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AEST'R,ACT'

The microscopic information about the geometry of the solid-fluid interface inside

a porous medium is "hidden' in such macroscopic transport properties as permea-

bility, Klinkenberg's gas-slippage factor and formation factor. In this study, explicit

integral expressions are derived for these properties by comparing the volume averaged

microscopic conservation equations (mass and momentum for permeability and gas

permeability with slip, and electric charge for formation factor) to the corresponding

phenomenological laws (Darcy's law for permeability and gas permeability with slip,

and Ohm's law at macroscopic level for formation factor). The expression for each

property consists of two terms which involve integrals of the related microscopic

thermodynamic variables.

Idealized porous media, consisting of networks of tubes, are employed to validate

the expressions for permeability and formation factor, and to interpret the terms in

them. It is found that the first term in the expression for permeability (formation

factor), called the uviscous term' (ucurrent termn), accounts for the fluid (electric)

flow in the macroscopic flow direction, whereas the second term, called the "pressure

term' (upotential term"), accounts for the fluid (current) flow in the directions normal

to the macroscopic flow direction. Interestingly, the magnitude of the pressure term

(potential term), which represents the flow in the directions normal to the macroscopic

flow direction, depends on the variation of the hydraulic conductances (electrical

conductances) of the tubes in the macroscopic flow direction. The results show that

the pressure and potential terms are directly responsible for the value of tortuosity

exceeding 1. In the presence of microscopic cross flow (microscopic flow normal to the

macroscopic flow direction), it is shown that the classical definition of tortuosity as a

ratio of geometric lengths is simplistic. The study suggests two types of tortuosities,

one accounting for the sinuousness of the individual flow channels (classical definition)

and the other accounting for the cross flow. An exact relation between the formation

factor and tortuosity is presented. In the presence of cross flow, the equivalence of

tv



hydraulic and electrical tortuosities is shown to be invalid.

Based on the integral expressions, explicit relations of permeability, permeability

with slip and formation factor to the statistical parameters characterizing the pore

space of parallel and serial capillary models are developed. With the help of nonlinear

regression, similar relations, based on the integral expressions, æ9 also determined for

the permeability and formation factor of a three-dimensional cubic network model. It

is observed that the absence of the unetworking effect" in the parallel and serial capil-

lary models results in these models showing opposite behaviors, whereas, its presence

in the network model results in an intermediate behavior representative of the real

porous media. These relations are shown to be valid for a considerably larger range

of coefficient of variation of tube diameter distribution (which represents the breadth

of the distribution) as compared to the relations based on the effective-medium

approximation (Nicholson et al., 1988).

A methodology for modeling the pore structure of homogeneous porous me-

dia, based on the explicit relations of the transport properties of the models to their

pore structure parameters, is outlined. A preliminary study of this methodology is

conducted on five sandstone samples and a limestone sample. It is found that for the

same sample the values of the pore structure parameters predicted by the network

model are intermediate between those predicted by the parallel and serial capillary

models. Except for one sandstone sample, all the three models satisfactorily predicted

the plateau portion of the drainage capillary pressure curves of the rest of the sand-

stone samples. However, the models did not accurately predict the drainage capil-

lary pressure curve of these samples near the irreducible wetting phase saturation.

The present models are found to be inappropriate for modeling the pore structure

of non-uniform porous media such as limestones. Incorporation of features such as

assignment of volume to junctions and size correlations between the neighboring tubes

are recommended to improve the capillary pressure curve predictions of the models

near the irreducible wetting phase for the sandstone samples.
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Transport phenomena in porous media are encountered in many fields of engineer-

ing. To mention a few, the flow of oil, water and gas through hydrocarbon reservoirs

is studied in petroleum engineering, the flow of water and transport of pollutants

in aquifers is studied in civil engineering, the movement of moisture through soil

and grain is studied in agricultural engineering and the chemical reactions in packed-

bed columns are studied in chemical engineering. The familiar conservation equations

(e.g., mass, momentum, energy, electric charge) can, in principle, be employed to des-

cribe the transport phenomena in porous media associated with these topics. It may

also be possible to state the boundary conditions, for example, the no'slip condition

at the solid surface in the case of momentum transport. These equations describe the

transport phenomena at the microscopic level, however, their solutions are not gen-

erally sought at this level. There are two important re¿mons for such a choice: One,

our inability to observe and describe the complex geometry of the solid-fluid interface

at the microscopic level precludes any direct solutions to these equations and two,

one is not usually interested in knowing the details of transport at the microscopic

level. Instead the solutions of the averaged conservation equations, which represent

the behavior of relatively large portions of porous media, are sought. This is called

the macroscopic level or continuum description of transport phenomena in porous

media.

The macroscopic level description circumvents the need for microscopic informa-

tion about the solid-fluid interface. This information is lumped into coefficients that



arise as a result of moving from the microscopic to the macroscopic level, and is

therefore "hidden" in such macroscopic transport properties as ¿bsolute permeability

(Darcy, 1856), gas-slippage factor (Klinkenberg, 1941) and formation factor (Archie,

1942). These transport properties are generally determined by conducting controlled

physical experiments in the laboratory or in the field. In other fields of science, where

the continuum approach is also applied, attempts have been made at theoretically

predicting the corresponding coefficients and many times with good accuraÆy. For

example, in the kinetic theory of gases, the coefficients (e.g., mass diffusion coeffi-

cient, dynamic viscosity, thermal conductivity) are predicted with accuracy by re-

turning to the molecular scale and modeling the behavior of the individual molecules

(Hirschfelder et al., 1954). In the case of porous media, much of the effort has been

spent on developing the theory of averaging, estimating the size of. the averaging

volume for which representative results may be statistically meaningful and deriving

the macroscopic conservation equations (Anderson and Jackson, 1967; Marle, 1967;

Whitaker, 1967, 1969; Gray, 1975; Gray and O'Neill, 1976; Hassanizadeh and Gray,

1979a, 1979b, 1980; Bachmat and Bear; 1986, Bear and Bachmat, 1986; Bear and

Bachmat, 1991).

In the present study, an approach to modeling the macroscopic transport pro'

perties of homogeneous porous media is outlined. The properties considered are ab-

solute permeability (referred to as simply permeability hereafter), gas-slippage factor

(referred to as Klinkenberg coefficient hereafter) and formation factor. Volume aver-

agng, which is one of the methods used for achieving transition from the microscopic

to the macroscopic level, is employed to derive macroscopic conservation equations

from the microscopic conservation equations. By comparing the macroscopic conser-

vation equations (mass and momentum for permeability and gas permeability with

slip, and electric charge for formation factor) to the corresponding phenomenological

laws (Darcy's law for permeability and permeability with slip, and Archie's expres-



sion for formation factor), explicit expressions are derived for these properties. These

expressions involve integrals of the microscopic field variables over the solid-fluid

interface-formalisms that represent exactly the information lost in the averaging

process.

Idealized porous media are employed to validate the integral expressions and to

interpret the terms in these expressions. This study provides a clear understanding of

the macroscopic transport property of porous media known as tortuosity and its rela-

tions to permeability and formation factor. Based on the integral expressions, explicit

relations of permeability and formation factor to the statistical parameters charac-

terizing the pore space of parallel capillary, serial capillary and three-dimensional

cubic network models of porous media (e.g., means and standard deviations of the

diameters and lengths of the tubes constituting the models) are developed. Similar

relations are also developed for the Klinkenberg permeability (and consequently for

the Klinkenberg coefficient) of the parallel and serial capillary models. A comparison

is made between these relations and similar relations based on the effective-medium

approximation (EMA) (Nicholson et al., 1988).

Since their introduction by Fatt (1956), network models have been found to be

realistic representations of the pore structure. Most of the work on network models

has been related to mercury porosimetry (Van Brakel, 1975; Tsakiroglou and Pay-

atakes, 1990, 1991). The emphasis has been laid on extracting enough pore structure

information from the capillary pressure curves so that a unique network model can be

constructed to replace a given porous medium. However, less effort seems to have been

spent on deriving the pore structure info¡mation from single phase transport proper-

ties. These transport properties also contain important information about the pore

structure which can complement the information derived through mercury porosime-

try. In the present study, a methodology to model the pore structure of porous media,

based on the relations of the transport properties of the parallel capillary, serial capil-



lary and three-dimensional cubic network models to their statistical parameters, men-

tioned earlier, is outlined. This methodology can be employed to study other trans-

port phenomena and to predict complex properties such as capillary pressure curves

and relative permeabilities. Following is the philosophy behind this methodology: If

trl statistical parameters are required to describe a porous medium according to a

given pore structure model, then /f transport properties can be determined experi-

mentally on a sample of a porous medium and .ðf equations for these .ðü properties

can be written. These equations can then be inverted to determine the .lü statisti-

cal parameters. Once the statistical parameters are known, the complex properties

may be predicted explicitly or with the help of computer simulations. The experi-

ments for measuring single phase properties of a porous medium are simple and less

time consuming as compared to those for complex properties such as capillary pres-

sures and relative permeabilities; therefore this methodology can be very useful in

estimating values of the complex properties, md studying other transport pheno.

mena. In the present work, a preliminary study based on this methodology is con-

ducted on five sandstone samples and one limestone rock sample, all of which are

selected from the existing literature. A comparison is made between the drainage

capillary pressure curves predicted by the methodology and those observed experi-

mentally.

Based on the discussion above, the motivation and objectives of the present re-

search are summarized as follow:

L.x. Motívatíon

1. Most of the work related to the continuum description of transport phe-

nomena in porous media has been directed toward: Development of mathe-

matical concepts related to the quantification of REV size, development



of averaging rules, interpretation of the various terms in the averaged

equations and derivation of the phenomenological laws from first principles.

It will be very useful and interesting to employ this appro¿ch to study the

relations of the macroscopic transport properties of porous media such as

permeability, Klinkenberg permeability, formation factor and tortuosity,

to various features of pore structure.

2. Relative permeability and capillary pressure are perhaps the most impor-

tant data required for predicting the performance of oil reservoirs. How-

ever, experimentation for determining such properties on samples of the

reservoir is tedious and time consuming. A quick and dependable way to

predict these properties can be very helpful. An ordinary sandstone core

sample used for laboratory experimentation, can, for all practical purpos-

es be assumed as homogeneous, therefore the methodology outlined in the

previous section can be very useful in this regard.

1,.2 Objectíves

To derive explicit integral expressions for permeability, Klinkenberg per-

meability and formation factor by comparing appropriate averaged conser-

vation equations to the corresponding phenomenological laws.

To validate and interpret the integral expressions for permeability and

formation factor with the help of idealized porous media and to study

the transport property tortuosity and its relations to permeability and

formation factor.

Based on the integral expressions derived in 1, to develop explicit rela-

tions of permeability and formation factor to the statistical parameters

characterizing the pore space of parallel capillar¡ serial capillary and three-

1.

t



dimensional cubic network models of porous media. Also, to derive similar

relations for the Klinkenberg coefficient of the parallel and serial capillary

models. To compare the present relations to those based on the effective-

medium approximation (EMA).

4. To outline a methodology for modeling the pore structure of homogeneous

porous media, based on the relations for the macroscopic transport pro-

perties developed in 3. Also, to compare the drainage capillary pressure

curves of real porous media samples predicted by the methodology to the

those observed experimentally.

L.3 T,ayout of the Dissertation

This dissertation is composed of seven chapters. An extensive literature review

and its relevance to the present research is discussed in Chapter 2. The volume aver-

aging method and the derivation of integral expressions for permeability formation

factor and Klinkenberg permeability are presented in Chapter 3. Validation and in-

terpretation of the integral expressions and the study of tortuosity based on simple

idealized porous media is conducted in Chapter 4. The relations of permeability,

formation factor and Klinkenberg permeability of the pore structure models to the

statistical parameters characterizing their pore space are developed in Chapter 5. This

chapter also includes a comparison of these relations to those based on the effective-

medium approximation. The methodology to model the pore structure of porous

media is outlined in Chapter 6. Finally, conclusions are presented in Chapter 7.



CF{APTÐR, ?

R,EVTEW TF'' T.F{E T,TT,.ETT,AT{.]T¿Ð

As mentioned at the beginning of Chapter 1, the study of transport phenomena

in porous media is covered in many fields of engineering and science, and therefore,

the information is widely scattered. Here, in order to form a clear picture of the

background for the present work, relevant literature from all possible sources which

the author has come across during the period of this study, is reviewed.

2"3. Scope of the Revïew

The review presented here is limited to pore structure models and other means

employed to study the relations of permeability, formation factor, Klinkenberg per-

meability, tortuosity and capillary pressure of a porous medium to different aspects of

its pore structure. The review includes the relations of these properties to the micros-

copic pore structure parameters and the correlations between two or more properties

proposed in the literature. The experimental techniques for measuring these proper-

ties are not relevant to the present study and therefore are not reviewed. The review

is confined to studies at the core level (laboratory scale) and studies at larger scales,

such as reservoir level, are not considered. Different topics related to the continuum

description of transport phenomena are briefly discussed in Section 2.2. Thestudy re-

lated to tortuosity forms a significant part of the present work and therefore, the litera-

ture related to it is reviewed separately in Section 2.3. In Section 2.4, the literature

related to permeability, Klinkenberg permeability and formation factor is reviewed.

This section also includes a brief review of the work related to the effective-medium



approximation (EMA) (Kirkpatrick, 1973), relevant to the present study. The litera-

ture covered under permeability, formation factor and tortuosity overlaps slightly.

The current thrusts in research related to mercury porosimetry and capillary pressure

modeling are reviewed in Section 2.5. Finally, the relevance of the present research is

discussed in the light of the reviewed literature in Section 2.6.

2.2 Continuur¡a llescríptío¡a of, Tbansp@rt Fhe¡lor¡¡e¡ra in

Forous Media

As pointed out in Chapter 1, our inability to observe and describe the solid-fluid

interface inside a porous medium necessitates a continuum description of transport

phenomena in porous media. The continuum description primarily consists of deriving

the conservation equations for the extensive quantities with appropriate boundary

conditions at the macroscopic level from the corresponding conservation equations and

boundary conditions at the microscopic (or pore) level. Volume averaging, statistical

averaging and homogenization are the three methods usually employed to derive the

macroscopic conservation equations. The volume averaging is the only method of

interest to the present work; therefore, only literature related to it is reviewed. The

review is confined to the applications of volume averaging method for studying single

phase flow in porous media, however some recent studies related to two'phase flow

are briefly mentioned. The literature related to the applications of volume averaging

method for studying other transport phenomena in porous media (e.g., heat, ma^ss,

diffusion and dispersion) is not considered.

A preliminary discussion of the volume averaging method is presented in Chap-

ter 3. This chapter also includes brief introductions to the statistical averaging and

homogenization methods, and to the techniques generally employed for solving the

averaged conservation equations. For detailed information on the statistical aver-



aging method and the techniques for solving the averaged conservation equations,

the reader is referred to Beran (1968) and Dagan (1989). An introduction to the

homogenization method is given in Ene (1990).

In essence, the volume averaging method involves the following steps: Criteria for

selection of the averaging volume size, definitions of average quantities, enunciation

of averaging rules, deterministic derivations of macroscopic or averaged conservation

equations, closure schemes for the macroscopic thermodynamic quantities, theoreti-

cal expressions for various macroscopic transport properties of porous media such as

permeability, formation factor, Klinkenberg coefficient and inertial coefÊcient (when

Forchheimer effects are considered), and solutions of the averaged conservation equa-

tions.

The main theory behind the volume averaging method has been developed over

the last thirty years and the contributions to this development have been reported

in a variety of journals. Important contributions include the works of Anderson

and Jackson (1967), Marle (1967), Slattery (1967, 1969), Whitaker (1967, 1969),

Gray (1975), Gray and O'Neill (1976), Gray and Lee (1977), Hassanizadeh (1979),

Hassanizadeh and Gray (1979a, 1979b, 1980), Bachmat and Bear (1986), Bear and

Bachmat (1986) and Bear and Bachmat (1991).

By invoking some statistical concepts Bachmat and Bear (1986) (also in Bear and

Bachmat, 1991) gave a systematic development of the universa.l criteria for the selec-

tion of the upper and lower bounds on the size of the averaging volume. This size of

the averaging volume is usually known as representative elementary volume (abbrevia-

ted as REV). The key mathematical theorem which relates the average of a gradient

of a microscopic quantity to the gradient of the averaged quantity was presented

independently by Anderson and Jackson (1967), Marle (1967), Slattery (1967) and

trVhitaker (1967). Gray (1975) presented a modified version of this theorem. Veverk¿

(1981) questioned whether the volume average is differential; Howes and Whita,ker



(1985) re-examined the derivation and confirmed its correctness. Mls (1987) demons-

trated the existence of the first derivative of the volume average everywhere in a

three-dimensional Euclidean vector space. Based on an order of magnitude analysis,

Carbonell and Whitaker (198a) showed that for the averaged quantities to be single

valued, the radius of the averaging volume (REV) should be very small as compared

to the macroscopic dimension of the problem. Gray (1975) defined the deviation

of a microscopic quantity from its macroscopic value within an REV. Hassanizadeh

and Gray (1979a) gave the explicit dependence of various quantities in this definition

on the mícroscopic and macroscopic coordinate systems. The averaging rules were

summarized by Bachmat and Bear (1986).

In the averaged conservation equations, quantities of the form (ri; ú¡)P are en-

countered (see Chapter 3). Here u¡ are the microscopic velocitiet, ( )p denotes the

intrinsic phase average which is evaluated over a single phase in the REV and the

tilde denotes the deviation of a microscopic quantity from its intrinsic phase average

value. This term is the dispersive flux of momentum (per unit mass) in the fluid

phase. Expressions for such quantities in terms of the average values are required for

the solution of the averaged conservation equations. Closure is also required for the

interfacial integral terms which arise in the averaged equations (see Chapter 3). These

integrals contain the information about the micro.structure of porous media and as

will be shown in Chapter 3, they are related to the macroscopic transport properties

such as permeability. Hassanizadeh and Gray (1980) and Shapiro (1981) incorporat-

ed the dispersive flux term with the macroscopic viscous stress tensor a¡d formed a

constitutive relation for the combined quantity. Gray and O'Neill (1976) and Bear

and Bachmat (1986) developed a separate constitutive relation for (ú¡ ,ú¡lP. Slat-

tery (1969, 1981) developed a constitutive relation for combined viscous and pressure

integral terms. This relation expresses the combined quantity as a linear function

of the intrinsic phase average velocity, the coefficient of which was determined by

10



using the Buckingham-Pi theorem. Constitutive relations for these terms were also

presented by Gray and O'Neill (1976), Hassanizadeh and Gray (1980) and Bear and

Bachmat (1986). For Stokes flow in porous media, Whitaker (1986a) developed a

scheme to transform the closure problem into a boundary value problem of the devia-

tion quantities. This scheme did not require any constitutive asqumptions.

The failure of Darcy's law at high flow rates in porous media led to the develop-

ment of the Forchheimer equation (Forchheimer, 1901). Recently, many a¡ticles have

been published which have tried to link the nonlinear effects to various terms in the

averaged momentum conservation equations. Barak and Bear (1981) studied physical

models with variable degrees of complexity and derived relationships between pres-

sure gradient and velocity; Du Plessis and Masliyah (1988), Coulaud et al. (1988)

and Barak (1987) associated the nonlinear effects to the microscopic inertial forces.

The explanation for such a conclusion was that at increasing pore Reynolds number,

vorticities are generated inside the pores resulting in tortuous streamlines. Cvetkoviò

(1986) associated the nonlinear efects with the dispersion flux and concluded that this

term contains most of the information related to microscopic inertial effects. How-

ever, Du Plessis and Ma^sliyah (1988) obtained macroscopic inertial effects even when

the dispersion term was neglected. Hassanizadeh and Gray (1987) concluded that

the microscopic viscous drag is responsible for the nonlinear effects. Barak's com-

ments (Barak, 1987) on the paper by Hassanizadeh and Gray (1987) contended that

the microscopic viscous drag is not the fundamental reason for the nonlinear effects;

the microscopic inertial effects (the change of streamlines due to generation of vorti-

cities) is the fundamental cause and increase in the microscopic drag is a consequence

of that. Hassanizadeh and Gray (1988) in their reply to Barak's comments (Barak,

1987) agreed with Barak's view. However, the authors stressed that in studies of

porous media flow for large-scale applications, interest should not be focused on the

micro.scale phenomena rather on their manifestations at the macro'scale, and there-

11



fore it is not necessary to study the change in streamlines at the microscopic level at

high velociiies. By examining flow in some very simple tube models of porous media,

Ruth and Ma (1992) demonstrated that the averaged microscopic inertial terms are

not responsible for nonlinear effects. The authors postulated that the Forchheimer

effects are due to the distortions of the microscopic velocity and pressure fields which

result in changes in the integral terms in the averaged equations.

The volume averaging method has also been employed to study phenomenologi-

cal relations (".g., the permeability in Darcy's law and the inertial coefficient in Forch-

heimer's equation). By ignoring the convective and inertial terms in the general

macroscopic conservation equations for slow flow in an anisotropic porous medium,

Gray and O'Neill (1976) derived the Darcy's law. Hassanizadeh and Gray (1980)

showed that Darcy's law can be recovered by neglecting the inertial and macroscopic

viscous effects (Brinkman efects) in the macroscopic fluid-phase momentum conser-

vation equations. However, both of these studies did not associate any explicit depen-

dence of the permeability in the Darcy's law to the micro-pore geometry. Whitaker

(1986a) presented a theoretical derivation of Darcy's law for Stokes flow in porous

media and provided means for direct theoretical determination of the permeability

tensor. However, explicit relation of permeability to the microscopic pore structure

parameters is not possible with this method. Also, the solution of the final equa-

tions depends on finding simpler representative pore structure cells. The relevance

of the the present work concerning the study of permeability, in the light of the

works by Whitaker (1986a) and Hassanizadeh and Gray (1980), will be discussed in

Chapter 3. Barrere et al. (1992) showed that Whitaker's (1986a) solution of the

closure problem in terms of a¡ integro.differential equation can be transformed into

a set of Stokes-like equations. They found that the solutions of these equations were

in good agreement with the experimental data. Du Plessis and Masliyah (1988)

evaluated the various terms in the averaged momentum conservation equations by
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assuming developed flow inside a square duct of a cubic representative cell which was

considered as model of sponge-like porous media. For creeping flows they derived an

expression for the permeability. The limitations of this expression will be discussed in

Section 2.4.I. Du Plessis and Masliyah (1991) performed an analysis similar to their

previous work (Du Plessis and Masliyah, 1988), on a porous medium consisting of a

stationary s\¡/arm of separate granules. Du Plessis (1991) carried out a similar study

on a two-dimensional idealized porous medium.

Whitaker (1986b, 1986c) applied the volume averaging method to derive the rele-

vant macroscopic conservation equations for Stokes flow of two immiscible fluids

through a rigid porous medium and Stokes flow of a single fluid in a deformable

porous medium. Recently, Quintard and Whitaker and their coworkers, in a series

of papers (Quintard and Whitaker, 1987, 1988, 1990a, 1990b; Bertin et al., 1990),

have reported their work on the applications of volume averaging method for studying

two-phase flow in heterogeneous porous media. The authors introduced and applied

the concept of large-scale averaging to two-phase flow in heterogeneous porous me-

dia. At this point, the diference between local volume averaging and large-scale

volume averaging may be stated. Local volume averaging is the method in which the

familiar microscopic conservation equations with appropriate boundary conditions

are averaged to get the macroscopic conservation equations. The work of Whitaker

(1986a) in which Stokes equations with appropriate boundary conditions \trere aver-

aged to produce the familiar Darcy-level equations is an example of the local volume

averaging. For heterogeneous porous media, the local volume averaging closure prob-

lem becomes exceedingly complex (Quintard and Whitaker, 1988). To by-pass this

difficulty, large-scale averaging is considered in which the Darcy-scale equations are

averaged over a region that is large compared to the length of the heterogeneities

(Quintard and Whitaker, 1988).

Kalaydjian (1987) pointed out some drawbacks of the volume averaging method.
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In particular, the author argued that it is not sure whether a common REV size can

be determined for all the properties and field variables associated with a transport

process which is a requirement for the application of the volume averaging method.

Also, it may not be possible to determine the size of the REV experimentally. He

employed a weighted function method to define the properties. at the macroscopic

level. This method was applied to derive macroscopic mass, momentum, energy and

entropy balance equations. The author, however, opined that the volume averaging

and weighted function methods are very similar and lead to similar results when

applied for deriving macroscopic balance equations.

Kalaydjian and Legait (1987) performed a quantitative estimation of the coupling

terms for the two.phase flow in square cross-section capillary tubes and found that

these terms are not negligibte with respect to the usual terms. Kalaydjian (1990)

described an experimental approach to study the origin and to quantify the viscous

coupling for two'phase flow in porous media at the pore level as well as at the macros-

copic level.

Hassanizadeh and Gray, in a series of papers (Hassanizadeh and Gray 1989a,

1989b, 1990; Gray and Hassanizadeh, 1989), have reported their recent work on

transport of interface properties in multi-phase flow in porous media. In these papers,

the authors have laid down a frame work for forming the macroscopic equations for

interface properties in multi-phase flows. According to the authors, these equations

must complement the macroscopic equations for the bulk phases to complete the

mathematical description of a well-posed problem. In the light of this study, the

authors, in their latest work (Gray and Hassanizadeh, 1991a, 1991b), pointed out

some paradoxes in the currently practiced unsaturated flow theory (simultaneous flow

of air and water in porous media) and presented a theory that includes interfacial

phenomena.
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2"3 T'ontuosity of Forous fuledia

Because the properties of a porous medium like porosity, permeability, formation

factor and capillary pressure are different manifestations of the same microscopic pore

structure, attempts have been made to relate them to one another or in groups. Be-

cause porosity and permeability were among the first such properiies to be introduced

and studied, earlier attempts were aimed at relating these two properties. In fact,

until the early part of the twentieth century, no distinction was made between per-

meability and porosity in the oil industry. The permeability and porosity a¡e related

because a medium with zero porosity will also have zero permeability. However, a

general correlation between the two is not possible. A review of various attempts

at directly relating permeability to porosity is presented in Scheidegger (1974). This

review clearly points out that it not possible to arrive at a universal relationship

between permeability and porosity. Exploration of the possibility that permeability

and porosity can be related by introducing additional parameters which contain more

information about the pore structure was the obvious next step and tortuosity is one

suðh parameter.

The tortuosity of a porous medium is defined as the ratio of the average length of

the flow path to the corresponding macroscopic length. It was introduced by Carman

(1937, 1938) to achieve agreement between the values of permeability predicted by

the familiar Carman-Kozeny equation and those observed experimentally. A detailed

derivation of the Carman-Kozeîy equation was given by Wyllie and Spangler (1952).

This derivation is summarized as follows: The average velocity in a circular pipe

under a pressure gradient according to the Hagen-Poiseuille law is

62 ph-pI
ut:út 

L , (2.1)

where u1 is the average velocity of a fluid with viscosity ¡.r in a pipe of diameter 6 and

length L., and ph - pt is the pressure drop across the pipe. For non-circular cross
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sections, this equation is modified to

where / is the shape factor and m is the mean hydraulic radius defined as the ratio

of the volume of the pipe to the area of the wetted surface. The essential part of

the Carman-Kozeny theory lies in the application of Equation (2.2) to porous media.

To do that, the void space inside a porous mediumis conceptualized as a pipe with

arbitrary cross-sectional area and length greater than the straight bulk length. It is

argued that the average velocity within the porous medium must be greater than the

velocity given by QtlAt (where 8r is the volumetric flow rate in the macroscopic flow

direction, k : I and A1 is the bulk area normal to it). Two reasons are cited in favor

of this argument: one, the area available for flow in the macroscopic flow direction is

less because of blockage due to the solid matrix; this area is taken to be d,4r instead

of. A1, where / is the porosity of the medium; two, because of the tortuous nature of

the flow paths inside a porous medium, the average path length, L", is greater than

the corresponding bulk length,, Lt,, therefore the average velocity is faster by a factor

of L"f L1. If these concepts are considered, the average velocity in a porous medium

(equivalent to u1 in Equation (2.2)) it (8t L")l(óArLr). The increased effective

length also affects the pressure gradient, that is, the pressure gradient it (po -pt)lL"
instead of (po - pt) I Lr. Therefore the equation for average velocity in porous media,

analogous to Ðquation (2.2) for average velocity in a pipe, is:

QtL"!-*'ph-pt
AtLtó- Cp L"

If Equation (2.3) is compared to Darcy's law in the form

Qt _ ktPn-Pt
ArþLt'

then the permeability,lcy, in the macroscopic flow direction, Ë : 1 is

(2.3)

ó*'

m2 pn-ptu': ctt h '

)-2u tch
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Herc r!¡, - (L"|LL)2 is the Carman-Kozeny definition of tortuosity. In the present

study, Equation (2.5) will be called the Carman-Kozeny equation. Equation (2.5) can

also be written in the form

L_rùl - c,ks30 - ö)''
(2.6)

where ^9" is the surface a¡ea of the porous medium per unit solid volume. Several

authors have given estimations of the shape factor C and the tortuosity factor r"¡.

By considering the probable shape of the flow paths in unconsolidated porous media,

Carman suggested that the value of C should fall in the range of. 2.0-2.5, and favored

the higher value, 2.5. From his observations in flow visualization experiments in

unconsolidated beds of particles, Carman found that average streamlines flowed at

an angle of 45o to the macroscopic flow direction and therefore, suggested a value of

rtfo, rck 01 2for r"2¡. Other values suggested for r"2¡, fall in the range of 1.5 to 3.25

(Bear, 1972).

Scheidegger (197a) has given a review of the experimental studies performed to

test the Carman-Kozeuy equation. Most of these studies have been conducted on

unconsolidated porous media and substantial amounts of disagreement have been

reported between the predictions and experimental observations. A severe criticism

of the Carman-K ozeny equation was put forward by Childs and Collis-George (1950).

They stated that because the Carman-Kozeîy equation does not involve any directed

quantities, it is not valid for anisotropic porous media. Also, they reported that the

equation failed to give reasonable prediction for structured bodies like ustiff-fissured'

clays. Many modifications of the Carman-Kozeny equation have been reported in the

literature without any substantial improvement in its predictions (Scheidegger, 1974).

Wyllie and Rose (1950) and Wyllie and Spangler (1952) postulated that tortuosity

in fluid and electrical flows should be the same, a¡d therefore the tortuosity in the

Carman-Kozeîy equation could be found independently from electrical measurements.

ó"
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However, the expression for electric tortuosity proposed by them has some inherent

shortcomings which will be discussed in Chapter 4.

Bea¡ and Bachmat (1966, 1967) and Bear (1972) conceptualized tortuosity of a

porous medium as a property which measures the deviation of a fluid particle from

the macroscopic flow direction at every point inside the porous medium. Accordingly,

they introduced the following quantities:

tij 
- 

ttJ (2.7)

with

(f)'

'u:(å*) (#) , (2.8)

where s is the length measured along the axis of the channel, ø is the length measured

along the streamline inside the channel, Ç are the local Cartesian coordinates, and r$

is the tortuosity tensor. The quantity (dÇ/da) (d(¡ ldo) represents nine elements of a

symmetrical3x3 (i,j:I,2,3) matrix. Theseelementsaretheproductsof thecosines

of the angles between the direction of a streamline at a point and the coordinate

axes. The coefficient (dø/ds)2 takes the converging-diverging nature of the channels

into account. For flow channels with constant cross-sectional arca, rl¡ - Tij, The

permeability model introduced by Bear and Bachmat (1966, 1967) which incorporates

the above concepts of tortuosity will be discussed in Section2.4.L.

By considering two types of capillary models, one with straight parallel tubes and

the other with tortuous tubes, Whitaker (1967) showed that the term involving the

area integral of the ju.np in the concentration, in the volume averaged two-component

diffusion equation for incompressible flow in porous media, is associated with tortuo-

sity. By using a Taylor series expansion, Whitaker (1967) presented a constitutive

relation between the non-dimensionalized version of this area integral, which he called

tortuosity vector, and the macroscopic concentration gradient. The present work
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related to tortuosity is on the lines of Whitaker's (1967) work. By considering various

idealized pore models, the integral terms in the averaged momentum conse¡vation

equations for single-phase fluid flow in porous media and averaged charge conservation

equations for current flow in porous media saturated with electrically conductive fluid

are studied (see Chapter 4). The direct relation of these terms with tortuosity is

very clearly demonstrated. Unlike Whitaker's work (1967), the present work clearly

differentiates between two types of tortuosities (discussed in Chapter 4) and identifies

the integral terms responsible for each type.

Dullien (1979) discussed the limited scope of the classical definition of tortuosity

in the Carman-Koz,eny equation when parallel- and serial-type non-uniformities are

present. Dullien argued that the concept of tortuosity should not only deal with the

diffe¡ences between the orientations of the microscopic and macroscopic streamlines-

it should also include the "networking effect". As such, he stressed that the classical

definition of tortuosity in the Carman-Kozeny equation is limited to the case of uni-

form, parallel, serial, and parallel-serial types of models. Citing other works (Wiggs,

1958 and Haring and Greenkorn, 1970) and his own work (Dullien, 1975), he suggested

that 3 is a reasonable value for the tortuosity factor.

By considering a cubic urepresentative unit cell' (RUC) * t representation of

porous media, Du Plessis and Masliyah (1988) derived an explicit relation between

porosity and tortuosity. The cell was designed to take maximum possible connec-

tivity and staggering into account. However, the tortuosity in their study has been

introduced from the geometrical point of view. As will be demonstrated in Chapter 4,

their definition of tortuosity is limited in the same sense as the classical definition in

the Carman-Kozeny equation.

Spearing and Matthews (1991) simulated a sandstone sample with a three-

dimensional array of cubes and cylinders representing pores and throats, respectively.

The pore-size distribution of the array was calculated from the mercury porosimetry
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curve of the sample and a correlation of 0.16 was maintained between the throat and

cube sizes. Fifty values of the tortuosity factor of the sandstone sample were then

predicted by considering weighted random walks through the array. The tortuosity

was then defined as the median of these fifty values. The tortuosity predicted by the

simulations increased from 2.45 to 3.55 with decreasing average eoordination number

(average number of throats meeting at a pore). Values of tortuosity of the sandstone

sample equal to 2.42 and 2.46 were found experimentally using the equations

D.fr:'4
tsm

(2.e)

and

rsm: (F Ð+ , (2.10)

respectively. Here z"- is the tortuosity factor, { is the porosity, .F is the formation fac-

tor of the medium, D"ff is the diffusion coefficient of the gas through the medium, and

Dosis the bulk diffusion coefficient. As will be shown in Chapter 4, Equation (2.10)

used by them to calculate experimental tortuosity factor is not the exact one. Also,

it is very difficult to verify if the method can predict correct values of hydraulic tor-

tuosities because there are no equations for fluid flow analogous to Equations (2.9)

and (2.10).

2.4 Fore Structure Propertíes of, Forous Medía

In this section, contributions toward understanding the relations of permea-

biliiy, Klinkenberg permeability and formation factor of a porous medium to its pore

structure are reviewed. Each of them is considered one by one.

2.4.I Fermeability

Darcy's law is a phenomenological law which introduces permeability of a porous

medium as a "black boxn dependent on its pore structure in a unique way. Much of
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the resea¡ch has been directed toward exploring this relation, either by relating the

permeability to the pore structure parameters or to other properties of the porous

medium. While doing so, a pore structure model of the porous medium has been

assumed implicitly or explicitly.

One of the earliest attempts to relate permeability to other pòre structure proper-

ties was by Kozeny (1927), who gave an equation which was later modified by Carman

(1937). As described in Section 2.3, this equation is developed by idealizing a porous

medium as a pipe with an arbitrary cross-sectional area rnd accounts for the block-

ages due to the solid matrix. It relates the permeability to porosity, tortuosity, shape

factor and specific surface area.

Scheidegger (1953) presented three types of capillary models of pore structure

which he called straight, parallel type a.nd serial type capillary models. All the three

models are based on a fundamental assumption about the relation between the pore

velocity, u1 and the filter velocity, QrlAr. This assumption is called the Dupuit-

Forchheimer assumption:

Q,ut: $
Here Q1 represents the bulk flow in the macroscopic flow direction and Ar is the

bulk a¡ea normal to this direction. Scheidegger, however, argues that the Dupuit-

Forchheimer assumption cannot be regarded as basic since the pore velocity in this

definition has not been exactly defined. The straight capillary model is the simplest

of the three; here a porous medium is represented by a bundle of straight and parallel

capillaries of uniform diameter 5. gy considering Hagen-Poiseuille flow in the tubes,

the following expression was derived for permeability:

(2.11)

(2.12)
-o, Qòq=E'

To achieve agreement with ihe experimental results, Scheidegger suggested that the

factor 32 in the denominator be replacedby r!, where zo is the "tortuosity'factor.
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5' -uy be written in terms of ^91 to give

,ötKt: 5dt1 ¡
t aùo

6' : 
lo* 

á2 o(á)dá ,

i : (1,* 6'?a(6)a6)' I #ou .

(2.13)

where Sf is the surface area per unit bulk volume. This equation is similar to the

Carman-Kozeny equation; however, the Carman-Kozeny equation is based on an

altogether diferent line of reasoning. In fact, the Carman-Kozeny equation is an

exact equation for parallel-straight capillary tube models.

Next the parallel type model was considered. This model consists of a bundle

of capillaries parallel to the macroscopic flow direction but with variable diameter.

The expression for the permeability of the model is similar to Equation (2.12) with

two changes: one, the factor 32 in the denominator is replaced by 96 and two, the

parameter ó- is given a more specific meaning in the form

where o(6) is the capillary diameter distribution function. The incorporation of the

additional factor 3 in the denominator is supposed to account for the fact that only

one-third of the tubes are in the macroscopic flow direction. This type of model was

first considered by Purcell (1949). In his model, the capillary diameter distribution

was found from the mercury capillary pressure curve.

The serial type model, the third and the final such model considered by Scheideg-

ger, is the opposite extreme of the first two models. This model consists of sections

of capillaries of diferent diameters joined end-to-end. A fluid particle is imagined to

travel through all the pore sizes in the porous medium. For this model, the expression

for permeability is similar to Equation (2.I2) with the factor 32 replaced by 96 and

(2.14)

(2.15)

According to Scheidegger (1974), the parallel and serial models when used to predict

permeability with tube diameters assigned according to mercury injection capillary
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pressure curve, predict very high and very low values, respectively, thereby indicat-

ing that the models are sensitive to the upper and lower portion of the pore size

distribution, respectively.

R¿ndom adjacent slice models are another category of models used to relate per-

meability to the pore structure. These models are constructed hy cutting thin slices

from a bundle of parallel tubes with diameters distributed according to a given dis-

tribution and then rearranging the slices randomly. Childs and Collis-George (1950)

were the first to consider these types of models. They contended that the models

were more realistic than the Carman-Kozeny equation because the Carman-Kozeny

equation did not consider pores of different cross sections. An expression for the

permeability was derived based on the following reasoning: The faces of two adja-

cent slices of a porous medium of bulk area At will have identical radius distribution

functions o(r) and if these slices are randomly juxtaposed, the total pore space area

in contact will be ó' Ar. Assuming that resistance to flow at a junction is confined

to the smaller pores, then

lmoa lmog

lq = C" Ð D ,i a(r¡)6r a(r¡)6r, (2.16)
r¡=0 ¡¡=Q

where r¡ is the radius of the smaller tube and r¡ is the radius of the larger tube,

a(r¡)6r and a(r.¡)6r represent the fractional areas occupied by the tubes of radius

range from r to r * dr. The tube radius distribution is to be determined by mercury

porosimetry or by other means and r-o" is the largest tube radius encountered in

such an experiment. The constant C, h* to be experimentally determined. Wyllie

and Gardener (1958) and Marshal (1958) contended that, instead of using r¡ as the

radius of the smaller tube at a junction , rt d6 should be used a^s the effective radius

because the fit of one tube to the next one is poor. Later improvements of this

approach specified the value of C". Marshal (1958) used / while Millington (1959)

used /r/s which was obtained by considering spherical pores. Millington and Quirk
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(1961) conceptualized a porous medium as made up of interpenetrating solid spheres

separated by interpenetrating spherical pores. This model gives ö æt the effective

area, where 0.6 ( n <0.7 for 0.1 < d < 0.6.

Haring and Greenkorn (1970) conceptualized a porous medium as a collection

of randomly oriented cylindrical tubes with tube diameters distributed according

to the beta function. Each tube was assumed to span from one boundary to the

other boundary. By considering Hagen-Poiseuille flow in each tube and taking the

orientation of the tubes into account, the value of the average velocity was calculated

by integration. By invoking the Dupuit-Forchheimer assumption to relate the average

velocity and the seepage velocity in Darcy's law, the following expression was found

for permeability:

, - ö'Io,
rul 

--'24
(a' +2) (a'+ 1)

(a' * þ'* 3) (o' + p' +2)
(2.r7)

Hete r^o, is the maximum value of the radius, and c' and p' are the parameters of

the beta distribution. The authors claimed that the model was a random network

model with intersecting tubes; however, the manner in which average velocity was

calculated, ignored intersections. This limitation is also evident from the fact that

capillary pressure was evaluated by assuming all the tubes to be directly accessible

from the outside.

Payatakes et al. (1973a, 1973b) presented a constricted unit cell model for mono.

sized, or nearly monosized unconsolidated granular porous media. A unit bed element

contained geometrically similar but unequal sized convergent-divergent unit cells. The

geometry of the unit cells was determined from experimental information about grain

size distribution, porosity and saturation versus capillary pressure data. The flow

inside each cell was assumed to be similar. A finite diference scheme to solve the

Navier-Stokes equation through the unit cell, retaining the inertial terms, was pre-

sented. Payatakes and Neira (1977) extended the model to account for the random
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orientation of the flow channels. In this case, the predicted permeability was shown

to agree well with the experimentally observed one. The way these models have been

implemented, the unetworking effectn has been ignored. Also, the scope of the models

is very limited for polysized granular unconsolidated porous media and consolidated

porous media in general.

Dullien (1975) considered the network approach for modeling permeabilities of

sandstones. His model consisted of a number of cubic capillary networks of arbitrary

orientation with respect to the macroscopic flow direction. Each network was built

of identical capillary tubes which however, were different in the various networks.

Each capillary was made of segments of different diameters. The capillaries in an

individual network were characterized by two pore size parameters: the controlling

pore entry diameter and the diameters of all other segments which may be penetrated

through the pore entry diameter. This bivariate pore size distribution was obtained

by measuring the pore entry diameters using mercury porosimetry and the larger

pores by using the pore size distribution derived with the help of photomicrography.

The best fit to the observed and predicted permeability data required the constant

96 in the denominator of the expression for permeability to be replaced by 106, and

with this value, the predicted permeabilities matched with the experimental values

within t23%. Dullien attributed the value 106 to a constant tortuosity factor of

3.3 instead of 3, which he argued was the theoretical value for his model. While

arriving at his expression for permeability, Dullien assumed that different networks

(with different individual permeabilities) in his model were independent of each other

and the permeability of the model was a linear sum of the permeabilities of different

networks constituting the model. Therefore, his model cannot be considered as a

typical network model because the effect of intersections was ignored.

Wise (1992) used a three-dimensional cubic network of tubes for modeling per-

meability of water through porous media. The pore size distribution was found from
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the drainage capillary pressure curve and the permeability was calculated by apply-

ing network theory (see Appendix B). A critical pore size was identified. When only

tubes with diameter above the critical size were used in the network, the permeability

of the network equaled the measured permeability of the medium. The evaluation

of pore size distribution from the drainage capillary pressure curve was based on a

parallel capillary model. As has been shown by many researchers (Dullien, 1975),

this practice leads to a narrower pore size distribution than exists in reality. This is

because the drainage capillary pressure curve is controlled by pore-throats (smaller

pores) and the pore-bodies (larger pores) that are not directly accessible from the

surface are invaded at later stages. This results in higher frequencies of smaller pores

in the pore size distribution. This may be one of the reasons for the existence of a

critical pore size in the model put forward by Wise (1992).

Bear and B¿chmat (1966, 1967; also see Bear, L972) conceptualized the void space

of a porous medium as consisting of a spatial network of interconnected flow paths of

varying length, cross-section and orientation. The average fluid flow at a point inside

the passage was assumed to be along the axis of the passage. Volumes of junctions

(where two or more flow passages meet) were assumed to be very small as compared

to the volumes of the flow channels and junctions rryere assumed to offer no resistance

to the fluid flow. The authors assumed the viscous force per unit volume at a point

inside the flow passage resisting motion of a particle (direction of the force is opposite

to the local velocity vector) to be

FL: (2.18)

is the hydraulic conductance of a

the channel cross section and the

the channel) and V* is the mass-

was incorporated into the equation

-L"v. '

where B (with the dimension of length squared)

channel at a point (a function of the shape of

location of the point with respect to the axis of

averaged velocity of the particle. Equation (2.18)
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of motion of a fluid particle inside the flow channel and the resulting equation was

first averaged over the cross section of the channel and then over a representative

elementary volume resulting (for laminar flow of a Newtonian fluid) in

k;¡: STrf¡ , (2.1e)

where å;¡ is the permeability tensor and r$ is the tortuosity tensor at a point as

defined by Equation (2.7). Further development consisted of writing

Erïj:84 ,, (2.20)

where E was called the average medium conductance and fü ** called the medi-

um's tortuosity. Bear and Bachmat (1966) showed that for an isotropic medium, the

tortuosity tensor reduces to a single scalar F. For a porous medium consisting of

straight channels of circula¡ cross section

V:T-n-î:n-r:I(,
r,

(2.2r)

and

Tl2: TZt: U . (2.22)

To obtain a value of 7F for unconsolidated porous media, the divergence of streamlines

is incorporated as (see Equations (2.7) and (2.8))

(2.23)

If the angle d between a channel axis and a streamline inside it is assumed to vary

between 0 :0o and d: 90o such that 0:45o is the representative value and

V:T(H),

H: secd2 - [sec 4so]2 -2,

V : Zr :2r.
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As argued by Dullien (1979), volume averaging B does not result in the correct

conductance of a network because it does not take topology of the network into

account. In other words, the contribution of an individual channel to the overall con-

ductance of the network will depend, in addition to its conductance, on the location

of the channel in the network. Also, the authors did not present a way of calculating

B for a general case. This was also pointed out by Van Brakel (1975).

Du Plessis and Masliyah (1988) considered a cubic representative unit cell as a

model of an isotropic porous medium. The flow passage inside the cell was repre-

sented by three square duct sections, connected end-to-end and oriented mutually

perpendicular to each other. This type of flow passage rryas considered to represent

the maximum possible pore interconnectivity and staggering within the cell. From

geometric considerations, the explicit relation between tortuosity and porosity

ó:
(3ro* - I)' (2.26)4rl*

was derived. Here, rdm : df d,", is their definition of tortuosity (the inverse of the

general definition used in this study), d is the external linear dimension of the cell

and d" is the total path length in the cell. The authors evaluated the various terms

including the nonlinear (inertial) terms, of the volume averaged Navier-Stokes equa-

tion by assuming developing laminar flow inside the square ducts. For creeping flows

they obtained the following equation for permeability:

L_,ì,1 -
ó'& r3^

(2.27)
42.69 (I - ,¿^)

The authors have considered the tortuosity in Equations (2.26) and (2.27\ as a geo.

metric quantity. As will be demonstrated in Chapter 4, an explicit relation between

porosity and tortuosity is only possible if tortuosity is considered to be a geometric

quantity. If the tortuosity is considered as a kinematical property, such a relation is

not possible.
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In addition to the permeability models presented above, many more based on

other considerations have been reported in the literature, for example, fissure models

(Irmay, 1955; Snow, 1965; Parsons; 1966), resistance to flow models or models based

on drag theory (Iberall, 1950; Rumer and Drinker, 1966; Rumer, 1969; Harleman et al.

1963; Happel and Brenner, 1965, Hubbert, 1956) and statistical models (Scheidegger,

1954, 1960; de Joss de Jong, 1969). These models have been reviewed by Bear (L972)

and Dullien (1979).

2.4.2 Klinkenberg Fermeability

Since the discovery of Darcy's law (Darcy, 1856) for fluid flow in porous media,

many non-Darcian behaviors have been observed. One of these behaviors is observed

when the flowing fluid is a gas. Fancher and Lewis (1933) were arnong the first

to note that air permeabilities, as calculated from Darcy's law, were higher than

liquid permeabilities in the same porous medium. This increase in permeability is

attributed to the existence of a finite "slipn velocity at the solid-fluid interface inside

the porous medium which results in flow augmentation. The significance of the gas

slippage increases as the pore size becomes comparable to the molecula¡ mean free

path of the flowing gas. The phenomenon of slip relevant to gas flow in a capillary is

theoretically well established as a conseguence of the kinetic theory of gases (Present,

1958). Due to the random nature of the pore structure, a rigorous treatment of gas

slippage in porous media has not yet been possible. Based on the slip theory of

Kundt and Warburg (1875), Klinkenberg (19a1) formed an expression for flow of a

gas through porous med.ia by introducing an uapparentn permeability, fro1 (called here

the Klinkenberg permeability; ø denotes the "appa.rent' nature of the permeability

and 1 denotes its direction), defined as

^" _ le,¡ ôp
ul--7¡

P oxt'

29

(2.28)



where u1 is the filtration velocity, ¡r is the viscosity and p is the pressure. Klinkenberg

found the dependence of this permeability on the mean pressure, P- in the porous

medium sample, to be of the form

where Èr is the true permeability and ö is the Klinkenberg coefficient. Using a straight

parallel capillary model of porous media, Klinkenberg showed that

. 8 c), P,n
b:-,t

lts

where À is the mean free path of the flowing Ea"s, [16 is the mean pore diameter and c

is the coefficient of slip (Jeans, 1967). Jeans described this coefficient as the fraction

of molecules which sta¡t out in random direction after colliding with the wall. He

further commented that its value is close to unity.

The relation of À to pressure and other properties of the gas, based on the ele-

mentary kinetic theory of gases (Present, 1958), can be used in Equations (2.30) and

sìmilar equations, However, if such a relation for À is used, the developments are

only valid for the cases when the pore diameters a^re greater tha¡ the average mean

free path of the flowing gas. However, at a given pressure, the size of a pore inside

a porous medium may be larger, smaller or comparable to the average mean free

path of the flowing gas. For the pores with ó >> À, the flow is governed by the

Hagen-Poiseuille law and for the pores with 6 << À, the flow is governed by Knudsen

equation (Present, 1958). According to Adzumi (1937), for the pressure range where

6 æ À, the Hagen-Poiseuille and Knudsen mechanisms must act simultaneously to

yield the following approximate relation for gas flow in a capillary:

kot b
tf,-Ë''P*'

eP*:#(p"-Pu)P^- # ffi (p"-po),,

(2.2e)

(2.30)

(2.31)

where Ç is the volumetric flow rate of the gas measured at a reference pressure, P*, 6

and S are the diameter and length of the capillary, po - pø is the pressure drop across
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the capillat¡, p^ is the mean pressure in the capillary, .B is the gas constant and ?

is the absolute temperature. The difference between P* and pm ma! be noted here:

p* is the mean pressure in the capillary whereas, P* is a reference pressure which

is usually taken to be the mean pressure in the porous medium sample. As shown

by Rose (1948), if Equation (2.31) is used for flow in a capillary, then for capillary

models this is equivalent to using the following expression for the average mean free

path:

À:2.13 Ldm.
Pm

(2.32)

The same expression for À was used by Ertekin et al. (1986) for studying gas slippage

phenomena in porous media partially saturated with water. In the present study this

expression for À is used.

According to Klinkenberg's experimental data, ô increased slowly with increasing

pressure; however, it has been assumed constant in most of the studies following

Klinkenberg's work. In the present study it is assumed to be constant.

2.4.3 Formation Factor

Archie (1942) defined the formation factor, F, of a porous medium as

o-Ro'- o' (2.33)

where .Ro is the resistivity of the porous medium when saturated with an electric con-

ductor of resistivity, R*. Archie studied the relation of formation factor to porosity

and permeability for sandstones over a wide range of porosity. The log-1og plots of

formation factor and porosity showed good linearity suggesting the following correla-

tion:

F=ó-^', (2.34)

where rn'is called the cementation exponent. The log-log plots of formation factor and

permeability showed crude linearity; however, the slopes differed dramatically from
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formation to formation and large discrepancies were noted for individual samples.

Archie also studied the relation between the ratio of observed resistivity and that

at I00% brine saturation, termed the resistivity index, -I", versus fractional brine

saturation, .9,,, and suggested the correlation

r,: Sl,"' , (2.35)

where n' is called the saturation exponent. Archie found that the value of m' ranged

from 1.8 to 2.0 for consolidated porous media and equaled 1.3 for unconsolidated

porous media. A value of 2 was given to n for clean consolidated and unconsolidated

sandstones.

Winsauer et al. (1952) defined tortuosity in the following manner:
_1L. /t"\'
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(2.36)

where ú is the transit time for ions of given mobility in a capillary of length .t" having

the same cross-sectional area as a porous medium with length of. Lt flowing under

the same potential gradient. These workers studied the dependence of formation

factor on the ratio of effective to actual cross-sectional area for electrical conduction,

ty', tortuosity, ro¡o and packing of sand grains. They analyzed Archie's data and

additional data and found t,hat the following correlations worked well:

(2.37)

(2.38)

(2.3e)

Archie's formula (Equation (2.34)) and Equation (2.39) (also known as the Hum-

ble formula) were generalized by Wyllie and Gregory (1953) as

(2.40)



Pa¡ameter ¿' was said to be dependent on the particle shape, sorting and degree of

compaction whereas parameter rn' was dependent on the type of cementation. Values

of m' ranging between 1 and 4, and of n' ranging between 1 and 7 have been reported

in the literature. The saturation exponent depends on the paths available to current

flow as the brine saturation in the sample decreases, and therefore is highly dependent

on the wettability of the porous medium.

Wyllie and Rose (1950) defined tortuosity as

TturJI : (+\'
\tr'l

and from first principles derived the following relations:

R*_ L o",,
I'tQ

(2.41)

(2.42)

(2.43)

(2.44)
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(2.45)

(2.46)

rL, : log (Sl r-il1r")
log (S|) '

where Rr, F. and r" are the values of resistivity, formation factor and tortuosity at

partial brine saturations. Wyllie and Spangler (1952) argued that hydraulic and elec-

trical tortuosities were equivalent a¡d that tortuosity in the Carman-Kozeny equation

(2.47)
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could be found from Equation (2.43). As will shown in Chapter 4, Equation (2.a3) is

only valid for straight parallel capillary models.

Perez-Rosales (1976) arrived at the following equation:

where /¡ is the fraction of porosity occupied by the conducting fluid and /" is the

fraction of porosity occupied by stagnant fluid. Ó¡ wæ assumed to be a linea¡ function

of porosity. The results predicted by Equation (2.a8) were in good agreement with

experimental observations except at low values of porosity. Perez-Rosales (1982)

showed that better agreement was predicted at low porosities if the relation

ó!: ó*" (2.4s)

was used instead of the linear one. The author derived the following relations for

tortuosity

*ó ("ö-*" +1 -o) (2.50)

and

L"
Tp"r: E

F:I+{P,
Q¡
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ó 

-ö" -,'Per -L1 -ó*,,-öj¡r'

(2.48)

(2.52)

(2.51)

In recent years, a few attempts have been made to relate formation factor to per-

meability and other pore structure properties on theoretical basis. Katz and Thomp-

son (1986) have proposed the relation

,2

Ërx*,
.r

where l. is the threshold pore size such that all the pore sizes greater or equal to /.

form a connected cluster that spans the porous medium sample. Katz and Thompson

showed that the length scale l" can be determined from the inflection point in the



mercury-intrusion capillary

relation

pressure curve. Johnson et al. (1986) have proposed the

tt2- lrkrN gF, (2.53)

where

[volE;(r;)1z dV
(2.54)

!e"olE;(';)l' d'A

E¡(r;) in the above expression is the local electric field. The parameter Ä,' is the

weighted pore volume to surface area in which the isolated portions of the pore space

that do not contribute to the transport are eliminated. Avellaneda and Torquato

(1991) have derived the following rigorous relation between permeability and forma-

tion factor:

/\'
2

r2
t -LAT't - ãF, (2.55)

where L¡7 is a length scale that involves certain averages of the eigenvalues of the

Stokes operator and contains information related to the electrical and momentum

transport. For the straight parallel capillary models, lv' : Ltr:612, where 6 is the

diameter of the tubes.

The length scales ¡\' and L¡7 contain information about the characteristic pore

dimension (i.e., analogous to mean hydraulic radius in the Carman-Kozery equation)

and the hydraulic and electrical tortuosities in a complex manner. In order to use

parameters Ä' and L¡7 for practical purposes, detailed studies of their physical mean-

ings and methods for determining them for realistic pore geometries are required.

2.4.4 Effective-Medium Approximation (EMA)

The effective-medium approximation (Kirkpatrick, 1973) can be employed to derive

the relations of permeability and formation factor of the pore structure models of

porous media (e.g., network models) to the statistical parameters characterizing their
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pore space. The EMA consists of replacing an infinite random network of conductors

with an effective-medium network which has the same overall conductance as the

original network. The elemental conductances in the effective-medium network are

identical. Nicholson et al. (1988) used the EMA with a renormalization group method

to relate the elemental conductance of the effective-medium network to the parameters

of the probability distribution function of the elemental conductances of the original

network. Details about the EMA and a comparison of the relations that will be

developed in the present work to those based on EMA, will be presented in Chapter 5.

2.5 Fone Struct¡¡re Models fon Capíllary Fressure Curves

In this section, the literature related to the application of pore structure mod-

els for studying the capillary pressure curves of porous media is reviewed with an

emphasis on network type models. For the background on physics and terminology

related to the capillary phenomena in porous media (e.g., wetting phase, non-wetting

phase; drainage, imbibition and secondary drainage capillary pressure curves; mer-

cury intrusion capillary pressure curve; irreducible wetting phase saturation, residual

non-wetting phase saturation; hysteresis), the reader is referred to Dullien (1979).

Only literature in which capillary dominated flows have been considered, is reviewed.

The viscous dominated a¡d intermediate flows are not considered here.

The capillary pressure curves are probably the most important pore structure

properties of a porous medium, for they contain most of the information about the

pore structure. This information is, however, reflected in a very complex fashion.

The research in this field has been directed towa¡d interpreting this information in

a meaningful manner and pore structure models have proven to be very helpful for

this purpose. Pore structure models are generally used in association with mercury

porosimetry. Fundamentally, mercury porosimetry consists of interpreting various
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features of pore structure (e.g., pore-size distribution, pore interconnectivity, corre-

lations in pore sizes) from the mercury intrusion and follow up capillary pressure

curves. The conventional method, presented by Ritter and Drake (1945) and Drake

and Ritter (1945) is based on the parallel capillary model, using the equation (relat-

ing the capillary pressure inside a cylindrical tube to its radius) originally introduced

by Washburn (1921). This model is, however, incapable of accounting for the irre-

ducible wetting and residual non-wetting phase saturations and capillary hysteresis.

A stochastic method to correct some of these shortcomings was developed by Meyer

(1e53).

The absence of interconnections between the flow passages in parallel capillary

type models is largely responsible for the deficiencies mentioned above. To model

the interconnections between the flow passages, Fatt (1956) presented network mod-

els, similar to electrical networks. The tube diameters of a two.dimensional square

network were assigned randomly and the tube lengths were assigned according to

2aùr:t, (2.56)

where ,9¡ denotes the length and 6¡ denotes the diameter of the /th tube, and ø is a

constant. Initially the network was assumed to be completely saturated with a wetting

phase and surrounded from all sides by the non-wetting phase. The pressure difference

between the wetting and the non-wetting phase, that is, the capillary pressure, \Mas

increased so that the tube (tubes) with largest diameter directly in contact with the

non-wetting phase outside of the network was (were) penetrated. At this point all the

tubes in the network with diameters greater or equal to and connected directly to the

tubes invaded on the periphery of the network were penetrated. Keeping track of the

tubes penetrated, the wetting phase saturation was calculated and this gave the first

point on the drainage capillary pressure curve. By increasing the pressure in the non-

wetting phase and repeating the process, other points on the capillary pressure were

37



obtained. Fatt found that the drainage capiliary pressure curves generated in this way

were in qualitative agreement with ones observed for sandstone samples. However,

Fatt's method did not take the phenomena of fluid trapping into consideration, and

therefore, was unable to predict irreducible wetting phase saturation.

The assumption that the network was surrounded on all sides by the non-wetting

phase was criticizedby Rose (1957) because it was not shown how the wetting phase,

displaced by the non-wetting phase, could possibly leave the network. Rose (1957)

contended that different irreducible wetting phase saturations existed for different

escape routes which is not the case in real porous media.

Dodd and Kiel (1959) modified Fatt's procedure by taking the phenomena of fluid

trapping into account. The non-wetting phase was allowed to penetrate from three

sides and the wetting phase was allowed to leave from the fourth side. The wetting

phase was trapped whenever no continuous path was available for it to exit. The au-

thors also considered the case of intermediate wettability by assigning a probability

of penetration based on the diameter. Ehrlich and Crane (1969) qualitatively showed

that interconnections between various pores were responsible for hysteresis in drainage

and imbibition relative permeability curves. Haring and Greenkorn (1970) used the

model described in Section 2.4.L lor predicting the mercury intrusion capillary pres-

sure curve. However, this model has the same limitations as a parallel capillary model

because all the pores are assumed to be directly accessible from outside.

Mayer and Stowe (1965, 1966) used random packing of uniform spheres to study

capillary pressure curves. Kwon and Pickett (1975) proposed a network model of

intersecting tapered angular pores to represent the pore structure of rocks. The mod-

el was used to study the effect of pore structure parameters on the shape, plateau

slope, irreducible wetting phase saturations and displacement pressures of the capil-

lary pressure curves" The results were in qualitative agreement with the experimental

observations.
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Dullien (1975a) emphasized the versatility of bivariate pore size distribution (ex-

plained in Section 2.4.I) for characterizing pore structure. The bivariate pore size

distribution was shown to simulate hysteresis for both independent and interacting

domains. The distribution of the bigger pores was determined from mercury intrusion

curve and the distribution of the smaller pores was found by photomicrography.

Androutsopoulos and Mann (1979) and Mann et al. (1981) used a regular two'

dimensional network to determine the pore size distribution of real porous media

samples. This was accomplished by fitting the predicted curve to the experimental

data by varying the parameters of the simulated pore size distribution. They studied

the effect of mercury entrapment on the resulting pore size distribution. Lin and

Slattery (1981) used a random three-dimensional network model to calculate per-

meability, capillary pressure curves as measured under static conditions and during

steady state flows, and relative permeability curves as measured during steady state

flows. The model, described by seven parameters, w¿rs employed to correlate single-

phase permeability, the drainage and imbibition capillary pressure curves and the

drainage and imbibition relative permeability curves. The subsequent loops of the

capillary pressure and relative permeability curves were predicted.

Wardlaw and Taylor (1976) and Wardlaw and McKeller (1981) used sandstone

samples and network models to study the effect of various pore structure parameters

on capillary pressure curves. Wardlaw and Li (1988) used two-dimensional etched

glass networks to study the effect of pore sizes and fluid occupied pore topology on

mechanisms of the retraction process. Lapidus et al. (1985) used three-dimensional

network models of throats and chambers and developed an algorithm assuming the

intrusion was controlled by throats sizes and and retraction by cha.mber sizes. Conner

et al. (1983) and Conner and Lane (1984) found that the actual throat-and-chamber

size distribution is wider than the one found by differentiating the capillary pressure

curve. Li et al. (1986) used a network model to study the effect of pore structure
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parameters, using the concept of throat-and-chamber-controlled domains.

Percolation theory has been used to study capillary phenomena in porous media.

Larson and Morrow (1981) used a percolation model to study the effect of sample size

on the capillary pressure curves. He found the accessibility of pore space increases

as the sample size decreases, which, in turn decreases the sharpness of the intrusion

curve knee and reduction of the residual mercury saturation. Chatzis and Dullien

(1977) used a bond percolation model to study breakthrough pressure as a function

of network topology, effect of dead-end pores and relative permeability to mercury

for sandstones. Diaz et al. (1987) also used a bond-correlated percolation model

to simulate drainage and imbibition pressure curves. Lane et al. (1986) modeled

intrusion as bond percolation and retraction as site percolation. Mayagoitia (1989a,

1989b) emphasized that while constructing pore-throat models, the size of any pore

must be greater or equal to the size of its delimiting throat, md size distribution

of both pores and throats should try to achieve maximum randomness. Mann et al.

(1986) generated a random two.dimensional network model by relocating the nodes

of a regular network. The model wa.s used to fit the porosimetry curves for an oil

reservoir rock sample and to find the effect of length to diameter ratio on the capillary

pressure curves. Using percolation concepts, Park and Ihm (1990) studied hysteresis

by proposing hypotheses of no coalescence and no entrapment for mercury intrusion

and extrusion in a two-dimensional network with different distributions for micro.

and macro.pores.

Mishra and Sharma (1988) used a model of Bethe lattice of pore throats and pore

bodies given by Larson and Morrow (1981), to develop a mathematical technique

for deriving reliable pore size distributions from capillary pressure curves. Renault

(1988) found that conventional capillary and ububble' networks were unsuitable for

determining pore size distribution for soils in which the intra-clay pores v¡ere very

small as compared to the inter-clay pores (lacunar pore space). BV assuming a normal
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distribution of the cylindrical capillaries of a network model, Cox (1991) demonstrated

a rapid way of estimating the parameters of the pore size distribution. The input to

the scheme \ilas the first two normalized moments of the raw capillary pressure data.

Tsakiroglou and Payatakes (1990) developed a mercury porosimeter simulator based

on a three-dimensional network of chambers and throats. The simulator modeled

mechanisms by which mercury menisci move in pores and stop at entrances of throats

and in certain cases chambers, mechanisms of snap-off that lead to disconnection and

entrapment of mercury, and the sequence in which the mercury moves and threads

break. The simulator was used to study the effect of throat size and chamber size

distributions, the coordination number and contact angle on capillary pressure curves.

The intrusion curve was found to depend on the pore size distribution and mean

coordination number, the retraction curve on the ratio of pore size to throat size. As

this ratio increased, the residual mercury saturation and the hysteresis between the

intrusion and retraction curves increased. The residual mercury saturation increased

as mean coordination number decreased. Portsmouth and Gladden (1991) used a

three-dimensional spherical network model to study the effect of connectivity and

pore size distribution on the capillary pressure curves. The emphasis was laid on

determining pore connectivity (coordination number) by conducting various pressure

sequences of the mercury porosimetry experiment. Soll et al. (1988) and Soll (1991)

developed network models to simulate the two. and three-phase capillary pressure

versus saturation relations.

With the development of the sophisticated mercury porosimetry simulators des-

cribed above, recently attention has been focused on the influence of correlations bet-

ween the sizes of neighboring pores on various transport properties of porous media,

including the capillary pressure curves. Chatzis and Dullien (1985) used a bond-site

correlated percolation model to study the mercury intrusion capilla^ry pressure curves

of networks in which sizes of the neighboring pores and throats were correlated but
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no correlation existed between the sizes of neighboring pores. It was observed that as

the c-t (chamber-throat) size correlation increased, breakthrough pressure decreased

and the primary drainage curve spread over a wider pressure raûge. Wardlaw et al.

(1987) used the mercury porosimetry simulator of Li et al. (1986) for comparing the

theoretical capillary pressure curve with experimentally observed-ones. A large corre-

lation between the neighboring throats and pores, and no correlation between pores or

throats among themselves was maintained. Their results for primary drainage curves

agreed with those of Chatzis and Dullien (1985). It was observed that for c-t corre-

lated networks, the breakthrough pressure for the second drainage curve was almost

the same as that for the initial drainage curve and the imbibition curves originating

from different saturation values terminated at approximately the same pressure value.

The findings for networks with no correlation were exactly opposite: breakthrough

pressure for second drainage was lower than that for the primary drainage and the

imbibition curves originating from different saturation values ended up at diferent

pressure values. The authors suggested that these observations may in future prove

to be the tools for measuring c-t correlations.

Tsakiroglou and Payatakes (1991) used the simulator that they described pre-

viously (Tsakiroglou and Payatakes, 1990) to find the effect of chamber-chamber and

chamber-throat size correlations on mercury capillary pressure curves. They found

that the effect of c-t correlations on the mercury porosimetry curves was relatively

small but that the efects of c-c and c-t (both simultaneously) correlations were strong.

The c-c and c-t correlations were found to widen the intrusion curve and the residual

mercury saturation was found to be smaller for c-c a¡d c-t correlated networks than

for uncorrelated networks.

The capillary pressure versus saturation relation is an important input to the

numerical models for studying multi-phase flow in porous media at the reservoir scale.

Usually, the measurements of this relationship are done in the laboratory on small core
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samples of the reservoir. The work on capillary pressure versus saturation relation,

descrìbed in the previous paragraphs, is relevant to this scale of stud¡ that is, the

laboratory scale. By performing statistical or volume averaging of the laboratory scale

relations for different core samples of a reservoir, the uefectivet capillary pressure

versus saturation relation for the whole reservoir is determined (Dagan and Bresler,

1983; Mantoglou and Gelhar, 1987a, 1987b, 1987c; Polmann et al., 1988, 1991).

The averaging implicitly assumes that the porous medium to some extent can be

considered homogeneous at the reservoir scale. However real porous media a.re rarely

homogeneous at the reservoir scale. Ferrand and Celia (1989, 1990a, 1990b, 1992)

used three-dimensional cubic network models to study the effect of various types of

heterogeneity on displacement and capillary pressure versus saturation relation. They

found that the capillary pressure versus saturation curve of heterogeneous networks

differed considerably from the one found by averaging the individual curves for various

homogeneous sub-domains constituting the complete heterogeneous network.

2.6 Fresent Research i¡r f,ight of the Reviewed Literature

It is clear from the review of literature related to the continuum description of

transport phenomena in porous media that the research in this area has been direct-

ed toward: development of mathematical concepts related to the quantification of

REV size, development of averaging rules, interpretation of the various terms in the

averaged equations and derivation of the phenomenological laws from first principles.

Limited efiort has been directed toward studying the dependences of the transport

properties, such as permeability, formation factor, Klinkenberg permeability and tor-

tuosity on various features of the pore structure using this approach. In the present

study, the volume averaging method is employed to derive integral expressions for

permeability, formation factor and Klinkenberg permeability of homogeneous porous

43



media. These expressions are studied with the help of idealized pore structure mod-

els. This study reveals useful information about the dependence of the transport

properties on the pore structure. The derivation of the integral expressions and their

relevance to the works by Whitaker (1986a) and Hassanizadeh and Gray (1980), will

be presented in Chapter 3.

The review of literature related to tortuosity indicates that recently more atten-

tion has been focused on this property of porous media (Du Plessis and Masliyah,

1988; Spearing and Matthews, 1991). As pointed out by Bear (1972), the effective

length, L", in the definition of tortuosity may be interpreted in two ways. When .L"

is calculated by averaging the actual lengths of the flow channels-not taking into

account the fact that a fluid particle may travel through different channels at various

times and with varying speeds-the tortuosity is a simple ratio of lengths. This is

the classical definition of tortuosity employed in the Carman-Kozeny equation and

other similar equations. In the second case, if .L" is calculated by averaging the actual

distance traveled by all the fluid particles passing through a particular cross section

of the porous medium at a particular instant, the tortuosity is then a kinematical

property. The study related to tortuosity in the present work is based on the integral

expressions for permeability and formation factor mentioned in the previous para-

graph. This study clearly demonstrates the limited scope of the classical definition of

tortuosity and attributes the difference between the two types of tortuosities to the

availability of multiple flow paths for fluid flow. This phenomena has been termed the

unetworking effect" by Dullien (1979). The failure of the Carman-Kozeîy equation

for polysized unconsolidated porous media and consolidated porous media in general

can be associated with this consideration. Most of the studies related to tortuosity,

including those of Bear and Bachmat (1966, 1967), Bear (1972), and Du Plessis and

Masliyah (1988) have considered tortuosity as a geometric quantity. The study by

Spearing and Matthews (1991) is an exception. The random walk model used by
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them to simulate the tortuosity of three-dimensional arrays accounts for the network-

ing effect to some extent and a close agreement between the experimentally observed

values and predictions in their study can be attributed to this feature of their model.

It is the endeavor of the present work to clearly distinguish between the two defini-

tions, both in the case of fluid flow and electric flow. This work also presents the

exact relation between the fo¡mation factor and electric tortuosity of porous media

and a discussion on the equivalence of hydraulic and electric tortuosities. As men-

tioned earlier (Section 2.3), the present approach for studying tortuosity is similar

to that reported by Whitaker (1967), however, unlike Whitaker's work, the terms in

the averaged conservation equations responsible for each type of tortuosity are clearly

identified. The study related to tortuosity is carried out in Chapter 4.

On the basis of the reviewed literature, the approaches followed to study the

relation of permeability to pore structure can be divided into two broad categories:

Under the first category, simulations of the pore structure models are generated on

computers and by inverting the mass conservation equations at the junctions (or

nodes), the permeability of the model is calculated (see Appendix B). The work of

Wise (1992) is an example of such an approach. These methods do not result in ex-

plicit relation of permeability to the pore structure parameters. Under the other cate-

gory, the pore structure models are employed to derive explicit relations of permea-

bility to the microscopic pore structure parameters. The works that fall under this

category are: the Carman-Kozeuy equation (Carman, 1937), Scheidegger's capilla,ry

models (Scheidegger, 1974), random adjacent slice models (Childs and Collis-George,

1950; Marshal, 1958; Wyllie and Gardener, 1958; Millington, 1959; Millington and

Quirk, 1961), the randomly oriented cylindrical tube model (Haring and Greenkorn,

1970) and constricted unit cell models (Payatakes et al., 1973a, 1973b; Payatakes and

Neira, 1977). All of these models are different variations of the capillary models and

ignore intersections of the tubes. As pointed out earlier, Dullien's network model
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(Dullien, 1975) also ignores intersections. The Bear and Bachmat model (Bear and

Bachmat, 1966, 1967, also Bear, 1972) relates permeability to the average medium

conductance and tortuosity. As indicated earlier, this average medium conductance

cannot be evaluated for a general case and also, the tortuosity has been considered as

a geometric quantity. The model by Du Plessis and Masliyah (1988) has also consi-

dered tortuosity as a geometric quantity. In the present study, the integral expression

for permeability is evaluated for a three-dimensional cubic network model of porous

media. This results in an explicit relation of the permeability to the microscopic pore

structure parameters. This relation is valid over a large range of the tube diameter

distribution breadth and also, does not consider tortuosity as a geometric quantity.

Such a relation of permeability to the pore structure parameters can also be derived

with the help of the effective-medium approximation (EMA). As will be demonstrated

in Chapter 5, the relation based on the EMA is valid for tube diameter distributions

with relatively smaller breadths.

Most of the work related to the formation factor has centered on finding empiri-

cal correlations between the formation factor, porosity and tortuosity (Archie,1942,

Winsauer et al. 1952, Wyllie and Rose, 1950, Perez-Rosales, 1976, 1982). Most of

these correlations are based on experimental data. In the present work, the integral

expression for formation factor will be evaluated for a three-dimensional cubic net-

work model. The prediction capability of this relation will be compared to that based

on the EMA.

The parallel and serial capillary models have also been considered in the present

work. These models help to study the effect of the topology (the pore connectivity)

on the permeability and formation factor. The development of explicit relations of

the macroscopic properties of the models to the pore structure pa.rameters will be

presented in Chapter 5.

It is evident that mercury porosimetry simulators have become very sophisticated
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where effects of correlations between the neighboring pores on va¡ious features of

capillary pressure curves have been studied in detail. However, we are still many

years away from the time when complete information of the pore structure can be

retrieved from capillary pressure curves only and also, most of the studies related to

the mercury porosimetry are of qualitative nature. Keeping this i¡ mind, it is the aim

of the present study to outline a methodology which can complement this effort. This

methodology is based on the relations of the transport properties of the models to

the pore structure parameters and can be used to simulate the pore structure of real

porous media samples with any of the three models. A preliminary study based on

this methodology will be conducted on real porous media samples. A comparison will

be made between the drainage capillary pressure curves predicted by the methodology

and those observed experimentally. This study will be reported in Chapter 6.
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In this chapter, mathematical concepts and relations which form the basis of the

present work are developed. An introduction to the continuum desc¡iption of trans-

port phenomena in porous media, also known as the macroscopic level description,

is presented in Section 3.1. The volume averaging method, which is the technique

used in the present study for achieving transition from the microscopic to the macros-

copic level description, is discussed in Section 3.2. By volume averaging the relevant

microscopic conservation equations, integral expressions for permeability, Klinken-

berg permeability and formation factor of a homogeneous porous medium are derived

in Section 3.3. These integral expressions form the core of the present study. Their

applications are studied in Chapters 4, 5 and 6.

Contínuu¡ra Descrïptíon of Tbansport Fhe¡ronaena in

Forous Media

3.L

As mentioned in Chapter 1, the transport of extensive quantities in porous media

can be described with the familiar conservation equations. It may also be possible

to state the boundary conditions in some cases (e.g., the condition of no.slip at the

solid-fluid interface in the case of momentum transport). However, these equations

describe the traasport phenomena at the microscopic level and at that level our inabi-

lity to observe and describe the complex geometry of the solid-fluid interface precludes

any direct solutions to these equations. Also, in most cases of practicai relevance, one
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is not interested in knowing the details of the transport at the microscopic level.

Instead, the knowledge about the behavior of relatively large portions of the porous

medium domain suffices. This level of description of transport phenomena is called

the macroscopic or continuum level description. Moreover, as it allows a comparison

with the experimental observations, which are only possible at the macroscopic level,

the continuum description is also desirable.

A few mathematical techniques are available to achieve transition from the micros-

copic level to the macroscopic level. These techniques can be broadly categorized as

the averaging methods and the homogenìzation method. Under the class of aver-

aging methods, two approaches are generally used: one is the volume averaging

method and the other is the statistical averaging method. In the volume averag-

ing method, the microscopic variables relevant to the transport process and the pore

structure properties are averaged over a representative elementary volume (REV) (an

REV is formally defined in Section 3.2.I) and the averaged values are assigned to the

centroid of the REV. The averaging is conducted throughout the domain of interest

which results in a continuous and differentiable spatial distribuiion of the transport

variables and the macroscopic properties of the pore structure (e.g., permeability, for-

mation factor, porosity). In the statistical averaging method, the transport variables

and the properties of the porous medium are considered as random space functions

(RSF). The actual porous medium and the transport process are considered as the

ensemble of the random space functions that describe them. The statistical averag-

ing must, in principle, be carried over a sufficiently large number of realizations. In

the case of porous media, most of the times, only one realization is available. This

difficulty is resolved by basing the statistical information on a unique sample that

satisfies the conditions of statistical homogeneity (explained in Appendix A). These

conditions are similar to those related to the concept of the REV discussed in the next

section. If the fluctuations of the transport variables within the REV are ignored,
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the results obtained by the two methods are the same.

The homogenization method is applied to porous media which periodically repeat

themselves. Artificial porous media generally fall into this class. In this method,

every property of the medium is expressed in the form f(ø;, y¡). Here c¡ denotes the

position vector of a point in the Cartesian coordinates and y; denotes the ustretched

coordinatesn given by y, : ,rlt'. e'is a parameter given by dlD, where d is the period

of the medium and D denotes the cha¡acteristic length at the macroscopic level. By

introducing a double scale asymptotic expansion of the partial differential equations

representing the transport phenomena of interest and identifying equal powers of e',

equations in the ø; and g; variables are obtained. In periodic media, equations in

U; are solvable and the equations in ø; represent the uhomogenizedn or macroscopic

equations describing the global behavior of the medium.

For porous media where macroscopic pore structure properties are constant or

known functions, the macroscopic conservation equations describing various trans-

port phenomena are the classical equations of mathematical physics, and therefore

have been studied extensively. For media where macroscopic pore structure proper-

ties are random space functions, stochastic approaches are employed to solve them.

One of the most widely used stochastic approaches is Monte Carlo simulation. The

partial differential equations (at the macroscopic level) which describe the transport

phenomena of interest are cast in numerical form and the solutions of the macroscopic

variables are sought in the form of vectors at the nodes of a spatial grid. Values are

assigned to the coefficients of the equations (that represent the properties of the

porous medium, e.g, permeability) according to a chosen probability density func-

tion. Then the values of the macroscopic variables a¡e found by solving the problem

in a deterministic manner. The operation is repeated many times which results in a

set of solutions of the vectors of the macroscopic variables. In this manner, the solu-

tion is presented in the form of realizations in which any moment of interest can be
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found. For relatively accurate results, finer grids are required for high variances of the

input coefficients and this requires prohibitively large computer power. Also, the use-

fulness of Monte Carlo simulations for a deeper insight into the flow phenomena and

for drawing general conclusions is limited by the very nature of the method. Other

important stochastic approaches include the small perturbation theory expansion and

the renormalization technique.

The volume averaging method is of interest to the present work; therefore, it is

discussed in detail. For reviews of the statistical averaging method and stochastic

approaches for solving macroscopic conservation equatìons, the reader is referred to

Beran (1968) and Dagan (1989). The details about the homogenization method are

given in Ene (1990).

3"2 Volume Avenaging Method

A porous medium consists of a solid matrix interspersed with a continuous void

space. Here, the solid matrix is called the solid phase. The void space may be filled

wiúh one or more fluid pha^ses (e.g., water, oil, air). The transport of various extensive

quantities inside a porous medium may take place within a particular phase, between

the solid phase and a fluid phase through the solid-fluid interface, and between two

fluid phases through the fluid-fluid interface.

As mentioned in the previous section, the volume averaging method for deriving

the macroscopic conservation equations from the microscopic conservation equations

consists of associating an REV to every point inside the porous medium and averaging

all the relevant transport variables and pore structure properties over it. The averaged

values are then assigned to the centroid of the REV which may fall inside either the

solid or the fluid phase.

Figure 3.1 illustrates a conceptual representation of a porous medium and an
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Fig. 3.1. -A conceptual representation of a pororü¡ medium showing various pha-ses, surfaces, an

REV, and microscopic and macroscopic coordinate systems.

REV. Only, a single component fluid phase is considered here. A general variable

is denoted bV ,þ. This variable may be a scalar or a component of a vector or of a

tensor. The phase of which ty' represents a property is denoted by a subscript on r/.

Three subscripts are used: c to denote a general phase, p to denote the fluid phase

and ø to denote the solid phase (i...,rþ,,, rþp *d tþ"). The interfacial area between

solid and fluid phases in the REV is denoted by A"p. The part of the REV surface

which constitutes the fluid-fluid interface between the fluid inside the REV a¡d the

fluid outside is denoted by Ap". The timeis denoted by ú. Both the vector (".g., o)

and tensor (".g., 
"r) 

notations are used. Throughout this monograph, the lower-case

letters i, j and,t, when used as subscripts, represent components of a vector or of

a tensor and the upper-case letters I, J and K, when used as subscripts, represent

52



a tube, a flow path or a section of the pore structure models (to be considered in

Chapters 4, 5 and 6) and have no vectorial or tensorial significance. The volume of

the REV is denoted bV V. It comprises the volume of the solid phase, Ç, and the

volume of the fluid phase, Vp. The porosity is denoted by / and for an REV is given

bv ó: vplvu.

As shown in Figure 3.1, x represents the position vector of the centroid of the

REV with respect to an inertial frame of reference. Inside the REV, r denotes the

position vector of a point with respect to the inertial frame of reference and z denotes

the position vector of the same point with respect to the centroid of the REV. The

following relation between r and x holds:

î:x+2. (3.1)

In the rest of this section, the criteria for selecting the REV size, the definition

of two types of averages and averaging rules are discussed. These concepts are then

applied in the following section for deriving the integral expressions for permeabilitg

Klinkenberg permeability and formation factor.

8.2.1 Selection of REV Size

As indicated a few times earlier in this chapter, the concept of an REV is the basis

of the continuum description of transport phenomena in porous media. The size of

an REV is related to a property representing the geometry of the void space. For an

averaging volume to qualify as an REV, its size should be such that the average of the

property over the volume is statistically meaningful, which in mathematical language

means that the averaged property at a point inside the porous medium domain is a

single valued function of the location of that point and time only and is independent

of the size of the REV. Conceptually, this can be explained with the help of Figure 3.2.

If, for example, at any instant, the porosity, ó, at a point is plotted as a function of
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Fig. 3.2. Porosity as function of size of the averaging volume.

the size of the averaging volume (represented by its characteristic dimension) then a

graph similar to the one illustrated in Figure 3.2 will result. When the size of the

averaging volume is very small, the porosity will be either I or zero depending on

whether the averaging volume lies in the void phase or in solid phase. As the size

of the averaging volume is increased, the porosity fluctuates between low and high

values. This is because the averaging volume contains large quantities of either the

solid or the void phase. As the size of the averaging volume is further increased, the

fluctuations decrease and eventually a region of sizes is obtained for which the porosity

remains constant, that is, is independent of the size of the averaging volume. Further

increase in the size of the averaging volume may result in deviations of porosity from

the constant value. This will be due to the bulk heterogeneities in the medium. If

I denotes the characteristic dimension of the averaging volume, then I has to satisfy

the following constraint for the averaging volume to qualify as an REV:

l-i"(l(l-.*,

.9

>ì
@o
o

Ê.
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where 16, is the microscopic characteristic length and /--. is the macroscopic charac-

teristic length of the porous medium. As illustrated in Figure 3.2, when the charac-

teristic dimension of the REV is of the order of l-¡o, large fluctuations of the porosity

are encountered over small changes in the size of the averaging volume and when

the characteristic dimension of the averaging volume is of the order l*^*, deviation

of the porosity from a constant value may be encountered. The above arguments for

the determination of the REV size are on the lines of the work by Whitaker (1969),

Hassanizadeh and Gray (1979a) and Bachmat and Bear (1986).

In the preceding developments, the size of the REV has been based on porosity

representing the geometry of the porous medium. If other properties appear in a given

macroscopic model for a transport problem (e.g., permeability), a common range of

REV size has to be found for all of them. If such a range cannot be determined, the

macroscopic model cannot be applied. In a particular transport problem, the range

of REV size should also be common to all the relevant state variables describing the

problem.

3.2.2 Macroscopic Values

Two types of averages or macroscopic values are defined within an REV:

(u) A volumetric phase average

(ú") 1*, Ð: + tu,,Þ,{r,t) ðv ,

which is evaluated over the entire REV, and

(b) a volumetric intrinsic phase average

(rþ,1" (x,t) - *, lr.rÞ,(r,t) dV ,,

(3.3)

(3.4)

which is evaluated over a single phase (here denoted by a) within the REV. The x

in the above definitions are the coordinates of the centroid of the REV to which the
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averaged values are assigned at time ú (Figure 3.1). From the definitions of the two

averages, it follows that the two are related as

(ú") (x, t) : $(x,t) (rþ")" (o, r) . (3.5)

At any point wiihin the REV, a microscopic quantity can be'expressed as (Gray,

1975; Hassanizadeh and Gray, 1979a)

tþ,(, - x * z) : (rþ,1" (x, ú) * ú.ço,z,t) , (3.6)

where ,lro(x,2, f ) is the deviation of 1þo at a point " (: x * z) within the REV

from its intrinsic phase average which is associated with the centroid x of the REV

(Figure 3.1). Because a point can belong to an infinite number of REVs, it is very

important to explicitly state the dependence of the deviation on x, which denotes the

centroid of the REV over which the average is calculated. The explicit dependence of

$ oo x and z in Equation (3.6) precisely does that. It states that the deviation of the

microscopic quantity 1þo at the point 
" 

(: o * z) is with respect to its intrinsic phase

average value calculated over the REV having centroid at x. By definition, both the

phase and intrinsic phase averages of this deviation are zero. In future, the reference

to the macroscopic coordinates and time inside the brackets will be omitted. If r/p

and ,þ'p denote two variables, the average of their product is defined as

(+o,tb)o : þþB)P (,þb)o + (,Þo{"p)u , (3.7)

which is a consequence of Equation (3.6).

The averages c4n, similarly, be defined with respect to a representative elementary

a.rea (abbreviated a^s REA). Bachmat and Bear (1986) showed that the volumetric

and the areal averages of a quantity at a point are identical and the areal average at

a point is independent of the orientation of the area and can be interchanged with

the volume average at that point.
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3.2.3 .&veraging R.ules

The averaging rules employed to derive the macroscopic conservation equations from

the microscopic conservation equations are given below:

(") When the macroscopic conservation equations are formed, one encounters an

average of a gradient, while it is the gradient of the average that is required. These

quantities are related by the spatial averaging theorem (Anderson and Jackson, 1967;

Marle, 1967; Slattery, 1967; Whitaker, 1967). Mathematically this theorem can be

written as

(3.8)

where n; represents the unit outward normal vector on the differential area, d,4..

The averaging theorem for the intrinsic phase average may be found by substituting

W) : * ('þò + i |^",gpn; dA,

Equation (3.5) into Equation (3.8):

(#)' : * ('þB)B * ä l^.,tþpn;d'A, W#,

(#) : ó*, (,þòp * + l^",gBn; ð,A.

(3.e)

If lhe porosity is constant, then the last term in Equation (3.9) vanishes. By manipu-

lating Equations (3.5) and (3.6) and using the averaging theorem of Equation (3.8),

Gray (1975) derived the following modified averaging theorem:

(3.10)

(b) The average of a time derivative is evaluated using the general transport theorem

in the form

(w)' :ry.%x - + I^",'þp("p);n¡ðA, (3'11)

where (."p), is the velocity of the surface Aop. The second and third terms on the

right-hand side vanish for constant porosity and stationary solid phase, respectively.
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3.S lntegnal Expnessions fon Macnoscopic Tb"ansport Fs'o-

penties

In this section, the volume averaging method outlined in the previous sections

is employed to derive integral expressions for permeability fqrmation factor and

Klinkenberg permeability of homogeneous porous media. This is achieved by averag-

ing the appropriate microscopic conservation equations and comparing the averaged

equations to the corresponding phenomenological laws.

3.3.L Integral Expression for Fermeability

For the purposes of this section, it is assumed that the fluid is incompressible and

Newtonian, and that all fluid properties (e.g., density, viscosity) and the porosity are

constants in both time and space. This condition is realized in many problems and

should not lead to misinterpretations. Also, it is assumed that the noslip condi-

tion applies (i.e., Klinkenberg effects are ignored). Only porous media completely

saturated with a single fl.uid are considered and the body force is assumed to be

gravitational.

The momentum conservation equations at a point inside the fluid phase of the

REV for incompressible and Newtonian microscopic flow in the microscopic Cartesian

coordinate system may be written as

(3.12)

where p is the fluid density, .rr* is the microscopic fluid velocity, p is the fluid viscosity,

p is the pressure, and ø; is the gravitational acceleration. Taking the intrinsic phase

average of this equation and applying Equations (3.6) through (3.11):
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Because all variables and properties (..g., ru, p, ¡t and p) relate to the fluid phase, the

subscript B on all of them has been dropped. The physical meanings of the various

terms are as follows: The first term is the unsteady term and has been proposed on

experimental grounds by some authors (see Bear (1972) for a review). Obviously this

term is zero if. the macroscopic flow is steady. The second terrn is the macroscopic

convection term and accounts for the spatial changes in the intrinsic phase average

velocity. If the problem under consideration is one-dimensional and incompressible,

this term is zero. The third term represents changes in average microscopic iner-

tia (i.e., hydrodynamic dispersion of the average velocity). This term is zero f.or a

uniform flow in a homogeneous porous medium. This term is often associated with

the Forchheimer coefficient (see Dullien and Azzam,1973); however this connection

is problematic because the derivative here is macroscopic, while the Forchheimer

effect is microscopic in nature. Further discussion of the Forchheimer effect is beyond

the scope of this study (for more discussion on Forchheimer effects, see Ruth and

Ma (1992) and the literature cited therein). The first three terms together represent

macroscopic inertial effects. The fourth term is the macroscopic viscous term or the

diffusion term. This term was suggested by Brinkman (1947) and is known as the

Brinkman term. For a fully developed one-dimensional macroscopic flow, this term is

zero. Here fully developed one-dimensional macroscopic flow means that the gradient

of the intrinsic phase average velocity is zero. This is true for a homogeneous porous

medium. The fifth term is the macroscopic pressure gradient term. The sixth and

seventh terms contain the 'hidden" information about the influence of the mic¡o'

structure of the porous medium on the fluid flow. As will be shown in Chapters 4

and 5, understanding these terms requires consideration of explicit models of the

porous medium. Finally, the eighth term is the gravity term. This term is zero for

one-dimensional horizontal macroscopic flows.

It is well known that the Darcy's law is invalid in the presence of inertial and
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Brinkman effects. Therefore, to derive ân expression for permeability, the terms re-

presenting these effects in Equation (3.13) must be ignored. If we assume the macros-

copic flow direction, fr : 1 to be horizontal, then the gravity can also be ignored. It

may be pointed out here that ignoring the gravity term does not limit the generality

of the final expression. This is because the gravity term can be combined with the

macroscopic pressure gradient term and to find the expression for permeabilit¡ the

resulting equation can then be compared to the Darcy's law with the gravity effects.

For the k : 1 direction, Equation (3.13) without macroscopic inertial, Brinkman and

gravity effects then becomes:

(3.14)

To visualize a typical experiment conducted for physically measuring permeabi-

lity, consider a parallelepiped-shaped sample of a homogeneous porous medium with

linear dimensions .L¿ and face areas ,4.¡. Let the faces of the sample normal to the

k : 2,,3 directions be sealed and let p¡ and p¡ denote the pressures imposed on

the upstream and downstream faces (these faces are normal to the macroscopic flow

direction, fr : 1) of the sample, respectively, resulting in a bulk fluid flow rate, Qt, io

the fr : 1 direction. If the macroscopic flow direction Ë : 1 coincides with horizontal

direction, then according to the Darcy's law, the permeability &1 of the sample in the

macroscopic flow direction É = 1 is:

r _h(pn-pt)
ßr - Qtph

(3.1 5)

An expressìon for permeability can be found by comparing Equation (3.14) to

Equation (3.15). However, it may be mentioned here that Equation (3.14) is the

differential form of the macroscopic momentum balance equation for å : 1 direc-

tion associated with the centroid of the REV, whereas Equation (3.15) is valid for a

sample used in the physical experiment for the measurement of permeability. If the

W - h I^", a-fu 'odA + + l^",p n1d'A: o '

60



characteristic dimension of the sample is very large as compared to the characteristic

dimension of the REV, then the end efects in the sample can be ignored and the

sample (which is assumed to be homogeneous) and the REV can be assumed to be

equivalent. A comparison of Equations (3.14) and (3.15) still requires a procedure to

relate ô (p)P f 0q in Equation (3.14) to (po- pòlL, in Equation (3.15). The pressure

in Equation (3.1a) is an intrinsic phase average pressure, whereas the pressures in

Equation (3.15) are the areal average pressures, or if the pressure measurements are

made at points outside of the sample, the microscopic pressures outside of the sample.

The intrinsic phase average pressure must therefore be expressed in terms of these

experimental pressures. This is accomplished in the following developments.

By definition, the intrinsic phase average of the derivative of pressure within the

REV is:

(H)':t*1,,#,*
By Gaussts divergence theorem

t Pou= [ pn¡d,A,,
JVp Ork JAp

lr,Hdv : lo"ront' aA* to*pne d'A '

ft ølo : + Iou.onr d¡.

(3.16)

whe¡e surface area Ap is equal to the sum of area.s Aop and AB. (see Figure 3.1). The

integral can therefore be decomposed into two integrals as

(3.17)

(3.18)

Combining Equations (3.16), (3.18) and the averaging theorem for constant porosity

(Equation (3.9)):

(3.1e)

This equation allows the gradient of the intrinsic phase average pressure to be ex-

pressed in terms of an integral of the microscopic pressure over the fluid-fluid interface
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Ao(ru)

Fig. 3.3. Conceptual determination of areosity, €r(x), of an REV.

of the REV. If Equation (3.19) for fr : 1 direction is applied to Equation (3.14), the

resulting equation becomes

- r lo"off ", dA + Io"u o nl d'A * Io* pn1 dA : 0 .

€¡(x) : * Ir,#lln-,,r,7(r) lcos{d'(")}l aa] a'* ,

(3.20)

To evaluate the last term in Equation (3.20), a new parameter is defined. It is

termed areosity, denoted bV €¡(x) and defined as

(3.21)

The various terms in the definition of areosity can be explained with help of Figure 3.3.

This figure shows an arbitrary shaped REV and the microscopic and macroscopic

coordinate systems. .[r is the characteristic length of the REV in the È direction and

.4¡ is the bulk area of the REV normal to the È direction. A¡ is a function of r¡, where

r¡ is a directed distance local to the REV as shown in Figure 3.3. 7 is a function

which is zero in the solid phase and 1 in the fluid phase. d'is the angle between the

direction of the microscopic flow and the Ë direction at a point inside the fluid phase.



The inner integral in Equation (3.21) gives the effective area open to flow in the &

direction in a slice of the REV normal to the Ë direction. This effective open area of

the slice is non-dimensionalized by the bulk area, Ap,,of. the slice. The outer integral

sums up these non-dimensionalized effective open areas for all the slices normal to

the Ë direction. By dividing the resulting summed up areas by 'Lp, â.n average non-

dimensionalized effective area open to flow in the Ë direction, termed areosity here,

is obtained. Therefore, areosity is a macroscopic property, defined for an REV and

assigned to its centroid, x. It is a directional property and is defined for all the points

inside the porous medium domain for which an REV is defined.

For further developments we assume the effective area open to flow in the macros-

copic flow direction k : 1 to be constant along the length of the sample. Then the

expression for areosity of the sample in the lc : I direction simplifies to

er: +; ln,t|) lcos{d'(r)}l dA. (3.22)

With the introduction of the concept of areosity, the third integral in Equa-

tion (3.20) may be evaluated for the porous medium sample to give

lo*on1 d'A: (Pt - Pn) $ h ' (3.23)

To show that the right-hand side in Equation (3.23) is the correct representation of

the integral on the left-hand side, consider the idealized porous medium sample of

Figure 3.4. This porous medium consists of a single slanted circular cylindrical tube.

If we ignore the end effects, then for the laminar flow situation, the microscopic flow

inside the tube is essentially in the direction of the axis of the tube. Therefore, by

definition, the areosity of the sample is ,4o cos 0'lAt, where ,4. is the open area, d'is

the angle between the tube axis and the macroscopic flow direction Ë : 1 and .41 is

the bulk area as shown in the figure. The areal porosity of the sample is A"f A1 and

the porosity is given by:
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Fig. 3.4. An idealized porous medium employed to illustrate the difference between areosity, areal

porosity and porosity.

I
A1

I

, Ao cosî' L, Ao
Y- AtLt - Ar' (3.24)

where .L" is the length of the tube. Therefore, the areal porosity and porosity are

the same for this sample. However, the areosity is different from areal porosity and

therefore from porosity. If porosity is used in Equation (3.23), it would mean that the

microscopic pressure, for example on the upstream face of the sample, is acting on

area Ao. However, Figure 3.4 clearly demonstrates that the pressure is acting on the

effective area given by A" cos 0' and this is the area taken into account when areosity

is calculated.

Application of Equation (3.23) to Equation (3.20) leads to

-r Io,rH ",d.4+ lo"urntd,A-(p, -p¿)€rÁr :0. (3.25)

Solving for (p¿ - nt) A, and substituting into Equation (3.15) gives the expression for

permeability:

(3.26)

The first term in Equation (3.26) will be referred to as the uviscous termn and denoted

by To, the second term will be referred to as the upressure term' and denoted by

Ao cos 0' =<q0-,
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Tp, and the complete equation will be referred to as the "integral expression for

permeability".

At this point, the developments of the present section may be put in the pers-

pective of the literature review presented in Section 2.2. Eqration (3.13) is the dif-

ferential form of the macroscopic momentum balance equationd for flow of a single

phase fluid with constant properties through a rigid homogeneous porous medium

having no interaction (chemical or other) with the fluid phase. A general form of

this equation for a multi-phase fluid system was derived by Hassanizadeh and Gray

(1979b) which explicitly considered exchange of momentum between different phases

through phase changes and mechanical interactions. Du Plessis and Masliyah (1988,

1991) and Du Plessis (1991) derived the volumetric phase averaged macroscopic mo-

mentum balance equations for a single fluid phase system. For Stokes flow of a single

fluid in porous media, Whitaker (19S6a) derived the following intrinsic phase averaged

macroscopic momentum balance equations:

ô (p)P
(3.27)

ôr;

In this derivation, t porosity was not assumed constant (in the present deriva-

tion, the porosity is assumed constant). In the absence of macroscopic inertial and

Brinkman effects, Equation (3.27) can be derived from Equation (3.13) with the help

of decomposition given by Equation (3.6) (Whitaker, 1986a).

Representations of the terms like the third, sixth and seventh terms of Equa-

tion (3.13), in terms of the average quantitìes (.0)P *d (p)P, which are the depen-

dent variables, are required for the solution of the macroscopic balance equations.

This is usually called the closure problem. The constitutive theories for such terms

presented by various authors have already been summarized in Section 2.2. Gray

and O'Neill (1976) and Hassanizadeh and Gray (1980) showed that Darcy's law can

be recovered by neglecting the inertial and macroscopic viscous effects (Brinkman

I^",# n¡ ð'A* ä I^", þn; ð'A- Pa;: o '
p

Vp

he
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effects) in the macroscopic momentum balance equations. However, both of these

studies did not associate any explicit dependence of the permeability in the Darcy's

law to the micro-pore geometry. Whitaker (1986a) developed a scheme to transform

the closure problem for integral terms of Equation (3.27) into a boundary value prob-

lem for the deviation quantities ri; and f. This scheme did not require any cons-

titutive assumptions. These developments provided for direct determination of the

permeability tensor in the Darcy's law. However, explicit relation of permeability

to the micro-pore geometry is not possible with this method. Also, the final solu-

tion depends on finding simpler representative pore structure cells. In the present

study also, Darcy's law is recovered by neglecting the inertial and Brinkman effects.

By introducing the concept of areosity, the permeability determined experimentally

on a porous medium sample is related to various terms in the macroscopic balance

equation valid for Darcy flow. Unlike the previous works (O'Neill and Gray, 1976;

Hassanizadeh and Gray, 1980; Whitaker; 1986a), explicit interpretations will be given

to the terms in this expression with the help of idealized porous media. Also, per-

meability will be explicitly related to the microscopic pore structure parameters of

commonly used pore structure models. This will be accomplished in Chapters 4 and 5.

S.3.2 nntegral Expression for Formation Factor

In this section, an integral expression is derived for the formation factor of a homo-

geneous porous medium saturated with a single electrically conductive fluid. This is

accomplished by volume averaging the differential form of Ohm's law over an REV

and comparing the averaged equation to Ohm's law for macroscopic current flow

through a porous medium sample. The porous medium is assumed to be homoge-

neous and completely saturated with the fluid. The solid phase is assumed to be rigid

and nonconductive. The electrical conduction inside the fluid phase under an electric

potential gradient is assumed to be ohmic only, that is, surface-flow phenomena in
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electric double-layers are ignored.

Consider a parallelepiped-shaped porous medium sample with electric potentials

en and e¡ imposed on the upstream and downstream faces (normal to the É : I

direction), respectively. If the faces normal to the k : 2,3 directions are insulated,

then the resulting macroscopic current inside the sample, in the k : I direction, is

given by Ohm's law:

where C1 is the macroscopic current in the le : I direction and R- is the resistivity of

the entire sample saturated with the conductive fluid. The formation factor, F, was

defined by Archie (19a2) as

t,:*ffo"

,-Ro'- R*'

n A1 eh-el
,1 :-'-QR- Lt

tr: *"r,

nr: -*.Or;

- 10et. - _vt - R* or;
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(3.28)

(3.30)

(3.2e)

where À- ir the resistivity of the electrically conductive fluid saturating the porous

medium. Therefore, the formation factor of the sample is:

At a point inside the electrically conductive fluid phase, the differential form of

Ohm's law is

(3.31)

where 4 is the current density and ,E; is the electric field intensity. The electric field

intensity can be expressed in terms of the gradient of a scala¡ function e called the

electric potential:

The minus sign is introduced by convention so that the electric field intensity points

in the direction of decreasing potential. This leads to

(3.32)

(3.33)



Taking the intrinsic phase average of Equation (3.33):

(r,)B:- (!g\'. (3.34)
\R- ar, ¡

With the application of Equation (3.9), Equation (3.34) for constant Æ- and / be-

comes

+ I,r¡d.v- **ur. #ln"u"n;ð,A:0.
For È - 1 direction, Equation (3.35) reduces to

+ L,r,dv. **n'. &ln"u"n1dA:'.
(3.36)

In order to identify an expression for the formation factor, Equation (3.36) must

be compared to Equation (3.30). It may be mentioned here that Equation (3.36) is

the macroscopic charge balance equation for the lc = L direction associated with the

centroid of the REV, whereas Equation (3.30) is valid for the laboratory sample. To

make the comparison, 0(e)P lôq in Equation (3.36) must be related to (e¡ - "t) I 
Lt

in Equation (3.30). This is accomplished as follows: Based on an analogy with

Equation (3.19), the following relation can be written:

(3.35)

(3.37)* n' : + lo*"nt d'A.

With the use of Equation (3.37), Equation (3.36) becomes

entd,A * *, l^,ren1ð,A:0.lrut'dY + #, l^," (3.38)

The concept of areositg introduced in the previous section, facilitates the evaluation

of the second term in Equation (3.38) as follows:

tn*"n1 d'A: (et - "o) €, A, ' (3.3e)

Equation (3.39) is analogous to Equation (3.23). Substitution of Equation (3.39) into

Equation (3.38) leads to

lrutrdv + {rc, - "o) €r Ar * *, I^"ren1dl 
: 0 . (3.40)



Solving for (e¡ - eh) and substituting in Equation (3.30):

(3.4i)

Equation (3.41) relates the formation factor to the micro-structure of the solid-fluid

interface through two integral terms. The first term involves a volume integral of

the component of the current density in the macroscopic flow direction over the

fluid phase; it will be called the "current termn and denoted by Q. The second

term involves a surface integral of the potential over the component of the solid-fluid

interface in the macroscopic flow direction; it will be called the upotential termn and

denoted by T"; the complete equation will be referred to as the uintegral expression

for formation factor'.

3.3.3 Integral Expression for Klinkenberg Fermeability

For the purposes of this section, the fluid is assumed to be compressible and Newto.

nian with constant viscosity. The momentum conservation equations for such a fluid

flow in a Cartesian coordinate system with gravity as the only body force are:

ð(p.r) -ô(pw¡w;) ,, 0'.; ô2w, 2 ^ ô'rt , 0p

T+Ë - p-:--a,frry- uffi+56;irffi+ñ- pa; - 0,(3.12)

where 6¿; is the Kronecker delta. For uniform porosity, the intrinsic phase average of

Bquation (3.42) is:

W#. *,þ.¡.,)P * ä l^.,pwiu;n¡ ð,A

-r'rr\"ìri - #;& !n"o,,n¡ d,A- 
# I^,,ff,0 ae

-rM - #r*, lo"u.,n¡ dA - fr I^", uw 
n, oo

.2 ... (0'(rr)o * l3 t w*nt d.A_, 
L ¡ ô-t .- L4l*|uö;i (.ffi + 

vo or, ,o"u r 
uo Jo"ut "o' /

': n+o luu',dv + driÃ lo"u"ntd' '

.W * à I^,, pn; ð,A- (p)P @i: o . (3.43)



A detaileddiscussion of various termsin the above equation has already been presented

in Section 3.3.1. After ignoring the macroscopic inertial, Brinkman and gravity effects,

the resulting equation for the k : I direction becomes

-h I^",# ", dA - h l^",ff ', ae

2p t Ôw¡" 'n*W*äl^,rpn1 d,A-0. (8.44)+rih lo,ufi n'd'

The 6th, 9th and 12th terms in Equation (3.a3) involve integrals of the velocity over

the solid-fluid interface. For the present situation, these integrals are non-zero. How-

ever, for homogeneous porous media, these terms must vanish because they involve

macroscopic gradients. Rest of the developments of this section are similar to those

for the derivation of the integral expression for permeability outlined in Section 3.3.1.

Here, only the important steps are presented.

Based on analogies with Equations (3.19) and (3.23), the term involving the

intrinsic phase average pressure in Equation (3.aa) can be expressed as

The Klinkenberg permeability, lc¡ of a porous medium sample, in the È - I

direction is defined as

* <ùu : + lo*o nldl: 
+@t - 

pn) (, A, .

1 _ A4pn-pt)
ka Qttth '

(3.45)

(3.46)

where Q, ir the macroscopic gas flow rate, with finite slip at the walls, calculated at

the mean pressure, P*: (pu + pt)12. Application of Equations (3.44) and (3.a5) to

Equation (3.46) yields

11t0w1 l¡Ôw;I
h,:

-# i^",H n1d'A.#, Io"u'ntð'A' (s'42)



The first three terms together will be called the uslip viscous term' and denoted by

7"; the last term will be called the "slip pressure term' and will be denoted by -[; and

the complete equation will be referred to as the "integral expression for Klinkenberg

permeability". The relationship of the Klinkenberg coefficient, ó, to the Klinkenberg

permeability and permeability is (Klinkenberg, 1941):

(3.48)

3.4 Sunnmany

In this chapter, an introduction to the continuum description of transport pheno.

mena in porous media has been presented. The volume averaging method, which

has been used for achieving the transition from the microscopic to the macroscopic

level, has been discussed in detail. The topics covered in this discussion include

the criteria for selection of REV size, definition of the two type of averages and the

averaging rules. All of these developments have been reproduced from the existing

Iiterature.

By averaging the appropriate microscopic conservation equations and comparing

the averaged equations to the corresponding phenomenological laws, explicit integral

expressions have been derived for the permeability, formation factor and Klinkenberg

permeability of homogeneous porous media. The integrals in these expressions contain

the information about the influence of the pore structure on the flow (fluid or electric),

which is manifested at the macroscopic level in these properties.

To derive the integral expressions, a property of the pore structure, termed

uareosityn in the present study, has been introduced. The areosity in a direction

denotes the average of the ratios of the effective cross-sectional areas open to flow

and the corresponding bulk areas along that direction, over an REV. Because the

effective areas depend on the local microscopic flow direction, the areosity is different

7I



from the areal porosity and therefore from the porosity. The integral expressions are

only valid when the effective area open to flow is constant along the macroscopic flow

direction. The areosity is further discussed in Chapter 4.

The derivation of the integral expression for permeability (and consequently the

derivation of the integral expression for Klinkenberg permeability) has been presented

in the perspective of the previously reported literature. The integral expression for

formation factor is an entirely new contribution. These integral expressions form the

basis of the present research. Unlike the previous works (O'Neill and Gray, 1976;

Hassanizadeh and Gray, 1980; Whitaker, 1986a), explicit interpretation is given to

different terms in these expressions in the following chapters. Their verification and

detailed interpretation is carried out in Chapter 4. In Chapter 5, the expressions are

used to derive explicit relations between the macroscopic properties and the statistical

parameters characterizing the void space of parallel capillary, serial capillary and

three-dimensional cubic network models of porous media. Based on the relations

developed in Chapter 5, a methodology for modeling the pore structure of real porous

media samples is outlined.
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In this chapter, idealized porous media are employed to interpret the terms in

the integral expressions for permeability and formation factor. This work results in

some useful concepts and relations. A better understanding of the transport property

of porous media known as tortuosity is provided. Section 4.1 briefly introduces the

idealized porous media used in this chapter. In Section 4.2, these media are employed

to demonstrate the validity of the integral expressions for permeability and formation

factor (Equations (3.26) and (3.a1)) and to understand the physical meanings of the

various integral terms. A detailed and clear understanding of tortuosity is given in

Section 4.3. In Section 4.4, an exact relation between formation factor and tortuosity

is presented. The lack of equivalence between hydraulic and electric tortuosities for

general porous media is discussed in Section 4.5. Finally, areosity, the property of

porous media introduced in Chapter 3, is discussed further in Section 4.6.

4"L Tdealízed Fonous Medía and R{JCes

The integral expressions for permeability, formation factor and Klinkenberg per-

meability (Equations (3.26), (3.41), (3.47)) are valid for any porous medium under

the stated assumptions. However, demonstration of their validity for real porous

media is very difficult. Their validity may instead be confirmed, in a simple manner,

by applying network theory to idealized porous media. Such an exercise also provides
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insight into the physical meanings of the various terms. The idealized porous media

are simple enough to be amenable to mathematical analyses, yet represent some im-

portant features of real porous media, and therefore, are invaluable tools for gaining

a fundamental understanding of the transport phenomena in porous media. A review

of such porous media has already been presented in Chapter 2. -

The porous media considered in this study consist of circular cylindrical tubes

with constant cross-sectional area along their length. The point where two or more

tubes meet is called a junction. A junction is assumed to possess no volume and ofer

no resistance to the fluid and current flows. Instead of considering an entire REV, a

representative unit cell (RUC) is used. A full scale model of a porous medium may

be generated by repeating the RUC in all directions. Du Plessis and Masliyah (1988)

also employed the concept of RUC in their study.

In the present study, the determination of the macroscopic transport properties

of idealized porous media by direct inversion of junction conservation equations is

termed as network theory. The basic procedure behind network theory is presented

in Appendix B.

4"2 Valídíty and lnterpretation of lntegral Ðxpressíons

In this section, a detailed study of the integral expressions for permeability and

formation factor is carried out. Each of the expressions is considered separately.

4.2.'1" Interpretation of the Integral Expression for Fermeability

For studying the integral expression for permeability, Hagen-Poiseuille flow is assumed

inside the tubes. Inertial effects are ignored and only creeping flows are considered.

The RUC illustrated in Figure 4.1 (RUC 1) is studied first. It consists of three tubes

(1, 2 and 3) and two junctions. All the three tubes are of the same diameter, 6, and
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Fig. 4.1. RUC 1 showing type'a tortuosity.

therefore the assumption of constant effective area open to flow in the macroscopic

flow direction, required for the application of the integral expressions, is satisfied for

this RUC. The viscous and pressure terms for this RUC simplify to

r': &ff's'* 'fe 
sg) (4.1)

and

',:#hsz, (4.2)

where fu: WlQr is the non-dimensionalizedflow rate in the lth tube, and ^9r, ,92

and ,Ss are the tube lengths. Here q¡ is the volumetric flow rate in the /th tube and

8r is the bulk flow rate in the macroscopic flow direction, k : L. For this RUC,

h : fz: fs:1, and therefore

*,:#(s'+'ez+ss) '

If network theory (Appendix B) is applied to this RUC, then pressures pt and p¿ are

related by:

(4.3)



R.UC 2

o*oo1 
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f: : ;; f - - - - 
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Outflow

Inflow

where g¡ represents the conductance (in the Hagen-Poiseuille equation; Appendix B)

of the .l'th tube. For this RUC, Qt = 8z: 8s: Q1, and therefore the permeability as

given by Darcy's law (Equation (3.15)) is:

l@-Lr@l

*,: &(sr *'ez + 's'¡ '

which is identical to Equation (4.3), thus confirming the validity of the integral ex-

pression for permeability for RUC 1.

The RUC illustrated in Figure 4.2 (RUC 2) is studied next. This RUC is funda-

mentally different from RUC 1 in that it offers an alternate path to the flowing fluid at

each junction, through the vertical tube (Tube 3), and therefore is more representative

of natural porous media. It consists of five tubes and two junctions. The diameters

of Tubes 1 and 5 are denoted by óo, Tubes 2 and 4 by 66 and Tube 3 by 4. For this

arrangement of tubes the cell satisfies the assumption of constant effective area open

to flow in the macroscopic flow direction required for the application of the integral

Fig. 4.2. RUC 2 showing type'b tortuosity.

8t 8z Qs
Pr=Ph 9t 9z 9z

(4.4)

(4.5)
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expression for permeability. The tube lengths are denoted by St, S¿, Ss, ,Sa, and ,9s.

The viscous and pressure terms for the RUC simplify to

T., : ,32= ( f' s, lfu st 
+ /, s, I /. s4 \ (4.6)"" - €, L, \---L T 6i )

and

32 f"s" ',63 - 6?ltn: ffiT 62 '
(4.7)

where the absolute value sign arises from the fact that when ó6 ( óo, the fluid flow in

Tube 3 is in negative (downward) direction a¡d vice versa. Hence the integral in Ç

ffÆ
ph

4
pl

+
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Fig. 4.4. REV A having the same external dimensions and porosity as RUC 1, with a eingle tube

of length ,Sr * ^9s.

is always positive (no signs are associated with the /¡'s). The integral expression for

permeability for the RUC becomes

| 32 lfrsê:-l-

î1 €rlt \
, frsr*faSa, .fsSs lói-ó:l\----T- 6?-T-)r*/sSs (4.8)

lq €, Lt 6?

An identical expression results when network theory is applied to the RUC, thus

confirming the validity of integral expression for permeability for RUC 2.

For large networks of tubes, it is cumbersome to validate the expression in the

above manner. For such networks, the flow rates in the tubes can be calculated with

the help of network theory and the viscous and pressure terms can be evaluated.

With the viscous and pressure terms known, the permeability of the network can

be calculated (1/k1 - T, t Tr). This permeability can then be compa.red to the

permeability found by the direct application of network theory. Figure 4.3 shows

such results for a three-dimensional RUC (inscribed in the figure). The dia.meters

of the tubes of the RUC in the macroscopic flow direction are éo or ó6 a¡d those of

cross flow tubes (tubes in directions normal to the macroscopic flow direction) are
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Fig. 4.5. REV B having the same external dimensions and porosity as RUC 2, with two identical

tubes.

selected randomly. The diameters of cross flow tubes and óo are held constant whereas

0 ( ó6 ( óo. The permeabilities have been scaled by k, which is the permeability of

the RUC when all tubes a¡e of the same diameter, óo.

The preceding results throw some light on the physical meanings of the viscous and

pressure terms. Equations (a.1) and (4.2) for RUC 1, and Equations (4.6) and (a.7)

for RUC 2, show that the viscous term accounts for the fluid flow in the macroscopic

flow direction and the pressure term accounts for the flow in directions normal to the

macroscopic flow direction. If we compare RUC 1 to RUC A (illustrated in Figure 4.4),

which has the same external dimensions and porosity as RUC 1 but consists of a single

straight tube of length .9r * Ss, then the decrease in permeability of RUC I (compared

to RUC A) due to the decrease in the open cross-sectional area is taken into account

by the viscous term, whereas the decrease in the permeability due to the increase in

the effective length is taken into account by the pressure term. These observations are

equally true when RUC 2 is compared to RUC B (illustrated in Figure 4.5), which has
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the same external dimensions a¡d porosity as RUC 2 but consists of two straight tubes

with identical diameters. However, the increase in the effective length in the case of

RUC I can be calculated from geometric considerations, but in the case of RUC 2'

the increase in the efective length will depend on many factors other than physically

measurable lengths. This observation is directly r€poßible for ou¡ inability to find

an explicit expression for the macroscopic transport property of porous media known

as tortuosity. This point is further discussed later in the present chapter.

For all but the limiting cases (limiting cases a¡e when adjacent tubes in the k = I

direction, that meet at a junction, have the same diameters), it may be observed f¡om

0.80.2
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.

Figures 4.6 through 4.8 that the diameters of the interconnecting tubes influence the

permeabilities. In the limiting c¿ses there is no cross flow; hence the diameters of

the interconnecting tubes cannot have any influence. These figures also ehow the

influence of the ratio of tube diameters on the inverse permeabilities and the terms in

the integral expression for permeability. Tbe effect of both the di"."'eter of the inter-

connecting tube and the ratio of the tube areas is obvious and drarnatic. In particular,

it is clear from these figures that the magnitude of the pressure term is proportional to

the rrariation of the cross-sectional areas of the tubes in the rnacroscoPic flow direction

even though it represents flow in directions normal to the macroscopic flow direction.

0
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It is of interest to observe that, for 6l > 0.7 ó1, the cross flo\il term (pressure term) is

essentially zero. This implies that the magnitude of the pressure term is very small

as compared to that of the viscous term when a narrow distribution of the diameters

of the tubes in the macroscopic flow direction exists.

4.2"2 lnterpretation of the Integral Expression for Formatíon Fhctor

For studying the integral expression for formation factor, the cu¡rent flow inside a

tube saturated with an electrically conductive fluid is assumed to be governed by

Ohm's law. The solid matrix is assumed to be nonconductive and the surface flow

phenomena in electric doublelayers are ignored.

'bmL$

0
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The validity and interpretation of this expression can be carried out in a manner

similar to that for the integral expression for permeability. For RUC 1, the current

and potential terms simplify to

If network theory is applied to this RUC, then the potentials e¡ and et ate related by

(4.e)

ryt_le - fís,, (4.10)
&Lt

where fi: qlQ is the non-dimensionalized current in the /th tube. Here c¡ is the

current in the .Ith tube and Cl is the bulk current in the macroscopic flow direction

lc - l. For this RUC, fi : fi - l8:1 and therefore

r" - ¿h(/í s, * ,rå ss),

o : #(s, +,92 + ss).

C1 C2 C3
C¡:LAv' - vn gî gt g3'

, : #(s, +,92 *,9¡) ,

,":#(/f s, + lis,+ üsu+/;s,),

/f S' 16', - 6:l

3-
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(4.11)

(4.r2)

(4.13)

(4.15)

(4.14)

where gi is the electric conductance of the .Ith tube saturated with an electrically

conductive fluid. Because cL = c2: ", 
: C1, the formation factor given by Equa-

tion (3.30) becomes

which is identical to the one given by Equation (4.11), thus confirming the validity

of the integral expression for formation factor for RUC 1.

The current and potential terms for RUC 2 simplify to

ry1 _le - &Lt



The reasons for the absolute sign a¡e the same as those for the pressure term in

Equation (4.7).The formation factor is given by

o : #(/f s, + rí sz + fi sa + /í su + fi s"lt? :d21, . (4.16)

An identical expression results for the formation factor if network theory is used,

thereby confirming the validity of the integral expression for formation fartor for

RUC 2.

The validity of the expression for a three-dimensional network is demonstrated

with the help of Figure 4.9. This figure compares the formation factors of the network

(the same as in Figure 4.3) predicted by the integral expression for formation factor

and network theory. The formation factors have been scaled by F, which is the

formation factor of the network when all the tubes are of the same diameter, ó". The

results for the three RUC's employed in this study confirm the general validity of the

integral expression for formation factor.

The pbysical meanings of the current and potential terms can now be discussed in

the light of the preceding results. According to Equations (a.9) and (a.10) for RUC 1,

the current term accounts for the current flow in the macroscopic flow direction

whereas the potential term accounts for the current flow in the directions normal

to the macroscopic flow direction. If we compare RUC 1 to RUC A (Figure 4.4), then

for ^9i - Sz : Sz : Ltl2, the formation factor of RUC I is 2.25 times the formation

factor of RUC A. The cross-sectional area of RUC 1 open to flow is 1/1.5 times that

of RUC A and the effective length of RUC 1 is 1.5 times that of RUC A. Therefore,

for the same porosit¡ the formation factor of RUC 1 increases by 1.5 times due to

the decrease in the open cross-sectional area and by 1.5 times due to the increase in

the effective flow length. The increase in the formation factor due to the decrease

in the open cross-sectional area is taken into account by the current term whereas

the increase due to the increase in the effective length is taken into account by the
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potential term.

In the case of RUC 2 also, the current term (Equation (4.14)) represents the

curreut flow in the macroscopic flow direction whereas the potential term (Equa-

tion (4.15)) represents the cunent flow in the directions normal to the macroscopic

flow direction. The increase in formation factor of RUC 2 with respect to RUC B

(Figure 4.5) due to the decrease in the open cross-sectional a¡ea is taken into account

by the current term a¡d the increase due to the increase in the efective length is

taken into account by the potential term. However, in this case the increase in the

ffi ê¡

+
€¡
+
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effective length will depend on many factors other than the physically measu¡able

lengths. This observation is similar to the one for fluid flow and is further discussed

later in the present chapter.

As in the case of permeabiliiy, the conductances of the interconnecting tubes

(tubes which are normal to the macroscopic flow direction) also-have a considerable

effect on the magnitudes of the formation factor, current term and potential term

when the conductances of the adjacent tubes at the junctions (in the macroscopic

flow direction) vary significantly.

4.2.3 Validity of Integral Expressions for ,A.nisotropic Media

Figure 4.3 demonstrates that the integral expression for permeability predicts correct

permeability even when the areosity in the other principal directions is different. For

the expression to predict correct permeability, only the efective area open to flow in

the macroscopic flow direction must remain constant. Therefore, the expression is also

valid for anisotropic porous media. This point is further illustrated by Figures 4.10

and 4.11. These figures show correlations between the permeabilities calculated by

the network theory (x-axis) and the ones predicted by the integral expression for

permeability for various tube sizes (y-axis). Each figure shows two cases: one for

constant effective area open to flow in the macroscopic flow direction, and the other

for variable effective area open to flow in the macroscopic flow direction. Further-

more, each case has three sub-cases for ó" (á" - 6o, 6": óu and 6": (6o+ 6ù12).

Here also, the permeabilities have been scaled by Ë". These figures show that the

expression predicts correct permeability provided the effective area open to flow in

the macroscopic flow direction is constant; the results a¡e insensitive to the values of

6", therefore confirming the ea¡lier statement about anisotropic porous media. The

validity of the integral expressions for formation factor and Klinkenberg permeability

for anisotropic porous media can be demonstrated similarly.
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4"3 Mícroscopíc Cross F'trow and T'ortr.eosity

In this section, the relation between tortuosity a¡d microscopic cross flow is dis-

cussed. As explained in Chapter 2, the tortuosity (hydraulic or electric) of a porous

medium is defined as the ratio of "effective average path", L", of. a fluid (or an elec-

tric) particle and the corresponding straight and shortest externa,l distance, .L1, along

the macroscopic flow direction:

,_L= h. G.r7)
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In some literature, tortuosity has been defined as the square of this ratio. This is

just a matter of definition a¡d the forms of the equations used to relate tortuosity

to other properties such as permeability and formation factor take into account the

proper power of this ratio.

Two interpretations of the effective average path are possible (Bear, 1972). When

tr" is calculated by averaging the actual lengths of the flow channels -not ta^king into

account the fact that at different times a fluid particle may travel through diff'erent

channels with varying speeds-the tortuosity is a simple ratio of geometric lengths.

This is the classical definition of tortuosity; in the present discussion it will be called

i8b ii 80 iiô¡
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utype-a" tortuosity and denoted by zo for fluid flow and rj for electric flow. In the

second case, if -L" is calculated by averaging the actual distance traveled by all fluid

(electric) particles passing through a particular cross section of a porous medium at

a particular instant, the tortuosity is then a kinematical property. It will be called

"type-b' tortuosity and denoted by 16 for fluid flow and r[ for electric flow. For real

porous media, the two tortuosities (type-a and type-b) are different, mainly due to

the availabitity of multiple flow (fluid or electric) paths. This fact becomes readily

evident from the following discussion.

4.S.L Tortuosity in Fluid Flow

The classical definition of tortuosity applies to RUC 1, that is,

^9r*.92*.9s,o _ 
Lt

With this substitution, Equation (a.3) for permeability reduces to

r32
E: *'"'

Equation (4.19) may also be expressed in terms of the flow area, Ag,

r62Aø: 
4

(4.18)

(4.1e)

(4.20)

to give

18n
E: ,r 4rn ' (4'21)

For RUC 2, if the expression for permeability as given by Equation (a.8) is com-

pared to Equation (4.21), then

(4.22)
8zr:6ru,

kt

tr: (
/r ,Sr +,fs Ss fzSz* feSa+ . ,f.,Sr lóí - ó:l\

" 6z 
--)

63

where
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The tortuositg now of type-b, is no longer a simple ratio of lengths but depends

on flow distributio" ("f¡), lengths of the tubes (^9¡), local cross-sectional areas of the

tubes (ó!), and variations in the cross-sectional areas of the tubes at the junctions

fl4 - 6?t t6Ð.

For RUC 1, the value ro ) L comes from the contribution of the pressure term

to permeability. The pressure term represents the microscopic cross flow (flow in

Tube 2 given by Equation (4.7)), and therefore microscopic cross flow is related to

the tortuosity for this RUC.

For RUC 2, the microscopic cross flow (flow in Tube 3) is also related to the

tortuosity. This can be explained wiih the help of Figure 4.6. In this figure, non-

dimensionalized permeability, viscous term and pressure term of RUC 2 (with ^91 
:

Sz: Sa:,9s : &f2: Ltl2;6" : ó.) are plotted as functions of (6616")2. When

ó¡ : 0, RUC 1 is recovered and therefore tortuosity is of type-a and is equal to 2.

When 6t: 6o, there is no cross flow (flow in Tube 3) and the pressure term is equal to

zero. For this value of á¡, the flow is equivalent to that in straight parallel tubes and

tortuosity (type-a) is equal to 1. For 0 < óu ( óo, the value of the tortuosity greater

than 1 is due to the contribution of the pressure term to the permeability. Therefore,

for RUC 2 also, microscopic cross flow is related to the tortuosity. However, there is

a difference between the two cross flows. In the case of RUC 1, the fluid can take

only one path, whereas, in the case of RUC 2, at each junction, the fluid can take

either of the two available paths when 0 ( óa ( 6o. In the latter case, this will

result in different flow rates in the two available paths. Therefore, in the presence

of microscopic cross flow of the nature present in RUC 2, the classical definition of

tortuosity as a simple ratio of lengths does not hold. In general, a real porous medium

will possess both types of tortuosities. The type-a tortuosity will result due to the

sinuousness of the individual flow channels and the type-b tortuosity will result due

to the variation of the conductivities of the flow cha¡nels (in the macroscopic flow
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direction) meeting at diferent junctions. More discussion of this point is given in

Ruth and Suman (1992). The converging-diverging nature of the flow channels in

real porous media will contribute to the type-a tortuosity whereas the type of pore

connectivity (the average number of pores meeting at a junction) will influence the

type-b tortuosity.

4.3.2 Tortuosity ín Electric Flow

The observations made in Section 4.3.1 are equally true for electric flow through

porous media. The classical definition applies to RUC 1, that is,

lo 
-

^9r + Sz +.9t
(4.24)

L1

With this substitution, Equation (4.11) for formation factor reduces to

p-lz
€r

(4.25)

For RUC 2, if the expression for the formation factor given by Equation (4.16) is

compared to Equation (4.25), then

r!. 1I' : Ë; rl: fiUrS, * fzSz * Í¿Se * fsSs * ,fgSa ry, . G.26)

The tortuosity, now of type-b, is no longer a simple ratio of lengths but depends on

current distribution (/f), lengths (,9¡) and the variations of the cross-sectional areas

of the tubes at the junctions (lói - 63'.16:).

For RUC 1, the value rl > I comes from the contribution of the potential term

to formation factor. The potential term represents the microscopic cross flow (flow in

Tube 2 given by Equation (a.10)), and therefore microscopic cross flow is related to

the tortuosity for this RUC. For RUC 2 also, the microscopic cross flow (current in

Tube 3) is related to the tortuosity. This can be explained with the help of Figure 4.12.

In this figure T"lF,, T.lF", Ff F" and tortuosity (Equation (4.26)) of RUC 2 (with

6.:6o and tube lengths equal to \12) are plotted as functions of. (6616,)2. Here F,
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is the formation factor of RUC 2 when 6t = 6o. When 6¡ : 0, RUC I is recovered

and the current term is twice the potential term. The tortuosity is of type'a and is

equal to 1.5. When 6b = 6o, there is no cross flow (flow in T[be 3) and the potential

term is equal to zero. For this value of ó6, the flow is equivalent to that in straight

parallel tubes a¡d tortuosity (type-a) is equal to 1. For 0 ( óa ( 6., the value of

the tortuosity is greater than 1 due to the contributiou of the potential term to the

formation factor. In the case of electric flow also, there is a difference between the

two cross flows. In RUC 1, the current can ta^ke only one path, whereas in RUC 2, at

each junction, the current can take either of the two ar¡ailable paths when 0 ( óa ( 6'.
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In the latter case, this will result in different magnitudes of the current in the two

paths. Therefore, in the presence of microscopic cross flow of the nature present in

RUC 2, the classical definition of tortuosity as a simple ratio of lengths is also not

valid for electric flow.

4"4 ReÏatíon Eletween Forrrratåon Factor and Tortuosity

According to Wyllie and Rose (1950) and Wyllie and Spangler (1952), the resis-

tance of a homogeneous porous medium saturated with a conductive fluid may be

considered equal to the resistance of the volume of the conductive fluid of length .["

and area /41, thus relating the tortuosity and formation factor as

rL: F2 ó2 , (4.27)

where r[ : (L"l-L1)2 represents their definition of the tortuosity. As mentioned in

Section 2.4.3, Equation (4.27) is only valid for straight parallel capillary models. This

inadequacy of Equation (4.27) is demonstrated below with the help of RUC 1:

The porosity of RUC 1 is

ó: #,(sr * sz *,9s) .

R.h 4R"

T = # (s' +'92 + '9t¡ ,

and the formation factor is

E-fi"-'-R-

(4.28)

The equation relating the resistance of the tubes to the resistance of RUC I is

4 h(& + ^92 + Ss)

r L162

formation factor

(4.2e)

(4.30)

are substituted into Equa-If these values of the porosity and

tion (4.27), one obtains

*,ssSz

h
Sr*

(4.31)"i: (



which is only true if Sz : 0, that is, the tube in RUC 1 is straight a¡d parallel.

For 52 ) 0, Equation (4.27) is invalid. This discrepancy has been observed by many

researchers including Spearing and Matthews (1991). It can easily be traced to the

value of the effective cross-sectional area open to flow in a porous medium assumed

by Wyllie and co-worke¡s while arriving at Equation (a.27). As will be shown later

in this chapter, {1 1.1 not ö At, as assumed by Wyllie and co-workers, represents the

efective cross-sectiona.l area open to flow. The quantity S A1 represents the average

of the open areas of the planes normal to the direction k: I, including those planes

that intersect Tube 2. As shown in Section 3.3.1, the quantity €t A, represents the

average of the effective open area of the planes normal to the direction le - I for which

the flow is in the È : I direction. Tube 2 will therefore be excluded by the latter

definition. The effective cross-sectional area will therefore depend on the direction of

the local microscopic flow (electric or fluid). The use of the effective area, as defined

in Equation (3.21), instead of the actual open area in relating the fo¡mation factor

to tortuosity has also been suggested by Cornell and Katz (1953).

The equation that has generally been accepted as the right one (Barrer, 1953)

relates the formation factor and tortuosity as

Tlor:@Ðl,, (4.32)

where rlo, : L"lLr. It can be seen from Figure 4.13 that even Equation (4.32) does

not predict correct results when microscopic cross of the nature present in RUC 2

exists. In this figure, the tortuosity of RUC 2 (with 6": 6o and tube lengths equal to

Lr12) as predicted by Equations (4.26) and (4.32) is plotted as a function of (6u16")'.

When 6¿ : 0, both the equations predict the correct value of tortuosity. For this

value of. 66, RUC 1 is recovered, and for RUC 1, Equations (4.26) and (4.32) are

equivalent (e.g., one can be derived from the other by using the equation $ : (1r',

which is true for RUC 1). For 0 < 6o ( óo, Equation (a.32) predicts higher values of
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the tortuosity than does Equation (a.26). The values predicted by Equation (4.32)

for this range of ó6 are incorrect, because in the timiting ca¡te when 6a = 6o, the flow

becomes equivalent to that in straight and parallel tubes with no cross flow (current

in Tube 3), and tortuosity must be equal to 1. Equation (4.26) correctly predicts

the tortuosity in this limiting case whereas Equation (4.32) does not. When 6b: 6o,

Equation (4.32) takes Tube 3 also into account whereas in reality there is no flow

through this tube for this value of ó¡. The latter fact is properly taken into account

by Equation (a"26). on these grounds, Equation (4.26) in the form ri : F€r is an

exact relation between the formation factor and tortuosity.
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4"6 Ðquívalellce of Electríc a¡ld ïlydraulíc T'ortuosïties

In the past, many attempts have been made to relate permeability and forma-

tion factor. Wyllie and Spangler (1952) proposed that the tortuosity factor in the

Carma¡-K oze\y equation (F,quation (2.5)) be determined from Equation (a.27). This

argument suggests that the hydraulic and electric tortuosities.are equivalent and also,

that permeability and formation fa¿tor can be related. The work on this topic recently

reported in the literature has been reviewed in Section 2.2.

As pointed out by Dullien (1979), the tortuosity factor in equations similar to
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the Carmen-Kozeny equation will, in general, depend on the form of the equation

itseif. For example, tortuosity will depend on whether hydraulic mean pore radius,

mean pore diameter or mean square diameter is used in Equation (2.5). Based on the

discussion about areosity in the previous sections, we a,ssume the following relation

between permeability and tortuosity:

T2
- 

- 

-+t

h - &n'¿2 
'n' (4.33)

Equation (4.33) is equivalent to the Carman-Kozeny equation but there are some

differences. Areosity has been used in place of porosity and the hydraulic tortuosity

has been defined as L"f L1 and not (L"llr)t a^s in the Carman-Kozeny equation.

Figure 4.14 itlustrates a comparison of the tortuosities predicted by Equations (a.26)

and (4.33) for RUC 2 (with 6":6o and all tube lengths equal to L1l2) as functions

of (6516")2. When 6¡ :0, both the tortuosities are equal to 1.5 and when 6o:6o

the tortuosities are equal to 1. For 0 ( óa ( áo, the values of the two tortuosities

are different. These results are to be expected. When 6a : 0, the cell equivalent

to RUC 1 is recovered and only tortuosity of type-a is present. When 6u : 6o, the

microscopic cross flow (electric or fluid) becomes zero and flow becomes equivalent to

that in straight and parallel tubes. In thislimiting case also, the tortuosityis of type-a.

For 0 ( áu ( óo, there is cross flow (electric and fluid in Tube 3) and tortuosity is

of type-b instead of type-a. It is obvious that, in the presence of microscopic cross

flow (electric or hydraulic) of the nature present in RUC 2, the previously assumed

equivalence between hydraulic and electric tortuosities (Wyllie and Rose, 1950; Wyllie

and Spangler, 1952) is not true. In real porous media, the equivalence is more doubtful

due to the presence of other factors. For example, unlike the electric flow, the fluid

flow depends on the shape of the channels, and not only on the total cross-sectional

area of the channels.
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4"6 F"\¡rther Consídenatio¡a of -åneosåty

As found in Chapter 3, areosity arises naturally in the expressions for permeability

and formation factor. This means that average of "directed open arean represented

by (t Ar, is more relevant in permeability and formation factor calculations than the

average open area represented bV d.41. Areosity is a well defined property and can be

readily calculated for the idealized porous media. Further discussion of this property

is presented in the remainder of this section.

For RUC 1, porosity and a¡eosity are related by:

ó:ro€t (4.34)

(4.35)

Although areosity at first appears to be the same as areal porosity, Equation (4.34)

implies that there is a subtle difference. Bachmat and Bear (1986) have shown that

porosity and areal porosity have the same value. Areal porosity is associated with the

open area; however, as shown in Section 3.3.1, areosity is associated not only with

the open area, but also with the local direction of flow, and is therefore affected by

the tortuosity. It follows that constant porosity does not necessarily imply constant

areosity, because tortuosity may vary in such a manner as to keep porosity constant

while areosity varies. If Equation (a.3a) is substituted into Equation (4.19), the result

is:

r32
-akr- ó6''"'

This equation is the classic expression for permeability of a capillaric model with

tortuosity (see Scheidegger, 1974). If RUC 2, illustrated in Figure 4.2 is considered,

then an expression analogous to Equation (a.35) cannot be derived. However, it is of

interest to consider the case when 6o : 6o for this RUC. For this value of 65 there is

no cross flow and tortuosity is unity. Equation (4.19) then reduces to

732
-:-h ü62'
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This equation disagrees with the classic expression in that areosity appears in the

place of porosity. This problem has been recognized for many years, although it

has never been approached before from the viewpoint of areosity. Scheidegger (1974)

discussesit inthe contextof one-directional flow in a multi-directional porous medium.

As he points out, methods of correcting the problem involve invalidation of the

Dupuit-Forchheimer assumption that the mean speed of the fluid in the macroscopic

flow direction, u1, is given by

QtDl: 
Ã

Qtut: lrt

(4.37)

However, if areosity, defined by Equations (3.21) is used, then Dupuit-Forchheimer

equation can be generalized by use of the concept of areosity to become

(4.38)

4,T Summary

. In this chapter, validity of the integral expressions for permeability and formation

factor has been demonstrated and interpretation of the terms in these expressions has

been carried out with the help of three idealized porous media and network theory. In

general, the expressions are valid for all porous media under the stated assumptions.

The property of the pore structure termed as "areosity", which was introduced in

the previous chapter, has been further discussed. In order for the predictions of the

integral expressions and the network theory to be the same, the effective area open to

flow in the macroscopic flow direction must remain constant. However, it may vary

in any manner in the other directions, thus confirming the validity of the expressions

for anisotropic porous media also.

It has been found that the viscous and current terms represent the flow (fluid and

electric) in the macroscopic flow direction whereas the pressure and potential terms
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represent the flow (fluid and electric) in the directions normal to the macroscopic flow

direction (microscopic cross flow). Surprisingly, the microscopic cross flow is found

to depend on the va¡iation of the conductances of the tubes in the macroscopic flow

direction in addition to the conductances of the cross flow tubes themselves. The

macroscopic cross flow can have a profound influence on the permeability (formation

factor) in the macroscopic flow direction.

Microscopic cross flow is shown to be directly responsible for values of tortuosity

exceeding one. In the presence of multiple flow paths to a fluid (electric) particle, the

classical definition of tortuosity is seen to be simplistic. The study suggests two types

of tortuosities, one accounting for the sinuousness of the individual flow channels and

the other accounting for microscopic cross flow resulting due to the availability of

multiple flow paths. The equivalence between the hydraulic and electric tortuosities

is found to be invalid in the presence of microscopic cross flow in porous media with

multiple flow paths.

An exact relation between formation factor, .F and tortuosity, r' of porous media,

in the form r' : F €t,, has been presented. Here, {r is the areosity in the macroscopic

flow direction.
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The discussion in the previous chapter was centered on very simple idealizations

of pore structure. Such idealizations are very helpful for gaining a physical under-

standing of the transport phenomena in porous media. However, much larger and

complex systems such as tube networks are required to model various flow pheno-

mena in real porous media. Such models are considered in the present chapter. The

integral expressions for permeability and formation factor are evaluated for parallel

capillary, serial capillary and three-dimensional cubic network models, and the inte-

gral expression for Klinkenberg permeability is evaluated for parallel and serial capil-

lary models. These developments result in explicit relations between the macroscopic

transport properties of the models and the statistical parameters characterizing their

pore space. The features of the models are discussed in Section 5.1 and the relations

are developed in Section 5.2. The discussion of the results is given in Section 5.3,

which also includes comparison between the predictions of the present relations and

those developed by Nicholson et al. (1988), which are based on the effective-medium

approximation (EMA) (Kirkpatrick, 1973).

5.X. Ðeveïop¡ment of the Modetrs

The present models are based on the conceptual model of porous media introduced

by Bear and Bachmat (1966, 1967). A typical porous medium is characterized by
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channels of very small cross-sectional area, and the average fluid flow and transport of

other quantities through the fluid (e.g., electric charge) inside a channel is essentially

in the direction of its axis. This feature is incorporated in the present models by

considering a circular cylindrical tube as the basic element of pore structure. In the

Bear and Bachmat model, the cross-sectional area of a channel is assumed to vary

along its axis to account for the converging-diverging nature of the flow channels

in real porous media. In the present models, the cross-sectional area of a tube is

assumed constant along its length. This simplification makes it possible to explicitly

relate the macroscopic transport properties of the models to the statistical parameters

characte¡izing their pore space, which is not possible in the case of the Bear and

Bachmat model (Van Brakel, 1975).

5.L.tr Construction of the Models

Figures 5.1 and 5.2 illustrate the important features of parallel and serial capillary

models, respectively. The parallel capillary model is the simplest and consists of tubes

of varying diameters and lengths running from the upstream to the downstream side

of the REV. The cross-sectional area of a tube is constant along its length. In the

case of the serial capillary model, a flow path running from the upstream to the

downstream side of the REV consists of sections of varying diameters and lengths.

However, the corresponding external macroscopic length of each section is constant,

that is, the amount of tortuousness in each tube is different. Each section will be

considered as a tube in this study.

The parallel and serial capillary models do not take the "networking effect" into

account. The networking effect is an important feature of the pore structure that

provides multiple flow paths to a fluid particle at each junction (the meeting place of

two or more tubes). The importance of the networking effect can be understood in

the light of the discussion of microscopic cross flow presented in the previous chap-
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Fig. 5.1. A parallel capillary model with non-uniform tube diameters and lengths.

ter. The network models of porous media, first introduced by Fatt (1956), take such

effects into account. In fact, as shown by Fatt (1956) and later commented upon

by many researchers, the parallel and serial capillary models are the two extremes of

the network model with coordination number equal to infinity and two, respectively.

The parallel and serial capillary models, therefore, provide a valuable insight into

the influence of coordination number on the properties of the models. Coordination

number denotes the average number of tubes meeting at a point called the junction.

It can vary between infinity and two for network models with different tube arrange-

ments. Figure 5.3 illustrates the essential features of the three-dimensional network

model considered in the present work. Such a model has a coordination number of 6.

The diameters of the tubes in the models are assumed to be distributed according

to a lognormal distribution (Crow and Shimizu, 1988). The lognormal distribution has

an advantage over symmetricai distribuiions such as uniform and normal distributions
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k=3 *
\d.*o=,

Fig. 5.2. A serial capillary model with non-uniform tube diameters and lengths. A flow path and

junction are also illustrated.

because higher standard deviation to mean ratios can be employed. For example, it

is known that 99.46% of the area under the normal curve lies in the range p¿ t 3oo.

Therefore, if standard deviation exceeds one-third of mean, some tube diameters will

assume values less than zero, which is not acceptable. If the tubes with negative

diameters are ignored or folded over to the positive side, the distribution becomes

distorted. In the case of capillary models, the tube lengths are also randomly assigned

according to a lognormal distribution; however, in the case of the network models, the

lengths are assumed to be uniform. As commented upon by Nicholson et al. (1988),

this assumption is no more arbitrary than the one by Fatt (1956) in which a relation

is assumed between the tube lengths and diameters. The tubes at a junction are

assumed to meet in such a rnanner as to not create any additional pore volume other

---:.J.É-- \

PLr#
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Fig- 5.3. A three-.dimensional cubic network model wiih NrP : 2 columnt, ¡ül : 2 rowe and

Nf : 2 tiers. T[bes and junctions are also shown.

than that represented by the tubes themselves, that is, the volume of the junctions

is ignored.

For all the three models, È - 1 denotes the macroscopic flow direction, .t1 denotes

the length of the REV in the À - I direction, and ,4,1 denotes the bulk area of the

REV normal to the k : 7 direction. The iotal number of tubes in a model is denoted

by Iúr. The total number of flow paths in a serial capillary model running from the

upstream to the downstream side is denoted by tr{"¿. Each flow path has lVþ junctions.

Therefore, the total number of tubes in the serial capillary model, denoted by lft, is

equal to /ü"¡. (¡{Ë + 1). The sections upstream of the first junction and downstream

JUNCTIONS
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of the last junction are of half macroscopic length as compared to the intermediate

sections (Figure 5.2). Both the parallel capillary and serial capillary models have

tubes in the k : 7 direction only.

The network model (Figure 5.3) consists of Nf tiers and each tier has .n{f columns

and .núf rows of junctions. The total number of junctions, denoted by I/p, is equal

to /úf x N{ x /Vf and the total number of tubes, denoted by iú7, is:

Nr - e /qP ¡ül ¡vf + w{ wl + Nl ¡vf + ¡rf ,vf (5.1)

For given values of /úrP, Iúf , and Nf, the junctions and tubes are assigned unique

global indices. As illustrated in Figure 5.3, which shows a 2 x 2 x 2 network (¡{f :

Nl : IÇ : 2), the first and last sections in all the three principal directions are

of half the length of the intermediate sections. For clarity, the tubes in the figure

are shown to be straight. However, the tubes used in simulations may be straight or

tortuous.

All the three models in the present study are completely characterized, that is,

all the macroscopic properties of the models can be expressed in terms of five pore

structure parameters: y'{¿, r, p6r ø6 and øs, where .ð{¿ is the total number of tubes

in the macroscopic flow direction intersecting a plane normal to the macroscopic flow

direction, per unit bulk area, and is equal to N7f Al for the parallel capillary model,

N"nlAt for the serial capillary model and /üf N{lh for the network models; r is

equal to þLsf Ll for the parallel capillary model *d p" NþlL, for the serial capillary

model, and.ð{rP þslh for the network model; F¡ and 06 are the mean aud standard

deviation of the tube diameter distribution, respectively; and /¿s and as are the mean

and standard deviation of the tube length distribution, respectively.

Based on the definition given to it in Chapter 3, the areosity of the network model

is defined for all the three principal directions, &:1,2 and 3. For the parallel and

serial capillary models there are no tubes in the k : 2 and 3 directions, therefore, for
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these models the areosity is not defined for these directions. For the parallel capillary

model, the effective area open to flow in the macroscopic flow direction is constant,

therefore the areosity in this direction may be calculated from

where ó¡ is the diameter of the .Ith tube. At any of the (/úË + 1) sections in a se¡ial

capillary model, the effective area open to flow in the macroscopic flow direction can

be found from

er=ft,Ður,

Ao,1"..,,o,, ,: ft ,=Y=rur, 
,

(5.2)

(5.3)

where ó¡.¡ is the Jth tube in the .Ith section. For a network model, the efective area

open to flow at any section, in any of the three principal directions, is given by

Aß,ln"r;oo t :
Nrf'vf

Ã, E 6?,, (5.4)

where ó¡.¡ is the "/th tube in the /th section in the k : i direction. Here, only the

cross-sectional areas of the tubes that are in the k : i direction contribute to Apr.

For a parallel capillary model, the effective area open to flow in the macroscopic

flow direction is naturally constant. However, for the serial capillary (for the Ic - I

direction only) and network models (for all the three directions), the number of tubes

in a section has to be very large to achieve constant effective area along a particular

direction. Due to the limitations on the available computer power, the following

procedure was devised to achieve constant effective open area for these models.

For the serial capillary model, the area open to flow at each section, Ap1, was

found, a¡d the average axea open to flow was calculated by taking the mea¡ of the

open areas for all the sections. Then the diameters were reassigned according to

óTi*:ffi,
r07

(5.5)
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Fig. 5.4. Permeability and formation factor of network model with original effective open area at

various sections and with constant effective open area (by reassigning tube diameters).

where the subscript I J on 6 denotes the Jth tube in the lth section and the super-

script I on Ag denotes the lth section. For network models, the same scheme was

applied to achieve constant effective open area in all the three directions. However,

the average open area was calculated by taking the mean of open areas in all the

sections in all the three directions. This ensured constant effective open area in a

particular direction as well as the same effective open area in all the three principal

directions.

The effect of reassigning the tube diameters on permeability and formation factor

of.a12 x 12 x 12 network (tr{r:2.4x 10em-2, z:1.1, ft:5.32 x 10-6m,and

øs:0) as afunction of aa(: otlpa) is shown in Figure 5.4. The presented data are
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with reassigned tube diameters and aa :0.L. The permeability and formation factor

were calculated by using the network theory (presented in Appendix B). The results

show that the net changes in properties due to reassigning ihe tube diameters increase

as ø5 increases. The changes are insignificant up to ø6 æ 0.7. As will be observed

in Chapter 6, this is the most useful range for simulaiing real porous media. The

maximum differences (at ø6 : 1.2) between the permeabilities of the network with

and without reassigning the tube diameters is l2.7To. The corresponding difference

for the formation factor is 4.5%.

5.L.2 Flow Inside the T\rbes of the Models

For permeability calculations, the fluid flow inside a tube is assumed to be laminar

and given by Hagen-Poiseuille law. This assumption is realistic for creeping flows in

which Reynolds number is O(1) and inertial effects introduced by the tortuous nature

of the tubes and the converging-diverging nature of the junctions are very small and

therefore can be ignored. For Klinkenberg permeability calculations, the flow inside

the tubes is assumed to be Hagen-Poiseuille corrected for a finite slip velocity at the

solid wall. Therefore, in this case also, the inertial effects are ignored. The movement

of various fluids in petroleum and water reservoirs is generally very slow, therefore

these assumptions are realistic. For formation factor calculations, the solid matrix is

assumed to be nonconductive a¡d the electric conduction inside the fluid phase under

a potential gradient is assumed to be ohmic only, that is, surface flow phenomena in

electric double-layers are ignored. It is assumed that the junctions offer no resistance

to the electric flow through the fluid in the pore space. The solid matrix is assumed

to be rigid, stationary and noninteracting with the fluid which completely saturates

the pore space.

5.L.3 Representativeness of the Models

For the predictions of a model to be truly representative, the size of the model should

109



Mean; a5 =0'l@
Cæff. Va¡.; a¡ = 0.1@

Mea¡; a¡ = 0.679
Cæff. Var.; a¡ = 0.679

Mean; a6 = l2ßO
Coeff. Va¡.; a¡ = 12@

o
+
tr
X
A

tr
o

Á,

6@æ@

X
+

A
vxÎ++ $

810
Network Size

Fig. 5.5. Mean and coefficient of variation of permeability versus network size.

be sufficiently large to even out the effects introduced by the random assignment of

tube diameters and lengths. In other words, the predictions of the model should be

independent of its size. In terms of the concepts presented in Chapter 3, this implies

that the size of the model should qualify as an REV. An REV is defined with respect

to a property and its size will depend on the breadths of the tube diameter and length

distributions. Therefore, an appropriate size of the model that qualifies as an REV

with respect to all the properties considered and all the values of. o5f p,5 and osf p,g

encountered, has to be determined. In principle, an infinite size of the model will

serve such a purpose. However, in practice, due to the limiiations on the available

computer power, the size of a model is chosen in such a way that the predictions

are fairly representative for all the properties considered. The following procedure

is generally adopted for this purpose: First the calculations are performed on the
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Fig. 5.6. Mean and coefficient of variation of formation factor versus network size.

model with a given number of junctions, that is, for a given size. This is called a

realization. The calculations are then repeated over a large number of realizations

which are generated by using different initial seeds. The final results are presented

as averages of the values for the realizations. An appropriate size of the model and

the number of realizations is then selected so that the errors introduced by the finite

size of the model are within acceptable limits. There is a trade-off between the size of

the model and the number of realizations. The property of a large network with one

realization may be approximated as the mean value of a large number of realizations

for a smaller network. This approximation improves as the size of the model increases

(Wise, 1992).

Different combinations of the network size a¡d the number of realizations have

been reported in theliterature. Bearei al. (1987) considered an 11x 11 x 11 network
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Fig. 5.7. Mean and coemcient of variation of Kliukenberg coefficieut versus network size.

with 12 realizations to study the effective and relative permeabilities of anisotropic

porous media. Rege and Fogler (1987) showed that a 40 x 40 network with one rcafiza-

tion was satisfactory for studying straining dominated particle entrapment in porous

media. Blunt and King (1991) used Delaunay triangulations for two'dimensional net-

works containing up to 80 000 points to study two-phase flow in porous media. Cox

(1991) used 10 x 10 x 10 and 20 x20 x 20 networks with 10 realizations for determining

the parameters of tube diameter distribution from mercury injection measurements.

Portsmouth and Gladden (1991) used a spherical network with diameter equal to

20 000 times the radius of the smallest pore for the determination of pore connec-

tivity from mercury porosimetry. Spearing and Matthews (1991) used a 10 x 10 x 10

array of cubes joined by cylinders to simulate the mercury porosimetry curve and to

study'uortuosiiy. Wise (1992) used a 15 x 15 x 15 network with 100û realizations to
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Fig. 5.8. Mean and coefficient of variation of porosity versus network size.

simulate permeability.

In the present work, the models are employed for studying permeability, formation

factor, Klinkenberg permeability, porosity and drainage capillary pressure curves.

Therefore, the size of a model that is a satisfactory representative with respect to all

of these properties has to be found.

Figures 5.5, 5.6, 5.7 and 5.8 show the dependences of the meâ.ns and coefficients

of variation of permeability, formation factor, Klinkenberg coefficient and porosity

of a network model (I{¡ : 2.4x 10e m-2, r: 1.1, Fa:5.32 x 10-6 m and os:
0; lognormal distribution of tube diameters) on its size (e.g., a size of B denotes

8 x B x 8 network). The means and the coefficients of variation are calculated for

50 realizations. The means for different sizes are scaled by the corresponding mean

values for a 12 x 12 x 12 network. For each property, the results have been presented
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for three values of. a6 (- 0.1, 0.679, and 1.2). These figures illustrate that the mean

values even out and the coefficients of variation decrease rapidly for all values of ø5 as

the network size increases. These trends are similar to those observed by Koplik (1981,

1982), Bear et al. (1987) and Wise (1992). Therefore, using Dagan's (1989) criteria,

the model is ergodic with respect to a given property if the variance of the average

tends to zero. Based on these results, two more observations may be made: One, the

size of. the REV with respect to a given property becomes larger as a6 increases and

two, for a given value o1. a5, the size of the REV is largest for permeability followed

by formation factor, Klinkenberg coefficient and porosity, in that order. Therefore,

out of these four properties of a model, it is suficient to define the size of the REV

with respect to permeability only. A L2 x \2 x 12 size with 50 realizations is shown

to be satisfactory and in this study, this size of the network is used throughout.

A similar analysis was performed for the parallel and serial capillary models. It

was found that 13 000 tubes with i00 realizations and a 750 x 750 size (Iú"¡ - 750,

Nþ :750) with 100 realizations were satisfactory sizes for parallel and serial capillary

models, respectively. The REV size of the models with respect to drainage capillary

pressure curve will be determined in Chapter 6.

5.2 Ðevelopment of the lðelatÍons f,or the Models

For the present models, the integrals in the integral expressions (Equations (3.26),

(3.41) and (3.a7)) can be replaced by summations. These simplifications of the expres-

sions are performed in the next section. The simplified expressions are then evaluated

for the three models in the following sections.

5.2.1 Simplification of the Integral Expressions

The integral expression for permeability is considered first. For the Hagen-Poiseuille

tL4



flow inside a cylindrical tube,

,::&(,_#) *, (5.6)

where urj is the axial velocity in the .Ith tube at a distance r from the axis of the

tube of diameter, 6¡, p is the pressure, and s is the coordinate along the axis of

the tube. Along the length of a tortuous tube, the velocity w! may not be along

a principal direction. However, for creeping flows, a tortuous tube with constant

diameter and flow rate can be treated as a single straight tube with total length

equal to the extended (straight) length (Ruth and Suman, 1992). The velocity uI"

can therefore be taken to be along the principal direction in which the tube is aligned.

The tangential and radial components of the velocity in the tube are zero for Hagen-

Poiseuille flow. The radial gradient of the axial velocity inside a tube, aligned in the

lc : I direction, at the surface of the tube is

du.'I I 6, do__¡i ___r _r 
(õ.7,¡d, lr,/, 4 p. ds'

and the other gradients are zero. The viscous term, fl,, therefore, becomes

where Ap¡ is the pressure drop across the /th tube with length ,5¡, and /üfl is the

total number of tubes in the macroscopic flow direction (/frr is equal to .ð/a for the

parallel and serial capillary models, and to (¡úl + 1) /ül I/f for the network model).

In terms of the average flow rate, q¡, through the tube

ru : -#, l^",Hn¡d'A'

= #ÃË1" hx:n6¡ds'
7f 

N't: dd;m Ð0i Lpt,

o., NrT c,J¿ É ù/t': 
¿,q1Lrþ-æ,n''

(5.8)
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The summation in the above expression is only carried over the tubes which are

aligned in the macroscopic flow direction, k : I.

The pressure term, Ç, involves integration of pressure over the parts of the solid-

fluid interface which are normal to the macroscopic flow direction, le - l. These areas

occur at the junctions where tubes of varying diameters meet. For parallel capillary

models, this term is zero because there are no junctions in these models. For serial

capillary and network models

permeability simplifies to

+,=#íä+ ør + LËo' $"'-03')

(5.10)

wherep¡ is the pressure at the.Ith junction, and ó,,¡ and 6¿¡ are the diameters of the

tubes in the lc : I direction upstream and downstream of the junction. p¡ is assumed

to be constant over the aÍea r(6'., * 63) l . Therefore, the integral expression for

For the Klinkenberg permeability, Hagen-Poiseuille flow corrected for a finite slip

velocity, 'tro, at the solid wall, is assumed inside a tube. Again, the inertial effects are

ignored. The axial velocity in the .Ith tube (aligned in the Ic - L direction) is:

(5.11)

(5.12)-{:&('-#) **,"
For this assumption of velocity, the slip viscous term, fl, simplifies to

Nrt
T- It 

Ió?Lpt.-u- 4€r6hFl=, (5.13)

The volumetric flow rate (with slip) inside a tube may be found by subsiituting

Equation (2.32) in Equation (2.31):

QtP^: &oo, [g.'"^g] ,
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whe¡e g¡ is the volumetric flow rate in the tube, measured at the overall mean pressure

in the REV, P^ : (po + pù12, pI* : (p¡" + nn)12 (see Appendix B), c is a constant

whose value is close to unity, and À is the mean free path of the flowing gas. With

the use of the above equation, the slip-viscous term becomes

Ðo Nrr
ã ùL .-a .9¡ 

-P*tu: 
\r-qrL, l---r@)o' o'*'

(5.15)

The slip pressure term,4,io the integral expression for Klinkenberg permeability

is still given by Equation (5.10). Therefore, the final expression for the Klinkenberg

permeability is:

r g2 5 st 
-P* 

î Np .^
h,: ñ hÐ 16i:fu qr å + umÐP, (ui, - 0",,)' (5'16)

The current and potential terms in the integral expression for formation factor

can be evaluated in a similar way. This leads to the following simplified expression

for the formation factor:

D- ' 
Ntî î NP

" : ù;Ð s' u + ffiD"' (ui'-o'o')' (5'17)

H"r" "¡ is the current in the .Ith tube and e¡ is the electric potential at the .Ith

junction.

5.2.2 Relations for the Farallel Capillary Model

For the parallel capillary model

ffrt

er: f ør,
f=l

nfl
q; -Ðq¡ 'I=L

and

Nrt

C1:lq .

f=1
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As explained earlier, the pressure, slip-pressure and potential terms ate zero for this

model. With the substitution of the above equations, the expressions for permeability,

Klinkenberg permeability and formation factor (Equations (5.11), (5.16) and (5.17))

reduce to

1

-:kot

L _ 32 $0,Iq €, L, 7=., 
t

åË', llÐ-

lÐ^#,

#*'"^ Ëg]

(5.21)

(5.22)

(5.26)

(5.23)

For the lognormal tube diameter and length distributions, the above expressions result

in the following relations:

32 r 1* a26

e, tt'o B'D''

I*az5

(5.24)

32r:-
& tft

(5.25)
1

t", (Bo+8cÀl¡t6çn) Dn'

and

and

where

., Nrt tMl ,z,:ùÐ,0?lÐ,É

, 8 cÀP^ CPÃ---
Ita BP

1

let

F_ (5.27)

BP : L * 6 ø|* 15 af +20 af* 15 ø! * 6 ø|o * ol', (5.28)

CP:L+3azr+3a!+aî,

r1
et D"
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3rDP:L*azs-

QIr: #*(p,r,,-pt¡,t) ,

á
O,'S . (5.30)

(5.32)

r -l
The detailed evaluation of the summations in Equations (5.21), (5.22) and (5.23) is

presented in Appendix C. The expression for the Klinkenberg coefficient, ô, has been

obtained with the help of Equations (5.24), (5.25) and (2.29). The only differ-

ence between Equation (5.26) and the expression for ó given by Klinkenberg (19a1)

(Equation (2.30)) is the factors Bp and CP in Equation (5.26) which involve ø5's. This

is because Klinkenberg used a parallel capillary model in which all the tubes were of

the same diameter and ø6 was equal to zero.

The results for three symmetrical distributions of tube diameters and lengths

(uniform, normal and logistic) are also included in Appendix C.

5.2.3 Relations for the Serial Capillary Model

For the serial capillary model, Equation (5.11) for permeability may be written as

r. rz k tj' sru
kr: €rarL, þ- ?^ o¡ett +

irtn Ni

TfuÐÐ nu(ol'"-63'") ' (5'31)

where I{"¿ is the total number of flow paths running from the upstream to the down-

stream side of the REV, Nþ + 1 is the number of tubes and .n{þ is the number of

junctions in each path. The Hagen-Poiseuille law for fluid flow inside a tube of the

model is

where ptt,o and pIJ,b ate the pressures at the upstream and downstream junctions of

the Jth tube in the lth flow path. If Equation (5.32) is substituted in Equation (5.31),

then

1

lct ä (rt, pn - 61r¡t;+,) pr) ,4&QtLtp
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where 6¡1 and ó¡(¡¿Ë+r) are the first and last tubes of the "Ith flow path, respectively. If

the number of flow paths in the REV is sufficiently large, the above equation simplifies

to

The macroscopic fl.ow rate, Qt, r* be related to the bulk pressure drop, pn- pt¡

by making an analogy to the flow of current in a series of conductors. The equivalent

of electric resistance to the fluid flow in a tube can be found from Equation (5.32)

and is given by

t _ r N"n(p3 + o3) ,^. -.\kt 
: 

4 €, e, Lrrt \Ph - Pt) '

Res/tube :r28ry7" .r61¡ )

and, therefore the resistance of the complete path to flow is

Res/path:ry,:'#

Res/REV : r2!rp "f,'* 
.r N"n f-=, 6î '

This gives the following expression for Q1:

a,:ffi(pn-rùf p'ä

r _Jz(p7+oÐ"$'t,kr- erl, k6r'

(5.34)

If the diameters and lengths of the tubes in various paths are randomly assigned

according to chosen distributions with given means and variances and also, if the

number of tubes in a path is sufficiently large, then each path will tend to have the

same resistance. The total resistance of the REV to the flow will therefore be

(5.35)

(5.36)

(5.37)

(5.38)

The permeability of the serial capillary model can now be found from Equations (5.34)

and (5.38), and is

I20

(5.3e)



1*Jz(p\+"Ðt$' sr på
lr"r: erL, þ 4¡gñ- '

._0'3+"Ð"S's,'- {.rLt ,="re'
The detailed evaluation of the summations in Equations (5.39), (5.40) and (5.a1)

for various distributions of tube diameters and lengths is presented in Appendix D,

which also includes the final results for uniform, normal and logistic distributions of

tube diameters and lengths. The final results for the lognormal distributions of tube

diameters and lengths are presented below:

+,: *+, (t * "3) (r + ro o] + +s al + rzo ol + zro ø|

+252 olo + 2r0 al2 + 120 o|n + 45 a166 * 10 a]8 + o3o) ,

32r , ^' I 1 B"C"
ño \, * "'o) fi;,¡, + 

61a1=
and

where

The expressions for the Klinkenberg permeability and formation factor may be

found similarly. Here, only the final expressions are included:

(5.40)

(5.41)

1

kot

*o3) ,

(5.42)

(5.44)

(5.45)

(5.46)

(5.47)

(5.48)

F- T

€t
(, *'3)

At= 8cÀ ¡t

ltd

Bt:a3,

c" : 10 + 15,4" + 6(A)2 ,

D':of+3o1,,

(r +t "|+t"l
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E" :20 + 45 A" + 36 (A")2 + 10 (,4")3 , (5.4e)

G" : aI2 * 6ø]o * 15a! * 16 al + s al (5.50)

and

H" :35 + i05 A" + 126 (A")' + 70 (A\3 + 15 (A")4 (5.51)

5.2.4 El.elations for the Network Model

Unlike the parallel and serial capillary models, the summations in Equations (5.11),

(5.16) and (5.17) cannot be determined in closed forms for the network model. The

reason for this is the availability of multiple paths for fluid and current flow at each

junction in the network model. In this section, a semi-analytical approach in combi-

nation with nonlinear regression analysis is employed to evaluate the summations in

Equation (5.11) for the permeability and Equation (5.17) for the formation factor of

the network model.

Eoaluation oÍ the Summations in Equation (5.11) Íor Pertneability

The viscous term, Tu,,in Equation (5.11) can be re-organized as

T,-
P--]*,',

(5.52)
ûLlNl N{

where

(5.53)

Here, /j is the non-dimensionalized volumetric flow rate through the /th tube in the

macroscopic flow direction, k : l. Its value is equal to 1 if all the tubes in the

macroscopic flow direction are of the same diameter and length, that is, possess the

same hydraulic conduciance.

rl: Nl *{ i,

t22



As indicated earlier, the summation in Equation (5.52) cannot be evaluated in a

closed form. This is because the flow rate fl in a tube depends on the position of

the tube in the network in addition to its hydraulic conductance. To evaluate the

summation, the following assumption, based on the Hagen-Poiseuille law, is made:

Í'r: A"# ,
ÐI

(5.54)

(5.57)

where the coefficient, Au, is assumed constant for a sufficiently large random network.

With the application of Equation (5.54), Equation (5.52) becomes:

7..: 32A: =Ër;'u - C, L, Nl Nf ,=,
(5.55)

Bvaluation of the summation in the above equation gives

(5.56)

where y'ÍrT is the total number of tubes in the macroscopic flow direction, k - l.

The pressure term, T,in Equation (5.11) is reorganized as

ryt- 7l NP

',- 4€,74ry.Ðf,(u3,-t3,),

where

PI: Pt (5.58)
uØf (¡{t¡6)

The advantages of the above reorganization are: pt is independent of the network size

(because 8, has been divided by ¡fl ¡ff ), pressure drop across the REV (because p¡

and Q1 are linear functions of pressure drop and the overall dependence cancels out

because one is in the numerator and the other is in the denoininator), and viscosity

of the flowing fluid (because Q1 is inversely proportional to p).

pt¡ car. be expressed as sum of the mean pressure at the junction and a fluctuation

component. The value of the fluctuation component at a junction is influenced by the
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diameters and lengths of all the tubes in the network. However, the farther a tube is

from a given junction, the lesser is its effect on the value of the fluctuation component

at the junction. With these observations in mind, the following assumption is made:

P'r : Ap (03, - o2or) + Bo, (5.5e)

where the coefficients Ao and Bo are assumed constant for a sufficiently large random

network. Application of Equation (5.59) to Equation (5.57) leads to

(5.60)

The summation in the above equation can be replaced by a double integration to give

r,: 4€,1:ñlñ lo* Io* lo'(u?'- 63) * 
"o)

(o:, - fi) r"çs"¡F¿(ó¿) Np dá" d6¿,

where ,FL and F¿ are the probability density functions of the distributions of the tube

diameters upstream and downstream of the junctions, respectively, and 6., and ó¿

are the corresponding variables of the double integration. Reorganization of Equa-

tìon (5.61) leads to

Te:
4€, L, Nl N{ U- { (o,u: * Bp6',) F (uò 

Io* 
F (6¿) aoa}aa"

nNp

- lo* {Q o,61 + Be) r (ó") I"* alo F (6¿) aaa 
} 

aa"

* 
Io* {o,, (6ò 

!o* 
6î F (6d) ao, 

}ao"] 
. (b.62)

In the above equation the limits on the inner integrals are not functions of the variables

of the corresponding outer integrals, therefore

¡r Np

(5.61)

TP:
lt^ l,* (e,ol +

- t* lo* 
(zerû, * 

",)
* ,* 

Io* 
Ap F (6,) un] ,

8r6,") F (ó") d6"
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where

Bquation (5.63)

Tp

where

Idt : Io* 
,(6d) dód,

I¿z = l"* u3 F (6d) ð,6d ,

ræ - Ir* lilr (6d) d6d.

may be rearranged to give

: 4#re1,,o"*- BPI,')1"

* (8, In - 2 Ap Id2) Iuz * Ao rdl r*1,

(5.64)

(5.65)

(5.66)

(5.67)

(5.68)

(5.6e)

(5.72)

rut : lo* o (ó") dó",

Iu2 : Ir* 
/j',F (ó") dó" ,

îoI,r: Jo ólF(ó") dó". (5.70)

The tubes upstream and downstream of the junctions possess the same distribution,

therefore

Ia : Ia : h; Iuz : I¿z: Iz; I¡s - I¿s : Is, (5.71)

and

,,:ffiesrL-rl).
Irrespective of the tube diameter distribution function, .F (ó),

h= to F(ó)d6:1,

r25

(5.73)



I, : 
lo* 

62 F $) d6 - pZ + o,o. (5.74)

The value of .Is is different for different tube diameter distributions. Here, only the

results for the lognormal distribution ¿Lre presented (Crow and Shimizu, 1988):

Is : 
Io* 

onr (ó) dó

_ øîþ + aa| + tla| * z0øl * r5a8, * oø|0 + "1,). (5.25)

With the application of Equations (5.73), (5.74) and (5.75), Equation (5.72) becomes

r Np A, p,frr: ffi (n"3 * t4a1; * 2ta6o + 15ø! * 6ø.0 + ot) . (5.76)

Eaaluation of the Summations in Eguation (5.17,1 lor Fornation Factor

For deriving an explicit relation between the formation factor and the statistical

parameters of the network model, an approach similar to the one for the permeability

is adopted. The current term, T",in Equation (5.17) is rearranged as

where

?r:-¿- f s,rî,-" - (, LrNl Nf ,=,

Íi':NlNi-ä

fT': A"#
ùI

L26

(5.77)

(5.78)

Here /f is the non-dimensionalized current in the .Ith tube in the macroscopic flow

direction, k:1. Likethe non-dimensionalizedflow rate fï,its value is equal to l if
all the tubes in the macroscopic flow direction possess the same electric conductivity.

In order to evaluate the summation in Equation (5.77), the following assumption,

based on Ohm's law of current flow, is made:

(5.7e)



The network is assumed to be random and sufficiently large so that A" may be consi-

dered constant. The application of Equation (5.79) to Equation (5.77) results in

tNTr":ffiÐ-u?'
which, irrespective of the chosen tube diameter distribution is

,.:##w o,; +,3) .

The potential term, T",in Equation (5.17) is rearranged to give

7r ivP

T": o. rrn-D"', (o'", - d'0,) ,

where

(5.80)

(5.81)

(5.82)

e'l: eI
(5.83)R- Crl@l ¡ráP) '

The advantages of the above substitution are the same as those for the pressure term

in Equation (5.58). Based on the arguments presented for the pressure term, the

following assumption is made:

el : A" (ui, - ti,) + a".

This results in the following expression for the potential term:

rNpA",":ffiW(r"rr-13). (5.85)

The values of the integrals Iu Iz and -Is for the lognormal tube diameter distribu-

tion have already been presented in Equations (5.73), (5.74) and (5.75), respectively.

Therefore for lognormal distribution of tube diameters

,": ffi Gú * Ma! * 20al + Lla +6alo + "Ir) . (5.86)

The relations between the coefficients A,, An l." and .4" (in Equations (5.56),

(5.76), (5.81) and (5.86), respectively) and the statistical parameters have to be deter-

mined. This is accomplished in the following section.

(5.84)
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Determínation of Erpressíons for the Coefr,cients A,,, A* A" and A"

Nonlinear regression was employed to find the expressions for the coefficients 1.,,,

Ap, A" and A" in terms of the statistical parameters of the network. Simulations

of. a L2 x 12 x 12, threedimensional cubic network for fifiy equally spaced values

of o6 between 0 and 1.2 p6 were generated on a SUN SPARC station 2 . The other

parameters of the network were: Nt - 2.4xl0s m-2, r : 1.1, and, ¡.t6 : 5.32x 10-6 m.

The tube lengths were kept constant and the tube diameters were randomly assigned

according to the lognormal distribution. The network possessed constant effective

open area in a particular principal direction and the same effective open area in all

the three principal directions. This was achieved by reassigning the tube diameters

as explained in Section 5.1.1.

For a given value of o5, the pressures and electric potentials at the junctions were

calculated by using the network theory (presented in Appendix B). The fluid flow

rates and electric currents in the tubes were then computed and the values of. T, Tp,

T"and ?" were found from the following expressions (Equations (5.11) and (5.17)):

.,o Nrt c,)Z s- ùftu: 
¿rq1L, þ- 6? o' '

(5.87)

Tp: 4&QtLtP Ë0, $?,, - t3,)
f=1

(5.88)

1
t--'" - €, crLt

fft

Ð
I=l

St ct (5.8e)

(5.e0)

the values of the terms

values of the four terms

and

For each value of

were presented as

7t NP

'- o Ðt'(o'"'-o3')'-"- 4$CtLtr,,t I=7

ø5, fifty realizations r¡i'ere generated and

averages of these fifty values. With the
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corresponding to the 50 values of ø6 known, the values of the coefficients, A, Ap, A"

and A" for each value of o5, were determined from Equations (5.56), (5.76), (5.81)

and (5.86), respectively.

Using SAS software, nonlinear regression was employed to fit various empirical

models to the values of the coefficients. The models tried fo¡ each coefficient and

the corresponding fitting pa^rameters are summarized in Appendix E. Based on the

criterion of minimum residue, following are the expressions chosen for the coefficients:

Au: pt r + 3.07 a26 - 2.86 af + e.oo af - 2.80 øl + 0.729 alo '
(5.e1)

I*ø|

lts

1 + 6.37 ø| + rc.+O af - 6.75 ø$ + lO.+0 aî - 9.19 øIo '
(5.e2)

A": pZI+a? (5.e3)

and

A": 0.277I y,s r+o.7
pt 1 + 9.61a! + t0.00 al - 6.90 af + ts.tt al - s.+9 ørro

Finally, the relations between the permeability and formation factor and the statistical

parameters of the network can be expressed as

, _ 13.83 ps
^o - ttg

lts

. (5.e4)

*,:mzr'(o,),

F=tz'(oo),

(5.e5)

(5.e6)

where Zkt and ZF arc functions of o5 and are given in Appendix E. When ø5 is

equal to zero, both the functions are equal to 1 and the above relations for the

permeability and the formation factor reduce to the corresponding relations for the

paraiiei capiiiary model with uniform tube diameiers and lengths.
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5"3 Ðísc¡.lssion of the Resr¡Ïts

In this section, first the relations developed in the present chapter are studied

and then a comparison is made between the predictions of these relations and similar

relations based on the effective-medium approximation (Nicholson et al., 1988).

5.3.n Fresent Results

Figures 5.9 and 5.10 show the predicted and observed permeabilities and formation

factors of a parallel capillary model as functions of ø6, respectively. Here, the observed

values refer to the ones found with the help of the network theory (Appendix B)

and the predicted values refer to the ones predicted by the relations developed in

the present chapter (i.e., Equation (5.2a) for the permeabilities and Equation (5.27)

for the formation factors). The model consists of 13 000 tubes with I/¿ : 6.0 x

10e m-2, r : 2.165, and Fs : 5.0 x 10-6 m. Figures 5.11 and 5.12 show similar

results for a serial capillary model. Here also, the predicted values refer to the ones

predicted by the relations developed in the present chapter (i.e., Equation (5.39) for

the permeabilities and Equation (5.41) for the formation factors). The model consists

of 750 flow paths and each path has 750 tubes in it. The other properties of the model

are: y'y'¿ : 4.I x 10s m-2, r - 2.015, and ¡16 : 5.0 x 10-6 m. The observed values for

both models are the averages of 100 realizations. For both models, the tube lengths

are kept constant and lognormal distributions are employed for the tube diameters.

Figures 5.9 through 5.12 illustrate that the two models show opposite behaviors

as ¿6 increases, both with respect to permeability and formation factor. For parallel

capillary model, the permeability increases and the formation factor decreases as ø6

increases, whereas, for the serial capillary model, the permeability decreases and the

formation factor increases as ø6 increases. In the case of the parallel capillary model,

the conducting capacity of a tube is independent of the conducting capacities of all

the other tubes in the model, and because the conducting capacity of a tube is highly
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dependent on its diameter (proportional to the 4th power of diameter for fluid flow and

to the 2nd power for the electric flow), the overall conducting capacity of the model

is dominated by the tubes with large diameters, even if their number is relatively

small. An increase in ø5 broadens the tube diameter distribution resulting in higher

values of maximum available tube diameter, therefore the permeability of the model

increases rapidly and the formation factor decreases rapidly (but not as rapidly as the

permeability)as a5 increases. Opposite is the case with the serial capillary model. The

conducting capacity of a flow path is controlled by the conducting capacity of the tube

in the path with the smallest diameter. Therefore, the overall conducting capacity of

the model is dominated by the tubes with smaller diameters which results in rapid

decrease in permeability and rapid increases in formation factor as ø6 increases. The

above results are in agreement with Schiedegger's observation (Schiedegger, 1957)

that the behavior of parallel capillary model is sensitive to the upper portion of the

tube diameter distribution, whereas, the behavior of the serial capillary model is

sensitive to the lower portion of the tube diameter distribution.

The agreement between the observed and predicted values of permeability and

formation factor of the parallel capillary model is good right up f,o a6 : I.2. For

the serial capillary model, the predicted and observed permeabilities start to diverge

f.or a5 > 0.60 and the predicted and observed formation factors start to diverge for

ø6 ) 1.0. It was found that the observed values come closer to the predicted ones as

the size of the model is increased beyond the current size of 750 x 750 (750 flow paths

with 750 tubes in each path). However, prohibitively large computer time is required

to find the observed values for sizes exceeding 750 x 750 with 100 realizations.

Figures 5.13 through 5.22 compare the predictions of the relations for various

coefficients, terms, and permeability and formation factor of the network model, deve-

loped in Section 5.2.4, to the corresponding observed values. Here also the observed

values refer to the ones determined with the help of the network theory (Appendix B).
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The size of the model is 12 x 12 x L2 with I/¿ : 2.4 x 10e n-2, r : 1.1, and

þa : 5.32 x 10-6 m. The observed values are the average of 50 realizations. The

tube lengths are constant and lognormal distributions are employed for the tube dia-

meters. For all the quantities, the predictions match well with the observed values

for the whole range of a6 for which the relations \üere developed, reflecting proper

selection of models in the regression analysis carried out in Section 5.2.4. The scatter

in permeability (Figure 5.21) may seem to be larger than in the cases of viscous and

pressure terms (Figures 5.15 and 5.16, respectively). This is because the range on

the y-axis in Figure 5.21 is very small as compared to those in Figures 5.15 and 5.16.

This observation is also true in the case of formation factor, and current and potential

terms (Figures 5.22,5.L9 and 5.20, respectively).

It can be observed from Figures 5.15 and 5.16 that the viscous term decreases and

the pressure term increases as ø5 increases. Because the reciprocal of permeability is

equal to the sum of the viscous and pressure terms, a decrease in the viscous term

results in an increase in the permeability, and an increase in the pressure term results

in a decrease in the permeability. The viscous term represents viscous momentum

dissipation in the tubes aligned in the macroscopic flow direction, lc : L. As ø5

increases, the tube diameter distribution broadens and because in a tube the momen-

tum dissipated through viscosity is inversely proportional to the fourth pov¡er of the

diameter, the overall momentum dissipation decreases andtherefore, the viscous term

decreases. The pressure term represents the viscous momentum dissipation in the

cross flow tubes, that is, the tubes aligned in the directions normal to the macroscopic

flow direction, ,b : 1. When a6 : 0 there is no flow through these tubes and therefore,

the pressure term is zero. As o5 increases, the amount of flow,in the cross flow tubes

increases resulting in increased momentum dissipation and correspondingly in higher

magnitudes of the pressure term. When c5 È 0.6, the magnitude of the pressure term

is equal to that of the viscous term. The combined effect of the viscous and pressure
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terms on the permeability can be observed from Figure 5.21. For 0 ( ø5 ( 0.3,

the contribution of the viscous term to the permeability dominates and the permea-

bility increases slightly. However, for a6 ) 0.3, the pressure term dominates and the

permeability decreases as d6 increases. The arguments presented in this paragraph

are equally true in the case of the formation factor in which case the current term is

equivalent to the viscous term and the potential term is equivalent to the pressure

term.

It may be argued that, at higher values of a5,, the errors introduced by the finite

size of the network may also be modeled during the nonlinear regression analysis. To

check this, a run was performed on a 14 x 14 x 14 network (with 50 realizations). The

maximum difference between the observed values of permeability for the L2 x 12 x 12

and 14 x14x 14 networks (at ø6 : I.2) was found tobeI.23%, and the corresponding

value for the formation factor was found to be 0.75%. To check the behavior of the

relations for o6 ) L.2, observed values were found for a 12 x 12 x 12 network for

0 1 aa < L.4. It was found that the predictions of the relations diverge from the

observed values for ø6 > I.25. Therefore, the predictions of the equations can be

safely assumed to be correct for values of ø6 up to I.2. However, the procedure

outlined in Section 5.2.4 can be used to find such relations for any given range.

It is interesting to compare the behaviors of the parallel and serial capillary, and

the network models at this stage. For the same range of ø5, the permeabilities of the

parallel and serial capillary models change through five orders of magnitude whereas,

the permeability of the network model changes approximately by a factor of 2 only. As

pointed out in Section 5.1.1, the absence of networking effect in the parallel and serial

capillary models is responsible for such behaviors of these models. In the network

model, the permeability is controlled by tubes with smaller diameters ("throatsn) but

not to the sarne extent as in the serial capillary model. This is due the availability

of multiple flow paths to a fluid particle at each junction which in turn traverses the
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path of least resistance from the upstream to the downstream side of the REV. In

the serial capillary model, the fluid particle has no choice but to travel through tubes

of all sizes. The absence of networking effect in the parallel capillary models allows

the domination of tubes with large diameters. These behaviors of the three models

point out that the permeability of the network model will increase as the coordination

number (average number of tubes meeting at a junction) increases.

5.3.2 Comparison with Effective-MediumA.pproximation (8M,4)

The relations of permeability and formation factor to the statistical parameters of

the pore structure models (parallel and serial capillary, and network) can also be

derived with the help of the effective-medium approximation (EMA). The EMA wa^s

originally employed to find the electrical permittivity of binary random mixtures of

continuous phases (Bruggeman, 1935). Kirkpatrick (1971, 1973) applied the EMA to

random networks of conductors based on the following equation:

(5.e7)

where 7 is the coordination number representing the average number of conducting

elements connecting a junction to its neighbors. For example, 7 is 2 for a serial

capillary model, 4 for a square network and 6 for a cubic network, both with no

diagonal elements, and oo for a parallel capillary model. Equation (5.97) is valid for

an infinite network in which the elemental conductances, g, are randomly distributed

according to a probability density distribution t.'r(g) with go 1 g 1 $. g- is the

effective-medium approximation to g,r, where g,, is the exact value of g which yields

the network conductance, G,,, when all elements of the network are replaced with

elements of conductance g,". Equation (5.97) is based on the reasoning that the

average change in G* caused by replacing an elementary conductor of an effective-

medium network with a conductor randomly chosen from cr(g), must be equal to zero.

îsu (s* - g) ,(g) ds 
^Jn";4¡2q¡ 

^:u 
'
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Here, an effective-medium network implies a network in which all the elementary

conductors have the same conductance, g,r.

Most of the applications of the EMA have been in two areas: the calculation

of conductivity or permeability of binary mixed component solids, and the study of

network percolation properties (Kirkpatrick, 1971, 1973; Gurland, 1966; Ahmed and

Blackman, 1979; Nagatani, 1981; Sax and Ottino, 1983). A Simple discrete form

of u(g) was used in both of these applications. Koplik (1981) used continuous c,;(g)

(uniform and log-uniform) distributions to determine the range of applicability of

the EMA of Equation (5.97) with respect to the shape and breadth of u(g). The

main purpose of his work was to show that the direct inversion of the conductance

matrix (see Appendix B) may be replaced by a less cumbersome numerical solution

of Equation (5.97) within acceptable errors introduced thereby.

Nicholson et al. (1988) solved Equation (5.97) using a renormalization group

method and found an explicit relation between g^ and the parameters of u(g) and rl

in the form of a series expansion. In this section, a comparison is made between the

predictions of the relations developed in the present study and those based on the

Nicholson's solution to Equation (5.97).

A detailed derivation of Equation (5.97), based on Kirkpatrick (1973), is presented

in Appendix F which also includes Nicholson's solution. To facilitate a discussion of

the comparisons, the Nicholson's solution is summarized as follows: The elementary

conductance of the network may be written as

86,n: , , (5.e8)

where 6 and .9 are the diameter and the length of the elementary tube, respectively;

.B and e are constants which depend on the tube shape and flow considered. Values

of e and B for various flows and tube shapes are summarized in Appendix F. In the

present study (and, also in Nicholson's work), á is a random variable with probability
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density function e(6) and ,5 has a fixed value. The following reduced random variables

are introduced:

*:!-t
lt¿

and

. / 0 \'c:(,;l -1-(1 +Æ).-1, (5.100)

where ¡16 is the mez.n tube diameter. If ã(rc) and Ë(O denote the probability density

functions of rc and (, respectively, then the corresponding moments are given by

rc,o : (rc*)E- : l"' n" ã(n)d,n , (b.101)

G : (e" )8'o : l:'r é(o d( .

The above relations result in the following general expression for Ç in

(": (-1)" Ë t-tl' ic i ic *¡ ,

(5.ee)

(5.102)

terms of nn;

(5.103)
d=1 j--t

where iC and't'C are the binomial coefficients. The normalized efective-medium

conductance of a network, based on the Nicholson's series solution to Equation (5.97),

is:

l*(lr,eò :1 - 
^ 

(z * /¡2(s - 
^3C¿ 

* ¡\a(u - Âu(u

+^(ï + (2^ - 3^') et Ç,2 * (4^' - 3À')(' ('

+(4^3 - 5r\n)(r (¿ + (2 L" - L') ç;

+(3^3-5^n)(z(e * (6^u- 4lf)erç

+(3^5 -2Ln)(3 + QL2 +2^)(i

+(8^4-?^5 -2L")Cî

+(13^2-10^3-3L)(TÇ

+ (15 L4 - L7 

^'+ 
4^',) (, ü + ... , (5.104)
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where ?*(Å, G) it the effective-medium conductance of a network normalized by the

efective-medium conductance of the equivalent parallel capillary model, and Â - rt 12.

Å varies between 0 and 1 for parallel and serial capillary models, respectively. Here

the equivalent parallel capillary model is one with the same extern¿l dimensions and

distribution of elementary conductances as the network model, with a coordination

number of oo. Values of Ç (n - 1,...,6) in terms of. nn (n - I,...,6) for four

values of e (:1,...,4) are included in Appendix F. This appendix also includes the

values of. nn (n - 1, . . . , 6) in terms of. ø6 (: ot I ps) for lognormal distribution of tube

diameters. Here ø6 is the standard deviation of the distribution. ø5 is the coefficient

of variation and is a measure of the breadth of the tube diameter distributìon.

The relation between the permeability and the normalized effective-medium

conductance (for fluid flow) of the network model is

(5.105)

where åi and åf denote the permeabilities of the network model and the equivalent

parallel capillary model, respectively. Similarly, the relation between the formation

factor and the normalized effective-medium conductance (for electric flow) of the

network model is

"l*(e:2) : (5.106)

where .F" and ,Fp denote the formation factors of the network model and the equiva-

lent parallel capillary model, respectively. Detailed derivations of Equations (5.105)

and (5.106) are given in Appendix F.

Figure 5.23 illustrates a comparison of the normalized effective-medium conduc-

tances predicted by Equation (5.10a) (with e:4 and Â - 0.33) and the normalized

effective-medium conductances predicted by Equation (5.105), as functions of a6. &f

and /cf in Equation (5.105) are found from Equations (5.24) *d (5.95), respectively.

7^(e:Ð:#r,

Fp
p"'
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The observed values in this figure correspond to the values of the normalized effective-

medium conductances given by Equation (5.105) in which Éf and &f are determined

with the help of the network theory (Appendix B).

Similarly, the normalized effective-medium conductances predicted by Equa-

tion (5.104) (with e : 2 and Â : 0.33) is compared to the normalized effective-

medium conductances predicted by Equation (5.106). FP and F" in Equation (5.106)

are found from Equations (5.27) *d (5.96), respectively. The comparison is illus-

trated in Figure 5.24. The observed values in this figure correspond to the values

of the normalized effective-medium conductances given by Equation (5.106) in which

F" and Fp are determined with the help of the network theory (Appendix B).

A 12 x 12 x 12 network with constant effective open area in the three principal

directions is employed in the above comparisons. The tube lengths are fixed and

the tube diameters are randomly assigned according to a lognormal distribution.

The statistical parameters of the network are: Nt - 2.4 x 10sm-2, r : l.L, p6 :

5.32 x 10-6m and ø6 varies between 0 and 1.2. The observed values are the average

of 50 realizations.

The results illustrated in Figures 5.23 and 5.24 show that the EMA predictions

deteriorate as ø6 increases beyond certain limit. For the present network, the maxi-

mum values of a5 up to which the EMA predicts accurate results are approximately

0.25 for the fluid flow (e : 4) and 0.3 for the current flow (e : 2). These results

are in agreement with those of Koplik (1981, 1982) and Nicholson et al. (1988). The

maximum value of ø5 up to which the EMA predicts accurate results depends on e,

.4, and the employed tube diameter distribution. This maximum value decreases as Â

and e increase. The EMA markedly deteriorates for networks-dominated by very low

conductances, that is, conductances with positively skewed distributions such as the

lognormal distribution at high a5 (Figure 5.25). For positively skewed distributions,

the network contains regions of very low conductivity and these regions contribute
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significantly to ihe effective-medium conductance because c"r(g) emphasizes the low

conductance range in the averaging in Equation (5.97). But in reality, regions of very

low conductances are most likely to be by-passed by the main fluid (current) flow

(Koplik, 1981). The range of applicability of the EMA for symmetrical tube diameter

distributions such as uniform and normal distributions, is larger than that for the log-

normal distribution (Nicholson et al., 1988). However, as explained in Section 5.1.1,

the maximum values of ø5 that can be generated with the symmetrical distributions

are very low, and therefore, such distributions are of limited scope.

In the present work, the relations of permeability and formation factor to the

statistical parameters of the network model (Equations (5.95) and (5.96)) have been

developed for values of a6 up to L.2, and therefore, are much more useful than those

based on the EMA. However, the EMA has an advantage in that it explicitly shows

the dependence of the network conductance on 7, the coordination number, whereas

such dependence is embedded in the coefficients of Equations (5.95) and (5.96).

5"4 Summary

In this chapter, parallel and serial capillar¡ and three-dimensional cubic network

models of porous media have been considered. These models are based on the concep-

tual model of porous media due to Bear and Bachmat (1966,1967). For permeability

and Klinkenberg permeability calculations, laminar flow has been assumed inside the

tubes. For formation factor calculations, the electric flow inside a tube saturated

with an electric conductor has been assumed to be given by Ohm's law. The tube

diameters of the models are distributed according to the lognormal distribution and

the tube lengths are constant.

An analysis has been performed to determine the sizes of the models that qualify

e-q RF',Vs v¡if.h tecnent fn nerrnc:hilif.r.r fnrmef inn fr¡f^" Illi-Lo-ho'o -^o€Ê^ion* o-J

porosity. It has been shown that out of these four properties, it is sufrcient to find
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the REV size of a model with respect to permeability only. A L2 x 12 x 12 size with

50 realizations has been shown to be a satisfactory representative size for the network

model. Such sizes have also been determined for the parallel and serial capillary

models.

Based on the integral expressions developed in Chapter 3 (Equations (3.26), (3.41)

and (3.a7)), closed form explicit relations between the permeability Klinkenberg

permeability and formation factor of the parallel and serial capillary models and the

statistical parameters characterizing their pore space have been derived. With the

help of nonlinear regression, similar relations, based on the integral expressions, have

been developed for the permeability and formation factor of the three-dimensional

cubic network model. It is observed that the absence of the networking effect results

in opposite behaviors of the parallel and serial capillary models, whereas, its presence

in the network model results in an intermediate behavior representative of the real

porous media.

The relations of permeability and formation factor of network model to the

statistical parameters characterizing its pore structure, have been developed for

values of ø5 up to 7.2. The predictions of similar relations based on the effective-

medium theory (Nicholson et al., 1988) are found to deteriorate for a6 ) 0.25 in the

case of permeability and for a6 > 0.3 in the case of formation factor.
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Fig. 5.9. Predicted and observed permeabilities of a parallel capillary model as functions of ø6.
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Fig. 5.11. Predicted and observed permeabilities of a e€rial capillary model as functions of ø5.
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Fig. 5.13. Predicted and observed values of coefficient, Ar, as functions of ø6.
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Fig. 5.15. Predicted and observed vi¡cous terms of a network model as functions of ø6.
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Fig. 5.23. Comparison of normalized conductances for Hagen-Poiseuille flow (e : 4; same as in

permeability calculatious) calculated from the EMA by Nicholson et al. (1988) and the present

method, with the observed values.
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Fig. 5.24. Comparison of normalized conductances for electric flow (e : 2; same as in formation

factor calculations) calculated from the EMA by Nicholson eü al. (1988) and the present method,

with the observed values.
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CETAPT'ÐR, 6

AN TUT''T,TNE OF' A MÐT'E{ODOT,TGV E OTT,

fuIODÐT,TNG PTR,E STR,{JCT'UR,Ð

In this chapter, a methodology to model the pore structure of homogeneous porous

media, based on the explicit relations of the transport properties of the models to

their statistical parameters derived in Chapter 5, is outlined. The main aim of this

chapter is to explain the philosophy behind this methodology. A preliminary study

based on this methodology is conducted on five sandstone and one limestone rock

samples, all of which are selected from the existing literature. The methodology is

used to predict the mercury drainage capillary pressure curves of five of the samples

and the oil-brine drainage capillary pressure curve of one sample. All the three pore

structure models are considered and a comparison is made between their predictions

and the experimentally observed curves. The limitations of the models are identified

and recommendations for improving the accuracy of their predictions are presented.

Section 6.1 briefly explains the philosophy behind the methodology. The outline of

the methodology is presented in Section 6.2. Section 6.3 summarizes the algorithm

employed for determining the drainage capillary pressure curve of the models. Finall¡

the results are discussed in Section 6.4.

6.L Fhilosophy

As mentioned in Chapter 1, if ¡/ statistical parameters are required to describe a

porous medium according to a given pore structure model and if .ð{ transport proper-

ties can be experimentally determined on a sample of the porous medium, then based
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on the explicit relations of the transport properties of the model to the statistical

parameters, .ðy' simultaneous nonlinear algebraic equations involving the statistical

parameters can be written. These equations can then be inverted to determine the

values of the y'{ statistical parameters. Once the statistical parameters are known,

complex properties such as capillary pressure curves can be predicted explicitly or

with the help of computer simulations. Such an exercise can serve two broad pur-

poses. One, the experiments for measuring transport properties (e.g., permeabilitg

formation factor) which are input to the method are simple and less time consuming

as compared to those for the complex properties such as capillary pressure curves;

therefore the method can provide a means for quick evaluatìon of such properties.

The method can also be employed for the purpose of confirming the experimentally

measured values of the complex properties. Two, the exercise may throw some light on

the dependence of the properties on pore structure and their relation to one another.

6"2 Outline of the h¡lethodology

6.2.L Froblem Formulation

The relations of the transport properties of the parallel capillary, serial capillary and

network models to the statistical parameters characterizing their pore space, derived

in the previous chapter, may be represented as follows:

lq: kt(pu, oo, z, {r) ,

F : F (pt, oo, r, €t)

(6. 1)

(6.2)

and

b = b(pd, ot, r,,€t) ,, (6.3)

r¡¡hcre þ, F rn¿l Ä rre the nerrnerhiìitw fnrrnrtinn f¡¡fnr ¡nrl Klinþpnhoro nnefF¡ienf

respectively, which are the macroscopic transport properties of the models, and ¡.ra,
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06, r and {1 are the mean tube diameter, standard deviation of the tube diameter

distribution, non-dimensionalized mean tube length (defined in Section 5.1.1) and

areosity (also defined in Section 5.1.1), respectively, which are the statistical para-

meters characterizing the void space of the models. It may be pointed out here that an

explicit relation between the Klinkenberg coefficient and the statistical parameters of

the network model, in the form of Equation (6.3), has not been found. The procedure

used in place of this relation for the network model is discussed in the next section.

The above relations may be recast using a relation between the areosity and

other parameters. For the network model this relation is determined as follows: The

areosity,

Ê-- 't-'frt,, _ 
4n, f=l

With the evaluation of the summation

€,-+ Q4 + o:;) , (6.5)

where 1ú¡ - Nl N{1A1, for the network model. Equation (6.5) is also true for the

parallel and serial capillary models. However, for the parallel capillary model, I[¡ is

equal Lo N7f A1, and for the serial capillary model, 1ü¿ is equal to N"nf At. Here.ðy'a

is the total number of the tubes in the parallel capillary model (Figure 5.1) and fl"r,

is the total number of flow paths in the serial capillary model (Figure 5.2). Wiih the

introduction of Equation (6.5), the functional forms represented by Equations (6.1),

(6.2) and (6.3) modify to

(6.6)

(6.7)

(6.4)

kt = kt(Fs,, ot, rrN,+) ,

F - F (lto, ot, r, Nt)

b: b([¿0, o6¡ r¡/{¿) .
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If. kL, F and ó are known, then the above relations reduce to three simultaneous

algebraic equations with ¡16, a6¡ I and .ð{¿ as the unknowns. To achieve closure,

one more equation is required. The relation between porosity and the statistical

parameters of a model can be used for this purpose. For the network model, tbis

relation can be found from the following expression for porosity:

(6.e)

where NT , NT and l{fl are the number of tubes in the k : L,2,3 directions, respec-

tively, given by

ó : #, r,Ë r;,s¡ * Th,Y, uls¡ * T...i*Ë rt r,,

/ú,t = (¡rf + 1) 
^d 

¡úf ,

NT : (M + t) ¡úf ¡rlP

ó _ 3"# 
0rro + o3) ,

NI N{ _ ¡ri ¡ri _ N{ Nl
Az As

(6.10)

(6.11)

and

16 = (¡rf + 1)/úlP ¡ç . (6.12)

Here NrP, .Nf and /úf are the number of columns, ro,ffs and tiers in the network model

(Figure 5.3). Because all the tubes are of the same length and the diameters of the

tubes in the three principal directions possess the same distribution, Equation (6.9)

reduces to

(6.13)

where

Nt-
A1

(6.14)

(IúrP + 1)pg (¡rj" + 1)ps (Nf + 1)ps
Lt Lz
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The parallel and serial capillary models have no tubes in the directions lc :2 and 3,

therefore the relation between the porosity and the statistical parameters for these

models is:

ó-!:P04 + oÐ. (6.16)

If the experimental values of Ë1, F, å and þ of a porous medium are known, then

Equations (6.6), (6.7), (6.8) and (6.13) (Equations (6.6), (6.7), (6.8) and (6.16) for

the parallel and serial capillary models) can be solved úd po,, ø6, r and -ð[¿ can be

found.

6,2.2 Solution of the Nonlinear .A.lgebraic Equations

Ordinarily, an iterative scheme based on the Newton-R¿phson method (Press et al.,

1986, pp. 269) can be used to solve a set of nonlinear algebraic equations in which the

number of unknowns is equal to the number of equations. In the present study two

major difficulties were encountered when this scheme rlras employed to solve the sets of

nonlinear equations relating the transport properties of the models to their statistical

parameters. One, because the equations involve higher order terms (up to twelfth

power), the solutions only converged when proper initial guesses were provided, and

two, for some samples the solutions did not converge within a satisfactory tolerance.

Keeping in view the simplicity of the pore structure of the models as compared to

the complex pore structure of the real porous media, the second difficulty can be

expected and should not lead to misinterpretations. It is expected that it may not be

possible to find a network model which can exactly reproduce all the properties of a

real porous medium sample. The usefulness of the methodology can only be judged

if real porous media ca¡ be realistically simulated with the'help of pore structure

models.

m- ^--^--^-^ ¿L^ -L ^-¿:--^l l:æ---l¿:^- - -^l:.c^J -^l--f:-- --L^-- L--^lIU (.)V€IUUrIIÚ ùIlC ¡IUUVC IIICI1I,I()I-IUU (lrlUçU¡ü¡Cör ¿ IrlUU.tllULI üUtUùrLrII tU¡l€llle U¡tSgU

on the Newton-Raphson method was used. This solution scheme although not exact,
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provides a means for inverting the equations in a meaningful manner. For the parallel

capillary model with symmetrical tube diameter distributions (e.g, uniform, normal

and logistic), the set of nonlinear algebraic equations represented by Equations (6.6),

(6.7) and (6.16) can be solved analytically if one of the four unknown parameters is

treated as a constant. If.l{¡ is treated as constant, the solution possesses definite

upper and lower bounds on .ð{¿ for real and positive values of pt, ø5 and r. These

bounds a^re given in Table 6.1. A value of .f/¿ was selected from this range and

Equations (6.6), (6.7) and (6.16) were solved. The values of ps, o5, r a¡fl /r/¡ (the

selected value of //¿) found in this way were substituted in Equation (6.8) for å and

the corresponding residue was found. By an iterative procedure, an appropriate value

of lú¿ was found which resulted in minimum residue in Equation (6.8) and lay in the

range of 1{¿ for real and positive values of 1td, o6 and r.

For all the three models with lognormal tube diameter distributions, an itera-

tive scheme based on the Newton-Raphson method (Press et al., 1988, pp 269) was

employed to solve the equations. The values of the statistical parameters for the

parallel capillary model with symmetrical tube diameter distributions (the analytical

solutions discussed in the previous paragraph) were used as initial guesses in this

scheme. This scheme may be summarized as follows: For a given value of i[¡, Equa-

tions (6.6), (6.7) and (6.13) (Equations (6.6), (6.7) and (6.16)) for the parallel and

serial capillary models) were solved using the Newton-Raphson method. The values

of. ¡.t6 o5, r and ,n/¡ (the selected value of .n/¡) found in this way were then substituted

in Equation (6.8) for ô and the corresponding residue was found. This procedure was

repeated until such a value of "ð/¡ was found which resulted in minimum residue in

Equation (6.8) and real and positive values of pt,, ø5 and r. 'As pointed out earlier,

an explicit relation between the Klinkenberg coefficient ó and the statistical para-

me¿r,ers of 'r,he network model, in the form of Equation (6.3) has not been found. For

this model, ó in the above scheme was found with the help of the network theory.
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6.2.3 Computer Simulations of the Models

For given values of the transport properties kt, F, ó and þ of a sample of porous

medium, the corresponding values of the statistical parameters p61 o6t r and / were

determined employing the procedure explained in the previous section. With the

statistical parameters known, computer simulations of the models were generated on

a SUN SPARC station 2. The physical features of the models have already been

discussed in Section 5.1. The diameters of the tubes in the models were distributed

according to a lognormal distribution and the tube lengths were kept constant.

The computer simulations of the models were employed for predicting the mercury

drainage capillary pressure curves for four sandstone and one limestone samples, and

the oil-brine drainage capillary pressure curve of one sandstone sample. All the six

samples have been selected from the existing literature. In the experimental mercury

drainage capillary pressure curves vacuum is the wetting phase, therefore for these

samples vacuum is assumed to be the wetting phase in the simulations.

To find the size of a model so that the predicted capillary pressure curve is a

satisfactory representative, the procedure explained in Section 5.1.2 was followed.

The corresponding results for the network model are illustrated in Figure 6.1. This

figure show that a 12 x 72 x 72 network is a satisfactory size for predicting the

capillary pressure curves. Similarly, 13000 tubes for the parallel capillary model and

750 channels with 750 tubes in each channel for the serial capillary model were found

to be the representative sizes for these models. A single realization was employed for

all the three models. The procedure employed for evaluating the drainage capillary

pressure curves of the models is presented next.

6.3 Ðnainage Capillary Fressure C¡¡rve fulodelíng

To evaluate the drainage mercury capillary pressure curve of a model, complete

vacuum is assumed to exist inside the parallelepiped-shaped REV. The mercury is
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allowed to penetrate the REV from the face normal to the negative k : I direction

and the remaining five faces are assumed to be sealed. Two conditions must be met

before mercury can enter a tube in a model: one, the Washburn criterion (Washburn,

I92I) must be satisfied and, two, the tube must be in contact with the bulk mercury.

The Washburn condition relates the capillary pressure, p", to the diameter of the

tube, ó, in the form

4 p cos0
(6.17)Pc: -

where p is the surface tension of the mercury and 0 is the contact angle. The Washburn

criterion assumes a piston-type displacement. Initially, the tube (tubes) with the

largest diameter in the face in direct contact with the mercury is (are) found and

filled with mercury. The freshly filled junctions at the ends of the invaded tubes are

stored as potential penetration sites. All the tubes connected to a filled junction

which satisfy the Washburn criterion at the given mercury pressure are then filled

with mercury. If a junction has already been filled with mercury, then the advancing

meniscus is assumed to immediately coalesce with the mercury in the junction. The

process of filling the junctions and the tubes is continued until the mercury front

is incapable of advancing at the given capillary pressure. The pore volume invaded

by the mercury is calculated and this gives the first point on the predicted capillary

pressure curve. The pressure is raised in small increments and the process is repeated

to determine the other points on the curve.

For evaluating the oil-brine drainage capillary pressure curve of a model, the

parallelepiped-shaped REV of the model is assumed to be completely saturated with

the brine. The oil is allowed to penetrate from the face normal to the negative k :7

direction and the brine is allowed to leave from the face norma^l to the positive k - I

direction, and the remaining four faces are sealed. Initially, the brine inside the REV

is assumed to be in continuous contact with a brine sink at the downstream side
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of the REV. This assumption is equivalent to the presence of a porous plate in the

conventional methods for measuring the oil-brine capillary pressure curve of a real

porous medium sample. The function of the porous plate in such tests is to allow

only the brine out of the sample and restrict the oil to the sample. For oil to invade a

tube, one condition in addition to the two conditions mentioned for mercury invasion

above, must be met. This condition is that the brine inside a tube to be invaded by

the oil, must be in continuous contact with the brine sink downstream of the REV.

The brine in the tubes which is not in continuous contact with the brine sink, becomes

isolated and contributes to the irreducible wetting phase (or the brine) saturation.

A junction filled with oil is assumed to disallow continuity (through the junction)

between the brine in different tubes meeting at the junction.

6"4 Results and Ðíscussíon

In this section, the properties of the selected samples are summarized and results

of the methodology for these sample are discussed.

6.4.1 Selected Samples and Their Froperties

Six rock samples covering a wide range of permeability were selected from the existing

literature. As indicated earlier, five of them are sandstone samples and one is a

limestone sample. For five of the samples, the properties permeability, formation

factor and porosity were provided in the source. The values of the Klinkenberg

coefficient for these samples were determined from two correlations between fr1 and

ó existing in the literature. These correlations are: b:0.777 Ér-o'tn, given in Heid et

al. (1950) and reported in API F"P27 (1956), and ó : 0.697 frl o'*, found by McPhee

and Arthur (1991). In both of these correlations, air is the flowing gas (viscosity,

f¿ : 0.1817 Pa.s; gas constant, .R : 8.3143 J/kg-k; molecular weight, M:0.02897

kg/mol), ö is measured in psi, and È1 in darcys. For one sa¡dstone sample, only two
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properties (Ë1 and /) were provided in the source. For this sample ó was found as

explained above, and .F was determined from the correlation F :0.62ö-z'ts, given

by Winsauer et al. (1952). This correlation was preferred over the correlation given

by Archie (1942) (F : $-2), because as shown by Winsauer et al. (1952), their

correlation is a better representation of the experimental data from different sources

including Archie's data. Table 6.2 summarizes the properties of the samples and their

source. The values of ó determined from the two correlations mentioned above are

summarized in Table 6.3.

Ideally, complete sets of experimental data for the samples would have been more

helpful in critically examining the present methodology. However, such extensive data

for the same sample of a porous medium are rare in the literature. The correlations

used for finding the missing data have been shown to give satisfactory predictions

(McPhee and Arthur, 1991 for ó; Winsauer et al., 1952 for .F) and also, keeping in

view the preliminary nature of this investigation, use of such data in place of the

missing experimental data should be satisfactory.

For five samples, the drainage mercury capillary pressure curve data were available

from their sources in the literature. For these data, vacuum is the wetting phase

and mercury (surface tension 485 rnN/m and contact angle 130o for samples from

Thompson et al., 1987; surface tension 480 rnN/m and contact angle 140o for the

sample from Brown, 1951) is the non-wetting or invading phase. For one sample,

oil-brine drainage capillary pressure curve was available (surface tension of oil 27.4

rnN/m; oil-brine contact angle 0"; oil as the non-wetting phase and brine as the

wetting phase).

In the present work, the maximum mercury capillary pressure of the samples from

Thompson et al. (1987) is assumed to be aí zero vacuum satur¿tion. In practice, there

is always a small vacuum saturation (of the order 0.05) vrhich cannot be accessed by

the mercury even at very high pressures. The main reasons for this phenomenon are:
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One, it is very difficult to achieve L00% vacuum inside the sample before mercury

is forced into it, and therefore, the compressed air occupies a very small fraction of

the pore space even at very high mercury pressures; two, a few pores with extremely

small sizes are generally present. For example, the sizes of the majority of the pores

in the present samples are of the order of 1 x 10-6m, whereas the size of the "small'

pores are of the order of 1 x 10-sm. However, the contribution of these usmalln pores

to the overall porosity of a sample is negligible.

8.4.2 Fore Structure Modeling of the Samples

Tables 6.4, 6.5 and 6.6 contain the values of the statistical parameters ly'¿, pat oo

and r predicted by the network, serial capillary and parallel capillary models for the

six samples, respectively. Based on the data in these tables, two observations can

be made: One, the values of the parameters simulated by all the three models for

each sample (lower numbers in braces) are almost identical to the values of the para-

meters found by inverting the equations (upper numbers). Based on this observation,

it can be concluded that the change in pore structure of the models due to the

reassignment of tube diameters to achieve constant areosity (details already presented

in Section 5.1.1) is negligible. Two, the values of the parameters predicted by the

three models for the same sample vary greatly. This observation is true for all the six

samples. The values of ¡16 for all the six samples predicted by the network model are

intermediate between those predicted by the parallel and serial capillary models, the

values predicted by the parallel capillary model being the lowest and those predicted

by the serial capillary model being the highest. As discussed in the previous chapter,

the behavior of the parallel capillary model is sensitive to the upper portion of the tube

diameter distribution because a fluid (electrical) particle travels through the same

tube from the upstream to the downstream side of the REV. The model, therefore,

predicts lower values of tto. Opposite is the case with the serial capillary model in
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which a fluid (electrical) particle is assumed to traverse all tube diameter sizes when

traveling from the upstream to the downstream side of the REV, and therefore, the

conducting capacity of a flow path inside the model determined by the tube with

smallest diamete¡ in the path. This makes the serial capillary model sensitive to the

lower portion of the tube diameter distribution, thus predicting higber values of ttt.

Due to the availability of multiple flow paths to a fluid (electrical) particle at each

junction, the network model depicts an intermediate behavior.

The values of r predicted by the network model are close to one for all the six

samples whereas its values predicted by the serial capillary model lie between I.44

and 1.85, and those predicted by the parallel capillary model lie between 1.63 and

2.2. Because the parallel and serial capillary models have no tubes in the lc : 2,,3

directions, the values of r predicted by these models are considerably higher than

one. To model the porosity of a sample correctl¡ the value of r predicted by the

parallel capillary model is greater than that predicted by the serial capillary model

because the value of ¡16 predicted by the parallel capillary model is lower than that

predicted by the serial capillary model.

Tables 6.7, 6.8 and 6.9 contain the values of fr1, F, S and ä simulated by the three

models corresponding to the six samples (the upper numbers). These tables also

include the percent errors of the simulated values with respect to the experimental

values (or valuesgiven bycorrelations)given in Tables 6.2 and 6.3 (the lowernumbers).

The errors in simulated values of the kt, F and d are very small thus confirming

the earlier statement about the reassignment of tube diameters to achieve constant

areosity. The errors in the simulated values of ö with respect to the values given in

Table 6.3 are relatively higher than those for k1, r' and {, the Ìnaximum being for the

limestone sample. Keeping in view the complexity of the pore structure of real porous

media as compared to that of the idealized models, for the sands'r,one sarnples these

errors are within satisfactory limits. The results for the limestone sample indicate
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that the present procedure for modeling the pore structure is not appropriate for

vuggy porous media such as limestones. This is because the present models ignore

the vugs present in limestones.

It is appropriate at this point to mention about the robustness and uniqueness of

the solution scheme presented in Section 6.2.2. It was found that for all the samples

with given values of. lc1, F, b and /, the final solutions were independent of the initial

guesses. Keeping in view the preliminary nature of this methodology at the present

stage, it is sufficient to show that the solution scheme is robust and unique. However,

for general application, the uniqueness and robustness of the solution has be checked

more stringently. One approximate way to accomplish this objective is: For a given

sample the value of one of the input properties (lrt, F, ä and d) -uy be changed by

a small fraction and if the final solutions do not change significantly, the scheme can

be said to be approximately unique and robust.

6.4.3 Drainage Capillary Pressure Curve of the Samples

Figures 6.2 through 6.6 illustrate the comparisons between the experimentally

observed mercury drainage capillary pressure curves and the ones predicted by the

models for four sandstone samples and the limestone sample. Except for the Berea

sandstone and Austin Chalk limestone samples, all the three models satisfactorily

predict the plateau portions of the capillary pressure curves.

For the limestone sample, a physical reason is available for the shape of the

predicted curves. As shown by Wardlaw et al. (1987), the shape of the capillary

pressure curves is influenced by the existence of pores (of larger size, also called vugs)

and throats (of smaller size) and correlations between the sizes of the neighboring

pores and throats, in addition to the pore and throat size distributions. It was shown

by these workers that a high degree of pore-throat size correlation is present in the

limestones, and consequently the slope of the drainage capillary pressure curve for
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such rock samples may change very significantly near the zero mercury saturation

point (or 100 percent vacuum saturation). Ar mentioned earlier, the present models

ignore vugs. Also, the diameters are randomly assigned to the tubes of the models

in which case no correlation exists between the neighboring tubes. These are the

prime reasons for the inability of the present models to accurately reproduce the

behavior of the limestones. These conclusions can also be corroborated with the work

of Ferrand and Celia (1992) who studied the effect of different types of heterogeneity

on the drainage capillary pressure curves of three-dimensional network models. The

authors have shown that random network models are only suitable for homogeneous

porous media and the shape of the drainage capillary pressure curves of such models

is flat in the plateau portion. However, when heterogeneities are introduced ìn the

network model, the effective drainage capillary pressure curve has a plateau region

very similar the one in the experimentally determined curve on the limestone sample

of Figure 6.6.

Wardlaw et al. (1987) found that the pore-throat size correlation was very

sm.all for the sandstone samples. However, at high capillary pressure, this correlation

increases. This explains the good agreement between the experimentally observed

and predicted capillary pressure curves in the plateau region and disagreement around

zero vacuum saturation for the other sa¡dstone samples. Berea being a sandstone

sample, one would have expected results similar to those for the other sandstone

samples. The probable reasons for such a behavior could either be the presence of

non-uniformities in the pore structure which the models are unable to capture, or

imperfect measurements of the properties of the sample.

Figure 6.7 illustrates the comparison between the experimentally observed oil-

brine drainage capillary pressure curve and the similar curves predicted by the models

for the sandstone sample from Longeron et al. (1989). As can be observed from the

figure, all the three models satisfactorily predict the plateau portion of the curve.
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Due to the absence of the "networking effect", the parallel and serial capillary models

cannot account for the trapping of the wetting phase. The irreducible brine satu-

ration predicted by the network model is 0.20, whereas 0.28 is the experimentally

observed value. The influence of the pore-throat size correlations on the predicted

capillary pressure curve, discussed in the previous paragraph, is accentuated when oil

and water is used in place of mercury and vacuum. This is due to the isolation of the

wetting phase mentioned earlier. This explains the larger disagreement between the

experimentally observed and predicted oil-brine capillary pressure curve for this sam-

ple as compared to the disagreements between the observed and predicted mercury

drainage capillary pressure curves for other sandstone samples near the irreducible

wetting phase saturation (zero vacuum saturation for the mercury capillary pressure

curves).

It is interesting to note that although the three models predict significantly

different values of the pore structure parameters for the same sample, still the capillary

pressure curves predicted by the models for the same sample do not vary apprecia-

bly. This indicates that all the three models are capable of qualitatively modeling the

pore structure of a sample. However, as can be observed from the figures, the network

model gives the best predictions out of the three models. Also, as indicated earlier,

only the network model can account for the irreducible wetting phase saturations in

oil-b¡ine capillary pressure curves.

The above results indicate that the present methodolory to model the pore struc-

ture is fundamentally correct. However, the models used in this methodolory are not

appropriate for modeling the pore structure of nonhomogeneous porolrs media such

as limestones. Also, for homogeneous porous media encountered in practice such as

sandstones, additional features need to be incorporated in the models so that their

predictions of the capillary pressure curve are accurate for the complete saturatio''

range. Some of these features are the assignment of volume to the junctions (in the
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present models, no volume is assigned to the junctions) and the incorporation of pore-

throat size correlations. A detailed discussion of these and other recommendations is

presented in Chapter 7.

6,õ Sunennary

In this chapter, a methodology for modeling the pore structure of homogeneous

porous media has been outlined. This methodology is based on the explicit relations of

the transport properties (e.g., permeabilitg formation factor Klinkenberg coefficient

and porosity) of the parallel capillary, serial capillary and network models to the

statistical parameters describing their pore space, developed in Chapter 5. A prelimi-

nary study of this methodology has been conducted with the help of five sandstone

samples and one limestone sample. For these samples, the drainage capillary pressure

curves predicted by the methodology have been compared to the experimentallyobser-

ved ones. The limitations of the models have been identified and recommendation to

improve their predictions have been suggested.

For the same sample, the statistical parameters predicted by the three models

vary significantly. The parallel and serial capillary models predict the lowest and

highest values of the mean tube diameter, respectivelg whereas the network model

predicts an intermediate value for this parameter. All the three models satisfactorily

simulated the permeability, formation factor, Klinkenberg coefficient and porosity of

the sandstone samples. However, the errors in the simulated value of the Klinkenberg

coefficient were significantly larger for the limestone sample.

The present models are found to be incapable of accurately predicting the capil-

lary pressure curves for non-uniform porous media such as limestones. Except for

one sandstone sample, all three models satisfactorily predicted the plateau por-

tion of the drainage capillary pressure curves of the remaining sandstone samples,

the predictions of the network model being the best. However, the models do not
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accurately predict the capillary pressure curve of these samples near the irreducible

wetting phase saturation. Incorporation of features such as the assignment of volume

to the junctions and size correlations between the neighboring tubes are suggested

to improve the predictions of the models near the irreducible wetting phase satu-

ration for the sandstone samples.
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Table 6.1. The bounds on.ðü¿ for real and positive roots of the set of nonlinear equations for the

parallel capillary model with symmetrical tube diameter distributions.

Tube Diameter Distribution Lower Bound on .lü¡ Upper Bound on .ð/¿

Uniform 0.125 Co'5
r Fr.5 Èr

0.28125 do.5
r Fr.s ht

Normal 0.12s do's
n Fr'5 Èr

o.g7s óo's
zr F'r'5 Èr

Logistic 0.125 do'5
r .F'l'5 frr

0.75 do'5
ur f'r'5 Èr
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Table 6.2. Properties of the rock samples employed in the preeent work together with their BouÌces

in the literature.

# Sample Source Èt (*') F ö ö (Pa)

1 Sandstone Longeron et al.

(1e8e)

0.040 x 10-12 22.100 0.184 NP+

2 Berea

Sandstone

Thompson et al.

(1e87)

0.121 x 10-12 16.129 0.205 NP+

3 Red Navajo

Sandstone

Thompson et al.

(1e87)

I.123 x 10-12 14.080 0.230 NP+

4 Boise Marsing I

Sandstone

Thompson et al.

(1e87)

1.259 x 10-12 20.325 0.239 NP+

5 Sandstone Brown

(1e51)

1.411 x 10-12 9.500++ 0.281 NP+

6 Austin Chalk

Limestone

Thompson et al.

(1e8i)

3.109 x 10-15 15.873 0.288 NP+

*NP-Not Provided.

++Bxperimental value not provided; found from Winsauer et al. (1952) correlation.
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Table 6.3. The values of the Klinkenberg coefficient, å, of the samples, determined from Eeid et al.

(1950) and McPhee and .A.rthur (1991) regressions.

# Sample Source

ô (Pa)

Heid et al.

(1e50)

McPhee & Arthur

(1ee1)

I Sandstone Longeron et al.

(1e8e)

18700 16248

2 Berea

Sandstone

Thompson et al.

(1e87)

12127 10649

3 Red Navajo

Sandstone

Thompson et al.

(1e87)

5092 4574

4 Boise Marsing 1

Sandstone

Thompson et al.

(1e87)

4870 4379

ð Sandstone Brown

(1e51)

4658 4794

6 Austin Chalk

Limestone

Thompson et al.

(1e87)

50759 42880
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Table 6.4. The statistical parameters of the samples predicted by the network model.

* V.luo determined by inverting the equations (upper values).

t VAu* present in the computer simulations of the model (lower values in the braces).

# Sample Source

Statistical Parameters

N¡ (Ilmz) Ft (P'm) 06 (pri.) T

I Sandstone Longeron

et al. (1989)

2.400 x 10s 5.1553+

(s.rsaz¡f

2.2470

(2.2772)

1.029

(1.02e)

2 Berea

Sandstone

Thompson

et aJ. (87)

1.340 x 10s 7.8125

(7.8382)

1.6507

(1.6481)

1.018

(1.018)

3 Red Navajo

Sandstone

Thompson

et al. (1987)

1.891 x 108 21.8963

(22.0250)

7.8716

(7.8551)

0.953

(0.e53)

4 Boise Marsing 1

Sandstone

Thompson

et al. (1987)

9.500 x 107 27.7536

(28.0805)

16.77r20

(16.6e55)

1.015

1.015

5 Sandstone Brown

(1e51)

3.000 x 108 20.2192

(20.324e)

6.5540

(6.5414)

0.879

(0.87e)

6 Austin Chalk

Limestone

Thompson

et al. (1987)

6.200 x 1010 t.2170

(1.22e6)

0.6790

(0.6763)

1.016

(1.016)
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Table 6.5. The statistical parameters of the samples predicted by the serial capillary model.

* Vduo determined by inverting the equations (upper values).

t VAuo present in the computer simulations of the model (lower valueq in the braces).
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JL'tf Sample Source

Statistical Parameters

N¡ (tlmz) pa 0m) ot (pm) T

1 S¿ndstone Longeron

et al. (1989)

2.000 x 10e 8.0887+

(a.r¿zs)f

2.8872

(2.88e5)

1.586

(1.586)

2 Berea

Sandstone

Thompson

et al. (1987)

1.500 x 10e 10.1331

(10.16e7)

2.7407L

(2.74s3)

1.579

(1.57e)

3 Red Navajo

Sandstone

Thompson

et al. (1987)

2.000 x 108 29.6687

(2e.8088)

8.5155

(8.53e0)

1.536

(1.536)

4 Boise Marsing 1

Sandstone

Thompson

et al. (1987)

1.000 x 108 38.8236

(3e.0212)

rr.7075

(11.7353)

1.852

(1.852)

5 Sandstone Brown

( 1e51 )

3.500 x 108 25.8149

(25.e17e)

6.5767

(6.6002)

T.441

(1.441)

6 Austin Chalk

Limestone

Thompson

et al. (1987)

6.000 x 1010 r.777r

(1.7836)

0.5733

(0.5742)

r.754

(1.754)



Table 6.6. The statistical parameters of the eamples predicted by the parallel capillary model.

* Vuluo determined by inverting the equations (upper values).

t Vuluo present in the computer simulations of the model (lower values in the braces).
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# Sample Source

Statistical Parameters

N¡ (Ilmz) pa (pm) a6 (pm) T

1 Sandstone Longeron

et al. (1989)

6.000 x 10e 4.1950+

(4.20$)f

r.3226

(1.328)

2.016

(2.016)

2 Berea

Sandstone

Thompson

et al. (1987)

2.500 x 10e 7.4963

(7.5032)

1.1130

(1.1 158)

1.818

(1.818)

3 Red Navajo

Sandstone

Thompson

et al. (1987)

5.000 x 108 17.0760

(17.112e)

5.8319

(5.8583)

1.800

(1.800)

4 Boise Marsing 1

Sandstone

Thompson

et al. (1987)

2.000 x 108 25.7099

(25.7431)

5.3718

(5.3877)

2.204

(2.204)

5 Sandstone Brown

(1e5i)

6.300 x 10E 18.1527

(18.178e)

4.2194

(4.2330)

1.634

(1.634)

6 Austin Chalk

Limestone

Thompson

et al. (1987)

2.000 x 1011 0.8573

(0.8601)

0.3482

(0.3501)

2.138

(2.138)



Table 6.7. The transport properties of the computer simulations of the netwo¡k model for the various

samples.

# Sample Source

Properties of the Model

&r (*') F ó ó (N/m2)

I Sandstone Longeron et

al. (1e8e)

0.418 x 10-13'

4.6**

21.58

-2.3

0.186

2.t

16517.2

-1I.7;1.2t

2 Berea

Sandstone

Thompson et

al. (1e87)

0.L24 x 10-12

2.0

15.99

-2.0

0.206

0.6

7t224.8

-7.4; 5.7

3 Red Navajo

Sandstone

Thompson et

al. (1e87)

0.1i6 x 10-1r

-3.6

r3.83

-1.8

0.232

1.0

3924.2

-22.9; -14.2

4 B. Marsing 1

Sandstone

Thompson et

al. (1987)

0.136 X

7.9

10-11 r9.53

-8.1

0.243

1.5

3041.8

-37.5; -30.5

5 Sandstone Brown

(1e51)

0.146 x 10-11

3.2

9.35

-1.5

0.2834

0.9

4268.0

-8.4; 1.8

6 Austin Chalk

Limestone

Thompson et

al. (1e87)

0.332 X

6.9

10-14 15.32

3.4

0.292

r.4

69318.5

36.6; 61.7

nValues of the properties of the computer eimulations of the model (upper numbers).

o*Percent errors in the propertiee of the model with respect to the experimentally obeerved valuee

given in Tables 6.2 and 6.3 (lower numbers).

tP"r."ot errors in å with respect to the values predicted by the Heid et al. and McPhee and Arthur

regressions given in Table 6.3.
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Table 6.8. The transport properties of the computer simulations of the serial capillary model for the

various samples.

# Sample Source

Properties of the Model

&t (*') F ó ó (N/m'?)

1 Sandstone Longeron et

al. (1e8e)

0.425 x 10-13*

6.2""

2r.82

-1.3

0.186

1.1

18128.1

-3.1;11.6t

2 Berea

Sandstone

Thompson et

al. (1e87)

0.L22 x 10-12

-0.7

16.35

0.0

0.202

-1.5

L2037.8

-0.7;11.5

3 Red Navajo

Sandstone

Thompson et

al. (1987)

0.116 x 10-11

3.6

13.94

-1.0

0.232

0.9

4322.r

-15.1;-5.5

4 B. Marsing 1

Sandstone

Thompson et

al. (1e87)

0.131 X

4.t

10-1r 20.86

-t.2

0.24L

1.0

3422.r

-29.772r.8

5 Sandstone Brown

(1e51)

0.145 x 10-11

2.7

9.41

2.7

0.283

0.8

4629.53

-0.6;10.4

6 Austin Chalk

Limestone

Thompson et

al. (1e87)

0.319 X

2.5

10-14 15.16

0.9

0.285

-1.1

74447.4

46.7;73.6

*Values of the properties of the computer simulations of the model (upper numbers).

**Percent errors in the properties of the model with respect to the experimentally observed values

given in Tables 6.2 and 6.3 (lower numbers).

f P".."nt errors in å with respect to the values predicted by the Heid et al. and McPhee and Arthu¡

regressions given in Table 6.3.
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Table 6.9. The transport properties of the computer simulations of the parallel capillary model for

the various samples.

*Values of the properties of the computer simulations of the model (upper numbers).

**Percent errors in the properties of the model with respect to the experimentally observed values

given in Tables 6.2 and 6.3 (lower numbers).

tP".""ot errors in ó with respect to the values predicted by ühe Heid et al. and McPhee and Arthur

regressions given in Table 6.3.

JL7f Sample Source

Properties of the Model

Èr (*') F ó ô (N/m'?)

1 Sandstone Longeron et

al. (1e8e)

0.404 x 10-13o

-0.9*o

22.02

-0.4

0.185

0.4

16055.5

-14.1; -1.21

2 Berea

Sandstone

Thompson et

al. (1e87)

0.122 x 10-12

-0.5

16.09

0.2

0.205

0.2

11206.5

-7.6;5.23

3 Red Navajo

Sandstone

Thompson et

al. (1987)

0.114 X

L.2

10-r1 14.07

-0.5

0.231

0.5

3750.2

-26.3; -18.0

4 B. Marsing 1

Sandstone

Thompson et

al. (1e87)

0.126 X

0.5

10-11 20.28

-0.2

0.240

0.2

3065.8

-37.03; -29.18

Ð Sandstone Brown

(1e51 )

0.L42 X

0.6

10-11 9.48

-0.2

0.2816

0.3

4212.8

-9.6; 0.4

6 Austin Chatk

Limestone

Thompson et

al. (1e87)

0.315 X

I.4

10-14 15.78

-0.5

0.290

0.5

65470.0

29.0;52.7
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Sample: BROWN
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Sahration

Fig. 6.1. The dependence of the shape of the mercury drainage capillary pressure curve on the size

of the network. These are the predicted curves for the Brown (1951) sample.
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Sample:BEREA
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Network Model Prediction 
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Fig. 6.2. Predicted and obs€rved drainage mercury capillary pressure curves of the Berea sandstone

sample from Thompson et al. (1987). Vacuum is the wetting pha-se.
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Sample: RED NAVAJO

Observd {l-
Network Model Prediction 

-Suial Caillary Model Prediction ---'
Parallel Capillary Model Prediction "*"
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Fig. 6.3. Predicted and observed drainage mercury capillary press¡ure curvea of the Red Navajo

sandstone sample from Thompeon et al. (1987). Vacuum is the wetting'phase.
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Sample:BOISEMARSING I
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Fig. 6.4. Predicted and observed drainage mercury capillary pressure curvea of the Bois€ Marsing 1

s¿ndstone sample from Thompson et al. (1987). Vacuum is the wetting,phase.
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Sample:BROWN
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Fig. 6.5. Predicted and observed drainage mercury capillary pressure curvea of the ean&tone sample

from Brown (1951). Vacuum is the wetting phas".

181



Sample: AUSTINCHALK
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Fig. 6.6. Predicted and observed drainage mercury capillary pressure curves of the Austin Chalk

limestone sample from Thompson et al. (1987). Vacuum is the wettingphase.
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Sample: lnngeron
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Fig. 6.?. Predicted and obs€rved drainage oil-brine capillary pressure curve of the sandstone sample

from Longeron et al. (1989). The trapping of the wetting phase (brine) is taken into account.
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CF{,&PT'ER. 7

CONCT,TJSTONS

In this chapter, the accomplishments of the present research are summarized and

recommendations are given for future research.

7.L .A,ccomplishrnents of the Fresent Research

In the present research, the volume averaging method has been employed to study

the relations of the macroscopic transport properties permeability, formation factor

and Klinkenberg permeability to various features of pore structure. Explicit relations

between these properties and the microscopic pore structure parameters of parallel

capillary, serial capillary and three-dimensional cubic network models of porous media

have been derived. The dependence of the tortuosity of porous media on various terms

in the averaged conservation equations has been studied. A methodology to model the

pore structure and to predict the drainage capillary pressure curves of homogeneous

porous media has been outlined. A preliminary study based on this methodology has

been conducted on real porous media samples. The present research, briefly outlined

above, can be divided into four major parts. The main accomplishments of each part

and the conclusions supported by it, are presented below:

7.X.1. Ðevelopment of Integral Expressions for Macroscopic Tbansport

Froperties

Explicit integral expressions have been derived for the macroscopic transport proper-

ties permeability, formation factor and Klinkenberg permeability of homogeneous

porous media. This has been accomplished by comparing the appropriate volume
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averaged microscopic conservation equations (mass and momentum for permea-

bility and Klinkenberg permeability, and electric charge for formation factor) to the

corresponding phenomenological laws (Darcy's law for permeability and Klinkenberg

permeability, and Ohm's law at macroscopic level for the formation factor). The

expression for each property consists of two terms which involve integrals of the

related microscopic field variables. These integrals contain the information about the

influence of the pore structure on flow, uhidden' in the macroscopic properties.

The derivation of the integral expression for permeability (and consequently the

derivation of the integral expression for Klinkenberg permeability) has been presented

in the perspective of the previously reported literature. The integral expression for

formation factor is an entirely new contribution. These integral expressions form the

basis of the present research. Unlike the previous works (O'Neill and Gray, 1976;

Hassanizadeh and Gray, 1980; Whitaker, 1986a), explicit interpretations is given to

diferent terms in these expressions.

To derive the integral expressions, a property of the pore structure, termed

uareosity' in the present study, has been introduced. The areosity in a direction

denotes the average of the ratios of the effective cross-sectional areas open to flow

and the corresponding bulk areas along that direction, over an REV. Because the

effective are¿¡s depend on the local microscopic flow direction, the areosity is different

from the areal porosity and therefore from the porosity. The integral expressions axe

only valid when the effective area open to flow is constant along the macroscopic flow

direction.

7.1.2 Validation and nnterpretation of the Integral Expressions

The validity of the integral expressions has been confirmed with the help of three

idealized porous media and network theory (details about network theory have been

presented in Appendix B). In general, the expressions are valid for any homogeneous
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porous medium when the assumptions concerning the flow (fluid and electric) through

it, stated in the previous section, are satisfied. The physical meanings of the viscous

and pressure terms in the integral expression for permeability, and the current and

potential terms in the integral expression for formation factor have been discussed. A

general and exact relation between the formation factor, F, and the tortuosity, z', of

a porous medium, in the form r' - F €, has been presented. Here, (1 is the areosity.

The main conclusions of this part of the present research are given below:

The effective area open to flow in the macroscopic flow direction must

remain constant in order for the predictions of the integral expressions

and the network theory to be the same. However, the effective open area

may vary in any manner in the othe¡ principal directions. Therefore the

expressions are also valid for anisotropic porous media.

The viscous and current terms represent the flow (fluid and electric) in the

macroscopic flow direction whereas the pressure and potential terms repre-

sent the flow (fluid and electric) in the directions normal to the macros-

copic flow direction. The microscopic flow in the directions normal to

the macroscopic flow direction is termed umicroscopic cross flow' in the

present study.

The magnitude of the microscopic cross flow in porous media depends on

the variation of the conductances of the tubes in the macroscopic flow

direction, and the conductances of the cross flow tubes themselves.

The microscopic cross flow can have a profound influence on the permea-

bility (formation factor) in the macroscopic flow direction.

The microscopic cross flow in porous media is directly related to tortuosity.

Tn the rlrêeên¿.ê nf tha micrnc¡nni¡ ¡rncc fl^* i. ñ^rñrrq -o.li, i- *hi.h

multiple flow paths are available to the flowing fluid (electric) particles at

1.

,

3.

4.

5.

Â
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intersections of the flow channels, the classical definition of tortuosity as

a ratio of geometric lengths is simplistic. This study suggests two types

of tortuosities, one arcounting for the sinuousness of the individual flow

channels (classic definition of tortuosity) and the other accounting for the

microscopic cross flow resulting due to the availability of multiple flow

paths.

7. In the presence of microscopic cross flow in porous media with mult'iple

flow (electric or fluid) paths, the equivalence of hydraulic and electric

tortuosities is not valid.

7.L.3 Development of Relations Between the Macroscopic Transport

Froperties and Microscopic Fore Structure Farameters

Based on the integral expressions, closed form explicit relations between the permea-

bility, Klinkenberg permeability and formation factor, and the statistical parameters

characterizing ihe pore space of parallel and serial capillary models of porous media

have been derived. With the help of nonlinear regression, similar relations, based on

the integral expressions, have also been developed for the permeability and formation

factor of a three-dimensional cubic network model. In these models, the diameters

of the tubes are assigned according to the lognormal distribution and the lengths

are kept fixed. For permeability a¡d Klinkenberg permeability calculations, fully

developed laminar flow has been assumed inside the tubes. For formation factor

calculations, the electric flow inside a tube saturated with an electric conductor has

been assumed to be given by ihe Ohm's law. A comparison has been made between

the predictions of the present relations and those developed by'Nicholson et al. (1988),

which are based on the effective-medium approximation (EMA) (Kirkpatrick, 1973).

A- ---l--,:- L^- L^^- ---f---^J ¿^ l-¿---:-^ rL^ -:-^ ^f - 
-^J^l 

¿L^¿ ^--^l:C^^ ^^ ^-fru a^uarys¡t u¡ts ucgu Pcl.lurrlrcu uu ucLclr¡lruc ùus ¡üZtr ur. úr ruur¡çr ùuôu qu<trrrrcs cr^5 óu

REV with respect to permeability, formation factor, Klinkenberg coefficient, porosity
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and capillary pressure. The main conclusions of this part of the present research are

given below:

1. The permeability of the parallel capillary model increases by approximately

five orders of magnitude when a5 changes from 0 to L.2. Here ø6 is the

coefficient of variation of the tube diameter distribution and represents the

breadth of the distribution. For the serial capillary model, the permeabi-

lity decreases by the same order of magnitude when @6 goes from 0 to 1.2.

These results are in conformity with the Scheidegger's observation (Schei-

degger, I974) according to which the parallel capillary model is sensitive to

the upper portion of the tube diameter distribution and the serial capillary

model is sensitive to the lower portion of the tube diameter distribution.

2. The permeability of the network model decreases as a6 decreases. However,

the decrease between the values of ø5 equal to 0 and 1.2 is of the same

order of magnitude. This relatively small change for the network model,

in comparison with the capillary models, is more representative of the real

porous media and is due to the presence of the networking effect in the

network model. Similar results have also been found for the formation

factor of the models.

3. In the present study the relations of permeability and formation factor of

network model to the statistical parameters characterizing its pore struc-

ture, have been developed for values of ø6 up to 1.2. The predictions of

similar relations based on the effective.medium theory (Nicholson et al.,

1988) are found to deteriorate for ao ) 0.25 in the case of permeability

and for ¿¡ ) 0.3 in the case of formation factor.

4. Out of the properties permeability, formaiion faci,or, Klinkenberg coeffi-

cient and porosity, it is sufficient to find the REV size of a model with
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respect to permeability only. A 12 x 12 x 12 size with 50 realizations is

a satisfactory representative size for the network model. Such size for the

parallel capillary model is 13 000 tubes with 100 realizations. For the serial

capillary model, the representative size is 750 x 750 (750 flow paths with

750 tubes in each path) with 100 realizations.

7.X..4 Ðevelopment of a Methodology for Modeling Fore Structure

A methodology for modeling the pore structure of homogeneous porous media has

been outlined. This methodology is based on the explicit relations of the transport

properties (e.g., permeability, formation factor and Klinkenberg coefficient) of the

parallel capillary, serial capillary and network models to the statistical parameters

describing their pore space, discussed in the previous section, and a similar relation for

porosity. A preliminary study of this methodology has been conducted with the help

of five sandstone samples and one limestone sample. For these samples, the drainage

capillary pressure curves predicted by the methodology have been compared to the

experimentally observed ones. The limitations of the models have been identified

and recommendations to improve their predictions have been suggested. The main

conclusions of this part of the present research are given below:

1. For the same sample, the statistical parameters predicted by the three

models vary significantly. The parallel and serial capillary models predict

the lowest and highest values of the mean tube diameter, respectively,

whereas the network model predicts an intermediate value for this para-

meter.

2. All the three models satisfactorily simulated the permeability, formation

factor, Klinkenberg coefficient and porosity of the sandstone samples.

However, the errors in the simulated value of the Klinkenberg coefficient
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were significantly larger for the limestone sample.

3. The present models are unable to accurately predict the capillary pressure

curves of non-uniform porous media such as limestones.

Except for one sandstone sample, all three models satisfactorily predicted

the plateau portion of the drainage capillary pressure curves of the

remaining sandstone samples, the predictions of the network model

beingthe best. However, the modelsdid not accuratelypredict the capillary

pressure curves of these samples near the irreducible wetting phase satu-

ration.

Incorporation of features such as the assignment of volume to the junctions

and size correlations between the neighboring tubes has been suggested to

improve the predictions of the models near the irreducible wetting phase

saturation for the sandstone samples. These and other recommendations

are discussed in the following section.

7"2 R ecorr¡.rnendatíons

1. In the present study, the junctions in the network model (the confluence of

two or more tubes) are assumed to possess no volume. It is recommended

that a given pore volume be assigned to the junctions (in which case they

will be called the pores). In order to carry out this effectively, the following

issues have to be addressed:

4.

ð.

What percentage of the total

pores ?

Should the sizes of pores be

density distribution or should

pore volume should be assigned to the

distributed according to a probability

they be fixed ?

190



Should the resistance offered by the pores to the flow (fluid and cur-

rent) be considered or ignored ? If it is considered, then how should

it be incorporated ?

How would the additional lengths introduced by the pores in the flow

paths affect the tortuosity of the model ?

2. The effects of correlations between the sizes of the neighboring pores and

tubes, neighboring tubes and tubes, and neighboring pores and pores on

permeability, formation factor, Klinkenberg coefficient and shape of the

drainage capillary pressure curves should be studied in detail. This study

may help in the incorporation of these correlations in the structure of the

network model in a meaningful way.

3. The algorithm used in the present study for calculating the drainage capil-

lary pressure curve of the network model considers the mercury intrusion

(oil in oil-brine curves) in one tube at a time. It is recommended that

an algorithm be developed which can simultaneously track the mercury

fronts at different locations inside the network. It is expected that the

incorporation of this suggestion will improve the accuracy of the irreducible

wetting phase saturation predicted by the model.

4. It is recommended thai algorithms be developed for calculating the relative

permeabilities and resistivity index of the models and incorporated in the

present methodology.

5. The relations of the permeability and formation factor of the network

model to its pore structure parameters, developed in the present study,

are valid for a coordination number of 6. It is recommended that simila¡

relations be developed for other coordination numbers.
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AFPÐNDÏK A

EXPT,ANATTTNS OF'' STfuTE ST'ATTST,.TCAT-, CONCEPT'S

The following explanations are based on Dagan (1989). For detailed descriptions

of these concepts, the reader is referred to Dagan (1989).

Stationar]' Random Function

If the random space function, 7(r), is defined in the domain under consideration,

that is, the joint probability density function, T(1r,12,...,7n), is known for any set

of arbitrary, but finite number of N points, rl,tz¡...,r¡ in the domain, then it is

considered stationary (or homogeneous) if it satisfies the requirement (Dagan, 1989)

?[r("' + h), t\z+ h),...,?(rN + h)] - 7[r(r'),1(rz),...,l(rN)] , (4.1)

where h is a constant but arbitrary vector and 7¡ is the value of.1 at a point, r : rr.

This means that 7 is invariant to a translation of the points 11 and depends only on

their relative positions. When 7(r) is a stationary random function in the domain

under consideration, then the domain is said to be statistically homogeneous with

respect to the function 7. This physically implies that 7 in some sense repeats itself

in the entire space.

The Ergodic Hypothesis

As explained at the beginning of Section 3.1, most of the times only a single

realization is available when applications related to fluid flow are considered. There-

fore, the statistical cha¡anteúzation of the random structure has to be based on the

given single realization. In other words, the moments such as the expected value and

vatiance, have to be found from space averages rather than ensemble averages. This

is only possible if the ergodic hypothesis is satisfied. Stated in a simple way, the
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ergodic hypothesis for a system means that all states of the ensemble are available

in each realization. As most of the times, only a single realization is available, it is

impossible to rigorously validate this hypothesis. The approach generally followed

is to assume ergodicity and derive the moments of interest by space averaging and

subsequently check the validity of the ergodic assumption. As explained by Dagan

(1989), it is generally assumed that the ergodic hypothesis holds if the variance of the

space average tends to zero. This point is further explained in Chapter 5 in which

representativeness of the pore structure models of porous media is considered .
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APPENÐTK B

NÐT'WTR,K T'F{EOR1r

A two'dimensional square network model is illustrated in Figure 8.1. The

coordinate system is chosen to be positive up and to the right. If 6¡ and ,9r de-

note the diameter and tortuous length of a tube in the network, respectively, then

the volumetric flow rate inside the tube can be calculated from the Hagen-Poiseuille

law:

u:gr(w"-pn),

where g¡ is the hydraulic conductance of the tube given by

(8.1)

(8.2)

The subscript 1 on pressure p denotes the tube number, and the subscripts ø and ó give

the location (i.e., ø for the left/bottom end and ó for the right/upper end, depending

on the direction of the tube). The assumption of Hagen-Poiseuille flow implies that

all inertial effects are ignored and that only creeping flows are considered.

The boundary conditions applied to the network are: a pressure p¡ at the left-

hand boundary; a pressure p¡ at the right-hand boundary; and zero-flow at all other

boundaries. For incompressible flow, a mass balance at each junction requires

Ðq¡¡ - o J:lr2r...rNp,, (8.3)
I

where the subscripi "I denotes the junction, the subscript / denotes the tubes meeting

at this junction, and .Np is the total number of junctions in the network. The system

of linear algebraic equations represented by Equation (8.3) can be translated into a

r61
s'= ffifi'



ïnflow

-----@

Oufflow
È!------_----&

.'l 
,
xl

Fig. 8.1. Ä regularly spaced twedimensional network model.

matrix notation:

ïG;¡l{.p¡} = {s;} , (8.4)

where p¡ is the vector of junction pressures, y; is the forcing vector representing the

imposed pressures at the left-hand and right-hand boundaries of the network, and G¡¡

is the conductance matrix. G¡¡ is a symmetric and banded matrix of order .lüp x -ð[p.

For a three-dimensional cubic network model, the bands correspond to: .[-,nff x Nf ,

I - N{, I -I,.I* 1, /+¡/i, and .I*I{rP x Nl.Here, .[ denotes the diagonal elements

of. G;¡ and /{f, /{f and /{f denote the number of columns, rows and tiers in the

network (see Figure 5.3). For computation purposes, only elements of the diagonal

and upper three bands are stored and algorithm ba.sed on Gauss elimination for such

matrices is used for inverting the equations. The details of the algorithm are given in

Bathe (1982) (pp. a3a). Once the pressures at the junctions are known, the flow rate

in each tube can be calculated. A permeability for the network can then be calculated

from Darcy's law given by Equation (3.15).

2I0



For the formation factor calculations, the same approach is followed for calculating

the electric potentials at the junctions. The current flow inside a tube filled with a

conductive fluid is calculated from Ohm's law in the form

q:gT("ro-en),

where gi is the electric conductance of the tube given by

(8.5)

sÏ: "6? (8.6)4R*St'

and e¡o - e¡6 denotes the electric potential drop across the lth tube. Once, potentials

at the junctions are known, the currents in the tubes can be calculated and the

formation factor of the network can be calculated from Equation (3.30).

For the Klinkenberg permeability calculations, the Hagen-Poiseuille equation

corrected for slip (Equation (2.31)) is employed for calculating the volumetric flow

rate of a gas through a tube in the network. For the sake of completeness, this

equation is again presented here:

(8.7)

whereÇ¡ is the volumetricflow rate measured at P^(: (po+pt)12), c is a constant

whose value is close to unity, pl is the mean pressure in the capillar¡ r? is the gas

constant, and ? is the absolute temperature. Because the gas flow rates in all the

tubes of the network are calculated at the same pressure, P-, the mass conservation

at the junctions requires

I?,, : o J : Ir2r..., Np . (B.B)
I

The system of nonlinear algebraic equations represented

translated into the matrix notation:

by Equation (8.8) can be

ÍG',¡){p¡}{pÏ} + lcill{p¡}: {v;},

.n61 , \ r c6s
Qt P* : ffi (p," - ptù p!^ + 6fiø" Rf (pr" - ptu) ,

2tt

(B.e)



where Gi¡ and G'!¡ arc the conductance matrices, p; is the vector of junction pressures'

pf is transpose of pj, and y; is the forcing vector representing the imposed pressures

at the left-hand and right-hand boundaries of the network. The matrices, G!¡ and

G'!¡, have the same properties as the matrix G¿¡ of. Equation (B.a) and therefore

are stored likewise. An iterative scheme based on the Newton-Raphson method is

employed to solve the system of nonlinear equations represented by Equation (8.9).

Details of the Newton-Raphson method are given in Press et al. (1986). The linear

algebraic equations arising in the Newton-Raphson method are solved by the Gauss

elimination scheme for symmetric banded matrices (Bathe, 1982; pp. 434). Once

the junction pressures are known, the flow rates in the tubes can be computed and

the Klinkenberg permeability of the network can be found from Darcy's law given by

Equation (3.46).

The values of the permeability and Klinkenberg permeability found with the help

of network theory (explained above) can be substituted in the following relation, given

by Klinkenberg (1941), to find the Klinkenberg coefficient, b:

(8.10)

where åa1 and k1 are the Klinkenberg permeability and permeability, respectively and

Pn is the mean pressure given by

P*- Pn*Pt (8.11)

b:P^(*-') ,

2r2
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In this appendix, the different summations a¡ising in the case of the parallel

capillary model are evaluated, and the final results for the uniform, normal and logìstic

distributions of tube diameters and lengths are summarized.

Irrespective of the chosen tube diameter distribution,

where at : otlpa .

If ó and .9 are continuous random variables representing the tube diameters

and lengths respectively, then regardless of their distributions, for large .ðfrr, the

distribution of | 6a f S can be closely approximated by the normal distribution

N(I{flp', Nlo'),, where

>ul- ffÎ u? (t * o?) ,
f=1

t':'[5] and o2 :varli]

Ëç: ¡úr¿ [c.] " [å]

For symmetric¿l distributions of tube diameters (Mood et al., 1974)

(c.1)

(c.3)

(c.2)

Here, E and Var denote the expected value and variance, respectively. If ó and 
^9

have independent distributions, then

E[o^]: r¿t * 6 p? o'a * Ap oî, (c.4)

where the value of. A? depends on ihe distribu^r,ion. For evaluating E ll I S), a Taylor's

series expansion must be used. If /(S) : 1/,9, then the Taylor's series expansion of
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f(,9) about ¡r5 is:

/(s) : ro,s). ry#1,=,,*ry#|*,,+.... (c.5)

For symmetrical distributions of tube lengths, "B [/(^9)] is:

Etf(s)l :l +++Ap+o .. (c.6)
lts þ"s P"s

If the higher order terms in Equation (C.6) are neglected, then Equation (C.3)

becomes

,ä 
g : ry(r + o a| + AP'Í) (' * azs * oo on), (c.7)

where as : osllts. The other summations may be evaluated in a similar fashion and

for the symmetrical tube diameter and length distributions are:

,Ëg 
:ry (r + e 

",) 
(t t a2s * oool) 

'

Ëg :ry(r + "3) þ + 
", 

+ APaa,) '

(c.8)

(c.e)

For lognormal distributions (Crow and Shimizu, 1988; Aitchison and Brown, 1969)

+

Ð

+* 6a|

l,) ('

15 ø!

(c.10)

Ëg 
:ry(r + r a| + r"| + "u,)(r +,3 - å"3) (c 1r)

For the symmetrical tube diameter and length distributions, the final relations

for permeability, Klinkenberg permeability and formation factor are:

kt 
: 

€, tti 0 + 6 a26 + Ae øÐ (L + e2s + AP aÐ'

of tube diameters and lengthr, l[1 6llSr is also given by Equation (C.9) and the

other summations are:

Sq
2s,

I 32r

Nl pt t,
- 

- 

ta

tts \

+6arro + a

l*ø25

L5ø|5

o's -

* 20øl

3r
r-I

214
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1

kot

32r r+a3
€t p3 Q * 6 a| + Ap aî * I c À I ¡t6 (1 + 3 o3)) (1 * azs * Ao aaò'

(c.13)

(c.14)

(c.15)

F:L
€r (L + o's + Ap øl)'

I *3azs
l*6ø|+APo.t

where þt and ø5 , and Fs and øs denote the means and standard deviations of the tube

diameter and length distributions, respectively, , : ItslLt¡ Q6 : oalpd, øs : osll.ts,

c is a constant, and À is the average mean free path of the flowing ga-s. The value of. Ap

is 1.8 for the uniform distribution (Mood et aI., 1974),3 for the normal distribution

(Mood et al., 1974), and 4.2 for the logistic distribution (Johnson andKotz,1970) of

tube diameters and lengths.

The expression for the Klinkenberg coefficient, ö, can be obtained from Equations

(C.12), (C.13) and (2.27), and is:

, 8 cÀP*
h--

p6
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In this appendix, the summations arising in the serial capillary model calculations

are evaluated, and the final results for the symmetrical tube diameter and length

distributions are presented.

A detailed derivation of the summation in Equation (5.a0) for lognormal tube

diameter and length distributions (Aitchison and Brown, 1969; Crow and Shimizu,

1988) is presented. The other summations may be evaluated similarly. For indepen-

dent tube diameter and length distributions, the summation in Equation (5.40) can

be expressed as

t'#-(¡rË +r)EtstE[#¡*] , (D.r)
I=

where A' : I c À, and .E represents the expected value. Here, it is assumed that the

effect of ignoring the factor pl^lP^ in the summation is negligible. This is true for

models with relatively small values of. a6. The expected value,

Elsl: ps.

For evaluating E tLl(6î + A'63)1, a Taylor's series expansion is used. If

.f(ó) : 6! ¡ ¡,6s '

then, the Taylor's series expansion of /(6) about ¡r5 is:

,r(6) : f(pa) * + #1,=,, . ry #1,=,,+ ...,

which gives

(D.2)

(D.3)

(D.4)

E Í(6 - pa)l d f I

-t 

f
d,6 l,,=u, 

I

2L6

E Í(6 - pt)'l &ft
#lr=,, + "" (D'5)Elf$)l- fj't) * 1! 2!



The various factors in the above equation are:

d,ft
d 6ls=po

4p? + gA'p3

jtt + A'p")' '
(D.6)

(D.7)

(D.8)

,(D.e)

(D.10)

(D.11)

(D.12)

(D.13)

(D.15)

(D.16)

(D.17)

ûft
d62ls=uo

20 pî + 3o A' ¡tl * t2 A'2 ¡fi
Q'î + A'pl)"

æ f I r20 p,f + 270 A' pî * 216 A'2 pT + ao A'" pE

¿16" lu=uo: - '

Ba} ¡,|u2 + 2520 A' ptt + 3024 A'' ptdo + 1680 A'" p3 + 360 A'n pE

0'î + A,p|)u

EÍ(6-l¿¡)l:0,

El@-uù"1-o't:p3o3,

E [(ó - ru)'] : p] (oî+ 3 øf) ,

EIG - uùn): pî (o'u'* 6alo * 15ø! * 16ø! + 3@Í)

If the higher order terms in Equation (D.5) are ignored, then

t*.ë&.ffi.ffi1t''n¡_ (¡rË + 1)¡¿s
A

på

dnfl

-t
d,6alæp,

"l'. l
where

aa 8cÀ¡t'
A

Fa

B":a?,

c" - r0 + r5 A" + 6(A\2 ,,

2t7



D":aî+3aî,

E" :20 + 45 A'+ 36 (,4")2 + 10 (4',)3 ,

Gu = ort' *6o]o * 15ø!* 16ø! *3ø!,

(D.18)

(D.1e)

(D.20)

(D.23)

(D.26)

(D.27)

(D.28)

and

H" :35 + 105 A" + 126(A")" + 70 (,4")3 + 15 (4")4 (D.21)

Therefore, the Klinkenberg permeability is:

* : Y,* ( +'?) Hr . å& - å*y. ffi], p 22)

The summations in Equations (5.39) and (5.a1) can be evaluated similarly. They

are not included here.

The final results for the uniform tube diameter and lengih distributions (Mood

et al., 1974) are:

I 32r-:- (r + 
"3)tu &pi

I 32r

-:-kot €t tlt

P:! (t
€r\

(D.24)

"3) (t + rø1^ + ea1; * 2Tøf + 81ø!) , (D.25)

8c),¡t

I t B"cu D'8" Ir_

It+a"' (1+Á"¡t' (1+Á")uJ

(r + ro ø| + æa1. + tz+o! + t+sso!) ,

(t *'3)

where

At=
ltd

Bt:ø2s,

c" -ro+r5A" +6(.4")2,

2r8



D":aî,

E' : 63 + 1gg A" + 226.8(A")' + 126 (Á',)t + 27 (A\4

(D.2e)

(D.30)

(D.32)

The final results for the normal tube diameter and length distributions (Mood et al.,

1974) are:

t -32r (r+"3) (r+roof +toso!+naool+tztz5o?) , (D.81)h- &p3'

32r
ü tls

(r + 
"3)

ea5ø!) ,
1

T
ç1

I t B'co D"E" Ir_ _L 

-l

ft+a"'(1 +A")3 (1 +A")sllcot

F_ (r + '3) (r + a a| + rsør4 + tosøg + (D.33)

where

A': 8cÀ y,
(D.34)

ltt

B":a3, (D.35)

c" =10+I5A' + 6(A\2 , (D.36)

Dt : øî,

E" :105 + 3r5 A" + 378 (A")' + 210 (Á',)t + 45 (A\4 .

(D.37)

(D.38)

The final results for the logistic tube diameter and length distributions (Johnson and

Kotz,1970) are:

1 ?-9nL - 'rLr (.t + '|) (r + ro o| + t+zof + es+so! + ttetl7a86), (D.39)h- $p3 \

2r9



(D.40)

F- (r + "3) (r + I o| + zt"f + zzoauo + anz.z"î) (D.41)

where

ts 8c\ ¡.t'
/L

ltt

Bu:a?,

C":10+15,4"+6(,4")2

D":dî,,

E" : t47 + 44r A" + 529.2(A')t + 294(A")t + 63 (.4")4

The final results for the lognormal tube diameter and length

given in Chapter 5.

(D.45)

. (D.46)

distributions are

I
l"t

32r, ^rl 1 B"C" D'E'1: 
€, tZ \r 

+ afr) 
Ll-r ¿; o 

1t 1a"¡' + 
1t + er¡1 ,

I
€t

(D.42)

(D.43)

(D.44)
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In this appendix, the results for the various nonlinear models tried for finding

relations of the coefficients Au, A, A" and A" to the statistical parameters of the

network are summarized and complete expressions for functions Zkt(a5) and Z'(ot)

are given.

E.1 Models for Ao

MODEL 1

^Ps.tau - a (8.1)- pt | * mtal + rnza| + msa65 + maa| + msør6o \!'

MODEL 2

MODEL 3

MODEL I

Ir.c 1

"" - pî L i mta! * mzal * mzaf + maø|,.

ttc 1

"u 
F,î r + mta| * mza| + msaf

¿ -lts'""- pîL*mtal+m2øf

"þs1't': fi T+ *r4

22r

(E.2)

(E.3)

(E.4)

MODEL 5

(E.5)



MODEL 6

MODEL 7

MODEL 8

MODEL 9

MODEL 10

^lts1n,: -t 

t ro'o,'

The values of rn1, Tn2r..., mean square residue and mean of the sum of the squares

of the observed values for each model are given in Table E.1. In all the tables of

this appendix, the mean square residue (M.S.R.) refers to the mean of the sum of

the squares of the differences between the observed values (found with the help of

network theory presented in Appendix B) and the corresponding values predicted by

the regression model.

W"2 Svlodels for Ao

MODEL 1

¿ _lts 1

"" - pt | * rntao * mza| * msas6 + maaf

,t.a 1

"" - pî I * mtaa * mza| + msø|

t -lts""- pt l*mta5!rn2a!

^þsllLU 
- A .pÊ L + rT\46

A^:rn^þt= = ,I * o"o= 
=pî L + mtø| * mza| + mzal + rnaa| + rnsør6t

(E.7)

(8.8)

(E.e)

(8.10)
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MODEL 2

MODEL 3

MODEL 4

MODEL 5

MODEL 6

MODEL 7

MODEL B

MODEL 9

MODEL 10

, ps I*a!
AP : rTL6 

æ

^ þs L+azÀp:trl6æW

^ þs Lta!
Ap:rfl6æñ,

Å -^^Ps 
I*a2s

rLP- "úti pE L + Tflta¡ * mzø! + rnsa| + maal + m5øl

A _*^Ps L1.&8
'LP-"úb 6 r , t -4 r -^ ,6 r -- -a

I*a¿52

tt6, L * mta\ * mza! + msaf + ma3 1 + mta\ * mza! * msaf + maa|

Ao: mo%
I*a|

3 t + rT4 a6 * mza26 + msa| + rnaal

(E.12)

(Ð.13)

(E.14)

(8.15)

(E.16)

(8.1i)

(E.18)

(8.1e)

pó

Å -^-Ps 
lta1¡

rLP - "eti pu6 L + tr\a6 * mza| + msa|

^ Fs r*ø!Ap:rrt6æ@

Ap=rna## (8.20)

Thp w:lrreq nf rn, -^ mêrn arrrrâ.re resifl¡e and mean of the surn of !þc snrrercsvÀ .,!¡t.,e¿t...t ¡Àrvu

of the observed values for each model are given in Table 8.2.
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MODEL 1

¡ -þs 
1

!1.c: 
- 

(E.21)
p3 L + mtø\ * mzaf + msa6u + maø| + msalo

MODEL 2

MODEL 9

MODEL 4

MODEL 5

MODEL 6

MODEL 7

MODEL 8

A :ltt'^c p3 1+mta?*mzøf +msø60+maa|

tr.c 1

""- p3 L * mta! * mzal + msa65

t -Fs 
1

""- p3 1*n¿ra|+m2øf

" l-Ls 1
!-_lLC 

- ô - 2p"6 I + mtaþ

t _þs 1

"" - pZ L * mtat * mza| + mea3u * maø| + rn5ø!

Å.- ps 1"Ç p? I +rflta¡*mzøf;+mta!5+rnaa!

¡ _lts 1

""- p3 1 * rnr ød * mza| + msas,

s -þs'^"- p3 L * mta5 { m2a}

(8.22)

(8.23)

(8.24)

(8.25)

(E.26)

(8.27)

(8.28)

MODEL 9
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MODEL 10

A -ps 
1o":'ñt***o (E'30)

The values of rn1, rrtz¡. .., me¿rr square residue and mean of the sum of the squares

of the observed values for each model are given ín Table E.3.

W"4 Models for A,

MODEL 1

A.:rrL6þ7 = ,r*o3= (8.31)
t4 L + mta2a I rnza| * msaf + rnaa| + msøf,o

MODEL 2

MODEL 9

MODEL 4

MODEL 5

MODEL 6

A - tts L*ø|
A - : Ì'fl¡"ë "-" pî I * rnta| * mza| + m3al + maa|

A" : ITla ffi

(8.32)

(E.33)

(8.34)

(8.35)

(8.36)

lts r*ø|A": ma7e-"aoú1+mta\*m2a!

A.: *u1
pi

MODEL 7

r*a!
I * mtao * mzø| + msa35 * rntøl + msal

A _- tts L + a,3,
A : Ífr^"e "-" pî L * mtat * mza| + msø| + rnaø|
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MODEL 8

MODEL 9

"PsA¿: ITI'6-1'
I*a25

ttîL+rr\d6*mza!+msa|

A.: *u4 Ita!
pîI+rntø,6*m2a|

(E.38)

(E.3e)

MODEL 10

A.:*6ffi#* (E.40)

The values of m1, rrl2r..., mean square residue and mean of the sum of the squares

of the observed values for each model are given in Table E.4.

p"5 F\rnctio¡¡s ZkL(a6) and Zr(^o)

zk'(au) : r+a3
1 + 3.07 a! - 2.86 øf + a.Sg ø60 - 2.80 a| + o.tzs ølo

, 0.681(1 +ar)@a|+t+a|+20a6, +tsa! +o o16o +olr),, ",,-r (Þ.+ri

zF(au) : 1 + 0.341(] ! a'z!)(4a3 !r!aî !?! 1rí 
+]_5.a8 + oo¡o + o"') t

1 + 8.61a! + ro.ooa! - 6.8e 
"g 

+ tstffi @'42)
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Table 8.1. The models tried for ,4., with the corresponding fitting parameters. The mean of the

eum of the squares of the obeerved values for Au iB 2.71 x 1032.

Model Tft l rTI2 lTl,3 ITl,4 m'5 M.S.R.t

Model lfl 3.07 -2.86 3.99 -2.80 0.729 6.99 x 1027

Model 2 3.00 -2.t3 r.92 -0.644 8.11 x 1027

Model 3 2.87 -r.27 0.493 1.53 x 1028

Model 4 2.69 -0.55 4.7L x IA28

Model 5 2.35 3.32 x 102e

Model 6 -0.026 3.65 _t oo 2.L4 -0.65 7.00 x 1027

Model 7 0.020 3.18 -1.57 0.49 7.15 x 1027

Model 8 0.09 2.67 -0.65 9.13 x 1027

Model 9 0.29 1.88 5.26 x 1028

Model 10 1.51 4.88 x 10æ

tn¿"uo Square Residue

ttr¡" selected model

227



Table E.2. The models tried for Ao with the corresponding fitting parameters. The mean of the

sum of the squares of the observed values for Ao is 3.45 x 1055.

Model Tfl,1 TTt 2 TTI,g rk4 îTl,g rn6 M.S.R.f

Model lfi 6.37 16.40 -6.75 30.46 -9.19 13.83 3.04 x 1051

Model 2 6.55 13.96 4.7r IT.82 13.87 3.04 x 1051

Model 3 7.05 8.98 20.21 13.97 3.78 x 1051

Model 4 4.97 ,, lo 13.44 2.96 x 1052

Model 5 15.73 16.78 1.02 x 10sa

Model 6 2.00 -10.72 70.78 -1r4.26 92.33 t4.97 3.07 x 1051

Model 7 -3.50 26.67 -52.90 57.57 11.19 6.06 x 105r

Model 8 8.82 -31.26 66.34 21.75 4.33 x 1052

Model 9 -4.18 14.47 8.61 3.69 x 1053

Model 10 -21568 -34792 4.54 x 1054

tu"uo Square Residue

f trn" selected model
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Table 8.3. The models tried for .4" with the corresponding parameters. The mean of the eum of

the squares of the observed values ior A" is 3.36 x 1011.

Model rTù1 7T1,2 ITì,9 rfl4 Tfl,5 M.S.R.t

Model 1 L.t4 -0.95 1.97 -L.62 0.46 9.11 x 106

Model 2 1.00 -0.02 0.05 -0.03 4.15 x 106

Model 3 0.99 0.01 -0.01 4.12 x 106

Model 4 1.00 0.00 4.11 x 106

Model 5tt 1.00 4.07 x 106

Model 6 -0.01 1.10 -0.34 0.43 -0.185 4.24 x L06

Model 7 0.00 0.94 0.10 -0.05 4.2I x L06

Model 8 0.00 1.00 -0.01 4.20 x 106

Model 9 0.00 0.99 4.14 x 106

Model 10 0.74 3.52 x 10s

tn¿"uo Square Residue

f irn" selected model
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Table E.4. The models tried for A" with the corresponding fitting parameters. The mean of the

eum of the squares of the observed values îor A" is 9.50 x 1030.

Model rTù1 TTL2 rfl3 1T1,4 ITLg m,6 M.S.R.t

Model lf f 3.61 10.96 -6.89 19.77 -5.49 0.217 7.65 x 1026

Model 2 3.77 9.03 t.r2 7.90 0.2r7 7.89 x 1026

Model 3 4.27 4.78 12.57 0.219 l.I2 x 1027

Model 4 2.49 14.54 0.210 1.03 x 1028

Model 5 10.83 0.263 3.27 x 102s

Model 6 0.91 -5.97 42.66 -71.01 56.29 0.223 8.13 x 1026

Model 7 -3.26 27.37 -4r.37 40.02 0.1 75 I.74 x 1027

Model 8 7.01 -24.65 44.00 0.323 1.46 x 1028

Model 9 *3.67 10.79 0.137 1.16 x 102e

Model 10 57.13 1.85 1.26 x 10s

tn¿"uo Square Residue

itrn" eelected model
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In this appendix, a derivation of effective-medium approximation (EMA), given

by Equation (5.97), is presented. It is reproduced from Kirkpatrick (tSZe) witn

some changes in nomenclature. Based on this equation, an explicit relation between

the overall network conductance and the statistical parameters characterizing the

distribution of the elementary conductors in the network is reproduced from Nicholson

et al. (1988). Finally, the relations of the permeability and formation factor of the

network to the corresponding normalized efective-medium conductances are found.

Electrical terminology is used for these derivations; however, similar statements apply

to fluid flow in networks of tubes.

F'.1 Ðffective-fuledíurn,{pproximatioxx (EfufA)

Consider an infinite network of electric resistors in which the conductances of the

individual resistors are randomly assigned according to probability density function

ar(g) such that g. 1 g 196. The coordination number of the network, that is, the

average number of resistors meeting at a junction, is denoted by 7. For example, 7 is

2 for a serial capillary model, 4 for a squaxe network and 6 for a cubic network, both

with no diagonal elements, and oo for a parallel capillary model. The EMA seeks

to replace all the resistors of the network with identical resistors of conductances g*

such that the total conductance, Gn, of the effective-medium network is the sarne as

that of the original network.

Consider an effective-medium network illustrated in Figure F.1. Here e- is the
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Fig. F.1. Determining EMT conductance (from Kirkpatrick, 1973).

potential drop per row in the direction of the macroscopic potential drop. If, in the

effective-medium netv¡ork, one conductor is reverted back to its original value, goo,

then thepotential drop across pq willbe differentfrom e^. A fictitious current, 
^co

may be introduced at p and extracted at g such that the potential drop across pq

reverts back to e^. In that case

Aco : (g^ - goc) e*

The current Aco produces an additional voltage

^- 
Âco

tÅçPq - goo +f'*'

(F.1)

(F.2)

where fio is the conductance of the rest of the network between junctions p and q.

For the effective-medium network, the total conductance,l'ro, between the junctions

pandgis

loc:floo*o^. (F.3)

foo can be calculated from the definition: if current co enters junciion p an<ì leaves

junction g producing a potential differenceof epq, then loo : co/epc. However, this
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situation is the linear superposition of the current co entering junction p and leaking

out at infinity, and the current co leaking in at infinity and exiting at junction g. In

the former case, current cof q is present in all resistors leading out of p, including pg,

so epq : co/T g^. In the latter case, the same current and the same voltage drop

occur io pq, so adding we have

| 2co
(F.4)|¿pq - 9* rl

Therefore

tpc : In^ ,

and from Equation (F.3),

r'ro:(I-Ðn*'

If Equations (F.1) and (F.6) are used in (F.2), then

f su (g^ - g) u(g) dg 
^

Jn" s+(m-ñ;:v'

(F.5)

(F.6)

L,eoo: e* 9^ - Çpq
(F.7)epq*þtlZ-I)s^'

The value of gpc and hence of. Leoo is a random variable, and it is required that the

average of. A,ero with respect to the probability density function a(go) be zero:

(F.8)

The effective-medium conductance is chosen such that Equation (F.8) is satisfied.

F,2 Nicholsorses SoÏr¡tíon to EfuL&

Nicholson et al. (1988) presented a solution to EMA, given in Equation (F.8),

using a renormalization group method. This resulted in an explicit relation between

the overall conductance, Gn, of the network and the statistical parameters charac-



terizing g. In this section, these development are reproduced. Nomenclature consis-

tent with the present work is employed.

The assumptions regarding the construction of the network and flow (fluid or

electric) inside the elementary tubes (conductors of fluid or electricity) are the same

as presented in Section 5.1.1. The elementary conductance may be written as

86,9:-3_, (F.e)

where 6 and .9 are the diameter a¡d the length of the elementary tube, respectively;

.B and € are constants which depend on the tube shape and flow considered. For

example, B is equal to rll28p, for the Hagen-Poiseuilleflow and nf4R* for electric

flow in a cylindrical tube of constant cross-sectional area, where ¡.1 is the viscosity of

the flowing fluid and .R* is the resistivity of electric conductor saturating the tube;

e : 2,3,4 for diffusion and electric flow, dilute gas flow (Knudson), md Hagen-

Poiseuille flow, respectively. The corresponding values of e for slit-shaped tubes are

1,2, and 3, respectively. ó is assumed to be distributed randomly according to the

probability density function e(ó) and ^9 is assigned a fixed value. Therefore

g:86', (F.10)

where B : B I S. ø(9) is completely determined by e(ó).

The following reduced random variable may be introduced in order to facilitate

the characterization of the shape and breadth of e(ó) by the first few moments about

the mean, p5:

u:!-r, (F.11)
ltt

which varies between Ka : 6"14o - 1 and Kb : 6blp¡ - 1, and another variable

C"<e((6givenby

-l:(1 +Æ)€-1.
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The corresponding probability density functions are denoted by e(rc) and á(O,

respectively, and the related moments are given by

nn - (rc")E* : 
l**"u 

r." ë(n) dn , (F.13)

G : (c")"* - f'.0 
("é(c)d( .

Equations (F.11) through (F.14) give the following expression for (,,:

(": (-1)" Ë t-tl' ic f ic *o , (F.15)
i=1 j=l

where iC and'f C arc the binomial coefficients. The efective-medium conductance

and reciprocal connectivity factor are normalized as

(F.14)

(F.16)

(F.17)

(F.8) trans-

^ -2lL 
- -

rl

Witn the help of Equations (F.10),

forms into

l0</\<1).t

(F.12), (F.16) and (F.17), Equation

-0. (F.18)

If p,,, is assumed to be small with respect to 1 (see Equation (F.16)), then the denomi-

nator of the integrand in Equation (F.18) may be expanded and the term-by-term

integration yields

K"(L,(") + K, (Â, Còî^ * Kz(^,G) 92* +..-. - 0, (F.1e)

fo t¡(g^ - o,r(c)d(/c.ffi

oo

Ko : Ð(-1)" l\"-, (n ,
n=L

where
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r¡=l

Here, the binomial coefficients have been written explicitly. Equation (F.19) in combi-

nation with Equations (F.20) through (F.23), gives an explicit solution for3,,*, in the

form of an infinite series in ascending moments of (," and powers of ¡l:

9*(Â, (") _ -K" Klt - (1 - L) K3 Kr" K,

-(1 - L), K3 Kr' (2 Kî - Kt Kù . (F.24)

The limiting cases of Â : 0 and Á, - 1 correspond to parallel and serial capillary

models, respectively (Koplik, 1981). The corresponding solutions for these cases are

K1 : Ð(-t)"*t n/r-L (G_r * (") ,
r¿=l
oo

Kz : Ð(-r)" n(n+ 1)¡"-t (G_, + e) p ,
n=I
oo

K3 : Ð(-1)"*' n(nt 1)(n + 2) ¡"-r (G_r + (ò 16 .

9,"(L: o) : (r ,

g*(L- 1) : Ë(-t)" e" I i,cr)'+'r, (G-, + G) .

¿=1 I ¡-l

From Bquations (F.16), (F.25) and (F.26),

g^(h = 0) :- g' 
'

g^(L: 1) = g" ,

where go md gs a;re the effective-medium conductances of the parallel

capillary models, respectively. From Equations (F.16) and (F.22)

ep: (r *g)B pï ,,

and from Equation (F.16)

9*(Ìr,(") : [1 + ?-(^, ("))B p'¿
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(F.22)

(F.23)

(F.25)

(F.26)

(F.27)

(F.28)

and serial

(F.2e)

(F.30)



The normalized g*(L,Ç) with respect to g, may be obtained from

?-(Á,,("): s*(L,e")lgo: [1 +g*(L,C")]lG +('). (F.31)

The expressìon for 7(Å, (") can be obtained by substitution of Equations (F.20)

through (F.24) into Equation (F.31) and is (up to sixth order terms):

l*(L,G):1 - A (z * ltz (s - Â3 Ca * ha(u - ,\u(u

+/\(r2 + (2/\-3^')(r(z * (4^t-3,\')Ct(t

+ (4^3 - 5^u)(r (¿ * (2L" - L\e}

+(3^3 - 5^n) CzCs * (6^'- 4lta¡erCn

+(3^5 -zLn)(3 + QL2 +2^)(13

+(8^4-7L5-2L")$

+(13^2-10^3-3^)(lC,

+(15L4-17^3+4^',)Crei+.... (F.32)

The values of Ç(n : 1,6) in terms of. nn(n: 1,6) for various values of e can

be calculated from Equation (F.15). The expressions (containing terms up to sixth

order) for e : 1,4 are summarized below. As mentioned in the beginning of this

section, different values of e correspond to different kinds of flows in the network.

(a) Values of G in terms of rc- (n:1,6) for e :1

,r=(.

lb) Values of C- in terms of. n-(n: 1.6) f.or e:2

(F.33)

Ct:2nt * nz

Çz:4rc2 * 4rcs I Ka

(s:8 ns * I2¡c¿ * 6rcs * Æe

(+: 16 ne * 32n5 $ 24rc6
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(s :32rcs * 8o rce

(o : 64 rco (F.94)

(c) Values of G in terms of æ- (n = 1.6) for e : 3

(r:3rcr*3rc2*Ks

Cz:9rc2 * 18 ns * ISne * 6rcs * æo

Cz:273 ¡cs * 81 rc¿ * 108 rcs * 81 rco

(¿ = 81 na * 324rcs * 594rca

(s :243 rcs I L2r5 rca

(a:729 na (F.85)

(d) Values of G in terms of rc- (n : 1,6) for e :4

et:2rcr * 6 nz * 4Ks * fíe

Cz:L6nz * 48rcs I 64tu * 56rcs * 28na

(s:64rcs * 288 rc¿ * 624rcs * 840rc0

Ca:256 rc¿ * 1536 rcs * 4480 rca

G:I024rcs * 768010

(e = 4096 rco (F.36)

Values of rc-. (n : 1,6) for lognormal distribution

It may be noted here that ,cr : 0 irrespective of the probability distribution

chosen for the element conductances of the network. If pt and o| represent the mean

and the variance of the employed lognormal distribution for tube diameters (tube

lengths a.re fixed), and ø5 : oa/Ft, then other moments are (Aitchison and Brown,

1e6e):

nz: a3
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ns: aî + 3af

n¿: alz * 6a|0 + 15ø! * t6al * 3a!

tcs : ø?ao * 10 ø]8 * 45 arr6 + 120 o|n + 205 at62 + 222 otdo + 135 ø! * B0 ø$

rca: al + 75aÁ8 +

* 6165 ø|6

*154!

r05a|6 + 445o3n + r365a|2 + 2gg7 o3o + 4945ø168

+ 5715 o|n + 3760a[2 + 1581 olo + 330a!

F.3 Re1atíons of Networl< Ferrrreability a¡rd Fonr¡lation Fac-

ton to Ðffective-Mediurn Conductances

In this section, the relations of network permeability and formation factor to the

corresponding effective-medium conductances (fluid and electric flow) a^re developed.

For fluid flow, the overall network conductance is

\Jn 
- 

- 

I
Ph-Pr

where Q1 is the bulk flow rate in the macroscopic flow direction, and p¿ and p¡ are the

Pressures at the upstream and downstream sides of the network (see Appendix B).

Qt may be written in terms of the permeability as

Q,: H (pn - pt) , (F.3e)

where Ëf denotes the permeability of the network, .41 is the bulk area normal to and

.[1 is the bulk length parallel to the macroscopicflow direction, &:1, md p is the

viscosity of the flowing fluid. From Equations (F.98) and (F.Bg), we get

Gn:ry.
tt Lt

Similarly for an equivalent parallel capillary model

^ 4A,up:Ã
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(F.37)

(F.38)

(F.40)

(F.41)



The equivalent parallel capillary model is one with the same external dimensions and

distribution of elementary conductances as the network model, with a coordination

number of oo. If g,. and gp represent the effective-medium conductances of the network

and the equivalent parallel capillary models, respectively, then

Gnqgn (F.42)

and

Gpx9p, (F.43)

Because the elementary conductors of an efective-medium network are identical, the

conductors in directions other than the macroscopic flow direction, do not contribute

to the overall conductance of the network in the macroscopic flow direction. Therefore,

the factors of proportionality in Equations (F.42) and (F.a3) are identical. Substi-

tutions of Equations (F.a0) and (F.al) into Equations (F.42) and (F.a3), respectively,

leads to

gnoW 
'þ I't

n,*#.
with the help of Equations (F.44) and (F.a5), Equation (F.31) becomes

'ln(e:4)-9"(e-4-):9.gp(e:4) F, '

(F.44)

(F.45)

(F.46)

The relations of Ëf and &f to the statistical parameters of the models are given in

Equations (5.24) and (5.95), respectively. It may be noted here that the value of øs is

zero in Equation (5.24) because tubes with fixed length are employed. A comparison

of the ncrmalized effective-medium conductances predicted by Equations (F.32) (with

e : 4) and (F.a6) is presented in Section 5.8.2. In this comparison, &f and Af are
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found from the relations developed in the present study (Equations (5.24) and (5.95),

respectively)

The relation between the formation factors of the network model and the equi-

valent parallel capillary model, and the corresponding normalized efective-medium

conductance of the network may be found similarly. Here, only the final result is

presented:

(F.47)

where Fp and F" denote the formation factors of the parallel capillary model and

network model, respectively. The relations of. Fp and .F' to the statistical parameters

of ihe models are given in Equations (5.27) and (5.96), respectively. Again, a6 is zero

in Equation (5.27). A comparison of the normalized effective-medium conductances

predicted by Equations (F.32) (with e = 2) and (F.aZ) is presented in Section 5.3.2.

In this comparisoî, Fp and .F" are found from the relations developed in the present

study (Equations (5.27) and (5.96), respectively)

^ln(e: Z¡ : g"{,e:2)
,,.\ , gr(e:Z)

Fp
pn'
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