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ABSTRACT

This thesis is a study of minimal wave digital filters
designed using n-port adaptors. A topological characterization of
the reactive redundancies in the reference RLC network is used
together with a set of constraint equations to simultanedusly
eliminate excess delays due to both loops and cutsets of capacitance
and inductance. The method, which can be applied to prototypes of
arbitrary topology, produces n-port adaptors in which the multipliers
are restricted to a submatrix, K. A network interpretation of K is
given which allows realizations which are canonic in both delays and
multipliers to be obtained from ladder prototypes.

Several results regarding the properties of n-port adaptors
and the controllability and observability of pseudolossless reciprocal
systems are given. The stability of linear wave digital systems and
the relationship with controllability and observability is investigated.
General system modification schemes which guarantee both state and
output stability for nonlinear wave digital systems are présented.

Necessary and sufficient conditions for the existence of
diagonal Lyapunov functions for minimal wave digital systems are
derived and it is demonstrated that such functions do not exist in
a majority of filters. An alternate diagonalization procedure which
uses a similarity transformation of the state variables is given.

A technique based upon a form of interval arithmetic is
used to bound the errors caused by finite word length effects. These

bounds are then used to define signal modifications which guarantee

~f i



freedom from parasitic oscillations in n-port filters having diagonal
Lyapunov functions. Finally, a type of zeroing arithmetic which

inhibits overflow oscillations in canonic realizations is given.
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CHAPTER I

INTRODUCTION

Digital signal processing is the processing of discrete-
time signals with a special-or general-purpose computer. Modern
digital processing began with the simulation of complex analog
systems on digital computers. As more sophisticated machines became
available and the possibility of implementing real-time systems arose,
a tremendous interest in developing highly efficient algorithms grew.
With the advent of integrated circuit technology which resulted in
high-speed circuitry at low cost, it is now practical to build hard-
ware digital signal processors.

Digital systems offer several advantages over analog systems.
System specifications can be achieved with a high degree of accuracy
and are easily repeatable, high reliability and economy are obtained
with IC realizations and time variable or adaptive behaviour is
easily implemented.

The applications of digital signal processing are now
widespread, including such diverse fields as radar, sonar, geophysical
exploration, analysis of biomedical signals and, of course, communica-
tion systems. Two recent textbooks [1], [2] provide an excellent
introduction to the field of digital signal processing. - In addition,
a large collection of important papers on the subject is available
[31, [4].

Infinite impulse response digital filters can be designed
in three distinct, although not independent, steps. These are:

1. From the given performance specification, determine a linear



shift-invariant (LSI) discrete-time system which meets cr exceeds
the specification.

2. Decide wupon a structure in which to realize the LSI system and
quantize the coefficients to a fixed word length.

3. Quantize the signals consistent with the word length of the digital
system used for implementation.

From the desired performance specification which can be given
in the time domain or, as is most often the case, in the frequency
domain, two basic techniques are available for determining the necessary
LSI system. When the specifications are not standard, mathematical
optimization procedures which minimize some specified error criterion
can be used to design directly in the z-domain. The majority of the
techniques which are available consider a structure consisting of a
cascade of second-order sections, the pole and zero locations being
determined by the algorithm. If a standard response such as Butterworth,
Chebyshev or elliptic is desired, then a more efficient teéhnique is
to utilize the well-established theory of RLC filters. Various
mappings have been proposed to transform an appropriate analog filter
into the required discrete-time filter, the most frequently used
methods being the impulse invariant and the bilinear z—ﬁrénsformation
(11, [21.

Having specified a suitable discrete-time system, an operational
realization consisting of adders, multipliers and delay (memory) elements
is required. These elements must be connected in a manner such that
the resulting digital structure is computable [1], [5]. Normally, the

infinite precision coefficients (multipliers) in the realization must



be modified to a finite word length. The choice of structure is
complicated by the sensitivity of the system performance due to

this coefficient quantization. The number of components, particularly
multipliers and delay elements, and the potential for high-speed
operation are other major considerations.

Several standard recursive structures have been developed.
Tﬁé direct forms DI and DII are high-order feedback structures realized
directly from the transfer function. The cascade form is obtained by
factqring the transfer function into a product of first-and second-
order sections while the parallel form is obtained from a partial
fraction expansion. In general, these structures all suffer to varying
dégrees from coefficient sensitivity problems [1] -[4].

A structure called a wave digital filter has been introduced
by Fettweis and his co-workers [6]-[10]. This method uses voltage
scattering waves together with the bilinear z-transformation to map
resistively-terminated LC ladder prototypes into digital structures.
Because the multipliers are determined in a one-to-one mapping from
the elements in the prototype, the low element sensitivity of the
classical filter is transformed into low coefficient sensitivity in
the digital filter [8], [11]. Allowing fqr impedance séaling, a
prototype of n elements produces a wave digital filter containing
n-1 mﬁltipliers. A comparison of the complexity of cascade and wave
digital realizations of an eighth-~order bandpass filter [12] has
shown that the number of multiplier elements is essentially the same
while the wave digital filter requires almost twice as many adders.

The lower coefficient sensitivity of the wave digital structure,



however, allows this realization to be implemented with about 60% of

the total number of bits of that required in the cascade form.

A second comparison by Fettweis et ai.[l3],based upon a seventh-order

lowpass filter shows that the total number of logic circuits required

for a serial arithmetic wave digital realization is comparable to that

required for a cascade design. The number of delay elements in a

standard wave digital realization is equal to the number of reactive

elements in the reference filter and thus these wave digital filters

are canonic in delays if and only if the reference filter is a minimal

realization. By using the dependence of the waves in loops and cutsets

of inductances and capacitances, additional hardware can be used to

eliminate some of the excess delays caused by these degeneracies [14].

Fettweis et al. [15] and Nouta [16] have both developed a lattice

adaptor for realizing symmetrical networks. Wave digital adaptors

for the reciprocal and nonreciprocal sections used in classical cascade

synthesis have also been obtained by various authors [17] - [21].
Implementation of a digital filter requires that the signals

be expressed in binary form. Fixed-point fractional arithmetic is most

often used in hardware realizations. Since the memory word length is

fixed, the signal values to be stored must lie within a specified

interval if they are to be represented accurately. However, as a

result of arithmetic operations, numbers may be produced which fall

outside the range available. Overflows result when the signal is

larger than the maximum value allowable. 1In this case the most significant

bits must be altered, causing large errors in the output and the possibil-

ity of zero-input liuit cycles, called overflow oscillations. Quantization

of the signals is used when necessary to modify the least significant



bits, producing quantization noise aﬁd the possibility of zero-input
limit cycles, called granularity oscillations. Claasen el al. [22]
have an excellent discussion of these problems.

For second-order direct form fixed-point realizations,
saturating overflow arithmetic does not produce overflow oscillations
[23]. Furthermore, magnitude truncation of the sum of products
almost always eliminates granularity oscillations [24]. Fettweis
and Meerk8tter have used the concept of pseudopower to derive a
simple criterion which guarantees the absence of both zero-input
overflow and granularity oscillations in wave digital filters [25].
This technique, howeﬁer, is not directly applicable to those wave
digital filters designed by the previously-discussed method which
reduces the number of excess delays [1l4]. Using wave digital concgpts,

Meerkdtter and Wegener [26] have designed a second-order section
having no limit cycles while a scheme using controlled rounding has
also been found to be effective for certain filters [27], [28].

An alternate wave digital structure in the form of a single
n-port adaptor terminated with feedback through memory has been
proposed by Martens and Meerkdtter [29]. Unlike the standard
Sedlmeyer-Fettweis procedure [9], this method is not restricted to
the transformation of ladder prototypes.

This thesis is a study of minimal wave digital filters

designed using n-port adaptors.

In Chapter II we introduce the basic concepts required for

an understanding of wave digital filters. The series-parallel adaptor



method developed by Fettweis is briefly discussed. The n-port adaptor
technique introduced by Martens and Meerkdtter is described and a
derivation of the various n-port adaptor representations is given.
Following a brief discussion of reflection-free n-port adaptors, a
simple example which illustrates the general n-port procedure is
given.

The main purpose of Chapter III is to develop a method of
designing minimal wave digital filters using n-port adaptors. First,
the reactive redundancies that cause the dimension of the state space
of the prototype fi}ter to exceed the minimal dimension are characterized
topologically. Constraint equations used to simultaneously eliminate
the excess delays due to both loops and cutsets of reactive elements
are then formulated and»their effect upon the network behaviour is
interpreted. The n-port adaptors produced have representations in
which the multipliers are restricted top a submatrix K. A network
interpretation of K is developed, allowing realizations which are
canonic in both multipliers'and delays to be obtained from ladder
prototypes. The chapter concludes with two illustrative examples.

In Chaptef IV some interesting properties of n-port adaptors,
including their pseudolossless and reciprocal nature, are established.
The controllability and observability of pseudolossless reciprocal
systems is studied. Several results concerning the stability of
linear wave digital systems are proved using the reference conductance
matrix as a Lyapunov function. This matrix is diagonal for non-minimal
realizations but becomes nondiagonal as a result of the minimal

realization procedure. Finally, the stability of nonlinear wave



digital systems is considered and a general scheme which, in principle,
guarantees freedom from both overflow and granularity oscillations in
these systems is given.

Chapter V is devoted to the search for diagonal Lyapunov
functions for those systems which have a nondiagonal reference con-
ductance matrix. Necessary and sufficient conditions for the existencs
of alternate Lyapunov functions are derived. Because several examples
demonstrate that these conditions can be satisfied in only a limited
number of cases, the final section of the chapter presents a technique
which uses a similarity transformation of the state variables to
produce new systems for which diagonal Lyapunov functions do exist.

In Chapter VI we describe a procedure for implementing
signal modifications which inhibit limit-cycles in wave digital filters
using n-port adaptors. The errors caused by finite word length constraints
are monitored by a form of error interval analysis which produces
error bounds on the signals at the outputs of the adaptor. Based
upon these bounds, the signals are appropriately modified before being
fed back to the adaptor inputs. The final section in this chapter
presents a form of.zeroing arithmetic which can be used to eliminate
overflow oscillations in minimal wave digital filters.

Standard matrix notation is used throughout. Superscripts
T and -1 denote transposition and inversion respectively, while U
isva unit matrix of appropriate dimensions. In general, time domain
vector or scalar signals are denoted by lower-case Latin letters,
while upper-case Latin letters identify scalar or vector signals

in the complex frequency domain.



CHAPTER II

WAVE DIGITAL FILTER DESIGN - n-PORT ADAPTORS

The design of wave digital filters imitating analog reference
networks is carried out via the voltage wave scattering representation
of the reference filter structure together with the application of the
bilinear z-transformation [6]-110]1, [29]. This synthesis procedure
transforms the low element sensitivity of doubly terminated LC ladder
reference filters into low coefficient sensitivity of the discrete-time
realization. In addition, wave digital filters exhibit several inter-
esting properties which can be utilized to guarantee the absence of
paraéitic oscillations. Chaptef II serves as an introduction to wave
digital filter design. Included is a discussion of the basic concepts
uvpon which the wave digital approach is based, as well as a brief
synopsis of Fettweis' adaptor technique [6]-[9]. The n-port adaptor
method of Martens and Meerk8tter [29] is reviewed and a derivation
of the various n-port adaptor representations is given. Finally, an
example is given to illustrate the n-port téchnique. |

2.1 INTRODUCTION TO WAVE DIGITAL FILTERS

The doubly terminated lossless reciprocal network shown in

i

Fig. 2.1 is the most often utilized analog filter structure and hence
extensive design tables are available [30]. Such a structure is

normally described by either its voltage transfer function

v, ()

—Ew-)— (2.1)

T(Y) =

or by its transmission coefficient [31]

, (RS)%
t) = 2 |=—| T (2.2)
\Ry



* LOSSLESS +
RECIPROCAL Vs R,

NETWORK —-

Fig. 2.1 Doubly terminated lossless reciprocal network.

1)
o>
a(t) =
v(t) R
b(f) =——— _
O

Fig. 2.2 Definition of port variables.
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where § is the continuous-time domain complex frequency variable.

As an alternative, voltage waves can be used to describe the Ffilter.
For a given port with associated references for the voltage v(t)

and the current i(t), (Pig. 2.2), we define the incident and reflected
voltage waves a(t) and b(t) respectively by

v + Ri " (2.3a)

a

b

v - R1i (2.3b)
or, in the complex frequency domain,

A=V + RI ' (2.4a)

B V - RI . (2.4Db)

where A, B, V and I are the complex amplitudes cf the signals and R
is the reference resistance, normally positive, chosen for the port.
If we choose the reference resistances for the source and load ports

to be equal to RS and RL respectively,then

Al = B (2.5a)
B2 = 2v2 (2.5Db)
and

BZ
W) = ' . (2.6a)

1
= 27(}) (2.6b)

R +

- RS () (2.6c¢)

where W(y) is the voltage wave transfer function. It is important

to note that the magnitude of T(j¢), t(id) and W(j¢) differ by, at

most, a frequency-independent constant and hence a realization of any
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of these functions produces the desired frequency response.

Use of the bilinear z-transformation

z - 1
b= z + 1 (2.7
produces the z-domain transfer function
a z -1
H(z) =W (/) (2.8)

where z is the discrete-time domain complex frequency variable. Since
the discrete-time frequency response is given by H(eij), the analog

frequency ¢ and the digital frequency w are related by

jwT
] e - 1 :
j¢ = —— (2.9)
JWT + 1
or equivalently
® = tan 9%- (2.10)

where T is the sampling period. This nonlinear warping, (2.10),
introduced by the bilinear transformation can be compensated by pre-
warping the prototype by appropriately changing the element values
so that the critical analog frequencies are transformea into the
desired critical digital frequencies.

Fettweis' wave digital design technique [6]-[2] takes
the voltage wave representation of each element in the reference
filter} transforms them into discrete-time equivalents and inter-
connects these gubnetworks using adaptors designed to allow the
interconnection of ports with different reference resistances.
This procedure represents a departure from the standard recursive

filter design techniques where the transformation into the discrete-
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time domain is made directly on the transfer function [11, [21.

If the reference resistances are chosen to be equal to R, L
and 1/C for the resistive, inductive and capacitive branches fespect—
ively, the elements are transformed into the discrete-time domain as
shown in Fig. 2.3. Since the elements in a ladder structure are
arranged in a series-parallel form, series and parallel adaptors
are used in the wave digital realization [6]. These instantaneous
elements, containing only multipliers and adders, can be designed
with reflection~free ports [9]. These special ports allow adaptors
to be interconnected with the assurance that no delay-free loops will
be introduced. A 3-port series or parallel adaptor contains 2
multipliers and 6 adders. The number of components is reduced to 1
multiplier and 4 adders for reflection-free adaptors [10]. Martens
and Meerk8tter [29] have proposed an alternate wave digital structure
in the form cof an n-port adaptor terminated with feedback through
memory. This technique can be applied to a network of coﬁnections
of arbitrary topology.

2.2 n-PORT ADAPTOR REPRESENTATIONS

Consider a lossless reciprocal instantaneous n-port network.
Since this network is passive, the port variables can always be

partitioned so that a hybrid matrix H exists [32]

2| 21 22 2 (2.11)

are port voltage vectors, i, and i_ are port current

1 2

where vl and v2

vectors and H is a real constant matrix of appropriate dimension.



b(n)
3 © ! ) >0
E Vv —T>
a(n)
a(n)=2v(n)-e(n) :l
b(n)=e(n)
I aln)
<—0 o—> [\ —0
+ V
R \%

._.D

ol
9:
‘%3

a(n)=2v(n)
b(n)=0
I a(n)
<o o—>
-+
/v ;J'l: e :
o o—<
b(n)=a(n-1)
I aln)
<o o—> :
+ Q-
WL v  —> T
_ b(n)
-0 o—<
b(n)=-a(n-1)

Fig. 2.3 Discrete-time equivalents of the analog elements,

13
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The lossless reciprocal nature of the network allows H to be written

in the form

H=| o (2.12)

T
0 P
Vil _ 1 |
- (2.13)
12 PO v2
T
where P = le
The incident and reflected voltage wave vectors are defined
by
a v R 0 i
[ o I Rl B 1 (2.14a)
Léz v2 0 R2 12
and
b v R 0 i .
o T N I 1 (2.14b)
b2 v2 0 R2: 12
Rl 0
where R = 0 R is the diagonal positive definite reference resistance
5 .
matrix. Then
v .
o R L Rt (2.15a)
+
v2 a b2
and
i G 0 a, - b
1
1f_ %_ 1 [.l i (2.15b)
i - bh
2 O G B2 7R
G
..l l O
where G = R = = 0 G is the diagonal positive definite reference
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conductance matrix.

Substitution of (2.15) into (2.13) yields

U a. +b 0 PT G 0 a. - b
= 1 . (2.16)
G2 fz - b2 -P 0 0 U a2 + b2
and,upon rearranging,
7 T
T b -U p a
U -P 1
- . (2.17)
PGl G%- b2 PGl G2 a2

1 .
= 1 {(2.18)

T . - c .
“where Y = PGlP + G2 is positive definite and hence nonsingular,

produces the following scattering matrix representation of the network:

bl 2PTK - U ZPT(U—KPT) a;

= T (2.19)
b 2 -
5 K U-2KP | a2

where K = Y-lPGl' If the network contains only wire connections and
ideal transformers, then P contains as its elements only +1, -1, O
and transformer turns ratios n. -

For networks of wire connections only,an obvious partition
of the ports is defined by a set of links and twigs of the network
graph. Xirchhoff's voltage and current laws

KVL: [U Bt] vy

Vi

(2.20a)

|
o
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)
KCL: [QQ U] =0 (2.20b)
i :
together with the orthogonality between the fundamental loop and cut-
: T . '
set matrices, Bt = —Q2 , [33] enable P in (2.13) to be replaced by
QR' We then obtain

LT T T
by zglx - U 2Q£(U - KQR) a,

b 2K g - 2KQ§ a, (2.21)

where X = Y-lQQGgand Y = QQGQQE + Gt is the node-pair azdmittance matrix
of the network of wire connections with each port terminated in its
reference resistance. This representation and those which follow are
identical to those obtained earliexr by Martens and Meerk8tter [29].

Alternate forms of the scattering matrix, S, are given by

e - -

g QE U 0 -u Qz
S= (2.22)
0 U -2k U] 0 U : '
~u o] [u B71 Ju o U B
- t t (2.23)
o ul [0 U 2K U 0 U
B T T ) p
) U- QK 9 -g 0 U oh
-K U 0 U K U~KQ§ - (2.24)

Equatién (2.24), which displays the eigenvalues of &, can be rewritten as
T T T T
U-QK  Qp U- QK Qp U o0

(2.25)
~-K U -K U 0 U
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which then displays the eigenvectors of s.

The representation given by (2.23) is a convenient form
for wave digital filter realizations. The modularity of the structures
produced can be emphasized by rewriting (2.23) as

S = OFMF (2.26)
where F describes the topology of the prototype and contains only
adders and inverters, M contains the multipliers in the submatrix X
and O contains only inverters. The general form of a wave digital
filter realized in this way is shown in Fig. 2.4. The inverters
required by the inductive elements are contained in L. It is also
apparent from Fig. 2.4 that a set of state equations describing the
system can be easily obtained.

If a direct realization is used for F and M, then no internal
delay-free loops will appear in the realization of S. 1In addition,
since the connection of the delay elements cannot introduce any delay-
free loops, a wave digital filter realized using a single ﬁ—port adaptor
is alwavs computable.

The matrix K has a simple network interpretation which can

be obtained as follows:

vt a, = 0. (2.27)
t

Then, from (2.21),
b, = 2Ka (2.28)

t L -
If we terminate all of the link ports in their reference resistance in
series with a voltage source (Fig. 2.5a) and all of the tree ports in

their reference resistances (Fig. 2.5b), then



n-PORT ADAPTOR: S

- - - —-— - -"—-"-"-"-"=-"-" - - -"=-""7-=-""-""-/”""7”77 1
INPUT | I output
| B B
— |
> > > B
—jjj>i ‘ B W - :
!
. o b

A
A

DELAYS z
1

Fig. 2.4 Block flow diagram illustrating the modularity and general form of a wave digital filter
based upon the n-~port adaptor representation (2.23).

81
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Fig. 2.5a Link termination required for the computation of K.

+ VY&

Fig. 2.5b Twig termination required for the computation of K.
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+
o
[N
il
0]

a =v +Rtit=o
bt = vt - Rtit = 2vt
and finally
v, = Kez (2.29)

where ey is the wvector of link voltage sources.
Thus K is the voltage transfer matrix from the link sources
to the tree branches and, since the network is resistive, the entries

of K are bounded
Ikij! <1, 1=1,2,...,t; 3 =1,2,.0.,0" (2.30)

The dimension of K is t x £ and therefore at most t&
multipliers are needed in a realization. These multipliers can be
generated directly by K = Y;lQQGQ or, due to the network interpretation
of X, by the application of any suitable network analysis technique.

If the prototype filter contains n elements, then, allowing for impedance
scaling, there are n-1 independent parameters in the transfer function.
This implies that a realization of K should be possible with the canonic
number, n-1, of independent parameters.

2.3 REFLECTION—FREE n~PORT ADAPTORS

If it is desirable to produce a wave digital filter as an
interconnection of n-port adaptors, reflection-free ports in some of the
adaptors are necessary. These special ports are used to quarantee

that delay-free loops cannot occur due to the adaptor interconnections.
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In general, one of the two ports at each adaptor connection must be
reflection-free.

An adaptor has port m reflection—free if bm is independent
of a i that is, if Smm = 0. In order to obtain this condition a
particular choice of reference resistance is necessary. If we terminate

all ports except port m in their reference resistance, then

O, i #m

o
il

and

b =8 a .
m mm m

The reflection-free condition then implies that

m m m m
or

v =R 1 .

m m m

Since the driving point resistance at port m is given by

de = Vm/lm

the reflection-free condition requires that the reference resistance
fgr port m be equal to the driving point resistance at port m when all
other ports are terminated in their reference resistances.‘ The
reflection~-free condition imposes a constraint upon the entries of K.
If port m is chosen as a link, then from (2.21), Smm = 0 requires that

t

-1 + 2) q k=0 (2.31)
r=1

where qij are the entries of QQ' Alternatively, if port m is a twig,

then S = 0 requires that
mm
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1 -2 %nrqmr =0 - (2.32)
r=1

The dependence of the entries of K imposed by the reflection-free
condition can be used to reduce the number of multipliers in a
reflection-free adaptor [10].

2.4 ILLUSTRATIVE EXAMPLE

The n-port adaptor deéign procedure can be applied to any
topology and hence can be used to obtain the adaptors introduced by
Fettweis. As an example, consider the paréllel connection of three
ports shown in Fig. 2.6a. The corresponding network graph showing
the tree chosen for the analysis and the fundamental cutset is

given in Fig. 2.6b. We have

1}
= 1 U
Q [Q,L']
r 1
= {1 1 :l]
[G. o
1
G, = r G, =G
2 0 G2 t' 3
L.
and thus
Gl 0 1
Y=[l l] 0o & 1| * 6
2
= Gl + G2 + G3.
Then G 0
9 1
[1 1]
Gl + G2 + G 0 G2



I3
| 2
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Fig. 2.6a Parallel connection of three ports.

Fig. 2.6b Network graph corresponding to Fig. 2.6a.
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G2

- + +
1 2 3 Gl G2 G3

The scattering matrix representation in the form of {(2.22)

1 0 1 1 0 0 -1 0 1
S = 0 1 1 0 1 0 0 -1 1
0 1 — 1 0 0 1

0 ~al az

is identical to that given by Fettweis and Meerk8tter[10].

If it is desired to make port 2 reflection-free then

since q12=l, (2.31) produces

-1 + 2k

12 0

and thus

The resulting scattering matrix can then be realized with one less

adder and one less multiplier [10].

In the next chapter we develop a procedure for obtaining
n-port adaptors for wave digital filter realizations having minimal
degree. Since the desigp examples given there use techniques which
are also applicable to the non-minimal filters considered in this

chapter, it will not be necessary to give further examples here,



CHAPTER III

CANONIC WAVE DIGITAL FILTERS:
n~PORT ADAPTOR REALIZATIONS

The number of delays contained in a'wave digital filter
obtained by the n-port adaptor technique of the previous chapter is
equal to the total number of reagtive elements in the prototype filter.
From a system theoretic point of view, such realizations may not be
minimal because the degree of the transfer function matrix may be
smaller than the number of delays. It is.well known that a minimal
discrete-time realization can always be constructed from the prototype
transfer function.} However, such a realization will not generally
depend directly upon the structure of the prototype filter and thus
the useful properties available in a wave digital realization are
not obtained.

In this chapter we describe a procedure for designing n-port
adaptors which can be used to obtain realizations with a feduced number
of delays. In situations whére the éxcess delays are due to loops
and/or cutsets of reagtive elements, the realizations obtained will
be minimal. A reduction iﬁ the order of a realization is not only of
academic interest since the delays, unlike the multiplieré, cannot be
multiplexed.

The technique to be developed can be considered to be a
generalization of the procedure used by Fettweis [14] to eliminate
some of the excess delays in an adaptor realization. However, unlike
Fettweis' procedure, the method given here is simultaneously applicable

to both loops and cutsets. In addition, the modularity of the structure
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is maintained and the filters can be shown to have all of the interesting
properties of wave digital systems. These properties will be discussed
in the next chapter.

For ladder prototypes containing n elements, it is possible
to obtain realizations using n-1 independent multipliers. The number
of adders required can be smaller than the number needed by an equivalent
Fettweis adaptor realization.

The most often used method of order reduction uses a nonsingular
transformation of the state variables. It can be easily demonstrated
that such a transformation leaves the transfer function invariant and,
if properly chosen, decouples the urcontrollable and/or unobservable
parts of the system [34]. Unfortunately, no simple technique exists
for determining the required symbolic change of variables. An alternate
procedure presented in this chapter solves this problem as it applies to
wave digital filter design using n-port adaptors. The specific charact-
eristics of the prototype filter which produce the extra delays are first
identified and then used to form constraint egquations. These constraints
are applied during the formation of the state equations in order to
produce a modified state description of lower dimension.

It is important to note, however, that an actual filter design

does not reguire the lengthy and complex proof to be duplicated. A

concise set of design rules is given.

The chapter concludes with some illustrative examples.

3.1 CHARACTERIZATION OF REACTIVE REDUNDANCIES IN RLC PROTGTYPES

The minimal degree required in an abstract realization of
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an analog transfer function can differ from the number of reactive
elements in a concrete RLC realization for two reasons. First, the
number of state variables needed to describe the RLC network is not
always equal to the number of reactive elements. 1In fact, it is well
known that the dimension of the state space is equal to the total
number of reactive elements less the number of independent capacitance
- voltage source-only loops and £he number of independent inductance-
current source-only cutsets [35]. By convention, these classes include
capacitance-only loops and inductance-only cutsets as special cases.
Secondly, the dimension of the state space of the RLC realization may
be excessively large due to the existence of uncontrollable and/or
unobservable modes. One such class of modes which can be easily
identified is the zero natural fregquency due o capacitance-only cutsets
and inductance-only loops.

In the following development we shall consider only connected
RLC networks. In addition, we shall also assume that all sources have
associated resistive elements and that a single edge of the network graph
will be assigned to a resistor-source combination and labelled for
'convenience as a resistive branch. This last restriction also rules
out the possibility of capacitance-voltage source loops and inductance-
current source cutsets.

A normal tree is defined as a tree having as its twigs the
maximum number of capacitive branches and the minimum number of
inductive branches [35]. Kirchhoff's voltage and current laws (KVL

and KCL), when partitioned with respect to the normal tree, yield
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Vs
U 0 0 'B.. O 0 VR
1 SC v
KVL: |0 U o 'B__ B =
t RC RG \—;I-,- 0 (3.1)
0 1
0 U 'Bro Brg Bir C
v
G
vr
- -
S
0. 9. Q_1U 0 O ‘R
*cs “CR *CL , i
! e
KCL: [0 Q. QGL: 0 U 0 il =o (3.2)
) i
0 O Q)0 00U G
T

where the subscripts S, R, L, C, G and I' denote link: capacitances,
resistances, inductances; twig: capacitances, resistances and inductances
respectively. Due to the nature of the normal tree, the capacitance-
only loops, defined by the link capacitances S, appear explicitly in

the first KVL equation while the inductance-only cutsets, defined by

the twig inductances T, appear explicitly in the last KCL equation.

The inductance—qnly loops and the capacitance-only cutsets do not

appear explicitly for this choice of tree.

Consider the network NLo' obtained by open—cirquiting all
branches of the original network, N, which are not inductances. Since
this procedure cannot create loops, nor can it destroy any inductance-
only loops, the number of independent loops in NLO is equal to the
number of independent inductance-only loops in N. Furthermore, since
the inductive twigs in N do not, by definition, form any loops in N,

these branches will not form any loops in NLo and therefore can be

chosen as part of a tree, TLo’ (or forest if NLo is not connected) in
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NLO [33]. Any additional twigs required to complete TLO are chosen-

from the branches which were links in N, thus inducing a partition in

these branches. The fundamental loop equations with respect to T

Lo
are
[v
L
1 -
Uy B B YL =0 | |
: 12 13 2 ‘ (3.3)
v

The original link inductances, denoted by L define the fundamental

17
loops in NLO and therefore also define the inductance-only loops in
N.

Next consider the network NCS' obtained bf short-circuiting
all branches of N which are not capacitances. Since this procedure
cannot create cutsets, nor can it destroy any capacitance-only cutsets,
the number of independent cutsets in NCS is equal to the number of
independent capacitance-only cutsets in N. Furthermore, since the
capacitive links in N do not, by definition, form any cutsets in
N, these branches will not form any cutsets in NCS;and therefore can be

chosen as part of a cotree, complementary to TCS’ in NCS [33]. Any
additional links required are chosen from the branches which were twigs
in N, thus inducing a partition of these branches. The fundamental

cutset equations with respect to TCS are

i
»
1 i
1 Ca =
Q1 9 U . 0 (3.4)
1 N
1
L

where any branches which form self loops are identified by a null




column in the cutset matrix.

by Cl’ define the fundamental cutsets in NCS

the capacitance-only cutsets in N.

If the branches of N are further partitioned consistent with

The original twig capacitances, denoted

and therefore also define

the partitioning induced in (3.3) and (3.4), KVL and KCL for N become

r_U 0
0 U
0 0
0 0
and
chs
chs
0
0

block row of (3.5) and equation (3.3) and in each case these

equations are independent, we can substitute (3.3) into (3.5),

obtaining

0O 0 B
1 SCy
i
0o 0
: BRC1
u o 's=B
I LGy
i
0O U +B
1 La2Cy

Qv Coun,
QCzR QC2L1
%r %L,
0 or,

B
SCo
RC»
B
LiC»

B
LoCo

QC1L2

CaoLo
GL2

QFLZ

- wm . - - e e

RG

B
1;G

B
LoG

L,T

LoT

v

YR

= 0

=0

(3.5)

(3.6)

Since there are the same number of equations in the third
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Vg
v
_ - R
U 0 0 0 I B B 0 0
1 SCa SCo VL 1
i
0O U 0O 0 B B 0 v
RC RC RG L
: ! 2 2l = 9o, (3.7)
0 0 U B,, O 0 0 B,
] v
0 0 0 U !B B B B C1
1 LaCy LaC» LoG LoT v
L ] e
v
G
vr

Similarly, the first block row of (3.6) can be replaced by (3.4) to

obtain
i
- - i
1 R
Q4 0 0 0 } U9, 00 N
t I
'
QCzS QCzR QC2L1 QCng ' 0 U 0 0 iL
0 0 0 O 100 U O l=0 - G®
GR GL1 GLa | ---
H i
0 0 Oy, Orp, 1 0 O 0 U- C1
lCz
e

Equations (3.7) and (3.8) constitute a valid set of KVL and KCL equations
for N which explicitly display all of the desired reactive redundancies.

In more compact notation, (3.7) and (3.8) can be written as

I PVQ/- '
B, B, 1 =0 (3.9)
[ & t] Y
t-
and .
i lz |
- =9 3.10
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B/Q and Qt are not unit matrices since (3.7) and (3.8) are not fundamental
equations; that is, the equations are not all written with respect to
the same tree in N.

Using the well-known orthogonality condition

the following relationships are easily derived:

Bse, - BsczQ'iz'Q’:lL‘l v Bge, T ° ngs (3.11 a,b)
L, T~ QFLzBI2-B§3 v 9, T° Bizr (311 c,d)
Bre, = - BRCZQI2 r Bre, T QEZR (3.11 e, f)
%L, - QGLZsz v 9L, T ° Bizs (3.11 g,h)
BLZCI - BL2C2Q§2 ! BLzCz T ngLz (3.11 1,3)
%, T QCngBIZ v Qe T Bizcz (3.11 k,2)

3.2 VOLTAGE WAVE CONSTRAINT EQUATIONS

In order to reduce the number of delays in a wave digital
realization, the topological descriptions of the reactive redundancies
described in the previous section must be transformed into the voltage
wave domain and suitable constraint equations must be dete;mined. These
constraints can then be used to obtain an n-port adaptor which, when
suitably terminated, will yield a discrete-time realization of a lower
dimension.

In this section we will assume that all time-domain signals

are represented in the form

Xx(t) = xelt _ (3.12)

where X is the complex amplitude and Y is the complex frequency variable.
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For notational convenience the explicit dependence of x upon time will
not be shown.

First consider the capacitance-only cutsets in N. A description
of these cutsets is available from KCL equation (3.4) or, equivalently,
from

Qi =0 _ (3.13)
where the variable partitioning is no longer explicitly shown in Q and i.

Equation (3.13) can be expressed in terms of voltage wave vectors

0G(a-b) = 0 | (3.14)

where the reference conductance matrix G is given by

G. 0o o | s

[ < 0o 0

=10 g o0 |= o ¢ of. (3.15)
o o GCIJ o o ¢

Using the port voltage-current references of N, the element
relationship for the capacitances
I = -YGv
combined with the complex frequency-domain equivalent of (3.13) implies
that
QGV = 0 for all Y # O - } - {3.16)
Up to this point we have been examining the intrinsic
behaviour of the system. Let us now consider the effect of extending
(3.16) to include ¥ = 0; that is,
QGV = 0 for all ¥ (3.17)
which is equivaleﬁt to

QGv = 0 * (3.18)
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Equation (3.18) can be written as
OG(at+b) = 0 (3.19)
which, together with (3.14), is equivalent to

QGa = 0 (3.20a)
QGb = 0 - . (3.20b)

These conditions can be viewed as.extensions of.the naturally-occurring
condition (3.14).

The extension of (3.14) to (3.20) or, equivalently, of (3.16)
to (3.17) imposes a restriction upon the network's natural voltage
distribution only at § = 0. Since the only elements which can support
a nonzerc voltage at this frequency are the capacitances in capacitance-
only cutsets, we can short-circuit all non-capacitive elements without

altering this voltagevdistribution. The remaining network, N

Ccs’ is
characterized by KVL and KCL in the form
v
1 T
U 019, vs
KVL: : - Cr| =0 (3.21)
0 Uy -Q P
2 v
1 1 C
IS
v ol Tes = o (3.22)
CKCL: Q. le‘u -_C-z =0 . . .
I
C
Equation (3.21) yields
A\ 1 - T ]
s 21
v = T v
Ca le Ca
v U
CIJ
. . T
or, in unpartitioned form V=0QV, . ’ (3.23)
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Substitution of (3.23) into (3.17) yields QGQTVC = (0 and,
1
since QGQT is positive definite,
VC1 = 0. (3.24)
Then, from (3.23),

N I S S
v-[vS Ve, vcl] =0 . (3.25)

Equation (3.25) shows that the effect of .the constraints
(3.20), which can be written in the equivalent form
G + G .+ Co= .2
Qll s%s QlZ CzaC2 GC1aC1 0 (3.26a)
G b + 3 + = . . b
Q18sPs * Q1,8,Pc, * GcPe, <O (3.26h)
is to inhibit the formation of modes at Y = 0 which could have occurred
in the original network due to the capacitance-only cutsets.
By following similar procedures 1t can be shown that the
effect of the constraints

a_ + =0 ' (3.27a)

B a + B a
S sCi1 C SCy Co

=0 (3.27b)

+ b + B b
bs BSC1 Cy SCy Cop

is to inhibit the formation of modes at Y = ®, which could have occurred
in the original network due to capacitance-only loops,

G + G. a + G
QTLl L% QFLz Lo L2 rér

0 (3.28a)

G + G b+ = - 3.28b
QFL1 L1bL1 QFLz Lo Lo GPbF 0 ( )

is to inhibit the formation of modes at y = ® , which could have occurred
in the original network due to inductance-only cutsets, and

+ B._an =0 (3.29a)

ar, B3y, 13°%r

(3.29b)

il
(@]

+
bL1 * BleLz B13bF

is to inhibit the formation of modes at ¥ = 0, which could have occurred

in the original network due to inductance-only loops.
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The effect of the constraint equations (3.26) - (3.29) in
the discrete-time domain is easily established by use of the bilinear
z-transformation. Eliminating modes at Y = 0 in the analog realization
eliminates modes at z = 1 in the discrete-time realization. Similarly,
the removal of modes at P = ® corresponds to the removal of modes
at z = -1,

3.3 n-PORT ADAPTOR REPRESENTATIONS FOR CANONIC WAVE DIGITAIL FILTERS

This section describes the procedure for obtaining wave
digital realizations of reduced degree. The application of the
constraint equations, used to eliminate redundant variables, together
with a change of variables, produces the desired results.

Kirchhoff's voltage and current laws (3.9) and (3.10)can be

combined into

= . (3.30)

{3.31)

which, upen collecting terms, produces a matrix equation describing

N in the form

ByRy B, G,b -B,R, -B Gya
- : (3.32)

28 by Rl t
If the variable partitioning described by (3.7) and (3.8)

is shown explicitly, (3.32) becomes
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R 0 0 0 B B
S ' Pscy SCy 0 0 Cgbg
]
H
0 R 0 0 B
R : RC, BRC2 RG 0 CrPr
1
0 0 B. .R 1 0] 0
RLl 1271, | 0 Bl3 GleLl
1
0 0 0 R ! p
Lo [ #1H L2Co L6 °r,rf| %n,PL,
_________________ U VU I DU
1 =
0 0 0 I G G
9 | C) le C, 0 bcl
H
f
chs chR QC2L1 QCng : 0 GC2 0 0 bCz
i
0 %kr %, %, | 0 0 Gy 0 b,
- |
1
0 0 QI,L1 QTL2 ; 0 0 0 Gp b
(3.33)
-R 0 0 0 -B -
s : sc; Pse, O© 0 s
1
- (I - -
0 Re O 0 i BRC1 BRC2 Bre 0 Cr2Rr
1
L
0 ~R -B -B.
0 L l2RL2 : 0 0 0 Bl3 LlaLl
i
-R | - -
0 0 0 Lo ] LG LoCo LoG BLzF LzaLz
!
———————————————— '———-——-—.—--——-———-—--—-—-———- — @
I
1
Qll 0 0 0 ] GC1 QlZGC2 0 'aC1
§
t
chs QCZR QC2L1 QCZLZ 1 0 G 0 0 a
i Ca Cy
1
§
O Q%R %%, %%, . 0 0 s 0 %
t
0 0 QFL1 QFL2 1 0 0 0 Gp ap
4L .
Note that if the constraint equations (3.26) - (3.29) were

now imposed upon the system, both the right-and left-hand sides of
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equations one, three, five and eight in (3.33) would be independently
equal to zero. We choose, however, to delay the actual use of the
constraints until a more appropriate time.

Tﬁe coefficient matrices in (3.33) can be made to display
a type of hybrid symmetry with the introduction of a nonsingular
change of variable together with the corresponding column operation
on the coefficient matrices. The variable transformation to be used

is given by

- . - .

(3.34)

- e am o o own fan am o e e e am an om e M e ke e e mn ew o -

W e v w e me e e em me e e e wme v . = e e e

where the off-diagonal elements not shown explicitly are all zero.

Insertion of T]—_lTl into (3.33) together with the use of orthogonality

relations (3.1la,c,e,g,i,k), yields
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6] RR 6]
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ﬁL11
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Log
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chs CoR 0
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QCzS QCZR 0
0 Qur 0
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QFLZ
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(3.35)

G
LlaLl

T
G. a_. -B._G_. a
Lo Lo 12 °1Lp 1In

— e - e sem e e e . e o

(3.36)
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and
é ¢]
“ Cn Ciz
G =
C A @
Ca1 Ca2
rU G 0 U 0
Ql2 Ch
"o U 0o G T 3-37)
Co Ql2 U

are both positive definite symmetric matrices.

If the constraint equations for the capacitance loops
(3.27) and for the inductance cutsets (3.28) are now imposed upon
(3.35), then both the right-and left-hand sides of the first and last
equations are independently equal to zero. Then, since RS and GF are

positive definite, variables aS, ar, bs and bF can be eliminated to

produce (using (3,11))

i I B ] G_b
e 0 0 X 0 Bre.  Pre [ R R
0 R R : 0 0 0
Ly Liz : Ly In
0, N | T
R G ~-B..G_. b
0 Lo Lo2 : 0 L2Co L2G Lo L 121y L
1
““““““““““““ jm T T o ittt _
0 0 0 - g 0 b )
'
1 Ci1 Ci2 Ch
T T b 0" b
QCzR QCsz t Cay Ca2 Cz Q12 Ca
1
i
%r © 6L, :0 0 G bg




-R 0 0 10 - -
R 1 RCZ
0 E % :O 0 0
Ly Ly2 :
0 H H 10
- - - -B
L21 Lao : LoC»
____________ A e e . e - . - - -
o o o W
: Cii Ci2 0
1
0 o ¢ e 0
C2R Cqu Ca Co22
i
QGR 0 QGL2:O 0 G
where
I
n, Lin ILa:z
R = )
L A" n,
R R
L2y L22
B
13 T T
= R B B +
B [§ [ 13 Lzr] ﬁL
L,T
and
(% %
n ~ Cii Ca2
GC = g n
C21 Ca2
Q
11 T T
= +
0 GS Qll QCzS CC
C2S
are both positive definite

RG

r%r
LlaLl
T
LzaLz BlZGLlaLl
a
C1
T
- a
aCz QlZ C
%
(3.38)
(3.39)
(3.40)

symmetric matrices and thus
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o ‘
R +
313 I11313 ﬁLll (3.41a)

Hﬁe
I

N
|

T
= +
C1i Qllegll @Cll (3.41Db)

are both positive definite.

Since (3.38) was produced by a change of variables followed
by a variable elimination, if we now impose the remaining constraint
equations for inductance loops (3.29) and for capacitance cutsets

(3.26), then both the right-and left-hand sides of the second and

‘ oy
fourth equations are independently equal to zero. Then, since RL
11

n
and G are both positive definite, variables a_ , a_ ,b and b
Ci11 L1 Ci1"  In C1

can be eliminated. We then have

_ l - . -
% 0 : BRCZ BRG GRbR
! T
b -
0 Re ; LoCp LG Lo Ly 12°Lj Li
__________ d o e e e e
| =
0 0 e 0 b -0-. b
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where
R, = B E & R (3.43
= - .43a
bl Lo Lz1 Li1 L1z )
G =& ¢ R ¢ (3.43b)
G C22 C21 Ci11 Ci2 )

The positive definite symmetric matrix

u 0 H R u -& R i 0
Lii L1z Lii Liz2 |_ | Ln
B¢ U R X 0 U 0 R
L1 L Lo Lo £

demonstrates that Ry is also positive definite and symmetric.

Similarly,
u 0 ¢ ¢ u - ¢ ¢ 0
Ci1 Ci2 Ci11 Ci2 Ci:
8’ ﬁl U &' 3’ 0 8] 0 G
C21 C11 C21 Co2 &
shows that Gy is a positive definite symmetric matrix.
The introduction of four new variables
T
= - B
De R«f(GLszz 12 GleLl) (3.44a)
b, = b. -0 .b (3.44Db)
& C2 127Ch ’
= R,(G. a - BT G. a_ ) (3.44c)
% T %Ly n, 127L; In )
- T (3.44Q)

% = aCz - QlZaC1

allows {3.42) to be written as
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(3.45)

Equation (3.45) has the same form as equation (2.17) and thus the

coefficient matrix on the left-hand side can be inverted, producing

bl ZPTK—U ZPT(U~KPT)
- T
b2 2K U-2XP
where
QCQR QCng
P =
QGR QGLz
-
_PT _ RCo LoCo
BRG BLzG
K=Y pG, Y=pGP" +a

o

jo1]

(3.46)

(3.47a)

(3.47b)

(3.48)
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G o0 |
R
G, = (3.49a)
0 G
GQ 0
G2 = (3.49b)
~ T
T T T . T T
al = aR a, ] ’ a2 = [at2 aG ] (3.50a)
and
7 T
T T T T
bl = [%R Q{ J ’ b2 = [bq bG ] . (3.50b)

The structure of (3.46) is identical to that of equation

(2.21) and hence (3.46) can be expressed in the various alternate

forms giveﬁ in Chapter 2 (see (2.22) - (2.24)). The matrices P and

—PT, (3.47), are submatrices of Ql and Bt while Gl and G2, (3.49), are

no longer diagonal but are now block diagonal. The relationship

between K in (3.46) and in (2.21) will be discussed in the next section.
In order to complete the filter} the ports of the adaptor

must be suitably terminated. The source and load ports are terminated

as discussed in Chapter 2. The remaining terminations can be derived

from the definition of the & and & variables together with the standard

capacitance and inductance termination equations. Using the waves defined

with respect to the n—-port rather than the elements

- - - -
b
I aLl
o) 1 a
Lo = - ;’ Lo
b a
.. PJ . F-
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together with (3.44a) yields

by = - _izl_ax. (3.51)
Similarly,
jbclq iacl—
bcz - 1 aC2
z
.bS | _as |

together with (3.44b) produces

b. = . ' (3.52)

L
-4 z

3g

These terminations, (3.51) and (3.52), correspond to a delay in series
with an inverter for the "inductance" (X ) ports and a delay for the
"capacitance" (& ) ports.

The dimension of the state space, m, and hence the number

of delay elements required in the realization, is given by

m = number of Xelements + number of & elements (3.53)
which can be shown to be equivalent to

m o= (L - #L, - #T) + (#C - #C - #s) ‘ (3.54)

where, with respect to the prototype network,

#L = number of inductances

#Ll = number of independent inductance loops
#I' = number of independent inductance cutsets
#C = number of <apacitances
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#C., = number of independent capacitance cutcets
#S = number of independent capacitance loops.

In orxder to demonstrate further that the system obtained
by the procedure developed in this section correctly describes the
input-output properties of the original system, Appendix A uses the
results of this section to prove that a similarity transformation

exists which decouples the undesirable modes at z = -1 and z = 1.

3.4 NETWORK INTERPRETATION OF K

As was the case in Chapter 2, the multipliers in an adaptor
realization can be restricted to lie in the submatrix XK. The dimensions

AN

P
of K have been reduced from t x £ to t x £ where

t

t - #Cl - #S (3.55a)

)

L - #Ll - #T (3.55b)

thus reducing the upper bound on the number of multipliers required.

A wide variety of realizations of K is possible. One interesting
but comparatively expensive solution would be to perform all of the
multiplications in parallel, producing a filter having an extremely
short computation time. At the other extreme would be a potentially
inexpensive and relatively slow realization using a single multiplexed
multiplier. A wave flow diagram of K using n - 1 independent multipliers
is of interest since, then, if the n - element analog prototype is designed
to have maximum transducer power gain at some frequency in the passband,
the resulting zero sensitivity property with respect to the element

values is maintained in the wave digital filter. The network inter-
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pretation of K developed in this section often allows such a set of
independent multipliers to be found.
Pirst let us simplify the variable ap in the adaptor re-

bPresentation (3.46). Substituting for R, from (3.43) and expanding terms

produces
E (G 8T G ) -R & X (G BT G ). (3.56)
a, = _a. - a - - a . .
Z L2z Ly Lp 12 Ly Ly Loy D11 Liz LaLp 12°L; L,
Consider first the expression
E (G B. .G ) (3.57)
a - B a . .57)
Ly1s Lo Lo 12 Ly L
N
Substituting for RL from (3.39) produces, upon expansion,
12
T T T T
B. _R_B G - B R.B B, .G a + B..a - B. R B..G a_ . 3.58
13’T7n,T LzaLz 13 1Ll 227 L, 1y 12 Lo 12 1, 12 Ly I ( )

Now, using the orthogonality conditions (3.1llc) and (3.11d) in the second

term of (3.58) yields the equivalent form

B12%p, * B13RFB52FGL2aL2 * Bl3RTB§1TGL1aL1 B B13RTBTBGL1aL1 T B12%0,P12%, %y
(3.59)

The second and third terms in (3.59) can now be rewritten using

constraint (3.28a) producing

B, a + B _a,- (B, RB._ +B, R B )G a . (3.60)

12 L, 13°T 1377713 127L,712" "Ly In
Use of constraint (3.29a) then yields
~(R. + B,_R._ B . +B, RB.) G a . (3.61)
L, 127,712 13777137 "L
Noting that the term in the parentheses in (3.61) is equal to ELII

(see (3.36) and (3.39)), we have
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n
-— G a = R G a - B G ) -
RL11 Ly L; le( Lo La 12 LlaLl) (3.62)
and hence, from (3.56),
% = R, (6 B),S ) + R 6 (3.63)
= - a a_ . .
X "Laa Lz Lo 1271, %1, Lo1 Lo,

N n
Substituting for RL and R.L from (3.39) and simplifying produces
22 21

T T T

T
= + B R. (B G - B B + B__G . .
& aLZ Lol F( Lol LzaLz o7 lZGLlaLl 13 LlaLl) (3.64)

Insertion of the orthogonality conditions (3.11c) and (3.11d) yields

T T
= + B R G + B . .65
Ay aL2 LoT F(BLZT LzaLz L1FGL1aL1) (3.6%)
Finally, using constraint (3.28a), ap becomes )
= + . .
ay aL2 BLzFaF (3.66)
Following a similar procedure, it can be shown that
b, = + b... .6
e bLz BLZF r (3.67)
From (3.46), the matrix K can now be defined by
T
- b .
e, T Q12Pc, *r
= 2K (3.68)
) +
bG aLz BLzFaF
when
T
aCz leacl
' = 0. (3.69)
e

In order to interpret K with the aid of the original network, it is

necessary to obtain terminations which simultaneously guarantee that
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(3.69) is satisfied and which allow a simple interpretation for the
excitations and responses in (3.68). 1In addition, the constraint
-equations (3.26) - (3.29) must be satisfied. We shall, however,
consider only those constraints in the incident waves, since it is
easily demonstrated from Section 3.2 that, together with the natural
behaviour of the system, these equations are sufficient for (3.26) -
(3.29).
Since the terminations required at the capacitive, inductive

and resistive ports are independent, we shall consider each class in
turn. The capacitive constraint equations together with the first

ya

equation in (3.69) require that

— 0 1T -
U 0 —le aCZ
B =0 3.70
Bsc, u sCy 8 0 ( )
G G
2126, %1% c1 | aCIJ

A series of elementary row operations produces an equivalent system

in the form

U 0 Al3 aC2

=0 . 3.71
0 U A23 ag ( )
0 0 A a
B 33 i R C1_l

T T
_ 0 i 1+ ini d
where A33 = GC1 + leG 2le + Q lG 211 is positive definite an henqe

the unique solution is the trivial solution

T
Toal At =0 (3.72)
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This condition, which is similar to that encountered in the previous
chapter, is satisfied if all capacitive ports are terminated in their

T
-0 b can be computed from

reference resistances. The response b 12Pc
1

Ca

T

®c, T YaPg, = 20, - Quve) - . (3.73)

The second condition in (3.69) can be obtained by terminating
all resistive twig ports in their reference resistances. Then the

response bG can be computed from

bG = ZVG . (3.74)

The source variable a, can be obtained by terminating the
resistive link ports in their reference resistance in series with a

voltage source. Then
%k T % (3.75)

Finally, consider the source variable a + B a as well
Ly LoT P

as the inductive constraints written in matrix form

M4 ]
L
u Bis B3
T a = 0. (3.76)
B G -G L
BL1FGL1 Lol Lo r 2
a
- r .

A change of variables allows the following equivalent system to be

obtained:
-B
v BL]_F aLl 12
0o a a ) e T B [.aL2 BLZFaF]
22 r Lol L, Lil 1,712
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T
where A = G, + B

G B + B _ . s inite.
22 T L. 0%, B, T LzlGLzBsz 1s positive definite It

is evident from (3.77) that the variable aL + BL Faf can be independently
2 2

specified. Furthermore, from (3.11) and (3.29a),

2, * Bryrir T “Bip(ap, * By pap) . (3.78)

Th iabl +
e variables a BLlraT and a

+ .
L, BLZFaF have simple

L2
network interpretations. Assume that all of the inductive ports are
terminated in their port resistances in series with .a voltage source,

(Of course, in light of (3.77), these sources cannot be chosen indepen-

dently.) Then

_"u

s R (3.79a)
_’\;

aL2 = eLz (3.79Db)
n,

ap = e (3.79¢)

n n ",
where eL eL and er are the vectors of the inserted sources. The
1 2

sources in the twigs I' can be shifted into the links Ll and L2,

producing a total source contribution in L2 of

=% B e
eLz eLz + "L T

=a, + Bszar , (3.80)

and a total source contribution in Ll of

hY + B V]

= + B a
s T P ror

—BlzeL2 . (3.81)



eL can therefore be considered to be a vector of independent voltage
2

sources while e is a vector of dependent voltage sources of value
1

e = -B__e_ . There are no longer any sources in the inductive

I, 12 L,

twigs I'. The response due to a + B an, which consists of two

L, LI T
components due to eL and eL  can be obtained by superposition.
1 2
A summary of the terminations required for the network

interpretation of K is given in Fig. 3.1.

N
If K is defined by

= - - -
e
VC1 R
= k | (3.82)
VC2 eLl .
v e
G Lo
L L

then X is given by

-oT 8} 0 U 0
QlZ

K = 0 0 U K 0) —Bl2 d (3.83)

k can be obtained from the K for the non-minimal realization in the
previous chapter by simply deleting those rows corresponding to the
inductive twigs and those columns corresponding to the capacitive

links. K can then be formed by pre- and post-multiplying k by the

appropriate matxices, as shown in (3.83).

3.5 DESIGN PROCEDURE -~ ILLUSTRATIVE EXAMPLES

The design of a wave digital filter can be carried out as

follows:



Port

Resistive links, R

Resistive twigs, G

Capacitive links, §

Capacitive twigs, C

1

Capacitive twigs, C2

Inductive links, L

1

Inductive links, L2

Inductive twigs, T

Termination

R
1/G
o——— "\AN——0
+ vG -
1/s

1/cC
o AAS 0
+ v -
¢
l/C2
+ v -
C,
A e
O ' ()
e 4 e
L
L,
o-—"\\\ G J—o
\_J
. e
L,

‘Fig. 3.1 Summary of the terminations required for the
netvork interpretation of K.
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From design tables or other available sources, choose an analog
reference filter which meets the performance specifications.
Pre-warp the element values of the reference filter to allow for the
nonlinear shift which will be introduced by the bilinear z-trans-
formation.

From the network graph, determine the topological matrix P or

~pT, (see (3.47)) and, if required B, and 0 ,, (see (3.3) and
(3.4)).

Terminate the ports of the network of connections as shown in

Fig. 3.1 and obtain K, (see (3.82) - (3.83)). The warped element
values {e} produce the multiplier coefficients {a}.

Replace the coefficients {a} by a new set {&} having suitable
finite word length. If the realization contains only n ~ 1
independent multipliers, then the low coefficient sensitivity allows
relatively drastic modifications to be made in {a}.

If desired, the element values {&} corresponding to the independent
multipliers {&} can now be calculated. The frequency response of
the digital filter with multipliers {8} is identical to the warped

response of the analog filter with element values {&} .

Example 3.1:

This example consists of a double passband filter given by

Watanabe [36]. The reference filter shown in Fig. 3.2 is eighth-order

with four attenuation poles, two of which are finite. The network

contains ten reactive elements, two of which are redundant due to the

existence of a capacitance loop and a capacitance cutset. The trans-

formation of structures of this type, where the capacitance loop and



Cs Cs
VAR VA
I\ I\
I
S
-~ . 2 ® L, == Ce

G

L

Fig. 3.2 Non-minimal eighth-order double passband reference filter.
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cutset have common elements, have not been considered in the literature.
The technique developed in this chapter can be used to obtain a minimal
realization having the canonic number of multipliers and hence low
coefficient sensitivity.

In Watanabe's filter the finite attenuation poles, A. and

1

2
A occur at Al = 0.332031 and A; = 0.717096. A frequency equal to

2'
1/4 of the sampling frequency, that is f = FS/4, is chosen for the

upper attenuation pole in the digital response. The corresponding pole

must therefore appear at ¢ tan m/2 = 1.0 in the analog filter. The

frequency scaling factor k Kz produces the desired response with

the following element values:

Cl = 0.223515 Ll = 1.565397
C2 = 0.518856 L2 = 1.927316
C3 = 1.366682 L3 = 6.983054
C4 = Q.309281 L4 = 5.677186
C5 = 0.886196 RS = 1.0

C6 = 0.116416 : RL = 8.589851

As the value of RL was not given by Watanabe, simulation of the analog
filter for various values of RL was carried out. A value of approximately
8 ohms was found to produce a response similar to Watanabe's. The value

of R_ given above, RL = l/C6, was chosen since then one of the multipliers

becomes equal to 1/2.
The network graph showing the tree chosen for the analysis
is given in Fig. 3.3. The branches are numbered in the order given by

, C. and G. There are no elements

» C 5

equation (3.5), that is,S, R, L

2 1

in classes Ll and I'. The partition of the capacitive twigs was obtained
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Fig. 3.3 Network graph corresponding to Fig. 3.2.

Fig. 3.4 Subnetwork NCs and corresponding graph.
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with the aid of NCs' Fig. 3.4. TCs' and hence class Cl' consists solely of

branch 7.
The non-unit part of the fundamental loop matrix is then
Cl C2 G
VAN
(
7 8 9 10 11 12
o1 1 1 1 o] 1 s
0O 0 O 0] 1 0 2 R
Bt = 0 0 O 0 1 0 3 A
0 1 O 0 0 1 4
> I
0 1 1 1 1 0 5
1 0 o 1 1 0 6‘)
le, which is needed to produce K, is obtained from KCL in NCs' (3.4).

le [O 1 -1 0]
A realization in the form of (2.23), Fig. 2.4, requires the topological

matrix F

where —PT (see (3.47)) is obtained from Bt by striking out both the first
row corresponding to the capacitive link in branch 1 and the first column

corresponding to the capacitive twig in branch 7.
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A flow graph realization of F contains only adders and inverters and is

trivial.

The network used to obtain K is shown in Fig. 3.5.

Thevenin's -

theorem can be applied successively to obtain a realization containing

the canonic number (11) of multipliers.

networks is produced:

Flg. 3-6,

Rll

where

Fig. 3.8, where

R+ R
6 7

" R_+R_+R_ _+R

67 10 o

4

r

RoRiq
R2 + Rll
R8 (R4 + Rlz)

(RgtR) (R g¥Rqy, )

+R_+R. _+R
R6 R7 10 0,

Qg

T 9%,

= e
%4,

The following sequence of

+(l-a4)83

= aseu4+ (l“‘as) e6



5 Qb 1 O

Fig. 3.5 Network used to obtain K for the filter of Fig. 3.2 (see also Figs. 3.6-3.9).
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Fig. 3.6
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Fig. 3.8
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R
OL2
— = O - -
g R’ v8 6(eu ey ) + (a6 1)ea
T 3 2
R
u7 =2 ' vy, = C (eq +e, -e,)
R 9 a o
T 7 2 5 3
R
a i Y
N— = 0 ~ + (o -
s = R , v 8(ea ea) ( 8 l)ea
T 2 5

R, =Ry + Ry + Ry +R

Finally, Fig. 3.9, where

R

’ ¥ +e)
o = m————, v, = ~q (Vv + e
9 R6 + R7 7 9 6
R
Oy A= — 10 v, = qg..(v+e )
+
10" Ry, *+ R 10 %0 oy
4
R
0. L= — 1z v, .= —d, (e, + v.)
+
11 Rl2 R4 12 11 4 8
N
V117 YV T Vo

through v can be

From the above analysis, the responses v 12

7

through e This defines

expressed in terms of the sources e 6"

1

n,
K. K is then formed from (3.83). The flow diagram for 2K, shown

in Fig. 3.10,is arranged so that each section (bounded by the

dotted lines) contains the operations required by each of Fig. 3.6

64




<

oF

Fig. 3.9

65



4 o
A A A A
+ <
; n
X) 3
0
O T
A
+ SO
8 A A AN A
1
—O0—rt
N N
_ - o~ 0
SMEOBNOFRONRO
A N
A
A A
S 3> | & $ 8 I

66

Fig. 3.10 Flow diagram for 2K for Example 3.1
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Flow diagram for 2K

Fig. 3.10 (continued)
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to Fig. 3.9, The last section is due to the effect of the capacitive
cutset through le. The factor of 2 has been inserted in the first
section.

The flow diagram for the entire filter is easily obtained
from the interconnection of F, 2K, 6 and I, Fig. 2.4. The adaptoxr
input corresponding to branch 12 is the filter input. The adaptor
input corresponding to branch 2 must be set equal to zero. The
inverters required in 6 and I cancel, with the exception of the
adaptor output corresponding to branch 2, the Ffilter output. This
inverter is optional since its only effect is a simple inversion
of the response. The adaptor output corresponding to branch 12
is not required. A total of 38 adders, 11 multipliers and 8
delays are required in the flow diagram.

From the equations which define the multiplier
coefficients, it follows that for Ri >0, i=1,2,...,12,

0 < dj <1l, 3i=1,2,...,11 and 0 < a6 + a7 + ag < 1l. Conversely,

if 05 satisfy these conditions, then a set of n - 1 = 11 independent
resistance ratios can be obtained from {a} . The inversion of the
equations which define the multipliers produces the following

resistance ratios which have been normalized with respect to Rlzt
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The multiplier coefficients‘{a} obtained from {e} are

Q
I

Q
It

Q
i

Q
il

o
9

0.500000

0.500000

0.740853

0.122495

0.316483

a .= 0.389803

11

Q
it

Q
il

]
I

R
|

(64 =
10

0.635564

0.569306

0.272960

= 0.443219

0.315770
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For realizability, the coefficients are approximated by finite word

length binary numbers as follows:

&; = 0.5 =271 &; = 0.6328125 = 2 T42 34277
&; =0.5=2"1 | &; = 0.5703125 = 2 h2"%o77
&; = 0.7421875 = 1-2 2=/ &g = 0.2734375 = 2 %427°=27
&; = 0.12109375 = 2 >-278 &é = 0.44140625 = 2 T-27%278
&9 = 0.31640625 = 2 24274278 &;0 = 0.31640625 = 2 242 %4278
&11 = 0.390625 = 2 T2 3427®

The corresponding element values {8} can be obtained exactly in

fractional form. Approximate decimal values are given below:

gi = 0.226659 £l = 1.560000
82 = 0.514403 . £2 = 1.944000
83 = 1.393867 £3 = 6.934091
84 = 0.311576 £4 = 5.605665
85 = 0.896960 §S = 1.00

8 = 0.118387 ; = 8.446893

No attempt was made to minimize the coefficient word lengths.
I1f a discrete optimization procedure were used, more drastic changes

in the coefficients would no doubt be possible.
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Simulation of the filter with both {a} and {g} was
carried out on an IBM 370/158 computer using double precision
floating-point arithmetic. The frequency responses shown in Figs. 3.1l
and 3.12 were obtained using a 1024 point FFT of the unit sample
responses. Due to the low sensitivity of the realization, the two
responses are virtually identical. A minor shift in the level of
the passband attenuation is the only discernable change.

A realization of this filter could also be obtained by
first converting the capacitance cutset into a loop. The resulting
structure is not a ladder and thus cannot be handled by the series-
parallel adaptor technique. However, the n-port method can again be
applied. The realization still only requires 11 multipliers since
the bridging capacitor produced by the wye-delta transformation
becomes a link in the graph and thus no source need be inserted to
obtain K.

Although the form of G1 and G2 in (3.49) does not affect
the realization, we shall éee in the next chapter that these matrices
do play an important role in the study of the properties of wave
digital filters. Gl and G2 can be obtained directly from (3.49) with

the aid of (3.43), (3.40) and (3.37). 1In this example GR' G_ and gf

G
are all diagonal and are easily obtained directly from the corresponding
element values in the prototype network. Howeve:,GG is nondiagonal
due to the capacitive degeneracies. From NCs’ Fig. 3.4, we conclude

that Qll = 0. Then, using the appropriate formulas, it is straight-

forward to show that Gy is given by
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39,69
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Fig. 3.11 TFrequency response of the canonic wave digital realization

of Fig., 3.2 using exact floating-point coefficients.
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Fig. 3.12 Frequency response of the canonic wave digital
realization of Fig. 3.2 using quantized coefficients.
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G +G G
1 ¢ ¢
G G +G G G
1 o Y Y 1
% G G G +G G
1 Y B Ty 1
G .
Gy 1 ¢ G11+G1
where
G.G
G, = 79 G = ©%10
(0 - ’ =
G_ + +
, 7 ¥ Gg T Gy . B G; 7 G5 * Gy

G,G, + G.G_ + +
177 19 GlGlO G9G10

+ +
Y G7 G9 GlO

Example 3.2:

The second example consists of a fourteenth-order band-
pass filter designed to pass the lower sideband of a télephone
signal modulated at 8 kHz while operating at a sampling frequency
of FS = 24 kHz. The passband attenuation, which meets the 1/20
C.C.I.T.T. specification, and the stopband attenuation specification
are shown in Fig. 3.20. Using Fettweis' adaptor methoa, Wegener
[11] has designed a wave digital filter which meets this performance
spgcification with very short coefficient word lengths. A discrete
optimization procedure was used to minimize the multiplier hardware
complexity. The lowpass prototype shown in Fig. 3.13 contains the

element values which produce the desired response. This network

was obtained from wWegener's adaptor realization by reversing his
g
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Fig. 3.13 Non-minimal seventh-order lowpass reference filter.
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Fig. 3.14 Network graph corresponding to Fig. 3.13.
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design procedure. The bandpass filter, which is arithmetically
symmetric, is obtained by using a particular form of the standard
digital lowpass-bandpass transformation [2] where z is replaced by
—22. This can be accomplished by simply replacing each delay by a
double delay in series with an inverter.

Since the same general procedure used in Example 3.1
will be followed here, only the major details of the design will
be given.

The network graph showing the tree chosen is given in
Fig. 3.14. There are no elements in classes Ll' Cl and T. —PT

is obtained from the fundamental loop matrix Bt by striking out the

first three rows corresponding to capacitive twigs. Thus

[ 1 1 0 o |
0 0 0 1
—PT = 1 0 0 O .
0 1 1 o
0 0 1 1

The network used to obtain K is shown in Fig. 3.15.
Note that sources are not required in the capacitive links.Successive
applications of Thevenin's theorem produces the sequencé of networks

shown in Figs. 3.16-3.18. The 11 independent multipliers generated are

-1 -2 -1
al = 2 + 2 0, = 2

-2 -1
0c3—2 0L4—2

- -2
. = 2 1 o = 2



Fig. 3.15 Netwérk_used to obtain K for the filter of Fig. 3.13 (see also Figs. 3.16-3.18).
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Fig., 3.16

Fig. 3.17
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Fig. 3.18
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X -3
oc7~2 a8—2
-3 -2
o, = 2 =
9 alo 2
=2
all = 2 .

In the flow diagram for 2K, Fig. 3.19, the factor of 2 in 2K has

been combined with ai, i=1,2,...,5 to produce Bi = 2ai, i=1,2,...,5
-1
Bl =1+ 2 62 =1
- -, 1 _
B3~2 B4~1
=1
B5

Thus we actually require only 8 multipliers for this particular case.

The frequency response obtained from a 1024 point FFT
of the unit sample response is given in Fig. 3.20.

For any set of prototype element values, the n-port
adaptor described above requires 32 adders and 11 multipliers. A
noncanonic series~parallel.adaptor realization requires from 39 to
42 adders and 11 multipliers) depending upon the technique used to
realize the attenuation poles. For an arbitrary set of element
values the particular structure used by Wegener requires 39 adders.
However, for the element values of the present example, é special
case arises and only 33 adders are required. A canonic realization
using Fettweis' method [14] requires 3 adders external to the adaptor
structure. However, as Fettweis points out, it may be possible to
save 3 adders by modifying those adaptors for which all output
signals are not necessary. In all of the above cases, more adders

may be saved if those adaptor inputs corresponding to the reflected
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Fig. 3.19 Flow diagram for 2K for Example 3.2
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wave at the source port and the incident wave at the load port are
removed from the realization. For our n-port adaptor 3 adders can
always be saved, bringing the total needed to only 29. 1In conclusion,
the n-port adaptor design can save between 7 and 10 adders as compared
with the series-parallel adaptor design. These savings are not
restricted to the particular example considered here. 1In fact,
savings will always be available if the prototype contains redundant
reactive elements and the number of adders saved will increase with
the number of redundancies.

The duplication of the topological matrix F in the n-port
adaptor representation can also be utilized to advantage. If a
hardware realization is of interest, then a single realization of
F can be multiplexed between the input and the output. Thus it may
be possible to save 8 adders at the expense of a digital multiplexer.
In a software or firmware realization, the block of code representing
F need not be duplicated. This reduces the amount of memory required
to store the programn.

The conductance matrices G, and G2 are easily obtained

1
‘for this example. GR' GG and G, are all diagonal with entries
equal to the corresponding element values in the prototype. e
is nondiagonal due to the capacitance loops, but since there are
no cutsets of capacitance, it can be readily shown that

G . This matrix can be interpreted as

T
= G + G
€ Cop QCZS S QCZS
the node conductance matrix of the capactive subnetwork obtained

by open-circuiting all non-capacitive elements. Thus in this

example we obtain



_ -

+ 0 0

G_+G ¢,
+G + 0

€1 C10*C*e, %,

G = . (3.84)
+G_+ G
0 G2 Gll G2 G 3
G, +G
2
0 0 ¢, 12773 |

Both of the examples presented in this section produced
realizations which are canonic in both delays and multipliers.
However, if the prototype is not a ladder structure then, although
the realizations obtained will generally be canonic in delays
(ie minimal), the network interpretation of K may not produce
realizations which are canonic in multipliers. In this case there
will not exist a one-to-one mapping from the independent resistance
ratios in the prototype to the multipliers and thus low céefficient
sensitivity and the existencé of very short coefficients is not

guaranteed. However, the following discussion outlines a design

procedure whereby short word.lengths can be obtained for the majority
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of thé multipliers, First, it is necessary to partition.the multipliers

into two disjoint sets, an independent set which can be determined

via a one-to-one mapping with the resistance ratios in the

prototype and a dependent set which can be related to the independent

multipliers by a set of dependency equations, Low element sensitivity

in the prototype is transformed into low coefficient sensitivity

in the independent multipliers and thus finite word length approximations
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for these multipliers can be obtained with a relatively small
number of bits. Now, using the dependency equations, the values
for the dependent multipliers can be computed. Normally these
multipliers will not be representable with a finite number of

bits and therefore must be modified for realizability. If the
errors introduced by these changes are kept asvsmall as possible
by usiﬁg relatively long word lengths, then the response will

not change drastically. Thus,short word lengths are obtainable for
the independent multipliers while longer word lengths are required

for the dependent multipliers.



CHAPTER IV

PROPERTIES OF WAVE DIGITAL FILTERS:

CONTROLLABILITY, OBSERVABILITY AND STABILITY

In this chapter we examine some important properties of wave
digital filters realized using n-port adaptors. These properties not
only aid in the characterization of wave digital systems but are also
of practical importance. The n-port adaptors of Chapters II and III
are shown to be both pseudolossless and reciprocal. Some results
concerning the controllability, observability and zero-input stability
of linear wave digital systems are presented. A general system modification
scheme which guarantees freedom from parasitip oscillations in nonlinear

wave digital filters using n-port adaptors is given.

4.1 PROPERTIES OF n-~PORT WAVE DIGITAL ADAPTORS

Digital filter realizations are often represented by signal
flow graphs. Such representations allow various properties of digital
networks to be studied [1], [371, [12]. Wave digital filters or, more
generally, wave digital networks belong to a subclass of signal flow
networks called port-connected signal flow networks. Fettweis has
discussed various properties of these networks in a series of publications
(81, [251, (371, [38].

In this section we give a short review of thoée concepts and
definitions required in the remainder of the thesis, followed by the
introdﬁction of some propérties of wave digital n-port adaptors.

The structure of wave digital network theory follows similar
lines to that of classical network theory. A set of elements consisting

of wave digital n~-ports can be interconnected according to a set of rules
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to form large wave digital networks. Each n-port has an associated port
weighting matrix which is usually diagonal and positive definite. Howevér,
due to the nature of the wave digital n-port adaptor derived in Chapter III,
it is necessary to consider nondiagonal positive definite port weighting
matrices. For wave digital n-port adaptors the weighting matrix is normally

taken to be equal to the port reference conductance matrix

G = ' (4.1)

where Gl and G2 are defined in (3.49).
The instantaneous pseudopower)p(n))absorﬁed by a wave digital

n-port at time n, with respect to the reference conductance matrix @,

is given by
T T
p(n) = a” " (n)Ga(n) - b (n)Gb(n) (4.2)

where a(n) and b(n) are the incident and reflected wave vectors at time

n. If the n-port is linear and instantaneous, in which case

b(n) = Sa(n) (4.3)
where the scattering matrix S is constant, then

p(n) = a (n) (G - S GS)a(n). (4.4)

The concepts of instantaneous pseudolosslessness and instantaneous

pseudopassivity can be defined in terms of the absorbed pseudopower.
With respect to the reference conductance matrix G, a wave digital n-port
is

(a) instantaneously pseudolossless if p(n) = 0 (4.5)

{b) instantaneously pseudopassive if p(n) > O (4.6)
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for all n and for all admissible signals a(n) and b(n). For linear
instantaneous n-ports we have the following simplified definitions: a
linear instantaneous wave digital n-port is
(a) instantaneously pseudolossless if G-STGS =0 (4.7)
(b) instantaneously pseudopassive if_G—STGS >0 (4.8)
where the matrix inequality refers to the corresponding guadratic form.

A reciprocity condition can also be developed in the complex

frequency domain. A linear instantaneous wave digital n-port is reciprocal

with respect to the symmetric reference conductance matrix G if
T
GS = S'G. (4.9)
It is now possible to prove the following:
Theorem 4.1:
For a linear instantaneous wave digital n-port, any two of
the following imply the third
T
1) S°GS = G (pseudolosslessness)
T . .
2) S G = GS (reciprocity)
3) ss=uU
Proof:
a) Given 1) and 2) we have
T
S GS =G > GSS =G *+S8S = U.
b) Given 1) and 3) we have
T
STGS =G > STGSS = GS * S G = GS.
c) Given 2) and 3) we have
T T
STG=GS->SGS=GSS‘*SGS=G.

Consider the n-port adaptor described by (3.46)-(3.49) ,

We now show that this class of adaptors, which includes the standard
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n-port adaptor of Chapter II as well as those of Fettweis, is both
instantaneously pseudolossless and reciprocal.
Theorem 4.2:

An n-port adaptor described by a scattering matrix in
the form of (3.46) - (3.49) is instantaneously pseudolossless and

reciprocal with respect to its port conductance matrix G.

Proof:
a) Reciprocity
Consider
X X
1 2
Gs = 1 1
X21 X22
where
T S s | T
= — = /Z P - = .
Xll = 2GlP K Gl Gl Y PGl Gl Xll
T T T T T
= - = 2{(U-P PG
X12 [2GlP (U-KP7) ] .( X™) 1
T -1 T .-1
= — = — Y
2{U PGlP Y )PGl 2(Y PGlP ) PGl
= 2G2K = X21'
T, _ -1 T
X22 = G2(U—2KP ) = G2(U 2Y PGlP )
-1 T -1
= G2Y (Y—2PG1P ) = G2Y (~Y+2G2)
-1 -1 _ T
= G, (-U+2Y G,) = - (G,y=26,Y Gy) = Xy
Hence,
as = (cs)T = sTG.
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b) Pseudolosslessness
Since (3.46) can be written as the product of three self~inverse

matrices

T
-0 P ~-U 0 ~U PT

0 U -2K U 0 U

then SS = U and, from Theorem 4.1, STGS = G. This result is of
tremendous importance in the stability studies to follow.

In the design procedure illustrated in Example 3.1 the
independent multipliers, and hence K, are modified for realizability.
This produces a modified adaptor representation. Since there exists
a set of element values for the prototype which corresponds to this
new set of multipliers, the modified adaptor is still pseudolossless
and reciprocal. However, if a realization of K was not obtained in
terms of independent multipliers then, where K is modified for realiz-
ability, it may no longer satisfy (3.48). Equivalently, a corresponding
set of element values for the prototype does not exist. The following
result proves that such an adaptor can no longer be pseudolossless and
reciprocal.

Theorem 4.3:

The n-port adaptor described by (3.46) is iﬁstantaneously
pseudolossless and reciprocal with respect to its port conductance
matfix G if and only if (3.48) is satisfied; that is, if and only if

1

- T
K =Y "PG = + P,
1 where Y 62 PGl
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Proof:

a) Sufficiency is established by Theorem 4.2«

b) Necessity: since SS = U independent of K, then if

-1 . T e
K=Y PGl is necessary for $°G = GS, it is also necessary for
. - T

Upon eguating the partitioned forms of GS and S G, four

matrix equations, two of which are identical, are produced. The

three independent equations are

T T
= _ L1
GlP K X PGl (4.10)
T T T T
P -G.P = 4.11
Gl Gl KP K G2 ( )
T T
_ . 4.12
G2KP PK G2 ( )

Substitution of (4.10) into (4.11) produces

T T T T
- P o= G
GlP K PGl K 5

which requires that

T -1 -1
K = (PG.P + = (4.13)
( 1 G2) PGl Y PGl'

Equation (4.13), which is the desired condition, can be substituted

into (4.10) and (4.12) to check for consistency. Thus, from (4.10),

T, -1 T -1
GlP Y PGl = GlP Y PGl

and, from (4.12L

-1 T T -1
G2Y PGlP = PGlP Y G2

-1 B -1
G,¥ (Y-G,) = (¥-G))Y "G,
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4.2 CONTROLLABILITY AND OBSERVABILITY OF LINEAR WAVE DIGITAL FILTERS

The n-port wave digital filter formulation immediately

yields a system description in state equation form. In general,

we have
L x(n+l) S S x(n)
- 11 12 (4.14)
y{(n) 821 522 u(n)

where x, u and y aie vectors of the state, input and ouﬁput variables
respecfively, L is the diagonal matrix containing the inverters
required by the inductive ports, and S (given here in partitioned form)
is the scattering matrix representing the n-port adaptor. Since

L = U, (4.14) becomes

x(n+1) _ Zsll 2512 % (n) . .15

v (n) 821 822 u(n)

The port reference conductance matrix can always be partitioned so

that
G 0
c=| (4.16)
0 G22
and
= : 4.1
IG 1 = Gyt (4.17)

where Gll is that component of G associated with the delay-terminated

ports of the n-port adaptor and G is thatpart associated with the input-

22
output ports. Qualitative properties of a linear discrete-time system

expressed in this form can be readily established. The concepts of

state controllability and observability and their relationship to
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minimal realizations are well documented, as are various procedures
which can test a system for these properties [34]. The most commoﬁly
used tests, expressed in the notation of (4.15), are as follows:

The m-dimensional linear shift-invariant system described by (4.15)
is controllable if and only if the controllability matrix Q has

rank m

m-1
0 —I:Zslz,ZsllZslz,...,(Zsll) Zslz] | (4.18)

and is observable if and only if the observability matrix P has

rank m

_ T T T T(m-1) T o
P = [521, (Zsll) s2l ,...,(Zsll) 521] (4.19)

The following theorem and corcllary investigate the controllability
and observability of a wave digital system built around a pseudolossless
reciprocal n-port adaptor. Such a system will be called a pseudolossless
reciprocal wave digital system.
Theorem 4.4:

A reciprocal wave digital system is controllable if and only

if it is observable.

Proof:

The state description of the system (4.15), together with the

c s T T . R
reciprocity condition $°G = GS or S = RS'G in partitioned form ,

yields
T T
: 0
x (n+l) ) L 0 Rll 0 sll s21 Gll x (n) )
o 0 R T 4T o ¢ llum
y (n) U 22| |812 S22 22

Since the controllability and observability are invariant
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under a similarity transformation [34], let
¥(n) = Ic
x(n) = llx(n)
and then, using (4.17),
¥() =G, .2
x(n) = 11 x(n) .

Implementation of this transformation produces

~
o, T T n
+
x{n+1) _ U 0 . Sll 821 L 0 U o x(n)
T T
v (n) ¢} R22 Sl2 822 0 U 0 G22 u(n)
T T "
5112 521G22 x(n)
= T (4.20)
X
Ry9512 R22322G22 u(n)

and thus system (4.15) is controllable (observable) if and only if
system (4.20) is controllable (observable). The controllability matrix

for system (4.15), Q

1
= | 55,38, s s, )" s
91 11%%127 1 5y 12
and the observability matrix for system (4.20), P2
P = rZs R__,%S..%S R (5s. )¥ s R
2 127227711 1272277 11 12722

o

are related by

PA2 = Ql dlag[R22]

where diag[R22] is a block diagonal matrix with all diagonal elements

equal to R and all off-diagonal elements equal to zero. Since R

22 22

is nonsingular, the rank of Ql is equal to the rank of Pé and therefore

system (4.15) is .controllable if and only if system (4.20) is observable.
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But (4.20) is observable if and only if (4.15) is observable and
therefore (4.15) is controllable if and only if it is also observable.
Since a system is said to be minimal if it is both
controllable and observable, we have the following self-evident

corollary to Theorem 4.4,

Corollary 4.4

A reciprocal wave digital system is controllable
(observable) if and only if it is minimal.

4.3 STABILITY OF WAVE DIGITAL FILTERS

In this section we investigate the zero-input stability of
both linear and nonlinear wave digital filters. From the variety of
stability criteria which are applicable to discrete-time linear shift-
invariant systems, stability in the sense of Lyapunov {i.s.L.) via
Lyapunov's direct method is chosen since this method can also be applied
to nonlinear systems. The direct method isbased upon the existence
of a positive definite energy function whose first forward difference
is negative semidefinite for systems which are stable i.s.L. and is
negative definite for systems which are asymptotically stable i.s.L.
Asymptotic stability i.s.L. is also obtained in a system which is stable
i.s.L. and for which the first forward difference of the Lyapunov function
does not vanish identically on the state trajectory. A complete discussion
of this theory is available in Kalman and Bertram [38].

We first consider linear wave digital systems described by

(4.15). The Lyapunov function used in the following development is

T
chosen to be x Gllx'
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Theorem 4.5 :

A linear pseudolossless wave digital system is stable i.s.L.

Proof:
Consider the positive definite function
T
Vix) = G .
(x) X Gy %

The first forward difference is given by

Av(x)

V{(x(n+l)) - v{(x(n))

T
X (n+1)G) x(n+1) = xT(n)Gllx(n)

T T T
X (n)SllZGllZSllx(n) - X (n)Gllx(n)

]

xT(n)(ST G..S Gll)x(n).

117117117
The pseudolossless property yields

T , _ T
511 €11%117%n 2192251

and thus
_ T T i
Avi(x) = -x (n)Szlestlk(n).

Since S2l is, in general, not square, AV(x) is negative semidefinite.
Hence

Av(x) < O
which is sufficient for stability i.s.L. [38].
This result can be applied immediately to demonstrate that

filters obtained from lossless prototypes by either of the n-port

adaptor techniques are always stable i.s.L. The pseudolosslessness

of such filters is in fact a direct consequence of the lossless nature

of the prototypes.

Theorem 4.5 can easily be extended to cover pseudopassive

(STGS - G £ 0) and strictly pseudopassive (STGS -G <0) systems.
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Corollary 4.5:

A linear pseudopassive (strictly pseudopassive) wave digital
system is stable (asymptotically stable) i.s.L.

The results of Theorem 4.5 can be combined with the obser-
vability of the system to investigate asymptotic stability.

Theorem 4.6:

A pseudolossless linear wave digital system is asymptotically
stable i.s.L. if and only if it is observable.
Proof:

First the sufficiency. Theorem 4.5 has established stability
i.s.L. by showing that

T T
= — <
AV (%) X (n)S2lG22821x(n).__ 0, for all n.

If the system is observable, the observability matrix has rank m and

thus

S

21
2511 ~
. x # 0, for all x # 0. (4.21)

SZl

m-1
8,1 (284y)

e -

Choose x{0) # 0 as an initial state in the system. Then
n

x(n) = (Zsll) x(0), n>0
defines the succession of states. The observability condition (4.21)
then requires that

,Szlx(p) # 0, p=20,1,2,...,m1

and hence

Toyst e s (p) #0 =0,1,2 m-1

X(P) 21722 ZlXP r P = tLr1Lpeeey .

Since x(p) is on the state trajectory,

Av(x) Z O
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on the trajectory and the system is asymptotically stable i.s.L. [38].
The necessity is most easily established by proving the
contrapositive., Assume that the system is not observable, in which

case there exists an x # 0 such that

- -
Sa1
$,155,, x = 0, x # 0. (4.22)
) m-1
821(2511) J

Let x(0) be a nonzero vector satisfying (4.22)s Then, since Gll is

positive definite
2T (0)G..x(0) # O (4.23)
- ll L4
and, from (4.22),
S2lx(n) = 0, n=290,1,2,...,m1.

This last condition can be extended, using the Cayley-~Hamilton Theorem,

to all succeeding states

= >
Szlx(n) 0, n > 0.

We then have

xT(n)ST

21G22521x(n) 0, n >0

which, when combined with the pseudolossless property, produces
T T T
. = >
ble (n)SllGllSllx(n) b4 (n)Gllx(n), n>0
or, equivalently,
Tn+l)G, x(n+l) = x* (n)G, . x(n) > 0 (4.24)
x (n 1% = x (n)G,,x(n), n > 0. .
Equation (4.23) together with (4.24) yields
xT(r) G, x(n) = x (0)G. . x(0) # 0 n >0
Y11 11 ! -

which proves that the state does not converge to the equilibrium state,

X, = 0, with increasing n. Thus we conclude that if the system is not

observable it is not asymptotically stable.
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Since most wave digital systems are both pseudolossless
and reciprocal, the following corollary is of interest.

Corollary 4.6:

A pseudolossless reciprocal wave digital system is
asymptotically stable i.s.L. if and only if it is minimal.
Proof:

From Theorem 4.6, a pseudolossless system is asymptotically
stable i.s.L. if and only if it is observable. If the system is also
reciprocal, Corollary 4.4 shows that it is observable if and only if
it is minimal. The desired result follows immediately.

The filters, which can be obtained by use of the technique
of Chapter III, in addition to being pseudolossless and reciprocal,
are in most instances minimal. Corollary 4.6 proves that such filters
are asymptotically stable.

So far in this section we have investigated the stability
of linear wave digital systems. However, due to the finite word
length requirements for realizability, any implementation is in
reality nonlinear. The stability of such systems can still be
“investigated by the direct method of Lyapunov. In faéf, the results
obtained in Theorem 4.5 can be extended to include nonlinear wave digital
filters. If the nonlinearities, which can be specifiea by the filter
designer, are such that the nonlinear filter remains pseudolossless,
then the filter is still stable i.s.L. The proof of this statement
follows directly from the proof of Theorem 4.5 by noting that for a
pseudolossless system under zero input the instantaneous pseudopower is

given by
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p(n) = XT(n+l)Gllx(n+l) - xT(n)Gllx(n) + yT(n)Gzzy(n) = 0. (4.25)
Then, since G22 is positive definite,

AV(x) = xT(n+1)G x(n+l) - xT(n)G x{n) < O. (4.26)

11 11 -
A similar result is obtained if the nonlinear system is pseudopassive.
A more important practical result is obtained if the nonlinear system
is strictly pseudopassive since then it will be asymptotically stable
i.s.L. and the state, and subsegquently the output, will eventually
become permanently zero. In this case 1limit cycles will not exist.
Because wave digital systems are in fact finite state machines,
a more appropriate definitionof stability is available [39]. A finite state
system is stable under =zero-input if the state becomes permanently zero
in a finite time. The stability of the output follows immediately by noting
that when the states are permanently zero, the outputs, being weighted sums
of the states, must also be permanently zero. Fettwels and Meerkdtter [25]
have shown that pseudopassivity of the nonlinear filter is sufficient for
output stability and,if the linear filter has no oscillations,then stability
is also guaranteed. 1In what follows we present some results which demonstrate
sufficient conditions for stability, and therefore alsoc for output stability,
"of wave digital filters using n-port adaptors.
Theorem 4.7:
A nonlinear finite state wave digital system.(NL) is stable

if it is derived from a linear wave digital system (L) which is asymptot-
ically stable i.s.L. such that,when xL(n) = xNL(n))the next states
xL(n+l) and xNL(n+l) satisfy either

a) xNL(n+l) = xL(n+l) and thus V(XNL(n+l)) = V(xL(n+l))

or b) V(xNL(n+l)) < V(xL(n+l)) if xNL(n+l) # xL(n+l)



102

where V(x) = xTGllx is the Lyapunov function for the linear system.
Proof:

Assume that a nonlinear system (NL) is obtained from an
asymptotically stable linear system (L) according to a) and b).
Because system (NL) is a finite state machine, either xNL(n) becomes
zero after a finite time, in which case the system is stable, or a

cycle begins. Assume that such a cycle exists starting at time n

0
with period N. Then
= .27
xNL(nO+pN) xNL (no) (4.27)
and
V(XNL(nO+pN)) = V(xNL(nO)) (4.28)
where nO{ED and N are non-negative integers. Let
xp (gl = Xy, (ng) -
Then, due to the asymptotic stability of (L), we have
| = > 4.29
V(XNL(nO)) V(XL(nO))__ V(xL(no+l)) ' ( )
while, from the design conditions a) and b), we must have
+ > + 4.30
Vix, (np+1)) 2 Vx o (n +1)) (4.30)

Equations (4.29) and (4.30) together require that

Vv ( {n.)) z_V(xNL(nO+l)).

*nL o

If we now set the next state in (L) equal to xNL(nO+l), the same
procedure produces
+1 > .
Vix o (nF1)) 2 Vixg (ny+2))
Repeated application yields

V(x,._ (n

an (M) 2 Vixy (k1)) > Lol > Vix o (n #N))> L.

— NL 0O

which,when combined with the cycle condition (4.28), requires that
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= > .
V(XNL(n)) V(XNL(nO)), for all n 2 ng,
Due to the nonlinear system design criteria a) and b), the above
energy condition requires that

= >
xL(n) xNL(n), for all n>n

-

0

This means that the same sequence of states occurs in both the linear
and nonlinear systems and thus a cycle must also exist in the linear
system. This contradicts the asymptotic stability assumption and thus
the nonlinear system cannot support a cycle andvmust therefore be
stable.

If the linear system is not asymptotically stable, but is
stable, then a similar result having only slightly modified design
conditions can be obtained.

Corollary 4.7:.

A nonlinear finite state wave digital system (NL) is stable
if it is derived from a linear wave digital system (L) which is stable
i.s.L. such that, when xL(n) = xNL(n))the next states xL(ﬁ+l) and xNL(n+l)
satisfy V(XNL(n+l)) <- V(xL(h+l)) where V(x) = xTGllx is the Lyapunov
function for the linear system.
Proof:

Using the same arguments as in the previous théorem, it

follows that,if a cycle exists starting at n_,then

0

V(xNL(n)) = V(xNL(nO)), for all n Z_no . (4.31)

However, the stability of (L), which requires

v (

xNL(nO)) = V(XL(nO)) E_V(xL(n0+l))

together with the design requirement of (NL), demands that

V(XNL(nO+l)) < V(XNL(nO)).
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This contradicts (4.31) and hence the nonlinear system must therefore
be stable.

The system modification required by either Theorem 4.7 or
Corollary 4.7 can be interpreted as a requirement on the‘reflected
waves at those ports of the n-port adaptor which are connected to
delays. For the situation where G is a diagonal positive definite

11

matrix, we have

m

T 2
= = o}
V(x) X Gllx izl gixi (4.32)

> = .., . i = . iti
where 9; 0, i=1,..., Thus, given xLi(n) XNLl(n)' the condition

< n.i
xNLi(n+l) < xLi(n+l) for all n,i _(4.33)

is sufficient for stability when the linear system is asymptotically
stable i.s.L. Such a linear system could either be a strictly pseudo-
passive system or a minimal pseudolossless reciprocal system. Similarly,
the condition b

+ <
X Li(n 1)

, (n+1
N XLl(n- )

for all n,i (4.34)

is sufficient for stability when the linear system is stable,i.s.L.
Recall that pseudoloésless, pseudopassive and strictly pseudopassive
systems are all stable i.s.L. A method of implementing (4.33) and
(4.34) is discussed in a later chapter.

The conditions (4.33) and (4.34) are similar to those obtained
by Eéttweis and Meerk&tter ([25]. The differences are that we need only
consider the cutputs of the adaptor connected to delays and that
stability is guaranteed even for pseudolossless linear filters which

contain unobservable modes.
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When Gll is not diagonal, (4.33) or (4.34) may no

longer be sufficient for stability. This situation, which occurs

naturally as a result of the design technique of Chapter III, is

studied in the next chapter.



CHAPTER V

DIAGONAL LYAPUNOV FUNCTIONS FOR MINIMAL WAVE DIGITAL FILTERS

The criteria developed in the previous chapter which guarantee
the absence of parasitic oscillations in nonlinear wave digital filters
are most easily implemented for systems with a diagonal reference
conductance matrix. The n-port adaptor design outlined in Chapter II
automatically produces systems with the appropriate form for Gll'
However, the minimal realizations obtained in Chapter III have a
nondiagonal Gll'

The first part of this chapter investigates the eigenvalues
and eigenvectors of Sll' This information is then utilized in the
search for alternate Lyapunov functions which have a diagonal form.
The chapter concludes with the presentation of a technique which uses
a similarity transformation of the state variables which simultaneously
maintains the input-output transfer function and diagonalizes Gll to

produce a diagonal Lyapunov function.

5.1 EIGENVALUES AND EIGENVECTORS OF Sll

In this section we investigate the eigenvalues and eigenvectors

of s First we present the following lemma.

11°
Lemma 5.1:

Given a real nxn matrix S, there exists an nxn symmetric
. L . . . T . . .
positive definite matrix G satisfying S G=GS if and only if S is of
simple structure with real eigenvalues.

Proof:
An nXn matrix is said to be of simple structure if and
only if it has a set of n linearly independent eigenvectors [40] or,

equivalently, if the modal matrix is nonsingular.
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T . . - s
Suppose that S°G = GS,where G is a symmetric positive definite
matrix. A congruence transformation PTGP of G exists for which
T
PGP =U (5.1)

and thus

Consider the similarity transformation P—lSP of S.
- T
4 lSP = PTGSP = PTS GP (5.2)
is symmetric and also has the same eigenvalues as S. Further, there

exists an orthogonal transformation of (5.2) such that

0" pTaspyg = A (5.3)

and

0'g = U (5.4)
where As is the diagonal matrix of eigenvalues of S.

If we now define

W = PQ
then, from (5. 3),

W GSW = AS (5.5)
and, from (5.1) and (5.4),

WiGW = 0 PGP = 0TQ = U. | (5.6)
Equation (5.6) yields

wt=we
which together with (5.5) produces

WGSW = W TeW = A

and therefore

sw=w\_ . . (5.7)
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Equation (5.7) demonstrates that the nonsingular matrix W is a modal
matrix of S and hence S is of simple structure. Furthermore, since W

and S are matrices over the field of real numbers, the entries of As

and hence the eigenvalues of S are real.
Suppose now that S is of simple structure with real eigenvalues.

Then the modal matrix W is nonsingular and
-1 _
W osw=A_. (5.8)

Since As is diagonal, and hence symmctric, we have

W lew = (W isw) T = wist(wh) t

from which we obtain

-1
(wT) lw ls = sT(wT) W l.

If we now define

¢ = )t W) Tyt

then

G

T T
G, WGH = U, GS = S°G.

. . e . - e T
Thus G is symmetric positive definite and satisfies S°G = GS.
Use of this lemma shows that for reciprocal wave digital

systems both S and S have real eigenvalues and are of simple

11
structure , . Martens and Meerk8tter [29] have shown that all of the
eigenvalues of S are either +1 or ~1. The eigenvalueé of 511 are now
investigated.
Thedrem 5.1:

Given a pseudolossless reciprocal system, at most two

eigenvalues of § are not equal to +1 or -1.

11



109

Proof:

For a pseudolossless reciprocal system we have, from
Theorem 4.1,

ss = U

which, upon partitioning, yields
+ =
Sllsll SlZSZl
or

2

(U -5,

) = 815550

Since, in general, S12 and S21 have dimensions of n x 2 and 2 x n

respectively, there exist at least n - 2 independent nonzero vectors X,

i
in the null space of S155515 n being the dimension of S,,- That is
2 . -~
(g - Sll) X, = SlZSlei = 0 x5 #0, 1i=1,2,...,m m > n-Z.
Therefore
2

Sll Xi = xi, xi #0, 1i=1,2,...,m, m Z.n - 2

. . . 2 . .
which implies that S has at least n-2 unit eigenvalues and hence

11
Sll has at least n-2 eigenvalues equal to either +1 or -1.

A physical interpretation of the +1 and -1 mcdes of Sll is
easily obtained. If all of the inductive elements in the prototype
are replaced by capacitive elements,an RC network which necessarily
has negative real eigenvalues is produced. Such a network may have
modes at ¥ = 0 and P = «® due to the capacitance-only cutsets and loops
respectively. These modes are equivalent to modes at z = 1 and z = -1.
in a discrete-time realization produced by the bilinear z-transformation.

Further, since I = U,these modes are identical with the eigenvalues of Sll

describing the original prototype. Some of these eigenvalues, however,
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are suppressed during the formation of the reduced Sll' The other

two modes which must be inside the unit circle (Sll is a stable
matrix) are .a result of the resistive terminations.
During the formation of the reduced order realization,all
capacitive and inductive cutsets and loops were effectively removed.
The remaining reactive cutsets, which account for the A = 1, can
be identified by first short-circuiting all capacitances and inductances

which define cutsets (classes C., and I'), and then open-circuiting all

1

capacitances and inductances which define loops (classes S and Ll)'

The remaining network is described by KCL in the form

1 iR

QCzR QCsz 1 v oo iLz
‘ ! - = 0. (5.9)

QGR QGL2 : c v iCz

iG-

Any reactance-only cutsets must occur in the first equation but are
not shown explicitly. Following similar arguments used in Chapter III,

we can partition the elements in class C, and then rewrite (5.9) as

2
i
- i - R
0 .
0 QA : U QB lL
-7l . =0. . (5.10
ACTPTCTIN S I e ’
C2R C2L2 Ca
| .
i(2)
%r %, : 00 v .éz
L. ; . ig

(1)

5 define the reactance cutsets.

Elements in the class C

Equation (5.10) can be considered to be the result of a
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reordering of the equations and the variables C2 in (5.9), followed

by a sequence of elementary row operations, Ml’ which reduces QC R
2

] [
MO =M 2 = (2) ) (5.11)
17C,R 1oty S

If the maximum number of reactance cutsets are displayed explicitly

(2)

in (5.10), then the rows of QC'R
) 2.

are independent and thus

rank QC R - rank Qg R number of elements in Céz) . (5.12)
2 2

However, since
rank QT + nullity of QT = number of elements in C(l)
C 2R CsR 2

+ number of elements in Céz) (5.13)

equations (5.12) and (5.13) together yield

number of elements in Cél)= nullity of Qg R (5.14)
2
and therefore
T
Y = . _ . .
number of A 1 in Sll‘ nullity of QCZR . (5.15)

As a direct consequence of this condition, there exists a matrix X

having m, independent columns such that

T
X=0 . 5.16
O,r (5.16)
where m, is the number of A = 1 in Sll'
., The eigenvalues A = -1 may be treated in a similar manner.

After the elements in classes Cl and ' are short-circuited and the
elements in classes S and L, are open-circuited, the remaining
reactive loops account for the A = -1. The resulting network is

described by KVL in the form
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v
I T T vR
v o s “2c,R "2 ~_Ef_
°© v : —ngLz —Qsz VCz o 47
Me

The reactance-only loops which must occur in the second equation can

be displayed explicitly in a manner similar to the previous situation.

. T
Thus, M2 reduces QGL2
T
M2QGL2 0
T
Q(2)
GLo
and (5.17) becomes ~v 7
R
i l 7 (1)
i _ T T v
U 0 0o | QCZR QGR Lo
: e
0 U BA ) BB 0] Lo =0 (5.18)
! T T -
P (2) (@
°© 0 { QCzL 2 QGLz Ve,
e . . -
v
- G .

where the L2 variables have been reordered and partitioned appropriately.
. 1 .
Elements in class Lé ) define the reactance loops.

If the maximum number of reactance loops are displayed

explicitly in (5.18), then it is easily shown that
(1)

number of elements in L2 = nullity of QGL (5.19)
2
and hence
P, 7 == ! . .2
number of A 1 in Sll nullity of QGL2 (5.20)

Furthermore, there exists a matrix Y having m, independent columns

2
such that
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QGLZY =0 (5.21)

where m, igs the number of A = -1 in Sll'

Having obtained explicit information regarding the +1 and

-1 eigenvalues of S,,, the matrices X and Y can be used to derive

11

symbolic representations for the corresponding eigenvectors. Sll

can be obtained directly from equations (3.46) and (2.22) in the form

T T T T T
-U -U+2 k 2 k.0 -
QCzL 2 v QGL g 22 QGL 2 217CoR u QCsz
Sll = T (5.22)
U - - )
0 2k12 U 2kllQC2R 0

where K has been partitioned conformally

K= K ’ (5.23)

Consider the matrix

QC2L2
W, = X. ’ (5.24)
U

Then, from (5.22),

T T T T :
- -U+ 2 k 0
U QC2L2 U 2QGL2k22 QGL2.21QC2R .
S.. W, = . (5.25)
1171 T
- - X
0 U 2k12 U 2kllQCZR
Using (5.16), the above equation can be reduced to
T T
7 Scon, ° Peats (5.26)
S11%1 7 =1 X
0 U X U
from which we have
S..W, = W,. (5.27)

111 1
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Eguation (5.27) demonstrates that the set of independent vectors

contained in W, is an independent set of eigenvectors corresponding

1

to eigenvalues at +1.

Now consider the matrix

QCzL 2

We then have, using (5.21)

-U 0
g
S11 W T o 5
CyL,
.
-U 0
and thus
T U ",
Sllw2 = —WZ.

Use of the reciprocity condition

T
SllGll

Gllsll
togcther with (5.31) yields

S11W, = W,

where

2 Rll

(5.28)

(5.29)

(5.30)

(5.31)

(5.32)

(5.33)

(5.34)
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Equation (5.33) demonstrates that the independent vectors in w2

constitute an independent set of eigenvectors of S corresponding to

11

eigenvalues at -l1l. We have thus proved the following theorem:

Theorem 5.2:

The number of eigenvalues of Sll egual to +1 and -1 is equal
to the dimension of the null spaces of Qg R and QGLQrespectively.
2
Furthermore, the corresponding sets of independent eigenvectors, Wl
and w2, are given by
T
QCsz -U
W, o= X , W, = R, . Y
U CaoL>»
where X and Y are matrices whose columns are linearly independent
vectors in the null spaces of QT and Q respectively.
C2R GL,
The complete eigenvalue problem as it relates to Sll is
given by
= 5.35
5117 WA _ ( )
where
U
A= ~U (5.36)
A3 :
and
= . 5.37
W [wl W, w3] ( )

The two eigenvalues which are not on the unit circle comprise A3;

the corresponding eigenvectors make up w3.
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5.2 GENERATION OF ALTERNATE DIAGONAL LYAPUNOV FUNCTIONS

It is well known that a Lyapunov function for a particular
system is not unique. 1In fact, for an asymptotically stable linear
system there are a large, possibly infinite, number. Thus, for those

wave digital filters having a nondiagonal G the existence of a diagonal

11’
Lyapunov function, D, cannot be ruled out a priori. The major result
presented in this secticn consists of a set of necessary and sufficient
conditions for the existence of diagonal Lyapunov functions. The results
rely on the eigenvalue and eigenvector analysis of the previous section.
The stability of a linear shift-invariant discrete-time

system is normally investigated through the matrix, ATDA~D. For the
class of systems presently under investigation, the state transition
matrix, A, is given by

A = ZSll . {5.38)
Furthermore, since we are considering only those potential Lyapunov
functions which are diagonal, D and I commute and then

ATDA-D = ST.DPS..-D. ' (5.39)

117711

. T
Thus; it is sufficient to investigate the behaviour of SllDSll—D.

Theorem 5.3:
Given a reciprocal pseudolossless system, there does not

. s . T . .
exist a positive definite matrix D such that $).DS.,-D is negative

117711
definite for n > 3, where n is the dimension of the sqguare matrix sll'
Proof:

From Theorem 5.1 we know that there exists at least one

nonzero X such that

S
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Then
T.. _ .T.T
X Dx = x Sllellx
and thus
T,.T _
bd (SllDSll D)x = 0.
T

This proves that SllDSll—D cannot be a definite form.
As a result of this theorem we can confine our search for

diagonal Lyapunov functions to those for which ST DS, .-D is negative

11 711

semidefinite. It is easy to show that STlD = DSll is sufficient for
the existence of a diagonal D. The proof proceeds as follows: Since

Sll satisfies the conditions of Lemma 5.1, a nonsingular modal matrix

W exists. After the appropriate multiplication we have

T T T 2 T 2
=1 = = ‘7. .
W sllellw W DSllW W DWA®, where WA sllt (5.40)
Then
T, T T 2
- = -U). 5.41
W (sllell D)W = W DWA"-U) ( )

However, because the magnitude of the eigenvalues of Sll is bounded

. T . . cs
by unity and W DW is positive definite, we can conclude that

T, 6T
W (SllDSl

Sll is given, then S?lD = DSll is easily checked for solutions. The

l-D)W and thus SleSil—D must be negative semidefinite. If
inability to find a solution, however, does not mean that a suitable
D for the system does not exist.
Theorem 5.4:

Given a pseudolossless reciprocal wave digital system there

. s . . . . T .

exists a positive definite symmetric matrix D such that SllDSll~D is
negative semidefinite if and only if there exist nonsingular matrices

Tl and T2 such that the following three conditions hold:

a) DW, =G _W,T



118

c) WT(ST DS W

3081, ll—D 1s negative semidefinite

3
G11 is that component of the reference conductance matrix G associated
with the delay-terminated ports of S and Wl, W2 and W3 contain the

eigenvectors of sll'
Proof:

We first establish two conditions. Using the properties of

the eigenvalues and eigenvectors of Sll given in (5.35)—(5.37» we have

T
W) (S1,DS,,=D)W, = 0  for all D (5.40)
and
We (ST DS..-D)W.=0  for all D (5.41)
2 11711 2= or a . .

Now assume that there exists a positive definite D such that

T . . . - . . .
SllDSll—D 1s negative semidefinite. Then, using a result given in [41],

(5.40) and (5.41) imply respectively that

(Slesll“D)wl =0 (5.42)
T
(SllDSll"D)W2 = Q. : (5.43)

From (5.42) we have

T
- = .44
(SllD D)wl 0 (5.44)
or,equivalently,
(sT -U)DW., = 0 (5.45)
11 1 : ’

Similérly)from (5.43), we obtain

(S§1+U)Dw2 = o. (5.46)

, . . . — ' T _
Since it has been previously established by Theorem 4.5 that SllGllsll Gll

is negative semidefinite, then equation (5.45) must be satisfied when

D=Gll. The set of vectors which constitute the columns of Gllwlare
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linearly independent and can therefore be used as a set of basis vectors

in the null space of sfl—U. Since DWl is in this null space, it is

a linear combination of the vectors in Gllwl and hence we obtain

a)- A similar argument shows that GllWZ can serve as a set of basis

+U and thus we obtain b), T. and T

vectors in the null space of ST 1 5

11

are nonsingular square matrices of appropriate dimensions. Condition

c) 1is obtained as follows: Pre-multiply (5.42) and (5.43) by Wg
and take the transpose of each equation to produce

W (s] DS -D)W, = 0 (5.47)
and

WY (ST DS, -D)W, = 0. | (5.48)

Similarly, pre-multiply (5.42) by wg and take the transpose to obtain

T, T B
W) (S),DS. -D)W, = 0. (5.49)

1

Now, using (5.40), (5.41) and (5.47) ~ (5.49), we have

[ T
W
1
T T _ T T _
W (sllell D)W = w2 [sllell D] {wl w2 w3]
T
W3
; T T '
= diag | 0 0 W - (5.50)
[ 3(Sllell D)W3]

" " « . . . 3
where diag is used to denote a diagonal matrix. Since W is nonsingular,

WT(ST DSll—D)W is negative semidefinite and thus, from (5.50), we have

11
condition c). This completes the proof of the necessity.

Consider now the sufficiency. Assume that conditionsa), b)

and ¢) are met. For D = Gu_we know that (5.45) and (5.46) are satisfied.
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That is
T
(S],"U)G W, =0 (5.51)
T —
(Sll+U)Gllw2 = 0. (5.52)

Since Tl is a nonsingular square matrix, the substitution of condition
a) into (5.51) produces
1

T —
(Sll—U)DWlTl =0 (5.53)

from which we have

(Sil—U)DWl =0 (5.54)

which is identical to (5.45). Equation (5.42) then follows directly.
Similarly, by substituting condition b) into (5.52), we obtain equation
(5.43). Now, by following the same procedure used in the necessity,

we can arrive at (5.50), from which we conclude, with the use of condition

T
c), that WT(S DS. . -D)W and hence S

T DS
117711 11

ll—D, is negative semidefinite.

Theoreﬁ 5.4 gives necessary and sufficient conditions for the
existence of alternate Lyapunov functions which may be either diagonal
or nondiagonal. Alternate equivalent forms of the conditions in the
theorem can be stated; however, the form given appears to be the most
suitable for the present purpose.

As an example of the application of Theorem 5.4, consider the
prototype filter shown in Fig. 5.1. For an appropriate choice of
element values, such a structure could be a realization of a third-
order elliptic lowpass filter. The network graph, showing the tree

chosen for the analysis, is given in Fig. 5.2. We obtain the

following matrices:
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L
“__fﬁm___.
Rs
— NN ¢
C3
16 C, =~ =< C, R,
& o

Fig. 5.1 Non-minimal third-order lowpass filter.

Fig. 5.2 Network graph corresponding to Fig. 5.1.
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i T
G4 0 0
= +
Gll 0 Gg Gl Gl (5.55)
+
0 Gl Gg Gl
and hence
AR4 0 | 0
R = = 0 G,+G. -G 5.5
1~ & 1% 761 (5.56)

i 0 -G G1+G5J

where A = GlG6 + GlGS + G5G6'

(5.57)

X0
it
0
|

There are two loops of reactive elements, hence two eigenvalues equal
to -1 in the noncanonic Sll' One of these eigenvalues, due to the
loop of capacitances, is removed in the formation of the canonic
filter; hence, only one eigenvalue at -1 now exists in Sll' There are
no cutsets of reactive elements; hence there are no eigenvalues equal
to +1. The two eigenvalues not on the unit circle which.are a result
of the resistive terminations can easily be determinedfif desired.

Since there do not exist any resistive twigs,QGL2 does not
exist. Thus we can choose Y (see (5.21)) to be a convenient nonzero
value

Y =1 ’ (5.58)

which then produces
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-1
r\.' —
W2 = 1 . (5.59)
1
Using (5.34), condition b) of Theorem 5.4 can be written as
n, o,
DR..W, = W. T, - (5.60)

1172 272
where, in this example,T2 is a nonzero scalar. If we consider only

those solutions D which are diagonal
D = diag [dl a, d3] (5.61)

then (5.60) is equivalent to the following three equations:

R4dl = T2 (5.62a)
G6d2 = AT2 (5.62b)
G5d3 =AT2 . (5.62¢)

A solution to (5.62) unique to within the arbitrary constant T2

can always be obtained. If T2 is chosen to be unity, then

d, =G . (5.63a)

G,G_ +G.G_+G_.G
d2 __16 15 576 . (5.63b)
G6 ‘

| 664+G GGG o
dz = Gl . (5.63c)
2

Since all of the prototype element values are positive, (5.63) will
yield positive values for the entries of D.
It now only remains to satisfy condition ¢) of Theorem 5.4.

However, since D is now unique to within an arbitrary multiplicative
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constant, it is more convenient to simply check to see if SleSll—D

is negative semidefinite for a particular Sll' If, for example, we

choose the element values to be

RS =1 RL = 1 L =16/15
Cl =1 02 =1 C3 = 1/16
then Sll is given by
-2 18 18
1
Sll = 37 15 -7 -7 (5.64)
15 -7 -7
and
15/16 O 6]
D= 0] 9/8 0 . (5.65)
0 0 9/8
It is readily verified that SleSll-D is negative semidefinite and

thuss as discussed previously, a signal modification scheme which reduces
“he magnitude of the adaptor output signals will produce a realizable
filter which is free from parasitic oscillations.

The element values given for this particular filter can
be obtained by approximating the values given in [30] for.a filter
having a CCO031517 specification. These element values have also been
used by Meerk8tter [42].

If all of the extrancous inputs and ocutputs are removed
from the n-port adaptor and the remaining matrix is subjected to a

numerical refactoring, the following representation is produced:
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1 0o o -1 -1]]|1 o 0o o 1
0 1 -1 -2 -2 1 0 1 -1 -1
Tlo o 1 1 1 1 1 0 o of- (566
0 0 0o 1 1 1 -1 0 1 1
- 4 15
7] Y

A realization of (5.66) can be obtained using only 8 adders and 2
multipliers. The multipliers, which have values of 1/4 and 15/32,
can both be operated in the same time slot. The fregquency response
obtained from a simulation of this filter is shown in Fig. 5.3. A
realization of the same filter, usin§ ?ettweis' canonic method [14]
and the standard adaptors, requires about 15 adders and 4 multipliers.
The multipliers,of which three are equal to 1/2 and the other is equal
to 1/16, require two time slots for the required computations. A
canonic realization using the lattice adaptor [15] requires 7 asdders
and 3 multipliers having values of 1/2, 1/2 and 9/16. Two multiplier
time slots are required.

As a second example, we shall consider the fifth-order
elliptic type lowpass structure of Fig- 5.4. BAnalysis using the tree

of Fig. 5.5 produces

— ' "
G, 0
]
Ge 1
—————— '——-—--——.-—-—.—-————-———
G, = : G176, 0 G (5.67)
: {
: 0] G2+G8 G2
|
N G, G *G,¥G,
L .
-
1 0 o 1 0 1
T of - . (5.68)
*C,yR 0 1 - o0’ C Lo o 1 1
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9,10 | ’

@c@g"

2.00 ] T T T
.99 0,95 06.19 0.i5 6¢.29 90.25

NORPALIZED FREQUENCY §/Fs

Fig. 5.3 Frequency response of third-order lowpass filter obtained
by simulation using (5.66).
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Fig. 5.4 Non-minimal fifth-order elliptic lowpass filter.

Fig. 5.5 Network graph corresponding to Fig. 5.4.
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Of the four reactive loops in the prototype, two are effectively removed
by the minimal realization procedure and thus there remain two eigenvalues
at -1. The reactive cutset produces one eigenvalue at +1. From Qg R we
2
obtain
0
x= | o (5.69)
1
while, since Q does not exist
GL2
1 0
¥ = (5.70)
o 1
" .
Wl and W2 are then found to be
1 -1 0
1 0o -1
W, = % = 1 0 5.71
l - O 4 2 - ( - )
0 0 1
1 J 1 1
Condition a) of the theorem requires that for a diagonal b
dl G5
9 %6 |
= T (5.72)
0 Gl 1 .
G2
d5 ‘ G1+G2+G9
e - -~ =
where"I‘l is a nonzero scalar. 'Since Gl’ G2 and Tl are all different
from zero, no solution to (5.72) exists and thus we cannot meet the

require

note th

ments for the existence of a diagonal D. It is interesting to

at the reason for this failure is strictly topological.
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The network of Fig. 5.4 contains seven possible normal trees,
each one of which will produce a different cutset matrix and thus a

W, and W,. Unfortﬁnately, the same result is produced

different Gll' 1 5

in each case and thus we must conclude that there does not exist a
diagonal Lyapunov function for a canonical realization of this fifth-
order network. Two possible remedies to this problem were considered.
The insertion of resistive elements in the prototype, such that the
degree of the realization remains unchanged, alsoc failed to produce
a desirable Gll' Even if one of the modes at -1 was not removed,
thus producing a realization of one degree greater than the minimal
degree and a Gll similar to that in the third-order elliptic case, the
results were still neégative.

The investigation of other networks, including the Watanabe
and seventh-order elliptic type structures used in Chapter II1I, forces
the conclusion that, except in a limited number of cases, diagonal'

Lyapunov functions do not exist for wave digital filters having a

nondiagonal Gll'

5.3 TRANSFORMATION OF VARIABLES TO DIAGONALIZE G

11

It is well known that a similarity transformation of the
state variables of a linear system will produce another system of the
same dimension having the same input-output transfer fuﬁction,
Additionally, the new system is controllable (observable) if and onliy
if thé original system is controllable (observable). If such a-
transformation is applied to a wave digital filter for which a diagonal
Lyapunov function does not exist, then it is possible that for the new

system such a diagonal function will exist.
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Consider the nonsingular linear transformation P, relating
the original state variables x, to the new set y:
X = Py . (5.73)
The transformed system will then have a state transition matrix of the
form

-1
A =P Is P. (5.74)

If we restrict our attention to those transformations which are block

diagonal and commutable with X ,then

A=15s
T "1 (5.75)
where
S =pls p | 5.76)
11 117 (5.76),

. . T . . .
Next consider the matrix SllGllsll Gll which is known to be symmetric

and negative semidefinite. A congruence transformation using P produces

another negative semidefinite matrix as follows:

PT(SflGllSll—Gll)P = PTsflPT—lPTGllPP—lsllp—pTGllp = %?lngll—o'
(5.77)
where ¢
D =plG,. P. (5.78)

11

.Because Gll is positive definite, the matrix P can always be chosen so
that D is a diagonal positive definite matrix and thus can be used as a
Lyapunov function for the new system. |

A realization of the new system is easily obtained as shown
in Fig. 5.6. Since the matrices P and P_-l have to be built into this

realization, it is important that these matrices are chosen with care.
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Fig. 5.6 System produced by the introduction of the diagonalization matrices, P and P—l .
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We shall show in the next thoerem that P can always be chosen so
that it is a product of elementary self-inverse matrices. This form
is important for three reasons. Firstly, the transformed system
cannot suffer from any sensitivity problems with respect to the
multipliers in P. No matter which P is implemented, the exact inverse
is always used and thus the transformed and original systems have
identical transfer functions. Secondly, the elementary product form
for P seems to require the minimum number of multipliers and adders
for the type of systems which we are considering. Although no proof
of this statement is available, experience with several examples
supports this claim. Finally, the self-inverse product form of P
allows the components of P in the realization to be multiplexed,
either in hardware or software, as is the case‘with the topological

matrix F.

Theorem 5.5:
A definite symmetric matrix G can always be reduced to a
. T
diagonal form D by a congruence transformation, P 'GP = D where

P = Ple...PQ is a product of self-inverse matrices,

Prcof:

Let G be an nxn matrix given by G = [gij]' i, 3=1,2,...,n.
Then, since G is definite, 955 # 0 for any i and thus can be used in
an elementary column operation to clear out any other nonzero entry

in the ith row, say g.j. This operation is eguivalent to post-
i

multiplication by the matrix Pl
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1 o0 0
0 1
P, = .1 Y 543
1 ’ ) Y. =
. Lo By
. 0 -1 .
0 Coe 1 J

where all diagonal entries are 1 except for the jj entry which is -1
and all off-diagonal entries are 0 except for the ij entry which is
equal to Yl‘ Pz represents the compleméntary row operations which will
clear out the symmetrical entry in the ith column. It is easily
established that PlPl = U. The matrix PTGPl, which now has entries

ij and ji equal to zero, is a definite matrix (since Pl is nonsingular)
and hence can be subjected to a similar transformation using P2, where
Psz = U. Continuing this procedure using a sequence of self-inverse
matrices, it is possible to systematically eliminate all off-diagonal
terms to‘produce the desired diagonal form D = PTGP where P = Ple...Pg.
The order and manner in which the entries are cleared out is in general
not fixed and thus the sequence of matrices in P is not unique. 2an
upper bound on the number of opcrations required can be derived as
follows: First, clear out the first row and column using the 11 entry.
This requires at most n-1 operations. Next, using the 22 entry we can
clear out the second row and column without altering the first row and
column. This reguires at most n-2 operations. Continuing on in this
manner, we finally need at most 1 operation to clear out the n-1 row
and column. Thus 2 < (n-1)+(n-2)+...+1 = n(n-1)/2.

In order to illustrate the procedure required to obtain D,

consider the form of Gll obtained for the fifth-order structure of the
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previous section (see equation (5.67)). Since the method used in
Chapter III assumed that there is no interaction between the
capacitive and inductive redundancies, Gll can be written as the

direct sum of qx and GG

Gll = diag [qx ’ GG] (5.79)
P can therefore be written as the direct sum of gf and Pe
P = diag [Px, ,P@] (5.80)

and thus B, and b, are determined independently. For the present
example there are no inductive redundancies and thus Gy, is diagonal

and Pp = U. G, can be diagonalized using the self-inverse matrix

1 0 Yl 1 0 O
32 = o 1 0 0 1 Y2 = PlP2 {(5.81)
0 0 -1 0 0 -1
where
G G ’
1 2
Y, = r Y, T . (5.82 a,b)
+ +
1 Gl G7 2 G2 G8

An alternative form for P, using Yoy = G2/(G1+G +G9) is possible.

2
As a second example, we shall return to the filter introduced
in Example 3.2. The lowpass to bandpass transformation used in that

example results in a system for which the state transition matrix

and thus the stability theory discussed so far is not

is not Zsll

directly applicable. The transformation in which z is replaced by -z
effectively doubles the number of delay terminated ports. Each port
which would have been terminated by a delay in the lowpass filter is

transformed into two such ports in the bandpass filter,as shown in Fig. 5.7.
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Fig. 5.7 Effect of the lowpass to bandpass . transformation
on the delay terminated ports.
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If the state variables are chosen as shown in Fig. 5.7,then

the state equations are

B 1 B ] B T
+
xl(n 1) 0 U 0 xl(n)
+ = -_— -
X, (n+1) Zsll 0 2512 x2(n) . (5.83)
y(n) S, O S5, un)
After defining $ = -L,these state equations can be associated with an

n-port adaptor specified by

[ o u o |
S = S5, 0 s, . (5.84)
S;1 9 Sy
If we consider ]
11
5 6\, (5.85)
€22

where Gll and G22 are the components of the port. conductance matrix
for the lowpass filter, then it can be verified that, since the lowpass

adaptor is pseudolossless,so is the bandpass adaptor. That is

APAA A

S GS-G = 0. (5.86)

It is interesting to note that this adaptor is not reciprocal and hence
not self-inverse. Also, the system (5.83) can be proven to be minimal.
Since the bandpass adaptor is pscudolossless with respect

to @ then, from Theorem 4.5,
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Gll
6., = (5.87)
11 Gll
can be used as a Lyapunov function for the system. Noting that
3
A = +(~A__) ? together with the fact that the lowpass minimal realization

BP - LP

is asymptotically stable ([XLP|<1), we have |KBP{< 1 and thus asymptotic
stability is preserved in the bandpass realization. Theorem 4.7 can
then be used to guarantee freedom from zero-input limit cycles.

In order to produce a diagonal Lyapunov function, B, for the

bandpass filter, it is only necessary to diagonalize G in the lowpass

11
filter. The frequency transformation then produces D = diag [D, D]

. -1 . .
This means that P and P need only be inserted once each in the flow
diagram.

Because there are no inductive degeneracies in this seventh-

order structure, it is'necessary only to diagonalize the capacitive

component of Gll' From (3.84),Gé is obtained as
- -
10 1
3 3 0 0
1 11 1
3 3 3 © ‘
Gy = : (5.88)
o, L2581 -
3 6 3
1 4
0 0 3 3

The technique which produces the minimum number of multipliers requires
that the off-diagonal elements in the first and last row and column

be cleared out first. This is accomplished using
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1
1 35 0 o
o -1 0 o
Py = o o -1 o |- (5.89)
1
o o 7 1
Then
- :
10
= 0 o o
09 1
PGP, = 30 3 (5.90)
1 49
°'3 1z 0
4
o 0 o 3
. J

The centre block in (5.90) can be diagonalized in two ways. If the

22 entry is used,then

1 0 0] 0
10
0 1 109 0
P2 = (5.91)
0 0 -1 0
0] 0 0 1
- -
and
10 109 5301 4
- ai 10 109 5301 44 5.92
D = diag [ 3" 30" 1308 3] ' ( )

If the 33 entry is used.,then

1 0 0] 0

0o -1 o0 o
b = (5.93)
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and
. 10 323 49 4
D = diag 3 147' 12" 3]° (5.94)
In either case P& = Ple requires 3 multipliers and 3 adders. One

of the multipliers has a finite word length binary representation

and thus can be realized exactly. The others are not of finite word length
and thus must be approximated for realizability. When this is done,

D is no longer diagonal. This problem and others regarding the

practical implementation of the signal modification scheme are

discussed in the next chapter.



CHAPTER VI

SUPPRESSION OF PARASITIC OSCILLATIONS IN

NONLINEAR WAVE DIGITAL FILTERS USING n-PORT ADAPTORS

The systems obtained using the standard n-port adaptor
method or the minimal systems using the diagonalization procedure
of the last chapter both have a diagonal Lyapunov function. In
this chapter we develop techniques which can be used to obtain
bounds on the errors caused by finite signal word lengths and
coefficient truncation in P. These bounds and the results of
Theofem 4.7 and Corollary 4.7 can be used to define the signal
modifications required to guarantee continued pseudopassivity of
the filter and hence freedom from parasitic oscillations.

6.1 SIGNAL MODIFICATIONS FOR STABILITY

Finite precision in tﬁe signals and coefficients cause
the signals in a truedigital filter to deviate from the corresponding
signals in the associated linear filter. Anticipating the results
of the next section, we shali'assume that each signal % in the finite
precision realization has associated with it an error interval such
that the corresponding signal, x, in the ideal filter lie; in this
interval. That is

xe[%—ol,§+02], o, >0, 0, >0 (6.1)

Standard interval notation is used where € denotes membership .

This interval can be illustrated as shown below.

[ . ] (6.2)
L " J
R-0 g {+0
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As discussed in the closing comments of Chapter IV, parasitic
oscillations can be avoided if, for the same input state, the

next states of the finite precision filter are smaller in magnitude
than those in the ideal filter. Examination of (6.1) or (6.2)

shows that this condition is not automatically guaranteed since

the ideal value could be anywhere in the interval. However, we
shall now show that it is possible to modify the finite precision
outputs at the delays so that the magnitude condition is always
satisfied. These modifications actually consist of the substitution
of a different set of signal values at the delays.

The specific form of the modifications depends upon the
manner in which the signal values are represented. We shall assume
that the filters under consideration are realized using two's-
complement fixed-point arithmetic. This form of arithmetic is used
in the majority of hardware filters and is also the basic arithmetic
implemented in most minicomputers. If the signal is repfesented by
mtk bits

I - 6.3)

where the radix point is assumed to be between 60 and 61, then
the actual signal value is given by
k. m~1

x=-8_2 + ] 2. _ (6.4)
i=-k+1

The values of k and m can be different at different points in the
filter; however, we will assume that the signals in the main delays
have k = 0. We also assume that the signals % at the output of the

adaptor before modification have a value of m consistent with the
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number of bits in the delays but that k > 0 is temporarily allowed.
The signal modification procedure must therefore produce a new set
of signals with k = O which satisfy the magnitude condition. This
can be accomplished in two steps. First, a small correqtion will
be applied to produce signals which satisfy the magnitude condition
but may not have k = 0. The errors introduced by this primary
correction can be made arbitrarily small by allowing an increase
in the precision.of the computations within the filter. Secondly,
if k¥ # 0 after the primary correction, then the signal is simply
front-chopped [25]. This is equivalent to discarding the bits to
the left of 60. The fact that this procedure reduces the magnitude
is easily established. If any of the bits chopped were nonzero,
then the original magnitude must have been greater than or equal
to one. The front-chopped version, however, is always less than
or equal to one in magnitude. Hence,the magnitude is either reduced
or stays the same as a result of front-chopping. This type of
signal modification can cause large errors in the signals and thus
the number of overflows should be limited by proper use of scaling.
The primary correction scheme to be discussed next ideally
requires that either -0, or O0_ may be added to the signals at the

1 2

delays. However, in general, 0. and ¢

1 5 cannot be represented exactly

in the word length allowed at the delays and thus the addition is not
realizable. 1In situvations such as this, the least upper bounds on

Ol and 02 must be replaced by weaker bounds which are realizable.

Thus:dl is replaced by 81 where 31 is the smallest number which

"~
satisfies 0. > 0. and which has an exact representation in the

1 1

A

word length allowed. Similarly, g, is replaced by O For example,

5

F4
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if there are 15 bits after the radix point, then 2-15 + 2-16, which

is not realizable, is replaced by 2—14'

Depending upon the value of X, four different situations for

the primary corrections arise.

a) >0, % > Gl,which can be represented by
8. r o .‘
L 1
0 x—@l R x+82 (6.5)

In this case |§~81| < |x| ana thus the magnitude condition could be
satisfied if X was replaced by i—@l. The value ﬁ—@l can be easily

obtained by adding —81 to X.

by ¥ <o, !QI > 32, which can be represented by
r R, S -‘ s
L o J -
2—81 X §+62 0 (6.6)

In this case l§+821§_|x| and thus the magnitude condition could be
satisfied if ¥ was replaced by §+62. The value §+62 can be produced
by adding 62 to X.

c) ¥>0, % 5_81, which can be represented by

I . . 1
L i J
>’E~6l 0 g X+8, (6.7)

Since x can take on any value in the interval, zero is the only value
which is assured of being smaller in magnitude than x. The magnitude
condition is satisfied by replacing X by zero.

d) % <o, |%] 5_62, which can be represented by

r — ]
C ]
2-8, & o 248, (6.8)

This situation is similar to that in c¢) and hence the magnitude
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condition is satisfied by replacing X by zero.

The compensation just described could be carried out by
first determining both the magnitude and the sign of the signal after
which the appropriate modification can take place. An equivalent,
yet computationally less cumbersome, method can be used if the correction
routine is described in the following equivalent form:

If X is positive, add —81. Then, if the new signal ¥ —81 is

1
still positive, no further action is required. If ﬁl—ﬁl is now negative,
it must be set to zero. If ¥ is negative, add 82. Then, if the new
signal §l+62 is still negative, no further action is required. If
§l+82 is now positive, it must be set to zero.

A straightforward implementation of this scheme could be
set up as shown in Fig. 6.1. The sign bit of X is used to select
the appropriate signal, —31 or 62, which is added to X. The EXCLUSIVE-
NOR gate determines whether the sign has changed; if it has changed,the
output is 0. The set of AND gates either produces zero or the output
of the adder. The leadingk bits in the final output are éeleted so
that k = O. |

The data selector can be realized using only a few inverters.

th

ith bit in —81 and éi(az) as the i bit

If we denote Gi(~8l) as the

in 62, then four situations are apparent:

a) 6i(—6‘l) = 0, ai<a2> =0
b)- ai(-al) =0, ai<62> =1
c) Gi(~81) =1, éi(az) = 1
d) éi(-al) =1, 6i(82) = 0.

The correct value for the ith bit out of the data selector is obtained

as follows: 1In case
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DATA
[ SELECTOR
—Gl or 02
C -+
~ P~ AN A A
X X—Ul or X+02
\/

Fig. 6.1 Implementation of the scheme which guarantees freedom from
parasitic oscillations.

6_y o‘{>¢ ) 5

Fig. 6.2 BAn example of the data selector implementation when

m=15, &, = 2713 ana §.= 2713 , ,714-

1 2



146

a) hardwire a 0,

b) wuse the sign bit,

c) hardwire a 1,

d4) complement the sign bit.
This is illustrated in Fig. 6.2, for the case where m = 15, 81 =2
and 82 =27 2—14.

The primary and secondary medifications are not generally
commutative operations. One exception occurs when 81=O and 82 has a
value equal to a 1 in the least significant bit of the signal. In
this case it may be possible to obtain a reduction in the hardware
complexity, since then modulo 2 adders may be used instead of full
precision adders at a number of points in the realization. A reduction
in the hardware needed to perform the signal modifications can also be
achieved. It is necessary only to add a 1 in the least significant
bit when the signal is negative. The addition of this bit cannot
produce a positive number and therefore no additional checking of
the sum is required.

The technique presented in this section can be considered to
be a generalization of the method used by Fettweis and Meerkdtter [25]
as applied to wave digital structures using series and_pérallel adaptors.

In those realizations the above - mentioned special case occurs. A

somewhat similar technique has also been used by L& [20].

6.2 FERROR INTERVAL ANALYSIS

Error analysis using interval algebra has been used to
study the errors caused by finite word length effects in computational

algorithms [43]. Mom recently, this technique has been applied,
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as an alternative to the commonly used statistical methods, in the
study of quantization noise in digital filters [44]. In this section
we use a modified form of interval arithmetic to monito:'the errors
caused by the finite precision realization.

Two sources of error occur. The first is due to the signal
word length reduction necessary in a recursive realization. If such
reduction is not performed, the signal word length would grow indef-
initely as signals propagate inside the feedback loops. The second
source is due to coefficient gquantization. Since a linear pseudoloss=-
less realization with finite word length coefficients can be used as
the basis of the filter, the only source of this form of error is in
the diagonalization matrices P and P_l which must be approximated for
realizability.

Assume that each signal, ¥, in the finite precision realization

. has an error, e, associated with it such that the corresponding signal,
X, in the ideal filter is given by
Xx =%+ e. (6.9)
If the error is known to lie in the interval

ee [-0,,0,], : (6.10)

then the ideal signal x must be in the interval given by
X € [x—Gl, X+02]. (6.11)
As these signals pass through the filter, new signals, each

having its own error interval, are created. The error at the output

of an arithmetic or word length reducing operation depends upon both
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the error in the input and any additional error introduced by the
operation. If the output error, denoted by e s is restricted to
an interval similar to (6.10), then the interval in which the ideal
signal value lies can be computed from eO and the realiéed signal
value in a manner identical to that used to produce (6.11) from
(6.9) and (6.10).

Using (6.9)-(6.11) to define the input signals, we now
consider the output error associated with the individual operationsg
found in a digital filter realization.

(a) Inversion
From (6.9)

-x = (-X) + (-e). (6.12)
Since no additional errors are introduced by an inversion, the
interval of the output error e, = (-e) is obtained from the input
error interval by interchanging the absolute value of the end points
while maintaining the sign. Thus, from (6.10),

e, = (-e)e [—Oz, OlJ . (6.13)

(b) Addition

=A =A+ -
it xl xl + el and x2 x2 e2, then

xl + x2 = (xl + x2) + (el + e2). (6.14)

Here we assume that the addition is carried out with full precision
which necessitates that the word length at the output of the adder
is 1 bit longer than the largest input word length. The input error

intervals, which are given by
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e € [-Gl(xl), Gz(xl)], e, € [—Ol(x2), GZ(XZ)] (6.15)

combine to produce the output error

e, = (él + e2) € [—Gl(xl) - Gl(xz), cz(xl) + 02(x2)]. (6.16)

(c) Exact nmultiplication
Using (6.9)

ox = 0X + ae, o > 0. (6.17)

In this case we assume that the multiplier coefficient o is positive
and can be represented exactly in the word length available. The
effect of the multiplier is to scale the input error e into the
output error eO = Qe

e = (ce) € [-acl, aozl. (6.18)

At this point we have assumed that the multiplication
0% has been carried out in full precisicn. Truncation or réunding,
which will be discussed shortly, . is normally used to reduce the
output word length.

Multiplication by negative coefficients can be interpreted
as the cascade of an inversion and multiplication by a positive
coefficient. |

(d) Multiplication by a quantized coefficient
The exact multiplier value o is given by

o =48+ Au @ >0,4>0 (6.19)
where O is the quantized multiplier and Aa is the error. Again we

assume that both o and & are positive. Using (6.19) and (6.9), the

ideal output signal is
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g

(G + Do) (R + e)

&% + Ge + Aox. (6.20)
The output which appears in the realized system, 8%, differs from
the ideal output, ox, by the output error eo.

ax = 8% + e, - (6.21)

eo consists of two terms; el = Qe which is due to the error in the
input and e, = Aax which can be attributed to the error in the
multiplier. If x, the signal value which would have occurred at the
input of the multiplier in an ideal realization is known, then the e,

is known exactly and can be expressed in interval form as

e, € [dox, Aox]. (6.22)

Then, using (6.16) and (6.18), we obtain

= -do_ + & . 6.23
eo (el + ez) el aol Aox, a02 + Aox) ( )

When x is unknown but can be bounded

that is,
X € [x ., x ] (6.24)
min max .
then, using (6.13) and (6.18), e2 becomes

e, € [Ao x . ,Ao x 1, Aa > 0 (6.25a)
2 min max

or

e, € [Aax , Ax .1, A<oO A (6.25b)
2 max min

and e, is given by
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e [-8o. + & >
eo [ ol Aaxmin, a02 + Aaxmax], A o] (6.26a)

r A A
© e € [~-00., + AaX . GO, + AxX . ), Aa < 0. (6.26b)
o] max 2 m

1 in
The intervals associated with the output signal can be obtained if
desired from & X and the appropriate output error, (6.23) or (6.26).

The intervals in (6.26) produced using the bounds on x
will generally be larger than the interval in (6.23) obtained from
the exact value. However, since these larger intervals can be
computed independently of the precise values of the signals and
therefore need only be determined once for a particular filter,
they will be used exclusively in the remainder of this chapter.

€) Truncation of the two's-complement representation
Truncation of a signal is performed by simply deleting a specified
number of bits at the least significant end of the word. If the
input signal X is truncated so that in the output signal QT there

remain r-1 bits to the right of the radix point, then, with reference

to (6.3) and (6.4), the error introduced is
m-1

S2-.3 = ¥ -1
e, =X X, .2 6i2 . (6.27)
i=r

Bounds on this truncation error are given by

e, € [0, W, (6.28)
where
m-1 -
M, = Y o2 . (6.29)
i=r

Since the input signal X in general has an associated

nonzero crror component, then, from (6.9) and (6.27),
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=% =% + . .
X X + e xT (eT + e) (6.30)

The output error eo = eT + e can be computed from (6.28), (6.29) and

(6.10) using (6.16)

= -0_,
e (eT + e) g [ 1 02

+ uz]. (6.31)
f) Rounding of the two's complement representation
Rounding of a siénal to reduce the word length is often used as an
alternative to truncation. This signal modification scheme can be
modelled as a truncation followed by the addition of the most
significant truncated bit into the least significant bit of the

truncated signal. Using this model and the interval for eT, (6.28)

and (6.29), the roundoff error, when r-1 bits are retained to the

right of the radix point, is

=£ - € (6.32)

ep = X Xe

where

- (6.33)

eR e[ Ull]-lz]

—r m-1 -3
and Ho=27, My = yooo2™h, (6.34)
i=r+l

If the input signal is in error, then

X=X+ e = XR + (eR + @) . (6.35)

and the output error eo = eR + e is

eO = (eR + e) € [*Ol—ul,GZ + u2]. (6.36)

The width of the error interval for rounding (6.33),
(6.34) is the same as the width obtained for truncation (6.28),

(6.29). The rounding interval, however, is essentially symnetrically



placed about zero and thus is often preferred to truncation.

The implementation of an interval arithmetic routine can
be conveniently carried out on a digital computer using complex
arithmetic in which the lower and upper bounds on the intervals
are represented by the real and imaginary components of a complex
numper. All of the required operations, with the exception of
inversion, are easily carried out using standard complex addition
and multiplication. Inversion can be accomplished by multiplying
the conjugate of the complex number representing the input interval
by the complex number (0,-1), i.e. -j.

The computation of the error bounds used in Section 6.1
can be carried out using interval arithmetic in two ways. The first
method is based upon a strictly arithmetic procedure in which the
errors are assumed to be independent from signal to signal. The
second method exploits the dependent nature of the signals in a
combination algebraic and arithmetic routine.

The difference in the intervals produced by these methods
can best be illustrated by a simple example. Consider the expression

Yy =%, - ot(xl + x2), a >0 (6.37)

We shall assume that the filter realization is such that the sum of
X, + X, is first computed, followed by multiplication by a and the

truncation of the product, which is then subtracted from xl. Also

assume that the input signals Xy and X, are given by

1 1 1’ 2 2 2

where, for convenience,

X, =%_+ e {(6.38 a,b)



el = 62 € [—01,02]. (6.39)

Using the rules just developed, the ultimate ideal output signal, vy,

satisfies
=A+
Yy y eo (6.40)
where
y = xl—[a(xl + x2)]T (6.41)
and
eO = el - Ot(el + e2) - eT. (6.42)

The symbol [ ]T is used to denote the truncated signal.
The difference in the two methods depends upon how the
interval for e, is evaluated. If the error at the multiplier output,

OL(el + e2), is thought of as being independent of e then a

l’
straightforward application of the rules to (6.42) produces

e € [-200, -0, -
0 1

5 200, + 02]. (6.43)

2’ 1

The advantage of this technique is the relative ease in which the

intervals can be computed. If a simulation of the filter flow diagram

is available, then, with only minor modifications, the same program

can be used to compute the error intervals. These changes are

required to allow the use of complex signals and to provide for the

introduction of the intervals due to the finite word length operations.
If, on the other hand, the expression for (6.42) is simplified

algebraically to

e (et o e - 6.44
e, (1 a)el e -e, ( )

then the application of the rules produces

-(1- - - ’ + . 6.45
e, e [-(1 oz)ol oo u2 aol 02] ( )

2
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This interval is smaller than that of (6.43). For example,
if Gl = 02, then (6.43) becomes [—(l+20¢)6l - u2, (l+2a)Ol] while
(6.45) becomes [—Gl - uz, (l+a)01]. The difference could be substantial
for values of o close to unity. This hypothesis has been confirmed
experimentally and thus we shall henceforth only consider intervals
produced by the second method.

In order to compute intervals via this method, it is necessary
to obtain the output error symbolically in terms of the individual
€rror sources. For a filter containing only a moderate number of
multipliers this task, if carried out by hand, becomes extremely time-
consuming and prone to error. Fortunately, it is possible to program
the entire procedure. The technique closely follows the method used
in the example just presented. First, all of the sources of error
due to both finite signal word length and coefficient quantization
are identified and, at each point in the filter where such an error
occurs, an input variable is defined. The transfer matrix from these
new inputs to the adaptor (which now includes P and Phl) outputs is
computed. This is carried out using a modified version of the filter
simulation routine in which all of the adaptor inputs are set to zero
and new inputs for the error sources are included as required. Next,
based upon the type of arithmetic to be used in the reaiization, the
errors caused by finite signal word length are assigned intervals.
Inter&als are also computed for the error variables which correspond
to coefficient quantization. Finally, the output error intervals can

be computed from the transfer matrix and the input error intervals using

a matrix interval arithmetic routine based upon the rules given earlier.
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The input intervals for the error variables due to coefficient
quantization can be obtained using a similar technique. First, using
a realization which uses the exact multipliers in P, the transfer
matrix from the state variables to the quantized multipliers is
computed. Then, with the state variable intervals set to [Xmin'

Xmax]' where Xmin and Xmax are the minimum and maximum signal values
allowed in the delays, the intervals at the quantized multipliers

can be computed. These intervals represent the range of signal values
which are possible in the ideal realization. The desired error intervals
are then obtained from (6.25).

Because the above computations are carried out on a finite
word length computer, the error interval obtained at the adaptor out-
puts will itself be in error. However, since most of the calculations
involve numbers which have a finite word length that is much shorter
than the double precision word length of the computer, these errors
are extremely small. Furthermore, since the output interval width will
be increased to make the end points realizable numbers as discussed in
Section 6.1, these errors are highly unlikely to cause problems.

A summary of the procedure used to compute the error

intervals required to implement the signal modifications which

guarantee freedom from parasitic oscillations is given in Figure 6.3.
In order to illustrate the theory presented in this section,

we will again consider the filter of Exarple 3.2, The diagonalization

matrix, P = P1P2, given by (5.89) and (5.91), will be used. The

exact multiplier values are given by
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1. sSimulate the filter using the exact multipliers in P.

2. Compute the transfer matrix from the state variables to
the multipliers in P which are to be quantized.

3. With the state variable intervals set to [xmin' xmax]'
use a matrix interval routine, based upon the interval rules a) to f)
and the transfer matrix of step 2 to compute the bounds on the signals
at the quantized multipliers.

4. Using (6.25), compute the interyals of the errors
caused by the multiplier quantization.

5. Simulate the filter again, this time using the quantized
multipliers in P.

6. Identify all sources of error due to word length reduction
or coefficient quantization and insert variables into the realization
at the appropriate places.

7. Compute the transfer matrix from the error variables to
the adaptor outputs. (The adaptor now includes P and P—l.)

8. Depending upon.the type of word length reduction to be
used (i.e. truncation or rounding), compute the values of the error
intervals using (6.27) and (6.28) or (6.32) and (6.33).

9. Using a matrix interval routine together with the results

of steps 4, 7 and 8, compute the output error intervals at the outputs

of the adaptor.

Figure 6.3 Summary of the procedure for computing the error intervals
required to implement the signal modification which

quarantee freedom from parasitic oscillations.
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1 1
Y1 7 109 ’ Yy T 1o Y357 - (6.46)

Two of these multipliers, Yl and Y2 must be modified for realizability.

Two different sets of values will be considered.

A —4 - "'8 bt ks had - =3

§,=2 +2 R T I e
(6.47a)

ey _4 _5 - - -

=2 427 -2 9 _ 14 YT (6.47b)

which will be called the long coefficients, and

9, = IR R A e (6.48a)
A _4 ""5 - -
g,=2 w2 -2 9 .7 (6.48b)

which will be called the short coefficients.

We have previously assumed that the signals in the delays
have a representation as shown in (6.4) with k = 0. vFor the purposes
of this example we shall further assume that the delay signal word
lengths are 16 bits; thus m=16. The minimum and maximum values in
each of the delays is therefore

X . = -1, X
min max

i
-
i
[

(6.49)

Four different cases were studied. Either rounding or
truncation was used exclusively with each of the long aﬂd short
coefficients. Using the procedure described in Figure 6.3, the
resulting output error intervals were obtained. Table 6.1 gives the
normalized output intexrvals, e 8[—61,02], accurate to 4 decimal
places, in each case. The results are normalized such that 1
corresponds to a one in the least significant bit. The unnormalized

. . . ~15
intervals can be obtained by multiplying by 2 .



TABLE 6.1

OUTPUT ERROR INTERVALS FOR LONG AND SHORT COEFFICIENTS OF (6.47) BAND (6.48)

Long Coefficients

Short Coefficients

Rounding Truncation Rounding Truncation

[-1.5843, 1.9242] [-0.9859, 2.5226] [-1.8871, 2.2269] [-1.2886, 2.8253]
[-2.6148, 2.2711] [-2.4523, 2.4336] [-2.9832, 2.6395] [-2.8207, 2.8020]
[{-1.7005, 1.2122] [-0.6583, 2.2544] [~1.7181, 1.2299] [~0.6760, 2.2720]
[-1.4333, 1.7372] [-0.8423, 2.3463] [-1.7131, 2.0169] [-1.1040, 2.6260]
[-1.6699, 2.0279] [91.7814, 1.9165] [-2.0916, 2.4494] [-2.2030, 2.3380]
[-0.9339, 0.9498] [-0.8777, 1.0058] [-0.9575, 0.9731] [-0.9013, 1.0294]
[-1.0000, 0.5000] [-0.0000, 1.5000] [~1.0000, 0.5000] [~0.0000, 1.5000]

69T
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As expected, the intervals obtained by the exclusive use of
rounding are more symmetrical than those produced by truncation. Due
to the smaller error produced by the coefficient truncation in P, the
intervals for the long coefficients are generally smaller than those
for the short coefficients. When the intervals are modified for use
in the oscillation sﬁppression scheme the intervals of Table 6.2 are

produced. Because the maximum value which appears is 3l the

o’
corrections are in all cases limited to the two least significant
bits. In addition, since the actual corrections required when the
short coefficients are used are in most cases the same as those
required when the long coefficients are used, the extra word length
of the long coefficients is unnecessary. A realization using the
short coefficients can be easily implemented on a 16 bit machine.

The filter incorporating the short coefficients, rounding
to 16 bits after all multiplications and including the signal
modifications required for stability, was simulated. The unit sample
response became zero after 207 samples. Figure 6.4 was obtained from
a 1024 point FFT of this response. The spectrum of the roundoff noise,
which is clearly visible in the passband and stopband, accounts for
any deviation from the ideal characteristic of Figure B.éO.

As a second example of the application of the interval
analysis procedure, we again consider the same prototype filter.
This time, however, a non-mininal realization as would be produced by
the technique of Chapter 2 is studied. In this case 9 delays are

required. Since the port reference conductance matrix is diagonal,
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of Fig. 3.13 after the cycle-suppressing corrections are
carried out.



TABLE 6.2

REALIZABLE OUTPUT ERROR INTERVALS FOR LONG AND SHORT COEFFICIENTS OF (6.47) AND (6.48)

Long Coefficients Short Coefficients
Rounding Truncation Rounding Truncation
(-2, 2] (-1, 3] [~-2, 31 [-2, 3]
["31 3] ["31 3] [':31 3] [_31 3]
(-2, 2] (-1, 3] [-2, 2] (-1, 3]
[—21 2] ["'ll 3] ["21 3] [_21 3]
[-2, 3] (-2, 2] (-3, 31 [-3, 3]
[-1, 1] [-1, 2] (-1, 11 [-1, 2]
(-1, 1] . [ 0, 2] (-1, 1] [ 0, 2]

29T
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no diagonalization matrix is necessary and thus there are no errors

due to coefficient quantization. The error intervals obtained are

shown in Table 6.3. The corrections required when rounding is

used exclusively, are limited to llo or 2lo and are therefore

restricted to the two least significant bits. & number of the

intervals require corrections only in the least significant bit.

The ability to obtain oscillation-free filters in this manner provides
an alternative to the method used by Fettweis and Meerk8tter for series-
parallel adaptor realizations.

As a final note in this section, we emphasize that the
interval analysis technique can be used to generate sufficient
conditions for stability in nonlinear wave digital filters implemented
using any form of arithmetic. The rules presented can be easily
modified to include such situations as floating~-point arithmetic
and sign-magnitude truncation.

6.3 REMOVAL OF OVERFLOW OSCILLATIONS IN MINIMAL REALIZATIONS WITHOUT

DIAGONALIZATION

Zero input parasitic oscillations caused by overflows during
addition are called overflow oscillations. These oscillations are
extremely undesirable in a filter since in some cases the output can
oscillate between the maximum amplitude limits [1]. As we have shown,
both overflow and granularity oscillations can be avoided in minimal
realizations if the diagonalization matrices P and P_l are included
in the filter. However, in this section we shall show that it is

_l.
not necessary to include P and P in order to suppress the overflow



TABLE 6.3

OUTPUT ERROR INTERVALS FOR NON-MINIMAL REALIZATION

Rounding Truncation
Exact Realizable Exact Realizable
[-1.2500, 1.2305] [-2, 2] {-0.5000, 1.9805] (-1, 2]
[-0.7227, 0.4688] (-1, 11 [-0.2227, 0.9688] [-1, 1]
[-0.6602, 1.0000] {-1, 1] [-0.9102, 0.7500] [-1, 1]
[-1.7500, 1.4063] (-2, 2] {(-0.7500, 2.4063] (-1, 3]
[-1.1563, 0.9180] (-2, 1] [-0.6563, 1.4180] [-1, 2]
[-0.6602, 1.0000] (-1, 1} {-0.9102, 0.7500] (-1, 1]
(-1.1094, 0.7500] [-2, 1] {-0.1094, 1.7500] (-1, 2]
(-0.8750, 0.8907] [-l,'l] [-0.8750, 0.8907] (-1, 1]
(-0.7227, 0.4688] [-1, 1] [-0.2227, 0.9688] [-1, 1]

9T
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oscillations. This result is of importance if the granularity
oscillations have very small amplitudes or can be removed by
other means. Since Gll is diagonally dominant, compensation for
granularity in the signals based upon the diagonal component of
Gll will reduce the system energy in many cases. This decreases
the probability that granularity oscillations will appear.

In the study of overflow oscillations, the granularity
of the signal and thus any roundoff or truncation effects are ignored.
For the filters which we are considering, this means that only the
most significant bits of the adaptor output signals need to be
modified before being stored in the delays.

Using the diagonalization method of Section 5.3, the
Lyapunov function, V = xTG X, can be written as a sum of squares

11

weighted with positive coefficients. Thus
m
T 2
V =yDy = z y. 4. (6.50)
jop 1

where D = diag [di]’ di > 0, i=1,2,...,m.
Due to the form of (6.50), the conditions of Theorem 4.7
are satisfied if the overflows are removed so that

lyNL (n+1) | < |yL (n+l)| i =1,2,...,m. , (6.51)
i i

However, the actual signals which appear in the adaptor are the
components of x and thus any operation which satisfies (6.51) must
be translated into equivalent operations upon the components of x.

A scheme which produces the desired results is illustrated

in the following example. We shall again consider the filter first

discussed in Example 3.2. Using the inductive element values from the
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prototype and the diagonalized capacitive component in (5.92), the

Lyapunov function can be written as

- 1.2, 1,2 .10 2, 100 .2 2 2
v = + = + = + 2 + £09 o 4 5301 + 4
173 3 T T T 55 B T Ye TS Yy (6.52)

or in terms of the adaptor outputs numbered according to the edge

labels of Figure 3.14

v=x§+_l-x3+£x§+£9(x + 1 x4+ 1 x )%+ 109 - 10 x )?
3 3 3 9 10 10 7591 30 19 1go 11
2
5301 R P N (6.53)

1308 11~ 3 7711 12

If, for example, an overflow in x occurs, then when x6 is set

6 Y3

to zero, y (n+1l) = 0 while vy (n+l), i = 2,3,...,m remain unchanged.
NLl NL .-

Thus, (6.51) is satisfied and no overflow oscillations can occur.

Similar action is required if x_ or x8 overflow. If x_ overflows,

7 9
y4 = x9 +i]§ xlO + i%;;xll can be set to zero by zeroing x9, xlO and
X1q However, the change in these variables not only zeros y4, but

also changes the value of yS, vy and y7, possibly producing a value

6

which 1s larger in magnitude. This problem can be avoided by setting

Yy

y_ and y7 to zero by also zeroing x_ ., X and x__. Further

5" %6 10" T11 12

examination shows that if any one of Xgr XlO' Xll or x12 overflows,
then if all four of these signals are zeroed, no overflow cscillations
will appear.

The zeroing scheme for each particular filter can be
determined by expressing the diagonalized Lyapunov function in the
form of (6.50) and following similar steps as outlined above. 1In

general, signals corresponding to capacitive elements which do not

appear in capacitance-only loops or capacitance-only cutsets can be
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zeroed independently when overflows occur, while all signals which
correspond to capacitive elements in capacitive degeneracies must be
zeroed simultaneously. The signals corresponding to the inductive
elements are treated independently from those corresponding to

the capacitive elements but in a similar manner.



CHAPTER VII

CONCLUDING REMARKS AND SUGGESTIONS FOR FUTURE WORK

A technique which simultaneously eliminates redundant
‘delays in wave digital filters caused by loops and/or cutsets of
reactive elements has been presented. This technique, which is
implemented via an n-port adaptor, can be used to design filters
which are canonic in both delays and multipliers from ladder
prototypes. Realizations of this type having the canonic number
of multipliers retain the low element sensitivity characteristic of
properly designed doubly terminated LC prototypes. Such filters
should also have the benefit of lower roundoff noise. The design
technique can also be used to transform prototypes which do not
have ladder structure. The resulting filters will be canonic in
delays (ie minimal) but, in general, the network interpretation of
K will not produce realizations which are canonic in multipliers.
In ladder prototypes where there is no interaction between the loops
and cutsets of redundant reactive elements, a canonic realiéation
can also be obtained using Fetfweis' method; however, the n-port
approach introduced here requires fewer adders.

The n-port adaptor presented is shown to be both pseudo-
lossless and reciprocal with respect to a nondiagonal port éonductance
matrix. This nondiagonal matrix is a direct consequence of the
reélization procedure. The controllability and observability of
wave digital systems using these adaptors was investigated. In

particular, it was shown that a pseudolossless reciprocal system is
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controllable or observable if and only if it is minimal (ie both
controllable and observable simultaneously). Various aspects of
the stability of both linear and nonlinear realizations were also
studied. The nondiagonal reference conductance matrix was shown
to be a Lyapunov function for linear filters and a result which
showed that linear pseudolossless reciprocal wave digital filters
are asymptotically stable if and only if they are minimal realizations
was derived. System modificafion schemes which can be used to
guarantee the total (state) stability as well as the output stability
in nonlinear realizations obtained from either stable or asymptotically
stable linear filters are also given.

Implementation of the limit cycle suppressing procedure is
easily implemented if a diagonal Lyapunov functién is available.
The possibility of obtaining such functions for minimal wave digital
filters was.considered. Using the properties of the eigenvalues and
eigenvectors of Sll’ necessary and sufficient conditions for the
existence of alternate Lyapunov functions were derived. However,
application of these conditions to various prototype structures
showed that diagonal solutions exist only in a limited number of
cases. Another procedure which utilizes a similarity transformation
on the state variables to simultanecously diagonalize Gll was developed.
Realizations produced by this method are no longer canonic in
multipliers but remain canonic in delays. No sensitivity oroblems
are introduced by this procedure since, as long as the transformation

matrix P is a product of self-inverse matrices, the input-output
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behaviour is independent of the actual multiplier values in P.

The final chapter of the thesis described a method based
upon an error interval technique which can be used to implement the
system modifications which guarantee freedom from parasitic oscillations.
This method is applicable to both non-minimal realizations and also to
minimal realizations after the introduction of the diagonalization
matrices. In the latter case oscillation-free performance has been
gained by essentially trading delays for multipliers. However,

multipliers can be multiplexed whereas delays cannot.

The network interpretation of K produces realizations which

consist of an interconnection of discrete adders and multipliers.
Such realizations are desirable for software, firmware or traditional
hardware designs. Distributed arithmetic, which has recently received
much attention in the literature, should be considered as one possible
alternate way to realize K. The sensitivity and noise perférmance of
such realizations are of interést.

The properties studied in Chapter IV could prove useful in
exﬁracting the essential features of wave digital filters so that
prototype networks are no longer necessary. |

When it was established in Chapter V that diagonal Lyapunov
functions for minimal wave digital filters existed only in a few
special cases, a similarity transformation was introduced which

simultaneously diagonalized Gll' It may be possible to find other
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simpler transformations which do not immediately diagonalize Gll but
which transform the system such that a diagonal Lyapunov function now
exists.,

The cycle suppressing scheme described in this thesis is
applicable to both minimal and non-minimal realizations. The stable
non-minimal realizations produced offer an alternative to the adaptor
technique used by Fettweis. In Fettweis' method correction terms are
added at each port of every adaptor. These corrections propagate
through the filter to the delay terminated ports where the component
in the signal due to the corrections can be substantial. Because
Fettweis' method does not take into account the dependent nature of
the errors in the various adaptors, it seems likely that the effective
corrections at the delay terminated ports are greater than those

which are required in the n-port technique. A thorough study of the

noise performance of each type of realization should be carried out.



APPENDIX A

In order to verify that the reduced realization of
Chapter III correctly describes the input-output properties of
the original system, we shall now demonstrate that this realization
can be obtained via a similarity transformation which simultaneously
decouples the modes at z = -1 and z = 1. The effort involved in
the solution of this préblem is considerably reduced by the fact
that the procedure already presented in Chapter III reveals the form
of the transformed state variables which appear in the reduced
order realization.

Equation (3.33) can be written in the form

Bb' = VBa' (A.1)
where

V=diag[—U -U -U -U U U U U] (a.2)
B is the coefficient matrix on the left~hand side of (3.33) and b’
and a' are the variables as they appear in that equatioﬁ. A seguence

of nonsingular transformations can be used to obtain

Bb = VB3 | (A.3)
where

B = T3T2BT;lT;lT;l ' (A.4)

V= T3T2VT;lT;l (A.5)

b= b', &=7T7Ta' (A.6)

T4T3T
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Tl is given by (3.34),

(A.7)
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and
Ry :
!
Ry l
|
i
U |
I
u |
_______________ e e o e e
T = 0 0 B o I =g 0 0T ol. (a.9
4 SC2 1 s 11
|
0 R 0 o | o R 0 0
Ly2 | L1
~ I ~
0 0 G 0 0 0 G 0
Ci2 : Ci
H
0 0 0 -
QFL2 ] 0 Blz © GF
= 1 -

All of the matrices which appear in T2, T3 and T4 have been defined
previously in Chapter III.

Evaluation of B in (A.4) yields a partitioned form

B = diag[c U] (A.10)
where C is identical to the coefficient matrix on the left-hand side
of (3.45). ¥V is not diagoﬁal. Inversion of B using the same
technique previously used for the solution of (3.45), followed by

the insertion of the dynamic port terminations produces a set of

state equations

- -1 - 17 7
Zal(n+l) Sll Sa S12 a,
z n+l = 0 S 0 . A.ll)
by | Sa1 Sy Sa2 aqy

The variables a,s a, and b2 correspond directly to those in (3.46),

while the submatrix S
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5 = (A.12)

is the scattering matrix of (3.46). The submatrices Sa' S, and

B

SY are in general nonzero. SB, which is of particular interest,

is given by

0 - -
U G 2B13RP

S, = : . (A.13)
20,06, 0 U 0

0 0 0 U

e ad

Equation (A.1ll) can be viewed as the result of a similarity
. . , . ~1
transformation using a transformation matrix P = (T4T3Tl) . The

form of (A.1ll) clearly shows that the state variables a. are decoupled

3
from the remainder of the system. These variables are uncontrollable
and can therefore be simply .discarded without altering the transfer
function. In fact, since these variables afe redundant, they can
also be arbitrarily assigned a value of zero. This step produces
the constraint equations of (3.26) - (3.29). The interpretation of
these constraint equations as well as the network inteipretation of
2K can then be developed in a manner identical to that already used
in Cﬁapter ITI.

Further examination of S, shows that an additional

B

transformation
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S, = X "8.%
8 B8
where
FU 0 0 0
0 U 0 B13RF
X =
QlZGS 0 U 0
0 0 0 U J
Produces

SB=diag[-U -U U U]
which proves that the decoupled eigenvalues are at z = -1 and

z = 41,
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