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Abstract

Extensible Markup Language (XML) is emerging as a dominant standard for data
representation and data exchange over the Internet. As XML is gaining widespread
adoption, it is expected that more and more information will be formatted as XML
documents. Managing a large amount of XML documents raises a number of chal-
lenges. One of the most important issues is the query evaluations against XML docu-
ments by which a database will be retrieved to find all those documents that satisfy a
given searching condition. The purpose of this thesis is to develop an efficient method
for evaluating path-oriented queries in document databases. Path-oriented queries are
the queries submitted for retrieving XML documents from databases. Many tradi-
tional query evaluation methods often use some types of index structures, such as
path indexes, to evaluate path-oriented queries. These methods fail to recognize that
the problem of path-oriented query evaluation is in fact a tree inclusion problem.
Therefore, they often perform well on simple queries but fail to do so in case of large
and complex queries. In this thesis, I propose a new query evaluation method to elim-
inate this deficiency. The new approach combines a top-down tree inclusion algorithm

with the signature technique to achieve high efficiency.
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Chapter 1

Introduction

The eXtensible Markup Language (XML) (3] is a standard format of data representa-
tion proposed by W3C (World Wide Web Consortium). Through customized markup
tags, XML can describe not only the data itself, but also its semantics, which enables
users to organize information with great freedom. Due to its simplicity and flexibil-
ity, XML is now a dominant standard for representing and exchanging data over the

Internet,.

<?xml version="1.0" 7>
<book> book
<title>Learning XML</title>
<author>
<last>Ray</last>
<first>Erik</first>
</author>
<publisher>Oreilly</publisher>
<year>2001</year>
</book>

Leaming XML 2001

Ray Erik

(a) (b)

Figure 1.1: An XML document and its tree model
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1.1 XML Document and Document Type Defini-
tion (DTD)

In Figure 1.1(a), a book record is represented in XML format, which is normally
known as an XML document, containing three basic components: Element, text and
attribute. The element is a piece of text delimited by a pair of tags (called start
tag and end tag) such as <book> and </book> in the above example. The text is
the “raw” data that represents the content of a document such as “Learning XML?”
appearing in Figure 1.1(a). The attribute is a name/value pair that represents the
additional properties of an element. In general, an element may contain texts and
sub-elements, i.e. multiple elements and texts can be nested in some way. Elements,
together with texts, exhibit the hierarchical nature of an XML document. Therefore,
any XML document can be modelled as a tree-like structure (we call it a document
tree or an XML tree) in which all texts are mapped to the leaf nodes and all elements
are mapped to the internal nodes. For example, Figure 1.1(b) shows the tree structure
associated with the sample document shown in Figure 1.1(a). Within the XML tree,
along a route from the root node to a leaf node, the edges and nodes make up of a
path.

An XML document must be well-formed in order to be processed correctly. A well-
formed document is one that has only one root element, has matching start and end
tags for every element, has no tags nested out of order, and is syntactically correct in
regard to the XML specification. An XML document can be, but not always required
to be valid. A walid document is one that is well-formed, and also conforms to its

Document Type Definition (DTD). A DTD is a context-free grammar that defines
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the potential structure of an XML document with a list of legal elements. It specifies
what constraints those elements must follow and how those elements are put together.

The following is the DTD for our sample XML document shown in Figure 1.1.

<?xml version="1.0"7>
<!DOCTYPE book [
<!ELEMENT book (title, author, publisher, year)>
<1ELEMENT title (#PCDATA)>
<!ELEMENT author (last, first)>
<1ELEMENT publisher (#PCDATA)>
<!ELEMENT year (#PCDATA)>
<!ELEMENT last (#PCDATA)>
<!ELEMENT first (#PCDATA)>
1>
<book>
<title>Learning XML</title>
<author>
<last>Ray</last>
<first>Erik</first>
</author>
<publisher>0Oreilly</publisher>
<year>2001</year>

</book>

In the DTD, the structure of every XML element is declared by which an element

with one or more sub-elements are indicated by a list of the names of its sub-elements
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(put in a pair of parentheses). The order of these sub-elements appearing in the
parentheses must be maintained when they appear in the document. For example, in
our sample document, if the sub-elements of “author” element switched their position
in the document, which means that “first” element appears before “last” element, the

document will be no longer valid according to the DTD.

1.2 Problem Statement

As the XML is gaining a widespread adoption, it is expected that more and more in-
formation will be formatted as XML documents. However, managing a large amount
of XML documents raises a number of challenges. Among them, the most important
issue is the query evaluation against XML documents, by which a database will be
retrieved to find all those documents that satisfy a given searching criteria. Retrieving
XML documents is not as easy as searching keywords from flat (i.e. non-structured)
text files because the hierarchical structure that resides in every XML document
should be considered. To this end, several query languages, such as XML-QL [11],
XPATH [9], XQL [18], and XQuery [1], have been proposed. These languages share a
common feature: they allow users to submit XML queries in the form of path expres-
sions to navigate through the tree structure of an XML document. We call this kind of
queries path-oriented queries. A path expression is used to describe an XML path in
a readable format. It is similar to a path in a file management system, but with some
extensions (e.g. with some predicate). For example, /book/author/[last = ‘Ray’] is
a path expression that enquiries one of the paths in the tree shown in Figure 1.1(b)
to find any book written by any author whose last name is Ray. Multiple path ex-

pressions can form a complex query that contains multiple paths, which is in fact a
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tree pattern (we call it a query tree). Up to now, most methods proposed to evaluate
path-oriented queries make use of various index structures on XML documents such
as those discussed in [21, 23]. For instance, in [23], each word (a tag or a text word)
in an XML document is numbered according to its position in the document, which
is used as an index and stored in database tables. In this way, the evaluation of a
path-oriented query can be done by performing a series of join operations. In [21],
the indexes are generated for tree paths, which dramatically reduces the number of
joins to be performed when evaluating a query.

An alternative method, which has been overlooked in the database research com-
munity, is to treat the problem as a tree-inclusion problem although much theoretic
research has been done on this issue and several interesting algorithms for checking
tree inclusion have been proposed in the literature [5, 13, 14]. However, all of them
work in a bottom-up way and assume that the whole document tree and the whole
query tree can be accommodated completely in main memory prior to any operation.
Obviously, it is not feasible in the case of large volume of data. Therefore, those
methods limited their usability for database applications.

In this thesis, I propose a new method for evaluation of path-oriented queries which
is based on a new tree inclusion algorithm discussed in [8] and a new index technique
called signature tree [6]. This new algorithm tackles tree inclusion problems in a top-
down fashion and each time manipulates only a small portion of a tree and therefore
is well suitable for a database environment. The signature tree technique is a new
method of organizing signatures for fast scanning and locating desired signatures. I
integrate it into the top-down tree inclusion algorithm and use it as an index structure

to immediately find all potential matching documents.
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1.3 Preliminaries

In this section, we present some background information related to this thesis, includ-
ing the concepts of trees, the problem of tree inclusion, and the principle of signature

techniques. These knowledge provides a necessary basis for the further discussion.

1.3.1 Tree

Let T be a tree as shown in Figure 1.2(a). We denote its root node by r7. Let v be
any node of T'. The children of v are called sibling nodes. The number of v’s children
is called the degree of v. For example, node b, ¢ and d in Figure 1.2(a) are siblings.
Their degrees are 1, 0 and 2, respectively. A tree, which is a child of v, is called
the subiree of v. Multiple disjoint subtrees or trees form a forest. In Figure 1.2(b),
the trees rooted at b, ¢ and d are subtrees of node a, and they are a set of subtrees
forming a forest. For any tree, there are three important properties: size, height and
width. The tree size is the total number of the nodes. The tree height is the length
of the longest path in the tree from the root to a leaf node. The tree width is the
number of the leaf nodes. In Figure 1.2(a), the size of T is 7, the height of T is 3,
and the width of T is 4.

1.3.2 Tree Inclusion Problem

Let T be a rooted tree. T is a labelled tree if each node of T is assigned a character
string. Let S and T be rooted, labelled trees. We say that S is included in T if S
can be obtained by deleting nodes of 7. When a node v of T is deleted, the children

of v will become the children of the parent of v. Hence, the tree inclusion problem is



CHAPTER 1. INTRODUCTION 7

(b) Subtree

Figure 1.2: Tree, Subtree, and Forest

to determine if S can be embedded in T'.

A tree can be ordered or unordered. T is ordered if a left-to-right order between
two sibling nodes is significant. Let S, T be two rooted, labelled trees. Let V(S) and
V(T') be the node sets of S and T respectively. We define an ordered tree inclusion

(f,S,T) as an injective function f : V(S) — V(T') such that for all nodes v, u € V(S),
e label(v) = label(u); (label preservation condition)

e v is an ancestor of u iff f(v) is an ancestor of f(u); (ancestor condition)

e v is to the left of u iff f(v) is to the left of f(u). (sibling condition)

For example, Figure 1.3 is an example of the ordered tree inclusion. The defini-
tion of an unordered tree inclusion is the same as above except without the sibling
condition. In [13], the unordered tree inclusion problem had been shown to be NP-
complete. Therefore, my proposed work only uses ordered tree inclusion method as
a basic strategy to evaluate path-oriented queries and adapt it to unordered cases by

imposing lexicographic order on both documents and queries.
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Figure 1.3: An ordered tree inclusion

1.3.3 Signatures

The signature technique [7, 12] was originally introduced as a text indexing method-
ology. Nowadays, it has been used in a wide range of applications. A signature is a
binary bit string that represents a word in an abstract format. The main idea of the
signature technique is that a document is considered as a set of words. Each word in
the document is hashed into a bit string of length F' such that exactly m(< F') bits
are set to 1. The resulting bit string is a word signature. The document signature s is
constructed by superimposing (i.e. bitwise OR, denoted as V) all the word signatures.
Suppose there are N documents. The N document signatures will be stored in a sig-
nature file sequentially. To search for a word in these documents, the word is hashed
by the same function to produce a query signature s,. Then it will be compared (i.e.
bitwise AND, denoted as A) with each document signature in the signature file to
find out where the word is located. Figure 1.4 depicts the signature generation and
comparison process. Given a document that contains three words, say “information”,

“retrieval”, and “method”. Each word produces a signature of length F' = 12, in
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which m = 4 bits are set to 1. They are superimposed together to get a document
signature s stored in a signature file. When a query arrives, the document signatures
in the corresponding signature file are scanned and many unqualified documents are
discarded. The rest are either checked (so that the “false drop” are discarded; see
below) or they are returned to the user as they are. Concretely, a query specifying
certain values to be searched for will be transformed into a query signature s, in the
same way as for word signatures. The query signature is then compared to each doc-
ument signature in the signature file. Three possible outcomes of the comparison are
exemplified in Figure 1.4: (1) the document matches the query; that is, for every bit
set in s¢, the corresponding bit in the document signature s is also set (i.e. sAs, = s,)
and the document really contains the query word; (2) the document does not match
the query (s A sy # s4); and (3) the signature comparison indicates a match but the
document in fact does not match the search criteria (i.e. false drop). In order to
eliminate false drops, the document must be examined after the document signature
signifies a successful match.

After superimposing multiple word signatures into a document signature, the den-
sity of ‘1’ bits in the document signature may increase, leading to a worse selectivity,
which means more false drops would happen. As shown in Figure 1.4, each word
signature has only 4 bits set to 1. After superimposing three word signatures into a
document signature, the document signature has 9 bits set to 1, which is more than
doubled. To retain the selectivity of a document signature (i.e. the ability of filtering
unqualified words), a longer signature should be used. However, a signature length
1s not unlimited. Therefore, an effective method [12] is to divide a document into

a number of blocks where each block contains roughly the same number of words.
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Word: Signature:

information 010000100110
retrieval 100010010100
method v 010100011000

Document signature: 110110111110

Query: Query signature: Document signature: Result:
information 010000100110 A 110110111110 = 010000100110 Match
XML 011000100100 A 110110111110 = 010000100100 No match
database 110100100000 A 110110111110 = 110100100000 False drop

Figure 1.4: Signature construction and comparison

We can construct a block signature for each block by superimposing all of its word
signatures. In this way, a single document signature is replaced by multiple block
signatures in a signature file. Since the number of words in a block is much less than
the number of words in a document, the density of ‘1’ bits in the block signature is
lower, thus it achieves a good selectivity. In this method, we can use the following

formula [12] to determine the length of signatures properly.
FxIn2=mxD (1.1)

where F' is the signature length to be determined, m is the number of bits set to 1 in

a word signature, and D is the number of words in a block.
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1.4 Objectives

The main goal of this thesis is to create a new query evaluation method for processing

path-oriented queries over relational databases, including:

e Implementing a new top-down tree inclusion algorithm which can be applied to

efficiently determine whether one tree can be embedded in another.

e Investigating the effectiveness of the signature technique in this problem.

1.5 Thesis Organization

The remain of the thesis is organized as follows. We proceed by first discussing
related work in the next chapter. Then, we discuss typical XML query evaluation
methods, and techniques solving tree inclusion problem. In Chapter 3, we describe
the details of our path-oriented query evaluation method, including the tree inclusion
algorithm and the signature technique. Implementation details and the analysis of the
experiments are presented in Chapter 4. Chapter 5 concludes the thesis and outlines

future work.



Chapter 2

Related Work

This thesis crosses over two related fields: XML query evaluation and tree inclusion

problem. In this chapter, we present some related work of both areas.

2.1 XML Query Evaluation

XML query evaluation has attracted a lot of attentions since XML became a universal
format for data representation and data exchange. So far most work done on this
subject views XML data as a collection of text documents with additional tags. The
common idea of those approaches is to index XML documents, and retrieve documents
based on the established indices.

In [23], Zhang et al. studied the problem of how to evaluate the containment
queries, which is a class of XML queries that evaluate containment and proximity
relationships among elements, attributes and texts. For example, the path expression
/book/author//‘Ray’ has two containment relationships. One is book/author; and

the other is author//‘Ray’. In this path expression, ‘/’ represents a parent-child

12
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E-index: T-index:

(1, <1, 20>, 0) ——» book (1,3,2) ~—» Learning
(1, <2,5>, 1) — title (1,4,2) —={ XML

(1, <6, 13>, 1) ——3» author (1,8,3) —P»i Ray

Figure 2.1: Inverted indices on an XML document

relationship and ‘//’ represents an ancestor-descendant relationship. To evaluate
such a query, a method based on inverted lists [19] is developed in [23], by means of
which two kinds of inverted lists are constructed to index elements and texts within
a set of documents, including the document number in which they appear, as well
as their positions in the corresponding documents. Concretely, two tables of the

following form will be defined.

o (doclID, wPosition, level) for a text word

o (docID, ePosition, level) for an element

where docID is the document number, wPosition is the position of a text within a
document, ePosition is a pair of values: < s,e >, representing the start position and
the end position of an element, and level is the depth of a node position with respect
to the root. For instance, Figure 2.1 shows two inverted indexes established for the
sample document shown in Figure 1.1. The index for texts is called T-indez, and the
index for elements is called E-inderz.

Let (d, z,l) be an index entry for an element a, and let (d',z’,1') be an index entry
for a word b. Then, a contains b iff d = d and z.s < £ < z.e. Let (d",z",1") be an

- . . " n
index entry for another element c. Then, a contains ¢ iff z.s < z".s and z.e > z".e.
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Using these properties, some simple path-oriented queries can be evaluated. For
instance, to process the query: /book/author[last = ‘Ray’], the inverted lists of ‘book’,
‘author’, ‘last’, ‘Ray’ will be retrieved and then their containment relationships will be
checked according to the above properties. In a relational database, E-indez and T-

indezr are mapped into the following two relations (the primary keys are underlined):

e E-index (element, docno, begin, end, level)

e T-index (word, docno, wordPosition, level)

The above index structures are efficient for simple cases, such as whether a word
is contained in an element. However, in the case that a query is a non-trivial tree,
the evaluation based on these index structures is an exponential time process. To
see this, consider the query: /book/author[last = ‘Ray’] once again. To evaluate this
query, three joins have to be performed. They are the self-joins on E-indez relation
to connect ‘book’ and ‘author’, ‘author’ and ‘last’, as well as the join between E-indez
and T-index relations to connect ‘last’ and ‘Ray’. In general, for a document tree
with n nodes and a query tree with m nodes, the checking of containment needs
O(n™) time using this method.

The above method is improved by Seo et al. [21] by introducing indexes on paths to
reduce the number of joins as well as the sizes of relations involved in a join operation.
This is achieved by establishing four relations to accommodate the inverted lists (the

primary keys are underlined):

e Path (path, pathID)

e PathIndex (pathID, docno, begin, end)
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e Word (word, wordID)

¢ WordIndex (wordID, docno, pathID, position)

In this way, the number of joins is dramatically decreased. For example, to process
the previous query, only two joins are needed. The first join is between the Path and

WordIndez relations with the following join condition:

e Path.path = ‘book/author/last’

o Path.pathIlD = WordIndez.pathID.

The second join is between the result R of the first join and the Word relation

with the following join condition:

o R.wordlD = Word.wordID

o Wordword = ‘Ray’

In general, the query evaluation based on such an index structure needs k joins,
where k is the number of the words appearing in a query. However, such a time
improvement is at cost of memory space since in Path relation the element names are
repeatedly stored. Concretely, for a document with n nodes, the size of Path relation
is on the order of O(n?). Therefore, the time complexity of this method is O(k-I-n?),
where [ stands for the average length of the paths.

To avoid expensive join operations, Wang et al. devised a new index method
named ViST [22] for searching XML documents, which is based on a new type of index
structures called structure-encoded sequences. Each XML document is transformed

into a sequence; so is each query. For example, Figure 2.2 shows two sequences
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e * v = hash(“text")
oo S

“text”

“text”

Document: Query:
(a,®)(c,a)(v",ac)(d,a)(f,ad)(g.ad) (a,®)(c.a)(v*,ac)(f.a)

Figure 2.2: Structure encoded sequences

representing a document and a query, respectively. The structure-encoded sequences
encode both structure and content of the XML data. Hence, evaluating an XML
query is in a way similar to a subsequence (non-contiguous) matching. Since an XML
query can be answered as a tree structure without being disassembled into multiple
subqueries (i.e. paths), join operations are avoided.

They used a suffix-tree-like structure to index document sequences like the one
shown in Figure 2.3, which includes three documents. Each tree node in such structure
holds two pairs of index values: a < symbol, prefiz > pair and a < preorder, size >
pair. The < symbol, prefiz > pair represents the ancestor-descendant relationships
of the nodes in the original document tree called D-Ancestorship, where the symbol is
the label of a document tree node and the prefix is the path from the root down to the
node. The < preorder,size > pair represents the ancestor-descendant relationships
of the nodes in the suffix-tree-like structure called S-Ancestorship, where the preorder
is the prefix traversal order of a node in the suffix-tree-like structure and the size is

the total number of descendants of this node in this structure. Suppose = and y are
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vi,ac
<3,3>

d,a
<4,2>

f.ad
<5,1>

g,ad
<6,0>

Figure 2.3: Suffix-tree-like structure for indexing structure encoded sequences

labelled < ng,size, > and < n,, size, > respectively, node z is an S-Ancestor of
node y iff ny € {n, + 1,n, +2,...,n, + size, }.

Given a query sequence g¢i,..., ¢, their objective is to sequentially match each
query node to a document node not only satisfying the D-Ancestorship but also sat-
istying the S-Ancestorship. Due to the nature of non-contiguous sequential searching,
this matching process is extremely costly. Therefore, they introduced two kinds of
Bttrees to speed up the process. A D-Ancestorship B*tree is constructed using
nodes’ < symbol, prefiz > pairs as keys. Since multiple documents may have nodes
with the same pair of < symbol, prefiz >, each < symbol, pre fiz > pair is associated
with a S-Ancestorship B*tree which is constructed using those nodes’ preorder num-
bers as keys. Based on these two B™trees, they can perform a subsequence matching

as follows. Suppose z, labelled with < ng, size, >, is the node matching of a query
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node ¢;_; in the query sequence q1,...,¢i_1,4, Git1,- - -, ¢»- To match the next node
gi, they first use ¢;’s < symbol, pre fiz > pair to query the D-Ancestorship Bt tree to
find a corresponding S-Ancestorship B*tree. Within this tree, they then issue a range
query ny < n < ng + size, to find all the descendants of z. For each descendant,
they use the same process to match the next query node g, until they reach the last
node in the query sequence. Finally, all the documents which are associated with the
last matching document node are the answer to the query.

With the help of Bttrees, the time complexity of this sequence-based method is
O3> %, Kilog(n)), where K; is a recursive factor, m and n are the number of nodes
in a query tree and a document tree. Thus, it gains some performances for certain
queries. However, it still has several disadvantages. For querying a document tree
whose elements have many identical labels and paths, the search would become very
inefficient because of many recursions. Also, in the case of a large data set, the whole
construction process of structure encoded sequences is much expensive. Moreover,
due to the problem of query equivalence (i.e. a subsequence matching does not imply
a successful retrieval), the method could bring some false alarms into final results.
For example, in Figure 2.4, there is a subsequence matching between the document

and the query. However, the document does not in fact match the query pattern.

2.2 Tree Inclusion Problem

The tree inclusion problem was originally introduced by Knuth in [15] as an exercise.
Motivated by solving the problem of querying structured text databases, Kilpeldinen
first began to study the problem. In his Ph.D thesis [13], he presented a detailed tax-

onomy, which classified the problem into two broad categories: ordered and unordered



CHAPTER 2. RELATED WORK 19

Document: (a,®)(b,a)(c,ab)(b,a)(d,ab) Query: (a,®)(b,a)(c,ab)(d,ab)

Figure 2.4: False alarm

with each containing five problems: tree inclusion, path inclusion, region inclusion,
child inclusion and subtree problem. He suggested that each problem in unordered
category is a special case of its previous one and each problem in ordered category is
a special case of its corresponding unordered version. He proved that unordered tree

inclusion is an NP-complete problem.

2.2.1 Ordered Tree Inclusion

Kilpeldinen and Mannila [13, 14] have presented the first polynomial time algorithm
for solving ordered tree inclusion problem. It uses O(|Q|-|D]) time and space, where
|@] and | D| are the numbers of nodes in a query tree and a document tree, respectively.

The main idea of their algorithm can be summarized as follows. Let T(r) be an
ordered, rooted tree with root node r and subtrees 7y, --- ,7;. V(T) be the node set

of T'(r). The left relatives Ir(v) and the right relative rr(v) of a node v € V(T') are
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defined as follows
Ir(v) = {z € V(T) | pre(v) > pre(z) A post(v) > post(z)}
rr(v) = {z € V(T) | pre(v) < pre(z) A post(v) < post(z)}

, where pre(v), post(v) stand for the preorder number and the postorder number of
node v, respectively. Let @ and D be two ordered labelled trees. A T00t-Preserving
embedding R(Q, D) is an embedding (i.e. inclusion) (f, Q, D), where f(ro) =rp. To
determine if D can include @, the algorithm constantly searches for root-preserving
embedding by processing the subtrees of @ from left to right, trying to embed them as
deep and as left in D as possible. However, the algorithm may need exponential time
to check such embedding. To this end, they introduce a concept called left embedding.
Let Fg = (Q1,---,Qk) be a forest, and let £ be a collection of embedding of Fopina
forest Fip. An embedding f € ¢ is a left embedding of € if post(f(rg,)) < post(g(rg,))
for every g € e. Their objective is to look for left embedding between the subtrees
of @ and D. Hence, they construct a |Q| x |D| table e with each entry e(u,v) in the
table, (where u € V(Q) and v € V(D)) defined as follows

e(u,v) = min({z € rr(v) | 3f € R(Q(u), D(v))} U {d +1}),

where d = |D|. That is, e(u,v) is the closest right relative of v which has a root-
preserving embedding of Q(v), i.e. the node with next left embedding of Q(u) in D(v).
The algorithm uses dynamic programming to compute every table entry e(u,v). For
each u, the algorithm tra&erses the nodes of D in postorder using a pointer p. At each
node v € V(D), it checks if there is a root-preserving embedding of Q(u) in D(v). If
not, the entry e(u, p) is set to d + 1, otherwise e(u, p) is set to v for all p € Ir(v). D
includes @ if and only if e(g,0) < d where ¢ = |Q)|.
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In the case of large trees, the O(|Q| - |D|) time and space complexities may be
unacceptable. Hence, Kilpeldinen [13] also presents a more space-efficient algorithm
to improve the space usage, which requires O(|Q| - depth(D)) space, where depth(D)
is the tree depth. The idea of the algorithm is to use a set of sibling intervals that
is marked by a start number and an end number to represent a sequence of sibling
nodes < v1,V2,---,V, > in @, which can be embedded in D if there is an ordered
inclusion of < Q(v1), Q(v2),---,Q(vx) > in D, where Q(v;) is the subtree rooted at
v;, (1 £ 4 < k). For each node w of D, the algorithm uses a bottom-up approach to
compute a match set M (w) consisting of sibling intervals that can be embedded in
D(w) (i.e. the subtree rooted at w). If the sibling interval of 7o appears in the last
result, Q) is embedded in tree D. The space is saved by merging two sets of sibling
intervals into one set of sibling intervals to make it simple, which means that it does
not contain two distinct members one of which contains the other. A merge-like
procedure is used to merge two lists of sibling intervals in which members are sorted
by their start numbers.

Chen [5] improves the above algorithms by introducing a concept called shell and
a p-lists data structure to further reduce the number of embedding checks. The idea
is to apply a more compact format to represent each set of sibling intervals in Q in
which the subtrees of the sibling intervals form a maximal forest. To this end, he uses
the following set of triples to describe the forests of a tree @, where d, is the degree

of the node v
Q={(v,a,b)|veV(Q),1<a<b<d).

For ¢ = (v,a,b) € Q, forest(q) denotes the subforest of Q that consists of subtrees

tree(v(al), tree(nfa + 1]),- - - , tree(n[b]), where n[i] is the ith child of node v. Let s,
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t € Q. s is said to be less than or equal to ¢ (denoted s =< t) if forest(s) is fully
covered by forest(t). Given S C @, the shell of Sis theset S°={s € S|3s € S
such that s < s}. S is reduced if S = S°. To speed up the generation of a reduced
set S°, the set S = {s1, -, sk} is organized as a p-list < s;,---,s; > in which
o(s1) < o(s2) < ---p(sy), where p(s;) = pre(v[a]),1 < i < k, for s = (v,a,b) € Q.
The algorithm runs O(J{(Q)] - |D|) time and O(]{(Q)] - min(depth(D), |I(D)|)) space,
where |I[(Q)] and |{(D)]| are the number of leaves in @ and D, respectively.

From the above discussion, we see that a bottom-up approach is mainly used in
those algorithms. With this approach, the algorithms can recursively build up match
sets for parents by scanning their children. However, the algorithms have to have
the complete knowledge of tree structures. Thus, the entire trees have to be loaded
in main memory for processing. In addition to the drawback, all the bottom-up
algorithms are not able to integrate with signatures for optimization due to their
bottom-up computation property. Therefore, compared with our approach, those

algorithms are not quite suitable for XML query evaluations.

2.2.2 Unordered Tree Inclusion

So far, no algorithm can solve the unordered tree inclusion problem in polynomial
time. Unexceptionally, the method proposed by Schlieder and Naumann [20] still
requires exponential time, by means of which the problem of evaluating an XML
query against a collection of XML documents is reduced to an unordered tree inclusion
problem. This approximately embeds an query tree into a document tree such that
only the labels and ancestor-descendant relationships of the nodes are preserved.

Since the order of siblings is not considered, multiple data nodes (nodes in a document
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tree) may share the same label. So the embedding between the query tree and the
document tree is not unique, that is, multiple subtrees of the document tree can be
mapped to the same query tree. These subtrees is a set of embeddings approximately
matching the query. To find a closest one among all such embeddings, Schlieder et al.
extended the above problem to an optimization problem by introducing a cost model
to the embeddings. Under this model, each data node d is assigned a deletion cost
denoted as cost(d). The embedding cost C is the sum of the deletion costs of all the
data nodes that must be skipped to embed the query. The embedding root d along
with its cost C are defined as a match m = (d, C).

The algorithm is based on dynamic programming. It processes the query tree
bottom-up and incrementally constructs embeddings for a query node ¢ (a node in
a query tree) and a data node d until reaching the root of the query tree. For each
query node, only the data nodes that have the same label as the query node are
processed. For each matching data node d, the algorithm tries to embed the query
subtree rooted at ¢ in the document subtree rooted at d, that is, constructs all the
possible embeddings for the query subtree rooted at g. Each of those embeddings is
represented by a match. To construct the match set of the current query node g, the
algorithm builds all the combinations of the match sets belonging to the children of
g, which are the Cartesian products of those match sets, leading to an exponential
time complexity. Since not all the combinations represent potential embeddings, only
proper combinations are chosen. This can be done as follows, for each combination S,
the algorithm checks whether all the data nodes of the matches in S are descendants
of the data node d and whether the matches in S are not blocking, i.e. any two

matches do not share common nodes. In addition, the preorder numbers of the data
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nodes are used to verify ancestor-descendant relationships and blocking matches in
the construction of a proper combination. During the above process, the algorithm
builds a match set for each query node by combining the matching data node with
the proper combinations belonging to its children. Within each match set, only the
match with the minimal cost (called a minimal match) is selected. Finally, when the
algorithm reaches the query root, the set of all minimal matches selected so far is the

result of the algorithm.

Figure 2.5: An algorithm for the approximate tree embedding problem

For example, consider the document tree D and the query tree Q in Figure 2.5.
The algorithm processes the query nodes Q = {qi, g2, g3} in postorder. Since both o
and ¢, are leaf nodes, their match sets are just the sets of matching data nodes. For
a1, the match set is M,, = {ds, dy,ds}. For ¢, the match set is My, = {dy,ds}. Now,
the algorithm is processing the query root gs. It first builds all the combinations
of the match sets belonging to the children of g3, that is, the Cartesian product
My, x My, = {{ds,da},{ds, ds}, {ds,ds},{ds,ds},{ds,d2},{ds,ds}}. To choose the
proper combinations from all the combinations, the algorithm then check for each
combination whether it qualifies. Since the matches {d3,d2}, {ds,ds} and {ds,ds}

are blocking, the proper combinations are {ds,ds},{ds,ds} and {ds,dy}. Lastly, the
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algorithm selects the match with the minimal cost, in this case, {ds, dy} is the minimal
match. Combining it with the matching data node d;, the final result of this process
is a set of minimal matches My, = {d;,d2, ds}.

The runtime complexity of this algorithm is O(|Q|- I - s**'- k- (k+h)), where |Q|
is the number of query nodes, I is iteration cycles that need to fetch matching data
nodes, s is the number of match data nodes for each query node, & is the number of
children of each query node and h is the height of the document tree. Due to the
factor s**!, the complexity of the algorithm remains exponential. From the above
description, we can see that the algorithm works in a bottom-up way, and is not able
to work with the signature technique in a top-down fashion to speed up evaluation

process. This is a major shortcoming when it is compared with our evaluation method.



Chapter 3

Path-oriented Query Evaluation

This chapter describes the method that I implemented to evaluate path-oriented
queries in a document database. The main purposes of this method are: 1) to effi-
ciently retrieve all matching documents from the database for a given query; 2) to
avoid expensive join operations which many index-based methods have suffered. To
achieve these purposes, we devise a method based on two basic techniques: the tree
inclusion algorithm and the signature technique. The tree inclusion algorithm treats
every document and query as trees, and checks the query tree against each document
tree to find out whether the query tree can be successfully embedded in it. The sig-
nature technique helps to speed up the process of tree inclusion by: 1) dramatically
reducing the number of documents that the tree inclusion algorithm needs to check;
2) eliminating all unnecessary subtree inclusion calls. By combining these two pow-
erful techniques, we are able to efficiently find all the documents matching a given

query without involving any join operations.

26
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3.1 Tree Inclusion

As pointed out by Mannila and Ré&ih& [17], the evaluation of path-oriented queries is
in essence a tree inclusion problem. Therefore, the tree inclusion algorithm is the core
of our query evaluation method. Since there is no polynomial time solution that exists
for unordered tree inclusion problem, we implemented only a tree inclusion algorithm
that targeted for ordered tree inclusion problem. For unordered query evaluation,
we can simply enforce an ordering among sibling nodes. The DTD (Document Type
Definitions) or XML Schema for an XML document contains information about a
linear order of all elements defined in the document. Hence, we can use it as a pre-
defined order that both document and query have to follow. If the DTD or the XML
Schema is not available, we simply use the lexicographical order of the element labels.

In addition, we can determine the ordering by checking the signatures of tree nodes.

3.1.1 Top-down Tree Inclusion

One of the main problems that any bottom-up tree inclusion algorithm suffers is lack
of supporting optimization techniques such as signatures, inverted files, or any kind of
indexing techniques. We avoid the problem by designing the tree inclusion algorithm
working in a top-down fashion. Suppose that D and @ are trees representing a
document and a query respectively, and D includes ). Then, we have the following

three observations.

1. Let rp and rq be the roots of tree D and ) respectively. If label(rp) = label(rg),
i.e. there is a root-preserving embedding, then we must check if the subtrees of

rp can include all the subtrees of rg.
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2. Let Dy, ..., Dy be the subtrees of rp. Let @y, ..., Q; be the subtrees of ro. If
label(rp) = label(rg), there must exist two sequences of integers: ki,--- , k;
and ly,---,l; and (I; < 1) such that Dy, includes < Qi,_ 41, -+ ,Q), > (i =
L,....,5,lo = 0,l; = [), where < @Q,_,+1, - ,Q), > represents a forest that

contains subtrees Q;,_, 1, -, and @,.

3. If label(rp) # label(rg), we need to check if there exists a D; (1 < i < k) that

includes the whole ) (i.e. one of subtrees of rp).

p label(rp’) = label(rg) fel
N >

Figure 3.1: The case of the observation (3)

The above observations indicate a top-down approach to find a tree inclusion.
The approach consists of two steps. The first step is to anchor a matching position
of rg in D, which is to find a subtree D" whose root has the same label as rq (i.e.
label(rq) = label(rp)). The possible matching location could be rp (this is the case
of our observation (1) in which the tree D' is just the tree D) or r, (this is the
case of our observation (3) in which the tree D’ has to be one of the subtrees of D,
as shown in Figure 3.1). Once the root node rq settles down, the next step is to
find the tree inclusions of all its subtrees. In the following discussion, we assume
that the matching position of rg in D is rp. According to the observation (2), we

first need to check D; against < Qy,--- ,@Q; > to find whether there exists an 7 such
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that D includes < @Q1,---,Q; >. If such ¢ does not exist (i.e. i = 0), it means
that D; does not include all subtree in < Qy,---,Q; >. Then, we have to check D
against < (41, -+, >, and so on. The result of this process is that we found two
sequences of integers k; (1 <4 < j) and ; (1 < i < j), which make Dy, include a forest
< @Q1,Q2,-,Qy >, Dy, include a forest < Qj, 11, Qryq2, -, Q1 >, -+, Dy; include
a forest < Q1 41, Q42,0 ,Q1; >. If the last integer of the sequence I, 1o, . .. e
is smaller than [ (ie. [; < [), it means that D can not include Q. Otherwise, if

l; =1, it means that D includes Q. For example, in Figure 3.2, p has four subtrees

k1=1,k2=3 |1=2,|2=4

Figure 3.2: A subtree inclusion example

{D1, D2, D3, Dy}, and 1¢ also has four subtrees {Q1, Q2, @3, @4}. Suppose that Dy
includes < ()1,Q2 >, and Dj includes < @3,Q, >. Then, based on the observation
(2), we will find two sequences of integers k; and [;, which k; = 1,ks = 3 and
Iy = 2,l = 4. Since ly = | = 4, D includes @ in this example. Notice that the
sequence of integer k£ may not be continuous since not all of subtrees in D participate
in the inclusions. The above discussion also applies to other situations in which the
matching position of r¢ in D is not rp.

When we check a subtree inclusion such as checking D; against < Qq,--- , @Q; >, we

apply a recursive process to the checking process (see Figure 3.3). Let D1, Dy, --- , Dy
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Figure 3.3: The recursive process of a subtree inclusion
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be a series of subtrees that are the leftmost subtrees of D, and D, is the subtree of
Tp,, D3 is the subtree of rp,, - - -, Dy is the subtree of TD,_,- Since this is an ordered
tree inclusion, the “leftmost” is to ensure the ordering. For any forest, we use a virtual
node to serve as a temporary root such that a forest can be transformed to a tree
with a virtual root. The virtual root can match any node label. For example, vg is a
virtual root of the forest < Qy,--- , Q; >, which matches the label of Tp,. Then, a new
subtree inclusion between D, and < @, -+ ,@Q; > is invoked recursively, where the i
is an integer such that [Do| > | < Q1,---,Q; > | but [Dy] < | < Q1,--+, Qi1 > |.
Again, we construct a virtual root v, for < Qy,--- ,Q; >, which matches the label of
Tp,. Then, another new subtree inclusion process is invoked. This type of recursion
continues until we check D;, against ¢ (both Dy and Q; could be leaf nodes). If the
label of rp, matches the label of ro,, the process returns 1 indicating a successful
inclusion, otherwise, it returns 0 indicating a failure. Either of these two results will
cause the recursive process to return. During the return, a series of new subtree
inclusions may begin, hence, the whole computation process is a top-down process
with a bottom-up checking interleaved.

Based on the previous observations, we can devise a computation process as below.
Firstly, we compare the root labels of query tree ) and document tree D. If label(rg)
= label(rp), we then recursively call the same function to check whether D; includes
< @1, ,Qr >. The process returns an integer i indicating that D; includes <
Q1,---,Q; >. Ifi > 0, then we can continue to check if Dy includes < Qiy1, -, @ >.
Otherwise, if 7 = 0, it indicates that no subtrees of D;’s root includes any of subtrees
in < Q1,---,Q; >. In this case, we need to check whether D; includes Q;. The reason

is that although no subtrees of D;’s root includes any subtree in < Q;,--- , Q1 >,
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D; may include @Q;. If D; includes @, 7 will be changed to 1; otherwise, it remains
0. However, if label(rp) # label(rg) at first, we have to search for any subtree in
< Dy,-++, Dy > to include the whole ). The algorithm repeats the above process
until it find an integer i (= k) such that D; contains all the remaining subtrees of rg,

or find that no such i exists.

3.1.2 A Top-down Tree Inclusion Algorithm

Algorithm 1 shows the details of how to perform a tree inclusion. The algorithm is
a recursive function which initially accepts two parameters: a document tree D, a
query tree () (strictly speaking, they are the root of a document tree rp and the root
of a query tree rg), and it returns an integer to indicate the result of a tree inclusion
(e.g. the 0 indicates that the document tree can not include the query tree; the 1

indicates a successful tree embedding).

Algorithm 1 Treelnclusion(D, Q)

1. if |D| < |Q| then
2. if @ is a forest (Qq,...,Q,) then
3. Q""’(Ql;an) //Lookingforiso{(Ql,...,Qi)l§]D} <'(Q1,...,Qi+1),

4. else

5. return 0
6. end if
7. end if

8. rp <« root of D
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9. ro « root of Q) //1f Q is a forest, ro will be a virtual root, which matches

any label

10. Let (Dy,..., D4) be the subtrees of D

11. Let (Q1,...,Q,) be the subtrees of Q

12. if label(rp) = label(rg) then

13. if rp is a leaf and 7¢ is not a virtual root then

14. return 1

15.  else if rp is a leaf and rg is a virtual root then

16. return 0

17.  end if

18.  temp — (Q1,...,Qy)

19. i« 1 //% indicates which subtree of D will be used.

20, j«<0 //Jj records how many subtrees of @ are included.

2l. z+0 //x is a temporary variable.

22.  while i < d and temp # ¢ do

23. z « Treelnclusion(D;, temp)

24. if z > 0 then

25. temp «— temp/(Qjt+1, .- ., Qj4z) //Matched subtrees are excluded.
26. else

27. if label(rp,) = label(rg,,,) then

28. z + Treelnclusion(D;, Q;41)

29. temp — temp/(Qj1s)

30. end if

31. end if
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32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

co

49.
50.
51.
52.
53.
54.

55.

1+—1+1
je—Jj+z
end while
if temp # 0 then
if rg is a virtual root then
return j
else
return 0
end if
else
if rg is a virtual root then
return ¢
else
return 1
end if
end if

else //label(rp) # label(rg)

fori=1toddo
z « Treelnclusion(D;, Q)
if z = ¢ then
return z
end if
end for

return 0

34
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56. end if

When the function Treelnclusion(D, Q) is called in each recursion, the algorithm
(line 1 - 7) will first make sure that D is large enough to “hold” Q, that is, it will
compare their tree sizes to determine whether D is larger than or equal to Q. If the
Q is a forest (Q1,...,Q,), the algorithm (line 2 - 3) will try to find the maximum
number of subtrees of () that D can include. Starting from the first subtree Q;, it
records the number of subtrees that D can include until it reaches a critical point
i where [(Q1,...,@Q:)| < D] < [(Q1,...,Qit1)]. After that, the forest (@1,---,Qs)
with rg being a virtual root will be used (instead of Q) in the rest of the execution.
The rest of algorithm flow (line 12 - 56) depends on the label test, which is to test if
the label(rp) is the same as the label(rg). This test is to satisfy the label preservation

condition of the tree inclusion definition (see Section 1.3.2).

o If the test is true (since the virtual root matches anything, the forest (Qy,. . ., Qi)
in the previous case will always pass this test), the algorithm (line 12 - 47) will
use each of the subtrees of rp: Dy,..., Dd to check against the subtrees of
rQ: Q1,...,Qq (or Q1,...,Q; if rg is a virtual root). This process is mainly
performed in a while loop (line 22 - 34), where each loop is a recursive call
Treelnclusion(D;, temp) . In each recursive call, an integer z is returned to
indicate how many subtrees of ¢ have been included. If z = 0, the algorithm
(line 27 - 30) may need to check if D; includes the first subtree of TQ,.1 Since
what it has done in each loop is to use the subtrees of rp, for checking, not D;

itself.

e If the test is false, i.e. two labels of rp and 7¢ are not the same, the algorithm

(line 48 - 56) will try to find the first D; that contains the whole Q by checking
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the subtrees of rp: Dy, Dy, ..., Dy one by one against the Q.

To better understand how this algorithm works, I give the following example
to illustrate the algorithm logic. Suppose that we have a document tree D and a
query tree () as shown in Figure 3.4(a). Each node in D is identified as d;, where
t=0,1,2,.... And each node in @ is identified as ¢;, such as qg, ¢1, go. We denote the
subtree of a node as D; or @);, wherei = 0,1,2,.... To find out whether D includes Q,

we run Algorithm 1 as Treelnclusion(D, Q). The main steps are described as follows.

1. Treelnclusion(D, Q). Since label(dy) = label(go) = “a” on line 12, we have a
root-preserving embedding. First, ¢, j, = are set to their initial values: iy = 1
Jo = 0; zg = 0. Then, we will use a while loop to check each subtree of dy against

all subtree of go until there is no more subtree of dy left or all the subtrees of g

are included. We first call TreeInclusion(D;, < @1, Qs >).

(a) Treelnclusion(D;, < @Q,Q2 >). Since < Q1,Q, > is a forest (see Fig-
ure 3.4(b)), label(d;) = label(virtual root) on line 12. i; = 1; j; = 0
z1 = 0. Then, we will check Dy; (subtree of d;) against forest < Q,, Qs >,

i.e. calling Treelnclusion(Dsq, < Qy, Qs >).

1. Treelnclusion(D11, < @1,Q2 >). Since |Dy| < | < @Q1,Q2 > |, i.e.
< @1, Q2 > is larger than Dy, we remove @, from < Qq, Qs >. Now,
we check Dy, against Q;. Since label(d;;) = label(q;) = “e”, , dq; is a
leaf node, and g, is not a virtual node, the algorithm returns 1 on line

14, which indicates that D;; includes Q;.

After return from Treelnclusion(Di1, < @1, @ >) online 23,4, = 2; j; = 1;

z; = 1. We remove the included subtree @; from temp =< @y, Qs > on
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Figure 3.4: Illustration of the tree inclusion algorithm
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line 25. Because there is no more subtree of d; left (i, > 1 on line 22),
the while loop ends. However, since temp still has ), and we also have a

virtual root on < @4, Q2 >, the algorithm returns 7, = 1 on line 37.

After return from Treelnclusion(D;, < @1, Q2 >) on line 23, ig = 2; Jo = 1;
o = 1. We remove the included subtree @, from temp =< Q;,Q, > on
line 25. Because there is a subtree of dy left and @, is not included yet, the
while loop continues. We will check D, (subtree of dy) against Qs, i.e. calling

Treelnclusion(Ds, @2).

2. Treelnclusion(Dy, @) (see Figure 3.4(c)). Since label(dy) # label(gs) on line
12, we have to begin with a for loop to check each subtree of dy against g5 on

line 49. We first call Treelnclusion(Ds;, Q5).

(a) Treelnclusion(Day, @2). Since label(dy;) = label(gy) = “f”, , da; is a leaf
node, and ¢; is not a virtual node, the algorithm returns 1 on line 14,

which indicates that Dy, includes Q5.

After return from Treelnclusion(Dy;, Q;) on line 50, there is no more subtree

left since @, has been included. the algorithm returns z = 1 on line 52.

3. The algorithm returns from Treelnclusion(Dy, (2) on line 23. After Q5 is re-
moved from temp, temp becomes empty. The while loop ends. Since the whole
tree @ is included, the algorithm finally returns 1 on line 45 to indicate that D

includes @ successfully.
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3.1.3 Correctness of the Algorithm

In this section, we prove the correctness of the top-down tree inclusion algorithm.
Proposition 1. If Q is a tree, Algorithm 1 Treelnclusion(D, Q) returns 1 if D
includes @Q); otherwise it returns 0. If Q is a forest of the form: < Q,... Q5 >,
Treelnclusion(D, Q) returns an integer i, indicating that D includes < Q1 ..., Q; >.
Proof. We prove the proposition by induction on the sum of the tree heights
of D and @, h. Without loss of generality, we assume that height(D) > 1 and
height(Q) > 1.

When h = 2, we consider two cases.
1. Both D and @ are singular nodes: rp and rg.
2. D is a singular node, but Q is a set of nodes.

In case 1, if rp and rg have the same label, the algorithm returns 1 (see line
12); otherwise the algorithm returns 0 (see line 55). In case 2, a virtual root will
be constructed for D, which matches any label. Then, the algorithm will check the
subtrees of rp against all the nodes in Q. Since rp does not have any subtrees, the
algorithm will return 0 (see line 16). Then, rp will be checked against the first node
in D and the algorithm returns 1 if they have the same label; otherwise, the algorithm
returns O (see line 22-34).

Now, we make the induction hypothesis: when h = n, the proposition holds. We
prove that the proposition still holds when h = n+1. Consider two trees D and Q with
height(D)+height(Q) = n+1. Assume that Q is a tree. Let rp and T be the roots of
D and Q, respectively. Let Dy, ..., Dy be the subtrees of rp, and let Qy, ..., Q, be the
subtrees of rg. Then, height(D;)+height(Q) < n and height(D)+height(Q;) < n. If
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label(rp) = label(rg), the algorithm partitions the integer sequence: 1,.. .1 into some
subsequences: {jo+1,...,51}, {s1+1,..., 42}, ..., {mo1+1,.. ., 9m}, where jo = 0 and
Jm < 1, such that each D; (i = 1,...,m; and m < k) includes < Qjir1,---,Qy, >
but not < Qj,_,41,---,Qj;, @si+1 > (see line 22-34). According to our hypothesis,
the partition is correct. Thus, the algorithm will return 1 if j,, = I, indicating
that D includes @ (see line 45); otherwise the algorithm returns 0 (see line 39). If
label(rp) # label(rq), the algorithm will try to find the first D; that includes the
whole Q. According to the hypothesis, the return value must be correct. If Q is a
forest in the form of < @1, ..., Q; >, a virtual root will be constructed for it. In terms
of the hypothesis, the algorithm will find the correct integer i such that D includes

< @1, ..,Q; > (see line 36-37 and 42-43). It completes the proof.

3.2 Signature Techniques

Signature technique is the most important optimization technique used in our query
evaluation method. The motivation of introducing signature technique into our
method is based on two observations. First, since querying XML texts is usually
much easier than querying XML structures, we can query XML documents directly
based on their contents instead of their structures. Hence, if we immediately find
out that a document will not match a query due to the differences between their
contents, we will not bother checking their structures and simply skip it. Second,
as we introduced in the Section 1.3.3, a signature is a binary bit pattern encoding a
piece of text, multiple signatures can be superimposed together to get a new signature
which provides a snapshot of all the texts represented by the multiple signatures, and

the result of two signature comparison can tell us whether the two pieces of texts
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represented by their corresponding signatures matches or not. Therefore, it is better
for us to use signatures to handle document contents instead of directly manipulating

texts.

3.3 Integration of Signatures and Top-down Tree
Inclusion

To use signature technique, we must first generate signatures for all the XML docu-
ments that are expected to be searched for. For each of those XML documents, We
use a hash function to generate a signature for each keyword in the text nodes. Since
all the text nodes are leaves, which are at the bottom of the tree, we then superimpose
all the signatures along the tree paths towards the root so that each node along the
paths gets a superimposed signature. Eventually, the whole tree is decorated by the
signatures, including a root signature representing all the texts in this document. For
example, the tree in Figure 3.5(a) represents our sample document. We assign each
keyword a signature. Figure 3.5(b) shows that when we superimpose these keyword
signatures along the tree paths, the parents of the text nodes first get the signatures,
which are the same signatures as their children’s. Then, the node ‘author’ gets a sig-
nature by superimposing the signatures of its two children ‘first” and ‘last’. Finally,
the root node ‘book’ gets its signature by superimposing the signatures of its four
children ‘title’, ‘author’, ‘publisher’ and ‘year’. The result of this process as shown
in Figure 3.5(c) is that each tree node gets a signature with the same length. For a
query tree, we use the same technique to generate signatures for it.

During a query evaluation, by each recursive call, the top-down tree inclusion
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algorithm compares the signatures of two tree nodes (in D and Q, respectively) prior
to the comparison of two node labels. If the signature comparison fails, the algorithm
knows that query keywords are absent in the current document subtree. Thus, this
subtree will be cut off and the current recursive call quits immediately. For example,
consider the trees T and .S shown in Figure 3.6. We assign signatures to the nodes of
T and S in the same way as the previous discussion. To check whether T includes S,
we first compare the signatures of two root nodes, then compare their labels. Since
both of them are the same, we will check whether the subtree of 7" that is rooted
at node b includes the forest of S (i.e. two subtrees rooted at node ¢ and node d,
respectively). However, the signature of the node b in T' does not match the signature
of the virtual root a in S, that is, sy A s, # s,. Therefore, we do not need to further
check the possible inclusion between these two trees. Our signature technique is
especially useful when the initial comparison of two root signatures fails, since in that
case the algorithm will skip the entire document. Imagine that when retrieving a
large set of documents, our signature technique can save a lot of execution time, thus
accelerate the whole evaluation process. To achieve such performance, we rely on a
new signature technique called Signature Tree, which will be described in the next

section.

3.4 Signature Tree Technique

To efficiently deal with large volume of data, such as hundreds of thousands of doc-
uments, we organize all document signatures into a Signature Tree [6], and use the
signature tree to select the documents which may qualify for our query. This can

save us a lot of time by directly jumping to those documents, which we really need
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Figure 3.6: Accelerate evaluation by signatures

to check, rather than scanning all set of documents one by one.

3.4.1 Signature Tree

Like a signature file, a signature tree works for the same purpose, which is to let
you submit a query signature and then find all the signatures matching this query
signature. However, the way it works is much different from that of any traditional
signature file, such as BSSF (Bit-Slice Signature Files) [4], S-trees [10], etc. As a
new way of organizing signatures, a signature tree is a binary tree with each leaf
node pointing to the corresponding signature in a signature file. Each of its internal
node has three keys: the middle key (k,,) is associated with a number representing a
bit position of the signatures; the left key (k;) that points to the left child is always
associated with 0; and the right key (k,) that points to the right child is always
associated with 1. The ki, tells which bit to be checked when doing a signature tree

search. As an example, Figure 3.7 shows a signature tree representing a signature file
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with eight signatures.

By organizing signatures into a binary tree, a signature tree can work in a way
which is very similar to a binary search tree. Therefore, it can easily support searching
and locating individual signatures from a very large set of signatures much faster than

the traditional signature files can.

Sy 1001 0011
Sy 1011 0100
S 0110 1001
S 1111 0000
Ss: 1010 1100
Se: 0001 1110
Sz 0111 0100
Sg 1100 1100

Figure 3.7: A sample of signature tree

3.4.2 Constructing a Signature Tree

If we do a search for signature s5 or s, in the previous signature tree, it will take
longer time than we search for other signatures. This is due to the fact that the tree
is unbalanced. Therefore, an unbalanced signature tree could significantly increase
the response time of signature queryings. To avoid constructing an unbalanced sig-
nature tree, we use a so-called weight-based method [6] to control the process of tree
construction to produce a balanced or an almost balanced tree.

In the weight-based method, a signature file F' = {s), s9,...,5,} is considered as
a binary matrix in which each row is a signature and each column corresponds to a

signature bit. We use F[i] to denote the ith column of F. For each column F[], we
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Figure 3.8: Constructing a balanced signature tree
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compute its weight w(F[i]), which is the number of 1s appearing in the F[i]. To begin
with constructing a signature tree, we arbitrarily select a column number ¢ such that
w(F[c]) = %, i.e. F[c| has almost the same number of 1 and 0. Then, we split F into
two smaller signature files f; and f; based on ¢, which fi[c] = 0 and f, [c] = 1. Now,
we can construct a simple tree T, in which c is the middle key of the root node and
the fi, fo are the left and right child. Next, we treat each f;(i = 1, 2) as if it was the
previous F', and repeat the same operation on f; and f5, respectively. This generates
two more trees from fi and f,. Replacing the two child nodes f; and f; in the 7.
with the corresponding trees, we “grow” the T, with one more level. We continuously

“grow” this tree until none of its leaf nodes can be replaced by a tree.

Algorithm 2 BalancedSigTree(F)

1. N — |F| //N gets the number of signatures in the F
2. if N > 1 then

3. choose ¢ such that w(F[c]) ~ &

Let f1 = 8435809y -+ Sy, with fl[C] =0

Let fo =54, 86,0, ---, 5y With falc] =1

Create a node r

T.km —c  //r.kn is the middle key of r

r.k — fi //7.ky is the left key of r

9. rk,— fo //7.k. is the right key of r

10.  Replace the left child f; with BalancedSigTree(f;)
11.  Replace the right child f, with BalancedSigTree( f5)
12. end if

00 NS o e

Algorithm 2 is the formal description of the weight-based method. It is a recursive
function which accepts a signature file as the input parametér and returns a balanced
signature tree as the output. Figure 3.8 presents the steps of applying this algorithm
to the signature file shown in the Figure 3.7. This time, a completely balanced

signature tree is constructed.
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1. Calling BalancedSigTree(F) with F' = {51, 52, 83, 84, S5, S6, 57,88 }. N first gets
the value 8 on line 1. Then, on line 3, we choose ¢ = 2 since w(F[2]) = L =4
In this case, fi = {s1,52,85,56} and fo = {s3,54,57,58}. From line 7 to 9,
we create a root node with the middle key k, = 2, the left key k; pointing
to f1 and the right key k, pointing to f,. We replace f; with a recursive call
BalancedSigTree(f1) and f, with a recursive call BalancedSigTree(f2) on line
10, 11.

(a) Calling BalancedSigTree(f;) with fi = {s1,52,55,86}. N first gets the

value 4 on line 1. Then, on line 3, we choose ¢ = 3 since w(F[3]) = =2
In this case, fi = {s1,s6} and fo = {s9,85}. From line 7 to 9, we create
a root node with the middle key k,, = 3, the left key k pointing to f;
and the right key k. pointing to f,. We replace f; with a recursive call
BalancedSigTree(f;) and f, with a recursive call BalancedSigTree(f,) on

line 10, 11.

i. Calling BalancedSigTree(f1) with f; = {s1,56}. N first gets the value
2 on line 1. Then, in line 3, we choose ¢ = 5 since w(F[5]) = & = 1.
In this case, f; = {s1} and fo = {ss}. From line 7 to 9, we create a
root node with the middle key k,, = 5, the left key k; pointing to f,
and the right key k, pointing to fo. We replace f; with a recursive call
BalancedSigTree(f;) and f, with a recursive call BalancedSigTree( fa)
on line 10, 11. Since both f; and f, contain only a single signature,

the recursive calls stop here.

ii. Calling BalancedSigTree(fo) with f, = {ss,85}. N first gets the value

2 on line 1. Then, in line 3, we choose ¢ = 4 since w(F[4]) = & = 1.
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In this case, fi = {ss} and fy = {s3}. From line 7 to 9, we create a
root node with the middle key K, = 4, the left key pointing to f;
and the right key k, pointing to f,. We replace f; with a recursive call
BalancedSigTree(f;) and f, with a recursive call BalancedSigTree( f5)
on line 10, 11. Since both f; and f, contain only a single signature,

the recursive calls stop here.

(b) Calling BalancedSigTree(f,) with f, = {s3,54,57,88}. N first gets the

N

value 4 on line 1. Then, on line 3, we choose ¢ = 1 since w(F[1]) = & = 2.

2

In this case, fi = {s3,57} and f, = {s4,55}. From line 7 to 9, we create

a root node with the middle key k,, = 1, the left key k; pointing to f;

and the right key k. pointing to f,. We replace f; with a recursive call

BalancedSigTree(f;) and f, with a recursive call BalancedSigTree(f2) on

line 10, 11.

i

il

Calling BalancedSigTree(f1) with f; = {s3,57}. N first gets the value
2 on line 1. Then, in line 3, we choose ¢ = 8 since w(F[§]) = =1
In this case, fi = {s7} and fo = {s3}. From line 7 to 9, we create a
root node with the middle key k,, = 8, the left key k pointing to f;
and the right key &, pointing to f,. We replace f; with a recursive call
BalancedSigTree(f;) and f, with a recursive call BalancedSigTree( f5)

on line 10, 11. Since both f; and f, contain only a single signature,

the recursive calls stop here.

Calling BalancedSigTree(f,) with f, = {s4,55}. N first gets the value
2 on line 1. Then, in line 3, we choose ¢ = 6 since w(F[6]) = =1

In this case, fi = {s4} and f, = {sg}. From line 7 to 9, we create a
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root node with the middle key k,, = 6, the left key &, pointing to f;
and the right key &, pointing to f,. We replace f; with a recursive call
BalancedSigTree(f1) and f; with a recursive call BalancedSigTree( f>)
on line 10, 11. Since both f; and f, contain only a single signature,

the recursive calls stop here.

3.4.3 Querying a Signature Tree

Once a balanced signature tree is constructed from a set of document signatures,
we can query the signature tree with a query signature 8¢ to find all the document
signatures matching s,, and retrieve only the corresponding documents. By matching,
we mean that the result of bitwise ORing between any document signature and the
query signature is the query signature itself. As mentioned before, a signature tree
works in a manner analogous to a binary search tree. Suppose that we have a query
signature s,. The ith bit position of s, is denoted as s,(i). To find all the match
signatures in the signature tree, we start from the root and walk down the tree in a
depth-first manner. Let v be the node that we encountered each time, we will check

5¢(km) as follows to determine which nodes will be explored in a next walk.

o If s;(kn) = 1, we will only go to the right child of v.

o If s4(km) = 0, we will explore both children of v.

The searching will stop until we reach some leaf nodes. Then, the signatures that
are pointed by these leaf nodes will be verified with 8¢ to see if they are the real
matches or not. Algorithm 3 implements the above querying logic. When we call

the algorithm with the root of a signature tree and a query signature, it will find all
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Algorithm 3 QuerySigTree(v, s,)
1. R—¢ //R is the result set of matching signatures, is empty initially.
2. S~ //S is a stack.
3. while S is not empty do
4. v+ 8§

5. if v is a leaf node and s, A 8¢ = 84 then
6. R— RuUs, //sv is the signature pointed by v.
7. else
8. T —vkny //v.km is the middle key of v.
9. if 5,(7) = 1 then
10. S — v, //v- is the right child of v.
11. else
12. S — v,
13. S — / /i is the left child of v.
14. end if
15.  end if

16. end while

matching document signatures for us. For example, in Figure 3.9, we have a query
signature s, = 01001001, and we are going to query the same balanced signature tree
shown in Figure 3.8. We denote a tree node as Vkn,, Where kp, is the middle key of

the node.

1. Calling QuerySigTree(vs, s,) with v, being the root of the signature tree. Ini-
tially, the result set R is empty. v, is pushed into a stack .S on line 2. Since the
stack S is not empty, we begin with a while loop. v, pop up from the S on line
4. Since vy is not a leaf node, We go to line 8 and set the bit position ¢ = 2 (the
middle key of v). Then, we check the 2nd position of Sq and find out s,(2) = 1,

thus, v; (i.e. the right child of v9) is pushed into the S on line 10.

2. Since S = (v;), we begin with a new loop. v, pop up from the S on line 4.

Since v; is not a leaf node, We go to line 8 and set the bit position 7 = 1 (the
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middle key of v1). Then, we check the 1st position of s, and find out s,(1) = 0,

thus, vs and vg (i.e. both children of v;) are pushed into the S on line 10.

3. Since S = (vs,vs), we begin with a new loop. vg pop up from the S on line 4.
Since vg is not a leaf node, we go to line 8 and set the bit position i = 8 (the
middle key of vs). Then, we check the 8th position of s, and find out 5,(8) = 1,

thus, the right child of vg) are pushed into the S on line 10.

4. Since S = (vs, the right child of vg), we begin with a new loop. The right child
of vg pop up from the S in line 4. Since it is a leaf node and s3 A Sq = 84 (L€

s3 is a real match), R = {s3}.

5. Since S = (vg), we begin with a new loop. v pop up from the S on line 4.
Since vg is not a leaf node, we go to line 8 and set the bit position i = 6 (the
middle key of vg). Then, we check the 6th position of s, and find out s,(6) = 0,

thus, both children of vg are pushed into the S on line 10.

6. Since S = (the right child of vg, the left child of vg), we begin with a new loop.
The left child of vg pop up from the S on line 4. Since it is a leaf node but

54 N\ 8q # Sq, R remains {s3}.

7. Since S = (the right child of vs), we begin with a new loop. The right child
of vg pop up from the S on line 4. Since it is a leaf node but sg A 8¢ # 8q, R

remains {ss}.

8. Now S is empty, the while loop ends. At last, we find that s3 matches our query

signature s,.
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From this example, we saw the benefit of the signature tree. Instead of sequentially
scanning all signatures, we only need to check 3 signatures. This is why querying a
signature tree will be more efficient than other signature file methods in the case of

dealing with a huge amount of signatures.
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Chapter 4

Performance Evaluation

In this chapter, we first describe some implementation issues that we encountered
when we were conducting the experiments to study the performance of the path-
oriented query evaluation method proposed in this thesis. Then, we present a per-
formance study of this method. We will discuss the details of how we performed the

experiments, and analyze the experimental results.

4.1 Implementation

In order to study the behavior of our propose method, we implemented our path-
oriented query evaluation method and carried out a series of performance experiments.
During the actual implementation, we had to face two challenges. The first challenge
was to determine what signature length we used in our signature technique. The
second challenge was to find a way to store XML documents into a relational database.

In this section, we address these two issues.
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4.1.1 Determining the Length of Signatures

When we were implementing the signature technique, an important problem we en-
countered is what signature length should be applied for all the signatures . The
Formula 1.1, which we discussed in the background section, is not useful any more for
our problem. Due to the superimposing signatures along the tree paths, each subtree
is considered as a block. Since the number of words in each subtree is not equally
distributed, the requirement that each block contains the equal number of words is no
longer satisfied. Thus, we can not use that formula to calculate the signature length.
For this reason, we make the following analysis and develop a new way to estimate
the signature length so that the previous problem can be removed.

Given two signatures sy, so, both of them are of length F' and with m; and ms
bits set to 1, respectively. If we superimpose them (i.e. s = 57 Vv S2) to get a new
signature s, s will possibly have more bits set to 1 than either of them. To keep
the ratio of 1 bits (i.e. the number of bits set to 1 versus the signature length) in
s unchanged, s has to be extended longer. The question is how long it should be.
To answer this question, we observe that for each bit position at which s; and s,
have different bit value, the length of s is increased by 1. Hence, our objective is to
estimate how many bits the two signatures will not be the same. In the worst case,
the s; and s, do not have any bit position in common, thus, the length of s will be
my + my bits. However, in general case, the s; and s will have some bit positions
in common. Let A be a random variable representing the number of such positions.

The following mathematical expectation of A is the number of bit positions at which
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both s; and s, set 1.

Mmin

eM) =Y (Axp(X) (4.1)

A=1
where My, = min{my,ms), p(\) represents the probability that s; and s, have A

bits in common, and 1 < A < Myp,. p(A) can be calculated as follows:

a5
P ="y

Now, the number of bit positions e(ms), where s; and s; are not the same, can be

(4.2)

calculated as follows:
e(ms) = Mumaz — €(X) (4.3)

where M. = maz(my, my). We notice that £(ms) is in fact the amount by which
we have to increase the length of s when superimposing s; and s,. Therefore, the
length of s will be F' + &(m;). Based on the above formulas, we can easily compute
the length of signatures for a document tree. Suppose that an XML document has n
keywords. We first calculate the average number of keywords per text node, then use
it as the value of D in Formula 1.1 to compute an initial value of F. This value will be
increased when we superimpose 7 signatures s;, s, - - - , 8, together. To determine the
final signature length after superimposing the n signatures, we first calculate mg for
superimposing s; and s, using Formula 4.3 to get a new length Fi, which represents
the length of signature s15 = s1V s5. We then calculate a new length Fi3 for signature
813 = $12 V s3 based on the previous length Fi;. This computation is stopped until
we get a length Fy, for signature s, = 81(n-1) V Sp. The length F}, becomes our
final signature length used for all signatures. To get a sense of how the above formula
performs in terms of different initial parameters, we conducted a test with three set

of parameters: z/y = (3/6,4/8,5/10), where z represents how many bits will be set
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to 1, and y represents the initial signature length. The test result is presented in

Figure 4.1.
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Figure 4.1: The test of new signature formula

4.1.2 Mapping XML data into a Relational Database

In this thesis, we focus our attention on strategies to query XML documents from
relational databases. Therefore, before we can make any query evaluation on XML
documents, we need to load all test documents into a relational database, i.e. we
must define a mapping scheme that can map XML data into a relational database.
Our goal is to select a mapping scheme that will retain the tree structures of
XML documents after we loaded the documents into a database so that the top-down
tree inclusion algorithm can take advantages of these tree structures. The mapping
scheme that we chose consists of the following three relations (the primary keys are

underlined):
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¢ Element (docID, tagID, tagName, firstChildID, siblingID, textID, treeSize,

signature, attributelD)

o Text (docID, textID, textValue)

o Attribute (docID, attributeID, tagID, attributeName, attributeValue)

In the Element relation, we defined the following fields:
doclID represents the identifier of the document that the element node belongs to.
taglD represents the identifier of this element.
tagName is the name of the element (or tag).
first ChildID is the pointer to the first child of the element node.
siblingID is the pointer to the right sibling of the element node.
attributelD is the pointer to the first attribute in the element.

textID is the identifier of the text node if the element node has a child which is a

text node.
treeSize is the size of the tree whose root is the element node;
signature is the signature (in a decimal format) associated with the current element.
In the Text relation, we defined the following fields:
docID See above.

textID See above.
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textValue is the content of the text node.
In the Attribute relation, we defined the following fields:
docID See above.
attributeID is the ID of the attribute (including the first attribute as above).
taglD See above.
attributeName is the name of the attribute.
attributeValue is the value of the attribute.

The mapping operation is done by a depth-first traversal of each document tree.
For each node in the document tree, we determine its type and act accordingly. Each
node in the document tree is traversed only once. Thus, each record in the Element
or Text relation corresponds to a tree node in the document tree. Take the document
in Figure 1.1 as an example, it will be mapped to two relations (since there is no
attribute in this document, the Attribute relation table will be empty). Table 4.1
is the Element relation of the document, and table 4.2 is the Text relation of the

document.

Table 4.1: A sample of the Element relation

doclID | tagID | tagName | firstChildID | siblingID | textID [ treeSize
1 1 book 2 7
1 2 title 3 1 1
1 3 author 4 6 3
1 4 first 5 2 1
1 5 last 3 1
1 6 publisher 7 4 1
1 7 year 5 1
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Table 4.2: A sample of the Text relation

docID | textID | textValue

1 1 Learing XML
1 2 Erik

1 3 Ray

1 4 Oreilly

1 5 2001

4.2 Experimental Setup

We conducted our experiments on a Pentium IV 1.8 GHz PC with 512 MB RAM
and 30 GB hard disk, running Windows 2000 Professional with Service Pack 4. We
chose Oracle9i Database Release 2 Enterprise Edition for Windows as the RDBMS
platform. All buffer caches of Oracle database are set to use default sizes. To avoid
the impact from the network latencies and communication overheads between client
and server, we developed all algorithms in Oracle PL/SQL and Java, and stored them
as Oracle stored procedures inside the database. For mapping XML documents into
the Oracle database, we used Oracle XML Developer’s Kit (XDK for PL/SQL version

9.2) to parse and process XML documents.

4.3 Data Sets

Our experiments are based on two real data sets: Shakespeare’s plays in XML [2] and
Digital Bibliography and Library Project database (DBLP) [16]. They are free and

easy to get from the Internet.

e The Shakespeare’s plays in XML is a collection of XML documents, each of

which is the script of a Shakespeare’s play represented in XML format. The
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data set consists of 37 documents with total file size 8 MB. Basically, all the
documents share a very similar tree structure which is shown in Figure 4.2.
Each document tree is quite large, approximately containing 8900 tree nodes

(4900 element nodes and 4000 text nodes). The average depth of the tree is 6.

e The Digital Bibliography and Library Project database (DBLP) is the popular
computer science bibliography in XML format. It includes conference papers,
articles, etc. The original data set is one huge file with file size 150 MB. For
the experimental purpose, we split the file into many smaller XML documents,
each of which is a corresponding bibliographic record of a publication. The new
data set consists of 300000 XML documents. Each document of DBLP is much
smaller than that of the Shakespeare data set, which averagely has 10 element

nodes and 10 text nodes.

Some quantitative characteristics of the data sets are summarized in Table 4.3.
As we can see, the two data sets covers a wide range of tree sizes and depths. To
study the impacts of the variations of query patterns and their matching positions
on performance, we use Shakespeare data set. To explore the scalabilities of different

methods, we use DBLP.

Table 4.3: The characteristics of data sets
Shakespeare | DBLP
Number of documents 37 300,000
Size of data set (MB) 8 150
Total number of elements 179,689 3,140,287
Total number of texts 147,442 3,059,052
Number of elements per document | 4,856 10
Number of texts per document 3,985 10
Average tree depth 6 2
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Figure 4.2: The tree structure of a Shakespeare’s play
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4.4 Comparable Methods

We implemented and experimented with the following four methods of path-oriented

query evaluation to study and compare their performances.

o IEW (Inverted index on Elements and Words): the method [23] which maps
XML elements and words (see Section 2.1) into two relations (E-index and T-

index relations) and processes containment queries in the RDBMS.

o IPW (Inverted index on Paths and Words): the method [21] which maps four
inverted indexes (see Section 2.1) into four relations (Path, PathIndex, Term,

and Termlndex relations) and processes containment queries in the RDBMS.

e ViST: the method [22] which uses the subsequence (non-contiguous) matching
of two structure-encoded sequences to answer XML queries without involving

any join operations.

o TIS (Tree Inclusions and Signatures): our method which integrates the top-

down tree inclusion algorithm with the signature technique.

4.5 Requirements of Data Storage

The storage requirement is one of the performance metrics we were going to measure.
Since each method has its own schema of data storage, we loaded two data sets into
the Oracle database separately for each method that we are going to test. The actual
spaces used by each method are listed in Table 4.4 and Table 4.7. Table 4.8 compares

the total sizes of relational tables that are required for these methods. From the
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Table 4.4: Table sizes (MB) of IEW method
Shakespeare | DBLP
E-index | 8 160
T-index | 10 240

Table 4.5: Table sizes (MB) of IPW method

Shakespeare | DBLP
Term 5 80
TermIndex | 19 240
Path <1 <1
PathIndex | 6 98

Table 4.6: Table sizes (MB) of ViST method
Shakespeare | DBLP
D-Ancestorship | 22 380
S-Ancestorship | 8 120

Table 4.7: Table sizes (MB) of TIS method
Shakespeare | DBLP
Elements | 12 250
Texts 8 120

Table 4.8: Comparison of total table sizes (MB)
Shakespeare | DBLP

IEW | 18 400
IPW | 20 420
VisST | 30 500

TIS |20 370

65
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comparison, we see that TIS method uses the least space to store DBLP data set

among the four methods.

4.6 Experiment on Shakespeare data set

In this experiment, we performed tests on the Shakespeare data set. As we know,
XML queries have a variety of patterns, but they are usually much smaller than
documents in terms of sizes (the number of tree nodes), and they can be embedded
in the different parts of the documents. Shakespeare data set has only 37 documents,
but each of those documents actually is a very big and complex tree. Because of this
characteristic of the Shakespeare data set, it is suitable for us to study the impacts

of the variations of query patterns and their matching positions on performance.

4.6.1 Queries

We tested 25 queries which are organized into 5 groups as shown in Tables 4.9 - 4.13.
The syntax of path expressions is borrowed from XPath [9], and is simplified for the
sake of easy understanding. ‘/’ represents a parent-child relationship, ‘//’ represents
an ancestor-descendant relationship. The expressions inside a pair of square brackets

are predicates. ‘|” connects different paths together.

Table 4.9: Group I. Queries with incremental path lengthes
Query | Path Expression
Q1 /PLAY//‘magnificence’
Q2 /PLAY /ACT//*magnificence’
Q3 /PLAY /ACT/SCENE//‘magnificence’
Q4 /PLAY /ACT/SCENE/SPEECH//‘magnificence’
Q5 /PLAY /ACT/SCENE/SPEECH /LINE/‘magnificence’
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Table 4.10: Group II. Queries with incremental degrees
Query | Path Expression

Q6 /PLAY //LINE/‘magnificence’

Q7 /PLAY //[LINE/‘magnificence’|LINE/‘churchyard’]
Q8 /PLAY//[LINE/‘magnificence’|LINE/ churchyard’]
LINE/ ‘reverence’]

Q9 /PLAY//[LINE/‘magnificence’|LINE/‘churchyard’]
LINE/‘reverence’|LINE/‘frequent’]

Q10 | /PLAY//[LINE/‘magnificence’|LINE/churchyard’]
LINE/‘reverence’|LINE/‘frequent’|LINE/‘heirless’]

Table 4.11: Group III. Queries matching at higher level of the document
Query | Path Expression

Q11 /PLAY//[LINE/‘magnificence’| LINE /‘perpetuity’]
Q12| /PLAY//[LINE/churchyard |LINE/ladyship]
Q13 /PLAY//[LINE/‘reverence’|LINE/‘continent’]

Q14 /PLAY//[LINE/‘frequent’|LINE/‘linen’]

Q15 | /PLAY//[LINE/ heirless’| LINE/‘delivery’]

Table 4.12: Group IV. Queries matching at middle level of the document
Query | Path Expression

Q16 | /SCENE//[LINE/‘magnificence’|LINE/ utterance’]
Q17 | /SCENE//[LINE/‘churchyard’|LINE/‘barbarism’]
Q18 | /SCENE//[LINE/‘reverence’|LINE/‘carriage’]

Q19 | /SCENE//[LINE/‘frequent’|LINE/‘imagination’]
Q20 | /SCENE//[LINE/‘heirless’|LINE/‘successor’]

Table 4.13: Group V. Queries matching at lower level of the document
Query | Path Expression

Q21 /SPEECH//[LINE/‘magnificence’|LINE/‘unintelligence’]
Q22 | /SPEECH//[LINE/‘churchyard’|LINE/ crickets’]

Q23 | /SPEECH//[LINE/‘reverence’|LINE/‘ceremonious’]

Q24 | /SPEECH//[LINE/‘frequent’|LINE/ ‘exercise’]

Q25 /SPEECH/ /[LINE/ heirless’|LINE/‘companion’]

67
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The queries in Group I is to test the impact of path lengths on performance.
The queries in Group II is to test the impact of node degrees on performance. The
queries in Group III - V are to test the impact on performance when query trees are
embedded in different parts of a document, and in the same group, the queries are

embedded in the same subtree level and follow the left-to-right order.

4.6.2 Test Method

Due to a relational database like Oracle that always has some sort of cache systems
such as a buffer pool to optimize the response time of every submitted query, we did
not test queries in a consecutive manner, instead, we shut down and restarted the
database after each test. In such a way, we avoided the situation that the execution
time for the same query would be shorter and shorter if we are running this query
repeatedly. We run through each group five times, and recorded an average execution

time for each query as the final test result.

4.6.3 Results

Figure 4.3 demonstrates the test results of Group One. From the figure, we can see
that the TIS method is not as efficient as the IPW method in these tests, but it is
comparable to the ViST method. Because of the queries with only one single path
involved, the IPW method performs only two joins: 1) the join between relation Path
and WordIndex; 2) the join between relation Word and the result of the first join.
Although the TIS method needs only scan a single path once, it has to perform two
operations during the scan of a query sequence: one is for the label checking and the

other is for finding the first child or the direct right sibling of the corresponding node.



CHAPTER 4. PERFORMANCE EVALUATION 69

BTIS BVIST OIPW OIEW

25
2
g 15 b
(4]
E 1 _

Q3
0.218 0.236 0.433 0.394 0.487
0.227 0.241 0.264 0.288 0.339
0.014 0.026 0.027 0.038 0.024
0.027 0.125 0.682 1.298 1.931
Query

Figure 4.3: Execution time of queries in Group One
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Figure 4.4: Execution time of queries in Group Two



CHAPTER 4. PERFORMANCE EVALUATION

70

Time (sec)

TIS BVIST OIPW OIEW

14 . — -
12 B [ =
10 =
8 -
6 | ] |
4 B
2 L
0 Q11 Q12 Q13 Q14 Q15
@TIs 0.924 1.197 1.414 1.396 1.89
1.554 1.694 2.006 1.607 1.772
oIPw 5.722 5.259 5.35 6.285 5.438
OIEW 13.105 12.926 12.762 12.811 13.085
Query

Figure 4.5: Execution time of queries in Group Three
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Figure 4.6: Execution time of queries

in Group Four
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Figure 4.7: Execution time of queries in Group Five

Therefore, as for single path queries, the TIS method is always less efficient than the
IPW method. For short path queries (e.g. Q1, Q2), the IEW method works much
better than TIS and ViST, however, the longer a path query is, the more inefficient
the IEW method becomes.

The results from Group Two are shown in Figure 4.4. As more and more paths
are involved in queries (from Q6 to Q10), the execution time of both IPW and IEW
increased dramatically. To answer each query, both methods have to decompose the
query into multiple single paths, and evaluate each path separately, then combine
the results of single path queries. Since each combination has to check the common
ancestors of different paths, this is a very time-consuming task. In contrast, both TIS
and ViST performed much better than the IPW and IEW methods did.

The results from the rest three groups (Figure 4.5, 4.6 and 4.7) are similar to
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each other no matter where a matching takes place. The IEW method did much
worse than other three methods in this three tests, it spent 13 to 16 seconds each
to answer most queries, whereas the TIS method outperformed other methods with
around 1 second for answering each query.

The results of this experiment suggest us that both IEW and IPW are inefficient
in answering multi-path queries due to many join operations, as we expected. When
the queries became more complex (i.e. more nodes and paths were involved in the
queries), the ViST method was inefficient too, it needed more execution time than
the TIS method did since it had to recursively issue a range query to find all the
descendants of the current node that satisfied S-Ancestorships when scanning each
node of a query sequence. This type of operations appeared to be costly. Contrary,
the signature technique made the TIS method skip many query nodes and paths that

were unnecessary for it to check during executions.

4.7 Experiment on DBLP data set

In this experiment, we performed tests on the DBLP data set. As we mentioned
before, DBLP is a huge data set that has total 300000 XML documents. Hence, it
Is very suitable for us to study the scalabilities of the previous four methods (IEW,

IPW, ViST and TIS).

4.7.1 Queries

To study the scalabilities of the methods, we organized test queries into 3 groups

according to query sizes: small, median and large. Each group has 5 queries, which
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are DBLP documents in practice since the documents in the DBLP data set are small
enough to be considered as queries. As the previous experiments, we run tests on
each query 5 times to get an average execution time as a final result. Between two

consecutive tests, we always shut down the database and restarted the database again.
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Figure 4.8: Queries of small sizes



CHAPTER 4. PERFORMANCE EVALUATION 74

auwor inproceedings

“db/conffac/petri86-

“Wollgang Reisig™ 2.htmi#Reisig8s”

title booktitle

“Petri Nets in Software
Engineering.”

“Advances in Petri Nets”

year
“63-96" “1986"
Qs
author www url
[ o
“Roy T. Fielding” “http:/iwww.w3.org/Protocols/

HTTP/1.1/spec.htmi”
title

h “Intemet Draft: Hypertext
author T nsfer Protocol -
*Tim Bemers-Lee” HTTP/1.1"

author
“Henrik Frystyk Nielsen”

Q7

author masterthesis school
P Py

“Univ. of Wisconsin-Madison”

Ad
“Kurt P. Brown™

year
“PRPL: A Database Workload “1992"
Specification Language, v1.3.”

Qs

author masterthesis school

“Tolga Yurek” “University of California at Santa

Barbara,...”
“Efficient View Maintenance...” year
1997"
Q9
author book bibsource

“Jeffrey D. Ullman™ “DBLP,http://dblp.uni-trier.de”

title isbn

“Principles of *0-914894-36-6"
Database Systems,
2nd Edition.” year
“Computer Science “1982"
Press”

Q10

Figure 4.9: Queries of median sizes
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Figure 4.11: Execution time of queries in small sizes
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Figure 4.12: Execution time of queries in median sizes
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Figure 4.13: Execution time of queries in large sizes

4.7.2 Results

Figure 4.11 to 4.13 show the results of this experiment. From these charts, again, we
see that the TIS method beat other methods in this experiment. When queries are
small, TIS finished most queries within 6 seconds, whereas IEW took about 17 seconds
to finish a query. The performance of IPW and ViST are very close to each other in
this category. For median size queries, the average time of evaluating a query by TIS
is around 5 seconds, which is almost the same as the average time it used in the small
query group. IEW had to spend about 1 minute to finish a query. The performance
gap between IPW and ViST widened this time. The average difference between them
rose to more than 10 seconds. For large size queries, the average execution time of
TIS rose to 17 seconds, but it still performed the best in this group. The average
difference between IPW and ViST became 49 seconds. IEW had to spend about 4
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minutes more to finish a query.

We found that the performance of TIS appeared to be less stable than the per-
formance of the other methods, especially in the group of small size queries (e.g. Q3,
Q4), where its performance variations are more radical than those of large queries (the
patterns and sizes of median queries are slightly different). Due to the randomness
of signatures, the TIS method may encounter some false drops (see Section 1.3.3)
during the courses of tree inclusions. If this is the case, the TIS method has to spend
extra time to check those false matching documents to identify their matchings, thus,
the amount of false drops affects the performance of query evaluation. Q4 seems to
be the case. In addition, as we expected, the small queries may be vulnerable to false
drops since the one bits in their query signatures are much less than those of large
queries.

Overall, TIS did the best in this experiment. The results of TIS suggests that
using a signature tree can let the TIS method immediately jump to potential matching
documents without running through each document one by one to carry out a tree
inclusion check. Since the TIS nearly did not need any time to screen the documents

even when the quantity of documents is huge, it definitely outperformed the rest.



Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this thesis we developed a path-oriented query evaluation method that efficiently
retrieves XML documents from a relational database. The motivation for this work
was to overcome some limitations of current query evaluation methods, such as the
need of expensive database join operations, and the lack of support for optimizations
(e.g. signatures). To that end, we combined ideas from the tree inclusion problem and
the signature technique in a way that allows us to efficiently evaluate path-oriented
queries for searching XML documents from databases.

We presented an overview of the query evaluation problem for XML data, and
provided some background information about using both the tree inclusion algorithm
and the signature technique to solve this problem. We surveyed literature related to
the XML query evaluation and the tree inclusion problem, and we proposed a new top-
down tree inclusion algorithm. We discussed the construction of a signature tree to

speed up the query evaluation process. We implemented the top-down tree inclusion
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algorithm and the signature tree, and we compared the performance of our method to
other three methods that are mainly based on index structures. We presented detailed
performance results to show that our path-oriented query evaluation method, TIS,

outperformed those three methods in most cases.

5.2 Future Work

"The following is the potential work for the future development of our query evaluation

method.

o Add attributes
In this thesis, we use an XML tree model that only contains two basic com-
ponents: elements and texts. Sometimes, the attributes in an XML document
also have the useful information related to the contents of the document. In
the future work, we will use the XML tree model that contains all three basic

components to improve the accuracy of query results.

e Use different RDBMS as repositories
Currently, Oracle is the only database system that we used in the experiments.
To avoid the situation where experimental results have some potential ties to
the Oracle, we will try to use different RDBMS as repositories in our future

experiments.

¢ Improve signature technique
Integrating signature technique with top-down tree inclusion algorithm is just

an initiative. As the experiments shows that the signature technique has a
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minor issue, i.e. vulnerable to false drops. We will further investigate this issue

and make the signature technique perform more reliable.

e Support XQuery
XQuery is a query language that is still under development. In future, it will
become a W3C standard of processing many types of XML data sources. We
expect many queries will be submitted in XQuery format. The basic building
blocks of XQuery are expressions. Therefore, we will need to develop a scheme

to handle the mapping between expressions and trees.
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