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The free oscillations of the perfectly conducting two-sphere geometry are deter-

mined analyticatly for large sphere separation. That is, asymptotic expressions for the

natural frequencies and natural modes are obtained, conect to first order in inverse

sphere separation. Denoting the sphere ¡adii as ¿ and å, we consider all cases a = å,

a * b, and å = 0, with detailed interpretation of the results.

It is understood that fof single-body geometries a free oscillation sustains itself

(except for radiation damping) without sources by currents at all locations interacting

causally via fields with each other, undel constraints imposed by the continuity equa-

tion, and of course the bounda¡y conditions. A two-body geometry gave us the unique

opportunity to treat each body as a 1ocal part of a single "distributed body" to examine

this feedback mechanism in detail, and thereby establish a di¡ect and logical link

between a natural mode and its conesponding natural frequency, with special emphasis

on causality.

we present a theory which links the natural frequencies and natu¡al modes with

those of the single-sphefe geomeEy. There appear to be features unique to the two-

body geometry, for example a basic duplicity in the expected number of free oscilla-

tions, as well as some "anomalous" free oscillations, which are accounted for by sug-

gesting new physical mechanisms.

Although the detailed results are valid only for large sphere separation, this does

not seriously limit the goals of this thesis. Most of the ideas and physical insight

apply for all sphere sepafations, and represent necessary reading before tackling the

problem by intensely numerical means.

ABSTRACT
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The singularity expansion method (SEM) was introduced by Baum [5] as a means

of more fully understanding transient electromagnetic scattering phenomena. Basically,

the bilateral Laplace transform of the electromagnetic scattering response contains

singularities attributed to both the excitation (waveform singularities) and the scattering

body itself (object singularities), which characterize its time domain and complex fre-

quency domain (s -plane) behavior [4]. In particula¡, Ma¡in [15] has shown rhar for

perfectly conducting finite-size objects in free space the object response has only poles

as singularities in the finite s-plane (a meromorphic function). It may also be singular

at infinity (the addition of an enti¡e function). Application of the inverse Laplace

trairsform yields the time domain response which, by the Cauchy residue theorem, is a

sum of exponentially damped sinusoids (for fust order poles), plus contributions from

an entire function if present (integration at infinity).

The locations of the poles in the s -plane a¡e called natural frequencies; at these

complex frequencies the object can sustain a response without a forcing function.

Alternatively, if forced at such a frequency the object will have an infinite response.

The corresponding field distributions a¡e called natural modes. A natural mode is a

solution of the source free ñeld equations in the presence of the scattering body, that

is, satisfying the appropriate bounda¡y conditions, with suppressed time dependence

governed by its respective natural frequency. A natural mode oscillating at its natural

frequency is referred to as a free oscillation of the scattering body. Notice that the

f¡ee oscillations are completely independent of any excitation - they are chaiacteristic

of the scattering body itself. Finding the free oscillations is the fust step tolvard solv-

ing the transient scattering problem via ttre SEM [4].

-1-
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After its inception the SEM was applied ro several simple perfectly conducting

geometries. For examples, Tesche [16] considered the fi¡ite length thin wire, and

Marin [7] considered the Q-independent electric type free oscillations of the prolate

spheroid for va¡ious axial ratios. Over the years many geometries of increasing com-

plexity have been analyzed.

Afte¡ some experience was gained it became clea¡ that the "possible entire func-

tion" is related to the early-time response before. the scattering body is completely

illuminated by the incident fie1d. Morgan [13] suggests rhat it is only after the

incident field is past the scattering body (late-time) that the scatte¡ed fields will be pro-

duced by the current associated with the free oscillations of the body. Before this time

(early+ime) the "d¡iven" response contains, among other terms, a physical optics tenn.

Heyman and Felsen [14], on the other ha¡d, look at the eariy-time from the point of

view of the geometrical theory of diff¡action (GTD), which they merge with a constant

coefficient sum of free oscillations in the late-time. The point is that the early-time

response is highly dependent on the form of the incident excitation field (direction,

polarization, time dependence), whereas the late-time response can be represented as a

constant coefficient sum of free oscillations. Although the coefficients in this sum a¡e

incident field dependent, as determined via SEM, the free oscillations themselves a¡e

not. This is one of the beauties of the SEM. In particular, at any point in space, the

scattering response in the lare-time is a sum of exponentia-lly damped sinusoids

corresponding to the set of natural frequencies, which are unique to the particular

scattering body. These natural frequencies can be extracted from a given scattering

response via Prony's method [17], for example, and then used to identify the scattering

body (with obvious applications in rada¡ target identification [9], remore sensing, et

cetera).



It should be mentioned, however, that most of the energy is contained in the

early-time scattering response, especially for metallic scattering bodies with low-Q free

oscillations (large surface area to volume ratios promoting rapid radiation damping)

[13]. For i¡stance, this results in practical difficulties in implementing some target

identification schemes due to the low signal to noise ratio (SNR) of the late-time

response [24]. However, there is progress being made in this area. For example,

Chen et al [19] have proposed a new technique they call the '¡ada¡ waveform syn-

thesis method', whereby the waveform of the incident radar pulse is chosen to excite

the target in such a way that the late-time response contains only a single natu¡al fre-

quency. The principle application is in sensitively discriminating the v)rong rax¡et.

The advanøge is that all of the return signal energy is concenrated in one free oscilla-

tion instead of being spread over many. Furthermore, this generally reduces the

bandwidth (and hence noise energy, with appropriate filtering) of the retumed signal.

Alternatively, consider periodically exciting the scattering body with a broad-band

pulse, and then arithmetically averaging the responses over a large number of periods

to virtually eliminate the noise (assuming the noise has zero mean) and thus recover

the weak late-time response. Van Blaricum et al l23l point out that the standard

deviation of the noise decreases as inverse square root of the number of trials run.

This may be useful for identification of a stationa¡y object buried in a homogeneous

medium, for example. Or if the noise is due to "stray" responses of background objects

(assumed fixed) on a radar range, for example, perhaps a catalog of this noise can be

made in the absence of any intended target, and then later subtracted from the scatter-

ing response of intended target plus background. Thus, the low SNR difficulties are

not insurmountable, and so the practical usefulness of the late+ime response, especially

in scattering object identification fo¡ which it is ideally suited, is nor really diminished.

-3-



From a mo¡e academic point of view, the early-time and the late-time responses

a¡e duals of each other, especially in the sense of "progressing wave/oscillatory wave"

put forth by Heyman and Felsen [14], and so are equaliy imporønt, in principle, to a

complete understanding of electromagnetic scattering phenomena.

The advantages of the SEM (for late-time response) over other techniques for

solving transient o¡ broad-band electromagnetic problems are well documented in the

literatu¡e. Tesche [16] points out that more traditional methods like time harmonic

analysis followed by Fourier inversion, or di¡ect time domain solution depend on the

incident field at an eârly stage; changing the incident field parameters means a consid-

erable part of the solution must be recalculated. With the SEM, on the othe¡ hand, the

bulk of the work involves determining the free oscillations and so called coupling vec-

tors. Then each natural mode has a fixed coupling vector which, when combined with

the incident field data, yields the coupling, o¡ excitation coefficient for that particular

free oscillation [4]. Thus changes in incident field parameters only affect the last stage

of calculation. In [18] Baum compares several different techniques for transient or

broad-band a¡alysis. In particular, he stresses how rich the SEM is in terms of provid-

ing physical insight into the problem.

It is for all of the aforementioned reasons that we developed an interest in the

analysis of the late-time response of scattering bodies using the SEM. As already

mentioned the SEM has been applied to numerous single-body geometries. The first

application to a two-body geomerry was by Umashankat et al [10], who considered

the fi¡ite length thin wire parallel to a ground plane (or wire and its image, with

illumination antisymmetric with respect to the symmetry plane). They numerically

generated the natural frequencies over a range of several parameters, but pointed to the

difficulty in interpreting them, and the need for an analytical investigation. A follow-
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up paper was published by Shumpert et al [1,7], which was simila¡, but allowed for

circumferential variation of the axial current. Riggs et al l20l also considered the

same problem, but va¡ied the conductivity and permittivity of the ground plane. Crow

et aL l2Il considered perpendicular crossed wires over a perfectly conducting ground

p1ane. Al1 of these provide limited physical interpretation; we could not find an

analyticâl treatment of the two-body problem.

We should mention, though, that Riley el al l22l present a general theory com-

bining the SEM with the classical theory of wave propagation in a multiple scattering

environment. Then fust derive (via the SEM) an expression for the far field transient

response of a single scattering body to plane wave excitation, and then generalize to

the case of multiple scattering bodies (in the far field of each other) by including not

only the zero o¡der terms (no interaction amongst the scatterers), but also a few higher

order multiple scattering terms. They apply the theory in a statistical form to a ran-

dom distribution of scatte¡ers. This type of analysis is ¡elated to one suggested earlier

by Umashankar et al [I0]: "... one might prefer to treat a two-body problem in the

time domai¡ as a multiple-scattering problem between two single-body scatterers that

have been individually cha¡acterized by the singularity expansion method." The point

is that these schemes are really early-time analyses, and highly dependent on the

incident freld parameters; they do not consider the free oscillations (global resonances)

of the multiple-body geometry as a whole, which apply in the late-time, and are the

subject of interest in this present investigation.

Clearly, two perfectly conducting spheres is one of the simplest two-finite-body

problems. An importa.nt source of difflculty, though, is that the wave equation does

not separate in the bispherical coo¡dinate system (or in any other two-finite-body coor-

dinate system). Thus we must Íesort to the well known translational addition theorem

-5-



for representing one vector spherical wave function in one coordinate system in terms

of those belonging to a tra¡slated coordinate system. Bruning and Lo [3] use such a

scheme to solve the problem of time harmonic scattering from two spheres. Their

derivation leads to a set of coupled inflnite dimensional matrix equations of the form

Ax =b, which they solve fo¡ the unk¡own x, in principle, by inverting the system

matrix A and multiplying it into the right hand side source column matrix å . In

chapter 2 we derive the corresponding homogeneous form Ax = 0 from the source free

field equafions, the solutions of which yield rhe free oscillations, and are the subject of

the ¡emainder of the thesis. In principle, the natural frequencies occu¡ when the sys-

tem determinant vanishes, and the corresponding null space is the natural mode(s)

associated with that natural frequency.

Thus the basis goals of the thesis a¡e to determine the free oscillations of two

conducting spheres, fo¡ late+ime applications as discussed above, and to discover pro-

perties of free oscillations unique to two (or more)-body geometries. Also, a two-body

geometry presents the unique opportunity to treat each body as a local part of a single

"distributed body" to examine in detail the mutual feedback, or coupling mechanisms

that exist between the parts of a single body to sustain the f¡ee oscillation (except for

radiation damping) without sou¡ces. The separation of the bodies places special

emphasis on causality conside¡ations. The fact that an analytical solution can be deter-

mined only for large sphere separation does not seriousiy limit these goals because

most of the knowledge gained, by its very nature applies qualitatively to two spheres

with any separation.

Because the geometry is i¡va¡iant under rotarion in Q the equations for different

azimuthal numbe¡ rn are not coupled. In chapter 3 we obtain the solution to the

l^l =t equations for large sphere separation d. First we find the zero order (in

-6-



l/d) translation coefficients (section 3.1). By a clever argument we circumvent calcu-

lation of the system marix determinant, ard yet obtain a tanscendental equation for

the natu¡al frequencies (section 3.2). We analyze the properties of this equation in the

complex frequency plane and numerically determine the natu¡al frequencies in the limit

d-+*. Let the sphere radii be a and b: We consider all cases a=b,a +b,and

å = 0, a¡d interpret the results (section 3.3). Then we determine and discuss the

corresponding natural modes, for example symmetry considerations in the case ø = b.

In all cases we examine the interaction, or feedback fields that sustain a f¡ee oscilla-

tion, which provides a very interesting explanation of the logic behind the natural fre-

quencies in terms of the dynamics of single-sphere scattering (section 3.4). Finally,

we add fi¡st order (in 1/d) conection terrns to allow finite d, and determine what new

information this provides (section 3.5).

Chapters 4 and 5 have a format similar to chapter 3, but conside¡ cases

I ^ I > t and. m = 0, respectively. All calculations a¡e done to fust order in 1/d.

The emphasis is on the diffe¡ences with the (now familiar) I ^ I = t case. Although

ror l rn I > 1 the equation structure is only slightly mod.ified, the details of the natural

frequencies and natural modes are of course different. For m = 0 the equation struc-

ture is radically different, for now the electric and magnetic multipoles decouple (no

longer hybrid natural modes). These differences a¡e also reflected in the natural ffe-

quencies.

In chapter 6 we collect together the ¡esults of chapters 3 to 5 and present a dis-

cussion with conclusions, which contains a wealth of physical interpretation and

insight into the problem. Most importantly we presenr a theory which links (most of)

the two-sphere natural frequencies and natural modes with those of the single-sphere,

introducing mechanisms apparently unique to multi-body geometries.

-7 -



CHAPTER 2: FORMULATION OF THE PROBLEM

Consider two pefectly conducting spheres of radii ¿ and å, separated by a dis-

tance d , embedded in a homogeneous, linea¡, and isotropic space, wherein the speed of

p¡opagation of an electromagnetic disturbance is c. We are i¡terested in the elec-

Eomagnetic fields which can exist in the presence of the spheres after all external

sources of excitation have ceased. Such fields are called free oscillations, or natural

modes [4]. It is well known (see, e.g., Stratton [1]) ftar, for the single sphere, free

oscillations exist with a time dependence ett, s =O+l<o, that is, an exponentially

damped (Q < 0) sinusoid of frequency ot. We hypothesize that the same is true for the

two sphere problem even if the spheres differ in ¡adius. Thus we seek solenoidal solu-

tions to the homogeneous vector wave equation (suppressed time dependence es¡)

subject to the boundary condition thar rhe tangential components of the total elect¡ic

fleld vanish on the surface of both spheres.

Following Stratton [1] we construct nro linearly

solutions to (2.1), namely

M=Vx(nyl=1VxN
k

r,,r=fvrrrr

(V x V x - k2) B(r) = 0, s =ikc,

where (V2 + k2¡ty = 0, which in a spherical coo¡dinare system (r,0,Q) are rhe familiâr

magnetic and electric multipole fields:

independent solenoidal vector

(2.t)

-8-
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M,9,)(¿;r,e,Q) =,,(i)çkr¡r,,,, 
[n # "r,rorr, 

- 6 arr¡t""rrlJ

N,9,1(¿ ;r ,0'o) = f 
nLr,u'(t 

r) ei^þ I (l + 1) Pf(coso)

* f a,r, z,Ø1kr¡:r'^, 
lnðspf(coso). 

ô # ¿n""re)]

where / =1,2,'.'i m=-I,-t+l,.. ,I; and z,Q) = j t, nt, h,0), ¡,(2) for

j = l,2,3, 4 respectively, are spherical Bessel, Neumann, and Hankel functions. Any

solenoidal vector field (over unrestricted angular variables) can be expressed as a linear

combination of the multipole fie1ds of type j = 3 and 4. In our case we have no

sources at infinity and homogeneous space (except for the spheres) so that only type

j = 4 (outward traveling waves) is acceptable.

In the usual way (see, e.g., Bruning a¡d l¡ t2l) we now introduce t\tro coordinate

systems O and O' cente¡ed on the spheres A and B, respectively, and related by a

tra¡slation d along the z-axis (see Fig. 1). We adopt the convention that a primed

quântity is refened to the O' system, whereas its unprimed counterpart is referred to

the O system. Thus, the appropriate general solution to (2.1) is

(2.3)

Invoking the boundary conditions will generate a set of simultaneous equations for the

unk¡own coefficients (the A 's and .B 's).

To facilitate the application of the boundary conditions we need to be able to

express primed quanfities in terms of unprimed quantities and vice ve¡sa. For exam-

nle, fV'$l is an outwa¡d uaveling wave originatin g at O' i in the region r < d , which

includes origin O , it must be expressible in terms of a linear combination of Mjf; and

-9 -
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Fig 1: Ceomctry of two sphcre problcm
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N{f;. since O = O'only terms with F = z will appear in the sum. Thus we construct

ihe ü'anslation formula [2]

M'll)= Ë [",n*¡f*BfiNJ]], r<a
v=¡nax0,l n l)'

Applying the curl operator to both sides immediately yields lsee (2.2)]

N,,Í1)= i, [";n*¡f*p#MJ]], r<d
v="t¿¡ ( t, l¿¡ l) '

where the cr's and B's are called translation coefficients. For translating from the

unprimed to the primed coordinate system we simply exchange primed and unprimed

quantities in (2.5). Bruning and t o [3] were apparently the fust to note that (the parity

of the Legendre functions implies)

Hence, for r < d we may write (2.4) as

-IT
E = L L I eE^x¡ot + Afl,lølâ)

!=l m=-l '

+ BEh, >[ "**lf * BJf rurJ] ]

* ril+l"n*n. pJ?*J, ] 
],

u'fi = 1-t¡'a af
þ'y"=-(-Ð'-t þlin

(2.sa)

or its counterpaf i¡ the primed coordinate system. Finally, applying the boundary

conditions and using the orthogonality relations amongst the M and N vector functions

over the 0, S space, we a¡rive at the fou¡ coupled homogeneous equations:

(2.5b)

(2.6)

(2.7)



ttflta¡ eE*

¡t](*a) elA

ttfltca¡ nE^

¡vlí<tø¡ nlX

where

lì
LluiYa!^ + þi#nl^ )

rl
>lWfnl^ + ai{nl* 

)

rì
Llu'i¡a!^ * þ'ütl^ )

tì
>,1ø'i;fe',^ + a'i{e!^ 

)

a' l 'n'r2t1t"¡]Afrtr¡= , t{1tr¡=-ry:?' ð,L';,tr,'l.l it&r)

n =O 41 *) ."

t,v>max0,lml)

Notice that there is no coupling between multipole fields of diffe¡ent azimuthal

number rz so we have an independent set of equations for each value of m. 'lhe

problem is to find the natural frequencies s = iÈc fo¡ which (2.8) admits solutions (the

system determinant vanishes), and for each such s find the corresponding set of A and

B coefficients (the system null space), which ca¡ries all information about the natural

mode through (2.4). fn case of degeneracy more than one natural mode will sha¡e the

same natural frequency. Unfortunately it is not possible to obtain an exact solution.

Instead we develop solutions valid for large sphere separation, with the hope that, in

the process, we can still discove¡ the salient features of the coupling mechanism.

(2.8)
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CHAPTER 3: BASIC PRINCIPLES OF THE SOLUTION

Let us fust make some ¡easonable conjectures about the coupling mechanism.

Suppose that the field around sphere A (excluding the field incident from sphere B) is

oscillating in a superposition of multipole fie1ds (all with the same azimuthal number

¡ø and time dependence ¿"r). Similarly for sphere ,8. These fields are responsible for

energy incident on theh respective opposite spheres, which in tum couples to, or is the

sou¡ce of excitation for, the original set of multipole fields. In a sense we have mutu-

ally self-sustaining (but exponentially damped due to radiation) oscillations consistent,

of course, with causality and the boundary conditions.

The transverse (to r) components of the multipole fields vanish on the z-axis

except in the case I m I = I lsee (2.3) and the Appendix]. Thus, we might expect

that the coupling, as described above, would be strongest in this case, especially for

large sphere separation. For example, two parallel dipoles will couple more strongly

than two coaxial dipoles. Although we shall see that this understanding is incomplete,

particularly in view of causality considerations, it turns out best to consider the

I m I = t case fust, if only for pedagogical reasons.

3.1 Translation Coefficients to Zero Order Approximation

To determine the translation coefficients in (2.5) we fust need expressions for

M'll1 and N'ltt in terms of the unprimed coordinates, valid at least in the neighbor-

hood of sphere A (r' = d, A' = n, þ' = 0). The reason for requiring both the electnc

and magnetic multipoles will become apparent shortly.

_13_



To fix ideas we first consider a zeto order approximation, which means that in all

our calculations we neglect terms of order llkd o¡ less with respect to terms of order

unity. We demonsfate later that the resulting solution is the correct solution in the

limit as the sphere separation d -+ *. Without loss of generality we suppose that the

sphere radü a ar.d b are of order unity or less. Then, in the vicinity of sphere.,4, and

to this order of approximation, we can wdte

lsee (2.3) and the Appendix]. In view of (2.5) and rhe orrhogonality properties of the

multipole fre1ds, this latter ¡esult implies, to this order of approximation,

M'f3r = +i-t+l tQ + 1) IVl e¡k'|î t t!¡

; .-ikd
where 171 = i :¿-, ana

N'lt, = tu]!,

This relation represents an important simpliûcation; we shall see this especially in the

next section.

The circularly polarized uniform plane wave eíkz (î + rf) is a solenoidal solution

to the homogeneous vector \¡/ave equation (2.i), and so must be expressible in the

form

Þ'lËi = t.cl¡*i

eík'z (þ ! $¡ = 1Êsin0 + Ôcoso I i$) ¿1iQ¿it'"ose

= i c". [u13, t N¡3, 
]v=l

where

(3.1)

{$f =1¡-t*t¿,t +l)wrci (3.s)

lsee (3.1)] and we have made use of (3.3). Once we determine Cu+ we have all the

-t4-
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t¡anslation coefficients by virtue of (3.5), (3.3), and (2.6). To this end we scalarly

multiply both sides of (3.4) by e+¡04, and making use of (2.3) and the well known

expansion

we have

! ;u1zu + r) j u(kr) sinO Pu(cos0) = * å ""* [ i 
"<Orl 

v(v + 1) p,] (cosê)(3.2)

Applying some recurrence ¡elations for the Legendre and spherical Bessel functions we

finally have

"ikt 
cøs} - i ¡'(zu + l) j vl(kr) pu(coso),

v=0

ln summary, for m = +1

/., Í _r..v_l (2v + 1)

' v(v + 1)

ai#= inffi ve + 1)w,(kd) 
l

þiI =¡ai# I
u'i{ = (l)t-vui{ 

|

þ'ä=-eDt-uþi,i 
l

hanged the indices / and v for late¡ convenience.where we have interc

(3.6)

3.2 Solution of the Coupled Equations

Fi¡st we will cast the coupled equations (2.8) into matrix form. we introduce

new coefficients, which are simply the translation coefficients scaled by the factor l4l1,

_i5_
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namely, for m =+7,

F,Y = Y = i'-" Í?{ 
+ 

1ìvtu + u'tm wr /(/+l)'

"ir = V =$#

,'w=V=ç¡t-'rff

o'W=V=--+(r)t-uFåi

lsee (3.9)]. (The double sign will always correspond to the cases n? = *1 unless other-

wise noted). Now let us collect the Fff coefficients into a matrix F, with row index

/ and column index v. Similarly we form the matrices G, F', and G'. But (3.10)

immediately implies

where "I = diagonalll, -i, 1, -1,...]. Notice that "¡ cornmutes with any diagonal marrix

and, J2 = 1, the identity matrix. Finally, defining the matrix Â = diagonal[r\n, r\,,¡1,...J,

where n =max(l,|*ll= 1 in this case, and collecting the nonzero multipole

coefficients into column marrices the coupled equations (2.8) become

G =!F
F, = JFJ
G' = --+JFJ

(3.10)

If the right hand side of these equations were zero then the first (second) pair of equa-

tions would describe an isolated sphere of radius ¿ (å). For example, the elecn-ic type
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natura.l modes for the single sphere (radius ø) are the electric multipole fields; the set

of natural frequencies a¡e found from the roots of ð o[ah /2) (ka)] = 0. All rhis is

equivalent to the equation lE lka¡ eE = O.

The coupling stmcture of (3.12) is much simpler than thar of rhe original (2.8);

we owe this simplification to the approximations which led to (3.3). In particular,

(3.12) immediately implies

which delineates the relative amplitudes of electric and magnetic multipole fields

present in the natural mode (or modes) associated with frequency s = ifrc; ¡8, <n 
E*¡

is directly proportional ø ell 6fl¡. Thus all natural modes of the two sphere

geometry (at least for I m I = 1) a¡e hybrid modes. Of course this is an obvious

consequence of both electric and magnetic coefficients mixing on the right hand side

of (3.12). We assume (and prove i¡ the next section) that the natu¡al frequencies

never coincide with those of either sphere in isolation so that the Â's can be inverted

which, since ^4. is diagonal, is a trivial operation.

The right hand side of each equation in (3.12) is a column matrix, whose ele-

ments are exactly in the role of coefficients in a multipole expansion of an incident

field, o¡ excitation (from the opposite sphere). For example, in the fust equation we

call WrF a translation (matrix) operator; it transforms the ^B coefficients (incident

field) into a suitable set of excitation (or coupling) coefficients for sphere A. All of

the geometry and frequency dependence of the translation operators is contained in the

common scale factor

tr? 1ka¡ AE = x¡H (ka) AH I
LE (kb) BE = --+hH (kb) BH , )

(3.13)
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[see (3.1)]. In this sense W1 is a measure of the srength of coupling, depending on

sphere separation and frequency. We shall find that all natural frequencies correspond

to & in the upper half ,t -plane. Thus we uncover the somewhat surprising fact that W1

is dominated by an exponential growth as d becomes large! A little thought shows

that this is a natural consequence of causality; we will understand its full significance

in the next few sections.

Knowledge of any set of coefficients, say AE , immediately implies the rest

(AH, BE, and BH) through (3.12). Thus we need only consider one set, Suirable sub-

stitutions, involving all four equations in (3.12), yields an equarion containing only

A E , namely,

: --ikdw,='"'2kn

where we have defrned

(3.r4)

( _ l-
[r - ¡rrElta¡1-' D tLE(kÐ]) AE =0,

n = (w )2 F t(kb) F t(ka)

r(kr) = ¡ [trr'r,tr¡-t - tlnltr¡1-r]

= diagonal[fn (&r ), I.n*1(tr),...]

,, -.t -
r.lf\ = '\'/^ 

' 
\>/ 

çhl2)G) a(t(år(2)(Ðl '

where, again, n =max(I,|^l¡= 1 in this case. We have made use of a Wronskian

relationship for spherical Bessel functions. Notice that the zeros of (n,{2)çÇ¡ na

ðçlÇhtØ(Çl determine the magnetic and electric natural frequencies for the isolated

sphere, respectively. ( f¡ will play a significant role in determining the natural
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frequencies).

Being homogeneous, (3.15) has solutions only for those natural frequencies

s = iftc which cause the determinant of the matrix in parentheses to vanish. An alter-

native to the quite formidable rask of calculating the determinanr is achieved by writ-

ing (3.15) as

AE = ILE (ka)l-t o ¡ttq 1t a¡1 l,E (3.18)

which immediately implies

which must be true for any N e {1, 2, ...}, Vy'e have shifted the work of calculating

the determinant to calculating all powers of the matrix D. But this larter task is made

alàost trivial when we realize that F can be written in the form if an oute¡ product of

two column matrices (J^ ønd V* (l ^ I = 1), namely

¿t = ¡trE çtca)l-t oN ¡ltE çka;1 l,E

where

utr= /ftiï, vvt= l-vv(v + 1) (3.21)

lsee (3.10)1. Then, using (3.20) in (3.i6) gives

oN = lgr¡2 yrlta¡ yrgt¡fv-. o (3.22)

where the scalar

P = U*vI, or Fi{ = (JhVu^

Clearly we must have

(3.1e)

Xt(kr) - VT r(kr) U t = Ð U¡{¡11¡(kr).

ß.20\
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which is a transcendental equation that permits us to detennine the allowed natural fre-

quencies s = ikc. Notice that (3.24) is independent of which coefficient set we a.re

solving for [see (3.15)], is symmetric in ø and å, a¡d is insensitive ro the sign of

m (m = +1). This latter fact gives rise to a basic two-fold degeneracy: Every m = +l
natural mode has a linearly independent (in fact orthogonal) m = -i counterpart, both

sharing the same natural frequency. The study of (3.24) is the subject of the next sec-

tion. In the section following that we solve for the multipole coefficients (and hence

the natural modes).

lW 1&Ð12 Xt(ka) Xt(kb) = 1

3.3 Natural Frequencies

We now discuss some properries of the function 11. Combining (3.23), (3.21),

and (3.17b) we have

(3.24)

The /ú term in the series (l = l, 2,3, ...) is an analytic function of Ç everywhere in

the finite (-plane except at rhe ze¡os of h,l2)1(¡ and açt(å12)(()1, where it has poles.

For any finite (, and /-+- we can use the asymptotic formula

xt(0=i>(-1)r(2/+1)

to show that the ratio of the (i + 1)ù term to the /ú term of the series is of the order

(Çl2l)2 -+ 0' and hence that the series is absolutely convergent for any finite ( not at a

pole of 11. Thus 11 is a meromorphic function. These poies of 11 conespond to the
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electric a¡d magnetic natural frequencies of a single isolated sphere and occur only in

the upper half (-plane (left half s -plane).

As ( -+ 0 the fust term in the series dominates, and the limiting form for small

argument is

revealing a third order zero at the origin. A numerical investigation of (3.25) reveals

only fust order zeros, and only in the upper half (-plane, interspersed amongst the

poles. These zeros will play an important role in our discussions. First notice that the

zero at the origin is uniquely thi¡d order suggesting (conectly) that its physical

significance is different from that of the other (flrst order) zeros.

Il has no zeros or poles in the lower half (-plane. Except for some oscillatory

behavior, I 1,1 | essentially increases monotonically along any radial path from the o¡i-

gin into the lower half (-plane (or real (-axis).

Finally, we note that

xt(Ç) = -i3Ç3,

where the asterisk denotes complex conjugation, implies the following parity propeny:

That is, the real part of 1, is symmetric and the imaginary part antisymmetric with

respect to a reflection i¡ the real (-axis. In pârticular, the magnitude of 11, and its

zeros and poles are symmetrically disposed about the imaginary (-axis.

Of course we are still operating unde¡ the assumption that our results a¡e correct

oniy in the limit as the sphere separation d -+ *. It is in this spirit that we now

examine the transcendental equation (3.24). For ft in the lower half complex plane
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tW t&d)12 -+ 0, so that for a solurion to exist we need y1(kn)y1(kb) --+ ." such that

the product is unity. But Xr(() is flnite everywhere in the lower finite (-plane. Thus

no modes of oscillation exist for & in the lower half plane (or natural frequency

s = i,tc in the righr half plane). This fact is, of course, easy to understand on physical

gtounds. With the time dependence err such a natural frequency would result in the

fields (and thus the energy density at any given point) growing expo¡entially with the

time, which is clearly unphysical since, by hypothesis, we have no soruces at ínfinity,

and we also consider the ma¡ch of time only in the forwa¡d direction.

For & real and nonvanishin g lW 7(kd)12 -+ 0 again, but this rime only as l/(kd)2

since the exponenrial is of unit magnitude. Again (3.24) admits no solutions. Natural

frequencies with o = 0 (no damping) are reserved for interior (lossless cavity) modes;

experience has shown that any time varying exterior mode must decay due to radia-

tion. An exception ro this rule can occur in the case of a perfect díelectric body. (see,

for example, Stratton [1] section 9.23).

Let k -+ 0 (and d -) oo as usual, but such that kd -+ 0). Using (3.27) the limit-

ing form of the left hand side of (3.24) 
^ i # kd)4 -+ 0. Thus (3.24) cannot be

satisfied for ,t = 0. This does not mean that no static (electric or magnetic) natural

modes exist, it is simply a manifestation of the tacit assumption & * 0 that we used

when setting up the original equations in chapter 2. The equation structure is different

in the static cases, necessitating a separate treatment. In the electrostatic case, for

example, instead of (2.1) we would write VxE=O and V.E=0 outside the

spheres. Then E can be derived f¡om the gradient of a scalar potential satisfying the

Laplace equation, et cetera. Then a treatment similar to that followed he¡e could be

used, or the fact that Laplace's equation is separable in the bi-spherical coordinate

system provides an alternative solution path. Here we shall be concerned only with

aa



time varying free oscillations. For some discussion about static natural modes in gen-

eral see appendix A of Baum [5].

This leaves only the upper half ,t-plane, wherein tW {kÐ12 -à co so that

71@a)¡(kb) must vanish such that the p¡oducr is unity. To fix ideas consider first the

case of two identical spheres a = å. Equation (3.24) becomes

which suggests that we have two sets of solutions: one corresponding to the upper sign

and the other to the lower sign (not to be confused with the cases tn = +1). Since the

problem has a symmetry plane it must possess solutíons (the fields or natural modes)

of definite pariry: symmetric and/or antisymmetric with respect to reflection in this

p1ane. We shall see when we solve for the natural modes that the double sign in

(3.30) ts in fact the mark of parity. But when d -r ""

Wt&d) XlGa) = +1,

so that the two sets of natural fiequencies must coalesce in this limit (but of course the

definite parity of the natural modes is invariant). In this case we have a four-fold

degeneracy: two for m = tl times two for parity.

The solutions of (3.31) correspond to the natural frequencies s in the left half

plane so that the free oscillations decay exponentially with time, consistent with ¡adia-

tion. Furthermore, the Hankel functions appea¡ing in the expansion (2.4) contain the

o-ib .-ik/
facto¡s j::- and : , ,respectively, so that we have outwa¡d traveling pardal wavesrr
(or multipoles) which, at any instant of time, have the usual 7lr decay (energy conser-

vation), but a¡e dominated by an exponential growth in amplitude with radial disønce

from the spheres. The exponential $owth is of course a necessary consequence of
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causality: the flelds remote from the spheres are a measure of the fields near the

spheres at an earlier time. Thus the "anomalous" factor I4z1 appearing in the coupled

equations 13.12). But we have yer to see in detail how narure allows infi¡ire amplitude

partial waves to be incident on their respective opposíte spheres as d -+ *.

We know that the zeros of Xl(() are symmetrically disposed abour the imaginary

(-axis, which implies that the natural frequencies occur in complex conjugate pairs, as

expected for any real system. ln Fig. 2 we indicate the iocations of the natural fre-

quencies in the second quadrant of the normalized s -plane. Here

where ( is a root of Xt(() = 0. Also shown for comparison is the set of natural fre-

quencies (electric and magnetic type) fo¡ the single isolated sphere of radius ø, where

( is a root of I Xt(() | = "".

Vy'e fust notice that the two sets are obviously distinct. This may be disturbing

because our intuition may be saying: As the sphere separation increases the coupling

should become less important until in the limit d -+ "" the free oscillations ¡educe to

those of two single spheres isolated by distance. Take fo¡ example the double ha¡-

monic oscillator studied in quantum mechanics: As the two potential wells separate,

pairs of allowed energies coalesce until the energy spectrum ¡educes to that of a single

isolated well. (see, for example, Merzbacher t6l). Or perhaps a closer analogy would

be the mutual coupling that exists between any two elements of an antenna aray,

which becomes weaker between increasingly separated elements because the field

decays primarily as the inve¡se of the distance (at sufficiently large element separa-

tion). But as discussed earlier, the free oscillations ffe exponentially damped in time

causing the mutual coupling to be dominated by an exponential g¡owth as sphere
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separation d i¡creases. The larger the sphere separation, the more important is the

coupling, and so the results in Fig. 2 are not in conflict with intuition. For if the time

dependence did correspond to a single sphere natural frequency then, just as in ci¡cuit

theory, that single sphere natural mode (multipole) would resonate with infinite ampli-

tude; the correct combination of multipoles could not exist to satisfy the necessary

boundary conditions.

Let us study the results in Fig. 2 more closely. The natural frequencies tend to

be grouped into so called "layers", typical of most geometries (see almost any litera-

ture on SEM, for example t4l). The fust layer lies immediately to the left of, and

almost parallel with the imaginary axis. To the left of this lies a layer of electric type

natural frequencies for the single sphere, followed by the second layer of natural fre-

quencies for the double sphere, and so on. The single sphere (electric and magnetic)

layers are alternately "sandwiched" between the double sphere (hybrid) layers.

Natural frequencies in the fust layer have the smallest magnitude of damping

coefficient and hence resonate with the highest Q. The energy in these modes of

oscillation is most tightly bound to the resonant structure (two spheres), even mo¡e so

than is possible with a single sphere (with comparable size and frequency, namely the

layer immediately to the left). A similar phenomenon occurs when a sphere is

deformed into a prolate spheroid (keeping the major axis fixed), and finally into the

thin rod limit (see Ma¡in [7]), although the underlying physical mechanism is probably

different. Notice thât there are also natural frequencies on the real axis corresponding

to an exponential decay in time, but no oscillation. Unfortunately we do not know

how the natural frequencies move as a function of d < "", which might provide clues

on how to further catagorize or 1abel them.
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We have been dealing with the special case ø = å. Now let us go back to (3.24)

and consider what happens when we set å = 0. Surely the presence of sphere B must

vanish leaving only the single sphere A. As kb -+ 0 (3.24) becomes, on using (3.27),

No matter how large we choose d [to ensure the correctness of (3.24)], when we set

å = 0 the right hand side of (3.33) becomes infinite, thereby reducing (3.33) to the

Eanscendental equation for the natural frequencies of a single isolated sphere of radius

a, as expected. For example, suppose b to be infinitesimal such that the right hand

side of (3.33) is large, and set & =ko+ Lk,where h|z)1koa¡ = 0. This corresponds to

a pure magnetic type ftee oscillation of the single sphere .4, except perturbed

infinitesimally by the presence of sphere B (b -+ 0). Retaining only the largest term

in the series expansion îor y1@a) (3.33) becomes

Xt(ka) =
-i3 (kÐ3Íw íkÐ12

provided I Urt*ol < l; fr reduces to &e when å = 0. The point of interest here is

that the right hand side is proportional to the ratio of sphere volumes . Thus the physi-

cal significance of the third order zero of Xt(() at the origin. (It is the machinery

which handles the limiting case of one sphere vanishing).

Finally, we must discuss the case of nonvanishing unequal spheres (a * b). Ima-

gine the exact solution when the sphere separation d is frnite. When ø = å the natural

modes have definite parity, either symmetric or antisymmetric, corresponding to

different natural frequencies. As we make ø different from å a symmetric mode will

continuously deform into a new natu¡al mode (no longer of definite parity), while the

corresponding natural frequency will follow some smooth path in the s-plane to its
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new value. Similarly for an antisymmetric natural oscillation. Now the words sym-

metric and antisymmetric have no physical meaning, but may be retained as labels to

distinguish limiting behavior as a -+ b .

We now examine this deforming of natu¡al modes and movement of natu¡al fre-

quencies, but in the limit d -+ ".. Vy'e al¡eady know from (3.31) that for equa-l spheres

pairs of natural frequencies (symmetric and antisymmetric) coalesce in this limit. (As

mentioned before, this degeneracy is probably lifted for d fi¡ite). For slightly unequal

spheres let us be democratic and set

a=ro+Lr and b=ro-Lr (3.35)

where lÂr I << r¡, and Àr may be positive or negative. Expanding y{ka) and

Xt&b ) in a Taylor series about krs we write

with a radius of convergence equal to the distance to the nearest pole. For brevity in

notation we wdte y1 lor 1h(kr s). Using (3.36) in (3.24) we get a quadratic equation for

f1, namelY

o = x? + (ka,r)2 x1" x, - f<w r¡-, + (kvr)2 y( + ol(kvr)a1) G37)

We assume (and have numerically verified) that 11' and 11" are never much greater

than unity in magnitude, nor ever zero in regions of interest here. The two roots of

(3.37) ue

XtGa) = xt + (kvr) xi * + (kvr)2 yl, + .

xt&b) = y1- (kvr) xi * + @Lr)z y1" - .

1xt=- z
(kvr)2 yr" t [fw,r, + @Lr)z xi2 + ot&*¡nr)rrz. (3.3s)

(3.36)
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In the case of vanishingly small difference in sphere radii we assume

l¿¡r I << l(wt)_t l < 1. Neglecting terms of order (ftÀr)2 with respect to unity

(3.38) becomes

in the limit d -+ "". When Ár = 0 we tecover (3.31) fo¡ the case ¿ = å. Thus we

identify the double sign in (3.38) as the mark of parity. For the purpose of discussion

'we mention here that the upper sign is for symmetric modes and the lower sign is for

antisymmetric modes (we prove this in the next section). When Â¡ + 0, the magnitude

of the second term in the parentheses is still much less than unity, by hypothesis, and

so (3.39) is the transcendental equation for the case a = b with a small first order

co¡rection term. But as d -+ .o the correction tenn remains small [and hence (3.39)

remains validl only if Àr -+ 0. This is the fust hint that the nature of the solution

changes very rapidly with the slightest perturbation from ¿ = å (at least in the limit

d -+ *).

Now let Ár *0 such that 1> l¿¡tl>> l(wt)-t l. rn tn" ümit d -+ "" this

means any nonzero I ¿¡r I << 1. Then to first order in (,tÄr) (3.38) becomes

x1ftro) = t,fu 
f, 

. | <rt f w tl<a)t2]| -> o (3.3e)

We fust ¡emind ou¡selves that the double sign appearing here is the same as that in

(3.39). Thus, in making A¡ + 0 the natural frequency belonging to the symmetric

(antisymmetric) natural mode changed f¡om its value when a = b to a new value satis-

fying the transcendental equation (3.40) with the upper (lower) sign. Thus each pair of

natural frequencies splits, the parity degeneracy having been lifted. [Recall that this

degeneracy had its origins in the double sign in (3.30)l The second point to notice is
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that (3.40) land (3.39)] are insensitive to the sign of Â¡. A bit of thought shows that

this is a necessary consequence of the fact that one sphere is not preferred over the

other.

Clearly the solutions of (3.40) are in the neighborhood of some ft = Èo , where

Xt& or ù = 0, so let us set fr = &o + À& . Here &6 conesponds to the natural frequency

when Ár = 0 and ¿ -e - [see (3.39)]. Writing 11(kr6) in a Taylor series about froro,

and retaining only terms to fi¡st order in small quantities, (3.40) becomes

Àft=* l¡'l

For Âr = 0 we use (3.39), which tells us Â,t = 0 (in the limit d --s *). For

I Âr I t 0 (but much less than rs) we use (3.41). Thus the parity degeneracy is lifted

to fust orde¡ in Âr. From (3.41) we make an interesting observation: As we make

Àr + 0, the syrnmetric natura.l frequency íncreases in magnitude (higher frequency

and more rapidly damped), while the antisymmetric one decreases by the same

amount. Analogous phenomena happen, for example, in the case of two coupled clas-

sical harmonic oscillators.

As an altemative approach to the case a * b , let us start again at (3.24). For

a + b &vo solutions immediately present themselves:

ko rO

X{koa) =

x{køb) =

We point out that these expressions approach zero like (W1)-2 instead of just (tV1)-1

as d -+ ".. [see (3.31) fo¡ the case a = b]. This fact wili become importanr to our

understanding of how the natural modes work in the case a + b. Using (3.35) again,
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Xrkba) * 0.
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but this time with no restriction on the size of Âr (except 0 < I ¡r I < ro), and

Xtk or ù = 0, we have

ko = ko'o = ,tn lr - ^r l,a | 'o)
kr=ko?=*nft* ^'1,, [ ,o)

With rg = d the set of natu¡al frequencies corresponding to the ko's are exactly those

appearing in Fig. 2, while those corresponding to the È¿'s are simply the same set,

except scaled by the factor alb. We can identify pairs in the limit Âr -+ 0. In (3.43),

fo¡ I Âr I lro < 1, we identify the Â,t appearing in (3.41). Furthermore, the smaller

(larger) sphere is associated with a larger (smaller) magnitude of natu¡al frequency and

hence to the deformed symmetric (antisymmetric) naturai mode. The exact meaning of

"associated with" will become clear during our discussion of the natu¡al modes.

for l¡r1..,
rg

l¡'l
<< I.

f¡
for

3.4 Natural Modes

We now tum our attention to the expansion coefficients n (2.4), which are the

essence of the natural modes themselves. As usual, the t sign used thoughout lvill

refer to the cases tn =*1 unless otherwise noted. Writing (3.18) out in detail [using

(3.16), (3.20), ard (3.23)l we have, for the AE set of expansion coefficients,

fl
¡e = ltw 1(kd)12 ylþb) vr t(ka) AE (kn) AE | ¡nE 1ø¡1-t u r. (3,44)

LJ

The homogeneous nature of equations (2.8) allows us to set the scalar in braces to any

convenient value, say unity. Then the remaining coefficients are fixed via (3.12),
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namely

Notice the asymmetry between the f orm of the A and .B coefficient sets. The

dual form can be obtained from (3.45a) simply by rescaling all the coefficients by the

factor W {kd) y1@b). On using (24) we have

¿E - lt\E (ka)l-r u 1

¿u =+¡AH 1ka¡1-1 u1

BE = w {kd) xtha) l4\E (kb)l-r JU I

BH = --+W t(kd) x1(k4) ILH (kb)l-1 JU 1

which demonstrates the symmetry that must be present in the equation structure (one

sphere is not preferred over the other). The "extra" "I in the B set of coefficients and

the --+ instead of t have their origins in the fact that we simply translated the O,

coordinate system (Fig. 1) instead of translating and inverting the zlaxis

(0' -+ n - 0'). The latter set of operations produces a left handed coordinate system

O ', which is a mir¡or image of the O system in the plane z = d 12 or z, = -d 12.

Either set (3.45a) or (3.45b) may be used, whichever is more convenient. (Actually,

multiplying (3.45a) by lW , y{kb)ltt2 or (3.45b) by lW , yr@a)l1l2 ¡esulrs in a more

symmetric form, but not suited for our discussion).

As a double check on the correctness of (3.45a or b) it is easy to demonstrate by

direct substitution that the coefficients satisfy the original equations (3.12), provided

the transcendental equation (3.24) is satisfied.

AE = wt(kd)x{kb)L E(ko)l-t ul
AH = +w íkd) xt&Ð ILH &ùl-1 u l
BE = ILE&ÐI-I JUl
gu = a¡¡tt 1¡çÐl-1 JU t,

(3.45a)

(3.45b)
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Let us examine the convergence of the natural mode partial wave expansion (2.4).

For example, from (3.45a) the magnetic coefficients for sphere.4 are

lsee (3.21) and (2.8)]. Using formulas like (3.2ó) we can show that for any given finite

ka, and I -+ -

Ail = r blua)t. ut, = --+ | fr++

An=+ + fr++ l;ç1''" +0, and

Af+t.* I lzt* t'' ( \)'ff=t (r+, 1r,.3!4) l#*-) -+o

and simila¡ expressions for the other coefficients. For the most part, the magnitude of

the coefflcients decreases with increasing / (at least for sufflciently large i ). Without

furthe¡ ado, by inspection of (3.46) and (2.3) we state the self evident fact that (2.4)

converges at all points in space.

It is interesting to observe from (3.47) that the larger l¿ I lr, the more rerms are

required for convergence of the sum (2.4). In other words, natural modes with larger

magnitude of natural frequency have more higher order multipole field components,

insensitive as to whether this magnitude is due primarily to crl (rapid oscillation with

iittle damping) or to C) (rapid damping with no oscillation), or a combination. The

basic reason is that both resuit in a rapid spatial variation of the field.

Now take the special case d = å . We inroduce the dichotomic parity variable p

which can lake on one of two values: +1 fo¡ even parity (symmetric) or -1 for odd

parity (antisymmetric) natural modes. Using

it&o)
¡,(z)1ka¡

ß.46\

(3.41a)

(3,47b)

w 1&d) y¡&a) = r

_ JJ -
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lsee (3.30)l in eithe¡ (3.45a) o¡ (3.45b) results in

¿ø = ¡trø 1ka¡1-t U 1

AH =+ ILH (ka)l-r u 1

Bø =p ¡lt'(ka)l-t JUI

BH = --+ p ILH &Ð]-t JU t.

As mentioned ea¡lie¡, had we invened the z'-axis the A and B coefficient sets would

be identical except for a possible overall sign difference, which here is represented by

p . (Of course then we would also require two different definitions of the multipoles:

one for right and one for left handed coo¡dinate systems). As it stands,

the -(-1)r coming from the matrix J. This result, coupled with the fact that inversion

of the z -axis, or 0 -> 0 - n, transforms Pfl(cos0) into (-1)l+' Pf(cos0), makes it

intuitively plausible that p is in fact the mark of parity as we claim, but this still

awaits a formal proof. But before we do so, let us digress a moment to briefly review

symmetry in electromagnetics.

Suppose that a¡ electric field E satisfies (2.1) and bounda¡y conditions which are

symmetric with respect to the z = 0 plane. Conside¡ another field E' obtained f¡om E

by replacing z with -z and â with -â (reflection in the z = 0 plane). By expanding

the V x V x operator in Ca¡esian coordinates it is easy to show that E'also satisfies

the same diffe¡ential equation (2.1). Since it also manifestly satisfies the boundary

conditions, E' is a¡other solution. Then, by linearity, so is E + E', which has even

parity (symmetric with respect to reflection in the z = 0 plane) or odd parity (antisym-

metric), respectively. (i.e., solutions of definite parity exist). We also note that since

- 3+-

A Et,, = -p (-Ðt AEb"

nf" = p (-Ðt Ay^ ,

(3.4e)

(3.s0)



the magnetic field is proportional to the curl of the electric field we can show that the

two must have opposite parity.

Thus we mus¡ prove that E in (2.4) (drop the sum over m) evaluated at the point

r,0,Q is equal topE evaluated at rhe point r'=r,0' =î-0, q'=q with i' = -î.
The fi¡st quantity is lsee (2.7)]

-f> I tt^NÍ,+>+AilMH)
J=l L

- p el)t AÊ, >10.JäNJ) + ÊJfrMJ, ]

+p (-1)r Ail>|,o.!n¡¡'r). pJ?NJ;Ì ] l,v 'J
where we have made use of (3.50). The second quantity is

æT
> | -t-rl AEh"N'lâ) + çDI AHM,Iå)
t=l

+ p (-1), ,qf^ > et), [ øn*,1* - pJ?M,# 
]

+ p eÐt ¡ll,Z<-tt' [ øn*,lf - B#N,f]ì ] l,v ')

where we made use of (2.6), and it is understood that in the vector functions

r' = r, Q' = n - 0, q/ = O, and î, = -r. Inspection oî (2.3) reveals thar in this case

M',$l = 1-1;t M¡fi,), and since N is proportional to the cu¡l of M, N',9) = -1-t¡t N,$).

Thus the two quantities are equal and the natu¡al modes are symmetric or antisym-

metric with respect to the z = dl2 plane according to whethe¡ p in (3.49) is +1 or -1.

Strictly speaking this proof is valid only in a region which is the union of r < d and.

r' < d. B:ut this is sufficient to fix the symmetry nature of the cunents on the spheres

and thus of the field everywhere in space.

-35-



Vy'e have already discussed the basic coupling mechanism which is responsible for

the existence of free oscillations in the two sphere geometry. The energy in the fleld

oscillating about one sphere comes from energy i¡cident from the other sphere and

vice-versa, and all the while energy is being given up to radiation to infinity. The field

incident from sphere B onto sphere á is

EB'i =¿ [re*',$, +Bf,M'lâ))

= i i ai,tr @l^ r BL) (Nrç,) r M,g)
,=1 v=l

where we used the translation formulas and (3.3), and interchanged / and v for con-

venience. But

the /ú excitation coefficient for sphere A, as expected [see right hand side of (3.12)].

Starting with (3.49) we find that this coeffrcient is simpty U¡1in (3.21). It is easy ro

establish the following identities:

Ð si# (aE^ t By) = lwrr ot *s")1,,

('f t rt) ,ikz = -¡ i u,, (N,9)t Mt1)
l=l

(î' t i9) ,-ikz' - 1¡ i uÅ Cn'#)* M',tl) ,
l=l

the fust of which was derived in section 3.1. Using this in (3.51) we find that

EåtsA = i (î + iî) eik' (3.s4)

is a right or left (m = +1) circularly polarized uniform plane wave with magnitude of

order unity. This is exactly the mode of interaction the energy Eansfer¡ed between the

spheres would be expected to adopt: A plane wave because of the great distance d
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between phase centers, circularly polarized because of the ei^þ factor in the mul-

tipoles, and of order unity because the coefficients AE and AH of the scattered field

a¡e also of order unity. But recall that the amplitudes of the individual panial waves

making up the incident field (3.54) a¡e of orde¡ lWrQrd) | -¡." [see the individual

terms in (3.51)ll The only conclusion is that there must be almost perfect destructive

interference amongst the panial waves radiated from sphere B, at least in the neigh-

borhood of sphere A .

Recall that the real part of dt is O/c, which is negative. Thus the incident field at

any instant of time inc¡eases exponentially in the direction of propagation. The ratio

of the amplitude at the farthest point on the shadow side (z =-d) to that on the

(^ I
corresponding point on the illuminated side (z = a ) is exp l- ll a | . For the tust't c )

natural frequency in the fust layer (Fig. 2) this ¡atio is about 1.32, which is the smal-

lest of all the modes. The corresponding wavelength is about 3.61a. The next natural

frequency with about the same wavelength is the second one in the second layer; its

amplitude ratio is about 14.3 already! Thus even within the fust few lowest order

natural modes this ratio can be quite large.

We can thus describe the incident field at any instant of time along the axis join-

ing sphere A to B: Starting at sphere B it has about unit magnitude. A short distance

away the exponential growth in l4z1(ftr) begins to dominate and the field continues to

grow in magnitude until the zero order asymptotic form for the spherical Hankel func-

tion becomes a good approximation. Then destructive interference amongst the partial

waves sets in, and finally dominates as we approach sphere A. The incident field is

now a plane wave which, at any point decreases exponentially with time and so, at any

time, must increase exponentially in the direction of propagation, going from almost
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zero on the illuminated side (z > 0) to order unity at z = 0 and finally, rapidly to

infinity on the shadow side (z < 0). of course the¡e is a similar wave traveling in the

opposite direction from sphere A fo B. Vy'e discuss the off-axis behavio¡ of these

frelds when we conside¡ first o¡der cofiections in the next section.

The incident field (3.54) scatters from sphere .4. It can be shown rhat the

coefficients in the multipole expansion of this scatte¡ed field are exactly just the AE

anð, AH , as expected. This field rhen acts as Ei\¡, which is similar in form to the

second of (3.53) in the neighborhood of sphere B, and so on. E i'!3 is just the back

scattered field to E;TrÁ, and vice-versa. Thus the natural frequencies are just those

(complex) frequencies at which a plane wave incident on a conducting sphere has

almost a back scattering null (as d -e o"). In fact, l y(ka) l2 is proportional to the

echo area of a conducting sphere of radius ø which, according to (3.31) must vanish at

the natural frequencies. (See Harrington [8] equation (6-105). Harrington plots

þ I X<t t> | 2 in ttis Fig. 6-72 for real k; we examine its behavior for complex k in

Fig. 2. In this new light, the poles correspond to the single sphere natural frequencies

where an incident plane wave of that frequency would excite an infinite response,

which implies an infinite echo a¡ea. The zeros on the othe¡ hand correspond to double

sphere natural frequencies where an incident plane wave of that frequency has almost

exactly a back scattering null (to compensate for causality considerations in signals

that decay in time). This implies zero echo a¡ea.

We now examine the case å = 0. We already know that the natural frequencies

reduce to those of the single sphere. Funhermore, inspection of (3.45a) reveals that

only the one A¡n corresponding to that natural frequency becomes infinite, the rest

remaining finite. A rescaling of all the coefficients then implies that the double sphere

natural mode reduces to that unique single sphere multipole (natural mode); all other
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multipoles have vanishing contribution. Incidentally, the B coefficients in (3.45a) also

vanish. As kb -s 0, and with the above rescaling in mind,

BF = - eÐt (¿å)2(r-1) -+ o
3¡z ¡1'3.s'.'1Zt-t))2 w Jkd)

nf = (-i)r (kb)2(t-t) -+ o
3/ (/+1) tl 3 s (2t-Dl2 W 1&d)

for all i = 7, 2,... This last ¡esult is just a further indicator of the self consistency of

the solution.

Lastly, we examine the case a * å. Recatl that the natural frequencies come in

pairs so and s¿ lcorresponding to ko and,t¿; see (3.42) and (3.43)]. Let us first dis-

cuss the natural mode corresponding to so. Using the fust of (3,42) in (3.45a) we

have

¿E = ¡lt' 1koa71-t tl ,

AH =+l H(k"a)l-t UI

gE-

Thus the A coefficients are of order unity as before, but the B coefficients (and hence

the cur¡ents on sphere B) vanish as (l{1)-1, even if the sphere radii differ only

infinitesimally! Our ea¡lier suspicions about the rapid change in the nature of the

oscillations when we pertu¡b the relative sphere size have been realized'

We can understand how the natural mode "works" by examining the interaction

fields between the spheres, just as we did for the case d = b. In fact, comparing

(3.56) with (3.49) reveals that these fields a¡e still circularly polarized uniform plane
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BH =-+

w {k"d) Xt&.b)

(3.ss)

w íkad) Xt@ob)

ILE (k"b)l-l JU 1 --+ 0

ILH (k.Ðl-l JU | + o.

(3.s6)



waves, just the amplitudes have been changed. Making use of the fust of (3.53) and

the B coefficients in (3.56) we can show that

This plane wave of order unity magnitude strikes sphere A and is scattered. The

induced currents and the A coefficients are of orde¡ unity like the incident field. On

the other hand, making use of the second of (3.53) and the A coefficients in (3.56) we

can show that

EÀ5¿ = i (î t i9) e¡Þ .

This plane wave of order (W1)-l + 0 magnitude strikes sphere B and is scattered.

The induced cur¡ent and the B coefficients vanish as d -+ .o, like the incident field.

So how does the asymmetry of the natural mode arise? We first notice that by

choosing r = sø sphere A is "matched" to the incident plane wave, that is, E|\o

striking sphere ^4 has almost a back scattering null in the legion of sphere B. The

important point is that the destructive interfe¡ence here is far more complete than it

was in the case d = á. Here the back scattered freld in the neighborhood of sphere B

(EåA¡ ) is of order (Wr)-1 -;0, instead of o¡der unity as it was in the case a = å'

The better matching in the former case is directly related to the fact that the right hand

side of (3.42) vanishes as (1421)-2 compared to only (IV1)-r in (3.31). If the right hand

side were identically zero in either of these expressions, a plane wave of the

corresponding frequency would have an exact back scattering null at infinity. Con-

versely, with s = s4 sphere B is not matched to the incident plane wave (Ef3¡).

The scattered field sta¡ts out with a magnitude of order (I'fz1)-1. ln the region of

sphere A it must be a plane wave, simila¡ in form to the fust of (3.53), but the magni-

tude has been increased by a factor !l/1 because now there is no (appreciable)
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i (î' t í9) e-ikz' -) o.
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destructive interference amongst the partial waves. Thus E3\ has a magnitude of

order unity, as we see in (3.5?). The asymmetry in the natural mode is thus explained.

The second solution follows from choosing s = Já. Using the second of (3.42) in

(3.45b) we have

¡E-

AH =+ ILH (kba)l-t ur --) o
W t(kbd) Xt(Ça) '

BE = ILE Gbb)l-l JU I

BH = --+ ILH (kbb)l-t JU t.

W {kbd) Xtþua)

This is the dual mode: The cur¡ents on sphere B are of order unity, while those on

sphere A vanish as (IYl)-I. It is now sphere B which is matched to the incident plane

wave of frequency så, and sphere A is unmatched, et cetera.

Nowsupposed<b. This implies ls, l> ls¿ I [see (3.43)]. Thus the natural

mode corresponding to s = sd (Jå) is the deformed symmetric (antisymmetric) mode.

The converse is true if b < a. In other words, the mode associated with, o¡ matched

to, the smaller (larger) sphere is the deformed symmetric (antisymmetric) mode.

l E (kba)la (J, -+ 0

3.5 First Order Corrections

We now understand that the existence of free oscillations as d -+o" relies on

almost perfect desm¡ctive interference between the partial waves (multipole fields)

incident on each sphere from its respective opposite sphere. This raises a question as

to the validity of ou¡ zero order approximation. In pafiicular, in writing (3.1) we have
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retained only the fust term in the sta¡da¡d finite series representation of the spherical

Hankel function, an<l throughout have neglected all terms of order l/Èd and higher

with respect to unity. But the almost perfect destructive interference demands a deli-

cate and precise relationship between the complex amplitudes of the partial waves.

Perhaps using our approximations (3.1) and (3.2) in place of the exact expressions for

the partial waves significantly changes the solution, leading us to doubt the results

derived thus far, even in the limit d-+.". To alleviate such concerns we shall in this

section, and in a condensed manner, repeat the mate¡ial of sections 3.1 to 3.4, but this

time retaining all terms to order 7lkd, lhat is, correct to first order.

But before we begin the first order correction proper, let us carry out a simple

double check which, although limited in scope, provides some useful insight. ln the

case a = å the details of the desm¡ctive interference are embedded in the steps leading

from (3.51) to (3.54). læt us repeat this calculation, but use the exact expressions for

the multipoles instead of the approximations in (3.1) and (3.2). For simplicity we limit

ourselves to finding Ej\ only at one point - the center of sphere A. The appropriate

multipole fields are [see (2.3) with r' = d,0'=n, O'= O, ô'= -Ê, ô'= ô l,

M'ffi) = ¡¡ (-t)r /(/+1) ! ¡,tz)1u¡ 1} r rt)

N'ffl = - (-r)¡ /(/+1) * * rrro nf)(u))d r,t),

which ¡educes to (3.1) and (3.2) with z = 0 tf we retain only the fust term in the finite

series expansion of the spherical Hankel function (i.e. the zero order approximation).

Using (3.49) and (3.60) in (3.51) we can show that

(3.60)
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Ef:A(r=0) = ip (î t,Ð w{r¿

-ii 1 f

Et nt (i2kd), l.n'

n,(o = -,=å, ,-,,' (2/ + 1) å:-l+]+ çpçfupa
rr,(()= l,l ,=nteÐt(zr.rrf,if#f #ffi

I 
{x,tt,r

&a) + fin,Ur,] 
]

The reason for using lr¡ I instead of n will become apparent in chapter 4. Using

asymptotic formulas like (3.26) we can show that for i -+"" (and />n) the ratio of the

(l -n+2)h terrn to the (/-n+1)ú term for both series in (3.62) is

( \2

- 
(l+n+l) l! I -t 0. Thus the series in (3.62) are absolutely convergent for any
(t-n+I) l2t )

finite ( not at a pole of xr((). Furthermore, as n -)êo only the first term in either

series contributes to that sum. Thus we have for ¿ -+oo

1¡+l _ l¿+r __ É ="onr,.fln 1, 2

(3.61)

Obviously, then, the sum over ¿ in (3.61) is absolutely convergent. In particular, for

I U I -=* the sum vanishes and, using (3.48), EllSA (r{) reduces to what we had in

(3.54) based on a zero order approximation.

For kd latge but finite we retain the one dominant term in that sum and write

I n, r¿a I I
E¡n!¡(r=o) = i p (î tiÐwt(kd) 

lxtttol 
- i* J, ß.64)

where r]1(/(a ) is very similar in nature to Xt(ka) lsee (3.25)], but of cou¡se does not
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have the same zeros. Let k = ko+ Lk, where 11(È¡rz) = 0 and I *nol <1, so that

to fust order in Â.k Xt&a) = X't&oa) À.tø, whe¡e the prime indicates differentiation.

Comparing (3.64) with (3.54) we rhen write

I I + ^*rl9'?)l==:,nrq*ì =ol=L.lrr.urraka=_ t_
X't(koa) lw íkod) 2k& ) zt & X'Jkoa) 

* 
[¿o¿ ] '"''"

since the second term dominates as I *sd I -+.". This latter observation implies that

the parity degeneracy of (3.31) is not lifted to first order in llkd.

F¡om (3.65) we see that any correction to our ea¡lier results is of order llkd

which vanishes in the iìmit d-+"". Thus we have shown that the natural frequencies

and coefficients for the natu¡al modes de¡ived for the zero order approximation of the

multipole flelds also work for the exact multipole fields in the limit d+.", at least at

the point r=0. Cfhe tedious generalization to include a neighborhood of sphere A

should be straightforward, but we fo¡sake it in place of a proper fust o¡der cor¡ection).

This is simply a double-check on the validity of using asymptotic approximations from

the beginning, instead of fust solving the problem exactly and then taking the limiting

form of the solution as d-+oo. within the limits of this derivation, both methods pro-

duce the same result.

Now let us begin a systematic first o¡de¡ colÏection. In order to determi¡e the

new translation coefficients we need asymptotic expansions for fø'ft) and N'Jf) in ,¡"

neighborhood of sphere A , where
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r' = d - z + { + o@-2); p2= x2 +y2
2d

¡-ê'=s [r* L+or¿-2t)dl d ')

0'= 0.

Using (3.66), (2.3) and the formulas in the Appendix we can show that, correct to fust

order in llkd (m = !l)

t ^ L,, * r, t2o2) I
s¿- = l(, t$¡ ¡:-::------:z +kz +: !-l +î kpeliöleik'. (3.67c)

L' "[ i2 i2) j

Compare (3.67) with (3.i) and (3.2). In particular, notice that (3.67b) implies that

(3.3) still holds so we see that the form, or structure of the matrix equations (3.12) is

insensitive to first order cor¡ections. This is a happy circumstance.

It is easy to verify that M' and N'in (3.67) are solenoidal land satisfy (2.2)].

Thus we attempt an expansion in the form of (2.5), with due regard to (3.3). In

(3.67a) we already know the expansion of the zero o¡der term (3.1), so we consider

the fust order term

vr{fr> = t i-t+l IU + D w {kd)

N',9)=tM'i$), *he."

l,'r' rot,lt. fr s'l

(3.66)

s. = ftÊsine + ôcoso * ,6¡ |,f(J-ff + krcosg * ¿2r2qn2e 
IL 'l iz ' i2 J

+ (Êcoso - êsin0) tr sine] eri'ö eit.,coso

= å "* [na1; t NJ] ]

(3.67 a)

(3.67b)

As in section 3.1, the ¡adial component of this equation provides enough information
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to solve for the Cut. Using (3.6), (2.3) and some recrurence relations for the Legendre

and spherical Bessel functions we find

^t 1 ¡u 141-1) t(v - lxv + 2) + /(l + 1)1. (3.6e)"u --1 v(v+ l)

Combining this intermediate result with (3.67a) and the fust of (3.9) we ca¡ summar-

ize the results for the fust order translation coefficients as follow:

r ìl
a,"J"=¡t-uQllJ)v(v+1) w,&d\h + t(/-1)(i +2)+v(v+1)l | |sbn -. tU + Ð 

v\v -r r.i " l\"r/ t 
- nkd [ |'lþü=¡aW I

q'rvi = el)t-vcti7 f3'70)

þ'i,i=-er)t*þi,-r I

Compare these equations with thei¡ zero order counterparts (3.9).

As mentioned already, the structure of the matrix equations (3.12) is unaltered.

In fact, the entire discussion in section 3.2 is directly applicable to the fust orde¡ case

presently under consideration, except fo¡ an obvious modification of the matrix e1e-

ments in (3.10), with a conesponding modification of (3.21), namely

These will generale the translation (matrix) operators conect to fust order 1n llkd.

The transcendental equation (3.24) has the same form, but now

tl
xr(()=¡ieÐtet+l){1-*vu*1)-1ll | '".''¡r=r " l' kd '''' ' '' ^') 

çhl2)G)A{çhtØ(ç)1"-''''

which follows from using (3.71) above in (3.23). For d -+." this 11 reduces to its zero
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orde¡ counterpart (3.25), and the natural frequencies are as shown in Fig. 2 (for case

¿ = å). With the fust order cor¡ection we should be able to determine the paths that

the natural frequencies follow in the complex plane as we ¡educe d from an infinite

value to a large, but finite value. The question is: What is the domain of I *¿ I

within which (3.72) is considered valid? Recall that retaining only the fi¡st rwo terms

in the expansion of h,l2)1¡¿¡ is a good approximation only when lt¿l > lU + l)/z

(see the Appendix). The same is rrue of (3.72); the fi¡st order term in braces is in the

spirit of a small conection, and so must be much smaller than the zero order term,

unity. Here we take / = /0, where /6 is the highest order term that still contributes

significantly to ¡he sum (3.72). Numerically we find /s ranges approximately between

5 and 10, at least for the fust few natural frequencies. This means, even in the best

"use, 
I kd I ,o t5, ,uy I U I > 100. Then the fust order correcrion for the (dom-

inant) / = i term in (3.72) is of order one percenr, and rhe facror W 1@d) is pracrically

zero. Thus we cannot, with any confidence, venture very fa¡ from the d -+." limiting

case.

Nevertheless, we can use the first orde¡ information to calculate exactly the

"angle of departure", to borrow a term from conFol system theory. This is the angle

that the tangent to the narural frequency path makes with the positive real axis in the

d -+." limit, i.e., the inirial di¡ection the path rakes as d is made finite. Using (3.62)

we can rew¡ite (3.72) as

where 1{0) is the zero order approximation (3.25). For d large let us set k = ko+ Lk,

where I Lktkol < t ano X{o)ltoa¡=0, so thar *1011*a)=Llo)'1koa)Áta, theprime

indicating differentiation. In the case a = b the transcendental equation tells us

- 4t -

x,<Çr= [r*fi] xf)ar -fin,<e>, (3.73)



yr@a) = p lW 1(Èd ) [see (3.48)]. Using this information in (3.73) and taking rhe limir-

ing form as d-+"" we find

The angle of departure is the angle of the complex number Át, plus 90 degrees, which

is a function of the particula¡ natural frequency so = i&oc.

Notice that the angle of departure is independent of the parity p, as predicted in

(3.65). This means the paths of the symmetric/antisymmetric pairs coalesce in the

limit d -+-. (Both approach the limit point from the same angle). Notice also that

(3.74) is single-valued, which implies that the number of natural oscillations is a con-

served quantity, i.e., invariant to changes in d, at least to the order of these approxi-

mations. Using (3.28) it is easy to verify that if ¿0 is replaced with -kfi, then Â/< is

replaced with -Àfr*, indicating that each path in the complex frequency plane has a

complex conjugate dual, as expected. Furthermore, the magnitude of A,td is a measure

of how rapidly the natural frequencies depart from thei¡ d -+"o limiting values as d is

made fi¡ite. In this sense Lkd 1n (3.74) can be thought of as a "departure vector"

(angle and magnitude). Finally, compare (3.74) with our earlier estimate (3.65); the

ex¡¡a U2 in (3.65) is rooted in the fact that we allowed only fr to have a first order

cor¡ection - actually both fr and the natu¡al mode coefficients undergo a fust order per-

turbation.

Fig. 3 is similar to Fig. 2, augmented with the fi¡st order information. The short

line segment emallating from a zero o¡der natu¡al frequency is at the departure angle,

and has magnitude proponional to the departure vector.

Some general observations: The departue angle lies between about -90 and -180

degrees. Thus the initial perturbation of the natural frequencies as the spheres a-re
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brought closer togethe¡ results in decrease frequency co and inc¡eased damping rate

I O I . fne relative importance of these two changes depends on the departure angle.

For example, for rapid (la¡ge r¡) high Q (small I O | ) free oscillations the depârture

angle is closest to -90 degrees; the initial pernrrbation is dominated by a change in fre-

quency o over change in damping rate. Furthe¡more, the overall magnitude of the

departure vector tends to be largest in this case. On the other hand, the natural f¡e-

quencies on the rea-l axis can only change in damping coefficient C), and so have a

departure angle equal to -180 degrees. (Of course zero degrees is also conceivable, but

does not seem to occur in reality). A change in frequency o is not possible because of

conservation of number of free oscillations, and the fact that I X, I i, symmetric with

respect to the real s -axis.

The natural mode coefficients are still given by (3.45), where the Q1 are now

given by (3.71) instead of (3.21). Recall the exrra 712 i¡ (3.65). We derived this

result under the simple-minded assumption that .BE and BH in (3.49) were the same as

in the zero order case; then (3.65) was the fust orde¡ correction to & necessary to pro-

duce the desired result (3.54) (with z = 0). It can be shown that if we were to repear

the derivation, but this time using the fust order correct BE and Bä we would find the

cor¡ection to É given by Q.7$ instead of (3.65).

Recall that in our discussion of the natural modes in section 3.4 we described the

behavior of the fields on the axis connecting the two spheres. In particular, Ej\o

given in (3.54) is corect in the neighborhood of sphere A in the limit d -+"". What

can our fust order conections tell us about the interaction fields for d large but finite,

especially the paraxial behavior? ln general

Påts¡ = I [a¿n',gr + BHM'1â))
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Using the multipole fields in (3.67) and the B coefficients in (3.49) for the case ø = å

this becomes

EåB¡ = i ",r, {<tr 
,rr 

l, 
. + l, - "+)1., +@ 

* 
'y)},

which is valid in the neighborhood of sphere A and up to fust order in 1/&d. Note

that (,r t iy) = períÞ and (f + ,îl = tÊ t tô) ¿rio, showing explicitty the ei^þ azimu-

thal dependence. Compare (3.76) with its zero order counterpart (3.54) obtained by

letting d -+.".

On the p = 0 axis (3.76) reduces to the usual (3.54) times the first o¡der correc-

lion factor

where r' is the distance from the center of sphere B to the observation point. This

cor¡ection comes from the inverse distance factor common to all spherical waves. If

z = 0 also, then r = 0 and E;TrÁ of course reduces to i (-f È¡9).

For the paraxial case let us flrst rewrite Ef!¡ in the more revealing form

Båts¡ = ;@õ ie,*,ôr ertÞ' +, (3.78)

I=t*1*oro-'r,

which, when expanded in powers of 1/d reduces to (3.76), correct up to fust order

terms. Recall that the primes here refe¡ to the O' coo¡dinate system centeied on

sphere B. The origins of the various factors in (3.78) a¡e suggested by inspection of

the multipole fields (2.3) and the limiting forms for the Legendre functions as 0'-¡æ,

prticularly the Eansverse (to Ê') polarization rerm @' -+ ¡6) 
"nç' 

. The radial

dependence is clearly a spherical wave, whose exponentially large magnitude in the

region of sphere .4 is tamed by the factor lW {kÐl-l - a direct manifestation of the

\t

(3.76)

(3.77)



destructive interference process.

Unfortunately I BÀt o I in (3.78) does not exhibit any dependence on 0'; to this

order of approximation I nr\, I is spherically symmetrical about O', at least in its

intended domain, and so does not reveal any interesting paraxial behavior. As

expected, in this I m I = | case 0' dependence is a second order effect [see (4.3) and

(4.4) of the Appendixl. Nevertheless, we can speculate with great confrdence that for

r' = d (r = d) the magnirude of the field radiated by sphere B (.4 ) has a sharp global

minimum at 0'= n (0 = 0); the conditions for appreciable destructive interference are

not satisfied elsewhere. Together with our previous discussion about the behavio¡ of

the fields on the axis connecting the two sphe¡es (section 3.4), we can nor¡/ envision

the energy density being at a minimum in the vicinity of the spheres, and (more or

less) increasing with radiai distance from either sphere. This is consistent with energy

being radiated out to infinity with the passage of time.

The calculation of second and higher order cor¡ection terms quickly becomes

unwieldy. Most importantly, correction terms beyond fust o¡de¡ destroy condition

(3.3) and thus the simple coupling structure of (3.12) no longer obtains. Although

these changes in coupling structure may provide useful physical insight, we have

instead committed our time to the solution for cases I ^ I * t.
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In chapter 3 we discussed the case I m I = t in great detail. IVe now have a

good understanding of the physical principles behind the free oscillations of the elec-

tromagnetic fields in the presense of two conducting spheres, at least fo¡ unity azimu-

tha-l number and large sphere separation. The case I ^ I , t is qualitatively rhe same

in many ways, but there are some important differences. This brief chapter is a formal

collection of the ¡esults for all cases I ^ I > l, with an emphasis on these differences.

The overlap with the I ^ I = t case provides a double-check of the results in chapter

3, since the two sets of results were actually derived independently of each other.

From the outset, all derivations and results in this chapter are corect to first order

in llkd. Notation: Because of cylindrical symmerry most quantities depend on I m I

rather thm tn, so we shall write +1 in place of mll m I to emphasize the dependence

of this quantity on the sign of m. In other words, we have set m = tl m I , which is

consistent with the usage of the double sign in chapter 3.

CHAPTER 4: CASE l*l > r

4.1. Translation Coefficients

As in section 3.5 we can show that in the vicinity of sphere A [as defined in

(3.66)l

M,,9) = + ¡-r+l^l r¡ + l. llt' (t_l;T[
I

' 
{tt 

o'*r

w^(kd)

a¡ ln l-r eík" çî x,î) * # u,. 
Ì
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,,. = lrr 
- t, []!;, + t^t r, . +l *, oo,,'.]

' (& Per;A¡ 
I ^ I -t 

'it"

w,,,&d)="*#ar- #*
all cor¡ect to fi¡st order in 7/kd. Compare (4.1) with (3.67), to which it reduces in rhe

case m = t7. The most important difference is the

(kpexio .l^l-t - tfr (x ti)ll.l-1 fa"tor, which makes even the zero o¡de¡ mul-

tipole fields in this region nonuniform helical waves tor I m I > 1, as opposed to uni-

form plane waves fo¡ I * I = t. This will of course directly affect the form of the

interaction fields E}T,Á and Ej"!, (discussed in section 4.-2). For I ¡æ I > t M' and

N'vanish on the axis connecting the two spheres, which we originally suspected may

make the coupling weak or even negligible. Furthermore, notice the ext¡a inverse
tt.(kd¡t^ t -' facto¡ in IV. over the I4l, case. However, we now know that the strength

of coupling is dominated by the exponential growth factor in Wn&d), so that the indi-

vidual partial waves striking the spheres still have enonnous amplitudes, except in an

"epsiìon neighborhood" of the axis.

As a double-check we can verify that the M' and N' in (4.1) are solenoidal and

satisfy (2.2). (4.1b) implies, as might have been expected, that (3.3) holds for all

llnl>1,namely

x',ffr=tM'lX), whe'e (4.1b)

(4.1c)

(4.1d)

As usual, this allows us to wdte

þh =r a.!f"
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Setting

a.!ft = ¡-r+t^r fffi ñ+T w^(kd) [c{or + 6#r] , (4.4)

in (4.3) and rearranging yields

(

l{krsino) 
lnl ,iøcnse * ! lçrr"-'^rl I s,-l}I oo '' -'J)

="=å, ["*, 
. h "l',)iu(,tr) 

Pf;(coso),

where C{0) and Cl1) a¡e unknown coefficients to be determined.

. For the ze¡o order part of (4.5) we w¡ite

L.H.s. =i-l.l (sine) l^l dl^1, - ílr coss\'¡¡v, 
d (cose¡ I 'T 

t

= ¡-l n I i iv (2v + 1) iu(,tr) Pf; (cosg),
v=l,'l

where we made use of (3.6). Thus

CJo) = tv- l,l (Zv + t).

For the fust order part of (4.5) we write [see (4.1c)]

M',lâ) =x
v=lnl

(4.3)

T .'l
L.H.s. = 1 l/(/ +1) +rlml + 1) trcosg * (&r sin0)2 lrtrshet løl oìb casø

kd I i2 i2 J'

where the factor (&r sin0) I m I 
"ilø 

coso is the same as the zero order part. After a cou-

ple of pages of tedious algebra and recurrence relations we find

(4.s)

Using (4.6) and (4.7) in (4.4) finarly yields cfr.
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ati = ¡t-, fr++ #:]#+ wnL&d) 
{r 

* t(¿ - l' lr<¿ *

The translation coefficients are summarized below:

þi,i =x ai#
a'ii! = Çt)t-v a¡u{

þ'i;i = -çDt* þi{

Compare these equations with (3.70) lor I m I = 1. As mentioned already, the extra
lr-

inverse (ftd ) I ¡¿ I -r in W. over W1 makes the coupling slightly weaker, but by no

means negligible!

Again the enti¡e discussion of the solution in section 3.2 applies, in spirit, to the

present case, with obvious modifications in notation to accornrnodate the increased

generality I * I > t. For example, W1 becomes W^, et cetera. Further, (3.21)

becomes

,, .r QI +t) [, , A - l*l¡<t + l.l + rl ]uh=t' i(/.rtl'*T)
v,^=i-vå|#+ ['.+#]

Compare these with (3.71) for I ", I = t. By (a.9) and (3.17) we have

ll¿l+t)+v(v+1)l
i2kd

(4.8)

x^(Ç) = vI rG) u^ =
t=lnl

[, ztlr+ l) - | . I r I , I +rl I 1

l'- o )T@aactehpl.;l,

which is to be compared with (3.72). The transcendental equation fo¡ the natural
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frequencies is

tw^(kÐ)2 X^&a) X^(kb) = 1,

an obvious generalization of (3.24).

4.2 Natural Frequencies

In the limit d -+.o we w¡ite, in the usual notation,

x^(Ç) -+ x,tY)(() = j >,=rir'-" /(i + Ð

1

lif) is qualitatively very similar to Xlo), the most important difference being the loca-

tions of the zeros (all of which are fust orde¡, as in the I ^ I -- t case). We know

that in the limit d -+"", k in the lower half compiex plane means IV,n (kd )-+0 so, by

(4.1Ð, Xf)(kr)-+c., where r = a o1 a. nut 1l0li(¡ has the same poles as Xlo)(ç) -

only in the upper half (-plane, and at all other points in the finite (-plane the series in

(4.i2) is absolutely convergent (easily proven as in section 3.3). Thus there are no

solutions to (4.1 1) for & in the lower half plane (s in the right half plane). The ¡eason

we emphasize this fact is that, unlike h, X^ (l ^ I > D apparently has some of its

ze¡os in the lower half (-plane. Usually, singular points in the mathematics (like

zeros) indicate imporunt physical phenomena; in this case, howeve¡, these lower half

plane zeros appear to have no physical meaning. (Indeed, if they were solutions they

would imply free oscillations which grow exponentially with time).

(4,11)

(n,Ø(Ç) a{ch12)G)l

(4.t2)
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Of course the zeros of 1j011ç¡ in the upper half (-plane still fumish the natural

frequencies through (3.32) (for case a = b and d -.l""). For brevity, in this chapter we

consider only the case d = å; the case a + b is a straightforward extension of these

results [see chapter 3, in particular (3.43)].

As in the ..rr I r I = 1, the usefulness of the fust order conection term in

(4.10) is practically limited to determination of the departure vector. Inspection of

(3.62) reveals that we can rewrite (4.10) as

( ' ,lrl-l+ll ¿-1¡l-l-r
x^(Ç) = l1 - t n' 't,'-'::-' ' 't I x#,(Çl - sÇ n^{Ç). (4.13)

I tzxa )

In analogy with the lml =t case, we set,t = ¿o + À/c, where &s is a solution when

d -+.", and find that in the limit of large d

Compare this with (3.74). Notice that the departure vector Â/rd does not depend on

the sign of m, in accordance with the basic degeneracy over sign of rn; nor does it

depend on the parity p. lncidentally, for the purpose of calculating (4.14) we find for

the derivative of lfo)1(¡:

Figs. 4, 5 and 6 are the same as Fig. 3, except they show the natural frequencies

and depanu¡e vectors for I m I = 2, 3, and 4, respectively. We must sress that in

these figures we are actually showing the ze¡os of 1j0); as discussed already, only the

ze¡os in the left half s -plane can be considered natu¡al frequencies, the others are

_s8_

(21 + t)
i(/+i)

I tt<t + t>(-2 - tl 1 I
I rðrrØF\dP - rçn,<24çç ¡

e+lml)l
a -1;l\

(4.14)

(4.is)
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apparently meaningless. The reason for their inclusion will become clear in chapter 6

where we compare all ¡z cases iri detail.

Figs. 3 to 6 are qualitatively similar except for two general differences. The first

is the migration of the fust layer zeros towards and into the right half s -plane with

increasing l.l. pot l^l =l all of the fust layer zeros of X{0) are in the left half

plane and hence constitute natural frequencies. For I n I = 2 the fust four zeros of

Xlo) *e in the right half plane, bur rhe fifth (and the sixth, and probably all higher

ones not shown) lie in the left hatf plane. The numerical evaluation of 1J0) (and all

other 1f,)) was done very carefully to virtually rule out possibility of numerical erro¡

of any description. This "partially in the right and partially in the left half plane"

behavio¡ of the lml =2 ñrst layer zeros is very curious indeed. Fo¡ li¿ I >Z ull

the fust layer zeros appear to be in the dght half plane; it is not known whether zeros

higher in the layer eventually make their way back to the left half plane.

Inspection of Figs. 3 to 6 reveals an alte¡native way of classifying, or grouping

the natural frequencies. Instead of layers, we notice approximate quarter-circle arcs

centered about s = 0. In Fig. 3 the fust a¡c has three natural frequencies, one being

on the real axis. The second has four natural frequencies, and so on. Thus the second

general difference between Figs. 3 to 6 is that the fust arc sta¡ts funher from the origin

for increasing I . I . rnis behavior can be linked with the fact that the sum in (4.12)

begins at t = I m L the l,h term in this sum has poles that occur approximately in

an arc (the eiectric and magnetic natural frequencies of a single sphere, see ahead to

Fig. 10). The / = 1 a¡c is closest to the origin, and for / =2,3, ... the arc radius is

an increasing function of / . Thus rhe sum in (4.I2) is missing the / < I rz I a¡cs of

poles closest to the origin. The observed fact that the zeros of 1j0) prefer to be inter-

spersed amongst the poles then explains the aforementioned behavior.
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We have discussed Figs. 3 to 6 in a rather descriptive way, preferring to leave the

more meanirgful speculation and physical insight to chapter 6, where we compare

natural frequencies fo¡ all m cases.

4.3 Natural Modes

The natural mode coefficients are still given by (3.45), with U l replaced by U*.

Notice that the U¿. in (4.9) depends on I - I only to fust order, so in the limit d+."

the form of the coefficients is independent of l. I þot of course the values ulti-

mately depend on the particular natural frequency and sign of m )

For the inte¡action fields we find

EBT3Á = ¡lnl 1¡p¿tiÞ¡l'l-r riø

Compare this with (3.76). The most imporrant diffe¡ence is the factor (kp¿tíÞ¡l^l-r

which, of course, makes even the zero orde¡ interaction fields nonunifo¡m helical

waves, just like the panial waves in (4.1). It is these differences in interaction fields

for different I rn I which are responsible for the diffe¡ent sets of natural frequencies.

(4,16) can be written as

. ¡-rrl-l-t r a ^-íb'B¡,!a = Tffi rfu t6'-+¡ôL "ino 
e-tÏ (sinsll' t-t4.n)

Compare this with (3.78). Recall that 0'-+æ as in (3.66); rhe factor (sing'¡ l¿' l-t dorn-

inates the paraxial behavior, and indicates the null that the natural modes have on the
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axis connecting the two spheres when lr¿ I > 1.
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Chapters 3 and 4 dealt in deuil with the solurion ro the coupled equations (2.g)

fo¡ the cases I * I > t and large sphere separation. Here we discuss the only remain-

ing case, namely nr = 0, wherein the fields have no azimuthal dependence. Vr'e shall

see that the structure of the coupled equations (2.8) is markedly different from what

we have seen before. In particular, the electric and magnetic multipole fields do not

couple and so the natural modes are no longer hybrid. Some features of the solution

will be familia¡, but there are many interesting differences. As with chapter 4, this

brief chapter is a formal collection of the ¡esults fo¡ the case m = 0, with an emphasis

on its unique features; we shall try not to belabor the discussions of concepts already

introduced. As usual, all calculations a¡e ca¡ried out to fust order in 1/&¿/.

CHAPTER 5: CASE m = 0

5.1 Translation Coefficients

For m = 0 the multipole flelds in (2.3) reduce to

M,g) = - $ r,ti]lçt r¡ ðsp¡(cos0)

N¡g)=Ê f ,,ti>grr¡l(l +1)P¡(cos0) +ë 
*LA,¡rz,{i)1tr;1 ð*r,1cos0¡,

where / = l,2, ' . ' As usual, we begin by frnding expressions for the fields M,fff)

and N'lá) emanating from origin O' (sphere B) in the vicinity of sphere A:

Ì" 

,,



Mlá) = ô í-t+t IU + r)wo(kd) e¡k" kp

l'.# [** +2kz+ry))

rrlffil = 1zâ - ikpþ) i-t+t i (l + 1) wo&d) eib

[- , í t<t *1) , ^,-- kzoz 
^, ll'lt+- +¿Kz + -=*- +tO¿P lll- kdl i2 i2 'JJ

^^where xþ means "cross-product with Q", and

, --¡ut e (5'2c)tr}\r,u)--ZGdf

Comparing (5.2) with (4.1) we see several similarities with cases I n I = 1 and 2,

e.g., the t(t + 1) factor, the kp factor in (5.2a), the 2kz term in the parentheses on the

far right of (5.2a,b), and the inverse lkd¡2 factor i¡ (5.2c). It must be stressed that

these simila¡ities are purely coincidental. The fact that the nature of the 
'?? 

= 0 case is

fundamentally different ffom that of the I n I > t cases is based on the following

observations: (i) all t?¿ = 0 fields have cylindrical symmetry about the axis joining the

two sphere centers, (ii) M' and N' in (5.2) are linearly independent vector fields, as

opposed to the simple relationship in (4.1b) (to this order of approximation)' and (iii)

W^ in (4.1d) does not extend naturally to the case m = 0; i¡ fact (-1)! = f(0) is not

defined which, together with (ii), leads us to suspect (conectly) that the basic structure

of the coupled equations (2.8) is not of the same form as (3.12). Wo as defined in

(5.2c) is completely independent of l4z- defined in (4.1d).

In the vicinity of sphere A, and to ze¡o order tn llkd ' the magnetic multipole

^M'Íó) i, a transverse 1$ polarized) nonuniform plane wave which vanishes on the z-

axis, whereas the electric multipole N'f6) i. approximately a longitudinal (radially

polarized) wave which does not vanish on the z -axis. It is easy to double-check that
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both fields a¡e solenoidal and satisfy (2.2). Thus we artempt the usual expansion

rTá,=å [øSrlA,*pJgNJå)] (s.3)

Examining the ¡adial component of both sides of this equation reveals ff$ = 0 for all

v,/ . Only u ff "o*pon"nt 
remains a¡d we find, after some manipulations,

l,. # lt*+ 2ftrcoso . 
"+*]] i iu 1zu + 1) ju(kr) ej (coso¡

* ( ' I (s4)
= t 

[t",0, 
* #, {" 

)ju(,tr) 
P'] (coso),

where we have set

.'rQ=;- f ì
wo = ¿ | t(r + 1)wo4Ð 

lc.) 
* # r{',J

and made use of (3.6) and the fact that ðspr(cos0) = - pu1 (cosO).

Fo¡ the ze¡o order part we obviously have

CJo) = iv (2v + 1).

Fo¡ the fust order part we can save ou¡selves some effort by recognizing the similarity

with the cat" | * I = 1 lsee the discussion following (4.6)]. Thus we have

6jr) = 610¡ U(i + i) + (v_- lxv + 2)l
'i2

the same as (4.7) (coincidentally).

The translation coefficients lor m = 0 are summarized below:

(5.s)

(5.6)

(5.7)
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d¡v60=¿r-v et +l)v(v+ t) wrkd)lr. --=;*Ì 
I

a'¡v6o = 1-1¡t-v o¡oo lfs.elpid=0=B'if 
l

5.2 Solution of the Coupled Equations

As usual we define the matrix elements

F'öu= o/oo -"'t' l= wokd) = utovvo 
I

,'#=ffi=1-r;r-v¡,¡o f 
u't'

so that in matrix notation

where, for l ,v = 1,2, . ,

uto=it(2t +1) f,.,. t'-'lU*' 1 1,-' ^, t' i2kd J I

vvo = i-v v(v + 1) f, * url=* 
'l I I (5'11)

v\v -r r./ 
lt 

- nkd ) l

The coupled equations (2.8) become

-ìF = Uovto 
L

F, = JFJ, I (s.10)



Compare these with (3.12). As suspected, the coupling structure here is completely

different from that for the cases I ^ I > t. He¡e the electric multipoles from one

sphere will coupie only with electric multipoles of the other sphere, and similarly for

the magnetic multipoles. This is obvious from the right hand side of each set of equa-

tions in (5.12) which, we recall, represents excitation from the opposite sphere. Thus

the fust and third sets of equations (electric) can be solved independently of the second

and fourth (magnetic), yielding two distinct types of free oscillation for m = 0; there

are no hybrid modes. Notice thar this coupling structure obtains fo¡ any sphere

sepa¡ation, not just d -+"". t(5.1) implies M,$) and M',{¿) have only r $ = $' .o--
ponent, so by (5.3) Ê,jB = 0 fot all dl. The same cannot be said of (3.12).

At this point it is expedient ro ¡eview some distinguishing properties of the elec-

tric and magnetic multipoles. The magnetic multipoles M do not have a radial com-

ponent. Furthermore, with m -- O M has only u fl "o-pon"nt. 
Thus the electric field

of a magnetic f¡ee oscillation [(2.4) with AE = 0 = BE and z = 0] has no field line

terminating perpendicular to the surface of either conducting sphere, which implies no

net surface charge. By the surface continuity equation we then conclude that the sur-

face current is divergenceless; in particular, the lines of surface current fotm closed

^loops in the Q direction only. On the orher hand, the eiectric multipoles N have a

radial component, so that the electric free oscillations a¡e associated with a net surface

charge (locally).

LE(ka)AE =woFBE

LH (ka)AH =WYFBH

LE(kb)BE =wVIFJAE

LH (kb)BH =WPIFJAH

(5.12)

-69-



As already mentioned, the first and third set of equations of (5.12) correspond to

the electric free oscillations. Making suitable substitutions we find

nE = lgtf ¡4, (s.13)

which must be valid for any N e [], 2, ...), and where the matrix

eE = (w ù2 l E (ka)la FJ ILE GÐ¡l FJ. (5.14)

Using (5.10) we tud

(eE)N = lrwol'xë<*ol6tgø¡f'-' p', (s.ls)

where the scalar

xoEG) = vl J ILE (ç)l-t uo = i (-1)¡*1uroy¡oi^P(Ç)l-1 (5.16)
t=1

= å,-r,, (2r + t)/(/ + 1) l, - -, ti (/ +l) - t,l ¿gl=1 I kd

[see (5.11) and (2.8)]. (5.15) together with (5.13) imply the transcendental equation

tw o&Ð12 x&(rù x&(t u) = t. (s.17)

The second and fourth set of equations in (5.12) apply to the magnetic free oscil-

lations. They differ from the elecnic case only formally by the interchange of super-

scripts E <--+ H, and thus we need nor repeat equations (5.13) to (5.17). Notice,

however, that (5.16) becomes

r#(() = i r-rl, (zt + t) r(r + 1) f, - ,,-rl(/ +1) - t,] #ä (s.16,)
t=l I kd
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5.3 Natural Frequencies

In the limit d ->"" we write, in the usual notation,

x'E(() -+ xóo)'E(ç)= i <-rl' er + r) r(t + 1) -ulÍ'l=$lt=t ðçlÇhrt')(Ç))

x{G) +xó0}ø(() = i r-ty et + r)i (/ + r) 4Ir=1 httz)(l)

As in section 3.3 we can show that xó'IE(() and 1{ora1ç¡ are meromorphic functions;

the poles, occurring exclusively in the upper half Ç-plane correspond d ectly to the set

of electric and magnetic m = 0 natural frequencies of the singly sphere, respectively.

The union of these two sets of poles is thus the same set encountered in the cases

I * I > t. Using (3.28) (which also applies for ¡) we obviously have

xé0)(-(-) = txáo\()l-,

which applies fo¡ both electric and magnetic cases. Finally, as d-;"o W s(kd)+"" for

,t in the upper half plane, but vanishes elsewhe¡e (except at the origin, where 1do) ¡u.

a thi¡d order zero, with similar consequences as discussed in section 3.3). These facts,

together with the transcendental equation (5.17) allow us to conclude that the upper

half plane zeros of 1{0)i(¡ lwtrictr a¡e all fust order) are symmetrically disposed about

the imaginary (-axis and furnish the rn = 0 natural frequencies through (3.32). As

usual we need only consider the case ¿ = å.

we now use the fi¡st orde¡ information to determine the departure vectors. we

w¡ite (5.16) in the form

(s.1 8)

xdro = 
[r 

* fi)xó'>,,re> - fi n(<et

(5.1e)

(5.20)



where we have defined

which is completely independent of the previous q, defined in (3.62). As usual we

novr' set k = ko + Äk, where ks is a solution when d-+-, and find that in the large d

limit

îoE(() = ¿ i t-rl, (zr + r) u(r + D)2 #ffi

Notice that the departure vector is again independent of the parity of the natural mode

(a = b).

For the magnetic case we simply replace the superscript E with H ; (5.21)

becomes

o*=#ffi=,[+]

For the purpose of calculating the departure vectors we find for the derivatives:

ì

xé'IE'(ç) = ¡ i t-rl/ et + r) t(t + t) I'-^ 
-!r('+ 

1x-21 I

,=, 
t' "t 'r r'' ¿\¿ 'r t' 

larlç,ro'rt,O t

x6o),H,G)=; i t-tlr (2t + r) t(t + r) *fu I 
o'"

n#(6) = ¡ i t-llr (2t + t) tt(t + Dt2 *r=r h,rzt1ç,

(5.21)

Figs. 7 and 8 display a few of the lower orde¡ ¡n = 0 electric and magnetic

natural frequencies a¡d relative departure vectors. Again we stress that the right half

plane zeros of 1Jo)'ø (the fust layer, or perhaps only pârt of it) are not naturaT frequen-

cies. Notice that 1d0),H has no right half plane zeros. This is a curious difference

between the two cases.

- t2 -

(s.22)
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In Fig. 7 we observe that the m = 0 electric natural frequency layers are

"sandwiched" between the layers of electric natural frequencies of the single sphere

(poles of Xéo)'E), at approximately the location of the single sphere magnetic layers.

This latte¡ layer would represent poles, but are of course not present in the sum 1d0)'Ë.

Similar comments apply for the ¡n = 0 magnetic natural frequencies in Fig. 8. This

sandwiching of layers of zeros of 1 between the single sphere pole layers behavior has

already been observed in cases I . I ,- 1,, see for example Fig. 2. We shall take up

the discussion of the natural frequencies again in chapter 6.

5.4 Natural Modes

Starting with (5.13) (with N = 1) we fi¡d

^tAE = 
ILwokd)tz 

xí<tca¡ vT t

BE follows from (5.12).

or to W s(k¿) loE1kå ¡ yietds the dual form

Setting the scala¡ in braces to unity

= ILE(kùl-l uo

= w o(kd) y{1t a¡ ¡ttE 1*u¡1-t tu o

¡E
BE

e,\rNøo>t'uo.

These are the m = 0 electric natural mode coefficients, Their (independent) magnetic

counterparts are formally obtained by replacing superscript E with H . (Of course the
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BE =lLE (kb)l-l JUo

yields

I
j
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allowed values of fr a¡e determined from the set of electric or magnetic natural fre-

quencies, respectively). Compare (5.26) with (3.45), which is very similar in form.

In the case a = b the transcendental equation (5.17) implies

Wo(kd)xog(ka)=p, (5.27)

where p = *1 marks parity as before. Then by (5.26a) the electric natural mode

coefficients become

and similarly for the magnetic case. For all cases l*l >t p =tl indicated

symmetric/antisymmetric natural modes. It tums out that the same rule applies for the

magnetic ræ = 0 natural modes, but the conve¡se rule must be used in the electric case.

The proof runs along the same lines as in section 3.4.

The interaction fields for the electric natural modes are found from

AE

gE
= ILE (ka)]-\ u o

= p ÍLE (ka.)l-t JUo,

Es,":fË)= Ir,$N16t= I U¡oN¡$). 6.2s)f=1 r=1

The latter equality follows from using (5.28) and the matrix equations (5.12). This

may be cast into a more explicit form by using (5.2b), namely

E¡'In5!¿) = i Qî - íkPþ) '*' {t * !lkd

Notice that on the axis this field has only a longitudinal component (â). perhaps our

point is better illusrated by writing (5.30) in terms of spherical coordinates (about O,),

namely

(s.28)

lr" . #. ,.ô *o]Ì (5 30)
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The Fansverse component vanishes on the axis, allowing the longitudinal component

to show itself as a fi¡st order cor¡ection. This is typical paraxial behavior for the elec-

tric field of an m = 0 electric multipole.

For the magnetic natural mode inte¡action fields we fi¡d the following various

expressions:

Es'st,)= [r'+ .r'#)rh +

E¡'l,F)= 2BfoM''lt) = > uroMfå).Ð
I

=$ ikp e¡k"

The magnetic interaction fields have only an azimuthal component which vanishes on

the axis - typical paraxial behavio¡ for the electric field of a¡ m = 0 magnetic mul-

tipole.

In analogy with rhe I * I > t cases, the inverse I,r/s(kd) is a di¡ect manifestarion

of the destructive interference process, which tames the exponential growth in ¿-iþ'.

It is interesting ttrat E¡13[E ) and EÀBf ) are duals of each other in the sense that

4, i sino' 7 e-¡w
' 2 Wo&d) kr'

t+!
kd

(s.31)

fr* . tÊ)I
I í2 ))

This property follows directly from (5.29), (5.32), and (2.2). That this property holds

for all sphere separation d should be obvious. [Actually the equality in (5.33) should

be replaced with a proportionality sign since electric and magnetic m = 0 natural
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vxEjlfirr=¿E¡hj,F) IvxE|\f,r=*tË\\t). 
l
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modes are independent of each other. Furthermore, recall that the allowed values of k

differ between electric and magnetic cases and so (5.33) is only formally correct.l

Nevertheless it does illuminate how the coupling is related between electric and mag-

netic /¡r = 0 free oscillations, and can also serve as a double-check in a numerical

investigation.
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In the previous chapters we discussed the free oscillâtions of the two-sphere

geometry for large sphere separation. As di¡ected by the equation structu¡e we divided

the discussion according to azimuthal dependence numbe¡ ra. Now we wish to unify

a¡d extend our unde¡standing by considering the natural frequencies for all m values

collectively, and try to identify or classify them according to possible relationships or

correspondences with the single-sphere natural frequencies,

In Fig. 9 we have collected together a few of the lowest o¡der natu¡al frequencies

for I m I = 0, 1, 2,3, and.4. We immediately notice a tendency of the natural fre-

quencies to occur in groups, or clusters as we shall call them. A cluster is delineated

by a closed dashed curve. We can label or identify the clusters by their layer number

(n = 0, I, 2, ' ' . beginning with the rightmost layer) and their a¡c number

(l = l,2, . . . beginning with the arc closest to the origin). The layers and arcs form

a grid with the clusters approximately at the nodes as sketched in the figure. The clus-

ters become less compact as n decreases and i increases. Vy'e stress again that the

ze¡os of 1f) ln the right half s -plane are not natural frequencies, but have been

included to display the pattern of zeros as clusters. Many transcendental equations

have solutions where, for example, two functions intersect, or overlap; here we are

interested in the intersection of the left half s -plane with the zeros of 1j0). It ¡ust so

happens that some of the zeros in the n = 0 clusters a¡e excluded.

Except for The n= 0 layer, the /nù cluster contains 2l +l natural frequencies,

including degeneracy over sign of m, i.e., includes cases z? = 0, +1, . . . , l/. Let us

denote these natural frequencies as t,)^ I , ln identifying the cluster and

lml =0, 1., .. ,/ identifying the natural frequency within that cluster. r even
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(odd) indicates that the m = 0 natu¡al frequency is of magnetic (electric) type. Notice

that the n = 0 layer is not compatible with this classification scheme, and we tem-

porarlly ignore this special case (reserved for later discussion).

In Fig. 10 we show the fust four a¡cs of electric and magnetic natural frequencies

of a single sphere. As in Fig. 9 we label rhese arcs as I =I,2, .. . The layers are

labeled with the index n agun, but starting with n = 1 instead of n = 0. Then n even

(odd) indicates a magnetic (electric) type of natural frequency as before. We denote

these natu¡al frequencies aS J¡r. The lack of superscript I n I emphasizes the degen-

eracy over nr : A given rr¡¡ conesponds to the natural modes M,fi)(t,n r; or N,fi)1,t¡,, r¡

for m = 0,+1, ... ,+l , according to whether z is even or odd, respectively.

'We now speculate that the single-sphere s¡, corresponds directly to the two-

sphere sf' I cluste¡ (ignoring the ¡t = 0 clusters). The naflre of this correspondence

and the reasons for its plausibility a¡e now discussed. Conside¡ for insta¡ce the n = 2

(magnetic) / = 1 (dipole) free oscillations of the single-sphe¡e. The normalized natural

frequency is s pa /c = -1 + l0 and rhe natu¡al modes are Wtlfç,"r¡ for m = O, ll
(3-fold degeneracy). Specialize further ro the m = 0 câse:

nl{f\*,rr¡ =$ n{2)1trta¡sin0 is the electric field, which is symmetric with respect to

reflection in the z = 0 plane. The surface curent forms closed loops in the $ direction

and has functional dependence sinO - a magnetic dipole oriented in the â di¡ection.

Now suppose we continuously deform the sphere into a prolate spheroid, for example,

or any other body symmetric under rotation in Q and reflection in the z = 0 plane.

How will this change the natu¡al frequency and the natural mode? Or, more impor-

tantly, what properties will remain invariant? We propose three intuitively obvious

invariants: (i) parity (symmetric or anrisymmetric under reflection in z = 0 plane), (ü)

electric o¡ magnetic type (applies only in rn = 0 cases), and (iii) s on real axis (only
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for those that sta¡t on real axis).

Pertaining to the fust properry we notice rhat the new body (deformed sphere) is,

by hypothesis, still symmetric under reflection in the z =0 plane and so the natural

modes still have definite parity. It seems unlikely that a natural mode will suddenly

flip from one parity to the opposite pårity at some "critical object shape". we have

not found any evidence to contradict this in any of the SEM literature. The inva¡iance

of type, electric o¡ magnetic, for m = 0 free oscillations follows f¡om the fact that the

¡¿ = 0 electric and magnetic equations for any rotationally symmetric geometry decou-

ple (are independent) [7]. we observed this phenomenon in section 5.2 where we

found that the "decoupled structure" of (5.12) applies for any sphere separation.

Finally, the idea that an s on the ¡eal axis will always remain on the ¡eal axis was dis-

cussed in section 3.7 in connection with the departure vector in (3.74). rt also appears

to apply, for example, for the prolate spheroid as the aspect ratio is va¡ied, at least for

the m = 0 electric f¡ee oscillations [7]. It seems plausible that rhis invariance is quite

general, and we assume as much for the present discussion.

Now back to the magnetic dipole, iæ = 0 case: Suppose we continuously deform

the sphere by pinching it around the equator until we have rwo identical, separated

spheres. Then let the sphere separation d-+.". According to our invariances, the

deformed natural mode will still be of m = 0 magnetic type (currents circulating in $

direction), even parity, and s on the real axis. It is plausible that the s 102 natu¡al fre-

quency in Fig. 9 rs that new s (compare with the original s12 in Fig. 10).

The remaining single-sphere narural modes belonging ro ,,12 are ttre M{f lt rrr¡
magnetic dipoles for m = +1, which have odd parity. We expect the parity and ',s on

real axis" inva¡iances to apply again, but since rn + 0 the new natu¡al modes should be

hybrid. Furthermore, the cylindrical symmeny means that the degeneracy over sign of
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m will not be lifted. Thus, as we deform the single-sphere into two identical infinitely

separated spheres it is plausible thar rhe single-sphere nl = +1 magnetic dipole modes

deform into rn = +1 odd parity hybrid modes sharing the natural frequency s,1, in rig.

9. In summary, we are suggesting that as the single-sphere is deformed continuously

into two identical infinitely separated spheres the s12 natural frequency in Fig. l0 splits
lr

into the sr!'l cluster in Fig. 9, the degeneracy ouer l. I having been lifred, with

corresponding changes in the natural modes as discussed,

The same type of analysis can be applied to the other clusters on the real axis.

Under the same geometry deformation, the s¡,¡*1 natural frequency in Fig. 10 splits
tt

into the s¡,!f1r real axis cluster, whe¡e lml =0,1, ... ,/, the degeneracy over

I m I having been lifted. Also, the rn = 0 tpes, electric or magnetic, of each cluster

are comect. Furthermore, we observe ttrat the s,,ffrl cluster is always immediately to

the left of its s¡,¡,"1 "origin", but always to the right of J¡+1,¡+2, i.e., its extent is always

confined to the real axis between two adjacent single-sphere natural frequencies. We

propose that the real axis clusters may always be so constrained, regardless of sphere

separation d; the exact coupled equations (2.8) always contain the factors (l¡E)-1 and

(Á,¡ä)-1 which are singular at the single-sphe¡e electric and magnetic natural frequen-

cies, respectively, and so the latte¡ act as natu¡al "ba¡rie¡s". Another way of thinking

about it is to recall that the natural frequencies for any sphere separation cannot occur

at (and thus avoid) single-sphere natural frequencies. This reasoning of course presup-

poses the constraint of the natural frequencies to the real axis, but it may also apply in

a loose sense to all of the clusters, and may be related to the "sandwiching" behavior

already discussed in previous chapters.

Inspection of both figures again suggests that this plausibility argument may be

extended to all of the natural frequencies (except those in the ¿ = 0 clusters): Under
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the usual geomery deformation, the s¡o single-sphere natura.l frequency splits into the
lr

sf t I cluster. The degeneracy oue. | ,z I is properly accounted for as is the m = 0

type invariance (elecaic/magnetic). Notice thar the parity invariance also applies,

where Nf;) has (-1)/+. parity and Mr9) t u, -(-1;t+. parity under ¡eflection in the

z = 0 plane.

Thus we have a plausible theory connecting the single-sphe¡e natu¡al frequencies

in Fig. 10 with those of the two-sphere problem in Fig. 9. This classification, or

identification scheme accounts for all of the two-sphere natural frequencies and natural

modes except for two prominent omissions. The fust is the n = 0 layer of clusters

which we have been ignoring, and the second involves (in the case ¿ = å) the degen-

eracy over parity in Fig. 9 which we have carefully avoided discussing. Let us con-

tinue to ignore the r = 0 layer while addressing this latter problem frrst.

Recall that in the case a = b and dì.", equation (3.31) (and its counterparts for

all rz) imply thar to every narural frequency in Fig. 9 (includ.ing degeneracy over sign

of rn) there corresponds tvvo natwal modes, one symmetric and the other antisym-

metric under reffection in the symmetry plane. Apparently as d --+." the natural fre-

quencies coalesce in pairs corresponding to natural modes of opposite parity. Further

evidence supponing this type of behavior for two-object geometries is found by Marin,

mentioned in [4], Fig. 3.15, who conside¡s two identical colinea¡ cylinders. But when

the single-sphere natu¡al frequency s¡, splits into the two-sphere cluster s¡,] . I , each

natural frequency in the cluster (including degeneracy over sign of rn ) "should,'

correspond to only one natural mode, the pariry of which comes from its single sphere

origins according to our parity invariance property. But we observe exactly twice the

number of natural modes than our theory can account for. In the mo¡e general case

a = b the parity degeneracy is lifted - the pairs split into two distincr natu¡al
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frequencies corresponding to the deformed symmetric (matched to smaller sphere) and

deformed antisymmetric (matched to larger sphere) natural modes, as discussed in sec-

tion 3.4. But we still can only account for half of these free oscillations; where do the

¡est come from?

At fust thought the sou¡ce of the problem may appea-r to be the double sign in

(3.30). Analogous to many problems, perhaps only one choice of sign leads to a phy-

sically allowed solution and the other is to be ignored. But then for a given m all the

natu¡al modes would have the same parity - clearly this is unacceptable. Besides,

when ø É å equations (3.42) clearly indicate a twofold set of solutions.

By examining the results in [7] it is clea¡ that our theory can be applied, success-

fully to the case of a sphere continuously deformed into a prolate spheroid (at least for

the m = 0 electric f¡ee oscillations). It seems that our problem is unique to a treo -

object geomery. Thus we are led to propose the following explanation: In "continu-

ously" deforming the single-sphere geometry into two separated spheres there is a

disconti¡uous change in the set of allowed free oscillations - in particular, the number

doubles over that expected f¡om our ea¡lier ideas. Naturally the point of discontinuity

is when the single object separates into two.

To understand how this might come about on physical grounds consider two

objects in contact at one point. For every allowed f¡ee oscillation, the electric poten-

tial must be the same at that point on both objects. Now separate the objects, even

infinitesimally, and that consEaint is removed; the system has acquired a new degree

of f¡eedom resulting in an increase in the number of allowed free oscillations. In

terms of our two greatly separated spheres this new degree of freedom manifests itself

as two possibilities: The natural frequency is either matched to sphere A or to sphere

B . When a = b these two possibilities become the degeneracy over parity. To test
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this hypothesis further we have done some preliminary work on the three-sphere prob-

lem, which indicates that there may be at least a three-fold increase in the number of

allowed free oscillations.

Thus we can now account for all of the free oscillations except those associated

with the n = 0 layer of cluslers in Fig. 9. Two general features make these clusters

unique. Firstly they include both electic and magnetic m = 0 zeros of 1d0) instead of

just one or the other. Secondly only part of the zeros represent natural frequencies, the

rest a¡e in the right half plane. The first five clusters have only the m = 0 magnetic

and l ml=lnaturalfrequencies. The lm I =2 natural frequencies are added for

/ 2 6. Perhaps as / increases, higher I rn I natural frequencies are periodically added

to the left half plane portion of the cluster. These unique features exclude these

natural frequencies from our earlier classification scheme and lead us to suspect that

their origins have a physically different explanation. Unfortunately, evidence of thei¡

origins does not survive the limiting process d-+.o, even to fust order. It is likely that

they are again a phenomenon unique to multi-body geometries.

Let us digress for a moment to mention that the lifting of degeneracy ou". L I

as a sphere is continuously deformed into another sizgle cylindricalty symmetric body

has many examples in the SEM literature (see Moser et al [9]). Since cylindrical

symmetry is the basic criterion, it should also apply for a øo -body problem like two

spheres, as we have observed here (with of course some features unique to the two-

body geometry). [9] point out that this "radar spectroscopy", as he calls it, may be

useful in radar target identification. An interesting extension of his work is to consider

how, in general, the coupling between two known targets (like two spheres) changes

the "rada¡ spectn¡m" over that of the targets considered individually. Intensive analyti-

cal and numerical work should yield some basic physical insights. For example,
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suppose it is true that the electric dipole free oscillations associated with the fuselages

of two neighboring aircraft couple strongly (large changes in natural frequencies)

because they have parallel polarization, but the fuselage-wing coupling can be

neglected because the dipoles have perpendicular polarizations. Information like this

can be used to understa¡d or predict the rada¡ spectrum of ai¡c¡aft flying in formation.

The present work represents some of the fust steps in this di¡ection. Especially useful

might be the wo¡k of cooray and ciric [12]. They have found the ¡otational-

Eanslational addition theo¡em for two spheroids with arbitrary orientation. perhaps the

far field form of this theorem is suitable to make an investigation along the lines con-

sidered he¡e feasible. It is easy to see how even a solution fo¡ far field separation can

yield important information on how polarization affects mode coupling to change the

radar spectrum.

we would also like ro comment on the fact that due to causality the stength of

coupling inc¡eases with increased sphere separation. This concerns the natu¡e of the

free osciliations themselves and has nothing to do with how strongly an incident field

will couple to, or excite the various natural modes. This latter information comes fiom

solving the conjugate adjoint, or transposed problem to find the so carled coupling vec-

tors (column matrices in a matrix formulation). The¡e is a coupling vector associated

with each natural mode which, when combined with the incident field data (direction,

polarization, et cetera) yields the coupling, or excitation coefficient for that natural

mode [4].

Let us conduct a thought experiment involving transient scattering from the two-

sphere geometry. conside¡ an end-fue incident temporal delta function excitation

striking sphere A fust. This initially excites the "early- rime,, response of sphere A ,

which includes any response not rcpresentable as a constant coupling coefficient
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superposition of (single-sphere) free oscillations. According to Morgan [13] the scat-

tered field consists of a physical optics ter¡n and a mutual inte¡action teün, the latte¡

may be represented by a superposition using temporaily varying coupling coefficients

in the early-time (one possibility). But "after the traveling wave impulse has com-

pleted its transit of the body the scattered fields will be produced by undriven, source-

free, current modes and can thus be represented by a simple class 1 [constant coupling

coefficientl expansion in the late-time". Heyman and Felsen [14], on the other hand,

feel that using temporally varying coupling coefficients in the early-time, although leg-

itimate, is a¡tiflcial and instead construct a self-consistent theory linking wavefront

(GTD) analysis in the early-time with sEM (global resonances) in the late-rime: "rhe

analysis cla¡ifies the evolution of ¡esonances as collective summadons of multiple

wavefront fields which are caused by successive reflections or diffractions at the sur-

faces and scattering centers comprising the object". Either way, in general terms we

may say that the free oscillations (global resonances) do not begin to dominate the

scattering response until the driven response is past and all the elements of the distri-

buted body have had a chance to mutually interact.

Now befo¡e the incident field st¡ikes sphere B, sphere Á is already entering the

late-time phase. Then the incident impulse and the field forwa¡d scattered from sphere

A excites sphere B. Notice that this does not simply excite the free oscillations of

sphere B (as an incident impulse by itself would do) because such frelds have zero

tangential E and cannot satisfy the boundary conditions in light of the forward scat-

tered field from sphere A. These laner fie1ds drive sphere .B at sphere .a natu¡al

resonant ftequencies, as does the impulse at ail frequencies. After some time the fields

backscattered from sphere B reexcite sphere A, and so on. Multiple such scattering

events must eventually synthesize the global two-sphere free oscillations discussed in
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this investigadon. In fact, Morgan's [13] ideas should also be valid in the two-body

case, which means that immediately after the impulse has passed sphere B , the scat-

te¡ed fields can be represented by a constant coefficient sum of the two-sphere free

oscillations. The fact thar one sphere is actually driving the other, and vice-versa, is

no different from the interaction of currents via fields on different parts of a single

body - as for any geometry, the two-sphere free oscillations are source free fields that

satisfy the appropriate boundary conditions.

Jhe main point is that multi-body problems amplify the mechanisms involved in

the early-time dynamics. A multi-body problem is no different from a single-body

problem except for heavy emphasis on causality conditions concerning interactions

between various elements. The larger the separation between the bodies the longer the

definition of early-time and the synthesis of global resonances.

The second point concems the practicality of our free oscillations for large sphere

separation d. certainly if we place a detecto¡ in the vicinity of sphere A the effects of

sphere B on any scattering process must vanish as d -+oo: The early-time becomes so

long (multiple scattering events become weake¡ and occu¡ less frequently) that by the

time free oscillations dominate the response (late-time) they have extremely small

amplitude, i.e., as d+." not only do we have to wait an infinite time for the coupling

coefficients to become operative, they also vanish. et is also true that the largest of

these coupling coefficients should be fo¡ lr¿ I = 1 free oscillations). The global reso-

nances exist for any geometry, however small their effect. umashank a¡ et at lr0l
makes the same observation concerning a finite wire above a parallel ground plane.

some of the questions ¡aised in this investigation might be answered by a detailed

numerical solution of the original equations (2.8) when the spheres are in the nea¡ field

of each other, a¡d so rhis represents the next logical step. For example, how in detail
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does the duplicity of free oscillations emerge as the two spheres, initially in contact,

are separated? How do the ¿ = 0 clusters a¡ise? And so on. The present efforts

should provide some guidelines ro the basic principles behind, and physical interpreta-

tion of such a set of detailed numerical ¡esults. It also of course provides the exact

solution in the limiting case d-+.o as a nume¡ical accuracy reference. Then, with a

complete understanding of the free oscillations, especially quantitative results for the

spheres in close proximity, one can apply the sEM to study some t¡ansient scattering

phenomena. This, and other obvious extensions, are left for future resea¡ch.
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APPENDIX: SOME LIMITING FORMS FOR LEGENDRE

AND SPHERICAL HANKEL FUNCTIONS

Legendre Functions

Using the definition 0 = 0, 1, 2, . ')

P((x)=-!ft- x2)nn dt+ñ
z,^ ";J*, @'-1)', m=0'7"" ,l (4.1)

it is easy to derive the following limiting forms for small argumenr 0 (and rz > 0):

pf(coso) = Af ¡ - cf02 +o(04)] 0. 6.2)

Pfl(cos0) ( ^ I
- ,iner = Af V - c'y6z + o@\) ø -t (A.3)

ðePf(coso) =Af l^-c"fez+o(6a¡] 6.-r (A.4)

where

^m- 1 (l +m)l
^t - 2^^¡ (l _ 

^)l
r-m_ft (l -rn)(l +m +1)
"'- 6- 4(^+D

.,*_(m -l) (/ -m)(l +m+l)
' 6 4(m+l)

¡-ua_ m(m - 1), I(l +m +2)(l +m + 1)(l -m + l)-(/ + lX/ - m\(! -nt - 1\,",_ O _

For 0-+n, we simply replace 0 with ¡ - 0 on the right hand side of (A.2) to (A.4)i, Af
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\'/ith (-1)¿+tt1Al' in (A.2) and (A.3), and Afl with -(-Dt*^Af in (A.4).

Spherical Hankel Functions

Using the sta¡da¡d definition of the spherical Hankel function we

I t I > t( + t)t2(and/ =0, 1, 2, ..')

h,(z)12¡ = ¡t+t e-iz lr * /<¡ 
^* 

il . o I ,t l'l
' L'- i2' - " 11' 12- )l

L ð"¡" nf2)1,¡1- -i it+t + lt. 
!J#?. "lir)l

Regarding (4.5) it is understood thar rhe OçLatl z l2) rc.- vanishes fo¡ / =0o¡ 1

whereas in (4.6) it vanishes only for / = 0.

write, for

(A.s)

(4.6)
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