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Abstract 
 

Computational tools such as finite element analysis and simulation are commonly 

used for system performance analysis and validation. It is often impractical to rely 

exclusively on the high-fidelity simulation model for design activities because of high 

computational costs. Mathematical models are typically constructed to approximate the 

simulation model to help with the design activities. Such models are referred to as 

“metamodel.” The process of constructing a metamodel is called “metamodeling.” 

Metamodeling, however, faces eminent challenges that arise from high-

dimensionality of underlying problems, in addition to the high computational costs and 

unknown function properties (that is black-box functions) of analysis/simulation. The 

combination of these three challenges defines the so-called high-dimensional, 

computationally-expensive, and black-box (HEB) problems. Currently there is a lack of 

practical methods to deal with HEB problems. 

This dissertation, by means of surveying existing techniques, has found that the 

major deficiency of the current metamodeling approaches lies in the separation of the 

metamodeling from the properties of underlying functions. The survey has also identified 

two promising approaches - mapping and decomposition - for solving HEB problems. A 

new analytic methodology, radial basis function–high-dimensional model representation 

(RBF-HDMR), has been proposed to model the HEB problems. The RBF-HDMR 

decomposes the effects of variables or variable sets on system outputs. The RBF-HDMR, 

as compared with other metamodels, has three distinct advantages: 1) fundamentally 

reduces the number of calls to the expensive simulation in order to build a metamodel, 

thus breaks/alleviates exponentially-increasing computational difficulty; 2) reveals the 
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functional form of the black-box function; and 3) discloses the intrinsic characteristics 

(for instance, linearity/nonlinearity) of the black-box function. 

The RBF-HDMR has been intensively tested with mathematical and practical 

problems chosen from the literature. This methodology has also successfully applied to 

the power transfer capability analysis of Manitoba-Ontario Electrical Interconnections 

with 50 variables. The test results demonstrate that the RBF-HDMR is a powerful tool to 

model large-scale simulation-based engineering problems. The RBF-HDMR model and 

its constructing approach, therefore, represent a breakthrough in modeling HEB problems 

and make it possible to optimize high-dimensional simulation-based design problems. 



III 
 

Acknowledgements 
 

I would like to express my gratitude to Advisory Committee members, Dr. Joe 

LoVetri, Dr. Mark F. Tachie, and especially my supervisor Dr. G. Gary Wang, for their 

encouragement, supports and thoughtful advices in my Ph. D. studies.  I also like to thank 

Prof. Timothy W. Simpson from the Pennsylvania State University who serves as my 

external examiner. 

I would like to acknowledge financial supports from Manitoba Hydro, Canada 

Graduate Scholarships (CGS), and Natural Science and Engineering Research Council 

(NSERC) of Canada.  



IV 
 

Table of Contents 
 

   Abstract ............................................................................................................................. I 

Acknowledgements........................................................................................................ III 

Table of Contents ........................................................................................................... IV 

List of Tables ................................................................................................................ VII 

List of Figures ............................................................................................................. VIII 

List of Copyrighted Material .......................................................................................... X 

Chapter 1 .......................................................................................................................... 1 

Preamble .......................................................................................................................... 1 

1.1. About Metamodeling ............................................................................................. 1 

1.2. HEB Problems ....................................................................................................... 2 

1.3. Threads of Dissertation .......................................................................................... 2 

1.4. A Description of Commonalities and Connecting Concepts ................................. 4 

1.5. Terms in Dissertation ............................................................................................. 5 

1.6. Student’s Contribution ........................................................................................... 6 

Chapter 2 .......................................................................................................................... 7 

Survey of Modeling and Optimization Strategies to Solve High-Dimensional Design 

Problems with Computationally-Expensive Black-box Functions .................................. 7 

2.1. Abstract .................................................................................................................. 8 

2.2. Introduction............................................................................................................ 9 

2.3. Strategies for Tackling High-Dimensionality ...................................................... 11 

2.4. Model Approximation Techniques ...................................................................... 29 

2.5. Optimization Strategies as Related to HEB Problems ......................................... 44 



V 
 

2.6. Challenges and Future Research .......................................................................... 52 

2.7. Conclusion ........................................................................................................... 55 

2.8. Acknowledgments ............................................................................................... 56 

2.9. References............................................................................................................ 56 

Chapter 3 ........................................................................................................................ 81 

Metamodeling for High-dimensional Simulation-based Design Problems ................... 81 

3.1. Abstract ................................................................................................................ 82 

3.2. Introduction.......................................................................................................... 83 

3.3. Basic Principle of HDMR .................................................................................... 86 

3.4. RBF-HDMR ........................................................................................................ 89 

3.5. Metamodeling for RBF-HDMR .......................................................................... 94 

3.6. Testing of RBF-HDMR ..................................................................................... 103 

3.7. Conclusion ......................................................................................................... 112 

3.8. Acknowledgment ............................................................................................... 113 

3.9. Appendix............................................................................................................ 113 

3.10. References ................................................................................................... 116 

Chapter 4 ...................................................................................................................... 121 

Turning Black-box into White Functions .................................................................... 121 

4.1. Abstract .............................................................................................................. 122 

4.2. Introduction........................................................................................................ 123 

4.3. RBF-HDMR ...................................................................................................... 125 

4.4. RBF-HDMR Modeling Process ......................................................................... 129 

4.5. Principle of Functional Form Identification ...................................................... 132 



VI 
 

4.6. Test Examples .................................................................................................... 143 

4.7. Final Remarks .................................................................................................... 150 

4.8. Acknowledgement ............................................................................................. 151 

4.9. References.......................................................................................................... 152 

4.10. Appendix ..................................................................................................... 156 

Chapter 5 ...................................................................................................................... 157 

Large-scale Metamodeling of Power Transfer Capability Using RBF-HDMR .......... 157 

5.1. Abstract .............................................................................................................. 158 

5.2. Introduction........................................................................................................ 158 

5.3. Framework of Methodology .............................................................................. 161 

5.4. RBF-HDMR techniques .................................................................................... 163 

5.5. Model Validation ............................................................................................... 169 

5.6. Case Studies ....................................................................................................... 175 

5.7. Summary ............................................................................................................ 190 

5.8. Acknowledgement ............................................................................................. 190 

5.9. Appendix Winnipeg River generation output ranges ........................................ 191 

5.10. References ................................................................................................... 192 

Chapter 6 ...................................................................................................................... 196 

Concluding Chapter ..................................................................................................... 196 

6.1. Summary ............................................................................................................ 196 

6.2. Future Research ................................................................................................. 198 

7. Other Publications during Ph. D. Period ............................................................... 200 

 



VII 
 

List of Tables 
 

Table   Page 

Chapter 2 

Table 2.1 Summary of strategies tacking problems of high-dimensionality 28 

Table 2.2 Metrics for evaluating experimental design 32 

Table 2.3 Cost of some experimental designs 32 

Table 2.4 Commonly used performance criteria for approximation models 36 

Table 2.5 Commonly used model validation metrics 37 

Chapter 3 

Table 3.1 Process of modeling RBF-HDMR for the example problem 100 

Table 3.2 Comparison of modeling cost for the study problem 107 

Table 3.3 Modeling results for the test suite 108 

Chapter 4 

Table 4.1 Modeling results of the example 143 

Table 4.2(a) Test results of examples 147 

Table 4.2(b) Test results of examples 148 

Table 4.3 The results of the example 12 149 

Chapter 5 

Table 5.1 Performance metric values of Case 1 178 

Table 5.2 Performance metric values of case 2 182 

Table 5.3 Performance metric values of case 3 185 

 

 



VIII 
 

List of Figures 
 

Figure  Page 

Chapter 2 

Fig. 2.1 An illustration of decomposition methodologies 13 

Fig. 2.2 Screening approaches 18 

Fig. 2.3 Approximation models 33 

Fig. 2.4 Relationship among factors for approximation 43 

Fig. 2.5 Optimization strategies for computationally expensive problems 45 

Fig. 2.6 MBDO strategies: a) sequential approach, b) adaptive MBDO, and c) 
direct sampling approach 

46 

Chapter 3 

Fig. 3.1 Distribution of sample points for the example problem 103 

Fig. 3.2 Performance metrics mean with respect to d (x-axis) for the study 
problem 

106 

Fig. 3.3 Comparison of NoE with Latin Hypercube points from Reference 109 

Fig. 3.4 
Model accuracy comparison. Data for models other than RBF-HDMR 
are from Ref. [5]; R2 values are for large-scale problems only, while 
RMAE and RAAE values are for all 14 test problems. 

110 

Chapter 4 

Fig. 4.1 A simplified flow of RBF-HDMR metamodeling 132 

Fig. 4.2 Component correlation matrix indicating a function having all 
significant bi-variate terms 

136 

Fig. 4.3 Process for high-order component identification 139 

Fig. 4.4 The structure matrix of the example 140 

Fig. 4.5 Deterioration of ���� when decreasing coefficients �� and �� 149 

Fig. 4.6 Structure matrices and correlation matrices of Problem 12 150 



IX 
 

Chapter 5 

Fig. 5.1 Framework of the methodology 162 

Fig. 5.2 An illustration of RBF-HDMR sampling scheme up to the 3rd order 166 

Fig. 5.3 Power system in Winnipeg River area 177 

Fig. 5.4 Error plots for Case 1 179 

Fig. 5.5 Structure matrix for Case 1 180 

Fig. 5.6 
Transfer capability impact curves of three generators; x axis shows 
the output from each generator and y axis is the power transfer at 
OMT. Unit: MW 

181 

Fig. 5.7 Error distribution of Case 2 (vertical axis shows errors) 183 

Fig. 5.8 Statistics of transfer capability for Case 2 (vertical axis unit: MW) 184 

Fig. 5.9 Values of case 3 186 

Fig. 5.10 Errors of case 3 186 



X 
 

List of Copyrighted Material 

[1] Shan, S. and Wang, G. G., 2010, "Survey of Modeling and Optimization Strategies 

to Solve High-dimensional Design Problems with Computationally-Expensive 

Black-box Functions," Structural and Multidisciplinary Optimization, 41(2(2010)), 

pp. 219-241. 

[2] Shan, S. and Wang, G. G., 2010, "Metamodeling for High-dimensional Simulation-

Based Design Problems," Journal of Mechanical Design, 132(5), pp. 051009-1-

051009-11. 

[3] Shan, S. and Wang, G. G., 2010, "Turning Black-box into White Functions," 

Proceedings of the ASME 2010 International Design Engineering Technical 

Conferences & Computers and Information in Engineering Conference, Montreal, 

Quebec, Canada. August 15-18, 2010. Paper No., DETC2010-28958. 

 



1 
 

Chapter 1 

Preamble 

1.1. About Metamodeling 

A system such as an automotive component, an entire vehicle, or a manufacturing 

process is typically modeled via computer simulation/analysis such as finite element 

analysis (FEA), and computational fluid dynamics (CFD). The computer 

simulation/analysis process is usually implicit and time-consuming for execution, which 

is therefore also called a computationally-expensive black-box function. Furthermore, 

outputs from these analysis/simulation processes are usually not directly useful for 

design, and their computation intensity makes optimization formidable. Despite the 

growth of computer power, the complexity of simulation models keeps increasing at a 

commensurate speed. To facilitate design analysis and optimization, metamodels are 

often constructed. Such a metamodel (also known as surrogate or response surface, or 

auxiliary model) is an approximation model of an underlying system implicitly defined 

by the given simulation model of the system. Usually it is assumed that the simulations 

and analysis processes are black-box functions, that is, the underlying system is 

completely unknown. A metamodel is constructed from a well-planned sampling scheme 

(that is, design of computer experiments) in the simulation input space. After validation, 

the metamodel serves in analyzing and/or optimizing the underlying system. The process 

of constructing metamodels is called metamodeling. The metamodel provides an effective 

mechanism for simplifying the interpretation of simulated results. The simplified 

interpretation helps engineers to gain insight into the underlying system. The fast 
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execution of the metamodel alleviates computation burden for sensitivity analysis and 

optimization of problems. 

1.2. HEB Problems 

Metamodeling techniques play an important role for analysis and optimization of 

computationally-expensive functions. The importance has been demonstrated by many 

successful applications in the literature; however, most of successful examples are low-

dimensional problems. The high-dimensionality of problems is challenging because the 

cost of metamodeling rapidly rises with the increase of dimensionality. High-fidelity 

simulation models for complex design problems are often high-dimensional, 

computationally expensive, and black-box functions, which are called HEB problems. 

HEB problems exist in various engineering disciplines, but HEB problems are not well 

solved due to their challenges.  In engineering design, HEB problems become a 

bottleneck for the wide application of metamodeling techniques. This dissertation aims at 

solving this bottleneck problem. 

1.3. Threads of Dissertation 

This dissertation is presented as a sandwich thesis type that contains the full text of 

four papers. These papers either have already been published or have been submitted for 

publication. This section threads them in a thesis manner. This manner in fact reflects the 

achievements at various stages which are logically sequenced. All four papers focus on 

the research theme: solving HEB problems. The contents include the survey of the state 

of the arts in HEB related techniques, a proposed Radial Basis Function–High-

dimensional Model Representation (RBF-HDMR) model and its matching sampling 
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scheme, enhancement of the RBF-HDMR, and industrial application of the RBF-HDMR. 

They form a logically integrated work on HEB metamodeling strategy. More details are 

as follows. 

Chapter 2 surveys strategies for tackling high-dimensionality, metamodeling 

approximation techniques, and optimization methodologies pertaining to black-box 

function problems aiming at solving HEBs. Features of various strategies, techniques, 

and methodologies have been discussed, which deal with a certain aspect or individual 

challenges respectively. These techniques and strategies cannot be easily extended or 

crossbred for HEB problems. Promising approaches for HEB problems are identified in 

the survey. The results of the survey indicate that HEB problems can be solved if a 

decomposable high-dimensional metamodel with low construction cost is available. This 

leads to the development of RBF-HDMR (Chapter 3). 

Chapter 3 develops a RBF-HDMR model based on High-dimensional Model 

Representation (HDMR) theory. Metamodeling a high-dimensional computationally-

expensive black-box function is a challenging job. Existing metamodels are designed for 

low-dimensional problems only. Thanks to the theory of HDMR: an integral function can 

be decomposed into summation of different dimensional sub-functions [1], and statistical 

data demonstrates that there is no high-dimensional covariance existing in most well-

defined problems [2]. In this chapter, we integrate Radial Basis Function with HDMR 

into a new model, RBF-HDMR. An accompanying algorithm to construct the RBF-

HDMR until the second-order has also been developed. This algorithm is suitable for 

problems with weak correlations among variables. 
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Chapter 4 enhances the RBF-HDMR to solve problems with high-order correlated 

variables and furthermore reveals the complete functional form of metamodels. The 

enhanced RBF-HDMR more accurately constructs black-box functions with higher-order 

terms. The model and the algorithm fundamentally change the exponentially growing 

computation difficulty to be polynomial. Moreover, with the assistance of two developed 

theorems and two defined matrixes, the enhanced model can explicitly express the 

functional form of the black-box function in a rapid manner, and thus turn the “black-

box” into “white box.” Testing and comparison confirm the efficiency and capability of 

the RBF-HDMR for HEB problems. 

Chapter 5 applies the proposed RBF-HDMR to solve a practical engineering 

problem with 50 variables. Three application cases of power transfer capability analysis 

in Manitoba Hydro are studied and modeled.  With a limited number of function calls, 

RBF-HDMR is able to model the systems and reveals interesting characteristics of the 

power system under different operating conditions. 

Chapter 6 summarizes the work of the preceding chapters, concludes the 

contributions, and recommends future research directions. 

1.4. A Description of Commonalities and Connecting Concepts 

The four papers are all centered on solving HEB problems. Chapter 2 is the survey 

for high-dimensional strategies, which reveals the possible ways to solve HEB problems. 

Chapter 3 describes in details the proposed RBF-HDMR strategy. Chapter 4 extends the 

RBF-HDMR from the second-order to higher-order models.  With new theorems 

developed in Chapter 4, the functional form of the underlying HEB problem can also be 
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revealed. So Chapter 4 is a natural extension and enhancement of the proposed method 

described in Chapter 3. Chapter 5 documents in detail the application of RBF-HDMR to a 

practical industry HEB problem with 50 variables. Therefore, all of the four main 

chapters are intrinsically and logically connected, representing the progress of the Ph.D. 

research. The main connecting concepts include HEB and RBF-HDMR. 

1.5. Terms in Dissertation 

In metamodeling community, there are some different terms for the same concept, 

for example, metamodel, response surface, and surrogate are often used interchangeably. 

This section will introduce some terms in this dissertation. 

In this work, the expensive simulation/analysis process that is to be modeled or 

approximated is also referred to as “underlying function,” “underlying system,” 

“underlying problem,” or “black-box function” in the context of metamodeling. 

“Sampling” and “design of computer experiments” have the same meaning. We 

distinguish, however, the design of computer experiments from classical design of 

experiments. In this dissertation, we only refer to the design of computer experiments. 

Simulations appear in various types (for example, stochastic or deterministic, 

continuous or discrete, and static and dynamic). This dissertation takes consideration of 

the deterministic computer simulation, that is, negligible random errors appear. In 

addition, simulations are considered as an ideal underlying system, that is, no noise exists 

in the simulation model.  

“Model” in Chapter 2 shares the same meaning of “metamodel”. 
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1.6. Student’s Contribution 

After identifying the research direction with the co-author (my supervisor), I 

developed the RBF-HDMR model, implemented the modeling algorithm, applied the 

developed RBF-HDMR to industrial cases, drafted the papers, and revised them with my 

supervisor and one other co-author for Chapter 5. 



7 
 

Chapter 2 

Survey of Modeling and Optimization Strategies to Solve High-

Dimensional Design Problems with Computationally-Expensive Black-

box Functions
1
 

 

Songqing Shan                G. Gary Wang 
 

 
 

Based on publication: 

Structural and Multidisciplinary Optimization (2010) 41:219-241 

 

                                                 
1 An earlier version of this work was published in Proceedings of the 12th AIAA/ISSMO Multidisciplinary 

Analysis and Optimization Conference, Sept. 10-12, 2008, Victoria, British Columbia, Canada. 
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2.1. Abstract 

The integration of optimization methodologies with computational 

analyses/simulations has a profound impact on the product design. Such integration, 

however, faces multiple challenges. The most eminent challenges arise from high-

dimensionality of problems, computationally-expensive analysis/simulation, and 

unknown function properties (that is, black-box functions). The combination of these 

three challenges severely aggravates the difficulty and becomes a major hurdle for design 

optimization. This chapter provides a survey on related modeling and optimization 

strategies that may help to solve High-dimensional, Expensive (computationally), Black-

box (HEB) problems. The survey screens out 207 references including multiple historical 

reviews on relevant subjects from more than 1000 papers in a variety of disciplines. This 

survey has been performed in three areas: (1) strategies for tackling high-dimensionality 

of problems, (2) model approximation techniques, and (3) direct optimization strategies 

for computationally-expensive black-box functions and promising ideas behind non-

gradient optimization algorithms. Major contributions in each area are discussed and 

presented in an organized manner.  The survey exposes that direct modeling and 

optimization strategies to address HEB problems are scarce and sporadic, partially due to 

the difficulty of the problem itself. Moreover, it is revealed that current modeling 

research tends to focus on sampling and modeling techniques themselves and neglect 

studying and taking the advantages of characteristics of the underlying expensive 

functions. Based on the survey results, two promising approaches are identified to solve 

HEB problems.  Directions for future research are also discussed. 
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Keywords: high-dimensional, computationally-expensive, black-box function, 

approximation, design optimization, large-scale, metamodeling, surrogate 

2.2. Introduction 

Engineering problems often appear with various features such as being low or high 

dimensional, computationally cheap or expensive, and with explicit or black-box 

functions (a black-box function is an unknown function that given a list of inputs, 

corresponding outputs can be obtained without knowing its expression or internal 

structure). These features characterize a problem from different perspectives. 

Combinations of these features lead to different computational costs for problem solution. 

For example, the computational cost for optimizing a cheap black-box function is largely 

from the optimization process, while for computationally-expensive functions the 

computational cost is mainly from the function evaluation rather than optimization. 

Therefore, solution methodologies need to be custom developed for problems of different 

combinations of these features.  This review focuses on design problems that are 

comprised of high-dimensional, expensive (computationally), and black-box (HEB) 

functions.  

HEB problems widely exist in science and engineering practices (Bates et al. 1996; 

Booker et al. 1999; Koch et al. 1999; Shorter et al. 1999; Srivastava et al. 2004; Tu and 

Jones 2003). For example, the wing configuration design of a high speed civil transport 

(HSCT) aircraft (Koch et al. 1999) includes 26 variables, four objectives (two traditional 

technical and two economic objectives), and four technical constraints. The NASA 

synthesis tool FLOPS/ENGGEN was used to size the aircraft and propulsion system. The 
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NASA aircraft economic analysis code ALCCA was applied to perform economic 

uncertainty analysis of the system. These computer codes often are regarded as black-box 

functions. Each execution of FLOPS/ENGGEN and ALCCA requires approximate 5 

minutes on an IBM RISC6000 7012 model 320 Planar workstation. If a two-level full-

factorial analysis is taken, 67,108,864 analyses are required, which would take over 600 

years to complete.  In automotive industry, the crashworthiness analysis takes on average 

98 hrs for one evaluation (Gu 2001).  Assuming ten variables with a two-level full-

factorial design, it needs 1024 analyses and takes close to 12 years to complete. 

The high-dimensionality of input and output variables presents an exponential 

difficulty (that is, the effort grows exponentially with dimensions) for both problem 

modeling and optimization (Koch et al. 1999; Li et al. 2001b; Shorter et al. 1999). 

Assuming sampling s points in each of the n input variables and performing the computer 

simulation or experiments, this sampling calls for  experimental or computer runs to 

build a model, which would obviously be  unrealistic for modeling of computationally-

expensive functions (for instance, if s=10 and n=10, then the number of sample points is 

1010 ). Modern analysis models are often built in commercial software tools, such as Finite 

Element Analysis (FEA) and Computational Fluid Dynamics (CFD) tools. Besides being 

computationally intensive, these models (functions) are implicit and unknown to the 

designer, that is, black-box functions. The function implicity is a significant obstacle to 

design optimization (Alexandrov et al. 2002). As the number of variables in design 

problems increases, the computational demand also increases exponentially (Michelena et 

al. 1995; Michelena and Papalambros 1995b; Michelena and Papalambros 1997; 

Papalambros 1995; Papalambros and Michelena 1997, 2000).  This kind of difficulty 

ns~
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brought by the dimensionality of problems is known as the “curse of dimensionality.” 

Mistree’s research group referred to this difficulty as the “problem size” in robust design 

(Chen et al. 1996; Koch et al. 1997) and multidisciplinary design optimization (Koch et 

al. 1999). The “curse of dimensionality” challenges computational analysis technologies 

and optimization methodologies that are used today in science and engineering 

disciplines.  

It is observed that in the area of engineering design there are limited publications 

that directly address HEB problems. In general, both modeling techniques and 

optimization methods for computationally-expensive or black-box function are limited to 

problems of low dimensionality.  Problems with high-dimensionality are more 

demanding. This chapter provides a survey of the modeling and optimization strategies 

that may help solving HEB problems in order to guide future research on this important 

topic. The survey has been performed along three routes: 1) strategies for tackling high-

dimensionality in disciplines including mathematics, statistics, chemistry, physics, 

computer science, and various engineering disciplines, 2) model approximation 

techniques, which are strategies for computationally-expensive black-box functions, and 

3) direct optimization strategies for computationally-expensive black-box problems, and 

promising ideas behind commonly used non-gradient optimization algorithms that may 

be helpful to solve HEB problems. 

2.3. Strategies for Tackling High-Dimensionality 

A spectrum of strategies for tackling high-dimensionality appears in many different 

disciplines since the high-dimensionality challenge is rather universal in science and 
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engineering fields. These strategies include parallel computing, increasing computer 

power, reducing design space, screening significant variables, decomposing design 

problems into sub-problems, mapping, and visualizing the variable/design space. These 

strategies tackle from different angles the difficulties caused by the high-dimensionality. 

Some of them may overlap and are thus not completely independent. In view of the space 

limit and the fact that some of strategies are studied in special areas (for example, parallel 

computing and increasing computer power), this section only reviews some of them that 

directly deal with high-dimensionality.  

2.3.1. Decomposition 

Decomposition is to reformulate an original problem into a set of independent or 

coordinated sub-problems of smaller scale. Decomposition methodology has been well 

studied and widely applied to complex engineering problems (Altus et al. 1996; Chen et 

al. 2005b; Kusiak and Wang 1993; Michelena et al. 1995; Michelena and Papalambros 

1995b). Some reviews pertaining to the decomposition can be found in the literature 

(Browning 2001; Li 2008; Papalambros 1995; Papalambros and Michelena 1997, 2000). 

A technical map of decomposition methodology is provided in Fig. 2.1. The review is 

organized according to this map. 

In engineering, decomposition reported in the literature can be categorized into 

product decomposition, process decomposition, and problem decomposition (Kusiak and 

Larson 1995). The product decomposition partitions a product into physical components. 

The application examples of product decomposition are given in (Kusiak and Larson 

1995). Such decomposition allows standardization, inter-changeability, or a capture of the
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Fig. 2.1 An illustration of decomposition methodologies 

 

product structure. Its drawback is that drawing “boundaries” around physical components 

is subjective. Secondly, the process decomposition applies to problems involving the 

flow of elements or information, such as electrical networks or the design process itself. 

Applications are found in (Kusiak and Wang 1993; Michelena et al. 1995).  Thirdly, the 

problem decomposition divides a complex problem into different sub-problems. Such 

decomposition is the basis of multidisciplinary design optimization and decomposition-

based design optimization. Intensive research has been done on multidisciplinary design 

optimization (Kodiyalam and Sobieszczanski-Sobieski 2000; Simpson et al. 2004) and 

applied in industry (Sobieszczanski-Sobieski and Haftka 1997). Decomposition-based 

design optimization (Michelena and Papalambros 1995b; Michelena and Papalambros 

Decomposition 
Category 

1. Product 
2. Process 
3. Problem 

Relationship 
Matrix 

1. Design structure matrix (square) 
2. Function dependent matrix (rectangular) 

Decomposition 
Patterns 

1. Coordination based 
decomposition 

2. Ideal decomposition 

Decomposition 
Algorithms 

1. Network probability 
2. Hypergraph 
3. …... 

Row-
based 

Hybrid 

Matrix 
format 

Coordina-
tion 
strategies  

Column- 
based  

Hierarchical  

Non-
hierarchical  
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1997) advances the use of nonlinear optimization techniques in solving design problems.  

Such design optimization (for instance, model-based decomposition) allows the 

identification of weakly connected model substructures and obtains robust solutions. 

Matrix is often exploited to reflect relationship in problems, which is called 

relationship matrix. Thus by means of partitioning the relationship matrix a problem is 

decomposed. Although various terms are utilized in the literature such as dependency 

structure matrix, interaction matrix, incidence matrix, function dependent table, and 

precedence matrix, there are two basic relationship matrices: design structure matrix 

(DSM) and function dependent matrix (FDM). DSM is a square matrix that has identical 

row and column listings to represent a single set of objects (Browning 2001; Li 2008). A 

matrix entry indicates whether (or how or to what degree that) the i-th object (row) relates 

to the j-th object (column). DSM captures symmetric or non-symmetric, directional or 

undirected relationships between any two objects of the same type. On the other hand, 

FDM has different row and column listings to represent two sets of objects, respectively. 

A matrix element indicates whether (or how or to what degree that) the i-th row object 

relates to the j-th column object and vice versa. FDM captures dependency relationships 

between two types of objects such as function dependent tables in (Krishnamachari and 

Papalambros 1997a, 1997b; Wagner and Papalambros 1993). 

Matrix partitioning is often formed by means of mathematical tools such as graph 

partitioning, clustering analysis, and optimization. Thus, algorithms for matrix 

partitioning or decomposition are dispersed. Normally these algorithms depend on how 

the decomposition is modeled.  They fall into three major types. The first type of 

algorithms models decomposition as a hyper-graph (Michelena and Papalambros 1997), 
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network reliability (Michelena and Papalambros 1995a), or an integer programming 

problem (Krishnamachari and Papalambros 1997b). The second type of algorithms is 

heuristic approaches such as (Wagner and Papalambros 1993). The third type of 

algorithms is clustering approaches such as (Chen et al. 2005a). For DSM, Browning 

(2001) found that mostly clustering and sequencing algorithms are used. The clustering 

algorithms are to reveal the architecture relationship; the sequencing algorithms are to 

expose the information flow relationship.   For FDM, clustering algorithms are useful for 

design optimization and group technology. In the context of group technology, machine-

part groups are formed to increase production efficiency. In the context of design 

optimization, function-variable groups are formed to dissolve the complexity of 

problems. Their common goal is to reveal independent groups (or sub-problems) in a 

complex problem.  

Decomposition patterns exist in two types (Chen et al. 2005a): ideal and 

coordination-based decomposition. The ideal decomposition diagonalizes a relationship 

matrix into several completely independent blocks without any interactions between the 

blocks (that is, no variable belongs to two blocks). If a design strictly follows the 

axiomatic design theory (Suh 2001), the ideal decomposition can be obtained. The 

coordination-based decomposition is a more realistic decomposition pattern with 

interactions between the blocks. In terms of matrix format, there are column-based, row-

based, and hybrid structured matrices (Chen et al. 2005a). Accordingly, some of column 

variables, row variables, or both column and row variables are taken as coordination 

variables. From the nature of coordination, decomposition patterns are categorized as 

hierarchical or non-hierarchical (Chen and Liu 1999; Krishnamachari and Papalambros 
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1997a; Michelena et al. 1999; Michelena and Papalambros 1997; Papalambros 1995; 

Papalambros and Michelena 1997; Wagner and Papalambros 1993). Coordination 

processes are to coordinate linking variables (connecting sub-problems and master 

problems or sub-problems and sub-problems) in order to find the optimal solution. 

Hierarchical decomposition is characterized by a tree structure (Renaud and Gabriele 

1991) whereas non-hierarchical decomposition is characterized by a network structure 

(Renaud 1993; Renaud and Gabriele 1991). In hierarchical decomposition, the intrinsic 

hierarchical structure can be used by many optimization algorithms and thus each sub-

problem can be of a smaller scale. Hierarchical decomposition schemes, however, are 

hard to use when lateral couplings exist between sub-problems of the hierarchy since the 

lateral couplings interfere with the hierarchical solution process. In non-hierarchical 

decomposition, likely more couplings appear because of the lack of hierarchy. Complex 

couplings bring a great challenge to optimization algorithms as decoupling is needed. A 

hybrid method combing hierarchical decomposition in the entire system and non-

hierarchical decomposition in the local area (subsystems with lateral couplings) is likely 

useful for problems with lateral couplings.  

Decomposition was recognized as a powerful tool for analysis of large and complex 

problems (Krishnamachari and Papalambros 1997b; Kusiak and Wang 1993). For 

rigorous mathematical programming, decomposing an overall model into smaller sub-

models was considered as necessary by (Papalambros 1995). Complexity of design 

problems in the context of decomposition is analyzed in (Chen and Li 2005). The idea of 

decomposition penetrates in conceptual design (Kusiak and Szczerbicki 1992), optimal 

system design (Kim et al. 2003), concurrent design, complex problem modeling, etc. 



17 
 

Decomposition often accompanies with parallel approaches to enhance the efficiency. 

Koch et al. (2000) proposed an approach to build partitioned, multi-level response 

surfaces for modeling complex systems.  This approach partitions a response surface 

model to two quadratic surrogates; one surrogate is constructed first and becomes a term 

in the other surrogate to form a two-level metamodeling process. Kokkolaras et al. (2006) 

presented a methodology for design optimization of hierarchically decomposed multilevel 

systems under uncertainty. Chan et al. (2000) designed and implemented a new class of 

fast and highly scalable placement algorithms that directly handled complex constraints 

and achieved the optimum through the use of multilevel methods for hierarchical 

computation. Lu and Tcheng (1991) proposed a layered-model approach.  The references 

(Pérez et al. 2002a; Wang and Ersoy 2005; Ye and Kalyanaraman 2003) applied 

parallelization in their optimization algorithms. Eldred et al. (Eldred et al. 2004; 2000) 

combined a multilevel idea with parallelization to implement optimization. These 

methods decompose a complex optimization problem and form cascading schemes that 

can be implemented by multilevel or parallel approaches.  Decomposition brings many 

advantages: improved coordination and communication between sub-problems, allowing 

for conceptual simplification of the problems, different solution techniques for individual 

sub-problems, reduced sub-problem dimensionality, reduced programming/debugging 

effort, modularity in parametric studies, multi-criteria analysis with single/multiple 

decision makers, and enhancing the reliability and robustness of optimization solutions 

(Michelena and Papalambros 1995b; Michelena and Papalambros 1997). 
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As concluding remarks, the decomposition methodology is an effective strategy for 

solving complex design optimization problems. Decomposition concepts are expected to 

advance for modeling and optimization of HEB problems. 

2.3.2. Screening 

Screening identifies and retains important input variables and interaction terms, 

whereas removes less important ones or noises in the problems of interest so that the 

complexity or dimensionality of the problems is reduced to save computational cost. 

Screening is often implemented via sampling and analysis of sampling results. Screening 

approaches are grouped as two categories as shown in Fig. 2.2.  One category deals with 

a single response and the other deals with multiple responses.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.2 Screening approaches 

 

Screening for a single response is to select the most important variables or 
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(ANOVA), principle component analysis (PCA), optimization approaches, and group 

screening after experiments. Some of these approaches are correlated, for example, 

sensitivity analysis is implemented by ANOVA. Sensitivity analysis studies how the 

variability of a function’s output responds to changes of its inputs. It includes local and 

global sensitivity analyses. The local sensitivity indicates the local variability of the 

output with respect to input variable changes at a given point, which are partial 

derivatives. It restricts to infinitesimal changes in input variables. The global sensitivity, 

however, explains the global variability of the output over the entire ranges of the input 

variables, which provides an overall view of the impact of input variables on the output.  

It considers more substantial changes in input variables. If a probabilistic setting is 

considered with both inputs and outputs, sensitivity analysis is referred to as probabilistic 

sensitivity analysis (Oakley and O'Hagan 2004). Sensitivity analysis has been widely 

studied (Morris 1991; Sobol 1993; Jin et al. 2004; Kaya et al. 2004). Griensven (2006) 

and Queipo et al. (2005) introduced different techniques in sensitivity analysis. Harada et 

al. (2006) screened parameters of pulmonary and cardiovascular integrated model with 

sensitivity analysis. Iman and Conover (1980) utilized the sensitivity analysis approach in 

the modeling with application to risk assessment. Wagner (2007) applied global 

sensitivity analysis of predictor models in software engineering. Sobieszczanski-Sobieski 

(1990) discusses sensitivity analysis for aircraft design. Hamby (1994) reviewed the 

techniques for sensitivity analysis of environmental models. By means of analysis of 

variance (ANOVA) (Myers and Montgomery 1995), the main effect of a single variable 

or correlated effect of multiple variables can be identified. Schonlau and Welch (2006) 

introduced the ANOVA decomposition (functional ANOVA) theory and developed the 
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steps for identifying and visualizing the important estimated effects. Principal Component 

Analysis (PCA) transforms data to a new coordinate system by data projection so that 

variables with greatest variances in the projection come to the principal coordinates. The 

selection of dimensions using PCA through singular value decomposition is a popular 

approach for numerical variables (Ding et al. 2002). Welch et al. (1992) proposed a 

sequential optimization algorithm for screening. Watson (1961) proposed a group 

screening method. Morris (1991) designed factorial sampling plans for preliminary 

experiments. Tu and Jones (2003) proposed a cross-validated moving least squares 

(CVMLS) method, which integrated the variable screening into a metamodeling process. 

It screens input variables by two ways: a main effects estimate procedure using one-

dimensional CVMLS analysis to eliminate insignificant inputs; and a backwards-

screening procedure for calculating cross-validation error sensitivities of input variables. 

Shen et al. (2006) developed an adaptive multi-level Mahalanobis-based dimensionality 

reduction (MMDR) algorithm for high-dimensional indexing. The MMDR algorithm uses 

the Mahalanobis distance and consists of two major steps: ellipsoid generation and 

dimensionality optimization. Brand (2003) proposed a dimensionality reduction method 

by kernel eigenmaps. Ding (2002) proposed an adaptive dimension reduction approach 

by clustering high-dimensional data. 

Screening strategies for multiple responses are different from that for a single 

response since the importance of variables or interaction terms varies for different 

responses. Strategies for a single response, however, may be used for the case of multiple 

responses. One method for multiple responses is to screen each response separately and 

select important variables or terms for each response, which is called the split method. 
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The split method bears two disadvantages: the screening process time increases as the 

number of the responses increases and the approximation response may not be consistent 

when some variables are fixed for another response.  The average method exploits the 

average effects of variables across all of the responses and selects the variables or terms 

which have average efforts on all responses. Such a method possibly eliminates variables 

that are extremely important for one response. Chen et al. (1996) employed this approach 

to reduce the problem size. An inverse screening approach (Koch et al. 1999) identifies 

variables that are not important for any of the responses. This approach is accomplished 

by combining sets of important variables for each response and observing which 

variables are not included in the combined set. A two-level fractional factorial experiment 

is designed for screening and Pareto analysis is used to analyze the experimental results 

to rank the importance of variables for each response. Like screening for a single 

response, the problems exist on deciding a cutoff criterion and the possible loss of 

accuracy. Since the cutoff point of importance is subjective, it is hard to make the trade-

off between the acceptable accuracy and completeness in problem formulation.  

In general, screening likely pays a price of losing modeling accuracy of problems 

because of removed dimensionalities. As the number of variables increases, the 

dimensionality of the remaining problem after screening may still be high for some 

existing models. Screening over multiple responses inherently may not allow many 

variables to be removed from problems. A design with fewer runs, or with fewer levels of 

each input variable, may well have missed the important regions (Schonlau and Welch 

2006). Advantages of screening include noises reduction, removal of unimportant 

variables or terms, and retaining of important variables in problems of interest, which 
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decreases complexities and reduces dimensionality. The use of screening depends on the 

purposes and experimental type. It is identified to be a good strategy for filtering noises 

in the physical experiments and supporting modeling. It can guide modeling and simplify 

the computer model. For the purpose of optimization, although it simplifies the problem, 

it pays the price of accuracy. The screening strategies therefore should be employed with 

care. 

2.3.3. Mapping 

Mapping has a broad sense including projection, non-linear mapping, parameter 

space transformation, and so on. In this section, mapping techniques are categorized into 

two groups: mapping aiming at dimensionality reduction and mapping aiming at 

optimization.  

Mapping aiming at dimensionality reduction transforms a set of correlated variables 

into a smaller set of new uncorrelated variables that retain most of the original 

information. This includes non-linear mapping and projection. Projection has multiple 

algorithms such as projections by principal component analysis (PCA) (Dunteman 1989; 

Penha and Hines 2001; Shlens 2005), analysis of variance (ANOVA), and relative 

distance plane (RDP) mapping (Somorjai et al. 2004). RDP maps high-dimensional data 

onto a special two-dimensional coordinate system, the relative distance plane. This 

mapping preserves exactly the original distance between two points with respect to any 

two reference patterns in RDP. Besides dimensionality reduction, projection approaches 

are used for data classification, data clustering, and visualization of high-dimensional 

problems as well. Non-linear mapping is a commonly used method for easing problem 
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complexity. Artificial Neural Network (ANN) embodies non-linear mapping techniques. 

Rassokhin et al. (2000) employed fuzzy clustering and neural networks for nonlinear 

mapping of massive data sets.  Sammon (1969) proposed an algorithm of nonlinear 

mapping for data structure analysis.  This algorithm was based on point mapping of a 

higher-dimensional space to a lower-dimensional space such that the inherent data 

“structure” was approximately preserved. Saha et al. (1993) applied linear transformation 

inducing intrinsic dimension reduction. Kaski (1998) reduced dimensionality by random 

mapping. All above mapping techniques successfully implemented the dimensionality 

reduction. 

Bandler et al. (1994) proposed a space-mapping (SM) technique aiming at 

optimization. This space-mapping technique made use of two models for the same 

system: a “coarse” model, and a “fine” model. The “coarse” model could be an empirical 

equation, simplified theoretical model or finite element model. These “coarse” models 

were less accurate and computationally inexpensive.  The “fine” model could be a high 

precision component model or fine finite element model. These “fine” models were more 

accurate and computationally expensive. A mathematical mapping between the spaces of 

parameters of two different models was established, which maps the fine model 

parameter space to the coarse model parameter space such that the responses of the 

coarse model adjust for the responses of the fine model within some local modeling 

region around the optimal coarse model solution. In conjunction with the accuracy of the 

“fine” model and the cheap computation of the “coarse” model, an optimization 

algorithm was implemented. In the context of this space mapping technique, the 

parameter extraction (obtaining the parameters of the coarse model whose responses 
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match the fine model responses) was crucial since the non-uniqueness of the extracted 

parameters may cause the technique to diverge. Some algorithms such as Aggressive 

Space Mapping (ASM) (Bandler et al. 1995a, 1995b, Bakr et al. 1999a), Trust Region 

Aggressive Space Mapping (TRASM) (Bakr et al. 1998), Hybrid Aggressive Space 

Mapping (HASM) (Bakr et al. 1999b) methods were developed to obtain better parameter 

extraction by the same research group of the original space mapping technique. This 

space-mapping was then applied to optimization of microwave circuits (Bakr et al. 

2000a) by the same researchers. Leary et al. (2001) developed a constraint mapping to 

structural optimization.  Bakr et al. (2000b) reviewed these space mapping techniques 

and discussed developments in Space Mapping-based Modeling (SMM) including Space 

Derivative Mapping (SDM), Generalized Space Mapping (GSM), and Space Mapping-

based Neuromodeling (SMN). Bandler et al. (2004) refreshed the state of the art of the 

space-mapping techniques. 

The first group of mapping approaches relaxes the “curse of dimensionality” of 

problems for modeling, and the second eases the complexity of optimization problems.  

But it seems that no one has examined the possibility of mapping optimization problems 

from an original higher-dimensional space to a new lower-dimensional space while 

preserving the optimum.  If this is doable, both the problem size and the optimization 

complexity can be reduced simultaneously. The challenge is how to ensure the optimum 

obtained in the lower-dimensional space is the true optimum for the higher-dimensional 

space.   
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2.3.4. Design Space Reduction 

When modeling and optimizing a practical problem, ranges of design variables 

need to be determined. Combination of variable ranges defines the design space. In this 

chapter, space reduction is limited to the reduction of ranges of design variables 

excluding the reduction of the number of variables (discussed in screening and mapping). 

Space reduction means shrinking a design space so that modeling is more accurate in the 

modeling range or optimization effort is reduced in the optimization domain. A common 

space reduction approach starts with sampling a limited number of points and evaluating 

function values at these points. Then the design space is reduced based on feedback 

information from modeling on these sample points. The revised design space is again 

segmented using smaller increments, and the objective function is determined for new 

points.  In this way, the focus of modeling can be in a more attractive region, which leads 

to more effective models. Approximated or inexpensive constraints are often employed to 

eliminate some portions of the design space. In the optimization formulation phase, the 

design space can be explored to obtain a deeper insight into the design problem, and thus 

the optimization focus can be made on the most interested sub-spaces that contain the 

optimum with high probability in the design space. Wang et al. developed a number of 

methods such as the adaptive response surface method (ARSM) (Wang et al. 2001), and 

the fuzzy clustering based approach (Wang and Simpson 2004), in which the design 

space is iteratively reduced. Shan and Wang then proposed a rough set based method 

which could systematically identify attractive regions (sub-spaces) from the original 

design space for both single and multiple objectives (Shan and Wang 2004, Wang and 

Shan 2004).  Engineers could pick satisfying design solutions from these regions or 
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continue to search in those regions. In the optimization processes, there are some 

strategies to contract the design space. Shin and Grandhi (2001) reduced the space using 

the interval method. This method began with a box in which the global optimum was 

sought; it first divided the box and found the interval of the objective function and each 

constraint in each sub-box, and deleted the sub-boxes which could not contain the 

optimum. This process continued until the box size became sufficiently small.   Marin 

and Gonzalez (2003) solved the path synthesis optimization problems using design space 

reduction. The design space reduction was implemented in two ways: one eliminating 

redundant design points by defining some prerequisites and the other eliminating poor 

design points. Yoshimura and Izui (1998) implemented mechanism optimization via 

expansion and contraction of design spaces.  Ahn and Chung (2002) utilized joint space 

reduction and expansion to redundant manipulator optimization. The space reduction and 

expansion is commonly employed as a strategy of optimization and done by moving 

limits of design variables.  Move-limit optimization strategies (Fadel and Cimtalay 1993; 

Fadel et al. 1990; Grignon and Fadel 1994; Wujek and Renaud 1998a, 1998b) applied the 

conjunction of approximation with move limit concepts to optimization problems. Trust 

region based algorithms (Byrd et al. 1987; Celis et al. 1984; Rodríguez et al. 1998) made 

use of the idea of changing spaces. These approaches varied the bounds of design 

variables in optimization iterations and differed from each other in bound adjustment 

strategies. Space reduction strategies can be used in optimization problem formulation 

phases, optimization processes, and modeling processes.  
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2.3.5. Visualization 

The idea of visualization is to present a problem in a visual form, allowing users to 

get insight into the problems, find key trends and relationships among variables in a 

problem, and make decisions by interacting with the data. There are various techniques 

for multidimensional data visualization including graph morphing, panel matrix displays, 

iconic displays, parallel coordinates, dense pixel displays, and stacked displays. Stump et 

al. (2002) listed advantages and disadvantages of scatter matrix/brushing and data-driven 

placement of Glyphs and developed an interface incorporating visualization techniques. 

Winer and Bloebaum (2002a; 2002b) developed a Visual Design Steering (VDS) method 

as an aid in multidisciplinary design optimization. VDS allows a designer to make 

decisions before, during, or after an analysis or optimization via a visual environment to 

effectively steer the solution process.  Many companies are utilizing the power of 

visualization tools and techniques to enhance product development and support 

optimization (Simpson 2004). Visualization is helpful when little is known about the data 

and the exploration goals are implicit since users are able to directly participate in the 

exploration processes, shift and adjust the exploration goals if necessary. The 

visualization can aid in black-box function modeling. VDS for high-dimensional 

optimization problems, however, need to be developed. 

2.3.6. Summary Remarks 

Five main strategies for tackling high-dimensionality are reviewed. Their pros and 

cons are summarized in Table 2.1. Among these methods, decomposition methodology is 

identified as the most promising tool for high-dimensional problems, given its general
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Table 2.1 Summary of strategies tacking problems of high-dimensionality 

Strategy Advantages Disadvantages Application 

Decomposition 

Reduced sub-problem dimensionality; reduced 
programming/debugging effort; 

simpler and more efficient computational 
procedures (such as parallel/distributed 
computation, concurrency, modularity); improved 
coordination and communication between the 
decomposed  sub-problems; enabling different 
solution techniques to individual sub-problems; 
support of multi-criteria analysis with 
single/multiple decision makers; enhanced 
reliability and robustness of optimization 
solutions 

Limited by 
decomposability 

Modeling 
and 
optimization 
for high-
dimensional 
or large 
scale 
problems  

Screening 

Removal of  noises and insignificant variables 
and terms; distinguish the interactions in 
problems 

May sacrifice 
accuracy; 
limited by 
nature of 
problems 

Problem 
investigation 
and 
modeling   

Mapping 

Removal of correlated variables; reduced 
dimensionality; reduction of computational 
burden for optimization  

Non-uniqueness 
of the extracted 
parameters; few 
techniques for 
high-
dimensional 
problems 

 

Modeling 
and 
optimization 

Space reduction 

Reduction of the effort on modeling and 
optimization 

May miss the 
global optima or 
important sub-
space  

Often used 
at the start of 
optimization  

Visualization 
Supporting design space exploration and 
optimization  

Difficult for 
high-
dimensional 
problems 

Interactive 
decision 
making; 
exploration 

 

applicability. Screening and mapping approaches can be very useful in suitable context, 

especially when there is prior knowledge of the underlying black-box function. Mapping 

strategies for high-dimensional problem modeling and optimization are limited and need 

to be further developed. Space reduction is a common strategy used in detailed 

optimization algorithms.  It may best suit for search strategies such as in trust region 

methods. Its use in the global scale, however, is to be cautioned as it is risky of missing 

important subspaces.  Visualization techniques are very attractive for human interactive 
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decision making.  They can be used to design an interface between the fundamental 

analytical approaches (such as modeling and optimization) and design engineers, in 

support of real design practice. 

2.4. Model Approximation Techniques 

Computationally-expensive problems and black-box problems are often found in 

science and engineering disciplines. For example, simulation and analysis processes are 

expensive to run and often considered black-box functions. The widely used strategies 

dealing with computational intensity, unknown function expressions, and both are model 

approximation techniques. These model approximations support engineering design 

optimization as well (Haftka et al. 1998; Wang and Shan 2007). This section first surveys 

the existing model approximation techniques, and then introduces a type of additive high-

dimensional model representation potentially supporting the solution of HEB problems. 

We will then elucidate the relationship between modeling techniques and nature of 

underlying functions to expose the oversight/flaws in current methods and indicate the 

direction for new model development.  

2.4.1. Existing Modeling Techniques 

Model approximation techniques involve two fields: design of computer 

experiments and modeling. These two fields work together to serve for model 

approximation. In typical model approximation techniques, there are four basic tasks: (1) 

to decide on a sampling method (that is, experimental design); (2) to select a model to fit 

sampling points; (3) to choose a fitting method (for example, least square regression); and 

(4) to validate the fitting model. These tasks often correlate with each other. A critical 
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issue in model approximation is to construct a sufficiently accurate approximation model 

with least effort based on available information.  

The research on design of computer experiments (Sacks et al. 1989a; 1989b; 

Steinberg and Hunter 1984) has been a few decades. The reviews on design of computer 

experiments can be found in the references (Chen et al. 2006; Chen et al. 2003; Crary 

2002; John and Draper 1975; Steinberg and Hunter 1984). Multiple design of computer 

experiments schemes are compared by researchers. For example, McKay et al. (1979) 

compared three sampling methods (random sampling, stratified sampling and Latin 

hypercube sampling). Simpson et al. (2001a) compared and contrasted five types of 

experimental design and four types of approximation model. Jin et al. (2002) compared 

sequential sampling with one stage sampling. Chan (1983) analyzed the sample variance 

algorithms and made recommendations. Ford et al. (1989) summarized work in optimal 

experimental design in nonlinear problems. Wang and Shan (2007) listed various design 

of experiments approaches. Chen et al. (2006) summarized some of the experimental 

designs’ pros and cons.  

The design of computer experiments can be grouped into three categories: the first 

category of designs is constructed by combinatorial, geometrical, or algebraic 

methodology, such as factorial design, fractional factorial design (Myers and 

Montgomery 1995), orthogonal arrays (Bose and Bush 1952; Hedayat et al. 1999; Owen 

1992a), Latin hypercube designs (Owen 1992b; Tang 1993; Ye 1998), etc.  These designs 

have desirable structural properties, and some of them have good projective property in 

low-dimensional subspaces. The second category of designs is constructed by optimality 
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approaches, such as D, A, E, G, 
λI  Optimality (Chen et al. 2003; John and Draper 1975; 

Steinberg and Hunter 1984), minimax and maximin distance designs (Johnson et al. 

1990), and Bayesian approaches (Chaloner and Verdinelli 1995; Currin et al. 1988, 1991; 

Mitchell and Morris 1992; Morris et al. 1993). In Bayesian-based sampling, the mean 

serves as a prediction, and the standard deviation serves as a measure of uncertainty of 

the prediction. Measures of information based on the predictive process are used to 

establish design criteria, and optimization can be used to choose good designs. The 

second category of methods usually yield sample points of comparatively good space-

filling proprieties; however, obtaining these designs can be either difficult or 

computationally intractable, and they may not have good projective properties in low-

dimensional subspaces. The third category of methods (for instance, Jin et al. 2005; 

Morris and Mitchell 1995) combine the optimality approaches with the first category 

approaches (for example, Latin hypercube sampling) to improve projective property as 

well as space-filling property. For evaluating the experimental design, Simpson et al. 

(2001b) and Chen et al. (2003; 2006) discussed some metrics of merit. Those metrics of 

merit are summarized in Table 2.2. 

For design of computer experiments, the “curse of dimensionality” presents a major 

hurdle as the amount of required sampling points for modeling grows with the number of 

design variables (Pérez et al. 2002b). Since a full factorial design is the most basic 

design, taking the full factorial design as a basis, Table 2.3 lists the cost of some 

experimental designs to illustrate the challenges when the number of dimension (n=30) is 

relatively high. The research on construction of designs for high-dimensional spaces has 

not been extensive (Currin et al. 1991). Another issue worthy of notice is the interactions 
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within experimental designs. Morris and Mitchell (1983) discussed the presence of 

interactions. 

Table 2.2 Metrics for evaluating experimental design 

Metric Description 

Orthogonality 
A design is orthogonal if, for every pair of factors ix  and jx , the sum of the 

cross-products of N design points ∑
=

N

u

juiu xx
1

is zero, which implies that the 

design points are uncorrelated. 

Rotatability 
A design is rotatable if 2/)](ˆ[ σxfVarN • has the same value at any two 

locations that are of the same distance from the design center, which maintains 

the same structure after rotation; where )(ˆ xf  is approximation of the underlying 

function.  

Robustness Robustness measures how well the design performs when there are violations of 
the assumptions upon which the design was derived. 

Minimum variance 
and minimum bias 

Estimation having minimum variance and minimum bias 

 

Table 2.3 Cost of some experimental designs 

Experimental 

design 

Condition (number of variables n=30) Cost 

Full factorial  Two level design 90737.1230 e=  

Fraction factorial Half fraction 
912687053=2×

2

1 30
,,  

Central composite  A central composite design is a two level 
n2  

factorial design, augmented by 0n center points 

and two ‘star’ points positioned at α± for each 
factor 

527,189 for 20 factors 

(generated by MatlabTM function 
“ccdesign(20)”; “ccdesign(30)” 
failed) 

In the modeling field, approximation models can be grouped into two categories: 

parametric models and nonparametric models as shown in Fig. 2.3. Based on these two 

categories of models, semi-parametric models are developed. Parametric models have a 

pre-selected form of the original variables for the underlying function, and so can be 
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parameterized in terms of any basis functions, for example, polynomial models (linear, 

quadratic or higher) (Hill and Hunter 1966). Simple parametric models require a few data 

points to obtain a meaningful result and can be rapidly computed. However, parametric 

models have limited flexibility, and are likely to produce accurate approximations only 

when the true form of the underlying functions is close to the pre-specified parametric 

one (Denison 1997; Friedman 1991). They are preferred when there is prior knowledge of 

the underlying function. 

Fig. 2.3 Approximation models 

In nonparametric modeling, the functional form is not known and so cannot be 

parameterized in terms of any basis functions, for instance, smoothing splines and kernel 

regression. Nonparametric approaches try to fit a function through the use of sampling 

data to derive the form of the model instead of “enforcing or imposing” them into a 

particular class of models (for instance, polynomial model).  So the model can alter from 

the sampling data, which reflects the nature of the underlying function. Nonparametric 
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dimensional function 
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estimate) 

Lower-dimensional 
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with low-dimensional 
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Roughness penalty 
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Projection 
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trees 

Parametric 
approximation 

(e.g., polynomial 
response surface) 

Adaptive 
computation 
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methods have two main classes: one models a d-dimensional regression function with a 

d-dimensional estimate and the other models the underlying function with lower-

dimensional functions. The first class includes three types of methods: piecewise 

parametric, local parametric, and roughness penalty. These techniques can work well for 

low-dimensional problems, but become unreliable when there are many variables 

(Denison 1997). The second class takes the underlying function as a combination of low-

dimensional functions and sums them together, which circumvents the “curse-of- 

dimensionality”.  This class includes two main strategies: additive models (Andrews and 

Whang 1990; Friedman and Silverman 1989; Stone 1985) and adaptive computation. 

Adaptive computation includes projection pursuit regression (Friedman and Stuetzle 

1981), and recursive partitioning regression (Friedman 1991). Next subsection will 

describe one additive model. Chen (1991; 1993) proposed interaction spline models to 

retain the advantages of additive models with more flexibility. Some of the above 

modeling techniques have been extended by Bayesian approaches (Barry 1986; Denison 

1997; Denison 1998; Leoni and Amon 2000; Otto et al. 1997). Apley et al. (2006) 

modeled approximation model uncertainty by Bayesian approach. Wang and Shan (2007) 

listed popular models, such as Kriging models (Joseph et al. 2006; Martin and Simpson 

2005), radial basis functions (RBF) models (Fang and Horstemeyer 2006; Regis and 

Shoemaker 2007a, 2007b), response surface models (Hill and Hunter 1966; Kaufman et 

al. 1996), support vector machine (Collobert, 2001), etc. Owen and his group (An and 

Owen 2001; Jiang and Owen 2002, 2003) developed quasi-regression methods for model 

approximation. Chen et al. (1999) presented an OA/MARS (orthogonal array and 

multivariate adaptive regression splines) method. Jin et al. (2001) compared four models 



35 
 

(polynomial regression, multivariate adaptive regression splines, radial basis functions, 

and Kriging model), and Wang et al. (2006) compared metamodels (multivariate adaptive 

regression splines, radial basis functions, adaptive weighted least squares, Gaussian 

process and quadratic response surface regression) under practical industry settings.  

Simpson et al. (1998) compared response surface and Kriging models for 

multidisciplinary design optimization. Chen (2006) described the pros and cons of some 

models. Mechesheimer et al. (2002) investigated assessment methods for model 

validation based on leave-k-out cross validation. Kennedy and O’Hagan (2001) 

developed a Bayesian approach for calibration of computer models. Calibration is the 

process of fitting a model to the observed data by adjusting parameters. Some researchers 

studied the structures and natures of the underlying function. For example, Hooker (2004) 

discovered an additive structure; Chen (1991; 1993) made use of interactions; Owen 

(2000; 1998) discussed linearity in high dimensions. Here commonly used performance 

criteria for approximation models and commonly used model validation metrics are listed 

in Table 2.4 and Table 2.5, respectively. To the authors’ knowledge, there is no specially 

designed validation method for HEB problems, especially when the total number of 

validation points is limited due to high computational cost.  



36 
 

Table 2.4 Commonly used performance criteria for approximation models 

Criterion Description 

Accuracy The capability of predicting underlying functions over a design space. It can be 
measured by RMSE, R square, RAAE, RMAE, and so on (see Table 2.5). 

Interpretability or 
Transparency 

The ability of proving the information and interactions (the underlying structure) 
among variables. It can be seen via function nonlinearity, interaction of the factors 
and factor contributions. 

Flexibility or 
Robustness 

The capability to provide accurate fits for different problems. It can be measured 
by variance of accuracy metrics. 

Dimensionality The amount of data required to avoid an unacceptably large variance that increases 
rapidly with increasing dimensionality. 

Computability or 
Efficiency 

The computational effort required for constructing the model and for predicting 
the response for a set of new points by the model. The computational effort 
required for constructing the model can be measured by the number of function 
evaluations and the number of iterations or time. 

Simplicity The ease of implementation 

Smoothness The derivative ability of the model function 
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Table 2.5 Commonly used model validation metrics 

Metrics Features 

Residual The difference between the predicted and true values at 
sampled points. 

Mean Square Error (MSE): 
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Measure the average of the “error”. The “error” is the 
difference between the predicted and true values. MSE does 
not have the same unit as the output, y. 

Root Mean Square Error (RMSE): 
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A better measure of “error” than MSE. RMSE has the same 
unit as the output. 

Relative Average Absolute Error: 
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Usually correlated with MSE. A global error measurement. 
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Usually correlated with MSE. A global error measurement. 

Predicted R squares: 
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The formula is the same as the R Square.  But the 
calculation process is similar to cross-validation. It is 
calculated by systematically removing each point from 
modeling points, constructing a new model on remaining 
points, and predicting function value at the removed point. 

Maximum Absolute Error: 

miyyMAX ii ,,1|,ˆ|max L=−=  

An absolute error measurement in a local region. Not 
necessarily correlated with MSE. 

Relative Maximum Absolute Error : 

STD

MAX
RMAE =  

A relative error measurement in a local region. Not 
necessarily correlated with MSE.  

Cross-validation Partitioning sampled points into multiple subsets and then 
iteratively employing one subset as testing set and other 
subsets as training set (modeling) to test the accuracy of the 
model. It includes leave-one-out and k-fold cross-validation.  

Where 

m -- the number of validation points; iy -- observed value; iŷ -- predicted value; y -- the mean of the 

observed values; STD -- standard deviation  
m
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2.4.2. High-Dimensional Model Representation 

Among the additive models, a high-dimensional model representation (HDMR), 

which was developed from science disciplines, has only drawn limited attention in 

engineering. The HDMR, given its direct relevance, potential application for high-

dimensional design, and limited exposure to engineering researchers, is thus described in 

more detail as follows. 

A HDMR represents the mapping between the input variables T

nxxx ]...,,,[ 21=xxxx  

defined on the design space nR  and the output )(xxxxf . A general form of HDMR (Li et al. 

2001a; Rabitz and Alis 1999; Sobol 1993) is shown as 
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where the component 0f  is a constant representing the zero-th order effect to )(xxxxf ; the 

component function )( ii xf gives the effect of the variable ix  acting independently upon 

the output )(xxxxf  (the first-order effect), and can have an arbitrary dependence (linear or 

non-linear) on ix . The component function ),( jiij xxf describes the interacting 

contribution of the variables ix  and jx  upon the output (the second-order effect), and 

subsequent terms reflect the interacting effects of an increasing number of interacting 

variables acting together upon the output )(xxxxf . The last term )( 2112 nn x,,x,xf L
L

represents any residual dependence of all the variables locked together correlatively to 

influence the output )(xxxxf . The HDMR expansion has a finite number of terms and is 
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always exact. The HDMR expands a d-dimensional function into summation of different 

functions of less than d-dimensions. The HDMR is a generalization of additive models 

(Andrews and Whang 1990; Chen 1991, 1993; Friedman and Silverman 1989; Stone 

1985) mentioned in the Section 2.4.1. The highest dimensionality of HDMR depends on 

the nature of interaction variables of the function. For most well-defined systems, high-

order correlated behavior of the input variables is expected to be weak and a HDMR can 

capture this effect (Rabitz and Alis 1999). Broad evidence supporting this statement 

comes from the multivariate statistical analysis of many systems where significant high 

correlated input variable covariance rarely appears. Owen (2000) observed that high-

dimensional functions appearing in the documented success stories did not have full d-

dimensional complexity.  

HDMR discloses the hierarchy of correlations among input variables. Each of the 

component functions in HDMR reveals a unique contribution of the variables separately 

or correlatively to influence the output )(xxxxf . At each new level of HDMR, higher-order 

correlated effects of input variables are introduced. While there is no interaction between 

input variables, only the constant component 
0f  and the function terms )( ii xf  will exist in 

the HDMR model. These component functions are thus hierarchically tailored to )(xxxxf

over the entire design nR . A hierarchy of identified interaction functions reveals the 

structure of )(xxxxf . 

There is a family of HDMRs that have been developed by the use of different 

choices of projection operators. Rabitz and his research group (Rabitz and Alis 1999; 

Rabitz et al. 1999) illustrated ANOVA-HDMR and cut-HDMR. Wang et al. (2003) and 
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Li et al. (2006) presented random sampling HDMR. Mp-cut-HDMRs (Li et al. 2001b) 

(monomial-based preconditioned HDMR) were developed to improve features of Cut-

HDMR. The choice of a particular HDMR is suggested by what is desired to be known 

about the output and is also dictated by the amount and type of available information. If 

the additive nature dominates in a problem, a HDMR or GHDMR (generalized HDMR) 

can efficiently partition the multivariate problem into low-dimensional component 

functions.  When the multiplicative nature is predominant in a problem, a factorized high-

dimensional model representation (FHDMR) (Tunga and Demiralp 2005) can be used. If 

the problem has a hybrid nature (neither additive nor multiplicative), HHDMR (Tunga 

and Demiralp 2006) (hybrid HDMR) has been developed. HDMR applications can be 

seen from references (Banerjee and Ierapetritou 2002; Jin et al. 2004; Kaya et al. 2004; 

Shorter et al. 1999; Taskin et al. 2002). Although HDMR has demonstrated good 

properties, the model at its current stage only offers a check-up table or need integration, 

lacks of a method to render a complete model, and there is no accompanying sampling 

method to support the development of HDMR model.   

Since the purpose for introducing the HDMR is to model HEB problems, both cost 

and accuracy are of concern. From this perspective, a Cut-HDMR (Li et al. 2001a) is 

more attractive than other HDMR variations. Cut-HDMR expresses )(xxxxf  by a 

superposition of its values on lines, planes and hyper-planes (called cuts) passing through 

the “cut” center 0xxxx  which is a point in the input variable space. The Cut-HDMR 

expansion is an exact representation of the output )(xxxxf  along the cuts passing through 

the “cut” center. The Cut-HDMR exploration of the output surface )(xxxxf  may be global, 
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and the value of 0xxxx  is irrelevant if the expansion is taken out to convergence. The 

component functions of the Cut-HDMR are listed as follows: 

�
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where i0xxxx , ij0xxxx  and  are, respectively, 0xxxx  without elements ix ; ix , jx ; and ix , jx , kx . 

)( 0xxxxf  is the value of )(xxxxf  at 0xxxx ; ),( 0
i

ixf xxxx is the model output with all variables evaluated 

at 0xxxx  except for the ix  component.  It is easy to prove that )( 00 xxxxff = is the constant term 

of the Taylor series (Li et al. 2001b); the first-order function )( ii xf  is the sum of all the 

Taylor series terms which only contain variables ix , while the second-order function 

),( jiij xxf  is the sum of all the Taylor series terms which only contain variables ix  and jx , 

and so on.  To sum up, each distinct component function of the Cut-HDMR is composed 

of an infinite sub-class of the full multi-dimensional Taylor series, and the sub-classes do 

not overlap one another.  

The computational cost of generating Cut-HDMR up to the i-th level, when it is 

used for interpolation purposes, is given by (Rabitz and Alis 1999)  

∑
=

−
−

=
l

i

is
iin

n
c

0

)1(
!)!(

!

,

                                                                  (2.7) 

ijk0xxxx



42 
 

where s  is the number of sample points taken along each x axis. This computational cost 

can be derived from summing each term’s computational cost in Eq. (2.1). If convergence 

of the Cut-HDMR expansion occurs at nL ≤ , then the sum above is dominated by the L-

th order term .  Considering 1≥s ,  a full space resolution is obtained at the computational 

cost of !/)(~ Lns
L , which is approximated from Eq. (2.7). This result is in strong contrast 

with the conventional view of exponential scaling of ns~ . It can be seen from Eq. (2.7) 

that the higher-order terms in the Cut-HDMR demand a polynomially increasing number 

of sampling points.  One approach to relieve this issue is to represent a high-order Cut-

HDMR component function as a sum of preconditioned low-order Cut-HDMR 

component functions (Li et al. 2001b).  

2.4.3. Relationship among Factors for Approximation 

In the previous subsections, design of computer experiments and modeling 

techniques have been reviewed. These two techniques work together in metamodeling 

techniques.  The goodness of the generated approximation models is not only related to 

sampling points (design of computer experiments) and the model, but also to the nature of 

the underlying problems.  This work identifies four basic features to capture complexities 

of an underlying problem, that is, dimensionality, nonlinearity, interactions among 

variables, and importance of terms (that is, individual variables or a subset of interrelated 

variables). The relationship between features of the underlying problems and model 

approximation techniques is depicted in Fig. 2.4. In Fig. 2.4, an underlying function 

(high-fidelity model) is approximated by a constructed model; both the underlying 

function and constructed model include the same input variables; the goodness of the



43 
 

 

Fig. 2.4 Relationship among factors for approximation 

 

constructed model fitting the underlying function is verified and validated by validation 

criteria. The complexities of an underlying function are expressed by its dimensionality, 

nonlinearity, interaction among variables, and importance of terms. Factors influencing 

the model quality include modeling strategy (for instance, sampling method, model type, 

model fitting method and sample size), as well as the nature (for example, the 

dimensionality, nonlinearity, interaction, and term importance) of the underlying 

functions. From this survey, it is observed that design of computer experiments and 

modeling techniques have been widely studied at the right side of Fig. 2.4 including 

sampling methods, models, model fitting, and sample size reduction. These techniques 

have been successfully applied to various disciplines for low-dimensional problems. As 

the dimensionality of the problems increases, it is increasingly difficult to construct most 

of such models for problems of a large number of variables. Although high-

dimensionality is the major problem in metamodeling, limited publications exist in the 

literature to address this issue. High-dimensional models therefore need to be developed.  
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It is observed that there are few papers that studied the entire structure of the underlying 

function (the left side of Fig. 2.4). We propose the use of dimensionality, nonlinearity, 

interaction among variables, and importance of terms, as four characteristics of an 

underlying/black-box function. In order to overcome the high-dimensional issue, high-

dimensional models need to lighten both sides of Fig. 2.4 (that is, nature of the 

underlying function and approximation techniques). The models should be adaptive and 

can automatically explore and make use of the nature of the underlying function 

(dimensionality, interaction, nonlinearity, and importance of terms). These adaptive 

models require new methods of computer experimental designs, which should have good 

projective and space filling properties. Generally, there exists a tension between space 

filling property and small sample size. Resolution of this tension should be expected by 

means of exploring and using the nature of the underlying function, as well as strategies 

such as decomposition, additive modeling, mapping, etc. The HDMR model is designed 

for modeling high-dimensional problems, which bears great potential for further 

development. 

2.5. Optimization Strategies as Related to HEB Problems 

Optimization problems with computationally expensive/black-box models exist 

commonly in many disciplines. Optimization processes inherently require iterative 

evaluations of objective functions. Therefore, the cost of optimization often becomes 

unacceptable. Especially high-dimensional, computationally-expensive, and black-box 

(HEB) problems pose more demanding requirements. This section reviews current 

optimization strategies for computationally-expensive black-box functions, and non-
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gradient optimization methods that are normally developed for cheap black-box 

functions. Given the broad scope of optimization, this review focuses mostly on non-

gradient methods, and selects optimization methods that are considered inspiring 

(inevitably with bias) for the development of new optimization methods for HEB 

problems. 

2.5.1. Optimization Strategies for Computationally-Expensive Black-box Functions 

It can be seen from literature that implementation of optimization of 

computationally expensive black-box functions often uses a cheap or approximate model 

as a surrogate of the expensive model (for instance, Jones et al. 1998; Schonlau et al. 

1998). The optimization strategies for computationally-expensive black-box functions fall 

into two classes as shown in Fig. 2.5: model approximation based techniques, and coarse-

to-fine model based techniques.  

 

 

 

 

 

 

 

 

Fig. 2.5 Optimization strategies for computationally expensive problems 
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Model approximation-based optimization techniques utilize a cheap model to 

approximate an expensive model and then optimize the cheap model or use information 

obtained from the cheap model to guide optimization. This kind of technique is also 

termed metamodel-based design optimization (MBDO) strategy. There are three different 

types of strategies in the literature, as illustrated in Fig. 2.6 (Wang and Shan 2007). Most 

of the MBDO approaches fall into the first two strategies.  The third strategy is rather 

new and demonstrates good robustness, efficiency, and effectiveness.  The first strategy, 

though being the most straightforward one among the three, can be practical in industry 

when sample points are already available and budget or time does not allow for iterative 

sampling. When iterations of sampling are allowed, the latter two strategies in general 

should lead to a less total number of function evaluations.  All of the MBDO methods, 

however, are limited by the difficulty of approximating high-dimensional problems with 

a small number of points. 

 

 

 

 

 

 

a)                                          (b)                              (c) 

Fig. 2.6 MBDO strategies: a) sequential approach, b) adaptive MBDO, and c) direct 
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The coarse-to-fine model based techniques combine the high accuracy of a fine 

model (high-fidelity model) with low cost of a coarse model (or low-fidelity model). The 

coarse model is exploited to obtain the information of optimization functions including 

rapid exploration of different starting points, local minima, sensitivities and other design 

characteristics within a suitable time frame while the fine model is used to verify the 

design obtained by the coarse model or evaluated in important regions to improve the 

accuracy. There are several methods in this technique, as shown in Fig. 2.5, such as 

mapping, difference modeling, ratio modeling (Leary et al. 2003) and model fusion 

(Xiong et al. 2008). Mapping (Bakr et al. 1999a, 1999b, 1998; Bandler et al. 

1995a,1995b,1994; Leary et al. 2001) aims to establish a relationship between the input 

space of the coarse model and that of the fine model such that the coarse model with the 

mapped parameter accurately mirrors the behavior of the fine model. This mapping 

approach is reviewed in Section 2.3.3. Difference modeling considers differences 

between two models (
ce ffd −=  where 

ef represents the expensive model and cf  the 

cheap model).  Watson and Gupta (1996) modeled the differences between the two 

models by a neural network and applied it to the microwave circuit design. Ratio 

modeling is to model the ratio of fine and coarse models (
c

f

f

f
r =

 
where ff

 
is the fine 

model; 
cf is the coarse model). Haftka (1991) calculated the ratio and derivatives at one 

point in order to provide a linear approximation to the ratio at other points in the design 

space. Nain and Deb (2002) proposed a concept of combining genetic algorithm with 

coarse-to-fine grain modeling. Xiong et al. (2008) proposed a variable fidelity 

optimization framework based on model fusion. The coarse-to-fine model based 
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techniques need a given (or easy-to-obtain) coarse model. They are suitable for problems 

with some prior knowledge. 

2.5.2. Non-gradient Optimization Algorithms  

There are many well known optimization algorithms such as quasi-Newton 

methods (Arora 1995), interior point algorithms (Rao and Mulkay 2000), generic 

algorithms (GA) (Holland 1975), simulated annealing (SA) (Kirkpatrick et al. 1983), 

trust region (Celis et al. 1984), and DIRECT (Jones et al. 1993). There are also various 

classification methods for algorithms. Multiple papers on algorithm review and 

comparison have been published. For example, Weise (2008) and Arora et al. (1995) 

reviewed and classified optimization algorithms. Ratschek and Rokne (1987) discussed 

the efficiency of a global optimization algorithm. Vanderplaats (1999) reviewed 

structural design optimization status. One can draw conclusions from these surveys: (1) 

there is no generally applicable optimization algorithm for all problems; (2) there is no 

analytical conclusion on which optimization algorithm is the most efficient; (3) no 

algorithm is found in open literature that is directly applicable to HEB problems.  

In view of the enormous amount of literature on optimization algorithms, this 

section aims only to extract some interesting and promising ideas behind algorithms that 

may potentially be integrated with aforementioned various technologies (for instance, 

decomposition)  to solve HEB problems.  This review is not intended to repeat previous 

works on reviewing, classifying, and comparing various optimization algorithms.  

Considering the gradients either usually not available, or the costs needed to find 

gradients for black-box functions falling victim to the “curse,” this chapter is limited to 
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non-gradient, or derivative-free, algorithms and only presents some of the often-used 

algorithms in engineering design.  

DIRECT (dividing rectangles): this algorithm was developed by Jones’s group 

(1993). It is a modification of the Lipschitzian approach that eliminates the need to 

specify a Lipschitz constant. DIRECT iteratively subdivides the design space into hyper-

rectangles and selects the set of hyper-cubes that are most likely to produce the lowest 

objective function. Björkman and Holmström (1999) implemented the DIRECT 

algorithm in MatlabTM. DIRECT is found to be more reliable than competing techniques 

for an aircraft routing problems (Bartholomew-Biggs et al. 2003) and have attractive 

results for benchmark problems (Björkman and Holmström 1999; Jones et al. 1993). 

DIRECT meets increasing difficulty with an increasing number of variables and is 

normally applied to low-dimensional problems. Siah et al. (2004) combined DIRECT 

with Kriging model and solved several optimization problems of 3 or 4 variables in the 

electromagnetic field.  Their approaches fall into the ones as shown in Fig. 2.6 (a) and 2.6 

(b).  

Pattern Search: pattern search, originated in 1950s (Box 1957), is a direct search 

algorithm which searches for a set of points around the current point, looking for one at 

which the value of the objective function is lower than the value at the current point. The 

set of points is decided by a prefixed or random pattern. This approach does not require 

gradient information of the objective function and can solve optimization problems with 

discontinuous objective functions, highly nonlinear constraints, and unreliable derivative 

information. This algorithm is applied to unconstrained, constrained, and black-box 

function optimization (Audet and Dennis 2004). Its advantages are being simple, robust 
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and flexible. But they are easy to trap into local optima, and the number of evaluations is 

high. It is suitable for low-dimensional optimization problems. 

Genetic algorithm (GA): Genetic algorithms (Holland 1975, Goldberg 1989) come 

from the idea of natural selection. Generic algorithms generate a population of points at 

each iteration. The population approaches an optimal solution and selects the next 

population by computations that involve random choices. GA is a robust stochastic global 

optimization algorithm. Since many evaluations are commonly required, its efficiency is 

generally low. In addition, parameters (population size, crossover, mutation operators, 

etc.) need tuning for each problem. Yoshimura and Izui (2004) successfully partitioned 

large-scale, yet computationally-inexpensive, problems into sub-problems and solved the 

sub-problems by the use of parallel GAs. 

  Simulated annealing (SA): simulated annealing (Kirkpatrick et al. 1983) was 

inspired by the annealing process in metallurgy. The objective function is analogous to 

temperature (energy). In order to get the optimal solution, the temperature changes from 

high to low and cooling should be sufficiently slow.  SA suffers from the same 

drawbacks as GA in that the convergence is slow. The performance of SA depends on 

proper initialization of program parameters used within SA.  

Trust region algorithms (Celis et al. 1984) dynamically control a region in the 

search space (so-called trust region) to pursue the optimum, which can be proved for 

global convergence. In MatlabTM optimization toolbox, all the large-scale algorithms, 

except for linear programming, are based on trust-region methods. 
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Mode-pursuing sampling method (MPS): MPS (Sharif et al. 2008; Wang et al. 

2004) is a recently developed method, which uses a variation of the objective function to 

act as a probability density function (PDF) so that more points are generated in areas 

leading to lower objective function values and fewer points in other areas. It is thus in 

essence a discriminative sampling method.  The performance of MPS on high-

dimensional problems is not yet examined. 

Many other meta-heuristics non-gradient methods have been developed such as Ant 

Colony (Dorigo et al. (1996), Particle Swarm (Kennedy and Eberhart 1995), Differential 

Evolution (Storn and Price 1995), Fictitious Play (Lambert, et al. 2005), and so on.  

Although each algorithm brings special characteristics, there are some commonalities 

among the aforementioned optimization algorithms. First, most of these approaches use a 

set, or population, of search points such as in DIRECT, Pattern Search, GA, SA, and 

MPS.  This will not only help explore the entire search space, it also makes the algorithm 

amenable to parallel computing. Second, the algorithms differentiate search regions. For 

example, DIRECT, Pattern Search, and Trust Region methods directly search for more 

attractive regions for further exploration. By using discriminative sampling, MPS 

inherently focuses on more attractive regions. GA and SA also indirectly move to more 

attractive search regions as defined by the current population. Third, most of these 

methods include a mechanism on where and how to sample/generate a new set of points, 

or a new population.   
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2.6. Challenges and Future Research 

Challenges of HEB problems come from three aspects: 1) unknown function 

properties, which almost implies that sampling or stochastic methods have to be used to 

explore the function; 2) high computational expense for function evaluation, which 

means that the number of function calls should be minimized; and 3) based on these two 

challenges, the high-dimensional problem becomes extremely difficult and prominent due 

to the potentially exponentially increasing expenses. Seeing from this survey, model 

approximation techniques have been successfully applied to low-dimensional expensive 

black-box problems. In other words, progresses have been made on the first two 

challenges; however, further study is worthy and needed for high-dimensional problems. 

Currently there are only sporadic researches in dealing with aspects of HEB problems; 

more work therefore needs to be done.  The authors believe that among current methods, 

two methods—mapping and decomposition—are the most promising approaches for 

solving HEB problems. 

In specific, the mapping approach is to transform optimization problems from an 

original higher-dimensional space to a new lower-dimensional space while preserving the 

optimum of the original function.  That is to say, via optimization on the new function in 

the lower-dimensional space, the obtained optimum may be inversely transformed to the 

optimum of the original problem. A few of questions regarding this transformation needs 

to be addressed: 1) how to preserve the original problems’ optimum or how to prove the 

property of such preservation, and 2) how to define a reversible transformation and how 

to guarantee its mapping uniqueness?  
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The decomposition methodology has been widely used for explicit complex 

functions. It refers to decomposition methods, decomposed models, adaptive sampling 

methods, modeling validation, and optimization algorithms for these decomposed 

models. 

Following possible research directions are suggested to stimulate more in-depth 

discussions. 

1. New models for high-dimensional problems 

Currently widely used models such as Kriging, RBF, and polynomials are not ideal 

for high-dimensional problems.  It is felt that a different model type is needed specifically 

for HEB problems. Such a model type may be rooted on some sound mathematical 

assumptions about a high-dimensional space and exploited to explore natures of 

underlying problems.   

2. Deeper understanding of a high-dimensional space 

To develop a model for a high-dimensional space, a deeper understanding of a 

high-dimensional space is felt needed.  It is very difficult to imagine an n>3 space, given 

our limited visualization capability.  Such a limit hinders the development of intuitive 

sampling approaches, and also hinders our understanding of such a vast space.  Although 

high-dimensionality of problems logically supports that the number of sampling points 

can grow exponentially with the number of input variables, broad evidence from statistics 

supports that significant high-dimensional variable covariance rarely arises (Li et al. 

2001a, 2001b). This indicates that high-dimensional correlation relationships rapidly 
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disappear under more general physical conditions in high-dimensional space. In addition, 

some researchers believe that most engineering problems have a limited number of 

feasible solutions located at comparatively very small regions in a high-dimensional 

space.  In other words, only very small regions in a vast space are of interest to us.  The 

problem is how to validate such a proposition? If this proposition is true, how to design 

sampling and modeling techniques to take advantage of such a property? Besides the 

above mentioned evidence and propositions, are there other properties and/or knowledge 

about a high-dimensional space?  A more in-depth theoretical study of characteristics of 

high-dimensional problems can help. 

3. Need for new sampling schemes 

The cost of modeling high-dimensional problems, in general, arises from the 

increase of dimensionality and the increase of the number of sample points along each 

dimension.  Associated with a new model type for high-dimensional problems, a new 

sampling method may be needed. Such a sampling method should 1) support the 

particular model type and modeling method, 2) take advantage of problem characteristics 

(for instance, nonlinearity and interaction) to have some degree of “intelligence,” 3) 

support adaptive sampling and sequential sampling, and 4) be efficient and effective in 

capturing the essence of the function—global trends and local details of interesting areas. 

Sampling methods with both good space filling properties (refining accuracy of 

interesting areas) and projective properties (capture the trends of the underlying 

functions) should work together with high-dimensional models. 

4. Decomposition for Optimization Problems 
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Decomposition of a high-dimensional problem is deemed an important and 

necessary step.  The issue is how to decompose a problem according to the inherent 

relationships among variables and functions, and yet amenable to modeling, sampling, 

and optimization.  How to integrate the decomposition with sampling, modeling, and 

optimization to achieve overall efficiency and effectiveness?  Decomposition-based 

modeling and/or decomposition-based optimization strategies with exploring capabilities 

need to be developed for high-dimensional problems. 

2.7. Conclusion 

This survey has reviewed from a variety of disciplines strategies that can potentially 

be used to solve high-dimensional, computationally-expensive, and black-box (HEB) 

problems. In closing, some comments are listed as follows: 

• As the use of computer-based simulation and analysis tools becomes more 

popular in engineering practice, HEB problems become more common. 

• There are few publications which directly address HEB problems. Optimization 

methods for computationally-expensive black-box functions are limited to lower 

dimensional problems.    

• Specially designed sampling methods, model types, and modeling approaches 

that take advantage of the natures of underlying functions (dimensionality, 

linearity/nonlinearity, interaction, and importance of terms) are needed for HEB 

problems. 
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• Two promising ways — mapping and decomposition — are recommended for 

solving HEB problems. Decomposition-based modeling and decomposition-

based optimization may be necessary. 
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3.1. Abstract 

Computational tools such as finite element analysis and simulation are widely used 

in engineering. But they are mostly used for design analysis and validation.  If these tools 

can be integrated for design optimization, it will undoubtedly enhance a manufacturer’s 

competitiveness. Such integration, however, faces three main challenges: 1) high 

computational expense of simulation, 2) the simulation process being a black-box 

function, and 3) design problems being high-dimensional. In the past two decades, 

metamodeling has been intensively developed to deal with expensive black-box 

functions, and has achieved success for low-dimensional design problems, but when 

high-dimensionality is also present in design, which is often found in practice, there lacks 

of a practical method to deal with the so-called High-dimensional, Expensive, and Black-

box (HEB) problems. This chapter proposes the first metamodel of its kind to tackle the 

HEB problem. The work integrates Radial Basis Function (RBF) with High-Dimensional 

Model Representation (HDMR) into a new model, RBF-HDMR. The developed RBF-

HDMR model offers an explicit function expression, and can reveal the 1) contribution of 

each design variable, 2) inherent linearity/nonlinearity with respect to input variables, and 

3) correlation relationships among input variables.  An accompanying algorithm to 

construct the RBF-HDMR has also been developed. The model and the algorithm 

fundamentally change the exponentially growing computation cost to be polynomial.  

Testing and comparison confirm the efficiency and capability of RBF-HDMR for HEB 

problems. 
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Key words: response surface, metamodel, large-scale, high-dimension, design 

optimization, simulation-based design 

3.2. Introduction 

A metamodel is a “model of model,” which is used to approximate a usually 

expensive analysis or simulation process; metamodeling refers to the techniques and 

procedures to construct such a metamodel. In the last two decades, research on 

metamodeling has been intensive and roughly along one of the four directions, including 

sampling and evaluation, metamodel development and evaluation, model validation, and 

metamodel-based optimization. Recently Wang and Shan [1] reviewed the applications of 

metamodeling techniques in the context of engineering design and optimization. Chen [2] 

summarized pros and cons of the design of computer experiments methods and 

approximation models.  Simpson et al. [3] reviewed the history of metamodeling in the 

last two decades and presented an excellent summary on what have been achieved in the 

area thus far and challenges ahead. 

It can be seen from the recent reviews that metamodels have been successfully 

applied to solve low-dimensional problems in many disciplines.  One major problem 

associated with these models (for example, polynomial, RBF, and Kriging) and 

metamodeling methodologies, however, is that in order to reach acceptable accuracy the 

modeling effort grows exponentially with the dimensionality of the underlying problem. 

Therefore, the modeling cost will be prohibitive for these traditional approaches to model 

high-dimensional problems. In the context of design engineering, according to references 

[3-6], the dimensionality larger than ten (�  10) is considered high if model/function 
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evaluation is expensive, and such problems widely exist in various disciplines [6-10].  

Due to its computational challenge for modeling and optimization, the high- dimensional 

problem is referred to as the notorious “curse of dimensionality” in the literature. For 

combating the “curse of dimensionality,” Friedman and Stuetzle [11] developed 

projection pursuit regression, which worked well with dimensionality � # 50 with large 

data sets.  Friedman [12] proposed multivariate adaptive regression splines (MARS) 

model, which potentially makes improvement over existing methodology in settings 

involving 203 ≤≤ d , with moderate sample size, 100050 ≤≤ N . Sobol [13] has proved 

the theorem that an integrable function can be decomposed into summation of different 

dimensions. This theorem indicates that there exists a unique expansion of high-

dimensional model representation (HDMR) for any function ����  integrable in space Ωd. 

This HDMR is exact and of finite order and has a hierarchical structure. A family of 

HDMRs with different characters has since been developed, studied, and applied for 

various purposes [14-21].  

In the recent review of modeling and optimization strategies of high-dimensional 

problems [22], it is found that the research on this topic has been scarce, especially in 

engineering. In engineering design, there is no metamodel developed to directly tackle 

HEB problems. Currently available metamodels are not only limited to low-dimensional 

problems, and are also derived in separation from the characteristics of the underlying 

problem. A different model type is therefore needed for HEB problems. This chapter 

proposes the RBF-HDMR model in response to such a need.   

As part of the metamodeling methodology, an adaptive sampling method is also 

developed to support the proposed RBF-HDMR model. In the research of sampling for 
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metamodeling, sequential and adaptive sampling has gained popularity in recent years, 

mainly due to the difficulty of knowing the “appropriate” sampling size a priori. Lin [23] 

proposed a sequential exploratory experiment design (SEED) method to sequentially 

generate new sample points.  Jin et al. [24] applied Enhanced Stochastic Evolution to 

generate optimal sampling points. Sasena et al. [25] used the Bayesian method to 

adaptively identify sample points that gave more information.  Wang [26] proposed an 

inheritable Latin Hypercube design for adaptive metamodeling.  Jin et al. [27] compared 

a few different sequential sampling schemes and found that sequential sampling allows 

engineers to control the sampling process and it is generally more efficient than one-stage 

sampling. In this work, we develop an adaptive sampling method that is rooted in the 

RBF-HDMR model format. Section 3.5.2 describes the method in detail.  

Before we introduce the RBF-HDMR and its metamodeling method, the premise of 

this chapter is: 1) there exists a unique expansion of HDMR and the full expansion is 

exact for a high-dimensional function, and 2) for most well-defined physical systems, 

only relatively low-order correlations among input variables are expected to have a 

significant impact upon the output; and high-order correlated behavior among input 

variables is expected to be weak [15]. The order of correlation refers to the number of 

correlated variables, for instance, bivariate correlation is considered low order while 

multivariate (for example, five-variable) correlation is high. Premise 1 was proven in 

Sobol [13]. Broad evidence supporting Premise 2 comes from the multivariate statistical 

analysis of many systems where significant covariance of highly-correlated input 

variables rarely appears [6, 15]. Owen [28] observed that high-dimensional functions 

appearing in the documented success stories did not have full d-dimensional complexity.  
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The rapid dying-off of the order of correlations among input variables does not, however, 

eliminates non-linear influence of variables, or strong variable dependence, or even the 

possibility that all the variables are important. These premises pave the way for this work 

to tackle the “curse of dimensionality”.  

This chapter is organized as follows. Section 3.3 introduces HDMR. Section 3.4 

proposes the RBF-HDMR model. Section 3.5 discusses how we address the high-

dimensionality challenge and describes in detail the metamodeling approach for RBF-

HDMR. A modeling example is also given for the ease of understanding of RBF-HDMR 

and its metamodeling approach. Section 3.6 studies the behavior of RBF-HDMR with 

respect to dimensionality through a study problem and testing on a suite of high-

dimensional problems. The test results are also compared with those from other 

metamodels based on Latin Hypercube samples. Conclusions are drawn in Section 3.7. 

3.3. Basic Principle of HDMR 

A HDMR represents the mapping between input variables � 	 %��, ��, � , �&'( 

defined in the design space and the output ����. A general form of HDMR [13,15] is 

shown as 

���� 	 �
 � ∑ �
��
�&
�� � ∑ �
���
 , �����
���& � ∑ �
����
�����& ��
 , �� , ��� � ��
 ∑ �
�
��
���
����
��& ��
� , �
� , � , �
�� � �� ����&���, ��, � , �&�,                        (3.1) 

where the component �
 is a constant representing the zero-th order effect to ����; the 

component function �
��
� gives the effect of the variable �
 acting independently upon 

the output ���� (the first-order effect), and may have either a linear or non-linear 
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dependence on �
. The component function �
���
, ��� describes the correlated 

contribution of variables �
  and ��  upon the output ����  (the second-order effect) after 

the individual influences of �
  and ��  are discounted, and �
���
 , ��� could be linear or 

nonlinear as well. The subsequent terms reflect the effects of increasing numbers of 

correlated variables acting together upon the output ����. The last term 

����&���, ��, � �&� represents any residual dependence of all the variables locked 

together to influence the output ���� after all the lower-order correlations and individual 

influence of each involved xi (i =1,…,d) have been discounted. As the order of the 

component function increases, the residual impact of higher correlations decreases.  If the 

impact of an l-th order component function is negligible, the impact of higher-order (>l-

th) component functions will be even smaller and thus negligible as well. For example, if 

�
���
 , ���  is negligible, then �
����
 , �� , ��� will be negligible since it is the residual 

impact after the influences of �
��
� and �
���
 , ��� are modeled. It is known that the 

HDMR expansion has a finite number of terms 2d (d is the number of variables, or 

dimensionality) and is always exact [13].  

There is a family of HDMRs with different features [14, 18-20].  Among these 

types, the Cut-HDMR [15, 16] involves only simple arithmetic computation and presents 

the least costly model with similar accuracy as other HDMR types. Therefore Cut-HDMR 

is chosen as our basis for the proposed RBF-HDMR. A Cut-HDMR [14-15] expresses 

���� by a superposition of its values on lines, planes and hyper-planes (or cuts) passing 

through a “cut” center �
 which is a point in the input variable space. The Cut-HDMR 

expansion is an exact representation of the output ����  along the cuts passing through 
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�
. The location of the center �
  becomes irrelevant if the expansion is taken out to 

convergence [15].  On the other hand, if HDMR expansion did not reach convergence, 

that is, the model omits significant high-order components in the underlying function, a 

poor choice of x0 may lead to large error [21].  Sobol [21] suggests using the point as x0 

that has the average function value; the average is taken from function values of a certain 

number of randomly sampled points. The component functions of the Cut-HDMR are 

listed as 

�
 	 ���
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,                                                               (3.3) 

�
���
 , ��� 	 ���
 , �� , �

�� � �
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���
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where �

 , �

�, and �

�� are respectively �
 without elements �
; �
 , ��; and �
 , �� , ��. For 

the convenience of later discussions, the points �
 , ��
, �

 � 	 %��+ , ��+ , � , �
 , � , �&+'(,  

��
, �� , �

�� 	 %��+ , ��+ , � , �
, � , �� , � , �&+'(, … , are respectively called the zero-th 

order, first-order, second-order model-constructing point(s), �. Accordingly, ���
� is the 

value of ���� at �
; ���
, �

 � is the value of ���� at point ��
 , �

 �.  
The HDMR discloses the hierarchy of correlations among the input variables. Each 

component function of the HDMR has distinct mathematical meaning. At each new order 
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of HDMR, a higher-order variable correlation than the previous level is introduced. 

While there is no correlation among input variables, only the constant component �
 and 

the function terms �
��
�  exist in the HDMR model. It can be proven that �
 	 ���
� is 

the constant term of the Taylor series; the first-order function �
��
� is the sum of all the 

Taylor series terms which only contain variables �
, while the second-order function 

�
���
 , ��� is the sum of all the Taylor series terms which only contain variables �
  and ��, 
and so on [14]. These component functions are optimal choices tailored to ���� over the 

entire d-dimensional space because these component functions are orthogonal to each 

other, the influence of each component term is independently captured by the model, and 

the component functions lead to minimum approximation error defined by ||f(x)-fmodel(x)||2 

[14, 15].  

Although Cut-HDMR has demonstrated good properties, the model at its current 

stage only offers a check-up table, lacks of a method to render a complete model, and 

also lacks of accompanying sampling methods to support it. This work proposes to 

integrate RBF to model the component functions of HDMR.  

3.4. RBF-HDMR 

In order to overcome the drawbacks of HDMR, this work employs RBF to model 

each component function of the HDMR. Among a variety of RBF formats, this work 

chooses the one composed of a sum of thin plate spline plus a linear polynomial. The 

details of the chosen RBF format are in the 3.9 Appendix. Without losing generality, the 

simple linear RBF format is used for the ease of description and understanding. In RBF-

HDMR, RBF models are used to approximate component functions in Eqs. (3.3-3.6),  
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where ��
- , �

 �, 4 	 1, … , � are points ��
 , �

 � 	 1��+ , ��+ , � , �
 , � , �&+2(evaluated at 

: 	 1,… ,;
 along each xi component; similarly ��
- , ��- , �

�� , : 	 1,� ,;
� are points 

%��+ , ��+ , � , �
, � , �� , � , �&+'( evaluated at xi, i=1,…,mi, and xj, j=1,…,mj, that are used 

to construct the first-order component functions; xk=%��- , ��- , � , �
- , � , ��- , � , �&-'(, 

k=1,…, ;���&, are the points built from  evaluated x components for lower-order 

component functions. 

Eqs. (3.7-3.9) are referred to as the modeling lines, planes, and hyper-planes. 

Substituting the above approximation expressions into the HDMR in Eq. (3.1), we have  

���� < �
 �∑ ∑ �
-.��
, �

 � � ��
- , �

 �./0���&
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��. � �� ∑ ����&-|� � ��|/���8��� .                                          

  

(3.10) 

The approximation in Eq. (3.10) is called the RBF-HDMR model. Inheriting the 

hierarchy of HDMR, RBF-HDMR distinctly represents the correlation relationship 

among the input variables in the underlying function, and provides an explicit model with 

a finite number of terms. The component functions of multiple RBFs in the model 

approximate the univariates, bivariates, triple-variates, etc., respectively. The RBF-
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HDMR approximation of the underlying function ���� is global. Since the HDMR 

component functions are orthogonal in the design space [14], approximation of HDMR 

component functions such as RBF-HDMR likely provides the simplest and also the most 

efficient model to approximate ���� over the entire d-dimensional design space.  

For typical underlying functions, RBF-HDMR expands to the second-order, 
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(3.11) 

The RBF-HDMR in Eq. (3.11) neglects higher-order component terms based on the 

assumption that the residual impact of the high-order correlation is small after the impact 

of individual variables and their lower-order correlations has been captured. The second 

model, however, does include all input variables and is capable of capturing high 

nonlinearity of the underlying function through nonlinear component functions.  

As we know RBF is an interpolative function, each component function goes 

through its own model construction points; however, since RBF-HDMR is a sum of these 

component functions, the question is: “will the resultant RBF-HMDR go through all of 

the evaluated model construction points?” 

Lemma: 

A RBF-HDMR model passes through all the prescribed sample points used for 

constructing zero-th order to the current order component functions. 



92 
 

For clarity, the prescribed, as compared to arbitrarily selected, model-constructing 

points are explained as follows. For the zero-th order component, the model-constructing 

point is �
; for the first-order components, the model-construction points include �
 and  

��
- , �

 �; for the second-order components, its model-construction points are 

�
, ��
- , �

 �, ���- , �
�� and  ��
- , ��- , �

��, 4 5 6. 
The lemma is proved as follows. Assuming �
 

is the cut center, the RBF-HDMR at 

first-order is defined as ���� 	 �
 � �
��
�. Its first-order component function �
��
� is 

approximated by one dimensional RBF function ∑ �
-.��
, �

 � � ��
- , �

 �./0���  by using 

the function values computed from �
��
-� 	 ���
- , �

 � � �
, where �
-  is the k-th 

model-constructing point along xi, and ���
- , �

 � is the true function value at point 

��
- , �

 �. Since �
 is a constant and �
��
� interpolates all model constructing points, the 

RBF-HDMR model ���� interpolates all the model constructing points  �
 and ��
- , �

 �.  
For the second-order components, the function values of these components are 

computed from �
���
, ��� 	 ���
 , �� , �

�� � �
��
� � ������ � �
, and �
���
 , ��� is then 

approximated by a two-dimensional RBF function ∑ �
�-.��
, �� , �

�� �  ��
- , ��- , �

��./03���
 
 

with points �
, ��
- , �

 �, ���- , �
��, and ��
- , ��- , �

��, 4 5 6. It is easy to see �
���
, ��� 
pass through all the evaluated points since they all participated in modeling �
���
 , ���.  
For first-order component functions, which are functions of only �
 and orthogonal to 

each other, they will have zero error at ��
- , ��- , �

�� since each �
��
� goes through �
.  
Therefore all first-order component functions, and therefore the resultant  RBF-HDMR 

model, will pass through all model constructing points to the second-order component 
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function, that is, �
, ��
- , �

 �, ���- , �
��, and ��
- , ��- , �

��, 4 5 6 . Similarly the RBF-

HDMR model passes their model-constructing points till the d-th component. As the 

RBF-HDMR has a finite number of terms and each of its component function is exact on 

these prescribed model-constructing (or evaluated sample) points, the RBF-HDMR 

model will pass through all sample points. The lemma is proved. 

The above lemma not only reveals an important feature of RBF-HDMR, but also is 

a great help to answer the following question, “if the RBF-HDMR model is built at the l-

th order, how to identify if there is still (l+1)-th order component that need to be 

modeled?”  

Let us start with l=1, which indicates that all the zero-th and first-order component 

functions have been modeled using points �
 and ��
- , �

 �.  If the second-order 

component functions are to be built, we will use the elements in these existing points to 

create new sample points  ��
- , ��- , �

�� for modeling. According to the lemma, the to-be-

built second-order RBF-HDMR model is then expected to go through these sample 

points ��
- , ��- , �

��.  If the first order RBF-HDMR model cannot accurately predict the 

function value at the new sample point ��
- , ��- , �

��, it indicates that there must exist 

second-order and/or higher-order correlation that has not been modeled, since the 

approximation error is zero for the first-order component functions at points ��
- , �

 � and 

���- , �
��.  
To generalize the above discussion, we create a point 

�� 	 %��- , ��- , � , �
- , � , ��- , � , �&-'( , : 5 0 by random combining the sampled values 
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�
 in the first-order component construction for each input variable (that is, �
, di ...,,1=

and evaluated at ��
, �

 �, respectively). According to the lemma, the complete RBF-

HDMR model in Eq. (3.10) should interpolate this point, ��.  If an l-th order RBF-

HDMR model does not interpolate this point, it indicates that there is higher-order (>l-th) 

component functions need to be modeled to decrease the prediction error, and the 

metamodeling should therefore continue until convergence. This fact has been 

incorporated in the metamodeling algorithm, which is to be detailed in Section 3.5.2. 

3.5. Metamodeling for RBF-HDMR 

3.5.1. Strategies for High-dimensionality 

From the recent review [22], the authors find that the cost of modeling an 

underlying function is affected by multiple factors including the function’s 

dimensionality, linearity/nonlinearity, ranges of input variables, and convergence criteria. 

Generally speaking, the cost increases as the dimensionality and nonlinearity rise, the 

ranges of input variables become larger, and as the convergence criteria become stricter. 

This section describes four strategies associated with the proposed metamodeling method 

for RBF-HDMR that help to circumvent/alleviate the computational difficulty brought by 

the increase of dimensionality without the loss of sampling resolution. 

First, a RBF-HDMR model has a hierarchical structure from zero-th order to d-th 

order components. If this structure can be identified progressively, the cost of 

constructing higher-order components in HDMR can be saved.  The computational cost 
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(that is, the number of sampling points) of generating a Cut-HDMR up to the l-th level is 

given by [15, 16] 

  = 	 ∑ &!�&?
�!
! �@ � 1�
A
�
 	 1 � ��@ � 1� � ����1�2! �@ � 1�2 � ����1����2�3! �@ � 1�3 � � 

         � &�&?���&?����&?AD��A! �@ � 1�A,                                                                            (3.12) 

where s  is the number of sample points taken for each xi. The cost of Cut-HDMR is 

related to the highest order of the Cut-HDMR expansion where the convergence is 

reached. Each term in Eq. (3.12) represents the computational cost for constructing the 

corresponding order of component functions.  The cost relates to three factors—the 

dimensionality �, the number of sampling points s for each variable (that is, take s levels 

for each variable), and the highest order of the component functions E. The highest order, 

l, of component functions represents the maximum number of correlated input variables. 

As mentioned before, only relatively low-order correlations of the input variables are 

expected to have an impact upon the output and high-order correlated behavior of the 

input variables is expected to be weak. Typically E # 3 has been found to be quite 

adequate [6]. Considering E F �, a full space resolution 1/s is obtained at the 

computational cost less than %��@ � 1�'A/�E � 1�!. Thus the exponentially increasing 

difficulty @& is transformed into a polynomial complexity, @A. This strategy exploits a 

superposition of functions of a suitable set of low-dimensional variables to represent a 

high-dimensional underlying function.  

Second, for components of the same order, for instance, at the second-order with 

bivariate correlations, not all possible bivariate correlations may be present in the 
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underlying function. Therefore some of the non-existing correlations among input 

variables can be identified and eliminated from modeling to further reduce the cost. The 

coefficients in Eq. (3.12), for example, 
&�&?���! , &�&?���&?��H! , respectively denote the 

maximum number of probable combinations of the correlated terms at second and third 

order component levels. While the number of dimensionality, �, cannot be changed, the 

number of these coefficients can be reduced if the non-existing correlations can be 

identified and eliminated, and the modeling cost associated with those terms can therefore 

be saved. The developed metamodeling algorithm for RBF-HDMR adaptively identifies 

such non-existing correlations and models the underlying function accordingly, which 

will be described in the next section. 

Third, although the number of sample points, s, for each variable cannot be reduced 

in order to keep a certain sampling resolution 1/s, these sample points can be reused for 

modeling higher-order component functions. For example, while modeling second-order 

component functions, sample points on the reference axes, or hyper-planes, such as  �
, 

��
- , �

 �, and ���- , �
�� are re-used.   

Lastly, the number of sample points, s, relates to the degree of the nonlinearity of 

the underlying function with respect to the input variable �
 . The higher the degree of the 

nonlinearity is, the more sample points along �
  are needed to meet the required accuracy. 

For a linear component, two sample points are enough to accurately model it.  The 

developed metamodeling algorithm for RBF-HDMR gradually explores the non-linearity 

of the component functions and thus conservatively allocates such cost.   
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In summary, the RBF-HDMR model naturally helps to transform an exponentially 

increasing computational difficulty into a polynomial one by neglecting higher-order 

component functions. The proposed metamodeling method will also adaptively explore 

the linearity/nonlinearity of each component function, identify non-existing variable 

correlations, and reuse sample points to further reduce the modeling costs.  

3.5.2. Sampling and Model Construction 

Based on the proposed RBF-HDMR model, a sampling and model construction 

algorithm is developed. The algorithm steps are described as follows: 

1. Randomly choose a point �
 	 1��+ , ��+ , � , �&+2(in the modeling domain as the 

cut center. Evaluating ���� at �
, we then have �
.  

2. Sample for the first-order component functions  

�
��
� 	 ��%��+ , ��+ , � , �
 , � , �&+'(� � �
 in the close neighbourhood of the two ends of 

xi (lower and upper limits) while fixing the rest of xj (j5i) components at �
. In this work, 

a neighborhood is defined as one percent of the variable range which is in the design 

space and near a designated point. Evaluating these two end points, we got the left point 

value�
I��
� 	 ��%��+ , ��+ , � , �
J , � , �&+'(� � �
 and the right point value
 
�
K��
� 	

��%��+ , ��+ , � , �
L , � , �&+'(� � �
 
and model the component function as �,
��
� by a one 

dimensional RBF model for each variable �
 . 
3. Check the linearity of �
��
�. If the approximation model �,
��
� goes through the 

center point, �
, �
��
� is considered as linear. In this case, modeling for this component 

terminates; otherwise, use the center point �
 and the two end points to re-
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construct �,
��
�. Then a random value along �
 is generated and combined with the rest of 

xj (j5i) components at �
 to form a new point to test �,
��
�. If �,
��
� is not sufficiently 

accurate (the relative prediction error is larger than a given criterion, for instance, 0.01%), 

the test point and all the evaluated points will be used to re-construct �,
��
�. This 

sampling-remodeling process iterates until convergence.  This process is to capture the 

nonlinearity of the component function with one sample point at a time. Step 3 repeats for 

all of the first-order component functions to construct the first-order terms of RBF-

HDMR model. 

4. Form a new point, ��
, �� , � �&�� 	 %��- , ��- , � , �
- , � , ��- , � , �&-'( , : 5 0 by 

random combining the sampled value �
 in the first-order component construction for 

each input variable (that is, �
, di ...,,1= and evaluated at ��
, �

 �, respectively). This 

new point is then evaluated by expensive simulation and the first-order RBF-HDMR 

model. The function values from expensive simulation and model prediction are 

compared. If the two values are sufficiently close (the relative error is less than a small 

value, for example, 0.01%), it indicates that no higher-order terms exist in the underlying 

function, the modeling process terminates.  Otherwise, go to the next Step.  

5. Use the values of �
 and �� , 4 5 6 that exist in thus-far evaluated points 

��
 , �

 � 	 %��+ , ��+ , � , �
 , � , �&+'(,  and ��� , �
�� 	 %��+ , ��+ , � , �� , � , �&+'( 
to form 

new points of the form��
, �� , �

�� 	 %��+ , ��+ , � , �
, � , �� , � , �&+'(. Randomly select 

one of the points from these new points to test the first-order RBF-HDMR model.  If the 

model passes through the new point, it indicates that xi and xj are not correlated and the 

process continues with the next pair of input variables. This is to save the cost of 
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modeling non-existing or insignificant correlations. Otherwise, use this new point and the 

evaluated points ��
, �

 � and ��� , �
�� to construct the second-order component function, 

�,
���
 , ���. This sampling-remodeling process iterates for all possible two-variable 

correlations until convergence (for instance, the relative prediction error is less than 

0.01%). Step 5 is repeated for all pairs of input variables. 

Theoretically, Step 5 applies to all higher-order terms in RBF-HDMR model, Eq. 

(3.10), in a similar manner. In this work, the process proceeds towards the end of the 

second-order terms based on the Premise 2 in Section 3.2.  The identification of 

correlations in Steps 4 and 5 is supported by the discussions in Section 3.4. 

3.5.3. An Example for Metamodeling RBF-HDMR 

For the ease of understanding, consider the following mathematical function with d 

= 3, 

���� 	 ��� � ���H � �� � 4,     0 # �
 # 1.                                                  (3.13) 

Table 3.1 shows the modeling processes – finding �
, modeling the first-order 

components �
��
�, 4 	 1,� ,3, detecting and exploiting linearity and correlation 

relationship in the underlying function, and modeling higher-order components, �
� , 4 5 6, 
if they exist. This process continues until convergence. The first and last rows list the 

original function and the corresponding RBF-HDMR model, respectively. Each middle 

row demonstrates the modeling process in hierarchy.  The detailed steps are as follows. 
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Step 1. Randomly sample the cut center �
  in the neighbourhood of the center of 

the design space, in this case, �
 	 %0.5, 0.5, 0.5'( and then find �
 	 ���
�. 
Table 3.1 Process of modeling RBF-HDMR for the example problem 

Function ���� 	 ��� � ���H � �� � 4, 0 # �
 # 1 �
 ���
� 	 ��%0.5, 0.5, 0.5'(� 	 �3 
 
 
 
 
 �
��
� 
 

Linearit
y 

Samples ix  
Observed ���� 0),( fxxf

i

i −  RBF 
coefs 

Component 
Function Plot 

 ������ 
(linear) 

0 
1 
0.5 

-3.75 
-2.25 
-3 
 

-0.75 
 0.75 
 0 

  0 
  0   
  0 
 -0.75 
  1.5 

 

 ������ 
(non-
linear) 

0 
1 
0.5 
0.19     
0.81 

-3.25 
-2.25 
-3 
-3.2139 
-2.5939 

-0.25 
 0.75 
 0 
-0.2139 
 0.4061 

  0.6796 
  0.6796 
 -0.1754 
 -0.5918 
 -0.5918 
 -0.3977 
  1 

 
 

�H��H� 
(linear) 

0 
1 
0.5 

-3.25 
-2.75 
-3 

-0.25 
 0.25 
 0 

 0  
 0  
 0 
-0.25 
 0.5 

 

 
 
 
 
 
 
 �
���
 , ��� 

Correlat
ion 
Relatio
nship

 

Sampling %�
 , ��'(  
Observed ���� ����, �H, �

�� � ������� �H��H� � �
  RBF 

coefs 

������, �� null null null null 

��H���, �H
 

(0.5,0.5); 
(0,0.5); 
(1,0.5); 
(0.5,0); 
(0.5, 1); 
(0,0); 
(1,1); 
(0,1); 
(1,0); 
 

-3 
-3.75 
-2.25 
-3.25 
-2.75 
-3.75 
-1.75 
-3.75 
-2.75 
 

  0 
  0 
  0 
  0 
  0 
  0.25 
  0.25 
 -0.25 
 -0.25 

0;0;0;0;0; 
0.3607;   
0.3607; 
-0.3607;  
-0.3607;  
0;0;0 

��H���, �H null null null null 

�,��� �3N�0�0.75 � 1.5��PQQQRQQQS�1 � 

0.6796|��|� log|��| � 0.6796|�� � 1|� log|�� � 1| �0.1754|�� � 0.5|� log|�� � 0.5| � 0.5918|�� � 0.19|� log|�� � 0.19| �0.5918|�� � 0.81|� log|�� � 0.81| � 0.3977 � ��PQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQRQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQSZ�
 

�0.25 � 0.5�HPQQQRQQQSZ[

� 0.3607 \���H\� log \���H\ � 0.3607 ]�� � 1�H � 1]� log ]�� � 1�H � 1] � 0.3607 ]�� � 0�H � 1]� log ]�� � 0�H � 1] � 0.3607 ]�� � 1�H � 0]� log ]�� � 1�H � 0]PQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQRQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQSZ�[
 

  

0         0.5      1 

-2 

-3 

-4 

0         0.5      1 

-2 

-3 

-4 

0         0.5      1 

-2.5 

-3 

-3.5 
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Step 2. Randomly sample �
 at its two ends, and form two new points ��
 , �

 � (one 

per end) and evaluate them. Model the component functions using the two end points. For 

example, for x1, two values 0 and 1 are sampled; we can use the function values [f (0, 0.5, 

0.5)-f0] and [f (1, 0.5, 0.5)-f0] as their function values for 0 and 1, respectively to model 

f1(x1). Note that the special RBF format as in the 3.9 Appendix is used rather than the 

simple linear spline format to avoid matrix singularity. 

Step 3. Detect the linearity of the output function with respect to each variable �
 by 

comparing ���
� and �,��
�. If nonlinearity exists, model �
��
�, 4 	 1,� ,3 until 

convergence. The f2(x2) component function, for instance, is a nonlinear function.  In 

addition to the two end points 0 and 1, two more new sample points are generated at 0.19 

and 0.81 to capture its nonlinearity.  All of the component functions are plotted with a 

distance �
 in the last column in Table 3.1. 

Step 4. Identify if correlation exists. If no, terminate modeling. Otherwise, go to 

Step 5. In this case, since there exists correlation between x1 and x3, the modeling process 

continues. 

Step 5. Identify the correlated terms according to Step 5 of the algorithm described 

in Section 3.5.2. If correlation exists in the underlying function, model the identified 

correlated terms. In this case, only the correlated term ���H exists, which needs to be 

modeled as a component function. Repeat Step 5 until convergence.  

To better understand Table 3.1, let us model ������ as an example.  When 

modeling ������, five values along �� are generated, that is, 0, 1, 0.5, 0.19, 0.81, 

according to the sampling algorithm described in Section 3.5.2.  By combining these 
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values with other �
 component values except for ��, we have five new points and their 

function values are evaluated.  Deducting the �
 value from their function values, we 

obtain the component function ������ values for these five points are, respectively, -0.25, 

0.75, 0.0, -0.2139, 0.4061.  Employing these five points and their function values to fit 

the RBF function as defined in the 3.9 Appendix, one can have the RBF model 

for ������, with five nonlinear terms and two polynomial terms, as shown in the last row 

of Table 3.1. 

In Table 3.1, �H��H� is especially noteworthy.  One can see from the original 

function expression that there is no separate x3 term in the function, but an x1x3 term.  

Why is �H��H� not zero?  This is because HDMR first finds the first-order influence of �H, 

the residual then goes to the second-order component function ��H���, �H�. Therefore, it 

would be wrong to mechanically match the component functions with the terms in the 

underlying function. As a matter of fact, the x1x3 term in the original function has been 

expressed by �H��H� and ��H���, �H�, as well as partially by ������. 
Figure 3.1 shows the distribution of all sample points in the modeling space. It can 

be seen that most sampled points are located on the lines and planes across the cut center 

�
. Points  ���, ��H, ��H and ���H were used to identify the correlation among the 

variables, respectively between �� and ��,  �� and �H, �� and �H, as well as the existence 

of correlations among all variables  ��, �� and �H of the underlying function. It is to note 

that these sample points are generated as needed according to the aforementioned 

sampling and model construction method.   
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Fig. 3.1 Distribution of sample points for the example problem 

Given the metamodel as expressed in the last row of Table 3.1, one can observe that 

all first-order functions are linear except for f2, which indicates that x2 has a nonlinear 

influence to the overall f function while others have linear effects. For the second-order 

components, only a nonlinear f13 is present, indicating other variables are not correlated.   

3.6. Testing of RBF-HDMR 

Several problems from the literature are used for testing the proposed RBF-HDMR 

and its metamodeling method. The modeling efficiency is indicated by the number of 

(expensive) sample points. The modeling accuracy is evaluated by three performance 

metrics. A comparison of the RBF-HDMR model with other metamodels is also given. 

3.6.1. Performance Metrics 

There are various commonly-used performance metrics for approximation models 

that are given in [22]. To the authors’ knowledge, however, there are no specially defined 

performance metrics for high-dimensional approximation models in the literature. In 
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mathematics, where the high-dimensional problems are mostly (and yet not adequately) 

studied, the percentage relative error is often used as a metric for model validation. It is 

found, however, when the absolute errors of the metamodels are quite small, their 

percentage relative errors could be extremely large when the function value is close to 

zero.  The percentage relative error measure is also dependent on the problem scale, 

which makes the comparison between problems disputable. In the engineering design, the 

cross-validation method is currently a popular method for model validation. However, 

Lin [23] found that the cross-validation is an insufficient measurement for metamodel 

accuracy.  The cross-validation is actually a measurement for degrees of insensitivity of a 

metamodel to lost information at its data points, while an insensitive metamodel is not 

necessarily accurate.  To be consistent with Ref. [5], which will be used for result 

comparison, this work employs three commonly used performance metrics —R square, 

relative average absolute error (RAAE) and relative maximum absolute error (RMAE) —

for validating approximation models. After the RBF-HDMR modeling process is 

terminated, additional 10,000 new random sample points are used to evaluate the model 

against the three performance metrics by Monte Carlo simulation. The values of these 

performance metrics show the prediction capability of the RBF-HDMR on new points.  It 

is to be noted that these three metrics all need a fairly large number of validation points to 

be meaningful, but for High-dimensional, Expensive, Black-box (HEB) problems such 

information are too costly to obtain. This is in contrast to high-dimensional problems 

studied in mathematics where those are inexpensive problems and a large quantity of 

validation points is affordable. Validation methodology for HEB problems is therefore 

worth further research.  Since this work also chose mathematical problems for testing and 
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comparison, we can still employ the three metrics with Monte Carlo simulations for 

validation. These metrics are described as below:   

1) R Square 

^� 	 1 � ∑ 1Z��0�?Z,��0�2�_0`�∑ %Z��0�?Za��0�'�_0`�  ,                                                                (3.14) 

where �a��b� denotes the mean of function on m sample points. This metrics indicates the 

overall accuracy of an approximation model. The closer the value of R square approaches 

one, the more accurate is the approximation model. Note that R square is evaluated on the 

new validation points, not on the modeling points. The same is true for RAAE and 

RMAE. 

2) Relative Average Absolute Error (RAAE) 

 ^ccd 	 ∑ .Z��0�?Z,��0�._0`� /ef(g  ,                                                                   (3.15) 

where STD stands for standard deviation. Like R square, this metric shows the overall 

accuracy of an approximation model. The closer the value of RAAE approaches zero, the 

more accurate is the approximation model. 

3) Relative Maximum Absolute Error  (RMAE) 

^hcd 	 ijk �.Z����?Z,����.,.Z����?Z,����.,�,.Z��_�?Z,��_�.�f(g .                   (3.16) 

This is a local metric. A RMAE describes error in a sub-region of the design space. 

Therefore, a small value of RMAE is preferred. 
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3.6.2. Study Problem 

A problem for large-scale optimization in MatlabTM optimization toolbox is chosen 

to study the performance of RBF-HDMR and its metamodeling method as a function of 

the dimensionality, d.  

���� 	 ∑ %��
���l0m�� D�� �&?�
�� ��
D�� ��l0�D��',  0 # �
 # 1.               (3.17) 

This highly nonlinear problem was tested with d=30, 50, 100, 150, 200, 250 and 300. For 

each d, ten runs have been taken and the mean values of R square, RAAE and RMAE are 

charted in Fig. 3.2. 

   

a) Mean of R2 b) Mean of RAAE c) Mean of RMAE 

Fig. 3.2 Performance metrics mean with respect to d (x-axis) for the study problem 

As seen from Fig. 3.2, although the three accuracy performance metrics deteriorate 

slightly as d increases, they demonstrate that the RBF-HDMR model fits well the high-

dimensional underlying function.  The minimum (worst) value of R square is close to 0.9, 

the maximum (worst) values of RAAE is about 0.32 and the maximum (worst) value of 

RMAE is about 0.54. The data explains the RBF-HDMR model has a good fit of the 

underlying function.   
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Regarding modeling cost, assuming five samples are taken along each axes (s = 5), 

we list the number of evaluations for RBF-HDMR model, full second-order expansion of 

the HDMR (polynomially increasing cost), and the full factorial design of experiments 

(exponentially increasing cost) for various dimensionality d in Table 3.2. The comparison 

clearly shows the computational advantage of the proposed RBF-HDMR. The efficiency 

of the proposed method will be further studied in comparison with Latin Hypercube 

samples in the next section. 

Table 3.2 Comparison of modeling cost for the study problem 

 

d 

Cost of 
RBF-

HDMR 
(second-

order) 

Cost of a full second-order 
expansion of HDMR  = 	 1 � ��@ � 1�� ��� � 1�2! �@ � 1�� 

(polynomial) 

Cost of full factorial 
design @&  

(exponential) 

30 819 7081 9.31 X 1020 

50 1830 19801 8.88 X 1034 

100 6116 79601 7.88 X 1069 

150 12807 179401 7.01 X 10104 

200 22042 319201 6.22 X 10139 

250 33762 499001 5.53 X 10174 

300 47979 718801 4.91 X 10209 

 

3.6.3. Testing and Comparison with Other Metamodels 

In order to test the effectiveness of various models (MARS, RBF, Kriging, and 

polynomial), Jin et al. [5] selected 14 problems which are classified into two categories: 

large scale and small scale. The large scale includes one 14-variable application, one 16-

variable, and four 10-variable problems. The small scale includes five two-variable 

problems and three three-variable problems, among which one was repeated by adding 

some noise to form a new problem.  Therefore, in total Ref. [5] gives 13 unique 
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problems, twelve are tested with RBF-HDMR except for the 14-variable application 

problem, which is unavailable to authors.  Since this work deals with high-dimensional 

problems, only the test results for the large scale problems (Problems 1-5) are reported in 

Table 3.3 with the first- and second-order RBF-HDMR models. These problems are listed 

in the 3.9 Appendix.  In our test, each problem runs ten times independently for 

robustness testing, and then takes the average of ten runs for each problem.  In Table 3.3, 

NoE indicates the number of all evaluated expensive points, which include modeling 

points and detecting points used for correlation identification. The NoE for the second-

order modeling includes the NoE for the first-order modeling. 

Table 3.3 Modeling results for the test suite 

Problem R Square RAAE RMAE NoE 
1 

(d=10) 
First 0.90 0.233 1.66 95 
Second 0.92 0.211 1.16 321 

2 
(d=10) 

First 1.00 0.006 0.04 40 
Second 1.00 0.006 0.02 232 

3 
(d=10) 

First 0.99 0.049 0.59 121 
Second 0.96 0.129 1.16 408 

4 
(d=10) 

First 0.98 0.110 0.33 34 
Second 0.98 0.107 0.28 40 

5 
(d=16) 

First 0.96 0.150 0.91 59 
Second 0.99 0.088 0.25 297 

Mean First 0.97 0.109 0.71 70 
Second 0.97 0.113 0.65 250 

 

It is can be seen from Table 3.3 that all results of the first-order RBF-HDMR are 

good enough for large scale problems, even though Problems 1 and 3 are highly 

nonlinear.  The results of the second-order models show slight improvement over the 

first-order models for all the problems except for Problem 3, which indicates a certain 

degree of over-fitting. Theoretically when convergence criteria or numeric tolerance for 
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nonlinearity and correlation identification is sufficiently tight, the second-order model 

should be more accurate than the first-order.  In practice, however, the errors in 

nonlinearity and correlation identification and RBF model construction may be larger 

than the influence of higher-order components. In such circumstances, over-fitting of 

RBF may occur.  

To understand the test results in Table 3.3, we compare the results with those from 

Ref. [5] in Fig. 3.3.  Ref. [5] used three different Latin Hypercube Design (LHD) sample 

sets for the large scale problems. Their average numbers are 34, 112, and 250 for scarce, 

small, and large data sets, respectively. From Fig. 3.3, one can see that the first-order 

RBF-HDMR modeling requires a data set of a size falling in between those of the scarce 

and small data sets. 

 

Fig. 3.3 Comparison of NoE with Latin Hypercube points from Reference [5] 

Figure 3.4 shows the mean value of the same three metrics — R square, RAAE and 

RMAE — for the aforementioned four models applied to test problems.  From Fig. 3.4, it 

can be seen that while the mean R square for RBF-HDMR models is 0.97, the maximum 
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(best) value of the four models in the reference is about 0.78.  Because the exact RAAE 

and RMAE data for only the large-scale problems are not available in Ref. [5], we use the 

mean for all 14 test problems as a comparison. The RAAE and RMAE values for the 14 

problems should be lower than that for the large scale problems alone.  Even with these 

comparison values, RBF-HDMR has much smaller RAAE and RMAE values.  It is also 

to be noted that the accuracy data from Ref. [5] is based on the average results for all data 

sets.  The highest R square value for large sample sets (250 points) for the four models is 

slightly above 0.90, still significantly lower than 0.97, which is the R square value of 

RBF-HDMR with only 70 points. 

 

 

Fig. 3.4 Model accuracy comparison. Data for models other than RBF-HDMR are 

from Ref. [5]; R
2
 values are for large-scale problems only, while RMAE and RAAE 

values are for all 14 test problems. 

In summary, from the comparison with the reference, the proposed RBF-HDMR 

model and its metamodeling method generates more accurate models with fewer sample 

0.61
0.78 0.78 0.7

0.97

2.5

1.8
1.6 1.5

0.71

0.41
0.28 0.24 0.32

0.11

0

0.5

1

1.5

2

2.5

3

MARS RBF Kriging PR RBF-HDMR

R^2

RMAE

RAAE



111 
 

points than conventional models such as MARS, RBF, Kriging, and polynomial functions 

with Latin Hypercube designs.  

3.6.4. Discussion  

This work employs RBF to model component functions of the HDMR, so that 

HDMR is no longer a check-up table but rather a complete equation. The proposed 

metamodeling approach takes advantages of properties of HDMR to make the sampling 

efficient.  RBF was chosen because of 1) its simplicity and robustness in model 

construction 2) the ease of obtaining an explicit function expression, and 3) its ability to 

interpolate the sample points (this could be a problem for noisy data, which is a topic of 

our future research).  The integration of HDMR with the interpolative feature of RBF 

supports the developed lemma and the sampling method, especially on identification of 

nonlinearity, variable correlations, and higher-order components; therefore RBF helps to 

reduce the sample size.  The choice of a specific RBF form, as shown in the 3.9 

Appendix, is deliberate as it is better than a simple linear spline for avoiding singularity. 

Exploration of other interpolative metamodels and selection of the best metamodel for 

component functions may be a topic for future research.  

The proposed metamodeling approach takes advantage of the hierarchical structure 

of HDMR, adaptively models its component functions while exploring its inherent 

linearity/nonlinearity and correlation among variables. The sample points are thus limited 

and well controlled. The realized samples spread in the design space (refer to Fig. 3.1), 

but unevenly, according to complexity of regions in the space.  Regions of high 

nonlinearity or correlation will have more sample points while linear regions have fewer 
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points, all according to the needs to capture the behavior of the underlying function. In 

contrast, the Latin Hypercube Design (LHD) has only one-dimensional uniformity and it 

is “blind” to the function characteristics.  It is also worth noting that the metamodeling 

process only involves fast and simple algebraic operations, which also lends itself well 

for parallel computation at each order of component levels. The outputs are multitude, 

that is, an explicit RBF-HDMR model, function linearity/non-linearity, correlations 

among variables, and so on. 

The RBF-HDMR at current stage, however, only models to the second-order 

components.  If an underlying function has significant multivariate correlation, the 

method may be limited.  New approaches are needed to extend beyond the second-order, 

whereas keeping the modeling cost low.  Secondly, the proposed RBF-HDMR adaptively 

determines the location of sample points, which is attractive when there is no existing 

data and the goal is to reduce the number of function evaluations.  In real practice, 

however, there are situations that some expensive data may have already been generated. 

Strategies needed to be developed to take advantage of the existing data when 

constructing RBF-HDMR.  Thirdly, RBF-HDMR at its current stage only deals with 

deterministic problems while in practice the expensive model may be noisy. Future 

research is needed to deal with these issues.  

3.7. Conclusion 

This work proposes a methodology of metamodeling High-dimensional, Expensive, 

and Black-box (HEB) problems. The methodology consists of the proposed RBF-HDMR 

metamodel, and its accompanying metamodeling method. The RBF-HDMR model 
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inherits hierarchical structural properties of HDMR, provides an explicit expression with 

RBF components, and needs neither any knowledge about the underlying functions nor 

assumes a priori a parametric form. The modeling process automatically explores and 

uses the properties of the underlying functions, refines the model accuracy by iterative 

sampling in the subspace of nonlinearity and correlated variables, and involves only fast 

and simple algebraic operations that can be easily parallelized. The developed 

methodology alleviates or circumvents the “curse of dimensionality.” Testing and 

comparison with other metamodels reveal that RBF-HDMR models high-dimensional 

problems with higher efficiency and accuracy.  Future research aims to extend the 

modeling approach to efficiently model high-order components, to use existing data, and 

to deal with noisy samples. 
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3.9. Appendix 

1. RBF model 

A general radial basis functions (RBF) model [2, 5] is shown as 

�,��� 	 ∑ n
o�|� � �
|��
�� ,                                                            (A.1) 

where iβ  is the coefficient of the expression and �
 are the sampled points of input 

variables or the centers of RBF approximation. o�. � is a distance function or the radial 
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basis function. .  denotes a p-norm distance.  A RBF is a real-valued function whose 

value depends only on the distance from center points �
.  It employs linear combinations 

of a radically symmetric function based on the distance to approximate underlying 

functions. Its advantages include: the number of sampled points for constructing 

approximation can be small and the approximations are good fits to arbitrary contours of 

response functions [2].  Consequently, RBF is a popular model for multivariate data 

interpolation and function approximations. 

The key of RBF approach is to choose a p-norm and a radial basis function (.)φ , 

both of which have multiple formats. One of the goals for choosing a format is to make 

the distance matrix (c
� 	 o�.�
 � ��.�, for 1 # 4, 6 # p, n is the number of sample 

points) non-singular. The singularity of the distance matrix relates to the distribution of 

the sample points. It can be seen that there are many works on choosing a p-norm and a 

radial basis function o�. � to avoid the singularity of the distance matrix [29]. This 

research uses a sum of thin plate spline (the first term) plus a linear polynomial q��� (the 

second term),  

�,��� 	rn
�

�� |� � �
|�Est|� � �
| � q���, 

∑ n
�
�� u��� 	 v, q��� 	 uw 	 1x�, x�, � , xy21��, ��, � , �y2(,       (A.2) 
where xi are the vectors of evaluated n sample points; the coefficients z 	 %n�, n�,� , n�' 
and α are parameters to be found. q��� is a polynomial function, where p consists of a 

vector of basis of polynomials. In this work, u is chosen to be �1, ��, � , �&� including 
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only linear variable terms and therefore q=d+1; The side condition ∑ n
�
�� u��� 	 0 is 

imposed on the coefficients z to improve an under-determined system, that is, the 

singularity of distance matrix A [29].  To calculate the coefficients z and w, Eq. (A.2) 

may be written in the matrix form as 

{|     }~}~�    v� �zw� 	 ��v�,                                                      (A.3) 

where, c
� 	 .�
 � ��.�Est.�
 � ��.,   4, 6 	 1,� , p, 

            q�
� 	 x���
�, 4 	 1,� , p;   6 	 1,� , �� � 1�; 
and xi and xj are the vectors of evaluated n sample points. The theory guarantees the 

existence of a unique vector z and a unique polynomial q���  satisfying Eq.(A.2) [29].  
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2. Test Problems 

No
. 

Function  Variable 
Ranges 

1 ���� 	 r %%ln��
 � 2�'� � %ln�10 � �
�'�'�


�� � ���
�



�� �
.�
 

2.1 # �
 # 9.9,4 	 1,� ,10 

2 ���� 	r �
�=
 � Ep �
�� ��� ��
��


��  

1d � 6 # �
# 10, 4 	 1,� ,10 

3 ���� 	 r exp��
� %=
 � �
 � ln �r exp�����'�

���

�


��  

�10 # �
 # 10,4 	 1,� ,10 
4 ���� 	 ������� � ���� � 14�� � 16�� � ��H � 10�� � 4��� � 5��� ��� � 3�� � 2��� � 1�� � 5��� � 7��� � 11��� 2��� � 10�� � ���
 � 7�� � 45 

�10 # �
 # 11,4 	 1,� ,10 
5 ���� 	r r �
���
� � �
 � 1����� � �� � 1���

���
��

��  

0 # �
 , �� # 5,  4, 6 	 1,� ,16 

For Prob. 2 and 3 =
��,�,�
	 �6.089,�17.164, �34.054, �5.914, �24.721, �14.986, �24.100, �10.708, �26.662, �22.179 

For Prob. 5 
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4.1. Abstract 

To build a metamodel for high-dimensional expensive black-box (HEB) functions, 

a recently developed metamodel, radial basis function-based high-dimensional model 

representation (RBF-HDMR), has been found promising. This work extends the 

modeling capability of RBF-HDMR from the current second-order form to any higher 

order.  More importantly, the modeling process “uncovers” black-box functions so that 

not only a more accurate metamodel is obtained, but also key information of the function 

can be gained and thus the black-box function can be turned “white.”  The key 

information that can be gained includes 1) functional form, 2) (non)linearity with respect 

to each variable, 3) variable correlations. The black-box “uncovering” process is based on 

identifying the existence of certain variable correlations through two derived theorems.  

The adaptive process of exploration and modeling reveals the black-box functions until 

all significant variable correlations are found. The black-box functional form is then 

represented by a structure matrix that can manifest all orders of correlated behavior of 

variables.  The resultant metamodel and its revealed inner structure lend themselves well 

for applications such as sensitivity analysis, decomposition, visualization, and 

optimization. The proposed approach is tested with theoretical and practical examples. 

The test result demonstrates the effectiveness and efficiency of the proposed approach. 

Key words: approximation, regression, interpolation, metamodel, response surface, 

prediction, RBF-HDMR, functional form, black-box function 
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4.2. Introduction 

Metamodeling techniques find a wide range of uses in engineering. These uses 

include getting insight into a complex system and supporting simulation-based 

optimization. Metamodeling techniques involve sampling approaches, model selection, 

model fitting, and model validations [1-3].  From the sampling perspective, there are 

various sampling approaches: one-stage sampling (for example, Latin hypercube and 

orthogonal arrays), optimal sampling (for instance, D-optimal and G-optimal), one-stage-

based optimal sampling (for example, optimal Latin hypercube, and optimal orthogonal-

arrays-based Latin hypercube) and sequential sampling [1-4]. Sampling approaches 

evolve from static to dynamic approaches, from one-stage to optimal one-stage, and to 

sequential sampling.  For metamodel selection and fitting, there are parametric models 

(for instance, polynomial) and non-parametric models (for example, radial basis function) 

[3]. For metamodel validation, there are various validating approaches and performance 

metrics such as relative error and R square [5]. There are multiple papers reviewing the 

advancement of the metamodeling techniques. Chen et al. [6] summarized the pros and 

cons of the sampling methods and metamodels. Queipo et al. [7] reflected the 

metamodeling techniques and optimization. Simpson et al. [8] reviewed the use of 

metamodeling techniques in multidisciplinary analysis and optimization. Wang and Shan 

[9] reviewed applications of metamodeling techniques in support of engineering 

optimization. 

With the advancement of metamodeling techniques, two issues become prominent: 

1) the “curse of dimensionality,” and 2) how to gain more insight into a black-box 

through metamodeling. The two issues in fact interweave with each other. The “curse of 



124 
 

dimensionality” indicates the metamodeling cost (the number of function evaluations) 

exponentially increases as the dimensionality of black-box functions become larger.  

Koch et al. [10] presented the size problem of the black-box functions for 

multidisciplinary design optimization. Simpson et al. [11] pointed out that the high-

dimensionality plagues metamodeling techniques. Shan and Wang [5] reviewed the 

relevant methodologies in solving HEB problems. Friedman and Stuetzle [12] developed 

projection pursuit regression.  Friedman [13] proposed multivariate adaptive regression 

splines (MARS) model. A family of HDMRs with distinct characters has since been 

developed for various purposes [14-19]. Recently Shan and Wang [20] proposed a RBF-

HDMR model and its modeling algorithm to approximate a black-box function until the 

second-order terms. For the second issue on gaining more insight into the black-box 

function, today, almost all the metamodels only provide the metamodel as a predictor and 

lack the capability to reveal the underlying functional form of the black-box function. 

This is particularly the case for commonly-used metamodels such as Kriging, support 

vector machine, and radial basis function (RBF). Few papers have addressed this issue, 

especially from the metamodeling community. For instance, Booker [21] used functional 

ANOVA techniques in conjunction with fitted Kriging model to disclose main effects and 

correlation relationships in the response. Hooker [22] from statistics developed an 

ANOVA approach to discover additive structure in black-box functions.  

This chapter naturally advances the RBF-HDMR model to discover the intrinsic 

structure in black-box functions and enhance the accuracy of modeling by adaptively 

modeling higher-order terms beyond the current second-order form of RBF-HDMR. 

While the accuracy of the RBF-HDMR approximation provided by the first and second-
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order is not sufficient, the developed approach explores high-order correlated terms, and 

continues to model the residual terms. Thus the accuracy of the RBF-HDMR can be 

further improved as far as the budget allows. Moreover, through the modeling process, 

key information of a black-box function such as the functional form, (non)linearity, and 

variable correlations can be revealed.  

Section 4.3 introduces the basics of RBF-HDMR. Section 4.4 describes the 

modeling process of RBF-HDMR approach. Section 4.5 presents structure matrix and 

component correlation matrix, and theories that support identification of high-order 

component terms. Section 4.6 provides test results and discussion. The final remarks are 

in Section 4.7. 

4.3. RBF-HDMR 

A general form of HDMR [16] is shown as 

���� 	 �
 �r�
��
�&

�� � r �
���
 , �����
���& ���    r �
�
��
���
����
��& ��
� , �
� ,� , �
�� 

��     ����&���, ��, � , �&�,                                                           (4.1) 

where the component �
 is a constant representing the zero-th order effect to ����; the 

component function �
��
� gives the effect of the variable �
 acting independently upon 

the output ���� (the first-order effect), and may have an either linear or non-linear 

dependence on �
. The component function �
���
, ��� describes the correlated 

contribution of the variables �
  and ��  upon the output ����  (the second-order effect) 
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after the individual influences of �
  and ��  are discounted, and �
���
 , ��� could be linear 

or nonlinear as well. The subsequent terms reflect the effects of increasing numbers of 

correlated variables acting together upon the output ����. The last term 

����&���, ��, � �&� represents any residual dependence of all the variables locked 

together to influence the output ���� after all of the lower-order correlation and 

individual influence of each involved xi (i =1,…,d) have been discounted. 

In order to compute component functions in Eq. (4.1), the simplest and most 

efficient type, Cut-HDMR [16], is explained here. For a chosen cutting center point �
, 

component functions of the Cut-HDMR  are defined as 

�
 	 ���
�,                                                                             (4.2) 

�
��
� 	 ���
, �

 � � �
,                                                               (4.3) 

�
���
 , ��� 	 ���
 , �� , �

�� � �
��
� � ������ � �
,                            (4.4) 

�
����
, �� , ��� 	 ���
 , �� , ��, �

��� � �
���
 , ��� � �
���
 , ��� � ������ , ��� � �
��
� �
������ � ������ � �
,                                                          (4.5) 

�,                                                                                                      
����&���, ��, � , �&� 	 ���� � �
 � ∑ �
�
 �
� � ∑ �
���
 , ���
� ��,                             (4.6) 

where �

 , �

�, and �

�� are respectively �
 without elements �
; �
 , ��; and �
 , �� , ��. For 

the convenience of later discussions, the points �
, ��
, �

 � 	 %��+ , ��+ , � , �
 , � , �&+'(,  

��
, �� , �

�� 	 %��+ , ��+ , � , �
, � , �� , � , �&+'(, … , are respectively called the zero-th 
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order, first-order, second-order model-constructing point(s), and so on. Accordingly, 

���
� is the value of ���� at �
; ���
 , �

 � is the model output at point ��
, �

 �. The Cut-

HDMR, in its original form, only provides a lookup table for data interpolation; there is 

no explicit expression for component functions. It also does not have a sampling 

approach to support HDMR construction.  

The recently developed RBF-HDMR [20] uses a sum of thin plate spline (the first 

term) plus a linear polynomial q��� (the second term) as follows to approximate each 

component function in Eqs. (4.3)-(4.6). 

   �,��� 	 ∑ n
�
�� |� � �
|�Est|� � �
| � q���,           

   ∑ n
�
�� u��� 	 v,          

   q��� 	 uw 	 1x�, x�, � , xy21��, ��, � , �y2(,                          (4.7) 
where xi are the vectors of evaluated n sample points; the coefficients z 	 %n�, n�,� , n�' 
and w are parameters to be found. q��� is a polynomial function, where p consists of a 

vector of basis of polynomials. In this work, u is chosen to be �1, ��, � , �&� including 

only linear variable terms and therefore q=d+1; The side condition ∑ n
�
�� u��� 	 0 is 

imposed on the coefficients z to improve an under-determined system, that is, the 

singularity of distance matrix A with c
� 	 .�
 � ��.�Est.�
 � ��.,   4, 6 	 1,� , p. RBF 

is a simple interpolative function and found to provide a good approximation to arbitrary 

systems [6].    
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For the ease of description, we use linear RBF as a substitute for Eq. (4.7) without 

losing generality. Therefore a general RBF-HDMR model is written as 

   ���� < �
 � ∑ ∑ �
-.��b, �

 � � ��b� , �

 �./0���&
�� �   ∑ ∑ �
�-.��
, �� , �

�� �/03�����
���&
 ��
- , ��- , �

��. � ��   ∑ ����&-|� � ��|/���8���  ,                                                     (4.8) 

where .  denotes a p-norm distance; �
-, �
�- , …, ����&- are respectively the coefficient 

of the expression; ��b� , �

 �,  ��
- , ��- , �

��, …, �� are the sampled points; ;
, ;
�, …, 

;���& are the number of sampled points for each term; the component 

∑ �
-.��b, �

 � � ��b� , �

 �./0���  is a function of only the i-th input variable �b which 

explains the effect of the i-th input variable �b independently acting on the output 

function  ����; the component ∑ �
�-.��
, �� , �

�� �  ��
- , ��- , �

��./03���  denotes the 

correlated contribution of the variables �
  and ��  upon the output ���� after the individual 

influences of �
  and ��  are discounted, and so on. 

For a black-box function with d dimensionality, the number of all possible existing 

components can be expressed as 

                                   � 	 ∑ 8!�8�0�!0!&
�
 	 2& .             (4.9) 

It can be seen that � increases dramatically as the number of dimensionality, d, rises. 

This challenges both the identification of functional form and modeling accuracy if 

higher-order correlated terms exist in the black-box functions. RBR-HDMR has an 

attractive feature that it interpolates all of the prescribed points used for constructing all 

order component functions. The prescribed points are defined as follows. For the constant 
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component, the model construction point is �
; for the first-order components, the model-

construction points include �
, and  ��
- , �

 �; for the second-order components, its 

model-construction points are �
, ��
- , �

 �, ���- , �
��, and  ��
- , ��- , �

��.  
4.4. RBF-HDMR Modeling Process 

Based on the argument that most of well defined physical systems involve 

relatively low-order correlations of the input variables [16, 20], the RBF-HDMR 

modeling process up to the second-order was described as follows [20]. 

1. Randomly choose a point �
 	 1��+ , ��+ , � , �&+2(in the modeling domain. 

Evaluating ����  at �
, we then have �
.  

2. Sample for the first-order component functions  

�
��
� 	 ��%��+ , ��+ , � , �
 , � , �&+'(� � �
 in the close neighborhood of the two ends of 

xi (lower and upper limits) while fixing the rest of xj (j5i) components at �
. Evaluating 

these two end points, we got the left point 

value�
I��
� 	 ��%��+ , ��+ , � , �
J , � , �&+'(� � �
 and similarly the right point value 

�
K��
�.   Model the component function as �,
��
� by a 1-D RBF model for each variable 

�
 using Eq. (4.7). 

3. Check the linearity of �
��
�. If the approximation model �,
��
� goes through the 

center point �
, �
��
� is considered as linear. In this case, modeling for this component 

terminates. Otherwise, use the center point �
 and the two end points to re-

construct �,
��
�. Then a random value along �
 is generated and combined with the rest of 
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xj (j5i) components at �
 to form a new point to test �,
��
�. If �,
��
� is not sufficiently 

accurate (the relative error is larger than a given criterion, for instance, 0.01%, the test 

point and all the evaluated points will be used to re-construct �,
��
�. This sampling-

remodeling process iterates until convergence.  This process captures the nonlinearity of 

the component function with one sample point at a time. Step 3 repeats the process for all 

of the first-order component functions to construct the first-order terms of RBF-HDMR 

model. 

4. Form a new point, ���, ��, � �
 , � �&�� 	 %��- , ��- , � , �
- , � , ��- , � , �&-'( , : 50 by randomly combining the sampled value �
 in the first-order component construction 

for each input variable (that is, �
,4 	 1,� , � in evaluated ��
, �

 �, respectively). This 

new point is then evaluated by expensive simulation, as well as by the first-order RBF-

HDMR model. If the two function values are sufficiently close (the relative error is less 

than a small value, for example, 0.01%), it indicates that no higher-order terms exist in 

the underlying function, and the modeling process terminates. Otherwise, go to the next 

step. 

5. Use the values of �
 and �� , 4 5 6 that exist in the thus-far evaluated points 

��
 , �

 � 	 %��+ , ��+ , � , �
 , � , �&+'(, and ��� , �
�� 	 %��+ , ��+ , � , �� , � , �&+'( 
to form 

new points of the form ��
, �� , �

�� 	 %��+ , ��+ , � , �
, � , �� , � , �&+'(. Randomly select 

one of the points from these new points to test the first-order RBF-HDMR model.  If the 

model passes through the new point, it indicates that xi and xj are not correlated, and the 

process continues with the next pair of input variables. This is to save the cost of 

modeling non-existing or insignificant correlations. Otherwise, use this new point and the 
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evaluated points ��
, �

 � and ��� , �
�� to construct the second-order component function, 

�,
���
 , ���. This sampling-remodeling process iterates for all possible two-variable 

correlations until convergence (the relative error is less than 0.01%). Step 5 is repeated 

for all pairs of input variables. 

Theoretically Step 5 applies to all higher-order terms in RBF-HDMR model in a 

similar manner.  However, given the exponentially growing number of terms as shown in 

Eq. (4.9), even if only one extra point is needed to test if a higher-order correlation exists 

or not (as that in Step 5 for bivariate correlation), the number of sample points needed 

would increase exponentially.  Therefore this work introduces some theorems first and 

uses the theorems to guide the modeling of higher-order component functions. 

Figure 4.1 shows a simplified flow of the RBF-HDMR modeling process.  The step 

Refine Model means increasing samples to improve the accuracy of the model without 

changing the functional form of the model; the step Update Functional Form adds the 

correlated component terms to RBF-HMDR model if the term exists. When the accuracy 

of modeling is reached, the modeling process terminates.  The last step for higher-order 

components are discussed in the next section. 
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Fig. 4.1 A simplified flow of RBF-HDMR metamodeling 

4.5. Principle of Functional Form Identification 

This section first defines two matrices that support the identification of multivariate 

correlated terms and the functional form.  Then theorems for identification are 

introduced, which form the basis for efficiently modeling higher-order components of 

RBF-HMDR, and also for uncovering the functional form of the black-box function.   

Start 

For each xi build its first-
order component model  

Un-captured 
Nonlinearity? 

Stop 

For each pair xi 
and xj, are they 
correlated? 

Refine Model: Add 
new point along xi 

Y 

N 

Update Functional 

Form: Add the test point 
to build second-order 

components  

Y 

N 

Identify higher-order components 
based on theorems and model them 

till convergence; output the 
structure matrix 
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4.5.1. Structure Matrix 

A structure matrix is defined to capture the inner structure of the resultant RBF-

HDMR of a black-box function as 

�h&�� 	
���
���
0 1 0 0…0 1…0…0…10 0 1 0…0 1…0…0…10 0 0 1…0 0…0…0…1…0 0 0 0…0 0…0…1…10 0 0 0…1 0…0…1…1��

���
�
 ,                    (4.10) 

where � is the dimensionality of the input variable vector �; p denotes the number of to-

be-decided component terms. Each row corresponds to a variable, �
. Each column 

corresponds to one of the component terms in the RBF-HDMR. Each element in the 

structure matrix is assigned as "0" or "1" ; "0" means that the variable is sampled at �
+; "1" means that the variable is sampled at non-�
+  locations.  For example, the column 

%0�, 0�, … , 0&' ( denotes the constant component term �
; %0�, 0�, … , 1
 , … , 0&' ( 

represents the first-order component term �
��
�; %0�, 0�, … , 1
 , … , 1� , … , 0&' ( indicates 

the existence of the second-order component term �
���
, ���, and the last column 

indicates the existence of d-variate correlation component term ���…&���, ��, … , �&�. 
The structure matrix is employed to index the corresponding component term and is 

created in tandem with the RBF-HDMR modeling process. Since each column in the 

structure matrix is associated with a unique component term and the maximum number of 

terms is 2d (Eq. 4.9), a structure matrix therefore could theoretically represent a 

maximum of 2d of terms [16]. Many component terms may not exist in the black-box 

function ����  , and some others have negligible contribution to ����. These terms’ 
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corresponding columns is eliminated from the structure matrix. For example, if the 

column %0�, 0�, … , 1
 , … , 1� , … , 0&' ( does not exist in the structure matrix, it means 

�
���
, ��� does not exist or is negligible. For the description convenience, a non-existing 

or negligible term is referred to in the rest of the paper as an insignificant term; otherwise, 

it is a significant term. The final output of the structure matrix thus depends on the 

intrinsic characteristics of the black-box function, and the structure matrix in return 

explicitly reveals the inner functional form of the black-box function. Each column in the 

structure matrix represents one term in the final RBF-HDMR and for each element �
,  a 

“1” in  a column means that the variable exist in the corresponding component term. 

4.5.2. Component Correlation Matrix 

Given the fact that HDMR is built on a hierarchy of orthogonal component 

functions with increasing dimensionality, we can explore further the variable 

relationships in the context of component functions.  As one understands from Eqs. 4.2-

4.6, for instance, ������, ��� does not simply capture the term ����, but rather the 

residual effect (����, ��, �
��� � ������ � ������ � �
) of ����. In other words, the 

algebraic term ���� is expressed by �
, ������, ������, and ������, ��� altogether. The 

effect of the term  ���� could have been well captured till the first-order components, and 

thus there is no need to model the second-order term ������, ���; otherwise, ������, ��� is 

necessary to be added to accurately model the term ����.  Whether or not ������, ��� is 

significant helps us to define the variable correlation ����  from the perspective of 

HDMR.  This point separates our variable correlation matrix, to be defined below, from 
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its conventional meaning. To distinguish the difference, we define the component 

correlation matrix as follows. 

Considering � variables (this is, � 	 %��, ��, … , �&'(),  both the row list and 

column list in a component correlation matrix denote the same set of input variables. The 

matrix entry indicates whether the i-th input variable in row and the j-th input variable in 

column defines a component term �
���
, ���.  A component correlation matrix (CCM) is  

��h&�& 	 1;
�2,   (4 	 1,2, … , �; 6 	 1,2, … , �),                (4.11) 

where ;
� 	 1 if �
���
 , ��� exists in a HDMR formula for a particular problem; 

otherwise, ;
� 	 0.  For example, a component correlation matrix for a function of only 

first-order components is a diagonal matrix of 1's; the component correlation matrix of all 

significant bivariate component terms is a square matrix with all 1’s, as shown in Fig. 

4.2. Similar to a conventional correlation matrix, CCM is symmetric. 

CCM can be automatically generated after completing modeling RBF-HDMR’s 

second-order terms, because the modeling process adaptively identifies such 

relationships. The 0’s and 1’s scatter in CCM depending on characteristics of the 

underlying black-box function. A CCM can be reorganized by changing the order of rows 

and columns to exhibit patterns of correlations or extract part of rows and columns to 

form sub-correlation matrices. CCM captures all the bivariate component terms and 

implies for more-than-two-variable component terms, which will be discussed in the next 

subsection.  
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� �� �� � �
 � �& �� 1 1 � 1 1 1 �� 1 1 � 1 1 1 � � � � � � � �
 1 1 � 1 1 1 � � � � � � � �& 1 1 � 1 1 1 

 

Fig. 4.2 Component correlation matrix indicating a function having all significant 

bi-variate terms 

 

4.5.3. Correlation Identification for Higher-order Component Modeling 

A CCM matrix shows second-order component terms between variable pairs. How 

can we identify higher-order component terms involving three or more variables without 

occurring extra sampling cost? Let us take a �-variable subset �3 # � # ��  from a CCM 

to form a new sub-matrix. Such matrices include two types, a � � � matrix with all 1’s 

and a � � � matrix with at least one 0.  

Theorem 1: The necessary condition of a t-variable (� � 3) component term 

existing in a HDMR formulation for a black-box function is that the  t-variable sub-

matrix of CCM is a � � � matrix with all 1’s and all of its component terms involving 

�� � 1� variables exist in the HDMR model. 

Proof:  Assuming t variables �
� , � , �
� , if one possible component term of a subset 

of �� � 1� variables �
� , � , �
��� , �
�…
��� , does not exist, it means that the corporate 
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contribution of the subset �
� ,� , �
���   is not significant after all the lower-order effects 

being modeled.  Therefore the higher-order component, �
�…
� , would not be significant 

either.  Similarly if �
�…
�  exists, it means that all the lower-order components for all t-

variables should exist since �
�…
�  is computed from all its related lower-order 

components (see Eqs. 4.5 and 4.6).  Therefore, all entries in the � � � matrix should be 

1’s.  If there exists an entry of ‘0’ between two variables �
� and �
_ , it means that  

�
�
_ does not exist or is not significant, and therefore any higher-order components 

involving �
� , �
_ would not be significant either. Proof completed. 

Theorem 1 can be used to explore higher-order component terms in RBF-HDMR. If 

the necessary condition is not met, then the corresponding t-variable component term 

does not exist, and the modeling of the term is skipped during modeling, and thus an 

extra sample point is saved.  It is to be noted if a sub-matrix of t-variable CCM has all 

entry of 1’s, one cannot sufficiently conclude that all of the 3rd and higher-order 

components exist.  It is because that CCM only defines bivariate relations.  Theorem 2 is 

therefore proposed to supplement Theorem 1. 

Theorem 2: The sufficient condition of the existence of a t-variable (� � 3) 

component term in a RBF-HDMR formulation for a black-box function is that the value 

of a new point formed from existing model construction points’ variable elements for up 

to the �� � 1� -th order component terms is not accurately predicted by the RBF-HDMR 

model of �� � 1� -th order. 

Proof: Assume a RBF-HDMR model of �� � 1�-th order is built, that is, 
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����� 	 �
 �r�
��
�&

�� � r �
���
 , �����
���& �� 

� ∑ �
�
��
�������
����
����&  �
� , �
� ,� , �
�����¡.                     (4.12) 

All its model construction points up to the �� � 1�-th order include �
, ��
, �

 �, 
 ��
, �� , �

�), �, and  ��
� , �
� , � , �
�¢?��, �

�
��
�����).  One picks variable elements from 

these points to form a new point  ��
� , �
� , � , �
¢ , �

�
��
�).   If the current �� � 1�-th 

order RBF-HDMR cannot accurately predict the function value of the new point, it means 

that the interaction of all t-variables has not been captured by the �� � 1�-th order model 

and therefore the t-variable (� � 3) correlated component term should exist. Proof 

completed. 

Theorem 2, the sufficient condition, can be used for confirming the existence of the 

correlated component terms.  The difficulty is what if the �� � 1�-th order model 

accurately predicts the function values of all possible new points?  Strictly speaking, one 

cannot sufficiently conclude from Theorem 2 that there does not exist t-th order or higher 

components.  Assuming the misjudgment under such situation is a rare occurrence, for 

practical algorithm development, the sufficient condition is loosened as follows. 

Loosened sufficient condition: If a RBF-HDMR of �� � 1�-th order can exactly 

predict the function value at the test point constructed from existing model points’ 

variable elements for up to the �� � 1�-th order component terms, then it is deemed that 

there is no t-variable or higher-order component terms in the black-box function.  
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4.5.4. Modeling of High-order Component Functions in RBF-HDMR 

The theorems developed in Section 4.5.3 are employed to identify and model high-

order component functions in RBF-HDMR. 

The general process follows that for the modeling of second-order component, as 

described in Section 4.4. The main difference is on the identification of high-order 

component functions, in order to avoid exponentially increasing sampling cost, and to 

reveal the functional form of the black-box function.  The logic for component 

identification is illustrated in Fig. 4.3. 

 

 

 

 

 

 

Fig. 4.3 Process for high-order component identification 

The structure matrix of the black-box function, as shown in Eq. 4.10, is constructed 

and updated with the modeling process. Once the modeling is completed, its functional 

form is captured in the structure matrix.  The following example explains the process in 

detail. 

GIVEN: CCM obtained after modeling the 2nd 
order component terms 

FOR each t-variable sub-matrix �� 	 3,� , �� 
IF there is one ‘0’ entry, skip modeling 
the t-variable component term (Theorem 
1) 

ELSE 

Construct a new point according to 
Theorem 2 and evaluate the point 

IF model prediction is not accurate, 
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4.5.5. An Example 

One example is used to illustrate the modeling and functional form identification 

process.  This problem is modified from [22] and expressed as 

���� 	 £l�l�¤2�H � sin?� �� � log��H � ��� � l§l�+¨©ª©« � ���� � ���.           (13) 

 

Fig. 4.4 The structure matrix of the example 

 

The resultant structure matrix of this example is shown in Fig. 4.4. In the structure 

matrix, we shadow component terms from zero-th order to the highest order with 

gradually lighter colors.  Also we mark the independent component terms by rectangular 

boxes. Matching the structural matrix with steps in Section 4.4, the first colored block 

corresponds to Step 1; the second colored block is implemented by Step 2 and 3; Step 4 

happens between the second colored block and the third colored block; Step 5 fills the 

third colored block and generates a component correlation matrix; the last two colored 

blocks are implemented via Step 5 by means of the two derived theorems, and the 

algorithm shown in Fig. 4.3. From the fourth and sixth rows, one can see that input 

variables �� and �� are independent variables, that is, having only first-order component 
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terms.  Observing from the second rightmost block, one can see that variables 

��, ��, and �H form a three-variable component term; from the last block, variables 

��, ��, ��, ��
 form a four-variable component term. The middle color block shows that 

two-variable correlation exists between variable pairs �� and ��, as well as �H and ��. It 

is to be noted that multiple variable component terms can be ignored if the terms are 

trivial to the output. From the final structure matrix, one can extract following 

mathematical expression 

���� 	 �
 � t����� � t����� � t�,����, ��� � tH,���H, ��� � t�,�,H���, ��, �H� �
t�,�,�,�
���, ��, ��, ��
�,                                                                         (4.14) 

where, t
��
� 	 �
��
�, 4 	 4,6,                                                                                
t�,����, ��� 	 ������ � ������ � ��,����, ���,                                         
tH,���H, ��� 	 �H��H� � ������ � �H,���H, ���,                                         
t�,�,H���, ��, �H� 	r�
��
�H


�� � r �
���
, ���H

��,
�� � ��,�,H���, ��, �H�, 

t�,�,�,�
���, ��, ��, ��
� 	
∑ �
��
��

�� � ∑ �
���
, ����

��,
�� �  ∑ �
����
, �� , ����

��,
���� �
��,�,�,�
���, ��, ��, ��
�.  

Eq. (4.14) corresponds to the structure depicted by Fig. 4.4. �
 corresponds to the first 

column. The numerical models of all component functions have been obtained using the 

modeling process described in Section 4.4 and stored in the final model. The final model 

manifests high-dimensional correlated behavior of variables. The linearity/nonlinearity 

information regarding to each input variable is also saved in the final model and can be 

readily output.  



142 
 

The CCM corresponding to the SM in Fig. 4.4 is  

��h 	
��
���
���
��1110000000
 
1110001000
  
1110100000
  
0001000000
  
0010100000
  
0000010000
  
0100001111
  
0000001111
  
0000001111
  
0000001111
 
��
���
���
��
 .                                         (4.15) 

From this CCM, one can roughly see the correlation among the variables in Eq. (4.14). 

The top left corner 3 � 3 sub-matrix indicates that ��, �� and �H may be correlated; 

however, it needs to be judged by the structure matrix. Similarly the bottom right corner 

4 � 4 sub-matrix indicates that ��, �� �� and ��
 may be correlated. Both the 4th row and 

4th column have only one ‘1’ element at the diagonal position, which shows that  �� is 

only in first-order component term f4(x4) and not in higher-order terms. Similarly, it is 

true for ��. Variables �� and �� correlate strongly and f2,7(x2,x7) must be modeled;  this is 

also true for �H and ��.  

The modeling result is given in Table 4.1, where NoE accumulates the number of 

function evaluations from lower to higher order, for example, it requires in total of 441 

points to model the function up to the fourth order, 393 points to the third order, and so 

on. “id” means accumulated NoE spent on identification of functional form, which is 

used for modeling if the term exists, and 35 sampling points in total are generated in the 

second order for this purpose. The column “model” indicates the NoE used for modeling. 

R Square, RAAE and RMAE are model performance metrics which will be introduced in 

the next section. Table 4.1 shows that the second RBF-HDMR models the underlying 

function well, and usually no more modeling effort is needed.  However, one can see that 
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the performance metrics like R Square and RAAE became worse from the second to the 

third order. This phenomenon indicates “over fitting”, this is, the gain from modeling 

higher-order terms is less than the error brought from the modeling process. Over fitting 

is one of common issues in metamodeling techniques. Wang et al. [23] discussed over 

fitting about RBF metamodel. Tecko et al. [24] presented comparison of over fitting and 

over training in artificial neural network. In artificial neural network community, some 

additional techniques such as early stopping and cross validation are used to avoid over 

fitting. Due to limited space, discussion on over fitting is not extended here.  

Table 4.1 Modeling results of the example 

 

Order R Square RAAE RMAE NoE 

id model total 

First 0.3809 0.3331 10.399 0 137 137 

Second 0.9386 0.1150 5.1044 35 238 273 

Third 0.9182 0.1372 2.4582 35 358 393 

Fourth 0.9187 0.1361 2.4580 35 406 441 

 

 

4.6. Test Examples 

4.6.1. Problem Description 

To test the effectiveness and efficiency of the proposed approach, fifteen test 

problems are selected based on the criteria: 1) the number of variables � 10; 2) high 

nonlinearity of the performance behavior; and 3) multiple variables are correlated. The 
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criteria are chosen to expose challenges for metamodeling HEB problems. Scalable 

problems with different dimensionality are treated as one problem. In total fifteen 

problems that satisfy the criteria are found from the book of Schittkowski [25], which 

offers 188 problems for testing nonlinear optimization algorithms and a few of them for 

testing data fitting algorithms. Most of these problems have some application 

background. Fifteen problems that satisfy our criteria are listed in 4.10 Appendix. Among 

these problems, the first ten are classified by Schittkowski as “theoretical” problems 

denoted by “T”, and remaining five problems as “practical” problems represented by “P”. 

Detailed backgrounds of these practical problems are omitted due to space limit. “Order” 

stands for highest order which is analyzed by RBF-HDMR. The modeling accuracy is 

evaluated by four performance metrics which are introduced in the next section. 

4.6.2. Performance Metrics 

1) R Square 

^� 	 1 � ∑ 1Z��0�?Z,��0�2�_0`�∑ %Z��0�?Za��0�'�_0`�  ,                                                               (4.16) 

where �a��b� denotes the mean of function on the m sampling points. This metrics 

indicates the overall accuracy of an approximation model. The closer the value of R 

square approaches one, the more accurate is the approximation model.  Note R square in 

this work is computed on 10,000 new test sample points for each problem, rather than on 

the modeling points. The same is true for the next two metrics. 

2) Relative Average Absolute Error (RAAE) 
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^ccd 	 ∑ .Z��0�?Z,��0�._0`� /ef(g ,                                                                   (4.17) 

where STD stands for standard deviation. Like R square, this metric shows the overall 

accuracy of an approximation model. The closer the value of RAAE approaches zero, the 

more accurate is the approximation model.  

3)  Relative Maximum Absolute Error  (RMAE) 

^hcd 	 ijk �.Z����?Z,����.,.Z����?Z,����.,�,.Z��_�?Z,��_�.�f(g .                    (4.18) 

This is a local metric. A RMAE describes error in a sub-region of the design space. 

Therefore, a small value of RMAE is preferred.  

4.6.3. Test Results 

Expressions for the 15 problems are listed in the 4.10 Appendix. Table 4.2(a) and 

4.2(b) show the results of 14 test examples except for Problem 12. The problem 12 is 

discussed in Section 4.6.4. The results represent the average of 10 independent runs. It 

can be seen that RBF-HDMR models well 14 problems out of 15.  

In Table 4.2(a), problems 1, 2, 11, and 15 are chosen for detailed report; other 

results are in Table 4.2(b) for brevity.  For problems in Table 4.2(a), the two matrices for 

each problem are shown, along with its mathematical function description as those in Eq. 

4.14.  For Problem 1, bivariate correlations exist, which are clearly shown with brighter 

colors from the two matrices. The RBF-HDMR model also reached high accuracy with 

up to the second-order components. Problem 2 has high-order multivariate correlations, 

but these terms have small influence and can be neglected.  Problem 11 has up to 6-th 
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order correlations.  The fourth-order RBF-HDMR model reaches R Square value of 0.938 

and the cost grows significantly due to strong variable correlations as the model moves 

one order higher. Problem 15 has 50 variables, but its internal structure is very simple and 

there is no strong correlation between variables. The modeling cost is thus low.  

Comparing Problems 1 and 2, both have d=10, the NoE is 196 and 584, respectively for 

the second-order model. As one can see that the cost for Problem 2 is significantly higher. 

Problem 2 consists of multiple correlated second-order and third-order terms, which are 

evident from its SM and CCM. Its CCM has all 1’s elements. SM also appears more 

complicated than that of Problem 1. Then for Problem 11 with 11 variables, the cost for 

the second-order is similar to that of Problem 2 but doubles each time the order increases 

by 1.  

Problem 11 has even more complex structure than Problem 2 with multiple 

correlated high-order terms until the sixth order, which explains its high modeling cost. 

For Problem 15, since it is a first-order problem, the NoE is only 251 even with d=50.  

Table 4.2(b) shows the test results for other functions.  These results show the 

effectiveness and efficiency for a wide range of problems. In addition, this work did not 

choose to compare the RBF-HDMR with other metamodeling techniques. Interested 

readers can refer to Ref. [20] for such comparison.  
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Table 4.2(a) Test results of examples 

Function 
R 

Square 
RAAE RMAE 

NoE 

id model total 

1 
d=10 

First 0.8683 0.2770 1.8064 0 51 51 
Second 0.9900 0.0804 0.3457 37 159 196 

SM

  

CCM 

  

���� 	 = �r t
,
D���
, �
D���

��  

No higher than 2nd order  

2 
d=10 

First 0.2756 0.4027 11.0485 0 51 51 
Second 0.9713 0.1025 2.7502 1 583 584 
SM 

 

CCM 

  

���� 	 = � r t
,���
, �����
����
  

Higher-order negligible 
11 

d=11 
First -0.3517 0.9050 5.6850 0 56 56 
Second 0.5412 0.4508 4.7432 1 579 580 
Third 0.8946 0.2368 2.0660 82 1251 1333 
Fourth 0.9368 0.1835 1.6048 82 2211 2293 

Only output first four orders 
SM                                                                                         CCM 

 
Only write out 3 highest correlated terms  ���� 	 = � �� t�,H,�,�,�,�
���, �H, ��, ��, ��, ��
�� t�,�,�,�,�,�����, ��, ��, ��, ��, ����� �H,�,�,�,�
,����H, ��, ��, ��, ��
, ����;   No higher than 6th order 

15 
d=50 

First 0.9024 0.2986 0.7368 0 251 251 

SM  CCM  

���� 	 = �r t
��
��


��  

No higher than 1st order 
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Table 4.2(b) Test results of examples 

Function 
R 

Square 
RAAE RMAE 

NoE 

id model total 

3 
d=10 

First 0.8622 0.2888 1.6642 0 101 101 
Second 0.9438 0.2027 0.8231 136 209 345 

4 
d=20 

First 0.8918 0.2555 1.3816 0 101 101 
Second 0.9471 0.2008 0.6896 166 265 431 

5 
d=20 

First -0.1862 0.8074 4.9560 0 101 101 
Second 0.8778 0.2663 1.5423 161 341 502 

6 
d=30 

First  0.4029 0.5293 5.3301 0 151 151 
Second 0.8715 0.2161 4.6852 1 3631 3632 

7 
d=30 

First -2.6392 1.7225 6.869286 0 151 151 
Second 0.7746 0.4213 1.6282 1 5367 5368 

8 
d=31 

First 0.5126 0.5494 3.1200 0 151 151 
Second 0.9506 0.1789 0.7747 407 499 906 

9 
d=20 

First 0.4968 0.5585 4.2935 0 101 101 
Second 0.9906 0.0852 0.4121 172 265 437 

10 
d=20 

First 0.9206 0.1936 3.1821 0 99 99 
Second 0.9971 0.0373 1.0299 1 1642 1643 

13 d=14 First 0.9997 0.0135 0.0716 0 71 71 
14 d=30 First 0.9999 0.0075 0.0168 0 151 151 

 

4.6.4. Discussion 

The test problem 12 is expressed as 

���� 	 100000∏ �
¯0��
��  ,    0.1 # �
 # 100, 4 	 1,� ,11,                            (4.19) 

° 	 ±�0.00133172, �0.002270927,�0.00248546,�4.67 �4.671973,�0.00814,�0.008092, �0.005, �0.000909,�0.00088, �0.00119 ². 
In this problem, �
 is employed for specifying the role of the corresponding variable �
 . �
 significantly affects the final output and modeling results. This effect can be seen from 

Fig. 4.5. Fig. 4.5 plots the ���� (vertical axis) with regard to �
 (all �
 are held equal to 

each other). As �� and �� getting smaller, the output curve becomes extremely steep.
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�� 	 �� 	 0 �� 	 �� 	 �0.5 �� 	 �� 	 �4.67 

Fig. 4.5 Deterioration of ���� when decreasing coefficients w³ and w´ 

When they reach the value above at (-4.67 -4.67), the output forms a right angle with the 

x-axis and the modeling error is prohibitive. Table 4.3 shows the modeling results. The 

structure matrices and correlation matrices are given in Fig. 4.6. It is very interesting to 

see as the coefficients decrease from 0 to -0.5, the SM and CCM change from simple 

structure to complex ones with multivariate correlations. It means as �
 decreases, high-

order variable correlations becomes stronger and finally dominates ����. 
 

Table 4.3 The results of the example 12 

�� �� R Square RAAE RMAE NoE 

0 0 0. 9914 0.0406 0.9234 126 

-0.5 -0.5 0.6791 0.1438 20.1244 144 

-4.67 -4.67 0.0000 0.0114 99.7205 146 
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Fig. 4.6 Structure matrices and correlation matrices of Problem 12 

 

4.7. Final Remarks 

This work extends the recently developed RBF-HDMR method to model higher 

than second-order component functions, based on which a black-box function can be 

“uncovered.” Key information about a black-box function such as functional form, 

variable (non)linearity, and variable correlations can be obtained through the modeling 

process.  A structure matrix (SM) is developed to present the functional form of the 

black-box problems. A component correlation matrix (CCM) is defined to describe 

correlation relationship among the variables. Note that SM and CMM depend on the 

characteristics of HEB problems and do not dictate the exclusive association with RBF-

HDMR. First, if other metamodels are used to model the component terms of HDMR, 

 SM CCM 

�� 	 �� 	 0 

  �� 	 ��	 �0.5 

  

�� 	 ��	 �4.67 
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SM and CCM remain exactly the same as in the context of RBF-HDMR. Second, even if 

HDMR is not used, for instance, for a second-order polynomial response surface, its 

constant, first-order and second-order terms correspond to the first a few columns of SM 

as defined in Eq. 4.10; CCM can represent the correlation among variables according to 

the coefficients. However, the full second-order response surface is a parametric model 

whose functional form is postulated. Therefore the high-order terms may be significantly 

but ignored once the second-order polynomial model is chosen. Although SM and CCM 

are applicable for other metamodel techniques, the challenge lies on how to uncover the 

functional form and fill the matrices.  In this work, two theorems are developed to 

support the efficient identification of high-order correlation terms in the context of 

HDMR. Multiple test examples show the effectiveness and efficiency of the proposed 

approach.  Future work will extend the methodology to support ANOVA analysis, direct 

problem decomposition, and design optimization.  
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4.10. Appendix 

No. Function 
Variable 
Ranges 

class order 

1 ���� 	 ��� � 1�� � ���
 � 1�� � 10r �10 � 4���
� � �
D����

�� �3 # �
 # 2,4 	 1,� ,10 

T 2 

2 ���� 	 {r 4H��
 � 1���


�� �H �3 # �
 # 3,  4 	 1,� ,10 

T 3 

3 ���� 	r %100��
 � �
D�
�� � ��
 � 1��'�


��  

�3 # �
 # 5,4 	 1,� ,10 
T 2 

4 ���� 	r %100��
� � �
D��� � ��
 � 1�� � 90��
D�
� � �
D���� � ��
D�
 � 1���
� � 10.1%��
D� � 1�� � ��
D�� � 1��' � 19.8��
D� � 1� � ��
D��� 1�' 

�3 # �
 # 5,4 	 1,� ,5 
T 2 

5 ���� 	r %��
 � 10�
D��� � 5��
D�
 � �
D���� � ��
D� � 2�
D�
���
� � 10��
 � �
D����' 

�2 # �
 # 5,4 	 1,� ,5 
T 2 

6 ���� 	 1 � µ�x �? ��
r l0�[+
� � 0 # �
 # 3.5,4 	 1,� ,30 

T 30 

7 ���� 	 ��(c���, c 	 �4�t�1,2,3,… ,30� �2 # �
 # 3,4 	 1,� ,30 
T 2 

8 ���� 	r %100��
D� � �
��� � �1 � �
��'��

��  

�2 # �
 # 2,4 	 1,� ,30 
T 2 

9 

���� 	 �(c� � 2�� , c 	
���
���
�   1 �1�1 2 �1�1 2    

0
�1 �          � � 0

0    � � ��1 2 �1�1 2 ���
���
�
 

0 # �
 # 25,4 	 1,� , �, � 	 20,50,100 

T 2 

10 ���� 	r �
��

� � {r �� 
 l0

�

� �� � {r �� 
 l0

�

� �� 

0 # �
 # 5,4 	 1,� ,20, T 4 

11 ���� 	r �¶
 � 1��µ�x%����
' � ��µ�x%�����
 � ����' � �Hµ�x%�����
 � ��
��'��
� � ��µ�x%�����
 � �����'2� ,� �
 	 0.1�4 � 1�, �4 	 1,… ,65�, 

· 	
¸
¹¹º
1.366 1.191 1.112 1.013 0.991 0.885 0.831 0.847 0.786 0.725 0.746 0.679 0.608 0.655 0.616 0.606 0.602 0.626 0.651 0.724 0.649 0.649 0.694 0.644 0.624 0.661 0.612 0.558 0.533 0.495 0.500 0.423 0.395 0.375 0.372 0.391 0.396 0.405 0.428 0.429 0.523 0.562 0.607 0.653 0.672 0.708 0.633 0.668 0.645 0.632 0.591 0.559 0.597 0.625 0.739 0.710 0.729 0.720 0.636 0.581 0.428 0.292 0.162 0.098 0.054 »

¼¼½ 

0 # �� # 1.6; 0 # �
 # 2,     4 	 2,� ,5; 2 # �
 # 8, 4 	6,� ,8; 1 # �� # 6,   4.5 # �
 # 6,4 	 10,11; 
 

P 6 

12 ���� 	 100000∏ �
¯0��
��  ,  ° 	 ��0.00133172  � 0.002270927 � 0.00248546 � 4.67 � 4.671973 � 0.00814 � 0.008092 � 0.005 � 0.000909 � 0.00088 � 0.00119� 
0.1 # �
 # 100,4 	 1,� ,11 

P 11 

13 ���� 	r �
 �
¾��
�  

° 	  12842.275  634.25  634.25  634.125  1268  633.875  633.75 1267  760.05  33.25  1266.25  632.875  394.46  940.838 ¡ 
0.0001 # �
 ,4 	 1,� ,11; �
 # 0.04, 4 	1,� ,5; �
 # 0.03, 4 	6,� ,14; 
 

P 1 

14 ���� 	r �
���H

�  

�
��� 	 420�
 � �4 � 15�H �r ¿
� ��sin�log�¿
����� � �cos�log�¿
������H

���  

¿
� 	 ¨��� � 4 6¾  

�2 # �
 # 2,4 	 1,� ,30 
T 1 

15 ���� 	r 4 ��
� � �
��&
�  

�2 # �
 # 4,4 	 1,� , �, � 	 20 sÁ 50 

P 1 
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5.1. Abstract 

Metamodeling a large-scale simulation system is challenging due to “curse of 

dimensionality.” This chapter applies the recently developed Radial Basis Function-High 

Dimensional Model Representation (RBF-HDMR) to model the transfer capability of a 

large-scale electric power grid subject to contingency disturbances, a problem with 50 

variables. The simulation-based transfer capability analysis has a combination of high-

dimensional, computationally-expensive, and black-box features, which is called a HEB 

problem. Two complementary sets of performance metrics are proposed to validate the 

resultant RBF-HDMR, which is used for power grid characteristic analysis and operation 

planning. The accuracy and efficiency of the proposed methodology is demonstrated 

through three practical cases under different operating scenarios. The results show that 

RBF-HDMR is effective in modeling this HEB problem. 

Keywords: power transfer capability, large-scale, high-dimensional, 

computationally expensive, black-box function, metamodel, RBF-HDMR, engineering 

optimization, response surface 

5.2. Introduction 

The power grid analysis is crucial for reliable and efficient system operations. Such 

analysis is commonly implemented by mean of a simulation process. The power transfer 

capability on the Manitoba-Ontario interconnection is limited by respecting the operating 

reliability criteria for the Winnipeg River 115 kV systems in Manitoba, Canada, subject 

to contingency disturbances. The system operating guides and instructions are derived 

from extensive simulation studies with a number of generation patterns for the six 
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hydraulic generating plants on the Winnipeg River and a thermal generating plant at 

Selkirk, a suburb of Winnipeg. Any deviations from the pre-determined generation 

patterns would require additional simulation studies or conservative operating limits must 

be applied. This renders the current study approach with two major drawbacks: (1) time-

consuming for expensive simulations and (2) lack of understanding to the underlying 

power system. Therefore, it is important to derive a methodology that can provide insight 

into the power grid characteristics and maximize the power transfer capability of the 

interconnection under forecast system operating conditions without extensive simulation 

effort. 

Metamodeling (also called response surface methodology) [1] provides an effective 

mechanism for facilitating simulation processes and simplifying the interpretation of 

simulation results. These techniques construct a mathematical model of simulation 

analysis by a well-planned sampling scheme to relate the simulation outputs as a function 

of relevant input factors. The mathematical model of this kind is called a metamodel 

since it is a model of the simulation model. The planned sampling is also known as the 

design of computer experiments. After validation, the metamodel often surrogates the 

expensive simulation processes for system analysis and optimization. 

There are various metamodels developed and studied, for example, polynomial 

response surface [1,2], Kriging model [3,4], radial basis function (RBF) [5,6], and 

support vector regression (SVR) [7]. These models are often selected based on 

practitioners’ experience or knowledge. The choice of a model type affects metamodeling 

results. The works [5, 7, 8] compared the performance of some of these metamodels. 

With advances in metamodeling techniques and increase in demands for application, 
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some researchers attempt to exploit the best one of multiple fitting metamodels based on 

certain criteria or constructing a weighed metamodel consisting of multiple individual 

models to increase metamodels’ accuracy and capabilities (see [9-11]).  

Metamodeling techniques have been widely used in various disciplines. Kuczera 

and Mourelatos [12] solved the reliability analysis of multiple failure region problems by 

the use of metamodels as indicators to determine the failure and safe regions. Yang et al. 

[13] used five metamodeling techniques for vehicle frontal impact simulation. Apley et 

al. [14] applied metamodeling techniques to an engine piston design problem and studied 

the effort of modeling uncertainty in robust design. Georgopoulou and Giannakoglou [15] 

proposed a metamodel-assisted evolutionary algorithm to solve power generating unit 

commitment with probabilistic outrages. Shan et al. [16] successfully applied the 

metamodeling methodologies to the transfer capability of a power grid with five input 

variables. 

From both foundational development and applications of metamodeling techniques, 

a general impression is that most of these successful cases are low-dimensional problems. 

HEB problems are challenging for metamodels and sampling methods. Computational 

complexity for HEB problems arises with the increase in dimensionality, known as “curse 

of dimensionality.” For example, for a problem with 50 variables, if a two-level-per-

factor design of computer experiments is taken, 2�
 simulations are needed. If each 

simulation needs 13 minutes to run (as is the case for the Manitoba power system in this 

work), it needs 2.8234 � 10�
 years to implement in total. Obviously, the computation 

expense is formidable for high-dimensional cases. Shan and Wang [17] reviewed the 

strategies to solve HEB problems. The existing techniques are often limited in their 
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respective ways. For example, dimensionality reduction techniques are not applicable for 

problems in which each variable has similar importance. Recently a novel RBF-HDMR 

[18,19] has been developed based on HDMR theories [20,21]. This work uses the RBF-

HDMR to model the transfer capability analysis of a large-scale power grid. 

The presentations of this work are organized as follows. Section 5.3 describes the 

framework of the methodology. Section 5.4 introduces the high-dimensional metamodel, 

RBF-HDMR, and its sampling scheme. Section 5.5 proposes two complementary sets of 

performance metrics to validate the resultant metamodel. Section 5.6 presents case 

studies. Summary is drawn in Section 5.7. 

5.3. Framework of Methodology 

As introduced, this study employs RBF-HDMR to build a mathematical model of 

the maximized transfer capability of interconnected power grid on the Manitoba-Ontario 

interconnection. In specific, the process starts with systematically planned sampling of 

generation patterns. The generation patterns are inputs to the power grid simulation 

model, on which various analyses are performed. The output will be the feasibility of the 

sample point (generation pattern) and the maximum value of the power transfer capability 

for a given input.  Once the samples have been evaluated, a metamodel can be built for 

the maximized transfer capability as a function of the generation patterns. After 

validation, the metamodel can be used to plan the interchange across the interconnections 

under forecast system operating conditions. Figure 5.1 delineates the framework of the 

methodology. 
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Fig. 5.1 Framework of the methodology 

In the procedures of Fig. 5.1, loading model represents starting the simulation  

model under a specified operating condition; sampling is to simulate the inputs, that is, 

the generation patterns; contingency analysis for the given input is performed by the 

power system simulation tool PSS/ETM; an in-house IPLAN [22]  program is run to 

search for the corresponding maximum transfer capability; the maximum transfer 

capability dependant on the input patterns is modeled by a RBF-HDMR. The RBF-

HDMR treats power grid simulation and the maximum transfer capability search in the 

dash box as a black-box function, that is, it uses the input/output data without the 

knowledge about how the simulation model processes these inputs to get outputs; after 

validation, the RBF-HDMR modeling process is completed and the resultant RBF-
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HDMR model can be used in applications for system operations planning. This approach 

provides a solution to effectively maximize the transfer capability of the interconnection 

under forecast system operating conditions. 

5.4. RBF-HDMR techniques 

5.4.1. RBF-HDMR model 

A general RBF-HDMR model is written as 

���� < �
 � ∑ ∑ �
-.��b, �

 � � ��b� , �

 �./0���&
�� � ∑ ∑ �
�-.��
, �� , �

�� �/03�����
���&
 ��
- , ��- , �

��. � �� ∑ ����&-|� � ��|/���8���  ,

                                                        

(5.1) 

where �
 denotes the constant term evaluated at �
 (any chosen reference point in 

modeling domain); �

 , �

�, …, are respectively �
 without element/s �b, �b and ��, … 

(that is,  ��
 , �

 � 	 %��+ , ��+ ,� , �
, � , �&+'(, ��
, ��, �

�� 	 %��+ , ��+ ,� , �
, � , ��, � , �&+'(, … 

respectively represents a point in the modeling domain);
 
� is the number of 

dimensionality for the input variable vector �;
 
.  denotes a p-norm distance; �
-, �
�- , …, 

����&- are respectively the coefficient of the expression and ��b� , �

 �,  ��
- , ��- , �

��, …, 

�� are the sampled points of input variables or the centers of radial basis function (RBF) 

approximation; ;
, ;
�, …, ;���& are the number of sampled points for each term; the 

component ∑ �
-.��b, �

 � � ��b� , �

 �./0���  represents the ith input variable �b term which 

explains the effect of the ith input variable �b independently acting on the output function  

����; the component ∑ �
�-.��
, �� , �

�� �  ��
- , ��- , �

��./03���  denotes the correlated 

contribution of the variables �
  and ��  upon the output ���� after the individual 
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influences of �
  and ��  are discounted;  the subsequent similar components reflect the 

effects of increasing numbers of correlated variables acting together upon the 

output ����. The last component ∑ ����&-|� � ��|/���8���  models any residual 

dependence of all the variables locked together to influence the output ���� after all the 

lower-order correlations and individual influence of each involved xi (i =1,…,d) have 

been discounted. Without losing generality, note that Eq. (5.1) uses a simple linear spline 

function as the basis function for the ease of description and understanding; in 

implementation, a sum of thin plate spline plus a linear polynomial is used to avoid 

singular matrices. Details of the basis function can be found in Ref. [18]. 

The functional form of the RBF-HDMR is represented by its structure matrix which 

is defined as 

�h&�� 	
���
���
0 1 0 0…0 1…0…0…10 0 1 0…0 1…0…0…10 0 0 1…0 0…0…0…1…0 0 0 0…0 0…0…1…10 0 0 0…1 0…0…1…1��

���
�
 ,                                              (5.2) 

where � is the dimensionality of the input variable vector �; p denotes the number of to-

be-decided component terms of Eq. (5.1). Each row corresponds to a variable �
. Each 

column corresponds to one of the component terms in Eq. (5.1). Each element in the 

structure matrix is assigned as "0" or "1" ; "0" means that the variable does not appear in 

the component term; "1" means that the variable appears in the component term.  For 

example, the column %0�, 0�, … , 0&' ( denotes the constant component term �
; 

%0�, 0�, … , 1
 , … , 0&' ( represents the first-order component term �
��
�; 
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%0�, 0�, … , 1
 , … , 1� , … , 0&' ( indicates the existence of the second-order component term 

�
���
, ���, and the last column indicates the existence of d-variate correlation component 

term ���…&���, ��, … , �&�. In total, there are 2& number of component terms; however, 

many components may not exist and some others disappear due to their negligible 

contribution to ����. The structure matrix is gradually generated with the RBF-HDMR 

modeling process. It indexes uniquely the component terms and explicitly expresses the 

functional form of black-box functions [19]. 

The RBF-HDMR has many attractive features: 1) has an explicit functional form to 

“reveal” correlation among the variables; 2) provides with (non)linearity information 

with regard to inputs; 3) discloses relative importance of variable terms, and 4) efficiently 

and effectively models large scale complex systems (for example, high-dimensional 

nonlinear problems) [18,19]. 

5.4.2. Sampling and Metamodeling Scheme 

The sampling scheme of RBF-HDMR is illustrated by Fig. 5.2. The sampling is 

carried out sequentially from the lower to higher orders (0D, 1D, 2D, 3D, …,) and the set 

of samples is gradually augmented by new sampling points. In Fig. 5.2, the dots denote 

new sampling points. The circles denote the sampling points inherited from previous 

order/s. The inherited sampling points in Fig. 5.2d are ignored for clarity. Those circles 

are distributed on orthogonal axes or planes passing the reference points (the center 

point), as shown in both Figs. 5.2b and 5.2c.  Starting from the second-order (2D), new 

sampling points are not on those axes or planes. As seen from Fig. 5.2c and 5.2d, the 

sampling points are augmented with corner points first, then points close to center points 



166 
 

of each quadrant, if needed, and at last other areas that need more exploration according 

to the characteristics of the underlying function. More detailed sampling steps are 

described as follows. 

  

 

 

 

a. 0D sampling        b. 1D sampling      c. 2D sampling            d. 3D sampling  

Fig. 5.2 An illustration of RBF-HDMR sampling scheme up to the 3
rd

 order 

1. Choose a reference point �
 	 1��+ , ��+ , � , �&+2(in the modeling domain (see 

Fig. 5.2a). It is recommended that taking the point �
 makes �
 	 �a (that is, the mean of 

the function ���� in the modeling domain). Due to unknown mean of the function, this 

work takes one point in the neighborhood of the center of the modeling domain. 

Evaluating ���� at �
, we then have �
.  According to the theory of HDMR and the 

premise, the reference �
 is irrelevant if the model converges. 

2. Sample for the first-order component functions  ∑ �
-.��
, �

 � � ��b� , �

 �./0��� 	
��%��+ , ��+ , � , �
 , � , �&+'(� � �
 in the close neighborhood of the two ends of xi (lower 

and upper limits) while fixing the rest of xj (j5i) components at �
. In this work, a 

neighborhood is defined as one percent of the variable range which is in the design space 

and near a designated point. Evaluating these two end points, we got the left point value 

�
J.��b, �

 � � ��bJ , �

 �. 	 ��%��+ , ��+ , � , �
J , � , �&+'(� � �
 and the right point value
 �
L.��b, �

 � � ��bL , �

 �. 	 ��%��+ , ��+ , � , �
L , � , �&+'(� � �
 

and define the component 



167 
 

function as ∑ �
-.��b, �

 � � ��b� , �

 �./0���  by finding coefficients �
J, �
L, … for each 

variable �
  (see Fig. 5.2b). 

3. Check the linearity of ∑ �
-.��b, �

 � � ��b� , �

 �./0��� . If the approximation model 

∑ �
-.��b, �

 � � ��b� , �

 �./0���  goes through the center point, �
,∑ �
-.��b, �

 � �/0���
��b� , �

 �. is considered as linear. In this case, modeling for this component terminates; 

otherwise, use the center point �
 to update ∑ �
-.��b, �

 � � ��b� , �

 �./0��� . Then a 

random value along �
 is generated and combined with the rest of xj (j5i) components at 

�
 to form a new point to test ∑ �
-.��b, �

 � � ��b� , �

 �./0��� . If ∑ �
-.��b, �

 � �/0���
��b� , �

 �. is not sufficiently accurate (the relative prediction error is larger than a given 

criterion, for instance, 0.01%), the test point and all the evaluated points will be used to 

re-construct ∑ �
-.��b, �

 � � ��b� , �

 �./0��� . This sampling-remodeling process iterates 

until convergence.  This process is to capture the nonlinearity of the component function 

with one sample point at a time. Step 3 repeats for all of the first-order component 

functions to construct the first-order terms of RBF-HDMR model individually (see Fig. 

5.2b). 

4. Form a new point, ��
, �� , � �&�� 	 %��- , ��- , � , �
- , � , ��- , � , �&-'( , : 5 0 by 

randomly combining the sampled value �
 in the first-order component construction for 

each input variable (that is, �
, di ...,,1= and evaluated at ��
, �

 �, respectively). This 

new point is then evaluated by expensive simulation and the first-order RBF-HDMR 

model. The values of expensive simulation and model prediction are compared. If the two 

values are sufficiently close (the relative error is less than a small value, for example, 
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0.01%), it indicates that no higher order terms exist in the underlying function, the 

modeling process terminates.  Otherwise, go to the next step. This new point does not 

appear in Fig. 5.2 since it has high dimensionality. 

5. Use the values of �
 and �� , 4 5 6 that exist in thus-far evaluated points 

��
 , �

 � 	 %��+ , ��+ , � , �
 , � , �&+'(,  and ��� , �
�� 	 %��+ , ��+ , � , �� , � , �&+'( 
to form 

new points of the form ��
, �� , �

�� 	 %��+ , ��+ , � , �
, � , �� , � , �&+'(. Randomly select 

one of the points from these new points (that is, one of four corners) to test the first-order 

RBF-HDMR model.  The corner points on �
 and �� planes (see Fig. 5.2c) have high 

priority. If the model passes through the new point, it indicates that xi and xj are not 

correlated and the process continues with the next pair of input variables. This is to save 

the cost of modeling non-existing or insignificant correlations; otherwise, use this new 

point and the evaluated points ��
, �

 � and ��� , �
�� to construct the second-order 

component function, ∑ �
�-.��
, �� , �

�� �  ��
- , ��- , �

��./03��� . This sampling-remodeling 

process iterates for all possible two-variable correlations until convergence (the relative 

prediction error is less than 0.01%). Step 5 is repeated for all pairs of input variables. 

Step 5 applies to all higher-order terms in RBF-HDMR model, Eq. (5.1), in a 

similar manner, which is shown in Fig. 5.2d. Ref. [19] described in detail how further 

computation savings are achieved by employing derived theorems for higher-order terms. 
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5.5. Model Validation 

Metamodels need to be validated prior to use. There are a collection of papers 

addressing metamodel validation (for instance, Refs. [23, 24]). The validation depends on 

the purpose of metamodeling [25]. Different purposes lead to various validation 

performance metrics and approaches. For example, Kleijnen and Sargent [25] prefer the 

absolute error than the absolute relative error while the latter is deficient; if a single large 

error is catastrophic (for example, nuclear simulations), the maximum error will be an 

important performance metric. Different validation performance metrics have their pros 

and cons [26]. Single performance metric reflects one aspect of a metamodel and none of 

a single performance is the best criterion for all circumstances.  

The goodness of a metamodel approximating an unknown function is commonly 

measured by some distance. The distance measure includes Â� distance and Â� distance. 

Â�  distance is the absolute value of the piecewise difference between the actual value 

���b� and predicated value �,��b�; while Â�  distance provides the square root of the 

piecewise square of the difference between the actual value ���b� and predicted value 

�,��b�. Whether the distance is scaled or mathematically changed further leads to different 

expressions to form various performance metrics. The scaled performance metrics are 

often used to eliminate the influence of variations in function units and scales.  Due to 

diversity of underlying systems’ features and lack of a priori knowledge about these 

diversities, one performance metric or even one class of similar performance metrics may 

not be able to reflect the goodness of metamodels. This work introduces two 

complementary sets of performance metrics: function-value-scaled and function-
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variability-scaled groups. The former is relatively scaled to the values of functions (based 

on Â� distance). The latter is relatively scaled to the variability of functions (for instance 

deviations or variations of functions, based on Â� distance). 

5.5.1. Function-value-scaled Set 

This group of performance metrics addresses the goodness of approximation 

models with regard to the values of underlying systems. 

1) Mean Absolute Relative Error (MARE) 

A mean absolute percentage error is defined as  

hc^d 	 �

/ ∑ µ
/
�� ,
µ
 	 Ã \Z��0�?Z,��0�Z��0� \ , |���
�| � 1min �\Z��0�?Z,��0�Z��0� \ , .Z��0�?Z,��0�.�|Z��0�|D.Z,��0�.� �⁄ �, |���
�| Æ 1Ç ,    4 	 1,� ,;.            (5.3) 

The relative error µ
 piecewise measures the error of the model. Note that relative errors 

µ
 	 \Z��0�?Z,��0�Z��0� \ is inflated when function values approach or equal to zero. Assuming a 

small number of inflating points in the validation point set, this inflation drawback is 

alleviated by using µ
 	 .Z��0�?Z,��0�.�|Z��0�|D.Z,��0�.� �⁄  just in case.  

2) Maximum Absolute Relative Error (MxARE) 

A maximum absolute relative error is 

 h�c^d 	 100 e ;��  \Z����?Z,����Z���� \ , \Z����?Z,����Z���� \ ,� , \Z��_�?Z,��_�Z��_� \¡.                (5.4) 



171 
 

Note that the absolute relative error definition is not modified to address the deficiency in 

the vicinity whereas ���/� approaches zero.  This is to expose the real behavior of the 

underlying system in extreme cases. MARE and MxARE can complement each other 

within this set of performance metrics, as one describes the average and the other the 

maximum relative error, respectively. 

3) Median Absolute Relative Error (MdARE) 

“Median” in median absolute relative error (MdARE) is defined as- 

h�c^d 	 100 e ;µ�4�p  \Z����?Z,����Z���� \ , \Z����?Z,����Z���� \ ,� , \Z��_�?Z,��_�Z��_� \¡.        (5.5) 

In this set of performance metrics, MARE is a global performance metric. The 

smaller the value of MARE is, the better the metamodel is in general;  h�c^d is a local 

performance metric. It not only reflects the status of one sample point, but also signals 

whether inflation appears in MARE. If an inflation appears in h�c^d, MARE must be 

modified. The deficiency of inflation thus can be dealt with.  MdARE assists MARE and 

h�c^d to measure a metamodel.  

5.5.2. Function-variability-scaled Set 

This group of performance metrics deals with the goodness of approximation 

models with regard to the variability of underlying systems. 

1) R Square 
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The error of a function ���� being approximated by �,��� can be estimated by 

normalized Euclidean distance as 

È 	 �ÉÊ1Z���?Z,���2�&�.                    (5.6) 

If the function is square integrable, 

È 	 �ÉË∑ 1Z��b�?Z,��b�2�Ë0`�                          (5.7) 

while sampling is considered, 

where Ì denotes the variance of ����. The smaller is the value of È, the better is the 

approximation. However, this metric depends on the variance Ì. The variance Ì reflects 

the intrinsic variability feature of ���� . According to the definition of variance, we 

rewrite 

È 	 ∑ 1Í��b��ÍÎ��b�2�Ë0`�∑ 1Í��b��ÍÏ���2�Ë0`�  ,                                                          (5.8) 

where �a��� is the mean of the function ���� in the defined domain. Likewise, the error È 
becomes inflated while the function output is or close to be a constant.  

The goodness of modeling is often estimated by R Square  

^� 	 1 � ∑ %Z��0�?Z,��0�'�_0`�∑ %Z��0�?Za��0�'�_0`�   .                                            (5.9) 

Obviously,  

^� 	 1 � È .                                                                   (5.9’) 
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Normally, if an approximation has È F 1 or R square approaches one, then this 

approximation has a good accuracy with regard to variability. Similar to (MARE), R 

square is deficient when V is close to zero. Let us assume that ���� in the defined 

domain is or close to a constant, that is, the mean of ����, and when �,��b� closely 

approaches ���b� (therefore, a good approximation), we have  

È 	 E4; Z���ÐZa���Z��b�ÐZ��b�
∑ 1Í��b��ÍÎ��b�2�Ë0`�∑ 1Í��b��ÍÏ���2�Ë0`� �� ,                                  (5.10) 

In RBF-HDMR (Eq. 5.1), the roughest approximation is the 0th order 

approximation ���� < �
. Then, the best 0th order approximation is �
 	 �a. Assuming the 

output ���� is a constant, ���� Ñ �
 Ñ �a indicates that the �, 	 �
 accurately models 

���� and there is no need for higher-order terms.  This corresponds to the scenario of 

È 	 1 or R square is 0. Hence if È < 1 or R Square approaches zero, one cannot conclude 

the approximation is poor. 

We caution that our R Square differs from the classical R Square (coefficient of 

determination [27,28]) although both R Square have an identical formula. In our case, R 

Square is measured on validation points, not on the modeling points. The evaluation of R 

Square is also not dependent on the types of metamodels.   

2) Relative Average Absolute Error (RAAE) 

^ccd 	 ∑ .Z��0�?Z,��0�._0`� /ef(g  ,                                                                  (5.11) 
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where STD stands for standard deviation, 
�ÒÓ 	 ¨ ∑ %���b���Ô���'ÕÖb`× _ . Like R square, this metric shows the overall accuracy of an 

approximation model. The closer the value of RAAE approaches zero, the more accurate 

is the approximation model. Similar to the discussion for R square, one can use this 

metric to find if a model is accurate regarding variability. The caveat is when the function 

is almost a constant,  

^ccd 	 ∑ |Z��0�?Z,��0�|_0`� /ef(g 	 ∑ |Z��0�?Z,��0�|_0`�¨/e∑ %Z��0�?Za���'�_0`� 	 �√_E4; Z�l�ÐZa���Z�l0�ÐZ��0�
∑ |Í��0��ÍÎ��0�|_0`�¨∑ %Í��0��ÍÏ���'�_0`� 	 �√/. 

(5.12) 

In this case, RAAE value is not zero but approaches to 
�√/.  Therefore RAAE bears 

similar disadvantage as R Square when the output is or close to be a constant.  

3) Relative Maximum Absolute Error  (RMAE) 

^hcd 	 ijk �.Z����?Z,����.,.Z����?Z,����.,�,.Z��_�?Z,��_�.�f(g .                    (5.13) 

This is a local metric. A RMAE describes error in a sub-region of the design space. 

Therefore, a small value of RMAE is preferred.  Similarly the variation of STD affects 

RMAE.  

Equations 5.3-5.13, defines two sets of performance metrics. Each set of 

performance metrics explains the accuracy of models from different perspectives. In each 

set, each performance metrics reflects the accuracy of metamodels from one standpoint, 

and they work together to reflect the overall goodness of metamodels. The judgment of 
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goodness of a metamodel is related to the nature of the underlying system and application 

requirements of the metamodel. For example, some application requires that maximum 

error not exceed a limit, while others need the global metamodel has minimum total 

errors. This work employs global performance metrics (mean absolute relative error 

(MARE) and relative average absolute error (RAAE)) from each group as convergence 

criteria for metamodeling. We set MARE as 0.1 and RAAE as 0.3; either one criterion is 

met, the modeling process stops. Other performance metrics are employed as a 

supplement to explain the local performance of models. 

5.6. Case Studies 

This section first introduces the power grid system of interest, and then describes 

three different practical operating scenarios to be studied, and at last the gained 

understandings of power grid and transfer capability are summarized. 

5.6.1. Power Grid Description 

Figure 5.3 shows a single line diagram of the Winnipeg River area system and 

Manitoba-Ontario interconnections. The 115kV transmission system interconnects the 

Winnipeg River generating plants, Selkirk generating station, Ontario-Manitoba Tie 

(OMT), and the major 230kV transmission grid surrounding the City of Winnipeg. There 

are totally six hydraulic generating plants on the Winnipeg River. Four plants, Seven 

Sisters (6 generators), Great Falls (6 generators), McArthur Falls (8 generators), and Pine 

Falls (6 generators) are connected through the 115kV transmission system.  The other 

two plants, Pointe du Bois (PDB) (16 generators) and Slave Falls (8 generators), feed 

radically into the City of Winnipeg 66kV system.  Selkirk generating station is a gas fired 
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thermal plant located near the City of Winnipeg and connected to the 115kV transmission 

system. The Ontario-Manitoba interconnection consists of two 230kV tie lines from 

Manitoba to northwestern Ontario.  The interface is controlled by the 115kV phase 

shifting and 115/230kV voltage regulating transformers at Whiteshell station near the 

Manitoba-Ontario border.  Generation levels of the hydraulic plants on the Winnipeg 

River are a function of river system management and economic operation of the plants.  

The total generation levels can vary significantly from a maximum of 593 MW to 

minimum of 298 MW depending on the river flow.  The Selkirk generating plant has two 

units of 65 MW each and is operated when required to regulate the system reliability. It is 

from the operating experience that the Selkirk generation has a unique impact on the 

system performance; so, it will be interesting to study this impact on the transfer 

capability of the interconnection. This information will be useful in coordinating 

generation operations in the concerned areas.  

The case studies are for the winter load with all the transmission lines in service.  

The hydraulic generation levels on Winnipeg River are shown in 5.9 Appendix. They are 

organized by generating plants and generators. Temperature is assumed at a 0°C 

representing winter operations, therefore, the metamodel will not show the sensitivity to 

the temperature change for the case studies. Committing to the generation units, this 

simulation proceeds with 50 inputs (number of hydraulic generators) and 1 parameter 

(thermal generators at Selkirk for system reliability).  The transfer capability of this 

simulation-based power grid can be abstracted out as � 	 ���, Ù�. The input � 

representing the input generators and the parameter Ù denoting the status of the 

generators at Selkirk determine a specific grid operating scenario. It takes about thirteen 



177 
 

OMT 

Seven Sisters 

Slave Falls  

PDB 

Great Falls  

MCA 

Pine Falls 

Selkirk  

St. Vital 

LaVerendyre 

Rosser 

minutes on a desktop computer (Pentium 4 CPU 2.53 GHz) to evaluate one simulation. 

Even a huge number of simulation runs cannot possibly cover the entire 50-dimensional 

input variable space. Scattered outcomes of sporadic simulations do not provide a global 

understanding of the functional relationship between the transfer capability (�� and 

generation patterns (�, Ù�. Three case studies using RBF-HDMR are presented in Section 

5.6.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.3 Power system in Winnipeg River area 

5.6.2. Three Model Cases 

Three cases are modeled, which include the cases that no Selkirk generators are 

online (Ù 	 0), one Selkirk generator with 65 MW is online (Ù 	 1), and two Selkirk 

generators with 130 MW are online (Ù 	 2), respectively. The two sets of performance 

metrics proposed in Section 5.5 are used to validate metamodels. In order to observe the 

changes of these performance metrics, five batches of 100 random test points (non-
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modeling points) are sequentially and accumulatively used to evaluate the metamodels 

against the performance metrics until all total 500 test points are used. The values of 

these performance metrics show the prediction capability of the RBF-HDMR on new 

input points.  

Case 1 No Selkirk Generators on Line (Ú 	 v) 

This metamodel has been constructed by 315 expensive simulation points. Table 

5.1 lists the performance metric values of accumulated samples of five batches. It shows 

Table 5.1 Performance metric values of Case 1 

Performance metric Validation Sample Size 

100 200 300 400 500 

Function-value-
scaled Set 

MARE (%) 6.27 6.72 6.56 6.61 6.57 

MxARE (%) 20.23 20.23 20.23 20.23 20.23 

MdARE (%) 4.89 5.63 5.53 5.64 5.64 

Function-
variability-scaled 
Set 

RSquare 0.02 0.00 -0.01 -0.02 0.01 

RAAE 0.79 0.83 0.83 0.83 0.83 

RMAE 2.50 2.48 2.52 2.75 2.75 

 

that the mean absolute relative error (MARE) is less than 7%.  The maximum absolute 

relative error (MxARE) in 500 validation points is 20.23%. The medium absolute error 

(MdARE) is less that 6%. The values of function-value-scaled performance metrics 

indicate that resultant RBF-HDMR metamodel has small absolute relative error. R Square 

swings around zero, which indicates the metamodel may not be a good approximation or 
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system output approaches a constant. Such situation needs other performance metrics to 

judge. Relative Average Absolute Error (RAAE) stays at 0.83, which explains the output 

approach to a constant. Relative Maximum Absolute Error (RMAE) vibrates at 2.5. If one 

judges this resultant metamodel only by the values of the function-variability-scaled 

performance metrics, the misleading (that is, bad metamodeling) may occur. 

a) Error distribution 
(vertical axis in MW) 

b) Sorted absolute relative 
error in percentage 

c) Percentage of absolute 
relative error less than 
specific percentiles  

Fig. 5.4 Error plots for Case 1 

Figure 5.4a shows the error distribution of 500 randomly sampled points. In Fig. 

5.4a, the horizontal coordinate provides the order of the sampled points, and the vertical 

coordinate represents the errors. The mean of the errors is approximate 10 mega watts 

(MW), which equals to the predetermined increments of power transfer for OMT.  This 

error means that the power transfer capability as the function output is discretely 

simulated at 10 MW increments.  It is believed that the mean error may mostly be due to 

this discreteness. Figure 5.4b sorts absolute relative errors of 500 test samples. It 

demonstrates that the 80% test samples have relative errors of less than 10%. Figure 5.4c 

displays the percentage changes of the absolute relative error less than the specific 

percentiles 5%, 10% and 20%, respectively. In Fig. 5.4c, the horizontal coordinates 
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denotes the number of accumulated samples of five batches and the vertical coordinate 

represents the percentages. It can be seen that almost 100% sample points have less than 

20% relative errors, and about 42% sample points have less than 5%. The percentage of 

all specified percentiles becomes stable as the test sample size increases. 

 

Fig. 5.5 Structure matrix for Case 1 

Figure 5.5 shows the structure matrix of this case, which uncovers the functional 

form of the transfer capability with respect to the output of generators. The functional 

form consists of the constant term and the first-order terms only, which shows no 

significant correlations between generators. In all first-order terms, some terms are linear, 

and others are nonlinear. The linearity/non-linearity of each component is stored in the 

final model. In more detail, the functional form is written as  

���� <
�
 � ∑ ∑ �
-.��b, �

 � � ��b� , �

 �./0���
����,�
,��,����
 �
∑ ∑ �
-.��b, �

 � � ��b� , �

 �./0���
��,�,��,��,��,�H,��,�� ,                                             (5.14) 

where �
 	 264hÛ, the coefficients w
 for each input variable �
 in the second term of 

Eq. (5.14) is zero, which shows both linearity and no contribution to the variation of 
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transfer capability ����. The variation of transfer capability ���� is brought about by the 

last term. The magnitude of coefficients embodies the sensitivity of corresponding 

generators to the transfer capability. Due to high-dimensionality and limited space, we 

choose to plot the impact curves of three generators in Fig. 5.6. In Fig. 5.6, the horizontal 

axis denotes the outputs of a generator and vertical axis represents the transfer 

capabilities. The dots display the modeling points. Figure 5.6a is the plot of the first 

generator at Great Falls, Fig. 5.6b is the plot of the first generator at Seven Sisters and 

Fig. 5.6c is the plot of the first generator at Pine Falls.  

 

�� generator at Great Falls  Ü� generator at Seven Sisters 

  =) generator at Pine Falls 

Fig. 5.6 Transfer capability impact curves of three generators; x axis shows the 

output from each generator and y axis is the power transfer at OMT. Unit: MW 

 

Case 2 One Selkirk Generator on Line (Ú 	 ×) 

For this case, one Selkirk generator with 65 MW is on line (Ù 	 1).  The resultant 

metamodel is built by 251 expensive simulation points. Table 5.2 displays the values of 

two sets of performance metrics with various size test samples. The mean absolute 

relative error (MARE) reaches 0.03%. The maximum absolute relative error (h�c^d) is 

4.9%. The medium absolute relative error (MdARE) is zero. The values of the function-
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value-scaled performance metrics indicate that the resultant RBF-HDMR accurately 

predicts the transfer capability. All R Square values are negative and close to zero. This 

phenomenon indicates that the current metamodel is either not accurate enough to 

approximate the simulation system, or the simulation function values are close to a 

constant. The final judgment needs to be supported by other performance metrics. 

Relative average absolute error (RAAE) has small values as the test sample size 

increases. Relative Maximum Absolute Error (RMAE) increases as the standard deviation 

decreases. The relative error of all test samples is less than 5%.  All these performance 

metrics support that the transfer capability of the power system is a constant of 300 MW 

and the final RBF-HDMR model is a good approximation of the transfer capability under 

this operating scenario. 

Table 5.2 Performance metric values of case 2 

Performance metric Validation Sample Size 

100 200 300 400 500 

Function-value-
scaled Set 

MARE (%) 0.08 0.05 0.04 0.03 0.03 

MxARE (%) 4.90 4.90 4.90 4.90 4.90 

MdARE (%) 0 0 0 0 0 

Function-
variability-scaled 
Set 

R Square -0.02 -0.02 -0.02 -0.01 -0.01 

RAAE 0.16 0.14 0.14 0.13 0.13 

RMAE 9.7 13.3 15.9 18.1 19.8 

 

Among additional 500 random samples, at 482 points the predicated value equals to 

the actual value; 4 have minus one MW errors; 13 have minus two MW errors; and only 
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one has minus fourteen MW error. For this case, since the transfer capability is a constant 

300 MW, the influence of the 10 MW increment does not exist. The 13 smaller errors 

may be due to the control dead-band (acceptable deviation) of the phase shifting 

transformers. Other is believed to be an outlier. For clarity, Fig. 5.7 shows the error 

distribution. It shows that the errors distribute close to zero. 

 

 

 

 

 

 

 

 

Fig. 5.7 Error distribution of Case 2 (vertical axis shows errors) 

 

Figure 5.8 plots the statistical data of 500 random samples for this case. The top 

plot displays the change of the mean of different test sample sizes. It can be seen that the 

mean of this approaches the constant 300 MW. The middle plot shows the standard 

deviation of the samples. The deviation becomes smaller as the sample size increases. 

The bottom plot explains the variance of this case. The variance becomes smaller as the 

sample size increases as well. 
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Fig. 5.8 Statistics of transfer capability for Case 2 (vertical axis unit: MW) 

The structure matrix of Case 2 shows a similar structure as that of Case 1, as shown 

in Fig. 5.4, which indicates there is no significant correlation between generators. 

However, the functional form can be written as 

���� < �
 � ∑ ∑ �
-.��b, �

 � � ��b� , �

 �./0����

�� ,                                              (5.15) 

where �
 	 300hÛ, all the coefficients w
 for each input variable �
 are close to be 

zeroes.  All of first-order terms are linear. The linearity/non-linearity of each component 

can be found in the final model. No generator causes significant changes of the transfer 

capability. In other words, this indicates that the transfer capability reaches a stable state 

of 300 MW. 
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Case 3 Two Selkirk Generators on Line (Ú 	 Õ) 

In Case 3, two Selkirk generators with 130 MW are on line (Ù 	 2). The cost of the 

final metamodel consists of 284 expensive evaluation samples. Table 5.3 gives the 

performance metric values of various test samples. The mean absolute relative error 

(MARE) is approximate 0.4%. The maximum absolute relative error (MxARE) has 

9.04%.  The medium absolute relative error (MdARE) is 0.05%. The values of function-

value-scaled performance metrics display the accuracy of the final RBF-HDMR 

prediction. R Square values swings around zero which indicates that the transfer 

capability is around some certain fixed value. Relative Average Absolute Error (RAAE) 

is under 0.4.  

Table 5.3 Performance metric values of case 3 

Performance metric Validation Sample Size 

100 200 300 400 500 

Function-value-
scaled Set 

MARE (%) 0.42 0.39 0.36 0. 35 0. 36 

MxARE (%) 9.04 9.04 9.04 9.04 9.04 

MdARE (%) 0.04 0.05 0.05 0.05 0.05 

Function-
variability-scaled 
Set 

RSquare 0.09 0.01 -0.03 -0.04 0.01 

RAAE 0.30 0.35 0.38 0.39 0.36 

RMAE 6.06 7.65 8.91 9.53 8.37 

 

Figure 5.9a displays the predicted and actual values of 500 random test samples. 

For clarity, Fig. 5.9b plots the trends of the first 100 of 500 test samples, which shows the 

final RBF-HDMR captures the overall trends of the model behavior. Figure 5.10a shows 
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the error distribution. Those errors distribute close to zero except for thirteen points. 

Some of these errors may be due to the 10 MW simulation increment. In other words, the 

transfer capability may not be at 300 MW for some generation patterns.  Some others

 

  

 

 

 

 

 

a) Actual and predicted values of Case 3   

 

 

 

 

 

 

b)  Trend of the first 100 random test 
samples 

Fig. 5.9 Values of case 3 

 

a) Error distribution  b)  Absolute relative errors  

Fig. 5.10 Errors of case 3 

may be outliers. Figure 5.9b shows the absolute relative errors. These relative errors are 

small except for thirteen points.  The outputs are close to a constant, that is, its variance is 

small. The mean of various sizes of samples is approximate 299 MW.  It can be seen that 
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final RBF-HDMR predicts the outputs of the simulation function except for thirteen 

points. 

The structure matrix is similar to that of Case 1, which still shows no correlation 

between input generators. The functional form is 

 ���� <
�
 � ∑ ∑ �
-.��b, �

 � � ��b� , �

 �./0���
����,�
,��,�H,��,�,�
 �
∑ ∑ �
-.��b, �

 � � ��b� , �

 �./0���
��,��,��,�,�� ,                                                         (5.16) 

 

where �
 	 300hÛ, the coefficient w
 in the second term is a v vector, and the 

linearity/nonlinearity of these components can be obtained in the final metamodel. The 

variation of transfer capability ���� is brought by the last term. The nonlinearity 

information of the components in the last term can be found in the model. The magnitude 

of coefficients reflects the sensitivities of generators. Three generators in Great Falls and 

two generators in Seven Sisters contributed to variation of transfer capability����.  
5.6.3. Understanding of Power Grid and Transfer Capability 

In Section 5.6.2, three model cases have been developed by RBF-HDMR with 

satisfactory results. This conclusion can be drawn from the values of performance metrics 

and statistical analysis of test data. The resultant RBF-HDMRs capture the characteristics 

of power grid under different state parameter Ù and achieve good accuracy of the transfer 

capability prediction for Ontario-Manitoba interconnection. Each model finds the 
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functional form of underlying power grid which discloses the relative importance of 

generators to the power transfer capabilities. As the nonlinearity of underlying power grid 

changes, the functional forms of the resultant models change, which can be seen from 

comparison of Eqs. 5.14, 5.15 and 5.16.  The modeling cost varies. As the nonlinear 

terms increase, the modeling cost increase. The underlying system model in Case 1 has 

the most nonlinear terms in Eq. (5.14) and costs 315 simulation points; the model in Case 

3 has less nonlinear terms in Eq. (5.16) and cost 284 simulation points; and the linear 

underlying system model in Case 2 has no nonlinear terms and costs only 251 simulation 

points. The resultant models show that the thermal generating plant at Selkirk plays a 

critical role in determining the transfer capability over OMT interconnection.  For Case 1 

when both generators in Selkirk are off line, the power transfer capability is strongly 

impacted by the hydraulic generation patterns. This impact is highly nonlinear and 

exerted mainly by generators in three hydraulic generating plants (Great Falls, Seven 

Sisters and Pine Falls). With one generator at Selkirk (Case 2) on line, the transfer 

capability is beyond 300 MW. Any individual generator will not impact the transfer 

capability at this transfer level.  When two generators at Selkirk are on line (Case 3), the 

transfer capability of the power grid manifests low-order nonlinearity, which means the 

stability of transfer capability becomes worse than in Case 2. The transfer capability is 

mildly impacted by generators from two generating plants (Great Falls and Seven sisters). 

These observations are supported by the system operating experience. In summary, both 

RBF-HDMR models and operational experience indicate that the Selkirk generation has a 

unique or non-linear impact on the power transfer capability on the Manitoba-Ontario 

interconnection. It is anticipated that Case 1 with no Selkirk generation and Case 3 with 
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both units on line would display more nonlinear characteristics while Case 2 with one 

unit on line shows fairly linear characteristics and is the most favorable operating 

condition. 

 Based on the observations of the three case studies from modeling standpoint, we 

can conclude that RBF-HDME models all three cases well. Among them, Case 2 is 

modeled the best, Case 3 is ranked second, and Case 1 is third. This conclusion is 

supported by the performance metrics in Tables 5.1-5.3. The mean absolute relative error 

(MARE) values are ranked by order of Case 2, Case 3 and Case 1. The relative average 

absolute error (RAAE) values are ranked in the same order as MARE, which indicates the 

consistency. All R Square values of three cases are close to 0, which is due to the fact that 

their outputs all approach to a constant. Both Cases 2 and 3 approach 300 MW and the 

error distribution of Case 3 is more scattered than that of Case 2. The mean of Case 1 

approaches a constant of 264 MW and shows high nonlinearity. In Case 1 error 

distribution is much more scattered than those for both Case 2 and Case 3. These results 

also show that the proposed performance metric sets overcome the deficiency of a single 

metric to avoid potential misjudgment.  

Compared with traditional metamodels, our experience is that RBF-HDMR model 

has obvious advantages in efficiency and accuracy for HEB problems. For example, a 

five variable similar power network is modeled by various polynomials [16]. The cost of 

the five variable cases is, on average, about two times higher than that for 50 variables.    
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5.7. Summary 

 This work applies the RBF-HDMR metamodeling technique to investigate the 

transfer capability of large-scale power grid on the Manitoba-Ontario Interconnection 

under various operating conditions.  The result of the research work enhances the 

understanding of the performance of the Manitoba-Ontario interconnected power grid. 

Three cases are studied, and the results demonstrate that RBF-HDMR model can capture 

characteristics of the studied power grid and achieve a good prediction of transfer 

capability. The developed metamodels provide useful information in operational planning 

of the interconnected power grid. 

In addition, the study finds the insufficiency of conventional performance metrics. 

Two sets of performance metrics are proposed for validation of metamodels.  
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5.9. Appendix Winnipeg River generation output ranges 

Plant Generator Generation 

Level 

Plant Generator Generation 

Level 

Bus No ID InID Low High Bus No ID InID Low High 

 

 

67992 1 1 3.2 7.0  

 

 

 

 

 
 

68025 1 27 4.8 9.1 

67992 2 2 3.2 6.9 68025 2 28 1.96 3.72 

67993 3 3 3.2 7.0 68025 3 29 1.96 3.72 

67993 4 4 3.2 7.0 68025 4 30 1.96 3.72 

67994 5 5 3.2 7.25 68026 5 31 2.43 4.6 

67994 6 6 3.2 7.0 68026 6 32 2.43 4.6 

67995 7 7 3.2 7.14 68026 7 33 1.82 3.46 

67995 8 8 3.2 7.21 68027 8 34 2.44 4.63 

 

 

68000 1 9 11.27 23.4 68027 9 35 2.17 4.12 

68001 2 10 11.27 20.9 68027 10 36 2.44 4.63 

68002 3 11 11.27 25.3 68028 11 37 2.57 4.88 

68003 4 12 11.27 20.2 68028 12 38 2.76 5.23 

68004 5 13 11.27 22.0 68029 13 39 2.77 5.26 

68005 6 14 11.27 23.4 68029 14 40 2.77 5.26 

 

68013 1 15 13.78 29.13 68030 15 41 3.02 5.72 

68014 2 16 13.78 28.71 68030 16 42 3.02 5.72 

68015 3 17 13.78 27.46  

 

 

68041 1 43 4.51 8.54 

68016 4 18 13.78 28.5 68041 2 44 4.21 7.99 

68017 5 19 13.78 26.01 68042 3 45 4.49 8.51 

68018 6 20 13.78 25.59 68042 4 46 4.49 8.51 

 

 

68019 1 21 7.47 14.18 68060 5 47 4.51 8.54 

68020 2 22 7.47 14.18 68060 6 48 4.51 8.54 

68021 3 23 7.47 14.08 68061 7 49 4.48 8.5 

68022 4 24 7.47 13.78 68061 8 50 4.48 8.5 

68023 5 25 7.47 16.54 InID: input variable order for modeling 

68024 6 26 7.47 16.84 
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Chapter 6 

Concluding Chapter 

In this chapter, prominent points presented in the previous chapters are 

recapitulated with a discussion for future work. 

6.1. Summary 

Metamodeling techniques provide an effective approach to enhance the analysis of 

simulation results and expedite simulation-based optimization. This dissertation has 

surveyed the-state-of-the-art of metamodeling techniques and optimization 

methodologies for problems of high-dimensionality. The survey exposes that the existing 

metamodeling techniques are not only limited to low dimensionality and are also 

developed with little regard to the nature of the underlying systems. It is pointed out that 

the metamodeling techniques should emphasize the exploration of characteristics of the 

underlying systems and exploit these characteristics for metamodeling. We believe that 

sampling and metamodels should help to reveal the underlying problems rather than 

being “blind.” The survey identifies the high-dimensional computationally-expensive 

black-box function (HEB) problems as a great hurdle for metamodeling and simulation-

based optimizations. The “curse of dimensionality” is a bottleneck in the development, 

application, and integration of metamodeling techniques and optimization methodologies. 

Two promising approaches to solve HEB problems, mapping and decomposition, have 

been identified.  
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Aiming at solving HEB problems, this dissertation integrates Radial Basis Function 

(RBF) with High-Dimensional Model Representation (HDMR) into a new model, RBF-

HDMR. The RBF-HDMR, compared with other metamodels, has a well-grounded 

theory. It is the first metamodel of its kind to tackle the HEB problem by taking 

advantage of the characteristics of underlying systems. The proposed RBF-HDMR and 

accompanying sampling adaptively explores and models an unknown underlying system 

and uses characteristics of an unknown underlying system such as linearity/nonlinearity 

and correlation relationships in variables. The RBR-HDMR has attractive features. The 

RBF-HDMR successfully circumvents the “curse of dimensionality”. Multiple 

mathematical examples are used to test RBF-HDMR. Comparison with other sampling 

methods and metamodels demonstrates the effectiveness and efficiency of RBF-HDMR. 

The dissertation extends from the initial development of RBF-HDMR to high-order 

component term, and also develops methods to “uncover” the black-box function. A 

structure matrix is proposed to support the explicit functional form of black-box function. 

A correlation matrix is proposed to explain the correlation relationship in the black-

functions. The extended RBF-HDMR first “uncover” black-box functions. Two theorems 

are derived to support the metamodel constructing cost reduction if high-order correlation 

of variables exists and plays an important role in the black-box functions. Multiple 

examples show the turning-black-to-white capacity of RBF-HDMR. 

The proposed RBF-HDMR has been applied to power transfer capability analysis 

of Manitoba-Ontario electrical interconnections. Three cases with 50 variables are 

modeled. The results further display the capability of constructing large-scale engineering 

problems. In addition, we found the deficiency of some performance metrics and propose 
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to assess a metamodel by the use of sets of performance metrics. The sets of performance 

metrics reflect the metamodel more thoroughly and avoid the impact brought by the 

deficiency of individual performance metrics. 

This dissertation identifies high-dimensional computationally-expensive black-box 

function (HEB) problems as a practical-but-not-solved problem and “curse of 

dimensionality” as a bottleneck. A novel metamodel RBF-HDMR has been proposed to 

overcome this bottleneck. The proposed RBF-HDMR is successfully applied to 

engineering application cases. The dissertation represents the first work in tackling HEB 

problems in engineering design and opens doors to many possible research paths and 

applications. 

6.2. Future Research 

The RBF-HDMR is not only a high-dimensional metamodel, but also represents a 

general modeling methodology for HEB problems. Therefore, combining other types of 

metamodels (for example, support vector regression and Kriging) with the HDMR 

concepts are worthy to be explored. 

The current RBF-HDMR does not address noises in simulation models. The noises 

exist in expensive analysis and simulation. Modeling noisy HEB problems have a 

practical significance in industry. RBF-HDMR needs to be further developed to tackle 

noisy problems. In addition, there are scenarios with existing simulation data. The 

function of RBF-HDMR using existing data is worthy to develop. 
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This research concentrates on metamodeling construction and sampling. 

Optimization for HEB problems is a natural extension of our current work. A 

decomposition-coordination optimization based on the proposed RBF-HDMR is to be 

developed. 

Validation often receives little attention in the metamodeling community. It is an 

important part of metamodeling. Existing performance metrics have their own pros and 

cons. We have proposed two sets of performance metrics to assess metamodels. The 

efficiency of validation approaches is expected to be enhanced by statistical approaches. 

How to use performance metrics and statistics to effectively and efficiently validate 

metamodels, especially for HEB problems, will be a challenging and ongoing research 

topic. 
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