```
PREDICTIVE INDICES OF JUNIOR HIGA SCHOOL TEST SCORES WITH RESPECT TO ACADEMIC PERFORMANCE IN TWELFTH-GRADE SUBJECTS OF THE UNIVERSITY ENTRANCE COURSE
```


A THESIS

PRESETTED TO
THE FACULTY OF GRADUATE STUDIES AND RESEARCH UNIVERSITY OF MANITOBA

IN PARTIAL FULFILLNENT
OF THE REQUIREMENTS FOR THE DEGREE MASTER OF EDUCATION

BY
FRANK JOHN FROESE
DECEMBER 1968
c Frank John Froese 1968

ACKNONLEDGEMENTS

The writer wishes to express his sincere appreciation to the many persons who have given most valuable assistance in the writing of this thesis. Dr. P. A. Taylor has been generous in providing advice and encouragement during verious stages of performing and reporting the study. Dr.J. W. Peach and Dr. I. W. Paterson have also given most helpful suggestions with respect to the writing of the study. The typine was efficiently and patiently completed by Mrs. W. Tanner. The writer was assisted by the personal interest shown by his wife, Elsie, throughout the writing of this stuxy. To these individuals, as well as all other persons who directly or indirectly were instrumental in making this stuay possible, the writer offers sincere gratitude.

ABS TRACT

The purpose of this study was to determine how effectively students' academic performance in individual twelfth-grade subjects of the University Entrance Course can be predicted at the ninth-grade level. The nine independent variables selected as predictors were the IQ scores of the Dominion Test, three separate test scores obtained from the School and College Ability Test (SCAT), test scores of ninth-grade language, mathematics, science and history, and the ninth-grade average marks.

A review of relevant literature revealed that Various tests of mental ability and academic performance have been used with considerable success to predict acadenic achievement of students' in senior high school.

The empirical analysis consisted of two major investigations. In the first investigation multiple regression was applied to the data. The coefficient of multiple correlation of the total batcery of nine independent variables and the twelfth-grade subjects were computed. The nine independent variables only accounted for forty-five per cent or less of the variance of the individual twelfth-grade subjects. Regression weights of the independent variables selected as the best
predictors were obtained and multiple regression equations were used to predict twelfth-grade subject scores. The predicted twelfth-grade scores were subject to a large error of estimate. A cross-valication analysis of the initial multiple regression investigation also indicated that the differences between the predicted scores and the actual twelfth-grade scores were very large.

The multiple regression investigation demonstrated that the nine selected independent variables, which primarily were measurements of intellectual ability and performance, did not account for a sufficient amount of the variance of individual twelfth-grade subjects to make accurate prediction by multiple regression equations possible. The results of this investigation indicate a need for further research in order to identify independent variables which account for an additional portion of the variance of the individual twelfth-grade subjects so that prediction by multiple regression equations will be subject to less error of estimate.

In the second part of the study expectancy tables were constructed to predict the probability of a student obtaining a score as great as or greater than a designated twelfthograde subject score. The expectancy tables based on the bivariate distribution of ninth-grade average marks and the scores of the individual twelfth-
grade subject examinations showed the most meaningful and discriminative relationship between the independent and dependent variables. This study established the utility of expectancy tables, based on ninth-grade average marks, to predict students' academic performance in individual twelfth-grade subjects of the University Entrance Course.

TABLE OF CONTETTS

I. THE OBJEGTIVES AND SIGNIFICANCE OF THE STUDY 1
The Objectives of the Study. 2
Statement of Objectives 2
Delineation of the Study. 2
Data Sources. 4
Significance of the Study 4
Curriculum Provisions and Course Selections. 4
Student Ability to Make Academic Decisions 5
Need for Valid Evidence 7
Summary 9
II. The revien of the literature 12
School Test Scores as Predictors of
Academic Performance 12
Differential Tests of Mental Ability.l2
School Achievement Tests 14
General Intelligence Tests 25
Methods of Prediction of Academic
Performance. 18
Multiple and Canonical Regression. 19
CHAPTER PAGE
Multiple regression 19
Ganonical regression 21
Expectancy Tables 22
The School and College Ability Tests(SCAT)23
Summary 25
III. THE DESIGN OF THE STUDY 26
The Variables of the Investigation 27
Dependent Variables 28
Independent Variables 29
Mental ability test 31
School achievement tests 32
General intelligence test 33
The Mrutiple Regression Investigation 33
Interpretation of Multiple Regression and Associated Statistical Techniques 34
Multiple correlation 34
Regression weights of independent
variables 36
Multiple regression equations. 36
Population Sample and Variables. 37
Procedure of Multiple Regression. 39

Belection of best independent variables 3s predictors...... 39

Construction of multiple regression equations........... 47
Cross-Validation of the Multiple
Regression Investigation 42
Population sample and variables of cross-validation analysis 42

Comparison of the population samples. 43
Procedure of cross-validation 46
The Expectancy Table Investigation $\ldots . . .48$
Population Samples and Variables 48
Construction of Expectancy Tables 4.8
Reading of the expectancy tables... 51
Use of expectancy tables 52
The Comparison of the Two Techniques of
Prediction.................................... 53
Comparison of population samples... 53
Procedure of comparison 54
Summary... 54
IV. THE FINDINGS OP THE PREDICTON STUDY 57

Findings of the 許ultiple Regression
Investigation 57
Multiple Correlation Coefficients.. 58
Variance of Frultiple Regression.... 60
Selection of Independent Variables as Best Predictors 60
English 300 63
History 300 65
Mathematics 300 65
Chemistry 300 65
Physics 300 65
Biology 300 65
French 300 66
Prediction of Dependent Variable Scores.. 66Findings of the Cross ValidationAnalysis67
Findings of the Expectancy Table Investigation 69
Prediction Based on SCAT Test Percentiles 70
Prediction Based on School
Achievement Tests 72
Prediction Based on the Dominion Pest. 74
Findings Based on a Comparison of the Two Techniques 76
Summary 79
CHAPTER PAGE
V. SUMMARY AND CONCLUSIONS 80
Review of the Study 80
Major Findings 81
Prediction by Multiple Regression. 82
Prediction by Expectancy Tables 84
Observations and Implications 85
Recommendations 88
Conclusion 89
BIBLIOGRAPHY 90
APPENDIX 94

LIST OF TABLES

I. Surmary of Variables 30
II. Size of Student Samples Associated With

Bach Dependent Variable Analysis of the Separate Investigations 38
III. The t-Test of Analysis of the Means of

Three Selected Pairs of Independent
Variables of the Population Samples of
the Multiple Regression Investigation
and the Crossmalidation Analysis 44
IV. English 300 Expectancy Table Based on

Verbal SCAT Test 50
V. Coefficients of Multiple Correlation and

Per Cents of Variance of Individual
Dependent Variables Associated With
the Battery of Nine Independent
Variables 59
VI. A Comparison of the Multiple Correlation

Between Each Dependent Variable and
the Total Battery of Independent
Variables as Compared to the Multiple
Correlation of Each Dependent Variable
and a Sub-Group of Selected Independent
Variables .. 61
VII. Sumnary of Data Associated With the Prediction of Dependent Variable Scores by Multiple Regression 64
VIII. A Comparison of Students' Actual Scores on Dependent Variables With Their Predicted Scores Obtained by Means of Multiple Regression Equations..................................... 67

IX。 English 300 Expectancy Table Based on Quantitative SCAT Test 94
X. English 300 Expectancy Table Based on Total SCAT Test............................. 94
XI. English 300 Expectancy Table Based on Language IX Pest 95
XII. English 300 Expectancy Table Based on Mathematics IX Test 95
XIII. English 300 Expectancy Table Based onScience IX Test 96XIV. English 300 Expectancy Table Based onHistory IX Test....................... 96
XV. English 300 Expectancy Table Based onGrade IX Average 97
XVI. English 300 Expectancy Table Based on Dominion Test 97
TABLE PAGE
XVII. History 300 Expectancy Table Based onSCAT Verbal Test................................... 98
XVIII. History 300 Expectancy Table Based onQuantitative SCAT Test 98
XIX. History 300 Expectancy Table Based on
Total SCAT Test 99
XX. History 300 Expectancy Table Based onLanguage IX Test.............................. 99XXI. History 300 Expectancy Table Based onMathematics IX Test 100
XXII. History 300 Expectancy Table Based onScience IX Test.......................... 100
XXIII. Kistory 300 Expectancy Table Based onHistory IX Pest............................. 101
XXIV. History 300 Expectancy Table Based onGrade IX Average 101
XXV. History 300 Expectancy Table Based onDominion Test 102
XXVI. Mathematics 300 Expectancy Table Based onVerbal SCAT Test 102
XXVII. Mathematics 300 Expectancy Table Based on Quantitative SCAT Test 103
XXVIII. Mathematics 300 Expectancy Table Based on Total SCAT Test 103
TABLe PAGEXXIX. Mathematics 300 Expectancy Table Based onLanguage IX Test......................... 104XXX. Mathematics 300 Expectancy Table Based onNathematics IX Test IOLXXXI. Mathematics 300 Expectancy Table Based onScience IX Test 105XXXII. Mathematics 300 Expectancy Table Based onHistory IX Test 105
XXXIII. Mathematics 300 Expectancy Table Based onGrade IX Average106
XXXIV Mathematics 300 Expectancy Table Based on Dominion Test 106
XXXV. Chemistry 300 Expectancy Table Based onTotal SCAT Test 107XXXVI. Chemistry 300 Expectancy Table Based onLanguage IX Test 107
XXVII. Chemistry 300 Expectancy Table Based onVerbal SCAT Test 108
XXXVIII, Chemistry 300 Fxpectancy Table Based onQuantitative Test 108XXXIX. Chemistry 300 Expectancy Table Based onMathematics IX Test109
XI. Chemistry 300 Expectency Table Based on Science IX Test 109

TABLE
XII. Chemistry 300 Expectancy Table Based on History IX Test.............................. 110
XLII. Chemistry 300 Expectancy Table Based on Grade IX Average........................... 110
XIIII. Chemistry 300 Expectancy Table Based on Dominion lest.. 11
XIIV. Physics 300 Expectancy Table Based on Verbal SCAT Test............................ 111
XIV. Physics 300 Expectancy Table Based on Quantitative SCAT Test.................. 112
XLVI. Physics 300 Expectancy Table Based on
Total SCAT Test 12

XIVII. Physics 300 Expectancy Table Based on Tancuage IX113
XLVIII. Physics 300 Expectancy Table Based on Mathenatics IX 113
XLIX. Physics 300 Expectancy Table Based on
Science IX 114
I. Physics 300 Expectancy Table Based on
History IX 114
II. Physics 300 Expectancy Table Based on
Grade IX Average 115
III. Physics 300 Expectancy Table Based on Dominion Test 115
TABLE PAGELIII. Biology 300 Expectancy Table Based onVerbal sCAT Test........................... 116
IIV. Biology 300 Expectancy Table Based onQuantitative SCAT Test.................... II6
LV. Biology 300 Expectancy Table Based on Total SCAT Test 117
LVI. Biology 300 Expectancy Table Based on Janguage IX Test 117
LVII. Biology 300 Expectancy Table Based on Mathematics IX Test 118
LVIII. Biology 300 Expectancy lable Based on Science IK Test 118
LIX. Biology 300 Expectancy Table Based on History IX Test 119
LX. Biology 300 Expectancy Table Based on Grade IX Average 119
IXI. Biology 300 Expectancy Table Based on Dominion Test 120
IXII. French 300 Expectancy Table Based onVerbal SCAT Test............................ 120IXIII. French 300 Expectancy Table Based onQuantitative SGAT Pest.121
IXIV. French 300 Expectancy Table Based onTotal SCAT Test121
TABLE PAGE
LXV. French 300 Expectancy Table Based onLanguage IX Test............................ 122IXVI. Prench 300 Expectancy Table Based onMathematics IX Test........................ 122LXVII. French 300 Expectancy Table Based onScience IX Test............................ 123LXVIII. French 300 Expectancy Table Based onHistory IX Test.............................. 123
LXIX. Erench 300 Expectancy Table Based on Grade IX Average 124
IXX. French 300 Expectancy Table Based on Dominion Test 124

I. INTRODUCTTON

At the completion of the ninth grade of junior high school and prior to entering senior high school, students in Menitoba schools must elect to enroll in one of four course patterns. These course patterns are the University Entrance Course, the General Course, the Commercial Course and the Industrial Course. Since each of these courses acts as a pre-requisite for attainment of particular academic or vocational goals, the decisions which are made with regard to course and subject selection at the ninth-grade level are often crucial for the student's future academic or vocational achievements. Therefore, sound guidance based on the most dependable evidence and information must be provided so that each student will make the wisest possible choices.

One useful guide in course selection in senior high school could be the prediction of academic performance in twelfth-grede subjects of the University Entrance Course on the basis of marks obtained in tests of mental ability, school achievement and general intelligence in junior high school. Several studies have been done in this area
of prediction, but none have been performed with these particular variables in the local setting of this study. This study seeks to provide information to assist students in the ninth-grade of the junior high school In the selection of the most appropriate course and subjects in senior high school.
II. THE OBJECTIVES OF THE STUDY

Statement of Objectives
This study has a two-fold purpose: it seeks to determine the effectiveness of selected junior high school tests of mental ability, school achievement and general intelligence as predictors of academic performance in individual subjects of the twelfth-grade University Entrance Course; the second objective of this study is to compare two techniques of prediction to assess by which method the selected variables could be used more effectively to predict acedemic performance in the twelfth grade. The two techniques being compared in this study are the application of multiple regression together with the construction of multiple regression equations, and the construction of expectancy tables. Delineation of the study

The study was limited by being performed with
population samples which consisted only of those twelfthgrade students enrolled in one secondary school in the city of Winnipeg in the province of Manitoba. The study is further limited by considering only those junior high school students who enrolled in the University Entrance Course and completed the twelfth-grade June examinations set by the Manitobe High School Examination Board. No consideration was given in this study to those junior high school students who subsequently enrolled in senior high school courses other than the University Entrance Course.

This study did not consider sex differences of the population samples of students who served as the source of the data of the study.

The study is restricted to a consideration of those independent variables as predictors of academic performance which are themselves measurements of mental aptitudes and academic performance. These independent variables consisted of data which was annually accumulated in the local school setting in which this study was performed. It was hoped that the findings of this study would assist the guidance personnel to assess the relative usefulness of data, readily available in the school, with respect to counseling of students in regards to
course and subject selection in senior high school. Data Sources

To carry out this study the following data were required:
I. The Verbal, Quantitative and Total scores on the School and College Ability Tests (SCAT) of all the students included in the individual investigations.
2. The final, June ninth-grade subject scores in language, mathematics, science and history of all students included in this investigation. Also, the students: average marks, which were the unweignted means of the four ninth-grade subject scores of all students which, were included in the individual investigations.
3. The IQ scores obtained from the Dominion Tests of Learning Capacity for all the students included in the individual investigations.
4. The twelfth-grade University Entrance Course subject scores obtained in English, history, mathematics, chemistry, physics, biology and French by students included in the individual investigations.
III. SIGNIFICANCE OF THE STUDY

Curriculum Provisions and Course Selection
The curriculum of the Manitoba high schools is
no longer primarily designed for those students preparing to enroll in a university. With the introduction of other courses besides the University Entrance Course, provision is made for more youth of high school age to prepare for vocational goals that are suited to their abilities. With the introduction of additional senior high school courses, the academic alternatives presented to a student, as he selects a senior high school course at the end of the ninth grade, have also been increased.

In the secondary school from which the data of this study were collected approximately 250 students were annually enrolled in the ninth grade. Of these students a total of 138 students completed the twelfth-arade English examination in the University Entrance Course in 1967 but only 97 students attained a pass standing. The remaining 41 students failed to gain a pass standing in this course subject. It is frustrating and often detrimental to a student to be placed in an educational program in which he will not be successful. Droedef (1960) stated that in recent years there has been increasing recognition of the importance of educational-vocational guidance during the ninth-grade in junior high school with respect to course and subject selection.

Student Ability to Make Academic Decisions Thompson (1966) supported Super's view (1960)
that students at the ninth-grade level are ready to consider problems of pre-vocational and vocational choices. Thompson found that ninth-grade students were not only interested in exploring the nature of various vocational occupations but indicated personal preferences. He found that there was practically no difference in the preference given to various occupations by individual students during the ninth grade and later during senior high school grades. A student, for example, who was interested in science related vocations such as pharmacy or the chemical research industries while in the ninth-grade would most frequently indicate similar vocational interests during the final year of senior high school.

While evidence based on research indicates thet students possess a meturity or stability of vocational and pre-vocational interests and preferences, other research evidences indicate that students frequently have great difficulty in accurately assessing their own ability and their personal potential to achieve in academic subjects. Spaight (1965) made a study to examine the relationship between the actual and the perceived level of academic achievement of junior high school students. He concluded that many junior high students are unable to rate their actual or potential achievement realistically or accurately. He noted that
bright junior high school students tended to underestimate their actual academic achievement and their capacity to achieve. Due to this tendency on the part of some students to underrate themselves, they hesitate to enroll in a certain course which they consider desirable and in which they would probably be successful if they enrolled. Other students, due to lack of adequate self-understanding, choose academic programs which are too demanding in relationship to their ability and consequently fail to achieve success.

Need for Valid Evidence

In seeking to assist a student to assess the probability that he would be successful if he were to enroll in a particular course subject, the counsellor must select independent variables which he considers to be the best predictors of academic performance in that subject. Shaycoft (1967) made a comorehensive study to assess the effectiveness of various independent variables as predictors of academic performance in the twelfth grede of senior high school. She concluded thet a student's achievement rating in the individual ninthgrade subject is an excellent predictor of that student's attainment in twelfth-grade suojects requiring the same cognitive skills. Shaycoft's findings justify the inclusion of ninth-grade subject scores as independent
variables of this stưy.
Prediction studies must be undertaken with tests even though the title of the test may imply which cognitive skill or skills are measured by it. Only if independent variables are proven empirically to be reliable measures of future performance in a specific subject can,they be used by the school to counsel a student with respect to the probability of success in that particular subject if he chooses to enroll in it. Lavin (1965) warned that many predictors with a label related to an area of academic performance frequently do not measure the same cognitive skills and consequently do not correlate significantly with the criterion carrying the same label. On the other hand, tests that have a particular label such as Numerical Ability may effectively predict achievement in an academic subject designated by an unrelated label such as Physics since the same coznitive skills are required for performance in both tests. Milholland (1962), in a review of educational testing, drew attention to the fact that the greater number of studies of prediction of academic performance in senior high school, as well as other levels of education, were restricted to an assessment of the effectiveness of a variety of independent variables as predictors of a single criterion, namely over-all
academic performance. However, as Horst (1957) pointed out, performance of most students differs qualitatively from one subject to another. Therefore individual senior high school subjects must be selected as the criterion of academic performance rather than considering composite high-school average marks as an adequate criterion in such prediction studies. This study used subject scores rather than over-all average marks as the criterion.

This study is also of value since it consists of empirical analyses of data obtained in a local setting and therefore provides additional information regarding how effectively these selected independent variables predict academic performance of students in a particular school. Lavin (1965) emphasized the importance of replicating stuaiies, using locally obtained data, in order to determine whether prediction of academic performance based on specific independent variable is warranted in that particular local situation.
IV. SUMMARY

This study seeks to assess the effectiveness of various independent variables as predictors of academic performance in individual twelfth-grade suojects of the University Entrance Course. Another objective of
the study is to compare two techniques of prediction to determine by which method of analysis of the data the most useful information is provided with respect to counseling of students in the selection of senior high courses. The approach of this study consists of the application of multiple regression equations and the construction of expectancy tables.

This study is important for several reasons. Students, at the end of the ninth grade, are faced with the selection of one of four senior high school courses as well as the selection of individual course subjects. Unfortunately, in numerous instances, students who select the University Entrance Course do not attain their twelfth-grade standing. Other students, who would possibly be successful if they enrolled, avoid the University Entrance Course because of their inability to assess their chances of academic success in this course. In order that guidance and counsel may be provided by the school with respect to the probability of success or failure in a given course subject, empirically validated information and evidence must be available。

Chapter II contains a review of some of the research literature that is relevant to this study. A description of the variables, the population samples
and a detailed description of the techniques used in the investigation is given in Chapter III. In Chapter IV the findings of the two main investigations are presented and compared. Chapter V consists of a summary of the study and the implications of the findings.

CHADTER II

THE REVIEW OF THE LITERATURE

The review of the literature will be restricted to a number of studies releted to the prediction of academic performance with the scores of tests of mental abilities, school achievement and seneral intellisence since these studies were most relevent to this stujy. A number of research techniques employed in prediction of academic performance will be reviewed. Also literature specifically related to the School and College Ability Tests (SCAT) will be summarized.
I. SCHOOL TEST SCORES AS PREDICTORS OF ACADEMIC PERFORMANCE

Differential Tests of Mentel Ability

Shaycoft (1967) demonstrated thet growth in cognitive skills is not only substantiel between the ninth and twelfth grade, but that the rank-order correlation between ninth and twelfth-grade scores on the same test tended to be highly significent. She concluded that studies of prediction of performance in specific cognitive skills were rationelly justifiable. However, she noted significent differences in the rete of mentel growth between the indivigusl cognitive skill areas. The largest gain in terms of rew scores on tests was in vocabulary.

Shaycoft recommended individual subject scores rather than over-all grade average as the criterion of academic performance in prediction studies so that differentiation in rate of mental growth in the indiviaual cognitive skills may be taken into consideration.

Meyer and Bendig (1961) made a study to determine whether scores obtained on differential ability tests in junior high school were effective predictors of academic performance in senior high school. The Primary Mental Abilities Tests were administered to a group of students during the eighth and eleventh grade. The eighth grade sub-test scores of the Primary Mental Abilities Tests correlated with eleventh grade achievement test scores resulted in a correletion coefficients that were highly significant. The study showed that differential tests of mental abilities administered at the junior high level were at least as useful predictors of eleventh grade performance as the same tests administered at the beginning of the Grade XI.

Ingersoll and Peters (1966) studied the predictive value of the sub-tests of the General Aptitude Test Battery (GATB) with respect to ninth-ene tenth-grade performance. Verbal Aptitude and Numerical Aptitude with regression weights of .27 and .22 respectively contributed most significantly to the variance of multiple
regression. Frost (1965) in his review of finaings of prediction studies based on multiple regression, agreed with Droedge (1966) by stating that numerous stuaies of mental ability tests indicated thet verbal, numerical and spatial factors were major components of the variance of regression between independent variables and the dependent varieble.Flanagen (1965) and Jacobs (1959), in separate studies, found that tests of arithmetic computation were the best single predictors of over-all high school performance.

Mitchell (1955) contended that subject echievement tests scores rather than grade average should be the criterion when predicting academic performance by means of differential ability test scores. He recommended four-factor ability tests as predictors.

School Achievement Tests

Boney (1966) made a comparative study of 23 independent variables as predictors of over-all twelfthgrade achievement. Scores obtained by a total sample of 222 students on sub-tests of the Differential Aptitude Tests, the Sequential Tests of Educational Progress, the California Tests of Mental Maturity, junior nichschool achievement tests and junior high-school gredepoint average served as the independent variables. The criterion of academic performance was over-all
twelfth-8rade academic performance. By means of multiple regression Boney demonstrated thet junior high-school grade-point average contributed more to the variance of the criterion than the sub-tests of well-known standardized tests of mental ability and achievement.

Scannell (1960) made a study to determine the usefulness of achievement test scores obtained at the junior high school grade level as predictors of success. He demonstrated that the scores of the sub-tests of the Iowe Test of Basic Skills predicted over-all college success equally well in the eighth grade as in the eleventh or twelfth grade. Klugh and Eierley (1959) found that the high school average mark was a better predictor of first semester college grades than the Co-operctive School and College Ability Test (SCAT). Narks and Murray (1965) stated thet high school average has long been considered es thet variable which singly provides the most information about future academic performance at the college level as measured by grade-point average.

Travers (1955) concludes his review of research findings with respect to prediction of academic success by stating:

There is evidence that a student's grade in a particuler subject-matter field can be best preBicted from his previous grade in the same or related fields. Relative performance in the same subject is quite stable from year to year, so that
the tenth-grade scores are in general as good as the eleventh grade scores for predicting twelfthgrade scores in the same subject area.

General Intelligence Tests

The literature of educational research pertaining to the usefulness of general intelligence tests as predictors of academic performence reflects a diversity of views amongst educators. Oronbach (1949) asserted thet multifactor tests of abilities add little to the prediction of performance in particular academic courses beyond what the general intelligence will predict. He reported a study at the high school level in which correlation between intelligence and grades was .55 . Travers (1949) found that correlations between intelligence and school grades were between . 50 and .75 on the eighthto tenth-grade levels. Gough (1953) obtained correlations of from .62 to .80 with three samples of high school seniors, and Garter (1059) found correletions of about .60 between intelligence tests and academic performance in senior high school of three student semples.

Wellman (1957) made a comparative study of single score intelligence tests and multifactor tests of mental maturity as predictors of high school achievement at the ninth-and tenti-grade level. The Gamma IQ test of the Otis quick-Scoring Mental Ability Test was used to obtain single scores and the Primary Mental Abilities Test
consisting of a battery of tests was used to obtain multiple scores. He found that a greater portion of the variance of the criterion wes accounted for by the Otis IQ scores then by the scores of any of the PMA sub-tests or by the PMA Total scores.

Tyler (1965) stated that correlations reported between group intelligence tests and standardized measurements of school achievements often are as hish as .80. She stated that long-term predictions from intelligence test scores lend support to the conclusion that intellisence tests measure basic educational aptitude. She concluded that if school attendance laws were such as to permit students to arop out after their fourteenth birthdays, intelligence tests given in a grade school woula predict with a fair degree of success how firr up the educational ladder students will go.

Strong opposition to the use of group tests of general intelligence as measures of mental ability has been expressed due to the belief that these tests are biased against the culturally deprived. This view was in large part responsible for the decision to ban group intelligence tests in the schools of the city of New York es reported by the Board of Education of the City of New York (1964).

Bloom (1963), in attemoting to determine the
relative usefulness of various tests of mental abilities as predictors of acedemic performence, discovered that the correlation between a general index of intelligence and over-all performance on a battery of achievement tests approaches unity at the elementary level and arops to about. 50 at the college level. He concluded that tests of general intelligence have less predictive capacity in the secondary school than differential aptitude tests. Frost (1965), in a review of findings of educationel research related to the prediction of scholastic achievement in senior hish school, also concluded that rarely cen more then 50 per cent of the variance of the criterion of academic performance be accounted for by intelligence test scores alone. However, he concurred with Wellman (1957) who argued that intelligence tests contribute significantly to the amount of variance of the subject criterion in senior high school that is accounted for by a battery of independent variables by means of multiple regression.
II. METHODS OF PREDICIION OF ACADEMIO PERFORMANCE

A brief review of a number of stuaies using verious methods to predict academic performance is included in this section. Studies employing multiple regression, canonical correlation and expectancy tables
will be discussed.

Multiple and Canonical Regression
Multiple regression. Wellman (1957) performed a multiple regression study with data obtained from a sample of 136 students in one hish school in the state of Iowa. The puroose of the study was to determine the effectiveness of a single score test and a multiple factor test of mental ability as a battery for differential prediction of ninth-and tenth-grade achievement. Scores obtained on the Otis Quick-Scoring Mental Ability Test and the Primary Mental Ability Tests served as the preaictor variables. He found that when the Otis Test scores, the PMA Verbal Meaning scores and the PMA Reasoning scores were correlated with individual criteria, coefficients of multiple correlation of 81 with English. .81 with science and .82 with over-all tenth grade achievement were obtained.

Swinnen (1961) made a study of prediction of acedemic performance in secondary schools in Belgium. The population sample consisted of 1259 boys, ages 12 and 13, in the last year of preparatory school. The purpose of the study was to predict academic success at various points during the six years of secondary school. Multiple correlations as well as regression weights of the indiviaual independent variables were obtained. Five
tests served as the predictor veriables and the average school achievement of the students during secondary school was the criterion. The five predictor variables were tests of verbal ability, abstract relations, arithmetic computations, a Latin prognosis test and the final examinetion in preparatory school. Multiple correlation coefficients renging from .68 to .88 were obtained at various stages during the six-year secondary school period. Also multiple regression equations were constructed with the regression weights of selected predictor variables. These were found useful in the prediction of academic performance in secondary school. The verbal ability test, the arithmetic computation test and the Latin prognosis test most frequently accounted for the greatest portion of the variance of the criterion. The author concluded his report of the research study by stating that it is not too ontimistic to say that the selection of suitable candidates for secondary schools can "nowadays be done competently with a minimum of mistakes" by predictions based on multiple regression studies.

Ingersoll and Peters (1966) performed a prediction study to investigate the use of the General Aptitude Test Battery for identification and counseling of students in vocational and academic classes in Onio seconaary schools. A multiple regression analysis was performed
using the General Aptitude Test Battery aptitude scores of 4,000 ninth-and tenth-grade boys and girls as the independent variables and subject grades and grade-point average at the end of one year separately as the dependent variables. They concluded that the General Aptitude Test Battery was useful in the predictive role for ninth-and tenth-grede achievement in most subject areas. However, they recognized that regardess of the significance of the aptitudes evaluated and the measures of attainment used as the criterion, about one-helf or less of the variance of the criterion was associated with the independent variables.

Impellitteri (1967) argues against the inclusion of the total score of a battery of mental ability tests as a predictor variable when seeking to determine the multiple correlation with a criterion. A total score, he contends, is not an independent measure and consequently contributes no unique dimension to the multiple regression equation even though it may appear to have a favorable weight in such an equation.

Canonical correlation. Impellitteri (1967)
points out that canonical correlation adds to the effectiveness of the multiple regression technique of prediction since it maximizes the common variance by empirically extracting the factors that account for the variance from
the dependent variables as well as the independent variables. Impellitteri used canonical regression in a study to determine the regression weights of the dependent variables as well as the independent variables. Canonical regression is used most advantageously when the dependent variable is a composite variable such as an over-all average academic rating. In such a situation the grades obtained in the individual school subjects are the factors of the composite dependent variable.

Expectancy Tables

Bloom and Peters (1961) advocated that school counsellors construct various forms of expectancy tables in order to estimete students' academic performance in a specific course or subject. They stressed thet expectancy tables provide the necessary evidence whereby academic achievement can be predicted as effectively as is possibly being done by the school with the most informed staff. Andersen and stiles (1968) constructed expectancy tables to estimate the probability of success in the twelfth grade based on ninth-grade subject scores and Scholestic Ability Test (SAT) percentiles. They considered the informetion obteined in this manner highly practical and useful for guidance and counselling of students with regards to academic course selections.

Blai (1966) constructed expectancy tables which he used to estimate academic performance in the college freshman year. These tables provided valuable informetion which enabled the college to predict the probability of success of an indiviaual candidate should his application for enrollment in a specific course be accepted by the college.
III. THE SCHOOL AND COLLEGE ABILITY TESTS (SCAT)

It is not possible to refer to extensive research based on the school achievement tests used in this study since different tests are constructed anually. However, since the School and College Ability Tests (SCAT) are both known and used internationally, it is valuable to make brief reference to studies and reviews releted to them.

Anastasi (1961), in an evaluation and comparison of tests, stated that on the whole the SCAT test is excellently constructed, standardized on the basis of a large and carefully chosen sample, end possesses promising evidence of predictive validity.

Green (1965) stated that the SCAT test is primarily suited for prediction of general over-all levels of academic performance. He found that research evidence justifies the use of the SCAT as a predictor of academic
performance over at least a two-year period. His review referred to the findings of numerous prediction studies of the SCAT which indicated that the Verbal SCAT test scores added very little to the predictive capacity of the Total scores and the Quantitative scores. Even senior hich-school English was predicted more effectively with Totel SCAT test scores than by Verbal SCAT test scores. Green remarks that the SCAT is primarily a Broup intelligence test that avoids the IQ labels and serves as a means of assessment of the likelihood of academic success of a student in a specific school situation.

Kaytal (1967) in a study based on data collected in selected Alberta secondary schools determined by means of biserial correlation that SCAT tests administered to ninth-grede students could be used to discriminate in a number of subjects between those students who would be successful and those who would not be successful in the twelfth grade. He determined the critical scores that a student must attein on the Verbal SCAT and Quentitative SCAT tests in order that a high probability of attaining twelfth-grede standing in the University Matriculation Course subjects existed. He obtained such critical SCAT scores for twelfth-grade English, social studies, chemistry, mathematics, and physics but concluded that success in biology could not be predicted from SCAT scores.

IV. SUMMARY

The research stuãies performed indicate that the use of tests of mental ability, school achievement, and generel intelligence for predicting academic Derformance in senior high school is considered practical by numerous educators. The SCAT tests have been found. to be useful predictors of academic performance in the secondary school setting. Although these studies do not prove the validity of the teste used in this study as predictors of academic performance in senior high school, they do justify the consideration given to these independent variables selected for this prediction study. Likewise both the use of expectancy tables and multiple regression have been found effective techniques of prediction of academic performance in senior high school on the basis of studies described in this review of some of the relevant literature.

CHAPTER III

THE DESIGN OF THE STUDY

The purpose of this chapter is to set out and describe the variables, the population samples and the techniques used in this prediction study. Identical dependent and independent variables were used for each of the investigations of this study. The variables will be described only once in this chapter and then will be reierred to by name in the individual investigations. The population samples consisted of twelfth-grade students selected from one secondary school of the city of Winnipeg in the province of Manitoba. Since different population samples were selected for each of the investigations of this study, the individual population sample will be identified in conjunction with the description of the technique used in each investigation:

The procedure of the analysis of the data consisted of two main parts. The first part of the empirical analysis consisted of the application of multiple regression to selected variables. In association with this investigation a cross-validation investigation of the initial multiple regression analysis was undertaken. The second part of the study consisted of an investigation based on the construction of expectancy tables.

The procedure of the analysis of the data took into consideration the two main aspects of the study of the problem. Each of the two main investigations was designed to determine which variables of a group of nine independent variables most effectively predicted academic performance in the individual twelfth-grade Tniversity Entrance Course subjects. Also the design of the study provided for a comparison of the two methods of prediction, namely the application of multiple regression and the construction of expectancy tables, in order to determine which method of prediction provided the most useful information in a ninth-grade school counselling situation with respects to academic placement of students in the senior high school program.

In order to be able to make valid comparisons of the separate investigations, the population samples which served as the source of the data of the individual investigations were compared to determine whether they could be considered as random samples of the some population and not significantly different from one another.
I. THE VARIABLES OF THE IIVESTIGATIONS Sixteen variables were selected for this prediction study. Seven dependent and nine independent variables
were used in each investigation. Scores on tests of mental ability, school achievement and general intelligence served as the variables of this study. The data associated with each variable was obtained from the cumulative student record files of the secondary school from which the population samples of this study were chosen. Dependent Variables

The dependent variables selected for this study were the student scores obtained in seven twelfth-grade subjects of the University Entrance Course. The seven subjects were English, history, mathematics, chemistry, physics, biology and French. The final June examinations set and scored under the direction of the Manitoba High School Examination Board were selected as the measurements of students' academic performance in each of the subjects. Twelfth-grade students enrolled in the University Entrance Course attain their standing on the basis of achievement on these examinations. A student must obtain a subject mark of 50 per cent or more in order to attain a pass standing in the individual subject.

A detailed description of the content of each course subject upon which the indiviaual June examinations are based is provided in the "Program of studies of the University Entrance Course". This booklet is published by the Manitoba Department of Education. For purposes of identification the subjects of the twelfth-grade University Entrence Course are labelled with the number 300 in the program of studies outline issued by the Manitoba Department of Education. Hereafter the individual dependent variables wich consist of twelfth-grade subject scores, will be identified by the subject name and the number 300 , for example English 300. These variables are labelled in order to assist in identifying then in later sections and chapters of this study. The individuel dependent variables are English 300, History 300, Mathematics 300, Chemistry 300, Physics 300, Biology 300, end French 300. These dependent variables are listed in Table I.

Independent Variebles
Nine independent variables were selected for use in this stuly. These variables were test scores of

> SUMMARY OF VARIABLES
Dependent Variables
English 300
History 300
Mathematics 300
Chemistry 300
Physics 300
Biology 300
French 300

Independent Variables

Mental ability scores
Verbal. SCAT
Quantitative SCAT
Total SCAT
c
Class achievement scores
Language IX
Mathematics IX
Science IX
History IX
Grade IX Average
General intelligence scores
Dominion IQ

```
a
    Twelfth-grade subject scores of University Entrance Course.
b
    Test scores of School and College Ability Tests (SCAT).
c
    Ninth-grade subject achievement scores.
d
    Single-score IQ measurements of Dominion Test of
    Learning Capacity.
```

mental ability, school achievement and general intellisence administered at the junjor high level.

Mental ability test. Three independent variables were derived from the Cooperative School and College Ability Test (SCAT), Form 2A. The SCAT test wes administered during the sixth month of the ninth srade. Each test booklet consists of four parts. As reported in the Menual for Interpreting Scores (1957) which has been issued by the publishers of this test, the SCAT test was designed to aid in estimating the capacity of a student to undertake the academic work of the next higher grade level of schooling. The test measures two kinds of school-related abilities Which are important in a large number of academic endeavors: verbal and quentitetive abilities.

Three converted SCAT scores were obtained for each student. The Verbal scat score is a measure of verbal abilities. The Quantitative SCAT score is a measure of numerical or quantitative abilities. The Total SCAT score provides a single measure of a student's ability to do academic work. These three SCAT scores served as independent variables. They are named Verbal SCAT, Quantitative SCAT and Total SCAT to assist in identification and will be referred to in this menner in subsequent sections of this stuay.

The Verbal SCAT, Quantitative SCAT, and Total SCAT percentile ranks which were used in the expectancy tables studies were derived from the SCAT Test scores on the basis of norms established for the winnipeg School Division.

School achievement tests. Four independent variables were students' scores in four selected ninthgrade subjects of junior high school. The final June subject scores in language, mathematics, science and history served as four independent variables. The average mark of these four ninth-grade scores served as a fifth independent variable. The five school achievement variables are named Language IX, Mathematics IX, Science IX, History IX and Grade IX Average.

Instruction in each subject was given by qualified teachers in accordance with the program of studies outlined by the Manitoba Department of Education. Identical subject text-books were provided for all students included in the population sample. Instruction was co-ordinated under the direction of subject committee convenors. Each subject score was a uniformly compiled composite mark based on term examinations and class assignments. The same ninth-grade subject examinations were written by all the students included in the population sample.

Consultation amongst subject teachers prior to the marking of the examinations assured relatively uniform marking standards.

General intelligence test. The ninth independent variable consisted of the $I Q$ scores derived from the Dominion Test of Learning Capacity, Intermediate Level, Form A. This test was administered during the second month of the seventh grade. This is a test of general intelligence and a single IQ score is obtained. In order to more readily identify this independent variable, it is named Dominion IQ.

The nine independent variables are listed by name and identified in Table I, page 30 and will be referred to in later sections and chapters by their designated names and by reference to this table.
II. THE MULIIPLE REGRESSION INVESTIGATION

This section is a description of the first of the two main investigations of this study. The technique associated with the investigation is briefly interpreted. The population samole and the variables are identified. The procedures related to the selection of the independent variables as the best predictors of the dependent variables are explained. The methods followed in the cross-
validation analysis of the initial multiple regression study are presented.

Interpretation of Multiple Regression and Associated Statistical Techniques

Multiple regression and multiple correlation are techniques used to determine the relationships between two or more independent variables and a dependent variable. Multiple regression equations are used to predict a students ${ }^{\text {(}}$ dependent variable score from two or more independent variable scores obtained by that student.

Multiple correlation。 Multiple correlation, R_{g} is a term used to describe the correlation between one dependent variable and two or more independent variables simultaneously. The coefficient of multiple correlation indicates the strength of the relationship that exists between the dependent variable and the independent variables. The coefficient of multiple determination, which is the square of the multiple correlation coefficient and is identified as R_{*}^{2}, expresses the amount of variance of the dependent variable that is accounted for or associated with a number of independent variables collectively. Theoretically a greater portion of the variance in the criterion could be accounted for by increasing the number
of independent variables being correlated with the criterion. A new test may add to the validity of the battery of independent variables by being related to or "taking out" some of the as yet unmeasured part of the dependent variable. An independent variable may also add validity as a "suppressor" if it takes out non-valid variance applied by another independent variable.

Guilford (1956) refers to two main principles thet serve as a basis for the selection of independent variables from a battery of test variables which account for or are related to the veriance of a particular dependent variable. These principles are (I) a multiple correlation increases a.s the size of correlation between the dependent and independent variables increases and (2) a multiple correlation increases as the size of inter-correlation of independent variables decreases. Guilford (1956) and Garrett (1958) state that the determination of the variance of the dependent variable is frequently only slightly enhanced by the inclusion of more than three or four independent variables from a battery of academic tests in a multiple correlation and multiple regression analysis. This limit to the numbers of useful independent variables is due to the fact that usually only a limited number of human abilities and other traits involved in the
dependent variable are represented in these tests which primarily measure academic performance or generel intelligence.

Regression weights of independent variables. In association with multiple correlation, a regression weight for each independent variable may be computed. Regression weights are calculated to determine the relative weight which each independent variable contributes to the variance of the dependent variable, independently of other factors. Thus the regression weight of a particular independent variable functions as a ratio thet expresses how many units the dependent variable will jncrease or decrease for every variation of one unit in this particular independent variable. Multiple regression equations. A multiple regression equation is used to predict a student's score on a dependent variable from the scores he has obtained on two or more independent variables. A multiple regression equation consists of an algebraically determined constant value called a regression constant, the regression weight of each of the selected independent variables which function as predictors and the student's obtained score on the selected independent variables. The function of the regression constant of the equation, graph foally related to the point of intersection of the regression Iine on the Y-axis and therefore referred to as the Y-interoept,
is to assure that the mean of the predicted scores will equal the mean of the originel dependent variable also referred to as the criterion.

Population Sample and Variables
The students selected as the population sample of the multiple regression analysis were those 144 students who completed the twelfth-grade University Entrance Course examinations in June of 1967 in one secondary school in Winnipeg. The population sample of each of the seven subject analyses consisted of those students who completed the exemination of the particular twelfth-grade subject to which multiple regression wes being applied in association with the nine independent variables. The size of the population sample for each of the seven dependent variable analyses is listed in Table II, page 38.

Seven dependent variable and nine indepenáent variables were selected for this analysis. The variables of this investigation were the total group of variables listed in Table I, page 30.

TABLE II

SIZE OF STUDENT SAMPLES ASSOCIATED WITH EACH DEPENDENT VARIABLE ANALYSIS OR THE SEPARATE INVESTIGATIONS

Dependent Variables	Size of Student Samples		
	Multiple Regression Investigation	Cross-Validation Analysis	Expectancy Tables Investigation
English 300	138	95	233
History 300	36	31	67
Mathematics 300	136	83	219
Chemistry 300	114	78	192
Physics 300	71	33	104
Biology 300	48	35	83
French 300	124	86	210
Total Population Sample	144	97	241

Procedure of Multiple Regression

The values for all the variables were punched onto I.B.M. cards and programes were used to enable the multiple regression technique to be applied to the data by the 360 I.B.M. computer system. An empirical enalysis of the data was made by the application of multiple regression to each of the seven dependent variables in association with the battery of nine independent variables. The mean, standard deviation and simple inter-correlations of the nine independent variables and each dependent variable were obtained. Also, the regression weights of the independent variables, the multiple correlation coefficient, the regression constant and the standara error of estimate were determined.

In this description of the analysis, the procedures of the study with respect to the dependent variable English 300 and the nine independent veriables will be presented in detail. Identicel procedures were followed with respect to the application of multiple regression to the other six selected dependent variables.

Selection of best independent variables as predictors. After the initial multiple correlation and multiple regression of the bettery of nine independent
variables and the criterion, namely the dependent variable English 300, was completed, a sub-group of independent variables was selected to serve as predictors in the regression equation. This battery of independent variables was chosen on the following basis:

1. The sub-grouo of independent variables which was selected as the predictors must account for a minimum of 80 per cent of the variance of the dependent variable that is associated with the battery of all nine independent variables.
2. The number of independent variables included in the battery was restricted to a maximum of four predictors. If no more than two per cent of the variance of the dependent variable was accounted for by including four independent variables instead of three, then only three indeoendent variables were chosen for the regression equation. Guilford (1956) and Gerrett (1958) recognized that the inclusion of more than three or four independent variables in a prediction equation frequently only slightly enhances the determination of the variance of the dependent variable (see page 35).
3. The coefficient of multiple correlation of the battery of independent variables included as predictors of the multiple regression equation of prediction of the dependent variable must not be less than .50 .
4. If no variance determinant was obtainable for
the battery of the nine independent variables then the sub-group of independent variables which as a battery met the first three stipulations was chosen.

Multiple regression was applied to the dependent variable Enslish 300 and batteries of two, three and four selected independent variables to determine winich battery of independent variables served as the best predictor of English 300. Independent variables which had low interm correlation and high correlation with the dependent variable were given preference as selected independent variables. These variables were assembled into batteries of variables which were correlated with the dependent variable English 300. The battery of independent variables which accounted for the largest portion of the variance of English 300, according to the guidelines which have been set out, wes selected for the construction of multiple regression equations. In adition the multiple correlation coefficient, the regression constant, the regression weights of the selected variables, and the standerd error of estimate of prediction for the selected battery of independent variables and English 300, was recorded. Construction of multiple regression equations. Three students were selected by the lottery method from the pooulation semple thet served as the source of the data of the English300investigation. Multiple regression equations
were constructed to predict these students" score in English 300. The multiple regression equation of prediction for each student was constructed with the regression constant, the regression weight of each selected variable of the sub-group of independent variables which had been obtained earlier by the application of multiple regression and the score on each of these independent variables obtained by that student whose score is being predicted. Each students predicted score was recorded and compared with his actual English 300 score.

Cross-Validation of the Multiple Regression Investigation The cross-validation investigation was designed to determine how effectively academic performance of a student of a twelfth-grade class in a following year could be predicted by means of the multiple regression equation constructed from data obtained by the initial multiple regression investigation. The population sample and variables are identified and the procedures of crossvalidation are described in this section.

Population sample and variables of cross-validation
analysis. The students selected as the population sample of the cross-validation analysis were those 97 students Who completed the twelfth-grade University Entrance

Course examinetions in June of 1968. This populetion sample was selected from the same secondary school from waich the populetion sample of the initial multiple regression investigation wes chosen. The size of the population samples associated with each of the seven dependent variables to which multiple regression equations were applied are listed in Table II, page 38.

The same seven dependent variables and the nine independent variables as those used in the initial multiple regression investigation were used in the cross-validation analysis. The variables used in this investigation are the variables listed in Table I, page 30.

Comparison of the population samples. Prior to making the cross-validation study of the original initial multiple regression study, a comperison of the population samples which served as the source of the data of these two investigations was made. This comparison was mede to determine whether it may be assumed that the two population samples were randomly selected from the same population. The null hypothesis which stated that there was no significant difference of the means of the students' scores obtained on tests written by members of the two population samples served as the basis of the comparison.

The t-test of significance was used to measure the difference between the means. As indicated in Table III, page 45% the means of the Total SCAT scores, the Grade IX Average scores and the Dominion Test scores of the cross-validation population samples. were compared with the means of the corresponding test scores of the initial multiple regression investigation.

The hypothesis that there was no significant difference between the means of the test scores obtained from the two population samples was either rejected at the five per cent level of significance or othe rwise the difference was considered non-significant and could easily have arisen from sampling fluctuations. Table III, page 45, shows the t-distribution of comparison of the means of the three selected variables for each of the seven pairs of population samples of twelfth-grade University Entrance Course subjects. These results of the comparison of the population samples are reported in this section, rather than in Chapter IV, since the cross-validation analysis was justified only if the population sample were known not to be significantly different. The seven colum headings on Table III, page 45 , are the names of dependent varjables which were associated with the
TABLE III

$$
\begin{aligned}
& \text { SELECTED PAIRS OF INDEPENDENT VARIABLES OF THE MULTIPLE PEGRESSION } \\
& \text { INVETIGATION AND THE CROSS-VALIDATION ANALYS IS }
\end{aligned}
$$

individual multiple regression and cross-validation analyses. The names of these dependent variables are used to identify the seven pairs of population samples being compared. The size of these population samples of the separate analyses are listed in Table II, page 38. The degrees of freedom of the t-distribution of the difference of the means of each pair of compared means consisted of the total number of observations obtained from the pooled population samples less two degrees of freedom.

There was no significant difference at the five per cent level of confidence between the means of the three pairs of independent variables with reference to all seven population sample comparisons. Therefore the null hypothesis was not rejected and it was assumed that no true difference existed between the means of each of the seven dependent variable-related population samples of the 1967 twelfth-grade multiple regression investigation and the corresponding population samples of the 1968 cross-validation investigation.

Procedure of cross-validation. Three students were selected by the lottery method from the population sample that served as the source of the data of this investigation. Each student's English 300 score was predicted by a
multiple regression equation. The regression constant and the regression weights used in the initial multiple regression investigation were substituted into this multiple regression equation. Also the score obtained by the individual student on each of those independent variables selected as the bestopredictorsin the initial investigation was introduced into this prediction equation. The predicted English 300 scores of the three students were compared with their actual scores. The differences between the predicted and actual scores in English 300 based on the cross-validation analysis were compared with the difference between predicted and actual scores in English 300 based on the initial multiple regression investigation。

The results and findings based on the multiple regression investigation and the associated crossvalidation related to the dependent variable English 300 are reported in Chapter IV. The results and findings based on identical investigations associated with each of the other six dependent variables are also reported in Chapter IV。

III. THE EXPEGTANGY TABLE INVESTIGATION

In this investigation an analysis is made to determine the relationship between dependent and independent variables by means of expectancy tables. The population sample and the variables will be identified. The construction of expectancy tables will be described and the reading of the tables will be illustrated.

Population Samples and Variables

The students selected as the population sample of the analysis of the data by expectancy tables were those 241 students of the selected secondary school who completed the twelfth-grade University Entrance Course in June of 1967 and 1968. The size of the population sample of the analysis associated with each of seven dependent variables is listed in Table II, page 38.

Seven dependent variables and nine independent variables were selected for this investigation. The variables of this investigation are the total group of variables listed in Table I, page 30 .

Construction of Expectancy Tables
An expectancy table is constructed from a grid containing rows and colums of cells on which the frequency distribution of pairs of scores of two variables
are plotted. In this manner the relationship of a student's standing on an independent variable, on the one hand, and a dependent variable, on the other hand, may be shown. When a student's score on an independent variable is given, it is possible by means of an expectancy table to predict the chances of his obtaining a score as great as or greater than a designated score on the dependent variable.

Expectancy tables were constructed to show the relationship between each dependent and independent variable. For example, separate tables were constructed to show the relationship of English 300 and each of the nine independent variables. Likewise nine expectancy tables were constructed in association with each of the other six dependent variables. In this description of the construction and reading of expectancy tables, the discussion will be restricted to the expectancy table of English 300 based on the Verbal SCAT scores.

As shown in Table IV, the scale of measures of the dependent variable English 300 was indicated across the top of the table and the scale of measures of the independent variable Verbal scat was indicated on the left-hand side of the table. The tallied frequencies of

TABLE IV

GNGIISH 300 EXPECTANCY TABLE BASED ON VERBAL SCAT TEST

Verbal SCAT Percentile	NT	50	$\begin{aligned} & \text { Grade } \\ & 55 \quad 60 \end{aligned}$		XII Subject Scores				Median Score
					65	70	75	80	
91-99	39	98	70	60	47	22	14	2	64
81-90	33	81	56	33	18	12	12	3	56
71-80	42	75	47	25	10	7	5	5	54
61-70	33	62	39	26	13				52
51-60	36	76	44	24	14	3			54
41-50	15	67	52	28	20	7	7		55
$31-40$	11	54	36	9	9				51
21-30	24	50	13	4	4				50
11-20	15	45	33					less	than 50
I-IO	4	75	25						
Total IN-	33								

the distribution of scores within each row were accumuleted by entering a particular row on the righthand side of the table and totalling or accumulating the frequencies in each cell of that row while progressing to the left-hand side of the row. The total of the numper of frequencies within each row were tabulated in the colum under the heading N. Finally the cumulative frequency of each cell in each of the rows was expressed as a per cent of the total frequency of scores in that row. The column of figures on the extreme left-hand side of the scale of measures of the dependent variable, English 300, are the listed percentages of the students within each of the percentile intervals of the independent variable, Verbal SCAT, who obtained an English 300 mark of 50 per cent or better. The column of marixs on the extreme right-hand side of the table are the medians of the dependent variable scores in each row of the expectancy tarole.

Reading the expectancy table. Upon entering
thet row in Table IV which includes all the students who obtained a Verbal SCAT score in the 81-90 percentile interval, it is observed that 81 per cent of the students received a "pass" mark of 50 per cent or better in English 300. The remaining 19 per cent of the students in the row
received a "failure" mark of 50 per cent. A mark of 50 per cent in English 300 is a critical score since in Manitoba only marks of 50 per cent or better are presently considered to be "pass" marks.

Use of expectancy tables. The use of the expectancy tables may be illustrated by making reference to Table IV, page 50, as follows: The counselor, together with a ninth-grade student may seek to assess the probability of the student achieving a particular score or a score higher than that score if the student were to enroll in the University Entrance Course and eventually write English 300. The counsellor, by checking the school records, may establish that the student has a percentile rank standing of 61 on the Verbal SCAT Test. By entering into the row of the expectancy table designated as the independent variable score interval of 61-70, the counselor may predict the student's academic achievement by stating that this student has 62 chances in 100 of obtaining a mark of 50 per cent or better in English 300, and he has 26 chances in 100 of obtaining a mark of 60 per cent or better in the same subject.

The expectancy tables which show the relationship between each of the remaining independent and dependent
variables are shown in Table IX to Table IXX of the Appendix.
IV. COMPARISON OF THE TWO TECHINQUES OF PREDICTION

The procedures of prediction of academic performance of twelfth-grade students by the use of two techniques have been described in earlier sections of this chapter. In this section the procedures related to a comparison of the relative effectiveness of these two methods of prediction namely by means of multiple regression equations and expectancy tables,will be outlined.

Comparison of population samples. In order to compare the findings based on the two methods of prediction, the population samples used in the two investigations were compared to determine whether they may be considered to be drawn from a common population. The population sample of the expectancy table investigation consisted of those students who completed the twelfth-grade University Entrance Course examinations in June of 1967 and June of 1968. This population sample consisted of the combined population samples of the multiple regression investigation and the cross-validation analysis. As indicated in Table III, page 45 , these two population samples which served as the source of data of the multiple regression investigation
and the cross-validation analysis were accepted as not being significantly different from one another at the five per cent level of significance. Therefore it is also assumed that the population sample of the expectancy table investigation is not significantly different from the population sample of the multiple regression investigation. Consequently data obtained from these two population samples may be compared.

Procedure of Comparison. The comparison of the findings based on these two methods of prediction did not consist of statistical analysis but was a general descriptive comparison. This comparison of the findings will be reported in Chapter IV.

V. SUMMARY

In this chapter seven dependent and nine
independent variables have been presented. The empirical analysis of the data has also been described. This description of the analysis was divided into two main parts. The first part of the investigation was achieved by the application of multiple regression, the selection of a battery of the best predictors for each dependent variable and the construction of multiple regression
equations. Students were selected by the lottery method and their dependent variable scores were predicted by means of the multiple regression equations. The predicted scores were compared with the actual scores to assess how effectively the individual dependent variable could be predicted. In association with the multiple regression investigation, a cross-validation analysis was undertaken. The multiple regression equation constructed for each of the seven dependent variables in the initial analysis were used to predict student's scores in the following year.

In the second part of the study a series of expectancy tables were constructed and analyzed. These expectancy tables were used to predict, on the basis of a student's score on an individual independent variable, the probability of a student obtaining a designated score or a score better than that score on a dependent variable.

The population samples which served as the source of the data were also compared. These comparisons were made in order that the relative effectiveness of these two methods of prediction could be evaluated. The seven dependent variables and nine incependent variables used
in each of the investigations have been listed in Table I, page 30. The size of the population samples which served as the source of the data of the individual subject analysis of each investigation are listed in Table II, page 38. The details associated with the comparison of the population samples of the multiple regression investigation and the associated cross-validation are presented in Table III, page 45°

The findings of the individual investigations
and the comparison of these findings based on two techniques of prediction will be reported in the following chapter, Chapter IV.

CHAPTER IV

THE PINDINGS OP THE PREDICTION STUDY

The findings of the prediction investigations of this study are given in this chapter. The presentation of the findings is organized on the basis of the two main investigations detailed in the previous chapter (Chapter III). A comparison of the findings based on the investigations using two different techniques of prediction will also be presented in this chapter.

The nature and importance of the study has been indicated in Chapter I. The review of relevant literature was presented in Chapter II. The selected variables and the techniques employed in the analysis were described in the previous chapter.
I. FINDINGS OF THE MULTIPLE REGRESSION INVESTIGATIOIV

The findings related to the analysis based on the application of multiple regression and the selection of the independent variables which were the best predictors of the scores on each dependent variable are given in this section. The dependent and independent variable of this investigation are listed in Table I, page 30. Also a comparison of the predicted and actual student scores is presented and the findings of the cross-validation investigation are reported.

Multiple Correletion Coefficients
Matrices of simple inter-correlations of the individual dependent variable and the nine independent variables were obtained. Also coefficients of multiple correlation of each dependent variable and the battery of all nine independent veriables were obtained and are listed in Table V. Physics 300 and French 300 , each with a multiple correlation coefficient of 67 and Mathematics 300 , with a multiple correlation coefficient of 66 , were the three dependent variables that correleted most highly with the battery of nine independent variables. Multiple correlation coefficients of. 58 for English 300 and. 54 for Chemistry 300 were obtained with the nine independent variables.

A matrix of simple intermorreletions between the dependent and nine indepenient variables was obtained for History 300 and for Biology 300 as for the other five dependent variables. However, instead of obtaining a coefficient of multiple correlation and the related regression coefficients of the independent variables, no correlation was obtained for these two dependent variables as is shown in Table V, page 59. Leter multiple regression was successfully apolied to History 300 and Biology 300 in association with selected sub-grouns of independent variables as is shown in Table VI and VII。

TABLE V

 WITH THE BATTERY OF NINE INDEPENDENT VARIABLES

Dependent Variables	N	Coefficient of Multiple Correlation	Per Cent of Variance
English 300	138	.58	33.64
History 300	36	-	-
Mathematics 300	136	.66	43.56
Chemistry 300	114	.54	29.16
Physics 300	71	.67	44.89
Biology 300	48	.67	44.89
French 300	124		

Variance of multiple regression. As indicated in Table V, page 59, the portion of the variance of the individual dependent veriable accounted for by the battery of nine independent variebles varied considerably. Physics 300 and French 300 hed 44.80 per cent of their verience accounted for. Only 29.16 per cent of the variance of Chemistry 300 was accounted for by the nine independent variebles. Selection of Independent Variables es Best Predictors

A sub-group of three or four independent variables was selected as best predictors of each of the seven dependent variables in accordence with the guide lines set out in Chapter III, page 40.

In Table VI, page 62, the multiple correlations of each dependent variable with the total battery of nine independent variables are compared with the multiple correlation of the same dependent variable and the battery of three or four selected independent variables. The comparisons of the coefficients of multiple correlation reported in Table VI, page 62, indicated that the amount of variance of English 300, Mathematics 300, Chemistry 300, Pnysics 300 and French 300 accounted for by the nine independent variables is accounted for almost equally well by 3 or 4 selected independent variables. For example the French 300 coefficient of multinle regression with the three selected variables was .65 as compared to a
coefficient of .67 with all nine independent variables. The difference of the per cent oi variance accounted for by these two batteries of independent variables is less than three per cent.

As indicated in Table VI, page 62, multiple correlation coefficients were obtained for History 300 and Biology 300 when each was correlated with a battery of three selected independent variables. The coefficient of multiple correlation for Biology 300 and the battery of three independent variables is 042 . This is less then the coefficient of multiple correlation of .50 which was accepted as the minimum coefficient acceptable for this prediction study.

In Table VII the regression weights of these independent variables selected as the best predictors of scores on each of the seven dependent variables are listed together with the regression constant and the standard error of estimate. In addition the coefficient of multiple correlation of each selected battery of three or four independent variables and the corresponding dependent variable are listed once more. A summery of the findings related to each dependent variable as presented in Table VI and VII are presented under the following sub-titles.

English 300. The independent variable, Total SCAT, had the lergest weighting in the prediction equation for

A COMPARISON OF THE MUTTIPLE CORRELATION BETWERN EACH DEPENDENT VARIABIR AND THE TOTAL BATMERY OF INDEPENDENT VARIABIES ${ }^{a}$ AS COMPARED TO THE MULPIPLE CORRELATION OF EACH DEPENDENT VARIABLE AND A SUB-GROUP OF SELYCTED INDEPENDENT VARIABLESb

Dependent Variables	Coefficient of Multiple Correlation With Vine Independent Variables	Coefficient of Multiple Correlation of Selected Independent Variables	Number of Selected. Variables
English 300	.58	. 55	3
Eistory 300	-	.55	3
Mathematics 300	. 66	.64	4
Chemistry 300	.54	.52	4
Physics 300	.67	.62	4
Biology 300	-	. 42^{*}	3
French 300	.67	. 65	3

*Rejected because R is less than 050 。
$a_{\text {For }}$ details related to list of independent variables refer to Table I, page 30.

English 300. Grade IX Average also contributed significantly to the English 300 multiple regression equation. Mathematics IX, the third independent variable had a negative regression coefficient and consequently acted as a "suppressor". The regression constant was 10.83. The coefficient of multiple correlation of English 300 and the three selected independent variables was .55 as compared to .57 for English 300 and all nine independent variables.

History 300. History IX, Grade IX Average and Quantitative SCAT were selected as the independent variables of a multiple regression equation of preaiction of History 300 scores. The multiple correlation coefficient was . 55, the regression constant was 19.39, and the standard error of estimate was 13.60.

Mathematics 300. Quantitative SCAT had the largest regression weight in the Mathematics 300 prediction equation. Science IX, Mathematics IX and Verbal SCAT were also selected for the multiple regression equation. The regression weight of Verbal SCAT had a negative weighting as a predictor of Mathematics 300.

Chemistry 300. History IX contributed the most significant weight in the Chemistry 300 prediction equation. This relationship between these two variables which are associated with two distinct school-subject areas may seem odd. However, Lavin (1965), as reported in Chapter I,
TABLE VII

page 8 of this study, observed that an independent variable may account for a considerable amount of the variance of a dependent varieble with which it is not readily identified by name or implied subject area. Apparently the same cognitive skills are essential for achievement in History IX and Chemistry 300. Mathematics IX, Science IX and Quantitative SCAT also contributed significantly to the Chemistry 300 multiple regression equation.

Physics 300. Grade IX Average contributed the most significant weight in the Physics 300 prediction equation. Language IX contributed a significent negetive weight and was followed by Dominion IQ and Total SCAT. Biology 300. The Biology 300 coefficient of multiple correlation with the three selected independent variebles was only .42. For purposes of comparison of predicted and actual scores, the battery of selected independent variables associated with Biology 300 is reported even though the coefficient of multiple correlation is less then the minimum of .50 stipuleted in Chapter III, page 40. Language IX hat the largest regression weight; followed by History IX and Verbal SCAT. These three variebles are commonly associeted with verbal skills. Consequently it would appear that verbal skills contribute significently to achievement in Biology 300. However, only 18 per cent of the variance of the criterion,

Biology 300, was accounted for by these three variables. Therefore this analysis does not provide conclusive evidence with respect to the major determinants of academic achievement in Biology 300.

French 300. The correlation for French 300
and the sub-groun of selected independent variables Was the highest of the seven dependent variables. The coefficient of multiple correlation was .65. Language IX had the largest regression weight, followed by Quantitative SCAT and History IX。

Prediction of Dependent Variable Scores
The three predicted and actual students: scores for each dependent variable are reported in the first two columns of Table VIII. The stucents whose scores were predicted were selected by the lottery method from the initial multiple regression population sample which consisted of students who completed twelfth-grade University Entrance Course exeminations in June of 1967. As indicated in Table VIII, a considerable fluctuation in the difference between the predicted and actual score is apparent for each dependent variable. The averege difference of the three presicted and three ectual scores of each dependent variable ransed from a
minimum of 3.3 marks for English 300 to a maximum of 11.6 for History 300 and for Biology 300. Physics 300, French 300 and Mathematics 300 showed average differences between actuel and predicted scores of 4.0 marks, 4.6 marks and 5.3 marks respectively. The average difference of predicted and actual scores for Chemistry 300 was 11.3 marks. The relatively large standard error of estimate of each multiple regression equation, as reported in Table VII, page 54, indicates that large errors in prediction will occur.

Einaings of the Cross-Validation Analysis
The population sample of the cross-validation investigation consisted of those students who completed the twelfth-grade University Entrance Course examinations in June of 1968. Three stuàents' scores were predicted for each dependent variable. The three predicted student scores for each dependent variable were compared with the corresponding actual student scores obtained on that same dependent variable. This comparison is presented in column three and four of Table VIII, page 68. A considerable fluctuation in the size of the difference of the predicted scores and actual scores occurred even

A COMPARISOIN OF STUDEITS' ACTUAI SCORES ON DEPENDENT VARIABIES WITH TGEIR PREDICHED SCORES OBTAINED BY MEANS OF NULTIPLE REGRESSION EQUATIONS ${ }^{a}$

	Initial Multiple Regression Analysis		Cross-Validation Analysis	
Dependent Variables	Actual Score	Predicted Score	Actual Score	Predicted Score
English 300	$\begin{aligned} & 41 \\ & 70 \\ & 56 \end{aligned}$	$\begin{aligned} & 46 \\ & 63 \\ & 57 \end{aligned}$	$\begin{aligned} & 79 \\ & 43 \\ & 50 \end{aligned}$	$\begin{aligned} & 57 \\ & 47 \\ & 53 \end{aligned}$
History 300	$\begin{aligned} & 77 \\ & 81 \\ & 46 \end{aligned}$	$\begin{aligned} & 64 \\ & 73 \\ & 60 \end{aligned}$	$\begin{aligned} & 76 \\ & 52 \\ & 64 \end{aligned}$	$\begin{aligned} & 67 \\ & 56 \\ & 56 \end{aligned}$
Mathematics 300	$\begin{aligned} & 86 \\ & 60 \\ & 47 \end{aligned}$	$\begin{aligned} & 86 \\ & 64 \\ & 59 \end{aligned}$	$\begin{aligned} & 82 \\ & 55 \\ & 50 \end{aligned}$	$\begin{aligned} & 69 \\ & 66 \\ & 62 \end{aligned}$
Chemistry 300	$\begin{aligned} & 58 \\ & 76 \\ & 35 \end{aligned}$	$\begin{aligned} & 51 \\ & 67 \\ & 53 \end{aligned}$	$\begin{aligned} & 68 \\ & 54 \\ & 62 \end{aligned}$	$\begin{aligned} & 66 \\ & 47 \\ & 53 \end{aligned}$
Physics 300	$\begin{aligned} & 50 \\ & 76 \\ & 38 \end{aligned}$	$\begin{aligned} & 50 \\ & 74 \\ & 48 \end{aligned}$	$\begin{aligned} & 43 \\ & 64 \\ & 83 \end{aligned}$	$\begin{aligned} & 56 \\ & 62 \\ & 69 \end{aligned}$
Biology 300	$\begin{aligned} & 54 \\ & 74 \\ & 62 \end{aligned}$	$\begin{aligned} & 67 \\ & 77 \\ & 43 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 78 \\ & 60 \end{aligned}$	$\begin{aligned} & 65 \\ & 78 \\ & 60 \end{aligned}$
French 300	$\begin{aligned} & 53 \\ & 74 \\ & 46 \end{aligned}$	$\begin{aligned} & 55 \\ & 67 \\ & 51 \end{aligned}$	$\begin{aligned} & 77 \\ & 41 \\ & 61 \end{aligned}$	$\begin{aligned} & 55 \\ & 42 \\ & 53 \end{aligned}$

afor details of selected independent variables, their regression weights and additional data related to the multiple regression equation of prediction of each dependent variable, see Table VII, page 64.
as in the comparisons of predicted and actual scores based on the initial multiple regression investigation which are shown in the first two columns of the same table. For example, the first predicted English 300 score of the crossvalidation analysis was 22 marks less than the actual score while the third predicted score for the same dependent variable was three marks higher than the actual score. The average difference of the three predicted and three actual scores was the lowest for the cross-validation analysis of History 300. The average difference was 7.0 marks. The largest average difference of actual and predicted scores of 12.0 marks was obtained for Nathematics 300 。
II. FINDINGS OF THE EXPEGTANCY TABLES INVESTIGATION Each of the expectancy tables is a table that shows the relationship between one of the nine independent variables based on students' test scores obtained during the junior high-school grades and one of the seven dependent variables consisting of twelfth-grade examination scores in individual subjects of the University Entrance Course. The variables being considered in the expectancy tables are listed in Table I, page 30. In this investigation
the percentile ranks of the SCAT Test scores rather than the SCAT Test Scores served as the data of the three independent variables associated with the SCAT Test. The English 300 expectancy table based on the Verbal SCAT percentile has been presented as Table IV, page 50. The other expectancy tables are reported in Table $I X$ to Table IXX (see Appendix).

The findings based on the expectancy table investigation will be presented in three parts. Since it is impractical to report the findings for each of the sixty-three expectancy tables separately, these comments will be related to the usefulness of scores of the SCAT Test, the school achievement tests and the Dominion Test as predictors of academic performance at the twelfthgrade level. The prediction of academic performance based on the expectancy tables is presented in terms of the probability, expressed as a given number of chances in a hundred, of a student obtaining a score as great or better than a designated dependent variable score.

Prediction Based on SCAT Test Percentiles
In examining Table IV, page 50, and other expectancy tables in which the percentile ranks of students' SCAT scores serve as the independent variables, it is apparent that there was a great range of the percentile ranks of the
scores obtained on the SCAT Tests by students who completed the individual twelfth-grade University Entrance Course examinations. As indicated in Table IV, page 50 , students Who completed the English 300 examination had Verbal SCAT scores whose percentile ranks ranged from the highest percentile rank interval, namely the $91-99$ percentiles, to the lowest percentile rank interval, namely the I-10 percentiles. Four students who completed the English 300 examination had Verbal SCAT scores which, when ranked, were placed in the l-10 percentile interval. Of these four students, three students or 75 per cent of the students in the 1-10 percentile interval obtained a "pass" mark of 50 per cent or better in English 300。 The population sample selected as the source of data for the construction of expectancy tables did not include all ninth-grade students of the particular secondary school from which the population sample was selected. Of the total ninthegrade population of approximately 520 students only those 241 students were included in the population sample of the expectancy table investigation Who later completed the twelfth-grade University Entrance Course examinations in June of 1967 and June of 1968. When the Verbal SCAT scores of the total ninth-grade student population of the school were examined, it was
observed that the majority of the students with Verbal SCAT scores in the l-l0 percentile range did not complete the twelfth-grade University Entrance Course examination in English 300. The majority enrolled in secondary school courses other than the University Entrance Course. Some students with Verbal SCAT scores in the $1-10$ percentiles did enroll in the University Entrance Course but due to their inadequate academic performance in earlier grades were not eligible to write the English 300. On the basis of the evidence provided in Table XV, (see Appendix), it is apparent that only those students with a Verbal SCAT score in the l-IO percentile range who achieved a Grade IX Average of $5 I$ per cent or better wrote the twelfth-grade University Entrance Course examination in English. Verbal SCAT Test student percentile ranks that fall at the lower end of the percentile rank scale of this expectancy table are not useful for predicting probability of achievement of an English 300 score as great or better than a designated score.

Prediction Based on School Achievement Tests
Findings related to the expectancy tables associated with the independent variables Language IX, Mathematics IX, Science IX,History IX, and Grade IX Averageare includedsin this
sub-section of the report. However particular attention will be directed to the expectancy tables associated with the Grade IX Average marks. The seven expectancy tables, Table XV, XXIV, XXXIII, XLII, LI, LX, LXIX (see Appendix), which show the relationship between Grade IX Average and the seven dependent variables merit careful consideration. The range of the scores obtained on the independent variable Grade IX Average is relatively restricted in each of these expectancy tables. In no instance did any student with a Grade IX Average mark of less than 50 per cent attain a pass mark of 50 per cent in an individual twelfth-grade examination of the University Entrance Course.

Relatively few students with a Grade IX Average mark in the 51-60 per cent interval obtained a "pass" mark of 50 per cent in a number of individual twelfthgrade subject. On the basis of the expectancy tables showing relationship between Grade IX Average and the seven individual twelfth-grade subjects, the probability of a student, whose Grade IX Average score is 51 per cent, obtaining a mark of 50 per cent or better in the twelfth-grade subjects may be expressed as a per cent for each of these subjects as follows: Enslish 300-53 per cent, History 300-25 per cent, Mathematics 300-75 per cent, Chemistry 300-22 per cent, Physics 300-33
per cent, Biology 300-83 per cent and French 300-36 per cent. By compering these results we note that a student with a Grade IX Average score of 51 per cent has 85 chances out of a hundred of attaining his stanaing in Biology 300 while a student with the same Grade IX Average score has only 22 chences in a hundred of attaining a pass standing in Chemistry 300 .

Similar comparisons can be made to predict the probability of a students' academic perfornance with respect to various selected scores on the independent variable range as well as the dependent variable range. For example, as shown in Teble LX (see Appendix), the probability of a student with a Grade IX Average mark of 61 obtaining e score of 60 or greater in Physics 300 is 12 chances out of a hunsred. The expectancy tables based on the Grade IX Averege scores reveal a more meaningful relationship with each of the seven dependent variables than is shown by any of the other independent variables.

Prediction Based on the Dominion Tests
The expectancy tables which present the relationship between stubents' Dominion Test scores and seven twelfthgrede subject scores are recorded in Tables XVI, XXV,

XXXIV, XIII, LII, LXI and LXX, (see Appendix). These expectancy tables do not provide discriminative information at the lower level of the Dominion IQ range of scores with respect to the academic performance in the individuel trelfth-grace subjects. This inconsistent relationship of independent and dependent variable scores at the lower level of the Dominion I q range is accounted for by the circumstance that only reletively few of the totel original ninth-grade student populetion whose Dominion Ia scores fell in the lower range level were included in the population sample of this investigetion.

As shown in Table XVI (see Appendix), 70 per cent of these students with an $I Q$ score in the 95-99 interval Who completed the English 300 examinetion received a "pass" mark of 50 per cent or better. However, less than one-half of the originel group of junior high school students who obtained Dominion $I Q$ scores in the $95-99$ score interval completed the English 300 exemination. A large number Of studente with $I a_{0}$ scores in the $95-99$ score interval were not academically eligible to write the English 300 examination. Therefore it is unrealistic to generalize, on the basis of date obtained of a select group of students, and stete that a student with a Dominion IQ score in the 95-99 score interval has 70 chances in a 100 of receiving a mark of 50 oer cent or better if he were to complete the English 300 examination.

At the higher range of the Dominion Ia scores, relatively consistent and meaningful relationships with the individuel dependent variables were demonstrated. As shown in Table XVI (see Appendix) 88 per cent of the students With a Dominion $I Q$ score of 120 received a pess stanaing in English 300 while 44 per cent of these same stucents received a score of 60 per cent or better in English 300 .
III. FINDINGS BASED ON A CONPARISON OF THE THO TECANIGUES

A significant finding of the multiple regression investigation is that prediction of students scores in the twelfth-graie examinations of the University Entrance Course is subject to a considerable error of estimate when the prediction is based on the scores of the nine selected tests of mental ability, academic achievement and general intelligence. As indicated in Table VII, page 64, the standare error of estimate for Chemistry 300 is 12.00 marks. This implies that 68 per cent of the predicted scores will be within the limits of plus or minus 12.00 of the actual score. Such a great range of fluctuationg of predicted scoresprovides for little improvement of the margin of error of prediction that would result from a shrewd guess based on knowledge of the means of the variables. A student's score in a particular suoject can be preaicted; however, it is of little value due to the large error of
estimate. Therefore the multiple regression equations obtained for prediction of individual dependent variables do not proviae the necessery informetion that a counsellor must possess as he seeks to counsel a ninth-grade student With respect to the selection of University Entrance Course subjects in senior high school.

In contrast a number of the expectancy tables provide information that is relatively precise and quite useful in a counselling situation. The SCAT percentiles at the higher interval level of the range provide fairly discriminating information with respect to the probability (expressed as a certain number of chances out of a hundred) of a. student, whohas a given independent varieble marix, obtaining a score at least as great as a designated dependent variable score. The Grade IX Average expectancy tables provide the most valuable counselling informetion since the delineation of probability of success or failure to obtain a particular dependent veriable score is more precise at all interval levels of the range of both the independent and dependent scores.

The expectancy tables have a number of additional adventages. An expectancy table proviaes a large number of comperisons with respect to the whole range of level of achievements as measured by both the independent and
dependent variables. Also the expectancy tables provide information that may be presented directly to the student. The prediction based on probability of academic performance at a series of points on an independent variable scale allows the student to relate the generalized information provided on the expectancy tables to his own situation after the counsellor has provided him with information related to his scores on achievement tests and other test scores that the counsellor chooses to reveal.

A student with a Grade IX Average mark of 61 may be told that 40 per cent of the students with scores like his do not attain their twelfth-grade standing in English 300 (see Table XV, Appendix). On the other hand the student recognizes that 60 per cent of the students obtain a "pass" mark of 50 per cent or better. The same student may be told that 13 per cent of the students with scores like his obtain a mark of 60 per cent or better in English 300 while 87 per cent of these students obtain a mark that is less than 60 per cent in this subject. In this manner a student is provided with valuable information and counsel and is not given a false impression of security that may result from a single predicted score obtained by a multiple regression equation which is however relatively meaningless due to the large error of estimate.
IV. SUMMARY

In this chapter the findings of the investigations have been reported. In the first section the findings of the multiple regression investigation were reported. In the second section of this chapter the findings related to the constmuction of expectancy tables were presented. Lastly the findings of these two investigations were compared. The relative usefulness of the information obtained by these two methods of prediction was evaluated from the standpoint of its utility in a guidance situation in which a student is counselled with respect to selection of senior high course subjects. In Chapter V a summary of the findings will be presented and some implications of these findings will be discussed.

This chapter includes a review of the study and the techniques employed in the separate investigations, a summary of the major findings of the study and a brief discussion of the implication of the findings. Also concluding recommendations will be presented.

I. REVIEN OF THE STUDY

This study has been concerned with the prediction of students' academic performance in seven twelfth-grade subjects of the University Entrance Course. Students' scores on junior high school tests of mental ability, academic achievement, and general intelligence served as the nine independent variables of the prediction study while the students' scores obtained on the twelfth-grade June examinations of the University Entrance Course served as the seven dependent variables (see Table I, page 30). One objective of the study was to determine which independent variables and groups of independent variables most effectively predicted academic performance in the individual twelfthgrade subjects. The second aspect of the study was to compare and evaluate the effectiveness of two techniques
of prediction of students' academic performance.
One method of prediction consisted of the application of multiple regression to the variables and the construction of multiple regression equations of prediction. A subgroup of independent variables consisting of those three or four independent variables which collectively accounted Por the largest portion of the variance of the individual dependent variables was selected for the multiple regression equation. The initial multiple regression investigation was cross-validated on data obtained from another population sample.

The second method of prediction was performed by means of expectancy tables. The object of this investigation was not to predict precise students' scores on the dependent variables but to express the probability of a student, with a given score on an independent variable, of successfully obtaining or failing to obtain a designated score on the dependent variable.
II. MAJOR FIMDINGS

The major findings of the stridy will be summarized under the sub-titles related to the two main investigations.

Prediction by Multiple Regression

A consideration of the findings which resulted from an analysis of the data by the application of multiple correlation, multiple regression and the construction of multiple regression equations is summarized by the following statements:

1. It appears that regardless of the significance of the tests of mental ability, school achievement and general intelligence used as predictors and irrespective of the twelfth-grade subject areas being predicted, only forty-five per cent or less of the variance of the dependent variables was associated with the total battery of independent variables (see Table V, page 59).
2. More than 80 per cent and in some instences more than 90 per cent of the total variance accounted for by the total battery of nine independent variables was accounted for by a sub-group of three or four independent variables (see Table VI, page 62).
3. Quantitative SCAT and Iistory IX were the independent variables most frequently selected as variables of the multiple regression equations of prediction of dependent variables (see Table VII, page 64)。 They were included in the prediction equations of four dependent variables. Language IX and Mathematics IX and Grade IX

Average were each selected for three different multiple regression equations. Dominion $I \mathrm{Q}$ was selected least frequently as a predictor of dependent variable scores. It wes included in only one prediction equation.
4. The stendard error of estimate of the seven multiple regression equations of prediction of the seven dependent varieble varied from a minimum of 9.50 for English 300 to a maximum of 13.60 for History 300 . This indicates that large errors of estimate of predicted scores will frequently occur. The predicted scores of students selected by the lottery method also illustrated this error of estimate. The average differences between the three predicted and three actual scores of History 300 was 11.6 merks.
5. The cross-validation anelysis corroborates the evidence besed on the information obteined from the initial multiple regression investigetion that prediction of twelfth-grade subject scores of the University Entrance Course by multiple regression equations results in a large error of estimate. The error of estimete of the predicted score is not appreciable reduced beyond what can be achieved by a shrewd guess on the besis of knowledge of the mean of the dependent verieble scores.

Prediction by Expectancy Tables
The major findings associated with the analysis of the data by the construction of expectancy tables may be stated as follows:

1. The expectency tables based on the Verbal SCAT, Quantitative SCAT and Total SCAT percentiles showed a meaningiul delineation at the higher range of the percentile intervals between the percentage of the students who did obtain a series of designated scores on the individual tweleth-grade subjects and those students who failed to obtain such a designated mark. However, at the lower end of the scale of SCAT percentiles, the relationships of the SCAT percentiles and the individual twelfth-grade subjects were inconsistent and unreliable.
2. The expectancy tables which presented the relationship with Grade IX Average scores and the individual twelfth-grade subjects revealed consistent and meaningful discrimination with respect to the percentage of the students who achieved a designated twelfth-grade subject score and those who failed to do so. This delineation of academic performance was consistent throughout the intervals of the range of scores of both the Grade IX Average and of the individual twelfth-grade subjects
represented in the bivariate distributions of scores. The expectancy tables based on Language IX, Mathematics IX, Science IX and History IX showed varying degrees of discrimination. Certain individual dependent varjables Were particularly useful with respect to prediction of particular twelfth-grade subjects.
3. Dominion IQ scores only showed reasonably consistent relationships with the twelfth-grade subject scores at the higher range intervals of the Dominion IQ scores.
III. OBSERVATIONS AND IMPICATIOHS

Since a relatively small portion of the variance of the individual twelfth-grade subjects was associated with the tests of mental ability, school achievement and general intelligence selected as predictors in this prediction study, it is apparent that many factors which may contribute to academic performance in the individual twelfth-grade subjects of the University Entrance Course are not found in or measured by these nine independent variables used in this study. Less then a perfect degree of reliability of the tests used as predictors would also account for some of the variance difference.

The population samples of this study consisted of a select group of students since only those members of the total ninth-grade student population who completed the twelfth-grade subject examinations of the University Entrance Course were chosen as the population samples of this study. As a result the relationship between some independent variable, namely the three SCAT Tests and the Dominion IQ, and the individual dependent variables became distorted at the lower end of the independent variable scale. Grade IX Average, on the other hand, represented a relationship with the twelfth-grade subjects that enabled this variable to be used meaningfully in expectancy tables. Only students in the ninth-grade who obtained a Grade IX Average mark of 50 per cent or more completed the individual twelfth-grade University Entrance Course examinations. Also, by virtue of the fact that Grade IX Average is not a measure of potential ability but rather a measure of applied ability, it inherently, at least to some extent, also measures such non-intellectual traits as motivation and work habits.

The findings of this study restricted to one secondary school, indicate that the prediction of students' academic performance in the individual twelfth-grade subjects of the University Entrance Course by means of multiple regression equations will be subject to a large error
of estinate. Prediction of academic performance in twelfth-grade subjects by this method may thererore result in a misrepresentation of facts related to future academic performance. Counsel based on information obtained by multiple regression in this study could actually be a disservice to the ninth-grade student seeking counsel with respect to course and subject selection in senior high school. Expectancy tables based on Grade IX Average provided the necessary information for the prediction of academic performance in terms of the probability of a student obtaining a score as great as or greater than a designated twelfth-grade subject on the University Entrance Course. Expectancy tables can be readily constructed by the guidance counselor in a local school counseling situation. By means of these tables information may be shared with a student faced with the selection of courses and subjects. The student will readily be able to comprehend the implications of the information in terms of what probability exists that he will or will not attain certain academic goals under consideration.

A word of caution may be in order, however, with respect to the use of expectancy tables based on certain independent variable scores. Expectancy tables, based on IQ scores. may serve as useful information for the counselor.
students' academic performance.
It would also be fruitful to apply analyses, based on multiple regression and expectancy tables, to variables in order to assess the effectiveness of prediction of students academic perfomance on individual subjects of the General Course, the Commercial Course and the Industrial Course. If meaningful relationships were proven to exist between various independent variables and the subject of these alternate senior high school courses, a student who would probably not be successful in the University Entrance Course could be counseled with respect to academic courses and subjects most suited for him in terms of probability of being successfiul.
V. CONGLUSION

The ultimate goal of this study was to provide additional information and evidence that will enable school counselors to offer guidance to students with respect to the selection of academic courses and subjects in the senior bigh school. Hopefully the findings of this study Will be of value to counselor and student alike in determining the probability of the individual student attaining his twelfth-grade standing in individual subjects of the University Entrance Course if he were to enroll in this course.

BIBLIOGRAPHY

A. BOOKS

Anastasi, Anne Dipferential Psychology. New York: The Mackillan Company: 1956. 664 pp.

Anastasi, Anne Psychological Testing. New York: The MacMillan Company, 1961. 657 pp.

Barr, Arvil So, Robert A. Davis, and Palmer O, Johnson, Educational Research and Appraisal. New York: J.P. Lipoincott Companys 1953. 362 pp.

Bloon, Benjamin S., "Testing Cognitive Ability and Achievenent, "Handbook of Research in Teaching. Gage, N. I. (ed.), Chicago: Rand McNalIy, I963. 383 pp.

Bloom, Benjamin S. and Prank R. Peters. The Use of Academic Prediction Scales for counseling and Selecting College Entrants. Mew York: The Free Press of GIencoe, Inc. 1961.145 pp .

Gronbach, Lee J. Essentials of Psycholosical Testing. New York: Harper and Brothers 1949. 650 pp .

Perguson. G.A. Statistical Analysis in Psychology and Education. New Yonk McGraw-Hill, 1966.446 pp.

Garpett, Henry E. Statistics in Psychology and Education. New York: Longmans, Green and Co. $1958,478 \mathrm{pp}$.

Good, Carter, V., Barr,A.S., D.E. Scates, Methodology of Educational Research. New York: Appelton-Century-Crofts Inc. 1938.882 pp .

Green. Russell ${ }^{\text {G. . "Tests and Reviews, " The Sixth Mentel }}$ Measurements Yearbook. Buros, $\overline{O_{0}} \mathrm{~K}_{0}(\mathrm{ed})_{\text {. }}$, Highland Park. N.J. Gryphon Press, 1965. p. 452-4.53.

Guilford. J.P. Pundamental Statistics in Psychology and Education. New York: McGrawmil1, 1965.605 pp .

Horst, Paul, "Differential Prediction in College Acmissions" College Board Review. 33:19-23. 1957 quoted by David E Lavin. The Prediction of Academic Performance. New York: Fussell Sage Foundation, 1965. 182 pp.

Lavin, David E. The Prediction of Academic Performance. New York: Russell Sage Foundation, 190́5, 182 pp.

Mitchell, Blythe C. "The Relation of High School Achievement to the Abilities Measured by the Holzinger - Crowder Uni Factor Test, " Educational and Psychological Measurement. 15: 487-490, 1955. Reported by David E. Lavin, The Prediction of Academic Performance. New York: Russell Sage Foundation, 1965, 182 pp 。

Travers, Robert M. Educational Measurement。 New York: The Macmillan Company, 1955.420 pp.

Travers, Robert M. Wo, "Significant Research on the Prediction of Academic Success," in Donahue, W.T., and associates, editors, The Measurement of Student Adjustment and Achievement. Ann Arbor: University of Michigen Press, 1949.
B. JOURNALS

Anderson, Dale G_{0}, and Herbert E.Stiles, "The Use of Expectancy Tables in Educational Guidance," Alberta Journal of Educational Research. 14:129-135, June, 1968.

Blai, Boris J., "Expectancy Tables and College Admissions," Junior College Journal. 36:27, February, 1966.

Boney, Jo Donald, "Predicting and Academic Achievement of Secondary School Negro Students," Personnel and Guidance Journal 44:700-703, March, 1966.

Carter, Harold D. . "Improving the Prediction of School Achievement by Use of the California Study Methods Survey," Educational Administration and Supervison. 45: 255-60, September, 1959.

Droedge, Robert C., "GATB Norms for Lower High School Grades," Personnel and Guidance Journal. 39: 33-35, September, 1960.

Droedge, R.C., "GATB Longitudinal Maturation Study, "Personnel and Geidance Journal. 44:119-130, May, 1966.

Flanagan, John C., "Identification, Development and Utilization of Human Talents," Cooperative Research Project No. 635, Pittsburgh: University of Pittsburg. Reported by Bligh, Harold F. "rrends in the Measurement of Educational Achievement," (Chapter IV), Review of Educational Research. 32: 45, 46, February, 1965.

Frost, Barry P., "Some Conditions of Scholastic Achievement," Canadian Educational and Research Digest. 5:267285, December, 1965.

Gough, Harrison, "What Determines the Academic Achievement of High School Students?" Journal of Educational Research 46:321-331, 1953.

Impellitteri, Joseph T., "Predicting Academic Achievement with the High School Placement Test, "Personnel and Guidance Journal. 44:140-143, October, 1967.

Ingersoll, Ralph Wo, and Ferman J. Peters, "Predictive Indices of the GATB," Personnel and Guidance Journal。 40:931-7, Nay, 1966.

Jacobs, J.B., "Aptitude and Achievement Measures in Predicting High School Academic Success," Personnel and Guidance Journal. 37:334-41, 1959.

Kaytal, Krishan Lal, "Io Predict Grade XII Success on the Basis of Three Scores on School and College Ability Tests," Unpublished Masters thesis, University of Manitoba, Winnipeg, 1967.

Klugh, H., and R. Bierley, "The School and College Ability Test and High School Grades as Predictors of College Achievement," Educational and Fsychological Measurement. 19:635-626, 1959. Reported by Barry Pe Frost, "Some Conditions of Scholastic Achievement (Part I)", Ganadian Education and Research Digest 5:267-85. December, 1965.

Meyer, William J. and A. W. Bendig, "A Longitudinal Study of the Primary Mental Abilities Test," Journal of Educational Psychology. 12:50-60, February, 196..

Milholland, John E., and Benno G. Fricke, "Educational and Psychological Testing," Review of Educational Research, 32: 25-39, February, 1962.

Murpay, Edmund, and Joseph E. Murray, "Non-Additive Effects in the Prediction of Academic Achievement," Educational and Psychological Measurement. 25: 1097-1104, Winter. 1965.

New York City Fublic Schools, "Testing Program Development," Special Circular No. 48, 1963-64. Board of Education of the City of New Yomkg 1964. Reported by Jason Millman and Marvin D. Glock, "Trends in the Measurement of General Mental Ability," Review of Educational Research. $35: 21$, Pebruary, 1965.

Scannell, Dale P., "Prediction of College Success from Elementary and Secondary Schools Performance," Journal of Educational Psychology. 51:130-134, June, 1960.

Shaycoft, Marion F, "The High School Years: Growth in Cognitive Skills, " Interim Report No. 3, Pittsburgh: University of Pittsburg Press and American Institutes of Research, 1967. Reported by Paul I. Clifford, "Testing the Educational and Psychological Development of Adolescents," Review of Educational Research 38:30-35, February, 1968.

Spaight, Emest, "Accuracy of Self-Estimation of Junior High School Students," Journal of Educational Research. 58:416-9, May-June, 1965.

Super, D.E., "The Critical Ninth-grade Vocational Choice or Vocational Explorations," Personnel and Guidance Journal. 39:106-9, October, 1960.

Swinnen, K., "Prediction of Secondary School Success: A Follow-up Study, "Reprint of English summary of: K. Swinnen, " Prognose van het school success in het Middelbaar Anderwijs. Follow-up onderzoek." Louvain(Belgium), Leuvense Universitaire Uitgaven, 1961, p. 175-179.

Thompson, O.E., "Occupational Values of High School $^{\text {E }}$ Students," Personnel and Guidance Journal. 44: 850-3, April. 1966.

Wellman, F.E., "Differential Prediction of High School Achievement Using Single Score ana Multiple Factor Tests of Mental Maturity," Fersonnel and Guidance. 35:512-517, April, 1957.

APPENDIX

SUPPLEMENTARY TABLES

ENGLISH 300 EXPECTANCY TABIE BASED ON QUANTITATIVE SCAT TEST

Quant.SCAT Percentile	N	50	Grade XII Subject Scores						Median Score
			55	60	65	70	75	80	
91-99	32	90	80	58	50	23	19	3	65
81-90	30	90	67	54	30	14	3		61
71-80	30	89	54	32	26	10	7	7	56
61-70	30	64	53	47	20	7	3	3	57
51-60	29	70	48	29	13	3	3		54
41-50	21	74	64	29	24	20	15	10	57
31-40	25	68	44	20	16	8	4		54
21-30	14	77	35	21	7				53
11-20	16	60	30						51
1-10	6	66	33	16	16				52
Total No	233								

TABLE X
ENGLISH 300 EXPECTANCY TABLE BASED ON TOTAL SCAT TEST

Total SCAT Percentile	N	50	Grade XII Subject Scores						Median Score
			55	60	65	70	75	80	
91-99	39	93	78	61	52	23	15	5	65
81-90	41	79	55	49	25	14	14	5	57
71-80	33	82	63	36	21	3	3		57
61-70	29	70	48	35	16	13	3	3	54
51-60	26	70	40	12	8				53
41-50	16	55	25	12	6				51
31-40	14	56	56	14	14				56
21-30	21	50	23	5	5				50
11-20	13	54	23	8					51
1-10	1	0							
Total $\mathrm{N}=$	233								

ENGLISH 300 EXPECTANCY TABLE BASED ON LANGUAGE IX TEST

Language Percent	N	50	Grade XII Subject Scores							Median Score
			55	60	65	70	75	80		
91-100	4	50	50	50	50	25				65
81-90	31	77	68	54	44	23	23	7		62
71-80	84	87	69	44	27	13	7	2		59
61-70	68	62	33	16	9					52
51-60	32	60	41	22	6	3				52
41-50	13	46	15	8					below	50
31-40	1									
1-30	0									
Total ${ }^{\text {N- }}$	233									

TABLE XII
ENGLISH 300 EXPECTANCY TABLE BASED ON MATHEMATICS IX TEST

Mathematics Percent	IN	50	Grade XII Subject Scores						Median Score
			55	60	65	70	75	80	
91-100	46	89	61	47	36	15	9	2	59
81-90	63	78	55	33	21	13	9	3	56
$71-80$	62	70	47	31	17	3	1	1	54
61-70	43	60	39	20	9	5	2		53
51-60	16	57	38	20	20.				52
41-50	3	66	33						52
31-40	0								
1-30	0								
Total Nm	233								

ENGLISH 300 EXPECTANCY TABLE BASED ON SCIENCE IX TEST

	Grade XII Subject Scores								
Science Percent	\mathbb{N}	50	55	60	65	70	75	80	Median
Score									

TABLE XIV
ENGLISH 300 EXPEGTANCY TABLE BASED ON HISTORY IX TEST

History Percent	N	50	Grade XII Subject Scores						Median Score
			55	60	65	70	75	80	
91.-100	25	92	76	52	40	24.	12	8	61
81-90	59	90	66	52	40	23	17	2	61
71-80	70	69	55	30	20	4	1	1	56
61-70	54	58	29	15	10				51
51-60	19	65	40	20	5				53
41-50	6	67	50	33					55
31-40	0								
1-30	0								
Total N-	233								

ENGLISH 300 EXPECTANCY TABLE BASED ON GRADE IX AVERAGE

Grade IX Average	\mathbb{N}	50	Grade XII Subject Scores						Median Score
			55	60	65	70	75	80	
91-99	6	83	83	66	66	33	16		67
81-90	57	92	70	57	40	20	15	6	62
71-80	91	72	50	32	19	6	4	1	55
61-70	66	60	36	13	7	1			52
51-60	13	53	23	8					51
41-50	0								
31-40	0								
1-30	0								
Total N-	233								

TABLE XVI
ENGLISH 300 EXPECTANCY TABLE BASED ON DOMINION TEST

Dominion I.Q. Scores	N	50	Grade XII Subject Scale						Median Score
			55	60	65	70	75	80	
$135+$	23	90	68	43	33	8	8		58
130-134	14	100	84	70	56	28	21	7	66
125-129	20	85	65	60	40	30	15	5	62
120-124	35	88	70	44	18	12	9	3	59
115-119	38	74	49	30	20	3	3		54
110-114	35	51	32	17	14	6	3	3	50
105-109	25	84	52	28	12	4			56
100-104	16	54	24	6	6			below	50
95-99	14	70	56	14	14				56
```less than 95 Total INm```	$\begin{array}{r} 13 \\ 233 \end{array}$	47	16	8					

HISTORY 300 EXPECTANCY TABLE BASED ON SCAT VERBAL TEST

Verbal SCAT Percentile	N	50	Grade XII Subject Scores						Median Score
			55	60	65	70	75	80	
91-99	13	92	77	77	77	44	44	15	69
81-90	13	77	77	68	38	30	15	8	64
71-80	10	80	80	70	40	40	40		64
61-70	11	72	55	45	18	18	9		56
51-60	5	60	40	20	20				52
41-50	3	66	66	66	66	66	66		75
31-40	7	57	27	27	27	13	13		51
21-30	7	39	39	39	13				50
11-20	7	71	55	27	13				51
1-10	1								
Total $\mathrm{N}=$	67								

TABLE XVIII
HISTORY 300 EXPECTANGY TABLE BASED ON QUANTITATIVE SCAT TEST

Quant. SCAT Percentile	N	50	Grade XII Subject Scores						Median Score
			55	60	65	70	75	80	
91-99	4	75	75	75	75	75	75	75	$80+$
81-90	9	88	77	66	44	33	33	33	64
71-80	9	89	89	78	66	33	22		62
61-70	9	66	55	55	33	22	22		61
51-60	10	60	50	50	40	30	20		60
41-50	6	85	85	85	50	50	33		70
31-40	6	67	67	67	50	33	33	17	65
21-30	5		80	60	40	20	20		62
11-20	7	75	58	38	16	16			52
1-10	2				50				65
Total Nm	67								

HISTORY 300 EXPECTANCY TABLE BASED ON TOTAL SCAT TEST

Total SCAT Percentile	N	50	Grade XII Subject scores						Median Score
			55	60	65	70	75	80	
91-99	8	87	75	75	63	50	50	25	75
81-90	11	90	90	90	72	54	54	18	76
71-80	13	78	78	71	48	32	23		65
61-70	7	70	70	56	42	28	14		62
51-60	7	70	70	70	42	28	14		63
41-50	5	80	60	40	20	20	20		57
31-40	5	60	60	60	20	20	20	20	61
21-30	5	60	60	60	20				61
11-20	6	68	68	51	34	17			60
$\begin{aligned} & \text { I-10 } \\ & \text { Total No } \end{aligned}$	67								

TABLE XX
HISTORY 300 EXPECTANCY TABLE BASED ON LANGUAGE IX TEST'

Language Percent	N	50	Grade XII Subject Scores						Median Score
			55	60	65	70	75	80	
91-100	2	50	50	50	50	50	50	50	80
81-90	10	90	90	90	80	60	50	20	75
71-80	24	77	69	66	53	42	33	12	66
61-70	16	87	75	56	32	19	19		61
51-60	10	90	80	80	40	20			64
41-50	5	40	20	20					50
31-40	0								
1-30	0								
Total $\mathrm{N}=$	67								

HISTORY 300 EXPECTANCY TABLE BASED ON MATHEMATICS IX TEST

Mathematics   Percent	N	50	Grade XII Subject Scores						Median Score
			55	60	65	70	75	80	
91.100	8	87	75	75	75	64	50	25	75
81-90	15	93	86	86	63	28	28	14	67
71-80	19	90	78	72	47	40	20	5	64
61-70	13	85	78	55	30	22	15		61
51-60	12	75	50	50	25	17	17	8	60
41-50	0								
31-40	0								
1-30	0								
Total N -	67								

TABLE XXII
HISTORY 300 EXPECTANCY TABLE BASED ON SCIENCE IX TEST

Science   Percent	N	50	Grade XII Subject Scores						Median Score
			55	60	65	70	75	80	
91.100	3	66	66	66	66	66	66	33	77
81-90	12	91	82	82	66	50	50		75
71-80	20	85	80	75	50	35	35	20	65
61-70	21	79	74	65	34	20			63
51-60	8	75	36	36	25	25	12		52
41-50	2	100	50	50	50				65
31-40	1	100	100						
1-30	0								
Total $\mathrm{N}=$	67								

HISTORY 300EXPEGTANCY TABLE BASED ON HISTORY IX TEST

History   Percent	N	50	Grade XII Subject Scores						Median Score
			55	60	65	70	75	80	
91-100	2	100	100	100	100	50			70
81-90	16	93	87	75	68	55	55	25	76
71-80	25	92	88	80	52	36	24	8	65
61-70	18	65	41	35	15	10	5		53
51-60	6	66	66	66	33	16			62
41-50	0								
31-40	0								
1-30	0								
Total ${ }^{\text {N- }}$	67								

## TABLE XXIV

## HISTORY 300 EXPEGTANCY TABLE BASED ON GRADE IX AVERAGE

Grade IX Average	N	50	Grade XII Subject Scores						Median Score
			55	60	65	70	75	80	
91-100	2	100	50	50	50	50			70
81-90	11	90	90	90	81	54	54	27	76
71-80	25	84	80	76	56	36	32	8	66
61-70	25	88	68	76	24	24	8		62
51-60	4	25	25	25	25				
41-50	0								
31-40	0								
1-30	0								
Total N	67								

HISTORY 300 EXPECTANCY TABLE BASED ON DOMINION TEST

DominionI。Q.Scores	N	50	Grade XII Subject Scores						Median Score
			55	60	65	70	75	80	
$135+$	5	80	80	80	60	40	40		67
130-134	3	100	100	100	67	67	67		75
125-129	7	100	85	85	85	56	42	42	72
120-124	11	81	72	72	54	36	36	18	66
115-119	7	70	56	56	28	28	14		61
110-114	12	82	75	75	57	41	25		67
105-109	4	75	25	25					52
100-104	5	40	40	20	20			below	50
95-99	6	83	83	83	50	50	16		70
```less than 95``` Total N-	7	100	85	56	14				60

TABLE XXVI
MATHEMATIGS 300 EXPECTANCY TABE® BASED ON VERBAL SCAT TEST

Verbal scat Percentile	N	50	Grade XII Subject Scores						Median Score
			55	60	65	70	75	80	
91-99	39	95	83	78	63	48	45	40	69
81-90	33	87	84	66	54	51	30	27	70
71-80	35	91	80	75	57	42	33	24	67
61-70	15	75	68	68	54	40	20	14	68
51-60	38	88	78	63	42	27	14		63
41-50	9	77	77	66	55	55	33		71
31-40	10	80	60	40	20	20	20		57
21-30	22	84	65	50	45	30	10	5	60
11-20	14	92	78	55	24	24	16		61
1-10	3					100	33	33	71
Total V	219								

MATHEMATICS 300 EXPECTANCY TABLE BASED ON QUANTITATIVE SCAT TEST

Quant. SCAT Percentile	\mathbb{N}	50	Grade XII Subject Scores						Median Score
			55	60	65	70	75	80	
91-99	31		100	96	89	77	70	65	
81-90	31	89	81	77	66	60	44	35	73
71-80	33	90	72	63	48	33	18	12	64
61-70	27	77	58	40	22	22	11		57
51-60	27	73	66	58	45	29	25	11	63
41-50	15		80	74	48	33	20	13	65
31-40	23		94	68	47	37	8		64
21-30	14	92	76	38	23	8	8		57
11-20	14	85	69	46	23	16			59
1-10	4	100	66	33	33				57
Total N -	219								

TABLE XXVIII
MATHEMATICS 300 EXPECTANCY TABLE BASED ON TOTAL SCAT TEST

Total SCAT Percentile	\mathbb{N}	50	Grade XII Subject Scores						Median Score
			55	60	65	70	75	80	
91-99	37	97	91	88	81	67	53	53	80
81-90	42	90	82	73	53	46	37	30	67
71-80	33	84	78	72	57	51	36		70
61-70	24	80	80	60	32	16	8		62
51-60	19	83	70	55	44	25	10		62
41-50	15	73	54	47	33	26	14		58
31-40	14	77	63	42	28	14			58
21-30	18	94	80	54	40	24	12	6	61
11-20	15	90	79	53	30	30	16	8	61
1-10	1								
Total No	219								

MATHEMATICS 300 EXPECTANGY TABLE BASED ON LANGUAGE IX TEST

Language Percent	N	50	Grade XII Subject Scores						Median Score
			55	60	65	70	75	80	
91-100	2							100	80+
81-90	30	96	96	80	70	66	54	42	76
71.80	80	97	88	78	60	46	34	25	68
61-70	75	74	59	42	38	28	14	8	57
51-60	27	86	70	51	30	15	11	7	60
41-50	5	80	80	80	20	20			62
31-40	0								
1-30	0								
Total N -	219								

TABLE XXX
MATHEMATICS 300 EXPECTANCY TABLE BASED ON MATHEMATICS IX TEST

Mathematics Percent	N	50	Grade XII Subject Scores						Median Score
			55	60	65	70	75	80	
91100	47	85	85	80	70	32	60	56	$80+$
81-90	64	98	90	78	62	50	30	21	70
71-80	59	91	88	74	48	43	23	13	65
61-70	35	84	70	54	31	17	3		61
51-60	13	78	78	53	24	12			61
41-50	1	100							
31-40	0								
1-30	0								
Total N-	219								

MATHEMATICS 300 EXPECTAINCY TABLE BASED ON SCIENCE IX TEST

Science Percent	\mathbb{N}	50	Grade XII Subject Scores						Median Score
			55	60	65	70	75	80	
91-100	20	100	90	85	85	80	70	60	$80+$
81-90	55	98	96	87	60	49	30	27	70
71-80	70	90	60	62	49	40	29	20	65
61-70	53	82	66	49	40	24	8	4	60
51-60	12	75	66	50	24	16	8		60
41-50	7	100	70	64	16				61
31-40	2	100							
1-30	0								
Total N -	219								

TABLE XXXII
MATHEMATICS 300 EXPECTANCY TABLE BASED ON HISTORY IX TEST

History Percent	N	50	Grade XII Subject Scores						Median score
			55	60	65	70	75	80	
91.100	21	100	88	82	77	70	55	55	$80+$
81-90	59	96	90	83	70	60	44	35	74
71-80	67	86	70	60	40	31	18	12	62
61-70	48	76	62	44	32	18	6	4	57
51-60	16	80	73	54	40	40	35	18	62
41-50	8	72	60	36	12	12			57
31-40	0								
1-30	0								
Total N -	219								

MATHEMATICS 300 EXPECTANCY TABLE BASED ON GRADE IX AVERAGE

Grade IX Average	IV	50	Grade XII Subject Scores						Median Score
			55	60	65	70	75	80	
91.100	9							100	$80+$
81-90	56	98	92	87	75	61	46	38	74
71-80	84	86	77	64	51	36	19	14	65
61-70	55	84	60	42	27	19	10	4	53
51-60	15	75	54	40	20	7			56
41-50	0								
31-40	0								
1-30	0								
Total No	219								

TABLE XXXIV
MATHEMATICS 300 EXPECTANCY TABLE BASED ON DOMINION TEST

CHEMISTRY 300 EXPECTANCY TABLE BASED ON VERBAL SCAT TEST

Verbal SCAT Percentile	N	50	Grade XII Subject Scores						Median Score
			55	60	65	70	75	80	
91-99	36	91	86	75	57	47	28	16	69
81-90	29	71	66	60	48	35	13	3	64
71-80	34	81	69	60	29	33	15	9	62
61-70	16	54	42	25	25	18	12		51
51-60	32	69	53	47	18	15	3		53
41-50	10	70	50	40	30	30	20	20	55
31-40	6	100	83	66	16				61
21-30	15	63	54	44	28	14			57
11-20	11	63	36	18	9	9			52
l-10	3	100	100	66	33				62

TABLE XXXVI

CHEMISTRY 300 EXPECTANCY TABLE BASED ON QUANTITATIVE TEST

CHEMISTRY 300 EXPECTANCY TABLE BASED ON TOTAL SCAT TEST

Total SCAT Percentile	N	50	Grade XII Subject scores						Median Score
			55	60	65	70	75	80	
91-99	36	90	88	80	67	67	41	27	73
81-90	39	85	80	70	50	33	6	2	65
71-80	29	67	51	40	20	17	7	3	55
61-70	23	63	52	43	20	20	8	4	55
51-60	17	70	58	36	17	11	6		56
41-50	10	70	60	50	30	10	10		60
31-40	11	63	45	36	27	18			54
21-30	17	66	53	36	17	11			56
11-20	9	66	33	22	11				52
1-10	1								
Total ivo	192								

TABLE XXXVIII
CHEMISTRY 300 EXPECTANCY TABLE BASED ON LANGUAGE IX TEST

Language Percent	N	50	Grade XII Subject Scores						Median score
			55	60	65	70	75	80	
91700	3	90	66	66	33	33	33		62
81-90	37	86	80	67	58	53	33	28	71
71-80	71	84	70	60	44	36	13	3	64
61-70	50	66	56	36	20	16	6	2	54
51-60	24	60	36	28	8	4			54
41-50	9		44	22	11				
31-40	0								
1-30	0								
Total $\mathrm{N}=$	192								

CHEMISTRY 300 EXPECTANCY TABLE BASED ON MATHEMATICS IX TEST

Mathematics Percent	N	50	Grade XII Subject Scores						Median Score
			55	60	65	70	75	80	
91100	44	93	91	83	75	67	40	18	73
81-90	58	83	68	60	28	20	6	2	61
71-80	54	68	57	50	25	16	2	2	60
61-70	28	61	44	22	14	7	7		54
51-60	6	72	36	18	18	18			53
41-50	2	0							
31-40	0								
1-30	0								
Total ${ }^{\text {- }}$	192								

TABLE XL
CHEMISTRY 300 EXPECTANGY TABLE BASED ON SCIENGE IX TEST

Science Percent	IV	50	Grade XII Subject Scores						Median Score
			55	60	65	70	75	80	
91-100	21	91	91	87	78	73	44	34	74
81-90	54	91	80	67	48	42	24	4	65
71-80	58	70	64	60	34	19	5	2	62
61-70	46	60	39	20	12	6	2		52
51-60	11	63	45	18	18	9			54
4工-50	2	50							50
31-40	0								
1-30	0								
Total N-	192								

GHEMISTRY 300 EXPECTANCY TABLE BASED ON HISTORY IX TEST

History Percent	N	50	Grade XII Subject Scores							Median Score
			55	60	65	70	75	80		
91100	21	96	92	84	75	65	40	30		73
81-90	54	93	90	80	66	53	26	12		70
71-80	61	75	62	50	25	14	3			60
61-70	36	75	59	41	22	19	8			57
51-60	13	28	21	21	14	7	7		below	50
41-50	7	42	14	14	14					
1-30	0									
Total N-	192									

TABLE XLII
CHEMISTRY 300 EXPECTANCY TABLE BASED ON GRADE IX AVERAGE

Grade IX Average	N	50	Grade XII Subject Scores						Median Score
			55	60	65	70	75	80	
91-100	6			100	83	83	83	83	$80+$
81-90	59	91	86	78	67	60	32	15	71
71-80	80	81	83	57	31	19	4		61
61-70	39	53	38	25	14	5			51
51-60	9	22							
41-50	0								
31-40	0								
I-30	0								
Total N -	192								

CHEMISTRY 300 EXPECTANCY TABLE BASED ON DOMINION TEST

Dominion I.Q. Score	N	50	Grade XII Subject Scores						Median Score	
			55	60	65	70	75	80		
$135+$	23	84	84	72	58	50	29	12		70
130-134	14	78	64	64	42	35	14			64
125-129	21	95	88	88	63	53	24	20		70
120-124	26	82	70	46	31	31	19	4		59
115-119	32	75	65	53	37	27	12	3		61
110-114	28	71	63	54	25	18	4			61
105-109	22	72	44	35	20	5				54
100-104	7	42	28	28	14	14	14		below	50
95-99	11	72	63	54	27	9				61
Less than 95 Total N-	$\begin{array}{r} 10 \\ 194 \end{array}$	60	40	20	20	10	10			53

TABLE XLIV
PHYSICS 300 EXPECTANCY TABLE BASED ON VERBAL SCAT TEST

Verbal SCAT Percentile	N	50	Grade XII Subject Scores						Median Score
			55	60	65	70	75	80	
91-99	25	88	68	64	52	40	24	12	65
81-90	16	87	70	70	44	38	18	6	64
71.80	20	85	60	50	15	10	10	10	60
61-70	7	84	84	56	14	14	14		61
51-60	16	67	31	24	12	6	6	6	52
41-50	4	50	25	25					50
31-40	3	66	66	33	33	33			52
21-30	8	75	62	25	12	12			51
11-20	3	66							
1-10	2	100	100	50					60
Total N	104								

PHYSIOS 300 EXPECTANCY TABLE BASED ON QUANTITATIVE SCAT TEST

Quant.SCAT Percentile	N	50	Grade XII Subject Scores						Median Score
			55	60	65	70	75	80	
91-99	23	91	85	69	60	52	39	25	70
81-90	20	75	65	55	35	15	10	5	61
71-80	13	80	72	56	24	24			61
61-70	10	90	40	30	10	10	10		54
51-60	10	90	50	40	10	10			55
41-50	8	50	25	24	12	12			50
31-40	9	66	55	44	22	11			57
21-30	4	100	50	50					60
11-20	6	71	57	18					56
1-10	1	100							
Total N -	104								

TABLE XLVI

PHYSICS 300. EXPECTANCY TABLE BASED ON TOTAL SCAT TEST

Total SCAT Percentile	N	50	Grade XII Subject Scores						Median Score
			55	60	65	70	75	80	
91-99	25	96	80	76	68	56	40	24	72
81-90	26	77	64	54	24	12			61
71-80	14	85	68	40	24	8	8		52
61-70	8	73	24	24	12	12	12		52
51-60	9	88	55	44	11	11			56
41-50	4	50	50	50	25	25	25	25	60
31-40	3	33							
21-30	12	72	56	40	16	16			
11-20	3	66	33						
1-10	0								
Total Nm	104								

PHYSICS 300 EXPECTANCY TABLE BASED ON LANGUAGE IX

Language Percent	N	50	Grade XII Subject Scores						Median Score
			55	60	65	70	75	80	
91-100	3				100	67	33	33	73
81-90	20	85	80	70	50	40	30	20	65
71.80	34	87	72	57	39	27	12	9	62
61-70	29	68	48	40	11	11	7	3	55
51-60	10	80	50	40	30	20			55
41-50	7	58	29						52
31-40	1					100			
1-30	0								
Total $\mathrm{N}=$	104								

TABLE XLVIII

PHYSICS 300 EXPECTANCY TABLE BASED ON MATHEMATICS IX

PHYSICS 300 EXPECTANCY TABLE BASED ON SCIENCE IX

Science Percent	N	50	Grade XII Subject Scores						Median Score
			55	60	65	70	75	80	
91-100	19.	95	90	90	80	54	37	26	71
81-90	30	80	66	58	33	24	20	10	62
71-80	30	80	58	48	20	16	4		59
61-70	20	65	40	15					53
51-60	4	25	25	25	25	25		below	50
41-50	0								
31-40	1		100						
1-30	0								
Total $\mathrm{N}=$	104								

TABLE L
PHYSICS 300 EXPECTANCY TABLE BASED ON HISTORY IX

History Percent	N	50	Grade XII Subject Scores						Median Score
			55	60	65	70	75	80	
91100	17	100	84	84	60	54	54	36	76
81-90	35	80	70	67	47	26	12	6	64
71-80	30	87	54	28	20	15			56
61-70	17	66	42	30	6	6	6		53
51-60	5	20	20						
41-50	0								
31-40	0								
1-30	0								
Total N -	104								

PHYSICS 300 EXPECTAITGY TABIE BASED ON GRADE IX AVERAGE

TABLE LII

PHYSICS 300 EXPECTANCY TABLE BASED ON DOMINION TEST

Dominion I.Q. Scores	N	50	55	Grade XII Subject Scores					Median Score
				60	65	70	75	80	
$135+$	16	86	86	86	67	54	36	12	71
130-134	8	50	38	38	25				50
125-129	13	92	68	53	38	29	21	21	61
120-124	14.	56	42	35	14	14			52
115-119	16	72	72	50	18	12			60
110-114	15	74	54	47	35	28	21	7	57
105-109	10	60	40	20	10				53
100-104	4	50	50	50	50	25	25	25	65
95-99	7	70	55	44	13	13			57
Less than									
95	3		33						
Total N-	104								

BIOLOGY 300 EXPECTANCY TABLE BASED ON VERBAL SCAT TEST

Verbal scat Percentile	IN	50	Grade XII Subject Scores						Median Score
			55	60	65	70	75	80	
91-99	5			100	80	80			70
81-90	11	90	81	72	63	36	9	9	67
71-80	13	85	78	78	62	40	40	24	68
61-70	9	66	44	44	22	11	11		54
51-60	18	68	56	45	33	15	15	5	58
41-50	6	83	34	34.	34	34	17		53
31-40	3				100	33	33		69
21-30	12	75	50	33	25	16	8	8	55
II-20	7	75	45	45	28	14	14		54
1-10	1			100					
Total N-	85								

TABLE LIV
BIOLOGY 300 EXPECTANCY TABLE BASED ON QUANTITATIVE SCAT TEST

Quant. SCAT Percentile	N	50	Grade XII Subject Scores						Median Score
			55	60	65	70	75	80	
91-99	6	83	83	83	66	33	16		67
81-90	4	50	50	50	50	50	25	25	70
71-80	12	92	67	67	50	33	16	8	65
61-70	7	86	86	86	71	28	28	14	67
51-60	14	75	61	42	28	14	7		57
41-50	9	77	55	55	55	33	22	11	66
31-40	12	84	57	57	50	42	24	8	65
21-30	8	75	50	25	12	12	12		55
11-20	9	88	55	44	22	11			56
1-10	4	75	50	50	25	25	25	25	60
Total $\mathbb{N}=$	85								

BIOLOGY 300 EXPECTANCY TABLE BASED ON TOMAL SCAT TEST

Total SCAT Percentile	N	50	Grade XII Subject Scores						Median Score
			55	60	65	70	75	80	
91-99	6	83	83	83	67	50	17	17	70
81-90	8	88	88	88	75	50	25		70
71-80	11	81	63	63	45	27	18	9	64
61-70	11	90	72	63	63	45	27	27	69
51-60	11	72	54	45	27	9	9		57
47-50	12	67	50	50	41	17	17		60
31-40	9	100	77	55	44	33	11		59
21-30	10	70	40	30	10				53
11-20	5	60	20	20					51
1-10									
Total $\mathrm{N}-$	83								

TABLE LVI
BIOLOGY 300 EXPECTANCY TABLE BASED ON LANGUAGE IX TEST

Language Percent	N	50	Grade XII Subject Scores						Median Score
			55	60	65	70	75	80	
91-100	0								
81-90	6	83	83	83	50	33	33		65
71-80	30	90	77	67	60	40	20	10	67
61-70	28	69	44	44	37	18	15	7	54
51-60	13	92	60	53	40	32	16	8	61
41-50	6	66	50	50	18				60
31-40	0								
1-30	0								
Total $\mathrm{N}=$	83								

BIOLOGY 300 EXPECTANCY TABLEBASED ON MATHEMATICS IX TEST

Mathematics Percent	N	50	Grade XII Subject Scores						Median Score
			55	60	65	70	75	80	
91-100	2	100	100	100	100	50			70
81-90	25	92	88	84	60	48	28	16	70
71-80	22	70	50	43	43	18	18	5	55
61-70	22	72	43	27	18	14	9	5	54
51-60	12	84	66	66	42	34	17	8	64
41-50	0								
31-40	0								
1-30	0								
Total N-	83								

TABLE LVIII

BIOLOGY 300 EXPEGTANGY TABLE BASED ON SGIENCE IX TEST

Science Percent	IN	50	Grade XII Subject Scores						Median Score
			55	60	65	70	75	80	
91-100	1	100	100	100	100				65
81-90	13	100	100	100	88	75	36	8	73
71-80	25	88	68	64	48	24	16	4	65
61-70	26	78	50	36	24	24	16	8	55
51-60	10	40	30	30	20	10			50
41-50	5	80	60	60	60	20	20	20	66
31-40	2	50							50
1-30	0								
Total $\mathrm{N}=$	83								

BIOLOGY 300 EXPECTANCY TABLE BASED ON HISTORY IX TEST

History Percent	N	50	55	Grade 60	$\begin{array}{r} \text { XII } \\ 65 \\ \hline \end{array}$	Subject Scores			Median Score
						70	75	80	
91-100	4	100	100	100	100	100	50	50	80
81-90	15	94	87	80	66	54	35	14	71
71-80	25	88	72	68	44	20	12		64
61-70	26	68	44	32	28	16	12		54
51-60	9	77	66	55	44	22	11	11	61
41-50	4	100	100	50	50	50	25	25	70
31-40	0								
1-30	0								
Total N -	83								

TABLE LX

BIOLOGY 300 EXPECTANCY TABLE BASED ON GRADE IX AVERAGE

Grade IX Average	N	50	Grade XII Subject Scores						Median Score
			55	60	65	70	75	80	
91-100	0								
81-90	9			100	88	77	55	22	76
71.80	32	87	76	67	55	33	15	6	66
61-70	35	69	45	36	26	9	9	3	54
51-60	7	85	43	43	28	28	14	14	54
41-50	0								
31-40	0								
I-30	0								
Total N-	83								

BIOLOGY 300 GXPECTANCY TABLE BASED ON DOMINION TEST

Dominion I.Q. Scores	\mathbb{N}	50	Grade XII Subject Scores							Median score
			55	60	65	70	75	80		
$135+$	3			100	67	33				67
130-134	4	75	75	50	25					60
125-129	1							100		$80+$
120-124	11	91	72	72	63	27	18	9	9	67
115-119	15	94	66	66	48	40	27	14		65
110-114	12	80	66	40	33	25	8	8		58
105-109	12	66	57	57	57	33	25	8		64
100-104	9	55	44	44	22	22				51
95-99	7	85	85	85	70	28	28			67
Less than 95 Total N-	9 83	55	22							51

TABLE LXII
FRENGH 300 EXPEGTANCY TABLE BASED ON VERBAL SCAT TEST

Verbal SCAT Percentile	N	50	Grade XII Subject Scores						Median Score
			55	60	65	70	75	80	
91-99	37	83	71	64	54	40	22	14	66
81-90	30	86	70	50	36	23	13	3	60
71-80	38	72	58	50	30	18	7	5	60
61-70	17	66	47	36	24	24	18	12	54
51-60	34	69	45	33	27	15	6	3	54
41-50	9	66	33	33	22	22	11	11	53
31-40	8	50	50	24	12	12	12		55
21-30	21	53	40	20					50
11-20	14	57	42	28	14				52
1-10	2	50	50						50
Total No	210								

FRENCH 300 EXPECTANCY TABLE BASED ON QUANTITATIVE SCAT TEST

Quant. SCAT Percentile	N	50	Grade XII Subject Scores						Median Score
			55	60	65	70	75	80	
91-99	29	100	80	68	60	39	30	26	67
81-90	30	76	60	50	36	26	13	6	60
71-80	32	81	75	57	36	23			61
61-70	26	66	50	43	24	20	12		55
51-60	27	58	42	23	15	15	8		52
41-50	13	78	62	55	24	24	15		61
31-40	22	73	49	43	24	15	5		55
21-30	13	78	31	24	8	8			22
11-20	15	20	7	7	7			below	50
1-10	3	33	33						
Total N-	210								

TABLE LXIV

FRENCH 300 EXPECTANCY TABLE BASED ON TOTAL SCAT TEST

Total SCAT Percentile	\mathbb{N}	50	Grade XII Subject Scores						Median Score
			55	60	65	70	75	80	
91-99	35	97	85	73	56	37	23	17	66
81-90	43	83	66	55	44	32	19	8	62
71-80	29	70	58	46	30	23	10	7	58
61-70	29	70	46	30	24	10			54
51-60	19	65	30	20	5	5	5	5	52
41-50	13	60	44	28	14	14	7		52
31-40	12	50	41	32	24	24	8		50
21-30	18	44	22	11					- 50
11-20	11	63	45	36	9				54
1-10	1								
Toal N-	210								

FREITCH 300 EXPECTANCY TABLE BASED ON LANGUAGE IX TEST

Language Percent	N	50	Grade XII Subject Scores						Median Score
			55	60	65	70	75	80	
91-100	3					100	66	33	77
81-90	35	97	88	76	64	4.5	32	26	69
71-80	82	89	69	56	36	22	10	2	61
61-70	59	50	28	20	8	6	1		50
51-60	25	40	36	20	8	4		below	50
41-50	6	18	18						
31-40	0								
1-30	0								
Total N	210								

TABLE LXVI

FRENCH 300 EXPECTANCY TABLE BASED ON MATHEMATICS IX TEST

FRENCH 300 EXPECTANCY TABLE BASED ON SCIENCE IX TEST

| | |
| :--- | ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Science | |\quad N

TABLE LXVIII

FRENCH 300 EXPECTANCY TABLE BASED ON HISTORY IX TEST

History Percent	N	50	Grade XII Subject Scores						Median Score
			55	60	65	70	75	80	
91-100	22	86	82	78	64	46	34	25	69
81-90	59	84	75	64	50	34	19	9	65
71-80	62	70	50	38	23	13	3	1	55
61-70	45	57	33	20	7	5	2		52
51-60	15	53	28	7	7	7			51
41-50	7	45	30	30				below	50
31-40	0								
1-30	0								
Total N -	210								

FRENCH 300 EXPECTANCY TABLE BASED ON GRADE IX AVERAGE

Grade IX Average	\mathbb{N}	50	Grade XII Subject Scores						Median Score
			55	60	65	70	75	80	
91-100	8				100	88	63	37	78
81-90	57	95	84	70	58	36	23	13	67
71-80	85	74	54	44	23	16	5	1	57
61-70	52	46	26	16	4	2		below	50
51-60	8	36	36	12				below	50
41-50	0								
31-40	0								
1-30	0								
Total Ne	210								

TABLE LXX

FRENCH 300 EXPECTANCY TABLE BASED ON DOMINION TEST

