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ABSTRACT

The microscopic information about the geometry of the solid-fluid interface inside
a porous medium is “hidden” in such macroscopic transport properties as permea-
bility, Klinkenberg’s gas-slippage factor and formation factor. In this study, explicit
integral expressions are derived for these properties by comparing the volume averaged
microscopic conservation equations (mass and momentum for permeability and gas
permeability with slip, and electric charge for formation factor) to the corresponding
phenomenological laws (Darcy’s law for permeability and gas permeability with slip,
and Ohm’s law at macroscopic level for formation factor). The expression for each
property consists of two terms which involve integrals of the related microscopic
thermodynamic variables.

Idealized porous media, consisting of networks of tubes, are employed to validate
the expressions for permeability and formation factor, and to interpret the terms in
them. It is found that the first term in the expression for permeability (formation
factor), called the “viscous term” (“current term”), accounts for the fluid (electric)
flow in the macroscopic flow direction, whereas the second term, called the “pressure
term” (“potential term”), accounts for the fluid (current) flow in the directions normal
to the macroscopic flow direction. Interestingly, the magnitude of the pressure term
(potential term), which represents the flow in the directions normal to the macroscopic
flow direction, depends on the variation of the hydraulic conductances (electrical
conductances) of the tubes in the macroscopic flow direction. The results show that
the pressure and potential terms are directly responsible for the value of tortuosity
exceeding 1. In the presence of microscopic cross flow (microscopic flow normal to the
macroscopic flow direction), it is shown that the classical definition of tortuosity as a
ratio of geometric lengths is simplistic. The study suggests two types of tortuosities,
one accounting for the sinuousness of the individual flow channels (classical definition)
and the other accounting for the cross flow. An exact relation between the formation

factor and tortuosity is presented. In the presence of cross flow, the equivalence of

iv



hydraulic and electrical tortuosities is shown to be invalid.

Based on the integral expressions, explicit relations of permeability, permeability
with slip and formation factor to the statistical parameters characterizing the pore
space of parallel and serial capillary models are developed. With the help of nonlinear
regression, similar relations, based on the integral expressions, are also determined for
the permeability and formation factor of a three-dimensional cubic network model. It
is observed that the absence of the “networking effect” in the parallel and serial capil-
lary models results in these models showing opposite behaviors, whereas, its presence
in the network model results in an intermediate behavior representative of the real
porous media. These relations are shown to be valid for a considerably larger range
of coefficient of variation of tube diameter distribution (which represents the breadth
of the distribution) as compared to the relations based on the effective-medium
approximation (Nicholson et al., 1988).

A methodology for modeling the pore structure of homogeneous porous me-
dia, based on the explicit relations of the transport properties of the models to their
pore structure parameters, is outlined. A preliminary study of this methodology is
conducted on five sandstone samples and a limestone sample. It is found that for the
same sample the values of the pore structure parameters predicted by the network
model are intermediate between those predicted by the parallel and serial capillary
models. Except for one sandstone sample, all the three models satisfactorily predicted
the plateau portion of the drainage capillary pressure curves of the rest of the sand-
stone samples. However, the models did not accurately predict the drainage capil-
lary pressure curve of these samples near the irreducible wetting phase saturation.
The present models are found to be inappropriate for modeling the pore structure
of non-uniform porous media such as limestones. Incorporation of features such as
assignment of volume to junctions and size correlations between the neighboring tubes
are recommended to improve the capillary pressure curve predictions of the models

near the irreducible wetting phase for the sandstone samples.
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CHAPTER 1

INTRODUCTION

Transport phenomena in porous media are encountered in many fields of engineer-
ing. To mention a few, the flow of oil, water and gas through hydrocarbon reservoirs
is studied in petroleum engineering, the flow of water and transport of pollutants
in aquifers is studied in civil engineering, the movement of moisture through soil
and grain is studied in agricultural engineering and the chemical reactions in packed-
bed columns are studied in chemical engineering. The familiar conservation equations
(e.g., mass, momentum, energy, electric charge) can, in principle, be employed to des-
cribe the transport phenomena in porous media associated with these topics. It may
also be possible to state the boundary conditions, for example, the no-slip condition
at the solid surface in the case of momentum transport. These equations describe the
transport phenomena at the microscopic level, however, their solutions are not gen-
erally sought at this level. There are two important reasons for such a choice: One,
our inability to observe and describe the complex geometry of the solid-fluid interface
at the microscopic level precludes any direct solutions to these equations and two,
one is not usually interested in knowing the details of transport at the microscopic
level. Instead the solutions of the averaged conservation equations, which represent
the behavior of relatively large portions of porous media, are sought. This is called
the macroscopic level or continuum description of transport phenomena in porous
media.

The macroscopic level description circumvents the need for microscopic informa-

tion about the solid-fluid interface. This information is lumped into coefficients that



arise as a result of moving from the microscopic to the macroscopic level, and is
therefore “hidden” in such macroscopic transport properties as absolute permeability
(Darcy, 1856), gas-slippage factor (Klinkenberg, 1941) and formation factor (Archie,
1942). These transport properties are generally determined by conducting controlled
physical experiments in the laboratory or in the field. In other fields of science, where
the continuum approach is also applied, attempts have been made at theoretically
predicting the corresponding coefficients and many times with good accuracy. For
example, in the kinetic theory of gases, the coefficients (e.g., mass diffusion coeffi-
cient, dynamic viscosity, thermal conductivity) are predicted with accuracy by re-
turning to the molecular scale and modeling the behavior of the individual molecules
(Hirschfelder et al., 1954). In the case of porous media, much of the effort has been
spent on developing the theory of averaging, estimating the size of the averaging
volume for which representative results may be statistically meaningful and deriving
the macroscopic conservation equations (Anderson and Jackson, 1967; Marle, 1967;
Whitaker, 1967, 1969; Gray, 1975; Gray and O’Neill, 1976; Hassanizadeh and Gray,
1979a, 1979b, 1980; Bachmat and Bear; 1986, Bear and Bachmat, 1986; Bear and
Bachmat, 1991).

In the present study, an approach to modeling the macroscopic transport pro-
perties of homogeneous porous media is outlined. The properties considered are ab-
solute permeability (referred to as simply permeability hereafter), gas-slippage factor
(referred to as Klinkenberg coefficient hereafter) and formation factor. Volume aver-
aging, which is one of the methods used for achieving transition from the microscopic
to the macroscopic level, is employed to derive macroscopic conservation equations
from the microscopic conservation equations. By comparing the macroscopic conser-
vation equations (mass and momentum for permeability and gas permeability with
slip, and electric charge for formation factor) to the corresponding phenomenological

laws (Darcy’s law for permeability and permeability with slip, and Archie’s expres-



sion for formation factor), explicit expressions are derived for these properties. These
expressions involve integrals of the microscopic field variables over the solid-fluid
interface — formalisms that represent exactly the information lost in the averaging
process.

Idealized porous media are employed to validate the integral expressions vand to
interpret the terms in these expressions. This study provides a clear understanding of
the macroscopic transport property of porous media known as tortuosity and its rela-
tions to permeability and formation factor. Based on the integral expressions, explicit
relations of permeability and formation factor to the statistical parameters charac-
terizing the pore space of parallel capillary, serial capillary and three-dimensional
cubic network models of porous media (e.g., means and standard deviations of the
diameters and lengths of the tubes constituting the models) are developed. Similar
relations are also developed for the Klinkenberg permeability (and consequently for
the Klinkenberg coeflicient) of the parallel and serial capillary models. A comparison
is made between these relations and similar relations based on the effective-medium
approximation (EMA) (Nicholson et al., 1988).

Since their introduction by Fatt (1956), network models have been found to be
realistic representations of the pore structure. Most of the work on network models
has been related to mercury porosimetry (Van Brakel, 1975; Tsakiroglou and Pay-
atakes, 1990, 1991). The emphasis has been laid on extracting enough pore structure
information from the capillary pressure curves so that a unique network model can be
constructed to replace a given porous medium. However, less effort seems to have been
spent on deriving the pore structure information from single phase transport proper-
ties. These transport properties also contain important information about the pore
structure which can complement the information derived through mercury porosime-
try. In the present study, a methodology to model the pore structure of porous media,

based on the relations of the transport properties of the parallel capillary, serial capil-



lary and three-dimensional cubic network models to their statistical parameters, men-
tioned earlier, is outlined. This methodology can be employed to study other trans-
port phenomena and to predict complex properties such as capillary pressure curves
and relative permeabilities. Following is the philosophy behind this methodology: If
N statistical parameters are required to describe a porous medium a,ccording to a
given pore structure model, then N transport properties can be determined experi-
mentally on a sample of a porous medium and N equations for these N properties
can be written. These equations can then be inverted to determine the N statisti-
cal parameters. Once the statistical parameters are known, the complex properties
may be predicted explicitly or with the help of computer simulations. The experi-
ments for measuring single phase properties of a porous medium are simple and less
time consuming as compared to those for complex properties such as capillary pres-
sures and relative permeabilities; therefore this methodology can be very useful in
estimating values of the complex properties, and studying other transport pheno-
mena. In the present work, a preliminary study based on this methodology is con-
ducted on five sandstone samples and one limestone rock sample, all of which are
selected from the existing literature. A comparison is made between the drainage
capillary pressure curves predicted by the methodology and those observed experi-
mentally.

Based on the discussion above, the motivation and objectives of the present re-

search are summarized as follow:

1.1 Motivation

1. Most of the work related to the continuum description of transport phe-
nomena in porous media has been directed toward: Development of mathe-

matical concepts related to the quantification of REV size, development



of averaging rules, interpretation of the various terms in the averaged
equations and derivation of the phenomenological laws from first principles.
It will be very useful and interesting to employ this approach to study the
relations of the macroscopic transport properties of porous media such as
permeability, Klinkenberg permeability, formation factor and tort‘uosity,

to various features of pore structure.

2. Relative permeability and capillary pressure are perhaps the most impor-
tant data required for predicting the performance of oil reservoirs. How-
ever, experimentation for determining such properties on samples of the
reservoir is tedious and time consuming. A quick and dependable way to
predict these properties can be very helpful. An ordinary sandstone core
sample used for laboratory experimentation, can, for all practical purpos-
es be assumed as homogeneous, therefore the methodology outlined in the

previous section can be very useful in this regard.

1.2 Objectives

1. To derive explicit integral expressions for permeability, Klinkenberg per-
meability and formation factor by comparing appropriate averaged conser-

vation equations to the corresponding phenomenological laws.

2. To validate and interpret the integral expressions for permeability and
formation factor with the help of idealized porous media and to study
the transport property tortuosity and ifs relations to permeability and
formation factor.

3. Based on the integral expressions derived in 1, to develop explicit rela-

tions of permeability and formation factor to the statistical parameters

characterizing the pore space of parallel capillary, serial capillary and three-



dimensional cubic network models of porous media. Also, to derive similar
relations for the Klinkenberg coefficient of the parallel and serial capillary
models. To compare the present relations to those based on the effective-

medium approximation (EMA).

4. To outline a methodology for modeling the pore structure of homogeneous
porous media, based on the relations for the macroscopic transport pro-
perties developed in 3. Also, to compare the drainage capillary pressure
curves of real porous media samples predicted by the methodology to the

those observed experimentally.

1.3 Layout of the Dissertation

This dissertation is composed of seven chapters. An extensive literature review
and its relevance to the present research is discussed in Chapter 2. The volume aver-
aging method and the derivation of integral expressions for permeability, formation
factor and Klinkenberg permeability are presented in Chapter 3. Validation and in-
terpretation of the integral expressions and the study of tortuosity based on simple
idealized porous media is conducted in Chapter 4. The relations of permeability,
formation factor and Klinkenberg permeability of the pore structure models to the
statistical parameters characterizing their pore space are developed in Chapter 5. This
chapter also includes a comparison of these relations to those based on the effective-
medium approximation. The methodology to model the pore structure of porous

media is outlined in Chapter 6. Finally, conclusions are presented in Chapter 7.



CHAPTER 2

REVIEW OF THE LITERATURE

As mentioned at the beginning of Chapter 1, the study of transport phenomena
in porous media is covered in many fields of engineering and science, and therefore,
the information is widely scattered. Here, in order to form a clear picture of the
background for the present work, relevant literature from all possible sources which

the author has come across during the period of this study, is reviewed.

2.1 Scope of the Review

The review presented here is limited to pore structure models and other means
employed to study the relations of permeability, formation factor, Klinkenberg per-
meability, tortuosity and capillary pressure of a porous medium to different aspects of
its pore structure. The review includes the relations of these properties to the micros-
copic pore structure parameters and the correlations between two or more properties
proposed in the literature. The experimental techniques for measuring these proper-
ties are not relevant to the present study and therefore are not reviewed. The review
is confined to studies at the core level (laboratory scale) and studies at larger scales,
such as reservoir level, are not considered. Different topics related to the continuum
description of transport phenomena are briefly discuésed in Section 2.2. The study re-
lated to tortuosity forms a significant part of the present work and therefore, the litera-
ture related to it is reviewed separately in Section 2.3. In Section 2.4, the literature
related to permeability, Klinkenberg permeability and formation factor is reviewed.

This section also includes a brief review of the work related to the effective-medium



approximation (EMA) (Kirkpatrick, 1973), relevant to the present study. The litera-
ture covered under permeability, formation factor and tortuosity overlaps slightly.
The current thrusts in research related to mercury porosimetry and capillary pressure
modeling are reviewed in Section 2.5. Finally, the relevance of the present research is

discussed in the light of the reviewed literature in Section 2.6.

2.2 Continuum Description of Transport Phenomena in

Porous Media

As pointed out in Chapter 1, our inability to observe and describe the solid-fluid
interface inside a porous medium necessitates a continuum description of transport
phenomena in porous media. The continuum description primarily consists of deriving
the conservation equations for the extensive quantities with appropriate boundary
conditions at the macroscopic level from the corresponding conservation equations and
boundary conditions at the microscopic (or pore) level. Volume averaging, statistical
averaging and homogenization are the three methods usually employed to derive the
macroscopic conservation equations. The volume averaging is the only method of
interest to the present work; therefore, only literature related to it is reviewed. The
review is confined to the applications of volume averaging method for studying single
phase flow in porous media, however some recent studies related to two-phase flow
are briefly mentioned. The literature related to the applications of volume averaging
method for studying other transport phenomena in porous media (e.g., heat, mass,
diffusion and dispersion) is not considered. |

A preliminary discussion of the volume averaging method is presented in Chap-
ter 3. This chapter also includes brief introductions to the statistical averaging and
homogenization methods, and to the techniques generally employed for solving the

averaged conservation equations. For detailed information on the statistical aver-



aging method and the techniques for solving the averaged conservation equations,
the reader is referred to Beran (1968) and Dagan (1989). An introduction to the
homogenization method is given in Ene (1990).

In essence, the volume averaging method involves the following steps: Criteria for
selection of the averaging volume size, definitions of average quantities, enunciation
of averaging rules, deterministic derivations of macroscopic or averaged conservation
equations, closure schemes for the macroscopic thermodynamic quantities, theoreti-
cal expressions for various macroscopic transport properties of porous media such as
permeability, formation factor, Klinkenberg coefficient and inertial coefficient (when
Forchheimer effects are considered), and solutions of the averaged conservation equa-
tions.

The main theory behind the volume averaging method has been developed over
the last thirty years and the contributions to this development have been reported
in a variety of journals. Important contributions include the works of Anderson
and Jackson (1967), Marle (1967), Slattery (1967, 1969), Whitaker (1967, 1969),
Gray (1975), Gray and O’Neill (1976), Gray and Lee (1977), Hassanizadeh (1979),
Hassanizadeh and Gray (1979a, 1979b, 1980), Bachmat and Bear (1986), Bear and
Bachmat (1986) and Bear and Bachmat (1991).

By invoking some statistical concepts Bachmat and Bear (1986) (also in Bear and
Bachmat, 1991) gave a systematic development of the universal criteria for the selec-
tion of the upper and lower bounds on the size of the averaging volume. This size of
the averaging volume is usually known as representative elementary volume (abbrevia-
ted as REV). The key mathematical theorem which relates the average of a gradient
of a microscopic quantity to the gradient of the averaged quantity was presented
independently by Anderson and Jackson (1967), Marle (1967), Slattery (1967) and
Whitaker (1967). Gray (1975) presented a modified version of this theorem. Veverka

(1981) questioned whether the volume average is differential; Howes and Whitaker



(1985) re-examined the derivation and confirmed its correctness. Mls (1987) demons-
trated the existence of the first derivative of the volume average everywhere in a
three-dimensional Euclidean vector space. Based on an order of magnitude analysis,
Carbonell and Whitaker (1984) showed that for the averaged quantities to be single
valued, the radius of the averaging volume (REV) should be very small as compared
to the macroscopic dimension of the problem. Gray (1975) defined the deviation
of a microscopic quantity from its macroscopic value within an REV. Hassanizadeh
and Gray (1979a) gave the explicit dependence of various quantities in this definition
on the microscopic and macroscopic coordinate systems. The averaging rules were
summarized by Bachmat and Bear (1986).

In the averaged conservation equations, quantities of the form (i; 1;)? are en-
countered (see Chapter 3). Here wy are the microscopic velocities, { )}# denotes the
intrinsic phase average which is evaluated over a single phase in the REV and the
tilde denotes the deviation of a microscopic quantity from its intrinsic phase average
value. This term is the dispersive flux of momentum (per unit mass) in the fluid
phase. Expressions for such quantities in terms of the average values are required for
the solution of the averaged conservation equations. Closure is also required for the
interfacial integral terms which arise in the averaged equations (see Chapter 3). These
integrals contain the information about the micro-structure of porous media and as
will be shown in Chapter 3, they are related to the macroscopic transport properties
such as permeability. Hassanizadeh and Gray (1980) and Shapiro (1981) incorporat-
ed the dispersive flux term with the macroscopic viscous stress tensor and formed a
constitutive relation for the combined quantity. Gray and O’Neill (1976) and Bear
and Bachmat (1986) developed a separate constitutive relation for (@;@;)?. Slat-
tery (1969, 1981) developed a constitutive relation for combined viscous and pressure
integral terms. This relation expresses the combined quantity as a linear function

of the intrinsic phase average velocity, the coefficient of which was determined by
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using the Buckingham-Pi theorem. Constitutive relations for these terms were also
presented by Gray and O’Neill (1976), Hassanizadeh and Gray (1980) and Bear and
Bachmat (1986). For Stokes flow in porous media, Whitaker (1986a) developed a
scheme to transform the closure problem into a boundary value problem of the devia-
tion quantities. This scheme did not require any constitutive assumptions. |

The failure of Darcy’s law at high flow rates in porous media led to the develop-
ment of the Forchheimer equation (Forchheimer, 1901). Recently, many articles have
been published which have tried to. link the nonlinear effects to various terms in the
averaged momentum conservation equations. Barak and Bear (1981) studied physical
models with variable degrees of complexity and derived relationships between pres-
sure gradient and velocity; Du Plessis and Masliyah (1988), Coulaud et al. (1988)
and Barak (1987) associated the nonlinear effects to the microscopic inertial forces.
The explanation for such a conclusion was that at increasing pore Reynolds number,
vorticities are generated inside the pores resulting in tortuous streamlines. Cvetkovic
(1986) associated the nonlinear effects with the dispersion flux and concluded that this
term contains most of the information related to microscopic inertial effects. How-
ever, Du Plessis and Masliyah (1988) obtained macroscopic inertial effects even when
the dispersion term was neglected. Hassanizadeh and Gray (1987) concluded that
the microscopic viscous drag is responsible for the nonlinear effects. Barak’s com-
ments (Barak, 1987) on the paper by Hassanizadeh and Gray (1987) contended that
the microscopic viscous drag is not the fundamental reason for the nonlinear effects;
the microscopic inertial effects (the change of streamlines due to generation of vorti-
cities) is the fundamental cause and increase in the microscopic drag is a consequence
of that. Hassanizadeh and Gray (1988) in their reply to Barak’s comments (Barak,
1987) agreed with Barak’s view. However, the authors stressed that in studies of
porous media flow for large-scale applications, interest should not be focused on the

micro-scale phenomena rather on their manifestations at the macro-scale, and there-

11



fore it is not necessary to study the change in streamlines at the microscopic level at
high velocities. By examining flow in some very simple tube models of porous media,
Ruth and Ma (1992) demonstrated that the averaged microscopic inertial terms are
not responsible for nonlinear effects. The authors postulated that the Forchheimer
effects are due to the distortions of the microscopic velocity and pressure fields which
result in changes in the integral terms in the averaged equations.

The volume averaging method has also been employed to study phenomenologi-
cal relations (e.g., the permeability in Darcy’s law and the inertial coefficient in Forch-
heimer’s equation). By ignoring the convective and inertial terms in the general
macroscopic conservation equations for slow flow in an anisotropic porous medium,
Gray and O’Neill (1976) derived the Darcy’s law. Hassanizadeh and Gray (1980)
showed that Darcy’s law can be recovered by neglecting the inertial and macroscopic
viscous effects (Brinkman effects) in the macroscopic fluid-phase momentum conser-
vation equations. However, both of these studies did not associate any explicit depen-
dence of the permeability in the Darcy’s law to the micro-pore geometry. Whitaker
(1986a) presented a theoretical derivation of Darcy’s law for Stokes flow in porous
media and provided means for direct theoretical determination of the permeability
tensor. However, explicit relation of permeability to the microscopic pore structure
parameters is not possible with this method. Also, the solution of the final equa-
tions depends on finding simpler representative pore structure cells. The relevance
of the the present work concerning the study of permeability, in the light of the
works by Whitaker (19862) and Hassanizadeh and Gray (1980), will be discussed in
Chapter 3. Barrere et al. (1992) showed that Whitaker’s (1986a) solution of the
closure problem in terms of an integro-differential equation can be transformed into
a set of Stokes-like equations. They found that the solutions of these equations were
in good agreement with the experimental data. Du Plessis and Masliyah (1988)

evaluated the various terms in the averaged momentum conservation equations by
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assuming developed flow inside a square duct of a cubic representative cell which was
considered as model of sponge-like porous media. For creeping flows they derived an
expression for the permeability. The limitations of this expression will be discussed in
Section 2.4.1. Du Plessis and Masliyah (1991) performed an analysis similar to their
previous work (Du Plessis and Masliyah, 1988), on a porous medium consisting of a
stationary swarm of separate granules. Du Plessis (1991) carried out a similar study
on a two-dimensional idealized porous medium.

Whitaker (1986b, 1986¢c) applied the volume averaging method to derive the rele-
vant macroscopic conservation equations for Stokes flow of two immiscible fluids
through a rigid porous medium and Stokes flow of a single fluid in a deformable
porous medium. Recently, Quintard and Whitaker and their coworkers, in a series
of papers (Quintard and Whitaker, 1987, 1988, 1990a, 1990b; Bertin et al., 1990),
have reported their work on the applications of volume averaging method for studying
two-phase flow in heterogeneous porous media. The authors introduced and applied
the concept of large-scale averaging to two-phase flow in heterogeneous porous me-
dia. At this point, the difference between local volume averaging and large-scale
volume averaging may be stated. Local volume averaging is the method in which the
familiar microscopic conservation equations with appropriate boundary conditions
are averaged to get the macroscopic conservation equations. The work of Whitaker
(1986a) in which Stokes equations with appropriate boundary conditions were aver-
aged to produce the familiar Darcy-level equations is an example of the local volume
averaging. For heterogeneous porous media, the local volume averaging closure prob-
lem becomes exceedingly complex (Quintard and Whitaker, 1988). To by-pass this
difficulty, large-scale averaging is considered in which the Darcy-scale equations are
averaged over a region that is large compared to the length of the heterogeneities
(Quintard and Whitaker, 1988).

Kalaydjian (1987) pointed out some drawbacks of the volume averaging method.

13



In particular, the author argued that it is not sure whether a common REV size can
be determined for all the properties and field variables associated with a transport
process which is a requirement for the application of the volume averaging method.
Also, it may not be possible to determine the size of the REV experimentally. He
employed a weighted function method to define the properties. at the macréscopic
level. This method was applied to derive macroscopic mass, momentum, energy and
entropy balance equations. The author, however, opined that the volume averaging
and weighted function methods are very similar and lead to similar results when
applied for deriving macroscopic balance equations.

Kalaydjian and Legait (1987) performed a quantitative estimation of the coupling
terms for the two-phase flow in square cross-section capillary tubes and found that
these terms are not negligible with respect to the usual terms. Kalaydjian (1990)
described an experimental approach to study the origin and to quantify the viscous
coupling for two-phase flow in porous media at the pore level as well as at the macros-
copic level.

Hassanizadeh and Gray, in a series of papers (Hassanizadeh and Gray 1989a,
1989b, 1990; Gray and Hassanizadeh, 1989), have reported their recent work on
transport of interface properties in multi-phase flow in porous media. In these papers,
the authors have laid down a frame work for forming the macroscopic equations for
interface properties in multi-phase flows. According to the authors, these equations
must complement the macroscopic equations for the bulk phases to complete the
mathematical description of a well-posed problem. In the light of this study, the
authors, in their latest work (Gray and Hassanizadeh, 1991a, 1991b), pointed out
some paradoxes in the currently practiced unsaturated flow theory (simultaneous flow
of air and water in porous media) and presented a theory that includes interfacial

phenomena.
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2.3 Tortuosity of Porous Media

Because the properties of a porous medium like porosity, permeability, formation
factor and capillary pressure are different manifestations of the same microscopic pore
structure, attempts have been made to relate them to one another or in groups. Be-
cause porosity and permeability were among the first such proper;cies to be introduced
and studied, earlier attempts were aimed at relating these two properties. In fact,
until the early part of the twentieth century, no distinction was made between per-
meability and porosity in the oil industry. The permeability and porosity are related
because a medium with zero porosity will also have zero permeability. However, a
general correlation between the two is not possible. A review of various attempts
at directly relating permeability to porosity is presented in Scheidegger (1974). This
review clearly points out that it not possible to arrive at a universal relationship
between permeability and porosity. Exploration of the possibility that permeability
and porosity can be related by introducing additional parameters which contain more
information about the pore structure was the obvious next step and tortuosity is one
such parameter.

The tortuosity of a porous medium is defined as the ratio of the average length of
the flow path to the corresponding macroscopic length. It was introduced by Carman
(1937, 1938) to achieve agreement between the values of permeability predicted by
the familiar Carman-Kozeny equation and those observed experimentally. A detailed
derivation of the Carman-Kozeny equation was given by Wyllie and Spangler (1952).
This derivation is summarized as follows: The average velocity in a circular pipe

under a pressure gradient according to the Hagen-Poiseuille law is

62 Pr— DI
TR (2.1)

V1

where v, is the average velocity of a fluid with viscosity p in a pipe of diameter § and

length L., and p; — p; is the pressure drop across the pipe. For non-circular cross

15



sections, this equation is modified to

m? p,—m
LB (2.2)

0
where ¢ is the shape factor and m is the mean hydraulic radius defined as the ratio
of the volume of the pipe to the area of the wetted surface. The essential part of
the Carman-Kozeny theory lies in the application of Equation (2‘.2) to porous media.
To do that, the void space inside a porous medium is conceptualized as a pipe with
arbitrary cross-sectional area and length greater than the straight bulk length. It is
argued that the average velocity within the porous medium must be greater than the
velocity given by Q1/A; (where @ is the volumetric flow rate in the macroscopic flow
direction, k = 1 and A; is the bulk area normal to it). Two reasons are cited in favor
of this argument: one, the area available for flow in the macroscopic flow direction is
less because of blockage due to the solid matrix; this area is taken to be ¢ A; instead
of Ay, where ¢ is the porosity of the medium; two, because of the tortuous nature of
the flow paths inside a porous medium, the average path length, L., is greater than
the corresponding bulk length, L, therefore the average velocity is faster by a factor
of Le/L;. If these concepts are considered, the average velocity in a porous medium
(equivalent to v; in Equation (2.2)) is (@1 L.)/(¢ A1 L1). The increased effective
length also affects the pressure gradient, that is, the pressure gradient is (px — p1)/Le
instead of (pr — p1)/L1. Therefore the equation for average velocity in porous media,
analogous to Equation (2.2) for average velocity in a pipe, is:

2 -
Ql Le 1 m ph pl . (2.3)

A1L1¢—C’ﬂ Le

If Equation (2.3) is compared to Darcy’s law in the form

k —
Q1 _kipn P (2.4)
Al K L1
then the permeability, k;, in the macroscopic flow direction, k =1 is
_g¢m
ky = e (2.5)
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Here 72 = (L./Ly)? is the Carman-Kozeny definition of tortuosity. In the present
study, Equation (2.5) will be called the Carman-Kozeny equation. Equation (2.5) can

also be written in the form

¥
SR eyl | 29

where S, is the surface area of the porous medium per unit solid volume. Several
authors have given estimations of the shape factor ¢’ and the tortuosity factor 7.
By considering the probable shape of the flow paths in unconsolidated porous media,
Carman suggested that the value of ¢’ should fall in the range of 2.0-2.5, and favored
the higher value, 2.5. From his observations in flow visualization experiments in
unconsolidated beds of particles, Carman found that average streamlines flowed at
an angle of 45° to the macroscopic flow direction and therefore, suggested a value of
V2 for 7. or 2 for 7%. Other values suggested for 724 fall in the range of 1.5 to 3.25
(Bear, 1972).

Scheidegger (1974) has given a review of the experimental studies performed to
test the Carman-Kozeny equation. Most of these studies have been conducted on
unconsolidated porous media and substantial amounts of disagreement have been
reported between the predictions and experimental observations. A severe criticism
of the Carman-Kozeny equation was put forward by Childs and Collis-George (1950).
They stated that because the Carman-Kozeny equation does not involve any directed
quantities, it is not valid for anisotropic porous media. Also, they reported that the
equation failed to give reasonable prediction for struptured bodies like “stiff-fissured”
clays. Many modifications of the Carman-Kozeny equation have been reported in the
literature without any substantial improvement in its predictions (Scheidegger, 1974).
Wryllie and Rose (1950) and Wyllie and Spangler (1952) postulated that tortuosity
in fluid and electrical flows should be the same, and therefore the tortuosity in the

Carman-Kozeny equation could be found independently from electrical measurements.
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However, the expression for electric tortuosity proposed by them has some inherent
shortcomings which will be discussed in Chapter 4.

Bear and Bachmat (1966, 1967) and Bear (1972) conceptualized tortuosity of a
porous medium as a property which measures the deviation of a fluid particle from
the macroscopic flow direction at every point inside the porous medium. Accordingly,

they introduced the following quantities:

. do\’
= () @

with

()

where s is the length measured along the axis of the channel, o is the length measured
along the streamline inside the channel, (; are the local Cartesian coordinates, and 7
is the tortuosity tensor. The quantity (d¢;/de) (d{;/do) represents nine elements of a
symmetrical 3x3 (7,7 = 1,2,3) matrix. These elements are the products of the cosines
of the angles between the direction of a streamline at a point and the coordinate
axes. The coefficient (do/ds)? takes the converging-diverging nature of the channels
into account. For flow channels with constant cross-sectional area, 7; = 7;;. The
permeability model introduced by Bear and Bachmat (1966, 1967) which incorporates
the above concepts of tortuosity will be discussed in Section 2.4.1.

By considering two types of capillary models, one with straight parallel tubes and
the other with tortuous tubes, Whitaker (1967) showed that the term involving the
area integral of the jump in the concentration, in the volume averaged two-component
diffusion equation for incompressible flow in porous media, is associated with tortuo-
sity. By using a Taylor series expansion, Whitaker (1967) presented a constitutive
relation between the non-dimensionalized version of this area integral, which he called

tortuosity vector, and the macroscopic concentration gradient. The present work
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related to tortuosity is on the lines of Whitaker’s (1967) work. By considering various
idealized pore models, the integral terms in the averaged momentum conservation
equations for single-phase fluid flow in porous media and averaged charge conservation
equations for current flow in porous media saturated with electrically conductive fluid
are studied (see Chapter 4). The direct relation of these terms with tortuosity is
very clearly demonstrated. Unlike Whitaker’s work (1967), the present work clearly
differentiates between two types of tortuosities (discussed in Chapter 4) and identifies
the integral terms responsible for each type.

Dullien (1979) discussed the limited scope of the classical definition of tortuosity
in the Carman-Kozeny equation when parallel- and serial-type non-uniformities are
present. Dullien argued that the concept of tortuosity should not only deal with the
differences between the orientations of the microscopic and macroscopic streamlines—
it should also include the “networking effect”. As such, he stressed that the classical
definition of tortuosity in the Carman-Kozeny equation is limited to the case of uni-
form, parallel, serial, and parallel-serial types of models. Citing other works (Wiggs,
1958 and Haring and Greenkorn, 1970) and his own work (Dullien, 1975), he suggested
that 3 is a reasonable value for the tortuosity factor.

By considering a cubic “representative unit cell” (RUC) as a representation of
porous media, Du Plessis and Masliyah (1988) derived an explicit relation between
porosity and tortuosity. The cell was designed to take maximum possible connec-
tivity and staggering into account. However, the tortuosity in their study has been
introduced from the geometrical point of view. As will be demonstrated in Chapter 4,
their definition of tortuosity is limited in the same sense as the classical definition in
the Carman-Kozeny equation.

Spearing and Matthews (1991) simulated a sandstone sample with a three-
dimensional array of cubes and cylinders representing pores and throats, respectively.

The pore-size distribution of the array was calculated from the mercury porosimetry
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curve of the sample and a correlation of 0.16 was maintained between the throat and
cube sizes. Fifty values of the tortuosity factor of the sandstone sample were then
predicted by considering weighted random walks through the array. The tortuosity
was then defined as the median of these fifty values. The tortuosity predicted by the
simulations increased from 2.45 to 3.55 with decreasing average coordination number
(average number of throats meeting at a pore). Values of tortuosity of the sandstone

sample equal to 2.42 and 2.46 were found experimentally using the equations

D,
D= =2 ¢ (2.9)
TS?‘TL
and
Tom = (F ¢)7 (2.10)

respectively. Here 7,,, is the tortuosity factor, ¢ is the porosity, F' is the formation fac-
tor of the medium, D.g is the diffusion coefficient of the gas through the medium, and
D, is the bulk diffusion coefficient. As will be shown in Chapter 4, Equation (2.10)
used by them to calculate experimental tortuosity factor is not the exact one. Also,
it 1s very difficult to verify if the method can predict correct values of hydraulic tor-

tuosities because there are no equations for fluid flow analogous to Equations (2.9)

and (2.10).

2.4 Pore Structure Properties of Porous Media

In this section, contributions toward understanding the relations of permea-
bility, Klinkenberg permeability and formation factor of a porous medium to its pore

structure are reviewed. Each of them is considered one by one.

2.4.1 Permeability
Darcy’s law is a phenomenological law which introduces permeability of a porous

medium as a “black box” dependent on its pore structure in a unique way. Much of
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the research has been directed toward exploring this relation, either by relating the
permeability to the pore structure parameters or to other properties of the porous
medium. While doing so, a pore structure model of the porous medium has been
assumed implicitly or explicitly.

One of the earliest attempts to relate permeability to other pore structure proper-
ties was by Kozeny (1927), who gave an equation which was later modified by Carman
(1937). As described in Section 2.3, this equation is developed by idealizing a porous
medium as a pipe with an arbitrary cross-sectional area and accounts for the block-
ages due to the solid matrix. It relates the permeability to porosity, tortuosity, shape
factor and specific surface area.

Scheidegger (1953) presented three types of capillary models of pore structure
which he called straight, parallel type and serial type capillary models. All the three
models are based on a fundamental assumption about the relation between the pore
velocity, v; and the filter velocity, @1/A;. This assumption is called the Dupuit-

Forchheimer assumption:

vy = ¢Q/;1 : (2.11)

Here @), represents the bulk flow in the macroscopic flow direction and A; is the
bulk area normal to this direction. Scheidegger, however, argues that the Dupuit-
Forchheimer assumption cannot be regarded as basic since the pore velocity in this
definition has not been exactly defined. The straight capillary model is the simplest
of the three; here a porous medium is represented by a bundle of straight and parallel
capillaries of uniform diameter 6. By considering Hégen-Poiseuille flow in the tubes,
the following expression was derived for permeability:
68

To achieve agreement with the experimental results, Scheidegger suggested that the

factor 32 in the denominator be replaced by 72, where 7, is the “tortuosity” factor.
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3 may be written in terms of S to give

k1 ¢ (2.13)

= -T-E-S'Z-z- ,
where S/ is the surface area per unit bulk volume. This equation is similar to the
Carman-Kozeny equation; however, the Carman-Kozeny equation is based on an
altogether different line of reasoning. In fact, the Carman-Kozeny equation is an
exact equation for parallel-straight capillary tube models.

Next the parallel type model was considered. This model consists of a bundle
of capillaries parallel to the macroscopic flow direction but with variable diameter.
The expression for the permeability of the model is similar to Equation (2.12) with
two changes: one, the factor 32 in the denominator is replaced by 96 and two, the

parameter 6 is given a more specific meaning in the form
5= / 8% a(8)ds , (2.14)
0

where «(§) is the capillary diameter distribution function. The incorporation of the
additional factor 3 in the denominator is supposed to account for the fact that only
one-third of the tubes are in the macroscopic flow direction. This type of model was
first considered by Purcell (1949). In his model, the capillary diameter distribution
was found from the mercury capillary pressure curve.

The serial type model, the third and the final such model considered by Scheideg-
ger, is the opposite extreme of the first two models. This model consists of sections
of capillaries of different diameters joined end-to-end. A fluid particle is imagined to
travel through all the pore sizes in the porous medium. For this model, the expression
for permeability is similar to Equation (2.12) with the factor 32 replaced by 96 and

% -(["# a(5)d6)2 9’-5(-65-)-«:15. (2.15)

According to Scheidegger (1974), the parallel and serial models when used to predict

permeability with tube diameters assigned according to mercury injection capillary
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pressure curve, predict very high and very low values, respectively, thereby indicat-
ing that the models are sensitive to the upper and lower portion of the pore size
distribution, respectively.

Random adjacent slice models are another category of models used to relate per-
meability to the pore structure. These models are constructed by cutting thiﬁ slices
from a bundle of parallel tubes with diameters distributed according to a given dis-
tribution and then rearranging the slices randomly. Childs and Collis-George (1950)
were the first to consider these types of models. They contended that the models
were more realistic than the Carman-Kozeny equation because the Carman-Kozeny
equation did not consider pores of different cross sections. An expression for the
permeability was derived based on the following reasoning: The faces of two adja-
cent slices of a porous medium of bulk area A; will have identical radius distribution
functions a(r) and if these slices are randomly juxtaposed, the total pore space area
in contact will be ¢? A;. Assuming that resistance to flow at a junction is confined
to the smaller pores, then

Tmaz Tmas
ki=d, Y. Y ria(r)éra(rs)ér, (2.16)

r1=0 r;=0
where r; is the radius of the smaller tube and ry is the radius of the larger tube,
a(ry)ér and a(ry)ér represent the fractional areas occupied by the tubes of radius
range from r to r + dr. The tube radius distribution is to be determined by mercury
porosimetry or by other means and rp,, is the largest tube radius encountered in
such an experiment. The constant ¢, has to be experimentally determined. Wyllie
and Gardener (1958) and Marshal (1958) contended that, instead of using r; as the
radius of the smaller tube at a junction, r;+/@ should be used as the effective radius
because the fit of one tube to the next one is poor. Later improvements of this
approach specified the value of ¢,. Marshal (1958) used ¢ while Millington (1959)

used ¢*/3 which was obtained by considering spherical pores. Millington and Quirk
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(1961) conceptualized a porous medium as made up of interpenetrating solid spheres
separated by interpenetrating spherical pores. This model gives ¢" as the effective
area, where 0.6 < n < 0.7 for 0.1 < ¢ < 0.6.

Haring and Greenkorn (1970) conceptualized a porous medium as a collection
of randomly oriented cylindrical tubes with tube diameters distributed according
to the beta function. Each tube was assumed to span from one boundary to the
other boundary. By considering Hagen-Poiseuille flow in each tube and taking the
orientation of the tubes into account, the value of the average velocity was calculated
by integration. By invoking the Dupuit-Forchheimer assumption to relate the average
velocity and the seepage velocity in Darcy’s law, the following expression was found

for permeability:

Proes (@' +2)(c/ +1)
ky =

24 (d+B+3)(@+4+2)° (217)

Here rpq, is the maximum value of the radius, and o’ and f’ are the parameters of
the beta distribution. The authors claimed that the model was a random network
model with intersecting tubes; however, the manner in which average velocity was
calculated, ignored intersections. This limitation is also evident from the fact that
capillary pressure was evaluated by assuming all the tubes to be directly accessible
from the outside.

Payatakes et al. (1973a, 1973b) presented a constricted unit cell model for mono-
sized, or nearly monosized unconsolidated granular porous media. A unit bed element
contained geometrically similar but unequal sized convergent-divergent unit cells. The
geometry of the unit cells was determined from experimental information about grain
size distribution, porosity and saturation versus capillary pressure data. The flow
inside each cell was assumed to be similar. A finite difference scheme to solve the
Navier-Stokes equation through the unit cell, retaining the inertial terms, was pre-

sented. Payatakes and Neira (1977) extended the model to account for the random
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orientation of the flow channels. In this case, the predicted permeability was shown
to agree well with the experimentally observed one. The way these models have been
implemented, the “networking effect” has been ignored. Also, the scope of the models
is very limited for polysized granular unconsolidated porous media and consolidated
porous media in general.

Dullien (1975) considered the network approach for modeling permeabilities of
sandstones. His model consisted of a number of cubic capillary networks of arbitrary
orientation with respect to the macroscopic flow direction. Each network was built
of identical capillary tubes which however, were different in the various networks.
Each capillary was made of segments of different diameters. The capillaries in an
individual network were characterized by two pore size parameters: the controlling
pore entry diameter and the diameters of all other segments which may be penetrated
through the pore entry diameter. This bivariate pore size distribution was obtained
by measuring the pore entry diameters using mercury porosimetry and the larger
pores by using the pore size distribution derived with the help of photomicrography.
The best fit to the observed and predicted permeability data required the constant
96 in the denominator of the expression for permeability to be replaced by 106, and
with this value, the predicted permeabilities matched with the experimental values
within £23%. Dullien attributed the value 106 to a constant tortuosity factor of
3.3 instead of 3, which he argued was the theoretical value for his model. While
arriving at his expression for permeability, Dullien assumed that different networks
(with different individual permeabilities) in his model were independent of each other
and the permeability of the model was a linear sum of the permeabilities of different
networks constituting the model. Therefore, his model cannot be considered as a
typical network model because the effect of intersections was ignored.

Wise (1992) used a three-dimensional cubic network of tubes for modeling per-

meability of water through porous media. The pore size distribution was found from
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the drainage capillary pressure curve and the permeability was calculated by apply-
ing network theory (see Appendix B). A critical pore size was identified. When only
tubes with diameter above the critical size were used in the network, the permeability
of the network equaled the measured permeability of the medium. The evaluation
of pore size distribution from the drainage capillary pressure curve was based on a
parallel capillary model. As has been shown by many researchers (Dullien, 1975),
this practice leads to a narrower pore size distribution than exists in reality. This is
because the drainage capillary pressure curve is controlled by pore-throats (smaller
pores) and the pore-bodies (larger pores) that are not directly accessible from the
surface are invaded at later stages. This results in higher frequencies of smaller pores
in the pore size distribution. This may be one of the reasons for the existence of a
critical pore size in the model put forward by Wise (1992).

Bear and Bachmat (1966, 1967; also see Bear, 1972) conceptualized the void space
of a porous medium as consisting of a spatial network of interconnected flow paths of
varying length, cross-section and orientation. The average fluid flow at a point inside
the passage was assumed to be along the axis of the passage. Volumes of junctions
(where two or more flow passages meet) were assumed to be very small as compared
to the volumes of the flow channels and junctions were assumed to offer no resistance
to the fluid flow. The authors assumed the viscous force per unit volume at a point
inside the flow passage resisting motion of a particle (direction of the force is opposite

to the local velocity vector) to be

Y
R=-=-V" .

where B (with the dimension of length squared) is the hydraulic conductance of a
channel at a point (a function of the shape of the channel cross section and the
location of the point with respect to the axis of the channel) and V* is the mass-

averaged velocity of the particle. Equation (2.18) was incorporated into the equation
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of motion of a fluid particle inside the flow channel and the resulting equation was
first averaged over the cross section of the channel and then over a representative

elementary volume resulting (for laminar flow of a Newtonian fluid) in
kij=¢Brtj, (2.19)

where k;; is the permeability tensor and 75; is the tortuosity tensor at a point as

defined by Equation (2.7). Further development consisted of writing

(2.20)

where B was called the average medium conductance and ;; was called the medi-
um’s tortuosity. Bear and Bachmat (1966) showed that for an isotropic medium, the
tortuosity tensor reduces to a single scalar 7*. For a porous medium consisting of

straight channels of circular cross section

=T=T=Tag=

1
3 (2.21)

and

TH=Tx=0. (2.22)

To obtain a value of 7% for unconsolidated porous media, the divergence of streamlines

is incorporated as (see Equations (2.7) and (2.8))

=7 (%%)2 : (2.23)

If the angle 6 between a channel axis and a streamline inside it is assumed to vary

between 6 = 0° and 6 = 90° such that § = 45° is the representative value and

p
(%%) =sech? = [sec45°)* =2, (2.24)

then
o=l (2.25)
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As argued by Dullien (1979), volume averaging B does not result in the correct
conductance of a network because it does not take topology of the network into
account. In other words, the contribution of an individual channel to the overall con-
ductance of the network will depend, in addition to its conductance, on the location
of the channel in the network. Also, the authors did not present.a way of calcﬁlating
B for a general case. This was also pointed out by Van Brakel (1975).

Du Plessis and Masliyah (1988) considered a cubic representative unit cell as a
model of an isotropic porous medium. The flow passage inside the cell was repre-
sented by three square duct sections, connected end-to-end and oriented mutually
perpendicular to each other. This type of flow passage was considered to represent
the maximum possible pore interconnectivity and staggering within the cell. From

geometric considerations, the explicit relation between tortuosity and porosity

_ (3 Tdm — 1)2
T 4713

¢ (2.26)

was derived. Here, 74, = d/d., is their definition of tortuosity (the inverse of the
general definition used in this study), d is the external linear dimension of the cell
and d, is the total path length in the cell. The authors evaluated the various terms
including the nonlinear (inertial) terms, of the volume averaged Navier-Stokes equa-
tion by assuming developing laminar flow inside the square ducts. For creeping flows
they obtained the following equation for permeability:

_ &,
T 42.69(1 — Tgm)

kx (2.27)

The authors have considered the tortuosity in Equations (2.26) and (2.27) as a geo-
metric quantity. As will be demonstrated in Chapter 4, an explicit relation between
porosity and tortuosity is only possible if tortuosity is considered to be a geometric
quantity. If the tortuosity is considered as a kinematical property, such a relation is

not possible.
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In addition to the permeability models presented above, many more based on
other considerations have been reported in the literature, for example, fissure models
(Irmay, 1955; Snow, 1965; Parsons; 1966), resistance to flow models or models based
on drag theory (Iberall, 1950; Rumer and Drinker, 1966; Rumer, 1969; Harleman et al.
1963; Happel and Brenner, 1965, Hubbert, 1956) and statistical models (Scheidegger,
1954, 1960; de Joss de Jong, 1969). These models have been reviewed by Bear (1972)
and Dullien (1979).

2.4.2 Klinkenberg Permeability

Since the discovery of Darcy’s law (Darcy, 1856) for fluid flow in porous media,
many non-Darcian behaviors have been observed. One of these behaviors is observed
when the flowing fluid is a gas. Fancher and Lewis (1933) were among the first
to note that air permeabilities, as calculated from Darcy’s law, were higher than
liquid permeabilities in the same porous medium. This increase in permeability is
attributed to the existence of a finite “slip” velocity at the solid-fluid interface inside
the porous medium which results in flow augmentation. The significance of the gas
slippage increases as the pore size becomes comparable to the molecular mean free
path of the flowing gas. The phenomenon of slip relevant to gas flow in a capillary is
theoretically well established as a consequence of the kinetic theory of gases (Present,
1958). Due to the random nature of the pore structure, a rigorous treatment of gas
slippage in porous media has not yet been possible. Based on the slip theory of
Kundt and Warburg (1875), Klinkenberg (1941) formed an expression for flow of a
gas through porous media by introducing an “appareﬁt” permeability, k,; (called here
the Klinkenberg permeability; @ denotes the “apparent” nature of the permeability

and 1 denotes its direction), defined as

_ kal ap
v = " Bz, (2.28)
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where vy is the filtration velocity, y is the viscosity and p is the pressure. Klinkenberg
found the dependence of this permeability on the mean pressure, P, in the porous

medium sample, to be of the form

kal _ b )
Te=lt 5 | (2.29)

where k; is the true permeability and b is the Klinkenberg coefficient. Using a straight

parallel capillary model of porous media, Klinkenberg showed that

AP,
p= 82 (2.30)

Hs

where ) is the mean free path of the flowing gas, ps is the mean pore diameter and ¢
is the coefficient of slip (Jeans, 1967). Jeans described this coefficient as the fraction
of molecules which start out in random direction after colliding with the wall. He
further commented that its value is close to unity.

The relation of A to pressure and other properties of the gas, based on the ele-
mentary kinetic theory of gases (Present, 1958), can be used in Equations (2.30) and
similar equations, However, if such a relation for A is used, the developments are
only valid for the cases when the pore diameters are greater than the average mean
free path of the flowing gas. However, at a given pressure, the size of a pore inside
a porous medium may be larger, smaller or comparable to the average mean free
path of the flowing gas. For the pores with é >> A, the flow is governed by the
Hagen-Poiseuille law and for the pores with § << A, the flow is governed by Knudsen
equation (Present, 1958). According to Adzumi (1937), for the pressure range where
§ =~ ), the Hagen-Poiseuille and Knudsen mechanisms must act simultaneously to
yield the following approximate relation for gas flow in a capillary:

7 64

TP = 15843

cé®
(pa "'pb) Pm + 6_5',' V27 RT (pa “'Pb) ’ (231)

where G is the volumetric flow rate of the gas measured at a reference pressure, P, §

and S are the diameter and length of the capillary, p, — ps is the pressure drop across

30



the capillary, p,, is the mean pressure in the capillary, R is the gas constant and T
is the absolute temperature. The difference between P,, and p,, may be noted here:
pm is the mean pressure in the capillary whereas, P,, is a reference pressure which
is usually taken to be the mean pressure in the porous medium sample. As shown
by Rose (1948), if Equation (2.31) is used for flow in a capillary, then for c#pillary
models this is equivalent to using the following expression for the average mean free

path:

A =213 ;"— VRT. (2.32)

The same expression for A was used by Ertekin et al. (1986) for studying gas slippage
phenomena in porous media partially saturated with water. In the present study this
expression for A is used.

According to Klinkenberg’s experimental data, b increased slowly with increasing
pressure; however, it has been assumed constant in most of the studies following

Klinkenberg’s work. In the present study it is assumed to be constant.

2.4.3 Formation Factor

Archie (1942) defined the formation factor, F, of a porous medium as
R,
Ru, ?

where R, is the resistivity of the porous medium when saturated with an electric con-

F= (2.33)

ductor of resistivity, R,. Archie studied the relation of formation factor to porosity
and permeability for sandstones over a wide range of porosity. The log-log plots of
formation factor and porosity showed good linearity suggesting the following correla-

tion:
F=¢m™, (2.34)

where m' is called the cementation exponent. The log-log plots of formation factor and

permeability showed crude linearity; however, the slopes differed dramatically from
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formation to formation and large discrepancies were noted for individual samples.
Archie also studied the relation between the ratio of observed resistivity and that
at 100% brine saturation, termed the resistivity index, I,, versus fractional brine

saturation, S, and suggested the correlation
L=5", ' (2.35)

where n’ is called the saturation exponent. Archie found that the value of m’ ranged
from 1.8 to 2.0 for consolidated porous media and equaled 1.3 for unconsolidated
porous media. A value of 2 was given to n for clean consolidated and unconsolidated
sandstones.

Winsauer et al. (1952) defined tortuosity in the following manner:

L, te) 2
Twin = E = <?> 3 (236)

where t is the transit time for ions of given mobility in a capillary of length L. having

et

the same cross-sectional area as a porous medium with length of L; flowing under
the same potential gradient. These workers studied the dependence of formation
factor on the ratio of effective to actual cross-sectional area for electrical conduction,
9, tortuosity, Twin and packing of sand grains. They analyzed Archie’s data and

additional data and found that the following correlations worked well:

_ ¢1.67
F="—, (2.37)
0.8
0.62
F= 55 - (2.39)

Archie’s formula (Equation (2.34)) and Equation (2.39) (also known as the Hum-

ble formula) were generalized by Wyllie and Gregory (1953) as

al

F=—0 (2.40)
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Parameter o’ was said to be dependent on the particle shape, sorting and degree of
compaction whereas parameter m’ was dependent on the type of cementation. Values
of m’ ranging between 1 and 4, and of »n’ ranging between 1 and 7 have been reported
in the literature. The saturation exponent depends on the paths available to current
flow as the brine saturation in the sample decreases, and therefore is highly dependent
on the wettability of the porous medium.

Wyllie and Rose (1950) defined tortuosity as

Le\?
Twyl = (—I—/;) (241)

and from first principles derived the following relations:

R, = ZLB R, , (2.42)

F= % = (Leé L) _ T‘;y’ : : (2.43)
F.= ? 5‘31 , (2.44)
L=p=Ts (T:;)% st (2.46)
n' = 108 fj (’g,“g‘)/ ) (2.47)

where R;, F, and 7. are the values of resistivity, formation factor and tortuosity at
partial brine saturations. Wyllie and Spangler (1952) argued that hydraulic and elec-

trical tortuosities were equivalent and that tortuosity in the Carman-Kozeny equation
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could be found from Equation (2.43). As will shown in Chapter 4, Equation (2.43) is
only valid for straight parallel capillary models.

Perez-Rosales (1976) arrived at the following equation:

Fo14 @9 (2.48)

i
where ¢y is the fraction of porosity occupied by the conducting fluid and ¢, is the
fraction of porosity occupied by stagnant fluid. ¢; was assumed to be a linear function
of porosity. The results predicted by Equation (2.48) were in good agreement with
experimental observations except at low values of porosity. Perez-Rosales (1982)

showed that better agreement was predicted at low porosities if the relation
¢y = ¢™ (2.49)

was used instead of the linear one. The author derived the following relations for

tortuosity

=¢ (ap™™" +1-a) (2.50)

Tper =

&

and

Lo 0 %4 (2.51)

Tper = 5~ =X — = .
LT ¢ T ¢y
In recent years, a few attempts have been made to relate formation factor to per-

meability and other pore structure properties on theoretical basis. Katz and Thomp-

son (1986) have proposed the relation
kl x __c_, (252)

where [ is the threshold pore size such that all the pore sizes greater or equal to [,
form a connected cluster that spans the porous medium sample. Katz and Thompson

showed that the length scale I, can be determined from the inflection point in the
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mercury-intrusion capillary pressure curve. Johnson et al. (1986) have proposed the
relation

AIZ
ki = 3F (2.53)

where

, Ei(r)|* dV
7 ff:!w(();! aA’ (259
E;(r;) in the above expression is the local electric field. The parameter A’ is the
weighted pore volume to surface area in which the isolated portions of the pore space
that do not contribute to the transport are eliminated. Avellaneda and Torquato

(1991) have derived the following rigorous relation between permeability and forma-

tion factor:

Lir
1=3F (2.55)
where L1 is a length scale that involves certain averages of the eigenvalues of the
Stokes operator and contains information related to the electrical and momentum
transport. For the straight parallel capillary models, A’ = Lar = 6/2, where § is the
diameter of the tubes.

The length scales A’ and L7 contain information about the characteristic pore
dimension (i.e., analogous to mean hydraulic radius in the Carman-Kozeny equation)
and the hydraulic and electrical tortuosities in a complex manner. In order to use

parameters A’ and L 47 for practical purposes, detailed studies of their physical mean-

ings and methods for determining them for realistic pore geometries are required.

2.4.4 Effective-Medium Approximation (EMA)
The effective-medium approximation (Kirkpatrick, 1973) can be employed to derive
the relations of permeability and formation factor of the pore structure models of

porous media (e.g., network models) to the statistical parameters characterizing their
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pore space. The EMA consists of replacing an infinite random network of conductors
with an effective-medium network which has the same overall conductance as the
original network. The elemental conductances in the effective-medium network are
identical. Nicholson et al. (1988) used the EMA with a renormalization group method
to relate the elemental conductance of the effective-medium network to the parameters
of the probability distribution function of the elemental conductances of the original
network. Details about the EMA and a comparison of the relations that will be

developed in the present work to those based on EMA, will be presented in Chapter 5.

2.5 Pore Structure Models for Capillary Pressure Curves

In this section, the literature related to the application of pore structure mod-
els for studying the capillary pressure curves of porous media is reviewed with an
emphasis on network type models. For the background on physics and terminology
related to the capillary phenomena in porous media (e.g., wetting phase, non-wetting
phase; drainage, imbibition and secondary drainage capillary pressure curves; mer-
cury intrusion capillary pressure curve; irreducible wetting phase saturation, residual
non-wetting phase saturation; hysteresis), the reader is referred to Dullien (1979).
Only literature in which capillary dominated flows have been considered, is reviewed.
The viscous dominated and intermediate flows are not considered here.

The capillary pressure curves are probably the most important pore structure
properties of a porous medium, for they contain most of the information about the
pore structure. This information is, however, reflected in a very complex fashion.
The research in this field has been directed toward interpreting this information in
a meaningful manner and pore structure models have proven to be very helpful for
this purpose. Pore structure models are generally used in association with mercury

porosimetry. Fundamentally, mercury porosimetry consists of interpreting various
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features of pore structure (e.g., pore-size distribution, pore interconnectivity, corre-
lations in pore sizes) from the mercury intrusion and follow up capillary pressure
curves. The conventional method, presented by Ritter and Drake (1945) and Drake
and Ritter (1945) is based on the parallel capillary model, using the equation (relat-
ing the capillary pressure inside a cylindrical tube to its radius) eriginally introduced
by Washburn (1921). This model is, however, incapable of accounting for the irre-
ducible wetting and residual non-wetting phase saturations and capillary hysteresis.
A stochastic method to correct some of these shortcomings was developed by Meyer
(1953).

The absence of interconnections between the flow passages in parallel capillary
type models is largely responsible for the deficiencies mentioned above. To model
the interconnections between the flow passages, Fatt (1956) presented network mod-
els, similar to electrical networks. The tube diameters of a two-dimensional square

network were assigned randomly and the tube lengths were assigned according to

2a

St = ?I_ , (2.56)

where S; denotes the length and &§; denotes the diameter of the Ith tube, and a is a
constant. Initially the network was assumed to be completely saturated with a wetting
phase and surrounded from all sides by the non-wetting phase. The pressure difference
between the wetting and the non-wetting phase, that is, the capillary pressure, was
increased so that the tube (tubes) with largest diameter directly in contact with the
non-wetting phase outside of the network was (were) penetrated. At this point all tile
tubes in the network with diameters greater or equal to and connected directly to the
tubes invaded on the periphery of the network were penetrated. Keeping track of the
tubes penetrated, the wetting phase saturation was calculated and this gave the first
point on the drainage capillary pressure curve. By increasing the pressure in the non-

wetting phase and repeating the process, other points on the capillary pressure were
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obtained. Fatt found that the drainage capillary pressure curves generated in this way
were in qualitative agreement with ones observed for sandstone samples. However,
Fatt’s method did not take the phenomena of fluid trapping into consideration, and
therefore, was unable to predict irreducible wetting phase saturation.

The assumption that the network was surrounded on all sides by the non-wetting
phase was criticized by Rose (1957) because it was not shown how the wetting phase,
displaced by the non-wetting phase, could possibly leave the network. Rose (1957)
contended that different irreducible wetting phase saturations existed for different
escape routes which is not the case in real porous media.

Dodd and Kiel (1959) modified Fatt’s procedure by taking the phenomena of fluid
trapping into account. The non-wetting phase was allowed to penetrate from three
sides and the wetting phase was allowed to leave from the fourth side. The wetting
phase was trapped whenever no continuous path was available for it to exit. The au-
thors also considered the case of intermediate wettability by assigning a probability
of penetration based on the diameter. Ehrlich and Crane (1969) qualitatively showed
that interconnections between various pores were responsible for hysteresis in drainage
and imbibition relative permeability curves. Haring and Greenkorn (1970) used the
model described in Section 2.4.1 for predicting the mercury intrusion capillary pres-
sure curve. However, this model has the same limitations as a parallel capillary model
because all the pores are assumed to be directly accessible from outside.

Mayer and Stowe (1965, 1966) used random packing of uniform spheres to study
capillary pressure curves. Kwon and Pickett (1975) proposed a network model of
intersecting tapered angular pores to represent the pore structure of rocks. The mod-
el was used to study the effect of pore structure parameters on the shape, plateau
slope, irreducible wetting phase saturations and displacement pressures of the capil-
lary pressure curves. The results were in qualitative agreement with the experimental

observations.
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Dullien (1975a) emphasized the versatility of bivariate pore size distribution (ex-
plained in Section 2.4.1) for characterizing pore structure. The bivariate pore size
distribution was shown to simulate hysteresis for both independent and interacting
domains. The distribution of the bigger pores was determined from mercury intrusion
curve and the distribution of the smaller pores was found by photomicrography.

Androutsopoulos and Mann (1979) and Mann et al. (1981) used a regular two-
dimensional network to determine the pore size distribution of real porous media
samples. This was accomplished by fitting the predicted curve to the experimental
data by varying the parameters of the simulated pore size distribution. They studied
the effect of mercury entrapment on the resulting pore size distribution. Lin and
Slattery (1981) used a random three-dimensional network model to calculate per-
meability, capillary pressure curves as measured under static conditions and during
steady state flows, and relative permeability curves as measured during steady state
flows. The model, described by seven parameters, was employed to correlate single-
phase permeability, the drainage and imbibition capillary pressure curves and the
drainage and imbibition relative permeability curves. The subsequent loops of the
capillary pressure and relative permeability curves were predicted.

Wardlaw and Taylor (1976) and Wardlaw and McKeller (1981) used sandstone
samples and network models to study the effect of various pore structure parameters
on capillary pressure curves. Wardlaw and Li (1988) used two-dimensional etched
glass networks to study the effect of pore sizes and fluid occupied pore topology on
mechanisms of the retraction process. Lapidus et al. (1985) used three-dimensiohal
network models of throats and chambers and developed an algorithm assuming the
intrusion was controlled by throats sizes and and retraction by chamber sizes. Conner
et al. (1983) and Conner and Lane (1984) found that the actual throat-and-chamber
size distribution is wider than the one found by differentiating the capillary pressure

curve. Li et al. (1986) used a network model to study the effect of pore structure
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parameters, using the concept of throat-and-chamber-controlled domains.

Percolation theory has been used to study capillary phenomena in porous media.
Larson and Morrow (1981) used a percolation model to study the effect of sample size
on the capillary pressure curves. He found the accessibility of pore space inqreases
as the sample size decreases, which, in turn decreases the sharpness of the intrusion
curve knee and reduction of the residual mercury saturation. Chatzis and Dullien
(1977) used a bond percolation model to study breakthrough pressure as a function
of network topology, effect of dead-end pores and relative permeability to mercury
for sandstones. Diaz et al. (1987) also used a bond-correlated percolation model
to simulate drainage and imbibition pressure curves. Lane et al. (1986) modeled
intrusion as bond percolation and retraction as site percolation. Mayagoitia (1989a,
1989b) emphasized that while constructing pore-throat models, the size of any pore
must be greater or equal to the size of its delimiting throat, and size distribution
of both pores and throats should try to achieve maximum randomness. Mann et al.
(1986) generated a random two-dimensional network model by relocating the nodes
of a regular network. The model was used to fit the porosimetry curves for an oil
reservoir rock sample and to find the effect of length to diameter ratio on the capillary
pressure curves. Using percolation concepts, Park and Ihm (1990) studied hysteresis
by proposing hypotheses of no coalescence and no entrapment for mercury intrusion
and extrusion in a two-dimensional network with different distributions for micro-
and macro-pores.

Mishra and Sharma (1988) used a model of Bethe lattice of pore throats and pore
bodies given by Larson and Morrow (1981), to develop a mathematical teéhnique
for deriving reliable pore size distributions from capillary pressure curves. Renault
(1988) found that conventional capillary and “bubble” networks were unsuitable for
determining pore size distribution for soils in which the intra-clay pores were very

small as compared to the inter-clay pores (lacunar pore space). By assuming a normal
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distribution of the cylindrical capillaries of a network model, Cox (1991) demonstrated
a rapid way of estimating the parameters of the pore size distribution. The input to
the scheme was the first two normalized moments of the raw capillary pressure data.
Tsakiroglou and Payatakes (1990) developed a mercury porosimeter simulator based
on a three-dimensional network of chambers and throats. The simulator modeled
mechanisms by which mercury menisci move in pores and stop at entrances of throats
and in certain cases chambers, mechanisms of snap-off that lead to disconnection and
entrapment of mercury, and the sequence in which the mercury moves and threads
break. The simulator was used to study the effect of throat size and chamber size
distributions, the coordination number and contact angle on capillary pressure curves.
The intrusion curve was found to depend on the pore size distribution and mean
coordination number, the retraction curve on the ratio of pore size to throat size. As
this ratio increased, the residual mercury saturation and the hysteresis between the
intrusion and retraction curves increased. The residual mercury saturation increased
as mean coordination number decreased. Portsmouth and Gladden (1991) used a
three-dimensional spherical network model to study the effect of connectivity and
pore size distribution on the capillary pressure curves. The emphasis was laid on
determining pore connectivity (coordination number) by conducting various pressure
sequences of the mercury porosimetry experiment. Soll et al. (1988) and Soll (1991)
developed network models to simulate the two- and three-phase capillary pressure
versus saturation relations.

With the development of the sophisticated mercury porosimetry simulators des-
cribed above, recently attention has been focused on the influence of correlations bet-
ween the sizes of neighboring pores on various transport properties of porous media,
including the capillary pressure curves. Chatzis and Dullien (1985) used a bond-site
correlated percolation model to study the mercury intrusion capillary pressure curves

of networks in which sizes of the neighboring pores and throats were correlated but
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no correlation existed between the sizes of neighboring pores. It was observed that as
the c-t (chamber-throat) size correlation increased, breakthrough pressure decreased
and the primary drainage curve spread over a wider pressure range. Wardlaw et al.
(1987) used the mercury porosimetry simulator of Li et al. (1986) for comparing the
theoretical capillary pressure curve with experimentally observed-ones. A large corre-
lation between the neighboring throats and pores, and no correlation between pores or
throats among themselves was maintained. Their results for primary drainage curves
agreed with those of Chatzis and Dullien (1985). It was observed that for c-t corre-
lated networks, the breakthrough pressure for the second drainage curve was almost
the same as that for the initial drainage curve and the imbibition curves originating
from different saturation values terminated at approximately the same pressure value.
The findings for networks with no correlation were exactly opposite: breakthrough
pressure for second drainage was lower than that for the primary drainage and the
imbibition curves originating from different saturation values ended up at different
pressure values. The authors suggested that these observations may in future prove
to be the tools for measuring c-t correlations.

Tsakiroglou and Payatakes (1991) used the simulator that they described pre-
viously (Tsakiroglou and Payatakes, 1990) to find the effect of chamber-chamber and
chamber-throat size correlations on mercury capillary pressure curves. They found
that the effect of c-t correlations on the mercury porosimetry curves was relatively
small but that the effects of c-c and c-t (both simultaneously) correlations were strong.
The c-c and c-t correlations were found to widen the intrusion curve and the residual
mercury saturation was found to be smaller for c-c and c-t correlated networks than
for uncorrelated networks.

The capillary pressure versus saturation relation is an important input to the
numerical models for studying multi-phase flow in porous media at the reservoir scale.

Usually, the measurements of this relationship are done in the laboratory on small core
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samples of the reservoir. The work on capillary pressure versus saturation relation,
described in the previous paragraphs, is relevant to this scale of study, that is, the
laboratory scale. By performing statistical or volume averaging of the laboratory scale
relations for different core samples of a reservoir, the “effective” capillary pressure
versus saturation relation for the whole reservoir is determined (Dagan and Bresler,
1983; Mantoglou and Gelhar, 1987a, 1987b, 1987c; Polmann et al., 1988, 1991).
The averaging implicitly assumes that the porous medium to some extent can be
considered homogeneous at the reservoir scale. However real porous media are rarely
homogeneous at the reservoir scale. Ferrand and Celia (1989, 1990a, 1990b, 1992)
used three-dimensional cubic network models to study the effect of various types of
heterogeneity on displacement and capillary pressure versus saturation relation. They
found that the capillary pressure versus saturation curve of heterogeneous networks
differed considerably from the one found by averaging the individual curves for various

homogeneous sub-domains constituting the complete heterogeneous network.

2.6 Present Research in Light of the Reviewed Literature

It is clear from the review of literature related to the continuum description of
transport phenomena in porous media that the research in this area has been direct-
ed toward: development of mathematical concepts related to the quantification of
REV size, development of averaging rules, interpretation of the various terms in the
averaged equations and derivation of the phenomenological laws from first principles.
Limited effort has been directed toward studying the dependences of the transport
properties, such as permeability, formation factor, Klinkenberg permeability and tor-
tuosity on various features of the pore structure using this approach. In the present
study, the volume averaging method is employed to derive integral expressions for

permeability, formation factor and Klinkenberg permeability of homogeneous porous
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media. These expressions are studied with the help of idealized pore structure mod-
els. This study reveals useful information about the dependence of the transport
properties on the pore structure. The derivation of the integral expressions and their
relevance to the works by Whitaker (1986a) and Hassanizadeh and Gray (1980), will
be presented in Chapter 3.

The review of literature related to tortuosity indicates that recently more atten-
tion has been focused on this property of porous media (Du Plessis and Masliyah,
1988; Spearing and Matthews, 1991). As pointed out by Bear (1972), the effective
length, L., in the definition of tortuosity may be interpreted in two ways. When L.
is calculated by averaging the actual lengths of the flow channels—not taking into
account the fact that a fluid particle may travel through different channels at various
times and with varying speeds—the tortuosity is a simple ratio of lengths. This is
the classical definition of tortuosity employed in the Carman-Kozeny equation and
other similar equations. In the second case, if L. is calculated by averaging the actual
distance traveled by all the fluid particles passing through a particular cross section
of the porous medium at a particular instant, the tortuosity is then a kinematical
property. The study related to tortuosity in the present work is based on the integral
expressions for permeability and formation factor mentioned in the previous para-
graph. This study clearly demonstrates the limited scope of the classical definition of
tortuosity and attributes the difference between the two types of tortuosities to the
availability of multiple flow paths for fluid flow. This phenomena has been termed the
“networking effect” by Dullien (1979). The failure of the Carman-Kozeny equation
for polysized unconsolidated porous media and consolidated porous media in general
can be associated with this consideration. Most of the studies related to tortuosity,
including those of Bear and Bachmat (1966, 1967), Bear (1972), and Du Plessis and
Masliyah (1988) have considered tortuosity as a geometric quantity. The study by

Spearing and Matthews (1991) is an exception. The random walk model used by
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them to simulate the tortuosity of three-dimensional arrays accounts for the network-
ing effect to some extent and a close agreement between the experimentally observed
values and predictions in their study can be attributed to this feature of their model.
It is the endeavor of the present work to clearly distinguish between the two defini-
tions, both in the case of fluid flow and electric flow. This work also presents the
exact relation between the formation factor and electric tortuosity of porous media
and a discussion on the equivalence of hydraulic and electric tortuosities. As men-
tioned earlier (Section 2.3), the present approach for studying tortuosity is similar
to that reported by Whitaker (1967), however, unlike Whitaker’s work, the terms in
the averaged conservation equations responsible for each type of tortuosity are clearly
identified. The study related to tortuosity is carried out in Chapter 4.

On the basis of the reviewed literature, the approaches followed to study the
relation of permeability to pore structure can be divided into two broad categories:
Under the first category, simulations of the pore structure models are generated on
computers and by inverting the mass conservation equations at the junctions (or
nodes), the permeability of the model is calculated (see Appendix B). The work of
Wise (1992) is an example of such an approach. These methods do not result in ex-
plicit relation of permeability to the pore structure parameters. Under the other cate-
gory, the pore structure models are employed to derive explicit relations of permea-
bility to the microscopic pore structure parameters. The works that fall under this
category are: the Carman-Kozeny equation (Carman, 1937), Scheidegger’s capillary
models (Scheidegger, 1974), random adjacent slice models (Childs and Collis-George,
1950; Marshal, 1958; Wyllie and Gardener, 1958; Millington, 1959; Millington and
Quirk, 1961), the randomly oriented cylindrical tube model (Haring and Greenkorn,
1970) and constricted unit cell models (Payatakes et al., 1973a, 1973b; Payatakes and
Neira, 1977). All of these models are different variations of the capillary models and

ignore intersections of the tubes. As pointed out earlier, Dullien’s network model
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(Dullien, 1975) also ignores intersections. The Bear and Bachmat model (Bear and
Bachmat, 1966, 1967, also Bear, 1972) relates permeability to the average medium
conductance and tortuosity. As indicated earlier, this average medium conductance
cannot be evaluated for a general case and also, the tortuosity has been considered as
a geometric quantity. The model by Du Plessis and Masliyah (1988) has also consi-
dered tortuosity as a geometric quantity. In the present study, the integral expression
for permeability is evaluated for a three-dimensional cubic network model of porous
media. This results in an explicit relation of the permeability to the microscopic pore
structure parameters. This relation is valid over a large range of the tube diameter
distribution breadth and also, does not consider tortuosity as a geometric quantity.
Such a relation of permeability to the pore structure parameters can also be derived
with the help of the effective-medium approximation (EMA). As will be demonstrated
in Chapter 5, the relation based on the EMA is valid for tube diameter distributions
with relatively smaller breadths.

Most of the work related to the formation factor has centered on finding empiri-
cal correlations between the formation factor, porosity and tortuosity (Archie, 1942,
Winsauer et al. 1952, Wyllie and Rose, 1950, Perez-Rosales, 1976, 1982). Most of
these correlations are based on experimental data. In the present work, the integral
expression for formation factor will be evaluated for a three-dimensional cubic net-
work model. The prediction capability of this relation will be compared to that based
on the EMA.

The parallel and serial capillary models have also been considered in the present
work. These models help to study the effect of the topology (the pore connectivity)
on the permeability and formation factor. The development of explicit relations of
the macroscopic properties of the models to the pore structure parameters will be
presented in Chapter 5.

It is evident that mercury porosimetry simulators have become very sophisticated

46



where effects of correlations between the neighboring pores on various features of
capillary pressure curves have been studied in detail. However, we are still many
years away from the time when complete information of the pore structure can be
retrieved from capillary pressure curves only and also, most of the studies related to
the mercury porosimetry are of qualitative nature. Keeping this in mind, it is the aim
of the present study to outline a methodology which can complement this effort. This
methodology is based on the relations of the transport properties of the models to
the pore structure parameters and can be used to simulate the pore structure of real
porous media samples with any of the three models. A preliminary study based on
this methodology will be conducted on real porous media samples. A comparison will
be made between the drainage capillary pressure curves predicted by the methodology

and those observed experimentally. This study will be reported in Chapter 6.
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CHAPTER 3

MATHEMATICAL DEVELOPMENTS

In this chapter, mathematical concepts and relations which form the basis of the
present work are developed. An introduction to the continuum description of trans-
port phenomena in porous media, also known as the macroscopic level description,
is presented in Section 3.1. The volume averaging method, which is the technique
used in the present study for achieving transition from the microscopic to the macros-
copic level description, is discussed in Section 3.2. By volume averaging the relevant
microscopic conservation equations, integral expressions for permeability, Klinken-
berg permeability and formation factor of a homogeneous porous medium are derived
in Section 3.3. These integral expressions form the core of the present study. Their

applications are studied in Chapters 4, 5 and 6.

3.1 Continuum Description of Transport Phenomena in

Porous Media

As mentioned in Chapter 1, the transport of extensive quantities in porous media
can be described with the familiar conservation equations. It may also be possible
to state the boundary conditions in some cases (e.g., the condition of no-slip at the
solid-fluid interface in the case of momentum transport). However, these equations
describe the transport phenomena at the microscopic level and at that level our inabi-
lity to observe and describe the complex geometry of the solid-fluid interface precludes

any direct solutions to these equations. Also, in most cases of practical relevance, one
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is not interested in knowing the details of the transport at the microscopic level.
Instead, the knowledge about the behavior of relatively large portions of the porous
medium domain suffices. This level of description of transport phenomena is called
the macroscopic or continuum level description. Moreover, as it allows a comparison
with the experimental observations, which are only possible at the macroscopié level,
the continuum description is also desirable.

A few mathematical techniques are available to achieve transition from the micros-
copic level to the macroscopic level. These techniques can be broadly categorized as
the averaging methods and the homogenization method. Under the class of aver-
aging methods, two approaches are generally used: one is the volume averaging
method and the other is the statistical averaging method. In the volume averag-
ing method, the microscopic variables relevant to the transport process and the pore
structure properties are averaged over a representative elementary volume (REV) (an
REV is formally defined in Section 3.2.1) and the averaged values are assigned to the
centroid of the REV. The averaging is conducted throughout the domain of interest
which results in a continuous and differentiable spatial distribution of the transport
variables and the macroscopic properties of the pore structure (e.g., permeability, for-
mation factor, porosity). In the statistical averaging method, the transport variables
and the properties of the porous medium are considered as random space functions
(RSF). The actual porous medium and the transport process are considered as the
ensemble of the random space functions that describe them. The statistical averag-
ing must, in principle, be carried over a sufficiently large number of realizations. In
the case of porous media, most of the times, only one realization is available. This
difficulty is resolved by basing the statistical information on a unique sample that
satisfies the conditions of statistical homogeneity (explained in Appendix A). These
conditions are similar to those related to the concept of the REV discussed in the next

section. If the fluctuations of the transport variables within the REV are ignored,
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the results obtained by the two methods are the same.

The homogenization method is applied to porous media which periodically repeat
themselves. Artificial porous media generally fall into this class. In this method,
every property of the medium is expressed in the form f(z;, y;). Here z; denotes the
position vector of a point in the Cartesian coordinates and y; denotes the “stretched
coordinates” given by y; = z;/¢’. €' is a parameter given by d/ D, where d is the period
of the medium and D denotes the characteristic length at the macroscopic level. By
introducing a double scale asymptotic expansion of the partial differential equations
representing the transport phenomena of interest and identifying equal powers of ¢/,
equations in the z; and y; variables are obtained. In periodic media, equations in
y; are solvable and the equations in z; represent the “homogenized” or macroscopic
equations describing the global behavior of the medium.

For porous media where macroscopic pore structure properties are constant or
known functions, the macroscopic conservation equations describing various trans-
port phenomena are the classical equations of mathematical physics, and therefore
have been studied extensively. For media where macroscopic pore structure proper-
ties are random space functions, stochastic approaches are employed to solve them.
One of the most widely used stochastic approaches is Monte Carlo simulation. The
partial differential equations (at the macroscopic level) which describe the transport
phenomena of interest are cast in numerical form and the solutions of the macroscopic
variables are sought in the form of vectors at the nodes of a spatial grid. Values are
assigned to the coefficients of the equations (that represent the properties of the
porous medium, e.g, permeability) according to a chosen probability density func-
tion. Then the values of the macroscopic variables are found by solving the problem
in a deterministic manner. The operation is repeated many times which results in a
set of solutions of the vectors of the macroscopic variables. In this manner, the solu-

tion is presented in the form of realizations in which any moment of interest can be
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found. For relatively accurate results, finer grids are required for high variances of the
input coefficients and this requires prohibitively large computer power. Also, the use-
fulness of Monte Carlo simulations for a deeper insight into the flow phenomena and
for drawing general conclusions is limited by the very nature of the method. Other
important stochastic approaches include the small perturbation theory expa.nsfon and
the renormalization technique.

The volume averaging method is of interest to the present work; therefore, it is
discussed in detail. For reviews of the statistical averaging method and stochastic
approaches for solving macroscopic conservation equations, the reader is referred to
Beran (1968) and Dagan (1989). The details about the homogenization method are
given in Ene (1990).

3.2 Volume Averaging Method

A porous medium consists of a solid matrix interspersed with a continuous void
space. Here, the solid matrix is called the solid phase. The void space may be filled
with one or more fluid phases (e.g., water, oil, air). The transport of various extensive
quantities inside a porous medium may take place within a particular phase, between
the solid phase and a fluid phase through the solid-fluid interface, and between two
fluid phases through the fluid-fluid interface.

As mentioned in the previous section, the volume averaging method for deriving
the macroscopic conservation equations from the microscopic conservation equations
consists of associating an REV to every point inside the porous medium and averaging
all the relevant transport variables and pore structure properties over it. The averaged
values are then assigned to the centroid of the REV which may fall inside either the
solid or the fluid phase. ’

Figure 3.1 illustrates a conceptual representation of a porous medium and an
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“k=3
Fig. 3.1. A conceptual representation of a porous medium showing various phases, surfaces, an

REV, and microscopic and macroscopic coordinate systems.

REV. Only, a single component fluid phase is considered here. A general variable
is denoted by %. This variable may be a scalar or a component of a vector or of a
tensor. The phase of which 1 represents a property is denoted by a subscript on .
Three subscripts are used: a to denote a general phase, 8 to denote the fluid phase
and o to denote the solid phase (i.e., ¥4, ¥ and 1,). The interfacial area between
solid and fluid phases in the REV is denoted by A,s. The part of the REV surface
which constitutes the fluid-fluid interface between the fluid inside the REV and the
fluid outside is denoted by Age. The time is denoted by t. Both the vector (e.g., x)
and tensor (e.g., ;) notations are used. Throughout this monograph, the lower-case
letters ¢,7 and k, when used as subscripts, represent components of a vector or of

a tensor and the upper-case letters I, J and K, when used as subscripts, represent

52



a tube, a flow path or a section of the pore structure models (to be considered in
Chapters 4, 5 and 6) and have no vectorial or tensorial significance. The volume of
the REV is denoted by V,. It comprises the volume of the solid phase, V,, and the
volume of the fluid phase, V3. The porosity is denoted by ¢ and for an REV is given
by ¢ = V/Vs.

As shown in Figure 3.1, x represents the position vector of the centroid of the
REV with respect to an inertial frame of reference. Inside the REV, r denotes the
position vector of a point with respect to the inertial frame of reference and z denotes
the position vector of the same point with respect to the centroid of the REV. The

following relation between r and x holds:
r=x-+2z. (3.1)

In the rest of this section, the criteria for selecting the REV size, the definition
of two types of averages and averaging rules are discussed. These concepts are then
applied in the following section for deriving the integral expressions for permeability,

Klinkenberg permeability and formation factor.

3.2.1 Selection of REV Size

As indicated a few times earlier in this chapter, the concept of an REV is the basis
of the continuum description of transport phenomena in porous media. The size of
an REV is related to a property representing the geometry of the void space. For an
averaging volume to qualify as an REV, its size should be such that the average of the
property over the volume is statistically meaningful, which in mathematical language
means that the averaged property at a point inside the porous medium domain is a
single valued function of the location of that point and time only and is independent
of the size of the REV. Conceptually, this can be explained with the help of Figure 3.2.

If, for example, at any instant, the porosity, ¢, at a point is plotted as a function of
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Fig. 3.2. Porosity as function of size of the averaging volume.

the size of the averaging volume (represented by its characteristic dimension) then a
graph similar to the one illustrated in Figure 3.2 will result. When the size of the
averaging volume is very small, the porosity will be either 1 or zero depending on
whether the averaging volume lies in the void phase or in solid phase. As the size
of the averaging volume is increased, the porosity fluctuates between low and high
values. This is because the averaging volume contains large quantities of either the
solid or the void phase. As the size of the averaging volume is further increased, the
fluctuations decrease and eventually a region of sizes is obtained for which the porosity
remains constant, that is, is independent of the size of the averaging volume. Further
increase in the size of the averaging volume may result in deviations of porosity from
the constant value. This will be due to the bulk heterogeneities in the medium. If
[ denotes the characteristic dimension of the averaging volume, then [ has to satisfy

the following constraint for the averaging volume to qualify as an REV:

Inin < 1 € Iy (3.2)
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where [y, is the microscopic characteristic length and [,.x is the macroscopic charac-
teristic length of the porous medium. As illustrated in Figure 3.2, when the charac-
teristic dimension of the REV is of the order of 1,5, large fluctuations of the porosity
are encountered over small changes in the size of the averaging volume and when
the characteristic dimension of the averaging volume is of the order l,.,, deviation
of the porosity from a constant value may be encountered. The above arguments for
the determination of the REV size are on the lines of the work by Whitaker (1969),
Hassanizadeh and Gray (1979a) and Bachmat and Bear (1986).

In the preceding developments, the size of the REV has been based on porosity
representing the geometry of the porous medium. If other properties appear in a given
macroscopic model for a transport problem (e.g., permeability), a common range of
REV size has to be found for all of them. If such a range cannot be determined, the
macroscopic model cannot be applied. In a particular transport problem, the range
of REV size should also be common to all the relevant state variables describing the

problem.

3.2.2 Macroscopic Values
Two types of averages or macroscopic values are defined within an REV:

(a) A volumetric phase average

(o) (5,0) = 5 [ alr,t) 4V, (33)

which is evaluated over the entire REV, and

(b) a volumetric intrinsic phase average

(o) (5,8) = 5 [ #alrst) 4V, (3.4)

which is evaluated over a single phase (here denoted by «) within the REV. The x

in the above definitions are the coordinates of the centroid of the REV to which the
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averaged values are assigned at time ¢ (Figure 3.1). From the definitions of the two

averages, it follows that the two are related as

(1/)a> (X,t) = ¢(X,t) <¢a)a (xvt) . (3°5)

At any point within the REV, a microscopic quantity can be expressed as (Gray,

1975; Hassanizadeh and Gray, 1979a)
ot =X +2) = (o) (x,1) + Pa(x,2,1), (3.6)

where zza(x,z,t) is the deviation of ¢, at a point r (= x + z) within the REV
from its intrinsic phase average which is associated with the centroid x of the REV
(Figure 3.1). Because a point can belong to an infinite number of REVs, it is very
important to explicitly state the dependence of the deviation on x, which denotes the
centroid of the REV over which the average is calculated. The explicit dependence of
¥ on x and z in Equation (3.6) precisely does that. It states that the deviation of the
microscopic quantity 4, at the point r (= x + z) is with respect to its intrinsic phase
average value calculated over the REV having centroid at x. By definition, both the
phase and intrinsic phase averages of this deviation are zero. In future, the reference
to the macroscopic coordinates and time inside the brackets will be omitted. If 4

and %' denote two variables, the average of their product is defined as
B B v =\ B
(eavs) = (wa)® (v5) +{Fadh) (3.7)

which is a consequence of Equation (3.6).

The averages can, similarly, be defined with respect to a representative elementary
area (abbreviated as REA). Bachmat and Bear (1986) showed that the volumetric
and the areal averages of a quantity at a point are identical and the areal average at
a point is independent of the orientation of the area and can be interchanged with

the volume average at that point.
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3.2.3 Averaging Rules

The averaging rules employed to derive the macroscopic conservation equations from
the microscopic conservation equations are given below:

(a) When the macroscopic conservation equations are formed, one encounters an
average of a gradient, while it is the gradient of the average that is required. These
quantities are related by the spatial averaging theorem (Anderson and Jackson, 1967;
Marle, 1967; Slattery, 1967; Whitaker, 1967). Mathematically this theorem can be

written as

ovs\ 8
< Or; > amt d’ﬁ V / Ypn; dA, (3.8)

where n; represents the unit outward normal vector on the differential area, dA.
The averaging theorem for the intrinsic phase average may be found by substituting

Equation (3.5) into Equation (3.8):

oys\° _ @ g, 1 (15)° 09
< a> = o e [ pamians S22 (39)

If the porosity is constant, then the last term in Equation (3.9) vanishes. By manipu-
lating Equations (3.5) and (3.6) and using the averaging theorem of Equation (3.8),

Gray (1975) derived the following modified averaging theorem:

3¢ﬁ
(b) The average of a time derivative is evaluated using the general transport theorem
in the form
0vs\" _ ()’ | (ws) 94 1 .
<6t> =5t o5 Vﬂ/Aaﬂw(waﬁ), nidA, (3.11)

where (w,g); is the velocity of the surface A,3. The second and third terms on the

right-hand side vanish for constant porosity and stationary solid phase, respectively.
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3.3 Integral Expressions for Macroscopic Transport Pro-
perties

In this section, the volume averaging method outlined in the previous sections
is employed to derive integral expressions for permeability, formation fa.ctbr and
Klinkenberg permeability of homogeneous porous media. This is achieved by averag-
ing the appropriate microscopic conservation equations and comparing the averaged

equations to the corresponding phenomenological laws.

3.3.1 Integral Expression for Permeability
For the purposes of this section, it is assumed that the fluid is incompressible and
Newtonian, and that all fluid properties (e.g., density, viscosity) and the porosity are
constants in both time and space. This condition is realized in many problems and
should not lead to misinterpretations. Also, it is assumed that the no-slip condi-
tion applies (i.e., Klinkenberg effects are ignored). Only porous media completely
saturated with a single fluid are considered and the body force is assumed to be
gravitational.

The momentum conservation equations at a point inside the fluid phase of the
REV for incompressible and Newtonian microscopic flow in the microscopic Cartesian
coordinate system may be written as

dpw) O(pwjwi)  wi  Op
at T ar, Foror o

—pa;=0, (3.12)

where p is the fluid density, wy is the microscopic fluid velocity, g is the fluid viscosity,
p is the pressure, and a; is the gravitational acceleration. Taking the intrinsic phase

average of this equation and applying Equations (3.6) through (3.11):

o) | o) ), Otmiw) ) 20
ot c’ia:j Oz; B:cj Ba:,- Oz;
3 5w, 1
— n; dA { —pa;=0. N
Vg » 37'] +Vg » pn;dA—pa; =0 (3.13)
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Because all variables and properties (e.g., wg, p, ¢ and p) relate to the fluid phase, the
subscript § on all of them has been dropped. The physical meanings of the various
terms are as follows: The first term is the unsteady term and has been proposed on
experimental grounds by some authors (see Bear (1972) for a review). Obviously this
term is zero if the macroscopic flow is steady. The second term is the macroscopic
convection term and accounts for the spatial changes in the intrinsic phase average
velocity. If the problem under consideration is one-dimensional and incompressible,
this term is zero. The third term represents changes in average microscopic iner-
tia (i.e., hydrodynamic dispersion of the average velocity). This term is zero for a
uniform flow in a homogeneous porous medium. This term is often associated with
the Forchheimer coefficient (see Dullien and Azzam, 1973); however this connection
is problematic because the derivative here is macroscopic, while the Forchheimer
effect is microscopic in nature. Further discussion of the Forchheimer effect is beyond
the scope of this study (for more discussion on Forchheimer effects, see Ruth and
Ma (1992) and the literature cited therein). The first three terms together represent
macroscopic inertial effects. The fourth term is the macroscopic viscous term or the
diffusion term. This term was suggested by Brinkman (1947) and is known as the
Brinkman term. For a fully developed one-dimensional macroscopic flow, this term is
zero. Here fully developed one-dimensional macroscopic flow means that the gradient
of the intrinsic phase average velocity is zero. This is true for a homogeneous porous
medium. The fifth term is the macroscopic pressure gradient term. The sixth and
seventh terms contain the “hidden” information about the influence of the micro-
structure of the porous medium on the fluid flow. As will be shown in Chapters 4
and 5, understanding these terms requires consideration of explicit models of the
porous medium. Finally, the eighth term is the gravity term. This term is zero for
one-dimensional horizontal macroscopic flows.

It is well known that the Darcy’s law is invalid in the presence of inertial and
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Brinkman effects. Therefore, to derive an expression for permeability, the terms re-
presenting these effects in Equation (3.13) must be ignored. If we assume the macros-
copic flow direction, k = 1 to be horizontal, then the gravity can also be ignored. It
may be pointed out here that ignoring the gravity term does not limit the generality
of the final expression. This is because the gravity term can be combined with the
macroscopic pressure gradient term and to find the expression for permeability, the
resulting equation can then be compared to the Darcy’s law with the gravity effects.
For the k = 1 direction, Equation (3.13) without macroscopic inertial, Brinkman and

gravity effects then becomes:

o)’ u [ Ow 1
g _ B[ T g4y — =0. .
5o "V T A /A _pmdd=0 (3.14)

To visualize a typical experiment conducted for physically measuring permeabi-
lity, consider a parallelepiped-shaped sample of a homogeneous porous medium with
linear dimensions L; and face areas Aj. Let the faces of the sample normal to the
k = 2, 3 directions be sealed and let p, and p; denote the pressures imposed on
the upstream and downstream faces (these faces are normal to the macroscopic flow
direction, k£ = 1) of the sample, respectively, resulting in a bulk fluid flow rate, @, in
the k = 1 direction. If the macroscopic flow direction k£ = 1 coincides with horizontal
direction, then according to the Darcy’s law, the permeability k; of the sample in the

macroscopic flow direction k =1 is:

1 A (Ph —Pl)
———— e~ 7 3.15
B Qiul (3.15)

An expression for permeability can be found bsf comparing Equation (3.14) to
Equation (3.15). However, it may be mentioned here that Equation (3.14) is the
differential form of the macroscopic momentum balance equation for k¥ = 1 direc-
tion associated with the centroid of the REV, whereas Equation (3.15) is valid for a

sample used in the physical experiment for the measurement of permeability. If the
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characteristic dimension of the sample is very large as compared to the characteristic
dimension of the REV, then the end effects in the sample can be ignored and the
sample (which is assumed to be homogeneous) and the REV can be assumed to be
equivalent. A comparison of Equations (3.14) and (3.15) still requires a procedure to
relate 8 (p)? /dz, in Equation (3.14) to (ps — pi)/ L1 in Equation (3.15). The pressure
in Equation (3.14) is an intrinsic phase average pressure, whereas the pressures in
Equation (3.15) are the areal average pressures, or if the pressure measurements are
made at points outside of the sample, the microscopic pressures outside of the sample.
The intrinsic phase average pressure must therefore be expressed in terms of these
experimental pressures. This is accomplished in the following developments.

By definition, the intrinsic phase average of the derivative of pressure within the

REV is:
2\ _ 1 oy, (3.16)
67‘k - Vg Vs Brk ) )
By Gauss’s divergence theorem
9p
Va 'aTk dV = Aﬂpnk dA ) (317)

where surface area Ag is equal to the sum of areas A,3 and Ag. (see Figure 3.1). The

integral can therefore be decomposed into two integrals as

op
—dV = dA . .
vy B7e dv -/A,,ppnk + /Aﬁcpnk dA (3.18)

Combining Equations (3.16), (3.18) and the averaging theorem for constant porosity
(Equation (3.9)):

0 g1
32, (p)” = 7 4/:4;3¢pnk dA. (3.19)

This equation allows the gradient of the intrinsic phase average pressure to be ex-

pressed in terms of an integral of the microscopic pressure over the fluid-fluid interface
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k=3

Fig. 3.3. Conceptual determination of areosity, {k(x), of an REV.

of the REV. If Equation (3.19) for k = 1 direction is applied to Equation (3.14), the

resulting equation becomes

—u 8—7{)-1—n_,-dA+/ pnldA+/ pridA=0. (3.20)
Aop Age

Asp OT;

To evaluate the last term in Equation (3.20), a new parameter is defined. It is

termed areosity, denoted by £x(x) and defined as

609=1 [ 7o [ [, @) st dA] ary (3.21)

The various terms in the definition of areosity can be explained with help of Figure 3.3.
This figure shows an arbitrary shaped REV and the microscopic and macroscopic
coordinate systems. Ly is the characteristic length of the REV in the k direction and
Ay is the bulk area of the REV normal to the k direction. A is a function of ri, where
v is a directed distance local to the REV as shown in Figure 3.3. ~ is a function
which is zero in the solid phase and 1 in the fluid phase. ¢ is the angle between the

direction of the microscopic flow and the k direction at a point inside the fluid phase.
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The inner integral in Equation (3.21) gives the effective area open to flow in the k
direction in a slice of the REV normal to the k direction. This effective open area of
the slice is non-dimensionalized by the bulk area, A, of the slice. The outer integral
sums up these non-dimensionalized effective open areas for all the slices normal to
the k direction. By dividing the resulting summed up areas by "Lx, an average non-
dimensionalized effective area open to flow in the k direction, termed areosity here,
is obtained. Therefore, areosity is a macroscopic property, defined for an REV and
assigned to its centroid, x. It is a directional property and is defined for all the points
inside the porous medium domain for which an REV is defined.

For further developments we assume the effective area open to flow in the macros-
copic flow direction £ = 1 to be constant along the length of the sample. Then the

expression for areosity of the sample in the k = 1 direction simplifies to

& = Ai [ 70) leos{#m}] a4, (3.22)

With the introduction of the concept of areosity, the third integral in Equa-

tion (3.20) may be evaluated for the porous medium sample to give

/A pridA=(pr — pr)é1 A1 (3.23)
Pe

To show that the right-hand side in Equation (3.23) is the correct representation of
the integral on the left-hand side, consider the idealized porous medium sample of
Figure 3.4. This porous medium consists of a single slanted circular cylindrical tube.
If we ignore the end effects, then for the laminar flow situation, the microscopic flow
inside the tube is essentially in the direction of the axis of the tube. Therefore, by
definition, the areosity of the sample is A, cos#'/A;, where A, is the open area, ¢’ is
the angle between the tube axis and the macroscopic flow direction £ =1 and A; is
the bulk area as shown in the figure. The areal porosity of the sample is A,/A; and

the porosity is given by:
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k=3
Fig. 3.4. An idealized porous medium employed to illustrate the difference between areosity, areal

porosity and porosity.

Ao costl' L, A,

AL A (3.24)

¢ =
where L. is the length of the tube. Therefore, the areal porosity and porosity are
the same for this sample. However, the areosity is different from areal porosity and
therefore from porosity. If porosity is used in Equation (3.23), it would mean that the
microscopic pressure, for example on the upstream face of the sample, is acting on
area A,. However, Figure 3.4 clearly demonstrates that the pressure is acting on the
effective area given by A, cos 6’ and this is the area taken into account when areosity

is calculated.

Application of Equation (3.23) to Equation (3.20) leads to

—u Aaﬂ%%nj dA+/Aaﬁpn1 dA—(pi — pr) & A = 0. (3.25)
Solving for (ps — pi) A1 and substituting into Equation (3.15) gives the expression for
permeability:

1 1 ow,

1
—_—— - dA + ——r— dA. 3.26
ky & Q1 Ly Asp aT'j " &L Lip -/Aop P ( )

The first term in Equation (3.26) will be referred to as the “viscous term” and denoted

by T.,, the second term will be referred to as the “pressure term” and denoted by
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T,, and the complete equation will be referred to as the “integral expression for
permeability”.

At this point, the developments of the present section may be put in the pers-
pective of the literature review presented in Section 2.2. Equation (3.13) is the dif-
ferential form of the macroscopic momentum balance equations for flow of a single
phase fluid with constant properties through a rigid homogeneous porous medium
having no interaction (chemical or other) with the fluid phase. A general form of
this equation for a multi-phase fluid system was derived by Hassanizadeh and Gray
(1979b) which explicitly considered exchange of momentum between different phases
through phase changes and mechanical interactions. Du Plessis and Masliyah (1988,
1991) and Du Plessis (1991) derived the volumetric phase averaged macroscopic mo-
mentum balance equations for a single fluid phase system. For Stokes flow of a single
fluid in porous media, Whitaker (1986a) derived the following intrinsic phase averaged

macroscopic momentum balance equations:

o) _ kB
B:v,- Vg Agp 37‘_,'

n dA+i/Aw;~,n,- dA—pa;=0. (3.27)
In this derivation, the porosity was not assumed constant (in the present deriva-
tion, the porosity is assumed constant). In the absence of macroscopic inertial and
Brinkman effects, Equation (3.27) can be derived from Equation (3.13) with the help
of decomposition given by Equation (3.6) (Whitaker, 1986a).

Representations of the terms like the third, sixth and seventh terms of Equa-
tion (3.13), in terms of the average quantities (wx)? and (p)?, which are the depen-
dent variables, are required for the solution of the macroscopic balance equations.
This is usually called the closure problem. The constitutive theories for such terms
presented by various authors have already been summarized in Section 2.2. Gray

and O’Neill (1976) and Hassanizadeh and Gray (1980) showed that Darcy’s law can

be recovered by neglecting the inertial and macroscopic viscous effects (Brinkman
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effects) in the macroscopic momentum balance equations. However, both of these
studies did not associate any explicit dependence of the permeability in the Darcy’s
law to the micro-pore geometry. Whitaker (1986a) developed a scheme to transform
the closure problem for integral terms of Equation (3.27) into a boundary value prob-
lem for the deviation quantities @; and . This scheme did not require any cons-
titutive assumptions. These developments provided for direct determination of the
permeability tensor in the Darcy’s law. However, explicit relation of permeability
to the micro-pore geometry is not possible with this method. Also, the final solu-
tion depends on finding simpler representative pore structure cells. In the present
study also, Darcy’s law is recovered by neglecting the inertial and Brinkman effects.
By introducing the concept of areosity, the permeability determined experimentally
on a porous medium sample is related to various terms in the macroscopic balance
equation valid for Darcy flow. Unlike the previous works (O’Neill and Gray, 1976;
Hassanizadeh and Gray, 1980; Whitaker; 1986a), explicit interpretations will be given
to the terms in this expression with the help of idealized porous media. Also, per-
meability will be explicitly related to the microscopic pore structure parameters of

commonly used pore structure models. This will be accomplished in Chapters 4 and 5.

3.3.2 Integral Expression for Formation Factor

In this section, an integral expression is derived for the formation factor of a homo-
geneous porous medium saturated with a single electrically conductive fluid. This is
accomplished by volume averaging the differential form of Ohm’s law over an REV
and comparing the averaged equation to Ohm’s law for macroscopic current flow
through a porous medium sample. The porous medium is assumed to be homoge-
neous and completely saturated with the fluid. The solid phase is assumed to be rigid
and nonconductive. The electrical conduction inside the fluid phase under an electric

potential gradient is assumed to be ohmic only, that is, surface-flow phenomena in
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electric double-layers are ignored.

Consider a parallelepiped-shaped porous medium sample with electric potentials
er, and e; imposed on the upstream and downstream faces (normal to the £ = 1
direction), respectively. If the faces normal to the k = 2,3 directions are insulated,
then the resulting macroscopic current inside the sample, in the k£ = 1 direction, is

given by Ohm’s law:

C] e Al 3 (328)

where C; is the macroscopic current in the £ = 1 direction and R, is the resistivity of
the entire sample saturated with the conductive fluid. The formation factor, F, was

defined by Archie (1942) as

(3.29)

where R,, is the resistivity of the electrically conductive fluid saturating the porous

medium. Therefore, the formation factor of the sample is:
A e—e
CiR, L1 =

At a point inside the electrically conductive fluid phase, the differential form of

F (3.30)

Ohm’s law is
Ji=—E;, (3.31)

where J; is the current density and F; is the electric field intensity. The electric field
intensity can be expressed in terms of the gradient of a scalar function e called the

electric potential:

Je

~ 7

The minus sign is introduced by convention so that the electric field intensity points

E;= (3.32)

in the direction of decreasing potential. This leads to

1 Oe
J= = e (3.33)
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Taking the intrinsic phase average of Equation (3.33):

() = — <-531; -§§;>ﬁ- (3.34)

With the application of Equation (3.9), Equation (3.34) for constant R, and ¢ be-

comes
1 1 8,5 1
Vg Vp J, dV+ E"é“;(ﬁ) + m‘/f‘cﬁen, dA = 0 (335)
For k = 1 direction, Equation (3.35) reduces to
1 1 0 1
— d . A P L S dA=0. .
W, J1dV + 7. a0 (e)” + R '/Aaﬁ en;dA=0 (3.36)

In order to identify an expression for the formation factor, Equation (3.36) must
be compared to Equation (3.30). It may be mentioned here that Equation (3.36) is
the macroscopic charge balance equation for the k£ = 1 direction associated with the
centroid of the REV, whereas Equation (3.30) is valid for the laboratory sample. To
make the comparison, §{e)?/0z, in Equation (3.36) must be related to (es — €;)/Ly
in Equation (3.30). This is accomplished as follows: Based on an analogy with

Equation (3.19), the following relation can be written:

0 g 1
5:?1' e) = T/;/Apc eny dA. (337)
With the use of Equation (3.37), Equation (3.36) becomes
1 1
/VﬁJldV+ -R:LﬂcenldA+ E—LcﬁenldA_O. (3.38)

The concept of areosity, introduced in the previous section, facilitates the evaluation

of the second term in Equation (3.38) as follows:
/;4 eni dA = (e —ep) & Ay . (3.39)
Be

Equation (3.39) is analogous to Equation (3.23). Substitution of Equation (3.39) into
Equation (3.38) leads to

1 1
,/VledV+ E(el—eh)&Al +—R—:[46ﬁen1dA—0. (340)
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Solving for (e; — e;,) and substituting in Equation (3.30):

1 1
JpdV+ —roroo— dA. 3.41
& CL Ly Vs ! & CiLiR, Asp € ( )

F =

Equation (3.41) relates the formation factor to the micro-structure of the solid-fluid
interface through two integral terms. The first term involves a volume integral of
the component of the current density in the macroscopic flow direction over the
fluid phase; it will be called the “current term” and denoted by T.. The second
term involves a surface integral of the potential over the component of the solid-fluid
interface in the macroscopic flow direction; it will be called the “potential term” and
denoted by T.; the complete equation will be referred to as the “integral expression

for formation factor”.

3.3.3 Integral Expression for Klinkenberg Permeability
For the purposes of this section, the fluid is assumed to be compressible and Newto-
nian with constant viscosity. The momentum conservation equations for such a fluid

flow in a Cartesian coordinate system with gravity as the only body force are:

d(pw;) 4 Mpwjwi)  Ow; 0%w; + 2 0w Op

ot g, FBran, Fnar T3% 5 om T o P = 03:42)

where §;; is the Kronecker delta. For uniform porosity, the intrinsic phase average of

Equation (3.42) is:

Ipw) B\ sy ] .
5 +az'(pij,) +———/ pw;w;n; dA
9? (w;)? dw;
—F 8a:, dz; V,@ Oz; ./,,3 win; dA4 - Vg op Or; dA
(92 (w,¢ p 0 Ow;
PO, T A, A d J
arrs dz; Vj 0z, Ja,, w;n; dA = Vp Acs ar, ¢ d4
2 32 (wk)ﬁ 3wk
+§"5"(ax,-axk+v;,ax1/ w""de‘LVﬂ o B ™ 94
op) . 1 , ‘.
e ¥ T, P A () w =0 .49
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A detaileddiscussion of various termsin the above equation has already been presented
in Section 3.3.1. After ignoring the macroscopic inertial, Brinkman and gravity effects,

the resulting equation for the k = 1 direction becomes

_E [ Ow v;
. amidA- /A Famdd
2p [ dpy?® 1 _
t5ve o e mdat +V¢;/A,ﬂ pridA=0.  (3.44)

The 6th, 9th and 12th terms in Equation (3.43) involve integrals of the velocity over
the solid-fluid interface. For the present situation, these integrals are non-zero. How-
ever, for homogeneous porous media, these terms must vanish because they involve
macroscopic gradients. Rest of the developments of this section are similar to those
for the derivation of the integral expression for permeability outlined in Section 3.3.1.
Here, only the important steps are presented.

Based on analogies with Equations (3.19) and (3.23), the term involving the

intrinsic phase average pressure in Equation (3.44) can be expressed as

0

1 1
'5;—1' <p) = vﬁ/Apcpnl dA = Vﬁ(pl —ph) 61 Al B (345)

The Klinkenberg permeability, k,; of a porous medium sample, in the k =

direction is defined as

L _Ailpn—p) : (3.46)

ka1 Q1 p Ly
where @, is the macroscopic gas flow rate, with finite slip at the walls, calculated at
the mean pressure, P, = (px + m)/2. Application of Equations (3.44) and (3.45) to
Equation (3.46) yields

1 1 ow, 1 ow;
— = n; dA — — ! n, dA
ka1 & Q Ly Jass 87'.1 ! £1Qy Ly Jas ‘97': '
2 6wk
s n; dA + ————— ny dA. 3.47
36:Q, Ly Ja, Or §1Q1L1#/ P (347)
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The first three terms together will be called the “slip viscous term” and denoted by
T,; the last term will be called the “slip pressure term” and will be denoted by T'; and
the complete equation will be referred to as the “integral expression for Klinkenberg
permeability”. The relationship of the Klinkenberg coeflicient, b, to the Klinkenberg

permeability and permeability is (Klinkenberg, 1941):

b=P, (ﬁ - 1) . (3.48)
A

3.4 Summary

In this chapter, an introduction to the continuum description of transport pheno-
mena in porous media has been presented. The volume averaging method, which
has been used for achieving the transition from the microscopic to the macroscopic
level, has been discussed in detail. The topics covered in this discussion include
the criteria for selection of REV size, definition of the two type of averages and the
averaging rules. All of these developments have been reproduced from the existing
literature.

By averaging the appropriate microscopic conservation equations and comparing
the averaged equations to the corresponding phenomenological laws, explicit integral
expressions have been derived for the permeability, formation factor and Klinkenberg
permeability of homogeneous porous media. The integrals in these expressions contain
the information about the influence of the pore structure on the flow (fluid or electric),
which is manifested at the macroscopic level in these properties.

To derive the integral expressions, a property of the pore structure, termed
“areosity” in the present study, has been introduced. The areosity in a direction
denotes the average of the ratios of the effective cross-sectional areas open to flow
and the corresponding bulk areas along that direction, over an REV. Because the

effective areas depend on the local microscopic flow direction, the areosity is different
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from the areal porosity and therefore from the porosity. The integral expressions are
only valid when the effective area open to flow is constant along the macroscopic flow
direction. The areosity is further discussed in Chapter 4.

The derivation of the integral expression for permeability (and consequently the
derivation of the integral expression for Klinkenberg permeability) has been présented
in the perspective of the previously reported literature. The integral expression for
formation factor is an entirely new contribution. These integral expressions form the
basis of the present research. Unlike the previous works (O’Neill and Gray, 1976;
Hassanizadeh and Gray, 1980; Whitaker, 1986a), explicit interpretation is given to
different terms in these expressions in the following chapters. Their verification and
detailed interpretation is carried out in Chapter 4. In Chapter 5, the expressions are
used to derive explicit relations between the macroscopic properties and the statistical
parameters characterizing the void space of parallel capillary, serial capillary and
three-dimensional cubic network models of porous media. Based on the relations
developed in Chapter 5, a methodology for modeling the pore structure of real porous

media samples is outlined.
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CHAPTER 4

DISCUSSION OF INTEGRAL EXPRESSIONS:

MICROSCOPIC CROSS FLOW AND TORTUOSITY

In this chapter, idealized porous media are employed to interpret the terms in
the integral expressions for permeability and formation factor. This work results in
some useful concepts and relations. A better understanding of the transport property
of porous media known as tortuosity is provided. Section 4.1 briefly introduces the
idealized porous media used in this chapter. In Section 4.2, these media are employed
to demonstrate the validity of the integral expressions for permeability and formation
factor (Equations (3.26) and (3.41)) and to understand the physical meanings of the
various integral terms. A detailed and clear understanding of tortuosity is given in
Section 4.3. In Section 4.4, an exact relation between formation factor and tortuosity
is presented. The lack of equivalence between hydraulic and electric tortuosities for
general porous media is discussed in Section 4.5. Finally, areosity, the property of

porous media introduced in Chapter 3, is discussed further in Section 4.6.

4.1 Idealized Porous Media and RUC’s

The integral expressions for permeability, formation factor and Klinkenberg per-
meability (Equations (3.26), (3.41), (3.47)) are valid for any porous medium under
the stated assumptions. However, demonstration of their validity for real porous
media is very difficult. Their validity may instead be confirmed, in a simple manner,

by applying network theory to idealized porous media. Such an exercise also provides
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insight into the physical meanings of the various terms. The idealized porous media
are simple enough to be amenable to mathematical analyses, yet represent some im-
portant features of real porous media, and therefore, are invaluable tools for gaining
a fundamental understanding of the transport phenomena in porous media. A review
of such porous media has already been presented in Chapter 2. - |

The porous media considered in this study consist of circular cylindrical tubes
with constant cross-sectional area along their length. The point where two or more
tubes meet is called a junction. A junction is assumed to possess no volume and offer
no resistance to the fluid and current flows. Instead of considering an entire REV, a
representative unit cell (RUC) is used. A full scale model of a porous medium may
be generated by repeating the RUC in all directions. Du Plessis and Masliyah (1988)
also employed the concept of RUC in their study.

In the present study, the determination of the macroscopic transport properties
of idealized porous media by direct inversion of junction conservation equations is
termed as network theory. The basic procedure behind network theory is presented

in Appendix B.

4.2 Validity and Interpretation of Integral Expressions

In this section, a detailed study of the integral expressions for permeability and

formation factor is carried out. Each of the expressions is considered separately.

4.2.1 Interpretation of the Integral Expression for Permeability

For studying the integral expression for permeability, Hagen-Poiseuille flow is assumed
inside the tubes. Inertial effects are ignored and only creeping flows are considered.
The RUC illustrated in Figure 4.1 (RUC 1) is studied first. It consists of three tubes

(1, 2 and 3) and two junctions. All the three tubes are of the same diameter, 6, and
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Fig. 4.1. RUC 1 showing type-a tortuosity.

therefore the assumption of constant effective area open to flow in the macroscopic
flow direction, required for the application of the integral expressions, is satisfied for

this RUC. The viscous and pressure terms for this RUC simplify to

T, = g (h 51+ £5) (@.1)

and
T,= 2 s 1.2
P — éL 62 f2 2 (')

where f; = q;/Q: is the non-dimensionalized flow rate in the Ith tube, and Si, S;
and S are the tube lengths. Here g is the volumetric flow rate in the Ith tube and
Q: is the bulk flow rate in the macroscopic flow direction, ¥ = 1. For this RUC,
fi = f2 = f3 =1, and therefore

1 32

ETEL Gt 5t (4.3)

If network theory (Appendix B) is applied to this RUC, then pressures p; and p; are

related by:
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g1 G2 g3
where g; represents the conductance (in the Hagen-Poiseuille equation; Appendix B)
of the Ith tube. For this RUC, ¢; = g2 = q3 = @)1, and therefore the permeability as
given by Darcy’s law (Equation (3.15)) is:

1 3
by &Ly 8

(S1+ 82+ Ss), (4.5)
which is identical to Equation (4.3), thus confirming the validity of the integral ex-
pression for permeability for RUC 1.

The RUC illustrated in Figure 4.2 (RUC 2) is studied next. This RUC is funda-
mentally different from RUC 1 in that it offers an alternate path to the flowing fluid at
each junction, through the vertical tube (Tube 3), and therefore is more representative
of natural porous media. It consists of five tubes and two junctions. The diameters
of Tubes 1 and 5 are denoted by é,, Tubes 2 and 4 by 6, and Tube 3 by .. For this

arrangement of tubes the cell satisfies the assumption of constant effective area open

to flow in the macroscopic flow direction required for the application of the integral
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Fig. 4.3. Correlation of calculated permeabilities for a three-dimensional RUC (inscribed) with
constant effective open area in the macroscopic flow direction and random cross flow tube diameters

(64 fixed, 0 < 5b < 50,)'

expression for permeability. The tube lengths are denoted by Sy, Ss, S3, Sy, and Ss.

The viscous and pressure terms for the RUC simplify to

32 (iS4 f5Ss | faSat fa S
L= & Ly ( 62 * L (46)
and
2 £2
T = 32 f35s |6f — 67 (4.7)

PTGL 6 &
where the absolute value sign arises from the fact that when é, < é,, the fluid flow in

Tube 3 is in negative (downward) direction and vice versa. Hence the integral in T,
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Fig. 4.4. REV A having the same external dimensions and porosity as RUC 1, with a single tube

of length Sl + 53.

is always positive (no signs are associated with the f;’s). The integral expression for

permeability for the RUC becomes
2 _ 52
1 32 (f151+f555 f252+f454+f353 |63 5a|) . (4.8)

ROELN & g & &
An identical expression results when network theory is applied to the RUC, thus
confirming the validity of integral expression for permeability for RUC 2.

For large networks of tubes, it is cumbersome to validate the expression in the
above manner. For such networks, the flow rates in the tubes can be calculated with
the help of network theory and the viscous and pressure terms can be evaluated.
With the viscous and pressure terms known, the permeability of the network can
be calculated (1/k; = T, + T,). This permeability can then be compared to the
permeability found by the direct application of network theory. Figure 4.3 shows
such results for a three-dimensional RUC (inscribed in the figure). The diameters

of the tubes of the RUC in the macroscopic flow direction are 8, or é, and those of

cross flow tubes (tubes in directions normal to the macroscopic flow direction) are
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Fig. 4.5. REV B having the same external dimensions and porosity as RUC 2, with two identical

tubes.

selected randomly. The diameters of cross flow tubes and §, are held constant whereas
0 < 6 < 8,. The permeabilities have been scaled by k, which is the permeability of
the RUC when all tubes are of the same diameter, 6.

The preceding results throw some light on the physical meanings of the viscous and
pressure terms. Equations (4.1) and (4.2) for RUC 1, and Equations (4.6) and (4.7)
for RUC 2, show that the viscous term accounts for the fluid flow in the macroscopic
flow direction and the pressure term accounts for the flow in directions normal to the
macroscopic flow direction. If we compare RUC 1 to RUC A (illustrated in Figure 4.4),
which has the same external dimensions and porosity as RUC 1 but consists of a single
straight tube of length S; + S, then the decrease in permeability of RUC 1 (compared
to RUC A) due to the decrease in the open cross-sectional area is taken into account
by the viscous term, whereas the decrease in the permeability due to the increase in
the effective length is taken into account by the pressure term. These observations are

equally true when RUC 2 is compared to RUC B (illustrated in Figure 4.5), which has
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Fig. 4.6. Dependence of the viscous and pressure terms, and the inverse permeability on the ratio

of tube areas (cross flow tube diameter &g).

the same external dimensions and porosity as RUC 2 but consists of two straight tubes
with identical diameters. However, the increase in the effective length in the case of
RUC 1 can be calculated from geometric considerations, but in the case of RUC 2,
the increase in the effective length will depend on many factors other than physically
measurable lengths. This observation is directly responsible for our inability to find
an explicit expression for the macroscopic transport property of porous media known
as tortuosity. This point is further discussed later in the present chapter.

For all but the limiting cases (limiting cases are when adjacent tubes in the k = 1

direction, that meet at a junction, have the same diameters), it may be observed from
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Fig. 4.7. Dependence of the viscous and pressure terms, and the inverse permeability on the ratio

of tube areas (cross flow tube diameter 63). |

Figures 4.6 through 4.8 that the diameters of the interconnecting tubes influence the
permeabilities. In the limiting cases there is no cross flow; hence the diameters of
the interconnecting tubes cannot have any influence. These figures also show the
influence of the ratio of tube diameters on the inverse permeabilities and the terms in
the integral expression for permeability. The effect of both the diameter of the inter-
connecting tube and the ratio of the tube areas is obvious and dramatic. In particular,
it is clear from these figures that the magnitude of the pressure term is proportional to
the variation of the cross-sectional areas of the tubes in the macroscopic flow direction

even though it represents flow in directions normal to the macroscopic flow direction.
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of tube areas (cross flow tube diameter (6, + 6)/2).

It is of interest to observe that, for §2 > 0.7 62, the cross flow term (pressure term) is
essentially zero. This implies that the magnitude of the pressure term is very small
as compared to that of the viscous term when a narrow distribution of the diameters

of the tubes in the macroscopic flow direction exists.

4.2.2 Interpretation of the Integral Expression for Formation Factor

For studying the integral expression for formation factor, the current flow inside a
tube saturated with an electrically conductive fluid is assumed to be governed by
Ohm’s law. The solid matrix is assumed to be nonconductive and the surface flow

phenomena in electric double-layers are ignored.
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The validity and interpretation of this expression can be carried out in a manner
similar to that for the integral expression for permeability. For RUC 1, the current

and potential terms simplify to

1
T.= &L (fi Si+f55), _ (4.9)
T. = 1 ;S 4.10
e‘—'ElLl f2 2 ( ‘ )

where ff = ¢;/C} is the non-dimensionalized current in the Ith tube. Here ¢y is the
current in the I'th tube and C; is the bulk current in the macroscopic flow direction

k = 1. For this RUC, f{ = f§ = f§ = 1 and therefore

1
F=——(§8 S Ss3). 4.11
§1L1(1+ 2 + S3) ( )

If network theory is applied to this RUC, then the potentials e, and e; are related by
=€ — - — - — — (4.12)

where g§ is the electric conductance of the Ith tube saturated with an electrically
conductive fluid. Because ¢; = ¢; = ¢3 = C}, the formation factor given by Equa-

tion (3.30) becomes

1

F=
&Ly

(S1+ 82+ S5), (4.13)

which is identical to the one given by Equation (4.11), thus confirming the validity
of the integral expression for formation factor for RUC 1.

The current and potential terms for RUC 2 simplify to

1
T. = &—Ll(ffb”l + f552 4 iS4+ 555) (4.14)

_ 1355 |6 — &

L= &Ly 62

(4.15)
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The reasons for the absolute sign are the same as those for the pressure term in

Equation (4.7). The formation factor is given by

! |62 — &2

F=£1—Ll(f1°51+f2¢52+f§54+f5055+f3053~—:52—). (4.16)

An identical expression results for the formation factor if network theory is used,
thereby confirming the validity of the integral expression for formation factor for
RUC 2.

The validity of the expression for a three-dimensional network is demonstrated
with the help of Figure 4.9. This figure compares the formation factors of the network
(the same as in Figure 4.3) predicted by the integral expression for formation factor
and network theory. The formation factors have been scaled by F, which is the
formation factor of the network when all the tubes are of the same diameter, §,. The
results for the three RUC’s employed in this study confirm the general validity of the
integral expression for formation factor.

The physical meanings of the current and potential terms can now be discussed in
the light of the preceding results. According to Equations (4.9) and (4.10) for RUC 1,
the current term accounts for the current flow in the macroscopic flow direction
whereas the potential term accounts for the current flow in the directions normal
to the macroscopic flow direction. If we compare RUC 1 to RUC A (Figure 4.4), then
for S} = S; = S3 = L, /2, the formation factor of RUC 1 is 2.25 times the formation
factor of RUC A. The cross-sectional area of RUC 1 open to flow is 1/1.5 times that
of RUC A and the effective length of RUC 1 is 1.5 times that of RUC A. Therefore,
for the same porosity, the formation factor of RUC 1 increases by 1.5 times due to
the decrease in the open cross-sectional area and by 1.5 times due to the increase in
the effective flow length. The increase in the formation factor due to the decrease
in the open cross-sectional area is taken into account by the current term whereas

the increase due to the increase in the effective length is taken into account by the
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Fig. 4.9. Correlation of calculated formation factors for a three-dimensional RUC (inscribed) with

constant effective open area in the macroscopic flow direction and random cross flow tube diameters

(6a fixed, 0< 5b < 5&)'

potential term.

In the case of RUC 2 also, the current term (Equation (4.14)) represents the
current flow in the macroscopic flow direction whereas the potential term (Equa;
tion (4.15)) represents the current flow in the directions normal to the macroscopic
flow direction. The increase in formation factor of RUC 2 with respect to RUC B
(Figure 4.5) due to the decrease in the open cross-sectional area is taken into account
by the current term and the increase due to the increase in the effective length is

taken into account by the potential term. However, in this case the increase in the
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effective length will depend on many factors other than the physically measurable
lengths. This observation is similar to the one for fluid flow and is further discussed
later in the present chapter.

As in the case of permeability, the conductances of the interconnecting tubes
(tubes which are normal to the macroscopic flow direction) also have a considerable
effect on the magnitudes of the formation factor, current term and potential term
when the conductances of the adjacent tubes at the junctions (in the macroscopic

flow direction) vary significantly.

4.2.3 Validity of Integral Expressions for Anisotropic Media

Figure 4.3 demonstrates that the integral expression for permeability predicts correct
permeability even when the areosity in the other principal directions is different. For
the expression to predict correct permeability, only the effective area open to flow in
the macroscopic flow direction must remain constant. Therefore, the expression is also
valid for anisotropic porous media. This point is further illustrated by Figures 4.10
and 4.11. These figures show correlations between the permeabilities calculated by
the network theory (x-axis) and the ones predicted by the integral expression for
permeability for various tube sizes (y-axis). Each figure shows two cases: one for
constant effective area open to flow in the macroscopic flow direction, and the other
for variable effective area open to flow in the macroscopic flow direction. Further-
more, each case has three sub-cases for &, (6. = 6, 6. = & and 6. = (6. + 6)/2).
Here also, the permeabilities have been scaled by k,. These figures show that the
expression predicts correct permeability provided the effective area open to flow in
the macroscopic flow direction is constant; the results are insensitive to the values of
8., therefore confirming the earlier statement about anisotropic porous media. The
validity of the integral expressions for formation factor and Klinkenberg permeability

for anisotropic porous media can be demonstrated similarly.
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Fig. 4.10. Correlation of calculated permeabilities for equal inlet and outlet flow areas, and for total

inlet flow area greater than total outlet flow area (6, fixed, 0 < 6, < 6,).

4.3 Microscopic Cross Flow and Tortuosity

In this section, the relation between tortuosity and microscopic cross flow is dis-
cussed. As explained in Chapter 2, the tortuosity (hydraulic or electric) of a porous
medium is defined as the ratio of “effective average path”, L., of a fluid (or an elec-
tric) particle and the corresponding straight and shortest external distance, Ly, along

the macroscopic flow direction:

T=—. (4.17)
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Fig. 4.11. Correlation of calculated permeabilities for constant and varying effective open area in

the macroscopic flow direction (6, fixed, 0 < & < &,).

In some literature, tortuosity has been defined as the square of this ratio. This is
just a matter of definition and the forms of the equations used to relate tortuosity
to other properties such as permeability and formation factor take into account the
proper power of this ratio.

Two interpretations of the effective average path are possible (Bear, 1972). When
L. is calculated by averaging the actual lengths of the flow channels—not taking into
account the fact that at different times a fluid particle may travel through different
channels with varying speeds — the tortuosity is a simple ratio of geometric lengths.

This is the classical definition of tortuosity; in the present discussion it will be called
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“type-a” tortuosity and denoted by 7, for fluid flow and 7, for electric flow. In the
second case, if L. is calculated by averaging the actual distance traveled by all fluid
(electric) particles passing through a particular cross section of a porous medium at
a particular instant, the tortuosity is then a kinematical property. It will be called
“type-b” tortuosity and denoted by 7, for fluid flow and 7; for electric flow. For real
porous media, the two tortuosities (type-a and type-b) are different, mainly due to
the availability of multiple flow (fluid or electric) paths. This fact becomes readily

evident from the following discussion.

4.3.1 Tortuosity in Fluid Flow
The classical definition of tortuosity applies to RUC 1, that is,

=51+S'2+53

a 1
T, I, (4.18)
With this substitution, Equation (4.3) for permeability reduces to
1 32
'E = Z_-l—(-s—z‘ Ta - (4.19)
Equation (4.19) may also be expressed in terms of the flow area, Ap,
52
Ap = 2 (4.20)
4
to give
1 8w
- = Ta . 4-21
b G An (a21)

For RUC 2, if the expression for permeability as given by Equation (4.8) is com-

pared to Equation (4.21), then

1 8
— = , 4.22
k1 El Aﬁl T ( )
where
_(f1Si+f585 | f282+ faSs | faSs |6 =62\ (6 + 6
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The tortuosity, now of type-b, is no longer a simple ratio of lengths but depends
on flow distribution (f7), lengths of the tubes (Sr), local cross-sectional areas of the
tubes (6%), and variations in the cross-sectional areas of the tubes at the junctions
(162 — &21/82).

For RUC 1, the value 7, > 1 comes from the contribution of the pressure term
to permeability. The pressure term represents the microscopic cross flow (flow in
Tube 2 given by Equation (4.7)), and therefore microscopic cross flow is related to
the tortuosity for this RUC.

For RUC 2, the microscopic cross flow (flow in Tube 3) is also related to the
tortuosity. This can be explained with the help of Figure 4.6. In this figure, non-
dimensionalized permeability, viscous term and pressure term of RUC 2 (with §; =
Sy = 84 =85 = 83/2 = L1/2;6. = 6,) are plotted as functions of (8/6,)2. When
6, = 0, RUC 1 is recovered and therefore tortuosity is of type-a and is equal to 2.
When &, = &, there is no cross flow (flow in Tube 3) and the pressure term is equal to
zero. For this value of &, the flow is equivalent to that in straight parallel tubes and
tortuosity (type-a) is equal to 1. For 0 < &, < é,, the value of the tortuosity greater
than 1 is due to the contribution of the pressure term to the permeability. Therefore,
for RUC 2 also, microscopic cross flow is related to the tortuosity. However, there is
a difference between the two cross flows. In the case of RUC 1, the fluid can take
only one path, whereas, in the case of RUC 2, at each junction, the fluid can take
either of the two available paths when 0 < 8, < é,. In the latter case, this will
result in different flow rates in the two available paths. Therefore, in the presence
of microscopic cross flow of the nature present in RUC 2, the classical definition of
tortuosity as a simple ratio of lengths does not hold. In general, a real porous medium
will possess both types of tortuosities. The type-a tortuosity will result due to the
sinuousness of the individual flow channels and the type-b tortuosity will result due

to the variation of the conductivities of the flow channels (in the macroscopic flow
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direction) meeting at different junctions. More discussion of this point is given in
Ruth and Suman (1992). The converging-diverging nature of the flow channels in
real porous media will contribute to the type-a tortuosity whereas the type of pore
connectivity (the average number of pores meeting at a junction) will influence the

type-b tortuosity.

4.3.2 Tortuosity in Electric Flow

The observations made in Section 4.3.1 are equally true for electric flow through

porous media. The classical definition applies to RUC 1, that is,

L Ry (4.24)
L,
With this substitution, Equation (4.11) for formation factor reduces to
Tl
F=-=2, (4.25)
&

For RUC 2, if the expression for the formation factor given by Equation (4.16) is
compared to Equation (4.25), then

Tl: ! 1 |6l? — 62'
F= &= E—l(f151 + f252 + faSa + fsSs + f353 ——52—) (4.26)

The tortuosity, now of type-b, is no longer a simple ratio of lengths but depends on
current distribution (ff), lengths (Sr) and the variations of the cross-sectional areas
of the tubes at the junctions (|67 — 82|/62).

For RUC 1, the value 7, > 1 comes from the contribution of the potential term
to formation factor. The potential term represents the microscopic cross flow (flow in
Tube 2 given by Equation (4.10)), and therefore microscopic cross flow is related to
the tortuosity for this RUC. For RUC 2 also, the microscopic cross flow (current in
Tube 3) is related to the tortuosity. This can be explained with the help of Figure 4.12.
In this figure T¢/F,, Te/F,, F/F, and tortuosity (Equation (4.26)) of RUC 2 (with
6. = 6, and tube lengths equal to L,/2) are plotted as functions of (6,/6,)?. Here F,
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Fig. 4.12. The non-dimensionalized current term, potential term, formation factor and tortuosity

(t{ = F &) of RUC 2 as functions of (5b/5a)2~

is the formation factor of RUC 2 when &, = 6,. When §, = 0, RUC 1 is recovered
and the current term is twice the potential term. The tortuosity is of type-a and is
equal to 1.5. When 6, = §,, there is no cross flow (low in Tube 3) and the potential
term is equal to zero. For this value of &, the flow is equivalent to that in straight
parallel tubes and tortuosity (type-a) is equal to 1. For 0 < 6, < &g, the value of
the tortuosity is greater than 1 due to the contribution of the potential term to the
formation factor. In the case of electric flow also, there is a difference between the
two cross flows. In RUC 1, the current can take only one path, whereas in RUC 2, at

each junction, the current can take either of the two available paths when 0 < 6, < 6.
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In the latter case, this will result in different magnitudes of the current in the two
paths. Therefore, in the presence of microscopic cross flow of the nature present in
RUC 2, the classical definition of tortuosity as a simple ratio of lengths is also not

valid for electric flow.

4.4 Relation Between Formation Factor and Tortuosity

According to Wyllie and Rose (1950) and Wyllie and Spangler (1952), the resis-
tance of a homogeneous porous medium saturated with a conductive fluid may be
considered equal to the resistance of the volume of the conductive fluid of length L.

and area ¢ A;, thus relating the tortuosity and formation factor as
i = F?¢?, (4.27)

where 7! = (L./L1)? represents their definition of the tortuosity. As mentioned in

Section 2.4.3, Equation (4.27) is only valid for straight parallel capillary models. This
inadequacy of Equation (4.27) is demonstrated below with the help of RUC 1:
_ The porosity of RUC 1is

7 62

"5:4/111;1

(Sl + Sy + S3) . (428)

The equation relating the resistance of the tubes to the resistance of RUC 1 is

L 4 .
RZI ! - 7!'};42” (Sl + Sz + 53) 3 (429)

and the formation factor is

pofo _4A(Sit5+5) (4.30)

Rw 7X'L1 62

If these values of the porosity and formation factor are substituted into Equa-

tion (4.27), one obtains

o= (51 + 52 + 33)4

7 (4.31)

93



which is only true if S; = 0, that is, the tube in RUC 1 is straight and parallel.
For S; > 0, Equation (4.27) is invalid. This discrepancy has been observed by many
researchers including Spearing and Matthews (1991). It can easily be traced to the
value of the effective cross-sectional area open to flow in a porous medium assumed
by Wyllie and co-workers while arriving at Equation (4.27). As will be showﬁ later
in this chapter, & A; not ¢ A;, as assumed by Wyllie and co-workers, represents the
effective cross-sectional area open to flow. The quantity ¢ A; represents the average
of the open areas of the planes normal to the direction k = 1, including those planes
that intersect Tube 2. As shown in Section 3.3.1, the quantity &; A; represents the
average of the effective open area of the planes normal to the direction k£ = 1 for which
the flow is in the k = 1 direction. Tube 2 will therefore be excluded by the latter
definition. The effective cross-sectional area will therefore depend on the direction of
the local microscopic flow (electric or fluid). The use of the effective area, as defined
in Equation (3.21), instead of the actual open area in relating the formation factor
to tortuosity has also been suggested by Cornell and Katz (1953).

The equation that has generally been accepted as the right one (Barrer, 1953)

relates the formation factor and tortuosity as
1
Thar = (F )7, (4.32)

where 7/, = L./L,. It can be seen from Figure 4.13 that even Equation (4.32) does
not predict correct results when microscopic cross of the nature present in RUC 2
exists. In this figure, the tortuosity of RUC 2 (with é, = é, and tube lengths equal to
L,/2) as predicted by Equations (4.26) and (4.32) is plotted as a function of (6,/8,)>.
When 6, = 0, both the equations predict the correct value of tortuosity. For this
value of 6, RUC 1 is recovered, and for RUC 1, Equations (4.26) and (4.32) are
equivalent (e.g., one can be derived from the other by using the equation ¢ = &; 7.,

which is true for RUC 1). For 0 < 6, < 8., Equation (4.32) predicts higher values of
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Fig. 4.13. The tortuosity of RUC 2 as a function of (55/ 54)2, as predicted by Equation (4.26)
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the tortuosity than does Equation (4.26). The values predicted by Equation (4.32)
for this range of &, are incorrect, because in the limiting case when &, = &, the flow
becomes equivalent to that in straight and parallel tubes with no cross flow (current
in Tube 3), and tortuosity must be equal to 1. Equation (4.26) correctly predicts
the tortuosity in this limiting case whereas Equation (4.32) does not. When 6, = &,
Equation (4.32) takes Tube 3 also into account whereas in reality there is no flow
through this tube for this value of 8. The latter fact is properly taken into account
by Equation (4.26). On these grounds, Equation (4.26) in the form 7, = F'{; is an

exact relation between the formation factor and tortuosity.
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4.5 Equivalence of Electric and Hydraulic Tortuosities

In the past, many attempts have been made to relate permeability and forma-
tion factor. Wyllie and Spangler (1952) proposed that the tortuosity factor in the
Carman-Kozeny equation (Equation (2.5)) be determined from Equation (4.27). This
argument suggeststhat the hydraulic and electric tortuosities are equivalent and also,
that permeability and formation factor can be related. The work on this topic recently
reported in the literature has been reviewed in Section 2.2.

As pointed out by Dullien (1979), the tortuosity factor in equations similar to
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the Carmen-Kozeny equation will, in general, depend on the form of the equation
itself. For example, tortuosity will depend on whether hydraulic mean pore radius,
mean pore diameter or mean square diameter is used in Equation (2.5). Based on the
discussion about areosity in the previous sections, we assume the following relation

between permeability and tortuosity:

12
TR (4.33)

Equation (4.33) is equivalent to the Carman-Kozeny equation but there are some
differences. Areosity has been used in place of porosity and the hydraulic tortuosity
has been defined as L./L; and not (L./L;)? as in the Carman-Kozeny equation.
Figure 4.14 illustrates a comparison of the tortuosities predicted by Equations (4.26)
and (4.33) for RUC 2 (with é, = é, and all tube lengths equal to L;/2) as functions
of ((5;,/6,,)2. When 6, = 0, both the tortuosities are equal to 1.5 and when & = 4,
the tortuosities are equal to 1. For 0 < 8, < &,, the values of the two tortuosities
are different. These results are to be expected. When 6, = 0, the cell equivalent
to RUC 1 is recovered and only tortuosity of type-a is present. When 68, = 4, the
microscopic cross flow (electric or fluid) becomes zero and flow becomes equivalent to
that in straight and parallel tubes. In thislimiting case also, the tortuosityis of type-a.
For 0 < & < 8., there is cross flow (electric and fluid in Tube 3) and tortuosity is
of type-b instead of type-a. It is obvious that, in the presence of microscopic cross
flow (electric or hydraulic) of the nature present in RUC 2, the previously assumed
equivalence between hydraulic and electric tortuosities (Wyllie and Rose, 1950; Wyllie
and Spangler, 1952) is not true. In real porous media, the equivalence is more doubtful
due to the presence of other factors. For example, unlike the electric flow, the fluid
flow depends on the shape of the channels, and not only on the total cross-sectional

area of the channels.
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4.6 Further Consideration of Areosity

As found in Chapter 3, areosity arises naturally in the expressions for permeability
and formation factor. This means that average of “directed open area” represented
by &; A;, is more relevant in permeability and formation factor calculations than the
average open area represented by ¢ A;. Areosity is a well defined property and can be
readily calculated for the idealized porous media. Further discussion of this property
is presented in the remainder of this section.

For RUC 1, porosity and areosity are related by:
p=11. (4.34)

Although areosity at first appears to be the same as areal porosity, Equation (4.34)
implies that there is a subtle difference. Bachmat and Bear (1986) have shown that
porosity and areal porosity have the same value. Areal porosity is associated with the
open area; however, as shown in Section 3.3.1, areosity is associated not only with
the open area, but also with the local direction of flow, and is therefore affected by
the tortuosity. It follows that constant porosity does not necessarily imply constant
areosity, because tortuosity may vary in such a manner as to keep porosity constant
while areosity varies. If Equation (4.34) is substituted into Equation (4.19), the result
is:

1_32 5 (4.35)

This equation is the classic expression for permeability of a capillaric model with
tortuosity (see Scheidegger, 1974). If RUC 2, illustrated in Figure 4.2 is considered,
then an expression analogous to Equation (4.35) cannot be derived. However, it is of
interest to consider the case when é, = é, for this RUC. For this value of é, there is
no cross flow and tortuosity is unity. Equation (4.19) then reduces to

1 32

‘El‘ = E‘E—i . (4.36)
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This equation disagrees with the classic expression in that areosity appears in the
place of porosity. This problem has been recognized for many years, although it
has never been approached before from the viewpoint of areosity. Scheidegger (1974)
discussesit inthe context of one-directional flow in a multi-directional porous medium.
As he points out, methods of correcting the problem involve invalidation of the
Dupuit-Forchheimer assumption that the mean speed of the fluid in the macroscopic

flow direction, vy, is given by

@
v = ¢A1 . (437)

However, if areosity, defined by Equations (3.21) is used, then Dupuit-Forchheimer

equation can be generalized by use of the concept of areosity to become

_ G
=g (4.38)

4.7 Summary

_In this chapter, validity of the integral expressions for permeability and formation
factor has been demonstrated and interpretation of the terms in these expressions has
been carried out with the help of three idealized porous media and network theory. In
general, the expressions are valid for all porous media under the stated assumptions.

The property of the pore structure termed as “areosity”, which was introduced in
the previous chapter, has been further discussed. In order for the predictions of the
integral expressions and the network theory to be the same, the effective area open to
flow in the macroscopic flow direction must remain constant. However, it may vary
in any manner in the other directions, thus confirming the validity of the expressions
for anisotropic porous media also.

It has been found that the viscous and current terms represent the flow (fluid and

electric) in the macroscopic flow direction whereas the pressure and potential terms
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represent the flow (fluid and electric) in the directions normal to the macroscopic flow
direction (microscopic cross flow). Surprisingly, the microscopic cross flow is found
to depend on the variation of the conductances of the tubes in the macroscopic flow
direction in addition to the conductances of the cross flow tubes themselves. The
macroscopic cross flow can have a profound influence on the permeability (formation
factor) in the macroscopic flow direction.

Microscopic cross flow is shown to be directly responsible for values of tortuosity
exceeding one. In the presence of multiple flow paths to a fluid (electric) particle, the
classical definition of tortuosity is seen to be simplistic. The study suggests two types
of tortuosities, one accounting for the sinuousness of the individual low channels and
the other accounting for microscopic cross flow resulting due to the availability of
multiple low paths. The equivalence between the hydraulic and electric tortuosities
is found to be invalid in the presence of microscopic cross flow in porous media with
multiple flow paths.

An exact relation between formation factor, F' and tortuosity, 7’ of porous media,
in the form 7/ = F &3, has been presented. Here, &; is the areosity in the macroscopic

flow direction.
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CHAPTER 5

RELATIONS BETWEEN TRANSPORT PROPERTIES
AND STRUCTURAL PARAMETERS OF PORE

STRUCTURE MODELS

The discussion in the previous chapter was centered on very simple idealizations
of pore structure. Such idealizations are very helpful for gaining a physical under-
standing of the transport phenomena in porous media. However, much larger and
complex systems such as tube networks are required to model various flow pheno-
mena in real porous media. Such models are considered in the present chapter. The
integral expressions for permeability and formation factor are evaluated for parallel
capillary, serial capillary and three-dimensional cubic network models, and the inte-
gral expression for Klinkenberg permeability is evaluated for parallel and serial capil-
lary models. These developments result in explicit relations between the macroscopic
transport properties of the models and the statistical parameters characterizing their
pore space. The features of the models are discussed in Section 5.1 and the relations
are developed in Section 5.2. The discussion of the results is given in Section 5.3,
which also includes comparison between the predictions of the present relations and
those developed by Nicholson et al. (1988), which are based on the effective-medium
approximation (EMA) (Kirkpatrick, 1973).

5.1 Development of the Models

The present models are based on the conceptual model of porous media introduced

by Bear and Bachmat (1966, 1967). A typical porous medium is characterized by
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channels of very small cross-sectional area, and the average fluid flow and transport of
other quantities through the fluid (e.g., electric charge) inside a channel is essentially
in the direction of its axis. This feature is incorporated in the present models by
considering a circular cylindrical tube as the basic element of pore structure. In the
Bear and Bachmat model, the cross-sectional area of a channel is assumed to vary
along its axis to account for the converging-diverging nature of the flow channels
in real porous media. In the present models, the cross-sectional area of a tube is
assumed constant along its length. This simplification makes it possible to explicitly
relate the macroscopic transport properties of the models to the statistical parameters
characterizing their pore space, which is not possible in the case of the Bear and

Bachmat model (Van Brakel, 1975).

5.1.1 Construction of the Models

Figures 5.1 and 5.2 illustrate the important features of parallel and serial capillary
models, respectively. The parallel capillary model is the simplest and consists of tubes
of varying diameters and lengths running from the upstream to the downstream side
of the REV. The cross-sectional area of a tube is constant along its length. In the
case of the serial capillary model, a flow path running from the upstream to the
downstream side of the REV consists of sections of varying diameters and lengths.
However, the corresponding external macroscopic length of each section is constant,
that is, the amount of tortuousness in each tube is different. Each section will be
considered as a tube in this study.

The parallel and serial capillary models do not take the “networking effect” into
account. The networking effect is an important feature of the pore structure that
provides multiple flow paths to a fluid particle at each junction (the meeting place of
two or more tubes). The importance of the networking effect can be understood in

the light of the discussion of microscopic cross flow presented in the previous chap-
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Fig. 5.1. A parallel capillary model with non-uniform tube diameters and lengths.

ter. The network models of porous media, first introduced by Fatt (1956), take such
effects into account. In fact, as shown by Fatt (1956) and later commented upon
by many researchers, the parallel and serial capillary models are the two extremes of
the network model with coordination number equal to infinity and two, respectively.
The parallel and serial capillary models, therefore, provide a valuable insight into
the influence of coordination number on the properties of the models. Coordination
number denotes the average number of tubes meeting at a point called the junction.
It can vary between infinity and two for network models with different tube arrange-
ments. Figure 5.3 illustrates the essential features of the three-dimensional network
model considered in the present work. Such a model has a coordination number of 6.

The diameters of the tubes in the models are assumed to b;a distributed according
to a lognormal distribution (Crow and Shimizu, 1988). The lognormal distribution has

an advantage over symmetrical distributions such as uniform and normal distributions
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Fig. 5.2. A serial capillary model with non-uniform tube diameters and lengths. A flow path and

junction are also illustrated.

because higher standard deviation to mean ratios can be employed. For example, it
is known that 99.46% of the area under the normal curve lies in the range us £ 305.
Therefore, if standard deviation exceeds one-third of mean, some tube diameters will
assume values less than zero, which is not acceptable. If the tubes with negative
diameters are ignored or folded over to the positive side, the distribution becomes
distorted. In the case of capillary models, the tube lengths are also randomly assigned
according to a lognormal distribution; however, in the case of the network models, the
lengths are assumed to be uniform. As commented upon by Nicholson et al. (1988),
this assumption is no more arbitrary than the one by Fatt (1956) in which a relation
is assumed between the tube lengths and diameters. The tubes at a junction are

assumed to meet in such a manner as to not create any additional pore volume other
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Fig. 5.3. A three-dimensional cubic network model with NIP = 2 columns, N2P = 2 rows and

Nf = 2 tiers. Tubes and junctions are also shown.

than that represented by the tubes themselves, that is, the volume of the junctions
is ignored.

For all the three models, k¥ = 1 denotes the macroscopic flow direction, L; denotes
the length of the REV in the k¥ = 1 direction, and A; denotes the bulk area of the
REV normal to the k = 1 direction. The total number of tubes in a model is denoted
by Ng. The total number of flow paths in a serial capillary model running from the
upstream to the downstream side is denoted by N.,. Each flow path has Np junctions.
Therefore, the total number of tubes in the serial capillary model, denoted by N7, is

equal to N, (Np + 1). The sections upstream of the first junction and downstream
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of the last junction are of half macroscopic length as compared to the intermediate
sections (Figure 5.2). Both the parallel capillary and serial capillary models have

tubes in the k& = 1 direction only.

The network model (Figure 5.3) consists of N} tiers and each tier has Nf columns
and Nf rows of junctions. The total number of junctions, denoted by Np, is equal

to N x Nf x NI and the total number of tubes, denoted by Nr, is:
Nr =3NP NP NP + NP NP + NPNP 4+ NP NP (5.1)

For given values of N, NP, and NF, the junctions and tubes are assigned unique
global indices. As illustrated in Figure 5.3, which shows a 2 x 2 x 2 network (Nf =
Nf = Nf = 2), the first and last sections in all the three principal directions are
of half the length of the intermediate sections. For clarity, the tubes in the figure
are shown to be straight. However, the tubes used in simulations may be straight or
tortuous.

All the three models in the present study are completely characterized, that is,
all the macroscopic properties of the models can be expressed in terms of five pore
structure parameters: N4, T, ps, 05 and og, where N4 is the total number of tubes
in the macroscopic flow direction intersecting a plane normal to the macroscopic flow
direction, per unit bulk area, and is equal to Nr/A; for the parallel capillary model,
N /A for the serial capillary model and N,f Nf /A; for the network models; 7 is
equal to us/L, for the parallel capillary model and us Np/L; for the serial capillary
model, and Nlp ps/Ly for the network model; ps and o5 are the mean and standard
deviation of the tube diameter distribution, respectively; and ps and og are the mean
and standard deviation of the tube length distribution, respectively.

Based on the definition given to it in Chapter 3, the areosity of the network model
is defined for all the three principal directions, k = 1,2 and 3. For the parallel and

serial capillary models there are no tubes in the k¥ = 2 and 3 directions, therefore, for
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these models the areosity is not defined for these directions. For the parallel capillary
model, the effective area open to flow in the macroscopic flow direction is constant,
therefore the areosity in this direction may be calculated from

& = 1 A1 ;6 7 (5.2)
where §; is the diameter of the Ith tube. At any of the (Np + 1) sections in a serial
capillary model, the effective area open to flow in the macroscopic flow direction can

be found from

T Nch 2
Aﬂl section I = m ng 6IJ ’ (53)

where 877 is the Jth tube in the Ith section. For a network model, the effective area
open to flow at any section, in any of the three principal directions, is given by

NPNP

Aﬁ.‘ Z 51] ’ (5'4)

section I

where 817 is the Jth tube in the I'th section in the k = i direction. Here, only the
cross-sectional areas of the tubes that are in the k = ¢ direction contribute to Ag,.
For a parallel capillary model, the effective area open to flow in the macroscopic
flow direction is naturally constant. However, for the serial capillary (for the k =1
direction only) and network models (for all the three directions), the number of tubes
in a section has to be very large to achieve constant effective area along a particular
direction. Due to the limitations on the available computer power, the following
procedure was devised to achieve constant effective open area for these models.

For the serial capillary model, the area open to flow at each section, Ag;, was
found, and the average area open to flow was calculated by taking the mean of the

open areas for all the sections. Then the diameters were reassigned according to

J}IJ \/ ( 5prevzo1_s) 2 averac,e / Aﬁl , ( 55)
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Fig. 5.4. Permeability and formation factor of network model with original effective open area at

various sections and with constant effective open area (by reassigning tube diameters).

where the subscript IJ on 6 denotes the Jth tube in the Ith section and the super-
script I on Ap; denotes the Ith section. For network models, the same scheme was
applied to achieve constant effective open area in all the three directions. However,
the average open area was calculated by taking the mean of open areas in all the
sections in all the three directions. This ensured constant effective open area in a
particular direction as well as the same effective open area in all the three principal
directions.

The effect of reassigning the tube diameters on permeability and formation factor
of a 12 x 12 x 12 network (N = 2.4 x 10°m=2, 7 = 1.1, ps = 5.32 x 10~%m, and
os = 0) as a function of as (= 0s/ps) is shown in Figure 5.4. The presented data are

averages of 50 realizations and are scaled by the corresponding values for a network
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with reassigned tube diameters and as = 0.1. The permeability and formation factor
were calculated by using the network theory (presented in Appendix B). The results
show that the net changes in properties due to reassigning the tube diameters increase
as as increases. The changes are insignificant up to a5 = 0.7. As will be observed
in Chapter 6, this is the most useful range for simulating real porous media. The
maximum differences (at as = 1.2) between the permeabilities of the network with
and without reassigning the tube diameters is 12.7%. The corresponding difference

for the formation factor is 4.5%.

5.1.2 Flow Inside the Tubes of the Models

For permeability calculations, the fluid flow inside a tube is assumed to be laminar
and given by Hagen-Poiseuille law. This assumption is realistic for creeping flows in
which Reynolds number is O(1) and inertial effects introduced by the tortuous nature
of the tubes and the converging-diverging nature of the junctions are very small and
therefore can be ignored. For Klinkenberg permeability calculations, the flow inside
the tubes is assumed to be Hagen-Poiseuille corrected for a finite slip velocity at the
solid wall. Therefore, in this case also, the inertial effects are ignored. The movement
of various fluids in petroleum and water reservoirs is generally very slow, therefore
these assumptions are realistic. For formation factor calculations, the solid matrix is
assumed to be nonconductive and the electric conduction inside the fluid phase under
a potential gradient is assumed to be ohmic only, that is, surface flow phenomena in
electric double-layers are ignored. It is assumed that the junctions offer no resistance
to the electric flow through the fluid in the pore space. The solid matrix is assumed
to be rigid, stationary and noninteracting with the fluid which completely saturates

the pore space.

5.1.3 Representativeness of the Models

For the predictions of a model to be truly representative, the size of the model should
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Fig. 5.5. Mean and coefficient of variation of permeability versus network size.

be sufficiently large to even out the effects introduced by the random assignment of
tube diameters and lengths. In other words, the predictions of the model should be
independent of its size. In terms of the concepts presented in Chapter 3, this implies
that the size of the model should qualify as an REV. An REV is defined with respect
to a property and its size will depend on the breadths of the tube diameter and length
distributions. Therefore, an appropriate size of the model that qualifies as an REV
with respect to all the properties considered and all the values of os/ys and os/us
encountered, has to be determined. In principle, an infinite size of the model will
serve such a purpose. However, in practice, due to the limitations on the available
computer power, the size of a model is chosen in such a waLy that the predictions
are fairly representative for all the properties considered. The following procedure

is generally adopted for this purpose: First the calculations are performed on the
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Fig. 5.6. Mean and coeflicient of variation of formation factor versus network size.

model with a given number of junctions, that is, for a given size. This is called a
realization. The calculations are then repeated over a large number of realizations
which are generated by using different initial seeds. The final results are presented
as averages of the values for the realizations. An appropriate size of the model and
the number of realizations is then selected so that the errors introduced by the finite
size of the model are within acceptable limits. There is a trade-off between the size of
the model and the number of realizations. The property of a large network with one
realization may be approximated as the mean value of a large number of realizations
for a smaller network. This approximation improves as the size of the model increases
(Wise, 1992). |

Different combinations of the network size and the number of realizations have

been reported in the literature. Bear et al. (1987) considered an 11 x 11 X 11 network
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Fig. 5.7. Mean and coefficient of variation of Klinkenberg coefficient versus network size.

with 12 realizations to study the effective and relative permeabilities of anisotropic
porous media. Rege and Fogler (1987) showed that a 40 x40 network with one realiza-
tion was satisfactory for studying straining dominated particle entrapment in porous
media. Blunt and King (1991) used Delaunay triangulations for two-dimensional net-
works containing up to 80 000 points to study two-phase flow in porous media. Cox
(1991) used 10 x 10 x 10 and 20 x 20 x 20 networks with 10 realizations for determining
the parameters of tube diameter distribution from mercury injection measurements.
Portsmouth and Gladden (1991) used a spherical network with diameter equal to
20 000 times the radius of the smallest pore for the determination of pore connec-
tivity from mercury porosimetry. Spearing and Matthews (1991) used a 10 x 10 x 10
array of cubes joined by cylinders to simulate the mercury porosimetry curve and to

study tortuosity. Wise (1992) used a 15 x 15 x 15 network with 1000 realizations to
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Fig. 5.8. Mean and coefficient of variation of porosity versus network size.

simulate permeability.

In the present work, the models are employed for studying permeability, formation
factor, Klinkenberg permeability, porosity and drainage capillary pressure curves.
Therefore, the size of a model that is a satisfactory representative with respect to all
of these properties has to be found.

Figures 5.5, 5.6, 5.7 and 5.8 show the dependences of the means and coefficients
of variation of permeability, formation factor, Klinkenberg coeficient and porosity
of a network model (N4 = 2.4 x 10° m™2, 7 = 1.1, ys = 5.32 x 10~ m and o5 =
0; lognormal distribution of tube diameters) on its size (e.g., a size of 8 denotes
8 x 8 x 8 network). The means and the coefficients of variation are calculated for
50 realizations. The means for different sizes are scaled by the corresponding mean

values for a 12 x 12 x 12 network. For each property, the results have been presented
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for three values of a5 (= 0.1, 0.679,and 1.2). These figures illustrate that the mean
values even out and the coefficients of variation decrease rapidly for all values of as as
the network size increases. These trends are similar to those observed by Koplik (1981,
1982), Bear et al. (1987) and Wise (1992). Therefore, using Dagan’s (1989) criteria,
the model is ergodic with respect to a given property if the variance of the average
tends to zero. Based on these results, two more observations may be made: One, the
size of the REV with respect to a given property becomes larger as a5 increases and
two, for a given value of as, the size of the REV is largest for permeability followed
by formation factor, Klinkenberg coefficient and porosity, in that order. Therefore,
out of these four properties of a model, it is sufficient to define the size of the REV
with respect to permeability only. A 12 x 12 x 12 size with 50 realizations is shown
to be satisfactory and in this study, this size of the network is used throughout.

A similar analysis was performed for the parallel and serial capillary models. It
was found that 13 000 tubes with 100 realizations and a 750 x 750 size (N = 750,
Np = 750) with 100 realizations were satisfactory sizes for parallel and serial capillary
models, respectively. The REV size of the models with respect to drainage capillary

pressure curve will be determined in Chapter 6.

5.2 Development of the Relations for the Models

For the present models, the integrals in the integral expressions (Equations (3.26),
(3.41) and (3.47)) can be replaced by summations. These simplifications of the expres-
sions are performed in the next section. The simplified expressions are then evaluated

for the three models in the following sections.

5.2.1 Simplification of the Integral Expressions

The integral expression for permeability is considered first. For the Hagen-Poiseuille
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flow inside a cylindrical tube,

&2 4r%\ dp
I_ Y1 _—— =
w, = To (1 5 ) 1 (5.6)

where w! is the axial velocity in the Ith tube at a distance r from the axis of the
tube of diameter, é;, p is the pressure, and s is the coordinate along the axis of
the tube. Along the length of a tortuous tube, the velocity w! may not be along
a principal direction. However, for creeping flows, a tortuous tube with constant
diameter and flow rate can be treated as a single straight tube with total length
equal to the extended (straight) length (Ruth and Suman, 1992). The velocity w!
can therefore be taken to be along the principal direction in which the tube is aligned.
The tangential and radial components of the velocity in the tube are zero for Hagen-
Poiseuille flow. The radial gradient of the axial velocity inside a tube, aligned in the

k = 1 direction, at the surface of the tube is

dw! 6 d

Sy 2L (5.7)

dr |, /2 4u ds

and the other gradients are zero. The viscous term, T, therefore, becomes
1 Bwl
T, = — —n;dA,
fl Ql L1 A,,,g 87’_1’ J
1 N St by dp 6rd
= ——7érds,

6QiL & Jo dpds T

T Ny

46 i lip i
where Ap; is the pressure drop across the Ith tube with length S7, and N is the
total number of tubes in the macroscopic flow direction (N{ is equal to N for the
parallel and serial capillary models, and to (Nf + 1) Nf Nf for the network model).

In terms of the average flow rate, g7, through the tube

T

32 Mg
T, =52 oL, 5.9
oL aY (5.9)
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The summation in the above expression is only carried over the tubes which are
aligned in the macroscopic flow direction, k£ = 1.

The pressure term, T,, involves integration of pressure over the parts of the solid-
fluid interface which are normal to the macroscopic flow direction, £ = 1. These areas
occur at the junctions where tubes of varying diameters meet. For parallel capillary
models, this term is zero because there are no junctions in these models. For serial

capillary and network models

1
Ty = — dA,
P & Q1 Ly K Aoﬁpnl

T Nr

461 Lip 17 PI

where py is the pressure at the Ith junction, and é,; and é4; are the diameters of the

(62— &%) , (5.10)

tubes in the k = 1 direction upstream and downstream of the junction. py is assumed
to be constant over the area w (82, — 3;) /4. Therefore, the integral expression for
permeability simplifies to

1 32 zl:SI + Np (5 —6 ) (5 11)
]Cl 61 Ql Ll = 52 q1 45 Q_l Llﬂ < IPI ul a1} - .

For the Klinkenberg permeability, Hagen-Poiseuille flow corrected for a finite slip
velocity, u., at the solid wall, is assumed inside a tube. Again, the inertial effects are

ignored. The axial velocity in the Ith tube (aligned in the k = 1 direction) is:
82 472\ dp
I 1
=L [1-= )= + w. :
w; 164 ( 5%)(13 + u (5.12)

For this assumption of velocity, the slip viscous term, T}, simplifies to

T, = ——— 65 A 5.13
4§1Q1L1u§’ Pr- (5.13)

The volumetric flow rate (with slip) inside a tube may be found by substituting
Equation (2.32) in Equation (2.31):

w

ap o T
U 128 4

1|81 Ji
Apr P 3 + 8c/\SI (5.14)
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where g7 is the volumetric flow rate in the tube, measured at the overall mean pressure
in the REV, P, = (pr + m)/2, pL, = (p1o + p1s)/2 (see Appendix B), c is a constant
whose value is close to unity, and A is the mean free path of the flowing gas. With

the use of the above equation, the slip-viscous term becomes

NT
—_ 32 1 Sr P,

T, = —— > =
601 Ly = (62 +8crép) L pL

=1

(5.15)

The slip pressure term, Ty, in the integral expression for Klinkenberg permeability
is still given by Equation (5.10). Therefore, the final expression for the Klinkenberg
permeability is:

P, n Ne
I— + e —— T —
oL 46 Lip 1

The current and potential terms in the integral expression for formation factor

1 39 M Sy

ka1 - fl_Q—l—Ll ?;:1 (5%'*'80’\51)

0y

pr (82— 6%;) . (5.16)

can be evaluated in a similar way. This leads to the following simplified expression

for the formation factor:

NT
l 1 T ]Vp

Here cy is the current in the Ith tube and e; is the electric potential at the Ith

junction.

5.2.2 Relations for the Parallel Capillary Model
For the parallel capillary model

N7

Ql = ZqI ’ (518)

I=1

N
Q=) 1, ‘ (5.19)
I=1
and

N
=3 c. (5.20)
I=1
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As explained earlier, the pressure, slip-pressure and potential terms are zero for this
model. With the substitution of the above equations, the expressions for permeability,

Klinkenberg permeability and formation factor (Equations (5.11), (5.16) and (5.17))

reduce to
NT NT
1 1 64
_— , 5.21
LN 52
1_ 25 g‘“m Aij53 (5.22)
ka1 ‘51 _L1 i St S1 '
and

1 52
=z L1 / . (5.23)

For the lognormal tube diameter and length distributions, the above expressions result

in the following relations:

1 327 14a?
k, & pl BPDP’ (5.24)
1 327 1+ a?
ko 2
koo & p3 (BP+8cA/us Cr) DP’ (5.25)
8cAP, C?
b= us B (5.26)
and
T 1
F= & D’ (5.27)
where
BP=1+6a2+15a}+20a +15a} +6 al® + a}?, (5.28)
C?=1+3a;+3a;+a3, (5.29)
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D”=1+a§—;3TT1-a§. (5.30)

The detailed evaluation of the summations in Equations (5.21), (5.22) and (5.23) is
presented in Appendix C. The expression for the Klinkenberg coefficient, b, has been
obtained with the help of Equations (5.24), (5.25) and (2.29). The only differ-
ence between Equation (5.26) and the expression for b given by Klinkenberg (1941)
(Equation (2.30)) is the factors B? and C? in Equation (5.26) which involve as’s. This
is because Klinkenberg used a parallel capillary model in which all the tubes were of
the same diameter and a5 was equal to zero.

The results for three symmetrical distributions of tube diameters and lengths

(uniform, normal and logistic) are also included in Appendix C.

5.2.3 Relations for the Serial Capillary Model

For the serial capillary model, Equation (5.11) for permeability may be written as

L+1 Np
392 N Np SIJ Ny

1
hRoL Y = Wt TaoLs QlLlﬂZZpIJ(uIJ_‘SdIJ)y (5.31)

J=1 I=1 J=1

where N, is the total number of flow paths running from the upstream to the down-
stream side of the REV, Np +1 is the number of tubes and N is the number of
junctions in each path. The Hagen-Poiseuille law for fluid flow inside a tube of the

model is

w 8%,
q = Eé‘”s_ (Pria — P13) » (5.32)

where prj, and prj are the pressures at the upstream and downstream junctions of

the Jth tube in the Ith flow path. If Equation (5.32) is substituted in Equation (5.31),

then
1 m Nch
e — 62 _ 52 , , 5.33
by 4&£Q1Lip Z:l ( npbh I(NP+1)PI) ( )

119



where 651 and 67(wvy,+1) are the first and last tubes of the Ith flow path, respectively. If
the number of flow paths in the REV is sufficiently large, the above equation simplifies

to

N,
g =) . (5:34

The macroscopic flow rate, @1, can be related to the bulk pressure drop, p, — p,

by making an analogy to the flow of current in a series of conductors. The equivalent
of electric resistance to the fluid flow in a tube can be found from Equation (5.32)

and is given by

12
Res/tube = —-—-§—'L£4Si , (5.35)
T 61_]
and, therefore the resistance of the complete path to flow is
128 N2t
Res/path = 8” Z SIJ . (5.36)

=1
If the diameters and lengths of the tubes in various paths are randomly assigned
according to chosen distributions with given means and variances and also, if the
number of tubes in a path is sufficiently large, then each path will tend to have the

same resistance. The total resistance of the REV to the flow will therefore be

Nptl o
128 MEP s,
Res/REV = T ; . (5.37)

This gives the following expression for Qy:

7 N, PHS
Q=13 m-m) [ 2 5 (5.38)
=1

The permeability of the serial capillary model can now be found from Equations (5.34)
and (5.38), and is

1 _32(+05) Nfl 51 (5.39)
kl él Ll I=1 6%
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The expressions for the Klinkenberg permeability and formation factor may be

found similarly. Here, only the final expressions are included:

1 _32(+e )N'i’:" St gk (5.40)
Far A — 634+ 8cA8 P, ’
(Wi +dd) Netl s
F= 6L Z 7 (5.41)

The detailed evaluation of the summations in Equations (5.39), (5.40) and (5.41)
for various distributions of tube diameters and lengths is presented in Appendix D,
which also includes the final results for uniform, normal and logistic distributions of
tube diameters and lengths. The final results for the lognormal distributions of tube

diameters and lengths are presented below:

1 327 \ ) ] .
T (1+a ) (1 +10a2 + 45 af + 12048 + 210 a®
1 327 1 B*C* D* E* o B
ka &4l 7 (14 i) [1 FTat (1+ A5 (1+ A + (1 +As)5] (5.43)
and
where
8c
Hs
B =al, (5.46)
C*=10+15A4"+6(4")", (5.47)
D*=a+3al, (5.48)
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E*=20+445A°+36(A°)* +10(A%)°, (5.49)

G’ =a}* +6a°+ 1545+ 16aS + 3 a; (5.50)
and

H® =35+ 105 A° + 126 (A°)® + 70 (A°)® 4 15 (A°)*. (5.51)

5.2.4 Relations for the Network Model

Unlike the parallel and serial capillary models, the summations in Equations (5.11),
(5.16) and (5.17) cannot be determined in closed forms for the network model. The
reason for this is the availability of multiple paths for fluid and current flow at each
junction in the network model. In this section, a semi-analytical approach in combi-
nation with nonlinear regression analysis is employed to evaluate the summations in
Equation (5.11) for the permeability and Equation (5.17) for the formation factor of

the network model.

FEvaluation of the Summations in Fquation (5.11) for Permeability

The viscous term, Ty, in Equation (5.11) can be re-organized as

T, = (5.52)

£1L1NPN§’ 252 Ii

where

fi= NPNP L (5.53)
Q1

Here, f7 is the non-dimensionalized volumetric flow rate through the I'th tube in the
macroscopic flow direction, £ = 1. Its value is equal to 1 if all the tubes in the
macroscopic flow direction are of the same diameter and length, that is, possess the

same hydraulic conductance.
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As indicated earlier, the summation in Equation (5.52) cannot be evaluated in a
closed form. This is because the flow rate f; in a tube depends on the position of
the tube in the network in addition to its hydraulic conductance. To evaluate the

summation, the following assumption, based on the Hagen-Poiseuille law, is made:
54
fr= S ) (5.54)
where the coefficient, A,, is assumed constant for a sufficiently large random network.

With the application of Equation (5.54), Equation (5.52) becomes:

32A, N
T, = 62 5.55
€1 Ll ]\/'2 é’ ; I- ( )

Evaluation of the summation in the above equation gives

32 A, N¥

= &1 Ly N N¥

(i3 +02) , (5.56)

where NT is the total number of tubes in the macroscopic flow direction, k£ = 1.

The pressure term, Tp, in Equation (5.11) is reorganized as

= 2
Ty = 4¢ Ly NP NP ?;PI (62, - 8%) , (5.57)
where
’ Pr
Pr= : (5.58)
#Qi/ (Nf NF)

The advantages of the above reorganization are: p} is independent of the network size
(because @, has been divided by Nf N¥'), pressure drop across the REV (because p;
and @, are linear functions of pressure drop and the overall dependence cancels out
because one is in the numerator and the other is in the denominator), and viscosity
of the flowing fluid (because @ is inversely proportional to ).

P can be expressed as sum of the mean pressure at the junction and a fluctuation

component. The value of the fluctuation component at a junction is influenced by the
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diameters and lengths of all the tubes in the network. However, the farther a tube is
from a given junction, the lesser is its effect on the value of the fluctuation component

at the junction. With these observations in mind, the following assumption is made:
r 2 2
pr=4, (6uI - ‘5dI) + By, (5.59)

where the coefficients A, and B, are assumed constant for a sufficiently large random

network. Application of Equation (5.59) to Equation (5.57) leads to

Np

T,= 17 L17;vf P ; (4, (63— 6%) + By| (62, -6%) . (5.60)

The summation in the above equation can be replaced by a double integration to give

T = 46 L17;fo N§ /ooo /0°° {AP (63 - 53) + B”]
(82 — 63) Fu(8.) Fa(82) Np 6, déa, (5.61)

where F, and F; are the probability density functions of the distributions of the tube
diameters upstream and downstream of the junctions, respectively, and 6, and 44
are the corresponding variables of the double integration. Reorganization of Equa-
tion (5.61) leads to

7 Np
4¢& Ly Nf NY

T, = [ / {(A,, 5+ By&) F(5) [ F(6) déd} dé,

-/ { (24,82 + B,) F(6,) [ 83F () d } dé,

+ /O {A,, F(5.) /0 5L F (65) dés } d5u] . (5.62)
In the above equation the limits on the inner integrals are not functions of the variables

of the corresponding outer integrals, therefore

7 Np
4¢ L NF NY

T, = [Id1 /0 ” (4,64 + B, 62) F(6.) dé,
— I, /0 " (24,82 + B,) F(b,) dé,

+ 1 /0 ~ A, F(8.) déu] , (5.63)
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where

In = /0 F(8) dba, (5.64)
I —~/°°52F 5,) d6 5.65
d2 — o d ( d) d >y ( . )
Ips = /0 64 F (62) db;. (5.66)

Equation (5.63) may be rearranged to give

_ T Np
T, = L NPRT (45 1is = By Ius)
+ (Bp Iy — 2Ap Idz) I, + Ap I Iug] y (567)
where
In = /0 " F(8,) 6., (5.68)
I, = /0 T 62 F(6,) dé., (5.69)
I = /0 Y6 F(8,) 6, . (5.70)

The tubes upstream and downstream of the junctions possess the same distribution,

therefore
Iul = Idl = Il; Iug = Idz = Iz; Iu3 = Id3 = I3, (571)
and
_ 7TNP Ap 2 .
T, = 56 L, fo NP (5L - I3). (5.72)

Irrespective of the tube diameter distribution function, F (9),
L=[ F(5)ds= .
1= [ F@ =1, (5.73)
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I2=/0°°62F(6) d§ = p? + o2. (5.74)

The value of I3 is different for different tube diameter distributions. Here, only the
results for the lognormal distribution are presented (Crow and Shimizu, 1988):
I = /°°54F(5) ds
0

= pi(1+6a? + 150 + 200§ + 154} + 64}° + a}?).  (5.75)

With the application of Equations (5.73), (5.74) and (5.75), Equation (5.72) becomes

m Np Ap s
2¢, Ly NF NY

T, = (40f + 140} + 20a} + 154} + 64f° + al?).  (5.76)

FEvaluation of the Summations in Fquation (5.17) for Formation Factor

For deriving an explicit relation between the formation factor and the statistical
parameters of the network model, an approach similar to the one for the permeability

is adopted. The current term, T, in Equation (5.17) is rearranged as

T. = A NP N3}) ZSI , (5.77)

where

P pP CI
=N; N; o (5.78)

Here f§' is the non-dimensionalized current in the Ith tube in the macroscopic flow
direction, k¥ = 1. Like the non-dimensionalized flow rate f}, its value is equal to 1 if
all the tubes in the macroscopic flow direction possess the same electric conductivity.
In order to evaluate the summation in Equation (5.77), the following assumption,

based on Ohm’s law of current flow, is made:

52
fi=A-L. (5.79)
St

126



The network is assumed to be random and sufficiently large so that A. may be consi-

dered constant. The application of Equation (5.79) to Equation (5.77) results in

Ac

T, = 6% 5.80
él Ll N2 3P 121 I ( )

which, irrespective of the chosen tube diameter distribution is

A.NT

2 2
Tc m (ﬂg + 0‘5) . (581)
The potential term, T, in Equation (5.17) is rearranged to give
T. = - 6%, .
4‘61 Cl LlRw ZeI ( dI) (5 82)
where
€r
e = . 5.83
"= R GNP ND) (589)

The advantages of the above substitution are the same as those for the pressure term
in Equation (5.58). Based on the arguments presented for the pressure term, the

following assumption is made:
er = A (62 — ) + B.. (5.84)

This results in the following expression for the potential term:

WNPAe

T, = TP L
2¢, Ly NENY

(Lh — ) . (5.85)

The values of the integrals I, I, and I3 for the lognormal tube diameter distribu-
tion have already been presented in Equations (5.73), (5.74) and (5.75), respectively.

Therefore for lognormal distribution of tube diameters

7 Np A, p} (

2 4 6 8 10 12
2%, I, NP NP (4% + 144} + 206§ + 15} + 645° + o) . (5.86)

T. =

The relations between the coefficients A,, A,, Ac and A. (in Equations (5.56),
(5.76), (5.81) and (5.86), respectively) and the statistical parameters have to be deter-

mined. This is accomplished in the following section.
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Determination of Ezpressions for the Coefficients A,, Ap, A. and A,

Nonlinear regression was employed to find the expressions for the coefficients 4,,
A,, A; and A, in terms of the statistical parameters of the network. Simulations
of a 12 x 12 x 12, three-dimensional cubic network for fifty equally spaced values
of o5 between 0 and 1.2 ys were generated on a SUN SPARC station 2 . The other
parameters of the network were: Ny = 2.4x10° m~2,7 = 1.1, and ps = 5.32x107 ¢ m
The tube lengths were kept constant and the tube diameters were randomly assigned
according to the lognormal distribution. The network possessed constant effective
open area in a particular principal direction and the same effective open area in all
the three principal directions. This was achieved by reassigning the tube diameters
as explained in Section 5.1.1.

For a given value of o5, the pressures and electric potentials at the junctions were
calculated by using the network theory (presented in Appendix B). The fluid flow
rates and electric currents in the tubes were then computed and the values of T, T,

T, and T, were found from the following expressions (Equations (5.11) and (5.17)):

T.=% Q1 I 2 Z 5 90 (5.87)
T Ne
T, = 160 L = (62— &%) , (5.88)
1 M
T. S 5.89
G0 & (5.89)
and
Np "
To= > er (62, - 64) . (5.90)

461 Cl Ll Rw I=1

For each value of o;, fifty realizations were generated and the values of the terms

were presented as averages of these fifty values. With the values of the four terms
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corresponding to the 50 values of o5 known, the values of the coefficients, A,, Ap, Ac
and A, for each value of o5, were determined from Equations (5.56), (5.76), (5.81)
and (5.86), respectively.

Using SAS software, nonlinear regression was employed to fit various empirical
models to the values of the coefficients. The models tried for each coefficient and
the corresponding fitting parameters are summarized in Appendix E. Based on the

criterion of minimum residue, following are the expressions chosen for the coefficients:

ps 1
Av="1 , 91
451+ 3.07a2 — 2.86af + 3.99a% — 2.80a§ + 0.729a° (5.91)
13.83 s 1+ a2
Ap = 92
= 8 176374l + 1640al —6.75a5 + 3046a5 — 9040 %)
bs 1
A= TTa (5.93)
and
2
A= 0.2171 ps 1 + a? (5.94)

pd 1 4 3.6la? + 10.96af —6.90a8 + 19.77a — 5.49a}°

Finally, the relations between the permeability and formation factor and the statistical

parameters of the network can be expressed as

R ER Z* (a5), (5.95)
T oF
F =—Z"(as), (5.96)

where Z*¥ and ZF are functions of as and are given in Appendix E. When a; is
equal to zero, both the functions are equal to 1 and the above relations for the
permeability and the formation factor reduce to the corresponding relations for the

parallel capillary model with uniform tube diameters and lengths.
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5.3 Discussion of the Results

In this section, first the relations developed in the present chapter are studied
and then a comparison is made between the predictions of these relations and similar

relations based on the effective-medium approximation (Nicholson et al., 1988).

5.3.1 Present Results
Figures 5.9 and 5.10 show the predicted and observed permeabilities and formation
factors of a parallel capillary model as functions of as, respectively. Here, the observed
values refer to the ones found with the help of the network theory (Appendix B)
and the predicted values refer to the ones predicted by the relations developed in
the present chapter (i.e., Equation (5.24) for the permeabilities and Equation (5.27)
for the formation factors). The model consists of 13 000 tubes with Ny = 6.0 x
10° m~2%, 7 = 2.165, and g5 = 5.0 X 107® m. Figures 5.11 and 5.12 show similar
results for a serial capillary model. Here also, the predicted values refer to the ones
predicted by the relations developed in the present chapter (i.e., Equation (5.39) for
the permeabilities and Equation (5.41) for the formation factors). The model consists
of 750 flow paths and each path has 750 tubes in it. The other properties of the model
are: Ny =4.1x10°m™2, 7 = 2.015, and g5 = 5.0 x 10~® m. The observed values for
both models are the averages of 100 realizations. For both models, the tube lengths
are kept constant and lognormal distributions are employed for the tube diameters.
Figures 5.9 through 5.12 illustrate that the two models show opposite behaviors
as as increases, both with respect to permeability and formation factor. For parallel
capillary model, the permeability increases and the formation factor decreases as as
increases, whereas, for the serial capillary model, the permeability decreases and the
formation factor increases as as increases. In the case of the parallel capillary model,
the conducting capacity of a tube is independent of the conducting capacities of all

the other tubes in the model, and because the conducting capacity of a tube is highly
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dependent on its diameter (proportional to the 4th power of diameter for fluid flow and
to the 2nd power for the electric flow), the overall conducting capacity of the model
is dominated by the tubes with large diameters, even if their number is relatively
small. An increase in as broadens the tube diameter distribution resulting in higher
values of maximum available tube diameter, therefore the permeability of the model
increases rapidly and the formation factor decreases rapidly (but not as rapidly as the
permeability) as as increases. Opposite is the case with the serial capillary model. The
conducting capacity of a flow path is controlled by the conducting capacity of the tube
in the path with the smallest diameter. Therefore, the overall conducting capacity of
the model is dominated by the tubes with smaller diameters which results in rapid
decrease in permeability and rapid increases in formation factor as as increases. The
above results are in agreement with Schiedegger’s observation (Schiedegger, 1957)
that the behavior of parallel capillary model is sensitive to the upper portion of the
tube diameter distribution, whereas, the behavior of the serial capillary model is
sensitive to the lower portion of the tube diameter distribution.

The agreement between the observed and predicted values of permeability and
formation factor of the parallel capillary model is good right up to as = 1.2. For
the serial capillary model, the predicted and observed permeabilities start to diverge
for as > 0.60 and the predicted and observed formation factors start to diverge for
as > 1.0. It was found that the observed values come closer to the predicted ones as
the size of the model is increased beyond the current size of 750 x 750 (750 flow paths
with 750 tubes in each path). However, prohibitively large computer time is required
to find the observed values for sizes exceeding 750 x 750 with 100 realizations.

Figures 5.13 through 5.22 compare the predictions of the relations for various
coefficients, terms, and permeability and formation factor of the network model, deve-
loped in Section 5.2.4, to the corresponding observed values. Here also the observed

values refer to the ones determined with the help of the network theory (Appendix B).
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The size of the model is 12 x 12 x 12 with Ny = 2.4 x 10° m™?, 7 = 1.1, and
ps = 5.32 x 107® m. The observed values are the average of 50 realizations. The
tube lengths are constant and lognormal distributions are employed for the tube dia-
meters. For all the quantities, the predictions match well with the observed values
for the whole range of as for which the relations were developed, reflecting proper
selection of models in the regression analysis carried out in Section 5.2.4. The scatter
in permeability (Figure 5.21) may seem to be larger than in the cases of viscous and
pressure terms (Figures 5.15 and 5.16, respectively). This is because the range on
the y-axis in Figure 5.21 is very small as compared to those in Figures 5.15 and 5.16.
This observation is also true in the case of formation factor, and current and potential
terms (Figures 5.22, 5.19 and 5.20, respectively).

It can be observed from Figures 5.15 and 5.16 that the viscous term decreases and
the pressure term increases as as increases. Because the reciprocal of permeability is
equal to the sum of the viscous and pressure terms, a decrease in the viscous term
results in an increase in the permeability, and an increase in the pressure term results
in a decrease in the permeability. The viscous term represents viscous momentum
dissipation in the tubes aligned in the macroscopic flow direction, ¥ = 1. As as
increases, the tube diameter distribution broadens and because in a tube the momen-
tum dissipated through viscosity is inversely proportional to the fourth power of the
diameter, the overall momentum dissipation decreases and therefore, the viscous term
decreases. The pressure term represents the viscous momentum dissipation in the
cross flow tubes, that is, the tubes aligned in the directions normal to the macroscopic
flow direction, k¥ = 1. When a5 = 0 there is no flow through these tubes and therefore,
the pressure term is zero. As as increases, the amount of flow-in the cross flow tubes
increases resulting in increased momentum dissipation and correspondingly in higher
magnitudes of the pressure term. When as = 0.6, the magnitude of the pressure term

is equal to that of the viscous term. The combined effect of the viscous and pressure
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terms on the permeability can be observed from Figure 5.21. For 0 < a5 < 0.3,
the contribution of the viscous term to the permeability dominates and the permea-
bility increases slightly. However, for a5 > 0.3, the pressure term dominates and the
permeability decreases as as increases. The arguments presented in this paragraph
are equally true in the case of the formation factor in which case the current term is
equivalent to the viscous term and the potential term is equivalent to the pressure
term.

It may be argued that, at higher values of a4, the errors introduced by the finite
size of the network may also be modeled during the nonlinear regression analysis. To
check this, a run was performed on a 14 x 14 x 14 network (with 50 realizations). The
maximum difference between the observed values of permeability for the 12 x 12 x 12
and 14 x 14 x 14 networks (at as = 1.2) was found to be 1.23%, and the corresponding
value for the formation factor was found to be 0.75%. To check the behavior of the
relations for as > 1.2, observed values were found for a 12 x 12 x 12 network for
0 < a5 < 1.4. It was found that the predictions of the relations diverge from the
observed values for as > 1.25. Therefore, the predictions of the equations can be
safely assumed to be correct for values of as up to 1.2. However, the procedure
outlined in Section 5.2.4 can be used to find such relations for any given range.

It is interesting to compare the behaviors of the parallel and serial capillary, and
the network models at this stage. For the same range of as, the permeabilities of the
parallel and serial capillary models change through five orders of magnitude whereas,
the permeability of the network model changes approximately by a factor of 2 only. As
pointed out in Section 5.1.1, the absence of networking effect in the parallel and serial
capillary models is responsible for such behaviors of these models. In the network
model, the permeability is controlled by tubes with smaller diameters (“throats”) but
not to the same extent as in the serial capillary model. This is due the availability

of multiple flow paths to a fluid particle at each junction which in turn traverses the
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path of least resistance from the upstream to the downstream side of the REV. In
the serial capillary model, the fluid particle has no choice but to travel through tubes
of all sizes. The absence of networking effect in the parallel capillary models allows
the domination of tubes with large diameters. These behaviors of the three models
point out that the permeability of the network model will increase as the coordination

number (average number of tubes meeting at a junction) increases.

5.3.2 Comparison with Effective-Medium Approximation (EMA)

The relations of permeability and formation factor to the statistical parameters of
the pore structure models (parallel and serial capillary, and network) can also be
derived with the help of the effective-medium approximation (EMA). The EMA was
originally employed to find the electrical permittivity of binary random mixtures of
continuous phases (Bruggeman, 1935). Kirkpatrick (1971, 1973) applied the EMA to

random networks of conductors based on the following equation:

% (gm —g) w(g)dg _
e 9+ (/2-1) gm 0, (5.97)

where 7 is the coordination number representing the average number of conducting
elements connecting a junction to its neighbors. For example, 5 is 2 for a serial
capillary model, 4 for a square network and 6 for a cubic network, both with no
diagonal elements, and oo for a parallel capillary model. Equation (5.97) is valid for
an infinite network in which the elemental conductances, g, are randomly distributed
according to a probability density distribution w(g) with g, < g < ¢5. gm is the
effective-medium approximation to g,, where g, is the exact value of g which yields
the network conductance, G,, when all elements of the network are replaced with
elements of conductance g,. Equation (5.97) is based on the reasoning that the
average change in G, caused by replacing an elementary conductor of an effective-

medium network with a conductor randomly chosen from w(g), must be equal to zero.
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Here, an effective-medium network implies a network in which all the elementary
conductors have the same conductance, g,.

Most of the applications of the EMA have been in two areas: the calculation
of conductivity or permeability of binary mixed component solids, and the study of
network percolation properties (Kirkpatrick, 1971, 1973; Gurland, 1966; Ahmed and
Blackman, 1979; Nagatani, 1981; Sax and Ottino, 1983). A Simple discrete form
of w(g) was used in both of these applications. Koplik (1981) used continuous w(g)
(uniform and log-uniform) distributions to determine the range of applicability of
the EMA of Equation (5.97) with respect to the shape and breadth of w(g). The
main purpose of his work was to show that the direct inversion of the conductance
matrix (see Appendix B) may be replaced by a less cumbersome numerical solution
of Equation (5.97) within acceptable errors introduced thereby.

Nicholson et al. (1988) solved Equation (5.97) using a renormalization group
method and found an explicit relation between g, and the parameters of w(g) and 7
in the form of a series expansion. In this section, a comparison is made between the
predictions of the relations developed in the present study and those based on the
Nicholson’s solution to Equation (5.97).

A detailed derivation of Equation (5.97), based on Kirkpatrick (1973), is presented
in Appendix F which also includes Nicholson’s solution. To facilitate a discussion of
the comparisons, the Nicholson’s solution is summarized as follows: The elementary

conductance of the network may be written as

_ Bé

g S Y (5.98)

where § and S are the diameter and the length of the elementary tube, respectively;
B and € are constants which depend on the tube shape and flow considered. Values
of € and B for various flows and tube shapes are summarized in Appendix F. In the

present study (and, also in Nicholson’s work), § is a random variable with probability
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density function £(6) and S has a fixed value. The following reduced random variables

are introduced:

k=——1 (5.99)

and

(:(%)C-—l:(l-i-n)‘—l, (5.100)

where s is the mean tube diameter. If £(x) and £(¢) denote the probability density

functions of « and (, respectively, then the corresponding moments are given by

K = (K7)EN = /"" k" E(k) dk | (5.101)
¢
Go= ()P = [T eraodc (5.102)
The above relations result in the following general expression for {, in terms of &,,:
(o= (=1)" 3 (1) PC Y ¥C «;, (5.103)
=1 j=1

where ?C and C are the binomial coefficients. The normalized effective-medium
conductance of a network, based on the Nicholson’s series solution to Equation (5.97),
is:
(A G) =1 = A + A% — A%+ A — A

+AG + (2A=3A%) G+ (4A°=3A%) (G

AN -5A) GG+ 2A° =A% G

+(BA°—5A") G + (6A° —4A) (¢

+(BA° —2AHG + (2A%+20)

+(8A*—TA —2A%)

+(13A2 —10A3 —=3A) (2 ¢,

+(15A* = 1TA> +4AD GG + -+, (5.104)
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where (A, () is the effective-medium conductance of a network normalized by the
effective-medium conductance of the equivalent parallel capillary model, and A = 5/2.
A varies between 0 and 1 for parallel and serial capillary models, respectively. Here
the equivalent parallel capillary model is one with the same external dimensions and
distribution of elementary conductances as the network model, with a coordination
number of co. Values of (, (n = 1,...,6) in terms of x, (n = 1,...,6) for four
values of € (= 1,...,4) are included in Appendix F. This appendix also includes the
values of k, (n = 1,...,6) in terms of a5 (= 05/ps) for lognormal distribution of tube
diameters. Here o5 is the standard deviation of the distribution. as is the coefficient
of variation and is a measure of the breadth of the tube diameter distribution.

The relation between the permeability and the normalized effective-medium

conductance (for fluid flow) of the network model is
ki
Ym(e =4) = =, (5.105)
k1
where k' and kf denote the permeabilities of the network model and the equivalent
parallel capillary model, respectively. Similarly, the relation between the formation

factor and the normalized effective-medium conductance (for electric flow) of the

network model is

FP
Ym(€=2) =+, (5.106)

where F™ and F? denote the formation factors of the network model and the equiva-
lent parallel capillary model, respectively. Detailed derivations of Equations (5.105)
and (5.106) are given in Appendix F.

Figure 5.23 illustrates a comparison of the normalized effective-medium conduc-
tances predicted by Equation (5.104) (with € =4 and A = 0.33) and the normalized
effective-medium conductances predicted by Equation (5.105), as functions of as. k¥

and k7 in Equation (5.105) are found from Equations (5.24) and (5.95), respectively.
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The observed values in this figure correspond to the values of the normalized effective-
medium conductances given by Equation (5.105) in which &} and k} are determined
with the help of the network theory (Appendix B).

Similarly, the normalized effective-medium conductances predicted by Equa-
tion (5.104) (with € = 2 and A = 0.33) is compared to the normalized effective-
medium conductances predicted by Equation (5.106). F? and F™ in Equation (5.106)
are found from Equations (5.27) and (5.96), respectively. The comparison is illus-
trated in Figure 5.24. The observed values in this figure correspond to the values
of the normalized effective-medium conductances given by Equation (5.106) in which
F™ and F? are determined with the help of the network theory (Appendix B).

A 12 x 12 x 12 network with constant effective open area in the three principal
directions is employed in the above comparisons. The tube lengths are fixed and
the tube diameters are randomly assigned according to a lognormal distribution.
The statistical parameters of the network are: Ny = 2.4 x 10°m™2, 7 = 1.1, us =
5.32 x 107®m and as varies between 0 and 1.2. The observed values are the average
of 50 realizations.

The results illustrated in Figures 5.23 and 5.24 show that the EMA predictions
deteriorate as as increases beyond certain limit. For the present network, the maxi-
mum values of as up to which the EMA predicts accurate results are approximately
0.25 for the fluid flow (¢ = 4) and 0.3 for the current flow (¢ = 2). These results
are in agreement with those of Koplik (1981, 1982) and Nicholson et al. (1988). The
maximum value of as up to which the EMA predicts accurate results depends on e,
A, and the employed tube diameter distribution. This maximum value decreases as A
and ¢ increase. The EMA markedly deteriorates for networks-dominated by very low
conductances, that is, conductances with positively skewed distributions such as the
lognormal distribution at high as (Figure 5.25). For positively skewed distributions,

the network contains regions of very low conductivity and these regions contribute
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significantly to the effective-medium conductance because w(g) emphasizes the low
conductance range in the averaging in Equation (5.97). But in reality, regions of very
low conductances are most likely to be by-passed by the main fluid (current) flow
(Koplik, 1981). The range of applicability of the EMA for symmetrical tube diameter
distributions such as uniform and normal distributions, is larger than that for the log-
normal distribution (Nicholson et al., 1988). However, as explained in Section 5.1.1,
the maximum values of as that can be generated with the symmetrical distributions
are very low, and therefore, such distributions are of limited scope.

In the present work, the relations of permeability and formation factor to the
statistical parameters of the network model (Equations (5.95) and (5.96)) have been
developed for values of a5 up to 1.2, and therefore, are much more useful than those
based on the EMA. However, the EMA has an advantage in that it explicitly shows
the dependence of the network conductance on 7, the coordination number, whereas

such dependence is embedded in the coefficients of Equations (5.95) and (5.96).

5.4 Summary

In this chapter, parallel and serial capillary, and three-dimensional cubic network
models of porous media have been considered. These models are based on the concep-
tual model of porous media due to Bear and Bachmat (1966,1967). For permeability
and Klinkenberg permeability calculations, laminar flow has been assumed inside the
tubes. For formation factor calculations, the electric flow inside a tube saturated
with an electric conductor has been assumed to be given by Ohm’s law. The tube
diameters of the models are distributed according to the lognormal distribution and
the tube lengths are constant.

An analysis has been performed to determine the sizes of the models that qualify
as REVs with respect to permeability, formation factor, Klinkenberg coefficient and

porosity. It has been shown that out of these four properties, it is sufficient to find
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the REV size of a model with respect to permeability only. A 12 x 12 x 12 size with
50 realizations has been shown to be a satisfactory representative size for the network
model. Such sizes have also been determined for the parallel and serial capillary
models.

Based on the integral expressions developed in Chapter 3 (Equations (3.26), (3.41)
and (3.47)), closed form explicit relations between the permeability, Klinkenberg
permeability and formation factor of the parallel and serial capillary models and the
statistical parameters characterizing their pore space have been derived. With the
help of nonlinear regression, similar relations, based on the integral expressions, have
been developed for the permeability and formation factor of the three-dimensional
cubic network model. It is observed that the absence of the networking effect results
in opposite behaviors of the paralle]l and serial capillary models, whereas, its presence
in the network model results in an intermediate behavior representative of the real
porous media.

The relations of permeability and formation factor of network model to the
statistical parameters characterizing its pore structure, have been developed for
values of as up to 1.2. The predictions of similar relations based on the effective-
medium theory (Nicholson et al., 1988) are found to deteriorate for as > 0.25 in the

case of permeability and for a5 > 0.3 in the case of formation factor.
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CHAPTER 6

AN OUTLINE OF A METHODOLOGY FOR

MODELING PORE STRUCTURE

In this chapter, a methodology to model the pore structure of homogeneous porous
media, based on the explicit relations of the transport properties of the models to
their statistical parameters derived in Chapter 5, is outlined. The main aim of this
chapter is to explain the philosophy behind this methodology. A preliminary study
based on this methodology is conducted on five sandstone and one limestone rock
samples, all of which are selected from the existing literature. The methodology is
used to predict the mercury drainage capillary pressure curves of five of the samples
and the oil-brine drainage capillary pressure curve of one sample. All the three pore
structure models are considered and a comparison is made between their predictions
and the experimentally observed curves. The limitations of the models are identified
and recommendations for improving the accuracy of their predictions are presented.
Section 6.1 briefly explains the philosophy behind the methodology. The outline of
the methodology is presented in Section 6.2. Section 6.3 summarizes the algorithm
employed for determining the drainage capillary pressure curve of the models. Finally,

the results are discussed in Section 6.4.

6.1 Philosophy

As mentioned in Chapter 1, if N statistical parameters are required to describe a
porous medium according to a given pore structure model and if N transport proper-

ties can be experimentally determined on a sample of the porous medium, then based
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on the explicit relations of the transport properties of the model to the statistical
parameters, N simultaneous nonlinear algebraic equations involving the statistical
parameters can be written. These equations can then be inverted to determine the
values of the N statistical parameters. Once the statistical parameters are known,
complex properties such as capillary pressure curves can be predicted explicitly or
with the help of computer simulations. Such an exercise can serve two broad pur-
poses. One, the experiments for measuring transport properties (e.g., permeability,
formation factor) which are input to the method are simple and less time consuming
as compared to those for the complex properties such as capillary pressure curves;
therefore the method can provide a means for quick evaluation of such properties.
The method can also be employed for the purpose of confirming the experimentally
measured values of the complex properties. Two, the exercise may throw some light on

the dependence of the properties on pore structure and their relation to one another.

6.2 Outline of the Methodology

6.2.1 Problem Formulation
The relations of the transport properties of the parallel capillary, serial capillary and
network models to the statistical parameters characterizing their pore space, derived

in the previous chapter, may be represented as follows:

kl = kl (#5, T8y Ty 61) ’ (61)
F = F(ﬂg, 05, T, fl) (62)

and
b= b(/‘&) 05, Ty fl) ’ (63)

where k;, F and b are the permeability, formation factor and Klinkenberg coefficient,

respectively, which are the macroscopic transport properties of the models, and ys,
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os, T and & are the mean tube diameter, standard deviation of the tube diameter
distribution, non-dimensionalized mean tube length (defined in Section 5.1.1) and
areosity (also defined in Section 5.1.1), respectively, which are the statistical para-
meters characterizing the void space of the models. It may be pointed out here that an
explicit relation between the Klinkenberg coefficient and the statistical parameters of
the network model, in the form of Equation (6.3), has not been found. The procedure
used in place of this relation for the network model is discussed in the next section.
The above relations may be recast using a relation between the areosity and

other parameters. For the network model this relation is determined as follows: The

areosity,
_ NINE
=— 6% . 4
With the evaluation of the summation
TN A
b= (i + ), (6.5)

where Ny = NF NF/A;, for the network model. Equation (6.5) is also true for the
parallel and serial capillary models. However, for the parallel capillary model, N4 is
equal to Np/A;, and for the serial capillary model, N4 is equal to N.;/A;. Here Nt
is the total number of the tubes in the parallel capillary model (Figure 5.1) and N,
is the total number of flow paths in the serial capillary model (Figure 5.2). With the
introduction of Equation (6.5), the functional forms represented by Equations (6.1),
(6.2) and (6.3) modify to

kl - kl (ﬂs’ gs, Ty NA) y (6'6)
F= F(pg, gs, T, NA) (67)

and
b=b(us, 05, T,Na) . (6.8)
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If ky, F and b are known, then the above relations reduce to three simultaneous
algebraic equations with ps, 05, 7 and N4 as the unknowns. To achieve closure,
one more equation is required. The relation between porosity and the statistical
parameters of a model can be used for this purpose. For the network model, this

relation can be found from the following expression for porosity:

NT NT
L3 2 1 52
¢= 4A1L1;:1551+4ALZ SI+4ALZ5ISI, (6.9)

where NI, NI and NI are the number of tubes in the k = 1,2, 3 directions, respec-

tively, given by

NI = (NP + 1) NP NT, (6.10)

NI = (Nf + 1) NP NF (6.11)
and

NI = (NF +1)NF NY . (6.12)

Here NI, NI and N} are the number of columns, rows and tiers in the network model
(Figure 5.3). Because all the tubes are of the same length and the diameters of the

tubes in the three principal directions possess the same distribution, Equation (6.9)

reduces to
37r'rN
¢ = = (15 + o2), (6.13)
where
NP NP NPNP NPNP
N, =22 _ Ny IV Vg .
4T A A; As (6.14)
and
_ (M +Vps (N +1)ps _ (N +1)ps (6.15)
Ly L, L ' |
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The parallel and serial capillary models have no tubes in the directions k& = 2 and 3,
therefore the relation between the porosity and the statistical parameters for these

models is:

T N
$=—1"(f + ad). (6.16)

If the experimental values of k;, F, b and ¢ of a porous medium are known, then
Equations (6.6), (6.7), (6.8) and (6.13) (Equations (6.6), (6.7), (6.8) and (6.16) for
the parallel and serial capillary models) can be solved and ps, 05, 7 and N4 can be

found.

6.2.2 Solution of the Nonlinear Algebraic Equations
Ordinarily, an iterative scheme based on the Newton-Raphson method (Press et al.,
1986, pp. 269) can be used to solve a set of nonlinear algebraic equations in which the
number of unknowns is equal to the number of equations. In the present study two
major difficulties were encountered when this scheme was employed to solve the sets of
nonlinear equations relating the transport properties of the models to their statistical
parameters. One, because the equations involve higher order terms (up to twelfth
power), the solutions only converged when proper initial guesses were provided, and
two, for some samples the solutions did not converge within a satisfactory tolerance.
Keeping in view the simplicity of the pore structure of the models as compared to
the complex pore structure of the real porous media, the second difficulty can be
expected and should not lead to misinterpretations. It is expected that it may not be
possible to find a network model which can exactly reproduce all the properties of a
real porous medium sample. The usefulness of the methodology can only be judged
if real porous media can be realistically simulated with the help of pore structure
models.

To overcome the above mentioned difficulties, a modified solution scheme based

on the Newton-Raphson method was used. This solution scheme although not exact,
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provides a means for inverting the equations in a meaningful manner. For the parallel
capillary model with symmetrical tube diameter distributions (e.g, uniform, normal
and logistic), the set of nonlinear algebraic equations represented by Equations (6.6),
(6.7) and (6.16) can be solved analytically if one of the four unknown parameters is
treated as a constant. If N4 is treated as constant, the solution possesses definite
upper and lower bounds on N4 for real and positive values of us, o5 and 7. These
bounds are given in Table 6.1. A value of N4 was selected from this range and
Equations (6.6), (6.7) and (6.16) were solved. The values of us, 05, 7 and N4 (the
selected value of N4) found in this way were substituted in Equation (6.8) for b and
the corresponding residue was found. By an iterative procedure, an appropriate value
of N4 was found which resulted in minimum residue in Equation (6.8) and lay in the
range of N4 for real and positive values of ys, o5 and 7.

For all the three models with lognormal tube diameter distributions, an itera-
tive scheme based on the Newton-Raphson method (Press et al., 1988, pp 269) was
employed to solve the equations. The values of the statistical parameters for the
parallel capillary model with symmetrical tube diameter distributions (the analytical
solutions discussed in the previous paragraph) were used as initial guesses in this
scheme. This scheme may be summarized as follows: For a given value of N4, Equa-
tions (6.6), (6.7) and (6.13) (Equations (6.6), (6.7) and (6.16)) for the parallel and
serial capillary models) were solved using the Newton-Raphson method. The values
of ps 05, T and Ny4 (the selected value of N4) found in this way were then substituted
in Equation (6.8) for b and the corresponding residue was found. This procedure was
repeated until such a value of N4 was found which resulted in minimum residue in
Equation (6.8) and real and positive values of us, 05 and 7. As pointed out earlier,
an explicit relation between the Klinkenberg coefficient b and the statistical para-
meters of the network model, in the form of Equation (6.3) has not been found. For

this model, b in the above scheme was found with the help of the network theory.
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6.2.3 Computer Simulations of the Models

For given values of the transport properties k;, F, b and ¢ of a sample of porous
medium, the corresponding values of the statistical parameters us, o5, 7 and ¢ were
determined employing the procedure explained in the previous section. With the
statistical parameters known, computer simulations of the models were generated on
a SUN SPARC station 2. The physical features of the models have already been
discussed in Section 5.1. The diameters of the tubes in the models were distributed
according to a lognormal distribution and the tube lengths were kept constant.

The computer simulations of the models were employed for predicting the mercury
drainage capillary pressure curves for four sandstone and one limestone samples, and
the oil-brine drainage capillary pressure curve of one sandstone sample. All the six
samples have been selected from the existing literature. In the experimental mercury
drainage capillary pressure curves vacuum is the wetting phase, therefore for these
samples vacuum is assumed to be the wetting phase in the simulations.

To find the size of a model so that the predicted capillary pressure curve is a
satisfactory representative, the procedure explained in Section 5.1.2 was followed.
The corresponding results for the network model are illustrated in Figure 6.1. This
figure show that a 12 x 12 x 12 network is a satisfactory size for predicting the
capillary pressure curves. Similarly, 13000 tubes for the parallel capillary model and
750 channels with 750 tubes in each channel for the serial capillary model were found
to be the representative sizes for these models. A single realization was employed for
all the three models. The procedure employed for evaluating the drainage capillary

pressure curves of the models is presented next.

6.3 Drainage Capillary Pressure Curve Mbdeling

To evaluate the drainage mercury capillary pressure curve of a model, complete

vacuum is assumed to exist inside the parallelepiped-shaped REV. The mercury is
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allowed to penetrate the REV from the face normal to the negative £ = 1 direction
and the remaining five faces are assumed to be sealed. Two conditions must be met
before mercury can enter a tube in a model: one, the Washburn criterion (Washburn,
1921) must be satisfied and, two, the tube must be in contact with the bulk mercury.
The Washburn condition relates the capillary pressure, p., to the diameter of the

tube, 6, in the form

po = — 2ocosb ;"59 , (6.17)

where g is the surface tension of the mercury and 8 is the contact angle. The Washburn
criterion assumes a piston-type displacement. Initially, the tube (tubes) with the
largest diameter in the face in direct contact with the mercury is (are) found and
filled with mercury. The freshly filled junctions at the ends of the invaded tubes are
stored as potential penetration sites. All the tubes connected to a filled junction
which satisfy the Washburn criterion at the given mercury pressure are then filled
with mercury. If a junction has already been filled with mercury, then the advancing
meniscus is assumed to immediately coalesce with the mercury in the junction. The
process of filling the junctions and the tubes is continued until the mercury front
is incapable of advancing at the given capillary pressure. The pore volume invaded
by the mercury is calculated and this gives the first point on the predicted capillary
pressure curve. The pressure is raised in small increments and the process is repeated
to determine the other points on the curve.

For evaluating the oil-brine drainage capillary pressure curve of a model, the
parallelepiped-shaped REV of the model is assumed to be completely saturated with
the brine. The oil is allowed to penetrate from the face normal to the negative k =1
direction and the brine is allowed to leave from the face normal to the positive k = 1
direction, and the remaining four faces are sealed. Initially, the brine inside the REV

is assumed to be In continuous contact with a brine sink at the downstream side
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of the REV. This assumption is equivalent to the presence of a porous plate in the
conventional methods for measuring the oil-brine capillary pressure curve of a real
porous medium sample. The function of the porous plate in such tests is to allow
only the brine out of the sample and restrict the oil to the sample. For oil to invade a
tube, one condition in addition to the two conditions mentioned for mercury invasion
above, must be met. This condition is that the brine inside a tube to be invaded by
the oil, must be in continuous contact with the brine sink downstream of the REV.
The brine in the tubes which is not in continuous contact with the brine sink, becomes
isolated and contributes to the irreducible wetting phase (or the brine) saturation.
A junction filled with oil is assumed to disallow continuity (through the junction)

between the brine in different tubes meeting at the junction.

6.4 Results and Discussion

In this section, the properties of the selected samples are summarized and results

of the methodology for these sample are discussed.

6.4.1 Selected Samples and Their Properties

Six rock samples covering a wide range of permeability were selected from the existing
literature. As indicated earlier, five of them are sandstone samples and one is a
limestone sample. For five of the samples, the properties permeability, formation
factor and porosity were provided in the source. The values of the Klinkenberg
coefficient for these samples were determined from two correlations between k; and
b existing in the literature. These correlations are: b = 0.777 k7%, given in Heid et
al. (1950) and reported in API RP27 (1956), and b = 0.697 k7*®, found by McPhee
and Arthur (1991). In both of these correlations, air is thé flowing gas (viscosity,
g = 0.1817 Pa-s; gas constant, R = 8.3143 J/kg-k; molecular weight, M=0.02897

kg/mol), b is measured in psi, and k; in darcys. For one sandstone sample, only two
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properties (k; and ¢) were provided in the source. For this sample b was found as
explained above, and F' was determined from the correlation F' = 0.62 ¢=21° given
by Winsauer et al. (1952). This correlation was preferred over the correlation given
by Archie (1942) (F = ¢~2), because as shown by Winsauer et al. (1952), their
correlation is a better representation of the experimental data from different sources
including Archie’s data. Table 6.2 summarizes the properties of the samples and their
source. The values of b determined from the two correlations mentioned above are
summarized in Table 6.3.

Ideally, complete sets of experimental data for the samples would have been more
helpful in critically examining the present methodology. However, such extensive data
for the same sample of a porous medium are rare in the literature. The correlations
used for finding the missing data have been shown to give satisfactory predictions
(McPhee and Arthur, 1991 for b; Winsauer et al., 1952 for F') and also, keeping in
view the preliminary nature of this investigation, use of such data in place of the
missing experimental data should be satisfactory.

For five samples, the drainage mercury capillary pressure curve data were available
from their sources in the literature. For these data, vacuum is the wetting phase
and mercury (surface tension 485 mN/m and contact angle 130° for samples from
Thompson et al., 1987; surface tension 480 mN/m and contact angle 140° for the
sample from Brown, 1951) is the non-wetting or invading phase. For one sample,
oil-brine drainage capillary pressure curve was available (surface tension of oil 27.4
mN/m; oil-brine contact angle 0°; oil as the non-wetting phase and brine as the
wetting phase).

In the present work, the maximum mercury capillary pressure of the samples from
Thompson et al. (1987) is assumed to be at zero vacuum saturation. In practice, there
is always a small vacuum saturation (of the order 0.05) which cannot be accessed by

the mercury even at very high pressures. The main reasons for this phenomenon are:
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One, it is very difficult to achieve 100% vacuum inside the sample before mercury
is forced into it, and therefore, the compressed air occupies a very small fraction of
the pore space even at very high mercury pressures; two, a few pores with extremely
small sizes are generally present. For example, the sizes of the majority of the pores
in the present samples are of the order of 1 x 107%m, whereas the size of the “small”
pores are of the order of 1 x 10~°m. However, the contribution of these “small” pores

to the overall porosity of a sample is negligible.

6.4.2 Pore Structure Modeling of the Samples

Tables 6.4, 6.5 and 6.6 contain the values of the statistical parameters Ny, ps, o5
and 7 predicted by the network, serial capillary and parallel capillary models for the
six samples, respectively. Based on the data in these tables, two observations can
be made: One, the values of the parameters simulated by all the three models for
each sample (lower numbers in braces) are almost identical to the values of the para-
meters found by inverting the equations (upper numbers). Based on this observation,
it can be concluded that the change in pore structure of the models due to the
reassignment of tube diameters to achieve constant areosity (details already presented
in Section 5.1.1) is negligible. Two, the values of the parameters predicted by the
three models for the same sample vary greatly. This observation is true for all the six
samples. The values of y; for all the six samples predicted by the network model are
intermediate between those predicted by the parallel and serial capillary models, the
values predicted by the parallel capillary model being the lowest and those predicted
by the serial capillary model being the highest. As discussed in the previous chapter,
the behavior of the parallel capillary model is sensitive to the upper portion of the tube
diameter distribution because a fluid (electrical) particle travels through the same
tube from the upstream to the downstream side of the REV. The model, therefore,

predicts lower values of ps. Opposite is the case with the serial capillary model in

161



which a fluid (electrical) particle is assumed to traverse all tube diameter sizes when
traveling from the upstream to the downstream side of the REV, and therefore, the
conducting capacity of a flow path inside the model determined by the tube with
smallest diameter in the path. This makes the serial capillary model sensitive to the
lower portion of the tube diameter distribution, thus predicting higher values of ys.
Due to the availability of multiple flow paths to a fluid (electrical) particle at each
junction, the network model depicts an intermediate behavior.

The values of 7 predicted by the network model are close to one for all the six
samples whereas its values predicted by the serial capillary model lie between 1.44
and 1.85, and those predicted by the parallel capillary model lie between 1.63 and
2.2. Because the parallel and serial capillary models have no tubes in the k = 2,3
directions, the values of 7 predicted by these models are considerably higher than
one. To model the porosity of a sample correctly, the value of = predicted by the
parallel capillary model is greater than that predicted by the serial capillary model
because the value of ps predicted by the parallel capillary model is lower than that
predicted by the serial capillary model.

Tables 6.7, 6.8 and 6.9 contain the values of k1, F, ¢ and b simulated by the three
models corresponding to the six samples (the upper numbers). These tables also
include the percent errors of the simulated values with respect to the experimental
values (or valuesgiven by correlations) given in Tables 6.2 and 6.3 (the lowernumbers).
The errors in simulated values of the k;, F' and ¢ are very small thus confirming
the earlier statement about the reassignment of tube diameters to achieve constant
areosity. The errors in the simulated values of b with respect to the values given in
Table 6.3 are relatively higher than those for k;, F' and ¢, the maximum being for the
limestone sample. Keeping in view the complexity of the pore structure of real porous
media as compared to that of the idealized models, for the sandstone samples these

errors are within satisfactory limits. The results for the limestone sample indicate
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that the present procedure for modeling the pore structure is not appropriate for
vuggy porous media such as limestones. This is because the present models ignore
the vugs present in limestones.

It is appropriate at this point to mention about the robustness and uniqueness of
the solution scheme presented in Section 6.2.2. It was found that for all the samples
with given values of k;, F', b and ¢, the final solutions were independent of the initial
guesses. Keeping in view the preliminary nature of this methodology at the present
stage, it is sufficient to show that the solution scheme is robust and unique. However,
for general application, the uniqueness and robustness of the solution has be checked
more stringently. One approximate way to accomplish this objective is: For a given
sample the value of one of the input properties (k;, F, b and ¢) may be changed by
a small fraction and if the final solutions do not change significantly, the scheme can

be said to be approximately unique and robust.

6.4.3 Drainage Capillary Pressure Curve of the Samples

Figures 6.2 through 6.6 illustrate the comparisons between the experimentally
observed mercury drainage capillary pressure curves and the ones predicted by the
models for four sandstone samples and the limestone sample. Except for the Berea
sandstone and Austin Chalk limestone samples, all the three models satisfactorily
predict the plateau portions of the capillary pressure curves.

For the limestone sample, a physical reason is available for the shape of the
predicted curves. As shown by Wardlaw et al. (1987), the shape of the capillary
pressure curves is influenced by the existence of pores (of larger size, also called vugs)
and throats (of smaller size) and correlations between the sizes of the neighboring
pores and throats, in addition to the pore and throat size distributions. It was shown
by these workers that a high degree of pore-throat size correlation is present in the

limestones, and consequently the slope of the drainage capillary pressure curve for

163



such rock samples may change very significantly near the zero mercury saturation
point (or 100 percent vacuum saturation). As mentioned earlier, the present models
ignore vugs. Also, the diameters are randomly assigned to the tubes of the models
in which case no correlation exists between the neighboring tubes. These are the
prime reasons for the inability of the present models to accurately reproduce the
behavior of the limestones. These conclusions can also be corroborated with the work
of Ferrand and Celia (1992) who studied the effect of different types of heterogeneity
on the drainage capillary pressure curves of three-dimensional network models. The
authors have shown that random network models are only suitable for homogeneous
porous media and the shape of the drainage capillary pressure curves of such models
is flat in the plateau portion. However, when heterogeneities are introduced in the
network model, the effective drainage capillary pressure curve has a plateau region
very similar the one in the experimentally determined curve on the limestone sample
of Figure 6.6.

Wardlaw et al. (1987) found that the pore-throat size correlation was very
small for the sandstone samples. However, at high capillary pressure, this correlation
increases. This explains the good agreement between the experimentally observed
and predicted capillary pressure curves in the plateau region and disagreement around
zero vacuum saturation for the other sandstone samples. Berea being a sandstone
sample, one would have expected results similar to those for the other sandstone
samples. The probable reasons for such a behavior could either be the presence of
non-uniformities in the pore structure which the models are unable to capture, or
imperfect measurements of the properties of the sample.

Figure 6.7 illustrates the comparison between the experimentally observed oil-
brine drainage capillary pressure curve and the similar curves predicted by the models
for the sandstone sample from Longeron et al. (1989). As can be observed from the

figure, all the three models satisfactorily predict the plateau portion of the curve.
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Due to the absence of the “networking effect”, the parallel and serial capillary models
cannot account for the trapping of the wetting phase. The irreducible brine satu-
ration predicted by the network model is 0.20, whereas 0.28 is the experimentally
observed value. The influence of the pore-throat size correlations on the predicted
capillary pressure curve, discussed in the previous paragraph, is accentuated when oil
and water is used in place of mercury and vacuum. This is due to the isolation of the
wetting phase mentioned earlier. This explains the larger disagreement between the
experimentally observed and predicted oil-brine capillary pressure curve for this sam-
ple as compared to the disagreements between the observed and predicted mercury
drainage capillary pressure curves for other sandstone samples near the irreducible
wetting phase saturation (zero vacuum saturation for the mercury capillary pressure
curves).

It is interesting to note that although the three models predict significantly
different values of the pore structure parameters for the same sample, still the capillary
pressure curves predicted by the models for the same sample do not vary apprecia-
bly. This indicates that all the three models are capable of qualitatively modeling the
pore structure of a sample. However, as can be observed from the figures, the network
model gives the best predictions out of the three models. Also, as indicated earlier,
only the network model can account for the irreducible wetting phase saturations in
oil-brine capillary pressure curves.

The above results indicate that the present methodology to model the pore struc-
ture is fundamentally correct. However, the models used in this methodology are not
appropriate for modeling the pore structure of nonhomogeneous porous media such
as limestones. Also, for homogeneous porous media encountered in practice such as
sandstones, additional features need to be incorporated in the models so that their
predictions of the capillary pressure curve are accurate for the complete saturation

range. Some of these features are the assignment of volume to the junctions (in the

165



present models, no volume is assigned to the junctions) and the incorporation of pore-

throat size correlations. A detailed discussion of these and other recommendations is

presented in Chapter 7.

6.5 Summary

In this chapter, a methodology for modeling the pore structure of homogeneous
porous media has been outlined. This methodology is based on the explicit relations of
the transport properties (e.g., permeability, formation factor Klinkenberg coefficient
and porosity) of the parallel capillary, serial capillary and network models to the
statistical parameters describing their pore space, developed in Chapter 5. A prelimi-
nary study of this methodology has been conducted with the help of five sandstone
samples and one limestone sample. For these samples, the drainage capillary pressure
curves predicted by the methodology have been compared to the experimentally obser-
ved ones. The limitations of the models have been identified and recommendation to
improve their predictions have been suggested.

For the same sample, the statistical parameters predicted by the three models
vary significantly. The parallel and serial capillary models predict the lowest and
highest values of the mean tube diameter, respectively, whereas the network model
predicts an intermediate value for this parameter. All the three models satisfactorily
simulated the permeability, formation factor, Klinkenberg coefficient and porosity of
the sandstone samples. However, the errors in the simulated value of the Klinkenberg
coefficient were significantly larger for the limestone sample.

The present models are found to be incapable of accurately predicting the capil-
lary pressure curves for non-uniform porous media such as limestones. Except for
one sandstone sample, all three models satisfactorily predicted the plateau por-
tion of the drainage capillary pressure curves of the remaining sandstone samples,

the predictions of the network model being the best. However, the models do not
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accurately predict the capillary pressure curve of these samples near the irreducible
wetting phase saturation. Incorporation of features such as the assignment of volume
to the junctions and size correlations between the neighboring tubes are suggested
to improve the predictions of the models near the irreducible wetting phase satu-

ration for the sandstone samples.

167



Table 6.1. The bounds on N4 for real and positive roots of the set of nonlinear equations for the

parallel capillary model with symmetrical tube diameter distributions.

Tube Diameter Distribution | Lower Bound on N4 | Upper Bound on N4
Uniform ?rlpgfgg‘: 0':23«“1122 kéj.s
Normal grl;fsé‘l’: 3{9;15?2;
Logistic %‘21_5%_5_ 2 ;‘51, %o}:
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Table 6.2. Properties of the rock samples employed in the present work together with their sources

in the literature.

# | Sample Source k; (m?) F é b (Pa)
1 | Sandstone Longeron et al. | 0.040 x 10712 | 22.100 | 0.184 | NP+
(1989)
2 | Berea Thompson et al. | 0.121 x 10712 | 16.129 | 0.205 | NP*
Sandstone (1987)
3 | Red Navajo Thompson et al. | 1.123 x 10712 | 14.080 | 0.230 | NP+
Sandstone (1987)

4 | Boise Marsing 1 | Thompson et al. | 1.259 x 10712 | 20.325 | 0.239 | NP*

Sandstone (1987)
5 | Sandstone Brown 1.411 x 10712 | 9.500** | 0.281 | NP+
(1951)

6 | Austin Chalk Thompson et al. | 3.109 x 10715 | 15.873 | 0.288 | NP+

Limestone (1987)

*+NP-Not Provided.

++ Experimental value not provided; found from Winsauer et al. (1952) correlation.
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Table 6.3. The values of the Klinkenberg coefficient, b, of the samples, determined from Heid et al.

(1950) and McPhee and Arthur (1991) regressions.

b (Pa)
# | Sample Source Heid et al. | McPhee & Arthur
(1950) (1991)
1 | Sandstone Longeron et al. | 18700 16248
(1989)
2 | Berea Thompson et al. | 12127 10649
Sandstone (1987)
3 | Red Navajo Thompson et al. | 5092 4574
Sandstone (1987)
4 | Boise Marsing 1 | Thompson et al. | 4870 4379
Sandstone (1987)
5 | Sandstone Brown 4658 4194
(1951)
6 | Austin Chalk Thompson et al. | 50759 42880
Limestone (1987)
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Table 6.4. The statistical parameters of the samples predicted by the network model.

Statistical Parameters
Sample Source
Ny (1/m?) | ps (pm) | o5 (pm) T

Sandstone Longeron 2.400x10° | 5.1553% | 2.2470 1.029

et al. (1989) (5.1932)t | (2.2772) | (1.029)
Berea Thompson | 1.340x10% | 7.8125 1.6507 1.018
Sandstone et al. (87) (7.8382) | (1.6481) | (1.018)
Red Navajo Thompson 1.891x10® | 21.8963 7.8716 0.953
Sandstone et al. (1987) (22.0250) | (7.8551) | (0.953)
Boise Marsing 1 | Thompson | 9.500x107 | 27.7536 16.77120 | 1.015
Sandstone et al. (1987) (28.0805) | (16.6955) | 1.015
Sandstone Brown 3.000x10% | 20.2192 6.5540 0.879

(1951) (20.3249) | (6.5414) | (0.879)
Austin Chalk Thompson | 6.200x10° | 1.2170 0.6790 1.016
Limestone et al. (1987) (1.2296) | (0.6763) | (1.016)

* Values determined by inverting the equations (upper values).

t Values present in the computer simulations of the model (lower values in the braces).
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Table 6.5. The statistical parameters of the samples predicted by the serial capillary model.

Statistical Parameters

# | Sample Source
Ny (1/m?) | ps (pm) | o5 (pum) T

1 | Sandstone Longeron 2.000x10° | 8.0887t | 2.8872 1.586
et al. (1989) (8.1425) | (2.8895) | (1.586)
2 | Berea Thompson 1.500x10° | 10.1331 2.74071 1.579
Sandstone et al. (1987) (10.1697) | (2.7493) | (1.579)
3 | Red Navajo Thompson | 2.000x10® | 29.6687 | 8.5155 1.536
Sandstone et al. (1987) (29.8088) | (8.5390) | (1.536)

4 | Boise Marsing 1 | Thompson | 1.000x10® | 38.8236 | 11.7075 1.852

Sandstone et al. (1987) (39.0212) | (11.7353) | (1.852)
5 | Sandstone Brown 3.500x10% | 25.8149 | 6.5767 1.441
(1951) (25.9179) | (6.6002) | (1.441)

6 | Austin Chalk Thompson | 6.000x10%° | 1.7771 0.5733 1.754

Limestone et al. (1987) (1.7836) | (0.5742) | (1.754)

* Values determined by inverting the equations (upper values).

t Values present in the computer simulations of the model (lower values in the braces).
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Table 6.6. The statistical parameters of the samples predicted by the parallel capillary model.

Statistical Parameters
Sample Source
Na (1/m?) | ps (pm) | o5 (pm) | 7

Sandstone Longeron 6.000x10° | 4.1950% | 1.3226 2.016

et al. (1989) (4.2033)1L (1.328) | (2.016)
Berea Thompson | 2.500x10° | 7.4963 1.1130 1.818
Sandstone et al. (1987) (7.5032) | (1.1158) | (1.818)
Red Navajo Thompson | 5.000x10® | 17.0760 | 5.8319 1.800
Sandstone et al. (1987) (17.1129) | (5.8583) | (1.800)
Boise Marsing 1 | Thompson | 2.000x10® | 25.7099 | 5.3718 2.204
Sandstone et al. (1987) (25.7431) | (5.3877) | (2.204)
Sandstone Brown 6.300x10% | 18.1527 | 4.2194 1.634

(1951) (18.1789) | (4.2330) | (1.634)
Austin Chalk Thompson | 2.000x10"! | 0.8573 0.3482 2.138
Limestone et al. (1987) (0.8601) | (0.3501) | (2.138)

* Values determined by inverting the equations (upper values).

f Values present in the computer simulations of the model (lower values in the braces).
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Table 6.7. The transport properties of the computer simulations of the network model for the various

samples.
Properties of the Model
# | Sample Source

@) | F | ¢ | boym)

1 | Sandstone Longeron et | 0.418 x 10713" | 21.58 | 0.186 16517.2
al. (1989) 4.6 23 | 21 |-1171.2f

2 | Berea Thompson et | 0.124 x 10712 | 15.99 | 0.206 11224.8

Sandstone al. (1987) 2.0 -2.0 0.6 -7.4; 5.1

3 | Red Navajo | Thompson et | 0.116 x 10~!! | 13.83 | 0.232 3924.2

Sandstone al. (1987) -3.6 -1.8 1.0 |[-22.9;-14.2

4 | B. Marsing 1 | Thompson et | 0.136 x 107! | 19.53 | 0.243 3041.8

Sandstone al. (1987) 7.9 -8.1 1.5 |-37.5;-30.5
5 | Sandstone Brown 0.146 x 10~ | 9.35 | 0.2834 4268.0
(1951) 3.2 -1.5 0.9 -8.4; 1.8

6 | Austin Chalk | Thompson et | 0.332 x 1071% | 15.32 | 0.292 69318.5

Limestone al. (1987) 6.9 3.4 1.4 36.6; 61.7

*Values of the properties of the computer simulations of the model (upper numbers).

**Percent errors in the properties of the model with respect to the experimentally observed values

given in Tables 6.2 and 6.3 (lower numbers).

1‘Percent errors in b with respect to the values predicted by the Heid et al. and McPhee and Arthur

regressions given in Table 6.3.
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Table 6.8. The transport properties of the computer simulations of the serial capillary model for the

various samples.

Properties of the Model

# | Sample Source
k; (m?) F é | b(N/m?)
1 | Sandstone Longeron et | 0.425 x 1071%% | 21.82 | 0.186 | 18128.1
al. (1989) 6.2~ -1.3 | 1.1 ~3.1;11.6Jr
2 | Berea Thompson et | 0.122 x 10712 | 16.35 | 0.202 | 12037.8
Sandstone al. (1987) -0.7 0.0 | -1.5 | -0.7;11.5

3 | Red Navajo | Thompson et | 0.116 x 10711 | 13.94 | 0.232 | 4322.1

Sandstone al. (1987) 3.6 -1.0 | 09 | -15.1;-5.5

4 | B. Marsing 1 | Thompson et | 0.131 x 107! | 20.86 | 0.241 | 3422.1

Sandstone al. (1987) 4.1 -1.2 | 1.0 |-29.7;-21.8
5 | Sandstone Brown 0.145 x 10711 | 9.41 | 0.283 | 4629.53
(1951) 2.7 27 | 08 | -0.6;10.4

6 | Austin Chalk | Thompson et | 0.319 x 107! | 15.16 | 0.285 | 74447.4

Limestone al. (1987) 2.5 0.9 | -1.1 | 46.7;73.6

*Values of the properties of the computer simulations of the model (upper numbers).

**Percent errors in the properties of the model with respect to the experimentally observed values

given in Tables 6.2 and 6.3 (lower numbers).

TPercent errors in b with respect to the values predicted by the Heid et al. and McPhee and Arthur

regressions given in Table 6.3.
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the various samples.

Table 6.9. The transport properties of the computer simulations of the parallel capillary model for

Properties of the Model
Sample Source
ky (m?) F ¢ b (N/m?)

Sandstone Longeron et | 0.404 x 10~13* | 22.02 | 0.185 16055.5

al. (1989) —0.9* 04 | 04 | -14.1; -1.2f
Berea Thompson et | 0.122 x 10712 | 16.09 | 0.205 11206.5
Sandstone al. (1987) -0.5 0.2 0.2 -7.6; 5.23
Red Navajo | Thompson et | 0.114 x 10~*! | 14.07 | 0.231 3750.2
Sandstone al. (1987) 1.2 -0.5 0.5 -26.3; -18.0
B. Marsing 1 | Thompson et | 0.126 x 107! | 20.28 | 0.240 3065.8
Sandstone | al. (1987) 0.5 02 | 02 |-37.03-20.18
Sandstone Brown 0.142 x 10711 | 9.48 | 0.2816 4212.8

(1951) 0.6 02| 03 | -9.604
Austin Chalk | Thompson et | 0.315 x 1071* | 15.78 | 0.290 65470.0
Limestone al. (1987) 1.4 -0.5 | 0.5 29.0; 52.7

*Values of the properties of the computer simulations of the model (upper numbers).

**Percent errors in the properties of the model with respect to the experimentally observed values

given in Tables 6.2 and 6.3 (lower numbers).

TPercent errors in b with respect to the values predicted by the Heid et al. and McPhee and Arthur

regressions given in Table 6.3.
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Sample: BROWN
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Fig. 6.1. The dependence of the shape of the mercury drainage capillary pressure curve on the size

of the network. These are the predicted curves for the Brown (1951) sample.
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Sample: BEREA
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Fig. 6.2. Predicted and observed drainage mercury capillary pressure curves of the Berea sandstone

sample from Thompson et al. (1987). Vacuum is the wetting phase.

178



Sample: RED NAVAJO
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Fig. 6.3. Predicted and observed drainage mercury capillary pressure curves of the Red Navajo

sandstone sample from Thompson et al. (1987). Vacuum is the wetting-phase.

179



Sample: BOISE MARSING 1
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Fig. 6.4. Predicted and observed drainage mercury capillary pressure curves of the Boise Marsing 1

sandstone sample from Thompson et al. (1987). Vacuum is the wetting phase.

180



Sample: BROWN
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Fig. 6.5. Predicted and observed drainage mercury capillary pressure curves of the sandstone sample

from Brown (1951). Vacuum is the wetting phase.

181



Sample: AUSTIN CHALK
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Fig. 6.6. Predicted and observed drainage mercury capillary pressure curves of the Austin Chalk

limestone sample from Thompson et al. (1987). Vacuum is the wetting phase.
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Sample: Longeron
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Fig. 6.7. Predicted and observed drainage oil-brine capillary pressure curve of the sandstone sample

from Longeron et al. (1989). The trapping of the wetting phase (brine) is taken into account.
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CHAPTER 7

CONCLUSIONS

In this chapter, the accomplishments of the present research are summarized and

recommendations are given for future research.

7.1 Accomplishments of the Present Research

In the present research, the volume averaging method has been employed to study
the relations of the macroscopic transport properties permeability, formation factor
and Klinkenberg permeability to various features of pore structure. Explicit relations
between these properties and the microscopic pore structure parameters of parallel
capillary, serial capillary and three-dimensional cubic network models of porous media
have been derived. The dependence of the tortuosity of porous media on various terms
in the averaged conservation equations has been studied. A methodology to model the
pore structure and to predict the drainage capillary pressure curves of homogeneous
porous media has been outlined. A preliminary study based on this methodology has
been conducted on real porous media samples. The present research, briefly outlined
above, can be divided into four major parts. The main accomplishments of each part

and the conclusions supported by it, are presented below:

7.1.1 Development of Integral Expressions for Macroscopic Transport
Properties

Explicit integral expressions have been derived for the macros;:opic transport proper-

ties permeability, formation factor and Klinkenberg permeability of homogeneous

porous media. This has been accomplished by comparing the appropriate volume
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averaged microscopic conservation equations (mass and momentum for permea-
bility and Klinkenberg permeability, and electric charge for formation factor) to the
corresponding phenomenological laws (Darcy’s law for permeability and Klinkenberg
permeability, and Ohm’s law at macroscopic level for the formation factor). The
expression for each property consists of two terms which involve integrals of the
related microscopic field variables. These integrals contain the information about the
influence of the pore structure on flow, “hidden” in the macroscopic properties.

The derivation of the integral expression for permeability (and consequently the
derivation of the integral expression for Klinkenberg permeability) has been presented
in the perspective of the previously reported literature. The integral expression for
formation factor is an entirely new contribution. These integral expressions form the
basis of the present research. Unlike the previous works (O’Neill and Gray, 1976;
Hassanizadeh and Gray, 1980; Whitaker, 1986a), explicit interpretations is given to
different terms in these expressions.

To derive the integral expressions, a property of the pore structure, termed
“areosity” in the present study, has been introduced. The areosity in a direction
denotes the average of the ratios of the effective cross-sectional areas open to flow
and the corresponding bulk areas along that direction, over an REV. Because the
effective areas depend on the local microscopic flow direction, the areosity is different
from the areal porosity and therefore from the porosity. The integral expressions are
only valid when the effective area open to flow is constant along the macroscopic flow

direction.

7.1.2 Validation and Interpretation of the Integral Expressions
The validity of the integral expressions has been confirmed with the help of three

idealized porous media and network theory (details about network theory have been

presented in Appendix B). In general, the expressions are valid for any homogeneous
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porous medium when the assumptions concerning the flow (fluid and electric) through
it, stated in the previous section, are satisfied. The physical meanings of the viscous
and pressure terms in the integral expression for permeability, and the current and
potential terms in the integral expression for formation factor have been discussed. A
general and exact relation between the formation factor, F', and the tortuosity, 7/, of
a porous medium, in the form 7/ = F §; has been presented. Here, £; is the areosity.

The main conclusions of this part of the present research are given below:

1. The effective area open to flow in the macroscopic flow direction must
remain constant in order for the predictions of the integral expressions
and the network theory to be the same. However, the effective open area
may vary in any manner in the other principal directions. Therefore the

expressions are also valid for anisotropic porous media.

2. The viscous and current terms represent the flow (fluid and electric) in the
macroscopic flow direction whereas the pressure and potential terms repre-
sent the flow (fluid and electric) in the directions normal to the macros-
copic flow direction. The microscopic flow in the directions normal to
the macroscopic flow direction is termed “microscopic cross flow” in the

present study.

3. The magnitude of the microscopic cross flow in porous media depends on
the variation of the conductances of the tubes in the macroscopic flow

direction, and the conductances of the cross flow tubes themselves.

4. The microscopic cross flow can have a profound influence on the permea-

bility (formation factor) in the macroscopic flow direction.
5. The microscopic cross flow in porous media is directly related to tortuosity.

6. In the presence of the microscopic cross flow in porous media in which

multiple flow paths are available to the flowing fluid (electric) particles at
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intersections of the flow channels, the classical definition of tortuosity as
a ratio of geometric lengths is simplistic. This study suggests two types
of tortuosities, one accounting for the sinuousness of the individual flow
channels (classic definition of tortuosity) and the other accounting for the
microscopic cross flow resulting due to the availability of multiple flow

paths.

7. In the presence of microscopic cross flow in porous media with multiple
flow (electric or fluid) paths, the equivalence of hydraulic and electric

tortuosities is not valid.

7.1.3 Development of Relations Between the Macroscopic Transport

Properties and Microscopic Pore Structure Parameters

Based on the integral expressions, closed form explicit relations between the permea-
bility, Klinkenberg permeability and formation factor, and the statistical parameters
characterizing the pore space of parallel and serial capillary models of porous media
have been derived. With the help of nonlinear regression, similar relations, based on
the integral expressions, have also been developed for the permeability and formation
factor of a three-dimensional cubic network model. In these models, the diameters
of the tubes are assigned according to the lognormal distribution and the lengths
are kept fixed. For permeability and Klinkenberg permeability calculations, fully
developed laminar flow has been assumed inside the tubes. For formation factor
calculations, the electric flow inside a tube saturated with an electric conductor has
been assumed to be given by the Ohm’s law. A comparison has been made between
the predictions of the present relations and those developed by Nicholson et al. (1988),
which are based on the effective-medium approximation (EMA) (Kirkpatrick, 1973).
An analysis has been performed to determine the size of a model that qualifies as an

REYV with respect to permeability, formation factor, Klinkenberg coefficient, porosity
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and capillary pressure. The main conclusions of this part of the present research are

given below:

1. The permeability of the parallel capillary model increases by approximately
five orders of magnitude when as changes from 0 to 1.2. Here a; is the
coeflicient of variation of the tube diameter distribution and represents the
breadth of the distribution. For the serial capillary model, the permeabi-
lity decreases by the same order of magnitude when as goes from 0 to 1.2.
These results are in conformity with the Scheidegger’s observation (Schei-
degger, 1974) according to which the parallel capillary model is sensitive to
the upper portion of the tube diameter distribution and the serial capillary

model is sensitive to the lower portion of the tube diameter distribution.

2. The permeability of the network model decreases as as decreases. However,
the decrease between the values of as equal to 0 and 1.2 is of the same
order of magnitude. This relatively small change for the network model,
in comparison with the capillary models, is more representative of the real
porous media and is due to the presence of the networking effect in the
network model. Similar results have also been found for the formation

factor of the models.

3. In the present study, the relations of permeability and formation factor of
network model to the statistical parameters characterizing its pore struc-
ture, have been developed for values of as up to 1.2. The predictions of
similar relations based on the effective-medium theory (Nicholson et al.,
1988) are found to deteriorate for as > 0.25 in the case of permeability

and for as > 0.3 in the case of formation factor.

4. Out of the properties permeability, formation factor, Klinkenberg coeffi-

cient and porosity, it is sufficient to find the REV size of a model with
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respect to permeability only. A 12 x 12 x 12 size with 50 realizations is
a satisfactory representative size for the network model. Such size for the
parallel capillary model is 13 000 tubes with 100 realizations. For the serial
capillary model, the representative size is 750 x 750 (750 flow paths with

750 tubes in each path) with 100 realizations.

7.1.4 Development of a Methodolegy for Modeling Pore Structure

A methodology for modeling the pore structure of homogeneous porous media has
been outlined. This methodology is based on the explicit relations of the transport
properties (e.g., permeability, formation factor and Klinkenberg coefficient) of the
parallel capillary, serial capillary and network models to the statistical parameters
describing their pore space, discussed in the previous section, and a similar relation for
porosity. A preliminary study of this methodology has been conducted with the help
of five sandstone samples and one limestone sample. For these samples, the drainage
capillary pressure curves predicted by the methodology have been compared to the
experimentally observed ones. The limitations of the models have been identified
and recommendations to improve their predictions have been suggested. The main

conclusions of this part of the present research are given below:

1. For the same sample, the statistical parameters predicted by the three
models vary significantly. The parallel and serial capillary models predict
the lowest and highest values of the mean tube diameter, respectively,
whereas the network model predicts an intermediate value for this para-

meter.

2. All the three models satisfactorily simulated the permeability, formation
factor, Klinkenberg coefficient and porosity of the sandstone samples.

However, the errors in the simulated value of the Klinkenberg coefficient
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were significantly larger for the limestone sample.

3. The present models are unable to accurately predict the capillary pressure

curves of non-uniform porous media such as limestones.

4. Except for one sandstone sample, all three models satisfactorily predicted
the plateau portion of the drainage capillary pressure curves of the
remaining sandstone samples, the predictions of the network model
beingthe best. However, the modelsdid not accurately predict the capillary
pressure curves of these samples near the irreducible wetting phase satu-

ration.

5. Incorporation of features such as the assignment of volume to the junctions
and size correlations between the neighboring tubes has been suggested to
improve the predictions of the models near the irreducible wetting phase
saturation for the sandstone samples. These and other recommendations

are discussed in the following section.

7.2 Recommendations

1. In the present study, the junctions in the network model (the confluence of
two or more tubes) are assumed to possess no volume. It is recommended
that a given pore volume be assigned to the junctions (in which case they
will be called the pores). In order to carry out this effectively, the following

issues have to be addressed:
— What percentage of the total pore volume should be assigned to the
pores ?

— Should the sizes of pores be distributed according to a probability

density distribution or should they be fixed ?
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— Should the resistance offered by the pores to the flow (fuid and cur-
rent) be considered or ignored ? If it is considered, then how should

it be incorporated ?

— How would the additional lengths introduced by the pores in the flow

paths affect the tortuosity of the model ?

2. The effects of correlations between the sizes of the neighboring pores and
tubes, neighboring tubes and tubes, and neighboring pores and pores on
permeability, formation factor, Klinkenberg coefficient and shape of the
drainage capillary pressure curves should be studied in detail. This study
may help in the incorporation of these correlations in the structure of the

network model in a meaningful way.

3. The algorithm used in the present study for calculating the drainage capil-
lary pressure curve of the network model considers the mercury intrusion
(oil in oil-brine curves) in one tube at a time. It is recommended that
an algorithm be developed which can simultaneously track the mercury
fronts at different locations inside the network. It is expected that the
incorporation of this suggestion will improve the accuracy of the irreducible

wetting phase saturation predicted by the model.

4. It is recommended that algorithms be developed for calculating the relative
permeabilities and resistivity index of the models and incorporated in the

present methodology.

5. The relations of the permeability and formation factor of the network
model to its pore structure parameters, developed in the present study,
are valid for a coordination number of 6. It is recommended that similar

relations be developed for other coordination numbers.
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APPENDIX A

EXPLANATIONS OF SOME STATISTICAL CONCEPTS

The following explanations are based on Dagan (1989). For detailed descriptions
of these concepts, the reader is referred to Dagan (1989).

Stationarv Random Function

If the random space function, (r), is defined in the domain under consideration,
that is, the joint probability density function, T'(y1,%2,...,N), is known for any set
of arbitrary, but finite number of N points, r;,ry,...,ry in the domain, then it is

considered stationary (or homogeneous) if it satisfies the requirement (Dagan, 1989)

Tly(ri+h)yy(rz +h),..oy(en + B)] = T [y(r1), 7(r2), ., v(ew)] ;- (AL)

where h is a constant but arbitrary vector and ~ is the value of 4 at a point, r = ry.
This means that T is invariant to a translation of the points r; and depends only on
their relative positions. When v(r) is a stationary random function in the domain
under consideration, then the domain is said to be statistically homogeneous with
respect to the function 4. This physically implies that 4 in some sense repeats itself

in the entire space.

The Ergodic Hypothesis

As explained at the beginning of Section 3.1, most of the times only a single
realization is available when applications related to fluid flow are considered. There-
fore, the statistical characterization of the random structure has to be based on the
given single realization. In other words, the moments such as the expected value and
variance, have to be found from space averages rather than ensemble averages. This

is only possible if the ergodic hypothesis is satisfied. Stated in a simple way, the
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ergodic hypothesis for a system means that all states of the ensemble are available
in each realization. As most of the times, only a single realization is available, it is
impossible to rigorously validate this hypothesis. The approach generally followed
is to assume ergodicity and derive the moments of interest by space averaging and
subsequently check the validity of the ergodic assumption. As explained by Dagan
(1989), it is generally assumed that the ergodic hypothesis holds if the variance of the
space average tends to zero. This point is further explained in Chapter 5 in which

representativeness of the pore structure models of porous media is considered .
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APPENDIX B

NETWORK THEORY

A two-dimensional square network model is illustrated in Figure B.1. The
coordinate system is chosen to be positive up and to the right. If é; and S; de-
note the diameter and tortuous length of a tube in the network, respectively, then
the volumetric flow rate inside the tube can be calculated from the Hagen-Poiseuille

law:

g1 = g1 (pr. — pPn) » (B.1)

where gy is the hydraulic conductance of the tube given by

)
g1 = .
128 u Sy

(B.2)

The subscript I on pressure p denotes the tube number, and the subscripts a and b give
the location (i.e., a for the left/bottom end and b for the right/upper end, depending
on the direction of the tube). The assumption of Hagen-Poiseuille flow implies that
all inertial effects are ignored and that only creeping flows are considered.

The boundary conditions applied to the network are: a pressure p; at the left-
hand boundary; a pressure p; at the right-hand boundary; and zero-flow at all other
boundaries. For incompressible flow, a mass balance at each junction requires

un= J=192a"'7NPa ) (B3)
I

where the subscript J denotes the junction, the subscript I denotes the tubes meeting
at this junction, and Np is the total number of junctions in the network. The system

of linear algebraic equations represented by Equation (B.3) can be translated into a
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Fig. B.1. A regularly spaced two-dimensional network model.

matrix notation:

(Giil{pi} = {ui}, (B.4)

where p; is the vector of junction pressures, y; is the forcing vector representing the
imposed pressures at the left-hand and right-hand boundaries of the network, and G;;
is the conductance matrix. Gj; is a symmetric and banded matrix of order Np x Np.
For a three-dimensional cubic network model, the bands correspond to: I— N x NF,
I—-NFP,I-1,1+1,I+NF, and I+ N x Nf. Here, I denotes the diagonal elements
of Gi; and Nf, Nf and N{ denote the number of columns, rows and tiers in the
network (see Figure 5.3). For computation purposes, only elements of the diagonal
and upper three bands are stored and algorithm based on Gauss elimination for such
matrices is used for inverting the equations. The details of the algorithm are given in
Bathe (1982) (pp. 434). Once the pressures at the junctions are known, the flow rate
in each tube can be calculated. A permeability for the network can then be calculated

from Darcy’s law given by Equation (3.15).
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For the formation factor calculations, the same approach is followed for calculating
the electric potentials at the junctions. The current flow inside a tube filled with a

conductive fluid is calculated from Ohm’s law in the form
cr = g? (eIa - er) ’ (B5)

where ¢§ is the electric conductance of the tube given by

2
c 7('6[

g = 41?4” SI ’ (B.G)

and ey, — e denotes the electric potential drop across the Ith tube. Once, potentials
at the junctions are known, the currents in the tubes can be calculated and the
formation factor of the network can be calculated from Equation (3.30).

For the Klinkenberg permeability calculations, the Hagen-Poiseuille equation
corrected for slip (Equation (2.31)) is employed for calculating the volumetric flow

rate of a gas through a tube in the network. For the sake of completeness, this

equation is again presented here:

7 6%
G P, = )i
u 128 1 Sy

63
(pza - pr) an + ESC—E'II— v2r RT (PIa - Plb) s (B-7)

where §; is the volumetric flow rate measured at P, (= (pr + p1)/2), ¢ is a constant
whose value is close to unity, p/. is the mean pressure in the capillary, R is the gas
constant, and T is the absolute temperature. Because the gas flow rates in all the
tubes of the network are calculated at the same pressure, P,,, the mass conservation

at the junctions requires
E-q_IJ=0 J=1,2,...,NP. (B.S)
I

The system of nonlinear algebraic equations represented by Equation (B.8) can be

translated into the matrix notation:

(G351 {pi Hpi'} + [GElH{ps} = {ui} (B.9)
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where G}; and G} are the conductance matrices, p; is the vector of junction pressures,
p¥ is transpose of pj, and y; is the forcing vector representing the imposed pressures
at the left-hand and right-hand boundaries of the network. The matrices, G;; and
G

%, have the same properties as the matrix G;; of Equation (B.4) and therefore

are stored likewise. An iterative scheme based on the Newton-Raphson method is
employed to solve the system of nonlinear equations represented by Equation (B.9).
Details of the Newton-Raphson method are given in Press et al. (1986). The linear
algebraic equations arising in the Newton-Raphson method are solved by the Gauss
elimination scheme for symmetric banded matrices (Bathe, 1982; pp. 434). Once
the junction pressures are known, the flow rates in the tubes can be computed and
the Klinkenberg permeability of the network can be found from Darcy’s law given by
Equation (3.46).

The values of the permeability and Klinkenberg permeability found with the help
of network theory (explained above) can be substituted in the following relation, given

by Klinkenberg (1941), to find the Klinkenberg coefficient, b:
ka
b=P, (-—‘ - 1) , (B.10)

where k,; and k; are the Klinkenberg permeability and permeability, respectively and

P,, is the mean pressure given by

Pm=p";p’. (B.11)
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APPENDIX C

SUMMATIONS: PARALLEL CAPILLARY MODEL

In this appendix, the different summations arising in the case of the parallel
capillary model are evaluated, and the final results for the uniform, normal and logistic
distributions of tube diameters and lengths are summarized.

Irrespective of the chosen tube diameter distribution,
Nf
S 62=Npi(1+4}), (C.1)
I=1

where a5 = 05/ s -

If § and S are continuous random variables representing the tube diameters
and lengths respectively, then regardless of their distributions, for large NT, the
distribution of 3 6*/S can be closely approximated by the normal distribution
N(NTy', NTo?), where

g8 d *_ Var | (C.2)
p = 3 an c°=Var 5l .

Here, E and Var denote the expected value and variance, respectively. If 6 and S
have independent distributions, then

NT
RO atels elL
> NIE[6]E[S]. (C3)

For symmetrical distributions of tube diameters (Mood et al., 1974)
E[8Y =} + 6piol + A0}, (C.4)

where the value of A? depends on the distribution. For evaluating E [1/5], a Taylor’s

series expansion must be used. If f(S) = 1/, then the Taylor’s series expansion of
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f(8S) about pg is:

S —ps) d S — us)? &
F(S) = flus) + (S—ps) 1!”5)3—%&#5 4 ! 2‘;‘5) dS]: o T (C.5)

For symmetrical distributions of tube lengths, E [f(S)] is:

E[f(S)]:/-}S- Z+A”#S+ - (C.6)

If the higher order terms in Equation (C.6) are neglected, then Equation (C.3)

becomes

1 54
z 5 = ;s"f (1 +6a + A7af) (1 +a% + A7al) (C.7)

where as = 0s/ps . The other summations may be evaluated in a similar fashion and

for the symmetrical tube diameter and length distributions are:

& i NlTﬂs

Z «S1 ps

(1+3a}) (1+a+ Ara}), (C.8)

NT
> 8 _ N
I=1 SI Us

For lognormal distributions (Crow and Shimizu, 1988; Aitchison and Brown, 1969)

(1+af) (1+dk+ 47af) . (C.9)

of tube diameters and lengths, Z]Iv._l_i; 82/5; is also given by Equation (C.9) and the

other summations are:

1 4
25 M "5 (1 + 642 + 15af + 204 + 154%
+64}° + af?) (1 +a} — 73_7 - ag) , (C.10)
N1 53 NT
Z 1#6 (1+3a§+3a§+a?) (1+a§-—- 7_37-1 aé) . (C.11)
I—-1 -

For the symmetrical tube diameter and length distributions, the final relations
for permeability, Klinkenberg permeability and formation factor are:

1 327 1+ a?

Z’:=fl,ug(1+6a§+APa§)(1+a§+Apag)’ (C.12)
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1 327 1+a? (C.13)
ko & pi (14603 + Arad+8cA/ps (143ad)) (1 +af + Ara})’ '
F=_ 1 (C.14)

& (1 +a%+ Araf)’
where ys and 05 , and ps and os denote the means and standard deviations of the tube
diameter and length distributions, respectively, T = ps/Li, as = o5/ps, as = os/ps,
cis a constant, and ) is the average mean free path of the flowing gas. The value of A?
is 1.8 for the uniform distribution (Mood et al., 1974), 3 for the normal distribution
(Mood et al., 1974), and 4.2 for the logistic distribution (Johnson and Kotz, 1970) of
tube diameters and lengths.

The expression for the Klinkenberg coefficient, b, can be obtained from Equations

(C.12), (C.13) and (2.27), and is:

_8cAP, 1434}

b ps 1+6ak+ Ara}’

(C.15)
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APPENDIX D

SUMMATIONS: SERIAL CAPILLARY MODEL

In this appendix, the summations arising in the serial capillary model calculations
are evaluated, and the final results for the symmetrical tube diameter and length
distributions are presented.

A detailed derivation of the summation in Equation (5.40) for lognormal tube
diameter and length distributions (Aitchison and Brown, 1969; Crow and Shimizu,
1988) is presented. The other summations may be evaluated similarly. For indepen-
dent tube diameter and length distributions, the summation in Equation (5.40) can

be expressed as
NL+1 S;
Z 5} + A’ 63

I=1

= (Np+1)E[S] E [ﬁ] , (D.1)

where A’ = 8¢, and E represents the expected value. Here, it is assumed that the
effect of ignoring the factor pl, /P, in the summation is negligible. This is true for

models with relatively small values of as. The expected value,
E [S] = Us . (D2)

For evaluating E [1/(67 + A’ 6%)], a Taylor’s series expansion is used. If

1

f(é) = TT A (D.3)

then, the Taylor’s series expansion of f(6) about us is:
y

§—pus)df (6 — us)® &2 f
f(5)=f(/‘5)+-—( 1!/‘6 —d‘g's:#& —'——276 757

S=ps

which gives

E[(8 — ps)’) d*f
S=ug 21 dé?

E[f(8)] = f(us) + ﬂﬁ‘il:,:ﬂ] %

+ . (D.5)

b=us
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The various factors in the above equation are:

af|  _ _4sg +3A 4

- ? D.6
d8limss ik + AR (D-6)
@f 204§ + 30 Ak} + 124" 4} o)
d52 6:#5 - (#g + Al #2 3 ? .
Bfl 12048 + 210 A’ 4 + 216 A” ] + 60 A° i3 (D.8)
A% lomu (ut + A )" ’ '
df|_ 8404P + 2520 A pf + 3024 A” O + 1680 A g + 360 A 09
A% lomus (st + A d)° hl
E[(6—ps)l =0, (D.10)
E [(5_”5)2] =0} = us a3 (D.11)
E[(6—ps)°] = 3 (§+34a}) (D.12)
E [(5*— l‘&)“] = ,u§ (a}2 + 6a‘1$° + 15(1253 + 16(155s + 3a§) . (D.13)
If the higher order terms in Equation (D.5) are ignored, then
1 _ (Np+ 1) ps 1 B:C? D E® G H*
. [54 + A'53] - I 1+ A + (1+ A%)3 + (1+ A%)? + 1+ A)® (D.14)
where
ar =020 (D.15)
Hs
B = ag y (D16)
C*=10+154 +6(4)", (D.17)
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D* =al+3dj, (D.18)

E°=20+45A°4+36(A°)>+10(4°)®, (D.19)
G*=al®+6a°+15a3 +16ai +3a;, (D.20)

and
H® =35+ 105 A° + 126 (A*)? + 70 (A%)® + 15 (A°)*. (D.21)

Therefore, the Klinkenberg permeability is:

(D.22)

Ra @ VY [T A T AP T (LAY T T A

The summations in Equations (5.39) and (5.41) can be evaluated similarly. They
are not included here.

The final results for the uniform tube diameter and length distributions (Mood
et al., 1974) are:

2
.I.::= ;;:g (1 +a2) (1 +10a} + 63a} + 3240} + 1485a5) ,  (D.23)

1 327 1 B*C* D* E*
—=——{14a? , D.24
= a0 ) [ e+ A (029

1
F=€—l (1 + o) (1+3a§+9a§+27a§+81a2), (D.25)
where
ar = BeAR (D.26)
Hs :

B*=a, (D.27)
C°=10+15A°+6(A°)*, (D.28)
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D* = a, (D.29)

E® =63+ 189 A® + 226.8 (A°)? 4+ 126 (A°)® + 27 (A%)* . (D.30)

The final results for the normal tube diameter and length distributions (Mood et al.,

1974) are:
1 _3r (1 +a?) (1 + 104} + 10545 + 126043 + 17325 a) (D.31)
kl él #g & § & ) §) »
1 327 N B*C® D* E*
b a0 ) [1 Iy O (T R T AB)S] ’ (0-32)
=l (1 +a2) (1 +3a? + 154} + 1054 + 945a) (D.33)
61 § 6 § § §) .
where
A
ar = Bedn (D.34)
s
B® = a}, (D.35)
C° =10+ 154° + 6 (A%)?, (D.36)
D® = a, (D.37)
E® =105 + 315 A® 4+ 378 (A*)? 4+ 210 (A°)® + 45 (A°)*. (D.38)

The final results for the logistic tube diameter and length distributions (Johnson and
Kotz, 1970) are:

1__327‘

ky & ,u%

(1 +a2) (141002 + 147af + 334808 + 118157df) ,  (D.39)
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1 327 . 1 B:C* D*E*

L 4

kar &} (1+4) [1 iy TR D R A’)5] ’ (D40
1 2 2 4 6 8
F= (1 +a?) (1 +3a? + 214} + 27945 + 6172.243) , (D.41)
where
JULLLYY (D.42)
s

B® =d}, (D.43)
C*=10+15A° + 6 (A%)?, (D.44)
D® =aj, (D.45)
E® = 147 + 441 A® 4 529.2 (A%) 4+ 294 (A®)® + 63 (A°)* . (D.46)

The final results for the lognormal tube diameter and length distributions are

given in Chapter 5.
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APPENDIX E

RESULTS OF NONLINEAR REGRESSION ANALYSIS

FOR THE NETWORK MODEL

In this appendix, the results for the various nonlinear models tried for finding

relations of the coefficients A,, A,, A, and A. to the statistical parameters of the

network are summarized and complete expressions for functions Z* (as) and Z¥ (a;)

are given.

E.1 Models for A,

MODEL 1

v

MODEL 2

v

MODEL 3

MODEL 4

MODEL 5

1

Hs
Av="3 2 1 6 8
ps 1 + myag + myas + maay + myag + msa;

10

©s 1

pi 1+ mia + moal + myaf + mydl

_us 1
ps 14+ mya? + mapaf + msal

v

A4,=5 !
T pt 1 + mya? + mya}

A, =E

pg 1+ miaf
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MODEL 6

1

ps
A, == E.6
s 1+ myas + moa} + maal + mya} + msaj (E-6)
MODEL 7
p1s 1
A, =—= E.7
pt 1+ myas + mea? + maad + mya} (E.7)
MODEL 8
1
A, =5 - (E.8)
1 + myas + mga? + maa}
MODEL 9
1
== E.9
ei 1+ myas + meal (E-9)
MODEL 10
1
== — E.10
ks 1+ myas ( )
The values of m;, my,..., mean square residue and mean of the sum of the squares

of the observed values for each model are given in Table E.1. In all the tables of

this appendix, the mean square residue (M.S.R.) refers to the mean of the sum of

the squares of the differences between the observed values (found with the help of

network theory presented in Appendix B) and the corresponding values predicted by

the regression model.

E.2 Models for 4,

MODEL 1

1 + a?

S
Apzmeg‘g

p& 1 + myak + myaf + mzad + myaf + msa}

(E.11)

i0
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MODEL 2

ks 1+ a
= ok E.12
Ay mﬁug 1 + mya2 + moa} + mgal + myat (E-12)
MODEL 3
ps 1 + af
= = E.1
A msy? 1 + mya} + mpa} + maag (E13)
MODEL 4
Us 1+ a}
A, =mg= E.14
P m6y21+m1a§+m2a§ (E.14)
MODEL 5
__ps 1+ al
Ap = Mg ,ug "———"""‘1 n - ag (E15)
MODEL 6
ps 1+ af
A = me 22 E.16
P mepg 1 + myas + moa? + mzad + mya} + msal ( )
MODEL 7
Us 1+ a
A, =meg—= E.17
PT S T mias + maal + madl + maadl (E17)
MODEL &8
ps 1+ af
= = E.18
Ap mspg 1 + myas + maa% + mzad (E-18)
MODEL 9
Bs 1+ a}
= . 22 E.l
MODEL 10
ps 1+ a
A, =mg—H —— E.20
P Me #g 1 + my ag ( )
The values of m;, ms,..., mean square residue and mean of the sum of the squares

of the observed values for each model are given in Table E.2.
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E.3 Models for A,

MODEL 1

MODEL 2

MODEL 3

MODEL /4

MODEL 5

MODEL 6

MODEL 7

MODEL 8

MODEL 9

(o

c =

21 4+ mya2 + moa} + mzaf + myad + msal

_ s 1

10

A=E .
Cpt 1+ mial + moal + maal + myad
A= -
T 14+ mya? + moa} + maal
= bs .
T pEl 4+ mpa 4+ moal
ks 1
T 1+ midg
ps 1

p2 1 + myas + mgaZ + mzad + myat + msal

= b3 1
p2 1 + myas + mpat + mzal + myal

c

ks 1
p2 1+ myas + mea? + maal

_bs !
T 214 myas + meal
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(E.22)

(E.23)

(E.24)

(E.25)

(E.26)

(E.27)

(E.28)

(E.29)



MODEL 10

Us 1
¢ = o m———— E.30
p: 1 + myas ( )
The values of my,m,,..., mean square residue and mean of the sum of the squares
of the observed values for each model are given in Table E.3.
E.4 Models for A,
MODEL 1
_ ks 1+ a2
Ae = me ps 1+ mia? + maa} + myaf + mya} + msal® (E31)
MODEL 2
ps 1+ a
e = Mg — .32
4 msyg 1 + mya + mya} + m3af + myad (E.32)
MODEL 3
ps 1 + 4}
Ae = me — E.
m6,u§ 1 + mya? + maal + maa (E.33)
MODEL 4
Bs 1+ 4}
A =me— .
e v 1 4+ myat + mya} (E-34)
MODEL 5
ps 14 a}
Ac=mg— ——— .
MODEL 6
ps 1 + af
A =me— E.36
meyg 1 4+ myas + mya? + mzal + myaf + msa} (E-36)
MODEL 7
A= me S L+ 9 (E.37)

pt 1+ myas + maal + maad + mya}
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MODEL &

__ bs 1 + a?
Ae = ms ps 14+ mias + maa? + mgad (E:38)
MODEL 9
_ s 1+ a2
Ae = Ms g 1 n - T . ag (E.39)
MODEL 10
ps 1+ af
Ac=mg—f ——— E.40
e el 4+ myas ( )
The values of my,m;,..., mean square residue and mean of the sum of the squares

of the observed values for each model are given in Table E.4.

E.5 Functions Z¥1(a;) and ZF(as)

2
74 (a5) = Lt+as
1+3.07aZ — 2.86a% + 3.99 4% — 2.8043 + 0.729 10
0.681(1 + a?)(4a? + 14af + 2048 + 15a% + 6al° + a}z)(E 1)
1+6.37aZ + 16.40al — 6.75a% + 30.46a% — 9.19410 * -
.341(1 2 2 4 6 8 10 12
ZF(as) =1 + 0.341(1 + af)(4af + 14a; + 204§ + 1508 + 6al® + a}?) (E.42)

1+3.61a2 +10.96 a3 — 6.89 % + 19.77 a3 — 5.49 41
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Table E.1. The models tried for A, with the corresponding fitting parameters. The mean of the

sum of the squares of the observed values for 4, is 2.71 x 1032,

Model my mo ms my ms M.S.R.T

Model 11| 3.07 | —2.86| 3.99 | —2.80 | 0.729 | 6.99 x 107

Model 2 3.00 [ -213| 1.92 | —0.644 - 8.11 x 10%7
Model 3 287 | —-1.27 | 0.493 - - 1.53 x 10?8
Model 4 2.69 | —0.55 - - — | 4.71 x 10%8
Model 5 2.35 - - - - 3.32 x 10%

Model 6 —0.026 | 3.65 | —2.99 | 2.14 | —0.65| 7.00 x 10?7

Model 7 0.020 | 3.18 | —1.57 | 0.49 - 7.15 x 10%7
Model 8 0.09 2.67 | —0.65 - - 9.13 x 10%7
Model 9 0.29 1.88 - - - 5.26 x 10%8
Model 10 1.31 - — - — | 4.88 x10%

iMea.n Square Residue

HThe selected model
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Table E.2. The models tried for A, with the corresponding fitting parameters. The mean of the

sum of the squares of the observed values for A, is 3.45 x 10°®,

Model my mg ms my ms me M.S.R.

Model 11T | 6.37 16.40 | —6.75 | 30.46 | —9.19| 13.83 | 3.04 x 10°!

Model 2 6.55 13.96 4.71 11.82 - 13.87 | 3.04 x 10%
Model 3 7.05 8.98 20.21 - - 13.97 | 3.78 x 10™
Model 4 4.97 22.49 - - - 13.44 | 2.96 x 10°2
Model 5 15.73 - - - - 16.78 | 1.02 x 10

Model 6 2.00 | -10.72 | 70.78 | —114.26 | 92.33 | 14.97 | 3.07 x 10!

Model 7 -3.50 | 26.67 | —52.90 | 57.57 - 11.19 | 6.06 x 10
Model 8 8.82 | —31.26 | 66.34 - - 21.75 | 4.33 x 10%
Model 9 —4.18 | 14.47 - - - 8.61 | 3.69 x 10%
Model 10 | —21568 - - - —_ —34792 | 4.54 x 10>

TMean Square Residue

”The selected model
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Table E.3. The models tried for A, with the corresponding parameters. The mean of the sum of

the squares of the observed values for A, is 3.36 x 1011.

Model mi mo ms my ms N‘[S.R,‘t

Model 1 1.14 | —0.95| 1.97 | —1.62| 0.46 | 9.11 x 10°

Model 2 | 1.00 | —0.02| 0.05 | —0.03| — |4.15x108
Model 3 | 0.99 | 0.01 |—0.01| - —  |412x10°
Model 4 | 1.00 | 0.00 | — - — | 4.11 x 108
Model 5Tt | 1.00 | — - - — | 4.07 x 106

Model 6 —0.01| 1.10 | —0.34| 0.43 | —0.185 | 4.24 x 10°

Model 7 0.00 | 094 | 0.10 | —0.05 - 4.21 x 108
Model 8 0.00 | 1.00 | —0.01 - - 4.20 x 108
Model 9 06.00 | 0.99 - - - 4.14 x 10°
Model 10 | 0.74 - - - - 3.52 x 10°

TMea.n Square Residue

”The selected model
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Table E.4. The models tried for A, with the corresponding fitting parameters. The mean of the

sum of the squares of the observed values for A, is 9.50 x 1039.

Model my ma ms my ms me M.S.R.f

Model 17T | 3.61 | 10.96 | —6.89 | 19.77 | —5.49 | 0.217 | 7.65 x 10%

Model 2 3.77 9.03 1.12 7.90 - 0.217 | 7.89 x 10%¢
Model 3 4.27 4.78 12.57 - — 0.219 | 1.12 x 10?7
Model 4 249 | 14.54 - - - 0.210 | 1.03 x 10%8
Model 5 10.83 - - - - 0.263 | 3.27 x 10%°

Model 6 091 | —5.97 | 42.66 | —71.01 | 56.29 | 0.223 | 8.13 x 10%

Model 7 -3.26 | 21.37 | —41.37 | 40.02 — 0.175 | 1.74 x 1077
Model 8 7.01 | —24.65 | 44.00 - - 0.323 | 1.46 x 10%®
Model 9 -3.67 | 10.79 - - - 0.137 | 1.16 x 10%°
Model 10 | 57.13 - - - - 1.85 | 1.26 x 1030

1'Mea.n Square Residue

HThe selected model
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APPENDIX F

EFFECTIVE-MEDIUM APPROXIMATION (EMA)

In this appendix, a derivation of effective-medium approximation (EMA), given
by Equation (5.97), is presented. It is reproduced from Kirkpatrick (1973) with
some changes in nomenclature. Based on this equation, an explicit relation between
the overall network conductance and the statistical parameters characterizing the
distribution of the elementary conductors in the network is reproduced from Nicholson
et al. (1988). Finally, the relations of the permeability and formation factor of the
network to the corresponding normalized effective-medium conductances are found.
Electrical terminology is used for these derivations; however, similar statements apply

to fluid flow in networks of tubes.

F.1 Effective-Medium Approximation (EMA)

Consider an infinite network of electric resistors in which the conductances of the
individual resistors are randomly assigned according to probability density function
w(g) such that g, £ ¢ < ¢5. The coordination number of the network, that is, the
average number of resistors meeting at a junction, is denoted by 5. For example, 7 is
2 for a serial capillary model, 4 for a square network and 6 for a cubic network, both
with no diagonal elements, and oo for a parallel capillary model. The EMA seeks
to replace all the resistors of the network with identical resistors of conductances g,
such that the total conductance, G, of the effective-medium network is the same as
that of the original network.

Consider an effective-medium network illustrated in Figure F.1. Here e, is the
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Macroscopioc Potential Drop

Fig. F.1. Determining EMT conductance (from Kirkpatrick, 1973).

potential drop per row in the direction of the macroscopic potential drop. If, in the
effective-medium network, one conductor is reverted back to its original value, gy,
then the potential drop across pq will be different from e,,. A fictitious current, Ac,
may be introduced at p and extracted at ¢ such that the potential drop across pgq

reverts back to e,,. In that case
Aco = (gm — gpq) €m - (F.1)

The current Ac, produces an additional voltage

Ac,

— F.2
gpq + P;q ( )

Aey =

where I is the conductance of the rest of the network between junctions p and gq.

/

g Detween the junctions

For the effective-medium network, the total conductance, T’

p and q is
Tpg =I5 + gm (F.3)

T'pq can be calculated from the definition: if current ¢, enters junction p and leaves

junction ¢ producing a potential difference of e,g, then I'yy = ¢,/ep,. However, this
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situation is the linear superposition of the current ¢, entering junction p and leaking
out at infinity, and the current ¢, leaking in at infinity and exiting at junction ¢. In
the former case, current ¢, /7 is present in all resistors leading out of p, including pg,
SO €pg = Co/N gm- In the latter case, the same current and the same voltage drop

occur in pg, so adding we have

1 2¢,
€pg = — . F.4
o= (k.1
Therefore
Toe = 3 9m » (F.5)
and from Equation (F.3),
I’ =(1-1)g (F.6)
rq 2 m *
If Equations (F.1) and (F.6) are used in (F.2), then
Aeyy = e —Im I8 (F.7)

oe + (/2= 1) gm
The value of g,, and hence of Ae,, is a random variable, and it is required that the

average of Aep, with respect to the probability density function w(g,,) be zero:

% (gm — g) w(g)dg
e T2 —D)gm (F8)

The effective-medium conductance is chosen such that Equation (F.8) is satisfied.

F.2 Nicholson’s Solution to EMA

Nicholson et al. (1988) presented a solution to EMA, given in Equation (F.8),
using a renormalization group method. This resulted in an explicit relation between

the overall conductance, G, of the network and the statistical parameters charac-
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terizing g. In this section, these development are reproduced. Nomenclature consis-
tent with the present work is employed.

The assumptions regarding the construction of the network and flow (fluid or
electric) inside the elementary tubes (conductors of fluid or electricity) are the same
as presented in Section 5.1.1. The elementary conductance may be written as

_ B§

9="—5 (F.9)

where 6 and S are the diameter and the length of the elementary tube, respectively;
B and € are constants which depend on the tube shape and flow considered. For
example, B is equal to 7 /128y for the Hagen-Poiseuille flow and 7 /4R, for electric
flow in a cylindrical tube of constant cross-sectional area, where y is the viscosity of
the flowing fluid and Ry is the resistivity of electric conductor saturating the tube;
€ = 2,3,4 for diffusion and electric flow, dilute gas flow (Knudson), and Hagen-
Poiseuille flow, respectively. The corresponding values of ¢ for slit-shaped tubes are
1,2, and 3, respectively. § is assumed to be distributed randomly according to the

probability density function e(6) and S is assigned a fixed value. Therefore,
g=Bé&, (F.10)

where B = B/S. w(g) is completely determined by ¢(6).
The following reduced random variable may be introduced in order to facilitate
the characterization of the shape and breadth of £(6) by the first few moments about

the mean, ps:

nzi—l, (F.11)

Hs

which varies between x, = é,/ps — 1 and k, = &/ps — 1, and another variable

(e £ ¢ < (b given by

C=<;;)6—1=(1+n)‘—1. (F.12)
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The corresponding probability density functions are denoted by é(x) and &(¢),

respectively, and the related moments are given by

K = (K7)EN = / " k" E(k)dr (F.13)
o
= (™ = [T adc (F.14)
Equations (F.11) through (F.14) give the following expression for (,:
Go=(-1)" 3 (-1) }C Y ¥C &5, (F.15)
i=1 J=1

where ?C and ¥C are the binomial coefficients. The effective-medium conductance

and reciprocal connectivity factor are normalized as

- 9m
I = = 6—19 F.16
B (F.16)
2
A=Z =A<y, (F.17)

With the help of Equations (F.10), (F.12), (F.16) and (F.17), Equation (F.8) trans-

forms into

¢ A7n—¢)é(Q)d¢
/ca 1+A(+(1~A)g, =0 (E.18)

Ifg,, is assumed to be small with respect to 1 (see Equation (F.16)), then the denomi-
nator of the integrand in Equation (F.18) may be expanded and the term-by-term

integration yields

K. (A G) + Ki(A,G) T, + Ko (A, ¢) ﬁfn +...=0, (F.19)
where
K, = S (=1 A™1¢, (F.20)
n=1
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K1 = Z(_l)n-}-lnAn—-l (C‘n—-l+Cﬂ)a (le)
K = i(—l)"n(n-}-l)A""l (Comr +C) /2, (F.22)
Ko = S0 a4 )0+ A7 G4 6) /6. (R

Here, the binomial coefficients have been written explicitly. Equation (F.19) in combi-
nation with Equations (F.20) through (F.23), gives an explicit solution for g,,, in the

form of an infinite series in ascending moments of ¢, and powers of A:
In(A, ) = =K. K{'—(1-A)KZKP K,
—(1-APKSK5(2K? - K,y K3) . (F.24)

The limiting cases of A = 0 and A = 1 correspond to parallel and serial capillary

models, respectively (Koplik, 1981). The corresponding solutions for these cases are

In(A=0)=(, (F.25)
Gn(A=1)= f,; LY 2( D™ 0 (at + Ca) - (F.26)

From Equations (F.16), (F.25) and (F.26),

gm(A=0)=g,, (F.27)

m(A=1)=g,, (F.28)

where g, and g, are the effective-medium conductances of the parallel and serial

capillary models, respectively. From Equations (F.16) and (F.27)
6= (143,55, (F.29)
and from Equation (F.16)

gm(A,Ga) = [1+Fm(A, )] B pss - (F.30)

236



The normalized g,,(A, (») with respect to g, may be obtained from

Y (A, Cn) = gm(A; Ga)/gp = [L + (A, cn)] /(L+G). (F.31)

The expression for y(A,(.) can be obtained by substitution of Equations (F.20)
through (F.24) into Equation (F.31) and is (up to sixth order terms):

Ym(AyCa) =1 — AG + A%ls — A%C + A% — A°Gs
+AG + 2A-3A) GG+ (4A°=3A%) GG
+ (4N —5A GG+ (2A° =A%) (G
+(BA=5AY) GG+ (6A° —4AY) G
+(BA° —2A%G + (2A%+20) ¢
+(8A* —TAS —2A%) (3
+(13A2 —10A3 = 3A)(2¢,

F(I5A* —1TAR+4AD) G2 + - . (F.32)

The values of (,(n = 1,6) in terms of £,(n = 1,6) for various values of € can
be calculated from Equation (F.15). The expressions (containing terms up to sixth
order) for € = 1,4 are summarized below. As mentioned in the beginning of this
section, different values of € correspond to different kinds of flows in the network.

(a) Values of (, in termsof Kk, (n=1.6) fore=1

¢. (F.33)

K

(b) Values of {, in terms of k, (n =1,6) for ¢ =2

G =281 + Ky
C2=4ky + 4K3 + K4
(3=8K3 + 12k4 + GKs + kg

C4 = 16I€4 + 32&5 + 24”6
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Cs =32K5 + 80&6

(6 = 64 ke (F.34)

(c) Values of {, in terms of £, (n =1,6) for e=3

G =3k1 + 3k2 + K3

C2=9ky + 18k3 + 1544 + 6 K5 + kg
(3 =273k3 + 8lky + 108ks + 81 kg
Ca=8lky + 324 k5 + 594 k¢

(s =243 ks + 1215ke

(6 =729 ke (F.35)

(d) Values of {, in terms of &, (n = 1,6) for e = 4

(G=2K1 + 6Ky + 4K3 + K4

C2=16kKky + 48k3 + 64 k4 + 56k5 + 28 k¢
(3=64k3 + 288k4 + 624 k5 + 840 k¢

G4 =256k4 + 1536 k5 + 4480 k¢

(s =1024 ks + 7680 ¢

(6 = 4096 ke (F.36)

Values of £,,(n = 1,6) for lognormal distribution

It may be noted here that x; = 0 irrespective of the probability distribution
chosen for the element conductances of the network. If 5 and o? represent the mean
and the variance of the employed lognormal distribution for tube diameters (tube
lengths are fixed), and as = o5/us, then other moments are (Aitchison and Brown,

1969):
Ko = a:‘;
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k3 = a§ + 3a}

ks = a3’ + 6a3° + 154§ + 1648 + 3}

ks = a2’ + 10a}® + 45a3° + 120 a5* + 20503 + 2224)° + 13548 + 3048

ke = a3’ + 15a2® + 10502 + 44542 + 1365a2> + 299742 + 49454®
+6165¢;° + 5715a5* + 3760 a}? + 15814l + 330}

+1548 (F.37)

F.3 Relations of Network Permeability and Formation Fac-

tor to Effective-Medium Conductances

In this section, the relations of network permeability and formation factor to the
corresponding effective-medium conductances (fluid and electric flow) are developed.

For fluid flow, the overall network conductance is

G, = , (F.38)
Pr—pi

where ), is the bulk flow rate in the macroscopic flow direction, and p; and pi are the
pressures at the upstream and downstream sides of the network (see Appendix B).

@1 may be written in terms of the permeability as

kP Ay
Q= I, (pn —m), (F.39)

where k' denotes the permeability of the network, A; is the bulk area normal to and
Ly is the bulk length parallel to the macroscopic flow direction, ¥ = 1, and 4 is the
viscosity of the flowing fluid. From Equations (F.38) and (F.39), we get

k7 Al '
G, = X . F.40
L (F.40)
Similarly for an equivalent parallel capillary model
kK A
= . F.41
P Y Ll ( )
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The equivalent parallel capillary model is one with the same external dimensions and
distribution of elementary conductances as the network model, with a coordination
number of co. If g, and g, represent the effective-medium conductances of the network

and the equivalent parallel capillary models, respectively, then
Gy  gn (F.42)

and
Gp X Gp , (F.43)

Because the elementary conductors of an effective-medium network are identical, the
conductors in directions other than the macroscopic flow direction, do not contribute
to the overall conductance of the network in the macroscopic flow direction. Therefore,
the factors of proportionality in Equations (F.42) and (F.43) are identical. Substi-
tutions of Equations (F.40) and (F.41) into Equations (F.42) and (F.43), respectively,

leads to
gn If Lft -, (F.44)
gp X If ;11‘ : (F.45)
With the help of Equations (F.44) and (F.45), Equation (F.31) becomes
Mm(e=4)= z:—g:—z—% = % : (F.46)

The relations of kf and k' to the statistical parameters of the models are given in
Equations (5.24) and (5.95), respectively. It may be noted here that the value of ag is
zero in Equation (5.24) because tubes with fixed length are employed. A comparison
of the normalized effective-medium conductances predicted by Equations (F.32) (with

€ = 4) and (F.46) is presented in Section 5.3.2. In this comparison, ¥ and k* are
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found from the relations developed in the present study (Equations (5.24) and (5.95),
respectively)

The relation between the formation factors of the network model and the equi-
valent parallel capillary model, and the corresponding normalized effective-medium
conductance of the network may be found similarly. Here, only the final result is

presented:

(e =2) = %ZE:—-—:-% = % : (F.47)

where F? and F™ denote the formation factors of the parallel capillary model and
network model, respectively. The relations of F? and F™ to the statistical parameters
of the models are given in Equations (5.27) and (5.96), respectively. Again, as is zero
in Equation (5.27). A comparison of the normalized effective-medium conductances
predicted by Equations (F.32) (with ¢ = 2) and (F.47) is presented in Section 5.3.2.
In this comparison, F? and F™ are found from the relations developed in the present

study (Equations (5.27) and (5.96), respectively)

241





