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SUMMARY

The computer simulaLion of Ëhe gas dynamíc problem of an inpulsively

started piston in both a "hard sphere" gas and a neutral plasma is in-

vesËÍgaËed by means of a new and moTe general Monte Carlo model. The

model allorrls the evaluaËion of non-constanL binary collision cross-

sections. The hard sphere results take the form of a shock wave. The

neutral plasma results show two discont,inuities' one in each gas com-

ponent. Both studies show good agreemenL wiËh experímenËal and logical

resulËs.

The hard sphere model ís then used to obt,ain properËy variations

through the shock wave by means of whích the Boltzmann equation is

solved. The BolËzmann equaËion is represenLed in the BGK formulation

with the ellipsoidal formulation for the distribution of velociËíes

coming out of collision given by Holway. This soluËion proves to be a

refinemenË over thar of the Krook formulation.



l_1

ACKNOI^TLEDGEMENTS

r would like to express my deep appreciat,ion to Dr. A. K. Maepherson

who acËed as my supervísor f.or this thesis. I would also 1íke to thank

Dr. R. Lzad and Dr. tr{. M. Boerner, the members of my advisory cornmit.tee,

for their Ëime and advice duríng both the research and wríting of this

r¿ork.

I would like to thank the staff and students of Ëhe Mechanical

Engineering Department for Ëheir many suggesËions and criticísms.

Especially among Ëhem, r would like Ëo thank Mr. G. v. price and Mr. T.

A. Derbentli.

f would like to acknowledge my gratitude to the staff of the

computer DeparËment for their tíme and co-operaËion especíally those

oPeraËors who worked the weekend overËime shifts in order ËhaË the

longer programs could be completed.

Finally, I would like Ëo thank ny wife, Beverly, not only for

typing and proofreadi-ng the manuscripË but also for helpíng me through

the frustrations of the research.



TABLE OF CONTENTS

SI]MMARY

ACKNOI.ILEDGEMENTS

TABLE OF CONTENTS

NOMENCLATURE

1. INTRODUCTION

PART I THE MQ}i.IE CARLO SIMULATION

2. THE MONTE CARLO SIMULATION MODEL
2.I The General Model
2.2 The Conputer Model for Hard Sphere Molecules
2.2.2 The DeËerminatíon of the Time Step Parameter
2.3 The Neutral Plasma Simulatíon Model
2.3.1 InËroduction
2.3.2 The Two Fluid Model For Neutral Plasma problems
2.3.3 The Theoretical ResulËant Behavior For an

Impulsively Started Piston in a NeuËral plasma
2.3.4 The Time Step Parameter

3. SIMULATION MODEL RESULTS
3.1 The Hard Sphere Gas Model
3.1.1 The Variation of Shock ProperÈies wiËh Time Step

ParameËer
3,L.2 The Accuraey of the Computer Model
3.1.3 The Shock SËructure
3.1.4 A Comparison of the Presented Monte Carlo Model to

OËher Monte Carlo Models
3.2 The Neutral Plasma Model

PART II TIIE BOLTZMANN EOUATION

4. THE BOLTZMANN EQUATION AND ITIS SOLU"IION

5. DISCUSSION OF RESULTS

PART III CONCLUDING REMARKS

6. CONCLUDING REMARKS

RNFERENCES

TABLES AND FIGURES

rl_l_

l_

l- l-

l-l- 1

I

B

9

9
L6
1-7

20
20
23

25
26

29
29

29
30
J4

35
JO

39

40

4B

49

54

57



l_v

APPENDIX I

APPENDIX II

APPENDIX III

Dg:ivaËion of the Particlesr Velocity Components
After A Binary Collision

A Derivation of thej?ne-Dimensional SÈatist:Lcally
Modeled Boltzmann Equation

A DerivaËion of the One Component Velocity Dis-
tribution Function of 4olecules Comíng Out 0f
Collision

89

92



NOMENCLATURE

Latin Alphabet

d

b

c

E

F

ç

N

M

m

_t
Jr¡

N

n

D

q

T

Ar

q

s

T

T

t

t.
L

acceleration

inpact parameter

molecular velocity

electric field inËensity due to a cell

total elecËric field intensity acting in a cel1

normal-ized velocity distributíon funcËion

relative speed between two parLicles

Boltzmannrs constant

Mach number

molecular mass

reduced mass

number of model molecules

number density

a collision par¿tmeter (page 22)

charge

spacial vector

spacial increment

tíme step parameter

molecular radius

temperature

soníc temperaËure

Ëime

pre-co11isi-on flight time



u

I'I

\7
m

vr
m

\/
p

vt

X

vl-

Ëime increment

flow velocity

speed of the fastest moving molecule

mosË probable velocity upstream of the shock

most. probable velociËy downstream of the shock

písËon velocity

ç

cell wÍdth

Greek Alphabet

y ratio of sPecific heats

ô maximum sloPe thickness

Ê narmi ttiylty of free space'o

e_ tensor ínverse of À

¡ orientaËion of the plane of the orbits of
colliding molecules

¡:t sonic point viscositY

¡, uPsËream mean free PaËh

À velocity moment maËrix of molecules emerging
from collision (posL-collisional velocíËy
monrents)

v collisíon frequencY

E a random number between 0 and I

P densitY

o0 collision cross-secËíon

o. total interaction cross-secËíon
a

X deflection angle



vta

^m

il

mÍnimum deflection angle

normalized velocity distribution funcËion
of particles emerging from collision



1. INTRODUCTION

The impulsively started piston problem was studied in Ëwo different

gases. The results take on two different forms. For a single component

gas in which the molecules are assumed to act as hard spheres, the re-

sulting Structure of the gas vlas thaË of a shock llave. For a gas composed

of equal quantities of electrons and proËons, Ëhe resulËing structure of

the gas Was that of Ëwo disconËinuítíes one in each component' The im-

pulsively sËarËed piston problem ín a hard sphere gas will henceforth be

referred Lo as the internal strucËure of a shock wave problem'

The study of the internal structure of a shock wave is a scíenLifíc

problen which presents nrany difficulties. Under standard conditions a

shock in air has small- dimensions (- l0-3 cm thick) and moves at a high

r
speed (> 3 , lOJ cn/sec). For these reasons, the standard procedures of

measurement used by experimentalÍsts have proved to be of litEle use'

Two represenËative sLudies of the experimental resulËs concerning

inËernal shock structure of high velocity shocks Ëo date are Ëhose by

t2
camac* and Robben and Talbot,.¿ Both invesËígators studied shock density

profiles and shock density thicknesses using electron beam Ëechniques'

cu*""l performed his work in argon at Mach nt*nbers beËween 5 and 10'

lle reported recíprocal shock lrave thicknesses non-dímensionalized wíth

upstream mean free path of beËr,reen 0.l8l and 0.245. He compared these

resulËs with several numerically obtained resulËs' Hovrever' no atËempt

was made Lo presenË any accurate density profiles. Robben and Talbot2

performed Ëheir work in helium, aïgon, and nitrogen over the range Mach

1.5 to L7.4. They reported recíprocal shock Ëhicknesses non-dímension-

aLLzed^lrithaReynoldsnumberbasedonshockthicknessof0.l4lto}"LT.
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They compared these results with earlier work including that of C*"..1

Once again no attempt, T¡¡as made to present ac.curaËe density profiles. Both

studÍes rePorË thaË several corrections r^iere necessary to reduce the data

to a workable forn.

No experimental work has been reporËed t,o date on any shock parameËer

excePt density. The only other exacË informaËÍon concerning shock sËruc-

tutre are Ëhe jump conditions across Ëhe shock. These are based on continur¡m

Ëheory and may be found in any standard reference on compressible fluid

flow, (e.g. Shapiro3).

Investígations of shock structure by means of MonËe Carlo simulaËion

models have been performed by Bird4'5'6 
"rrd 

Macphersor,.T'B rhe basis of

the Ëechnique was Ëhe assumpËion Ëhat Ëhe behavior of a large nunrber of

molecules could be studied by studying the behavior of a sma1l subgroup

of the inolecules. A system of cells \,'ias set up in which molecules were

assumed to be ísolated during a short Ëime inËerval. Duríng this tj-me

interval Ëhe rnodel molecules were allowed to interact. wiËh each oËher within

the same cell. BoËh invesËigators assumed that the Ëime inËerval required

for a collisÍon to occur r¡tas

2/N n o0 rr)

where N was Ëhe number of model molecules, n was the number density,

o0 was the collision cross-sectÍon and t, was the relaËíve velocity of

Ëhe two colliding molecules. BoËh invesËigators assumed that the molecules

acËed as hard spheres and Ëhat the probability of collision rn¡as propor-

Ëional Ëo Ëhe above Ëime inËexvaL. A much fuller account of MonËe Carlo

models will be given in Sectj-on 2.I.
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Bírð.4'5 pt.".rrted density, temperaËure, and velocity profíles for

shocks of Mach 1.5, 3.0, and 10.0. Macphersorr' pt"".oËed densiËy,

temperature, pressure and velocity profiles for a Mach 10.0 shock rqave.

The study of magnetohydrodynamic flows is very complex. Although

the basic laws of charged particle interacÉions, electromagnetic fíeld

behavior, radiation and other associaLed fields are well undersËood,

Éhe inËeracËions of large numbers of charged particles is complícated.

Theoret.i-cal works conÉain many simplifying assumptions and experimental

work Ís hampered by high equipment costs.

Generally, magnetohydrodynamic discontinuíËies are Ëreated in a

ÄacroscopÍc manner. Stand.ard references such as Sutton and Sherman9

and HoJ-t and Haskelllo ,l"" this approach.

The Boltzmann equation is generally written as

af af âr larl 11
;---t C';--1- a';- = | * | I-IdE dï dc [ ,r J.ol

where f is the velocity distríbution funcËion, t is the tíme, c is

Ëhe molecular velociËy, r is the spacial position vecËor' a is the

acceleration due t,o exËernal forces, and Ëhe right hand side of the

equation is the collision Ëerm.

One of the earliest solution attempËs of the Boltzmanrl equaËion \,ras

ËhaË proposed by Enskog and independently by Chapman. The Enskog-Chapman

meËhod rras described in detail in reference 11. This method expressed

the dístributÍon of molecules emerging from a collision in terms of a

vector A and a tensor B These t\^/o quanËities were then expanded



using the Sonine polynomitl=ll which have Ëhe form

-i- i

'l (- x)* (h + j)i_i/i: (i - i):
i=0

where j is the order of the desired polynomial, x Ís the independent

variable and h is a number v¿hich depends on Ëhe molecular model. The

soluËion of these series when combíned in the ËoËal solution, became pro-

gressiVe]-y Ínofe diffÍcult as the order, j , íncreased. In effecË, above

order Ëhree the serÍes \^las unsolvable.

AlËhough many solutions have been presented using the Enskog-Chapman

1'
formuLation, MoËË-Smith-'showed ËhaË based on work using a thírd order

polynomial the series converged so slowly for Mach numbers larger than

L.2 t]nat Ëhe meËhod was not valid above Ëhís value.
1'Mott-Smith" wenË on to propose an alternate model. He assumed that

the distribution function could be represenËed as a bi-modal maxwellian

of the for¡n

nf+nf,AADD

where f and f, were ma)$¡rellians about different temperatures and rI^
AD

and rL r^rere the nurnber density of molecules representing Ëhese maxwel-
D

lians. The soluËion for Ëhe dístríbutÍon funcËion was performed by a firsL

step iËeration meËhod. From these he obtained density thicknesses. He

sËaËed that his model worked besË for Mach numbers highex tlnan 2.0.

The coll-ision term of the Boltzmann equation was modeled by BhaLnagar'

Gross, and Krookt' as

v(rJl - f)

where v r^¡as Ëhe collision frequency and rf was Ëhe velociËy distribution
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of molecules emergíng from collision. Thís is Ëhe well known BGK

approximaËion. Furthermore, Krookl4 ntono"ed that Û at any position

be approximated by the maxwellian distríbution corresponding to the

temperature aË that position. He suggested that steady state problems

could then be solved by determining v and T , the temperatuTe' in

Ëhe same manrrer as Ëhey \¡/ere deterrnined for solving the Enskog-Chapman

model (see reference 11).

15 . i r, -- -t- ^---- L:^-Anderson used the BGK forrnulaËion of Boltzmannts equation in a

discreÈe analog system which he solved by an iËeration procedure. His

meËhod vras numerj.cal and complicated. He did not presenË dístribution

functions, hourever, density, temperaËure, and velocíty profiles were

pfesented for Mach 1.2 and 10.0 shocks.

16
Holway-" used Ëhe BGK formulation, however, he derived an alternaËe

represent,aËion for rJ, . Using statistÍcal arguments he shor¿ed that {,

could be represented as a functíon of the velociËy moment.s of particles

emerging from collision. The equaËion had the form

Qù-3lz Eft/'exp - T r.r, (c. - ur) (c. - ur))

where À was the velociËy moment matrix (tltl, v.uz, vLv2, etc.) of

molecules emerging from collision (often called post-collísíonal velociËy

momenËs), g was the tensor inverse of À I and u was the flow. This

formulaËion ís ofËen referred to as Ëhe ellipsoidal model. To solve his

equation tto1r"yl6 had to resorË to Enskog-Chapman techniques.

Enskog-Chapman solutions require knowledge of temperaËures and col-

lisj-on frequencies through Ëhe shock. Since v and T are not known

expefimenLally, all of the models except those of MoËt-Smithl2 and
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15Anderson-- musË be solved by further assumptions or by iËeratíon Ëechniques.

^ ... t2The lvlott-SmÍth model defines a priori the form of f and is, therefore,

limited to one Ëype of solution. The Ander"ool5 solution is almost purely

numerical and Ëakes little accounË of physical behavior. None of the

papers discussed presented actual- dístributíon functíons.
\

Bird- used the Monte Carlo simulation technique to gíve the velocíty

distributions direcËly. His method required that particles be counËed ín

boËh posit,ion and velocity space. Since the MonËe Carlo model ran

efficiently only when the number of model molecules was small, the

accuracy of such an analysis was in some doubt.

The present r¿ork covered three studies. Fírstly, a ne\^I and more

general Monte Carlo simulatíon model based on a paper by Denisit et a117

was developed and anaLyzed. This model allowed for Ëhe definiËíon of

variable collision cross-secËi.ons.

Secondly, Ëhe general Monte Carlo model \^ras extended Ëo shorrr Lhat

iË was applícable Ëo the sËudy of phenomena in a non-equilibrium neutral

plasma. The specific problem considered was Ëhat of an ínfinite pisËon

impulsiyely entering a neutral plasma. Since Ëhis was the first model of

its Ëype, Ëhe sËaËe of the gas modeled was chosen in a símple region.

SutËon and Sherm"rrg girr" the various plasma regímes. The gas modeled

lies in the S region. In Ëhis region ionLzation is greater than 50%.

A1l inËernal- magnetic fields are ignored since their effect is very small.

In thís regime bremsstrahlung radiation ís unimportanË and no electrons

have relaËivisËic velociËies. I¡,IíËh these properËies very few assumptions

were needed Ëo achieve a working model.

Thirdly, a complete solution to Èhe Boltzmalln equaËion r¡as obtaíned



by usíng Mont,e Carlo derived shock profiles in Ëhe Ktookl4 formulation

L6with the Holway*" rf represenËation.

The thesis is organized into Ëhree parts. ParË I describes the

method and resulËs of the two MonËe Carlo models. Part II describes

the BolËzmann equation solutíons. All concluding remarks are presented

in Part III.



PART I

THE MONTE CARLO SIMULATION
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2. THE MONTE CARLO SIMULATION MODEL

2.1 The General Model

The increasing availability of high speed elecËronic computers has

made the direcË simulatíon of some natural phenomena feasible. The

Monte Carlo technique is a statistícal simulaËion method that assumes

Ëhat a large number of molecules have the same average behavior as a

sma1l subgroup of themselves. The study of gas dynamic problems by use

of this method involves modeling the behavior of such a subgroup.

A shock hrave r.ras modeled by assuming a posiËional space between tr¿o

r,¡alls (see Figure 1). The right wal1 was assumed to be movable and was

referred t.o as Ëhe piston. A cartesian co-ordinate system was origínated

in the left wall. Both walls r^Iere assumed to be infinite and Ëo be per-

pendícular to the x axis.

Molecules were positíoned ín the x direcËion beËween the tr¿o walls

in a totally random manner. A standard subroutine thaË generated rec-

tangularly distribuËed random numbers betr¡Ieen 0 and I r'ras used Ëo give

fractional distances. The fractional distances were then rnultiplied by

the Ëotal distance between the Ëwo walls to find the x component of

the molecules posiËion. IË was not necessary Ëo det,ermine y and z

posiËions because the shock \^iave r^ras considered to be one dimensional

(i.e. the shock r¡/as assumed to be infinite in Ëhe y and z dLrections)'

The velocity space of the molecules was assigned by means of an

algorithm given by nirdl8 and described as follows. The velocity space

$/as assumed to be maxwellian, therefore the probabíliËy of a molecule

haying a ¡nolecular speed, c, (normalized wíth the most probable speed)
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was proporËional to

"2 "*p 
(- 

"2)
The most probable speed therefore had a probability of occurrence of

exp (- 1)

and the raËio of probability of the occurrence of any speed to the max-

imum probability was

R =.2"*n(r-"2)
A counter, K , \nras set to some iniËial random number

A value of c üras then randomly generated, and its

R , was calculated. The counter lras then set to

K=K-|-R

Values of c \Áiere chosen unËil K was larger than

of c r^Ias Ëhen the required value. The value of I(

Ëo

2-1,

between 0 and 1,

probability ratio,

2-2

1. The final value

was Ëhen adjusËed

K=K-l 2-3

and the nexË molecular speed was chosen ín an idenËical manner. The

resulË \¡ras a maxwellian speed díst.ributÍon.

The velocity components were assigned by choosing random direcËional

cosines and mulËiplying then by the molecular speeds found above.

Although the molecular speeds are generally considered, for mathe-

maËical convenience, Ëo range from 0 to æ , for the purpose of the model

only speeds between 0 and 6 times Ëhe most probable velocity were assumed

to occur. This in fact, considered over 99.997" of all molecules.

The space beËween the walls uras assumed Ëo be divíded into a number

of equal width cells. The value of any physical property, such as temp-

erature or densiËy, aË the center posíËíon of each cell was assumed Ëo be
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represented by the average of Ëhe property over Ëhe molecules whose x

posiËíons were betr¿een the two ce11 boundaries.

All tests of the model were conducted using 4000 model molecules

distributed over 40 cells.

The oríginal width of each cel1 was determined ín the following

manner. The thickness of a shock wave is of approximately the same síze

as the mean free path in the undisturbed gas. Therefore, Ëo obtain a

reasonable approximation of the variation of properties through the shock,

the cell r^/idth had to be of such a size thaË the shock thickness included

several cell widths. However, if the cel1 wídth was too small very few

collisions would occur since the mean free path would be large compared

to the ce1l wídth. Based on experimenËation with Ëhe model, an Ínitial

cell width of 0.7 undisturbed mean free paËhs r,¡as chosen. As the model

is run, the cel1 \^Iidth decreases. The above initial síze was such that

in a reasonabl-e amounË of computer time the model advanced to the point

where the ce1l width \^ras approximately 0.35 mean free paths whích gave

good resolution of properties. However, this initial cell spacing insured

Êhat sufficient model time elapsed so that several ce1ls near the pisËon

end of the system developed Ëo post-shock maxwellian conditions.

The shock r¡lave was generated by allowing the piston to instantan-

eously take a velociËy of

(1 - o*r2)un = {zY C.fff
Where y was the specifíc heat ratío and

(Bird4, Macpher"onT¡. A piston moving aË

uiËy which had the properËies of a plane

M was the

this speed

normal shock

2_4

upstream Mach number

created a discontin-

in a Mach number,
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lvl, flow. Collisions between molecules and the wall or molecules and

the piston T¡zere assumed to be specular.

The value of the piston velocíty was simply the difference in the

flow velocity across a Mach number, M , shock *"4r..* For simplicity,

Ëhe region on the piston side of the shock was referred to as dol¡msËreau

while Ëhe region on the wall- side of the shock was referred to as eiËher

Ëhe upsËream or the undÍsturbed region.

The maËhemaËical model-, used to sÍmulaËe the collisions beËween

moleculesr rrtâs Ëhe basis of the símulation study. Three separaËe problems

T¡rere associaËed wÍth Ëhe molecular collisions. FÍrstly, the elapsed time

before a collision occurred had to be calculated. Secondly, Ëhe two

colliding molecules had to be identified. Thirdly, Ëhe acËual ínteraction

* The ratio of flow velociËy across a shock is

2+(y-L)M2
(Y+1)M2

The upsËrearn flow velocity is the product of Ëhe upsËream Mach number and

Ëhe speed of sound whích has a value of y/2 Y^. The pisËon velocity

which is given by the difference between the upstream flow velocity and

Ëhe downsËrean flornr velocítv is then

(?l
aÁ y 17 l2+ (v-1)M- " I

'r 2 'm |. -ly-TY r- Ð M'l-

which when dj-vided by V*, Ëhe most probable upstream velociËy, and sím-

plified yields

zy (t-vtz)
(Y+1)M
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of the two molecules or in actuality Ëhe fína1 velocity components afËer

ínËeraction had to be defined.
17

Denisik et g!-' proposed that the time of flíght before collision

for any molecule could be expressed as

N ln E.
2_5

Ëhe number of

densitv. c. hras
l_

total ínt.eracËion

l_
l- l-

where Eí I¡Ias a random number between 0 and Ir N T¡ras

model molecules in the cell, n was the cell rs nr¡mber

the speed of the molecule considered, and oi was the

cross-secËion of the molecule gíven by

tJ rsi - eilo. i '#' on'. 2-6a ,-r 'rJ

where o^. . was the inËeraction cross-secËion beËween Lhe i-th and j-Ëh
u l--ì

molecules. This differs in several ways from Ëhe tíme of flight used in

previous models.

.47Both Bird- and Macpherson' used a time ínterval of

.i = 2/(N n o0 tr) ¿-t

The new formulatíon, (equation 2-5), had several advantages over the

earlÍer formulalion, (equation 2-7). Firstly, the new formulation in-

herently consídered the possibility of Ëhe co1lisíon of a particle wiLh

every other particle in a cell. The earlier model was based on a parËicle

colliding with sone average particle. Secondly, the new model was applíc-

able to inËeraction models for which Ëhe cross-section \^7as noË consËanË

for all collisions. This was possible ín Ëhe old formulaËion only by

using an average evaluation of o,., . Thirdly, the new formulation
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inherenËly considered the random naËure of collisions, whereas, the

former model did not. The ne\¡I formulatíon was, therefore, both more

exacÈ and more flexible.

The primary collision partner \¡/as found by firsË evaluating equaËion

2-5 for all molecules in a cell. The mo1ecu1e, for which Ëí was a mín-

imum, was Ëhen the primary collision partner. The secondary collision

partner was chosen at random with a probability proportional Ëo

1.. -..1 o^..
2V-,r-"M "M

r^rhere VU \¡7as Ëhe speed of the fastest moving molecule'in Ëhe cell and

o* was the maximum interact.ion cross-section in the cell'

Appendíx I conËains a derivation of the component,s of velocity afËer

collision. Therein, it is shown Ëhat the collision is compleËely defined

by the deflection angle, ¡ , and the orientation of the plane of the

orbits of the colliding molecules, ¡ . Sínce both hard spheres and

coulomb parËicles haVe symmeËric force fields, I ü/as chosen aË random

between 0 and 2n . The manner in which the deflection angle was chosen

depended on the assumed inËerparËic1e force law.

Once Ëhe initial system T¡7as set up, the computer simulaËion model

proceeded as follows. For a cerËain Lime incremenË, AË, each cell was

assumed to be an isolated system. During thís time only particles within

any one cell could inËeract wÍth each oLher. Mol-ecular movement $/as riot

considered during this increment. Collisions were simulated in each

cell until Lhe sum of Lhe collisíon Ëimes, ti , given by equation 2-5 was

Larger Ëhan the Ëime incremenË" After each cel1 had been considered,



the position of the piston resulËíng from movement

by equation 2-4 for At was calculated. The new

cules were then calculated usíng the equation

a Lt2x = xO*vLt+ Z-

15

aË the velocity given

posítions of the mole-

where 0 denoted conditions aË the beginnÍng of Ëhe time íncrement and

a was the aeceleration of the particle due to external force fields. AE

this stage, collisions wiËh the r¿all and the piston \¡Iere consídered.

These collisions \^iere calculated in det.aíl as to when during the time

incremenË Ëhey occurred. If an acceleration was presenË, all velociËíes

were Íncreased Ëo

v = v^*aAË 2-9
U

After all the molecules were relocated, the cell boundaries were redefined

and each molecule was identified as to which cell it was locaËed in. All

physíca1 païaneters of interest \nrere then calculated. These sËeps üiere

repeated unËil the required daËa was acquíred.

No analytic arguments have been presented that satÍsfactoríly define

the rnagnitude of Ëhe Ëime incremenË, At. Bird5 suggested ít should be

small relative Ëo Ëhe mean collision free time. Macphet"orrT suggested

LhaË the fastesË molecule be allowed to move 0.4 - 0.5 of a cell r¿ídËh.

This value r¡ras later raísed to 0.7. The ultímate deËermination of At

had to be made through experimental test,ing of the mode1. However, several

logical argumenËs \^rere presented t.o deËermine limits Lo Ëhe magnitude of

^t. 
These arguments are found in SecËion 2.2.2.

If the time incremenË \,üas Ëoo long Èhe molecules in each cel1 would

acËually move far ouËside of the celL boundaries during the time step.

2-B
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This r,rould violate the ísolation assumption. If the t.ime incremenË vras

Ëoo short ínsufficíent collisions would occur. The resulË would be ËhaË

particles acquiring energy from the piston would penetrate far upsËream

before transferring energy to other parËicles. This would cause the

shock Ëo be poorly defined as t.o shape and size. Also downstream max-

wellian condit.ions would not result since little or no energy would be

Ëransferred into the y and z dírections.

The tiine increment was defined as

2-LO
Cl¿

aE=v
'M

where S was a constant, henceforth referred

et.er, X was the cell width, and V¡U was the

movÍ.ng parËicle in the sysËem. The limits of

argunenËs and Ëhe final value of S was found

the -model.

to as the Ëirne step parân-

speed of the fastest

S were found by logical

by experimentaËion wiËh

2.2 Tlne CompuËer Model For Hard Sphere Molecules

2.2.L Introducti-on

The sËudy of gas dynamics by assuming that molecules act. as rigíd

hard spheres dates back several centuries. The hard sphere gas approx-

imation allows Ëhe evaluatj.on of almost arl propertíes of a gas in a

steady state. By incorporating these propertíes in a Monte Carlo scheme,

infornation abouË non-steady conditions may be obtaíned.

Assuming the mol-ecular sphere had a radíus of s, Ëhe int,eracËion

cross-secËion in equaËion 2-6 was given by

a
6^.. = 4T Stn a

'^J
2_LT
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which vras a constant for all interactions. The impact paraneter varíed

between 0 and 2s with a probability of occurrence proporËional Ëo

itself (i.e. the probabiliËy of a collision impact parameter of b ís

proportional to b n db. Since n db is a consËant, Ëhe probability of

occurrence of b is proportional Ëo itself). Once b was chosen, the

deflection angle, ¡ , followed immediately since

2.2"2 The Deternínation of the Time Step Parameter

For a hard sphere gas, logical argument.s will be

deËerrnine approximate upper and lower limits for S.

The collision frequency in any ce11 was found by

2-tL

r1o model as described ín

presented to

-1= r-2 sin- I uì
l.2"J
nte CaThis cornpleted the defining of Ëhe Mo

Section 2.1.

It r,zas imrnediately evident that the deflecËion angle, X e \nras noË

dependent on the magnitude of s, but. only on the fact LhaË b/2s varíed

fronr 0 to 1. The only physical property of inËeresÈ .t,rhich depended on

o^,= was the collísion frequency. By assuming s = I x 10-B Ëhe col-
Ur.J

lision frequency was in effecË non-dimensionalized r¿ith a one angstrom

molecular radius. The MonLe Carlo model of hard sphere rnolecules was

therefore independent of the molecular radius assumed.

The hard sphere gas model \,üas Ëested extensively Ëo deËermine its

applicabilíty to Ëhe study of shock T¡raves. All Ëests were conducËed for

a Mach number 10 shock in a gas wíth a number densiËy of 1018 molecules

per cubic cenËimeter.

count.ing Ëhe number
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of model collisions occurring rhe cell and multiplying by

NAr

where N was Ëhe number of model mol-ecules in the cell and At r,¡as the

time incremenË. Tf. no model collisions occurred, Ëhe predicted collision

frequency would be zero which is an inaccurate prediction caused by Ëhe

facË that the model is díscreËe (i.e. assumíng one model molecule repre-

sents one hundred real molecules, one model collision represents one

hundred co11isÍons. However, fifty real collisions could noË be modeled

since the model molecule cannoË experÍence half of a collisíon). The

minimum collision frequency occurred upstream of the shock and had a

magnitude of 2005 collisions per parLicle per secorì.d non-dimensionalized

wiËh Ëhe mosË probable upstream molecular velocity.o Ia was fe1Ë un-

reasonable Ëo a1low less than one collision per four cells in Ëhis regíon.

An average over four data sets then resulted in an average of one collision

per cel1.

trrlhen the cell width was approximaËely 0.35 of Ëhe ínitíal mean free

path, the number of parËicles in each upsËream cell was approxímately 50.

The upstreâm mean free path was 0.56 x 10-3 cm for a number density of

1R1O'" partícles per cc. From equatíon 2-10 and Ëhe collision frequency

* This follows from the hard sphere collisíon frequency

4 n t2 ht r, t/n)L/2

by consídering an s of one angsLrom and díviding by the mosË probable

velocity (zk t/n)L/2.

l_n

.,
L
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it follo\,rs that
2vu

$= 2-L2XvN

Vl,t \¡/as approximately 20 Ëimes the mosË probable velocity and therefore

the minimum lirút of S from equaËíon 2-L2 was approximately 0.5.

An upper limit for S was not as easily specified. In order to

justify Ëhe isolation of each cell during a Lime step, it seemed logical

ËhaË Ëhe maximum speed particle noÈ be allowed Ëo move more Ëhan one cell

lridËh. However, this stipulation may be argued to be t.oo small since a

single unusually fast particle could retard the development of the shock.

On Ëhe other hand, arguing stricËly on ísol-ation Ëerms, S = 1.0 is very

large since a high speed particle movíng to the left, located initially

on the left hand boundarv of the cell would move almosË across the next

cell. The isolation argumenË and the reËardation argument had to be

compromised.

For a maxwellian distribuËion 99% of the particles had speeds beËween

0 and 2 V_ . The maximum speed allowed in the initial system hTas 6 V-.-mm

IË was therefore possible to allow the fastest particle to cross 3 cells

and stíl1 have 99"/" of the particles cross l or less cells. Hor,^rever, Ëhe

piston i.mparted energy to some partícles and the result was Ëhat the max-

imum speed in Ëhe sysËem I¡Ias aPproximateJ-y 20 Vm. At the same Líme the

downstrean particles Ëook on a maxwellian distribution whose mosË probable

velocity. Vr r \¡ras 5.66 V . The maximum velociËy particle was thereforem-m
approximaËely 3.5 V; . Allowing the maxímum speed partícle to cross 3

cells ín a time increment sËill guaranteed that over 9014 of the UPSËream

particles crossed less Ëhan one cell. IË was felt therefore, that. a tíme

step of three r/rias a logical upper limíË.
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The ultimate choice of the time sËep parameter was made by exper-

imenting with the model. The parameËer was checked aË values of 0.5,

1.0, 1.5, 3.0 and 10.0. The last value T¡ras tested to determine the modelrs

behavior far out,síde the logical upper limiË.

2.3 The Neutral Plasma Simulation Model

2.3.L Introduction

The invesËigation of non-equilibriurn behavior ín a neuËral elecËron-

proton plasma presented many complicaËíons that did not exisË in a gas

composed of uncharged particles. Many of these difficulties arose from

the fact thaË a charged partíc1e influences all other charged parËicIes

irregardless of how far apart Ëhese particles are.

The interactions of charged particles u/ere considered to be of two

Ëypes, close encounters or collisions and distant encounËers or far field

effects.

For the Monte Carlo model two collision definítÍons \^rere considered.

The first defined as a collision, an encounter beÈween trnro parËicles for

which the irnpacË parameter T¡ras less than or equal to the local Debye

shieldÍng length (Sutton and Sherm"rrg¡ gi.r"r, by

(2u..^r)r/2. t--'-O-til=i-t-maxl2l
I ne J

2-L3

where k v¡as the Boltzmann constant, e0 was the permiËivity of free

space, T r¡¡as the temperature, n r,sas the number density and e \¡ras

the electron charqe. The second defined a collisiorr as an encounter

between two particl-es for whích Ëhe impact parameter rnlas less than or

equal to the radius of the sphere that enclosed Ëhe volume unique Ëo
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each particle. The

Ëhe number density,

volume unique to each parËicle was

+L ^-^Ê^n^Lt!çr ç!u! s t

the inverse of

r¡7as zero for b > bmax.
o

and Sherman.- The

2-L4

In any particular case Ëhe minimum of these two defínítíons was used.

The Debye shielding length 1Ímit T¡ras used to accounË for Ëhe fact

thaË due Ëo screening of charged parËicles by opposiËely charged partícles

the effecËive collisíon cross-secËion was reduced. The argument for iËs

choÍce is gÍven in Sutton and Sherman.9 It is the same argumenÉ that

leads to the screened coulomb poËenLial definiÊíon of classical electro-
J.

stat,ic theory.

The unique volume definition T¡ras based on the argument Ëhat inter-

acËions beËween more than Ëwo parËicles at once could be treaËed as far

field effects. The probabil-iËy of Lwo particles beíng closer to each

other than Ëo any other particles I¡Ias greater than 502 only Íf one particle

enËered Ëhe oËher partÍ.clers unique space. Any encounËers wíth an impaet

parameter larger than Ëhe radius of the unique space T¡rere noË consídered

to be collisions.

Having defined a collision, the collision cross-section for charged

parËi.cles was evaluated. It was assumed that the coulomb potential 1aw

f

l1
max =|.4.ls9n

applied for b . b*"* and Ëhat the potentíal

This was Ëhe same approach followed by SuËton

l'' t
)

* The argumerit is based on the distance a charged part.iclers field exËends

before opposiËely charged parËícles effectively shield it.
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Jc 1ô
integraËed form of equation 4.66" of. Holt and Haskell-" then gave the

collision cross-section as

* Eouation 4.66 is

s(x) =
(1 - cos x)2

where S (X) is the angular distribution function. The total cross-

secËion i.s then

which resulËs in equaËion 2-L5 if Ëhe lower límit is changed from 0

toY..'m

1Tooij = 1 P"
,I c

c

+1

I

OS

OS

^m
;
^m

2-L5

where
q. q.

pc = i:i" 2-16
tt -

where q \^Ias the charge, g vtas the relative velocíËy and mt was Lhe

reduced mass
m. m.

m,=r-J2-L7m.*m.rJ

x denoËed the mínimum deflection angle and was given by,'m

-1fp^ly = 2tan-|,-:--l z-LB'-m 
I o*"" 

J

D'c

,, Irs(x) sin x dx



¿J

The impact parameter Ì^7as chosen to

tional to itself. The deflection angle

occur with a probability propor-

was then given by

2-L9

2.3.2 The Two Fluid Model For Neutral Plasma Problems

The neutral plasma was consídered Ëo be made up of two gases, electron

and proËon, which r¡rere coupled by both their elecËríc fields and Ëheir

co1lisíon interactíons. Because two differenË gases exist.ed, a piston

driven into a neuËral plasma was noË expected to generate a disconËinuity

thaË reseurbled ariy one Mach number. InsËead two discontínuiËíes hlere

expecËed, one in each gas, with a coupling motion set up between them.

This problem could not be cal-led a shock problem but was better described

as an írnpulsively started píston problem.

In order to generaËe a shock in a hard sphere gas, a píston T¡las

driven inËo it at a velocity gíven by equaxLon 2-4. This velocity was

non-dimensionalized r,^ríth respect to the mosL probable velocity of parËíc1es

in Êhe upstfeam gas. In a charged parËicle gas, however, Ëhere T¡rere t\^lo

mosË probable velocities; one for electrons and one for protons. Since

the piston could travel- at only one velocity it was decided Ëo define an

average gas moleeule of mass

(
-1 |

X= 2tan-[
nY-c
b

m +mepïq="ç2
Þ

The mosË probable velocity of a gas with this

given by

2-20

molecular weight was Ëhen

( ot- nlr/o
I L K L lLlL
lno Ite)
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A1l velocities T¡7ere non-dimensíonaLLzed with respect to this value'

If the two gases hrere completely uncoupled, a pisËon travelling

at Mach 10 with respecË to Ëhe average gas would set up a Mach 14'068

dísconËinuíty in Ëhe proËon gas and a Mach 1.18 disconËinuíty ín the

electron gas. With two different díscontinuiËies a variaËion ín species

density would be set up and in certain regíons the plasma r.uould no longer

be neutral. An induced electric field I¡Ias therefore expecËed.

tr^líthin the system each cell was assumed to acË as an infínite sheet

with respecË to its charge dístribution. As the field due to an infinite

sheet d.oes noË vary with distance perpendicular to the sheeË, the fields

due to each cell are algebraieally summable. Outside of the walls this

sum iS zero since the sr:m of all charges in the sysËem is zero (i"e' neuËral

plasma).

The field, Ei , due to a charge disËribuLion, tp - t. , in a cell

e(nn-n.)X
l_

where X was the cell- width. The

was aeting at a Point Ëo the xLght

field, Fi , in a ce11 due Lo the

a^too

+ and - specified whether the field

or Ëhe left of the cel1. The toËal

fíel-ds generated by all other cells was

2-2L

L- ¿LF.
i-1

=)-F: t. -:
t--t J
l-l

N

+ïn
í=i*l J
J ---

where N. was the riumber of cells.

Because of Ëhe lack of information ÍnherenË in the model, the fíeld

wiËhin a cell due Ëo particles wiËhin iËse1f \^7as assumed to be zero' The

Monte carlo meËhod assurned that the model particles represent a much
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larger number of acËual molecules. For Ëhis reason the particles r,^riËhín

a cell could not be fixed to one position in order to study fíelds because

each molecule represenËed many molecules scattered throughout the ce11.

The minimum resolution of nacroscopic propert.ies in the system was, in

facË, a cell width. The cellrs molecules could be assumed to generate a

field wiËhin the cell gíven by equation 2-2L, however, there is no method

of deËermining the correct sign (t). This quesËion had no ansr¡rer, and

Ëherefore the field r^ras assumed to be zexo.

The acceleration on a partícle i due to Ëhe induced field ín a

cell j was then
cl .

a. = F. ---: 2-23= F. 
-r

l-tm. -t

This acceleration is the one Lo be used in equations 2-B and 2-9.

2.3.3 The Theoretical Resultant Behavíor For an Impulsívely Started Piston
in a Neutral Plasma

It will be constructive to describe at this poínt the interrelaËions

of the piston-gas reacËions, Ëhe inËerparticle reactíons, and Ëhe electric

field-particle reacËions from a ËheoreËical point of vier^r.

The physical properËies of the resulËanL system wil-l be due to a

physical balance beËween the Ëhree interactions. The general picËure

has the piston acËing as ari energy source setLing up a flow and densiËy

paËtern; the elecËríc field atËempti.ng to alËer flow and density patËerns;

collísions aÈtempËing t.o communicaËe energies between dírecËions and

beËween species.

As the pisËon eriters Ëhe gas, particles will sËríke iË, reverse their
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direction and pick up an added velocity of 13.56 Vmg. AË any temperaËure'

the hígh mass proËons have low peculiar velocities and low mass electrons

have high peculiar velocities. As a result thís added velocity wíI1

accounË for almost all of the protons velocity while Ëhe electron gains

relatively little added velocity. Since the peculiar velocity of the

electrons ís much higher than twice Ëhe pist,on velociËy, electrons re-

flected from the pisËon wí1l move away much faster than the proËons. The

protons will therefore tend to concenËrate near the piston while an

electron concenËration builds up farther upstream. These tr^7o concen-

trations will act like a dipole and will set up a strong electric field.

The electric field will accelerate electrons Ëoward the pisËon and

protons toward the wall. Consequently, the fíeld wíl-1 extract flow energy

fron Ëhe electrons and add iË to the protons. In the limit Ëhe action

of the field rn'ould dest,roy itself .

Collisions between particles tend Ëo transfer Ëhe extra energy

received ffom the piston ínto the y and z ditectj-ons as well as

Ëransfer energy between speci-es. On the average they will reLard the

motion of particles rebounding from the pist,on by transferring flow energy

into Ëhermal energy. The inËer-species collisions will have Ëhe net

result of bringing the LemperaËures of the two species closer together.

2.3.4 The Time SËep Parameter

Since Ëhe maxímum velociËy of the electrons was much higher than

that of the protons, the maximum elecËron Velocity was considered ín

equation 2-L0. However, for neutral plasmas, the time step parameter

had Ëo be of such a magnitude thaË it allowed Ëhree Lypes of collísions
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to occur; elecËron-electron, electron-proton, and proton-proËori. However,

the low peculiar velocity of proËons made Ëhe proton-proËon collision

frequency considerably less than thaË of the other thro types of collísions.

Therefore, Ëhe information transfer due Ëo proton-proËon collisions i¡/as

of secondary importance.

The maximrun velocity of upstream electrons ì¡ias approxímately 70 Vng.

Since the dÍscontinuity in Ëhe electron shock was small, Ëhe maximum

downstream elecËron velocity was only approximatell 100 Vrr. The proËon

maximum velocíËy however \^ras approximaËely t U*, in the upsËre¿ìm regíon and

20 V_- ín Ëhe dounstream region. Due Ëo the very weak discontinuity ín the
mg

elecËron shock j-Ë was assumed for Ëhe purpose of determining the time

step parameËer that the elecËrons \Ä7ere veTy neaTly in the same state

throughout Ëhe system. For thís condition a Ëíme sËep parameter of a

relatively high magniËude did not adversely affecL the electron sËructure

since isolaËion T¡ras noË extremely critíca1 . It was felË that S = 5.0

would not yiolate Ëhe assurnpËions used Ëo determine Êhe Ëime step parameËer

for hard sphere g"".". o 
trrlhen S was 5.0, the time steP parameËer based

on proLon velociËies \¡ras approximately 1.0. This allowed proton collisions

throughouË the system, however, most of Ëhese collisions r¡rere of the Proton-

electron type. Proton-proton collisÍons occurred only in the downstream

region and in small quantities. It has already been shown that this lack

of occurrence \¡Ias both expecËed and of litËle importance.

The presence of the electric fíeld enËered into consideraËions of

S = 10, the results

L07!.

'* It T¡rí11 be shown

for hard spheres

in the resulËs Ëhat, even for

are not in error by more Ëhan
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Ëhe time sËep parameËer. Since the field acted as a means of dissipating

energy in a manner much less effected by the time sËep parameter than Ëhe

collisions, it tended to make the time sËep parameter take on a less im-

portanË role Ëhan it had in Ëhe hard sphere case. This T¡ras a final con-

sideration which suggested a tÍme sËep parameter of 5.0 was not. too high.

2.3.5 Test CondiËíons

The neutral plasma r^ras assumed to have an íniËial temperaÈure of

10,000oK (n" I eV) and a nurnber density of tO15 particles per cubic centi-

meter. As is generally assumed in theoretical studies of neutral plasmas,

Ëhe gas \¡ras assumed to be 100% Íonized and re-associaËion ráias assumed noË

EO OCC¡ir.
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3. SIMULATION MODEL RESULTS

3.1 The Hard Sphere Gas Model

3.1.1 The VariaËion of Shock Properties l^Iith Time Step Parameter

The simulation model r^ras ruri for t.ime step parameters of 0.5, 1.0,

1.5, 3.0 and 1-0.0. From t\^io to four times during each run, compleËe

informaËion about densiËy, temperature, flow, collisíon frequency,

veloci.Ly momenËs and post,-colIísional velocÍty moments \¡/as printed out.

Two or three runs \¡rere perforrned for each Ëime step parameËer. Therefore,

four or more data set,s were available for each time step parameter.

These data seËs hTere statistically averaged for each time sËep parameter

Ëo obËain average variations of the properties with position"

The variations obtained in this manner, show very similar behavior.

Tor this reason no graphical presenËaËion hias atËempted to show Ëhe be-

havior for various time step parameters. Instead, Ëhe downsEream cell

properties \^rere averaged. BeË\nreen 9 and 11 cel1s were involved in these

averages. The resulËs are shown ín Table 1. The last column shows the

ËheoreËical upstream values found. from sËandard mass-energy conservaËj-on

formulae.

From Table I it was clear that Ëhe propertíes density, Ëemperature,

f1-ow, collision frequency, and velocity moments showed sínr-ilar accuracies

for S = 0.5 Ëo S = 3.0. All these time sËep parameËers showed errors

generally of less xhan 2% in predicted upstream conditions. For S = 10.0

Ëhe inaccuracy vlas much more pronounced, especíally f.or density and col-

lisíon frequency. The errors for these properties \¡rere aLmost 57.. These

results tended Ëo confirm the upper and lower 1imít analysís presented

previ-ously.
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The error in Ëhe post-collisional velocity moments (i.e. the velocity

moments of particles emerging from collision) urarkedly increased with in-

creasing S. Errors of up to L9% T¡rere noted r¿iËh the best agreement

being r,,iíthin 6.57" for S = 0.5. These errors however were misleading

especially tor 1ow values of S. For S = 0.5 approximately 207" of. tlne

particles have collisions in the downstream region during one time step.

Since the velocity momenLs \¡rere found by averaging only over these part-

ic1es, whereas all other propertíes average over all part,ícles, post-

collisional velocity moments \¡iere inherently five Ëímes less accurat,e.

When S = 3.0 the nr:mber of parËicles averaged over \¡ras approxímately

the same (i.e. approximately every partic.le had one collision). Thís

would indicate Ëhat the best value of S was Ëhe smallesË value possible.

Experimentation, thereforer,,showed that the value of S should be 0.5.

3.L.2 The Accuracy of the Computer Model

The accuracy of the computer model r^ias tested by three independent

means. Firstly, resulËs \¡rere compared r¡líËh the linited experimental

results available. Secondly, Ëhe model downstream condiËions r^rere com-

pared with theoreËicall-y derived conditíons. Thirdly, Ëhe model resulËs

were checked to assure that Ëhey r¡rere consisËent wiËhin themselves by

testing Ëhe conservaËíon of mass criteria and the collisíon frequency

variation as described below.

The only experimental results available were shock thícknesses found

by electron beam fluorescence techniques. Two dífferent ÍnvesËígations

-ïfeïe considered; Ëhat of Robben and Talbotz and, that of Cæ"".1

Robben and Talbo t2 xeporxed results non-dímensionalízed wiËh the
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length L defined as

ù
L

?twhere n r¡ras the víscosiËy

The maximtun slope Èhickness,

3ônoM

sr_nce

ú

=npu

at the sonic poinË

ô , was defined in

ll -1ì--d u
= (dnldx)'max

3-l

pu was Ëhe flow.

usual manner as

and

the

where n was the number density with d denoting downstream and u

denoting upstream. For hard sphere particles the víscosity was defined

AS

* plerr*)r/zrì = = | - - - l-'- 3-310 tTr m I

where m rrras the molecular weíght of the gas. Equatíon 3-1 then reduce

to

J-¿

3-4

3-5

assumed ín

a radius it,

the Monte

and Talbot2

B

lTY

(2+(v-L)M2
Y+1 )'''

2+(y-:r)M2
Y+1

r:Kr)L/zrJ

and
¿

T
.n

3-6

The problem r¡Ias to determine what molecular radius should be

order Ëo deËermine the cross-sectíon o. RaËher than assume

r"ras decided to use the maximum slope thickness deËernined by

Carlo sÍmulation model and use equation 3-4 wiËh the Robben

results to predict moleculax tadLí.
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Robben and Talbot2 reported L*/ô values between .141 and .L7 Íor

Mach 10.0 shocks in argon, helium and nitrogen. The MonËe Carlo model

predícted a thickness of L.22 x 10-3 cm. The corresponding molecular

radíi r,rould be 0.98 x l0-B cm to 0.90 x 10-B c*.
1

Camac- reported shock thicknesses non-dimensionalized with upsËream

mean free path. For hard spheres this ratio \¡ras given by

0.707
6no

The experimental values reported ranged from 0.181 to 0.245

shocks in argon. Solvíng equation 3-7 f.or molecular radii,

from 1.59 x 1O-B cn to L.37 x l0-B cm were obtained.

À
=

6
3-7

for Mach 10.0

values ranging

Table 2 shows some typical molecular radii estimated from viscosiËy

daËa at 0oC. The values range from approximaËely 1.1 x l0-8 cm Ëo

-R1l-.9 x 10 " cn. The radii predicred by Camacrs- results fall roughly in

Ëhe niddle of this range. Robben and Talbotts2 results predicËed radii

slightly below this range.

A detaÍled error analysis for the downstream conditions r.ìras performed

for S = 0.5. The reference daËum was the theoretically calculated con-

ditions. Table 3 shows the resulLs. The first column gives Ëhe percentage

error while the second column shows the predicËed value divided by the

ËheoreËica1 value.

The Ër¡to most import.ant properËies, the density and temperature ratios,

agreed to wíthLn 27". The flow T¡ras exacL Lo Ër^io decimal points! The co1-

lision frequency t^ras accurate to wíthin 1%. The velocity moments I^/ere

in error by approxímateLy 4%. The maximurn error occurred for Ëhe primary

velociËy moment of partÍcles emerging from collision. However, the error
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\,üas sËill less than 7% ar,d this error has alreadv been shown to be i-n-

herently 5 tímes greaËer than other errors. 0vera11 the Monte Carlo

model conditions \^iere verv close to the theoretical values.

Two checks were possible Ëo ensure that the simulation model gave

result,s which \¡rere consistent wíËhin themselves. Fírstly, conservation

of mass required Lhat the mass flow rate (product of density and flow

aË any posítion) should be a consËant. Secondly, Ëhe collision frequency

should vaïy as rrlil. Table 4 shows a check on Ëhe mass flow rate. The

maxj-mum error occurs aË a point roughly Ëwo-thirds of the way Ëhrough

Ëhe shock. This maximum error was less than 4% whích is srnall.

figure 2 shows Ëhe collision frequency sËrucËure as given by Ëhe

MonËe Carlo simulation. The poínts ploËted are those found by multiplying

Ëhe upsËream, collision frequency by

where x denoËes the posítion in the shock and u denotes Ëhe upstream

values. The temperature and density used l^¡ere those predict,ed by Monte

Carlo simulation. It may be seen that the two predicËions agreed very

well-.

Confidence in the meËhod was Ëherefore esËablished in three dífferent

\^/ays. Comparison vlith experimental resulËs \nras shown to be favourable.

TheoreËicall-y expecËed values \,rere obtained to a very good tolerance.

Fínally, it was shown that the results r47ere consístent \^/ithin itself.

The present Monte Carlo simulatíon model therefore was found to be a

good workable approximation to the real shock wave behavior.

t-n 
^l 

Lx'Y x

%ffi
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3.1.3 The Shock SËructure

Figures 3 through l0 show the shock structure of various properties

for S = 0.5. The curves \¡rere visually fitted through daËa points whích

r¿ere obtained by statisËically averaging síx data seËs" The scatter is

very smal1 on all graphs except for the collision frequency and the post-

collisional velocity moments. It has already been shown in SecLion 3.1.1

ËhaË less accuracy and more scaËËer hras expecËed in Ëhe post-collísional

velociËy momenËs due to sample sLze. The same Ëype of argumenË may be

used to explain the collision frequency scaËËer. The collísion frequency,

r trâs calculated by the formula

L Ll,
K 3-8NAr

where N was the number of particles and Nt was the number of collísions

in Ëhe time sËep At. The average r¡ras therefore, over the number of

collisions per parËicle per Ëime step which was a number less Ëhan one.

There was therefore less dat,a avaílable for the collision frequency than

f.ox a property such as densíty. However, ít has already been shown that

the collision frequency structure agrees very well \^rith ËhaË predicted

by the pressure and temperature structures.

The upsËream equilibrium lines shown on Figures 3 Ëhrough 10 are Ëhe

theoretical and noË the values shor,rn ín Table 1. The data points emphasize

how well the model predicts these theoretical upstream properties.

A curious anomaly manifested itself ín Ëhe primary posË-collisional

velocity momenË sËructure. The values first overshot then returned Ëo

approximately Ëhe downstream value of 16.06. This behavior is shown by

a solid 1ine" However, very soon after the curve reÈurned Ëo Ëhe downsËream
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value it rose once more and peaked a second t.ime. Comparíng thÍ-s curve

Ëo Ëhe other shock structures iË was seen that aË the point where the

shock first Teturns to it.s downstream value al1 the oËher propertÍes had

also reached their downstream values. In other words, the second peak

occurred somewhere in Ëhe region behind Ëhe shock. The reason for its

occurrence probably lies in interference wiËh the piston. Sínce the

number of rnodel molecules r^ras verv much lower than the toËal number of

actual molecules and since high speed molecules tended to collide more

frequenËly, molecules that had rebounded from the pisËon domínaËed the

collision model in the first few cells.

Figure 1l shows the post-collísion velocity moment as predicted by

Ëwo individual data seËs. The anomaly described above is clearly shown

as is the initial reEurn t.o the do\,Erstream condiLions. The solid line

ís identical Ëo thaË in Figure 9.

In the ¡egion of major i-nterest, that Ëhrough the shock, Ëhe sËructure

T¡zas acceptable. Any inaccuracies may be reduced by rerunning the program

Ëo obËain more daËa for a betËer sËatistical average.

The new Monte Carlo simulation model, therefore, produces very

reasonable lookíng results with very low scatËer for a small sample size.

3.1.4 A Comparíson of Ëhe Presented Monte Carlo Model Ëo Other MonËe Carlo
Models

Mach 10 results for two other Monte Carlo simulation sËudies were

n.7 Both of these models

\.{ere more limited Ëhan the presenË model in thaË they did not a11ow for

yarying inËeraction cross-sect,ions. In this respecË the new model was

much more general with direct applicaËions to mulËi-component gases.
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Birdls' results show that the shock thickness parameter, À/6 ,

should be 0.31 which suggested a shock whÍch is definitely Ëoo thin

when compared with experimental results. This could, however, be caused

by assuming an inaccurate molecular radius when calculating I The

longiËudinal temperaËure overshot seen in Figure 7 was also observed by
\tBird-. His maximum value \¡ras approximately 20 Vm- whí1e the presenË

model predícted approximateby 2l Y-2. The theory of Yenl9 predicted a
m

maximum temperature overshoot of 2L V 2. therefore, the new Monte Carlo'm'

siinulation is marginalty closer Ëhan Birdts5 model.

Macphersonts/ resulËs showed a maximum slope thickness of

-c10 " cm. This agrees well r,¡ith the present value of L.22 x L0

longíËudinal temperaËure overshoot was 2L.5 V-2 ín Macpherson's
m

r,rhich once more agrees rr¡ell with the present r¡rork.

3.2 The Neutral Plasma Model

IË was a greaË disadvantage that no experimenËal daËa or even sound

Ëheoretíca1 informaËion was avaílable with whj-ch to compare Ëhe neutral

plasma mode1. The results r^rere compared wiËh the logícally expected

behavior.

Figure 12 shows electron and proton density profiles. The Ëwo

separate concenËrations are clearly vísíble. Near the piston the proton

density greaËly exceeded Ëhe elecËron density. AË approximately 1.9 x

-Ll-0 ' cm a neuËral plasma posiËion occurred. From here Ëo the shoek fooË

an electron concenËraËion exísËed.

Figure 13 shows the electríc field in the system. trrIhen Ëhe partícle

field was iniËíally set up, random positioning placed differenË numbers

of each specíes in each cel1. This in Ëurn set up an electric field

1" 33 x

" rne

T¡7Of K
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which will be referred to as noise. The magnitude of this noise is

shown as a dashed line Ín Figure 13. The electric field in Figure 13

v/as very well defíned. It went xo zero as expected at both extremes.

Comparing Figures L2 ar.d L3, the field has values of Ëhe same magniËude

as the noise field at approximately the electron shock foot. The field

maximum occurs aË 1.9 x l0-4 cm r¿hich is the neuLral plasma poinË. IË

was at Ëhis poinË thaË maximum particle acceleratíon occurred.

Fígure 14 shows the proton and electron temperature profiles. An

average shows the downstream temperatures to be 61.3 and L.34 f.ox protons

and electrons respectively. In Sectíon 2.3.2 it was shown that if the

gases w'ere uncoupled, two disconËinuities would result. The downstream

Èemperatures of these uncoupled discontinuities r,rould be 62.7 and L.77

for proËons and electrons respectively. Collísion coupling of the Ëwo

gases, Ëherefore, must have occurred since the ËemperaËures have moved

Ëoward an equilibrj.um. The electron temperaËure had too srnall a magniËude

to show abnormalities. The proton Ëemperature however, shows a definiËe

overshooË. The position of this overshoot was 1.9 x 1O-4 cm which cor-

responded to Ëhe neutral plasma point. This would suggest thaË Ëhe Ëwo

feaËures are correlated.

Figure 15 shows Ëhe proton and electron flow profiles. The proton

flow was of a high magniËude. This r¿as due t.o the ínfluence of the

piston and Ëhe facË that Ëhe electric field acceleraËes Ëhe protons

negaËively. The electron flow, however, r^/as retarded by the fÍeld and

was less affected by the pisËon due to the high peculiar velocity of

electrons. Since the electrons \^/ere much lighter than protons, equaLion

2-23 shows thaË elecÊron accelerations were much higher than proton
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accelerations. The combined effects keep Ëhe electron flow very 1ow.

The behavior of Ëhe model was clearly consistent wÍËh the logically

expected behavior. The electron behavior, excepË in regard Lo densities,

exhibited very liËEle departure from the initial state. The proËon be-

havior showed gross deparËures from the Ínia1 state as \,ras logically

expected. The model remained stable at all Ëimes.
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PART II

THN BOLTZMANN EQUATION
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4. THE BOLTZMANN EQUATTON AND rr'S SOLUIION

For any species ín a gas the Boltzmann equaEíon is wrítten as

4-L

r,¡here f is the velocity distributíon funcËion, t is the Ëíme, c Ís

the molecular velociÈy, a Ís the acceleration due Ëo external fíelds,

and the ríght hand side is the collision term. The rigorous form of the

collision term ís

where g is t.he relaËive speed, b ís the ímpact par¿tmeter and n is

Ëhe angle specifying the orientaLion of Ëhe plane of relaËive orbíËs'

The subscripts denote Ëhe Ëwo collision partneÏs and Ëhe (r) denotes

conditions after collision. Except for simple cases, such as sËeady

staËe, this form ís unsolvable.
1t, '15

In recent years many authors including Krook'-, Anderson-' and

1A
Holwavto have used a sËaËistical model of the forn

v(v - f)

Ëo represenË the collísion term. Here v is the collision frequency

and r! is the disËributj-on of velocities of molecules Ëhat have just

Lision. Holt"yl6 \,renE on Ëo show thaË r! was given by

Ëhe relaËíonshiP

f@ l¿T

I I Ititå -'rtr)ebdbdn
00
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where À is the second order velocíËy momenË matrix of molecules eurerging

from collision and g ís iËs tensor inverse. The flow is denoted by u.

For a s¡eady one-dímensional shock T,fave in a single componenL gas

with no external fíe1d, Appendix II shows that the Boltzmann equation may

be represented by Ëhe Ëhree equaËions

ðrr (, I
"1 a'r = u["-'rJ

fZ are the

equaËions of

4-3a is

4-3a

4-3b

4-3c

component equaËions

.rl are derived

4-)

Ê-,1,'2 vz

c-,t,
'3 v3

where qr1, þ2, and ú3, fl, f2, and

of rJ.r and f respectively. The eomponent

in Appendíx III.

The finite difference form of equaËion

and a finite difference solution for nras

Ilar)
-77t1

aË any

v l,n
{ [tt= r1 +

poínt,

.n-1-ì--1

.-0where f; is the original value of ft

4-5 may be solved for ft at any point'

a means of solving Ëhe BolËzmann equatíon

spacial points. The resultant field may

spline.

For any value of .l equation

Thís equaüion theréfore, Provides

aË a number of velociËY and

then be fitted wíth a bi-cubíc

A splíne ís a piece-wise contínuous curve fittíng ËechnÍque. IË is
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based on fitËíng a third order polynomial between any t\'Io poínts such

thaË at each of Ëhe points the first and second derivates are contin-

uous. By supplying a seË of data points consisting of a set of absícca

points (x) with the corresponding ordinate points (V) and by specifying

the boundary condi-tions at the extremes, a simple cubic spline may be

fitted to the data points. This spline has Ëhe following propertíes.

IË passes smoothly through each point provided. Between data points the

curve is continuous. The first and second derivatives aË the data points

are continuous.

The above description may be extended to a bi-cubic spline where

the Values to be fitted are functions of Ëwo variables (eg. z as a

function of x and y). In this case a surface is fitted Ëo a. grid

system. The surface v¡il1 be smooth r,¡ÍËh Ëhe first and second derivatives

aË poinËs al-ong grid boundaries beíng conËinuous. Within each grid the

surface is continuous and smooËh.

The cubic spline fÍt provides a method of expressing y as a

funcËion of x ín the form

2 __3Y = "1r, 
* 

^zn 
* f 

"3r, 
x" + aon x" 4-6

where the n denot,es Ëhe cell number along the x axís (i.e. the given

data poÍnts divide the x axis into a mrmber of cells) for Ëhe bi-cubíc

spline z is expressed bY

z = "1*r, + 
^2*n 

* + 
"3*r, 

*2 + tonrr *3

+a-v+
5ffii "6*., xY t ^7*n*" +

2 22tlorrr*Y + ulh'*Y

3

"8*o 
* Y

+ 
'Lz^o

5¿xy

( over )
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* 
"r3*r, "3 

+ 
"14rr, 

* Y3 + 
"r5*r,. 

*2 y3 + 
"16*r, 

*' 

",^(price"") where m denotes the y cell and n denotes the

The values of the g maËrix are found by methods described by

21
Nilson and l,tralsh-*.

4-7

x cel1.

Ahlberg,

It j-s immedÍately apparent Ëhat once the z-grid ís defined the value

of z at any point wíthin the defined boundaríes of x and y is immed-

iaËely obtainable. It is seen Ëhat by fínding the distribution functíon

at a finite number of point.s in .l and rle a bi-cubic spline may be

fiËted to Ëhe resulËíng grid in order to complete Ëhe solut.ion.

By solving the finite difference equation, 4-5, f.ot a number of 
"1

values at a number of spacial poinËs, TL, a gri.d sysËem T¡Ias generated.

The spline then completed the soluËion.

The finite difference evaluation of f, was simplífied by the use

of simple cubic splines. To evaluate equation 4-5 the value of v and

4,1 musË be known at any poínt. Monte Carlo simulation studies gave v

directl-y at a number of points in the shock. The distrÍbution funcËion

ri/1 is derived in Appendíx III as

2tl
exp- 

2

2\
33 - 23t

ô-' t13 t22 o^- " tLz'L3'23

(
-l a- f ^- lLtt \.??\ --

2-L2 -33

ür-.I

1Iì- ;lrl | ".:.)

"11 4-0

where À is Ëhe momenË matrix

-c- is its Ëensor inverse. In

evÍdence Ëo indicate ËhaË À" ^L¿

2

'22 t33 - tz3

of particles emerging from

the MonËe Carlo sirnulatíon

, À13 ot XZ3 were oËher

collision and

there \^ias no

t'}:.ar. zero,
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Equation 4-B will therefore reduce to
2

f l-r/2 tl
{.,., = 12 r Àrr | 

*'- 
"*p - ,'I | 1r ) . XLL

1/.
This form bears a stïong resemblance to Krookf s-- equation for ü-, whích

ís)
- ) - 1l)

ú1 = (2 r cr-) exP
t1

4-10
to2""1

where dt is defined as

( ' r I 1l)õ = I K - | -'- 4-LL"1 [n )

The quanËity Ur" is Ëherefore Ëhe velocíty moment corresponding to the

local kinetic temperature. Except under equilibrium condiËions U-r' will
1^

noË equal Àtt The Holway" model is therefore a refinement of the

1/)original Krook-- expression.

Expressíng equation 4-9 in the form

ú1 = a(r) exP - b(r) vr2

4-9

4-r2

it can be seen that equation 4-5 may be evaluated onee v(r), a(r), b(r) '

and ur(r) are obËained. The flow ur(r) ís necessary in order thaË

t1 may be found at any position given Ëhe molecular velociËy .l The

variaËion of these quanËiËies \¡las obËaíned by fítting símple cubíc splines

Ëo the yalues of v, â: b and u, given by the Monte Carlo simulaËion

sËudy. It was found ËhaË twenty daËa poínËs hTere more Ëhan sufficient

for this purpose.
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5. DISCUSSION OF RESULTS

Once the splines are defined for the variatíon of v and Úl '

equation 4-5 may be evaluaËed using any desired value of Ar . It was

found ËhaË for Ar < 0.2 * 1O-5 cm the numerícal íntegration yielded

sj.milar results. Equation 4-5 vras then used Èo define a fíeld for twenty

values of r, and sixËy-five values of .l Thís field was then fitËed

with a bi-cubic sp1íne which compleËed the soluËion.

The accuracy of Ëhe distributÍon functions found by the finíte dif-

ference evaluation r¡ras ËesËed by comparing the variation of the prímary

velocíty momenL obtained by inËegration, Inlíth thaË obtained directly from

Ëhe símulation study. As a second test, Krookf"l4 fot*rrlaËion of rf1 was

used.

Figure 16 compares the MonËe Carlo results \,rith the integration results

of both ü, formulaËions. Near the foot of the shock both formulatíons

show poor agreemerit. This is primarily aLtributed to Ëhe insensítiviËy

of Ëhe statistical model of the collision term and Lo the inaccuracy of

MonËe Carlo data near the foot of the shock. It, has been shown in SecËion

3 Ëhat the accuracy of Ëhe posË-collisional velocíty momenËs is much poorer

than thaË for oËher properties. Since the Krookl4 fot*,rlation is based

on temperaËure, the error of its prediction depended much less on the

MonËe Carlo process than that for Holwayt"l6 fot*,rlation. It is signif-

icant Ëherefore, that Holwayr"16 fot*.rlaËion shows much better correlaËion

with observed behavior away from Ëhe shock fooL. Especially of note is

the prediction of the magnit,ude and posiËion of the overshoot. Holw.ytsl6

maximum overshooË is only slightly behind the observed overshoot whíle

1/!
the Krook'* overshooL occurs much later. This figure convincingly shows
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1^ 1lr
thaË Holwayts-" formulat,ion is superíor to that of Krook.--

Figures 17 through 21 show the distribution functions at various

positions in the shock as predí.cted by llolwayr 
"16 

f ot*rrlaËion. The up-

stream and downstream distributions are perfectly ma:orellian. The

intermedíate sËaËes aË x -- 2.8 x 10-3 cm and x = 3.6 " 10-3 cm show

Ëhe upstream peak rapidly shrinking while the upsLreFm max\^Iellian gro\¡ls

ouË Ëo the left. At x = 4.4 x 10-3 cm the longiLudínal Ëemperat.ure is

near the Ëop of iËs overshoot. The distributíon is seen to be very nearly

maxwell-ian about Ëhe local longitudinal Ëemperature. From Ëhís poínt to

Ëhe downstream position, the distribution sirnply shífts to its proper

yelocity position and perfects its ma:<vrellían nature.

A coinparison of the secondary velocity moment is shown Ln Figuxe 22.

It has been shown in Appendix II that for hard sphere molecules

La Va
LL

5-1

This implied that the variation of Ëhe secondary velociËy moment of

molecules euerging from collision is the same as Ëhe secondary velociËy

moment aË the posíËíon. The lÌo1way16 fot*rllation therefore, ís repre-

sented by the post-collisional secondary velocíËy momerit. The t<rook14

formulation arises from equation 4-10. IË Ís seen thaË boËh the Krookl4
th

and Holway-" formulatÍons show the same size of error. However, in order

to gain accurate distribution functions aL any point ín the 2 and 3

direcËÍons, equation 5-1 shows that

rz = en Mrr) L/2 exp ( +urzltrr) t-,

where MZZ is the secondary velocíËy moment value at Ëhe point. Due Lo
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symmetry f: is equal to fZ

The present approach used to solve Boltzmannrs equation is much less

complicated numeri eaLLy than the meËhods used by Andersonl5 
"rrd 

oËher

numerical experimenters. It also has the advant,age of remaining at all

Ëímes dependent on physical behavior paËterns rather than numerical con-

vergence critería. The applicaËion of the spline fit allows a complete

solution t,o be obtained.
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6. CONCLUDING REMARKS

The impulsively sËarted piston problem has been solved by a new

and more general Monte Carlo model of molecular behavior. The model

was based on the time of collision free fti-ght given by Denisik et a117

and assumed that the behavíor of a gas was predicted by the behavior

of a subgroup of the gas molecules. Two gases were modeled, one com-

posed of "hard sphere" molecules Ëhe oËher of equal numbers of electrons

and proËons. The model was solved by means of an IBM 360-65 computer.

The impulsively started piston in the "hard sphere" gas produced

a shock \üave. The resulting shock wave strucËure was used to solve

the BolËzmann equation in the BGI( formulation. The irnpulsively sËarted

piston in the neutral plasma demonstraËed thaË the new model could be

applied to a gas for which the collision cross-section \^ras noË a constant

but a function of the ínitial condit,ions of Ëhe col1Íding parËícles.

In Section 2.L iË was shown that the new lvlonte Carlo model Ì¡Ias more

general and exact than the previous models. This conclusion t^ras based

on Ëhree consideraËions. Firstly, the randomness of collisions was

inherently consídered. Secondly, collisions wiËh all other particles

are considered in Ëhe formulation. Finally, collisions whose inter-

acËion cross-sections are noË constanË could be treated.

In SecË,ion 3.1.2 x]ne results of the Monte Carlo model as formulated

for hard sphere molecules were tested to prove Ëheir accuracy. The

shock thicknesses predicted by Ëhe model compared very well with the

experimentally derived results of Camacl and less well wiËh Ëhose of

Robben and Talbot2. The downsLream conditions as derived by the model

agreed r^iith Ëhe results predicËed by continuum theory. Both Ëhe
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conservation of mass law and the collision frequency were verified

accurately.

In Section 3.2 the results of Ëhe ímpulsively sËarËed piston

in a neutral- plasma \^rere demonstrated to agree with logically expected

behavior.

The solution of Ëhe Boltzmann equation given in Sections 4 and 5

r,rere obËained in a very simple, straight forward manner. A comparison

of longitudinal velociËy moments predicËed by the Monte Carlo model

and the BolËzmann equation solution showed only faír agreement. How-

ever, the Holway forrnulatíon of Ëhe posË-col1isional velocity distribution

yielded a more accurate indication of these moments than díd the Krook

formulation.

The new MonËe CarLo model in Ëhe charged-partícle formulaËion has

several applications as discussed below. However, four extensions are

fiecessary before these realistic problems can be attempted.

The most important extension would be the consideration of the

associatiOn of Íons and electrons. Thís could be achieved by a con-

sideratj.on of the energy of collision and Ëhe ionization potenËial.

FurËhermore, re-ionizaËíon of the resulting neutral products of asso-

ciatÍon could be considered in Ëhe sane manner. This extension would

a11ow sËudies of problems where 100% ionizat-ion cannoË be assumed.

The consideration of radiation effecËs would be a second exËension.

BoËh bremsstrahlung and cyclotron radiaËion could be considered. Since

the former Ëype of radiation ís a collision phenomenon' the Monte Carlo

method ís especially well suiËed to iËs sÊudy.

Two simpler exËensíons would be Lhe consideraËion of external
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electromagneËic fields and Lhe treaËment of relativisËic electrons.

Both Ëhese extensions may be based on well known equaËions of behavior.

As was stated in the introduction, Ëhe basic mechanísms of impor-

Lance in ionized gas problems are well understood. The power of the

MonËe Carlo meËhod lies in the fact that iË allows these well undersËood

mechanisms to be used ín complex situations to predict plasma behavior.

Three problems that could be treated in this manner wí1l be described.

The gas discharge Ëube has been exhaustívely studíed yet still

presenËs several unsolved ptobl.*".22 The modeling of a gas discharge

Ëube would be a good problem to consider while developing Ëhe MonËe

Carlo model techniques. The available experimenËal ínformat.ion (con-

tained in such works as HowaËsorr23) would furnish an excellent comparison

for Monte Carlo results. By this comparison, both the model ítself and

the conpuËational Ëechniques involved ín its soluËion could be refined.

Tt is a well known fact that a plasma will reflecË and noL Lransmit

electronlagnetic \¡raves whose frequency is below Ëhe plasma frequency.

ThiS causes a resonance in the electromagnetic \^lave aL the plasma

frequency. Experiments with a gas discharge tube inside a wave guide

confirm this resonance but also indicaËe several- oËher resonances.22

IË has been theorized Ëhat this multiple resonance ís due Ëo non-uniform

electron densiËy. The confirmaËíon of this theory is within Ëhe scope

of the llonte Carlo simulation model. With the model, a deËailed study

of the microscopic inËeracËion of the plasma and Ëhe wave could be

pefforned.

Ther¡.rlonuclear fusion por¡ier generation experimentation is a very

coStly underËaking--noË to menËion Lhe danger involved to lífe and
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property. At present a great deal of work centers alourtd finding

equipment geomeËry thaË will contain a plasma at high pressures and

temperatures. Hovrever, due to plasma instabilities all desígns to

date have faíIea.24 It should be possible to consLruct a Monte CatLo

model of the plasma in the thermonuclear range and use this model to

perform computer simulations of proposed equípmenË confíguraËions.

In this marlrleï, the feasíbi1iËy of a design could be ascertained in a

relatively inexpensive and absolutely safe way.

A thírd problem that could be studied by a Monte Carlo model is

that of coronal heatíng. The manner ín r¿hich the energy of Ëhe sun

is passed from the photosphere to Ëhe chromosphere and corona is not

)?
kno\,m." The best Ëheory to date proposes a mechanism involving

acgustic and shock T¡zaves generated in the phot,osphere and plopagatíng

through to the corona. At presenË it is irnpossible to make close range

studies of behavioï olL the surface of the sun. The MonËe Carlo model

could provÍde a meËhod of obËaining both an understanding of the

mechanisms involved and a testíng of the proposed Ëheories.

The three preceding studies were chosen to demonsËrate Ëhe ver-

satilíty of Ëhe Monte Carlo meËhod. The first study provides confir-

mation of an existing theory. The second study provides an inexpensive

method of performíng feasibility study of Ëhermonuclear problems. The

Ëhird study provides a means of obtaining information in a situation

r^zhere direcË observation is hampered by extraordinary círcumstances.

As a research tool in the sÈudy of plasma physics, the Monte Carlo

modeling technique offers a unique advantage. Si-nce the prograrnming

of the model is at. al-l times under the control- of Ëhe researcher, Ëhe
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inclusion of any parËicular mechanism, such as collisions, radiaËion,

etc., is decided by him. This allows Ëhe contribulion of any particular

mechanism to be directly evaluated--an evaluation whích is generally

very dífficult with laboratoîy experimenËs.

It is concluded Ëhat the MonËe Carlo method construcLed under the

new formulation provides a powerful tool for the investigaËion of gas

dynamic problems.
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Suuunary of Downstream
Pararneters (S)

TABLE I

Shock Properties For Varying Time Step
as Compared to the Theoretical

0.5 I.U 1.5 ?n 10.0 TheorYProperty

Non-Dimensional
Density

Non-Dimensional
Temperature

¡1ow (urlV*)

Collisíon Fre-
quency (x 10-r/sec)

Prímary VelocilV
Moment (v rL lv^')

Secondary lelocítY
Moment (v 

2" /Vm¿)

Pos t-Co llis íonal
Primarv Velocity

O,-- ?i
Moment \vrL/Y^')

Pos t-Co 1lis ional
Secondary VelocitY
rÍ^-^-+ l-, Zlv ¿\
JruruçrrL \v2 / v, ,r

3 . 91 3.89

/1
JI")O JI. O.L

-6 ,7 8 -6.7 9

43 .7 B 44.98

16.37 1.5.47

15.35 Ls.97

3.92 3.90

3r.88 31.07

-6.7 9 -6 "7 4

44.L9 44.63

L6.L7 L5.94

15. B0 15. 5

3.67 3 . 88

32.47 32.12

-6. 88 -6 "7 8

4L.63 44.L4

L6.20 L6.06

L6.L2 16 . 06

L7.Og L7.74 19.01 L8.99 18.81 16.06

ls.35 18.40 L7 "86 18.40 18.BB 16.06
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TABLE 2

Sorne Typícal Molecular Radii At Oo Centigrad.e

Gas Radius (cm)

He1íum

Neon

Argon

Hydrogen

Nitrogen

-R1.09 x 10 -

-R1.30 x 10 '
_R

1.83 x 10 "

-a1.38 x 10 "

-R1.89 x 10 -

(From: ttAn

of Gasestt
InËroducËion to the Kinetic Theorv

by James Jeans, p. 183).
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TABLE 3

Error AnalysÍs For Time SteP Parameter of 0.5

Property % Errox Ratio of Measured to TheoreËic

Density Ratio

Temperature RaËio

Upstream Flow

UpsËream Collision
I'requency

Primary VelocitY
Moment

Secondary VelocitY
Moment

Primary VelocitY MomenË

(Pos t-Coltisional)

Secondary VelocitY MomenË
(Pos t-Co llis ional)

Shock Propagation SPeed

^ 
11

-L.7 4

0

-0. 81

+1.93

-3. B0

+6.40

+2.68

+0.22

1 .01

0.98

1.00

noq

L"02

0.96

1. 06

L.02

1. 00
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TABLE 4

Pefcent Error Ín Conservation of Mass RequÍremenË

PosÍtÍon (x 1000 cm) Flow Error (%)

3.0

3.5

4"0

4.s

5.0

5.5

6.0

6.5

7.0

9. 13

9.13

9.2r

o11

9.22

8.79

aoo

9.11

9. 11

0

0

o

1.5

1.0

-3. 8

-1.6

-.2

-.2
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APPENDIX T

Derivation of Ëhe Particlesr VelociË onents After A Binarv Collision

Consider two partícles of mass 11

c.l and 92 respecÊively. The followíng

and ^2 moving

parameË.ers are

with velocít,ies

defined

t1
'-1 tl**2

^2

A1-1a

--, ,..1 | LL\2
A1-lb

Eu, = 9- 9-L t\L- z

where &Zt is the relative velocity. Assuming Ëhese two parÈicles

collÍde, their velocities afËer collision are given ín Chapman and

11Uol¡Ill-ng AS

A1-3a

9; = c2-?NIL(ezt" k)E A1-3b

trhere & is the collision vector and Ëhe only unknown.

Figure A1-1 is a diagram of a binary col-lisíon. E is seen to be the

bisecËing vect,or of the tr^ro vectors 8." and gl, . IË is also observed

ËhaË

0- n;x A1-4
z

hence, k is enËj"rely specÍfíed by 0, therefore, X , and an angle, ¡ ,

which orientaËes the Azt - AL1, plane in space. Henceforth, the unit

vecËor g will be defined as the unit, vector in the direction of &Zt .
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m2

FIGURE A1-1: A BINARY COLLISION

If a plane, { , is constructed perpendicular to Ëhe &Zt vecËor,

thÍs plane intersects the x-y plane along a vector r. (rn the limit

if E is identÍcal to the x-y plane, r will be defÍned as i , Ëhe

uníË axis ín the x direction. ) The unit projectíon of the g vecËor

in Ëhe x-y plane is the vecËor

Þl
f=*-í: s *o ="1 "2

ço2
+--i

o *o JÞ1 02
Al-5

A1-6

which makes an angle

ß - arc cos (ff)

Since r and f. are ax righË angles Ëo eachwith Ëhe x-axis. oËher
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r makes an angle

c!= ß-g00 A1-7

with Ëhe x-axis.

A right hand system of co-ordinates is defined by å , -g. and u

where

u=fx€. A1-Ba

u = tz%!- - rre3í + Gtez-rzgL)n A1-8b

vrhere i, i- and n are the origínal co-ordinate system. The { prane,

ín which both r and u líe, is then Ëhe plane in which ¡ musË lie
to orienËate Ëhe g - k plane. Defining the vecÉor g to 1ie in both

the I plane and the g - k p1ane, g ís given by

q=cosnr + sin¡u A1-9

and E is

k=cos0g + sin0g

The expanded components of k are

A1-10

kr=cos 0 g1 sín0 cos n cos o,tsin0 sín¡ sinog, A1-11a

k, = cos O g2 sin 0 cos rì sin q, - sin 0 sin n cos cr, g3 Al-llb

k, = cos 0 g3 sin 0 sÍn¡ (cos o 92 - sino gt) A1_11c

Since 0 has been shown to be a function of x, the components of velocÍty
af'Eet colli-sion are obtainable froin iniËial condiËions and a knowledge of

X and n.
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APPENDTX II

The general form of BolÊzmannrs equation j.s

] 
"",

t\¿-L

t is the time, c is

ís the acceleration due

terrn (right hand side

# + g"# + e"# =[#

where f is the normalized dístribution function,
the molecular velocity, r is the positíon and a

to exËernal fields. The BGK model of Ëhe collision
of equation A2-1) is

Iarì
{. â. j

âf Ar
*1 " "#,

=v (r/r-f)
^2-2col

t¿here v is the collision frequency and ü ís the velocity di.stribution
of uolecules emerging from a collision.

Expanding equation A2-1 and substiËuËing equat ion A2- 2, it i.s seen
that

ic

Ë*c"oL J.

Assurni.ng a steady sËate

field

tc
tâ+Â'*)An'4.)'""2 r

tc^
J

af âfna*"tq ^¡OL

^.J

=v(,1,-t)

shock r¿ave in the ,1

#=o

A2_3

direcËíon wiËh no exËernal

A2-4a
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J

t3=o

and equation A2_3 reduces to

1C

"r ¿.9- = v(ú - f)
I

By definition

f = ftfZfS

p, = útúzús

where Èhe subscripts denoËe the component equations.

dr
âr

90

L\¿-4b

At-/, ^

A2-5

A2-6a

^^
^2_6b

It follows that
OLq = tr rr ä + ,rrr# + ,r rrä
Integrating

eÍËher 2

equatÍ

f*
I

J_*

A2-5 over all 
"2 and 

"3 and noËing thaË

f. dc. = 1Ia

&¿- /

A2-Ba

fid"i = 0 A2-Bbl*
ðf.

t_-

4 o'í
â̂r,

I l.

"1

or 3)

âft
otr

it is found Ëhat

u (úr - fr)

(where Íis

a ?-o



Similarlyr ân Íntegration ovêr -l ., 
n'

rver all 
"1 and 

"3 yields

fz = ù2

and over all ,. ^_ , 
A2-ro

'1 and 
"3 the result is

t-g = ú3

A2-7I



APPENDIX III

V=
eQuaÈr64 A3-1 rnaI be expanded

+.t'1r -r2 "I

Velocit
%'or

92

Ho1-o"y16 gives the velocity disÈribution funer;^ñ ^remerging froru collisíon, ú , as 
--*s{urr runction of molecules

p= 3 rQn)-rllt-i exp_lf ^ ,- 2 l. 'ij tc, - ur) ("j
where 

4 is the velocity moment
Ínverse of 1 ^ . ---t 

^'rv¡'crlE matrix of such
-- 4: s is the molecular _,-r^^:. 

ùucn molecules,
_ -.."+quurar velocíÈy andthe peculiar velocir¡¡ r--- 

-""*cv êflcl u Ís theccíËy by v t¡here

.l- ur,) 
IJI

e is the

f1ow. De

ÂJ--L

tensor

finíng

(No:e¡ since ) ,..-- j! .rs symnetríc, e is
Çi^:-3f 'lr and r{J -32 = .zì.

C-zr

d5

,Jif = en)-itlt. t.*p_Å'2

¿

2

vn*2,
' -r3

Pt = Qn) /¿t- sxp

[ 'r, ur-' * ,22 ,2' * ,r, ur,

tr % n r.r3"r"r)

also symmetrÍc and .2I = ,I2,

A3-2

he one_dÍmensional 
form. ttt :

'z', rt follor¿s that 
--' Yr rs obtained by Ín.Ëegratíng over all

J
2

I

2
, --2-1r v--Ll I

[-I "xp-at'2. *OO
(t33 t:'*, e13 v1 vr)

(oyer)
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r-I-rlrI exÞ -;lz
¡

r^
l/

letl vt -r ¿ ['rz "r 
* ,r3 '3 ] ", I duz dv

Ĵ
A3-3

completing the square

(ttz tt + tz3 t3)
exPT " "22

which is of the form

c"22

and has Lhe solutíon

this integral reduce toln

I
I
I

t

S

l'
I

J

tegral

r-t1lrI exp"t
I

By

,lexp-tl-t

ìr1., I
I L I I l^I t^-+ 2 |tt:tt

tì\
[. 

"*p -î 
[["'

of the ínner

t22 uz *

tll t1

è1r-l-c\7'Lz "L "23 '3

"22

duz

f-
lrI exp-ã
ILJ--

zoz

(t12 tl + t23 t3)
aêt'22

( t* f/2
|'" I exp

l'zz )

Equation A3-3 now takes the form

22
I

Vr , - tLlLL ,^ - lìl-'-Lr "r) t_j: l

I
'Lz'23 |

-^_-vrltr, -l
J

I
I

'3 I 
u"t

)

l\J-+

Once mole emPloYing a comPleÈing the square technique the resulËant
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equatlon is

ur=

e)+ -

Y'

exp -

exp

2t1
2

(
lr*t-"
I

2
uz

2

t11

tzz

(,
lrnlLr .22 r33 - .rr'] 

'U'

Ll2

23.IZ- .33 n rl_3- .ZZ - 2 .LZ .L3 .23

ì-
j

By analygous Èechniques the second

þZ and ú3 , *f"

and third component equations,

Ll2

A3-5

A3-6

L3-7

I z I '.'I e,n €^^ - e.^ | l^lLrrJJrJ)_

I

I

I

tL.
ec"r2 "11 .r3' .33 - , .L, .L3 .23

2
cÇÊ"t_1 "33 -13

rir3
( zL.,
[ 'rr 'zz - 'l.2 J l+l

(
¡

= lZr¡
I

t

2t3
-2

l"''
c--33

^2^r^2--2cct13 tll * t23 'tzz - t trz 'L3 tz3

tLL tzz tL2


