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Abstract

The potential of clirnate change to affect hydlological legimes has increased

the need for simulation of futui-e tlends in hydlological variables. Global Climate

It4odels (GCN4s) ale commonly used to provide possible futule climate scenalios.

The coarse Ìesolution of GC\,ls makes it difficult to use the data directly fol hy-

drological modelling. Post-processing of the GCN4 data is necessaly to plovide

data of applopliate scale. Application of statistic methods to dorvnscale the data

is a common solution to the dispality of scales.

A À-nealest neighbor resampling model is presented to dorvnscale hydlological

variables from large-scale atmospheric data. Although the nonparametlic nature

of the resampling algolithm avoids the extensive parameterization requiled by

other statistical dorvnscaling methods, it ivas necessaty to develop an optimization

loutine to rnaximize the pelformance of the model. The algolithm rvas able to

adequately leploduce histolical rveather data, and rvas applied to generate data

for ìrydrological modelling undel climate change scenalios fol multiple sites in the

Nelson River and Winnipeg River drainage basins.
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Chapter 1

Introduction

1.1 Problem

Global climate change is becoming an issue of grorving conceÌn. Legitimate con-

cern over hoiv a changing climate ivill afiect many aspects of human life liave

made adaptation strategies a commor engineering requirement. Industries based

on the use of rvatel resoLrÌces may be par-ticularÌy vr,rlnerable as changes in temper-

ature, evapolation, and precipitation cause changes in available streamflorv. Local

changes in hydlo-clirnatic varial¡les and the effects on \\'ater availability are not

rvell undelstood br-rt ale imperative to long-telm $,âteÌ Lesollr-'ce management.

Cullently global climate moclels (GCÀ4s) ale the best available tool fol sim-

ulating clirnate change. These complex models gener-ate clirnate data over long

peliods of time fo¡ diffelent scenalios of atmosphelic forcing conditions based on

global population grol'th and lesoulce development. Horvever', the r-esolution of

GCÀ4s makes it difficult to model hyd::ological regimes using GCIVI data directly as
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input. Fol example, the GCIVI data plovided by the Canadian Centi'e for Clirnate

l\,IodeÌling and Analysis (CCCrna) from their CGCN43.1/T47 model has a spatial

resoh-rtion of apploxirnately 3.75' by 3.75' latitude and longitude. Hydrological

modelling lequires data on a much smallel scale. A solution to the disparity of

scales is to statistically dorvnscale GCitd data to points rvhere weathel stations

exist. Weather data dorvnscaled from the GCN4 data can then be used fol effective

hydrological modelling of the climate trends present in GCM scenarios.

lvlany statistical methods have been adapted to dorvnscaÌe GClvl data (Wilby

and lVigley, 1997). Comrnon statistical dorvnscaling methods inclnde transfer'

functions, t'eather typing, and rveathel geneÌators. The difficr-rlty of using these

models is the large numbel of palametels that ale requiled to adeqr,rately captule

the relationships betrveen lalge-scale atmospheric valiables and local rveather.

An altelnative apploach is a fr-neai-est neighbor statistical dorvnscaling ap-

ploach. Nearest neighbol resampling is a nonpalametlic approach that has the pri-

maly advantage of avoiding the complex parameterization process. Local tveathet

data is ploduced by strategically resarnpling fi'om a historical recold based on

similality of the daily lalge-scale atmosphelic patteÌns of the GCN,I. Reanalysis

data fi'om the National Centre for Environmental Plediction (NCEP) plovides tl.re

historical lecold of atmosphelic data. The k days from the liistorical record that

are most similal to the simulated day are extracted and leferred to as nearest

neighbors. One of these nearest neighbols is selected by random sampling. Since

the resarnpled day has sirnilar Ìalge-scale s'eather conditions, rvhich ale couelatecl

to local ri'eathel' corditions, this day provides tìre desired local iveathel valiables
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fol the simulatecl atrnosphelic conditions. In this lepolt, a È-neaÌest neighbol

dorvnscaling model s,ill be developed to genelate data for' þdrological modeìling

of futule clirnate charrge scerralios.

1.2 Objectives

Tlie objectives of this report are to:

1. Review climate change plinciples

Revierv climate change in the context ofthe recent changes in climate as rvell

as futule plojections by GClVIs. Changes in climate rvill be revierved in a

global context, and then in gleater depth for the Canadian Prairie legion.

2. Review downscaling techniques

A multitude of dorvnscaling techniques are available in litelature. A culsoly

¡eviery of dos'nscaling techniques rvill be plesented. The impoltance of de-

veloping a È-nn dorvnscaling rnodel as an addition to the realm of existing

dorvnscaling metliods ivill be appalent after this objective is met.

3. Explore GCM data

An important step in the project ivill be to explole tlie availability of GCM

data rvithin Canada and to evaluate the GCNds' ability to leproduce current

climatological patterns ancl statistics in the prailie region of Canada. Biases

in the GCN,I data, if they are pÌesent) rvill be identifled in this poltion of the

project.
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4. Explore relationships in large-scale and local weather variables

The basis of dorvnscaling methods is the link betu,een lalge-scale and local

s'eather valiables. Statistical techniques rvill be used to identify the lelation-

ships betrveen the difrerent scales of data.

5. Develop and apply a k-nn downscaling model

The essence of the leport and its contribution to science is to develop, apply,

and evaluate a fr-neai-est neighbor dorvnscaling model to dorvnscale GCivI

output. A successful development and application of a k-nn dorvnscaling

rvould contribute to the advancement of statistical dos'nscaling and climate

change impact assessment technologv.

1.3 Context of Work

The rvolk presented in this leport is pal't of a larger ongoing project in the Depalt-

ment of Civil Engineering at the Univelsity of Manitoba. The project is entitled

"Efiect of Climate Change on \Árater Supply for lVlanitoba Hydlo Systems" and will

be completed in mid 2009. The project is using statistical rnethods to dorvnscale

GCX,I data. The doiv¡rscaled GCI\,I data is being used for hydrological modelling

to quantify the effect of climate change on rvater srqrply for \4anitoba Hydlo's

hydloporvel generating system. The k-nearest neighbor dol'nscaling model de-

veloped in this report s,ill be one of tìre dorvnscaling rnethods used to supply a

hydrological rnodel rvith iveather valiables for climate change scenalios.
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L.4 Organization of Report

Chapter 2 provides a levies' of climate change, including a descliption of GCt\,fs,

a leviel' of GCN,I clorvnscaling methods, and a levieg' of climate change data

and trends. Chapter 3 is a technical description of the methodology, including

backglound infolmation on the numelical methods used tliloughout the project as

g'ell as a literatule levierv of the k-nn methodology and applications. The difielent

data sets employed in the project are.desc¡:ibed in Chaptel 4. Results from GC\,I

validation and the exploration of lalge-scale and local-scale climate relationships

ale plovided in Chapter 5. Chapter 6 plovides the descliption and lesults of four

applications of the k-nn dorvnscaling model developed for this project. Chapter 7

evaluates the rnodel's ability to improve upon raw GCIvI output and simulate

plausible future climate scenalios, and aÌso summarizes the model development

rvith recomnendations for developing futule À-nn dou'nscaling models. Chapter'8

sumrnalizes the overall conclusions from the ivork completed.



Chapter 2

Background

2.L Climate Change

2.1.L Global Climate Change

Climate is the long term average rveathel that an area experiences. Climate of a

specifrc location may be defined by the average tempelatuÌe, plecipitation, ivind

patteÌns, da5,s of sr.rnshirre, hequency of severe events, etc.

The Earth's climate has ahvays been changing. Even in the past 100,000 yeals

the Ea¡th has seen extleme valiation includir.rg periods of glaciation and periods

of rvarming. The Earth's clirnate is a highly complex, chaotic, non-linear, dynamic

system. N4any factols can create changes in the Earth's climate. For example,

changes in climate have can be attributed to volcanism, plate tectonics and changes

in the snn's strength ovel time called solar valiation. Ovel the last fel' centuries,

ìruman activities have played a role in the Ealth's clirnate. Human activities

affecting climate include land use change, livestock, lelease of aerosols, and the
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bulning of fossil fuels.

The Ðalth has expelienced surface ternperature increases of 0.74 t 0.18'C dur'-

ing the hunclred years ending in 2005 (IPCC, 2007). The Intelgovelnmental Panel

on Climate Change (IPCC), a scientilìc body representing the rvolk of 2500 scien-

tists on climate change, concluded that most of the obselved increase in globally

avelaged temperatures since the mid-trventieth centuly is vely likely due to the

observed increase in anthropogenic gleenhouse gas concentrations. Glol¡al climate

models are able to leproduce the rnean global temperature ovel- the last one hun-

dred yeals by incoi-polating valious climate change dlivers srrch as variations in

gleenhouse gas concentlation, solar enelg¡ ozone, volcanic activity, and concen-

trations of sulfates (N,Ieelil, 2004). The rvork by \4eehl (200a) demonstrates tìrat

the rise in greenhouse gases is the leading contributing factor: to climate change

over the last one hundred yeals.

As humans continue to buln fossil fuels at high rates, the changes this l'iÌl

have on the climate of the next one hundred years is an issue of groiving concetn.

As a lesult, gloups of atmospheric scientists have developed computer algolithms

to model the Ealth's clirnate. These lalge, complex models rvill be discussed in

gleater deptl.r in Section 2.2. "lhe possible changes in climate ovel the next one

hundred yeals simr-llated by these models l'ill be discussed in the next section.

2.1.2 F\-rture Global Climate

Estimates of futule climate trends ale plimalily based rqron the simulations of

GC\ds. GC\,Is are currently the best available tool for sirnulating future climate
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change. GCltIs ale forecasting that large changes rvill occur in Ealth's climate in

the next one hundled yeals.

Figure 2.1 is a summary of the historical global ternpelature, as rvell as the

futr-u e global tenperatuÌes simulated by a valiety of GCN4s fol ilifierent ernission

scenalios. The figure shorvs mean global tempelatures compared to the year'1990.

Proxy data rvere used to exteld the data back 1000 years using infolmation fi'om

air tÌapped in glacial ice and tlee ring analysis. The gley shadorv shorvs the margin

of elrol in these data may be quite high. Flom the late 1800's global tempela-

tuÌes aÌe estimated fLom measLrrements taken alound the rvolld. The figule shorvs

that since the early 20th centuly, tempetatu¡e has been gradually increasing. The

envelope created by the multitude of GCNI and scenario combinations shorv that

temperatures rvill contimre to lise at an increasing late. By the end of the 21st

centruy, temperatures ale folecasted to lise betrveen 1.4"C and 5.6'C. The tem-

peÌature simulated fol the 21st centuly is significantly rvarmel than tempelatures

experienced in tlie last 1000 yeals.

Figule 2.1 shorvs the lange of results for each of the scenalio families from the

IPCC (2000) special repolt on emission scenalios (SRES). The A1 family has a

rvide lange of rvalming, rvith the AlFl shorvilg the higliest rvarming out of all

emission scenalios, the A1B shorving a medium deglee of rvalming, and the A1T

shos'ing a medium to lot' degree of rvarming. The A2 scenalio shorvs a high degree

of ivarming, the 82 shoivs a medium to lorv degree of s'arming, and the B1 scenario

shorvs a lorv deglee of rvalrning.

The late of walming aronnd the globe is folecasted to occur in a hetei-oge-
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(Adapted from Climafe Change 2001: Synthesis Repolt, IPCC, 2001, pg. 34).
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neous rìranner' (IPCC, 2007). Although the mean globaì ternperature l'ill Ìikely

lise as shorvn in Figure 2.1, some aleas may only rvalrn slightly rvhile otÌrers rvill

see much highel lates of rvalming. Genelally ail above oceans and land neal the

oceans rvill have tempelatules rnodelated by the ocean rvater. Aleas in the middle

of continents, farthest arvay fi'om the modeÌating effects of oceans, rvill see the

highest amounts of rvalming. Since most of the Ealth's land mass is in the North-

ern hemisphere, the Northern hemisphere, and especially the Arctic, rvill see an

amplification of global rvalming tlends. Higher latitudes rvill see relatively liigher

increases than lo¡v latitudes.

2.1,.3 Climate Change on the Canadian Prairies

Sauchyn and l(ulshreshtha (2008) summarized the possible effects of climate change

on the Canadian Prailie Provinces. Their report provided a discussion on climate

change in the Canadian Prairie Provinces, including the speciflc effects on watel'

resouÌces, ecosystems, soil landscapes, agriculture, forestry, transportation, com-

munities, healt h, energy, and tourism and recleation.

For rvater Ìesoulces, closed basin lakes are a good indicator of tlends in cli-

mate. Closed basin lakes, lakes rvithout natural outlets, ale indicators of long

teÌm \\'ater balances in plailie rvatelsheds. Their l'ater leveìs provide a men1ory

of l'ater balance conditions o\¡eÌ a numbel of years, even decades. lVatel levels

are geneÌally constâ.nt but rvill change as they gradually rise ol fall over time as

changes in climate affect the rvatel balance of the rvatershed. A surnmaly of water

levels of a numbel of closed basin plairie lakes (Wiiteivafer Lake, Big Quill Lake,

10
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\,Ianito Lake, Redberly Lake, Uppel l\,lann Lake, Spling Lake, Little Fish Lake)

all shorv decreasing water levels since the mid 1950's (Sauchyn and I(ulshreshtha,

2008). This trend shorvs that, overall, Ìunoff oveÌ the last sixty years has genelally

decreased on the prairies compaÌed to the sholt term conditions pliol to 1950.

For futnle changes in the climaTe of the Canadian Plailie Provinces, Sauchyn

and l(ulshreshtha (2008) provide a summary of tempelatule and precipitation

pÌojections fi'om a valiety of GCMs and emission scenarios for both grassland and

forest areas of the prairies. Table 2.1 summarizes the range of trends in mean

annuaì temperature for the Prairie Provinces. Ta.ble 2.2 summarizes the lange

of trends in annual precipitation. These tables shorv the range of tlends and the

ensemble mean simulated by a variety of GClvfs.

Table 2.1: Simulated "C ch rov
Grasslands ¡bÌest

lt4inimum IvIean lvlaximum lvlinimum Nfean l\¡Iaximum
2020's
2050's
2080's

0.5
7.7
2.2

1.8

3.1
5.0

ta
5.6
8.9

0.9
1.9

7.7
2.4
4.4

2.9

6.8
10.8

Provinces.Tal-¡le : Simulated 7n ch in oleci¡itation for the Prailie
Lirasslands !blest

1\4rnÌmìlm N4eân lvlâxìmllm l\4 Ìtml r nl 1\4eân l\4aximur
ZUZU S

2050's
2080's

1U

-4
-6

'z

5

9

1Ð

18

29

ó

2

2

5

I
12

o

16

for the Prairie P Inces.

N4ean annual tempelatules aÌe shown to continr,rally inclease throughout the

next centuly. By the yeai' 2100, tempelatules ale likely to have incleased 5.0oC

in glasslands and 4.4"C in forested areas. The waÌmest models simulate tìrat

tempeÌature could rise as much as 8.9'C in grasslands and 10.8"C in folested areas.

11
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For the clirnate of the next one hundred years, the GCÀ4s simulatiorìs suggest a

rvide range of possible plecipitation tlends. Some models shoiv slight decleases,

rvhile others shorv increases of up to 29%.

The Canadian Cer.rter for Clirnate Nlodelling and Analysis (CCCma) CGCÀ{2

model rvas included in the summaly information. Among the GClr4s compaled,

the CCCma CGCX,I2 model, the precuÌsor to CCCrna's most recent model, the

CGCIVI3, wâs near the average for temperature changes, ancl one of the drier'

models in terms of precipitation.

While higlier C02 levels and u,almer tempelatures may provicle some benefits to

the plairie legion, the lalge rvalming trends that ale projected fol the prairies bring

many disadvantages. For example, the cold rvinters in the plairies help limit pest

and diseases, and also facilitate âccess to northeln communities and lesoulces via

rvinter ice roads. Walmer rvinters may allorv nerv pest and diseases to move into the

prairies, similar to horv the mountain pine beetle has seen incleasing populations

in Britisli Columbia and severely threatens forest ecosysterns. A possible benefit

to higher COz levels and highel temperatures could be increased folest, grassland,

and cto¡r ploductivity. Horvever', these benefits may be limited by the avaiÌability

of rvater.

Sauchyn and I(ulsh'-eshtha (2008) cited that the most setior-rs clirnate risk to the

plairies is increases in rvatel scalcity. Theil lepolt stated that lecent trends and

future projections for u,ater Ìesources include lorvel surnmer streamflol's, falling

lake levels, retreating glaciels, ancì incleasing soil rnoisture deficits. The freqr:ency

of dry yeals is also lihely to inclease. Although the numbel of dry yeals are

12
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expected to inclease, risk due to flooding may also increase due to more sevele

rainfall events.

ln 2004, tl.re Canadian Government published å, sLrmmâÌy repolt regalding

projections of cìimate change and irnpacts of climate change in Canada (Lemmen

and Walren, 2004). This report cites that due to its inland location, the plairie

region could see a greater inclease in tempelatule than the rest of the country.

Although plecipitation on the plairies is forecasted to slightly increase, there may

be significant negative changes in the annual hydlologic cycle due to these changes

in climate. The rise in temperatuÌe reduces the frost season significantly and

ircreases the rate of evapotransirilation.

The 2004 goveÌnment lepolt (Lemmen and Warren, 2004) cites some potential

changes in wateÌ resoLrÌces in the Prairie Plovinces as:

r Changes in annual flos' regime, r'educed snmmer florvs,

o lncleasing ìikelihood of severe dror.rght, and

r Incleases ol decleases of iuigation demand and rvater availability.

The thleat clirnate change poses to water resoLu'ces in the Canadian Prairies

and elservhere around the rvorld mal<es climate change impact studies an irnpoltant

component in long-telm wateÌ r'esoulce management plans.

13
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2.2 Glot¡al Climate Models

2.2.1 Tntrocl uction

A global climate model (GClt,I), also refeued to as a general cilculation model, is

a lalge computer model used fol simulating long periods of l'eathel over the entile

globe. GClr,Is aÌe very complex and constlucting a GCNI is a massive undeltaking.

Therefole they ale usually developed by government olganizations or universities.

A list of current GCIVIs and the olganizations rvho developed them is given in

Table 2.3.

GCÀ,Is are combinations of othel large computeÌ models. The trvo major build-

ing blocks of a GCIvI ale an atmospheric general circulation model (AGCN4) and

an oceanic genelal circulation model (OGCIVÐ. The combination of an AGCN,Í

and an OGCX4 is referred to as a coupled global climate modeÌ (CGClvI). Addi-

tional models are added to complete the description of the Ðarth's climate dliving

forces. These supplementary models include ice models, river louting models,

evapotranspilation rnodels, and chemical trânspolt models. Each GCM employs

similar but slightly diffelent types arld combinations of these components, and as

a result GCI\4s plovide different results l4ren forced rvith the same atmosphelic

conditions. The va¡:iation in the models plovide a spectmm of possible projections

of the Ealth's climate.

GCNIs typically complete theil cornputations using either a finite difierence

rnethod oÌ a spectral rnethod. The model is discretized into a three dimensional

grid. Since the rnodels ale complex, to be compntationally feasible the model

1,1
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Model Name ¡iource
ON41 Beiiins CLjmale Centre (BUC), China

tsc)À42.0 tsjelknes Cerrl,r'e lol Clirnate lìeseaÌclr (BCCR)
UGL][43 Uanadian CentÌe for Ulimate 1\4odelling and

Analysis (CCCma), Canada
CIVI3 Centre National de Rechershes Meteorosioues ICNRI\4)

l\4k3.0 Austlalia's Commonrvealth Scientific and Industlial Research
Oreanisation (CSIRO). Australia

EUHAMS-UI\4 IVIAX-l-lAnK-IrìSü¡Ute IOr lvleteorology (IVlrIJ ârld UeUtSClìeS

I(limalechenzentrum (DI(RZ), Germany
I,;UHU-G I\4eteorological Institute, Univelsity of Bonn (NfIUB)

\4eteorological Research Institute of I(lt4A (lvlETRI)
N4odel and Data Groupe at IvIPI-lvl (l\4& D)

FGOALS-g1.0
cN42.0
CN,I2.1

Institute of Atmospheric Physics (LASG)
Geophysical Fluid Dynamics Laboratoly GFDL, USA

AO\4
E-H
E-R

Goddard Institute for Space Studies (GISS) Atmosphere
Ocean \4odel

ci\43.0 Institute fol Numelical Nlathematics (INN'I), Germanv
CN,I4 Institut Pierre Simon Laplace (IPSL), Flance

I\,tIOROCl3.2 Clenter lol Cllimate Research Studies & National Institute fbr
Environmental Studies, Japan

N,IRI It4eteorolosical Research Institute llvIRI). Jaoan
PCN4

CCSIVf3

National Centle for Atrnospheric Research, USA

HAdUIVIó
HadGElvIl

Hadley Uentre lor climate Pr-ediction and tiesealch
HCCPR, Uk lvleteorological Office (UI(I\4O)

SXG 2OO5 National Institute of Geophysics and Volcanology (INGV)
Italy

glids ale coalse. TS,pical glid resolutions are on the ordel of betrveen one and

five degrees in latitude arld longitude. The Hadley HaclCl\43 model uses a glid

of 2.5' in latitude and 3.75" in longitr-rde, giving a global glid of 73 by 96 points.

The T47 veÌsion of the CCCma CGCN43 has a grid Ìesolution of apploximately

3.75' in latitude and longitude, giving the global glid of 48 by 96 points shorvn on

Figure 2.2. Such lesolutions lesnlt in glid cells rvith side lengths in the order of

L5
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Figure 2.2: Discretization grid of the CCCma CGCÀ43/T47 model.

300 to 400 kilorneters. Discretization in the veltical is also necessaly. The Hadley

HadClvlS model uses 19 levels in the veltical rvliile the CCCma CGClvl3 uses 31

levels in the vertical.

The chemical transport models are impoi-tant to the modelling of climate

change. The changes in future climate can be modeled by adding one oÌ rnore

chemical transpolt models fol the atmosphelic chemicals impor-tant to climate.

For example, a chemical transport model is developed to describe the carbon cycle.

The carbon cycle is then modifred by adding gr-eenhouse gas ernissions accolding

to a plausible futule anthropogenic ernission scenalio. The changes in tlie Ðarth's

climate, sucìr as chalges in tempelature ol plec\ritation patterns, in response to

change in the calbon cycle can then be studied. Fol consistency betrveen modelling

agencies, the IPCC l.ras defined sets of emission scenarios for future antluopogenic

releases of greenhouse gases. The IPCC emission scen¿r'ios rvill be discussed in

cletail in the follorving section.

1t)
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2,2,2 Emission Scenarios

The IPCC has been the leading olganization fol developing future emission scenar-

ios to be used in clirnate cìrange studies. In 1992, the IPCC released the fir'st set of

emission scenarios named the lS92 scenalios. These rvere the first future ernission

scenalios used by GCNfs and the first global scenarios to provide estimates fo¡ the

full srrit e of greenhouse gases.

In the years follou'ing the development of the IS92 scenarios many scientific

advancements rvere rnade in the field. In 1996, the IPCC decided to develop a

nerv set of emission scenarios to be used in the IPCC Third Assessment Repolt.

As a lesult, in the year 2000 the IPCC leleased a report on updated possible

future emission scenalios entitled Special Report on Emissions Scenarios (SRtrS)

(IPCC, 2000). In this leport, the IPCC developed families of emission scenalios

that explore alternative global development pathrvays, coveling a rvide lange of

demographic, econornic and technological driving forces and lesr-rlting greenhouse

gas emissions. The scenarios ale gi'ouped into four scenalio families: 41,42, 81,

and 82.

The follorving is the descliption of the difielent families of emission scenarios

according to the IPCC Special Report on Enission Scenalios (IPCC, 2000):

o SRES A1 Scenario Family

The A1 stolyline and scenario farnily describes a futule rvorld of vely rapid

economic glos'tli, global population that peaks in mid-century and declines

thereafter, and the lapid intloduction of nerv and mole efficient technologies.

17
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\,Iajol undellying themes are conveÌgence among regions, capacity building,

and incleased cultural ancl social intelactions, *,ith a substantial teduction in

regional difielences in pel capita income. The A1 scenario family is divided

into three groups that desclibe alternative dilections of technological change

in the energy system. The three A1 gr:oups âr'e distinguished by their tech-

nological emphasis: fossil intensive (A1FI), non-fossil enelgy soulces (A1T),

or a balance acloss all sources (A1B).

SRES A2 Scenario Family

Tlie A2 storyìine and scenalio family desclibes a very hetelogeneous rvorld.

The undellying theme is self-r'eliance and preselvation of local identities.

Fertility patterns across regions conveÌge very slorvly, rvhich results in con-

timrously increasing gìobal population. Economic development is plimalily

regionally oriented and per capita economic grorvth and technological change

are mole fragmented and slorver than in other stolylines.

o SRES B1 Scenario Family

The 81 stolyline and scenalio family describes a convergent l'orld rvith the

same global population that peaks in micl-centuly and decliues the::eaftel, as

in the A1 storyline, but rvith ra¡:id changes in economic structures torvat'd a

service and infolmation economy, s,ith leductions in rnatelial intensity, and

the intloduction of clean and lesoulce-efficient technologies. The emphasis

is on global solutions to economic, social, and envilonmental sustainability,

inclucling imploved equity, but rvithout additional climate initiatives.

18
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. SRES B2 Scenario Family

The B2 stolyline and scenalio farnily describes a ri'orld in rvhicl.r the emphasis

is on local solutions to economic, social, and envilonmental sustainability. It

is a rvorld rvith continuously incleasing global population at a Ìate lolel than

42, intermediate levels of economic development, and less rapid and more

diverse technological change than in the 81 and A1 storylines. While the

scenalio is also oriented torvard envilonmental plotection and social equity,

it focuses on local and regional levels.

When these emission scenalios ale used rvith diferent GCIvls, they produce a

spectrum of possible future climates. Althor.rgh the fntules sirnulated by diffelent

GClvfs rvill vary for the same scenalio, general conclusions can be made. In general,

the A2 scenalio family shot's tlie highest degree of global rvarming, the A1B and

B1 scenario families shorv a medium level of rvalming, and the B2 family shorvs

the lorvest level of rvarming.

2.3 Downscaling of Global Climate Models

Global climate models ale cullently the best tools availabÌe lol climate change

impact assessments. Horvever', one of the primaly difficulties ivitli utilizing GCM

data is that the coalse lesolution of the data grids makes it difficult to directly

apply il a meaningfr:l l'ay, palticularly for ivatel resoLrÌces applications. Even

large rvatersheds may only have ¿ ferv GCÀ,I glid cells coveling the watershed.

Because of the dispality in scale betleen hydlologic plocesses and GClr4 data,

i9



2.3. DOWNSCÀLING OF GLOB-,\L CLtì\IATD ÀIODDLS

these ferv cells pooÌly repÌesent the valiability in hydlological l,eathel vatiables,

especially the distlibuted natule of precipitation. In addition, GCX4 cells ale too

large to simulate some important featules of the local rveathel and hydrological

cycle slrclì as cloud cover'. GClvIs are designed to reploduce the fluid dynamics

of the hydrological cycle at the continental scale and therefole precipitation at

individual rveather station Iocations are genet'ally not rvell lep::oduced.

Fol the above reasons, GClr4 output requiles postprocessing before it is ac-

ceptable to use in climate change impact assessrnelits. The GCl\4 output must be

dorvnscaled to a finer spatial, and possibly temporal, resolution. The goal of dorvn-

scaling GCI\4 outpr,rt is to produce nerv output that is on the scale of subcatchment

h5'clrology.

Dorvnscaling models can be divided into tivo lalge groups, dynamic dorvnscaling

and statistical doivnscaling. In dynamic dorvnscaling a legional climate rnodel

uses GCIVI output as boundaly conditions and runs a highel resolution (10 to 50

krn) clirnate model oveÌ the alea of interest. In statistical dorvnscaling models,

a valiety of statistical methodologies are used to palameterize the relationships

between lalge and snall scale climate valiables. The chalt on Figule 2.3 shorvs

the genelal classes of dorvnscaling models.

2.3.1, Dynamic Downscaling

Running GCNIs at a high enough resolution to be acceptable for assessing loca.l

climate change is not computationally possible. Dynamic dorvnscaling involves

nesting a legional climate model (RCN,I), also knorvn as a limited alea model
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k-Nearest
Neighbor

Downscaling

Figure 2.3: Organization chart of dolnscaling methodologies.
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(LA\4), rviiliin a Gclvl. The ernl¡edded model uses the GCN4 data as boundary

colditions to ¡rroduce rveather on a much finel lesolution, typically on grids ivith

10 to 50 km horizontal resolution and 100 to 1000 m veltical lesolution. Running

the model ovel only a po::tion of area of the GCNI's global glid is computationally

much more afioldal¡le than tunning a GCNI at a liigher resolutiou.

There are some limitations of dorvnscaling GCM data rvith a RCNI (Wilby and

Wigley, 1997). RCN4s still lequire considerable computing resoutces) much more

than current personal computers can plovide. RCN{s are somervhat inflexible in

the sense that the computational demands apply each time that the model is

transfelled to a diffelent t'egion and for each emission scenalio. Auothel potential

dlaivback of RCNIs is the fact that they ale completely dependent upon the veracity

of the GCN4 grid-point data that ¿re used to dlive the boundary conditions of the

region. If biases or erÌor.-s âr'e present in the GCN4 for the area the RC\,I is nested

in, those inaccuracies ale tlansferled into the dorvnscaled data thlough the RClt'I.

lvlany RClvIs have been developed around the rvorld. A RCIVI has been de-

veloped in Canada by the Canadian Regional Climate lvfodelling and Diagnostics

(CRClvlD) Netrvolk. The CRCN,ID Netrvork is made up of lesealchels fi'om various

institutions; Université du Québec à N4ontr'éal (UQAN,I - Centre ESCER), Univer'-

sity of Victoria (BC), Oulanos Consortium (QC), Envilonmeut Canada (Canadian

Centre fol Climate \,Iodelling ancl Anaìysis) and Rechelche Prévision Numér'ique

(RPN) (QC). The Canadian Regional Climate lvlodel (CRCN'Ð rvas first developed

in the early 1990's (Caya and Laprise, 1999) and is norv il its foulth genet'ation,

CRCN44.2.
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Figure 2.4: CRCNI discretization of Pan-Canadian Ìegion.

The I72 x 124 grid discletizatior.r over- the Pan-Canadian legion used by the

CRCN4 is shorvn on Figule 2.4. The CRCIvI has ¿ 45 km horizontal grid-size mesh

and 18 vertical levels. The time step betrveen the CRClt4 calculations is fifteen

minutes, rvhich is slightly mole fi'equent than the trventy minute time step used

by the CCCrna CCCNI3.

2.3.2 Statistical Downscaling

Statistical clorvnscaling methods use tìre statistical lelationsl.rips that exist betrveen

lalge-scale and local clirnate variables to dol'nscale GCNIs. !\/hile not physically

based, statistical dos,nscaling methods ìrave the plirnary advantage that they le-

c¡,rire significantly less computational resonlces than dynamic dorvnscaling. Sta-
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tistical dorvnscaling can be carlied out in a short peliod of time on inexpensive

¡rersonal computels. The rnodels can be run fol different areas for diffelent emis-

sion scenarios in short periods of time.

The follorving is a blief description of some of the most conìmon categolies of

statistical dorvnscaling models.

tansfer F\rnctions

Dorvnscaling by transfer fnnctions usually refers to the application of linear or non-

linear regression methods. Regression methods lvere among the ealliest dotvnscal-

ing approaches (Wibly and Wigley, 1997). Reglession methods generally involve

relating the rveather variables to the coarse lesolution GCilf predictol variables.

Othel tlansfel functions such as altificial neulal netrvorks ol canonical colrela.-

tion analysis may also be used to derive the empirical relationships to dot'nscale

the large-scale climate valiables.

A softrvale application based on legression methods rvas developed by Wilby et

al. (2002) as a methodology that could be applied in a rvide variety of dorvnscaling

applications. According to the developels, the softs'ale package, narned Statis-

tical DoivnScaling \,Iodel (SDS\,I), facilitates the rapid development of mult\rle,

Iorv-cost, single-site scenarios of daily sulface rveatltel vatiables undel current and

futule legional climate folcing. The softivale pelfolms ancillary tasks of predic-

tor valiable pre-scleening, model calibration, basic diagnostic testing, statistical

analysis and glaphing of climate data. The getelal plocess SDSN4 uses to plodnce

dorvnscaled simulations is as follorvs (Wilby et al., 2002):
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1. Scleening of pledictor valiables;

2. ltlodel calibration;

3. Synthesis of observed data;

4. Generation of climate change scenarios;

5. Diagnostic testing and statistical analysis.

Although SDSM pelforms the dorvnscaling and some other ancillary tasks as

described above, the application of SDSII4 is still a time consuming plocess as

NCEP leanalysis and GClr4 data must be dorvnloaded and manipulated to conform

to SDS\4's protocols. The data gathering and preprocessing tasks are generally

the most time consuming and difficult steps for other statistically dorvnscaling

methodologies as ivell.

The utility of the SDSN4 softrvare package to assess the hydrological impacts

of climate change on the Canadian Plailies is being investigated by othels at the

Univelsity of lvlanitoba concurrentÌy rvith the development of the Æ-nn statistical

dorvnscaling rnodel irr Lhis ¡rroject.

'Weathel Typing

Dorvnscaling by rveathel typing rnethodologies involves statistically lelating corn-

mon rveather patterns to obselved station valiables. If a strong relationship exists

betrveen the cilculation patteÌns and the local rveather, the local rveathel can be

simulated conditional on the cilculation pattern classes.
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Days are divided into groups based on their lalge-scale circulation varial¡les

using a classification scheme. YaLnal (1993) describes a valiety of classification

schemes, inch,rding manual classification, cor-r'elation-based map pattern classifica-

tion, eigenvector'-based classification and compositing, indexing and specification.

Once a classification scheme has been utilized to divide tlle historical days

into gloups rvith similal circulation patterns, the distributions of local sulface

valiables such as tempelature and plecipitation conditional on the occulrence of

each rveather pattern ale calculated. For example, the conditional plobability of a

rvet day follorving a ivet day, ol the mean rvet-day amount associated rvith a given

atmosphelic circulation pattern can be derived. The conditional plobabilities may

also be calculated on a season ol nonthly basis to improve correlation betrveen the

rveather patterns and local valiables.

To clorvnscale GCN4 data, the sarne Ìatge-scale circulation valiables used in

the classification scheme ale used to classify each day of the GC\,f output into

the rveather types determined from the classification of histolical data. Tìie local

ç'eathel is then simulated based on the relationships that exist l¡etrveen the his-

tor-ical rveathel patteÌns and historical local rveather'. The change in fi'equency of

the difielent iveather patterns in the GCN,I data rvill reveal trends in the future

local-scale climate.

lVeather classification can be used to folm Nlalkov models ivhere the probability

of plecipitation occurrence is conditional on the occurrence of precipitation on the

¡rrevious day as rvell as tlìe pÌevious ancl/or cullent cilculation pattern class. Tìre

most sophisticatecl of the rveathel typing schemes is the nonhomogeneous hidden
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IVlarkov rnodel (NHI\4Ì\,I) as defined by Hughes and Gr-rttorp (1994) and Hughes et

al. (1999). The basis of the model is the existence of an unobselvable discrete-

value stochastic process rvhich links the lalge-scale atmospìrere to the local-scale

plecipitation. This unobselved 1:r'ocess is referled to as a hidden weatlìer state.

Tìre hidden rveather state is assumed to folloiv a \4alkov chain coliditioned on the

current day large-scale climate to capture the persistence of rvet and dry conditions.

'Weather Generators

Weather gener-âtors ale computer rnodels that genetâte long synthetic time selies

of rveather data based on paÌâmeters derived frotn historical data.

lVeather genelators first simulate rvhether or not rainfall occurs. This is com-

monly based on a lvlalkov renerval process conditioned on the occulrence of pre-

cipitation on the previous day. The N4alkov pt'ocess can be filst-order and be

based only on the single previous day or be multiple-older and be based on the

occur-r-ence of precipitation on multiple pi'evious days. OtlieÌ rveather paÌameters

are then genelated conditional on the occurlence of precipitation.

To dorvnsca.le GCN4 clata, the palametets of the rveather geneÌatoÌ are adjustecl

using data f'-om the GCI\4. The rveathel genet'atol is then run s'ith the neiv pa-

rametels to generate tine series of climate change data. One of the difficulties in

applying stochastic rveathel generatols to future climate scenalios has been the

method of adjusting the parameters in a physically lealistic and intetnally consis-

tent ivay (\Vilby and Wigley, 1997).

A populal s'eather generator model is \\¡GtrN (Riclialdson, 1981). Tlie IVGEN
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model is able to pÌoduce a daily tirne selies of precipitation amount, maxirmrm and

¡ninimum tempelature, and solar radiaïion. WGtriri is the most common s'eather

generator used for climate impact studies. While WGEN is the most popuìar

rveathel genelator', a multitude of other models exist: WXGÐN (Shalpley and

\4¡illiams, i990), CLIGtrN (Nicks and Gander, 1993), USCLIN4ATE (Johnson et

al., 1996), ClimGen (Semenov et al., 1999) and LARS-WG (Semenov et al., 1998).

Tlie LARS-WG a¡d ClimGen models have been previously applied in Canada.

The utility of the LARS-WG softrvale package to assess the hydrological im-

pacts of climate change on the Canadian Plairies is being investigated by others

at the University of lVlanitoba concurrently rvith the development of the fr-nn sta-

tìstical dol,nscaling model in this ploject.

À-Nearest Neighbor Resampling

Nearest neighbol resampling is a nonpalametric statistical clorvnscaling method

that has tìre primary advantage of avoiding the complex patametelization pro-

cess of otheÌ statistical doivnscaling models. Local rveather data is ploduced by

strategically resampling fi'om a historical lecord based on similality of the daily

large-scale atmosphelic patterns of the GCl\4. A data set such as the NCEP/NCAR

Reanalysis 1 data set provides the liistorical recold of large-scale atmosphelic data

ivhile data fiom rveather station measurements typicall¡' plovide the histolical local

rveatìrer. The nearest neighbols, oÌ most statistically similal days, to the simu-

lation day in the historical record ale detelmined. One of the nearest neighbols

is selected by random sarnpling. Since the resampled day lias similal large-scale
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Figure 2.5: Schematics of regression (top) and fr-nn (bottom) dorvnscaling ap-

¡rloaches.
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l\¡eatheÌ conditions, which are corì-elâted to local $'eather conditions, this day pro-

vides the desiled local \\'eathel variables fol the simulated atmospheric conditions.

The process is repeated for each sirnulated GCIvI day to genelate a time selies of

local rveather.

Figule 2.5 shorvs a basic compatison of a reglession based methodology to

the methodology of nearest neighbol lesampling. The top figure (Figure 2.5)

shoivs the basic concept of pat'ameterizing the lelationships betrveen predictols

and local rveather and then using the relationship to estimate the local rveather.

The bottorn figure (Fignre 2.5) shows the basic concept of lesampling fi'om the

nearest neighbols of the set of predictol variables. Nearest neighbor resampling is

explained in full detail in the methodology section.

2.3.3 Statistical vs. Dynamic Downscaling

In the above description of statistical and dynarnic dorvnscaling methods, sorne of

the advantages ancl disadvantages of the diffelent methodologies rvere noted. Both

statistical and dynamic dorvnscaling have unique advantages and disadvantages.

Which methodology is prefelred should l¡e detelmined for each climate change

assessment. Wilby et al. (2002) plovicìed a suìÌrmary of the general strengths

and *'eaknesses of statistical and dynamic doivnscaling methods as shorvn in Ta-

ble 2.4. \4¡hile not an exhaustive list, the iufolmation in Table 2.4 provicles basic

infolmation to assist in the choice of model.
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Table 2,4: Comparison
2002).

of statistical and dyüanic dorvnscaling (Wilby et al.,

Statistical downscaling Dvnamical downscaline
Strengtlìs - Station-scale clirnal.e infor -

mation flom GCNI-scale out-
put
- Cheap, computationally un-
demanding and readily avail-
able
- Ensembles of climate scenar'-
ios permit lisk/tnceltainty

- Flexibility

- 10 to 50 km resolut ion cli-
lnate information flom GCIvI-
scale output
- Respond in physicaìly consis-

tent ivays to diffelent external
tlansferable forcings
- Resolve atmosphelic lrlo-
cesses such as oroglaphic pre-

cipitation
- Consistencv ivith GCNI

weaknesses -uependent on tne realrsm oI
GClvf boundary folcing
- Choice of domain size and lo-
cation affects results
- Requires high quality data for
model caliblation
- Pledictor/pledictand re-
lationsìrips ale oft en non-
stationaly
- Choice of pledictor valiables
affects lesults
- Choice of empirical tlansfer'
scìreme affects lesults

- Lorv-frequency climate vali-
ability problematic

- Dependent on the realism of
GClvl boundary forcing
- Choice of domain size and lo-
cation affects results
- Requiles significant comput-
ing resources
- Ensembles of climal,e scenat-
ios seldom ploduced

- lnitial boundaly conditions
affect lesults
- Choice of cloud/convection
scheme affects (plecipitation)
results
- Not readily tlansfelred to
ne*'regions
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Chapter 3

Methodology

3.1 Numerical Methods

3.1.1- Principal Component Analysis

Often in multivaliate dâtâ sets there can be a high degree of collelation among

valiables. This leads to a ledundancy in the infolmation contained in the variables.

If it rveie possible to remove the redundancy among variables, the infolmation con-

tained il the data could possibly be represented in only a ferv variables. Plincipal

component analysis (PCA) is a method to reduce the number of valiables lequiled

to explain the variation rvithin a multivariate data set. Fol an in-depth delivation

of PCA, Wilks (1995) is an excellent Ìesource.

Climate data often contains significant spatial collelations making principal

cornponents a useful tool fol data analysis. PCA rvill be appliecl later in Sec-

tion 3.1.1 to geopotential heiglit data. Befole the PCA is shos,n for-climate data,

the sirnplified case of ¿ bivariate data set l,ill l¡e discussed.
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Bivariate Example of Principal Component Analysis

Considel a bivariate data set rvith a high deglee of collelation (Figule 3.1). The

data has a 2 x 2 covariance matlix, X, rvhich has eigenvalr:es of Àr and À2. A shift

in the cooldinate system can be made ivhele the first axis, 21, is aligned in the

direction of maximum variation. This axis is in the direction of the eigenvector'

colresponding to Àr. The second axis is aligned in the dilection of second greatest

variation. The second axts, 22, is in the direction of the second eigenvector, rvhich

is pelpendiculal to the first eigenvector. The 21 axis contains Àr/(Àr+Àz)x 100% of

the valiance contained in the original data set (apploximately g5% in the example

in Figure 3.1), and the Zz axis contains Àzl1t + À2) x 100% of the valiation

(apploximately 5% in the example in Figure 3.1).

The values of the first principal component (PC) scores ale the values of the

clata points along axis 21, and the second PC scoÌes aÌe the values of the clata

points on axis 22. Figure 3.2 shorvs the trvo sets of PC scores plotted against each

other. It can be seen that PCr has much mole variation than PCz, and that the

trvo variables have no corlelation. Therefor-e, much of the valiation in the original

scattel plot in Figure 3.1 can be desclibed using only one variable, PCt.

Principal Component Analysis with Multivariate Data

The above pÌocess can be applied to data sets rvith any number of variables.

Consider a rnultivariable data set X rvith n valiables. The n x n covaÌiance

matlix X rvill have n eigenvalues and n eigenvectols. A shift in coordinates r,rsing

PCA rvill plocluce a net' data set rvith n principal components. The sum of all
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Figure 3.L: Scattel plot of correlated bivariate data.

PC1

Figure 3.2: Plot of PC2 versus PC1
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eigenvalues equâls the srm of the valiance of each variable. Ðach PC desclibes a

uniqr:e poltion of valia¡rce in thè oliginal data set, rvhicìt can be compr-rted as

(3 1)

Each PC is a linear combination of the oliginal n valiables. The coefficients

fol the i¿" PC are given by the i¿h eigenvectot'. A set of PCs a:re generated fol each

time step,

PCo: sry -- e¡X1 I ei2X2 * . . . I e¡nX,. (3 2)

Application of Principal Component Analysis

To illustrate the usefulness of PCA rvhen analyzing spatial climate data, a sample

application of PCA rvill be demonstrated rvith a 500 mb geopotential height data

set. The data is cornplised of thirty years of data from the NCEP/NCAR Reanal-

ysis 1 data set. The data is on a 9 x 15 grid rvith spacing of 2.5' in latitude and

longitude. Geopotential heights valy gt'adually across the large distances betu'een

grid points and tìrelefo¡:e nearby grid points experience high collelations rvith each

other. For this reason, geopotentiâl height is an excellent example ofdata sets that

can be easily reduced to a feiv variables using PCA.

The values of the fir'st ferv eigenvalues ancl the pe'-centage of the total variance

(surn of the variances of individual data points) explained by a given number of

PCs ale shorvn on Figr-rre 3.3. As expected rvith the high degree of colrelation in

the data set, the first ferv eigenvalues are large and explain most of the valiance in

the ìalge clata set. Olly frve PCs are needed to explain over' 90% of the variauce

Pelcenl va::iation explainerì by PC¡ : #.,-- i:r^)
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Figule 3.3: Eigenvalues and the % valiation explained.

contained in the original data set of 135 valiables.

The rveights associated rvith the eigenvectors of each PC can be plotted in

space. FiguÌe 3.4 shoivs the iveights of the fir'st eight eigenvectors plotted in space.

The most rveight of the first PC is in tìre center of the glid. The first PC desclibes

if the geopotenfial glid is al:ove ol belorv avelage for that day of the year:. The

second PC has rveights distributed in a rvest to east dilection. If thele is a strong

plessuÌe gladient in this dilection, the second PC ivill have a large value. The

ót)
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thild PC is similal to the second but descriÌ¡es the nolth to south gladient. Each

PC thele after desclibes a characteristic pìessure pattern r-rntil aftel a handful of

PCs the eigenvectols dissolve and contain only noise. The strongel a palticular

patteln is, the largel the corresponding PC u,ill be.

The ability of PCA to reduce large gridded clirnate data sets to only a handfr-rl

of variables made it a vely useful numerical rnethod fol this ploject. PCA rvas used

extensively to reduce the variables in the lalge-scale NCEP/NCAR Reanalysis 1

and GCltl data sels.

3.L.2 Canonical Correlation Analysis

Canonical corlelation ana.lysis (CCA) is a statistical method used to explole the

connections betrveen tl'o multivaliate data sets. As principal component analysis

explores a single multivaliate data set by projecting the data onto a nerv set of

variables that describe maximum âmounts of valiation, CCA plojects trvo mul-

tivaliate data sets onto trvo nerv plojections rvith maximum colrelation betrveen

them.

Another- desci-iption of CCA may be to envision it as multivariate regression

rvitìr trvo sets of pÌedictor variables. Instead of having one set of rveights as regres-

sion coefficients to simulate a single valiable fi'om a multivaliate set, CCA finds

pails of sets of regression coemcients that define nerv variables ivith rnaximized

correlatio¡r.

CCA transfor-ms tn'o multivaliate data sets, z and y, into nerv va'-iables u- ancl
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ân.l

Ø- called carronicâl variates. The nerv variables ale defined by

u^: aTt : Dliaa^,¡x¿, m:I, ,min(I, J) (3.3)

u^: f.s:Dl:þ*,¡a¡, m: I,.. ,min(I, J), (3.4)

rvlrere -I is the number of elements in ø and a^, and J is the mrmbet' of elements in

g and b*. 1 and J do not need to be the same. Horvever', the number of cânonical

pairs, r1,1, that can be produced is equal to the smallel of the trvo.

The selection of the canonicaÌ vectors a,,' and ð,,. are done so that the follorving

are satisfied:

Corr'[21, u-,r] > Corr'[o2, tu2] >... ) Colr'lu¡r, zr¡r], (3.5)

Corr[ø¡, u.r-] :
rc,^, k : ¡n

0, klm
(3.6)

Var'fo-] : Var[ti.r-] :I, rn:7,...,X,¡ (3 7)

Equation 3.5 states that each of the i1,1 successive paits of canonical variates

has a rveakel correlation than the previous pair. The collelations betrveen paits

and
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of canonical valiates ale referred to as canonical colrelations. Equation 3.6 states

that a canonical variate has no correlation rvith all othet variates, exce¡tt fol its

countelpalt in the m¿à pair'. Equation 3.7 states that each variate has unit valiance.

The goal in CCA, as in PCA, is to select the rveiglrts such that the nerv projec-

tion ploduces valiabÌes that contain useful information. The selection of canoni-

cal coefficients is based on the variance-covariance matrix of ø and g. The joint

valiance-covali¿nce matlix, ,9", of the variables combined into one valiable set,

{ : lxr,srl, is

s"-- /rt"'1,t"\:
S,* S,Y

ss, sro

(3.8)

rvhere the prime in y' denotes that the variables are centered on the sample means.

The canonical coefficients and canonicaÌ corlelations ale lelated to the eigen-

vectols and eigenvalues of the matrices, ,4r1. and rVlr, rvhere

[¡,r,] : [s,-] -' [s."y] [ssu] 
-1 [ss"]

and

[¡,1v] : [Syy]'[S,."][,9,""]-'[.9",] (3.10)

The canonical vectols, a- and ö*, are the eigenvectors of Ì,1" and 1,1r, satisfying

(3.11)

(3 e)

[ÃA.']a^ : ,2",.a,,, m:7,...,A,1
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and

[^,1!]b^: rz,,b^, ¡n: 1,. . . , 
^[.

(3.12)

The canoliical collelations, ?'c, aÌe the squâre loot of the eigenvalues. High canoni-

cal cor-lelations ale the lesult of stlong lelationships existing betrveen the trvo data

sets.

3.1.3 Fourier Series Analysis

In most cases il4rere a signal varies rvith time, the signal is anaìyzed as a time series

rvith the signal as a function of time. Hos'ever', in some cases, particulally rvhen

a signal is peliodic, p::oblems can be solved more easily if the signal is transfeued

into frequency domain. In the frequency domain, a signal is separated into sine

and cosine functions rvith varying frequencies, amplitudes and phase shifts. A

continuous periodic function can be expressed as a lineal combination of these

sinusoids knorvn as the Fourier selies.

Fol a signal l'itli a length of time ?, composed of .ly' obselvations at intelvals

of ôú, tlie longest sinusoid conponent has a peliod of ? : lúáf, and the sholtest

has a peliod of 2áú.

Given a function f(¿) that valies rvith tirne, tìre Fourier selies is explessed as

F(ú): (3.13)i 1",, 
"o. 

l,?tl * ¿,, . / 2r \l
z¿ t" \ r t " sin[1IF¿J]'

The Fou::iel selies can be cletelmined

tinuous functions. This is important for'

for disclete functions as rvell as con-

engineeling applications as often the

47



3.1, NU]\fERICAL IIÉTFIÔDS

measurements are Ìecorded at discÌete ti¡ne increments. For a discrete function.

the disclete Fourier series is explessed as

., : b.:i þ. *. ("il * ð., sin ("il]
Tlre vectors of coefficients au and b, can by for"urd as

u.: +ä", .* ("f;n)

Amp,: J418"

, l)".
(l)ù : tân-' --i:.

aù

#Þ. "' *,("'$n)

(3.14)

(3.15)

(3.16)

(3.18)

Using the coefficients a, and b.,, the signaì can be descr.ibed by the amplitude

and phase shift,9, ofeach ofthe individual fi.equencies fi.om z: [0, 1,...,¡ú-1].

The fi'equency index of ¿:0 is hnorvn as the static term. It Ìepresents the mean

of the signal and has no phase shift. The signal can be expr.essed as

and

and

(3.1e)
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Time Domain

Figure 3.5: Fourier series example of function a : 2 + sin(ø) + 0.2sin(102) in
time and freqr.rency domain.

The function y:2+sin(¿) +2sin(iOr) is shorvn in both the time domain and

fi'equency domain on Figule 3.5. The tri'o sine telms of diffelent fi'equency ale

shorvn in the frequency domain as trvo amplitudes rvith specific fi'equencies. Since

the fir'st term in the function offsets the signal fi'om having a,.r:o -.on, the static

terrn at ¿: 0 is nonzero. This sholt example shorvs horv easily Foulier selies can

simplify a problem tliat is more complex in the time domain.

Fourier series transforms have many useful applications in engineering. One irn-

portant application of Fouriel selies is rednction of noise in signals. By separating

a signal into its frequency components, the high ol lol' f::equency components can

arI
0
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be easily identified. If a signal contains noise of a higher frequency than the desired

signal, these high flequencies can be removed by using a filtel rvhich eliminated

high f::equencies.

A clemonstlation of the ability to leduce ol remove noise frorn data is shorvn

on Figure 3.6. In this example the daily mean temperature rvas calculated fol the

Thompson iveather station flom 1967 to 2000. The lesult sliould be a gladual

increase to a maximum in the summer months and a decrease to the minimum in

rvinter. The signal is noisy due to the natural valiations in the day-to-day temper'-

atures. By applying Fourier selies analysis and filteling high and lorv frequencies,

the noise portion of the signal is easily identified and removed.

Fourier series analysis and the filteling technique sho*'n above rvas used exten-

sively thloughout this project to standardize station data and climate model grid

data to remove seasonality of the variables. It rvas critical to remove noise flom

tlie daily mean and standald deviations before standardization.

3,L.4 Circulation Pattern Classification

Correlation-Based Map-Pattern Classifi cation

Correlation-based map-pattern classification is a circulation-to-envilonment ap-

ploach to classification. The categolies are developed independent of surface con-

ditions. The goaì is to divide days l¡ased on theil similality to common pressuÌe

pattelns. A day is categolized based on the strongest coÌÌelation torvard one of the

common mâp patterns. The focal point of the method is to find the comtnon tnâp

pattelns, r'eferred to as keE days. The classification sclìeme requires the usel to
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decide features such as horv many key days are ltecessâr'y, correlation thleshoìds,

minimum gloup sizes, etc.

The fir'st step is to detelmine the key days rvhich all othel days rvill be cornpar.ed

to and classified. Each key days is an actual histolical pressLrre fleld selected as

re¡rresentative of a common circulation patteln. These are selected by a cornpai-ison

of circulation from each historical day to every othel day on record.

Usually the data is first standaldized to remove the seasonality of the data.

For instance, geopotential heights rvill be gleater in summer and have more glad-

ual gladients than in rvintet. Standaldization using monthly or daily means and

standald deviations remove these seasonal diflelences.

The compalison betrveen grids is made using the Pealson ptoduct-moment

couelation, r"r, defined by

(3.20)

rvhele ø represents the glid points of one grid, and y of another-. X and 7 lepresent

the mean of the N glicl points. The deglee of correlation is a measu¡ernent of

sirnilarity betrveen glids. A thleshold value of collelation is used to disceln if trvo

glids ale significantly sirnilar. Thleshold values generally range fi'om 0.5 to 0.7,

but could range higher ol lorver' (Yarnal, 1993). The degree of similality of one

day to the lest is norv leco::ded as either 1 or 0. For a historical record of z days,

a correlation matrix of size z x z wtll be constlucted.

The first key day is seÌected as the day that is significantly corlelated to the

4l)
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rnost days. This is the most typical glid pattern. The first key day is removed

fi'om the record along rvith all days consideled significantly similal. The process

is repeatecì to identify the seconcl key clay and remove it ancl the clays similar to it

fiom the record. The plocess is repeated until all days have been accounted for, or

until a user defined minimum group size has been teached. The key days represent

the circulation pâtteÌns to categolize the data.

The days are then reclassified. Reclassification is necessary as a day may have

been significantly correlated rvith mole than one key day. A day could possibly be

more couelated rvith key day 2 than key day 1, bnt filst classified into those in key

day 1. Collelation betrveen each day and the key days are calculated and days are

placed into the key day categolies they ale most correlated to. Decisions such as

minimum group sizes and the number of categories needed to efiectively categorize

the circulation patterns ale made. The last step is to catalog the classification

rvhich norv becomes anothel valiable to desclibe the large-scale climate.

Eigenvector-Based Map-Pattern Classifi cation

Eigenvector-based map-pattern cÌassification is anothel cilculation-to-environment

apploach to classification. There are rnauy diffelent folms of rnodels based on the

use of eigenvectors. There are a multitude of data selection options and decom¡ro-

sition rnethods. In this methodology, glidded pÌessuÌe data ale imputed into the

rnodel and PCA is used as the decomposition method. Days are classified based

on ch-lsters of days rvith similalities in plincipal component scoles.

The data is decomposed into plincipal components (PCs). The PCs are rotated
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to ploduce physicallf interpretable loadings that appeal as pressure patterns. In-

dividual giids rvill typically not lesemble only one of these patteÌns, but rvill rather

be a combination of the rotated PCs. Therefore, instead of classifying the gr.ids

into categolies defined by one of the PCs, clustel analysis determines common

combinations of the PCs. If one takes the ¡rlessure fields ivithin the clusters and

finds the average among them, the pressule fields Ìept'esentative of the clusters rvill

be shorvn. Each cluster should have significantly different representative pressur.e

patterns.

A subset composed of a given mrmbel of the fir'st PCs explains the maximum

amount of valiation of tìre original data set in a minimum number of variables.

In this regard, the orientation of eigenvectors after PCA is optimum. There ale

no other subset of eigenvectors that can explain more of the valiation the oliginal

data set. Horvever', these pattelns ale a result of the statistical plocess and may

not be useful as physical explanations of the patterns rvhich exist in the data. In

rnany applications of PCA, it is useful to totate the leading principal components

to another pÌojection of eigenvectors.

Trvo plimary options for rotation exist: olthogonal or oblique. In an or.thog-

onal lotation, the lesulting eigenvectors remain or-thogonal and expÌain nnique

variance. An oblique lotation results in the PCs shaling a portion of variance.

Yarnal (1993) suggests that eigenvector-basecl map-pattern classification Llse an

ortl.rogonal Ìotation.

Tlre rotation tlansforms one set of input eigenvectors, P : (pit. . . ,?-rr), into

tlre ontput eigenvectors Q : k¡ir,... ,dtò The rotation is rnade by the 1l x 1(

48



3.1, NUTfERICAL T1ETHODS

ancl

matÌix .R such thâ,t

Q_-PR (3.21)

K

dt:lnx;¡

The matrix ¡1 determines the type of rotation and is selected such that a

constraint V(Q) is optimized. If 1l is orthogonal, the rotated eigenvectors ivill

aìso be olthogonal; othelrvise they rvill be oblique. One example of an orthogonal

rotation is the 'va.rimax' method.

(3.22)

K
v@):Dr,kÐ, (3.23)

where /o is defined by

(3.24)

rvhere r¿ is the lengtli of the vectors. The constant s¡ is chosen by the user. The

ra¡v varirnax r-otation is obtained rvhen s¿ is set to l for all i, and the nolmal

varinrax rotation is obtained by setting si equal to Ð!¡':r@r)'.

The PCs corresponding to the nerv lotated eigenvectors ale the dot ploducts

r.@:*å (*)' -#ä(:)' ,
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of the data points and Ìotated eigerÌvectols,

PC: : qT X, (3.25)

The plessure glids s'ill be composed of combinations of the lotated eigenvec-

tols. Rathel than cornpale glids to the rotated PCs, groups rvith similal PCs ale

identifled. Clustel analysis is a statistical tool used to classify multivariate data

into pleviously unknorvn groups. Cluster analysis is applied to the principal com-

ponents to divide the days into cilculation pattelns. The most common methods

for clustering data are hielarchical. ln the beginning of the analysis, all days be-

long to their own group or cluster. A distance measurement is made betrveen all

of the n gloups. The trvo closest gloups are then combined into one group to make

n - 1 groups. The process of clustering the most similar groups could continue

until all observations ale grouped as one. The process is therefore stopped rvhen

a specified distance tluesl.rold or minimum number of groups is reached.

N4any options exist in clustering algorithms. The distance measulement be-

t*'een trvo vectols can be made in many ivays: Euclidean distance, squared dis-

tance, N4ahalanobis distance, ol Pearson correlation ale just a ferv of many. The

most comÍìon is the Euclidean distance (Wilks, 1995),

(3.26)

*'hele 1l is the dimensior of tìre vectors.

Tìrere are also many methods available to measure tlie distance betrveen trvo

d¿¡:tþ¡-",,,: 
[å 

{,n,0-,,,*¡,)/ ,
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clusters of vectols, G1 and G2. Some of the common methods ale:

o Single-linkage clr:steling (minimr,rm-distance clustering)

The distance betrveen G1 and G2 is the smallest distance betu,een any mem-

ber of Gr and any member of Gz,

dcr,c" : min [d¡¡] (3.27)

¡ Complete-linkage clusteling (maximum-distance clustering)

The distance betrveen G1 and G2 is the maximum distance betrveen any

member of G1 and G2,

d,ç¡,Gz : max [d¡] (3.28)

o Avelagelinkage clustering

The distance betrveen G1 and, G2 is the avelage Ðuclide¿n distance betrveen

all possible pairs of points,

1.nln2dc,,c,::Il¿,r, (3.29)
ntnz Ztîi

wlrele n1 is the nurnber of days in G1, and n2 is tlie number of days in G2.

o Centloid clustering

Tlre distance betl'een Gt and Gz is the distance betrveen the centroids ol
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a\¡eÌage vectors,

dG,,G,: ll¿6', - ¿c,ll

¡ \4/ald's minimum-vaÌiance clustering

This method makes G groups fi'om G+ 1 gloups by minimizing the variance

betrveen each day and the centroid of the cluster it belongs to, summed over'

the G groups. The variance over the G groups is detelmined as

(3.30)

Gf,s
v: tt ll"o-,nll' (3.31)

Yalnal (i993) indicates that no preference in clustering method has developed

in the literature and that the selection of clustering method is most likely less of

a p::iority than othel tser decisions made during eigenvectol-based map-pattern

classification.

An impoltant user decision rvhich will dilectly afiect the outcome of the classi-

fication scherne is the number of clusters to letain. Thele ar-e no cleat-cut rules to

follorv rvhen selecting the number of clustets. Scree plots of valious output statis-

tics can be vierved and subjectively interpleted. The number of clusters letained

should be sirnilar to the niunber of cilculation patterns determined fi'om aualysis

by colrelation-based map-patteln classification.

Each cluste:: repÌesents days rvith similal cilculatiou patterns that are differ'-

ent flom cilculation pattelns in othet' gloups. The clusters cannot be physically
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rnapped or interpreted. To physically intetpr-et the clr:stels, the average of the

PCs can be found ancl back tlansfolmed to flnd the gridded values. The resulting

pattelns should be physically meâningful pressuìe PatteÌtìs.

3.1-.5 Optimization

In some mathematical ploblems it rnay be difficult to find an analytical solution

because of the complexity of the problem. Numelical optimization methods can

often be used to find solutions to problems that cannot be solved analytically.

Optimization is used to find a set of parameters, c : [26,21,. .., ø"], that can

be clefined in some rvay as optimal. Typically, optimization is used to find the

minimum of a function, /(c), as described by

min /(ø). (3.32)

One of the simplest set of optimization techniqnes are line search rnethods lf

/(ø) is a function, the itelative process can be setup such that

,.(A+1) - ¿(À) _ cr¡dt ; k:0,I,2, (3.33)

To stalt, the iteration countel k is set to zero and an initial guess is made for'

,-0. A search dilection, d¡, is chosen ol calculated, ancl the step size a¡ rvhich

minimizes the function in that direction is found by solving

(3.34)min/(a) : Íþr+ad.x).
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Once the optimal cr¡ is found, the palameters ale then r-rpdated in Ec¡ra-

tion 3.33. The process is lepeated to find the optimal set of parameter.s.

In the simplest case, the search could be done one valiable at a tirne. Horvever,

this rvould most likell' lead to a long conver-gence tirne and many evalnations of

the objective function. An implovement is to search in the direction of steepest

descent. The dilection of steepest descent is the gradient of the objective function

at ¿Å. The gradient can be calculated as the unit vector of paltial derivatives of

/(ru) at r¡.

This section plesented a very blief intloduction to optimization for. the purpose

of understanding the methodology appÌied later. in the optimization of the nealest

neighbol model. X,Iany textbooks offel in-depth discr-rssions of various optirnization

techniques (Nocedal and Wlight, 1999; Chong and Stanislarv, 2001).

3.2 k-Nearest Neighbor Resampling

Nearest neighbol resampling is a nonparametric method rvhich lesamples data from

a histolical record. The nonparametric aspect of the model makes it appealing to

statistical dorvnscaling. Parametlic models, such as the regression methods or

rveathel genei-ator models, tequire extensive patameteÌ estirnation.

Tlie basic idea of the model is that if one compares the large-scale var.iables

that a GCNI produces for a given day to the same valiables of a histor.ical record,

a similar day in the liistorical record can be found. Since thele is a direct link

betrveen the large-scale and local climates, the simulation day should exhibit a
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local clirnate similal to the histolical day l,itli a similar large-scale climate. The

local climate variables reqr:irecì for hydrologic modelling can be letrieved fiom the

selected historical day and used as the dorvnscaled valiables for tlie GCNI simulated

duy.

The comparison betl'een the simulation day and the histolical iecord is made

by r-rsing a vectol of valiables referred to as the featule vector'. A distance mea-

surement is made betrveen the feature vector and individnal days in the histolical

recold. A gloup ofthe fr most similal days is letained and one is selected to plovide

the local climate variables. The process is lepeated to produce a time series.

The follorving section describes the methodology of the È-nealest neighbor re-

sampling model.

3.2.L Feature Vector

The feature vector, D¿, is used to compaÌe the simulation day to liistorical days.

The featnre vectol is given as

D¿ : 1u1,t2,q, . . . ,u.), (3.35)

rvhere n is the lumber of variables contained in the featu'-e vectot'. The composition

of D¿ can be varied from a ferv clirnate variables (Buishand and Blandsma, 2001)

to many varial¡les (Gangopadhyay et al., 2005). The selection of valiables to

include in the featule vector is an important step in the development of the nearest

neighbol algorithm. Some multivaliate statistical methods can be used to explole
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the lelationship of lalge-scale atrnosphe):ic v¿tiables and local weathe):. Canonical

coì'Ìelation analysis or circulation pattet'n classificatiotì and analysis are examples

of potertial methods to explore lelationships betrveen the trvo scales of va¡iables.

An investigation of difierent combinations of large-scale variables has been done

in some studies (Buishand and Blandsma, 2001).

The rarv variables lequire some manipulation before they ale used by the al-

gorithm. In the litelature, data sets are often standardized to remove seasonality

and avoid differences in magnitude betrveen difielent types of valiables. In some

instances, plincipal component analysis is used to reduce the number of variables

used in the feature vector (Gangopadhyay et a1.,2005; Buishand and Blandsma,

2001; Young, 1994).

3.2.2 Finding the k-Nearest Neighbors

A reduced set of days to lesample flom is detelmined by finding the nearest neigh-

bors to the current feature vectol in state space. The neighbols ale found by

calculating the distance betrveen the featule vectol of the simulation day and the

feature vectors of histolical days. Tlie Æ-nearest neighbols are the k days that aie

llost similal to the simulation day and thelefore ploduce the smallest distances.

To reduce the efiect of seasonal variation, Lall et al. (1996) divided the year

into foul seasons and restlictecl the selection of neighbors to the season of the

simulation da¡r An altelnative to clividing the yeal into seasons is choosing the

neighbols fi'om a rnoving rvindorv alound the calendar day of the simulation day.

The size of the rnoving rvindorv, I4l, can be v¿lied. A rvindori. of 14 days rvas used
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b1, Gangopadhyay et al. (2005) and b)'Yates (2003). A larger rvindorv of 61 days

rvas used by Buishand and Brandsma (2001) and by \Vójcik and Br.anclsma (2003).

The number of neighbols to retain after the distances are calculated is a featur.e

of the algorithm ivhich the designer can manipulate. Horvever, the number of

neighbols letained can have significant effects on tlte algorithm outcome. The

numbel of nealest neighbors to retain rvas studied using general closs-validation

(GVC) by Rajagopalan and Lall (1999) and by Lall and Sliarma (1996). The

goal of the GVC studies rvas to minimize the predictive mean square er.ror of the

À-nn algorithm (Rajagopalan and Lall, 1999). In both studies, good results rver.e

obtained rvhen the value of È rvas equal to the sqr:are of the sample size,

k : \/n, (3.36)

rvhele the sarnple size, n, is the number of histolical days that could be possible

neighbors (numbel of 1'ears of data ¡ l,/). Buishand and Brandsma (2001) varied

the number of neighbors using tivo, five, tiventy, and fifty neighbors in their study.

Their study lecommended a srnall k, but largel than trvo. A À-value equal to five

shorved the l:est ovelall results. Young (1994) also found that a smaller Æ cat

produce good results.

The k nealest neighbors ale searched fol' in the historical record by using a

clistance metric. Trvo distance metrics ale cornrnonly used, a Euclidean distance

metric (Gangopadhyay et aI.,2005; Buishand and Br-andsma, 2001; Rajagopalan

and Lall, 1999; Blanclsrna and Buishand 1998; Lall and Sharma, 1gg6), or a lt,la-
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halanobis distance rneti'ic (Yates, 2003; Wójcik and Buishand, 2003).

The rveightecl Euclidean distance, ô¿,, betiveen tu'o feature vectols, D¿ ancl D,,,

can be calculated as

(3.37)

rvhere n is the nurnber of valiables in the feature vector, and u.r¡ is the rveight given

to the variable z; (Brandsma and Buishand, 1998).

The N,Iahalanobis distance, ô¿.,, betrveen trvo feature vectols, D¿ and Do, can

be calculated as

(3.38)

where B is tìre covariance matrix of the feature vectol D¿.

Pails of feature vectols that have smaller distances lepresent days that have a

moie similal climate than pairs having larger distance metlics. The historical days

rvithin the selection rvindorv ale ranked accolcling to distance and the /r nea¡est

neighbols are retained.

3.2.3 Choosing a Neighbor

Once the À nearest neighbors have been chosen, the next step is to tesample one of

the neighbols. There are diffelent methodologies to resampling a neighbor. Atlost

applications of the k-nn moclel have ltad an objective to geneÌate synthetic time

selies of iveather for short-telm folecasting. In these situations, the featule vector'

T u¿(a¿1 - u,¡)2,

(Dt - D")' B-t (Dt -
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is com¡:osed of the station variables from the plevious tirne step. If the nearest

neighbor is resam¡rled every tirne, the model t'ould only leproduce the existing

time selies. To avoid this pr'oblem, mo'-e than one neighbor ale retained.

The selection of rvhich neighbol to use could be done randornly rvith equal

chance given to all neighbors. Horvever, it is mole common to use â rveighting

scheme to favor days that have a smaller distance. There are two common wâys

to âssign rveights to the neighbols during resampling. One possibility is to use a

decleasing kelnel density function (Lall and Shalma, 1996, Blandsma and Buis-

hand 1998, Rajagopalan and Lall, 1999, Buishand and Brandsma, 2001, Wójcik

and Buishand, 2003, Yates et al., 2003). The kernel function distlibutes the plob-

ability of the day being selected based on its rank in the set of sorted distances,

(3.3s)

rvhere p¡ is the probability that the day of rank j is resampled. A plot of the

probabilities assigned by a kelnel density function rvith k : 20 nearest neighbors

is shorvn on Figule 3.7. This is a simple method that has been found to be

effective in the literatule. Also, using a kernel allorvs the rveights to be calculated

once rather than each time the algorithm is used to resample a neighbor because

the rveights do not depend on the actual distances.

An alternative to pre-calcr.rlating the plobability rveights is to use a iveight

function that depends on the distances. Gango¡radhyay et al. (2005) use the
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Decresing Kernel Density Funct¡on probabil¡ty Dishibution

Èo
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Figure 3.7: Plot of the decreasing kernel density function.

bi-squale rveight function

(3.40)

rvhele ô¡ is the distance to the Àúi' neighbor after. sor.ting. The advantage of this

folm of probability rveigliting is that the plobability is basecl on the actually sirn-

ilality of the histolical day to the simulation day. The disadvantage is that the

rveights depend on the distances a'd reed to l¡e calc'latecl each time a dav is

resampled, incleasing computation time.

The application of the .esarnpling algorithrn for dorvnscaling GC\d clata is

sÌightly diflerent than tlie applications fol weathel forecasting. In rveathel fore-
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castirg, tlle station var.iables for: ol]e day ate often used to ¡rredict the variables for'

the next day. The simulation cìay is a day tl-rat has actually occnrred in the past'

and there is a danger that the rnodel rvill reprocluce spans of historical data exactly

as lÌrey occttrt'ecl in the past if the nearest neigìrbol is lesampled too frequently'

Therefore ,t must be selected lalge enough to prevent this fi'om occurling Wìren

dorvnscaling a GCIVI' the GClr4 generates simulation days tliat are separate fron

the historical t'ecord. Thelefor-e, problems cleated by resampling the closest of the

nearest neighbors rvill not occur rvhen dorvnscaling GCIvI data' Retaining a small

number of neighbors rvhen dorvnscaling a GCIvI should not adversely afiect model

performance.

3.2.4 Modelling Climate Change Scenarios

To evaluate a possible climate change scena'-io, GCIvI data for a particular scenario

rvill be used as input to the algorithrn. HistoÌical days rvith feature vectors similar

totlreGCMsimu]'ationdaysrvillberesampledtogeneÌateatimeseriesofdorvn-

scalecl climate data. A variety of GCIvI genelated scenarios aÌe available based on

clifferent population glorvth predictions ancl consumption rnodels Anotìrer pos-

sibleconcepttosimulateaclimateclrarrgescenarioistostr.ategicallyr.esample

data.Yatesetal'(2003)adaptedak-nrlaìgorithmtogenerâtealter.nativeclimate

scenarios by using presclibed conditioning data To apply this concept' yeaÌs were

giveu an index numbel. For example, if it s'as desi'-ed to have a climate scenario

clepicting rvarm moist splings rvith cool chy autumns, the rveekly means for tetn-

pelature and precipitation rvould be usecl to create an index The years rvould
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then be ordered based on a pailed lanking method. The ¡,sn¡s t'ith abo.r,e aver-

âge temper:ature and precipitation in spling and belol' aveÌage temperatnre and

precipitation in autumn $¡ould receive the higliest lanking and rvor,rld be given a

lliglier index. When using the k-nn algorithrn, the year.s rvith higher indices are

biased to favor days fi'om those yeaÌs in the r.esampling procedute. The resulting

data rvould have the desired attributes of the annual climate cycle.

In this project, the fir'st procedure of modelling climate change thr.ongh the

use of GCMs rvill be employed. Data from the Canadian global climate model

(CGCN43.1/T47) rvill be used as input into the k-nn model. Although the indexing

methodology of Yates et al. (2003) rvill not be further explor.ed, the methodology

doès have merit for developing adaptation sttâ,tegies, par.ticular.ly for. generating

data to test a system's sensitivity against a palticulal climate tlend.
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Chapter 4

Data

4.L Canadian Daily Climate Data

canaclian Daily climate Data (CDCD) is a set of aÌchived rveather station data

managed by Environment canada. The data set includes data frorn over 10,000

rveather stations across Canada. The variables recolded ând the length of record

vary fi'om station to station, rvith some records extending as far back as 1830

Nlany variables are available in the data set. Temperature and pÌecipitation

variables ale available at the daily time scale and include:

o Tempelature: Temper-atures ale recorded 1.5 m above the glound in a box

called a Stevenson Screen

- \,Ia,>iimum Temperature: TIie highest tempelatur-e of a day is lecorded

as the maximum tenPelature.

- lvlinirnum Temperatule: The lou'est temperature of the day is recorded

as the minimtrtn tempelal ul€.
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- l\,fean Tempelature: The average betiveen the rnaximum and minimum

temperatules is the mean claily tempelatule.

o Precipitation: Precipitation as lain, dlizzle, freezing lain, fi'eezing dlizzle,

s¡1611r, and hail ale all recolded as depth of rvater'. Plecipitation is recorded

using a standard Canadian rain gauge, a cylindrical container 40 cm high

and 11.3 cm in diameter'.

r Snorvfall: Measured as the depth of nervly fallen snorv.

o Depth of snorv on glound: The depth of accumulated snow on the ground.

The CDCD data is available online thlor.rgh Environment Canada's rveb site,

ol available on a CD-RON,I (Envilonment Canada, 2000). Since the data set is

large, it has been divided into westeÌn and eastern data sets. The rvestern Canada

data set contains climate data fol aÌl stations in Nlanitoba, Saskatchervan, Albelta,

8.C., Yukon and N.W.T. The rvestern data set is available on a separate CD-RO\4.

The CD-ROIVI also includes softrvare to extract the data and data descliption text

files.

One charactelistic of tlie station measurement data is that it is common to ìrave

missing entlies in a data file. Some stations may have an almost corn¡rlete data set,

rvhile other statioÌrs, palticrùarly stations in small torvns o¡ northeln ateas, may

have a high late of missing data. Sornetimes the missing entries may be infi'equent

and only a day long, othel times there may be lengthy spans of missing data of

months ol yeals as equipment fails or stations ale temporalily abandoned. lr,lissing

data ale marked rvith an entÌy of "\,I" ol a numerical marker such as "-9999".
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4.2 NCEP/NCAR Reanalysis 1

In ajoint efiort, the National Centel for Envilonmental Plediction (NCÐP) and the

National Center for Atmosphelic Research (NCAR) generated the NCEP/NCAR

Reanalysis 1 data set in tlie late 1990's (l(alnay et al., 1996). The ploject first

stalted in 1991 to correct jumps in climate data that occurred ovel time as a result

of changes in equipment and data assimilation methods.

The reanalysis data set is genelated by assimilating multiple sources of data

by a consistent assimilation method thloughout the data period. Some of the

sources of data include land surface, sliip, rarvinsonde, rveather balloon, aircraft,

and sateÌlite data. By using a consistent assimilation method, biases or jumps in

climate caused by changes in the assimilation method ale ¡ninimized.

Tlie data set is available on a grid rvith a resolution of 2.5' x 2.5" latitude

and longitude over the entire globe. Oliginally the leanaìysis rvas available for 40

years (1957-1996), but is culrently available fi'om 1948 to the present day. Data

are available at a temporal resolution of 4-tirnes daily, daily and montlily values.

NCÐP/NCAR Reanalysis 1 has a massive alray of output valiables. Some of

the variables are available at multiple plessule levels. Thele are 17 plessr:le levels

available, including the 1000, 925, 850, 700, 600, 500, 400, 300, 250, 200, 150,

100, 70, 50, 30, 20, 10 mb geopotential heights. A small sample of the variables

available include:

o Ail tempelatule (su'-face and at multiple plessule levels)

o Geopotential height (sulface and at multiple pressule levels)

65



4.2. NCDP/NCAR RÐANALYSIS I

Relative humidity (sulface and at multiple plessure levels)

Omega (vertical velocity) (sulface and at multiple pressure levels)

o U-rvild

. V¡vind

o Precipitable rvater (sulface)

o Sea level pressure (surface)

. ¡ Soil moistuÌe

Variables rvithin the NCEP/NCAR Reanalysis 1 data set a'r'e deÌived by differ-

ent methodologies. Some of the variables in the data set aÌe assimilated th'-or.tgh

intelpolation directly flom observations. Some variables are detelmined by the

model duling the data assimilation and do not use any obselvation data The

reanalysis gridded fields have been divided into foul classes, depending on the lel-

ative influence of the obsetvational data and the model on the specific variables.

class A inclicates that the anaìysis variable is strongly influenced by obseÌved data

and is therefole the most reliable class. class A va.riables include uppel aiÌ temper-

atur.e ancl $,ind. The designation B indicates that, although theÌe are observational

data that directly a.fiect the value of the valiable, the model aÌso has a very strong

influence on the analysis value. Humidity and surface ternperature are examples

of this category. class c indicates that there are no obser-vations diÌectly afiecting

the variable, so tliat it is derived solely fi.om the model fields forced by the data

assirnilation to r.ernain close to the atmosphele. class c vaÌiables include clouds,
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precipitation, ancl surface fluxes. Finally, the lettel D replesents a field that is

obtainecl frorn climatological v¿lues and cloes not depend on the model. class D

variables include plant resistance and land-sea tnask.

NCEP/NCAR Reanalysis 1 is retlieved in a data folmat called netCDF NetCDF

(netrvor.k common Data Form) is an interface fot arlay-oriented data access and

involves a librar.y that provides an implementation of the inteÌface. The netcDF

libr.ar.y aìso cìefines a machine-independent folmat for replesentiug scientifrc data.

Together., the interface, librar.y, and foi-mat suppoÌt the creation, access, and shar'-

ilìg of scientific data. A netCDF toolbox is available for unpacking or ct'eating

netCDF files in \,latlab. The toolbox simplifies handling the netCDF files'

NCtrP/NCAR Reanalysis 1 data is useful for caliblating and vaìidating sta-

tistical models for dorvnscaling GCN4 data. The NCtrP/NCAR Reanalysis 1 data

ar.e available at a similaÌ resolution as GClr4 data. Also, many GCIVI valiables at'e

available in the NCEP/NCAR Reanalysis 1 data set. Therefore, NCEP/NCAR

Reanalysis l data can be easily used as ptedictors in a statistical dorvnscaling

moclel to gener.ate data at rveather stations. The simulated rveather can then be

compaled to the observed recold to detelmine holv ivell a model perfolms'

A seconcì global reanalysis data set produced by NCEP and the Departrnent

of Energy (DOE), catled the NCEP-DOE Reanalysis 2, is an itnproved version

of the NCÐP/NCAR Reanalysis 1 model that fixes errors and employs updated

par.ameterizations of physical processes. Horvever', this data set is only available

foÌ the pe::iocl of 1979 to 2003. Due to this relatively short tempolaì span of data,

it ri,as not used in this study
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4.3 North American Regional Reanalysis

The NCEP Nolth Amelican Regional Reanalysis (NARR) data set is a ver.y high

resolution teanalysis of the North American regioli (À4esinger. et al., 2006). The

NARR ploject is an extension of the NCEP Global Reanalysis over the Nor.tll

American region. The glid r.esolution is 349 x 2TT tvhich is approximately 0.3

deglees (32 km) at the loivest Ìatitude. Tlie highel spatial r.esolution is better

at capturing the legional hydrological cycle. The higher r.esolution also allorvs

for bette. data assimilation, including assimilatecl precipitation rather tllan model

derived plecipitatior as in the NCEP/NCAR Reanalysis 1 data set. NARR data

is dorvnloaded in netCDF files, tÌre same file format as NCEP/CAR Reanalysis 1

data a.nd CCCma CGCìvI3.i data.

NARR data is also available at a higher ternporal resolution than NCEp/NCAR

Reanalysis 1 data. Data are available at time inte¡vals of three honr, daily ancl

rnonthly means. This improves the model's ability to captur.e the diurnal cycle in

valiables.

Although the data has higher spatial and temporal r.esolution than NCEp/NCAR

Reanalysis 1 data, its utility is somervhat limited because it is cur:rerltly only avaiÌ-

able for the 25-yeal peliod from Janr:ary 1, 1g7g, to December. 31, 2006.

Despite the NARR data set coveting a r.elatively short time period, it rnay

have rrany useful purposes in clirnate change assessment studies. Choi et al.

(2007) evaluated the tempelature and pr.ecipitation data fi.on the NARR data set

by com¡rarison rvitli selected s'eatlier. stations ir.r l,Ianitoba and conclndecl NARR

data have good potential fol use as input data for hydrological models. Choi et
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at. (2009) conducted a pilot studY on eva.luâting the reliability of NARR data for

hJ'drologic mocìelling. They applied NARR data to calibr-ate a hydlologic model

and comparecl it to the calibr.ation obtained $'ith observed rveathel station data

in northeln l\4anitoba. In tìrei,- study, the use of NARR data foÌ liydrological

modelling rvas found to be plomising. I(im et al. (2008) conducted a study us-

ing NARR as a replacement for rveather station data in the ,k-nearest neighbor

r.esampling doivnscaling model cleveloped in this lepoÌt to evaluate the effect of

climate change scenarios on the winnipeg River Basin. A detailed description of

the dorvnscaling using NARR data can ì:e found in Section 6.4

4.4 CCCma CGCM3.l/T47

The canadian centre for climate N4odelling and Analysis (cccrna) is a division

of the climate Research Branch of the lvleteolological service of canada. The

CCCma conducts research in coupled aud atmosphet'ic climate modelling, sea-ice

modelling, climate variability and pledictabilit;" the carbon cycle, and a number

of otl.rer ar.eas. The cccma has developed a GC\d named the canadian centre

foÌ climate N4odelling and Analysis (cccma) coupled Global climate \4oclel

(CGC\4). The CGCN4 is a combination of tivo components, an ocean model and

an atmospheric ciÌculation rnodel. An in-depth descÌiption of the cccma cGClt4

can be found in Flato et al. (2000).

To clate, thele have been tluee generatious of the CGC\4. The thiÌd geueÌation

rnodel, cGCN43, is composecì of a second geneÌation atmosphelic circ[]ation model
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develol:ed by the CCCma, the AGCI\,I2, and the ocean component is an updated

version based on the GFDL Ì\4ON,I1.1 code. Like other.GClr4s, the CGCÀ,I3 r.equires

hr,rge computational porver to lun. Oliginally, the CGCI\43 rvas developed and lan

on a NEC SX/6 vectol supercomputet'. N,Iodifications s'e¡e macle to the model to

allorv it to be lun on a distributed memoty IBN,I computer systern. This latter

veÌsiorì, câ.lled the CGCI\43.1, supplies the data available on CCCma's iveb site for

the third genelation CGCM.

A vast arlay of variables are available from the CGCX,{3.l. The variables ar.e

similal to the variables available form the NCtrP/NCAR Reanalysis 1 data set.

The data ale availal¡le for dorvnload as daily data (in netCDF for.rnat) for.a var.iety

of emission scenarios, including:

o 20c3m: The IPCC 20¿â Century expeliment for years 1850-2000, available at

daily time scale for' 196i-2000.

r SRES A1B: The IPCC SRES A1B 720 ppm stabilization experiment for years

2001-2100.

o SRtrS 81: The IPCC SRES B1 550 ppm stabilization experiment for.years

2001-2100.

o SRES A2: The IPCC SRES A2 expeliment fol years 2001-2100, initialized

from the end of the 20C3\,I expeliment.

¡ COÀ41\4IT: The IPCC committed experiment fol yeals 2001-2100, initialized

fi'om tlie end of the 20C3À,I experiment rvith gleenhouse gas concentr.ations

lemaining constant throughout the 21"¿ centr:r.y.
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o PICNTRL: The IPCC pre-industrial coutrol experiment.

For tìre 20c3rn lun, model output for' 2-D valiables is available for the yeals

1850-2000, ivhile model output for 3-D valiables is available fol the yeai-s 1961-

1980, and 1981-2000. Fol the daily time scale of the futut'e scenarios of A1B, 81,

A2 and CON,lltIIT, the 2-D variables are available for' 2001 to 2100, rvhile 3-D

varial¡les are only available for 2046-2065 and 208i-2100. The PICNTRL scenalio

has model output fol the five variables sea level plessut'e) plecipitation, maximum

surface temperature, minimum sulface tempelatut'e, and surface tempelatut'e for

time slices of the years 1850-1950, 1951-2050, 2051-2750, 2757-2250, 2257-2350,

235I-2450, 2457-2550, 2551,-2650, 2657-2750, ancl 2751-2850. All remaining 2-

D variables and 3-D valiables ale av¿ilable for the years 1961 to 2000. For all

available clata, the 3-D variables are available at the 200, 300, 400, 500, 600, 700,

850, 925, and 1000 mb geopotential heights.

Dr"rling this study the scenarios used from the CGClvl3.1/T47 rnodel ivere the

20c3m (1961 to 2000), SRÐS A1B (2046-2065 and 2081-2100), SRÐS B1 (2046-2065

and 2081-2100) and SRÐS A2 (2046-2065 and 2081-2100)

Data fol tlie CGClvI3.l ale available in trvo diffelent glid lesolutions. The

T47 version has a glid resolution of approxirnately 3.75 deglees in latitude and

longitude (Figule 4.1), and 31 levels in the veltical. Tlie T63 version has a grid

lesolution of approxirnately 2.8 deglees latitr.rde and longitude and 31 levels in the

ve¡bical. At the tirne at this study, not all atmospheric vatiables rvete availabÌe

for the T63 version. Therefore the CGCN43.1/T47 rnodel supplied the GCNI data

used in this study.
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Figure 4.1: CGCNI3.1/T47 grid



Chapter 5

Data Analysis Results

5.1 Global Climate Model Validation

In this p'oject, ttre GC[4 selected to pr.ovide the climate change scenario data rvas

the CCCma's CGCIVÍ3.1/T47. This model rvas selected because daily data for a

multitude of emission scenalios are readily accessible to do.rvnload fi.ee of charge.

Due to time constraints and the efiort r.equired to fuìly explore and doivnscale

a GCN4 data set, only one model rvas selected. In the future, to develop a full

ensernble of possible futuÌe climate scenarios, it is recommended that other moclels

be adapted to study climate change in the Canadian Ptair.ies.

When selecting a GCI\4 for climate change assessment, one should have confi-

dence that the output of the GClr4 is realistic. To address this, the present section

rvill exami'e the means of the CGC\,13.1 1"147 d,ata"to l¡e used i'the dorvnscaling

rnodel.

The rnean values for NCtrP/NCAR Reanalysis 1 and the CGClvI3.lT/47 data
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gÌids fot' suÌface tempeÌatuÌe, tempeÌature at 500 mb, temperatul:e at g50 mb,

850 mb geopote'tial heiglit and 500 mb geopotential height are shorv'o'Figure 5.1

to Figure 5.5 The sarne mearì values of va.iables *'e.e also plotted for the GCN4

output of future cÌirnate scenarios to validate the GCÀ,j output is consistent ivith

tìre general trends presented in the liter.atnle. As an example of tlie futute GCM

data, the results from the A2 scenar.io ar.e included in each of the figures for the

2046 to 2065 and 2081 to 2100 time slices.

The lesults for sulface tempeÌâture a.re shorvn on Figure 5.1. Cooler.temper._

atures are present for the 20c3m data compaled to the NCEp/NCAR Reanalysis

1 data in some areas. The trvo data sets deviate the most in the north east and

southrvest portions of the plots. In the middle of the study a'ea, the 20c3m data

matches quite rvell to the NCÐP/NCAR Reanalysis 1 data. For the A2 data, as

expected the 2046 to 2065 data was lvarmer than the 20c3m data, and the 20g1 to

2100 data rvas rva.me. than the 2046 to 2065 data. Futu.e surface temperatules in

the CGCM3.1/T47 data ale consistent rvith the literature revierved in Section 2.

The lesults for tempelature at the geopotential height of 8b0 mb are sìrorvn on

Figule 5.2. The 20c3m data has a similar.pattern of contours as NCEp/NCAR

Reanaìysis 1 data; horvever in the midclle and southern legions of the study alea,

the 20c3rn has rvalmer temper.atur.es by as much as 2.C. Tliis is a fairly large

temperatu'e magnit,de of diffe'ence, the same as betrveen tìre clifier.e't emission

scenaÌios. As in the surface ternperatuÌe results, the tempeÌatuÌes continually

increase ri'ith time.

The results for ternpelatur.e at the geopotential lieight of b00 rnb are shorvn
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Figure 5,1: lVlean values of sulface temperatule.

on Figure 5.3. The same magnitude of biases in tempelature that rvele plesent at

the 850 mb level at'e present at the 500 mb level. Horvever, the 20c3m data is 1'C

to 2.5"C cooler than the NCEP/NCAR Reanalysis 1 data. The largest biases are

pr-esent in the southeln region of the study area. The tempet'atures continually

inclease rvith time.

The lesults for the mean 850 mb geopotential height are shosm on Figule 5.5.

In genelal, the mean values of the 850 ml¡ geopotential height ale just above

1400 m above sea level. In the southern poltion of the study atea, the 20c3m and

NCtrP/NCAR Reanalysis 1 data match rvell, hos'ever in the ttortheln aleas the

20c3rn 850 rnb geopotential height is rqr to 20 m lorvel than the NCEP/NCAR

Reanalysis 1 data. As tempeÌatules inclease, ait expands and laises the distance
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Figure 5,2: Mean values of temperature at the 850 mb geopotential height.

to geopotential height levels. In the A2 scenarios, the mean geopotential height

incleases sìightly rvith tirne, ivhich is consistent rvith expectations.

The results for the mean 500 mb geopotential height are shot'n on Figule 5.4.

The mean values of the 500 mb geopotential height in the study area are generally

around 5500 rn above sea level. The 20c3rn mean values ai-e 25 to 50 m lorvel

than the NCEP/NCAR Reanalysis 1 mean values. The diference betrveen the trvo

data sets fol the current climate period are approximately equal to the difierence

betrveen the 2046 to 2065 and 2081 to 2100 data sets of the A2 scenalio.

Tìre analysis of the mean values of the NCEP/NCAR Reanalysis 1 data and

20c3m scenario output fi'orn the CGCN43.1/T47 shorv that fol the cullent pe-

riod, the CGC\,13.1/T47 lias slight biases in the variables in many areas. Overall,
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Figure 5.3: lVlean values of temperature at the 500 mb geopotential height.

patteÌns in variables are leproduced vety rvell, as seen in the contour lines of

the various plots. The 20c3m or"rtput should be consistent rvith NCEP/NCAR

Reanalysis 1 data. The biases in the CGC1\43.1/T47 can be easily dealt rvitli

though standaldization of the data. TIie NCÐP/NCAR Reanalysis 1 and the

20c3m CGCÌVI3.1/T47 output rvill be standar.dized so tìrat each gr.id point has a

rnean of zelo and a standard deviation of one.

When sta¡rdardizing the GCN,I or,rtput fi'om future emission scenarios, the bi-

ases present betrveen these or-rtputs aud the 20c3m scenario must be pleselved.

These biases hold the information necessar..y to evaluate climate change tlends.

To pleserve the bias, futLrle scenalios rvill be standar.dized using the mean and

standard deviation of the 20c3m scenalio.
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Figure 5.4: À4ean values of 850 mb geopotential heiglit.

To determine if biases âre plesent in the temporal dimension of the 20c3m

model output, the surface temperature data for Thompson, N{anitoba, \\¡ere ex-

tracted for both the 20c3m output and NCEP/NCAR Reanalysis 1 data and com-

pai-ed to the mean rnonthly observed temperature from Environment Canada's

CDCD data set. The CGClvl3.1/T47 and NCEP/NCAR Reanalysis 1 data rvere

interpolated from the nearest grid points to the location of Thompson. The lesults

of this exelcise a¡e shorvn on Figure 5.6.

Biases ale plesent for both data sets, and these biases are not consistent

throughout the year'. For the 20c3m or-rtput, monthly biases range from under-

estimation by 1.6"C in the month of NIay, to an ovelestirnation of 4.9'C in the

month of December'. In compalison, the bias of the NCEP/NCAR Reanalysis 1
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Figure 5.5: Ivfean values of 500 mb geopotential height

langed fi'om an underestimation of 1.7'C in the month April, to an overestimation

of 2.1'.C in the month of January. Wrile biases ate present in both clata sets com-

pared to the obselved monthly means, lar:ge biases exist for. the CGCÌvI3.1/T47

20c3m output in the ivinter months of Novembel to January.

To measure the significance ofthe biases in monthly means, t-tests rvere admin-

isteled on the mean tempel.atuÌes of JuÌy and December. NCEp/NCAR Reanal-

ysis 1 rnonthly means weÌe compatecl to tìre obsenacl means, and CGC[43.1/T4Z

20c3m rnonthly means lvere compared to the obselved means. Trvo months rver.e

selected to check, July and December., for. a total of four. t-tests. The nuÌl hypoth-

esis 11 ::0, that the NCEP/NCAR Reanalysis 1or CGCÀ43.1/T4Z 20c3m had

tlie same mean values as the obse.ved tempeÌatur-e rvas rejected for both datâ sets
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Comparison of Thompson Temperature l9T0-2000
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Figure 5,6: N4ean molthly Thompson suÌface temperatule compa.rison.

for July and December at the 1% signifrcance level. This ploves that the biases

in NCEP/NCAR'Reanalysis 1 and CGClvi3.1 /T47 20c3m output are indeed sig-

nificant. To complicate the issue, the biases range greatly fi'om rnonth to month

betrveen overestimation and underestimation. Applying a global bias correction to

tìre data rvonld couect the annual average, but rvould actually amplify the bias of

sone months.

Flom the above discussion, it is obvious that any bias colrection must account

for the tirne-valying bias. When standaldizing data, a daily value should be used

for rneans and standard deviations. Bv using the daily statistics for each of the

individual grid points, the resulting stanclardized data rvill be bias free in a spatial

and tempolal dimensions.

Oct
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Aftel bias conection by standaldization, the CGCN43.1/T47 20c3m output

should plovide accurate representation of the cun'ent climate l,hen dorvnscaled.

The dorvnscaled results should bettel leplesent the molthly mean statistics than

the oliginal CGCÌVI3.1/T47 grid points.

5.2 Circulation Pattern Classification

Cilculation pattern (CP) classification rvas used to explore the relationships be-

tiveen Ìalge-scale and local climate valiables, or more specifically, the ability of

cilculation patterns derived from geopotentiaì height data to influence the occur-

rence and quantity of precipitation at a u'eather station.

Tivo methoclologies of classification rvele applied, corlelationJ¡ased classifi ca.-

tion and eigenvectol-based classification, as described in the methodology section.

In both applications the 500 mb geopotential height freld over the alea shorvn

on Figure 5.7 l'as considered. The precipitation dat¿ rvele fi'om Envilonment

Canada's Thompson rveather station. Thilty seven yeârs of precipitation data

rvere available from January 1, 1967 to December 31, 2003. NCtrP/NCAR Re-

analysis 1 clata rvele letrieved for the same time peliod.

5.2.1 Correlation Classification

A l\4atlab function t'as created to per-form the collelation-based rnap pattern clas-

sifica.tion rnethodology desclibed in Section 3.1.4. The Pearson ploduct-moment

conelation thleshold rvas set to 0.6, tlie middle of the range of 0.5 to 0.7 sug-
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Figure 5.7:

gested by Yarnal (1993).

categories.

The computation of the co.relation mat.ix demands la.ge âmounts of computer

memory. Without precautions for memory mânagement during programming, the

computational demand can lirnit the length of tecord used to find the key days.

To make the classification possible for all 37 years of station data available, sparse

matrices rvele used to store the position of col.relations above the thr.eshold value.

The classificatio' algo.ithm ivas applied to the 3z year.s of geopote'tial height

data. The selected key days a.e shorvn o' Figu'e 5.g. Each key clay shorvs a

co',mon pÌessure patteÌn that is significantly different fi.om the other key clays.

using these key clays, each of the ten categories has a s.fficie'tly la'ge numbel of

membels.

The goal of the classification rvas to clivicle clays into categoì.ies l¡ased o' their.
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Coi'lelation-based tteln classifi cation statistics

2

4

5

6
7

8
ô

10

0.09

0.07
0.12

0.10
0.09
0.15
0.09
0.07
0.08

0.31

0.47
0.27
0.39
0.2s
0.48
0.42
0.27
0.42

4.4r
2.47

2.67
2.88

2.00

5.19

¿.o t
3.87

3.82

6.53
4.20

4.83
2.95

7.86

3.50

6.56

3.60
3.30

4.52

3.15
2.93

o. t.t
4.26

Total 0.39 3.63 5.93 3.75

similality to comìnon pressure patterns. The potential usefulness of the division of

days into categories is to also find patterns in the local precipitation based on these

categolies. The most irnportant varial¡le for-liydrologic modelling is plecipitation.

The distlibution of pr-ecipitation amounts and the probability of plecipitation for'

the days in each category rvere cal.culated fol the Thompson rveather station. Ta-

ble 5.1 shoivs the results for each of the CPs, including tlie probability of the CP

occurring, the probability of precipitation, along rvith the first three moments of

the distlibution of daily plecipil ation accumulation.

Table 5.1 shorvs that each of these key statistics va.ry among the CP categories.

On average, fol any given day the plobability of plecipitation occulring is applox-

imately 0.39. For CP 7 the probability of rain is 0.48, and for CP 9 it is 0.27. This

is useful infolmation lr'l.ren attempting to predict the occurrence of rainfall. The

circulation patterns in geopotential height influence occunence of prec\ritation at

a rveather station.

Each CP also has a diferent distlibution of daily rainfall accumulation. The
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distribution statistics shorv that plecipitation chaÌâcteI'istics valy greatly bettveen

the CPs. Fol example, the days in the CP 7 categoly are likeliel to have larger

accurnulations than the days in the CP 2 categor-y.

5.2.2 Eigenvector Classification

A Matlab function rvas cleated to pelform the eigenvector-based map patteln

classification methodology in Section 3.1.5. The numbel of classification categories

rvas set equal to ten câtegolies, the same numbel used during the cot't'elation-based

classification.

The memory available to complete the clr"rsteling step was a factol in the

rnethod selection. lVhen classifying the 37 years of data (13,505 days) simul-

taneously, Matlab (32-bit Windows Xp version) did not have enough memory to

allorv the valiables to be stored during tlie calculations for the Ward and centroid

method algorithms, even rvith mauy memory saving precautions taken. Therefore,

the average liuking method rvas used. The avelage linkage method proved to be

time and memory efficient.

To vierv the physical meaning of the clusters, the mean of the grids of stan-

dardizecl geopotential heights in each category rvere calculated. The results ale

shorvn on Figure 5.9. The pattelns delived fi'om the eigenvector'-based classifica-

tion do not appeax as unique as the key days of the corlelation based classification,

rvl.rich is likely due to the fact tìrat the key days ale an actual single day of the

NCEP/NCAR Reanalysis Data 1 data, l'hile the data on Figule 5.9 are averages

of hundleds ol a ferv thousand days. The circulation patteÌns each shorv difielent
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C
1 0.07
2 0.01 0.62

Table 5.2:

3 0.11
4 0.13
5 0.30
6 0.01
7 0.02
8 0.03
I 0.23

tor'-based classification statistics

ll. bb

0.31
0.34
0.45

0.32
0.24
0.34
0.35

2.68

2.49

3.86

3.81

2.62

6.11
6.'1.7

3.61
2.56

10.20 2.46
4.68 4.95
3.95 3.53

2.38 4.12 3.08
4.00 2.77
6.13 4.0910 0.09 0.39 3.65 5.22 3.07

.ä

areas of high a'd lorv pressure systems. some pattelns are cyclonic, others anti-

cyclonic, rvhich lesults in each ci.culation patteì.n having a u.ique probability of

plecipitation occuÌtence and distr.ibution of plecipitation quantity.

The dist.ibution of daily precipitatio' accumulations and the probability of

¡rtecipitation occurrence for the days in each category rvere calculated for the

Thompson rveathel station and the results are shorvn in Table b.2.

As in the circ'lation patte.n classification, difierent circulation patterns lead

to highel (cP 2) or lori'er (cP 7) p.obabilities of precipitation occurrence. The

cìistribution moments also valy betrveen circulation patterns. cp 2, ivith a 0.01

p.obability of occu'ling, has a p.eci¡ritation distribution rvith high mean and stan-

dald deviation, meanir.rg this patteln may be associated ivith l.are but heavy rainfall

events-
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5.2.3 Circulation Pattern Classification Summary

Th::ongh cilculation patteru classification, it rvas shorvn that patterns in the 500 mb

geopotential height influence both the occurlence of precipitation and the distribu-

tion of plecipitation quantities. Thelefor-e, geopotential heiglit fields can provide

valuable information rvhen included in the large-scale valiables used in dot'nscaling

models. As a lesult of the preceding exercise, grids of 500 mb and 850 mb geopo-

tential heights ivill be incolpolated into the À-nn dorvnscaìing model developed in

Chapter 6.

As a side note, although it is not in the scope of this ploject, a doivnscaling

model could be derived based on the cilculation pattern classification completed

in this section. Section 2.3.2 provides more infot'mation on rveather typing dorvn-

scaling models.

5.3 Canonical Correlation Analysis

One of the difficulties of dorvnscaling climate data is finding meaningful lelation-

ships betrveen large-scale and local variables. There are many questions regarding

the selection of lalge-scale variables. Canonical collelation analysis rvas used to

evaluate the cor¡elations betrveen large valiables and local variables, and more

specifically to determine if large-scale temperatut'e and geopotential height data

ale collelated to local temperatnle and plecipitation ol¡servations.

Tìie goal of exploring the large and local-scale vatiaÌ¡les rvas to justif¡, the se-

lection of valiables by ploducing canouical valiates rvith high collelations. It rvas
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âssumed that since tempelature usuallj¡ changes graduâlly ovet large clistances,

the lalge-scale temperature should be highly corlelated rvith Ìocal temperatr-lres.

Also, it rvas assumed that since circulation patte.n classification shoiverì that p.e-

ci¡:itation is related to geopotential height data, geopotential height clata shoulcl

be correlated to local plecipitation occur.rence.

For lalge-scale variables, the 850 mb and b00 mb geopotential heights rvill

be used along rvith temper.atule at the surface, 850 mb geopotential height and

500 mb geopotential height. NCEP/NCAR Reanalysis 1 data for these variables

rve.e extracted fo'the grid shorvn on Figure 5.7. NCÐP/NCAR Reanalysis 1 data

rvere trimmed to match the temporal Ìange of the station data. To r.emove seasonal

influences i' the data, each grid point .*,as standar.dized using a daily mean and

standard deviation smoothed using Fouriel series. since each of the data gricls

contain many g.id points, principal component analysis rvas used to r.educe the

number of vatiables.

To determine the colrelations ivith local temperature, the tempelatute data

af the Thompson a'd rhe Pas Ðnvironment canada rveather stations rver.e ob-

tained for the ¡,s¿.s available at both stations, 1g70 to 2000. Each station rvas

standa.dized using a cìaily mean and standard deviation smoothed nsing Fonlier

series.

The results from the ccA rvith the fir'st 24 principal compone'ts fi.om the large-

scale data and the daily temperatnre fi'orn the trvo ¡ræather stations is shorvn in

Table 5.3. Tlie $'eights fiom the filst set of canonical va'iates for the temper.ature

clata, à*, are approximately equal in magnitnde and are both positive. Therefore.
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tltese sets of variate I'epresent the magnitucle of the temperature being above or'

beloiv nolmal for. the calender. day. The canonical couelation of 0.93 for these

trvo sets of variates demonstrates that the deglee to rvhich the stations ale cooler

or wâÌmer than no::mal is explained ver-y rvell. The second set of val'iates hâs

weights of opposite sign appliecì to the trvo weathel stations. The second set of

valiates the::efor.e describes the temperatule difference betrveen the trvo stations.

The canonical cortelation of 0.56 demonstrates that the pÌincipal components also

explain a poltion of the temperature difierence betlveen the trvo stations'

The second application of ccA rvas to determine if colrelations exist betrveen

the large-scale variables and station measuremerìts of precipitation. Since precip-

itation is a stochastic process altd the occurrence at a point is difficu]t to predict,

mole rveather. stations rver.e added to the ccA. A total of six Environment canada

rveatl.reÌ stations in Northern \'Ianitoba rveÌe used, including Thompson, The Pas,

Gillam, Grand Rapids lsland Lake, Lynn Lake, and Norrvay House' The ple-

cipitation data rvere set to 1 or 0: days ivith precipitation greater than 0'2 mm

rvele coded as 1, and days rvith less tlian 0.2 mm wele codes as to 0 With six

rveather stations the lesults, shorvn in Table 5 4, can be difficult to interpÌet phys-

ically, horvever the fir.st set of canonical vatiates plovide some useful inforl ation.

\Á¡ith a.ll negative rveights assigned to the rveather stations, the first set of valiates

descril¡es the occurrence of pr.ecipitation at all stations. Given the stochastic na-

ture of rainfall, the canonical colrelation of 0.58 demonstÌates that the laÌge-scale

r.ariables describe a lalge proportion of the local rainfall occuÌr'ence'
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Table 5.3: Curon&el m.r4.tign telqpelollule analysis results
72

a- i"o8-il {-¡oo8-
0.0453 _0.0095

0.0127 _0.1131

-0.0106 _0.0440

0.0344 0.0671
_0.0249 _0.0747
_0.0758 _0.0394

-0.0252 0.0091
-0.0005 _0.0862

0.1008 _0.0414

0.0358 -0.0846
0.0071 _0.0060

-0.0349 _0.i263
-0.0209 -0.1023
0.0247 _0.0650

0.0i7i _0.0286
_0.0355 0.0220
_0.0625 0.0186
-0.1038 _0.1538

0.0180 0.1814
-0.0186 0.1614
0.0382 -0.0125
-0.0664 0.0822
0.0513 _0.1333

0.4125 _0.2342-T- o--.s?oi¡s50t
0.4542 1.8938

rc- 0 9269 05591
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Table 5.4: Canonical correlation precipitation analysis lestlts.

-0.0682 -0.0269 0.0414 ,-0.0171 -0.0367 0.0040 0.0100

0.0094 0.0284 0.0483 0.0437 -0.0128 -0.0141 -0.0496

-0.0162 -0.0124 0.0102 -0.0411 0.0173 -0.0306 0 0159

-0.0675 0.1689 -0.0:õ22 0.0430 -0.0115 -0.0214 -0.0267

-0.0219 0.0327 -0.0971 0.0061 0.0108 0.1132 0.0178

-0.0884 0.0017 -0.1292 -0.0236 -0.0692 -0.1346 0.0858

0.0830 0.0166 -0.0623 0.0489 0.0516 -0.0100 0.0653

-o.o72s -0.0642 -0.0240 0.1687 . 0.0730 0.0650 0.0645

-0.0149 0.0127 -0.0120 -0.1638 0.1923 -0.0886 -0.0720

-0.1569 -0.0571 0.1325 0.1287 0.0339 -0.1182 -0.0413

0.0731 -0.1296 -0.0726 -0.0306 -0.0399 -0.1065 0.1009

-0.0993 -0.1115 0.0481 0.0520 0.1912 0.0059 -0 0803

0.2580 0.0865 0.0647 -0.0465 -0.1060 -0.1103 -0.0282

0.0706 0.1160 0.0719 0.0039 -0.1799 -0.1237 -0.0661

0.1679 -0.0855 -0.0504 0.2452 -0.0414 -0.0573 -0.1903

0.0378 -0.2501 -0.1742 0.1208 0.0641 0.0631 -0.1787

0.037i 0.1149 -0.1662 0.1125 0.1377 0.0984 0.0484

-0.1039 -0.0784 -0.1096 -0.1307 0.0624 -0.0132 -0.3415

-0.1639 0.2596 0.0690 -0.1047 0.0855 0.1176 -0.2020

0.0559 -0.0466 -0.0556 -0.3544 -0.2624 0.1577 -0.1657
. 0.1035 0.1191 0.0942 -0.0744 0.4368 -0.3555 0.0360

-0.0026 -0.0482 -0.1089 -0.2435 0.1152 0.1894 -0.2916

-0.0529 0.2538 0.1155 0.0046 0.L276 0.2022 0.2096

-0.635i 1.1588 0.4t75 -7.7662 -0.2694 -0.6398 -0.5364

-0.2610 -0.8271 -0.6697 -0.8963 -1.4780 -0.2109 1.5834

-0.6867 0.8045 -1.5168 1.3325 -0.5419 0.0234 -0.3330

-0.5445 -0.3749 1.4551 r.2211. -1.0922 -0.7980 -0.1591

-0.0418 -0.3953 0.4585 -0.3993 -0.4290 2.0457 -1.5434

-0.5287 -1.0613 -0.4739 -0.1575 1.6316 -1.2331 -0.9464
ss
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Chapter 6

k-Nearest Neighbor Resampling

Results

6.1 Single-Site Application

The first application of the nearest neighbor do*,nscaling moder ivas designed for

a ri'eather station at Thompson, rvlanitoba. Trris application serves âs a simplified

pilot study of the fr-nn moder' The ressons rearned fi'om this application ivill be

important for. the next steps of applying the À_nn to multiple sites in the Nelson

River basin and the Winnipeg River. basin.

6.1.1 Data

In tlie application ¡xesented here, GCÀ4 clata l,as do¡vnscalecl to produce time

series of minimum daily ternper.atrue, maximum daily temper.atur.e, and daily ac_

c,mulated p.eci¡ritation for the rveathe. statio' at Trrompson, rVlanitoba, ca'acla
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(55'4S'N, 97'51'W). Thilty seven years (1967-2003) of data weÌe ¿vâilable for the

Thonpson rveather station. Thelefor-e the ìristorical recold from ivhich to resample

rvas limiteà to this tirne periocl.

The NCtrP/NCAR Reanalysis 1 sr'rpplied the historical atmospheric data and

the Canadian Daily Climate Data (CDCD) data set provided the historical station

data fol the Thompson rveathet station. The CCCma coupled GCM, CGClvl3.1/T47,

rvas selected to provide the simulation data for a 20th century contlol lun (20c3m)

and the IPCC SRÐS A2 climate change scenario. Five runs of 40 years (1961-2000)

rvele available from the 20c3m experiment, and three luns of 20 years (208i-2i00)

rvele available for the A2 model run.

To adequately capture the lalge-scaìe cit'culation pâtterns, a Ìarge spatial area

rvas selected over rvestern Canada. The avelage surface tempet'atule, 500mb tem-

peratule, 850mb tempelatule, 500mb geopotential height' and 850mb geopoten-

tial height variables rvere used as the large-scale vat'iables. The glids for the

NCEP/NCAR Reanalysis 1 and CCCma data sets have slightly different resolu-

tions, 2.5' x 2.5' and 3.75' x 3.75" , respectively. To make the data sets consistent,

the NCEP/NCAR Reanalysis 1 data rvas lineally interpolated onto the CCCma

glid points. The data covel the region on Figure 6.1 and consist of 60 data points.

Canonical correlation analysis and cilculation pattern classification rve¡e used in

Cliapter' 5 to establish that relationships exist betiveen the large-scale valiables

and the Tliompson rveathet station cìata.

NCEP/NCAR Reanalysis 1 data and tlie 20c3m expelimeut data rvere stan-

daldized using the mean and standard deviation from each data set to lemove
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Figule 6.1: CGCN43.1/T47 data grid and Thompson rveather station.

slight biases between the data sets fol the cu.rent climate. The A2 scenario data

rvele standardized using the means and standar.d cìeviations from the 20c3rn data

to preserve the biases created in the model due to changed atmospheric loadings.

With each of the five climate var.iable grids containing 60 data points, the

numbe¡ total number of data to compare betrveen NCEP/NCAR Reanalysis data

and GCÀ4 data totaled 300. si'ce a high cìeg'ee of correlation exists spatialÌy in

each'ariable, and also betrveen va.iables, principal component analysis ivas used

to reduce the number of va'iables in the featrue vector by removing redunda.t

information (Gangopadhyay et al., 200b; Buishand and Brandsma, 2001; young,

1994). The fir'st 24 pr'ìncipal co'rpo'ents rve'e'etained ancl explai'over g6% ofthe

vaÌiation contained in the oliginal data sets. Tìre eigenvector.s calculated from the
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NCEP/NCAR Reanalysis data s,ele used to calculate the principal components

fol the GClr4 data sets to maintain the same modes of vatiation explained by the

plincipal components of the GCNd data as tìre NCEP/NCAR Reanalysis plincipal

comìlonents.

6.L.2 Model set-up and optimization

AÌthough the model does not lequii:e parameterization of specific relationships

betil'een large-scale and local variables, some components of the model should be

adjusted to optimize the ability of the model to estimate the station data. The

number of neighbors to Ìetain, k, the windorv size, lV, and the rveights rir¿ can all

be adjusted to improve model performance.

To optimize the model, a closs-validation method rvas set up in rvhich the model

rvas used to simulate the histolical station data. The NCEP/NCAR Reanalysis

1 data for one year rvas consideled as simulation data and lemoved from the

liistolical recold. Station data rvele then genelated for this yeal of NCtrP/NCAR

Reanalysis 1 data. This plocess was repeated fol each of the 37 year-s of data.

An objective must be specified to optimize the model. Since estimation of both

tempelature and precipitation are itnpoltant, the objective considered here rvas to

optirnize the correlation betil'een the estimated and obsei-ved daily tempelatule

anomaly, and the corlelation of estimated aud obselved accumulated rvintel pre-

cipitation (October to April) at the annual scale. Precipitation *'as limited to

the t'intel season because the lleavy convective ra.infall that occurs in the summer'

rvas found to be cìifficult to predict as it is a local phenomenon rathel than dliven
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by synoptic scale climate. Fulthermore, year.ly runoff in the Nelso' River ancì

most other canadian .ive. systems is la.gely dominated by spring melt *,ater from

accnmulated rvinter preci¡:itation. The objective function for this application is

max f (W, k, w¿) : 
I 
p"l + 

I 
pl, (6.1)

rvhere z refer.s to maximum temperatule anomaly and u lefers to rvinter precipi_

tation accumulation.

The model rvas initialized using equaì rveighting to each principal component

and fr set to retain only the most sim ar nea.est neighbor. The rvindorv rvidth, trU,

rvas optimized 
'sing 

trial and error'. Flom Figur.e 6.2 it rvas obser.ved that a rvindorv

size of 27 days leads to the maximum model performance. The iveighting vector., tu,

rvas optirnized using the i\4atìab optimization Toorbox. Trre softrvare emproyed a

gradient line search optimization metliodology to optimize trre objective function.

The number of nearest neigrrbors to retain rvas var.ied and the best resurts dur-

ing tìre cross-validation rvele obtained rvhen only the fir'st nearest neighbor ivas

retained Horvever, to encourage variability in the serectio' process rvrren simulat-

i'g rvitli GCNI data, k rvas set to retain the ten nea.est neigrrbors. Increasing trre

n'ml¡er of nearest neighbo.s only slightly affected the validation results.

The model rvas able to leproduce the time series of rnininum and maximum

temperature quite 
''ell, 

rvith correlations of 0.93 and 0.g5 r.espectively for the

scattel plots on Figure 6.3. Tlie stochastic natnre of r¿infall occurlence made

daily p.ediction of preci¡ritation difficult, especially for con'ective stor.ms in sum-
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Figure 6.2: Objective function optimization for' !l/.

mel months. The model rvas al¡le to adequately capture season tlends in rvinter

accumulation rvith a collelation of 0.65 for the data shorvn on Figure 6.4. The

ability of the model to simulate the rvintet' precipitation storage is important, as

the spring melt is the most impoÌtant feature of the annual hydlograph. In some

years, the model significantly over'-estimated or under-estimated the accutnulation

of plecipitation, such as in 1981, 1986, and 1997. In most years the model is

able to capture the seasonal trends in plecipitation quite rvell. Table 6.1 shot's the

model ploduced similar mean amounts of rvintel and annual precipitation and also

contained similar amounts of variation. The year' 1979 is omittecl due to numerous

rnissing data entries in the observed record.
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Table 6.1: Closs-validation precipitatio¡r statigtics.
Observed Simulated

'Winter standat'd deviation 38 46

Annual mean 572 504

Annual standard deviation 85 89

6.L.3 Model Application

The moclel rvas employed ivith data generated by the CGCM3 11"147 to evaluate

changes in temperature and precipitation.

Nlolthly averages of maximum temperatule and accurnulated plecipitation are

shos,n on Figure 6.5. As expected, the dorvnscaled 20c3m (i961-2000) GCI\4 r'uns

produced mean tempet'atures very close to the observecl clata. The SRES A2 sce-

nalio (2081-2100) prodr,rced doivnscaled tempelatures 3 to 5"C rvarmel in summer

and 5 to SoC rvarmer in the rvintel. The inclease in temperatr.rle experienced in

the spling and fall seasons rvill shot ten the rvintel season and reduce the length of

time plecipitation is able to be stored as snow

The 20c3m experiment led to dorvnscaled precipitation results that slightly

under'-estimate monthly plecipitation accumulation. The A2 scenalio led to ple-

cipitation that rvas similar to the obselved and 20c3¡n data' except fol the months

of June and July that had significantly less plecipitation.

The statistics for rvinter and anuual plecipitation in Table 6.2 shorv that both

GC\4 simulations provide atmosphet'ic conditions that lead to reduced precipita-

tion at the rveathei- station. The 20c3rn experiment underestimates t'iutel precipi-

tation by 20To ar'd annual pt'ecipitation by nearly 10%. The A2 scenalio leads to a
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Annu¿l mean

38 34
572 475

Figure 6.5: Monthly averages of maximum temperatule and plecipitation accu_
mulation for observed and GCI\4 simulated scenarios.

Table 6.2: Observed an{4orvnscaled Thompson precipitation.
ubserved 20c3m A2 (1981_2100)

__.. (mm) (mm) (mm)
\ /tnter mean 195 14S 

- 
144 

-
Annual standard deviation 85 gg

27
430

dec'ease or 22To in the rvinter season and an annual dócr.ease of 16%. Although the

20c3m expe'iment led to an unde'estimation of precipitation, tìre further. reduction

in precipitation in the A2 scena¡io simuration shorvs trrat future precipitation may

dec¡ease at the Thompson rveathel station.

The most significant decrease in future precipitation occurs in the montrr of Jury

(Figure 6 5). A more detailed investigation rvas made into the pr.ecipitation of Jury

and A.gust. Freq'ency clistributions for these trvo months are srrorvn on Figrue 6.6.

Tlie observed and 20c3m (1961-2000) simulations experience similar. fi.equency

trends in both months. Fo. trre month of J'ry, the frequency clistrib.tion for. the

dorvnscaled SRES A2 (2081-2100) simuration sho*,s an increase in trre fi.eclue'cy of

ch'5' ¿or. a'd a reduction in fieque'cy fo'arr.ainfal events, causing a significart
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Figure 6.6: \4onthly freqr:ency distlibution of daily precipitation accumulâtion.

decrease in mean accumulation for- July. A less exaggerated inclease in dry days

occuls in August, rvhere thele is a decrease of small events less than 10 mm, but an

increase in events rvith mole than 10 mm. The inclease in largel events ofisets the

increase in dly days and maintains the rnonthly mean accumulation at its current

level. Cool tempelatures are usually experienced during rainy days; therefore the

declease in small events may be attlibuted to rvarmer future temperatures. Since

convective rainfall lequires rvarmer tempelatures, the frequency of large events in

the future may not decrease to the same extent as small events.

The combinatiou of incleased tempelature, shoi-tened rvintel season, and re-

cluced plecipitation rvill certainly lead to changes in stteamflorv.

6.1.4 Discussion

A À-nealest neighbor resampling algorithm rvas developed to generate data at the

Thompson rveathel station by dorvnscaling large-scale atmosphelic data. Opti-

mization of some tnodeÌ parâmeters wâs ttecessary to implove the model perfol-
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mance. Atmosphelic data genelated by the CGClvf3.l/T47 r'ere used as input

to generate l'eathel data fol climate change sceualios. The do*'nscaled A2 sce-

nalio (2081-2100) r'esulted in a future climate ât Thompson that is expected to be

l'armel thloughout the year and slightly drier.

The next application of the lc-nn rnodel ivill be to dorvnscale GCNI data to

produce rveather variables at both the Thompson weatheÌ stâ,tion and an addi-

tion rveather station at The Pas, Ivlanitoba. The lessons leat'ned from this pilot

application that rvill improve the methodology in the next application ale:

o Lalge-scale grids of tempelature and geopotential height atmospheric vari-

ables can be dorvnscaled to adequately reproduce histolical daily tempelatule

and seasonal precipitation trends.

o Optimization of the model pâr'ameteÌs k, tu¿, and I4l can be used to improve

the ability of the model to lepi'oduce historical climate.

o A ,k-para.metel equal to one resulted in the best model pelformance. Horv-

ever, it is recommended to use a larger k, È : 10 for example, to increase

model variability rvhile generating dorvnscaìed GCIVI data.

r Historical temper-atule is re¡rroduced rvell rvithont significant optimization.

Future optimization should focus on pÌecipitation.

The rvolk plesented fol this single site application of À-nn rvas folmulated into

a confelence papei presenting the optimization methodology fol the modeì and

also displaying the ability of the À-nn rnodel to doivnscale GC\,I data (Lee ancl

Rasmussen, 2007).
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6.2 Nelson River Multi-site Application

In this application, the À-nn rnodel ivill be,secl to geneÌate 
'ariables 

for hydr.o-

logical rnodelling i' the Nelson Rive. Drainage Basin. The þch.oÌogical moclel

that rvill use the dorvnscaled data is the sLURp hydrological model. The sLURp

model requires the follorving variables at the daily time scale:

¡ À4ean temperatule,

o Depth of precipitation,

¡ Relative humidity, and

r Solar radiation or. bright sunshine hour.s.

6.2.L Data

The same lalge-scale input variables that *'ere used in the single-site application

rvill be used for this application. The i'put va'iables a'e the average surface

temperatule, 500mb temper.atur.e, 85Ornb temper.ature, 50Omb geopotential height,

and 850mb geopotential height over the grid sllorvn on Figure 6.1.

The liisto.ical lecord to sample fi'om rvas lirnited to 31 year.s, fr.om 1g70 to 2000.

Tliese were the years rvhe'e all va¡iables rvele available for botli of the Thompson

(55"48'N, 97'51'W) and The Pas (53.58'N, 100.6'W) rvearher. srarions. in total,

eight va.iables rvill be dorvnscaled sim.lta'eously in this application, daily mean

tempelature, precipitation, relative humidity and br.ight sunshine hours.

The NCEP/NCAR Reanalysis 1 data fo. the large-scale va.iabres rver.e retrieved
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ancl pÌepaÌed for dou,nscaling by standardizing the data and applying principal

component aualysis as in the single-site application.

For CGCI\,I3.1/T47 GCÀ'l data, five GClvl model runs of the 20c3m scenario

for the period of 1961-2000 are available fi.om the canadian cent::e for climate

lvloclelling and Analysis (cccma) rvebsite fol doivnloading, but only three model

r-uns of the A2 scenario rver.e available. Trvo additional GCIVI runs fol future emis-

sion scenarios rveÌe made available by the cccrna since the single-site applicalion

rvas completed. In this application, the additional GCIU scenarios of SRES Bi and

SR,ES A1B rveÌe dorvnscaled for the time slices of 2046 to 2065 and from 2081 to

2100. It total, five scenar.io runs fi.om the CGCÀ43.1/T47 rvere available. There-

for.e, frve runs of for.ty years each $'ere available for the 20c3m scenario, for a total

of 200 years of clata, and five runs of trventy yeaÌs were available for a total of 100

years of data for each of the time slices fol each futule scenario.

The GClvf data rvere standardized and transfor-med into plincipal components'

As in the previous application, the future scenarios rvere standardized using the

means ancl standard deviations from the 20c3m model runs. This preserves the bias

or trends bet$,een the model sirmrlated current climate (20c3m), and the climate

uncìer.the difier.ent emission scenar.ios (SRES 42, A1B, and B1). To be consisteut

ì:etrveen data sets, the transfolmation of tìre GCIVI data into principaì components

s,as done using the eigenvectols of the NCEP/NCAR Reanalysis data'
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6.2.2 Model Setup and Optimization

The model par'âmeters consisting of the rvindorv rvidth, 17, the numbel of nearest

neighbors to retain, À, and the rveighting vectol in the distance calculation, tu¡,

rvele optirlized r"rsing the cross-validation nethodology developed in the single-site

application of the k-nn model.

In the single-site application, the objective function rvas specified as the cor-

relation betrveen the estima.ted and observed daily temperatr-rre anomalv, and the

correlation of estimated and observed accumulated t'intel precipitation. ln this

application, more rveather station valiables are available to use in an objective

function. It rvas found in the single-site optimization that by using tempera.tuÌe

data as a significant part of the lalge-scale climate variable inpr,rt, good results for

doivnscaling histolical tempelature rvere achieved relatively easily. Precipitation

is a key input valiable for hydrological modelling and mole difficult to acculately

do*'nscale than temperature. The SLURP model is not as sensitive to changes

in lelative lnrnidity or blight sunshine hours input variables as it is to changes

in plecipitation. For these leasons the objective function in this application rvas

focused on optirnizing the dorvnscaling of precipitation.

The objective function \\'as specified as the avelage ovel the trvo stations' mean

I..oot meân squâre elroÌ (RN4SE) of the estimated rvinter plecipitation,

.--:.- r/rr/ t- - \ R I\l S Ea¡" pu" 1y;"¡cr. prncip * RNISEa¡o-o.o,' lyintcìj prccip /¿ ô\rnrìJ(ly, h',ai): . (u.zJ
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A cross-validation was set up rvhere the model rvould take one yeal of the

NCEP/NCAR Reanalysis data as simulation data and use the othel yeals as a

histolical lecord to resample fi'om. This process was repeated for all 31 ),eals

of the histolical lecord. The objective function was then calculated using the

simulated station variables and the histolical station valiables.

The ivindoiv rvidth rvas optimized manr-rally by adjusting ll'. From Figr-rre 6.7 it

can be seen that the optimum rvindorv rvidth rvas 25 days. The lalger rvindorv ividth

compared to the optimum rvindoiv rvidth of 21 days for the single site application

is likely dr"re to the sholter historical lecord available for the multi-site application.

The histolical record rvas 37 years for the single-site, but only 31 yeals fol the

multi-site application.

The lvlatlab Optimization Toolbox rvas used to optimize the rveight vector, ?r.

With the lalge number of valiables in the featule vector, the optimization of the

zri vector was a time consuming process, even rvith the use of software.

The objective function improved from 47.0 to 34.7 by adjusting tìre tr vector, a

decrease of 26%. Aftel optimization, the model rvas able to captule trends in the

rvinter precipitation at the rveather stations. Figure 6.8 shorvs the optirnization

lesults for the Thompson rveathel station. RN4SE's of 39.b mm and 30.6 mm, and

collelations of 0.41 and 0.68, rvere achieved for the simulation of winter plecipita-

tion accurnulations fol The Pas and Thompson.

The simulated temperature data u'as checked to ensure the model l'as able to

adequately estimate the histolical temperâtule data, clespite temperatule not be-

ing a critelion in the objective function. The correlation of obserrred and simulated

107



6.2. NELSON RIVDR ÀfULTI.SITD APPLICATION

Éo

cf
LL
0)

(.)ã

44

43

42

41

40

39

38

37

36

35

34
25

W¡ndow Width, W

Figure 6'7: Optimization of IV for Nelson River

daily temper.atute was 0.95 for both The Pas and Thompson rveathel stations. A

plot of the estimated and observed ternperâ,tuÌes at the Thompson rveather station

is shorvn on Figure 6.9. The tempeÌature data rvere adequately simulated'

Relative humidity and solar. radiation, the otheÌ variables sirnulated, also shorved

adequate correlation to the obselved va.L-iables. At Thompson, the sirnulated Ìe1a-

tive humiclity had a 0.54 corlelation *'ith the obselved relative humidity, and the

simulated bright sunshine hours had a 0.51 correlation rvith the observed bligllt

sunshine hours. At The Pas the sirnulated relative l[rmidity had a 0.47 correlation

rvitìr the observed relative humidity, and the simulated blight sunshine houls had

a 0.43 correlation rvith the observed bÌight sunshine hours. The corlelations are

much lorver than the tempeÌatute correlations, horvever this may not be a cÌiti-

35
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cal concenl since the SLURP hydrological model is not over.l¡, sensitive to these

vari¿Ì:les. Therefore these correlations a¡e consideled adequate.

6.2.3 Downscaling Results

20c3m Control Run

With the k-nn model simulating the four. input variables for. Thompson and Tlie

Pas rvith acceptable level of pelformance, it was then used to generate dorvnscaled

GCIvI data by using la.r-ge-scale v¿r.iables from the CGC\43.1/T4Z GCI4 data as

input to the model.

The fir'st scenalio dorvnscaled by the ,k-nn model rvas the 20c3m scenario. The

GClvl runs for this scenalio Ìeplesent the atmosphelic cotrposition for.the period

from 1961 to 2000. The dorvnscaled variables frorn this scenario should leacl to

monthly mean avetages that are similar to the obselved data, and also to the sim-

ulated station variables dorvnscaled from the historical NCEP/NCAR Reanalysis

1data.

Figule 6.10 shorvs that the mean monthly temperatures of the station data

simulated fi'om the dot'nscaled NCtrP/NCAR Reanalysis 1 and 20c3m ar.e an

excellent fit to the obselved monthly mean tempetâtur.es. Figur.e 6.1i, Table 6.b

(page 155), and Table 6.6 (page 155) shorv that tìre mean monthly pr.ecipitation

results of clorvnscaled NECP/NCAR Reanalysis 1 and 20c3¡n ar.e similal to the

single-site applicatio'. The annual dist.ibution of rainfall is reploduced rvell rvhen

¡:recipitation data is dorvnscaled from tlie 20c3m scenario. The dorniscaled lesults

flom NCEP/NCAR Reanalysis 1 data sho¡ved similar ¡rrecipitation volumes as
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the observed Ìecord, an implo'ernent cornparecì to tl.re single-site application. on

aveÌage, the annual pÌeci¡:itation accnrnulation fo. the 20c3rn scenario compared

to tlre observed recol'd rvas unde¡estimated by r0%, ancl rvinter. plecipitation ivas

unde.estimated by 17%. with the cornplexity of the .ainfall processes, GClvIs, and

dorvnscaling models, it is difficult to ascertain the or.igin of the underestimation of

p.ecipitation. Although the acc.mulations fi'om the 20c3m scena¡io do not match

the observed record, vah:able information can be del'ivec.l using the 20c3m scenar.io

as the baseline to rvhich the 
'esults 

of futu'e scenarios can be compared. The

bias betrveen the futu¡e scena.ios compa.ed to the 20c3¡n scenar.io, rathel tlian

the observed recold, rvill provide more useful tr.end information.

The k-nn model rvas then used to dorvnscale the cGCÀ43.1/T4z data for the A2

(2046-2065), A2 (2081-2100), AiB (2081_2100), A1B (20S1_2100), B1 (2081_2100),

and B1 (2081-2i00) scenarios.

F\rture Temperature

The results for dorvnscaled tempeÌature can be seen for The pas on Fig.r.e 6.12, a'd

Table 6.3 (page 154), and for.Thompson on Figure 6.13 and Table 6.4 (page 154).

For the 2046-2065 tirne slice, all future scenarios shorv year.-r.o'nd incr.eases in

mean monthly tempelature at both sites. Winter inc¡eases range from 1.7.C in

the 81 scenario to 3.6"c in the A2 scenario. The A2 a'd A1B scenar.ios shorv

mole rvaÌming than the 81 scenario. surnmel tem¡:eratures also increase in all

scenaÌios, ho*ever the inc.eases are not as lai-ge as for the rvinter months. The

i'c¡eases ranged fi'om less tha'0.5"c in the B1 scenar.io to approximately l"c in
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the A2 scenario.

Temperature rises are mole dlamatic for the 2081-2100 time slice. \Ä¡inter.

temperature increases cornpared to the 20c3m scenalio r.ange fiom 3.0.C in the B1

scenalio to up to 5.5'C in the A2 scenalio.

F\rture Precipitation

The results for dotvnscaled mean monthly pr.ecipitation can l¡e seen for The Pas

on Figule 6.14 and for Thompson on Figure 6.15, and as annual and rvinter accu-

mulations in Table 6.5 (page 155) and Table 6.6 (page 15S).

As expected, the trends in plecipitation are not as clear as in temperature.

This is likely due to the random and complex nature of lainfall occurrence, pal-

ticularly for large storms. Horvevel, in most scenarios, for both The Pas and

for Thompson, the annual precipitation accumulations decr.ease. The 81 scenario

shorvs the smallest changes; the 81 2046-2065 data is the only scenario in ivhich

annual plecipitation did not declease compa ed to the 20c3m scenar.io. Figur.e 6.13

and Figule 6.12 shorv that most of the decr.ease in pr.ecipitation occurred dur.ing

the summer months. The rnaximLrm decrease in pr.ecipitation at the annual scale

occulred in the A2 scenario, rvhele, dur.ing the 2081-2100 time slice, The Pas sarv

a rìecrease of 23To, ancl Thompson sarv a decrease of 12% compar.ed to the 20c3m

scenalio.

The annual accumulations over rvinter months are shorvn in Tal¡le 6.6 (page 15b).

The A2 and AIB l'ere slightly dlier than the 81 scenario.
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6.3 Winnipeg River Multi-site Application

The Winnipeg Rivel is a large rvestern-florving river originating fi'orn Lake of the

Woods neal the City of l(enora, Ontario, and discharging into Lake Winnipeg in

À,Ianitoba. This liver is approxirnately 235 km long and its drainage basin covels

approximately i50,000 km2 in Ontario, lvlanitoba, and nolthern lvlinnesota. The

Winnipeg River is significant to hydroelectlic porver production in lvlanitoba. Five

hydroelectlic dams are on the Winnipeg River, and the River also is an important

contributol to the total florv of the Nelson Rivel and the hydroelectric dams on

the Nelson River.

The methodology presented in the Nelson River multi-site application rvas

repeated for trvo Environtnent Canada rveather stations in the Winn\reg River

drainage basin. Data was dorvnscaled using the È-nn model fol the Redlake ancl

Sioux Lookout rveather stations. The Redlake rveather station (51'4'N, 93'47'W) is

close to the Troutlake Rivel Basin, and the Sioux Lookout rveather station (50'7'N,

91"54'W) is close to the Sturgeon River dtainage basin. The k-nn model ivas again

ernployed to dorvnscale four variables for the trvo stations simultaneously, allorving

hydlological modelling of the tl'o basins for climate change assessment. These trvo

sub-basins of the Wimripeg River basin rvere selected as a lepresentative model

for the largel Winnipeg River Basin because they ale t*'o of the ferv snb-basins

that ale unregulated and also have an adequate amount of historical clirnate and

streamflorv data.
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+++

Figure 6,16: Lalge-scale variable gr.id for Winnipeg River applications.

6.3.1 Data

The large-scale variables tsed in the dorvnscaling are the sa¡ne as those used in

the Nelson River applications: average surface temperature, 500mb temperatur.e,

850mb temperature, 500mb geopotential height, and 850mb geopotential height.

Hos'ever, the variables rvere redot'nloaded and repr.ocessed to center tÌre lalge-scale

glid over the \\¡innipeg River basin as shorvn on Figur.e 6.16.

The glid in the Winnipeg Rivel applications rvas selected to be sliglitly smaller.

than the grid used in the Nelson River applications. The grid cover.ing tlie Win-

nipeg River basin measuled 6 x 7 CGCN,I3.1/T47 gLid points, spaced at ap-

ploxirnately 3.75' x 3.75" IatitudeJongitude. The NCEP/NCAR Reanalysis 1
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data rvele dorvnloaded for a slightly larger alea and thelt intelpoÌated onto the

CGCN,l3. 1/T47 grid points.

Since a high degree of spatial correlation existed in the data, plincipal com-

ponent analysis rvas used to leduce the numbel of variables in the feature vectol

by rernoving ledundant infolmation (Gangopadhyay et al., 2005; Buishand and

Brandsma, 2001; Young, 1994). The first 17 principal cornponents rvere letained

and explail over 96% of the variation contained in the original data sets. The

eigenvalues associated rvith the first thirty principal components, as rvell as the

cumulative pelcent of explained variance, ale shoç'n on Figure 6.17. For the larger'

glid used in the Nelson Rivel applications, 24 principal components u'ere required

to capture 95% of the original valiance. The recluction in the uumber of valiables

made a noticeable reduction in the data processing time.

The iveathel stations had a good length of lecord fol daily tempelatr:r'e, pre-

cipitation and relative hurnidity. Both of the rveather stations had data flom 1965

to 2004, fol a total length of 40 yeals to be used as a historical tecotd to lesample

from. Horvever, neither station had solar radiation ol bright sunshine hours data

availal¡le ovel the 1965 to 2004 time period. This problem of missing variables rvas

overcome by first dol'nscaling the other thlee valiables fol the tivo stations. The

solar radiation rvas then genelated using a sirnplified lesampling model. A nealest

neighbol model, using the six ah'eady dos'nscaled variables as a featule vector,

rvas used to resarnple solar radiation dafa fi'om NARR data glid points close to

the rveathel stâ.tions. The genetation of solar ladiation rvill be discussed latel in

tlie presentation of the dorvnscaling results.
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Figure 6,17: Eigenvalues and percent variâ,tion explainecl for. Winnipeg River
basin application.

All the available scena.ios and model'uns from the cGCÀ48.1/T47 rvere clo*,n-

scaled, i'cl.ding the 20c3m (1961-2000) contr.ol run and future scenar.ios 81, A2,

and A1B (20a6-2065; 2081-2100). With five model runs availa.ble, a total of 200

years of data $'ele dorvnscaled foÌ the 20c3m mns, 100 years fol each future sce-

nalio fol the time slice 2046 to 2065 and 100 years for each futu¡e scenario fol the

time slice 2081 to 2100.

6.3.2 Model Setup and Optimization

The model paraneters, i.e. the rvindorv rvidth, I,y, the number.of near.est neighbo.s

to retai', fr, and tìre rveighting vector in the dista'ce calculation, tu, rver.e optimized

r:sing the same cross-validation methodology as in the Nelso' River. application.
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Figure 6'18: Objective function optimization fol W'

The objective function wâs specified as the avel'age of the tivo stations' root

mea.n squâÌe elror' (RÀ4SE) of the estimated rvinter precipitafion accumulation,

min f (w,tc,w¿) _ RNISEn"¿ruko wt',t". p,o"ip * BlVISEsiou* l-ooLoutwint". p.""ip . (6.3)

The typicaì closs-validation was set Lrp rvhere the model takes one year of

NCÐP/NCAR Reanalysis 1 data as simulation data and uses the other ¡'ear-s as a

histor.ical record to resample from. This pt'ocess was repeated for the 40 yeals of

the historical record available for the Redlake and Sioux Lookout rveatheÌ stations.

The objective function rvas then calculated using the simulated station valiables

and the historical station vai-iables.

The rvindorv rvidth rvas optirnized by rnanually adjusting the W' pat'ameter'
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Estimated vs, Observed W¡nter Precipitation for Sioux Lookout

:
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Figure 6,19: Sioux Lookout rvinter plecipitation accumulation cr.oss-validation
tesults.

From Figule 6.18 it can be seen that the optimum rvindoiv rvidth is 19 days. An

interesting observation is that in the applications the t'indoiv rvidth appears to be

dilectly related to the length of the historical record available to lesample from.

The rvindorv rvidth of 19 days for a histolical peliod of forty years is smallel than

the rvindorv ividths of 21 and 25 days that rvele optimal for. historical records of

31 and 37 years, lespectively.

The l\,Iatlab Optimization Toolbox rvas used to optimize the r¡ vector. In this

application, the t¿ vectol consisted of rveights for' 17 variables. In the Nelson River

applications, 24 rveights had to be optimized in the t¿ vector'. The reduced length

of the feature vectol leduced the ovelall time lequired for. optimization.

The optirnization pÌocess stalted rvith eqtaì n'eight given to all var.iables. By
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Est¡mated vs, Observed Daily Temperature for Sioux Lookout

-20 -10 0 10

Observed Temperature (oC)

Figure 6.20: Sioux Lookout daily tempelature cross-validation results'

adjusting the tu vector, the objective function improved ftom 49 2 to 44 1, a de-

crease of 10.4%. The decrease in the objection function was not as lai'ge as in the

Nelson River multi-site a.pplication, but the optimization of the feature vector did

improve the model an appreciable amoûnt.

Satisfactor-y results rvele achieved after optimization. The tnodel rvas able to

repi"oduce seasonal trends in the tvinter pÌecipitation at both stations. Better re-

snlts rvere achieved for the sioux Lookout station than fol the Redlake station.

Figur.e 6.19 shorvs the estimated and obser-ved rvinter precipitation accumulations

for the Sioux Lookout after optimization. RÀ'lSÐ's of 50.0 mm and 38 3 mm, and

correlations of 0.60 and 0.75, rvere achieved foÌ the simnlation of rvinter precipita-

tion accumulations for Redlake and Sioux Lookout.
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6,3, lVINNIPEG RIVER ]\IULTI.SITE APPLICATION

Altho'gh the other sirnulated valiables we'e not incluclecl in the optimizatio',

it is irnportant that the model also simulate these va.i¿bles adeq'ately. The sim-

ulated te'rpelatn.e data rvere checked and correlations at the claily time scale

of 0.97 rve.e fo.'d for both the sio'x Lookout and Recllake stations. A scatter

plot of simulated and observed daily temperatures at Siorx Lookout is shorvn on

Figule 6.20. The results shorv daily temperature is adequately simulated.

Correlations for estimated and obselved relative humidity at the daily time

scale rvere 0.50 for botli stations. As in tlie Nelson River application, relative hu-

rnidity rvas not sirnulated rvith as high correlation as daiÌy temper.ature. Horvever,

since the SLURP model is most sensitive to precipitation and temperatur.e, the re_

sults obtained for relative humidity rvere judged to be aclequate in this application

as rvell.

The numbers of neighbors, fr, to r.etain for.resampling was set to ten. In

the previous model setups, À rvas found to be optimal rvhen the resampling was

limited to only the single nealest neighbor. Horvever, to inc.ease the va.riability in

dorvnscaled GCNÍ data, the nurnber of neighbors was set to ten.

6.3.3 Downscaling Results

20c3m Control Run

The fii-st step was to dorvnscale tìre CGC\43.1/T4Z 20c3m contr.ol lun and compare

the lesults to the observed ri'eather statistics. Figule 6.21 shot's that the obse.ved

monthly mean tempeÌature is in excellent agreement s'ith the monthly avelages of

temperature simulated by dorvnscaling both NCEP/NCAR Reanalysis 1 data and

I¿D
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Figure 6.21: Optimization results for mean monthly tenìpetatutes.
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Sioux Lookout Mean Monthly precipitation

-x- Observed 1965-200¿
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Month
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Figure 6'22: opti'rization results for nrean montrrry lvin'ipeg River stationplecipitation.
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the 20c3rn GCI\4 data. There ale no Ì¡iases in the doivnscaled 20c3rn and dorvn-

scaled NCEP/NCAR Reanalysis 1 data compaled to the obselved temperature

data at the monthly scale.

Figule 6.22 shorvs that the dorvnscaled NCtrP/NCAR Reanalysis 1 and 20c3m

data have a good match for the average monthly accumulation of lainfall.

The annual precipitation was slightly underestimated by the 20c3m scenario.

The mean annual observed precipitation at Sioux Lookout rvas 741 mm, rvhile

the 20c3m dorvnscaled plecipitation had a annual average accumulation of 704,

a difierence of 5%. Similarly, the anmral precipitation rvas r:nderestimated by

5% for the Sioux Lookout station. The rvinter precipitation rvas slightly mole

underestimated: 15% for Redlake ancl 10% fol Sioux Lookout. The agreement

between obselved and dorvnscaled 20c3m data annual and rvintel precipitation

accumulations is better than the lesults for the Nelson River multi-site application.

The È-nn model rvas then used to dorvnscale the GCI\4 data for the 42, A1B,

and 81 scenalios foÌ the futule time slices of 2046 to 2065 and 2081 to 2100.

For the dorvnscaling application in the Winnipeg River Basin, solar radiatiou

ol bright sunshine hours data rvele not available. Since one of these variables

is requiled as input to the SLURP hydlological model, an alte::native source of

dorvnscaled solar ladiation or bright sunshine houls data t'as necessary. Solar'

ladiation data from tivo NARR data points close to the Redlake and Sioux Lookout

iveather stations rvele used as sources of data to genelate solar- r-adiation data for

the dorvnscaled scenarios. The peliod of ovellap betrveen the NARR data and

the historical station data is fi'om 1979 to 2004. A sirnplified nealest neighbor
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resampling model was set up to geneÌate solar ladiation clata for the clorvnscaled

CGCN13.1lT47 and NCEP/NCAR Reanalysis 1 clata sets by sear.cliing for. clays

in tlie histo.ical lecold based on a featu¡e vecto¡ of the previously cìoivnscalerì

temperature, plecipitation, and relative hr-unidity var.iables.

Since the SLURP model is not as sensitive to solar radiation as tenperatur.e and

precipitation, the resampling procedure ivas designed much simpler and rveights

rvere assigned based on judgement rathel tltan lobust optimization. The thr.ee

variables in the feature vector lveÌe daily temper.atur.e (.C), daily occurrence of

precipitation (1 if precipitation greater than or equal to 0.2 mm, O if precipitation

is less than 0.2 mm), and relative humidity. Weights ivere assigned to the var.iables

as 1, 10 and 0.1, respectively, rneaning almost all rveightlvas placed on ternper-

ature and the occurrence of rainfall. The resampling of days rvas not restricted

to a moving tvindorv, and tempetature data rvas not deseasonalized by standard_

izing using the seasonal means and standard deviations. Using temperature data

rvith seasonal influences lestlicted the resampling to days in the same season as

the simulation day. A Euclidean distance metric rvas employed and the nealest

neighbor (Æ:1) u'as letained as tl.re day to r.esample solar. racliation from. This

rnodel proved to be time efficie't and capitalized on the advantages of the nealest

neighbor model, such as preserving the colrelation betrveen the histor.ical solar

radiation and temperature, pr.ecipitation and r.elative humidity var.iables.
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F\rture Temperature

The lesults for dorvnscaled temperatuÌe cau be seen fol Redlake on Figule 6.23,

and Table 6.7 (page 156), and fol Sioux Lookout on Figure 6.24 and Table 6.8

(page I5b).

For the time slice 2046 to 2065 all futule scenalios shorv incr-eases in tem-

pelature thloughout the year'. The 81 scenario shoivs the least rvarming, rvith

ternperatule incleases of less than 3.0'C in the rvintel and 2.0"C in the summer

conrpared to the 20c3m scenalio.

For the time slice of 2081 to 2100 all futule scenarios shos'ed increases in

temperatùre compared to the 2046 to 2065 time slice. Horvever, the temperature

increases rvere not as significant as the increâses betrveen the 20c3m and 2046 to

2065 time slice. The A2 scenalio shorved only slight rvarming betrveen the trvo

time slices, and in some months shorved slight cooling of up to 0.9'C. The A2

scenario rvas the rva¡mest scenario in the late rvinter months of Janualy, Februaly

and \4arch, rvhile the A1B rvas the ivarmest in the summer months and early

winter months of October', Novembel and December. The 81 scenalio remained

the coolest ofthe future scenalios, only increasing 3.1 to 3.9'C in the rvinte¡ and

2.2 to 2.4"C in the summer. Compared to the 20c3m scenario, the Ìargest rvinter'

tenperâture increases u'ere arouncl 6.1'C at Sioux Lookout and 6.4"C at Redlake

in the A2 scenario, and the largest incleases in the summer tempelatur-es n'ere

around 3.6oC at Sioux Lookout and 3.8'C at Redlake in the A18 scenario.
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Rediake Future Mean Monthly Temperature for 2046-2065
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Figure 6.23: Futule mean monthly temperatule at Redlake.
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F\rture Precipitation

The results fol dorvnscaled plecipitation as monthly rnean accumulations can be

seen for Redlake on Figure 6.25 and for Sioux Lookout on Figure 6.26 , and as

annual and rvinter accumulations in Table 6.9 (page 157) and Table 6.10 (page 157).

As in the Nelson River application, tlie monthly mean plecipitation accumu-

lations ale much more valiable than the monthly tempelature means. While tlìe

Nelson Rivel application resulted in decreases in annual and rvinter precipitation,

the results for this application suggest that plecipitation rvill remain close to the

present ol slightly inclease at the Redlake and Sioux Lookout stations. For the

2046 to 2065 time slice at the annual scale, Sioux Lookout's precipitation ranges

from remaining almost the same in the B1 scenario to an increase of 2% in the

A1B scenalio. Redlake's annual precipitation does not change more than 0.1% for

any scenalio compaled to the 20c3m run. Wintel precipitation shorvs increases

at both stations for all scenarios rvith the maximum inclease of 14% occulring at

Sioux Lookout for the A2 scenalio.

For the 2081 to 2100 time slice, almost all scenarios lead to further increases in

annual precipitation rvith the exception of a slight decrease of 2To at the Redlake

station for the AlB scenalio. The largest increases for' 2081 to 2100 peliod ale

experienced rvith the A2 scenalio, rvhele precipitation incleases 10% at the Redlake

station and 9% at the Sioux Lookout station compared to the 20c3m run. lVinter

preci¡ritation changes are mole va.lied, rvith small decleases fol the A2 scenario

and incleases of up to 13% for the 81 scenalio compaled to the 20c3m run.
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Figure 6.25: Future mean monthly pr.ecipitation at Redlake.
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6.4 Winnipeg River NARR Application

One ofthe difficirlties in assessing the potential efiects of clirnate change in Canacla

is the sparsity of station data. Tliis is particuìarly evident in nolthern Canada and

othel sparsely populated aleas. A possible replacement for the non-existent station

data is Nolth American Regional Reanalysis (NARR) data. With a grid resolution

of 32 km, multiple NARR data points ale available in close ploximity to aìty

s'atelshed. If NARR data can be substituted into the dorvnscaling methodology

in the place of regulal Environment Canada CDCD rveather station variables, it

ç'ould facilitate assessment of rvatersheds in aleas rvith ferv or no iveather stations.

In this application of the È-nn model, the utility of NARR data as a substi-

tute for rveathel station data rvill be exploled. NARR data is used to srq¡rly the

historical measur-ements of temperature, plecipitation, relative humidity and soÌar

radiation. A limitation of NARR data is the lelatively shol't temporal recotd avail-

able compaled to many weather stations. NARR data is currently only available

fi'om January 1979 to December 2004.

6.4.1 Data

Five NARR glid points as shorvn on Figure 6.27 provided the histolical obseÌva-

tion data fol this application. Three grid points n'ele selected in the Sturgeon

River basin, and tri'o rvere selected from the Tf'outlake River Basin. The rveather

variables requiled by the SLURP hydlological model, dail¡' ternperature, precipi-

tation, r'elative humidity and solal radiation, rvele extlactecl for tìrese grid points.
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The length ofthe NARR data rvas 26 years, fi'om Janualy i, 1979, to Dec 31, 2004.

An advantage of using NARR clata is tl.rat since the data is a reanalysis data set,

the data set is complete and thei'e ale no missing entries.

The large-scale data in this application remained unchanged frorn the previor,ts

multi-site Winnipeg Rivel Dlainage Basin application. The lalge-scale data rvas

com¡xised of the 850 geopotential height, the 500 mb geopotential height, surface

ternperatule, temperature at 850 mb geopotentiâl height and temperature at the

500 mb geopotential height. NCÐP/NCAR Reanalysis 1 data for the same time

period as the NARR data rvas interpolated on to the CGCIvI3.1/Ta7 grid shorvn on

Figure 6.16. The 6 x 7 GC\4 data glid contains 42 data points, apploximately 2/3

the size ofthe 60-point grid used for the Nelson River Dlainage Basin applications.

Although this glid is smallel than the grid used for the Nelson River Drainage

Basin applications, it rvas used fol the Winnipeg River multi-site application and

led to comparable model pelformance t'ith leduced computational time.

The large-scale data sets rvele reduced in size by plincipal componeut analy-

sis. The 42 gr:id points for each of the five data sets, for a total of 210 variables,

rvere leduced to seventeerì summaÌy valiables. The first seventeen variables rvele

rvithheld as the amount of valiance explained by including furthel principal com-

ponelrts diminishes quickly after this point. The next variables have eigenvalues

less than one, meaning that an oliginal single glid point rvould explain more vali-

ance than each of these eigenvalues. The seventeen principal vectors explain mot'e

than 96% of the vai-iance of the oliginal 210 valiables.
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Figure 6.27: NARR grid point locations.



6.4. \\¡INNIPDG RIVDR NARR APPLICATION

6.4.2 Model Setup and Optimization

The modeÌ does not requile paraneterization of specilìc lelationships betrveen

large-scale and local valiables, horvever solne comporents of the rnodel should be

adjusted to optimize the abilit¡'of the model to estimate the station data. As in

the previous applications, the numbel of neighbors to retain, À, the rvindorv size,

I4l, and the t'eights tu can all be adjusted through optirnization to improve modeÌ

performance.

In the application using NARR data, the model rvas optimized using the sane

closs-validation method as the Nelson River and Winnipeg Rivet' rveather sta-

tion applications. The model rvas used to simulate the historical NARR data for

all five glid points simultaneously from January 1979 to December 2004. The

NCEP/NCAR Reanalysis 1 data for one year rvas considered as simulation data

and removed from the historical recold. NARR data ¡vas then generated for this

year of NCEP/NCAR Reanalysis 1 data. This process was lepeated for each of

the 26 years of data.

The optimization objective function rvas specifred as the root mean square error'

fol the accumulated rvinter (October to Aplil) plecipitation averaged ove¡ the five

data points. Tempelature rvas not included into the objective function as good

results rvele obselved for tempelatui-e vaìidation statistics in applications using

only plecipitation as the objective. The objective function ivas specified as

(6.4)min /(Hz, ,t,2.,¿) - Ð'9:t RN4SEN4nn' wi"t"'p*"io
i)
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Figure 6.28: Objective function optimization for !l/.

The model rvas initialized by assigning equal rveight to each pr:incipal compo-

nent variable and fr set to.etain only the first nearest neighbor'. The rvindorv rvidth

rvas optimized by manua.lly adjusting I4l. Flom Figure 6.28 it tvas obselved that a

rvindos' size of 27 days leads to the maximum model per.formance.Combined ivith

the other applications, there is a relationship betrveen the size of sear.ch rvinclorv,

],1/, ¿nd the lengtli of the histolical record to resarnple from.

The x'eighting vectoÌ, ?r, ¡r'as optimized using the Matlab Optirnization Toolbox

as in previous applications. The N4atlab Optimization Toolbox optimized the tr.r

vector using a steepest descent line search method. For the model initialized rvith

equal iveight to all featule vectol var.iables, the average r-oot mean square etÌo¡

among the five grid points wâs 51.0 rnm. The optimization procedure irnplovecl

the avelage root mean squâre ertor.to 46.4 mm, a decr.ease of g.0%. As a bypr.ocluct

1.4r
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of optimizing the loot nearì sqLlaÌe elror', the average co.r'elation of the simulated

g'intel accumulations to the obselved rvinte. accnmulations fol the five gr.id points

im¡rloved from 0.44 to 0.68.

As irr sirnilal applications, to encourâge variability in the selection plocess rvhen

simulating rvith GCI\4 daIa, k rvas set to tetain the ten near.est neighbols.

The rnodel rvas able to adequately r.eproduce tìre observed local rveathel vari-

ables. Figules 6.29 and 6.30 disptay the r.esults for one of the five gr.id points from

dorvnscaling the historical large-scale climate valiables to reproduce the histor.ical

local iveather. Figure 6.29 shorvs the estimated and observed d.aily temperature.

The estimated and observed accumulated pr.ec\ritation over the rvinter months ale

sho¡vn on Figure 6.30. A cor.¡elation of 0.g6 rvas achieved for daily temperatuÌe.

Relative h'midity and sola. r'adiation rvere also rvell r.eproduced, rvith average cor-

relations at the daily time scale of 0.65 and 0.82, respectively. The lesults for

relative humidity and solar ladiation rvere much bettel than those fo¡ the previous

applications.

At the monthly time scale tìre modeì is able to reproduce the monthly means

of tempelature and accumul¿ted precipitation. Figule 6.31 shotvs that tlie doivn-

scaled NCÐP/NCAR Reanalysis 1 data rnatches the mean monthly temper.ature of

the NARR data almost ¡rerfectly. Figule 6.32 shoivs the dorvnscalecl NCEP/NCAR

Reanalysis 1 data rvas also able to repr.oduce the tr.ends in monthly mean pr.ecipi-

tation accumulation.

The optimization lesults rvete similar to those achieved for. applications resam-

pling frorn rveathel station measuì.eìnents. This demonstr.ates that NARR data
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can be substitr-ltecl fol *,eather station clatâ in the k-nn rìorvnscaling mocleÌ.

6.4.3 Downscaling Results

20c3m Control Run

with the À-nearest r.reighbor model optimized and shoiving good per.formance d'r-

ing cross-validatio', the model rvas used to clorvnscale 20cs¡n contr.ol r.un and the

IPCC SRES 42, 81, and AIB cìimate change scenarios. The fr_nn model used

the large-scale climate va'iables provided by the cGClvI3.l/T47 to r.esample days

from the histolical NARR data set.

First, the 20c3m model runs rvere dorvnscaled to compare the control run of

the GCIvI to the historical NARR data statistics. The monthly mean temperatur.e

and accumulated p'ecipitation fol one of the Tì'outlake grid points averaged over.

the five 20c3rn GCM model runs are shorvn on Figules 6.2g and 6.30, along rvith

monthly averages from the NARR data and dorvnscaled NCEP/NCAR Reanarysis

1 data. The dorvnscaled 20c3m data shorv excellent agreement ri,ith the other trvo

data sets.

The first trvo rorvs of rables 6.16 (page 161) and 6.12 (page 161) shorv trrat

the dorvnscaled 20c3m data sligìrtly 
'nderestimates 

precipitation. The underesti-

mation is minor, Iess tlian 10% for rvinter precipitation and less than b% at tlie

annual scale. The precipitation accumulation dorvnscaled fi.om the 20c3m scenalio

compale bette. to the obseÌved NARR data than the r.esults ty¡rical of the station

data applications.

1.45
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6.4. WINNIPEG RIVER NARR APPLICATION

Sturgeon River Mean Monthly Preceipitation
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6,4, lVINNIPEG RIVER NARR APPLICATTON

Fbture Temperature

The results obtailied fo. dorvnscalecl temperature clata rvere consistent rvith tlie

.es'lts obtained in the othe. applications. The fut.r.e rnonthly mean tern¡reratures

fiom trvo of the five g.id points can be vierved on Figu.e 6.s3 for stur.geon River,

and on Figure 6.34 for r'outlake River. All scenar.ios exhibit var.io's clegrees of

rvarming The B1 scena.io has the least amount of rva.ming. At all stations either.

the A2 and A1B scena'io has trre largest amount of rvarming, depending on trre

location of the gr.id point and the tirne slice (see Tables 6.11 to 6.lb on pages 15g

to 160) Tempe.ature increases Ìange up to 5.g"c in trre rvinter of the A2 scenario,

rvhile the 81 scenario shorvs the smallest incr.eases of 2.c in the summel and 4"c

in the rvinte¡.

F\rture Precipitation

The trends in futu.e precipitation varied greatly betrveen the difie.ent emission

scenar-ios. Tables 6.16 (page 161) and 6.17 (page 161) shoiv trre mean annuar

and ivinter precipitation accumulations for the differ.ent doivnscaled scenarios. For

the A2 scena.io, p.ecipitation i.creases at all data gr.icl point locations, with the

rnaximum i'crease occu.ring at a Tt'outlake River location rvhere the 20g1 to 2100

time slice expe.iences 17% more annual p.ecipitation than the 20c3m scenario. The

B1 scenalio has similar ¡rrecipitation as the 20c3m sce'ario; the fut're p.ecipitation

is rvithi'j.st a ferv percentage points hìgher. or lorver at each grid point. At the

annual time scale, the A1B scena.io is slightly drie¡ at the tlilee sturgeon River

g.id poi'ts and slightly rvetter at the t*'o Trontlake River.grid points. Horvever,

i48



6.4. WINNIPEG RIVER NÀRR APPLICATTON

Sturgeon River Future Mean Monthly Temperature for 2046-2065
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6,4, \,VINNIPEG RIVER NARR APPLICATION

Troutlake River Future Mean Monthly Temperature for 2O46_2065
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6.4. WINNIPDG RIVER NARR APPLICÂTION

Troutlake River Future Mean Monthly Precipitation 'fot 2046-2065
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6.4. WINNIPEG RIVER NARR ¡\PPLICÀTION

dr-rring the \\¡inteÌ season) all frve glid points including the Stulgeon River locations

shorv slight incleases in plecipitation.

The future montìrly distribution of lainfall conpaÌed to the histolical NARR

data can be vierved fo,- a Sturgeon Rivel grid point on Figure 6.35, and for a

Troutlake River gricl poiut on Figure 6.36. The monthly distribLrtions are relatively

similal to the histolical distributions, except that the A2 scenatio shorvs an increase

in summer precipitation at both locations during the 2081 to 2100 time slice.

6.4.4 Discussion of NARR Application

The dorvnscaled data generated in the this application rvill be used to test if dorvn-

scaled GCIvI data using NARR data is an acceptable replacernent for rveather

station data. Therefore, the main objective of this application of the À-nn dorvn-

scaling model was to determine if the model can dorvnscale lalge-scale GClvl data

rvith the NARR data selving as a substitute fot'rveather station dâta. The results

obtained shorved that the model can use the same optirnization procedure as rvas

developed using station data and similar performance can be achieved. Doivn-

scaling using NARR data has vet'y plomising potential for use rvhele station data

are not available. Doivnscaling using NARR data rvould be usefr-rl in many of the

sparsely populated areas of Canada, palticulally nolthern legions, ivhere rveather

station data are generally not available in either quality ol cluality.



20c3m (1961-2000)
A2 (2045-2046)
A2 (2081-2100)
Br (2045-2046)
B1 (2081-2100)
AlB (2045-2046)
A1B (2081-2100)

Table 6.3: Observed and downscaled mean mont
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6.d. WINNIPEG RIVER NÀRR APPLIC.¡\TION

Table 6.5:
(--)

Table 6.6:
(--)

Observed (1970-2000)
20c3rn (1961-2000)

A2 (2045-2046)
A2 (2081-2100)

B1 (2045-2046)
B1 (2081-2100)
A1B (2045-2046)
A1B (2081-2i00)

Obselved ard dos'nscaled mean annual plecipitation accumulation

Scenalio The Pas Thompson
44t)
aô7

344
307
397
JDI]

356

572
467

426
475

453
433
438

413

Observed and dorvnscaled mean rvintel precipitation accumulation

ved (1970-

20c3rn (1961-2000)

A2 (2045-2046)
A2 (2081-2100)

B1 (2045-2046)

B1 (2081-2100)

A1B (2045-2046)
A1B (2081-2100)

159

137

r23
119

i40
130

129

r21

1.43

143

737
t44
t37
1.44

130

155
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^2 
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6.4. WINNTPEG RIVER NARR ÀPPLTCÄTION

Table 6.9:
(mrn).

Obselved and dorvnscaled mean annnal precipitation accurnulation

Scenario Sioux Lookout Redlake

20c3n (1961-2000)
A2 (2045-2046)
A2 (2081-2100)
B1 (2045-2046)
B1 (2081-2100)
A1B (2045-2046)

704 615
720 622
802 676
709 604
734 622
723 617

A1B (2081-2100) 735 603

Table 6'10: observed and dorvnscaled mean rvinter precipitation accumulation
(mrn).

Scenario Sioux Lookout Redlake
0bserved (1965-2004)
20c3rn (1961-2000)
A2 (2045-2046)
A2 (2081-2100)
81 (2045-2046)
B1 (2081-2100)
A1B (2045-2046)
A18 (2081-2100)

290

289

248
270
9(}t

287
286

210
238

208
221
237

228

r57



Table 6.11: Obse¡ved and downscaled mean

20c3m (1961-2000)
A2 (2045-2046)
A2 (2081-2100)
Br (2045-2046)
Bi (2081-2100)

^rB 
(2045-2046)

A1B (2081-2100)

-16.9 -13.5
-13.9 -10.3
-r2.9 -9.3
-74.9 -7r.4
-r4.1 -11.0
-13.3 -10.7
-12.8 -9.4

-7.7
-6.9

-4.2
-5.5
-5.1

-4.4

cenârrÕ
Table 6.12: Ol¡served and downscaìed meân mont
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20c3m (1961-2000)
A2 (2045-2046)
A2 (2081-2i00)
Bt (2045-2046)
B1 (2081-2100)
A1B (2045-2046)
A1B (2081-2100)

5.0
5.6
4.7
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5.0
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Table 6.13: Obse¡ved and downscaled mean mont

20c3m (1961-2000)
A2 (2045-2046)
A2 (2081-2100)
B1 (2045-2046)
B1 (2081-2100)
AlB (2045-2046)
A1B (2081-2100)

-17.3 -13.9
-14.2 -70.6
-13.1 -9.5
-15.2 -rr.7
-14.3 -11.3
-13.6 -11.0
-13.0 -9.7

Table 6.14: Observed and downscaled mean monthlv

-5.4
,1 t

-5.7
-5.4

-4.7

20c3m (1961-2000)
A2 (2045-2046)
A2 (2081-2100)
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B1 (2081-2100)
A1B (2045-2046)
A1B (2081-2100)
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Table 6.15: Obse¡ved and downscaled mean mont

20c3m (1961-2000)
A2 (2045-2046)
A2 (2081-2100)
B1 (2045-2046)
B1 (2081-2100)
A1B (2045-2046)
A1B (2081-2100)

-18.1
-r4.9
-73.4

-15.9
-15.0
-14.3
-13.7

-1.4.6

-tl.2
-9.8

-11.9
-11.6
-10.2

- t.D

-5.9
-4.7
-t).2
-5.8
-5.9
-5.1

2.6

2.8
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6,4. WINNIPEG RIVDR NARR APPLIC¡\TION

Table 6.16: Obselved and doivnscaled mean annual precipitation accumulation
for NARR applrcglrolþrnL

20c3m (1961-2000) 639 648 631 583 601
A2 (2045-2046)
A2 (2081-2100)
81 (2045-2046)
B1 (2081-2100)
A1B (2045-2046)
A1B (2081-2100)

708 613 601 582 593
733 747 726 680 695
61,7 627 610 571 585
628 637 624 607 672
631 636 624 606 617
586 585 579 613 614

Table 6.17: Observed and dorvnscaled mean rvinter pr.ecipitation accumulation
for NARR eplication (mml

Scenario 51 52 Sg T1 T2

20c3m (1961-2000) 235 243 229 205 210
A2 (2045-2046)
A2 (2081-2100)
B1 (2045-2046)
B1 (2081-2100)
AlB (2045-2046)
A1B (2081-2100)

250 259 246 219 225
224 232 223 203 208
245 253 240 274 220
257 265 252 222 230
248 256 245 227 228
253 260 249 223 229
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Chapter 7

k-Nearest Neighbor Model

Discussion

7.I Model Evaluation

The goal of this section is to demonstrate the value of dorvnscaling r.arv GCNI

output rvith the k-nn rnodel. The model is fir'st evaluated in terms of its ability to

reduce the bias in the GCM at rveather station locations for. the current clirnate.

Then the tempetatule and plecipitation data generated by the k-nn model for the

various emission scenalios for tìre 2081 to 2100 time slice is compaled rvith the

range of temperature and precipitation trends simulated by a variety of GC\ds for

the legion containing the rveather stations.
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7.1. trIODDL EVALUATION

7.7.1 Comparison to Raw GCM Data

one of the prirnary goals of statistical dorvnscali'g is to imp.ove the q'ality of rarv

GCN,I output. A statistical do*,nscaling nodel sho'ld reprocluce statistics such as

mean rnonthly tempeÌature or mean monthly precipitation accumulations better

than the rarv GCI4 data.

To determine if the fr-nn model is an improvement compared to the rarv CGCÌVI3.1

data, the doivnscaled ralv GCN4 data for the 20c3m emission scena¡io wete ex-

tracted for the grid points nearest to the Thompson and Sioux Lookout rveather

stations. Theoretically, the .arv and dorvnscaled GCIVI data should repr.oduce the

monthly mean data at the rveather stations, although some degr.ee of bias is ex-

pected.

The comparison between the dos'nscaled and rarv CGCI\,I3.1 fol temperature

at the trvo rveathel stations is shorvn on Figure 7.1. It is clearly demonstr.ated that

for mean monthly temperatut'e the dorvnscaled data is much closet to the observed

means than the larv GCIvI data. The CGClVf3.l underestimates tempeÌature most

of the year, although it overestimates temperatrue in the early rvinter months. The

clorvnscaled clata also tends to overestimate in the ivintel months, but the biases of

the dorvnscaled data are much smaller thror-rghout the entire year for.both stations.

In most months the dotvnscaled data is tvithin 0.b"C of the obse¡ved monthly mean.

The comparison betx'een the dorvnscaled and r.arv CGCN4g.1 precipitation data

at the tivo rveathel stations is shoivn on Figure 2.2. At the Thompson rveather

station the CGCIVI3.1 glid cell undelestimates the monthly plecipitation for most

months. During the months of June thr.ough to September the underestimation is
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Figure 7,1: Comparison of dorvnscaled and r¿rv CGCÌVI3.1 temperature data



7,1. ÀIODEL EVALUATTON

la.ge. The do*'nscaled data arso uncìerestirnates pr.eci¡ritation tliroughout the year,

ìrorveve. the large underestimation in the GC\4 data a.e significa'tly recluced i' the

do*'nscaled data. The annual observed p.ecipitation at Trrompson is 512 mm. The

annual mea'for the CGCM3.1 grid cell is 455 mm for the 20c3m scenario rvhile the

dorvnscaled 20c3m scen¿rio data has an ann'ar mean of 467 mm. By dorvnscaling

the GClvI, the annual unde'estimation of p.ecipitation rvas reduced fi.om 11% to

9%. At the sioux Lookout rveathe. station location the CGCM3.1 20c3m scenario

data underestimates p.ecipitation for alr months. overall, the dorvnscared data

also underestimates precipitation but provides better les.lts than the r.arv GCIvI

data similar to the Thompson station location, ihe dorvnscaled data reduces

la.ge biases present in the GCfuI data during trre rate summer.months. For the

mean monthly precipitation in September., an nnderestimation of near.ly 30 mm

by the cGClvI3.1 is .ed'ced to almost zero in the clorvnscaled data. The annual

observed precipitation at sio.x Looko't is 741 mm. The annual mean for the

OGCM3.1 g.id cell is 640 mm fo. the 20c3m scenar.io ivhile the dorvnscaled 20c3m

scenario data has an annual mean of 704 mm. By dorvnscaling the GClvI, the

annual underestimation of precipitation rvas reducecl ftom I4To to bTo.

The above discussion demonst.ates the ability of the k-nn moclel to impr.ove the

output of cGClvI3.l data. The dorvnscaled data better. simulates mean monthly

statistics, especially fol tempelature. Biases are present in do*nscaled pr.ecipita-

tion data, horvever the biases are less than those ¡rresent i'the GC[d data.
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7.1. J\IODEL D\ALUATION
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Figure 7.2: Comparison of dou'nscaled and rarv CGCN,I3.1 precipitation data.
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7.1, ÀfODEL Ð\ALUÀTION

7.1.2 Comparison to Other Simulations of F\rture Climate

The future climate is unkno*,n, rnaking it difficult to detetmine tlie validity of

the data generated by do*'nscaling GClr4 outpr,rt based on the f.ture emission sce-

nalios Tìre best available compa.ison is to othel simulatiolis of futur.e climate.

Sauchyn and I(ulshreshtha (2008) summarized the simulations made by a variety

of GCMs fol multiple emission scenarios for the Pr.airie Provinces of Canada (see

Tables 2.1 and 2.2 on page 11). Chiotti and Lavende¡ (2008) provide a similar.

summary for the rvestetn portion of Ontario. These summaries a¡e for lar.ge geo-

graphical ar-eas, b't the È-nn dorvnscaling model should ploduce similar. trencls to

the rarv GCIvI simulation data.

For tempelature in the forest r.egion of the Pr.air.ie Pr.ovinces, GC[,I simulated

temperatur-e incleases ranged flom 2.3 to 10.8'C for.the 2080s time horizon depend_

ing on the diffelent emission scenarios and GClvIs. The temperatur.e predictions

for Thompson and The Pas fit rvithin this range. For rvestern Ontario, temper.-

ature simulations of GCIVIs shorv incleases ftom 2.7 to 11.8.C for.the 20g0s time

horizon (Chiotti ancl Lavender, 2008). The sim*lations for. Red Lake a'd Sio'x

Lookout ale rvithin this lange.

For precipitation in the forest region of tl.re Prair.ie Provinces, incleases r.ange

from 2Ta to 25Ta fot the 2080s liorizon (Sauchyn and I{ulshreshtha, 2008). De-

pending on the different elnission scenarios, during the Nelson River application in

northem lr'Ianitoba precipitation data dorvnscaled by the ft-nn rnodel for the 20gl

to 2100 time peliod decleased ftom 7To to 72Vo at Thompson rveather station, and

decteased from 8% lo 23To at The Pas rveather station. For the multi-site appli-
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7 , ÀIODEL E\ALUÀTION

cation of the È-nn algorithm in the Nelson River. drailage basin produced drier

futule climates than tìre GCN,Is sumrnatized by Sauchyn and I(ulshreslttha.

For rvesteln Ontalio, plecipitation sirmrlated by the GClvIs shorved increases

of 57o lo 23Vo for the 2080s time holizon (Chiotti and Lavencler, 2008). For the

Winnipeg Rivel application in rvesteln Ontario, the Sioux Lookout preci¡ritation

data dorvnscaled by the fr-nn model for the 2081 to 2100 time period shoived

inc¡eases of 4To to 14%, rvhile the Redlake changes tanged frorn a decr.ease of 3%

to an increase of 10%. Some of the doivnscaled scenarios rvere belorv the r.ange of

GCNfs presented by Chiotti and Lavender (2008), horvever, for the most part the

dorvnscaled precipitation data rvere similar. to GCIvI simulations.

A possible explanation to the simulation of drier. futule climates for Thompson

and The Pas than simulated by rarv GCNI data may be drarvn fi.om the analysis

of the dorvnscaled plecipitation cìata in the single-site applicatiou for.Thompson.

In general, clays rvith precipitation tend to be ovetcast and cooler. Dorvnscaling

of the A2 scenario in the single-site application resulted in an inctease of the

flequency of dry days compared to the 20c3m scenario. Since temperatures inctease

substantially in future scenarios, the model may be less incìined to lesample cool

rvet days. This may result in the sirnulation of a dr.iel climate as temperatule

incleases.

7.L.3 Evaluation Conclusion

As expected of statistical don'nscaling models, the È-nn model r.ernoves much of the

bias present in the CGCN¡I3.1 for the 20c3m scenario. Aside from the possibility
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tl.rat precipitation is undelestimated for future scenarios in the Nelson River ap-

plications, the &-nn dorvnscaling model simulations are consistent rvith the r.alrge

of future climates simulated by a variety of GCN4s. Over.all, the GCÀ4 output

do*'nscaled ri'ith the k-nn model is an implovement over the rarv GCIVI output.

7.2 k-Nearest Neighbor Application Recommen-

dations

The folloiving section is a summal'y of the methodology applied for dorvnscaling

GCNI data using a k-nearest neighbor model. Recommendations based on the

lessons learned are also made ivhere appropriate. Section 3.2 provides a literatule

revieiv of Æ-nn modelling.

7.2,-J, Feature Vector Selection

The feature vector, D¿, is used to compâre the simulated day to histor.ical days.

The selection of lalge-scale valiables contained in the feature vector is an impor.-

tant decision in the modelling plocess. The spatial extent that the feature vector.

valiables leplesent is also an important factor.

Ndultivariate statistical analysis methods can be utilized to aid in deciding the

composition of the featule vectot. In the applications presented in this r.epolt,

canonical circulation analysis and ciÌculation pattern classification analysis rvere

used to identify the existence of lelationships betrveen the large-scale and local-

scale cÌimate variables.
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Tlie length of the feature vector is an important consider.ation. Longer feature

vectols lead to greatel computation time, especially duling the ìrighly iter.ative

optimization process. It rvas found in this str.rdy that the 6 x 7 grid and 6 x

10 grid of GCN4 data gave simiÌal results during cross-validation. Horvevel, after

principal component analysis the smallel grid lequired a smallel featur.e vector.

and led to much faster computation times. It is recommended to use statistical

analysis, or small scale pilot applications, to determine the minimum grid legion

requiled to maintain adequate cross-validation ¡esults.

7.2.2 Finding the fr-Nearest Neighbors

The selection of the nearest neighbors rvas dependent on three par.ameters: rvindorv

rvidth, the s'eighting vectol and the number of neighbors retained. Optimization

of an objective function rvas used to determine the best values of these par.ameters.

Since lalge-scale and local temperatule variables rvere highly correlated, very

good results were obtained during cross-validation for doivnscaling of daily tem-

peratuÌe. Thelefore the objective functions focussed on maximizing the models'

performance related to precipitation. N,Ieasuring the pelformance of the models

for dorvnscaling plecipitation on a daily scale rvas difficult since the r.esults rvere

highly sensitive to lalge orle-day preci¡ritation events. It rvas decided to use pÌe-

cipitation statistics detelrnined on a seasonal scale to limit the influences of tl.re

lat'ge one day events. Since most of the large plecipitation events occul during

the summel season, it rvas decided to use only the winter season including the

months from October to Aplil. During these months, plecipitation is dr.iven by
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large synoptic scale rveathel systems lathel than convective stolms, making the

precipitation occLlt'Ìence easier to do\\,nscale accur.ately. The rvintel precipitation

is also impoltant to the þdlological cycle of the study aÌea due to the stor.age

of plecipitation as snorv and release as spring melt rvater. For these reasons, the

recommended objective function is to maximize the per.folmance of the model to

dorvnscale rvinter precipitation. This rvas done by defining the objective function

for cross-validation as the root mean squaled erlor of each season's simulated and

observed accumulated precipitation.

Since the rvindorv rvidth, W, is limited to discrete numbers over. a relatively

small lange, it rvas easily optimized by manually adjusting it to detelmine the

optimum rvidth. In the difierent applications of the model, it rvas found tìrat

W ivas dilectly lelated to the length of historical records available to resample

from. The summary of the optimum tvindorv ividth and the number of year.s in the

historical record used can be vierved in Table 7.1 or on Figur.e 7.3. The relationship

is almost perfectly linea¡. The relationship can be expressed as

W :42 - 0.57N

where lV is the number of years in the historical recor.d.

(7 1)

Table 7.1: Summar of historical lecord r and

MÌ
It4ulti-site Nelson River'
N,Iulti-site Winnipeg River
NARR Wimiipeg River'

30

40
26

zÐ

19

27
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W¡ndow Width as a Function of Length of Historical Record
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Figure 7.3: Scatter plot of l4l vs. number of years in the historical recor.d.

The rveighted Euclidean distance rvas used to calculate the distance between

the simulated and historical feature vectors,

(7 2)

ivhere r¿ is the numbel of variables in the featule vector, and tu¿ are tìre rveight given

to the valiables of u¿. The tu vectoÌ can be optimized to minimize an objective

function. With a large number of v¿r'iables, optimization rvas cornplex and the use

of compìlter softwaÌe $¡as necessary. The N4atlab Optirnization Toolbox minirnized

tìie objective functions using a steepest descent line sealch methocl. Since the

process was highly itelative, and each itelation involved simulating betrveen 26

and 40 years of data, optimization n'as a tine consuming process.

T.w¿(u¡1 - u,¡)2
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Cross-validation shorved that retaining the single nearest neighbor (k : 1)

led to the best objective function results. Horvever, to promote variability in the

modelling process, a lalger ß is recornmended during the dorvnscaling of GCI\4

data. A k-value equal to ten rvas used in the applications plesented in this leport.

The performance of the model rvas not significantly afiected by using â larger

fr-value.

7,2.3 Choosing a Neighbor

Once the Æ nealest neighbols rvere determined, the next step rvas to resample one

of tìre neighbors. A decreasing kernel density function rvas used to assign rveight to

the first ten neaÌest neighbors. To save computation time, the decleasing density

1/i
) - tt,ì.

(7.3)

rvhere p¡ is the plobability that day j is lesampled, rvas employed rather- than a

density function dependent on calculated distances.

Once the neighbor rvas selected, the desiled variables rvere retrieved from the

histolical rveathel lecold. This process rvas lepeated for each simr.rlation day.

lvlLrltiple valiables rvere lesampled at once during the applications presented. FoÌ

instance, in the NARR application tlenty variables rvere resampled at one time.
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Chapter 8

Conclusion

The most efficient way to concl.de the study is to revierv if the original objectives

set befole ivork began we.e met through the course of the project. The objectives

of this report rvere to:

1. Revierv climate change principles,

2. Revierv dorvnscaling techniques,

3. Explore GCN4 data,

4. Explole relationships in lar.ge-scale and local rveather variables, and

5. Develop and apply a À-nn dorvnscaling mocìel.

Each of these objectives ivas completed successfully. This section *,ill ¡evierv

the accomplishments made torvar.ds the above objectives.



8.1. CLI\fATD CHANCE AND SlATISTICAL DOWNSCALfNC

8.1 Climate Change and Statistical Downscaling

l. cha¡rte. 2 climate change rvas discussed in te.ms of its global significance as

ivell as horv global changes could impact the canadian prairies. on the canaclian

P.airies, tern¡re.atules rvill likely rise u¡r to g"c, u,hile pr.ecipitation changes could

range betrveen a decrease of 6To to an inc.ease of 2g% (sauchyn and l(,lslir.eshtha,

2008). one of the g.eatest threats of climate change to tìre prairies is its impacts

to rvater resoLlrces.

GCNIs are large compute' models used to forecast rong peliods of rveather. over

the entire globe. To model the Earth's complex climate systems in a reasonable

amount of time the models lrse coâLse glid resolutions, typically one to five degrees

in latit*de and longit,de. These models a.e .sed to simulate future climate de-

pendent on greenhouse gas emission scenarios specified by tlie lpcc. The coalse

resolution of the GClvIs make their output implactical for direct appìication in

water resouÌces. Therefore the GCN,I output must be post-pr-ocessed before it is

utilized i' hydrological models. The post-processing consists of dorvnscaling the

data by dy'arnic o. statistical dorvnscali'g. Dynamic clorvnscaling involves nesting

a finer resolution .egional climate model (RCÀ4) rvithin a GCNI. statistical doivn-

scaling methods use the statistical relationships tliat exist betrveen lar.ge-scale and

local climate valiables to dorvnscale GCi\4s.

A valiety of statistical methods can be used to dolmscale GCN4 output. Com_

mon categolies of models inclucle tlansfer functions, rveather typing, and rveather.

geneÌatots. The methodology and past applications of near.est neigltbor. lesam_

pling rvas tho.oughly .esearched and repo.ted o'as another possible statistical
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dorvnscalilg model. Nealest neighbol resampling is a less cotntnon rnethod to

dorvnscale data, but its relative simplicity and flexibility ale advantages compared

to the othel methodologies.

8.2 GCM Data Analysis

Several aspects of the large-scale and local climate valiables rvere explorecl. Both

spatial ancl temporal biases rvere identified in the CGCX43.1/T47 2Oc3m control

run data compaled to NCEP/NCAR Reanalysis 1 and weather station data. Circu-

lation pattern classification demonstlated geopotential height data contain useful

information for predicting the occurlence and depth of daily rainfall. Canonical

correlation analysis demonstrated that the combination of la-r-ge-scale temperature

data at multiple levels and geopotential height data can describe much of the

valiation in temperature and precipitation processes at rveather stations.

Trvo impoltant conclusions rvere reached during the data exploration exercises.

The first is that data must be standaldized using a dâily mean and standard

deviation to ler.nove bias. Secondly, data explolation identified relationships be-

tiveen the large-scale ancl local climate variables rvhicìr leads to confidence that

the large-scale data grids selected ale applopriate to dotvnscale temper.ature and

precipitation data at iveather stations.
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8.3 k-Nearest Neighbor Downscaling Results

The À-nealest neighbol model rvas used in four dorvnscaling applications. The r.e-

sults from the applications demonstlate that k-nealest neighbor is a vial¡le method-

ology to dorvnscale GClt,l data.

The first pilot application of the methodology rvas to dorvnscale the CGCM3.1/T47

output to generate temperatule and plecipitation at the Thompson rveather sta-

tion. During this applica.tion an optimization methodology rvas developed and it

rvas demonstlated that the dorvnscaling model could reproduce historical .rveather

variables. It rvas determined tliat precipitation was the most difficult and im-

portant valiable to optimize, as ìristorica.l temper'âture is reproduced rvell rvithout

significant optimizar ion.

The next undeltaking rvas a multi-site application in the NeÌson River Basin.

In this application, the variables required for the SLURP hydr.ological model, tem-

perature, precipitation, solar radiation, and relative humidity, *'ele dorvnscaled for

the locations of the Thompson and The Pas rveathel stations for multiple climate

change scenarios generated by the CGCIvI3.1lT47. The À-nn model rvas optimized

using only statistics fol plecipitation as this valiable is both the most important

and most difficult to model. This appÌoach rvas found to not have a negative efiect

on the model's ability to leproduce daily temperature, solar r.adiation, or lelative

hr.rmidity. The inclusion of data from tivo s'eathel stations slightly irnproved the

optimization perfolmance compaled to the single site application. Temperatures

rvere found to inclease throughout the 21"¿ century for all future ernission sce-

narios. Overall, the A2 and A1B shorved more rvalming than the 81 scenal.io.
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This is consistent rvith global trends sirnulated by the Intergovernmental Panel on

Climate Change (IPCC, 2007). Plecipitation rvas found to be r:nderestirnated by

the 20c3m scenario compared to the observed tecotd. When comparing the 20c3m

scenario to the future GCIVI scenarios, a dectease in all future scenarios except

for the B1 2046-2065 scenario rvere observed. Pr.ecipitation decreased more in the

late¡ half of the 21'¿ century. The precipitation lesults wet'e near the loiver. bouncìs

of futule precipitation simulations in literatur.e.

In the next application of the À-nearest neighbor dorvnscaling model, GC\4

data ivas dorvnscaled for'þdrological modelìing in the Winnipeg River Basin at

Redlake and Sioux Lookout rveather stations. The GCIvI data in this application

rvas centered over the weathet stations rvith a slightly smaller grid than rvas used

in the Nelson River application. This resulted in a smaller featu¡e vectol and

faster o¡rtimization of the ?il vectot, .rvithout a reduction in model performance.

For future temperature, increases occurled in all future scenarios. As in the Nel-

son River Dlainage Basin, the A2 and A1B scenarios wete warmer thali the 81

scenalio. \4aximnm increases in temperatuÌe rvere up to 6.4.C at Redlake for the

A2 scenario from 2081 to 2100. The resuLts fol pr.ecipitation shorved that the \\¡in-

nipeg River Basin could expect to see pr.ecipitation accumulations increase up to

74To. Tbe data shorved that valiabìe futule rvintel precipitation, rvith sorne scenar.-

ios shorving incleases of 13% and some shorving decr.eases of almost 5% compar.ed

to tlre doivnscaled 20c3m scenalio.

The foulth application of the À-nn model rvas to dorvnscale GC\,I data rvith

NARR clata leplacing station data. NARR data coulcl ser.ve as an altelnative to
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station dâtâ for clirnate change assessments in aleas such as nor.thern Canada that

lack rveather station data- Tlie utility of NARR data in this capacity rvas tested in

this application. The results fol the application ivith NARR data u'ere consistent

rvith the results obtained in the Winnipeg River rveathel station application. All

emission scenarios shorv incleases in future temper'âtuÌe. The 81 scenario shorvs

the least amount of rvalming and the A1B and A2 shorv the most rvarming. Pr.ecip-

itation varied betrveen scenarios, either slightly incleasing or remaining relatively

the same compared to historical means. Difierent emission scenarios had similar.

rvarming trends rvhen r"rsing the station data and the NARR data for. dorvnscal-

ing. In both applications, precipitation either lemains approximately the same or

inc¡eases moderately. This application demonstrated that NARR data can be a

viable leplacement fol station data in climate change assessments. The applica-

tion also demonstlated the advantage the À-nn model has of dorvnscaling many

valiables at one time. Four variables rvere dorvnscaled at each of the five NARR

glid points, fo¡ a total of trventy valiables pÌoduced simultaneously.

8.4 Challenges and Significance of Research

The objective of applying a À;-nn model to doivnscale GCII data ofiered many

challenges. Climate cltange modelling, assessment of clirnate change impacts, and

dorvnscaling of GC\,I ale all i'elatively neiv branches of science and engineer.ing.

Before the project rvas stalted, mr-rch enetgy was spent acquiling expertise in

climate change, multivaliate statistics, advanced nnrnelical methods, and N4atlab
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plogrammrng.

The organization and plocessing of climate data lequires significant time and

attention. GCNI data liad to be validated to inspect that it rvas functioning prop-

erly in the study legion. The ple-processing of data before use in the doivnscaling

model included application of complex standardization and plincipal component

analysis. The volume of data climate data used in the study rvas large. In total,

thousands of yeals of clirnate data rvere processed and dorvnscaled; rvith each day

represented by many large grids of GCIVI ol NCtrP/NCAR reanalysis data, and

weather station or NARR data.

Another challenge in the development and application of the À-nn ivas the

lack of previous applications of the methodology to doivnscale GCN,I data. The

softlvare packages that are available fol other methods such as rveathe¡ geneÌâtors

are not available for Æ-nn. While the plemise of the method is lelatively simple,

the successful br,rilding of the model lequired developing À4atlab code to run the

model. Optimization of a k-nn model was not plesent in any of the literature

found. The development of an optimization procedure was one of the greatest

contlibutions of the lesearch and should be used in future applications of the

nealest neighbol lesampling model. An optimization plocedure similar to the one

¡rresented in this rvolk could also be useful rvhere nearest neighbor r.esampling is

used in an application otìrel than dorvnscaling climate data.

The research plesented is a valuable contlibution to climate change assessment

reseaÌcll and to the study of cìirnate change on the Canadian Prailies. As climate

change conceurs continue to grow, assessments of manl' systems that interact rvith
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the envilonment and climate ivill be reqr-rired. This rnay include infi'astructule,

agliculture, folestry, ecosystems, and of coulse \\'ateì' resources. Witìr the un-

certainty involved in simulating future climate, the best apploach is to use as

many tools as possible to develop a fuÌl ensemble of possible futures. The resealch

demonstrated that a k-nn doivnscaling model can successfully dorvnscale large-

scale climate. The k-nn dorvnscaling model should be included in future climate

change assessments along side the other common doivnscaling models.
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