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Abstract

In goodness-of-fit testing, the goal is to determine if data come from a particular

distribution. One graphical approach to test goodness-of-fit is a probability plot.

Two probability plots typically used are the probability-probability plot and the

quantile-quantile plot, but to use these plots, plotting points are needed. Balakr-

ishnan et al. (2010) proposed a new plotting point based on simultaneous closeness

probabilities. This was followed up by a correlation-type goodness-of-fit test based

on these plotting points.

In this thesis, two tests based on the correlation coefficient test are proposed;

in particular, a maximal-correlation coefficient test and a minimal-correlation coef-

ficient test which are based on simultaneous closeness probabilities are developed.

Two approaches are considered to investigate these two tests: a grid search method

and an averaging method. Numerical results, including illustrative examples, criti-

cal values and a power study are also provided.
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Chapter 1

Introduction

1.1 Motivation

The Pitman closeness criterion allows for the comparison of two estimators of a

statistical parameter. It can determine if one estimator is better than another. A lot

of work has been completed on Pitman closeness to ordered data including Pitman

closeness to the population median of a distribution (Balakrishnan et al., 2009b)

and Pitman closeness related to population quantiles (Balakrishnan et al., 2009a).

This work led to the introduction of simultaneous Pitman closeness probabilities

which can be found in Balakrishnan et al. (2010). This work has the advantage of

being able to compare all order statistics at once as opposed to the previous pairwise

comparisons.

Goodness-of-fit tests are generally used to determine how well a set of observa-

tions can be fit to a model. There are two types of plots that are typically used to

visually assess goodness-of-fit; these two plots are the probability-probability plot

and the quantile-quantile plot. A probability-probability plot compares an empir-

ical cumulative distribution function to a specified theoretical distribution while a
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quantile-quantile plot compares quantiles of the two probability distributions. Both

type of plots require the use of plotting points, which is a controversial topic. Bal-

akrishnan et al. (2012a) recently introduced plotting points based on simultaneous

Pitman closeness probabilities.

The correlation coefficient goodness-of-fit test was introduced by Filliben (1975).

This test is based on the linearity of probability plots and is therefore relatively

easy to understand as well as to calculate. Balakrishnan et al. (2012a) proposed a

correlation-type goodness-of-fit test statistic based on simultaneous closeness prob-

ability plotting points. However, optimal plotting points could not be found for the

first and last order statistic.

In this thesis, I will introduce a minimal-maximal correlation test which has two

forms: one based on the maximum correlation and the other based on the minimum

correlation. Both of these tests will use simultaneous closeness probability plotting

points. Furthermore, the tests will be carried out in two ways: a grid search method

and an averaging method. A comparison between the two methods will be carried

out, which will come in the form of tables of critical values of the associated test

statistics and power properties of the proposed tests for both methods. I will also

provide a few examples to illustrate these tests.

1.2 Thesis Organization

In Chapter 2, I provide some background material. First, I describe Pitman close-

ness probabilities and their use in the analysis of ordered data in more detail. Then

I will provide an overview of simultaneous Pitman closeness probabilities and their
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applications. This will be followed up by an overview of goodness-of-fit assess-

ments, including descriptions of probability-probability plots and quantile-quantile

plots. Subsequently I will discuss a correlation-type goodness-of-fit test and its use

in probability plots. Finally, I will outline plotting points based on simultaneous

closeness probabilities and their use in a correlation-type goodness-of-fit test.

In Chapter 3, I will introduce the proposed correlation goodness-of-fit tests based

on maximal and minimal correlations. For each, I will first consider a grid search

method, and secondly I will consider a method where the average plotting points are

found from the first method and used in each test. I will provide critical values for

the maximal- and minimal-correlation tests for both methods. I will also carry out a

power study to investigate their performance. I will follow up with a demonstration

of the tests using several data sets.

Important segments of the R code used to produce the results in this thesis are

provided in the Appendix.
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Chapter 2

Preliminaries

2.1 Pitman Closeness

2.1.1 History

The concept of Pitman closeness was introduced by Pitman (1937). This criterion

aims to compare two estimators within a class where both estimators are based on

a sample size of n. It can be defined as follows: the Pitman closeness of T1 relative

to T2 is the probability that the estimator T1 produces an estimate that is closer

to a real-valued parameter θ than the one which is produced by the estimator T2

(Balakrishnan et al., 2011b). Formally, it is given by

P(T1, T2|θ, n) = Pr(|T1 − θ| < |T2 − θ|). (2.1)

This is also known as the Pitman closeness probability or Pitman nearness. Fur-

thermore, if

Pr(|T1 − θ| < |T2 − θ|) ≥
1

2
(2.2)
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for all values of θ with strict inequality holding for at least one value of θ, then it

can be said that T1 is a closer estimator of θ than T2 (Balakrishnan et al., 2009a).

It should be noted that Pitman closeness does not measure how much closer T1 is

to θ than the competing estimator T2 (Keating et al., 1993).

A related criteria for comparing two estimators is Banks’ criterion. Introduced

in 1997, it states that an estimator T1 is closer to a parameter θ than another

estimator T2 if

P(|T1 − θ| < ε) > P(|T2 − θ| < ε) (2.3)

for some ε > 0. This differs from Pitman closeness since T1 is preferred over a

competing estimator T2 if it has a greater probability of being within ε of θ than

T2. This criterion can be thought to compare the clustering of T1 to that of T2 in

an ε - neighborhood of the parameter θ. Banks’ criterion can also be generalized to

a simultaneous comparison of multiple estimators of θ.

Pitman closeness has also been used in the area of Bayesian statistics. Ghosh and

Sen (1991) introduced the notion of posterior Pitman closeness and identified the

differences between this new Bayesian approach and traditional Pitman closeness.

They found that this new criterion avoided the drawbacks of the usual notion of

Pitman closeness involving transitivity.

2.1.2 Some Issues and Controversies

One major concern with the Pitman closeness criterion that has been noted in the

literature is that it lacks the transitive property. If a set of items is transitive, it

relates A to B, B to C and also A to C. A relation is said to be intransitive if A
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cannot be related to C. A simple example is in sports: Team A beats Team B, and

Team B beats Team C, but Team A does not beat Team C. Formally, intransitivity

of random variables can be defined as: for any real-valued random variables A, B,

and C, stochastic intransitiveness occurs whenever Pr(A < B), Pr(B < C), and

Pr(C < A) all exceed 0.50. These probabilities imply that there is a better than

50% chance of each of the events occurring: A is less than B, B is less than C and

C is less than A. In the context of Pitman closeness, this occurs, for instance, when

three estimators are to be compared, say θ̂1, θ̂2, and θ̂3 and P(θ̂1, θ̂2|θ), P(θ̂2, θ̂3|θ)

and P(θ̂3, θ̂1|θ) are all greater than 0.50. When this occurs it raises the question as

to which of the estimators is the best choice (Balakrishnan et al., 2011b).

Another controversy with the Pitman closeness criterion is the pairwise-worst

simultaneous best paradox. This paradox can be defined as follows: for any real-

valued random variablesX1, X2, andX3, it is possible for Pr(Xi = min{X1, X2, X3})

to be the largest for i = 3, even though Pr(X1 < X3) and Pr(X2 < X3) exceed

0.50. Hence, while X3 is preferred over X1 and X2 in any simultaneous comparison,

in the pairwise comparisons it is worst (Balakrishnan et al., 2011b). Similar to this,

a pairwise-best simultaneous-worst paradox can also occur. This can be defined

analogously as follows: for any real-valued random variables X1, X2, and X3, it is

possible for Pr(Xi = min{X1, X2, X3}) to be the smallest for i = 1, even though

Pr(X1 < X2) and Pr(X1 < X3) exceed 0.50. Here, for the simultaneous compar-

ison, X1 is the least preferred over both X2 and X3, even though X1 is preferred

over each one in the pairwise comparison.
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2.1.3 Pitman Closeness and Ordered Data: Recent Devel-

opments

A lot of work has been done recently on Pitman closeness related to ordered data.

One of the initial works on this was completed by Balakrishnan et al. (2009b)

who studied the Pitman closeness of order statistics to the population median of a

distribution. Let X1:n < · · · < Xn:n be the order statistics from a random sample

of size n from an arbitrary absolutely continuous distribution. The sample median

is defined as Mn = Xm:n if n = 2m − 1 and Mn = 1
2
(Xm:n + Xm+1:n) if n = 2m,

and denote the population median by µ. In some general situations, the authors

showed that the sample median Mn was the Pitman-closest order statistic to the

population median. In this context, the Pitman closeness of order statistics to the

population median is

πi = Pr(|Mn − µ| < |Xi:n − µ|), for i = 1, . . . n,

except for i = m in the case n = 2m − 1. From this, it was found that for all

i = 1, . . . , n (except i = m in the case n = 2m − 1), πi >
1
2
. It was also shown

that πi is decreasing in i for i = 1, . . . ,m, and increasing in i for i = m + 1, . . . , n;

this was shown to hold for any distribution if n = 2m − 1 and for any symmetric

distribution if n = 2m.

For a sample size that is odd, in the case of symmetric distributions and taking

µ = 0, the authors found that the probabilities of closeness πi were symmetric, i.e.,

πi = πn−i+1, and the probabilities πi, for i = 1, . . . , n, were distribution-free. They

also found a large sample approximation for πm+1 using Stirling’s approximation

and showed that πm+1 → 1
2

as m → ∞. An expression was also derived for πl for
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m+ 1 < l < 2m− 1 and a table of values was produced supporting the results that

πl >
1
2
. This table also supported the observation that πl increases as l increases.

For a sample size that is even, the authors defined, for µ = 0, π∗i = Pr(|Xm+1:n| <

|Xi:n|) for i = m+ 2, . . . , n. An explicit expression was found for π∗m+2 and also for

π∗l for m+ 2 < l < n. Symmetry was also shown, i.e., for π∗∗i = Pr(|Xm:n| < |Xi:n|)

then for i = 1, . . . ,m− 1, π∗∗i = π∗n−i+2. A table of the probabilities of closeness for

π∗l demonstrated that π∗l >
1
2
. This table also confirmed that as l increases, so does

π∗l .

Further work has also been done on comparing estimators under the criterion

based on censored samples. Balakrishnan et al. (2011b) compared the Best Linear

Unbiased Estimator (BLUE) and Best Linear Invariant Estimator (BLIE) under

the Pitman closeness criterion based on a Type-II right censored sample from the

exponential distribution. Suppose that a Type-II right censored sample is taken

from the Exp(θ) distribution and let X1:n ≤ · · · ≤ Xr:n be the order statistics,

with the largest n − r order statistics being censored. The BLUE and BLIE are

then defined as θ∗r = (1/r)Tr and θ̂r = (1/(r + 1))Tr, respectively, where Tr =∑r
i=1Xi:n + (n − r)Xr:n, which is often known as the total time on test. Noting

that 2Tr/θ ∼ χ2
2r, the exact Pitman closeness probability between θ̂r and θ∗r was

calculated as

πr = Pr(|θ∗r − θ| ≤ |θ̂r − θ|) = Pr

(
χ2

2r ≤
4r + 4

2r + 1
r

)
, (2.4)

where χ2
a denotes a central chi-square random variable with a degrees of freedom.

As can be seen in Equation 2.4 , it was determined that the probability of closeness
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only depended on r and not on either θ or n. Furthermore, they also established

that the BLIE is Pitman closeness (PC) inadmissible compared with the BLUE,

where an estimator Tj is PC-admissible if there is an estimator Ti in a class C which

is closer than Tj.

Similar work has been completed on comparing the Best Linear Unbiased Predic-

tor (BLUP) and Best Linear Invariant Predictor (BLIP) of censored order statistics

from an exponential distribution in one-sample and two-sample situations under the

Pitman closeness criterion; this was done by Balakrishnan et al. (2012b). In the

one sample case, consider a Type-II censored sample of size r from n variables from

Exp(θ) and let X1:n ≤ · · · ≤ Xr:n denote the r order statistics. It may be of use to

an experimenter to be able to predict how long the experiment would have lasted

had it not terminated at the rth failure, i.e., the prediction of Xs:n for r < s ≤ n .

In this case, there is no real valued parameter but instead a random quantity, Xs:n.

In the case of the exponential distribution, it is known that the BLUP and BLIP

of Xs:n based on a Type-II right censored sample of size r are

X∗s:n = Xr:n + θ∗r(αs:n − αr:n),

X∗∗s:n = Xr:n + θ̂r(αs:n − αr:n),

respectively, where θ∗r and θ̂r are the BLUE and BLIE of θ, and

αi:n =
1

n
+

1

n− 1
+ · · ·+ 1

n− i+ 1
for i = 1, 2, . . . , n.

The Pitman closeness probability between X∗s:n and X∗∗s:n in the prediction of

Xs:n was then found to be

9



πr,s:n = Pr(|Xs:n −X∗s:n| < |Xs:n −X∗∗s:n|)

= br,s,n

s−r−1∑
i=0

(−1)i
(
s− r − 1

i

)(
1

n− s+ i+ 1

)(
1

[1 + (n− s+ i+ 1)D]

)r
,

(2.5)

where D = (αs:n−αr:n)(2r+1)
2r(r+1)

and br,s,n = (n−r)!
(s−r−1)!(n−s)! .

Using this expression, for n = 10 and 15 for r = 1(1)n − 1 and s = r + 1(1)n,

the authors found exact Pitman closeness probabilities. These results showed that

when r = 1, the BLUP is Pitman closer than the BLIP. However when s = r + 1

except when r = 1, the BLIP is always Pitman closer. For small values of r, the

BLUP is generally Pitman closer, however the reverse is true for larger r, i.e., the

BLIP is Pitman closer.

For the two special cases when r = 1 and s = r+ 1, they found that for r = 1, it

did not matter what the choice of s and n were since the BLUP was always Pitman

closer than the BLIP. However for s = r+ 1, the BLIP was Pitman closer than the

BLUP for all r > 1 and when r = 1, the BLUP was Pitman closer.

For the two sample case, suppose the interest lies in predicting future sample

lifetimes Y1:m, . . . , Ym:m from Exp(θ). Let X1:n ≤ · · · ≤ Xr:n be a Type-II right

censored sample from the Exp(θ) distribution and let θ∗r and θ̂r be the BLUE and

BLIE of θ as defined earlier. For predicting Ys:m, the BLUP and BLIP of Ys:m are,

Y ∗s:m = αs:mθ
∗
r and Y ∗∗s:m = αs:mθ̂r, respectively, and αs:m = 1

m
+ 1

m−1
+ · · · + 1

m−s+1
.

The authors found the Pitman closeness between Y ∗s:m and Y ∗∗s:m as predictors of Ys:m

to be

10



πs:m(r:n) = Pr(|Y ∗s:m − Ys:m| < |Y ∗∗s:m − Ys:n|)

=
m!

(s− 1)!(m− s)!

s−1∑
j=0

(−1)s−1−j
(
s− 1

j

)
1

m− j

×
[

2r(r + 1)

2r(r + 1) + αs:m(2r + 1)(m− j)

]r
. (2.6)

For r = 1, 5 and 10 with m = 5 to 15 when s ≥ 2, the authors found that

the BLUP is always Pitman closer when r = 1 or 5. However, when r = 10, the

outcome depended on m and s. The BLIP was found to be Pitman closer than the

BLUP for small values of s, and for larger values of s the BLUP was Pitman closer

than the BLIP. For the special case when s = 1, the authors found that the BLIP

was uniformly better than the BLUP.

Another type of censoring that has been considered is progressive censoring.

A progressively Type-II right censoring experiment is when n identical units from

an absolutely continuous distribution are placed on a test and r complete failures

are to be observed, where 1 ≤ r ≤ n. To reduce the total time on test or the

number of failed items, the n−r remaining lifetimes are to be progressively censored

such that R1 surviving units are to be withdrawn at random from the test at the

time of the first failure, R2 surviving units are to be withdrawn at random from

the test at the time of the second failure and so forth. This continues until all

remaining Rr surviving units are to be withdrawn at the time of the rth failure.

The lifetime data observed in this way produce Type-II right progressively censored

order statistics (PCOS) and we denote the progressive censoring scheme (PCS) by

R = (R1, R2, . . . , Rr). With this in mind, in the case of the exponential distribution
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with mean lifetime θ, Volterman et al. (2012) wished to determine the optimal

progressive censoring scheme to estimate θ under the Pitman closeness criterion. For

this, they considered two different progressive censoring schemes, R̃ = (R1, . . . , Rm)

and S̃ = (S1, . . . , Sm), such that Ri 6= Si for at least two i. They then defined the

Pitman closeness probability as

Pr(θ∗
R̃
, θ∗
S̃
|θ) = Pr(|θ∗

R̃
− θ| < |θ∗

S̃
− θ|), (2.7)

where θ∗
R̃

and θ∗
S̃

are the BLUEs based on PCSs R̃ and S̃, respectively. If this

probability exceeds 0.50, it can be said that R̃ is a better censoring scheme than

S̃ for the purpose of estimating θ. The authors then compared various progressive

censoring schemes to the right censoring scheme for different samples of size n and

showed that the right censoring scheme was indeed optimal compared to the others.

They did this by computing the probability exactly for small sample sizes and for

larger samples they used 1, 000, 000 Monte Carlo simulations.

2.1.4 Pitman Closeness and Population Quantiles

2.1.4.1 Pitman Closeness of Order Statistics to Population Quantiles

The work on Pitman closeness of order statistics to the population median was

extended to comparing order statistics to population quantiles in Balakrishnan et al.

(2009a). Let Y1, . . . , Yn be a random sample of size n with cumulative distribution

function (cdf) G(y) and probability distribution function (pdf) g(y). The authors

goal was to determine the closest order statistic to a particular population quantile.

The authors denoted ξ∗p as the pth quantile of G(y), where the pth quantile, ξp, is
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defined as a point satisfying the equation Pr(Y ≤ ξ∗p). Furthermore, they assumed

G(·) belongs to the location-scale family of distributions such that

G(y) = F

(
y − µ
σ

)
and g(y) =

1

σ
f

(
y − µ
σ

)
∀y ∈ <

with location parameter µ ∈ < and scale parameter σ > 0. Let X1:n ≤ · · · ≤ Xn:n

denote the corresponding order statistics from the standard distribution with cdf

F (x) and pdf f(x) from a random sample of size n. For any two order statistics

Xi:n and Xl:n, they defined the probability of Pitman closeness to the population

quantile ξp, where ξp = (ξ∗p − µ)/σ, as

π(l)i(p) = Pr(|Xl:n − ξp| < |Xi:n − ξp|) for i = {1, . . . , n}/l.

For i = l + 1, l + 2, . . . , n, using properties of order statistics, the general ex-

pression for the Pitman closeness between two order statistics, Xl:n and Xi:n, to a

population quantile ξp, was then found to be

π(l)i(p) = 1− Ip(l, n− l + 1) + kl,i,n

i−l−1∑
j=0

(−1)i−l−1−j
(
i− l − 1

j

)
1

n− l − j

×
∫ ξp

−∞
{F (x)}l−1{1− F (x)}j{1− F (−x+ 2ξp)}n−l−jf(x)dx, (2.8)

and for i = 1, 2, . . . l − 1,
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π(l)i(p) = Ip(l, n− l + 1) + kl,i,n

l−i−1∑
j=0

(−1)l−i−1−j
(
l − i− 1

j

)
1

l − j − 1

×
∫ ∞
ξp

{F (y)}j{1− F (y)}n−l{F (2ξp − y)}l−j−1f(y)dy, (2.9)

where

Ix(α, β) =
1

B(α, β)

∫ x

0

uα−1(1− u)β−1du, 0 < x < 1

is the incomplete beta ratio, B(α, β) = Γ(α)Γ(β)/Γ(α + β) is the complete beta

function, and

kl,i,n =
n!

(l − 1)!(i− l − 1)!(n− i)!
for 1 ≤ l < i ≤ n.

For comparing two contiguous order statistics, i.e., Xi:n and Xi+1:n, the authors

defined πi(p) = Pr(|Xi:n − ξp| < |Xi+1:n − ξp|) for i = 1, . . . , n − 1, for which they

found a general expression for πi(p) as

πi(p) = 1− Ip(l, n− i+ 1) + ai,n

∫ ξp

−∞
[F (x)]i−1[1−F (−x+ 2ξp)]

n−if(x)dx, (2.10)

where ai:n = n!
(i−1)!(n−i)! for i = 1, . . . , n− 1.

It was shown that if Xl:n, for some l ∈ 1, . . . , n, is the Pitman-closest order

statistic to ξp, then Yl:n is the Pitman-closest order statistic to ξ∗p . For a distribution
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that is symmetric about the origin, suppose that Xl:n is the Pitman-closest order

statistic to the pth quantile ξp. The authors also showed that Xn−l+1:n is the Pitman-

closest order statistic to the (1− p)th quantile ξ1−p.

To infer about a specified quantile, if the Pitman closeness probability for a given

l is greater than 0.50 for all i, then it can be said that the lth order statistic is the

Pitman-closest order statistic to the specified population quantile and hence can be

used as an estimator. The authors demonstrated this procedure for the uniform,

exponential and power function distributions.

For the uniform distribution, the authors found an expression for the Pitman

closeness probability associated with two order statistics and tables were created to

provide closeness probabilities for p = 0.1, 0.25, 0.75 and 0.90 and for sample sizes

n = 10 and n = 15. Consider estimating p = 0.25 quantile, then for the uniform

distribution with n = 10, looking at l = 3, it can be seen that for all i, πi:10 is

greater than 0.50. So it can be said that X3:10 is the Pitman-closest estimator to

the 25th percentile. Also, tables were constructed to provide a summary of the

Pitman closest order statistic to the pth quantile of the distribution for sample sizes

n = 5(5)20. These tables allow for one to identify the closest order statistic to a

particular quantile for a specified sample size.

Similar to what was done for the uniform distribution, the Pitman closeness

probabilities for the standard exponential and the power function distributions were

derived and calculated. Tables for the Pitman-closest order statistics to the pth

quantile of the exponential distribution turned out to be the exact same results as

those found for the uniform distribution. For the power function distribution it was

found that the Pitman closest order statistics do change but are still quite similar
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to results for both the uniform and exponential distribution. These differences were

seen for for extreme values of α, i.e., 0 < α < 0.25.

2.1.4.2 Simultaneous Closeness among Order Statistics to Population

Quantiles

In order to determine the most frequently closest order statistic among all other

order statistics to a population quantile under Pitman closeness, a pairwise com-

parison could be used but it is both time consuming and cumbersome. To overcome

these concerns, Balakrishnan et al. (2010) suggested a simultaneous comparison.

With the same idea in mind, Blyth (1972) suggested the reduction of the com-

parisons by considering the joint distributions of the estimators being compared

with respect to loss functions. For this, Blyth suggested two criteria. Blyth’s first

criterion suggests choosing the estimator within a class C which is most frequently

closest to the value of the unknown parameter θ. In other words, select θ̂i from

among estimators in a class C for which

maxPri∈KdLi = min
j∈K

(Lj)e, (2.11)

where k is an index set for C, and Li = |θ̂i − θ|. This can be thought of as a

max-min criterion, in that the probability that θ̂i has the smallest loss among all

estimators in C is maximized. The second criterion is to choose the estimator within

the class C which is least-frequently farthest from θ. This minimizes the probability

that θ̂i has the maximum loss among the estimators in C and hence can be thought
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of as a min-max criterion. This can be seen as choosing θ̂i from among estimators

in C for which

minPri∈KdLi = max
j∈K

(Kj)e. (2.12)

Note that whenever the size of the index set is two, both these criteria are

equivalent to the Pitman closeness criterion.

Using Blyth’s first criterion, in the context of order statistics as estimators,

Balakrishnan et al. (2010) defined the simultaneous closeness probability (SCP) of

Xi:n for i ∈ 1, . . . , n among the order statistics X1:n ≤ · · · ≤ Xn:n, in the estimation

of a population parameter θ as

πi:n(θ) = Pr

(
|Xi:n − θ| < min

j,j 6=i
|Xj:n − θ|

)
(2.13)

for all i ∈ 1 . . . n. This simplifies the probability computations in Blyth’s first

criterion and allows for the partitioning of a random vector of observations into

regions for which each order statistic is the best. The idea of this comparison is

to determine the probability that each order statistic is simultaneously closest to

θ when being compared to the remaining order statistics in the sample. For this,

geometric arguments are needed, and in particular, the concept of Voronoi regions

or tessellations. A Voronoi tessellation is a way of dividing space into different

regions and since the estimators are ordered in this case it makes the computation

less complex. The best estimator is chosen by looking for the order statistic with

the highest probability of being closest to the parameter of interest. Let Ai:n be
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the pairwise Voronoi region associated with Xi:n when compared with the previous

order statistic Xi−1:n, i.e.,

Ai:n = {x ∈ <n : Xi−1:n +Xi:n ≤ 2θ} for each i ∈ {2, . . . , n},

and let Bi:n be the simultaneous Voronoi region associated with Xi:n. Then, Xi:n is

closer to θ than all other order statistics in this region, i.e.,

Bi:n =

{
x ∈ <n : |Xi:n − θ| ≤ min

j,j 6=i
|Xj:n − θ|

}
for each i ∈ {1, . . . , n}.

For support <, for i = 2, . . . , n−1, the authors derived the simultaneous closeness

probability πi:n(θ) of Xi:n in the estimation of θ as

πi:n(θ) = Pr{Bi:n}

= Pr{Ai:n} − Pr{Ai+1:n} =

(
n

i− 1

)
[F (θ)]i−1[1− F (θ)]n−i+1

+

∫ F (θ)

0

n!

(i− 1)!(n− 1)!
[F̄ (2θ − F−1(u))]n−iui−1du

−
∫ F (θ)

0

n!

(i− 2)!(n− i+ 1)!
[F̄ (2θ − F−1(u))]n−i+1ui−2du. (2.14)

From this, the authors found the simultaneous closeness probabilities for the

special cases π1:n(θ) and πn:n(θ), for the smallest and largest order statistics, which

can be expressed as

π1:n(θ) = Pr{B1:n} = 1− Pr{A2:n}
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and

πn:n(θ) = Pr{Bn:n} = 1− Pr{An:n}.

With Blyth’s second criterion in mind, πi:n(θ) can be interpreted as the proba-

bility that the loss due to Xi:n in the estimation of θ is less than the losses due to

all the other order statistics.

For X with a bounded support on the interval (a, b), πi:n(θ) was given as

πi:n(θ) = n

(
n− 1

i− 2

)∫ b∗

a

f(x)[F (x)]i−2{[F (h2(x))]n−i+1 − [F (h1(x))]n−i+1}dx,

(2.15)

where b∗ = min(b, 2θ − a), h1(x) = max(a, x) and h2(x) = min(b, 2θ − x).

Considering a location-scale family and ξ∗p as the pth quantile of F (x), for a

complete support, it was found that the simultaneous closeness probabilities do not

depend on location and scale parameters but rather depend on p, where p ∈ (0, 1),

and n. For i = 2, . . . , n− 1, setting θ = ξ∗p , the authors found the SCPs to be

πi:n(p) =

(
n

i− 1

)
pi−1(1− p)n−i+1

+
n!

(i− 1)!(n− i)!

∫ p

0

{1−G[2G−1(p)−G−1(u)]}n−iui−1du

− n!

(i− 2)!(n− i+ 1)!

∫ p

0

{1−G[2G−1(p)−G−1(u)]}n−i+1ui−2du (2.16)

where, once again,
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F (x) = G

(
x− u
σ

)
and f(x) =

1

σ
g

(
x− u
σ

)
∀x ∈ <.

If the distribution is symmetric, it was also found that

πi:n(p) = πn−i+1:n(1− p) for i = 1, . . . , n. (2.17)

Equation 2.17 certainly makes tabulating simultaneous closeness probabilities

easier since the probabilities only need to be found for p ≤ 0.50 and the others can

be computed by using the symmetry relation. To demonstrate, the authors derived

and calculated SCPs for the normal distribution for various values of n.

For X with a bounded support on the interval (a, b), the authors found the

simultaneous closeness probability of Xi:n to ξ∗p to be

πi:n(p) = n

(
n− 1

i− 2

)∫ b∗∗

a′
g(z)[G(z)]i−2{[G(h2(z))]n−i+1 − [G(h1(z))]n−i+1}dz,

(2.18)

where b∗∗ = min(b′, 2zp−a′), h1(z) = max(a′, z) and h2(z) = min(b′, 2zp−z). With

b′ = (b− µ)/σ, a′ = (a− µ)/σ), and ξp = (ξ∗p − µ)/σ.

The authors derived and calculated SCPs for the exponential distribution for

various values of n. They found that the simultaneous closest order statistic and

the SCPs to the pth quantile were similar to that of the normal distribution.

Simultaneous closeness probabilities have also been found for progressively Type-

II right censored order statistics to population quantiles; this was done in Volterman

et al. (2013). For a bounded support, assume there exists Type-II right PCOS from

a continuous pdf f(x) and cdf F (x) for a sample of size n with censoring scheme
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R = (R1, . . . , Rr). For a bounded support, l = 1, 2, . . . , r − 1 and fixed quantiles

ξp ∈ (a, b), the probability that XR
l+1:r:n is Pitman closer to ξp than XR

l:r:n was given

as

Pr{Al+1:r:n} = FXR
l:r:n(ξp)− cl−1

l∑
i=1

ai(l)

×
∫ p

0

(1− u)γ1−γ
−1
l+1 [1− F (min[b, 2ξp − F−1(u)])]γl+1du. (2.19)

The constants γ1, . . . , γr are defined as γl =
∑r

i=l(Ri+1) = n− (l−1)−
∑l−1

i=1 Ri for

l = 1, . . . , r. Here, γl represents the number of remaining units between the (l−1)th

and lth failures. For simplification of notation, the authors let cl−1 =
∏l

i=1 γi and

ai(l) =
∏l

k=1
k 6=i

1/γk − γi. From Equation 2.19, the authors noted that FXR
l:r:n(ξp)

depends only on p and the PCS, and does not depend on the underlying distribution

F .

Using Equation 2.18 and the results in Balakrishnan et al. (2010), for l =

2, 3, . . . , r − 1 and any fixed quantile ξp, the SCP of XR
l:r:n to ξp, πl:r:n(ξp), was

found to be
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πl:r:n(ξp) = Pr{Bl:r:n}

= Pr{Al:r:n} − Pr{Al+1:r:n}

= FXR
l−1:r:n(ξp)− FXR

l:r:n(ξp)

+ cl−1

l∑
i=1

ai(l)

∫ p

0

(1− u)γ1−γl+1+1−1

[1− F (min[b, 2ξp − F−1(u)])]γl+1du

− cl−2

l−1∑
i=1

ai(l − 1)

∫ p

0

(1− u)γ1−γl+1−1[1− F (min[b, 2ξp − F−1(u)])]γldu.

(2.20)

For the special cases of l = 1 and l = r, the authors found

π1:r(ξp) = Pr(B1:n) = 1− Pr(A2:r), (2.21)

πr:r(ξp) = Pr(Br:n) = Pr(Ar:r). (2.22)

Together, Equations 2.19 - 2.22, give the SCP of PCOS to any population quan-

tile. The authors demonstrated their procedure for the exponential, uniform and

normal distributions.

2.1.4.3 Pitman Closeness of Record Values to Population Quantiles

Another type of data considered in the context of Pitman closeness and quantiles

is record data. Let {Xi, i ≥ 1} be a sequence of independent and identically dis-

tributed random variables with cdf F (x) and pdf f(x). For every i < j, Xj is defined

as an upper record if Xj > Xi. In other words, Xj is an upper record if its value is
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greater than all observations before it. Similarly, lower record values can be defined.

Furthermore, the zero-th upper and lower records are given as U0 ≡ L0 ≡ X1, and

for n ≥ 1 the nth upper and lower records are taken as Un and Ln. With this

in mind, Ahmadi and Balakrishnan (2009) aimed to study the Pitman closeness of

record values to population quantiles. The Pitman closeness probability for any two

upper record values Ui and Uj to the parameter ξp for 0 < p < 1 was defined as

πU(i, j : p) = Pr(|Ui − ξp| < |Uj − ξp|), (2.23)

which was alternatively written as

πU(i, j : p) =

{
Pr(Ui < ξp) + Pr(Ui > ξp, Ui + Uj < 2ξp) for 0 ≤ j < i
Pr(Ui > ξp) + Pr(Ui < ξp, Ui + Uj > 2ξp) for j > i.

(2.24)

From Equation 2.24, for 0 ≤ j < i, the authors showed that Ui is the Pitman-

closest estimator of ξp among the class C∗ = {U0, U1, . . . , Ui} assuming that Pr(Ui <

ξp) ≥ 0.50. Similarly, for j > i, Ui is Pitman-closest estimator of ξp among the class

C∗ = {Ui, Ui+1, . . . , } provided Pr(Ui > ξp) ≥ 0.50. An explicit expression for the

probability of πU(i, j : p) was given as

πU(i, j : p) = q

i∑
k=0

(− log q)k

k!
+

j−i−1∑
k=0

j−i−k−1∑
r=o

(−1)k

i!k!r!(j − i− 1)!
C1(i, k, r; p) (2.25)

for 0 ≤ i < j, p ∈ (0, 1) and q = 1− p, where

C1(i, k, r; p) =

∫ − log q

0

uk+i
{
− log F̄ (−F−1(1− e−u) + 2ξp)

}r
F̄ (−F−1(1−e−u)+2ξp)du.
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For two contiguous upper record values, the Pitman closeness probability was

found to be

πU(i, i+1; p) = (1−p)
i∑

k=0

(− log q)k

k!
+

∫ − log q

0

F̄ (−F−1(1−e−u)+2ξp)
ui

i!
du. (2.26)

For the special case when p = 0.50, it was found that the probabilities of close-

ness of upper records to the population median are distribution-free for a parent

distribution which is symmetric about ξ0.5. For i ≥ 1, when p = 0.50, they found

Pr(Ui > ξ0.5) =
1

2

i∑
k=0

(log2)k

k!
>

1

2
= Pr(Uo = X1 > ξ0,5).

Furthermore, the authors found that U0 was the Pitman-closest estimator of

the population median among the class of all upper record values. Generally, they

established that Ui is a Pitman closer estimator of the population median than Uj

for j > i ≥ 0, and for the class C = {Ui, Ui+1, Ui+2, . . . }, Ui is the Pitman-closest

estimator of ξ0.5. These results were demonstrated for the uniform and exponential

distributions.

2.1.4.4 Simultaneous Closeness of k-Records

Another work on Pitman closeness and quantiles is based on k-record data. For

this, assume that X1:n, . . . Xn:n form a sequence of random variables with cdf F (x)

and pdf f(x). Then for a sample of size m, let Xi:m denote the ith order statistic.

Ahmadi and Balakrishnan (2013) considered the following setting: let T0:k = k,

U0,k = X1:k, and for n ≥ 1 let Tn,k = min{j : j > Tn−1,k, Xj > XTn−1,k−k+1:Tn−1,k
}.
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An upper k-record is defined as the kth largest X that is yet unseen. This se-

quence of upper k-records is then defined as Un,k = XTn,k−k+1:Tn,k
for n ≥ 0, and is

known as a Type-2 k-record sequence. A similar definition can be given for lower

k-records, denoted by Ln,k. With this in mind, Ahmadi and Balakrishnan (2013)

extended previous work on Pitman closeness to population quantiles and examined

the simultaneous closeness probability for record data. The simultaneous closeness

probability of Ui,k to the parameter of interest θ among the class of upper k-records

was expressed as

πU(i, k; θ) =

{
Pr(|Ui,k − θ| < minj=i−1,i+1 |Uj,k − θ|) for i ≥ 1
Pr(|U0,k − θ| < |U1,k − θ|) for i = 0.

(2.27)

For a sequence of upper k-records U0,k, U1,k, . . . with bounded support on the

interval (a, b), for fixed k and i ≥ 1, the simultaneous closeness probability of Ui,k

to θ was shown by the authors to be

πU(i, k; θ) = [F̄ (θ)]k
[−k log F̄ (θ)]i

i!
+

ki

(i− 1)!

∫ − log F̄ (θ)

− log F̄ (max{a,2θ−b|})

× ui−1[F̄ (−F−1(1− e−u) + 2θ)]k
(
ku

i
− 1

)
du. (2.28)

For a sequence with unbounded support, the simultaneous closeness probability

of Ui,k was found to be
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πU(i, k; θ) = ki
∫ − log F̄ (θ)

0

ui−1

(i− 1)!
[F̄ (−F−1(1− e−u) + 2θ]k

(
ku

i
− 1

)
du

+ [F̄ (θ)]k
[−k log F̄ (θ)]i

i!
. (2.29)

The Pitman closeness probability for the lower k-records was found in a similar

manner. Assuming F (·) belongs to a location-scale family and replacing θ with

ξp in Equation 2.29 gives the simultaneous closeness probability of k-records to

population quantiles.

In the case of unbounded support, for fixed k, the SCP of Ui,k to the pth quantile

ξp, for i ≥ 1, was given as

πU(i, k; ξp) =

∫ − log q

0

[F̄ (−F−1(1−e−u)+2ξp]
k k

iui−1

(i− 1)!

(
ku

i
− 1

)
du+qk

−k log qi

i!
(2.30)

and for i = 0,

πU(0, k; ξp) = qk + k

∫ − log q

0

[F̄ (−F−1(1 − e−u) + 2ξp]
kdu, (2.31)

where q = 1 − p. Clearly these probabilities depend on p, i, and k but not on

location and scale parameters. Assuming F is symmetric about ξ0.5, the authors

found the probabilities πU(i, k; ξ0.5), for all i ≥ 0, do not depend on F and are given
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by

πU(i, k; ξ0.5) =
(k log 2)i

i!

(
2−k − 1 +

k log 2

i+ 1
− k

k∑
r=1

(
k

r

)
(−1)r

r2r

)

+
k∑
r=1

(
k

r

)
(−1)r

(
k

r
− 1

)(
k

r

)(
1− 1

2r

i−1∑
t=0

(r log 2)t

t!

)
(2.32)

for i ≥ 1, and for i = 0 they found that

πU(0, k; ξ0.5) =
1

2k
+ k log 2

k∑
r=1

(
k

r

)
(−1)r

r

(
1− 1

2r

)
. (2.33)

Furthermore, if Ui,k is the simultaneous closest k-record to ξp among the class of

upper k-records, then they found that Li,k is the simultaneously closest k-record to

ξ1−p among the class of lower k-records.

2.2 Goodness-of-fit Assessments

2.2.1 Basics

The goodness-of-fit of a statistical model determines how well the model fits a set of

observations. It is common to assume that a set of data follows a particular distribu-

tion and being able to test the validity of the model assumptions of that particular

distribution is desirable. In goodness-of-fit tests, the most important part involves

checking for different departures from a set of standard conditions (Huber-Carol,

2002). With this goal, there are both parametric and non-parametric goodness-

of-fit tests available. Parametric statistics assume that data come from a specific
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probability distribution and inferences about the parameters of the distribution are

made. Non-parametric statistics refers to statistics whose sampling distribution

does not depend on either the explicit form of the distribution of the population or

the values of certain parameters in the distribution of the population (Massey Jr,

1951). Parametric methods typically make more assumptions than non-parametric

methods.

The first parametric goodness-of-fit test was introduced by Karl Pearson during

the 1900s in a paper that described an objective way of assessing adequacy of fit.

This test was the chi-squared test, and the corresponding test statistic was used to

compare observed values to theoretical ones (Huber-Carol, 2002). For this test, it

is first assumed that underlying probability distribution of the data is multinomial.

Then the null hypothesis is that the multinomial probabilities are equal to the

hypothesized probabilities, pi. The test statistic is defined as

χ2 =
k∑
i=n

(xi −mi)
2

mi

,

where xi comes from a multinomial distribution, n is the number of observations, pi

are the hypothesized probabilities and mi = npi. Here, xi can be interpreted as the

observed counts and mi the expected numbers or expected cell counts (Cochran,

1952). As n approaches infinity, the test statistic, χ2, has a chi-squared distribution

with k − 1 degrees of freedom under the null hypothesis (Cochran, 1952).

A popular non-parametric goodness-of-fit test is the Kolomogorov-Smirnov test,

which is based on the maximum difference between an empirical cumulative dis-

tribution function and a hypothetical cumulative distribution function (Lilliefors,
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1967). The test statistic is

d = maximum|F0(x)− Sn(x))|,

where F0(x) is the specified cumulative frequency distribution from a population

and Sn(x) is the cumulative step function of the sample (Massey Jr, 1951). For

this test, the null hypothesis is that the sample which comes from an unknown

distribution is equal to a common known distribution. If the sample comes from

the hypothesized distribution, then d will be small. Over the years, there have been

many parametric and non-parametric tests introduced. Some of these include non-

parametric tests such as the Wilcoxon signed rank test, the Kruskal-Wallis test and

the Mann-Whitney U test, while some parametric tests include t-tests and analysis

of variance tests.

2.2.2 Graphical Assessments

Probability plots are used as a graphical procedure of testing the goodness-of-fit of

a hypothesized distribution to given data (Arnold et al., 1992). By looking at a plot

of two sets of values, an empirical set against a theoretical set or two theoretical

data sets, a decision can be reached as to whether there is agreement. The most

commonly used plots are the probability-probability plot and the quantile-quantile

plot.

2.2.2.1 Probability-Probability Plots

In general, a probability-probability (PP) plot typically has two purposes: it can

be used to see if two data sets agree or it can be used to compare a data set to
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a theoretical distribution. In the latter case, it is used to determine how well a

specific distribution fits the observed data. It does this by comparing an empirical

cumulative distribution function to a specified theoretical cumulative distribution

function F (x). To do this, the location and scale parameters of F (x) are required in

order to evaluate the cdf at the ordered data values; if they are not specified, they

need to be estimated. Let X1, X2, . . . , Xn be a random sample from an absolutely

continuous distribution with cdf F (x), then a PP plot, more precisely, is a plot of

F (xi:n) versus pi, where x1:n ≤ · · · ≤ xn:n denote the ordered observations and pi is

a plotting point associated with xi:n. If the specified theoretical distribution fits the

data well, then the plot will be exhibit a 45 degree line. A PP plot will not remain

linear if there are changes to either the location or scale parameters. Furthermore,

these type of plots are able to detect discrepancies in the middle of a distribution

rather than in the tails. PP plots can also be extended to multivariate situations

(Wilk and Gnanadesikan, 1968).

2.2.2.2 Quantile-Quantile Plots

Another visual method of goodness-of-fit is the quantile-quantile (QQ) plot. QQ

plots are generally more widely used than PP plots. Introduced by Wilk and

Gnanadesikan (1968), a QQ plot compares the quantiles of one probability distribu-

tion with similar quantiles of another using a graphical approach. This type of plot

can be used to compare collections of data or theoretical distributions. Also, this

plot allows one to identify outliers as well as expose location and scale differences

(Marden, 2004). Furthermore, it can be used to check whether an assumed linear

regression model’s errors behave like a random sample from the normal distribution
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(Arnold et al., 1992).

Commonly, a QQ plot is used to compare a data set to a theoretical model.

For the univariate case, let X1, X2, . . . Xn be a random sample from an absolutely

continuous cdf F (x) with location and scale parameters. The observed order statis-

tics, x1:n ≤ · · · ≤ xn:n can be thought to represent the values taken by the sample

quantile function, F−1(p) (Arnold et al., 1992). The QQ plot is made by plotting

the points (F−1(pi), xi:n) where xi:n are ordered observed values of the sample and pi

is again the plotting point associated with xi:n. Normally the population quantiles

are on the x-axis and the sample quantiles on the y-axis. If the plotted points lie

close to a 45 degree line, then this leads to the conclusion that the model fits the

data well (Castillo et al., 2005).

A QQ plot has many benefits, for instance, it is a good detector of distribu-

tional discrepancies and also provides a useful tool for examining the sufficiency of

a composite hypotheses in which there are unspecified location and scale parame-

ters. Unlike PP plots, however, QQ plots cannot easily be applied in multivariate

situations (Wilk and Gnanadesikan, 1968). One benefit over the PP plot is that the

parameters do not need to be estimated and, in fact, a QQ plot is also unaffected

by changes in location or scale. Since the location and scale parameters are not

required for this type of plot, it is better at comparing the data distribution with a

family of distributions that change only in location or scale.

Like PP plots, QQ plots need plotting points and since there are a multitude

of different plotting points to choose from, the best choice usually depends on the

purpose of the research as well as the distribution of the variable being considered.
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2.2.3 Plotting Points

Plotting points are needed in various goodness-of-fit graphical assessments. The

first plotting point introduced was

Pi =
i

n
,

where i is the rank of the ordered data and n is the number of observations. The

problem with such plotting points, however, is that the largest value cannot be

used since it corresponds to the 100th percentile of the theoretical distribution. To

rectify this, π = i−1
n

was suggested, however, in this case the smallest value cannot

be plotted for similar reasons. Over the years, many different plotting points have

been suggested. A distribution-free plotting point was proposed by Weibull (1939)

as

Pi:n =
i

n+ 1
. (2.34)

For a random variable, X, with pdf f(x) and cdf F (x), then F (Xi:n) is a new

variable related to X by order ranking from the smallest to the largest value and it

will have a probability density fi:n(F (Xi:n)) given by

fi:n(F (Xi:n)) =
n!

[(i− 1)!(n− i)!]
(F (xi:n))i−1(1− F (xi:n))n−if(xi:n). (2.35)

If X has a continuous distribution then Xi:n is such that F (Xi:n) ∼ B(i, n−i+1),

where B(α, β) is a beta distribution with shape parameters α and β. Based on this,
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one can obtain the plotting point in Equation 2.34 which is also known as the

mean-rank plotting point, denoted ei:n. In this way, we see

ei:n = E[F (Xi:n)] =
i

n+ 1
. (2.36)

Also based on this, another plotting point that can be used is the median of F (Xi:n).

Let M(x) denote the median of F (Xi:n), then the median-rank, mi:n is given by

mi:n = M[F (Xi:n)] = b0.5;i,n−i+1, (2.37)

where b0.5;α,β is the median of B(α, β). This plotting point is referred to as the

median-rank plotting point.

The median-rank plotting point is typically used for skewed distributions such

as extreme value, since it is thought to be more robust than the mean-rank. Since

F (Xi:n) ∼ B(i, n− i+ 1), it has been established that

ei:n < mi:n ∀i <
n

2
and ei:n > mi:n, ∀i >

n

2
.

For more details on these plotting points, see Castillo et al. (2005).

The choice of plotting point is a controversial topic. Recently Makkonen (2008)

presented the idea that for any analysis of the cdf, observed order statistics must

be plotted at i/(n+ 1) and that the mean of F (Xi:n) is the best plotting point for

extreme value analysis, which contradicts the previous assumption that the median-

rank is more robust than the mean-rank. New plotting points have been recently

introduced which are based on the Pitman closeness criterion.
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A distribution approach that chooses plotting points based on simultaneous

closeness probabilities of order statistics to population quantiles was recently done

by Balakrishnan et al. (2012a). The authors established that these simultaneous

closeness probabilities are independent of the location and scale parameters for

location-scale families and just depend on the sample size n as well as p. For a

given i and n, the goal is to identify a plotting point for xi:n. If one considers SCPs,

which are functions of p, one may find a p for which the SCP is maximized. This

p, where the SCP is maximized, could be used as a plotting point for that xi:n. For

n = 10 and n = 15, Figures 2.1 and 2.2 respectively, plot the SCPs, πi:n, at different

values of p for each order statistic xi:n, for i = 1, . . . , n for the normal distribution.

From both Figures 2.1 and 2.2, for i = 2, . . . , n− 1, it is clear that optimal plotting

position can be found by taking the mode of each curve since for X2:n, . . . , Xn−1:n,

the curves are unimodal. Also note the SCP plots for the ith and (n− i+1)th order

statistic are symmetric about p = 0.50. Since the normal distribution is symmetric,

in order to maximize πi:n(p), the partial derivatives of πi:n(p) with respect to p were

taken and equated to zero. Then, let the solution to this equation be denoted by

si:n, which the authors referred to as a SCP plotting points.

In Balakrishnan et al. (2012a), SCP plotting points for values of p ranging over

0.001(0.001)0.999 for all values of i corresponding to different values of n were first

found for the case of the normal distribution. The authors noted that for n = 10 and

n = 15, the simultaneous closeness plotting points were higher than the mean-ranks,

which were higher than the median-ranks for larger order statistics. For smaller

order statistics this inequality was reversed. Simultaneous closeness plotting points

were also found for the logistic, Laplace, and Cauchy distributions for values of
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Figure 2.1: SCPs for normal order statistics when n = 10

n = 10 and n = 15. From the tables, it was noted that the uniform distribution had

the highest SCP plotting points for the smaller order statistics and lowest for the

largest order statistics, this was followed in order by the normal, logistic, Laplace

and Cauchy. The Cauchy distribution had the smallest SCP plotting points for the

lower order statistics and the highest for the higher order statistics. Distribution-

free SCP plotting points were also found using the uniform distribution for samples

of size n = 10 and n = 15.

From Figures 2.1 and 2.2, it should be noted that the plots are not unimodal
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Figure 2.2: SCPs for normal order statistics when n = 15
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for i = 1 and n; they are monotonically decreasing and increasing, respectively.

This means that SCP plotting points cannot be found by maximizing the SCP in

these two cases. In order to overcome this, the authors used the midpoints between

(0, s2:n) and (sn−1:n, 1) for the plotting points for x1:n and xn:n, respectively.

2.2.4 Correlation Test

One common goodness-of-fit test is the correlation test. The normal probability plot

correlation coefficient test was first introduced by Filliben (1975). It was introduced

to test for the hypothesis of normality because it was easy to understand and also

relatively easy to calculate since it only centers on the linearity of a probability

plot. The null hypothesis being tested is that the sample data come from a specific

distribution, i.e.,

Ho : F (x) = F0(x)

Ha : F (x) 6= F0(x),

or equivalently,

Ho : ρ ≥ ρ0

Ha : ρ < ρ0,

where ρo is a percentile point for the correlation coefficient under the null distribu-

tion F0(x). Let xi:n ≤ · · · ≤ xn:n be the observed order statistics from a sample of

size n. In its original form, the normal probability plot correlation coefficient test
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computes the product moment correlation coefficient between the ordered observa-

tions xi:n and the median-ranks M(xi:n) (Filliben, 1975), where the observations

come from the standard normal distribution. The product moment correlation co-

efficient was introduced by Karl Pearson in 1895 and can be written as

r =

∑
(xi − x̄)(yi − ȳ)√∑

(xi − x̄)2
√∑

(yi − ȳ)2
.

A product moment correlation coefficient being close to one implies that the

normal probability plot of xi:n against the median-ranks, M(xi:n), is roughly linear

and that the sample was generated from the hypothesized normal distribution. The

distribution of r depends only on the sample size n and the standardized cdf; it

does not depend on either location or scale parameters. Due to the simplicity of

this test, some advantages of this test include that it is not limited to any sample

size and that it can be easily extended to other distributions besides the normal

distribution (Filliben, 1975).

Based on Filliben’s work, Kinnison (1989) developed a correlation coefficient

type test for a Type-I extreme value distribution, the Gumbel distribution. For

this test, the correlation coefficient was calculated between the ordered data values

and their mean-ranks. The mean-ranks were found by substituting the rank per-

centile of a data value, where the rank percentiles were calculated as the rank of

each data divided by the sample size plus one, into the inverse of the extreme value

cumulative distribution function (Kinnison, 1989). Through simulation, the empir-

ical distribution of the statistic was found and was used to get the critical values

at different percentage points. Kinnison also examined the power properties of this
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test for alternative models. The alternate distributions chosen were the Weibull and

Cauchy distributions since they are a part of extreme value family. The normal and

log-normal distributions were also considered. Several different sample sizes were

used for each distribution and it was found that the test had good power to reject

samples from the alternate distributions. It was also found that as the sample size

increased, the power of the test also did Kinnison (1989). This test is useful since it

is one of the easiest available goodness-of-fit tests for the extreme value distribution.

2.2.5 Correlation Coefficient-Type Test Based on SCPs

Following along the lines of Kinnison, a correlation goodness-of-fit was proposed for

the test of normality using the new SCP plotting positions introduced by Balakr-

ishnan et al. (2012a) and described in Section 2.2.3. For observed order statistics

x1:n ≤ · · · ≤ xn:n, let s1:n, . . . , sn:n be the SCP plotting points. Since optimal plot-

ting points could not be found for smallest and largest order statistics, as previously

mentioned, the authors used the midpoint between (0, s2:n) for x1:n and the mid-

point between (sn−1:n, 1) for xn:n. First proposed as a test for normality, the tests

considers the correlation between the values xi:n and Φ−1(si:n) for i = 1, . . . , n where

Φ is the standard cdf of the standard normal distribution. For this test, small values

of the correlation coefficient indicate the rejection of the hypothesis of normality.

Monte Carlo simulations were used to find the average value, variance and both

5% and 10% critical values of the new test statistic for sample sizes of n = 10, 15

and 25. The power of the test for these sample sizes was found using Monte Carlo

simulations for various alternatives such as the exponential and Cauchy. The pur-

pose of this power study was to evaluate the proposed correlation goodness-of-fit
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test for normality. The authors also compared the performance of the test when

other plotting points were used, such as distribution-free, mean- and median-rank

plotting points. These comparisons showed that the power of the test based on the

distribution-free SCP plotting method and median-rank method were not as good

as the SCP plotting method based on the normal. An advantage of the SCP plotting

method is that optimal plotting points can be found for other distributions. The

authors found that this could result in the possibility of better power properties and

better plotting methods for that model compared to the mean- and median-ranks.

This work was followed by a correlation-type goodness-of-fit test for the extreme

value distribution based on simultaneous closeness probabilities. To test for extreme

value, G−1(si:n) = log(−log(1−si:n) is used in place of the inverse cdf of the standard

normal distribution, where si:n now denotes the SCP plotting points for the extreme

value distribution. Since SCP plotting points once again cannot be found for i = 1

and n, the authors again took the midpoints of the intervals (0, s2:n) and (sn−1:n, 1)

which were used for x1:n and xn:n, respectively. By using Monte Carlo simulation,

the distribution of the correlation coefficient statistic was estimated, as well as the

critical values of its distribution. Also, the distribution of the correlation coefficient

was estimated based on both the mean-rank plotting points and the median-rank

plotting points for the sake of comparison.

A power study comparing the proposed test with the correlation coefficient test

based on the mean- and median-ranks was then conducted to judge the performance

of the goodness-of-fit test for extreme value distribution based on SCP plotting

points. Samples were simulated from distributions such as exponential, gamma,

lognormal, and Students t, and the power of the test was determined based on
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100,000 simulations at significance levels of 5% and 10%. The authors found that

the test based on the SCP plotting points gave consistently better power than

the other methods. It was also found, in particular, that the test based on SCP

plotting points performed better than the median-ranks for small sample sizes. As

n increased, the power of the tests based on the median-ranks and SCP plotting

points became very similar in all cases.

The authors also demonstrated the use of their test in the form of a Weibull

analysis. Suppose that an experimenter wants to know if a particular set of data

comes from the Weibull(θ, α) distribution. To estimate the location and scale pa-

rameters, a least-squares regression could be used on a QQ plot. Based on this

idea, the correlation coefficient test could be used. In order to use the correlation

coefficient test, the log of the data is taken so it can be transformed to data from

the extreme value distribution with location parameter log(θ) and scale parameter

1/α. For an ordered sample Y1:n ≤ · · · ≤ Yn:n from the extreme value distribution,

it can be seen that

Yi:n − log(θ)

1/α
≈ log(− log(1− ai:n)) (2.38)

which implies Yi:n ≈ log(θ) + 1
α

[log(− log(1 − ai:n))], where ai:n is a plotting point

associated with Yi:n. By substituting the mean-rank, median-rank and SCP plotting

points for ai:n, the authors were able to get the least-squares estimates of the Weibull

parameters. They then computed the bias and mean square error of these estimates

by using 10, 000 simulated Weibull samples of size n = 10, 40 and 50 for all three

methods. They found that the estimates of θ based on the SCP plotting points and

median-ranks were very near unbiased and became almost identical as n increased.
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For the estimate of α, the mean-rank method ended up being the best based on the

mean squared error.
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Chapter 3

Proposed Test

3.1 Motivation

In order to assess goodness-of-fit, QQ plots comparing an observed sample to a theo-

retical distribution can be used. QQ plots do this by comparing the quantiles of the

two probability distributions and checking for linearity. In order to use these type of

plots, plotting points are needed. A new plotting point was introduced by Balakr-

ishnan et al. (2011a) that is based on simultaneous closeness probabilities. These

SCP plotting points were the basis for the correlation coefficient test described in

Section 2.2.5. The correlation coefficient test involves finding the correlation be-

tween a sample data and the inverse cdf of the hypothesized model evaluated at

the corresponding plotting points. If the correlation is close to one, it indicates the

linearity and it can be said that the data come from the hypothesized distribution.

One of the drawbacks of the correlation test using SCP plotting points is that SCP

plotting points for x1:n and xn:n had to be interpolated. That is, the midpoint be-

tween 0 and s2:n was used for x1:n and similarly for xn:n, the midpoint between sn−1:n
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and 1 was used. While this provides a valid test, we now consider modifications to

this procedure.

3.2 Construction

We propose a minimal-maximal correlation-type goodness-of-fit test, which will have

two forms: a minimal-correlation test and a maximal-correlation test. In particular,

in conjunction with typical SCP plotting points, we will consider a space of SCP

plotting points (0, s2:n)× (sn−1:n, 1) for x1:n and xn:n, and identify where the corre-

lation coefficient is minimized (maximized). Both tests can be used to determine if

the model comes from a specific distribution.

Considering the hypotheses given in Section 2.2.4, under H0, the largest corre-

lation that can be achieved with a given data set should be high. Therefore, for

the test which identifies maximum correlation, which we shall call the maximal-

correlation test, if the maximum correlation test statistic is below the critical value,

then the null hypothesis is rejected. This implies that the data does not come from

the proposed distribution, i.e., there is a lack-of-fit. If the test statistic is above

the critical value then we have insufficient evidence to conclude that the data come

from the alternative distribution. It is set up in this way because the maximum

correlation needs to be high enough to be a good fit.

For a given data set, under the null hypothesis, the lowest correlation that can be

obtained should not be too low. Therefore, for the test which determines minimum

correlation, which we shall call the minimal-correlation test, if the minimum cor-

relation is high then it suggests that the data come from the hypothesized model.

That is, if the correlation test statistic is lower than some critical value then it
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can be concluded that the null hypothesis should be rejected and the hypothesized

model is not a good fit. In order to investigate these two tests, we considered two

approaches, which we will call the grid search method and the averaging method.

For a given data set, the first method consists of a grid search which finds where

the correlation value is minimized (maximized). For x2:n, . . . , xn−1:n the SCP plot-

ting points s2:n, . . . , sn:n found by Balakrishnan et al. (2012a) are used. Since we do

not have optimal plotting points for x1:n and xn:n (which would be 0 and 1, respec-

tively), we consider a range of the plotting point for x1:n that is from (0.0001, s2:n)

and similarly the range considered for xn:n is from (sn−1:n, 0.9999), thus giving a

space of possible values defined by (0, s2:n) × (sn−1:n, 1). The correlation is then

found between the sample data and inverse cdf of the hypothesized distribution

evaluated at each point in this grid and the known plotting points si:n. For in-

stance, for a given data set, x1:n, . . . xn:n, the first correlation evaluated is between

(x1:n, . . . , xn:n) and (0.0001, s2:n, . . . , sn−1:n, sn−1:n) and the last one is evaluated be-

tween (x1:n, . . . , xn:n) and (s2:n, s2:n, . . . , sn−1:n, 0.9999). This will create a grid of

correlation values. The grid is then searched for the highest correlation value which

corresponds to the maximal-correlation test statistic and the lowest correlation value

which corresponds to the minimal-correlation test statistic. The so found plotting

points corresponding to minimal-correlation test will be denoted as s∗1:n and s∗n:n for

x1:n and xn:n respectively. For the maximal-correlation test, the plotting points for

x1:n and xn:n will be denoted to as s∗∗1:n and s∗∗n:n . In the remainder of this thesis,

we will refer to these new plotting points as modified SCP plotting points. Note, for

both tests, we use the traditional SCP plotting points, si:n, for i = 2, . . . , n− 1, i.e.,

s∗i:n = s∗∗i:n = si:n for i = 2, . . . , n − 1. To make this procedure more clear, consider
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the following data set:

0.5465 0.2021 0.6995 0.0099 0.2293 0.7782 0.6547 0.3516 0.8880 0.1313

Suppose we wish to test for the uniform distribution. Then the procedure en-

tails evaluating the correlation between these ordered data values and all sets of

plotting points of the form (0.0001, 0.1584, . . . , 0.8416), where the first and last en-

tries are increased in their support over the space (0, s2:n) × (sn−1, 1). The points

0.1584, . . . , 0.8416 are the SCP plotting points found for s2:10, . . . , s9:10 by Balakr-

ishnan et al. (2010). This gives a matrix of correlation values and these are plotted

in Figure 3.1. This visualizes our objective function which we can minimize and

maximize. From Figure 3.1 it can be seen that the minimal correlations occur at

the boundaries of the space, i.e., 0.0001 and 0.1584 for x1:10 and 0.8416 and 0.9999

for x10:10. The maximal correlation occurs in the middle of the space.

The second method does not require a search for a given data set, but instead

it finds the maximal (minimal) correlation using the averages of the plotting points

that were found in the first method, i.e., it uses the averages of s∗1:n, s∗n:n, s∗∗1:n and

s∗∗n:n. We will denote these by s̄∗1:n, s̄
∗
n:n, s̄

∗∗
1:n and s̄∗∗n:n. In other words, this method

uses plotting points which are not data dependent. The test proceeds in the same

fashion; it finds the correlation between the ordered data and the inverse cdf of the

hypothesized distribution evaluated at the modified SCP plotting points.

3.3 Numerical Results

In this section, we compare the two tests across both methods by looking at their

distributional properties, carrying out a power study and considering several illus-
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trative examples.

3.3.1 Distributional Properties

Through simulation we investigated the distribution of our four test statistics for

both the uniform(0, 1) and standard normal for both methods. For the grid search

method, uniform(0, 1) random observations were simulated for samples of size,

n = 10, 15, 20 and 30. Within each sample, the correlation was found between

the ordered data and the inverse cdf evaluated at points in the space considered.

These values were then stored in a matrix for each of the four sample sizes. A grid

search was then conducted by scanning each of the four matrices for the highest and

lowest correlation, thus finding the set of plotting points at which each occurred,

and identifying maximum and minimum correlation values. This grid search method

was repeated 10, 000 times. The 5% and 10% critical values of the test statistic were

then found by ordering both the maximum and minimum correlation values for each

sample size and finding the 500th and 1000th value. For further information, the

number of times that the four new plotting points were the same as their corre-

sponding boundary values was calculated and stored, i.e., for s∗1:n it was found how

many times that it was equal to either 0.0001 or s2:n. This procedure was repeated

for the standard normal distribution. The average SCP plotting points to be used

in the second method, i.e., s̄∗1:n, s̄∗n:n, s̄∗∗1:n and s̄∗∗n:n, can be seen in Tables 3.1 and

3.2. These two tables compare the previously used plotting points for x1:n and xn:n

and our modified SCP plotting points. It can be noted from these two tables that

as n increases, the SCP plotting points for the minimal- and maximal-test become

quite different from the SCP plotting points using the midpoint method, though
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are very similar for small values such as n = 10. The critical values found for the

test statistics for the distributions considered can be seen in Tables 3.3 and 3.6.

For the uniform distribution with n = 10, from Table 3.7, it can be seen that

for the minimal-correlation test, the bounds are being hit 100% of the time. This

was the case for all the sample sizes considered. From Table 3.8 we can see this

pattern did not continue for the normal distribution. It can be seen from Table

3.8 that the proportions for s∗n:n and s∗∗n:n occurring at the boundary values total to

one. For the normal distribution, the proportion of times the plotting points s∗∗1:n

occurs at the bound 0.0001 seems to decrease as n increases, but for the plotting

point s∗1:n it increases as n increases. This is also the case for the plotting point

s∗∗n:n; the proportion of times it hits the bound 0.9999 decreases as n increases but

increases for s∗n:n as n increases. For s∗∗1:n and s∗∗n:n, at the bounds s2:n and sn−1:n

respectively, the proportion increases as n increases but the reverse is true for s∗1:n

and s∗n:n. In the case of the uniform distribution, all the proportions increase for

both s∗∗1:n and s∗∗n:n. However for s∗1:n and s∗n:n the proportions decrease as n increases

for the bounds s2:n and sn−1:n, but increase for the bounds 0.0001 and 0.9999.

The second method took the average of the SCP plotting points from the grid

search method and used them as plotting points for x1:n and xn:n for both tests. The

maximum correlation was found between the ordered data values and the average

SCPs found for the maximal test in the grid search method, and the minimum

correlation was found between the ordered data and the average SCPS found the

for the minimal test. This procedure was repeated 10, 000 times. Critical values

were found at the 5% and 10% level; these results can be seen in Tables 3.4 and 3.5.

Histograms of the correlation statistic were made for both methods for the max-
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imal and minimal correlation tests for the two distributions considered. Figure 3.2

-3.9 show that for both methods, the majority of correlation values were between

0.95 and 1 for the uniform distribution. These results were very similar for the nor-

mal distribution. The histograms also show that the distribution of the correlation

statistic is always skewed to the left in both tests across both methods.

3.3.2 Power Study

The power of a test is the probability that the test will reject the null hypothesis

when the null hypothesis is false. The power of the proposed tests was investigated

by replacing the uniform (normal) distribution with an alternative distribution in

the simulations. For a given alternative, 10,000 random samples were generated for

sample sizes n = 10, 15, 20 and 30, and the correlation was found using the modified

SCP plotting points. The proportion of the correlations that were less than the

critical values was determined; this is the power of the test at the associated level.

The alternative distributions chosen for this power study were the B(1, 3), B(3, 1),

B(3, 3), B(2, 1) and B(2, 2). The choice of significance levels were 5% and 10%.

The results are presented in Tables 3.9 and 3.10. Table 3.9 indicates that all four

correlation tests for the uniform had good power to reject samples from the majority

of alternative distributions considered; this is more evident as n increases. The

averaging method appears to have consistently better power than the grid search

method for the maximal-correlation test in all cases. For the minimal-correlation

test, the grid search method had better power than the averaging method for all

alternative distributions for n = 15, 20 and 30. In terms of the two tests, the

minimal-correlation test had higher power in almost all cases. For the normal, the
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Figure 3.1: Plot of the correlation coefficient over a grid of plotting points for x1:n
and xn:n
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i/n 10 15 20 30
si:n s̄∗∗i:n s̄∗i:n si:n s̄∗∗i:n s̄∗i:n si:n s̄∗∗i:n s̄∗i:n si:n s̄∗∗i:n s̄∗i:n

1 0.0792 0.0779 0.0847 0.0529 0.0516 0.0554 0.0398 0.0385 0.0415 0.0265 0.0255 0.0277
2 0.1584 0.1584 0.1584 0.1058 0.1058 0.1058 0.0795 0.0795 0.0795 0.0530 0.0530 0.0530
3 0.2542 0.2542 0.2542 0.1699 0.1699 0.1699 0.1275 0.1275 0.1275 0.0851 0.0851 0.0851
4 0.3521 0.3521 0.3521 0.2353 0.2353 0.2353 0.1766 0.1766 0.1766 0.1178 0.1178 0.1178
5 0.4506 0.4506 0.4506 0.3012 0.3012 0.3012 0.2261 0.2261 0.2261 0.1508 0.1508 0.1508
6 0.5494 0.5494 0.5494 0.3674 0.3674 0.3674 0.2758 0.2758 0.2758 0.1840 0.1840 0.1840
7 0.6479 0.6479 0.6479 0.4337 0.4337 0.4337 0.3256 0.3256 0.3256 0.2172 0.2172 0.2172
8 0.7458 0.7458 0.7458 0.5000 0.5000 0.5000 0.3754 0.3754 0.3754 0.2504 0.2504 0.2504
9 0.8416 0.8416 0.8416 0.5663 0.5663 0.5663 0.4252 0.4252 0.4252 0.2837 0.2837 0.2837
10 0.9208 0.9225 0.9149 0.6326 0.6326 0.6326 0.4751 0.4751 0.4751 0.3169 0.3169 0.3169
11 - - - 0.6988 0.6988 0.6988 0.5249 0.5249 0.5249 0.3502 0.3502 0.3502
12 - - - 0.7647 0.7647 0.7647 0.5748 0.5748 0.5748 0.3835 0.3835 0.3835
13 - - - 0.8301 0.8301 0.8301 0.6246 0.6246 0.6246 0.4168 0.4168 0.4168
14 - - - 0.8942 0.8942 0.8942 0.6744 0.6744 0.6744 0.4501 0.4501 0.4501
15 - - - 0.9471 0.9484 0.9445 0.7242 0.7242 0.7242 0.4834 0.4834 0.4834
16 - - - - - - 0.7739 0.7739 0.7739 0.5166 0.5166 0.5166
17 - - - - - - 0.8234 0.8234 0.8234 0.5499 0.5499 0.5499
18 - - - - - - 0.8725 0.8725 0.8725 0.5832 0.5832 0.5832
19 - - - - - - 0.9205 0.9205 0.9205 0.6165 0.6165 0.6165
20 - - - - - - 0.9603 0.9610 0.9591 0.6498 0.6498 0.6498
21 - - - - - - - - - 0.6831 0.6831 0.6831
22 - - - - - - - - - 0.7163 0.7163 0.7163
23 - - - - - - - - - 0.7496 0.7496 0.7496
24 - - - - - - - - - 0.7828 0.7828 0.7828
25 - - - - - - - - - 0.8160 0.8160 0.8160
26 - - - - - - - - - 0.8492 0.8492 0.8492
27 - - - - - - - - - 0.8822 0.8822 0.8822
28 - - - - - - - - - 0.9149 0.9149 0.9149
29 - - - - - - - - - 0.9470 0.9470 0.9470
30 - - - - - - - - - 0.9735 0.9743 0.9724

Table 3.1: SCP plotting points for the uniform distribution using the averaging
method
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i/n 10 15 20 30
si:n s̄∗∗i:n s̄∗i:n si:n s̄∗∗i:n s̄∗i:n si:n s̄∗∗i:n s̄∗i:n si:n s̄∗∗i:n s̄∗i:n

1 0.0717 0.0671 0.0717 0.0476 0.0450 0.0457 0.0356 0.0349 0.0298 0.0237 0.0238 0.0159
2 0.1433 0.1433 0.1433 0.0951 0.0951 0.0951 0.0712 0.0712 0.0712 0.0473 0.0473 0.0473
3 0.2472 0.2472 0.2472 0.1644 0.1644 0.1644 0.1231 0.1231 0.1231 0.0820 0.0820 0.0820
4 0.3487 0.3487 0.3487 0.2320 0.2320 0.2320 0.1738 0.1738 0.1738 0.1158 0.1158 0.1158
5 0.4496 0.4496 0.4496 0.2992 0.2992 0.2992 0.2242 0.2242 0.2242 0.1494 0.1494 0.1494
6 0.5504 0.5504 0.5504 0.3662 0.3662 0.3662 0.2745 0.2745 0.2745 0.1829 0.1829 0.1829
7 0.6513 0.6513 0.6513 0.4331 0.4331 0.4331 0.3246 0.3246 0.3246 0.2164 0.2164 0.2164
8 0.7528 0.7528 0.7528 0.5000 0.5000 0.5000 0.3748 0.3748 0.3748 0.2497 0.2497 0.2497
9 0.8567 0.8567 0.8567 0.5669 0.5669 0.5669 0.4249 0.4249 0.4249 0.2831 0.2831 0.2831
10 0.9208 0.9342 0.9271 0.6338 0.6338 0.6338 0.4750 0.4750 0.4750 0.3165 0.3165 0.3165
11 - - - 0.7008 0.7008 0.7008 0.5250 0.5250 0.5250 0.3499 0.3499 0.3499
12 - - - 0.7680 0.7680 0.7680 0.5751 0.5751 0.5751 0.3832 0.3832 0.3832
13 - - - 0.8356 0.8356 0.8356 0.6252 0.6252 0.6252 0.4166 0.4166 0.4166
14 - - - 0.9049 0.9049 0.9049 0.6754 0.6754 0.6754 0.4500 0.4500 0.4500
15 - - - 0.9525 0.9545 0.9549 0.7255 0.7255 0.7255 0.4833 0.4833 0.4833
16 - - - - - - 0.7758 0.7758 0.7758 0.5167 0.5167 0.5167
17 - - - - - - 0.8262 0.8262 0.8262 0.5500 0.5500 0.5500
18 - - - - - - 0.8769 0.8769 0.8769 0.5834 0.5834 0.5834
19 - - - - - - 0.9288 0.9288 0.9288 0.6168 0.6168 0.6168
20 - - - - - - 0.9644 0.9656 0.9695 0.6501 0.6501 0.6501
21 - - - - - - - - - 0.6835 0.6835 0.6835
22 - - - - - - - - - 0.7169 0.7169 0.7169
23 - - - - - - - - - 0.7503 0.7503 0.7503
24 - - - - - - - - - 0.7836 0.7836 0.7836
25 - - - - - - - - - 0.8171 0.8171 0.8171
26 - - - - - - - - - 0.8506 0.8506 0.8506
27 - - - - - - - - - 0.8842 0.8842 0.8842
28 - - - - - - - - - 0.9180 0.9180 0.9180
29 - - - - - - - - - 0.9527 0.9527 0.9527
30 - - - - - - - - - 0.9868 0.9766 0.9841

Table 3.2: SCP plotting points for the normal distribution using the averaging
method
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Minimal Maximal
n 5% 10% 5% 10%
10 0.7287 0.7548 0.9607 0.9689
15 0.8064 0.8251 0.9666 0.9729
20 0.8510 0.8648 0.9710 0.9765
30 0.8990 0.9079 0.9771 0.9814

Table 3.3: Critical values of the correlation statistics using the grid search method
for normal data

Minimal Maximal
n 5% 10% 5% 10%
10 0.9084 0.9285 0.9109 0.9301
15 0.9355 0.9480 0.9355 0.9481
20 0.9504 0.9589 0.9489 0.9598
30 0.9650 0.9712 0.9630 0.9701

Table 3.4: Critical values of the correlation statistics using the averaging method
for normal data

Minimal Maximal
n 5% 10% 5% 10%
10 0.9164 0.9334 0.9174 0.9341
15 0.9438 0.9545 0.9439 0.9546
20 0.9563 0.9653 0.9564 0.9653
30 0.9704 0.9765 0.9704 0.9765

Table 3.5: Critical values of the correlation statistics using the averaging method
for uniform data

Minimal Maximal
n 5% 10% 5% 10%
10 0.8802 0.9036 0.9362 0.9501
15 0.9307 0.9442 0.9510 0.9613
20 0.9507 0.9598 0.9612 0.9687
30 0.9682 0.9747 0.9719 0.9779

Table 3.6: Critical values of the correlation statistics using the grid search method
for uniform data
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Figure 3.2: Histograms of the minimal-correlation statistic found using the grid
search method for uniform(0,1): on the top row from left to right are the plots for
n = 10 and 15; on the bottom row from left to right are the plots for n = 20 and
30.
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Figure 3.3: Histograms of the maximal-correlation statistic found using the grid
search method for uniform(0,1): on the top row from left to right are the plots for
n = 10 and 15; on the bottom row from left to right are the plots for n = 20 and
30.
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Figure 3.4: Histograms of the minimal-correlation statistic found using the aver-
aging method for uniform(0,1): on the top row from left to right are the plots for
n = 10 and 15; on the bottom row from left to right are the plots for n = 20 and
30.
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Figure 3.5: Histograms of the maximal-correlation statistic found using the aver-
aging method for uniform(0,1): on the top row from left to right are the plots for
n = 10 and 15; on the bottom row from left to right are the plots for n = 20 and
30.
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Figure 3.6: Histograms of the minimal-correlation statistic found using the grid
search method for the standard normal distribution: on the top row from left to
right are the plots for n = 10 and 15; on the bottom row from left to right are the
plots for n = 20 and 30.
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Figure 3.7: Histograms of the maximal-correlation statistic found using the grid
search method for the standard normal distribution: on the top row from left to
right are the plots for n = 10 and 15; on the bottom row from left to right are the
plots for n = 20 and 30.
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Figure 3.8: Histograms of the minimal-correlation statistic found using the averag-
ing method for the standard normal distribution: on the top row from left to right
are the plots for n = 10 and 15; on the bottom row from left to right are the plots
for n = 20 and 30.
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Figure 3.9: Histograms of the maximal-correlation statistic found using the averag-
ing method for the standard normal distribution: on the top row from left to right
are the plots for n = 10 and 15; on the bottom row from left to right are the plots
for n = 20 and 30.
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n/ Boundary Maximal Minimal
i = 1 i = n i = 1 i = n

0.0001 s2:n sn−1:n 0.9999 0.0001 s2:n sn−1:n 0.9999
10 0.2824 0.2195 0.2180 0.2862 0.4655 0.5345 0.5367 0.4633
15 0.3196 0.2650 0.2618 0.3182 0.4770 0.5230 0.5238 0.4762
20 0.3354 0.2910 0.2951 0.3324 0.4782 0.5218 0.5145 0.4855
30 0.3726 0.3229 0.3313 0.3678 0.4788 0.5212 0.5204 0.4796

Table 3.7: Proportion of times the modified SCP plotting points occurred at the
boundary for uniform(0, 1)

n / Boundary Maximal Minimal
i = 1 i = n i = 1 i = n

0.0001 s2:n sn−1:n 0.9999 0.0001 s2:n sn−1:n 0.9999
10 0.0204 0.1144 0.4998 0.5002 0.1094 0.0203 0.5086 0.4914
15 0.0119 0.1381 0.5273 0.4727 0.1341 0.0132 0.4777 0.5223
20 0.0106 0.1503 0.5818 0.4182 0.1532 0.0117 0.4269 0.5731
30 0.0107 0.1724 0.6657 0.3343 0.1692 0.0107 0.3351 0.6649

Table 3.8: Proportion of times the modified SCP plotting points occurred at the
boundary for the standard normal distribution

grid search had higher power for all cases for the minimal-correlation test, and

almost all cases for the maximal-correlation test. In terms of the two tests, the

minimal-correlation test generally had higher power than the maximal-correlation

test for the grid search, except for case when the alternative was B(3, 3). For the

averaging method, the minimal-correlation test again had consistently higher power

for n = 20 and 30 than the maximal-correlation test. Also we observe that the power

increases with sample size.

These observations lead us to believe the optimal test, in general, is the minimal-

correlation test based on the grid search method.
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Grid Search Method Averaging Method
Maximal Minimal Maximal Minimal

n Alternative 5% 10% 5% 10% 5% 10% 5% 10%

10

B(1, 2) 0.1217 0.1935 0.1358 0.2191 0.1308 0.2114 0.1318 0.2130
B(1, 3) 0.1951 0.2934 0.2302 0.3438 0.2293 0.3249 0.2313 0.3265
B(2, 1) 0.1211 0.1921 0.1382 0.2251 0.1398 0.2203 0.1400 0.2198
B(3, 1) 0.1951 0.2902 0.2252 0.3304 0.2302 0.3232 0.2300 0.3241
B(3, 3) 0.0594 0.1188 0.0691 0.1360 0.0729 0.1340 0.0745 0.1374

15

B(1, 2) 0.1928 0.2878 0.2210 0.3297 0.2144 0.3092 0.2153 0.3316
B(1, 3) 0.3466 0.4557 0.3945 0.5136 0.3824 0.4925 0.3844 0.4938
B(2, 1) 0.1929 0.2905 0.2257 0.3358 0.2198 0.3123 0.2212 0.3145
B(3, 1) 0.3382 0.4490 0.3895 0.5057 0.3816 0.4907 0.3821 0.4927
B(3, 3) 0.0839 0.1564 0.1071 0.1900 0.0951 0.1704 0.0979 0.1752

20

B(1, 2) 0.2735 0.3778 0.3035 0.4204 0.2813 0.4012 0.2814 0.4018
B(1, 3) 0.4815 0.5840 0.5230 0.6345 0.5130 0.6259 0.5124 0.6260
B(2, 1) 0.2726 0.3816 0.3069 0.4178 0.2787 0.3976 0.2804 0.4002
B(3, 1) 0.4838 0.5892 0.5271 0.6346 0.5510 0.6223 0.5124 0.6249
B(3, 3) 0.1133 0.1958 0.1357 0.2355 0.1131 0.2043 0.1135 0.2081

30

B(1, 2) 0.4097 0.5421 0.4446 0.5813 0.4257 0.5589 0.4268 0.5591
B(1, 3) 0.6936 0.7950 0.7287 0.8242 0.7187 0.8082 0.7192 0.8085
B(2, 1) 0.4071 0.5409 0.4406 0.5770 0.4271 0.5573 0.4283 0.5590
B(3, 1) 0.6943 0.7915 0.7287 0.8221 0.7129 0.8058 0.7142 0.8068
B(3, 3) 0.1540 0.2727 0.1837 0.3209 0.1727 0.2876 0.1753 0.2908

Table 3.9: Power of the minimal- and maximal-correlation tests for uniform(0, 1)
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Grid Search Method Averaging Method
Maximal Minimal Maximal Minimal

n Alternative 5% 10% 5% 10% 5% 10% 5% 10%

10

B(1, 2) 0.1263 0.2111 0.1284 0.2224 0.0740 0.1564 0.0742 0.1561
B(1, 3) 0.1408 0.2306 0.2185 0.3371 0.1532 0.2519 0.1519 0.2511
B(2, 1) 0.1220 0.2093 0.1259 0.2233 0.0896 0.1633 0.0818 0.1519
B(3, 1) 0.1396 0.2328 0.2246 0.3458 0.1474 0.2493 0.1382 0.2345
B(3, 3) 0.0615 0.1272 0.0343 0.0738 0.0248 0.0611 0.0241 0.0599

15

B(1, 2) 0.1955 0.3008 0.2069 0.3501 0.1231 0.2173 0.1257 0.2214
B(1, 3) 0.2572 0.3688 0.3747 0.5294 0.2502 0.3798 0.2539 0.3826
B(2, 1) 0.1921 0.2971 0.2088 0.3510 0.1291 0.2255 0.1268 0.2191
B(3, 1) 0.2562 0.3704 0.3798 0.5375 0.2488 0.3772 0.2452 0.3706
B(3, 3) 0.0614 0.1268 0.0273 0.0726 0.0211 0.0499 0.0209 0.0493

20

B(1, 2) 0.2747 0.3931 0.3127 0.4878 0.1750 0.3055 0.2040 0.3436
B(1, 3) 0.3787 0.5103 0.5350 0.6906 0.3613 0.5144 0.3855 0.5378
B(2, 1) 0.2740 0.4032 0.3143 0.5010 0.1765 0.3090 0.1964 0.3386
B(3, 1) 0.3866 0.5193 0.5420 0.7042 0.3615 0.5250 0.3997 0.5600
B(3, 3) 0.0549 0.1179 0.0268 0.0734 0.0159 0.0463 0.0202 0.0533

30

B(1, 2) 0.4492 0.5969 0.5752 0.7475 0.3002 0.4785 0.4238 0.6014
B(1, 3) 0.6259 0.7546 0.7955 0.8960 0.5895 0.7420 0.6874 0.8161
B(2, 1) 0.4541 0.5995 0.5757 0.7517 0.3151 0.4923 0.4369 0.6132
B(3, 1) 0.6398 0.7565 0.8058 0.9045 0.5858 0.7388 0.6767 0.8089
B(3, 3) 0.0572 0.1190 0.0525 0.1243 0.0126 0.0430 0.0295 0.0747

Table 3.10: Power of minimal- and maximal-correlation tests for the standard nor-
mal distribution
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3.4 Illustrative Examples

3.4.1 Example 1

To illustrate these methods, data from Nelson (2005) were used. This set of data is

the time to failure of specimens of a new Class H electrical insulation at a temper-

ature of 260 ◦C. Since the test items were inspected periodically and the lifetimes

were assigned as the midpoint of the intervals between inspections, the data set

contains some equal failure times. The experiment was done in order to estimate

the life at 180 ◦C with an expected nominal life of 20, 000 h. The observations, in

hours, are

600 744 744 744 912 1228 1320 1464 1608 1896

The purpose of this test was to assess normality of the data. From Figure 3.10

we can see that the data looks approximately normal since the points fall closely

about a 45 degree line for all of the plotting points except for the minimal grid search

plotting points. For the grid search method, the minimal-correlation statistic was

found to be 0.8502 (p-value of 0.6841) and the plotting points for x1:n and xn:n were

0.0001 and 0.8567, respectively; the maximal-correlation statistic was found to be

0.9745 (p-value of 0.1679) and the plotting points for x1:n and xn:n were 0.1014 and

0.9136, respectively. For the averaging method, the minimal-correlation statistic

was 0.9730 (p-value of 0.5612) and the maximal-correlation statistic was 0.9722

(p-value of 0.5378).

In both methods, the p-values are similar for the minimal-correlation test, how-

ever for the maximal-correlation test the p-values are quite different. For both
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Figure 3.10: Starting at the top left and going from left to right, the plots are of
the log of the data vs the inverse cdf of the normal distribution evaluated at the
modified SCP plotting points for the minimal- and maximal-correlation tests for
normality for the grid search method, and the minimal- and maximal-correlation
tests for normality for the averaging method.
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methods and tests, the p-values agree, i.e., the null hypothesis cannot be rejected

and we can assume that the data come from a normal distribution. Also, since

the p-value is higher for the minimal-correlation test in both methods, it is clear

that the minimal-correlation test is better in detecting the normality of the data.

From the p-values we can see that individually, between the methods, the minimal-

correlation test is better at discriminating the data for the grid search method and

the maximal-correlation was better at discriminating the data for the averaging

method. These results are similar to those found by Balakrishnan et al. (2012a),

since the correlation they reported was 0.9730 with a p-value of 0.5634.

3.4.2 Example 2

The following data were a simple random sample of size n = 30 generated according

to the method given by Stephens and D’Agostino (1986):

79.89 88.13 90.03 92.56 95.97 99.62 103.56 105.48 111.38 113.90
85.29 89.33 91.46 95.14 96.20 102.56 103.60 106.82 112.97 115.95
87.83 89.35 92.55 95.94 98.70 103.22 104.21 108.39 113.75 118.52

Again, we wish to test for normality. For the grid search method, the minimal-

correlation statistic was found to be 0.9349 (p-value of 0.5334) and the plotting

points found for x1:n and xn:n were 0.0001 and 0.9999 respectively. The maximal-

correlation statistic was found to be 0.9905 ( p-value of 0.4921) and the plotting

points for x1:n and xn:n were 0.0282 and 0.9638 respectively. For the averaging

method, the correlation statistic for the minimal-correlation test was 0.9882 (p-value
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Figure 3.11: Starting at the top left and going from left to right, the plots are of
the data vs the inverse cdf of the normal distribution evaluated at the modified
SCP plotting points. The top two are for the minimal- and maximal-correlation
tests for the grid search method and the bottom two are for the minimal- and
maximal-correlation tests for the averaging method.
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of 0.6605) and the maximal-correlation statistic was found to be 0.9899 (p-value of

0.7362).

All four tests agreed that the data came from a normal distribution. The p-values

for the grid search method are lower than those found for the averaging method sug-

gesting that the averaging method was better able to reach the conclusion that the

data is normal. The p-value for the minimal-correlation test for the grid search

method is higher than the maximal-correlation test; this was reversed for the aver-

aging method. This shows that within the two tests, the minimal-correlation test is

again better at discriminating than the maximal correlation test for the grid search

and vice versa for the averaging method. All these results are consistent with those

found by Balakrishnan et al. (2012a) whom, based on the traditonal SCP plotting

points, found a correlation of 0.9899 and a p-value of 0.7362.

3.4.3 Example 3

Data from Stephens and D’Agostino (1986), given below, consist of order statistics

of a random sample of values which in the literature have been tested for uniformity:

0.004 0.304 0.304 0.612 0.748 0.806 0.850 0.885 0.906 0.977

The minimal-correlation statistic was found to be 0.8314 (p-value of 0.0097)

for the grid search method and the plotting points for x1:n and xn:n were 0.1584

and 0.9999 respectively. The maximal-correlation statistic was 0.9086 (p-value of

0.0138) and the plotting points for x1:n and xn:n where 0.001 and 0.8416 respec-

tively. For the averaging method the correlation statistic was found to be 0.8735
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Figure 3.12: Starting at the top left and going from left to right, the plots are of
the data vs the inverse cdf of the uniform distribution evaluated at the modified
SCP plotting points. The top two are for the minimal- and maximal- correlation
tests for uniformity for the grid search method. The bottom two are the minimal-
and maximal-correlation tests for uniformity for the averaging method.

70



for the minimal-correlation test (p-value of 0.0098). For the maximal-correlation

test the correlation was found to be 0.8770 (p-value of 0.0100). The p-values for

both maximal-correlation tests are similar, as is the case for the minimal-correlation

test p-values across both methods. In both methods, the minimal-correlation test

has a lower p-value. All four p-values suggest that the data do not come from the

uniform distribution; this is also evident from the QQ plots in Figure 3.12. The

conclusion is consistent with the results of the various tests carried out in Stephens

and D’Agostino (1986).
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Chapter 4

Conclusion

In this thesis, two froms of a correlation-based test have been proposed to test

for goodness-of-fit: a maximal-correlation test and a minimal-correlation test, each

carried out using two methods. For the maximal-correlation test, we wanted to

achieve the highest possible correlation to infer goodness-of-fit. For the minimal-

correlation test we wanted to obtain a test statistic that was not too low so as to also

infer goodness-of-fit. This was done using two methods: a grid search method and

an averaging method. These two methods were used to simulate the distribution

of test statistics for two different distributions: uniform(0, 1) and the standard

normal. The tests were compared through distributional properties and a power

study. Through the comparison of the critical values of each test, it was noted that

the averaging method had higher critical values than the grid search method for

both the maximal and minimal test for both distributions.

Through a power study of the uniform(0, 1), it was found that in general, the

minimal-correlation test had consistently better power for the grid search method

than the averaging method. In terms of the maximal-correlation test, it was found

that it generally had better power for the averaging method than the grid search
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method. Based on the power study for the standard normal, we found that the grid

search method had consistently better power for both the maximal- and minimal-

correlation tests. We also found that the minimal-correlation test had better power

in most cases than the maximal-correlation test. The only exception to this was

the for the alternative distribution B(3, 3), for this we noted that the maximal-

correlation test had higher power than the minimal-correlation test for both meth-

ods. In general, for both methods the minimal test had higher power than the

maximal test. We also observed that in all cases that as the sample size increased,

the power also increased.

In the future, it would be interesting to compare of the power properties of

the proposed tests to the correlation test that used the midpoints of (0, s2:n) and

(sn−1:n, 1) as the SCP plotting points for x1:n and xn:n as well as the correlation test

using the mean- and median-ranks as plotting points. Another future work would

be to extend the maximal- and minimal-correlation tests to test for goodness-of-fit

to the extreme value distribution. Lastly, a more extensive power study could be

carried to include more alternative distributions.
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Appendix A

R code

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Maximal−Minimal Cor r e l a t i on Test f o r Uniform (0 , 1 )
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Grid Search Method
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

#I n i t i l i z i n g the l i s t s and vec to r s
ind1max <− c ( )
ind1min <− c ( )
r . max <− l i s t ( )
r . min <− l i s t ( )
pp . maxr <− l i s t ( )
pp . maxc <− l i s t ( )
pp . minr <− l i s t ( )
pp . minc <− l i s t ( )

# Creat ing ve c t o r s f o r each l i s t
f o r (h in 1 : 4 ){

r . max [ [ h ] ] <− c ( l ength (1000) )
r . min [ [ h ] ] <− c ( l ength (1000) )
pp . maxr [ [ h ] ] <− c ( l ength (1000) )
pp . maxc [ [ h ] ] <− c ( l ength (1000) )
pp . minr [ [ h ] ] <− c ( l ength (1000) )
pp . minc [ [ h ] ] <− c ( l ength (1000) )

}
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# Sta r t i ng the counts at zero
lower . countmx1 <− l i s t ( 0 , 0 , 0 , 0 )
lower . countmx2 <− l i s t ( 0 , 0 , 0 , 0 )
lower . countmn1 <− l i s t ( 0 , 0 , 0 , 0 )
lower . countmn2 <− l i s t ( 0 , 0 , 0 , 0 )
upper . countmx1 <− l i s t ( 0 , 0 , 0 , 0 )
upper . countmx2 <− l i s t ( 0 , 0 , 0 , 0 )
upper . countmn1 <− l i s t ( 0 , 0 , 0 , 0 )
upper . countmn2 <− l i s t ( 0 , 0 , 0 , 0 )

f o r ( l in 1 :1000) {

# genera t ing 30 random uniforms and a l l o c a t i n g the data
data <− r u n i f (30)
datag <− l i s t ( )
os . data <− l i s t ( )
datag [ [ 1 ] ] <− data [ 1 : 1 0 ]
os . data [ [ 1 ] ] <− s o r t ( datag [ [ 1 ] ] )
datag [ [ 2 ] ] <− data [ 1 : 1 5 ]
os . data [ [ 2 ] ] <− s o r t ( datag [ [ 2 ] ] )
datag [ [ 3 ] ] <− data [ 1 : 2 0 ]
os . data [ [ 3 ] ] <− s o r t ( datag [ [ 3 ] ] )
datag [ [ 4 ] ] <− data [ 1 : 3 0 ]
os . data [ [ 4 ] ] <− s o r t ( datag [ [ 4 ] ] )

# a l l o c a t i n g x n , x 1 and spcs based on the s i z e o f n
f o r (h in 1 : 4 ){

i f ( l ength ( os . data [ [ h ] ] ) == 10) {
scp1 <− 0 .1584
scp2 <− 0 .8416
scps3 <− c (0 . 1584 , 0 .2542 , 0 .3521 , 0 .4506 , 0 .5494 , 0 .6479 ,

0 .7458 , 0 . 8416)
}

i f ( l ength ( os . data [ [ h ] ] ) == 15) {
scp1 <− 0 .1058
scp2 <− 0 .8942
scps3 <− c (0 . 1058 , 0 .1699 , 0 .2353 , 0 .3012 , 0 .3674 , 0 .4337 ,

0 .5000 , 0 .5663 , 0 .6326 , 0 .6988 , 0 .7647 , 0 .8301 ,
0 . 8942)
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}
i f ( l ength ( os . data [ [ h ] ] ) == 20) {

scp1 <− 0 .0795
scp2 <− 0 .9205
scps3 <− c (0 . 0795 , 0 .1275 , 0 .1766 , 0 .2261 , 0 .2758 , 0 .3256 ,

0 . 3754 , 0 . 4252 , 0 .4751 , 0 .5249 , 0 .5748 , 0 .6246 ,
0 .6744 , 0 .7242 , 0 . 7739 , 0 . 8234 , 0 .8725 , 0 .9205)

}
i f ( l ength ( os . data [ [ h ] ] ) == 30) {

scp1 <− 0 .0530
scp2 <− 0 .9470
scps3 <− c (0 . 0530 , 0 .0851 , 0 .1178 , 0 .1508 , 0 .1840 , 0 .2172 ,

0 .2504 , 0 .2837 , 0 .3169 , 0 .3502 , 0 .3835 , 0 .4168 ,
0 .4501 , 0 .4834 , 0 .5166 , 0 .5499 , 0 .5832 , 0 .6165 ,
0 .6498 , 0 .6831 , 0 .7163 , 0 .7496 , 0 .7828 , 0 .8160 ,
0 .8492 , 0 .8822 , 0 .9149 , 0 . 9470)

}
k <− 0

# Sequence f o r f i n d i n g the max/min f o r the c o r r e l a t i o n
scps1 <−seq (0 . 0001 , scp1 , by=0.0001)
scps2 <− seq ( scp2 , 0 .9999 , by=0.0001)
n1 <− l ength ( scps1 )
n2 <− l ength ( scps2 )
x = matrix ( nrow = n1 , nco l = n2 )

# For loops to f i n d the c o r r e l a t i o n at each i and j va lue
f o r ( i in scps1 ){

k <− k+1
m <−0
f o r ( j in scps2 ) {

m <− m+1
x [ k ,m] = cor ( os . data [ [ h ] ] , qun i f ( c ( i , scps3 , j ) ) )

}
}

# Finding the counts , max/min and the p l o t t i n g po in t s
ind1max <− which ( x==max( x ) , TRUE)
ind1min <− which ( x==min( x ) , TRUE)
r . max [ [ h ] ] [ l ] <− x [ ind1max ]
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r . min [ [ h ] ] [ l ] <− x [ ind1min ]
pp . maxr [ [ h ] ] [ l ] <− scps1 [ ind1max [ 1 ] ]
pp . maxc [ [ h ] ] [ l ] <− scps2 [ ind1max [ 2 ] ]
pp . minr [ [ h ] ] [ l ] <− scps1 [ ind1min [ 1 ] ]
pp . minc [ [ h ] ] [ l ] <− scps2 [ ind1min [ 2 ] ]

i f (pp . maxr [ [ h ] ] [ l ] == scps1 [ 1 ] ) {
lower . countmx1 [ [ h ] ] <− lower . countmx1 [ [ h ] ]+1

}

i f ( pp . maxr [ [ h ] ] [ l ] == scps1 [ n1 ] ) {
lower . countmx2 [ [ h ] ] <− lower . countmx2 [ [ h ] ]+1

}

i f ( pp . minr [ [ h ] ] [ l ] == scps1 [ 1 ] ) {
lower . countmn1 [ [ h ] ] <− lower . countmn1 [ [ h ] ]+1

}

i f ( pp . minr [ [ h ] ] [ l ]== scps1 [ n1 ] ) {
lower . countmn2 [ [ h ] ] <− lower . countmn2 [ [ h ] ]+1

}
i f ( pp . maxc [ [ h ] ] [ l ] == scps2 [ 1 ] ) {

upper . countmx1 [ [ h ] ] <− upper . countmx1 [ [ h ] ]+1
}

i f ( pp . maxc [ [ h ] ] [ l ]== scps2 [ n2 ] ) {
upper . countmx2 [ [ h ] ] <− upper . countmx2 [ [ h ] ]+1

}
i f ( pp . minc [ [ h ] ] [ l ] == scps2 [ 1 ] ) {

upper . countmn1 [ [ h ] ] <− upper . countmn1 [ [ h ] ]+1
}

i f ( pp . minc [ [ h ] ] [ l ] == scps2 [ n2 ] ) {
upper . countmn2 [ [ h ] ] <− upper . countmn2 [ [ h ] ]+1

}
}

}
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# f i n d i n g the propor t i on s
prop counts 10 <− l app ly ( l app ly ( combinedcounts 10 , sum) ,

func t i on ( r ) { r /10000})
prop counts 15 <− l app ly ( l app ly ( combinedcounts 15 , sum) ,

func t i on ( r ) { r /10000})
prop counts 20 <− l app ly ( l app ly ( combinedcounts 20 , sum) , func t i on ( r ) { r /10000})
prop counts 30 <− l app ly ( l app ly ( combinedcounts 30 , sum) ,

func t i on ( r ) { r /10000})

# s o r t i n g the c o r r e l a t i o n s
maxminsort 10 <− l app ly ( combinedmaxmin 10 , s o r t )
maxminsort 15 <− l app ly ( combinedmaxmin 15 , s o r t )
maxminsort 20 <− l app ly ( combinedmaxmin 20 , s o r t )
maxminsort 30 <− l app ly ( combinedmaxmin 30 , s o r t )

# Extract ing the c r i t i c a l va lue s
max 10 <− maxminsort 10$V1
min 10 <− maxminsort 10$V2
max 15 <− maxminsort 15$V1
min 15 <− maxminsort 15$V2
max 20 <− maxminsort 20$V1
min 20 <− maxminsort 20$V2
max 30 <− maxminsort 30$V1
min 30 <− maxminsort 30$V2

# Finding the c r i t i c a l va lue s
max 10 [ 5 0 0 ]
min 10 [ 5 0 0 ]
max 10 [ 1 0 0 0 ]
min 10 [ 1 0 0 0 ]
max 15 [ 5 0 0 ]
min 15 [ 5 0 0 ]
max 15 [ 1 0 0 0 ]
min 15 [ 1 0 0 0 ]
max 20 [ 5 0 0 ]
min 20 [ 5 0 0 ]
max 20 [ 1 0 0 0 ]
min 20 [ 1 0 0 0 ]
max 30 [ 5 0 0 ]
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min 30 [ 5 0 0 ]
max 30 [ 1 0 0 0 ]
min 30 [ 1 0 0 0 ]

# Finding the p l o t t i n g po in t s
combinedpp 10 <− do . c a l l ( rbind , pp 10 )
combinedpp 15 <− do . c a l l ( rbind , pp 15 )
combinedpp 20 <− do . c a l l ( rbind , pp 20 )
combinedpp 30 <− do . c a l l ( rbind , pp 30 )

# Averaging the p l o t t i n g po in t s
mean pp 10 <− l app ly ( combinedpp 10 , mean)
mean pp 15 <− l app ly ( combinedpp 15 , mean)
mean pp 20 <− l app ly ( combinedpp 20 , mean)
mean pp 30 <− l app ly ( combinedpp 30 , mean)

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Average Method
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# I n i t i l i z i n g the l i s t s and vec to r s
corr min <− l i s t ( )
corr max <− l i s t ( )

# Creat ing ve c t o r s f o r each l i s t
f o r (h in 1 : 4 ){

corr min [ [ h ] ] <− c ( l ength (10000) )
corr max [ [ h ] ] <− c ( l ength (10000) )

}

# Sta r t i ng the counts at zero
f o r ( l in 1 :10000) {

# genera t ing 30 random uniforms and a l l o c a t i n g the data
data <− r u n i f (30)
datag <− l i s t ( )
os . data <− l i s t ( )
datag [ [ 1 ] ] <− data [ 1 : 1 0 ]
os . data [ [ 1 ] ] <− s o r t ( datag [ [ 1 ] ] )
datag [ [ 2 ] ] <− data [ 1 : 1 5 ]
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os . data [ [ 2 ] ] <− s o r t ( datag [ [ 2 ] ] )
datag [ [ 3 ] ] <− data [ 1 : 2 0 ]
os . data [ [ 3 ] ] <− s o r t ( datag [ [ 3 ] ] )
datag [ [ 4 ] ] <− data [ 1 : 3 0 ]
os . data [ [ 4 ] ] <− s o r t ( datag [ [ 4 ] ] )

# a l l o c a t i n g x n , x 1 and spcs based on the s i z e o f n
f o r (h in 1 : 4 ){

i f ( l ength ( os . data [ [ h ] ] ) == 10) {
scp1 <− 0 .1584
scp2 <− 0 .8416
scps3 <− c (0 . 1584 , 0 .2542 , 0 .3521 , 0 .4506 , 0 .5494 , 0 .6479 ,

0 .7458 , 0 . 8416)
}
i f ( l ength ( os . data [ [ h ] ] ) == 15) {

scp1 <− 0 .1058
scp2 <− 0 .8942
scps3 <− c (0 . 1058 , 0 .1699 , 0 .2353 , 0 .3012 , 0 .3674 , 0 .4337 ,

0 .5000 , 0 .5663 , 0 .6326 , 0 .6988 , 0 .7647 , 0 .8301 ,
0 . 8942)

}
i f ( l ength ( os . data [ [ h ] ] ) == 20) {

scp1 <− 0 .0795
scp2 <− 0 .9205
scps3 <− c (0 . 0795 , 0 .1275 , 0 .1766 , 0 .2261 , 0 .2758 , 0 .3256 ,

0 . 3754 , 0 . 4252 , 0 .4751 , 0 .5249 , 0 .5748 , 0 .6246 ,
0 .6744 , 0 .7242 , 0 . 7739 , 0 . 8234 , 0 .8725 , 0 .9205)

}
i f ( l ength ( os . data [ [ h ] ] ) == 30) {

scp1 <− 0 .0530
scp2 <− 0 .9470
scps3 <− c (0 . 0530 , 0 .0851 , 0 .1178 , 0 .1508 , 0 .1840 , 0 .2172 ,

0 .2504 , 0 .2837 , 0 .3169 , 0 .3502 , 0 .3835 , 0 .4168 ,
0 .4501 , 0 .4834 , 0 .5166 , 0 .5499 , 0 .5832 , 0 .6165 ,
0 .6498 , 0 .6831 , 0 .7163 , 0 .7496 , 0 .7828 , 0 .8160 ,
0 .8492 , 0 .8822 , 0 .9149 , 0 . 9470)

}
k <− 0

# Stor ing the c o r r e l a t i o n s
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corr min [ [ h ] ] [ l ] <− cor ( os . data [ [ h ] ] ,
qun i f ( c ( min mean 1 , scps3 , min mean 2 ) ) ) corr max [ [ h ] ] [ l ] <− cor ( os . data [ [ h ] ] ,
qun i f ( c ( max mean 1 , scps3 , max mean 2 ) )

}
}

# Sort ing the c o r r e l a t i o n s
m2 min 10 <− s o r t ( u n l i s t ( corr min [ 1 ] ) )
m2 max 10 <− s o r t ( u n l i s t ( corr max [ 1 ] ) )
m2 min 15 <− s o r t ( u n l i s t ( corr min [ 2 ] ) )
m2 max 15 <− s o r t ( u n l i s t ( corr max [ 2 ] ) )
m2 min 20 <− s o r t ( u n l i s t ( corr min [ 3 ] ) )
m2 max 20 <− s o r t ( u n l i s t ( corr max [ 3 ] ) )
m2 min 30 <− s o r t ( u n l i s t ( corr min [ 4 ] ) )
m2 max 30 <− s o r t ( u n l i s t ( corr max [ 4 ] ) )

#Gett ing the c r i t i c a l Values
m2 max 10 [ 5 0 0 ]
m2 min 10 [ 5 0 0 ]
m2 max 10 [ 1 0 0 0 ]
m2 min 10 [ 1 0 0 0 ]
m2 max 15 [ 5 0 0 ]
m2 min 15 [ 5 0 0 ]
m2 max 15 [ 1 0 0 0 ]
m2 min 15 [ 1 0 0 0 ]
m2 max 20 [ 5 0 0 ]
m2 min 20 [ 5 0 0 ]
m2 max 20 [ 1 0 0 0 ]
m2 min 20 [ 1 0 0 0 ]
m2 max 30 [ 5 0 0 ]
m2 min 30 [ 5 0 0 ]
m2 max 30 [ 1 0 0 0 ]
m2 min 30 [ 1 0 0 0 ]

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Power Study
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Grid Search Method
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#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# I n i t i l i z i n g the l i s t s and vec to r s
ind1max <− c ( )
ind1min <− c ( )
r . max <− l i s t ( )
r . min <− l i s t ( )

# Creat ing ve c t o r s f o r each l i s t
f o r (h in 1 : 4 ){

r . max [ [ h ] ] <− c ( l ength (500 ) )
r . min [ [ h ] ] <− c ( l ength (500 ) )

}

f o r ( l in 1 : 500 ) {

# genera t ing 30 random beta ’ s and a l l o c a t i n g the data
data <− rbeta (30 , 1 , 2 )
datag <− l i s t ( )
os . data <− l i s t ( )
datag [ [ 1 ] ] <− data [ 1 : 1 0 ]
os . data [ [ 1 ] ] <− s o r t ( datag [ [ 1 ] ] )
datag [ [ 2 ] ] <− data [ 1 : 1 5 ]
os . data [ [ 2 ] ] <− s o r t ( datag [ [ 2 ] ] )
datag [ [ 3 ] ] <− data [ 1 : 2 0 ]
os . data [ [ 3 ] ] <− s o r t ( datag [ [ 3 ] ] )
datag [ [ 4 ] ] <− data [ 1 : 3 0 ]
os . data [ [ 4 ] ] <− s o r t ( datag [ [ 4 ] ] )

# a l l o c a t i n g x n , x 1 and spcs based on the s i z e o f n
f o r (h in 1 : 4 ){

i f ( l ength ( os . data [ [ h ] ] ) == 10) {
scp1 <− 0 .1584
scp2 <− 0 .8416
scps3 <− c (0 . 1584 , 0 .2542 , 0 .3521 , 0 .4506 , 0 .5494 ,

0 .6479 , 0 .7458 , 0 . 8416)
}

i f ( l ength ( os . data [ [ h ] ] ) == 15) {
scp1 <− 0 .1058
scp2 <− 0 .8942
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scps3 <− c (0 . 1058 , 0 .1699 , 0 .2353 , 0 .3012 , 0 .3674 ,
0 .4337 , 0 .5000 , 0 .5663 , 0 .6326 , 0 .6988 ,
0 .7647 , 0 .8301 , 0 . 8942)

}
i f ( l ength ( os . data [ [ h ] ] ) == 20) {

scp1 <− 0 .0795
scp2 <− 0 .9205
scps3 <− c (0 . 0795 , 0 .1275 , 0 .1766 , 0 .2261 , 0 .2758 ,

0 .3256 , 0 . 3754 , 0 . 4252 , 0 .4751 , 0 .5249 ,
0 .5748 , 0 .6246 , 0 .6744 , 0 .7242 , 0 .7739 ,
0 .8234 , 0 .8725 , 0 . 9205)

}
i f ( l ength ( os . data [ [ h ] ] ) == 30) {

scp1 <− 0 .0530
scp2 <− 0 .9470
scps3 <− c (0 . 0530 , 0 .0851 , 0 .1178 , 0 .1508 , 0 .1840 ,

0 .2172 , 0 .2504 , 0 .2837 , 0 .3169 , 0 .3502 ,
0 .3835 , 0 .4168 , 0 .4501 , 0 .4834 , 0 .5166 ,
0 .5499 , 0 .5832 , 0 .6165 , 0 .6498 , 0 .6831 ,
0 .7163 , 0 .7496 , 0 .7828 , 0 . 8160 , 0 . 8492 ,
0 .8822 , 0 .9149 , 0 . 9470)

}
k <− 0

# Creat ing the sequneces f o r f i n d i n g the c o r r e l a t i o n
scps1 <−seq (0 . 0001 , scp1 , by=0.0001)
scps2 <− seq ( scp2 , 0 .9999 , by=0.0001)

n1 <− l ength ( scps1 )
n2 <− l ength ( scps2 )

x = matrix ( nrow = n1 , nco l = n2 )

# For loops to f i n d the c o r r e l a t i o n at each i and j va lue
f o r ( i in scps1 ){

k <− k+1
m <−0
f o r ( j in scps2 ) {

m <− m+1
x [ k ,m] = cor ( os . data [ [ h ] ] , qun i f ( c ( i , scps3 , j ) ) )
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}
}

# Finding the counts , max/min and the p l o t t i n g po in t s
ind1max <− which ( x==max( x ) , TRUE)
ind1min <− which ( x==min( x ) , TRUE)
r . max [ [ h ] ] [ l ] <− x [ ind1max ]
r . min [ [ h ] ] [ l ] <− x [ ind1min ]

}
}

# Finding the power
# n = 10
gs countmax10 5 <− which ( r . max [ [ 1 ] ] <= 0.9362388 )
gs countmin10 5 <− which ( r . min [ [ 1 ] ] <= 0.8802414 )
gs countmax10 10 <− which ( r . max [ [ 1 ] ] <= 0.9500979 )
gs countmin10 10 <− which ( r . min [ [ 1 ] ] <= 0.903626 )

# n = 15
gs countmax15 5 <− which ( r . max [ [ 2 ] ] <= 0.9509959 )
gs countmin15 5 <− which ( r . min [ [ 2 ] ] <= 0.9306624 )
gs countmax15 10 <− which ( r . max [ [ 2 ] ] <= 0.9612513 )
gs countmin15 10 <− which ( r . min [ [ 2 ] ] <= 0.944174 )

# n = 20
gs countmax20 5 <− which ( r . max [ [ 3 ] ] <= 0.9612149 )
gs countmin20 5 <− which ( r . min [ [ 3 ] ] <= 0.9507521 )
gs countmax20 10 <− which ( r . max [ [ 3 ] ] <= 0.9686859 )
gs countmin20 10 <− which ( r . min [ [ 3 ] ] <= 0.9598361 )

# n = 30
gs countmax30 5 <− which ( r . max [ [ 4 ] ] <= 0.9719308)
gs countmin30 5 <− which ( r . min [ [ 4 ] ] <= 0.9681896 )
gs countmax30 10 <− which ( r . max [ [ 4 ] ] <= 0.9779393 )
gs countmin30 10 <− which ( r . min [ [ 4 ] ] <= 0.974732 )

# Combining the Data
combined count 10 <− cbind ( l ength ( gs countmax10 5 ) ,

l ength ( gs countmin10 5 ) ,
l ength ( gs countmax10 10 ) ,
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l ength ( gs countmin10 10 ) ,
)

combined count 15 <− cbind ( l ength ( gs countmax15 5 ) ,
l ength ( gs countmin15 5 ) ,
l ength ( gs countmax15 10 ) ,
l ength ( gs countmin15 10 ) ,

)
combined count 20 <− cbind ( l ength ( gs countmax20 5 ) ,

l ength ( gs countmin20 5 ) ,
l ength ( gs countmax20 10 ) ,
l ength ( gs countmin20 10 ) ,
)

combined count 30 <− cbind ( l ength ( gs countmax30 5 ) ,
l ength ( gs countmin30 5 ) ,
l ength ( gs countmax30 10 ) ,
l ength ( gs countmin30 10 ) ,
)

# f i n d i n g the propor t i on s
prop counts 10 <− l app ly ( combined props 10 , sum)
prop counts 15 <− l app ly ( combined props 15 , sum)
prop counts 20 <− l app ly ( combined props 20 , sum)
prop counts 30 <− l app ly ( combined props 30 , sum)

u lprops 10 <− u n l i s t ( prop counts 10 )
u lprops 15 <− u n l i s t ( prop counts 15 )
u lprops 20 <− u n l i s t ( prop counts 20 )
u lprops 30 <− u n l i s t ( prop counts 30 )

# Fina l r e s u l t s f o r the power study

cbind ( u lprops 10 , u lprops 15 , u lprops 20 , u lprops 30 )

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Average Method
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# I n i t i l i z i n g the l i s t s and vec to r s
corr min <− l i s t ( )
corr max <− l i s t ( )
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# Creat ing ve c t o r s f o r each l i s t
f o r (h in 1 : 4 ){

corr min [ [ h ] ] <− c ( l ength (10000) )
corr max [ [ h ] ] <− c ( l ength (10000) )

}

# Sta r t i ng the counts at zero
f o r ( l in 1 :10000) {

# genera t ing 30 random uniforms and a l l o c a t i n g the data
data <− r u n i f (30)
datag <− l i s t ( )
os . data <− l i s t ( )
datag [ [ 1 ] ] <− data [ 1 : 1 0 ]
os . data [ [ 1 ] ] <− s o r t ( datag [ [ 1 ] ] )
datag [ [ 2 ] ] <− data [ 1 : 1 5 ]
os . data [ [ 2 ] ] <− s o r t ( datag [ [ 2 ] ] )
datag [ [ 3 ] ] <− data [ 1 : 2 0 ]
os . data [ [ 3 ] ] <− s o r t ( datag [ [ 3 ] ] )
datag [ [ 4 ] ] <− data [ 1 : 3 0 ]
os . data [ [ 4 ] ] <− s o r t ( datag [ [ 4 ] ] )

# a l l o c a t i n g x n , x 1 and spcs based on the s i z e o f n
f o r (h in 1 : 4 ){

i f ( l ength ( os . data [ [ h ] ] ) == 10) {
scp1 <− 0 .1584
scp2 <− 0 .8416
scps3 <− c (0 . 1584 , 0 .2542 , 0 .3521 , 0 .4506 , 0 .5494 , 0 .6479 ,

0 .7458 , 0 . 8416)
}
i f ( l ength ( os . data [ [ h ] ] ) == 15) {

scp1 <− 0 .1058
scp2 <− 0 .8942
scps3 <− c (0 . 1058 , 0 .1699 , 0 .2353 , 0 .3012 , 0 .3674 , 0 .4337 ,

0 .5000 , 0 .5663 , 0 .6326 , 0 .6988 , 0 .7647 , 0 .8301 ,
0 . 8942)

}
i f ( l ength ( os . data [ [ h ] ] ) == 20) {

scp1 <− 0 .0795
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scp2 <− 0 .9205
scps3 <− c (0 . 0795 , 0 .1275 , 0 .1766 , 0 .2261 , 0 .2758 , 0 .3256 ,

0 . 3754 , 0 . 4252 , 0 .4751 , 0 .5249 , 0 .5748 , 0 .6246 ,
0 .6744 , 0 .7242 , 0 . 7739 , 0 . 8234 , 0 .8725 , 0 .9205)

}
i f ( l ength ( os . data [ [ h ] ] ) == 30) {

scp1 <− 0 .0530
scp2 <− 0 .9470
scps3 <− c (0 . 0530 , 0 .0851 , 0 .1178 , 0 .1508 , 0 .1840 , 0 .2172 ,

0 .2504 , 0 .2837 , 0 .3169 , 0 .3502 , 0 .3835 , 0 .4168 ,
0 .4501 , 0 .4834 , 0 .5166 , 0 .5499 , 0 .5832 , 0 .6165 ,
0 .6498 , 0 .6831 , 0 .7163 , 0 .7496 , 0 .7828 , 0 .8160 ,
0 .8492 , 0 .8822 , 0 .9149 , 0 . 9470)

}
k <− 0

# Stor ing the c o r r e l a t i o n s
corr min [ [ h ] ] [ l ] <− cor ( os . data [ [ h ] ] ,

qun i f ( c ( min mean 1 , scps3 , min mean 2 ) ) )
corr max [ [ h ] ] [ l ] <− cor ( os . data [ [ h ] ] ,

qun i f ( c ( max mean 1 , scps3 , max mean 2 ) ) )
}

}

# Finding the Power
# n = 10
nm countmax10 5 <− which ( corr max [ [ 1 ] ] <= 0.9174137)
nm countmin10 5 <− which ( corr min [ [ 1 ] ] <= 0.9164834 )
nm countmax10 10 <− which ( corr max [ [ 1 ] ] <= 0.9341992 )
nm countmin10 10 <− which ( corr min [ [ 1 ] ] <= 0.933432 )

# n = 15
nm countmax15 5 <− which ( corr max [ [ 2 ] ] <= 0.9439232)
nm countmin15 5 <− which ( corr min [ [ 2 ] ] <= 0.9436713 )
nm countmax15 10 <− which ( corr max [ [ 2 ] ] <= 0.9546443 )
nm countmin15 10 <− which ( corr min [ [ 2 ] ] <= 0.9545003 )

# n = 20
nm countmax20 5 <− which ( corr max [ [ 3 ] ] <= 0.9564804)
nm countmin20 5 <− which ( corr min [ [ 3 ] ] <= 0.956344 )
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nm countmax20 10 <− which ( corr max [ [ 3 ] ] <= 0.9653213 )
nm countmin20 10 <− which ( corr min [ [ 3 ] ] <= 0.9652664 )

#n = 30
nm countmax30 5 <− which ( corr max [ [ 4 ] ] <= 0.9704636)
nm countmin30 5 <− which ( corr min [ [ 4 ] ] <= 0.9704358 )
nm countmax30 10 <− which ( corr max [ [ 4 ] ] <= 0.9764956 )
nm countmin30 10 <− which ( corr min [ [ 4 ] ] <= 0.976452 )

# Combining the data
combined count 10 <− c ( l ength ( nm countmax10 5 ) ,

l ength ( nm countmin10 5 ) ,
l ength ( nm countmax10 10 ) ,
l ength ( nm countmin10 10 ) )

combined count 15 <− c ( l ength ( nm countmax15 5 ) ,
l ength ( nm countmin15 5 ) ,
l ength ( nm countmax15 10 ) ,
l ength ( nm countmin15 10 ) )

combined count 20 <− c ( l ength ( nm countmax20 5 ) ,
l ength ( nm countmin20 5 ) ,
l ength ( nm countmax20 10 ) ,
l ength ( nm countmin20 10 ) )

combined count 30 <− c ( l ength ( nm countmax30 5 ) ,
l ength ( nm countmin30 5 ) ,
l ength ( nm countmax30 10 ) ,
l ength ( nm countmin30 10 ) )

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
#Maximal−Minimal Cor r e l a t i on Test f o r Normal (0 , 1 )
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Grid Search Method
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# I n i t i l i z i n g the l i s t s and vec to r s
ind1max <− c ( )
ind1min <− c ( )
r . max <− l i s t ( )
r . min <− l i s t ( )
pp . maxr <− l i s t ( )
pp . maxc <− l i s t ( )
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pp . minr <− l i s t ( )
pp . minc <− l i s t ( )

# Creat ing ve c t o r s f o r each l i s t
f o r (h in 1 : 4 ){

r . max [ [ h ] ] <− c ( l ength (1000) )
r . min [ [ h ] ] <− c ( l ength (1000) )
pp . maxr [ [ h ] ] <− c ( l ength (1000) )
pp . maxc [ [ h ] ] <− c ( l ength (1000) )
pp . minr [ [ h ] ] <− c ( l ength (1000) )
pp . minc [ [ h ] ] <− c ( l ength (1000) )

}

# Sta r t i ng the counts at zero
lower . countmx1 <− l i s t ( 0 , 0 , 0 , 0 )
lower . countmx2 <− l i s t ( 0 , 0 , 0 , 0 )
lower . countmn1 <− l i s t ( 0 , 0 , 0 , 0 )
lower . countmn2 <− l i s t ( 0 , 0 , 0 , 0 )
upper . countmx1 <− l i s t ( 0 , 0 , 0 , 0 )
upper . countmx2 <− l i s t ( 0 , 0 , 0 , 0 )
upper . countmn1 <− l i s t ( 0 , 0 , 0 , 0 )
upper . countmn2 <− l i s t ( 0 , 0 , 0 , 0 )

f o r ( l in 1 : 500 ) {

# genera t ing 30 random uniforms and a l l o c a t i n g the data
data <− rnorm (30 , mean = 0 , sd = 1)
datag <− l i s t ( )
os . data <− l i s t ( )
datag [ [ 1 ] ] <− data [ 1 : 1 0 ]
os . data [ [ 1 ] ] <− s o r t ( datag [ [ 1 ] ] )
datag [ [ 2 ] ] <− data [ 1 : 1 5 ]
os . data [ [ 2 ] ] <− s o r t ( datag [ [ 2 ] ] )
datag [ [ 3 ] ] <− data [ 1 : 2 0 ]
os . data [ [ 3 ] ] <− s o r t ( datag [ [ 3 ] ] )
datag [ [ 4 ] ] <− data [ 1 : 3 0 ]
os . data [ [ 4 ] ] <− s o r t ( datag [ [ 4 ] ] )

# a l l o c a t i n g x n , x 1 and spcs based on the s i z e o f n
f o r (h in 1 : 4 ){
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i f ( l ength ( os . data [ [ h ] ] ) == 10) {
scp1 <− 0 .1433
scp2 <− 0 .8567
scps3 <− c (0 . 1433 , 0 .2472 , 0 .3487 , 0 .4496 , 0 .5504 , 0 .6513 ,

0 .7528 , 0 . 8567)
}
i f ( l ength ( os . data [ [ h ] ] ) == 15) {

scp1 <− 0 .0951
scp2 <− 0 .9049
scps3 <− c (0 . 0951 , 0 .1644 , 0 .2320 , 0 .2992 , 0 .3662 ,
0 .4331 , 0 .5000 , 0 .5669 , 0 .6338 , 0 .7008 , 0 .7680 ,
0 .8356 , 0 . 9049)

}
i f ( l ength ( os . data [ [ h ] ] ) == 20) {

scp1 <− 0 .0712
scp2 <− 0 .9288
scps3 <− c (0 . 0712 , 0 .1231 , 0 .1738 , 0 .2242 , 0 .2745 ,
0 .3246 , 0 .3748 , 0 .4249 , 0 .4750 , 0 .5250 , 0 .5751 ,
0 .6252 , 0 .6754 , 0 .7255 , 0 .7758 , 0 .8262 , 0 .8769 ,

0 . 9288)
}
i f ( l ength ( os . data [ [ h ] ] ) == 30) {

scp1 <− 0 .0473
scp2 <− 0 .9527
scps3 <− c (0 . 0473 , 0 .0820 , 0 .1158 , 0 .1494 , 0 .1829 ,

0 .2164 , 0 .2497 , 0 .2831 , 0 .3165 , 0 .3499 , 0 .3832 ,
0 .4166 , 0 .4500 , 0 .4833 , 0 .5167 , 0 .5500 , 0 .5834 ,
0 .6168 , 0 .6501 , 0 .6835 , 0 .7169 , 0 .7503 , 0 .7836 ,
0 .8171 , 0 .8506 , 0 .8842 , 0 .9180 , 0 . 9527)

}
k <− 0

# Creat ing the sequences f o r f i n d i n g the c o r r e l a t i o n
scps1 <−seq (0 . 0001 , scp1 , by=0.0001)
scps2 <− seq ( scp2 , 0 .9999 , by=0.0001)

n1 <− l ength ( scps1 )
n2 <− l ength ( scps2 )

x = matrix ( nrow = n1 , nco l = n2 )
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# For loops to f i n d the c o r r e l a t i o n at each i and j va lue
f o r ( i in scps1 ){

k <− k+1
m <−0
f o r ( j in scps2 ) {

m <− m+1
x [ k ,m] = cor ( os . data [ [ h ] ] , qnorm( c ( i , scps3 , j ) )

}
}

# Finding the counts , max/min and the p l o t t i n g po in t s
ind1max <− which ( x==max( x ) , TRUE)
ind1min <− which ( x==min( x ) , TRUE)
r . max [ [ h ] ] [ l ] <− x [ ind1max ]
r . min [ [ h ] ] [ l ] <− x [ ind1min ]
pp . maxr [ [ h ] ] [ l ] <− scps1 [ ind1max [ 1 ] ]
pp . maxc [ [ h ] ] [ l ] <− scps2 [ ind1max [ 2 ] ]
pp . minr [ [ h ] ] [ l ] <− scps1 [ ind1min [ 1 ] ]
pp . minc [ [ h ] ] [ l ] <− scps2 [ ind1min [ 2 ] ]

i f (pp . maxr [ [ h ] ] [ l ] == scps1 [ 1 ] ) {
lower . countmx1 [ [ h ] ] <− lower . countmx1 [ [ h ] ]+1

}
i f ( pp . maxr [ [ h ] ] [ l ] == scps1 [ n1 ] ) {

lower . countmx2 [ [ h ] ] <− lower . countmx2 [ [ h ] ]+1
}
i f ( pp . minr [ [ h ] ] [ l ] == scps1 [ 1 ] ) {

lower . countmn1 [ [ h ] ] <− lower . countmn1 [ [ h ] ]+1
}
i f ( pp . minr [ [ h ] ] [ l ]== scps1 [ n1 ] ) {

lower . countmn2 [ [ h ] ] <− lower . countmn2 [ [ h ] ]+1
}
i f ( pp . maxc [ [ h ] ] [ l ] == scps2 [ 1 ] ) {

upper . countmx1 [ [ h ] ] <− upper . countmx1 [ [ h ] ]+1
}
i f ( pp . maxc [ [ h ] ] [ l ]== scps2 [ n2 ] ) {

upper . countmx2 [ [ h ] ] <− upper . countmx2 [ [ h ] ]+1
}
i f ( pp . minc [ [ h ] ] [ l ] == scps2 [ 1 ] ) {
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upper . countmn1 [ [ h ] ] <− upper . countmn1 [ [ h ] ]+1
}
i f ( pp . minc [ [ h ] ] [ l ] == scps2 [ n2 ] ) {

upper . countmn2 [ [ h ] ] <− upper . countmn2 [ [ h ] ]+1
}

}
}

# f i n d i n g the propor t i on s
prop counts 10 <− l app ly ( l app ly ( combinedcounts 10 , sum) ,

func t i on ( r ) { r /10000})
prop counts 15 <− l app ly ( l app ly ( combinedcounts 15 , sum) ,

func t i on ( r ) { r /10000})
prop counts 20 <− l app ly ( l app ly ( combinedcounts 20 , sum) , func t i on ( r ) { r /10000})
prop counts 30 <− l app ly ( l app ly ( combinedcounts 30 , sum) ,

func t i on ( r ) { r /10000})

# s o r t i n g the c o r r e l a t i o n s
maxminsort 10 <− l app ly ( combinedmaxmin 10 , s o r t )
maxminsort 15 <− l app ly ( combinedmaxmin 15 , s o r t )
maxminsort 20 <− l app ly ( combinedmaxmin 20 , s o r t )
maxminsort 30 <− l app ly ( combinedmaxmin 30 , s o r t )

# Extract ing the c r i t i c a l va lue s
max 10 <− maxminsort 10$V1
min 10 <− maxminsort 10$V2
max 15 <− maxminsort 15$V1
min 15 <− maxminsort 15$V2
max 20 <− maxminsort 20$V1
min 20 <− maxminsort 20$V2
max 30 <− maxminsort 30$V1
min 30 <− maxminsort 30$V2

# Finding the c r i t i c a l va lue s
max 10 [ 5 0 0 ]
min 10 [ 5 0 0 ]
max 10 [ 1 0 0 0 ]
min 10 [ 1 0 0 0 ]
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max 15 [ 5 0 0 ]
min 15 [ 5 0 0 ]
max 15 [ 1 0 0 0 ]
min 15 [ 1 0 0 0 ]
max 20 [ 5 0 0 ]
min 20 [ 5 0 0 ]
max 20 [ 1 0 0 0 ]
min 20 [ 1 0 0 0 ]
max 30 [ 5 0 0 ]
min 30 [ 5 0 0 ]
max 30 [ 1 0 0 0 ]
min 30 [ 1 0 0 0 ]

# Finding the p l o t t i n g po in t s
combinedpp 10 <− do . c a l l ( rbind , pp 10 )
combinedpp 15 <− do . c a l l ( rbind , pp 15 )
combinedpp 20 <− do . c a l l ( rbind , pp 20 )
combinedpp 30 <− do . c a l l ( rbind , pp 30 )

# Averaging the p l o t t i n g po in t s
mean pp 10 <− l app ly ( combinedpp 10 , mean)
mean pp 15 <− l app ly ( combinedpp 15 , mean)
mean pp 20 <− l app ly ( combinedpp 20 , mean)
mean pp 30 <− l app ly ( combinedpp 30 , mean)

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Average Method
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# I n i t i a l i z i n g the l i s t s and vec to r s
corr min <− l i s t ( )
corr max <− l i s t ( )

# Creat ing ve c t o r s f o r each l i s t

f o r (h in 1 : 4 ){
corr min [ [ h ] ] <− c ( l ength (10000) )
corr max [ [ h ] ] <− c ( l ength (10000) )

}
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f o r ( l in 1 :10000) {

# genera t ing 30 random uniforms and a l l o c a t i n g the data

data <− rnorm (30 , mean = 0 , sd = 1)
datag <− l i s t ( )
os . data <− l i s t ( )
datag [ [ 1 ] ] <− data [ 1 : 1 0 ]
os . data [ [ 1 ] ] <− s o r t ( datag [ [ 1 ] ] )
datag [ [ 2 ] ] <− data [ 1 : 1 5 ]
os . data [ [ 2 ] ] <− s o r t ( datag [ [ 2 ] ] )
datag [ [ 3 ] ] <− data [ 1 : 2 0 ]
os . data [ [ 3 ] ] <− s o r t ( datag [ [ 3 ] ] )
datag [ [ 4 ] ] <− data [ 1 : 3 0 ]
os . data [ [ 4 ] ] <− s o r t ( datag [ [ 4 ] ] )

# a l l o c a t i n g x n , x 1 and spcs based on the s i z e o f n
f o r (h in 1 : 4 ){
i f ( l ength ( os . data [ [ h ] ] ) == 10) {

scp1 <− 0 .1433
scp2 <− 0 .8567
scps3 <− c (0 . 1433 , 0 .2472 , 0 .3487 , 0 .4496 , 0 .5504 , 0 .6513 ,

0 .7528 , 0 . 8567)
}

i f ( l ength ( os . data [ [ h ] ] ) == 15) {
scp1 <− 0 .0951
scp2 <− 0 .9049
scps3 <− c (0 . 0951 , 0 .1644 , 0 .2320 , 0 .2992 , 0 .3662 ,
0 .4331 , 0 .5000 , 0 .5669 , 0 .6338 , 0 .7008 , 0 .7680 ,
0 .8356 , 0 . 9049)

}
i f ( l ength ( os . data [ [ h ] ] ) == 20) {

scp1 <− 0 .0712
scp2 <− 0 .9288
scps3 <− c (0 . 0712 , 0 .1231 , 0 .1738 , 0 .2242 , 0 .2745 ,
0 .3246 , 0 .3748 , 0 .4249 , 0 .4750 , 0 .5250 , 0 .5751 ,
0 .6252 , 0 .6754 , 0 .7255 , 0 .7758 , 0 .8262 , 0 .8769 ,

0 . 9288)
}
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i f ( l ength ( os . data [ [ h ] ] ) == 30) {
scp1 <− 0 .0473
scp2 <− 0 .9527
scps3 <− c (0 . 0473 , 0 .0820 , 0 .1158 , 0 .1494 , 0 .1829 ,

0 .2164 , 0 .2497 , 0 .2831 , 0 .3165 , 0 .3499 , 0 .3832 ,
0 .4166 , 0 .4500 , 0 .4833 , 0 .5167 , 0 .5500 , 0 .5834 ,
0 .6168 , 0 .6501 , 0 .6835 , 0 .7169 , 0 .7503 , 0 .7836 ,
0 .8171 , 0 .8506 , 0 .8842 , 0 .9180 , 0 . 9527)

}
k <− 0

# Stor ing the c o r r e l a t i o n s

corr min [ [ h ] ] [ l ] <− cor ( os . data [ [ h ] ] ,
qnorm( c ( min mean 1 , scps3 , min mean 2 ) ) )

corr max [ [ h ] ] [ l ] <− cor ( os . data [ [ h ] ] ,
qnorm( c ( max mean 1 , scps3 , max mean 2 ) ) )

}
}

# Sort ing the data

m2 min 10 <− s o r t ( u n l i s t ( corr min [ 1 ] ) )
m2 max 10 <− s o r t ( u n l i s t ( corr max [ 1 ] ) )
m2 min 15 <− s o r t ( u n l i s t ( corr min [ 2 ] ) )
m2 max 15 <− s o r t ( u n l i s t ( corr max [ 2 ] ) )
m2 min 20 <− s o r t ( u n l i s t ( corr min [ 3 ] ) )
m2 max 20 <− s o r t ( u n l i s t ( corr max [ 3 ] ) )
m2 min 30 <− s o r t ( u n l i s t ( corr min [ 4 ] ) )
m2 max 30 <− s o r t ( u n l i s t ( corr max [ 4 ] ) )

# To get the c r i t i c a l Values

m2 max 10 [ 5 0 0 ]
m2 min 10 [ 5 0 0 ]
m2 max 10 [ 1 0 0 0 ]
m2 min 10 [ 1 0 0 0 ]
m2 max 15 [ 5 0 0 ]
m2 min 15 [ 5 0 0 ]
m2 max 15 [ 1 0 0 0 ]
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m2 min 15 [ 1 0 0 0 ]
m2 max 20 [ 5 0 0 ]
m2 min 20 [ 5 0 0 ]
m2 max 20 [ 1 0 0 0 ]
m2 min 20 [ 1 0 0 0 ]
m2 max 30 [ 5 0 0 ]
m2 min 30 [ 5 0 0 ]
m2 max 30 [ 1 0 0 0 ]
m2 min 30 [ 1 0 0 0 ]

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Power Study
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Grid search Method
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# I n i t i a l i z i n g the l i s t s and vec to r s

ind1max <− c ( )
ind1min <− c ( )
r . max <− l i s t ( )
r . min <− l i s t ( )

# Creat ing ve c t o r s f o r each l i s t

f o r (h in 1 : 4 ){
r . max [ [ h ] ] <− c ( l ength (500 ) )
r . min [ [ h ] ] <− c ( l ength (500 ) )

}

f o r ( l in 1 : 500 ) {

# genera t ing 30 random Betas and a l l o c a t i n g the data
data <− rbeta (30 , 1 , 2 )
datag <− l i s t ( )
os . data <− l i s t ( )
datag [ [ 1 ] ] <− data [ 1 : 1 0 ]
os . data [ [ 1 ] ] <− s o r t ( datag [ [ 1 ] ] )
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datag [ [ 2 ] ] <− data [ 1 : 1 5 ]
os . data [ [ 2 ] ] <− s o r t ( datag [ [ 2 ] ] )
datag [ [ 3 ] ] <− data [ 1 : 2 0 ]
os . data [ [ 3 ] ] <− s o r t ( datag [ [ 3 ] ] )
datag [ [ 4 ] ] <− data [ 1 : 3 0 ]
os . data [ [ 4 ] ] <− s o r t ( datag [ [ 4 ] ] )

# a l l o c a t i n g x n , x 1 and spcs based on the s i z e o f n

f o r (h in 1 : 4 ){
i f ( l ength ( os . data [ [ h ] ] ) == 10) {

scp1 <− 0 .1433
scp2 <− 0 .8567
scps3 <− c (0 . 1433 , 0 .2472 , 0 .3487 , 0 .4496 , 0 .5504 , 0 .6513 ,

0 .7528 , 0 . 8567)
}

i f ( l ength ( os . data [ [ h ] ] ) == 15) {
scp1 <− 0 .0951
scp2 <− 0 .9049
scps3 <− c (0 . 0951 , 0 .1644 , 0 .2320 , 0 .2992 , 0 .3662 ,
0 .4331 , 0 .5000 , 0 .5669 , 0 .6338 , 0 .7008 , 0 .7680 ,
0 .8356 , 0 . 9049)

}
i f ( l ength ( os . data [ [ h ] ] ) == 20) {

scp1 <− 0 .0712
scp2 <− 0 .9288
scps3 <− c (0 . 0712 , 0 .1231 , 0 .1738 , 0 .2242 , 0 .2745 ,
0 .3246 , 0 .3748 , 0 .4249 , 0 .4750 , 0 .5250 , 0 .5751 ,
0 .6252 , 0 .6754 , 0 .7255 , 0 .7758 , 0 .8262 , 0 .8769 ,

0 . 9288)
}
i f ( l ength ( os . data [ [ h ] ] ) == 30) {

scp1 <− 0 .0473
scp2 <− 0 .9527
scps3 <− c (0 . 0473 , 0 .0820 , 0 .1158 , 0 .1494 , 0 .1829 ,

0 .2164 , 0 .2497 , 0 .2831 , 0 .3165 , 0 .3499 , 0 .3832 ,
0 .4166 , 0 .4500 , 0 .4833 , 0 .5167 , 0 .5500 , 0 .5834 ,
0 .6168 , 0 .6501 , 0 .6835 , 0 .7169 , 0 .7503 , 0 .7836 ,
0 .8171 , 0 .8506 , 0 .8842 , 0 .9180 , 0 . 9527)
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}
k <− 0

# Creat ing the sequences f o r f i n d i n g the c o r r e l a t i o n
scps1 <−seq (0 . 0001 , scp1 , by=0.0001)

scps2 <− seq ( scp2 , 0 .9999 , by=0.0001)

n1 <− l ength ( scps1 )
n2 <− l ength ( scps2 )

x = matrix ( nrow = n1 , nco l = n2 )

# For loops to f i n d the c o r r e l a t i o n at each i and j va lue
f o r ( i in scps1 ){

k <− k+1
m <−0
f o r ( j in scps2 ) {

m <− m+1
x [ k ,m] = cor ( os . data [ [ h ] ] , qnorm( c ( i , scps3 , j ) ) )

}
}

# Finding the counts , max/min and the coo rd ina t e s at the max and min
ind1max <− which ( x==max( x ) , TRUE)
ind1min <− which ( x==min( x ) , TRUE)
r . max [ [ h ] ] [ l ] <− x [ ind1max ]
r . min [ [ h ] ] [ l ] <− x [ ind1min ]

}
}

# Finding the Power
# n = 10
gs countmax10 5 <− which ( r . max [ [ 1 ] ] <= 0.9607204 )
gs countmin10 5 <− which ( r . min [ [ 1 ] ] <= 0.7286672 )
gs countmax10 10 <− which ( r . max [ [ 1 ] ] <= 0.9688554)
gs countmin10 10 <− which ( r . min [ [ 1 ] ] <= 0.7547894 )

# n = 15
gs countmax15 5 <− which ( r . max [ [ 2 ] ] <= 0.9666295 )
gs countmin15 5 <− which ( r . min [ [ 2 ] ] <= 0.8063892)
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gs countmax15 10 <− which ( r . max [ [ 2 ] ] <= 0.9729472)
gs countmin15 10 <− which ( r . min [ [ 2 ] ] <= 0.8250993 )

# n = 20
gs countmax20 5 <− which ( r . max [ [ 3 ] ] <= 0.9709903 )
gs countmin20 5 <− which ( r . min [ [ 3 ] ] <= 0.8509791 )
gs countmax20 10 <− which ( r . max [ [ 3 ] ] <= 0.976458 )
gs countmin20 10 <− which ( r . min [ [ 3 ] ] <= 0.8648301 )

# n = 30
gs countmax30 5 <− which ( r . max [ [ 4 ] ] <= 0.977135)
gs countmin30 5 <− which ( r . min [ [ 4 ] ] <= 0.8990045 )
gs countmax30 10 <− which ( r . max [ [ 4 ] ] <= 0.9813577 )
gs countmin30 10 <− which ( r . min [ [ 4 ] ] <= 0.9078754)

# Combining the Values
combined count 10 <− cbind ( l ength ( gs countmax10 5 ) ,

l ength ( gs countmin10 5 ) ,
l ength ( gs countmax10 10 ) ,
l ength ( gs countmin10 10 ) ,

)
combined count 15 <− cbind ( l ength ( gs countmax15 5 ) ,

l ength ( gs countmin15 5 ) ,
l ength ( gs countmax15 10 ) ,
l ength ( gs countmin15 10 ) ,

)
combined count 20 <− cbind ( l ength ( gs countmax20 5 ) ,

l ength ( gs countmin20 5 ) ,
l ength ( gs countmax20 10 ) ,
l ength ( gs countmin20 10 ) ,

)

combined count 30 <− cbind ( l ength ( gs countmax30 5 ) ,
l ength ( gs countmin30 5 ) ,
l ength ( gs countmax30 10 ) ,
l ength ( gs countmin30 10 ) ,

)

# Combing the power
combined props 10 <− do . c a l l ( rbind , props 10 )
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combined props 15 <− do . c a l l ( rbind , props 15 )
combined props 20 <− do . c a l l ( rbind , props 20 )
combined props 30 <− do . c a l l ( rbind , props 30 )

# Summing the r e s u l t s
prop counts 10 <− l app ly ( combined props 10 , sum)
prop counts 15 <− l app ly ( combined props 15 , sum)
prop counts 20 <− l app ly ( combined props 20 , sum)
prop counts 30 <− l app ly ( combined props 30 , sum)

u lprops 10 <− u n l i s t ( prop counts 10 )
u lprops 15 <− u n l i s t ( prop counts 15 )
u lprops 20 <− u n l i s t ( prop counts 20 )
u lprops 30 <− u n l i s t ( prop counts 30 )

# c r e a t i n g a tab l e o f r e s u l t s
cbind ( u lprops 10 , u lprops 15 , u lprops 20 , u lprops 30 )
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
#Average method
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# I n i t i a l i z i n g the l i s t s and vec to r s
corr min <− l i s t ( )
corr max <− l i s t ( )

# Creat ing ve c t o r s f o r each l i s t
f o r (h in 1 : 4 ){

corr min [ [ h ] ] <− c ( l ength (10000) )
corr max [ [ h ] ] <− c ( l ength (10000) )

}

f o r ( l in 1 :10000) {

# genera t ing 30 random Beta ’ s and a l l o c a t i n g the data
data <− rbeta (30 , 1 , 2 )
datag <− l i s t ( )
os . data <− l i s t ( )
datag [ [ 1 ] ] <− data [ 1 : 1 0 ]
os . data [ [ 1 ] ] <− s o r t ( datag [ [ 1 ] ] )
datag [ [ 2 ] ] <− data [ 1 : 1 5 ]
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os . data [ [ 2 ] ] <− s o r t ( datag [ [ 2 ] ] )
datag [ [ 3 ] ] <− data [ 1 : 2 0 ]
os . data [ [ 3 ] ] <− s o r t ( datag [ [ 3 ] ] )
datag [ [ 4 ] ] <− data [ 1 : 3 0 ]
os . data [ [ 4 ] ] <− s o r t ( datag [ [ 4 ] ] )

# a l l o c a t i n g x n , x 1 and spcs based on the s i z e o f n f o r (h in 1 : 4 ){
i f ( l ength ( os . data [ [ h ] ] ) == 10) {

scp1 <− 0 .1433
scp2 <− 0 .8567
scps3 <− c (0 . 1433 , 0 .2472 , 0 .3487 , 0 .4496 , 0 .5504 , 0 .6513 ,

0 .7528 , 0 . 8567)
}

i f ( l ength ( os . data [ [ h ] ] ) == 15) {
scp1 <− 0 .0951
scp2 <− 0 .9049
scps3 <− c (0 . 0951 , 0 .1644 , 0 .2320 , 0 .2992 , 0 .3662 ,
0 .4331 , 0 .5000 , 0 .5669 , 0 .6338 , 0 .7008 , 0 .7680 ,
0 .8356 , 0 . 9049)

}
i f ( l ength ( os . data [ [ h ] ] ) == 20) {

scp1 <− 0 .0712
scp2 <− 0 .9288
scps3 <− c (0 . 0712 , 0 .1231 , 0 .1738 , 0 .2242 , 0 .2745 ,
0 .3246 , 0 .3748 , 0 .4249 , 0 .4750 , 0 .5250 , 0 .5751 ,
0 .6252 , 0 .6754 , 0 .7255 , 0 .7758 , 0 .8262 , 0 .8769 ,

0 . 9288)
}
i f ( l ength ( os . data [ [ h ] ] ) == 30) {

scp1 <− 0 .0473
scp2 <− 0 .9527
scps3 <− c (0 . 0473 , 0 .0820 , 0 .1158 , 0 .1494 , 0 .1829 ,

0 .2164 , 0 .2497 , 0 .2831 , 0 .3165 , 0 .3499 , 0 .3832 ,
0 .4166 , 0 .4500 , 0 .4833 , 0 .5167 , 0 .5500 , 0 .5834 ,
0 .6168 , 0 .6501 , 0 .6835 , 0 .7169 , 0 .7503 , 0 .7836 ,
0 .8171 , 0 .8506 , 0 .8842 , 0 .9180 , 0 . 9527)

}
k <− 0

# Finding the Maximum and minimum c o r r e l a t i o n

101



corr min [ [ h ] ] [ l ] <− cor ( os . data [ [ h ] ] ,
qnorm( c ( min mean 1 , scps3 , min mean 2 ) ) )

corr max [ [ h ] ] [ l ] <− cor ( os . data [ [ h ] ] ,
qnorm( c ( max mean 1 , scps3 , max mean 2 ) ) )

}
}

# Finding the Power
# n = 10
nm countmax10 5 <− which ( corr max [ [ 1 ] ] <= 0.9108808)
nm countmin10 5 <− which ( corr min [ [ 1 ] ] <= 0.908479)
nm countmax10 10 <− which ( corr max [ [ 1 ] ] <= 0.9300996)
nm countmin10 10 <− which ( corr min [ [ 1 ] ] <= 0.9285467)

# n = 15
nm countmax15 5 <− which ( corr max [ [ 2 ] ] <= 0.9355293)
nm countmin15 5 <− which ( corr min [ [ 2 ] ] <= 0.93552)
nm countmax15 10 <− which ( corr max [ [ 2 ] ] <= 0.9480486)
nm countmin15 10 <− which ( corr min [ [ 2 ] ] <= 0.947958 )

# n = 20
nm countmax20 5 <− which ( corr max [ [ 3 ] ] <= 0.9487769)
nm countmin20 5 <− which ( corr min [ [ 3 ] ] <= 0.9503622 )
nm countmax20 10 <− which ( corr max [ [ 3 ] ] <= 0.9588988)
nm countmin20 10 <− which ( corr min [ [ 3 ] ] <= 0.9598521 )

# n = 30
nm countmax30 5 <− which ( corr max [ [ 4 ] ] <= 0.9630239)
nm countmin30 5 <− which ( corr min [ [ 4 ] ] <= 0.9650149)
nm countmax30 10 <− which ( corr max [ [ 4 ] ] <= 0.9701206)
nm countmin30 10 <− which ( corr min [ [ 4 ] ] <= 0.9712342 )

# Combining the data
combined count 10 <− c ( l ength ( nm countmax10 5 ) ,

l ength ( nm countmin10 5 ) ,
l ength ( nm countmax10 10 ) ,
l ength ( nm countmin10 10 ) )

combined count 15 <− c ( l ength ( nm countmax15 5 ) ,
l ength ( nm countmin15 5 ) ,
l ength ( nm countmax15 10 ) ,
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l ength ( nm countmin15 10 ) )
combined count 20 <− c ( l ength ( nm countmax20 5 ) ,

l ength ( nm countmin20 5 ) ,
l ength ( nm countmax20 10 ) ,
l ength ( nm countmin20 10 ) )

combined count 30 <− c ( l ength ( nm countmax30 5 ) ,
l ength ( nm countmin30 5 ) ,
l ength ( nm countmax30 10 ) ,
l ength ( nm countmin30 10 ) )

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Data Example 1
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# Grid Search Method
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# Inputt ing the data
c h l i f e d <− c (600 ,744 ,744 ,744 ,912 ,1228 ,1320 ,1464 ,1608 ,1896)

# Taking the log
c h l i f e d l o g <− l og ( c h l i f e d )

# Putting in the SCP va lues
scps3 <− c (0 . 1433 , 0 .2472 , 0 .3487 , 0 .4496 , 0 .5504 , 0 .6513 ,

0 .7528 , 0 . 8567)

# Creat ing the sequence f o r the g r id
scp1 <− 0 .1433
scp2 <− 0 .8567
scps1 <−seq (0 . 0001 , scp1 , by=0.0001)
scps2 <− seq ( scp2 , 0 .9999 , by=0.0001)

n1 <− l ength ( scps1 )
n2 <− l ength ( scps2 )

x = matrix ( nrow = n1 , nco l = n2 )

# For loops to f i n d the c o r r e l a t i o n at each i and j va lue
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k <− 0
f o r ( i in scps1 ){

k <− k+1
m <−0

f o r ( j in scps2 ) {
m <− m+1
x [ k ,m] = cor ( c h l i f e d l o g , qnorm( c ( i , scps3 , j ) ) )

}
}

ind1max <− which ( x==max( x ) , TRUE)
ind1min <− which ( x==min( x ) , TRUE)
r . max<− x [ ind1max ]
r . min<− x [ ind1min ]

# Finding the P−value f o r the maximum
combinedmaxmin 10 <− do . c a l l ( rbind , maxmin 10 )
min 10 <− combinedmaxmin 10$V2
m i n g s c h l i f e d <− which ( min 10 <= 0.8502242)
l ength min gs <− l ength ( m i n g s c h l i f e d )
p value min10 <− l ength min gs /10000

# Finding the P−value f o r the minimum
max 10 <− combinedmaxmin 10$V1
max gs ch l i f ed <− which ( max 10 <= 0.9744889)
length max gs <− l ength ( max g s ch l i f ed )
p value max10 <− l ength max gs /10000

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Avergae Method
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# Putting in the modi f i ed SCP p l o t t i n g po in t s
min mean 1 <− 0.07172864
min mean 2 <− 0.9270685
max mean 1 <− 0.06707189
max mean 2 <− 0.9342107
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# Finding the Cor r e l a t i on
corr min <− cor ( c h l i f e d l o g ,

qnorm( c ( min mean 1 , scps3 , min mean 2 ) ) )
corr max <− cor ( c h l i f e d l o g ,

qnorm( c ( max mean 1 , scps3 , max mean 2 ) ) )

# Finding the P−value f o r the maximum
average min <− read . t ab l e (” cor r min 10 . csv ”)
min a 10 <− which ( average min <= 0.9729964)
l ength min a <− l ength ( min a 10 )
p valuea min10 <− l ength min a /10000

# Finding the P−value f o r the minimum
average max <− read . t ab l e (” corr max 10 . csv ”)
max a 10 <− which ( average max <= 0.972244)
length max a <− l ength ( max a 10 )
p valuea max10 <− length max a /10000

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Data Example 2
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Grid Search Method
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# input t ing the data
s r s 30 <− c ( 7 9 . 8 9 , 88 .13 , 90 .03 , 92 .56 , 95 .97 , 99 .62 , 103 .56 ,

105 .48 , 111 .38 , 113 .90 , 85 .29 , 89 .33 , 91 .46 , 95 .14 ,
96 .20 , 102 .56 , 103 .60 , 106 .82 , 112 .97 , 115 .95 , 87 .83 ,
89 .35 , 92 .55 , 95 .94 , 98 .70 , 103 .22 , 104 .21 , 108 .39 ,
113 .75 , 118 .52 )

# SCPs f o r n= 30
scps3 <− c (0 . 0473 , 0 .0820 , 0 .1158 , 0 .1494 , 0 .1829 , 0 .2164 , 0 .2497 ,

0 .2831 , 0 .3165 , 0 .3499 , 0 .3832 , 0 .4166 , 0 .4500 , 0 .4833 ,
0 .5167 , 0 .5500 , 0 .5834 , 0 .6168 , 0 .6501 , 0 .6835 , 0 .7169 ,
0 .7503 , 0 .7836 , 0 .8171 , 0 .8506 , 0 .8842 , 0 .9180 , 0 . 9527)
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# Creat ing the sequence f o r the g r id search
scp1 <− 0 .0473
scp2 <− 0 .9527
scps1 <−seq (0 . 0001 , scp1 , by=0.0001)
scps2 <− seq ( scp2 , 0 .9999 , by=0.0001)

n1 <− l ength ( scps1 )
n2 <− l ength ( scps2 )

x = matrix ( nrow = n1 , nco l = n2 )

# For loops to f i n d the c o r r e l a t i o n at each i and j va lue
k <− 0
f o r ( i in scps1 ){

k <− k+1
m <−0

f o r ( j in scps2 ) {
m <− m+1
x [ k ,m] = cor ( s o r t ( s r s 30 ) , qnorm( c ( i , scps3 , j ) ) )

}
}

ind1max <− which ( x==max( x ) , TRUE)
ind1min <− which ( x==min( x ) , TRUE)
r . max<− x [ ind1max ]
r . min<− x [ ind1min ]

# Finding the maximum p−value
combinedmaxmin 30 <− do . c a l l ( rbind , maxmin 30 )
min 30 <− combinedmaxmin 30$V2
m i n g s c h l i f e d <− which ( min 30 <= 0.9349074 )
l ength min gs <− l ength ( m i n g s c h l i f e d )
p value min30 <− l app ly ( l ength min gs , f unc t i on ( r ) { r /10000})

# Finding the Minimum p−value
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max 30 <− combinedmaxmin 30$V1
max gs ch l i f ed <− which ( max 30 <= 0.9905121)
length max gs <− l ength ( max g s ch l i f ed )
p value max30 <− l app ly ( length max gs , f unc t i on ( r ) { r /10000})

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Average method
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Putting the modi f i ed SCP Values
min mean 1 <− 0.01587896
min mean 2 <− 0.9840833
max mean 1 <− 0.02377405
max mean 2 <− 0.9765869

s r s 3 0 s o r t <− s o r t ( s r s 30 )

# Finding the maximal and minimal c o r r e l a t i o n
corr min <− cor ( s r s 3 0 s o r t ,

qnorm( c ( min mean 1 , scps3 , min mean 2 ) ) )
corr max <− cor ( s r s 3 0 s o r t ,

qnorm( c ( max mean 1 , scps3 , max mean 2 ) ) )

# Finding the maximum P−value
average min <− read . t ab l e (” cor r min 30 . csv ”)
min a 30 <− which ( average min <= 0.988209)
l ength min a <− l ength ( min a 30 )
p valuea min30 <− l app ly ( length min a , func t i on ( r ) { r /10000})

# Finding the minimum p−value
average max <− read . t ab l e (” corr max 30 . csv ”)
max a 30 <− which ( average max <= 0.9899287)
length max a <− l ength ( max a 30 )
p valuea max30 <− l app ly ( length max a , func t i on ( r ) { r /10000})

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Data Example 3
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Grid Search Method
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# Inputt ing the data
data <− c ( 0 . 0 0 4 , 0 . 304 , 0 . 612 , 0 . 748 , 0 . 771 , 0 . 806 , 0 . 850 ,

0 . 885 , 0 . 906 , 0 . 977 )

# SCP va lues f o r n = 10
scps3 <− c (0 . 1584 , 0 .2542 , 0 .3521 , 0 .4506 , 0 .5494 , 0 .6479 ,

0 .7458 , 0 . 8416)

# Creat ing the sequence f o r the g r id search
scp1 <− 0 .1584
scp2 <− 0 .8416
scps1 <−seq (0 . 0001 , scp1 , by=0.0001)
scps2 <− seq ( scp2 , 0 .9999 , by=0.0001)

n1 <− l ength ( scps1 )
n2 <− l ength ( scps2 )

x = matrix ( nrow = n1 , nco l = n2 )

# For loops to f i n d the c o r r e l a t i o n at each i and j va lue
k <− 0
f o r ( i in scps1 ){

k <− k+1
m <−0

f o r ( j in scps2 ) {
m <− m+1
x [ k ,m] = cor ( s o r t ( data ) , qun i f ( c ( i , scps3 , j ) ) )

}
}

ind1max <− which ( x==max( x ) , TRUE)
ind1min <− which ( x==min( x ) , TRUE)
r . max<− x [ ind1max ]
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r . min<− x [ ind1min ]

# Finding the p−value f o r the maximum
combinedmaxmin 10 <− do . c a l l ( rbind , maxmin 10 )
min 10 <− combinedmaxmin 10$V2
min gs data<− which ( min 10 <= 0.8314281)
l ength minu gs <− l ength ( min gs data )
p value min10 <− l ength minu gs /10000

# Finding the p−value f o r the minimum#
max 10 <− combinedmaxmin 10$V1
max gs ch l i f ed <− which ( max 10 <= 0.9085895)
length max gs <− l ength ( max g s ch l i f ed )
p value max10<− l ength max gs /10000

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Average Method
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

# Putting in the modi f i ed SCP Values
min mean 1 <− 0 .0847
min mean 2 <− 0 .9225
max mean 1 <− 0 .0779
max mean 2 <− 0 .9149

# Finding the Cor r e l a t i on
corr min <− cor ( s o r t ( data ) ,

qun i f ( c ( min mean 1 , scps3 , min mean 2 ) ) )
corr max <− cor ( s o r t ( data ) ,

qun i f ( c ( max mean 1 , scps3 , max mean 2 ) ) )

# Finding the p−value f o r the maximum
average min <− read . t ab l e (” cor r min 10 . csv ”)
min a 10 <− which ( average min <= 0.8735113)
l ength min a <− l ength ( min a 10 )
p valuea min10 <− l ength min a /10000

# Finding the p−value f o r the minimum
average max <− read . t ab l e (” corr max 10 . csv ”)
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max a 10 <− which ( average max <= 0.8769523)
length max a <− l ength ( max a 10 )
p valuea max10 <− length max a /10000
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