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ABSTRACT

In this dissertation we have considered three problems
of nonparametric inference, namely, (i) the estimation of
a probability density function and the mode when the sample
size Nt is a random variable depending on a positive
parameter t, (ii) the estimation of the shift between two
probability density functions, and (iii) the estimation
of a multivariate multiple regression function. In solving
all the three problems we have employed the so-called
kernel method of estimating a probability density function
and its derivatives.

In the first problem we have considered a situation
where the sample size Nt is distributed as an integer
valued random variable depending on a positive parameter t.
By making suitable assumptiogs on the convergence of Nt as
t tends to infinity we have proved, under certain regularity
conditions, the uniform strong consistency and the asymptotic
normality of the estimates of a probability density function
and the mode as t approaches infinity.

In the second problem we have considered the case
when we have two independent random samples Xl’XZ”"’X

m

and Y, ,Y

1 2,...,Yn coming from two distributions with proba-

bility density functions f and g respectively. It is



assumed that these two densities differ only in location
and their common form is unknown. Motivated by the like-
lihood principle, we have then defined an empirical like-
lihood egquation based on the kernel estimates of a proba-
bility density function and its derivatives. We have
found that under certain regularity conditions, the solution
of this empirical likelihood equation gives rise to an
estimate of the shift between the densities f and g, and
that the large-sample properties of this estimate are the
same as the large-sample properties of the corresponding
maximum likelihood estimate.

Finally, we have used the kernel method to estimate a
multivariate multiple regression function. We have proved
the uniform strong consistency of the estimated regression
function, and the joint asymptotic normality of the estimate

when this is computed at two or more distinct points.
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CHAPTER I

INTRODUCTION

1.1 Xernel Estimates of a Probability Density Function

and Its Derivatives

Let Xl’X2""'Xn be independent random varibles
having a common probability density function f and let

¢ be a real valued Borel measurable function such that

f d(w)dw = 1.

—

We now define %n(x) by

L) . (1.1)

where {an} is a seguence of posgsitive numbers converging to
zero as n tends to infinity. The function %n(x) in (1.1)
is said to be a kernel estimate of £(x).

Convergence properties of this estimate have been
extensively studied. We only mention here the works of
Rosenblatt [32, 341, Parzen [29], Nadaraya [26, 271,
Bhattacharya [5], Schuster T41] and Singh [45].

Multivariate analogues of the estimate in (1.1) for a
multivariate density have been considered among others by
Cacoullos (71, van Ryzin [53], and Epanechnikov [14].

For the one-dimensional case, let p > 0 be an integer

(p)

and denote by £ the p-th order derivative of f where



f(o) = f. Suppose that the kernel ¢ and its first (p+1)

derivatives satisfy certain regularity conditions. Then

(x)

for estimating f (x), r = 0,1,...,p Bhattacharya [5]

suggested the estimates given by

2 (r) S €3 S
£ X)) s ——7 T ¢ (), r=201,...,p ...(1.2)
na =1 n
n
and he studied their asymptotic properties. Schuster [41]

also studied the asymptotic properties of the estimates
in (1.2) and obtained their rates of convergence.
Singh [45] suggested different estimates for f(r)(x)

of the form given by

~(r) 1 n X_Xi
£ (x) = ——— I K( Y, r = 0,1,... c..(1.3)
n r+1 . a

nan i=1 n

where the kernel K is chosen such that
T% ? yjK(y)dy _ 1 if 3 =«
I e 0 if 3 # ¥, 3 =0,1,...,r-1
and later in Singh [47], he studied further asymptotic
properties of these estimates.
Yamato [59] and Davies [12] considered a kernel estimate

of £ given by

IR,
a . a .
173 ]

1

f (x) =

n ) ... (1.4)

o~ B

j

which has the following property:




Because of this recursive property, Yamato [59] called the
estimate in (1.4) a "seguential" estimate for a probability
density function. However, it was not until the works of
Davies and Wegman [ 13] and Caroll 8] that sequential density
estimation, in its proper sense, was investigated.

Now, suppose that the sample size is a random variable
distributed as a positive integer valued random variable
N, depending on a positive parameter t. On the basis of

t

Srivastava [48] considered an estimate of

X X I 4
l' 2’ 14 I
Nt
f(x) similar to that in (1.1) given by
R 1 Nt X—Xi
th(X) = E;g;‘ 'El ¢ ( ay ) ... (1.5)
t 17 t

and he studied its asymptotic properties as t approaches
infinity. He also attempted to prove the asymptotic normality
of this estimate when Nt and the secuence {Xi} are not
independent. However, his proof is incorrect as Caroll gl
has pointed out.

In Chapter II we have proposed an estimate of f(x) based

on xl’X2""'XN and given by
t

Nt 1 x-X.
T ——¢(—;——3—). ... (1.6)

a . .
1 73 J

. _1
Nt(x) N,
We have established conditions under which our estimate
given in (1.6) is uniformly strongly consistent and asymp-
totically normal. Following Parzen [29] we have also
proposed an estimate BN of the mode 6 of f(x) and we have

t
proved its strong consistency and asymptotic normality as



t tends to infinity.

1.2 Applications of Kernel Estimates to Statistical Problems

In this section we shall briefly mention some instances
where kernel estimates for densgsity functions and their
derivatives have been applied to statistical problems.

Parzen [29] and Nadaraya [26] considered the problem
of estimating a mode of a univariate probability density
function. Van Rvzin [53] and Samanta [37] considered the
estimation of a mode of a muitivariate density. Murthy [24]
applied the kernel method to the estimation of jumps, relia-
bility, and hazard rate. Bhattacharya [5] gave a solution
to the estimation of the Fisher information. Nadaraya [25,
271, Rosenblatt [33], Schuster [42], Schuster and Yakowitz
f43] all considered the estimation of regression curves
and Singh and Tracy [44] considered the same problem for a
special model where the conditional density of Y given X
belongs to a Lebesgue exponential family. 1In Singh [46],

a wide range of problems including those in econometrics

were suggested which could be solved by using the kernel
method. Rosenblatt [35] considered among other things a

test of independence using functionals of kernel estimates
for density functions. Ahmad and Lin 2] suggested estimates
for a vector valued bivariate failure rate. Aitken and
MacDonald [3]1 applied kernel-based density estimates to

categorical data and Titterington [ 511 explored their use



in this area. bopas and Fryer [10] used kernel estimation
techniques to determine the suicide risks among psychiatric
patients.

In this dissertation we shall apply the kernel method
in estimating the shift between two densities and also in
estimating a multivariate multiple regression function.

In the next section we shall briefly discuss the problem

of estimating the shift between two densities.

1.3 Estimation of the Shift Between Two Densities

Let Xl,X ,...,Xm be independent random variables

2
having a common probability density function f and
Yl'YZ""’Yn be independent random variables having a
common probability density function g. Suppose that there
exists a function h and two real numbers 61 and 62 such that

f(x) = h(x~61) and g(x) = h(x—@z) cea(1.7)
for all real numbers x. The number 8§ = 92—61 is said to be
the shift between the two densities f and g.

Let {mN} and {nN} be two sequences of positive integers

1im N
+ —= —_— =

such that mN nN N for each N and Nroo N A where

0 < X < 1. If h were known, then el and 62 could be estimated

Y Yn using the

separately from Xl’Xz""’Xm and Yl’ AR
N N
method of maximum likelihood by solving for tl and t2 in
the following eguations:
my h(l)(xi_tl)
T = 0 ...(1.8)
_, bh(xX;-t]) ,



and
(1)
N h (Yj—tz)

1 h(Yj—tz)

= 0. ... (1.9)

e~ B

3

Under certain regularity conditions on h (see Cramer [111,

p.500), the above equations have solutions th and t2N

which converge in probability to el and 62 so that

tN = tZN - th converges in probability to the shift 6.
Moreover, the estimate tN is asymptotically normally distri-
. . 1

buted with mean 6 and variance NA (1M T where

© 1) 2 © (1) 2

{51 (x)3 {n (x)}
J = = . .o .10
_o{ ) dx _oj; - ax (1.10)

Further properties of the estimate tN can be found in Wald
[54]), Lecam [18], and Chernoff [91.

The nonparametric counterpart of this problem arises
when h is unknown. Many nonparametric estimates of 6 have
been suggested in the case when h is unknown. For testing
the hypothesis H : = 0 against H_: 8 > 0, Wilcoxon [57]

proposed the statistic W given by

n
N
W= I R, e (1.11)
j=1
where Rj, j o= l,...,nN are the ranks of the observations
Yl'YZ"'°'Yn in the combined ordered arrangement of the
7 N
two samples Xl'x2""'XmN and Yl’YZ""’YnN' A large-sample

confidence interval for 6 based on the Wilcoxon's statistic

is discussed in Lehmann [20]. Hodges and Lehmann [15]



proposed a point estimate of 6 based on the statistic U of
Mann and Whitney [ 231 (which is egquivalent to the statistic
W) where U is given by

N Oy

U = .z ‘z I(Xi,Yj) ... (1.12)
i=1 j=1
and where
1 if b > a
I{a,b) =
0 otherwise.

The Hodges-Lehmann point estimate 6§ of 6 based on the Mann-
Whitney statistic is given by

5 = median of {Yj-Xi, i = l,...,mN, j = l,...,nN}.
The small-sample and large-sample properties of this estimate
are discussed in Hodges and Lehmann [15].

Asymptotically efficient nonparametric estimation of
6 has been the subject of intense research in recent years.
An estimate GN of 68 is said to be asymptotically efficient
if the limiting distribution of VNA(l-A) {BN—G} is a normal
distribution with a variance which attains the Cramer-Rao
lower bound given by 1/J where J is the Fisher information
as defined in (1.10). The existence of nonparametric
estimates of 6 having this property was first indicated
by Stein [49].

van Eeden [52] proposed asymptotically efficient rank

estimates of 6 based on a fraction of the N observations

Xl""'xm , Yl,...,Yn . Beran [4] used all the N observations
N N



in constructing an estimate of 6 that is asymptotically
efficient. Weiss and Wolfowitz [56] considered simultaneous
estimation of the shift and scale parameters in the two-
sample problem and Wolfowitz [ 58] continued this work for
scale parameters.

Analogous estimates for the location parameter in the
one-sample problem have been chsidered among others by
Stone [50] and Sacks [36].

Motivated by the maximum likelihood method for estimating
the shift 6 in the two~sample problem, Bhattacharya [6]
proposed a nonparametric estimate of 6 by first reducing
one sample to a frequency distribution over a fixed set of
class intervals. He then defined an "empirical likelihood
ineguality" and proved that this empirical likelihood inequa-
lity has a solution (in some sense) which converges in
probability to 6. He also showed that the asymptotic
efficiency of his estimate relative to the maximum likeli-
hood estimate is equal to the ratio of the Fisher information
in a grouped observation to the Fisher ihformation in an
ungrouped observation.

Samanta [ 38] improved the method of Bhattacharya by
defining an empirical likelihood equation using kernel
estimates of a probability density function and its deriva-
tives. He proved that with arbitrarily high probability
this equation has a solution %; which is consistent for 6.

He also proved that VNA(1-X) {%;—8} has an asymptotic normal



distribution with a variance egqual to 3———A—TET where ay
g17%2

and a, (al < a2) are two arbitrarily fixed real numbers

chosen in advance,

2
{f(a.)} 2 {f(l)(x)}z {f(a2)}
F(a_.) f(x) 1-F(a.,)
a 2
... (1.13)

and F(y) is the distribution function of f(+*). The guantity

Ja A (f) has the property that although it is less than J
1772

it converges to J as ay and a, approach -« and +« respec-—

tively.

In this dissertation we have further improved the
method of Samanta [ 38]. Using kernel estimates of a pro-
bability density function and its derivative, we have
devised a nonparametric estimate of 6 which we have shown
to be asymptotically efficient. In Chapter III we shall
first describe our method, then obtain an estimate TN of
® and proceed to study its asymptotic distribution using
the theory of a two-sample U-statistic. We shall also
describe a simple computational procedure which leads to
an estimate %N of 6 having the asymptotic properties
possessed by TN. We shall then apply our method to the
estimation of a location parameter in the cne-sample problem.

In the next section we are going to discuss the
problem of estimating a multivariatermultiple regression

function using the kernel method.
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1.4 Estimation of a Multivariate Multiple Regression

Function

Let (Xli""'xp i Yli""'szi) , 1 =1,...,n be n

1
independent observations of a vector random variable

X

—_— 1

{ } = (Xl"'°'xp ' Yl""’Yp ) having the joint distri-
Y 1 2
bution function ?(xl,...,xpl, yl,...,ypz) and the joint

probability density function f(x Yyree-r¥ ).

r o1 X ’
1 Py Py

We denote the joint distribution function and the joint

probability density function of (Xl,...,XP ) by
1
G(x.,...,x ) and g(x,,...,x ) respectively. The expecta-
1 p 1 p
1 1
tion of Y given 5' = (xl,...,xp ), denoted by E(X[& = x)

1

defines the regression of Y on X and is given by the

pz—dlmen81onal vector (ml(xl,...,xp ),...,mP (xl,...,xp ) )
1 2 2
where for 1 = 1,...,p,, m.{(x.,,...,%X_ ) is given by
2 i 1 1
m, (x,,...,X% )
i1 Py
f.-fy flx,,eeesX_ 4 Yyrewo-ry Ay, ,--.,4dy
e L 1 Py 1 P, 1 P,

Let ¢i(y), i = l,...,pl be P,y univariate probability
density functions and let {an} be a seguence of positive
numbers converging to zero as n tends to infinity. Following
Nadaraya [25, 27] and Watson [55] we shall propose a

nonparametric kernel estimate for the population regression



11.

function given by (mln(xl,...,xp ),...,m.p n(xl,...,xp ))
1 2 1
where
m (X 7 . r X )
in 1 pl
p -
n 1 Xl ij
T Y, T ¢, )
oy 13 o4 L a,
= 3 ;1= 1,...,p, ... (1.14)
n Pl XQ—XQ.
n g, (D)
j=1 =1 n

Let S be a closed set in the pl—dimensional Euclidean
space such that ;Z: g(§) = u > 0.

The problem of estimating the regression function when
P, = P, = 1 was considered among others by Nadaraya [25, 271,
Rosenblatt [33], Schuster [42], and Schuster and Yakowitz
[43]. Schuster [42] proved the asymptotic joint normality
of the estimates of the regression function at g distinct
points. For arbitrary p, and p, = 1, Ahmad and Lin [1]
considered the estimation of a multiple regression function
using a recursive-type of kernel estimate for a probability
density function given in (1.4) and they proved the asymp-
totic joint normality of the estimates when these estimates
are computed at g distinct points in S. One of the regu-

larity conditions assumed by Ahmad and Lin [1] is that

g(]y]>

X = x) 1is a bounded function over the entire Py-
dimensional Euclidean space. This assumption, however,

excludes very important classes of reagression functions.



In this dissertation we
of estimating a multivariate

for the special case when P,

12,

have considered the problem
multiple regression function

=p, = 2. By assuming that

3+ .
n](oo 1 =

7

for arbitrarily small n > 0, E[lYi] 1,2,
we have also studied the asymptotic joint distribution
of the regression estimates when these estimates are
computed at two distinct points in S. We have discussed
how these results can be extended to the case when Py
and p, are arbitrary and the regression estimates are
distinct points.

computed at g (g > 2)

1.5 OQutline of the Dissertation

In the next chapter (Chapter II) we discuss the
problem of estimating a probability density function
and mode when the sample size is random. In Chapter III
we consider the problem of estimating the shift between
two densities and finally, in Chapter IV, we examine
the problem of estimating a multivariate multiple
regression function.

All integralsgs in this dissertation will be under-

stood to be Lebesgue integrals.
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CHAPTER II
ESTIMATION OF A PROBABILITY DENSITY FUNCTION

AND MODE WHEN SAMPLE SIZE IS RANDOM

2.1 Introduction and Summary

Let X_,X

1 2,...,Xn be n independent observations of a

random variable X having the probability density function
f(x). Yamato [59] and Davies [12] have studied the asymp-
totic properties of the estimate fn(x) of f(x) given by

Xx—-X.
1 b ( J

a ., a .
1 73 3

[ne ]

Folx) = = ) . (2.1)

n

I}

3

where ¢ (u) is a continuous probabilitx density function
and {an} is a monotonically decreasing sequence of positive
numbers converging to zero.

In many practical situations the number of observations
Nt which we observe in time (0,t)] is a random variable.
For example, we consider the problem of estimating the
probability density function of the waiting times of
customers at a service station and we may assume that the
number of customers Nt arriving in time (0,t] is a Poisson
random variable with parameter 7t (m > 0).

Considering such problems we assume that for any

t > 0, Nt is an integer valued random variable. Let
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Xl’XZ'X3""' be independent observations of X having the

probability density function f(x). The random variables

Xl,X2,X3,... need not be independent of the random variable
Nt. In this chapter we consider the estimate fér)(x) of
t

(x)

the r-th derivative f (x) (r = 0,1,2,...) based on

Xl,X2,...,XNt and given by

' t x-X,
fl\(]r)(x) - ﬁl 5 r+l~1 6 (¥ —2) L(2.2)
t t j=1 aj 3

)

where ¢(r (u) is the r-th derivative of ¢ (u).
If ¢(u) is so chosen that ¢ (u) tends to 0 as u tends

to +», then for every sample seguence fN (x) is continuous

t
and tends to 0 as x tends to +e. Consequently, there is a
random variable BN such that
t
max
£ (6 )y = £ (x). . (2.3)
—w< x<
Nt Nt @< <™ Nt

Similarly, if the probability density function f(x) is
uniformly continuous, then f(x) possesses a mode 8 defined

by

F(8) = TEX eixy. L. (2.4)

—o< < w

We consider 6N as an estimate for 6 and we shall assume
t
that 6 is unique.

In this chapter we have proved that under certain

(xr)

N
t

uniformly (uniform in x) strongly consistent and the sample

regularity conditions the estimates £ (x) in (2.2) are

mode © in (2.3) is strongly consistent (Theorems 2.1 and
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2.2). We have also shown that under certain conditions

(r)(x), r = 0,1 and GN are asymptotically
t t
normally distributed (Theorems 2.3 and 2.4). These four

the estimates f

theorems can be regarded as appropriate extensions of the
earlier results due to Parzen [29], vamato [59], and
Davies [12].

Some allied work in this area has been done by
Srivastava [ 48], Davies and Wegman [13], and Caroll [81].
However, our methods are fairly standard, and working with
the derivative of the density function, we have been able
to derive the asymptotic normality of the estimated mode
as well.

2.2 Asymptotic Normality of £ (x) and fél)(x)

We assume that the function ¢ (u) and its first derivative

(1)

¢ (u) satsify the following conditions:
lim
- lug (w) | = 0o ... (2.5)
L e M @] < e ana fle M fau < e .. (2.6)
]iifm |u¢(l)(u)] =0 .(2.7)

We note that Condition (2.5) and the existence of

(1) sup

—m< < ® |¢(u)| < w., Let C(f) denote

¢ (u) imply that
the set of cdntinuity points of f(x).

Lemma 2.1. Let K(u) be a real-valued Borel measurable

function. If x ¢ C(f) and if
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—w(ilji | (u) I < o

f IK(u)Idu <
and

]inw luk(u)| = o

then for any 7n > 0

U kD [T e xmy) ay
n -—o n

lim
n-—>oo

Il+n

- £(x) J[]x(y) dy|} = o.

Proof. We note that if

sup

o< < lK(u)! < o

and

f |K(u)|du < o,

-0

then for any n > 0

f ]K(u)'l NTdu < o,
The rest of the proof follows along the lines of the proof
of Theorem 1A of Parzen [297.

Lemma 2.2. Let {gn} be a sequence of functions converging

to a function g at a point y as n tends to infinity. Then

gj(y)} = gly).
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proof. This is a well known result in calculus.

Lemma 2.3 Let {vnj’ j = 1,2,...,n; n=1,2,3,...} be a

uniformly bounded double array of numbers such that

N~
<
—t

il
<

=1
Let {gj} be a sequence of functions converging to a function

g at a point y as Jj tends to infinity. Then

lim 1 &
IR Selip angj(y)} = vg(y).
j=1
Proof. The proof of this lemma follows from Lemma 2.2 in

conjunction with the inequality

1 n
= I v .g.(y) - vgl(y)]
n 5=1 nj-~j
L os vl
< = I v L llastv) - gy |
n 5=1 nj 3
n
1
+ |g(y)Hn jil Vaj T v].

We now assume that for some real numbers s > 1 the

sequence {an} satigsfies the following condition:

n
5 (%) =y < . e..(2.8)
= aj

Lemma 2.4. Let ¢ (u) and ¢(l)(u) satisfy Conditions (2.5),
(2.6), and (2.7) and the seguence {an} satisfy Condition

(2.8). If x € C(f), then for r = 0,1 and for any n > O
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n a o

lim ,1 n,s 1 (x) vy, 1+n _

mow 15 I () / gfl¢ (=) | £(x-y)dy}
j=1 J - 7 J

- OO

where

(o)

o) (u) = ¢ (u).

Proof. We let

®n.s
Y o = (—)
n a.
J J
T 1+
g.(x) = [ == 1o Xy T (x-y)ay
3 a. a.
-] 3
and
< 1+
g(x) = f£(x) f }¢(r)(y)l ndy.
We note that IYnd <1 for all j = 1,2,...,n; n = 1,2,3,...

and by Lemma 2.1

lim
jre 95

(%) g(x).

An application of Lemma 2.3 completes the proof.

(r)

n

We assume that the estimate £ (x) is defined in a

similar manner as in (2.2), i.e.,

n Xx—-X.
(x) 1 1 () j
fn (x) = n 2 r+1 ( a.
= a., J

Lemma 2.5. Let ¢ (u) and ¢(l)(u) satisfy Conditions (2.5),

(2.6), and (2.7), and the seqguence {an} satisfy Condition

(2.8) for s = 1,2,3. If x ¢ C(f), then for r = 0,1
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[ee]

(x)

lim 1+2r _ (r) 2
e [nal T{var(s T} =y, £(x) _i "7 (w) [ au
Proof. We have
nat T rvar{£ ) (x) 1)
n n
n a o
L Sl PR LSV L Y PRSI
n . a . .
=1 73 ~o 7] 3
a

By Lemma 2.1 we get for r = 0,1

Lim [;i J |¢(r)(g§)!2f(x—u)du] -t J [0 (uy [ Pau

and

o f;i B ¢(r)(g§)f(x—u)du]2 = e60 o) (w)aud?

An application of Lemma 2.4 completes the proof.

Remark 2.1. If a, = n_s, § > 0, then for s > 0
lim {l 2 (ig)s} _ lim {156+256+s..+n56} _ 1
n>® n n-—>o 1+s6 1+sd6°
j=1 J n

For a proof of this result see page 46 of Korovkin [17]1.

Since I%g < 1 we note that for this particular choice of
{an} the asymptotic variance of fn(x) is smaller than the
asymptotic variance of the estimate given in Parzen [29].
This fact was first observed by Yamato 59] who proved

Lemma 2.5 for r = 0. However, his proof is based on the

incorrect assumption that a probability density function
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continuous on (-«,®) is necessarily bounded.
We now assume that the seguence {an} satisfies the
condition

lim

Cim ma_ = . ce.(2.9)

TLemma 2.6. Let ¢ (u) and ¢(l)(u) satisfy Conditions (2.5),
(2.6), and (2.7), and the sequence {an} satisfy Condition
(2.8) for s = 1,2,3 and Condition (2.9). If x € C(f), then

for r = 0,1

(nalt2ryip ¢ () (x) - E{£ ) (x)}7
n n n

converges in distribution to a normal random variable with

mean zexro and variance

Y1an £ T 10 () [aud.

142 e
Proof. We note that Yamato [ 591 has proved this lemma for
r = 0. The proof for r = 1 can be accomplished in a similar
way. We define for r = 0,1
x-X.
(xr) _ 1 (r) -
Wj (x) = iy ¢ (a_ Y, 3 = 1,2,...,n
a. J
Then
n
£ (x) == 1 owi .
j=1

To prove the lemma it suffices to show that for some ¢ > O

(see Loeve [21], p.275)
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(r)

Wit (x) - E{Wj }|2+6

(x)

... (2.10)
8
1+ 3

() (%))3

n
{ z Var(Wj

converges to zero as n tends to infinity. Now, the expression

in (2.10) is equal to

1+2r 1+ 2
a

n
n

(x)

(r)(x) - E{wW.
]

n
[z El|w,

‘ 246
j=1 J

(x)} 1

1+ 2

2

1+2r )
a

[n

{var (£ %) (x))}]
n

By Lemma 2.5, the denominator of the above expression
converges to

£(x) [ l¢(r)(u)lzdu]

-0

] 2
Yisor

as n tends to infinity. Hence, to prove the lemma it suffices
to show that the numerator of the above expression converges
to zero as n approaches infinity. Using the Cr—inequality

(see Loeve [21], p.155) we have

ai+2r‘l+ 2 n (r) (r) 248
—_;__J [ I E!W. (x) - E{wW. (x)}( ]
j=1 ’
al+2r 1+ % n
< 21+5[ n ] [ r elwl® o279
- n j=1 J
al+2r 1+ % a
+ 21+5{ nn [ 2 IE{Wgr)(x)}|2+6]. c..(2.11)
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Now,

(x)|2+6]

n a 1+ $ +r (2+§)
( n) 2
j=1 (naj) aj

- ) |¢(r)(g—z)f2+6f(x—y)dy

J 3

1T r) _y
< ——73 5 * | g“ | & (=)
(nan) j=1 - 3

]2+6f(x—y)dy].

From this inequality, using Lemma 2.1 and Lemma 2.2 and

Condition (2.9) we conclude that

{ Jl+2r 1+ o
lim [ n {3 Elwgr)(x)|2+6} - 0.
n->o L n _ :]

j=1
For the other term in the right hand side of (2.11), we have

1+2r 1+ ﬁ
n 2. (r) 246
*—E——J [T |E{W. (X)}] ]
j=1 )
1+ g
a n a_ r(2+98) ©
n 1 n 1 (r) v 2+6
= [= & (3 | [ — (L) £ (x-y)dy]
n6/2 n 5=1 aj -5 aj aj
§
a1+ '5 . N
" n 1 1 (r) 2+8
s 1 e T ey
n j:l — o0 3 J

From this inequality we conclude in a similar manner that
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al+2r 1+ g n
114 n 246
rm [——-—] [r Jetw™ 0 3]?%%) = o.
n-re n . b
j=1
This completes the proof of the lemma.
We now assume that the function ¢ (u) and the seguence

{an} satisfy the following conditions:

Jlul¢(u)au < ... (2.12)

- 00

1
n

o3

a. < Ca (C >0), n=1,2,3,... ... (2.13)
1 2~ "

j
Lemma 2.7. Let ¢ (u) and ¢(l)(u) satisfy Conditons (2.6)
and (2.12) and the sequence {an} satisfy Condition (2.13).

If for r = 0,1 the first (r+l) derivatives of f(x) exist

and are bounded, then

//na“rzr sup [E{f(r) (x)} - g () (x)1 = O(na3+2r)l§.
n —o{y <o n n

Proof. For r = 0 we have

le{s_(x)} - £(x)]

1 21 g -
== 3 —= [ ¢EH r(wau - £(x) |
n . . a. a.
j=1 "] - J
1 27
= |= & [ f(x-a.w)¢(uw)du - £(x)]. ... (2.14)
n j=1 -e J
For r = 1, we integrate by parts to get
le(el M oy - 2
n <o
-2 2 =2 oM EDrwan - £ 0]
j=1 a“ - 83
3
N & B (1)
= |z [ = (x~aju)¢(u)du - £ (x)]. ...(2.15)
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In (2.14) and {(2.15) expanding f(x—aju) and f(l)(x—aju)
around x to the order of aj we get for r = 0,1
sup (r) (r)
cwegew IELE 7700} - £777 (x) |
sup (r+1) ¢ 1 B
S omexew | £ (x) | f_lu‘¢(u)du{g I a.}
- ]:l 3
< Ca
- n

where C is a positive constant. The proof of the lemma

follows from the above observation.

-8
Remark 2.2. If a = n , 0 < 8§ < 1, then

L 4, (see Korovkin [17], p.26).

1
n 5 2 (1-8) %n

N~ s
W]

j=1
Thus, Condition (2.13) is satisfied for this choice of {an}.
Lemma 2.8. Under the conditions of Lemmas 2.6 and 2.7, if

for r = 0,1, nai+2r = o(1l), then,/nai+2r'{fér)(x) - f(r)(x)}

converges in distribution to a normal random variable with

(o]

mean zero and variance Yl+2rf(x){ / |¢(r)(u)lzdu}.

—_ 00

Proof. We have

\)na1+2r [f(r)(X) - f(r)(x)]
n n

:‘/nai+2r [f(r)(x) - E{f(r)(x)}]

n n

+ Jnai+2r [E{fér)(x)} - f(r)(x)]
= Vnal™T el oo - me T 031 v 0,

n
by Lemma 2.7. The desired conclusion now follows from

Lemma 2.6.
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2.3 Uniform Strong Consistency of the Estimates

£ (%), s =0,1,...,r
n

We define

a(t) = f eitxf(x)dx

and

k(t)

[ 1% (x) ax.

We now assume that for some integer r > 0 the following
conditions on the functions a(u), ¢(u) and k(u) and the

sequence {an} are satisfied.

[ e Ja(w) [au < ...(2.16)
J ' lx(u)|au < = L (2.17)
lx(w)] < |k ] if |u] < |w| ... (2.18)
J [¢(S)(u)]du < o, s =1,2,...,r ce.(2.19)
. a
im oy 0y o ...(2.20)
n->w
n+1
” 1
b © ...(2.21)
n=1 (nal+r)2
n
2 1 1 1
nil na2(l+r)_l an+1 ) an =T ...(2.22)
n.

lim [ 2(1+x) _ .. (2.23)
n->o n
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We note that Condition (2.16) implies that the first (r+1)
derivatives of f£(x) are bounded and Conditon (2.19) means
that ¢ (u) and its first (r-1) derivatives are functions

of bounded variation on (-w,®).

Lemma 2.9. If Condition (2.12) and for some integer r > 0
Conditions (2.16) through (2.23) are satisfied, then for

s = 0,1,...,r

wlte 15,5 0 - £ G0

converges to zero with probability one as n tends to infinity.
Proof. For r = 0, the proof has been given by Davies [12].

The proof for r > 1 can be accomplished along the same lines

as in Davies [12] and is omitted.

Remark 2.3. If we chose ¢(y) to be the standard normal

o . . -6 1
= < < —
probability density function and an n , O 8 5 (1+r)

then Conditions (2.17) through (2.23) are satisfied.

(s)

N
t

(x),

2.4 Uniform Consistency of the Estimates f

s = 0,1,...,r, and the Sample Mode GN
t

We now prove the following theorem.

Theorem 2.1. Suppose that Condition (2.12) and for some

positive integer ¥ 2 0 Conditions (2.16) through (2.23)
are satisfied.

(a) If for every € > O

t >

then for s = 0,1,...,r

N
P{I_E_ﬂl > e} =0, 0< 7 < o, ... (2.24)
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sup (s) (s)
—~o<< x <o lth (X) - f (X)l

converges in probability to zero as t tends to infinity.

(b)) If
N
lim t
P{t_m—;g—ﬂ}—l, 0 < 7 < o, ... (2.25)
then for s = 0,1,...,r

sup (s) (s)
ey lth (x) = £ 77 (x)]

converges to zero with probability one as t tends to

infinity.

Proof. For any s = 0,1,...,r let
_ sup (s) _ c(s)

W= oote £ - (0]

and
sup (s) (s)
W, oo= £ 77 (x) - £ 77 (x)].
—_—n <L < o
Nt X Nt

To prove part (a) of the theorem, let € and n be arbitrarily

small positive numbers. By Lemma 2.9 we can find an integer
m, = no(e,n) such that

P{Wn < % for all n greater than no} >1 - n
and

P{Iwm+n - W | <3 for all m whenever n > no} >1 - n.

From (2.24) we can also find to = tO(E,n) such that for
t > t we have
o

P{INt - mt| < et} > 1 - n.
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Let Ni = [t(wm-€)] and Né = [t(m+e)] + 1 where [x} denotes
the integral part of x. We now choose t > tO such that
1]
> .
Nl n Then we get
<
P{wN e}
t
> < . - < . - < =
> P{WN e; |n -7t ety |w, wnl > for some
t t
] 1
integer n lying between Nl and N2}
€ €
> p{w_ < =; |n_-mt| < et; |w _-w_ | < = for all
- n 2 t m n 2
. . 1 t
integers m and n lying between Nl and N2}
> P{Wn < % for all integers n lying between Ni
H
and N2}

- P{INt—ﬂtt > et}

- P{lwm—wnl > for all integers m and n lying

Njm

] ]
between Nl and NZ}

> 1 - 3n.

For a proof of part (b) of the theorem we refer to
Srivastava [48J, p.80.
We now recall the definitions of the sample mode

GN and the population mode 6 given in (2.3) and (2.4)
t

respectively.
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Theorem 2.2. If the Conditions of part (b) of Theorem 2.1

are satisfied for r = 0, then the sample mode eN converges
to 6 with probability one as t tends to infinity?

Proof. The proof follows from the fact thatisince f(x)

is uniformly continuous with a unigue mode 6, for every

€ > 0 there is a § > 0 such that lf(x) - f(9)| > 8

whenever ]x - 6| > €.

2.5 Asymptotic Normality of fér)(x), r = 0,1
t

We assume that the random variable Nt satisfies
Condition (2.24). Then for every € > 0, there exists

t =t (€) such that for t > t we have
o o) - o

pln, - me| > mee} < e.

We define

Nl = [mt(l-g)]

and

N2 = [mt(l+e) ]

where [°] denotes the greatest integer function.
1
We note that for any 0 < € < % and t > Te the numbers

Nl and N2 defined above satisfy the following inequalities:

N
2 1+¢€ 2 1 3€
—= < <

Nl 1-7¢ and Nl T-5¢° ceol2.26)
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We define for r = 0,1
-X
(r) 1 (r) *7%5
Wj (x) T+r ¢ ( . ) .. (2.27)
a, 3
J
o (r) (r)
S (x) = 3 {w."(x) - £ (x)} ...(2.28)
m,x . J
j=1
and
max n (r) (r)
Zr(x) = N <n<N pX [wj (x) - E{wj (x)3}3]...(2.29)
177-"2 =N+l

In order to study the asymptotic distribution of

+
Nta; 2r [fér)(x) - f(r)(x)], we find it convenient to choose
t t
a specific sequence {an = n~6’ n=1,2,3,...}, where § is

some positive number. With this choice of {an} we have

the following lemma.

(1)

Lemma 2.10. Let ¢ (u) and ¢ (u) satisfy Conditions (2.5),

8y s s 0. Ifx e cC(f),

(2.6), and (2.7), and {an = 1
then for any 0 < g < %, t > F% and r = 0,1, we have
1o 5
3 1 Ce l+e,8(1+2r)
P IZ > R a— <
r(X) Z ¢ a1+2r 1-2¢ (1—28)
i M1
where C is a positive constant.
Proof. By Kolmogorov's inequality,
l._.___
L o ]
PlZ (x) > s3 —-l—
Y - 1+2r
N
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N
2 (r)
5 Var{Wj (x)}
j=N_+1
. 1
|-
1+2r
N
1
N2 (r) 2
) E{er (x) |
3=Nl+l
< 2
E? Ny
1+2r
Ny
V2 1 T1
5 —=— [—= s (Y)I £f(x-y)dy
N +1 al+2r 8.
_ j=N, 5 3 3
2 x
3 1
1+2r
ey

By Lemma 2.1 for any fixed x € C(f) and r = 0,1, the sequence

{ f gl ! )(;X)]2f(x—y)dY: j = 1,2,...} is bounded. Using
- J

this result and the inegualities in (2.26), we now conclude

1
that for any 0 < € < % and t > oy and r = 0,1

( l+€)6(l+2r)
1-2¢

1
3
<
- 1-2

Ce
1
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where C is a positive constant.

(1)(u

Lemma 2.11. Let ¢ (u) and ¢ ) satisfy Conditions (2.6),

(2.12) and {an = n—é}, § > 0. If for r = 0,1 the first

(r+1) derivatives of f(x) exist and are bounded and if

0 < e < %, &t > L and & > 1 , then for all n such that
TE 3+2«r
N, <n <N,
1+2r
aN n
sup 1 o e(w!T 01 - £F ] £
—co < 3 < o N . ] 1-2¢
1 Jj=N_ +1
1
where C is a positive constant.
Proof. For r = 0,1 we obtain from the proof of Lemma 2.7

that for all n such that Nl < n < N

- 2
n
X [E{W;r)(x)} - f(r)(x)]
j=Nl+l
sup (r+1) < n
S i acyew If (W | ] Juléwaul{ ay)
—® j=Nl+l
C
< 3 (N2 - Nl)aNl.
Hence,
1+2r
N n
oop 1 5 fefw' ™) (x)1 - £ (27
—0<l <o N
1 3=N1+1
C(N,-N,) (n.a3+2r)h
- 3Nl 1 N1
_ Cmy-Ny) (1= (3+21) )%
B 3N 1
1.
Cce

1A

1-2¢
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Theorem 2.3. Let ¢ (u) and ¢(1)(u) satisfy Conditions (2.5),

(2.6), (2.7) and (2.12) and {an = n_‘s}, § > 0. If for

r 0,1, the first (r+1l) derivatives of f(x) exist and are

1+2r

< 8 < 1, then N a {f (r)

bounded and if (x)1}

(r)
N (x)~£f

1
3+2r
t t
converges in distribution to a normal random variable with

o

mean zero and variance yl+2rf(x) f |¢(r)(u)!2du as t tends

— OO
to infinity.
Proof. The proof resembles that of Theorem 1 in Renyi [31].
let € (¢ < %) be an arbitrarily small positive number. Let
t > t where t =t (g) > 1 and let N, and N, be chosen
- o0 o o TE 1 2

as before.

We have for r = 0,1 and yv > O
Pl fu, al™" (£ ) - £ 0} < oyl
t N N
t t
- T pLfnal®®® (£ - £ 0y < yiow, = )

1228 /nal+2r {f(r)(x) - f(r)(X)} < y;
n n

ln—wt|<ﬂte

N, = nl
£ n.

+ z [ [nal*?” {fér)(x) -2y <y

ln—ﬂt]iﬂtE
N, = nl

t
X Pl /nai+2r {fér)(x) - f(r)(x)} < y;

]n~nt[<ﬂt€

I A
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Hence,
| pl ,/Ntal+2r {f(r)(x) - f(r)(x)} < v]
N N
t t
- z PL Jnai+2r {f(r)(x) - f(r)(x)} < y;
[n—wt|<nt€ n
N, = n]] < e. ... (2.30)
Introducing the random wvariables W;r)(x), Sm r(x), and

Zr(x) as defined in (2.27), (2.28), and (2.29) respectively,

we have for any n such that Nl < n < N2

1+2
Pl nan+ * {fér)(x) f(r)(x)} <y No= n]
1+2r N
2 Lo () (r)
=P = {2 (w,” " (x) - £ (%))
j=1
+ z (w(r)( ) E{wjfr)(x)}) ... (2.31)
j=Nl+l
n
+ T (E{Wfr)(x)} - f(r)(x))} < yi N o= ;
j=N_+1 J J
1
N n
2 (r)
< Plsy X)) <y 1327 z {E(W (x))
1 =N_+1
N 1
2
- f(r)(x)} + Z (x); N, = nl
r ' t
1+2r 2
_ g [ s (x) <y T2 Nl>l+2r
Nl Nl,r Nl ayg
2
1+2rx
N n
- ; b (E{Wér)(x)} f(r)(x))




35,

al+2r
Nl
+ N Zr(x); Nt = n
1
N, 1+8(1+2r)
+ 2
< pl JNlaé 2x {fér)(x) - £y < y./(ﬁ—)
1 1 1
al+2r
N
+ CE + L Z (x); N, = nl by Lemma 2.11
1-2¢ N, r X F N S T
Hence,
z Pl nal+2r {f(r)(x) f(r)(x)} < y; N, = n]
n n t

|n—nt]<ﬂte

N 1+8(1+21x)
< p[/Nla1+2r (e () - £ (k)1 < y\/(—i)
- Nl Nl Nl

1+2r
. ag
Ce 1
1-2¢ N, Zr(X)' th - me] < meel
1+8(1+2r)
+
< Bl att?T 2 ) - £ oy < oy 2Es 2
- 1N N 1-2¢
1 1
Ce % % Nl
- 1
+ 1-5e + €7 ; Zr(x) < g 1327 ' Nt Tt < wtel
N
1
[ s [y ]
+ P{Zr(x) > € 172z
Nl J
1+8(1+2r)
1+2rx (r) (r) 1+¢ 2
- < —_———
< P[’NlaN (e, 7 (x) £ (x)} Y (7557)
1 1
L 3
Ce 3 Ce 1+, 6(1+42r)
tyae t el v G50 ‘ ---(2.32)

by Lemma 2.10.
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From (2.31) we get in a similar manner

T Pl nal+2r {f(r)(x) - f(r)(x)} < y; Nt = n]
|n-nt|<nte n n
> el Jnoait?T ey - ey <y
- 1N N
1 1
1+2zx
N
Ce 1
- To5% - N Z_(x); |, = we] < meel
1
1+2r (r) (r) Ce 3
> Pl [NlaN {fN (x) f (x)} < - 158 T ;
1 1
L=
3 1
z,(x) <e T |Nt - wt] < mtel
aNl
1
1+2 C 3
> p[/NlaN * {fér)(x) -ty <y - l~§e - e7]
1 1
L)
- P Zr(x) > € al+2r P[]Nt - mt| > wte]
L N,
1
1+2r (r) (r) € 3
> pL ’NlaN e, (x) - £ (x)} <y - y257 - &
1 1
1
C€3 1+e,8(1+2x)
(=== ol el ... (2.33)

T 1-2¢ ‘1-2¢

From (2.30), (2.32), and (2.33) we conclude that for t > to,

1+2r (r) (r)
Pl thaNt {th (x) - £ (x)} < v]

1+8 (1+2x)

1+2r (r) (xr) . 1+€ 2
< pl /NlaNl {le (x) - £ (x)} < y(3550)
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1
L 3
Ce 3 Ce l1+e,6(1+21x)
fie v el 1 G
and
pl a2 (£l o - £ ot < yd
N
t t
o 1
1+2r (r) (xr) Ce 3
> pl leaN {fN (x) - £ (x)} <y - 1-2c ~ € ]
1 1
1

_ ce? ( l+€)5(l+2r) - 2e
1-2e '1-2¢ :

Similar statements hold for y < 0. We now invoke Lemma 2.8
and the continuity of the distribution function of a normal
random variable to complete the proof of the theorem.

Remark 2.4. We note that Caroll 8] has given a proof for

(r)

N
t

the asymptotic normality of £ (x), r = 0, under conditions

different from ours.

2.6 Asymptotic Normality of the Sample Mode

In this section we study conditions under which the

distribution of the sample mode GN igs asymptotically normal.
t
Lemma 2.12. If for r = 2 the conditions of part (a) of

Theorem 2.1 are satisfied and if the random variable 6

t
converges in probability to 6 as t tends to infinity, then
2 ~
f( )(6 ) converges in probability to f(z)
Nt Nt

to infinity.

(6) as t tends

Proof. We have with probability one
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(2) ;4 (2)
[£. 7y - £ (o]
N N
t t
2) 4 (2) = (2) 2 (2)
1e$2) 5 £ ] o+ gty - £ (]
Nt Nt Nt Nt

suP 1 (2) iy - s @)+ 1526y - £ e

IA

The proof follows from part (a) of Theorem 2.1 and the

hypothesis.
-6

We assume that {an =n }, & > 0.
. (1)
Expanding £ (6., ) around 06 we get
N N
t t
fél)(eN ) = fél)(e) + (e -e)féz)(e; ) = 0 .. (2.34)
t t t t t t
where ]8 -] < ]6 —6[. Hence, if 6 _ -6 = o_(1), then
N N P
t t t
8* -6 = o (1) . From (2.34) we obtain
N p
t
S S ACN TS
3 tN N
NtaN (GN -8) = 2) . . «..{2.35)
t t fN (eN)
t t
Iif f(l)(e) = 0, then we can conclude from Theorem 2.3 that
3 (1) . . . .
NtaN fN (8) converges in distribution to a normal
t t

random variable with mean zero and variance

(=]
Y3£(8) | ]¢(l)(u)|2du as t tends to infinity, provided

n_s}, 15 < 1. Similarly from Lemma 2.12 we can

{a = s

conclude that

(2) , . % o (2)
£g (85 ) = £

(8) + o (1)
t t P

provided {an = n—a}, 0 < & < % . We now note that there
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does not exist a sequence {an = n—s} which can be used to
prove the convergence results for the numerator and the
denominator of (2.35). Due to this difficulty we shall
use additional conditions in Theorem 2.3. We state the

following conditions:

[oo]

[ up(uw)ydu = o ...(2.36)

- o0

[ w?p(wydu < =, . (2.37)

-— 00

(1) (2)

£ (8) = 0; £ (8) < 0. ...(2.38)

We prove the following theérem.
) 1 -
}, = < § < z - If Conditions (2.5),

(2.6), (2.7), (2.18), (2.24), (2.36), (2.37), and (2.38) are

Theorem 2.4. Let {an = n

satisfied, and if for r = 2 Conditions (2.16), (2.17) and (2.19)

are also satisfied, then\thaé (GN -8) converges in distri-
t t

bution to a normal random variable with mean zero and variance

[ e ™ (wy ] 2au

£(2)

Y3f(6) as t tends to infinity.

EARRCINE

Proof. We first note that according to the hypothesis,

the conditions of part (a) of Theorem 2.1 with r = 0,1,2

are satisfied. We also note that from the uniqueness of

the mode 6, the uniform continuity of f£(x), and part (a)

of Theorem 2.1, the sample mode SN converges in probability
t

to & as t tends to infinity. Using Lemma 2.12, we can

write relation (2.35) as:
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- N a3 f(l)(ﬁ)
3 EN N
NtaN (SN -8) = 2 . .. (2.39)
t t £ (8)+o0_ (1)
P
. 3 (1)
We now show that under the hypothesis NtaN fN (6)

€ t

converges in distribution to a normal random variable with

o«

2
mean zero and variance Y3f(6) f |¢(l)(u)] du as t tends

— 0

to infinity. We note that Condition (2.16) with r = 2

implies that the third derivative of f(x) is bounded. In

(1)

relation (2.15) expanding f (x—aju) around x to the order

of a? = j_26 (% < § < %) we get
na>  SUP rpie M)y o ey = 0@t
n —e<x<e n

It

o(1l).

Hence, we note that the conclusions of Lemma 2.8 and

Theorem 2.3 hold with r = 1. From relation (2.39) we have
- n a3 f(l)(e)
3 -t Nt Nt
N.ay (8, -6) = 2 {1 + o (1)}
t £ £ (o) P
- a2 £ e
t Nt Nt
= ) + 0 (1)+0 (1)
f (8)
- Nta; fél)(e)
t t
= 2) + op(l).
£ (8)

The proof of the theorem now follows from this computation.
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CHAPTER III

EFFICIENT NONPARAMETRIC ESTIMATION

OF A SHIFT PARAMETER

3.1 The Empirical Likelihood Method for Estimating a

Shift Parameter

Let X, ,X and Y.,Y

pr¥gre .. 1 PR be independent random

variables with probability density functions f and g
respectively. Suppose there exists a probability density

function h and two real numbers 91 and 62 such that

f(x) = h(x-el) and g(x) = h(x-82)

for all real numbers x. In such a case, the number
6 = 62—81 is said to be the shift between the densities

f and g. Let {mN} and {nN} be sequences of positive

m

. lim N _
integers such that mN+nN = N for each N and Noo N A,
0 < A < 1. The classical maximum likelihood method of
estimating 6 on the basis of Xl,xz,...,me, Yl’Y2""'YnN
when h is known consists of solving the eguations

Ty h(l)(Xi—tl)

z = 0 ce . (3.1)

i1 h(xi tl)

Oy h(l)(yj—tz)

T = 0. .. (3.2)

h(y.-
sy RVt

If h satisfies certain regularity conditions (see for
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example, Cramer [11], p.500), then eguations (3.1l) and

(3.2) have solutions th and t2N converging in probability

to 6., and 62 respectively so that tN =

1 converges

Ean"tin
in probability to the shift 6. Furthermore, VN (tN~6)

converges in distribution to a normal random variable

with mean zero and variance S where u = 1-2 and J(f)
Aud(f)

is the Fisher information defined by

2

J(f) =

© (1)
J LSRN E D S ... (3.3)

f(x)

The nonparametric counterpart of this problem arises
when f is unknown. In this chapter we propose a method
for estimating 6 in the nonparametric set-up which first
obtains a kernel estimate of the common density of

Y ., Y and then the maximum likelihood principle

1707 Ny

is invoked to estimate the shift required on X_. X

1r 2""'X

NA

in order to match them with this estimated density. In

what follows, we shall take mN = NA and nN = Nu and proceed

as if NA and Nu were integers. In this way we shall avoid

unnecessary complications without affecting our analysis.
By means of a Borel measurable function ¢ and a

sequence {aN} of positive numbers converging to zero, we

define a kernel estimate of the r-th derivative of the

common density function of Yl’YE"'°’YNU as
(r) 1 W) f:fi (3.4)
T (x) = e T 6| )s v = 0,1,2,,. ---13-
NuaN J=1 N

for all real x. Let {bN} be a sequence of positive numbers
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converging to infinity and I_ be the indicator function of

N
the interval (—bN,bN). For every t, we define
. ™ fél)(xi+t)
t = f - —_
LN( ) p byt + o II (X)) TS
i=1 N i
- fN(bN+t) ... (3.5)
and call
L_(t) = 0 ...(3.6)

N
the empirical likelihood egquation for estimating 6.
We examine the maximum likelihood estimate of 6 in a

different way to explain the motivation behind equation

(3.6). We have
NA NA
}: - = —
. log h(xi th) .Z log h(Xi+tN tZN)
i=1 i=1
NA R
= .Z log gN(Xi+tN)
i=1
where for every t, éN(z+t) = h(z+t—t2N) is an estimate of

h(z+t—62) which is the density function of the random
variables Yj—t, 3 =1,2,...,Nu. Hence we propose a method
of estimating 6 in the nonparametric set-up which first
obtains an estimate fN(z+t) of f£f(z+t-8) based on the

Y-sample and then uses the X-sample to find the value of
NA

t for which I log'fN(Xi+t) is maximized. This gives
i=1

the following eguation:

(1)
1 NA fN (Xi+t)

— = 0.
.+
N i1 fN(Xl t)
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However, for technical reasons we have modified the
above equation. For those Xi's lying in the interval
(—bN,bN) we have used the above form of the left hand side
of the eguation. We have then added fN(~bN+t) and
—fN(bN+t) to this expression to give rise to eguation (3.5).

It will be shown in Theorem 3.1 that under certain
regularity conditions, with probability approaching one
as N tends to infinity the empirical likelihood equation
(3.6) has a solution TN which is consistent for 6.

Furthermore, VYN (TN—G) converges in distribution (Theorem

3.2) to a normal random variable with mean zero and variance

N , where J(f) is the Fisher information as defined
AuJ(£)
in (3.3).

The estimate TN of the shift proposed here is very
difficult to compute. However, in Theorem 3.3 we shall
give a simple computational procedure which starts with
an easily computable first approximation and after exactly
one iteration leads to an estimate %N of 6 having the
asymptotic properties possessed by TN.

The method proposed above is an improvement upon a
method developed by Samanta [381.

We now state and discuss the regularity conditions

on £, ¢, and the sequence {aN} which we shall refer to as

Conditions A.3.
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3.2 Conditions A.3

Condition 3.1: f and its first five derivatives are
bounded.
[ee]
s d 2
Condition 3.2: J(f) = f {E§ log f(x)} f(x)dx < =,
2
Condition 3.3: 5 log f(x) is uniformly continuous.
90X
T To(2)
condition 3.4: [ £ (xyax = [ £ (x)ax = o.
- 00 - OO

Condition 3.5: There exists a strictly monotone

increasing function H such that

sup <
|X|fy Fix) < H(y) for all y and
2
E(b_+1) = n°/25.
N
Condition 3.6: ¢ and its first two derivatives are

continuous functions of bounded

variation.

Condition 3.7: [ ¢(w)du = 1, [ u ¢(udu = 0,
T 5
r=1,2,3,4, and [ [u”¢(u)]du < =.

— 0

Condition 3.8: ay = N ;, = < § <

Probability density functions which satisfy Conditions
3.1, 3.2, 3.3, and 3.4 include among others the normal,
the Cauchy, the contaminated normal, and mixtures of the

Cauchy and normal probability density functions.
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Condition 3.5 is similar to that in Bhattacharva [517,
_— 2/2
p.381. If we let H(y) = Vom ey , then Condition 3.5 is
satisfied if f is the standard normal density function or
any other density function having flatter tails than the
standard normal probability density curve.

The kernel ¢ satisfying Conditions 3.6 and 3.7 can be

obtained in the following manner. For some integer £ > O
2 29, .
let P2£(x) = c(l+le + ... + le ) be a polynomial of
degree 282. We now define another kernel K22(x) given by
2
Ky (x) = P, (x) == &% /2
vamw

2
c(1+le2+ ... + B ng) L e % /2

L /3w

i

... (3.7)

where the constants c, B ,...,BQ are to be chosen such that

1

00

_i Ky, (x)dx = 1 ...(3.8)
and

= 2r

f X K22(x)dx = 0, for r = 1,...,%. ... (3.9)

— 0

o 5 2r+1
- 2

Since f xzre x/ dx = 2 2 F(2r+l), we can use the

2

—_— 00

condition in (3.9) to determine the constants Bl""'BQ by
solving a set of 2 simultaneous equations. Then ¢ can be
chosen such that (3.8) is satisfied. The kernel K2£(x)

so obtained, together with all its derivatives, is a

continuous function of bounded variation. We note that
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the kernels obtained in this manner possess similar properties
as those suggested by Schucany and Sommers [40]. For

2 = 2, the kernel K., (x) suggested in (3.7) 1is given by

2%
15 2 2 1 4, 1 -x%2
K, (x) = = (1 - = x7 + — x) — e ,
4 8 3 15 /o
2w
and this is the kernel given in Nadaraya [2817]. By setting
b {x) = K4(x), we get a kernel function which satisfies

Conditions 3.6 and 3.7 of Conditions A.3.

3.3 Convergence Properties of Kernel Estimates of a

Density Function and Its Derivatives

We now consider the following lemmas.

Lemma 3.1. Under Conditions 3.1, 3.6, and 3.7,

S fere T @1 - £z ] < cal L r = 0,12,
where C is a positive constant.
Proof. The proof is very similar to that in Samanta [ 38]
and will be omitted.
Lemma 3.2. Under Conditions 3.6 there exists a universal

constant C such that for any N > 0 and EN > 0

sup (r) (xr)
Pl _pepcw |Ey  (2) = ELE T (2)}] > e ]
2 2r+2 2
< C exp(—2Nu€NaN /ur)
for r = 0,1,2 and where ur = f I¢(r+l)(u)|du.

Proof. See Lemma 2.2 of Schuster [41].

Lemma 3.3. Under Conditions 3.1, 3.6, and 3.7 for

sufficiently lérge N and for r = 0,1,2, if a;_r = O(EN),
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then
sup (r) (r)
Pl _peyew |Ey  (2) = £ 77 (z-08)] > ¢
2 _2r+2
< —
< Clexp( C2N€NaN )
where Cl and C, are positive constants independent of N.
Proof. We have for r = 0,1,2

sup (r)
—o<Z<® IfN

(z) - £ (z-0) ]

sup (x) (r)
S wegew |Ey  (2) = ELET(2)]]
+ _wfgfw ]E[fér)(z)] £ (zoay ]
(r) (r)
< Lo ley @ E[fNr (z).]] + ca
Hence, if aS“r = o(e_)
r N N 4
large N,
(r) (xr)
PL_ S8 15y (2) - £ (z-0)] > ¢
su (x) (r)
< el_ S0P g7 (2 - Elfy
2 2r+2
< Clexp(—CzNeNaN ), by Lemma 3.2.

This completes the proof.
We now consider the function

f(l)

. 1 N (xi+t—e)
L) =7 20 &) Fx se-o)
i=1 i
We also define L(l)(t) = 2 L_(t) and L
) N ot N

N

€N
(z)}‘ > _Ej

(t)

14

by Lemma 3.1.

then we obtain for all sufficiently

We have the following lemma on the convergence to zero

and 1 () - ¥ (1)

*
of LN(t) - LN(t) N N

(t) .
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Lemma 3.4. Under Conditions A.3 for every e > 0,
l1im sup % _
(a) P[|t—e!§1 ILN(t) - LN(t)I s el =0
lim sup (1) * (1) _
() o P[It—9|fl o, ey - )| > el = 0.

Proof. We shall only demonstrate the proof of part (a)

of the lemma. The proof of part (b) is similar and is
omitted. We have
sup g%
|t-0]<1 By (8) - To(e)|
sup _ _ _ - sup _ _
< Jese]<1 |fN( b +t) £(-b +t 6) | + e8] <1 | £ ( b tt 6) |
sup sup
+ lt-p]<1 |fN(bN+t) - f(bN+t-e)]+ le6]<1 ]f(bN+t-e)|
(1) (1)
. sup 1 gx o )!fN (Xi+t) ) £ (xi+t—e)I
[t-6]<1 Nx 7. "N 717 F(X,+t) £(X,+t-0) .
- i=1 i i

In view of Lemma 3.3 it now suffices to show that for any

e > 0,
(1)
tin opo osee|fn 2O WGy
N-reo ]zlbe+1 £,(z+6) £(2) . e
If
sup _
lz|<b_+1 | £ (z+0) £(z) | < ey
-7 N
sup (1) ()
!Z|<b +1 IfN (z+8) t (Z)| < ey
-"N
éup 1
!Zlbe+1 £(z) = Hby+1),
and
lim

Now eN{H(bN+1)} = 0,
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then for all sufficiently large N,

(1) (Lhe) (D)

sup N _ (z)
]z|5bN+1 £, (2+8) £(z)
sup |fél)(z+8)~f(l)(z){
N ]z]be+1 |fN(z+6)[
cup If(l)(z)||fN(z+8)—f(z)]
Iz]ibN+l |£(2) [[£, (2+8) |

I A

2
C EN{H(bN+l)} .

If we define ¢ = € , then

C{H(bN+1)}2

_lim _ e
EN{H(bN+l)} T Noow C{H(bN+l)} 0

lim
N>

Hence, for all sufficiently large N,

(1)
o sup By (=0 Gy .
lzlbe+l | £, (z+8) £(z) l
sup e
p[ | £ (z+8) - £(z)]| > ]
[zl <py+1 on T c{u(b 1) }7
+op0y 5P e M) phey - £ (] > = 1.
[z]<bgr1 T on - c{H(bN+1)}2

The proof of part (a) now follows from Lemma 3.3 and the

hypothesis.
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3.4 Consistency and Asymptotic Efficiency of the Nonpara-

metric Estimator of the Shift Parameter

We now prove the following lemma.

Lemma 3.5. Under Conditions 3.2 and 3.4,

* —
(a) LN(G) = op(l)

* (1) _
(b) LN (8) = ~J(£f) + op(l).

Proof. We first give the proof of part (b) of the lemma.

Let us introduce the random variable Ny defined by

roE T x)) £ (%) o

1
£(X,) t £(X.) Pl
1 1

- 1
"w T owNa .
1

N ™=
i

1

Using Conditions 3.2 and 3.4 we have

(2) (1)

£ (Xl) f (Xl) 2
EL - { } 1 = -3(£).
f(xl) f(xl)
Hence, by Khintchne's theorem, nN = -J(f) + op(l). Using

this fact, it now suffices to show that

lim * (1)
Yoo E[lLN (6) - n 1 =o0. wnow,
* (1)
Ellz, " 8) - n ]
1 NA f(2)(xi)
2 Blgx 2 IIN(X ) ll‘ £(X,)
i=1 i
. M ‘ f(l)(Xi) 2
Ry iil 1 - 1) H—Fm51 ]
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The right hand side of the last equality converges to zero
as N tends to infinity. This completes the proof of
part (b). The proof of part (a) can be accomplished in a

similar manner by letting

3 f(l)

N (x.)
I R
Ty T wa £(x.) °
i=1 i
Lemma 3.6. Under Condition 3.3 for every El > 0, there is
a 61 > 0 such that
sup *(1) *(1)
— <—]=
P[lt"9|§5l jLN (t) Ly (8) | e, ] 1.
Proof. We have
*(1) *(1)
LN (t) LN (8)
1 NA 82
= = I I _(X,){——= log f£(X.+t-0)
NA i=1 N i 3t2 i
32 .
- —= log f£(X,+t-0)]|, __1.
3t2 i t=0
32
Due to the uniform continuity of ——3~log f(x), we conclude
90X

that for every El > 0 there is a 61 > 0 such that

2 2

o log f(x-t-8) - —2— log f(x+t-0) | < €
2 2 t=06 1
ot Jt
for all x whenever !t—6| < 61.
Using this fact we have
sup * (1) LR (L) L _
P[lt“el§51 !LN (t) - Iy (8)] < e, 1 = 1.
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Lemma 3.7. Under Conditions 3.2, 3.3, and 3.4 for arbi-
trarily small & > 0 and § > 0, there exists No = NO(E,G)
such that for N > N_, P[{L;(Q-ﬁ) > 0} n {L§(6+5) < 0}1 > 1-¢.
Hence, Qith probability approaching one as N tends to
infinity the equation L;(t) = 0 has a solution which is
consistent for 6.

Proof. Expanding L;(t) around 6 gives

* % 3 * (1)
LN(t) = LN(B) + (t G)LN (el)
where |61-6! < lt—el. Let e, in Lemma 3.6 be less than
J(£f) .
2 and let the corresponding 51 be chosen. We select

arbitrarily small positive numbers €, § where & < 61.
If |t-8] < 8§, then |61—8| < §. Hence, by Lemma 3.6,

ey - M) < ey =1,

*
PLILy 1 1

Therefore,

*(1) J(f) *(1)

P[LN (8) - —5— < Ly (el) < Iy (g) + 2 = 1.
... {(3.10)
* * (1) . R
By Lemma 3.5, LN(e) and LN (6) converge in probability

to zero and to -J(f) respectively as N tends to infinity.
Using these facts and the result in (3.10), we conclude
that there exists NO = No(e,ﬁ) such that for N > No’

£ *(1) -J(£) €
> and P[LN (91) > 5 1 < >

Pl loyce) | > §27 <

We have
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* 2 * (1) -J(£f)
PO 8] > 6% v {n "7 (o) > =—5=%1]
% 2 (1) ~J(£) e & _
< POl (8)] > 871 + PIL "' (8)) > ====1 < = + o = €.
Hence, for N > No’
* 2 *(1) -J(f)

P[{ILN(G)} < 8% n {n (8,) < ==5=11 > 1-e.
Suppose t = 0§ + 6. For any sample point satisfying the
inegqualities

* 2 *(1) -J(f)
]LN(G)f < 8 and LN (61) < T
. * * * (1) .
the expression L_(t) = L_(8) + (t-8)L (61) is less than
N N N
62 + 6(:£é£l) if t = 6+8. Hence, Lg(t) assumes a negative
value if t = 06+6 and if § is chosen less than J(Z). Similarly
* 2 *(1) -J(f) .
for |LN(9)| < §° and LN (el) 5 , the expression
* * *(1) o .
L (t) = L_(8) + (t-6)L (6.) assumes a positive value if
N N N 1
. . J(f)
t = 6-8 and if § is chosen less than -

We now appeal to the fact that Lg(t) is a continuous
function of t for every sample point. Thus, for arbitrarily
small positive numbers € and 8, the egqguation L;(t) = 0 will,
with a probability exceeding l-e, have a root between the
limits ©+8 as soon as N > NO(E,G).

We now prove the following theorem.

Theorem 3.1. Under Conditions A.3 with probability approaching

one as N tends to infinity the empirical likelihood egquation

L._(t) = 0 has a solution TN which is consistent for 6.
i
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Proof. By Lemma 3.7 for arbitrarily small positive numbers
€ and § there exists N0 = No(€,5) such that

P[{L;I(e—(‘i) > e} n {L;(e+6) < -g}] > 1-¢

whenever N > No. And by part (a) of Lemma 3.4 for arbi-

trarily small €4 > 0 there exists N1 = Nl(el) such that
sup *
- > -
P[lt—efil |l (8) - L ()| < e3> 1-e;
whenever N > Nl' Combining these two results, we conclude
that
pl{L*(t) - e, < L _(t) < L. (t) + e. for all |t-8| < 1}
N 1 N N 1 -
{1 (8- }on (L. (846 13
- > < - > l-g-
n LN( ) € n LN( +46) € l1-¢ El
whenever N > N* where N* = max(NO,Nl).

If we choose § < 1 and el—e < 0 (hence, e—el > 0),

then

P[{LN(G—G) > 0} n {LN<6+6) < 0}l > l-e-g,

*
whenever N > N'.

We now appeal to the fact that LN(t) is a continuous

function of t for every sample point. Hence, with proba-

bility greater than l-e-¢ the eqguation LN(t) = 0 has a

1’
root between the limits 6+8 as soon as N exceeds N

For any given sample size N there may be sample points
for which the empirical likelihood eguation LN(t) = 0 has
no solution. In such a case we define TN in an arbitrary

manner. But we note that the probability of such sample

points can be made arbitrarily small for all sufficiently



56,

large N. With this convention, let TN = TN(Xl’XZ""’XNA'
Yl’Y2""’YNu) be a consistent solution of the eguation
LN(t) = 0. The following lemma will be used in the derivation

of the asymptotic distribution of YN (TN—G).
Lemma 3.8. Under Conditions A.3, if {éN} is a seguence of

random variables such that éN = 8 + op(l), then

(L) 2 _
Ly (GN) = J(f) + Op(l).

Proof. We have with probability one

]Lél)(éN) + J(£) |
< |Lél)(éN) - L;(l)(éN)l + IL;(l)(éN) L;(l)(e)l
+ IL;(]‘)(G) + J(6) .
Hence, for any € > O
P[]Lél)(éN) + J(E)| > €]
<erfoit B - M £
TR 0 AR GRS AR C PRI
+prln e+ oa| s 5.
Now,
ol T AL IO N CIRE IR
> ;iz P[{!Lél)(éN) L;(l)(SN)I < £} {|8,-0] < 13
> i}—l:: p[{ltfﬁ)fl JL[\(]l)(t) - L;(l)(t)l < %}

n {]éN_e| < 1}] = 1, by Lemma 3.4(b) and-the

hypothesis.
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Hence,
(1) 4 *(1) 2
8 - = .
LN ( N) LN (6N) op(l)
2
Using the uniform continuity of — log f(x), it follows
oax

from Theorem 2 of Mann and Wald [ 227 that

*(1) o * (1) _
Ly (O) = Ty e) = o (1),

Finally, by part (b) of Lemma 3.5, we have
L (6) + J(f) = o_(1).
N b

The proof of the lemma now follows from the above observations.
Expanding LN(TN) around 6 we obtain

= - (1) %
L (Ty) = Ly (8) + (T =6)L =" (T.) ... (3.11)

where
|m -0l < [rg-0].

Hence, T; = 8 + op(l), by Theorem 3.1. Using Theorem 3.1

and relation (3.11) we have for any real number C

lim lim _
Now POVN (T =8) < cl = T8 PIVN (T -8) < c; L (T.) = 0]
YN L_(8)
lim N
= o Pl j;TiT?EI? < cl. ...(3.12)
N N
VN L, (8)
We conclude that VN (TN—G) and 1) have the same
~-L (T_)
N N
limiting distribution. By Lemma 3.8 we have
(1) *,
LN (TN) = J(f) + op(l).

It is now evident that the asymptotic distribution of
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VYN (TN—e) depends on the asymptotic distribution of
VYN LN(G). We have

Ly(8) = Vi * Vou

where

1IN

fN(bN+9) ... (3.14)
and

. X )

2N oN NA' T1r¥orcecr¥yy

(1)
£ (X, 40) £ (X, +8)-£(X,)

N N
z IN(Xi) f_(X.+98) { F(X.) oo (3.15)
= N 1 1

1
NA
Lemma 3.9. Under Conditions A.3 for every e > 0,

lim P[‘/ﬁ l

7T =
N> > g 0.

Yol

Proof. To prove the lemma is suffices to show that

(1) N %
lim cup  UlEy T xr0) [T £ (xr0) ~£ () |}

N-sco NKP[lxlbe

- >Ve]l = 0.
{lfN(x+e)|} £ (%)

Now, if

(1)
N

(

sup

(x+6) - £
|x|<b
_N

E Yol <1,

sup

lebe |fN(x+6) - £(x)] < €N for € _ > 0O,

sup 1 lim _
lxlbe ) < H(bN), and ENH(bN) = 0,
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then

(1 ook 31
{|f )<x+e)l} {N ]fN(x+e)—f(x)l} 3T

sup N
< ce lH(D TN

|x]<b

()£, (xv0) [ 175 (o)

The proof can now be completed in a similar manner as in
Lemma 3.4.

From this lemma we conclude that VN LN(e) and VN VlN

have the same limiting distribution. We shall show that

/N VlN can be expressed as a sum of a function of a two

sample U-statistic and a random variable which converges
in probability to =zero. We shall now briefly outline the
theory of a two sample U~-statistic.

We let Zi =Y,-8, 1 =1,2,... Then X, ,X

i 1 gt and

Zl’ZZ"" are independent random variables with a common
probability density function f£. For each N let

gN(Xl’X2""'Xr' 21’22"'°’Zs) be a Borel measurable function

of r+s real wvariables xl,xz,...,xr, zl,z2,...,zs. Define

for each N for which m = my = NA > r, n = ny = Np > s,

UN(Xlrxzr---rxmr lezzl-'°lzn)

= ET_”%___ LGy (Xy vXy veee Xy 0 2y 02 peenZy)
(r) (s) P 1 2 r jl I I
... (3.16)
where m = _m n S N and the summation L
(x) (m~-x) !’ (s) ~ (n-s)! p

is over all permutations (i .,ir) of r distinct

1'12’f°

integers selected from (1,2,...,m) and over all permutations

(jl'j2""'js) of s distinct integers selected from (1,2,...,n).

.

Let us define for each N another Borel measurable function
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*
gN(xllx2l---lx r 2. .12

. 1 .,zs) which is symmetric in the x's

2"

and symmetric in the z's by

*
gN(Xl'X2"'°'Xr' zl,zz,...,zs)
= 1 g, (x X X z z z. )
- [P s X e e X, g 12 e e gD, ’
r.s. P N 11 12 lr jl 32 js

the summation I Dbeing over all permutations (il’iZ""’ir)
P

of the integers (1,2,...,r) and over all permutations

(jl'jZ""'js) of the integers (1,2,...,s). The random

variable UN(Xl'XZ""'Xm' Zl'Z2’°"’Zn) defined by (3.16)

can then be written as

UN(X11X2I-'-Ier leZ2l---lZn)
1 *
= —————— T g . {X. ,X. sec-3X, 4 Z. +Z. ge--12. )
S NGO N, Ty 31 32 s

where (?) and (2) are the binomial coefficients and the

ri)

summation ¥ extends over all combinations (il’i2"" .

c
of r distinct integers chosen from (1,2,...,m) and all

combinations (jl'j2"°"js) of s distinct integers chosen
from (1,2,...,n). For notational simplicity we shall

write UN for UN(Xl'XZ""’Xm' Zl’ZZ" .,Zn). The statistic

UN defined in (3.16) is called a two sample U-statistic

first studied by Lehmann [19] where the function gy does

not depend on N.

A A )]2
s

*
We assume that E[gN(Xl'X2""fxr’ Zl’ 5

exists for each N. This implies that E[g;(xl,xz,...,xr,

Z,.,3

1 ,...,ZS)] also exists for each N and we let

2
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*
eN = E[gN(Xl,Xz,...,Xr, zl,zz,...,zs)].
It then follows that

E[UN] = 6N = E[gN(xl,xz,...,xr, zl,zz,...,zs)].

Let us define

B rXgreeenxp v zy02y, 00 002)
= *( X z ) - 8
I Epr¥pre Xy ByrEoreeeaZg N
and for ¢ = 0,1,...,r and 4 = 0,1,...,s let hN,cd(xl’XZ""'Xc'
21'22""'zd) be the conditional expectation of
hN(Xl,X2,...,Xr, Zl’z2""'zs) given Xl = Xy X2 = Xy
- = Z = . . = . 1
..y XC Xc' Z1 zl, 5 22, ,Zd zd We define
2
E3 _l . :
EN,cd E[hN’cd(xl,xz,...,xc, zl,z2,...,zd)_ in particular,
*
EN,rs = V[gN(Xl,XZ,...,Xr, Zl,Zz,...,ZS)] where V stands

for variance.

We now assume the following conditions:

- lim .
Condition 3.9(a): 510 = Now gN,lO exists.
Condition 3.9(b): 3 = lim £ exists
: : 01 N->e °N,01 :
1 NA
Condition 3.9(c): —— 2 hN lO(Xi) converges in
YNA i=1 !

distribution to a normal random

variable with mean zero and variance

glO'

Condition 3.9(d): —— I h (Z.,) converges in
—_— . N,01 " j
/Nu =1

distribution to a normal random vari-

able with ‘mean zero and variance 501‘



62,

The following result on the asymptotic distribution
of UN is a direct generalization of Lehmann's theorem

and its proof is omitted.

Lemma 3.10. (a) If for all (c,d) with the exception of

c+d-1

(1,0) and (0,1), & o (N ), then

N,cd

2 2

- I s
ViR v = {5 En,10 7 Ty &w,o01

+ o(1)}1 + o(1)1}.
(b) If further, Conditions 3.9(a) to 3.9(d)
hold with at least one of the numbers glO and 501 positive,

then VN (UN—G } converges in distribution to a normal random

N r2 52
variable with mean 0 and variance Y glo + —E 501'
From relation (3.14) we obtain
Nu-1
= + e .
Vin Nu Uk Vox (3.17)
where UN = UN(Xl'X2""’XNA’ Zl'ZZ""’ZNu) is a two-sample
U-statistic defined by
1 NA Ny
U, = T z g (X.,2.,2.) ...(3.18)
N NANu (Nu-1) i=1 §,k=1 N i 3 k
j#k
and
O(X z Z)__lq)(:_b__N_:fi)
o 14 r -
N 1 1 2 ay aN
X,—-2z
1 ¢(l)( 1 l) 1 X,-2,
2 a — ¢ ( )
a N a a
I (xy) — {2 N N }
N 71 f(xl) f(Xl)
b -z
1 N 1
-3 ¢(~—;~—) ... (3.19)
N N

and where
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-1 _ _
Van = Nu {fN( bN+e) fN(bN+e)}

1 Xi—Z.
—= ¢ (—1)

a a
N N
-{2 - f(Xl) }. ... (3.20)

We now prove the following lemma on the convergence

to zero of the random variable VBN'

Lemma 3.11. Undexr Conditions A.3

YN =
N V3N op(l).
Proof. By Conditions 3.1 and 3.7, we have
1 1 r 2y
—= E[f (2)] < == £(z-8) [ |[¢(w)]au + ¢ —
VN N — YN
where C is a positive constant. Hence
1
—= elf (2)]| = o(1). ... (3.21)
VYN

Similarly, using Conditions 3.5 and 3.6, we get

X.,~%,
—% ¢(l)(—ig—l) 1 ¢(Xi_zj) ]
aN N aN aN
Bl Iy (Xy) £(X.) {2 - £(X,) } l
1 1
X,~%
_% ¢(1)( 1a 3, 1 ¢(X1'Zj)
a N a a
< E lz (x.) — 2+ N N }1
- N £(X.) f(xX.) JJ
a 1
I 1w AT
] 2 a
C H(bN) , aN N

1A
=
()
-+
v
)
=
[
Z
>
th
>
| o]
R
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1 . " . 3
where C 1s a positive generic constant. Hence,

_% ¢(l)( i j) 1 Xi--Zj
a o ( )
NA Nu a N a a
B 1oy 5 1.(x,) % {2 N N } t
LN5/2 i=1 j=1 N f(xi) f(xi)
v Em )
< c >
&N
31
= O(N 150], by Condition 3.8
= o(1). ... (3.22)

The proof of the lemma now follows from the results in
(3.21) and (3.22).

It is now evident that VN V and Nu-1
1N Nu

{V/N U_} have
N
the same limiting distribution.
In the next six lemmas we shall study the asymptotic
distribution of the U-statistic defined by (3.18) and (3.19).

Lemma 3.12. Under Conditions 3.1, 3.5, 3.6, and 3.7

4 5
= -+ .
0 olay aN{H(bN)}]
Proof. By Fubini's theorem and Lemma 3.1, we have
eN = E[gN(Xl,erZZ)]

1l

5
f(—bN) + O(aN)

N f<x)+0(a§)
+ _i {_i £ (x-a u)¢ (u)du}{2 % }dx
N

5
- f(bN) + O(aN)

_ 5
= £(-b) + 0(ay)



bN 2 (1) O(ag)
+ [ { [ £ (x-ayu) ¢ (u) dul{—ytax
_bN —c
N 4 5
+ f {£77 (x) + aNKN(x)}dx - f(bN) + O(aN)
-b
N
where
KN(X) = Z% _i u4f(5)(x—aaNu)¢(u)du and 0 < o < 1.
We have
b 5
N [o] O(a )
(1) N
[_£ {~£ £ (x—aNu)¢(u)du}{—E7;T}dx|
N

1] £ o ]axiorasin(ey)}]

-_— 00

1A

IN

5 :
claglu(b )11,
since by the Cauchy-Schwarz inequality,

f £ (x) | ax < {I(D)]F < w.

Similarly,

bN bN o
I f KN(x)dxl = 4% ! f f u4f(5)(x—aaNu)¢(u)dudx{ <
by © by e

The proof of the lemma now follows from the above compu-

tations.
Corollary. If further, Condition 3.8 is satisfied, then

VYN 6, = o(1).

For each N let the function tN(z) be defined by

b
N (1)
£ (2) = gl [ f(é?) ¢ (222) gu.
N -b N

N

655

w-
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Lemma 3.13. Under Conditions 3.1, 3.5, and 3.7 there exists
a constant C independent of N such that
bN~z
a
(1) N
£ (z) 2
- <
t (2) 2 J ewrat| < ca lud)]}
-b -z
N
gy
- < <
for all bN Z bNT
Proof. We have
1 bN f(l)(u) u-z
tylz) = a_ / f (u) ¢ a ydu.
N -b
N
Put t = itz . Then
&N
bN—z
ay f(l)(z+a t)
£y (2) = | T ¢ (v)at.
-b_ - N
N
N
f(l)(z+aNt)
Now, expanding f(z+aNt) around z we get
bN—z
a
(1) N
_ £ (z)
ty(2) = —F _bf_z ¢ (t)dt
N
N
bN—z
ay | £(2) (z+Ba t) g (D) (z+Ba t) 21
+
&N f £(z+Ba_t) { f(z+Ba,t) } Jt¢(t)dt
-b -z N N
N
&N
where 0 < B < 1. Since
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we conclude that for 0 < B < 1, —bN < z + BaNt < bN. The

proof of the lemma now follows from the hypothesis and the
above computation.

Corollary. Under Conditions 3.1, 3.5, 3.6, 3.7, and 3.8,

. (1)
lim _ £ {z) - -
N> tN(z) = ——ETET— for all - < z < .

The proof follows immediately since, for any z, N can be
chosen sufficiently large to satisfy the condition

—bN < z < bN’ and the limits of integration in Lemma 3.13,
b.-z ~b -z

N N .
2 and — approach +« and -« respectively as N tends
N N

to infinity.

Lemma 3.14. Under Conditions 3.1, 3.5, 3.6, and 3.7

(a) n (x) = T (x) £ 6o + £(-b.) - f£(b.) + R.(x)
a N,10 % T ¥ f(x) N N N

5 2 4 .
where |RN(x)| < C[aN{H(bN)} + aN{H(bN)}] and where C is

independent of x.

(b) hN,Ol(Z) = -3 tN(z) +

N [

{f(bN) - f(-bN)} + RN(Z)

where IR&(Z)I C'[ag{H(bN)}] and C' is independent of z.

I A

Proof. By Fubini's theorem and Lemmas 3.1 and 3.12 we have

*
hN,lO(X) = E[gN(x,Zl,Z2)] - eN
= 1
= E[2 {gN(x,zl,zg) + gN(x,ze,zl)}] - 0
= f(—bN) + o(ai)
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f(l)(x)+0(a§) f(x)+O(a§)
+ I._(x) {2

N f(x) - f(x) ’

- f(bN) + O(a;) + Ofag + a;{H(bN)}]

(1)
-1 (x) )

5 2 4
N ) T oFaN{H(bN)} + aN{H(bN)}]

+ £(-b) - £(by) + 0(ay) + olay + ag{H(bN)}]

(1)
= I (x) £ x)

N Fx) T Ry — BBy

5 2 4
+ O[aN{H(bN)} + aN{H(bN)}].

The proof of part (a) of the lemma is now complete.
(b) By Fubini's theorem and Lemma 3.1 we get

E[gN(Xl,z,Z )]

2
b 5
-b -z N f(x)+0(a_l)
B it L S O =2 P N yax
aN aN b a2 aN f(x)
N N
b .~z
- = ()
N N
b
-b -z N
= = ¢ )+ S e ERax
N N —bN aN N
b _~z
+ Orag{H(bN)}] Lo 2 )
ey N
= ora4{H(b y H] (3.23)
N . } ... (3.

Similarly,

E[gN(Xl'Z2’z)]

_ _ 5
= £ bN) + O(aN)
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by L o (X2
(1) 4 Sy N
+ _IJ:; {f (x) + aNKN(X)}{Z - ‘——-‘%—‘(—X‘)—} ax
N

- f(bN) + O(ag),

where

u4f(5)

(x-ca_u)d(u)du and O < a < 1.

K._(x) N

1
N 4t

8§— 8

Hence,

E[gN(Xl,erZ)]

b

N f(l)(x) 1 X-2z

b f(x) g; ¢ N
N

5
f(bN) - f(—bN) + O(aN) - ) dx

+ O(ag) + O[aE{H(bN)}]

4 3
- - - q
ty(z) + f(bN) £ ( by) + o[aN + aN{H(bN)}ﬂ

3
—tN(z) + f£(by) - f(—bN) + o[aN{H(bN)}]. ... (3.24)

Hence, using relation (3.23), (3.24), and Lemma 3.12, we get

- 1 -
hN,Ol(z) = 3 E[gN(Xl,z,Zz) + gN(Xl'Z2'Z)] eN
- _ 1 1 X e
= - 5 tylz) + 5 £(by) - 5 £(-b)
3
+ OEaN{H(bN)}]. ... (3.25)

The proof of part (b) now follows from (3.25).

Lemma 3.15. Under Conditions A.3

lim
(a)  Nse Ey,10 = J(8)
lim _ 1
) §ow En,01 =7 T
(1)
(c) 1M gin (x.) f———ifli} - J(£)
N-roo N,10'%1 £(x,)
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. f (z.)
lim 1 1
(@) yye Elby o1(%)) £(z,) b=-g
1 NX
(e} —— L hN lO(Xi) converges in distribution to a normal
YNX i=1 O

random variable with mean 0 and variance J(f).

(£) — X hN Ol(Z.) converges in distribution to a normal
/Ny j=1 ' J

random variable with mean 0 and variance L J(f).

4

Proof. (a) By part (a) of Lemma 3.14 we have

Lim oy SERE e (X)I for k = 1,2

N->o N,10 £ (%) T
We then note that for all sufficiently large N, hN lO(x)]k

£ (x) k
is bounded above by {!———~———] + 1} and
f(l)(xl) .

E{|—-——~——l + 1} is finite for kx = 1,2.

f(Xl)

An application of the Lebesgue dominated convergence theorem
completes the proof.

(b) By the corollary of Lemma 3.13 and part (b) of Lemma
3.14 we have

( (Z)|

om In @ " = £(z)

N N, 01 for k = 1,2.

We then note that for all sufficiently large N, h (z)[k
14

is bounded above by

( )(Z)l

f(z

N

5 + l}k for k = 1,2.

The proof is complete by the Lebesgue dominated convergence

theorem.
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(c) We note that for all sufficiently large N,

(1) (1) (1)
£ (x) £ (x) f (x)
By, 10 TF | U |+ M =y D)
and
. (1) (1)
lim £ (x)4 _ £ (x),2
N->o [hN,lO(x) f(x) ~ { f (%) H.

An application of the Lebesgue dominated convergence theorem
completes the proof.

(a) For all sufficiently large N,

(1) (1) (1)
f (z) 1 f (z) f (z)
17y, 012 TFy | S 13 5 1T
and
. (1) (1)
lim £ (z)4 _ _ 1 (£ (z)42
¥re Py,00) TEG T T 7 UEmy

The proof is now complete by the Lebesgue dominated convergence
theorem.

(e) We have

[ L N L M f(l)(xi) 2
E|— I nh (X,) - — I
[/%  i=1 N0 gy oo PR
1 NA 2 1 NA f(l)(Xi) 2
= E|—— I n (X.) + Ef— I
[/'NT i=p N0 } /v i=1 F (%)
1 NA f(l)(Xi)
- —= I 2El|n (X.)
NA LD N,10 £(X,)
f(l)(Xl)1
= gN,lO + J(f) - 2E hN,lO(Xl) -——————*f(xl) _J



Hence,
(1) 2
lin _|_1 gk . x ) - gA £ (%))
Nee ey i1 N0 Ry sar BORY)
(1)
lim 1im £ (%) ]

TE) + fhe Ey,10 7 2|noe Blhy 10(Xp) £(X)) }J

J(f) + J(f) - 23(f), by part (a) and part (c)

0.

We conclude that

A NA f(l)(x.)
1

N 1
I nh (x,) = — I ———F— + o_(1).
-F'
= * /ax i=1 F (%) P
The proof of part (e) is complete by an application of

the central limit theorem.

(£) We have

2
1 Ny 1 Ny f(l)(Z.)
E|l—== I hg (2 + —=— I 3 ——;72—%~
VNu j=1 ! J YNup j=1 i
1 Nu 2 1 Nu 1 f(l)(Z.) 2
- F L by, Y EIS— I3 T ;
/Nu j=1 7] /Nu j=1 i’ ]
1 Nu f(l)(Z.)]
e LI By, 01 By TEGED
j=1 i’ ]
f(l)(zl)“
= fy,01 T2 9B Bihg 01 (Z)) TEE
1
Hence,
(1) 2
. N N £ z
Lim o 1 Py o + -1 3 L ( 3)1
N-c0 N,O01 2 £(2.)
/N 3=1 Nu j=1 |
1 1 1
=7 J(f) + 7 J(f) - ) J(f), by vart (b) and part

72.



We conclude that

1 Nu 1 Nu £ (Zj)

—— ¥ h (z,) = -~ — I Z ——=— + o (1).

— . N,O - . .

YNu §=1 13 VNu =1 2 f(Zj) p

An application of the central limit theorem completes the

proof.

Lemma 3.16. Under Conditions A.3

{4_4_*
75
(a) gN,ll = O|N
[éi*
5
(b) ‘EN,oz = 0N 7
{ 23
2
(c) EN,12 = O{N 7).
2
Proof. (a) We have EN,ll = E[hN,ll(Xl'Zl)] , where
. *
hN,ll(xl’zl) = E[gN(xl,zl,Zz)] - GN
“LEI—( z.) + g ( Z.,Z,)]1 - 8B
IS VIR A R In *1r227%17 - N
Now
.
E“gN(xl’zl'ZZ)]
B O Wt
ay aN
1 (1) F17%1
~5 ¢ ( a ) 5
a N f(x,)+0(a_)
T (x,) =2 2 - L N
N1 f(xl) f(xl)
R
N ay
H(b_ )
- ol + — N B
a 2 N N
N a

N



~ N 3 2
= 0 5 + aN{H(bN)} }

Similarly,

12,2 )]

Blgy(xy:2,02

5
f(-bN) + O(aN)

£ (1)

4
o (x,)+0(ay) {2 3y ay }
N F1 £(x,)

- f£(by) + O(a;)

5
f(—bN) - f(bN) + O(aN)

74.

ETCINN L 5 ,
.
+ o[H(bN) + ay + aN{H(bN)} + aN{H(bN)} ]
- 2
{H(bN)}
= 0 —
L N
( 31
_ O~N150]
Hence,
{ 44
_ ol
gN,ll = 0N
2
= 7
(b) We have EN,OZ E[hNIOZ(Zl,Z2)J , where
= * -
by, 02(21025) Elgg(Xy,2y,2,)] ®n
=1 Efg (X.,z.,2z.) + g _(X.,z_ ,2.)] - 6_.
2 T 9ntt1rf17%2 N T17%27% N

Now,



.
E[gN(Xl,zl,zz)“
b
1 bN—z1 N 1 (1) bid zl
=g—¢( a ) o+ I _5¢ (a ) 12
- N
N N bN aN
1 ¢(bN—zl)
Y ay
H(b_ )
= o|-% + N
aN él2
- N
_ H(bN)
= az
— N
(22
_olw) .
Similarly,
[ 22
. 75]
E[gN(Xl,zz,zl)] = O[N
Hence,
(44
~ 75]
£y 0 = oln75].
{c) We have
£ = Elh (X.,2..,2 )]2 where
N,12 ~ T"UN,12 71'717°%2 !
h ( ) = = [g (x,,2,,2.) + g_(x
N,12 ¥17%17%2 2 "IntE1rFirE) In ¥y
Now,
g (X.,2.,2.) = 1 ¢(_bN—Zl)
4 r b
N 1 1 2 aN aN
X, -2z
L1 1 *17%,
2 a — ¢ ( )
a N a a
+ I_(x.) N {2- N N }
N 71 £(x) _ f(xl)'

75.

22721)] - GN.
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b .~z
- = e (=5
N N
i H(b.) {H(b )}2}
1 N N
= 0j— + +
aN a2 a3 J
- N N
r 2
o {H(bN)}
- 3
(23
_olw50).

Similarly,

{2
B 50]
<:-IN(xl,zz,zl) = 0O|N .

Hence,

Lemma 3.17. Under Conditions A.3, VN UN converges in distri-

bution to a normal random variable with mean 0 and variance

J(f)
Ap

Proof. By Lemmas 3.15 and 3.16 the hypotheses of Lemma 3.10
are satisfied. Hence, VN (UN—BN) converges in distribution

to a normal random variable with mean zero and variance

¢ 4£Ol

iO + . . By the corollary of Lemma 3.12 and part (a)

and part (b) of Lemma 3.15 the proof now follows.

Lemma 3.18. Under Conditions A.3, VN LN(G) converges in

distribution to a normal random variable with mean 0 and

J(f)
An

variance



77

Proof. Using relation (3.13) we have

VN L, (8)

i

VN + VN
NV NV,

= VN VlN + op(l), by Lemma 3.9

= VN (

Np-1 .
. + Vv
Nu UN 3N) + op(l), by relation

(3.17)

= VN Ut YN Ugeo(l) + VN Voy ¥ op(l)

= /N U_+ 0 (1)o(l) + o (1) + o_(1), by
N p P P
Lemmas 3.11 and 3.17

= YN U_ + o (1).
N P

Another application of Lemma 3.17 now completes the proof.

Theorem 3.2. Under Conditions A.3 with probability approaching

one as N tends to infinity the likelihood equation LN(t) = 0
has a solution TN which is consistent for 0. Furthermore,

the solution is asymptotically normally distributed with

1
NApJT (£)

mean 9 and variance
Proof. The first part of the theorem is a restatement of

Theorem 3.1. For the second part we note that in view of

relation (3.12) it suffices to obtain the asymptotic

VYN L. (8)
distribution of ——/—m . We have
—L(l)(T*)
N N
VYN L () ) VN L, (8)

, by Lemma 3.8
J(f)+op(l)
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YN L_(9)
= : {1 + o_(1)}
J(f)
/ﬁLNw)
- ———-J_(_r + op(l)op(l)r by Lemma 3.18
/ELN(e)
= T3 top b ...(3.26)

Another application of Lemma 3.18 now completes the proof.

3.5 A Computational Method for an Asymptotically Efficient

Estimate of the Shift Parameter

The estimate TN of the shift parameter studied in
this chapter is computationally formidable. We. now outline
a simple procedure leading to an estimate having the asymp-
totic properties possessed by a consistent sequence of
solutions of the empirical likelihood equation.

*
Let TN be any estimate of the shift 0 such that

T - 8 =0 (—i). For example, we can take for T* the
N P JN ; N

median of the first sample subtracted from the median of

the second sample. With T§ as a first approximation for a
solution of the eguation LN(t) = 0 we get the next approxi-

mation TN going through exactly one iteration by the Newton-

Raphson method, i.e.,

*
L (T¥)
o=ty NN e (3.27)
N N —L(l)(T*)
N N

For the estimate %N we have the following theorem.
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~

Theorem 3.3. Under Conditions A.3, TN is asymptotically

. . . . 1
normally distributed with mean ® and variance NuAT(E) °
Proof. We first note that T; - 6 = op(l). Hence, by
Lemma 3.8, we have
o P ) = e+ oo (1) (3.28)
N N = op . “e .
From (3.27) and (3.28) we get
. N LN(TI’\‘T)
VYN (T _-8) = /N (T -8) +
N N - —L(l)(T*)
N N
S *
/N L (8)+/8 (Ti-8)n 1) (r')
= VN (T -9) + N N N N
N J(f) + o (1)
b
) * . . . ' -
where |TN—el < ITN—GI. This implies that Ty = 8 + op(l).
Hence, by another application of Lemma 3.8 we have
/N T (0) I (£)+0 (1)
YN (T_-6) = YN (T*- -
N0 = s ey P Y O - e )
b b
VN Ly (6)

iy Ta— {1 + op(l)}

+ 0 (L)[1 - {140 (1) }{140 (1)1}
P p p

VYN L (8)

= T a(g)  t 0 (Do (L) # 0 (1)e (1),

by Lemma 3.18
VN L, (8)

= —WETET_— + Op(l).

Another application of Lemma 3.18 now completes the proof.
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3.6 Miscellaneous Remarks

(i) Choice of the sequence {bN}.

The choice of the seguence {bN} requires a knowledge
of the tails of the density function. If the density
function has flatter tails than the standard normal proba-
bility density function, then bN may be chosen to be equal
to /5% In N for all sufficiently large N. The density
functions which possess flatter tails than the standard
normal density function include among others the Céuchy
density function, the mixture of the standard normal and
the Cauchy density functions, and the density function of
the random variable t with degrees of freedom 1 < v < =,
(ii) Estimation of J(£f).

Following Bhattacharya [5] we propose the following
estimate of J(f) given by

by {fél)(x)}2

Je) = ax.
b £ ()

N
The consistency of J(f) can be proved in a similar manner
as in Bhattacharya [51].
(iii) Large sample tests of hypothesis about 6.
Suppose we want to test the null hypothesis HO: 6 = 6
against alternatives on both sides. We have shown that

under Hg, VN (TN—GO) is asymptotically normally distributed

1

I (E) " Using a consistent estimate

with mean 0 and variance

S(E) of J(f) (see Miscellaneous Remarks (ii)), we now
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define the statistic

_ z % _
Ty = {NApT(£)} (TN 60)

which is asymptotically standard normal under HO. Ty can

be used as a test statistic for testing Ho and the critical

-1

region !T R " (1 =- %) will have an approximate level

gl 2
of significance o for large N, where R is the standard
‘normal probability distribution function. In an analogous
manner we can construct a large sample confidence interval
for the unknown parameter for a prescribed confidence
coefficient. The test statistic Ty can also be used for
testing the hypothesis Ho: B < eo (or 6 > 90) against

Hl: 6 > 80 (or 6 < 60). It can be shown that the asymp-

totic efficiency (ARE) of these tests relative to the tests

based on the maximum likelihood estimate is 1.

(iv) Estimation of the location parameter in the one sample
problem.

s+ W _ be independent and identically distri-

Let W ,W2 N

1

buted random variables with probability density function
h(*-v) where v is a location parameter and h(°*) is symmetric
about zero, i.e., h{w) = h(-w) for all w. If h were known,

then v could be estimated from W._. ,W

1 2”"’WN using the method

of maximum likelihood by solving the following likelihood

eguation:
N
1 9
_ [— J = =
N iil a__v{log h(V\i v)} 0.
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It is well known (see Cramer [11], p.500) that under
certain regularity conditions on h, with probability
approaching one as N tends to infinity, the above likeli-
hood equation has a solution v; which is consistent for v.

Furthermore, /N (v;—v) converges in distribution to a

normal random variable with mean zero and variance T (1)

where

J(h) = dw.

}° tn 1) (wy32

The nonparameteric counterpart of this problem arises

. . N
when h is unknown. We define my = [g] and n = N - [53

N . . . . N .
where [5] is the largest integer contained in 5. Since h

is symmetric it follows that the probability density function
of —Wl is h(-+v). Thep Xi = —Wi, i = 1,2,...,mN and

Y. =W,, J = m _+1,m

3 3 N N+2,...,N are independent random variables.

The common probability density function of the random
variables Xi’ i = 1,2,...,mN, is h(*+v) and the common
probability density function of the random variables Yj,

i o= l,2,...,nN is h{(+-v). The shift between these two
density functions is 6 = 2v. Using the method developed
in this chapter, we define the sample empirical likelihood
egquation as given in (3.5) and conclude (see Theorems 3.1
and 3.2) that under Conditions A.3, with probability

approéching one as N tends to infinity, this equation has

* %
a solution GN which is consistent for 8. Furthermore,
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* k)

YN (6N -6) converges in distribution to a normal random

variable with mean zero and variance . From this result,

J (h)

* )

it follows that the estimate converges in probability

2
e**
i — N .
to the location parameter v and VN (—5— -~ V) converges in

distribution to a normal random variable with mean 0 and

. 1 .
variance T(n) " We also note that using the Newton-Raphson
. . * k % A
technigque one can easily compute an estimate 6N which,

according to Theorem 3.3, has the same asympEbtic properties

* *
possessed by GN .
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CHAPTER IV

NONPARAMETRIC ESTIMATION OF A MULTIVARIATE

MULTIPLE REGRESSION FUNCTION

4.1 Introduction and Summary

X
Let (Y) be a vector random variable where X = (Xl,X2,..

o=

oL X ) and ¥ = (Y_,Y_,...,Y )'. In this situation the
P1 B 12 P2

expectation of Y given X = x defines the regression of Y
on X. We note that this regression is a vector function
having P, components. In this chapter we consider the

problem of estimating this regression function on the basis
of a random sample of size n. For notational simplicity

we shall consider the situation when P, = P, = 2. The
asymptotic properties of our estimate can be proved under
similar conditions for arbitrary P, and p,. Let

( Y, (X ),...,(xln,x

X117%017¥117 Y91 1278027127 %55 on'Y1n’Yon’

be independent vector random variables identically distri-
buted as the vector random variable (Xl’XZ’Yl’YZ) having
the joint distribution function F(Xl’XZ’yl’y2) and the
joint probability density function f(xl,xz,xl,yz). We
also denote the joint distribution function and the joint
probability dénsity function of the vector random variable
(Xl,Xz) by G(xl,xz) and g(xl,xz) respectively, and the
regression of Yi on (X.,X

) by mi(x ,x2), i=1,2. Then

1772 1

we have
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—f _0{ Ylf(xl,X21erY2)ledY2

m, (x,,x.) = ’
2 ’
i 71 g(x1 xz)

. (4.1)
Let ¢i(y), i = 1,2 be two univariate Probability density
functions and let {an} be a sequence of positive numbers
converging to zero as n tends to infinity. Following
Watson [55] and Nadaraya 25, 27] we propose to estimate

the population regression function mi(x ;X.,) by the

1772

statistic min(x +Xx.,) defined by

1'72

*17%94 27723
)6, ¢

n n

1”X1j)¢ 2725

1Y a 2" a ... (4.2)

1 n n

n
i Yis0 03

Theorems 4.1 and 4.2 state the asymptotic properties of

the estimates min(x ,x2), i=1,2. In Theorem 4.1 we have

1
shown that under a set of regularity conditions the estimates
are uniformly (uniform over a closed finite rectangle)
strongly consistent. In Theorem 4.2 we have proved that
under a second set of regularity conditions the estimates

are asymptotically djointly normally distributed. These

two theorems can be regarded as appropriate generalizations
of the earlier results due to Nadaraya [.25, 271 and Schuster

ra2l.

4.2 Uniform Strong Consistency of min(xl,xz), i=1,2

In this section the following conditions will be

referred to as Conditions (A.4.2).
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Condition 4.2.1: mi(x ,x2), i = 1,2 and g(x ,x2) are

1 1

continuous over the entire two dimensional
Euclidean plane.

Condition 4.2.2: g(xl,xz) is bounded away from zero over
every closed finite rectangle of the

Euclidean plane.

s lim 2 .
Condition 4.2.3: |y|+m vy ¢i(y) = 0, i = 1,2.
Condition 4.2.4: ¢i(Y), i = 1,2 are continuous functions

of bounded variation on (-«,®) .,
Condition 4.2.5: The random variables Yi' i =1,2 are
bounded with probability cne, i.e.,

there exist real constants, Ai, B.,,

i = 1,2 such that pl[A, < Y, < B,] =1,
i- i - "1
i=1,2.
o 4
Condition 4.2.6: The infinite sexries I exp(—Ynan) is
n=1
convergent for any vy > 0.

From Conditions 4.2.3 and 4.2.4 we conclude that the functions
¢i(y) and y2¢i(y), i = 1,2 are bounded.

Let Ri = {(xl,x2): aij < xj < bij' j = 1,2}, i = 1,2
be two closed finite rectangles in the Euclidean plane.

We first prove five lemmas. Without any loss of
generality we shall assume that Ai = 0, B, = 1, i = 1,2.

We also define

wi(xl,x2) = mi(xl,xz)g(xl,xz)
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n Xx.—X Xa—X,.
1 1 713 2 727
= z ... .
win<xl,x2> 7 Ylj¢l( a )¢2( 2 ) (4.3)
na_ j=1 n n
n x. =X X . =-X_..
1 1 717 2 27
Ip (Xyr%p) = =5 T b (), ().
na_ j=1 n n
Lemma 4.1. Under Conditions 4.2.1, 4.2.3, 4.2.4, and 4.2.5,
lim sup
, — =
e (. % yer. |EUO Grpax) ) = v (x| = 0.
1772 1
Proof. We have
o o 1 1 X_ -t x.~-t
1 1 1 2 2
E{y, (x.,x )} =—= [ [ [ [ vy ¢ ¢ o ( )
In "1"772 a2 o -2 0 0 171 a 2 a_
n
"E(ey sty Yy sy )dy,dy,de,de,
@ © x.-X X=X
1 1 1 2 2
=5 J IE[Y1¢1< )9, ()
a —0 —0 n n
n
X o=t X, S t2]g(tl,t2)dtldt2
L © x. -t x.-t
1 1 1 2 2 _
= = ] o, (16, ¢ )E[Yl]xl =ty
a —00 =00 n n
n
X, = t2]g(tl,t2)dtldt2 ... {4.4)
o © x.-t x.-t
1 1 1 2 2
) [ ¢ (=)o, (=¥, (x,,x,)dt, at
a —_C00 0O n n
n
Let § > 0. We define M = (x Sip)€R> |¢1(X1,X2)!. Using
1772 1

relation

(4.4) we get
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sup

(Xl,X yer, ]E{w l,xz)} - b (xpax, ) |
< sup sup ]W t % -t.)
h (xl,xz)eR1 {(ti+t2 %<6} 1 2 2

[eo]

- ¥ (xg %) | _i _i |4, (W) o, (v)|auav

sup f f |wl(x1—tl’x2_t2)|

(xl,xz)eR

+

L2 20k
I {(e]+t)) 26} (t] + t3)

(t +t ) t t
2 1 2
-——————~ | ¢ (g—)¢2(g—)ldtldt
n n

a
n

2

+ M I fl l¢l(tl)¢2(t2)]dtldt

2 2.5 2
{(e+t2)>68/a 1

sup sup lw

(xl,xz)eRl {(t§+t2 %<6}

lx"t)

I A

- wl(xl,x2)| _i _i |6, (W) ¢, (v) [duav

1 sup 2 2
§ o— (u+ul) [ o (u ) d. (u.) |
52 {(ui+u§)%>5/a } 1 2 1 1 2 2
- n .. (4.5)

I
+ M o (£, () |at. at
{(t L2 B

5
Let n be an arbitrary positive number. By letting n tend
to infinity we can make the sum of the last two terms in
(4.5) less than n/2. Then by choosing 8§ sufficiently small

we can make the first term less than n/2. This proves

the lemma.
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Lemma 4.2. Under Conditions 4.2.4 and 4.2.5 we have for

any € > 0

sup
- 1
PLix. % )er len(xl,xz) E{y, Xl,xz)}] > ¢
1772 1
-A na4 -A na4
< A.e 2 'n £ ) e 4 n
where Ai' i =1,2,3,4 are positive constants.
Proof. We have
o0 o ] % -t % -t
- 1 1 71 2 2
an Q0 =00 o n n

where Hn(u,v,w) is the empirical distribution function of the

sample (Xll'XZI'Yll)'(X12'X22’Yl2)""'(x ’X2n'Yln) defined
by
; n
H (u,v,w) = =— I ®(u-X, .)d(v-X_,.)d(w-Y )
n n 1j 23 13
j=1
where ®(x-y) = 1 if y < x and vanishes otherwise., Let

)

H(u,v,w) be the joint distribution function of (Xl X2'Yl

H(ulv,w) be the conditional distribution function of Xy

given (X2,Y ) and Hl(v,w) be the joint distribution function

1
of (x2 Yl).

We have
‘l -] w 1

Bly, (x,v)} = — [ [ w¢l >¢ Y~V a5 (u,v,w)
a —o oo () n
n
1 71 v

Y [ ] W, (y ) { f ¢ (=2 qH (ul v, w)}dH (v,w).

an - 0 n n

Integrating by parts the integral in the brackets and

interchanging the order of integration we get
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w 1 ©
E{p, (x,v)} = —% ] owe, 0= [ HGa]v,w)

- n -0

n

ra¢, (F25) 1aE, (v, w)

n
1 =] col
= -~ — e [ J w¢2 =Yy b ( ul|v,w)
an - —® n ... (4.06)

X=-1

-dHl(v,w)}d¢l( )

wo, ( ;V)dHZ(v,w)}a¢l<§§3)

n n

8~ 8

tJ

O~

o
8 N

where for fixed u the function H; (v,w) is defined by
o)

*
H (v,w) =
u
O —

8 <

O %

H(u_[t),t,)dH (£, t,)) = H(u_,v,w)

Repeating twice this operation with the integral in the

bracket in (4.6) we get

__i =) =) yv —u
E{y, (x,9)} = = i _i G(u,v)as, (— )d¢ an>
n
... (4.7)
<] ool
1 -
Y f f f H(u,v,w)dwd¢2(zgz)d¢l(x u),
a — -0 () n n
n
Similarly,
1 T 7 -u
by (x,y) = ;5 _i _i G_(u,v)dd, )d¢ n)
n
... (4.8)
1 © w ] u
- = f f f H (u,v, w)dwd¢ (=X )d¢ 3
an - —» 0 n

where Gn(u,v) is the empirical distribution function of

the random sample (Xll,le),(Xl2,X22),...,(Xln,X2n) and can

be defined in a similar manner.
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Let Ez be the 2-dimensional Euclidean space and Ul

and H, be the variations of ¢l and ¢2 defined by

wy = las ]

-0

n, = f |d¢2(v)l.

Then we have

sup
(x,,%x,)€R Ilpln(xl'XZ) - E{l‘bln(xl’XZ)}|
1 2 1
_ sup _l < < _
= (% .x.)eR > | ) [e_(t,,t,) Gty t,)]
1 2 1 a ~00 0o
n
x,.=-t X, —t
2 2 1 1
‘d¢2(——g——)d¢l( )
n n

< ml
1
- f J f [Hn(tl,tz,y) - H(tl't2’y)]
a —0 —w
n
x,-t x;-t
2 2 1 1
dyd¢, (——)d¢, (=)
n n
B,
172 sup
<=5 iy wyen, 16, (v = Glu,v) |
a 2
n
sup
(u,v,w)eE an(u,v,w) - H(urV,W){].

3
By invoking the result of Keifer and Wolfowitz [16]

we get for any € > 0

sup _
Pl x.)er [0y Geprxy) = B, G ex ) 3] > 6]
172 1
2
sup €%n
< P[(u,v)eEz ]Gn(u,V) - G(u,V)L > EEIE;]
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2
sup £%n
+ - >
P[(u,v,w)eE [H (u,v,w) H(u,v,w) | CIRY ]
3 172
I —ina o —)\4nan
< Ae 5@
where ki, i=1,2,3,4 are positive constants.
Lemma 4.3. Under Conditions 4.2.1, 4.2.3, 4.2.4, and 4.2.5

for all sufficiently large n and for any € > 0O,

sup

- >
PLix % yer ]wln(xl'XZ) wl(xl’x2)] el
1772 1
—kznai —A4nai
< + )
< Ale A3e
where Ai, i =1,2,3,4 are positive constants.
Proof. For any € > 0O we have for all sufficiently large n
sup
- >
PLix  x.)er oy, oy ZRCIREINN el
1772 1
sup B _ ., &
< P[(x % )eR |wln(xl,x2) E{wln(xl,xz)}| 2]
1772 1
—A2nai -A4nai
< Kle + A3e ' r by Lemmas 4.1 and 4.2.
Lemma 4.4. Under Conditions 4.2.1, 4.2.3, and 4.2.4
Lim Sup |E{g (x,,x.)} - g(x,,x )| =0
n+® (xl,xz)eRl n 1’72 1’772 :

We omit the proof which can be accomplished using a similar

method to that used in Lemma 4.1.

Lemma 4.5.

Under Conditions 4.2.1,

4.2.3, and 4.2.4 for

all sufficiently large n we have for any € > 0

P[(Xl

sup
,x2)€R

1

- ]
Ign(xl,xz) g(xl,xz)l > g o
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2 4
Aze n;n
2 2
1Mo

< Al exp| -
u

where Al and Kz are positive constants.

Proof. Using Lemma 4.4 we get for all sufficiently large n

sup _
PLix x)er, 19, (%p%y) = alxpx)] > €]
17%27 €%

sup €
< — =
<Pl xyer, loptxprxy) = Bl (xyx 03] > 5]

17%27 €%

(2 ezna4
< A,exp|- 2 o .
=M 2 2

niu,

The last ineguality follows from Lemma 1 of Samanta [39].

We are now in a position to prove the following theorem.

Theorem 4.1. Under Conditions (A.4.2) we have
pp1im sup |m, (x ) - m, (x.,x.) ]
n>® (xl,xz)eRi in " %17%2 i1 72

Proof. To prove the theorem it suffices to show that
lim sup _ _
Pl e (x.,x.)eR !mln(xl’xz) my (xpox,) | =03 =1
1°72 1
and
lim sup
- o= 0 = .
P[n+w (Xl’x2)€R2 Im2n(xl'x2) m2(xl,x2)| ] 1

Since the definitions of m n(x

1 ,x2) and m

(%, ,x%x.) and the
n 2

1 2 1

corresponding parametric functions are similar it is enough
to prove the first result.

We define



min

2 = 'g(X rx)ll
1 (Xl'x2)€Rl 172
and
max
2. = ]m (x,,x )l.
2 (Xl'x2)€Rl 1 7172
Let ¢ > 0 (g < 21) be arbitrarily chosen. Using standard

computations in probability theory we get

sup

P[(xlrxz)€R1 lmln(xl'xz) ml(xl'xz){ > €]
] (x,,x.)
= P[{(X Sup) R l ln( 1 2) - ml(xl,xz) > ¢}
17%27 €%y 1 9, Xy X,
sup
n | lg (x,,%,) - g(x.,x,)] < €}]
(xl,xz)eRl n 1 2 1 2
Y, (x.,x.)
+ P[{(x Sip)éR I 1n(xl XZ) - ml(xl'XZ) > e}
17%27 €% 1 91Xy Xy
sup
n { lg (x.,%x.) - g(x,,x.)] > €}
(x,,x,)eRy Tn 71772 17%2
sup ~
S Pl xer, |Pin (xprxy) my (xq 3,09, (xp0x,) |
1" %2 1
> e, -€)]
sup
i P[(Xlrxz)ERl Ign(xl’xz) - g(xl’xz)l > el
sup e(zl—e)
= Plix,x)er len(xl’xz) = g (g x| > —
17%2 1
sup . 5(21—8)
* p[(xl,xz)eRl !gn(xl'x2) - g(xl,xz)l g “_Ef;__]
sup _ :
+ PL lgn(xl,xz) g(xl,xz)l > e].

(Xl’x2)€Rl
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We now invoke Lemmas 4.3 and 4.5 to conclude that there
exist positive constants Xi, i =1,2,...,8 such that for

sufficiently large n

sup _ S
P[(x /X)) €eR 'mln(xl'x2) ml(xl'x2)| e
1 2 1
-A na4 -A na4 -2 na4 -A na4
< A.e 2 n + A_e 4 RN e & n + A _e 8 n
- 1 3 5 7

This inequality in conjunction with the Borel-Cantelli
lemma and Condition 4.2.6 completes the proof of the theoremn.

Remark 4.2.1. Theorem 4.1 can be generalized to the

1 1
situation where X = (Xl'X2""'Xpl) and Y = (Yl,Yz,...,YPZ)
When the regression functions and their estimates are
defined in a similar manner, the theorem remains true under

conditions similar to those mentioned before. For example,

Conditions 4.2.3 and 4.2.6 should be replaced by:

. b
. lim 1 .
Condition 4.2.7: IY!*m )% ¢i(y) = 0, i = l,2,...,pl
Condition 4.2.8: The infinite series I exp(—Ynan )
n=1

is convergent for any vy > O.

4.3 Asymptotic Joint Normality of the Estimates

min(xl’XZ)’ i=1,2

We shall investigate the asymptotic joint distribution
of our estimates for two distinct points.
We note that for i = 1,2

: w,(x.,x.)

1 1 2
E(YiIXl = Xy X, g(x-l,x2) )
e (4.9)
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where
(o] oo
- dy .4 .
Wi(xl’xz) f J yif(xl,leylry2) y,4y,
- OO - OO
We now define for i,j = 1,2
v, . (x.,x.)
1] 1 2
Y = X = =
E(Yi jlxl 17 %o XZ) g(xl,xz)
where
foe) [+]
v, . = .
13 %y e%y) _i S vy EGaaxg, v iy ay,ay,

The following conditions will be referred to as Conditions

(A.4.3).
Condition 4.3.1: (Xll'XZl) and (X12’X22) are two distinct
points such that (x ;X..) > 0 and
91X117%01
g(x1pr%,5,) > 0.
Condition 4.3.2: For arbitrarily small positive n,
+
E[]Yi]3 "] <o, i =1,2.
g (x ) 9% (x.,x") dw. (x.,x.)
Condition 4.3.3: ’ 1'% ’ 172 wi xl’ 2
T 3x ! 9x 9x ! 9x !
r r 7s r
82w (x ) P (x.,%x.)
i %1% Vigt¥17%2 .
5% 5x . . ry 1,J,x,s = 1,2
r 7s r

exist and are bounded.

Condition 4.3.4: ¢i(y) and ly¢i(y)| are bounded and

lim .
Iy v (Y00 =0, 4 = 1,2,
Condition 4.3.5: / yo,(y)dy = 0, i = 1,2.
T 2
Condition 4.3.6: f v ¢i(y)dy < ®, i = 1,2.
Condition 4.3.7: lim na6 = o for 6 < 6 and Lim na6 = 0.
n-»o n n-»w n
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We define for i,s = 1,2 and j =1,2,...,n the following
random variables.

X

-X
* 1 1s “14 257 %25
an(xls'x2s) T2 ¢l( a 1o, ¢ a )
a n n
n
[u’ { }]
an(xls'XZS) - %n an(xls'XZS) - ElU (xls'x2s)
* — *
i5n F1s7¥2g) 13930 F157%2¢)
* *
Vljn(xls'x2s) n[vijn(xls'x2s) - E{vijn(xls’x2s)}]
n
Un(xls'x2s) - .Z an(xls'x2s)
j=1
n
Vln(xls'XZS) - 'El Vljn(xls'XZS)
] .. (4.10)
Bin = OgnGyarxog) e Vyg g e¥py) e Vo (yyrxpy)y
Usn (X¥aar%p0) v Vo, (2150550, Voyn (XK1a7%55))
n%z = (U (x,.,%X..), V. (x X,.) V., (x..,x..)
Zn 117%217 " Vaint*117 %21’ Von'¥i10¥o1’
]
Un (Xpgr¥pp)r Vo (xyoexy0) Vo (3 50%5,5))
N : * )
nEZ, T ey jEl Uyn (Fppr¥an) = 9l exy)r Vg (0%,
- ( X ) v ( X..) - w_ (x X))
Y1t ¥117%217 0 Vogn ¥117%21 2 ' ¥117%21
Ul ( ) - gl Y, VL o(x )
in ' ¥12'%22 I1Xyor %007 v Vi3n'*127 %00
* 1
T W Ry Xgp) e Vo n (Rypr¥pp) m oWy (xpnax, 000
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where
n
En = 2 —3jn
j=1 7
with
a
_ _ *
“in % (glxgqrxy) = BIUG (xpgux, by wy (kg 0%, )
% *
EUVY (g rxp ) de wy (e rx, ) EUV,yn (xyp iy )
glx grxy,) = BIUL (xppux 000, wdxy 0x,,)
*
BV g (X0 e wy(x 0%, )
* ]
- E{szn(xlz,x22)})
We also define the following matrices:
® ’ A 0 1
2 2 1
A= [ 97 (£ 65 (£,)at, at,
oo —w 0 A J
2
Ay = (O g Ay = (0L 0,
Mag T oV YSIXy = kg Xy = k) 0) /9 (g g exy)
Maig T COVIYL YRy = xp,, Xy o= w00 /g (xg,0x,y,)
e.. (4.
- o ; S (4.11)
¢ = [ Jel(eey(endr at,
o — 0 D
2
g(xls'XZS) wl(xls'x2s) WZ(Xls'X2s)
Dy = Wy (X gr¥yg) Vi (%pgr¥5g) Vig(XygrXyg)| s = 1.2,
Wy Xy gr¥yg) Vig (X gr¥yg) Voo (¥ gr%og)
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We prove eight basic lemmas.

Lemma 4.6. Under Conditions 4.3.3, 4.3.5, and 4.3.6 we
have for i,s = 1,2 and j = 1,2,...,n
(1) JE{u* (x. ,x. )} - g(x. ,x. )] = 0(a%)
n 1s 2s 1ls 2s n
(11)  JE{VI, (x. _,x. )} - w.(x. .x. )] = 0(a2).
i1jn “1s 2s i 1ls 2s n
Proof. We shall prove part (ii) of this lemma. The proof

of part (i) is similar and is omitted.

We have for i,s = 1,2
*
]E{Vijn(xls'x2s) wi(xls'x2s)’
o] o o oo X -1 bie _t
- |1 1s 2s
=l L T ]y =2, =
a —~® -0 =00 —00 n n
n
'f(u,t,yl,yz)dyldyzdudt - wi(xls’x2s)
ot © xls—u x2s—t
= _i _i ¢l(‘—g;—)¢2(——g;—ﬁwi(u,t)dudt - wi(xls,x2s)

= —i —J' ¢l(u)¢2(t){wi(xls—anul xzs_ant)

- wi(xls,xzs)}dudt .

Expanding wi(x -a_u, x —ant) around (x ) up to the

1s "n 2s 1s'¥2s

2 .
order of a, and using the hypothesis we get the desired
result.
Lemma 4.7. Under Conditions 4.3.3, 4.3.5, 4.3.6, and 4.3.7,

F converges to the null vector in E

F g @5 n tends to infinity.
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Proof. By Lemma 4.6 we have
O(ai) :
Ejn =—;¥—‘ (,1,1,1,1,1) .

The proof now follows from Condition 4.3.7 and the fact

that

F
-

[ ac e}

E'n'
j=1
Lemma 4.8. Under Conditions 4.3.3, 4.3.4, 4.3.5, and

4.3.6 the following results hold for i,%,r,s = 1,2 and

3 =1,2,...,n.

(i) E{u® (x. ,x. )}
S

jn T1s’'72
= g(x x_ ) ? ? ¢2(u)¢2(t)dudt + 0(a )
1s’'72s IR | 2 n
(L3) BV, S Gy Xy IV g vxp D) = v (xy exy )
. 7 ? ¢2(u)¢2(t)dudt + 0(a_)
ey o 1 2 n
(iii) E{an(xls,xzs)vijn(xls,x2 Y} = wi(xls,x2s)
_i _i 7 (w)¢5 (t)dudt + 0(a_)
(iv) E{an(XlS'X2S)an(Xlr'X2r)} = O(an), r # s
(V) E{Vi'jn(xlsrxzs)vgljn(Xlrlxzr)} = O(an)l r # S
(vi) E{an(xlS,XZS)Vijn(xlr,xzr)} = O(an), r # s.

Proof. We shall prove part (ii) and part (v) of the lemma.

The proofs of the other parts are similar and are omitted.
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(ii) eB{v.. (x, ,x. )V (x. ,x

[o0} o

2 2
_i _£ ¢l(tl)¢2(t2)vi£(xls_antl’ x, ma t,)dt dt,

(2] o

—antz)dtldtz}{_ofo J o e o, (e )w, (x, -a t

X ls "n 1’

2s

00

x2s_ant2)dt1dt2}'

X, —-a t.)

Expanding v ( -a t a t,.) and w. (x —antl, s 8,

i2 ' ¥1s %0 1 2570 i T1s

r

around (Xls'x2s) to the order of a_ and using the hypothesis

the desired conclusion follows.

X..-X X, .-X
(v) Let § - 12 11 and § = —22——£l. Since the points
in a 2n a
n n
(xll'XZl) and (xl2’x22) are distinct at least one of the

quantities aln and 62n is nonzero. We shall assume without
any loss of generality that aln > 0.

We have
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BLV gn By %00V (% 50%, 50 ]
- Loply v iy, T Mot %aa7¥a
2 i 271 a 2 a 1 a 2 a
a L n n n n
n
: X -X X -X X -X
11 1 21 2 1 12 1
a b 2 Y1¢l( a )¢2< a ) IE 2 Y2¢l( a )
a n n | |a n
Ly (222
2 a
n

= _i _£ O (80, (B0 (8) +E1)8, (8, +t,)

.Viﬁ(xll—antl'XZl_antZ)dtldt2
- a? 7 ? b ot )d (£ )w,(x..~a t.,x_ - -a_ t.)dt.dt_}
n e o 1 1 2 2 i 11 n 17721 n 2 1 2
{_i _i Oy (e )0, (e )wy (xgpma by %, -a £ )de de, ).
Expanding ViR(Xll—antl'XZl_antZ) around (Xll’XZl) and

WZ(XlZ_antl’XZZ—antZ) around (Xl2'x22) to the order of an

and using the hypothesis, we get

IE[V.. (X r X )v (X r X )]|

ijn 1177217 &9n 7127722

I A

lviz(xll’X21)|_£ _i Oy lE )0 (00, (8, +E)

-¢2 (<82n+t2)dtldt2 + O(an)
B ’Vil(xll'XZl)l_i{lt <£ (800, (8
1 ‘In )



¢

* ,Viz(xll’le)[ /1

44

(x

1 In 1 2

¢l(61n+tl)¢2(

11’X21)|{

I

!V (x

ig 11’x21)!{]t1]35

(8, +#£)9, (8, +t)dt }at

2 2

J ¢1(tl)¢2(t2)
>§
- 1n

2

e

62n+t2)dtl}dt2 + 0(a_)

sup
|t ]<6 ERAEPAASER
1 1n
2

¢2(t2)¢2(62n+t2)dtldt2

TIE b e )]
1n

f i 9, (00, (8, +E)¢, (8, +t )dat at,

t1'Sl<1§1n/2 LIPS REALAEY
{Itngiln/Z $,(£)3-0(1) + 0(a)
|z,§§fn/2 ¢, (z)}-0(1) + 0(a_)
2155, , o7 2oy @0+ o)

li |z|§§§n/2 lz¢, (=) [-0(1) + 0(a_)
ta_ cup

127 %11) |z]>8

lz¢, () [r0(1) + 0(a)

in/2

0O(a_)+o(1l) + 0(a_ )
n n

0(

an).

103,

+ O(an)
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Lemma 4.9. Under Conditions 4.3.3, 4.3.4, and 4.3.6 for
any 6 > 0 the following results hold for i,s = 1,2 and

i = 1,2,...,n

) 2+8, _1
(i) E{Iujn(xls, 5o | } o= o{ 6]
an
. 2+8, 1
(ii) E{]Vijn(xls,xzs)[ } =0 T
1+
a
n

|(2+6)(l+€)]

where € is any positive number for which E[lYi

is finite.

Proof. (i) We have
2+6 2+6 *
E{}an(xls,xzs)] } o= a_ E[Ian(Xls'XZS)
* 2+8
- E{an(xls,XZS)}| J.

By Minkowski's inequality and by an analysis similar to

that in Lemma 4.8 we have

1
[E{Ian(xlS,x25)12+6]§:§
1
< an[{E(lU;n(Xls,Xzs)l)2+6}2+5
L
+ B G e, 0 |20

1
e I
n

1
=0 [ 6/(2+6)J .
1a

n

The desired conclusion for (i) now follows.
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(ii) We have

E{|V ,
{{ ijn(xls %25

- E{V;. (x

in T1s’ % )

2s

By Minkowski's inequality and the results in Lemma 4.8

we get
1
2+6,2+8
{Elvijn(xls'XZS)l }
L
* 2+8,2+¢
< an[{E([vijn(xlS,xzs)l) }
L1
* 2+6,2+6¢
+ {IE(vijn<xls,x2s))| 3T
L
= a [E{|vi. (x. ,x )12+6}]2+6 + 0(a_).
n ijn 1s 2s n

Using Holder's inequality we get for any € > 0

2+6
a

248
2 124833

)

*
[E{lvijn(xls'x2s

X -X X -X
1ls l)¢2( 2s 2)

n n

-(2+6)
a
n

E{ Yi¢l( 2

a;(2+6)[E{|Yi](2+6)(l+€)}]l+€

A

1ls l)¢2( 2s 2)} €

n n

x. -X x. -X (2+68) (=5 1+e
: E{(bl( a

1

a—(2+6)+2e/(1+e l(2+6)(1+€)}31+8

)[E{IY.
hS

€
L x. -X x. -X (2+5)(lzef]1+e
- Yy 7 -
as n n ‘ ]



106,

Using an analysis similar to that in Lemma 4.8 and the

hypothesis we conclude that

248 * 2+68 1
“n [E{]vijn(xls'XZS)I 1 =0 2+8-2e/(1l+€)
an
Hence,
L
2+6,2+8 ¢ 1 \
{E|Vijn(xls'x2s)l } = 0 - 52 + 0(a )
(1+e) (2+98)
‘T n
- nf 1
=0 1- 2¢
(1+e) (2+8)
S n

The conclusion now follows from the above observation.

= row vector
Let 4 (dl'dz’d3’d4’d5’d6) be any nonnull
in E6. We define for j = 1,2,..,,n
2 gw'n
o% = var{—2%}
jn %
n
and
2+ dW n|2ts
. = E{|—s— }.
jn %
n

Lemma 4.10. Under Conditions 4.3.3, 4.3.4, 4.3.5, and 4.3.6

for j = 1,2,...,n

2 an
(i) o5 = {acda'l/n + 0(—)
jn - = n

where the matrix C is as in (4.11).

2+
(11) pj1’1(S =0 8 - 2¢
1+ > 2+6- T+e
n a
n

where § and € are positive numbers for which -



E{|v,
1

Proof.
(1)

2
no .,
J

|(2+6)(1+e)} < o

]
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;i

Using the results in Lemma 4.8 we get

Var{dw. }
Jn

oo

2 2 2
f f ¢l(u)¢2(t)dudt[dlg(xll,XZI)

O

oo

-0

2

2 .
oAy (R exgg) ARV, (xygaxyg) Fdglxg o ex,,
+ a3y, ¢ )+ alv. )
11 %127 %22 6 22 F12"%22
e . (4.12)
+ 2dld2wl(xll,x21) + 2dld3w2(xll,x21)
to2dydavy o (X exyy) 24, 40w, (% ,0%,,)
+2d,d W, (%, 0%,,) 4 2d5d6Vl2(x12,x22)] + 0(a )
=QCQI + 0(a_ ).
n
The desired conclusion now follows.
(ii) We have
8
1+ —
+ +
n o 2.p2%0 L B{ |aw. |29}
jn =Z9n
2+8 2+8
< |af E{len! }
248, 2 2
= [al"  Bluy, ey am, ) Vign F117%21)
2 2
+ »
T Vogn (Fppe¥gg) T Uy (xypexy,)
2+6
2 )
T Vign (FparEyy) T Vo (ko000 )
248
248 2 2 2
< lal 6 = EBlmax{uy, (xy)rxpy) s Vign(Fyy0%p0)
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2 2 2
Vagn (Xr1r¥a1)r Ugn (Xpgrxy,) e Vg (xyp0xy,),
2+6
2 2
Voyn (¥127%5,) 1]
2+§
2486 2 246
= i§| 6 E[max{lan(xll,x21)] '
246 2+68
1V g0 Gpp x50 [V sn Cey gy 1770
2+6 2+6
[0, (k50550 ] [V gn (xpprxp ) 1770,
246
]szn(xlz, 50 | }3
2+6
2+6 2 2+6
< .
< |4l 6 E[lujn<xll,x21)|
2438 2+8
* ]Vljn(xll'XZI)I + 2jn(xll'x21)|
2+86 246
+ !an(xlz'xzz)l ]Vljn(XIZ'X22)|
24§
Vs Xy ) [T
= O(—%‘ + 0 ————l——ag-, by Lemma 4.9
%n 2+8- l+e
a
n
4 1
- ° 2+8- 2¢
' l+¢
\an

The proof of part (ii) is now complete.

Lemma 4.11. Under Conditions (A.4.3) for some § > 0

lim , 2 2 '
(i) {2 of }=4dca > o
n->oo . Jn - -
j=1
n
. 1im 2+8
(ii) e { i 5n } = 0.



Proof.

By part (i)

n
I o = 4c3" + 0(a ).
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of Lemma 4.10 we have

To complete the proof we have to show that the submatrices

D, and D

1 5 which appear in matrix C

are each positive definite.

definition it suffices to prove that the matrix D

positive definite.

for any nonnull vector § = (20,2

1
' 2
D & = g(xll,XZI)E[{ILO +21Yl+22Y2} lxl =
(ii) Using the results of part (ii)
we have
n
+8
{2 p2% = of—2
'=1 jn é 2+6_ 2€
J 2 l+e
ln~ a
n
- of . 1 §/2
4 o 4
§ (1+€) 6§
na
‘" Tn

where € is a positive number for which

[E|Y

il(2+6)(1+€)] < w,

We now let ¢ = a8 (oo > 0). Then we have
n
+
{z 2 6} =0 L §/2
'_l Jn é +2_ 4OL
J= 5 1+06
na
n
provided E[lYi](2+6)(l+a6)] ©, i =1,2.

(see relation

(4.11))

Due to the symmetry in the

1 is

This result follows from the fact that

,22) we have

X = X 1> 0.

X117 %2 21

of Lemma 4.10

By Conditions 4.3.2
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and 4.3.7 the conclusion will follow if we can show that

for arbitrarily small positive n there exist o > 0 and

4 4da
§ > 0 such that (2+48)(1+ad) < 3 + n and 3 + 2 - T35 < 6.
4 4q . . 2
& - < - >
Now, Tt 2 1103 6 if and only if odé” + 6 1 0. We

consider the equation

h(8) = a8 + 6§ - 1 = 0.

-1+/1+4q

a It 1s easy to

The roots of this equation are

verify that the function h(§) is strictly increasing and

-1+

positive in the interval (_l_E%iﬂg , ®), We further note

. c1+V/1 530
that lim {_l_il*ﬂﬁ} = 1. Hence, for arbitrarily small

>0 2a

-1+V1+
positive El there exists nl > 0 such that ~l—§%~§2 - 1| < €
whenever 0 < a < Ny - Hence, if 0 < o < min(el,nl) and
<

1 + €1 6 < 1 + 281, then

(2+8) (1+0d) < (3+2el){1 + el(1+2el)}

2 3
= 3 + Sel + 851 + 451,
and

h(8) = a6 + 6§ - 1 > 0.
Since El is arbitrary the proof is complete.

Lemma 4.12. Under Conditions (A.4.3), gn converges in

distribution to Z where Z is a siX dimensional normal

random variable with mean vector 0 and covariance matrix C.

1
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Proof. It suffices to prove that the random variable daz

converges in distribution to dZ as n tends to infinity

(see Theorem (Xi) of Rao [30], p.103). We note that
n QW'n

ggn = I {*-%—}. We also note that the results in Lemma 4.11
j=1 n

enable us to apply Theorem B(ii) in Loeve [21], p.275, and

daz
to conclude that — 2 converges in distribution to a
YVar (dz )
-=n
standard normal random variable. Using this result and
Lemma 4.11 we have
az az VVar (dz_)
i ~=n ==n
Vaca' Yvar (dz ) vacga'
az_
= —————— {1 + o(1)}
V/Vvar (dz_)
==n
dz

--n

= —————— + 0_(1)-o(1).
/Var(ggn) P

The proof follows from this observation.

Lemma 4.13. Under Conditions (a.4.3), %; converges in

distribution to Z where Z is a six dimensional normal random
variable with mean vector 0 and covariance matrix C.
Proof. We have by Lemma 4.7

*

V4 = Z - F
“n = =

where Qn converges to the zero vector as n tends to infinity.
The proof now follows from Lemma 45123

We now prove the following theorem.
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Theorem 4.2. Under Conditions (A.4.3)
(na’) *(m. ) - m. ) ( )
nay 1n'*117%21 Myt ¥ %21y Mop 1 ¥y %y
T oMy (X exp ) my Gy naxg ) s gy o ax, ),
Mon (FporXgp) = my(x,,,%,,))

. . . . * * . .
converges 1in distribution to Z2° where 2" is a four dimen-
sional normal random variable with mean vector 0 and

covariance matrix A.

Proof. We define
In - (Tln’T2n'T3n'T4n'T5n'T6n)
§ = (8,,8,,85,8,.05,0¢)
where
n n
1 * 1 *
T = = = =
in "o JE Usn(Xppexgg)s Ty o= o2 1n F117%¥21)
j=1 j=1
n n
1 * 1
Tan T % % Vosn(Eppexp)e Ty, =g 2 Usn (¥157%55)
j=1 j=1
n n
_ 1 * _ 1 *
Tsn =0 2 Vign(Fparxpp)e Tgo =5 2 24n (¥127%55)
j=1 =1
01 = 9y X))y 0y = wp(xgex,y) By = W (xy g x,,)
g = 9(xypuxp0)r B = wyxyyrxyy), B = wo(x %)),
We also define a function H on E6 into E4 by
H(Y) = (H)(y), Hy(y), Hy(y), H,(y))
where

Yy = _(ery21y31Y4rY51y6)
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Y Y Y Y
2 3 5 6
H (Y) = Ty H (Y) =, H (Y) = T H (Y) =
12 1 2 = yl 3 y4 4 = y4
We have
z2* = (na’)XT -9).
-Nn n -n -

We conclude using Lemma 4.13 in conjunction with Theorem

(iii) of Rao [30], p.322 (replacing nli by (nai)%) that
2. %
(na’) *(H(T_) - H(8))
= (na?)*(m, (x ) - m. ) (x
= (nay in'¥117%21 My t¥qqrXoq)r My (X0 %oy
Tomy Ry exg )y my (xpLaxg ) s my (xyx )
Mon (¥1pr¥yy) = mylx ,0x,,))

. . . . * * . .
converges 1in distribution to 2" where Z is a four dimen-

sional normal random variable with mean vector 0 and
. 9H, (8)
covariance matrix HCH where H = [[——§§—~}] is the
3 4%X6

matrix of partial derivatives of the functions Hi(z),
i =1,2,3,4 with respect to their arguments evaluated
at 6. It is easy to verify that HCH = A.

The proof of the theorem is now complete.

Remark 4.3.1. Theorem 4.2 can be generalized to the

. . 1
situation when X = (Xl’x2""' ) and Y = (Yl,Y2(...,Y

X
Py

and the regression function E[XIK §] is computed at g

(x990 xzz""'xplz) '

distinct points X

L

L

It can be shown that under certain regularity conditions
the limiting distribution of the estimated regression

function at these points is pzxq—variate normal. Except

£ =1,2,...,q.

v
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for a multiplier the covariance matrix of this limiting

distribution is given by

Al 0
A
A = .
[ 4
0 - A
- el
where

A, = “*glj)’pszz
Mggg = cov(¥L Y X = x))/g(x)), L= 1,2,...,q

i3 = 1,2,...,p,.

To accomplish the proof we need to replace Conditions 4.3.2

and 4.3.7 respectively by

Condition 4.3.8: For arbitrarily small positive 7,
p
2+ S +1
El|y, | 2']<eoi=12...p.
i B I r<r I2
C . lim )
Condition 4.3.9: na_ = o for § < p. + 4 and
n->o n 1
+4
lim pl
na = 0.

n->o n
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