a layer of electric type
natural frequencies for the single sphere, followed by the second layer of natural fre-
quencies for the double sphere, and so on. The single sphere (electric and magnetic)

layers are alternately "sandwiched" between the double sphere (hybrid) layers.

Natural frequencies in the first layer have the smallest magnitude of damping
coefficient and hence resonate with the highest Q0. The energy in these modes of
oscillation is most tightly bound to the resonant structure (two spheres), even more so
than is possible with a single sphere (with comparable size and frequency, namely the
layer immediately to the left). A similar phenomenon occurs when a sphere is
deformed into a prolate spheroid (keeping the major axis fixed), and finally into the
thin rod limit (see Marin [7]), although the underlying physical mechanism is probably
different. Notice that there are also natural frequencies on the real axis corresponding
to an exponential decay in time, but no oscillation. Unfortunately we do not know
how the natural frequencies move as a function of d < e, which might provide clues

on how to further catagorize or label them.
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We have been dealing with the special case @ = 5. Now let us go back to (3.24)
and consider what happens when we set b = 0. Surely the presence of sphere B must

vanish leaving only the single sphere A. As kb — 0 (3.24) becomes, on using (3.27),

1
-i3 (kbYW (kd)]*

Xitka) = (3.33)

No matter how large we choose d [to ensure the correctness of (3.24)], when we set
b = 0 the right hand side of (3.33) becomes infinite, thereby reducing (3.33) to the
transcendental equation for the natural frequencies of a single isolated sphere of radius
a, as expected. For example, suppose b to be infinitesimal such that the right hand
side of (3.33) is large, and set k = kg + Ak, where h,P(kga) = 0. This corresponds to
a pure magnetic type free oscillation of the single sphere A, except perturbed
infinitesimally by the presence of sphere B (b — 0). Retaining only the largest term

in the series expansion for ¥ (ka) (3.33) becomes

?:-ID
o |

3
- 2 C"Cr+1) | b
= 3[W 1 (kd)] 0O e [—a—] (3.34)

provided | Ak/k0| < 1; k reduces to k5 when b = 0. The point of interest here is
that the right hand side is proportional to the ratio of sphere volumes. Thus the physi- .
cal significance of the third order zero of %,({) at the origin. (It is the machinery

which handles the limiting case of one sphere vanishing).

Finally, we must discuss the case of nonvanishing unequal spheres (@ # b). Ima-
gine the exact solution when the sphere separation 4 is finite. When @ = b the natural
modes have definite parity, either symmetric or antisymmetric, corresponding to
different natural frequencies. As we make a different from b a symmetric mode will
continuously deform into a new natural mode (no longer of definite parity), while the

corresponding natural frequency will follow some smooth path in the s-plane to its
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new value. Similarly for an antisymmetric natural oscillation. Now the words sym-
metric and antisymmetric have no physical meaning, but may be retained as labels to

distinguish limiting behavior as a — b.

We now examine this deforming of natural modes and movement of natural fre-
quencies, but in the limit d — eo. We already know from (3.31) that for equal spheres
pairs of natural frequencies (symmetric and antisymmetric) coalesce in this limit. (As
mentioned before, this degeneracy is probably lifted for d finite). For slightly unequal

spheres let us be democratic and set

a=rg+Ar and b =ry—Ar (3.35)
where |Ar | < rg» and Ar may be positive or negative. Expanding y(ka) and
x1(kb) in a Taylor series about kry we write

= + ’ 1 »”
xika) = + kAr) x" + 5 (kAr)2 Y SN S
(3.36)

p, ”
xi(kb) = x; — (kAF) %, + 5 kAP 3 =
with a radius of convergence equal to the distance to the nearest pole. For brevity in
notation we write y; for x;(krg). Using (3.36) in (3.24) we get a quadratic equation for

%1, namely
0=xf+ *kAr) " 51— |[W2+ (kAr)2 3,2+ 0 [(kAr)“]] (3.37)

We assume (and have numerically verified) that %,” and x,” are never much greater
than unity in magnitude, nor ever zero in regions of interest here. The two roots of
(3.37) are

Xy = - % kArY? 31" & (W2 + (kAr)? 4,2 + O [(kAr)Y ] REET)
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In the case of wvanishingly small difference in sphere radii we assume
| kar | < | (W | « 1. Neglecting terms of order (k Ar)* with respect to unity

(3.38) becomes

i
Wkd)

v (kro) = % 1+ —;— (kAF)? [W,(kd))?| — 0 (3.39)

in the limit d — o=. When Ar = 0 we recover (3.31) for the case a = 5. Thus we
identify the double sign in (3.38) as the mark of parity. For the purpose of discussion
we mention here that the upper sign is for symmetric modes and the lower sign is for
antisymmetric modes (we prove this in the next section). When Ar # 0, the magnitude
of the second term in the parentheses is still much less than unity, by hypothesis, and
so (3.39) is the transcendental equation for the case @ = b with a small first order
correction term. But as d — oo the correction term remains small [and hence (3.39)
remains valid] only if A — 0. This is the first hint that the nature of the solution
changes very rapidly with the slightest perturbation from a =& (at least in the limit

d — o).

Now let Ar # 0 such that 13> | kAr | > [ (W)™ |. In the limit d — oo this

means any nonzero | kAr | <« 1. Then to first order in (kAr) (3.38) becomes

7
X1
~ | .

X1

wtrg =% & lar Dy |1 -—+—;— «lar D (3.40)

We first remind ourselves that the double sign appearing here is the same as that in
(3.39). Thus, in making Ar # 0 the natural frequency belonging to the symmetric
(antisymmetric) natural mode changed from its value when a = b to a new value satis-
fying the transcendental equation (3.40) with the upper (lower) sign. Thus each pair of
natural frequencies splits, the parity degeneracy having been lifted. [Recall that this

degeneracy had its origins in the double sign in (3.30)] The second point to notice is
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that (3.40) [and (3.39)] are insensitive to the sign of Ar. A bit of thought shows that
this is a necessary consequence of the fact that one sphere is not preferred over the

other.

Clearly the solutions of (3.40) are in the neighborhood of some & =k, , where
%1koro) =0, so let us set & = kg + Ak. Here kg corresponds to the natural frequency
when Ar =0 and d — o [see (3.39)]. Writing (k7o) in a Taylor series about kg7,

and retaining only terms to first order in small quantities, (3.40) becomes

M, lard

ko ro

(3.41)

For Ar =0 we use (3.39), which tells us Ak =0 (in the limit d — o). For
| Ar | > 0 (but much less than ro) we use (3.41). Thus the parity degeneracy is lifted
to first order in Ar. From (3.41) we make an interesting observation: As we make
Ar # 0, the symmetric natural frequency increases in magnitude (higher frequency
and more rapidly damped), while the antisymmetric one decreases by the same
amount. Analogous phenomena happen, for example, in the case of two coupled clas-

sical harmonic oscillators.

As an alternative approach to the case a # b, let us start again at (3.24). For

a # b two solutions immediately present themselves:

i
k,a) = — 0, where k,b)=# 0, and
it X1y &) W1k, )] *1ifa
1 [ (3.42)
Xilkyb) = — 0, where y(k,a) # 0.
Aalkpa) [W(kyd)]? '

We point out that these expressions approach zero like (Wl)"2 instead of just (W)™
as d —» oo, [see (3.31) for the case @ = b]. This fact will become important to our

understanding of how the natural modes work in the case @ # b. Using (3.35) again,
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but this time with no restriction on the size of Ar (except 0 < lAr ] < ro), and

%1k gro) = 0, we have

r r N
kazko—-(lzko ].—'ﬂ , for Iérl <1
a 7'0J 0
\
( ) (3.43)
r
by =k = kg |14 80| o AAPL
b rg Fo

With ry = a the set of natural frequencies corresponding to the k,’s are exactly those
appearing in Fig. 2, while those corresponding to the k,’s are simply the same set,
except scaled by the factor a/b. We can identify pairs in the limit Ar — 0. In (3.43),
for | Ar | Irg < 1, we identify the Ak appearing in (3.41). Furthermore, the smaller
(larger) sphere is associated with a larger (smaller) magnitude of natural frequency and
he;lce to the deformed symmetric (antisymmetric) natural mode. The exact meaning of

"associated with" will become clear during our discussion of the natural modes.

3.4 Natural Modes

We now turn our attention to the expansion coefficients in (2.4), which are the
essence of the natural modes themselves. As usual, the  sign used throughout will
refer to the cases m =*1 unless otherwise noted. Writing (3.18) out in detail [{using

(3.16), (3.20), and (3.23)] we have, for the AF set of expansion coefficients,
AE = {{Wl(kd)}z %1(kb) VT T(ka) AE (ka) AE} AFGka) UL (3.44)

The homogeneous nature of equations (2.8) allows us to set the scalar in braces to any

convenient value, say unity. Then the remaining coefficients are fixed via (3.12),
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namely

A = [AFGa) U,y

A =AY k)T U,

BE = W,Gd) xytka) ANEGDY U, | (3.452)
B = W (kd) x;(ka) (AT (kb)Y JU,

Notice the asymmetry between the form of the A and B coefficient sets. The
dual form can be obtained from (3.45a) simply by rescaling all the coefficients by the

factor W (kd) %;(kb). On using (24) we have

AE = W (kd) 3 (kb) [AE (k)] U,

AR = W (kd) 3, (kb ) [AF (ka)1™' U,

BE = [AEgb) U, > G450
BH = A (kb1 JU

A

which demonstrates the symmetry that must be present in the equation structure (one
sphere is not preferred over the other). The "extra" J in the B set of coefficients and
the — instead of * have their origins in the fact that we simply transiated the O’
coordinate system (Fig. 1) instead of translating and inverting the z’-axis
(8" — m — 0’). The latter set of operations produces a left handed coordinate system
O’, which is a mirror image of the O system in the plane z = d/2 or z’ = —d /2.
Either set (3.45a) or (3.45b) may be used, whichever is more convenient. (Actually,
multiplying (3.45a) by [W; x;(k5)]"? or (3.45b) by [W, x;(ka)]¥? results in a more

symmetric form, but not suited for our discussion).

As a double check on the correctness of (3.45a or b) it is easy to demonstrate by
direct substitution that the coefficients satisfy the original equations (3.12), provided

the transcendental equation (3.24) is satisfied.
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Let us examine the convergence of the natural mode partial wave expansion (2.4).
For example, from (3.45a) the magnetic coefficients for sphere A are

Q! +1) Jika)

AR =+ (APt Uy = —+ i ,
Im [ l( )] i1 l(l +1) h1(2)(ka)

(3.46)

[see (3.21) and (2.8)]. Using formulas like (3.26) we can show that for any given finite

ka,and [ — oo

it 2y [ oeka |7
AR =+ , and 3.47
m=E g y |wer) 7O G472
AR i 20 +1 | eka 2
LI 3.47b
af U+ |20 +3 2+3| VY (3.47b)
I L

and similar expressions for the other coefficients. For the most part, the magnitude of
the coefficients decreases with increasing / (at least for sufficiently large /). Without
further ado, by inspection of (3.46) and (2.3) we state the self evident fact that (2.4)

converges at all points in space.

It is interesting to observe from (3.47) that the larger | k¥ | is, the more terms are
required for convergence of the sum (2.4). In other words, natural modes with larger
magnitude of natural frequency have more higher order multipole field components,
insensitive as to whether this magnitude is due primarily to @ (rapid oscillation with
little damping) or to Q (rapid damping with no oscillation), or a combination. The

basic reason is that both result in a rapid spatial variation of the field.

Now take the special case a = b. We introduce the dichotomic parity variable p
which can take on one of two values: +1 for even parity (symmetric) or -1 for odd

parity (antisymmetric) natural modes. Using

Wykd) x (ka) = p (3.48)
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[see (3.30)] in either (3.45a) or (3.45b) results in

AE = [AE (ka) U,

A =+ M ka7t U,

BE =p [AE(ka)] JU,
BH = — p [AH (ka1 JU .

( (3.49)

As mentioned earlier, had we inverted the z’-axis the A and B coefficient sets would
be identical except for a possible overall sign difference, which here is represented by
p. (Of course then we would also require two different definitions of the multipoles:

one for right and one for left handed coordinate systems). As it stands,

BE =-p 1)} AE,

3.50
B =p 1) AfL, ©-%0)

the —(—1)" coming from the matrix J. This result, coupled with the fact that inversion
of the z-axis, or 6 — 6 — &, transforms P[*(cosB) into (—1)Hm P{*(cosB), makes it
intuitively plausible that p is in fact the mark of parity as we claim, but this still
awaits a formal proof. But before we do so, let us digress a moment to briefly review

symmefry in electromagnetics.

Suppose that an electric field E satisfies (2.1) and boundary conditions which are
symmetric with respect to the z = O plane. Consider another field E” obtained from E
by replacing z with —z and £ with -2 (reflection in the z = O plane). By expanding
the V x V x operator in Cartesian coordinates it is easy to show that E" also satisfies
the same differential equation (2.1). Since it also manifestly satisfies the boundary
conditions, E’ is another solution. Then, by linearity, so is E £ E’, which has even
parity (symmetric with respect to reflection in the z = O plane) or odd parity (antisym-

metric), respectively. (i.e., solutions of definite parity exist). We also note that since
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the magnetic field is proportional to the curl of the electric field we can show that the
two must have opposite parity.

Thus we must prove that E in (2.4) (drop the sum over m ) evaluated at the point
r, 9, ¢ is equal to pE evaluated at the point ¥ =7, 8 =1 — 6, ¢’ = ¢ with & = -2,

The first quantity is [see (2.7)]

| AEN + A Mg

M3

I=1

-p 0 AL %[ olnND + BzM |

v

ep 0 Al 3 odnm® + BN | }

v

where we have made use of (3.50). The second quantity is
) [ ~=DP ARNE + (1 ARMD
1=1

+p GV AL X 1Y [ NG = B M) }

v

b AL O [ ol - gy | ]
A%

where we made use of (2.6), and it is understood that in the vector functions
r'=r,8=r-06,¢"=0¢, and £ =—2. Inspection of (2.3) reveals that in this case
M’ = (-1)) M), and since N is proportional to the curl of M, N’ = —(-1)} NS,
Thus the two quantities are equal and the natural modes are symmetric or antisym-
metric with respect to the z = d/2 plane according to whether p in (3.49) is +1 or -1.
Strictly speaking this proof is valid only in a region which is the union of » < d and
r’ < d. But this is sufficient to fix the symmetry nature of the currents on the spheres

and thus of the field everywhere in space.
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We have already discussed the basic coupling mechanism which is responsible for
the existence of free oscillations in the two sphere geometry. The energy in the field
oscillating about one sphere comes from energy incident from the other sphere and
vice-versa, and all the while energy is being given up to radiation to infinity. The field

incident from sphere B onto sphere A is

[ BEN(D + BEM'( } (3.51)

Mg

EB —A =

—
1
—

I
YTME

z: BE, +BH Y ND + M)

where we used the translation formulas and (3.3), and interchanged / and v for con-

venience. But
3, oyt (BY, + BI ) = [W1F BE iB”)}, : (3.52)

the /™ excitation coefficient for sphere A, as expected [see right hand side of (3.12)].
Starting with (3.49) we find that this coefficient is simply U;; in (3.21). It is easy to

establish the following identities:

@ £if) e == ¥ Uy (NI £ MED)
=1

. o ( (3.53)

tif)e ™ =4+ ¥ U; VP —+MD),
=1

J

the first of which was derived in section 3.1. Using this in (3.51) we find that
EfS,, =i @ £if) e (3.54)

is a right or left (m = =£1) circularly polarized uniform plane wave with magnitude of
order unity. This is exactly the mode of interaction the energy transferred between the

spheres would be expected to adopt: A plane wave because of the great distance 4
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between phase centers, circularly polarized because of the ¢ factor in the mul-
tipoles, and of order unity because the coefficients A® and A of the scattered field
are also of order unity. But recall that the amplitudes of the individual partial waves
making up the incident field (3.54) are of order | W (kd ) | — oo [see the individual
terms in (3.51)]! The only conclusion is that there must be almost perfect destructive
interference amongst the partial waves radiated from sphere B, at least in the neigh-

borhood of sphere A.

Recall that the real part of ik is /¢, which is negative. Thus the incident field at
any instant of time increases exponentially in the direction of propagation. The ratio

of the amplitude at the farthest point on the shadow side (z = —a) to that on the

. For the first

corresponding point on the illuminated side (z = a) is exp [— %a— Q

natural frequency in the first layer (Fig. 2) this ratio is about 1.32, which is the smal-
lest of all the modes. The corresponding wavelength is about 3.61a. The next natural
frequency with about the same wavelength is the second one in the second layer; its
amplitude ratio is about 14.3 already! Thus even within the first few lowest order

natural modes this ratio can be quite large.

We can thus describe the incident field at any instant of time along the axis join-
ing sphere A to B: Starting at sphere B it has about unit magnitude. A short distance
away the exponential growth in W ;(kr) begins to dominate and the field continues to
grow in magnitude until the zero order asymptotic form for the spherical Hankel func-
tion becomes a good approximation. Then destructive interference amongst the partial
waves sets in, and finally dominates as we approach sphere A. The incident field is
now a plane wave which, at any point decreases exponentially with time and so, at any

time, must increase exponentially in the direction of propagation, going from almost

- 37 —



zero on the illuminated side (z > 0) to order unity at z =0 and finally, rapidly to
infinity on the shadow side (z < 0). Of course there is a similar wave traveling in the
opposite direction from sphere A to B. We discuss the off-axis behavior of these

fields when we consider first order corrections in the next section.

The incident field (3.54) scatters from sphere A. It can be shown that the
coefficients in the multipole expansion of this scattered field are exactly just the AZ
and A¥, as expected. This field then acts as E* p, which is similar in form to the
second of (3.53) in the neighborhood of sphere B, and so on. EJ™°p is just the back
scattered field to EJ°,, and vice-versa. Thus the natural frequencies are just those
(complex) frequencies at which a plane wave incident on a conducting sphere has
almost a back scattering null (as d — o). In fact, | x(ka) |2 is proportional to the
echo area of a conducting sphere of radius ¢ which, according to (3.31) must vanish at

the natural frequencies. (See Harrington [8] equation (6-105)). Harrington plots

% | x(ka) | 2 in his Fig. 6-12 for real k; we examine its behavior for complex k in

Fig. 2. In this new light, the poles correspond to the single sphere natural frequencies
where an incident plane wave of that frequency would excite an infinite response,
which implies an infinite echo area. The zeros on the other hand correspond to double
sphere natural frequencies where an incident plane wave of that frequency has almost
exactly a back scattering null (to compensate for causality considerations in signals
that decay in time). This implies zero echo area.

We now examine the case b = 0. We already know that the natural frequencies
reduce to those of the single sphere. Furthermore, inspection of (3.45a) reveals that
only the one A,, corresponding to that natural frequency becomes infinite, the rest
remaining finite. A rescaling of all the coefficients then implies that the double sphere

natural mode reduces to that unique single sphere multipole (natural mode); all other
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multipoles have vanishing contribution. Incidentally, the B coefficients in (3.45a) also

vanish. As kb — 0, and with the above rescaling in mind,

BE = - (1) (kb )X~
T 312135202 Wqkd) > 655
H o~ (i) (kb)2-D) 0 :
31(1+1) [1:35-1 -1 Wikad)

for all I = 1, 2,... This last result is just a further indicator of the self consistency of

the solution.

Lastly, we examine the case a # b. Recall that the natural frequencies come in
pairs s, and s, [corresponding to &k, and k; see (3.42) and (3.43)]. Let us first dis-
cuss the natural mode corresponding to s,. Using the first of (3.42) in (3.45a) we

have

AE = AP (ko) U,

A =+ (AP (ka1 U,
) (3.56)

BE = AE (k)1 IU, =0 *

T Wilked) x1(kab)
1
Wl(kad) XI(kab)

B = — Ak, b)) JU, — 0.

Thus the A coefficients are of order unity as before, but the B coefficients (and hence
the currents on sphere B) vanish as (Wl)”l, even if the sphere radii differ only
infinitesimally! Our earlier suspicions about the rapid change in the nature of the

oscillations when we perturb the relative sphere size have been realized.

We can understand how the natural mode "works" by examining the interaction
fields between the spheres, just as we did for the case @ =b. In fact, comparing

(3.56) with (3.49) reveals that these fields are still circularly polarized uniform plane
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waves, just the amplitudes have been changed. Making use of the first of (3.53) and

the B coefficients in (3.56) we can show that
Eirc, =i @ tif)e®. (3.57)

This plane wave of order unity magnitude strikes sphere A and is scattered. The
induced currents and the A coefficients are of order unity like the incident field. On
the other hand, making use of the second of (3.53) and the A coefficients in (3.56) we

can show that

Einc = 1
ADB T W kd) % U b)

i@ tif) e 0. (3.58)

This plane wave of order (Wl)‘1 — 0 magnitude strikes sphere B and is scattered.

The induced current and the B coefficients vanish as d — oo, like the incident field.

So how does the asymmetry of the natural mode arise? We first notice that by
choosing s = s, sphere A is "matched” to the incident plane wave, that is, EQS,
striking sphere A has almost a back scattering null in the region of sphere B. The
important point is that the destructive interference here is far more complete than it
was in the case @ = b. Here the back scattered field in the neighborhood of sphere B
(Ej“i,g) is of order (Wl)“]L — 0, instead of order unity as it was in the case @ = b.
The better matching in the former case is directly related to the fact that the right hand
side of (3.42) vanishes as (W ;)2 compared to only (W)™ in (3.31). If the right hand
side were identically zero in either of these expressions, a plane wave of the
corresponding frequency would have an exact back scattering null at infinity. Con-
versely, with s =5, sphere B is not matched to the incident plane wave (E,ini,B).
The scattered field starts out with a magnitude of order (Wi)"". In the region of

sphere A it must be a plane wave, similar in form to the first of (3.53), but the magni-

tude has been increased by a factor W, because now there is no (appreciable)
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destructive interference amongst the partial waves. Thus E, has a magnitude of

order unity, as we see in (3.57). The asymmeiry in the natural mode is thus explained.

The second solution follows from choosing s = s,. Using the second of (3.42) in

(3.45b) we have

AF = c
Wilkyd) xi(kpa)

N 1
Witkpd) X1kpa)

BE = [AE (kb1 JU,

B = — (A" (k, )71 U,

[AE(kpya) P U, =0

AH = AN o)) U, -0

(3.59)

This is the dual mode: The currents on sphere B are of order unity, while those on
sphere A vanish as (W)™'. It is now sphere B which is matched to the incident plane

wave of frequency s, and sphere A is unmatched, et cetera.

Now suppose a < b. This implies | Sg | > |sb | [see (3.43)]. Thus the natural
mode corresponding to s = s, {s5,) is the deformed symmetric (antisymmetric) mode.
The converse is true if » < a. In other words, the mode associated with, or matched

to, the smaller (larger) sphere is the deformed symmetric (antisymmetric) mode.

3.5 First Order Corrections

We now understand that the existence of free oscillations as d-—ee rtelies on
almost perfect destructive interference between the partial waves (multipole fields)
incident on each sphere from its respective opposite sphere. This raises a question as

to the validity of our zero order approximation. In particular, in writing (3.1) we have
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retained only the first term in the standard finite series representation of the spherical
Hankel function, and throughout have neglected all terms of order 1/kd and higher
with respect to unity. But the almost perfect destructive interference demands a deli-
cate and precise relationship between the complex amplitudes of the partial waves.
Perhaps using our approximations (3.1) and (3.2) in place of the exact expressions for
the partial waves significantly changes the solution, leading us to doubt the results
derived thus far, even in the limit d —eo. To alleviate such concerns we shall in this
section, and in a condensed manner, repeat the material of sections 3.1 to 3.4, but this

time retaining all terms to order 1/kd, that is, correct to first order.

But before we begin the first order correction proper, let us carry out a simple
double check which, although limited in scope, provides some useful insight. In the
case a = b the details of the destructive interfefence are embedded in the steps leading
from (3.51) to (3.54). Let us repeat this calculation, but use the exact expressions for
the multipoles instead of the approximations in (3.1) and (3.2). For simplicity we limit
ourselves to finding Ej"°,, only at one point - the center of sphere A. The appropriate

multipole fields are [see 2.3) with 7’ =d, & =m, ¢’ =0, & =B, ¢’ = ¢ I:

M/ = +i (1) 1(+1) % h@kd) & £ i)

. 1 L1 , (3.60)
ND == ' 10+1) 5 - 9d h P kd)] B i),

which reduces to (3.1) and (3.2) with z = 0 if we retain only the first term in the finite
series expansion of the spherical Hankel function (i.e. the zero order approximation).

Using (3.49) and (3.60) in (3.51) we can show that
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EfFc ,(r=0)=ip (£ + if) Wkd) {xl(ka)

(3.61)
- 1
AT de)" M+ g T‘“(ka)]
where
-~ I+ |nl) 1
M) = - D! 2+ 1) (
z:lzi| n DU Gy@©) ofen®@1 | ,
- B4 (3.62)
_ Y 1(l+|n|)! c .
M@= lnl =%I -0 @ +1) a=Tnl O [LHAQ)]

J

The reason for using | n | instead of n will become apparent in chapter 4. Using
asymptotic formulas like (3.26) we can show that for [ —eo (and [=n) the ratio of the

(-n+D)™ term to the (—-n+D)™ term for both series in (3.62) is

_ (+4n+1) 19
(I-n+1) |21

} — 0. Thus the series in (3.62) are absolutely convergent for any

finite { not at a pole of %,({). Furthermore, as n—eo only the first term in either

series contributes to that sum. Thus we have for n—eo

2
Mavt _ M1 % = const. (3.63)

N T,

Obviously, then, the sum over n in (3.61) is absolutely convergent. In particular, for
| kd | =00 the sum vanishes and, using (3.48), EB ¢ 4 (r=0) reduces to what we had in

(3.54) based on a zero order approximaton,

For kd large but finite we retain the one dominant term in that sum and write

(3.64)

My (ka) }
2kd |’

EF,r=0=ip @+ i) W,kd) [X1(ka) -

where 1 (ka) is very similar in nature to x1(ka) [see (3.25)], but of course does not
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have the same zeros. Let k = kg + Ak, where x;(kga) = 0 and | Ak ik | <1, so that
to first order in Ak x,(ka) = ' (kga) Aka, where the prime indicates differentiation.

Comparing (3.64) with (3.54) we then write

k k
Ak 1 p +Th(oa) _ 1 Mkea) [1

~ ~ =0|—— |(3.65
Vilkoa) | Wiked) = 2k 2kod ¥\ (koa) kOdJ( )

since the second term dominates as | kod | oo, This latter observation implies that

the parity degeneracy of (3.31) is not lifted to first order in 1/kd.

From (3.65) we see that any correction to our earlier results is of order 1/kd
which vanishes in the limit d —ee. Thus we have shown that the natural frequencies
and coefficients for the natural modes derived for the zero order approximation of the
multipole fields also work for the exact multipole fields in the limit d —oo, at least at
the point r=0. (The tedious generalization to include a neighborhood of sphere A
should be straightforward, but we forsake it in place of a proper first order correction).
This is simply a double-check on the VaIidity of using asymptotic approximations from
the beginning, instead of first solving the problem exactly and then taking the Hmiting
form of the solution as d—ee. Within the limits of this derivation, both methods pro-

duce the same result.

Now let us begin a systematic first order correction. In order to determine the
new translation coefficients we need asymptotic expansions for M’éi) and N’,Sfl) in the

neighborhood of sphere A, where
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2
¥=d-z +_§E+O(d_2); p?=x%+y?

1+ 2 +0 (d"ﬁ)] > (3.66)

Using (3.66), (2.3) and the formulas in the Appendix we can show that, correct to first

order in 1/kd (m = %1)

M =i~ [+ 1) W, (kd) [e"kz @+ i) + ;12 slm] (3.67a)
N =+ M D, where (3.67b)
2,2 o
S,, = [(f + if) ﬂ—;—ll +he + f‘l—g—] iy kpei“?] ez (3.670)
i

Compare (3.67) with (3.1) and (3.2). In particular, notice that (3.67b) implies that
(3.3) still holds so we see that the form, or structure of the matrix equations (3.12) is

insensitive to first order corrections. This is a happy circumstance.

It is easy to verify that M" and N’ in (3.67) are solenoidal [and satisfy (2.2)].
Thus we attempt an expansion in the form of (2.5), with due regard to (3.3). In
(3.67a) we already know the expansion of the zero order term (3.1), so we consider

the first order term

2,232
———————I(Z,-'- D + krcosd + k7r7sin"6 ri.;m 0

Sin = [(Psme + BcosB + i §)
+ (Fcosd — Osind) kr sine} etit pikrcosd (3.68)

- 5o (M@ ang).
v=1

As in section 3.1, the radial component of this equation provides enough information
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to solve for the C7. Using (3.6), (2.3) and some recurrence relations for the Legendre

and spherical Bessel functions we find

v VD w2+ 10+ DL (3.69)

1
C i
2 viv+ 1)

<M

= —+

Combining this intermediate result with (3.67a) and the first of (3.9) we can summar-

ize the results for the first order translation coefficients as follow:

N\

vm _ v 2L + 1) [ - DU+ 2+ v(iv+ 1]

v _ V.
Im = E0u" ’
(3.70)
— - .
a"l\;nm — (_1) Val)'nm

B = - OB

Compare these equations with their zero order counterparts (3.9).

As mentioned already, the structure of the matrix equations (3.12) is unaltered.
In fact, the entire discussion in section 3.2 is directly applicable to the first order case
presently under consideration, except for an obvious modification of the matrix ele-

ments in (3.10), with a corresponding modification of (3.21), namely

g @+ d-1Dd +2)
7" 1a +1 i 2kd
v D ( (3.71)
v v(v
V=i viv+ 1) {1 + —ide

P

These will generate the translation (matrix) operators correct to first order in 1/kd.

The transcendental equation (3.24) has the same form, but now

1 3
LA d[ChP Q1

x1(6) = ii D' @+ 1) {1 - L Ui +1) - 1]} 72)
i=1 kd

which follows from using (3.71) above in (3.23). For d —e this j; reduces to its zero
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order counterpart (3.25), and the natural frequencies are as shown in Fig. 2 (for case
a =b). With the first order correction we should be able to determine the paths that
the natural frequencies follow in the complex plane as we reduce d from an infinite
value to a large, but finite value. The question is: What is the domain of | kd |
within which (3.72) is considered valid? Recall that retaining only the first two terms
in the expansion of 4,®(kd) is a good approximation only when | kd | > 1¢ + 12
(see the Appendix). The same is true of (3.72); the first order term in braces is in the
spirit of a small correction, and so must be much smaller than the zero order term,
unity. Here we take [ =/, where [, is the highest order term that still contributes
signiﬁcanﬂy to the sum (3.72). Numerically we find /( ranges approximately between
5 and 10, at least for the first few natural frequencies. This means, even in the best
case, | kd | > 15, say | kd | > 100. Then the first order correction for the (dom-
inant) / = 1 term in (3.72) is of order one percent, and the factor W,(kd) is practically
zero. Thus we cannot, with any confidence, venture very far from the d —eo limiting

case.

Nevertheless, we can use the first order information to calculate exactly the
“"angle of departure”, to borrow a term from control system theory. This is the angle
that the tangent to the natural frequency path makes with the poéitive real axis in the
d —eo limit, i.e., the initial direction the path takes as d is made finite. Using (3.62)

we can rewrite (3,72) as

1

x1(0) = d Mm©), (3.73)

kd

L+ —-5—} 1) -

where ¥{? is the zero order approximation (3.25). For d large let us set k = ko + Ak,
where | Ak/kol < 1 and %x{O%kya) = 0, so that 1 Oka) = 1Y (koa) Aka, the prime

indicating differentiation. In the case a = b the transcendental equation tells us
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X1tka) = p/W (kd) [see (3.48)]. Using this information in (3.73) and taking the limit-

ing form as d —>e we find

1 Mitkea) B
kod % {(kqa)

1

A =
ka kod

(3.74)

The angle of departure is the angle of the complex number Ak, plus 90 degrees, which

is a function of the particular natural frequency sy = ikc.

Notice that the angle of departure is independent of the parity p, as predicted in
(3.65). This means the paths of the symmetric/antisymmetric pairs coalesce in the
limit d—seo, (Both approach the limit point from the same angle). Notice also that
(3.74) is single-valued, which implies that the number of natural oscillations is a con-
served quantity, i.e., invariant to changes in d, at least to the order of these approxi-
mations. Using (3.28) it is easy to verify that if kg is replaced with —kS, then Ak is
replaced with —Ak™, indicating that each path in the complex frequency plane has a
complex conjugate dual, as expected. Furthermore, the magnitude of Akd is a measure
of how rapidly the natural frequenéies depart from their d —ee limiting values as d is
made finite. In this sense Akd in (3.74) can be thought of as a "departure vector"
(angle and magnitude). Finally, compare (3.74) with our earlier estimate (3.65); the
extra 1/2 in (3.65) is rooted in the fact that we allowed only & to have a first order
correction - actually both k& and the natural mode coefficients undergo a first order per-

turbation.

Fig. 3 is similar to Fig. 2, augmented with the first order information. The short
line segment emanating from a zero order natural frequency is at the departure angle,

and has magnitude proportional to the departure vector.

Some general observations: The departure angle lies between about -90 and -180

degrees. Thus the initial perturbation of the natural frequencies as the spheres are
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brought closer together results in decrease frequency  and increased damping rate
| Q1. The relative importance of these two changes depends on the departure angle.
For example, for rapid (large ®) high Q (small | Q) free oscillations the departure
angle is closest to -90 degrees; the initial perturbation is dominated by a change in fre-
quency ® over change in damping rate. Furthermore, the overall magnitude of the
departure vector tends to be largest in this case. On the other hand, the natural fre-
quencies on the real axis can only change in damping coefficient Q, and so have a
departure angle equal to -180 degrees. (Of course zero degrees is also conceivable, but
does not seem to occur in reality). A change in frequency ® is not possible because of
conservation of number of free oscillations, and the fact that | %1 | is symmetric with

respect to the real s -axis.

The natural mode coefficients are still given by (3.45), where the U;; are now
given by (3.71) instead of (3.21). Recall the extra 1/2 in (3.65). We derived this
result under the simple-minded assumption that BZ and BY in (3.49) were the same as
in the zero order case; then (3.65) was the first order correction to k& necessary to pro-
duce the desired result (3.54) (with z = 0). It can be shown that if we were to repeat
the derivation, but this time using the first order correct BX and B¥ we would find the

correction to £ given by (3.74) instead of (3.65).

Recall that in our discussion of the natural modes in section 3.4 we described the
behavior of the fields on the axis connecting the two spheres. In particular, Ef, ,
given in (3.54) is correct in the neighborhood of sphere A in the limit d —eo, What
can our first order corrections tell us about the interaction fields for 4 large but finite,
especially the paraxial behavior? In general

Ef, =3 |BLNGY +BIMD]. (3.75)
=1
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Using the multipole fields in (3.67) and the B coefficients in (3.49) for the case ¢ = b

this becomes

! . ]+9%(x iiy)}, (3.76)

Effc, =i e {(f + if) [1 + 1 [z w2
B—A -

which is valid in the neighborhood of sphere A and up to first order in 1/kd. Note
that (x +iy) = pe® and (£ + i) = (B £ i) e*%, showing explicitly the e ® azimu-
thal dependence. Compare (3.76) with its zero order counterpart (3.54) obtained by

letting d —>o.

On the p = 0 axis (3.76) reduces to the usual (3.54) times the first order comrec-

tion factor

414 % +0Wd™, (3.77)

;=

where r’ is the distance from the center of sphere B to the observation point. This

correction comes from the inverse distance factor common to all spherical waves. If

z =0 also, then r =0 and EJ"°,, of course reduces to i (£ % if).

For the paraxial case let us first rewrite EJ™ ,in the more revealing form

e —ikr’

kr'

Ej* L i) et

B5A = W (3.78)

which, when expanded in powers of 1/d reduces to (3.76), correct up to first order
terms. Recall that the primes here refer to the O’ coordinate system centered on
sphere B. The origins of the various factors in (3.78) are suggested by inspection of
the multipole fields (2.3) and the limiting forms for the Legendre functions as 6'—m,
particularly the transverse (to £) polarization term (&' —+ i¢’) "¢, The radial
dependence is clearly a spherical wave, whose exponentially large magnitude in the

region of sphere A is tamed by the factor [W(kd )™ - a direct manifestation of the
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destructive interference process.,

Unfortunately | EFS,, | in (3.78) does not exhibit any dependence on ©'; to this
order of approximation | Ej | is spherically symmetrical about O, at least in its
intended domain, and so does not reveal any interesting paraxial behavior. As
expected, in this |m | =1 case & dependence is a second order effect [see (A.3) and
(A4) of the Appendix]. Nevertheless, we can speculate with great confidence that for
r =d (r =d) the magnitude of the field radiated by sphere B (A ) has a sharp global
minimum at 8’ = x (6 = 0); the conditions for appreciable destructive interference are
not satisfied elsewhere. Together with our previous discussion about the behavior of
the fields on the axis connecting the two spheres (section 3.4), we can now envision
the energy density being at a minimum in the vicinity of the spheres, and (more or
less) increasing with radial distance from either sphere. This is consistent with energy

being radiated out to infinity with the passage of time.

The calculation of second and higher order correction terms quickly becomes
unwieldy. Most importantly, correction terms beyond first order destroy condition
(3.3) and thus the simple coupling structure of (3.12) no longer obtains. Although
these changes in coupling structure may provide useful physical insight, we have

instead committed our time to the solution for cases |m | # 1.
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CHAPTER 4: CASE |m| 21

In chapter 3 we discussed the case |m | =1 in great detail. We now have a
good understanding of the physical principles behind the free oscillations of the elec-
tromagnetic fields in the presense of two conducting spheres, at least for unity azimu-
thal number and large sphere separation. The case Im| >1is qualitatively the same
in many ways, but there are some important differences. This brief chapter is a formal
collection of the results for all cases | m | = 1, with an emphasis on these differences.
The overlap with the | m | =1 case provides a double-check of the results in chapter

3, since the two sets of results were actually derived independently of each other.

From the outset, all derivations and results in this chapter are correct to first order
in 1/kd. Notation: Because of cylindrical symmetry most quantities depend on | m |
rather than m, so we shall write 1 in place of m/ | m | to emphasize the dependence
of this quantity on the sign of m. In other words, we have set m =+ | m |, which is

consistent with the usage of the double sign in chapter 3.

4.1 Translation Coefficients

As in section 3.5 we can show that in the vicinity of sphere A [as defined in

(3.66)]

(+ |ml)
- Tml)

i ml|- ikz . 1
-{(kpei")' -1 ik (fi19)+ESzm}

M/L('i) =+ l-—1'+|m | Wm(kd)

(4.1a)
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N® =+ MWD, where (4.1b)

2.2 .
M0 e K52 e

) (kpeii¢)|m | -1 ek

Sin = [(f + i)
4.10)

z|m| e—lkd

2lmb(m | =)t ka)Im 1

W, (kd) = (4.1d)

all correct to first order in 1/kd. Compare (4.1) with (3.67), to which it reduces in the
case m = 1. The most important difference is the
(k peii‘b)lm -1 _ £ (x £iy )]l’” f-1 factor, which makes even the zero order mul-
tipole fields in this region nonuniform helical waves for | m | > 1, as opposed to uni-
form plane waves for | m | = 1. This will of course directly affect the form of the
interaction fields Eff°,, and E{",, (discussed in section 4.3). For |m | >1 M’ and
N’ vanish on the axis connecting the two spheres, which we originally suspected may
make the coupling weak or even negligible. Furthermore, notice the extra inverse
(kd) Im 11 factor in W,, over the W case. However, we now know that the strength
of coupling is dominated by the exponential growth factor in W, (kd), so that the indi-
vidual partial waves striking the spheres still have enormous amplitudes, except in an

“epsilon neighborhood" of the axis.

As a double-check we can verify that the M’ and N’ in (4.1) are solenoidal and
satisfy (2.2). (4.1b) implies, as might have been expected, that (3.3) holds for all

lm| > 1, namely

Bl =+ olm. (4.2)

As usual, this allows us to write
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p-MBD=x T olnp N 4.3)

Setting

m oo irlml Gt Im DU 1 [ © (1)]
ovm =1 (- lmDy vov+1) Wi kd) |Cy7 +CV7 4.4

in (4.3) and rearranging yields

{(kr sme)lm | gikreosd | 2 k [(kre"’m(’) £ S,m]}

(4.5)
1

© , 1
Cv kd

> c

v=|m |

Jytkr) P (cos6),

where C{® and C {1 are unknown coefficients to be determined.

For the zero order part of (4.5) we write

m | Im| _ di=mt
LHS. =i~'™! (sinG)'"™ ———— o thr cosB
d(cosf) '™
=imlml S Q1) jykr) PP (cos8),

v=lm

where we made use of (3.6). Thus
c®=p-lmluen). (4.6)
For the first order part of (4.5) we write [see (4.1¢)]

1|+

LHS. =
S kd i2

2 .
+(lm| +1) krcost + _(i‘f_?_lg@l_} (krsine)]m | gikrcosd

where the factor (krsin®) Im | gikreos® is the same as the zero order part. After a cou-

ple of pages of tedious algebra and recurrence relations we find

e e LD+ Im Do+ Iml +1)
Y i2

4.7)

Using (4.6) and (4.7) in (4.4) finally yields o7,
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The translation coefficients are summarized below:

~

- 823 el v [ Uslabis gl neses )
=t o >
ot = (DI o @9
W= =D BT
Compare these equations with (3.70) for |m | = 1. As mentioned already, the extra

inverse (kd)[’” -1 W,, over Wy makes the coupling slightly weaker, but by no

means negligible! .
Again the entire discussion of the solution in section 3.2 applies, in spirit, to the

present case, with obvious modifications in notation to accommodate the increased

generality |m | = 1. For example, W, becomes W, , et cetera. Further, (3.21)

becomes
_g @+l (-ImbDu+lml +1
Un =8 10+ [1 i i2kd |
( (4.9)
R (N VU D U PR )
im v— lmi) i2kd |’
Compare these with (3.71) for lm | =1. By (4.9) and (3.17) we have
X =VEITQ U, = ; : Ui Vim T1©) (4.10)
I=lm

Lo

)y

I=|m|

Ql+1 ¢+ Iml)

_iytm—-1
T (=T

=i

1

. A0 + D - 1mldm | +D
+ 2 (2) ’
ChUE) 3ICh O]

i2kd

which is to be compared with (3.72). The transcendental equation for the natural
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frequencies is
[W,, (kd )1? X, (k) % (kD) = 1, (4.11)

an obvious generalization of (3.24).

4.2 Natural Frequencies

In the limit d —co we write, in the usual notation,

@+ ¢+ 1m)
I+ d-1Tmh

@ =200 =i 3 ! (=1yH+m-1 (4.12)

I=|m

1
ChiPE) B[P O]

©) i qualitatively very similar to %{?, the most important difference being the loca-
tions of the zeros (all of which are first order, as in the lml =1 case), We know
that in the limit d —eo, & in the lower half complex plane means W,, (kd )—0 so, by
4.11), x,f,?)(kr)——)oo, where r =g or b. But x,f,?)(?;) has the same poles as xl{o)(C) -
only in the upper half {-plane, and at all other points in the finite {-plane the series in
(4.12) is absolutely convergent (easily proven as in section 3.3). Thus there are no
solutions to (4.11) for k in the lower half plane (s in the right half plane). The reason
we emphasize this fact is that, unlike X1, X (Iml>1 apparently has some of its
zeros in the lower half {-plane. Usually, singular points in the mathematics (like
zeros) indicate important physical phenomena; in this case, however, these lower half
plane zeros appear to have no physical meaning. (Indeed, if they were solutions they

would imply free oscillations which grow exponentially with time).
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Of course the zeros of ¥ P({) in the upper half {-plane still furnish the natural
frequencies through (3.32) (for case a = & and d —ee). For brevity, in this chapter we
consider only the case @ = b; the case a # b is a straightforward extension of these

results [see chapter 3, in particular (3.43)].

As in the case |m | = 1, the usefulness of the first order correction term in
(4.10) is practically limited to determination of the departure vector. Inspection of

(3.62) reveals that we can rewrite (4.10) as

_ _ lml(lm|+1) (©) _(_1)tm|—1
X © = |1 i 2kd A @) = == M, €. (413)

In analogy with the | m | =1 case, we set k = ko + Ak, where kg is a solution when

d—»eo, and find that in the limit of large d

|m|-1 k
(-1) N ko) 1
Aka = =0|-—|. 4.14
¢ kod x}g?)'(koa) [koa' } @.19)

Compare this with (3.74). Notice that the departure vector Akd does not depend on
the sign of m, in accordance with the basic degeneracy over sign of m; nor does it
depend on the parity p. Incidentally, for the purpose of calculating (4.14) we find for

the derivative of % M():

O - i qyemel QLD+ [m )
m®=- % D U+ D (= Tmt

I=|m

(4.15)

. {{l(l RVt N }
CHIGA(9)) N (€ (41
Figs. 4, 5 and 6 are the same as Fig. 3, except they show the natural frequencies
and departure vectors for | m | =2, 3, and 4, respectively. We must stress that in
these figures we are actually showing the zeros of x,g)); as discussed already, only the

zeros in the left half s -plane can be considered natural frequencies, the others are
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Fig 4: Natural frequencies and departure vectors for
d—eo, a=b, m=42.
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Fig 6: Natural frequencies and departure vectors for

d—e, a=b, m=+4.

- 61 —



apparently meaningless. The reason for their inclusion will become clear in chapter 6

where we compare all m cases iri detail.

Figs. 3 to 6 are qualitatively similar except for two general differences. The first
is the migration of the first layer zeros towards and into the right half s-plane with
increasing |m |. For Im | =1 all of the first layer zeros of %{? are in the left half
plane and hence constitute natural frequencies. For |m | =2 the first four zeros of
x40 are in the right half plane, but the fifth (and tﬁe sixth, and probably all higher
ones not shown) lie in the left half plane. The numerical evaluation of ¥%{% (and all
other x,g))) was done very carefully to virtually rule out possibility of numerical error
of any description. This "partially in the right and partially in the left half plane”
behavior of the |m | =2 first layer zeros is very curious indeed. For |m | > 2 all
the first layer zeros appear to be in the right half plane; it is not known whether zeros

higher in the layer eventually make their way back to the left half plane.

Inspection of Figs. 3 to 6 reveals an alternative way of classifying, or grouping
the natural frequencies. Instead of layers, we notice approximate quarter-circle arcs
centered about s = 0. In Fig. 3 the first arc has three natural frequencies, one being
on the real axis. The second has four natural frequencies, and so on. Thus the second
general difference between Figs. 3 to 6 is that the first arc starts further from the origin
for increasing | m | . This behavior can be linked with the fact that the sum in (4.12)
begins at / = | m |. The /'™ term in this sum has poles that occur approximately in
an arc (the electric and magnetic natural frequencies of a single sphere, see ahead to
Fig. 10). The ! =1 arc is closest to the origin, and for / =2, 3, - - - the arc radius is
an increasing function of /. Thus the sum in (4.12) is missing the / < | m | arcs of
poles closest to the origin. The observed fact that the zeros of % prefer to be inter-

spersed amongst the poles then explains the aforementioned behavior.
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We have discussed Figs. 3 to 6 in a rather descriptive way, preferring to leave the
more meaningful speculation and physical insight to chapter 6, where we compare

natural frequencies for all m cases.

4.3 Natural Modes

The natural mode coefficients are still given by (3.45), with U replaced by U,,,.
Notice that the U,,, in (4.9) depends on | m | only to first order, so in the limit d —eo
the form of the coefficients is independent of |m | (but of course the values ulti-

mately depend on the particular natural frequency and sign of m).

For the interaction fields we find

E}_I?HE)A =i|m| (kpeii¢)!m|—1 ek (4.16)

J+9%(xiiy)}.

Compare this with (3.76). The most important difference is the factor (kpeti®)ylm -1

-{(ﬁ?iiﬁ) [1+% []miz—ik%z—

which, of course, makes even the zero order interaction fields nonuniform helical
waves, just like the partial waves in (4.1). It is these differences in interaction fields

for different | m | which are responsible for the different sets of natural frequencies.

(4.16) can be written as

S o L 1
Bot T o Tm T m [ =1y W (kd)

ik
O —+ i§) eimo f? (sing”) | 1-1¢4.17)

Compare this with (3.78). Recall that '~ as in (3.66); the factor (sin®’)” | =1 dom-

inates the paraxial behavior, and indicates the null that the natural modes have on the
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axis connecting the two spheres when Im | > 1.
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CHAPTER 5: CASEm = 0

Chapters 3 and 4 dealt in detail with the solution to the coupled equations (2.8)
for the cases | m | =1 and large sphere separation. Here we discuss the only remain-
ing case, namely m = 0, wherein the fields have no azimuthal dependence. We shall
see that the structure of the coupled equations (2.8) is markedly different from what
we have seen before. In particular, the electric and magnetic multipole fields do not
couple and so the natural modes are no longer hybrid. Some features of the solution
will be familiar, but there are many interesting differences. As with chapter 4, this
brief chapter is a formal collection of the results for the case m = 0, with an emphasis
on its unique features; we shall try not to belabor the discussions of concepts already

introduced. As usual, all calculations are carried out to first order in 1/kd.

5.1 Translation Coefficients

For m = 0 the multipole fields in (2.3) reduce to

M = = 6 20%r) 3P, (cosh)
. . _ (5.1)
N = # é 2Dy L( + 1) Py(cos) + 6 % 3, [rz)(kr)] 3gP; (cost),

where / = 1,2, -+ As usual, we begin by finding expressions for the fields M’,(g)

and N’f§ emanating from origin O” (sphere B) in the vicinity of sphere A :
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M =6 i1 1 + 1) Wolkd) €™ kp (5.22)
_ 1 g+ 9
[1 + v > + 2kz + H
N[ = @8 — ikpP) i1 I + 1) Wokd) ™ (5.2b)
, 1 g+ k%p?
[1+kd { 2 + 2kz + 7 +><q>ka

A . g
where x¢ means "cross-product with ¢", and

1 e—ikd 5
Wolkd) = — — (5.2¢)
’ 2 (kdy?
Comparing (5.2) with (4.1) we see several similarities with cases |m | =1 and 2,

e.g., the [(I + 1) factor, the kp factor in (5.2a), the 2kz term in the parentheses on the
far right of (5.2a,b), and the inverse (kd )2 factor in (5.2¢). It must be stressed that
these similarities are purely coincidental. The fact that the nature of the m = 0 case is
fundamentally different from that of the | m | =1 cases is based on the following
observations: (i) all m = 0 fields have cylindrical symmetry about the axis joining the
two sphere centers, (ii) M’ and N’ in (5.2) are linearly independent vector fields, as
opposed to the simple relationship in (4.1b) (to this order of approximation), and (iii)
W,, in (4.1d) does not extend naturally to the case m = 0; in fact (1! = IT'(0) is not
defined which, together with (ii), leads us to suspect (correctly) that the basic structure

of the coupled equations (2.8) is not of the same form as (3.12). W as defined in

(5.2¢) is completely independent of W, defined in (4.1d).

In the vicinity of sphere A, and to zero order in 1/kd, the magnetic multipole
M’'{§) is a transverse ($ polarized) nonuniform plane wave which vanishes on the z-
axis, whereas the electric multipole N’,(g) is approximately a longitudinal (radially

polarized) wave which does not vanish on the z-axis. It is easy to double-check that



both fields are solenoidal and satisfy (2.2). Thus we attempt the usual expansion
M = 5 [l + BING . 53)
v=1
Examining the radial component of both sides of this equation reveals B3 = 0 for all

A . . .
v,.. Only a ¢ component remains and we find, after some manipulations,

2,202 oo
1+ L M + 2krcosB + _lg_r_s_m_e_ > iV @2v+ 1) jythr) Pl (cosO)
kd i2 i2 v=1 (5.4)

1 .
C,0) + “d c51>J Jokr) Pl(cose),

=2
v=1

where we have set

wlf =i 1U + 1) Wkd) |CO + "/EIE c (5.5)
and made use of (3.6) and the fact that dgP ,(cosB) = — P\} (cosB).
For the zero order part we obviously have
CO =iV v+ (5.6)

For the first order part we can save ourselves some effort by recognizing the similarity

with the case | m | =1 [see the discussion following (4.6)]. Thus we have

C(l) =C(G) [l(l + 1)+ v - 1)(V+2)]

) (5.7

the same as (4.7) (coincidentally).

The translation coefficients for m = 0 are summarized below:
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[ = DU +2)+v(v+1)]

ofg =iV Q21 + D) (v + 1) Woka) {1 + & i 2kd

3.2 Solution of the Coupled Equations

As usual we define the matrix elements

oy
Figd s ———=UyV
0Lfv()
v 10 =~ =v0
= = (-1) F
0= W kd) 10 J

so0 that in matrix notation

F=UVI }
F’=JFJ,

where, for/,v=1,2, - -

3

o : (- D +2)
Up=i' @ +1) [1+ T J

i2kd

V=i viv + 1) {1+ MJ

The coupled equations (2.8) become
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(5.8)

(5.9)

(5.10)

(5.11)



AE(ka)AE = W FBE
Al (ka)AH = wFBH
AE(kb)BE = W JFIAE
A" (kb)BY = W oJFIAY

( (5.12)

Compare these with (3.12). As suspected, the coupling structure here is completely
different from that for the cases |m | = 1. Here the electric multipoles from one
sphere will couple only with electric multipoles of the other sphere, and similarly for
the magnetic multipoles. This is obvious from the right hand side of each set of equa-
tions in (5.12) which, we recall, represents excitation from the opposite sphere. Thus
the first and third sets of equations (electric) can be solved independently of the second
and fourth (magnetic), yielding two distinct types of free oscillation for m = 0; there
are no hybrid modes. Notice that this coupling structure obtains for amy sphere
separation, not just d —eo. [(5.1) implies M’ and M’} have only a 23: $’ com-

ponent, so by (5.3) ng = 0 for all d]. The same cannot be said of (3.12).

At this point it is expedient to review some distinguishing propérties of the elec-
tric and magnetic multipoles. The magnetic multipoles M do not have a radial com-
ponent. Furthermore, with m = 0 M has only a $ component. Thus the electric field
of a magnetic free oscillation [(2.4) with Af = 0=BE and m = 0] has no field line
terminating perpendicular to the surface of either conducting sphere, which implies no
net surface charge. By the surface continuity equation we then conclude that the sur-
face current is divergenceless; in particular, the lines of surface current form closed
Ioops in the $ direction only. On the other hand, the electric multipoles N have a
radial component, so that the electric free oscillations are associated with a net surface

charge (locally).
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As already mentioned, the first and third set of equations of (5.12) correspond to

the electric free oscillations. Making suitable substitutions we find
AE = (QFWAE, (5.13)

which must be valid for any N € (1, 2, ...}, and where the matrix

QF = (Wo)? [AE (ka)1' FJ [AE (kb)Y FU. (5.14)
Using (5.10) we find
©F) = | o2 1Etka) )] oF, (5.15)
where the scalar
1B = VE T AEQI Uy = é DUV AFGT (5.16)
=§‘1 DPQEADIC+TD) (1= kid [ +1) - 1}] %

[see (5.11) and (2.8)]. (5.15) together with (5.13) imply the transcendental equation

[W o(kd ) xE(ka) xE(kb) = 1. (5.17)

The second and fourth set of equations in (5.12) apply to the magnetic free oscil-
lations. They differ from the electric case only formally by the interchange of super-
scripts E «— H, and thus we need not repeat equations (5.13) to (5.17). Notice,

however, that (5.16) becomes

XO(C)—Ei(l) @ +DIC+D 1= = U+ - 1] W00 (5.16)
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5.3 Natural Frequencies

In the limit 4 —e we write, in the usual notation,

o I[Ljr (D]
E 0.Efy = ! 9
©->x"* Q=% D' @ +DIC+1) — 2
X o Ei A LCh (0]
Ji(©) [ G118
WO = 14O =% 1 @+ i¢+1 2L Prones
i=]

s

As in section 3.3 we can show that x{™#({) and x§™#(0) are meromorphic functions;
the poles, occurring exclusively in the upper half {-plane correspond directly to the set
of electric and magnetic m = 0 natural frequencies of the singly sphere, respectively.
The union of these two sets of poles is thus the same set encountered in the cases

[ml 21 Using (3.28) (which also applies for j;) we obviously have

A = QT (5.19)

which applies for both electric and magnetic cases. Finally, as d —eo Wy(kd )—eo for
k in the upper half plane, but vanishes elsewhere (except at the origin, where xéo) has
a third order zero, with similar consequences as discussed in section 3.3). These facts,
together with the transcendental equation (5.17) allow us to conclude that the upper
half plane zeros of x§(¢) (which are all first order) are symmetrically disposed about
the imaginary {-axis and furnish the m = 0 natural frequencies through (3.32). As

usual we need only consider the case g = b.

We now use the first order information to determine the departure vectors. We

write (5.16) in the form

%@ =

1+ —} x$PEE) - né”(C) (5.20)
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where we have defined

o [8i1 (O]

(5.21)
CALT(8)

nEQ =i Y (1Y @+ 1[I+ P
I=1

which is completely independent of the previous mn,, defined in (3.62). As usual we
now set &k = kg -+ Ak, where kg is a solution when d—ee, and find that in the large 4

limit

Aka

E
1 nfke) [1 ] (5.22)

Tkl (O Gga) | ked

Notice that the departure vector is again independent of the parity of the natural mode

(a =b).

For the magnetic case we simply replace the superscript £ with H; (5.21)

becomes
N =1 3 D' @+ DI+ DP O (5.23)
I=1 (@
For the purpose of calculating the departure vectors we find for the derivatives:
OEr iy _ I [1-1¢ + DA
X =i DRI+ DIE+ D
: z:zi [B¢ LGP 11
o oo [ I [ (524
X0 M =i DR+ + ) ——
A (Ae(e)k

Figs. 7 and 8 display a few of the lower order m = (Q electric and magnetic
natural frequencies and relative departure vectors. Again we stress that the right half
plane zeros of xéo)'E (the first layer, or perhaps only part of it) are not natural frequen-
cies. Notice that xéo)'H has no right half plane zeros. This is a curious difference

between the two cases.
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Fig 7: Natural frequencies and departure vectors for
d-e, a=b, m=0 electric type. For comparison
the natural frequencies of a single sphere are

indicated as y(electric).
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Fig 8: Natural frequencies and departure vectors for
d—es, a=b, m=0 magnetic type. For comparison
the natural frequencies of a single sphere are

indicated as x(magnetic).
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In Fig. 7 we observe that the m =0 electric natural frequency layers are
"sandwiched" between the layers of electric natural frequencies of the single sphere
(poles of %§¥F), at approximately the location of the single sphere magnetic layers.
This latter layer would represent poles, but are of course not present in the sum X(SO)'E.
Similar comments apply for the m = 0 magnetic natural frequencies in Fig. 8. This
sandwiching of layers of zeros of ¥ between the single sphere pole layers behavior has
already been observed in cases | m | =1, see for example Fig. 2. We shall take up

the discussion of the natural frequencies again in chapter 6.

5.4 Natural Modes

Starting with (5.13) (with N = 1) we find
AE = {[Woorcd)}2 &by vE g AE} [AE (ka)™! U, (5.25)
BE follows from (5.12). Setting the scalar in braces to unity yields

AE = [AB(ka)] Uy

BE = Wokd) x§ka) [AE (kb)I U (5.268)
or to Wolkd) x&(kb) yields the dual form
AL = Wlkd) x§kb) [AE (ka)]™ Uy
(5.26b)

BE = [AE(kb)L JU,

These are the m = 0 electric natural mode coefficients. Their (independent) magnetic

counterparts are formally obtained by replacing superscript £ with H. (Of course the
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allowed values of & are determined from the set of electric or magnetic natural fre-

quencies, respectively). Compare (5.26) with (3.45), which is very similar in form.

In the case @ = b the transcendental equation (5.17) implies
Wolkd) xEka) = p, (5.27)

where p =21 marks parity as before. Then by (5.26a) the electric natural mode

coefficients become

AE = [AF (ka)™' U,

BE =p [AE (ka)1 TV JU,, (5.28)

and similarly for the magnetic case. For all cases |m | > 1 p =1 indicated
symmetric/antisymmetric natural modes. It turns out that the same rule applies for the
magnetic m = 0 natural modes, but the converse rule must be used in the electric case.

The proof runs along the same lines as in section 3.4.

The interaction fields for the electric natural modes are found from
Eff =3 BEN =3 UoNR. (5.29)

The latter equality follows from using (5.28) and the matrix equations (5.12). This

may be cast into a more explicit form by using (5.2b), namely

kZp

i

1 2

Eje®) =i 28 - ikpP) e {1 t o {Zkz +

+ %6 kp] } (5.30)

Notice that on the axis this field has only a longitudinal component (£). Perhaps our
point is better illustrated by writing (5.30) in terms of spherical coordinates (about O”),

namely
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: ing’ j 1 e
Eic &) = (o SO a0 © . 5.31
B—A [ 2 k' | Wokd) & (5.31)

The transverse component vanishes on the axis, allowing the longitudinal component
to show itself as a first order correction. This is typical paraxial behavior for the elec-

tric field of an m = 0 electric multipole.

For the magnetic natural mode interaction fields we find the following various

expressions:
B =3 BAM(Q = 3 UoMf. (5.32)
=1 =1
1 k2p2
=0 ikpe™ 1+ — |2kz +
bikpe { k|77 T2 ”
_ A, isin®’ 1 e

2 Wykd) &kr

The magnetic interaction fields have only an azimuthal component which vanishes on
the axis - typical paraxial behavior for the electric field of an m = 0 magnetic mul-

tipole.

In analogy with the |m | > 1 cases, the inverse Wo(kd) is a direct manifestation

of the destructive interference process, which tames the exponential growth in e ™%

It is interesting that EF°E) and Ejf*,4) are duals of each other in the sense that

VX EFSP = £ EEYD

Vv x Eénig{) =k Eéni)l(f)- (5-33)

This property follows directly from (5.29), (5.32), and (2.2). That this property holds
for all sphere separation d should be obvious. [Actually the equality in (5.33) should

be replaced with a proportionality sign since electric and magnetic m = 0 natural
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modes are independent of each other. Furthermore, recall that the allowed values of k
differ between electric and magnetic cases and so (5.33) is only formally correct.]
Nevertheless it does illuminate how the coupling is related between electric and mag-
netic m = 0 free oscillations, and can also serve as a double-check in a numerical

investigation.
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CHAPTER 6: DISCUSSION AND CONCLUSION

In the previous chapters we discussed the free oscillations of the two-sphere
geometry for large sphere separation. As directed by the equation structure we divided
the discussion according to azimuthal dependence number m. Now we wish to unify
and extend our understanding by considering the natural frequencies for all m values
collectively, and try to identify or classify them according to possible relationships or

correspondences with the single-sphere natural frequencies.

In Fig. 9 we have collected together a few of the lowest order natural frequencies
for |m]| = 0,1, 2,3, and 4. We immediately notice a tendency of the natural fre-
quencies to occur in groups, or clusters as we shall call them, A cluster is delineated
by a closed dashed curve. We can label or identify the clusters by their layer number
(n =0,1,2, -+ beginning with the rightmost layer) and their arc number
(/ =1,2, -+ beginning with the arc closest to the origin). The layers and arcs form
a grid with the clusters approximately at the nodes as sketched in the figure. The clus-
ters become less compact as n decreases and / increases. We stress again that the
zeros of x,g?) in the right half s-plane are not natural frequencies, but have been
included to display the pattern of zeros as clusters. Many transcendental equations
have solutions where, for example, two functions intersect, or overlap; here we are
interested in the intersection of the left half s-plane with the zeros of x,&o). It just so

happens that some of the zeros in the » = O clusters are excluded.

Except for the n = 0 layer, the In™ cluster contains 2/ + 1 natural frequencies,
including degeneracy over sign of m, i.e., includes cases m =0, +1, --- , #/. Let us
denote these natural frequencies as s,‘”‘ |, In identifying the cluster and

7

Iml =01 --,1 identifying the natural frequency within that cluster. n even
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(odd) indicates that the m = 0 natural frequency is of magnetic (electric) type. Notice
that the n = 0 layer is not compatible with this classification scheme, and we tem-

porarily ignore this special case (reserved for later discussion).

In Fig. 10 we show the first four arcs of electric and magnetic natural frequencies
of a single sphere. As in Fig. 9 we label these arcs as / = 1,2, - -+ The layers are
labeled with the index n again, but starting with n = 1 instead of n = 0. Then n even
(odd) indicates a magnetic (electric) type of natural frequency as before. We denote
these natural frequencies as s;,. The lack of superscript | m | emphasizes the degen-
eracy over m: A given s5;, corresponds to the natural modes M{M(k, r) or Nk, )
form =0, x1, - -- , %/, according to whether n is even or odd, respectively.

We now speculate that the single-sphere s, corresponds directly to the two-
sphere s,nl m | cluster (ignoring the n = O clusters). The nature of this correspondence
and the reasons for its plausibility are now discussed. Consider for instance the n = 2
(magnetic) / = 1 (dipole) free oscillations of the single-sphere. The normalized natural
frequency is sjp,a/c =—-1+41i0 and the natural modes are Mfﬁ?(klzr) for m =0, £1
(3-fold degeneracy). Specialize further to the m =0 case:
M{P ko) = $ h{® (ir/a)sin® is the electric field, which is symmetric with respect to
reflection in the z = 0 plane. The surface current forms closed loops in the $ direction
and has functional dependence sinf - a magnetic dipole oriented in the £ direction.
Now suppose we continuously deform the sphere into a prolate spheroid, for example,
or any other body symmetric under rotation in ¢ and reflection in the z = 0 plane.
How will this change the natural frequency and the natural mode? Or, more impor-
tantly, what properties will remain invariant? We propose three intuitively obvious
invariants: (i) parity (symmetric or antisymmetric under reflection in z = 0 plane), (ii)

electric or magnetic type (applies only in m = 0 cases), and (iii) s on real axis (only
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for those that start on real axis).

Pertaining to the first property we notice that the new body (deformed sphere) is,
by hypothesis, still symmetric under reflection in the z =0 plane and so the natural
modes still have definite parity. It seems unlikely that a natural mode will suddenly
flip from one parity to the opposite parity at some "critical object shape". We have
not found any evidence to contradict this in any of the SEM literature. The invariance
of type, electric or magnetic, for m = 0 free oscillations follows from the fact that the
m = 0 electric and magnetic equations for any rotationally symmetric geometry decou-
ple (are independent) [7]. We observed this phenomenon in section 5.2 where we
found that the "decoupled structure” of (5.12) applies for any sphere separation.
Finally, the idea that an s on the real axis will always remain on the real axis was dis-
cussed in section 3.7 in connection with the departure vector in (3.74). It also appears
to apply, for example, for the prolate spheroid as the aspect ratio is varied, at least for
the m = 0 electric free oscillations [7]. It seems plausible that this invariance is quite
general, and we assume as much for the present discussion.

Now back to the magnetic dipole, m = 0 case: Suppose we continuously deform
the sphere by pinching it around the equator until we have two identical, separated
spheres. Then let the sphere separation d—oo. According to our invariances, the
deformed natural mode will still be of m = 0 magnetic type (currents circulating in $
direction), even parity, and s on the real axis. It is plausible that the S102 natural fre-
quency in Fig. 9 is that new s (compare with the original s,, in Fig. 10).

The remaining single-sphere natural modes beIonging to 515 are the M{}(k,r)
magnetic dipoles for m = 1, which have odd parity, We expect the parity and "s on
real axis" invariances to apply again, but since m # 0 the new natural modes should be

hybrid. Furthermore, the cylindrical symmetry means that the degeneracy over sign of
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m will not be lifted. Thus, as we deform the single-sphere into two identical infinitely
separated spheres it is plausible that the single-sphere m = *1 magnetic dipole modes
deform into m = 1 odd parity hybrid modes sharing the natural frequency sfz in Fig.
9. In summary, we are suggesting that as the single-sphere is deformed continuously
into two identical infinitely separated spheres the 54, natural frequency in Fig. 10 splits
into the 31[2'“ | cluster in Fig. 9, the degeneracy over | m | having been lifted, with

corresponding changes in the natural modes as discussed.

The same type of analysis can be applied to the other clusters on the real axis.
Under the same geometry deformation, the s;;,; natural frequency in Fig. 10 splits
into the sllltf‘ll real axis cluster, where |m | =0,1, -+ , I, the degeneracy over
| m | having been lifted. Also, the m = 0 types, electric or magnetic, of each cluster
are correct. Furthermore, we observe that the s,f,ﬁfil cluster is always immediately to
the left of its 5; ;,; "origin", but always to the right of 141,142, 1.€., its extent is always
confined to the real axis between two adjacent single-sphere natural frequencies. We
propose that the real axis clusters may always be so constrained, regardless of sphere
separation d; the exact coupled equations (2.8) always contain the factors (Af)™! and
(A‘,H)‘1 which are singular at the single-sphere electric and magnetic natural frequen-
cies, respectively, and so the latter act as natural "barriers”. Another way of thinking
about it is to recall that the natural frequencies for any sphere separation cannot occur
at (and thus avoid) single-sphere natural frequencies. This reasoning of course presup-
poses the constraint of the natural frequencies to the real axis, but it may also apply in

a loose sense to all of the clusters, and may be related to the "sandwiching" behavior

already discussed in previous chapters.

Inspection of both figures again suggests that this plausibility argument may be

extended to all of the natural frequencies (except those in the n = 0 clusters): Under
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the usual geometry deformation, the s, single-sphere natural frequency splits into the
slnlm ; cluster. The degeneracy over |m | is properly accounted for as is the m =0
type invariance (electric/magnetic). Notice that the parity invariance also applies,
where Nf) has (=1)'*" parity and M) has —(=1)Y"*" parity under reflection in the
z = (0 plane.

Thus we have a plausible theory connecting the single-sphere natural frequencies
in Fig. 10 with those of the two-sphere problem in Fig. 9. This classification, or
identification scheme accounts for all of the two-sphere natural frequencies and natural
modes except for two prominent omissions. The first is the n = 0 layer of clusters
which we have been ignoring, and the second involves (in the case a = b) the degen-
eracy over parity in Fig. 9 which we have carefully avoided discussing. Let us con-

tinue to ignore the n = 0 layer while addressing this latter problem first.

Recall that in the case ¢ = b and d —es, equation (3.31) (and its counterparts for
all m) imply that to every natural frequency in Fig. 9 (including degeneracy over sign
of m) there corresponds mvo natural modes, one symmetric and the other antisym-
metric under reflection in the symmetry plane. Apparently as d—ee the natural fre-
quencies coalesce in pairs corresponding to natural modes of opposite parity. Further
evidence supporting this type of behavior for two-object geometries is found by Marin,
mentioned in [4], Fig. 3.15, who considers two identical colinear cylinders. But when
the single-sphere natural frequency s, splits into the two-sphere cluster s,,,lm E, each
natural frequency in the cluster (including degeneracy over sign of m) "should"
correspond to only ore natural mode, the parity of which comes from its single sphere
origins according to our parity invariance property. But we observe exactly twice the
number of natural modes than our theory can account for. In the more general case

a =b the parity degeneracy is lifted - the pairs split into two distinct natural
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frequencies corresponding to the deformed symmetric (matched to smaller sphere) and
deformed antisymmetric (matched to larger sphere) natural modes, as discussed in sec-
tion 3.4. But we still can only account for half of these free oscillations; where do the

rest come from?

At first thought the source of the problem may appear to be the double sign in
(3.30). Analogous to many problems, perhaps only one choice of sign leads to a phy-
sically allowed solution and the other is to be ignored. But then for a given m all the
natural modes would have the same parity - clearly this is unacceptable. Besides,

when a # b equations (3.42) clearly indicate a twofold set of solutions.

By examining the results in [7] it is clear that our theory can be applied success-
fully to the case of a sphere continuously deformed into a prolate spheroid (at least for
the m = 0 electric free oscillations). It seems that our problem is unique to a fwo-
object geometry. Thus we are led to propose the following explanation: In "continu-
ously" deforming the single-sphere geometry into two separated spheres there is a
discontinuous change in the set of allowed free oscillations - in particular, the number
doubles over that expected from our earlier ideas. Naturally the point of discontinuity

is when the single object separates into two.

To understand how this might come about on physical grounds consider two
objects in contact at one point. For every allowed free oscillation, the electric poten-
tial must be the same at that point on both objects. Now separate the objects, even
infinitesimally, and that constraint is removed; the system has acquired a new degree
of freedom resulting in an increase in the number of allowed free oscillations. In
terms of our two greatly separated spheres this new degree of freedom manifests itself
as two possibilities: The natural frequency is either matched to sphere A or to sphere

B. When a = b these two possibilities become the degeneracy over parity. To test
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this hypothesis further we have done some preliminary work on the three-sphere prob-
lem, which indicates that there may be at least a three-fold increase in the number of

allowed free oscillations.

Thus we can now account for all of the free oscillations except those associated
with the n = 0 layer of clusters in Fig. 9. Two general features make these clusters
unique. Firstly they include both electric and magnetic m = 0 zeros of y§? instead of
just one or the other. Secondly only part of the zeros represent natural frequencies, the
rest are in the right half plane. The first five clusters have only the m = 0 magnetic
and |m | =1 natwral frequencies. The |m | =2 natural frequencies are added for
! > 6. Perhaps as / increases, higher | m | natural frequencies are periodically added
to the left half plane portion of the cluster. These unique features exclude these
natural frequencies from our earlier classification scheme and lead us to suspect that
their origins have a physically different explanation. Unfortunately, evidence of their
origins does not survive the limiting process d —<o, even to first order. It is likely that

they are again a phenomenon unique to multi-body geometries.

Let us digress for a moment to mention that the lifting of degeneracy over | m |
as a sphere is continuously deformed into another single cylindrically symmetric body
has many examples in the SEM literature (see Moser et al [9]). Since cylindrical
symmetry is the basic criterion, it should also apply for a two-body problem like two
spheres, as we have observed here (with of course some features unique to the two-
body geometry). [9] point out that this "radar spectroscopy”, as he calls it, may be
useful in radar target identification. An interesting extension of his work is to consider
how, in general, the coupling between two known targets (like two spheres) changes
the "radar spectrum” over that of the targets considered individually. Intensive analyti-

cal and numerical work should yield some basic physical insights. For example,
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suppose it is true that the electric dipole free oscillations associated with the fuselages
of two neighboring aircraft couple strongly (large changes in natural frequencies)
because they have parallel polarization, but the fuselage-wing coupling can be
neglected because the dipoles have perpendicular polarizations. Information like this
can be used to understand or predict the radar spectrum of aircraft flying in formation.
The present work represents some of the first steps in this direction, Especially useful
might be the work of Cooray and Ciric f12]. They have found the rotational-
translational addition theorem for two spheroids with arbitrary orientation. Perhaps the
far field form of this theorem is suitable to make an investigation along the lines con-
sidered here feasible. It is easy to see how even a solution for far field separation can
yield important information on how polarization affects mode coupling to change the

radar spectrum.

We would also like to comment on the fact that due to causality the strength of
coupling increases with increased sphere separation. This concerns the nature of the
free oscillations themselves and has nothing to do with how strongly an incident field
will couple to, or excite the various natural modes. This latter information comes from
solving the conjugate adjoint, or transposed problem to find the so called coupling vec-
tors (column matrices in a matrix formulation). There is a coupling vector associated
with each natural mode which, when combined with the incident field data (direction,
polarization, et cetera) yields the coupling, or excitation coefficient for that natural
mode [4].

Let us conduct a thought experiment involving transient scattering from the two-
sphere geometry. Consider an end-fire incident temporal delta function excitation
striking sphere A first. This initially excites the "early- time" response of sphere A,

which includes any response not representable as a constant coupling coefficient
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superposition of (single-sphere) free oscillations. According to Morgan [13] the scat-
tered field consists of a physical optics term and a mutual interaction term, the latter
may be represented by a superposition using temporally varying coupling coefficients
in the early-time (one possibility). But "after the traveling wave impulse has com-
pleted its transit of the body the scattered fields will be produced by undriven, source-
free, current modes and can thus be represented by a simple class 1 {constant coupling
coefficient] expansion in the late-time”. Heyman and Felsen [14], on the other hand,
feel that using temporally varying coupling coefficients in the early-time, although leg-
itimate, is artificial and instead construct a self-consistent theory linking wavefront
(GTD) analysis in the early-time with SEM (global resonances) in the late-time: "the
analysis clarifies the evolution of resonances as collective summations of multiple
wavefront fields which are caused by successive reflections or diffractions at the sur-
faces and scattering centers comprising the object”. Either way, in general terms we
may say that the free oscillations (global resonances) do not begin to dominate the
scattering response until the driven response is past and all the elements of the distri-

buted body have had a chance to mutually interact.

Now before the incident field strikes sphere B, sphere A is already entering the
late-time phase. Then the incident impulse and the field forward scattered from sphere
A excites sphere B. Notice that this does not simply excite the free oscillations of
sphere B (as an incident impulse by itself would do) because such fields have zero
tangential E and cannot satisfy the boundary conditions in light of the forward scat-
tered field from sphere A. These latter fields drive sphere B at sphere A natural
resonant frequencies, as does the impulse at all frequencies. After some time the fields
backscattered from sphere B reexcite sphere A, and so on. Multiple such scattering

events must eventually synthesize the global two-sphere free oscillations discussed in
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this investigation. In fact, Morgan’s [13] ideas should also be valid in the two-body
case, which means that immediately after the impulse has passed sphere B, the scat-
tered fields can be represented by a constant coefficient sum of the two-sphere free
oscillations. The fact that one sphere is actually driving the other, and vice-versa, is
no different from the interaction of currents via fields on different parts of a single
body - as for any geometry, the two-sphere free oscillations are source free fields that

satisfy the appropriate boundary conditions.

The main point is that multi-body problems amplify the mechanisms involved in
the early-time dynamics. A multi-body problem is no different from a single-body
problem except for heavy emphasis on causality conditions concerning interactions
between various elements. The larger the separation between the bodies the longer the

definition of early-time and the synthesis of global resonances.

The second point concerns the practicality of our free oscillations for large sphere
separation d. Certainly if we place a detector in the vicinity of sphere A the effects of
sphere B on any scattering process must vanish as d —e: The early-time becomes so
long (multiple scattering events become weaker and occur less frequently) that by the
time free oscillations dominate the response (late-time) they have extremely small
amplitude, i.e., as d —o not only do we have to wait an infinite time for the coupling
coefficients to become operative, they also vanish. (It is also true that the largest of
these coupling coefficients should be for |m | = 1 free oscillations). The global reso-
nances exist for any geometry, however small their effect. Umashankar et al [10]

makes the same observation concerning a finite wire above a parallel ground plane.

Some of the questions raised in this investigation might be answered by a detailed
numerical solution of the original equations (2.8) when the spheres are in the near field

of each other, and so this represents the next logical step. For example, how in detail
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does the duplicity of free oscillations emerge as the two spheres, initially in contact,
are separated? How do the n =0 clusters arise? And so on. The present efforts
should provide some guidelines to the basic principles behind, and physical interpreta-
tion of such a set of detailed numerical results. It also of course provides the exact
solution in the limiting case d —eo as a numerical accuracy reference. Then, with a
complete understanding of the free oscillations, especially quantitative results for the
spheres in close proximity, one can apply the SEM to study some transient scattering

phenomena. This, and other obvious extensions, are left for future research.
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APPENDIX: SOME LIMITING FORMS FOR LEGENDRE
AND SPHERICAL HANKEL FUNCTIONS

Legendre Functions
Using the definition (! =0, 1,2, -+ )
P”‘(x)-—1—~(1—-x2)m’zdll(x2-—1)’ m=0,1 - ,1 (A
{ - 21“ dxl+m : ’ b ? :

=P[_m(X), m=—'1s—2s 5—1

it is easy to derive the following limiting forms for small argument 8 (and m = 0):

P[*(cos®) = A" [1 - Cre? + 0(94)] o™ (A2)
P%(cosH
LICoD) _ 4 [1 —C’,’”82+0(94)] g1 (A.3)
sin®
9ePM(cos8) = A" [m ~C"Pre%+ 0 (94)] g7 -1 (A4)
where
. 1 (+m)
Al =
2%m) (@ —m)!
m_m  (-m)l+m+1)
=t T am 3 D

m_ (m=1) -m)l+m+1)
ci= 6 dm + 1)

crm = m@m — 1) + [+m+2U+m+ D -m+ D)= +DU —m¥l -m - 1)
b 6 4m + DQL + 1)

For 6—m, we simply replace © with © — 6 on the right hand side of (A.2) to (A.4), A i
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with (<1)"" A" in (A.2) and (A.3), and A with ~(=1)"*" A" in (A.4).

Spherical Hankel Functions

Using the standard definition of the spherical Hankel function we write, for

lz| >1¢+DR2@ndl=0,1,2, )

WOy =it £ |y L ot 1 (A.5)
! z i2z |z ]2
—iz 4
1 90z WP =~ M & |14 D 5] ! . (A.6)
z z i2z I 4 | 2

Regarding (A.5) it is understood that the O (% | z | %) term vanishes for / = Q or 1,

whereas in (A.6) it vanishes only for [ = (.
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