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Abstract

This thesis presents the application of graphics processing unit (GPU) based parallel

computing technique to speed up electromagnetic transients (EMT) simulation for

large power systems. Nowadays, desktop computers come with GPUs that support

extra computing capability to handle gaming and animation related applications.

GPUs are built with highly parallel computing architecture to support the high de-

mand of graphics for various applications mainly related to computer graphics, video

processing, and playback. It is possible to use these GPUs for general-purpose com-

putations, such as EMT simulation. Power system components are mathematically

modeled in their highest detail in EMT simulation. Traditionally, EMT simulation

tools are implemented on central processing unit (CPU) based computers, where sim-

ulation is performed in a sequential manner. With the increase in network size there

is a drastic increase in simulation time with conventional CPU based simulation tools.

This research shows that the use of GPU computing considerably reduces the total

simulation time. In this approach, GPU performs computationally intensive parts

of the EMT simulation in parallel on its built-in massively parallel processing cores,

and the CPU handles various sequential jobs such as flow control of the simulation,

storing the output variables, etc.

This thesis proposes a parallel computing algorithm for EMT simulations on the

GPU platforms, and demonstrates the algorithm by simulating large power systems.

Total computation time for GPU computing, using ’compute unified device architec-

ture’ (CUDA)-based C programming is compared with the total computation time for

the sequential implementations on the CPU using ANSI-C programming for systems

of various sizes and types.
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Special parallel processing techniques are implemented to model various power sys-

tem components such as transmission lines, generators, etc. An advanced technique

to perform matrix-vector multiplication in parallel on the GPU, is introduced and

implemented in this thesis, which shows significant performance gain in the simula-

tion. A sparsity-based technique for the inverse admittance matrix is implemented in

this simulation process to ignore the multiplications involving zeros.

A typical power electronic subsystem is also implemented in this simulation pro-

cess, which had not been implemented in the literature so far for GPU platforms.

GPU computing-based simulation of large power networks with many power elec-

tronic subsystems has shown massive performance gain compared to conventional

sequential simulations with and without the sparsity technique.

Finally, in this research work, the effect of granularity on the speed up of simulation

was investigated. Granularity is defined as the ratio of the number of transmission

lines used to interconnect various subsystems to the total size of the network. It

should be noted that dividing a network into smaller subsystems requires additional

transmission lines. Simulation results show that there is a negative impact on the

overall performance gain of simulation with the use of excessive transmission lines in

the test systems.
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Chapter 1

Introduction

1.1 Background

Computer-based analysis and simulation of power systems have been used by engi-

neers and researchers around the world for many years. Simulation-based study is

mainly used to accurately analyze the behaviour of various power systems equipment,

and plan the future expansions of the system that may include advanced equipment

and techniques to ensure its stable operations. Electromagnetic transient (EMT) sim-

ulation is a widely used technique to analyze power systems transients in the range

of nanoseconds to a few seconds [1]. This section briefly discusses the overview of

the state of the art techniques used in EMT simulation. More details on this are

introduced in the subsequent chapters.

Operation of any electrical power system involves continuous distribution of elec-

tromagnetic and electromechanical energy among various system components, such

as generators, load, transmission lines, transformers, etc. [1, 2]. Continuous increase

in demand for interconnection of various sub-systems has lead to the creation of ex-

tremely large and interconnected power systems [1, 3, 4, 5, 6]. In case of disturbances
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caused by an unpredicted fault, lightning strikes or any other switching events, var-

ious system components (for example generators, transmission lines, transformers,

etc.) are subjected to transients that may cause excessive currents or voltages in

the network [1, 7]. In the early days (i.e. before digital computer based simula-

tions), Transient Network Analyzers (TNA) were used to study transient effects [8].

TNAs use physical components such as inductors, capacitors and resistors to build

a miniature physical model of the power network. Some of the advanced versions of

TNAs have used analog simulator elements to model more complicated devices such as

electrical machines, which were often emulated with micro-machines [8]. Some of the

major limitations of TNAs are high cost, changes in behavior due to component aging,

longer set-up time and difficulty in reproducing identical results at a later time [9], etc.

Analytical solution of large power systems is almost always impossible; therefore,

numerical simulation is preferred instead [3, 10]. Digital computer-based transients

simulations have alleviated many of these problems [9, 11]. As a result design

and operation of modern power systems mainly depends on the available numer-

ical simulation tools for electromagnetic transients (such as ATP [12], EMTP [2],

PSCAD/EMTDC [13]) [3, 14]. It is to be noted that there are many techniques for

digital computer-based EMT simulation, which are broadly classified into frequency-

domain [15] and time-domain techniques [9]. In this thesis only the time domain

technique is discussed (as it is the focus of this research work). EMT simulation

is most commonly used to study fast transients such as lightning strikes, switching

impact, power electronic converters, etc. In comparison to other available modeling

approaches (such as transient stability studies [16, 17]), EMT simulation [1, 18, 19,

20, 21] models power system equipment in its greatest detail in the time domain. Due

to the inherent complexity and computational intensity of EMT simulations, it was

originally used for relatively small networks (i.e. networks with few hundred buses).
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However due to improvements in computing power, EMT simulation is now widely

used to study large (i.e. systems with thousands of busses) systems with fast dynam-

ics. Digital computer-based electromagnetic transient simulation program (EMTP)

for multi-node networks was first introduced by H.W. Dommel [2, 4].

EMT simulation models key aspects of the physics of the electromechanical appara-

tuses including the detailed functionality of analog and digital control systems, various

types of switches including power semiconductor switching devices, etc. [18, 19]. Tra-

ditionally, EMT simulation tools are implemented on central processing unit (CPU)-

based computers, where simulation is performed in a sequential manner. Therefore,

conventional CPU-based simulation is time consuming. Many attempts have been

made to reduce the simulation time, such as parallel implementation of the EMT

algorithm [22], use of the Multi-Area Thevenin Equivalents (MATE) algorithm [23],

multi-processor based parallel EMT simulation [16, 19, 22, 24, 25, 26, 27, 28, 29, 30],

etc. Multi-processor based EMT simulation implements parallel processing techniques

using special computers (such as supercomputers [16, 27]) and computers connected

through the network (such as the use of PC clusters, etc. [19, 22, 24, 25, 26]). These

approaches improved the performance of EMT simulation. However, the cost of

installing a supercomputer and the delay in inter-PC communication in case of a PC-

cluster are still major challenges. Even though all of these approaches have improved

performance of EMT simulation, there is still room for more speed-up by further

exploiting the parallelism inside the EMT algorithm.

This research work focuses on using Graphics Processing Units (GPUs) as a po-

tentially cost effective (significant), high performance alternative to speed up EMT

simulations. These days most computers come with built in GPUs, therefore no

additional investment is necessary for the hardware. Additionally, the average cost

3



of one GPU card is around a few hundred dollars (at the time of writing this the-

sis), which has massive parallel computation capability. GPUs come with thousands

of processors onboard capable of performing massive computations (in parallel) re-

lated to large matrices with less inter processor communications. These are specially

designed hardware for applications such as graphics and visual computing [31]. How-

ever, GPUs are also excellent at many general purpose applications such as Monte

Carlo simulation [32]. The author of this thesis reported the very first work on GPU

based EMT simulation in a conference in 2011 [33]. In the subsequent years fur-

ther progress of the work was reported [34, 35]. Recently Zhou et al. [36] presented

a method to accelerate EMT simulation using massive thread capable GPUs. The

approach presented by Zhou et al. [36] uses a special node mapping structure to ex-

ploit parallelism inside the EMT algorithm. In this case non-zero elements of the

admittance matrix were rearranged to form a perfect block-diagonal matrix. Then

the whole matrix was sub-divided into smaller sub-blocks (interconnected by virtual

transmission lines) to represent much smaller decoupled sub-systems. All these sub-

blocks were considered as dense matrices and the normal inversion method (without

sparsity) was implemented to calculate the unknown node voltages. This approach

has shown improvements in the speed up of EMT simulation. However, it did not cap-

ture the full benefit of parallelism as it internally treats the system matrix as smaller

subsystems virtually decoupled by transmission lines, which require internal commu-

nications among those subsystems. Additionally, it introduces extra computational

burden related to transmission lines (memory access calls, communication between

the subsystems, etc.). Hence, the approach did not fully utilize the vast parallelism

offered by the many core GPUs with less inter processor communications. Therefore,

the author found that Zhou et al. [36] had not gone far enough. Inclusion of sparsity

and investigation of interconnection ratio to trade-off mathematical computation ef-

fort versus communication bottlenecks could further increase computation speed. In

4



EMT simulations, the interconnection ratio (i.e. granularity) is defined by the ratio of

the number of interconnecting transmission lines between the subsystems inside the

networks to the size of the electrical network modelled on the GPU. The approach

presented in this thesis organizes the parallelism in an alternative way that considers

the equitable distribution of tasks for various processors on the GPU. Thus the pro-

posed approach attempts to minimize inter-processor communication bottlenecks to

achieve significant speedup in the simulation. In this research, the conventional EMT

algorithm is explored and algorithmic steps that can be run in parallel are identified.

1.2 Objective of the research work

This research work uses Graphics Processing Unit (GPU)-based computing to accel-

erate EMT simulation for power systems. This section briefly outlines the background

in choosing this specialized hardware and the programming techniques to program

these GPUs. More details on GPU-based computing will be presented in Chapter 2.

As mentioned in the previous section, many attempts have been made to acceler-

ate EMT simulation. Those approaches accelerated the simulation, however they

did not explore the parallelism inside the algorithm, which is suitable for specialized

hardware such as GPU. Therefore, the demand for further acceleration in the simu-

lation continues. This demand for higher speed in computer-based simulations was

not unique to the power systems engineers only. Computer users around the world

demand faster computational speed. Additionally, the introduction of the Graphical

User Interface (GUI)-based operating systems for computers accelerated the demand

for higher speed to accommodate their rendering applications [31]. Tremendous de-

mand in the last decade from the multimedia and gaming industries for accelerating

3-D rendering has driven researchers around the world including several graphics
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hardware companies to the development of high-performance parallel graphics accel-

erators [31, 37]. This has resulted in the introduction of Graphic Processing Units

(GPUs), which are available off the shelf at an affordable price to customers [31, 37].

Nowadays GPUs are an inevitable part of any standard computer (they are used

to provide additional computing power to handle high performance gaming and an-

imation related applications). In their early versions, GPUs were not suitable for

programmers to implement general purpose computations. Starting from the gen-

eration of GPUs launched in 2002 and later (including NVIDIA GeforceFX series

and ATI Radeon 9800 and above), developers can develop their own general purpose

computations on a GPU. Any general-purpose computations could be accelerated by

using these GPU-devices [31]. The main focus of this research is to apply these po-

tentially cost-effective devices (i.e. GPUs) in accelerating EMT simulations. The key

idea is to explore the massive parallelism inside the EMT algorithm to accelerate the

computation process [24, 26]. Traditional application software is normally developed

as a sequential program and executed on the CPU in a sequential manner [26, 31].

Starting around 2003, with the introduction of multi-core processors, parallel pro-

gramming techniques are attracting more researchers to be involved in accelerating

general purpose computations [11, 24, 25, 26, 27, 37]. GPUs have a large number

of built-in processing units, capable of performing massive computations in parallel.

Nowadays, these GPUs are continuously being used by researchers for accelerating

EMT simulations [33, 34, 35, 36, 38, 39].

Accelerating general-purpose computations using GPUs with the help of a parallel

programming language and special API (Application Programming Interface) that

does not use the traditional graphics API and graphics pipeline model, is com-

monly known as GPU-computing [40, 41]. The Compute Unified Device Architecture

(CUDA) is a commonly used parallel programming architecture to perform general-
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Figure 1.1: Schematic details of a CUDA-enabled (G-80) Graphic Processing Unit
(GPU).

purpose computations on the GPUs from NVIDIA corporation [37]. There are sev-

eral computer languages to program GPUs for general purpose computations (such

as OpenCL [42, 43], CUDA C/C++ [37], etc.). Each of these programming tech-

niques has its own merits and disadvantages [44]. Both OpenCL and CUDA-based

C/C++ are commonly used programming language for GPU computing. However,

OpenCL (first version was released several years after the release of CUDA) is still

catching up to implement the programming features available in CUDA. Compared to

CUDA, OpenCL still lacks some of the advanced debugging and profiling tools, such

as cuda-gdb or cuda-memcheck, etc. [44]. In addition, the availability of the most

robust drivers and Software Development Kits (SDKs) for general purpose computing

from NVIDIA [37], has made CUDA based GPU programming a near universal tool.
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Therefore, in this work the CUDA-based C programming technique was used, which

was the only available tool to the author when he started this work. Fig. 1.1 shows

the schematic of a CUDA enabled GPU (G80 architecture) [31]. It shows that there

are 8-blocks of processors, commonly known as Thread Processing Centers (TPCs).

Each TPC has two groups of 8-small processing elements. Each of these groups of

8-small processors is commonly known as a Streaming Multiprocessor (SM). It is due

to the architectural issues of the GPUs, groups of processors in SMs are specially

organized [31]. The number of processors in a SM may vary from one generation of

GPU to another (for example, Fig. 1.1 shows the G-80 architecture with 8 processors

in each SM). In general purpose computing, a GPU is used as a co-processor to the

main CPU. The part of the computation task with intensive computation is acceler-

ated by the GPUs, which execute the assigned tasks in parallel on multiple processing

cores. The EMT algorithm, as will be explained in the upcoming chapters, also has

massively parallel and computationally intensive parts suitable to be implemented on

these specially designed hardware.

1.3 Overview of the thesis

The thesis provides a discussion of the present-day state of the art in GPU computing

and power system electromagnetic transient simulation. It investigates methods to

parallelize the simulation problem so that it can be assigned to multiple processors

on the GPU. The thesis introduces a special approach that uses equitable distribu-

tion of the matrix-vector multiplication job on the GPU, which results in massive

performance gains in the simulation. The thesis also presents performance improve-

ments using GPU computing for various test cases involving large power networks.

It provides a parametric analysis and comprehensive comparison between sequential

computation time on the CPU and parallel computation time on the GPU for systems

8



of various sizes and types. The thesis consider an investigation of the granularity of

the problem, i.e., using an increased number of transmission lines in the network to

divide the network into smaller subsystems versus connecting larger subsystems with

less number of transmission lines. Following this chapter, the rest of the thesis is

organized as follows:

Chapter 2 includes an overview of GPU computing. This chapter starts with a brief

introduction to GPUs, their hardware structure and finally an overview of GPU com-

puting using Compute Unified Device Architecture (CUDA)-C is presented. This

chapter also discusses some of the barriers, due to the special architecture of the

GPUs, that limits the performance gain for general purpose computations.

In Chapter 3 an overview of EMT simulation is presented. This chapter discusses

the preliminary concepts of EMT-simulation of a typical power network. This chap-

ter also presents and compares the accuracy of the GPU based EMT simulation with

a commercial EMT simulation tool (PSCAD/EMTDC) [13] for a typical circuit ex-

ample.

Chapter 4 starts with a brief discussion on the state of the art techniques used to

accelerate EMT simulation. This chapter then presents the details of the proposed

algorithmic steps to adapt the conventional EMT simulation on the GPU platform to

accelerate the computations. This chapter presents the proposed sparsity technique

implementation details on the inverse admittance matrix to ignore multiplications in-

volving zeros. This chapter also presents the various test cases used in this work. Two

sets of test cases were selected and implemented with different level of granularity,

which were simulated (simulation based performance is presented in the next chapter)

using the proposed sparse and without sparse techniques. Finally, this chapter identi-
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fies a special barrier on the GPU-based matrix-vector multiplication implementation,

that limits the optimum performance gain in the GPU-based simulation process.

Chapter 5 presents the performance improvements using GPU computing to per-

form EMT simulations using parallel computing. This chapter also presents the

disadvantage of using too many transmission lines in the network, while dividing the

network into smaller subsystems. Finally, this chapter compares GPU-based sim-

ulated waveforms of the described EMT simulation with the corresponding results

using commercially available tool.

Finally in Chapter 6 conclusions and future directions of this research work are pre-

sented.

10



Chapter 2

Overview of graphics processing units-

based computing

2.1 Introduction

Graphics processing units are used in many electronic systems such as game-consoles,

mobile phones, personal computers, etc. The GPU uses specially designed hard-

ware, most commonly, to accelerate the rendering of images for display purposes. As

mentioned earlier, the tremendous increase in demand for high performance gaming,

video processing and animation related applications on personal computers, lead to

the necessity for separate graphics processors [31]. The programmable GPU was first

introduced by NVIDIA in 1999 [31, 37, 45]. At that time, this was the most extensive

parallel processor to date with unprecedented floating-point performance and pro-

gramming capability [31, 45]. Todays GPUs greatly outpace CPUs in general purpose

computations in terms of computational throughput and memory bandwidth [43].

Nowadays, GPUs are commonly considered as an alternative to conventional CPUs

in accelerating a variety of computationally intensive applications, such as computa-

tional fluid dynamics simulation [46].
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This chapter starts with some brief historical background on GPUs. It then presents

the detailed architecture of modern GPUs. Finally the programming techniques used

for general purpose computing using GPUs and some barriers that limit the perfor-

mance gain in GPU-based simulations are presented.

2.2 Overview of graphics processing units

The Central Processing Units (CPUs) in personal computers used to have a clock

speed of around 1-MHz in the early 1980’s [45]. The tremendous demand to speed

up computations resulted in the increase of this speed to the 1-4 GHz range in more

recent computers, which implies a thousand times faster computations in approxi-

mately 30 years. It should be noted that increase in clock speed results in more

heat generation and imposes challenges to the heat removal mechanisms on the hard-

ware [47]. This ultimately limits the size of integrated circuits, and the maximum

clock-rate of CPUs to boost computation speed [41, 48]. This has resulted in exten-

sive effort by researchers, engineers and computer manufacturers around the world

to look for an alternative solution to meet the market demand for high performance

gaming, video processing, etc. [31, 45]. Multiple processing cores are now available in

the main CPUs to perform computations in parallel; this is an increasingly ubiquitous

form of parallel processing [28, 29, 24, 26]. This multicore approach is intended to

speed up computations by assigning parallel tasks to multiple processing cores in the

CPUs. The very first CPU with two processing cores was introduced in 2005 [45].

In the following years, further versions of the CPUs were released with three, four,

six and more cores. This trend of using multicore CPUs is also approaching its limit

due to issues such as memory-bandwidth constraints, thermal effects, high power

consumption, and the dimension of electronic components, etc. [38, 42, 47, 49, 50].
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2.2.1 History of graphics processing units

In the 1980’s and early 1990’s the development and popularization of graphics driven

operating systems (by companies such as Microsoft) [45] has increased the momentum

to introduce 2D-display accelerators for personal computers. In 1992 Silicon Graphics

introduced OpenGL library to program graphics accelerators [31, 42, 48]. Addition-

ally, the continuously increasing consumer demand for 3D graphics, has provided

opportunities for companies, such as NVIDIA, ATI technologies and 3dfx Interactive,

to release affordable graphics accelerators [42]. NVIDIA released its GeForce 3 se-

ries in 2001, which was considered as an important breakthrough in GPU technology

by giving programmers/developers some control over the exact computations to be

performed on the GPUs [45]. In those GPUs developers had to use shader-languages

(high-level graphics programming, based on the syntax of the C) or DirectX libraries

to program the GPUs for general purpose computing [48]. Programmers had to fit

the general purpose computations (i.e. mostly matrix computations) into the format

used for graphics rendering. More recently in 2006, NVIDIA corporation released its

parallel programming architecture, CUDA (Compute Unified Device Architecture)

and compatible GPUs (GeForce 8800 GTX series) [31, 37, 45]. This was a major

breakthrough to provide freedom to the programmers in terms of using these GPUs

for any general purpose computations without using any graphics library.

Current GPUs have many independent processing cores, each capable of perform-

ing floating point operations (large volume) in parallel. Fig. 2.1 shows the schematic

architecture of a CPU and a GPU. The CPU in this figure has only 4 cores and the

GPU has 64 processing elements (i.e. GPU cores).

In a GPU, groups of several processing elements ( the exact number of processors
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Figure 2.1: Schematic details of (a) a CPU architecture and (b) a GPU architec-
ture [31].

varies across different generations of GPUs) commonly known as Streaming Mul-

tiprocessors (SMs). These SMs are used to provide parallel computing ability in

the Single Instruction Multiple Thread (SIMT) fashion [31] (explained later). Each

streaming multiprocessor has a small amount of shared (cache) memory and a control

unit to control the thread operations that specify the code sequence for the cores in

the SM. In general GPUs have more cores or processing elements compared to CPUs

and are capable of performing large computations in parallel. For example the Intel

core i7 CPU has only four cores while the NVIDIA GeForce GTX 590 GPU has 512

cores. It should be noted that due to the lack of enough space to accommodate large

cache memory and control units as used in CPU cores, each GPU cores are designed

to be very light weight with only one Arithmetic Logic Unit (ALU), which support

addition, subtraction and multiplication. Therefore, each GPU processors has very

limited resources, which limits the computational capability compared to a CPU-
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processor. Hence, GPU processors can not be considered as an alternative to those of

the CPUs. Additionally, in each SM there is a Super Function Unit (SFU) to perform

computations involving special functions such as logarithms [31]. These days GPUs

are considered as a significant computing resource for computers [49]. Recent GPUs

have more transistors than modern CPUs [48]. For example the Intel core i7 CPU

has about 731 million transistors whereas Nvidia GeForce GTX 590 has more than

3 billion transistors. Transistors in graphics cards are used for the implementation

of Single-Instruction Multiple-Data (SIMD) units [31] suitable for high performance

parallel computing (i.e. the computations only require repeated identical operations

on collections of identical data). On the other hand, many of the transistors on

the CPU are dedicated to support non-computing tasks such as branch prediction

and caching, etc. As a result CPU performance is better on traditional sequential

algorithms.

2.3 Overview of NVIDIA’s CUDA

2.3.1 Choosing CUDA-C as a programming language

Use of GPUs for general purpose computing (as opposed to graphics acceleration)

started in 2001 [31, 48] and is commonly known as ’General Purpose GPU’ (GPGPU)

computing [40]. Some applications of GPGPU are real-time computer vision [49],

fluid dynamics simulations, molecular dynamics simulations [41], Monte Carlo simu-

lation [32], power system stability studies [38], EMT simulations [36, 33, 39] and so on.

Programming languages such as CUDA-based C or Fortran [37], OpenCL [42, 43],

DirectCompute [48], etc. can be used to program GPUs for general purpose com-

putations. CUDA-based programming is specific to NVIDIA GPUs [31, 42], while

OpenCL is an open standard that can be used to program any hardware including

CPUs, GPUs, and other devices from different vendors [42, 43]. OpenCL 1.1 became
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available on June 14, 2010 (latest version is OpenCL 2.0) and provided compara-

ble flexibility and programming capability with other programming techniques such

as CUDA-based C/C++ [51]. Both CUDA and OpenCL based GPU computing

are gaining popularity among general purpose programmers /developers. Although

OpenCL provides much of the functionality of CUDA, it is still a work in progress

and as of yet does not provide the same level of debugging and profiling tools [44].

CUDA-C is an ANSI C based programming technique with some special keywords,

introduced to access the GPU. Due to its inherent similarity with standard C program-

ming, CUDA-C has become more widely used by the majority of the programmers

and developers [44]. For the above reasons, CUDA-based C programming is used in

this thesis to access the GPUs to implement EMT-simulations.

2.3.2 CUDA based programming

CUDA-C based GPU computing does not require the programmer to be familiar with

any graphics API (Application Programming Interface), which greatly reduces the

programming effort for general purpose programmers. With the support of its associ-

ated specially-built hardware, CUDA provides an effective SIMD-based programming

model to implement parallelism in general purpose computations [31]. NVIDIA also

released its own compiler for CUDA that distributes parts of the job to be imple-

mented between the CPU and the GPU [37].

A general CUDA program consists of two different parts as specified by the program-

mer, a) a portion of the program to be executed on the CPU (mostly the sequential

portion of the program) and b) a portion of the program to be executed on the

GPU (parallel part of the program) [31, 45]. The NVIDIA-C compiler differentiates

between codes that will be part of the CPU job and the GPU job during the com-

pilation process. The GPU portion of the program starts with the invocation of a

16



kernel function, which contains instructions that are to be performed in parallel on

the GPU. A kernel function generates a large number of threads arranged in various

blocks to implement SIMD-based data parallelism. The compiler specifies the number

of blocks and threads to be generated during the kernel launching to execute the por-

tion of the program in parallel. All threads generated in a single launch of the kernel

function implement the same instruction in parallel. Therefore, this implementation

is commonly known as Single-Instruction Multiple-Thread (SIMT) [31, 45]. SIMT

based parallel programming is used in this work. The SIMT is an extension of the

commonly known SIMD mode of parallelism [31]. SIMD implements parallelism by

executing an instruction on various data. On the other hand, SIMT introduces dy-

namic way of parallelism that implements thread level execution of an instruction on

various data [31]. In this SIMT mode, each instruction is executed with different data

in parallel by multiple threads that run on the identical GPU cores [31, 37, 45].

Fig. 2.2 shows the schematic details of the execution of a CUDA program. This

program has serial as well as large parallel parts. The part of the program with very

little or no data parallelism is executed on the CPU and the rest of the program with

massive data parallelism is implemented on the GPU. The execution of the program

starts on the CPU, and with the launch of a kernel function, task execution is shifted

to the GPU. The set of threads generated by a kernel call is collectively called a

grid. For example, Fig. 2.2 has two different grids. As soon as all the threads in a

single kernel finish their computations the corresponding grid terminates execution

and program execution control is shifted to the CPU. In GPU computing, parallel

part of the program is divided into number of smaller block (block size is fixed by

the programmer). Each of these blocks contains parallel threads to perform actual

computations on the GPU cores. Collection of blocks involved in a single kernel are

commonly called a grid. More detail on these may be found in [31, 37, 45]. Fig. 2.2
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Figure 2.2: Schematic details of a CUDA program execution.

shows the invocation of two grids involving various blocks and parallel threads. It is

to be noted that the terminologies used in this thesis are specific to CUDA-based pro-

gramming techniques, in other programming techniques the same topic might have a

different name (for example thread blocks are known as work-groups in OpenCL).

2.4 Challenges to general purpose computing on

the GPU

A major challenge in obtaining the optimal performance on the GPU comes from the

task scheduling, which is commonly known as warp-scheduling. A warp currently

consists of 32 threads on NVIDIA hardware and 64 threads on AMD hardware (the

number may vary depending on the design of the hardware) [31]. All the threads in

a warp execute the same instruction in lock-step (i.e. various warp groups cannot

communicate or share information). To explain this lets consider a kernel function

with 24 blocks having 4 parallel threads in each block. To fit this job on the GPU,
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the CUDA compiler will split it into warp groups with 8 blocks in each warp. In this

case the kernel function will have 3 warp groups. The data that various warp groups

operate on (i.e. thread level) is different. So in case the program has any statement

that causes the threads in a warp to be unable to execute the same instruction, such

as branching depending on some conditional statements, some threads in the warp

will be moved to another warp during the execution of that instruction. So there

would be some loss of the available computational power of the GPU. Additionally,

the whole job will be scheduled on the GPU in a group of warps. Therefore, in case

the total threads in the job are not integer multiples of the warp size then there would

be some warp groups having less than the maximum number of threads, which will

result in less performance in the computations. It is the programmer’s responsibility

to ensure the effective use of the available computational power due to warp schedul-

ing.

The second challenge to maximize performance in GPU execution comes from the

lack of adequate data cache on the GPU for individual processors (commonly known

as shared memory, which is very quickly accessible by the processors and therefore

critical in obtaining high performance). It should be noted that due to the lack of

enough space and architectural constraints the GPUs come with a very small amount

of shared memory [31, 37] (for example, in the case of G80 GPUs the shared memory

size is only 16kB for each streaming multiprocessor). Therefore, the programmer

has to design the algorithm to efficiently use this shared memory to get the optimal

performance in the computations.

The final challenge in achieving the best possible performance from GPUs comes from

the existence of branching in the algorithm. In general EMT simulations may involve

many switching instances, which require the algorithm to meet some preset condi-
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tions involving some logical operations (such as AND, OR, etc. to identify the exact

instant of switching). The GPUs are specially designed hardware to work on highly

parallel job such as video processing [48]. However, the GPUs lack some fundamental

computing based on integer and associated operations such as bit-shifts and bitwise

logical operations such as (AND, OR, XOR, NOT). Therefore applications involving

logical operations are not easily accommodated on GPUs [48, 41]. Hence, applications

involving many conditional statements or logical operations are recommended to be

performed on the CPU (that reduces the decision making time in branching and hence

improves overall simulation speed). More details on the performance limitations of

GPU computing may be found in [31, 37, 41, 43, 45, 48].

2.5 Chapter summary

This chapter briefly discussed the background of multi-core CPU and GPU com-

puting. The advantages and disadvantages of different programming interfaces were

presented and the reasons for using CUDA-based C programming language in this

work were justified. Finally, this chapter introduced some of the barriers in achieving

optimal performance gain in the GPU-based simulations. The next chapter presents

the basic steps of sequential EMT simulations.
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Chapter 3

Introduction to electromagnetic tran-

sients simulation

3.1 Simulation tools for power systems

Transients in electrical power networks are typically caused by short circuits, lightning

strikes, switching of various power electronic equipment and so on. A transient is a

sudden change in a system’s states from its equilibrium condition [1, 4]. A transient

may sometimes results in high current or voltage variation in the network [1, 19].

Power systems must be able to withstand such transient effects without any damage

to the network and its components [4, 17, 52]. Due to their presence in vast geograph-

ical areas, power systems are usually complex networks and do not lend themselves

to analytical solution of the transients. Therefore, digital computer-based simula-

tion tools are commonly used to simulate the behaviour of power systems. Digital

computer-based simulation tools are mainly classified into, (a) load flow study tools,

(b) transient stability study tools, and (c) electromagnetic transients simulation tools.
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3.1.1 Load flow study tools

Load flow simulation tools numerically calculate the steady state behaviour of power

systems, such as flow of electric power through the system, voltage profile for the

whole network, etc. [1]. This types of simulation uses simplified phasor models for

various power system equipment, per-unit system based computations, and so on.

Load flow studies are used to determine AC power system quantities such as voltage,

power factor, real power and reactive power, etc. [17]. Load flow studies are used to

determine overloading of equipment, such as transmission lines, generators, etc.

3.1.2 Transient stability study tools

Transient stability tools are used to study the electro-mechanical transients in a large

power system located over a wide geographical area. These tools capture the slow

transient behaviour of power systems in the range of 10−1 sec to 20 sec (mainly due

to electromechanical devices in the network) [9]. On the other hand electromagnetic

transients simulation tools are used to represent the system behaviour in the range

of 10−7 sec to 10−1 sec, which are considered as fast transients in power systems.

Transient stability-based simulation techniques represent the slow-moving mechani-

cal parts such as generator rotors, governors, etc. with differential equations, which

are numerically integrated. The AC networks are represented by phasor components.

Changing quantities in the electrical network are captured via different phasor solu-

tions in each time-step.

3.1.3 Electromagnetic transients simulation tools

EMT simulation is the most comprehensive approach for transient simulation com-

pared to the other available approaches. EMT simulation represents network elements

in their greatest detail by modelling the physics of various electromechanical appa-
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ratuses including the functionality of analog and digital control systems, switches,

etc. [18, 19]. Most EMT programs include a comprehensive library of commonly-

used power system components. However, the available models may sometimes not

represent specific advanced devices, for example an advanced control system for a

specific power electronic device may not be available in the library. In this case,

specialized programs may be used. As an example, to design power electronic con-

verters including the precise representation of the power semiconductors, including

the detailed physics based behaviour of the semiconductors may require a special pro-

gram. Commonly-used commercially available EMT simulation tools include Micro-

Tran (Microtran Power Systems Analysis Corporation, University of British-Colombia

version of the EMT simulation program) [53], ATP (Alternative Transients Pro-

gram) [12], PSCAD/EMTDC of the Manitoba HVDC Research Center [13], RTDS

(Real Time Power System Simulation) [11, 54], EMTP-RV [55], etc. This chapter

presents the basic steps of conventional EMT simulation and explains the details of

EMT simulation techniques.

3.2 Overview of network elements substitution

Analysis of power systems starts with the appropriate modelling of various equipment

of the system. A model of an equipment consists of the mathematical formulation of

the system using sets of algebraic equations or relations that appropriately describes

the physical behaviour of the system. Power systems are modelled using lumped

elements such as resistances (R), capacitances (C), inductances (L) and distributed

elements such as transmission lines and cables [1, 2]. This section outlines the basic

steps in EMT simulation of power systems.
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3.2.1 EMT models of basic resistive (R), inductive (L), ca-

pacitive (C), mutual-inductive (M) components

The voltage across a resistor is given by the following equation (commonly known

as Ohm’s law [56]). In this equation, vR is the voltage across the resistor, iR is the

current through the resistor and R is the resistor value.

vR = R.iR

The voltage across a capacitor, vC(t), is mathematically expressed in terms of the

current through the capacitor, iC(t), by the following equation [56]:

vC(t) =
1

C

∫ t

−∞
iC(t)dt

Similarly, current through an inductor, iL(t) is expressed in terms of the the voltage

across the inductor, vL(t) by the following equation; details may be found in [56]:

iL(t) =
1

L

∫ t

−∞
vL(t)dt

Similar differential or algebraic equations can be developed for all other elements in

power systems. Hence, the mathematical model of an electrical network consists of a

set of ordinary differential equations, where resistances, capacitances and inductances

are taken as network parameters. In general, numerical techniques are applied to solve

these equations. Numerical integration techniques, such as the trapezoidal rule, have

been successfully employed to solve these differential equations [1, 2]. In the most

commonly-used approach (due to Dommel [2]) lumped parameters such as capacitors

and inductors of a power system are modelled as Norton equivalent sources [56] as

shown in Fig. 3.1. In this figure, i(t) is the current through the capacitor (the
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Figure 3.1: Schematic equivalent circuit for (a) an inductor and (b) a capacitor
following trapezoidal rule based formulation.

inductor) while v(t) is the voltage across the capacitor (the inductor). RC = 4t
2C

and

RL = 2L
4t are the Norton equivalent resistances of the capacitive and the inductive

components, respectively (4t is the time step used in the simulation). IC(t-4t) and

IL(t-4t) are the history current terms for the capacitive and the inductive branches,

respectively, and are defined by the following equations [2]:

For an inductive branch (i.e. Fig. 3.1a ):

i(t) = IL(t−4t) + 4t
2L
× v(t),

and IL(t−4t) = i(t−4t) + 4t
2L
× v(t−4t)

(3.1)

For a capacitive branch (i.e. Fig. 3.1b ):

i(t) = IC(t−4t) + 2C
4t × v(t)

and IC(t−4t) = −i(t−4t)− 2C
4t × v(t−4t)

(3.2)

where 4t is the time step used in the simulation process.

Computer-aided simulation of any electrical network requires representation of each

capacitive and inductive element using its Norton equivalent model as shown in

Fig. 3.1. Transformers also have similar equivalent models [1] and result in multi-port
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Figure 3.2: Schematic of single phase transformer model as used in this work.

Norton equivalent forms [1]. Fig. 3.2 shows the schematic equivalent of a single phase

transformer using the above mentioned integration technique. In this case (i.e. in

Fig. 3.2) various inductances of the transformer are mathematically replaced using the

above trapezoidal integration-based representation and replaced by R1, R2, and Rs,

respectively. The currents Ik and Im (in Fig. 3.2) are the Norton equivalent current

after replacing the transformer equivalent inductances using trapezoidal integration

based representation. In Fig. 3.2 k represents the primary and m represents the

secondary side of the transformer. More details on transformer modeling may be

found in [1]. A similar Norton equivalent [56] representation may be developed for

other network elements such as transmission lines and cables (more details on mod-

elling transmission lines will be presented in Chapter 4). Switching systems including

semiconductor equipment such as thyristors or IGBTs (Insulated Gate Bipolar Tran-

sistors) in HVDC (High Voltage Direct Current) and FACTS (Flexible Alternating

Current Transmission System) devices can be represented by an equivalent resistor

whose value is set according to the switching state of these devices.

3.2.2 Solution of the admittance matrix based formulation

of EMT

After replacing every component in the network with its Norton equivalent model a

purely resistive network emerges, which can be solved (for unknown voltages) using

a nodal admittance-based approach [1, 13, 21, 25, 56, 52]. The mathematical repre-

26



sentation (using Nodal analysis [56]) of any power system has the following general

form [1, 4, 21, 38] at any instant of time, t:

[Y ]× [V ] = [J ]− [IH ] (3.3)

where:

[Y ] is the nodal admittance matrix.

[V ] and [J ] are vectors of various node voltages and of injected currents at various

nodes at instant t, respectively.

[IH ] is the vector of history currents injected at various nodes. They are calculated

from the system states in the previous time-steps.

The only unknown in ( 3.3 ) is the vector of node voltages, [V ] [1, 2, 25]. The

solution of ( 3.3 ) requires calculation of the inverse of the admittance matrix, [Y ].

3.2.3 Inclusion of switches

In the case there is no switching equipment in the network, the admittance matrix is

fixed for the whole duration of the simulation. Therefore, calculation of the inverse

of the admittance matrix, [Y ], is required only at the beginning of the simulation

process. In general, networks having power electronic components will require on the

fly calculation of the inverse of the admittance matrix (as the network admittances

are no longer fixed). There are some alternative methods to avoid direct calculation

of the inverse of the admittance matrix, such as LU -decomposition technique [57]. In

this thesis the binary type of switching technique was implemented. The binary type

of switching algorithm [58] is also an alternative option, where various admittance

matrices for different switching events are formed at the beginning of the simulation

process [5]. The inverses of those matrices are calculated at the beginning of the
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simulation process. Hence, the potential inverses of the anticipated post-switching

configurations are pre-calculated and inserted in the solution when required. In this

work, the Gauss-Jordan method based general inversion method was implemented on

the CPU [57] to perform computations related to inverse admittance matrices.

Transmission line model (TLM) technique [59] is another popular method to model

power electronics (i.e. switches) in EMT-simulation, which could be used as an al-

ternative option of having fixed admittance matrix for the entire simulation process.

Fixed admittance matrix does not require on the fly calculation of the inverse of the

admittance matrix. In this technique (i.e. TLM) the ON state and the OFF state

of a power electronic device is represented by an inductive and a capacitive branch,

respectively. However, the challenge of this approach is the selection of appropriate

values for the inductive and capacitive components in representing the switches [59].

Details on recommended practices regarding modeling of non-linear power electronics

equipment may be found in [5, 7, 9, 58, 60, 61].

In the following section an example of a typical electrical circuit simulation is pre-

sented, which uses the above mentioned techniques. This circuit is simulated on the

commercial tool, PSCAD/EMTDC, and also using GPU-computing technique (GPU-

computing technique for EMT-simulation will be presented in Chapter 4). The output

voltages and currents are also compared to demonstrate the accuracy of the GPU-

based simulation.

3.3 Typical example of EMT simulation

Simulation of the circuit shown in Fig. 3.3 (without switching) using the techniques

presented above will be discussed in this section. This circuit has a DC voltage source,
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Figure 3.3: Typical electrical circuit for EMT-simulation, as an example.

E = 10V , other circuit parameters are, Rg = 2.0Ω, R = 3.0Ω, L1 = 0.10H, L2 =

0.05H, and C = 100µF , respectively. The parameters of interest of this circuit are

(as shown in Fig. 3.3), Vs voltage across the source, VL1 voltage across the inductor

IL1, VC voltage across the capacitor C, Is current through the resistor R, IL1 current

through the inductor L1, and IL2 current through the inductor L2. In the first step

of the simulation, the circuit components (of Fig. 3.3) are replaced with their Nor-

ton equivalent models to form the desired nodal-admittance matrix. Fig. 3.4 shows

the equivalent circuit after substituting Norton equivalents for all the inductors and

capacitor of the circuit. As can be seen, this equivalent circuit in Fig. 3.4 has three

nodes as marked by the dotted circles (colored). History currents for the various

Norton equivalent sources of Fig. 3.4 are defined by the equations below, where 4t

is the time step used in the simulation process:

For inductor L1 in Fig. 3.3:

IL1(t) = IL1H(t−4t) +
1

Rl1

× VL1(t), where Rl1 =
2× L1

4t
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and IL1H(t−4t) = IL1(t−4t) +
1

Rl1

× VL1(t−4t)

where, IL1(t) is the current through the inductor L1, VL1 is the voltage across the

inductor L1 and IL1H(t−4t) is the history current of inductor L1.

For inductor L2 in Fig. 3.3:

IL2(t) = IL2H(t−4t) +
1

Rl2

× (VL1(t)− VC(t)), where Rl2 =
2× L2

4t

and IL2H(t−4t) = IL2(t−4t) +
1

Rl2

× (VL1(t−4t)− VC(t−4t))

where, IL2(t) is the current through the inductor L2, VC is the voltage across the

capacitor C and IL2H(t−4t) is the history current of inductor L2.

For capacitor C in Fig. 3.3:

IC(t) = ICH(t−4t) +
1

RC

× VC(t), where RC =
4t

2× C

and ICH(t−4t) = −IC(t−4t)− 1

RC

VC(t−4t)

where, IC(t) is the current through the capacitor C and ICH(t − 4t) is the history

current of capacitor C.

The resulting mathematical representation of the equivalent circuit in Fig. 3.4 at any

instant of time t, using Nodal analysis [56], is shown below:
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Figure 3.4: Equivalent circuit after replacing Norton equivalents for Capacitors and
Inductors following Dommel’s [2] formulation in circuit of Fig. 3.3.
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0 (− 1
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) ( 1
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)

×


Vs(t)

VL1(t)

VC(t)

 =


E
Rg

− IL1H(t− dt)− IL2H(t− dt)

IL2H(t− dt)− ICH(t− dt)

 (3.4)

The above equation (i.e. 3.4) involves matrix-vector multiplication. The only un-

known in this equation is the vector of various node voltages (i.e. [Vs(t) VL1(t) VC(t)]T ),

at instant t. All sources are either known or in the case of history currents are known

from the earlier timestep. Solving this equation for unknown node voltages requires

calculation of the inverse for the admittance matrix. The inverse of the admittance

matrix for this particular circuit can be precomputed as there is no switching. The

admittance matrix inversion is usually performed at the start of the simulation pro-

cess or when a circuit breaker or power electronic switch operates and changes the

circuit’s impedances. This admittance matrix was inverted using the Gauss-Jordan

method-based general inversion method [57], as mentioned earlier. To solve for the
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Figure 3.5: Simulated voltage waveforms for the circuit of Fig. 3.3 using PSCAD/
EMTDC [13].

unknown voltage (or current) of (or through) a particular node (branch) for a par-

ticular duration of time, various steps of the simulation processes (e.g. matrix-vector

multiplication, history current updating and source current updating, etc.) are re-

peated iteratively with a time step of 4t. The simulation process starts from the

instant t = 0 and continues until the end of the simulation period is reached. It

should be noted that other formulations are also possible to simulate any electrical

network, such as MNA (Modified Nodal Analysis) [62], in which the unknown vector

is a combination of voltages and currents. However, these methods have not been

implemented in this thesis.

3.3.1 Simulation using CPU-based tool PSCAD/ EMTDC

and using GPU computing

Fig. 3.5 shows various node voltages for the circuit of Fig. 3.3, simulated using com-

mercially available (CPU based) simulation tool PSCAD/EMTDC [13]. As is obvi-
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Figure 3.6: Simulated current waveforms using PSCAD/EMTDC, for the circuit of
Fig. 3.3.

Figure 3.7: Simulated voltage waveforms for the circuit of Fig. 3.3, using GPU-
computing.
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Figure 3.8: Simulated current waveforms using GPU-computing for the circuit of
Fig. 3.3.

ous, the inductive branch voltage settles down to zero volts after its initial transients

that last for a few miliseconds. After the initial transients, the capacitive branch is

short circuited by the inductive branch L1 (shown in Fig. 3.3); therefore, the capac-

itive branch voltage is also settled to zero volts after the transients. Also, Fig. 3.6

shows various currents for the circuit of Fig. 3.3, simulated using PSCAD/ EMTDC.

Similarly in this case, the inductive branch current reaches its peak value after the

transients (due to the reason mentioned above) and the capacitive branch current

reaches zero after initial transients (as this branch is short circuited after the initial

transients). Next this same circuit ( Fig. 3.3) was simulated using CUDA-C pro-

gramming technique in parallel on the GPU (here only the simulation results are

presented, details on CUDA-C programming techniques for EMT simulation are pre-

sented in Chapter 4). Fig. 3.7 shows the voltages at various nodes of the circuit,

simulated using GPU-computing and Fig. 3.8 shows various currents for the circuit

simulated using GPU-computing. To compare GPU computing based simulation re-

sults of Figs 3.7 and 3.8, with the rersults obained using PSCDA/EMTDC based

simulation (i.e. of Figs 3.5 and 3.6), simulated current waveforms were plotted (on
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Figure 3.9: Comparision of simulated current waveforms using GPU-computing and
PSCAD/EMTDC simulation for the circuit of Fig. 3.3.

top of each other) in Fig. 3.9. It is clear from Fig. 3.9 that the simulated current

waveforms are identical. Hence, it is clear that GPU-based simulation generates

exactly the same results as generated by a commercially available simulation tool

(i.e. PSCAD/EMTDC [13]). In this case, the performance improvements from GPU-

computing were not recorded (as the circuit had only three nodes). A comprehensive

comparison of performances are presented in Chapter 5. In cases where networks

are comparatively small in size, CPU-based simulation outperforms GPU computing

as communication between the CPU and GPU is time consuming (i.e. transferring

data between the CPU and the GPU creates a communication bottleneck). Details

on adapting this conventional EMT simulation on the GPU will be presented in later

chapters. Based on the above discussion a typical flow chart of EMT simulation is

presented in Fig. B.7. This flowchart schematically explains the typical steps for

sequential version of EMT simulations.
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3.4 Chapter summary

This chapter briefly introduced the basic steps in conventional EMT simulation. A

typical example was implemented using the basic steps. Simulation of this circuit was

implemented on the CPU using conventional sequential computing and on the GPU

using parallel computations (will be discussed in the next chapter). A schematic

flowchart for EMT simulation (sequential) using the techniques introduced in this

chapter was presented in Fig. B.7. Implementation of parallel techniques to adapt

EMT simulations on the GPU and parallel modelling of various equipment on the

GPU are introduced in the next chapter.
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Chapter 4

EMT simulation using GPUs

4.1 Introduction

EMT simulation, as presented in the previous chapter, is a time domain simulation

tool. Compared to other modeling approaches, such as transient stability analysis

(TSA) tools, EMT simulation [1, 18, 19, 20, 21] models power system components

in their greatest detail. As a result EMT simulation can simulate travelling wave

phenomena in transmission lines, switching of power electronic devices, etc., which

are normally not possible using TSA tools [1]. Due to the inherent complexity and

computational intensity of EMT simulations, it was originally used for relatively small

networks. However, due to the advances in digital computer technology, EMT simu-

lation is now widely used to study large power systems (e.g. power networks having

upto few hundred busses are usually considered as small networks) with fast acting

dynamics. Simulation of large existing or planned networks take considerable amount

of computer time on conventional EMT programs that uses serial computing. This

is particularly true for power networks involving power electronic converters such as

High Voltage DC (HVDC) transmission systems or Flexible AC Transmission Sys-

tems (FACTS) devices. These switching devices require small timesteps (the order of
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1 − 10 µs) and also require online (i.e. on the fly) updating and retriangularization

of the admittance matrix [63].

It is well known that EMT simulation consists of many parallelizable tasks such as

matrix-vector multiplication, transmission lines related computations, etc. [9, 22, 24].

Indeed the use of transmission lines as an interface between subsystems has been ex-

ploited in real-time digital simulators [11, 64]. Due to the delay in signal transmission

over transmission lines, the networks on either side are isolated in any given instant

of time and can be solved in parallel. As mentioned earlier, GPUs could be used to

perform those parallel tasks on their multiple processing cores and could considerably

speed up the EMT simulation. This chapter starts with a brief overview of the state

of the art of EMT simulation techniques to accelerate computations, then it presents

the details of adapting the EMT algorithm on the GPUs to obtain optimal speedup

in the computation. This chapter also introduces the test cases used in this work.

4.2 Overview of earlier approaches in accelerating

EMT simulation

With the introduction of digital computer based EMT simulation, there was a tremen-

dous demand to increase the simulation speed and hence to increase the capability

of EMT simulation to include large power networks [23]. Many attempts (as men-

tioned earlier) have been taken to accelerate EMT simulation by parallelizing the

algorithm [25]. Most of those approaches implemented parallel EMT simulation us-

ing parallel processors, such as parallel implementation of the EMT algorithm [22],

multi-processor based parallel EMT simulation [28, 29], etc. Introduction of multiple-

core based desktop computers paved the way to speedup simulatins using various

methods, such as multi-area Thevenin equivalents (MATE) algorithm [23]. Other

38



approaches such as time-domain transformation method [63], grid processing based

implementations [30], etc. tried to accelerate EMT-simulation using networked multi-

core computers (commonly known as pc-clusters) [19, 25, 26]. Supercomputers also

have been used to accelerate EMT simulations [16, 27]. A brief overview of vari-

ous directions in performing EMT simulation using parallel processing techniques are

summarised in the report of the IEEE PES Task Force on Computer and Analytical

Methods [24].

Early attempts at parallelization used the natural latency of transmission lines in

decoupling the networks into subsystems that could be simulated in parallel. A time

delay for the propagation of electrical signals on a long transmission line is imposed

by the special theory of relativity that states that no signal can travel faster than the

speed of light. This means that a 300km long transmission line will require at least

1ms of time to receive information sent from one side of the transmission line to the

other side (assuming speed of light, c = 3 × 106km/sec). Therefore, if the propaga-

tion delay for the signal through the transmission line is greater than one timestep,

information from one side of the transmission line cannot influence the sub-system

on the other side of the transmission line in a given timestep. Hence, the subsystems

can be treated as isolated and solved in parallel. Most real-time simulators (such as

RTDS [5, 11]) use this method to split large networks.

The method presented in [22] proposes parallel solution of differential equations using

the trapezoidal integration technique to perform EMT simulation. In this approach

unknown parameters of the assigned simulation are fitted into a vector and computa-

tions related to each element of this vector are simulteneously performed in different

processors. This approach requires T
2

number of parallel processors, where T is the

number of discrete time steps needed for the solution of the differential equations.
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The major drawbacks of this approach were the requirement of the size of unknowns

to be a power of 2 (for best performance) and the required number of dedicated par-

allel processor are also unrealistic for large systems with thousands of busses.

The Multi-area Thévenin equivalent (MATE) algorithm was introduced by J.R. Marti

et al. [23, 64] to speed up EMT simulation. The MATE algorithm uses the concepts of

Modified Nodal Analysis (MNA) [62] and DIAKOPTICS [65]. MNA is an extension of

the commonly known nodal analysis technique with the capability of calculating some

branch currents along with the calculation of various node voltages [62]. DIAKOP-

TICS [65] is a special node mapping technique to split large admittance matrices into

smaller subsystems by using virtual tie-lines. This approach first solves individual

subsystems simultaneously and then those solutions are combined (modifications are

performed if needed) to generate the final solution of the network [28]. The MATE

algorithm also uses parallel processing techniques (along with MNA and DIAKOP-

TICS, which divide large networks into smaller subsystems) that facilitates faster

processing. In this approach large electrical networks are partitioned into smaller

subsystems by tearing apart some of the branches using long transmission lines [64].

Hence, all of these subsystems are completely decoupled from the neighboring subsys-

tems. These subsystems are solved independently by using the Thev́enin equivalents

for each link. Transmission lines are considered as links between these subsystems.

Equivalent currents for various links are computed separately and are injected into

the subsystems.

Recent approaches presented by the author of this thesis [33] and Zhou et al [36]

also used similar approaches to exploit the parallelism inside the EMT-simulation

and implemented them using GPU. The approach presented by Zhou et al. [36] uses

a special Node Mapping Structure (NMS), which re-formats the original admittance
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Figure 4.1: Schematic view of the admittance matrix for a power system.

matrix into a perfect block diagonal form. This approach is similar to the DIAKOP-

TICS [65] based approach, which is used to solve large systems by tearing them into

smaller subsystems. Zhou et al. [36] divided the whole system into smaller subsystems

decoupled by virtual transmission lines. All of these sub-blocks were treated as a dense

system (i.e. all the busses of those smaller subsystems were physically connected to

each other) and a normal inversion method (without sparsity) was implemented to

calculate the unknown node voltages. To explain this approach a schematic of the

admittance matrix is considered and is shown in Fig. 4.1. This matrix has diagonal

and non-diagonal elements as is usually the case in a real power system. A view of

the original admittance matrix of the IEEE 39 bus system is shown in Fig. 4.2, where

non-zero elements are white spots and dark spots are representing zeroes. As seen

in Fig. 4.2 the admittance matrix contains diagonal as well as non diagonal elements

(non-zero). It should also be noted that the admittance matrix (i.e. in case of nodal

analysis based EMT simulation) is symmetric. In the very first step of the approach
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Figure 4.2: View of the admittance matrix of an IEEE 39 Bus system (white spots
represents nonzero elements and dark spots represents zero elements in the admittance
matrix).

Figure 4.3: Schematic of re-arranging the non-diagonal elements of the matrix to form
a block-diagonal matrix.
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Figure 4.4: Schematic of dividing the system matrix into smaller sub-blocks as pro-
posed by Zhou et al. [36].

by Zhou et al. [36], the admittance matrix was converted into a block diagonal matrix

using their special NMS algorithm. Schematically this resultant admittance matrix

is shown in Fig. 4.3, where all the elements are aligned accordingly to represent a

perfect block diagonal matrix. In this case the non-diagonal elements (non-zero) of

the matrix of Fig. 4.1 are regrouped to make the matrix a perfect block-diagonal.

In the final stage (of Zhou et al.’s approach) this matrix was divided into smaller

subblocks along the diagonal elements, as shown schematically in Fig. 4.4. In this

figure, (for explanation purposes) smaller sub-blocks were given an arbitrary size of

4× 4 (though the approach by Zhou et al. [36] may have used a different block-size).

As seen in Fig. 4.4 the smaller matrices also contains some zero elements (i.e. result-

ing in a moderately sparse matrix). Zhou et al. [36], however, treated these smaller

matrices as dense and implemented a normal inversion method for these smaller sub-

systems. It should also be noted that the elements outside the boundaries of individual
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subblocks (as shown by smaller diagonal blocks in Fig. 4.4) were treated as virtual

transmission line links. This approach has shown some acceleration in the EMT sim-

ulation (using GPUs), but it did not capture the full capabilities of the GPUs to

boost the speed of EMT simulation. For example, Zhou et al.’s approach introduced

many additional virtual transmission lines in the network. Computations related to

these transmission lines have less parallelism then other parallel computaions such as

matrix-vector multiplications. Additionally, transmission line-related computations

introduce communication-related burden, additional memory accesses, etc., which

make the computations slower on the GPU. Therefore, introducing too many trans-

mission lines into the system by reducing the inherent parallelism inside the EMT

algorithm negatively affects the performance gain (details on this will be presented in

Chapter 5). In general GPUs are for massively parallel computations such as the case

of matrix-vector multiplications, where less amount of memory accesses and inter-

processor communications are preferred.

The approach proposed in this thesis organizes the parallelism in a different way

that takes into account the equitable distribution of tasks for massive threads on

the GPU. This proposed approach does not require the time-consuming additional

algorithms (as used by Zhou et al. [36]) to subdivide the original admittance matrix

into smaller subsystems (as explained using Figs. 4.1- 4.4). Instead the original test

system (i.e. IEEE 39 Bus system) was used as the basic building block (will be elabo-

rated later) and used the highly parallel GPU to perform the computations related to

this matrix in parallel, which reduces the communication bottleneck considerably (as

will be shown later). The approach results in fewer transmission lines in the systems

in an attempt to minimize inter-processor communication bottlenecks to get more

significant speedup in the simulation.
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4.3 Parallel implementation of EMT simulation for

GPU-computing

EMT simulation as presented in Chapter 3 implements the algorithm in a sequen-

tial manner. The first step of this sequential EMT simulation is to replace all the

components of the power system with their Norton equivalents. These subsititutions

of equivalent models make the network purely DC (resistive), which contains resis-

tances and current sources only. The admittance matrix and the injected current

vector (with proper initial conditions) for the whole network is formed. Then in the

simulation loop (i.e. the code that updates the unknown system variables in each

time-step), all the equivalent current sources and node voltages need to be updated

in every time step, 4t. The inclusion of power electronic equipment or other switch-

ing components in the network may cause a topological change of the network (as

mentioned earlier) during the simulation process. In that case online (i.e. on the

fly) updating of the admittance matrix is also required, which may cause additional

delay in the simulation (additional time delay in updating the admittance matrices

was not considered in this thesis). This section introduces the inherent parallelism

in the EMT-algorithm and discusses various techniques to perform EMT-simulation

related computations on the GPU in parallel.

4.3.1 Parallelism in the matrix-vector multiplication

The mathematical representation of any electrical network (using nodal analysis [56]

and Norton equivalents for various network components) has the general form as

shown in ( 3.3) at any instant t [1, 4, 38]. Solving this equation for the vector of
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unknown node voltages, V yields

[V ] = [Y ]−1 × [J − IH ]

where [Y ]−1 is the inverse of the admittance matrix.

As seen in the above equation solution for the vector of unknown node voltages

requires matrix vector multiplication. The size of the admittance matrix depends on

the number of nodes in the network. For example in the case of a circuit with N nodes

(e.g. N is chosen to be in the range of few hundred or even more), the admittance

matrix will be an N × N matrix. Solution for the vector of unknown node voltages

requires the multiplication of this potentially large matrix with a vector of size N . It

is shown in the author’s earlier works [33, 34, 35] that matrix-vector multiplication

consumes upto 90% of the total simulation time. This matrix vector multiplication

can be significantly speeded up by using a GPU.

Computation of the unknown node voltages involve matrix-vector multiplication

where each row of the matrix is multiplied with the vector. Multiplication of each

row with the vector involves multiplication of each element of the row with the corre-

sponding element of the vector. Finally these element-wise multiplication results are

added together to generate the appropriate element of the resultant vector. This con-

ventional matrix-vector multiplication is shown schematically in Fig. 4.5. It should

be noted that the multiplication process for one row of the matrix with the vector is

completely independent from the multiplication of other rows. Therefore, multipli-

cation of each row with the vector can be assigned to an independent thread on the

GPU to perform matrix-vector multiplication in parallel. In this case, given sufficient

processing cores, the total time for the matrix-vector multiplication would approxi-
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Figure 4.5: Schematic of conventional matrix-vector multiplication process.

Figure 4.6: Schematic of matrix-vector multiplication by splitting the matrix into
various blocks (suitable for GPU based implementation due to the availability of
many processing elements).
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mately be the time of performing multiplication of a single row with the vector (in

this case ideal situation with no hardware limitations is assumed ). This method

of exploiting parallelism in matrix-vector multiplications is useful if the matrix size

is relatively small (due to the limitations imposed by the hardware architectures of

GPUs) [31, 37, 45]. Therefore, the maximum dimension of the matrix to perform

matrix vector multiplication is actually limited. The size may vary depending on

the particular version of the GPU. To overcome this limitation when the required

number of threads per block exceeds the available hardware limit, the whole matrix

and the vector must be divided into a number of small blocks. Each of these blocks

corresponds to a certain number of threads (defined by the user/programmer at the

beginning of the simulation, which can be any number between 1 and the block-size)

to perform computations in parallel. This approach of matrix-vector multiplication

was implemented in the author’s earlier works [34, 35]. Note that the total number of

floating point operations required to perform a matrix-vector multiplication between

a matrix of size M ×N and a vector of size N is M × (2 ∗N − 1). Therefore, if the

matrix is divided along the row in 4 different blocks, essentially the total number of

computations will be reduced to a fourth, i.e. M
4
× (2 ∗ N − 1). In this thesis the

matrix was divided along both the x and y directions simulteneously, which results in

a further reduction in the required number of computations and hence higher speed

up (i.e. the blocks were created on both M and N variables in the above example).

The approach to implement matrix-vector multiplication used in this work is shown

schematically in Fig. 4.6. In this case parallel threads are deployed in both the x and

y directions in every block (i.e. as shown in Fig. 4.6 each colored square represents

a thread). These blocks are assigned to the GPU in parallel and all the computa-

tions are performed in parallel. Multiplication results of these blocks are temporarily

stored in the shared memory of the GPU before producing the final results that will

be transferred to the global memory of the GPU (this is shown as intermediate stage
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in Fig. 4.6). This intermediate stage contribute to increase the number of parallel

threads to be deployed during the invocation of the kernel -function (i.e. the function

that contains instruction to perform computations in parallel on the GPU), which

ensure faster processing. In this case, parallel threads are deployed in various blocks

generated along the x and y axis direction of the matrix. For example for a 39 bus test

system (3-phase) the admittance matrix dimension will be 117×117. If a block size of

3 is chosen for both the x-axis and y-axis dilmensions, then total of 39 blocks will be

deployed during the kernel -invocation, along the x and y axis respectively. Similarly

parallel threads will be deployed for each block in parallel. These threads perform

computations in parallel and stores their results on the shared memory in parallel,

which significantly reduces the total computation times for the matrix-vector mul-

tiplications and minimises the memory access times from the GPU (detailed results

on performance gains will be presented later). Additional details on performing this

multiplication on the GPU are further explained in Fig. A.1. Implemention details of

this matrix-vector multiplication on the GPU is explained using the Algorithm 1 in

Appendix A. This method of performing matrix-vector multiplication can handle ma-

trices of arbitrarily large dimensions. More details on matrix-vector multiplications

in parallel may be found in [31, 37, 45].

4.3.2 Parallelism in history currents calculations

Power systems are usually modeled using lumped parameter equivalents such as re-

sistive, inductive, and capacitive elements. Similar models exist in the case of dis-

tributed elements such as transmission lines and cables. A branch of a power system

containing a resistive and an inductive element in series is shown in Fig. 4.7a. This

RL branch can be replaced with a Norton equivalent consisting of a single equiva-

lent resistance and an equivalent current source [2, 1]. Norton equivalent of the RL

branch ( Fig. 4.7a) is shown in Fig. 4.7b. Calculation of the history currents for the
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Figure 4.7: Schematic of a) a general RL-branch and b) Norton equivalent for the
RL-branch following Trapezoidal rule based formulation.

resistive-inductive branch of Fig. 4.7a is shown in (4.1) below [1]:

ILHnew =

2×L
4t

R + 2×L
dt

× (1− 4t×R
2× L

)× (ILHold
+

V (t)

R + 2×L
4t

) +
4t

2× L
× V (t) (4.1)

where ILHnew is the new/updated history current for the Norton equivalent,

ILHold
is the history current from the previous time-step,

V (t) is the value of the voltage across the RL-branch,

R is the resistance value and L is the value of the inductance.

Therefore, history current calculations (as seen from (4.1)) require the current of

the branch from the previous time step and the present value of the voltage across

the RL branch. The values of various node voltages are available in each iteration

after performing the matrix vector multiplication. Therefore, by passing these voltage

values and old history currents to a new kernel -function (as introduced earlier), all

the history current computations can be performed in parallel on the GPU. Branches

having capacitors require history current computations using (3.2). These computa-
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tions are also suitable to be performed in parallel on the GPU in a similar manner.

Details on implementing history currents computations on the GPU are explained in

Algorithm 2 in Appendix A.

4.3.3 Simulation of synchronous generators

Electrical generators/motors are the energy conversion units in power systems. There

are various types of electrical generators such as synchronous generators, induction

generators, DC generators, etc. [17]. Among them synchronous generators are mostly

used in various power generating stations. Therefore, modelling of this particular

type of electrical generators are included in this thesis. It is common to model these

generators as separate subsystems and interface them as Norton equivalent sources

(i.e. a current source in parallel with an equivalent admittance [56]) to the original

network [1, 20, 66]. In this thesis synchronous generators are modeled as a separate

subsystem and interfaced with the main network as a Norton equivalent source [20,

17, 66]. The generator model implemented so far only includes a field winding on

the d-axis, and armature windings on the d&q-axis. Amortisseur windings are not

included. The reader is reminded that the purpose of this research is to investigate

and demonstrate the GPU-based implementations and the most detailed models have

not been used in this thesis.

dψd

dt
= vd − idRd − ωψq

dψq

dt
= vq − iqRq + ωψd

dψ
′
f

dt
= v

′

f − ifR
′

f

iq = [Lmq + La]−1ψqid
i
′

f

 =

Lmd + La Lmd

Lmd Lmd + La


−1 ψd

ψ
′

f


J dω
dt

= Tmech − Telec −Dω

(4.2)
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Figure 4.8: Schematic of the generator model as used in this work [1].

Basic mathematical equations used to model a synchronous generator are listed in

(4.2) and can be found in [1, 20, 66]. In (4.2), ψd and ψq are the direct and quadra-

ture axis flux linkages respectively. Va, b, c are the three phase AC input voltage to

the generator terminals, ia, b, c are the three phase AC currents to be injected in the

network respectively. La, Lmd, Lmq are the various inductances of the generator’s

field winding. id, iq, i0, i
‘
f are the direct, quadrature, zero-axis and DC field cur-

rent respectively. ω is the generator speed, Tmech, Telec are mechanical and electrical

torques respectively.

Fig. 4.8 shows the schematic diagram of the generator model used in this research

with the necessary equations, input, and output parameters. In this case the genera-

tor models take their terminal voltages as input and calculate various currents to be

injected back into the network using ( 4.2), also shown in Fig. 4.8. These currents

are injected back into the network as current sources in parallel with an equivalent
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resistance [1, 20, 66]. All the input terminal voltages from the network are first

transformed into dq0 domain. The dq0 domain transformation is used to transform

three-phase quantities (such as voltage and/or current) into a rotating reference frame

attached to the rotor. Hence, in steady state 60Hz balanced currents and voltages on

the rotor side become dc quantities in the dq-frame [17]. All the internal computa-

tions for the generator model are performed in this dq0 domain, as shown in (4.2).

Finally the output currents are transformed back into the phase domain and injected

into the main network.

A large power system typically contains many synchronous generators. To imple-

ment generator related computations on the GPU, each generator could be assigned

a block containing several threads to perform computations in parallel. In this thesis

the synchronous generator related computations are performed using two different

kernel -functions. One kernel -function rearranges the generator terminal voltages in

a matrix form, which speeds up the memory access during the execution of the other

kernel -funcion, which performs the main generator related computations. Fig. A.2,

shows the schematic of the reformatting of various terminal voltages of the genera-

tor using the above kernel-function. Additional details may be found in page 110.

Three threads in every block (for each kernel -function) were assigned and each block

performed computations related to one three-phase generator. Details on implement-

ing synchronous generators on the GPU is explained using the Algorithm 5 in Ap-

pendix A.

4.3.4 Injected current vector updating

Conventional EMT simulation requires updating the injected current vector in every

time step. Injected currents may come from capacitive branches, inductive branches,

generators and so on. Real power systems normally connect generating stations to the
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load centers over vast geographic areas, which give rise to a very irregular (arbitrary)

structure. Therefore, the injected current vector for the power system is also irregular.

Hence, exploitation of parallelism in node interconnection (i.e. in the injected current

vector) is limited; and this part of the EMT-simulation has the least amount of

parallelism. In this thesis computations related to current vector updating were

performed on the GPU. However, due to the lower amount of parallelism, they could

also have been performed on the CPU. For every node of the network that connects to

a current source (which may come from a host of elements, e.g., capacitors, inductors,

transmission lines or generators, etc.) the total injected current vector is updated in

every time step. In this case the injected currents for each node are added together

and the final current vector is updated. As mentioned earlier, current vector updating

for every subsystem is performed on the GPU using one single thread for each phase

and each subsystem related current vector was assigned in one block.

4.3.5 Acceleration of other power system components using

GPU

4.3.5.1 Transmission lines

Electrical power generating stations are often established in remote locations far from

the consumption centers. Transmission lines are used to transfer bulk electrical en-

ergy from the generating stations to the demand centers. Accurate mathematical

models are required to simulate these transmission lines and analyze their transient

effects. Transmission lines have their accurate mathematical model in the time and

frequency domain [1, 2, 67]. Those advanced transmission line and cable models take

into account the frequency dependence of the line parameters. In this thesis only

the simpler lossless Bergeron Model [68, 69] is implemented. In this work transmis-

sion lines are used to interconnect the basic test systems to create larger networks,
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Figure 4.9: Modal equivalent of transmission line modeled using Bergeron’s model [1].

which acts as tie-lines (other researchers also used this simplified model in the litera-

ture [36, 38, 23]). Therefore, GPU implementation of other models for transmission

lines are left for future research. However, the parallelization approach would be

identical for more advanced models of TL.

The Bergeron model is a time domain distributed parameter model [1, 68] and it

was first developed by Louis Bergeron in the 1940s [70] and the technique was ap-

plied to EMT simulation by Prof. Hermann Dommel in the late 1960s [68, 69].

Fig. 4.9 shows the schematic of a single phase transmission line modeled using the

Bergeron model. In this model, transmission line related computations are performed

separately. Transmission lines parameters are transformed into single-phase equiv-

alent lines using modal transformation matrices. All the computations related to

transmission lines are performed in the modal domain. Equivalent transmission lines

are interfaced into the main network as current sources in parallel with an equiva-

lent Norton resistive network. The Norton network and the history current sources

are calculated by applying inverse modal transformation to the corresponding modal

quantities [2, 21]. The history currents are due to the remote end. Hence, they are

delayed by the travel time of the transmisssion line. The history current computa-
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tions for transmission lines in the modal domain use the following equations (for a

single mode):

I
′

jkm(t− τ) = − 1

Z
′
j

v
′
jm(t− τ)− i′jmk(t− τ)

I
′

jmk(t− τ) = − 1

Z
′
j

v
′

jk(t− τ)− i′jkm(t− τ)

(4.3)

where, Z
′
j =

√
Lj

Cj
is the characteristic impedance of the Transmission Lines (TL) in

the modal domain, τ = d/c is the travel time delay introduced by the TL, where d is

the length of the line and c is the velocity of propagation of electromagnetic waves in

free space (' 300 km/s) and equals to
√
LjCj (Lj, Cj are the line inductances and

capacitances per unit length per phase). i
′

jkm and i
′

jmk are the modal domain current

at the sending end (k) and receiving end (m), for mode j. Also, v
′
jm and v

′

jk is the

modal voltage at the receiving end (m) and sending end (k) of the transmission line

for mode, j.

Transmission lines in the network introduce parallelism in two ways. Firstly, as seen

from the above equations, individual phase related computations are separated using

the modal transformation matrices and are thus suitable to perform computations

in parallel. Secondly, as information does not propagate faster than the speed of

light, if the line travel-time is longer than one time-step, effectively the two sides of

the transmission lines are computationally decoupled and can be executed in paral-

lel on the GPU. This latter form of parallelism is widely used in various real-time

EMT simulations tools such as RTDS [5, 11]. In this research work, both of these

parallelization techniques are implemented to obtain the optimal speed up in the

simulation process. Transmission line related data are aligned into a matrix (similar

to those described earlier for synchronous generators) and shared memory is used in

the calculations to ensure faster access (hence faster computations) from the GPU. It
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should also be noted that computations related to the sending and the receiving ends

of the transmission lines were performed in parallel (using separate kernel -functions),

which ensured more parallelism in the simulation. Details on implementing transmis-

sion lines related computations on the GPU are explained using the Algorithm 3 in

Appendix A.

4.3.5.2 Power-electronic subsystems

Power systems are designed to continuously supply power to ever-changing load pro-

files throughout the day. Power systems usually consist of passive components. Hence

precise control of the right amount of power to meet the demand accurately is criti-

cal. Therefore, power electronic devices are commonly used to control the power flow

and power quality in the networks. These days many power electronic components

are used in various power system devices such as Flexible AC Transmission Systems

(FACTS ) devices, High Voltage DC (HVDC) transmission systems, etc. Power elec-

tronic devices are used to precisely control the amount of current flow through vari-

ous power system equipment. In this research a simple power electronic subsystem,

namely a full bridge power converter, was implemented to demonstrate the capability

of the GPU to simulate the behaviour of power electronic devices. This basic system

demonstrates the methodologies involved in modelling power electronic subsystems.

Implementation of an advanced HVDC system will require the implementation of

advanced control/switching sequences on top of this basic subsystem, which will not

significantly change the computation methodologies and hence the parallelism will

not be unduly affected. The main focus of this research work was the development of

the simulation methods to accelerate EMT simulation and the simple diode bridge is

used to demonstrate the basic switching. In a commercial implementation, obviously,

a full suite of power electronic equipment models will be available.
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Figure 4.10: Schematic characteristic of a diode as used in this thesis for the diodes
used in power electronic subsystem shown in Fig. 4.11. Showing the two resistive
’ON’ and ’OFF’ states.

The diode characteristic was approximated using a near-ideal switch characterisitic

shown in Fig. 4.10, where the switch is in the ON -state (i.e. conducting) when-

ever there is a positive voltage across the diode and is in the OFF -state (i.e. non-

conducting) whenever the voltage accross the diode is negative. The diode is turned

on (i.e. conducting state and its resistance set to a very low value) when it is for-

ward biased, and reverts back to the off state when the current goes negative (i.e.

reverse biased with a very high resistance value). Additional logic (such as tracing

the current through the diodes) determines the transitions between conducting and

non-conducting states of various switches (diodes) in the network of Fig. 4.11. More

details on identifiying the transition instants for power electronic switches can be

found in [1, 56].

Fig. 4.11 shows the schematic of the power electronic subsystem (the diode bridge).

Input to this system is a three-phase AC voltage and the output is a DC voltage. In
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Figure 4.11: Schematic interconnection of the IEEE 39 Bus system interconnected
with a full-bridge diode rectifier.

this network (i.e. the circuit of Fig. 4.11) the switches (diodes) turn ON (i.e. con-

ducting state) and OFF (i.e. non-conducting state) multiple times within a cycle,

depending on the applied AC voltage at the input terminals of the bridge. The swith-

ches of Fig. 4.11 were modeled as resistors with binary switching states (very large

conductance for the ON -state and very small (ideally zero siemens) conductance for

the OFF state) [5, 58].

As mentioned earlier, implementation of switching introduces additional admittance

matrices in the simulation process due to changes in network admittances. In this

thesis, inverses corresponding to these admittance matrices were precomputed on the

CPU and stored on the GPU memory and were inserted into the simulation whenever

needed. This approach is viable even if a Pulse Width Modulation (PWM) type of in-

verter is used with multiple switchings in each cycle, because, matrices for subsystems

with converters can also be pre-inverted and stored on the GPU memory. It may be

possible that some configurations are missed in the pre-computation process. In that

case, the CPU can be used to quickly compute the required inverses. Once computed

it could be properly tagged and used later in the simulation if required again. Note

that this is not a real-time simulation, so occassional slowing down caused by this
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process is acceptible. Additionally, any subsystem with switchings may be given a

smaller size, in order to minimize the storage and computational burden.

4.4 Sparsity implementations

In general power systems are loosely inter-connected (i.e. individual buses are con-

nected only to few of the neighbouring buses) and the resultant admittance matrices

are mostly sparse in nature (i.e. most of the elements are zero as shown earlier in

Fig. 4.2, for the example of a 39 bus system). In most cases the admittance ma-

trix could be approximated as block-diagonal, having most of the elements along the

diagonal only. As mentioned earlier, EMT simulation involves matrix-vector multi-

plications. In [33, 34, 35], the author of this thesis has shown that the matrix-vector

multiplication on the CPU (i.e. sequential implementation) may consumes upto 90%

of the total simulation time. In case of dense matrix implementations, all the elements

of the admittance matrix (i.e. zeros and non-zeros) are multiplied with the vector

to determine the new state of the network. Therefore, multiplication operations in-

volving these zeros (while simulating the network) reduce the available computing

power and hence the performance. Various techniques have been taken to ignore

multiplications involving zeros, such as the compensation technique [71]. In the lit-

erature, there are various approaches to implement sparsity on the CPU [72, 73],

but require additional effort to implement parallelism for special hardware such as

GPU. Hence in this thesis, a lookup table based approach has been applied on the

inverse-admittance matrix to ignore multiplications involving those unwanted zeros.

In this approach, a table containing the addresses (i.e. subscripts of the matrix) of

the nonzero elements (as shown in Fig. 4.12, white spots represents nonzero elements)

is formed. Fig. 4.12b shows the schematic of the table containing the addresses of the

non-zero elements. During the simulation process, an instruction reads the address of
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(a) Schematic of the sparse matrix before reformatting (dark spots represents zero elements)

(b) Schematic of the sparse matrix after reformatting

Figure 4.12: Schematic of inverse admittance matrix before and after reformatting
according to the sparsity technique used in this thesis (nonzero elements are white;
zeros are black). 61



the non-zero elements from the table. Then another instruction read those elements

from the inverse admittance matrix. Finally multiplication with the corresponding

elements of the vector is performed. In general, power systems are loosely connected

and the number of zeros in every row of the admittance matrix is high. Applying this

algorithm saves significant time as the instructions do not need to perform the expen-

sive multiplications involving floating points, which resulted in improved performance

in the simulation. This approach was applied on all the test cases (i.e. less and high

granular test cases). Details on performance improvements in the simulation process

using this approach are presented in the next chapter.

Through testing on several example cases, it was determined that for a typical power

system, the inverse-admittance matrix is highly sparse in nature. For example, in

case of a 39 bus test system, the admittance matrix contains 13296 number of zeros

before inversion and 9126 number of zeros after inversion (i.e. significant amount

of zeros). Due to numerical issues in most cases the inverse admittance matrix is

full of nonzero elements with individual values in the range of [0, 10−10], which are

practically zero. It was observed by simulating various test cases that setting those

elements to zero does not noticeably affect the simulation accuracy. Therefore, the

algorithm used a threshold value to set such elements of the inverse admittance ma-

trix to zero. This technique of implementing sparsity is illustrated using Fig. 4.12.

Fig. 4.12a shows the schematic of the inverse admittance matrix (after using that

threshold). Finally, this approach was also parallelized using the similar approach as

used in case of matrix-vector multiplications.
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4.5 Test cases used for GPU-based EMT simula-

tion

GPU-based EMT simulation is intended to speed up computations for large power

networks. Therefore, large test cases are required to evaluate the performance im-

provements of the proposed GPU-based EMT simulations. The focus of this thesis

was to demonstrate that the GPU-based EMT simulation is computationally faster

than traditional CPU based EMT simulation with increasing network size. Instead of

using an existing large real system, test systems were constructed using a pre-defined

structure that could be easily scaled indefinitely. This approach has also been used by

other researchers in developing parallel simulation tools for power systems [23, 36, 50].

The development of the GPU-based simulation tool involves numerous effort in par-

allel implementation of the algorithms, parallelization of various component models,

coding, testing of the simulation results, etc. Additionally, implementation of a partic-

ular realistic power network using the described GPU-based simulation tools will use

the same parallelization techniques for various components as discussed above. Hence

the focus was not given in implementing an existing real power system (although it

was demonstrated in Chapter 3 that GPU-based simulation produces the same results

as produced by commercial tools, such as PSCAD/EMTDC). As explained earlier,

transmission lines are used as a link between subsystems to create large networks.

Although inclusion of transmission lines in the network introduces exploitable par-

allelism, it also introduces additional computations related to the calculation of the

transmission line variables themselves and also increases the inter-processor commu-

nication. Computations related to transmission lines require memory access calls for

the various sending and receiving ends and communications between the sending and

receiving ends, etc. It is a commonly used technique in power system to divide a

large network into smaller subsystems using transmission lines. Therefore, dividing
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a large network into smaller subsystems will require additional transmission lines.

On the other hand additional transmission lines will introduce the above mentioned

delay in the computations. It is to remind that transmission lines in this thesis are

implemented using lossless Bergeron model. Implementation of other advanced model

for transmission lines, such as frequency dependent transmission line models will in-

troduce additional computations for themselves. Thus, too many transmission lines

in the network can reduce the overall parallelism and adversely affect the simulation

speed. The ratio of the total number of transmission lines used to interconnect the

neighbouring subsystems to the total number of buses in the large system is defined

as a measure of granularity. Therefore, higher value of granularity means, more trans-

mission lines in the network and smaller subsystem size. In this thesis two sets of test

cases with different granularity were used and described below.

4.5.1 Test cases based on IEEE 39 Bus system (low granu-

larity)

In this case, test systems of increasing size were created by interconnecting a basic

building block containing power electronic subsystem, as shown in Fig. 4.13. This

subsystem demonstrates switching methodology on the GPU with a basic power elec-

tronic subsystem. Most advanced HVDC devices will require the implementation of

additional control sequences for the algorithm, which will not affect the parallelism.

This building block system of Fig. 4.13 was constructed by interconnecting an IEEE

39 bus system with the power electronic subsystem introduced in Fig. 4.11. It should

be noted that there is no distributed parameter transmission line inside this system.

The links between various buses of this system are implemented using π-equivalents.

This system provides scalability to create larger test cases by interconnecting these

building blocks using distributed parameter transmission lines. Additionally, the in-

clusion of the basic power electronic diode bridge rectifier enabled the capability to
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Figure 4.13: Schematic of the IEEE 39 Bus system connected with the rectifier,
referred to as Building Block 1 system.

check the performance of the GPU-based simulation when power electronic equipment

is present in the network. It should be noted that test systems constructed using this

basic block have an asymptotic value of the granularity equal to 0.154 as the network

size increases towards infinity (i.e. lim
N→∞granularity(N) = 0.154, where N is the size

of the network).

This approach (i.e. creating large network by interconnecting the basic block) closely

resembles large power networks having many devices interacting simultaneously in an

existing power network. It should be noted that earlier approaches did not implement

power electronic subsystems on the GPU.
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Figure 4.14: Schematic of a 975 Bus less granular test system created by intercon-
necting building block 1 system of Fig. 4.13.

Henceforth the basic system of Fig. 4.13 will be called building block 1. The building

block 1 system has ten three-phase generators, twelve three-phase transformers and

one power electronic subsystem. Larger test cases were created by interconnecting this

building block 1 system using transmission lines. As an example, Fig. 4.14 shows the

schematic of a test system having 975 buses, which was created by interconnecting 25

instances of building block 1. The system of Fig. 4.14 has 250 three-phase generators,

25 power-electronic subsystems, 300 three-phase transformers and 120 three-phase

transmission lines. It should be noted that these test systems do not represent any

real system, but are used to (artifacts) easily construct arbitrarily large systems to

evaluate the capability of the proposed GPU based parallel EMT simulation.
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Figure 4.15: The 3 bus system used in this work as building block 2 (links between
various buses are implemented using Π-equivalents).

4.5.2 Test cases created by 3 bus system, (high granularity)

To investigate the performance with increased interconnection density (transmission

lines), additional test cases with a different building block system were implemented.

The interconnection density (as explained above) is determined by the ratio of the

number of transmission lines used to interconnect various building blocks to the total

number of busses present in the network. A higher number of transmission lines re-

quire increased computation burden which involves higher amount of communication

between the interconnecting subsystems, memory access calls and so on. This ulti-

mately leads to reduced performance gain in the simulation.

The effect of the increased number of transmission lines on the total simulation times

was explored using this more granular test system (shown in Fig. 4.15). The asymp-

totic value of granularity using this system as a building block is 1.33 as the network

size increases towards infinity. In this case a basic building block of only 3 buses (as

opposed to the 39 bus building block 1 introduced earlier) was used. It consists of one

generator and one three-phase transformer (power electronics were not included in

this case). The 3-bus system is shown in Fig. 4.15. Henceforth this 3-bus system will

be called building block 2. There is no distributed parameter transmission line with

in the building block 2 systems and the links between various buses of building block
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Figure 4.16: Schematic of a 78 bus highly granular test system created by intercon-
necting building block 2 system of Fig. 4.15.

2 system are implemented using π-equivalents. Larger test cases were implemented

by interconnecting this 3-bus system using lossless transmission lines. As an exam-

ple, Fig. 4.16 shows the schematic of a 78-bus test system created by interconnecting

26-instances of building block 2 using lossless transmission lines. With 26 instances

of parallelizable subsystems, it is more granular than a corresponding 78-bus system

constructed using the building block 1, which would only have 2 parallelizable sub-

systems (i.e. for same number of nodes). However, it has 80 interconnecting 3-phase

transmission lines between the subsystems, whereas the corresponding system built

with the building block 1, would only have 3 three-phase transmission lines. Simula-

tion results (presented later) show that the larger number of T-lines in the test cases

have a negative impact on the total simulation times. More detailed schematics of

various test cases constructed using building block 1 and building block 2 systems are
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Figure 4.17: Schematic of accessing a particular memory location simultaneously by
many parallel threads during matrix-vector multiplications on the GPU.

presented in Appendix B.

4.6 Hardware imposed barrier for GPU-based EMT

simulations

GPUs are specially designed hardware to accelerate massively parallel algorithms,

such as rendering in computer graphics. Most of the general purpose computations

are a mixture of serial as well as parallel computations. Therefore, general purpose

computations must be parallelized to apply them on GPUs to achieve the desired per-

formance improvements. Some of the barriers in getting optimal performance gain

using GPU computing were presented earlier in section 2.4. This section presents
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another barrier in GPU-based EMT-simulation, which is specific to matrix-vector

multiplications and may result in less performance gain in the parallelised EMT sim-

ulation.

In the case of performing the matrix-vector multiplication on the GPU a critical

situation in accessing the required memories on the GPU occurs. Fig. 4.17 shows

the situation of accessing the very first memory location of the vector of currents by

the very first element of every row of the matrix simultaneously, which is required

repeatedly in GPU-based parallel EMT simulation. It was explained earlier that mul-

tiplication of each row of the matrix with the vector is implemented in parallel. As

seen from Fig. 4.17, the very first element of each row has to be multiplied with the

very first element of the current vector. A similar situation exists for every other

element of the current vector as well. As the multiplication job is performed in par-

allel, all the threads corresponding to those elements will try to access (as well as

write after computations) the memory location simultaneously in parallel. As the

size of the matrix becomes large the number of parallel threads trying to access that

particular memory location would be large and they will have to wait until they are

able to read the data (GPU allow concurrent reading on the shared memory [37]).

This waiting for reading the data places an obvious constraint on the expected per-

formance gain of the simulations. To overcome this barrier, in this thesis the matrix

was divided into many subblocks and an attempt has been taken to use the shared

memory (as opposed to global memory) as much as possible as shared memory sup-

ports concurrent reading of data [37]. At the same time, use of transmission lines

to divide large networks into smaller subsystems (i.e. smaller size of the admittance

matrix) reduced the amount of concurrent data access requirement. Note however

that (as mentioned earlier) having too many transmission lines also slows the overall

computational performance. This subsystem based EMT simulation also reduced the
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size of the admittance matrix and hence it contributed to reduce the total number of

parallel access of the memory location. However further investigation in this topic is

still needed to accelerate the memory accesses, which may be a good direction of this

thesis in the future.

4.7 Chapter summary

The algorithmic steps to adapt conventional EMT simulation to a parallel GPU-

based implementation of EMT simulation was presented in this chapter. This chapter

started with a brief overview of the state of the art techniques for EMT simulation.

Then it presented methods to parallelize computations of various power system equip-

ment such as generators, transmission lines, etc. An effective parallelization technique

suitable for GPU-based matrix-vector multiplication (the most time consuming part

of EMT simulation) was implemented and presented in this chapter. This approach

ensured the effective use of GPU shared memory to speed up EMT simulation by in-

troducing an intermediate stage, which enabled the use of more threads in the matrix-

vector multiplication process. A typical power electronic subsystem was included in

the simulation to demonstrate the capability of the GPUs to simulate electromag-

netic transients for various switching devices. This chapter also introduced a sparsity

technique that was included in the GPU-based implementations, to further accelerate

the conventional EMT-simulation. Then, various test cases used to demonstrate the

acceleration of conventional EMT-simulation using GPU-computing were presented.

Two basic test systems (one with only 3-busses and the other with 39-busses) were

introduced and were used to create larger test cases suitable for evaluating simulation

performance on GPU based platforms. Two different simulation cases with different

interconnection density were introduced so that investigation on performance based

on granularity could be explored. Finally, this chapter showed a special instance
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of memory access for matrix-vector multiplications, which ultimately acts as a bar-

rier in getting optimum performance gain for larger power systems. It presented the

approaches used in this thesis to overcome this barrier. Performance comparisons be-

tween GPU-based EMT simulation over conventional EMT simulation are presented

in the next chapter.
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Chapter 5

Performance improvements and eval-

uation of GPU-based EMT simula-

tion

5.1 Introduction

EMT simulation was introduced in Chapter 3. The algorithmic steps to parallelize

this EMT simulation for GPU-based computations were introduced in Chapter 4.

Various test cases used to demonstrate the performance of the proposed algorithm

were also introduced in Chapter 4. This chapter presents performance results obtained

using the described parallelization techniques for EMT simulations on the GPU. To

evaluate the improvements in total computation times, two separate programs (one

written in CUDA-C to run on the GPU using the parallel EMT algorithm proposed

in Chapter 4 and the other written in ANSI-C to run on the CPU in sequential man-

ner) were created for each of the test cases presented in Section 4.5 of Chapter 4.

Additionally, two separate programs (to run on the CPU and on the GPU as before)

were created to implement the sparsity handling technique that ignores the unneces-
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sary multiplications involving zeros. One of the test cases of the presented approach

implements a network with 3861 buses, which includes detailed models for 990 three

phase-electrical generators, 594 switches (diodes), 990 three-phase transformers, etc.

It should be noted that the presented program for GPU-based EMT simulation is

capable of modelling larger networks than the above. The duration of simulation in

all of the test cases was taken to be 10 seconds and the simulation time-step used in

this work was 50µs. To quantify the improvements in performance, total clock times

for GPU-based simulation of various test cases were compared with the total clock

times for conventional CPU-based simulation of those test cases. It should be noted

that CPU-based simulation means sequential, single core implementation of EMT

simulation on the CPU. Similarly, GPU-based implementation means the parallel

version of the EMT simulation that run on multiple processing cores on the GPU. To

quantify the improvements in the GPU-based simulation process performance gain

(βGPU) defined by the equation below [37] was used:

βGPU =
Total clock time for CPU only simulation

Total clock time for simulation using CPU & GPU
(5.1)

Details on the results of simulating various test cases (as presented earlier) using the

described parallelized EMT simulation and sequential EMT simulation and perfor-

mance gain using GPU-computing will be presented in this chapter.

5.2 Details on the workstation used

In this thesis a hybrid workstation consisting of GPUs and multi-core CPU was

used. The operating system on the workstation used was Linux (distribution Fedora

14) [74]. Details of the hybrid platform are listed in Table 5.1. The CPU processors

in the workstation were chosen to be more powerful (in terms of speed and cache

memory) than those on the GPU. The CPUs of this workstation use a ’Sandy Bridge’
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Table 5.1: Details of the hybrid simulation platform

Main Computer (CPU) details
Type Intel core i7 CPU 2600K

CPU Clock rate 3.40 GHz
Total RAM 16GB

GPU Details
Type NVIDIA GeForce GTX 590

Number of multiprocessors 16
Number of cores 512
GPU Clock rate 1.26 GHz
Global memory 1.5GB

Shared memory per block 64KB
Warp size 32

Max. No. of threads per block 1024

Figure 5.1: Pictorial view of the workstation used in this work (GPUs are shown
connected to the motherboard).
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architecture, which (at the time of writing this thesis) is one of the top ranked CPUs

in the market in terms of overall performance, value, etc. [75]. On the other hand the

GPU was chosen to be an ordinary one, with moderate rating in performance and

speed [37]. The main reason behind choosing the less powerful GPU (compared to

CPU) was to show the capability of an ordinary GPU to computationally outperform

the most powerful CPUs. A labelled photograph of this workstation is shown in

Fig. 5.1. In this workstation, two GPUs (Nvidia GTX GeForce 590) are mounted

on the motherboard through the PCIe buses, which connect these GPUs to the Intel

core i7 2600K CPU. The Intel core i7 2600K CPU is a 4-core CPU based on the

above mentioned Sandy Bridge architecture, which has a clock speed of 3.40GHz and

was installed with an external RAM of 16GB. Each of the Nvidia GTX GeForce 590

GPUs houses two GeForce 580 equivalent GPUs [37]. Each GPU (i.e. GeForce 580)

has 512 processing cores, capable of performing floating point operations in parallel.

This makes for a total of 2048 processing cores available in this workstation. There

are 1.5 Giga-Bytes of DRAM on each of these GPUs (i.e. GeForce 580) and the clock

rate of each processor on the GPU is 1.26 GHz. Other details of these GPUs are

listed in Table 5.1.

5.3 Overview of the preliminary findings

The author of this thesis reported the very first work on the GPU-based EMT simula-

tion in a conference in 2011 [33]. Further progress of this illustrated GPU-based EMT

simulations have been published in subsequent years [33, 34, 35]. Most recently we

submitted a journal paper [39] based on the the most advanced algorithmic changes

(such as new algorithm for matrix-vector multiplication, optimized approaches for

history current calculations, inclusion of parallelized model for various power system

equipment, etc.) applied on the GPU-based EMT simulations, which is currently
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under review. Before presenting the most recent results on accelerating EMT simula-

tions using GPU computing (by using the algorithms and parallelization techniques

presented in Chapter 4), a brief overview of the earlier published works of the author

of this thesis will be presented.

A preliminary study on accelerating EMT simulation using random networks was

published in [33]. Some important findings were reported in [33], which included

the earlier discussed conclusion that GPU-based computations are not suitable for

small networks (i.e. networks with few hundred buses). The GPU-based computa-

tions require the necessary data to be transferred to the GPU memory from the CPU

memory before any EMT simulation related computations to be performed. When

the network size is small, this transfer of data between the CPU and the GPU may

require a longer time compared to the time required for the actual computations for

the whole network. It was shown in [33] that a system of at least 55 nodes (appr.)

is required to outperform CPU-based computations using GPU computing. Finally,

simulation results using GPU-based EMT simulations were compared with those from

commercial tool (PSCAD/EMTDC) [13].

The second paper was published in a conference in Montreal, Canada in 2012 [34].

In this paper the total computational times in simulating various parts of the EMT

algorithm on the CPU and the GPU were reported. While parallelizing an algo-

rithm it is critical to determine the core portion of the algorithm, where the bulk of

the computations are performed. In this paper four different approaches were imple-

mented to determine the most time consuming part of the EMT simulation, as follows:

1) Implementation # 1: ALL/CPU

In this case, all the computations related to the simulation of various electrical
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networks were performed on the CPU in a sequential manner (i.e. a single core im-

plementation of the algorithm). This approach was implemented to estimate the

total computation time required by sequential simulations (as is the case in com-

mercially available tools, such as PSCAD/EMTDC [13], which run the simulation

in a sequential manner). This CPU-based sequential implementation was aimed to

ensure homogeneity in the modelling. The exact modelling and simulation tech-

niques of the commercially available sequential tools (such as PSCAD/EMTDC)

were not available and it was very important to compare the performance im-

provements in simulating the exact same algorithm (implemented in serial on the

CPU and in parallel on the GPU). Therefore, this paper implemented the same

algorithm on the CPU in sequential and later on the GPU using the parallelization

techniques. Total clock times for this implementation is used (later) in (5.1) to

calculate the speed up using GPU computing. It should be noted that GPU is not

used in this implementation (i.e. Implementation # 1 is a CPU only implemen-

tation).

2) Implementation # 2: MV/GPU

MV/GPU stands for matrix-vector multiplication performed on the GPU. In this

implementation, computations related to a portion of the EMT algorithm (i.e. the

matrix-vector multiplication) were performed on the GPU, and the CPU was re-

sponsible for the rest of the computations related to the EMT simulation (such

as history current calculation, generators related computations, etc.). It is to be

noted that this matrix-vector multiplication related algorithm was in its primi-

tive stage (i.e. parallelism was not explored efficiently and the number of parallel

threads deployed were significantly less than the number of parallel threads de-

ployed in the latest 2D version of matrix-vector multiplication as presented earlier)

compared to the one presented in this thesis in Chapter 4. Even this relatively
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primitive algorithm showed significant performance gain in the simulation process.

The results in this implementations showed that matrix-vector multiplication con-

sumes upto 90% of the total clock times for simulation.

3) Implementation # 3: MV+H/GPU

MV+H/GPU stands for matrix-vector multiplication and history currents com-

putations performed on the GPU. In this implementation computations related to

history currents computations and matrix-vector multiplications were performed

on the GPU. It should be noted that the difference between Implementation #

2 and Implementation # 3 is the inclusion of history currents computations on

the GPU. In this case, the CPU was responsible for updating the vector of source

currents (which is the most sequential part of the EMT algorithm), storing output

variable values, flow control of the simulation, etc. Performance gain in this case

was higher compared to the previous case (i.e. Implementation # 2 ). Details on

performance gain using this step can be found on [34].

4) Implementation # 4: ALL/GPU:

In this implementation all the computations related to the EMT algorithm, such as

history currents computations, matrix-vector multiplications, updating the current

vector, etc. were performed on the GPU. The difference between Implementa-

tion # 3 and Implementation # 4 is the inclusion of the current vector related

computations on the GPU. In this case the CPU was only responsible for the flow

control of the simulation and storing the output variables. As mentioned before,

the time required to transfer various data between the CPU and the GPU acts as a

delay in the simulation (worse for smaller networks being simulated). In this case,

the CPU was responsible only for sending the control instructions regarding the
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simulation, which ensures the minimum information transfer to control the sim-

ulation. In [34], it is shown that performing all the computations, including the

highly sequential ones, related to EMT simulations on the GPU is more efficient

than implementing them on the CPU. Therefore, in this thesis, all the computa-

tions related to EMT simulation were performed on the GPU.

Several test cases were simulated using the above mentioned cases on the CPU in

a sequential manner and on the GPU in parallel. Based on the test results it was

determined that matrix-vector multiplication is the most time consuming part in

EMT simulation. It should be noted that the test cases used in [34] did not include

transmission lines, generators, transformers, etc. Inclusion of these equipment mod-

els will increase parallelism in the network as well, as will be shown later. It was

also shown that performing all the computations on the GPU actually accelerates

the overall simulation. As discussed earlier, some tasks of EMT simulation may seem

more suitable for implementation on the CPU, but implementing those algorithms on

the GPU saves the time in moving the associated data between the CPU and GPU,

which incurs significant delay.

In [35], transformers and generator models were included in the simulation. Details

on modeling transformers were presented in Chapter 4. It was shown that inclusion

of detailed models for such equipment in GPU-based implementations accelerated

EMT simulations considerably. However, the results presented in [34] did not in-

clude switching effect, models for transmission lines and partitioning larger networks

into smaller subsystems using transmission lines, etc. Additionally, the matrix-vector

multiplication algorithm was not as efficient as the one described in this thesis. In all

of the preliminary assessments the inverse of the admittance matrix was performed

off-line using the commercially available tool Matlab and was inserted into the sim-
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ulation at the beginning (as there was no switching in the network, the admittance

matrix was constant). As introduced earlier, these inverse admittance matrix related

computations are now entirely implemented on the CPU, based on the Gauss-Jordan

elimination algorithm [57]. This makes the described GPU-based EMT simulation

environment a complete one that does not require any external computing resources

such as Matlab. More details on various implementations and test cases used in those

approaches may be found in [33, 34, 35].

5.4 Performance improvements for simulation of

test systems with low granularity

This section presents the computational performance improvements seen for the sim-

ulation of the test cases created by interconnecting several instances of ’building block

1’, as presented earlier in Chapter 4. A typical test system with low granularity was

presented schematically in Fig. 4.14. As presented earlier, the ratio of the number

of interconnecting transmission lines between the subsystems inside the network to

the size of the electrical network modelled on the GPU is defined as a measure of

granularity. The test systems simulated in this section have an asymptotic value

of the granularity equal to 0.154 as the network size increases towards infinity (i.e.

lim
N→∞granularity(N) = 0.154, where N is the size of the network).

Total clock times for simulating less granular test cases, created by interconnect-

ing building block 1 system of Fig. 4.13, are presented in Table 5.2. It should be noted

that the test systems of Table 5.2 have a smaller number of transmission lines with

reference to the total number of busses in the network, compared to the more gran-

ular test systems, which were constructed using the smaller subsystem building block

2, as presented schematically in Fig. 4.16. This table presents the total clock times
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Table 5.2: Total time for simulation and performance gain for test cases created by
interconnecting building block 1 system of Fig. 4.13

Without Sparsity With Sparsity
No. of No. of Granu- GPU CPU Gain GPU CPU Gain
Buses T-Lines larity Only (s) Only (s) βGPU Only (s) Only (s) βGPU

39 0 0 11.890 22.280 1.874 11.250 11.560 1.028
78 3 0.0385 14.530 44.019 3.029 14.080 27.761 1.972
156 9 0.0577 14.530 89.331 6.148 14.650 55.747 3.805
273 21 0.0769 14.750 154.434 10.470 14.760 98.223 6.655
858 102 0.1189 23.060 491.358 21.307 19.790 310.882 15.709
936 114 0.12179 23.370 535.942 22.932 20.380 337.218 16.546
975 120 0.12308 23.850 561.537 23.544 20.780 354.224 17.046
1365 174 0.12747 28.461 784.544 27.566 24.200 494.932 20.451
1599 204 0.12758 29.940 926.433 30.942 25.660 578.723 22.553
3471 474 0.13656 52.407 2013.16138.414 42.879 1261.134 29.412
3861 534 0.13831 57.146 2249.38039.362 46.888 1403.705 29.937

Figure 5.2: Total clock times for simulating various test cases with CPU and the par-
allelized GPU implementations created by interconnecting building block 1 (Fig. 4.13).
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and performance gain for executing the programs (sequentially on the CPU and in

parallel on multiple cores on the GPU) for dense matrix as well as for sparsity-based

implementations. The number of buses, granularity, and the number of transmission

lines for each system size are also indicated in Table 5.2. Various times are shown

for simulation without and with the sparsity technique. The performance gain, βGPU

is also shown without and with the sparsity technique. Fig. 5.2 shows the total

clock times for various simulations, as presented in Table 5.2, in graphical form by

plotting total clock times for CPU and GPU-based computations for dense matrix

based and sparsity-based simulations. It should be clear from Fig. 5.2 and Table 5.2

that GPU-based computations provide significant speedup over CPU-based imple-

mentations (even with the inclusion of sparsity based technique). As an example

(in Fig. 5.2 and Table 5.2), for a system with 3861 busses and without sparsity, the

total clock times for simulation are 57.146 s and 2249.380 s on the GPU and CPU,

respectively. On the other hand, for the same system of 3861 busses and with spar-

sity, the total clock times for simulations become 46.888 s and 1403.705 s respectively.

In the CPU-based implementations, all the computations related to EMT simula-

tion are performed sequentially, hence the total clock times to finish the simulation

are longer. As can be seen in Table 5.2, the total clock time for simulation of the

3861-bus system on the CPU is more than half an hour. On the other hand parallel

computation techniques are applied on the GPU-based implementations and there-

fore the total clock times for simulation are much less compared to the CPU-based

implementations, as can be seen for the case of the 3861-bus system, the total clock

time is less than a minute.

Application of the sparsity technique on the inverse admittance matrix also reduced

the total computation times by eliminating the multiplications involving zero as can
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Figure 5.3: Computational performance gains with GPU computing, with and with-
out sparsity (for total clock times presented in Table 5.2).

be seen from Fig. 5.2 and Table 5.2. The benefits from exploiting sparsity are sig-

nificant for the CPU implementations, with a reduction in computation times from

2249.380 s to 1403.705 s, which means a speedup of 1.602. This is as expected be-

cause the elimination of unwanted computations involving zeros, greatly decreases

the total number of sequential multiplications involving zero, on the CPU. However,

there is only a smaller benefit (i.e. from 57.146 s to 46.888 s, which is a speedup of

1.193) on the GPU implementations, this is because the tasks have already been par-

allelized into smaller blocks involving parallel threads and the computation benefits

from additional sparsity are thus reduced. Additionally, the exploitation of sparsity

also reduces the total number of parallel threads to be deployed, which on the other

hand is equivalent to increasing the total clock times for the simulation. This can

be explained with an analogy. Let us consider a job of measuring customer level

voltages for a community of 100-people. Henceforth, this job will be called work1.

Lets consider there are four scenarios for work1 as follows:
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1) Scenario 1: Only one person is assigned to perform work1. This is equivalent of

sequential implementation of the EMT simulation on the CPU.

2) Scenario 2: 20 people are assigned for work1. This may be considered as a

parallel implementation of work1, which resembles the parallel implementation of

EMT simulation on the GPU.

3) Scenario 3: In this case, the job was redefined with the discovery of redundancy

in measuring the voltage for every other customer. Therefore, in this case work1

has voltages are to be measured for only half of the people in the community (i.e.

50 people). In this case also, only one person is assigned. This is equivalent of

implementing sparsity on the CPU in sequential.

4) Scenario 4: In this case for the redefined work1, only 10 persons are assigned

instead of 20 as used in Scenario 2. Please note that total number of workforce

is reduced to half in this case along with the redefinition of the job. It should be

noted that this scenario is similar to the implementation of sparsity on the GPU

(parallelism inside the job is reduced and the workforce is also reduced).

Now if we compare the total time required to perform work1 in Scenario 1 with

Scenario 2, it is obvious that Scenario 2 would be much less than the time for

Scenario 1. It is also obvious that total time for Scenario 3 would be much less

compared to Scenario 1 as the total number of customers was reduced with the dis-

covery of the redundancy. But it should be noted that this savings in time was due

to the discovery of the redundancy, which is equivalent of ignoring multiplications

involving zeros in the computations. Additionally, the total time for Scenario 4 will

not be significantly different than the time for Scenario 2. As mentioned earlier, in

the case of Scenario 4 the job was redefined and the corresponding workforce was

also reduced compared to Scenario 2. This is the situation in the case of the sparsity

implementations for EMT-simulations. It reduces the total amount of computations
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significantly on the CPU for sequential computations by eliminating the unnecessary

multiplications involving zeros. On the other hand it reduces the number of parallel

threads to be deployed on the GPU for parallel implementations (i.e. the case of

redefining the job and the workforce, case of Scenario 4 in the above).

Fig. 5.3 graphically shows the performance gain in the simulation, βGPU , without

and with the sparsity technique as presented in Table 5.2. As can be seen, the speed

gains for both of the cases are significant. For example, there is about a 40 times

speedup for a system with 3861 buses without sparsity (as presented in Table 5.2)

and with sparsity, the speedup for the same system size is 30. The programs in the

described approach can simulate larger networks and the test cases so far did not

reach the limit of the GPU resources. It is, however, clearly visible from Fig. 5.3 that

the performance gain is about to reach saturation. Therefore, it is expected that the

speed up will increase for larger test cases with more than 3861-buses, as the trend

of speed gain is still increasing for the networks so far implemented.

5.5 Simulation-based tests on systems created us-

ing building block 2 (high granularity)

This section presents the total clock times for simulating test cases with higher gran-

ularity compared to those systems presented in the previous section. In this case the

size of the basic subsystem (i.e. building block 2) is much smaller than the one (i.e.

building block 1) used in the previous section. Therefore, the number of transmission

lines interconnecting these smaller subsystems is increased compared to those pre-

sented above with less granularity. The asymptotic value for granularity is 1.33 for

the test systems constructed using building block 2 (i.e. lim
N→∞granularity(N) = 1.33,

where N is the size of the network). This is in contrast with 0.154 for the systems
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Table 5.3: Total time for simulation for various test cases created with the more
granular building block 2 system of Fig. 4.15

Test cases using 3 bus Test cases using IEEE
No. system of Fig. 4.15 39 bus system
of No. of CPU GPU No. of CPU GPU

Buses 3-phase Granu- times times Gain 3-phase Granu- times times Gain
T-lines larity (sec) (sec) βGPU T-lines larity (sec) (sec) βGPU

39 32 0.82051 16.426 15.441 1.064 0 0 10.430 9.739 1.071
78 80 1.02564 34.011 23.484 1.448 3 0.03846 23.738 13.022 1.823
117 130 1.11111 51.318 32.611 1.574 6 0.05128 36.290 13.232 2.743
195 226 1.15897 87.761 49.335 1.779 12 0.06154 60.086 13.327 4.509
234 276 1.17949 103.348 58.480 1.767 15 0.06410 66.642 14.406 4.626
273 324 1.18681 123.364 67.356 1.832 21 0.07692 87.204 14.161 6.158

presented in the previous section. Table 5.3 presents the total clock times for simu-

lation of the various test cases created by interconnecting the building block 2 system

of Fig. 4.15 on page 67. These subsystems have only 3 buses and finer granularity

compared to those systems created using building block 1 subsystem of Fig. 4.13 of

page 65, and are interconnected with transmission lines as presented schematically in

Fig. 4.16 on page 68. Table 5.3 also includes total clock times to simulate similar test

cases created by interconnecting building block 1 system, without the power electronic

subsystem (this is essentially the standard IEEE 39 bus system). It should be noted

that the presence of switching in the subsystems does not affect the granularity. The

granularity depends on the number of subsystems and the interconnecting transmis-

sion lines but does not depend on the content of a subsystem. Total clock times for

simulating various test cases with larger granularity are presented in Table 5.3. Once

again, the duration of each simulation run was 10s, which used a 50µs time-step.

Table 5.3 lists the number of buses, number of transmission lines, granularity and

total clock times for simulating the various test cases on the CPU and GPU. It is to

be noted that the subsystem admittance matrices for various test cases created by

interconnecting building block 2 are much smaller in size compared to those created
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by interconnecting building block 1. Therefore, it was expected that the test cases

with smaller subsystems sizes would run faster than the others. But the actual sim-

ulation results (Table 5.3) are to the contrary. For example, for the more granular

system with 273 buses, constructed with the 3-bus building block 2, total simulation

times are 123.364 s and 67.356 s respectively on the CPU and GPU. On the other

hand, total simulation times were 87.204 s and 14.161 s respectively on the CPU and

GPU for the less granular system, with the same number of buses constructed using

the IEEE 39 bus building block 2. This is because the transmission lines increase the

computation burden in the test systems, which effectively reduces the total amount

of parallelism (as discussed earlier). Hence proper attention must be given to the

number of interconnecting transmission lines and the size of the subsystems, while

partitioning big networks into smaller subsystems. Initially, when only a few trans-

mission lines are present in the network, their computational burden is much smaller

than the computation time for the admittance matrix based network solution. How-

ever, increasing the number of transmission lines causes the computational burden of

transmission lines to become comparable to the admittance matrix related compu-

tations. Therefore, partitioning a large power system into many smaller subsystems

using transmission lines is not always efficient. For example, faster simulation may

result if larger systems are modeled on the GPU (i.e. reduced granularity) for a

system with extensive granularity.

5.6 Typical simulated wave-shapes of the proposed

GPU based EMT simulation

The main focus of this thesis was to demonstrate the performance gain in EMT simu-

lations using GPU computing. Therefore, simulated voltage and current wave-shapes

for large networks were not presented so far. It should be noted that the compar-
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Figure 5.4: Various voltages (AC, DC) and AC currents entering the converter in a
312 Bus system (simulated using the proposed GPU-based EMT simulation and the
commercial tool, PSCAD/EMTDC).

ison of GPU-based EMT simulation with a commercially available simulation tool

(i.e. PSCAD/EMTDC) was presented in Chapter 3, with a typical circuit example.

This section presents typical output voltage and current waveforms for a large net-

work, for visual demonstration purposes (simulated using the proposed GPU-based

EMT simulation and the commercial tool PSCAD/EMTDC [13]). Fig. 5.4 shows

the DC voltage at the output of the converter, the AC voltages at the input of the

converter, and the AC-currents entering the converter, simulated using the proposed

GPU-based EMT simulation, and the PSCAD/EMTDC for a system of 312-bus. DC

voltage is the rectified version of the ac voltage (due to the diode-bridge) at bus 277

of a 312 bus test system. The 312-bus test system was implemented by intercon-
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Figure 5.5: Voltage at bus 24 of a 39 bus system for a 3-phase to ground fault.

necting the building block 1 subsystem using transmission lines. Note that the diode

bridge was included only to demonstrate that switching could be included in the for-

mulation (as illustrated earlier). It is unlikely that such a bridge would be connected

in any real power system. A better example would have been to include an HVDC

transmission system. It should be noted that inclusion of HVDC systems (which will

require additional control sequences to determine the desired switching instances) will

not change the algorithms used to implement this basic power electronic switching.

Additionally, the main focus of this research work was on the development of the

simulation methods. Therefore, modelling and simulation of a more realistic power

system with HVDC or FACTS devices is left for future research. It should be noted

that switching operation changes the admittance matrix of the network, which re-

quires a new inverse admittance matrix to be inserted in the simulation. Therefore,
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implementation of switching requires additional logical operations in the algorithm to

determine the exact switching instant, which ultimately increases the computational

burden in the simulation. Therefore, switching was not implemented so far on the

GPU-based EMT-simulations. Similarly, AC-voltage at the input of the converter (as

shown in Fig. 5.4) is essentially the three phase AC-voltage from the source and the

AC-currents (shown in Fig. 5.4) are the currents entering the converter during various

switching instances. As can be seen from Fig. 5.4, GPU-computing produces exactly

the same results as produced by commercial tool (explained and graphically proved

earlier in Chapter 3). Similarly, Fig. 5.5 shows the voltage at bus 219, following a

3-phase to ground three cycle fault in a 234 bus test system. Again, this typical

fault was applied to demonstrate the capability of the GPUs to correctly handle the

computations related to a fault in the network. It should be noted that there is an

instantaneous change of the admittance matrix during the fault due to the change in

admittances in the particular bus in fault. The transients following recovery of the

fault are visible and balanced operation of the network resumes after about 100 ms

of fault clearance as can be seen in Fig. 5.5.

5.7 Chapter summary

This chapter presented the improvements in simulation speed achievable by imple-

menting EMT simulations using the presented GPU-based parallel computing tech-

niques. This chapter started with a brief overview of the earlier works on GPU-based

EMT simulations published in the literature by the author of this thesis and demon-

strated the proposed advanced parallelism techniques used in this thesis. It presented

details about the workstation used to demonstrate the presented GPU-based EMT

simulations. This chapter presented total clock times for simulating various test cases

using two types of granularity in the network. Performance improvements using GPU-
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based EMT simulation using the presented sparsity technique were also presented for

various test cases with different granularity. Significant improvements in performance

gain using the described GPU-based parallel EMT simulation were reported in var-

ious sections of this chapter. This chapter also demonstrated that dividing larger

networks into smaller subsystems using interconnecting transmission lines may result

in less performance gain on the GPU (if the granularity is high). Therefore, proper

care must be taken while sub-dividing large networks into smaller subsystems. Fi-

nally this chapter presented simulated voltage (DC, AC) and AC current wave-shapes

for the power electronic converter (simulated using the presented GPU-based EMT

simulation and the commercial tool, PSCAD/EMTDC). The simulated AC voltage

wave-shape in the event of a fault was also presented at the end. The conclusions

of the thesis and future directions of this proposed GPU based EMT simulation are

presented in the next chapter.
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Chapter 6

Conclusions and future directions

The main purpose of this thesis was to explore the potential to speed up electromag-

netic transients (EMT) simulation of large power systems using graphics processing

unit (GPU) based computing. The entire algorithm for the EMT simulation was par-

allelized to adapt it for the proposed GPU-based simulations. Additionally, various

component-related computations (such as, generators, transmission lines, etc.) were

also parallelized so that those can be implemented on the GPU in parallel. Various

techniques used in the process of parallelization have been discussed in the earlier

chapters, which were ultimately used to ensure optimal performance gain in the sim-

ulation. Output waveforms produced by the described GPU-based simulation were

compared to those produced by professional serial simulations to verify the correct-

ness of the presented implementation. The presented algorithm was evaluated and

improvements in performance gain were demonstrated using a workstation consisting

of CPU and GPUs. Various test cases to verify the proposed algorithm were designed

and simulated using the described GPU-based EMT algorithm.
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6.1 The main contributions and conclusions of the

thesis

i) A novel and potentially cost effective alternative (as most computers these days

are equipped with powerful GPUs, which do not require further investment) to

perform and speed up EMT simulation using GPUs is presented in this thesis.

Various test cases with detailed models for different components have shown that

GPU-based computations are significantly faster, even for dense matrix-vector

multiplication. So far systems with detailed models of generators, transmis-

sion lines, transformers and certain power electronics components in the network

have shown a speed gain of 40 for a network of 3870 buses (approx), using GPU

computing. It should be noted that the proposed algorithm can handle larger

networks than 3870 buses. The total clock times for simulation were approach-

ing saturation at this size of the network (as shown earlier), hence additional

test cases of larger size were not implemented. It should also be noted that the

GPU-based simulation of 3870 bus system required less than a minute compared

to more than half an hour on the CPU alone.

ii) The algorithm inside the EMT simulation was parallelized to adapt it to the

GPU-based computations. Various parallelization techniques for different com-

ponents were proposed and implemented on the GPU. These approaches showed

significant performance improvement of the GPU based EMT simulation.

iii) A special algorithm to deploy parallel threads in 2D-directions, was proposed and

implemented on the GPU to speed up the matrix-vector multiplication, which is
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required to solve the unknown nodal voltages.

This parallelized matrix-vector multiplication showed notable performance gain

in the simulation process. It should be noted that the matrix-vector multiplica-

tion alone may consume up to 90% of the total clock time for simulation, as was

noted in [34]. Therefore, its efficient parallelization is critical to obtain notable

speedup in the simulation process.

iv) A sparsity algorithm for the inverse admittance matrix is introduced to avoid the

unnecessary and expensive multiplications involving zeros.

It was observed that implementation of sparsity handling techniques, reduces

the total clock times for the CPU-based computations significantly and for the

GPU-based computations by a lesser but noteworthy amount. Inclusion of spar-

sity on the GPU has shown significant performance gain compared to conven-

tional CPU-based simulations.

v) As discussed in Chapter 2, a CPU processor is significantly faster in instruction

execution than a GPU-processor. However CPU processors can only perform

computations in serial. On the other hand, although the GPU processors are

more primitive than those of the CPU, the GPU’s parallel processing capabil-

ity eventually outperforms CPU-processors as the system size increases. The

research investigated the minimum size of the network required to outperform

CPU-based sequential implementations.

For the equipment used and test networks considered, simulation-based tests
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demonstrated that a system with a minimum of 55 nodes is needed for the pro-

posed GPU-based simulations to outperform CPU-based simulations.

vi) The research work also investigated the effect of building-block granularity on

the performance gain using GPU computing. There is a tradeoff between sub-

system size and the number of interconnecting transmission lines. In this case,

the communication overhead for a large number of transmission lines cancels any

advantage resulting from smaller matrix sizes. While dividing a large network

into smaller subsystems, proper care must be given not to create excessive gran-

ularity that requires too many interconnecting transmission lines.

vii) A typical power electronic subsystem was implemented and included in the as-

sessment of this work to demonstrate the capability of the GPU to perform EMT

simulation of a real power network.

viii) Parallel implementation of computations related to various power system com-

ponents (such as, transmission lines, generators, etc) on the GPU in parallel were

developed and included in the simulation process.

ix) Finally an algorithm was developed and included in the simulation process to per-

form history current calculations on the GPU in parallel. This also contributed

to the overall performance improvements using the GPU-based EMT simulations.
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6.2 Future directions

The algorithms and methodologies developed and explained in this thesis have great

potential for future research work. In this section major research directions taking

this research as a basis are introduced.

i) The current simulation platform is equipped with only one GPU. Further work

may be performed to apply multiple GPUs to simulate larger power systems

than those used in this work or to perform multiple simulations at the same

time. Multiple simulation at the same time may offer significant benefit to those

simulations requiring multiple runs (as individual runs will take significantly less

time and those runs will be in parallel themselves).

ii) A typical simulation based study on the effect of interconnection (using trans-

mission lines) density was performed in this thesis. More detailed study of the

effect of transmission line density on the simulation performance may open a new

window to further speed up EMT simulation.

iii) GPUs lack some fundamental computations based on integer and associated oper-

ations (as presented earlier) such as bit-shifts and bitwise logical operations such

as (AND, OR, XOR, NOT). EMT simulation especially with switching devices

require lots of logical operations to implement switching operations. Therefore,

future investigation is needed to perform the additional control related compu-

tations (to implement HVDC devices) on the GPU.

iv) In this work allocation of parallel threads for different part of the EMT sim-
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ulation, was performed manually. Further work is needed to investigate the

allocation of these jobs to the GPU processors automatically.

v) A standard electrical network with more buses and more detailed models for vari-

ous realistic power systems equipment may be included in the simulation process.

For example, simulation of a more realistic power system with HVDC and FACTS

devices may open a new window (which may involve new technique to implement

switching operations in parallel) for the GPU-based EMT-simulations.

vi) Another direction of future research work would be to investigate the possibility

of applying these GPUs for real-time EMT-simulations.

vii) As mentioned earlier, further exploration of the parallel memory access scenario

of the matrix-vector multiplication on the GPU may open a new direction for

further speed up the simulation process.

viii) This thesis included a CPU version of the matrix inversion algorithm. Further

work is needed to implement this matrix inversion on the GPU in parallel. Ad-

ditionally, in the case of power electronic switches in the network, this matrix

inversion has to be able to perform online (i.e. on the fly) computations. Future

work may be performed to implement online GPU-based matrix inversion for

EMT simulation.

ix) Finally, further work could be done in the direction of developing a dynamic

simulation tool for GPU-based EMT simulations. A dynamic simulation tool

will be able to partition the network automatically with the capability of choos-

ing the optimal block-size and number of parallel threads per block for the GPUs.
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[64] José R. Marti, L. R. Linares, J. Calvin̂o, H. W. Dommel, and J. Lin. OVNI: An
Object Approach to Real-Time Power System Simulators. International Con-
ference on Power System Technology, PowerCon’98, Beijing, China, pages 1–5,
August 1998.

[65] Gabriel Kron. Tensorial Analysis of Integrated Transmission Systems, Part III.
The ”Primitive” Division. AIEE Transactions, 71(3):814–821, 1952.

[66] D.A. Woodford, A.M. Gole and R.W. Menzies. Digital simulation of dc links
and ac machines. IEEE Power engineering Review, pages 36–36, June 1983.

[67] A.J. Gruodis and C.S. Chang. Coupled Lossy Transmission Line Characteriza-
gtion and Simulation. IBM Journal of Research and Develepment, 25(1):25–41,
January 1981.

[68] C.W. Ho. Theory and Computer-aided Analysis of Lossless Transmission Lines.
IBM Journal of Research and Develepment, 17(3):249–255, May 1973.

[69] Hermann W. Dommel. EMTP Theory Book. Microtran Power System Analysi
Corporation, 2nd Edition, Vancouver, 1992.

[70] Louis Bergeron. Du Coup de Belier en Hydraulique au Coup de Foudre en Elec-
tricite (Waterhammer in hydraulics and wave surges in electricity). Paris: Dunod
(in French), (English translation by ASME Committee, New York: John Wiley
& Sons, 1961), 1950.

[71] O. Alsac, B. Stott, and W. F. Tinney. Sparsity-oriented compensation methods
for modified network solutions. IEEE Transaction on Power Apparatus and
Systems, PAS-102(5):1050–1060, May 1983.

104



[72] Yousef Saad. Iterative Methods for Sparse Linear Systems. Society for Industrial
and Applied Mathematic, Philadelphia, PA 19104-2688 USA, 2003.

[73] Timothy A. Davis. Direct Methods for Sparse Linear Systems (Fundamentals of
Algorithms). Society for Industrial and Applied Mathematic, Philadelphia, PA
19104-2688 USA, 2006.

[74] GNU Operating System. available online at (Last accessed on March 20, 2013):
http://www.gnu.org/.

[75] Intel R© CoreTM i7-2600K Processor review. available online at (Last accessed on
August 20, 2014): http://ark.intel.com/products/52214.

105



Appendix A

Schematic algorithm of various ker-

nels used in this thesis

This chapter presents schematic of some of the kernel -functions as used in this the-

sis. As mentioned earlier, matrix-vector multiplication is the most time consuming

part in the EMT simulation. The schematic presented in Algorithm 1, explains the

algorithm used in performing matrix-vector multiplications. In this case, the whole

matrix was divided into number of blocks in the x and y axis directions (as mentioned

before in Fig. 4.6 of page 47) based on the programmer (or user) defined variable for

the Block-size. Each block is assigned with a unique id and is accessible from the

GPU. In this algorithm, number of threads per block is set during the compilation

process. Number of threads in the x and y axis directions (for each block) are equal to

the user defined parameter Block-size. The algorithm uses a loop counter to perform

the computations for all the blocks in the x direction and computations related to

the parallel blocks in the y-direction are performed according to their own Ids (for

various blocks and threads), in parallel on the GPU. In this case, all the y-direction

blocks are created in parallel by the kernel call, the size of these blocks (as mentioned

before) are equal to the parameter Block-size. The total number of blocks in the
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y-axis may or may not be equal to the number of blocks in the x-axis. In case of

a large test system, whole network is usually divided into smaller sub-systems using

transmission lines and hence contain different number of blocks in the x and y−axis

directions. For example, a 975 bus system, as presented in Fig. 4.14 on page 66, had

25-of those building block 1 system of Fig. 4.13 in page 65. In this case the admittance

matrix had a dimension of 2925× 117. If a block size of 3 was used in this particular

system (of Fig. 4.13 of page 65), then the number of blocks in the x-direction would

be equal to 39 and in the y-axis direction would be 975. A loop (as mentioned in

Algorithm 1), moves the multiplication process of various blocks along the x-axis.

Fig. A.1 shows the multiplication process in the very first iteration of the loop. In

this case, multiplication for all the rows in each block are performed in parallel and

also for all the blocks in that column (i.e. column of the admittance matrix in the

y-axis direction created by the border of the first iteration loop, as shown in Fig. A.1).

Each block contains equal number of threads in the x and y direction. As shown in

Fig. A.1, all the threads in each blocks are assigned to perform the multiplication

with the corresponding element in the vector. After the multiplication the result

is added to the previous multiplication results. This processes continues for all the

blocks in the x-axis direction. Finally, all the elements of one row of the temporary

matrix containing results of those multiplications are are added together to form a

vector and these results are copied to the corresponding block of the resultant vector

of voltages (as shown details in Algorithm 1 and Fig. A.1).

The schematic algorithm for updating history currents are presented in Algorithm 2.

As mentioned earlier, a table containing the values of inductive and capacitive branches

with the information of interconnecting nodes are prepared at the beginning of the

simulation process. During the simulation this whole table is divided into various

suitable blocks, depending on the amount of branches. During the computations, if
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the history current is related to capacitive branch it uses equation 3.2 of page 25

and in case of inductive branches it uses the equation 3.1 of page 25. There were

two different Kernel functions to perform calculations for capacitive and inductive

branch related history currents. Various parameters such as Block size, total number

of Threads, etc are set (by the programmer/user) at the beginning of the simulation.

Algorithm 1 Schematic algorithm for matrix-vector multiplication

1: Initialize:

Ny ← y−dimention of the matrix,
Bs ← Block size,
Nb ← (Ny/Bs) ← Number of blocks in the x− axis direction,
Temp[Bs][Bs] ← Temporaray result storage matrix (set initial values to zero).

2: for (i=1; i<= Nb; i++) do
3: Perform multiplication of each element of each of the rows of

the current matrix-block with the corresponding element in the

vector and sum the result with the previous result.

4: end for
5: for (i=1; i<= Bs; i++) do
6: Take summation of all the elements of each row of the resultant

matrix and save in a vector.

7: end for
8: copy the results to the resultant vector of voltages

Algorithm 3, shows the schematic algorithm for performing computations related to

transmission lines. Schematic equivalent circuit of transmission lines as used in this

thesis (i.e. Bergeron’s model) is shown in Fig. 4.9 on page 55. Also, transmission lines

related computations are presented in equation 4.3 on page 56. The algorithm starts

with converting the sending and receiving end voltages of every transmission lines

into modal domain using the modal transmission matrix (it also includes memory

access calls for various nodes). Next this algorithm performs computations related

to equation 4.3 of page 56 for all transmission lines in parallel (this includes memory

read write of previous modal currents as well). Finally, resultant modal currents for
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Figure A.1: Schematic of the matrix-vector multiplication on the GPU in one iteration
of the inner loop shown in Algorithm 1.

every transmission lines are converted back into time domain using the inverse-modal

transformation matrix (details are shown in Algorithm 3).

Next, Algorithm 4 and Algorithm 5 shows the schematic algorithms related to the

implementation of electrical generators on the GPU. Schematic equivalent circuit

of a synchronous generator with necessary mathematical equations are presented in

Fig. 4.8 on page 52. As mentioned earlier, synchronous generators are interfaced

with the main network using Norton equivalents. Generators related computations

are performed separately in the dq0 -domain. Algorithm 4 shows the schematic of

the kernel -function used to re-arrange the generator terminal voltages into a matrix,

which ultimately helps in faster access to the updated voltages on the generator

terminals. Fig. A.2 shows the schematic of the reformatting of various terminal

voltages using this kernel -function. As seen in the figure, before formatting the

voltage vector contains all the generator voltages in an arbitrary format into a single
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Algorithm 2 Schematic algorithm for history currents calculation

1: Initialize:

bx ← x−axis component for Block index,
by ← y−axis component for Block index,
tx ← x−axis component for thread index,
NRL ← Block size for the history current computations

2: Perform computations related to the history currents using:

3: Case of Inductive Branch:
4: Equation 3.1 of page 25.

5: Case of Capacitive Branch:
6: Equation 3.2 of page 25.

7: Copy the results to the history current vector

Algorithm 3 Schematic algorithm for Transmission line related computations

1: Initialize:

Trmat ← modal transformation matrix,
Trmatinv ← inverse of the modal transformation matrix,
bx ← x−axis component for Block index,
by ← y−axis component for Block index,
tx ← x−axis component for thread index.

2: Transform sending and receiving end voltages into modal domain

using Trmat
3: Perform transmission lines related computations using equation 4.3

of page 56.

4: Convert the modal domain currents (sending and receiving end) back

into time domain using Trmatinv

Algorithm 4 Schematic algorithm for the kernel -function to rearrange terminal
voltages of synchronous generators into a matrix form

1: Initialize:

bx ← x− axis component for Block index,
by ← y−axis component for Block index,
tx ← x−axis component for thread index,
Ngen ← total number of generators in the network,
V id ← matrix containing various terminal voltages of the generators with di-

mension is Ngen × 3.

2: Copy the new magnitudes of the voltages at different nodes

(connecting the generators) into the matrix V id (according to the

interconnection table containing the interconnection nodes of the

generators).
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voltage vector. After reformatting, (as seen from Fig. A.2) the voltages are fit into a

new matrix where various phases are assigned along the columns of the matrix and

various generators are assigned along the rows of the matrix. This helps in faster

access of various generator voltages using their corresponding block and thread Ids in

parallel. Algorithm 5 shows the schematic of various steps used in the other kernel -

function, which was used to calculate the values for current sources in the Norton

equivalents of generators connected in the main network. As mentioned earlier each

generators are assigned in a block with several threads to perform computations to

perform various computations related to each generator.

Algorithm 5 Schematic algorithm for synchronous generator computations

1: Initialize:

2: T (θ) ← time domain to dq0 -domain transformation matrix,

T (θ)−1 ← dq0 -domain to time domain transformation matrix,

bx ← x−axis component for Block index, by ← y−axis component

for Block index, tx ← x−axis component for thread index

3: Transform generator terminal voltages into dq0 -domain using T (θ)
4: Perform generator related computations using equations shown in

Fig. 4.8 on page 52.

5: Convert the equivalent currents (for Norton equivalents sources

connected in the main network) into time domain using T (θ)-1
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Figure A.2: Schematic of generator terminal voltage reformatting before and after
the kernel -function execution.
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Appendix B

Schematic of some of the test cases

used in this work

This Chapter presents schematic of various test cases used in this thesis. These net-

works do not represent any real system but they may represent hypothetically large

systems, which are used (in this thesis) to demonstrate the capability of the GPU to

perform computations related to any real power system. Fig. B.1 shows the building

block 1 test system consisting of an IEEE 39-bus system interconnected with a power

electronic subsystem as mentioned earlier. This system was used in the simulation

(details were presented before in section 4.5 on page 63) to create very large test cases

to implement very large and realistic power systems.

Fig. B.2 shows the schematic of 78-bus test system implemented using the building

block 1 system shown in Fig. B.1. In this case, two of those building block 1 systems

were interconnected using transmission lines. Three transmission lines were used as

link to interconnect two building block 1 systems. Fig. B.3 shows the schematic in-

terconnection of a typical 585-bus test system, used in this work. In this case 15-of

those building block 1 system were interconnected using transmission lines. Detailed
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interconnection of a typical building block 1 with its neighbours is also shown in this

figure. Similarly interconnected typical schematic for 195-bus and 390-Bus systems

are shown in Fig. B.4 and Fig. B.5 respectively. Other larger test cases were created

in the similar manner and a typical example of a 975 bus system was presented earlier

in Fig. 4.14 on page 66.

Fig. B.6 shows the schematic details of a 78-bus test system created using the

Figure B.1: Schematic of the 39 Bus test system interconnected with a power-
electronic subsystem, as used in this work.(links between various buses are imple-
mented using Π-equivalents)

building block 2 system of Fig. 4.15 of page 67. As presented earlier, this building

block 2 system is a 3-bus system used to demonstrate the effect of communication

114



Figure B.2: Schematic of the 78 Bus test system used in this work created by inter-
connecting building block 1 system of Fig. 4.13 of page 65.

Figure B.3: Schematic of details interconnection of the 585 Bus test system used in
this work created by interconnecting building block 1 system of Fig. 4.13 of page 65.
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Figure B.4: Schematic interconnection of 195-Bus system as used in this work created
using the building block 1 system of Fig. 4.13 of page 65.

Figure B.5: Schematic interconnection of 390-Bus system as used in this work created
using the building block 1 system of Fig. 4.13 of page 65.

Figure B.6: Schematic of details interconnection of the 78 Bus test system used in
this work created by interconnecting building block 2 system of Fig. 4.15 of page 67.
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bottleneck in the EMT-simulation. Fig. B.6 shows interconnection of 26 of those

building block 2 systems using transmission lines. This figure also shows the detailed

interconnection of a particular building block 2 system with its neighbouring blocks

using transmission lines. It is to be noted that these systems does not represent any

real power system but are hypothetical networks created to demonstrate the effect

of having increased number of transmission lines in the network. In this case also

larger test cases were created by interconnecting these building block 2 systems in the

similar manner as shown in Fig. B.6.

Fig. B.7 shows the schematic flow chart of a typical EMT-simulation. It starts with

reading the initial conditions for various equipment with a time, t = 0 (if initial time

is not specified). Then it reads the current admittance matrix and perform compu-

tations related to inverse admittance matrix. Then it enters into the main loop. It

update the vector of injected currents, determines the unknown nodal voltages. Then

it performs computations related to updating history currents for various inductive

and capacitive branches. It increases the total time, t by ∆t. Then it checks if there

was any switching instances in the network or not. In case there was a switching in-

stant it will return to update the current admittance matrix, otherwise it will continue

the loop with a time step of ∆t until the STOP -time of the simulation is reached.
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Figure B.7: Schematic flow-chart for EMT-simulation.
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