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SUMMARY

The computer simulation of the gas dynamic problem of an impulsively
started piston in both a "hard sphere" gas and a neutral plasma is in-
vestigated by means of a new and more general Monte Carlo model. The
model allows the evaluation of non-constant binary collision cross-—
sections. The hard sphere results take the form of a shock wave. The
neutral plasma results show two discontinuities, one in each gas com-
ponent. Both studies show good agreement with experimental and logical
results.

The hard sphere model is then used to obtain property variations
through the shock wave by means of which the Boltzmann equation is
solved. The Boltzmann equation is represented in the BGK formulation
with the ellipsoidal formulation for the distribution of velocities
coming out of collision given by Holway. This solution proves to be a

refinement over that of the Krook formulation.
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NOMENCLATURE

Latin Alphabet

»»»»» a acceleration
b impact parameter
c molecular velocity
E electric field intensity due to a cell
F total electric field intensity acting in a cell
£ normalized velocity distribution function
g relative speed between two particles
k Boltzmann's constant
M Mach number
m molecular mass
m' reduced mass
N number of model molecules
n number density
P, a collision parameter (page 22)
q charge
T | spacial vector
Ax spacial increment
S time step parameter
s molecular radius
T temperature
3
T sonic temperature
t time
t pre-collision flight time



Greek Alphabet

n#

1>

vi

time increment

flow velocity

speed of the fastest moving molecule

most probable velocity upstream of the shock
most probable velocity downstream of the shock
piston velocity

g

cell width

ratio of specific heats
maximum slope thickness
permittivity of free space
tensor inverse of )

orientation of the plane of the orbits of
colliding molecules

sonic point viscosity

upstream mean free path

velocity moment matrix of molecules emerging
from collision (post-collisional velocity
moments)

collision frequency

a random number between O and 1

density

collision cross~section

total interaction cross-—section

deflection angle



vii

minimum deflection angle

normalized velocity distribution function
of particles emerging from collision



1. INTRODUCTION

The impulsively started piston problem was studied in two different
gases. The results take on two different forms. For a single component
gas in which the molecules are assumed to act as hard spheres, the re-
sulting structure of the gas was that of a shock wave. For a gas composed
of equal quantities of electroms and protons, the resulting structure of
the gas was that of two discontinuities one in each component. The im-
pulsively started piston problem in a hard sphere gas will henceforth be
referred to as the internal structure of a shock wave problem.

The study of the internal structure of a shock wave is a scientific
problem Which presents many difficulties. Under standard conditions a
shock in air has small dimensions (~ 10—3 cm thick) and moves at a high
speed (> 3 x lO5 cm/sec). For these reasons, the standard procedures of
measurement used by experimentalists have proved to be of little use.

Two representative studies of the experimental results concerning
internal shock structure of high velocity shocks to date are those by
Camacl and Robben and Talbot.2 Both investigators studied shock density
profiles and shock density thicknesses using electron beam techniques.
Camacl performed his work in argon at Mach numbers between 5 and 10.

He reported reciprocal shock wave thicknesses non-dimensionalized with
upstream mean free path of between 0.181 and 0.245. He compared these
results with several numerically obtained results. However, no attempt
was made to present any accurate density profiles. Robben and Talbot
performed their work in helium, argonm, and nitrogen over the range Mach
1.5 to 17.4. They reported reciprocal shock thicknesses non—dimension-

alized with a Reynolds number based on shock thickness of 0.141 to 0.17.



They compared these results with earlier work Including that of Camac.1
Once again no attempt was made to present accurate density profiles. Both
studies report that several corrections were necessary to reduce the data
to a workable form.

No experimental work has been reported to date on any shock parameter
except density. The only other exact information concerning shock struc-—
ture are the jump conditions across the shock. These are based on continuum
theory and may be found in any standard reference on compressible fluid
flow, (e.g. Shapiro3).

Investigations of shock structure by means of Monte Carlo simulation

models have been performed by Bird4’5’6 7,8

and Macpherson. The basis of
the technique was the assumption that the behavior of a large number of
molecules could be studied by studying the behavior of a small subgroup
of the molecules. A system of cells was set up in which molecules were
assumed to be isolated during a short time interval. During this time
interval the model molecules were allowed to interact with each other within
the same cell. Both investigators assumed that the time interval required
for a collision to occur was

2/N n 9 vr)
where N was the number of model molecules, n was the number density,
OO was the collision cross-section and V. was the relative velocity of
the two colliding molecules. Both investigators assumed that the molecules
acted as hard spheres and that the probability of collision was propor-

tional to the above time interval. A much fuller account of Monte Carlo

models will be given in Section 2.1.



Bird4’5 presented density, temperature, and velocity profiles for
shocks of Mach 1.5, 3.0, and 10.0. Macpherson7 presented density,
temperature, pressure and velocity profiles for a Mach 10.0 shock wave.

The study of magnetohydrodynamic flows is very complex. Although
the basic laws of charged particle interactions, electromagnetic field
behavior, radiation and other associated fields are well understood,
the interactions of large numbers of charged particles is complicated.
Theoretical works contain many simplifying assumptions and experimental
work is hampered by high equipment costs.

Generally, magnetohydrodynamic discontinuities are treated in a
macroscopic manner. Standard references such as Sutton and Sherman9
and Holt and Haskelllo use this approach.

The Boltzmann equation is generally written as

of 3 3 _ [ of _
TR P Bc—[at] -1
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where f is the velocity distribution function, t is the time, c¢ is
the molecular velocity, r is the spacial position vector, a is the
acceleration due to external forces, and the right hand side of the
equation is the collision term.

One of the earliest solution attempts of the Boltzmann equation was
that proposed by Enskog and independently by Chapman. The Enskog-Chapman
method was described in detail in reference 11. This method expressed
the distribution of molecules emerging from a collision in terms of a

vector A and a temsor B . These two quantities were then expanded



.using the Sonine polynomialsll which have the form
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where j is the order of the desired polynomial, x is the independent
variable and h is a number which depends on the molecular model. The
solution of these series when combined in the total solution, became pro-
gressively more difficult as the order, j , increased. 1In effect, above
order three the series was unsolvable.

Although many solutions have been presented using the Enskog—-Chapman
formulation, Mott—Smith12 showed that based on work using a third order
polynomial the series converged so slowly for Mach numbers larger than
1.2 that the method was not valid above this value.

Mott—Smith12 went on to propose an alternate model. He assumed that
the distribution function could be represented as a bi-modal maxwellian
of the form

"a fa + b fb
where fa and fb were maxwellians about different temperatures and n,
and n, =~ were the number density of molecules representing these maxwel-
lians. The solution for the distribution function was performed by a first
step iteration method. From these he obtained demsity thicknesses. He
stated that his model worked best for Mach numbers higher than 2.0.

The collision term of the Boltzmann equation was modeled by Bhatnagar,
Gross, and Krook13 as

vy - £)

where Vv was the collision frequency and ¢ was the velocity distribution



of molecules emerging from collision. This is the well known BGK
approximation. Furthermore, Krook14 proposed that Y at any position
be approximated by the maxwellian distribution corresponding to the
temperature at that position. He suggested that steady state problems
could then be solved by determining v and T , the temperature, in
the same manner as they were determined for solving the Enskog-Chapman
model (see reference 11).

Anderson15 used the BGK formulation of Boltzmann's equation in a
discrete analog system which he solved by an iteration procedure. His
method was numerical and complicated. He did not present distribution
functions, however, density, temperature, and velocity profiles were
presented for Mach 1.2 and 10.0 shocks.

Holwayl6 used the BGK formulation, however, he derived an alternate
representation for ¢ . Using statistical arguments he showed that ¢
could be represented as a function of the velocity moments of particles

emerging from collision. The equation had the form

-3/2 ~-1/2

(2m) Iéj exp - %-(eij (ci - ui) (cj - uj))

where .%: was the velocity moment matrix (vlvl, VoVss V1Vss etc.) of
molecules emerging from collision (often called post-collisional velocity
moments) , £ was the tensor inverse of A , and u was the flow. This
formulation is often referred to as the ellipsoidal model. To solve his
equation Holwayl6 had to resort to Enskog—Chapman techniques.
Enskog-Chapman solutions require knowledge of temperatures and col-
lision frequencies through the shock. Since v and T are not known

experimentally, all of the models except those of Mott—Smith12 and



Anderson15 must be solved by further assumptions or by iteration techmiques.
The Mott—Smith12 model defines a priori the form of f and is, therefore,
limited to one type of solution. The Anderson15 solution is almost purely
numerical and takes little account of physical behavior. None of the
papers discussed presented actual distribution functions.

Bird5 used the Monte Carlo simulation technique to give the velocity
distributions directly. His method required that particles be counted in

both position and velocity space. Since the Monte Carlo model ran

efficiently only when the number of model molecules was small, the
accuracy of such an analysis was in some doubt.

The present work covered three studies. Firstly, a new and more
general Monte Carlo simulation model based on a paper by Denisik EE.EE}7
was developed and analyzed. This model allowed for the definition of
variable collision cross-sections.

Secondly, the general Monte Carlo model was extended to show that

it was applicable to the study of phenomena in a non-equilibrium neutral

plasma. The specific problem considered was that of an infinite piston

impulsively entering a neutral plasma. Since this was the first model of

its type, the state of the gas modeled was chosen in a simple region.
Sutton and Sherman9 give the various plasma regimes. The gas modeled
lies in the § region. In this region ionization is greater than 50%.
All internal magnetic fields are ignored since their effect is very small.
In this regime bremsstrahlung radiation is unimportant and no electrons
have relativistic velocities. With these properties very few assumptions
were needed to achieve a working model.

Thirdly, a complete solution to the Boltzmann equation was obtained



by using Monte Carlo derived shock profiles in the Krook14 formulation
with the Holwayl6 Yy representation.

The thesis is organized into three parts. Part I describes the
method and results of the two Monte Carlo models. Part II describes
the Boltzmann equation solutions. All concluding remarks are presented

in Part III.



PART 1

THE MONTE CARLO SIMULATION



2, 'THE MONTE CARLO SIMULATION MODEL
2.1 The General Model

The increasing availability of high speed electronic computers has
made the direct simulation of some natural phenomena feasible. The
Monte Carlo technique is a statistical simulation method that assumes
that a large number of molecules have the same average behavior as a
small subgroup of themselves. The study of gas dynamic problems by use
of this method involves modeling the behavior of such a subgroup.

A shock wave was modeled by assuming a positional space between two
walls (see Figure 1). The right wall was assumed to be movable and was
referred to as the piston. A cartesian co-ordinate system was originated
in the left wall. Both walls were assumed to be infinite and to be per-—
pendicular to the x axis.

Molecules were positioned in the x direction between the two walls
in a totally random manmer. A standard subroutine that generated rec-—
tangularly distributed random numbers between O and 1 was used to give
fractional distances. The fractional distances were then multiplied by
the total distance between the two walls to find the x component of
the molecules position. It was not necessary to determine Yy and z
positions because the shock wave was considered to be one dimensional
(i.e. the shock was assumed to be infinite in the y and z directions).

The velocity space of the molecules was assigned by means of an
algorithm given by Birdl8 and described as follows. The velocity space
was assumed to be maxwellian, therefore the probability of a molecule

having a molecular speed, c, (normalized with the most probable speed)
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was proportional to
c2 exp (= c2)
The most probable speed therefore had a probability of occurrence of
exp (- 1)
and the ratio of probability of the occurrence of any speed to the max-
imum probability was
R = c2 exp (1 - cz) 2-1
A counter, K , was set to some initial random number between 0 and 1.
A value of c¢ was then randomly generated, and its probability ratio,
R , was calculated. The counter was then set to
K=K+ R “ 2-2
Values of c¢ were chosen until K was larger tham 1. The final value
of c¢ was then the required value. The value of K was then adjusted
to
K=K-1 2~3
and the next molecular speed was chosen in an identical manner. The
result was a maxwellian speed distribution.
The velocity components were assigned by choosing random directional
cosines and multiplying them by the molecular speeds found above.
Although the molecular speeds are generally considered, for mathe-
matical convenience, to range from 0 to « , for the purpose of the model
only speeds between 0 and 6 times the most probable velocity were assumed
to occur. This in fact considered over 99.997 of all molecules.
The space between the walls was assumed to be divided into a number
of equal width cells. The value of any physical property, such as temp-

erature or demsity, at the center position of each cell was assumed to be
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represented by the average of the property over the molecules whose x
positions were between the two cell boundaries.

All tests of the model were conducted using 4000 model molecules
distributed over 40 cells.

The original width of each cell was determined in the following
manner. The thickness of a shock wave is of approximately the same size
as the mean free path in the undisturbed gas. Therefore, to obtain a
reasonable approximation of the variation of properties through the shock,
the cell width had to be of such a size that the shock thickness included
several cell widths. However, if the cell width was too small very few
collisions would occur since the mean free path would be large compared
to the cell width. Based on experimentation with the model, an initial
cell width of 0.7 undisturbed mean free paths was chosen. As the model
is run, the cell width decreases. The above initial size was such that
in a reasonable amount of computer time the model advanced to the point
where the cell width was approximately 0.35 mean free paths which gave
good resolution of properties. However, this initial cell spacing insured
that sufficient model time elapsed so that several cells near the piston
end of the system developed to post-shock maxwellian conditions.

The shock wave was generated by allowing the piston to instantan-—

eously take a velocity of

2

(1 - M%)
V - 2 e
p ¥ v ¥+ Du

2-4
where vy was the specific heat ratio and M was the upstream Mach number

(Bird4, Mac herson7). A piston moving at this speed created a discontin-
P P

uity which had the properties of a plane normal shock in a Mach number,
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M, flow. Collisions between molecules and the wall or molecules and
the piston were assumed to be specular.

The value of the piston velocity was simply the difference in the
flow velocity across a Mach number, M , shock Wave.* For simplicity,
the region on the piston side of the shock was referred to as downstream
while the region on the wall side of the shock was referred to as either
the upstream or the undisturbed region.

The mathematical model, used to simulate the collisions between
molecules, was the basis of the simulation study. Three separate problems
were associated with the molecular collisions. Firstly, the elapsed time
before a collision occurred had to be calculated. Secondly, the two

colliding molecules had to be identified. Thirdly, the actual interaction

% The ratio of flow velocity across a shock is

2+(y—l)M2
(v + 1) M

The upstream flow velocity is the product of the upstream Mach number and
the speed of sound which has a value of v/2 Vm . The piston velocity
which is given by the difference between the upstream flow velocity and

the downstream flow velocity is then

-1

2
M XL v 2+ (v -1 M
2 'm (y + 1) M2

which when divided by Vm’ the most probable upstream velocity, and sim-
plified yields

2y (1 -
y+1LHM
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of the two molecules or in actuality the final velocity components after
interaction had to be defined.
Denisik EE.él}7 proposed that the time of flight before collision

for any molecule could be expressed as

N 1n Ei

t, = —— 2-5
i n o, C,
i7i

where Ei was a random number between 0 and 1, N was the number of
model molecules in the cell, n was the cell's number density, c;, was

the speed of the molecule considered, and o; Wwas the total interaction

cross—section of the molecule given by

where OOij was the interaction cross-section between the i-th and j-th
molecules. This differs in several ways from the time of flight used in

previous models.

Both Bird4 and Macpherson7 used a time interval of

£, = 2/(Nno vr) 2-7

0
The new formulation, (equation 2-5), had several advantages over the
earlier formulation, (equation 2-7). Firstly, the new formulation in-
herently considered the possibility of the collision of a particle with
every other particle in a cell. The earlier model was based on a particle
colliding with some average particle. Secondly, the new model was applic-
able to interaction models for which the cross-section was not constant
for all collisions. This was possible in the old formulation only by

using an average evaluation of 9y - Thirdly, the new formulatiomn
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inherently considered the random nature of collisions, whereas, the
former model did not. The new formulation was, therefore, both more
exact and more flexible.

The primary collision partner was found by first evaluating equation
2-5 for all molecules in a cell. The molecule, for which t, was a min-
imum, was then the primary collision partmer. The secondary collision

partner was chosen at random with a probability proportional to

c, - c.| On..
1—1 —j 04j
2 VM Oy
where VM was the speed of the fastest moving molecule-in the cell and
OM was the maximum interaction cross-section in the cell.

Appendix I contains a derivation of the components of velocity after
collision. Therein, it is shown that the collision is completely defined
by the deflection angle, x , and the orientation of the plane of the
orbits of the colliding molecules, n . Since both hard spheres and
coulomb particles have symmetric force fields, n was chosen at random
between 0 and 27 . The manner in which the deflection angle was chosen
depended on the assumed interparticle force law.

Once the initial system was set up, the computer simulation model
proceeded as follows. For a certain time increment, At, each cell was
assumed to be an isolated system. During this time only particles within
any one cell could interact with each other. Molecular movement was not
considered during this increment. Collisions were simulated in each
cell until the sum of the collision times, ts given by equation 2-5 was

larger than the time increment. After each cell had been considered,
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the position of the piston resulting from movement at the velocity given
by equation 2-4 for At was calculated. The new positions of the mole-—

cules were then calculated using the equation

a Atz
X=X0+VAt+——2—“ 2-8

where O denoted conditions at the beginning of the time increment and

a was the acceleration of the particle due to external force fields. At
this stage, collisions with the wall and the piston were considered.
These collisions were calculated in detail as to when during the time
increment they occurred. If an acceleration was present, all velocities
were increased to

Vo= v, + a At 2-9

After all the molecules were relocated, the cell boundaries were redefined
and each molecule was identified as to which cell it was located in. All
physical parameters of interest were then calculated. These steps were
repeated until the required data was acquired.

No analytic arguments have been presented that satisfactorily define
the magnitude of the time increment, At. Bird5 suggested it should be
small relative to the mean collision free time. Macpherson7 suggested
that the fastest molecule be allowed to move 0.4 — 0.5 of a cell width.
This value was later raised to 0.7. The ultimate determination of At
had to be made through experimental testing of the model. However, several
logical arguments were presented to determine limits to the magnitude of
At. These arguments are found in Section 2.2.2,

If the time increment was too long the molecules in each cell would

actually move far outside of the cell boundaries during the time step.
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This would violate the isolation assumption. If the time increment was
too short insufficient collisions would occur. The result would be that
particles acquiring energy from the piston would penetrate far upstream
before transferring energy to other particles. This would cause the
shock to be poorly defined as to shape and size. Also downstream max-—
wellian conditions would not result since little or no energy would be
transferred into the y and =z directions.

The time increment was defined as

S X

ae = X 2-10
R

where S was a constant, henceforth referred to as the time step param-
eter, X was the cell width, and VM was the speed of the fastest
moving particle in the system. The limits of S were found by logical

arguments and the final value of S was found by experimentation with

the model.

2.2 The Computer Model For Hard Sphere Molecules

2.2.1 Introduction

The study of gas dynamics by assuming that molecules act as rigid
hard spheres dates back several centuries. The hard sphere gas approx-—
imation allows the evaluation of almost all properties of a gas in a
steady state. By incorporating these properties in a Monte Carlo scheme,
information about non-steady conditions may be obtained.

Assuming the molecular sphere had a radius of s, the interaction _
cross—section in equation 2-6 was given by |

_ 2
GOij = 47 s 2-11
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which was a constant for all interactions. The impact parameter varied
between 0 and 2s with a probability of occurrence proportional to
itself (i.e. the probability of a collision impact parameter of b is
proportional to b w db. Since mw db is a constant, the probability of
occurrence of b dis proportional to itself). Once b was chosen, the

deflection angle, x , followed immediately since

X = w—ZSin_l[Eg} ' 2-11

This completed the defining of the Monte Carlo model as described in
Section 2.1.

It was immediately evident that the deflection angle, ¥ , was not
dependent on the magnitude of s, but only on the fact that b/2s varied
from 0 to 1. The only physical property of interest which depended on
GOij was the collision frequency. By assuming s = 1 X 10—8 the col-
lision frequency was in effect non-dimensionalized with a one angstrom
molecular radius. The Monte Carlo model of hard sphere molecules was
therefore independent of the molecular radius assumed.

The hard sphere gas model was tested extensively to determine its
applicability to the study of shock waves. All tests were conducted for

a Mach number 10 shock in a gas with a number density of lO18 molecules

per cubic centimeter.

2.2.2 The Determination of the Time Step Parameter
For a hard sphere gas, logical arguments will be presented to
determine approximate upper and lower limits for S.

The collision frequency in any cell was found by counting the number
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of model collisions occurring in the cell and multiplying by

2
N At

where N was the number of model molecules in the cell and At was the
time increment. If no model collisions occurred, the predicted collision
frequency would be zero which is an inaccurate prediction caused by the
fact that the model is discrete (i.e. assuming one model molecule repre-
sents one hundred real moleéules, one model collision represents one
hundred collisions. However, fifty real collisions could not be modeled
since the model molecule cannot experience half of a collision). The
minimum collision frequency occurred upstream of the shock and had a
magnitude of 2005 collisions per particle per second non-dimensionalized
with the most probable upstream molecular velocity.* It was felt un-
reasonable to allow less than one collision per four cells in this region.
An average over four data sets then resulted in an average of one collision
per cell.

When the cell width was approximately 0.35 of the initial mean free
path, the number of particles in each upstream cell was approximately 50.
The upstream mean free path was 0.56 X 10“3 cm for a number density of

1018 particles per cc. From equation 2-10 and the coilision frequency

% This follows from the hard sphere collision frequency

4 n 32 (r k T/m)l/2

by considering an s of one angstrom and dividing by the most probable

velocity (2k T/m)l/z.
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it follows that

s = 2-12

VM was approximately 20 times the most probable velocity and therefore
the minimum limit of S from equation 2-12 was approximately 0.5.

An upper limit for S was not as easily specified. In order to
justify the isolation of each cell during a time step, it seemed logical
that the maximum speed particle not be allowed to move more than one cell
width. However, this stipulation may be argued to be too small since a
single unusually fast particle could retard the development of the shock.
On the other hand, arguing strictly on isolation terms, S = 1.0 is very
large since a high speed particle moving to the left, located initially
on the left hand boundary of the cell would move almost across the next
cell. The isolation argument and the retardation argument had to be
compromised.

For a maxwellian distribution 997 of the particles had speeds between
0 and 2 Vm . The maximum speed allowed in the initial system was 6 Vm.
It was therefore possible to allow the fastest particle to cross 3 cells
and still have 99% of the particles cross 1 or less cells. However, the
piston imparted energy to some particles and the result was that the max-
imum speed in the system was approximately 20 Vm. At the same time the
downstream particles took on a maxwellian distribution whose most probable
velocity, V; , was 5.66 me The maximum velocity particle was therefore
approximately 3.5 V& . Allowing the maximum speed particle to cross 3
cells in a time increment still guaranteed that over 90% of the upstream
particles crossed less than one cell. It was felt therefore, that a time

step of three was a logical upper limit.
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The ultimate choice of the time step parameter was made by exper-—
imenting with the model. The parameter was checked at values of 0.5,
1.0, 1.5, 3.0 and 10.0. The last value was tested to determine the model's

behavior far outside the logical upper limit.

2.3 The Neutral Plasma Simulation Model
2.3.1 Introduction

The investigation of non-equilibrium behavior in a neutral electron-
proton plasma presented many complications that did not exist in a gas
composed of uncharged particles. Many of these difficulties arose from
the fact that a charged particle influences all other charged particles
irregardless of how far apart these particles are.

The interactions of charged particles were considered to be of two
types, close encounters or collisions and distant encounters or far field
effects.

For the Monte Carlo model two collision definitions were considered.
The first defined as a collision, an encounter between two particles for
which the impact parameter was less than or equal to the local Debye
shielding length (Sutton and Shermang) given by
1/2

2 k g T

max 2
ne

where k was the Boltzmann constant, e, was the permitivity of free

0
space, T was the temperature, n was the number density and e was
the electron charge. The second defined a collision as an encounter

between two particles for which the impact parameter was less than or

equal to the radius of the sphere that enclosed the volume unique to



21

each particle. The volume unique to each particle was the inverse of

the number density, therefore,

4.189 n

max

- (—___._l ]1/3 ' 2-14

In any particular case the minimum of these two definitions was used.

The Debye shielding length limit was used to account for the fact
that due to screening of charged particles by oppositely charged particles
the effective collision cross-section was reduced. The argument for its
choice is given in Sutton and Sherman.9 It is the same argument that
leads to the screened coulomb potential definition of classical electro—
static theory.*

The unique volume definition was based on the argument that inter-
actions between more than two particles at once could be treated as far
field effects. The probability of two particles being closer to each
other than to any other particles was greater than 50% only if one particle
entered the other particle's unique space. Any encounters with an impact
parameter larger than the radius of the unique space were not considered
to be collisions.

Having defined a collision, the collision cross-section for charged
particles was evaluated. It was assumed that the coulomb potential law
applied for b < bmaX and that the potential was zero for b > b

maxe.

This was the same approach followed by Sutton and Sherman.9 The

* The argument is based on the distance a charged particle's field extends

before oppositely charged particles effectively shield it,
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*
integrated form of equation 4.66" of Holt and HaskelllO then gave the

collision cross-section as

. _on 9 1 + cos Xy
04j 2 Pe L - cos x,
where
. s
¢ 4 €9 m' gz

where q was the charge, g was the relative velocity and m'

reduced mass

X denoted the minimum deflection angle and was given by

- p
Xy = 2 tan 1 5 <
max
% Equation 4.66 is
D 2
c
s(x) = 5
(1 - cos Yx)

2-15

2-16

was the

2-17

2-18

where 8(x) is the angular distribution function. The total cross-

section is then

i
27 J S(x) sin y dy
0

which results in equation 2-15 if the lower limit is changed from O

to Xm .
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The impact parameter was chosen to occur with a probability propor-

tional to itself. The deflection angle was then given by

I
x=2tanl[1—)—9} 2-19

2.3.2 The Two Fluid Model For Neutral Plasma Problems

The neutral plasma was considered to be made up of two gases, electron
and proton, which were coupled by both their electric fields and their
collision interactions. Because two different gases existed, a piston
driven into a neutral plasma was not expected to generate a discomtinuity
that resembled any one Mach number. Instead two discontinuities were
expected, one in each gas, with a coupling motion set up between them.
This problem could not be called a shock problem but was better described
as an impulsively started piston problem.

In order to generate a shock in a hard sphere gas, a piston was
driven into it at a velocity given by equation 2-4. This velocity was
non—-dimensionalized with respect to the most probable velocity of particles
in the upstream gas. In a charged particle gas, however, there were two
most probable velocities; one for electrons and one for protons. Since
the piston could travel at only one velocity it was decided to define an

average gas molecule of mass
n = ———F 2-20
The most probable velocity of a gas with this molecular weight was then

given by

m

(ZkT]l/Z
g




24

All velocitiés were non-dimensionalized with respect to this value.

If the two gases were completely uncoupled, a piston travelling
at Mach 10 with respect to the average gas would set up a Mach 14.068
discontinuity in the proton gas and a Mach 1.18 discontinuity in the
electron gas. With two different discontinuities a variation in species
density would be set up and in certain regions the plasma would no longer
be neutral. An induced electric field was therefore expected.

Within the system each cell was assumed to act as an infinite sheet
with respect to its charge distribution. As the field due to an infinite
sheet does not vary with distance perpendicular to the sheet, the fields
due to each cell are algebraically summable. Outside of the walls this
sum is zero since the sum of all charges in the system is zero (i.e. neutral
plasma).

The field, Ei , due to a charge distribution, np -, in a cell

was
e (n_ - ne) X
E, = % P 2-21
i 2 €
0
where X was the cell width. The + and - specified whether the field

was acting at a point to the right or the left of the cell. The total
field, Fi , in a cell due to the fields generated by all other cells was
-1 Nc
F, = ) - E, + E, 2-22
=1 I =i
where NC was the number of cells.

Because of the lack of information inherent in the model, the field

within a cell due to particles within itself was assumed to be zero. The

Monte Carlo method assumed that the model particles represent a much
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larger number of actual molecules. For this reason the particles within
a cell could not be fixed to one position in order to study fields because
each molecule represented many molecules scattered throughout the cell.
The minimum resolution of macroscopic properties in the system was, in
fact, a cell width. The cell's molecules could be assumed to generate a
field within the cell given by equation 2-21, however, there is no method
of determining the correct sign (£). This question had no answer, and
therefore the field was assumed to be zero.

The acceleration on a particle i due to the induced field in a

cell j was then
2-23
This acceleration is the one to be used in equations 2-8 and 2-9.
2.3.3 The Theoretical Resultant Behavior For an Impulsively Started Piston
in a Neutral Plasma
It will be constructive to describe at this point the interrelations
of the piston-gas reactions, the dinterparticle reactions, and the electric
field-particle reactions from a theoretical point of view.
The physical properties of the resultant system will be due to a
physical balance between the three interactions. The general picture
has the piston acting as an energy source setting up a flow and density
pattern; the electric field attempting to alter flow and density patterns;
collisions attempting to communicate energies between directions and
between species.

As the piston enters the gas, particles will strike it, reverse their
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direction and pick up an added velocity of 13.56 Vmg' At any temperature,
the high mass protons have low peculiar velocities and low mass electrons
have high peculiar velocities. As a result this added velocity will
account for almost all of the protoms velocity while the electron gains
relatively little added velocity. Since the peculiar velocity of the
electrons is much higher than twice the piston velocity, electrons re-
flected from the piston will move away much faster than the protons. The
protons will therefore tend to concentrate near the piston while an
electron concentration builds up farther upstream. These two concen-
trations will act like a dipole and will set up a strong electric field.

The electric field will accelerate electroms toward the piston and
protons toward the wall. Consequently, the field will extract flow energy
from the electrons and add it to the protoms. 1In the limit the action
of the field would destroy itself.

Collisions between particles tend to transfer the extra energy
received from the piston into the y and z directions as well as
transfer energy between species. On the average they will retard the
motion of particles rebounding from the piston by transferring flow energy
into thermal energy. The inter—-species collisions will have the net

result of bringing the temperatures of the two species closer together.

2.3.4 The Time Step Parameter

Since the maximum velocity of the electrons was much higher than
that of the protons, the maximum electron velocity was considered in
equation 2-10. However, for neutral plasmas, the time step parameter

had to be of such a magnitude that it allowed three types of collisions
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to occur; electromn-electron, electron-proton, and proton-proton. However,
the low peculiar velocity of protons made the proton-proton collision
frequency considerably less than that of the other two types of collisions.
Therefore, the information transfer due to proton-proton collisions was
of secondary importance.

The maximum velocity of upstream electrons was approximately 70 Vmg'
Since the discontinuity in the electron shock was small, the maximum
downstream electron velocity was only approximately 100 Vmg' The proton
maximum velocity however was approximately 2 Vmg in the upstream region and
20 Vmg in the downstream region. Due to the very weak discontinuity in the
electron shock it was assumed for the purpose of determining the time
step parameter that the electrons were very nearly in the same state
throughout the system. For this condition a time step parameter of a
relatively high magnitude did not adversely affect the electron structure
since isolation was not extremely critical. It was felt that § = 5.0
would not violate the assumptions used to determine the time step parameter
for haxd sphere gases.* When S was 5.0, the time step parameter based
on proton velocities was approximately 1.0. This allowed proton collisions
throughout the system, however, most of these collisions were of the proton-
electron type. Proton-proton collisions occurred only in the downstream
region and in small quantities. It has already been shown that this lack
of occurrence was both expected and of little importance.

The presence of the electric field entered into considerations of

% It will be shown in the results that, even for § = 10, the results

for hard spheres are not in error by more than 10%7.
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the time step parameter. Since the field acted as a means of dissipating
energy in a manner much less effected by the time step parameter than the
collisions, it tended to make the time step parameter take on a less im-—
portant role than it had in the hard sphere case. This was a final con-

sideration which suggested a time step parameter of 5.0 was not too high.

2.3.5 Test Conditions

The neutral plasma was assumed to have an initial temperature of
lO,OOOOK (v 1 eV) and a number density of 1015 particles per cubic centi-
meter. As is generally assumed in theoretical studies of neutral plasmas,
the gas was assumed to be 100% ionized and re-association was assumed not

to occur.
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3. SIMULATION MODEL RESULTS
3.1 The Hard Sphere Gas Model
3.1.1 The Variation of Shock Properties With Time Step Parameter

The simulation model was run for time step parameters of 0.5, 1.0,
1.5, 3.0 and 10.0. From two to four times during each run, complete
information about density, temperature, flow, collision frequency,
velocity moments and post—collisional velocity moments was printed out.
Two or three runs were performed for each time step parameter. Therefore,
four or more data sets were available for each time step parameter.

These data sets were statistically averaged for each time step parameter
to obtain average variations of the properties with position.

The variations obtained in this manner, show very similar behavior.
For this reason no graphical presentation was attempted to show the be-
havior for various time step parameters. Instead, the downstream cell
properties were averaged. Between 9 and 11 cells were involved in these
averages. The results are shown in Table 1. The last column shows the
theoretical upstream values found from standard mass-energy conservation
formulae.

From Table 1 it was clear that the properties density, temperature,
flow, collision frequency, and velocity moments showed similar accuracies
for S =0.5 to S = 3.0. All these time step parameters showed errors
generally of less than 2% in predicted upstream conditions. For S = 10.0
the inaccuracy was much more pronounced, especially for density and col-
lision frequency. The errors for these properties were almost 5%. These
results tended to confirm the upper and lower limit analysis presented

previously.
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The error in the post-collisional velocity moments (i.e. the velocity
moments of particles emerging from collision) markedly increased with in-
creasing S. Errors of up to 19% were noted with the best agreement
being within 6.5% for S = 0.5. These errors however were misleading
especially for low values of S. For S = 0.5 approximately 207 of the
particles have collisions in the downstream region during one time step.
Since the velocity moments were found by averaging only over these part-
Vicles, whereas all other properties average over all particles, post-
collisional velocity moments were inherently five times less accurate.
When S = 3.0 the number of particles averaged over was approximately
the same (i.e. approximately every particle had onme collision). This
would indicate that the best value of S was the smallest value possible.

Experimentation, therefore,showed that the value of S should be 0.5.

3.1.2 The Accuracy of the Computer Model

The accuracy of the computer model was tested by three independent
means. Firstly, results were compared with the limited experimental
results available. Secondly, the model downstream conditions were com—
pared with theoretically derived conditions. Thirdly, the model results
were checked to assure that they were consistent within themselves by
testing the conservation of mass criteria and the collision frequency
variation as described below.

The only experimental results available were shock thicknesses found
by electron beam fluorescence techniques. Two differént investigations
1

were considered; that of Robben and Talbot2 and that of Camac.

Robben and Talbot2 reported results non~-dimensionalized with the
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length L defined as
%*
LT o= 3-1

%
where n  was the viscosity at the sonic point and pu was the flow.
The maximum slope thickness, § , was defined in the usual manner as

n, - n
u

4 u
(dn/dX)maX

where n was the number density with d denoting downstream and u
denoting upstream. For hard sphere particles the viscosity was defined

as

L 3-3

*
* mi 8k T 1/2
T m

where m was the molecular weight of the gas. Equation 3-1 then reduce

to
%
Lt 1 8 2+ (v -1 m |2 s
§ 386noM ™Y v+ 1
since
ou = mnM[:Y__E_I]l/Z 3-5
and
%
2+ -1 W 3-6
T v + 1

The problem was to determine what molecular radius should be assumed in
order to determine the cross—section‘ 0. Rather than assume a radius it
was decided to use the maximum slope thickness determined by the Monte
Carlo simulation model and use equation 3~4 with the Robben and Talbot

results to predict molecular radii.
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Robben and Talbot2 reported L*/é values between .141 and .17 for
Mach 10.0 shocks in argon, helium and nitrogen. The Monte Carlo model
predicted a thickness of 1.22 x 10_3 cm. The corresponding molecular
radii would be 0.98 x 10_8 cm to 0.90 x lO—8 cm.

1 . . . . .
Camac™ reported shock thicknesses non-dimensionalized with upstream

mean free path. For hard spheres this ratio was given by

A _ 0.707 .
§ = Sno 3-7

The experimental values reported ranged from 0.181 to 0.245 for Mach 10.0
shocks in argon. Solving equation 3-7 for molecular radii, values ranging
from 1.59 x 1070 em to 1.37 x 107° cm were obtained.

Table 2 shows some typical molecular radii estimated from viscosity
data at 0°C. The values range from approximately 1.1 X 10—8 cm  to
1.9 % lO_8 cm. The radii predicted by Camac'sl results fall roughly in
the middle of this range. Robben and Talbot's2 results predicted radii
slightly below this range.

A detailed error analysis for the downstream conditions was performed
for S = 0.5. The reference datum was the theoretically calculated con-
ditions. Table 3 shows the results. The first column gives the percentage
error while the second column shows the predicted value divided by the
theoretical value.

The two most important properties, the density and temperature ratios,
agreed to within 2%. The flow was exact to two decimal points! The col-
lision frequency was accurate to within 1%. The velocity moments were

in error by approximately 4%. The maximum error occurred for the primary

velocity moment of particles emerging from collision. However, the erroxr
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was still less than 7% and this error has already been shown to be in-
herently 5 times greater than other errors. Overall the Monte Carlo
model conditions were very close to the theoretical values.

Two checks were possible to ensure that the simulation model gave
results which were consistent within themselves. Firstly, conservation
of mass required that the mass flow rate (product of density and flow
at any position) should be a constant. Secondly, the collision frequency
should vary as nJT-. Table 4 shows a check on the mass flow rate. The
maximum error occurs at a point roughly two-thirds of the way through
the shock. This maximum error was less than 47 which is small.

Figure 2 shows the collision frequency structure as given by the
Monte Carlo simulation. The points plotted are those found by multiplying

the upstream collision frequency by

where =x denotes the position in the shock and u denotes the upstream
values. The temperature and density used were those predicted by Monte
Carlo simulation. It may be seen that the two predictions agreed very
well.

Confidence in the method was therefore established in three different
ways. Comparison with experimental results was shown to be favourable.
Theoretically expected values were obtained to a very good tolerance.
Finally, it was shown that the results were consistent within itself.

The present Monte Carlo simulation model therefore was found to be a

good workable approximation to the real shock wave behavior.
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3.1.3 The Shock Structure

Figures 3 through 10 show the shock structure of various properties
for S = 0.5. The curves were visually fitted through data points which
were obtained by statistically averaging six data sets. The scatter is
very small on all graphs except for the collision frequency and the post-
collisional velocity moments. It has already been shown in Section 3.1.1
that less accuracy and more scatter was expected in the post-collisional
velocity moments due to sample size. The same type of argument may be
used to explain the collision frequency scatter. The collision frequency,

, was calculated by the formula

vo= ot | 3-8

where N was the number of particles and Nk was the number of collisions
in the time step At. The average was therefore, over the number of
collisions per particle per time step which was a number less than one.
There was therefore less data available for the collision frequency than
for a property such as density. However, it has already been shown that
the collision freéuency structure agrees very well with that predicted

by the pressure and temperature structures.

The upstream equilibrium lines shown on Figures 3 through 10 are the
theoretical and not the values shown in Table 1. The data points emphasize
how well the model predicts these theoretical upstream properties.,

A curious anomaly manifested itself in the primary post-collisional
velocity moment structure. The values first overshot then returned to

approximately the downstream value of 16.06. This behavior is shown by

a solid line. However, very soon after the curve returned to the downstream
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value it rose once more and peaked a second time. Comparing this curve
to the other shock structures it was seen that at the point where the
shock first returns to its downstream value all the other properties had
also reached their downstream values. In other words, the second peak
occurred somewhere in the region behind the shock. The reason for its
occurrence probably lies in interference with the piston. Since the
number of model molecules Wés very much lower than the total number of
actual molecules and since high speed molecules tended to collide more
frequently, molecules that had rebounded from the piston dominated the
collision model in the first few cells.

Figure 11 shows the post—collision velocity moment as predicted by
two individual data sets. The anomaly described above is clearly shown
as is the initial return to the downstream conditions. The solid line
is identical to that in Figure 9.

In the region of major interest, that through the shock, the structure
was acceptable. Any inaccuracies may be reduced by rerunning the program
to obtain more data for a better statistical average.

The new Monte Carlo simulation model, therefore, produces very
reasonable looking results with very low scatter for a small sample size.
3.1.4 A Comparison of the Presented Monte Carlo Model to Other Monte Carlo

Models

Mach 10 results for two other Monte Carlo simulation studies were
available; those of Bird5 and those of Macpherson.7 Both of these models
were more limited than the present model in that they did not allow for
varying interaction cross-sections. In this respect the new model was

much more general with direct applications to multi-component gases.
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Bird's5 results show that the shock thickness parameter, XA/S ,
should be 0.31 which suggested a shock which is definitely too thin
when compared with experimental results. This could, however, be caused
by assuming an inaccurate molecular radius when calculating X . The
longitudinal temperature overshot seen in Figure 7 was also observed by
BirdS. His maximum value was approximately 20 sz while the present
model predicted approximately 21 sz. The theory of Yen19 predicted a
maximum temperature overshoot of 21 sz, therefore, the new Monte Carlo
simulation is marginally closer than Bird'35 model.

Macpherson's7 results showed a maximum slope thickness of 1.33 x
10_3 cm. This agrees well with the present value of 1.22 x 10—3 . The

longitudinal temperature overshoot was 21.5 sz in Macpherson's7 work

which once more agrees well with the present work.

3.2 The Neutral Plasma Model

It was a great disadvantage that no experimental data or even sound
theoretical information was available with which to compare the neutral
plasma model. The results were compared with the logically expected
behavior.

Figure 12 shows electron and proton density profiles. The two
separate concentrations are clearly visible. Near the piston the proton
density greatly exceeded the electron density. At approximately 1.9 x
107" cm a neutral plasma position occurred. From here to the shock foot
an electron concentration existed.

Figure 13 shows the electric field in the system. When the particle

field was initially set up, random positioning placed different numbers

of each species in each cell. This in turn set up an electric field
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which will be referred to as noise. The magnitude of this noise is
shown as a dashed line in Figure 13. The electric field in Figure 13
was very well defined. It went to zero as expected at both extremes.
Comparing Figures 12 and 13, the field has values of the same magnitude
as the noise field at approximately the electron shock foot. The field
maximum occurs at 1.9 X lO~4 cm which is the neutral plasma point. It
was at this point that maximum particle acceleration occurred.

Figure 14 shows the proton and electron temperature profiles. An
average shows the downstream temperatures to be 61.3 and 1.34 for protons
and electrons respectively. In Section 2.3.2 it was shown that if the
gases were uncoupled, two discontinuities would result. The downstream
temperatures of these uncoupled discontinuities would be 62.7 and 1.17
for protons and electrons respectively. Collision coupling of the two
gases, therefore, must have occurred since the temperatures have moved
toward an equilibrium. The electron temperature had too small a magnitude
to show abnormalities. The proton temperature however, shows a definite
overshoot. The position of this overshoot was 1.9 x 10_4 cm which cor-
responded to the neutral plasma point. This would suggest that the two
features are correlated.

Figure 15 shows the proton and electron flow profiles. The proton
flow was of a high magnitude. This was due to the influence of the
piston and the fact that the electric field accelerates the protomns
negatively. The electron flow, however, was retarded by the field and
was less affected by the piston due to the high peculiar velocity of
electrons. Since the electrons were much lighter than protons, equation

2-23 shows that electron accelerations were much higher than proton
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accelerations. The combined effects keep the electron flow very low.

The behavior of the model was clearly consistent with the logically
expected behavior. The electron behavior, except in regard to densities,
exhibited very little departure from the initial state. The proton be-
havior showed gross departures from the inial state as was logically

expected. The model remained stable at all times.
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THE BOLTZMANN EQUATION
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4. THE BOLTZMANN EQUATION AND IT'S SOLUTION

For any species in a gas the Boltzmann equation is written as

of of of _ [ of
3t T ST T2 7% T [ ot J b=l
- col

where f 1is the velocity distribution function, t is the time, ¢ is
the molecular velocity, a is the acceleration due to external fields,
and the right hand side is the collision term. The rigorous form of the

collision term is
o 2m
v 1 -
( £1 £ £, £, ] g b db dn

where g is the relative speed, b is the impact parameter and n 1is
the angle specifying the orientation of the plane of relative orbits.
The subscripts denote the two collision partners and the (') denotes
conditions after collision. Except for simple cases, such as steady
state, this form is unsolvable.
. . 14 15
In recent years many authors including Krook™ ', Anderson = and

Holwayl6 have used a statistical model of the form

v - )
to represent the collision term. Here V is the collision frequency
and ¥ dis the distribution of velocities of molecules that have just
undergone a collision. Holwayl6 went on to show that ¥ was given by
the relationship

1

3
-3 - = 1
Y= (2w) 2 I%J 2 exp i) { Eij (ci - ui) (cj - uj) 4-2

40
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where )\ is the second order velocity moment matrix of molecules emerging

from collision and ¢ is its temsor inverse. The flow is denoted by u.
For a steady one-dimensional shock wave in a single component gas

with no external field, Appendix II shows that the Boltzmann equation may

be represented by the three equations

QL

£

l = —

cq 5;1- = v {wl fl ] 4~3a
f2 = wz 4-3b
f3 = w3 4-3c

where wl . wz , and w3 , f f2 , and £

1 are the component equations

3
of Y and f respectively. The component equations of ¥ are derived
in Appendix TII.

The finite difference form of equation 4-3a is
Ny
°1

Af = (g - £1) Ar b=4

and a finite difference solution for £ at any point, n , is

n _ 0 v n _ n-1 _

fl = fl + o [ wl fl J Ar 4=5
where fg is the original value of fl . For any value of el equation
4~5 may be solved for £ at any point. This equation therefore, provides

1

a means of solving the Boltzmann equation at a number of velocity and
spacial points. The resultant field may then be fitted with a bi-cubic
spline.

A spline is a piece-wise continuous curve fitting technique. It is
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based on fitting a third order polynomial between any two points such
that at each of the points the first and second derivates are contin-
uous. By supplying a set of data points consisting of a set of absicca
points (x) with the corresponding ordinate points (yv) and by specifying
the boundary conditions at the extremes, a simple cubic spline may be
fitted to the data points. This spline has the following properties.
It passes smoothly through each point provided. Between data points the
curve is continuous. The first and second derivatives at the data points
are continuous.

The above description may be extended to a bi-cubic spline where
the values to be fitted are functions of two variables (eg. z as a
function of x and y). In this case a surface is fitted to a grid
system. The surface will be smooth with the first and second derivatives
at points along grid boundaries being continuous. Within each grid the
surface i1s continuous and smooth.

The cubic spline fit provides a method of expressing y as a
function of x in the form

2 3
y o= a2, + a, X + ay X + an X 4—-6

where the n denotes the cell number along the x axis (i.e. the given
data points divide the x axis into a number of cells) for the bi-cubic

spline =z is expressed by

— 2 3
z = almn -+ aZmn x + a3mn X + aémn X
+ aSmn v a6 xy -+ a7mn Xy + a8mn X'y
2 2 2 2 3.2
+ a9mn b + alOmn xy + all xy + 21 2mn xy

(over)
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3 3 2 3 3.3

+ 213mn ¥ + allunn xy + 21 5mn =y + al6mn x 4=1

(Pricezo) where m denotes the y cell and n denotes the x cell.
The values of the a matrix are found by methods described by Ahlberg,
Nilson and Walsth.

It is immediately apparent that once the z-grid is defined the value
of =z at any point within the defined boundaries of x and y dis immed-
iately obtainable. It is seen that by finding the distribution function
at a finite number of points in ¢y and ry, a bi-cubic spline may be
fitted to the resulting grid in order to complete the solution.

By solving the finite difference equation, 4-5, for a number of ¢y
values at a number of spacial points, ry, a grid system was generated.

The spline then completed the solution.

The finite difference evaluation of f; was simplified by the use
of simple cubic splines. To evaluate equation 4-5 the value of v and
b, must be known at any point. Monte Carlo simulation studies gave v

directly at a number of points in the shock. The distribution function

wl is derived in Appendix III as

_ 1
- 2 2
by =(2m (epy 53 = 37) 2 ]
2 2 + 2 - 2 € €
oxp - 1 _F12 ®33 £13 22 €12 ®13 ©23
P 11 2 4-8
€22 ©33 €23

where A dis the moment matrix of particles emerging from collision and

e is its temsor inverse. In the Monte Carlo simulation there was no

evidence to indicate that A,, , AlB or -X23 were other than zero.
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Equation 4~8 will therefore reduce to
_ - 1/2 V1
wl = [2 T All J exp - 4-9

This form bears a strong resemblance to Krook's14 equation for *1 which

is

wl = (2 512)— 1/2 exp -

4-10

where C is defined as

1
o, = ( 5—3-] 1/2 4-11
m

The quantity € 2

1 is therefore the velocity moment corresponding to the

local kinetic temperature. Except under equilibrium conditions Elz will

not equal A The Holway16 model is therefore a refinement of the

11 -
. . 14 .
original Krook™ ' expression.

Expressing equation 4-9 in the form
2
p; = a(r) exp - b(r) vy 4-12

it can be seen that equation 4-5 may be evaluated once v(r), a(r), b(r),
and ul(r) are obtained. The flow ul(r) is necessary in order that

may be found at any position given the molecular velocity ey - The

Y1
variation of these quantities was obtained by fitting simple cubic splines
to the yvalues of v, a, b and Uy given by the Monte Carlo simulation

study. It was found that twenty data points were more than sufficient

for this purpose.
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5. DISCUSSION OF RESULTS

Once the splines are defined for the variation of v and wl s
equation 4-5 may be evaluated using any desired value of Ar . It was
found that for Ar < 0.2 x ]_O-_5 cm the numerical integration yielded
similar results. Equation 4-5 was then used to define a field for twenty

values of r, and sixty-five values of cy - This field was then fitted

1
with a bi-cubic spline which completed the solution.

The accuracy of the distribution functions found by the finite dif-
ference evaluation was tested by comparing the variation of the primary
velocity moment obtained by integration, with that obtained directly from
the simulation study. As a second test, Krook's14 formulation of ¢1 was
used.

Figure 16 compares the Monte Carlo results with the integration results
of both wl formulations. Near the foot of the shock both formulations
show poor agreement. This is primarily attributed to the insensitivity

of the statistical model of the collision term and to the inaccuracy of

Monte Carlo data near the foot of the shock. It has been shown in Sectiom

3 that the accuracy of the post—collisional velocity moments is much poorer
* than that for other properties. Since the Krook14 formulation is based

on temperature, the error of its prediction depended much less on the

Monte Carlo process than that for Holway'sl6 formulation. It is signif-

icant therefore, that Holway'sl6 formulation shows much better correlation

with observed behavior away from the shock foot. Especially of note is

the prediction of the magnitude and position of the overshoot. Holway'sl6

maximum overshoot is only slightly behind the observed overshoot while

the Krook14 overshoot occurs much later. This figure convincingly shows
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that Holway'sl6 formulation is superior to that of Krook.14

Figures 17 through 21 show the distribution functions at various
positions in the shock as predicted by Holway'sl6 formulation. The up-
stream and downstream distributions are perfectly maxwellian. The

3 cm show

intermediate states at x = 2.8 X lO_3 em and x = 3.6 x 10
the upstream peak rapidly shrinking while the upstream maxwellian grows
out to the left. At x = 4.4 X 10_3 cm  the longitudinal temperature is
near the top of its overshoot. The distribution is seen to be very nearly
maxwellian about the local longitudinal temperature; From this point to
the downstream position, the distribution simply shifts to its proper
velocity position and perfects its maxwellian nature.

A comparison of the secondary velocity moment is shown in Figure 22.

It has been shown in Appendix II that for hard sphere molecules
£, = wz 5-1

This implied that the variation of the secondary velocity moment of
molecules emerging from collision is the same as the secondary velocity
moment at the position. The Holwayl6 formulation therefore, is repre-

sented by the post-collisional secondary velocity moment. The Krook14

. . . . 14
formulation arises from equation 4-10. It is seen that both the Krook
16 X . .
and Holway  formulations show the same size of error. However, in order

to gain accurate distribution functions at any point in the 2 and 3

directions, equation 5-1 shows that

_ - 1/2 1 2 -
£, = 27 M22) exp ( 5V, /M22 ] 5-2
where M is the secondary velocity moment value at the point. Due to

22
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symmetry f3 is equal to f2 .

The present approach used to solve Boltzmann's equation is much less
complicated numerically than the methods used by Anderson15 and other
numerical experimenters. It also has the advantage of remaining at all
times dependent on physical behavior patterns rather than numerical con-
vergence criteria. The application of the spline fit allows a complete

solution to be obtained.
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6. CONCLUDING REMARKS

The impulsively started piston problem has been solved by a new
and more general Monte Carlo model of molecular behavior. The model
was based on the time of collision free flight given by Denisik gE_§1}7
and assumed that the behavior of a gas was predicted by the behavior
of a subgroup of the gas molecules. Two gases were modeled, one com-—

posed of "hard sphere" molecules the other of equal numbers of electrons
and protons. The model was solved by means of an IBM 360-65 computer.

The impulsively started piston in the 'hard sphere" gas produced
a shock wave. The resulting shock wave structure was used to solve
the Boltzmann equation in the BGK formulation. The impulsively started
piston in the neutral plasma demonstrated that the new model could be
applied to a gas for which the collision cross—section was not a constant
but a function of the initial conditions of the colliding particles.

In Section 2.1 it was shown that the new Monte Carlo model was more
general and exact than the previous models. This conclusion was based
on three considerations. Firstly, the randomness of collisions was
inherently considered. Secondly, collisions with all other particles
are considered in the formulation. Finally, collisions whose inter-
action cross-sections are not constant could be treated.

In Section 3.1.2 the results of the Monte Carlo model as formulated
for hard sphere molecules were tested to prove their accuracy. The
shock thicknesses predicted by the model compared very well with the
experimentally derived results of Camacl and less well with those of
Robben and Talbotz. The downstream conditions as derived by the model

agreed with the results predicted by continuum theory. Both the
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conservation of mass law and the collision frequency were verified
accurately.

In Section 3.2 the results of the impulsively started piston
in a neutral plasma were demonstrated to agree with logically expected
behavior.

The solution of the Boltzmann equation given in Sections 4 and 5
were obtained in a very simple, straight forward manner. A comparison
of longitudinal velocity moments predicted by the Monte Carlo model
and the Boltzmann equation solution showed only fair agreement. How-
ever, the Holway formulation of the post-collisional velocity distribution
yielded a more accurate indication of these moments than did the Krook
formulation.

The new Monte Carlo model in the charged-particle formulation has
several applications as discussed below. However, four extensions are
necessary before these realistic problems can be attempted.

The most important extension would be the consideration of the
association of ions and electrons. This could be achieved by a con-
sideration of the energy of collision and the ionization potential.
Furthermore, re-ionization of the resulting neutral products of asso-
ciation could be considered in the same manner. This extension would
allow studies of problems where 1007 ionization cannot be assumed.

The consideration of radiation effects would be a second extensiomn.
Both bremsstrahlung and cyclotron radiation could be considered. Since
the former type of radiation is a collision phenomenon, the Monte Carlo
method is especially well suited to its study.

Two simpler extensions would be the consideration of external
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electromagnetic fields and the treatment of relativistic electromns.
Both these extensions may be based on well known equations of behavior.
As was stated in the introduction, the basic mechanisms of impor-
tance in ionized gas problems are well understood. The power of the
Monte Carlo method lies in the fact that it allows these well understood
mechanisms to be used in complex situations to predict plasma behavior.
Three problems that could be treated in this manner will be described.
The gas discharge tube has been exhaustively studied yet still
presents several unsolved problems.22 The modeling of a gas discharge
tube would be a good problem to consider while developing the Monte
Carlo model techniques. The available experimental information (con-
tained in such works as Howatson23) would furnish an excellent comparison
for Monte Carlo results. By this comparison, both the model itself and
the computational techniques involved in its solution could be refined.
It is a well known fact that a plasma will reflect and not transmit
electromagnetic waves whose frequency is below the plasma frequency.
This causes a resonance in the electromagnetic wave at the plasma
frequency. Experiments with a gas discharge tube inside a wave guide
confirm this resonance but also indicate several other resonances.22
It has been theorized that this multiple resonance is due to non-uniform
electron density. The confirmation of this theory is within the scope
of the Monte Carlo simulation model. With the model, a detailed study
of the microscopic interaction of the plasma and the wave could be
performed.
Thermonuclear fusion power generation experimentation is a very

costly undertaking--not to mention the danger involved to life and
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property. At present a great deal of work centers around finding
equipment geometry that will contain a plasma at high pressures and
temperatures. However, due to plasma instabilities all designs to
date have failed.24 Tt should be possible to comstruct a Monte Carlo
model of the plasma in the thermonuclear range and use this model to
perform computer simulations of proposed equipment configurations.

In this manner, the feasibility of a design could be ascertained in a
relatively inexpensive and absolutely safe way.

A third problem that could be studied by a Monte Carlo model is
that of coronal heating. The manner in which the energy of the sun
is passed from the photosphere to the chromosphere and corona is not
known.22 The best theory to date proposes a mechanism involving
acoustic and shock waves generated in the photosphere and propagating
through to the corona. At present it is impossible to make close range
studies of behavior on the surface of the sun. The Monte Carlo model
could provide a method of obtaining both an understanding of the
mechanisms involved and a testing of the proposed theories.

The three preceding studies were chosen to demonstrate the ver-
satility of the Monte Carlo method. The first study provides confir-
mation of an existing theory. The second study provides an inexpensive
method of performing feasibility study of thermonuclear problems. The
third study provides a means of obtaining information in a situation
where direct observation is hampered by extraordinary circumstances.

As a research tool in the study of plasma physics, the Monte Carlo
modeling technique offers a unique advantage. Since the programming

of the model is at all times under the control of the researcher, the
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inclusion of any particular mechanism, such as collisions, radiation,
etc., is decided by him. This allows the contribution of any particular
mechanism to be directly evaluated--an evaluation which is generally
very difficult with laboratory experiments.

It is concluded that the Monte Carlo method comstructed under the
new formulation provides a powerful tool for the investigation of gas

dynamic problems.
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Summary of Downstream Shock Properties For Varying Time Step
Parameters(S) as Compared to the Theoretical

TABLE 1

59

Property 0.5 1.0 1.5 3.0 10.0 Theory
Non-Dimensional

Density 3.91 3.89 3.92 3.90 3.67 3.88
Non-Dimensional

Temperature 31.56 31.61 31.88 31.07 32.47 32.12
Flow (u,/V ) -6.78 -6.79 -6.79 -6.74 -6.88 -6.78
Collision Fre-

quency (x 1073/sec) 43.78 44,98 44,19 44,63  41.63 44,14
Primary Velocity

Moment (vlz/vm ) 16.37 15.47 16.17 15.94 16.20 16.06
Secondary Xelocity

Moment (v, /vmz) 15.35 15.97 15.80 15.5 16.12  16.06
Post-Collisional

Primary Velocity

Moment (v12/vm2) 17.09 17.74 19.01 18.99 18.81 16.06
Post-Collisional

Secondary Velocity

Moment (VZZ/Vm ) 15.35 18.40 17.86 18.40 18.88 16.06




TABLE 2

Some Typical Molecular Radii At 0° Centigrade

Gas Radius (cm)
Helium 1.09 x 1078
Neon 1.30 x 1078
Argon 1.83 x 10-—8
Hydrogen 1.38 x 10_8
Nitrogen 1.89 x 10_8

(From: "An Introduction to the Kinetic Theory
of Gases' by James Jeans, p. 183).
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TABLE 3

Error Analysis For Time Step Parameter of 0.5

Property % Error Ratio of Measured to Theoretic
Density Ratio 0.77 1.01
Temperature Ratio -1.74 0.98
Upstream Flow 0 1.00

Upstream Collision
Frequency ~-0.81 0.99

Primary Velocity
Moment +1.93 1.02

Secondary Velocity
Moment -3.80 0.96

Primary Velocity Moment
(Post-Collisional) +6.40 1.06

Secondary Velocity Moment
(Post~Collisional) +2.68 1.02

Shock Propagation Speed +0.22 1.00




TABLE 4

Percent Exror in Conservation of Mass Requirement

Position (% 1000 cm) Flow Exrror (%)

3.0 9.13 0

3.5 9.13 0

4.0 9.21 .9
4.5 9.27 1.5
5.0 9.22 1.0
5.5 8.79 -3.8
6.0 8.99 -1.6
6.5 9.11 -.2
7.0 9.11 -.2

62
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APPENDIX I

Derivation of the Particles' Velocity Components After A Binary Collision

Consider two particles of mass my and m, moving with velocities

c, and c, respectively. The following parameters are defined

1 2

M1

T om o, Al-1a
1 2
"2

Mo T mtm, AL-1P
1 2

81 T 5 TG Al-2

where 891 is the relative velocity. Assuming these two particles
collide, their velocities after collision are given in Chapman and

Cowlingll as

0
Il

et 2N, (521 < k) k Al-3a

1 = — ° -
c Cy = 2 My (521 k) k : Al-3b

where k is the collision vector and the only unknown.
Figure Al-1 is a diagram of a binary collision. k is seen to be the
bisecting vector of the two vectors 891 and Eél . It is also observed

that

g = T - X Al-4

hence, k is entirely specified by 6, therefore, x , and an angle, n ,
which orientates the 891 ~ gél plane in space. Henceforth, the unit

vector g will be defined as the unit vector in the direction of 851 -



87

FLIGURE Al-1: A BINARY COLLISION

If a plane, £ , is constructed perpendicular to the 891 vector,
this plane intersects the x-y plane along a vector r. (In the limit
if £ dis identical to the =x-y plane, ¥ will be defined as i , the
unit axis in the x direction.) The unit projection of the g wvector
in the =x-y plane is the vector

&1 ) )
e ~
817 8 g1 7 &y

JHh
f

i Al-5

which makes an angle

B = arc cos (fl) Al-6

with the =x-axis. Since r and f are at right angles to each other
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¥ makes an angle

a= 8 - 90° Al-7

with the x-axis.
A right hand system of co-ordinates is defined by r, g and u
where

u=rxg Al-8a

or

v =1 8, i - ry g3 i + (rl gy = T, gl) n Al-8b

where i, j and n are the original co-ordinate system. The £ plane,
in which both ¥ and u lie, is then the plane in which n must lie

to orientate the g - k plane. Defining the vector g to lie in both

the £ plane and the g - k plane, g 1is given by

g=cosnr + sinnu Al-9

and k is

k

1t

cos 8 g + sin 6 g Al-10

The expanded components of k are

kl = cos f 81 + sin 6 cos n cos o + sin 6 sin n sin o 83 Al-11a
k2 = cos § 8o + sin 6 cos n sin o - sin 6 sin n ces o &3 Al-11b
k3 = cos 9 83 + sin 8 sin n (cos a g, — sin o gl) Al-11c

Since © has been shown to be a function of X, the components of velocity
after collision are obtainable from initial conditions and a knowledge of

X and n .
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APPENDIX IT

A Derivation of the One

—Dimensional Statistically Modeled Boltzmann
Equation

The general form of Boltzmann's equation is

= (g—tf—J A2-1
col

9

h

|

+ c -

(o34

t

Eg]
+
)
Q)no)

[g) lr-h

where f 1is the normalized distribution function, t is the time, c¢ is

the molecular velocity, r is the position and a is the acceleration due

to external fields. The BGK model of the collision term (right hand side

of equation A2-1) is

(%J =v (¥ - f) A2-2
col

where v is the collision frequency and ¢ 4is the velocity distribution

of moleculeg emerging from a collision.

Expanding equation A2-1 and substituting equation A2-2, it is seen

that

of of of of of of of
sttty ar te, = 4o, & 4, 3 +ta, == +a, —
ot 1 arl 2 8r2 3 8r3 1 acl 2 802 3 8c3
=v (Y - f) A2-3

Assuming a steady state shock wave in the Ty direction with no external

field

o),o)
(e
I
o

A2-4a



and equation A2-3 reduces o

o5}
Hh

|

o5
=

By definition

]
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of = 0 A2-4p
or
3
5 = a3 = A2-4e
vy - £) A2-5
fl f2 f3 A2-64
wl wz ws A2-6p

It follows that

of of of
of 3 2 1
r. T i) £ f5 5% ) f3 35 A2-7
1 1
Integrating equation A2-5 oyer all ¢, and cq and noting thag
f. de, = 1 A2-84
i i
of, 5
= de, = 3 f. de, = 0o A2-8h
ar i or i i
. 2 1 .
(where 1 is either 2 or 3) it is found that
. Bfl
C, —— =y (wl - fl) A2-9

1 3rl



Similarly,

and over all

C

1

an integration over all

and

“1

and

3

yields
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A2-10

A2-11
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APPENDIX IIT

A Derivatlon of the One—Dlmensional Velocit
Molecules Comlng OQut of Colllslon

Holway16 g&ives the velocity distri

1
- = 1
_Lé] 2 exp ~_§-( €, . (ci - ui) (cj - uj) J A3-1

where‘ A 1s the veloc1ty moment matrix of such molecules, £ is the tensor
inverse of “As ¢ s the molecular Velocity apng Y is the floy, Defining

—

the;peculiar velocity by V¥V  vwhere

v_z:C-.E

-

€quation A3-3 may be €Xpanded ag

le one—dlmen81onal form, w is obtaineq by integrating over al]

Vose It follows that

-3 1 1 p
o= 2 [AlT 7 -4
1 (2m) f:J 2 exp 2 €11 v,
8Xp ~ 5 (e v, 2 + 2 vy v,)
33 13 "1 Y5
00

(over)
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1 2
exp — 5 [822 v, + 2 [312 vy + €13 V3 ] Vs ] dv2 dv3 A3-3

By completing the square of the inner integral this integral reduces to

o 2
o 12 V1T a3 v3) 1 T IS St I
P 2 e, ®¥P 7 3 €22 V2 R v
o 22
which is of the form
L exp - -zz dz
€22 )__
and has the solution
o 2 (e15 vy * €93 V3)
€ exp 2 €
22 22
Equation A3-3 now takes the form
c 2 2
0. = 1 exp - L | eir v 2 - 12 V1
1 1/2 T2 11 1 B
2T €99 Lél 22
* e 2 €,4 €
1 23 2 12 723
exp - & € - v, t+ 2 € - v v dv
2 33 €99 3 13 '1 €99 1 3 3
A3-4

Once more employing a completing the square technique the resultant
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equation is

) - 1/2
bp =T [ ®22 ®33 7 23 ] Al
v 2 2 + 3 -2
e - X | F12 ®337 F13 %22 ®12 €13 ©23 35
2 11 _ 2 -
€22 €33 €23

By analygous techniques the second and third component equations,

wz and ¢3 , are

- 1/2
- ( 2
b = | 27 | eq1 €33 " 513 | [
v 2 € 2 € + € 2 sv - 2¢ € €
2 12 11 7 %23 %33 12 €13 23
Xp =T | f22 T 2 A3-6
! ®11 ¥33 T F13
) -1/2
2
b3 = 12T | Epp Spp T f12 } ]
2 2 + 2 - 2 €
V3 €13 f11 7 Fa3 €22 €12 €13 ®23
exp = €33 ~ ' 2 A3
| €11 ®22 12




