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ABSTRACT

The subject of creep fracture is rather empirical at the
present stage. The present study attempts to apply the fi-
nite element method to simulate the crack propagation pro-
cess under high temperature where creep becomes very signif-
icant. A plate in plane stress state with a line crack was
used for the case studies. Besides visco-elastic creep,
plasticity was also considered, which was absent in many
previous numerical analyses in this field. In the finite el-
ement modelling of the creep crack growth, the "breakable
element" concept and the corresponding stress relaxation of
the broken elements were introduced. The correlation between
the crack growth rate a and the parameter C* was also in-
cluded. The results are compared with both numerical and
experimental works by other researchers. It is found that

the results from this study are closer to the experimental

results than those by other numerical studies.
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Chapter I

INTRODUCTION

1.1 INTRODUCTION

Through a series of accidents and casualties, it was
gradually discovered that pre-existing flaws in materials
could initiate cracks and fractures. This discovery led to
the development of fracture mechanics.

Fracture mechanics approach provides a technigue where
material behavior is analyzed with the assumption of pre-ex~-
isting crack-~like defects. Analysis of material fracture
frequently consists of three individual steps: the initia-
tion, propagation of cracks and the final failure. Engi-
neering fracture mechanics can usually deliver the methodol-
ogy to compensate the inadeqguancies of conventional design
concepts.,

On the other hand, the importance of allowing for creep
in the design of certain components operating under sus-
tained loading at elevated temperatures has long been recog-
nised. It was found that failure occurs by the initiation
and propagation of a single macroscopic flaw at high temper-
ature more easily than at room temperature. This problem isg
especially important for those structural components in-

volved in modern power plants and nuclear reactors operating



at elevated temperature. Many of these components are of
such large sizes that current technology in the inspection
and repairment preclude the assumption of a defect free
structure. In these cases, the material behavior might bet-
ter be chacterized by an analysis which accounts for these
defects. The very early report was given by Kaufman and
Holt [1]. They reported on their findings of time dependent
crack growth in 2219-T851 plate at elevated temperatures. As
a result of those findings, a program was initiated to in-
vestigate the significance of this phenomenon on the service

ability of materials utilizing fracture mechanics.

1.2 LITERATURE SURVEY

There are quite a few publications on creep fracture me-
chanics, a comprehensive review in this area was given in
1980 by Fu [2].

One of the main objectives of the study of creep fracture
mechanics is to establish a mathematical relationship be-
tween the creep crack growth rate a and some suitable param-
eter. In some early works, based on the application of lin-
ear elastic fracture mechanics techniques to brittle
fracture, ©Neat and Sivens, Floreen and James et al [3-5]
showed that creep crack growth rate could be expressed as a
power function of elastic stress intensity factor K. This
was supported by Kenyon and Yokobori [6,7]. Later, people

gstarted to search in the non-linear fracture mechanics area.



Net section stresses T et had been proposed by Harrison and
Sandor, Nicho and Formby [8,8] and several other researchers
[10,12] as another parameter which can be used to describe
creep crack growth. Freeman [14]) found the reference stress
to be a better parameter for some materials and Haigh, Vitek
and Pilkington [15~17] used the crack opening displacement
rate to describe the crack growth behavior. A number of au-
thors [18~21] attemped to extend the J-integral concept to
the creep condition. They defined a parameter C* to deal
specially with the visco-elastic creep fracture problems.
C*¥ is a power or energy rate line integral under small scale
yielding, it is interpreted as the energy rate difference
between crack lengths a and ay.

The C* method holds great promise for design calculations
and is widely studied. Though it was proposed under the

elastic or very limited elastic-plastic conditions, it has

e plasticity casg=~

been modified in various ways to suit lar plasticit Y

W

es. It can be calculated using finite element methods or by
some empirical formulae as well as measured empirically in
constant displacement rate tests,

Many researchers have tried to summarize and explain the
applicability and limitation of all these parameters, The
general conclusion is that creep crack growth rates corre-
late well with K only for brittle materials and correlate

better with o for ductile materials. For the in between

et

cases, C* or modified C* is a better parameter to correlate

the creep crack growth rates [22-25].



Recently, a few new parameters were proposed. In 1981, a
parameter ¢ oy, was developed by Atluri [26] which is a
path independent vector integral and subsequently had been
examined in greater detail by Stonesifer and Atluri [27,281.
Through their analytical work, they concluded that ( AT L; is
a parameter which bridges the gap between K controlled
growth and C* controlled growth and it «can be applied to
problems of non-steady c¢reep as well as steady-state creep
and so it has some advantages over the more commonly used C*
parameter which can only be applied to steady-state creep.

Liu and Hsu [29] studied another parameter c; which mod-
ified the C* parameter by adding a plastic energy
rate integral term to the C* formulation and claimed that
this parameter can uniquely characterize creep crack growth
behavior from the small scale plasticity to extensive scale
plasticity. They concluded that this C; overcomes the in-
consistency and the often-confused uses of parameters X, C%
and O et in characterizing the crack behavior for different
creep stages.

On the theoretical and analytical side, Goldman and
Hutchinson [30] proved that under steady state creep condi-
tions, there exists a strain rate singularity at the crack
tip which can Dbe characterized by the C¥% parameter, Rie-
del [31] discussed the creep behavior near the crack tip at

different stages of creep deformation. Hui. and Riedel [32]

derived the asymptotic stress and strain fields near the



crack tip of a slowly growing crack and discussed the stress
and strain singularity of this field. McCartney [33] applied
a continuum energy balance approach to the creep fracture of
both linear and non-linear materials. With a generalized
creep damage hypothesis, Kubo et al [34] proposed an analyt-
ical method based on singular stress strain field near the
crack tip. McCartney [35] proposed a crack growth law for
linear visco-elastic solids by using the Dugdale model of
small yielding., Other models have also been proposed, such
as critical strain model by Barnby [36], plastic zone size
modal by To [37], continuous rupture model by Purushothaman
and Tien [38] and critical COD model by Vitek [39] etc.

Taira and Ohtani [12,40] applied the finite element meth-
od to simulate the process of creep crack growth under a
critical strain criterion and compared it with their experi-
mental work, This will be discussed in detail in Chapter 7.
Stonesifer and Atluri [27,28] also performed finite element
analysis under the uniformly applied displacement rates
at the top and bottom edges of a compact tensile specimen.
In their analysis both C* and crack propagation rate a were
assumed to be constant.

As for the mechanism of creep crack growth from a stand-
point of microstructure, a review on analytical treatments
of creep crack growth due to vacancy diffusion and condensa-
tion was given by Leeuwen [41]. It 1is agreed that under

creep conditions the diffusion of vacancies towards a crack



or a void and their condensation there would contribute to
the crack growth. Based on the c¢rack tip stress field in a
creeping body and on models for microvoid growth, Riedel
[42] showed that at low level of C*, the voids growth mecha-
nism prevails by diffusion whereas at high C*-values the

voids grow mainly due to creep.

1.3 OBJECTIVE OF THIS THESIS

A review of the literature of creep fracture shows that
experimental studies were dominant during the past years.
Though there were some theoratical analysis, most of them
were limited to the stress strain analysis around a crack.
The analytical analysis of creep crack growth is complicated
not only by the non-linear creep deformation of the whole
structure but also by the plastic region developed at the

crack tip. To the author's knowledge, in the very few finite

ation problem,

3

element analyses of the cree

ko

crack propa

{a]

{

elastic-plastic analysis was not considered. It would be in-
teresting to see how this simplification would affect the
results. The objective of this thesis is to approach the
creep crack growth by another way in which an elastic-plas-
tic analysis is included,

In this thesis, the creep deformation will be converted
to a corresponding "pseudo~creep load" and added to an elas-
tic-plastic analysis by the finite element method. When the

strain at the crack tip reaches the value €¢ which s



called a rupture strain, the crack starts to grow. To simu-
late the real process of the crack growth, the "breakable
elements" [69,70] will be used which does not break at once
but gradually. After the element is broken the reaction
force at the former crack tip will be given back to the
structure also gradually in a form of relaxation.

The results will consist of the stress and strain fields
in the vicinity of the crack tip, the profile of the crack,
the mathematical relationship between the crack growth rate
a and the C* parameter and the size and shape of the plastic
zone, The results will show that the method used in this
thesis is acceptable and the program works well. Through
this investigation, one may find that it is quite possible
to use a numerical method to establish the relationship be-

tween the creep crack growth rate a and the C* parameter.



Chapter 11

ELASTIC-PLASTIC STRESS STRAIN ANALYSIS BY FINITE
ELEMENT ANALYSIS

2.1 REVIEW OF THE BASIC EQUATIONS IN FINITE ELEMENT METHOD

When a solid is loaded at a stress level beyond its elas-
tic limit, the relationship between the stress and strain is
not linear any more. Various elastic-plastic analysis meth-
ods have been proposed and most of them are expressed in
differential forms. Thus it is impossible to avoid a step by
step solution,

The finite element method was developed to meet the de-
mand for the numerical soluticns of thig types of engineer-
ing analyses problems and hence this method was also used in
this analysis.

The basic idea in finite element 1is to discretize a body
or a structure of complex geometry into an equivalent system
of smaller bodies, or units. Instead of solving the problem
for the entire body in one operation, the solutions are for-
mulated for each constituent unit and then combined to ob-
tain the solution for the original body or structure.

In this analysis, the finite element displacement method
is used and hence is presented in this section.

For each unit or element, the displacement { u } at any
point in the element can usually be related to the nodal

displacement { u, } by



{ul=[N]{uw }, (2.1.1)

where [ N ] is called a displacement transformation matrix
or a shape function,

If { € } is the vector of the relevant strain components
at an arbitrary point within the finite element, we use the
strain displacement equations and the displacement model to

give:

{elt=[B]{u }, (2.1.2)

where [ B ] is a matrix involving the derivatives of the

shape function [ N ] with respect to the nodal coordinates.
If { ¢ } is the vector of stress corresponding to the

strain { € }, we may get a stress-strain relation following

the generalized Hooke's law:

{olt=TcCcl{elt=TCT1([B]{ u } (2.1.3)

where [ C ] is a matrix of material property constants and
is usually called elasticity matrix.

Suppose one element is loaded by some external forces
f F 1, the work done by the nodal forces { F } is equal to
the sum of the products of the forces and the displacements

in the forces direction:



Wos{u LR}, (2.1.4)

where { uo } is the nodal displacement vector.
The strain energy due to internal work done by the

associated stress and strain fields isg:

W.=f {e Y iloday
v

‘fv { ¢ }T [c]1{e } dv
(2.1.5)

S, 0Bl {ue 10T [ CT BT {uo }dy

i

it

s, e T e 1B ] {u ) ay

where v represents the volume of the element.
According to the variational principle, the functional
T=W, «w

1 e

will be stationary when

or in this case



d W, oW
o I i e . )

B{uo}T i 8{uo}T ) B{UQ}T

By substituting the expresions for W; and W, in

Bgs.( 1.1.4 ) and ( 1.1.5 ) into the above relation, we may

obtain

2 T 3 T . .T
3 {ug )T ( {ued {F}) - oyt ( fduod” (B [C] [B] {wo} dv) =0 -

Since { u, } are the nodal displacements which are
independent of coordinates, they may be moved out from the

integral. The following equation can thus be derived:

’{F}:JV[B]T[C][B]dv{uO} (2.1.6 )

Let

T

I=J, 0B} [Cc][B])dv , (2.1.7)

[ K ] is called stiffness matrix.
Every element has its own stiffness matrix. After all the
stiffness matrices are evaluated, the stiffness for the

assemblage can be formed by summing up all the element

matrices to give:



] ( 2.1.8)

The equilibrium equations for the assemblage are now obtained

as

[K]{uw }={F} . (2.1.9)

By solving these equations, the displacements at each
nodal point can be obtained, then from ( 1.1.2 ) and
( 1.1.3 ) the strain and stfess in each element can be

determined.

2.2 YIELD CONDITION

The Von Mises vyield condition has been accepted as the
most practical and reliable yield criteria. For most
engineering materials, when the Von Mises plastic potential
at one point of a material becomes equal or greater than
zero, plastic deformation occurs,

The general form of the Von Mises plastic potential is:

F=F({o},k,T,{e}) . (2.2.1)

where K = the usual hardening parameter,

....12._



P,

Q

fe——
1

stress vector,

3
1

temperature and

~

Me

(-
i

strain rate.

For an isotropic material, F is defined'by
¢ - rd o - 02
I3 J2 Ty J2 7 Gy s (2.2.2)

where T and o  are the yield stress in pure shear and in

y y
uniaxial tension respectively, Jy is the second stress
invariant
J = P -
2 2 13 ij (2.2.3)
and Oii is the deviatoric stress components defined as:

According to Von Mises criterion, plastic yielding takes

place when:



aj

or

36t gt = o2

2915 %33 7 9% - ( 2.2.5)
Since the effective stress is defined as
1 2 2 2 2 2 2
32 0001 =05 0%+ (0y, = 045) (01 = 03307 1+ 3 (oy, + 03+ 075
3 gl. o!.’)Li
2 Tij Tij °

( 2.2.6)

I 2
2739 =0 (2.2.4)

for a multi-axially loaded solid, it is easily observed from

( 2.2.5 ) and ( 2.2.6 ) that

o =0 . ( 2.2.7)

which is the yield criterion used in this analysis,

) 3

1



2.3 MATERIAL CONTITUTIVE RELATION

The relationship between the effective stress and the ef-
fective plastic strain for a material subjected to plastic
deformation is wusually determined from experiments., Func-
tions which can describe experimentally established continu-
ous stress vs. strain curves are necessary for the analysis.
Hsu et al [43] have proposed such a function which can cover
the entire stress vs. strain regime. This function describe
a sharp turn at the conjunction of the elastic and plastic
parts of the stress-strain curve which is closer to the true

stress-strain curve,.

Ec
0 =
(14 e " }l/n ( 2.3.1)
E - - =
(1 = ) Okink + €
where
o~ E
E= sy,
- 3 Rt
Et =
. (1 - 2v ) E!
B

with E and E' to be the respective moduli of elasticity and

plasticity from a uni-axial stress vs., strain curve and



0o = the stress at which the elastic line intersects
with the tangent of the plastic curve as shown in Fig.l,
By differentiating ( 2.3.1 ), one may obtain a tangent

modulus Et:

E ¢ _
iy . +1 El
£ {1+ ntl BTy
[U»Zfé:)o +‘-ﬁ,gj E
E .40 E kink ’
t £ e nxl
de {14’[ -~ - E € :jﬂ }"’TT
_.].5:__ - o~
(1 =-=) Oing “E'E
E
(2.,3,2)
To obtain eguivalent plastic modulus HY for the

multiaxial stress condition, which is the slope of effective

stress vs. effective plastic strain curve, one may start
from
T om & + dg i 2. -
de dee p (2-'3!3 )
Let
p H ? ( 2.3.4)
Since



(2.3.5)

- 4
d¢ =-—— .
E
~ .40
de = E, ’ (2.3.6 )
it follows that
1
H' = oo ( 2.3.7 )
A1
Et B

FINITE ELEMENT CONSTITUTIVE EQUATIONS
the application of the

2.4
In the elastic-plastic problems,
concept of incremental stationary potential energy leads to
equilibrium in each

force~displacement

the incremental

loading step:
[ Ki ] {Aui } ( 2.4.1)

{8, }

wvhere i denotes the ith loading step.
that the whole non-linear
into many piecewise

The above relationship implies
now has been divided

loading process

linear loading steps.
- 17 -



The key for elastic-plastic analysis is to get the
elastic-plasticity matrix [Ckp ] which 1is different from
the elasticity matrix [ C_, ] in ( 1.1.3 ). Once the [ Cep ]
matrix has been evaluated, the ’computation of nodal
displacement increments, stress and strain increments can be
carried out following the same procedures adopted in the
elastic analysis.

It has been found that the plastic strain component

increments are proportional to the current deviatoric stress

components { o' }:

dell ) de,, d€33 de | 4

? 1 ? 1]
91 92 933 O3

which leads to the Prandtl-Reuse flow rule

tae }=ar{d r (2.4.2)

.

where dx 1is a proportionality factor.

Referring to EBqg.( 2.2.2 ), it is found that

o,, =
ij aoi. s (2.4.3)

or in the matrix form:



{o'}={%§_}

Now ( 2.4.2 ) becomes

L BF
{ dEp } "d/)\ {'”8"6,'

If only the stress and the hardening parameter

be taken into account, ( 2.2.1 ) becomes
F=F ({01} ,K) s

The differential form is

dF = {«GLE 3T

9F ..
80 {dO}'\"‘S‘T(’d}\"‘O o

By expressing the hardening increment in terms

strain, Eg.( 2.4.7 ) can be expressed as follows
.. ¢ BE T OF [ 3K o=
aF = { 5= 1" {do } + 55 { Bep} {dep } =0

The total increment of strain at any step is

{de }={de }+{ae 1}
e b

_19..

(2.4.4 )

( 2,4.5)

K are to

( 2.4.6)

(2.4.7)

of plastic

( 2.4.8)

( 2.4.9)



in which { dep } is the plastic strain increment and

{dae } is the elastic increment. From Hooke's law,

{de t=1[c 171 (a5} . ( 2.4.10 )
€ e
Substitute ( 2.4.4 ) and ( 2.4.10 ) into ( 2.4.9 ), we have

(e Y= fe, T Cas b ean (28, (240
hence,

) oF
{do } = [ Cc 11 de} - Co 1 { ==

. ( 2.4.12)
30,} dA

Substitute ( 2.4.4 ) and ( 2.4.12 ) into ( 2.4.8 ) and solve

for dxr,

9F T ; .
{ w [ Ce ] { de }

: oF 3T t ..%._E ﬁ}_(_ T t
{ 35 } [ Ce }{ o'} - SK{ aﬁp P i{o }

dX =

(2.4.13)

The relation



has been used in the above derivation.

Finally, combining ( 2.4.12 ) and ( 2.4.13 ) leads to:
. oF oF T .
¢, ] { 55-} { o c, ]

30
{do} =] C, 11 e yo-

5 e ) (2.4.14)

where

oF T ¢ : o aF oF 9K T  9F
Sf—‘{-:\(;g} tce]{%—}_w{%}{30}

( 2.4.15 )
It is convenient to introduce the plasticity matrix:
oF oF T
[ Cq J R P o s o Ce]
[ 1= S . ( 2.4.16 )

and the elastic-plasticity matrix

Up to now, a new constitutive relation has already been

established for elastic-plastic analysis, which is

{do} = [ Cop ] { de } (2.4.17 )

It is also shown in [44] that
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S5 )T < Ops Ogps 201, > ’
OF 2
T »
aK T
{'"3“5" } o= { } 9
P
where H' 1is the plasticity modulus
section,
Since in the Plane stress case,
1 v o 1
E | .
: : 1.0
(¢, l=———— 1= v
L= v? sym. e
2
we have
1 } 4
O‘ll'* \)022
] %
Cc 1 (2T L B ST )
e’ 30 1 - V2 (1=-v)o

given in

t

12

( 2.4.18 )

( 2.4.19 )

( 2.4.20)

the previous

( 2.4.21 )

(2.4.22 )



and

A 9F T , OF ’
e, 1 it {55 ) 0C] (2.4.23)
" (0 +\)0 )2 (o +\)0’ )(\)c* +ot) (1~-v) ( 4 ]
22 117922 V)G, (0)+H90),)
E ' N2
I (\)Ull+022> (1-«\))(5 (\)0' 4022)
(1-v?)? .
sym. (1=v) Oi;
-~ >
Let
E
S‘ = - el £ 0] + VvV O )
1T T ( 22 )
Sy = T (Vo +0s,) . ( 2.4.24.)
I
S, ® e O
37 T4 12 ,
( 2.4.23 ) becomes
e ~2 ~
< "
21 S1 5)2 52 83
oF 7T oF 2
[¢c J{=3) {—%)Y[1c 1= 5 S, S
[ o] ile] (<1 2z 2 3 ( 2.4.25 )
Sym. 2 R
53
e P




On the other hand,

B T By s 4o ,
tge b [C gyt =0y 8 +0), 8, +20;,5,
OF (9K T  OF 4 4= 2 .,

K Lae | lgyl=-g507H g

Substituting the above relationship into ( 2.4.15 )

4 =2

— 1 t + 1 — t
S ( 011 S1 + 022 S2 2 012 S3 ) + 5 0" H
Finally,
1 V) 0 /82 S.S .,
. 1 1 172
[ Cop 1= — S B %2
1 - v? L sym, *‘"é-
Sym.,

( 2.4.26 )

(2.4.27)

(2.4,28)



Chapter I1II

CREEP DEFORMATION AND PSEUDO CREEP LOAD

3.1 REVIEW OF SOME BASIC CONCEPTS OF CREEP

The progressive deformation of a material at constant
stress is called creep. Creep is a time-dependent phenom-
enon. A Creep curve is usually wused to describe the strain
change of a material vs. time at a certain temperature and a
certain stress level. One way to get such a curve is to ap-
ply a constant stress to a tensile specimen maintained at a
constant temperature and to measure the strain as a function
of time.

A typical creep curve, curve A, is given in Fig.2. It is
generally agreed that the creep curve has three stages. The
first stage of creep, known as primary creep, represents a
region of decreasing creep rate. The second stage of creep,
known as secondary creep, 1is a period of nearly constant
creep rate. For this reason, secondary creep is usually re-
ferred to as steady-state creep. The average creep rate in
this stage is called the minimum creep rate which is the
most important engineering design parameter.

The third stage or tertiary creep mainly occurs in con-
stant load, high stress and high temperature tests. When low

temperature and low stress tests are made, it is frequently



found that the second and the third stage will not occur and
a creep curve like curve B in Fig.2 will be obtained.

At low temperatures, say, below half of the material's
melting temperature, primary creep dominates. The commonly

used creep law in this stage is

¢ . g <P ( 3.1.1)

._.C . . .
where ¢ is the effective creep strain, g and p are

constants determined from experiments.
High-temperature creep is predominated by steady~state or
viscous creep. The minimum creep rate is usually determined

from "Norton's Law", which has the form

S enQ/RT

Ml

( 3.,1.2)

0

where % = effective creep strain rate,
o = effective stress,
Q = activation energy,
T = absolute temperature,
R = universal gas constant and

K,n = material constants.

m26 -



3.2 ELASTIC-PLASTIC CONSTITUTIVE RELATIONS FOR CREEP
ANALYSIS

Generally speaking, at any particular time, the strain

rate of the structure is composed of .

[y ={" 1 +16% (3.2.1)
in which
{e®} = the creep strain rate and
e % © ° ®
{e } ={ €ep b+ o € } o+ { €re }

=
o
[
=
4]
-
m
et
#

elastic-plastic strain rate,

ep
{ éT } = thermal strain rate and
{éTe } = strain rate due to temperature dependent

material properties.
In our problem, the temperature is constant

becomes
{€Y={¢ Y+ {&% ( 3.2.2)

where { §@3} can be expressd by stress rate following the

relationship given in ( 2.4.17 ):

°

{e Y=[c 1V¢{é ( 3.2.3)



On the other hand, the creep strain rate can also be

written in terms of a creep potential function [45]:

— (3.2.4)

(eey= g2 ld
where B 1is a positive parameter depending on the loading
history.

If the material 1is assumed to be homogeneous and
isotropic with no Bauschinger effect, also to be
incompressible and obeys Von Mises yield condition, the

creep potential then takes the form of the second deviatoric

stress invariant J, given in ( 2.2.3 ):

W ({oly_ o8J = { g
wa e s % 5T { o'} ( 3.2.5)

..

viatoric stress comnponents.

ateV ol LUL AL 2Ll sa R

where { o' } is the

£

The creep strain rate tensor 1is related to the effective

creep strain rate by

e 2, rc T ;o 3
gl et (3.2.6)

Substitute ( 3.2.4 ) into ( 3.2.6 ) and solve for B one

gets:

/ o) ( 3.2.7)

4



Substitute ( 3.2.5 )} and ( 3.2.7 ) into ( 3.2.4 )
c 3 £ - ‘
{e }='5 (g% /5 ) { o' } . (3.2.8)
or

{ae)=2 (& /5y o} . (3.2.9)

From ( 3.2.1 ), ( 3.2.3 ) and ( 3.2.4 ), the constitutive

equation 1is obtained as

[e, 7M1 +5 ¢ /5y (o) . (3.2.10)

.
M e
—
i}

3.3 FINITE ELEMENT FORMULAS

In Chapter 2, only mechanical load is considered. For
creep analysis, however, a pseudo creep load has to be added

on. The total load increment now ig

{aF } = { ar } + { dp_} ( 3.3.1)

o

where { dp } is the mechanical load on the nodal points and

{ dP | } is the pseudo creep load which takes the form
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(=
i

{ ar fV [ B ]T [ a, ] av

( 3.3.2)

i

I Cop 1 (e Jav

The equilibrium equation has the same form as ( 1.1,9 )

LRI {au} = {4r} ( 3.3.3)

where [ K ] elastic-plastic stiffness matrix and

{ du }

[

displacements of nodes 1in the finite element

mesh.

Apply the load in ( 3.3.1 ) to the structure and solve
( 3.3.3 ), the displacement of every node may be calculated

and the strain of every element may be obtained from
{dﬁ}"‘-[B]{du} o ( 3.3.4)
Also,
{dO}=LCepJ{dge} .

P

from which we get

{do } = [ Cep T ¢{de}~ {4 1) . ( 33,5 )

.._30«,



3.4 INTEGRATION SCHEME

In this thesis, the Euler integration has been adopted as
the numerical integration scheme to calculate the effective

creep strain increment:

where ©° is given by the Norton's Law.

In the elastic-plastic analysis, the magnitude of the
load increment has to be controlled so that the accumulated
error will not be too high. In creep problems, selection of
the time increments becomes very important. Too large a time
step can lead to unacceptable errors or even divergence of
the solution, Cormeau and 1Irons et al [46] suggested that
the integration can be made if the ratio of the maximum
creep strain increment and the elastic strain at that point
is kept Dbelow 2/n where n is the exponent of the Norton's
Law., From that, a maximum time increment Aﬂn for power-law
creep has been given in [47] in terms of <the maximunm

effective stress O ax °

L (14 v) ( “max /B ( 3.4.2 )

) ey n *
3n Kc £(T) ( Omax )

m



Although ( 3.4.2 ) is derived for elastic creep analysis,
it is easy to understand that it can be applied to
elastic-plastic creep analysis due to the fact that the
elastic strain would be small in comparison to the total
strain which is the sum of the elastic and the plastic

strain.



Chapter IV

FRACTURE MECHANICS IN DUCTILE MATERIALS

4.1 INTRODUCTION

Since fracture mechanics was introduced as a result of
the study of brittle fractures of steel at low temperature,
more attention was paid to linear or elastic fracture analy-
sis in early studies of this subject. The theory of linear
fracture mechanics 1is well established. This thesis deals
only with the fracture of ductile solids. No attempt was
made here to retroact the elastic fracture theory and a re-

view of ductile fracture is presented in this chapter.

4,2 THE SHAPE OF THE PLASTIC ZONE

The elastic stress functions at the c¢rack tip in a polar

coordinate system are

K -
0, = ———— cos~g(l+sin%)
vV 2 Tr
0, = m—— cos = (1 + sin = )
z vV 2Tt 2 -
i o .
ay v ( o, +0, ) = 2V e cos for plane strain,
- 2T
q3==0 for plane stress



where K 1is the stress intensity factor, r is the vector
distance from the crack tip, 6 is the angle between the
vector and the ZX-axis ( Fig.8 ), SR and o; are the
principal stresses, the principal stresses 0, and v, are equal
and act in x and y directions on the plane 6 = 0.

Substitute these equations into the Von Mises yield

condition which gives the yield surface of a material under

a certain stress condition

where <®S is the yield stress, and solve r as a function of

6, the boundary of the plastic zone is obtained as :

2
Plane strain: r (8 ) = K——«—-['%sin26+(l—-2\)) (1+ cos 8 ) ]
P
4o 02
ys
( 4.2.1 )
4 K2 : 3 2
Plane stress: r (6 )= — 2 [ 1 + 5 sin” 6 + cos 6 ]
2 i
4 o
Vs
( 4.2,2 )
. . ) ) 2 .
A non-dimensional r* = r / ( K / 'TUYS ) vS. B curve is

plotted in Fig.3 a. The region inside this curve 1is the

plastic zone,



There is another plastic zone shape function derived from

the Tresca yield criterion:

2 0 .
plane stresgs: r o= -----—E [ cos % ( 1 + sin ; 3 ]2 $ ( 4,2.3)
2
. /7roys
plane strain:
2 2
. . 26
r = MJE.«_W cosz' 9 L1 ~-2v+sin b ]2 or r = - CO8 =
9 2 2 9 2
2mo 2mo
ys S
whichever is larger. ( 4.2,4)

The corresponding figures are in Fig.3 B.

Tuba [49] and Rice and Rosengren [50] did more accurate
analysis on this problem by using relaxation methods. The
results are presented in Fig.4. Tuba's result showed that
the line connecting the farthest point of the plastic bound-
ary and the crack tip is at an angle 6 = 69° from the crack
line., Note that this is almost the angle at which maximum
shear stress occurs, Rice and Rosengren however calculated
an angle of 100°.

All these analytical results need experimental verifica-
tion. The dark area in Fig.5 A [51] shows a plastic zone in
plane stress which resembles Tuba's modal well and
Fig.5 B [40] is another example which confirms Tuba's model

to be a more realistic one.



4,3 PLASTIC ZONE CORRECTION METHOD

Since most engineering materials have the ability to de-
form plastically, the elastic solutions of crack problems
cannot be applied directly. However,' it would be easier to
solve the elastic-plastic problems by correlating plastic
fracture to the existing elastic theories. Irwin [51,52] and
Dugdale [53,54] proposed two different plastic zone correc-
tion methods to approximate an elastic-plastic fracture so-
lution to an elastic fracture problem.

It is a condition in both of these therories that the oc-
currence of plasticity makes the crack behave as if it were
longer than its physical size as the existence of plasticity
increases the displacement and decreases the stiffness of
the plate specimen,

They assumed that

a=a_+§ { 4,3.1)

wvhere a 1is the equivalent crack length, a, the physical
length of the crack and ¢§ is the additional length to be
calculated as follows:

According to Irwin,

2
1 K ”
§ = or o ( 4.3.2)
o
ys
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for plane stres

From Dugdale:

O o e LTO 5.3
o T ?-«g- cos 2 C;...»h., ( 4:;50 )

where o is the gross section stress.

For small value of ¢ /¢ , § is obtained from ( 4.3.3 )

s

by the series development of the cosine,

il K
L & omeme - A 2 A%
¢ 16 2 ™ {: @9\5&4 A

In this case, the twe methods lead to similar solutions
because ( 4.3.2 ) and ( 4.3.4 ) are almost identical, For

large values of U‘/OLS . the difference between these two
3

e

~hods bhecome significant because ( 4,3.3 )} should be used

o

ne
instead of ( 4.3.4 ) by Dugdale's method.

The application of this method is limited by the fact
that when the plastic zone size is too emall in comparison
to the <orack size, this correction might be unnecessary.

however, when the plastic zone size becomes large, the va-

s -

lidity of this method becomes questionable as ve will real-

=

a2

ize that the stress intensity factor K which is involved in

i

[ & is derived from the theory

s

#ll the three expregsions ¢
of elasticity.
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4.4 THE ENERGY PRINCIPLE

4.4,1 The Crack Growth Resistance ( R Curve ) Method

The crack growth resistance of a ductile solid can be

defined as:

where W is the energy reqguired for the crack growth,

As the crack growth resistance R represents the energy
required for crack growth, R is considered independent of
crack length under plane strain or brittle fracture
conditions, In the case of plane stress or ductile
fracture, the <crack resistance varies with the amount of
crack growth.

Fig.6 shows a typical R curve and its physical meaning.
The straight lines represent the stress intensity factors
K =0/ 1mTa VS, crack length a.

When the R curve starts from zero, the material at the
crack tip 1s not ready to separate until the stress
increased to oo where the corresponding K, intersects the R
curve at a = ag and crack growth takes place, After the
crack grows to a; , the K line intersected with R curve
becomes K1 which corresponds to a higher stress level o;. If
the applied stress remains at oo the crack growth will
stop. The crack growth can be resumed only when the stress

is increased to a higher level, i.e. o . Physically it



means that as the crack grows longer, the resistance of the
material to arrest the crack growth tends to increase, in
other words, the energy required to maintain the crack
growth becomes larger. The increased energy is mainly the
additional work to form a new and larger plastic =zone to
overcome the increased strain hardening ahead the crack tip
as the crack advances.

Note that the K line is tangent to the R curve at a =
a,. After the crack length reaches a,, the rate of supplied
energy will be always higher than the rate of the resistant
energy 8o a, 1s the critical point where unstable crack
propagation occurs,

The R curve might be invariant with the initial crack
size as pointed by Krafft et al [55]. An energy criterion
for fracture mechanics provided by the R curve is possible
if an analytical expression for R curve can be derived.

. .
ve 1ig still under

However,

[

.
he R curve

he theory of th

development,

4.4.2 The J~Inteqgral

Another energy method was proposed by Rice [56] which is
the J-integral method. J-integral is a line integral with

the form

. 9
J=/ . (Wdy =T gﬁ»ds )

m39.,..



where I' = a contour surrounding an area at the crack tip

( refer to Fig.7 )

T = the tension vector perpendicular to T ,
u = the displacement in x direction,
ds = an increment length on I' and
W = the strain energy per unit volume.
For elastic fracture or small scale yielding, the

physical meaning of J-integral was explained by Rice [57] to

be:

@ o
S e

where U 1is the potential energy which gives a generalized
relation for the energy release due to crack propagation.
Since the J-integral value has been proved to be path
independent for small strain case [56], one may select a
most convenient path ﬁo perform the integration. It may be
expected that there 1is a critical value at which crack
growth will occur. Begley and Landes [58,59] found that
fracture indeed occurs at a constant Jye -

The J-integral seems to be a better description for cases
with some plasticity but it is limited +to characterize the
initiation of a crack or some limited crack growth because
one of the preliminaries in proving the path independence is
the deformation theory of plasticity which does not allow
for localized unloading phenomenon which takes place behind

the crack tip during a stable crack growth process,
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4.5 THE CRACK OPENING DISPLACEMENT CRITERION

When the net section stress beyond the yield stress which

is defined to be:

in which w 1is the width of the specimen, the plastic zone
becomes very large and it may spread through the entire
cracked section. This is called general yielding. Under this

condition, a measure for the plastic strain at the crack tip

can be made by the crack tip opening displacement CTOD. The

CTOD criterion was first

Following the Dugdale

proposed by Wells [60,61].

apprecach, CTOD can be calculated to

give:
8 0 a T U
CTOD = ~d o 10g 8€C —me ( 4.5.1)
m E 20
ys
Again, for the case of small o/ O ( 4.5.1 ) reduces
te
2
0 = o ( 4.5.2)
g E
ys

OF MANITORA
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Although CTCD cannot provide a guantitative solution to
the fracture problem, it shows one possible way to extend
fracture mechanics to highly ductile materials, it can also
indicate the toughness of a material to fracture. & general
rule is that the higher the CTOD value, the better the crack

resistance.



Chapter 5

SIMULATION OF THE CREEP CRACK GROWTH

5.1 DESCRIPTION OF THE PROBLEM

A center notched plate under consideration is depicted in
Fig.8. This plate had the same dimensions as the center
notched plate described in Ohtani's paper [40] for the creep
test which was conducted at a constant load in a single lev-
er creep tester, The plate was 32 mm wide, 50 mm long and
2.3 mm thick. A 5 mm long initial crack was situated at the
center of the plate. Since the plate was very thin in com-
parison to the width, plane stress finite element formulae
were used in this analysis.

The material of this plate was assumed to be 304 stain-
less steel. Table 1 presents the mechanical properties of
this material wused in the analysis. It should however be
noted that there is considerable variable in these propor-
ties as listed in different héndbooks. The values listed in
table 1 represent a reasonable estimate of these values.

The gross section stress level was 98.1 MPa but for the
case of €. = 12% a higher level of 135 MPa was also applied.
The environmental temperature was maintained at 650°C for
all cases. According to the discussion before, under such a
high temperature, the secondary or steady-state creep domi-
nates, By negléeting the effect of the activation energy,

the Norton's creep Law becomes:
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where ¢ has the dimensions of MPa, the respective values of
K and n for the material at 650°C are 1.37 x 10" anad 7.1.

All case studies presented here are limited to mode I
type of crack growth.

5.2 FINITE ELEMENT MESH

Special isoparametric elements, special triangular ele-
ments and circular elements have been used in elastic stress
analysis around a crack tip which can simulate the singular-
ity of the stress at the crack tip and showed great advan-
tage by obtaining the same result with fewer elements. How-
ever, in the elastic~-plastic analysis, simple but smaller
elements have been used for computational simplicity and ac-
curacy.

In the present analysis, only a guarter ( the shaded part
in Fig.8 ) of the plate was taken into consideration due to
symmetry of the geometry. This quarter was divided into a
mixture of quadrilateral and triangular elements as shown in
Fig.%. Around the crack tip, the elements needed to be very
small for large stress strain gradients in that region. As
the distance from the crack tip 1increases, the elements
became larger and larger. Fig.9 A shows the finite element
meshes for the whole quarter plate and Fig.9 B gives the
detail of region A in Fig.9 A. The ratioc of the length of
the elements near the crack tip and the original crack
length was 0.2/2.5 = 0.08. A total of 325 elements and 232

nodes were used.



It is obvious that there must be some limitation on the
element size. Beyond it, the problem might not converge. An
attempt was made to find a suitable compromise. The conclu-
sion is that this model is good encugh for this particular
problem,

5.3  CRITERION OF CRACK PROPAGATION

In elastic fracture mechanics, 1t 1is considered that
crack extension will occur when the stress intensity factor
R reaches a critical value K¢, the fracture toughness of the
material, In the elastic-plastic fracture analysis,
critical values of COD, J-integral, the wultimate tensile
strength and the rupture strain criterion etc have been
suggested as fracture criteria. Let wus just focus our
attention on the rupture strain criterion for the time
being.

There vwere a few researchers [62,63,64] who attempted to
measure the strain field around the crack tip. They found
that the strain around the crack tip was almost a constant
during the fracture process. The rupture strain criterion
states that when the state of the strain at the crack tip
reaches a certain value fracture will occur [65].

There should be only one rupture strain for one material
under certain mechanical and environmental conditions during
elastic-plastic deformation, which can be obtained through
experiments. This criterion appeared to work satisfactorily

in {69,70]. However, it is not clear at this point whether a



single value of rupture strain can describe the entire creep
stage. The purpose then of this thesis is not to determine
all the parameters in creep fracture analysis quantitative-
ly, but rather to use three arbitarf rupture strain 0.03,
0.075 and 0.12 and to assess their sensitivity to the crack

growth behaviour.

5.4 THE CONCEPT OF THE "BREAKABLE ELEMENT"

In the present analysis, the crack was considered to ex-
tend in a predetermined crack growth path. Those elements
along x-axis from the crack tip in Fig.9 B were assumed to
be "breakable", the following sections describe how they

broke gradually one after another [69,70].

5.4.1 Extrapolated Strain

Since the present analysis |is based on the basic

principle used 1in the TEPSA computer code on the constant
stress strain elements, the effective strains in the

breakable elements could be extrapolated as a smooth curve
towards the crack tip by a least squares curve fitting
technigue [66]. It was found that wusually the strains
changes abruptly from the first to the fourth element, so
the wvariation of the effective strain in the first four
elements ahead of the crack tip had been considered. A

polynomial function was used to describe such a variation:
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€(x)=a, x  +a.x +a_x+a ( 5.4.1 )

where x denotes the distance from the crack tip along the

crack path, 81, 85, az, a, are constants derived from the

least squares analysis by using the average strains at the

]2 Xy By X )

The extrapolated strain at the crack tip can be expressed

element centroids (=

as:

5.4.2 Rupture of Breakable Elements

At first, €oxr WaS smaller than €rup OF Eg the rupture

strain., As the creep deformation increases, ngt would

eventually exceed ¢ at such time the crack growth process

£
began. The amount of crack extension Ax was evaluated by
solving for x in Eg.( 5.4.1 ) with € ( x ) = €¢ - It can be
illustrated schematically in Fig.10 as the crack growth at
time step 1i.

At time step i+1, due to the creep deformation, the
strain in the crack tip element would have increased further
and the strain at point a might exceed €p s The same
procedure like in time step i would be repeated again as



illustrated in Fig.1ll. This process went on and on until

peint a reached the next node.

5.4.3 Force Relaxation of the Broken Element

In Chapter 2, the eguilibrium equation was shown to be

{r1=x {u}
- s 8 1P T ec1[B]dvi{u}
- 081 el Bl (uday ’ (5.4.2 )

from above, the nodal force components are:

{F}

it

s, 031 Lelleav

s, o ) av : ( 5.4.3)

i

Once the crack front had passed through a crack tip
element, thigs element was deemed to have fractured and
became incapable of carrying any load. The nodal forces
carried by this element before it broke had to be released
to redistribute the stress field of the plate. This force
release is called relaxation step in this analysis.

In the relaxation step, the stiffness matrix of the
broken element was reduced to zero so it could not carry any

load in the later analysis,
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Since the restrictions on nodes 1 & 2 were all normal to
the crack, only reaction forces in this direction would be
given back to the structure as illustrated in Fig.12. 1In
order to maintain a smooth computation, small load increment
had to be used. The reaction forces were divided by 15
segments and were added on the structure by 15 pseudo-time
steps., A stress analysis was performed with these nodal
forces while the external lcad remained unchanged.

During the relaxation process, some elements would be
kept under loading while others would be under unloading in
these elements around the newly created free crack surfaces.

Loading or unloading of the elements was determined by a
trial and error technique. 1In trial step 1, all elements
were assumed to be under loading. Eg.( 1.1.9 ) was solved
and the incremental stresses were added on in the usual way.
The effective stress o of each element obtained in the tri-

with the

ffactive stre

(1]

1] load step would be compare

TR e

D
[$2]

[

Ny

p

prior to the trial step. According to 8?;;§i or 52<101 ,
the 1oadiﬁg and unloading elements was determined
respectively ( Fig.13 ). The stress prior to the trial step
was then restored, the analysis of trial step 2 with the
stiffness matrices of those yielded unloading elements

changed from [ Cep I to [ C, ] was carried out.



Chapter VI

PROGRAM AND SOLUTION PROCEDURE

6.1 INTRODUCTION

The program TEPSA [43] was used as the basis for the
present analysis. It was originally developed by Prof. Hsu
and his associate, A.A.M. Bertels to handle thermal elastic
plastic stress problems. The crack propagation part has been
implemented by Y.J. Kim and the creep analysis part by
Y.J. Liu., The author combined all these elements together
to make a new program which c¢an now deal with creep crack
growth problem. |

The procedure of this program work is as follows:

6.2 MECHANICAL LOADING

The load increment for the first step was 21 MPa which was
almost the maximum value to keep the structure in fully
elastic., Subsequent load increments of 1 MPa, 0.5 MPa and
0.25 MPa were used as the load increases. To reach the gross
section stress levels at 98.1 MPa and 135 MPa, 120 and 180
steps were used correspondingly.

In order to simplify the analysis, creep effect was not
considered in the initial mechanical loading as this effect

may be neglected for short time duration involved.



The elastic~plastic stress analysis in the initial loading
stage was performed according to the following steps:
1) Compare for each element the present effective stress

with the vyield stress, if O<:Oy , form the elasticity
matrix [ C, J. If Eszoy , form the elastic-plastic matrix
[ Cep 1. Form element stiffness matrices [ Ko ] and the
overall stiffness matrix [ K ].

2) Evaluate the mechanical load matrix { F } on every

node of the structure,

3) Solve for { du } from the following eguations:
[k] {dul}=1{4aF} ( 6.1 )

then calculate the strain and stress from

{dae}t=[8]{du} ( 6.2 )

£
o3
[o])

{do } = c, 1 {de} ( 6.3 )

for elastic deformation, or

tao}=TLc 1{ae] ( 6.4 )

for the elastic~plastic deformation.

4) Add this stress increment to update the stress



~~
G

1) =lo Y+ {a) .

5) Update new coordinates of nodes

{ x }i+1 = { x }i + { du } .

6) Repeat from step 1 with the newly defined coordinates.

6.3 CREEP ANALYSIS

Creep analysis started right after the initial mechanical
loading finished. The procedure is as follows:

1) Find the element possessing the maximum effective
stress from all the elements.

2) Use the maximum effective stress to compute At in
( 3.4.2 ) and :gc in ( 3.1.2 ).

?

3) Determine de° from Eg.( 3.4.1 ) where At and £° has

Lo Qs T Lo

been evaluated in step 2 and { ¢ } from ( 3.2
{ dP_ } from ( 3.3.2 ).

4) Forward to the next time step i+l with the pseudo
creep load { dPC } and perform the elastic-plastic analysis
for the whole structure again.

) Evaluate the total strain increment { de } by using
( 6.1 )} with the specified value of { du } 1in step 4 and
the stress increment { do } from ( 3.3.5 ).

6) Use ( 6.5 ) to update the nodal coordinates and
{ 6.4 ) to update the stress.

7) Repeat from step 1 again.
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6.4 CRACK PROPAGATION

Creep is a time dependent phenomenon., Therefore as the
time passed, the strains in every element of the structure
graw until the extrapolated strain at the crack tip reached
the critical wvalue and then crack growth started. This
procedure has already been described in Chapter 5 so it will
not be repeated here, It is worth noting that after the re-
lazation step of a broken element, the extrapolated strain
at the new crack tip might not yet reach the rupture strain.
The creep analysis would then continue until ¢ 2 €.

As time increased the "breakable" elements ruptured one

after another until the crack propagation became unstable.



Chapter VII

RESULTS AND DISCUSSION

7.1 CRACK GROWTH RATE VS. TIME CURVES

The extrapolated strain at the tip of the crack was 0.015
at the completion of the mechanical loading at 98.1 MPa.
After a creep relaxation of 1.6 hours, it reached a rupture
strain of 0.03 then crack propagation initiated. 1In Fig.l1l4,
curve A represent the crack length wvs. time for € = 0.03,
curve B for €p = 0.075 and curve C for Ee = 0.12, The
elapsed time before crack initiation were 10.5 hours and
28.8 hours for € = 0.075 and 0.12 correspondingly.

The curves in Fig,15 represent crack growth rates a vs.
time for the three cases under the same gross stress level
of 98.1 MPa,

These two figures indicate that as the assigned rupture
strain increases, both the crack growth and the rate of
crack growth decreases and the crack growth initiation is
delayed as well,

Actually, in many creep tests for ss 304 at 650°c, the
elongation exceeds 60% which suggests a much higher rupture
strain than the present 123, However, computing condition
limits the analysis to include a rupture strain of 0.5 or

0.6, By varying the rupture strain from 0.03 to 0.12, a



trend indicates that the crack growth rate can approach .
the experimental value of 0.001 mm/hr obtained through
experimerts [12] (0.152 for €, = 0.03, 0.441 for € = 0.075
and 0.0242 for €c = 0.12 ) when €¢ approches say 0.5,

7.2 SHAPE AND SIZE OF THE PLASTIC ZONE

The shape of the plastic zone formed during loading
process for the case of €¢ = 0.03 is shown in Fig.16. It
coincides with some experimental works described in
Chapter 4 and also some finite element stress analysis
results [67,68]. It indicates that the present finite
element analysis is adeguate in simulating the crack
propagation process during creep deformation.

The case study started from the stress level of 98.1 MPa
which corresponds to the smallest plastic zone 1in Fig.ls6.
However, by the time the extrapolated strain reached the
rupture strain of 0.03, the plastic zone diminished to

within only a few elements due to the creep stress

relaxation. This was also true for the cases of €. = 0.075
and 0.12.
During the crack opening process, the variations of the

plastic zone were different for three cases. For €, = 0.03,
the plastic zone enlarged as the crack advances till the
last element was broken. By then, the plastic zone was al-
most restored to the size at the end of initial mechanical
loading at 98.1 MPa as shown in Fig.16. This process is

illustrated schematically in Fig.17.

WSBW



As for the cases of €, = 0.075 and 0.12, the crack growth
rates were so low that it provided ample time for the creep
relaxation to take place and hence the stress concerntration
at the crack tip became less phenomenal. Conseqguently, the
plastic zone did not expand as much as in the case of e =
0.03. As a matter of fact the very small plastic zone re-
mained unchanged all the way to the end of the computation.

There is one thing which has to be clarified. Consider
the case of gross section stress level of 135 MPa. At the
end of this initial loading, an extrapolated strain of 0.104
was obtained. This is much larger than 0.015 resulting from
the case of gross section level of 98.1 MPa. The excessive
strain of our incremental method is guestionable. Fortu-
nately, this problem of excessive strain has already been
recognized and therefore a case study with a gross section
stress level of 135 MPa and a rupture strain of 0.12 has
been treated as a trial case and is good only for compari-

o

50n.

7.3 STRESS AND STRAIN DISTRIBUTIONS

The effective stress distribution ahead of the crack tip
at different stages of crack propagation is presented in
Fig.l8 where A, B and C correspond to the assigned strains
of 0.03, 0.075 and 0.12 under the same stress level of
98.1 MPa. In each figure, the first curve is drawn at the
crack initiation, the second curve is after the first ele-

ment "broken"™ and so on.



These curves are not as smooth as those obtained by Taira
and Ohtani [12] and Kim [69] due of the difference of as-
sumptions. In Taira and Ohtani's case, the material was as-
sumed to be elastic and visco-elastic therefore the stress
rising towards the crack tip was very high. In Kim's case,
the gradient was also high because the elastic-plastic ma-
terials were considered to be at room temperature with very
high yield stress. In the present case there is a higher
temperature and a lower yield stress than in Kim's case.

In this analysis, a low yield stress and a low gross
stress level made the stress distribution curve relatively
gradual hence the stress distribution tended to be sensitive
to the nodal relaxation forces. This is proved by Fig.l1l9
which is the stress distribition ahead of the crack during
crack growth process with the initial gross stress level at
135 MPa in which the stress gradient is greater but the var-
iation is more smooth than that in the case of 98.1 MPa
gross section stress.

Some other features of the stress curves are: The crack
tip stress keeps rising although the variations become less
drastic as the crack grows. The distribution curves become
fairly smooth beyond a certain distance from the original
crack tip position,

The stress normal to the crack line is termed oyyo This
stress and O, COmponent and the shear stress ny are also
plotted in Fig.20., For each case, three curves are drawn: 1.
crack growth initiation, 2. after the fourth «lement broken

and 3. after the last element broken.
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The shape of o,, and 0y, Curves are similar to the

effective stress o except the magnitudes are all smaller,

The © and o for the three cases e = 0.03, 0.075 and
KX yy "

0.12 at the same stage of crack growth are close but the

shape of Ory does vary abruptly. Having noticed that the

magnitudes of O., are all small ( less than 25 MPa ), these

Y
fluctuations are most likely caused by the numerical errors
and hence present no serious concern.

The effective strains are very nicely distributed in
front of the crack tip as illustrated in Fig.21l. Variation
of peak strains at various stages of crack growth have been
observed. At €c = 0.03, the strain decreases very fast from
the crack tip till the fifth element or a distance of 1.0 mm
from the crack tip. This trend has slowed down significantly

afterwords whereas for the case of €e = 0,12, the strain

keeps decreasing but not as fast as in the previous case

until a distance of 2.4 mm, which is 2.4 times of the
distance in the case of €c = 0.03. Note that these two

figures are under the same stress level., It is again creep

which is responsible for this phenomenon.

7.4 CRACK PROFILE AND CRACK OPENING ANGLE

As has been discussed 1in Section 7.2, under the same
stress level of 98.1 MPa, the crack opening would take place
in a larger plastic state for the case € = 0.03 than for
the other two cases. This leads to a blunted crack profile



in Fig.22 A for €, = 0.03, Within the three figures of
Fig.22, A is c¢loser to that produced by Kim [67] and C is
closer to Taira's results [12]. The reason is that the
structure tends to be less plastic and hence less ductile in
case ¢ with €, = 0,12,

The other two parameters which are sometimes used in
fracture mechanics are COA ( Crack Opening Angle } and CTOA
( Crack Tip Opening Angle ). COA is the value of the crack
opening displacement increment divided by the crack
increment and CTOA is the angle of crack opening at the
crack tip.

Fig.23 and Fig.24 show the COA and CTOA with respect to
the position of the advancing crack tip, from which one may
observe that COA tends to decrease as crack advances, which
is also observed in [69], and CTOA fluctuates significantly
with higher rupture strain values.

In elastic-plastic stre:s

i

g, CTOA can be uged as a

s analyeis
fracture criterion as these values are almost constant dur-
ing crack propagation such as shown in [69,73]. In the case
of creep crack propagation, CTOA might not be a good frac-
ture criterion to use as such consistency is no longer ob-

served,



7.5 THE C* PARAMETER IN CREEP CRACK GROWTH

Based on the concept of the J-integral, Landes and
Begley [18] proposed the ¢* parameter defined as:
4

o 3
Ck = ‘f»_\ W# dv - T —e d
I ) (ax ) s ( 7.5.1 )

wvhere the integral contour and other symbols are the same as

for the J-integral except

i

u the displacement rate and

¢

Wk = fﬂmn Uij dgij .

C* was proposed for elastic-viscoelastic materials or ma-
terials which exhibit small scale yielding like the J-inte-
gral, it has the energy rate interpretation only under these
conditions. Some formulae for evaluating'c* were derived,
among them, the simplest one was given by Ohji and his co-

workers in 1978 [71] which has the form:

C* = i (¥ v ( To5:2 )

o

11
ot

e

where n = the exponent of Norton's creep law,
O er = the net section stress and
v = crack opening displacement rate,



Ohtani [40] compared the C* wvalue calculated by this
formula and the one by the integration through finite ele-
ment analysis and found that the value given by this formula
is about fifteen percent smaller than the finite element so-
lution. Hsu, Liu and zhai [72] also studied the corelation
of the C* from ( 7.5.1 ) and ( 7.5.2 ) and found that the C*
value by ( 7.5.2 ) was far from ( 7.5.1 ) but very close to
CE which was proposed by Liu and Hsu [29]. Note that CZ in~
cludes a plastic energy rate integral term. From this,
the value of C* from ( 7.5.2 ) might represent a modified C%
which can be used for materials with larger plasticity in-
stead of the original C* defined in elastic analysis for ma-
terials with very small plasticity. Eg.( 7.5.2 ) was chosen
for this analysis to evaluate the C* parameter.

After every elemént was broken, C* and the crack growth

rate a were calculated. The three short curves in Fig.25

were obtained after all the eight elements were broken.

@

most a vs CF elations were established

v
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through experiments. 1In Taira and Ohtani's analytical work,
this problem was tcuched by merely given a group of straight
lines of dimensionless crack growth rate with respect to
dimensionlesgs C* with no furhter discussion. It will |Dbe
explored in a little detail in this research work,

The long straight line in Fig.25 1is the experimental
result for 304 stainless steel at 650°c [40]. At a stress
level of 98.1 MPa, the experimantal data can be connected to

be a curve on that line as shown., It is easily observed tlhat

...61....)



the three calculated curves are almost parallel to the
experimental curve. It looks as if the curve for €r = 0.03
is shifting down towards the experimental curve as the
rupture strain approaching a more realistic value ---- 0.5
or 0,6, It can be concluded that the analytical comparison
to the experimental result from the present numerical
analysis is gQuite possible,

Another group of curves in Fig.26 will further reinforce
the above assessment in a different way. The rupture strains
for these three hypothetical curves are 0.03, 0.075 and 0.12
respectively but the gross stress levels have been modified
te 98.1 MPa, 110 MPa and 135 MPa correspondingly. These
three curves can be shifted horizontally toward the
experimental curve.

Another characteristic of these curves in Fig.26 is that

there is a point at which the a vs. C* curve changes its

.

slope to unity. Thisg phenomenon was also

Laid ~

v

“hearved by Landec
Dgerveg b

{
¢

and Begley [18]. They found that the point of the slowest
crack growth rate lied far beléw the line through the other
test points. A threshold wvalue of C¥ similar to the
threshold K for the fatigue crack growth rate control
parameter was thus postulated. Physically, it means that
below this threshold, the crack will not start to grow.,
Indeed, if one takes a closer look at the two curves for
€c = 0.075 and €. = 0.12 in Fig.26, which correspond to

f
higher stress levels of 110 MPa and 135 MPa and hence have



higher crack growth rate, the threshold point vanishes in
both these cases. Further investigations on this problem is
necessary in the future by both experimental and analytical
investigations,

The slope of the third curve in Fig.26 needs some
explanation as well. This curve 1is for the rupture strain
0.12 and gross stress level 135 MPa . The mathematical
relationship between the crack growth rate and C* parameter

established through this curve is

@

a = 0,050 ( Cc* )-158

vhich deviates from linear relationships as have been
presented by experimentalists. As discussed earlier, the
extrapolated strain under gross section stress level of
135 MPa is fairly large to introduce significant error when

using small strain theory such ag in the present analysis.,

7.6 COMPUTER EXECUTING TIME

The computer executing time was approximately 5 hours for
the case of a rupture strain of 0.03 and 10 hours for the
case of a rupture strain of o0.12 respectively., A restart ca-
pability made this time consuming computing possible for

this analysis.



Chapter VIII

CONCLUSIONS AND RECOMMENDATIONS

A new numerical method for creep crack propagation analy-
sis has been proposed. This method is powerful by its gener-
al considerations of elastic-plastic c¢reep behaviour of ma-
terials. The adoption of "breakable element™” and
"relaxation” of a broken element allows unloading of the ma-
terial behind the crack tip to occur immediately after the
crack tip element breaks.

The results showed in Chapter 7 have illustrated the ap-
plicability of this method and the established computer pro-
gram. It is hoped that this method and program can be used

to study the relationship between a and C* and C* for struc-

]

tures with com

o
%
Y!Sl e ':!\'\Q r

o % ae o Rk LV e i

¢

plex geometries, The conc
mendations are as follows:

1) Due to the effect of creep, the stress at the crack
tip decreased and the strain at the crack tip increased
steadily as the time elapsed in the creep fracture process.
Besides, the stress distribution in front of crack tip tend-
ed to be very sensitive to the crack propagation while the
strain was not as sensitive . The rupture strain criterion
is therefore considered to be more suitable for creep crack

problem.



2} The crack opening angle and the crack tip opening an-
gle both showed some gradual fluctuations which is unlike
the elastic-plastic situations.

3) Beyond a certain value of the éreep crack growth rate
a , a can be related to the C% parameter by a linear rela-
tion.

4) Further study of C* and Cg parameters for their usage
and limitations in creep fracture mechanics is warranted.

5) Well planned and executed experiments are necessary to
obtain the material properties such as: rupture strain,
yield stress, tangent modulus and the multi-dimensional
creep law with unloading behaviour etc. Experimental veri-
fications of the analytical results produced by the present
method are also required so that a gquantitative numerical
analysis can be established.

6) Modify the program to make it suitable for large de-

Wk

formation or lar

N

i
f

e

e plasticity analysis by the finite strain

approximation method in order to study high stress level

creep crack problems,
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Fig. 3 Plastic zone shapes according to
a. Von Mises criterion
b. Tresca criterion

Fig. 4 More accurate plastic zone shapes according to
a. Tuba b. Rice and Rosengren
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A . Photograph of a cracked specimen showing a high shear region

( Zero stress at left, onset of crack growth at right, ) [51]
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B. Creep crack growth 8. specimen [40}

Fig.5 Photographs showing plastic zone
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Fig. 7 The contour for the J - integral
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TABLE 1

Mechanical Properties of 304 Stainless Steel at 650°c

Modulus of Elasticity ( E ) 140000 MPa*
Plastic Tangent Modulus ( E' ) 700 MPa

Yield Strength ( o_ ) 145 MPa

Ultimate Strength ° 310 MPa

% Elongation 60 %

* Modulus of elasticity at room temperature is
200000 MPa.

«.96».





