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Abstract

This thesis evaluates regional hydrology using output from the Canadian Regional Climate

Model (CRCM 4.1) and examines changes in the hydrological processes over the Churchill

River Basin (CRB) by employing the Variable Infiltration Capacity (VIC) hydrology model.

The CRCM evaluation has been performed by combining the atmospheric and the

terrestrial water budget components of the hydrological cycle. The North American Regional

Reanalysis (NARR) data are used where direct observations are not available. The outcome

of the evaluation reveals the potential of the CRCM for use in long-term hydrological studies.

The CRCM atmospheric moisture fluxes and storage tendencies show reasonable agreement

with the NARR. The long-term moisture flux over the CRB was found to be generally

divergent during summer.

A systematic bias is observed in the CRCM precipitation and temperature. A quantile-

based mapping of the cumulative distribution function is applied for precipitation adjust-

ments. The temperature correction only involves shifting and scaling to adjust mean and

variance. The results indicate that the techniques employed for correction are useful for hy-

drological studies. Bias-correction is also applied to the CRCM future climate. The CRCM

bias-corrected data is then used for hydrological modeling of the CRB. The VIC-simulated

streamflow exhibits acceptable agreement with observations. The VIC model’s internal

variables such as snow and soil moisture indicate that the model is capable of simulating

internal process variables adequately. The VIC-simulated snow and soil moisture shows the

potential of use as an alternative dataset for hydrological studies.
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Streamflow along with precipitation and temperature are analyzed for trends. No

statistically significant trend is observed in the daily precipitation series. Results suggest that

an increase in temperature may reduce accumulation of snow during fall and winter. The

flow regime may be in transition from a snowmelt dominated regime to a rainfall dominated

regime. Results from future climate simulations of the A2 emission scenario indicate a

projected increase of streamflow, while the snow depth and duration exhibit a decrease.

Soil moisture response to future climate warming shows an overall increase with a greater

likelihood of occurrences of higher soil moisture.
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Chapter 1

Introduction

1.1 Introduction

The earth’s climatic system is undergoing considerable change (IPCC, 2007a), leading

to an acceleration of the hydrological cycle. Sauchyn and Kulshreshtha (2008) state that

projections for the future as well as recent trends indicate increasing soil-surface-water

deficits, lower summer streamflows, and falling lake levels in Canada. These changes will

influence every aspect of human life and well-being.

Streamflow plays an important role in economic growth and many aspects of social

development (Grey and Sadoff , 2007). A change in streamflow will have impacts on

irrigation and the development of agriculture and agriculture-based industries. Also, changes

in flow may necessitate land use change, changes in agriculture practice, and altering of

the cropping patterns of a region. The amount of available water in streams and lakes is

important for aquatic ecosystems. Streams have navigational as well as recreational values.

Extreme low flow during summer months can make such uses difficult or impossible. Also,

continuous low flow can cause destruction in the aquatic ecosystem. On the other hand,

floods can cause considerable structural damage and loss of human life.

The demand for water is increasing with the growth of the world’s population. The
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climate warming puts additional pressure on the water supply system. It is important to

know the effect of changes due to warming on the water regime in a region (Lemmen et al.,

2008). The province of Manitoba has a large hydro-electric generation system that is entirely

dependent upon a supply of fresh water. Estimates of the future supply of water is of

significant interest to Manitoba Hydro. Although the impact of water supply would vary on

a regional basis, all areas of Canada and virtually every economic sector would be affected.

Further research into the potential impacts of climate change and the processes of adaptation

would contribute to reduce the vulnerability (Warren, 2004).

General Circulation Models (GCMs), also known as global climate models, can simulate

and reproduce the observed large-scale changes in climate over the past, and are used to

simulate future climate conditions (McGuffie and Henderson-Sellers, 2001). GCMs create

predictions on a relatively coarse scale unsuitable for regional climate change impact studies

in which hydrological assessment is a prime concern (Hostetler, 1994). Wood et al. (2004)

and Maurer (2007) suggested downscaling of climate data to a scale of 1/8◦ for hydrological

modeling.

Use of a Regional Climate Model (RCM) is a well known approach for downscaling and

incorporating regional details into GCMs (Feser et al., 2011). Recent RCMs have introduced

a multiple nesting process and can be coupled with land surface models. RCM scenarios

can be used to investigate hydrological changes in river basins (Teutschbein and Seibert,

2010). In such studies, inputs from RCMs are used to drive a hydrological model in order to

obtain variables for change investigation (Xu et al., 2005). A distributed hydrology model is

required in order to make the best use of gridded RCM data as an input. Distributed models

require an extensive array of observed datasets for the purpose of validating their simulated

output. Hence, the parameterization of hydrological model is constrained by the availability

of observed data. Due to the limitations of dependable observed data and their sparsity, the

modelling of northern river basins can be challenging.

A coupled RCM with a sophisticated land surface scheme exchanges water and energy
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between the land surface and the atmosphere, and thus provides presumably realistic surface

variables as well as authentic moisture return to the atmosphere (Laprise, 2008). The

reliability of RCM simulated data must ideally be demonstrated by showing that they are

statistically compatible with other independent data sources. Considering the advantages

of coupled RCMs, the major science questions to be addressed by the current study are

as follows: (a) How will local climate systems be resolved in a RCM when the boundary

forcings are provided by a GCM? (b) How and to what extent can one use the RCM dataset

in regional hydrological studies?

In response to these questions, datasets from the Canadian Regional Climate Model

(CRCM) will be explored for change studies using different climate scenarios. The goal is

to demonstrate that these CRCM scenario datasets are dependable pictures of hydrological

change. The atmospheric moisture integrated over an area such as a river basin is a useful

piece of hydrological information that can be used for hydrological change assessment on a

long-term basis. The purpose of this research is to test the hypothesis that output variables

derived solely from the CRCM with improved moisture partitioning through the land surface

scheme can provide an estimate of long-term hydrological changes in a river basin. In order

to test this hypothesis, the Churchill River basin (CRB) and the CRCM coupled with the

Canadian LAnd Surface Scheme (CLASS) have been selected.

1.2 Research objectives

The followings are the key objective of this study:

• To improve the understanding of how and to what extent climate change will affect

hydrological systems in the CRB, using input from a CRCM

• To examine changes in the hydrological processes by employing a distributed hydro-

logical model with input from the CRCM. This will facilitate identification of the

dominant hydrological process variables and their feedback to the system.
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The thesis will employ a comprehensive approach to validating CRCM through its

atmospheric moisture, along with surface variables over the CRB, in order to determine

whether the quality of the output from the selected CRCM is adequate for the study of long-

term hydrological change. A combined atmospheric and terrestrial water budget approach is

used to determine changes in the hydrological cycle of the CRCM and to provide justification

for the use of the CRCM in hydrological studies.

This study integrates a state-of-the-art distributed hydrology model using the CRCM

gridded meteorological variables as input. These meteorological variables propagate through

the modeled hydrological system and produce the hydrological variables of interest. The

CRCM input to the hydrological model affects output variables such as snow, soil moisture,

and stream discharge that in turn depend upon the characteristics of the system. The study

will examine these dominant hydrological process variables and their feedback within the

changed climate.

Prior to using the CRCM output in hydrological change studies, the simulated values

for current (control) climate must be comparable to observed values. Some studies have

reported that the CRCM variables are subject to systematic errors (van Pelt et al., 2009;

van Roosmalen et al., 2010). Therefore, variables obtained from the CRCM should be

corrected for bias. In order to achieve the objectives of this study, the following tasks will

be performed:

1. Evaluation of regional hydrology using the CRCM, by means of a comparison with

observation and re-analysis data.

2. Bias-correction of the CRCM precipitation and temperature, if necessary.

3. Assessment of changes in hydrological processes for the CRB derived from the hydrolog-

ical model, using multiple CRCM scenarios as input.
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1.3 Outline of the thesis

The thesis consists of eight main chapters. Chapter 2 reviews the literature regarding climate

and climatic change, climate modelling, as well as the reasons for selecting a regional

climate model for this study. A review of hydrological models is also discussed in Chapter 2.

Chapter 3 presents the description of the study area. Chapter 4 discusses the CRCM dataset

used in this research. Chapter 5 presents the evaluation of regional hydrology as simulated

by the CRCM. The NARR atmospheric dataset has been used for validation. Chapter 6

provides a discussion of CRCM bias-corrections that are applied in order to obtain a suitable

dataset for hydrological modelling. Chapter 7 presents the hydrological modelling of the

Churchill River Basin using the VIC model and includes a discussion of the region of study.

In Chapter 7, an evaluation of the dominant hydrological processes, as well as an assessment

of hydrological changes due to climate change are provided. Chapter 8 summarizes the

overall findings of this study, discusses the shortcomings, and provides suggestions for

future research.
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Chapter 2

Literature Review

2.1 Climate Change

The earth experiences continuous climatic changes initiated by external factors which

impinge on the climate system. These climate forces include human and natural factors

of influence (Moss et al., 2010). Due to the enormous increase in the global population

and the advancement in technologies based upon carbon-based fuels, significant changes in

global climate are occuring. Climate change is directly linked to the increase in greenhouse

gas concentration. For example, the recent IPCC (2007b) report states that most of the

observed increases in global average temperatures since the mid-20th century are due to the

observed increases in anthropogenic green house gas (GHG) concentrations. The impact

on the climate system by human activities greatly exceeds the impact of natural events

(Solomon et al., 2007).

The climate system consists of the following major components: (i) the atmosphere;

(ii) the hydrosphere; (iii) the terrestrial and marine biospheres; (iv) the cryosphere and

(v) the land surface. When dealing with climate change over longer periods, Houghton

and Morel (1984) suggest that consideration of the atmosphere alone is not sufficient. All

components of the climate system must be considered. The collective interaction among
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these various components determines the climate. Climate interactions are often referred

to as feedbacks. Thus, the climate system can be defined as a set of components and

their feedbacks influencing one another, which in turn influence the system as a whole.

Knowledge of the components of the climate system, including their feedback and change

mechanisms, is essential.

2.2 Climate Models: Global and Regional

In recent decades, increases in computing power have enabled the development of climate

system models. These sophisticated models facilitate our understanding of complex climate

processes and enable predictions of future climate change (McGuffie and Henderson-Sellers,

2001). Besides these sophisticated models, simple models are used to explore individual

aspects of the climate system. With this expanding knowledge of the climate system, the

associated modelling needs have also increased which has led to the development of more

comprehensive models. The most comprehensive models available are atmosphere-ocean

general circulation models (AOGCMs) which provide the most realistic representations of

nature.

The General Circulation Models (GCMs) have been developed based on interactions

between climate components and their feedbacks. The more recent GCMs capture greater

process detail including improved representations of the land surface process and are linked

to the ocean models (McGuffie and Henderson-Sellers, 2005, Chapter 5). By coupling

the models of the atmosphere, the ocean and the land surface, the interplay among the

components of the climate system can be studied in order to make predictions of future

change. In addition, the transient climate changes produced by anthropogenic forcing,

the behavior of the climate system as it adapts to annual increases in greenhouse gas

concentrations, can also be simulated (Shepherd and McGinn, 2003). Currently, the highest

resolution GCMs have spatial resolutions in the order of 150 to 300 km. Outputs from these
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models are generally only available as decadal length series of monthly means or totals. A

demand exists for higher resolution information for climate impact and adaptation studies.

The GCM outputs are insufficient in terms of spatial and temporal resolution for regional

hydrological impact studies (Hostetler, 1994). The representation of orography, coast-line,

lakes, and land surface characteristics are much simplified in GCMs. The lack of some of

these characteristics in GCMs has long been acknowledged by scientists (Laprise, 2008).

Different studies (e.g., Dickinson et al. (1989); Russo and Zack (1997); Giorgi and Mearns

(1999); Teutschbein and Seibert (2010)) have suggested the use of regional climate models

(RCMs) driven by GCMs, with the objective of bridging the gap between the different spatial

and temporal resolutions caused by simplification of schemes in the global models. Recent

RCMs have introduced multiple nesting and can be coupled with land surface models. The

effects of domain size, resolution, boundary forcing and internal model variability in RCM

are now better understood (Varis et al., 2004; Braun et al., 2012).

Recent RCMs can provide high resolution output in the order of 10 km. These models

are driven at their lateral boundaries by time-dependent, large-scale atmospheric data. As

these models are able to resolve fine-scale physiographic details, they can also generate

meteorologically coherent small-scale features (Frigon et al., 2002; Eum et al., 2012).

The objective behind the high resolution nested RCMs, in the context of climate change

projections, is to add finer scale detail retaining the large scale circulations of the GCM. In a

RCM, the fine scale surface processes linked to hydrology, including topography, are better

resolved. The added detail provided by using high resolution RCMs appear quite realistic

when driven at their boundaries by coarse resolution GCM (Laprise, 2008).

2.2.1 Climate Change Impacts on Hydrology

Many studies have been conducted to examine the effect of climate change on components

of the hydrological cycle. These studies can be classified differently depending on the

approach. The most common approach has been to combine basin-scale hydrology models
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with climate change scenarios derived directly from GCMs.

Wolock and McCabe (1999) examined changes in mean annual runoff in response to

potential climate change in the continental United States. These researchers identified the

main uncertainty as related to the GCMs’ ability to estimate change in precipitation. The

Wolock and McCabe study showed that determining surface hydrology at the continental

scale using direct output of GCM can be misleading.

Recent developments of hydrological and land-surface parameterizations coupled with

GCMs have improved the current situation. Arora (2001) performed simulation of 23

continental-scale river basins from the third generation Canadian GCM, where components

of the global hydrological cycle and globally averaged precipitation and overland runoff

were accurately estimated. On the other hand, the study showed discrepancies in the

simulations of regional precipitation and consequently the runoff. Arora’s study explained

these discrepancies as being due to poor partitioning of precipitation into evapo-transpiration

and runoff in the land surface scheme. Further development of hydrological processes in

land surface schemes will lead to improved estimations of continental or sub-continental

level basin hydrology.

Hostetler and Giorgi (1993) investigated the feasibility of coupling RCMs with a

landscape-scale hydrological model. Streamflow simulations demonstrated agreement in

the seasonal cycle of streamflow but underestimated winter flow due to discrepancies in

simulating winter time precipitation with the RCM used in the simulation. The results of the

study indicated that coupling an RCM with a hydrology model would be a useful approach

for evaluating the effects of climate change on hydrological systems.

Graham et al. (2007b) used 11 different RCMs for assessing hydrological change. Their

study concluded that hydrological results from different RCMs vary considerably from

model to model, although representations of hydrology are included in all RCMs. These

researchers further explained the results as due to poor partitioning of precipitation into

evapo-transpiration and runoff, similar to Arora (2001). Graham et al. (2007b) concluded
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that RCM runoff can be used to analyze scenario trends, but attention must be given to the

precipitation biases that most RCM show. Similarly, Fowler et al. (2007) used RCM data in

hydrological modelling for a catchment in north-west England where they made a correction

to the RCM data to overcome seasonality bias.

Frigon et al. (2002) evaluated surface hydrology as simulated by the Canadian regional

climate model (CRCM). Two years of simulation presented in the study served as a first

experiment to evaluate CRCM surface hydrology when the CRCM was coupled with a

simple land surface scheme. Frigon et al. noted a seasonal bias which they attributed

to the oversimplification imposed by the single-layer surface scheme. Nevertheless these

researchers’ conclusion from the first experiment suggest the possibility of using the CRCM

to feed a hydrology model.

The CRCM is continuously being improved, and recent developments include the

coupling of a sophisticated land surface scheme with the model. The CRCM version 4 and

more recent versions are coupled with the Canadian Land Surface Scheme (CLASS) version

2.7 (Verseghy, 1991; Verseghy et al., 1993; Verseghy, 2000). OURANOS has performed

several successful experiments using the CRCM coupled with an improved version of

CLASS (Music and Caya, 2009). The present study will use a recent CRCM (version 4.1),

and will also examine the improvements in surface hydrology in CRCM 4.1 simulations due

to the inclusion of multi layer CLASS.

2.3 Hydrological Models

A hydrological model deals with the estimation of the partitioning of water among the

various pathways of the hydrological cycle (Dooge, 1992). The entire modelling process can

be divided into several sub-processes that interact with each other in a confined geographical

area called a watershed. Each of these sub-processes is represented by an analytical formula-

tion based on an empirical relationship or on a function derived from a physical relationship.
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Depending on the formulation of the processes, a model can be classified in different ways.

A wide variety of hydrological models have been developed and used in the past century

and applied to study water resources (Singh, 1988, Chapter 3). These models can be grouped

or classified in many different ways depending on (i) the purpose of modelling - i.e., real-

time application, long-term prediction, process understanding; (ii) the basis of the model

structure - i.e., models based on fundamental laws of physics, conceptual models calibrated

on field data, black box analysis of input output translation or empirical analysis; (iii)

spatial discritization - i.e., lumped parameter, distributed parameter; (iv) temporal scale -

i.e., hourly, daily, monthly, annual, and (v) spatial scale - i.e., point, field, basin, region,

global (Leavesley, 1994). Although hydrological models can be classified in numerous ways

based on the above criteria, the models in this literature review will be grouped according to

model structure and spatial discretization criteria.

2.3.1 Empirical and Physically based Models

Hydrological models can be grouped into empirical models and physically-based models

according to their theoretical background. An empirical model is based on an empirical

relationship that fits the observed data set. Such models do not explicitly take into account

all governing physical laws of the processes involved in a basin’s hydrology, but consider

only the functional relationship between the input and output of a basin (Leavesley, 1994).

These relationships are only applicable to the watershed for which they are developed. These

empirical algorithms are limited as they are unable to take into account changes in landuse

and channel properties through time and space (Frakes and Yu, 1999) . On the other hand,

physically-based models are based on an understanding of the physical processes that govern

the basin response. These fundamental physical principles are expressed by mathematical

formulae (Abbott et al., 1986).
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2.3.2 Lumped and Distributed Models

Lumped model parameters do not vary spatially over the basin. The representation of

hydrological processes in a lumped model is to some extent simplified. Sub-basin responses

are grouped or lumped together and the entire basin response is measured only at the outlet.

As the physical features of the hydrological processes are lumped together, this type of

model includes a certain level of empiricism. Lumped models are user-friendly because they

are simple in nature, the input requirement is less, and they are easy to use, easy to set-up

and to calibrate. These models work well in the case where hydrological predictions are

required only at the outlet. For their calibration, they need sufficiently long climatological

and hydrological records which are not always available (Beven, 1989). This requirement is

considered a limitation of this type of model.

Distributed model parameters vary spatially over the basin. In this type of model, the

spatial variability of a basin is considered to facilitate process simulation in a distributed

manner using a grid-based approach or a topographically distributed approach. Process

equations are required for each grid cell or topographic unit (Abbott et al., 1986; Beven,

1989). Patterns of spatial distribution and the ability to simulate hydrological responses

based on the spatial patterns make this approach more acceptable for coupling with a variety

of physically distributed models. Distributed models require a large amount of input data for

parameterization of processes in each grid unit, a requirement often considered a limitation

of this approach. Because governing physical equations are modeled in a distributed manner,

this approach can perform simulations with a high degree of accuracy, provided initialization

and data input are managed correctly (Nandakumar and Mein, 1997). Models which fall in

between distributed and lumped designations are called semi-distributed and are essentially

simplifications of a distributed model.
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2.3.3 Selection of a Hydrological Model

Hydrological models have been developed to address a range of problems and are used

for many different purposes. In order to select an appropriate model for this study, several

issues were considered: (i) the nature of the problem to be solved; (ii) the availability of

input data; (iii) the output requirement and (iv) the availability of software and appropriate

hardware. Singh (1988, Chapter 3) provides guidance regarding how to select an appropriate

hydrological model for a study.

The objective of the present study is to utilize a hydrological model as a tool for assessing

climate change impact on hydrology. As the study aims to investigate the long term impact of

climate change on hydrology, short term event driven models have been excluded. Empirical

models can be excluded as well, because the model will run under different climate scenarios,

and the ability of empirical models to accommodate future change (e.g., changes in landuse

and channel properties over time) is in question (Frakes and Yu, 1999). Therefore, the model

should be physically-based.

As discussed in Section 2.2.1, a climate change scenario derived from a regional climate

model will be used as input to the hydrology model in order to assess changes in hydrology.

The hydrology model must be capable of using gridded data from a regional climate model as

input. A distributed model would be the correct choice in order to used spatially-distributed

gridded data (Bell et al., 2007). The utility of physically-based distributed hydrology models

to assess the effect of climate change has been recognized by researchers (Beven, 1989;

Nandakumar and Mein, 1997). Therefore, model selection can be narrowed down to the

family of distributed physically-based hydrological models. Also, in the selection of a model,

attention must be given to models with less input data requirements, as data availability is a

crucial issue for high-latitude northern Canada basins. Considering the factors discussed in

this section, the Variable Infiltration Capacity (VIC) (Liang et al., 1994, 1996), a distributed

hydrological model, has been selected for this study. The VIC model takes into account

the dynamics of surface and ground water interactions and calculates the watertable (Liang
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et al., 2003). The VIC model can be applied to high-latitude basins where snow and frozen

soil processes play an important role (Cherkauer and Lettenmaier, 1999; Cherkauer et al.,

2003).

2.4 Model Uncertainty

Model uncertainty is an important issue in climate change studies. Models represent

approximations to real-world systems but may not include all factors involved in a system as

not all internal processes are fully understood or can be described by simple mathematical

models. The models used for understanding the complex climate system are likely to

produce a range of uncertainties in their predictions (Maslin and Austin, 2012).

In this research, regional climate model data have been used for future climate projections

as well as for the historical climate. Hydrological simulations are performed using input

from a regional climate model. Regional climate model data are derived from coarse

resolution GCMs by downscaling. A hierarchy of uncertainties are therefore introduced.

The first level of uncertainty comes from GCMs and their choice of emission scenarios.

The second level of uncertainty arises from the downscaling process. Another level of

uncertainty is associated with the selection and implementation of hydrological model.

Wilby and Harris (2006) and Teutschbein and Seibert (2010) suggested a framework for

hydrological impact studies where the sources of uncertainties are ranked and summarised

as follows: choice of GCMs and emission scenario > downscaling method (i.e. RCMs) >

choice of hydrological model > parameter estimation of a hydrological model. Assessing

and combining the uncertainties from the individual sources is a major undertaking. Also

the relative importance of various sources uncertainty is not easy to assess.

The majority of hydrological impact studies are looking at uncertainties associated with

hydrological modelling and its parametrisation (Muleta and Nicklow, 2005; Jung et al.,

2012; Kienzle et al., 2012). The sources of uncertainty in hydrological modelling may
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come from model structure, from the calibration procedure, and from errors in the data

used for calibration. The parameter uncertainty may be associated with the physical basin

characteristics and its dominant processes (Brigode et al., 2013).

For UK catchments, Arnell (2011) showed that the uncertainty from different climate

models is considerably greater than the range of uncertainty from hydrological model

parametrisation. In a study of hydrological impact assessment over Canadian watersheds,

Chen et al. (2011) also showed that the choice of GCMs and emission scenarios is the

major contributor to uncertainty. Other sources of uncertainties, such as hydrological model

structure and parameter estimation, appear to be less important in hydrological impact

studies.

Given the large number of GCMs, a family of emission scenario, and different down-

scaling techniques, it is a major effort to study all possible combinations of sources of

uncertainty in one study. In addition, the choice of hydrological model and estimation of

model parameters must be considered in hydrological studies. Despite all these difficul-

ties, it has been recognized that sources of uncertainties should be taken into account in

hydrological impact studies (Teutschbein and Seibert, 2010; Chen et al., 2011).

The goal of this study is to provide a comprehensive evaluation of a CRCM through a

combined atmospheric-terrestrial water balance study along with hydrological modelling

using VIC. The study was somewhat constrained by the availability of CRCM atmospheric

datasets. We could only get a recent CRCM (4.1) simulation driven by CGCM3 (4th

ensemble member) member with the required atmospheric fields. The driving data of

CGCM3 are based on the SRES A2 scenario. The choice of a model as well as a single

scenario is a limitation of this research.
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Chapter 3

Study Area

This chapter will provide a description of the selected study area, its physiography as well

as other relevant information necessary for hydrological research. The chapter also provides

information on hydrometric and climatological data used in the study.

3.1 Churchill River Basin

Figure 3.1 shows the major drainage basins contributing to Manitoba. The Churchill River is

a major river in Saskatchewan and Manitoba. Geographically, the basin ranges from 53◦N to

60◦N latitude and from 113◦W to 95◦W longitude. Its source, located in central-east Alberta,

drains through the lowlands of Saskatchewan and Manitoba. Although the Upper Churchill

River drainage is separate from the Nelson River basin, the Churchill River contributes a

large portion (approximately 85%) of the flow through a diversion into the Nelson River at

Southern Indian Lake (Hertlein, 1999). The Nelson River drains Lake Winnipeg into Hudson

Bay. Lake Winnipeg receives water from several large river systems: the Saskatchewan

River system, the Red River system, and the Winnipeg River system.

The net flow of the Nelson River, including diversions of the Churchill River, provides

approximately 80% of the hydropower production of Manitoba Hydro. Apart from its

significance for hydro-power generation, the Churchill River basin has been selected in this
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Figure 3.1: Major drainage basins contributing to Manitoba (Reproduced with permission from Manitoba
Water Stewardship).

study because of its high-latitude location where climate change impacts are expected to be

particularly strong.

Geography and Climate

The Churchill River basin has an area of approximately 283,350 km2 and drains into Hudson

Bay via its natural outlet and via the Nelson River. It lies to the north of the Nelson

and Saskatchewan River basins, with its headwaters in east-central Alberta adjoining the

Athabasca River drainage basin on the north and west. A map of the Churchill River basin

is shown in Figure 3.2. The map also presents the delineated part of the basin used for this

study. A detailed discussion of the delineated basin above Otter Rapids (station # 06CD002)

is provided in Section 3.1.3.

Many lakes of various sizes can be found in the Churchill River basin. The river system

is made up by a series of lakes interconnected by natural channels with a gradual, mild

slope. Essentially, one lake drains into the next. Some of the major lakes in this system
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Figure 3.2: The Churchill River basin and the delineated basin above Otter Rapids (Station # 06CD002).

are Churchill Lake, Pinehouse Lake, Otter Lake, Lac La Ronge and Reindeer Lake. The

presence of interconnected lakes in the drainage systems strongly modulates the flow of the

Churchill River.

During summer months, the evaporation of the basin area is relatively high due to open

water evaporation from lakes and wetlands. The basin outflow is attenuated due to the

significant lake storage. The attenuation applies to peak flow as well as low flows. The

majority of flow originates as snowmelt in May, reaches a maximum in July, and gradually

recedes to a relatively constant flow, maintained in part by the existence of lakes.

The average annual accumulated precipitation of the Churchill River basin is approx-

imately 440 mm. The mean annual average temperature of the basin is below 0◦C. The

average precipitation and temperature data are calculated from the thirty-year data series of

selected weather stations. A list of stations as well as a map of station locations are given

in Section 3.1.1. The basin area is dominated by long cold winter and short mild summer.

Therefore, most of the basin area is underlaid with continuous or discontinuous permafrost.
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Its headwaters are in the interior plains of east-central Alberta and in the Boreal Plains and

Boreal Shield of west-central Saskatchewan.

There are two major dams in the Churchill River as part of the diversion project. The

diversion project began operation in 1977, allowing Manitoba Hydro to divert water into the

Nelson River system at South Indian Lake. This study will mainly focus on the basin area

upstream of the diversion project in order to avoid the highly regulated portion of the basin.

3.1.1 Climatological Data

The climatological data used in this research were obtained from Environment Canada’s data

archives. These data can be accessed on-line through Environment Canada’s web portal1.

Daily precipitation and temperature data series, two essential inputs of a hydrological model,

were retrieved from the data archives. Thirty weather stations were used to derive observed

gridded data series for hydrological simulations. These stations were selected based on

their geographic location as well as the length of the daily data series. The distribution of

these stations is shown in Figure 3.3. Stations in the Alberta portion of the basin are well

distributed. Over Manitoba, the station distribution is sparse and most stations are located in

the southern part of the basin. These stations all have thirty years of continuous record for

the study period (1976-2005). A list of selected weather stations is provided in Table 3.1

showing their geographic location and record length.

3.1.2 Hydrometric Data

The Water Survey of Canada (WSC)2 provided the streamflow data. The selection of flow

data was a function of the availability and the quality of the data. Many northern gauging

stations are seasonal, measuring only periodic flow in order to satisfy a specific requirement.

Flow series should be long enough for validation and calibration of a hydrological model. A

1 http://climate.weatheroffice.ec.gc.ca, accessed June 19, 2012.
2 http://www.wsc.ec.gc.ca/applications/H2O/index-eng.cfm. Accessed June 19, 2012.
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Table 3.1: Environment Canada’s weather stations used in the study.

Station Station name Latitude Longitude Elev. Record length
ID (N) (W) (m) (YYYY-MM-DD)

3010234 Andrew 54.02◦ -112.23◦ 610.0 19730601 20080627
3015672 ST Lina 54.30◦ -111.45◦ 632.5 19700501 20080402
3061800 Conklin LO 55.62◦ -111.18◦ 670.6 19540501 20080627
3061930 Cowper LO 55.83◦ -110.38◦ 563.3 19570501 20080627
3062889 Gordon Lake LO 56.62◦ -110.50◦ 515.0 19640401 20080627
3063120 Heart Lake LO 55.00◦ -111.33◦ 887.0 19470701 20080627
3063685 Lac La Biche (AUT) 54.77◦ -112.02◦ 567.0 19581001 20030929
3065305 Primrose LO 54.75◦ -110.05◦ 678.2 19670601 20080627
3065710 Sand River LO 54.65◦ -110.98◦ 731.5 19570401 20080627
3067590 Winfered LO 55.33◦ -110.20◦ 743.7 19570401 20080627
3081680 Cold Lake A 54.42◦ -110.28◦ 541.0 19521101 20080627
4041000 Butte St Pierre 53.45◦ -109.20◦ 571.5 19550501 20080627
4043246 Hillmond 53.43◦ -109.72◦ 587.0 19700601 20080627
4060620 Big River 53.83◦ -107.03◦ 502.9 19561001 20031030
4063560 Island Falls 55.53◦ -102.35◦ 299.3 19290901 20051003
4063755 Key Lake 57.25◦ -105.62◦ 509.0 19761001 20080627
4064150 La Ronge A 55.15◦ -105.27◦ 378.6 19590601 20040714
4064600 Loon Lake CDA 54.05◦ -109.10◦ 542.8 19510101 20080627
4065058 Medow Lake A 54.13◦ -108.52◦ 480.4 19770801 20080605
4065710 Otter Rapids 55.65◦ -104.73◦ 358.0 19641001 20080627
4068840 Whitesand Dam 56.23◦ -103.15◦ 344.0 19380101 20061213
5050920 Flin Flon 54.77◦ -101.88◦ 320.0 19270101 20080627
5050960 Flin Flon A 54.68◦ -101.68◦ 303.9 19681201 20080627
5060520 Brochet A 57.88◦ -101.68◦ 346.3 19480801 20080627
5061646 Lynn Lake A 56.86◦ -101.08◦ 356.6 19680801 20050606
3013770 Lavoy 53.53◦ -111.87◦ 670.0 19580801 20080627
4048520 Waseka 53.13◦ -109.40◦ 638.0 19070701 20080627
4056240 Prince Albert A 53.22◦ -105.67◦ 428.2 19421201 20021211
4075518 Nipawin A 53.33◦ -104.00◦ 371.9 19730801 20050901
5062922 Thompson A 55.80◦ -97.86◦ 223.1 19670401 20080627
3066160 Stoney Mount. LO 56.38◦ -111.23◦ 762.0 19540501 20080627
3065560 Round Hill LO 55.30◦ -111.98◦ 749.8 19510701 20080627
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Figure 3.3: Location of weather stations within and around the Churchill River Basin.

list of twelve hydrometric stations located in the Churchill River basin is provided in Table

3.2. A map showing the geographic locations of the WSC gauge stations is provided in

Figure 3.4. The gauge stations are fairly well spread across the basin. The downstream part

of the Churchill River basin below Otter Rapids (station # 06CD002) is highly regulated.

The flow station at Otter Rapids is unregulated and has more than forty years of data which

is reasonable for hydrological modelling.

3.1.3 The Basin above Otter Rapids

Figure 3.5 shows the delineated basin above the Otter Rapids hydrometric station (#

06CD002). The digital elevation model (DEM) used in this study is from the USGS

HYDRO1K. The location of three southern study areas (SSA) from BOREAS is also shown

on the map as these data are used for model evaluation (see Chapter 7).

Figure 3.6 shows the land cover classification map of the basin. The land cover classes

were derived from the University of Maryland’s 1km global land cover dataset. The land
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Table 3.2: Location of hydrometric gauging stations within the Churchill River Basin.

Station Station Name (Provincea) Lat. Long. Record Flow
ID (N) (W) length (yr) type

06AD001 Beaver river near Dorintosh (SK) 54.3◦ 108.6◦ 24(1972-1995) Natural
06AF005 Waterhen river near Goodsoil

(SK)
54.4◦ 109.2◦ 31(1969-1995) Natural

06AG001 Beaver river below waterhen
river (SK)

54.8◦ 107.8◦ 25(1971-1995) Natural

06BB003 Churchill river near Patuanak
(SK)

55.9◦ 107.7◦ 23(1972-1994) Natural

06CD002 Churchill River above Otter
Rapids (SK)

55.6◦ 104.7◦ 43(1963-2005) Natural

06DC001 Wathaman river below wathaman
lake (SK)

57.1◦ 103.7◦ 35(1971-2005) Natural

06DA002 Cochrane river near brochet
(MB)

58.0◦ 101.4◦ 29(1975-2005) Natural

06DD002 Reindeer river above Devil
Rapids (SK)

56.2◦ 103.1◦ 21(1985-2005) Regulated

06EA002 Churchill river at Sandy Bay
(SK)

55.5◦ 102.3◦ 78(1928-2005) Regulated

06EA006 Churchill river above Granville
falls (MB)

56.1◦ 100.4◦ 60(1951-2005) Regulated

06EB004 Churchill river above Leaf
Rapids (MB)

56.5◦ 100.0◦ 33(1973-2005) Regulated

06EC002 South bay diversion channel at
South bay (MB)

56.6◦ 99.0◦ 13(1993-2005) Regulated

aSK = Saskatchewan, and MB = Manitoba
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cover of the basin is diverse. The headwaters of the basin are in the interior plains of east-

central Alberta, and in the Boreal Plains and Boreal Shield of west-central Saskatchewan.

The South-western portion of the basin is dominated by cropland and mixed cover. The

grassland and deciduous trees are found at the headwaters of the basin and are typical in

the Boreal plains. The wetlands and coniferous (evergreen needle-leaf) forest dominate

the basin over the Boreal shield from the middle section to the north-eastern outlet of the

delineated basin.

The flow of water (overland and subsurface) generally depends on the land cover class

and retention time varies based on the physical characteristics of the vegetation. The soil

type also plays an important role in the movement of water. Soil permeability varies based

on landform (bedrock), organic matter accumulation, and vegetation cover. The Boreal

shield is composed of bedrock with shallow top soil deposits and the Boreal plains, formed

by glacial deposits, consists of a fairly deep layer of soil. Permeability is generally higher in

the Boreal plain than in the Boreal shield. Low permeability soils increase the potential for

lateral flow by limiting vertical flow.

Apart from hydrological modelling, this research also aims to perform an evaluation

of regional hydrology using the combined atmospheric-terrestrial water balance approach

presented in Chapter 5. The accuracy of atmospheric water-balance computations depends on

the size of the selected basin. The critical size for atmospheric water-balance computations

is in the order of 105 km2 (Abdulla et al., 1996; Berbery and Rasmusson, 1999; Hirschi

et al., 2006). The basin above the Otter Rapids is approximately 112,000 km2 which meets

the critical size requirement. Therefore, the Churchill River basin above Otter Rapids is

selected for this study.
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Figure 3.6: Land cover classification of the Churchill River basin above Otter Rapids (station # 06CD002).
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Chapter 4

The Canadian Regional Climate Model

4.1 Description of the CRCM

The CRCM is a limited-area regional climate model developed at Université du Québec

à Montréal (UQAM). The CRCM simulations are performed using GCM output or atmo-

spheric reanalysis as driving data through its lateral boundary. The initial conditions are

also taken from a GCM or reanalysis. At the boundary of the domain the CRCM blends

the input fields received from the GCMs through one-way nesting. Beyond the blending

zone, the variables of the CRCM evolve freely and are not affected by the inputs from the

GCM. The CRCM produces finer resolution variables that are suitable for regional studies.

Many aspects relevant to hydrology are better represented in the CRCM than in the driving

GCM. The vertical grid of the model follows the terrain with 29 vertical levels. The model’s

horizontal grid resolution is 45 km at polar-stereographic projection. The CRCM covers

North America with 201×193 grid points. The North-American domain of the CRCM is

shown in Figure 4.1. A detailed description of the model can be found in Caya and Laprise

(1999) and Plummer et al. (2006).
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Figure 4.1: The North-American domain of the CRCM. This figure is reproduced from the Data Access
Integration (DAI) site.

4.1.1 CRCM versions

The earlier CRCM (version 3.6) utilized the physical parametrization package of the second

generation CGCM2. The CRCM 3.7 used a modified set of physical parametrization of

CGCM2 compared to version 3.6, where bucket representation of soil was updated to address

summer time surface fluxes (Plummer et al., 2006).

The CRCM version 4 (and newer) offers a major improvement over earlier versions

(Braun et al., 2012). Earlier versions of the CRCM used a simple force-restore land surface

scheme. The CRCM version 4 is coupled with the Canadian LAnd Surface Scheme (CLASS)

(Verseghy, 2000; Verseghy et al., 1993; Verseghy, 1991). The physical parametrization of

CRCM version 4 is based on the CGCM3 package. The latest CRCM, version 4.2, provides

a more realistic representation of water and energy exchange between the land surface

and atmosphere by using the CLASS. The CLASS includes three soil layers and treats the

vegetation canopy based on four vegetation types (coniferous, deciduous, crops, and grass).
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An overview of the CLASS scheme used in the CRCM is presented in Music et al. (2009).

4.1.2 CRCM scenarios

The emission scenarios prescribed in the Special Report on Emissions Scenarios (SRES)

are possible future states of the world. These scenarios were determined by assumed

climate driving forces such as demographic development, socio-economic development, and

technological change. Climate driving forces are grouped to form the four main families

(A1,A2,B1,B2) of scenarios, and a total of 40 different scenarios across the four families

have been constructed.

The CRCM uses CGCM driving data at the boundary. The scenario of a CRCM is

inherited by the CGCM driving data. The CGCMs have been used to produce climate

change projections using different scenarios. The CRCM 3.7 simulations used in this study

are performed using the CGCM2 with the A2 scenario as forcing. The CRCM 4 (and newer)

simulations used in this study were driven by CGCM3 following the A2 scenario.

The A2 scenario is at the higher end (albeit not the highest) of the SRES scenario

family. Presently the available CRCM simulations are based on the A2 scenario only. The

North American Regional Climate Change Program (NARCCAP) adopted the A2 emission

scenario from an impact and adaptation perspective. The NARCCAP provided justification

for selecting the higher end emission scenario because if the impacts from a higher emission

scenario can be adapted to, then the impacts from a lower emission scenario can also

be adapted to. A low emission scenario provides less information from an impact and

adaptation point of view. Considering the above rationale, the selection of the A2 scenario

in this research is justified.

4.1.3 Selected CRCM Simulations

The CRCM climate simulations employed in this study used observed greenhouse gas and

aerosol (GHG+A) for the present climate and the A2 scenario GHG+A for the future climate.
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Table 4.1: List of the CRCM experiments used in this study.

Expe- Model Driving Atmos. GHG+A Start End
rimenta Version Ocean Data Evolution Time Time

abf 3.7.1 NCEP and AMIP II - 1960-12 1990-12
ade 4.1.1 NCEP and AMIP V - 1960-12 2005-05
adj 4.2.0 CGCM3 4th member (6h) Obs +SRES A2 1960-12 2050-12
adk 4.2.0 CGCM3 4th member (6h) SRES A2 2040-12 2070-12

aThe climate simulations of ‘adj’ and ‘adk’ are the most recent (as of December 3, 2012) dataset available
to date through the Ouranous consortium.

The CRCM simulations were driven by the 4th ensemble member of the CGCM3. The earlier

version of CRCM (3.7) simulations used in this study are driven by the global re-analysis

dataset from the National Centers for Environmental Prediction (NCEP) as boundary forcing

and ocean data (i.e., sea surface temperature and sea-ice) provided by the Atmospheric

Model Intercomparison Project (AMIP) II/V. A list of the CRCM simulations used in this

research are provided in Table 4.1.

Averages of 30-year time slices provide more effective representation of the climate

scenarios than a shorter period (IPCC, 2007b). Differences between emission scenarios

become more important with time into the future, for example the 2050’s versus the 2030’s

(Merritt et al., 2006). From the perspective of developing management practices, the time

slice from the near future (2030’s) may be of most practical interest. Therefore, in this

research, two future time slices of CRCM simulations were taken into consideration: the

near future time slice of the 2030s (2020-2049), and the distant future time slice of the 2050s

(2041-2070). A thirty-year climate between 1976 to 2005 is considered as baseline climate.
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Chapter 5

Evaluation of Regional Hydrology using

a Canadian Regional Climate Model

5.1 Introduction

Understanding the hydrology of a region is essential for the development and utilization of

water resources. Knowing various hydrological cycle processes and associated feedbacks

contributes to our understanding of long term change in the climate system. Climate models

are powerful tools to simulate complex interactions of climatic systems, especially with the

improved representation of land surface components of the hydrological cycle (McGuffie

and Henderson-Sellers, 2001). Regional climate models are capable of multiple nesting

using global climate model data at the boundaries (Rummukainen et al., 2001). These

regional climate models can resolve fine-scale surface features of topography and land

surface. Regional climate models can be useful in climate change impact studies in which

regional hydrological assessment is a key concern.

The atmospheric-based water balance is often used to evaluate watershed storage change,

land-atmosphere interactions, groundwater recharges, and drought events. The moisture

change in a large region is determined by calculating the moisture flux across the boundaries
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of a region. The inflow and outflow of moisture over a region is calculated by estimating

whether water is being added to or removed from the atmosphere by means of evaporation

and precipitation. Several studies investigated this technique in order to derive evaporation

minus precipitation from a closed atmospheric region such as a river basin (Walsh et al.,

1994; Strong et al., 2002). In the terrestrial-based water balance, the water is being added to

and removed from a bounded region, typically a river basin, by means of precipitation and

evaporation. The precipitation minus evaporation is equivalent to the surface and subsurface

storage change plus the outflow from the bounded region. The process of precipitation

minus evaporation acts as a linkage between the atmospheric and terrestrial water balances.

By estimating the precipitation minus evaporation from the atmospheric-based water

balance technique and then coupling this estimate with the measured streamflow at the

outlet of the basin, one can estimate the basin total water storage. Similarly, the basin total

water storage can be estimated from the traditional hydrological models using precipitation

as an input to the model; and runoff, either estimated from the model or measured at the

outlet of the basin, as output. Evaporation is calculated by the model. For data sparse

areas where calibration and validation of a hydrological model is difficult, the combined

atmospheric-terrestrial water budget technique would provide an estimate of the storage

change of a basin. Two independent techniques for estimating the basin total storage

would provide a basis for comparison as well as help to better understand the mechanisms

associated with the hydrological cycle and the water balance of a basin. In the present

research, the Canadian Regional Climate Model (CRCM) coupled with the Canadian Land

Surface Scheme (CLASS) is used to evaluate the combined atmospheric-terrestrial water

budget technique. The comparison of the basin total water storage estimated from these two

independent techniques would help to better understand the mechanisms associated with the

hydrological cycle and the water balance of a basin. The following sections in this chapter

will present a detailed review of the coupled water budget technique over the Churchill River

Basin. In the later chapter, the second approach using a hydrology model will be presented.
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The CRCM is validated using its water budget components through observations over

the Churchill River Basin (CRB). The observation data includes climatological data from

weather stations, gauge station data, gridded CANGRID data, and the North American

Regional Re-analysis (NARR) data. A short description of CANGRID and NARR data is

presented in the following section of this chapter.

5.2 Literature Review

Atmospheric and terrestrial water balance estimates with acceptable accuracy are funda-

mental for understanding the hydrological cycle. The Global Energy and Water Cycle

Experiment (GEWEX) is an international effort focusing on understanding energy and

water cycle within the climate system, initiated by the World Climate Research Programme

(WCRP). The focus of Canada’s contribution to GEWEX is the Mackenzie River basin

(MAGS)(Stewart et al., 1998). The objectives of MAGS was to understand and model

the high latitude water and energy cycles as well as to improve the ability to assess the

changes to Canada’s water resources (Stewart, 2002). MAGS provided a comprehensive

description of water and energy budgets by summarizing the estimates of several models as

well as data from global and regional re-analysis. The MAGS concluded that despite some

agreement between the modelled and observed water budget components, many quantitative

uncertainties remains. Many authors have undertaken energy and water budget studies

dealing with these uncertainties (Berbery and Rasmusson, 1999; Roads and Betts, 2000; Ek

et al., 2003; Szeto et al., 2007). These studies contribute to our present understanding of the

improvements that are necessary in the models as well as in reanalysis products to describe

the hydrological cycle process.

With the recent development of remote sensing techniques, researchers are using radar

or satellite remote sensing data to estimate water budget components for large spatial scale

studies. These recent developments substitute traditional methods of estimating the water

32



budget using observed data at the ground surface; however, there are still shortcomings

of these estimates. On the other hand, water balance estimation for large basins using

atmospheric data only is becoming easier to apply than before due to the availability of high

resolution atmospheric data (Oki et al., 1995).

Elguindi et al. (2011) evaluate the ability of a GCM to estimate hydrological budget

components (precipitation minus evaporation and runoff) over the Mediterranean, Black and

Caspian sea basins. Their results suggest that high resolution global models, or downscaling

models such as regional climate models (RCMs) are necessary in order to assess the climate

change impact in the hydrological components of these basins.

Bresson and Laprise (2011) investigated a scale-decomposed atmospheric water budget

over North America as simulated by CRCM for current and future climates. The contribution

of water budget on each scale, as well as its change in a warmer climate was investigated.

In both the current atmospheric water budget climatology or its projected evolution, small

scales appeared to contribute significantly. These studies (Brochu and Laprise, 2007; Music

and Caya, 2009; Bresson and Laprise, 2011) demonstrate that great progress has been made

in the area of nested high-resolution regional climate models (RCMs). The final quality of

the results from the nested RCMs depends in part on the large-scale forcing as well as the

parametrization of sub-grid scale processes.

Strong et al. (2002) performed a comparison of land surface water budget with the

atmospheric based water budget over the Mackenzie basin. This study used WATFLOOD to

estimate changes in surface storage. The result demonstrated a monthly water budget deemed

to be within acceptable accuracy. These results show significant advancement compared

to previous studies. The limitations identified in Strong et al. (2002) were attributed to

poor spatial and temporal resolution of atmospheric data. Further studies are required using

higher spatial resolution data along with an inter-comparison with independently measured

or estimated data from a hydrological model.
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5.3 Methodology

The Canadian Regional Climate Model (CRCM) is a logical choice for regional hydrological

analysis of Canadian watersheds. However, one should first evaluate the output for the

purpose for which the model is being used. The test should demonstrate that the CRCM

simulations are consistent with the theory and physical understanding of the processes

involved.

Recent CRCM versions are coupled with a sophisticated land surface scheme. The

improved land surface parametrization provides realistic representations of water and energy

exchange between the land surface and the atmosphere. The skill of the CRCM depends

also on the driving data that generally comes from a global model. Therefore, the CRCM

simulations will vary as a function of the model version and the forcing data (Music and

Caya, 2009).

In the present thesis, a simple test on precipitation, and temperature from two CRCM

model versions have been carried out to investigate whether the use of a sophisticated

multi-layer land surface scheme improves the CRCM simulation.

A comprehensive CRCM evaluation of the chosen model has been performed on selected

variables. A combined atmospheric and terrestrial water budget technique is used to estimate

the components of hydrological cycle. Detailed validation methodologies are presented

later in this section. The validation of the hydrological cycle components takes into account

the available observations. In this thesis, in situations where direct observations are not

available, data from the North American Regional Reanalysis have been used as quasi-

observed. Surface flux measurements are useful for model evaluations but they are difficult

to obtain from dependable sources. Attempts have been made to test these variables using

quasi-observed data as well as satellite remote sensing data.
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Figure 5.1: Schematic representation of the combined atmospheric and terrestrial water balance.

5.3.1 Water Budget Equations

This section presents a brief overview of the atmospheric, terrestrial, and combined water

budget equations along with some explanation of their assumptions and applications in this

research. For a given river basin, the terrestrial water budget equation can be written as

{
∂S

∂t

}
= −

{
R
}

+
{
P − E

}
(5.1)

where S (kg m−2) represents the terrestrial water storage of the given basin, R (kg m−2s−1)

represents the streamflow (assumed to include both surface and the groundwater runoff of

the basin), P (kg m−2s−1) represents the basin precipitation, and E (kg m−2s−1) represents

the basin evapotranspiration. The overbar denotes a temporal average (i.e., monthly means)

and {} denotes a spatial average over the basin.

Neglecting the contribution of the liquid and solid water storage in clouds, the atmo-
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spheric water budget equation of the same area can be expressed as

{
∂W

∂t

}
= −

{
∇H ·Q

}
−
{
P − E

}
(5.2)

where W (kg m−2) represents the precipitable water in the atmosphere, which means the

amount of water in vapour form that would precipitate if it condensed over the region;

the operator (∇H ·) represents the horizontal divergence, and Q is the vertically integrated

horizontal vapour flux.

Q =
1

g

∫ pt

ps

qVdp (5.3)

where ps is the surface pressure, pt is the pressure at the top of the atmosphere considered,

q is the specific humidity, V is the horizontal velocity vector, and g is the gravitational

acceleration constant. The horizontal velocity vector can be expressed as

V = u~i+ v~j (5.4)

where u and v are the eastward and northward wind components, respectively.

The term
{
P − E

}
is common for Equations (5.1) and (5.2), which establish the

connection between the terrestrial and atmospheric branches of the hydrology cycle. A

schematic representation of the connection between the terrestrial and atmospheric water

balance is shown in Figure 5.1. Eliminating the term
{
P − E

}
between these two equations,

a combined equation can obtained as

−
{
∂W

∂t

}
−
{
∇H ·Q

}
=

{
∂S

∂t

}
+
{
R
}

(5.5)

A comprehensive review of these classic equations of water budget is presented in Peixoto

and Oort (1992, Chapter 12). The terrestrial storage change {∂S/∂t} can be expressed as

the sum of three terms: the atmospheric storage change {∂W/∂t}, the horizontal moisture
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divergence {∇H ·Q}, and stream flow
{
R
}

. The term {∂W/∂t} can be neglected for

long-term average (i.e., multi-year average) but can not be neglected for monthly averages

as this term can be large for spring and fall (Rasmusson, 1968).

The accuracy of atmospheric water-balance computations using water vapour flux con-

vergence depends on the size of the selected basin. The critical size for atmospheric

water-balance computations using high-resolution data (e.g., a grid resolution of 45 km for

CRCM) is in the order of 105 km2 (Abdulla et al., 1996; Berbery and Rasmusson, 1999;

Hirschi et al., 2006). The Churchill River Basin above the Otter Rapids is approximately

112,000 km2 which meets the critical size requirement.

5.3.2 Validation approach

An integrated analysis approach is used to validate the CRCM hydrological cycle. The

combined terrestrial and atmospheric water balance equations have been used to estimate

components of the hydrological cycle that are not directly observed. The validation ap-

proach involves long term time averages (annual means and annual cycle) of the equation

components, spatially averaged over the upper Churchill River Basin above Otter Rapids.

The terrestrial water budget in Equation (5.1) can be simplified by taking the time and

spatial average for a multi-year period and over the entire basin. This results in

{
R
}

=
{
P
}
−
{
E
}

(5.6)

where {∂S/∂t} is neglected as this term tends to zero when averaged over multi-year periods.

Similarly, the atmospheric water budget in Equation (5.2) can be simplified as

{
∇H ·Q

}
= −

{
P
}
−
{
E
}

(5.7)

where {∂W/∂t} is neglected as this term tends to zero when averaged over a large basin

for a multi-year period of time. In order to validate Equations 5.6 and 5.7, observed data
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are required. Observed precipitation data for the basin
{
P
}
obs

can be obtained from the

Canadian gridded homogenized dataset (CANGRID). Mean annual runoff
{
R
}
obs

data for

the CRB can be obtained from HYDAT.

Evaporation data are difficult to obtain at the regional scale. In order to validate the

model evaporation in this study,
{
E
}
quasi−obs is calculated by rearranging Equation 5.6 as

follows

{
E
}
quasi−obs =

{
P
}
obs
−
{
R
}
obs

(5.8)

Also, the time and space averaged evaporation
{
E
}
NARR

can be derived from the North

American Regional Reanalysis (NARR) dataset. The NARR is a reanalysis dataset as-

similated with observations. The atmospheric moisture convergence
{
∇H ·Q

}
CRCM

de-

rived from the CRCM over the basin can be compared with the moisture convergence{
∇H ·Q

}
NARR

calculated from the NARR.

The terrestrial and atmospheric storage terms {∂S/∂t} and {∂W/∂t} neglected for multi-

year means cannot be neglected for annual cycle validation. Quasi-observed evaporation

can be calculated using the atmospheric water balance Equation (5.2) as shown below

{
E
}
quasi−obs =

{
∂W

∂t

}
NARR

+
{
∇H ·Q

}
NARR

+
{
P
}
obs

(5.9)

Similarly, quasi-observed terrestrial storage change can be calculated from the combined

Equation 5.5 as follows

{
∂S

∂t

}
quasi−obs

= −
{
∂W

∂t

}
NARR

−
{
∇H ·Q

}
NARR

−
{
R
}
obs

(5.10)

5.3.3 Validation datasets

For climate model evaluation, a gridded dataset is preferred, as gridding helps homogeniza-

tion for irregular station distribution (New et al., 2000). The homogenized precipitation and

38



temperature data from the Canadian gridded datasets (CANGRID) are used as observed

data. The North American Regional Reanalysis (NARR) dataset is also used in this study.

The reanalysis data is a good source of information since they are derived from observed

assimilated data. A brief description of CANGRID and NARR data is provided below.

CANGRID data

The Canadian gridded data sets (CANGRID) offers monthly temperature and precipitation

data from the Climate Research Branch of Environment Canada. The dataset covers Canada

with a horizontal grid resolution of 50 km at the polar stereographic projection. The dataset

passed through different quality control processes. The temperature time series are adjusted

and homogenized using neighbouring stations (Vincent and Gullett, 1999). The precipitation

data series are corrected in order to remove systematic biases induced by observation system

change as well as for station re-location. Also, the precipitation series are adjusted for

gauge catch for wind induced errors, wetting loss, and evaporation (Metcalfe et al., 1997).

Therefore, corrected precipitation series are representing true precipitation amount (Mekis

and Hogg, 1999; Vincent and Mekis, 2006). The gridded representation of CANGRID may

be different from other gridded dataset due to the interpolation technique employed for

gridding. The precipitation amount may also vary from other dataset as the difference in

computation of the precipitation during rehabilitation process.

North American Regional Reanalysis (NARR)

The NARR is a high-resolution climate dataset for North America. The dataset covers North

America with a 32 km spatial resolution in 45 vertical layers. The NARR is an assimilation

of meteorological observations into the atmospheric analysis. The NARR is a follow-up

of the NCEP global re-analysis which appears to be a major improvement upon the earlier

global reanalysis in terms of resolution and accuracy (Ruiz-Barradas and Nigam, 2006;

Mesinger et al., 2006).
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The NARR data have been evaluated and applied by a few studies. Choi et al. (2009)

used NARR data for hydrological modelling of selected watersheds in northern Manitoba.

The study suggests that the Semi-distributed Land Use based Runoff Process hydrological

model (SLURP) can be adequately calibrated with NARR data and used for modelling

hydrological processes in data sparse areas. Woo and Thorne (2006) applied NARR data

for modelling western Canada basins using SLURP and showed that the model produced

reasonable output. A similar conclusion has been drawn by Keshta and Elshorbagy (2010)

for a northern Alberta watershed. Considering these research recommendations, the NARR

data have been used in validating CRCM atmospheric water budget and have also been used

in a later chapter to validate the hydrological model output from VIC.

5.4 Results

Compared to previous model versions, the CRCM 4.0 or later provides a more realistic

representation of water budget components by including the CLASS (Music and Caya,

2007). In order to evaluate the performance of the CRCM with or without CLASS, a

simple test has been carried out on two selected CRCM versions. Two CRCM simulations,

‘abf’ using version 3.7.1. and ‘ade’ using version 4.1.1, were considered, using identical

large-scale boundary forcing, more specifically the global reanalysis dataset from National

Centers for Environmental Prediction. Model version 3.7.1 uses a simple Manabe-based

(Manabe et al., 1965) land surface scheme and version 4.1.1 is coupled with CLASS version

2.7 (Verseghy, 2000). The length of simulation in the experiment ‘abf’ is 1960 to 1990 and

in the ‘ade’ is 1960 to 2005. Five years of data 1986 to 1990 have been selected for the

comparison. Outputs from the regional models driven by the reanalysis (assimilated) data

set are expected to be a real representation of the present climate where the model will add

further detail to the driving data to produce finer resolution output.

Two variables, precipitation and temperature, have been extracted and spatially averaged
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Figure 5.2: Two CRCM simulations compared with observed CANGRID. The simulation ‘abf’ uses model
version 3.7.1 with simple land surface scheme and the simulation ‘ade’ uses version 4.1.1, which is coupled
with CLASS. The top figure shows monthly precipitation averaged over the CRB; the middle figure shows
maximum temperature ◦C and the bottom figure shows minimum temperature ◦C averaged over the CRB.
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over the CRB domain to compare monthly time series. Observed precipitation and tempera-

ture data from CANGRID over the same domain for the same period have been extracted for

comparison. Figure 5.2 shows a plot of two CRCM time series with observed CANGRID

over the same domain. The precipitation time series (Figure 5.2 in top) shows a noticeable

overestimation in experiment ‘abf’ compared to CANGRID, whereas the precipitation from

experiment ‘ade’ is in close agreement with CANGRID with some minor overestimation in

late summer (July-August). A similar tendency of precipitation overestimation in the CRCM

3.7 was also found by Music and Caya (2007). The researchers concluded that improvement

of the boundary layer mixing in the land surface scheme enhanced the CRCM results, a fact

that is noticeable in the precipitation of the experiment ‘ade’. One can conclude from Figure

5.2 that the inclusion of a sophisticated land surface scheme in the CRCM 4.1 does produce

a significant improvement in precipitation. The time series of temperature (maximum and

minimum) shown in Figure 5.2 (in the middle and in the bottom) also show improvement

with the use of CLASS. Based on the comparison, it can be concluded that CRCM 4.1 with

CLASS performs better in simulating precipitation, and hence was selected for this study.

A further comparison of CRCM simulation ‘ade’ with observed CANGRID for 1999 -

2004 is shown in Figure 5.3. The monthly time series again show a good agreement with the

CANGRID precipitation. Table 5.1 shows monthly precipitation and the difference between

CRCM ‘ade’ and CANGRID. The monthly time series shows an acceptable agreement

with CANGRID precipitation (mean annual precipitation is overestimated by 1.8 %). The

correlation coefficient and RMSE found between the two series are 0.91 and 8.49 mm,

respectively. The highest difference of CRCM minus CANGRID precipitation of 10.6 mm

exhibits during early summer for the month of June. This deviation could be a limitation of

the model’s surface processes where convection is poorly handled. Many researchers have

concluded that simulations for summer are more locally controlled than for other seasons

(Caya and Biner, 2004). Fowler and Kilsby (2007) also suggested a seasonal bias correction

in the RCM. Even with the improvements in CRCM 4.1.1, a seasonal bias correction should
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Figure 5.3: Monthly precipitation time series of the CRCM 4.1.1 from the simulation ‘ade’ compared with the
observed CANGRID precipitation over the CRB shown in the top. The correlation coefficient and RMSE found
between two series are 0.91 and 8.49 mm respectively. Annual cycle of the CRCM precipitation compared
with the observed CANGRID shown in the middle. A scatter plot of CRCM monthly precipitation vs observed
CANGRID is presented in the bottom.
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Table 5.1: Comparison of CRCM 4.1.1 and CANGRID precipitation time series (1999-2004) averaged over
the CRB.

Months CRCM CANGRID CRCM - CANGRID
Precip (mm) Precip (mm) (mm)

January 17.8 20.1 -2.2
February 13.2 17.0 -3.8
March 22.4 21.7 0.7
April 24.2 26.4 -2.2
May 48.3 45.2 3.1
June 66.7 56.0 10.6
July 76.9 74.3 2.5
August 52.3 51.7 0.6
September 41.3 48.2 -6.9
October 27.5 23.9 3.6
November 22.0 17.5 4.4
December 21.0 23.7 -2.7
Annual 434.1 426.2 7.8

be applied to precipitation before using the CRCM data in hydrological models. Bias

correction will be discussed in Chapter 6.

5.4.1 NARR water budget components

The North American Regional Reanalysis (NARR) dataset has been used to validate the

CRCM model data. Choi et al. (2009) used the NARR for hydrological modelling in the data

sparse Northern Manitoba. The study provides a detailed comparison of NARR precipitation

and temperature with NCEP-NCAR1 Global Reanalysis - 1 (NNGR) and station data, as the

researchers used these two variables as input to the hydrological model. A couple of other

studies (Nigam and Ruiz-Barradas, 2006; Woo and Thorne, 2006) also evaluated NARR

data from a similar perspective. In this section, we consider the atmospheric datasets from

NARR rather than surface variables. The aim is to validate the vertical integrated moisture

convergence and precipitable water calculated from the atmospheric variables of NARR.

Components of the atmospheric water budget (Equation 5.2) can be derived from

NARR’s atmospheric datasets. Specifically, {∇H ·Q + ∂W/∂t}NARR should be equal to

1The National Center for Environmental Prediction (NCEP) - National Center for Atmospheric Research
(NCAR)
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Figure 5.4: Monthly time series of NARR {∇H ·Q+∂W/∂t} compared with precipitation minus evaporation
over the CRB shown in the top. The correlation coefficient and RMSE found between the two series are 0.74
and 18.45 mm/month respectively. Annual cycle of the same two series is presented in bottom.
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Figure 5.5: Cumulative {∇H ·Q} of NARR is compared with observed outflow of the CRB at the Otter
Rapids (Station # 06CD002). The difference shows from the cumulative plot is 17.83 mm/year

evaporation minus precipitation calculated from NARR over the CRB. Figure 5.4 (top) shows

components of the atmospheric water budget equation. It can be seen that the two time series

agree fairly well except for some years. The correlation coefficient and RMSE between the

two series are 0.74 and 18.45 mm/month, respectively. Figure 5.4 (bottom) shows the annual

cycle of {∇H ·Q + ∂W/∂t} along with the E − P ; E − P exceeds {∇H ·Q + ∂W/∂t}

in almost all months of the year except November, December and January. It is apparent

here that there is a budget closure error in the model. This shortcoming could be related to

the surface scheme’s partitioning of moisture. In order to further explain the atmospheric

water budget closure, calculated moisture divergence {∇H ·Q} is compared with observed

outflow of the basin for a long-term basis.

From the combined atmospheric and terrestrial water budget in Equation 5.5, we can

conclude that the moisture divergence term {∇H ·Q}NARR should be equal to the outflow

(Robs) of the basin considering that the two terms {∂W/∂t} and {∂S/∂t} are negligible

over a long period. Figure 5.5 shows the cumulative plot of moisture divergence calculated

over the CRB and the observed outflow of the basin. Both cumulative plots show the

overall trend. The CRB basin is a Prairie wetland and works as a flow-through system
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Pond 25 at 106oW 52oN

Figure 5.6: Cumulative storage (sub-surface and surface) change {∂S/∂t} of NARR is compared with
observed pond level 25 at St. Denis wildlife area. The Pond 25 is located at 106◦W 52◦N) and the center of
the watershed is at 107◦W 54◦N.

(LaBaugh et al., 1998). The cumulative outflow plot in Figure 5.5 shows a fairly smooth

line. The mean annual difference from the cumulative plot is 17.8 mm/year. The effects of

dryness and wetness within the basin is dampened in the cumulative outflow plot which

can be seen during 1995 to 1999. The cumulative atmospheric moisture divergence plot is

providing episodes of dryness and wetness of the basin. It is known that this area suffered

severe drought during 2001/2002 (Bonsal and Regier, 2007; Hanesiak et al., 2011). The

atmospheric moisture divergence indicates a drought signal for these years.

The NARR atmospheric data has been used to calculate components of Equation 5.10.

The cumulative {∂S/∂t} is the storage change which is compared with the pond level data2

shown in Figure 5.6 (bottom) published in Conly and van-der Kamp (2001) and Spence

(2007). The Pond 25 is located (106◦W 52◦N) at the St Denis National Wildlife (SDNW)

area and the center of the CRB watershed is 107◦W 54◦N.
2Pond level data used with permission by Dr. Chris Spence, Environment Canada, Saskatoon, Saskatchewan,

Canada
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Figure 5.6 (top) shows the sub-surface and surface storage change calculated from

NARR atmospheric data in conjunction with the observed outflow of the watershed. The

storage change derived from the NARR atmospheric data shows variations of storage levels

that follow the observed pond level data in Figure 5.6 (bottom). The pond level data shows a

record low (near zero) starting from 2002 due to severe drought during 2001-2002 and starts

rising in 2004, corresponding to the cumulative storage change derived from the NARR.

The peak of the pond level data recorded in the SDNW is in the spring of 1997 (van-der

Kamp et al., 1999) that can also be seen from the storage change derived from the NARR.

5.4.2 CRCM water budget components

The CRCM simulated hydrological cycle components are analysed in this sub-section. Long-

term annual means and the annual cycle (monthly means) of observed and quasi-observed

datasets are discussed. The analysis is limited to the 1986-2004 period where the most

reliable observed datasets are available. The CRCM (version 4.1.1) simulation ‘adj’ coupled

with CLASS version 2.7 (Verseghy, 2000) is used in this section of study.

Annual means of the CRCM water budget components

Table 5.2 summarizes annual means (1986-2004) of the atmospheric and terrestrial wa-

ter budget components over the CRB. The Canadian Prairies receives an average annual

precipitation of 1.25 mm/day (450 mm/year ) (McGinn and Shepherd, 2003). The mean

annual precipitation over the basin simulated by the CRCM is compared with observations

obtained from three other independent datasets (CANGRID, NARR, and weather station)

shown in Table 5.2. The mean annual CRCM precipitation obtained is 1.20 mm/day which

is 2.5 % lower than the precipitation recorded at weather stations and 2.6 % higher than

the homogenized CANGRID precipitation. The NARR mean annual precipitation is 1.32

mm/day. The CANGRID mean annual precipitation in 1.17 mm/day. The CANGRID

precipitation data are corrected to remove systematic biases and account for site specific
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Table 5.2: Annual means (1986 - 2004) of atmospheric/ terrestrial water budget components over the CRB in
mm/day

Models/Reanalysis/Obs
{
∇H ·Q

}
Precipitation Evaporation

(mm/day) (mm/day) (mm/day)
CRCM 0.22 1.20 1.10
NARR 0.24 1.32 1.34
CANGRID - 1.17 -
Weather/Gauge Stn. - 1.23 -
Quasi-observed - - 1.02

errors caused by observation system change and station re-location, and is perhaps the most

reliable precipitation data for climate studies (Mekis and Hogg, 1999; Vincent and Mekis,

2006).

The water budget of the Prairies is governed by the cold, semi-arid climate that makes

evaporation difficult to estimate (van-der Kamp et al., 2003). A quasi-observed evaporation

is calculated from multi-year observed CANGRID precipitation and observed basin runoff

following Equation 5.8. The quasi-observed evaporation is 1.02 mm/day. Since the quasi-

observed evaporation is calculated from multi-year observed dataset, it should be reasonably

accurate. The estimated CRCM mean annual evaporation is 1.10 mm/day which is 8%

higher then the quasi-observed. The estimated NARR evaporation is even higher at 1.34

mm/day.

By combining Equations 5.7 and 5.8 over a long period the moisture flux convergence

{∇H ·Q} should balance with precipitation minus evaporation {P − E} and should show

an acceptable agreement with observed basin outflow {Robs}. The observed outflow from

the gauge station data over the basin {Robs} is 0.2 mm/day. The CRCM precipitation minus

evaporation (1.20 - 1.10 = 0.10 mm/day) does not correspond to the observed basin outflow.

The hydrological closure error is 0.10 mm/day. A fair part of the error may be caused by

the evaporation bias related to the land surface scheme due to lack of vegetation resistance

(Music and Caya, 2007).

The moisture flux convergence {∇H ·Q} calculated from the CRCM is 0.22 mm/day,

which should be equal to the observed basin outflow on a long-term basis. An error of
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Figure 5.7: Annual cycle of precipitation comparison from CANGRID, CRCM, and NARR, averaged over the
CRB for the periods of 1986-2004.

‘closure’ of CRCM moisture flux convergence with observed basin outflow is 0.02 mm/day.

The NARR moisture flux convergence is 0.24 mm/day. Similarly, the error of ‘closure’ of

NARR moisture flux convergence with observed basin outflow is 0.04 mm/day. The CRCM

moisture flux convergence shows better ‘closure’ than the NARR moisture flux convergence

with observed basin outflow. The error of ‘closure’ may be related to inaccuracies in :

(a) the model’s horizontal and vertical resolution and the time sampling of the moisture

flux calculation, or (b) the model physics that can introduce bias in layers of atmospheric

moisture and wind profiles (Music and Caya, 2009).

Annual cycle of the CRCM water budget components

Figure 5.7 shows a comparison of mean monthly precipitation derived from CANGRID,

CRCM, and NARR over the CRB. The CANGRID dataset is gridded from observed station

data that uses Mekis and Hogg (1999) procedure for precipitation gridding and adjustment.

Since the gridded CANGRID precipitation data has been corrected and homogenized, it can

be used as observed reference. The CRCM precipitation slightly overestimates during May-

June and underestimates precipitation during July - November compared to CANGRID. The
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Table 5.3: Comparison of monthly CANGRID, CRCM, and NARR precipitation (1986-2004) averaged over
the CRB.

Precipitation (mm) Bias (%)a

Months CANGRID CRCM NARR CRCM NARR
January 24.5 21.1 23.3 -14 -5
February 16.2 15.2 19.1 -6 18
March 22.8 23.9 21.8 5 -4
April 26.9 27.3 32.2 1 20
May 38.6 45.6 46.8 18 21
June 61.5 65.8 74.3 7 21
July 80.4 74.4 79.8 -7 -1
August 68.1 51.3 58.1 -25 -15
September 39.1 30.2 46.5 -23 19
October 32.4 27.8 28.6 -14 -12
November 31.5 24.4 26.6 -23 -16
December 20.9 23.1 24.9 11 19
Annual 462.9 430.1 482.0 -7 4

aBias (%) is calculated as (PCRCM − PCANGRID)/PCANGRID × 100

correlation coefficient and RMSE between CANGRID and CRCM monthly time series are

calculated as 0.94 and 6.7 mm, respectively. NARR over-estimates spring and summer pre-

cipitation during April - June compared to gridded CANGRID precipitation. The correlation

coefficient and RMSE between CANGRID and NARR monthly time series are calculated

as 0.95 and 6.3 mm, respectively. Annual total precipitation of CRCM under-estimates by

8% compared to CANGRID and annual total precipitation of NARR overestimates by 4%

compared to CANGRID, as it can be seen from the Table 5.3. Overall, the CRCM annual

cycle of precipitation shows a slightly better agreement with the CANGRID compared to

the NARR precipitation. Mishra et al. (2012) examined NARCCAP3 RCMs across US and

found the ensemble mean percentage precipitation bias of ±10% compared to observations.

The annual cycle of evaporation is presented in Figure 5.8. Along with CRCM and

NARR evaporation, a quasi-observed evaporation is also presented. The quasi-observed

evaporation is calculated using Equation 5.9, where {∇H ·Q} and {∂W/∂t} are calculated

from the NARR atmospheric datasets (i.e., relative humidity, wind) and precipitation from

3North American Regional Climate Change Assessment Program (NARCCAP)
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Figure 5.8: Annual cycle of evaporation presented. The quasi-observed evaporation is calculated from
Equasi−obs ≈ −{∇H ·Q + ∂W/∂t}NARR + PCANGRID. The CRCM and NARR evaporation is calculated
over the CRB.

the observed CANGRID dataset. The CRCM simulated evaporation agrees well with

quasi-observed evaporation except during spring. NARR over-estimates the quasi-observed

evaporation during spring and summer months. The positive evaporation bias reaches its

maximum (0.7 mm/day) in May which could possibly be related to Prairie wind and warm

air temperature and soil moisture available for evaporation during this period of the year,

variables which are not well captured by the NARR assimilation procedure. Overall, the

implementation of CLASS in the CRCM (Version 4.1) has improved the boundary layer

mixing, resulting in improvement in evaporation over the basin. Similar findings have been

reported by Brochu and Laprise (2007). The CRCM evaporation is in good agreement with

calculated quasi-observed evaporation.

Table 5.4 shows the monthly evaporation derived over the CRB. All three datasets

(i.e.,CRCM and NARR, and quasi-observed) show maximum evaporation in July. Evapo-

ration estimates are evidently more uncertain and very limited observations can be found.

Inter-comparison of evaporation estimates in the context of the atmospheric water balance is

an important component of this study. A comparison of Figures 5.7 and 5.8 shows that for

both CRCM and NARR, precipitation are generally larger that evaporation (precipitation ≥
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Table 5.4: Comparison of monthly CRCM, NARR, Quasi-obs evaporation (1986-2004) averaged over the
CRB.

Evaporation (mm)
Months CRCM NARR Quasi-obsa

January 0.00 4.67 4.94
February 1.69 9.38 1.26
March 6.53 17.16 6.79
April 22.17 41.62 17.35
May 61.97 72.32 44.58
June 88.22 100.94 79.62
July 94.13 104.55 96.6
August 70.61 70.73 68.64
September 36.49 39.37 26.34
October 16.44 17.33 12.70
November 4.81 8.91 10.58
December 0.00 2.86 2.09
Annual 403.07 489.84 371.49

aQuasi-obs evaporation is calculated as Equasi−obs ≈ −{∇H ·Q + ∂W/∂t}NARR + PCANGRID

evaporation) during October - April, while the opposite (precipitation ≤ evaporation) is true

in other months. This observation supports the wetland Prairies evaporation trend (Winter

and Rosenberry, 1995; van-der Kamp et al., 2003; Szeto, 2007; Brimelow et al., 2010). The

mean annual evaporation for NARR is 1.34 mm/day (490 mm/year) and CRCM is 1.10

mm/day (403 mm/year) and the quasi-observed is 1.02 mm/day (371 mm/year). Szeto (2007)

reported CRCM evaporation of 1.05 mm/day over the Saskatchewan River Basin.

The water budget equations were presented in Section 5.3.1, where assumptions and

evaluations of individual components were discussed. For annual cycle analysis (changes

of monthly means), water budget equations should take into account the storage terms

({∂S/∂t} and {∂W/∂t}) which are neglected for multi-year means. These terms can be

significant during spring and summer (Rasmusson, 1968; Music and Caya, 2009).

The annual cycle of vertically integrated area averaged moisture flux divergence (con-

vergence) over the CRB is shown in the top panel of Figure 5.9, and the annual cycle of

precipitable water over the basin is shown in bottom panel. The CRCM moisture flux over

the CRB shows convergence during October - April as can be seen from Figure 5.9 (top).
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Figure 5.9: Annual cycle of {∇H ·Q} (in top) and {∂W/∂t} (in bottom) for NARR and CRCM over the
CRB.
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Table 5.5: Comparison of monthly {∇H ·Q} and {∂W/∂t} calculated from CRCM, and NARR atmospheric
dataset averaged over the CRB.

{∇H ·Q} (mm) {∂W/∂t} (mm)
Months NARR CRCM NARR CRCM
January -19.44 -16.52 -0.13 -1.85
February -15.12 -13.90 0.13 1.31
March -16.08 -11.08 0.03 0.84
April -10.70 -5.42 1.10 3.07
May -1.03 0.26 6.97 4.51
June 2.05 7.71 16.03 4.16
July 5.24 12.69 10.88 0.81
August 15.68 1.62 -15.11 -5.07
September 1.05 -6.08 -13.85 -6.13
October -11.70 -11.91 -8.04 -7.46
November -19.95 -23.60 -0.96 -0.09
December -18.87 -15.68 0.04 -1.68
Annual -88.88 -81.91 -2.91 -7.58

Szeto (2007) reported similar atmospheric moisture flux tendencies for the CRCM over a

Prairie basin. Prairie evaporation picks up and moisture flux becomes divergent from May

and evaporation keeps contributing moisture to the atmosphere until September. During

the summer months, Prairie moisture fluxes are generally divergent as evaporation exceeds

precipitation (Winter and Rosenberry, 1995). Similar moisture flux tendencies appear in the

CRCM and NARR. Table 5.5 shows the peak of moisture flux divergence (12.69 mm/month)

appears for the CRCM in July, while NARR shows its peak divergence (15.68 mm/month) in

August. The correlation coefficient and RMSE found between CRCM and NARR moisture

flux tendencies are 0.85 and 5.94 mm.

Figure 5.9 (bottom) shows the annual cycle (mean monthly change) in atmospheric

moisture storage {∂W/∂t}. Typically, this storage term should be small. The amplitude of

derived moisture storage {∂W/∂t} from the CRCM is much smaller compared to that of

the NARR. The CRCM moisture storage term changes its sign between July and August.

Despite the large variations of NARR precipitable water {∂W/∂t} during the months of

May to September (Figure 5.9, bottom), the sign of NARR moisture storage also change

between July and August.
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Figure 5.10: Annual cycle of −{∇H ·Q + ∂W/∂t} for NARR and CRCM over the CRB.

The noticeable variations in NARR precipitable water during May to September is

likely a shortcoming of the assimilation, since the evaporation is not directly nudged or

adjusted during NARR assimilation. During assimilation, when model precipitation needs

to be reduced over a certain grid box, the storage term {∂W/∂t} bears the entire burden of

precipitation reduction (Nigam and Ruiz-Barradas, 2006).

Figure 5.10 shows a comparison of moisture flux divergence with atmospheric storage

−{∇H ·Q + ∂W/∂t} from the CRCM and NARR. This quantity evolves similarly in both

CRCM and NARR, showing positive amplitude in the early part of the year, negative during

summer months, and again becomes positive during autumn/winter months. Month-to-

month amplitude differences in the two curves are noticeable. The NARR peak appears in

June. The contribution of the atmospheric storage {∂W/∂t} in NARR is the cause of the

moisture peak in June, as discussed earlier and presented in Figure 5.9 (bottom).

The amplitude of simulated moisture is lower in the CRCM than NARR during the

summer months. Since precipitation removes moisture from the atmosphere and evaporation

adds moisture to the atmosphere, the NARR evaporation greatly exceeds the CRCM during

May to July. Figure 5.8 shows the evaporation bias in NARR, specifically that NARR

evaporation greatly exceeds the quasi-observed evaporation during spring and summer.
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The implementation of CLASS in version 4.1 of the CRCM has resulted in significant

improvement in the mixing of boundary water vapour and consequently adjustment of

summer moisture flux divergence (Music and Caya, 2007), which means summer convection

is more controlled and evaporation more closely follows the quasi-observed evaporation that

can be seen from the comparison of evaporation in Figure 5.8.

Figure 5.11 shows the time series of mean monthly (solid line) as well as mean annual

(dots) moisture flux divergence over the basin from 1986 to 1999. The top panel of the figure

shows NARR moisture and the bottom panel shows the CRCM moisture. The monthly

means vary noticeably from month to month. The seasonal variation of moisture flux can be

seen from the monthly time series plot. The monthly time series (Figure 5.11) indicates that

usually moisture flux is divergent during summer months and moisture flux is convergent

during winter months. Similar findings of atmospheric moisture flux over the Saskatchewan

River Basin using NCEP-NCAR reanalysis are presented by Liu and Stewart (2003). The

magnitude of monthly maximum and minimum shows that in a year monthly gain or loss of

moisture could be as high as 65 mm/month while net moisture flux in a year is divergent

in almost all years in the series both for CRCM and NARR. The long-term average annual

moisture flux is 5.97 mm/month for CRCM, and 6.06 mm/month for NARR.

The ten-year average of estimated annual moisture flux is divergent as seen in Figure

5.11. The ten-year average of moisture flux result is somewhat inconsistent with the general

hydrology of the basin. The atmospheric transport of moisture into and through the basin

should show a balance. This implies that there may be a bias in the moisture flux calculation.

Theoretically, the long-term average of moisture flux divergence should be equal to the

long-term outflow of the basin. The long-term measured average outflow of the basin is

about 0.2 mm/day at the Otter Rapids station (06CD002). The moisture flux convergence

of the basin is calculated as 0.24 mm/day from NARR reanalysis and 0.22 mm/day from

the CRCM. Therefore, there is a bias of 0.04 mm/day, and 0.02 mm/day from NARR and

CRCM, respectively, in estimation of the moisture flux divergence overt the basin. This bias
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Figure 5.11: Mean monthly time series (solid line) of moisture divergence/ convergence (mm/month), and
mean annual moisture divergence (dots) over the CRB from 1986 to 1999. NARR in top, and CRCM in
bottom.
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is probably related to the size of the domain and pressure level data used in the calculation.

Despite the bias in the moisture flux calculation, the estimates provide insight into the

basin’s moisture flux and transport and complements our understanding of atmospheric

processes relevant to hydrological modeling.

5.5 Conclusions

This study presents an attempt at developing state-of-the-art water budget estimates for the

CRB and demonstrates the capability of the recent CRCM model to capture the water cycle

of this northern and data-sparse region. The motivation for this undertaking is to demonstrate

that a CRCM realistically represents many complex sub-grid scale processes involved in

the hydrological cycle, and hence can be used in basin scale hydrological process studies.

A comprehensive validation of the CRCM water budget components over the Churchill

River Basin (CRB) has been performed to demonstrate the consistency of CRCM with

observational data. In this regard, Knutti (2008) states that the most we can hope for from a

model is to demonstrate that the model does not violate our theoretical understanding of

the climate system and that it is consistent with the available data within the observational

uncertainty.

The North American Regional Reanalysis is used as quasi-observed data where direct

observational data are not available. Therefore, NARR’s components of atmospheric water

budget has been evaluated. Moisture divergence derived over the CRB from NARR is

compared with long-term outflow of the basin, showing reasonable agreement. Also, storage

change derived from the NARR atmospheric water budget equation shows reasonable

agreement with pond level data from a neighbouring pond. Therefore, the NARR assimilated

dataset is found to be convincing although NARR evaporation remain suspect, as discussed

in Section 5.4.1.

The annual means of CRCM water budget components were first analysed. The annual
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means were computed by integrating spatial averages over the basin and averaging over

time (multi-year). Mean annual precipitation shows agreement with CANGRID and station

precipitation. The CRCM evaporation shows reasonable agreement with quasi-observed

data, whereas NARR evaporation shows an over-estimation. Implementation of CLASS

in CRCM 4.1 has resulted in improvements in simulated annual mean evaporation over

the basin. The CRCM simulated mean annual moisture flux convergence does not exactly

correspond with the long-term observed basin outflow. However, the CRCM moisture flux

convergence shows reasonable closure with the observed basin outflow compared to NARR

moisture.

The annual cycle analysis shows an overestimation of precipitation during summer in

both CRCM and NARR compared to the observed CANGRID. Such positive bias is related

to summer convection process and inadequate boundary layer distribution in the region. Such

limitations of boundary layer mixing also affect the moisture flux divergence calculation

over the CRB from May to July. During summer, Prairie evaporation exceeds precipitation

and thus moisture flux remains divergent. The long-term annual moisture flux over the CRB

is generally divergent in both CRCM and NARR. The annual mean (multi-year) moisture

flux is reasonably close in CRCM and NARR. The CRCM atmospheric moisture fluxes and

storage tendencies are consistently represented, and therefore show reasonable agreement

with the NARR. Atmosphere-land surface interactions are better represented by inclusion of

CLASS in the CRCM.

The hydrology of the CRB is governed by complex interactions between atmosphere

and surface processes. Representation of these process are related to cold region hydrology

while some of them are specific for the CRB. Some of these processes are represented in very

simplified form or not at all represented in the model. These simplifications will certainly

affect the water budget of the region. Despite these limitations and considerable differences

between the model physics that are employed in the NARR, and CRCM, the water budgets

derived from these datasets for the CRB are reasonable, and in general compare well to
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available observations.
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Chapter 6

Bias correction of the CRCM

Precipitation and Temperature

6.1 Introduction

Modelling regional hydrology using the Canadian Regional Climate Model (CRCM) data

is one the main interests of this study. A distributed hydrology model has been selected

in order to make the best use of gridded CRCM data with different climate scenarios as

input. It is expected that the CRCM will produce more reliable data compared to global

climate models as the model better resolves physical processes and the local terrain. The

physical processes controlling precipitation are, in particular, expected to improve with the

CRCM’s higher resolution because precipitation depends heavily on topography which is

more realistic at higher resolution. The expectation of improved precipitation simulation at

higher resolution is well documented in the literatures (Leung and Ghan, 1995; Brankovic

and Gregory, 2001; Rauscher et al., 2010). The reliability of a hydrological model output is

strongly dependent on the quality of the forcing data. Therefore, these forcing data must

be carefully examined. In this chapter, the CRCM precipitation and temperature bias are

investigated and a bias correction is devised to adjust present and future climate data. The
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present study assumes that the model’s ability to simulate present climate conditions will

be carried over to the future climate conditions. All bias-correction methods follow the

underlying assumption considering the fact that a bias correction considerably improves

hydrological simulations (Teutschbein and Seibert, 2012).

6.2 Literature Review

The use of hydrological models with input from RCMs in climate change studies has been

carried out by many researchers (Fowler and Kilsby, 2007; Leander and Buishand, 2007;

Piani et al., 2010). No straightforward guidelines are available regarding the most effective

use of the RCM output in hydrological modelling (Teutschbein and Seibert, 2010). RCM

simulations of temperature and precipitation are subject to uncertainties and biases which

restricts their direct application for hydrological impact studies.

Christensen et al. (2008) suggest the need for bias correction when using RCMs for

projections of hydrological change. This study highlights that the sources of bias derives

from a model’s inability to accurately simulate present-day climate conditions, which

essentially means that models have varying levels of systematic biases (van Pelt et al., 2009;

van Roosmalen et al., 2010). For example, typical biases include the occurrence of too

many wet days with low intensity rain or incorrect estimation of extreme temperature and

precipitation (Ines and Hansen, 2006).

Graham et al. (2007b) use 11 different RCMs to assess hydrological change. Their study

concludes that hydrological results from different RCMs vary considerably from model

to model, although all RCMs include representations of hydrology. Several other studies

(Fowler and Kilsby, 2007; Leander and Buishand, 2007; Piani et al., 2010) demonstrate

that high-resolution RCMs suffer from varying levels of systematic biases. The researchers

attribute this issue to poor partitioning of atmospheric moisture in the model’s surface

schemes.
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In order to utilize these high resolution data, different studies (van Pelt et al., 2009; Piani

et al., 2010) suggest that prior bias correction is required to achieve realistic output. van

Pelt et al. (2009) apply two different correction approaches to RCM output before using the

data into a hydrological model. Although the results indicate a difference between the two

correction methods, bias-corrected data always improved over the uncorrected result, which

confirms the importance of an appropriate bias correction.

The bias correction requires a process of scaling the climate model output in order to

account for systematic errors in the climate models. The scaling of model output is performed

by identifying differences between simulated series of current climate and observations.

Biases can then be removed from climate control runs as well as scenario runs. Different

techniques are available in order to translate RCM output into variables that can be used in

hydrology models. RCMs simulations are biased by the occurrence of too many wet days

with low intensity rain (Ines and Hansen, 2006). Therefore, the number of rainfall events

with very low intensity rainfall (e.g. ≤ 0.1 mm) are sometimes adjusted (e.g., redefine as dry

day; P = 0 mm) by applying a ‘precipitation threshold’. The simple ‘delta’ method consists

of the addition of the climatological difference between a climate scenario and a control

simulation to an observed base time series. A ‘linear transformation’ of RCM variables

can be used to adjust the mean and variance (Shabalova et al., 2003; Horton et al., 2006).

Some researchers (Leander and Buishand, 2007; Leander et al., 2008; Choi et al., 2009) use

‘power transformation’ by applying a non-linear equation P ′ = aP b for correction. P ′ is the

corrected precipitation. The parameters a and b can be determined iteratively by matching

the mean and the coefficient of variation (CV) of the corrected precipitation with the mean

and the CV of observed precipitation. Piani et al. (2010) use a ‘transfer function’ derived

from historical observed and simulated cumulative distribution functions (CDFs). Different

CDFs can be used depending on the data series to be corrected.

A ‘precipitation model’ can also be used, wherein precipitation is modelled with a

stochastic weather generator (Hansen and Mavromatis, 2001). Observations are used
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in order to derive relationships to estimate the climate parameters of the temporal and

spatial precipitation model. Use of an advanced stochastic model will provide realistic

data that preserve day-to-day and seasonal variability; however, they are computationally

more demanding. A comprehensive review of bias correction techniques can be found in

Teutschbein and Seibert (2010). The review indicates that although RCMs have been used in

recent years to provide the hydrologist with fine-scale climate parameters for hydrological

predictions, no clear rules exist as to how RCMs can be best applied in impact studies.

Therefore, a bias correction procedure is outlined and discussed in the following Section.

6.3 Methodology

The main objective of the bias correction is to obtain corrected daily time series of temper-

ature, precipitation and possibly other variables that can then be applied for hydrological

simulation in order to assess long term changes in hydrology.

Different bias correction techniques were discussed in Section 6.2. The most common

correction technique used to date is the delta approach (Fowler and Kilsby, 2007; Graham

et al., 2007a), often referred as ‘delta change’. The ‘delta change’ method is a straightforward

approach in which the differences in the mean values of the relevant climate variables,

typically precipitation and temperature, are extracted from the control and the scenario

simulations, and then superimposed on an observed data series. The method implicitly

assumes that the observed variability of a climate variable will also prevail in a future climate

- apart from a scaling factor. The method does not adjust the number of wet days (Graham

et al., 2007a) which may lead to undesirable results in the hydrological simulations of this

study. Seasonality is dealt with by using monthly delta values.

In order to select a suitable technique for bias correction, the precipitation and temper-

ature time series from the CRCM were first compared with observed station data. Two

stations, Winnipeg and Churchill, which both have more then thirty years of daily data

65



series were selected. A comparison of biases in the seasonal and annual cycles and their

corrections in these two data series are proposed later in this chapter. Two techniques for

correcting precipitation and temperature bias are discussed below.

A distributed hydrological model (VIC) is used for hydrological simulation in this study.

The VIC hydrological model performs simulations for each grid cell independently; thus

the model requires a set of input data (i.e. temperature and precipitation) for each model

grid. Therefore, each individual input grid from the CRCM data series must be corrected for

bias. In order to perform the bias correction on the individual input grid, observed station

data and CRCM data for both present and future have been re-gridded according to the

VIC model grid. The synergraphic mapping system (SYMAP) interpolation algorithm of

Shepard (1984), previously implemented in similar studies (Maurer et al., 2002; Paulat

et al., 2008; Yong et al., 2009), is used for the re-gridding. A detailed description of the

SYMAP mapping is discussed by McHaffie (2000). The correction techniques that are found

suitable are applied for bias correction of re-gridded CRCM dataset.

Precipitation Correction: A quantile-quantile mapping technique is used in this study to

transform the cumulative distribution function (CDF) of CRCM data. The CDF is based on

the two-parameter gamma distribution. Shape and scale parameters are estimated from the

CRCM and observed data using the maximum likelihood estimation method. The gamma

distribution is a common choice for representing daily precipitation (e.g., Aksoy (2000);

Piani et al. (2010); You et al. (2007)).

Before fitting the gamma distribution to precipitation amounts, the dry-day probabilities

of observed and simulated data are determined. A threshold value is defined and simulated

precipitation amount below the threshold is set to zero. The threshold is chosen in such a

way that the simulated dry-day equals the observed dry day probability.
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The two-parameter gamma distribution function is given by

F (x;α, β) =
1

βαΓ(α)
xα−1e−x/β; x ≥ 0 (6.1)

where α is the shape and β is the scale parameter. The gamma distribution is applied to

observed and CRCM simulated precipitation for current climate. Let FObs and FSim be

the fitted gamma cumulative distribution functions. The corrected CRCM data can then be

obtained by following quantile-quantile mapping:

xCorr−Sim = F−1Obs(FSim(xSim)) (6.2)

where F−1Obs is the inverse of the observed CDF and xCorr−Sim is the corrected CRCM data.

FObs and FSim are obtained for each re-gridded observed and simulated time series. The

correction described by Equation 6.2 is applied to each grid cell. The correction is applied

on a ninety days window block of precipitation time series over thirty years of data. Terink

et al. (2009) use sixty five days of window block for bias correction of RCM precipitation

data as input to the VIC hydrology model. At each grid cell, a bias of ∆x is calculated as

shown below:

∆x = xCorr−Sim − xSim (6.3)

This ∆x can be obtained for each grid cell in the watershed and can be used for bias

correction of future CRCM simulations. The transformed time series xCorr−Scen values of

each grid cell can be calculated as:

xCorr−Scen = xScen + ∆x(FSim(xScen)) (6.4)

where xCorr−Scen is the transformed time series of future scenarios of each grid cell. The

subscript Scen in the equation denotes a future climate scenario. The transformation

67



technique shown in Equation 6.4 is applied to the CRCM future climate with an assumption

that the bias correction ∆x for each grid cell is the same for the corresponding grid for both

in present and future climate.

Temperature Correction: A different bias correction technique is used for daily temper-

ature. This method involves shifting and scaling to adjust the mean and variance and follows

the work of Shabalova et al. (2003), Leander and Buishand (2007), and Terink et al. (2009).

The bias correction is applied to each gridded maximum and minimum daily temperature.

The corrected daily temperature TSim−Corr is obtained as:

TSim−Corr = TObs +
σ(TObs)

σ(TSim−Area)
(TSim − TObs) + (TObs − T Sim−Area) (6.5)

where TSim−Corr is the corrected daily CRCM temperature; TSim is the uncorrected daily

CRCM temperature; TObs is the observed temperature; TSim−Area is the uncorrected daily

CRCM temperature areal average over the basin; and an over bar denotes the thirty year

average; and σ is the standard deviation. Both mean and standard deviation are calculated

on a fifteen days window of the thirty year time series of data. Shabalova et al. (2003)

used a ten days window block for bias correction of RCM temperature. Corrected daily

temperature TScen−Corr of CRCM future climate is also obtained using Equation 6.5.

6.4 Results

In order to assess temperature and precipitation biases in the CRCM, the annual cycle, the

seasonal mean, and the annual mean of these two variables are compared with observed

weather station data. Two Environment Canada (EC) stations, Winnipeg and Churchill, are

used. Findings from these two stations are used to determine suitable adjustment methods

for bias correction. The correction techniques that are found suitable are applied to build

bias corrected gridded dataset. In order to take into account multi-annual natural climate

68



Jan Mar May July Sep Nov
0

25

50

75

100
Winnipeg A

M
on

th
ly

 p
re

ci
p.

 (
m

m
)

 

 

Observed
CRCM

DJF MAM JJA SON
0

50

100

150

200

250
Winnipeg A

Se
as

on
al

 p
re

ci
p.

 (
m

m
)

 

 

Observed
CRCM

Jan Mar May Jul Sep Nov
0

20

40

60

80
Churchill A

M
on

th
ly

 p
re

ci
p.

 (
m

m
)

 

 

Observed
CRCM

DJF MAM JJA SON
0

50

100

150

200
Churchill A

Se
as

on
al

 p
re

ci
p.

 (
m

m
)

 

 

Observed
CRCM

Figure 6.1: Mean monthly (left) and seasonal (right) precipitation (mm) at Winnipeg A (top), and Churchill A
(bottom) stations for the CRCM simulation and observations for the period of 1961-1990.

variability, a thirty year period (1961-1990) is used to construct correction functions, and

the same corrections are applied to correct the bias of the time series (1976-2005) used for

hydrological modelling.

6.4.1 Precipitation

Figure 6.1 provides a comparison of mean monthly and seasonal cycles of precipitation at the

Winnipeg and Churchill weather stations based on CRCM and observations for the period

of 1961-1990. The CRCM successfully reproduced the basic precipitation pattern as can be

seen from the monthly plots (Figure 6.1 right panels) for both stations. During the months of

June and July, the CRCM overestimates precipitation at both stations; However, the CRCM

precipitation for August underestimates at Winnipeg and overestimates at Churchill. The

largest bias was found in July at Churchill. The precipitation bias varies over the region

which was also found in Jiao and Caya (2006)’s study of six subregions over the CRCM

North American domain.
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Table 6.1: Bias corrected CRCM seasonal precipitation compared with observed station precipitation and
percent bias for the period 1961-1990.

Station Seasona CRCM Precip (mm) Observed Biasb (%)
Name Raw Corr. Precip(mm) Raw Corr.
Winnipeg A Winter 42 47 49 -15 -3

Spring 94 108 112 -16 -3
Summer 206 217 230 -10 -5
Fall 77 99 104 -26 -5
Annual 420 473 497 -15 -5

Churchill A Winter 35 48 47 -26 2
Spring 60 65 67 -10 -3
Summer 191 142 147 30 -4
Fall 116 136 138 -16 -2
Annual 404 392 401 1 -2

aWinter: December-January-February, Spring: March-April-May, Summer: June-July-August, Fall:
September-October-November

bBias (%) from seasonal precipitation (raw/corrected) is calculated as Pbias = (PCRCM−Pobs)/Pobs×100

Even though the CRCM replicates the annual cycle, Figure 6.1 (right panels) shows

an underestimation of seasonal precipitation during winter (December-January-February)

and fall (September-October-November) for both stations; overestimation shows during

the summer at Churchill with slightly underestimation at Winnipeg. A similar bias is also

recognized in the Jiao and Caya (2006) study, which finds that, in central Canada, the

CRCM underestimates winter and fall precipitation and overestimates during the summer.

Table 6.1 shows CRCM bias (%) statistics comparing those observed at Winnipeg and

Churchill. The largest seasonal positive bias of 30% is found during the summer at Churchill.

The mean annual precipitation is underestimated by 15% at Winnipeg and overestimates by

1% at Churchill.

Figure 6.2 shows a Q-Q mapping of daily observed and CRCM simulated precipitation

for Winnipeg and Churchill. A 45-degree solid line is also plotted to provide a reference.

The Q-Q plot should approximately follow the y = x line, if simulated precipitations fit well

with observed precipitations. The Q-Q plot in Figure 6.2 shows that simulated precipitation

is underestimated (negatively biased) at both Winnipeg and Churchill stations. It can also

be seen from the Q-Q plots that the higher quantiles experiences higher bias. Leander and
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Figure 6.2: Q-Q plot of daily precipitation at Winnipeg A (top), and Churchill A (bottom) stations for the
CRCM simulation and observed for the period of 1961-1990

Buishand (2007) and Kjellstrom et al. (2010) report a similar level of underestimation of

model precipitation in higher quantiles. Unless proper treatment is provided for precipitation

of higher quantiles, results may show an underestimation of climate extremes related to

floods. In order to provide appropriate adjustments of these biases, higher quantiles of the

CRCM precipitation are adjusted based on the corresponding ranked observed precipitation

using the Q-Q mapping.

Additional checks have been performed on precipitation occurrences (i.e., wet/dry days)

as they are important for hydrological modelling. A dry day is defined as a day with

precipitation amount less than a threshold precipitation. Table 6.2 shows a comparison of

mean annual dry day statistics at the Winnipeg and Churchill stations. At both stations, the

CRCM underestimates the dry day frequency by 28%. The findings of Sushama et al. (2010)
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Table 6.2: Dry day statistics (per year) of Observed, Raw CRCM, and Corrected CRCM, using precipitation
time series for the period 1961-1990.

Number of dry days per year
Stations Observed Raw CRCM Bias Corr. CRCM
Winnipeg A 279 217 263
Churchill A 263 204 259

also suggest that the CRCM underestimates the mean number of dry days over Canada.

Leander and Buishand (2007) and Piani et al. (2010) report a persistent over estimation

of wet days in RCMs due to too many days of weak precipitation. In order to adjust

the weak precipitation days in the CRCM, the method of ‘precipitation threshold’ has

been applied in this study. Sushama et al. (2010) apply four different thresholds to CRCM

simulated precipitation in order to compare dry day statistics with observations. Their results

suggest that at a low precipitation threshold, the mean number of dry days is significantly

underestimated. A careful selection of a suitable threshold is essential in order to adjust

dry/wet day statistics. After multiple trials, a cut-off precipitation of 0.5 mm is selected

and applied in this study. Table 6.2 shows mean annual dry day statistics of observed, raw

CRCM, and corrected CRCM, using a precipitation time series for the period of 1961-1990.

The adjusted mean annual dry days of corrected CRCM indicates a clear improvement

compared, with underestimation of 5% for Winnipeg, and 1% for Churchill.

Figure 6.3 presents a comparison of mean seasonal precipitation of raw CRCM, corrected

CRCM, and observations. Bias corrections are applied to daily precipitation following

Equation 6.2 on the ninety-day seasonal window for the time series of 1961-1990. Significant

adjustments of precipitation are required in most seasons and generally result in a reasonable

agreement with observed seasonal precipitation. Table 6.1 presents the statistics of seasonal

precipitation adjustments. The bias column in Table 6.1 shows the improvement after

correction is applied. After adjustment, the CRCM seasonal precipitation demonstrates

a close agreement with observed station data for both Winnipeg and Churchill with bias

reduced to the order of 5% or less. This improvement can be considered reasonable for
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Figure 6.3: Mean seasonal precipitation (mm) at Winnipeg A (top), and Churchill A (bottom) stations for the
CRCM simulation and observed for the period of 1961-1990

application of the corrected time series in hydrological modelling.

Summer precipitation simulations are more locally controlled than those of the other

seasons (Caya and Biner, 2004; Plummer et al., 2006). Therefore, improvements in bias

during summer months are examined separately. Table 6.3 presents monthly statistics of

bias during summer. The bias correction indicates noticeable improvement during summer

months at both stations except for the month of August at Winnipeg.

The hydrological modelling performed in this study employs a distributed hydrology

model (VIC) that requires bias corrected gridded data. Time series data for every grid

must therefore be corrected for bias. Previous studies address this issue in a number of

ways: i) Several of these studies (Christensen et al., 2008; Ashfaq et al., 2011) use available

gridded observed data to adjust climate data of the corresponding grid. ii) Some studies

(Ines and Hansen, 2006; Sennikovs and Bethers, 2009) construct a bias correction function
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Table 6.3: Bias corrected mean monthly CRCM precipitations (Summer: June-July-August) compared with
observed station precipitation and percent bias for the period 1961-1990.

Station Month CRCM Precip (mm) Observed Bias (%)
Name Raw Corr. Precip(mm) Raw Corr.
Winnipeg A June 89.54 80.54 79.10 13 2

July 72.62 73.86 72.56 0 1
August 53.62 64.42 78.82 -32 -18

Churchill A June 50.88 36.91 41.69 22 -11
July 76.74 56.66 53.17 44 6
August 70.39 49.95 54.42 29 -8

from observed station data and corresponding control simulation. The correction functions

are than spatially interpolated and applied to all model grids.

In this research, observed station data within the basin or in the neighbourhood of the

basin are used to build a gridded dataset of 1/8◦ resolution according to VIC model grid.

The gridding is performed by using the SYMAP interpolation algorithm of Shepard (1984),

which is inverse square of the distances to the target grid cell, previously implemented in

similar studies (Maurer et al., 2002; Paulat et al., 2008; Yong et al., 2009). For a target

grid cell, values are calculated from the surrounding data points within a search radius.

The radius is chosen in such a way that at least four stations contribute to the interpolation.

A detailed description of the SYMAP mapping is discussed by McHaffie (2000). Similar

gridding is applied to CRCM present and future climate data. The gridded observed and

the CRCM dataset is then used to derive a bias adjustment for each grid using Equation

6.3. The same bias adjustment of the grid is used in future CRCM simulations following

Equation 6.4, with an assumption that the same bias correction is applicable for both present

and future climates.

Figure 6.4 presents the mean monthly precipitation plot along with error bars for raw

CRCM (top panel) and bias-corrected CRCM (bottom panel), along with observations for

the period of 1976-2005. The error bars show the standard deviation of the monthly data

series. Figure 6.4 suggests that most adjustment appears during May to August.

Table 6.4 presents the overall statistics of raw and corrected CRCM and observed
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Figure 6.4: Mean monthly precipitation for raw CRCM (top) and bias corrected CRCM (bottom) simulations
with observations for the period of 1976-2005 over the Churchill River basin.
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Figure 6.5: Mean seasonal precipitation for raw CRCM, bias-corrected CRCM, and observations for the period
of 1976-2005 over the Churchill River basin.
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Table 6.4: Summary statistics of precipitations for Raw CRCM, Corr CRCM, and Observed for the period
1976-2005 averaged over the Churchill River basin.

Statistics CRCM Precip (mm) Observed
Raw Corrected Precip (mm)

Annual:
Minimum 14.60 14.60 13.27
Maximum 98.16 89.07 84.85
Mean 39.48 37.00 38.66
Std 27.45 24.12 23.98
Seasonal:
Average winter (DJF) 50.69 51.08 52.34
Average Spring (MAM) 82.26 87.16 92.17
Average Summer (JJA) 243.64 211.16 218.93
Average Fall (SON) 97.17 94.77 100.45

precipitation. Annual statistics show improvements after bias correction. The bias-corrected

results for maximum precipitation statistics show a slight overestimation (Table 6.4 annual).

Figure 6.5 presents mean seasonal precipitation for raw CRCM, bias-corrected CRCM, and

observations for the period of 1976-2005. The seasonal precipitation exhibits improvement

after bias correction. The difference in CRCM seasonal average precipitation from Table

6.4 is approximately ±5% of the observed precipitation.

Figure 6.6 shows the Q-Q plot of daily precipitation averaged over the basin for raw

CRCM (top panel) and bias corrected CRCM (bottom panel) simulations with observed, for

the period of 1976-2005. After bias correction, the Q-Q plot shows an overall improvement

in the daily precipitation series except for several extreme outliers. The gamma distribution

is employed in this research to represent the distribution of precipitation in order to provide

an overall good fit to precipitation. Rasmussen et al. (2012) considered that extreme

values cannot be represented with a single gamma distribution and hence should be treated

separately.

6.4.2 Temperature

The bias correction of temperature is simpler and more straightforward than that of precipi-

tation, as the CRCM simulated temperature shows (Figure 6.7) better resemblance to the
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Figure 6.6: Q-Q plot of daily precipitation for raw CRCM and bias corrected CRCM simulations with
observations for the period of 1976-2005 over the Churchill River basin.

observed. The temperature bias correction involves shifting and scaling in order to adjust

the mean and variance, respectively. The CRCM daily temperature at 2m is used in this

study. The temperature bias at the Winnipeg station for 1961-1990 is examined in order

to understand the characteristic of bias. Figure 6.7 provides a plot of daily (top) and mean

monthly (bottom) temperatures. Although the CRCM simulations reasonably reproduces

the annual cycle, the CRCM systematically underestimates the temperature. The largest

underestimation of CRCM mean monthly temperature compared to observed is around

5.5◦C and is found during the summer months, Figure 6.7, bottom panel. These findings are

in agreement with Plummer et al. (2006) who report that the CRCM simulated surface air

temperatures are colder than the observations.

Bias correction is applied to the CRCM daily temperature series following Equation 6.5
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Figure 6.7: Daily temperature for raw/corrected CRCM and mean monthly raw/corrected CRCM with
observations for the period of 1961-1990 at Winnipeg A.

78



Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
−30

−20

−10

0

10

20

30

T
m

ax
 (

° C
)

 

 

Observed
raw CRCM

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
−20

−10

0

10

20

30

T
m

ax
 (

° C
)

 

 

Observed
Corr. CRCM

Figure 6.8: Daily Tmax for CRCM (raw/corrected) compared with observations for the period of 1976-2005
averaged over the Churchill River basin.
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Table 6.5: Summary statistics of annual temperature (Tmax/Tmin) for Raw CRCM, Corr CRCM, and Observed
for the period 1976-2005 averaged over the Churchill River basin.

Variables Annual CRCM temp. (◦C) Observed
statistics Raw Corr. temp. (◦C)

Tmax Mean 0.49 5.30 5.88
Std 13.12 13.48 13.34

Tmin Mean -8.06 -6.50 -5.95
Std 12.58 13.01 12.85

in the methodology section. The bias-corrected CRCM temperature demonstrates excellent

improvement throughout the year and compare well with observed temperatures (Figure 6.7)

at Winnipeg. For all 12 months, the differences between CRCM and observed temperatures

do not exceed 0.5◦C.

The hydrological modelling performed in this study requires time series of maximum and

minimum temperature. The CRCM and observed temperature data are therefore interpolated

onto the VIC model grid. Bias correction is applied on time series of the interpolated

CRCM daily temperature. The hourly temperature data are used to build time series of daily

maximum temperature (Tmax) and daily minimum temperature (Tmin). Figure 6.8 shows

mean monthly Tmax plots along with errorbars for raw CRCM (top panel) and bias corrected

CRCM (bottom panel), along with observations for the period of 1976-2005. The error

bars indicate the standard deviation of the monthly data series. Daily CRCM Tmax shows

systematic underestimation compared to the observed mean for all 12 months over the basin,

with biases ranging from 3◦C to 6◦C. After performing the bias correction, the CRCM Tmax

shows considerable improvement for all 12 months of the year, with maximum differences

between CRCM and observed ranging from 0.3◦C to 0.8◦C.

Figure 6.9 shows mean monthly Tmin raw (top) and bias corrected (bottom) CRCM

along with observed mean monthly temperature. Tmin shows a similar systematic underesti-

mation as Tmax throughout the year with a magnitude of underestimation of 3◦C. After bias

correction, the CRCM Tmin suggests an excellent improvement for all 12 months of the year,

with maximum differences between CRCM and observed ranging between 0.3◦C and 0.5◦C.
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Figure 6.9: Daily Tmin for CRCM (raw/corrected) compared with observed for the period of 1976-2005
averaged over the Churchill River basin.
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Table 6.5 presents summary statistics of the annual temperature (Tmax/Tmin) for raw

CRCM, corrected CRCM, and Observed for the period 1976-2005 averaged over the basin.

Table 6.5 suggests that the bias correction mainly affects the mean and only imparts relatively

small changes to the standard deviation. This finding signifies that the CRCM performs more

effectively in simulating the variability of the daily temperatures than it does in simulating

the mean level. Results shows that bias correction method employed for temperature

correction performs well in removing bias in temperatures (Tmax/Tmin) and observed annual

statistics are fully preserved.

6.5 Conclusions

In this chapter, bias correction for precipitation and temperature is discussed. The bias is

defined as the difference between simulated model data and observed data. Bias correction

is a post processing step of CRCM data before applying them as input to a hydrological

simulation. The bias treatment does not add skill to the CRCM simulations but fixes

problems with systematic errors. The bias correction adjusts the CRCM time series so that

they have the same statistics as the observed station data. Bias correction is applied to the

daily time series. In order to build a set of observed gridded data, selected station data within

the basin and in neighbourhood of the basin are interpolated using the SYMAP algorithm of

Shepard (1984). No correction is applied to the observed station data during interpolation.

The interpolation of station data to a grid does not introduce a significant error.

As mentioned in the methodology section, bias correction is much more complicated in

the case of precipitation than in the case of temperature. No single bias correction procedure

has been generally argued upon and in practice and the correction method must be chosen

as a function of the modelling objectives (Teutschbein and Seibert, 2010). In this research, a

combination of techniques are applied for precipitation adjustment.

The results from the precipitation bias correction shows that techniques employed here
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performed successfully, not only for mean quantities but also for improvement in the number

of wet/dry days statistics which are quantities that may have a significant influence on

hydrological modelling. Also, the results from the temperature bias correction shows

substantial improvements during all months of the year, although a simple technique of

shifting and scaling of mean and variance is used. The bias-corrected CRCM climate

presented in this chapter will prove to be useful for the hydrological change assessments

over the CRB presented in the next chapter.

Despite the considerable improvement of precipitation and temperature time series after

applying bias corrections, some shortcomings remain (e.g. precipitation extreme outliers).

This observation could be related to limitations of the bias correction techniques employed

in this research, limitations of RCMs itself, or inconsistencies of the observed station data

used as a basis for bias adjustment. One of the known RCM limitations is related to its

land surface process and its ability to capture summer convection as well as other surface

processes (Music and Caya, 2007).
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Chapter 7

Assessing Changes in Hydrological

Processes using the VIC model

7.1 Introduction

Greater knowledge of climate variability is required in order to understand the potential

impacts of changes in hydrological processes (Xu et al., 2005). As discussed in the literature

review (Section 2.2), a regional climate model (RCM) is a useful tool to investigate regional

climate variability. Climate data from the Canadian Regional Climate Model (CRCM) are

used in this chapter in order to investigate changes in hydrological processes. In Chapter

5, an attempt was made to evaluate regional hydrology from the atmospheric dataset of

the CRCM, using the combined atmospheric and terrestrial water balance technique. In

this chapter, changes in hydrological processes will be examined by using the distributed

hydrological model VIC, with inputs from the CRCM. The Churchill River Basin (CRB)

above the Otter Rapids (station # 06CD002) is modelled using the VIC model. Modelling

of the CRB hydrological processes is not an easy task due to the complexity of the terrain

and scarcity of data which make hydrological model calibration and validation difficult.

The goal of this effort is to capture adequately the physics of the watershed, especially
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the winter processes. Calibration of the model is achieved through the comparison of the

model simulated streamflow with the available measured streamflow record. Assessing

the performance of a hydrological model from its observed and simulated flow only may

not be sufficient. The climate variable inputs from the CRCM are propagated through the

modelled hydrological systems and produce the hydrological variables of interest. If the

internal variables from the model can be demonstrated to compare favourably with measured

values, then the confidence in the model simulated streamflow will increase. Additionally,

the study will provide more conclusive estimates of water budget components by comparing

the hydrological model output with the output obtained from the atmospheric-based water

budget estimates from Chapter 5.

7.2 Literature Review

The impacts of the changing climate on the regional hydrology is already evident (IPCC,

2007a, Chapter 11). Methods used for assessing changes in regional hydrology have evolved

over time. The use of a RCM in the study of regional hydrological process changes have

been pursued by several researchers (Leander and Buishand, 2007; van Roosmalen et al.,

2010; Piani et al., 2010). These studies used RCMs as input to hydrological models in order

to provide flow estimations as well as to study regional/basin scale processes.

The use of future climate projections from RCMs is an obvious choice for assessing the

impacts of regional-scale climate change on hydrological processes, as discussed in Section

2.2. These RCM simulations are depending on the GCM data used at the boundaries and the

chosen emission scenarios. Graham et al. (2011) demonstrated the potential use of RCM

projections in assessing hydrological responses to climate change. Olsson et al. (2011)’s

study suggests that the RCM simulations providing the best representations of the recent

past may provide dependable projections of the near future that can be used for climate

change assessments. In Chapter 5, it was demonstrated that the CRCM’s present climate is
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in agreement with available observations and with re-analysis data.

Canadian regional climate projections from the CRCM are used in this study. The

CRCM projections of future climates are driven by CGCM3 for the emission scenario

SRES-A2. The CRCM simulations used in the present study were realized by the Ouranous

Consortium and provided by the Ouranous climate simulation team. A list of the CRCM

simulations used in this research are provided in Table 4.1.

Selection of an appropriate hydrological model is important (Leavesley, 1994). Different

hydrological models were discussed earlier in Section 2.3.3. The distributed hydrological

model VIC has been selected for the present study in order to account for the spatial

variability in sub-basin scale processes as well as to make best use of gridded spatially-

distributed RCM data. The CRCM data used as input to the VIC model has been corrected

for biases. Bias correction of CRCM data was discussed in Chapter 6.

The VIC model has been applied to major North American basins such as the Colorado

River basin (Christensen and Lettenmaier, 2007; Cayan et al., 2010; Gao et al., 2011), the

Columbia River basin (Hamlet et al., 2010), and the conterminous United States (Maurer

et al., 2002). Hurkmans et al. (2010) investigated streamflow dynamics using the VIC

model under three scenarios of the regional climate model. Liang and Xie (2003) discuss

the surface runoff generation process and interactions between surface and groundwater

using the VIC. Their results show that the VIC model properly simulates the total runoff and

groundwater table of the Little Pine Creek watershed in Pennsylvania for multiple years. Gao

et al. (2011) used RCMs from the North American Regional Climate Change Assessment

Program (NARCCAP) to evaluate implications of climate change for the discharge of the

Colorado River basin. Another study, by Liu et al. (2009), used the VIC model to assess the

impact of climate change on streamflow with input data from PRECIS (Jones et al., 2004)

used to drive the model. Both studies suggest that RCM data may be used effectively with

the VIC model for hydrological change assessment.

86



7.3 Methodology

This chapter will present the approach to modelling regional hydrology under different

climate conditions using the VIC hydrology model. The bias-corrected CRCM climate data

are used as input to the hydrology model. The Churchill River basin (CRB) above Otter

Rapids has been selected for this research. Use of area specific information such as digital

elevation maps (DEMs), land use, and soil data, climatological data, as well as hydrometric

data plays a key role in the modelling process. The following subsection will present a site

description and a detailed discussion of data used. Model calibration and validation are

also discussed in this chapter. The VIC model calibration is performed using the observed

streamflow at Otter Rapids (station # 06CD002 shown in Figure 3.4). Model validation

is also performed using streamflow at the basin outlet. Apart from the outflow validation,

important hydrological variables such as evaporation, snow, and soil moisture are chosen for

a detailed evaluation of VIC’s performance and will be presented later in the chapter.

Once the VIC model is calibrated and validated over the watershed with observed

data, the validated model can be used with CRCM climate simulations. Streamflow is the

aggregation of many different hydrological processes in the watershed. Streamflow trends

are evaluated and presented using a non-parametric Mann-Kendall (Mann, 1945; Kendall,

1975) test. Assessment of trends for changes in streamflow includes tests for mean annual,

maximum and minimum streamflow along with different percentiles of streamflow. Besides

the streamflow comparison, a detailed analysis of snow water equivalent, snow depth, and

soil moisture are also presented in order to evaluate hydrological responses in a changed

climate.
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7.4 Study region and Data

7.4.1 Churchill River Basin

The Churchill River basin has been selected for this study. A detailed discussion of the basin

is provided in Chapter 3. The downstream portion of the Churchill River basin is highly

regulated because of its diversion for hydro-power development. Therefore, this study will

mainly focus on the basin area upstream of the diversion. The basin upstream of the Otter

Rapids hydrometric station (# 06CD002) is selected for modelling. The flow regime at Otter

Rapids is natural. A map of the delineated basin is shown in Figure 3.5.

7.4.2 Data

A detailed description of the climatological and hydrometric data used in this research is

presented in Section 3.1.1 and 3.1.2, respectively. The VIC hydrological model requires

input for each model grid. Therefore, in order to perform calibration and validation, obser-

vational temperature and precipitation data from selected weather stations are gridded at a

spatial resolution of 1/8◦ using the SYMAP interpolation algorithm of Shepard (1984). The

interpolation technique is based on an inverse-square-distance rule. A detailed description

of the SYMAP mapping is given in McHaffie (2000). The minimum and maximum tem-

peratures are derived from the daily time series of station data. In the gridding process, the

temperature data were corrected (0.65◦C/100m) to the center elevation of grid cells. No

correction was applied to the daily precipitation data.

The CRCM climate simulations are used in this study (see Chapter 4). The CRCM

climate simulations includes a baseline climate (1976-2005) with observed greenhouse gas

and aerosol (GHG+A) evolution and two time slices of future climate (2030s: 2020-2049,

and 2050s: 2041-2070) with the SRES A2 scenario. The CRCM baseline and future climate

data are also re-gridded at the same spatial resolution of 1/8◦ of the VIC model grid.
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7.5 The VIC model

7.5.1 Description

The Variable Infiltration Capacity (VIC) model is a surface water and energy balance model.

The single-layer original version of VIC was developed by Wood et al. (1992) as a land-

surface hydrology parameterization scheme for general circulation models (GCMs). Liang

et al. (1994) modified this model to include two soil layers, thereby improving the water

and energy balance. Later, Liang et al. (1996) determined that an additional thin top layer of

5-15 cm significantly improved the evapotranspiration predictions in arid climates; thus, a

third layer was added. The spatial distribution of precipitation, infiltration, and vegetation

are considered in the model to simulate the water and energy budget at the surface. Liang

and Xie (2001) modified the surface runoff parameterization in VIC to express dynamically

both the infiltration excess (Horton) and the saturation excess (Dunne) runoff.

The VIC model was upgraded to include a two layer snow model (Andreadis et al.,

2009). Bowling et al. (2004) added the blowing snow algorithm in the VIC. Bowling and

Lettenmaier (2009) incorporated a lake and wetland algorithm in the VIC model as storage

of runoff in lakes and wetlands influence both the inter-annual and inter-seasonal variability.

VIC can also deal explicitly with the dynamics of surface and ground water interactions

and calculate the water table (Liang et al., 2003). VIC can be applied under cold climate

conditions where snow and frozen soil processes play an important role (Cherkauer and

Lettenmaier, 1999; Cherkauer et al., 2003). Mishra and Cherkauer (2011) investigated cold

season climate variability on lakes and wetlands in the Great Lakes region using VIC.

The model used in this study is comprised of two parts : (i) the VIC-3L model (Liang

et al., 1994, 1996; Cherkauer and Lettenmaier, 1999; Cherkauer et al., 2003; Andreadis

et al., 2009); and (ii) a routing model (Lohmann et al., 1996, 1998). The VIC model

produces surface runoff and baseflow within each grid cell. The routing model transports

grid cell flow to the outlet of that grid cell and then into the river system. The routing model
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Figure 7.1: The VIC model schematic: a. Grid cell energy and moisture flux - in left; Layer 0 - a thin layer
; Layer 1 - an upper layer; and Layer 2 - a lower layer. b. Grid cell vegetation coverage - in right. ‘Runoff’
is determined by a nonlinear function of infiltration relationship with fraction of area and ‘base flow’ is
determined by a functional relationship with layer 2 soil moisture.

does not pass any feedback to the VIC, nor does it transport soil water between neighbouring

grid cells.

A schematic of the VIC hydrological model appears in Figure 7.1. The VIC-3L model

has three soil moisture layers (Liang et al., 1996): (i) a thin layer ; (ii) an upper layer; and

(iii) a lower layer. The upper layer is designed to represent the dynamic behaviour of the soil

column to rainfall events; the lower layer is used to characterize slowly varying seasonal soil

moisture behaviour. The lower layer shows the response to a rainfall event only when the

upper layer is wet. Therefore, the subsurface flow is separated from the quick storm response.

The top thin layer allows a quick bare soil evaporation following small summer rainfall

events. A grid cell area is partitioned into N different types of vegetation including bare

soil. Vegetation characteristics such as leaf area index, root distribution, canopy and surface

resistance, roughness length, and displacement height are assigned for each vegetation type.

Three types of evaporation are considered in the VIC: (i) EC - evaporation from canopy

layer; (ii) ET - transpiration from vegetation classes, and (iii) E - evaporation from bare
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Figure 7.2: The schematic of the routing model used in the VIC; upper right and lower left are two impulse
response functions for the internal grid box routing and the river routing, respectively (after Lohmann et al.
(1996))

soil. Other governing processes in each grid cell within the soil column are infiltration (i),

percolation (Q), latent heat flux (L), sensible heat flux (S), ground heat flux (τG), long and

shortwave radiation (RL and RS), runoff (R), and baseflow (W). The non-linear variable

infiltration capacity curve is used for runoff calculations. Baseflow is also derived using

a curve, a non-linear function, that depends on soil moisture at the base-layer. A detailed

discussion of the VIC model can be found in Liang et al. (1994).

The VIC model produces a time series of runoff values for each grid cell. These time

series are not considered as runoff produced at a single point; rather they are distributed

non-uniformly over the area of the grid cell in accordance with the soil moisture distribution.

To calculate the runoff generated in different parts of the grid cell, VIC is convoluted with a

transfer function which simulates routing within the grid cell and transfer the response via

deconvolution of the catchment impulse response function with the river network impulse

response function belonging to that catchment (Lohmann et al., 1996). Runoff from each

cell can only flow into one of its eight neighboring cells and the entire flow must go to the
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same neighboring cell. The outflow from each grid cell is then added to a cell in the drainage

direction with a time delay based on simple travel distance and velocity assumptions after

calculating the outflow using an impulse transfer function described by Lohmann et al.

(1996). The rive routing model may account for human activities such as extraction or

reservoir operation in a specific node, and therefore, need to be implemented separately

following the operation rules. A schematic of VIC routing model appears in Figure 7.2.

7.5.2 Model Inputs

The VIC model can be run in two different modes, water balance and energy balance,

depending on the availability of meteorological input data. The water balance mode has

been selected for use in this study. The forcing data for VIC in the water balance model

include daily maximum temperature, daily minimum temperature and daily precipitation.

Apart from the climatological data, the model requires input parameters related to soil and

vegetation. The energy balance simulation of VIC could not be used as the energy balance

simulation requires observations of shortwave radiations which are not available for the

basin.

The soil and vegetation parameters are gathered from the University of Maryland 1 km

global land cover datasets, and the land data assimilation system (LDAS) vegetation library

data and 5-min Food and Agriculture Organization (FAO) global soil datasets. Manitoba

Land Initiative (MLI) information is used in this study for a priori estimation of vegetation

and soil parameters. The land cover classification map of the Churchill River basin used in

this study is shown in Figure 3.6.

A digital elevation model (DEM) of the watershed area from USGS HYDRO1K is

used to define the contributing area, which is done by basin delineation using the Arc/Info

software. Once the basin boundary is defined, other required data such as flow direction,

flow network, elevation mask file, and fraction file for flow routing is also extracted from the

DEM. The delineated watershed above Otter Rapids of the CRB is approximately 112,000
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km2 using the HYDRO1K elevation data and is shown in Figure 3.5. The Water Survey of

Canada (WSC) estimates a gross drainage area of 119,000 km2 and an effective drainage

area of 112,000 km2 above Otter Rapids station (# 06CD002).

7.5.3 Parameter Estimation and Calibration

Parameter estimation is a critical aspect of the modelling exercise, because the efficiency of

model prediction depends upon the proper estimation of model parameters (Huang et al.,

2003). In a hydrological modelling exercise, some parameters are non-changing regionally

and can be set at reasonable values from regional datasets based upon the literature.

According to Nijssen et al. (1997), the VIC model parameters having the highest effect

on streamflow hydrographs are the infiltration capacity shape parameter (b); the maximum

velocity of base flow (Dm); non-linear base flow (Ds); the depth of second soil layer (D2);

and the fraction of maximum layer 2 soil moisture at points where non-linear base flow

occurs (Ws). Demaria et al. (2007) also claims that the infiltration capacity shape parameter

(b), and the depth of second soil layer (D2) are highly sensitive to streamflow and the

three other model parameters (e.g., Dm, Ws, and D3 ) are only slightly sensitive. A priori

estimates of seven parameters appear in the Table 7.1. These parameter estimates are chosen

based on the calibration of the VIC model in similar Prairie basins (Wen et al., 2009). A

parameter estimation scheme for the VIC using MOPEX databases was published by Xie

and Yuan (2006). A recent study by Wang et al. (2012, Table 2) presents maximum and

minimum of parameters based on 125 calibrated catchments. Of these parameters, the most

sensitive are chosen for systematic manual calibration in this research.

The VIC model calibration is performed manually by systematically adjusting parameters

with aim to reduce the differences between observed values and simulated results and the

visual match of the shape of the hydrograph. Calibration is performed using the following

steps: (i) determine a reasonable value for the thickness of the second soil layer; usually a

thicker second layer allows more storage; (ii) adjust values of Dm and Ds in order to fit the
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Table 7.1: A priori estimate of parameters values for VIC model.

Parameter Unit Value
Infiltration capacity shape parameter (b) - 0.2
Maximum velocity of base flow (Dm) mm/day 10
Fraction of Dm where non-linear base flow (Ds) Fraction 0.02
Fraction of the maximum layer 2 soil moisture where non-
linear base flow occurs (Ws)

Fraction 0.8

Thickness of first soil layer (D1) m 0.1
Thickness of second soil layer (D2) m 0.5
Thickness of third soil layer (D3) m 1.5

low flows; (iii) adjust the infiltration capacity shape parameter (b) to match the observed

flow peaks. The parameter b dictates the partitioning of rainfall into infiltration and surface

runoff. Generally, a higher value increases the peak and a lower value lowers the peak. Then

(iv), repeat the above steps to obtain the best simulated result. During the calibration process,

the second layer thickness is adjusted and the top layer thickness (0.1 m) is kept constant.

The VIC model treats the first and second layers as one entity while calculating the surface

runoff (Figure 7.1).

Figure 7.3 presents the calibration (top) and the validation (bottom) of daily flow series

as simulated by the VIC model for the CRB above Otter Rapids. The VIC calibration was

performed for the period 1985-1991, and validation was performed for 1977-1983. The

seven-year calibration and validation periods are assumed to contain sufficient intra-annual

and seasonal variability to be representative. Many different test criteria can be used to assess

the efficiency of a hydrological model calibration (Hall, 2001; Krause et al., 2005). Apart

from the visual inspection of plots of streamflow, the Nash-Sutcliff coefficient of model

efficiency (NSE) (Nash and Sutcliffe, 1970), shown in Equation 7.1, is used to measure

the goodness-of-fit between the observed and simulated flow time series. The NSE can be

calculated as follows:

NSE = 1−
∑N

t=1 (Qi,o −Qi,m)2∑N
t=1

(
Qi,o − Q̄

)2 (7.1)

where Qi,o is the observed streamflow, Qi,m is the model-simulated streamflow, and Q̄ is the
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Figure 7.3: Comparison of observed and VIC simulated hydrograph of daily flow series for the upper Churchill
River basin. The calibration (top) is performed for 1985-1991 and the validation (bottom) is performed for
1977-1983. The Nash-Sutcliffe coefficient of Efficiency (NSE) is found 0.607 and 0.501 for calibration and
validation, respectively. The percent volume bias error (%VB) is found 9% and 12% during calibration and
validation, respectively

mean observed streamflow. Higher values of NSE (closer to 1) indicate better agreement.

The NSE is 0.607 and 0.501 for calibration and validation periods, respectively. Henriksen

et al. (2003, Table 4) suggested that values of NSE between 0.5 - 0.65 are considered

acceptable.

The volume bias error (%VB), is a second measure of fit used in this research., The

%VB can be calculated as follows:

%V B = 100.
Q̄o − Q̄m

Q̄o

(7.2)

where Q̄o is the mean observed streamflow and Q̄m is the mean modelled streamflow. The

%VB emphasizes volume conservation over the calibration and validation periods and is not

sensitive to errors in streamflow timing or seasonality. Schnorbus et al. (2011) performed
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Figure 7.4: The sensitivity of the VIC infiltration capacity shape parameter (b) on the streamflow production.

Table 7.2: The sensitivity of the VIC infiltration capacity shape parameter (b). Calculation of NSE and %VB
are shown for different b .

Inf. capacity shape param (b)
Statistical test 0.005 0.05 0.01 0.2
Nash-Sutcliff coefficient of model ef-
ficiency (NSE)

0.26 0.47 0.56 0.22

Percent volume bias error (%VB) 15.8 11.9 7.5 23.4

successful calibration of VIC while keeping the percent volume bias error within 10%. In

this research, the %VB is 9% and 12% for calibration and validation periods, respectively.

Merritt et al. (2006) also accepted a volume bias error of 13% during validation.

Streamflow is considered highly sensitive to the infiltration capacity shape parameter (b)

(Demaria et al., 2007). Therefore, a sensitivity test of the infiltration capacity shape param-

eter (b) on the streamflow production is carried out in this study. The infiltration capacity

curve represents the spatial variability of soil infiltration which is the most distinguishing

characteristics of the VIC model. Figure 7.4 presents the streamflow simulated for differ-

ent shape parameters (b) with all other parameters held constant. Only three consecutive

years are shown in Figure 7.4 for better visual interpretation. The b parameter dictates the

partitioning of rainfall into infiltration and surface runoff. Figure 7.4 demonstrates that the

smaller values of b increase the model infiltration and weaken the surface runoff. Table

7.2 provides values of NSE and %VB for different values of the b parameter. The visual

interpretation of flow in Figure 7.4 indicates that b influences both the magnitude and the
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timing of the simulated peak flows. The b parameter can play a critical role in partitioning

of rainfall into infiltration and surface runoff in a dry, water-stressed basin (Demaria et al.,

2007).

Although the statistical performance of the modelled discharge indicates a good model

fit, some discrepancies exist between modelled and observed results. Simulated low flow is

lower than observations for some years. The simulated snow-melt peaks are not well captured

and in most cases are overestimated. The snow-melt issue in VIC was also recognized in

the North American Land Data Assimilation System project (Lohmann et al., 2004, Figure

12). The anomaly in the model discharge may be due to the driving observational dataset

as there are only a few climate stations located in the Manitoba portion of the delineated

basin. Also, this shortcoming could be related to the limitations of the VIC simulations in

water balance mode. In this study, VIC simulations are performed in water balance mode.

The full energy balance simulation could not be used as the VIC energy balance simulation

requires observations of shortwave radiations which are not easily available.

The disagreement in the model discharge may also be due to the modelling limitations of

the areas of lakes and wetlands. The lakes and wetlands have influence on the downstream

flow regime through attenuation, storage and slow release processes that occur within the

lakes. These lakes and wetlands create challenges for hydrological modelling because the

input-storage-output relationship between the river system and wetlands/lakes are not fully

understood (Hughes et al., 2013). A lake model is not included in the VIC simulation.

The main focus of the study, however, is modelling the hydrological processes not only

discharge. Overall, the VIC is able to reproduce the run-off dynamics for the calibration and

validation periods. Based on the above validation results, the calibrated VIC hydrological

model can be considered suitable for use in the hydrological change assessment of the

region.
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7.6 Results

One of the main objectives of the study is to increase an understanding of how and to what

extent climate change can affect hydrological processes in the CRB. As discussed earlier

(literature review section), the CRCM climate data are used to drive a hydrological model

over the CRB to assess changes in the hydrological processes. Before applying CRCM data

to a hydrological model, bias corrections have been performed (Chapter 6).

The model calibration by adjusting basin outflow is a reasonable approach, but it is

possible that internal variables are simulated incorrectly but cancel out and result in accurate

outflow of the basin. If the internal variables such as snow and soil moisture simulated from

a hydrological model can be validated with alternative data sources, doing so will enhance

the reliance of the model’s ability to reproduce streamflow over the basin. The following

section presents the VIC model evaluation by examining the internal state variables.

The VIC model was used to simulate hydrological regimes of 30-years of baseline

climate (1976-2005) and 30-years of future climate of 2030s (2020-2049), and 2050s (2041-

2070) with climate forcing from the CRCM. Later in this chapter, hydrological process

variables from these climate simulations will be evaluated in order to assess the impact of

climate change.

7.6.1 Evaluation of the VIC model

The VIC produces many internal variables as simulation output. The dominant variables are

chosen for evaluation. Climatologically, the CRB, a Prairie basin, is classified as semi-arid

to sub-humid with cold and relatively long winters (Pomeroy et al., 2007). One-third of

Prairie annual precipitation is received as snowfall (Akinremi et al., 1999). Snowpack plays a

central role in runoff production. The water stored as snow accounts for a dominant fraction

of the spring runoff contributing to streamflow.

Given the importance of snow in the hydrological cycle in the Prairies, the changes

98



in snowpack are strongly related to the associated changes in evaporation, soil moisture,

and runoff dynamics. Therefore variables chosen for model evaluation are the following:

(i) evaporation, (ii) snow depth, (iii) snow water equivalent (SWE), and (iv) soil moisture.

These variables are rarely observed at the basin scale; therefore, direct comparisons of these

variables are performed only at locations where observed data are available. In the following

sections, attempts are made to validate these variables with quasi-observed or reanalysis

datasets. In some cases, attempts have been made to validate these variables with point

measurements, where measurements are available within the basin or the neighbouring area

of the basin.

Evaporation

Evaporation is a vital but also the least measured component of the water budget equation.

Since evaporation measurements are scarce at a regional scale, validation of hydrological

model estimates is difficult. Traditionally, point measurements of evaporation are performed

with lysimeters or evaporation pans. The other method of obtaining direct measurements

of evaporation is through the flux tower also known as an eddy covariance system. Eddy

covariance measurements of evaporation from Great Slave were conducted from GEWEX

in the Mackenzie River basin study (MAGS) (Stewart et al., 1998; Blanken et al., 2000).

Using modelled data, a simple method for obtaining regional evaporation is to solve

the classic water balance equations. Regional or basin scale evaporation can be obtained

from aerological datasets by deriving atmospheric water balance using reanalysis data

(Abdulla et al., 1996; Maurer et al., 2002). Evaporation can also be derived as the residual

of precipitation and water vapour convergence from an atmospheric water budget calculation

(Rasmusson, 1968; Berbery and Rasmusson, 1999).

In this section, evaporation estimates from different independent calculations are pre-

sented. The NARR is used to obtain surface evaporation. A quasi-observed evaporation

is calculated from the atmospheric dataset of NARR following the Equation 5.9. Annual
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Figure 7.5: Annual cycle of VIC evaporation compared with CRCM, NARR and quasi-observe. The quasi-
observe evaporation is calculated as Equasi−obs ≈ −{∇H ·Q + ∂W/∂t}NARR + PCANGRID.

cycles of evaporation from these independent calculations are presented in Figure 7.5 along

with evaporation derived from VIC simulation.

A seasonal cycle of VIC evaporation, shown in Figure 7.5, clearly demonstrates that the

peak evaporation appears in the month of July. The VIC underestimates summer (June-July-

August) evaporation. This underestimation may be due to VIC model limitation of defining

Prairie lakes and wetlands. A ‘surface water’ land class is used in the VIC model set-up

where small water bodies are included. Evaporation from the water surface is calculated

in each time step of the VIC calculation, assuming surface temperature is equal to the air

temperature. During summer, surface temperatures are usually higher than air temperatures;

therefore, the summer evaporation is underestimated. Cherkauer et al. (2003) demonstrates

the effect of including surface water from lakes on the average monthly VIC simulated

hydrograph. Specifically monthly discharge is reduced due to lakes with little change in the

timing of the hydrograph. The authors concluded that the over-prediction of runoff is due to

the underestimation of evaporation from the surface water. Seasonal evaporation of these

lakes and wetlands are not well known. Evaporation is still a relatively understudied part of

the Prairie wetlands hydrological balance (Waddington et al., 2009).
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Figure 7.6: Average mean monthly time series for VIC evaporation estimates are compared with measured
evaporation at location 53.98◦N 105.12◦W(in top) for the period 1999-2005. Annual cycle of mean monthly
evaporation estimates for VIC is compared with observed (in bottom). The annual cycle of evaporation is
calculated from 1999 to 2005 monthly evaporation time series. Observed data are obtained from Fluxnet-
Canada at Old Black Spruce, SK. The error bar indicates the standard error (one std.) of the VIC evaporation
estimates.
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Figure 7.6 shows a comparison of evaporation estimates for the VIC model and measured

evaporation for the period 1999-2005. The measured evaporation is obtained from the

Fluxnet-Canada1 at Old Black Spruce, SK. The site is located at 53.98◦N 105.12◦W and

shown in Figure 3.5. The simulated evaporation from the VIC model is extracted from a

neighbouring grid at location 53.99◦N, 105.44◦W. The error bars in the Figure 7.6 (bottom)

indicates the standard error (±1 standard deviation) of the VIC evaporation estimates.

Figure 7.6 (top) shows that in all years, the late fall and winter evaporation estimates

from VIC tend to be lower than those of the measured evaporation. Sometimes, during

fall and winter, the VIC evaporation tends to have small negative values (not shown). The

negative values are most likely due to the model’s assumptions and computations. Yeh

et al. (1998) also found evaporation estimates to be below zero during the late fall and

winter months which was explained by the limited accuracy of the model. Another partial

explanation may be VIC’s snow model, which was not separately calibrated and may

contribute to the underestimation of evaporation. The VIC snow model is intended for

large-scale applications.

Figure 7.6 exhibits both model and observations has peak evaporation in July of 86.6

mm and 91.3 mm, respectively. The model’s peak evaporation is underestimated by 5%.

Simulated summer (June-July-August) evaporation of VIC is 228.88 mm and measured

summer evaporation is 252.53 mm. VIC underestimates summer evaporation by 9%,

which can partially be explained by the assumptions of the VIC model. In water balance

mode, VIC assumes a surface temperature equal to the air temperature. Usually the surface

temperature during summer is higher than air temperature; therefore, the summer evaporation

is underestimated. This limitation can be overcome by using the VIC energy-and-water

balance mode where VIC finds the surface temperature through an iterative process of

solving the surface energy balance. This mode requires more computational time than the

water balance mode and requires a sub-daily simulation time step which was not possible in

1Fluxnet-Canada data were accessed on August 04, 2012 with permission through the web portal at
ftp://fluxnet.ccrp.ec.gc.ca/PublicMeasuredData/.
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this study due to data limitation.

Figure 7.6 (bottom) presents the annual cycle of mean monthly evaporation estimates.

Overall, the VIC model underestimates evaporation compared to the measured evaporation

at location 53.98◦N, 105.12◦W, except for the months of May and June. The same tendency

can be observed in the spatially averaged evaporation over the basin shown in Figure 7.5.

The estimated total annual evaporation for the VIC model is 367.87 mm, whereas the

measured total annual evaporation is 431.75 mm. The VIC model’s total annual evaporation

underestimates the observed by 14%. Although there is an overall underestimation of VIC

evaporation, the pattern of the model’s annual cycle of evaporation is in close agreement

with measured evaporation estimates.

Snow

Snow is a crucial component of the hydrological cycle, especially in high latitude northern

basins. Snow processes are integral components of a hydrological model. The VIC model

was upgraded to include a snow model in order to represent cold land processes (Andreadis

et al., 2009). Validation of the snow process was by no means an easy task due to the

limited availability of snow measurements. In this research, observation at the boreal forest

sites were taken as a part of the Boreal Ecosystem-Atmosphere Study (BOREAS) (Sellers

et al., 1997). In the BOREAS study, manual snow depth and water equivalent measurements

were taken at various sites. Two sites (SSA-OBS2, and SSA-999-NIY013), shown in Figure

3.5, were selected for this study. Apart from the BOREAS data, Western North American

domain monthly (Dec-Jan-Feb-March) average snow water equivalent (SWE) data from the

Scanning Multichannel Microwave Radiometer (SMMR; 1978-1987) and the Special Sensor

Microwave/Imager (SSM/I; 1987 - 2002) were used (Derksen et al., 2002, 2003). There are

10491 grid cells covering the domain. The grid cell close to location 53.98◦N, 105.12◦W

2SSA-OBS: The southern Old Black Spruce snow course is located at 53.98◦N, 105.12◦W. The site location
map of SK-OBS can be seen at http://daac.ornl.gov/BOREAS/bhs/sites/SSA-OBS.html

3SSA-999-NIY01: This snow course is located at east of highway #106 about 4.0 km north of the correction
facility road. It is about 200m off the highway. The geographic location is 53.85◦N and 104.61◦W.
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Figure 7.7: The VIC simulated monthly averaged SWE compared with the microwave measured SWE at
location 53.98◦N, 105.12◦W. Passive microwave data are obtained from from the Scanning Multichannel
Microwave Radiometer (SMMR; 1978-1987) and the Special Sensor Microwave/Imager (SSM/I; 1987-2002).

was retrieved for comparison. In the following sub-section, snow water equivalent (SWE)

followed by snow depth as simulated by VIC hydrological model are validated using these

measured datasets.

Figure 7.7 illustrates a comparison of the VIC simulated monthly averaged SWE along

with microwave measured SWE. The NARR SWE, representing quasi-observed data, is

also included in this figure for comparison. Overall, the monthly VIC SWE overestimates

compared to microwave measured SWE. Andreadis et al. (2009) examined SWE data at the

neighbouring site SSA-OJP4, where the VIC model overestimates SWE. There are only four

months (Dec-Jan-Feb-March) of microwave measured SWE data available; therefore, it is

not possible to validate the SWE situation during snow melt from microwave measurements.

Figure 7.7 demonstrates that the VIC SWE follow closely with the NARR SWE during

snow accumulation. Overall, the NARR SWE is considerably smaller than microwave

measured SWE. Snow information (i.e., depth, SWE, snow cover fraction) are included

in the NARR dataset based on the Noah land surface process model. Brown et al. (2007)

suggested that the Noah model melts snow too quickly in the spring which can be seen

in Figure 7.7. Brown et al. (2007) present a comparison of snow datasets over Québec

4SSA-OJP: The Southern Old Jack Pine site is located at 53.91◦N 104.69◦W and shown in Figure 3.5
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Figure 7.8: The VIC simulated snow water equivalent (SWE) compared with the measured at SSA-999-NIY01
Site. The geographic location of the site is 53.85◦N and 104.61◦W

and point out that the NARR greatly underestimates SWE over the western Cordillera and

Québec. The overall RMSE between NAAR SWE and microwave measured SWE is 16.1

mm, and RMSE between VIC simulated SWE and microwave measured SWE is 9.7 mm.

Figure 7.8 presents the VIC SWE comparison with measured SWE at location 53.85◦N

and 104.61◦W (SSA-999-NIY01). This plot suggests that VIC captures snow accumulations

effectively for both 1995 and 1996, but over-predicts the peak SWE. For both years, VIC

snowmelt agrees closely with measured values and finally VIC predicts the timing of

complete melt of the snowpack fairly accurately. The correlation between the measured and

VIC modelled SWE is 0.94, while the RMSE is 20 mm.

Figure 7.9 shows a comparison of snow depth as simulated by VIC along with snow depth

measurements at SSA-OBS site. The snow depth measurements were taken in clearings

of the site. Figure 7.9 (top) shows that the VIC simulated snow depth is underestimated

throughout the winter at this site. Figure 7.9 (top) also demonstrates that the VIC snow model

captured an early snowfall event successfully in December 1998. Despite the noticeable

underestimation of snow depth, the model appears to follow the accumulation and melt

events closely, which suggests a consistent underestimation over the snow period. The

underestimation of modelled snow depth may be partly explained by the snow interception.
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Figure 7.9: The VIC simulated snow depth compared with the observations at SK-Old Blak Spruce site located
at 53.98◦N, 105.12◦W.

The observed snow depth data are collected at the clearings of the site, where there is no

canopy interception present. According to Storck et al. (2002), the snow interception was

observed to reach about 60% of snowfall.

Figure 7.9 (bottom) suggests that model snow accumulations are reasonable in De-

cember, but underestimates snow accumulation during February and March, leading to an

underestimation of peak snow depth. Overall, the VIC-simulated snow depth follows the

observed fairly closely and predicts the timing of complete melt of the snow for all years at

this site. The correlation coefficient between VIC-simulated snow depth and measured snow

depth is 0.94 with an RMSE of 8.3 cm. The model underestimates snow depth for almost all

the years. Despite the model’s underestimation, it tends to follow the accumulation and melt

events closely.

During calibration of the VIC model , the snow model was not calibrated. A set of

default parameters were used for the VIC snow model. The comparison of VIC-simulated
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Figure 7.10: The VIC simulated soil moisture from three aggregated layers are compared with the measured
soil moisture at SSA-OBS site located at 53.98◦N, 105.12◦W. A correlation coefficient of 0.7 is found between
observed and VIC simulated soil moisture at this location.

snow with measured station data shows that the model is able to predict SWE and snow

depth reasonably well. Improved simulations may be obtained by adjusting VIC snow model

parameters.

Soil Moisture

The VIC soil moisture has been utilized and evaluated at the basin scale (Abdulla et al.,

1996; Cherkauer and Lettenmaier, 1999), in the continental US using the North American

Land Data Assimilation System (NLDAS) (Maurer et al., 2002), and in the global-scale

applications (Nijssen et al., 2001). Meng and Quiring (2008) evaluated VIC soil moisture

against observations from the Soil Climate Analysis Network (SCAN) over several U.S.

sites and found that VIC generally performs well in simulating soil moisture conditions.

Field measurement of soil moisture is rarely available at the regional scale. Soil moisture

measurements are time consuming as well as expensive. Most research applications that

require soil moisture relies on model simulations (Sheffield et al., 2004). Soil moisture

validation in this section is limited to observational data obtained from one location of the

BOREAS study region.

In this study, soil moisture measurements (six times a day) were obtained from the

southern Old Black Spruce (SSA-OBS) site of the BOREAS study region. The SSA-OBS
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site is located at 53.98◦N 105.12◦W. Figure 7.10 compares the soil moisture simulated by

the VIC model with measured soil moisture at the SSA-OBS location. Because the VIC

model simulations are performed on a daily time step, the measured soil moisture dataset

is aggregated to a daily time series. The VIC soil moisture is taken as the addition of the

three soil layers, assuming that soil moisture is vertically and homogeneously distributed

within each layer of the soil column. The observed soil moisture is measured at 45 cm depth

at the site. The VIC model simulation produces a daily variation of soil moisture in the

soil column, but the magnitude of daily variations does not agree with the measured daily

variations. A correlation coefficient of 0.7 is found between measured observed and VIC

simulated soil moisture.

Figure 7.10 indicates that VIC reproduces some aspects of the observed seasonal cycle

of soil moisture, although observed soil moisture peaks are clearly underestimated by the

VIC. The timing of soil moisture recharge, i.e. the wetting of the soil column, in VIC is

consistent with the measured. In comparisons with other soil moisture models, VIC has

been shown to simulate the timing of wetting and drying of the soil well (Meng and Quiring,

2008). However, the VIC-simulated soil moisture has much less seasonal variation than the

measured series.

During snowmelt and rain events, the soil moisture is replenished. The fraction of water

contributing to runoff generation decreases when the soil moisture deficit increases. The

streamflow is strongly coupled to soil moisture in the wet seasons, and there are time lags

between the soil moisture recharge at the onset of snowmelt/rain and the generation of

streamflow in the dry season (Moore et al., 2011).

Figure 7.11 (bottom) shows a plot of VIC-simulated soil moisture from the three ag-

gregated soil layers, and a corresponding plot of flow surplus/deficits (top panel) derived

from streamflow gauge data. Figure 7.11 demonstrates that the VIC-simulated soil moisture

depletion, shown with arrows a,b,c,d, closely follows the streamflow deficits with an average

lag of a year. The Moore et al. (2011)’s study over a small western Oregon watershed shows
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Figure 7.11: The VIC-simulated soil moisture (bottom) corresponding to the flow surplus/deficits (top)
calculated from the flow gauge are presented together. VIC simulation is performed using input from the
observed climate.

a lag of 48 days to refill the moisture during the wet season. Andreadis et al. (2005, Figure

10) showed that the lag could be from 1 to 12 months. The soil moisture depletion shown

in circles in Figure 7.11 (bottom) can not be explained by the flow surplus/deficits plot.

This soil moisture situation may be explained partly by the local processes occurring during

summer months in the lake/wetlands of the Prairies, processes that are not well captured by

the VIC model.

Soil moisture data are most pertinent for drought monitoring. A drought index can be

calculated as the deficit of soil moisture relative to its seasonal climatology at a location. The

soil moisture data can be used in a consistent and meaningful way to identify the occurrence

of drought in different locations. Sheffield et al. (2004, 2009) used simulated daily soil

moisture data and transformed to percentiles in order to derive a drought index. A drought

is then defined conceptually as a sequence of spatially contiguous deficits below the 20th

percentile. This method has been used in previous applications to the United States and is
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Figure 7.12: Soil moisture drought as simulated by VIC mode. The soil moisture values below 20th percentile
are shown in circles. The VIC simulation is performed using input from observed climate.

consistent with drought thresholds used by the U.S. Drought Monitoring network (Andreadis

et al., 2005).

Figure 7.12 presents aggregated soil moisture series as simulated by the VIC model. A

soil moisture below the 20th percentile is calculated and provided in this figure. The Prairie

drought of 2001/2002 is discussed in Bonsal and Regier (2007) and Stewart et al. (2011).

The 2001/2002 drought is reflected in the soil moisture plot presented in Figure 7.12.

The VIC model can simulate the annual cycle of soil moisture fairly closely, as well

as the wetting and drying response. Although, the VIC simulations underestimate the soil

moisture magnitude and do not capture seasonal variations well, a reasonable correlation

coefficient of 0.7 is found between the VIC model simulated and measured soil moisture.

The accuracy of the results depends partly on the quality of the observed data used to drive

the model and partly on the model’s limitations in simulating all aspects of the hydrological

cycle in the Prairies.

7.6.2 Hydrological simulation under changing climate

In this research, the evaluation of changes in hydrological processes under a changing

climate is the ultimate objective. Xu et al. (2005) provided a good review of existing studies,

showing the progress made in simulating hydrological consequences of climate change. The
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review states that modelling seems to be the well-accepted resort to address and attribute

changes in complex hydrological processes under a changing climate. The VIC model

simulations in this study utilize climate model scenarios. The scale issue when applying

these scenario inputs to a hydrological model must be addressed through downscaling. In

order to obtain regional and watershed-scale information, GCM climate scenarios must be

downscaled. Dynamically downscaled regional climate model data have been substantially

improved and has been given increasing preference by the scientific community. CRCM data

are used in this study to evaluate climate change impacts on streamflow, soil moisture, snow,

and snow water equivalent. These variables are analysed together with the climatological

variables precipitation, maximum and minimum temperature.

Streamflow

Streamflow is the best documented hydrological variable considered here. Streamflow acts as

an integrator of the response to all hydrological processes in the basin. Therefore, streamflow

offers the opportunity to identify changes due to climate change. Streamflow trend have

been examined in a number of studies (e.g. Zhang et al. 2001; Burn et al. 2008), due to

growing need for water usage in irrigation, hydropower, and in the aquatic ecosystems. Also,

there has been a growing concern regarding climate change and its impacts on streamflow

(Rood et al., 2005; Masih et al., 2011; Zhang et al., 2011).

The detection of past trends and changes in streamflow is useful for the understanding of

potential future changes resulting from climate change. The daily streamflow data measured

at the gauge station for 1976-2005 are used for trend analysis and presented first in this

sub-section. Subsequently, the VIC simulated daily streamflow series for CRCM baseline

climate (1976-2005) are used for detecting trends in the present climate. In order to assess

trends in the future climate, the VIC simulated daily streamflow using CRCM future climate

(2030s and 2050s) are presented in the following sub-section.

To analyse streamflow properties such as volume, peak, and timing of peak appearance,
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Figure 7.13: Annual hydrograph of the average daily streamflow of three ten year time slices (1976-1985,
1986-1995 and 1996-2005) at Otter Rapids of the Churchill River basin.

it is useful to examine the average hydrograph of the flow regime. Figure 7.13 presents

an annual hydrograph of the average daily streamflow of three ten years time slices (i.e.,

1976-1985, 1986-1995, and 1996-2005) at the Otter Rapids of the Churchill River Basin

(CRB). Streamflow of the CRB varies seasonally. Three distinct flow regimes (the runoff

generated due to spring snowmelt, and the runoff that occurs during summer rainfall, the

base flow) can be seen from the average hydrograph (Figure 7.13). The snowmelt period

begins about mid-April and extends until late June or beginning of July. At the onset of

the snowmelt period, streamflow increase substantially and climbs to its peak in late June

or beginning of July. The summer follows the snowmelt period. The snowmelt peak is

noticeable from the average hydrograph of 1976-1985, where summer rainfall peak is not

prominent. The average hydrograph of 1976-1985 indicates that the regime is dominated

by snowmelt flow. The average hydrograph of 1986-1995 is bimodal that presents a hybrid

response; the first peak is due to spring snowmelt whereas the second peak is due to summer

rainfall. The average hydrograph of 1996-2005 did not appear to be bimodal, but a gradual

snowmelt, while the hydrograph peak is dominated by summer rainfall. These three ten year

time slices show that the flow regime may be in transition in changing from a snowmelt
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Table 7.3: List of variables analysed for streamflow trends.

Variables Descriptions
Annual mean streamflow Mean discharge (m3/s) for each year
Seasonal mean streamflow Seasonal (e.g., spring snowmelt, and summer) mean

stream discharge (m3/s) for months of the season for
each year

Annual minimum daily
mean streamflow

Minimum daily mean stream discharge (m3/s) for each
year

Annual maximum daily
mean streamflow

Maximum daily mean stream discharge (m3/s) for each
year

Percentiles of daily mean
streamflow

Stream discharge (m3/s) exceeding X% of daily mean
streamflow. The X is considered as 10th, 30th, 70th, and
90th percentiles.

dominated regime to a summer rainfall dominated regime.

To examine streamflow trends, the following streamflow statistics were considered:

annual maximum and minimum daily streamflow; high daily streamflow percentiles (seven-

tieth, ninetieth); and, low daily streamflow percentiles (tenth, thirtieth). Zhang et al. (2001)

tested for trends in seven quantiles of daily streamflow, tenth, thirtieth, seventieth, ninetieth

percentiles, and annual maximum and minimum values. As the basin shows significant

seasonal variations in flow, the streamflow during the spring and summer season are also in-

corporated for trend analysis. Table 7.3 provides a detailed description of variables analysed

for streamflow trends.

The non-parametric Mann-Kendall (MK) test (Mann, 1945; Kendall, 1975) was used

in this study to perform trend analysis. The MK test has been extensively used to assess

the significance of trends in hydrological time series (Zhang et al., 2001; Yue et al., 2003;

Yue and Wang, 2004; Burn et al., 2008). The advantages of the MK test are the following:

distribution-free, robust against outliers, and higher power than many other commonly used

tests (e.g., Hess et al., 2001). The MK trend detection in a series is affected by the presence

of a positive or negative autocorrelation (Hamed and Rao, 1998; Yue et al., 2002). Therefore,

the modified Mann-Kendall (MK) statistical test (Rao et al., 2003) was used in this study.

A detailed description of the Mann-Kendall (MK) statistical test is provided in Appendix
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Table 7.4: Trend analysis of measured daily streamflow time series for 1976 - 2005 at Otter Rapids.

Streamflow statistics Z test p-value Trend Slope Trend at 95%
(observed daily flow series) statistics (2-sided) (m3/sec/year) Sig. Level
Maximum/peak flow (Qmax) -0.999 0.318 -2.619 No trend
Minimum/low flow (Qmin) -1.427 0.153 -2.000 No trend
Annual mean flow (Qmean) -0.892 0.372 -2.354 No trend
Date of annual peak 2.322 0.020 2.278a Increasing
Percentile flow:
90th percentile flow (Q90) 3.923 0.000 0.134 Increasing
70th percentile flow (Q70) 1.296 0.045 0.018 Increasing
30th percentile flow (Q30) -2.738 0.006 -0.005 Decreasing
10th percentile flow (Q10) -2.043 0.041 -0.006 Decreasing
Seasonal flow:
Spring mean flow (QMAM ) -1.427 0.153 -2.501 No trend
Summer mean flow (QJJA) -1.320 0.187 -3.052 No trend
Fall mean flow (QSON ) -0.607 0.544 -1.775 No trend
Winter mean flow (QDJF ) -0.563 0.573 -1.020 No trend

aTrend slope - days/year

A.1. Here, a significance level of α=0.05 is used. The slope of the time series is estimated

by Theil-Sen’s (Theil, 1950; Sen, 1968) method. A detailed description of the Theil-Sen’s

method is provided in Appendix A.2. This method is a robust linear regression that chooses

the median slope among all lines through pairs of two-dimensional sample points.

The MK trend analysis is performed on measured daily streamflow time series for the

period 1976-2005. Trend test statistics as well as Sen’s slope are presented in Table 7.4.

The mean annual flow (Qmean) and annual high (Qmax) and low (Qmin) did not show any

significant trend. The Sen’s slopes for Qmin, Qmax, and Qmean are -2.00, -2.62, and -2.35

m3/sec/year, respectively.

The trend analysis is also performed on high (Q90,Q70) and low (Q30,Q10) flow per-

centiles. Both high flow percentiles (Q90,Q70) show statistically significant increasing trends.

The estimated annual changes in the Q90 and Q70 streamflow regimes are small, with a trend

slope of 0.13 and 0.02 m3/s/year, respectively. The low flow percentiles (Q30,Q10) show a

decreasing trend, the slope of the trend is very small (Table 7.4). Low flow quantiles reflects

baseflow which appears to be decreasing. The Zhang et al. (2001, Figure 5)’s study of trends
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Figure 7.14: Annual high/low flow of the daily streamflow time series (1976-2005) at Otter Rapids of the
Churchill River basin.

in Canadian streamflow shows decreasing trends on percentiles of daily mean flow except

for the thirtieth percentile.

Figure 7.14 shows one day high and low flow for the daily streamflow time series. The

date of peak flow of the daily time series is shown in Figure 7.15. The effect of temperature-

driven shifts in the region for streamflow is evident on the date of peak flow. The reason for

this shift of the date of annual maximum daily streamflow is that the peak flow events are

not all snowmelt related; as well, the secondary peak due to summer rainfall is dominant

for some years. Zhang et al. (2001)’s study of the date of annual maximum Canadian daily

streamflow suggests the fact that earlier dates of peak daily streamflow due to spring snow

melt are located in the souther fringe of the country.

In order to analyse the effect of climate on streamflow trends, the climatological variables

(daily precipitation, minimum and maximum temperature) are analysed. The basin average

daily precipitation, minimum and maximum temperature time series (1976-2005) are used

to performed trend tests. Trends in precipitation and temperature for each of the twelve

months are tested using the same MK method to explore whether trends for precipitation

and temperature coincide with streamflow trends. The trend slope is also calculated using
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Figure 7.15: Date of annual maximum daily streamflow (1976-2005) at Otter Rapids of the Churchill River
Basin.

Theil-Sen’s approach for each of the variables analysed. The precipitation variables used

to perform the MK test are annual and seasonal total precipitation, 90th percentile of daily

precipitation, and the number of dry days in a year. Similarly, the temperature variables

tested for trends are the annual and seasonal average temperature, and 90th and 10th

percentiles of temperature. Table 7.5 illustrates the trend test results.

Table 7.5 shows trend statistics of daily precipitation. None of the precipitation variables

considered for the trend test show statistically significant (2-tailed p-value ≤ 0.05) trend.

The reason that no trend in precipitation is observed may be due to the use of a basin spatial

average for the trend test. This trend test result agrees with the findings of Zhang et al.

(2000) in their study of Canadian precipitation trends. Similar findings were reported by

Akinremi et al. (1999, Figure 3), who found that low-precipitation events show a significant

negative trend, while high-precipitation events show a significant positive trend.

Table 7.5 presents trend statistics for daily minimum (Tmin) and maximum (Tmax)

temperature. The 90th percentile, 10th percentile, and mean annual of both Tmin and Tmax

did not show any significant trend. Seasonal Tmin for fall and winter shows an increasing

trend with a trend slope of 0.05 and 0.08 ◦C/year, respectively. As well, seasonal Tmax
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Table 7.5: Trend analysis of observed daily basin average precipitation, minimum and maximum temperature
time series for 1976 - 2005.

P and T(max/min) statistics Z test p-value Trend Slopea Trend at 95%
(observed daily time series) statistics (2-sided) Sig. Level
Precipitation:
Annual -0.646 0.518 -0.888 No trend
Spring (MAM) -1.666 0.096 -0.644 No trend
Summer (JJA) 0.000 1.000 0.008 No trend
Fall (SON) 1.530 0.126 0.747 No trend
Winter (DJF) -1.496 0.135 -0.350 No trend
Number of dry day/year 0.561 0.575 0.136b No trend
90th percentile (P90) 0.146 0.884 0.000 No trend
Minimum temperature:
Annual 0.748 0.455 0.019 No trend
Spring (MAM) -1.836 0.066 -0.060 No trend
Summer (JJA) -0.238 0.812 -0.004 No trend
Fall (SON) 2.312 0.021 0.055 Increasing
Winter (DJF) 2.401 0.016 0.084 Increasing
90th percentile (Tmin90) -0.038 0.969 -0.000 No trend
10th percentile (Tmin10) -1.349 0.177 -0.000 No trend
Maximum temperature:
Annual 0.000 0.142 0.025 No trend
Spring (MAM) -2.104 0.035 -0.064 Decreasing
Summer (JJA) 0.986 0.324 0.028 No trend
Fall (SON) 2.413 0.016 0.069 Increasing
Winter (DJF) 1.700 0.089 0.082 No trend
90th percentile (Tmax90) 1.377 0.169 0.000 No trend
10th percentile (Tmax10) -0.525 0.600 0.000 No trend

aTrend slope for precipitation - mm/year and temperature - ◦C/year
bnumber of days/year
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shows an increasing trend for fall with a trend slope of 0.07 ◦C/year. Zhang et al. (2000,

Figure 11)’s study reported significant positive trends in annual and summer Tmin with a

slope of 0.04 - .06 ◦C per year on grids over Prairies. In another figure of Zhang et al. (2000,

Figure 10)’s study presented a significant positive trends for annual Tmax with a slope of

0.05 - 0.07 ◦C per year over the Prairie grid cells.

An increase in temperature during fall and winter is responsible for lower precipitation

in the form of snow. An increasing temperature trend of the region found in the fall for

Tmin and for Tmax, and in winter for Tmin (see Table 7.5) may partly explain the negative

snowfall during fall and winter, which in turn changes the flow regime by causing a lesser

snow accumulation during fall and winter.

7.6.3 Baseline and Future Climate

Streamflow

Figure 7.16 presents boxplots of mean monthly streamflows (top panel) and mean annual

streamflows (bottom panel) for CRCM future climates as well as the CRCM baseline climate.

Each box illustrates the median and inter-quartile (25th and 75th percentiles) ranges at the

edges of the box, the whiskers are plotted to the most extreme data points without outliers,

and outliers are plotted (+) individually.

Figure 7.16 (bottom panel) shows the CRCM projections of mean annual flow for the

Churchill River basin. The median total annual flow for the CRB increased by 19% for the

2030s climate, and increased by 34% for the 2050s climate. The monthly flow statistics

(Figure 7.16, top panel) exhibit median flow shifts substantially from the CRCM baseline

climate during late spring (May), fall (Sep-Oct-Nov), and early winter (Dec). The timing of

peaks does not seem to change.

The minimum temperature of the observed climate for fall and winter indicates a

significant increasing trend as presented earlier in the Table 7.5, coinciding with monthly

increased flow projections shown in Figure 7.16 (top) for the CRB. The winter warming
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Figure 7.16: Box plots of mean monthly and annual flows for the 2050s and 2030s climates and the baseline
climate (1976-2005) at Otter Rapids of the Churchill River basin.
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Figure 7.17: Probability of annual streamflow exceedance for the 2050s and 2030s climates compared with the
baseline climate at the Otter Rapids of the Churchill River basin.

trend may result in winter precipitation falling as rain-on-snow and rain-on-frozen-ground.

The shifting of fall and winter flows based on the SRES A2 scenario, suggest that the basin

flow pattern is shifting towards being hybrid or rain-dominated due to climate warming

trends.

Flow exceedance plots are cumulative frequency curves that show the percentage of

time a specified streamflow is likely to be equalled or exceeded in a given time period. A

description of how to construct streamflow exceedance frequency plot is given in Appendix

A.3. These flow exceedance plots are particularly useful for planning purposes. Figure

7.17 illustrates the probability of annual streamflow exceedance (constructed from daily

streamflow data) for the CRCM baseline and future climates. In both 2030s and 2050s

climates, flows are expected to increase in terms of frequency and magnitude, relative to

the CRCM baseline climate. The projected increase of flow magnitude that are exceeded

50% of times are greater than that of the projected increase of flow that are exceeded 10%

of times of 2050s and 2030s climate relative to the baseline climate.
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Figure 7.18: Compariosn of VIC simulated snow water equivalent (SWE) for the 2050s and 2030s climates
with the baseline climate.

Snow

The volume and extent of snow in the snow-dominated regions are closely linked to climate

variability and change (Stewart, 2009; Kapnick and Hall, 2012). The potential impacts on

snow (snow water equivalent, and snow depth) due to climate warming over the Churchill

River basin will be evaluated in this section. Three simulations of VIC snow for 2030s,

2050s, and the baseline climate (1976-2005) are analysed and presented in this section.

In Section 7.6.1, an evaluation of VIC-simulated snow was performed. The evaluation of

snow with measured station data illustrates that the model was able to predict snow water

equivalent (SWE), and snow depth reasonably well.

The daily SWE and snow depth data for the grid cell at location 53.98◦N, 105.12◦W

were retrieved from the future climates of 2030s, 2050s as well as from the baseline climate

(1976-2005). In order to provide an enhanced understandings of snow change, the snow

data from the same grid cell that was used for snow validation is considered here.

Figure 7.18 compares the VIC-simulated SWE for the 2030s and 2050s climates as well

as the baseline climate. This plot was prepared using the daily time series of simulated

SWE. For both future and baseline climates, the simulated SWE reaches its maximum in
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mid-March to early April. The SWE of the 2030s climate does not show a decrease in every

month of the snow season; in fact there is a slight increase of SWE during January to March.

The average SWE of 2030s climate exhibits a decrease of 6% compared to the baseline

climate. An overall decrease of SWE was observed for the 2050s climate with an average

decrease of 32%. Räisänen (2008, Figure 4a) reported an overall SWE decrease in this

region between -30 to -15 mm for a 2050-2099 climate relative to a 1950-1999 climate. The

decline in SWE may be associated with increases in temperature (shown in Table 7.5) since

there is no significant trend in precipitation. This finding is consistent with trends observed

by Mote (2003), which were attributed to the increase in air temperature.

The date of maximum SWE is an indicator of when and where the spring snowmelt

begins. Figure 7.18 shows the maximum and minimum SWE derived from a daily time

series of snow data. There is a shift of peak SWE towards an earlier date relative to the

baseline climate. The date of maximum SWE for baseline, 2030s, and 2050s climates is

found to be the 90th Julian day (March 31st), 83rd Julian day (March 24th), and 80th Julian

day (March 21st), respectively. Similar findings of earlier peaks have been reported by

MacDonald et al. (2012), while discussing potential impacts of climate change on SWE in

the north Saskatchewan River basin.

The days between maximum and minimum SWE is the duration of the snowmelt period.

From Figure 7.18, the days between maximum and minimum SWE for the baseline, the

2030s, and the 2050s climates is calculated as 53, 58, and 61 days, respectively. The duration

of the snowmelt period increases by 8 days between the VIC-simulated baseline climate

and the 2050s climate. MacDonald et al. (2012) also found snowmelt duration increases

between 2020s to 2080s climate in the north Saskatchewan River basin using the B1 climate

scenario.

Table 7.6 presents monthly changes in the VIC-simulated SWE. The monthly change in

SWE for the 2050s climate shows an overall decrease for all months of the snow season,

with the highest decrease in the month of April. Similar patterns of change can be seen in
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Table 7.6: Change in monthly snow water equivalent (SWE) and snow depth as simulated by VIC. The
CRCM future climate (2030s, and 2050s) is compared with CRCM baseline climate. Snow depth, and SWE is
calculated from daily time series at location 53.98◦ -105.12◦.

SWE change (mm) Snow depth change (cm)
Months 2030s-baseline 2050s-baseline 2030s-baseline 2050s-baseline
September 0.12 -0.07 0.08 -0.05
October 0.08 -4.08 0.25 -2.23
November -0.74 -15.03 -0.71 -8.11
December -2.29 -18.44 -1.90 -9.11
January 1.24 -15.01 -1.47 -6.75
February 3.98 -11.85 -1.88 -6.18
March 4.77 -13.54 -0.91 -6.71
April -4.21 -39.09 -2.12 -12.62
May -4.67 -5.04 -1.39 -1.63
June -0.01 -0.01 -0.01 -0.01

Table 7.6 for snow depth change, where the highest decrease is observed in the month of

April as well.

Figure 7.19 presents a comparison of VIC-simulated snow depth in future climates and

the baseline climate. Although there is a minor increase in snow depth during September-

October of the 2030s climate, the snow depth of both future climate projections shows an

overall decrease. The average decrease in snow depth for the 2030s climate compared to the

baseline climate is -1.00 cm, and for the 2050s climate compared to the baseline climate

is -5.35 cm. The maximum decrease in snow depth is observed in April -2.12 cm (2030’s)

and -12.62 cm (2050’s). This decline in snow depth is consistent with Lawrence and Slater

(2010, Figure 2b), who reported a projected decrease (2080-2099 minus 1950-1969) of

annual maximum snow depth between -15 to -5 cm in different grid cells over the region of

our interest.

The VIC-simulated snow changes are illustrated in Figures 7.18 and 7.19, where sub-

stantial shifts towards earlier maximum and depleted SWE and reduced water storage in

the snowpack are clearly seen. The total snow duration period is expected to decrease

by 2 days. These findings are consistent with Scott et al. (2008), who projected a shorter

snow cover season and shallower winter snowpack over most of Canada in response to
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Figure 7.19: Comparison of VIC simulated snow depth for the 2050s and 2030s climates with the baseline
climate.

global warming. These assessments based on the SRES A2 scenario suggest that the amount

of snow that helps build SWE during the cold season is gradually decreasing, reducing

snowmelt-generated flow during spring.

Soil moisture

Soil moisture availability is a key issue in regional hydrology. The impact on hydrological

parameters of climate warming has been widely studied, while the impact on soil moisture is

less studied. Soil moisture estimates from the VIC model, have been evaluated by a number

of authors (Abdulla et al., 1996; Nijssen et al., 2001; Meng and Quiring, 2008) and generally

compare well with observations. In this section, the potential impacts on soil moisture due

to climate warming over the Churchill River basin are evaluated.

The VIC-simulated soil moisture for the 2050s , 2030s, and baseline climates are

retrieved at location 53.98◦N, 105.12◦W for change assessments. Daily soil moisture time

series from the model simulations are used for the change analysis. In Section 7.6.1, the VIC-

simulated soil moistures were evaluated at the same location and found to be in reasonable

agreement with measured soil moisture.
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Figure 7.20: Comparison of VIC simulated soil moisture for the 2050s and 2030s climates with the baseline
climate.

The graphical representation of the 30-year average soil moisture derived from daily

time series of VIC-simulated data for the 2050s, 2030s, and baseline climates are presented

in Figure 7.20. The three VIC-simulated soil moisture layers have been added in order

to produced these soil moisture plots. Soil moisture projections for the 2050s and 2030s

climates exhibit an overall increase compared to the baseline climate throughout the year.

Due to climate warming, the near surface soil moisture holding capacity is increasing which

is seen in the future projections of Figure 7.20 where an overall increase in soil moisture is

observed. The highest increase is between mid-April to late-August. Due to temperature

increases during spring and summer, the ground thaws, resulting in an increase in the soil’s

capacity to hold moisture. In Figure 7.20, soil moisture shows a gradual increase following

the spring snowmelt and reaches its peak during mid-spring. There is a gradual shift of peak

soil moisture from mid-April to early May between the baseline and 2050s climates.

Table 7.7 illustrates seasonal soil moisture changes, i.e. 2050s minus baseline, and

2030s minus baseline, as simulated by the VIC model. Soil moisture increases in all seasons

in both climate projections compared to the baseline climate. The highest projected soil

moisture increase compared to the baseline climate is during summer, reaching 19.09 mm
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Table 7.7: Changes in seasonal soil moisture as simulated by VIC model. The CRCM future climate of 2030s,
and 2050s are compared with baseline climate. Seasonal changes of soil moisture are calculated from daily
time series at location 53.9871◦ -105.1178◦. The VIC simulated three soil moisture layers are added together.

Soil moisture change
Seasonsa 2030s-baseline (mm) % change 2050s-baseline (mm) % changeb

Spring 10.70 3.56 34.51 11.46
Summer 19.09 6.10 65.50 24.45
Fall 13.55 5.16 42.00 16.01
Winter 9.54 3.50 29.39 10.97

aSpring:March-April-May, Summer:June-July-August, Fall:September-October-November,
Winter:December-January-February

b% change is calculated as (2050s-baseline)/baseline×100

150 200 250 300 350 400 450 500
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

Soil moisture (mm):Layer 1+2+3: 

Pr
ob

ab
ili

ty
 d

is
tr

ib
ut

io
n 

(p
df

)

 

 
Baseline
2030s
2050s

Figure 7.21: PDFs of soil moisture for the 2050s and 2030s climates compared with the baseline climate.

(6.1%) and 65.05 mm (24.5%) for the 2030s, and 2050s climates, respectively. The mean

annual soil moisture is projected to increase compared to the baseline climate by 4.5% in

the 2030s, and by 15.7% in the 2050s. Kienzle et al. (2012)’s study reported a projected

increase in the mean annual soil moisture of 0.5% in a 2020s climate, and a 1.4% in a 2050s

climate over the north Saskatchewan River basin. Robock et al. (2000) used a global soil

moisture data bank to analyze soil moisture for 600 stations over the world under grassland

and agriculture lands for more than 15 year of data. They concluded that summer soil

moisture in the top 1 m has increased while temperatures have risen.
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Probability/frequency distributions of soil moisture data for 30 years of daily time series

for the 2050s, 2030s, and baseline climates have been derived and are presented in Figure

7.21. These pdfs describe the expected change in soil moisture distribution due to climate

change. The pdf of the baseline climate indicates a predominance of soil moisture around

255 mm. In the 2030s climate, the pdf shows a peak around 270 mm. In the 2050s climate,

the pdf is shifted to the right and is significant. Nishat et al. (2008)’s study using 45 years of

climate data over South-Western Ontario demonstrates that there will be an overall increase

in growing season soil moisture. These authors also investigated long-term soil moisture

conditions and suggested the likelihood of future occurrences of higher soil moistures.

7.7 Conclusions

Dominant hydrological processes over the Churchill River basin have been evaluated in this

chapter. The primary goal of this study is to better understand the hydrological processes

and their linkage to the climate system and to identify the impacts of climate change on

hydrological processes.

The VIC, a distributed hydrological model, has been used to simulate hydrological

processes over the Churchill River basin. The calibrated hydrological model showed

acceptable results in the validation against measured streamflow. Also, attempts have been

made to validate model-simulated evaporation, snow, and soil moisture variables with

observed or quasi-observed data. The validation of these internal process variables confirms

that the VIC model is capable of simulating these variables adequately.

The validated hydrology model is used to simulate future climate conditions using

input from the CRCM model. It is assumed that the hydrology model is able to simulate

future climate as the model showed reasonable agreement in simulating present climate.

Knutti (2008) argued that model’s reproducing the current climate should be acceptable for

simulating the future as they are based on physical principles include many known processes.
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Three 30-year time slices (2050s, 2030s, and a baseline climate of 1976-2005) have been

used to simulate the hydrology of the Churchill River basin.

Streamflow outputs have been analysed for trends. The Mann-Kendall (MK) trend test

has been used. Besides the MK test, the slope of the time series has been estimated by

Theil-Sen’s method. Streamflow trends were analysed for mean annual, seasonal, high and

low flow, date of annual peak, as well as percentiles of mean daily streamflow. In addition

to streamflow trend, precipitation, minimum and maximum temperature trends from the

observed data were also analysed in order to derive a linkage with streamflow. Results of

the streamflow trend analysis was compared with other published results.

Based on the A2 Scenario, the future projections of streamflow for the 2050s and 2030s

climates exhibit an increase compared to the baseline climate . The streamflow trends for

the 2050s climate shows a significant increasing trend in high and low flow as well as in

the date of annual peak, whereas the streamflow trends for the 2030s climate did not show

statistically significant trends. The median of the total annual flow of the basin increased by

19% for the 2030s climate, and by 34% for the 2050s climate relative to the baseline period.

The MK test did not find any significant trend in the observed precipitation. An increasing

trend is found in fall minimum and maximum temperature, as well as in winter minimum

temperature.

Projections of VIC simulated SWE, and snow depth for the 2050s and 2030s climates are

compared with the baseline climate at a grid point location. The average SWE of the 2030s,

and 2050s climates exhibit a decrease of 6%, and 32% compared to the baseline climate,

respectively. The highest decrease of SWE is observed during April for both the 2030s and

2050s climates. The date of maximum SWE is shifted towards an earlier date relative to

the baseline climate. The snow depth of both future climates exhibit an overall decrease,

with the highest decrease in April. Based on the A2 Scenario, these findings suggest that the

amount of snow that builds SWE during the cold season is gradually decreasing, therefore

decreasing snowmelt flow.
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Soil moisture responses to climate warming in the future have been evaluated using

VIC-simulated outputs. Soil moisture at three different layers are added together at a grid

point location. Daily time series of soil moisture data are analysed for the 2050s and

2030s climates of the A2 scenario and compared with the baseline climate for change

assessment. Soil moisture projections for the 2050s and 2030s climates exhibit an overall

increase compared to the baseline climate with the highest increase observed during summer

(June-July-August): 6.1% and 24.5% for the 2030s and 2050s climates, respectively. A

gradual shift of peak soil moisture is noticed from mid-April to early-May in response to

climate warming. Based on the A2 Scenario, the mean annual soil moisture is projected to

increase compared to the baseline climate by 4.5% during the 2030s and by 15.7% during

the 2050s. The overall increase in soil moisture may partially be explained by the increased

holding capacity of soil due to the warming of near surface soil.

Probability distribution functions (PDFs) of 30-year soil moisture data have been anal-

ysed to provide insight into soil moisture characteristics and degrees of change. The baseline

climate showed a range of moisture between 200 mm to 400 mm, while the 2050s climate

exhibits an increase of range between 200 mm to 475 mm. The pdf comparison of 2030s and

2050s climates of the A2 scenario indicates a shift to the right, that is a greater likelihood of

occurrences of higher soil moistures conditions. Higher soil moisture indicates higher soil

saturation, and may lead to an increase in saturated overland flow (Bonell, 1993).

The climate induced changes in hydrological processes discussed above are suggesting

a shift in the hydrological regime. Such conclusions generally depend on the climate

projections from a particular CRCM. Multiple CRCMs can provide a range of possible

future scenarios, but this option was not possible here due to data limitation. Also, there

is very limited data available about the long-term effects on land cover due to climate

warming (Innes, 1994). The hydrological change assessment in this study does not take into

consideration of the dynamics of vegetation (e.g., the effect of possible land cover changes)

that may occur in future.
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Chapter 8

Summary and Discussions

This research has investigated the usefulness of a regional climate model (RCM) in climate

change impact studies and has created insight into the hydrological processes dominant in

the northern Canadian basins. The evaluation of regional hydrology has been carried out

using CRCM data by applying the combined atmospheric-terrestrial water budget techniques.

The CRCM simulations were then used as input to the VIC hydrology model in order to

assess hydrological process changes due to climate change. In this chapter, a synopsis of the

results will be provided, based on conclusions drawn in Chapters 5, 6, and 7. A discussion

of shortcomings and recommendations for future research will also be provided.

In Chapter 5, the potential of the CRCM for capturing many sub-grid scale process

involved in the hydrological cycle has been demonstrated. The inter-comparison of the

NARR and CRCM atmospheric moisture flux divergence (convergence) provided infor-

mation about seasonal variations of atmospheric moisture over the CRB, where summer

moisture fluxes are divergent in both datasets. The long-term CRCM atmospheric moisture

fluxes and storage tendencies are consistently represented, and show reasonable agreement

with NARR.

This research represents an attempt to uncover a critical aspect of moisture flux over

the CRB. The region of CRB is found to be a net source of moisture (Figure 5.11) as the
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mean annual moisture flux is divergent. The primary source of moisture is from the active

evapotranspiration during summer in the region. As surface evaporation becomes weak

during winter, the moisture flux converges into the basin, and the basin becomes a moisture

sink. Similar results were found by Liu and Stewart (2003) over the Saskatchewan River

basin using NCEP-NCAR reanalysis dataset. The findings related to atmospheric moisture

over the CRB further contribute to the understanding of Canadian water cycle experiments.

The CRCM atmospheric datasets have been employed in order to evaluate long-term

changes in water budget components over the CRB. Overall, the water budget components

derived from the CRCM over the CRB were found to be realistic and in general compare

well with available observations as well as quasi-observed data. This indicates that the

implementation of CLASS in the CRCM has resulted in improvements of boundary layer

moisture partitioning. The land surface schemes coupled with atmospheric models are

gradually improving as there is a growing need to obtain dependable land surface variables

from atmospheric models rather than obtaining land surface variables from an off-line model.

The real-time coupling of atmospheric model with land surface hydrology model leaves an

area of potential future research.

In Chapter 6, before applying the CRCM data into the VIC model, bias correction of

input variables has been performed. The bias correction approach utilized for precipitation

and temperature are different as the sources of bias for these two variables are different.

The quantile mapping technique applied to the CDFs of CRCM data seemed appropriate

for precipitation bias-correction as mean annual precipitation statistics show considerable

improvements. After bias-correction, an overall improvement in the daily precipitation is

achieved except for several extreme outliers. Rasmussen et al. (2012) recommended that

extreme outliers should be treated separately, which was not done in this study but could be

implemented in future studies.

The bias-correction method employed for temperature performs well, with the dif-

ferences of CRCM temperature and observations not exceeding 0.5◦C. The simulated
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temperature also preserved observed annual statistics. There is no standard technique for

adjusting RCM biases (Teutschbein and Seibert, 2010), but the CRCM bias-correction

method employed here is sound and can be applied with confidence in hydrological impact

studies. Bias correction techniques should be performed prior to any change analysis.

In Chapter 7, the use of CRCM data in a hydrology model has been explored. The results

obtained from the VIC model demonstrated its potential use in simulating hydrological

process variables which compare well with measured data.

The soil moisture results obtained from the VIC simulations are validated with measured

data. Annual variations of simulated soil moisture, and the timing of the wetting and

drying of the soil column showed good agreement with observations. Although a snow

model was not calibrated separately, the VIC-simulated snow depth and SWE showed a

remarkable agreement with measured BOREAS snow data. The present study demonstrates

the value of the VIC-simulated results when the model is properly calibrated. Therefore,

the VIC-simulated soil moisture and snow have potential use as an alternative dataset for

hydrological studies, especially in areas where measured data are scarce.

The validated VIC model was used to simulate climate scenarios using CRCM data

as input over the CRB. The Mann-Kendall (MK) test was used for mean daily streamflow

trend analysis. Trend tests on atmospheric variables (i.e., precipitation and temperature)

were also conducted in order to explore connections between observed streamflow and

atmospheric variables. The slope of the trend has been estimated by Theil-Sen’s method.

Some conclusions based on the trend tests are:

• Results of trend tests over thirty years (1975-2005) of observed streamflow data have been

presented (Table 7.4). The mean annual and seasonal flows did not show any statistically

significant trend. Trends appeared on low flow percentiles and high flow percentiles and

exhibits decreasing and increasing trends, respectively. The date of the annual peak of the

daily flow series show increasing trend. The increasing trend of the date of annual peak

appears to be linked with an increasing frequency of annual peaks generated by summer
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rainfall for some years. In the averaged hydrograph of ten years observed streamflow for

three different time slices (Figure 7.13), there appears to be a gradual shift of hydrograph

peaks toward rainfall-dominated peaks which signifies that the flow regime may be in

transition from a snowmelt dominated regime to a summer rainfall dominated regime.

• The results of trend tests on observed precipitation and temperature time series have been

presented for the same period (1976-2005) as streamflow data (Table 7.5). Trends in

daily precipitation were not as significant as those in streamflow for the same period.

Fall maximum temperature shows a statistically increasing trend. Also, fall and winter

minimum temperatures exhibit an increasing trend. An increase in temperature during

fall and winter may lead to a decrease in solid precipitation (Akinremi et al., 1999). The

increase in temperature will lead to a change in flow regime by causing lesser snow

accumulation during fall and winter. The overall trend analysis suggests that changes in

the streamflow regime in the CRB is quite complex. Seasonal trends is a potential area to

be further explored.

Climate scenarios were used to perform change analysis. The CRCM future climates of

2030s, and 2050s along with a baseline climate (1976-2005) is used for change analysis.

The SRES-A2, a higher end emission scenario, is preferred for this research. The CRCM

future simulations were only available for the A2 scenario from the OURANOS consortium.

The choice of a single scenario is a limitation of the research, but could be expanded in

future research.

The box plots of streamflow scenarios (Figure 7.16) depict a wide range of changes in

future projections. For instance, the median of total annual flow for the CRB increased by

19% for the 2030s climate, and increased by 34% for the 2050s climate compared to the

baseline climate. A comparison of annual flow exceedance probability shows a relative

reduction of larger flow frequency in the 2050s climate compared to the 2030s climate,

although the frequency of larger flow increased in both future climates compared to the

baseline climate. In the middle to high-latitude basins where larger flows are caused by
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snowmelt, a relative reduction of larger flow frequencies indicates a diminished influence of

snowmelt flow, as noted by Arora and Boer (2001).

The daily snow data (depth, and SWE) data retrieved from VIC simulated future climates

of 2030s, 2050s, and a baseline climate are used to develop change scenarios. The average

SWE decreased by 6% for the 2030s climate, and by 32% for the 2050s climate compared

to the baseline climate. A decrease in SWE in the region of our interest was also reported by

Räisänen (2008). As precipitation did not show any significant trend (Table 7.5), the SWE

decrease must be associated with the temperature increase. Similar findings were obtained

by Mote (2003). The future projections of snow depth suggest a decline compared to the

baseline climates, with the maximum decrease observed during the month of April (Table

7.6). The duration of snow on the ground also exhibits a small decline. Mote et al. (2005)

reported a decline in April snow in western Canada due to climate warming. It is likely that

the loss of snowpack will continue (Kapnick and Hall, 2012). The future changes in SWE

and snow depth will have profound impact on the flow regime, with consequences for water

use in the region.

Soil moisture projections derived from VIC future climate simulations illustrate an

overall increase in soil moisture, with the highest increases occurring during summer. A

shift of peak soil moisture from mid-April to early-May is observed. In snow dominated

basins like the CRB, soil moisture recharge exhibit a close relationship with snowmelt

(Hamlet et al., 2007). The time shift of the soil moisture peak corresponds to the findings of

the increase in snow duration on the ground presented in Section 7.6.2. An increase of soil

moisture is also projected in Kienzle et al. (2012)’s study over the north Saskatchewan River

basin. Probability distribution functions (pdfs) derived from thirty years time slices of future

climate from VIC-simulated soil moisture provided further understanding of the degree of

changes in the soil moisture distribution. The pdf of the 2050s climate exhibited bimodality

(Figure 7.21). The pdfs of future climate indicate greater likelihood of occurrences of higher

soil moistures.
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As stated in the objectives, the novelty of the thesis is the following: (a) to validate a

CRCM atmospheric dataset from a combined atmospheric and terrestrial approach (Chapter

5), and (b) to assess the use of a CRCM in hydrological change studies over the CRB (Chapter

7). The outfall of these two research components complement each other, and contribute to

our understanding of how and to what extent climate change can affect hydrological systems

of the CRB. This work appears to be one of the first studies that offers a comprehensive

understanding of the dominant hydrological process in the CRB along with an assessment

of their sensitivity to climate change.

Despite the efforts to make the research comprehensive, issues still remain for future

research. This research did not consider vegetation change while modelling the CRB.

Changes in climate forcing, however, may have an effect on land cover type in the permafrost

or seasonally permafrost zone, which may eventually alter vegetation types. Presently, very

limited data are available about land cover change due to climate warming (Innes, 1994).

Such information should be included into future hydrology models in order to integrate

the land cover change response in hydrology. Northern basins have been examined by

scientists from many perspectives. Collectively, these research findings have contributed

to our understanding of processes dominant in the northern hydrology. Yet, more research

needs to be conducted in order to identify gaps and explore opportunities for collective

future research in advancing our knowledge of northern basins and wetlands.
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Appendix A

Statistical test

A.1 Mann-Kendall test

The Mann-Kendall (MK) statistics (Mann, 1945; Kendall, 1975) can be calculated as follows:

S =
n−1∑
i−1

n∑
j=i+1

sgn(xj − xi) (A.1)

The application of the trend test is done to a time series xi that is ranked from i = 1, 2, n− 1

and xj , which is ranked from j = i + 1, 2, .n. Each data point xi is taken as a reference

point which is compared to the rest of the data points Xj so that

sgn(xj − xi) =


+1 if (xj − xi) > 0

0 if (xj − xi) = 0

−1 if (xj − xi) < 0

(A.2)

The S statistics is approximately normally distributed when n ≥ 8, with mean E(S) = 0

and the variance statistics is given as

V (S) =
(n− 1)(2n+ 5)−

∑n
i=1 ti(i)(i− 1)(2i+ 5)

18
(A.3)
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where ti is considered as the number of ties up to sample i. The Z of the MK test and

corresponding p-value can be calculated as

Z =


S−1√
V ar(S)

if S > 0

0 if S = 0

S+1√
V ar(S)

if S < 0

(A.4)

Positive and negative Z values indicate an upward and downward trend, respectively. The

p-value of the two-sided Z test is a function of Z alone and can be calculated as

p = p(Z) = 2(1− Φ(|Z|)) (A.5)

In order to compute p-value, apply the standard normal cumulative distribution function

(Φ) to both sides. A significance level α is also utilised for which the null hypothesis will

be tested. At the significance level of 0.05, if p-value ≤ 0.05, then the existing trend is

considered to be statistically significant. The Modified MK test has been used for trend

detection of an autocorrelated series (Hamed and Rao, 1998). Therefore, the corrected

variance (after removing serial correlation of de-trended time series) is calculated and

replaces the variance of the Equation A.3.

A.2 Slope estimator

The slope estimate (b) is conducted with the nonparametric Theil-Sen method. The well-

known robust estimator of the slope was first proposed by Theil (1950) and then extended

by Sen (1968) . This method is suitable for a nearly linear trend in the variable x and is

less affected by non-normal data and outliers (e.g., Helsel and Hirsch, 1992). The slope is

computed between all pairs i of the variable x:
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βi =
xj − xk
j − k

; (A.6)

with j = 2, . . . n;

and k = 1, . . . n− 1;

and j > k

(A.7)

where i = 1 . . . N . For n values in the time series of x, the N will result in N = n(n− 1)/2

values of β. The slope estimate b is the median of βi,i = 1, . . . , N .

A.3 Frequencies of exceedance

Helsel and Hirsch (2002) provided a description of plot of streamflow exceedance frequen-

cies. To construct a plot of streamflow exceedance frequencies, the data (i.e., peak flow) are

ranked from smallest to largest. The rank (i) of smallest is i = 1, and largest is i = n where

n is sample size. The plotting position of streamflow is a function of the rank i and sample

size n. The plotting position can be calculated as

pi =
i

n+ 1
(A.8)
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