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ABSTRACT

This thesis is a study of minimal, rvave digital firters

designed using n-port adaptors. A topological characLerization of

the reactive redundarrcies in the reference RLC netr¿ork is used

together ruíth a set of constraint equations to simultaneously

eljminate excess delays due to both loops and cutsets of capacitance

and inductance. The method, which can be applíed to prototypes of

arbitrary topology, produces n-port adaptors ín which the multíp1íers

are resËricted to a submatrix, K. A netv¡ork inËerpretation of K ís

given v¡hich allows reaLLzations rvhich are canonic in both delays and

multipliers to be obtained from ladder prototypes.

several results regarding the properties of n-port adaptors

and the controllability and observability of pseudolossless reciprocal

systems are given. The stability of línear wave dígital sysËems an<i

the relationship wíth conËrollabílity and observability is investigated.

General system modificatíon schemes which guarantee both state ancl

output stability for nonlinear wave digital systems are presented.

Necessary and sufficient conditions for the exístence of

diagonal Lyapunov funcËions for minimal v¡ave digital systems are

derived and it is demonstrated Ëhat such functions do not exist in

a majority of filters. An alternaÈe diagonalization procedure r¿hich

uses a similarity transformation of the state variab-les is given.

A techni-que based upon a form of interval arithmetic ís

used to bound the errors caused by finite word rength effects. These

bounds are Ëhen used to defíne signal modifications which guarantee
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freedom from parasitic oscillations in n-,Þort filters having diagonal

Lyapunov functions. Finally, a type of zeroing arithmetic which

inhibits overflow oscil-l-ations in canonic realizations is given.

-Ìl_1-



ACKNOWT,EDGEMENT

The author wishes to express his sincere appreciation to

Dr. G.o. Martens for his guidance and encouragement not only during

the preparation of this thesis, but throughout his entire graduate

progran. The author also wishes to thank his col-reagues and those

members of the acad.emic staff of the Department of Electrical

Engineering who have contributed, either directly or ind.irectly,

to this thesis.

The financial assistance of the National Research Council,

Gulf Oil Canada Limited and the University of Mani.rtoba is gratefully

acknowledged..

-l_v-



Chapter

Table of Contents

Page

Introd-uction . I

!,lave Digital Filter Design - n-Port AdaptorsII
2.L
2.2
2.5
2.4

fntroduction to lniave Digital Filters
n-Port Adaptor Representations
Reflection-Free n-Port Adaptors
Illustrative ExamPIe

8
L2
20
22

III Canonic Wave Digital Filters:
n-Port AdaPtor Realizations

3.1 Characterization of Ree'ctive Redunclancies
in RLC PrototYPes ...

3.2 Voltage l^lave Constraint Equations
3.3 n-Port Adaptor Representations

for Canonic Wave Digital Filters
3.4 Network InterPretation of K '
3.5 Design Procedure - fllustrative Examples

IV Properties of l¡tave Digital Filters:
Controllabitity, Observability and Stability

4.1 Properties of n-Port Iniave Digital Adaptors
4.2 Controllabitity and Observability

of Linear Wave Digital Fil-ters ' '
4.3 Stability of l'Iave Digital Filters

V Diagonal LYaPunov Functions for
Minimal tlave Digital Filters

5.1 Eigenvalues and Eigenvectors of S.'
5.2 GeneraÈion of Alternate Diagonal rr

25

26
5¿

36
47
53

a7

87

93
96

106

r06

Lyapunov Functions
5.3 Transformation of Variables to Diagonalize G,.-LL

116
L29

L40

140
L46

163

vI suppression of Parasitic oscillations in Nonlinear
Wave Digital Filters Using n-Port Adaptors

6.1 Signat Modifications for Stabitity
6.2 Error Interval AnalYsis
6.3 Removal of Overflow Oscitlations in

Minirnal ReaIízations without Diagonafization

VII Concluding Remarks and Suggestions for Future Work 168

Appendix A .... r72

L77
Bibliography .



CHAPTER I

]NTRODUCTION

Digitar signar processing is the processing of discrete-

time signals with a special-or geneïal-purpose computer. Modern

digital processing began with the simulation of comprex analog

systems on digital computers. As more sophisticated. machines became

avail-able and. the possibility of implementing reat-time systems arose,

a tremendous interest in d.everoping highly efficient algcrithms qrew.

Vüith the ad.vent of integrated circuit technology which resulted. in

high-speed circuitry at low cost, it is now practicar to buird hard-

rvare digital signal processors.

Digital systems offer several advantages over analog systems.

system specifications can be achieved. with a high degree of accuracy

and are easily repeatable, high reliability and economy are obtained.

with rc realizations and time variable or adaptive behaviour is

easily implemented..

The applications of.digital signal processing are now

widespread, including such diverse fields as rad.ar, sonar, geophysicar

expì-oration, analysis of biomedical signals and, of course, communica-

tion sysb,ems. Two recent textbooks [1], [2] provide an excel_]ent

introd.uction to the field of digital signar processing. rn addition,

a large coll-ection of important papers on the subject is avairabre

[3] , t4l .

. Infinite impulse response digital filters can be designed

in three d.istinct, although not independ.ent, steps. These are:

1. From the given performance specification, determine a l-inear
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shift-invariant (LSI) discrete-time system which meets cr exceeds

the specification.

2. Decide upon a structure in which to realize the LSr system and

quantize the coefficients to a fixed word length.

3. Quantize tire sJ-gnals consistent with the word length of the digital

system used for implemeirtation.

From the desired performance specification which can be given

in the time domain or, as is most often the case, in the frequency

domain, two basic techniques are avail-able for determining the necessary

LSI system. !{hen the specifications are not standard, mathemat.i-cal

optimization procedures which minimize some specified erlîor criterion

can be used to design directly in the z-domain. The majority of the

techniques which are available consider a structure consisting of a

cascade of second-order sections, the pole and zero l-ocations being

determined by the algorithm. If a standard response such as Br¡tterworth,

Chebyshev or elliptic is desired, then a more efficient technique is

to utilize the wel-l-established theory of RLC filters. Various

mappings have been proposed to transform an appropriate analog filter

into the required d.iscrete-time filter, the most frequently used

methods being the impulse invariant and the bilinear z-transformation

[1], r21.

Having specified a suitable discrete-time system, an operational

realization consisting of adders, multípliers and delay (memory) elements

is required. These elements must be connected in a manner such that

the resul-ting digital structure is computable [f], [5], l'lorr¡ral-1y, the

infinite precision coefficients (multipliers) in the real-ization must
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be modified to a finite word length. The choice of structure is

complicated by the sensitivity of the system performance due to

this coefficient quantization. The number of components, particutarly

multipliers and deray el-ements, and the potential for high-speed

operati_on are other major considerations.

Several standard recursive sÈructures have been developed.

The direct forms DI and DII are high-order feed.back structures realized

directJ-y from the transfer function. The cascade form is obtained by

factoring the transfer function into a product of first-and. second-

order sections whil-e the paralle] form is obtained from a partial

fraction expansion. In general, these structures all suffer to varying

degrees from coefficient sensitivity problems tIl - t4l .

A structure call-ed a wave digital filter has been introd.uced

by Fettweis and his co-workers t6l - tlol . This method. uses voltage

scattering \¡Iaves together with the bil-inear z-transformation to map

resistiveÌy-terminated LC ladder prototypes into digital structures.

Because the mul-tipliers are determined in a one-to-one mapping from

the elements in the prototype, the low el-ement sensitivity of the

classical- filter is transformed. into low coefficient sensitivity in

the digital filter [8], trll. Allowing for impedance scaling, a

prototype of n eLements produces a wave digital- fi]ter containing

n-l multipliers. A comparison of the complexity of cascade and wave

digitar realizaEions of an eighth-order bandpass filter t12l has

shov¡n that the number of multipl-ier elements is essentially the same

whiLe the wave digital filter requires al-most twice as many adders.

The lower coefficient sensitivity of the wave digitar structure,



however, alJ-ows this realization to be implemented \,/ith about 60È of

the total number of bits of that required in the cascade form.

A second comparison by Fettweis et al. [13], based upon a seventh-order

Iowpass filter, shows that the total number of logic circuits required

for a seriaÌ arithmetic wave digitat realization is comparable to that

required for a cascade design. The number of delay elements in a

standard wave digital- realization is equal to the number of reactive

eLements in the reference filter and thus these wave digital filters

are canonic in delays if and onJ-y if the reference filter is a minimal

real-ization. By using the dependence of the waves in loops and cutsets

of inductances and capacitances, additional hardware can be used to

el-iminat,e some of the excess delays caused by these degeneracies tf4l.

Fettweis et al. tl5l and Nouta tl6l have both developed a lattice

adaptor for realizing symmetrical networks. lnlave digital adaptors

for the reciprocal and nonreciprocal sections used in classical cascade

synthesis have also been obtained by various authors tfTl - t2ll.

Implementation of a digital filter requires that the signals

be expressed in binary form. Fixed-point fractional arithmetic is most

often used in hardware realizations. Since the memory word length is

fixed, the signal values to be stored must lie rvithin a specified

interval if they are to be represented accurately. However, as a

result of arithmetic operations, nunbers may be produced which fall

outside the range avail-able. Overflows result when the signal is

larger than the maximum val-ue al-l-ov¡able. In this case the rnost significant

bits must be altered, causing large errors in the output and the possibiL-

ity of zero-input lii,rit cycles, callcd overflow oscillations. Quantization

of the signals is used when necessary to modify the leasL significant
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bits, prod.ucing quantization noise and the possibirity of zero-input

limit cycres, called. granularity oscillations. craasen el al. 1,221

have an excellent discussion of these problems.

For second-order direct form fixed-point realizations,

saturating overflow arilhmetic does not produce overfl-ow oscillations

t231. Furthermore. magnitud.e truncation of the sum of products

almost always eli-minates granurarity oscirlations 1.241 . Fettweis

and Meerkötter have used the concept of pseudopower to derive a

simple criterion which guarantees the absence of both zero-input

overflov¡ and granularity oscirlations in wave digitaL filters t251.

This technique, however, is not directly applicable to those vJave

digital filters designed by the previously-discussed. method v¡hich

red.uces the number of excess delays tl4l. using wave digitar concepts,

.Meerkötter and wegener t26l have designed a second-ord.er section

having no limit cycles while a scheme using controlled rounding has

al-so been found to be effective for certain fil_ters 127J, [291.

An alternate wave digitat structure in the form of a single

n-port ad.aptor terminated with feedback through memory has been

proposed by Martens and Meerkðt'ter [29]. Untike the standard

sedlmeyer-Fettweis procedure [9], this method is not restricted to

the transformation of ladder prototypes.

This thesis is a study of minimal wave digital filters

designed using n-port adaptors.

In Chapter II we introduce Ëhe basic concepts required for

an understanding of wave digital filters. The series-parallel adaptor
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method d.eveloped by Fettweis is briefl.y d.iscussed. The n-port ad.aptor

Ëechnique j-ntroduced by Martens and Meerkötter is d.escribed and a

derivation of the various n-port adaptor representations is given.

Following a brief discussion of refrection-free n-port.adaptors, a

simple example which ilrustrates the general n-port procedure is

given.

The main purpose of Chapter Iff is to develop a method of

designing minímal wave digital fil-ters using n-port a<laptors. First,

the reactive redundancies that cause the dimension of the state space

of the prototype fil-ter to exceed the minimal dimension are characterized

topologically. Constraint equations used to simul-taneously elimi¡rate

the excess deJ-ays due to both loops and cutsets of reactive elements

are then formulated and their effect upon the network behaviour is

interpreted. The n-port adaptors prod.uced have representations in

which the muttipriers are restricted t9 a submatrix K. A netrry-ork

interpretation of K is deveroped, allowing reaLizations whj-ch are

canonic in both multipriers'and delays to be obtained fro¡n ladd.er

prototypes. The chapter concludes with two illustrative examples.

In Chapter IV some interesting properties of n-port adaptors,

including their pseudolossless and reciprocal- nature, are estabtished.

The controll-ability and observability of pseudolossless reciprocal

systems is studied. Several results concerning the stability of

linear wave digital systems are prorred using the reference conductance

matrix as a Lyapunov function. This matrix is di-agonal for non-minjmal

realizations but becomes nondiagonal as a resul-t of the minimal

realization procedure. Finally, the stability of nonl-inear wave
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digital systems is considered ancr a generar scheme which, in principle,
giuarantees freedom from both overflow and. qranul-arity oscitlations in
these systems is given.

chapter v is d.evoted to the search for diagonar Lyapunov

functions for those systems which have a nondiagonar_ reference con_

ductance matrix. Necessary and sufficient conditions for the existence
of alternate Lyapunov functions are derived.. Because several exa-rnples

demonstrate that these conditions can be satisfied in onry a rimited
number of cases, the final- section of the chapter presents a technique

which uses a simiLarity transformati-on of the state variables to
produce new systems for which diagonar Lyapunov functions do exist.

In Chapter VI we describe a procedure for ímplementing

signal modifications which inhibit limit-cycres in wave digital firters
using n-port adaptors. The errors caused. by finite word length constraints
are monitored. by a form of error intervar a'arysis which prod.uces

error bounds on the signal-s at the outputs of the adaptor. Based

upon these bounds, the signars are appropriatery rnodified before being

fed back to the adaptor inputs. The finar section in this chapter

presents a form of zeroing arithmetic which can be used to elim.inate

overflow oscir-rat.ions in minimal wave digita_t firters.

standard matrix notation is used. throuqhout. superscripts
T and -1 denote transposition and inversion respectivery, while u

is a unit matrix of appropriate crime'sions. ïn general, ti_me domain

vector or scarar signals are denoted by r-ower-case Latin letteïs,
while upper-case Latin ]etters identify scarar or vectoï signars
in the complex frequency domain.



C¡IAPTER IT

WAVE DIGITAL FTLTER DESIGN - n-PoRT ADAPTORS

The design of wave digital filters imitating analog reference

networks is carried. out via the voltage wave scattering representation

of the reference fitter structure together with the application of the

bilinear z-transformation t6l-tl0l , [2g]. This synthesis procedure

transforms the Ìow el-ement sensitivity of doubly terminated LC ladder

reference fil-ters into low coefficient sensitivity of the d.iscrete-time

realization. rn addition' vlave digital fil-ters exhibit several inter-

esting properties which can be util-ized to guarantee the absence of

parasitic oscillations. Chapter II serves as an introduction to wave

digital filter design. Incl-uded is a discussion of the basic concepts

upon which the wave digital approach is based, as well as a brief

synopsis of Fettweisr adaptor technique t6l-t91. The n-port adaptor

method of Martens and Meerkötter L2gl is reviewed and a derivation

of the various n-porL adaptor representations is given. Finatly, an

exaniple ís gi-ven to í11usËrate the n-port technique

2.I INTRODUCTTON TO WAVE DIG]TAI FTLTERS

The doubly terminated lossless reciprocal network shown in
"t:

Fig. 2.1 is the most often utilized analog filter structure and hence

extensive design tables are avairable t3ol. such a structure is

normally described. by either its voltage transfer function

v? (u)
r(u) = E(ü'

or by its transmiss

t (t!) +

fficient t3Il

r (ü)

l_on coe

/n È
2 I --11-

\\/

(2.L)

(2.2)
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Fíg. 2.r Doubly termínated lossless reciprocar netr,¡ork.

aft) --Þ
b(t) €--

Fig. 2.2 DefiniËion of port variables.
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vrhere tf.r is the continuous-time domain complex frequency variabl_e.

As an alternative, voltage waves can be used to describe the filter.

For a given port with associated references for the voltage v(t)

and the current i(t), (Fis. 2.2), we define the incident and reflected.

voltage waves a(t) and b(t) respectively by

a=v*Ri

b=v-Ri

or t in the complex frequency domain,

A=V.lRI

B=V-RI

where A, B, V and I are the complex amplitudes

is the reference resistance, normally posítive,

If we choose the reference resistances for the

to be equal to R= and R" respectivelyrthen

(2.3a)

( 2. 3b)

(2.4a)

(2.4b)

of the signals and R

chosen for the port.

source and load. ports

(2.5a)

(2.5b)

(2.6a)

(2.6b)

(2.6c)

and

Ar=E

B2 = 2Y2

B?
w(\r) = -:

^r

= 2T (ìl.,)

1." \+= t\i t(u)

where I^I(lJj) is the voltage wave transfer function. rt is important

to note that the magnitude of r(jQ), t(jQ) and W(jQ) cliffer by, at

most, a frequency-independent constant and hence a real-izaÈion of any
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of these functions produces the des.ired frequency response.

Use of the bilinear z-transformation

, z-I
Y z*I

prod.uces the z-domain transfer function

(2.7)

(2.e)

H(z) = r¡r (#) (2.8)

where z is the discrete-time d.omain complex frequency variable. Since

the d.iscrete-time frequency response is given by H (ejülT) , the analog

frequency þ and the digital frequency o are related by

jQ =

or equivalently

.jrt - t

.j"*1

0= (2.r0)

where T is the sampling period. This nonlinear warping, (2.ro) ,

introduced by the birinear transformation can be compensated by pre-

warping the prototype by appropriately changing the element values

so that the criticaL analog frequencies are transformed into the

desired. critical digital frequencies.

Fettweisr wave Cigital design technique t6l-t9l takes

Èhe vol-tage wave representation of each element in the reference

fil-ter, transforms them into discrete-time equivalents and inter-

connects these subnetworks using adaptors d.esigned to al]ow the

interconnection of ports with different reference resistances.

This procedure represents a departure from the standard. recursive

filter design techniques where the b.ransformation into the d.iscrete-

ûJTtan 
- 2
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time domain is made directly on the transfer function []l , L2j "

If the reference resistances are chosen to be equal to R, L

and L/C for the resistive, ind.uctive and capacitive branches respect-

ively, the eLements are transformed into the discrete-tÍme domain as

shown in Fig. 2.3. Since the elements in a ladder structure are

arranged in a series-paralle 1 form, series and. parallel adaptors

are used in Èhe wave digital realization t6l. These instantaneous

elements, containing only multipliers and adders, can be designed

with reflection-free ports t9l. These special ports allow adaptors

to be interconnected with the assurance thaÈ no delay-free loops witl

be introduced. A 3-port series or parallel adaptor contains 2

multipliers and 6 adders. The number of components is reduced. to I

multiplier and 4 adders for reflection-free adaptors [10]. Martens

and Meerkötter L291 have proposed an al-ternate wave digital- structure

in the form of an n-port adaptor terminated with feedback thrl>ugh

memory. This technique can be applied to a network of connections

of arbitrary topology.

2.2 n-PORT ADAPTOR REPRESENTATIONS

Consider a lossless reciprocal instantaneous n-port rretvrork.

Since this network is passive, the port variables can always be

partitioned so that a hybrid matrix H exists l32l

ï;, ?,',1 l:; ]t

are

a

where v, ancL v,

vectors and H is

port voltage vectors, ia and i, are

real constant rn-atrix of appropriate

(2.11)

porf current

dimension.
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-Þ

a (n) =2.r çn) -e (n)
b (n) =g çt¡

--.>

a (n) =2y ¡tr¡
b (n) =0

b (n) =¿ ltt-1¡

-->

b (n) =-" 1n-1¡

#
4
ry

b(d ,.1

*

R

E

+v __>| /r!'e

o(n)

o(n)

equivalents of the analog elemenËs.Fig. 2.3 Discrete-tíme



(2.L2)

(2 .13)

incident and refl-ected. voltage wave vectors are defined

(2.LAa)

L4

nature of the network all-ows H to be writtenThe lossless reciprocal

in the form

or, usrng

where P =

and

where R

matrix.

and

L"t, :'1

Ier notation,

L:" 
:'] L:i

Ët
positi

tî1

þt
tlis
*rJ

I)

FI

Ël
=F'

Then

[l

ü-t¡ -

simp

Ii
T

^Lz

The

by

(2.L4b)

ve d.efinite reference resistance

(2"15a)

Ë' :J

the diagonal

F; r:l

(2.rsb)[l i['':J [;""l
[' :l is the diagional positive definite reference-tG=R =where
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conductance matrix.

Substitution of (2.I5) into (2.I3) yiel-ds

F:l F: 
::i f":l F'N E: ;:l

andrupon rearranging,

F", :l [i [:", il L"i

Inversion of the coefficient matrix on the left-hand side

F -"tl 
-t 

= þ - nt"-'no, ntI-l
Þ", "J 

= 
L-"-'n"r' "-tJ'

twork:

and

0

tion

k

T
where v = PGrPt + G, is positive definite and hence

produces the fol-l-owing scattering matrix representa

[. I llnt* - u znt(u-*t;l l" I

Ë:j [";' '; ;ï'1 g
where r = y-lper. rf the network contains only wir

ideaÌ transformers, then P contains as its elements

and transformer turns ratios n.

For networks of w-ire connections only, an

of the ports is defined by a set of links and i-wigs

graph. Kirchhoff's voltage and current laws

KVL: t" "d tt"] = o

L%J

(2.L6)

(2.L7)

in the form

(2.18)

nonsingular,

tion of the ne

(2.Le)

e connections

cnly +l , -L,

obvious parti

of the netl¡¡or

(2.2oa)
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(2.20b)['--l = oli I

LtJ

the orthogonality between

". = -QI , t33l enable P in

obtain

KCL: 
Iru "]

the fundamental loop and cut-

(2.13) to be replaced by

þoi* - " 2erLß

t 2K u- (2.2r)

-lTwhere K = Y 'QOcUand Y = QUGUQU * aa is the node-pair ad.mittance matrix

of the network of wire connections with each port terminated in its

reference resistance. This representation and those which follow are

identical to those obtained earlier by Martens and MeerkðtLer L29).

Al-ternate forms of the scattering matrix, S, are given by

(2.22)

(2.23)

(2.24)

of S, can be rer"-'ritten as

ther with

matrices,

We then

toge

set

QL-

L:J
,*;'t'] Fi

r' t t :1 Ll t; :1

f I. fl [, I [ ,;i]
Equation (2.24), which displays the eigenvalues

'[:: fl [.'. fl [,:]

g i :'l L; l I f

(2.2s)
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rvhich then displays the eigenvectors of S.

The representation given by (2.23) is a convenient form

for wave digital filter rearizations. The modul-arity of the structures
produced can be emphasized by rewriting (2.23) as

s = oFMF Q.26)
where F describes the topol0gy of the proÈotype and contains only
adders an<1 inverters, M contains the murtipliers in the submatrix K
and 0 contains onry inverters. The generar form of a wave aig.itar
filter real-ized in this way is shown in Fig. 2.4. The inverters
required by the inductive elements are contained in r. rt is arso

apparent from Fig- 2.4 |_haL a set of state equatio's describing the

system can be easiJ_y obtained.

lf a direct realization is used for F and M, then no internaL

deray-free roops wirr appear in the rear-ization of S. rn ad.dit,ion,

since the connection of the delay elements cannot introduce any rlelay-

free loops, a wave digital fil-ter real-ized. using a singJ-e n-port acla.ptor

is always computa-ble.

The matrix K has a simple network interpretation which can

' b. obtained as follows:

Let
- - ^ (2.27',)ot-''

Then, from (2.2L)'

b, = 2KaU . (2.28)

If we terminate all of the link ports in their reference resistance in

series with a voltage source (Fig. 2.5a) and all- of the tree ports in

Ëheir reference resistances (FiS. 2.5b), then
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Fig. 2.5a Link termination requíred for the cornputation of K.
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Fig. 2.5b Twig termination required for the computation of K.
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uL= uL + Rnin = eU

a. =v. +Ri =Qr t tt

b. =v -Ri =2vr t tt t

and final-Iy

uL = K"L (2.2e)

where e^ is the r,ector of lj.nk voltage sources.
v-

Thus K is the voltage transfer matrix from the l-ink sources

to the tree branches and, since the network is resistive, the entries

of K are bounded.

It.*l . t, i = 1,2,...,ti j = 112r......,g-. (2.3o)I }ll-

The dimension of K is t x I and. therefore at most tf,

multipliers al:e needed in a real_ization. These multipliers can be

generated. directry by t< = Y-lQnGn or, d.ue to the network interpretation-x, x,

of K, by the apprication of any suitable network anarysis technique.

ff the prototype filter contains n elements, then, allowing for impedance

scaling, there are n-l- independ.ent parameters in the transfer function.

This implies that a realization of K should be possible with t.he canonic

number, n-l, of independ.ent parameters.

2.3 REFLECTION-FREE n-PORT ADAPTORS

If it is desirable to produce a \¡¡ave digital filter as an

interconnection of n-porÈ adaptors, reflection-free ports in some of the

adaptors are necessary. These special ports are used to guarantee

that delay-free loops cannot occur due to the adaptor interconnections.
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rn generaÌ, one of the two ports at each ad.aptor connection must be

ref l-ection-f ree.

An adaptor has port n reflection-free if bm is independent

of a_-; that is, if S = 0. In order to obtain this cond.ition ammm
particular choice of reference resistance is necessary. If we terminate

all ports except port m in their reference resistance, then

.i=0,ilm

b -S am nÌmm

The refl-ection-free condition then impties that

b =v -Ri -0m m mm

v =Rim mm

Since the driving point resistance at port m is given by

R- =v/Lopmm

the reflection-free condition requires that the reference resistance

for port m be equal to the driving point resistance at port m when all

other ports are terminated. in their reference resistances. The

refl-ection-free condition imposes a constraint upon the entries of K.

If port m is chosen as a link, then from t2.2I), S** = O requires that

t
-1+2I s k =Q-rm rmr=I

(2.31)

where nr-j .r the entries of 9U. Al-ternatively) if port m is a twig,

thenS =0requiresthat
mm
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9"

r-zI r q =emr Ìnrr=I
(2.32)

1'¡s dependence of the entries of K imposed by the refl-ection-free

condition can be used to reduce the number of multipriers in a

reflection-free adaptor tf0l .

2.4 IIJ,USTR\TIIE EX.AI4PLE

The n-port adaptor design procedure can be applied to any

topology and hence can be used to obtain the acaptors introduced by

Fettweis. As an example, consider the pararlel connection of three

ports shown in Fig. 2.6a. The corresponding network graph showing

the tree chosen for the analysis and the fundamental cutset is

given in Fig. 2.6b. We have

a = ["i"]
= t' 'i']

Gr=[':J 'Gr=G3

and thus

=Gl*G2+G3.

Then

Y=r' 'r [:' :J ll]*"3

':J[c

[' lJ 
þ

*"3
2

",
Gr*z]tr-=

=[o'' "']
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Fíg. 2.6a Parallel 
"orrrr."tion of three ports.

Fíg. 2.6b Netr¿ork graph correspondir-rg Ëo Fig. 2.6a.
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where

o1

The scattering

,"t 2G
2

cf+c2+c3t o2
Gl+G2+G3

matrix representation in the form of (2.22)

s-- l[::ltI
0

I
0

to

ir

(2.

00
10

L-o2 t

that given by Fettweis and MeerkötrertlOl.

ís desired to make port 2 reflecËion-free then

3f) produces

is identical

If

since 1.,=L,

-1 + 2kr, = o

and thus

o2= r

The resulting scattering matrix can then be realized with one l-ess

adder and one less multiplier t101.

rn the nexË chapter r^/e develop a procedure for obtaining

n-port adaptors for wave digítal filter realizatíons havíng mini.mal

degree. since the desígn examples gíven there use techniques ruhich

are also applícable to the non-mj-nimal filters considered in tl-ris

chapËer, it rvíll noË be necessary to give furLher examples here.



CHAPTBR TII

CANONIC WAVE DTGITAT, FILTERS:

n-PORT ADAPTOR REALIZATIoNS

The number of delays contained in a \,vave digital filter

obtained by the n-port ad.aptor technique of the previous chapter is

equal to the total number of reactive elements in the prototype filter.

From a system theoretic point of vierv, such realizat,ions may not be

minimal because the degree of the transfer function matrix may be

small-er than the number of delays. ït is werr known that a minimal

discrete-time real-ization can always be constructed from the prot-otype

transfer function. However, such a realizat.ion wil-r not generally

depend. directly upon the structure of the prototype filter and thrrs

the useful properties avail-abl-e in a wave digitar realization are

not obtained.

In this chapter we describe a proced.ure for designing n-port

adaptors which can be used to obtain realizations with a reducecl number

of delays. In situations where the excess deJ-ays are due to loops

and/or cutsets of reactive elements, the real-izat.ions obtained will

be minj¡nal . A red.uction in the order of a real-ization is not only of

academic interest since the d.elays, unlike the multiplier:s, cannot be

multiplexed.

The technique to be developed can be consj-dered to be a

generalization of the procedure used by Fettrveis tf4l to el-iminate

some of the excess delays in a.n adaptor realization. However. unlíke

Fettweis' procedure, the metìrod gj-ven here is simultaneously applicable

to both loops and cutsets. In addít:Lon, the modul-arity of tlte structure



26

is maintained and the filters can be shown to have aII of the interesting

properties of wave digital systems. These properties wilI be discussed

in the next chapter.

For ladder prototypes containing n elements, it is possibte

to obtain realizations using n-l independent multipliers. The number

of adders required can be smaller than the number needed by an equivalent

Fettweis adaptor realization.

The most often used method of order reduction uses a nonsingular

Lransformation of the state variables. It can be easily demonstrated

that such a transformation leaves the transfer function invariant and,

if properly chosen, decouples the uncontrollable and/or unobservable

parrts of the system [34]. Unfortunately, no simple technique exists

for deterrnining the required symbolic change of variables. An alternate

procedure presented in this chapter solves this problem as it applies to

wave digital filter design using n-port adaptors. The specific charact-

eristics of the prototype filter which produce the extra deJ-ays are first

identified and then used to form constraint equations. These constraints

are applied during the formation of the state equations in ordc'r to

produce a modified state description of lower dimension.

It is irnportant to note, however, that an actual filt.er design

does not require the J-engthy and complex proof to be dupJ-icated. A

concise set of design rul-es is given.

The chapt.er concludes with some illustrative examples.

3.I CHARACTERIZATION OF RNACTIVE REDUNDAI.¡CIES IN RLC PROTCTYPES

The minimal degree required in an abstract realization of
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an analog transfer function can differ from the number of reactive

elements in a concrete Rrc realization fOr two reasons' First, the

number of state variables needed to describe the RLC network is not

alwaysequaltothenumberofreactiveelements.Infact,itiswell

known that the dimension of the state space is equal to the total

number of reactive elements less the number of independent capacitance

- voltage source-only loops and the number of independent inductance-

current source-only cutsets t35]. By convention, these classes include

capacitance-only loops and inductance-only cutsets as special cases'

secondly, the dimension of the state space of the RLC realization may

be excessively large due to the existence of uncontrol-lab1e and'/or

unobservable modes. one such class of modes which can be easily

ident.ified is the zero natural frequency due to capacitance-only cutsets

and inductance-onlY looPs'

.Inthefollowingdevelopmentweshallconsideronlyconnected

RLC networks. In addition' rde shall also assume that aII sources have

associated resist.ive elements and Ëhat a single edge of Ëhe neEr+ork graph

wilI be assigned to a resistor-source combination and tabelled for

convenlence as a resistive branch. This last restriction also rules

out the possibility of capacitance-voltage source loops and inductance-

current source cutsets.

A normal tree is defined as a tree having as its twigs the

maximum number of capacitive branches and the minir¡um number of

inductivebranchest35].Kirchhoff'svoltageandcurrentlaws.(KVL

and KCL), when partitioned with respect to the normal tree' yield
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KVL:

KCL:

cs Qa* Q""

Qc"

Qt"

l-" o o lur. o o I
lo u o l"*. "*G o 

I

þ o u 1""" u"" u"rl

i"'l
i o u ol

io o ul

Þ

\¡.R

\7.L
;-'c
v

\J

"f

I
S

i
R

i_
t

i"
a

\J

ir

=$

=Q

(3.r)

(3.2)Q"*

0

where the subscripts s, R, L, c, G and f denote link: capacitances,

resistances, 
,inductances; 

twig: capacitances, resistances and inductances

respectively. Due to the nature of the normal tree, the capacitance-

only Ioops, defined by the link capacitances s, appear explicitly in

the first KVL equation white the inductance-onl-y cutsets, defined by

the twig inductances f, appear expticitly in the last KCL equation.

The inductance-only loops and. the capacitance-only cutsets do not

appear explicitly for this choice of tree.

consider the network N"o, obtained by open-circuiting all

branches of the original network, N, which are not inductances. Since

this procedure cannot create loops, nor can it destroy any inductance-

only loops, the number of independent loops it NLo is equal Ëo the

number of índependent incluctance-only loops in N" Furthermore, since

the inductive trvigs ín N do not, by definition, form any loops in N,

these branches rvill not forrn any loops t* *ro and therefore can be

chosen as part of a tree, TLo, (or forest if NLo is not connected) ín
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N.^ t3:1. Any additional twigs required to complete T_ are chosen-LO Lo

from the branches which were rinks in N, thus inducing a partition in

these branches. The fundamental toop equations with respect to T"o

are

þ
tt, 

"t¡

!-"",1

] l';l =o

L"t J

link inductances,

and therefore als

(3.3)

denoted by L, , d.efine the fundamental
l_

o define the inductance-onl-y }oops in

- o (3.4)

The original

J-oops tr *"o

N.

Next cortsider the network N"", obtained by short-circuiting

all branches of N which are not capacitances. Since this procedure

cannot create cutsets, nor can it destroy any capacitance-onJ-y cutsets,

the number of independent cutsets ir *"" is equal to the number of

independ.ent capacitance-onLy cutsets in N" Furthermore, since the

capacj-tive links in N do notr. by definition, form any cutsets in

N, these branches wil-l not form any cutsets tr *"r.and therefore can be

chosen as part of a cotree, complementary to Tarr tr *a, [33]. Any

additional- links required are chosen from the branches which were twigs

in N, thus inducing a partition of these branches. The fundamental

cutset equations with respect to TCs are

a (:

l_

þ,,
etr 

l " ]
w2

ta,

where any branches wl:ich form self loops are identified by a nuì-I
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corumn in the cutset matrix. The original twig capacitances, denoted

by C" ' define the fundamental cutsets in N- and therefore also definercs
the capacitance-only cutsets in N.

If the branches of N are further partitioned consistent v¡ith

the partitioning induced in (3.3) and (3.4), KvL and KCL for N become

U

0

0

0

o o o 1"r", 
"r", o o

¡u o o 
| "*a, "*", "*c o

O U O IB B B" I -Llcr - Ltcz -LrG u"r,
I

o o u | "".a, ""r", ""r" ""rf

Q"r* Q","t

Qar* Q"r",

Q"* Q"",

0 Q.-r l¡l

u000

0u00

o0u0

000u

ts
tR

v
Lr

_:
v

Cr

Cz

v
G

tf

equations

each case

(3.3) into

= Q (3.5)

=Q (3.6)

in the third

Èhese

(3.s),

and

Q",,

Qa rt
0

0

Qar",

Q"r",

a^_lolr2

Qf",

i
S

i
R

i
L1

i
L2

i
C1

i
v̂2

I
G

tr

blocÏ row

equations

obtaining

Since there are the same number of

of (3.5) and equation (3.3) and in

are independent, we can substitute
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u000

0u00

00u"tz

000u

Similarly, the

obtain

Qtr

Q.r,

0

0

00

Q"r* Qar",

9"* o-GLr

0 Qr,-I lrl

first block row of (3.6) can be repla-ced by (3.4) to

B
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B
RCr

0

BLzct
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B
Rcz

0

B
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"*c
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B
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uQn
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00

0
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"t:
BLzI
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Lr
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S
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-0 (3.7)

=0 (3.8)

0

o"CzLz

o
(:lr2

o_
r Jrz

00

00

UO

OU

R
t",
i

i
Cr

i
Cz

i
G

il

Equations (3.7) and (3.8) constitute a valid set of KVL and KCL equations

for N which explicitly display all of the desired reactj-ve reCund.ancies.

In more compact notation, (3.7) and (3.8) can be written as

["u i".] Lï] 
= o (3 e,

and.

[n* i a.r 
F:]

-0 ( 3. 10)



B" and O, are not unit matrices since
KL

equations; that is, the equations are

the same tree in N.
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are not fundamental.

with respect to

(3.7) and (3.8)

not aI1 written

Using the well-known orthogonality condition

T'nag".e,+arB.=o

the fol-lorving relationships are easily derived I

"r",
Q--l lrI

B
RCr

Q"",

BLzCt

Q", 
",

- "'"'al'-ol'
TT- Qf"r"tz-"t¡
T

"*".Qtz
T- Q""r"t,

^T- ""raron
T- Q"r"rtL2

B
sce

Qf",

B
RCz

Q"",

B
LzCz

Q"r",

T
Q"r,

T

"L, f
T

Q"r*

T
B

LzG

T
o*CzLz

T
BLzcz

(3. lL a,b)

(3. 11 c,d)

(3.11 e, f )

(3.11 g,h)

(3.1r i,j)

( 3. tl k,l,)

3.2 VoLTAGE I^JAVE CONSTRÀINT EQUÀTIONS

In order to reduce the number of delays in a wave digital

realization, the topological descriptions of Lhe reactive redundancies

described in the previous section must be transformed into the voltage

wave domain and suiLable constraint equations r'¡ust be determined. These

constraints can then be used to obtain an n-port adaptor r+hich, when

suitably t.erminated, wiJ-I yield a discrete-time realization of a lower

dimension.

In this section we will- assume that all time-domain signals

are represented. in the form

x(t) = x.Út (3-r2)

where X is the complex amplitude and ü is the co:r,plex frequenc¡r variable.
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For notational- convenience the explicit d.ependence of x upon time wi1l

not be shown.

First consider the capacitance-only cutsets in N. A d.escription

of these cutsets is avail-abl-e from KCL equation (3.4) or, equivatently,

from

Qi=g ( 3. r3)

where the variable partitioning is no longer explicitly shorvn in e arrd i.

Equation (3.13) can be expressed in terms of voltage vrave vectors

QG (a-b) = o (3. 14)

where the reference conductance matrix G is given by

G00
ù

s00

0 Gcr0 l= l0 cz 0l (3. rs)

00c
Cl

Using the port voltage-current references of N, the element

rel-ationship for the capacitances

1 = -r¡bv

combined. with the complex frequency-domain equivalent of (3.13) implies

that

QGv=0 foralltJ.'lO. (3.f6)

Up to this point v¡e have been examining the intrinsic

behaviour of the system. Let us now consider the effect of extending

(3.16) to include Ú = 0; that is,

QGV=O foralfp (3.17)

which is equivalent to

QGv=0' (3.r8)
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Equation (3.I8) can be written as

QG(a+b) = 0 (3.re)

which, together with (3.f4), is equivalent to

QGa = 0 13"20a)

QGb= 0. (3.20b)

These conditions can be viewed. as.extensions of the naturally-occurring

cond.ition (3.14).

The extension of (3.f4) to (3.20) or, equivalently, of (3.16)

to (3.17) imposes a restriction upon the network's natural vortage

distribution only at {.r = 9. Since the only elements which can support

a nonzerc voltage at this frequency are the capacitances in capacitance-

only cutsets, we can short-circuit alL non-capacitive elements without

altering this vol-tage distribution. The remaining network, Na=r is

characterized by KVL and KCL in the form

KVL: 

[.:i :î;] $,] 
, ßzL,

-0
s

ïc
"]

KCL: att',In,,
(3.22)

I
Cl

( 3. 2r) yields

T
Qrr

T
Qtz
U

u",
2

I

Equation.

['.
lu"

1""

T
Qvû1

(3.23)[=or t in.unpartitioned forn
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Substitution of (3.23) inËo (3.17) yielcls QCQTVC, = 0 and.,

since qCqT is positive defíníte,

ua, _ 0.

Then, from (3.23),

= fur' u.T u.'] ' = o

(3.24)

(3.2s)

(3 '27a)

(3 -27b)

which coufd have occurred

loops,

( 3. 28a)

(s'28b)

which could have occurred

cutsets, and

(3.29a)

( 3.2eb)

could have occurred

Equation (3.25) shows that the effect of the constrai¡rts

(3.20), which can be written in the equivalent form

Qr-tGs.s*QL2Gcrucr+ccrtc, -0 (3'26a)

Qrr"sbr*QtzGcrbc2+cc1bc1 =0, (3'26b)

is to inhibit the formation of modes at tf = 0 which could have occurred

in the original network due to the capacitance-only cutsets.

By following similar procedures it can be shown that the

effect of the constraints

a +B a +B a =QS -SCr Cr SCz Cz

IS

an

l_s

l_n

b^+B^^b^ +B^^b^:0
Þ 5\-l (-l ÞL2 u2

to inhibit the formation of modes at tIJ = æ'

the originaf network due to capacitance-only

ef"rGlr.", * Qf"r"Lr_uLz+ Gtat = o

Qr"r""rb", * Qf"r"LrbL, + Gtbt = o

to inhibit the formation of modes at Ú = - ,

the original network due to inductance-only

t", * Br2uL, + Brrat = o

o", * 
"L2b", 

+ Brrb, = o

is to inhibit the formation of modes at Ú = 0, which

in the original network due to inductance-only loops.
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The effect of the constraint equations (3.26) - (3.2g) in

the discrete-time domain is easily established by use of the bilinear

z-transformation. Eliminating modes at rf = O in the analog real-ization

el-iminates modes aL z = I in the discrete-time real-ization. Similarly,

the removat of modes at ql = æ corresponds to the removal of modes

aLz=-L.

3.3 n-PORT ADAPTOR REPRESENTATïONS FOR CANONIC I^IAVE DrcïTAï, FILTERS

Thig section describes the procedure for obtaining wave

digital. realizations of reduced degree. The apptication of the

constraint equations, used to eliminate redundant variables, together

with a change of variables, produces the desired resul_ts.

Kirchhoff's voltage and current laws (3.9) and (3.f0)can be

combined into

f", ' 
] L;:] [,_ :.] L:j 3 30

Lo n. J L'.1 L-nn 
o I L".J

Introd.uction of the incident and. refl-ected port voltage waves yields

[,' :.] [, ".] F: 
: ::] 

1.,_ 
,1 [' :l F. 

: ::] 3 3r

which, upcn collecting terms, produces a matrix equation describing

N in the form

l;;',::i [:i.] [;;',.:l f:.f 3 32

If the variable partitioning described by (3.7) and (3.8)

is shown explicitly, (3.32) becomes
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equations one, three, five and eight in (3.33) would be independently

equal to zero. lve choose, however, to delay the actual use of the

constraints until- a more appropriate time.

The coefficient matrices in (3.33) can be made to dispray

a type of hybrid s1-mmetry with the introduction of a nonsingular

change of variable together with the corresponding co-lumn operation

on the coefficient. matrices. The variable transformation to be used

is given by

t-
I

UO

T-Btz 
. 

uTt=

where the

Insertion

rel-ati ons

-t

I
I
I

I

¡

I
I
t_
I

I

I
I

I
I

I

I

(3.34)

are al-I zero.

of orthogonality

-aL
t-
I

I
I
I

I

I

I

off-diagonal- elements not shorvn explicitly
-1of Tr-T, into (3.33) together with the use

(3.1la, ctêtgtirk) , yields
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0
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(3.35)

'l 
(3.36)

"J

Qrr

Q"r,

0

0

0

9"r",

o'GLz

Qr",

00

Qar* o

Q"* o

a, --T" Dl-3

T-"r2""rt",

zuc,

I

2

T
I

f-" "

l":":

1"",ï
t__

1"",

Ll:

-a

R__t,-

where
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and

tr
c l;:: i j

[,,,:]
:'] l,''[,

00

tutu
RRLr r Ltz
tutu
RR

Lz r Lzz

:",1
( 3. 37)

are both positive definite symmetric matrices.

If the constraint equat.ions for the capacitance loops

(3.27) and for the inductance cutsets (3.28) are now imposed upon

(3.35), then both the right-and l-eft-hand sides of the first and last

equations are independently equal to zero. Then, since R, and G, are

positive definite, variables aS, .f, b" and ba can be elirninated to

produce (usi¡g (3.11))

R
R

0

BB
RCZ RG

00

BBLzCz LzG

Gb
R R

bGL¡

Lz

Lr

o", -"Tr"",o",

0

Qa r*

Qcn

0

Q" ù,

Q"",

G
Cl I

G^L2l

0

t-
I

I

I
I
I

I

I
I
I

I

G^0
LT2

GO
Czz

0G^
u

b
C1

o.r-QT, o",

b"
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GaRR

""ru",
GaLz Lz

T-"r2G"rtL,

-B
RCz

0

-B
RG

0

-RoR
I

0 r0
I

tu^Jlo -ñ,_. -ñ,-. iol,Il ).12 
Itutur0 -R- -R- r0t2! t22 
I

0

Q"r*

Q.*

I

0

G
(̂J

-aïr"",

ê
c

a
Cr

a
Cz

a
t̂t

-u"r"r. -""r"

I.ttuo iccr, "a'
I
I
..U 'LQ"r"rï"" ,, "" uI

Ia^- ¡o ou!2 
r

where

)(3.3

[*",, i",,-llr H I

L "'t 
Lzz)

["::,] 
n f'î' "ï"1 . u"

l:"' ' :" ".1
L ".r, ""r rJ

[::,,] 
* ['',

th positive

R=L

(3.3e)

( 3 .4o)nä,r] +

and

and thusmatricesdef inite s1'mmetrÍcare bo



42

R-l,t I

"", ,

"rr*r"T, 
* Ê",,

att"raï, * ê",,

( 3 .41a)

( 3.41b)

are both positive defÍnite.

Since (3.38) was produced by a change of variables follorved.

by a variabre elimination, if we now impose the remaining constraint

equations for ind.ucÈance l-oops (3.29) and for capacitance cutsets

(3-26), then both the right-and reft-hand sides of the second a¡rd

fourth equations are independently equal to zero. Then, "irr"" l-l,t t
and G^- - are both positive definite, variables a_ , ã^ ,b_\-l I Lr {-1 Lr

can be eliminated. lfe then have

and b
Cr

R-0
Ã

::1
Q".* Q" 

r"r..

Qc* Q",

leBt RCz RG
I

I
¡BB
i LcCc LeGt-
l--_
I
Iicao
I

I

t0G
lG

GbRR
T

""rb"r-t 1r."", o",

b"

b
\̂J

'-QTro" '

GaRR
T

""rt"r-"r-2GL r 
tLr

Ttcr-Ql2tc,

aû

(3.42)

ffiurliv
ÇF f,I"å.F¡ITOBA

/,c@æ

{19p¡ç1fS
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where

_R
Crl

U

nite sy

ur ner,{

G
Crr

0

trix.

( 3 .43a)

(3.43b)

(3 .44a)

(3.44b)

(3.44c)

(3.44d)

matrix

u -È. ft. I [n",, . lLir Liz l=oui-lr...lI L ")

itive definite and symmetric.

tutututuR-=R- -R- G- R-ã Lzz Lzt Ltt Lrz
tutututu

Ga = Gczr- ""rr*"rr""rr'

The positive definite symmetri.c

l-u ,l[r ftlf-
l- tu I lo"" '""11L-*"r,"",, 

ttl 
[*"r, 

*"rrl 
L

demonstrates that R*' is also pos

Similarly,

I
3'l l-"'] 

L

mmetric ma

variables

l- u .l [r è l[,,

l'",,r",, "] L;,: ;",1 L'

shows that Ga, is a positive defi

The introduction of fo

b.r = **(""ro", - "i, ""ro"r)

b4= o"r-AIro",

aÍ: L(""r.", - "Tr""r."r)
Tae= ucr- Qtztc,

allows (3.42) to be written as
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b
R

bx

DD

RCz RG

BLzCz LzG

I

Q.r*9* Q"rr7t | "o o

ec*o* e""r"{ i . 
""I

L
a

b
\J

a
R

tf

t---Dr RCz
t

I
r-B
; Lzc2

-B
RG

-B
LzG

-U

o

0

-U

(3.,1s)

(2.I7) and thus the

be invertedrpr:oducing

(3.46)

( 3.4'i a)

(3.47b)

a6

a
G

G-

0

O G O G.-CzR R 'CzLz {

OGOG--GR R -GLz ú

s equation

side can

[":ì

Equa

coef

|-",

1.,

wher

tion (3.45) has the same form a

ficient matrix on the left-hand

I [rn'*-u ,n-tu-*'r 
II L ," u-,*' I

e

[;": 
:::,]

r= 
[":'":::1

= Y-1PG', Y = rcanT * ( 3 .48)Gz

-P
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\j2-

-r=

and

br=

rl r
'r)

l-ru2 = 
L"o

."1

T

o.']

( 3 .49a)

(3.4eb)

( 3.5oa)

(3.50b)

Gr= ;l

:.]

1,.

[,'

[".'

Ion'[,.' o"] ',
b2=

The strucLure of (3.46) is identical to that of equation

(2.2I) and hence (3-46) can be expressed in the various alternate

forms given in Chapt-er 2 (see (2.22) - (2.24)) . The matrices P and

T
-P', (3.47), are submatrices of Qn ana B" r+hile G, and Gr, (3.49), are

no longer diagonal but are now block diagonal. The relationship

between K in (3.46) and in (2.2I) r+iIl- be discussed in the next section.

In order to compJ-ete the filter, the ports of the adaptor

must be suitably terminated. The source and load ports are Lerminated

as discussed in Chapter 2. The rernaining terminations can be derived

from the definition of the X ana (z variables together i{ith the sLandard

capacitance and inductance tcrminaLion equations. Using the waves defined

with respect to the n-port rather than the elements

bL¡

b
L2

br

I

a
L1

a
L2

-f
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together with (3.44a) yields

-1I)-=--âø'4ZÁ

Similarly,

(3.sl)

(3.s2)

o",

b
Cz

b,

1

z

Cr

a
Cz

a
S

together with (3.44b) produces

Ib- --a-..1zr<

These terminationsr(3.51) and (3.52))coïrespond to a delay in series

with an inverter for the "inductance" (K ) ports and a delay for the

"capacitance" (& ) ports.

The dimension of the state space, m, and hence the number

of delay elements required in the realization, is given by

- ---am = number oflelements * number of€ elements (3.s3)

which can be shown to be equivalent to

m=(#i,-#"r-#f)+(#c-#cl -#s) (3.54)

where, with respect to the prototlpe netrvork,

#L = number of inductances

#f,. = number of independent ind.uctance loops
l_

#f = number of independent inductance cutsets

#C = number of capacitances
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#C. = number of independent capacitance cutsets
.L

#S = number of independent capacitance l.oops.

ln order to demonstrate further that the systern obtained.

by the procedure developed. in this section correctly describes the

input-output properties of the original system, Appendix A uses the

results of this section to prove that a similarity transformation

exists which decouples the undesirabl-e modes aL z = -l and z = L.

3 .4 NETI\7ORK INTERPRETATION OF K

As v¡as the case in Chapter

real-ization can be rest.ricted. to lie

of K have been reduced from t x .0 to

L-ffcl-#s

0-#r,r- #f

multipliers in an adaptor

submatrix K. The dímensions

where

2, the

in the

Ê"î

t=

n_

( 3. 55a)

( 3. s5b)

thus reducing the upper bound on the number of multipl-iers required..

A wide variety of realizations of K is possible. One interesting

but comparatively expensive solution v¿ourd be to perform all- of the

multiprications in pararler, producing a filÈer having an extremely

short computation time. At the other extrerle would be.a potentialry

inexpensive and relatively slow realization using a single multiplexed

multiplier. A wave flow diagram of K using n - I independent multipliers

is of interest since, then, if the n - element analog prototype is designed

to have maximum transducer pov/er gain at some frequency in the passband,

the resul-ting zero sensitivity property with respect to the element

values is maintairred in the wave digitat fil-ter. The network inter-
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pretation of K developed in this section often arrows such a set of

independent multipliers to be found.

Firsi l-et us simplify the variable a* in the adaptor re-

presentation (3.46). Srbstituting for R, from (3.43) and expanding terms

produces

tuTtutu^JTa* = RLz, (GLruLr.-"iz""rt"r) - È".rd"rrñ"r r(""rtr-"ir""rtLr)' (3'56)

Consider first the expression

fu ¡tt

*"r, (""rtt, - BizGLraLr)'

Substituting for H"r, ,ro* (3.39) produces,upon expansion,

_ __T _ ___T _T_ T

"t:*f""rf ""ru"" - "tt*ruirlBizcr,r-", 
n BL2uL, - "r2*"r"i.2""r-", ' 

(3 ' 58)

Now, using the orthogonality conditions (3.11c) and (3.11-d) in the second

term of (3.58) yields the equival_ent form

T - __T _ T TBLzuL, + Bl3Rr-B; 
rrGL2aL2 

* o:-¡*l"i,rfGLrtL, - etrntei3GLrtLr - ":.2*"r"i.z""rt"r'

(3.57)

(3"5e)

The second and third terms in (3.59) can now be rewritten using

constraint (3.28a) producing

TT
(3.60)BL2.L, * 

"t3tf - (Bl3RfBi: * 
"rr*" ,"i) ""rt",

Use of constraint (3.29a) then yields

TT-(Rlr * Br-2RLrBiz * 
"r:*rBi¡) ""rt"r' 

(3'61)

Noting that the term in the parentheses in (3.61) is equal to f.Ltr

(see (3.36) and (3.39)), we have
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and hence, from (3.56),
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(3.62)

(3.63)

simplifying produces

T

"r-2""rt", )

tuT.* = RLz ,(""ru", - tsizcr,rt"r)

S:bstituting for H- arra ft-
JJ2 2 J'Z I

ar = aLz * 
""rf*f 

("lrt""rt", -

Insertion of the orthogonality

+R G aL21 L1 L1

from (3.39) and

T11

"irruiz""rt", n

êr = â- + B- .R,1el.c_ a_ + el -c a ).^ t z ]-zI I' L2I Lz Lz -LtI'-Lr-Lr,'

Finatly, using constraint (3.2ga)r a" becomes

ar=aLz*Blrrtr'

Following a similar procedure, it can be shown that

b-=b +B -bo{ -L2 "Lzf-l

condit.ions (3.11c) and (3.t]d) yields

(3.65)

(3.66)

(3 .67 )

"Trt",t",)' (3.64)

(3.68)

(3.6e)

now

,"J

From (3.46), the matrix

[o", - nîro"J I

l" "'J =2K I

L o" J 1"",

when

["", - nîr*., I
l-1 

-v¡l 
=o'L-G J

fn order to interpret K with the

necessary to obtain terrn,j-nat-ions

K can

-d
R

+B
Lz

be defined by

aid of the original netrvork, it

which simul-taneously guarantee

is

that
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(3.69) is sat.isfied and whictr all_ow a simpre interpretation for the

excitations and responses in (3.6g). In addition, the constraint

equations (3.26) - (3.29) must be satisfied. we shatl, however,

consider onry those constraints in the incident waves, since it is
easily demonstrated. from section 3.2 that, together with the naturar

behaviour of the syst.em, these equations are sufficient for (3.26)

(3.2e).

tions

epende

raint

that

0

U = 0.

the capacitj-ve, inductive

I consider each c-lass in

together with the first

at

ha1

ired

ve sh

:ions

ul_r

\{e

ati

egu

L

qua

re

nt

eq

Since the termina

and resistive ports are ind

turn. The capacitive const

equation in (3.69) require

T
-ô-L2

Bscr

\J

Cr

ry row

E:l
* Qrr".rQL

tion is the

lr
J = o.

Qtr",

of elementa

rm

^;,]f

t"
l"
I SCe

þ.,.",

series

the fo

t"

A

in

00A^-
JJ

ttt o33 = 
"",

: unique solu

TTTaaaC2 S Cr

wne.

the

t

a
C^

a
S

a
Cr

operations

(3.70)

produces an equivalent system

-0 ( 3.71)

hence
T* Qff"r?r_, is positive definite and

trivial solution

(3.72)
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This condition, which is símirar to that encountered in the previous

chapter, is satisfied if all capacitive ports are terminated in their
reference resistances. The response bcz _ ATrO", ..r be computed from

or, - alro., = 2(u c, - ofrv.r)

The second condition in

all- resistive twig ports in their

response b^ can be computed from
(J

b^ = 2v^(r(r.

The source variable

resistive link ports in their

voltage source. Then

-R

Finally, consi

nductive constra

B,^
I¿

_B.GLl LzI Lz

(3.74)

aR can be obtainãa Uy terminating the

reference resistance in series with a

(3.69) can be obtained

reference resis.tances.

(3.73)

by terminating

Then the

"R

as the i

t.
lBr,rG

A cha

obtai

|-"

L'

nge of variables aLlows

ned!

the source variable

written in matrix

Lr

a_
L2

aF
I

- 0.

-B I2
T- 

"",f9r,rBrz

the foll-owing equivalent system to be

( 3. 7s)

a_ + B_ -a- as wellLo I." l l'

form

(3.76)

þ", 
.

ts

::]f

.der

int

BI

-G-

:;;'] 
f": ] [,,,"",

""rr"r]

(3.77)
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is evident

specified.

T= Gf * 
""rf""r""rf 

* Br,rf""r""rr

from (3.77) that the variable a",

Furthermore, from (3.11) and (3.

52

is positive definite. It

* 
""rluf 

can be indePendentlY

29a) ,

"L, * Br,rftf = -Brz(tr, Br,rftf) ( 3. 78)

The variabres a", * 
""rl-l 

.td u", * Blrf.l have simple

network interpretations. Assume that all of the inductive ports are

terminated in their port resistances in series with a voltage source,

(of course. in light of (3.77), these sources cannot be chosen .indepen-

dently. ) Then

t
"L, 

= tL,

t
^"" 

= "L,

"f=
tu

where e

tutu
"Lr="Lr*Blrr"r

= ^"" * Br,rftr

and a total source contribution in L, of

tutu
"Ll=elr*Blrf"f

= "L, * urrftf

= -BL|"L,

e

e

f
tu

- and eF are the vectors of the insertedL2 T

the trvigs f can be shifted into the links

total source contribution in L, of

(3.19a)

( 3.79b)

(3.79c)

source.s. The

L, and Lr,

( 3 .80)

L1

sources in

producing a

(3 .8r)
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er ^ can therefore be considered to be a vector of independent voltage)J2

sources while e", is a vector of dependent voltage sources of value

"", = -BL2uLr. There are no longer any sources in the incluctive

twigs f. The response due to aL, * 
""rf-r, 

which consists of two

components due to e", -rd .L, , can be obtained by superposition.

A sunmary of the Lerminations reguired for the network

interpretation of K is given in Fig. 3.1.

If K is defined by

(3.82)

t.hen K

lft[il
is given by

l-r
I -arz u

L' o

l v
Cr

Cz

v
G

:] K (3.83)

K can be obtained from the K for the non-mini¡ral realization in the

previous chapter by simply deleting those rolÌs corresponding to the

inductive twigs and those columns corresponding to the capacj_tive

links. K can then be formed by pre- and post-multiplying Ï Uy af,u

appropriate matrices, as shown in (3.83).

3.5 DESIGN PROCEDUR-E - ILLUSTRATIVE EX^I'IPLES

fol-.1-ows:

The design of a wave digital filter can be carried out as
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Capacítive twigs r C,
L/C.

Port

Resistive línks, R

Resistive twigs, G

CapaciËive 1inks, g

Capacítíve twigs, C,

fnductive 1inks, L,

Inductive linksr L,

Induc,tive twígs, f

Terminatíon

LlG

+tc

LlS

ta,.+

Llc

r

L)

' "L2

Summary of the termínaËions required for the
netr¡ork interpretation of K.

Fig. 3.1
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From design tables or other avail-abl-e sources, choose an ana]og

reference filter which meets the performance specifications.

Pre-warp the element values of the reference filter to allow for the

nonlinear shift which will- be introduced by the bil_inear z-trans-
formation.

From the network graph, determine
T-P , (see (3.47) ) and, if required

(3.4) ) .

the topological matrix p or

,812 ..d Ql-2, (see (3.3) and

Terminate the ports of the network of connections as shown in

Fig- 3.r and obtain K, (see (3.92) - (3.83)). The warped. erement

values {.} produce the mul_tiplier coefficients {a}.
Replace the coefficients {a} by a new set t âl having suitable

finite word length. rf the realization contains onry n - 1

independent multipliers, then 1-he low coefficient sensitivity allows

relatively drastic modifications to be made in { cl},

rf desired, the el-ement val-ues {ê} corresponding to the independ.ent

multipJ-iers {â} can nov/ be carculated. The frequency response of

the digital filter with muttipriers { ô} is identicat ro the warped

response of the analog filter with el-ement values {ê} .

Exampl-e 3. Ì:

This exampl-e consists of a doubl-e passband filter given by

watanabe t36l . The reference filter shown in Fig . 3.2 is eighth-order

with four attenuation poles, two of which are finite. The network

contains ten reactive elements, two of which are redundant due to the

existence of a capacitance loop and a capacitance cutset. The trans-

formation of structures of this type, where the capacitance roop and
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U
)

E
.
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cutset have common elements, have not been considered in the literature,

The technique developed in this chapter can be used to obtain a minimal

realization having the canonic number of murtipriers and hence low

coefficient sensitivity.

In Watanabers fil_ter the finite attenuation poles, À, and
2'>À2'occur at Àl = 0.332031 and Àã = 0.7L7o96. A freguency equal to

r/4 of the sampJ-ing frequencyr that is f = îr/4, is chosen for the

upper att.enuation pole in the digital response. The corresponding pole

must therefore appear at 0 = tan r/2 = l.o in the analog firter. The

frequency scaJ-ing factor n = À, produces the desired response with

the following element values:

CI = 0.223515

C2 = 0.518856

C3 = 1.366682

"¿ 
= 9.30e28r

CS = 0.886196

C6 = 0.116416

I. 565397

r.9273L6

6. 983054

5.677L86

1.0

8. 5B9B5I

"t
"z

"¡
Lq

R
S

R
L

As the value of R" was not given by Watanabe, simulation of Èhe analog

filter for various values of R" was carried out. A value of approximately

8 ohms was found to produce a response simil-ar to l,Jatanabe's. The value

of R- given above, R, = I/C., was chosen since then one of the multiptiersL' L 6'

becomes equal to I/2.

The network graph slrowing the tree chosen for the analysis

is given in Fig. 3.3. The branches are numbered in the order given by

equation (3.5), that ísrS, R, L2, Cl-, C, and G. There are no elements

in classes L, and l. The partition of the capacitive twigs r+as obtained
L
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Fig. 3.3 Netrvork graph corresponding to Fig. 3.2.

Fig. 3.4 Subnetrvork NC= and corresponding graph.
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with the aid of NC=, Fig. 3.4. t"=, ârtd hence class Cr, consists solely of

branch 7.

The non-unit part of the fundamental loop matrix is then

ct"rc

7's e ro rlrz
lolr I 1 o

Ilo 0 0 0 1 0

IB. = l0 0 0 0 I 0'l
lo I 0 0 0 I
I

lo I 1 I l o

I

Ll 00 L l

Qrr, which is needed. to prod.uce K, is

1s
2R

3

4

5

6
Ì

obtained from KCL tr *a,, (3.4).

Qtz: to I -1 ol.

A realization in the form of (2.23), Fig.2.4, reqr-rires the toporogical

matrix F

fF

where -P- (see(3.47)) ís obtained from 
"a 

by striking out both the first

row corresponding to the capacitive l-ink in branch I and. the first column

corresponding to the capacitive twig in branch 7.

r ti rl
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-P' =

A fl-ow graph realization

trivial.

The network used to obtain K

theorem can be applied successively to

the canonic number (11) of multipl-iers.

networks is prod.uced:

Fig. 3.6, where

*lt

00010

000I0

I0001

1l_110

001r0

ofF contains only ad.ders and inverters and. is

is shown in Fig. 3.5. Thevenin's

obtain a real-izatiorr containing

The fol-l-owing sequence of

or = *2**rr'

Ro
()

RzRtt
rru '.r2 ,t11

*B(*n * *rz)

u% = %u'

R4*Rg**ar' "o, = o2"4*n**r*^1,

RI

\.\ '

Fig. 3.7, where

R
3

R.+R 'tol

L

R
a2

a2

0,-

0,
4

Fig. 3.8, where

R +R67

Rs\r

IT^+R ,

' or-

(R6+R7) (RlO+Rü4)

*6o*7**1oo*on '

R- R-_ 15a:'-cr^ R- + R- '
JI5

e = 0-e-G3 r)

.o. = o4"o.+(1-on)e:
+L

R=
ß4

R
05*6**7**ro**on

0,-) uou = s5u04+(l-¡¡r)eu
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Fig. 3.5 Netr,iork used to obËaÍn K for the filter of Fíg. 3.2 (see also Fígs. 3.6-3.9).
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R
cl

2

%R'
T

tB = o6(.*, - uoa) * {00 - 1)eG2

vn = c'1, (eo * uct - .o )

253

Ï = oa ,uo, uoà * (o, t,.ou

RÔ
0='

7Rl
T

R^.u5
t
8R'

T

\=Ro +Rs *Ro, *Ro
235-

Finally, l'ig. 3.9, where

R
7.Nan = *- -,. p-''7 = -o9(v + eu)

67

R10.tu
cho= R* + R tfo= cto(v + e )

"l-o "cl4 rv rv d4

*r,
ürr= R - + R- ur2= -ürf (en + vr)

124

trr-= t - tlo

From the above analysis. the responses v, througn ,r, can be

expressed. in terms of the sources e, through .6. This defines

K. K is then formed from (3.83) . The fl-ow d.iagram for 2K, shown

in Fig..3.10ris arranged so that each section (bounde<l by the

dotted lines) contains the operations required by each of Fig. 3.6
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to Fig. 3.9. The lasi section is due to the effect of the capacitive

cutset through Qrr. The factor of 2 has been inserted in the first

section.

The flow diagram for the entire fitter is easiry obtained

from the interconnection of F, 2K, 0 and r, Fig. 2.4. The adaptor

input corresponding to branch L2 is the fil-ter input. The adaptor

input corresponding to branch 2 must be set equal to zero. The

inverters required in 0 and r cancel-, v¡ith the exception of the

adaptor output corresponding to branch 2, the filter output. This

inverter is optional sj-nce its only effect is a simp]e inversion

of the response. The adaptor output corresponding to branch 12

is not required. A total_ of 38 adders, 11 multipliers and. g

delays are required in the flow diagram.

From the equations which define the multiplier

coefficients, it foLl_ows that for R. > 0, i = I ,2,... rI2,

0 < qi < L, j = 1,2,...rI1 and 0 < c[- + o¿_ + o^ < ]. Conversely,Jbt3
if cr. satisfy these conditions, then a set of n - l- = ll ind.epend.ent

J

resistance ratios can be obtained fron { a} The inversion of the

equations which define the multipliers produces the following

resistance ratios which have been normal-ized with respect to Rrrl
.
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The mul-tiplier coefficients {ct} obtained. from {e} are

o.l- : 0.500000
2

Q,=
4

0. 635564

0. 569306

o.272960

o.4432L9

0.315770

= 0.500000

= 0.740853

= O.l-22495

= 0.316483

: 0.389803

c[
6

0,=oo

c[
10

0
9

11



70

For realizability, the coefficients are approximated by finite word

l-enqth binary nunbers as fol-Iows:

^ -rol = o'5 - 2'

^ -'l0, = 0.5 = 2 -
3

o, = 0.6328125 - z-r+z-3+z-7

¡ -À -1d4 : 0-5703125 = 2 L+2 =+2 t

4 = 0.7421875 = L-2'-r-' ;u = o.27343t5 = z-2+z-5-z-7

? -a ^ -1 -4 -go- = 0.12109375 = 2'-2 - c,¿^ = 0.44140625 = 2-'-2-o+2't --8

2-4-8-2-4-8cx^ = 0.31640625 = 2 -+2 -+2 " o_^ = O.3L64O625 = 2'+2 =+2
9 --l_o

Jr, = 0.390625 = r-r-r-3*r-6

The corresponding el-ement values { ê} can be obtained exactly in

fractional- form. Approximate decimal values are given befow:

c- = 0.226659 L_ - I.560000l1

i^ = ]. .s44ooo¿¿
^^
C^ = I.393867 L^ = 6.934091J3
^Ĉ, = 0.311576 L. = 5.60566544

â- = o.8e6e6o â^ = r"oo5S
^Ĉ- = 0.118387 R_ = 3.446893bL

No attempt was made to minimize the coefficient word lengths.

If a discrete optimization procedu::e were used, more d.rastic changes

in the coefficients would no doubt be possible.
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Simut-ation of the filter r^¡ith both ig] and {$} was

carried out on an rBM 37o/L5g computer using d.oubl_e precision

froating-point arithmetic. The frequency responses shown in Figs. 3.il
and 3.12 were obtained using a ro24 point FFT of the unit sample

responses. Due to the l-ow sensitivity of the realization, the two

responses are virtually identical. A minor shift in the level 0f

the passband attenuation is the only discernable change.

A realization of this firter cou]d arso be obtained by

first converting the capacitance cutset into a loop. The resulting

structure is not a ladder and thus cannot be handl_ed by the serj_es-

paralJ-el adaptor technique. However, the n-port method can again be

applied. The realization still only requires ll mulbipliers since

the briciging capacj-tor proclucerJ. by the wye-d.elta tr¿rnsformation

becomes a link ín the graph and thus no source need be inserted to

obtain K.

Although the form of G, and G, in (3.4g) does not affect

the realization, we shall see in the next chapter that- these matrices

do play an important rol-e in the study of t.he proper-ties of rvave

dj-gital filters. cl and G, ca-¡: be obtained. directly from (3.49) with

the aid of (3.43), (3.40) and (3.37). fn this example GR, Gc and G,

are all- diagonal and are easily obtained directly from the corresponding

element values in the prototype network. However, Go is nond.iagonal_

due to the capacitive degeneracies. From N"", Fi9. 3.4, we conclude

that 9ra = 0. Then, using'the appropriate formul-as, it is straight-

forward to show that c€ is given by
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ExampLe 3.2:

The second example consists of a fourteenth-ord.e:: band-

pass filter designed to pass the lorver sideband of a telephone

signal modulated at I kHz while operating at a sampring frequency

of F, = 24 kHz. The passband attenuation, which meets tihe r/2o

C-C-I-T.T. specification, and the stopband attenuation specification

are shown in Fig. 3-20- using Fettv¿eisr adaptor method, I^iegener

tlll has designed a wave digital- fitter which rneets this performance

specification rvith very short coefficient word lengths. A discrete

optimization procedure was used to minimize the multiplier hard.ware

compì-exity. The lowpass prototype shown in Fig. 3.13 contains the

element values which produce the desired response. This network

was obtained from vüegenerrs adaptor reaLization by reversing his



Fig. 3.13 Non-minimal sevenËh-order rowpass ref.erence filter.

Fíg. 3.L4 Network graph corresporiding to Fig. 3.13.

{(¡
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design procedure. The bandpass filter, which is arithmeticatly

symmetric, is obtained by using a particurar form of the standard.

digital lowpass-bandpass transformation [2] where z is replaced. by
)

-z . This can be accomplished by simply replacing each delay by a

double delay in series with an inverter.

Since the same general procedure used in Example 3.1

wil-l- be followed here, only the major details of the design will

be given.

The network graph showing the tree chosen is given in

Fig. 3.14. There are no el-ements in cl-asse= Ll , C, and f . -pT

is obtained from the fundamental loop matrix Ba by strikì-ng out the

first three rows corresponding to capacitive twigs. Thus

T
-P

The network used to obtain K is shown in Fig- 3.15.

Note that sources are not required in the capacitive l-inks.Successive

applications of Theveninls theorem produces the sequence of networks

shown in Figs. 3.16-3.18. The 11 independent multipliers generated are
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o7=

o9=

orl -)
-z

Tn the flow diagram for

been combined witir cr,. ,

-?uB= 2'
-)oro= 2'

2K, Fig. 3.19, the factor of 2 Ln 2K has

j:-=I ,2 5 to produce $. = 2a.rr i=I ,2,..

2-3

-a2'

1+

2-r

1.

pI

at3

ßs

,5

2-L =1

=1

Thus we actually require only 8 nultipliers for this particul-ar case.

The frequency response obtained from a Lo24 point FFT

of the unit sample response is given in Fig. 3.20.

For any set of p::ototype element values, the n-port

adaptor described above ::equires 32 add.ers and l-l multipriers. A

noncanonic series-parallel adaptor realj-zation requires from 39 to

42 adders and l-r murtipliers, depending upon the technique used to

real-ize the attenuation poles. For an arbitrary set of el-ement

values the particular structure used by wegener requires 39 adders.

llowever, for the elemelrt varues of the present example, a special

case arises and only 33 adders are required. A canonic real-ization

using Fettweis' method t14l regu-i-res 3 add.ers external to the adaptor

structure. However, as Fettweis points out, it may be possible to

save 3 adclers by modifying those adaptors for which al-l output

signats are not necessary. ln arr of the above cases, more ad.ders

may be saved if those adaptor inputs corresponding tcl the refl-ected

g2

g4
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v/ave at the source port and the incident wave at the l-oad. port are

removed from the realization. For ouï n-port adaptor 3 add.ers can

always be saved, Lrringing the total needed to onty 29. In co'cl_usion,

the n-port adaptor design can save between 7 and l-O add.ers as compared.

with the series-pararr-er adaptor design. These savings are not

restricted to the particurar exampre considered here. rn fact,
savings wil-L always be available if the prototype contains redundant

reactive elements and the number of adders saved wil-I increase with

the number of redundancies.

The duplication of the topologicar- matrix F in the n-port
adaptor representatio¡r can al-so be utir-ized to advantage. rf a

hardware realization is of interest, then a single realization of
F can be multiplexed between the input and the output. Thus it may

be possibl-e to save I adders at the expense of a digital^ multiprexer.

fn a software or firmv¡are realization, the bfock of code representing

F need not be duplicated. This reduces the amount of memory required

to store the program.

The conductance maÈrices G, and G2 are easiry obtained.

for this example. GR, G" and G¡ are arr- diagonar with entries

equar to the corresponding etement varues in the prototyþe. GE

is nondiagonar due to the capacitance roops, but since there are

no cutsets of capacitance, it can be readi]y shown that

Gtr = 
"", 

* Q"rr a, AäS . This matrix can be interpreted as

the node co¡rductance matrix of the capactive subnetwork obtained

by open-circuiting all non-capacitive elements. Thus in this

example we obtain



85

"9*tt "t o

"r- "ro*"r.*"2 Gz

(3.84)

", "r-t*Gz*"3 ":

": "l2nG3

Both of the examples presented in thÍs section produced

reaLizatio's r¿hich are canonic in boËh delays and murtipriers.
Horvever, if the protoËype is not a ladder structure then, al ttrough

the realizations obtaíned will generally i¡e canonÍc in delays
(ie minimal), the network interpretation of K may not produce

rearizations rvhích are canonic in multipliers. rn this case Ëhere

wíll not exist a one-to-one mapping from the independent resistance
ratios in the prototype to the multipliers and tl-rus lorv coefficient
sensitivity and the existence of very short coefficienEs is not
guaranteed. Hor¡ever, the forlowing díscussion outlines a design
procedure whereby short word-lengths can be obtained for the majority
of the multípliers. First, it is necessary to partition the multipliers
ínto two dísjoÍnt sets, an indepenclent set rvhich can be deterrníned.

via a.one-to-one mapping r+ith the resistance ratios ín the

prototype and a dependent set which can be related to the independent

multipliers by a set of dependency eqlrations. Lov¡ elernent sensitivfty
in the prototype is transformed ínto low coefficient sensitivity
in the índependenL multiplíers and thus finite word length approxiiuations

d
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for these muttipliers can be obtained with a relatively small-

nurnber of bíts. Norø, using the dependency equatíons, the values

for the dependent rnultípliers can be compuËed. Normally these

mulÈÍpliers will not be representable rvith a finite number of

bíts and therefore must be modified for realizabLlity. If the

errors íitroduced by these changes are kept as small as possíb1e

by using r-elatively long rvord lengths, then the response lri1l

not change clrastically. Thus,short word lengths are obtainable for

the independent mul.tipliers while longer word lengths are required

for the dependent multíplíers.



CH?\PTER IV

PROPERTIES OF I^/AVE DIGITAL FTLTERS:

CONTROLLABTLITY, OBSÊRVABTLTTY ÄND STABILTTY

fn this chapter we examine some important properties of wave

digital fitters realized using n-port adaptors. These properties not

only aid in the characterization of wave digitat systems but are also

of practicar ímportance. The n-port adaptors of chapters rr and rrr

are shown to be both pseud.olcssless and reciprocal. Some resul-ts

concerning the controll-ability, observability and zero-input stability

of linear wave digital systems are presented. A general system modification

scheme which guarantees freedom from parasitic oscillations in nonlinear

wave digital filters using n-port adaptors is given.

4.L PROPERTIES OF n_PORT WAVE DTGTTAL ADAPTORS

Digital filter realizations are often represented by signal

flow graphs. Such representations allow various properties of digital

networks to be studied [1], [37], tL2]. Wave digital fil-ters or, more

generally, wave digital networks belong to a subclass of signal flow

networks called port-connected signal flow networks. Fettweis has

discussed various properties of these networks in a series of publications

[8], t25), [37] , [38].

In this section we give a short review of those concepts and

definitions required in the remaind.er of the thesis, followed by the

introd.uction of some properties of wave digital n-port adaptors.

The structure of wave digital network theory fol-Iows similar

lines to that of classical- net\,/ork theory. A set of elements consisting

of wave digital n-ports can be interconnected according to a set of rules
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to form large wave digital networks. Each n-port has an associated port

weighting matrix which is usuaLfy diagonaf and positive definite. However,

due to the nature of the wave digital n-port adaptor derived. in Chapter III,

it is necessary to consider noodiagoual positj-ve definite port weighting

matrices. For wave digital n-port adaptors the weighting matrix is normally

taken t.o be equal to the port reference conductance matrix

r-r
l"t o 

I_ttc- lo c^l Ø.L)
L 'J

rvhere G, and G, are defined in (3-49)

The instantaneous pseud.opowerrp(n)rabsorbed by a wave digital

n-port at time n, with respect to the reference conductance matrix G,

is given by

P (n)

where a (n)

n. If the

= .t (rr) Ga (n) - ¡T (r,) cb (n)

and b(n) are the incident and refl-ected wave

n-port is Linear and instantaneous, in which

(4.2)

vectors at time

case

b(n) = Sa(n)

where the scattering matrix S is constant, then

p(n) = .t(n) (c - sTcs)a(n) .

(4.3)

(4.4)

The concepts of instantaneous pseudol-ossl-essness and instantaneous

pseud.opassivity can be defined in terms of the absorbeopseudopower.

I,lith respect to the reference conductance matrix G, a wave digital n-port

is

(")

(b)

instantaneously pseudolossless if p (n) = Q

j¡stantaneously pseudopassive if p (n) > 0

(4. s)

(4.6)
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for al-l- n and for aII admissible signals a(n) and b(n). For linear

instantaneous n-ports we have the following simplified definitions: a

linear instantaneous wave digital n-port is

(a) instantaneously pseudolossl-ess if G-STGS = O

(b) instantanecusly pseudopassive if.c-STcs > O

(4.7)

(4.8)

where the matrix inequality refers to the corresponding quadratic form.

A reciprocity cond.ition can also be developed in the complex

frequency domain. A linear instantaneous wave digital n-port is reciprocal

with respect to the symmetric reference conductance matrix G if
T

GS = S-G. (4.9)

It is now possible to prove the following:

Theorem 4. I :

For a linear instantaneous \^.¡ave digitat n-portr anY two of

the fol-l-owing irnply the third

I) STGS = G (pseudolosslessness)

2) STG = cS (reciprocity)

3) SS=U

Proof:

a) Given 1) and 2) we have

TSGS=G-)GSS=G-t'SS=U.

b) Given I ) and 3) we have

TTT
s-GS = G -+ S-GSS = GS + S G = GS.

c) civen 2) and 3) we have

TTTs-G = GS -+ S-GS = GSS -+ S-GS = G.

Consider the n-port adaptor described by (3.46)-(3.49)

i^¡e now show that this class of adaptors, which includes the standard
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n-port adaptor of Chapter II as well as those of Fettweis, is both

instantaneously pseudolossless and reciprocal.

Theorem 4.2:

An n-port adaPtor

the form of (3.46) - (3.49)

reciprocal with resPect to

Proof:

a) Reciprocity

Consider

GS=

described by a scattering matrix in

is instantaneously pseudolossless and

its port conductance matrix G.

[;;: ::l
where

"tt
Txtz

,"r"t*-", = 2crPTY-rn"r-", = *,-at.

rF,nT
lzcrnTlu-*t) I = 2{u-"*t)no,

= 2 (u-pGrn*"-l)nGÌ = z{r-n"r"t)"-1n",

2Gr}l. = Xrr'

c, {u-zxnT ) = G2{u-zr-tn"rnt),,22

_1 'T

"r" 
- {v-zrcre^ )

-tc2çv+2Y -c2)

-l= G2Y - 1-u+2cr)

-rT
- (G2-2G2Y -G) = X22'

Hence,

TT
cS = (GS)-=S-G.
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.1 the

Iizability.

ere exists

s to this

dolossless

tained in

for realiz-

corresponding

he fotlowing

lossless and

s- 
L, :'] [.;. :] | , :']

then SS = U and, from Theorem 4.f, STGS = G. This result

tremendous importance in the stability studies to follow.

In the design procedure illustrated in Example 3

independent multipliers, and hence K, are modified for rea

This produces a modified adaptor representation- Since th

a set of element values for the prototype rvhich correspond

new set of multipliers, the modified adaptor is stilL pseu

and reciprocal. However, if a realization of K rvas noL ob

terms of independent multipliers then, where K is modified

ability, it may no longer satisfy (3-48) - Equivalently, a

set of element values for the prototype does not exist. T

resuft proves that such an adaptor can no longer be pseudo

reciprocal.

Theorem 4.3:

b) Pseudolosslessness

Since (3.46) can be written as the product of three self-inverse

matrices

is of

The n-port adaptor described by (3.46) is instantaneously

pseudolossless and reciprocal with respect to its port conductance

matrix G if and only if (3.48) is satisfied; that is' if and only if

-1 TK = Y -PG, where Y = c2 + PGIP-.
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Proof:

a) Sufficiency is established by Theorem 4.2'

b) Necessity: since SS = U independent of K, then if

-1 T
K = y'pG, is necessary for S*G = GS, it is also necessary for

STGS = G.

upon equating the partitioned forms of GS and STG, four

matrix equations, two of which are identical, are Produced. The

three independent equations are

TTGIPK=KPG,

TTTTG.P--GIPKP =KGZ

TT
"Z* 

= PK G,

Substitution of (4.10) into (4.ff) produces

creT-rTncrPT = KTc,

(4.1o)

(4. rr)

(4.L2)

which requires that
(4. 13)( = (ecreT+cr)-lec, = "-tn"r.

Equ.etion (4.13), which is the desired condition' can L¡e substituted

into (4.I0) and (4.L2) to check for consistency. Thus,' from (4.10),

.r. -l T -lcfP'Y 'nc, = GIP^Y *PGI

and, f rom (4.:..2))

-l T T-l
G2Y -PGIP' = PGIP-" 'Gz

-l -l
GZ" -(Y-G2) = (Y-G2)Y 

"Z

-l- - -.-l-G2-G2Y -G2 = G2-G2Y G2.
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4.2 CONTROLLABILTTY AND OBSERVABILTTY OF LTNEAR T.IAVE DIGTTAL FTLTERS

The n-port r^rave digital filter formulation immediatety

yields a system description in state equation form. In general,

we have

[ ;:ï''] [,;, :;l [::l]
(4.14)

where x, u and y are vectors of the state, input and ouLput variabl-es

respectively, I ís the diagonal matrix containing the inverters

required by the inductive ports, and S (given here in partitioned fom)

is the scattering matrix representing the n-port adaptor. Since

II = U, (4.I4) becomes

[* t"*irl l-trr, tr,-r l
L ''"' -J 

= 
L ';i :,',)

The port reference conductance

that

(4. rs)

U_ (4. r6)

and

rtrr- = 
"r1r

(4.r7)

where G., is that component of G associated with the clelay-terminated
II

ports of the n-port ad.aptor 
^nd 

GZ2 is thatpart associated witir the input-

output ports. Qual-itative properLies of a linear discrete-time system

expressed in this form can be readity established. The concepts of

state controllability and observabiJ-ity and their rólationship to

[* r"il

L"'"'J 
'

matrix can always be partitioned

[:.' 
:,,]
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rank m

t- (4. r_8)a = 
LIst2,rrrr-Err,,...,(Esrr)*-trrrr]

and is observabÌe if and only if the observability matrix P has

rank m

f-mñ.l
n = 

LrTr, 
(rsrr)rsrrr,...,(rrr-r.)tt*-t'rTrl o (4.Ie)

The following theorem and corollary investigate the controllability

and observability of a wave digital system built around a pscudolossless

reci¡trocal n-port adaptor. Such a system will be called a pseudolossless

reci¡rrocal wave digital system.

Theorem 4.4:

minimal realizations are well documented, as are various procedures

which can test a system for these properties t341. The most commonly

used tests, expressed in the notation of (4.15), are as follows:

The m-dimensional- linear shift-invariant system described by (4.f5)

is controllable if and only if the controllability matrix Q has

A reciprocal wave digital system is controllal¡le if and only
if it is observabl_e.

Proof:

The state description of the system (4. I5L together with the

reciprocity condition STG = GS or S = RSTG in partitioned form ,

yields

[::;''] [ :] ['":,,] [t ,î,] [:'' :,][::l
Since the controllability and observability are invariant
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transformation produces

[l ,ï ][ :] [ ",,] [::l

under a simil-arity tran

Ïtt l = Icrrx(n)

and then, using (4.I7),

tu
x (n) = Garlx (n) .

Implementation of this

þ,".',-l _ ["' I
[',", ] 

- 
L' *,, .l

sformation 1341, Iet

'îå"" I f::l]
^rz'zzczz) L"

(4.20)

and thus system (4.15) is controllable (observabl-e) if and only if

system (4.2O) is controlfable (observable). The controll-ability natrix

L=or system (4.15), Qf

rn_,1
ar_ = | LsL2,rrrrrtr, ,..., {xsar)" 'rtr_, 

I-LJ
and the observability matrix for system (4.2O), P2

t- n-r 
-1

n, = 
Lt', 2R22'r'rr-r'rr* 22"" ' (tslt)"-tr'rr*rr-l

are related by

P2 = Qr ut"nþrrl

where diag[RrrJ is a block diagona]- matrix with all diagonal elements

equal to *rr. and al-l- off-diagonal elements equal to zero. Since R,

is nonsingular, the rank of Qt is equal to the rank of P, and therefore

system (4.15) is controllabl-e if and only if system (4.2O) is ol¡servable.
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But (4.20) is observable if and only if (4,L5) is observable and

therefore (4.15) is controllable if and only if it is also observable.

Since a system is said to be minimal if iÈ is both

controllable and observable, vre have the forrowing self-evident

corollary to Theorem 4.4.

Corollary 4.4 z

A reciprocal wave digital system is control-lable

(observa.l¡1e) if and onty if it is minimal

4.3 STABILITY OF II¡AVE DIGITAL FILTERS

In this section we investigate the zero-input stability of

both Iinear and nonlinear wave digital filters. From the variety of

stabilit.y criteria which are applicabl-e to discrete-time linear shift-

invariant systems, stability in the sense of Lyapunov (i.s.L.) via

Lyapunovrs direct method is chosen since this method can also be applied

to nonlinear systems. The direct method isbased upon the existence

of a positive definite energy function whose first forward difference

is negative semidefinite for systems which are stabLe i.s.L. and is

negative definite for systems which are asympLoticalJ-y stable i.s.L.

Asymptotic stability i.s.L. is also obtained in a system rvhich is stable

i.s.L. and for which the first forward difference of the L)'apunov function

does not vanish identically on the state trajectory. A complete discussion

of this theory is availabLe in Kalman and Bertram t381.

I,le first consider linear wave digital systems described by

(4.15). The Lyapunov function used in the folloling development is

chosen to be *t"rr*.
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Theorem 4.5 t

Proof:

A linear pseudolossl-ess wave digital system is stable i.s.L.

Consider the positive definite function

v(x) = *tcra*.

The first forlard difference is given by

Av(x) = v(x(n+I)) - v(x(n))
T. T- x (n+I) Grrx (n+l) - x'(n) Garx (n)

T T_ T= x (n) sitrcrtrsttx (n) - x^ (n) Gtt* (r,)

T. T
= x* (n) (tirar-r_trt-Gtr) x(n) -

The pseudolossl-ess property yields
TTttt-"ttttt-Gtt = -sitt zzs zt

and thus

a .¡ (x) = -*T (n) slrcrrsrrx (n) .

Since arr- i=, in general, not square, AV(x) is negative semidefinite.

Hence

Av(x) 1 0

which is sufíicient for stability i.s.L. t:e¡ -

This result can be applied immcdiately to demonstrate that

fitters obt.ained from lossÌess ¡lrototyPes by either of the n-Port

adaptor techniques are always stabl-e i.s.L. The pseuColosslessness

of such filters is in fact a direct consequence of the lossless nature

of the prototyPes.

Theorem 4.5 ca¡r easily be extended to cover pseudopassive

TT(srcs - G < 0) and strictty pseudopassive (S-GS -G <o) systems'
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9olc1l".y._4:!.'

A linear pseudopassive (strictly pseudopassive) wave digital

system is si-.able (asymptotically stable) í.s.L.

The results of Theorem 4.5 can be combined rvith the obser-

vability of the system to investigate asymptotic stability.

Theorem 4.6:

A pseudolossless l-inear wave digital system is asymptotically

stable i.s.L. if and only if it is observable.

Proof:

First the sufficiency. Theorern 4.5 has established stability

i.s.L. by showing that

^v(x) 
= -*t(n)slrcrrsrrx(n) < o, for alr n.

If the system is observable, the observability rnatrix has rank m and

thus

c
2L

cfc
" 21"" r-1

:
' --rs2r (Islr)"' '

xfO, for aIIxl0. (4.2L)

Choose x(0) I 0 as an initial state in the system. Then

x(n) = (IS.,)nx(O), n > Ol-r

defines the successíon of states. The observability condition (4.2L)

then requires that

S2Ìx(F) I O, p = 0,L,2,...,fr-f

and hence

TrFx-('o)s)-tc22s2¡(.P) I o, p = 0,L,2,...,m-1.

Since x(p) is on the state Èrajectory,

Av(x) 7 o
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l- szr I
| 'r,-"'' l*=0, xto.l-:'-l
lrrr,rrrr,*-t J
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on the trajectory and the system is asymptotically stable i.s.L. t38].

The necessity is mosE easily established by proving the

contrapositive. Assume that the sysEem is not observable, in which

(4.22)

Let x(O) be a nonzero vector satisfying (4.22). Then, since 
"lt 

i=

positive definite
T>:-(0)G.,x(0) I O (4.23)II

and, from (4.22),

Srrx(n) = 0r n = 0,L,2,...,F-I.

This last condition can be extended, using the Cayley*tlamilton Thec.rrem,

to aLl- succeeding states

S^,x(n) =O, n>0.
¿L

We thcn have

Trrlx-(n)tãr"zztzr*(t) = o¡ n > o

which, wherl combined with the pseudolossless property, produces

TTFT
x- (n) tir"rf trf * (t) = x- (n) Gtt* (r,) , n ) O

or, equivalently,
rf'T

x- (n+l-) Gtt* (n+1¡ = x- (n) aar* (r,) , n ) O. (4.24)

Equation (4.23) l,ogether vrith (4.24) yields
rF TF

x- (n) Grrx (n) = x- (0) crrx (0) I O, n > 0

rvhich proves that the state does not converge to the equilibriuj! state,

xe = 0, wit.h increasing n. Thus we conclude that if the svstem is not

observable it is not asynptotica.lly stable.
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Since most wave digital systems are both pseudolossless

and reciprocal, the following corollary is of interest.

Coroflary 4.6:

A pseudolossfess reciprocal wave digital system is

asymptotically stable i.s.L. if and only if it is minimal.

Proof:

From Theorem 4.6, a pseudolossl-ess system is asymptotically

stable i.s.L. if ancl only if it is observable. ff the system is also

reciprocal, corollary 4.4 shows that it is observable if and only if

it is minimal. The desired resuft follows immediately'

The filters, which can be obtained by use of the technique

of chapter III. in addition to being psetidolossless and reciprocal,

are in most instances minjmal. Corol-lary 4.6 proves thaL such fifters

are asymptoticallY stable.

so far in this section we have investigated the stability

of l-inear wave digital systems. However, due to the finite worrl

Iength requirements for realizability, any implementation is in

reality nonlinear. The stability of such systems can still be

investigated by the direct method of Lyapunov. In fact, the results

obtained in Theorem 4.5 can be extended. to include nonlinear wave digital

filters. If the nonlinearities, which can be specified by the filter

designer, are such that the nonfinear filter remains pseudolossLess,

then the filter is still stable i.s.L. The proof of this statement

follows directly from the proof of Theorem 4.5 by noting that for a

pseudolossless system under zero input the instantaneous pseudopower is

given by
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t{r,)"rr*{r,) * yT(rr)crrvltr-) = o. (4.25)

Then, since GZZ L" positive definite,

*t (r,) ar_r* (r,) < O. (4 .26)

A similar result ís obtained if the nonl-inear system is pseudopassive.

A more important practical resul-t is obtained if the nonlinear system

is strictly pseudopassive since then it rvill- be asymptotically stable

i.s.L. and the state, and subsequentty the output, wiJ-l eventually

become permanently zero. In this case timit cycles wil-l not exist.

Because wave digital systems are in fact finite state machines,

a more appropriate defjnitionof stability is available t:0¡ . A finite state

system is s;table under zero-input if the state becomes permanently zero

in a finite time. The stability of the output fol-Ìorvs immediately by noting

that rr'hen the states are permanently zero, the outputs' being weighted sur.rs

of the states, must also be permanently zero. Fettweis and l'leerkötter t25l

have shown that pseudopassivity of the nonlinear fitter is sufficient for

output stability and, if the linear fil-ter has no oscillationsrthen stability

is also guaranteed. In what follows we present some results which demonstratt:

sufficient conditions for stability, and therefore also for output stability,

of wave digital filters using n-port adaptors.

Theorem 4.7:

A nonlinear finite state wave digital system (Nr,¡ is stable

if it is derived from a linear wave digital system (L) which is asYmptot-

ically stable i.s.L. such thatrrvhen x"(n) = *N"(n), the next states

x"(n+1) .tU **"(n+l) satisfy either

a) x*"(n+I) = xr,(n+l) and thus v(x¡¡L(n+I) ) = v(xr(n+1))

or b) u (**" (n+1) ) < V (x" (n+I) ) if x*" (n+1) I x" (n+I)
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where v(x) = x-Grlx is the Lyapunov function for the linear system.

Proof:

Assume that a nonrinear system (NL) is obtained from an

aslmptotically stable linear system (L) according to a) and b).

Because system (NL) is a finite state machine, either *¡¡r,(r) becomes

zero after a finite time, in which case the system is stabre, or a

cycle begins. Assume that such a cycre exists starting at time no

with period N. Then

**"(ro*p*) = **" (ro) (4.27)

and

V(x (n *p.NL- o -N)) = v(x*"(no)) (4-28)

v¡here trol p and N are non-negative integers. Let

*" (to) = *NL (no) .

Then, due to the asymptotic stability of (L), we have

(4.2e)u(**"(no) ) - v(xr,(no))ì v(x"(no+t))

while, from the design conditions a) and b), we must have

V(x"(nO+J.)) tV(xr.lL(nO+1)) (4.30)

Equations (4.29) and (4.30) together require that

u (**" (no) ) > v (x¡¡L (no+l) ) .

ff we now set the next state in (L) cqual ao **"(n'+l), the same

procedure pro<1uces

u(**"(n'+l) ) > v(x*"(nO+2) ).

Repeated application yields

u(**"(nO)) t v(xr,¡L(n.+l)) > ... > v(xr"(nO+N))> ...

whichrwhen combined with the cycle condition (4.28)) requires that
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V(x*"(n)) = u(**"(nO)), for all r t rO.

Due to the nonlinear system design criteria a) and b), the above

energy condition requires that

x"(n) = x*"(n), for al-l n ì nO.

This means that the san.e sequence of states occurs in both the linear

and nonl-inear systems and. thus a cycle must also exist j-n the linear

system. This contradicts the asymptotic stability assumption and thus

the nonlinear system cannot support a cycle and must therefore be

stable.

If the linear system is not asymptotically stabl-e, but is

stable, then a similar result having onllz slightly modified design

conditions can be obtained.

CorolLary 4.72

A nonlinear finite state wave digital system (NL) is stable

if it is derived from a linear wave d.Ígita1 system (L) which is stable

i.s.L. such thatrwhen x"(n) = **"(n), the next states x"(n+1) and x*"(n+I)

satisfy u(*r"(n+1)) . y(xl(n+l)) where V(x) = *t"rr* is the Lyapunov

function for the linear system.

Proof:

Using the same arguments as in the previous theorem, it

follows that) if a cycle exists starting at nO,then

V(x*"(n)) = V(xNL(nO)), for al-l- rìrO (4.31)

Ho\"¡ever, the stability of (L), which requires

v(x*"(no)) - y(xl(no)) > v(x"(no+t))

together with the design requirernent of (NL), d.emands that

u (**" (no+l) ) < v (x*" (no) ) .
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This contradicts (4.3f) and hence the no¡rlinear system must therefore

be stable.

The system modification required by either Theorem 4.7 or

corollary 4.7 can be int-erpreted as a requirement on the reflected

v¡aves at those ports of the n-port adaptor which are connected to

d.elays. For the situation wher" G Il_ is a diagonal positive definite

matrj-x, we have

V(x) : *tcrr*
m

1YZ= ) q.x.
-1 Aa=I

where 9i t 0, i=1, ...'m. Thusrgiven

**", (n+r) 
| 

< x". (n+l)

(4 .32)

*"i (r) = x*", (n) . the conditíon

tor al-L n,j- (4.33)

for all nri (4.34)

is sufficient for stability when the rinear system is asymptotically

stabre i.s.L. such a linear system could either be a strictJ-y pseudo-

passive system or a minimal pseudolossless reciprocal system. Similarly,

the condition

x .(n+f)NLr-' x". (n+1)

is sufficient for stability when the linear system is stable,i.s.L.

Recall- that -pseudorossless, pseudopassive and. strictry pseudopassive

systems are alr stable i.s.L. A method of imprementing (4.33) and

(4.34) is discussed in a later chapter.

The conditions (4.33) and (4.34) are similar to those obtained

by Fettweis and Meerkötter t25j. The differences are that we need. only

consid.er the outputs of the adaptor connected to derays and that

stability is guaranteed. even for pseudol-ossless linear filters which

contain unobservable modes.
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*ur 
"r_r_ 

is not diagonal , (4.33) or (4.34) may no

longer be sufficient for stabirity. This situation, which occurs

naturally as a resul-t- of the design technique of chapter rrr, is

studied in the next chapter.
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ao

produce a diagonal- Lyapunov functicn.

5.1 EIGENVALUES AND EIGENVECT'ORS OF Slt

In this section rve investigate the eigenvalues and eigenvectors

.of S.,. First we present the following lemma.
.LI

Lem¡na 5. l:

matrix S, there exists an nxn symmetric

satisfying sTc=cs if and only if S is of

eigenvalues.

nxn matrix is said to be of sirrple structr¡re if and

a set of n l-inearly independent eigenvectors I40l ot,

if the modal matrix is nonsingular.
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Suppose that STG = GS, where G is a symmetric positive definil-e

matrix. A congruence transformation pTGp of G exists for which
TPGP=U (5.1)

and thus

-tTP =P-G

Consider the similarity transformation p-lsp of S.

p-Isp = pTcsp = pTsTGp (.5.2)

is symmetric and also has the same eigenvalues as s. Further, there

exists an orthogonaf transformation of (5.2) such that
TT'

Q-(P'GSP)Q = À, (5.3)

and

T
Q-9 = u 6.4)

where Â is the diagonal matrix of eigenvalues of S.
S

If we now define

r,rl : pe

then, from (5. 3) ,

T
Inr-GSlV = 

^s 
(5.5)

andrfrom (5.1) and (5.4))

wTcw = gTeTceç = eTe = u. (5.6)

Equation (5.6) yields

-1 TW =!VG

which together with (5.5) produces

T -1w'GSI^i -- w 's!ù = L
S

and therefore

SW = ûIA
S

(s.7)
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Equation (5.7) demonstrates that the nonsingular matrix Vf j-s a modal

mat,rix of S and hence S is of simple structure. Furthermore, since !r7

and S are mat.rices over the field of real numbers, the entries of Â
S

and hence the eigenvalues of S are real.

Suppose now that S is of simpJ-e structure v¡ith real eigenvalues.

Then the modal matrix i¿J is nonsinguJ-ar and

t¡-lsw = Ar. (5.8)

Since Â is diaqonal, and hence symmctric, we have
S-

-l -1 .T T T. T.-IW SW = (W SI^f) = I¡I S (W-)

from which we obtain
q'-r--l T T-l -l(w') 'w ^s = s'(I,J^) I,t -.

If we now define

c = (lvwr) -I = lraT¡ 
-I*-r

then

G = GT, I^¡TGI,ü = U.¡ GS ! STG.

Thus G is symmetrj-c positive definite and satisfies STG = GS.

Use of this lennna shows that for reciprocal rvave digital

systems both S and S* have real eigenvalues and are of sim-ole

strucLr.¡re t'lartens and Meerkötter 1291 have shorr'n that all of the

eigenval-ues of S are either +l or -I. The eigenvalues ot tr_r. are nov¡

investigated.

Theorem 5.1:

Given a pseudolossless reciprocal system, at most two

eigenvalues of Sl_l .r" not equal to +l or -1.
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Proof:

For a pseudolossless reciprocal system we have, from

Theorem 4. l,

SS=U

which, upon partitioning, Yields

tttttt*trzt2l=u

or

(u-sÎt)=st2Szr.

Since, in general, S' and Sr, have dimensions of n x 2 and 2 x n

respectively, there exist at least n - 2 independent nonzero vectors xi

in the null spac. of SI2S2I, n being the dimension of Srr. That is

(U - Sll) *i = Sl-2S2lxi = O *i I O, i = I,2,"',m ¡n ) n-2'

Therefore
2tif *i = *i, xrl O, i = Lr2,...¡Ill¿ m ) n - 2

which implies ttrat Sl, has at least n-2 unit eigenvalues and hence

Sa, has at least n-2 eigenvalues equal to either +1 or -I '

A physical- interpretation of the +1 and -l modes of St, is

easily obcained. If all of the inductive elements in the prototype

are refJlaced by capacitive efements, an RC netv¡ork which. necessarily

has negative real eigenvalues is produced. Such a netr"ork may have

modes at r,l, = o and ü = - due to the capacitance-only cutsets and loops

rcspeclively. These rnodes are equivalent to rncies at z = 1 a¡d z = -!'

in a discrete-time realization producc,d by the bilinear z-transforrnation.

Further, since I = Urthese modes are identical rcith the ei.genvalues of ttl

describing the original prototype. Some of these eigenvalues' llor¡/el'er'



are suppressed during the formation of the reduced S

two mod.es which must be inside the unit circle (tr-r-

matrix) are,a resul-t of the resistive terminations.
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The other
.LI

is a stable

(s. e)

equation but are

used in Chapter III,

rewrite (5.9) as

During the formation of the reduced order realizationrall

capacitive and inductive cutsets and loops were effectivel-y removed.

The renaining reactive cutsets, which account for the À = l-, can

be identified by first short-circuiting all capacitances and inductances

which define cutsets (classes C, and f), and then open-circuiting all

capacitances and inductances which define loops (cl-asses s and Lr).

The re¡naining network is described by KCL in the form

[":

Q"r"" i
,l

Ol'GLz 
I

i
R

i
L2

l_
Cz

i
\̂J

-0

Any

not

we

reactance-only cutsets rnust occur in the first

shown explicitly. Following simil-ar arguments

can partition the elements in class C, and. then

oQ^ å

n" ji' ,",1"',

Q"* Q" 
"

l-
R

i
_:_

. (1)
l-

Cz

í(2\cí
i

G

- 0.

the reactance

considered to

u9-
D

OU

00

( s. r0)

Elements in the cl-ass c(l)a"rir,. cutsets,

be the result of aEquation (5.f0) can be



reordering of

by a sequence

equations

elementary

ttl

in (5.9), followed

which rudr..= e"r*

the

of

Mt

and the variables C,

rovr operations , I4yr

['*',]

tlQar* = (s.1r)

If the maximum number of reactaltce cutsets are dispì_ayed explicitly

[¡:*]

in (5.10)/ then the ronr of gj2l are independent and thus-C zR

rank Qa2¡ = ran¡ aär* = number of element= ir., cj2)

Ho\'/ever, since

rank OlzR + nullity of A3r* = number of el-emenrs in

+ number of elements in

I3) together yield

i" cjl)= nut-lity ot aär*

and therefore

number of À = 1 in Srr. = nutlity "f aär*

As a direct consequence of this condition, there

having m, independent col-umns such that
TQcr**=o

^ (r)t2

^(2)t2

(s.r_2)

(s.l_3)

(s.14)

equations (5.Ì2) and (5

number of element,s

where m- is the number of À = II

TheeigenvaluesÀ=-l-

After the el-ements in classes C,

elements in cl-asses S and Ll are

reactive loops accot-l¡t for the À

described by KVL in the form

(s.rs)

exists a matrix X

(s.16)

in S--.
11

may be treated in a siniLar rnanner.

and I are short-circuited and tlle

open-circuited, the renaining

= -1. The resul-ting network is
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-aä* Irl-4"",J

R

-0
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(5.18)

The reactance-only loops which must

be displayed explicitly in a rnanner

T
-o=czR

^T-Uvilr2

o'raä",=[',]

L,¿ii
(5.17) becomes

't
u o o l-nä.*

I

ouB !eAIB
I

o o u iu[iL',

- 0. (s. 17)

occur in the second equation can

simiLar to the previous situation.

_::_
v

Cz

v
L̂J

-ot-GR

0

(2\T
-o'

vlJ2

v
R

v 
(1)
Lz

__(2)
I'z

Thus, M, red.uce" aä",

and

v
Cz

\t

where the L2 variables have been reord.ered and partitioned appropriately.

El-ements ir', .t.== r,jt) d.efine the reactance loops.
2

If the maximum number of reactance loops are displayed

explicitly in (5.18)/ then it is easily shown that

number of el-en - (r)Lents in 
")-'= 

nullity of QCr., (5.I9)

and hence

number of À = -1 it tr_, = null-ity of QCf,z. (5.2O)

Furthermore, there exists a matrix Y having rn, independent columns

such that
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(s.2r)

form

(5.22)

(5.23)

(s.24)

(s.25)

(s.26)

+Ia

erive

ttt

the

O Y=0"GLz

where m, is the number of À = -1 in Sra.

Having obtained explicit information regarding the

-I eigenval-ues ot ar_r, the matrices X and Y can be used to d

symbolic representations for the corresponding eigeirvectors.

can be obtained directly from equations (3.46) and (2.22) in

[-" nä," ,l f-u*'nä" ,or, 2elL f 2La:,.1 |.-" nä,"Jslr=L'ulL -ro' u-2k*eä,*lL'ul

where K has been partitioned conformally

[o' orr-l
K - 

L-" "*)
Consider the matrix

|-nä,",-] x.wr= 
I' Lu I

Then, from (5.22),

[-" nä ,"J | -u*'af,",or, 'nl" ,orrnä,J I t 
tl

srrwr:1,';',1 L 
",i", 

u_,o,,aä,"lL.l

Using (5.16), the above equat.ion can be reduced to.,,,*, 

= [,'=;";] L . ] 
= 

L'=;"' ] 
x

from which we have

sttwr = wl' (s.27)
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of independent vectors

eigenvectors corresponding

( s. 28)

(s.2e)

( 5. 30)

(s.3r)

(s.32)

(s.33)

trates that the set

independent set of

the matrix

.2r)

:][,.ï.i,,:",

= Rrrw2'

Equation (5-21) demons

contained in I.l, is an

to eigenvalues at +1.

Nov.'consider

H'= 

L'-'] 
"

I^fe then have , using (5

t-
l-u

'i,4 = 
|

l-n',", " ',"ï.,'] [']

[:.,",:] [,] [;.,",] 

Y

and thus

T'Ufusir*z = -wz

Use of the reciprocity condition

^T^tir-"rr = "trtrl
togcther with (5.3f) yields

ttr*z = -w2

where

[,;",] 

Y (s.34)*ttw2=



r_ 15

Equation (5.33) demonstrates that the independent vectors in W,

constitute an independent set of eigenvectors of sll corresponding to

eigenvalues at -r. we have thus proved the folrowing theorem:

Theorem 5.2:

to the

Further

and hI,,

tot

where X

vectors

The number of eigenvalues of tr-, equal to +l and -l is equal

dimension of the null- spaces of elr* .rl4 eChrespectively.

more, the corresponding sets of independent eigenvectorsr I,I,

are given by

l-' I [-" II 4"r", 
I- I I - r,ù^=R__ I l"= 

| u I 
- ' w2 =*11

L J 
¿ lrLnt'"'J

and Y are matrices v¡hose columns are l-inearly independent

in l-he null spaces of Qär* ..U 0"", t"rnectively.

The compleLe eigenvaLue problem as it rel_ates to S' is

not on the unit circl-e

make up l.Ir.

( s. 3s)

(s.36)

(s.37)

cornprise il , ;

[" 
-u 

^,]

given by

SrrgÍ = 9IA

where

A-

and

1,. .. II^I = Lvrr 
wz tr-l

two eigenvalues which are

corresponcìing eigenvectors

The

the
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5.2 GENERÀTION OF ALTERNÀTE DTAGONAL LYAPUNOV FUNCTIO}JS

rt is v¡erl known that a Lyapunov function for a particurar

system is not unique. rn fact, for an asymptotically stable rinear

system there are a ì-arge, possibly infinite, number. Thus, for those

wave digital fitt.ers having a nondiagonal Grr, the existence of a diagonal

Lyapunov function, D, cannot be rured out a priori. The major resurt

presented in this secticn consists of a set of necessary and sufficient

conditions for the exist.ence of diagonal Lyapunov functions. The results

rely on the eigenvalue and eigenvector analysis of the previous section.

The stability of a linear shift-invariant discrete-time

system is normally ínvestigat.ed through thc matrix, ATDA-D. For the

class of systems presently under investigation, the state transition

matrix, A, is given by

A = ISr, (5.38)

Furthermore, since we are considering only those potential Lyapunov

functions which are diagonal, D and I commute and then
TTA-DA-D = Slrnsra-o. (5.39)

Thus; it is sufficient to investigate the behaviour of Slrosrr-O.

Theorem 5. 3:

Given a reciprocal pseudolossless system, there does not

exist a positive definite matrix D such that sfrostt-D is negative

definitefor n ) 3, where n is the dimension of the sguare natrix srr.

Proof:

From Theorem 5.1 we knov¡ that thcre exists at least one

nonzero x such that

Slfx = + x.
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Then

*TD* = *Tslrosar*

and thus

*tttlrotrt-D)x = o.

This proves that slrosra-O can¡rot be a definire form.

As a resur-t of this theorem \.ve can confine our search for
diagonal Lyapunov functions to those for which TttlDttt-O is negative

semidefinite- rt is easy to show tÌ¡at t]ro = DS11 is sufficient for
the existence of a diagonar D. The proof proceeds as forrows: since

srt satisfies the conditions of Lemma 5.r, a nonsingurar modal matrix
W exists. After the appropriate rnultiplication we have

rvTsfrosaaw = wToslrw = wTDr,[Â2, r^lhur" vrÂ = srrr^r.

Then

wrtsfrosrt-D)lv = r,JTDr,¡(Â2-u). (5.4r)

However, because Lhe magnitude of the eigenvalues of stl is bounded

by unity and wTnw is positive definit.e, we can concrude that
TTTw-(sirDslt-D)w and thus siansrr-o musr be negative semidefinire. rf

tll it given, then t]r-o = DS,' is easily checked for solutio's. The

inability to find a soJ-ution, however, does not mcan that a suit-abl-e

D for the system does not exist.

Theorem 5.4:

(s.40)

Given a pseudolossless reciprocal wave digital system there

positive def inite syrnrnetric matrix D such that f 
TìrrDSra-D is

semidefinite if and only if there exist nonsingurar matrices

such that the following three conditions hol_d.:

DWl = 
"trtrtl

exists a

negative

T, and T,

a)
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b) DW2 = GttWzrz
TrFc) I^IJ (SiIDSlt-D) wg is negative semidef inire

"11 
i= that component of the reference conductance matrix G associated

with the delay-terminated ports of s and wl-, w2 and w, contain the

eigenvectors of Srr.

Proof:

we first estabrish Lwo conditions. using the properties of
the eigenval-ues and eigenvectors ot trr_ given in (5.35)-(5.37), we have

TrnÌvi(sitDsrt-D)I{a = o for al-l D (5.40)

and
fFrF

wJ (sirosrt-D) ivr=O for al-I D. ( 5. 41)

Now.assume that there exists a positive definit.e D such tl¡at
Tttlotlt-o is negative semidefinite. Then, using a result given in [41],

(5.40) and (5.4f) imply respecrivety that
-T(tttoStt-o)wt 0 15.42)

T(silDslr-D)w, = 0. (s.43)

From (5.42) we have
'T

(siID-D)I^I, = 0

or, equivalently,
rF

(sit-u)DW, = O.

Similarly, from (5.43), we obtain
T(Sif+U)DI.I, = 0.

since it has been previousÌy estabrished by Theoren -r.5 that t]r"rr-trr-"r_,
is negative semidefinite, then equation (5.45) musÈ be satisfied when

o="'L. The set of vectors which constitute the col-u-':urs of Grrvlrare

(s.44)

(s.4s)

(s.46)
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ÌinearJ-y independent and can therefore be used as a set of basis vectors

in the null space ot sfr-u. since DW, is in this nulI space, it is
a linear combination of the vectors in Gtt"t and hence we obtain

a)' À similar argument shows that Grrw2 can serve as a set of basis

vectors in the nuLl space of Slr+U and thus r.ve obtain b) , Tf and T,

are nonsingular square matrices of appropriate dimensions. Condition

c) is obtained as fol-lows: pre-murtiply (5.42) and (5.43) by wT

and take the transpose of each equation to produce

wftslrnsrr-D)w, = o

and

wltsf.nsrr-D)w, = o.

Similarly, pre-multipJ-y (5.42) by WT

wltsfrosrr-D)w, = o.

Now, using (5.40), (5.41) and (5.47)

[_-
[4I'I

T*z
Tt¡

wrtslrosrr-D)w -
Ir]rorrr-"] ['',

(s .47)

(s-48)

and take the transpose to obtain

(s.4e)

- (5.49), v¡e have

*, "r]

r=aiaslo o rTrsfros.r-ol
ll&

where diag is used to denote a di.rgonal matrix. Si
T.n

I^l- (SilDSlt-D)W is negative semidefinite and thus, f

condition c). This compl-etes the proof of the neces

Consider now the sufficicncy. Assume iha

and c) are met. For D = GI_ we knorv that (5.45) and

l
r{ I ts.so)3l

nce W is nonsingular,

rom (5.50), we have

sity.

t, conditions a), b)

(5.46) are satisfied.



That is

fslr-ul G1lwl = o

t rlr*ul G'.FI, = o.

Since Ta is a nonsingular square matrix,

a) into (5"51) produces
rr,_1_o

(sit-u) o*lt,

from which we have

Tl(sit-u)DV'i, = 0

L20

(s. sr)

(s.s2)

the substitution of conCition

(s.s3)

(s. s4)

which is identical- to (5.45) . Equation (5.42) then follor.rs directly.

Similarly, by substituting condition b) into (5.52), we obtain equation

(5.43). Now, by following the same procedure used in the necessit-y,

v/e can arrive at (5.50), from which we conclude, v/ith the use of cond.ition

TTT
c) , that W- (SiIDSII-D)W and hence SilDSlf-D, is negative semidefinite.

theorem 5.4 gives necessary and sufficient conditions for the

existence of alternate Lyapunov functions which may be either diagonal

or nondiagonal. Alternate equivalent forms of the conditions -in the

theorem can be sta{led; however, the form given appears to be the most

suitabl-e for the present purpose

As an example of the application of Theorem 5.4, consider the

prototype filter shown in Fig. 5.1. For an appropriate choice of

element vafues, such a structure could be a reafizatiou of a l--hird,-

order elliptic lowpass filter. The network graph, sholing the tree

chosen for the analysis, is given in I'ig. 5.2. we obtain the

following matrices:
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Fig. 5.1 Non-mínimal third-order lowpass filter.

Fíg. 5.2 Network graph corresponding to Fíg. 5.1.



"rr -

*tt

0

G5*Gl

"t

0

"t
G.+G-o1

G.

U

L22

(s.s5)

(s.s6)

(s.s7)

and hence

l

^

A*n o

0 G1+c6

o -Gt

G1G5 * GsG6'

0

-e"1

1*.L

where Ä =

a= ::l-1 01

011

G:-G6 *

[: lrl
v

w2J' 2

There are two loops of reactive elements, hence two eigenvalues equal

to -1 in the noncanoni. tll. one of these eigenvalues, due to the

loop of capacitances, is removed in the formation of the canonic

filter; hence, only one eigenvalue at -r now exists in srr. There are

no cutsets of reactive el-ements; hence there are no eigenvalues equal

to +l-. The two eigenval-ues not on the unit circl-e which.are a result

of the resisLive terminations can easily be del-ermined if d.esired.

Since there do not exist any resistive twigsre^- does not
\J).2

exisl-. Thus we can choose y (see (5.2r) ) to be a convenient nonzero

value

Y=1

which then produces

(s.s8)
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are

u']

tto

r l-:lwz: I t' 
I'.J

Using (5 . 34) , cond.ition

tutuo*lt*z = w2T2

where, in this exampler T,

those sol-utions D which

aiaø 
[a, 

dz

then (5.60) is equivalen

.!i

b) of Theorem 5.4 can be written as

L23

(s. se)

(5.62a)

(s.62b)

(5.62c)

(5.63a)

(s.63b)

(5.63c)

R4dt = T2

Gud, = a\,

a nonzero scal_ar.

diagonaJ-

tfie following three equations:

r¡ithin the arbitrary constant T,

is chosen to be unity, then

(s.60)

If we consider only

(s.61)

GUd, =Af,

A solution

can always

(5.62) unique

obtained. ff

to

t2

to

be

tl-t4

. "t"o+crcs+csc6-o-____-_l_-¿ \t-
b

G1G6j-G1G5nG5G6
d3 u-

3

since al-l of the prototype element val_ues are positive, (5.63) will

yield positive values for the entries of D.

rt norv e¡]y remains to satisfy condition c) of Theorem 5.4.

However, since D is now unique to v¡ithin an arbitrary multipticative



constant, it is more convenient to simply

is negative semidefinite for a particular

choose the element values to be

r24

fnto see if SitDStt-D

If, for example, we

check

ttt'

R=
s

\-1 -

then S*

*!= t

c2= r
r6/Ls

r/16

l=

c3=

I

I

* 
f Í :: ï]

is given by

ë"ll (s.64)

and

(s.6s)

It is readily verified that ST. r
aa 

rttl-O is negative semidefinite and

thus' as discussed previously' a signaì- modification scheme which reduces

-he magnitude of the adaptor .output signals will producc a real-izable

filter which is free from parasitic oscillat.ions.

The element values given for this particular filter can

be obtained by approximating the valucs given in t3ol for. a firter

having a CC03l5l-7 specification. These element val-ues have also been

used by l'leerköt.ter [427 .

If all of the extrancous inputs and outputs are removed

from the n-port adaptor and the remaining matrix is subjected to a

numerical refactoring, the foll-owing representation is produced:



I
0

0

0

0

I
0

0

0-1
-l -2
T1
01

-1

I
I

"t*"7
0

Gt

001
1-1-1
000
01r
1-1-t

L25

(s.66)

(s.67)

15

0

0

1

-1
o

¿.
4

J¿

A real-ization of (5.66) can be obtained using only g adders and 2

multipliers. The nul-tipliers, which have values of r/4 and L5/32,

can both be operat.ed in the same time sLot. The frequency response

obl-ained from a simulation of this fifter is shown in Fig. 5.3. A

realization of the same filter, using Fettweis, canonic method tr4l

and the standard adaptors, requires about l-5 adders and 4 multipliers.

The multipliers,of which three are equal to L/2 and the other is equar

to I/16, require two time slots for the required computatj_ons. A

canonic real-ization using the lattice ad.aptor il5l requires 7 ad.d.ers

and 3 multipliers having values of r/2, l/2 and 9/16. Tv¡o multiplier

time sl-ots are required.

As a second examp'le, v/e shall_ consider the. f ifth-orcler

elliptic type lovrpass structure of rig. 5.4. Analysis using the tree

of Fig. 5.5 produces

0

9,
f)

- -l-= - :-

G_
5

o

Grr =

2'"9

tt

Gz

GI+G

[,"

L'
nä,o= 

[: : :],

0

Gz*Gg

Gz

^Tl) ='c ú.¡

0

1 rl ( 5.68)



Øo

dil
ì*'

T
Ð
û-{
&-
d!-

u_l

0-"€

5t, tt

40"ûö

38. tØ

aØ,ØØ

LØ,&Ø

Ø"tø

ü.15

Ø,LØ

ø"Ø5

Ø,ØØ

8,ØØ LØ Ø "eØ

Ø,8Ø Ø,Øç Ø,LØ

NORI'?&L X ZEÐ

0,3Ð Ø"4Ø #"$Ø

Fig. 5.3 Frequency response
by simulaËion using

Ø.15 Ø,æØ fr"ä5

FRËGU$ t{0V I tF s

of Ëhird-order lowpass fÍlter obtained
(s. oo¡.



L27

Fig. 5.4 Non-mi.nima1 f if th-order elliptic loro-pass f i1Eer.

Fig. 5.5 Network graph corresponding to Fig. 5.4.



Of the

by the

at -l^.

obtain

X

four reactive loops

minimal- real-ization

The reacLive cutset

while,

I

does not exist

W, and n found to be

0

-1
n

I
1

thaCondition a) of the theorem requires t for a diagonal D

I28

in the protor-ype, two are effectively remor¿ed

procedure and thus there rernain two eigenvalues

proCuces one eigenval-ue at +l-. rrom eÏ ^ we
u 2¡(

l.:l
L;J

since O-GLz

[::]
tu
W, are the

(s.6e)

( s. 70)

(s.71)

(s.72)

W=I

I
I
0

0

I

-1
0

1

0

I

w2=

d l
dz

0

0

d_
5

G-
5

G
6

"t
"z

Gf+G2+c9

TI

where 't, is a nonzero scaLar. since Gr, G2 and T, are alr different

from zero, no solution to (5.72) exists and thus ive cannot meet the

requirements for tire existence of a diagonar D. rt is interesting to

note that the reason for this failure is strictly b.opo'rogical .
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The network of Fig- 5.4 contains seven possibte normaf trees,
each one of which wilr produce a different cutset matrix and trrus a
different Grr-, wr- and wr. unfortunat.eJ-y, the same result. is procluced

in each case and. thus we must concr-ud.e that there does not exist a

diagonal Lyapunov function for a canonical realization of this fifth-
order network' TVo possibl-e remedies to this problem were consÍdered..

The insertion of resistive elements in the prototype, such that the

degree of the rearization remains unchanged, arso failed to produce

a desirabt" 
"r-r_. 

Even if one of the modes at _l_ was not removed,

thus producing a real-izatíon of one d.egree greater than the minimal-

degree and a GfI similar to that in the third-order elliptic case, the

results were still négative.

The investigation of other networks,includinq the Watanabe

and seventh-order eJ-riptic type structures used in chapter rïr, forces

the concl-usion that, except. in a limited number of cases, diagonal

Lyapunov functions do not exist for wave digital filters having a

nondiagonal G-, .
l-I

5.3 TRÀNSFORIÎATION OF VARIABLES TO pTAGoNALIZE Gll
' It is wel-t known that a simiÌarity transformation of the

state variables of a rinear system wirl produce another system of the

sa.me dimension having the same input-output transfer function.

Additionally, the new system is controll-able (observabJ-e) if and o¡iy

if the original system is controllab]e (observable). ff such a

transformation is app]-ied to a wave digital- fil-ter for whictr a diaqonal

Lyapunov function does not exist, then it is possible that for the nev¡

system such a diagonal function wiLl exis.b.



Consider the nonsj-ngular linear transformation

the original state variables x, to the nevr set y:

x=py.

The transformed system wirl then have a state transition

form

P can alr.rays be

and tirus can be

130

P, relating

(s.73)

matrix of the

(s.

chosen

used

-t_A = P Itttn. (5.74,)

If we restrict our attention to those transformations which are block

diagonal and commutable with I,then

(s. 7s)

(s.76)

(s.77)

A=IS'

where

tu -lS=Þ.-qÞ"11 ' "r1''

Next consider the matrix t]a"r-r-tr_r--G* which is known to be symmetric

and negative semidefinite. A congruence transformation using p produces

another negative semidefinite matrix as follows:

rrtslrcrrrrr-.rr)n = "trîrnt 
In'"rree-lsrrn-rrcrre 

= {ro3rr-o

where (

TD = P G--P.II

Because G,, is posiLive definite, the matrixII

that D is a diagonal posit.ive definite matrix

iyapunov function for the new system.

78)

so

asa

A realization of the new system is easiJ-y obtained as shown

in Fig. 5.6. since the matrices p and. p-r have to be built into this

realization, it is important that these matrices are chosen r*'ith care.
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de shall show in the next thoerem that P can always be chosen so

that it is a product of elementary self-inverse matrices. This form

is important for three reasons. Firstly, the transformed system

cannot suffer from any sensitivity problems with respect to the

rnultipliers in P. No matter which P is implemented, the exact inverse

is always used and thus the transformed and original systens have

identical transfer functions. Secondly, the elementary product form

for P seems to require the minj¡num number of multipliers and adders

for the type of systems which we arre considering. Although no proof

of this statement is available, experience r^¡ith several examples

supports this claim. Fina1ly, the self-inverse product form of p

allows the components of P in the realization to be multiplexed.

either in hardware or software, as is the case with the topological

matrix F.

Theorern 5. 5:

A definite s)nrimetric matrix G can alrn'ays be reduct:d to a

diagonal for¡n D by a congruence transformation, PTGP = D v¿here

P = PrPr...P[ is a product of self-inverse matrices.

Proof:

Let G be an nxn matrix given bY G

Then, since G is definite, gii I 0 for any

an elementary co1-umn opcr;rtion to clear out

in the ith rot, =ay 9ij. Th.is operation is

multiplication by the matrix Pa

= [srrJ, i, j = 1,2,...,n

i and thus can be used in

any other nonzero entrY

equivalent to post-
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10
o1

Y
1

-1

Y=I

where alr diagonar entries are l except for the jj entry r.¿hich is -r

and all- off-diagonar entries are o except for the ij entry which is
Tequal to Yl. Pi renresents the complemenLary rotdr operations which wili

clear out the symmetricar entry in the ith .otrr*r. rt is easiry

established thaÈ PrP, = u. The matrix efcer, which now has entries

ij and ji equal to zero, is a definite matrix (since F, is norrsingular)

and hence can be subjected to a similar transformation using prr where

PrP, = u. continuing this procedure using a sequence of self-inverse

matrices, it is poss.i-ble to systematicalJ-y eliminat.e alI off-diagonal

terms to produce the desired diagonal form D = pTGp where p = nlPz...Pg.

The order and manner in which the entries are cleared out is in general

not fixed and thus the sequence of matriccs in p is not unique. An

upper bound on the number of operat,ions required can be derived as

foll-ows: First, clear out the first row and colunn using.the 1l entry.

This requires at most n-l operations. Next, usinE the 22 entry vJe can

clear out the second row and column without. altering the first row and

col-un'¡¡. ?his requires at most n-2 operations. continuing on in this

manner, we finally need at most I operation to clear out the n-l row

and column. Thus I < (n-l)+(n-2)+...+1 = n(n-L)/2.

fn order to iÌlustrate the procedure required t,o obtain D,

consider the form of 
"rr. 

obtained for the fifth-order structure of the

D'1 I

0

o:-ij
6.,

II

0



previous section (see equation (5.67)). Since the method used in

Chapter IfI assumed that there is no interaction between the

capacitive and inductive redundancies, G, r can be rvritten as the

direct sum of G* and Gn

Grr : aiaø [c* , "u_l 
(s.7e)

P can therefore be written as the direct sum of P¡ and Pa

e = aiaø þ ,rq (s.80)

and thus P¡ and PU are determined. independently. For the present

example there are no inductive redundancies and thus Gy is diagonal

and P¡ = u. G6 can be diagonalized using the self-inverse matrix

f' o vrl f' o ol
Pa-= | o r o I lo I yrl =nrnz (s.81)(4 

Lt o-,-l L'o-t'l 
L¿

where

Gt
Yr = Gr+c7 '

"zv'2 Gr*"g

134

(5.82 a,b)

An alternative form for P, using \, = Gr/ (G'+G2+G9) is possible.

' As a second example, we shall return to the filter introduced

in Example 3.2. The lowpass to bandpass transformaLion used in that

example resul-ts in a system for which the state transition matrix

is not IS- - and thus the stability theory discussed so far is not
l-1

directly applicabl-e. The transformation in which z is repl aceð' by -22

effectively doubles the number of delay terminated ports. Each port

v¡hich would have been terminated by a detay in the lowpass filter is

transformed into two such ports in the bandpass filterras shown in Fig' 5'7'
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$
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I
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Fis . 5.7 Effect of the
on the delay

xz(n )

xr (n)

lowpass to bandpass
terminated ports.

transformation
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Fig. 5.7 ,then

the

If the state variables are chosen

equations arestate

x, (n+l)

x, (n+I)

Y (n)

0

-Ic-"tt
trt

x, (n)

x, (n)

ún)

(s.83)
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It is interesting to note that this

not self-inverse. Also, the systern

Since the banclpass adaptor

to ê then, from Theorem 4.5,

state equations be associated with an

(s.84)

(s.8s)

s of the port conductance matrix

be verified thaÇ since the towpass

bandpass adaptor. That is

( s.86)

adapLor is not reciprocal .end hence

(5.83) can be proven to be minimal.
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b. tfa

can be used.

À = +(-lBP LP

["' I

L ",,1

as a Lyapunov function for

¡ å together with the fact

r37

(s.87)

the system. Noting that

that the J-owpass minimaL real_ization

is aslmptoticalty stable (lÀlp|..r), we have lÀunl. I ana rhus asymprotic

stability is preserved. in the bandpass real-ization. Theorem 4,7 can

then be used to guarantee freedom from zero-input l-irnit cycres.

In order to produce a diagonal Lyapunov function, ô, for the

bandpass firter, it is only necessary to diagonalize 
"rt 

ir the lowpass

fil-ter. The frequency ti:ansformation then prodr".= ô = diag [o, o]

This means that P and P-l need. only be inserted once each in the frow

diagram.

Because there are no inductive degeneracies in this seventh-

order structure, it is necessary onry to diagonal-ize the capacitive

component of Gll. From (3.84), c€ is obtained as

(s.88)

[.0r, å o o

I

l+ + å o

""= |

lo 12s !

| 
'u, =o

Lo o å ä.1

The technique which produces

that the off-diagonal eleme

be cleared out first. This

the mininum nu¡rber of multipliers

nts in the first and last row and

is accomplished using

requr_res

column
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( s .8e)

(s.e0)

Then

nl"ont

l_0:-0o0J

_r09I"303
1 AO0:-03L2

0004
3

The centre bl-ock

22 entry is used,

in (5.90) can be diagonalized in two ways. If the

then

I

0

0

0

000

_10
o

109

0-1 0

001

and

Þ='2

Þ=-2

r_ -. I 10 r09 5301u=ciaâcfl-" *-*"L:'30'1308'

If the 33 entry is used,then

+l

(s. e])

(s.e2)

( s. e3)

lOOO

0-1 00
4o4s1o

0001



and

ñ _ ri-^ lro 323 4s glll = ctl-ag I :-r :-;=r ì-':.r I I .u¿(¡Y 
l: ' L47, 12, :J
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(s.e4)

rn either case Po = nl_nz requires 3 multipliers and 3 adders. one

of the murtipliers has a finite word length binary representation

and thus can be realized exactly. The others are not of finite word length

and thus must be approximated for realizability. I,lhen this is done,

D is no longer diagonal. This problem and others regarding the

practical implementation of the signal modification scheme are

discussed in the next chapter.



CIIAPTER VT

SUPPRESSION OF PARÃSITIC OSCTLIÀTIONS IN

NONLINEAR WAVE DTGTTAL FILTERS USING n-PORT ADAPTORS

The systems obtained using the standard n-port adaptor

method or the minimal systems using the diagonal_ization procedure

of the last chapter both have a diagonal Lyapunov function. In

this chapter we develop techniques which can be used to obtain

bounds on the errors caused by finite signat word Ìengths and.

coefficient truncation in P. These bounds and the results of

Theorem 4.7 and. Corolì-ary 4.7 can be used to define the signal

modifications required. to guarantee continued pseudopassivity of

the filter and hence freed.om from parasitic oscil-lations.

6.1 STGNAL },IODIFTCATIONS FOR STABILITY

Finite precision in the signals and. coefficients cause

the signal-s in a true digital filter to deviate from the corresponding

signals in the associated. Iinear filter. Anticipating the results

of the next section, we shall'assume that each signal î in the finite

precision realization has associated with it an error interval such

that the corresponding signaL, x, in the ideal- filter lies in this

interval. That is

x e tÎ - or, ì. + orJ,

SËandard interval

This interval can

notation is used

be illustrated as

01 >0ro^>0 (6.1)r-¿-

where e denotes membership .

shown below.

(6.2)
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As discussed i¡r the crosing conment.s of chapter rv, parasitic

oscill-ations can be avoided if, for the same input state, the

next states of the finite precision fifter are smal-ler in magnitude

than those in the ideal_ filter. Examination of (6.1) or (6.2)

shows that this condition is not automatically guaranteed. since

the ideal- value coul-d be anywhere in the interval. However, r¡¡e

sharl now show that it is possible to modify the finíte precision

outputs at the d.elays so that the magnitude condition is a]ways

satisfied. These modifications actual-ly consist of the substitut.ion

of a different set of signal val_ues at the delays.

The specific form of the modificat,ions depends upon the

manner in which the signal values aïe represented. we shall- assume

that the filters under consid.eration are real-ized. using twors-

complement fixed-point ari-thmetic. This form of arithmetic is used

in the majority of hardware fiLters and is al-so the basic ari.thmetic

implemented in most. rninicomputers. rf the signal is represented by

m+k bits

Ò

where the

the actual-

_ô - ô r r
-k -k+r -l'ott

radix point is assumed. to

signal value is given by
r. m-l

=-ô-o2* + I ôir-t.
i=-k+l

. ô*_r (6.3)

be between ôO and ôa, then

(6.4)

The values of k and m can be different. at different points in the

fiJ-ter; however, we will assume that the signals in the main delays

have k = O. We also assume that the signals 1 at the output of the

adaptor before modification have a value of m consistent with the
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number of bits in the delays but that k > O is i:emporariJ_1r all-owed.

The signar modification proceduïe must therefore produce a new set

of signats with k = 0 wLrich satisfy the rnagnitude cond.it.ion. ,rhis

can be accomplished in two steps. First, a smal_l- correction wil]

be applied to produce signals which satisfy Èhe magnitude cond.ition

but may not have k = 0. The errors introduced by this primary

correctíon can be made arbitrarily small by allowing an increase

in the precision of the computations within the filter. secondly,

if k I 0 after the primary correction, then the signal is simpJ-y

front-chopped t251. This is eqrrivalent to d.iscarding the bits to

the l-eft of 6 . The fact that this procedure reduces the magnitude0

is easily established. rf any of the bits chopped were nonzero.

then the original magnitud.e must have been greater than or equal

to one. The front-chopped version, however, is always l-ess than

or equal to one in rnagnitude. Hence.the magnitude is eiLher reduced

or stays the same as a result of front-chopping. This type of

signar modification can causg large errors in the signals and thus

the number of overfrows should be limited by proper use of scaring.

The primary correction scheme to be discussed. next ideal-Iy

requires that either -ol or o2 may be added to the signals at the

delays. However, in generar, ol- and rl, cannot be represented exactly

in the word length allowed at the delays and thus the addition is not

realizable. fn situations such as this, the l-east upper bound.s on

o, and o^ must be repraced by weaker bounds which are reaÌizabl-e.L¿

Thusro. is replaced bv ô. where â. is the small-est number whichf--l-.L

satisfies ô, > o" and which has an exact representation in thel- -L

word length allowed. simirarly, o, is replacea rv âr. For exampre,
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is

there are 15 bits after the radix point, then

not realizable, is replaced by 2-I4'
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2-r5 * 2-L6, which

Depending upon the value of î, four different situations for

the primary corrections arise.

a) Î > o, Î t ôrrwhich can be represente<l by

o î-ôr î
rn rhis case lî-ôr-l : l"l and

satisfied if î was repJ-aced by

obtained by adding -ô, to î.

b) î<0, lîl r62,

î+ô-
2

thus the magnitude

Î-ô-. The valueI

(6.s)

condition could be

î-ô, can be easityI

î-ô,.

In this case

satisfied if

by adding ô,

v

lî+ôrl. l"l ana rhus rhe

î was replaced bV î+ôr.

Lo Î.

î>0,î

which can be represented by

î+ô (6.6)

magnitude condition coul-d be

The value Î+ô^ can be produced
2

c)

î-ô, o î

î-ô- î oI

This situation is sjmilar to that in c)

ôr, which can be represented by

x+dz (6.7)

since x can take on any value in the interval, zeyo is the only value

which is assured of being smaller in magnitrrde than x. The magnitude

condition is satisfied by replacing î by zero.

d) î < O, lÎl 1 ô2, which can be represenred by

î+ô^ (6.8)
¿

and hence the ¡1¿qni¡u¿s
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condit.ion is satisfied by replacing î ¡y zero.

The compensation just described could be carried out by

first determining both the magnitude and the sign of the signal after

which the appropriate modification can take place. An equivalent,

yet computationally less cr.unbersome, met.hod can be used if the correction

routine is described in t.he following equivalent form:

If î is positive, add -ôr. Then, if the new signaf îr-ô, is

still positive, no further action is required. rf îl-ôl is now negative,

it must be set to zero. If Î is negative, add ôr. Then, if the new

signal îa+ô, is stilt negative, no further action is required.. Í.f

îr_*ô, is now positive, it must be set to zero.

A straightforward implementation of this scheme couLd be

set up as shown in Fig. 6.1. The sign bit of Î is used to select.

the appropriate signal, -ô, or ôr, which is added to î. The EXCLUSTVE-

NOR gate determines whether the sign has changed; if it has changed,the

output is 0. The set of AND gates either produces zero or the output

of the adder. The leadi-ng k bit.s in the final output are del-eted so

that k = 0.

he data selector can be realized using only a few inverters.

rf we denote 6,(-ô-) as the ith ¡ir in -ô- and 6.(ô^) as rhe ith ¡itr' l-' -t - i'2'
in ô., then four situations are apparent:

¿

a) ô. (-ô. ) = o, ô. (ô^) = ot l. L. 2

b) ð. (-ôI) = o, ô. (ô2) = ]

c) 6. (€-) = r, 6. (ô^) = Ì' T L I- ¿-

d) ô. (-ô. ) = L, ô. (ô^) = O.II]-¿

The correct val-ue for the ith ¡it out of the data sel-ector is obtained

as foLlows: fn case



DATA

SELECTOR

Fig. 6.1 Implementation of the sche¡ne which
parasitic oscillations.

145

guarantees freedom from

Fig. 6.2 Àn example of the data selector
m=r5, ôr_ = ,-t' and ôr= z-r3 + 2

implementation when
-r4.



L46

a) hardwire a 0,

b) use the sign bit,

c) hardwire a 1,

c) complement the sign bit

This is ill-ustrated in Fig. 6.2, for the case where m = l-5, ô, = 2-L3

and ô, = 2-L3 + 2-r4.

The primary and secondary modifications are not generally

commutaLive operations. one exception occurs when ôr=0 and ô, has a

value equal to a I in the least significant bit of the signal. In

this case it may be possible to obtain a reduction in the hardware

complexity, since then modul-o 2 adders may be used instead of fufl

precision ad.ders at a number of points in the real-ization. A reduction

in the hardware needed to perform the signal modifications can also be

achieved. It is necessary only to add a I in the least significant

bit when the signal is negative. The addition of this bit cannot

produce a positive number ancl therefore no additional checking of

the sum is required.

The technique presented in this section can be considered to

be a generalization of the method used by Fettweis and Meerkðtter t25l

as applied to wave digital sLructures using series and parallel- acaptors'

frr those real-izations the above - mentioned special- case occurs ' A

somewhaL similar technique has also been used bi Lâ t201,.

6.2 ERROR INTERVAL ANALYSTS

Erlot anatysis using interval algebra has been

study the errors caused by fi-nite word length effects in

algorithms [43] . MoYe recently' this technique has been

used to

computational

applied'
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as an al-ternat.ive'to the commonly used st_atisticar methods, in the

study of quantization noise in digital filters L441. rn this section

we use a modified form of interval arithrnetic to monitor the errors

caused by the finite precisi-on realization.

Two sources of error occur. The first is due to the signal

word length reducb,ion necessary in a recursive realization. If such

reduction is not performed., the signal word. length wou]d grow indef-

initery as signals propagate inside the feedback roops. .The second

source is d.ue to coefficient quantization. Since a linear pseudoloss-

less realization with finite word. lengÈh coefficients can be used as

the basis of ihe fil-ter, the only source of this form of error is in

the diagonal-ization natrices p and p-l which must be approximated. for

realízability.

Assume that each signal, î, in the finite precision realization

has an error¡ e' associated with it such that the corresponding signal,

x, in the ideal- filter is given by

x = x + e.

If the error is known to lie in the intervaL

e e [_ol,a27 )

then the ideal signal x must be in the interval given by

x s [î-o-, î+o^].

(6.e)

( 6. 1.0)

(6.11)

As these sígnals pass through the filter, nerv signals, each

having its ov¡n error ínterval, are created. The error at the output

of an arithmetic or rvord length reducing operation depends upon both
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the error in the input and any additional- error introduced by the

operation. rf the output error, denoted. by eo, is restricted to

an interva] simi]ar to (6.10), then the interval_ in which the ideal

signar value Lies can be computed. from eo and the realized signal

value in a rnanner identical to that used to produce (6.1r) from

(6.9) and (6.10).

Using (6.9)- (6.fl) to define the ínput signals, we noh/

consider the output error associated with the individuat operations

found. in a digital filter reaLization.

(a) fnversion

From (6.9)

_x = t_îl + (_e). (6.L2)

since no additionar errors are introduced by an inversion, the

interval of the output error eo = (-e) is obtained from the input

error interval by interchanging the absolute value of the end points

while maintaining the sign. Th,us, from (6.10),

.o = (-e) e I^o* or)

(b) Addition

rf x, = Îr_ * e, and *z -- îz * "2, then

x, * x, = (çI + î2) + (el + er).

ilere we assume that the addition is carried

which necessitates that the word tength at

is I bit longer than the largest input word.

intervals, which are given by

(6.13)

(6. 14)

out \^rith full precision

the output of the adder

length. The input error
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e' Ð [-ot(xr), or(xr)J, u2 . t-or(xr) , or?r)1 (6.15)

combine to produce the output error

.o = (e, + er) e [-or(xr) - or(xr), 6r(xr) + or(xr)J. (6.16)

(c) Exact multiplication

Using (6.9)

ox = 0î + 0,e, ct > O. (6.17)

rn this case we assume that the multipJ-ier coefficient o, is positive
and can be represented. exactry in the word rength avair_abfe. The

effect of the multiplier is to scar-e the input error e into the

outputerrore =O¿eo

e = (se) e [-cto,, o¿o.]. (6.1g)o - l'-'-2'-

At this. point we have assumed. that the multiplication

aî n-" been carried out in ful-l precis.icn. Truncation or rou'd.ing,

which will- be discussed shortry, is normally used to reduce the

output word length. 
_

Multiplication by negative coefficients can be interpreted.

as the cascade of an inversion and. mul-tiplication by a positive

coefficient.

(d) Multiplication by a quantized coefficient

The exact multiplier value a is given by

o.=ô+Acr G)0,ô>o (6.f9)

where ô is the quantized multiptier and ag is the error. Again we

assume that both ct and ô, are positive. Using (6.19) and (6.9), the

ideal output signal is
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eo consists of two termsr .l_ ôe which is due to the error in the
input and e, = Âcrx which can be attributed to the error in the
multiplier- rf x, the signar varue which wourd have occurred at the
input of the muttiplier in an idear rearization is knorqn, then the e,
is known exactly and can be expressed in intervar form as

cr<= (ô+Ao) (i+e¡

ôî+ôe+Âax.

The output which appears in the realized system, ôî,
the ideal output, 0,x, by the output error e .

o
q.x=ôî+e

o

"Z . [Ao,x, Âax].

Then, using (6.16) and (6.18), we obtain

"o = (ea + er) et-ôoa + Acrx, &o2 + ÁcrxJ.

I{hen x is unknown but can be bounded.

(x(x
max

that is,

Xe

then, using

[x., x tmJ-n' max-

(6.1-3) and (6.18),

e [Aax ,ÂGx Lm].n rnax- '

. (6.20)

differs from

( 6. 21)

(6.22)

(6.23)

(6.24)

(6.25a)

x
ml_n

u2

e, becomes

Aa>0

€. E [Aox ,' max

and e is given by

Âs x l,ml-n Aa<0 (6.2sb)



e_ e [-ôo, + Aû,x_._r ôo^ + Áax l, Ac > Oo I mln' 2 -max-'

15r

ß.26a)

(6.28)

t6.29)

e_ e [-ôor + 
^crx__-_, 

ôo^ + Aa,X._J, 
^c 

< O. (6.26b)ormax-2min.'

The intervaLs associated with the output signal can be obtained if

desired from ô Î and the appropriate output error , (6.23') or 16.26).

The intervals in (6.26) produced using the bounds on x

rvill generarry be larger than the interval in (6.23) obtained from

the exact varue. However, since these larger intervals can be

computed independentJ-y of the precise values of the signals and

therefore need onry be determined once for a particurar firter,

they will be used cxcLusively in the remainder of this chaptcr.

e) Truncation of the twots-compLement representation

Truncation of a signal is performcd by simply- deleting a specified

numbcr of bits at the least significant end of the ç'ord. If the

input signal î is truncated so that in the output signal î, there

rcmain r-l bits to the right of the radix ¡rcin.t, then, wit.h reference

to (6.3) and (6.4), the error introduced is
m-l

ur=î-îr= I ôrr-t. (6.27,
r=r

Dounds o¡r t.his truncation error are givcn by

e, Ê [O, ÞZ]

where
rn- I

v2= I z-L.
ì=r

Since the input signal Î in gencral has an associat.ed

nonzcra crror compon?nt, t.hen, from (6.9, and (6.27r,
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(6.30)

The output error .o = .T + e can be computed from (6.28'), (6.29) and

(6.r0) using (6.16)

.o = (e, + e) E [-ol ,o2 + Vz). (6.3f )

f) Rounding of the two's compJ_ernent representation

Rounding of a signar to reduce the word rength is often used as an

alternative to truncation. This signal modification scheme can be

modell-ed as a truncation forrowed. by the addition of the most

significant truncated bit into the least significant bit of the

truncated signal. using this model- and the interval for err rc.2g)

and (6.29), t.he roundoff error¡ when r-r bits are retained to the

right of the radix point, is

^^e*=1-1* (6.32)

rvhere

x=Î+e=îr+ (e*+e).

e* e [-ut'u'J
m-I

and Hr= 2-t, 12= L ,-t.
i=r+I

(6.33)

(6.34)

If the input signal is in error, then

x=î+e=î*+(e*+e) (6.35)

and the output error uo = uR + e is

.o = (e* + e) e [-ol-UI ,a2 + V2l . (6.36)

The width of the error interval for rounding (6.33),

(6-34) is the same as the width obtained for truncation (6.2g),

(6.29). The rounding interval, however, is essential-ly slrrnetricalty
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placed abouÈ zero and thus is often preferred to t-runcation.

The implementation of an interval arithmetic routine can

be conveniently carried. out on a digitar computer using complex

aritìr¡netic in which Èhe lower and upper bounds on the intervals

are represented by the real and imaginary components of a compJ-ex

number. Al-l- of the required operations, with the exception of

inversion, are easiJ-y carried out using standard complex addit_ion

and multiplication. Inversion can be accomplished by multiplying

the conjugate of the complex number representing the input interval

by the complex number (0,-l), i."' -j.

The comput.ation of the error bounds used in Section 6.1

can be carried out using interval arith¡netic in two ways. The first

method is based upon a strictly arithmetic procedure in which the

errors are assumed to be independent from signal to signal. The

second method exploits the dependent nature of the signals in a

combination algebraic and arithmetic routine.

The difference in the intervals produced by

can best be illustratcd by a simple example. Consider

y = xl - a(xl + xr), ct >o

these methods

the expression

(6.37)

l^ie shall assume that the filter realization is such that the sum of

x. * x^ is first computed, followed by multiplication by o and the
L¿

truncation of the product, whictr is then subtracted from xr. Àlso

assume that the input signals x, and xZ are given by

*l=Îl*.1, xr=îr+e,

where, for convenience,

(6.38 a,b)



ô=â"r -z

Using the rules

satisfies

e [-ol ,c2i .

just developed, the ultimate ideal output

L54

( 6. 3e)

signal, y,

where

and

+ î2) lr

(6.40)

( 6.41)

(6.42)

(6.44)

The symbol t l* is used to denote the truncated signal.

The difference in the two methods depends u.Þon how the

interval- for e is eval-uat.ed. If the error at the mul-tiplier output,o

o,(e, + er)r is thought of as being independent of ul, then a

straÍghtforruard applÍcation of the rules to (6.42) produces

"o u l-2ao2 - o, - Urr zo.oL + o2J.

"o="1_-g(el+er)-eT

.o = (I-G) el-CI,"2-.*

then the application of the rules produces

"o 
Ê [-(l-a) oI - ao2 - 12, col + 02]

(6.43)

The advantage of this technique is the relative ease in which the

interval-s can be computed. I.f a simulation of the filter flow diagram

is availabì-e, then, with only minor modifications, the same program

can be used to compute the error intervals. These changes are

required to all-ow the use of complex signals and to provide for the

introduction of the intervals due to the finite word length operations.

f , on the other hand, the expression for (6.42) is sirrrplified

algebraically to

(6.4s)



t_ 55

This interval is smaller than that of (6.43). For example,
:c ãr-r or = 6n, then (6.43) becomes [_ (]_+2c) o, _ U., (l+Zs) O- I whileL ¿ '-l -. 

-L

(6'45) becomes [-or - u2, (l+cl)ol]. The difference coul-d be substantial
for values of o cr-ose to unity. This hypothesis has been confirmed
experimentarly and thus we shal-I henceforth only consider interval_s
produced by the second method.

rn order to compute intervals via this method, it is necessary

to obtain the output error slmboJ-ically in terms of the individual
error sources- For a filter containing onry a moderate number of
multipliers this task, if carried out by hand, becomes extremely time_
consumíng and prone to error. Fortunatery, it is possible to program

the entire proced.ure. The technique crosely fotrows the method used

in the exampr-e just. presented. First, arr- of the sources of error
due to both finite signal word rength and coefficient quantization
are identified and., at each point in the filter where such an error
occurs, an input variable is defined. The transfer matrix from these

new inputs to the adaptor (which now incrudes p ana r-1¡ outputs is
computed' This is carried out using a modified version of the firter
simuration routine in which arl of the adaptor inputs are set to zero

and. new inputs for the error souïces are included as reguired. Next,

based upon the type of arithmetic to be used in the realization, the

errors caused by finite signar v,'ord. rength are assigned intervals.
rntervals are ar-so computed for the erroï variabres which correspond

to coefficient quantization. FinalÌy, the output error intervars can

be computed from the transfer matrix and the input error intervals using

a matrix interval arithnetic routine based upon the rul-es given earlier.
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The input intervals for the error variabres due to coefficient
quantization can be obtained using a similar technique. First, using

a rearization which uses the exact murtipriers in p, the transfer
matrix from the state variables to the quantized multipliers is
computed- Then, with the state variable intervals set to [**irr,
**-*], where X*ir, ttd X*u.* uta the minimum and maximum signal values

all-owed in the derays, the intervars at the quant.ized. murtipliers
can be computed. These intervals represent the range of signal values

which are possible in the ideaL realization. The desired error intervals
are then obtained from (6.25).

Because the above computations are carried out on a finite
word length computer, the error intervaL obtai¡red at the adaptor out-
puts will itsel-f be in error. Ho\./ever, since most of ¡he calculations
involve numbers which have a finite word length that is much shorter

than the double precision word length of the computer, these errors
are extremely small. Furthermore, since the output intervat rvi¿th will
be increased to make the end. points real-izabl-e numbers as discussed in
section 6.1, these errors are highly unrikely to cause probrems.

A s''nmary of the procedure used to compute the error

intervals required to imprement tire signal modifications which

guarantee freedom from parasitic oscitrations is given in Figure 6.3.

In order to ilLustrate the theory presented in this section,

r¿e will- again consider the filter of Exarrpl-e 3.2. The diagonalizaÈion
matrix, P = PrPr, given by (5.99) and (5.91), will be used.. The

exact multiplier values are given by
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Figure 6.3 Summary of the procedure for computing the error inLervals

required to implement the signal modification which

quarantee freedom from parasitic oscillations.

r. si¡nurate the filter using t.he exact murtipliers in p.

2. Compute the transfer matrix from the state variables to

the multipliers in p which are to be quantized.

3. with the state variable intervals set to [**i.r, **u.*],

use a matrix interval routine, based upon the interval rules a) to f)

and the transfer matrix of step 2 to comput.e the bounds on the signals

at the quantized multipliers.

4. Using (6.25), compute the intervals of the errors

caused by the multiplier quantization.

5. sj:nulate the firter again, this time using the quantized

multipliers in P.

6. IdenLify all sources of error due to word J-ength reduction

or coefficient quantization and insert variablcs into the realization

at the appropriate places.

7. Compute the transfer matrix from the error variables to

the adaptor outputs. (The adaptor now includes p and p-f.)

8. Depending upon the type of word length reduction to be

used (i.e. tru¡rcation or rounding), compute the varues of the error

intervals using (6.27) and (6.28) or (6.32) and (6.33).

9. Using a matrix interval routine together with the results

of steps 4, 7 and 8, compute the output. error intervals at the outputs

of the adaptor.



Two of these multiplie¡s, Y1

Tv¡o different sets of val-ues

it= z-4 + 2-5 + 2-8

Îz = z-4 + 2-5 -

which will be caLled the

r =2-4+2-5+'l

and Y, must be modified for realiza-biJ-ity.

will- be considered..

+ 2-9 + 2-L2 * 2-13 * 2-L6 + 2-L7

(6.47 a)

(6.47b)
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(6.46)

( 6. 48a)

( 6 .48b)

signals in the delalzs

k = 0. For the purposes

the delay signal word

and maximum values in

(6.4e)

]-U

11-tog '
I

'2 ro' '3
I
4

-s -14 -I72 - - 2 "- + 2

long coefficients, and

z-8 + z-9 + z-L2 + 2-L3 + 2-L5

î =2-4+2-5-2-9-2-L4'2

which wil-I be called the short coefficients.

i^ie have previously assumed that the

have a representation as shown in (6.4) rvith

of this example we shall further assume that

Iengths are 16 bits; thus m=f6. The minimum

each of the delays is therefore

-1 R

x = -l-, X - I - 2 --.
man max

Four different cases were studied. Either rounding or

truncation was used exclusively with each of the long and short

coefficients. Using the procedure described in Figure 6.3' the

resulting output error intervals were obtained. Table 6.1 gives the

normalized output intervals' e e[-ol,6rJ, accurate to 4 decimal

places, in each case. The results are normalized such that I

corresponds to a one in the least significant bit. The unnormalized
.-15

intervals can be obtained by multiplying by 2



OUTPUT ERROR TNTERVALS

Rounding

[-1. 5e43, 1. 9242]

[-2.6L4e, 2.27LL]

[-1.7005, I.2I22J

[-1.4333, 1.7372]

[-L.€,699, 2.02]9J

[-0.9339, 0.9496]

[-1.0000, 0.5000]

Long Coefficients

TABLE 6.I

FOR LONG AND SHORT COEFFTCIENTS OF (6.41) AUO (6.48)

Truncation

[-0.9859, 2-5226J

L-2.4523, 2.4336J

[-0.6583, 2.2544]

[-0.8423, 2.3463]

Í-L.78: 4 , L.9165l

l-o.e777, t. oo58l

[-0.0000 , r.5000]

Rounding

Short Coefficients

[-].8e71, 2.22691

l-2.9832, 2.63951

[-r.7]81, 1. 22991

[-1.713], 2.01691

[-2.0916, 2.4494]

[-0.9575 , O.9731]

[-1.0000, 0.5000]

Truncation

[-1. 2886, 2.8253)

L-2.8207, 2.8020l

[-o.6760, 2.2720]

[-1.1040, 2.6260]

l-2.2O3O , 2.33801

[-0.9013, I.O294J

[-o.0ooo, 1 . 50oo]

F(¡
\o
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Às expected, the intervals obtained by the exclusive use of
rounding are more slzmmetrical than those produced by truncation. Due

to the smalrer error produced by the coefficient truncation in p, the

intervals for the long coefficients are generarly smaller than those

for the short coefficients. trhen the interval-s are modified for use

in the oscil-tation suppression scheme the intcrval-s of Tabte 6.2 are

produced. Because the maximum vaLue which appears i" 3tO, the

corrections are in all cases Limited to the two l_east significant
bits' rn addition, since the actuar corrections required when the

short coefficients are used are in most cases the same as those

required when the long coefficients are used, the extra word length

of the long coefficients is unnecessary. A rearization using the

short coefficients can be easily implemented on a r6 bit machine.

The fil_ter incorporating the short coefficients, rounding

to L6 bits after al-l multiplications and including the signal

modifications required for stability, vras simulated. The unit sarnple

response became zero after 2O7 samples. Figure 6.4 was obtained from

a Io24 ¡nint FFT of this response. The spectrum of the roundoff noise,

whi,ch is crearry visible in the passband and stopband, accounLs for

any deviation from the idear characteristic of Figure 3.20.

As a second example of the apprication of the interval

analysis procedure, we again consider the same Prototype filter.

This time, however, a non-mininal- rcalization as r.-ould be produceo by

the technique of chapter 2 is studied. rn this case 9 deJ-ays are

required. since the port reference conductance natrix is diagonal_,
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REALIZABLE OUTPUT ERROR

Long Coefficients

TABLE 6.2

TNTERVAT,S FoR LoNG AND sHoRT coEFFrcrENTS oF (6.41) AND (6.4g)

t-t

[-3,

l-2,

l-1

[-2 '

[-1,

[-r,

Truncation

[-f ,

[-3,

[-1,

[-1,

[-2 ,

[-]- '

I o,

Short Coeffi-cients

Rounding

L-2, 3l

It3,3]

[-2, 2]

L-2,31

[-3, 3]

[-l , 1]

[-1, 1]

Truncation

l-2,

l'-2L J'

[-f ,

l-2,
t-2
L J,

[-1,

H
ol
t\)
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no diagonalization matrix is necessary and thus there are no errors
due to coefficient quantization. The error intervals obtained are

shown in Table 6.3. The corrections required when rounding is
used excl_usively, are limited to IIO o, 2lO "rd are therefore

restricted to the two reast significant bits. A number of the

intervars require corrections onry in the least significant bit.
The ability to obtain oscil-lation-free filters in this manner provides

an al-ternative to the method used by Fettweis and l4eerkötter for series-
parallel adaptor realizations.

As a final note in this section, we entphasize that the

interval anal-ysis technique can be used to generate sufficient

conditions for stability in nonlinear wave digital filters implemented

using any form of arithmetic. The rules presented can be easiry

modified to incl-ude such situations as floating-point arithmetic

and sign-magnitude truncation.

6.3 R-EMOVAL OF OVERFLOW OSCILLATTONS IN MINII'IAL REÀLTZ\TIONS I{ITHOUT

DIAGONALIZATION

Zero input parasitic oscillations caused by overftows during

addition are called overflow oscill-ations. These oscillations are

extrentely undesirabl-e in a filter since in some cases the output can

oscillate between the maximurn amplitude l-i¡rits tll . As we have shor*n,

boÈh overflow and granularity oscillations can be avoided in minimal

realizations if the diagonarization matrices p and p-I are included

in the filter. Horn/ever, in this section we shall show that it is

not necessary to include p and p-r in order to suppress the overflow



TABLE 6.3

OUTPUT ERROR INTERVALS FOR NON-MINTMÄL REAITZATION

Rounding

[-] . 2500,

[-o .7 227 ,

[-0.6602,

[-1.7s00,

[-1.rs63,

[-0. 6602,

[-1. r094,

[-0. E7s0,

l,-o.7227 ,

1.23051

0.46881

1 .00001

I .40631

0.91801

1 .00001

0.7s001

0 .8907 l

0.46881

Realizable

[-2, 2J

[-r, 1]

Exact

Truncation

[-0. 5000, r .9805]

[-o.2227,0.9688]

[-0.9102, 0.7500]

[-0.7500, 2.4063)

[ -0 . 656 3 , 1 . ¿ lgo ]

[-0.9102.0.7500]

[-0.1094, I.7500]

[-0 . 87 50 , 0 . 8907 ]

l-o.2227, 0.96881

[-t, r]
l-2, Ll

RealizabLe

[-1,

[-1,

[-r,

[-r,

[-1,

[-1,

[-1,

[-1,

[-1,

2l

1l

rl

3l

2)

rl

2)

rl

1l

H
o\
,È
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oscilÌations, This result is of importance if the granularity

oscillations have very small arnpritudes or can be removed by

other means- since 
"tt 

i= diagonally d.ominant, compensation for
granurarity in the signals based upon the diagonal com¡ronent of

Gt, will reduce the system energy in many cases. This decreases

the probability that granutarity oscillations wirl appear.

In the study of overflow oscillations, the granularity

of the signal and thus any roundoff or truncation effects are ignored.

For the firters which we are considering, this means that only the

most significant bits of the adaptor outpuÈ signars need to be

modified before being stored in the delays.

Using the diagonalization met.hod of Sqs¡ien 5.3, the

Lyapunov function, v = *t"., r*, can be written as a sum of squaresl-l

weighted with positive coefficients. Thus

lm- v-yrDy= I t.'u, (6.50)
II

where D = diag [d,], di t 0., i = 1r2r...rm.

Due to the form of (6.50), the conditions of Theorem 4.7

are satisfied if the overfLows are removed so that

(6.sr)

However, the actuaL signars which appear in the adaptor are the

components of x and thus any operation which satisfies (6.51) must

be translated into equivarent operations upon the com¡rcnents of x.

A scheme which produces the desired results is illustrated

in the foltowing exarnple. We shatl again consider the filter first

discussed in Exarnple 3.2. Using the inductive ele¡rent values from the

lt*".(n+r)l: lvl.(n+l)l i = L,2,...,m.
J.I
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in (5.92), theprotol-ype and the

Lyapunov function

diagonalized capacitive conìponent

can be written as

2V=v +'l

or in terms of the adaptor outputs

labels of Figure 3. 14

2t2U = *6 * ã*, *

+ 53ol- x2_ +
f3OB II

numbered according to the

I"1 . ?'=.+t'r.# r3 + 5301 v2
13Og '6

+4u2
J

(6.52)

edge

't2'x^
3o

4G
)
J

+ ]e{x, + å *10 * #*rr,'* #,-*ro-ioî"rr,'

å "r. * *rr)2 . (6.53)

ff, for example, an overflow in *6 = yI occurs, then vrhen xa is set-

Èo zerot y-- (n+l) :0 whiLe y-- (n+l), L = 2,3r...rrrì remain unchanged.' -NLI' -*"i

Thus, (6.51) is satisfied and no overflow oscillations can occur.

Similar action is required if xJ or x, overflow. If xn overflows,

lly4= *g *Ë "rO 
* ,ät"rr_ can be set to zero by zeroing *9, *10.td

*lI . Ho\dever, the change in these variabl-es not only zeros Yn' but

also changes the value of y5r ya and yr, possibly producing a value

which is larger in magnitude. This problem can be a.¿oided b1' setting

yS, y6 and Y, to zero by also zerottn *r_0, *ll_ ttd *12. Further

examination shows that if any one of xn, *lO, *1I ot xr, overflows,

then if all- four of these signals are zeroed, no overflow oscillations

wiII appear.

The zeroing scheme for each particular fitter can be

determined by expressing the diagonalized Lyapunov funcÈion in the

form of (6.50) and following similar steps as outlined above- In

general, signals correspondirrg to capacitive elements which do not

appear in capacitance-only loops or capacitance-only cutsets can be
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zeroed 'independently when overfl-orvs occur, wiril_e all signals which
correspond to capacitive elements in capacitive degeneracies must be

zeroed simurtaneousry. The signals corresponding to the inductive
eLements are treated independentry from those corresponding to
the capacitive el_ements but in a simiÌar manner.



CHAPTER VII

CONCLUDING REI'IARKS AND SUGGESTIONS FOR FUTURE I,IORI(

A technique i,rhich s'multaneousry elimínates redundanË

delays in wave digíta1 filters caused by loops and/or cutsets of
reactive elements has been presented.. This technique, whLch is
implemenËed via an n-port ad.aptor, can be used to design fírters
iuhich are canonic in both delays and murtiprÍers from ladder
prototypes. Realizations of this type having the canonic number

of multipliers retain the low element sensitivity characterisËic of
properly designed doubly terminated LC prototypes. such filters
should also have the benefit of lor,¡er roundoff noise. The desÍgn
technÍque can arso be used to transform prototypes ruhich do not
have ladder structure. The resultíng filters wirl be canonic in
delays (ie ininimal) but, in general, the neËwork interpretation of
K r'irl not produce reaLízatíons which are canonic Ín multipliers.
rn ladder prototypes where Lhere is no interacËion between the roops

and cuEsets of redundant reactive elements, a canoníc reaLization
can also be obtaíned using FetËrn¡eist methcd; horvever, the n-port
approach inËroduced here requires fer,¡er adders.

The n-port adaptor prese'ted ís srrown to be both pseudo-

lossless and reciprocal with respect Ëo a nondiagonal port conductance

matrix. This nondiagonal maLrix is a direct consequence of the
reaLLzaxíon procedure. The controlrabirity and observabilÍty of
wave dígital systems using these ad.aptors r¡as investigated. rn
particular, it was shov¿n Ehat a pseudolossless reciprocal system is
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controlrable or observable if and only if it is minimal (le both

conErollable and observable simultaneously). various aspects of
the stability of both linear and nonlinear reaLízations rvere also

studied. The nondiagonal reference conductance matrÍx was shoç,n

to be a Lyapunov function for linear filters and a result rvhich

sho'¡ed that linear pseudolossless reciprocal r¡ave digítal fíIters

are as)¡mPtotically stable if and only if Èhey are minimal realizations

ruas derived. systeru rnodif ication schemes which can be used to

guarantee the total (state) stability as well as the outpu¡ stabiliry

in nonlinear realizations obtained from either stable or asymptoEically

stable linear filters are also gÍven.

rmplementation of the limit cycle supp_ressing procecure ís

easily implemented if a diagonal Lyapunov function is available.

The possibility of obtaÍnlng such functions for minimal ¡vave digital

filters rn¡as considered. Using Èhe properties of the eigenvalues and

eigenvectors of srr, necessary and sufficient conditions for Ëhe

existence of alternate Lyapunov functions ruere derived. Horvever,

applicaEíon of these condltions to various protoEype strucEures

shor,¡ed that díagonal solutions exist only in a limítcd nurnber of

cases. Another procedure r+ilich utilizes a similarity transformaÈion

on the state variables to simultaneously diagonaliru Gll rvas developed,

Realizations produced by this method are no longer canonic in

multipliers but re¡nain canonic ín delays. No sensitivity problems

are introduced by this procedure since, as long as the Eransformation

matrix P is a product of seLf-inverse matrices, Lhe input-outnut



L70

behaviour is independent of the actuar multiplier values in p.

The final chapter of the thesis described a merhod based

upon an error interval technique r,¡hich can be used co implement Ëhe

system modifications which guarantee freedom from parasitic osci1la¡ions.
This method is applicable to both non-minimal realizations and also to

mínirnal realizations after the introduction of the diagonalization

matrices. Tn the latter case oscíllation-free performance has been

gained by essentially trading delays for mulEÍpliers. However,

multipriers can be multiprexed whereas delays cannoE.

The netrvork interpretation of K produces realizations which

cor-rsist of an interconnection of discrete adders and rnultipliers.

Such realizations are desirable for sof L-rvare, f irmrvare or tradítional
hardware designs. Distributed aríthmetíc, which lras recenEly received

much attentl-on in the literature, should be considered as one possible

alEernate rvay to realize K. The sensitívity and noise performance of
such realizatÍons are of interest,.

The propertíes stuclied in chapter rv could prove useful in
extracLíng the essenËiar f eatures of r'ave digital f ilters so thaE

prototype netrvorks are no longer nccessary.

I'Jhen it was established Ín Chapter V Ehat diagonal Lyapunov

functions for minimal rvave digital filters exist.ed only ín a few

special cases, a similarity transformation was introduced r,¡hich

simultaneously diagonalized Gr r . rt inay be possibre to find other
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simpler transformations whích do not immediately diagonaLize G* but

which transform the system such Ëhat a diagonal Lyapunov function no\¡l

exis ts .

The cycle suppressing scheme described in this thesis is

applicable to both minímal and non-mínimal realizations. The stabl-e

non-mínimaL realLzatíons produced offer an alternative to the adaptor

tectrníque used by Fettweís. In Fettweis I method correction terms are

added aË each port of every adaptor. These correctíons propagate

through the filter to the delay terminated ports rvhere the component

in the sígna1 due to the corrections can be substantíal. Because

FetËweís I method does not take into account the dependent nature of

the errors ín the various adaptors, ít seems likely that the effective

correctíons at the delay termínated ports are greater than ti'lose

which are required in the n-port technique. A thorough study of Ëhe

noise performance of each type of. reaLization should be carried out.



APPENDIX A

rn order to verify that the reduced rear-ization of
chapter rrr correctly describes the input-output, properties of
the original system' we shal-t now demonstrate that this real-ization
can be obtained via a simil-arity transformation which simul-taneously

decouples the modes aL z = -r and z = r. The effort invorved. in
the sol-ut.ion of this probl-em is consid.erably red.uced by the fact
that the procedure already presented. in chapter frï reveal_s the form

of the transformed state '¡ariabres which appear in the reduced

order realization.

Equation (3.33) can be written in the form

Bbr = VBar (A.1)

where

v=¿iasf-u -u -u -u u u u ul @.2)L -J

B is the coefficient matrix on the left-hand side of (3.33) a.nd b'

and a' are the variabLes as they appear in that equation. A sequence

of nonsingular transformations can be used to obtain

ÊË = üËã (A.3)

where

Ë = TrTrBralrrrrnl (A.4)

ü-'n'n -l -'l, - 3_ 2vrZ-Ts- (A.5)

Ë = TnTrTab', ã - TnTrTra' (A.6)
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T, is given by (3.34),

!2 - -"t:*f

¡luo
Irlou

where

" = ñ"rrõ"r rurr*f-B'rrRf

t = õ"rrñar 
rQ11G'-Q"rrGr'

oi Irl
ul r

r-ñ õ rr; '_,__i*r'___:_i_ i o E

-Qrr"roljuof
lllF o I l-õ ñ rlL-- -----l czt crl I

I | ----T

(A.7)

0

0

T
J
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I

o 0i
00

UO (A.8)
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o
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I
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I
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(A. e)T='4

Qf",

AII of the matrices which appear

previously in Chapter III.

rn Trr T, and Tn have been defined

(À. r0 )

on the left-hand side

using the same

(3.45), followed by

produces a set of

sce

ñ.o
trl2

oõ Ctz

"--
0

0

0

0

l-
T

-Qr_r

o

o

ñLrr

o

T-"tz

ë,^ o
t-l I

0c-
I

Evaluation of ã in (A.4) yields a partitioned form

È = aiasfc 
"]

where C is identical to the coefficient matrix

of (3.45). ü is not diagonal. Inversion of È

technique previousJ-y used for the solution of

the insertion of the dynamic port terminations

state equations

Ia, (n+J.)

Ia, (n+I)

b2

The variables ar, a, and

while the suLxnatrix S

-

bz

ttt

0

szt

ttz

0

tzz E]
to those

5
0

c"ß

S.,
I

(A. rr)

R

correspond directly' in (3.46),
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f =r-,. trrl
s= I r

L "' ",,l
is the scattering matrix of

Sy are in general nonzero.

is given by

(3.46) . rhe

SU, which is

(A. 12 )

submatrices So, SU and

of particul-ar interest,

Þ

-U

0

2QttG,

0

0

-28I3Rf

00

-u0

OU

00

(A. r3)
0

U

Equation (A.If) can be viewed as the result of a similarity

transformation using a transformation matrix p = {tntrtr)-1. The

form of (4.lf) clearly shows that the state variabl-es a3 are decoupled

from the remainder of the system. These variables are uncontrol-Iable

and can therefore be simply.discarded. ivithout altering the transfer

function. In fact, since these variabl-es are redundant, they can

also be arbitrarily assigned a value of. zero. This step produces

the constraint eguations of (3.26) - (3.29). The interpretation of

these constraint equations as weLl as the netv¡ork interpretation of

2K can then be d.eveloped in a manner identical to that already used

in Chapter III.

Further examination of Sß shows that an additional

transformation
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- -1SU = X -SUX

where

00

uo
0u
00

produces

sU = aias[-u -u u "j
which proves that the decoupled eigenvaÌues aïe
z = 4I .

l1
f"

{= It
I 4,.r",

LO

al'z=-Land
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