
EvaluarloN op' PaIH-ORTENTED Queruns

rN DocUMENT Daraeasps

YoNc Ssl

A thesis submitted to the

Department of Computer Science

in confbrmity with the requirements for

the degree of Master of Science

University of Manitoba

Winnipeg, Manitoba, Canada

September 2006

Copyright @ Yong Shi, 2006

by

THE I]NIVERSITY OF MANITOBA

FACULTY OF GRADUATE STT]DIES

coPYRrc#H*.rrrssroN

EVALUATION OF' PATH-ORIENTED QUERIES
IN DOCUMENT DATABASES

BY

YONG SHI

A Thesis/Practicum submitted to the Faculfy of Graduate Studies of The University of

Manitoba in partial fulfillment of the requirement of the degree

oF

MASTER OF SCIENCE

YONG SHIO 2006

Permission has been granted to the Library of the University of Manitoba to lend or sell copies of
this thesis/practicum, to the National Library of Canada to microfilm this thesis and to lend or sell
copies of the fälm, and to University Microfilms Inc. to publish an abstract of this thesis/practicum.

This reproduction or copy of this thesis has been made availabte by authority of the copyright
ol¡vner solely for the purpose of private study and research, and may only be reproduced and copied

as permitted by copyright laws or with express written authorization from the copyright owner.

Abstract

Extensible Markup Language (XML) is emerging as a dominant standard for data

representation and data exchange over the Internet. As XML is gaining widespread

adoption, it is expected that more and more information will be formatted as XML

documents. Managing a large amount of XML documents raises a number of chal-

lenges. One of the most important issues is the query evaluations against XML docu-

ments by which a database will be retrieved to find all those documents that satisfy a

given searching condition. The purpose of this thesis is to develop an effìcient method

for evaluating path-oriented queries in document databases. Path-oriented queries are

the queries submitted for retrieving XML documents f¡om databases. Many tradi-

tional query evaluation methods often use some types of index structures, such as

path indexes, to evaluate path-oriented queries. These methods fail to recognize that

the problem of path-oriented query evaluation is in fact a tree inclusion problem.

Therefore, they often perform well on simple queries but fäil to do so in case of large

and complex queries. In this thesis, I propose a nerv query evaluation method to elim-

inate this deficiency. The new approach combines a top-down tree inclusion algorithm

with the signature technique to achieve high efficiency.

Acknowledgments

This thesis work was performed under the supervision of my supervisor, Dr. Yangjun

Chen. He is a learned professor in his research area, and he honored me with his

insights and invaluable suggestions and comments during the research. I am greatly

thankful to Professor Chen for his continued guidance, advice, and generous financial

support.

I would also like to thank Mr. Donovan Cooke and Mr. Yan Zhuang who spent

their time on the performance experiments. I am grateful to their patience and

valuable helps.

My deepest gratitude goes to my parents, Zhaochun shi and Ning zhang, my

sister Yun Shi for their emotional support and encouragement. I dedicate this thesis

to them.

Finally, I want to express all my love to my wife, Jing Zhang. Her support and

unconditional love are beyond words. Without Jing this thesis would not have been

written. She made me believe I was capable of succeed on this dream. All my love

to her.

Contents

Abstract

Acknowledgments

Contents

List of Tables

List of Figures

1 Introduction
i.1 XML Document and
I.2 Problem Statement

Document Type Definition (DTD)

ll

lll

vi

1

2

4

6

6

6

8

11

11

1.4

1.5

1.3 Preliminaries
1 .3. 1 Ttee
I.3.2 Tþee Inclusion Problem
1.3.3 Signatures
Objectives
Thesis Organization

Related Work
2.I XML Query Evaluation
2.2 Tlee Inclusion Problem

2.2.7 Ordered Tlee Inclusion
2.2.2 Unordered Tlee Inclusion

Path-oriented Query Evaluation
3.1 Tlee Inclusion

3.1.1 Top-down Tlee Inclusion
3.1.2 A Top-down Tlee Inclusion Algorithm
3.1.3 Correctness of the Algorithm

L2
T2

18

19

22

26
27

27
.'¡)
¿L

39

iii

Signature Techniques
Integration of Signatures and Top-down flee Inclusion
Signature Tbee Technique
3.4.7 Signature Tlee
3.4.2 Constructing a Signature Tlee
3.4.3 Querying a Signature Tlee

Performance Evaluation
4.7 Implementation

4.7.I Determining the Length of Signatures
4.L2 Mapping XML data into a Relational

3.2
.)..f

3.4

4.2
4.3
4.4
4.5
4.6

43

44

45

50

Database

40

4I

55
55

56

58

61

61

64

64

66

66

68

68

72

72

77

79
79

80

82

Experimental Setup
Data Sets

Comparable Methods
Requirements of Data Storage
Experiment on Shakespeare data set
4.6.7 Queries
4.6.2 Test Method
4.6.3 Results

4.7 Experiment on
4.7.1 Queries
4.7.2 Results

DBLP data set

5 Conclusion and F\rture Work
5.1 Conclusion
5.2 F\ture Work

Bibliography

IV

List of Tables

4.1

4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.r0
4.7r
4.r2
4.r3

A sample of the Element relation
A sample of the Text relation
The characteristics of data sets
Table sizes (MB) of IEW method
Table sizes (MB) of IPW method
Table sizes (MB) of ViST method
Table sizes (MB) of TIS method
Comparison of total table sizes (MB)
Group L Queries with incrementaì path lengthes
Group II. Queries with incremental degrees
Group III. Queries matching at higher level of the document
Group IV. Queries matching at middle level of the document
Group V. Queries matching at lower level of the document

60

61

62

65

65

65

65

65

66

67

67
67
67

List of Figures

An XML document and its tree model
Ttee, Subtree, and Forest
An ordered tree inclusion
Signature construction and comparison

Inverted indices on an XML document
Structure encoded sequences

2.3 suffix-tree-like structure for indexing structure encoded sequences
2.4 False alarm
2.5 An algorithm for the approximate tree embedding problem

The case of the observation (3)
A subtree inclusion example
The recursive process of a subtree inclusion
Illustration of the tree inclusion algorithm
Signature a tree

1.1

r.2
1.3

r.4

2.r
2.2

1

7

I
10

13

16

17

19

24

28

29

30
JI

42

44

45

46

54

58

63

69

69

70

70

7T

t!)

74

75

76

3.1

3.2
.),.)

3.4
3.5

3.6

'Jù. I

3.8
3.9

4.I
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.17

Accelerate evaìuation by signatures
A sample of signature tree
Constructing a balanced signature tree
Querying a balanced signature tree

The test of new signature formula
The tree structure of a Shakespeare's play
Execution time of queries in Group One
Execution time of queries in Group Two
Execution time of queries in Group Three
Execution time of queries in Group Four
Execution time of queries in Group Five
Queries of small sizes

Queries of median sizes

Queries of large sizes
Execution time of queries in small sizes

vi

4.12 Execution time of queries in median sizes .

4.13 Execution time of queries in large sizes
76

77

vtl

Chapter 1

Introduction

The eXtensible Markup Language (XML) [3] is a standard format of data representa-

tion proposed by W3C (World Wide Web Consortium). Through customized markup

tags, XML can describe not only the data itself, but also its semantics, which enables

users to organize information with great freedom. Due to its simplicity and flexibil-

ity, XML is now a dominant standard for representing and exchanging data over the

Internet.

<?xml version='1.0" ?>
<book>

<title>Leaming XML</title>
<author>

<last>Ray</last>
<first>Erik</first>

</author>
<publisher>Oreilly</publisher>
<year>2001 <lyear>

</book>

(a) (b)

Figure 1.1: An XML document and its tree

book

modeì

CHAPTER 1. INTRODUCTION

1.1 XML Document and Document Type Defini-

tion (DTD)

In Figure 1.1(a), a book record is represented in XML format, which is normally

known as an XML document, containing three basic components: Element, tert and

attribute. The element is a piece of text delimited by a pair of tags (called stari

tag and end tag) such as <book> and </book> in the above example. The text is

the "raw" data that represents the content of a document such as "Learning XML"

appearing in Figure 1.1(a). The attribute is a name/value pair that represents the

additional properties of an element. In general, an element may contain texts and

sub-elements, i.e. multiple elements and texts can be nested in some way. Elements,

together with texts, exhibit the hierarchical nature of an XML document. Therefore,

any XML document can be modelled as a tree-like structure (we call it a document

tree or an XML tree) in which all texts are mapped to the leaf nodes and all elements

are mapped to the internal nodes. For example, Figure 1.1(b) shows the tree structure

associated with the sample document shown in Figure 1.1(a). Within the XML tree,

along a route from the root node to a leaf node, the edges and nodes make up of a

path.

An XML document must be well-formed in order to be processed correctly. A wett-

formed document is one that has only one root element, has matching start and end

tags for every element, has no tags nested out of order, and is syntactically correct in

regard to the XML specification. An XML document can be, but not always required

to be valid. A aali,d document is one that is well-formed, and also conforms to its

Document Type Definition (DTD). A DTD is a context-free grammar that defines

CHAPTER 1. INTRODUCTION

the potentiaì structure of an XML document with a list of legal elements. It specifies

what constraints those elements must follow and how those elements are put together.

The following is the DTD for our sample XML document shown in Figure 1.1.

<?xn1 version=" 1 .0"?>

<!DOCTYPE book t

<!ELEMENT book (titl-e, author, publisher, year)>

<!ELEMENT title (#PCDATA)>

<!ELEMENT author (last, first)>
< ! ELEMENT publisher (#PCDATA)>

< !ELEMENT year (#PCDATA)>

<!ELEMENT lasr (#PCDATA)>

< !ELEMENT first (#PCDATA)>

l>

<book>

<t itle>Learning XML</t itle>
(author>

<last>Ray</Iast>

<f irst>Erik</f irst>

</author>

<pub1 i sher>0re i I 1y</pubJ_ i sher>

<year>200 I</year>

</book>

In the DTD, the structure of every XML element is declared by which an element

with one or more sub-elements are indicated by a list of the names of its sub-elements

CHAPTER 1. INTRODUCTION

(put in a pair of parentheses). The order of these sub-elements appearing in the

parentheses must be maintained when they appear in the document. For example, in

our sample document, if the sub-elements of "author" element switched their position

in the document, which means that "first" element appears before "last" element, the

document will be no longer valid according to the DTD.

L.2 Problem Statement

As the XML is gaining a widespread adoption, it is expected that more and more in-

formation will be formatted as XML documents. However, managing a large amount

of XML documents raises a number of challenges. Among them, the most important

issue is the query evaluation against XML documents, by which a database will be

retrieved to find all those documents that satisfy a given searching criterìa. Retrieving

XML documents is not as easy as searching keywords from flat (i.e. non-structured)

text files because the hierarchical structure that resides in every XML document

should be considered. To this end, several query languages, such as xML-eL lrl,
XPATH l9), xQL [18], and xQuery [1], have been proposed. These languages share a

common feature: they allow users to submit XML queries in the form of path expres-

sions to navigate through the tree structure of an XML document. We call this kind of

queries path-oriented queries. A path expression is used to describe an XML path in

a readable format. It is similar to a path in a file management system, but with some

extensions (e.9. with some predicate). For example, fbookf author/[last : 'Ray'] is

a path expression that enquiries one of the paths in the tree shown in Figure 1.1(b)

to find any book written by any author whose last name is Ray. Multiple path ex-

pressions can form a complex query that contains multiple paths, which is in fact a

CHAPTER 1. INTRODUCTION

tree pattern (we call it a query tree). Up to now, most methods proposed to evaluate

path-oriented queries make use of various index structures on XML documents such

as those discussed in [21, 23]. For instance, in [23], each word (a tag or a text word)

in an XML document is numbered according to its position in the document, which

is used as an index and stored in database tables. In this way, the evaluation of a

path-oriented query can be done by performing a series of join operations. In [21],

the indexes are generated for tree paths, which dramatically reduces the number of

joins to be performed when evaluating a query.

An alternative method, which has been overlooked in the database research com-

munity, is to treat the problem as a tree-inclusion probìem although much theoretic

research has been done on this issue and several interesting algorithms for checking

tree inclusion have been proposed in the literature [5, 13, 14]. However, all of them

work in a bottom-up way and assume that the whole document tree and the whole

query tree can be accommodated completely in main memory prior to any operation.

Obviously, it is not feasible in the case of large volume of data. Therefore, those

methods limited their usability for database applications.

In this thesis, I propose a new method for evaluation of path-oriented queries which

is based on a ne'v¡/ tree inclusion algorithm discussed in [8] and a new index technique

called signature tree [6]. This new algorithm tackles tree inclusion problems in a top-

down fashion and each time manipulates only a small portion of a tree and therefore

is well suitable for a database environment. The signature tree technique is a new

method of organizing signatures for fast scanning and locating desired signatures. I

integrate it into the top-down tree inclusion algorithm and use it as an index structure

to immediately find all potential matching documents.

CHAPTER 1. INTRODUCTION

1.3 Preliminaries

In this section, we present some background information related to this thesis, includ-

ing the concepts of trees, the problem of tree inclusion, and the principle of signature

techniques. These knowledge provides a necessary basis for the further discussion.

1.3.1 Tbee

Let T be a tree as shown in Figure 1.2(a). We denote its root node by r7. Lel" u be

any node of ?. The children of u are called si,bli,ng nodes. The number of u's children

is called the degree of u. For example, node b, c and d in Figure I.2(a) are siblings.

Their degrees are 1, 0 and 2, respectively. A tree, which is a child of u, is called

the subtree of u. Muìtiple disjoint subtrees or trees form a Jorest. In Figure 1.2(b),

the trees rooted at b, c and d are subtrees of node a, and they are a set of subtrees

forming a forest. For any tree, there are three important properties: s'ize, he,ight and

wi'dth. The tree size is the total number of the nodes. The tree height is the length

of the longest path in the tree from the root to a leaf node. The tree width is the

number of the leaf nodes. In Figure r.2(a), the size of ? is z, the height of T is 3,

and the width of 7 is 4.

L.3.2 Tþee Inclusion Problem

Let T be a rooted tree. T is a labelled tree if each node of T is assigned a character

string. Let ,S and ? be rooted, labelled trees. We say that S is included. in T lf S
can be obtained by deleting nodes of 7. When a node u of T is deleted, the children

of u will become the children of the parent of u. Hence, the tree ,inclusi,on problem is

CHAPTER 1. INTRODUCTION

(a) Tree (b) Subtree

Figure 1.2: Ttee, Subtree, and Forest

to determine if ^9 can be embedded in 7.

A tree can be ordered or unordered. ? is ordered if a left-to-right order between

two sibling nodes is significant. Let ,S, ? be two rooted, Iabelled trees. Let I/(S) and

V (T) be the node sets of ,S and 7 respectively. We define an ord"ered tree inclusi,on

(f ,S,T) as an injectivefunction J :V(S) ---rV(T) suchthatforallnodes u11r €.V(S),

o label(u) : label(u); (label preservation condition)

o u is an ancestor of u itr /(a) is an ancestor of /(u); (ancestor condition)

o u is ro the left of uifr f (u) is ro the ìeft of /(z). (sibling condition)

For example, Figure 1.3 is an example of the ordered tree inclusion. The defini-

tion of an unordered tree inclus'ion is the same as above except without the sibling

condition. In [13], the unordered tree inclusion problem had been shown to be NP-

complete. Therefore, my proposed work only uses ordered tree inclusion method as

a basic strategy to evaluate path-oriented queries and adapt it to unordered cases by

imposing lexicographic order on both documents and queries.

CHAPTER 1. INTRODUCTION

Figure 1.3: An ordered tree inclusion

1.3.3 Signatures

The signature technique [7, 12] was originally introduced as a text indexing method-

ology. Nowadays, it has been used in a wide range of applications. A signature is a

binary bit string that represents a word in an abstract format. The main idea of the

signature technique is that a document is considered as a set of words. Bach word in

the document is hashed into a bit string of length F such that exactly rn(< F) bits

are set to 1. The resulting bit string is a word szgnature. The document si,gnature s is

constructed by superimposing (i.e. bitwise OR, denoted as V) all the word signatures.

Suppose there are ly' documents. The ly' document signatures will be stored in a s'ig-

nature fle sequentially. To search for a word in these documents, the word is hashed

by the same function to produce a query signature sn. Then it will be compared (i.e.

bitwise AND, denoted as A) with each document signature in the signature file to

find out where the word is located. Figure 1.4 depicts the signature generation and

comparison process. Given a document that contains three words, say "information",

"retrieval", and "method". Each word produces a signature of length F : 12, in

S

CHAPTER 1. INTRODUCTION

which m : 4 bits are set to 1. They are superimposed together to get a document

signature s stored in a signature file. When a query arrives, the document signatures

in the corresponding signature file are scanned and many unqualified documents are

discarded. The rest are either checked (so that the "false drop" are discarded; see

below) or they are returned to the user as they are. Concretely, a query specifying

certain values to be searched for will be transformed into a query signature sn in the

same way as for word signatures. The query signature is then compared to each doc-

ument signature in the signature file. Three possible outcomes of the comparison are

exemplified in Figure 1.a: (1) the document matches the query; that is, for every bit

set in sn, the corresponding bit in the document signature s is also set (i.e. sAsn : sn)

and the document really contains the query word; (2) the document does not match

the query (s A sn * sò; and (3) the signature comparison indicates a match but the

document in fact does not match the search criteria (i.e. Jatse drop). In order to

eliminate false drops, the document must be examined after the document signature

signifies a successful match.

After superimposing multiple word signatures into a document signature, the den-

sity of '1'bits in the document signature may increase, leading to a worse selectivity,

which means more false drops would happen. As shown in Figure 1.4, each word

signature has only 4 bits set to 1. After superimposing three word signatures into a

document signature, the document signature has 9 bits set to 1, which is more than

doubled. To retain the selectivity of a document signature (i.e. the ability of filtering

unqualified words), a longer signature should be used. However, a signature length

is not unlimited. Therefore, an effective method [12] is to divide a document into

a number of blocks where each block contains roughly the same number of words.

CHAPTER 1. INTRODUCTION

Word: Signature:

information 010000100110
retrieval 100010010100
method y 010100011000

Document s¡gnature: 1101101111 10

Query: Query signature: Document signature: Result:

information 010000100110
^ 110110111110 = 010000100110 Match

XML 011000100100
^

110110111110 = 010000100100 No match

database 110100100000
^

110110111110 = 110100100000 False drop

Figure 1.4: Signature construction and comparison

We can construct a block signature for each block by superimposing alì of its word

signatures. In this 'v¡/ay, a single document signature is replaced by multiple block

signatures in a signature file. Since the number of words in a block is much less than

the number of words in a document, the density of '1' bits in the block signature is

lower, thus it achieves a good selectivity. In this method, we can use the following

formula [12] to determine the length of signatures properly.

Fxln2:mxD (1.1)

where F is the signature length to be determined, m is the number of bits set to 1 in

a word signature, and D is the number of words in a block.

10

CHAPTER 1. INTRODUCTION

L.4 Objectives

The main goal of this thesis is to create a new query evaluation method for processing

path-oriented queries over relational databases, including:

. Implementing a new top-down tree inclusion algorithm which can be applied to

efficiently determine whether one tree can be embedded in another.

o Investigating the effectiveness of the signature technique in this problem.

1.5 Thesis Organization

The remain of the thesis is organized as follows. We proceed by first discussing

related work in the next chapter. Then, we discuss typical XML query evaluation

methods, and techniques solving tree inclusion problem. In Chapter 3, we describe

the details of our path-oriented query evaluation method, including the tree inclusion

algorithm and the signature technique. Implementation details and the analysis of the

experiments are presented in Chapter 4. Chapter 5 concludes the thesis and outlines

future work.

11

Chapter 2

Related \Mork

This thesis crosses over two related fields: XML query evaluation and tree inclusion

problem. In this chapter, we present some related work of both areas.

2.L XML Query Evaluation

XML query evaluation has attracted a lot of attentions since XML became a universal

format for data representation and data exchange. So far most work done on this

subject views XML data as a collection of text documents with additional tags. The

common idea of those approaches is to index XML documents, and retrieve documents

based on the established indices.

In [23], Zhang et al. studied the problem of how to evaluate the containment

queries, which is a class of XML queries that evaluate containment and proximity

relationships among elements, attributes and texts. For example, the path expression

lbooklaúhorf f 'P'ay' has two containment relationships. One is book/author; and

the other is author//'Ray'. In this path expression, '/' represents a parent-child

12

E-index:

(1, <1,20>,0) book

(1, <2,5>, 1) t¡tle

(1, <6, 13>,1) aulhor

CHAPTER 2. RELATED WORK

Figure 2.1: Inverted indices on an XML document

relationship and 'f f' represents an ancestor-descendant relationship. To evaluate

such a query, a method based on znuerted lzsús [19] is developed in [23], by means of

which two kinds of inverted lists are constructed to index elements and texts within

a set of documents, including the document number in which they appear, as well

as their positions in the corresponding documents. Concretely, two tables of the

following form will be defined.

o (d,oclD, wPosit,ion, leuel) for a text word

o (doclD, ePos,ition, Ieuel) for an element

where doclD is the document number, wPositionis the position of a text within a

document, ePos'it'ion is a pair of values: 1s,€ >, representing the start position and

the end position of an element, and leuelis the depth of a node position with respect

to the root. For instance, Figure 2.1 shows two inverted indexes established for the

sample document shown in Figure 1.1. The index for texts is called T-inder, and the

index for elements is called E-i,nder.

Let (d,r,l)be an index entry for an element a, and let (d' ,r',.L') be an index entry

for a word ð. Then, ø contains b ifr d: d' and r.s < Í' < r.e. LeI (d",r",1") be an

index entry for another element c. Then, ¿ contains c iff r.s < tr" .s and r.e > r" .e.

13

T-index:

('t,3,2\ Learning

(1,4,2) XML

(1,8, 3) Ray

CHAPTER 2. RELATED WORK

Using these properties, some simple path-oriented queries can be evaluated. For

instance, to process the query: /book/author[ast : 'Ray'], the inverted lists of 'book',

'author', 'last', 'Ray' will be retrieved and then their containment relationships will be

checked according to the above properties. In a relational database, E-'inder and 7-

'inder are mapped into the following two relations (the primary keys are underlined):

o E-index (element, docno, begin, end, level)

o T-index (word, docno, wordPosition, level)

The above index structures are efficient for simple cases, such as whether a word

is contained in an element. However, in the case that a query is a non-trivial tree,

the evaluation based on these index structures is an exponential time process. To

see this, consider the query: /book/author[last : 'Ray'] once again. To evaluate this

query? three joins have to be performed. They are the self-joins on E-znder relation

to connect'book'and'author', 'author'and'last', as well as the join between E-i,nd,er

and T-inder relations to connect 'last' and 'Ray'. In general, for a document tree

with n nodes and a query tree with zn nodes, the checking of containment needs

O(r^) time using this method.

The above method is improved by Seo et al. [21] by introducing indexes on paths to

reduce the number of joins as well as the sizes of relations involved in a join operation.

This is achieved by establishing four relations to accommodate the inverted lists (the

primary keys are underlined):

o Path (path, pathlD)

74

o Pathlndex (pathlD, docno, begin,94g!)

CHAPTER 2. RELATED WORK

o .Word
(word, wordiD)

o Wordlndex (wordlD, docno, pathlD, position)

In this way, the number of joins is dramatically decreased. For example, to process

the previous query, only two joins are needed. The first join is between the Path and

Wordlndex relations with the following join condition:

o Path.palh : 'book/author/last'

o Path.paLhlD : Wordlnder.pathlD.

The second join is between the result

with the following join condition:

o A.wordID : Word.wordID

o Word.word : 'Ray'

.B of the first join and the Word relation

In general, the query evaluation based on such an index structure needs ,k joins,

where k is the number of the words appearing in a query. However, such a time

improvement is at cost of memory space since in Path relation the element names are

repeatedly stored. Concretely, for a document with n nodes, the size of Path relation

is on the order of O(r').Therefore, the time complexity of this method is O(k.I.n2),

where I stands for the average length of the paths.

To avoid expensive join operations, Wang et al. devised a new index method

named ViST l22l for searching XML documents, which is based on a new type of index

structures called structure-encoded sequences. Each XML document is transformed

into a sequence; so is each query. For example, Figure 2.2 shows two sequences

15

CHAPTER 2. RELATED WORK 16

- v = hash("text")

Document:
(a,O)(c,a)(l,acXd,aXf,adXg,ad)

(a)

,/\/\
(,(,
'text'

Ouery:
(a,O)(c,a)(v',ac)(f,a)

Figure 2.2: Structure encoded sequences

representing a document and a query, respectively. The structure-encoded sequences

encode both structure and content of the XML data. Hence, evaluating an XML

query is in a way similar to a subsequence (non-contiguous) matching. Since an XML

query can be answered as a tree structure without being disassembled into multiple

subqueries (i.e. paths), join operations are avoided.

They used a suffi.x-tree-like structure to index document sequences like the one

shown in Figure 2.3, which includes three documents. Each tree node in such structure

holds two pairs of index values: a < symbol,prefir > pair and a <preord"er,size)

pair. The < symbol,pref ir > pair represents the ancestor-descendant relationships

of the nodes in the original document tree called D-Ancestorship, where the symbol is

the label of a document tree node and the prefix is the path from the root down to the

node. The < preorder,s'ize > pair represents the ancestor-descendant relationships

of the nodes in the suffix-tree-like structure called S-Ancestorship, where the preorder

is the prefix traversal order of a node in the suffix-tree-like structure and the size is

the total number of descendants of this node in this structure. Suppose r and, y are

CHAPTER 2. RELATED WORK T7

c,a
<2,6>

v1,ac
<3,3>

d,a
<4,2>

f,ad
<5,1 >

g,ad
<6,0>

b,ac
<7,1>

v2,a
<8,0>

c,ab
<10,2>

d,ab
<11,1>

v3,a
<12,0>

Figure 2.3: Suffix-tree-like structure for indexing structure encoded sequences

labelled l rlttsize' > and < na)sizea > respectively, node u is an S-Ancestor of

node g ift no € {n" + I,n, i 2,. . .,n, * sizer}.

Given a query sequence Qt,...,q,,, their objective is to sequentially match each

query node to a document node not only satisfying the D-Ancestorship but also sat-

isfying the S-Ancestorship. Due to the nature of non-contiguous sequential searching,

this matching process is extremeìy costly. Therefore, they introduced two kinds of

B+trees to speed up the process. A D-Ancestorship B+tree is constructed using

nodes' < symbol jpreJir > pairs as keys. Since multiple documents may have nodes

with the same pair of < symbol,pref ir >, each < symbol,prefi,r > pair is associated

with a S-Ancestorship B+tree which is constructed using those nodes' preorder num-

bers as keys. Based on these two B+trees, they can perform a subsequence matching

as follows. Suppose z, labelled with < nr)s'¿ze.D >, is the node matching of aquery

CHAPTER 2. RELATED WORI<

node Ç¿-1 in the query sequence Qt,...,Q¿-1,Q¿,Q¿+t,... ,Qn. To match the next node

q¿, they first use Ç¿'s < sarnbol,prefir) pair to query the D-Ancestorship B+tree to

find a corresponding S-Ancestorship B+tree. Within this tree, they then issue a range

query rlx 1 'tL { n, * s'ize, to find all the descendants of r. For each descendant,

they use the same process to match the next query node q¿-,,1 until they reach the last

node in the query sequence. Finally, all the documents which are associated with the

last matching document node are the answer to the query.

With the help of B+trees, the time complexity of this sequence-based method is

O(D1tK¿\og(n)), where K¿ is a recursive factor, m and n are the number of nodes

in a query tree and a document tree. Thus, it gains some performances for certain

queries. However, it still has several disadvantages. For querying a document tree

whose elements have many identical labels and paths, the search would become very

inefficient because of many recursions. Also, in the case of a large data set, the whole

construction process of structure encoded sequences is much expensive. Moreover,

due to the problem of query equivalence (i.e. a subsequence matching does not imply

a successful retrieval), the method could bring some false alarms into final results.

For example, in Figure 2.4, there is a subsequence matching between the document

and the query. However, the document does not in fact match the query pattern.

2.2 Tree Inclusion Problem

The tree inclusion problem was originally introduced by Knuth in [15] as an exercise.

Motivated by solving the problem of querying structured text databases, Kilpeläinen

first began to study the problem. In his Ph.D thesis [13], he presented a detailed tax-

onomy, which classified the problem into two broad categories: ordered and unordered

18

CHAPTER 2. RELATED WORK

<4,0>

Document: (a,O)(b,a)(c,ab)(b,a)(d,ab) Query: (a,O)(b,a)(c,ab)(d,ab)

Figure 2.4: False alarm

with each containing five problems: tree inclusion, path inclusion, region inclusion,

child inclusion and subtree problem. He suggested that each problem in unordered

category is a special case of its previous one and each problem in ordered category is

a special case of its corresponding unordered version. He proved that unordered tree

inclusion is an NP-complete problem.

2.2.I Ordered Tbee Inclusion

Kilpeläinen and Mannila [t3, 14] have presented the first polynomial time algorithm

for solving ordered tree inclusion problem. It uses oQAl pD time and space, where

lQl and lDl are the numbers of nodes in a query tree and a document tree, respectively.

The main idea of their algorithm can be summarized as follows. LeI T(r) be an

ordered, rooted tree with root node r and subtrees r1.,... ,r¡. V(T) be the node set

of T(r). The left relatiues lr('u) and the right relat'iae rr(u) of a node u e V(T) are

19

<5,0>

CHAPTER 2. RELATED TA/ORK

defined as follows

lr(u) : {r e V(T) | pre(u) > pre(r) Apost(u) > post(x)}

rr(u) : {r e V(T) | pre(u) < pre(r) A post(u) < post(r)}

, where pre(u), post(u) stand for the preorder number and the postorder number of

node u, respectively. Let Q and D be two ordered labelled trees. A root-preseruzng

embedding R(Q,D) is an embedding (i.e. inclusion) (/, 8,D), where f (rq) : ro. To

determine if D can include Q, the algorithm constantly searches for root-preserving

embedding by processing the subtrees of Q from left to right, trying to embed them as

deep and as left in D as possible. However, the algorithm may need exponential time

to check such embedding. To this end, they introduce a concept called teft embeddi,ng.

Let Fç : (Qt,"' ,Qx) be a forest, and let e be a collection of embedding of Fq in a

forest Fp. An embedding / e e is a left embedding of e if post(Í (rq)) < post(g(rq))

for every g € e. Their objective is to look for left embedding between the subtrees

of Q and D. Hence, they construct a lQl x lDl table e with each entry e(u,u) in the

table, (where ueV(Q) and u €V(D)) defined as follows

e(u,u) : min({z € rr(u) I U e R(Q@),p(r))} u {d+ 1}),

where d : lDl. That is, e(u,u) is the closest right relative of u which has a root-

preserving embedding of Q@), i.e. the node with next left embedding of Q(u) in D(u).

The algorithm uses dynamic programming to compute every table entry e(2, u). For

each u, the algorithm traverses the nodes of D in postorder using a pointer p. At each

node u e v (D), it checks if there is a root-preserving embedding of e(u) in D(u). If

not, the entry e(u,p) is set to d+ 1, otherwise e(u,p) is set to o for all p € tr(u). D

includes Q if and only if e(q,0) (d where q : l8l.

20

CHAPTER 2. RELATED WORK

In the case of large trees, the O(lQl lDl) time and space complexities may be

unacceptable. Hence, Kilpeläinen [13] also presents a more space-efficient algorithm

to improve the space usage, which requires o(lAl. depth(D)) space, where depth(D)

is the tree depth. The idea of the algorithm is to use a set of si,bti,ng 'interuals that

is marked by a start number and an end number to represent a sequence of sibling

nodes 1 'u1,'u2,"' ,1)k) in Q, which can be embedded in D if there is an ordered

inclusion of < Ç(o1),Q(rr),-'. ,Q@t) > in D, where Ç(u¿) is the subtree rooted at

a¿, (1 (i,< k). For each node'u of D, the algorithm uses a bottom-up approach to

compute a match ser, M(w) consisting of sibling intervals that can be embedded in

D(tll) (i.e. the subtree rooted at w). If the sibling interval of rq appears in the last

result, Q is embedded in tree D. The space is saved by merging two sets of sibling

intervals into one set of sibling intervals to make it s'imple, which means that it does

not contain two distinct members one of which contains the other. A merge-like

procedure is used to merge two lists of sibling intervals in which members are sorted

by their start numbers.

Chen [5] improves the above algorithms by introducing a concept called shell and

a p-li,sts data structure to further reduce the number of embedding checks. The idea

is to apply a more compact format to represent each set of sibling intervals in Q in

which the subtrees of the sibling intervals form a maximal forest. To this end, he uses

the following set of triples to describe the forests of a tree Q, where do is the degree

of the node u

Q = {(u,a,b) | u € V(Q),I 1 a. 6 < d,}.

For q : (1r,a,b) e Q, forest(q) denotes the subforest of Q that consists of subtrees

tree(u[a]),tree(n[a + 1]), .'. ,tree(n[b]), where n[z] is the ¿th child of node u. Let s,

21

CHAPTER 2. RELATED WORK

t € Q. s is said to be less than or equal to ú (denoted s { t) if Íorest(s) is fully

covered by forest(t). Given S çQ,theshell of ,Sistheset,S,: {s e S l3s'e ,S

such that s' { s}. S is red,uced if S : So. To speed up the generation of a reduced

set So, the set ^9: {sr,...,sr} is organized as a ¿list < s1,...,sÆ) in which

p(sl) < p(s2) <'.. p(sÈ), where p(si) = pre(ufa)),l < i < k, for t : (u,a,b) e Q.

The algorithm runs OW(A)|. lDl) time and O(lt(Q)l.mi,n(depth(D),1¿(D)l)) space,

where l¿(A)l and ll(D)l are the number of leaves in Q and D, respecrively.

Flom the above discussion, we see that a bottom-up approach is mainly used in

those algorithms. With this approach, the algorithms can recursively build up match

sets for parents by scanning their children. However, the algorithms have to have

the complete knowledge of tree structures. Thus, the entire trees have to be loaded

in main memory for processing. In addition to the drawback, all the bottom-up

algorithms are not able to integrate with signatures for optimization due to their

bottom-up computation property. Theref'ore, compared with our approach, those

algorithms are not quite suitable for XML query evaluations.

2.2.2 lJnordered Tþee Inclusion

So far, no algorithm can solve the unordered tree inclusion problem in polynomial

time. Unexceptionally, the method proposed by Schlieder and Naumann [20] still

requires exponential time, by means of which the problem of evaluating an XML

query against a collection of XML documents is reduced to an unordered tree inclusion

problem. This approximately embeds an query tree into a document tree such that

only the labels and ancestor-descendant relationships of the nodes are preserved.

Since the order of siblings is not considered, multiple data nodes (nodes in a document

22

CHAPTER 2. RELATED WORK

tree) may share the same label. So the embedding between the query tree and the

document tree is not unique, that is, multiple subtrees of the document tree can be

mapped to the same query tree. These subtrees is a set of embeddings approximately

matching the query. To find a closest one among all such embeddings, Schlieder et al.

extended the above problem to an optimization problem by introducing a cost model

to the embeddings. Under this model, each data node d is assigned a deleti,on cost

denoted as cost(d). The ernbeddzng cost C is the sum of the deletion costs of all the

data nodes that must be skipped to embed the query. The embedding root d along

with its cost C are defined as a rnatch m: (d,C).

The algorithm is based on dynamic programming. It processes the query tree

bottom-up and incrementally constructs embeddings for a query node q (a node in

a query tree) and a data node d until reaching the root of the query tree. For each

query node, only the data nodes that have the same label as the query node are

processed. For each matching data node d, the algorithm tries to embed the query

subtree rooted at q in the document subtree rooted at d, that is, constructs all the

possible embeddings for the query subtree rooted at q. Each of those embeddings is

represented by a match. To construct the match set of the current query node q, the

algorithm builds all the combinations of the match sets belonging to the children of

q, which are the Cartesian products of those match sets, leading to an exponential

time complexity. Since not all the combinations represent potential embeddings, only

proper combinati,ons are chosen. This can be done as follows, for each combination ^9,

the algorithm checks whether all the data nodes of the matches in S are descendants

of the data node d and whether the matches in ,S are not blocking, i.e. any two

matches do not share common nodes. ln addition, the preorder numbers of the data

ot
Lt)

CHAPTER 2. RELATED WORK

nodes are used to verify ancestor-descendant relationships and blocking matches in

the construction of a proper combination. During the above process, the algorithm

builds a match set for each query node by combining the matching data node with

the proper combinations belonging to its children. Within each match set, only the

match with the minimal cost (called a mi,n'imal match) is selected. Finally, when the

algorithm reaches the query root, the set of all minimal matches selected so far is the

result of the algorithm.

Figure 2.5: An algorithm for the approximate tree embedding problem

For example, consider the document tree D and the query tree Q in Figure 2.5.

The algorithm processes the query nodes Q: {qt,Qz,Qz} in postorder. Since both q1

and q2 are leaf nodes, their match sets are just the sets of matching data nodes. For

q1, the match set is Mn, : {ds, dq,ds}.For q2, the match setis Mnr: {dz,d6}. Now,

the algorithm is processing the query root q3. It first builds all the combinations

of the match sets belonging to the children of q3, that is, the Cartesian product

Mn, * Mnr: {{dt,dr},{ds,da},{dn,dr},{dn,da},{dt,dr),{ds,da}}. To choose the

proper combinations from all the combinations, the algorithm then check for each

combination whether it qualifies. Since the matches {ds, dr}, {d¿.d2} and {dr,du}
are blocking, the proper combinations are {ù,d6},{da,d6} and {dr,dz}.Lastly, the

,À

CHAPTER 2. RELATED WORK

algorithm selects the match with the minimal cost, in this case, {dt, dr} is the minimal

match. Combinìng it with the matching data node d1, the final result of this pïocess

is a set of minimal matches Mnr: {ú,d2,ds}.

The runtime complexity of this algorithm is O(l8l . /. se+l .k.(k + ñ.)), where lel
is the number of query nodes, .I is iteration cycles that need to fetch matching data

nodes, s is the number of match data nodes for each query node, k is the number of

children of each query node and h is the height of the document tree. Due to the

factor sÈ+l, the complexity of the algorithm remains exponential. Flom the above

description, \,ve can see that the algorithm works in a bottom-up way, and is not able

to work with the signature technique in a top-down fashion to speed up evaìuation

process. This is a major shortcoming when it is compared with our evaluation method.

25

Chapter 3

Path-oriented Query Evaluation

This chapter describes the method that I implemented to evaluate path-oriented

queries in a document database. The main purposes of this method are: 1) to efli-

ciently retrieve all matching documents from the database for a given query; 2) to

avoid expensive join operations which many index-based methods have suffered. To

achieve these purposes, we devise a method based on two basic techniques: the tree

inclusion algorithm and the signature technique. The tree inclusion algorithm treats

every document and query as trees, and checks the query tree against each document

tree to find out whether the query tree can be successfully embedded in it. The sig-

nature technique helps to speed up the process of tree inclusion by: 1) dramatically

reducing the number of documents that the tree inclusion algorithm needs to check;

2) eliminating all unnecessary subtree inclusion calls. By combining these two pow-

erful techniques, we are able to efficiently find all the documents matching a given

query without involving any join operations.

26

CHAPTER 3. PATH-ORIENTED QUERY EUALUATION

3.1 TYee Inclusion

As pointed out by Mannila and Räihä [17], the evaluation of path-oriented queries is

in essence a tree inclusion problem. Therefore, the tree inclusion algorithm is the core

of our query evaluation method. Since there is no polynomial time solution that exists

for unordered tree inclusion problem, we implemented only a tree inclusion algorithm

that targeted for ordered tree inclusion problem. For unordered query evaluation,

we can simply enforce an ordering among sibling nodes. The DTD (Document Type

Definitions) or XML Schema for an XML document contains information about a

linear order of all elements defined in the document. Hence, we can use it as a pre-

defined order that both document and query have to follow. If the DTD or the XML

Schema is not available, we simply use the lexicographical order of the element labels.

In addition, we can determine the ordering by checking the signatures of tree nodes.

3.1.1 Top-down TYee Inclusion

One of the main problems that any bottom-up tree inclusion algorithm suffers is lack

of supporting optimization techniques such as signatures, inverted files, or any kind of

indexing techniques. We avoid the problem by designing the tree inclusion algorithm

working in a top-down fashion. Suppose that D and Q are trees representing a

document and a query respectively, and D includes Q. Then, we have the following

three observations.

1. Let rp andrqbe the roots oftree D and Ç respectively. If label(rp) : label(rq),

i.e. there is a root-preserving embedding, then we must check if the subtrees of

rp càÍL include all the subtrees of rq.

27

CHAPTER 3. PATH-ORIENTED QUERY EVALUATION

LeL D1,...,Dk be the subtrees of rp. Let Qt,...,Qt be the subtrees of rq. If
label(rp) : label(rq), there must exist two sequences of integers: 1q,... ,kj

and 11 ,.'. ,lj and (l¡ < l) such that D¡u includes 1Qr¿_t+t,... ,Q¿n > (i:
1,..., j,lo : O,lj : l), where 1 Q¿¿_t+t,... ,Qtn > represents a forest that

contains subtrees Qt¡_t+t,. . ' , and Q¿n.

lf label(rp) I label(rq), we need to check if there exists a D¡ (l < i < k) that

includes the whole Q G.". one of subtrees of rp).

label(rp')=label(fç) - lo

Figure 3.1: The case of the observation (3)

The above observations indicate a top-down approach to find a tree inclusion.

The approach consists of two steps. The first step is to anchor a matching position

of rç in D, which is to find a subtree D' whose root has the same label as rç (i.e.

Iabel(rq): Iabel(ro,)). The possible matching location could be rp (this is the case

of our observation (1) in which the tree D' is just the tree D) or rr, (this is the

case of our observation (3) in which the tree D' has to be one of the subtrees of D,

as shown in Figure 3.1). Once the root node rç settles down, the next step is to

find the tree inclusions of all its subtrees. In the following discussion, \¡/e assume

that the matching position of rq in D is rp. According to the observation (2), we

first need to check D1 against 1Qt,..- ,Qt > to find whether there exists an z such

28

2.

J.

Q:

CHAPTER 3. PATH-ORIENTED QUERY EVALUATION

lhal D1 includes 1 Qt,..' ,Q¿). If such z does not exist (i.e. ¿ : 0), it means

that Dl does not include all subtree ir < 8r,... ,Qr >. Then, we have to check D2

against 1 Q¿+t, "',Qt >, and so on. The result of this process is that we found two

sequences of integers k¿ (7 < i < j) and l¿(1 < i < j), which make D¡, include a forest

1Qt,Q2,... ,Q4), D¡, include a forest 1Q¿r+t,Qrr+2,... ,Qh >, ..., D¡, include

a forest 1Qt¡_r+t,Qt¡_t+2,.-. ,Q4 >. If the last integer of the sequence \,12,...,li
is smaller than I (i.e. Ii < l), it means that D can not include Q. Otherwise, if

lj: l, it means that D includes Ç. For example, in Figure 3.2,rp has four subtrees

kr=1,k2=3 \= 2,12= 4

Figure 3.2: A subtree inclusion example

{Dr,Dr,Ds,D¿}, and rç also has four subtrees {8r,Qz,Qs,Q¿}. Suppose that D1

includes 1 Qt,Qz), and D3 includes (8s, Qq >. Then, based on the observation

(2), we will find two sequences of integers k¿ and l¿, which kl : 1,,k2 : 3 and

h : 2,lz : 4. Since 12 : I : 4, D includes Q in this example. Notice that the

sequence of integer k may not be continuous since not all of subtrees in D participate

in the inclusions. The above discussion also applies to other situations in which the

matching position of rç in D is not rp.

When we check a subtree inclusion such as checking D1 against 1 Qt,. . . ,Q¿), wê

apply a recursive process to the checking process (see Figure 3.3). Let Dt, Dz,. . .
, Dt

29

CHAPTER 3. PATH-ORIENTED QUERY EVALUATION

fp
D: -----',;î"',-, label(rp) = label(vq)

30

^/p\

/\/\ /\ /\,/\/\/\
,/ D.\ ,' '. ,'

"/ '\ ¿_____\ ¿_____\

\
-. checkino aoainst

\
-

checking against_ _

^/ oi\ 1is4

\--
-

checkino aoainst

/ o'\
____Y-____J

-t7

Figure 3.3: The recursive process of a subtree inclusion

CHAPTER 3. PATH-ORIENTED QUERY EVALUATION

be a series of subtrees that are the leftmost subtrees of D, and D2 is the subtree of

rD, Ds is the subtree of rp", ... , Dk is the subtree of. rpu_r. Since this is an ordered

tree inclusion, the "leftmost" is to ensu¡e the ordering. For any forest, we use a virtual

node to serve as a temporary root such that a forest can be transformed to a tree

with a virtual root. The virtual root can match any node label. For example, ,uq is a

virtualrootof theforest 1Qt,.'-,Qt >,whichmatchesthelabel of rpr. Then,ane\¡/

subtree inclusion between D2 and 1Qt,'.. ,Qo > is invoked recursively, where the i
is an integer such that lD2l > I < Qr,...,Q¿) | but lD2l < I < et,...,Ç¿+r) l.

Again, we construct a virtual root uçn for 1 Qt,.-' ,Q¿ >, which matches the label of

r¡r. Then, another new subtree inclusion process is invoked. This type of recursion

continues until we check D¡ against Q1 (both D¡ and Or could be leaf nodes). If the

label of rDh matches the label of rq, the process returns 1 indicating a successful

inclusion, otherwise, it returns 0 indicating a failure. Either of these two results will

cause the recursive process to return. During the return, a series of new subtree

inclusions may begin, hence, the whole computation process is a top-down process

with a bottom-up checking interleaved.

Based on the previous observations) we can devise a computation process as below.

Firstly, we compare the root labels of query tree Q and document tree D. If label(rç)

: label(r¡), we then recursively caìl the same function to check whether D1 includes

< Qt,... ,Qt). The process returns an integer i indicating that D1 includes <

Qt,... ,Q¿).If i > 0, then wecan continuetocheckif D2 includes (e¿11 ,... ,e¿).
Otherwise, if i:0, it indicates that no subtrees of Di's root includes any of subt¡ees

in < Qt,''',Qt >. In this case, we need to check whether D1 includes Q1. The reason

is that although no subtrees of D1's root includes any subtree in < er,... ,e¿),

31

CHAPTER 3. ?ATH-ORLE|{TED QUERY EVALTJATTON

D1 may include Qt. If D1 includes Qt, i will be changed to 1; otherwise, it remains

0. However, if label(r¿) I label(rq) at first, we have to search for any subtree in

1 Dt,"' ,Dx) to include the whole Q. The algorithm repeats the above process

until it find an integer i (: k) such that D¿ contains all the remaining subtrees of rq,

or find that no such i exists.

3.1.2 A Top-down Tbee Inclusion Algorithm

Algorithm 1 shows the details of how to perform a tree inclusion. The algorithm is

a recursive function which initially accepts two parameters: a document tree D, a

query tree Q (strictly speaking, they are the root of a document tree r¡ and the root

of a query tree re), and it returns an integer to indicate the result of a tree inclusion

(".g. the 0 indicates that the document tree can not include the query tree; the 1

indicates a successful tree embedding).

Algorithm 1 Tleelnclusion(D, Q)

f. if lDl < lQl then

2. if Q is a forest (Qt,. .. , Çn) then

3. Q * (Qt,...,Q0) llLookingforiso l(Qr,...,Q)l < lDl < l(Q, ,...,e;+r)l
4. else

5. return 0

6. end if
7. end if
8. rp <- root of D

32

CHAPTER 3. PATH-ORIENTED QUERY EVALUATION

9. rq *- root of Q lllf Q is a forest, rç will be a virtual root, which matches

any label

10. Let (Dt,. . . , D¿) be the subtrees of D

11. Let (Qt,...,Qò be the subtrees of Q

12. if label(r¡) : label(rq) then

13. if r¿ is a leaf and rç is not a virtual root then

14. return 1

15. else if rp is a leaf and rq is a virtual root then

16. return 0

17. end if
18. temp *- (Qt,... ,Qo)

19. i * I lli indicates which subtree of D will be used.

20. j n0 f f j records how many subtrees of Q are included.

21. r *- 0 llr is a temporary variable.

22. whilei (dand templþdo

23. ø *- Tleelnclusion(D¿, temp)

24. if r>0then
25. temp *- templ(Q¡al,.. , Qi*,) //Matched subtrees are excluded.

26. else

27. if label(r¡,) : label(rqj+l) then

28. z *- Tþeelnclusion(D¿, Q¡+r)

29. temp *- templ(Q¡¡,)

30. end if
31. end if

.JJ

CHAPTER 3. PATH-ORIENTED QUERY EVALUATION

32. i,*-i.+I
33. j<-jtr

34. end while

35. if temp I 0 then

36. if rç is a virtual root then

37. return j

38. else

39. return 0

40. end if
4I. else

42. if rç is a virtual root then

43. return q

44. else

45. return 1

46. end if
47. end if
48. else lllabel(rp) I label(rç)

49. for i, :1 to d do

50. r *- Tleelnclusion(D¿, Q)

bt. if r:qthen
52. return ø

53. end if
54. end for

55. return 0

34

CHAPTER 3. PATH-ORIENTED QUERY EVALTJATION

56. end if

When the function Treelnclusi,on(D, Q) is called in each recursion, the algorithm

(line 1 - 7) will first make sure that D is large enough to "hold" Q,lhat is, it will

compare their tree sizes to determine whether D is larger than or equal to Q. If the

Q is a forest (Qt,...,Qq), the algorithm (line 2 - J) will try to find the maximum

number of subtrees of Q that D can include. Starting from the first subtree Q1, it

records the number of subtrees that D can include until it reaches a critical poi,nt

i where l(8r,...,Q1)l < lDl < l(8,,...,Q¿+r)1. After that, the forest (er,...,en)

with rç being a virtual root will be used (instead of Q) in the rest of the execution.

The rest of algorithm flow (line 12 - 56) depends on the label test, which is to test if

the label(r¿) is the same as the label(rç). This test is to satisfy the label preseruation

conditi,on of the tree inclusion definition (see Section 1.3.2).

o If the test is true (since the virtual root matches anything, the forest (Qr, . . . , eo)

in the previous case will always pass this test), the algorithm (line 12 - 47) will

use each of the subtrees of rp: Dt,...,Dd to check against the subtrees of

re: Qt,...,Qo (o. 8, ,. .. ,Q¿ if rq is a virtual root). This process is mainly

performed in a wh'¿le loop (line 22 - 34), where each loop is a recursive call

Tþeelnclusion(D¿, temp) . In each ¡ecursive call, an integer r is returned to

indicate how many subtrees of rç have been included. If r:0, the algorithm

(line 27 - 30) may need to check if D¿ includes the first subtree of rqr*, since

what it has done in each loop is to use the subtrees of r¡n for checkin g, not D¿

itself.

o If the test is false, i.e. two labels of r¡r and rq àre not the same) the algorithm

(line 48 - 56) will try to find the first D¿ that contains the whole Ç by checking

35

CHAPTER 3. PATH-ORIEN'TED QUERY EVALUATION

the subtrees of r¿: Dt,Dz,...,D¿ one by one against the Q.

To better understand how this algorithm works, I give the following example

to illustrate the algorithm logic. Suppose that we have a document tree D and a

query tree Q as shown in Figure 3.4(a). Each node in D is identified aß d¿, where

i:0,7,2,.... AndeachnodeinQisidentifiedasÇ¿,suchasÇ0,Çr,Qz.Wedenotethe

subtree of a node as D¡ or Ç¿, where i : 0,1,2,. ... To find out whether D includes e,

we run Algorithm 1 as Tleelnclusion(D, Q). The main steps are described as follows.

1. fleelnclusion(D,Q). Since label(do) : label(q¡) : "s" on line 12, we have a

root-preserving embedding. First , i, j, r are set to their initial values: io : I;

jo : 0; uo : 0. Then, we will use a wh'ile loop to check each subtree of d6 against

all subtree of q6 until there is no more subtree of d6 left or all the subtrees of q6

are included. We first call Tleelnclusion(Di ,1 Qt,Q, >).

(a) Tteelnclusion(D1 ,1 Qt,Q, >). Since < Qr,ez) is a forest (see Fig-

ure 3.4(b)), label(d1) : label(virtual root) on line 12. ü:7; jt:0;
zr :0. Then, we will check D11 (subtree of d1) against forest 1et,ez),
i.e. calling Tleelnclusion(D11 ,1Qt,Q, >).

i. Tleelnclusion(D11 ,1 Qt,Q, >). Since lD11l < I < et,ez > l, i...
1 Qt,Qz > is larger than D11) we remove Q2 from 1Qt,Q2 >. Now,

we check D11 against Q1. Since label(d11) : label(qr) : ,,¿,,,
, d11 is a

leaf node, and q1 is not a virtual node, the algorithm returns 1 on line

14, which indicates that D11 includes Q1.

After return from Tleelnclusion(D1i ,1 Qt,Qz >) on line 2J, \ : 2; jt : I;

rt : 7. We remove the included subtree Q1 from temçt :q et,ez) on

36

CHAPTER 3. PATH-ORIENTED QUERY EVALUATION

(a) Treelnclusion (D, A)

JI

o

9o

ia.j

9t..¡
o

D1 Qr, Qz

(b) Treelnclusion (Dr , <Qr, Q2>)

d6

(c) Treelnclusion (Dz, Qz)

9z

o

Qz

Figure 3.4: Illustration of the tree inclusion algorithm

CHAPTER 3. PATH_ORIENTED QUERY EVALUATION

line 25. Because there is no more subtree of d1 left (zr > t on line 22),

the while loop ends. However, sincetemp still has Q2 and we also have a

virtual root on 1Qt,Qz), the algorithm returns jt: I on line 32.

After return from Tleelnclusion(D1,(Qr,Q, >) on line 23, i,s : 2; jo : I;

ro : 7. We remove the included subtree Q1 from temçt -q et,ez) on

line 25. Because there is a subtree of d2 left and Q2 is not included yet, the

whi,le loop continues. We will check D2 (subtree of d2) against ez, i.e. calling

Tteelnclusi on(D2, Q 2) .

2. Theelnclusion(D2,Q2) (see Figure 3.+(c)). Since label(dr) # label(q2) on line

12,we have to begin with a for loop to check each subtree of d2 against q2 on

line 49. We first call Tbeelnclusion(D2t,Qz).

(a) Tleelnclusion(D21,82). Since label(d21) : label(qz) - t(f)),
, d2, is a leaf

node, and q1 is not a virtual node, the algorithm returns 1 on line 14,

which indicates that D2l includes Q2.

After return from T[eelnclusion(D21,Qr) on line b0, there is no more subtree

left since Q2 has been included. the algorithm returns r : r on line 52.

3. The algorithm returns from Tleelnclusion(Dz,Qz) on line 23. After e2 is re-

moved from temp, temp becomes empty. The whi,le loop ends. Since the whole

tree Q is included, the algorithm finally returns 1 on ìine 45 to indicate that D

includes Q successfully.

38

CHAPTER 3. PATH-ORIENTED QUERY EVALUATION

3.1.3 Correctness of the Algorithm

In this section, v/e prove the correctness of the top-down tree inclusion algorithm.

Proposition 1. If Q is a tree, Algorithm 1 Tleelnclusion(D, Q) returns 1 if D

includes Q; otherwise it returns 0. If Q is a forest of the form: 1 et,...,e¡),
Tleelnclusion(D, Q) returns an integer i, indicating that D includes 1 et,... ,e¿).

Proof. We prove the proposition by induction on the sum of the tree heights

of D and 8, h. without loss of generality, we assume that hei,ght(D) > 1 and

hei.sht(Q) > 1.

When h:2, we consider two cases.

1. Both D and Q are singular nodes: rp andrq.

2. D is a singular node, but Q is a set of nodes.

In case I, if rp and rç have the same label, the algorithm returns 1 (see line

12); otherwise the algorithm returns 0 (see line 55). In case 2, a virtual root will

be constructed for D, which matches any label. Then, the algorithm will check the

subtrees of r¡ against all the nodes in Ç. Since r¿ does not have any subtrees, the

algorithm will return 0 (see line 16). Then, r¿ will be checked against the first node

in D and the algorithm returns 1 if they have the same label; otherwise, the algorithm

returns 0 (see line 22-34).

Now, we make the induction hypothesis: when h : TL, the proposition holds. We

prove that the proposition still holds when h : n]-l. Consider two trees D and Q with

height(D)+hei,ght(Q) : n+I. Assume that Q is a tree. Let rp and rq be the roots of

DandQ,respectively. Let Dt,...,D¡,bethesubtreesof rp,andlet Qr,...,Q¿bethe

subtrees of rq. Then, hei,sht(D¿)+hei.sht(Q) ! n and hei,ght(D)+heisht(Q) < n. If

39

CHAPTER 3. PATH-ORIENTED QUERY EVALUATION

label(r p) : Iabel(rq), the algorithm partitions the integer sequence: 1, . . . , I into some

subsequences: {70a1,...,jt},{Jr+l,...,jr},...,{j,n_t+l,...,-7-},wherejo:0and
j^ 1 I, such that each D¿ (i : I,. ..,ffi) and rn < k) includes (e¡n_,al,. .. , e¡n >

but not 1 Qj¿_r+t,...,Qjn,Qjn+t > (see line 22-J4). According to our hypothesis,

the partition is correct. Thus, the algorithm will return I if j* : l, indicating

that D includes Q (see line 45); otherwise the algorithm returns 0 (see line 3g). If
label(rp) I label(rq), the algorithm will try to find the first Do that includes the

whole Q. According to the hypothesis, the return vaìue must be correct. If Q is a

forestintheformof 1Qt,...,Q¿),avirtualrootwillbeconstructedforit. Interms

of the hypothesis, the algorithm will find the correct integer i such that D includes

1Qt,...,Q0 > (see line 36-37 and 42-43). It completes the proof.

3.2 Signature Techniques

Signature technique is the most important optimization technique used in our query

evaluation method. The motivation of introducing signature technique into our

method is based on two observations. First, since querying XML texts is usually

much easier than querying XML structures, we can query XML documents directly

based on their contents instead of their structures. Hence, if we immediately find

out that a document will not match a query due to the differences between their

contents, we will not bother checking their structures and simply skip it. Second,

as we introduced in the Section 1.3.3, a signature is a binary bit pattern encoding a

piece of text, multiple signatures can be superimposed together to get a new signature

which provides a snapshot of all the texts represented by the multiple signatures, and

the result of two signature comparison can tell us whether the two pieces of texts

40

CHAPTER 3. PATH-ORIENTED QUERY EVALUA'TION

represented by their corresponding signatures matches or not. Therefore, it is better

for us to use signatures to handle document contents instead of directly manipulating

texts.

3.3 Integration of Signatures and Top-down Tbee

fnclusion

To use signature technique, we must first generate signatures for all the XML docu-

ments that are expected to be searched for. For each of those XML documents, We

use a hash function to generate a signature for each keyword in the text nodes. Since

all the text nodes are leaves, which are at the bottom of the tree, we then superimpose

all the signatures along the tree paths towards the root so that each node along the

paths gets a superimposed signature. Bventually, the whole tree is decorated by the

signatures, including a root signature representing all the texts in this document. For

example, the tree in Figure 3.5(a) represents our sample document. We assign each

keyword a signature. Figure 3.5(b) shows that when we superimpose these keyword

signatures along the tree paths, the parents of the text nodes first get the signatures,

which are the same signatures as their children's. Then, the node 'author' gets a sig-

nature by superimposing the signatures of its two children 'first' and 'last'. Finally,

the root node 'book' gets its signature by superimposing the signatures of its four

children 'title', 'author', 'pubìisher' and 'year'. The result of this process as shown

in Figure 3.5(c) is that each tree node gets a signature with the same ìength. For a

query tree, we use the same technique to generate signatures for it.

During a query evaluation, by each recursive call, the top-down tree inclusion

4I

CHAPTER 3. PATH-ORIENTED QU ERY EVALU ATION 42

Learning XML:

Erik:

Ray:

Oreilly:
2001:

01010000
00111000
00010101

00101000
10101000

(a)

title: 01010000
fìrst: 00111000
last: 00010101
publisher: 00101000
year: 10101000 00111101 book: 11111101

first:

last:

00111000

v 00010101

tiue: 01010000
author: 00111101
publisher: 00101000
year: V 10101000

author:

(c)

Figure 3.5: Signature a tree

(b)

book

1111r101

1010000 111101 Q00101000

10000 00101000 10101
00111000 I0001010i

00111000 00010101

CHAPTER 3. PATH-ORIENTED QUERY EVALUATION

algorithm compares the signatures of two tree nodes (in D and Q, respectively) prior

to the comparison of two node iabels. If the signature comparison fails, the algorithm

knows that query keywords are absent in the current document subtree. Thus, this

subtree will be cut off and the current recursive call quits immediately. For example,

consider the trees 7 and S shown in Figure 3.6. We assign signatures to the nodes of

7 and S in the same way as the previous discussion. To check whether 7 includes ,S,

we first compare the signatures of two root nodes, then compare their labels. Since

both of them are the same, we will check whether the subtree of ? that is rooted

at node Ó includes the forest of ^9 (i.e. two subtrees rooted at node c and node d,

respectively). However, the signature of the node b in ? does not match the signature

of the virtual root a in ,S, that is, s6 A so I so. Therefore, we do not need to further

check the possible inclusion between these two trees. Our signature technique is

especially useful when the initial comparison of two root signatures fails, since in that

case the algorithm wiìl skip the entire document. Imagine that when retrieving a

large set of documents, our signature technique can save a lot of execution time, thus

accelerate the whole evaluation process. To achieve such performance) we rely on a

new signature technique called S'ignature Tree, which will be described in the next

section.

3.4 Signature Tree Technique

To efficiently deal with ìarge volume of data, such as hundreds of thousands of doc-

uments, we organize all document signatures into a Signature Tree [6], and use the

signature tree to select the documents which may qualify for our query. This can

save us a lot of time by directly jumping to those documents, which we really need

43

CHAPTER 3. PATH_ORIENTED QUERY EVALUATION

--*-ìr
00111101

,\
'.4I
^1

00010]01

Figure 3.6: Accelerate evaluation by signatures

to check, rather than scanning all set of documents one by one.

3.4.L Signature Tbee

Like a signature file, a signature tree works for the same purpose, which is to let

you submit a query signature and then find all the signatures matching this query

signature. However, the way it works is much different from that of any traditional

signature file, such as B,s,9F (Bit-slice Signature Files) l4l, s-trees [10], etc. As a

nev/ way of organizing signatures, a signature tree is a binary tree with each leaf

node pointing to the corresponding signature in a signature file. Each of its internal

node has three keys: the middle key (k-) is associated with a number representing a

bit position of the signatures; the left key (k¿) that points to the left child is always

associated with 0; and the right key (k,") that points to the right child is always

associated with 1. The k^ tells which bit to be checked when doing a signature tree

search. As an example, Figure 3.7 shows a signature tree representing a signature file

44

t
1010

ST

/' k-'
11 1 0100 0

10101000 11000000 00010101 00101000

CHAPTER 3. PATH-ORIENTED QUERY EVALUATION

with eight signatures.

By organizing signatures into a binary tree, a signature t¡ee can work in a ì,vay

which is very similar to a binary search tree. Therefore, it can easily support searching

and locating individual signatures from a very large set of signatures much faster than

the traditional signature files can.

45

Sr:
sz:
S::
S¿:

Ss:

so:
Sz:

Ss:

1001 0011
1011 0100
0110 t-001
111r. 0000
1010 1100
0001 1110
0111 0100
1100 1100

Figure 3.7: A sample of signature tree

3.4.2 Constructing a Signature Tbee

If we do a search for signature s5 or s2 in the previous signature tree, it will take

longer time than we search for other signatures. This is due to the fact that the tree

is unbalanced. Therefore, an unbalanced signature tree could significantly increase

the response time of signature queryings. To avoid constructing an unbalanced sig-

nature tree, we use a so-called ueight-based method [6] to control the process of tree

construction to produce a balanced or an almost balanced tree.

In the weight-based method, a signature file F: {sr ,s2,...,s,"} is considered as

a binary matrix in which each row is a signature and each column corresponds to a

signature bit. We use F[z] to denote thei.th column of F. For each column -P[z], we

CHAPTER 3. PATH-ORIENTED QUERY EVALUATION

sr, sz, ss, se 53, Sa, 57, 56

46

s', ,fiot
sr: rloh r
s¡: olih o

s": rlthi
su: rloh o

::; :lllll
ss: rlloo

0011
0100
1001
0000
1100
1110
0100
1100

Sr, So Sz, Ss

Sî: 10
52: 10
Ss: 10
56: 00

I 0011
1 0100
0 1100
1 1110

1001
0000
0100
1r00

s', oirr orofå
s3: orro rooþJ

53: lolr r o
Sa: lrlr r r
57: lOh 11
s6: þtoo

5
S,: toot ldorr
su: ooor lrhio

4
Ss:1ofol 11oo
Sr: rorþl oroo

doloo

rlrjo o

S¿:

Se:

1111
1100

Figure 3.8: Constructing a balanced signature tree

CHAPTER 3. PA'TH-ORIENTED QUERY EVALUATION

compute its weight w(F[i]), which is rhe number of 1s appearing in the r[z]. To begin

with constructing a signature tree, we arbitrarily select a column number c such that

w(Ffcl) - l,i.".F[c] has almost the same number of 1 and 0. Then, we split F into

two smaller signature files fi and J'2 based on c, which lrlrl:0 and fr["):1. Now,

we can construct a simple tree T, in which c is the middle key of the root node and

thefi,f2àre theleftandrightchild. Next,wetreat eachf¿(i:r,2) asif itwasthe

previous F, and repeat the same operation on /1 and fi, respectively. This generates

two more trees from f1 and f2. Replacing the two child nodes fi and f2 in the T"

with the corresponding trees, we "grow" the I with one more level. We continuously

"grow" this tree until none of its leaf nodes can be replaced by a tree.

Algorithm 2 BalancedSigTree(F)

47

i. ff e- lFl llN gets the number of signatures in the F
2.ifN>1then
g. choose c such that u,,(F[c]) = #4. Let fi : sü,si2,.. ., s¿, with li[.] : 0
5. Let J'z: Sir+r,si¡¡2,...,Sirv with l2[c] : t
6. Create a node r
7. r.k^ n c llr.k- is the middle key of r
8. r.k¿ <- f, I lr.kt is the left key of r
9. r.k, +- f, I lr.k, is the right key of r

10. Replace the left child fi with BalancedSigTtee(fi)
i1. Replace the right child 12 with BalancedSigteeff2)
12. end if

Algorithm 2 is the formal description of the weight-based method. It is a recursive

function which accepts a signature file as the input parameter and returns a balanced

signature tree as the output. Figure 3.8 presents the steps of applying this algorithm

to the signature file shown in the Figure 3.7. This time, a completely balanced

signature tree is constructed.

CHAPTER 3. PATH-ORIENTED QUERY EVALUATION

1. Calling BalancedSigTlee(F) with F : {sr, s2, s3, s4, s5, s6, s7, "r}. N first gets

the value 8 on line 1. Then, on line 3, we choose c: 2 since w@lZl) : I : 4.

In this case, fi : {sr,s2,s5,s6} and fz : {4,sa,s7,ss}. From line T to g,

we create a root node with the middle key k^ : 2, the left key k¿ pointing

to fi and the right key k, pointing b fr. we replace li with a recursive call

BalancedSigTlee(Í) and 12 with a recursive call BalancedSigTlee(/2) on line

10, 11.

(a) Calling BalancedSigTtee(Å) with fi : {s,,s2,s5,s6}. ,M first gets the

value4on line 1. Then, on line3, wechoosec:3sinceu(F[3]) : f :2.
In this case, fi : {sr,s6} and fz: {s2,s5}. Ftom line 7 to g, we create

a root node with the middle key k* : 3, the left key k¿ pointing to ll
and the right key k, pointing b fr. We replace fi with a recursive call

BalancedsigTtee(Å) and J2 with a recursive call BalancedsigTtee(fù o,

line 10, 11.

Calling BalancedSigTbee(/1) with 11 : {sr,"u}. N first gets the value

2 on line 1. Then, in line 3, we choose c : 5 since u(F[S]) : # : 1.

In this case, fi : {s1} and J2: {s6}. From line T to g, we create a

root node with the middle key k*:5, the left key k¿ pointing to l1

and the right key þ pointing to /2. we replace fi with a recursive call

BalancedsigTiee(/1) and f2 with a recursive call BalancedSigTree(/2)

on line 10, 11. since both fi and /2 contain only a single signature,

the recursive calls stop here.

Calling BalancedSigTlee(/2) with /z : {sz,"r}. N first gets the value

2 on line 1. Then, in line 3, we choose c : 4 since w(F[+]): # : 1.

48

It.

CHAPTER 3. PATH-ORIENTED QUERY EVALUATION

In this case, fi : {s5} and f2: {s2}. From line T to g, we create a

root node with the middle key K^:4, the left key k¿ pointing to ll
and the right key k" pointing to /2. we replace ll with a recursive call

BalancedSigTtee(fi) and f2 with a recursive cail BalancedsigTleeff2)

on line 10, 11. Since both lì and li contain onry a single signature,

the recursive calls stop here.

(b) Calling BalancedSigT[ee(12) with /2 : {se,s4,s7,ss}. N first gets the

value 4 on line 1. Then, on line 3, we choos€ c : 1 since tl(F[lfi : I :2.
In this case, fi : {ss, s7} and fz : {sa,ss}. F}om line 7 to g, we create

a root node with the middle key k*: 1, the left key k¿ pointing to fi
and the right key þ pointing to fr. we replace fi with a recursive call

BalancedSigTtee(å) and /2 with a recursive call BalancedsigTbee(fù on

line 10, 11.

i. calling BalancedsigThee(/1) with Í : {ss,"r}. N first gets the value

2 on line 1. Then, in line 3, we choose c: g since u,(F[g]) : # : 1.

In this case, /1 : {sz} and f2: {s3}. From line T Lo g, we create a

root node with the middle key k^: 8, the left key k¿ pointing to fi
and the right key þ pointing to 12. we replace fi with a recursive call

BalancedsigTlee(Á) and J'2 with a recursive call BalancedsigTlee(12)

on line 10, 11. since both 11 and /2 contain onry a single signature,

the recursive calls stop here.

ii. calling BalancedsigTree(12) with 12: {s¿,rr}. N first gets the value

2 on line 1. Then, in rine 3, we choose c: 6 since tu(F[o]) : T : r.

In this case, fi : {s4} and f2: {s8}. Fyom line T to g, we create a

49

CHAPTER 3. PA'TH-ORIENTED QUERY EVALTJATION

root node with the middle key k^: 6, the left key k¿ pointing to fi
and the right key k" pointing to /2. We replace fi with a recursive call

BalancedSigTþee(ñ) and f2 with a recursive call BalancedSigTlee(/2)

on line 10, 11. Since both fi and /2 contain only a single signature,

the recursive calls stop here.

3.4.3 Querying a Signature Tþee

Once a balanced signature tree is constructed from a set of document signatures,

\Me can query the signature tree with a query signature sn to find all the document

signatures matching so, and retrieve only the corresponding documents. By matching,

\À/e mean that the result of bitwise ORing between any document signature and the

query signature is the query signature itself. As mentioned before, a signature tree

works in a manner analogous to a binary search tree. Suppose that we have a query

signature so. The i'th bit position of sn is denoted as so(z). To find all the match

signatures in the signature tree, we start from the root and walk down the tree in a

depth-first manner. Let u be the node that we encountered each time, we will check

so(k^) as follows to determine which nodes will be explored in a next walk.

o If so(k-) : 1, we will only go to the right child of u.

o If sn(k-) : 0, we will explore both children of u.

The searching will stop until we reach some leaf nodes. Then, the signatures that

are pointed by these leaf nodes will be verified with sn to see if they are the real

matches or not. Algorithm 3 implements the above querying logic. When we call

the algorithm with the root of a signature tree and a query signature, it will find all

50

CHAPTER 3. PATH-ORIENTED QUERY EVALUATION 51

Algorithm 3 QuerySigtee(u, sn)

t. R * ó I lR is the result set of matching signatures,
2. S+-u llS isastack.
3. while S is not empty do
4. u --,S
5. if u is a leaf node and s, A sn : sn then
6. -R *- A U s, lls, is the signature pointed by u.
7. else
B. 'i *- u.lt* I lr.k* is the middle key of u.
f. ifsn(i) :1then

10. S * u, llu, is the right child of u.
1i. else
72. S <- ,u,

i3. S *- ut llu¿ is the left child of u.
74. end if
15. end if
16. end while

is empty initially.

matching document signatures for us. For example, in Figure 3.9, we have a query

signature ss :01001001, and we are going to query the same balanced signature tree

shown in Figure 3.8. we denote a tree node as uk_, where k,,, is the middle key of
the node.

1' Calling QuerySigTf ee(u2,sn) with u2 being the root of the signature tree. Ini-

tially, the result set ,R is empty. u2 is pushed into a stack ,S on line 2. Since the

stack ,s is not empty, we begin with a while loop. uz pop up from the ,s on line

4' Since o2 is not a leaf node, We go to line 8 and set the bit position i : 2 (the
middle key of u2). Then, we check the2nd.position of sn and find out sr(2) : 1,

thus, u1 (i.e. the right child of u2) is pushed into the ,g on line 10.

2' since s : (rt), we begin with a new loop. ur pop up from the ^9 on rine 4.

since u1 is not a leaf node, we go to rine g and set the bit position i : 1 (the

CHAPTER 3. PATH-ORIENTED QUERY EVALUATION

middle key of u1). Then, we check the 1sú position of sn and find out sq(1) :0,

thus, u6 and trs (i.e. both children of u1) are pushed into the ^9 on line 10.

5

Since,S: (uo,u6), we begin with a new loop. us pop up from the ^g on line 4.

Since us is not a leaf node, we go to line 8 and set the bit position i : 8 (the

middle key of us). Then, we check the 8lä position of sn and find out sn(8) : 1,

thus, the right child of us) are pushed into the ,S on line 10.

Since S: (uo, the right child of u6), we begin with a new loop. The right child

of us pop up from the S in line 4. Since it is a leaf node and s3 A sq : sn (i.e.

s3 is a real match), Ã : {s3}.

Since ,S : (u6), we begin with a new loop. uo pop up from the ^9 on line 4.

Since u6 is not a leaf node, we go to line 8 and set the bit position i : 6 (the

middle key of u6). Then, we check the 6úh position of sn and find out sn(6) : 0,

thus, both children of u6 are pushed into the ,S on line 10.

Since ^9: (the right child of t'6, the ìeft child of u6), we begin with a new loop.

The left child of uo pop up from the ,S on line 4. Since it is a leaf node but

s4 A sn # sn, R remains {s3}.

7. since 5 : (the right child of 'u6), we begin with a new loop. The right child

of u6 pop up from the ,S on line 4. Since it is a leaf node but ss A sn f sn, R

remains {s3}.

8. Now ,s is empty, the while loop ends. At last, we find that s3 matches our query

signature sn.

52

ó.

4.

CHAPTER 3. PATH-ORIENTED QUERY EVALUATION

Flom this example, v/e saw the benefit of the signature tree. Instead of sequentially

scanning all signatures, we only need to check 3 signatures. This is why querying a

signature tree will be more effìcient than other signature file methods in the case of

dealing with a huge amount of signatures.

53

CHAPTER 3. PATH-ORIENTED QUERY EVALUATION 54

So Ss

Se Ss

Sa S;

J'
Y2

Sz Sz

it
Y2

-----------1
sq: proo roor

I
Sq:0100 1008

b

Sg:0100 1Eo1

Figure 3.9: Querying a balanced signature tree

Chapter 4

Performance Evaluation

In this chapter, we first describe some implementation issues that we encountered

when we were conducting the experiments to study the performance of the path-

oriented query evaiuation method proposed in this thesis. Then, we present a per-

formance study of this method. We will discuss the details of how we performed the

experiments, and analyze the experimental results.

4.1 Implementation

In order to study the behavior of our propose method, we implemented our path-

oriented query evaluation method and carried out a series of performance experiments.

During the actual implementation, we had to face two challenges. The first challenge

was to determine what signature length we used in our signature technique. The

second challenge was to find a way to store XML documents into a relational database.

In this section, we address these two issues.

55

CHAPTER 4. PERFORMANCE EVALUATION

4.L.L Determining the Length of Signatures

When we were implementing the signature technique, an important problem we en-

countered is what signature length should be applied for all the signatures . The

Formula 1.1, which we discussed in the background section, is not useful any more for

our problem. Due to the superimposing signatures along the tree paths, each subtree

is considered as a block. Since the number of words in each subtree is not equally

distributed, the requirement that each block contains the equal number of words is no

longer satisfied. Thus, we can not use that formula to calculate the signature length.

For this reason, we make the following analysis and develop a new way to estimate

the signature length so that the previous problem can be removed.

Given two signatur€s s1, s2, both of them are of length F and with m1 and m2

bits set to 1, respectively. If we superimpose them (i.e. s : sl V s2) to get a new

signature s, s will possibly have more bits set to 1 than either of them. To keep

the ratio of 1 bits (i.e. the number of bits set to 1 versus the signature length) in

s unchanged, s has to be extended longer. The question is how long it should be.

To answer this question, we observe that for each bit position at which s1 and s2

have different bit value, the length of s is increased by 1. Hence, our objective is to

estimate how many bits the two signatures will not be the same. In the worst case,

the sr and s2 do not have any bit position in common, thus, the length of s will be

rn1 Irm2 bits. However, in general case, the s1 and s2 will have some bit positions

in common. Let À be a random variable representing the number of such positions.

The following mathematical expectation of) is the number of bit positions at which

56

CHAPTER 4. PERFORMANCE EVALUATION

both s1 and s2 set 1.

îflmin

6(À) : It^xp(À))
À:1

where rrl¡n¿n : min(m1,mz), p(À) represents the probability

bits in common, and 1 < À < TTL,n¿n. p(À) can be calculated as

p(À) : (i':;)!T',)
\Ìu /

Now, the number of bit positions €(m6), where s1 and s2 âr€

calculated as follows:

57

(4 1)

that s1 and s2 have À

follows:

(4.2)

not the same, can be

€(rn6) -- mmar - s(À) (4 3)

where ffimo,: mar(rnt,m2). We notice that e(rn5) is in fact the amount by which

we have to increase the length of s when superimposing s1 and s2. Therefore, the

length of s will be F+ €(m6).Based on the above formulas, we can easily compute

the length of signatures for a document tree. Suppose that an XML document has n

keywords. We first calculate the average number of keywords per text node, then use

it as the value of D in Formula 1.1 to compute an initial value of ,t'. This value will be

increased when we superimpose n signatür€s s1 , s2,. .. , s,, together. To determine the

final signature length after superimposing the n signatures, we first calculate m6 for

superimposing s1 and s2 using Formula 4.3 to get a ne\ry length F12, which represents

the length of signaturc. s12: s1Vs2. 'We then calculate a new length F13 for signature

st3 : s12 V s3 based on the previous length F12. This computation is stopped until

we get a length F1,,, for signature s1", : s11,r-1¡ V srr. The length Fl' becomes our

final signature length used for all signatures. To get a sense of how the above formula

performs in terms of different initial parameters, we conducted a test with three set

of parameters: rf y: (3f 6,418,5170), whe¡e ø represents how many bits will be set

CHAPTER 4. PERFORMANCE EVALUATION

to 1, and g/ represents the initial signature length. The test result is presented in

Figure 4.1.

Figure 4.1: The test of new signature formula

4.I.2 Mapping XML data into a Relational Database

In this thesis, we focus our attention on strategies to query XML documents from

relational databases. Therefore, before !ù/e can make any query evaluation on XML

documents, we need to load all test documents into a relational database, i.e. vre

must define a mapping scheme that can map XML data into a relational database.

Our goal is to select a mapping scheme that will retain the tree structures of

XML documents after we loaded the documents into a database so that the top-down

tree inclusion algorithm can take advantages of these tree structures. The mapping

scheme that we chose consists of the following three relations (the primary keys are

underlined):

58

250
o
)
Ë 2ooc
.9
f; rso
o

Ë rooc
o

50

CHAPTER 4. PERFORMANCE EVALUATION

o Element (doclD, taglD, tagName, firstchildlD, siblinglD, textlD, treesize,

signature, attributelD)

o Text (doclD, textlD, textValue)

¡ Attribute (dociD, attributelD, taglD, attributeName, attributevalue)

In the Element relation, we defined the following fields:

doclD represents the identifier of the document that the element node belongs to.

taglD represents the identifier of this element.

tagName is the name of the element (or tag).

firstChildlD is the pointer to the first child of the element node.

siblinglD is the pointer to the right sibling of the element node.

attributelD is the pointer to the first attribute in the element.

textlD is the identifier of the text node if the element node has a child which is a

text node.

treeSize is the size of the tree whose root is the element node;

signature is the signature (in a decimal format) associated with the current element.

In the Text relation, we defined the following fields:

doclD See above.

textlD See above.

59

CHAPTER 4. PERFORMANCE EVALUATION

textValue is the content of the text node.

In the Attribute relation, we defined the following fields:

doclD See above.

attributelD is the ID of the attribute (including the first attribute as above).

taglD See above.

attributeName is the name of the attribute.

attributeValue is the value of the attribute.

The mapping operation is done by a depth-first traversal of each document tree.

For each node in the document tree, we determine its type and act accordingly. Each

node in the document tree is traversed only once. Thus, each record in the Element

or Text relation corresponds to a tree node in the document tree. Take the document

in Figure 1.1 as an example, it will be mapped to two relations (since there is no

attribute in this document, the Attribute relation table will be empty). Table 4.1

is the Element relation of the document, and table 4.2 is the Text relation of the

document.

Table 4.1: A sample of the Element relati

60

5¿1Irt e rr feralton
docID taglD tagName firstChildID siblinglD textID treeSize
I 1 book 2 7
1 2 title t

r) I I
1 ,) author 4 6 .f

1 4 first 5 2 1

1 5 last tJ 1

1 6 publisher 7 4 1

1 7 year 5 1

CHAPTER 4. PERFORM AN CE EVALU ATION

Table 4.2: A sample of the Text relatione

docID textID textValue
1 1 Learing XML
I 2 Erik
1

oJ Ray
1 4 OreilÌy
1 5 2001

4.2 Experimental Setup

we conducted our experiments on a Pentium IV 1.8 GHz PC with b12 MB RAM

and 30 GB hard disk, running Windows 2000 Professional with Service Pack 4. We

chose Oracle9i Database Release 2 Enterprise Edition for Windows as the RDBMS

platform. AII buffer caches of Oracle database are set to use default sizes. To avoid

the impact from the network latencies and communication overheads between client

and server, we developed all algorithms in Oracle PL/SQL and Java, and stored them

as Oracle stored procedures inside the database. For mapping XML documents into

the Oracle database, we used Oracle XML Developer's Kit (XDK for PL/SQL version

9.2) to parse and process XML documents.

4.3 Data Sets

Our experiments are based on two real data sets: Shakespeare's plays in XML [2] and

Digitaì Bibliography and Library Project database (DBLP) [16]. They are free and

easy to get from the Internet.

¡ The Shakespeare's plays in XML is a collection of XML documents, each of

which is the script of a Shakespeare's play represented in XML format. The

61

CHAPTER 4. PERFORMANCE EVALUATION

data set consists of 37 documents with total file size 8 MB. Basically, all the

documents share a very similar tree structure which is shown in Figure 4.2.

Each document tree is quite large, approximately containing 8900 tree nodes

(4900 element nodes and 4000 text nodes). The average depth of the tree is 6.

o The Digital Bibliography and Library Project database (DBLP) is the popular

computer science bibliography in XML format. It includes conference papers,

articles, etc. The original data set is one huge file with file size 150 MB. For

the experimental purpose) we split the file into many smaller XML documents,

each of which is a corresponding bibliographic record of a publication. The new

data set consists of 300000 XML documents. Each document of DBLP is much

smaller than that of the Shakespeare data set, which averagely has 10 element

nodes and 10 text nodes.

Some quantitative characteristics of the data sets are summarized in Table 4.3.

As we can see, the two data sets covers a wide range of tree sizes and depths. To

study the impacts of the variations of query patterns and their matching positions

on performance, we use Shakespeare data set. To explore the scalabilities of different

methods, we use DBLP.

Shakespeare DBLP
Number of documents
Size of data set (MB)
Total number of elements
Total number of texts
Number of elements per document
Number of texts per document
Average tree depth

t,JI

8

179,689

747,442

4,956
3,985
6

300,000
i50
3,740,287
3,059,052
10

10

2

62

63CHAPTER 4. PERFORMANCE EVALUATION

o/r\/t\
TITLE PGROUP

alô.\-./ \"/
l#rEçi\/ \a\
PERSONAE

o
@4

Figure 4.2: The tree structure of a Shakespeare's play

ACT

o
SCNDESCR PLAYSUBT ACTooa
l#rEnl l#lExr I ---')? \l___________)--rf ,./ \

TITLE. SCENE SCENE

TITLE STAGEDIR SPEECH SPEECHoo o .)p'*:-¡lÉ;l,,rT\-
SPEAKER LINE LINEoo o
,#r=rEx

-r+Enl
FrEXrl

FM

a
/\

/\

TITLE

o
@Exll

P

o
@4

CHAPTER 4. PERFORMANCE EVALUATION

4.4 Comparable Methods

We implemented and experimented with the following four methods of path-oriented

query evaluation to study and compare their performances.

IEW (Inverted index on Elements and Words): the method [23] which maps

XML elements and words (see Section 2.1) into two relations (E-index and T-

index relations) and processes containment queries in the RDBMS.

IPW (Inverted index on Paths and Words): the method [21] which maps four

inverted indexes (see Section 2.1) into four relations (Path, Pathlndex, Term,

and Termlndex relations) and processes containment queries in the RDBMS.

ViST: the method [22] which uses the subsequence (non-contiguous) matching

of two structure-encoded sequences to answer XML queries without involving

any join operations.

TIS (Ttee Inclusions and Signatures): our method which integrates the top-

down tree inclusion algorithm with the signature technique.

4.5 Requirements of Data Storage

The storage requirement is one of the performance metrics \¡re were going to measure.

Since each method has its own schema of data storage, we loaded two data sets into

the Oracle database separately for each method that we are going to test. The actual

spaces used by each method are listed in Table 4.4 and Table 4.7. Table 4.8 compares

the total sizes of relational tables that are required for these methods. Flom the

64

CHAPTER 4. PERFORMANCE EVALT]ATION

Table 4.4: Table sizes (MB) of IEW method
Shakespeare DBLP

E-
T-

ndex
ndex

8

10

160

240

Table 4.5: Table sizes (MB) of IPW method
Shakespeare DBLP

Term
Termlndex
Path
Pathlndex

5

19

<1
6

80

240
<1
98

Tabl hod

Tabl e 4.7: 'I'able sizes (Mts) of TIS
Shakespeare DBLP

Elements
Texts

72

8

250
r20

method

Table 4.8: Comparison of total table sizes (MB)
Shakespeare DBLP

IEW
IPW
ViST
TIS

18

20

30

20

400
420

500

370

65

e 4.6: 'lable sizes (MB) of ViS'l' met
Shakespeare DBLP

D-Ancestorship
S-Ancestorship

22

8

380
r20

CHAPTER 4. PERFORMANCE EVALUATION

comparison, we see that TIS method uses the least space to store DBLP data set

among the four methods.

4.6 Experiment on Shakespeare data set

In this experiment, we performed tests on the Shakespeare data set. As we know,

XML queries have a variety of patterns, but they are usually much smaller than

documents in terms of sizes (the number of tree nodes), and they can be embedded

in the different parts of the documents. Shakespeare data set has only 37 documents,

but each of those documents actually is a very big and complex tree. Because of this

characteristic of the Shakespeare data set, it is suitable for us to study the impacts

of the variations of query patterns and their matching positions on performance.

4.6.I Queries

We tested 25 queries which are organized into 5 groups as shown in Tables 4.9 - 4.I3.

The syntax of path expressions is borrowed from XPath [9], and is simplified for the

sake of easy understanding. '/' represents a parent-child relationship,'l l'represents

an ancestor-descendant relationship. The expressions inside a pair of square b¡ackets

are predicates. 'l' connects different paths together.

bf)

Table 4. : uroup ueries with incremental
Query Path Expression

Q1 IPLAY / l'magnificence'
Q2 I PL AY I ACT f f ' magnifi cence'

Q3 I PL AY I ACT/SCENE//'magnifi cence'

Q4 I PLAY I ACT/SCENE/SPEECH//'magnifi cence'

Q5 I P L AY I ACTI S CEN E/ S PBECH / LINE/' magnifi cencèi

CHAPTER 4. PERFORMANCE EVALUATION

Table 4 11 III. Q

67

tchi hi Ievel of he document

document

ment

her

Table

TabI

Tablr 4.10: Group II. Queries with incremental degrees

Query Path Expression

Q6 I PL AY I I LINE/'magnifi cence'

Q7 I PL AY I I ILINB/' magn ifi cence'
I
LIN E/' chu rchyard']

Q8 I P L AY I I ILINE/' magnifi cence'
I
LII\ E/' churchyard'

I

LINE/'reverence']

Qe I P L AY I I ILI N E/' m agn ifi cen ce'
I
LI N E/' chu-chyardl

LINE/' reverence'
I
LINE/'frequent'l

Q10 I P L AY I I þINE/' magnifi cence'
I
LIN E/' churchyard'

I

LINE/'reverence'
I
LINE/' frequent'

I
LINE/' heirless'l

uup rrr. wuel'les IIta a oc
Query Path Expression

Q11 IPLAY /l 4\E/'magnifi cence'
I
LINE/'perpetuity']

Q12 IPLAY / / LINE/'churchyard'
I
LINE/'ladyship'

Q13 IPLAY I I LINE/' reverence'
I
LINE/' continent'

Q14 IPLAY ll LINE/'frequent'
I
LINE/'linen']

Q15 IPLAY I I LINE/'heirless LINE/'delivery']

4.12: Group IV. Queries matchins at middle level of the
Query Path Expression

Qi6 /scENE// LINE/' magnifi cence'
I
LINE/' uit-rañcel

Q17 /scENE/i LINE/'churchyard'
I
LINE/'barbarism

Q18 /scENE// LINE/'reverence'
I
LINE/' carriage']

Q1e /scENE/i LINE/' frequent'
I
LINE/'imagination']

Q20 scENE// LINE/'heirless'
I
LINE/'successor'l

e 4.13: Group V. Queries matching at lower level of the docu
Query Path Expression

Q21 lsPÐECHll LINE/jmagnifi cence'
I
LINE/'unintelligence']

Q22 lsPEECHll LINE/'churchyard'
I
LINE/'crickets'

Q23 lsPEECHll LINE/'reverence'
I
LINE/'ceremonious

Q24 lsPEECHll LINE/'frequent' LINE/'exercise'
Q25 lsPEECHll LINE/'heirless' LINE/'companion'

CHAPTER 4. PERFORMANCE EUALUATION

The queries in Group I is to test the impact of path lengths on performance.

The queries in Group Ii is to test the impact of node degrees on performance. The

queries in Group III - V are to test the impact on performance when query trees are

embedded in different parts of a document, and in the same gïoup, the queries are

embedded in the same subtree level and follow the left-to-right order.

4.6.2 Test Method

Due to a relational database like Oracle that always has some sort of cache systems

such as a buffer pool to optimize the response time of every submitted query, we did

not test queries in a consecutive manner, instead, we shut down and restarted the

database after each test. In such a v/ay, rue avoided the situation that the execution

time for the same query would be shorter and shorter if we are running this query

repeatedly. 'We run through each group five times, and recorded an average execution

time for each query as the final test result.

4.6.3 Results

Figure 4.3 demonstrates the test results of Group One. Fbom the figure, \Me can see

that the TIS method is not as efficient as the IPW method in these tests, but it is

comparable to the ViST method. Because of the queries with only one singìe path

involved, the IPW method performs only two joins: 1) the join between relation Path

and Wordlndex; 2) the join between relation Word and the result of the first join.

Although the TIS method needs only scan a single path once, it has to perform two

operations during the scan of a query sequence: one is for the label checking and the

other is for finding the first child or the direct right sibling of the corresponding node.

68

CHAPTER 4. PERFORMANCE EVALUATION

Figure 4.3: Execution time of queries in Group One

69

trTIS øVIST trIPW trIEW

o
0,o
(¡,

E
tr

2.5

2

1.5

1

0.5

0

Query

trTIS WVIST trIPW trIEW

50

o
0,
u,

(l,

.EF

40

30

20

10

0
Q6 Q7 Q8 Q9 Q10

trTIS 0.656 0.993 1.278 1.991 2.094

@VIST 1.154 1.694 2.102 2.697 2.816

trIPW 0.983 5.865 10.741 I r 0.Ar 26.239

trIEW 1.482 9.537 16.385 I 23.894 39.292

Query

Figure 4.4: Execution time of queries in Group Two

CHAPTER 4. PERFORMANCE EVALUATION

Figure 4.5: Execution time of queries in Group Three

trTIS @VIST DIPW trIEW

20

15

10

5

0

70

trTIS WVIST trIPW trIEW

14

12

10
o
¿B
o^Eo
i:4

2

0

5.722

I 3.1 05

Query

Query

Figure 4.6: Execution time of queries in Group Four

CHAPTER 4. PERFORMANCE EVALUA'TION

trTIS MVIST trIPW trIEW

Figure 4.7: Execution time of queries in Group Five

Therefore, as for single path queries, the TIS method is always less efficient than the

IPW method. For short path queries (e.g. Q1, Q2), the IEW method works much

better than TIS and ViST, however, the longer a paih query is, the more inefficient

the IEW method becomes.

The results from Group Two are shown in Figure 4.4. As more and more paths

are involved in queries (from Q6 to QiO), the execution time of both IPW and IEW

increased dramatically. To answer each query, both methods have to decompose the

query into multiple single paths, and evaluate each path separately, then combine

the results of single path queries. Since each combination has to check the common

ancestors of different paths, this is a very time-consuming task. In contrast, both TIS

and ViST performed much better than the IPW and IEW methods did.

The results from the rest three groups (Figure 4.5, 4.6 and 4.7) are similar to

71

o
o)
v,

o
E
i:

0.179 0.436

0.74 I 0.939

0.377 0.85

0.767 0.892

16.422 i TO.OSS

Query

CHAPTER 4. PERFORMANCE EVALUATION

each other no matter where a matching takes place. The IEW method did much

worse than other three methods in this three tests, it spent 13 to 16 seconds each

to answer most queries, whereas the TIS method outperformed other methods with

around 1 second for answering each query.

The results of this experiment suggest us that both IEW and IPW are inefficient

in answering multi-path queries due to many join operations, as we expected. When

the queries became more complex (i.e. more nodes and paths were involved in the

queries), the ViST method was inefficient too, it needed more execution time than

the TIS method did since it had to recursively issue a range query to find all the

descendants of the current node that satisfied S-Ancestorships when scanning each

node of a query sequence. This type of operations appeared to be costly. Contrary,

the signature technique made the TIS method skip many query nodes and paths that

were unnecessary for it to check during executions.

4.7 Experiment on DBLP data set

In this experiment, we performed tests on the DBLP data set. As we mentioned

before, DBLP is a huge data set that has total 300000 XML documents. Hence, it

is very suitable for us to study the scalabilities of the previous four methods (IEW,

IPW, ViST and TIS).

4.7.I Queries

To study the scaìabilities of the methods, we organized test queries into 3 groups

according to query sizes: small, median and large. Each group has b queries, which

72

CHAPTER 4. PERFORMANCE EVALUATION

are DBLP documents in practice since the documents in the DBLP data set are small

enough to be considered as queries. As the previous experiments? we run tests on

each query 5 times to get an average execution time as a final result. Between two

consecutive tests, we always shut down the database and restarted the database again.

"Self-organizing'http:/trw,cis.hut.f/nnrcJnnrc-
Map" progEms.html'

"W3C: Extensibte "http://M.w3-org/Styler(SLr
Stylesheet Language

(xsL)"
o2

"The MPEG Home Page' "htlpJ/drogo.cselt.stet.ivmpegf

'ArdentSoftware"'htlp:/dw.ardentsoftware.f¡'

t.1

"KAFFE- "htlpj dww.kaíe.orgf

Figure 4.8: Queries of small sizes

Q3

CHAPTER 4. PERFORMANCE EVALUATION

'PRPL: A Datrabase Workload
Specifi cation Language, v1.3."

74

author

"Tolga Yurek" 'Univers¡ty of Califomia at Santa
Barbara....'

'Efticient V¡ew Ma¡ntenance..."

Figure 4.9: Queries of median sizes

"Petrí Nets in Software

aulhor

¡sbn

CHAPTER 4. PERFORMANCE EVALUATION

'P. A. Beaven'

.^ ...Y aqthor

t¡tle
'An associalive parallel...l

"Patrick Mârt¡n"

"K, HiSHho'-

'Judy L Russel'

tille
'An Evalualion of..."

'Jordi Tubella'

'Antonio

"E. Ellas"

"The
Arch¡leclure

'N. M. P¡tman'

'F. Waren

'E. W. Haddon'

t¡ile
'Buddy Systems w¡th...'

75

pages

t¡tle

Figure 4.10: Queries of large sizes

CHAPTER 4. PERFORMANCE EVALUATION

Figure 4.11: Execution time of queries in small sizes

76

trTIS @V¡ST trIPW trIEW

Q5

5.265

9.585

10.023

16.943

Query

trTIS WV|ST trIPW EIEW

80

70

60
gbo
tt

;40
.E 30t-

20

10

0

23.103 I 26.594

36.1 58

70.753

Query

Figure 4.\2: Execution time of queries in median sizes

CHAPTER 4. PERFORMANCE EVALUATION

trTIS 6V¡ST trIPW trIEW

300

25Q

o
o,o
c)
E
tr

200

150

100

50

0

73.585

18.91 1

68.389 , 72.433

114.529 125.232 118.12

273.487

Query

Figure 4.13: Execution time of queries in large sizes

4.7.2 Results

Figure 4.11 to 4.13 show the results of this experiment. Fbom these charts, again, we

see that the TIS method beat other methods in this experiment. When queries are

small, TIS finished most queries within 6 seconds, whereas IEW took about 17 seconds

to finish a query. The perf'ormance of IPW and ViST are very close to each other in

this category. For median size queries, the average time of evaluating a query by TIS

is around 5 seconds, which is almost the same as the average time it used in the small

query group. IEW had to spend about 1 minute to finish a query. The performance

gap between IPW and ViST widened this time. The average difference between them

rose to more than 10 seconds. For large size queries, the average execution time of

TIS rose to 17 seconds, but it stilì performed the best in this group. The average

difference between IPW and ViST became 49 seconds. IEW had to spend about 4

77

CHAPTER 4. PERFORMANCE EVALUATION

minutes more to finish a query.

We found that the performance of TIS appeared to be less stable than the per-

formance of the other methods, especially in the group of small size queries (e g. Q3,

Q4), where its performance variations are more radical than those of large queries (the

patterns and sizes of median queries are slightìy different). Due to the randomness

of signatures, the TIS method may encounter some J'alse drops (see Section 1.3.3)

during the courses of tree inclusions. If this is the case, the TIS method has to spend

extra time to check those false matching documents to identify their matchings, thus,

the amount of false drops affects the performance of query evaluation. Q4 seems to

be the case. In addition, as we expected, the small queries may be vulnerable to false

drops since the one bits in their query signatures are much less than those of large

queries.

Overall, TIS did the best in this experiment. The results of TIS suggests that

using a signature tree can let the TIS method immediately jump to potential matching

documents without running through each document one by one to carry out a tree

inclusion check. Since the TIS nearly did not need any time to screen the documents

even when the quantity of documents is huge, it definitely outperformed the rest.

78

Chapter 5

Conclusion and Fbture Work

5.1 Conclusion

In this thesis we developed a path-oriented query evaluation method that efficiently

retrieves XML documents from a relational database. The motivation for this work

was to overcome some limitations of current query evaluation methods, such as the

need of expensive database join operations, and the lack of support for optimizations

(e.g. signatures). To that end, we combined ideas from the tree inclusion problem and

the signature technique in a way that allows us to efficiently evaluate path-oriented

queries for searching XML documents from databases.

We presented an overview of the query evaluation problem for XML data, and

provided some background information about using both the tree inclusion algorithm

and the signature technique to solve this problem. We surveyed literature related to

the XML query evaluation and the tree inclusion problem, and we proposed a new top-

down tree inclusion algorithm. We discussed the construction of a signature tree to

speed up the query evaluation process. We implemented the top-down tree inclusion

CHAPTER 5. CONCLUSIOIV AND FUTURE WORI<

algorithm and the signature tree, and \¡/e compared the performance of our method to

other three methods that are mainly based on index structures. We presented detailed

performance results to show that our path-oriented query evaluation method, TIS,

outperformed those three methods in most cases.

5.2 F\rture 'Work

The following is the potential work for the future development of our query evaluation

method.

o Add attributes

In this thesis, we use an XML tree model that only contains two basic com-

ponents: elements and texts. Sometimes, the attributes in an XML document

also have the useful information related to the contents of the document. In

the future work, we will use the XML tree model that contains all three basic

components to improve the accuracy of query results.

o Use different RDBMS as repositories

Currently, Oracle is the only database system that we used in the experiments.

To avoid the situation where experimental results have some potential ties to

the Oracle, we will try to use different RDBMS as repositories in our future

experiments.

o Improve signature technique

Integrating signature technique with top-down tree inclusion algorithm is just

an initiative. As the experiments shows that the signature technique has a

80

CHAPTER 5. CONCLUSION A¡VD FUTURE WORK

minor issue, i.e. vulnerable to false drops. We will further investigate this issue

and make the signature technique perform more reliable.

o Support XQuery

XQuery is a query language that is still under development. In future, it will

become a w3C standard of processing many types of XML data sources. we

expect many queries will be submitted in XQuery format. The basic building

blocks of XQuery are expressions. Therefore, we will need to develop a scheme

to handle the mapping between expressions and trees.

81

Bibliography

[1] Scott Boag, Don Chamberlin, Mary F. Fernández, Daniela Florescu, Jonathan

Robie, and Jéôme Siméon. XQuery 1.0: An XML query language.

http: I f www.w3.org/TR/xquery/, October 2004.

[2] Jon Bosak. The plays of Shakespeare in XML. http:llwww.oasis-

open.org/cover/bosakShakespeare200.html, July 1999.

[3] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, and Eve Maler. Extensible

markup language (xML) r.0. ht|p: I lwww.w3.org/TR/REC-xml, october 2000.

[] Ben Carterette and Fazli Can. Comparing inverted files and signature files for

searching a large lexicon. Inf. Process. Manage., 41(3):613-633, 2005.

[5] Weimin Chen. More efficient algorithm for ordered tree inclusion. J. Algorithms,

26(2):370-385, 1998.

[6] Yangjun Chen. On the Signature Trees and Balanced Signature Trees. In Pro-

ceedi'ngs of Internati,onal Conference on Data Engineering (|CDE2005), pages

742-753.IEEE, April 5 - 8, 2005.

82

BIBLIOGRAPHY

[7] Yangjun Chen and Yong Sh| Encycloped,ia of Database Tech.nologies and, Appli-

cat'ions, chapter Signature Files and Signature File Construction, pages 638-64b.

Idea Group Inc., 2005.

[8] Yangjun Chen and Yong Shi. Tfee inclusion algorithm, signatures and evaluation

of path-oriented queries. Accepted by 21st Annual ACM Symposium on Applied

Computing, Dijon, Fbance, Aprll 23-27, 2006.

[9] James Clark and Steve DeRose. xML path language (Xpath) version 1.0.

http: I I www.w3.org/TR/xpath, November 19g9.

[10] Uwe Deppisch. S-tree: a dynamic balanced signature index for office retrieval. In

SIGIR '86: Proceedings of the gth annual internati,onal ACM SIGIR conJerence

on Research and deueLopment i,n inJ'ormat'ion retriet,a/, pages TT-ïT, New york,

NY, USA, 1986. ACM Press.

[11] Alin Deutsch, Mary Fernandez, Daniela plorescu, Alon Levy, and Dan Suciu.

X\4L-QL: A query language for XML. http:lf www.w3.org/TR/NorE-xml-ql,

August 1998.

[12] C. Faloutsos. Information Retrieaal: Data Structures and, Algorithms, chapter

Signature Files, pages 44-65. Prentice Hall, 1g92.

[13] Pekka Kilpeläinen . Tree Matching Problems wi.th Appli,cations to Structured, Tert

Databases. PhD thesis, Department of Computer Science, University of Helsinki,

November 1992.

[1a] Pekka Kilpeläinen and Heikki Mannila. Ordered and unordered tree inclusion.

SIAM J. Comput., 24(2):340-356, 199b.

83

BIBLIOGRAPHY

[15] D. E. Knuth. The Art of Computer Programm,ing, volume 1. Addison-Wesley,

Reading, MA, 1969.

[16] M. Ley. Computer Science Bibliography. hltp:llwww.informatik.uni-

trier.de/ ley/db/index.html, 2005.

[17] H. Mannila and K.-J. Räihä. InJ'ormatr,on Modelling and Knowledge Bases, chap-

ter On query languages for the p-string data model, pages 469-482. IOS Press,

1990.

[18] Jonathan Robie, Joe Lapp, and David Schach. XML query language (XQL)

ht"tp: I I www. w3. org/Tands/ QL/Q L98 I pp I xql. htmt, September 1 998.

[19] G. Salton and M. J. McGill. Introduction to Mod,em Informati,on Retrieual.

McGraw Hill, New York, 1983.

[20] T. Schlieder and F. Naumann. Approximate tree embedding for querying XML

data. In ACM SIGIR Workshop On XML and Information Retrieuøl, Athens,

Greece, July 2000.

[21] Chiyoung Seo, Sangwon Lee, and Hyoung-Joo Kim. An efficient inverted index

technique for XML documents using RDBMS. ELseui,er Science B. V., ab(l):11-

22, January 2003.

[22] Haixun Wang, Sanghyun Park, Wei Fan, and Philip S. Yu. ViST: A dynamic

index method for querying xML data by tree structures. rn SIGM)D '0s:

Proceedi,ngs of the 2003 ACM SIGMOD i,ntemat'ional conference on Management

of data, pages 110-121, New York, NY, USA, 2003. ACM Press.

84

BIBLIOGRAPHY

[23] Chun Zhang, Jeffrey Naughton, David DeWitt, Qiong Luo, and Guy Lohman.

On supporting containment queries in relational database management systems.

S I G M O D Rec., 30(2):425-436, 2007.

85

