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ABSTRACT

Bearing capacity coefficients for footings and passive pres-
sure coefficients for walls in sand are computed wusing
stress-characteristic solutions with the Cambridge 'Critical
State' strength model. The basic equilibrium equations are
combined with the Coulomb criterion to produce a set of so-
called 'basic differential equations’. These equations are
solved using a finite differences method and stress-charac-
teristics are computer-drawn. The solution is rigid-plastic
and does not take into account volume strains prior to fail-
ure. In the Critical State model, and hence in the analysis,
the angle of shearing resistance is not considered to be
constant in the sand, and is allowed to vary in the domain
under stress. This takes account of‘the well-known curvature
Coulomb-Mohr envelope, in contrast with most solutions which

assume it is straight.

Bearing capacity coefficients for footings and passive
pressure coefficients for walls are plotted as functions of
the size of the structure (breadth of the footing, or height
of the wall) and of the compressibility of the sand. These
theoretical results agree well with experimental data and

with previous analysis.
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- specific volume

Vy - specific volume on reference section

X - coordinates axis
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Z - idem
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Chapter I

INTRODUCTION

Bearing capacity factors for footings ahd passive pressure
coefficients for walls are invariably reported in the liter-
ature as functions of the angle of shearing resistance of
the soil. However, it is well acknowledged that identifying
the angle of shearing resistance in a given problem is dif-
ficult. This thesis starts from the understanding that sand
behaviour cannot be adequately described by a straight Cou-
lomb-Mohr-Strength envelope as is done in traditional analy-

sis

. To get better co;relation between theoretical results and
experimental tests, it appears necessary to improve the
methodology with respect to the sand parameters-involved.
One such parameter is the angle of shearing resistance that
is commonly considered to be constant for reasons of sim-
plicity. However, experimental evidence (Schofield and
Wroth,1968) shows that the Coulomb envelope flattens with
increasing stress. An understanding .of this evidence is
mainly based on the reasonable assumption that while the in-
tergranular friction.component of the angle of shearing re-
sistance may be essentially independent of stress level, the

dilatancy component is not. That is, the angle of shearing



]
resistance is not a soil constant but more a variable indi-

cating the response of the soil structure under stress.

One attempt was made by Graham and Pollock (1372) to de-
velop a non-constant-¢ solution for the failure of walls and
footings. To compute the ultimate stresses under a footing
base or behind a retaining wall, Graham (1974) used the so-
called 'slip-line' or 'stress-characteristic’ method and in-
troduced some developments of the Sokolovskit! (1960) solu-
tions. The varying-¢ relationship was composed of three
distinct linear parts as a function of stress level, and had
been proposed earlier by De Beer (1963). It is important to
note that the work required the use of computers that fortu-
nately became available at that time (late 1960's and early
1970's). Although the consideratjon of a non-constant ¢ rep-
resented a more realistic approach‘ to computer modelling of
sand behaviour, some limitations could be put forward due

the simplicity of the De Beer model.

With the appearance of a more reliable soil model, namely
the critical state model (Roscoe,Schofield,Wroth,1958) in
conjunction with great improvement of the computer soft-
ware,it was felt that the time had come to address the vari-
able ¢ question in a new 'critical state' framework. In view
of these developments ané in order to arrive at an adgquate
" assement of the influence of the angle of shearing resis-

tance, it was thus necessary to reprogram the stress charac-

! Also written "Sokolovskii"



teristic solution for a varying angle of shearing resistance

based on the critical state model. This is the main objec-

tive of this thesis.

Firstly, in chapter 2, in order to comprehend and predict
the behaviour of a sand, a conceptual framework is estab-
lished : this is the critical state model. In chapter 3, a
numerical procedure adapted by the author to include a new
form of ¢-variation is developed and used to address the two
different cases of a rough footing and of a rough passive
wall. Chapter 4 describes the parametric study that has
been conducted by means of a revised computer program and
also the choice of the required input -parameters. Results
and their discussion follow in Chapter 5 and 6. Topics for
further research and conclusions are listed in Chapter 7.
Appendix A deals with the question of how the theoretical
and parahetric results could be applied in construction
problems of engineering interest. Appendix B contains the
computer listing and a typical output. Finally, A sample of

a8 computer plotting program is presented in Appendix C.



Chapter 11I

SAND MODELLING

2.1 INTRODUCTION

Since Coulomb introduced the simple equation 7 = ¢ + otan(¢)
(r shear stress at failure, o normal stress at failure) to
describe how the normal stress and the shear stress relate
in a soil failure, soil mechanics has had to be developed in
order to cope with the increasing complexity of industrial-
ized society. In this process, researchers have had to ap-
proach various difficult situations such as the liguefaction
of sands, slope stability problems, earthquakes, etc . These
studies led them to acknowledge the complexity of the soil's
response and induced them to conceive a 'unified' theory ca-

pable of handling variousbpossible states of soil media.

2.2 THE CRITICAL STATE MODEL

Roscoe, Schofield and Wroth (1958) following ideas suggested
earlier by Taylor(1948) proposed that the basic parameters
'r,0,e' were necessary and sufficient to describe the behav-
iour of a soil element. They conducted a series of drained
and undrained tests on sand to obtain a unique yield surface

composed of two major subsurfaces (Fig 2.1):



1. The Hvorslev surface

2. The Roséoe surface

The link between the two subsurfaces is called the criti-
cal void ratio line (CVR) or critical state line (CSL) and
represents the ultimate state of a soil sample. Once at
this 'critical state', the soil can be sheared without any

further change of the three basic parameters.

Technically in material science we are dealing with yield
surfaces because plastic-hardening is involved. However, in
most soil mechanics work using the Coulomb-Mohr criterion,

this should be called a 'rupture' or 'failure' envelope.

Fig 2.1 represents a schematic diagram of the model. This

three dimensional plot can be expressed in two ways :

1. a (r,0,e) diagram
2. a (q,p‘,V) diagram
a) with p'= (o4' + 02" + 03' )/3 , the mean principal
stress.

b) @ = 01'-03', the deviator stress

c) V=1+e , the specific volume

Although plot(1) is easier to visualize, plot(2) has the
merit of taking. into account the intermediate principal
stress. As acknowiedged by the position and the shape of
the yield surface the shearing resistance of a soil depends

not only on the normal stress but also on the value of the
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initial void ratio. However, .it important to note that the
ultimate state represented by the CVR 1line is associated

with independence from stress history effects.

In a 1ln(p'):V space, the normal consolidation line (NCL)
and the critical state line (CSL) are experimentally found
to be parallel (Wroth and Basset,1965,Fig 2.2). For various
reasons associated with the low compressibility A of sands?
it has proved helpful to modify the original pfesentation of
the critical state model by projecting all the points onto a
reference section set arbitrarily as p'=1. This has permit-
ted the three dimensional model to be represented in a two
dimensional space,namely q/p' : V (Atkinson and Brans-

A
by,1978,Fig 2.3), where

1. vV, =V + XLog(p'), and

2. X is the slope of the CSL.

The present study has used these normalized plots as a
representation of the critical state model for sand. This
has enabled the author to develop a simple iteration process
which can be used in calculating failure loads of structures

in sand (section 3.6)

2 The term 'compressibility' is retained for A (A=Cc/2.3)



2.3 MODELLING

In 1937, Casagrande stated simply that a dense sand exibits
a high friction angle whereas a loose sand tends to exibit a
lower friction angle (Rowe,1967). 1In the context of the so-
phistication and the simplicity of the critical state model
and since the angle of shearing resistance is the character-
istic that determines the response of the soil structure to
external stresses, it has become necessary to understand the
dependency of the angle of shearing resistance with respect

to the ' basic parameters' e and p' (or e and o).

Rowe (1967) separated the angle of shearing resistance ¢

into three components :

1. strength developed by frictional resistance and de-
pending on the mineralogical content of the sand.

2. strength developed by the energy required to cause
expansion or dilation of the material.

3. strength developed by energy required to rearrange

and reorient soils particles.

Fig 2.4 shows the distribution of each component as a
function of the relative density I, . As might be expected,
the dilatancy effect plays an increasing role as the rela-
tive density increases. This explains the higher friction

angle of denser sands.

Although Rowe's diagram (Fig 2.2) is of considerable in-

terest in understanding the behaviour of ¢ as a function of



the void ratio (represented by In ) it does not address the

influence of the confining pressure, that is, the second ba-

sic parameter of the critical state model.

Studying the behaviour of sands at extremely low pres-
sures, Ponce and Bell (1971) found themselves in the posi-
tion where they had to take into account the influence of
the confining pressure and proposed a three-dimensional dia-

gram ¢ = f(e,P); (Fig 2.5).

With regards to this representation, it is important to
note that at éxtremely low pressures, shear produces almost
no rearranging of particles since most of the energy is dis-
sipated in expansion and true sliding; 1in other terms, it
can be stated that low confining pressures cannot suffi-
ciently restrain the sand to permit an internal reorganisa-
tion. Another consideration is the rapid decrease of ¢ with
increasing pressure and the greater influence of the rear-

ranging component over the dilatancy one for loose sands.

Even if the detailed study of each component of the angle
of shearing resistance does not come directly into wuse in
geotechnical calculations, that is, only the overall knowl-
edge of ¢ is wused, the parallel between the critical
state model (e, o, 7) in Fig 2.1a, and the three-dimensional
¢ diagram (e,0,¢) in Fig 2.5 permits the establishement of a
sound 'foundation' to explain the systematic wvariation of

the angle of shearing resistance. More particularly should
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be noticed the conceptual pafallels between the r-axis which
represents the real physical shearing resistance of soil in
engineering applications (macro-behaviour) and the ¢-axis
representing a measure of strength arising from engineering

analysis (micro-behaviour).

2.4 CHOICE OF A ¢ps =£(¢,,) RELATIONSHIP

This thesis addresses the computation of bearing capacity
coefficients for strip footings and passive pressure coeffi-
cients for retaining walls. Both cases are two-dimensional
and require the knowledge of a plane strain friction angle.
Sincé triaxial tests are easiest to perform in the laborato-
ry, they are used to establish the critical state model and
they lead to angles of shearing resistance for three dimen-
sional (axisymetric) stress states. It was therefore neces-
sary to find a relationship that would transform triaxial

¢~-values (¢tx) to ¢-plane strain values (¢ps).

Various researchers have proposed such relationships:

1. Wroth (1984,pers. comm.) $ps= 9/8 6.y
2. Lade (1976)
= - 0 0
a) ¢ps 1.5 by 17 for ¢ > 34 .
= 4]
b) ¢ps ¢tx ¢txs 34 v
3. Bishop (1966) : Fig 2.6 in the Sixth Rankine Lec-

ture,1966 (after Cornforth,1964).

These various proposals are presented in Fig 2.7.
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In this thesis, relationship (3) by Bishop has been used

in the revised form shown in Fig 2.8. For use in the com-
puter, the relationship was plotted in 1logarithmic terms

and was subdivided into three linear parts (Fig 2.8) :

1. ¢tx< 33° ¢ps = ¢tx

2. 33% ¢ < 36° 1n¢ = 1.6661ln¢ - 2.336
tx ps tx
3. ¢ > 369 ln¢ = 1.2931ln¢ - 1.002
X ps t

t X




Chapter 111

STRESS-CHARACTERISTIC METHOD AND METHODOLOGY

3.1 INTRODUCTION

At the state of plastic limit equilibrium, the soil benea
a footing or behind a passive retaining wall is stressed
its limiting or yield condition. In loose and medium den

sands, failure is close to the critical state, with :
3p _ 39 _ 3v

e = 3% e = 0. In dense sands,further straining is req
red after failure before critical state is reached.Sokolov
(1960) developed the stress-characteristic method to compu
the stresses at failure. Graham(1968) pursued this idea an

improved the numerical accuracy of the solution.

3.2 CHOICE OF A YIELD CRITERION
Coulomb (1776) suggested the equation :

T_=c¢ + o tan(g¢)

£ - n
This equation states that plastic flow will occur (plasti
failure) when the shear stress r reaches a value that de
pends on two material parameters and on the stress level
These are the cohesion of the soil ¢ , the angle of shearin

resistance ¢ and the normal stress to the plane of applica

tion o .
n
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Although this equation does not take into account the in-
fluence of the intermediate stress, Fig 3.1 provides some
experimental evidence that the use of the Coulomb criterion
is more accurate than the corresponding Tresca or the Von
Mises criteria. The Coulomb criterion has been adopted in

this thesis to define a 'vyield' criterion.

3.3 SOKOLOVSKI METHOD

The Coulomb criterion is combined with the static equilibri-
um equations to provide a set of so-called 'basic equations'
(Sokolovski, 1960). One method of solving these eguations
consists of using logarithmic transformations to generate
curvilinear coordinates whose directions coincide with the
direction of the failure planes.  This is commonly known as
the method of stress characteristics. In turn, the solved
system in 1logarithmic stress space provides a set of slip
lines or a slip-line field whose positions are known in the

physical (x,z) plane.

Assuming that the soil could be modelled by a constant
value of the angle of shearing resistance, Sokolovski (1960)
developed a numerical procedure based on approximations of
the hyperbolic differential equations to obtain the slip-
line field for cohesionless as well as cohesive soils. Since
this thesis aims at analysing localized ¢-variations in a
granular (cohesionless) material, a more general application
of Sokolovski's procedure has had to be developed 1in this

thesis project.
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3.4 LOCAL ¢ —VARIATION ASSOCIATED WITH SOKOLOVSKI'S
METHOD

3.4.1 Local system of references

The proposed model is based on the representation of Fig
3.2, Locally, the curvature of the Coulomb-Mohr envelope
can be treated as presenting a 'cohesive' component in a
general system of references. This entails using the general
differential equations developed for a (c,¢) medium (Soko-
lovski,1960). This is justified by the more general aspect
of a cohesive frictional medium over '@ non-cohesive one.
That is, a cohesionless soil is a more restricted case where

the envelope has no intercept with the r-axis.

3.4.2 General system of references

a) In a two-dimensional representation (Fig 3.2),. the equi-

librium equations are :

)
1. %k, Ty
dx dy
BTX 90
2. SIS A S ¢ Egs. 3.1
ax Yy

b) The Coulomb-Mohr criterion as a yield condition is de-

scribed by (Fig 3.3)

1. max(|r | - (o)) =0
n n
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2. or T = £(S) where
a) T=r
n

b) S=q1

This yield condition can be written as (Fig 3.3) :

d 1 =
EE_(,TﬁI f(%l)) 0 Egq. 3.2
where
1. o =1/2(01+03) + 1/2(0,-03)cos2w
2. T = 1/2(01-03)sin2w

Substituting o and T into Eq. 3.2 :

E%—(|Tn| - f(dn)) = (01-03)sin2w(cos2w + £' (o, ))

and therefore %_(Ir | = £(o )) 0 provides the general
w n n

condition cot2u = £'(g,) where 2u

T - 2w-(Fig 3.4)., This
angle determines the position of the slip lines inclined to
the principal axis at the angle Tpu . At failure the stress

conditions are :

-—r

.

Q
L

n 1/2(01 + 03) - 1/2(01 - 03)6052#
1/2(0, - 03)sin2u

N

L]

.‘
]

In a chosen system of references (Fig 3.5), for any point A

c -
T. X 1/2(01+ 03) T 1/2(01- 03)c052u

9y

2. 7 = 1/2(0y -03)sin2y
Xy

substituting o and T into ox,ay,rxy wve get :
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X cos2ut cos2y
1. = 0 T
C nthy sin2yu

2. ey =T sin2y/sin2u

Substituting o ,ay,rxy into the equilibrium equations 3.1

produces a new set of eguilibrium equations 3.3 :

3X . 39X . . oY 3
1. (l+cosZucosZW)§§ + cosZu51n2w5; - 51n2u(51n2w5§-— coszwsg)

_ sin®2y
21
n

2. in2ydX - 2X 4+ gj Wy singyd¥
cosZu51n2wax + (1 cosZucoszw)ax + s1n2u(coszwax + 51n2w§§

- sin22u
2T
n
"where the Mandel function x is defined by :
do
2x = — - 2dx
n

It is now convenient to introduce new variables defined by :

—h
.
3
n

x(u) -y
x(u) + ¢

N
re
]

Using these variables, Eqs. 3.3 become :

1. .a_n+ —-a—n-=
% tan (¢ “)ay a

]
o

%% + tan(w+u)ag

s Eqs. 3.4
3y qsv _

where



16
-t sin2p(Xsin (y¥u) - Yeos(ytu))
b 2t_cos(y )

If the present problem is redefined in dimensionless
terms with gravitational accéleration in the X-direc-
tion, the body forces are (Fig 3.5) :

x =1 and y =0

The right-hand part of Egs. 3.4 becomes :

a _ * sin2usin(yyp)
b 2Tncos(Wiu)
Since at failure 7, = 1/2(0y-03)sin2u (Fig 3.4), we
obtain :
a o+ sin(y *w)
b '(01-03)cos(¢;tu)

For cohesionless materials, the angle- of shearing
resiétance ¢ is defined as the angle between the tan-
gent to the Coulomb-Mohr circle passing through the
origin and the o¢-axis. 1In principle, in the general
case, the locus of the intersection of the tangent
and of the Coulomb-Mohr stress circle could describe
any curve (Fig 3.6). In order to match the definition
of ¢ with the theoretical general case, an assumption
is made in the context of the_finite differences
method :

Locally , ¢ can be determined as : sin¢ = (0,-03)/20
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where o = (o0,+03)/2
In view of this assumption, & and b in Egs.3.4 can
be rewritten as :

a sin(yp ¥ u)

= +
b - 20sindcos(y + u)

The system of equations to be solved becomes, in the
adopted system of coordinates (Fig 3.7) where now the
z-axis is in the gravity direction, and the x-axis is

horizontal :

1, & 4 an _ . = _sin(y - u)
9Z tan(y+ u>3X v b 20sindcos(P+ p)

sin(y + u)
2 sin cos(y_u ) Egs. 3.5

2, 2an L
-3 + tan (¥ u)ax a

, as before n=X-v E=x+y
and 2dx = dan/fn -2du

Now dy can be integrated after substitution of o
and r , bearing in mind that ¢ = ¢ - 7
n o n
2dx = 2sin22y + 27ndy 24y
T
n

T can be found from : sin¢ = r Josin2u,
Since 2u = /2 - ¢ ,
we have sin¢ = r Jfocoss ,

and thus r = osing¢cos¢ .

Finally,  2dx = do/gtan¢
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wWwith the assumption that ¢ is non-variable within a
limited finite range of stresses, the last equation
can be integrated to give :

x = logo/2tan¢
The set of differential eguations 3.5 <can now be
easily solved by the method of the characteristics.

Use the differential relations :

3t

dg = gzdz + %%dx y dn = %%dz + 2n

aXdX

Solving Eg. 3.5 with these relations we obtain :

1. 3¢ _ _bdX - tan (U+ p)dE
32 dX - tan(y+ £)dZ
2. an _ _adX - tan(Y~- u)dn
3 dX - tan(y- up)dz

Egs. 3.6

The stress characteristics correspond to cases where
the numerator and the denominator are simultaneously
equal to zero. This determines two real separate fam-

ilies of stress characteristics :

1. dn = a along %% = tan(y~- u)
dZ
dE dx

. il b along 3z = tan(y+ u)

Egs. 3.7

Note that the slopes (y+ u) of the characteristics
are in the direction of limiting shear stress, and

are therefore the lbcal inclinations of failure

planes.
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Rewriting the above set in finite-difference terms

1. (X—Xl)'= (Z-Zl)tan(wl -u) 3 n -n;= (Z—Zl)al

2. (X—XZ) = (Z-Zz)tan(wz.ku) 58 -E,= (Z—Zz)b2

Eqs. 3.8
The unknowns are the variables X,2,n,% which can be
evaluated from the previously known variables
X1,X2,21,22, 171,82 . The solution will then proceed

from two previously determined points say P,,P; to a

new point P (Fig 3.8).

Solving Egs. 3.8 directly for X,Z,n,t .

than(wl- u) - Xl— Zztan(w2+ u) + X,

Z =

tan(wl-u) - tan(w2+ u)
X‘= X1+ (2-Z1)tan(yg-u) = Xy+ (Z-Zy)tan (Yo+u)
n = nl + (Z—Zl)al s & = €2+ (Z—Zz)bz

On . reversing the logarithmic transformation :

o = exp((f + n)tang) v = 1/2(¢ - 7)
This simple finite-difference method yields only ap-
proximate results since no account of the curvature
of the slip lines is considered in the use of ¥y and

Va2 . Previous. researchers have used iteration pro-
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cesses on ¢ (De Jong,1959, Sokolovski,1960), and on
both ¢ and ¢ (Graham, 1968) to take account of the

curvature of generalized slip-line fields.

The computer program used in this thesis added one

additional iteration process.

1. 1iteration on o (Sokolovski,1960; De
Jong, 1959)
2. iteration on ¢ (Graham,1968)

3. iteration on ¢ (Author)

This is a new development of earlier procedures sug-
gested by Graham and Pollock (1972). The additional
iteration is wused to model the dependency of ¢ on
pressure, that is, the curvature of the Coulomb-Mohr

envelope.

3.5 THE ¢ -ITERATION PROCESS

- The process has been developed specifically to improve com-
putational accuracy in a domain where ¢ varies with stress
level. That is, the ¢-value used in any small section of the
solution arises from the solution itself, and is not predet-
ermined by the analyst. It is based on the normalized plot
of the critical state model outlined in chapter 2. Fig 2.2
represented this model on a plot of g/p' vs V+Aln(p'). For
every state of stress and every specific volume there corre-
sponds a value q/p" on the overconsolidated Hvorslev surface

represented by the straight line in the normalized plot.
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Since g/p' = 6 sin¢ /(3 - sing),

¢, = Arcsin(3M/(6 + M)) where M = a/p'

In the ¢-iteration procedure, this value of $., is com-
pared with the initial value of ¢ previously used to calcu-
late p'. If '¢tx - ¢il/ $; > 1073, the initial value of ¢
is reset as ¢i= ¢tx. The process is repeated until the con-

vergency criterion set as 10-3 in the program is satisfied.

3.6 DETERMINATION OF THE SLIP-LINE FIELD

Proceeding from a known boundary, that in this work is com-
monly taken as the edge of a passive zone beneath the free
surface where ¢ = 7/2, the program computes point by point
the slip-line field towards an end boundary where failure
Stresses are to be evaluated.The type of problem being exam-
ined (that is wall or footing, for Kp or Ny values respec-

tively) determines the data input to the program.

If point O is taken as the point of origin of the adopted
system of physical coordinates, set as either the bottom
corner of a footing or the top of a passive wall, the slip-

line field consists of two families of characteristics :

1. a set of curved radial lines originating from point
O.
2. a set of spiral lines intersecting the radial lines

in turn at an angle of 2u = /2 - ¢
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Since point O 1is a singular point of the slip-line
field, it represents a point of discontinuity in fhe mathe-
matical solution of the basic equations. At stress equals
zero, the logarithmic transformations that are involved in
the solutions tend to infinity. In order to handle this
problem, Graham (1368) introduced a surcharge term in the
computation of the slip-line field that allows the logarith-
mic stress range to remain finite. The effect of thé sur-
charge term is then reduced by 'shrinking' the field by a
factor of 10 , n being a number of scale reductions neces-
sary to almost eliminate the effect of the surcharge. Graham
(1968) showed that the surcharge component is negligible af-
ter four or five scale reductions depending on the required
accuracy. It is important to note that this scale reduction
process does not introduce any scale effects itself since
all computations are carried out in dimensionless terms. The
influence of footing size on the results is handled sepa-

rately in chapter 6 (Discussion of Results).
The present study has retained this procedure for han-

dling the singularity at point 0.

3.7 EDGE OF THE PASSIVE ZONE :THE INITIAL BOUNDARY
CONDITION

This boundary is determined prior to any computation of the
characteristic field and is defined as :
x : horizontal distance from O

z = x tan (n/4 - ¢/2) depth of the soil.
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o = (1.0 + 2) / (1 - sin¢) where 1.0 is the sur-
charge term

v = n/2 direction of the major principal stress

Since the solution addresses a non-constant ¢ problem,
the edge of the passive zone has to be developed as a bound-
ary using the ¢ iteration process to'compute a coupled set
of compatible ¢- and o- values. As a result, the shépe of
this boundary is not a straight line but exhibits a slight
convex curvature with increasing depth because stress levels

(and therefore ¢-values) change with depth.

3.8 THE END BOUNDARY : SURFACE WHERE LOADINGS ARE NEEDED

Two distinct cases can be identified.

3.8.1 Passive wall

The solution addresses the case of a fully rough wall where
the angle of wall friction which is mobilized corresponds to
the local angle of shearing resistance of the sand (Gra-
ham,1971; Shields and Tolunay,1972)). Since no discontinu-
ities exist at the interaction between the sand and the
wall, the wall is in this case a slip surface where normal
stresses computed by the solution can be inteqrated as a
force boundary. The computer program includes a subroutine
that performs this operation and integrates the pressures
into the dimensionless coefficient K = ( chde )/0.5yH?2

where H is the wall height, and o is horizontal pressure.
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In this case, K is a function of the height of the wall,
P
even though it it a dimensionless coefficient. That is, the

program permits the examination of scale effect.

3.8.2 Bearing capacity for footings

Differing from the passive wall failure, a foundation fail-
ure presents two symmetrical zones of failure where the so0il

flows outward from the centre-line.

Graham (1971) showed that a solution that involves the
extension of the slip lines up to the base of the footing
should also address the problem of the discontinuity of the
base friction angle & at the centre-line of the footing
base. He proposed a linear-§ variation to handle this situ-
ation where the footing base is considered to be a slip sur-

face.

An alternative considers that an elastic wedge is trapped
below the footing preventing the extension of the slip
lines. This concept seems now acknowleged by wvarious re-
seachers. Vesic (1973) concluded that the stress and the de-
formation patterns under a compressed area in an actual
footing is such that it always leads to the formation of a

wedge.

The present solution is based on the assumption of an
elastic trapped wedge. In this case, the end boundary in

the stress field computation is the 1lower edge of the elas-
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tic wedge and is also a slip-line. This boundary is inclined
to an angle ¢ with the footing base. Since the angle of
~shearing resistance has been allowed to vary in this thesis,
the edge of thevelastic zone must be determined using the ¢
iteration procedure. This leads to a slightly curved edge

which is concave upwards.

Vertical stresses on the two symmetrical lower boundaries
of the wedge are calculated for different-sized footings and
then expressed as the dimensionless (but scale dependent)
parameter Ny, where for surface footings :

Q = 0.5 vB2Ny

3.9 THE RIGID-PLASTIC ASSUMPTION

The solution which has been developed above is based on :

1. a yield criterion : the Coulomb-Mohr criterion incor-
porated into a critical state model,
2. static equilibrium equations, expressing rigid-plas-

tic behaviour (Fig 3.9).

The solution does not take into account any strain-stress
relationship in the sand and assumes negligible wvolume
strains.prior to failure. Clearly, the validity of such an
assumption must be associated with the mode of failure ob-
served. Even if the soil density alone does not determine
the mode of failure patterns, Fig 3.10 shows that a loose

sand (compressible) tends to fail in a 'punching shear fail-
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ure’ mode whereas a dense sand (incompressible) tends to
fail in a 'local' or ‘'general shear failure' mode. These
various failure modes were reported by Vesic (1963) and De

Beer (1970).

It therefore seems that the idea of associating a rela-
tively incompressible material such as a medium dense sand
with a rigid-plastic behaviour does not alter the basic va-
lidity of the theoretical stress-characteristic solution. In
the absence of an exact solution, this assumption is re-
tained, especially for the range of densities considered
(medium dense sand). By careful consideration of boundary
conditions that changed with displacement of the stucture,
Graham (1974) was able to compute approximate load-displace-

ment interactions.



Chapter 1V

PARAMETRIC STUDY

4.1 INTRODUCTION -

In order to address a great number of possible variables , a

broad range of input parameters has been tested.

4.2 DEFINITION OF THE CRITICAL STATE MODEL

The use of normalized plots of the sand behaviour (Fig 4.1)
requires the input of a series of parameters necessary to

define the g/p' and the v, axes.

4.2.1 ¥, axis

Vlis defined by Vy = V+Aln(p') where V is the specific vol-
ume (V=1+e) and N\ is the slope of the critical state line.
V. has been allowed to vary within a range of wvalues re-

A
ferred to as (V) and (v.) where :
A min A max

min

(vi) = (1+e ) + Aln(p® )
X

max ma max

(V&) = (1+enﬂn) + kln(p;in )

Two ranges of values were tested. They are hereafter re-
ferred to the 'limited' range case, and the 'broad' range
case. For the limited range , the necessary values were
fixed to be :

e . =0.5, p'mh1= 10 kPa

min

e = 0.7,

max = 104 kPa

]
P max

- 27 -
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For the broad range case, these values were :

e = 0.4, phin = 10 kPa

min

€nax = 0.8, phax = 10% kPa

It is important to note that the values of the void ratio
and pressure were chosen to be representative df extreme
values that might be encountered in real sands, and to per-
mit a parametric study. Bearing in mind that this study 1is
directed particularly at medium dense sands (section 3.9),
values of the void ratio should be associated with a "medi-

um’ range. This guestion is addressed in Appendix A. The
literature records few cases where the compressibility A (or
Cc) has been measured. Mostly, the behaviour of sands is re-
lated to its placement void ratio and unit weight. Values

which have been found include :

Ref. Sand type A
Lee and Farhoomand, 1967 subrounded 0.150
Lee and Farfoomand, 1967 angular 0.2590

Atkinson and Bransby,1978 "typical” 0.100

Vesic and Clough,1968 Chatahoochee river o 0.175
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The work in this thesis has been performed on the basis
of A-values chosen to cover the range described by this lim-
ited number of references. In order to study the influence
of the compressibility X\, a range of values of A was tested
for both the limitéd and the broad range cases. These values
are :

A =0.05, 0.10, 0.175, 0.250

4.2.2 a/p'-axis

The limits of the chosen range were fixed as (q/p')min and
(q/p')max corresponding respectively to (VA)max and (vk)mi
A minimum and a maximum angle of shearing resistance were
given as input parameters and the use of the relationship
a/p' = 6sin(¢)/(3-sin¢) provided the two limits (q/p’)mi_
and (q/b')max . For the limited range case, the values of

the limits of the angle of shearing resistance were chosen

as :

o' 320
min
¢7

max

400
For the broad range case, these values were :

¢! = 28°

min

o' = 459

max
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4.3 OTHER INPUT PARAMETERS

4.3.1 Density y

An average dry density was considered for each case and was

defined by :

GS
7ave - 1 + e Tw
ave
where e =
- ave
G = 2.65 specific gravity

7 = 9.81 kN/m3 water unit density
w .

4.3.2 Scale parameter : 1

All the variables throughout the computation of the stress-
characteristics were expressed in dimensionless terms. That
is a=ar/31, x=xr/1, Z=Zr/l where 1 is a scale parameter used
to convert real physical plane dimensional parameters o¢ ,X,
Z into dimensionless ones, and vice-versa.The scale param-
eter 1 was chosen as the horizontal length of the edge of

the passive zone (Fig 4.1 and 4.2).

4.3.3 Number of spiral and radial lines

In order vto compare results from each case studied, the
numbers of spiral and of radial lines used in the computa-
tion were kept i@entical throughout the parametric study.
Ten spiral lines and twenty radial lines were considered. It
is important to note that the radial lines are not straight

lines but curved under gravity forces. This in effect re-
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quires the computation of extra radial 1lines after each
scale reduction of the domain (section 3.5). To input a
higher number of spiral lines and of radial lines would
slightly improve the accuracy of the solution. However, it
would also lengthen the computation time. It was felt that a
compromise has been reached with the chosen figures (10 spi-
rals, 20 radials). This guestion was explored by Graham

(1968).

4,3.4 Edge of the passive zone

The number of spirals having being chosen, the abscissas of
the intersection of the spirals and of the edge the passive
zone are input in dimensionless terms. Corresponding z, o,
y-values are then computed by the computer program (section

3.7)

4.3.5  Summary of all input parameters

For each case computed , the input parameters are:

1. €nin’€®pax ¢ Minimum, maximum void ratio

, . s s .
2. Pnin'Pmax ¢ Minimum, maximum pressure

3. ¢' ,¢' : minimum, maximum angle of shearing resis-
min max
tance
4. N : compressibility (A=Cc/2.3)
5. 1 : scale parameter
6. n : number of spiral lines
7. m : number of radial lines
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8. x(n) : abcissa of the intersections of the spirals

and of the edge of the passive zone

Further discussion of factors influencing the choice of in-

put parameters in a given problem is given is Appendix A.

4.4 VALIDITY OF THE COMPUTER PROGRAM

The validity of the numerical results produced by the com-
puter has been established by testing the program with a
constant-¢ solution. That is, the ¢-angle was not allowed to
vary throughout the computation but was fixed at a constant
value. Various values of the ¢—angle were tested and re-
sults are summarized in Table 4.1 together with results pre-
viously obtained by Graham and Stuart (1971). Both sets of
numerical results agree within 1% representing slight dif-
ferences in computer rounding. This confirms the basic va-
lidity of the computer program for constant-¢ hodelling.
This step is needed because the original program was in
ALGOL, and had to be translated into WATFIV for use at the
University of Manitoba. This comparison does not however
confirm the validity of the variable-¢ subroutine calcula-

tions which form the new contribution by the author.



Chapter Vv

RESULTS

5.1 BEARING CAPACITY COEFFICIENT FOR FOOTINGS

Since the determination of the slip-line field proceeds from
an assumed "known" boundary (edge of the passive zone) to?
wards the 1initially unknown boundary (edge of the elastic
wedge), the coordinates of this end boundary are determined
at the very end of the computation and depend on the input
parameters. Fig 4.1 showgd the position of the end boundary
(E), the edge of the passive zone (P) and the direction of
the computational process. Point A which is the intersection
of the extreme characteristic and of the elastic wedge lies
also on the centre-line of the considered footing. There-
fore, the actual breadth of the footing is not predetermined
but computed after the development of the stress—character-
istics from the known passive zone boundary. Due to the sym-
metry of the problem, the actual breadth of the footing is

twice the abcissa of point A. For every set of input parame-

p' ,¢

ters e ;e rYe NP,
min "max min

. ' @ and 1, the computer
min max mazx

program calculates a set of coupled results :

1. dimensionless bearing capacity coefficient Ny, where
/2
a) Ny =2fovdx/0.5732, and
-]

- 33 -
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b) where the vertical stress o, = o(1 + singcos?y)

2. breadth of the footing B (metres)

5.2 PASSIVE PRESSURE COEFFICIENT FOR WALLS

Similar to the computation of the bearing capacity coeffi-
cients for footings, the determination of the slip-line
field behind a retaining passive wall proceeds from the edge
of a passive zone towards the end boundary. In this case,
the end boundary represents the fully rough back-surface of
the wall. Fig 4.2 showed the position of the intersection of
the extreme characteristic with the wall. As in the footing
case where the breadth is determined a postiori, the actual
height of the wall is determined at ;h; ;ng ;f—the computa-
tion process and is represented by point A. Therefore, the
ordinate z(A) of point A is the computed actual height of
the wall. As a result of the parametric study outlined in

the preceding chapter, every set of input parameters pro-

duces

1. the passive pressure coefficient for a retaining wall
Kp (dimensionless).
a) K = ("o dz/0.5vH?2
P joaH / 7
b) where 0y = o(1-sin¢cos?y)

2. the height of the wall H (metres)..
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5.3 SLIP-LINE FIELDS

Due to the number of characteristics, plots of the result-
ing slip-line fields are unacceptably "dense". For clarity,
all the spirals but only half of the radial lines have been
computer-drawn. Fig 5.1 shows the slip-line field for the
footing case, only half of the total field 1is drawn, the
other part being symmetric about the centre-line of the base
of the footing. Fig 5.2 shows the slip-line field behind a

failing passive wall.

5.4 RESULTS

5.4.1 Bearing capacity coefficient for footings

Chapter 4 described the parametric study that was conducted.

Results of the computations are plotted in :

1. semi-log scale?® : Figs 5.3a,b

2. log-log scale : Figs 5.4a,b where the abcissa ranges
from 0.1 m to 10 m.

3. Compreséed log-log scale : Figs 5.5a,b where the ab-

cissa ranges from 0.01 m to 10 m.

Figs 5.6a,b present the plot of Ny versus the compressibili-

ty A.

3 a and b refer to the "limited" and to the "broad" range
case respectively. :



5.4.2
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Passive pressure coefficient for walls

Results are plotted in :

1.
2.
3.

semi-log scale : Figs 5.7a,b
log-log scale : Figs 5.8a,b

compressed log-log scale : Figs 5.9a,b

Figs 5.10a,b represent the plots of the passive coefficients

for wall as function of the compressibility A of the sand.

These results are discussed in more detail in Chapter 6.



Chapter VI

DISCUSSION OF RESULTS

6.1 BEARING CAPACITY COEFFICIENTS FOR FOOTINGS

6.1.1 Influence of the breadth of the footing

'Figs 5.3a,b showed semi-logarithmic plots of the bearing ca-
pacity coefficients versus breadth of footing. The bearing
capacity coefficients increase rapidly as breadth decreases
and flatten almost asymptotically as the breadth increases.
This behaviour is observed for both the broad range case and
the limited range case. However, it is important to note
that the broad ranée case produces higher values at small
sizes (Ny = 303 for B=0.08 m ,X = 0.250) than the limited
range case (Ny = 170 for B=0.10 m ,A = 0.250). At large
footing sizes, a reversed behaviour is observed : the broad
range case gives lower values (Ny = 44 for B=8 m ,\ = 0.250)
than the 1limited range case ( Ny = 655 forB= 7.8 m ,A =
0.250). An explanation of this phenomenon is due to the cur-
vature of the Coulomb-Mohr envelope. In a given range of
stresses, the broad range model is associated with higher
and lower angles of shearing resistance than the limited
range model. Thérefore, the stresses at which the soil
reaches its minimum ¢—value'under large footings on sands

permitting angles of shearing resistance as low as 28° (the

- 37 -
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broad range case) are greater than the equivalent stresses
under similar footings resting on sands that exibit angles
of shearing resistance as low as 32° (the limited range
case). This in turn leads to lower values of the bearing ca-
pacity coefficients for the broad range case for large sizgs

as compared with those obtained for the limited range case.

A similar phenomenon occurs for small-size footings where
stresses at which thé soil first reaches its maximum value
in the broad range case (¢'hax = 45°) are lower than those in
the limited range case (¢'nax = 40°). In turn, higher Ny val-

ues are observed for the broader range case.

Another factor attracts attention for both ranges, al-
though it is more acute for the broad range case. Lines rep-
resenting the behaviour of the sand in Figs 5.4a,b and Figs
5.8a,b for various compressibilities intersect at a bfeadth
around 0.8 m, Thus, for a large footing, say breadth over
0.8 m, the Ny value associated with a more compressible sand
(for instance A = 0.250) is lower than the Ny values associ-
ated with a less compressible sand (for instance A\ = 0.050).
The reverse behaviour is observed for small footings with
breadth say, less than 0.8 m. That is, the Nvy values asso-
ciated with a more compressible sand (A = 0.250 for in-
stance) are greater than those associated with a less com-

pressible sand (A = 0.050 for instance).
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It appears necessary to set upper and lower limits for
the values of the Ny éoefficients since the mode of failure
changes with the size of the footing. It was remarked earli-
er that large footings fail by 'punching' and small footings
along localized shear surfaces (Vesic,1963). The notion of
punching failure is understandable when thinking of the
amount of energy required to develop a general shear failure
mode in compressible soils, that is to move the soil outside
the footing 1in an upward direction. The upper and lower
limits of Ny correspond to cases where only part of the fou-
dation soil has reached 1limiting equilibrium. In narrow
foundations, this part is restricted to the narrow zones in
which continuous shear failure has deveioped. In very large
foundations, or on compressible soil, the plastic region is
bounded to the side of the footing by soil whose straining
has not taken it into plastic behaviour. Controversy may
arise in determining the criterion to fix the boundaries be-
tween these different failure mechanisms. It has not been
possible in the past to approach this question quantitative-
ly. As the changes of behaviours are probably subtle and
progressive, experimental evidence is needed. This remains

outside the scope of this thesis.

6.1.2 Influence of the compressibility A

Both the limited and the broad range cases show similar pat-
terns of behaviour (Fig 5.6). At small sizes Ny increases

with compressibility A. However, for large footings, the
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trend is reversed, and Ny decreases slightly with increasing
compressibility. The value is found to remain constant (non-
varying with X) for a size of 1.3 m in the case of a limited

range and for a size of 1.21 m in the broad range case.

The explanation of this behaviour resides in the coun-
teracting influences of the size of the footing and that of
the compressiblity A of the sand. For small footings, say
B=0.5 m, the likelihood of failing in a rigid-plastic mode
diminishes as the soil becomes more compressible. The sand
compresses but does not fail and postpones failure at higher
stresses. This explains the increases of the Ny values.
However, the same pattern of change 1is not observed in the
case of‘large footings, say B=8 m. Here, the influence of
the compressibility still does exist (leading to a higher
Ny) but this influence is overriden by the influence of the
scale effect and failure envelope curvature. As shown in
the preceeding paragraph, for constant A, the Ny value de-
creases as the footing size increases. The combined effect
of the influences of both the scale effect and compressibil-
ity leads to the observed behaviour, that is an overall de-
crease of bearing capacity coefficients for large footings.
This behaviour is readily apparent in footings at large
field scale. It contributes to an understanding of the com-
mon perception that small laboratory footings behave differ-

ently from field-scale footings.

[
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It 1is important to note that the behaviour described
above in Fig 5.6 is compatible with that observed in the
preceding paragraph (Fig 5.4). As mentioned previously in
section 6.1, the Ny values for large footings decrease as
the compressibility of the sand increases while the Ny val-

ues of small footings increase with compressibility (lines

1,2,3,4 of Figs 5.4a,b).

Although it is difficult to separate the influence of the
compressibility from that of pressure-dependent scale ef-
fects, this study shows that the two separate influences
should not be neglected when an accurate evaluation of the

N7y coefficients is required.

6.2 COEFFICIENTS OF PASSIVE PRESSURE FOR WALLS

Computation of the coefficients of passive pressure for
walls are very similar to those carried out for the estima-
tion of the bearing capacity coefficients for footings . The
patterns of the results are also similar. Consequently, a
detailed discussion of these results and an explanation of
the observed behaviour will not be repeated, The main
points will be highlighted here and reference made to the
previous detailed discussion of the bearing capacity coeffi-

cients.
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6.2.1 Influence of the height of the wall

Both the limited range and the broad range exhibit the same

general characteristics:

1. For a given X\, the coefficient of passive pressure
for walls Kpdecreases with the height of the wall
(Figs 5.7a,b).

2. Curves correppnding to various compressibilities in-
tersect for a.wall height of 1.8 m . This is apparent
on Figs 5.8a,b.

3. For large wall heights,say over 1.8 m, the Kp coeffi-
cients associated with more compressible sand are
smaller than those associated with less compressible
sands (lines 1,2,3,4 on Figs 5.7;5,8).

4. For small wall heights,say less than 1.8 m, the K
coefficients associated with more compressible sandp

are larger than those associated with less compressi-

ble sands (lines 4,3,2,1 on Figs 5.6:5.8).

Similar to the case of the bearing capacity problem, the
general tendency is for the Kp coefficient to decrease with
increasing wall size. This decrease is affected by the com-
 pressibility of the sand. Differences between the various

~ lines representing the compressibility of the sand are also

"f more marked for the broad range case.
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6.2.2 Influence of the compressibility

The general characteristics for both the limited range and
the broad range case (although more marked for the broad

one) are:

1. For small heights, 1less than 1.8 m, the Kp coeffi-
cient increases with increasing compressibility. This
is due to a lower likelihood of the sand of failing
in a rigid-plastic mode . The sand compresses and
postpones failure to higher stresses.

2. For large wall heights, over 1.8 m, the Kp coeffi-
cient decreaseé with increasing compressibility. This
is due to the counteracting influences of pressure
dependent size increases leading to lower values and
of increased compressibilities leading to larger val-
ues. The overall observed behaviour is a decrease of

the K, coefficient with increasing compressibility.

6.3 CONTOURS OF THE ANGLE OF SHEARING RESISTANCE

6.3.1 Distribution of the ¢-angle under a footing

Figs 6.1a,b show the contours of the angle of shearing re-
sistance under 0.1 m wide and 2 m wide footings. In both
cases, A=0.250 and the broad range values are considered.
The contours are represented by the dash lines. For both
footing sizes,’a aecrease of roughly 10° is observed between
the edge of the passive zone and the centre line. As expect-

ed, values of the ¢~angle are greater for a small footing
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(38°-48°) than those for a large footing (32°-42° for the 2
m footing); this is due to the larger pressures under the

large footing.

It is interesting to compare the Ny values obtained from
a constant ¢-solution (Table 6.1) where ¢ is now taken as
the average mobilized shearing resistance throughout the do-
main under stress, and corresponding Ny values obtained from.
the present analysis based on the size of the footing and on
the compressibility of the sand. The importance of this
step in selecting appropriate ¢-values was intoduced earlier

by Graham and Stuart (1971).

For small footings, the Ny value corresponding to a con-
stant-¢ analysis is 224 for ¢=44° and 330 for ¢=46° The
Ny value obtained from Fig 5.6b (broad range case,A=0.250,
B=0.1 m) is 300. For the large footing, the respective fig-
ures are 78 for the constant-¢ solution with $=38° and 75
from Fig 5.6b Depending on the average value of ¢ which is
taken to model the failu;e domain, the Ny values from the
two methods are clearly similar. It therefore appears that a
conventional constant-¢ analysis may produce accurate re-
sults as long as the 'correct' ¢ is chosen for the analysis.
Since in practice it is extremely difficult to estimate a
'correct' angle of shearing resistance for a domain under
stress, the present analysis based on the size of the foot-
ing and on the compressibility of the sand 1is inherently

sound.
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6.3.2 Distribution of ¢ behind a passive wall

Figs 6.2a,b show the contours of the angle of shearing re-
sistance behind passive walls for heights of 0.1 m and 2.0
m. In both cases, the variation of ¢ in the failure zone is
of the order of 8° . However, the mobilized ¢ angles for a
2 m wall are much smaller (36°- 44°) than those obtained for
the 0.1 m wall (41°-49°), This 1is due to the larger pres-

sures involved in the case of the larger wall.

‘As was shown for the bearing capacity problem, it is in-
teresting to compare the K values that arise from the pres-
ent analysis® with those ogtained for a constant ¢-solution
where ¢ is taken as the average value of the angle of shear-
ing resistance Ehroughout the failing domain. Table 6.2
summarizes these values. The results of the two analyses
are reasonably close but depend strongly'on the average val-
ue of the ¢-angle which is taken. Like the bearing capacity
problem, it is apparent that estimation of the average ¢-an-

gle of the £failing domain remains difficult. The-critical

state analysis presents a potentially easier alternative.

4 referred as a 'critical state' analysis.



6.4 COMPARISON WITH OTHER THEORETICAL RESULTS

Fig 6.3 and 6.4 show the comparisons for walls and for foot-
ings with results obtained by Graham and Stuart (1971) who
used the De Beer (1963) ¢-pressure relationship. Only the
broader- and the narrower-range results of the present anal-
ysis are plotted. Line (3) represents the results obtained
for the broader range case with A=0.250. Line (2) corre-
sponds to the results obtained for the limited range case
with A=0.050. Lines (1) and (4) represent results provided
by the Graham and Stuart study for a loose sand and for a

dense sand respectively.

It is important to notice that for both the wall problem
and the footing one, the curves éorresponding to the narrow-
er range (line 2) remain in the Graham and Stuart range and
almost parallel to the loose sand. Ideally, if the varia-
tion of the ¢-angle did not have any influence, curves cor-
responding to a medium sand (lines 2) should approximatively
be situated 1in the middle of the Graham and Stuart range.
Therefore, the fact that lines (2) are offset towards the
loose sand brings some evidence that the variation of the
¢-angle does alter the computation of the ultimate stability

of the domain under stress.

Lines (3) regtesenting the broader range where the ¢-an-
gle is allowed to vary from 28° to 45° must be understood as
an accentuation of what lines (2) represent (narrow range, ¢

= 3209~ 40°). 1In view of this fact, it is therefore expected
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that lines (3) be closer to the Graham and Stuart dense
state for small sizes and closer to the Graham loose state
for large sizes. This is what Figs 6.3 and 6.4 reveal. How-
ever, since the minimum ¢-angle in the broader range in the
present study is as low as 289, compafed with the Graham and
Stuart minimum of 32°, the range of behaviour of the sand
represented by lines (3) is broader than the Graham and
Stuart range. Consequently, bearing capacity coefficients
for large footings and passive pressure coefficients for
large walls are 1lower than those obtained by Graham and

Stuart.

6.5 COMPARISON WITH EXPERIMENTAL RESULTS

6.5.1 Footing case

Experimental results provided by Vesic (1973), Graham ana
Stuart (1971) and Meyerhof (1951). have been plotted in Fig
6.5. In order to compare these results with the range of
values produced by the critical state analysis, the upper
limit of the set of Ny values produced (broad range,A=0.05)
as well as the equivalent lower limit (limited
range,A=0.250) have also been plotted in Fig 6.5. Clearly,
the general trend of experimental values correlate reason-
ably well with the form of the solution arising from the
critical state analysis. . In particular, the range of the
theoretical solutions which have been primarily carried out
for medium dense sands covers closely the range of experi-

mental values obtained for medium relative density sands.
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However, it is clear that it 1is still not possible without
extensive additional testing to predict from this work, the
bearing capacity of a footing on a particular sand. Since
this thesis was prepared, the author has been made aware of
a recent literature review in the paper: Amar,S., Bague-
lin,F., and Canepa,Y., 1984 : "Etude experimentale du com-
portement des fondations superficielles",Anales de'l;inSti—
tut technique du batiment et des travaux publics, sols et

fondations 189 # 427,Paris,France.

6.5.2 Wall case

Similar to the footing problem, the broadest range of K
values obtained from the critical state analysis have been
plotted against experimental data (Fig 6.6). The upper limit
of the range is described as the set of values vyielded by
the broad range case analysis (A=0.05), whereas the lower
limit correspond to the limited range (A=0.250). As for the
experimental data, results obtained by Kerisel (1972), Horn
- (1967) and Graham (1971) have been considered. Even if the
experimental values seem quite dispersed, a general trend
still appears, that is, a decrease of the Kp values with in-
creasing wall height. Like the bearing capacity problem, the
range of theoretical values which is primarly valid for me-
dium dense sands. broadly covers the range of experimental

data.
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In both cases (Ny and Kp values), the theoretical solu-
tions and field data encompass scale effect influences
whereas small scale laboratory tests do not in general. It
therefore appears- that the scattering of the experimental
values outside the theoretical range is not an abnormality
of the sand behaviour but represents tests on sands which
may be very angular, rounded, or well-graded, and which lie

outside the ranges of behaviour shown in Figs. 4.3a,b.

6.6 SINGULARITY OF SIZE 1m

Figs 5.5a,b and Fig 5.%9a,b showed respectively the plots of
the bearing capacity coefficients against the bréadth of the
footing, and the passive pressure coefficients against the
height of the wall . These are plots where abscissas repre-
sent a broader range (0.01,0.1,1.0,10 m) compared with the
preceding plots (Figs 5.4 and 5.8) where the the range was
(0.1,1.0,10.0 m). This has the effect of compressing the
diagrams in the X-direction and thus accentuating all the
possible singularities in the curves. Such a singularity is
situated for a size of 1 m ( height of the wall or breadth
of the footing). As is apparent in Figs 5.5 and 5.9, the Ny
values and the Kp values exhibit 1ocalize§ slope discontinu-
ities at size 1 m. These discontinuities can be explained by

the way the Ny values and the Kp values are calculated.

For a passive wall, KP is evaluated from the eqguation :

= 2
Pp 0.5 ﬂ{Kp

For a footing, Ny is calculated from :



50

Q = 0.5 yB2N«y

Both equations have the same form :

y = 0.5 kyx?

The function x? shows a singularity when the wvariable
x=1, that is x2? = x (12 = 1), Therefore it is important to
consider the singularity which is introduced by sguaring the
variable X which as explained above represents the breadth

of the footing or the height of the wall.

Consider : x2-x = x(x-1) and notice that Kp and Nv are
evaluated as a function of the form : k / |x(x-1)].
The function y=1 / x(x-1) is plotted in Fig 6.7. Three in-

tervals can be distinguished:

1. 0 < x < 0.5 asymptote at x=0 with y decreasing.
2. 0.5 < x < 1 asymptote at x=1 with y increasing.
3. 1 < x asymptote at y=0 with y decreasing

These patterns of slope changes are similar in some respects

to those observed in Figs 5.5 and 5.9 :

1. 0 < size < 0.5 m Ny and K, decrease rapidly

2. 0.5 < size < 1m Ny and Kp decrease slowly and a
local slope discontinuity obtained at size 1 m.

3. 1 < size ) Ny and Kp decrease first rapidly and

seem to tend to an asymptotic value.
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The mathematical function y=1/|x(x-1)| explains the be-
haviour observed for Kp and ﬁ7. The local slope discontinu-
ity at size 1 m is therefore not due to some particular fea-
ture of the sand response but is introduced artificially by
the normalizing equations which serve the purpose of defin-
ing the bearing capacity and passive pressure coefficients

in dimensionless terms.

These results have shown that an estimation of bearing
capacity and passive pressure coefficients based sclely on a
constant angle of shearing resistance seriously underesti-
mate the complexity of the problem. The scale effect factor
plays notably such an important role that practicing engi-
neers use some empirical rules to take it into account. Al-
ternatively, they neglect the usefulness.of calculating
failure loads 1in sands for full size structures. Bjerrum
(1973) mentions such an empirical rule by stating that cal-
culation of large footings for gravity stuctures in the
North Sea is done by applying a reduction of ¢ of the order
n.1% to n .4° for each 10" reductions of the footing size (n
is an integer). This rule arises from the gualitative work
presented by Graham and Pollock (1972). It thus appears that
current practice acknowledges the importance of known but

poorly determined factors such as those described in this

thesis,
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Chapter VII

CONCLUSIONS AND FURTHER RESEARCH

CONCLUSIONS

Conclusions drawn from this study are :

1.

The advent of more powerful and more convenient com-
puters and peripherals makes it possible to investi-
gate the development of the static equilibrium equa-
tions combined with a new sand model (Critical State
model).

The angle of shearing resistance is only one compo-
nent among others that are necessary to get accurate
computations of bearing capacity coefficients for
footings and passive pressure coefficients for walls.
The two most important additional parameters that are
taken into account in this study are :

a) the footing breadth or the wall height.

b) the compressibility of the sand (A or Cc).

Bearing capacity coefficients for footings and pas-
sive pressure coefficients for walls have been ex-
pressed ip dimensionless terms. For a given sand,
they decrease with increasing size (breadth of the
footing or height of the wall). This is due to the

effect of higher pressures associated with larger

- 52 -
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walls or footings which decrease the mobilized angle
of shearing resistance.

5. The variation of the angle of shearing resistance has
been found to be approximatively 10° in the rigid-
plastic domain beneath a footing (Fig. 6.1). The
equivalent variation of the ¢-angle behind a passive
wall is 8° (Fig. 6.2).

6. The produced solutions correlate well with other
theoretical and experimental results (Figs. 6.3 to

6.6).

7.2 SUGGESTIONS FOR FURTHER RESEARCH

1. The behaviour of rigid-plastic zones has been de-
scribed using stress-characteristics. It would be of
considerable interest to model with a Finite Element
mesh the trapped elastic zone beneath a footing and
connect it to the stress-characteristic solution.
Similarly, a major further development would be to
connect a stress-characteristic solution to the com-
pressed non-failing field to the side of a footing on
strain-hardening soil when "punching" is occurring.

2. Contours of the_mobilized angle of shearing resis-
tance have been drawn. The critical state analysis
could also permit the computation of the vériation of
the void ratio. This could be investigated to draw

the contours of the void ratio or volume strain be-
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neath a footing or behind a passive wall. In turn,
the variation of the density could be addressed.

The rigid-plastic assumption does not take into ac-
count volume strains prior to failure. Experimental
tests could determine some index of "compressibility"
that could be used to factor the Ny and Kp values for
compressible sands. Alternatively, approximate load-
displacement relationships can be derived by close
attention to boundary conditions.

Further laboratory tests should be performed to fur-
ther confirm the validity of the critical state mod-
el. This, in turn, will reinforce confidence in the

critical state analysis.
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¢—angle NY-value from NY-value from the
Graham and Stuart computer program
30° 23 23.17
32° 31 31.25
34° 45 45.60
36° 68 69.20
38° 98 98.90
40° 146 147.90
42° 240 242.97
¢-angle Kp-value from . Kp—vali:e from the
Graham and Stuart carmputer program
30° 5.6 5.65
34° 7.8 7.85
3g° 11.3 11.60

TABIE 4 .1 - CHECK OF NUMERICAL ACCURACY OF THE PROGRAM,
COMPARISON OF CONSTANT- ¢ SPECIFICATION WITH
EARLIER RESULTS. FROM GRAHAM AND STUART (1971).
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Tmin

TYmax

®rnin

®rmax

m
118
114
121
122
114
112

114
101
111
115
123
110
115
112
112
114
112
118

108

97
12
113
116
113
107
118
120
108
103
124
126
112
108
119
122
125
124
115
123
128
114
116
120
134
127
129
133
128
133
130
134
139
139

0.7
0.18
0.18

- 0.16

0.17
0.12

0.49
0.43
0.45

TABLE A.1 - COMPACTIBILITY(F) OF COHESIONLESS
.~ SOILS (WHERE F=(e
AFTER WINTERKORN AND FANG (1975).
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FIG 2.1 - THREE-DIMENSIONAL REPREGENTATION OF
THE CRITICAL STATE MODEL.
(a) AFTER ROSCOE, SCHOFIELD AND WROTH (1958),
(b) AFTER ATKINSON AND BRANSBY (1978).
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FIG 2.2 - THE NORMAL CONSOLIDATION LINE (NCL),CRITICAL
: STATE LINE (CSL) AND THE "REFERENCE SECTION".
AFTER ATKINSON AND BRANSBY (1978) '
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Appendix A
FACTORS INFLUENCING THE CHOICE OF PARAMETERS FOR
COMPUTATION
Bearing in mind that the computer program has been developed
for a sand failing in a rigid-plastic mode, it is relatively
easy to make use of the program to analyse practical appli-
cations. This appendix summarizes the necessary input pa-

rameters and proposes guidelines for their estimation.

A.1 NECESSARY INPUT PARAMETERS

The input is fed into the computer in the following order :

1. epinr€pax ¢ minimum, maximum void ratio
' ' e s .
2. PninrPpax ¢ Minimum, maximum pressure

3. &in’¢&ax : minimum, maximum angle of shearing resis-

tance

4. X : compressibility (A=Cc/2.3)

5. 1 ¢ scale parameter
6. n ¢! number of spiral lines
7. m ¢ number of radial lines

8. x(n) : abscissa of the intersections of the spirals

and of the edge of the passive zone

- 96 -
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A.2 PRACTICAL ESTIMATION

A.2.1 Void ratio

Table A.1 indicates for various soils the :

1. maximum void ratio

2. minimum void ratio

The initial condition of a sand can be described by its rel-

ative density I = (e -e )/(e -e .). The medium dense
D max max min

range of behaviour can be taken to be cases where the ID is

greéter than 35 and less than than 85 (Lambe and Whit-

man, 1969).

A.2.2 Pressures

Minimum as well as maximum pressures can be estimated as the
unloaded state of the sand and from the anticipated maximum
stress intensity under the footing or behind a passive wall.

Typical values are respectively 10 kPa and 104 kPa.

A.2.3 Angle of shearing resistance

Usually, the engineer who calculates the size of a footing
or that of a wall has also the task of estimating the angle
of shearing resistance of the soil. The choice lies in the
results of laboratory tests combined with experience. Mini-
mum and maximum .angles of shearing resistance can be taken
as the extreme values that the engineer considers can be mo-
bilized in the sand by the pressure levels in the problem.
The values are affected by the density, mineralogy, and by

the particle size distribution, partible shape'of the sand.
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A.2.4 Compressibility A

Since A = Cc/2.304, the determination of A is related to
that of of the compression index. Compression tests into the
normally consolidated (linear V,logp') range can supply such
information. Such tests are rare. In the absence of relia-
ble data, a typical value of X is 0.1 (Atkinson and Brans-

by,1978).

A.2.5 Scale parameter

Note that this is not equal to the height of the wall or the
footing breadth and the structure size results from this
choice. Any figure can be taken as scale parameter. Confu-
sion might appear for the user who is not familiar with the
computer program. The choice of the horizontal length of the
- edge of the passive zone is recommended. This figure corre-
sponds to the abcissa of the intersection on the extreme
spiral and of the edge 'of the passive zone (Figs 4.1 and

4.2),

A.2.6 Radial and sgiral lines

Augmenting the number of spiral and radials lines leads to
greater accuracy. Nonetheless, the user should keep it mind
that it will also increase the computing time. Ten spirals

and twenty radials in the present work have been used.



99

A.2.7 Edge of the passive zone

If ten spirals are chosen, the horizontal length of the edge
of the passive zone is divided in ten equal segments. A spi-
ral line will depart from each of these ten points. The abs-
sissa x(n) are the required input parameters. The dimension-

less figures nn/10 are convenient (n = 1,10).



Appendix B

LISTING OF THE COMPUTER PROGRAM

PHI -9

FIRPHI - First ¢

PHILO - Local ¢

XX,2Z - Physical coordinates
SIMA, SIGMAl, sIcGMA2 - ¢
PSSI, PSI1,prS1iz - ¢

P - Pressure

E - voids ratio

L - Number of spirals

K - Number of radials

C - Control

LANDA =~ A

GS - Specific gravity

GW - Water density

PP, QQ - Iteration counts
SUBSCRIPTS :
MIN - Minimun

MAX - Maximum

- 100 -



COMPUTER PROGRAM

REAL PIRPHI

COMMON FIRPH1, BETA, DELTA, TOL, CONVG,SIZE,GAMMA
INTEGER L,K,C

COMMON L,K,C

REAL XX, 22, SIMA, PSS1, PHH]

COMMON /TATA/ X1,X2,XX,Z1,Z2,22,PHHI

COMMON /TITI/ SIGMAT,SIGMAZ,SIMA

COMMON /TETE/ PSI11,PSI2,PSS!

COMMON /TOTO/ Pl ,SNPHI,CSPHI

INTEGER PP,QQ ,CONTRO

COMMON /OUl/ PP,QQ,CONTRO

REAL MU

COMMON /AH/ MU,PHILO,SIGLOC,PHI1,PHI2,PHILOP,PHILOT
REAL

X(40,40;,2(40,40),SIGMA(40,40),PSY(40,40),PHI(40,40)
COMMON /LALA/ X,Z,SI1GMA,PSI
COMMON /ALO/ PHI
INTEGER P(40),Q(40)
COMMON /LOLO/ P,Q
REAL CO,LANDA
COMMON /CRIT/
EO, LANDA, PMIN, PMAX , PHIMIN, PHIMAX, PHI1 ,EMIN, EMAX
INTEGER SP!,RAD,W,H,H1,KS,L1,LX,1,J,RAD1
REAL DIF,DI,TNPHI
REAL KP,NY,l'1RS1G,GS,GW

ann

Pl= ARCOS(-1.)
READ,FIRPHI,DELTA,BETA, TOL,CONVG,S1ZE,GS,GW

READ, CONTRO .
1P (CONTRO .EQ. 1) THEN DO
PRINT 43
43
FORMAT('1',/////////ZOX.'""""""""""""""""",
1 /20%x,°'*
.
2 /20%,°* CONTROL= 1
-
‘o3 /20%,°*
LA
4 /20%,°* PARTIAL RESULTS PRINTOUT
-
‘s /20K, "

101

/20K, R R AR AR A A RN AR RN R E P IR IR RSN R O )

SE
GO TO 44
ENDIF
44 CONTINUE
READ,L,K
_READ,EMIN,EMAX, LANDA , PMIN, PMAX, PHIMIN, PHIMAX
EO= (EMIN'EMAX) /2,
GAMMA=(GW * GS)/(1, +« EO)
PHIMIN=PHIMIN * P1 /180,
PHIMAX=PHIMAX * P1 /180U,
1P (ABS(DETA) .LE. 0,0001) DETA =0,0001

(o} INITIALISATION
CALL HEADIN
PRINT 825
825 PORMAT(1*,///////////////720%)

PRINT,’
."""""'l"'"'."..’."."Q"."'.'..'"...'Q. *

PRINT, " -
-

PRINT, - THE PROGRAM COMPUTES THE FAILURE
LINES OF L

PRINT, ' -
-

PRINT, * A SAND HAVING A PLAST! CHEHAVIOUR.
TH1S 1S Aol

PRINT, ' -
-

PRINT, ' * THE CASE OF A WALL (ROUGH OR SMOOTH),
oR -

PRINT, ' -
- .-

PRINT, * A FOOTING. THE COMPUTATION PRESENTS A
FEATURE *°

PRINT, -
-

PRINT,' hd WHICH CONSISTS OF TRAPPING THE
PAILURE LINES -

PRINT, ' -
-

PRINT, * AROUND A POLE BY IMPLEMENTING VARIOUS
SCALE A

PRINT, * -
-

PRINT,' - REDUCTIONS WITH A DIMINISHING
SURCHARGE EFrecr.*’

PRINT, " -
-

PRINT,*
hhbd A A L L A 2 A2 2 22 2 2 2 d dd LT YT 2 I a iy gy a b R e ey

Li=40

LX=40

DO 1 1=1,01



- N

24

DO 2 J=*',LX
Xx(1,J3)=0,
z(1,3)»0,
SIGMA(1,J)=0.,
PS1(1,3)=0,
PHI(1,3)=0.
CONTINUE
CONTINUE C C
DO 3 1=1,L1
P(1)=0
Ol1)=0
CONTINUE
BETA= BETA * PI1/180.
DELTA« DELTA * PI/18O,
FIRPHI =FIRPH1 /57.2957795
CSPHI= COS(FIRPHI)
SNPHI= SIN{FIRPHI)
THPHI= TAN(FIRPHI)
X{1,1)«0,0
2(1,1)w0,0
CONTINUE
PIRSIG » 1,0/{1 - SIN(PIRPHI))
GAMMA®GAMMA * 6,369 .
S1zB» SI12C * 3.2808
SIGLO C* PIRSIG * SIZE * GAMMA
GAMMA®GAMMA /6,369
SIZE=S12E/3.2808
CALL PHILOC
DI={FIRPHI -PHILO)/PHILO
1P(ABS{DI!) .GT. 0.001) THEN
PIRPHI «PHILO
GO TO 21
ELSE
GO TO 24
ENDIT
CONTINUE
SIGMA(1,1)*SIGLOC/(SIZE*GAMMA®3,2808%6,369)
PSI(1,1)=0,5*3,1415927
PHI(1,1)=PHILO
PHI(1,1)=pHI(1,
PRINT,PHI(1,1)
PHI(1,1)=PHI(1,
DO S 1=2,L
READ, X(1,1)
CONTINUE
[od¢]
CALL EDGEPA
PRINT

1)+*180,/P1
1)*P1/180.

12
12 PORMAT(1' ,//////12%," EDGE OF RECTILINEAR PASS1VE
2Z0NE ")

PRINT 19

19 FORMAT(//17X,’X',13x,'2',12x,'SlGMA’,12X.‘PS!'.
1

15X,°P’ ,4X,'Q",8%, 'PHI ' /)
DO 15 1=1,L

- i -
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CALL RESOUT(I,1)

15 CONTINUE

C=1

CALL POLCOM

SPI~L-1
C FIRST TIME COMPUTATION

C=0
450 C=C11

PRINT 22,C
22 FORMAT('1' ,////25%, ' wwen wenw hebebded A A AL AL A A L AN

1 : /25%,°'* .,

2 /25X, '* SCALE ITERATION C=',13,°
.

3 /25%,'* -,

4 /25X,'*  REGULAR DOMAIN -

5 725%,°* .,

6 25X, ' WNwensert s RaRRI R AR AR R TR R R R R RN )

1F( C.EQ.1 ) THEN DO

RAD= X471
W=0
ELSE DO
RAD= K1 SP1
W= SPI- 1
ENDIF

DO 100 J=1,RAD
IF(CONTRO .EQ. 1) GO TO 53
PRINT, ' *
PRINT,*® °*
PRINT, " *
PRINT 37,0
PRINT 39

39 FORMAT(I10X,® ®*wwwt)
37 PORMAT(10X,* J=',13) A

53

PRINT 19

CONTINUE

1r(J .EQ. 1) GO TO 50

DO 75 1= 3,L
X1 X(1-1,3)
2Z1= 2(31-1,J3)
SIGMAT= SIGMA{1-1,J)
PSItm PSI(1-1,3)
X2= X{1,3-1)
Z2= 2{1,3-1)
SIGMA2= SIGMA{l,J-1)
PSI2= PSI{(1,J-1)
PHI1=PHI(1-1,J)
PHI2=PHI (2 ,J-1)
CALL NUPT C
X(1,J)= xx
zZ(1,3)= 22
SIGMA{1,J)= SIMA
PS1(1,J)= PSSI
P(1)= PP
Q(1)= Q0

-~ iy -



75
s1

80

100

25
26
678
67

300

47
S9
68

PHI(1,J)ePHH]
CONTINUE
GO TO 51
IF{CONTRO .EQ. 1) GO TO 100
IF(J.B2Q.1) THEN
PRINT 19

DO 80U 1=2,L

CALL RESOUT(1,1)
CONTINUE
ELSE

GO TO 100
ENDIT
CONTINUE
END OF RADIAL ZONE COMPUTATION
IF(CONTRO .E2Q. 1) GO TO 67
PRINT, ' '
PRINT, " *
PRINT,' *
PRINT 25

FOMMAT( 11X, 'RADIAL ZONE COMPUTATION COMPLETED®)

PRINT 26

PORMAT( 11X, "o ewesevvvencvvnvennasvenneonncan)

PRINT 678

FORMAT(®1',////25X," COMPUTATION OF THE EXTRA DOMAIN®,
1 /.

/258, bbbl Al dd d t A L LI 2 L I 2L A

CONTINUE

Hw2

J=RAD

H= H41

J= J11
HiwH4 1
IFP(CONTRO .EQ. 1) GO TO 68
PRINT, ' *
PRINT,® °*
PRINT, " *
PRINT,"® *
PRINT 47,J,H

PORMATU10X, 'J="',13,5X, 'PIRST SPIRAL~',13)

PRINT 59

FORMAT( 10X, ' ***we’ 5y ‘wwsesswseswwnann?)

PRINT 19
CONTINUE

X1w X{(H-1,J-1
21= Z(H-1,3-1
SIGMA1= SIGMA
PSI1= PSI(H-1
X2= X(H,J-1)
Z2= Z(H,3-1)
SIGMA2~ SIGMA(H,J-1)
PS12= PSI(H,J-1)

PHI 1=PHI (H-1,J-1)
PHI2=PHI(H,J-1)

CALL EBNDPT

X(H,J)= XX

103

117

200
PO T 20X, "AETERERR IR RN RN E R R AR R AR AR RS R AR
RHA1 [17/7777 S abx, e

Z(H,J)= 22
SIGMA(H,J)= SIMA
PSI(H,J)= PSSI
PHI (H,J) =PHHI
IF(H1 ,GT. L) GO TO 117
DO 2SO0 I=H1,L
X1= x(1-1,0)
Zi= 2z(1-1,J)
SIGMAI= SIGMA(I-1,J)
PSI1= PSI(1-1,J)
X2= x(1,3-1)
Z2= 2(1,0-1)
SIGMA2= SIGMA(1,J-1)
PSI12~ PSI{1,0-1)
PHI1=PHI(1-1,3)
PHI2=PHI(1,J-1)
CALL NUPT
X{1,3)* xx
Z(1,3)= 22
SIGMA(],J)= SIMA
PSI{1,J)= PSSI
P(1)= pp
Qu1)= Q0
PHI (1,J0)=PHH1
CONTINUE
IF(H .LT. L) GO TO 300
RAD1=RAD+L-2
PRINT,RAD1
IF(ABS{BETA) .GE., 0.1) THEN
CALL NGAMA (RAD)
ELSE
CALL XAPE(RAD)
ENDIF

DIP-(SIGMA(L,RAD1)-10'S!GMA(2,RAD))

DIP=DIF/SIGMA(L,RADT)
DIF= ABS(DIF)

PRINT 200, SIGMA(L,RAD1} ,SIGMA(2,RAD),DIF,CONVG

SIGMA(L,RAD4L-2)=" ,F12,6,'*",
2 /20K, ' SIGMA(2, RAD)=',Fri12.6,'
-
'3 //20%, Dir=’,r8.5,"
P
' //720%, " coNvG=*,P8.5,*
LAd .
‘s
//ZOX.' LA L 2 2 2 2 e )
IP(DIF ,GT. CONVG) THEN
DO 500 1=2,L
SIGHMA(I,1)= (2{1,1)-2(2,1))}/(1,0-SNPHI)
SIGMA(I,1)= SIGMA(I,1) + (SIGMA(L,1)/10.0)
500 CONTINUE :

- i -



KS=X4S$P1

DO 510 9= 2, kS
X(2,3)= {(X(L,w13))/10.0
2(2,J9)= (2(L,W13))/10,0
SIGMA(Z,J)« (SIGMA(L,w13))/10.0
PSI(2,J)= PSI(L,WtJ)
PHI(2,J)=PHI(L,W4J)

510 CONTINUL
PRINT 22.C
PRINT
27, x(z RAD),2(2,RAD),SIGMA(2,RAD),PS1{2,RAD),PHI (2,RAD)

PORHAT(////1OX *x(2, RAD)",?S 2,

ox

1 //1 ,'2(2,RAD})=" PS5,
2 //10x .'s:cHA(z RAD) =, F12. 8,
3 //10x ,'PSI(2,RAD)~* ,F12.8,
4 //10% ,*PH1(2,RAD}=",P12.8//}
PRINT 30,C
30 PoRMAT('t',//////1tx. RESULTS OF PFIRST  SPIRAL

APTER' ,13,
1 ° SCALE REDUCTION')
PRINT 19
DO 415 J=1,RAD
CALL RESOUT{(2,J)
415 CONTINUE
GO TO 450
ELSE
GO TO 222
ENDIF
222 PRINT 333

333
poRMAT('1"//////20x'----a-ct.a--"a-c'---"c-'---'-""-'
1 /20%,° >

2 /20X,'* END OF FINAL COMPUTATION
3 /20%,'>
4 /20%,'*  ZERO  SURCHARGE  CASE
S /20X,

3 /20X,'* PIRST: REGULAR RADIAL ZONE
7 /20%,'*
9

/ZUX, PEREARRIS T RARI NN - - '//)
DO 555 J=2,RAD
PRINT 890,J
PRINT 891
890 PORMATI(////10X,°0=",13}
891 PORMAT( 10X, *wwwww:)
PRINT 19
DO 666 1=1,L

- wvii -
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CALL RESOUT(1,J)
666 CONTINUE
555 CONTINUE
DO 557 1=1,L
PRINT 893,1
PRINT 896
893 FORMAT('1*,////10%,*1=*,13)
896 FORMAT( 10X, ' wwwwwr )
PRINT 19
DO 669 J=2,RAD
CALL RESOUTI(1,J)
669 CONTINUE
557 CONTINUE
. PO 92 1=1,L
DO 93 J=1,RAD
CALL OUTPUT(1,J,RAD)
93 CONTINUE
92 CONTINUE
103 PRINT 104 .
104 PORHAT( zox"'..'-.'Q""")
PRINT 756

v

/45X, "

756
PORHAT(’1'.////45x,'tt""'.-"'Q...t."t"."Q".."
1

2 /45%, ' EXTRA DOMAIN CREATED BY
3 /45X, '
4 /45X, SCALE  REDUCTIONS
5
3

-
.

-e
’

/45K, *
-
.
/ISX, ""'Q'Q.""..'Q"'Q..'...Q"'Q'//)
KP=0.0
DO 777 H=3,L
J*RAD4H-2
PRINT 890,J
PRINT 891
PRINT 19
DO 888 1wH,L
CALL RESOUT(1,J)
CALL OUTPUT(1,J,RAD)
[-:1:) CONTINUE
KP=(1+4SIN(PHI(H,J)))/{1-SIN(PHI (H,J)))+KP
777 CONTINUE
KP=KP/(L-2)
PRINT 112,KP

ronuAT('1'.////////20!.'KP-'.PB @ c
PRINT

STOP

END

€234567
112

- viii -
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SUDROUTIRE HEADIN

REAL FIRPHI

COMMON FPIRPHI, BETA, DELTA,TOL, CONVG,SIZE,GAMMA
INTEGER L,X,C

COMMON L,K.C

REAL XX, 2Z, SIMA, PSS1,PHH)

COMMON /TATA/ X1, X2,X%.21, 22,2Z,PHHI

CcoMMon /TIT1/ sxcMA1 SIGMAZ SIMA

COMMON /TETE/ PSIT, Pszz PSS1

COMMON /TOTO/ P1 ,SNPHI,CSPHI

INTEGER PP, QO , CONTRO

COMMON /0OU1/ PP,QQ,CONTRO

REAL MU

comqon /AR/ MU,PHILO,SIGLOC,PHI1,PHI2,PHILOP, PHILOT

x140,40), 2(‘0 40),SIGMA(40,40),PS1(40,40),PH1 (40,40)

COMMON /LALA/ X,2, SIGHA PS1
COMMON /ALO/ PHI1

INTEGER P(40),0(40)

COMMON /LOLO/ P,Q

REAL EO,LANDA

COMMON /crir/

EO.LANDA,PMIN,PHAX.PH!HIN,PH!MAX,PHX!,BMIH.EHAX
c

<
NN~

PRINT 10,PIRPHI,BETA,DELTA,TOL,CONVG, S1 2L, GAMMA

FORMAT( 1" ///////////1ox. FIRPHI=",F5.1,
//710x% BETA=',PS5.1
//10% B DELTA=' ,PS.1,
//10% ! TOL"',P7.5,
//10x% . CONVGw' ,P7.5,
;///////1ox . SIZE*" ,F6.3,
/10x . GAMMA=* ,#6,.3)

PHIMIN=PHIMIN®180. /P1
PHIMAX=PHIMAX* 180, /Pl

PRINT 11, L,
K,BO,LANDA,EMIN, EMAX, PMIN , PMAX , PHIMIN , PH1MAX
11 FORMAT(////1OX. NUMBER OF SPIRAL LINES=',13,
//10% , NUMBER OF RADIAL LINES=’,13,
//10% N VOID RATIO EO =',P6.3,
//10X . SLOPE LANDA=',P6.3,
//10x% .’ E-MINIMUM=',P6,3,
/10% . E-MAXIMUM=' ,P6.3,
//10% . P-MINIMUM=',F7.1,
;/1ox . P-MAXIMUM=* 77,1,
/10X . PHI-MIN=* ,P5,2,
//10x 5 PHI-MAX=' ,P5,2)

lam\lﬂ\u‘\bhll\)-l

PHIMIN=PHIMIN®PI /180,
PHIMAX=PHIMAX*P1 /180,

RETURN
END

105
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[

SUBROUTINE RESOUT(A,B)

REAL FIRPHI

COMMON FIRPH],BETA,DELTA,TOL,CONVG,SIZE,GAMMA
INTEGER L,K,C

COMMON L,X,C

REAL XX,ZZ,SIMA,PSSI,PHKI

COMMON /TATA/ x1 1 X2,XX,21,22,2Z,PHHI

COMMON /TITI/ SIGMA{, SIGMAZ, S1MA

COMMON /TETE/ PS11,PSI2,PSS]

COMMON /TOTO/ P1 snpnx CSPHI

INTEGER PP.QQ,CONTRG

COMMON /0U1/ PP,QQ,CONTRO

REAL MU

COMMON /AH/ MU, PHILO,SIGLOC,PHI1,PHI2, PHILOP, PHILOT

X(40,40), 2(40 40),SIGMA(40,40),PS1(40,40),PHI (40,40)

COMMON /LALA/ X,2, SIGMA PS1
COMMON /ALO/ PHI

INTEGER P(40),Q(40)

COMMON /LOLO/ P,Q

REAL EO,LANDA

COMMON /CRIT/

EQ, LANDA,PMIN, PMAX, PHIMIN , PHIMAX, PH11,EMIN, EMAX

[

INTEGER A,D
PHI(A D)=PHI(A,R)*180./P1
NT

20,%{(a,B), Z(A B),SIGMA(A,B),PSI{A,D),P(A),QlA),
1PH1(A B}

2
PORMAT(11X,F12.6,3X,r12,.6,E15.5,3X,F12.6,8%,14,1X,14,6X,
)

C
c
c
C

.PHI(A,B)'PH!(A,B)'PX/1BO.
RETURN
END

LA A2 T2 2 22 wewwen noenew - - RERER RO T RAS

SUBROUTINE OUTPUT(A,B, RAD)

REAL PFI1RPHI1

COMMON FIRPHI,BETA,DELTA, TOL,CONVG,SIZE,GAMMA
INTEGER L,K,C

COMMON L,K,C

REAL XX,ZZ,SIMA,PSS1,PHH]

COMMON /TATA/ x1 X2, xx 21,22,22,PHH1
COMMON /TITY/ S!GMA1.$IGMA2 SIMA
COMMON /TETE/ PSI1,PS12,PSSI

COMMON /TOTO/ PI ,SNPHI,CSPHI
INTEGER PP,QQ, CONTRO

COMMON /OU1/ PP, QQ, CONTRO

REAL MU



counon /AH/ MU,PHILO,SI1GLOC,PHI1,PHI2,PHILOP, PHILOT
ZAL
x(40, 40),1(40 40) ,SIGMA{40,40]}, PSI(AO 40) ,PHI (40,40)

COMMON /LALA/ X,2,S1GMA,PSI
COMMON /ALO/ PHI
INTEGER P(40),Q(40)
COMMON /LOLO/ P,Q
REAL EO,LANDA

COMMON /CrRIT/

BO,LANDA, PMIN, PMAX, PHIMIN, PHIMAX, PHI1 ,EMIN, EMAX
INTEGER A,D,TH1(40,40),AN,DN,LHI (40,40) ,M] ,RAD1,RAD
REAL T,R,XP(40,40),XN(40,40),TN,RN,MN,M C
RAD1*RADIL 2 C
MN=(D 1)/2.
MI=INT(MN)
MCwMN M1
1F{M C.GT. 0.001) THEN
GO TO 44
ZLSr
GO TO 33
ENDIP
33 PHI (A,D)=PHI(A,B)*1800, /P2
THI(A,B)=INT(PHI(A,D))
PHI (A,D)=PHI (A,DB)*P1/1800,

WRITE(8,20) X{A,B),2tA,D),A,B,THI(A,D)

20 FORMAT(PE.4,3X,P8.4,8%,18,8%,182,3%,13)

21 PORMAT(r8.4,3%X,78.4,3X,F9.0,3%X,F9.0,3X,13)
T=A*100,
R=D*100.

IF(R .BQ. 500) GO TO 44

1P(R ,EQ. 700) GO TO 44

IP{R ,EQ. 900) GO TO 44

IF(R ,EQ. 1100) GO TO 44

WRITE(8,21) X(A,B),2(A,B),R,T,THI(A,B)
44 CONTINUE
RETURN
- END
c

fe bt A4 4 2L 2 2 T2 el g e e ey e e e e e e R A S 2 e 22 22 2 2

[of

€345678
SUBROUTINE POLCOM
REAL FIRPHI
COMMON FIRPHI, DETA, DELTA, TOL, CONVG,S!ZE,GAMMA
INTEGER L,X,C
COMMON L,X,C
REAL XX, 22, SIMA, PSSI,PHHI
COMMON /TATA/ X1,%X2,XX,21,22,22,PHH]
COMMON /TITI/ SIGMA1,SIGMA2,SIMA
COMMON /TETE/ PS11,PS12,PSSI
COMMON /TOTO/ PI ,SNPHX.CSPH!
INTEGER PP, QQ,CONTR
COMMON /OU1/ PP,QQ, conrno

- xi -
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REAL MU
COMMON /AH/ MU, PHILO,SIGLOC,PHI1,PH12,PHILOP,PHILOT

REAL
X(40,40),2(40,40),SIGMA(40,40),PS1(40,40),PHI(40,40)
COMMON /LALA/ X,Z%,S1GMA,PS}
COMMON /ALO/ PH1
INTEGER P(40),0(40)
COMMON /LOLO/ P,Q
REAL EO,LANDA
COMMON /CRrRIT/
ED,LANDA, PmN PMAX, PHIMIN, PHIMAX, PH11 ,EMIN,EMAX
NTEGER KK, K1, 1, J
REAL PS11,PSI1F,INT,FIRSIG,FINSIG, TNPHI , FINPHI
[
PS1I= 3,1415927 / 2,
FINPHI=39,/57.2957795
MU=PI /4, -FINPHI /2.
400 PSIFwMUY BETA
405 INT= (PSII-PSIF)/ K
KK=K- 1
PRINT,' '

pn N'x AR LA AL A2 A2 ARl 2 A2 22 22 2222 222322222222 2222 22222222227
1.Q""'Q'Q".'Q"""..""""I.."""..'."' .
PRINT,® °*
PRINT, * POLE  CONPT < > PIRST
SPIRAL:(1,J3) '
PRINT," '
PRINT,' '
PRINT 14
PRINT,' °*
DO 350 J=2,K
X(1,3)=x(1,1)
2(1,3)=2(1,1)
PIRPHI=PHI (1,J-1) *

34 TNPHI =TAN (PIRPHI}
PIASIG=EXP(ALOG(SIGMA(1,J-1) )4 INT"2*TNPHI )
SIGLOC®FIRS1G*S1ZE*GAMMA®3,2808%6.369
CALL PHILOC
D1=(PHILO- PIRPHI } /PHILO
IF(ARS(D1) .GT. 0.001) THEN
PIRPHI *PHILO
GO TO 34
ELSE
GO TO 37
ENDIF

37 S1GMA{1,J)»FIRSIG
PHI{1,J)=PHILO
PS1{1,3)= PS1(1,3-1) - IN
PRINT 12,%(1,3),3(1,3), sxanA(1.J).Psx(1.J)

12 FORMAT(11X,P8.5,3x,#8.5,215.5,3%,F8.5)

350 CONTINUE
PRINT,' °

T,
1'-c.-tt--t"'tt"n'tt'."-t'.-'.'t.----t...'t't'
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IF(CONTRO .EQ. 1) GO TO 64 .

PRINT,' '
PRINT,’ SECOND SPIRAL ' 107
PRINT,' *
PRINT 19

19 PORMAT(////17%,°'X',13X,°Z’ 12X, SIGMA® , 12X, 'PSI1 ",

1 15X, P’ ,4X%,'Q°,8X, 'PHI" /)

PRINT,® *

64 CONTINUE
PRINT," *
DO 355 0=2,K
Ri= X(1,3)
21w 2(1,)
SIGMAT= SIGMA(1,J)}
PSITe PSI(1,J)
X2« x{2,3-1)
z2= 2(2,3-1)
SIGMA2* SIGMA{2,J-1)
PSI2% PS1(2,3-1)
PHI1=wPHI(1,J)
PHIZ2=PHI(2,0-1)
CALL NUPT

SIGMA{2,J;= SIMA
PS1(2,J)= PSS1
PlI)=pP
QiI)= QO
PHI (2,J)=PHH1

3ass CONTINUE

[« CALCULATION O A WALL POINT
X1= x(1,K)
Z1= 2(1,K)
SIGMA1l= SIGMA{1,K)
PSIte PSI(1,K)
X2= %X(2,K)
Z2= 212,K)
SIGMA2= SIGHMA({2,K)
PSI2« PSI{(2,K)
PHI 1=pPHI(1,K)
PHIZ2%PHI(2,X)

CALL ERDPT

Kiwg4 1t

X(2,K1)=xx

Z(2,K1)=22

SIGMA(2,K1)=SIMA

PSI{2,X1)=pPSS1

P{K1)=pPpP

Q{R1)=QQ

PHI (2,K1)=PHHIL

PRINT,® *

[:38 bR AR L A A A4 A A 24 22 A2 22 2 2 A 2 22 T T T T L R R L 2 2 P p ey
AR AAAAA A R A2 A2 A2 2 X2 2212222 R 2 20 2T B T el

- xiif -

PRINT,
LAST POINT:
1 (2,K81)°
PRINT,"® *
PRINT, ' *
PRINT 11
€2345678
11

FINAL 2-ND SPIRAL LINE WITH THE

FORMAT(14X,'X'51OX,'Z’,10x,'S!GHA',9x.'PS]',15X.'P',4X,'Q',
18X, 'PHI '
14 FORMAT(14X,°'X"',10X%,'2',10X, "SIGMA* ,10X,'PSI ")

PRINT,' '

PRINT,' '

DO 65 Jwi,K1

PHI(2,J)=PHY(2,3)*180,/PY

PRINT
16,%02,3),2(2,3),S1GMA(2,J),PSI(2,0),P(J),0(J),

1PHI(2,3)

6
PORMAT(11%,78.5,3%X,P8.5,215,5,3%,F8,5,9%,14,1X,14,7%X,76.3)
PHI(2,J)=PHI1(2,J)"P1/180.

65 CONTINUE
RETURN
END
C
(o A A A LA A4 A aadd s ALl I a gy L e R s
C
<

SUBROUTINE NUPT .

REAL FIRPHI

COMMON FIRPHI, BETA, DELTA, TOL, CONVG,S12E,GAMMA
INTEGER L,K,C

COMMON L,K,C

REAL XX, 2Z, SIMA, PSSI,PHH]

COMMON /TATA/ X1,X2,XX,21,22,22,PHH]

COMMON /TI1T1/ S1GMA1,SIGMA2,SIMA

COMMON /TETE/ PS11,PS12,PSS1 :

COMMON /TOTO/ P1 ,SNPH1,CSPHI

INTEGER PP, QQ,CONTRO

COMMON /OU1/ PP,QQ,CONTRC

REAL MU )

COMMON /AH/ MU, PHILO,SIGLOC,PHI1,PHI2,PHILOP, PHILOT

REAL
X(40,40),2(40,40) ,SIGMA(40,40),PSI(40,40),PH1(40,40)

COMMON /LALA/ X,2Z,SI1GMA,PS]

COMMON /ALO/ PH1

INTEGER P(40),0Q(40)

COMMON /LOLO/ P,Q

REAL EO,LANDA
€2345678
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COMMON
!O,LANDA,PH]N.PHAX.PH!HIN.PH!MAX.PHIX,BHIN,!HAX
REAL ZIGMA1,ZIGMAZ2,P211,P212,SUM1,SUM2
REAL DIFM1,DIFF2,CSDIF1,CSSUM2
REAL A,D,ETA,.X1,.F,G,U,V
INTEGER 1,9
REAL THRPHI, PHHH1

c

c

[
SIMA= (SIGMA14SIGMAZ) /2.
PSSI= (PS114PS12)/2.
PPw1
QQ=1

€23456789

PHIT=(PHI14PHI2) /2.0
PHILOP=PHI1

201 PHI1=PHILOP
CALL RPLANE
CALL CRITIC
MU=P1/4, - PHILOP/2,
ZIGMAI=(SIMAISIGMAL) /2.
ZIGMA2=(SIMAISIGMAZ) /2,
PZ3l= (PSSI4PSI1)/2,
PZ12= (PSS1PS12)/2,
SUMie SINIP2]14MU)
SUM2= SIN{PZ]2¢MU)
DIFFi= SIN(PZ]1-MU)
DIFF2« SIN(PZI2-MU)
CSDIP1= COS(PZI1-MU}
CSSUM2= COS(PZI24MU)
A=SUM1/{2*ZIGMA1*SNPHI*CSDIF 1)
Be-1, * (DIPF2)/(2."21GHA2"SNPHI *CSSUM2)
ZZ=Z1*DIPF1/CSDIF1-Z2*SUM2 /CSSUM2-X14X2
2Zw2Z/(DIFr1/CSDIF1-SUM2/CSSUM2)
TNPHI*TAN(PHILOP)

/crit/

ZTA-ALOG(SIGMA1)// (2."TNPHI) -PS11 + A®(Z2Z 21)
t

XI=ALOG(SIGMA2)
P= EXP{(X1'ZTA)*TNPHI)
G= (X1-BETA)/2.

Us ABS({r-SIMA)/F)

V= ABS{{G-PS51)/G)

2."TNPHI) 4 PSI2 4B*(22-22)

108

c
IF(V.GT.U) GO TO 202
IP{U.LE.TOL) GO TO 203
SIMA = F
PP = PP41
IF{PP-100) 201,201,203

€2345678

202 IF(V.LE.TOL) GO TO 203
PSS1%G
QO=Q0+ 1
IF(QQ-100) 201,201,203

- xv -

203 XX=X1+{22-21)*DIFF1/CSDIF1
XX~ (XX+X%2+(22-22)*"SUM2/CSSUM2) /2.,
PHHI =PHILOP
PHHH1*PHHI * 180, /P1

[«

IP(CONTRO .EQ. 1) GO TO 16
PRINT 13, XX.2Z,SIMA,PSSI,PP,QQ,PHHH]
13

PORMAT(11X.F12.8,3x,F12.8,E15.5.3x,?12.8,8x,14,1x,1(,

16X,F6.3)
16 CONTINUE
RETURN
END

T R N R A A N R R A R R AN P R AN RN RN AP P AR AT R AP T TR TR D

c
SUBROUTINE ENDPT
REAL PIRPHI

COMMON PIRPH1, BETA, DELTA, TOL, CONVG, SI2IZ, GAMMA

INTEGER L,K,C

COMMON L,X,C

REAL XX, ZI, SIMA, PSSI, PHHI
COMMON /TATA/ X1,X2,XX,21,22,22,PHHI
COMMON /TIT1/ SIGMA1,SIGMA2,SIMA
COMMON /TETE/ PSI1,PSI12,PSS1

COMMON /TOTO/ P31 ,SNPH1,CSPH1
INTEGER PP, QQ,CONTRO

COMMON /0U1/ PP,QQ,CONTRO

REAL MU

COMMON /AH/ MU, PHILO, SIGLOC,PHI1,PH12,PHILOP, PHILOT
EAL !

R
X(40,40),2(40,40),SIGMA(40,40),PS1(40,40),PH1(40,40)
COMMON /LALA/ X,Z,SIGMA,PSI.
COMMON /ALO/ PHI
INTEGER P(40),0(40)
COMMOK /LOLO/ P,Q
REAL EO,LANDA
€2345678
COMMON
EO,LANDA, PMIN, PMAX , PHIMIN, PHIMAX, PH1 , EMIN , EMAX
REAL ENDPS1!
REAL ZIGMA2,PZ12,SUMZ,DIFF2Z,CSSUM2
REAL B,X1,F,U,PHHHI
INTEGER 1,J

non

PPw=1
QO=1
SIMA={SIGMA1+SIGMAZ) /2,
PHII={PHI1+PH12)/2,0
PHILOPwPHI!

302 PHII=PHILOP
CALL RPLANE
CALL CRITIC

- oavi -

/CRIT/



MU=P1 /4. -PHILOP/2.,
DELTA*PHILOP
IPIDETA LE. 0.001) THEN
GO TO 301
ELSE
GO TO 309
ENDIT
€2345678
301 ENDPS] =MU+BETA
GO TC 3CS
309 ENDPS1 =MU (1.732° DELTA)
305 PSS1wENDPSI
ZIGMA2= (SIMAYSIGMAR)/2.
PZI2=(PSS14PS12)/2.
SUM2=SIN(P212¢MU)
DIPF2=SIN{PZI2-MU)
CSSUM2= COS(PZI2vMU)
D=-1,*(DIPF2)/(2.*2IGMA2*SNPHY *CSSUM2)
IP(ABS(DCTA) .LE. 0.0001) THEN
BETA»0,0001
ELSE
BETA=-1,%(1,732-DELTA)
ENDIP
Z2ZwZI1®TAN(DETA)-X1- Z2*SUM2/CSSUM24+X2
22=22/(TAN{DETA) - (SUM2/CSSUM2) )
XIALOG(SIGMA2) /12, *TANIPHILOP) }4P51240%(22-22)
FerXP{2.*TAN(PHILOP)*(XI-PSS1))
U=ADS{{(F-SIMA) /)
IP(U .LE. TOL) GO TO 303
SIMA=F
PP=PpP+ 1
17{PP-100) 302,302,303
€2345678
303 XXwX14¢(ZZ-Z1)*TAN(BETA)
PHH] =PHILOP
PHHHI =PHHI*180, /P1
17 (CONTRO .EQ. 1) GO TO 26
PRINT 13, XX,2ZZ,SIMA,PSSI,PP,QQ, PHHH]

13
PORMAT(11X,F12.8,3X,r12.8,E15,5,3X,F12.8,8%,14,1X,14,
16X,F6,3)
PRINT 306
306 FORMAT('1*,*
1

2 BOUNDARY')

26 CONTINUE
RETURN
END
c
Conenane - - e renER R AR TR T
[

SUBROUTINE EDGEPA
REAL FIRPHI1
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COMMON FIRPH1,BETA,DELTA,TOL,CONVG,S1ZE,GAMMA
INTEGER L,K,C

COMMON L,X,C

REAL XX, 2z, SIMA, PSSI,PHHI

COMMON /TATA/ X1,X2,%X,21,22,22,PHHI

COMMON /TITI/ SIGMA1,SIGMA2,SIMA

COMMON /TETC/ PS11,PS12,PSS1

COMMON /TOTO/ P1,SNPH1,CSPHI

INTEGER PP,QQ,CONTRO

COMMON /0U1/ PP,QQ,CONTRO

REAL MU

COMMON /AH/ MU,PHILO,SIGLOC,PHI1,PH12,PHILOP, PHILOT

REAL
%(40,40),2(40,40),SIGMA(40,40),PSI(40,40),PHI{40,40)
COMMON /LALA/ X,Z,SIGMA,PS1
COMMON /ALO/ PH1
INTEGER P(40),0(40)
. COMMON /LOLO/ P,Q
REAL EG,LANDA
€2345678

COMMON /CRrRIT/

EO,LANDA, PMIN, PMAX , PHIMIN, PHIMAX,PHI1 ,EMIN,EMAX
INTEGER CC,1,J
REAL DI ,NUZ,NSIMA
C
[
1P( C.2Q. 0) THEN
CC=2

Cw1
ELSE
[k
ENDIF
DO 23 1=CC,L
PIRPHI=PHI(1-1,1)
MU=P1/4,0-FIRPHI /2.0
PHILOP=F1RPHI
CALL RPLANE
PHI1=PHILOT
MU=PI/4,-PH11/2.
Z(1,1)=x(1,1)*TAN(MU)
SIMA«(1,042(3,1))/(1.0-SIN{PHI1))
CALL CRITIC
MU=P3I /4 .0-PHILOP/2.0
NUZ=X(1,1)*TAN(MU)
NSIMA=(1.04NUZ)/(1.0~SIN(PHILOP))
SIMA®NSIMA
C234567

z(1,1)=NU2Z
PHI(1,1)=PHILOP

. SIGMA(I,1)=NSIMA
PSI(1,1)=3,1415927/2,0

23 CONTINUE
RETURN
END
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c
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c .
SUBROUTINE PHILOC
REAL PIRPH1 110
COMMON FIRPHI ,BETA,DELTA,TOL,CONVG,SI ZE, GAMMA
INTEGER L,K,C
COMMON L,K, C
REAL XX,ZZ,SIMA,PSSI,PHHI
COMMON /TATA/ X1,X2,XX,21,22. ZZ,PHHI
COMMON /TITI/ SIGMAT, SIGMAZ, S1MA
COMMON /TETE/ PS11, Psxz.PSSJ
COMMON /TOTO/ P!.SNPH!.CSPHI
INTEGER PP,Q0,CONTRO
COMMON /OU1/ PP,QQ,CONTRO
REAL MU
COHHON /AH/ MU, PHILO,SIGLOC,PHI 1,PHIZ, PHILOP, PHILOT

RE
X(40,40), z(4o lO),S!GMA(40 40),PS1(40,40),PHI(40,40)

COMMON J/LALA/ X,Z,SIGMA.PSI

COMMON /ALO/ PHI

INTEGER P(40),Q(40)

COMMON /LOLG/ P,Q

REAL CO,LANDA

COMMON /criT/
Z0,LANDA, PMIN, PMAX , PHIMIN, PHIMAX, PHI 1, EMIN , EMAX

REAL TT

INTEGER DD

of
C*** SIGLO CI1S DIMENSIONAL wes»
o

DD=2
IF(DD .EBQ. 1) THEN
GO TO 10
ELSE
GO TO 11
ENDIF
11 1F(ABS(SIGLOC) ,LT. 1000.0) THEN

234567
PHILO={47.B-4,.7*(ALOG(SIGLOC)- 2.30258)/4.60517) /57.295779
ELSE

IP(ADS(SIGLOC) .LT. 20000C.0) THEN

PHILO=(43.2-11, 2'(ALOG(SIGLOC) 6.90776)/5.29832) /57.295779

ELSE

PHILOw32.0/57.295779%

ENDIF

ERDIF

GO TO 30
C234567

10 IF(ABS(SIGLOC) .LT. 100.0} THEN

PHILO=(47.8-4.7*(ALOG(SIGLOC)-2.30258)/4.60517)/57.295779
ELSE

- xix -

) TT-(47.8-4.7'(ALOG(100.0)-2.30258)/4.60517)/(100.0
**0.5 .
PHILO={TT*(SIGLOC**0.5))/57,295779
ENDIT
30 SNPH1=SIN(PHILO)

CSPHI=COS{PHILO)

RETURN
END
[of
C
c ruww “nww row L L L TS
€2345678

SUBROUTINE CRITIC

REAL FIRPHI

COMMON FIRPHI,BETA,DELTA,TOL,CONVG,S12ZE, GAMMA

INTEGER L.K,C

COMMON L,K,C

REAL XX,2Z,SIMA,PSS1,PHK]

COMMON /TATA/ X1,%2,XX, 21,22,22, PHH]

COMMON /TITI/ SIGMA1,S1GMAZ,S1MA

COMMON /TETE/ PS11,PS12,PSS1

COMMON /TOTO/ P1,SNPHI ,CSPHI

INTEGER PP,QQ,CONTRO

COMMON /oux/ PP,QQ,CONTRO

REAL MU

COMMON /AH/ MU,PHILO,SIGLOC,PHI1,PH12,PHILOP, PHILOT
AL

RE
X(40,40),2(40,40),SIGMA{40,40) +PSYIL40,40),PH1(40,40)
COMMON /LALA X,2,SIGMA.PS1
COMMON /ALO/ PHI
i INTEGER P(40),Q(40)
! COMMON /LOLO/ P,Q
‘ REAL EO,LANDA
COMMON . /CrT/
EO,LANDA, PMIN, PMAX, PHIMIN, PHIMAX ,PHI1,BMIN, EMAX
REAL V,VLANDA, KK, PHICI ,QoP,D1, PPR M
REAL MMAX,MMIN,VLAMAX,VLAMIN,AA,BD

[

V*1,04E0
PHII=PHILOT

S KK=(1,04SIN(PHII))/(1.0-SIN(PHII))
SIMA=SIMA*GAMMA"SIZE
PPRw (2% {1,042"KK)*SIMA) /(3% (14KK))
SIMA=SIMA/(S1ZE*GAMMA)
VLANDA=YV + LANDA*ALOG(PPR)
VLAMAX={1,4EMAX) + LANDA*ALOG(PMAX)
VLAMIN=(1,4EMIN) + LANDA®ALOG(PMIN)
IFP(VLANDA .GT, VLAMAX) THEN
VLANDA®=VLAMAX
PHICI=PHIMIN-
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IP{VLANDA ,LT. VLAMIN) 'THEN
VLANDA=VLAMIN
PHICI=PHIMAX

ENDIP
MMAX= (6. *SIN(PHIMIN) } /(3-SIN(PHIMIN))
MMIN=(6."SIN(PHIMAX) ) /(3-SIN(PHIMAX))
AA= (MMAX-MMIN)}/(VLAMAX- VLAMIN ]
BO=MMAX AA®VLAMAX
QOPwAA*VLANDA + BB

M=00P

TT=(3*M) /(64M)

PHICI=ARSIN(TT)

PHILOT=PHICI

D1=(PHILOT- PHI1)/PHILOT
IF(ABS(DI).GT.0.11) THEN

PHI ] ~PHILOT

GO TO 5

ELSE

GO TO 9

BNDIP

CALL PPLANE

PHI I »PHILOP

SNPHI=SIN{PHILOP)
CSPH1=COS(PHILOP)

RETURN

END

SUBROUTINE PPLANE
REAL FIRPHI

COMMON FIRPH1 ,BETA,DELTA,TOL,CONVG,S12E, GAMMA

INTEGER L,K,C

COMMON L,K,C

REAL XX,ZZ,SIMA,PSS1,PHH]

COMMON /TATA/ X1,X2,XX,21,22,22,PHH1
COMMON /TITI/ SIGMA1,SIGMA2,S5IMA
COMMON /TETE/ PS11,PS12,PSS1

COMMON /TOTO/ PI,SNPHI,CSPH1

INTEGER PP,QQ,CONTRO

COMMON /QU1/ PP,QQ,CONTRO

REAL M

{1
COMMON /AH/ MU, PHILO,SIGLOC, PHI1,PHI2,PHILOP,PHILOT

REAL
X(40,40),2(40,40),SIGMA(40,40),PS1(40,40),PH1(40,40)

COMMON /LALA/ X,Z,SIGMA,PS]
COMMON /ALO/ PHI

INTEGER P{40),Q(40)

COMMON /LOLO/ P,Q

REAL EO,LANDA

C234567
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EO.LANDA,PMIN, PMAX, PHIMIN, PHIMAX, PHI1 ,EMIN, EMAX

C
C
C

€234567
10

20

35

COMMON

REAL PHIPL1,PHIPL2

PHIPL1=32,8328*p1 /180,
PHIPL2=36.*P1/180,

IP(PHILOT LT. PHIPL?!) GO TO 10
IFP(PHILOT .GT. PHIPL2) GO TO 20
PHILOT=PHILOT* 180./P1
PHILOP=1,6667*ALOG(PHILOT) - 2.3362
PHILOP=EXP(PHILOP)
PHILOP=PHILOP*P1 /180,

GO TO 35 C

PHILOP=PHILOT

GO TO 35

PHILOT=PHILOT* 180, /P?
PHILOP=1.2944*ALOG(PHILOT)-1,002
PHILOP=EXP (PHILOP)
PHILOP=PHILOP*PI /180,

GO TO 35

RETURN

END

/CRIT/

Cornnannn LAAA L A4 L2222 2222 T T2

SUBROUTINE RPLANE
REAL PIRPHI

AR AR TR AR RANS S

COMMON PIRPH1,BETA,DELTA,TOL,CONVG,SIZE,GAMMA

INTEGER L,K,C
COMMON L,K,C

REAL XX,2Z,SIMA,PSSI,PHHI -

COMMON /TATA/ X1,X2,XX,21,22,2Z,PHH1
COMMON /TIT1/ SIGMA1,SIGMA2,SIMA
COMMON /TETE/ PSI11,PSI2,PSSI

COMMON /TOTO/ P1,SNPHI,CSPH}
INTEGER PP,QQ,CONTRO

COMMON /QUl/ PP,QQ.CONTRO

REAL

MU
COMMON /AH/ MU, PH1LO,SIGLOC,PHI1,PHI2, PHILOP, PHILOT

REAL
X(40,40),2(40,40),SIGMA(40,40),PS1(40,40),PHI(40,40)

COMMON /LALA/ X,%,S1GMA,PSI
COMMON /ALO/ PH1

INTEGER P(40),0(40)

COMMON /LOLO/ P,Q

REAL EO,LANDA

€234567

c
[+

COMMON
2O, LANDA, PMIN, PMAX , PHIMIN, PHIMAX, PHIT ,EMIN, EMAX

REAL PHIPL1,PHIPL2

- axii -

/CRIT/



€234567
10

20

as

PHIPL1#32,8328"P1 /180,
PHIPL2%37.9569"P1/180.

IF(PHILOP ,LT. PHIPL!) GO TO 10
IFP(PHILOP ,.GT. PH:PLZ) GO TO 20
PHILOP=PHILOP*1B0. /P
PHILOT-(ALOG(PHILOP)'2 3362)/1.6667
PHILOT~EXP (PHILOT)
PHILOT=PHILOT*P1/180.

GO TO 35

PHILOT=PHILOP

GO TO 35

PHILOP=PHILOP* 118G, /P!

PHILOT= (ALOG(PHILOP)+1.002)/1.2944
PHILOT=EXP(PHILOT)
PHILOT=PHILOT*P1 /180,

GO TO 35

RETURN

END

N N A A R R RN S P AN RN AN AP AN PO RO PP PR AN PRI O I TR I AN T IR T TR E D
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SUBROUTINE NGAMA (RAD)
REAL P1RPHI
COMMON FIRPHI ,BETA,DELTA,TOL,CORVG,SIZE, GAMMA
INTEGER L,K,C
COMMON L,K,C
REAL XX,ZZ,SIMA,PSSI,PHHI
COMMON /TATA/ %!,X2,XX,21,22,22,PHH]
COMMON /TIT1/ SIGMA1,SIGMAZ,SIMA
COMMON /TETE/ PS11,PS12,PSS1
COMMON /TOTO/ PI1,SNPHI,CSPHI
INTEGER PP,QQ,CONTRO
COMMON /OUl/ PP,QQ,CONTRO
REAL MU
COMMON /AH/ MU,PHILO,SIGLOC,PHI1,PH12,PHILOP,PHILOT

REA
X{40,40), 2((0 40),SIGMA(40,40),PS){40,40) ,PH1(40,40)

comMon’ /LALA/ X,Z,S1GMA,PSI
COMMON /ALO/ PRI

INTEGER P{40),0(40)

COMMON /LOLO/ P,Q

REAL EO,LANDA

C€2345678

COMMON /CRIT/

EQ,LANDA,PMIN, PMAX,PHIMIN, PHIMAX ,PHI1 ,EMIN, EMAX

REAL COSPSI1,SIMAVI(30),NGAMMA,F,E,SOMME,RATIO, CENTRE
REAL*8 B
INTEGER L1,RAD,I,J,H,RAD1,RAD3

RADT=RAD4L- 2
RAD3=RAD+L-3
1=0

H=0

- xxiii
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C2345678

J=RAD-2
H=H41
J=J41

I=141

SINPHI=SIN(PHI (H,J))
PSI(H,J)=2.*PSI(H,J)

COSPSI=COS (PST (H,J))
PSI(H,J)=PSI(H,3)/2.
SIMAV{1)=SIGMA(H,J)*%(1+SINPHI*COSPS1 )
IF(H LT. L) GO TO 4

I=2

H=2

J=RAD

NGAMMA=0,0

SOMME=0.0

Jwysd

He=H4+ 1

JeJ+1

SOMME= (SIMAV(I-1)+SI1MAV(I)) /2,
SOMME=SOMME* (X{H,J}-X(H-1,J-1})
NGAMMA=NGAMMA ¢+ SOMME

Li=t

IP{} .LT. L1) GO TO 6

€234567

10

12

11

NGAMMA=-2,* (NGAMMA )

PRINT 10,NGAMMA

B=X(L,RAD1)*2,

RATIO™ 1,./B**2

NGAMMA=NGAMMA®RATIO"2,

PRINT 10,NGAMMA
PORHAT('1‘,////////20x. NGAMMA=' ,F79.4)
B=B*SIZE/1.
PRINT 12,8
FORMAT(/////20%, ' BREADTH=",F9.4)
8=B*1,732/S12E
B=(1, /B)'(10 »w(1-C})

PRINT
ronnxr(////////zox,'n/a-'.Ps 1)
RETUR

END

c new L e - wwnw 1242214 222312l

[

SUBROUTINE KAPE(RAD)

REAL FIRPHI

COMMON FIRPH1,BETA,DELTA, TOL,CONVG,SIZE,GAMMA
INTEGER L,X,C
COMMON L,K,C
REAL XX,22,SIMA,PSS1,PHHI
COMMON /TATA/ X1,X2, xx,21,22 .22, PHM]
COMMON /TITY/ S1IGMAT, sxcqu SIMA
COMMON /TETE/ PS11, psxz PSSI
COMMON /TOTO/ PI, snpu! ésph1

INTEGER PP,QQ, CONTRO

- xxfv -



COMMON /OU1/ PP,QQ,CONTRO

REAL MU

COMMON /AH/ MU, PHILO, sxGLoc PHI1,PH12,PRILOP, PHILOT
AL

RE
X(40,40),2(40,40),S1GMA40,40),PS1(40,40),PHI(40,40)
COMMON ' /LALA/ X,Z. SI1GMA,PSI
COMMON /ALO/ PHI
INTEGER P(40),Q(40)
COMMON /LOLO/ P,Q
REAL EO, LANDA
€234567
COMMON /crit/
EO,LANDA,PMIN,PMAX, PHIMIN, PHIMAX, PHI1 ,EMIN, EMAX
REAL COSPS1 .SIMAH(30) ,XP,F,E,SOMME, B,RATIO,CENTRE
INTEGER L1,RAD,1,J,H,RAD],RAD3

113

c
RADIV*RADIL- 2
1wC
H=0
J=RAD- 2
RAD3*RADIL- 3
4 HwH 1
J=31
€2345678
1=y
SINPHI=SIN(PHI (H,3))
PSI1{H,J)=2.*PSI(H,J)
COSPS1=CCS(PSI(H,J))
PSI{H,J)=PST(H,J)/2.
SIMAH(I )=SIGMA(H,J)* (1-SINPHI*COSPST)
1F(H .LT. L) GO TO 4
[of
1=1
Hw1
J=RAD- 1
KP=C.,0
SOMME=0, 0
6 | K
H=H41
J=J+1
SOMME={SIMAH{I-1)+4SIMAH(I)) /2.
SOMMEwSOMME* (Z(H,J)-2(H 1,3-1))
KP=KF s SOMME
Li=L
IF(1 .LT. L1) GO TO &
C234567
KPeKP
PRINT 10,Kp
D*Z{L,RAD1)
n-n'SIzz/1 732
PRINT 14,
14 PORMAT(///////ZOX. HEIGHT=' ,P9.3)
B=Bp*1.732/S12E
RATIO=1.,/B**2
- XXV -~
KP=KP"RATIO"2,
c
PRINT 10,KP
10 FORMAT(////////20%, ‘KP=" P9, 4)
RETURN
END
c'..""..."'."."".'w- L 2 4 AAA AT T RN AN AT RRRRIRTANS
1+
c L'ORGANISATION DE L'ENTREE DES DONNEES
'c EST LA SUIVANTE:
c
[ PIRPHI,DELTA,BETA, TOL,CONVG, SIZE,GS,GW
C  CONTROL
c
[of EMIN, EMAX,LANDA, PMIN, PMAX , PHIMIN, PHIMAX
c  x(1,1
'E *eww - LA 2 2 2 2 *ow 'Q'.-"""."-Q'Q'.'-'
,c
[
ENTRY
30,0 3¢.,0 -30.C 0.0001 0,001 0.2 2,65 2.81
2
10 20 )
0.40 0,80 0,175 10 10000 28 45
0.1732
0.21%
0.260
0.346
0.519
0.693
0.866
1.216
1.732 *
SSTOP

;/PTDBPOO1 DD DSN=HOVAN.SAS.OUTPU2,DISP=OLD
- .
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The following pages (115-117) show a sample of the computer
print-out. Each point is characterized by :

- X, Z, Physical coordinates

- SIGMA, Stress

- PSI, Direction of the major principal stress
- P,Q, Iteration counts

- PHI, Angle of shearing resistance

The radial number is J. For each radial, the print-out shows
the characteristics (X,Z,SIGMA,PSI,P,Q,PHI) of the intersec-

tions of the spirals with the radial.



COMPUTATION OF THE EXTRA DOMAIN

Je 30 FIRST SPIRAL: 3
ssean Rsssssesessrnnns

x 2 SIGMA
©.00001288 0.12878000 o.258348 O1
©.00047808 o.18288120 Q.27833E Ot

‘ 0.008014388 6.2017718%0 0.3113ee Ot
0.020480788 ©.30987840 ©.37430E O}
0.08793748 0.42881180 O0.43071E 01
©.08400088 0.84470180 O.428148F O
©.17771100 0. 788511840 0.%7¢33¢ o1
0.38397220 1.17343100 O.887835E ©O1

CLE 2 ) FIRST SPIRAL: 4
aesss BssssssEseERROeS
X 2 $IGMA
0.00001522 0.13224330 ©.29283E 01
0.001303834 0.2001%380 0.33010F Of
0.0133134130 0.30821200 0.39%74E 01
0.03883770 ©.420841380 O.8S443E 01
0.0888388303 ©.53913130 ©0.%0711E ot
0.150313%90 ©0.78871670 ©.80430F 01
0.31143700 1.18748100 0.7308%E Ot
Jr 32 FIRST SPIRAL: &
sesse Ssassesssernunsse
X E SIGMa
0.00001922 0.19818340 ©.38282E Ot
0.0048789881 0.30t180820 0.432832 o1
C.01980883 0.41347970 0.49843E 01
©.048282328 0.82888%10 C.53147F O
0.109284380 ©.77728800 0.85417E 01
0.24875%80 1.1885489%00 C.78781E O

PSS

0.484231710
0.48578%420

O.79888700
0.87837820
0.90188120

rs1

Q.458335840
0.%52765750
0.82304430
©.70306010
©.75%21%30
0,84432040
a.s3018770

rs]

0.48477110
0.8857233%0
©.84348830
0.70112080
©.78834820
0.a87802170
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PUULWNLS

v

- e

o
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o
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PHI

37.487
37.07a
38.458%
35.388
35.815
38.027
34 .393

PHI

38.783
38.180
38.894
33.313
34.781
34.144

SOUNDARY

B0UNDARY

B0UNDARY

STT



Js 33 FIRST SPIRALS [
ssans ssssasessas

X 4
0.000028384 0.23842800
G.00376835 0.40483%1820
©0.01310109 0.51711880 ©.82583¢% Ot
0.0889%2012 0.735834820 0.738208 O
0.15817370 1.13334500 ©.88287E 01
Jr 38 FIRST sPIRAlL: 7
stasesw Ssssscsascsssnesy
X 2
©0.00004028 G.480230870
0.00301403 0.51034300
©.02870487 ©.74588300 0.80823¢ o1
0.08788414 t.11483800 o.883228 Ot
Js 3% FIRST SPIRAL: 3
ssnes Sassszsesssennns
x 2 21GMA
©0.00008084 0.80843820 ©.74380EF O1
Q.0088825%2 ©.731703140 0.87031E Ot
©0.05843802 1.098343%00 0.10321 02
Jet 38 FIRST SPIRAL: 3
sessns StssssEsssnanasse
X 2 SI1GMA
©.00007311 ©.73109320 O.97743EF o1t
0.01813783 1.079483400 0.1152%5E 02
Je 37 FIRSY SPIRAL: (0
sasss ssusssusessRenes
X z si1Gma
0.00010702 t.07018200 O,t13041E 02
7

rs]

0.8%7400880
0.851640%0
0.811248480
©.70304010
C.738198380

rs1
0.48072980
0.8%54818229%0

0.833882%0
0.73188870

rsi
0.485884%0

o.ss159820
0.67987%%0

rst

0.493741380
0.58513710

(£}

0.483932180

hJ
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e
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PHI

38,898
38,286
3 10
34.2380
33.787

PHI
34.924
34.6888

34 088
33.481

PHI
34.1318

33.818
33.254

PH]

33.431
32.893

PHI
32.793

BOUNDARY

DOUNDARY

GOUKDARY

BOUNDARY

BOUNDARY
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HEIGHT 4.9430

KPs

9.44312

AERASSSURESLEENTS SR ESEEURAURNDEEEES

SIGMA[L,RAD+L -2} 13.040830s

S1GMA(2, RAD)» 1.305003 bd
DiFs: 0.00070 *
CaOMVC: 0.00i00 .

SIS LN IBASSENATSEUSABSNRLIIENS
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Appendix C

SAMPLE OF A PLOTTING COMPUTER PROGRAM

- 118 -



1 s A Lt og 08 SaAs3 82.4 v32/mMvS gae PRINT sTEP GO PrOC te:08 SATURNDAY, NeYEmaER 17, teea
NOTR: THE Jos PRINT HAS wEEN AUN uNoEeR RELEase 82.4 DF 3AS AT THE umiversity or MANITORA {o2248001) .
NOTE: crujD VERSION ¢ 01 SERIAL o 000103 MoOEL osso

NOTE: SAS OPTIONS SPECIFIED ane:

SORTe4
t GOPY1ONS DEVICEsvERSATIC, 8.
2 bara ovo; 7.
3 INFILE SASDATA; [
L tuPuT X 2 A 8 PHI; 9.
NOTE: INFILE SASDATA 1s.

DSWAME<HOVAN.3AS . OupUTW,

unlv-o:sx.vot-s:n-us!not,ols'-auu.

nCllIULKlIREIIOIO,ll!cttio.llcln-rll
NOTR: 292 LINES WERE READ FRom INFILE sSAasDATA.
NOTZ: DATA 3ET WORK.QYOD MAS 2932 DESERVATIONS AND B vAR[ABLES. 433 083/7AK.
NOTE: THE DATA STATEMEWT UseD ©.08 3ECONDS AND JggK.
1 PROC PRINT; 10. s
NOTE: THE PROCEOURE PAINT UsED ©.18 SECONDS AND 380K aAND PRINTED PAGES | Vg &,
[ PROC GPLOY DATAsOYD UNIPORM; (R}
7 LABEL 2eHEIGHT OF THE Passive waLtL 12,
[ KYHORIZONTAL; 13,
] TITLE .He2 .rapupLEx sygp LINES BENIND a passivE wALL 1e.
10 FOOTNOTEY .Het .FeDUPLEX poun RIRE; s,
(R PLOT Zexea / woLEGEND VREVERSE vAXISsO TO 1.3 my 0.2 .
t2 HAXISsO TO 1.8 BY o2 VREF 1.3 MREFe).8; 181
13 SYMBOLT  vawONE Lay teugin; 17, '
14 SYMBOL2  veNONE Le} teaoin; 18,
1] BYMBOLI vsNONE L) tedoin; 1.,
ts SYMBOLS  veNONE L) tvgoin; 20.
17 SYMBOLS  venONE L4y Tayoin; 2.
18 SYMBOLE VeNONE Loy l1ayoin; 22.
1 SYMBOLY veNONE Lag 1eJ0IN; 23,
20 SYMBOLS  VENONE Loy tsaoin; 24.
21 SYMBOLY  VYeNONE La) [EFLITH 28
22 BYMBOLIO VeNOKE (e} 10J01IN; 2s.
23 SYMBOL V1 VeNONE Loy ledoin; 27,
24 SYMBOLI2 venmONE Lo} Tedoin; s
28 SYMBOLII veNONE Lo ledoin; 2.
28 SYMBOLIG VeNONE Lo leJoin; 30,
27 TYMEOLIB VINOMNE Lo legoin; 31,
28 SYMBOLIG YeNONE (e} tedoin; 32,
2 SYMBOL1T VeMONE Loy 1suoin; 13,
30 SYMBOL IS YeNONE Loy tsuotn; 34,
31 SYMBOL IS VeNONE Lo} ledotn; 3s.
32 SYMBOL20 YeNOME Lo 10J0IN; .
33 SYMBOL2T YeNOWE Let legoin; 37.
3 SYMBOL22 VeNONE (o 1vyoin; 3.
s SYMBOL23 VeNONE (e} teJoin; 30
3 BYMBOL24 venONE Lot Tugoin; 40,
31 SYMBOL2E VYeNONR Lu leJoiIn; .
3 SYMBOLIS veMNONE Luy legoin;
2 SYMBOL2T? VsNONE (v Tegoin;
40 SYMROL2S VeNONE Let [sgain;
4 SYMBOL2S ViNONE Let Tagogn;
42 SYMBOLIO YeNONE Loy fsaotn;

NOTE: THE PROCEDURE CPLOT USED o.80 seconDs AND BB2K,
MOTE: BAS USED 82K MEMORY . |

NOoTR: sas INSTITUTE INC,
SAS Clnrcie
PO 80X 8000 .
CAmrY, x.g. 27811-3000
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