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ABSTRACT

The crystal structure of sillimanite has been refined by 2-
dimensional Fourier syntheses. The specimen used throughout this
investigation was from Willimantic, Connecticut, U.S.A.

Accurate unit cell dimensions were measured by the method
of C. L. Christ (1956) using & conventional Weissenberg camera with
an internal standard. The values obtained were a = 7,476,003 Eg

o) o
b= 79666i9005ﬁ, C.= 5,763L,0034, The specific gravity was measured
on 2 Bermen microbalance and was found to bhe 3.240 gm. cm.™>  From
the volume of the unit cell and the measured density, the number of
formula units in the uwnit cell of sillimanite was thus 4 (A123105)a
The presence of a centre of symmetry was indicated by a statistical
analysis of the hkd{ data and the space group was confirmed to be Fbnm.

Two-dimensional intensity data were collected from Weissenberg
photographs using a triple film pack and molybdenum Xeradiation. The
intensities were measured by visual comparison with a standard intensity
scale and the structure amplitudes derived by applying the Lorentz-
polarization factor to each reflection. The observed structure factors
were placed on an absolute scale by comparison with structure factor
data calculated from previously published atomic parameters of
sillimanite,

Using the atomic parameters of Taylor (1928) and of Hey and
Taylor (1931) as starting points, refinement of the structure was made
by seven successive FB and Fow Fc syntheses along all three of the
principal axes; the final R factors for 148 hk0, 57 ho{ and 63 0k{

reflections being 18.9%, 12.8% and 12.9% respectively. The mesn Si=0

=3



bond distance is 1.630 ¥ o.01L Ka the mean tetrahedral Al=0 bond diste
ance is 1.742 % 0,014 X and the mean octashedral A41-0 bond distance is
1,916 kA 0,013 ga Temperature factors are given for each atom in each
projection,

A comparison is made with the results recently published by
Burnham (1963), and possible electrostatic charge distribubtions within
the structure are discussed. The tetrahedral site sizes indicate that
the structure is ordered with respect to silicon and aluminum.

A programme for the computation of 2-dimensional structure
factors for sillimanite on the I.B.M, "1620" is included in an

Appendix of this dissertation.
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CHAPTER I

INTRODUCTICN

This project was undertaken for the purpose of instructing
the author in the methods of crystal structure analysis by doing a
refinement of a relatively simple structure. The experimental work
was done in the X-Ray Diffraction Laboratory of the Geology Department
of the University of Manitoba, and it was thus appropriate to choose a
mineral which fell into the general programme of research in that
Laboratory. The mineral chosen was sillimanite, an aluminosilicate of

the ideal formula A12310 It was felt that this mineral would yield

valuable information aboZt the silicon-aluminum "ordering" in this
mineral and about the bonding in silicates.

In the determination of a completely unknown crystal struct-
ure it is necessary to solve the structure with no previous knowledge
of the atomic positions. However, in a refinement spproximate stomic
positions have to have been determined beforehand, and during the
refinement the atoms are located more accurately in the wnit cell,

For the above reasons, an unknown structure determination is more
difficult and requires more time to complete than a refinement. By
its nature an unknown structure determination is uncertain in its out=
come, while s refinement of this complexity mey be expected to reach
completion in one year.

The original derivation of the crystal structure of silliman-
ite was done by W. H. Taylor (1928), and later, J. S. Hey and W. H,
Taylor (1931) published a revision of the original structure which was

more accurate, but which still required refinement by modern Fourier
9 q

methods. A search of the literature to June 1962, revealed that no



refinement had been published so the author began work on this strucet-
ure at that time. However, in November of 1962, while this work was
in progress, an abstract of a refinement of the sillimanite structure
was published by C. W, Burnham (1962a)., In view of the fact that the
present refinement had already included the accurate determination of
cell dimensions, the collection of all the intensity data for a two-
dimensional refinement, and a number of the computations, the decision
was made to continue this work and so produce a completely independent
refinement. PFurthermore, it appesred unlikely that Burnham's full
paper would be published before the present refinement would be com-
pleted.

All of the Z-ray data that would be required for the refine-
ment were collected on single-crystal Weissenberg photographs. Most
of the computations were done on an I.B.M. "650" computer at Great

West Life Assurance Company, Winnipeg.



CHAPTER II

DESCRIPTION OF THE SILLIVMANITE SPECTMEN

Sillimanite is a polymorph in the aluminosilicate group of
minerals of ideal formula Algsio5° The other two members of this
group are kyanite and andalusite. The temperature-pressure relation-
ships between sillimanite, kyanite and andalusite have not been com-
pletely determined, but sillimanite is known to be the high-tempera-
ture polymorph and is characteristic of high-temperature and high-

pressure metamorphic rocks.

A _Locality

The sillimenite specimen used in this investigation was
taken from the mineral museum at the Geology Department of the
University of Manitoba (Museum Number 399-3). The rock containing
the sillimenite was found in Willimantic, Comnecticut, U.S.A. The
sillimanite occurs as large (up to 3 cm.), elongated, transparent
amber crystals in a sillimanite gneiss with quartz, feldspar, biotite
and muscovite, 4 suitable crystal of sillimanite was broken off the

large specimen and used to provide material for the investigation,

B _Chemical Analvsig

A chemical analysis of the specimen was done on the X-ray
fluorescence spectrometer in the Geology Department of the University
of Manitoba by Mr. K. Ramlal, The specimen was prepared by crushing
about 0.5 grams of sillimanite to a moderately fine size, and then
visible impurities removed under the binocular microscope. The results
of the analysis are shown in Table I. The low total for the analysis

may be due to absorbed water which was not analyséd for but which may
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have been present because the finely powdered specimen was possibly
hygroscopic. The small amount of potassium and correspondingly small
amounts of magnesium and iron in the sample may be due to small amounts
of biotite still present in the handpicked sample. However since the
potassium analysis is so low this will not explain the large amounts
for Fe203 and Mg0, It has been assumed in Table I in the calculation
of the number of metal atoms per five oxygen atoms that the magnesia
and ferric oxide are present in the sillimanite, while that present as
biotite has been neglectedo It is unlikely, from this analysis com=-

pared to analyses in Deer, Howie and Zussman (1962, Vol, I), that

anything is unusual about the composition of this sillimanite.

The specific gravities of three small fragments were deter-
mined with the aid of the Berman specific gravity balance, using
toluene at an average temperature of 24°C, The values found for each
were, 3.234, 3.245 and 3.241 gm/cmge The average specific gravity of
these fragments is 3.240 gm/cm3 which lies within the range listed in
Deer, Howie and Zussmsn (1962, Vol. I) of 3.23-3.27 gn/em .

From the measured density 4 (gm/cm3), the volume of the unit
cell V (cnP), Avogadro's number N, and the molecular weight, M (gm/mole),
the number of formula units (Z) in the unit cell may be calculated using

the formula 2 = L. X % x N .

The volume of the unit cell in the orthorhombic system is
simply the product of the three cell edges, a, b and c. The determina-
tion of these values is described in Chapter V, but they are used here

03
to calculate the volume, which is 330.28 4



Using this value for the volume V, the sbove value of the

measured density, and the molecular weight of ideal A128105 of 162,00

gms/mole, the cell content of sillimanite calculates to be,

=24 2
Z = 330,28 x 10 x 3,240 x 6,023 x 10 3 = 3,98

162,00

Since the wnit cell must contain an integral number of moleculeg or
formula units, the ideal cell content of sillimanite must be 4 (A128i05)°
With this value for the cell content (&), the ideal density as deter-

mined by X-ray methods is 3.258 gm/cmae



CHAPTER III

SOME BASIC X-RAY DIFFRACTION THEORY

A crystalline substance may be defined as one that is a regular
arrangement of atoms in space repeated throughout the volume of the crys-
tal. ZX-radiation is an electromagnetic phenomenon like visible light but
of short wave=length (096 - 2.5 K), Ir X?rays are directed at any crystall-
ine substance they are diffraoted‘just as visible light is diffracted by
an optical grating. The interaction of the electric field of the X-radia-
tion with the electrons of the atoms produces this diffraction. The
electric field sets the electrons into forced vibrations making them second-
ary emitters of the radiation. This interaction of the incident radiation
and the electrons causes them to scatter the original X-ray wave.

There are two general techniques used in examining crystals by
X-ray diffraction. The first is X-ray powder photography which is con-
cerned mainly with the study of crystalline compounds for the purpose of
identification and, in favourable cases, quantitative analysis of mixtures
although some simple cfystal structures have been solved by the use of
powder photographs. The second includes single crystal methods which are
used mainly for complete structure determinations. The single crystal
methods are used for structural analyses because they yield more informa-
tion about the crystal than do powder photographs. There are several
different types of single crystal methods that have been used to advant-
age. These include oscillation, rotation, Weissenberg and precession
methods. This report describes the interpretation of only oscillation,
rotation and Weissenberg photographs because they are the only ones used

in this investigation.,



X-ray diffraction by a crystal can be thought of as reflec-
tion by sets of parallel lattice planes in a crystal (Buerger, 1942,

Po 43), From a consideration of the positions of these reflections
from different sets of lattice planes in the crystal one is able to
determine the geometrical nature of the lattice and the size of the
unit cell, From the systematic absences of reflections one is able
to determine, sometimes uniquely, the space group for that crystal.
Pinally from chemical analysis and specific gravity measurements, the
kinds and numbers of atoms that are contained in a unit cell can be
determined.

Megsurements of the intensities of these reflections afford
much of the informstion required to determine the atomic positions in
the unit cell. However, associated with these reflections there is not
only the masgnitude of the intensity but also a phase angle and this
is in general, unobservable. Therefore, in order to fully define the
nature of the waves producing the reflections, one must calculate the
phase angles from a structure that is essentially correct. It is this
"phase problem" which makes the derivation of a crystal structure so
uncertain but at the same time so challenging.

The discovery of the diffraction of Z-rays by crystals took
place in 1912 when M. von Laue suggested that the wave-length of
Xeradiation was likely of the oxrder of 10"8 cm. Thus a natural crystall-
ine substance would serve as a three~dimensional diffraction grating
for X-rays. Laue set down the conditions for the diffraction of X-rays
by a three-dimensional crystal lattice in three equations, which require
that the path difference between waves scattered from successive lattice

points be equal to a whole number of wave-lengths ns



a (cos o, - cosof) = nl)\
) (cosﬁom cos,@) = nz}\
¢ (cos ) - cos¥) = n3>\

In these three equations o , ﬂo s ¥, are the angles which the incident
béam makes with the three orincipal axes, 2, b and c¢ in the crystal
lattice. The direction of the diffracfed beam is defined by the angles
It ,p and §, and the set of integers, ny, N, and ng denotes the order of
the reflection. A formal proof of these relationships which must be
satisfied in order that diffraction will occur, is given in Buerger,
(1942, Chapter 3). Also in this reference it is shown that these three
conditions for diffraction are geometrically equivalent to a reflec<
tion of the X-ray beam by the lattice plane, whose intercepts on the

three principal axes would be a./nl, b /n2 and ¢ /n3°

Shortly after the discovery of the diffraction of X-rays by
crystals by von Laue, W. L. Bragg in 1913 suggested a simpler inter-
pretation of this phenomonon which he expressed in the now well known
Braogg Law, n A= 2d sin®. This equation arose from the fact that Bragg
considered the scattered radiation to be "reflected" from lattice planes
within the crystal. Reinforcement of one wave by another reflected
from a parallel neighbouring plane at a distance d will occur when the
path difference between these two waves is equal to a whole number of
wave-lengths, i.e., when nA= 24 8in© where Ais the wave-length in X,

4 the interplanar spacing in X, and © is the angle in degrees between

the crystal plane and the incident X-ray beam. Thus Bragg showed that
the concept of the crystal lattice as a set of parallel planes through
lattice points is extremely useful in explaining the theory of diffrac-

tione.
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Coupled with this concept of the direct lattice, there is
also the concept of a '"reciprocal lattice" without which the inter-
pretation of single-crystal photographs would be very difficult. The
idea of a reciprocal lattice was introduced by Ewald in 1921. It has
no physical reality and is used only in the interpretation of the
diffraction of X-rays by crystals. However, the direct or space lattice
does have reality for it describes the manner in which groups of atoms
are repeated in space. The reciprocal lattice is similar in many respects
to the gnomonic projection used in the morphological description of
crystal faces.

In crystallographic problems it is convenient. to represent
sets of lattice planes by their normals rather than by the sets of
planes themselves. In this way the task of interpreting single-crystal
photographs is greatly simplified. The reciprocal lattice closely
corresponds to a single-crystal photograph in that both are character-
ized by points or spots which represent sets of parallel lattice planes.
In order to construct the reciprocal lattice corresponding to a direct
or space lattice, consider a two dimensional projection of a primitive
monoclinic space lattice along the y axis shown in Fig. 1. Bach inter-
planar spaciﬁg dth is then considered. For example, dOOl is the per-
pendicular distance from the origin to the (oo1) plane. A vector S hot
is plotted parallel to the interplanar spacing dhOQ and its length is

e., equal to __k  where
hol

made proportional to the reciprocal of dhOQ’ i,

k is a constant of proportionality. When this construction is made for
edch plane of the direct lattice, the resulting array of points, one

at the end of each vector (Shogg constitutes the reciprocal lattice.
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Fig. 1. Construction of the reciprocal lattice of a primitive
monoclinic space lattice projected along the y axis.
Solid lines represent the direct lattice; dashed lines
represent the reciprocal lattice.
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In Fig. 1 the direct lattice points are represented by crosses
and the reciprocal lattice points by closed circles. The principal axes

of the reciprocal lattice x*, y* and 2z* are the directions from the ori-

gin normal to the three principal planes of the direct unit cell (100),
(010), and (001). The unit lengths of the reciprocal axes a*y b and ¢

are defined as equal to k k and k respectively. Reciprocal
/3100° /010 /dgey T°° v

lattice elements are thus denoted by the same letters as used for the
direct lattice elements with the addition of asterisks.
Direct elements Xy ¥s %y 85 by ¢y, B, 4.

. % H* %* ¥ * % * H 3
Reciprocal elements X, ¥, B s a sb ¢ sd By -

The scale of any given reciprocal lattice is determined by the
constant of proportionality k., For a reason that will be developed
shortly, the constant k in all X-ray work is taken as A, the wave=length
of the X-radiation.

With this concept of the reciprocal lattice it is now possible
to consider a geometrical interpretation of Bragg's Law and the condi-
tions necessary for reflection by a real lattice., The concept of
reflection by the reciprocal lattice results in a "sphere of reflection
which is shown diagrammatically in Fig. 2. This sphere of reflection
is constructed to surround the crystal which is located at the sphere's
centre. It gives the condition of when and vhere a reflection from a
single crystal will occur. The sphere of reflection may be derived in
the following manner,

At point O in Fig. 2 let the line pp' depict the orientation
of a set of crystal planes of spacing d. Let this set of planes be

in the proper position for a reflection of the X-rays to result. Since



Reflected Beam

Direction

Incident B8 Direct

Beam Beam

~

Fig., 2, The derivation of the sphere of reflection and the
limiting sphere. The crystal is at S, the centre
of the sphere of reflection and the origin of the
reciprocal lattice is located at the poiunt 0.
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this is a set of crystal planes one can construct a reciprocal lattice
point to represent this set of planes by erecting a normal to the plane
and choosing a unit length OQ =  where = A/d and d is the inter-
planar spacing of this set of planes. Let the line AB represent the
path of the incident X-ray beam and the line OR represent the reflected
beam from the plane pp'e The glancing angle AOp and the reflecting
angle ROp' are both designated by © ., If pp' lies in the plane of

AOR then { AOp = L ROp = © . Angle p'OB = O (vertically opposite

L AOp) and so LROB =26. From the reciprocal lattice point Q con-
struct line QA perpendicular to 0Q to meet the primary X-ray beam at A.

Then QA will be parallel to pp' and L_QAO = Z_AOp ®, From the dia-

i}

grem, sin £ QA0 = sin & = €, but €= A so that 40 A ., For a first
AC d d sin @
order reflection the Bragg equation must be 1 l = 24 sin & and thus A0
must equal 2, It follows from this constructiom that all of the recipro=
cal lattice points of the type Q of all of the direct lattice planes will
be corners of triangles of the type AQO in which [ s AQO are right angles.
Thus the locus of all points Q in one plane will be a circle and in three
dimensions a sphere whose diameter will be AO = 2 and whose radius will
therefore be 1. Although in our construction the direction OR is the
direction of the reflected beam, one can equally choose the parallel
direction SQ to represent the reflected ray, thus allowing one to place
the crystal at S, the centre of the sphere. Thus is derived the I‘sphere
of reflection“ which for reciprocal lattice distances of A/H will have
unit radius and will consist of a sphere with the crystal at the centre,

the X-ray beam along one diameter and the origin of the reciprocal

lattice at the point where the direct X-ray beam emerges from the sphere,
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The final topic to be considered in this chapter is the con-
cept of the "limiting sphere”. The limiting sphere gives one the max-
imum number of possible reflections afforded by a certein crystal using
a specific X-radiation. The crystal rotates about the point S in Fig. 2,
while the reciprocal lattice is thought of as rotating about the point
of emergence of the primary Z-ray beam from the sphere of reflection
(poin*c 0). This permits only reciprocal lattice points with 942 units
to possibly reflect. The volume containing such reciprocal lattice points
is therefore contained approximately in a sphere known as the limiting

sphere with radius 2.



CHAPTER IV
OSCILLATION AND ROTATION PHOTOGRAPHS:

CRYSTAL ALIGNMENT AND CELL DIMENSIONS

A  Introductory Theory

It has been shown in the previous chapter that each time a
reciprocal lattice point cuts the sphere of reflection a diffracted beam
is produced along the direction SQ (Fige 2). In the rotating crystal
method a single crystal is placed in the X-ray beam with one principal
axis of the direct lattice parallel to the axis of rotation. A fixed
cylindrical film is placed around the crystal to record the diffraction
pattern, The manner in which the reflections are recorded on the film
can be deduced from Figs. 3 and L4 modified from Bunn (1961 Fig. 83). As
shown in the last chapter, the reciprocal lattice rotates about the point
at which the primary X-ray beam emerges from the sphere of reflection,
point O on Figs. 3 and 4. A particular case is shown in Fig. 4 in which
the diffracted beam is flashing out in the direction ST striking the film
at W The crystal is assumed to be rotating about the ¢ axis with the
incident beam perpendicular to the axis of rotation. It can\be seen in
Figs. 3 and 4 that the reflected beams corresponding to reciprocal lattice
points in the same plane (same value of {) will all lie on one conical sur-
face. The semi-vertical angle of this cone ((b) has the same value for all
reflections of the same 1 index (the recivrocal lattice plane of constant
§). The base of this cone is at the film, and in general all reflections
of the same { index will lie on onme straight line on the film.

It now becomes necessary to determine the relationship between

the separation of these "layer lines " and the rotation period of the



RECIPROCAL
LATTICE
ROTATES gERE

. Diagrammatic representation of the reciprocal

lattice as it passes through the sphere of
reflection. (Reproduced from Bunn (1961)
Fige 829)
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Fige l'l’o

Reciprocal Lattice
Rotates
Here

The production of reflections:
on a cylindrical film surround-
ing the sphere of reflection.
(Modified from Bunn (1961)

Fig. 83.)
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axis about which the crystal is rotating. When the difference between
the path lengths of the rays scatiered by neighbouring points (aiffract-
ing centres) along this rotation axis is either zero or a whole number of
wave-lengths, reinforcement occurs and a diffracted beam is produced. By
referring to a simplified diagram shown in Fig. 5, the condition necessary
for diffraction to occur can be derived. Along the axis about which the
crystal is rotating let there be diffracting centres at points separated
by the repeat distance p, and let the incident X-ray beam (wave—lengthlk)
strike this row at right angles. Let the angle which the diffracted beam
makes with the diffracting row be(b, and the path difference between
waves scattered from neighbouring diffracting centres be . Then 6/p =
cosd)° The secondary scattered waves of wave-length A in general
interfere with each other destructively. For comstructive interference
(wavelets in phase) the path difference ¢ must be either zero or a whole
nurber of wave~lengths,
iceey D €08 @ =1n A where n=0, 1, 2, 3ye..00

For a particular value of n,A and p in the above equation, it
follows that the cosine of ¢ must be constant. The diffrscted rays will
thus lie on the surfaces of two cones symmetrically on either side of
the zero layer with the lattice row as the axis (Fig. 6). If one then
imagines the crystal surrounded with a cylindrical film that is coaxial
with the axis of rotation, then these two cones will be recorded on the
film as two straight lines, one on either side of the zero layer lines.
There will be two such lines for each value of n. However, a crystal is
not a single row of diffracting centres but rather meny identical parallel
rows extending in three dimensions. Therefore there is not a continuous

diffracted beam meking up the surfaces of these cones but rather only
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wave fron
| ‘ 5STorder

‘ \
AN \ 4 = O order
, \
)‘,
‘\ |

' lS? order

©

Figo 5. Diagrammatic representation of the production of diffracted
rays from a single row of diffracting points of repeat per-
iod p. The condition necessary for diffraction is p cos¢=qlk

Nz=2

Incident Beam / 0
. n=

2

Pig. 6. Conical surfaces containing the diffracted beams of different
orders of reflection (n) from a row of diffracting points
with the incident X-ray beam perpendicular toc the row.
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individual beams on the surfaces of these cones. The directions of these
beams are such that the Bragg eguation is satisfied, and they will pro-

duce series of spots lying on the straight layer lines,

B Alionment of the Crvstal on a Goniometer Head

The first step in any single-crystal study is to orient the
crystal on the Weissenberg Goniometer head so that it will rotate sbout
a chosen crystallographic direction, usually a principal axis. Since
this investigation was a refinement and the approximate cell dimensions
of the crystal were known beforehand, the problem of orienting the cry-
stal sbout a principal axis were not as difficult as it would be were
the structure unknown. In an unknown structure the unit cell dimensions
must be chosen very carefully. If the crystal has well developed faces,
then a knowledge of the morphology will permit the fairly accurate
orientation of the crystal around a known axis on a reflecting goniometer.

In the present case, a suitable single crystal was chosen by
crushing a small sample of the sillimanite specimen and selecting an
appropriate fragment under the binocular microscope. The ideal size of
the fragment depends upon its composition and the radistion used. The
fragments chosen in this study were no larger than 0.025 cm. in any
dimension and were as nearly equidimensional as possible. An examina-
tion of each fragment under a petrographic microscope revealed that twinn-
ing was absent. The selection znd mounting procedures are discussed at
length in Buerger (1960).

Since sillimanite has perfect cleavage on {010}, a preliminary
alignment normal to this cleavage (about the b axis) was made using the

reflecting gonicmeter. This alignment was approximate but rapid. The
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goniometer head was then transferred to the Weissenberg unit without dis-
turbing the alignment. Precise alignment of the crystallographic axis
with the rotation axis was then achieved by a series of oscillation
photographs using the methods of correction described in Bunn (1961,
These oscillation photographs consist of double exposures each taken 180O
on the Weissenberg drum reading from the other. When the camera was loaded
and fixed in a central position relative to the X-ray collimater, the
crystal was oscillated over seven and one-half degrees on either side of
a setting on the goniometer drum at which one of the rockers of the
goniometer head was parallel to the direction of the incident beam, s0
that it would be known to which rocker a given correction must be applied.
The correct exposure time had to be determined by a preliminary photo=
gravh. After this exposure had been recorded, the crystal was rotated
180° so0 that it would oscillate with the same amplitude about a position
180° from the first. The exposure time for this orientation was one-third
of the time used for the long exposure so that the direction of the
correction may be determined. 4n example of the setting pictures is
given in Figs, 7 (v), (c), and (4). Fig. 7 (a) is a single exposure to
show the position of the equatorial line (zero la,yer)° Notice that when
the crystallographic axis is offset, the zero layer reflections are found
to lie not on the equatorial line but on a curve; the shape of which deter-
mines the megnitude and direction of the correction. The nature of the
offset of the curve from the equatorial line is provided by the double
eXposure.

The shapes of these curves can be éxplained as follows. TFig. 8
shows diagramstically the two possible corrections that need to be applied

to a crystal not aligned properly. The offsets are of two types: (a) the
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principal axis is offset in a plane normal %0 the incident beam and (b)
the axis is offset in a plane containing the incident beam. The result-
ing curves on the flattened out film are shown in Figs, 8 (e) and (a)
respectively, in relation to the equatorial line., In general the crystal
is offset in both these directions and the resulting curve is & conmbina-
tion of these two special cases (Fig. 8 (e))e From such a curve it is
possible to calculate both components of the correction.

Before discussing the practical method of determining these
corrections a theoretical proof of the corrections is given. Fig. 9 (a)
gshows & diagrammatic sketch of the camers in cross section and the posit-
ion of the sphere of reflection. An arbitrary reciprocsl plane has heen
included also. Curve (¢) of Pig. 8 results from a displacement of the
crystallographic axis from the axis of rotatior in a plane that is per-
vendicular to the X-ray beam (chained curve in Fig. 9 (a)). The dist-
ance of this curve from the equatorial line is a maximum wher the
Bragg angle B = 450 and zero when © = 9009 Curve (d) of Fig. 8 is
obtained when the crystallographic axis is displaced from the axis of
rotation in a plane containing the incident beam (curve in crosses
Fig. 9 (a)). The reflections in this case fall on a curve whose maxi-

[o]
mum distance from the equatorial line occurs at & = 90

A vertical section of the camera through the two 450 positions
is shown in Fig. 9 (b). R is the radius of the camera and § is the
angle which the crystallographic axis mskes with the axis of rotation.

i O = 450 the angle between the equatorisl line plane and the zero-
level reciprocal plane is also § because the angle between their normals
is § .

The separation of the zero-layer line from the equatorial line

25



Crystal axis offset in plane

Crystal axis offset in plane

perpendicular to X-Ray Beam containing X-Ray DBean

: ,»””r”**—f—ﬂ4h\\*“‘\\
C X—jf

Curve resulting from situation in (a) on flattened film

]

Curve resulting from situation in (b) on flattened fiim

W

Genersl curve resulting from offset in both planes simultanecusly

Fig, 8, Diagrammatic representation of the
two conditions of offset in the
alignment of a crystal axis with the
rotation axis. (Reproduced from
Bunn (1961) Fig. 108)
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Sphere of reflection.

X-ray Beam

Fig, 9(a). Vertical cross section of camera showing sphere of reflection
and the two curves resulting from the two special cases of
offset of the crystallographic axis from the rotation axis.

P

— —— - —

Film

Fige 9(b). Horizontal cross section of the camera showing the film at the
45° position. Radius of the camera is R and the angle of offset
is § .



28

is x (see Pig, 8 (¢)). To a first approximation when the angle § is
small, x measured on the film is equsl to x' the arc length on a circle
of radius R, the radius of the camera (see Fig. 9 (b)), TFor this particu-~

lar camera the radius is R = 36o/ﬁﬁrmm° = 90/ﬁ’mm°

x! is the arc length subtending the angle § , thus

x'mm, = _NR& $ mme
180
Then §°= 180 x' = 180 x' . XL = 2x' mm,
T R e 90

§°= 2x' mm.
= 2x wmm. on the film.,

It is this distance 2x that is measured from the film. At a
distance of 45 mm. from the direct beam the separation of the two curves
obtained from a long and short double exposure is measured. This dis=-
tance in millimeters, 2x, will be the correction in degrees that must
be applied to the rocker controlling the direction of the crystallo-
graphic axis in the plane perpendicular to the X-ray beam. A similar
result is arrived at if one considers curve (d), Fig., 8, which is for
an offset in a plane containing the incident beam.

Generally, these two kinds of error are combined i.e.,; the
crystal is offset in both planes, and then it is necessary to make

o
corrections to both rockers. The separation of the curves at ©= 45

is measured on the upper and the lower halves of the film. The larger
correction to be made on one rocker is one-half the sum of these two
distances and the smaller correction to be made on the other rocker is
one-half the difference between these two distances. If the separation
of the two curves is the same magnitude on the upper and lower half of

the film, then the correction required is entirely in one plane and thus
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TABLE II

BEXAMPLE OF CORRECTIONS TO ALIGNMENT OF A CRYSTAL AXIS WITH
THE ROTATION AXIS USING OSCILLATION SETTING PHOTOGRAPHS

Darker line

Photograph in Fig, 7 (b) Pogition Separation
Upper half of film lef% 1.70 mm,
Lower half of film right 3.30 mm.

Crystal axis in relation %o rotation axis iss

(a) too far up by 1.70 + 3,30 Zeﬁoin the plane J_to X-ray beam.
2

(v) too far back by|l.70 = 3«30I= 0.8 in the plane containing the

2 X-ray beam.
Darker line
Photograph in Fig. 7 (¢) Pogition Separation
Upper half of film left 1.0 mm.
Lower half of film right 2,2 Mo

Crystal axis in relation to rotation axis is:

1.0 + 2.2

(a) too far up by = 1.6° in the plane 1 +o X-ray beam,

2

(v) too far back by|2°2 = 1°0l = Oeéo in the plane containing the
2 X-ray beam.

The photogravh in Fig, 7 (a) is the result of making this final correction

to the rockers of the goniometer head. The crystallographic axis is oriented

exactly along the axis of the instrument.
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\ /
| \ y
Crystal too far too far toc far too far
Axis back forward up down
a+c a+d b+c b+d
\ / \ /
\ [ \ /
L S
\ / |
! \ / \
/ / \
/|
/ / \
/ \ / \
/ | \ \
! / \ \
‘ ) ) l
\ /\ /\ /
\ [ \ /
~ Crystal too far back too far back too far forward too far forward
Axis: . and up and down and up and down

Pig. 10, Diagrammatic representation of all the possible curve shapes
on oscillation photographs resulting from an offset of the
crystallographic axis from the rotation axis.



on one rocker., If the separation of the curves is zero on either the
upper or lower half of the film, then equal corrections must be applied
to both rockers. In general, neither reading is zero and the two read-
ings are different, in which case different corrections will be required
on each rocker,

There are only eight possible types of curve that may be
obtained from any one setting in which the crystallographic axis is a
few degrees offset from the axis of rotation. These curves are tabulated
in Fig. 10. The first four, (a), (b), (¢) and (8), are errors in align-
ment in ome plane only, while the other four are the possible combina-
tions of these curves. To give meaning to the curves, they are oriented
such that the camera axis is horizontal, with the observer viewing the
photograph along the direction of the incident A-ray beam from the A-ray
tube,

An example of these corrections is given in Table II which
gives measurements that were made on the photograph in Figs. 7 (b)
and (C)e Pigo 7 (d) shows the result of making these corrections and
the type of oscillation photograph that is obtained when the crystallo-
graphic axis corresponds exactly to the axis of rotation. The exposure

times for all of these films were 45 minutes for the long exposure and

15 minutes for the short exposure.

The rotation period can be determined by measuring the film
in the manner shown in Fig. 11. Here the film is shown with the layer

lines corresponding to n=0, 1, 2, By knowing the radius of the camera

R and measuring the separation y of the nth layer line from the zero

31
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Film

I

Fig, 11,

nd

ISf

Diagrammatic representation of the determination of
the rotation period p from the measurement of the

separation y of the nth

layer line.

layer lines from the zexo
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layer line, one can determine the angle
4)= tan™t R/ .

From the relationship given in Section A of this chapter, the rotation

period then becomes

n A
cos tan™t R/ .

p:

An example of such a determination is given in Table IIT,
This tsble contains datas measured from the oscillation photograph of
sillimanite shown as Fig. 12 (a) in which the axis of rotation is a
[100] and the radistion molybdenum Kcie It can be seen from this table
that each layer line gives one value of the rotation period of that
particular axis., Fig. 12 shows prints of oscillation photographs obtained
about each of the three principal axes in sillimanite. The values of

the rotation periods obtained from these photographs are,

ao = 7958 X
b = 7.78 R
o, = 5:83 2

It was later found that all three values were too large by
approximately 1.4%., The reason for this method producing inaccurate
results is due to the inacecurate knowledge of the effective camera rad-
ivs. It was necessary to include extra paper in the jacket to make it
light tight. This would effectively reduce the radius of the camera
thus increasing the calculated rotation period. The larger the n value
of the layer line, the more accurate the value of the rotation period
because of the reduction of error in measuring the separation of the

two lines.
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Fig. 12(c). Oscillation photograph taken
gbout ¢ [001) Mo/Zr radiation.
Rotation period = 5.83 A,
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TABLE III
DETERMINATION OF ROTATION PERIOD FROM.

OSCILLATION PHOTOGRAPH ABOUF & [100)

o}
Radiation: Molybdemum Kg, A= 0.7107 &,

Radius of the camerat R = 28,65 millimeters.

n 1d 2d 30! 40 50 6ol 7 80!

Right (mm.) 84,90 870,65 90,60 93.77 97.45 101,72 107.33 115.30
Left (mm,) 79652 76,77  T3.84  T70.60 66,99  62.66 57,15 149,30
2 y (mm.) 5,38 10,88 16.76 23.17 30.46  39.06 50,18 66,00
y (mm.) 2,69  B.hls 8,38  11.59 15,23  19.53 25.09 33,00

ﬁan(i)=§=,.£f£n,i.),, 10,650 5,266  3.4186 2.4729 1.8810 14669 1.1418 0.8681
J (mme)

cos d) 0.0935 0,1866 0,2810 0.3743 004695 05633 006585 0.7552
o
n A (&) 0,7107 1.4214 2,1321 2.8428 3.5535 L4.2642 L.9749 5.6856

o]
p=n A (4) 7060 762 7459  7.59 757 7.57 7455 7453

w05 &

Average value of a [_100] = 7.58 xe




Fig. 13 (a) shows a photograph obtained while attempting to
orient the crystal sbout a [100h This photograph lacks the symmetry
characteristic of orthorhombic crystals rotated about a principal axis,
and it yields a large value for the rotation period? 16,24 go (Notice
that there are very weak reflections half way between the prominent layer
lines.) From a knowledge of the known cell dimensions it is possible %o
identify the lattice row with a period of =bout 16.2 z» The mammer in
which the approximate value of the rotation period was found is shown in
Fig, 13 (b) where it can be seen that the rotation period in this case
is likely [201] which has a value of 16.15 Za By measuring the angle
between [100] ana {20i}, (210)s en angular correction was determined but
the direction of the correction could only be determined by trial and

error. Subsequent photographs finally produced the one shown in Fige

12 (a) in which the crystal is accurately oriented around a[}Od]o




Fig. 13(a). Oscillation photograph obtained while attempting
to orient the crystal sbout a |10Q) . Rotation
axis {201) rotation period 16,2ia,Mo/Zr, :

7

Fig, 13(b). Determination of the approximate value of the rotation
period (201] from a knowledge of the cell dimensions

a. and Coe

(o]




CHAPTER V

THE WEISSENBERG METHOD: CELL DIMENSIONS,

SPACE GROUP AND INTENSITIES

A  Introduction

Until recently the Weissenberg method was the commonest
of the moving-film methods but now the precession method often suppi;==
ments or replaces the Weissenberg. Weissenberg photographs are dis-
torted pictures of the reciprocal lattice whereas precession photographs
are undistorted pictures of the reciprocal lattice. The disadvantage
of the precession method is the use of a flat film to record the reflect-
ions, thus limiting the nuwber that may be observed.

It is possible to index all the reflections observed on an
oscillation photogravh, and so such photographs may be used to gather
intensity data. The details of the technigque are described in Henry,
Lipson and Wooster (1960), and in Bunn (1961). The disadvantage of
this method lies in the number of oscillation photographs that are
required to record all the reflections of one zone, say all the hkO0
reflections. The interpretation of these photographs for the purpose
of indexing is also tedious and there is the possibility of ambiguity
in the indexing of some reflections.

It has been shown in the previous chapter that when a crystal
is rotated about a crystallographic axis in a monochromatic X-ray beam,
cones of reflections are sent out and they appear on the cylindrical
film as straight rows called layer lines. If the axis of rotation is

the ¢ axis then the central or equatorial layer line is made up of hkO



reflections, the first layers on either side of the cenitral row are

the hkl and hkl rows, etc. In the Weissenberg method, one of these
layer lines is chosen to the exclusion of all others and the reflec-
tions are spread out over the whole area of the film. By this method
all of the hk0 reflections can be recorded on one photograph, and all

the hkl on another, etec. When each £ilm has been interpreted one obtains
projections of the reciprocal lattice from which the correct axes, cell
dimensions, and spzce group extinctions may be obtained,

_The experimental set-up for a normal-beam Weissenberg photo-
graph is shown diagrammatically in Fig. 14. The same general arrange-
ment of the rotating crystal method is used except that a slotted screen
is placed between the crystal and the film. The normal-beam method is
characterized by having the axis of the crystal rotation normal to the
incidentmeray beam., The camera containing the film translates
coaxially with the crysfallographic axis and the axis of rotation, and
synchronously with the rotation of the crystal. The slotted screen is
adjusted to permit the passage of only one of the cones of reflections.

In most Weissenberg cameras, the arrangement is such that,
as the crystal rotates through 180O the camera translates 90 mm. Thus
a translation of 1 mm. of the camera is equivalent to a 2° rotation of
the crystal. By measuring the lateral distance between ény two reflect-
ions on a film, the amount the crystal has turned between these two
reflecting positions can be measured. In all systems but the hexagonal
and triclinic, the lattice planes (n00) and (0k0) are at right angles
to each other. Therefore when a Weissenberg photograph is taken about

c [boil, the distance between the two rows on the film which contain
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Figo 14, Experimental arrangement of the Weissenberg moving film goniometer
for the recording of the equatorial layer by the normal beam method
(Reproduced from Bunn (1961) Pig. 103(a)).
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Fige 15, Weissenberg photograph O ¢ [OOi] of the zero layer hk0 reflections
taken by normsl beam method using Mo/-radiation. Only the upper
half of the film is included. Prominent primary lattice rows are

shown by the white radiation streak. Principal axial rows are marked
h and k and the festoons are also shown on this photograph.
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the different orders of reflection from these two planes is
45 mm.(=90°). Similsrly, in any crystal system the distance between
. . 0
the rows of reflections from (hOO) and (hOO) is 90 mmo(=180 )e
Due to the synchronous translation of the camera with the
rotation of the crystal, successive reflections from one reciprocal
lattice row passing through the origin fall along a straight line

making an angle of tan"l.g = 63°26" with the horizontal. Reflections
1

corresponding to reciprocal lattice rows that are parallel to rows

that pass through the origin are arranged on a family of curves called
festoons as may be seen in Fig. 15. A rotation-translation correspond-
ing to at least 180° is required to photograph all of the points in a

reciprocal lattice plane possible with a particular X-radiation.

B Plotting the Reciprocal lattice from a Weissenberg Photograph

In order to plot the undistorted reciprocal lattice from a
Weissenberg photograph it is necessary to locate each reflection by
two coordinates that can be measvred from the film. It is possible to
read cartesian coordinates from the film referred to the edges of the
film but these are not convenient as they must be corrected for the
translation of the camera. A special template that is described in
Buerger (1942, Chapter 14) is used to determine the necessary coordine-
ates for plotting. This template is shown in Fig. 16 reproduced from
Buerger (1942, Pig. 145). The horizontal coordinate of a spot is read
from a millimeter scale placed along the bottom of the template. This
reading (x) corresponds to the angle of turn or the angle of azimuth @

of the reciprocal lattice point., Since 1 mm. = 20, x in mm. must be

multiplied by 2 to give @ in degrees. The second coordinate {z)



Figg 16,

Special template to measure x and z coordinates from
a normal beam Welssenberg photograph in order to pre-
pare g plot of the reciprocal labttice. x in mm., is
measurad on the Qworizontal scale and z in reciprocal
lattice wnits is measured on the inclined scale.
(Reproduced from Buerger (1942) Fig. 145),



giving the polar coordinate in reciprocal lattice units, is read from
the inclined edge of the template. In order to produce a convenient
size for the reciprocal lattice representation it is customary to
multiply z by 10, These two coordinates and the estimated intensity
(v,sa, Sog Moy Woy Vow.) are read for each o< reflection on the
Weissenberg photograph. It is usual to start at the extreme left hand
side and read the points successively from left to right. For the pur-
pose of determining the correct reciprocal unit cell, only one half of
the film need be read.

Once the readings have been recorded for the complete half
of the film (see Table @) it is & simple matter to plot them on polax
coordinate paper. Fig. 17 shows the reciprocal lattice zero-layer
(n0f) of sillimanite for Mo K, radiation. From this figure it is
usually apparent which are the axial rows so these may be traced back
to the film. All the reflections appearing on one festoon will fall
along the same straight line in the projection. All the reflections
that are on one inclined straight line on the film (central lattice
row) appear as a straight line that passes through the centre of the

reciprocal lattice projection,

C Choice of the Reciprocal Unit Cell

Once the axial rows have been determined from the reciprocal
lattice plot, a mesh may be drawn that passes through all the points.
In the case of sillimanite which is orthorhombic an orthogonal net was
dravn (See Figs, 17 and 18). However the reciprocal lattice cell
defining this mesh will not necessarily be the true reciprocal cell

because of systematically missing reflections. Therefore it is necessary

Ly
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TABLE IV
DATA FOR PLOTTING A WEISSENBERG PHOTOGRAPH: ho{ REFLECTIONS OF SILLIMAWITE

x is the azimuthal coordinste in mm., z the polar coordinate in

reciprocal lattice uvnits (ralau,)

Refl, No, 1 2 3 b 5 6 7

I nm_ v .. m_  __wW._ _.w 8 _ _.m_
hk { 16°0°2  18°0°2 1h4e0eL 18°0°6 16°0°6 804 1h4e0-8
Xy DM 31.1 31.1 36.3 3861 39.0 L2.5 Lly b
2y Tolslo 1@52 le?l loL!‘O 1084 1967 0989 1063
Refl, No, 8 9 10 11 12 13 14

I g _vs —_—V Vs VS O A W
hk{ 10046 604 10-0-8 202 Lo 4 666 707
X, MM, 45,0 he.2 49,0 5202 5262 5262 52,2
Zy Tololls 1.18 0,74 1.35 0,31 0,61 0,92 1.08
Refl. Ho, 15 16 17 18 19 20 21

I I I S - Vs __ w8 mo
hk 808 10°0°10 608 L g6 8012 204 Lo 8
Xg MM, 5202 5292 5691 5?05 5?05 6096 6096
Zy Tololo 1.22 1,54 1.12 0.82 1.64 0652 1.04
Refl. No, 22 23 24 25 26 27 28

I m . .m ___ s _ o _vw _ Vs vs _
hkyg 6+¢0°12 4°0°10 20 6 LeQell 10 5 002 004
X, M, 60@6 6298 6431 6593 6?@0 7105 7195
Dy TeloUo 1957 1927 0975 le?L}’ 00_61 09214’ OeL{’S
Refl. No, 29 30 31 32 33 3 35
T m o vs _ m o W _ s Voo ms
hk{ 006 008 0:0°12 20 6 LeQollh L.0:10 204
X, Mo 71.5 71.5 715 7709 7845 80,0 81.9
Zy ToloeUs 0972 Oa97 1e1+6 1975 0075 1927 0052
Refl. No, 36 37 38 39 40 41 L2

I w W S m Ve s m

hk 4 LoB 6012 408 608 202 LOE 6078
X, M, 81l.9 8l.9 85.0 86.5 90.1 90,1 90,1
Zg Tololo 1,04 1.56 0.82 1,12 0+30 0,61 0.92
Rerl, No, L3 Ll Ly Le 74 Lg 49
I mo__ W vs _ mo_ Vs _ s _ W _
hk 808 10010 604 10:0:6 Lo 2 8 0 4 703
Xg MRle 90.1 90,1 9650 9‘795 9909 9909 10109
Zy Tololo 1.22 1.54 0.73 1,18 0.44 0,88 0.7k
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X, Mo

Zy Telolo
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hk{
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Refle NOo
1

hk(
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Zg Tolole

Refl. NO@
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hk4

Xy Mo
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10°0°4
102.9
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6l

703
130.9
0.73

71

Vs
202
1424
0.30

8 0 4

132.7
0.87

54

vs
200
116.3
0,17

61
m

602
128 60
0.60

68

m
10°0°6
135.2
1,17

75

W
10-0.10
142.4
1.52

82

Vs
002
161,.2
0.24

55

vs
Loo
116.3
0.36

62

vw

162046

129.7
1.66

69
vs

604
136.6
0.72

56

s
600
116.3
0.55

63
vw
10004
130.2
1,04
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The reciprocal axes are labeled x* and z*,
uged to prepare this plot are listed in Table IV.

Fige 17, Reciprocal lattice plot of the hod layer of sillimanite,

The readings
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gillimanite.

18, Reciprocal lattice plot of the upper h2@ level of
This was used in conjunction with
“the plot in Fig. 17 %o choose th

e reciprocal onit



to examine upper level Weissenberg plots, usually the lst and 2nd,
along with the 0 level plot to determine the true cell, The plots of
the upper-level photographs are superimposed on the zero-level glot so
that the true reciprocal lattice net which includes all the reflections
of all layers may be correctly chosen,

This situation occurred in the case of sillimenite: on the
0k{ projection all reflections with k=2n+l are systemstically absent
but first and second-level Weissenbergs revealed the true reciprocal
iattice net. The reciprocal unit cell of sillimanite was determined
by the above methods. 4 right hand rule was used to define the positive
ends of the three principal axes, x*, y¥, and z%¥., This cell was chosen
to make c* > a¥* > b* which resulted in the direct cell having the con-

ventional setting ¢ <{a { b,

D  Indexing the Reflections on Weissenberg Photographs

Once the unit net has been chosen on a reciprocal lattice plot
all points can be indexed directly. One need only use the reciprocal
lattice plot in conjunction with the measured data (such as that in
Table IV) to index all the reflections on a Weissenberg photogranhe.
This is the way in which the indices hk{ in Table IV were arrived at.

There is a second method that is described in Buerger (19423
Do 280) which makes use of a "Weissenberg chart" or template that can
be superimposed on the film to read the indices of each reflection.
This template has been reproduced from Buerger (1942, Fig. 148) and
is shown as Fig. 19. A dot copy of the photogravh, made on tracing
paper, is placed on the template so that the two principal axial lines

such as h0OO and h0O correspond with the sloping left and right margins
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of the template. The reflections on the film or dot copy are then

found to line up on or between the lines (this depends upon the ¢
spacing and camers constants). Thus lines parallel to ones on the
template may be drawn through the spots, each line representing lattice
points arranged in a lattice row. When all lattice rows of the one type
have been traced on the template, it is then shifted so that it lines

up with the second principal axial lines such as 004 and Od? and the
reciprocal lattice rows again drawn in as before,

One system of lines is labelled, 104, 20%, 308, etc., while
the other is labelled h0l, h02, h03, etc. HBach spot or reflection now
lies 2t the intersection of two of the above lines and can be indexed
accordingly. Care must be taken not to omit any of the accidentally

missing lattice rows by observing the regularity of the d spacings,

E Determination of the Space Group

The term point group symmetry implies that all symmetry
elements must pass through one point. However, in considering space
groups there is the added degree of freedom of translation, in which
the symmetry elements do not have to pass through a single point,

These additional translations result in certain modifications in the
diffraction of X-rays. Lattice centering and symmetry operations
involving trenslation have the effect of extinguishing certain classes
of reflections. Thus a list of the extinctions of a given crystal is
characteristic of the translation operations which produced them.

The determination of a space group from & list of systematic-

ally absent reflections is given here using sillimanite as an example.



This mineral was reported by Taylor (1928) to e orthorhombic in
symmetry. This has been confirmed in the present work by measuring
the separation of the principal axial lines of the Weissenberg photo-
graphs. In all three cases the separations were 45mm. corresponding
to interaxial angles of 9003 The non-equality of the three axial
lengths (e <{ a <:b) was demonstrated in rotation photographs and also
from a preliminary examination of the Weissenberg patterns, which is
discussed in a later section.

Examination of the reflections of type hk{ provides infor-
mation on the type of 1atticé. In the orthorhonbic systenm the presence
of glide planes is determined from the gones of reflections hk0, h0f
and 0k{ and screw axes are detected from an examination of the reflect-
ions of type h00, 0kO snd 00{. The theory behind this is discussed in
Buerger (1942, Chapter IV), This work confirmed Taylor's (1928)
observations that reflections with {=20%1 were scarce and the intensit-

ies were weak in comparison with reflections having {=2n.

From the indexed Weissenberg photographs the following extinct-

ions were determined.
(nx): all present
(nk0): all present

(n0¢): present only with h+Q = 2n

(0k#): present only with k = 2n
(n00): present only with h = 2n
(OkO): present only with k = 2n
(00¢): present only with 4 = 2n

The fact that the {th}reflections showed no extinection con-

ditions confirmed the fact that the lattice is primitive (P). The

52



other extinction conditions lead to two possible space groups as listed
in the International Tables (Vol. I, 1952) Pnazl and Poma (numbers 33
and 62 respectively).

The present author's choice of axes (e {a <'b) requires that
these symbols be cyclically permuted to correspond with the observed
extinctions. The two possible space groups are thus written as an21
and Pbnm. The final choice between these is discussed in the follow-

ing section,

F Xeray Analysis for Centrosymmetry

The space group anzl has no centre of symmetry whereas Fbnm
is centrosymmetric. Thus if it can be determined whether or not
sillimanite is centrosymmetrical, a choice between these space groups
can he mades,

An analysis for centrosymmetry in sillimanite was made using
the X-ray method devised by Howells, Phillips, and Rogers (1950). This
is a statistical test that may be applied to intensities observed for
reflections of the type hk{. The presence of a centre of symmetry tends
to create large intensity differences from reflection to reflection
vwhereas the absence of a centre of symmetry smoothes the intensity dis-
tribution so that it is more uvniform. This test is not applied to
special reflections of the type hkQ, hOQ, or 0k{ because the zone which
they represent may be centrosymmetric, even though the crystal has no
centre of symmetry.

The N(Z) test of Howells, Phillips and Rogers is described
in Lipson and Cochran (1953). The reflections are divided into several

groups according to their sin 69/%. values. The range of sin E?/A.
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Fige 200

Stereographic projection of the symmetry
elements of poimt group 2/y 2/n 2/ms
showing the different multiplicities of
the reflections hk0, hOf and hk{.
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for each group is chosen so that the number of reflections contained
in each group is approximately the same, and the number of reflect-
ions in each group is large enouvgh to have statistical meaning.
Systematically absent reflections are not included but accidentally
absent reflections must be included with zero intensity. The theory
does not apply to very low values of sin 8/A .

In practice one calculates the sum of the uncorrected inten-
sities and then the average intensity'<1:> of that group. In the
orthorhonbic system for the calculation of <:I>’ half weight is given to
reflections such as hkO, hOﬁ and 0k{. The reason for this may be seen
from Fig. 20. This is a projection of the point group 2/m 2/m 2/me
Examples of the different types of reflections are shown as hkO, nof
and hkf. Notice that the intensity of the reflection from an hkf plane
is divided into eight positions while that from the hk0 and h0f zones
is divided only into four.

Progressive fractions, %, of the average intensity are selected
and the percentages N(Z) of the total number of reflections whose inten-
gsities are less than or egual to the fraction 2 are calculated. Howells
et al. have shown that the fractions N(Z) are given by N(Z)=1~exp(~z)
for non centrosymmetric crystals, and by N(Z)=erf(%2)% for centro-
symmetric crystals, where "exrf" is a complicated error function for
which values have been determined. Finally the calculated values of
N(2) are compared graphically with the theoreticsl values for centro-
symmetry and for non-centrosymmetry.

This test was applied to the hkl, 5k{ and h5{ reflections of

sillimanite. In order to include enough reflections in each sin & /A
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Pig, 21(a),

Z (%)

Graphical representation of the results of the N(Z)
test for centrosymmetry on the 5k{ reflections of
sillimanite. The experimental points indicated by
crosses refer to the groups in Table V in which
reflections of Q=2n+l are omitted whereas the points
denoted with circles refer to the groups of 5k{
including all reflections. The theoretical curve for
centrosymmetry is indicated as a solid line, that for
non-centrosymmetry as a dashed line,
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Graphical representation of the results of the N(Z)
test for centrosymmetry on the h5{ reflectiorsof
sillimenite. The experimental points are indicated
by crosses and refer to the groups omitting the
reflections with ! =2n+l. The theoretical curve for
centrosymmetry is indicated as a solid line, that
for non-centrosymmetry as a dashed line.
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Graphical representation of the results of the N(z)
test for centrosymmetry on the hkd reflections of
sillimanite. The experimental points are indicated
by crosses. The theoretical curve for centrosymmetry
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group, only two groups were chosen for each of the three zones of
reflections. In the course of applying this test it was found that

the groups of reflections SkQ and h5{ gave values that were much too
large for the low values of Z, even for the case of centrosymmetry.

This was due to the fact that reflections with {= 2n+l are very weak or
unobserved thus tending to increase the number of reflections in the
groups of low Z value. In order to correct for this, all reflections
with { odd were omitted from the calculations in zones h5f and 5k{ .
Details of the calculations are given in Table V which includes the

two cases for 5kl only for comparison. Graphical comparisons with the
theoretical values are reproduced in Figs. 21 a,byc. In a2ll three cases
the experimental curve is in reasonable agreement with the theoretical
case for centrosymmetry. Thus the space group can be chosen most likely

as Pbnm.

G Determination of Accurate Unit Cell Dimensions of Sillimanite

Approximate cell dimensions may be obtained from rotation
photographs by the methods outlined in the previous chapter. However,
since the interatomic distances and bond angles depend upon the values
of these cell edge lengths, it is desirable to measure them to an
accuracy of one part in one thousand. There are several methods listed
in the literature of obtaining this precision in measurement. Buerger
(1937) suggests the use of a Weissenberg “back-reflection camera.
Farquhar and Lipson (1946) employ this same technique using the oscillat=
ing crystal principle. Weisz, Cochran and Cole (1948) describe a method
using a conventional Weissenberg camera in which one scans for the exact
position of high order pinacoidal reflections and thus accurately

measures (@ values. This is called the "theta' method. C.L. Christ (1956)
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describes 2 method for the precise determination of lattice constants

of single crystals using a Weissenberg photograph using an internal
stendard., In essence the method involves the determination of a film
correction factor, as a function of angle e s by the superposition of
the powder pattern of a standard calibration substance on a zero-level
Weissenberg photograph of the single crystal in which one is interested.
It was this last method that was used by the anthor for the determing-
tion of the cell dimensions of sillimanite.

Weissenberg photographs of the gero layers (hkO, h0f and Ok{)
were prepared in the usual way, except that the translation of the
camera was set so that there would be two centimeters of unexposed film
on either side of the Weissenberg pattern. The goniometer head contain-
ing the crystal was then removed and replaced by a head containing a
thin wire of 59 grade Aluminum (99»999%) which was used as the standard.
The Veissenberg layer screen was replaced by a specially prepared screen
with a slot of 1 cm. width, and powder patterns of the Aluminum were
recorded on either side of the Weissenberg pattern. The regular
VWeissenberg layer screen was used to record the narrow patiern seen
on the right hand side of Fig. 22. This is a photograph that was
obtained around [COi] of sillimanite using Cu Kégpradiation whereas
the powder patterns were recorded using Ni filtered Cu radiation,

The films were measured as follows. First, the Al powder
patterns were measured by means of a travelling microscope to the
nearest .005 cm. Both patterns on either side of the film were read

to give average values of ) The Weissenberg patterns were read

meas, ®

in a manner which differed slightly from the normal method. The



Pige. 22, Zero layer VWeissenberg taken about c¢ [OOl]
with Cu/- and superimposed Al powder pattern
used as an internal standard for the deter-
mination of accurate cell dimensions by the
method of C. L, Christ (1956). The Al
pattern was recorded with Cu/Ni radiation.
The cell dimensions from this film are given
in Table VI,
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travelling microscope was used to measure the separations of the
indexed reflections along a principal lattice row, i.e. along the
white radiation stresk (2s! in Table VI), In order to determine

the trve separstions normal to the direct beam stresk (2s mm.) the
separations of the spots were measured in this manner and then
corrected for the traverse cof the camera by multiplying each separa-

tion by sin 63°26' (ie sin tan~t 2), Table VI contains the details
T

of the calculations made for the photograph shown in Fig. 22.

The determination of the correction factor for the films,
which is designated ¥ (0 ) = © theor./ e meas.,for the calibrate-
ing substance Aluminum, was made by first of all calculating the
values of Al from the cell edge a,= @004943 as determined by Swanson
and Tatge (1953). Then the ratio k { © ) for each reflection of the
Al powder pattern was plotted against © meas. Corrected © values
from which d spacings were calculated for sillimanite were obtained
by multiplying the value of k ( ©) as read from the graph (See Fig.23)
for the corresponding value of & measured from Weissenberg photo~

graphs of the sillimanite crystal.

The final values of the cell dimensions were calculated
from the area of the film which was felt to b; most free of errors.
This area of the film was 30° <‘55 <;6003 For each of &, and b, 2
total of ten separate determinations were made, eight were made for
Cp The results of these determinations are listed in Table VII.
The accuracies in Table VII are the root mean square deviations of

the +total number of determinations for each cell dimension.
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TABLE VI

ACCURATE DETERMINATION OF 2y and bo FROM nhk(0 WEISSENBERG

The data here refer to Fig. 22

2s' is the separation measured along the white radiation streak, Zis the

separation normal to the direct beam streak.

3o

e

Index Refl. Right(mm,) Left(mm.) 2s'(mm.) 2s(mm.) G?(Cu) éf(Cu) dme
corr

200

40 o

600

800

10.0.0

o)
From this photograph, best a(100) = 7.476 A

A

<

é

cx
¢
6
o4

Xy

B

105,60
106.88
117.84
120,60
131,16
13586
146.80
164.39

178.40

8l.92
80.62
69,66
66,94
56434
51.68
40,76
L2 ,24

L2.00
103.31

23,68
26.26
48,18
53.66
74,82
84.18
106.04
122.15

122.60
75.09

%

21,146
2345
43,02
47.92
66.82
75,18
9,69
109,08

109.48

10.57
11.725
21.51
23.96
33.41
37.59
k7,345
54,54
547l
67,06

Tndex Refle. Right(mm.) Left(mm.) 2s'(mm.) 2s(mm.) gf(Cu)

020

04O

060

080

From this photograph, best a(010) = 7.662 X

L R T R ®

-

2L R w

a4

122,86
124,10
134,80
137.46
147.70

152.20
111,26

111.26

111.26

99.66

98,42
8774
85,06
74.85

70.32
59094
52.38

52,16

23020
R5.68
47.06
52,40
72.85

81.88
51.32
58.88

59.10

20,72
22.93
42,02
46,79
65.06
73.12

10.36
11.46
21.01
2340
32.53

36.56
45,83

52.58
52.78

0
A
a8,

10,710 3.745

11.882 3,741

21.822 1.8725

2L,315 1.8725

33,940 1.2467

38.203 1.2465

48,164 0,9343

55,527 09342

553731 Oe9343
68,361 00,7489

(o]
C
8%
10.50

11.61
21.31
23.75
33 .04

3715
46.61

53.52
53.72

d A
meas.
3.820
3.828
1.9154
1.9150
1.2767

1.2768
069579

0.9579
0.9579
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[o IS
a(100)a

7,490
7,482
70490 , 1
7490 :
704791

7479
7474
7474

7.7k |
7,489

Q
a(010)A

746140
7656
7.662
70660
7.660)

7,661
79663 r

7.663
7.663]




TABLE VII

ACCURATE TNIT CELL DIMENSIONS OF SILLIVANITE

Best values from the three zero-level VWeissenberg photographs

O *
a,= 7.476 £ ,003 A
b= 7666 T .005 2
o]
c = 5.763 T ,003 4
Ve 330.28 %

#* The ¥ values listed here are the estimated standard deviations,

not the probable errors.
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O Measgurement of the Iniensities

Fhotographs for intensity messurement were taken with une
filtered Molybdenum radiation by the Weissenberg camera using the
normal beam method as described in Sections & and B of this Chapter.
Great care was taken in aligning the crystal for these measurements.
The intensities of the reflections were recorded using a multiple
film pack technigue to provide as wide a range of intensities as
possible in order to facilitate the reading of these intensities by
visual estimation. The multiple film pack consisted of three sheets
of film interleaved with brass foil 0,001 inches thick. 4Also, to
further increase the range of measurable intensities, a long and
short exposure of each zero-layer was recorded. The time ratio of
the long to short exposure was approximately 4.83 the ratio IL/IS
calculated from the films after the intensities were read was 4.48,

Since at the outset of this project only s 2-dimensional
refinement was planned, only 2-dimensional intensity data were recorded
and measured. Two sets of photographs, a long and & short exposure,
were recorded for each of the three zero layers, hk0, h0{ and Okf,
Indexing of the Weissenberg photographs was accomplished by means of
Weissenberg charts as described in section D of this Chapter and one
chart was drawn for each zero layer,

The intensities were measured by visual comparison of the
spots on the Weissenberg pattern with a standard intensity scale.
This intensity scale was prepared in the following manner. First of
all a suitsbly strong reflection had to be isolated. Such a reflect~
ion would be one sufficiently strong to give a barely verceptible

spot on the film with one oscillation. Starting at the extreme left



Fig@ ZL"e

The isolation of a suitable reflection used
to prepare the intensity scale. The
reflection is in the eighth range recorded.
The exposure time for each range was 3
minutes and the camera was moved laterally
through 3 mm. between each exposuxre,
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end of the camers traverse the corresponding reading on the gonio-
meter drum was recorded. wSuccessive three~minuté exposures with an
oscillation angle of twelve degrees including a two degree overlap
on either side of the range were recorded. After each exposure the
camera was moved a distance of three millimeters on the camera scale
so that the patterns are all recorded on one film (see £ilm in Fig. 2@)5
A total of sixteen overlapping ranges were recorded and a suitable
reflection was found in the eighth range. The above procedure was
again employed in order to isolate the chosen reflection using an
oscillation amplitude of two degrees on the goniometer drum with a
one degree overlap between_eaoh exposure. The camera was moved
laterally through three mm. between each exposure as before. The
reflection was found in only the eighth range of the twelve ranges
photographed, and the 2% oscillation of this eighth range was used
to prepare the intensity scale. Using a triple f£ilm pack like that
used to collect the intensity data, the intensity resulting from one
oscillation of the crystal was recorded. The camera was then dis-
place@ several millimeters and the intensity resulting from two
oscillations was recorded. This procedure was continued so that the
final intensity scale consisted of 32 spots ranging in intensity from
one to 354, The recording of the scale on a triple film pack meant
that each film of the Weissenberg pack had its own intensity scale.
The scale and a Weissenberg pattern are shown in Fig. 25

The intensities were measﬁred successivly along each lattice
vow and the results recorded on large squared sheets. Both the upper
and lower halves of the films were exemined and all possible visnal

intensities were estimated. Due to the orthorhombic symmetry of

sillimanite reflections with indices of the type hk0, Eko, nkO and
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L kO are all eguivalent, and thus only the positive indices had to be
recorded (hko9 0k, and hOQ)g Thie multiplicity however, allowed in
gome cases a maximum of eight readings to be made for one intensity

on one film using both uwper and lower halves of the film., In the case
of the axial reflections h00, 0k0 and 00{, at least three readings of
each were recorded. The best value of the intensity was chosen as the
average of all the estimated values for that particular reflection.
The short exposure Weissenberg photographs were used to measure the
intensities of only the very strong reflections which were too strong
to be read even from the outermost film of the three film pack used to
record the long exposure. The moderately strong reflections were used
to put the long and short exposures on the same relative scale,

By measuring the intensities in the above manner one obtains
values for the intensities which are on a relative scale. No attempt
was maede t0 put the three zones on the same relative scale,since in
the computations each zone (nko, 0x{, ho{) was to be treated as a
separate job, and because after the first calculation of structure
factors using Taylor's (1928) parameters scale factors were determined
for placing the Fu's on an absolute scale. These factors were found

t0 be very close to 10,

I. Derivation of Structure Factors from the Intensities

Having obtained a set of experimentally observed intensities
it is desirable to convert them to a set of structure amplitudes. The
structure amplitude is the magnitude of the "structure factor" which
is directly related to the kinds and positions of the atoms in the
unit cell, and so may be calculated when the structure is known. These

structure factors are discussed more fully in Chapter VI.
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The amount of energy determining the intensity I of reflect-
ions on a Weissenberg photograph is rvelated to the structure factor
F by the expression
I = KipF?
where K is a proportionality constant, L the Lorentz factor and p the
polarization factore.

The Lorentz factor takes account of the variation in observed
intensities due %to certain reflection planes remaining in a reflecting
position longer than others., This factor is dependent on the geometry
of the method used to record the reflections. Buerger (19609 Chapter VII)
deals guantitatively with the Lorentz corrections that must be applied
for each single-crystal method. For the Weissenberg method this factor
is expressed as L = 1 where ?’is a reciprocal lattice coordinate

€ cos ©
and thus a function of h, k and £ .

The polarization factor p depends only on the glancing angle 6
and not on the X-ray method employed to record the intensities. The
intensities vary with & duve to the polarization of the X-ray beam
after reflection from crystallographic planes. This factor is expressed
by the relation p = (1+c082 260 )/2,

It may be seen that both these factors are simple trigonometric
functions of © , and they are ususlly applied together in a single Ip |

correction factor expressed as

2
2lp = 1 +cos 2@ .
g‘cos )

2
Tn solving the equation for I expressed above for F each intensity may

be corrected for these two geometrical factors by multiplying by _1_ -«
2Lp

These 1 values were determined graphically by means of the reciprocal

2Lp
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lattice projections,; and scales prepared from curves of constant _1_
2Lp

as a function of reciprocal lattice coordinates f?and ghpublished by

Cochran (19@8)9 Relative values of ¥ were obtained by taking the

square root of the values of F2 50 obtained for each reflection. These

relative values of F were placed on an absolute scale by the methods

described in the previous section.

Another factor which is usually corrected for in full scale
structure determinations is absorption of the X-ray beam by the crystal,
This absorption depends upon the chemical composition and the size of
the crystal and on the radiation used. It can be shown by calculations
that for a crystal of sillimanite 0.25 mm. across,the absorption using
molybdenum X-radiation is negligible,

In order to distinguish between the observed structure factors
and those calculated from atomic positions, the conventional symbols
F, and FE respectively are used throughout the remaining chapters in

this dissertation.



CHAPTER VI

THE STRUCTURE FACTOR

A Derivation of the Equations

A structure determination involves the elucidation of the
arrangement of the atoms in a crystal and this is done by analyzing
the effect of the arrangement on the intensities of the diffracted
X-ray beams. The wave scattered from each hk{ plane is characterized
by a complex quantity, Fhk}’ called the structure factor. This struct-~
ure factor can be written as a function of the coordinates of the J
atoms in the unit cell of a crystal. Thus for a particular arrangement
of atoms in a unit cell, there is a set of specific diffraction waves
g e

In a structure analysis a structure model is proposed, the
validity of which is determined by the comparison of the structure
factors, F,, calculated for this model and the observed structure
factor Fbe For the proposed model to be the correct one the computed
set of Ehkﬂts must match the observed set of Fhkﬁ's°

As mentioned in Chapter III, the electrons of the atoms in a
crystal are the scattering units. However, it is more convenient to
think of the scattering units in a crystal as the chemical atoms, If
the amplitude of the wave scattered by the jth atom in a vnit cell is

f. then the scattered wave is described in amplitude and phase by

i
f.e (b.y where d)
J

3 J

of the coordinate system. &4 wrigorous derivation of this is given in

is the phase angle of the wave referred to the origin

Buerger (1960)3 At the maximum of the reflection from the plane hkQ

the resultant wave from all the J atoms in the unit cell is given by
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£ oexp (4 (P)
d

j=1

R =
hk{

The phase angle d)‘ may be expressed as a function of the fractional
|

o

coordinates Xj’ Y5 and zj of the atoms in the unit cell:

D= 2Tilhx, + ky. + .
@3 (o, + ki, +0y)

g0 that the structure factor can be written

J

J=1

Notice that from these expressions the structure factor is
a complex guantity and is in general characterized by a magnitude
thkﬂ‘ and a phase d)hkﬂa The magnitude is observeble by experimental
metheds but the phase cannot generally be observed by present day methodse.

If the scattering power of one electron is taken as unity and
all the electrons in an atom are assumed to be concentrated at a single
point then the scattering power of an atom fj will he its atomic nuwber
4, However, in an atom the electrons are found in a volume and thus
the waves scattered from the electrons in one atom will interfere with
each other, This destructive interference effect increases with
increasing © and this is shown diagrammatically in Fig., 26 where f .
can be seen to fall off with increasing sin 8/A . Notice that at
sin Q‘/R\ =0 the diffracting power of an atom is equal to its stomic
number Z,

The expression for the structure factor can be written in

component form as
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Fige 26. Atomic scattering factor curves
for Si+4, 81% ana 072, £ values

taken from Freeman (1959)9
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where A = f.cos 2T (hx, + ky . +ﬂz‘>
J J J J

J=1

J
and B = £ osin 2T(hx, + ky, +fz )
J J J dJ

J=1

In these expressions all the terms have the meanings described above.
Prom symmetry considerations, considerable simplification of these
equations can usuvally be made.

For crystals having a centre of symmetry which is chosen as
the origin of the coordinate system, there is no need to calculate the
sine terms because, for every atom, X, ¥y, 2 having a phase contribution
of d)xyz there is an identical atom X, ¥, 7z with phase contribution
- d)xyz° Thus in summation their contributions are equal in magnitude
but opposite in sign and so B = 0 for the origin at a centre cf symmetry.

A further simplification is applicgble dve to any further
symnetry of the space group. In any space group there are in general
m equivalent positions. Thus by taking account of these m positions
one need only calculate the summation over the structurally different
atoms at one of these eguivalent positions and the multiplicity of
that position will take account of the other similar atoms at the other
equivalent positions. This process may be demonstrated by the follow-
ing example of the derivation of the structure factor formulae for
the hk0 planes of the space group Pbnm. The extension to the 3-
dimensional formulae is by no means difficult and the same procedures
used in this example are spplicable to it.

To begin this derivation consider the projection on to the

plane (001) of the space group FPbnm shovm in Fig. 27, There is & pro-

plem encountered using this plane group pggl, for the derivation of the
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i i S

Figa 2?0

Projection of the symmetry elements of the space group
Pbom onto the (001) plane. The plane group so formed

is pgg in the notation of the Internationsl Tables for
X-ray Crystallography Vol. I (1952)., The equivalent
positions have been indicated by crosses and accordingly
labeled.
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structure factor eéuationsa It appears from this figure that there are
only four equivalent positions in the plane group, which is in fact so,
vhereas there are eight equivalent positions in the space group Fbnm,
This is explained by the fact that the space group Pbnm contains &
mirror plane perpendicular to ¢ which introduces four more equivalent
positions of the same values of x and y but different z. Account cen
be taken of the doubling of the multiplicities by considering that
there are two identical atoms at each of the equivalent positions shown
in the plane group of Fig. 27, Atoms that are in special positions
such as the origin and on the symmetry planes will have a multiplicity
of four in Pbnm. The z coordinates in the hk0 projection make no
contribution to the structure factor since all the {indices are zero.
The "symmetry factor", the structure factor without the atomic

scattering factor fj9 is defined as:
m

S = E exp (i 2ﬂ(hxj + kyj))

J=1
for the hk0 projection, where all terms have the same meaning as before,
and m is the multiplicity of the equivalent positions. In plane group

= o, L a o
X, ¥3 T+t x5 - ¥; and

pgg?2 the equivalent positions ared x, y3
% - x, 5+ yo Substitubing these in the expression for the symmetry
factor and teking account that in the projection of space group Fhum

there are two atoms at each equivalent position in pgg?2 one obtainss

S = 2 { ol 2W(hx+ky)+e i 2W(~hx-ky) o 2Tf(h(—?§-+x)+k(%~y))+ei 2 (h(E-x) +k(Fy) )}

i

2{ i 2l(hxtky) =i 2M(hxtky) 1 2(hx=ky) im(b+k) -i 20(hx-ky) i‘lT(hﬂ;)} g
e +a +e e e e

. iTih+k
Taking out the common factor; e (b#c) for the last two terms, and making
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use of Buler's relation el¢ + e"1¢ = 2 cos (i) s

_ . if(ntk)
S =4 {:cos 2M(hxtky) + e * cos 2M(hx-ky) .
There are now two cases which one must consider, h+k=2n and ht+k=2n+l,

These two cases will account for 21l possible values of the term

eiﬁ(h‘*’k) .

Case 1, h+k=2nzand ..e i’ﬁ(h"'k)=

.+1°
Then S = hr{cos 2(hxt+ky) + cos ZW(hXFkyj}e
A further reduction can now be made by applying the trigonometric identity

cos (X+B) + cos (-B) = 2 coso(cosf

which immediately reduces the expression %o

2

=8 cos 2Thx - cos 2Tky,
Case 2. h+k=2n+1and . eiﬁ(h+k)= 1

Then S

hf{oos 2T(hx+ky) -cos 2ﬂ(hx-kyj}e

Using th

®

identity cos ({+f8) - cos (a(-f) = =2 sino(sinf,
this cese may be expressed as:
S = -8 sin 2Thx  sin 2Nky.

For the atoms in the special positions these same equations
are applicable except that the factor m in front of each one is &
instead of 8. Table VIII gives a list of all the equations that were
used in the calculation of the structure factors for the three zero
levels in the space group Ybnm. In order to facilitate computing, all
the reflections were divided into the two groups for each zero level

as shown in this table,
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B  The Temperature Factor

The problem of thexmsl vibration in crystal structure analysis
is quite complex, In the derivation of the structure factor equations
it was assumed that the atoms were stationary. This condition only
exists at absolute zero. #&ny temperature above this causes the atoms
to vibrate in such a way that in general, the electron density is
smeared over a triaxial ellipsoid. Thus the effect of thermal motion
is to make the electrons occupy a larger volume than if the atoms were
at rest. Since the scattering factor curves are derived with the atoms
at rest, undergoing no thermal vibration, then this thermal motion will
cause the f values to fall off more rapidly with sin 9//A o

An accurate allowance for the thermal motion of the atoms is
very difficult to make. Ilowever, Waller (1927) showed that a fair
approximation may be made by correcting the scattering factors derived
for atoms at rest with a factor

f=f exp (-3 shﬁ@/f),ﬂwmaBisa'%wmmmhwe
0

factor". In the case of an unknown structure the megnitude of B may
be derived from a statistical examination of the intensities. In the
present case values of B were chosen from a structure refinement of
andalusite (Burnham and Buerger 1961) which is a polymorph of sillimanite
A123105a Values of the temperature factor B are obtained from a Fourier
refinement. Final values determined in the present refinement proved

that the temperature factors initially chosen in this menner were of

the right magnitude.

C The Computation of Structure Factors

In the course of a crystal structure analysis, structure

factors must be computed meny times. TUp to the introduction of electronic
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digital computers these calculations as well as the Fourier summations
had to be done by hand on desk calculators. The tedium of these com-
putations lead to ingenious methods of cutting down the work involved.
Tables of values of cos 2fhx and sin 2%hx for various values of h and
X were used, and methods of Fourier summations were facilitated by such
devices as Beevers-Lipson strips and Patterson-Tunell strips. However
even with the use of these labor-saving devices many hours of calcula-
tions are still involved.

With this in mind the author decided to programme the University
of Manitoba's IBM "1620" electronic digital computer to perform these
calculations. The language used in programming the '1620'" was the
"FORTRAN'" developed by IBM so that programming is greatly facilitated.
The programme was fed into the machine on punched paper tape which
stores it in the "memory". It is this programme that provides the
mgchine with the necessary information to operate on the numerical data
which are fed in on another paper tape. The programme prepared by the
author for the IBM "1620% computer is described in Appendix II. The
computation time was approximately seven seconds per structure factor.
As a check, a few of the answers obtained from the computer were cal-
culated with the use of a desk calculator and tables of sin 2T hx
and cos 2TMhx. As described in the next Chapter most of the structure
factors were calculated on an IBM "650" in conjunction with the Fourier
calculations using programmes written and provided by Dr. F. R. Ahmed.

The diffractihg powers of the atoms were taken from Freeman
(1959) and the atoms were assumed to be in completely ionized states,

ie€o, Si+#, 21*3 and 072, A graph of the diffracting powers f against



sin © //\ for these three atoms is shown in Fig. 26, To provide all
possible values of f in the I,B.M, "1620" programme, polynominal
equations were derived for each of the three curves from coordinates
listed in Freemsn (1959) using a "1620" programme developed by W. Re
Graves (I.B.M, file XNo, 7.0,001), The polynominal is of the form

6

2
=A +A x+A X7t seoes + A X
v o 1 2 6

where y is the scattering factor f and x is sin 9//1 o The temperature
correction was then applied to the scattering factors thus obtained for

a particular plane by multiolying fj by exp(»-BJ. si‘n2 2] / Vs 2)@



CHAPTER VII

REFINEMENT BY FOURIER METHODS

A Introduction

There are several standard procedures of refinement listed
in textbooks on crystal structure analysis. Some of these include
the method of least squares initiated by Hughes (1941) 3 Bootn's (1947)
method of steepest descents, and the Fourier series method of produc-
ing an image of the electron density in the unit cell, first suggested

by W. H.Bragg (1915). This last method of refinement was used in the
present work.

Any periodic function can be represented by an appropriate
sum of sine and cosine terms known as a Fourier series. Since a
crystal is periodic, that is it contains an infinitely repeating
array of unit cells, its electron density can be represented by such
a sum. The scattering units in a crystal are the electron clouds
surrounding the nuclei of the atoms. Thus a representation of the
electron density at any point in the unit cell may be described in
terms of the amplitudes and phases of the waves scattered from the
crystal., It has been shown that the expression for the electron den-

sity ¢ at point (X¥Z) is given by the 3-dimensional Fourier equation

(=)
e(X,Y,2) = 1 E Z -2 P o1 2T(nX+cY+42)

— 0o
where®(X,Y,2) is the electron density at the point in the wnit cell
with coordinates X,Y,;2,

V | is the volume of the unit cell, and

is the structure factor of the wave from plane hk{ in

pi
bl the crystal.
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This expression may be rewritten in terms of a phase angle X

referred to the origin.

€(X,Y,2) = % ;2;—\ ;%%;;_ <Z;r— thkQ(cos {ZW(hX+kY+iZ)°Q%k£}

where(){hkjl is the phase angle of the diffracted beam. If the structure

is centrosymmetric and a centre of symmetry is chosen as origin, then
the phase angle o<hk£ will be 0° or 180° with regpect to the centre of

symmetry. The expression will thus reduce to:
A

)
C(X,Y,2) = 1 Z an Fopeq 05 2N(nX#Y+Z)
h X

v 2

This expression for the electron demsity is not as explicit
as it appears. In Chapter VI it was shown that the structure factor
is described by a magnitude and a phase (either + or - for centrosymmetric
crystals), The magnitude is experimentally observable but since the
intensity is proportional to the square of the structure factor there
is in general no means of observing the sign. The signs or phases of
the structure factors must therefore be calculated from a knowledge
of an approximate structure prior to the production of an electron
density map.

The above expressions all deal with 3-dimensional electron
density maps in which the electron density is computed at specific
intervals throughout the volume of the wnit cell. The intervals that
are usually chosen are lithor _1 th's of the cell edge. If the

60 120

interval chosen is th , the total number of sample points in the

L
60
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unit cell is 60> or 216,000, This number in general may be reduced
due to the symmetry of the particular crystal, however the number

of computations involved is still large enough to limit 3-dimensional
refinements to sections or planes through stomic positions in the cell
where more detail is required.

Complete refinements of simpler structures utilize the much
simpler projections of the electron density. In these so-called
2-dimensional electron density maps the 3-dimensional distribution of
the electron density is projected parallel to a crystallographic trans-
lation direction. An image of the crystal structure is obtained by
8 synthesis of all reflections from planes parallel to the zone axis,
Thus to produce a map of the electron density projected parallel to
the ¢ axis the Fourier summation is taken over all the reflections of
the type hkO. The general expression for the electron density projected
onto the plane parallel to ¢ can be obtained from the 3~dimensional

expression and is written as
oQ

e(x,Y) = 1 ;> :> Fio  cos 2T(hX+kY),
A h k
oo

C

vhere the origin is chosen at a centre of symmetry and Ag is the area

of the projected plane. A Fourier synthesis of this kind is commonly

called an electron density or¥€, synthesis. In it one uses the observed

amplitudes and the signs calculated from a postulated crystal structure
model, In the first instance generslly only the signs of the strong
reflections are known with any certainty so only these are used %o
calculate the first synthesis. New atomic coordinates may then be

deduced from this map and the structure factors recalculated. Those



reflections for which the signs did not change are used in the next

Fourier synthesis. This process is carried out until the signs for

all the reflections have been determined or do not change on further
small changes in the atomic parameters.

A modification of this method was introduced by Cochran (1951),
This method is called the Difference Fourier synthesis since the
structure factors of the Fourier waves (F,) are replaced by the differ-
ences (F,- F,) as the Fourier coefficients. The advantage of the
€~ €, synthesis over the €, synthesis results from the fact that the
electron density given by a Fourier series of the observed structure
factors, F,, differs from the true electron density because of the use
of a finite series; i.e., finite limits of h and k. Also when atoms
overlap, the peaks of the €, synthesis may not correspond to the true
atomic positions. The difference synthesis affords a much more
sensitive method of determining tempersture factors than does a ©o
synthesis.

The interpretation of a €,- €, map is quite simple., Refer-
ence to Fig. 28 (a) will show an ideal situation in which the assumed
atomic coordinate does not correspond to the true coordinste., Atomic
positions which are correctly chosen have no accompanying density
gradient while incorrectly chosen positions fall on density gradients.
The magnitude of the correction is directly proportional %o the
gradient “%%Q and inversly proportional to the electron demsity
at the centre :f the nth atom (€),. The magnitude of the correction

as deduced by Cochran (Lipson and Cochran, 1953) is given by

LXrn = (0D/dx)n .
2p ( eo)n
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(a)

Fig. 28(a). Vertical section of the projected electron
density showing the shape of D= §- %, when
the assumed atomic position does not agree
with the actual position.

(b)

Fige 28(b)., Vertical section of the projected electron
density showing the result on the shape of

D=%Q- ¢ when the temperature factor has been
underestimated.



The direction of this correction is upslope from the assumed position.
To use this expression, one determines 6D/'b r from the difference
map by taking OI% the difference in density between the peak maximum
and the value at the assumed position and then divides it by the
corresponding distance, é:?im.anstroms, from the assumed position
to the pezk. ({;)n is determined from a €g synthesis and is the
electron density at the centre of the nbh atom. The constant p is

determined from the fg map by the equation

=€ e (- pr?).

vhere f} is the electron density at a point r from the electron den-

sity peak.

Information concerning the temperature factor for a particular

atom can also be cbtained from a difference synthesis. The effect of
underestimating the temperature factor B, of an atom is to make the
assumed peak more compact. This situation is shown in Fig. 28 (b)
where the assumed and actual atomic positions are the same. There

is a negative region at the atomic position and to remedy this one
must increase the temperature factor. 4An overestimated temperature
factor is characterized by f; in the neighbourhood of the stomic

position being more diffuse than €.

o and so a positive region is pro-

duced on the f%» f% mape
Refinement of the crystal structure of sillimanite was
accomplished by 2-dimensional Fourier methods using both fg and

fgm (% maps of the electron density projections. The process may be

described as follows.
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(1) Structure factors were calculated from the atomic
perameters of sillimanite derived by Taylor (1928). The F_ values
were used to place the FO values on an absolute scale and assign
phase angles (+ or - sign) to them for use as ccefficients in the
Fourier series. Three f’o vrojections were prepared along the three
principle axes.

(2) Using the atomic positions derived from a Fourier ‘63
projection (hkO, 0k 4, hOQ) structure factors were calculated for all
the observed reflections in the particular zone.

(3) fza f% maps of the three projections were prepared using
the signs of the calculated structure factors with the observed Fo
values.

(4) From these maps new atomic parameters and thermal para=
meters were derived a2nd a second set of structure factors computed.

(5) The above two procedures, 2 and 3, were carried out
successively until no further change occurred in the signs of the F's.
Then a final EB map was prepared along each of the three axes and
used in conjunction with the ng f?c maps to estimate the accuracy

of the final atomic parameters.

B Computational Aspects

An attempt was made to programme the University of Manitoba's
IBM "1620" digital computer to perform the Fourier synthesis. The
programme was prepared in the "FORTRAN" language and was run first of
all to calculate an hkO fosyn“thesis° Spot checks on the computed
values of fg using this 1620 programme showed that the answers were
erroneous; also the computing time was excessive. Since too much

time was being spent in attempting to correct this programme, it was



abandoned, and an efficient and sophisticated Fourier series programme
was obtained through the kindness of Dr. ¥F. R. Ahwed at the National
Research Council in Ottawa. With the aid of the staff at I.B.M,
(Winnipeg) this programme (card input-output) was run with success
on the I.B.M, "650" at the Great West Life Assurance Company (Winnipeg) .
The computing time for each synthesis was approximately one hour,
using 240 observed structure factors and a mesh of 31 x 31 grid units,

4 structure factor programme for the I.B.M. "650" was also
obtained from Dr. Ahmed at the same time as the Fourier programme.
Although the author's structure factor progremme for the 1620 worked
efficiently a great deal of time would have to have been taken to
transfer the results of these computations to cards for input to the
650 Fourier programme. The author's 1620 programme which is described
in Appendix II,'Calculated only the structure factors whereas the "650"
structure factor programme supplied, along with the struc£ure factors,
a value of the scale factor necessary to place the observed data on
the absolute scale as well as a value of the "reliability" factor R
(which is discussed in the next section)e Thus it was decided to do
all the subsequent computations on the I.B.M. "450" through the
generosity of the Great West Life Assurance Companyey

The formula applicable for the projection of the electron
density that is shown in Section & of this Chapter was not used in
this form. The symmetry conditions that are contained in the plane
groups of each of the projections were applied to this formula. It
was these resulting formulae similar to those listed in the International
Tables (Vol I. 1952) for the plane groups pgg, pmg and cmm, that were

used to calculate the electron density projections for the three zones.



As an example, the formula for the determination of the electron
density in the plane group pgg, which is the hk0 projection in

sillimanite is given as

\<? h=2n X k=2n
e(x,Y) = & F(.
00) + % i F X+ F Y
T i 5 o cos 27Th 0k cos 20k
¢ h=2 k=2
h+k=2n
Z E hk cos 27hX cos 27kY
h+k=2n+1

E E X Y
hk gin 27hX sin 21k

where H and K represent the maximum limits of the values of h and k.
Similar expressions were used for the h0{ and 0k{ projections. The
zero term of the Fourier series F(OO)iS the total amount of scatter-
ing matter in the unit cell, i.e., the total number of electrons in

the vnit cell, which in sillimanite is 320.

C The R Factor

The criterion used to measure the correciness of the struct-
ure at each stage of the refinement is the '"relisbility factor" or

"residual factor" defined as

R = Z[ {—L‘nl=iFnll x 100 %
Zl

The value of R is a relatively small percentage (l(lj%) when the

structure is the correct one for the observed data, and a large

percentage Q“:> 40%) when the structure is incorrect. The R factorg

were calculated for each projection following the derivation of each
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new set of atomic parameters. Only the observed reflections were

included in this czlculation.

D The Refinement

(a) Initial Syntheses Starting with Taylor's (1928)
Paremeters

This refinement was started by using W. . Taylor's (1928)
parameters for the calculation of structure factors. Using the
calculated phases of these structure factors with the observed struct-
ure amplitudes three fg Fourier summations were prepared and the result-
ing electron densities were plotted on projections along the a, b and
¢ axes. Dach summation was computed over an asymmetric part of the
unit cell so as to include at least one of each structurally different
atom in the unit cell. The electron densities were computed at
intervals of 1/60th of the cell edge in all three projections and the

o)
scale used to plot the projection was 14 = 10 cm. Contours of equal

electron density were drawn at 2.0 e/g»2 on each of the maps.

Upon examination of the*ﬁ)maps produced from Taylor's para-
meters it was evident from the shapes of the peaks and from the
relief observed in areas that should have been flat, that Taylor's
original structure was badly in error. New parameters were taken
from these maps and the structure factors were recalculated. There
was little improvement in the R factors at this stage. Two further
cycles of refinement using F, and z - Fc syntheses were attempted in
trying to improve Taylor's structure but little was accomplished.,

The %Z and fg=-€ maps that were produced in this Stage I of the

refinement are not included in this dissertation.



The fz maps were of value in calculating the constant p for
the correction of the atomic paremeters in the fge foc maps. As
shown previously, the electron density near the centre of zn atom is
given by

2

er) = f?(O) N
where f9(0)is the electron density at the peak maximum and‘fzﬁ is the
electron density at a point r from the atomic centre. The values of

p for each type of atom (Si, A{ and 0) were calculated from this

relationship by taking the width at one-half the peak height as r

and solving for p = =ln {kr) / eko) = 0,693, The values so calculated
2
r T

showed rather a wide range; the averages of these values were,

0=2

Si = 19@8 -A
0=2

Al = 18,1 A
0=2

0 = 16,5 4

It should be noted here that these values are substantially larger
than the expected values (p=590, Lipson and Cochran, 1953) and a
probable explanation is given at the end ofkthis Chapter. The use
of these values, however, gave fairly good results for the correct-
ions in the atomic position on subsequent ‘an fg mapSe

Near the end of Stage I (including the three cycles) an
oversight on the part of the author was discovered. It was not until
this stage that the modification of the sillimanite structure by Hey
and Taylor (1931) was found. This point started Stage II of the
refinement as it is referred to in later sections of the thesis.
Using Hey and Taylor's parameters new structure factors were calculated

and a very large drop in R was noted for the hk0 projection, but the
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R factor for the Okl projection increased slightly over that derived
from the final attempt in Stage I. Thus it was felt that something
could be gained by using both of these parameters together as des-
cribed in the next section of this Chapter,

The thermal parameters of the stoms used in computing the
structure factors were those found by Burnham and Buerger (1961) in
their refinement of andalusite. It was felt that these parsmeters
were likely to be close to the thermal parameters in sillimanite, due
to the close relationship of these polymorphs. An isotropic temperat-
ure factor for 21l the atoms in the cell of 0,40 was used to calculate
the structure factors uvsing Hey and Taylor's parameters. A list of
the variation of the temperature factors throughout the refinement is
given in Table X,

(b) Syntheses Starting with Parameters of Hey and
Taylor (1931) and of Stage I.

Following the first attempt at refinement from the initial
@,nwps that were prepared from Taylor's (1928) parameters, F, - Fc

syntheses were performed both on the model proposed by Hey and Taylor
(1931) and on the new set of coordinates derived in Stage I. Those
reflections which observed an appreciable amplitude but calculated
very low were omitted from these syntheses since their signs would be
meaningless. On the other hand, those reflections which observed zero
but calculated an appreciable amplitude were used in these FO - FC
syntheses., This was felt to be justified because the high value to
which they calculated would contribute apprecifbly to the difference
maps. 4£11 computations for these stages and those following were per-

formed on the I.B,.M., "650" using the programmes provided by Dr. F. R,

Ahmed.
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Projection

hk0

hof

okl

Atom

Si

TABLE X

VARIATION OF TEMPERATURE FACTORS(B)

DURING THE REFINEMENT

Stege 1
Burnham and  Hey and
Buerger Taylor Stage
(1961) (1931) 1T
0,264 0.40 1.00
0.280 0,40 1.00
0,250 0.40 0.60
0.394 0.40 0.40
0.39% 0,40 0.60
0,394 0,40 0,70
0,394 0,40 0.60
0.264 040 1.00
0,280 0,40 1,00
0,250 0,40 0,60
0,394 0,40 0.40
0394 0,40 0,60
0,394 0,40 0,70
0.394 0,40 040
0.264 040 0.50
0.280 0,40 050
0,250 0.40 0.60
0.394 0,40 0,40
0,394 0,40 0.60
0.39% 0,40 0.70
0,394 0 .40 0,50

Stage
111

1.20
1.10

1.00
0.40
0,60

0,70
0,70

1.20
1,10
0.70
0,40
0.60

0,70
0650

0,70
0+50

0,70
0,40

0.60
0,70

0650

1.40
1.10

1.20
0,65
0.62
085
085

0,97
0675
0.68

0oh5
0.65

0,80
0,52

0,60

045
0045
0650

0655
0,80

0.55

Stage
Vi

1.25
1,07

1,07
0.83
0.73
0,87
0.92

0.90
0,60
0,60
0640
0,63

0695
0362

0.52
0.38

0.40
0,58

0.53
0.65

0,65



Four Fo = Fy syntheses were calculated at this Stage II,
Three syntheses were performed on the model of Stage I along the a,
b and ¢ axes, whereas only the projection along the ¢ axis was com~
puted from Hey and Taylor's model. In all four syntheses fg— fz
values were compubed at 1/60th of the cell edges over an asymmetric
unit in the cell. The €y= €, maps assuming the model in Stage I are
shown in Figs. 29 (a,b,c) and the c=axisg projection of"€0~ G% using
Hey and Taylor's structure is shown in Fig. 30. In these and sub-
sequent meps the assumed positions of the atoms that were used to
produce the maps are indicated by filled circles and the newly derived
positions are shown as open circles with smaller accompanying letter-
.inge

A1l the Po“{é maps at this stage were found t0 have con-
siderable relief, especially those assuming the model derived from
Stage I. All the atoms exept the Aly at the origin were found to
lie on strong density gradients. In the c-axis projection based on

the model of Stage I (Fig. 29 (¢)) two atoms, 0, and Oc9 were found

b
to lie in strongly negative regions with no neighbouring high regions
to indicate possible shifts. The coordinates of these two atoms
proved to be badly in error resulting in the very large values of the
R factors for the three zones of reflection.

Using mainly the Po- éz maps of Hey and Taylor in conjunct-
ion with the other three projections of Stage II and the expected
values of bond distances in the silicon and aluminum tetrahedra,
shif'ts were made to all atoms except the aluminum I at the origin and

0.. TFive of the atoms were shifted in the x/a direction and four

d@

99

in the y/% directicn as showm by the open circles on these maps (Fig°29)e
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Fig. 29(b). *gmfg projected along the b axis at Stage II
of the refinement, ogontours are drawn at equal

intervals of 2.0 e/A'e Zero contours are chained
liness negative contours are shown as dashed

lines, Filled circles represent the atomic posi-
tions used Yo produce the map, open circles are
the newly derived atomic positions.
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Figo 30, €5= ¥, projected along the ¢ axis at Stage II of the

refinement. The atomic positions that are shown as
closed circles are those of Hey and Taylor (193 )e
Contours are drawn at equal intervals of 2.0 e/A with

the zero contour as -, chained lines and negative
contours as dashed lines.



The shifts in the X/a direction for AlII and 0, were derived mainly

b
from the ho{ projection of ¥4~ €,. The rest of this map was used
mainly for temperature factor correction. The 0k projection indicated
by its relatively low value for the R factor of 25.9% that perhaps

most of the y/b values of theeatoms were satisfactory. Contradicting-
this conclusion, however, were the relatively high R factors of the

two hk0 projections of Stage II. The reason for the relatively low

R factor for OkQ was that 0c occupied a position that later proved

to be nearly the true position of Obe Thus the calculations would be
influenced by this fact and it would seem as though only 0 was not

in its correct position. The strong electron density high at (0%%

on the 0kf projection indicated that an atom should be placed near
there, and this presently proved to be the true position of 0,.

With all of this in mind, two large shifts were made to the
values of y/b for 0y and O as well as a large shift in x/a for Oqs
New positions and temperature factors were derived from all this
information, and Stage III of the refinement was carried out.

With the new atomic parameters derived from Stage II the
structure factors were recalculsted and the values of the reliasbility
(R) factors for the three zones were hk0, 36.3%; hod, 26.8%; and
0kf, 29.0%. The R factor for the hk0 projection was still larger
than that obtained from Hey and Taylor's parameters (34.1%) which
indicated that their positions were still better than the author's,
The fact that the R factor for the 0k{ zone increased slightly
suggested that much of the cause was dve to the y/b coordinate shifts,
The substantial drop in R from the previous value of 4097% for the hof
zone suggested that a great improvement had been made in the x/a

coordinates of the atoms,



Fy = FC syntheses were then computed along the a, b, and ¢

axes as before and again prepared by contouring at constant values of
Yo - €., These electron density maps of Stage III are reproduced in
Fig. 31, a,;byce They still showed considerable relief with most of
the atoms still lying on rather strong gradients of electron density
difference. However, the situation around the two atomic positions
for 0y and 0, had improved considerably. These two atoms no longer
lay in regions of large negative electron density but rather on
gradients from which changes in position could be calculated.

A11 the changes that were made to the atomic positions in
Stage II appeared to have been in the right direction as may be seen
from the maps at Stage III. (Fig. 31). The definite improvement in

the coordinates for 0b and Oc mainly accounts for the substantial

decreases in the R factors for the three zones., However, the shifts

appear to be excessive for some atoms such as O_, Si and Alyy. With

this in mind and asgain considering the projection of f9o— f’c for
Hey and Taylor's structure, further revision of the atomic parameters
was made., Up to this point in the refinement it was felt that the
z/c coordinates could not be improved upon and so no change was made
to them,

It was obvious from the overcorrecting in the atomic
coordinates by the use of Cochran's formula that too large values for
the changes in atomic position were being made. This was probably
due to the overlapping of several of the ztoms as well as some
incorrect temperature factors. Thus the third revision of the atomic
parameters was calculated by the formula but weighted arbitrarily so

that the magnitvde of the change was on the low side.
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Figo

31(v).

Co-1, projected along the b axis at Stage III
of the refinement. ontow:s are drawn at equal
intervalg of 2.0 e/?l Zero contours are chained
linesg; negative contours are shown as dashed
lines, Filled circles represent the atomic posi-
tions used to produce the map, open c¢ircles are
the newly derived atomic positions.
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Fig@.31(059 ‘fgu'g projected along the ¢ axis at_Sﬁage'III of"

refinemengé Contours are drawn at equal intervals:

of 2.0 /L, Zero contours are shown as chained .
lines; negative contours as dashed lines, Filled

circles represent the atomic positions used to pro=.

duce the map, open circles are the newly derived
atomic positions, » - :



¥, values were computed again from the revised set of

coordinates and temperature factors derived at Stege III. At this
stage of the refinement a very marked improvement in the whole
structure was noted from the large decreases in the R factors. The
computed values were 23.0%, 16.5% and 23,0% for the hk0, hOf and
0k { reflections respectively.

f%-f% maps were prepared along all three axes from the EB-FE
data of Stage IV. The same asymmetric units were used and the
summation intervals were 1/60th of the cell edge lengths as before.
The improvements in the R factor values were reflected in the marked
decrease in relief of these latest maps. These maps are reproduced
in Fig. 32 (a)9 (b), (c)s The legend of representation of the atomic
shifts in these maps is slightly different, but as before, closed
circles represent the sssumed atomic positions used to produce the
maps and open circles represent the new positions that were taken
directly from Stage IV of the refinement. In addition shaded circles
represent the atomic positions that were derived from Stage V. This
method was adopted since the author felt not much would be gained
by reproducing the €y~ ¥, maps produced in Stage V. It is hoped that
clarity is maintained in this process.

As may be seen from the maps in Fig. 32 of the Stage IV,
only small shifts were made to the coordinates of the atoms. Modergte
changes were made in the values of the temperature factors for some
of the atoms, as shown in Table 10, Perhaps there are two significant

changes that should be mentioned. It had been noticed up to this

point of the refinement that persistent highs existed at the equivalent

positions (0,0,é), and (09%5%) on the 0kf projections. This sugzested

that Oc should be placed at this position. This change was made
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Fige 32(b)e fo=Tp projected along the b axis at Stage IV
of the refinement.  Gontours are drawn at equal
intervals of 2.0 e/?&. o Zero contours are chained
lines; negative contours are shown as dashed
_lines, Filled and open circles have the same
meaning as on previous maps whereas shaded circles
are the positions derived at Stage V.
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Fig. 32(c). o= projected along the ¢ axis at Stage IV
of the refinement, oyontours are drawn at equal
intervals of 2.0 e/A o Zero contours are shown

as chained lines; negative contours as dashed
lines, Filled and open circles have the same
meaning as on previous maps whereas shaded

circles are the positions derived at Stage V,
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accordingly snd an ilmprovement in this region on the {’oa f?c maps
was noticed immediately in Stage V. Secondly, Od was moved in the
z/c direction on the basis of an indication to do so in the €, f’c
map of the h0f projection Stage IV (Fig. 32 (b)). A second reason for
doing so was that the bond distaﬁces would be improved, i.e., the
Si--Od and, A%IuOd distances. The magnitudes of the revisions made to
the atomic parameters in Stage IV were estimated on the basis of
previous experience in earlier stages of the refinement.

The structure factors were recalculated using the parameters
derived from Stage IV and the R factors were found to drop to 20.7%,
15,0% and 15.7% for the hk0, ho{ and Ok{ reflections respectively.,
Quite substantial improvements were made to the y/% parameters account-
ing for the large drop(?mB%)in the 0kf{ zone's R factor. Fy=F,
syntheses computed again for the three principal zones of reflection

and the plotted values of fém f% 50 calculated were contoured. The

maps of Stage V have not been included here since the change in them
was not too significant. The relief had improved considerably and
the changes in atomic positions derived from Stage IV were essentially
correct. New and final atomic parameters (both positional and thermal)
were derived from these maps at Stage V. The changes in position
were becoming smallerand smaller as may be seen from Table IX so it was
decided that Stage V would represent the final refinement.,

The final atomic parameters were derived from the maps ab
Stage V of the refinement. The structure factors were recalculated
on this basis and the final values.of the R factors for the zones
hk0, hof and 0k{ were 18.9%, 12,8% and 12,9% respectively. A table

of a comparison of the Fj and F, valves at this final stage of the
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refinement is given at the end of this Section (Table XI), The
values of Fo for the three zones of reflection hk0, hOf and Ok
have been multiplied by scale factors in order to place them on an

absolute scale and it is these KFO values that are listed in
Table XI, The values of these three scale factors are 0.9791,
1,0194 and 0.9609 respectively.

Both fg- -?c andn% maps were prepared for the three zones
over the same assymmetric units, using the same summation intervals
ss before. These maps are reproduced in Figures 33, a,b,c and
34, a,b,c, respectively. The final projections of € -€ show a
much improved relief. The electron density gradients near the atomic
centres are very low (compare with Fig. 29)9 which indicates that the
refinement by 2-dimensional methods is very nearly complete. Definite
shifts are indicated for some of the atoms, namely Si and Alyg in
the Ok{ projection (in the y/b direction). However, from past exper-
ience these changes would be very small, so it was felt that they
vere not significant. Some changes in thermal parameters were also
indicated but not made. Since the signs of all but four of the
observed structure factors had been determined at Stage VI no
further changes in atomic parameters would significantly change the

@ , maps and so the refinement was terminated. The final atomic
parameters and temperature factors are listed in Tables IX and X
respectively., It is of interest to note that there is a suggestion
of anisotropic thermal vibration for both 0, and Og which may be
seen in the final hk0 projection of f;- F% (Fig. 33 (e)), However,
a programme to correct for snistropy was not available so no account

was taken of this effect. This anistropy is characterized by the

position of the atom occupying a region of negative electron density
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172 . 174

PFig. 33(0), f%mfz projected along the b axis at
: Stage VI of the refinement. Contours

arizdrawn at equal intervals of 2.0
e/A%, Zero contours are chained lines;
negative contours are shown as dashed
lines. Filled circles represent the
final atomic positions as determined
in this refinement,
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Fig. 34(b). ‘Po projected along the b axis at Stage VI
of the refinement. Contours are drawn at
equal intervals of 5.0 e/ o ZeT0 contouvrs
are chained lines; negabive contours arsa
shown as dashed lines,
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Fige 34(c). fo projected along the ¢ axis at Stage VI of the
refinement. Contours are drawn at equal intervals
of 5.0 e 2, Zero conbtours are shown as chained
lines; negative contours as dashed lines.
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accompanied by two adjacent positive peaks on either side,

An error in computing was discovered after the final fg
meps hed been prepared. It was found that the different multiplicit-
ies of the axial reflections had not been allowed for in the computa-
tion of the Fourier series. Thus the true values of the electron
density were not computed and are not shown on any of the aforementioned
maps. This error must be less on the difference Fourier projections
than on the electron density projections for the following reason:

On the former the corrections that would be necessary would be a
function of certain (Fo’ Fc) values which are small numbers, wherecas
in the latter the corrections must be a function of certain FO values,
some of which may be large.

An T, synthesis vas then computed for the 0k{ reflections,
taking account of the correct multiplicities of the axial reflections,
since this projection showed the greatest resolution of the atoms.
This €, map is shown in Fig. 35. It can be seen by comparison with
Fig. 34 (a) that the shapes and positions of the peaks have not changed

~apprecisbly, but the peak heights have decreased, and much of the
negative regions of Fig, 34 (a) has become positive. Since the
positions and shapes of the peaks did not change in this projection,
Fo syntheses were not computed on the hkO or hof{ reflections. Also
it can be seen that the atoms are not well resolved in either of
these projections.

A Fourier synthesis with E;~ Fc values as amplitudes was
also made using the 0k{ reflections, taking account of the correct
multiplicities of the axial reflections. 4 comparison of the values

offgw fz from this summation with the values of {g— f; that were used
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Group (1) n +kx = 2n

2

2

o F

10
12
14
16
18

20

OO~ wn W

11
13
15

6

8

0

0

TABLE X

.2
sin &

hk

.0086
034l
0773
01375
.2149
309k
L4211
25500
6961
859k

004k
0216
.0560
.1075
21763
02622
<3654
L1857

+0090
.0176
0433
.0863

+1465

S

h k¥ ¢ FPROJECTION

1

OBSERVED AND CALCULATED STRUCTURE FACTORS

Kg*

13,0
21,5
il 5
16.4

29,9
20,4

15,0

wobserved
3960
8.2
23.6
334
0
0

0

26,7
5401
51.3
19.6

2367

2,1
h1,3
77
-28,.1
27.0
2.8
3.0
2.6

2846
61.3
577
2l

2k .2

* A1l wvalues of Fo were multiplied by 0.9791 to give the values listed in this

table.
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10
1z
14
16

18

O~ N W

11
13
15
17
19

o I

10
12
1y
16

sin2

02238
<3184
4301
+5590
»7051

0223
0395
0739
o1254
<1942
2801
»3833
5036
6411
<7958

.0358
SO4hl
.0702
01132
-1733
02507
3452
14570
+5859

«0581

0753

9.8
27.6
25.7
52.3
20.5

6.6

9ol

10.2

5762
68,3
Ls b
14,1
21.3
30.4

19.4

10,5

17.9

19.4
6.0
50
6,1

3.0

=724
7he5
52,7
18,2
23 ok
2.0
-0k
-2k

10.7

11.2

19.0
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11
13
15

10
12
14
16

18

O~ W

11
13
15

. 2
sin

S ma
.1097
1613
.2300
.3160
4191
<5394

0806
.0892
+1150
+1580
.2181
<2955
03900
25017
6307
7768

1119
21291
1634
2150
.2838
23697
4728
05932

9e1

2067
8okt

50l
60.0

17.3

3he5
8ol

19.8

11.6

7.8
21.3
0.5
Tolt
~1.1

262

11.0
42.8
265
-2k,7
22,5
39
3.1

3.8
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14
16
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sin

hkl
o 1433
21519
<1777
02207
«2808
03582
L5227
<5644
6934
8395

21835
.2007
2351
.2867
355k
b1l
o 54k45
6648

«2239
22325
22583
3013
361L
4388
#5333
6450

<7740

5066
6.8
10.2
9.2

6.1

9.2

10,1

1945
17.4
27.7

4.8
11,7

17.2

9ok

5247
50l
13.8
9.0
7.6
3.6
7.1
8.6
~1.1

3.2

17.2
=39
17.1
9.7
3.8
~0.7
6.0

-0.6

~20.4
1hok
22,9
1.5
9.8
9.9
=3.8
=1.2

L.l

126



11
11
11
11
11
11

1l
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11

13

[es] o\ L N
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12

11
13
15

© N W W

2
San
©

02731
22903
3247
3762
4h50
-5309
<6341

3224
.3310
:3568
3998
L4600

«5373
6318

+3806
«3978
4321
4837
5525
6384
J7H15
«8619

4389
4733

l«"l

6.5

10.2

2505

6.9

11.0

16.1

9.0

23.6

647
=0.1
9.2
21,0
-248
3.7

0.2

=0.9
9.8
=0.9
9.7
2.7

3.2

by
15.6
~1.5
=0.6
4.9
62
061

3.3

1605
1.9

~3.1
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05162
5764
6537
7483

5060
25232
5575
<6091
6779
7638
28669

+5732
+5818
6076
.6506
.7107
»7881

.8826

26493
+6665
.7008

07524

7255
S7341

07599

b

8.7
9.7

763
bo2
Lok
=263
4e9

1.2

066
~1l.4
509
=263
1.6
1.k

-1.8

268
=1,0
608

5.8

o7

1.6

128



[6) N

10
12
1k
16
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sin &

.8105

8277

sin o

.0108
0366
0796
-1397
22171
«3116
234
«5523

.0111
.0283
.0627
.1142
.1830
2689
03721
1924
+6299

.0287
0545

hikl

hkl

64,0
55.1
L1.6
17.8
233

1.3

8.7

11.5

2340

6.2

&}

1.1

~76.8
~2.8
22.7
=28.3
21.1
369
=502

-3.1

87.1

~59¢8 -

-46,9
19.6
22.7
-8.0
=1.3

5e3

=842

=26,1

=863
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20646
0904
1333
1935
.2708
23654
4771

6060

.0828

.0999

01343

13.7
12.4

12.8

19,0
4,2
24,7
11.8
6.9
565

k5.2

7.0
15.8
2965
2068

75

33.5
18.8

17.4

13.8
=1k.7

12.4

2362

8.0
27 o
=124
=9.8

566
=09
=12

2.6

61.2
~5.8
-18.2
2k .8
-20.3
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5.7
363

~37+2
24
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2h.7
13.3
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=36
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3.6
=3l

20,8
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.2261
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3292
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5870
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22795
3053
3483
4085
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6921

03246
3418
«3762
H277

hkl

15.0

14,7

6.2

10.2

14.8

3.2

4.3
6.9

9.0

16.4

6.8

b

-12.0
13.1

2ol

962
=11,0
0.8
-1.6

365

4.9
=70
0.7
1.1
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509
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05159
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.6878
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)
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«6129
.6989
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#5382
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<6413
07187
«8132

.9249

2575k
05926
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0
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=73
1.7

-0.2

6o6
Lol
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4,0
-6k
0.1

0.2

2.2
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=2.3

9.1
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1.9
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OBSERVED AND CALCULATED STRUCTURE FACTORS

h 01 PROJECTICH

Group (1) h+4 =2n, h=2n, f=2n

n ok 1 sin® @ |, KF
0 0 2 0152 56.1
0 0 L 0608 105.6
0 0 6 21369 3346
0 0 8 2433 62.0
0 0 10 23802 6.9
0 0 12 25075 31.9
0 0 14 7452 0

2 0 0 0090 31.2
2 0 2 0242 40,7
2 0 L .0698 16.5
2 0 6 1458 2547
2 0 8 .2523 ' 0

2 0 10 3891 9e9
2 0 12 55604 0

2 0 14 7541 0

4 0 0 0358 70,1
b 0 2 0510 54,5
L 0 L 0967 Le 6
L 0 6 <1727 | b1,k
Ly 0 8 2791 21,7
Ly 0 10 4160 20,2
Ly 0 12 25833 10,0
L 0 1k 27810 11.2

B
e

61,0
148.0
=267
5909
-10,8
26,0

-495

28,6
b2k
15.9
24,7
6.3
9.7
2.4
4ol

-7h.2
64,6
-l .8
37.0
-21.2
15,0

~10.6

6o7
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*A11 values of Fy were multiplied by 1.,0194 to give the values listed in this

table,



N O OV O OV OV O

[o4]

10

10

10

10

10

10

10

12

12

12

12

12

10

12

o &=

10

12

ON

10

12

(S

sinzcj
hikl
.0806
.0958
J1b1l
« 2175
+3239
24608

.6281

.1433
-1585
22041
02802
.3866
05235
+6908

02239
62391
02848
.3608
L672
<6041
o771l

«3224
23377
«3833
4593
05658

53.1
56l
Lly,9
6.3
27,9

12.9

2k,9
Ls5,1
15.9
32.1
10.2
17.9
ly 6
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ki

85.0
=28.3
60.7
=15.9
30,0
=77
13.7

583
6.0
k5.0
3.7
2505
1.9

13.0

~23e5
h2.7
-19.1
284
~11,8
15.3
~6.3
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n k 1 sin® O na F Fc

0 0 4389 27.1 234
o 2 S5kl 10,1 -8.1
14 0 b4 4997 20 .4 20,2
0 6 <5758 10,0 -6.3
0 8 6822 14,6 13.8
1 0 10 8191 0 “l,1
16 0 0 «5732 0 1.6
16 0 2 5884 1507 16.5
16 0 4 6341 0 1.6
16 0 6 7101 12.6 12,7
16 0 8 8166 7e5 1.3
16 0 10. 29534 6.5 8.0
18 0 0 7255 0 =549
18 0 2 - 7h07 10,6 9.6
18 0 b 7863 0 ~5.k
18 0 6 8624 10.3 748

Group (2) h=2n+1,f=12n+1

1 0 1 .0060 unobserved ~7.9
1 0 3 20365 0 Lok
1 0 5 0973 865 -5
1 0 7 .1885 0 =04
1 0 9 03102 0 -3.2

1 0 11 4623 0 =13
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1439
.2048
02960
4177
05698

21852
.2156
2276k
23677
4893

g

6.7

48
7ok

1h.s
1506
8.0

12.8
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-8
~043
-249
-1.5
=22

~l.4

-6.2
6.6
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sin2

<2747
03052
«3660
A572

03822

44126
4735

+5076
«5380
#5989

hkl
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=12
=04

=1.1

=6.2
6.6

=40
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OBSERVED AWD CALCULATED STRUCTURE FACTORS

0 k1 PRCJECTION

Group (1) k = 2n, 1 = 2n

h X 1 sin? g - i‘lFo-x-
0 0 2 0152 5849
0 0 Ly 0608 119,0
0 0 6 «1369 30,9
0 0 8 2433 65.1
0 0 10 23802 13.6
0 0 12 5475 3566
0 0 14 7h52 0

0 0 16 9733 13.8
0 2 0 0086 14,7
0 2 2 0238 21,9
0 2 b 0694 8.6
0 2 6 1455 6.6
0 2 8 02519 0

0 2 10 3888 0

0 2 12 5561 0

0 2 14 27538 0

0 L 0 20344 22,9
0 b 2 0496 8l ol
0 L 4 0952 3.6
0 b 6 1712 47,2
0 Ly 8 02777 0

0 L 10 h146 26,0
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~-61.7
151.0
-29,1
6540
-13.6
30,5
-645
14.8

13.9
~21.7
8e2
643
4.0
0.8
2e7

=00l

19.4
91,8
7ol
L9k
36l

23.0

% 411 values of Fo were multiplied by 0.9609 to give the values listed in this

table,
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2301
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Lge3
23.2
4o.3
13.3
2h b

10,9

19.3
23.5
12.7

17.5

6.8
4.8

2509

14,2

7.1

2,0

11.1

5369
-23.8
k2.6
-14.0
20.8
-6.0
9ol

"’2 03

1869
25,7
14,6
16.6
840
9.1
b2

5.0

~269
31.7
=1.9
2069
-0k
11.5

0.2

606
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to prepare the map in Fig. 33 (2) showed an almost negligible change
at each summation point. Therefore this €5-& map has not been
included in this dissertation. The corrected f% map projected along
a in conjunction with the corrected values of f%- {% for the same pro-
jection were used to assess the accuracy of this refinement as dis-
cussed in Section F of this Chapter,

At this point in the discussion of the electron density maps,
it should be noted that a particularly striking feature on the hkO
projection and the 1ol projection persisted throughout the refinement.
The feature on the hk0 maps (both fg and €,- f?c) was a ridge of peaks
parallel to the x axis in a line passing through the peaks of Oa and
0. The persisting feature on the ho{ projections was a single mexi-
mum of electron density just to the right of 04 at 4 ¢. The anomolous
peaks on the hk0 projections could not be explained by the author but
it was noticed that as the refinement progressed the maximum values
of the electron density at the peaks slowly decreased. The anomaly
on the hof projection mey be explained as anisotropic thermal
vibration of Og, since Og lies in a slightly negative region with an

accompanying very small meximum area to the left.

E Calculation of Interatomic Distances and Bond Angles

The general equation for the calculation of an interatomic
distance from the fractional coordinates of two atoms (xlyzgg and

(x2, Yoo 22) in a triclinic crystal is given by3

2
dlz = {(XZ’ Xl)

+ 2 (x,- x7) (yp- yy) ab cos ¥

2 2 2.2 22
a + (yz" yl) b+ (ZZ"' zl) c

+ 2 (22— zl) (X2°' ﬁ) c a cosf3

+ 2 (yz— yl) (22~ zl) b ¢ cos 0(}
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o
where d,, is the required distance in 4 umits,

0
a2y, by, ¢ are the cell dimensions in A,

and X, , ¥ are the angles between the cell edges,
b and ¢; a and c¢; a and b respectively,
If the unit cell has orthogonal axes as in the present orthorhombic

case, then cosd= cosp = cos¥ = 0 and the expression simplifies to:
2 2.2 2 27 %
a ={(x - x § a + (y ~cy ) (22 )¢ =

12 2 1 2 1 2 1

In the orthorhombic system the expression for the angle

between the bonds which link an atom at (xzyzzg) to atoms at

(xl, Ty Zl) and (XB’ T30 z3) ig

cos3 92= A {(Xl“"xz) (XB“XZ) 3«2+ (?fl“’yz) (ys“"yé) b2+ (21“32) (23'22) C2
da.1 do3

where 92 is the required angle and d2_19 d2_3 are the bond lengths
between atoms (1) and (2) and between atoms (2) and (3) respectively.
This expression is applicable to crystals with orthogonal axes but
cross-product terms including the interaxial angles are necessary in
the general triclinic case.

A 1list of the bond lengths for the Si-0 and 41-0 tetrahedra
and for the Al-0 octahedra calculated from the final atomic parameters
(Stage VI) is given in Table XII, Table XIII lists the interbond
angles within the tetrahedra and octahedra as well as angles at which
tetrahedra and octahedrs are linked. All these calculations were
done by hand due to the simplicity and number of them.

The mean value of the Si-0 distance in the silicon tetrahedron

o) o

is 1,630 A and the mean Al-0 distance in the Al tetrahedron is 1.742 A,

The average value for the Al-0 distance in the zluminum octahedron is

0
1,916 &, The mean 0-X-0 angle in Si and 41 tetrahedra was 109°2! which
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is very close to the expected tetrahedral angle of 109°28¢%,

F Assessment of the Accuracy

The reliability factor (R) as discussed in Section C of this
chapter gives one a general indication of the progress of a refinement,
However, R is not directly related to the probable errors of the deter-
mination, and no estimation of the standard deviation of the final
parameters can be obtained from it. The accuracy of this 2-dimensional
refinement of sillimanite has been determined by a method shown in
Iipson and Cochran (1953). The standard deviation (<T'(rn)) of the
atomic parameters was determined in the y direction only from the
final Ok{ projections of €, and €y- &,, on the assumption that
O(xn) = o(ya) =Lj(znf, The 0k{ maps were used because the atoms
were best resolved in this projection. (See Fig. 35)

Lipson and Cochran have reproduced Cruickshank's formula

for the determination of the standard deviation as

o = Zk2<FO-FC>2

q

b A C,

for a 2-dimensional refinement, where Cn is the central curvature at
the n®hatom, b is the cell edge length in the y direction, A is the
ares of the projection used to determine cr(yn), and ZE: is the summa-
tion over all the reflections in the limiting sphere (or circle in a
2-dimensional case). Account was taken in this summation for the

orthorhombic symmetry of sillimanite by multiplying (Fb- FC) for the

* This relation may hold for a 3=diménsional refinement but it is not

necessarily true for a 2-dimensional refinement.
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0k{ reflections by four and for the 0k0 reflections by two.

The above expression may be written as

O(y,) = (’%—5)2 %/Cn

as shown in Lipson and Cochran. In this formula, D = 100-100 and
AD/d y is the slope of D in the y direction on a - £, map.
The average is taken over the whole unit cell or projected area of
the cell. By taking this average over the whole unit cell, the
calculated experimental error includes errors due to the residual
gradients which might be removed by further small shifts,

Brrors other than these random errors of measurement were
neglected. Drrors due to scale of the FO synthesis were not considered
since the electron densities were not rigidly required in this project,
Series termination errors and computational errors discussed in
Lipson and Cochran (1953) and Cruickshank (1949) have also been ignored
since their effects were assumed to be negligible compared to the ran-
dom errors.

In assessing the accuracy of this refinement use was made
of both the sbove expressions for the standard deviation. If these

equations are written so that Cn is the only denominator such as:

Oy = gﬂ{éikz(FO‘Fc)z} : S (6D>2 % 1

b A n

0y C,

then both bracketed terms should have the same value since C, is the

only variable for any particular atom. The first bracketed term was

evaluated from the FO_FC data for the 0kf reflections and was foung

0.3 )%
to be 14.21 e & . The expression {(GD/ d ) }d was evaluated
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over 240 points distributed evenly over the '62— {?c map projected
0=3
along a. Its value was found to be 13.24 e A  giving good agree-
ment with the value determined by the first method,
In order to evaluate the standard deviation it is necessary
to determine the curvature for each atom. This was done in the case
of sillimanite for Si, AlII’ Ob and OG using the final ok{ fé map

(Fig. 35)s The curvature C,» at an atomic centre is the same as

2
( 8)2 f;,/a )} in the v direction. The atoms were assumed to be
y

spherically symmetrical, so the curvature was evaluvated in several

directions across the Si, Al and Oc peaks. Assuming that the

iTe Ob
o

electron density at a point r A from the atomic centre is given by

€(r) =) exp (<pr?)

or An =—I‘2
S AEE

where f?(o)is the cbsexved electron density at r=o, then the straight
line for fn ( f’(r)/ fD(o)) against r? has as its slope =~p. The

curvature may be written simply as
Icn‘= |-2p f?(o)‘

The values of p were determined by the above methods from a straight
line plot fit to the data by least squares. Using these values of p
and the observed electron densities at the peak maxima, the values
of the central curvature at each atom were calculated. Calculations
of the standard deviation of error in the final atbmic paraneters

were performed using both values of the numerator in these equations.



The averages of these two calculations were used as the final result.

The following tabulation lists the values of f;s ps Cy and & (y)

for the atoms S5i, ElII’ Ob and Oce
0-2 0.2 oL 0
(o) (e &) p (4 c (e d™) oy (4)
S5i 6245 24,0 3,000.0 0,005
AlII 59.5 21.2 2,523.0 0.006
Qb 35,0 17 1,190.0 0,012
OC 32.6 14.8 965,0 0,014

The sverage of the two values for Ob and. 0C is 0,013 and this value
was used in further calculations to represent the standard deviation
in stomic parameters for all the oxygen atoms in the wmit cell of
sillimanite,

These standard deviations agree fairly closely with those
obtained by 2-dimensional methods from similsr structures, for example
Low aznd High Albite by Ferguson, Traill and Taylor (1958) in which
they report O(y) 0 = 0,018 and G(y) Si = 0,006, There is perhaps
a slight underestimate on the part of Si and Alq; but it is felt that
these numbers represent the true values very closely,

The standard deviation of the length of a bond, A-B, between

two atoms, & and B, is given by the relation,

0?(aB) = g3(a) +52(3)

V2 O (4) when the two atoms are the

]

or by O (A-B)

same. The present standard deviations of error in the atomic positions

of 8i, 4lq7 and Oxygen were substituted into this expression, and the

following standard deviations of error in S5i-0, Aly1=0, and 0-0 distances
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were found to be,
[+]

0,014 A

[}

0,014 A

0°(si - 0)

{1

0’ (AL 7 -0)

0(0=0) =0.018 &
Cruickshank (1949) has suggested a test to determine the significance

of differences in bond lengths which are subject to error. If a bond
of length C with standard deviation 0(C) is determined as greater than
a bond of length D with standard deviation d'(D) by an amount &/ then;
if 60/  1.645, the difference is not significant,
if 2,327 ) §1/ 0 > 1.645, the difference is possibly significant,
and if 3,090 7 §1/ 0 > 2,327, the difference is significant.

In these inequalities the quantity (¢ is given by

2 Y2

O = {cr © +G6° (D)

This test was applied to the bonds S$i-0 of the silicon tetrahedron, AlIIuO

of the aluminum tetrahedron and the 0-0 distances in both of these tetrahedra.

Since the standard deviation of error is the same for each bond length of the
o

Si and AlII tetrahedra, the overall standard deviation, O , is 2 (0.014)A

or 0,020 A, and for the 0-0 distances is |2 (0.018) & or 0.0255 .

For the examination of the differences of the bond lengths from the

mean values of the Si-0 and AlIImO distances, a different overall standard

deviation O is employed. This standard deviation is given Dby:

12
2 2
={O“ (C) +ovmean} g

vhere ' (C) is the standard deviation of the bond length C andO'mean =0 () /¥,
0’ () is the overall standard deviation of the $i-O and AlII-O distances and

N is the number of bonds involved in deriving the mean length. In the

present case since the standard deviations of the bond lengths in the Si

and AlII tetrahedra were the same, the value of the overall standard deviation

was the same as the above O for the comparison of two bonds of lengths C and

o
Do (ie€ey & = 0,020 4.)
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The deviation of each bond 1ength in the Si-0 and AlIIaO
tetrahedra from the mean was determined and then these significance
‘tests were applied. It was found that in the S5i=0 tetrahedron, the
bond length differences from the mean of Si=Og, Oaaocvand 04-04' were
significant and the differences of 8i-04 from the mean were possibly
significant. In the Aly;7=0 tetrahedron all the AlIIaO differences from
the mean were not significant whereas the differences of Ob«aO09 Ob»Od
and Odde' from the mean were all significant. The difference between
the mean values for the Si~0 distance and the AlII“O distance in these
two tetrahedra is highly significant.

When the curvatures for the different atoms in the unit cell
of sillimanite were calculated, it was felt that the values were
excessively large. A comparison of the author's values with the cur-
vatures for silicon and oxygen obtained by Ferguson, Traill and
Taylor (1958) in a refinement of low- and high-temperature albites
revealed this to be the case. The curvatures reported in the above
paper were 303 el for oxygen and 845 ¢2=3 for silicon. Both these
values are approximately one-quarter the sigze of the curvatures for
oxygen and silicon obtained in this study. In order to provide an
explanation for this,; a comparison was made of the number of terms
that were used as amplitudes in the F, syntheses of both refinements.

In the present work, 63 observed reflections were used to calculate

the f; map projected along a, whereas 125 observed reflections were

used in the same projection in the low-albite refinement. The large
value of the curvature in this refinement represents a high narrow

peak with steep slopes on the sides. Thus the large curvature may be
attributed to a series termination effect due to the fewer number of

terms used in the Fourier summation.



CHAPTER VIII

SUMMARY, COMPARISON AND DISCUSSION OF THE RESULTS

A Introduction

The crystal structure of sillimanite has been refined by
2-dimensional Fourier technigues. An Xeray determination of the
centrosymmetric nature of sillimenite confirms Taylor's (1928) resulb
that the space group is Pbnm. The essential structural features of
sillimanite determined by Hey and Taylor (1931) have been confirmed
by this refinement through the agreement between 268 observed and
calculated structure factors, although the values of the interatomic
distances and interbond angles have been obtained more accurately.

The structure of sillimenite is characterized by chains of
aluminum octahedra parallel to the ¢ axis linked by parallel double
chains of alternating silicon and aluminum tetrahedra formed into
Yepernbered rings. This linkage suggests thet sillimanite should be
placed in the chain or ino=silicate group in the silicate classifica-
tion, with the pyroxenes and the amphiboles. However the very close
structural and mineralogical relationship of sillimanite to andalusite
and kyanite probably justifies the customary inclusion of sillimanite
with these two minerals.

In this Chapter comparison is made with the work of other
authors on sillimenite, but it should be pointed out that since much
of this work was well underway before any of these refinements had
appeared in detail, this constitutes a completely independent refine-
ment of the structure. The first refinement that appeared was that
of Durovic and Davidova (1962). This was a short note in Acta
Crystallographica containing only the R factor for 72 unspecified

planes, the measured density and a list of the refined atomic coordinates.
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Burnham's refinement appeared in 3 different publications (1962a9
1962b and 1963) in November 1962, December 1962, and May 1963. The
present refinement had been completed by the ftime the full account
(Burnham 1963) had been published, but the data given in the two
earlier shorter publications were purposely ignored in order to insure

the independence of the author's refinement.

B Cell Dimensions and Specific Gravity

Table XIV (a) contains a list of the measured specific
gravities and cell dimensions of this work, Burnham (1963) and Durovic
and Davidovae (1962). Burnham's paper contains no specific gravity
determination whereas the cell dimensions are absent in the paper by
Durovic and Davidova. There is no appreciable difference in the
specific gravities measured by the two different authors. The diff=
erences between the two sets of measured cell dimensions are probably
significant since the present author’s values are all slightly smaller
for all three axes than Burnham's refined values. The standard
deviations of the author's values are not sufficiently large to include

the ranges reported by Burnham.

C Comparison of Atomic Parameters

A list of the final atomic parameters in sillimanite deter-
mined in this work is given in Table XIV (b). This table compares
the atomic paremeters determined by Taylor (1928), Hey and Taylor (1931),
Burnham (1963) and Durovic and Davidova (1962) with those of the present

refinement. Since the R factors relative to Hey and Taylor's sitructure



Measured
Sp. Gravity
gmocmo"B)

2, (4)
b ()

0

c (&)

0

v (%)

TABIE XIV g
COMPARISON OF SPECIFIC GRAVITIES AND

CELL DIMENSICHS OF VARIOUS AUTHORS

This Work Burnham (1962b)
3,240 -
7.476%,003 * 7.4856%,0006
7.666%,005 7.6738%£.,0003
5.,763%,003 5.7698%,0008
330,28 .331,43

D.,and D, (1962)

3.226

* The 4 values listed here are the estimated standard deviations, not

the probable errors.



were improved upon in the present work a definite improvement has been
made to their structure. Duroviec and Davidova report a final R factor
of 7.1% for 72 independent vreflections. Since so few planes were used
in their refinement it is felt that the present work is more accurate
and this is also suggested by their reported accuracies of the atomic
parameters which are laréer than the ones in this work. The very small
value of the R factor (5.6%) for a large number of 3-dimensional data
reported by Burnham shows definitely that his parameters are much more
accurate than the present author's.

Table XIV (b) requires an explenation of the notation used
in it. The parameters that are subscripted by T (XT9 Ve ZT> are
referred to Taylor's original setting and choice of prototype in the
unit cell., The parameters for "This Work" include all of the atoms
in the unit cell and the headings of the columns give the equivalent
positions in the space group Pbum referred to Taylor's setting. The
parameters with a subsecript B are those listed by Burnham (1963)0
In order to facilitate a comparison with andalusite he has moved the

origin to ¥ % 0 in the Taylor cell which corresponds to a transforma-

tion of xg —=Xp3 ¥y __4.553 zB._—v'EEQ The atomic parameters of
This Work that correspond to the transformed parameters of Burnham
have been singly underlined. The doubly underlined parasmeters in
This Work and Durovic and Davidova (1962) are the prototype atoms
referred to Taylor's original setting with coordinates all positive.
These parameters are the ones that were used in the computations dur-
ing this refinement and they are contained in Table IX.

The largest discrepancy in atomic parameters reported by

Burnham and the author occurs in the parameter of 0g. The difference

is 0.010% which is most definitely significant. However there was

little indication from the ‘f;m €g nmaps during this refinement that
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0. should be moved any further from the (oo1) plane. This large -

d
difference in the position of 04 accounts for the large differences
in interatomic distances S5i-04 and Alyy-04 which are shown in Table
XIV (c) (¥ext section). This difference in the position of 04 is

half as much again as great in distance as the difference in peosition

of any other atom, the largest being the X parameter of 0, (0.0054) o

No definite indication of any of these differences in atomic position
were indicated by the f’on f?c maps so this refinement may be con-

sidered to be complete.

D Comparison of Temperature Factors

The final temperature factors B for the individual atoms in
the three zones hk0, hOQ and 0k f{ are given in Table XIV (c) where they
are compared with Burnham's (1963) equivalent isotropic temperature
factors. Since the present suthor used different temperature factors
for the atoms in the three zones they appear as anisotropic temperat-
ure factors, whereas because of the overlapping of certain atoms in
projection some of these differences may not be real. The final
temperature factors, especially those in the hk0 projection, are
significantly different from the isotropic temperature factors of
Burnham,

In the final ¥,- €, projections (Fig. 33, agb;c) there are
indications that the temperature factors could also be improved upon.
However due to the overlapping of many of the atoms, especially in
the hk0 and hof zones, the work required to make these changes in
temperature factor was not warranted. It can be seen in Table XIV (¢)

that the best overall agreement with Burnbam's values is obtained in
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02
COMPARISON OF TEMPERATURE FACTORS B IN A4 s

FINAL STAGE VI WITH THOSE OF BURNHAM (1963)

Atom This Work Burnham (1963)
(projections) (isotropic
hko0 ho{ Ok £
AlIf 1.07 0.60 0.38 0,238
AlII 1.07 0,60 0,40 4 0370
Si 1.25 0,50 0.52 0339
Oa 0.83 0.40 0658 0.355
Ob 0,73 0.63 0.53 0.500
Oc 0.87 0.95 0,65 06857
0 092 0.62 0.65 0.b07
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the Ok{ projection which is probably due to the fact that the resolution
is best in this zone. The anisotropy of 0, as reported by Burnham (1963)
is suggested in the present study by the variation in the values of B
for this atom in the three projections. However, differences between
the values for the other atoms observed by the author are even greater
than these for Og whereas Burnham observed no appreciable anisotropism
for these atoms. Therefore little reliance should be placed on the
differences in the B values of individual atoms between the three pro-
jeetions as a measure of anisotropism. The large values of B for S5i

and Al in the hkO zone may be significantly reduced since both of these
atoms are in electron density highs on the final ‘e'ou-'%ma‘ps° Since

0, and Oy are in negative electron density regions on the hk0 e,- fz

map a contrary increase in their temperature factors is indicated.

£ Comparison of Interatomic Distances and Interbond Angles

The bond distances and interbond angles from the parameters
of the refinement by Durovic and Davidova were not calculated so no
comparison was made with them, since it was felt that nothing would
be gained from this. Table XIV (a) gives a comparison of the inter-
atomic distances and interbond angles of this work with those of
Burnham (1963). The atom pairs that have asterisks fall outside the
accuracy range of both authors. It also can be noted that Sind and

Al ”Od distances differ appreciably from those of Burnham's. This

IT
is due to the fact that Od is placed farther from the (oc1) planes in

Burnham's structure thus decreasing the S5i~04 distance and increasing

the AlIInOd distance since these Od atomg are related by the mirror

planes. The author's AIIIeOb distance is also nmuch smaller than



TABLE XIV ()

COMPARISON OF INTERATOMIC DISTANCES AND INTERBOND ANGLES

BETWEEN THIS WORK AND BURNHAM (1943)

o
Interatomic Distances (4)

Atom Pair This Work Burnham (1963)
8i-0, 1.62240,014F 1,62940,007)
51-0,, 1,55740.014p 1.630%0,014° 1.564%0,006 f 1,615
%2 SimOd ¥ 1.671%0,014] 1.633£0.00% )
'4‘ 9 S N
0,- 0, % 2.56120,018 2,60820,007
x2 0= Oy 2.63820.0184 2.,661%0.018 2.628%0,0057 2.636
%2 Oc” od * 2,659%0,018 2.627%0.006
0g- 04t # 2,81220,018 | , 2.69620.,007)
Alyg- 0y % 1,73050,014] 1.758%0,005)
Alyy=-0, 1.725%0,014 ¢ 1.74230,014 1.72120.,006} 1,770
- * * x
xR Al od 1.756 oeowJ 1.800%0,004)
Ob” oc 2.916%0,018) 2.903%0,007)
2 0= 0, * 2,776%0,018% 2.844%0,018 2,83410,0050 2.889
%2 00“ od 2.,823%0,018 2.843%0,006
- % x +
0,- 0,1 2.951%£0,018 3.074%0,007}-

& The £ values for the bond distances of This Work are the estimated

standard deviations ((7) not the probable errors.
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Atom Pair
%2 Ali“ Oa
x2 All »Ob
%2 AlI =Od
%2 Oa »Ob
x2 0 -0 ¢

a b
x2 0 -0

a a
X Oa "Odv
x2 O =04
%2 0 -0 1

b Od

Interbond Angles

04=51-0,,
= -

x2 Oa i Od

x2 Oc=Si-=0d

G101
Od Si Od

AL .
Ob 111 Gc

%2 ObnAlnaOd

A
OdedlllaO&?

This Work

1,92620,013)
1.861%0,013

15961i09013J

2.885%0.,018 ]
2.454%0,018
2,771%0,018
* 2,734%0,018

2.689%0,018

P 1.91620,013

3 2,710%0.018

*2,72740,018

This Work

107° 17

106° 22!

¢

110° 51

114° 35

115° 11°

105° 35
108° 12

114° 21

[l
O
A¥a

Burnham (1963)

1.919%0.003)

1.861%£0.003

r 1.912

1995?230@003J

2.893%0,001)

2.434%0,006

2.77620,005

2.705%0,005

2.698%0,005

Foo2.702

2°?03i0500§

Burnham (1963)

109,6°

107 .4°

110,5°

111.3°

113,29

105.6°

107,7°

117.3°



%2

%2

'X2

0_-A1l.-0, 99015"

0,~A17-0, " 80° 45"
0, =A1=0, 90° 56v
0 410 s 890 &'

0 -A1.-0, 890 2
Ob»AllaOdv 90° 36
5-0_~h1 170° 36

biaOd-aAl 1 1140 29

99.8°
80.2°
91.5
88.5°
89.99

90,1°

171;6°

114,4°



Burnham's corresponding distance. This is due to a disagreement in

the y parameter of Oy and the x parameter of Alyy between the two authors,
The significant differences in the values of the average interatomic
distances for tetrahedral silicon and aluminum is due mainly to the

value of the z parameter of 0z, The table of the comparison of the
d

bond angles also shows these trends in the differences of the stomic

position of 04

¥ Discussion of Electrostatic Charge Distribuiion in the Sillimanite
Structure

There is good reason to believe that in silicate structures
the atoms exist as ions and therefore it is vrofitable to discuss
the electrostatic charge distribution in the sillimanite structure.
In an ionic structure the balance of the electrostatic charges may
determine the stability of the structure. If one assumes a completely

b

s + -
ionic character of the atoms in sillimanite (Al 3, 31 and O 2) then

the bond strengths of the positive ions contributed to the four oxygen
atoms constituting a tetrahedral A104 or S104 group should total 8 and
the bond strengths contributed to the six oxygens constituting an

AlOé group should totel 12. Care must be taken in drawing conclusions
from the results of applying Paulings Rules (1961) since it is
possible that the Si-0 bonds may possess a partial covalent character.
In applying these rules to the sillimanite structure several different
approaches are described below. The structure was first assumed to

be fully ordered but with the AlII in two possible coordinations, 4
and 5. Two impossible situations which will be shown presently,

rule out the possibility of A105 coordination dr Alyy. In addition,
for L-coordinated AlII cases of partisl disorder, complete disorder,

I

and complete interchange of siT and A"l between the two sites are



examined.

Table XV shows the charge distribution for & and 5=coordinated
AlIIa The charge on the silicon atom is assumed to be +4 and is divided
among four oxygens, whereas the charge on the aluminum atoms is +3 and
it is divided among 4 and 6 oxygens for the tetrahedra and octshedra
respectively.

It can be seen from Table XV that 4-coordinated Alyy gives
perfect agreement for the Aln--OL,r groups and the A11-06 groups but an

excess of 0.25 e on the Si~04 groups. In the case of 5-coordinated

AlII only the A111u05 group gives perfect agreement whereas both the
SiOQ and AlI’Oé groups have excess charge on them. One reason for dis-
carding the possibility of 5-coordinated AlII in sillimanite is this
poor value of the charge balance. Another is the impossible situation
that occurs in the Allnoé group of oxygens. The whole group has an
excess of 0.6 electrons. This cannot be lowered by disorder considerat-
ions since there are no ions with a positive charge less than 3 that
could be placed there on a statistical basis to lower the effective
charge on the AlI site. Also Si is not known to exist in six fold

coordination. The final reason for discarding the AlII-r-O5 group is the

fact that the oxygen atom (Oa) that is the closest to AlII other than
o)
the four atoms to which it is definitely bonded is 2.942 A from Alty,

o
nd this distance is approximately 1.20 A larger than the sum of the

o}

ionic radii of 4173 ang 0-2,
Table XV also shows that there is a local charge unbalance
on the individual oxygen atoms. Both OO and Ob have a deficiency of

0.25 e while 05 has an excess of 0,25 e, With 04 being present in



CHARGE BALANCES FOR TETRAHEDRAL AND OCTAHEDRAL GROUPS

BASED ON Al__=0

II

Group

AlI

Group Total

Grovp Total

Group Total

TABLE XV

) . _
Q'AND ON AlII 0

Al7r-0y
Total (&)

2,00
1.75
2.25

2.25

T

8.25

1.75

1.75

COORDINATION

Total (&)

2,60

1,60
2,10

2,10

8.40

2.60
1,60
1.60

2,10

2,10

10,00
2,60

2,60
1,60

1.60

2,10

2,10

12.60



twice the number compared with OC in the unit cell there resulis an
excess ofcharge on the Si0y tetrshedral group since 0, has a perfect
charge balance and Ob is not coordinated to Si.

It can be shown that it is not possible to vary the charges
contributed to the two fetrahedral groups of oxygens for a given
silicon=a2luminum distribution by dividing the charges on the catiouns
in amounts that are inversly proportional to the cation-oxygen diste-
ances in the tetrshedra. However, it is possible to vary the charges
on the tetrshedral groups of oxygens by varying the Si-Al distribution
and some possibilities of this kind are shown in Table XVI, So in
attempting to provide an explanation for the charge distribution two
disordered structures were considered. The results of the calculations
are given in Table XVI. This table also shows the result occuring
when 5i and Al are completely interchanged in their sites. Notice that
when this is done the excess charge on the Si site is changed to the
AlII site whereas no excess charge is observed on the All octahedral
site. Also throughout the different approaches, except in the A],II--O5

case, the charge distribution to the oxygens surrounding AlI has

remained nearly perfect,
Table XVI along with the results of Table XV suggests that
i ) provides

=3
0.5 0.5
the best overall charge distribution with an equal excess of 0,13 ¢

the fully disordered structure of sillimenite (41

on each of the tetrahedral groups of oxygens. However this is cone
tradicted by the size of these two tetrahedral sites. In this work

ol
the average Si-0 distance is 1.630 A and the average Aly7-0 distance

) 0 0
is 1.742 A and Burnham's more accurate values are 1.615 A and 1,7704



TABLE XVI
CHARGE DISTRIBUTIONS FOR

DIFFERENT Al-Si ARRANGEMENTS

Partial Disorder Full Disorder
Crou Sl069“’“051 Sl065"’“0,5
» in Si site in both sites
’Oa 1,98 1.88
OC le?5 1075
Si <
0d 2.25 2+25
$
04 2.25 2.25
Group total 8.23 8,13
(
Ob 1,78 1.88
0C 1.75 1.75
Al
o 2,25 2.25
4
0, 2.25 » 2.25
Group total 8.03 ‘ . 8613
(o 1,98 1.88
a
0, 1,98 1,88
Oy 1,78 1,88
Alg
Obf 1.78 1.88
O o <
a 2.25 2425
01 2025 2,25
Group total 12.02 12,02

171

Interchange
i &
51 & Alyy

in tetrahedral sites
1.75
1.75

2.25

2.25

8,00
2,00

i 1375

225
2,25
8025
1.75

1.75

2,00

2.00
2.25
2.25

12,00



respectively. When these values are taken into account with the values
given by Smith (19543 see also Smith 1962) for the pure Si-0 and Al
distances, 1.60%0,01 i and 1.78%0.02 2 respectively, it appears that
the silicon and aluminum atoms must be completely ordered or nearly

g0 in sillimanite.
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APPENDIX T

PROCEDURE FOR TAKING WEISSENBERG PHOTOGRAVHS

Zero Level

1,

20

3o

4o

5e

Affix Weissenberg screen in position. Make sure screen setting:
and horizontal angular settings are reading zero.

Slide direct beam trap to extreme left and check for emission of
X=ray beam.

Record central streak in the film as follows:

(a) Place direct beam trap to extreme left, turn off X-rays and

have the brass drive pin for the carriage aligned with the collinatox.

(b) Insert camera on carriage, free carriasge from drive, and have
camera snd carriage to the extreme left of its traverse.

(¢) Turn on X=rays and immediately slide the camera and the carriage
fairly quickly to the extreme right and at once turn off the X-rays.
Lock the carriage to the drive pin, remove the camera from carriage,
replace the direct beam trap in line with the collinator and return
camera to the carriage making sure the camera setting is zero.

Make sure the circular scale piece (drum) is linked to the drive

by the lock pin (as distinguished from the pressure pin)e. Fix the
raverse stops for the appropriste traverse lengths.

Start Weissenberg motor and turn on the X-rays.

Upper Level

1

2

Set the Weissenberg instrument at the appropriate horizontal angular

setting and affix the Yeissenberg screen in the appropriate position,

Same as for the zero level,



5

17k

Same as for the zerc level,

Lock the carriage to the drive pin, remove the camera from the
carriage, replace the direct beam trap at the required setting

and return the camera to the carrizge making sure the camera is

at its appropriate setting for the upper level,

Same as for the gero level noting that in general, the traverse
stops will be in slightly different position from those required
for the zero level, and their positions will be determined by

the position of the camera and carriage relative to the collimator,

Same as for the zero level,
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APPENDIX IX

STRUCTURE FACTOR COMPUTATION FOR SPACE

GROUP Phnm ON THE I.B.M. "LE20"

A programme was prepared to compute crystallographic struct-
ure factors for the space group Pbaum on the I.B.M. "1620" at the
University of Manitoba using the simplified coding system of FORTRAN,
A familiarity with the FORTRAN system on the part of the reader is
assumed in this section¥®. The programme prepared by the author is
admittedly simple and can only be applied to the special case of
sillimanite. However, since it was prepared in the course of this

M.S¢ Thesis, it was felt that it shouvld be included in this report.

A The Problem Statement

Crystallographic structure factors of the type F(hkﬁ) for

the space oup Fbhnm as required in the present investigation can be
£ -

represented by the relation

F(hkﬂ) = 8 E fj exp (aBj sin2 69/ A 2)
J
X cos 2ﬂ(hxj + k)
L

X cos 2T(ky. - htk+{)
J L

X cos Zﬁ(fzj + QGQQ

In this expression, the summation is over the J atoms in the unit

is the scattering factor of the j%¥™atom, B,

cell, f. 5

3 igs the temperature

% Reference: General Information Manual FORTRAN, I.B.M. (1961)
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factor of the jth atom, & is the Bragg angle of reflection from the

lattice planes with Miller indices hkf, A the wave-length of the
X-radigtion and x39 yj and Zj are the coordinates of the j%h atom
expressed as fractions of the cell edges. The factor 8 applies only
for the case of 04 which is the only atom in the unit cell that is in
the general position of the space group. For all the octher atoms in
special positiors the factor is 4. Since this was a 2-dimensional
refinement and structure factors of the type F(th) were not required,
this expression was modified slightly to calculate structure factors
for the reflections of the types (hk;{))9 (noR) ana (oxf) by preparing
three separate programmes, one for each zone. The same equation was
used for each zone but provision was made for keeping one of the
Miller indices constantly zero. The scattering factors fj of the
atoms were computed from a sixth degree polynomial expansion of the
scattering factor in terms of sin ey/f\e, The coefficients of the
terms in these equations were obtained by using a polyncmial curve
fitting programme also run on the "1620" (W.R. CGraves, I.B,M, file

number 7903001)9

B Description of the Programme

In order to facilitate explanation of this programme refer-
ence should be made to the Flow Chart given in Fig. 36. This descrip-
tion closely follows this block diagram so that correlation between
the chart and the programme listed at the end of this Appendix is easily
mnade,

The constants that were stored at the beginning of the pro-

gramme were 2T, the squares of the cell dimensions, and the coefficients



of the sixth degree polynominals used to calculated the scattering

factors for Si%'9 41%2 ana 0%, These constants were as followss

g3 tH ALY3 0=2
2 = 6.283186 A0 = 9,99543 B0 = 9.98324 €O = 10,0393
a? = 55,8906 AL = 0.,195043 Bl = 0.95214 Cl = -16.8775
b2 = 58,7676 A2 = -23.3760 B2 = =36.9209 (2 = -65.1891
¢? = 33.2122 A3 = 7,25941 B3 = 38,9954 C3 = 287.178
Al = 31,4735 Bk = 0,757586 Ch = 427,181
A5 = _32.0954 By = -18,32297 (35 = 286.020
A6 = 9,22637 B6 = 6,87218 06 = =72,6295

The temperature factors of the atoms were read into the come
puter first., These were punched onto paper tape along with the atomic
coordinates since they were all entered at the same place in the pro-
gramme. Allowance was mede for possible differences in temperature
factors for Si, AlIs AIII and 0, Only isotropic temperature corrections
were incorporated into this programme. The atomic coordinates for
one prototype of each structurally different atom were entered since
the use of the general structure factor equation from the International
Tables of X-ray Crystallography (Vol. I) allows for the symmetry of
the related positions in the space group FPbhum.

At this point of the programme, depending upon which zone
of structure factors was being calculated (hk09 hof or Okﬂ)9 Proe=
vision was made to keep one of the Miller Indices constantly zero.

The example shown in the listing at the end of the appendix is for
the calculation of FhkO S0 that'Q= 0., Throughout the programme, in
order to keep all calculations in the floating point system, h, k and §

have been replaced by P, @ and R respectively.
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The indices h, k { are generated by "DO" statements. The
index that varies least is designated by "H" while the one varying
most is designated by "K" in the flow chart. This double looping
generated by two "DO" statements caused the computations of all
structure factors up to the arbitrarily imposed limit of sin O /A=1.2.
The test for the limit of sin @ /A was done by first calculating
sin Q,/A. from the indices and the oxthorhombic spacing formula
1 =nl it ?

A

and then testing whether its value was greater than
FE a? gﬁ X

1.2, If the value of sin © /A was less than 1.2, the structure factor
for that plane was computed but if the value was greater than 1.2 the
computations were bypassed and the "K" index incremented by 1 and the
test applied again.

Having already determined the value of sin 8 /A for the
particulayr plane that had been generated by the looping,; the next
sectlon of the nrogramme computed the scattering factors for the 3
chemical atoms Si+49 4173 ang 072, Following the evalvation of these
three polyncmials of the sixth degree, the scattering factor values
were then corrected for the thermal motion by multiplying each scatter-
ing factor by 1/23(55%tgt)29

Using these thermally corrected values of the scattering
factors of the atoms the contribution of each atom to the struciure
factor for the particular plane was calculated by the equation given
at the beginning of this appendix. After sll contributions were
calculated the total structure factor was computed by summing these
seven terms. Finally, the indices of the plane, sin 6/& and the

structure factor for that plane were printed on the itypewriter. VYhen



the value of "E" had reached its maximum, the computations were
stopped and the vrogramme was terminated.

During the compilation of the source programme into machine
language a trace feature was incorporated into the object programme.
This factor allowed the operator to follow a complete cycle in the
calculation of a single structure factor so that each step was typed
and any error in the programme could be detected. "FORTRAN" gub-
routines were also incorporated into the object progremme so that the
different arithmetic and trigonometric commands could be executed by
the computer.

This programme was run successfully for the three zones hk0,
nod end Okf. A representative number of structure factors computed
for the three smones were checked by hand calculation by the author and
the computed values were found to be correct. The computing time for
each structure factor was approximately seven seconds. No provision
was made to omit the printing of the structure factors of the systematic-
ally extincet reflections of the space group. A typical out-put for the
hk0 reflections has been included following the listing of the programme
in FORTRAN 1anguage at the end of this appendix. The atomic parameters

for this calculation were those of Taylor'(l928)e
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Fig. 36

FLOW CHART OF IBM 1620 PROGRAMME FOR STRUCTURE FACTORS

START

Store constants

required

by Programme

!

Read temperature

factors of the
Atoms Si,AlI,AlII,O

Read fractional
coordinates of one

prototype of each
structurally different
atom

Structure
factors for whic

zone?

FOR SPACE GROUP Pbnm

—

Set MHM=0
Set ;;ﬂzo
Cg?iuge Increment Increment
S "KY by 1 "HY by 1
No No

Is

w9
mnax

NHY! >/

ryH } xvKgax?

hkO hod Okt
Set Set Set

Compute
scattering

factors for
sith a1t3 -2

Punch
Correct scattering HEL
factors with F(HKL)
Temperature
Factors B
Print H,¥K,L
Compute Sin 6/ A
Structure F(HKL)
Factors
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FORTRAN LANGUAGE LISTING OF PROGRAMME

TO COMPUTE FhkO VALUES FOR SILLIMANITEH

READ, BSI, BALL,BAL2,B0X
READ, XSI,YSI,4SI,XAL1,YAL],ZAL1 ,XALR,YAL2 ,ZAL2
READ,X0X1,Y0X1,Z0X1,%0X2,Y0X2,40X2,X0X3,Y0X3,20X3
READ , X0Xk , YOX4 , ZOXl

1 R=0,0

DO 10 I=1,21

p=I.1

DO 10 J=1,21

Q=J-1

GO TO 99

99 ASPAC=((P**2)/55,8906)+((Q**2)/58.7676)+((R**2) /33 ,2122)
SHTL2=(1./4, ) *ASPAC

SINTL=SQR(SNTL2)

27=1.2001-SINTL

1F(22)10,10,89

89 CONTINUE

Z1=SINTL

42=0]%%2

Z3=72%71

Dly=2,2% %

25=72%73

Z6=03%%p
SES31=0,995L3+A1 A1 +A2% 2 2+A3* L3 ALY T L+A 5% T 5+AE%Z6
SFAL=9,98324+B1*Z1+B2¥Z2+B3¥Z3+BUAZL+B 5%Z 54B6*%6

SFOX=10,0393+C1%Z1+C2%Z 2+C3 %43 +CU* L L+C5%Z 5+C6%26



SSESI=SFSI*(1,/(EXP(BSI*SNTL2)))
S1FAL=SFAL*(1,/(EXP(BALI*SNTL2)))
S2FAL=SFAL# (1, /(8XP (BAL2*SNTLR)))
SSFOX=SFOX*(1./(EXP (BOX*SNIL2)))
X=(P+Q) /4.

Y=(P+Q+R) /b,

Z=R/k,
RRSI=l,*SSFSI*COS(PI*(P*XSI+X))
SSST=C0S(PI*(Q*YSI-Y))
TISI=COS(PI*(R*ZSI+Z))
FST=RRSTI*SSSI*TTST

RRAL1=L . %S1 FAL*COS(PT* (P*XALL+X) )
SSAL1=CO0S (PT*(Q*¥YAL1-Y))
TTALL=COS(PI*(R*ZAL1I+Z))
FAL1=RRAL]*SSAL]L*TTALL

RRAL2=L ,*S2FAL*COS(PI# (P¥XAL2+X) )
SSAL2=COS(PI*(Q*YAL2-Y))
TPALR=COS(PI*(R*ZAL2+Z))
FAL2=RRAL2*SSAL2*TTALY

RROX1=li, ¥SSFOX*COS(P1* (P*X0X1+X) )
SS0X1=COS(PI*(Q¥Y0X1-Y))
TTOX1=COS (PI*(R*¥Z0X1+2))
FOX1=RROX1#*SS0X1*¥TTOX1

RROX 2=l , *SSFOX*COS(P1#(P*X0X24X) )
SS0X2=C0S(P1*(Q*Y0X2-Y))
TTOX2=COS(PI*(R*¥Z0X2+Z) )
FOX2=RROX2¥SS0X2%TT0X2

RROX3=L ,¥SSFOX*COS(PI*(P*X0X3+X) )

$80X3=C08(PT*(Q*Y0X3-Y))



PTPOX3=C0S(PI*(R¥Z0X3+Z) )
FOX3=RROX3%SS0X3*TTOX3

RROXL=8 , *SSFOX*COS (PT* (P*XOXL+X) )
SS0XL=COS(PT*(Q*Y0XL-Y))
TPOXL=COS(PT*(R*Z0X4+2) )
FOXL=RROX4*3SOXL*TTOXL
FHKL=FSI+FAL1+FAL2+FOX1 +FOX2+FOX3+FOXL
I=P

M=Q

=R

PRINT, L,M,N,SINTL,FHKL
PUNCH, L, 1M, FHKL

10 CONTINUE

END
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10
11
12
13
14
15
16
17
18

sin &/

00000000
6,528-02
1304
1957
2609
3261
+3913
566
5218
5870
6522
JTLT7h
07827
8479
29131
<9783
1,044
1,109

1.174

P
(hko)

320.63364
-9 LlE-06
9.95
-1.79E-05
=l 15

=8 ,28E-06
96,89
~2096E-05
7.30
1.99E-05
~21,20
2.698-.06
34,84
=3.31E-05
8.3k

4 43E-07
=15+23
1.65B-05
6,17
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EXAMPLE OF OUTPUT FROM PROGRAMME TO COMPUTE P

hk0

extinct

extinct

extinct

extinet

extinect

extinet

extinct

extinet

extinet



=

© ~ oN W oo W

i~ O
(o]

11
12
13
14
15
16
17
18

sin & /A

6,688E-02
90342E-02
<1466
.2068
2693
23329
3970
JH61L
5261
5908
26557
07206
27855
8505
29156
9806
1.046
1,111

1,176

1338
1488
1868
+2370
02932
3525

* (1x0)
1.278-05 extinct
12,86
-46,27
10.99
27453
11,54
9496
16456
-13.86
23,67
16,69
17.50
1.73
16,57
-8.76
8423
1.85
2.87

""1 050

17.17
57 .84
61,55
~13.42
60,76
=729k



sin ©/\

4136
4758
05387
+6021
+6658
27298
7940
-8584
09229
2987k
1,052
1.117

1.182

F(hko)
6,92
25,21
15,00
19,26
23.29
~23.33
2,26
-1.83
0,16
7,80
8.1k
-1, 52

3483
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