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Abstract

The potential of climate change to affect hydrological regimes has increased
the need for simulation of future trends in hydrological variables. Global Climate
Models (GCMs) are commonly used to provide possible future climate scenarios.
The coarse resolution of GCMs makes it difficult to use the data directly for hy-
drological modelling. Post-processing of the GCM data is necessary to provide
data of appropriate scale. Application of statistic methods to downscale the data
is a common solution to the disparity of scales.

A k-nearest neighbor resampling model is presented to downscale hydrological
variables from large-scale atmospheric data. Although the nonparametric nature
of the resampling algorithm avoids the extensive parameterization required by
other statistical downscaling methods, it was necessary to develop an optimization
routine to maximize the performance of the model. The algorithm was able to
adequately reproduce historical weather data, and was applied to generate data
for hydrological modelling under climate change scenarios for multiple sites in the

Nelson River and Winnipeg River drainage basins.
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Chapter 1
Introduction

1.1 Problem

Global climate change is becoming an issue of growing concern. Legitimate con-
cern over how a changing climate will affect many aspects of human life have
made adaptation strategies a common engineering requirement. Industries based
on the use of water resources may be particularly vulnerable as changes in temper-
ature, evaporation, and precipitation cause changes in available streamflow. Local
changes in hydro-climatic variables and the effects on water availability are not
well understood but are imperative to long-term water resource management.
Currently global climate models (GCMs) are the best available tool for sim-
ulating climate change. These complex models generate climate data over long
periods of time for different scenarios of atmospheric forcing conditions based on
global population growth and resource development. However, the resolution of

GCMs makes it difficult to model hydrological regimes using GCM data directly as
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input. For example, the GCM data provided by the Canadian Centre for Climate
Modelling and Analysis {CCCma) from their CGCM3.1/T47 model has a spatial
resolution of approximately 3.75° by 3.75° latitude and longitude. Hydrological
modelling requires data on a much smaller scale. A solution to the disparity of
scales is to statistically downscale GCM data to points where weather stations
exist. Weather data downscaled from the GCM data can then be used for effective
hydrological modelling of the climate trends present in GCM scenarios.

Many statistical methods have been adapted to downscale GCM data (Wilby
and Wigley, 1997). Common statistical downscaling methods include transfer
functions, weather typing, and weather generators. The difficulty of using these
models is the large number of parameters that are required to adequately capture
the relationships between large-scale atmospheric variables and local weather.

An alternative approach is a k-nearest neighbor statistical downscaling ap-
proach. Nearest neighbor resampling is a nonparametric approach that has the pri-
mary advantage of avoiding the complex parameterization process. Local weather
data is produced by strategically resampling from a historical record based on
similarity of the daily large-scale atmospheric patterns of the GCM. Reanalysis
data from the National Centre for Environmental Prediction (N CEP) provides the
historical record of atmospheric data. The & days from the historical record that
are most similar to the simulated day are extracted and referred to as nearest
neighbors. One of these nearest neighbors is selected by random sampling. Since
the resampled day has similar large-scale weather conditions, which are correlated

to local weather conditions, this day provides the desired local weather variables




1.2. OBIECTIVES

for the simulated atmospheric conditions. In this report, a k-nearest neighbor

downscaling model will be developed to generate data for hydrological modelling

“of future climate change scenarios.

1.2 Objectives

The objectives of this report are to:

1. Review climate change principles

Review climate change in the context of the recent changes in climate as well
as future projections by GCMs. Changes in climate will be reviewed in a

global context, and then in greater depth for the Canadian Prairie region.

. Review downscaling techniques

A multitude of downscaling techniques are available in literature. A cursory
review of downscaling techniques will be presented. The importance of de-
veloping a k-nn downscaling model as an addition to the realm of existing

downscaling methods will be apparent after this objective is met.

. Explore GCM data

An important step in the project will be to explore the availability of GCM
data within Canada and to evaluate the GCMs’ ability to reproduce current
climatological patterns and statistics in the prairie region of Canada. Biases
in the GCM data, if they are present, will be identified in this portion of the

project. .
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4. Explore relationships in large-scale and local weather variables

The basis of downscaling methods is the link between large-scale and local
weather variables. Statistical techniques will be used to identify the relation-

ships between the different scales of data.

. Develop and apply a k-nn downscaling model

ot

The essence of the report and its contribution to science is to develop, apply,
and evaluate a k-nearest neighbor downscaling model to downscale GCM
output. A successful development and application of a k-nn downscaling
would contribute to the advancement of statistical downscaling and climate

change impact assessment technology.

1.3 Context of Work

The work presented in this report is part of a larger ongoing project in the Depart-
ment of Civil Engineering at the University of Manitoba. The project is entitled
“Effect of Climate Change on Water Supply for Manitoba Hydro Systems” and will
be completed in mid 2009. The project is using statistical methods to downscale
GCM data. The downscaled GCM data is being used for hydrological modelling
to quantify the effect of climate change on water supply for Manitoba Hydro’s
hydropower generating system. The k-nearest neighbor downscaling model de-
veloped in this report will be one of the downscaling methods used to supply a

hydrological model with weather variables for climate change scenarios.
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1.4 Organization of Report

Chapter 2 provides a review of climate change, including a description of GCMs,
a review of GCM downscaling methods, and a review of climate change data
and trends. Chapter 3 is a technical description of the methodology, including
background information on the numerical methods used throughout the project as
well as a literature review of the k-nn methodology and applications. The different
data sets employed in the project are-described in Chapter 4. Results from GCM
validation and the exploration of large-scale and local-scale climate relationships
are provided in Chapter 5. Chapter 6 provides the description and results of four
applications of the k-nn downscaling model developed for this project. Chapter 7
evaluates the model’s ability to improve upon raw GCM output and simuhte
plausible‘ future climate scenarios, and also summarizes the model development
ﬁrith recommendations for developing future A-nn downscaling models. Chapter 8

summarizes the overall conclusions from the work completed.




Chapter 2

Background

2.1 Climate Change

2.1.1 Global Climate Change

Climate is the long term average weather that an area experiences. Climate of a
specific location may bé defined by the average temperature, precipitation, wind
patterns, days of sunshine, frequency of severe eveﬁts, ete.

The Earth’s climate has always been changing. Even in the past 100,000 years
the Earth has seen extreme variation including periods of glaciation and periods
of warming. The Earth’s climate is a highly complex, chaotic, non-linear, dynamic
system. Many factors can create changes in the Earth’s climate. For example,
changes in climate have can be attributed to volcanism, plate tectonics and changes
in the sun’s strength over time called solar variation. Over the last few centuries,
human activities have played a role in the Farth’s climate. Human activities

affecting climate include land use change, livestock, release of aerosols, and the
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burning of fossil fuels.

The Earth has experienced surface temperature increases of 0.74 4 0.18°C dur-
ing the hundred years ending in 2005 (IPCC, 2007). The Intergovernmental Panel
on Climate Change (IPCC), a scientific body representing the work of 2500 scien-
tists on climate change, concluded that most of the observed increase in globally
averaged temperatures since the mid-twentieth century is very likely due to the
observed increase in anthropogenic greenhouse gas concentrations. Global climate
models are able to reproduce the mean global temperature over the last one hun-
dred years by incorporating various climat_e change drivers such as variations in
greenhouse gas concentration, solar energy, ozone, volcanic activity, and concen-
trations of sulfates (Meehl, 2004). The work by Meehl (2004) demonstrates that
the rise in greenhouse gases is the leading contributing factor to climate change
over the last one hundred years.

As humans continue to burn fossil fuels at high rates, the changes this will
have on the climate of the next one hundred years is an issue of growing concern.
As a result, groups of atmospheric scientists have developed computer algorithms
to model the Earth’s climate. These large, complex models will be discussed in
greater depth in Section 2.2. The possible changes in climate over the next one

hundred years simulated by these models will be discussed in the next section.

2.1.2 Future Global Climate

Estimates of future climate trends are primarily based upon the simulations of

GCMs. GCMs are currently the best available tool for simulating future climate
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change. GCMs are forecasting that large changes will occur in Earth’s climate in
the next one hundred years.

Figure 2.1 is a summary of the historical global temperature, as well as the
future global temperatures simulated by a variety of GCMs for different emission
scenarios. The figure shows mean global temperatures compared to the year 1990.
Proxy data were used to extend the data back 1000 years using information from
air trapped in glacial ice and tree ring analysis. The grey shadow shows the margin
of error in these data may be quite high. From the late 1800’s global tempera-
tures are estimated from measurements taken around the world. The figure shows
that since the early 20th century, temperature has been gradually increasing. The
envelope created by the multitude of GCM and scenario combinations show that
temperatures will continue to rise at an increasing rate. By the end of the 21st
century, temperatures are forecasted to rise between 1.4°C and 5.6°C. The tem-
perature simulated for the 21st century is significantly warmer than temperatures
experienced in the last 1000 years.

Figure 2.1 shows the range of results for each of the scenario families from the
IPCC (2000) special report on emission scenarios (SRES). The Al family has a
wide range of warming, with the A1FI showing the highest warming out of all
emission scenarios, the A1B showing a medium degree of warming, and the A1T
showing a medium to low degree of warming. The A2 scenario shows a high degree
of warming, the B2 shows a medium to low degree of warming, and the B1 scenario
shows a low degree of warming.

The rate of warming around the globe is forecasted to occur in a heteroge-
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- Scenarios

Figure 2.1: Past estimates and future simulation of mean global temperature
(Adapted from Climate Change 2001: Synthesis Report, IPCC, 2001, pg. 34).
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neous manner (IPCC, 2007). Although the mean global temperature will likely
rise as shown in Figure 2.1, some areas may only warm slightly while others will
see much higher rates of warming. Generally air above oceans and land near the
oceans will have temperatures moderated by the ocean water. Areas in the middle
of continents, farthest away from the moderating effects of oceans, will see the
highest amounts of warming. Since most of the Earth’s land mass is in the North-
ern hemisphere, the Northern hemisphere, and especially the Arctic, will see an
amplification of global warming trends. Higher latitudes will see relatively higher

increases than low latitudes.

2.1.3 Climate Change on the Canadian Prairies

Sauchyn and Kulshreshtha (2008) summarized the possible effects of climate change
on the Canadian Prairie Provinces. Their report provided a discussion on climate
change in the Canadian Prairie Provinces, including the specific effects on water
resources, ecosystems, soil landscapes, agriculture, forestry, transportation, com-
munities, health, energy, and tourism and recreatioﬁ.

For water resources, closed hasin lakes are a good indicator of trends in cli-
mate. Closed basin lakes, lakes without natural outlets, are indicators of long
term water balances in praivie watersheds. Their water levels provide a memory
of water balance conditions over a number of years, even decades. Water levels
are generally constant but will change as they gradually rise or fall over time as
changes in climate affect the water balance of the watershed. A summary of water

levels of a number of closed basin prairie lakes (Whitewater Lake, Big Quill Lake,

10
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Manito Lake, Redberry Lake, Upper Mann Lake, Spring Lake, Little Fish Lake)
all show decreasing water levels since the mid 1950’s (Sauchyn and Kulshreshtha,
2008). This trend shows that, overall, runoff over the last sixty years has generally
decreased on the prairies compared to the short term conditions prior to 1950.
For future changes in the climate of the Canadian Prairie Provinces, Sauchyn
and I{ulshreshtha (2008) provide a summary of temperature and precipitation
projections from a variety of GCMs and emission scenarios for both grassland and
forest areas of the prairies. Table 2.1 summarizes the range of trends in mean
annual temperature for the Prairie Provinces. Table 2.2 summarizes the range
of trends in annual precipitation. These tables show the range of trends and the

ensemble mean simulated by a variety of GCMs.

Table 2.1: Simulated °C change in temperature for the Prairie Provinces.

Grasslands Forest
Minimum | Mean | Maximum | Minimum | Mean | Maximum
2020's 0.5 1.8 2.8 0.9 1.7 2.9
2060°s ¢ . 1.7 3.1 5.6 1.9 2.4 6.8
2080’s 2.2 5.0 8.9 2.3 4.4 10.8

Table 2.2: Simulated % change in precipitation for the Prairie Provinces.

Grasslands Forest
Minimum | Mean | Maximum | Mindimum | Mean | Maximum
2020°s -10 2 15 -3 5 6
2050’s -4 5 18 2 9 16
2080’s -6 9 29 2 12 25

Mean annual temperatures are shown to continually increase throughout the
next century. By the year 2100, temperatures are likely to have increased 5.0°C
in grasslands and 4.4°C in forested areas. The warmest models simulate that

temperature could rise as much as 8.9°C in grasslands and 10.8°C in forested areas.

11
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For the climate of the next one hundred years, the GCMs simulations suggest a
wide range of possible precipitation trends. Some models show slight decreases,
while others show increases of up to 29%.

The Canadian Center for Climate Modelling and Analysis (CCCma) CGCM2
model was inclﬁded in the summary information. Among the GCMs compared,
the CCCma CGCM2 model, the precursor to CCCma’s most recent model, the
CGCM3, was near the average for temperature changes, and one of the drier
models in terms of precipitation.

While higher COs; levels and warmer temperatures may provide some benefits to
the prairie region, the large warming t'rends that are projected for the prairies bring
many disadvantages. For example, the cold winters in the prairies help limit pest
and diseases, and also facilitate access to northern communities and resources via
winter ice roads. Warmer winters may allow new pest and diseases to move into the
prairies, similar to how the mountain pine beetle has seen increasing populations
in British Columbié and severely threatens forest ecosystems. A possible benefit
to higher CO; levels and higher temperatures could be increased forest, grassland,
and crop productivity. However, these benefits may be limited by the availability
of water.

Sauchyn and Kulshreshtha (2008} cited that the most serious climate risk to the
prairies Is increases in water scarcity. Their report stated that recent trends and
future projections for water resources include lower summer streamflows, falling
lake levels, retreating glaciers, and increasing soil moisture deficits. The frequency

of dry years is also likely to increase. Although the number of dry years are

12
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expected to increase, risk due to flooding may also increase due to more severe
rainfall events.

In 2004, the Canadian Government published a summary report regarding
projections of climate change and impacts of climate change in Canada (Lemmen
and Warren, 2004). This report cites that due to its inland location, the prairie
region could see a greater increase in temperature than the rest of the country.
Although precipitation on the prairies is forecasted to slightly increase, there may
be significant negative changes in the annual hydrologic cycle due to these changes
in climate. The rise in temperature reduces the frost season significantly and
increases the rate of evapotranspiration.

The 2004 government report (Lemmen and Warren, 2004) cites some potential

changes in water resources in the Prairie Provinces as:

e (Changes in annual flow regime, reduced summer flows,

s Increasing likelihood of severe drought, and

¢ Increases or decreases of irrigation demand and water availability.

The threat climate change poses to water resources in the Canadian Prairies
and elsewhere around the world makes climate change impact studies an important

component in long-term water resource management plans.

13
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2.2 Global Climate Models

2.2.1 Introduction

A global climate model (GCM), also referred to as a general circulation model, is
a large computer model used for simulating long periods of weather over the entire
globe. GCMs are very complex and constructing a GCM is a massive undertaking.
Therefore they are usually developed by government organizations or universities.
A list of current GCMs and the organizations who developed them is given in
Table 2.3.

GCMs are combinations of other large computer models. The two major build-
ing blocks of a GCM are an atmospheric general circulation model (AGCM) and
an oceanic general circulation model (OGCM). The combination of an AGCM
and an OGCM is referred to as a coupled global climate model (CGCM). Addi-
tional models are added to complete the description of the Earth’s climate driving
forces. These supplementary models include ice models, river routing models,
evapotranspiration models, and chemical transport models. Each GCM employs
similar but slightly different types and combinations of these components, and as
a result GCMs provide different results when forced with the same atmospheric
conditions. The variation in the models provide a spectrum of possible projections
of the Farth’s climate.

GCMs typically complete their computations using either a finite difference
method or a spectral method. The model is discretized into a three dimensional

grid. Since the models are complex, to be computationally feasible the model
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Table 2.3: List of current GCMs.

Model Name | Source
CM1 Beijing Climate Centre (BCC), China
BCM2.0 Bjerknes Centre for Climate Research (BCCR)
CGCM3 Canadian Centre for Climate Modelling and
Analysis (CCCma), Canada
CM3 Centre National de Rechershes Meteorogignes (CNRM)
Mk3.0 Australia’s Commonwealth Scientific and Industrial Research

Organisation (CSIRO), Australia

ECHAM5-OM

Max-Plank-Institute for Meteorology (MPI) and Deutsches
Klimarechenzentrum (DKRZ), Germany

ECHO-G Meteorological Institute, University of Bonn (MIUB)
Meteorological Research Institute of KMA {(METRI)
Model and Data Groupe at MPI-M (M& D)
FGOALS-gl1.0 | Institute of Atmospheric Physics (LASG)
CM2.0 Geophysical Fluid Dynamics Laboratory GFDL, USA
CM2.1
AOM Goddard Institute for Space Studies (GISS) Atmosphere
E-H Ocean Model
E-R
CM3.0 Institute for Numerical Mathematics (INM), Germany
CM4 Institut Pierre Simon Laplace (IPSL), France
MICROC3.2 | Center for Climate Research Studies & National Institute for
Environmental Studies, Japan
MRI Meteorological Research Institute (MRI), Japan
PCM National Centre for Atmospheric Research, USA
CCSM3 -
HadCM3 Hadley Centre for climate Prediction and Research
HadGEM!1 HCCPR, Uk Meteorological Office (UKMO)
SXG 2005 National Institute of Geophysics and Volcanology (INGV)

Italy

grids are coarse.

Typical grid resolutions are on the order of between one and

five degrees in latitude and longitude. The Hadley HadCM3 model uses a grid

of 2.5° in latitude and 3.75° in longitude, giving a global grid of 73 by 96 points.

The T47 version of the CCCma CGCM3 has a grid resolution of approximately

3.75° in latitude and longitude, giving the glohal grid of 48 by 96 points shown on

Figure 2.2. Such resolutions result in grid cells with side lengths in the order of
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Figure 2.2: Discretization grid of the CCCma CGCM3/T47 model.

300 to 400 kilometers. Discretization in the vertical is also necessary. The Hadley
HadCM3 model uses 19 levels in the vertical while the CCCma CGCM3 uses 31
levels in the vertical.

The chemical transport models are important to the modelling of climate
change. The changes in future climate can be modeled by adding one or more
chemical transport models for the atmospheric chemicals important to climate.
For example, a chemical transport model is developed to describe the carbon cycle.
The carbon cycle is then modified by adding greenhouse gas emissions according
to a plausible future anthropogenic emission scenario. The changes in the Earth’s
climate, such as changes in temperature or precipitation patterns, in response to
change in the carbon cycle can then be studied. For consistency between modelling
agencies, the IPCC has defined sets of emission scenarios for future anthropogenic
releases of greenhouse gases. The IPCC emission scenarios will be discussed in

detail in the following section.
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2.2.2 HKEmission Scenarios

The IPCC has been the leading organization for developing future emission scenar-
ios to be used in climate change studies. In 1992, the IPCC released the first set of
emission scenarios named the IS92 scenarios. These were the first future emission
scenarios used by GCMs and the first global scenarios to provide estimates for the
full suite of greenhouse gases.

In the years following the development of the IS92 scenarios many scientific
advancements were made in the field. In 1996, the IPCC decided to develop a
new set of emission scenarios to be used in the TPCC Third Assessment Report.
As a result, in the year 2000 the IPCC released a report on updated possible
future emission scenarios entitled Special Report on Emissions Scenarios (SRES)
(IPCC, 2000). In this report, the IPCC developed families of emission scenarios
that explore alternative global development pathways, covering a wide range of
demographic, economic and technological driving forces and resulting greenhouse
gas emissions. The scenarios are grouped into four scenario families: Al, A2, B1,
é.nd B2.

The following is the description of the different families of emission scenarios

according to the IPCC Special Report on Emission Scenarios (IPCC, 2000):

¢ SRES A1l Scenario Family

The Al storyline and scenario family describes a future world of very rapid
economic growth, global population that peaks in mid-century and declines

thereafter, and the rapid introduction of new and more efficient technologies.
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Major underlying themes are convergence among regions, capacity building,
and increased cultural and social interactions, with a substantria.l reduction in
regional differences in per capita income. The Al scenario family is divided
into three groups that describe alternative directions of technological change
in the energy system. The three Al groups are distinguished by their tech-
nological emphasis: fossil intensive (A1F1), non-fossil energy sources (A1T),

or a balance across all sources (A1B).

SRES A2 Scenario Family

The A2 storyline and scenario family describes a very heterogeneous world.
The underlying theme is self-reliance and preservation of local identities.
Fertility patterns across regions converge very slowly, which results in con-
tinuously increasing global population. Economic development is primarily
regionally oriented and per capita economic growth and technological change

are more fragmented and slower than in other storylines.

SRES B1 Scenario Family

The B1 storyline and scenario family describes a convergent world with the
same global population that peaks in mid-century and declineé thereafter, as
in the Al storyline, but with rapid changes in economic structures toward a
service and information economy, with reductions in material intensity, and
the introduction of clean and resource-efficient technologies. The emphasis
is on global solutions to economic, social, and environmental sustainability,

including improved equity, but without additional climate initiatives.
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¢ SRES B2 Scenario Family

The B2 storyline and scenario family describes a world in which the emphasis
is on local solutions to economic, social, and environmental sustainability. It
is a world with continuously increasing global population at a rate lower than
A2, intermediate levels of economic development, and less rapid and more
diverse technological change than in the B1 and Al storylines. While the
scenario is also oriented toward environmental protection and social equity,

it focuses on local and regional levels.

When these emission scenarios are used with different GCMs, they produce a
spectrum of possible future climates. Although the futures simulated by different
GCMs will vary for the same scenario, general conclusions can be made. In general,
the A2 scenario family shows the highest degree of global warming, the A1B and
B1 scenario families show a medium level of warming, and the B2 family shows

the lowest level of warming.

2.3 Downscaling of Global Climate Models

Global climate models are cur.rently the best tools available for climate change
impact assessments. However, one of the primary difficulties with utilizing GCM
data is that the coarse resolution of the data grids makes it difficult to directly
apply in a meaningful way, particularly for water resources applications. Even
large watersheds may only have a few GCM grid cells covering the watershed.

Because of the disparity in scale between hydrologic processes and GCM data,
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these few cells poorly represent the variability in hydrological weather variables,
especially the distributed nature of precipitation. In addition, GCM cells are too
large to simulate some important features of the local weather and hydrological
cycle such as cloud cover. GCMs are designed to reproduce the fluid dynamics
of the hydrological cycle at the continental scale and therefore precipitation at
individual weather station locations are generally not well reproduced.

For the above reasons, GCM output requires postprocessing before it is ac-
ceptable to use in climate change impact assessments. The GCM output must be
downscaled to a finer spatial, and possibly temporal, resolution. The goal of down-
scaling GCM output is to produce new output that is on the scale of subcatchment
hydrology.

Downscaling models can be divided into two large groups, dynamic downscaling
and statistical downscaling. In dynamic downscaling a regional climate model
uses GCM output as boundary conditions and runs a higher resolution (10 to 50
km) climate model over the area of interest. In statistical downscaling models,
a variety of statistical methodologies are used to parameterize the relationships
between large and small scale climate variables. The chart on Figure 2.3 shows

the general classes of downscaling models.

2.3.1 Dynamic Downscaling

Running GCMs at a high enough resolution to be acceptable for assessing local
climate change is not computationally possible. Dynamic downscaling involves

nesting a regional climate model (RCM), also known as a limited area model
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Figure 2.3: Organizétion chart of downscaling methodologies.
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(LAM), within a GCM. The embedded model uses the GCM data as boundary
conditions to produce weather on a much finer resolution, typically on grids with
10 to 50 km horizontal resolution and 100 to 1000 m vertical resolution. Running
the model over only a portion of area of the GCM’s global grid is computationally
much more affordable than running a GCM at a higher resolution.

There are some limitations of downscaling GCM data with a RCM (Wilby and
Wigley, 1997). RCMs still require considerable computing resources, much more
than current personal computers can provide. RCMs are somewhat inflexible in
the sense that the computational demands apply each time that the model is
transferred to a different region and for each emission scenario. Another potential
drawback of RCMs is the fact that they are completely dependent upon the veracity
of the GCM grid-point data that are used to drive the boundary conditions of the
region. If biases or errors are present in the GCM for the area the RCM is nested
in, those inaccuracies are transferred into the downscaled data through the RCM.

Many RCMs have been developed around the world. A RCM has been de-
veloped in Canada by the Canadian Regional Climate Modelling and Diagnostics
(CRCMD) Network. The CRCMD Network is made up of researchers from various
institutions; Université du Québec & Montréal (UQAM - Centre ESCER), Univer-
sity of Victoria (BC), Ouranos Consortium (QC), Environment Canada (Canadian
Centre for Climate Modelling and Analysis) and Recherche Prévision Numérique
(RPN) (QC). The Canadian Regional Climate Model (CRCM) was first developed
in the early 1990’s (Caya and Laprise, 1999) and is now in its fourth generation,

CRCM4.2.
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Figure 2.4: CRCM discretization of Pan-Canadian region.

The 172 x 124 grid discretization over the Pan-Canadian region used by the
CRCM is shown on Figure 2.4. The CRCM has a 45 km horizontal grid-size mesh
and 18 vertical levels. The time step between the CRCM calculations is fifteen

minutes, which is slightly more frequent than the twenty minute time step used

by the CCCma CGCMS3.

2.3.2 Statistical Downscaling

Statistical downscaling methods use the statistical relationships that exist between
large-scale and local climate variables to downscale GCMs. While not physically
based, statistical downscaling methods have the primary advantage that they re-

quire significantly less computational resources than dynamic downscaling. Sta-
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tistical downscaling can be carried out in a short period of time on inexpensive
personal computers. The models can be run for different areas for different emis-
sion scenarios in short periods of time.

The following is a hrief description of some of the most common categories of

statistical downscaling models.

Transfer Functions

Downscaling by transfer functions usually refers to the application of linear or non-
linear regression methods. Regression methods were among the earliest downscal-
ing approaches (Wibly and Wigley, 1997). Regression methods generally involve
relating the weather variables to the coarse resolution GCM predictor variables.

Other transfer functions such as artificial neural networks or canonical correla-
tion analysis may also be used to derive the empirical relationships to downscale
the large-scale climate variables.

A software application based on regression methods was developed by Wilby et
al. (2002) as a methodology that could be applied in a wide variety of downscaling
applications. According to the developers, the software package, named Statis-
tical DownScaling Model (SDSM), facilitates the rapid development of multiple,
low-cost, single-site scenarios of daily surface weather variables under current and
future regional climate forcing. The software performs ancillary tasks of predic-
tor variable pre-screening, model calibration, basic diagnostic testing, statistical
analysis and graphing of climate data. The general process SDSM uses to produce

downscaled simulations is as follows (Wilby et al., 2002):
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1. Screening of predictor variables;

2. Model calibration;

3. Synthesis of observed data,

4. Generation of climate change scenarios;

5. Diagnostic testing and statistical analysis.

Although SDSM performs the downscaling and some other ancillary tasks as
described above, the application of SDSM is.still a time consuming process as
NCEP reanalysis and GCM data must be downloaded and manipulated to conform
to SDSM’s protocols. The data gathering and preprocessing tasks are generally
the most time consuming and difficult steps for other statistically downscaling
methodologies as well.

The utility of the SDSM software package to assess the hydrological impacts
of climate change on the Canadian Prairies is being investigated by others at the
University of Manitoba concurrently with the development of the A-nn statistical

downscaling model in this project.

Weather Typing

Downscaling by weather typing methodologies involves statistically relating com-
mon weather patterns to observed station variables. If a strong relationship exists
between the circulation patterns and the local weather, the local weather can be

simulated conditional on the circulation pattern classes.
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Days are divided into groups based on their large-scale circulation variables
using a classification scheme. Yarnal (1993) describes a variety of classification
schemes, including manual classification, correlation-based map pattern classifica-
tion, eigenvector-based classification and compositing, indexing and specification.

Once a classification scheme has been utilized to divide the historical days
into groups with similar circulation patterns, the distributions of local surface
variables such as temperature and precipitation conditional on the occurrence of
each weather pattern are calculated. For example, the conditional probability of a
wet day following a wet day, or the mean wet-day amount associated with a given
atmospheric circulation pattern can be derived. The conditional probabilities may
also be calculated on a season or monthly basis to improve correlation between the
weather patterns and local variables.

To downscale GCM data, the same large-scale circulation variables used in
the classification scheme are used to classify each day of the GCM éutput into
the weather types determined from the classification of historical data. The local
weather is then simulated based on the relationships that exist between the his-
torical weather patterns and historical local weather. The change in frequency of
the different weather patterns in the GCM data will reveal trends in the future
local-scale.climate.

Weather classification can be used to form Markov models where the probability
of precipitation occurrence is conditional on the occurrence of precipitation on the
previous day as well as the previous and/or current circulation pattern class. The

most sophisticated of the weather typing schemes is the nonhomogeneous hidden
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Markov model (NHMM) as defined by Hughes and Guttorp (1994) and Hughes et
al. (1999). The basis of the model is the existence of an unobservable discrete-
value stochastic process which links the large-scale atmosphere to the local-scale
precipitation. This unobserved process is referred to as a hidden weather state.
The hidden weather state is assumed to follow a Markov chain conditioned on the

current day 1&1'ge—scale climate to capture the persistence of wet and dry conditions.

Weather Generators

Weather generators are computer models that generate long synthetic time series
of weather data based on parameters derived from historical data.

Weather generators first simulate whether or not rainfall occurs. This is com-
monly based on a Markov renewal process conditioned on the occurrence of pre-
cipitation on the previous day. The Markov process can be first-order and be
based only on the single previous day, or be multiple-order and be based on the
occurrence of precipitation on multiple previous days. Other weather parameters
are then generated conditional on the occurrence of precipitation.

To downscale GCM data, the parameters of the weather generator are adjusted
using data from the GCM. The weather generator is then run with the new pa-
rameters to generate time series of climate change data. One of the difficulties in
applying stochastic weather generators to future climate scenarios has been the
method of adjusting tile parameters in a physically realistic and internally consis-
tent way (Wilby and Wigley, 1997).

A popular weather generator model is WGEN (Richardson, 1981). The WGEN
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model is able to produce a daily time series of precipitation amount, maximum and
minimum temperature, and solar radiation. WGEN is the most common weather
generator used for climate impact studies. While WGEN is the most popular
weather generator, a multitude of other models exist: WXGEN (Sharpley and
Williams, 1990), CLIGEN (Nicks and Gander, 1993), USCLIMATE (Johnson et
al., 1996), ClimGen (Semenov et al., 1999) and LARS-WG (Semenov et al., 1998).
The LARS-WG and ClimGen models have been previously applied in Canada.
The utility of the LARS-WG software package to assess the hydrological im-
pacts of climate change on the Canadian Prairies is being investigated by others
at the University of Manitoba concurrently with the development of the k-nn sta-

tistical downscaling model in this project.

k-Nearest Neighbor Resampling

Nearest neighbor resampling is a nonparametric statistical downscaling method
that has the primary advantage of avoiding the complex parameterization pro-
cess of other statistical downscaling models. Local weather data is produced by
strategically resampling from a historical record based on similarity of the daily
large-scale atmospheric patterns of the GCM. A data set such as the NCEP/NCAR
Reanalysis 1 data set provides the historical record of large-scale atmospheric data
while data from weather station measurements typically provide the historical local
weather. The nearest neighbors, or most statistically similar days, to the simu-
lation day in the historical record are determined. One of the nearest neighbors

is selected by random sampling. Since the resampled day has similar large-scale
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Figure 2.5: Schematics of regression (top) and k-un (bottom) downscaling ap-

proaches.
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weather conditions, which are correlated to local weather conditions, this day pro-
vides the desired local weather variables for the simulated atmospheric conditions.
The process is repeated for each simulated GCM day to generate a time series of
local weather.

Figure 2.5 shows a basic comparison of a regression based methodology to
the methodology of nearest neighbor resampling. The top figure (Figure 2.5)
shows the basic concept of parameterizing the relationships between predictors
and local weather and then using the relationship to estimate the local weather.
The bottom figure (Figure 2.5) shows the basic concept of resampling from the
nearest neighbors of the set of predictor variables. Nearest neighbor resampling is

explained in full detail in the methodology section.

2.3.3 Statistical vs. Dynamic Downscaling

In the above description of statistical and dynamic downscaling methods, some of
the advantages and disadvantages of the different methodologies were noted. Both
statistical and dynamic downscaling have unique advantages and disadvantages.
Which methodology is preferred should be determined for each climate change
assessment. Wilby et al. (2002) provided a sﬁmmary of the general strengths
and weaknesses of statistical and dynamic downscaling methods as shown in Ta-
ble 2.4. While not an exhaustive list, the information in Table 2.4 provides basic

information to assist in the choice of model.
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Table 2.4: Comparison of statistical and dynamic downscaling (Wilby et al.,

2002).
Statistical downscaling Dynamical downscaling
Strengths | - Station-scale climate infor- | - 10 to 50 km resolution’ cli-
mation from GCM-scale out- | mate information from GCM-
put scale output
- Cheap, computationally un- | - Respond in physically consis-
demanding and readily avail- | tent ways to different external
able transferable forcings
- Ensembles of climate scenar- | - Resolve atmospheric pro-
ios permit risk /uncertainty cesses such as orographic pre-
cipitation
- Flexibility - Consistency with GCM
Weaknesses | -Dependent on the realism of | - Dependent on the realism of

GCM boundary forcing

- Choice of domain size and lo-
cation affects results

- Requires high quality data for
model calibration

- Predictor/predictand  re-
lationships are often non-
stationary

- Choice of predictor variables
affects results

| - Choice of empirical transfer

scheme affects results

- Low-frequency climate vari-
ability problematic

GCM boundary forcing

- Choice of domain size and lo-
cation affects results

- Requires significant comput-
ing resources

- Ensembles of climate scenar-
ios seldom produced

- Initial boundary conditions
affect results

- Choice of cloud/convection
scheme affects (precipitation)
results

- Not readily transferred to
new regions
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Chapter 3

Methodology

3.1 Numerical Methods

3.1.1 Principal Component Analysis

Often in multivariate data sets there can be a high degree of correlation among
variables. This leads to a redundancy in the information contained in the variables.
1f it were possible to remove the redundancy among variables, the information con-
tained in the data could possibly be represented in only a few variables. Principal
component analysis (PCA) is a method to reduce the number of variables required
to explain the variation within a multivariate data set. For an in-depth derivation
of PCA, Wilks (1995) is an excellent resource.

Climate data often contains significant spatial correlations making principal
components a useful tool for data analysis. PCA will be applied later in Sec-
tion 3.1.1 to geopotential height data. Before the PCA is shown for climate data,

the simplified case of a bivariate data set will be discussed.
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Bivariate Example of Principal Component Analysis

Consider a bivariate data set with a high degree of correlation (Figure 3.1). The
data has a 2 x 2 covariancé matrix, 2, which has eigenvalues of A; and Ay, A shift
in the coordinate system can be made where the first axis, 73, is aligned in the
direction of maximum variation. This axis is in the direction of the eigenvector
corresponding to A;. The second axis is aligned in the direction of second greatest
variation. The second axis, Z,, is in the direction of the second eigenvector, which
is perpendicular to the first eigenvector. The Z; axis contains A; /(A +A) X 100% of
the variance contained in the original data set {approximately 95% in the example
in Figure 3.1), and the Z; axis contains As/{A; + Az} x 100% of the variation
(approximately 5% in the example in Figure 3.1).

The values of the first principal component (PC) scores are the values of the
data points along axis Z;, and the second PC scores are the values of the data
points on axis Zs. Figure 3.2 shows the two sets of PC scores plotted against each
other. It can be seen that PC, has much more variation than PCs;, and that the
two variables have no correlation. Therefore, much of the variation in the original

scatter plot in Figure 3.1 can be described using only one variable, PC;.

Principal Component Analysis with Multivariate Data

The above process can be applied to data sets with any number of variables.
Consider a multi-variable data set X with n variables. The n X n covariance
matrix X will have n eigenvalues and n eigenvectors. A shift in coordinates using

PCA will produce a new data set with n principal components. The sum of all
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Figure 3.2: Plot of PC; versus PC;.
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eigenvalues equals the sum of the variance of each variable. Each PC describes a

unique portion of variance in the original data set, which can be computed as

A
E_Tfl:l Aj .

(3.1)

Percent variation explained by PC,; =

Each PC is a linear combination of the original n variables. The coefficients
for the i** PC are given by the i*" eigenvector. A set of PCs are generated for each

time step,

Pc’i — ez-_X = eﬂXl -+ EiQXQ +...+ ein.Xn- (32)

Application of Principal Component Analysis

To illustrate the usefulness of PCA when analyzing spatial climate data, a sample
application of PCA will be demonstrated with a 500 mb geopotential height data
set. The data is comprised of thirty years of data from the NCEP/NCAR Reanal-
ysis 1 data set. The data is on a 9 x 15 grid with spacing of 2.5° in latitude and
longitude. Geopotential heights vary gradually across the large distances between
grid points and therefore nearby grid points experience high correlations with each
other. For this reason, geopotential height is an excellent example of data sets that
can be easily reduced to a few variables using PCA.

The values of the first few eigenvalues and the percentage of the total variance
(sum of the variances of individual data points) explained by a given number of
PCs are shown on Figure 3.3. As expected with the high degree of correlation in
the data set, the first few eigenvalues are large and explaig most of the variance in

the large data set. Only five PCs are needed to explain over 90% of the variance
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Figure 3.3: Figenvalues and the % variation explained.

contained in the original data set of 135 variables.

The weights associated with the eigenvectors of each PC can be plotted in
space. I'igure 3.4 shows the weights of the first eight eigenvectors plotted in space.
The most weight of the first PC is in the center of the grid. The first PC describes
if the geopotential grid is above or below average for that day of the year. The
second PC has weights distributed in a west to east direction. If there is a strong

pressure gradient in this direction, the second PC will have a large value. The
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third PC is similar to the second but describes the north to south gradient. Each
PC there after describes a characteristic pressure pattern until after a handful of
PCs the eigenvectors dissolve and contain only noise. The stronger a particular
pattern is, the larger the corresponding PC will be.

The ability of PCA to reduce large gridded climate data sets to only a handful
of variables made it a very useful numerical method for this project. PCA was used
extensively to reduce the variables in the large-scale NCEP/NCAR, Reanalysis 1

and GCM data sets.

3.1.2 Canonical Correlation Analysis

Canonical correlation analysis (CCA) is a statistical method used to explore the
connections between two multivariate data sets. As principal component analysis
explores a single multivariate data set by projecting the data onto a new set of
variables that describe maximum amounts of variation, CCA projects two mul-
tivariate data sets onfo two new projections with maximum correlation between
themT

Another description of CCA may be to envision it as multivariate regression
with two sets of predictor variables. Instead of having one set of weights as regres-
sion coefficients to simulate a single variable from a multivariate set, CCA finds
pairs of sets of regression coefficients that define new variables with maximized
correlation.

CCA transforms two multivariate data sets, « and y, into new variables v,, and
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w,, called canonical variates. The new variables are defined by

U = 0T = Z{:Iam,imi, m=1,...,min(/, J) (3.3)

and

Wi = bLy = B bpjy;, m=1,...,min(l,J), (3.4)

where I is the number of elements in z and a,,, and J is the number of elements in
y and b,,. I and J do not need to be the same. However, the number of canonical
pairs, M, that can be prociuced is equal to the smaller of the two.

The selection of the canonical vectors a,, and b,,, are done so that the following

are satisfied:

Corr{vy, wy] > Corrfve, ws] > ... > Corrfva, wal, (3.5)

rCn, k=m
Corr[vg, W) = , (3.6)
0, k#m

and

Varlvp,] = Varfwn| =1, m=1,..., M. (3.7)

Equation 3.5 states that each of the M successive pairs of canonical variates

has a weaker correlation than the previous pair. The correlations between pairs
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of canonical variates are referred to as canonical correlations. Equation 3.6 states
that a canonical variate has no correlation with all other variates, except for its
counterpart in the m® pair. Equation 3.7 states that each variate has unit variance.

The goal in CCA, as in PCA, is to select the weights such that the new projec-
tion produces variables that contain useful information. The selection of canoni-
cal coeflicients is based on the variance-covariance matrix of z and y. The joint
variance-covariance matrix, S, of the variables combined into one variable set,

" = [2T,y7), is

1 ; ; S:m: 5':1:y
Se=——[c]"] = ; (3.8)

1—-n
Sy Syy
where the prime in ¢’ denotes that the variables are centered on the sample means.
The canonical coefficients and canonical correlations are related to the eigen-

vectors and eigenvalues of the matrices, A4, and M, where

[Ma] = [Sual ™ [Sey} [Sys] ™ [Siel (3.9)

and

[My] = [Sy] ™ [Syl [Sea] Sy (3.10)

The canonical vectors, a,, and by,, are the eigenvectors of M, and A, satisfying

[(Milam =78 am, m=1,...,M (3.11)
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and

[Mylbm = 12 bm, m=1,..., M. (3.12)

The canonical correlations, r¢, are the square root of the eigenvalies. High canoni-
cal correlations are the result of strong relationships existing between the two data

sets.

3.1.3 Fourier Series Analysis

In most cases where a signal varies with time, the signal is analyzed as a time series
with the signal as a function of time. However, in some cases, particularly when
a signal is periodic, problems can be solved more easily if the signal is transferred
into frequency domain. In the frequency domain, a signal is separated into sine
and cosine functions with varying frequencies, amplitudes and phase shifts. A
continuous periodic function can be expressed as a linear combination of these
sinusoids known as the Fourier series.

For a signal with a length of time 7", composed of N observations at intervals
of ét, the longest sinusoid component has a period of T = Nét, and the shortest
has a period of 26t.

Given a function f(t) that varies with time, the Fourier series is expressed as

PH=3 [au-cos (U,Q%t) 4 by - sin (u%gt)] . (3.13)

The Iourier series can he determined for discrete functions as well as con-

tinuwous functions. This is important for engineering applications as often the
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measurements are recorded at discrete time increments. For a discrete function,

the discrete Fourier series is expressed as

= 27 2
T; = Z [au - COS (uﬁi) -+ b, - sin (uﬁz)} . (3.14)

u=0

The vectors of coeflicients a, and b, can by found as

i, 2
u =55 ) @i~ COS (uaf:z) (3.15)
i=0
and
| N 5
by, = N Z x; - sin (u%a) : (3.16)
i=0

Using the coefficients a, and b,, the signal can be described by the amplitude
and phase shift, ¢, of each of the individual frequencies from u = [0,1,..., N —1].
The frequency index of u = 0 is known as the static term. It represents the mean

of the signal and has no phase shift. The signal can be expressed as

Xo = [(Ampy, 0), ..., (Ampy, @u), . . -, (Ampy_1, On_1)] (3.17)
w‘here‘
Amp, = /& + 1 (3.18)
and
_1 D
@y = tan”™ —. (3.19)
Uy
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Time Domain

0.5 L 1 L i i 1
0 1 2 3 4 5 6
X
Frequency Domain
140 T T T T T .
(0]
120+ .
100+ 1
@
S 80+ .
._(E:l
5 601 1
40+ g
201 g
¢ WQWMMMWMWMAAAAJ@WI ST
0 10 20 30 40 50 60

u

Figure 3.5: Fourier series example of function ¥ = 2 + sin(z) + 0.2sin(10x) in
time and frequency domain. ‘

The function y = 2+ sin(z) + 2sin(10z) is shown in both the time domain and
frequency domain on Figure 3.5. The two sine terms of different frequency are
shown in the frequency domain as two amplitudes with specific frequencies. Since
the first term in the function offsets the signal from having a zel-'o mean, the static
term at u = 0 is nongero. This short example shows how easily Fourier series can
simplify a problem that is more complex in the time domain.

Fourier series transforms have many useful applications in engineering. One im-
portant application of Fourier series is reduction of noise in signals. By separating

a signal into its frequency components, the high or low frequency components can
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be easily identified. If a signal contains noise of a higher {requency than the desired
signal, these high frequencies can be removed by using a filter which eliminated
high frequencies.

A demonstration of the ability to reduce or remove noise from data is shown
on Figure 3.6. In this example the daily mean temperature was calculated for the
Thompson weather station from 1967 to 2000. The result should be a gradual
increase to a maximum in the summer months and a decrease to the minimum in
winter. The signal is noisy due to the natural variations in the day-to-day temper-
atures. By applying Fourier series analysis and filtering high and low frequencies,
the noise portion of the signal is easily identified and removed.

Fourier series analysis and the filtering technique shown above was used exten-
sively throughout this project to standardize station data and climate model grid
data to remove seasonality of the variables. It was critical to remove noise from

the daily mean and standard deviations before standardization.

3.1.4 Circulation Pattern Classification
Correlation-Based Map-Pattern Classification

Correlation-based map-pattern classification is a circulation-to-environment ap-
proach to classification. The categories are developed independent of surface con-
ditions. The goal is to divide days based on their similarity to common pressure
patterns. A day is categorized based on the strongest correlation toward one of the
common map patterns. The focal point of the method is to find the common map

patterns, referred to as key days. The classification scheme requires the user to
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Figure 3.6: Example of noise reduction using Fourier series analysis,
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decide features such as how many key days are necessary, correlation thresholds,
minimum group sizes, etc.

The first step is to determine the key days which all other days will be compared
to and classified. Each key days is an actual historical pressure field selected as
representative of a common circulation pattern. These are selected by a comparison
of circulation from each historical day to every other day on record.

Usually the data is first standardized to remove the seasonality of the data.
For instance, geopotential heights will be greater in summer and have more grad-
ual gradients than in winter. Standardization using monthly or daily means and
standard deviations remove these seasonal differences.

The comparison between grids is made using the Pearson product-moment

correlation, 7, defined by

Yo (@ — X)(y: - V)]

(3.20)
PRRCED A ROER ol

Tay = /27

where x represents the grid points of one grid, and % of another. X and Y represent
the mean of the N grid points. The degree of correlation is a measurement of
similarity between grids. A threshold value of correlation is used to discern if two
grids are significantly similar. Threshold values generally range from 0.5 to 0.7,
but could range higher or lower (Yarnal, 1993). The degree of similarity of one
day to the rest is now recorded as either 1 or 0. For a historical record of z days,
a correlation matrix of size z x z will be constructed.

The first key day is selected as the day that is significantly correlated to the
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most days. This is the most typical grid pattern. The first key day is removed
from the record along with all days considered significantly similar. The process
is repeated to identify th‘e second key day and remove it and the days similar to it
from the record. The process is repeated until all days have been accounted for, or
until a user defined minimum group size has been reached. The key days represent
the circulation patterns to categorize the data.

The days are then reclassified. Reclassification is necessary as a day may have
been significantly correlated with more than one key day. A day could possibly be
more correlated with key day 2 than key day 1, but first classified into those in key
day 1. Correlation between each day and the key days are calculated and days are
placed into the key day categories they are most correlated to. Decisions such as
minimum group sizes and the number of categories needed to effectively categorize
the circulation patterns are made. The last step is to catalog the classification

which now becomes another variable to describe the large-scale climate.

Eigenvector-Based Map-Pattern Classification

Bigenvector-based map-pattern classification is another circulation-to-environment
approach to classification. There are many different forms of models based on the
use of eigenvectors. There are a multitude of data selection options and decompo-
sition methods. In this methodology, gridded pressure data are imputed into the
model and PCA is used as the decomposition method. Days are classified based
on clusters of days with similarities in principal component scores.

The data is decomposed into principal components (PCs). The PCs are rotated
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to produce physically interpretable loadings that appear as pressure patterns. In-
dividual grids will typically not resemble only one of these patterns, but will rather
be a combination of the rotated PCs. Therefore, instead of classifying the grids
into categories defined by one of the PCs, cluster analysis determines common
combinations of the PCs. If one takes the pressure fields within the clusters and
finds the average among them, the pressure fields representative of the clusters will
be shown. Each cluster should have significantly different representative pressure
patterns.

A subset composed of a given number of the first PCs explains the maximum
amount of variation of the original data set in a minimum number of variables.
In this regard, the orientation of eigenvectors after PCA is optimum. There are
no other subset of eigenvectors that can explain more of the variation the original
data set. However, these patterns are a result of the statistical process and may
not be useful as physical explanations of the patterns which exist in the data. In
many applications of PCA, it is useful to rotate the leading principal components
to another projection of eigenvectors.

Two !primary options for rotation exist: orthogonal or oblique. In an orthog-
onal rotation, the resulting eigenvectors remain orthogonal and explain unique
~variance. An oblique rotation results in the PCs sharing a portion of variance.
Yarnal (1993) suggests that eigenvector-based map-pattern classification use an
orthogonal rotation.

The rotation transforms one set of input eigenvectors, P = (p1,,- - , i), into

the output eigenvectors = (41, - ,qx). The rotation is made by the K x K
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matrix B such that

Q=PrR (3.21)
and
K
G =Y riip;. (3.22)
Jj=t

The matrix K determines the type of rotation and is selected such that a
constraint V(@) is optimized. If K is orthogonal, the rotated eigenvectors will
also be orthogonal; otherwise they will be oblique. One example of an orthogonal
rotation is the ‘varimax’ method,

K
V(Q) = fu(@), (3.23)
i=i

where fv is defined by

fo(@) = %i (%)4 - # i (g—)z (3.24)

=1 i=1
where m is the length of the vectors. The constant s; is chosen by the user. The
raw varimax rotation is obtained when s; is set to 1 for all ¢, and the normal
varimax rotation is obtained by setting s; equal to E;(:l(pij)Q.

The PCs corresponding to the new rotated eigenvectors are the dot products
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of the data points and rotated eigenvectors,
PCl =gl X. (3.25)

The pressure grids will be composed of combinations of the rotated eigenvec-
tors. Rather than compare grids to the rotated PCs, groups with similar PCs are
identified. Cluster analysis is a statistical tool used to classify multivariate data
into previously unknown groups. Cluster analysis is applied to the principal com-
ponents to divide the days into circulation patterns. The most common methods
for clustering data are hierarchical. In the beginning of the analysis, all days be-
long to their own group or cluster. A distance measurement is made between all
of the n groups. The two closest groups are then combined into one group to make
n — 1 groups. The process of clustering the most similar groups could continue
until all observations are grouped as one. The process is therefore stopped when
a specified distance threshold or minimum number of groups is reached.

Many options exist in clustering algorithms. The distance measurement be-
tween two vectors can be made in many ways: Fuclidean distance, squared dis-
tance, Mahalanobis distance, or Pearson correlzition are just a few of many. The

most common is the Euclidean distance (Wilks, 1995),

K« 1/2
diz = |lw: — =5 = {Z (wip — 33j,k)2} ; (3.26)
=]

where K is the dimeunsion of the vectors.

There are also many methods available to measure the distance between two
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clusters of vectors, G; and G5. Some of the common methods are:

¢ Single-linkage clustering (minimum-distance clustering)

The distance between G; and G5 is the smallest distance between any mem-

ber of G; and any member of G,

de, 6, = min[d;] . (3.27)

e Complete-linkage clustering (maximum-distance clustering)

The distance between (7 and G5 is the maximum distance between any

member of G and G,

dGl,Gz = max [dtj] . (328)

o Average-linkage clustering

The distance between G; and G, is the average Euclidean distance hetween

all possible pairs of points,

1 n1  n2
CanhG2 = p— ;;di}': (329)

where n; is the number of days in G, and n, is the number of days in G.

¢ Centroid clustering

The distance between (G; and (35 is the distance between the centroids or
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average vectors,

de,6. = 1Ta; = Ta || - (3.30)

o Ward’s minimum-variance clustering

This method makes G groups from G + 1 groups by minimizing the variance
between each day and the centroid of the cluster it belongs to, summed over

the GG groups. The variance over the G groups is determined as

G ng
V=0 flw— &l (3.31)

g=1 i=1

Yarnal (1993) indicates that no preference in clustering method has developed
in the literature and that the selection of clustering method is most likely less of
a priority than other user decisions made during eigenvector-based map-pattern
classification.

An important user decision which will directly affect the outcome of the classi-
fication scheme is the number of clusters to retain. There are no clear-cut rules to
follow when selecting the number of clusters. Scree plots of various output statis-
tics can be viewed and subjectively interpreted. The number of clusters retained
should be similar to the nunber of circulation patterns determined from analysis
by correlation-based map-pattern classification.

Each cluster represents days with similar circulation patterns that are differ-

ent from circulation patterns in other groups. The clusters cannot be physically
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mapped or interpreted. To physically interpret the clusters, the average of the
PCs can-be found and back transformed to find the gridded values. The resulting

patterns should be physically meaningful pressure patterns.

3.1.5 Optimization

In some mathematical problems it may be difficult to find an analytical solution
because of the complexity of the problem. Numerical optimization methods can
often be used to find solutions to problems that cannot be solved analytically.
Optimization is used to find a set of parameters, = [o, 21, - - -, Ty], that can
be defined in some way as optimal. Typically, optimization is used to find the

minimum of a function, f(z), as described by
min f{x). (3.32)
T
One of the simplest set of optimization techniques are line search methods. If
f(z) is a function, the iterative process can be setup such that

26 — 2 ® g k=0,1,2,-. (3.33)

‘To start, the iteration counter k is set to zero and an initial guess is made for
2% A search direction, dy, is chosen or calculated, and the step size oy which

minimizes the function in that direction is found by solving

min ¢la) = flop + ady). (3.34)
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Once the optimal ay is found, the parameters are then updated in Equa-
tion 3.33. The process is repeated to find the optimal set of parameters.

In the simplest case, the search could be done one variable at a time. However,
this would most likely lead to a long convergence time and many evaluations of
the objective function. An improvement is to search in the direction of steepest
descent. The direction of steepest descent is the gradient of the objective function
at zi. The gradient can be calculated as the unit vector of partial derivatives of
f(z) at zy.

This section presented a very brief introduction to optimization for the purpose
of understanding the methodology applied later in the optimization of the nearest
neighbor model. Many textbooks offer in-depth discussions of various optimization

techniques (Nocedal and Wright, 1999; Chong and Stanislaw, 2001).

3.2 k-Nearest Neighbor Resampling

Nearest neighbor resampling is a nonparametric method which resamples data from
a historical record. The nonparametric aspect of the model makes it appealing to
statistical downscaling. Parametric models, such as the regression methods or
weather generator models, reqﬁire extensive parameter estimation.

Tlie basic idea of the model is that if one compares the large-scale variables
that a GCM produces for a given day to the same variables of a historical record,
a similar day in the historical record can be found. Since there is a direct link

between the large-scale and local climates, the simulation day should exhibit a
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local climate similar to the historical day with a similar large-scale climate. The
local climate variables required for hydrologic modelling can be retrieved from the
selected historical day and used as the downscaled variables for the GCM simulated
day.

The comparison between the simulation day and the historical record is made
by using a vector of variables referred to as the feature vector. A distance mea-
surement is made between the feature vector and individual days in the historical
record. A group of the & most similar days is retained and one is selected to provide
the local climate variables. The process is repeated to produce a time series.

The following section describes the methodology of the k-nearest neighbor re-

sampling model.

3.2.1 Feature Vector

The feature vector, D, is used to compare the simulation day to historical days.

The feature vector is given as

Dg == [’Ul,’Ug,’Ug,...,Un], (335)

where n is the number of variables contained in the feature vector. The composition
of Dy can be varied from a few climate variables {(Buishand and Brandsma, 2001)
to many variables (Gangopadhyay et al.,, 2005). The selection of variables to
include in the feature vector is an important step in the development of the nearest

neighbor algorithm. Some multivariate statistical methods can be used to explore
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the relationship of large-scale atmospheric variables and local weather. Canonical
correlation analysis or circulation pattern classification and analysis are examples
of potential methods to explore relationships between the two scales of variables.
An investigation of different combinations of large-scale variables has been done
in some studies (Buishand and Brandsma, 2001).

The raw variables require some manipulation before they are used by the al-
gorithm. In the literature, data sets are often standardized to remove seasonality
and avoid differences in magnitude between different types of variables. In some
instances, principal component analysis is used to reduce the number of variables
used in the feature vector (Gangopadhyay et al., 2005; Buishand and Brandsma,

2001; Young, 1994).

3.2.2 Finding the k-Nearest Neighbors

A reduced set of days to resample from is determined by finding the nearest neigh-
bors to the current feature vector in state space. The neighbors are found by
calculating the distance between the feature vector of the simulation day and the
feature vectors of historical days. The k-nearest neighbors are the k days that are
most similar to the simulation day and therefore produce the smallest distances.
To reduce the effect of seasonal variation, Lall et al. (1996) divided the year
into four seasons and restricted the selection of neighbors to the season of the
simulation day. An alternative to dividing the year into seasons is choosing the
neighbors from a moving window around the calendar day of the simulation day.

The size of the moving window, W, can be varied. A window of 14 days was used
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by Gangopadhyay et al. (2005) and by Yates (2003). A larger window of 61 days
was used by Buishand and Brandsma (2001) and by W¢jcik and Brandsma (2003).

The number of neighbors to retain after the distances are calculated is a feature
of the algorithm which the designer can manipulate. However, the number of
neighbors retained can have significant effects on the algorithm outcome. The
number of nearest neighbors to retain was studied using general cross-validation
(GVC) by Rajagopalan and Lall (1999) and by Lall and Sharma (1996). The
goal of the GVC studies was to minimize the predictive mean square error of the
k-nn algorithm (Rajagopalan and Lall, 1999). In both studies, good results were

obtained when the value of k& was equal to the square of the sample size,

k=+/n, (3.36)

where the sample size, n, is th-e number of historical days that could be possible
neighbors (number of years of data x 1¥). Buishand and Brandsma (2001) varied
the number of neighbors using two, five, twenty, and fifty neighbors in their study.
Their study recommended a small &, but larger than two. A k-value equal to five
showed the best overall results. Young (1994) also found that a smaller k can
- produce good results.
The & nearest neighbors are searched for in the historical record by using a
distance metric. Two distance metrics are commonly used, a BEuclidean distance
metric (Gangopadhyay et al., 2005; Buishand and Brandsma, 2001; Rajagopalan

and Lall, 1999; Brandsma and Buishand 1998; Lall and Sharma, 1996), or a Ma-
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halanobis distance metric (Yates, 2003; Wdjcik and Buishand, 2003).
The weighted Euclidean distance, d;,, between two feature vectors, Dy and D,

can be calculated as

6tu =, sz (Uti - vui)27 (337)
i=1

where 7 is the number of variables in the feature vector, and w; is the weight given
to the variable v; (Brandsma and Buishand, 1998).
The Mahalanobis distance, dy,, between two feature vectors, D; and D, can

be calculated as

Su=1/(Di= DY B (D= D,), (3.38)

where B is the covariance matrix of the feature vector D;.

Pairs of feature vectors that have smaller distances represent days that have a
more similar climate than pairs having larger distance metrics. The historical days
within the selection window are ranked according to distance and the k nearest

neighbors are retained.

3.2.3 Choosing a Neighbor

Once the & nearest neighbors have been chosen, the next step is to resample one of
the neighbors. There are different methodologies to resampling a neighbor. Most
applications of the k-nn model have had an objective to generate synthetic time

series of weather for short-term forecasting. In these situations, the feature vector
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is composed of the station variables from the previous time step. If the nearest
neighbor is resampled every time, the model would only reproduce the existing
time series. To avoid this problem, more than one neighbor are retained.

The selection of which neighbor to use could be done randomly with equal
chance given to all neighbors. However, it is more common to use a weighting
scheme to favor days that have a smaller distance. There are two common ways
to assign weights to the neighbors during resampling. One possibility is to use a
decreasing kernel density function (Lall and Sharma, 1996, Brandsma and Buis-
hand 1998, Rajagopalan and Lall, 1999, Buishand and Brandsma, 2001, Wdjcik
and Buishand, 2003, Yates et al., 2003). The kernel function distributes the prob-

ability of the day being selected based on its rank in the set of sorted distances,

1/j )
T — 3 :1,...,k 339
S IRV (539

where p; is the probability that the day of rank j is resampled. A plot of the
probabilities assigned by a kernel density function with & = 20 nearest neighbors
is shown on Figure 3.7. This is a simple method that has been found to be
effective in the literature. Also, using a kernel allows the weights to be calculated
once rather than each time the algorithm is used to resample a neighbor because
the weights do not depend on the actual distances.

An alternative to pre-calculating the probability weights is to use a weight

function that depends on the distances. Gangopadhyay et al. (2005) use the
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Figure 3.7: Plot of the decreasing kernel density function.

bi-square weight function

(3.40)

where 0y is the distance to the k' neighbor after sorting. The advantage of this
form of probability weighting is that the probability is based on the actually sim-
ilarity of the historical day to the simulation day. The disadvantage is that the
weights depend on the distances and need to be calculated each time a day is
resampled, increasing computation time.

The application of the resampling algorithm for downscaling GCM data is

slightly different than the applications for weather forecasting. In weather fore-
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casting, the station variables for one day are often used to predict the variables for
the next day. The simulation day is a day that has actually occurred in the past,
and there is a danger that the model will reproduce spans of historical data exactly
as they occurred in the past if the nearest neighbor is resampled too frequently.
Therefore & must be selected large enough to prevent this from occurring. When
!downscaling a QCM, the GCM generates simulation days that are separate from
the historical record. Therefore, problems created by resampling the closest of the
nearest neighbors will not occur when downscaling GCM data. Retaining a small
number of neighbors when downscaling a GCM should not adversely affect model

performance.

3.2.4 Modelling Climate Change Scenarios

To evaluate a possible climate change scenario, GCM data for a particular scenario
will be used as input to the algorithm. Historical days with feature vectors similar
to the CCM simulation days will be resampled to generate a time series of down-
scaled climate data. A variety of GCM generated scenarios are available based on
different population growth predictions and consumption models. Another pos-
sible concept to simulate a climate change scenario is to strategically resample
data. Yates et al. (2003} adapted a k-nn algorithm to generate alternative climate
scenarios by using prescribed conditioning data. To apply this concept, years were
given an index number. For example, if it was desired to have a climate scenario
depicting warm moist springs with cool dry autumns, the weekly means for tem-

perature and precipitation would be used to create an index. The years would
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then be ordered based on a paired ranking method. The years with above aver-
age temperature and precipitation in spring and below average temperature and
precipitation in autumn would receive the highest ranking and would be given a
higher index. When using the k-nn algérithm, the years with higher indices are
biased to favor days from those years in the resampling procedure. The resulting
data would have the desired attributes of the annual climate cycle.

In this project, the first procedure of modelling climate change through the
use of GCMs will be employed. Data from the Canadian global climate model
(CGCM3.1/T47) will be used as input into the k-nn model. Although the indexing
methodology of Yates et al. (2003) will not be further explored, the methodology
does have merit for developing adaptation strategies, particularly for generating

data to test a system’s sensitivity against a particular climate trend.
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Chapter 4

Data

4.1 Canadian Daily Climate Data

Canadian Daily Climate Data (CDCD) is a set of archived weather station data
managed by Environment Canada. The data set includes data from over 10,000
weather stations across Canada. The variables recorded and the length of record
vary from station to station, with some records extending as far back_as 1830.
Many variables are available in the data set. Temperature and precipitation

variables are available at the daily time scale and include:

e Temperature: Temperatures are recorded 1.5 m above the ground in a box

called a Stevenson Screen.

— Maximum Temperature: The highest temperature of a day is recorded
as the maximum temperature.
— Minimum Temperature: The lowest temperature of the day is recorded

as the minimum temperature.
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~ Mean Temperature: The average between the maximum and minimum

temperatures is the mean daily temperature.

e Precipitation: Precipitation as rain, drizzle, freezing rain, freezing drizzle,
snow, and hail are all recorded as depth of water. Precipitation is recorded
using a standard Canadian rain gauge, a cylindrical container 40 cm high

and 11.3 cm in diameter.
¢ Snowfall: Measured as the depth of newly fallen snow.
e Depth of snow on ground: The depth of accumulated snow on the ground.

The CDCD data is available online through Environment Canada’s web site,
' or available on a CD-ROM (Environment Canada, 2000). Since the data set is
large, it has been divided into western and eastern data sets. The western Canada
data set contains climate data for all stations in Manitoba, Saskatchewan, Alberta,
B.C., Yukon and N.-W.T. The western data set is available on a separate CD-ROM.
The CD-ROM also includes software to extract the data and data description text
files.

One characteristic of the station measurement data is that it is common to have
missing entries in a data file. Some stations may have an almost complete data set,
while other stations, particularly stations in small towns or northern areas, may
have a high rate of missing data. Sometimes the missing entries may be infrequent
and only a day long, other times there may be lengthy spans of missing data of
months or years as equipment fails or stations are temporarily abandoned. Missing

data are marked with an entry of “M” or a numerical marker such as “-9999”.
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4.2 NCEP/NCAR Reanalysis 1

In a joint effort, the National Center for Environmental Prediction (NCEP} and the
National Center for Atmospheric Research (NCAR) generated the NCEP/NCAR
Reanalysis 1 data set in the late 1990’s (Kalnay et al., 1996). The project first
started in 1991 to correct jumps in climate data that occurred over time as a result
of changes in equipment and data assimilation methods.

The reanalysis data set is generated by assimilating multiple sources of data
by a consistent assimilation method throughout the data period. Some of the
sources of data include land surface, ship, rawinsonde, weather balloon, aircraft,
and satellite data. By using a consistent assimilation method, biases or jumps in
climate caused by changes in the assimilation method are minimized.

The data set is available on a grid with a resolution of 2.53° x 2.5° latitude
and longitude over the entire globe. Originally the reanalysis was available for 40
Sfeal‘s (1957-1996), but is currently available from 1948 to the present day. Data
are available at a temporal resolution of 4-times daily, daily and monthly values.

NCEP/NCAR Reanalysis 1 has a massive array of output variables. Some of
the variablesére available at multiple pressure levels. There are 17 pressure levels
available, including the 1000, 925, 850, 700, 600, 500, 400, 300, 250, 200, 150,
| 100, 70, 50, 30, 20, 10 mb geopotential heights. A small sample of the variables

available include:

o Air temperature (surface and at multiple pressure levels)

o Geopotential height (surface and at multiple pressure levels)
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Relative humidity (surface and at multiple pressure levels)

Omega (vertical velocity) (surface and at multiple pressure levels)

U-wind

V-wind

Precipitable water (surface)

Sea level pressure (surface)

Soil moisture

Variables within the NCEP/NCAR Reanalysis 1 data set are derived by differ-
ent methodologies. Some of the variables in the data set are assimilated through
interpolation directly from observations. Some variables are determined by the
model during the data assimilation and do not use any observation data. The
reanalysis gridded fields have been divided into four classes, depending on the rel-
ative influence of the observational data and the model on the specific variables.
Class A indicates that the analysis variable is strongly influenced by observed data
and is therefore the most reliable class. Class A variables include upper air temper-
ature and wind. The designation B indicates that, although there are observational
data that directly affect the value of the variable, the model also has a very strong
influence on the analysis value. Humidity and surface temperature are examples
of this category. Class C indicates that there are no observations directly affecting
the variable, so that it is derived solely from the model fields forced by the data

assimilation to remain close to the atmosphere. Class C variables include clouds,
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precipitation, and surface fluxes. Finally, the letter D represents a field that is
obtained from climatological values and does not depend on the model. Class D
variables include plant resistance and land-sea mask.

NCEP/NCAR Reanalysis 1 is retrieved in a data format called netCDF. NetCDF
(network Commeon Data Form) is an interface for array-oriented data access and
involves a library that provides an implementation of the interface. The netCDF
library also defines a machine-independent format for representing scientific data.
Together, the interface, library, and format support the creation, access, and shar-
ing of scientific data. A netCDF toolbogc is available for unpacking or creating
netCDF files in Matlab. The toolbox simplifies handling the netCDF files.

NCEP/NCAR Reanalysis 1 data is useful for calibrating and validating sta-
tistical models for downscaling GCM data. The NCEP/NCAR Reanalysis 1 data
are available at a similar resolution as GCM data. Also, many GCM variables are
available in the NCEP/NCAR Reanalysis 1 data set. Therefore, NCEP/NCAR
Reanalysis 1 data can be easily used as predictors in a statistical downscaling
model to generate data at weather stations. The simulated weather can then be
compared to the observed record to determine how well a model performs.

A second global reanalysis data set produced by NCEP and the Department
of Energy (DOE), called the NCEP-DOE Reanalysis 2, is an improved version
of the NCEP/NCAR Reanalysis 1 model that fixes errors and employs updated
parameterizations of physical processes. However, this data set is only available
for the period of 1979 to 2003. Due to this relatively short temporal span of data,

it was not used in this study.
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4.3 North American Regional Reanalysis

The NCEP North American Regional Reanalysis (NARR) data set is a very high
resolution reanalysis of the North American region (Mesinger et al., 2006). The
NARR project is an extension of the NCEP Global Reanalysis over the North
American region. The grid resolution is 349 x 277 which is approximately 0.3
degrees (32 km) at the lowest latitude. The higher spatial resolution is better
at capturing the regional hydrological cycle. The higher resolution also allows
for better data assimilation, including assimilated precipitation rather than model
derived precipitation as in the NCEP/NCAR Reanalysis 1 data set. NARR data
is downloaded in netCDF files, the same file format as NCEP/CAR Reanalysis 1
data and CCCma CGCM3.1 data.

NARR data is also available at a higher temporal resolution than NCEP/NCAR
Reanalysis 1 data. Data are available at time intervals of three hour, daily and
monthly means. This improves the model’s ability to capture the diurnal cycle in
variables.

Although the data has higher spatial and temporal resolution than NCEP /NCAR
Reanalysis 1 data, its utility is somewhat limited because it is currently only avail-
able for the 25-year period from January 1, 1979, to December 31, 2006.

Despite the NARR data set covering a relatively short time period, it may
have many useful purposes in climate change assessment studies. Choi et al.
(2007) evaluated the temperature and precipitation data from the NARR daia set
by comparison with selected weather stations in Manitoba and concluded NARR

data have good potential for use as input data for hydrological models. Choi et
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al. (2009) conducted a pilot study on evaluating the reliability of NARR data for
hydrologic modelling. They applied NARR data to calibrate a hydrologic model
and compared it to the calibration obtained with observed weather station data
in northern Manitoba. In their study, the use of NARR data for hydrological
modelling was found to be promising. Kim et al. (2008) conducted a study us-
ing NARR as a replacement for weather station data in the k-nearest neighbor
resampling downscaling model developed in this report to evaluate the effect of
climate change scenarios on the Winnipeg River Basin. A detailed description of

the downscaling- using NARR data can be found in Section 6.4.

4.4 CCCma CGCMS3.1/T47

The Canadian Centre for Climate Modelling and Analysis (CCCma) is a division
of the Climate Research Branch of the Meteorological Service of Canada. The
CCCma conducts research in coupled and atmospheric climate modelling, sea-ice
modelling, climate variability and predictability, the carbon cycle, and a number
of other areas. The CCCma has developed a GCM named the Canadian Centre
for Climate Modelling and Analysis (CCCma) Coupled Global Climate Model
(CGCM). The CGCM is a combination of two components, an ocean model and
an atmospheric circulation model. An in-depth description of the CCCma CGCM
can be found in Flato et al. (2000).

To date, there have been three generations of the CGCM. The third generation

model, CGCM3, is composed of a second generation atmospheric circulation model
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developed by the CCCma, the AGCM2, and the ocean component is an updated
version based on the GFDL MOM]1.1 code. Like other GCMs, the CGCMS3 requires
huge computational power to run. Originally, the CGCM3 was developed and ran
on a NEC SX/6 vector supercomputer. Modifications were made to the model to
allow it to be run on a distributed memory IBM computer system. This latter
version, called the CGCM3.1, supplies the data available on CCCma’s web site for
the third generation CGCM.

A vast array of variables are available from the CGCM3.1. The variables are
similar to the variables available form the NCEP/NCAR Reanalysis 1 data set.
The data are available for download as daily data (in netCDF format) for a variety

of emission scenarios, including:

e 20c3m: The IPCC 20 Century experiment for years 1850-2000, available at

daily time scale for 1961-2000.

¢ SRES A1B: The IPCC SRES A1B 720 ppm stabilization experiment for years

2001-2100.

e SRES B1: The IPCC SRES B1 550 ppm stabilization experiment for years

2001-2100.

o SRES A2: The IPCC SRES A2 experiment for years 2001-2100, initialized

from the end of the 20C3M experiment.

o COMMIT: The IPCC committed experiment for years 2001-2100, initialized
from the end of the 20C3M experiment with greenhouse gas concentrations

remaining constant throughout the 21% century.
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e PICNTRL: The IPCC pre-industrial control experiment.

For the 20c3m run, model output for 2-D variables is available for the years
1850-2000, while model output for 3-D variables is available for the years 1961-
1980, and 1981-2000. For the daily time scale of the future scenarios of A1B, B1,
A2 and COMMIT, the 2-D variables are available for 2001 to 2100, while 3-D
variables are only available for 2046-2065 and 2081-2100. The PICNTRL scenario
has model output for the five variables sea level pressure, precipitation, maximum
surface temperature, minimmum surface temperature, and surface temperature for
time slices of the years 1850-1950, 1951-2050, 2051-2150, 2151-2250, 2251-2350,
2351-2450, 2451-2550, 2551-2650, 2651-2750, and 2751-2850. All remaining 2-
D variables and 3-D variables are available for the years 1961 to 2000. For all
available data, the 3-D variables are available at the 200, 300, 400, 500, 600, 700,
850, 925, and 1000 mb geopotential heights.

During this study the scenarios used from the CGCM3.1/T47 model were the
20c3m (1961 to 2000), SRES A1B (2046-2065 and 2081-2100), SRES B1 (2046-2065
and 2081-2100) and SRES A2 (2046-2065 and 2081-2100)

Data for the CGCM3.1 are available in two different grid resolutions. The
T47 version has a grid resolution of approximately 3.75 degrees in latitude and
‘ longitude (Figure 4.1), and 31 levels in the vertical. The TG63 version has a grid
resolution of approximately 2.8 degrees latitude and longitude and 31 levels in the
vertical. At the time at this study, not all atmospheric variables were available
for the T63 version. Therefore the CGCM3.1/T47 model supplied the GCM data

used in this study.
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Figure 4.1: CGCM3.1/T47 grid.




Chapter 5

Data Analysis Results

5.1 Global Climate Model Validation

In this project, the GCM selected to provide the climate change scenario data was
the CCCma’s CGCM3.1/T47. This model was selected because daily data for a
multitude of emission scenarios are readily accessible to download free of charge.
Due to time constraints and the effort required to fully explore and downscale
a GCM data set, only one model was selected. In the future, to develop a full
ensemble of possible future climate scenarios, it is recommended that other models
be adapted to study climate change in the Canadian Prairies.

When selecting a GCM for climate change assessment, one should have confi-
dence that the output of the GCM is realistic. To address this, the present section
will examine the means of the CGCM3.1/T47 data to be used in tlie downscaling

model.

The mean values for NCEP/NCAR Reanalysis 1 and the CGCM3.1T/47 data
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grids for surface temperature, temperature at 500 mb, temperature at 850 mb,
850 mb geopotential height and 500 mb geopotential height are shown on Figure 5.1
to Figure 5.5. The same mean values of variables were also plotted for the GCM
output of future climate scenarios to validate the GCM output is consistent with
the general trends presented in the literature. As an example of the future GCM
data, the results from the A2 scenario are included in each of the figures for the
2046 to 2065 and 2081 to 2100 time slices.

"The results for surface temperature are shown on Figure 5.1. Cooler temper-
atures are present for the 20c3m data compared to the NCEP/NCAR Reanalysis
1 data in some areas. The two data sets deviate the most in the north east and
southwest portions of the plots. In the middle of the study area, the 20c3m data
matches quite well to the NCEP/NCAR Reanalysis 1 data. For the A2 data, as
expected the 2046 to 2065 data was warmer than the 20c3m data, and the 2081 to
2100 data was warmer than the 2046 to 2065 data. Future surface temperatures in
the CGCM3.1/T47 data are consistent with the literature reviewed in Section 2.

"The results for temperature at the geopotential height of 850 mb are shown on
Figure75.2. The 20c3m data has a similar pattern of contours as NCEP/NCAR
Reanalysis 1 data; however in the middle and southern regions of the study area,
the 20c3m has warmer temperatures by as much as 2°C. This is a fairly large
temperature magnitude of difference, the same as between the different einission
scenarios. As in the surface temperature results, the temperatures continually
increase with time.

The results for temperature at the geopotential height of 500 mb are shown
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HCEP 1851-2000 CGCM3 20c3m 1961 - 2000

255 260 285 270 215

CGLM3 A2 2046 - 2065 CGCM3 AZ 2081 - 2100

Figure 5.1: Mean values of surface temperature.

on Figure 5.3. The same magnitude of biases in temperature that were present at
the 850 mb level are present at the 500 mb level. However, the 20c3m data is 1°C
to 2.5°C cooler than the NCEP/NCAR Reanalysis 1 data. The largest biases are
present in the southern region of the study area. The temperatures continually
increase with time.

The results for the mean 850 mb geopotential height are shown on Figure 5.5.
In general, the mean values of the 850 mb geopotential height are just above
1400 m above sea level. In the southern portion of the study area, the 20c3m and
NCEP/NCAR Reanalysis 1 data match well, however in the northern areas the
20c3m 850 mb geopotential height is up to QG m lower than the NCEP/NCAR

Reanalysis 1 data. As temperatures increase, air expands and raises the distance
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HCEP 1861 -~ 2000 CGCh3 20c3m 1961 - 2000

CGCM3 A2 2046 - 2065 CGCM3 AZ 2081 ~ 2100

Figure 5.2: Mean values of temperature at the 850 mb geopotential height.

to geopotential height levels. In the A2 scenarios, the mean geopotential height
increases slightly with time, which is consistent with expectations.

The results for the mean 500 mb geopotential height are shown on Figure 5.4.
The mean values of the 500 mb geopotential height in the study area are generally
around 5500 m above sea level. The 20c3m mean values are 25 to 50 m lower
than the NCEP/NCAR Reanalysis 1 mean values. The difference between the two
data sets for the current climate period are approximately equal to the difference
between the 2046 to 2065 and 2081 to 2100 data sets of the A2 scenario.

The analysis of the mean values of the NCEP/NCAR Reanalysis 1 data, and
20c3m scenario output from the CGCM3.1/T47 show that for the current pe-

riod, the CGCM3.1/T47 has slight biases in the variables in many areas. Overall,
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{CEP 1561-2060 CGCM3 20c3m 1981 ~ 2000

255 260 265 270 275

CGCMI A2 2046 - 20685 CGCM3 A2 2081 - 2100

255 250 285 270 275

Figure 5.3: Mean values of temperature at the 500 mb geopotential height.

patterns in var.iables are reproduced very well, as seen in the contour lines of
the various plots. The 20c3m output should be consistent with NCEP/NCAR
Reanalysis 1 data. The biases in the CGCM3.1/T47 can be easily dealt with
though standardization of the data. The NCEP/NCAR Reanalysis 1 and the
20c3m CGCM3.1/T47 output will be standardized so that each grid point has a
mean of zero and a standard deviation of one.

When standardizing the GCOM output from future emission scenarios, the bi-
ases present between these outputs and the 20c3m scenario must be preserved.
These biases hold the information necessary to evaluate climate change trends.
To preserve the bias, future scenarios will be standardized using the mean and

standard deviation of the 20c¢3m scenario.
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255 280 265 270 275

CGCM3 A2 2046 ~ 2065 CGCH3 A2 208% - 2100

Figure 5.4: Mean values of 850 mb geopotential height.

To determine if biases are present in the temporal dimension of the 20c3m
model output, the surface temperature data for Thompson, Manitoba, were ex-
tracted for both the 20c3m output and NCEP/NCAR Reanalysis 1 data and com-
pared to the mean monthly observed temperature from Environment Canada’s
CDCD data set. The CGCM3.1/T47 and NCEP/NCAR Reanalysis 1 data were
interpolated from the nearest grid points to the location of Thompson. The results
-of this exercise are shown on Figure 5.6.

Biases are present for both data sets, and these biasgs are not consistent
throughout the year. For the 20c3m output, monthly biases range from under-
estimation by 1.6°C in the month of May, to an overestimation of 4.9°C in the

month of December. In comparison, the bias of the NCEP/NCAR. Reanalysis 1
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{CEP 1861 ~

CGCM3 26c3m 1861 - 2000

CGCM3 A2 2046 - 2055 CGOMI A2 2081 - 2100

Figure 5.5: Mean values of 500 mb geopotential height

ranged from an underestimation of 1.7°C in the month April, to an overestimation
of 2.1°C in the month of January. While biases are present in both data sets com-
pared to the observed monthly means, large biases exist for the CGCM3.1 /T47
20c3m output in the winter months of November to January.

To measure the significance of the biases in monthly means, t-tests were admin-
istered on the mean temperatures of July and December. NCEP/NCAR Reanal-
ysis 1 monthly means were compared to the observed means, and CGCM3.1 JT47
20c3m monthly means were compared to the observed means. Two months were
selected to check, July and December, for a total of four t-tests. The null hypoth-
esis H == 0, that the NCEP/NCAR Reanalysis 1 or CGCM3.1/T47 20c3m had

the same mean values as the observed temperature was rejected for both data sets
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Comparison of Thompson Temperature 1970-2000
20 T T T T H T S T H T T T

Mean Monthly Temperature (°C)

—>— Observed
m20 g —o— NCEP/NCAR Reanalysis 1
3 —a— CGCMB3.1/T47 20c3m

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Month

Figure 5.6: Mean monthly Thompson surface temperature comparison.

for July and December at the 1% significance level. This proves that the biases
in NCEP/NCAR Reanalysis 1 and CGCM3.1/T47 20c3m output are indeed sig-
nificant. To complicate the issue, the biases range greatly from month to month
between overestimation and underestimation. Applying a global bias correction to
the data would correct the annual average, but would actually amplify the bias of
‘some months.

From the above discussion, it is obvious that any bias correction must account
for the time-varying bias. When standardizing data, a daily value should be used
for means and standard deviations. By using the daily statistics for each of the
individual grid points, the resulting standardized data will be bias {ree in a spatial

and temporal dimensions.

80



5.2, CIRCULATION PATTERN CLASSIFICATION

After bias correction by standardization, the CGCM3.1/T47 20c3m output
should provide accurate representation of the current climate when downscaled.

The downscaled results should better represent the monthly mean statistics than

the original CGCM3.1/T47 grid points.

5.2 Circulation Pattern Classification

Circulation pattern (CP) classification was used to explore the relationships be-
tween large-scale and local climatg variables, or more specifically, the ability of
circulation patterns derived from geopotential height data to influence the occur-
rence and quantity of precipitation at a weather station.

Two methodologies of classification were applied, correlation-based classifica-
tion and eigenvector-based classification, as described in the methodology section.
In both applications the 500 mb geopotential height field over the area shown
on Figure 5.7 was considered. The precipitation data were from Environment
Canada’s Thompson weather station. Thirty seven years of precipitation data
were available from January 1, 1967 to December 31, 2003. NCEP/NCAR Re-

analysis 1 data were retrieved for the same time period.

5.2.1 Correlation Classification

A Matlab function was created to perform the correlation-based map pattern clas-
sification methodology described in Section 3.1.4. The Pearson product-moment

correlation threshold was set to 0.6, the middle of the range of 0.5 to 0.7 sug-

81




5.2, CIRCULATION PATTERN CLASSIFICATION

i,
*‘b“&n
* » . .
L * * $
.,
LI,
e
- )3 3
i H » L 4 Ld
| S
l # [ [}
-1\9
* \-,5 * .
\v\\\
Al
* L] ',3\ »

Figure 5.7: NCEP data grid and Thompson weather station.

gested by Yarnal (1993). Trial-and-error exploration led to ten circulation pattern
categories.

The computation of the correlation matrix demands large amounts of computer
memory. Without precautions for memory management during programming, the
computational demand can limit the length of record used to find the key days.
To make the classification possible for all 37 years of station data available, sparse
matrices were used to store the position of correlafions above the threshold value.

The classification algorithm was applied to the 37 years of geopotential height
data. The selected key days are shown on Figure 5.8. Each key day shows a
common pressure pattern that is significantly different from the other key days.
Using these key days, each of the ten categories has a sufficiently large number of
members.

The goal of the classification was to divide days into categories based on their
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Figure 5.8: Key days of the correlation-based map-pattern classification.
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Table 5.1: Correlation-based map-pattern classification statistics.
CP P(CP) P(Precip Occurs) Mean (mm) Std. (mm) Skew.

1 0.14 0.44 4.41 6.45 2.89
2 0.09 0.31 . 2.47 3.82 3.67
3 0.07 0.47 4.37 6.53 3.60
4 0.12 0.27 2.61 4.20 3.30
5 0.10 0.39 2.88 4.83 4.92
6 0.09 0.29 2.00 2.95 3.15
7 0.15 0.48 5.19 7.86 2.93
8 0.09 0.42 2.55 3.50 3.37
9 0.07 0.27 2.51 4.74 5.73
10 0.08 0.42 3.87 6.56 4.26
Total 0.39 3.63 5.93 3.79

similarity to common pressure patterns. The potential usefulness of the division of
days into categories is to also find patterns in the local precipitation based on these
categories. The most important variable for hydrologic modelling is precipitation.
The distribution of precipitation amounts and the probability of precipitation for
the days in each category were calculated for the Thompson weather station. Ta-
ble 5.1 shows the results for each of the CPs, including the probability of the CP
occurring, the probability of precipitation, along with the first three moments of
the distribution of daily precipitation accumulation.

Table 5.1 shows that each of these key statistics vary among the CP categories.
On average, for any given day the probability of precipitation occurring is approx-
imately 0.39. For CP 7 the probability of rain is 0.48, and for CP 9 it is 0.27. This
is useful information when attempting to predict the occurrence of rainfall. The
circulation patterns in geopotential héight influence occurrence of precipitation at
a weather station.

Fach CP also has a different distribution of daily rainfall accumnulation. The

84




5.2. CIRCULATION PATTERN CLASSIFICATION

distribution statistics show that precipitation characteristics vary greatly between
the CPs. For example, the days in the CP 7 category are likelier to have larger

accumulations than the days in the CP 2 category.

5.2.2 Eigenvector Classification

A Matlab function was created to perform the eigenvector-based map pattern
classification methodology in Section 3.1.5. The number of classification categories
was set equal to ten categories, the same number used during the correlation-based
classification.

The memory available to complete the clustering step was a factor in the
method selection. Wh_en classifying the 37 years of data (13,505 days) simul-
taneously, Matlab (32-bit Windows Xp version) did not have enough memory to
allow the variables to be stored dm‘ipg the calculations for the Ward and centroid
method algorithms, even with many memory saving precautions taken. Therefore,
the average linking method was used. The average linkage method proved to be
time and memory efficient.

To view the physical meaning of the clusters, the mean of the grids of stan-
dardized geopotential heights in each category were calculated. The results are
shown on Figure 5.9. The patterns derived from the eigenvector-based classifica-
tion do not appear as unique as the key days of the correlation based classification,
which is likely due to the fact that the key days are an actual single day of the
NCEP/NCAR Reanalysis Data 1 data, while the data on Figure 5.9 are averages

of hundreds or a few thousand days. The circulation patterns each show different
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Table 5.2: Eigenvector-based map-pattern classification statistics
CP  P(CP) P(Precip Occurs) Mean (mm) Std. (mm)} Skew.

1 0.07 0.38 4.44 6.66 2.97
2 0.01 .62 7.44 10.20 2.46
3 0.11 0.31 2.68 4.68 4.95
4 0.13 0.34 2.49 ‘ 3.95 3.53
) 0.30 0.45 3.86 6.11 3.61
6 0.01 0.32 3.81 6.17 2.96
7 0.02 0.24 2.38 4.12 3.08
8 0.03 0.34 2.62 4.00 2.77
9 0.23 0.35 3.72 6.13 4.09
10 0.09 0.39 3.65 5.22 3.07
Total 0.39 3.63 9.93 3.79

areas of high and low pressure systems. Some patterns are cyclonic, others anti-
cyclonic, which results in each circulation pattern having a unique probability of
precipitation occurrence and distribution of precipitation quantity.

The distribution of daily precipitation accumulations and the probability of
precipitation occurrence for the days in each category were calculated for the
Thompson weather station and the results are shown in Table 5.2.

As in the circulation pattern classification, different circulation patterns lead
to higher (CP 2) or lower (CP 7) probabilities of precipitation occurrence. The
distribution moments also vary between circulation patterns. CP 2, with a 0.01
probability of occurring, has a precipitation distribution with high mean and stan-
dard deviation, meaning this pattern may be associated with rare but heavy rainfall

events.
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Figure 5.9: Mean values of the eigenvector-based map-pattern classification.
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5.2.3 Circulation Pattern Classification Summary

Through circulation pattern classification, it was shown that patterns in the 500 mb
geopotential height influence both the occurrence of precipitation and the distribu-
tion of precipitation quantities. Therefore, geopotential height fields can provide
valuable informatioﬁ when included in the large-scale variables used in downscaling
models. As a result of the preceding exercise, grids of 500 mb and 850 mb geopo-
tential heights will be incorporated into the k-nn downscaling model developed in
Chapter 6.

As a side note, although it is not in the scope of this project, a downscaling
model could be derived based on the circulation pattern classification completed
in this section. Section 2.3.2 provides more information on weather typing dowh— '

scaling models.

5.3 Canonical Correlation Analysis

One of the difficulties of downscaling climate data is finding meaningful relation-
ships between large-scale and local variables. There are many questions regarding
the selection of large-scale variables. Canonical correlation analysis was used to
evaluate the correlations between large variables and local variables, and more
specifically to determine if large-scale temperature and geopotential height data
are correlated to local temperature and precipitation observations.

The goal of exploring the large and local-scale variables was to justify the se-

lection of variables by producing canonical variates with high correlations. It was
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assumed that since temperature usually changes gradually over large distances,
the large-scale temperature should be highly correlated with local temperatures.
Also, it was assumed that since circulation pattern classification showed that pre-
cipitation is related to geopotential height data, geopotential height data should
be correlated to local precipitation occurrence.

For large-scale variables, the 850 mb and 500 mb geopotential heights will
be used along with temperature at the surface, 850 mb geopotential height and
500 mb geopotential height. NCEP/NCAR. Reanalysis 1 data for these variables
were extracted for the grid shown on Figure 5.7. NCEP/NCAR Reanalysis 1 data
were trimmed to match the temporal range of the station data. To remove seasonal
influences in the data, each grid point was standardized using a daily mean and
standard deviation smoothed using Fourier series. Since each of the data grids
contain many grid points, principal component analysis was used to reduce the
number of variables.

To determine the correlations with local temperature, the temperature data
at the Thompson and The Pas Environment Canada weather stations were ob-
tained for the years available at both stations, 1970 to 2000. Each station was
standardized using a daily mean and standard deviation smoothed using Fourier
series.

The results from the CCA with the first 24 principal components from the large-
scale data and the daily temperature from the two weather stations is shown in
Table 5.3. The weights from the first set of canonical variates for the temperature

data, by, are approximately equal in magnitude and are hoth positive. Therefore,
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these sets of variate represent the magnitude of the temperature being above or
below normal for the calender day. The canonical correlation of 0.93 for these
two sets of variates demonstrates that the degree to which the stations are cooler
or warmer than normal is explained very well. The second set of variates has
weights of opposite sign applied to the two weather stations. The second set of
variates therefore describes the temperature difference between the two stations.
The canonical correlation of 0.56 demonstrates that the principal components also
explain a portion of the temperature difference between the two stations.

The second application of CCA was to determine if correlations exist between '
the large-scale variables and station measurements of precipitation. Since precip-
itation is a stochastic process and the occurrence at a point is diflicult to predict,
more weather stations were added to the CCA. A total of six Environment Canada
weather stations in Northern Manitoba were used, including Thompson, The Pas,
Gillam, Grand Rapids Island Lake, Lynn .Lake, and Norway House. The pre-
cipitation data were set to 1 or 0: days with precipitation greater than 0.2 mm
were coded as 1, and days with less than.0.2 mm were codes as to 0. With six
weather stations the results, shown in Table 5.4, can be difficult to interpret phys-
ically, however the first set of canonical variates provide some useful information.
With all negative weights assigned to the weather stations, the first set of variates
describes the occurrence of precipitation at all stations. Given the stochastic na-
ture of rainfall, the canonical correlation of 0.58 demonstrates that the large-scale

variables describe a large proportion of the local rainfall occurrence.
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Table 5.3: Canonical correlation temperature analysis results.

1 2

an 0.0853 -0.0008
0.0453 -0.0095
0.0127 -0.1131
-0.0106 -0.0440
0.0344 0.0671
-0.0249 -0.0747
-0.0758 -0.0394
-0.0252  0.0091
-0.0005 -0.0862
0.1008 -0.0414
0.0358 -0.0846
0.0071 -0.0060
-0.0349 -0.1263
-0.0209 -0.1023
0.0247  -0.0650
0.0171  -0.0286
-0.0355  0.0220
-0.0625 0.0186
-0.1038 -0.1538
0.0180 0.1814
-0.0186 0.1614
0.0382 -0.0125

- -0.0664 0.0822
0.0613 -0.1333
04125 -0.2342

bn  0.5701 -1.8595
0.4542  1.8938
rem  0.9269  0.5591
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Table 5.4: Canonical correlation precipitation analysis results.
1 2 3 4 5 6 7
a, 0.0168 0.0035 0.0413 -0.0067 0.0087 0.0310 0.0284
-0.0682 -0.0269 0.0414 -0.0171 -0.0367 0.0040 0.0100
0.0094 0.0284 0.0483 0.0437 -0.0128 -0.0141 -0.0496
-0.0162 -0.0124 0.0102 -0.0411 0.0173 -0.0306 0.0159
-0.0675 0.1689 -0.0522 0.0430 -0.0115 -0.0214 -0.0267
-0.0219 0.0327 -0.0971 0.0061 0.0108 0.1132 0.0178
-0.0884 0.0017 -0.1292 -0.0236 -0.0692 -0.1346 0.0858
0.0830 0.0166 -0.0623 0.0489 0.0516 -0.0100 0.0653
-0.0729 -0.0642 -0.0240 0.1687  0.0730 0.0650 0.0645
-0.0149 0.0127 -0.0120 -0.1638 0.1923 -0.0886 -0.0720
-0.1569 -0.0571 0.1325 0.1287 0.0339 -0.1182 -0.0413
0.0731 -0.1296 -0.0726 -0.0306 -0.0399 -0.1065 0.1009
-0.0993 -0.1115 0.0481 0.0520 0.1912 0.0059 -0.0803
0.2580 0.0865 0.0647 -0.0465 . -0.1060 -0.1103 -0.0282
0.0706 0.1160 0.0719 0.0039 -0.1799 -0.1237 -0.0661
0.1679 -0.0855 -0.0504 0.2452 -0.0414 -0.0573 -0.1903
0.0378 -0.2501 -0.1742 0.1208 0.0641 0.0631 -0.1787
0.0371 0.1149 -0.1662 0.1125 0.1377 0.0984 0.0484
-0.1039 -0.0784 -0.1096 -0.1307 0.0624 -0.0132 -0.3415
-0.1639 0.2596 0.0690 -0.1047 0.0855 0.1176 -0.2020
0.0559 -0.0466 -0.0556 -0.3544 -0.2624 0.1577 -0.1657
0.1035 0.1191 0.0942 -0.0744 0.4368 -0.3555 0.0360
-0.0026 -0.0482 -0.1089 -0.2435 0.1152 0.1894 -0.2916
-0.0529 0.2538 0.1155 0.0046 0.1276 0.2022 0.2096
b, -0.3947 0.0712 0.3234 0.1975 15566 1.1917 1.7612
-0.6351 1.1588 0.4175 -1.7662 -0.2694 -0.6398 -0.5304
-0.2610 -0.8271 -0.6697 -0.8963 -1.4780 -0.2109 1.5834
-0.6867 0.8045 -1.5168 1.3325 -0.5419 0.0234 -0.3330
-0.5445 -0.3749 14551 1.2211 -1.0922 -0.7980 -0.1591
0.0418 -0.3953 0.4585 -0.3993 -0.4290 2.0457 -1.5434
-0.5287 -1.0613 -0.4739 -0.1575 1.6316 -1.2331 -0.9464
rem 05775 03389 0.2613  0.0971  0.0776  0.0686  0.0553




Chapter 6

k-Nearest Neighbor Resampling

Results

6.1 Single-Site Application

The first application of the nearest neighbor downscaling model was designed for
a weather station at Thompson, Manitoba. This application serves as a simplified
pilot study of the k-nn model. The lessons learned from this application will be
important for the next steps of applying the k-nn to multiple sites in the Nelson ‘

River basin and the Winnipeg River basin.

‘6.1.1' Data

In the application presented here, GCM data was downscaled to produce time
series of minimum daily temperature, maximum daily temperature, and daily ac-

cumulated precipitation for the weather station at Thompson, Manitoba, Canada
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(55°48’N, 97°51°W). Thirty seven years (1967-2003) of data were available for the
Thompson weather station. Therefore the historical record from which to resample
was limited to this time period.

The NCEP/NCAR Reanalysis 1 supplied the historical atmospheric data and
the Canadian Daily Climate Data (CDCD) data set provided the historical station
data for the Thompson weather station. The CCCma coupled GCM, CGCM3.1/T47,
was selected to provide the simulation data for a 20th century control run (20c3m)
and the IPCC SRES A2 climate change scenario. Five runs of 40 years (1961-2000)
were available from the 20c3m experiment, and three runs of 20 years (2081-2100)
were available for the A2 model run.

To adequately capture the large-scale circulation patterns, a large spatial area
was selected over western Canada. The average surface temperature, 500mb tem-
perature, 850mb temperature, 500mb geopotential height, and 850mb geopoten-
tial height variables were used as the large-scale variables. The grids for the
NCEP/NCAR Reanalysis 1 and CCCma data sets have slightly different resolu-
tions, 2.5° x 2.5° and 3.75° x 3.75° , respectively. To make the data sets consistent,
the NCEP/NCAR Reanalysis 1 data was linearly interpolated onto the CCCma
grid points. The data cover the region on Figure 6.1 and consist of 60 data points.
Canonical correlation analysis and circulation pattern classification were used in
Chapter 5 to establish that relationships exist between the large-scale variables
and the Thompson weather station data.

NCEP/NCAR Reanalysis 1 data and the 20c3m experiment data were stan-

dardized using the mean and standard deviation from each data set to remove
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Figure 6.1: CGCM3.1/T47 data grid and Thompson weather station.

slight biases between the data sets for the current climate. The A2 scenario data,
were standardized using the means and standard deviations from the 20¢3m data
to preserve the biases created in the model due to changed atmospheric loadings.

With each of the five climate variable grids containing 60 data points, the
number total number of data to compare between NCEP/NCAR Reanalysis data
and GCM data totaled 300. Since a high degree of correlation exists spatially in
each variable, and also between variables, principal component analysis was used
to reduce the number of variables in the feature vector by removing redundant
information (Gangopadhyay et al., 2005; Buishand and Brandsma, 2001; Young,
1994). The first 24 principal components were retained and explain over 96% of the

variation contained in the original data sets. The eigenvectors calculated from the
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NCEP/NCAR Reanalysis data were used to calculate the principal components
for the GCM data sets to maintain the same modes of variation explained by the
principal components of the GCM data as the NCEP/NCAR Reanalysis principal

components.

6.1.2 Model set-up and optimization

Although the model does not require parameterization of specific relationships
between large-scale and local variables, some components of the model should be
adjusted to optimize the ability of the model to estimate the station data. The
number of neighbors to retain, k, the window size, W, and the weights w; can all
be adjusted to improve model performance.

To optimize the model, a cross-validation method was set up in which the model
was used to simulate the historical station data. The NCEP/NCAR Reanalysis
1 data for one year was considered as simulation data and removed from the
historical record. Station data were then generated for this year of NCEP/NCAR
Reanalysis 1 data. This process was repeated for each of the 37 years of data.

An objective must be specified to optimize the model. Since estimation of both
temperature and precipitation are important, the objective considered here was to
optimize the correlation between the estimated and observed daily temperature
anomaly, and the correlation of estimated and observed accumulated winter pre-
cipitation (October to April) at the annual scale. Precipitation was limited to
the winter season because the heavy convective rainfall that occurs in the summer

was found to be difficult to predict as it is a local phenomenon rather than driven
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by synoptic scale climate. Furthermore, yearly runoff in the Nelson River and
most other Canadian river systems is largely dominated by spring melt water from

accumulated winter precipitation. The objective function for this application is

max f(W, k, w;) = |l + [pul, (6.1)

where u refers to maximum temperature anomaly and v refers to winter precipi-
tation accumulation.

‘The model was initialized using equal weighting to each principal component
and k& set to retain only the most similar nearest neighbor. The window width, W,
was optimized using trial and error. From Figure 6.2 it was observed that a window
size of 21 days leads to the maximum model performance. The weighting vector, w,
was optimized using the Matlab Optimization Toolbox. The software employed a
gradient line search optimization methodology to optimize the objective function.

The number of nearest neighbors to retain was varied and the best results dur-
ing the cross-validation were obtained when only the first nearest neighbor was
retained. However, to encourage variability in the selection process when simulat-
ing with GCM data, k was set to retain the ten nearest neighbors. Inereasing the
number of nearest neighbors only slightly affected the validation results.

The model was .able to reproduce the time series of minimum and maximum
temperature quite well, with correlations of 0.93 and 0.95 respectively for the
scatter plots on Figure 6.3. The stochastic nature of rainfall occurrence made

daily prediction of precipitation difficult, especially for convective storms in sum-
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Figure 6.2: Objective function optimization for W.

mer months. The model was able to adequately capture season trends in winter
accumulation with a correlation of 0.65 for the data shown on Figure 6.4. The
ability of the model to simulate the winter precipitation storage is important, as
the spring melt is the most important feature of the annual hydrograph. In some
years, the model significantly over-estimated or under-estimated the accumulation
of precipitation, such as in 1981, 1986, and 1997. In most years the model is
able to capture the seasonal trends in precipitation quite well. Table 6.1 shows the
model produced similar mean amounts of winter and annual precipitation and also
contained similar amounts of variation. The year 1979 is omittgd due to numerous

missing data entries in the observed record.
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Figure 6.3: Validation scatter plots of simulated and observed daily minimum
and maximum temperature at Thompson.
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Figure 6.4: Annual accumulation of winter precipitation at Thompson weather
station.
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Table 6.1: Cross-validation precipitation statistics.
Observed Simulated

(mm)  (wm)
Winter mean 185 176
Winter standard deviation 38 46
Annual mean 512 504
Annual standard deviation 85 89

6.1.3 Model Application

The model was employed with data generated by the CGCM3.1/T47 to evaluate
changes in temperature and precipitation.

Monthly averages of maximum temperature and accumulated precipitation are
shown on Figure 6.5. As expected, the downscaled 20c3m (1961-2000) GCM runs
produced mean temperatures very close to the observed data. The SRES A2 sce-
nario (2081-2100) produced downscaled temperatures 3 to 5°C warmer in summer
and 5 to 8°C warmer in the winter. The increase in temperature experienced in
the spring and fall seasons will shorten the winter season and reduce the length of
time precipitation is able to be stored as snow.

The 20c3m experiment led to downscaled precipitation results that slightly
under-estimate monthly preeipifation accumulation. The A2 scenario led to pre-
cipitation that was similar to the observed and 20c3m data, except for the months
of June and July that had significantly less precipitation.

The statistics for winter and annual precipitation in Table 6.2 show that both
GCM simulations provide atmospheric conditions that lead to reduced precipita-
tion at the weather station. The 20c3m experiment underestimates winter precipi-

tation by 20% and annual precipitation by nearly 10%. The A2 scenario leads to a
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Figure 6.5: Monthly averages of maximum temperature and precipitation accu-
mulation for observed and GCM simulated scenarios.

Table 6.2: Observed and downscaled Thompson precipitation.
Observed 20c3m A2 (1981-2100)

(mm) (mm) (mm)
Winter mean 185 148 144
Winter standard deviation 38 34 27
Annual mean 512 475 430
Annual standard deviation 85 99 72

decrease of 22% in the winter season and an annual decrease of 16%. Although the
20c3m experiment led to an underestimation of precipitation, the further reduction
mn precipitation in the A2 scenario simulation shows that future precipitation may
decrease at the Thompson weather station.

The most significant decrease in future precipitation occurs in the month of July
(Figure 6.5). A more detailed investigation was made into the precipitation of J uly
and August. Frequency distributions for these two months are shown on Figure 6.6.
The observed and 20c3m ( 1961-2000) simulations experience similar frequency
trends in both months. For the month of July, the frequency distribution for the
downscaled SRES A2 (2081-2100) simulation shows an increase in the frequency of

dry days and a reduction in frequency for all rainfall events, causing a significant
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Figure 6.6: Monthly frequency distribution of daily precipitation accumulation.

decrease in mean accumulation for July. A less exaggerated increase in dry days
occurs in August, where there is a decrease of small events less than 10 mm, but an
increase in events with more than 10 mm. The increase in larger events offsets the
increase in dry days and maintains the monthly mean accumulation at its current
level. Cool temperatures are usually experienced during rainy days; therefore the
decrease in small events may be attributed to warmer future temperatures. Since
convective rainfall requires warmer temperatures, the {requency of large events in
the future may not decrease to the same extent as small events.

The combination of increased temperature, shortened winter season, and re-

duced precipitation will certainly lead to changes in streamflow.

6.1.4 Discussion

A k-nearest neighbor resampling algorithm was developed to generate data at the
Thompson weather station by downscaling large-scale atmospheric data. Opti-

mization of some model parameters was necessary to improve the model perfor-
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mance. Atmospheric data generated by the CGCM3.1/T47 were used as input
to generate weather data for climate change scenarios. The downscaled A2 sce-
nario (2081-2100) resulted in a future climate at Thompson that is expected to be
warmer throughout the year and slightly drier.

The next application of the k-nn model will be to downscale GCM data to
produce weather variables at both the Thompson weather station and an addi-
tion weather station at The Pas, Manitoba. The lessons learned from this pilot

application that will improve the methodology in the next application are:

e Large-scale grids of temperature and geopotential height atmospheric vari-
ables can be downscaled to adequately reproduce historical daily temperature

and seasonal precipitation trends.

e Optimization of the model parameters &, w;, and W can be used to improve

the ability of the model to reproduce historical climate.

e A k-parameter equal to one resulted in the best model performance. How-
ever, it is recommended to use a larger k, & = 10 for example, to increase

model variability while generating downscaled GCM data.

e Historical temperature is reproduced well without significant optimization.

Future optimization should focus on precipitation.

The work presented for this single site application of k-nn was formulated into
a conference paper presenting the optimization methodology for the model and
also displaying the ability of the k-nn model to downscale GCM data (Lee and

Rasmussen, 2007).
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6.2 Nelson River Multi-site Application

In this application, the k-nn model will be used to generate variables for hydro-
logical modelling in the Nelson River Drainage Basin. The hydrological model
that will use the downscaled data is the SLURP hydrological model. The SLURP

model requires the following variables at the daily time scale:

Mean temperature,

Depth of precipitation,

Relative humidity, and

Solar radiation or bright sunshine hours.

6.2.1 Data

The same large-scale input variables that were used in the single-site application
will be used for this application. The input variables are the average surface
temperature, 500mb temperature, 850mb temperature, 500mb geopotential height,
and 850mb geopotential height over the grid shown on Figure 6.1.

"The historical record to sample from was limited to 31 years, from 1970 to 2000.
These were the years where all variables were available for both of the Thompson
(55°48'N, 97°51'W) and The Pas (53°58'N, 100°6’W) weather stations. In total,
eight variables will be downscaled simultaneously in this application, daily mean
temperature, precipitation, relative humidity and bright sunshine hours.

The NCEP/NCAR Reanalysis 1 data for the large-scale variables were retrieved
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and prepared for downscaling by standardizing the data and applying principal
component analysis as in the single-site application.

For CGCM3.1/T47 GCM data, five GCM model runs of the 20c3m scenario
for the period of 1961-2000 are available from the Canadian Centre for Climate
Modelling and Analysis (CCCma) website for downloading, but only three model
runs of the A2 scenario were available. Two additional GCM runs for future emis-
sion scenarios were made available by the CCCma since the single-site application
was completed. In this application, the additional GCM scenarios of SRES B1 and
SRES A1B were downscaled for the time slices of 2046 to 2065 and from 2081 to
2100. It total, five scenario runs from the CGCM3.1/T47 were available. There-
fore, five runs of forty years each were available for the 20c3m scenario, for a total
of 200 years of data, and five runs of twenty years were available for a total of 100
vears of data for each of the time slices for each future scenario.

The GCM data were standardized and transformed into principal components.
As in the previous application, the future scenarios were standardized using the
means and standard deviations from the 20c3m model runs. This preserves the bias
or trends between the model simulated current climate (20c3m), and the climate
under the different emission scenarios (SRES A2, A1B, and B1). To be consistent
between data sets, the transformation of the GCM data into principal components

was done using the cigenvectors of the NCEP/NCAR Reanalysis data.
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6.2.2 Model Setup and Optimization

The model parameters consisting of the window width, W, the number of nearest
neighbors to retain, k, and the weighting vector in the distance calculation, w;,
\\}ere optimized using the cross-validation methodology developed in the single-site
application of the k-nn model.

In the single-site application, the objective function was specified as the cor-
relation between the estimated and observed daily temperature anomaly, and the
correlation of estimated and observed accumulated wiﬁter precipitation. In this
application, more weather station variables are available to use in an objective
function. It was found in the single-site optimization that by using temperature
data as a significant part of the large-scale climate variable input, good results for
downscaling historical temperature were achieved relatively easily. Precipitation
is a key input variable for hydrological modelling and more difficult to accurately
downscale than temperature. The SLURP model is not as sensitive to changes
in relative humidity or bright sunshine hours input variables as it is to changes
in precipitation. For these reasons the objective function in this application was
focused on optimizing the downscaling of precipitation.

The objective function was specified as the average over the two stations’ mean

root mean square error (RMSE) of the estimated winter precipitation,

) . RNISETI]CP&S\Viuter Precip + RI\’ISEThomgson\Vintchrccip (6 2)

min f(W, k, w; 5
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A cross-validation was set up where the model would take one year of the
NCEP/NCAR Reanalysis data as simulation data and use the other years as a
historical record to resample from. This process was repeated for all 31 years
of the historical record. The objective function was then calculated using the
simulated station variables and the historical station variables.

The window width was optimized manualiy by adjusting W. From Figure 6.7 it
can be seen that the optimum window width was 25 days. The larger window width
compared to the optimum window width of 21 days for the single site application
is likely due to the shorter historical record available for the multi-site application.
The historical record was 37 years for the single-site, but only 31 years for the
multi-site application.

The Matlab Optimization Toolbox was used to optimize the weight vector, w.
With the large number of variables in the feature vector, the optimization of the
w; vector was a time consuming process, even with the use of software.

The objective function improved from 47.0 to 34.7 by adjusting the w vector, a
decrease of 26%. After optimization, the model was able to capture trends in the
winter precipitation at the weather stations. Figure 6.8 shows the optimization
results for the Thompson weather station. RMSE’s of 39.9 mm and 30.6 mm, and
correlations of 0.41 and 0.68, were achieved for the simulation of winter precipita-
tion accumulations for The Pas and Thompson.

The simulated temperature data was checked to ensure the model was able to
adequately estimate the historical temperature data, despite temperature not be-

ing a criterion in the objective function. The correlation of observed and simulated

107



6.2. NELSON RIVER MULTI-SITE APPLICATION

45 T T T T T

Obijective Function

34 1 1 1
15 20 25 30 35

Window Width, W

Figure 6.7: Optimization of W for Nelson River

daily temperature was 0.95 for both The Pas and Thompson weather stations. A
plot of the estimated and observed temperatures at the Thompson weather station
is shown on Figure 6.9. The temperature data were adequately simulated.
Relative humidity and solar radiation, the other variables simulated, also showed
adequate correlation to the observed variables. At Thompson, the simulated rela-
tive humidity had a 0.54 correlation with the observed relative humidity, and the
simulated bright sunshine hours had a 0.51 correlation with- the observed bright-
sunshine hours. At The Pas the simulated relative humidity had a 0.47 correlation
with the observed relative humidity, and the simulated bright sunshine hours had
a 0.43 correlation with the observed bright sunshine hours. The correlations are

much lower than the temperature correlations, however this may not be a criti-
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Estimated vs. Observed Winter Precipitation for Thompson
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Figure 6.8: Thompson winter precipitation cross-validation results.
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Figure 6.9: Thompson daily temperature cross-validation results.
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cal concern since the SLURP hydrological model is not overly sensitive to these

variables. Therefore these correlations are considered adequate.

6.2.3 Downscaling Results
20c3m Control Run

With the &-nn model simulating the four input variables for Thompson and The
Pas with acceptable level of performance, it was then used to generate downscaled
GCM data by using large-scale variables from the CGCMS3.1/T47 GCM data as
input to the model.

The first scenario downscaled by the k-nn model was the 20¢3m scenario. The
GCM runs for this scenario represent the atmospheric composition for the period
from 1961 to 2000. The downscaled variables from this scenario should lead to
monthly mean averages that are similar to the observed data, and also to the sim-
ulated station variables downscaled from the historical NCEP/NCAR. Reanalysis
1 data.

Figure 6.10 shows that the mean monthly temperatures of the station data
simulated from the downscaled NCEP/NCAR Reanalysis 1 and 20c3m are an
excellent fit to the observed monthly mean temperatures. Figure 6.11, Table 6.5
(page 155), and Table 6.6 (page 155) show that the mean monthly precipitation
results of downscaled NECP/NCAR Reanalysis 1 and 20c3m are similar to the
single-site application. The annual distr{ibution of rainfall is reproduced well when
precipitation data is downscaled from the 20c3m scenario. The downscaled results

from NCEP/NCAR Reanalysis 1 data showed similar precipitation volumes as
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Figure 6.10: Optimization results for mean monthly temperatures.
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The Pas Mean Monthly Preceipitation
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Figure 6.11: Optimization results for mean monthly precipitation.
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the observed record, an improvement compared to the single-site application. On
average, the annual precipitation accumulation for the 20c3m scenario compared
to the observed record was underestimated by 10%, and winter precipitation was
underestimated by 17%. With the complexity of the rainfall processes, GCMs, and
downscaling models, it is difficult to ascertain the origin of the underestimation of
precipitation. Although the accumulations from the 20c3m scenario do not match
the observed record, valuable information can be derived using the 20c3m scenario
‘as the baseline to which the results of future scenarios can be compared. The
bias between the future scenarios compared to the 20c3m scenario, rather than
the observed record, will provide more useful trend information.

The k-nn model was then used to downscale the CGCM3.1 /T47 data for the A2
(2046-2065), A2 (2081-2100), A1B (2081-2100), A1B (2081-2100), B1 (2081-2100),

and B1 (2081-2100) scenarios.

Future Temperature

The results for downscaled temperature can be seen for The Pas on Figure 6.12, and
Table 6.3 (page 154), and for Thompson on Figure 6.13 and Table 6.4 (page 154).

For the 2046-2065 time slice, all future scenarios show year-round increases in
mean monthly temperature at both sites. Winter increases range from 1.7°C in
the B1 scenario to 3.6°C in the A2 scenario. The A2 and A1B scenarios show
more warming than the Bl scenario. Summer temperatures also increase in all
scenarios, however the increases are not as large as for the winter months. The

increases ranged from less than 0.5°C in the B1 scenario to approximately 1°C in
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Figure 6.12: Future mean monthly temperature at The Pas.
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Figure 6.13: Future mean monthly temperature at Thompson.




6.2. NELSON RIVER MULTI-SITE APPLICATION

the A2 scenario.
Temperature rises are more dramatic for the 2081-2100 time slice. Winter
temperature increases compared to the 20c3m scenario range from 3.0°C in the B1

scenario to up to 5.5°C in the A2 scenario.

Future Precipitation

The results for downscaled mean monthly precipitation can be seen for The Pas
on Figure 6.14 and for Thompson on Figure 6.15, and as annual and winter accu-
mulations in Table 6.5 (page 155} and Table 6.6 (page 155).

As expected, the trends in precipitation are not as clear as in temperature.
This is likely due to the random and complex nature of rainfall occurrence, par-
ticularly for large storms. However, in most scenarios, for both The Pas and
for Thompson, the annual precipitation accumulations decrease. The B1 scenario
shows the smallest changes; the B1 2046-2065 data is the only scenario in which
annual precipitation did not decrease compared to the 20c3m scenario. Figure 6.13
and Figure 6.12 show that most of the decrease in precipitation occurred during
the summer months. The maximum decrease in precipitation at the annual scale
occurred in the A2 scenario, where, during the 2081-2100 time slice, The Pas saw
a decrease of 23%, and Thompson saw a decrease of 12% compared to the 20(:3111
scenario.

The annual accumulations over winter months are shown in Table 6.6 (page 155).

The A2 and A1B were slightly drier than the B1 scenario.
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Figure 6.14: Future mean monthly precipitation at The Pas.
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Figure 6.15: Future mean monthly precipitation at Thompson.
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6.3 Winnipeg River Multi-site Application

The Winnipeg River is a large western-flowing river originating from Lake of the
Woods near the City of Kenora, Ontario, and discharging into Lake Winnipeg in
Manitoba. This river is approximately 235 km long and its drainage basin covers
approximately 150,000 km? in Ontario, Manitoba, and northern Minnesota. The
Winnipeg River is signirﬁcant to hydroelectric power production in Manitoba. Five
hydroelectric dams are on the Winnipeg River, and the River also is an important
contributor to the total flow of the Nelson River and the hydroelectric dams on
the Nelson River.

The methodology presented in the Nelson River multi-site application was
repeated for two Environment Canada weather stations in the Winnipeg River
drainage basin. Data was downscaled using the k-nn model for the Redlake and
Sioux Lookout weather stations. The Redlake weather station (51°4’N, 93°47'W}) is
close to the Troutlake River Basin, and the Sioux Lookout weather station (50°7’N,
91°54’W) is close to the Sﬁurgeon River drainage basin. The £-nn model was again
employed to downscale four variables for the two stations simultaneously, allowing
hydrological modelling of the two basins for climate change assessment. These two
sub-basins of the Winnipeg River basin were selected as a representative model
for the larger Winnipeg River Basin because they are two of the few sub-basins
that are unregulated and also have an adequate amount of historical climate and

streamflow data.
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Figure 6.16: Large-scale variable grid for Winnipeg River applications.

6.3.1 Data

The large-scale variables used in the downscaling are the same as those used in
the Nelson River applications: average surface temperature, 500mb temperature,
850mb temperature, 500mb geopotential height, and 850mb geopotential height.
However, the variables were redownloaded and reprocessed to center the large-scale
grid over the Winnipeg River basin as shown on Figure 6.16.

The grid in the Winnipeg River applications was selected to be slightly smaller
than the grid used in the Nelson River applications. The grid covering the Win-
nipeg River basin measured 6 x 7 CGCM3.1/T47 grid points, spaced at ap-

proximately 3.75° x 3.75° latitude-longitude. The NCEP/NCAR Reanalysis 1
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data were downloaded for a slightly larger area and then interpolated onto the
CGCM3.1/T47 grid points.

Since a high degree of spatial correlation existed in the data, principal com-
ponent analysis was used to reduce the number of variables in the feature veptor
by removing redundant information {Gangopadhyay et al., 2005; Buishand and
Brandsma, 2001; Young, 1994). The first 17 principal components were retained
and explain over 96% of the variation contained in the original data sets. The
eigenvalues associated with the first thirty principal components, as well as the
cumulative percent of explained variance, are shown on Figure 6.17. For the larger
grid used in the Nelson River applications, 24 principal components were required
to capture 95% of the original vériance. The reduction in the number of variables
4made a noticeable reduction in the data processing time.

The weather stations had a good length of record for daily temperature, pre-
cipitation and relative humidity. Both of the weather stations had data from 1965
to 2004, for a total length of 40 years to be used as a historical record to resample
from. However, neither station had solar radiation or bright sunshine hours data
available over the 1965 to 2004 time period. This problem of missing variables was
overcome by first downscaling the other three variables for the two stations. The
solar radiation was then generated using a simplified resampling model. A nearest
neighbor model, using the six already downscaled variables as a feature vector,
was used to resample solar radiation data from NARR data grid points close to
the weather stations. The generation of solar radiation will be discussed later in

the presentation of the downscaling results.
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Figure 6.17: Eigenvalues and percent variation explained for Winnipeg River
basin application.

All the available scenarios and model runs from the CGCM3.1/T47 were down-
scaled, including the 20c3m (1961-2000) control run and future scenarios BI, A2,
and A1B (2046-2065; 2081-2100). With five model runs available, a total of 200
years of data were downscaled for the 20c3m runs, 100 years for each future sce-
nario for the time slice 2046 to 2065 and 100 years for each future scenario for the

time slice 2081 to 2100.

6.3.2 Model Setup and Optimization

The model parameters, i.e. the window width, W, the number of nearest neighbors
to retain, £, and the weighting vector in the distance calculation, w, were optimized

using the same cross-validation methodology as in the Nelson River application.
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Figure 6.18: Objective function optimization for W.

The objective function was specified as the average of the two stations’ root

mean square error (RMSE) of the estimated winter precipitation accumulation,

min f(M/, k, w{) _ RI\’iSERedlake Winter Precip + ]-;{NISESioax Lookout Winter Precip ) (63)

The typical cross-validation was set up where the model takes one year of
NCEP/NCAR Reanalysis 1 data as simulation data and uses the other years as a
historical record to resample from. This process was repeated for the 40 years of
the historical record available for the Redlake and Siowx Lookout weather stations.
The objective function was then calculated using the simulated station variables
and the historical station variables.

The window width was optimized by manually adjusting the W parameter.
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Estimated vs. Observed Winter Precipitation for Sioux Lookout
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Figure 6.19: Sioux Lookout winter precipitation accumulation cross-validation
results.

From Figure 6.18 it can be seen that the optimum window width is 19 days. An
interesting observation is that in the applications the window width appears to be
directly related to the length of the historical record available to resample from.
The window width of 19 days for a historical period of forty years is smaller than
the window widths of 21 and 25 days that were optimal for historical records of
31 and 37 years, respectively.

_The Matlab Optimization Toolbox was used to optimize the w vector. In this
application, the w vector consisted of weights for 17 variables. In the Nelson River
applications, 24 weights had to be optimized in the w vector. The reduced length
of the feature vector reduced the overall time required for optimization.

The optimization process started with equal weight given to all variables. By
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Estimated vs. Observed Daily Temperature for Sioux Lookout
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Figure 6.20: Sioux Lookout daily temperature cross-validation results.

adjusting the w vector, the objective function improved from 49.2 to 44.1, a de-
crease of 10.4%. The decrease in the objection function was not as large as in the
Nelson River multi-site application, but the optimization of the feature vector did
improve the model an appreciable amount.

Satisfactory results were achieved after optimization. The model was able to
reproduce seasonal trends in the winter precipitation at both stations. Better re-
sults were achieved for the Sioux Lookout station than for the Redlake station.
Figure 6.19 shows the estimated and observed winter precipitation accumulations
for the Sioux Lookout after optimization. RMSE’s of 50.0 mm and 38.3 mm, and
correlations of 0.60 and 0.75, were achieved for the simulation of winter precipita-

tion accumulations for Redlake and Sioux Lookont.
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Although the other simulated variables were not included in the optimization,
it is important that the model also simulate these variables adequately. The sim-
ulated temperature data were checked and correlations at the daily time scale
of 0.97 were found for both the Sioux Lookout and Redlake stations. A scatter
plot of simulated and observed daily temperatures at Sioux Lookout is shown on
Figure 6.20. The results show daily temperature is adequately simulated.

Correlations for estimated and observed relative humidity at the daily time
scale were 0.50 for both stations. As in the Nelson River application, relative hu-
midity was not simulated with as high correlation as daily temperature. However,
since the SLURP model is most sensitive to precipitation and temperature, the re-
sults obtained for relative humidity were judged to be adequate in this application
as well.

The numbers of neighbors, &, to retain for resampling was set to ten. In
the previous model setups, & was found to be optimal when the resampling was
limited to only the single nearest neighbor. However, to increase the variability in

downscaled GCM data, the number of neighbors was set. to ten.

6.3.3 Downscaling Results
20c3m Control Run

The first step was to downscale the CGCM3.1/T47 20¢3m control run and compare
the results to the observed weather statistics. Figure 6.21 shows that the observed
monthly mean temperature is in excellent agreement with the monthly averages of

temperature simulated by downscaling both NCEP/NCAR. Reanalysis 1 data and
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Figure 6.21: Optimization results for mean monthly temperatures.
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Sioux Lookout Mean Monthly Precipitation
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Figure 6.22: Optimization results for mean monthly Winnipeg River Station

precipitation.
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the 20c3m GCM data. There are no biases in the downscaled 20c3m and down-
scaled NCEP/NCAR Reanalysis 1 data compared to the observed temperature
data at the monthly scale.

Figure 6.22 shows that the downscaled NCEP/NCAR Reanalysis 1 and 20c3m
data have a good match for the average monthly accumulation of rainfall.

The annual precipitation was slightly underestimated by the 20c3m scenario.
The mean annual observed precipitation at Sioux Lookout was 741 mm, while
the 20c3m downscaled precipitation had a annual average accumulation of 704,
a difference of 5%. Similarly, the annual precipitation was underestimated by
5% for the Sioux Lookout station. The winter precipitation was slightly more
ﬁnderestimated: 15% for Redlake and 10% for Sioux Lookout. The agreement
between observed and downscaled 20c3m data annual and winter precipitation
accumulations is better than the results for the Nelson River multi-site application.

The k-nn model was then used to downscale the GCM data for the A2, A1B,
and B1 scenarios for the future time slices of 2046 to 2065 and 2081 to 2100.

For the downscaling application in the Winnipeg River Basin, solar radiation
or bright sunshine hours data were not available. Since one of these variables
is required as input to the SLURP hydrological model, an alternative source of
downscaled solar radiation or bright sunshine hours data was necessary. Solar
radiation data from two NARR data points close to the Redlake and Sioux Lookout
weather stations were used as sources of data to generate solar radiation data for
the downscaled scenarios. The period of overlap between the NARR data and

the historical station data is from 1979 to 2004. A simplified nearest neighbor
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resampling model was set up to generate solar radiation data for the downscaled
CGCM3.1/T47 and NCEP/NCAR Reanalysis 1 data sets by searching for days
in the historical record based on a feature vector of the previously downscaled
temperature, precipitation, and relative humidity variables.

Since the SLURP model is not as sensitive to solar radiation as temperature and
precipitation, the resampling procedure was designed much simpler and weights
were assigned based on judgement rather than robust optimization. The three
variables in the feature vector were daily temperature (°C), daily occurrence of
precipitation (1 if precipitation greater than or equal to 0.2 mm, 0 if precipitation
is less than 0.2 mm), and relative humidity. Weights were assigned to the variables
as 1, 10 and 0.1, respectively, meaning almost all weight was placed on temper-
ature and the occurrence of rainfall. The resampling of days was not restricted
to a moving window, and temperature data was not deseasonalized by standard-
izing using the seasonal means and standard deviations. Using temperature data
with seasonal influences restricted the resampling to days in the same season as
the simulation day. A Luclidean distance metric was employed and the nearest
neighbor (k = 1) was retained as the day to resample solar radiation from. This
model proved to be time efficient and capitalized on the advantages of the nearest
neighbor model, such as preserving the correlation between the historical solar

radiation and temperature, precipitation and relative humidity variables.
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Future Temperature

The results for downscaled temperature can be seen for Redlake on Figure 6.23,
and Table 6.7 (page 156}, and for Sioux Lookout on Figure 6.24 and Table 6.8
(page 156).

For the ti}ﬁe slice 2046 to 2065 all future scenarios show increases in tem-
perature throughout the year. The Bl scenario shows the least warming, with
temperature increases of less than 3.0°C in the winter and 2.0°C in the summer
compared to the 20c3m scenario.

For the time slice of 2081 to 2100 all future scenarios showed increases in
temperature compared to the 2046 to 2065 time slice. However, the temperature
increases were not as significant as the increases between the 20c3m and 2046 to
2065 time slice. The A2 scenario showed only slight warming between the two
time slices, and in some months showed slight cooling of up to 0.9°C. The A2
scenario was the warmest scenario in the late winter months of January, February
and March, while the A1B was the warmest in the summer months and early
winter months of October, November and December. The Bl scenaric remained
the coolest of the future scenarios, only increasing 3.1 to 3.9°C in the winter and
2.2 to 2.4°C in the summer. Compared to the 20c3m scenario, the largest winter
temperature increases were around 6.1°C at Sioux Lookout and 6.4°C at Redlake
in the A2 scenario, and the largest increases in the summer temperatures were

around 3.6°C at Sioux Lookout and 3.8°C at Redlake in the A1B scenario.
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Figure 6.23: Future mean monthly temperature at Redlake.
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Figure 6.24: Future mean monthly temperature at Sioux Lookout.
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Future Precipitation

The results for downscaled precipitation as monthly mean accumulations can be
seen for Redlake on Figure 6.25 and for Sioux Lookout on Figure 6.26 , and as
annual and winter accumulations in Table 6.9 (page 157) and Table 6.10 {page 157).

As in the Nelson River application, the monthly mean precipitation accumu-
lations are much more variable than the monthly temperature means. While the
Nelson River application resulted in decreases in annual and winter precipitation,
the results for this application suggest that precipitation will remain close to the
present or slightly increase at the Redlake and Sioux Lookout stations. For the
2046 to 2065 time slice at the annual scale, Sioux Lookout’s precipitation ranges
from remaining almost the same in the B1 scenario to an increase of 2% in the
A1B scenario. Redlake’s annual precipitation does not change more than 0.1% for
any scenario compared to the 20c3m run. Winter precipitation shows increases
at both stations for all scenarios with the maximum increase of 14% occurring at
Sioux Lookout for the A2 scenario.

For the 2081 to 2100 time slice, almost all scenarios lead to further increases in
annual precipitation with the exception of a slight decrease of 2% at the Redlake
station for the A1B scenario. The largest increases for 2081 to 2100 period are
“experienced with the A2 scenario, where precipitation increases 10% at the Redlake
station and 9% at the Sioux Lookout station compared to the 20c3m run. Winter
precipitation changes are more varied, with small decreases for the A2 scenario

and increases of up to 13% for the B1 scenario compared to the 20c3m run.
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Figure 6.25: Future mean monthly precipitation at Redlake.

135



6.3. WINNIPEG RIVER MULTI-SITE APPLICATION
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Figure 6.26: Future mean monthly precipitation at Sioux Lookout.
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6.4 Winnipeg River NARR Application

One of the difficulties in assessing the potential effects of climate change in Canada
is the sparsity of station data. This is particularly evident in northern Canada and
other sparsely populated areas. A possible replacement for the non-existent station
data is North American Regional Reanalysis (NARR) data. With a grid resolution
of 32 km, multiple NARR data points are available in close proximity to any
watershed. If NARR data can be substituted into the downscaling methodology
in the place of regular Environment Canada CDCD weather station variables, it
would facilitate assessment of watersheds in areas with few or no weather stations.

In this application of the k-nn model, the utility of NARR data as a substi-
tute for weather station data will be explored. NARR data is used to supply the
historical measurements of temperature, precipitation, relative humidity and solar
radiation. A limitation of NARR data is the relatively short temporal record avail-
able compared to many weather stations. NARR data is currenﬂy only available

from January 1979 to December 2004.

6.4.1 Data

Five NARR grid points as shown on Figure 6.27 provided the historical observa-
tion data_, for this application. Three grid points were selected in the Sturgeon
River basin, and two were selected from the Troutlake River Basin. The weather
variables required by the SLURP hydrological model, daily temperature, precipi-

tation, relative humidity and solar radiation, were extracted for these grid points.
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The length of the NARR data was 26 years, from January 1, 1979, to Dec 31, 2004.
An advantage of using NARR data is that since the data is a reanalysis data set,
the data set is complete and there are no missing entries.

The large-scale data in this application remained unchanged from the previous
multi-site Winnipeg River Drainage Basin application. The large-scale data was
comprised of the 850 geopotential height, the 500 mb geopotential height, surface
temperature, temperature at 850 mb geopotential height and temperature at the
500 mb geopotential height. NCEP/NCAR Reanalysis 1 data for the same time
period as the NARR data was interpolated on to the CGCM3.1/T47 grid shown on
Figure 6.16. The 6 x 7 GCM data grid contains 42 data points, approximately 2/3
the size of the 60-point grid used for the Nelson River Drainage Basin applications.
Although this grid is smaller than the grid used for the Nelson River Drainage
Basin applications, it was used for the Winnipeg Riverr multi-site application and
led to comparable model performance with reduced computational time.

The large-scale data sets were reduced in size by principal component analy-
sis. The 42 grid points for each of the five data sets, for a total of 210 variables,
were reduced to seventeen summary variables. The first seventeen variables were
withheld as the amount of variance explained by including further principal com-
(ponents diminishes quickly after this point. The next variables have eigenvalues
less than one, meaning that an original single grid point would explain more vari-
ance than each of these eigenvalues. The seventeen principal vectors explain more

than 96% of the variance of the original 210 variables.
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Figure 6.27: NARR grid point locations.
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6.4.2 Model Setup and Optimization

The model does not require parameterization of specific relationships between
large-scale and local variables, however some components of the model should be
adjusted to optimize the ability of the model to estimate the station data. As in
the previous applications, the number of neighbors to retain, %, the window size,
W, and the weights w can all be adjusted through optimization to improve model
performance.

In the application using NARR data, the model was optimized using the same
cross-validation method as the Nelson River and Winnipeg River weather sta-
tion applications. The model was used to simulate the historical NARR data for
all five grid points simultaneously from January 1979 to December 2004. The
NCEP/NCAR Reanalysis 1 data for one year was considered as simulation data
and removed from the historical record. NARR data was then generated for this
year of NCEP/NCAR Reanalysis 1 data. This process was repeated for each of
the 26 years of data.

The optimization objective function was specified as the root mean square error
for the accumulated winter (October to April) precipitation averaged over the five
data points. Temperature was not included into the objective function as good
results were observed for temperature validation statistics in applications using

only precipitation as the objective. The objective function was specified as

5
Zi:l RN‘{SENARRi Winter Precip

min f(W, k,w;) = z

(6.4)
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Figure 6.28: Objective function optimization for W.

The model was initialized by assigning equal weight to each principal compo-
nent variable and £ set to retain only the first nearest neighbor. The window width
was optimized by manually adjusting W. IFrom Figure 6.28 it was observed that a
window size of 27 days leads to the maximum model performance.Combined with
the other applications, there is a relationship between the size of search window,
W, and the length of the historical record to resample from.

"The weighting vector, w, was optimized using the Matlab Optimization Toolbox
as in previous applications. The Matlab Optimization Toolbox optimized the w
vector using a steepest descent line search method. For the model initialized with
equal weight to all feature vector variables, the average root mean square error
among the five grid points was 51.0 mm. The optimization procedure improved

the average root mean square error to 46.4 mm, a decrease of 9.0%. As a byproduct
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of optimizing the root 1ﬁean square error, the average correlation of the simulated
winter accumulations to the observed winter accumulations for the five grid points
improved from 0.44 to 0.68.

As in similar applications, to encourage variability in the selection process when
simulating with GCM data, & was set to retain the ten nearest neighbors.

The model was able to adequately reproduce the observed local weather vari-
ables. Figures 6.29 and 6.30 display the results for one of the five grid points from
downscaling the historical large-scale climate variables to reproduce the historical
local weather. Figure 6.29 shows the estimated and observed daily temperature.
The estimated and observed accumulated precipitation over the winter months are
shown on Figure 6.30. A correlation of 0.96 was achieved for daily temperature.
Relative humidity and solar radiation were also well reproduced, with average cor-
relations at the daily time scale of 0.65 and 0.82, respectively. The results for
relative humidity and solar radiation were much better than those for the previous
applications.

At the monthly time scale the model is able to reproduce the monthly means
of temperature and accumulated precipitation. Figure 6.31 shows that the down-
scaled NCEP/NCAR Reanalysis 1 data matches the mean monthly temperature of
the NARR data almost perfectly. Figure 6.32 shows the downscaled NCEP /NCAR
Reanalysis 1 data was also able to reproduce the trends in monthly mean precipi-
tation accumulation.

‘The optimization results were similar to those achieved for applications resam-

pling from weather station measurements. This demonstrates that NARR data
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Figure 6.29: Troutlake River 2 daily temperature cross-validation results.
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Figure 6.30: Optimization results for winter precipitation accumulation (Trout-
lake River 2).
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can be substituted for weather station data in the k-nn downscaling model.

6.4.3 Downscaling Results
20c3m Control Run

With the k-nearest neighbor model optimized and showing good performance dur-
ing cross-validation, the model waé used to downscale 20c3m control run and the
IPCC SRES A2, BI, and A1B climate change scenarios. The k-nn model used
the large-scale climate variables provided by the CGCM3.1 /T47 to resample days
from the historical NARR data set.

First, the 20c3m model runs were downscaled to compare the control run of
the GCM to the historical NARR data statistics. The monthly mean temperature
and accumulated precipitation for one of the Troutlake grid points averaged over
the five 20c3m GCM model runs are shown on F igures 6.29 and 6.30, along with
monthly averages from the NARR data and downscaled NCEP /NCAR Reanalysis
1 data. The downscaled 20c3m data show excellent agreement with the other two
data sets.

The first two rows Qf "Tables 6.16 (page 161) and 6.17 (page 161) show that
the downscaled 20c3m data slightly underestimates precipitation. The underesti-
mation is minor, less than 10% for winter precipitation and less than 5% at the
annual scale. The precipitation accumulation downscaled from the 20c3m scenario
compare better to the observed NARR data than the results typical of the station

data applications.
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Figure 6.31: Optimization results for mean monthly temperature.
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Future Temperature

The results obtained for downscaled temperature data were consistent with the
results obtained in the other applications. The future monthly mean temperatures
from two of the five grid points can be viewed on F igure 6.33 for Sturgeon River,
and on Figure 6.34 for Troutlake River. All scenarios exhibit various degrees of
warming. The B1 scenario has the least amount of warming. At all stations either
the A2 and A1B scenario has the largest amount of warming, depending on the
location of the grid point and the time slice (see Tables 6.11 to 6.15 on pages 158
to 160). Temperature increases range up to 5.9°C in the winter of the A2 scenario,
while the B1 scenario shows the smallest increases of 2°C in the summer and 4°C

in the winter.

Future Precipitation

The trends in future precipitation varied greatly between the different emission
scenarios. Tables 6.16 (page 161) and 6.17 (page 161) show the mean annual
and winter precipitation accumulations for the different downscaled scenarios. For
the A2 scenario, precipitation increases at all data grid point locations, with the
maximum increase occurring at a Troutlake River location where the 2081 to 2100
time slice experiences 17% more annual precipitation than the 20c3m scenario. The
B1 scenario has similar precipitation as the 20¢3m scenario; the future precipitation
1s within just a few percentage points higher or lower at each grid point. At the
annual time scale, the A1B scenario is slightly drier at the three Sturgeon River

grid points and slightly wetter at the two Troutlake River grid points. However,
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Figure 6.33: Future mean monthly temperature in Sturgeon River Basin.
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Figure 6.34: Future mean monthly temperature in Troutlake River Basin.
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Figure 6.35: Future mean monthly precipitation accumulation in Sturgeon River
Basin.
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Figure 6.36: Future mean monthly precipitation accumulation in Troutlake River
Basin.
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during the winter season, all five grid points including the Sturgeon River locations
show slight increases in precipitation.

The future monthly distribution of rainfall compared to the historical NARR
data can be viewed for a Sturgeon River grid point on Figure 6.35, and for a
Troutlake River grid point on Figure 6.36. The monthly distributions are relatively
similar to the historical distributions, except that the A2 scenario shows an increase

in summer precipitation at both locations during the 2081 to 2100 time slice.

6.4.4 Discussion of NARR. Application

The downscaled data generated in the this application will be used to test if down-
scaled GCM data using NARR data is an acceptable replacement for weather
station data. Therefore, the main objective of this application of the k-nn down-
scaling model was to determine if the model can downscale large-scale GCM data
with the NARR data serving as a substitute for weather station data. The results
obtained showed that the model can use the same optimization procedure as was
developed using station data and similar performance can be achieved. Down-
scaling using NARR data has very promising potential for use where station data
are not available. Downscaling using NARR data would be useful in many of the
sparsely populated areas of Canada, particularly northern regions, where weather

station data are generally not available in either quality or quality.
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Table 6.3: Observed and downscaled mean monthly temperature at The Pas (°C).

Scenario Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Observed (1970-2000) -20.7 -16.2 -9.0 09 89 149 177 165 100 3.1 -7.8 -17.6
20c3m (1961-2000) -19.2 -158 -88 1.2 88 151 177 164 105 3.1 -6.9 -16.5
A2 (2045-2046) -166 -123 -71 26 99 163 189 17.7 121 44 -51 -134
A2 (2081-2100) -14.7 -11.7 55 36 106 17.0 197 186 132 51 -39 -12.0
B1 (2045-2046) -181 -148 -81 12 89 156 182 17.1 11.2 40 -56 -15.0
B1 (2081-2100) -16.3 -186 -70 24 94 160 187 175 11.8 42 -53 -14.0
A1B (2045-2046) -16.1 -134 -70 24 96 16.0 187 176 11.9 42 -52 -14.0
A1B (2081-2100) -15.6 -120 -64 32 99 167 193 181 126 4.7 -44 -12.9
Table 6.4: Observed and downscaled mean monthly temperature at Thompson (°C).
Scenario Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Observed (1970-2000) -24.9 -20.4 -129 -23 64 127 159 141 7.2 -00 -11.9 -22.0
20c3m (1961-2000) -24.4 -205 -127 -21 64 128 157 138 78 -0.1 -10.8 -21.1
A2 (2045-2046) -21.7 -17.1 -11.0 -05 73 13.8 168 154 91 14 -86 -17.3
A2 (2081-2100) -193 -160 -91 06 81 143 176 164 103 23 -7.2 -155
B1 (2045-2046) -23.2 -193 -120 -20 64 131 162 145 85 1.0 -93 -194
B1 (2081-2100) -214 -185 -11.0 -09 6.9 135 166 151 90 12 -89 -18.0
A1B (2045-2046) -21.3 -182 -108 -0.8 7.1 134 166 1522 91 12 -88 -18.1
A1B (2081-2100) -20.3 -16.7 -10.2 02 73 141 172 159 97 1.8 -7.9 -165
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Table 6.5: Observed and downscaled mean annual precipitation accumulation
(mm).

Scenario The Pas Thompson
Observed (1970-2000) 446 512
20c3m (1961-2000) 397 467
A2 (2045-2046) 344 426
A2 (2081-2100) 307 415
B1 (2045-2046) 397 453
B1 (2081-2100) 366 433
A1B (2045-2046) 356 438

A1B (2081-2100) 324 413

Table 6.6: Observed and downscaled mean winter precipitation accumulation
(mm).

Scenario The Pas Thompson

Observed (1970-2000) 159 185

20c3m (1961-2000) 137 143

A2 (2045-2046) 123 143

A2 (2081-2100) 119 137

B1 (2045-2046) 140 144

B1 (2081-2100) 130 137 ‘
A1B (2045-2046) 129 144

A1B (2081-2100) 121 130
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Table 6.7: Observed and downscaled mean monthly temperature at Redlake (°C).

Scenario Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Observed (1965-2004) -19.6 -157 -8.0 1.7 9.5 151 181 16.8 10.8 3.6 -6.2 -155
20c3m (1961-2000) -188 -156 -76 19 97 152 183 166 11.1 40 -52 -15.0
A2 (2045-2046) -14.6 -11.2 -52 39 122 183 209 189 136 65 -24 -106
A2 (2081-2100) -123  -90 -29 53 122 183 207 196 139 57 -39 -10.7
B1 (2045-2046) -15.9 -126 -56 36 116 174 20.2 183 130 6.2 -2.7 -11.9
B1 (2081-2100) -14.8 -12.1 -51 39 11.7 17.8 205 187 135 6.4 2.7 -11.2
A1B (2045-2046) -14.0 -12.0 -5.1 43 122 178 205 187 136 6.3 -26 -11.1
A1B (2081-2100) -13.1 -10.2 -42 49 126 194 215 199 146 7.3 -1.8 -938
Table 6.8: Observed and downscaled mean monthly temperature at Sioux Lookout (°C).
Scenario Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Observed (1965-2004) -186 -148 -7.4 20 99 155 185 172 112 40 <55 -144
20c3m (1961-2000) -17.8 147 -7.1 21 100 156 188 17.1 116 44 -46 -13.9
A2 (2045-2046) -13.6 -10.2 -46 42 127 188 214 195 143 7.0 -1.8 -95
A2 (2081-2100) -11.7 82 -24 52 128 189 208 200 143 6.2 -3.5 -10.0
B1 (2045-2046) -14.9 -11.7 -51 38 120 17.8 20.7 190 135 6.7 -21 -109
B1 (2081-2100) -13.8 -11.1 -45 41 122 182 21.1 194 141 7.0 -2.0 -10.0
A1B (2045-2046) -13.1 -11.1 46 46 127 183 21.1 194 142 69 -19 -99
A1B (2081-2100) -121 92 -36 51 132 199 221 206 152 80 -12 -88
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6.4. WINNIPEG RIVER NARR APPLICATION

Table 6.9: Observed and downscaled mean annual precipitation accumulation

(mm).

Scenario

Sioux Lookout Redlake

Observed (1965-2004)
20c3m (1961-2000)
A2 (2045-2046)

A2 (2081-2100)

B1 (2045-2046)

B1 (2081-2100)

A1B (2045-2046)
A1B (2081-2100)

741
704
720
802
709
734
723
735

649
615
622
676
604
622
617
603

Table 6.10: Observed and downscaled mean winter precipitation accumulation

(mm).

Scenario

Sioux Lookout Redlake

Observed (1965-2004)
20c3m (1961-2000)
A2 (2045-2046)

A2 (2081-2100)

B1 (2045-2046)

B1 (2081-2100)

A1B (2045-2046)
A1B (2081-2100)

290
262
289
248
270
292
287
286

247
210
238
208
221
237
228
232
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Table 6.11: Observed and downscaled mean monthly temperature at Sturgeon River 1 (°C).

Scenario Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Observed (1970-2000) -174 -13.6 -7.1 3.2 125 177 205 193 13.1 49 -45 -134
20c3m (1961-2000) -16.9 -13.5 -69 34 125 178 207 192 133 53 -3.7 -12.7

A2 (2045-2046) -13.9 -103 -52 50 148 208 231 212 156 7.6 -1.9 -95
A2 (2081-2100) -12.9 93 -42 56 15.0 203 223 215 157 6.6 -3.7 -10.8
B1 (2045-2046) -14.9 -114 -55 47 143 199 225 208 151 72 -21 -106
B1 (2081-2100) -14.1 -11.0 -5.1 49 145 205 229 210 155 7.5 -26 -10.0
A1B (2045-2046) -13.3 -10.7 -53 50 149 204 229 211 157 74 -1.9 -9.8
A1B (2081-2100) -128 -94 -44 58 154 21.7 237 220 163 81 -1.5 -9.1

Table 6.12: Observed and downscaled mean monthly temperature at Sturgeon River 2 (°C).

Scenario Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Observed (1970-2000) -17.5 -13.7 -7.3 3.0 124 175 203 192 129 47 -46 -13.4
20c3m (1961-2000) -17.0 -13.7 7.1 32 123 177 205 19.0 131 50 -39 -128

A2 (2045-2046) -14.0 -104 -53 47 146 206 229 210 154 74 -20 -9.6
A2 (2081-2100) -129 -94 -43 54 149 202 220 214 155 6.5 -38 -10.8
B1 (2045-2046) -149 -11.5 -56 45 142 198 222 206 148 70 -22 -10.7
B1 (2081-2100) -14.1 -11.1 -2 46 144 203 227 209 153 73 -2.3 -10.0
A1B (2045-2046) -13.4 -10.8 -54 47 147 203 227 209 155 72 -20 -0.8
A1B (2081-2100) -128 -95 -45 55 1563 215 234 218 161 80 -15 -9.1
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Table 6.13: Observed and downscaled mean monthly temperature at Sturgeon River 3 (°C).

Scenario Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Observed (1970-2000) -17.7 -13.9 -74 29 123 174 202 189 127 4.6 -48 -137
20c3m (1961-2000) -17.3 -139 -72° 31 122 175 203 188 130 49 -40 -131
A2 (2045-2046) -14.2 -106 -54 46 145 204 227 208 152 72 -21 -98
A2 (2081-2100) 2131 -95 43 54 148 201 220 213 154 63 -39 -11.0
B1 (2045-2046) -15.2 -11.7 -5.7 44 140 196 221 203 147 68 -24 -11.0
B1 (2081-2100) -14.3 -11.3 -54 45 142 20.1 225 206 151 71 -24 -10.3
A1B (2045-2046) -13.6 -11.0 -55 47 146 20.1 225 207 153 70 -22 -10.1
A1B (2081-2100) 2130 -9.7 -47 54 151 213 233 216 160 78 -1.7 -94
Table 6.14: Observed and downscaled mean monthly temperature at Troutlake River 1 (°C).

Scenario Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Observed (1970-2000) -18.7 -14.6 -7.8 28 126 180 21.2 199 129 45 -5.6 -143
20c3m (1961-2000) -18.3 -146 -75 3.0 125 183 213 196 131 47 -46 -14.3
A2 (2045-2046) -15.2 -11.2 -58 46 149 21.3 239 218 155 68 -2.7 -11.0
A2 (2081-2100) -13.8 -98 46 54 152 208 237 224 159 61 -43 -118
B1 (2045-2046) -16.1 -12.3 6.1 4.3 144 204 232 213 150 66 -2.9 -121
B1 (2081-2100) -15.2 -12.0 -5.7 45 146 209 235 21.7 154 6.8 -29 -11.3
A1B (2045-2046) -145 -11.6 -5.8 46 150 209 235 21.7 155 6.6 -28 -11.3

-5.1 54 156 223 245 228 164 74 -22 -10.5

Al1B (2081-2100) -14.1 -10.2
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Table 6.15: Observed and downscaled mean monthly temperature at Troutlake River 2 (°C).

Scenario Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Observed (1970-2000) -18.5 -14.6 -7.9 26 121 175 204 193 124 41 -58 -14.8
20c3m (1961-2000) -181 -146 -76 28 120 177 205 191 127 44 -49 -142

A2 (2045-2046) -149 -11.2 -59 44 144 207 231 212 152 6.7 -2.8 -10.9
A2 (2081-2100) -134  -98 47 52 147 202 228 217 155 59 -44 -11.6
B1 (2045-2046) -15.9 -123 -62 41 14.0 200 224 -207 146 6.4 -3.1 -12.0
B1 (2081-2100) -15.0 -11.9 -58 43 141 203 228 21.1 151 6.7 -3.1 -11.3
A1B (2045-2046) -143 -116 -59 45 146 203 228 211 152 6.5 -2.9 -11.2
A1B (2081-2100) -13.7 -102 -5.1 52 151 216 237 222 161 7.3 -23 -10.3
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6.4. WINNIPEG RIVER NARR APPLICATION

Table 6.16: Observed and downscaled mean annual precipitation accumulation
for NARR application (mm).

Scenario S1 S2 S3 T1 T2

Observed (1970-2000) 661 669 652 601 618

20c3m (1961-2000) 639 648 631 583 601

A2 (2045-2046) 708 613 601 582 593
A2 (2081-2100) 733 741 726 680 695
B1 (2045-2046) 617 627 610 571 585
B1 (2081-2100) 628 637 624 601 612
A1B (2045-2046) 631 636 624 606 617
A1B (2081-2100) o086 585 579 613 614

Table 6.17: Observed and downscaled mean winter precipitation accumulation
for NARR application (mm).

Scenario ST S2 S3 T1 T2

Observed (1970-2000) 256 265 251 224 228

20c3m (1961-2000) 235 243 229 205 210

A2 (2045-2046) 250 259 246 219 225
A2 (2081-2100) 224 232 223 203 208
B1 (2045-2046) 245 253 240 214 220
B1 (2081-2100) 257 265 252 222 230
A1B (2045-2046) 248 256 245 221 228
A1B (2081-2100) 253 260 249 223 229
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Chapter 7

k-Nearest Neighbor Model

Discussion

7.1 Model Evaluation

The goal of this section is to demonstrate the value of downscaling raw GCM
output with the k-nn model. The model is first evaluated in terms of its ability to
reduce the bias in the GCM at weather station locations for the current climate.
Then the temperature and precipitation data generated by the k-nn model for the
various emission scenarios for the 2081 to 2100 time slice is compared with the
range of temperature and precipitation trends simulated by a variety of GCMs for .

the region containing the weather stations.
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7.1. MODEL EVALUATION

7.1.1 Comparison to Raw GCM Data

One of the primary goals of statistical downscaling is to improve the quality of raw
GCM output. A statistical downscaling model should reproduce statistics such as
mean monthly temperature or mean monthly precipitation accumulations better
than the raw GCM data.

To determine if the £-nn model is an improvement compared to the raw CGCMS3.1
data, the downscaled raw GCM data for the 20c3m emission scenario were ex-
tracted for the grid points nearest to the Thompson and Sioux Lookout weather
stations. Theoretically, the raw and downscaled GCM data should reproduce the
monthly mean data at the weather stations, although some degree of bias is ex-
pected.

The comparison between the downscaled and raw CGCM3.1 for temperature
at the two weather stations is shown on Figure 7.1. It is clearly demonstrated that
for mean monthly temperature the downscaled data is much closer to the observed
means than the raw GCM data. The CGCM3.1 underestimates temperature most
of the year, although it overestimates temperature in the early winter months. The
downscaled data also tends to overestimate in the winter months, but the biases of
the downscaled data are much smaller throughout the entire year for both stations.
In most months the downscaled data is within 0.5°C of the observed monthly mean.

'The comparison between the downscaled and raw CGCM3.1 precipitation data
at the two weather stations is shown on Figure 7.2. At the Thompson weather
station the CGCM3.1 grid cell underestimates the monthly precipitation for most

months. During the months of June through to September the underestimation is
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Thompson Mean Monthly Temperature Simulation (1970-2000)
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Figure 7.1: Comparison of downscaled and raw CGCM3.1 temperature data.
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7.1. MODEL EVALUATION

large. The downscaled data also underestimates precipitation throughout the year,
however the large underestimation in the GCM data are significantly reduced in the
downscaled data. The annual observed precipitation at Thompson is 512 mm. The
annual mean for the CGCM3.1 grid cell is 455 mm for the 20c3m scenario while the
downscaled 20c3m scenario data has an annual mean of 467 mm. By downscaling
the GCM, the annual underestimation of precipitation was reduced from 11% to
9%. At the Sioux Lookout weather station location the CGCM3.1 20c3m scenario
data underestimates precipitation for all months. Overall, the downscaled data
also underestimates precipitation but provides better results than the raw GCM
data. Similar to the Thompson station location, the downscaled data reduces
large biases present in the GCM data during the late summer months. For the
mean monthly precipitation in September, an underestimation of nearly 30 mm
by the CGCM3.1 is reduced to almost zero in the downscaled data. The annual
observed precipitation at Sioux Lookout is 741 mm. The annual mean for the
CGCM3.1 grid cell is 640 mm for the 20¢3m scenario while the downscaled 20c3m
scenario data has an annual mean of 704 mm. By downscaling the GCM, the
annual underestimation of precipitation was reduced from 14% to 5%,

The above discussion demonstrates the ability of the k-nn model to improve the
output of CGCM3.1 data. The downscaled data better simulates mean monthly
statistics, especially for temperature. Biases are present in downscaled precipita-

tion data, however the biases are less than those present in the GCM data.




7.1. MODEL EVALUATION

Thompson Mean Monthly Precipitation Accumulation Simulation {1970-2000)
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Figure 7.2: Comparison of downscaled and raw CGCM3.1 precipitation data.
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7.t. MODEL EVALUATION

7.1.2 Comparison to Other Simulations of Future Climate

The future climate is unknown, making it difficult to determine the validity of
the data generated by downscaling GCM output based on the future emission sce-
narios. The best available comparison is to other simulations of future climate.
Saughyn and Kulshreshtha (2008) summarized the simulations made by a variety
of GCMs for multiple emission scenarios for the Prairie Provinces of Canada (see
Tables 2.1 and 2.2 on page 11). Chiotti and Lavender (2008) provide a similar
summary for the western portion of Ontario. These summaries are for large geo-
graphical areas, but the %-nn downscaling model should produce similar trends to
the raw GCM simulation data.

For temperature in the forest region of the Prairie Provinces, GCM simulated
temperature increases ranged from 2.3 to 10.8°C for the 2080s time horizon depend-
ing on the different emission scenarios and GCMs. The temperature predictions
for Thompson and The Pas {it within this range. For westérn Ontario, temper-
ature simulations of GCMs show increases from 2.7 to 11.8°C for the 2080s time
horizon (Chiotti and Lavender, 2008). The simulations for Red Lake and Sioux
~ Lookout are within this range.

For 1)1‘ecipitation‘ in the forest region of the Prairie Provinces, increases range
from 2% to 25% for the 2080s horizon (Sauchyn and Kulshreshtha, 2008). De-
pending on the different emission scenarios, during the Nelson River application in
northern Manitoba precipitation data downscaled by the k-nn model for the 2081
to 2100 time period decreased from 7% to 12% at Thompson weather station, and

decreased from 8% to 23% at The Pas weather station. For the multi-site appli-
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cation of the k-nn algorithm in the Nelson River drainage basin produced drier
future climates than the GCMs summarized by Sauchyn and Kulshreshtha.

For western Ontario, precipitation simulated by the GCMs showed increases
of 5% to 23% for the 2080s time horizon (Chiotti and Lavender, 2008). For the
Winnipeg River application in western Ontario, the Sioux Lookout precipitation
data downscaled by the k-nn model for the 2081 to 2100 time period showed
increases of 4% to 14%, while the Redlake changes ranged from a decrease of 3%
to an increase of 10%. Some of the downscaled scenarios were below the range of
GCMs presented by Chiotti and Lavender (2008), however, for the most part the
downscaled precipitation data were similar to GCM simulations.

A possible explanation to the simulation of drier future climates for Thompson
and The Pas than simulated by raw GCM data may be drawn from the analysis
of the downscaled precipitation data in the single-site application for Thompson.
In general, days with precipitation tend to be overcast and cooler. Downscaling
of the A2 scenario in the single-site appiication resulted in an increase of the
frequency of dry days compared to the 20c3m scenario. Since temperatures increase
substantially in future scenarios, the model may be less inclined to resample cool
wet days. This may result in the simulation of a drier climate as temperature

increases.

7.1.3 Evaluation Conclusion

As expected of statistical downscaling models, the k-nn model removes much of the

bias present in the CGCM3.1 for the 20c3m scenario. Aside from the possibility
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that precipitation is underestimated for future scenarios in the Nelson River ap-
plications, the k-nn downscaling model simulations are consistent with the range
of future climates simulated by a variety of GCMs. Overall, the GCM output

downscaled with the £-nn model is an improvement over the raw GCM output.

7.2 k-Nearest Neighbor Application Recommen-

dations

The following section is a summary of the methodology applied for downscaling
GCM data using a k-nearest neighbor model. Recommendations based on the
~ lessons learned are also made where appropriate. Section 3.2 provides a literature

review of k-nn modelling.

7.2.1 Feature Vector Selection

The feature vector, Dy, is used to compare the simulated day to historical days.
The selection of large-scale variables contained in the feature vector is an impor-
tant decision in the modelling process. The spatial extent that the feature vector
variables represent is also an important factor.

Multivariate statistica‘l analysis methods can be utilized to aid in deciding the
composition of the feature vector. In the applications presented in this report,
canonical circulation analysis and circulation pattern classification analysis were
used to identify the existence of relationships between the large-scale and local-

scale climate variables.
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The length of the feature vector is an important consideration. Longer feature
vectors lead to greater computation time, especially during the highly iterative
optimization process. It was found in this study that the 6 x 7 grid and 6 x
10 grid of GCM data gave similar results during cross—vaiidation. However, after
principal component analysis the smaller grid required a smaller feature vector
and led to much faster computation times. It is recommended to use statistical
analysis, or small scale pilot applications, to determine the minimum grid region

required to maintain adequate cross-validation results.

7.2.2 Finding the k-Nearest Neighbors

The selection of the nearest neighbors was dependent on three parameters: window
width, the weighting vector and the number of neighbors retained. Optimization
of an objective function was used to determine the best values of these parameters.

Since large-scale and local temperature variables were highly correlated, very
good results were obtained during cross-validation for downscaling of daily tem-
perature. Therefore the objective functions focussed on maximizing the models’
performance related to precipitation. Measuring the performance of the models
for downscaling precipitation on a daily scale was difficult since the results were
highly sensitive to large one-day precipitation events. It was decided to use pre-
cipitation statistics determined on a seasonal scale to limit the influences of the
large one day events. Since most of the large precipitation events occur during
the summer season, it was decided to use only the winter season including the

months from October to April. During these months, precipitation is driven by

170



7.2. K-NEAREST NEIGHBOR APPLICATION RECOMMENDATIONS

large synoptic scale weather systems rather than convective storms, making the
precipitation occurrence easier to downscale accurately. The winter precipitation
is also important to the hydrological cycle of the study area due to the storage
of precipitation as snow and release as spring melt water. For these reasons, the
recommended objective function is to maximize the performance of the model to
downscale winter precipitation. This was done by defining the objective function
for cross-validation as the root mean squared error of each season’s simulated and
observed accumulated precipitation.

Since the window width, W, is limited to discrete numbers over a relatively
small range, it was easily optimized by manually adjusting it to determine the
optimum width. In the different applications of the model, it was found that
W was directly related to the length of historical records available to resample
from. The summary of the optimum window width and the number of years in the
historical record used can be viewed in Table 7.1 or on Figure 7.3. The relationship

is almost perfectly linear. The relationship can be expressed as

W =42 — 0.57N (7.1)

where N is the number of years in the historical record.

Table 7.1: Summary of historical record length and optimal W.

Application Record Length (years) Optimal W (days)
Single-site Nelson River 37 21
Multi-site Nelson River 30 25
Multi-site Winnipeg River 40 19
NARR Winnipeg River 26 27
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Window Width as a Function of Length of Historical Record
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Figure 7.3: Scatter plot of W vs. number of years in the historical record.

The weighted Euclidean distance was used to calculate the distance between

the simulated and historical feature vectors,

Oty = |, Z w; (Vs — Vui)” (7.2)
i=1

where n is the number of variables in the feature vector, and w; are the weight given
to the variables of v;. The w vector can be optimized to minimize an objective
function. With a large number of variables, optimization was complex and the use
of computer software was necessary. The Matlab Optimization Toolbox minimized
the objective functions using a steepest descent 'line search method. Since the
process was highly iterative, and each iteration involved simulating between 26

and 40 years of data, optimization was a time consuming process.
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Cross-validation showed that retaining the single nearest neighbor (k = 1)
led to the best objective function results. However, to promote variability in the
modelling process, a larger k£ is recommended during the downscaling of GCM
data. A k-value equal to ten was used in the applications presented in this report.
The performance of the model was not significantly affected by using a larger

k-value.

7.2.3 Choosing a Neighbor

Once the k nearest neighbors were determined, the next step was to resample one
of the neighbors. A decreasing kernel density function was used to assign weight to

the first ten nearest neighbors. To save computation time, the decreasing density

Y.
PESE (73)

where p; is the probability that day j is resampled, was employed rather than a
density function dependent on calculated distances.

Once the neighbor was selected, the desired variables were retrieved from the
historical weather record. This process was repeated for each simulation day.
Multiple variables were resampled at once during the applications presented. For

instance, in the NARR application twenty variables were resampled at one time.
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Chapter 8

Conclusion

The most efficient way to conclude the study is to review if the original objectives
set before work began were met through the course of the project. The objectives

of this report were to:

1. Review climate change principles,

2. Review downscaling techniques,

3. Explore GCM data,

4. Explore relationships in large-scale and local weather variables, and

5. Develop and apply a k-nn downscaling model.

Each of these objectives was completed successfully. This section will review

the accomplishments made towards the above objectives.
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8.1 Climate Change and Statistical Downscaling

In Chapter 2 climate change was discussed in terms of its global significance as
well as how global changes could impact the Canadian Prairies. On the Canadian
Prairies, temperatures will likely rise up to 9°C, while precipitation changes could
range between a decrease of 6% to an increase of 20% {Sauchyn and Kulshreshtha,
2008). One of the greatest threats of climate change to the prairies is its impacts
‘to water resources.

GCMs are large computer models used to forecast long periods of weather over
the entire globe. To model the Earth’s complex climate systems in a reasonable
amount of time the models use coarse grid resolutions, typically one to five degrees
in latitude and longitude. These models are used to simulate future climate de-
pendent on greenhouse gas emission scenarios specified by the IPCC. The coarse
resolution of the GCMs make their output impractical for direct application in
water resources. Therefore the GCM output must be post-processed before if is
utilized in hydrological models. The post-processing consists of downscaling the
data by dynamic or statistical downscaling. Dynamic downscaling involves nesting
a finer resolution regional climate model (RCM) within a GCM. Statistical down-
scaling methods use the statistical relationships that exist between large-scale and
local climate variables to downscale GCMs.

A variety of statistical methods can be used to downscale GCM output. Com-
mon categories of models include transfer functions, weather typing, and weather
generators. The methodology and past applications of nearest neighbor resam-

pling was thoroughly researched and reported on as another possible statistical
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downscaling model. Nearest neighbor resampling is a less common method to
downscale data, but its relative simplicity and flexibility are advantages compared

to the other methédologies.

8.2 GCM Data Analysis

Several aspects of the large-scale and local climate variables were explore&. Both
spatial and temporal biases were identified in the CGCMS3.1 /T47 20c3m control
run data compared to NCEP/NCAR Reanalysis 1 and weather station data. Circu-
lation pattern classification demonstrated geopotential height data contain useful
information for predicting the occurrence and depth of daily rainfall. Canonical
correlation analysis demonstrated that the combination of large-scale temperature
data at multiple levels and geopotential height data can describe much of the
variation in temperature and precipitation processes at weather stations.

Two important conclusions were reached during the data exploration exercises.
The first is that data must be standardized using a daily mean and standard
deviation to remove bias. Secondly, data exploration identified relationships be-
tween the large-scale and local climate variables which leads to confidence that
the large-scale data grids selected are appropriate to downscale temper&ture and

precipitation data at weather stations.
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8.3 k-Nearest Neighbor Downscaling Results

The k-nearest neighbor model was used in four downscaling applications. The re-
sults from the applications demonstrate that k-nearest neighbor is a viable method-
ology to downscale GCM data.

The first pilot application of the methodology was to downscale the CGCMS3. 1 [/ T47
output to generate temperature and precipitation at the Thompson weather sta-
tion. During this application an optimization methodology was developed and it
was demonstrated that the downscaling model could reproduce historical weather
variables. It was determined that precipitation was the most difficult and im-
portant variable to optimize, as historical temperature is reproduced well without
significant optimization.

The next undertaking was a multi-site application in the Nelson River Basin.
In this application, the variables required for the SLURP hydrological model, tem-
perature, precipitation, solar radiation, and relative humidity, were downscaled for
the locations of the Thompson and The Pas weather stations for multiple climate
change scenarios generated by the CGCM3.1/T47. The k-nn model was optimized
using only statistics for precipitation as this variable is both the most important
and most difficult to model. This approach was found to not have a negative effect
on the model’s ability to reproduce daily temperature, solar radiation, or relative
humidity. The inclusion of data from two weather stations slightly improved the
optimization performance compared to the single site application. Temperatures
were found to increase throughout the 21 century for all future emission sce-

narios. Overall, the A2 and A1B showed more warming than the Bl scenario.
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This is consistent with global trends simulated by the Intergovernmental Panel on
Climate Change (IPCC, 2007). Precipitation was found to be underestimated by
the 20c3m scenario compared to the observed record. When comparing the 20¢3m
scenario to the future GCM scenarios, a decrease in all future scenarios except
for the B1 2046-2065 scenario were observed. Precipitation decreased more in the
later half of the 21°¢ century. The precipitation results were near the lower bounds
of future precipitation simulations in literature.

In the next application of the k-nearest neighbor downscaling model, GCM
data was downscaled for hydrological modelling in the Winnipeg River Basin at
Redlake and Sioux Lookout weather stations. The GCM data in this application
was centered over the weather stations with a slightly smaller grid than was used
in the Nelson River application. This resulted in a smaller feature vector and
faster optimization of the w vector, without a reduction in model performance.
For future temperature, increases occurred in all future scenarios. As in the Nel-
son River Drainage Basin, the A2 and A1B scenarios were warmer than the B1
scenario. Maximum inéreases in temperature were up to 6.4°C at Redlake for the
A2 scenario from 2081 to 2100. -The results for precipitation showed that the Win-
nipeg River Basin could expect to see precipitation accumulations increase up to
14%. The data showed that variable future winter precipitation, with some scenar-
ios showing increases of 13% and some showing decreases of almost 5% compared
to the downscaled 20c3m scenario.

The fourth application of the k-nn model was to downscale GCM data withA

NARR data replacing station data. . NARR data could serve as an alternative to
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station data for climate change assessments in areas such as northern Canada that
lack weather station data. The utility of NARR data in this capacity was tested in
this application. The resulis for the application with NARR data were consistent
with the results obtained in the Winnipeg River weather station application. All
emission scenarios show increases in future temperature. The B1 scenario shows
the least amount of warming and the A1B and A2 show the most warming. Precip-
itation varied between scenarios, either slightly increasing or remaining relatively
the same compared to historical means. Different gmission scenarios had similar
wam;ing trends when using the station data and the NARR data for downscal-
ing. In both applications, precipitation either remains approximately the same or
increases moderately. This application demonstrated that NARR data can be a
viable replacement for station data in climate change assessments. The applica-
tion also demonstrated the advantage the k-nn model has of downscaling many
variables at one time. Four variables were downscaled at each of the five NARR

grid points, for a total of twenty variables produced simultaneously.

8.4 Challenges and Significance of Research

The objective of applying a k-nn mbdei to downscale GCM data offered many
challenges. Climate change modelling, assessment of climate change impacts, and
downscaling of GCM are all relatively new branches of science and engineering.
Before the project was started, much energy was spent acquiring expertise in

climate change, multivariate statistics, advanced numerical methods, and Matlab
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programming.

The organization and processing of climate data requires significant time and
attention. GCM data had to be validated to inspect that it was functioning prop-
erly in the study region. The pre-processing of data before use in the downscaling
model included application of complex standardization and principal component
analysis. The volume of data climate data used in the study was large. In total,
thousands of years of climate data were processed and downscaled; with each day
represented by many large grids of GCM or NCEP/NCAR reanalysis data, and
weather station or NARR data.

Another challenge in the development and application of the k-nn was the
lack of previous applications of the methodology to downscale GCM data. The
software packages that are available for other methods such as weather generators
are not available for k-nn. While the premise of the method is relatively simple,
the successful building of the model required developing Matlab code to run the
model. Optimization of a k-nn model was not present in any of the literature
found. The development of an optimization procedure was one of the greatest
contributions of the research and should be used in future applications of the
nearest neighbor resampling model. An optimization procedure similar to the one
presented in this work could also be useful where nearest neighbor resampling is
used in an application other than downscaling climate data.

The research presented is a valuable contribution to climate change assessment
research and to the study of climate change on the Canadian Prairies. As climate

change concerns continue to grow, assessments of many systems that interact with
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the environment and climate will be required. This may include infrastructure,
agriculture, forestry, ecosystems, and of course water resources. With the un-
certainty involved in simulating future climate, the best approach is to use as
many tools as possible to develop a full ensemble of possible futurgs. The research
demonstrated that a k-nn downscaling model can successfully downscale large-
scale climate. The k-nn downscaling model should be included in future climate

change assessments along side the other common downscaling models.
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