OPTIMAL ANALYSIS OF A SUBSURFACE BARRIER FOR SALTWATER INTRUSION CONTROL

BY

MUNDZIR HASAN BASRI

A Thesis Submitted to the Faculty of Graduate Studies in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

Department of Civil & Geological Engineering University of Manitoba Winnipeg, Manitoba

(c) September, 1994

@\$

National Library of Canada

Acquisitions and Bibliographic Services Branch

395 Wellington Street Ottawa, Ontario K1A 0N4 Bibliothèque nationale du Canada

Direction des acquisitions et des services bibliographiques

395, rue Wellington Ottawa (Ontario) K1A 0N4

Your lile Volre rélérence

Our file Notre référence

THE AUTHOR HAS GRANTED AN IRREVOCABLE NON-EXCLUSIVE LICENCE ALLOWING THE NATIONAL LIBRARY OF CANADA TO REPRODUCE, LOAN, DISTRIBUTE OR SELL COPIES OF HIS/HER THESIS BY ANY MEANS AND IN ANY FORM OR FORMAT, MAKING THIS THESIS AVAILABLE TO INTERESTED PERSONS. L'AUTEUR A ACCORDE UNE LICENCE IRREVOCABLE ET NON EXCLUSIVE PERMETTANT A LA BIBLIOTHEQUE NATIONALE DU CANADA DE REPRODUIRE, PRETER, DISTRIBUER OU VENDRE DES COPIES DE SA THESE DE QUELQUE MANIERE ET SOUS QUELQUE FORME QUE CE SOIT POUR METTRE DES EXEMPLAIRES DE CETTE THESE A LA DISPOSITION DES PERSONNE INTERESSEES.

THE AUTHOR RETAINS OWNERSHIP OF THE COPYRIGHT IN HIS/HER THESIS. NEITHER THE THESIS NOR SUBSTANTIAL EXTRACTS FROM IT MAY BE PRINTED OR OTHERWISE REPRODUCED WITHOUT HIS/HER PERMISSION.

'anada'

L'AUTEUR CONSERVE LA PROPRIETE DU DROIT D'AUTEUR QUI PROTEGE SA THESE. NI LA THESE NI DES EXTRAITS SUBSTANTIELS DE CELLE-CI NE DOIVENT ETRE IMPRIMES OU AUTREMENT REPRODUITS SANS SON AUTORISATION.

ISBN 0-315-99050-3

Name

Dissertation Abstracts International is arranged by broad, general subject categories. Please select the one subject which most nearly describes the content of your dissertation. Enter the corresponding four-digit code in the spaces provided.

CIVIL

SUBJECT TERM

3 8 4 0 SUBJECT CODE

Subject Categories

THE HUMANITIES AND SOCIAL SCIENCES

COMMUNICATIONS AND TH	E ARTS
Architecture	0729
Art History	0377
Cinema	0900
Dance	0378
Fine Arts	0357
Information Science	0723
Journalism	0391
Library Science	0399
Mass Communications	0708
Music	0413
Speech Communication	0459
Theater	0465

EDUCATION

General	.05	15
Administration	05	14
Adult and Continuina	.05	16
Agricultura	05	17
Art	02	73
Bilingual and Multicultural	02	BŽ
Business	06	B8
Community College	.02	75
Curriculum and Instruction	07	27
Early Childhood	05	18
Elementory	05	24
Finance	02	77
Guidance and Counselina	.05	19
Health	06	80
Higher	07	45
History of	05	20
Home Economics	.027	78
Industrial	05	21
Language and Literature	02	79
Mathematics	02	30
Music	05	22
Philosophy of	099	28
Physical	052	23

Reading 0535 Religious 0527 Sciences 0714 Secondary 0533 Social Sciences 0534 Sociology of 0340 Special 0529 Teacher Training 0530 Technology 0710 Tests and Measurements 0288 Vocational 0748 Vocational0747

LANGUAGE, LITERATURE AND LINGUISTICS longuage

- cangoago	
General	0679
Ancient	0289
Linguistics	0290
Modern	0291
Literature	
General	0701
Classical	
Comparativa	
Comparative	0293
Medieval	0297
Modern	0298
Atrican	0316
American	0591
Asian	0305
Canadian (English)	0352
Canadian (French)	0355
English	0593
Germanic	0211
Lotin American	
Attalle Easters	0212
Romance	0313
Slavic and East European	0314

SOCIAL SCIENCES	
American Studies	0323
Anthropology	
Archaeology	0324
Cultural	0326
Physical	0327
Business Administration	
General	0310
Accounting	0272
Bankina	0770
Management	0454
Marketing	0338
Canadian Studies	0385
Economics	
General	0501
Agricultural	0503
Commerce-Business	0505
Finance	0508
History	0509
Labor	0510
Theory	0511
Folklore	0358
Geography	0366
Gerontology	0351
History	
General	0578

PHILOSOPHY, RELIGION AND

Philosophy0422

Religion General 0318 Biblical Studies 0321 Clergy 0319 History of 0320 Philosophy of 0322 Theology 0469

THEOLOGY

Ancient	.0579
Medieval	0581
Modern	0582
Black	0328
African	0331
Asia, Australia and Oceania	0332
Canadian	0334
European	0335
Latin American	0336
Middle Eastern	0333
United States	0337
fistory of Science	0585
ow	0398
Political Science	
General	0615
International Law and	
Relations	0616
Public Administration	0617
Recreation	0814
Social Work	0452
Sociology	
General	0626
Criminology and Penology	0627
Demography	0938
Ethnic and Racial Studies	0631
Individual and Family	
Studies	0628
Industrial and Labor	
Relations	0629
Public and Social Welfare	0630
Social Structure and	
Development	0700
Theory and Methods	0344
ransportation	0709
Jrban and Regional Planning	0999
Nomen's Studies	0453

š

THE SCIENCES AND ENGINEERING

BIOLOGICAL SCIENCES

Agriculture	
General	.0473
Agronomy	.0285
Animal Culture and	
Nutrition	.0475
Animal Pathology	0476
Food Science and	
Technology	0359
Forestry and Wildlife	0478
Plant Culture	0470
Plant Pathology	0477
Plant Physiology	0400
Plant Physiology	.0017
Konge Management	.0///
wood technology	.0/40
Biology	0007
General	.0306
Anatomy	.0287
Biostatistics	0308
Bolany	.0309
Cell	.0379
Ecology	.0329
Entomology	0353
Genetics	.0369
Limnology	.0793
Microbiology	.0410
Molecular	.0307
Neuroscience	0317
Oceanography	0416
Physiology	0/33
Radiation	0821
Votoringny Science	0778
Zeelenu	0472
Biophyrice	.04/2
Capacal	0794
Madical	0760
medicol	,0/00
FARTH SCIENCES	
Biogoochomistry	0425
Coord and an interview.	.0423
Geochemisiry	.0790

Geodesy 0370 Geology 0372 Geophysics 0373 Hydrology 0388 Mineralogy 0411 Poleobotany 0345 Poleoecology 0426 Poleontology 0418 Paleozoology 0418 Paleozoology 0427 Physical Geography 0368 Physical Geography 0415

HEALTH AND ENVIRONMENTAL

SCIENCES En He

vironmental Sciences	.0768
alth Sciences	
General	.0566
Audiology	.0300
Chemotherapy	0992
Dentistry	.0567
Education	.0350
Hospital Management	0769
Human Development	07.58
Immunology	0982
Medicine and Surgery	0564
Mental Health	0347
Nursing	0569
Nutrition	0570
Obstatrics and Gynacology	0380
Occupational Health and	. 0300
Therapy	0254
Oshthalmalaav	0334
Dail ala an	0571
Planningy	.03/1
Pharmacology	.0419
Pharmacy	.05/2
Physical Therapy	.0382
Public Health	.05/3
Kadiology	.0574
Recreation	.0575

Speech Patholoay	0460
Toxicology	0383
Home Economics	0386

PHYSICAL SCIENCES

Pure Sciences	
General	0405
Agricultural	040J
Agricolorul	0/47
Pt all and the	0400
biocnemistry	0487
Inorganic	0488
Nuclear	07 38
Organic	0490
Pharmaceutical	0491
Physical	0494
Polymer	0495
Radiation	0754
Mathematics	0405
Physics	
General	0605
Acoustics	0986
Astronomy and	
Astrophysics	0606
Atmospheric Science	0608
Atomic	0748
Electronics and Electricity	0607
Elementary Particles and	
High Energy	0798
Fluid and Plasma	0759
Molecular	0609
Nuclear	0610
Optics	0752
Radiation	0756
Solid State	0611
Statistics	0463
• • • • •	
Applied Sciences	
Applied Mechanics	0346
Computer Science	0984
-	

ngineering	
General	0537
Aerospace	0538
Agricultural	0539
Automotive	0540
Biomedical	0541
Chemical	0542
Civil	0543
Electronics and Electrical	0544
Heat and Thermodynamics.	0348
Hydroulic	0545
Industrial	0.546
Marine	0547
Materials Science	0792
Mechanical	0549
Metalluray	074
Mining	0551
Nuclear	0552
Packaging	0549
Petroleum	0764
Sanitary and Municipal	055/
System Science	0790
Sectechnology	0428
Deorations Porograh	0704
Plastice Technology	0704
Textile Technology	
rexilie recanology	

PSYCHOLOGY

Engineering

General	
Behavioral	
Clinical	
Developmental	
Experimental	
Industrial	
Personality	
Physiological	
Psychobiology	
Psychometrics	
Social	

æ

Nom

Dissertation Abstracts International est organisé en catégories de sujets. Veuillez s.v.p. choisir le sujet qui décrit le mieux votre thèse et inscrivez le code numérique approprié dans l'espace réservé ci-dessous.

SUJET

Catégories par sujets

HUMANITÉS ET SCIENCES SOCIALES

COMMUNICATIONS ET LES ARTS

Architecture	
Beaux-arts	
Bibliothéconomie	
Cinéma	
Communication verbale	
Communications	
Danse	0378
Histoire de l'art	
Journalisme	
Musique	0413
Sciences de l'information	0723
Théôtre	0465

ÉDIICATION

Généralités	515
Administration	0514
Art	0273
Collèges communautaires	0275
Commerce	0688
Économie domestique	0278
Education permanente	0516
Education préscolaire	0518
Education sanitaire	0680
Enseignement agricole	0517
Enseignement bilingue et	
multiculturel	0282
Enseignement industriel	0521
Enseignement primaire	0524
Enseignement professionnel	0747
Enseignement religieux	0527
Enseignement secondaire	0533
Enseignement spécial	0529
Enseignement supérieur	0745
Evaluation	0288
Finances	0277
Formation des enseignants	0530
Histoire de l'éducation	0520
Lanaues et littérature	0279

Programmes a erudes er enseignement 0727 Psychologie 0525 Sciences 0714 Sciences sociales 0534 Sociologie de l'éclucation 0340 Technologie 0710

LANGUE, LITTÉRATURE ET LINGUISTIQUE

LINUULJINGUL	
Langues	
Généralités	067
Anciennes	028
Linguistique	0290
Modernes	029
Littérature	
Généralités	040
Anciennes	0294
Comparée	029:
Mediévale	0292
Moderne	0298
Africaine	0316
Américaine	059
Anglaise	0593
Asiatique	0303
Canadienne (Analaise)	0352
Canadienne (Francaise)	0355
Germanique	031
Latino-oméricaine	0312
Moven-orientale	0313
Romone	0313
Slave et est-européenne	0314

PHILOSOPHIE, RELIGION ET

hilosophie	0422
Religion	
Généralités	0318
Çlergé	0319
Etudes bibliques	0321
Histoire des religions	0320
Philosophie de la religion	0322
héologie	0469
T	

SCIENCES SOCIALES

Anthropologie	
Archéologie	0324
Culturelle	0326
Physique	0327
Droit	0398
Économie	
Généralités	0501
Commerce-Affaires	0505
Économie garicole	0503
Économie du travail	0510
Finances	0.508
Histoire	0509
Théorie	0511
Études américaines	0323
Etudes canadiennes	0385
Etudes féministes	0453
oklore	0358
Géoaraphie	0366
Gérontologie	0351
Gestion des affaires	
Générolités	.0310
Administration	0454
Banaves	0770
Comptabilité	0272
Marketina	0338
tistoire	
Histoire générale	0578

Médiévale0581 Africaine 0331 Canadienne 0334 Étals-Unis0337 Droit et relations internationales0616 pénitentiaires 0627 pénitentiaires 0627 Pémographie 0938 Etudes de l'individu et 0628 Études des relations interethniques et des relations raciales0631 Structure et développement

Ancienne

CODE DE SUJET

re ge

SCIENCES PHYSIQUES

Sciences Pures

Chimie	
Genérolités	0485
Biochimie	487
Chimie goricole	0749
Chimie analytique	0486
Chimie minérole	0488
Chimie nucléaire	0738
Chimie organique	0490
Chimie pharmaceutique	0491
Physique	0494
PolymCres	0495
Radiation	0754
Mathématiques	0405
Physique	. 0400
Généralités	0605
Acoustique	0986
Astronomie et	
astrophysique	0606
Electronique et électricité	0607
Fluides et plasma	0759
Météorologie	0608
Optique	0752
Porticules (Physique	
nuclégire)	.0798
Physique atomique	0748
Physique de l'état solide	0611
Physique moléculaire	0609
Physique nucléoire	0610
Radiation	0756
Statistiques	.0463
Sciences Appliqués Et	

Se Te

Technologie	
Informatique	0984
Ingénierie	
Généralités	0537
Agricole	0539
Automobile	0540

Biomédicale	.0541
Chaleur et ther	
modynamique	.0348
Conditionnement	
(Emballage)	0549
Génie gérospatial	0538
Génie chimique	0542
Gónio civil	0542
Cánia álastranious at	.0545
dente electronique er	0511
electrique	.0544
Genie industriel	.0546
Génie mécanique	.0548
Génie nucléaire	.0552
Ingénierie des systömes	.0790
Mécanique navale	.0547
Métallurgie	.0743
Science des matériaux	.0794
Technique du pétrole	0765
Technique minière	0551
Techniques sanitaires et	
municipales	0554
Tochnologia hydraulique	0545
Mécanique appliquée	0343
Céatacha al a sia	0.40
Geolecinologie	.0420
malleres plastiques	0705
(lechnologie)	.0795
Recherche operationnelle	.0796
Textiles et tissus (Technologie)	.0794
PSYCHOLOGIE	
Généralités	0421
Porconnolité	0621
Development in the second seco	.0023

P

621
625
349
622
384
620
623
624
989
451
632

SCIENCES ET INGÉNIERIE

SCIENCES BIOLOGIQUES

Aduconoie	
Généralités	. 0473
Aaronomie.	0285
Alimentation et technologie	
alimentaire	0250
Culture	0337
Culture	.0479
Elevage et alimentation	.04/5
Exploitation des péturages	.0777
Pathologie animale	.0476
Pathologie végétale	.0480
Physiologie végétale	0817
Sulviculture et laune	0479
Toshnologio du hais	0714
a. I crimologie du bois	.0/40
BIOLOGIE	
Généralités	.0306
Anatomie	.0287
Biologie (Statistiques)	.0308
Biologie moléculaire	.0307
Botanique	0309
Cellue	0379
Ecologia	0220
Enternalente	0327
chiomologie	.0333
Genetique	.0369
Limnologie	.0793
Microbiologie	.0410
Neurologie	.0317
Océanoaraphie	.0416
Physiologie	0433
Radiation	0821
Science vétéringire	0779
Zealasia	0472
D'	.04/2
biophysique	0704
Generalités	.0786
Medicale	. 0760
CORNERS OF LA STODE	
SCIENCES DE LA TERRE	
Biogéochimie	.0425
Géochimie	.0996
Géodésie	.0370
Géographie physique	0368

Géologie Géophysique Hydrologie Océanographie physique Paléobotanique Paléocologie Paléocologie Paléontologie Paléozologie Paléozologie Palynologie	.0372 .0373 .0388 .0411 .0415 .0345 .0426 .0418 .0985 .0427
SCIENCES DE LA SANTÉ ET DE L'ENVIRONNEMENT Économie domestique Sciences de la sonté	.0386 .0768

conomic domestique	.0500
ciences de l'environnement	.0768
ciences de la santé	
Généralités	.0566
Administration des hipitaux	.0769
Alimentation et nutrition	. 0570
Audiologie	.0300
Chimiothéropie	.0992
Dentisterie	.0567
Développement humain	.0758
Enseignement	.0350
Immunologie	.0982
Loisirs	.0575
Médecine du travail et	
thérapie	0354
Médecine et chiruraie	0564
Obstétrique et avnécologie	0380
Ophtalmologie	0381
Orthophonie	0460
Pathologie	0571
Pharmacie	0572
Pharmacologie	0419
Physiothéropie	0382
Radiologie	0574
Santé mentale	0347
Santé publique	0573
Soins infirmiers	0569
Toxicologie	0383

0756 0463	
0984	

OPTIMAL ANALYSIS OF A SUBSURFACE BARRIER FOR SALTWATER INTRUSION CONTROL

BY

MUNDZIR HASAN BASRI

A Thesis submitted to the Faculty of Graduate Studies of the University of Manitoba in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

© 1994

Permission has been granted to the LIBRARY OF THE UNIVERSITY OF MANITOBA to lend or sell copies of this thesis, to the NATIONAL LIBRARY OF CANADA to microfilm this thesis and to lend or sell copies of the film, and UNIVERSITY MICROFILMS to publish an abstract of this thesis.

The author reserves other publications rights, and neither the thesis nor extensive extracts from it may be printed or otherwise reproduced without the author's permission.

Abstract

Saltwater intrusion is a major groundwater quality problem due to excessive freshwater abstraction from coastal aquifers at many locations of the world. Artificial recharge has been widely used to limit the expansion of intruded areas. However, at some locations such as in densely populated areas and metropolitan cities, artificial recharge is neither a feasible nor practical solution. Furthermore, even where it is feasible clogging problems may still exist. This study attempts to assess whether a subsurface barrier can be used to prevent or stop further seawater intrusion. A subsurface barrier is an underground structure which rests on an impervious layer. This structure is made from semi-impervious material, such as puddled clay, silica gel or grouting cement. Because of the difference in permeability between the aquifer and the subsurface barrier, it can lower the freshsaltwater interface line to the contact point between the subsurface barrier and aquifer in the freshwater region. To simulate the fresh-saltwater interface, the Navier-Stokes, Continuity and Energy equations were solved using the finite element technique. The FLOTRAN computer program (Compufio, 1992) has been used to investigate the interface encroachment phenomenon. The ANSYS computer package (Swanson, 1992) which uses the Sequential Unconstrained Minimization Technique was employed to optimize the design characteristics and location of the barrier. The results obtained from the numerical calculations were compared with observed values of a laboratory sand-box model conducted by

i

Sugio et al. (1987). Good agreement was found between calculated and observed values. It is concluded that a subsurface barrier is one alternative that should be seriously considered for saltwater intrusion control in coastal aquifers.

ACKNOWLEDGMENTS

I would like to express my gratitude to the members of my thesis committee. Special appreciation and gratitude are expressed to Professor Slobodan P. Simonovic for his advice and suggestions which have greatly contributed to the progress of this research. His charming personality and continuous encouragement have made the thesis possible.

Sincere thanks are offered to Professor Caspar C. Booy for his help in providing new ideas and in discussing materials, Kathy Norman and Budi Rahardjo for their assistance in arranging the use of ANSYS and FLOTRAN, and James Hildebrandt P.Eng. (WARDROP Inc.) for his patience to guide me in using ANSYS and FLOTRAN in the initial stages of this study. I would also like to thank Roberta Mitchell for her patience and careful attention to detail during the writing of this thesis.

The financial support of the Canadian International Development Agency (CIDA), Canada has made the current study possible and is gratefully acknowledged.

Loving appreciation is expressed to my wife and my family in Indonesia for their love, sacrifice and encouragement which has made this study possible.

iii

CONTENTS

ABSTRACT	i
ACKNOWLEDGEMENTS	iii
LIST OF FIGURES	vii
LIST OF TABLES	х
CHAPTER 1. Introduction	1
1.1 Saltwater Intrusion Phenomena	1
1.2 The Objectives of the Study	6
1.3 Outline of the Thesis	8
CHAPTER 2. Methods of Controlling Saltwater Intrusion	10
2.1 Altering Existing Pumping Schedules	11
2.2 Artificial Recharge	13
2.3 Hydraulic Ridge (Injection Barrier)	17
2.4 Pumping Trough (Extraction Barrier)	18
2.5 Subsurface Barrier	20

CHAPTER 3. Subsurface Barrier: Literature Review	24
3.1 Transition Zone Models	25
3.2 Sharp Interface Models	31
3.3 Subsurface Barrier	35
CHAPTER 4. Subsurface Barrier: Theoretical Background	39
4.1 Modeling Saltwater Intrusion Using Heat-Transfer Analogy	39
4.1.1 Governing Equations	40
4.1.2 Finite Element Method	44
4.1.3 Advection Term	48
4.1.4 Velocity-Pressure Solution	51
4.2 Optimization	53
CHAPTER 5. Subsurface Barrier: Problem Solution	63
5.1 Saltwater Intrusion	63
5.1.1 Model Description	63
5.1.2 Mesh Generation	65
5.1.3 Boundary Conditions	69
5.1.4 Numerical Calculation	70
5.1.5 Data Requirement	71
5.1.6 Primary Difficulties	72
5.2 Subsurface Barrier Optimization	74
5.2.1 Optimization Procedure	74
5.2.2 Optimization Problem Formulation	78
5.2.3 Input/Output Data	80

CHAPTER 6. Results and Discussion	82
6.1 Results.	82
6.2 Discussion	96
CHAPTER 7. Conclusions and Future Work	104
7.1 Conclusions	104
7.2 Future Work	105
BIBLIOGRAPHY	107
APPENDIX 1	113
APPENDIX 2	121
APPENDIX 3	143

LIST OF FIGURES

2.1	Schematic cross section showing individual and composite drawdowns	11
2.2	Diagram showing the method of induced recharge from the lake	16
2.3	Diagram showing injection well increasing water table and	
	forming seaward gradient	17
2.4	Example of pumping trough withdrawing seawater intrusion	19
2.5	An illustration of subsurface barrier	21
	(a) Minimum groundwater storage with no barrier	
	(b) Groundwater table increase with barrier	
	(c) Seawater intrusion advancing inland	
	(d) Seawater intrusion delayed by subsurface barrier	
3.1	Comparison of freshwater-saltwater interface results obtained by	
	Segol et al. (1987), Pinder & Cooper (1970) and	
	Henry's analytical solution (After Willis & Yeh, 1987)	26
3.2	Comparison of the result obtained by Huyakorn et al. (1987)	
	for the constant dispersion and several other interfaces	
((After Huyakorn et al., 1987)	28
3.3	Comparison of the 0.5 isochlor for the variable dispersion at	
	steady state obtained by Huyakorn et al. (1987) and fresh-saltwater	
	interface given by Frind (1982b) (After Huyakorn et al. 1987)	30

3.4 Comparison of the 0.5 isochlor under transient solution given by	
Huyakorn et al. (1987) and the results given by Frind (1982b) and	
Segol et al. (1975) (After Huyakorn et al., 1987)	30
3.5 Comparison of numerical results obtained by Costa & Wilson	
(Finite Element) and Liu et al. (Boundary Element) with	
experimental result observed by Bear & Dagan. Sudden decrease	
of freshwater level is applied. (After Liu et al., 1981)	33
3.6 Comparison of numerical results obtained by Costa & Wilson	
(finite Element) and Liu et al. (Boundary Element) with experimental	
result observed by Bear & Dagan. Sudden increase of freshwater	
level is applied. (After Liu et al., 1981)	34
3.7 Comparison of the finite difference method and observed	
experimental values (without a subsurface barrier) given	
by Sugio et al. (After Sugio et al., 1987)	38
3.8 Comparison of the finite difference method and observed	
experimental values (with a subsurface barrier) given	
by Sugio et al. (After Sugio et al., 1987)	38
4.1 Example of a 3-D tetrahedron element in stream line upwind	50
4.2 Example of penalty function for state variable	59
5.1 Schematic diagram of the model	64
5.2 Sufficiently fine grid	67
5.3 Grid for optimization	68
5.4 Flowchart of integrated process of analysis (Optimization,	
ANSYS, and FLOTRAN)	75
6.1 Position of the interface toe at $Hf = 0.4030$ m.	88
6.2 Position of the interface toe at $Hf = 0.3970 \text{ m}$.	89
6.3 Position of the interface toe at $Hf = 0.3938$ m.	90

6.4 Position of the interface toe at $Hf = 0.3916$ m.	91
6.5 Position of the interface toe at $Hf = 0.3905 m$.	92
6.6 Position of the interface toe at $Hf = 0.3894$ m.	93
6.7 Position of the interface toe at $Hf = 0.3887 m$.	94
6.8 Position of the interface toe at $Hf = 0.3884 m$.	95
6.9 Transition zone model	99
6.10 Setting state variable at node 2	103

LIST OF TABLES

4.1 Seawater intrusion analogy	39
4.2 Penalty function for decision variables	59
4.3 Penalty function for state variables	60
5.1 Input data	64
6.1 Comparison of the location off the fresh-saltwater interface toe	85
6.2 Results of optimization	87

Chapter 1

Introduction

1.1 Saltwater Intrusion Phenomena

In recent years saltwater intrusion, which has been threatening many coastal aquifers, has become one of the major groundwater quality issues in the world. The invasion of seawater into aquifers begins when the amount of abstracted water from aquifers increases without being able to control. This is a common consequence resulting from a dramatically increased demand for water. This increase is due to a vast growth in population and rapid expansion in economy. Moreover, conflicts among users as well as droughts exacerbate the situation. Therefore, efficient planning and proper management of a coastal aquifer, are needed to avoid suffering from a chronic shortage of freshwater in the future.

One of the most important tasks in managing coastal aquifers is the prediction of the shape of the freshwater-saltwater interface and the location of the interface toe. By being able to analyze the shape of the interface and the location of its toe over time, managing coastal aquifers becomes much more reliable.

Saltwater intrusion phenomena have been investigated by a number of authors. Many mathematical simulations of the freshwater-saltwater interface have been reported. These reports can be classified into two groups: an abrupt interface approach and a transition zone approach.

The first approach assumes that the thickness of a transition zone is much smaller compared to the aquifer thickness. A freshwater-saltwater system has a very narrow contact zone. Jacobs and Schmorak (1960) and Schmorak (1964) investigated the contact zone in coastal areas of Israel and proved that the sharp interface could be justified. Another investigation done by Contractor and Srivastava (1990) indicated that a sharp interface model fits the measured data in most regions of the Northern Guam Lens. Several other authors, Bear and Dagan (1964), Strack (1976), Liu and Cheng (1981), Wilson and Costa (1982), have used this approach in their analyses.

The second approach refers to the existence of a mixing zone between fresh and saltwater. This zone is fairly wide compared to the aquifer thickness. Therefore, the sharp interface is no longer valid. Some researchers have ascertained that consideration of the transition zone is a very important factor in order to perform hydrologic analysis and water supply prediction. In the case of a groundwater basin where pumping rates, natural and artificial recharges, and tidal stresses are the main components, the transition zone approach is the only one which fits the situation. The extracted water, natural replenishment and artificial recharge in the freshwater region and the variation in sea water level in the saltwater region can affect the width of the transition zone simultaneously. Most investigators do believe that the transition zone approach most closely models the saltwater intrusion phenomena. This approach is supported by the fact that freshwater and saltwater are miscible fluids. The investigators who studied the problem using this assumption are Lee and Cheng (1974), Segol and Pinder (1976), Volker and Rusthon (1982), Frind (1982b), and as well as several others.

Although these two approaches have been widely adopted, several investigators have introduced a new classification, namely the multiphase flow approach. In this approach a different immiscible fluid occupies each of several regions of the density-stratified aquifers. The mixing zone between the two regions does not contain an abrupt interface. They suggested that this approach should only be used when the first two approaches fail to provide an acceptable solution.

After developing a better understanding of the saltwater intrusion phenomena, the research continued to study various methods of saltwater intrusion control. There are five known methods for seawater intrusion control (Todd, 1980); (1) modification of pumping pattern; (2) artificial recharge; (3) extraction barrier; (4) injection barrier; and (5) subsurface barrier. The first two methods are widely accepted and commonly implemented. The three other methods are not so common. The idea behind modification of the pumping rate is to reestablish the seaward hydraulic gradient back to the natural condition gradient. To reach such a gradient in the areas where pumping rates are very high, the number of production wells must be reduced. As a compensation, the areas with less abstraction may have more pumping wells. This may change the pattern of the hydraulic gradient. In brief, this method implies relocation of pumping wells.

Artificial recharge is a more popular method than the modification of pumping patterns. The purpose of this method is to recharge freshwater into the water bearing formations where the water table, or the piezometric level, is lowered because of heavy pumping rates. After recharging water into an aquifer with or without pressure, the water table or piezometric level will be raised and the seaward gradient reestablished.

The third method used to control seawater intrusion is installation of a line of wells along the sea coast. Wells that are used to pump seawater flowing from

the sea inland are called trough wells. In addition to removing saltwater, trough wells can lower the water table in the vicinity of the wells. The water table is maintained so that a flow pattern to the sea is formed. If the trough wells work properly, they can act as an extraction barrier to stop the invasion of seawater landward.

A method similar to artificial recharge is the injection barrier method. High pressure injection wells are used to force seawater and freshwater to undisturbed positions. The injection well method involves building a ridge line of wells along the sea coast. They are located in front of the seawater wedge. Injecting water into the aquifers also causes an increase in the water table. This increase in the vicinity of the injection wells, again, creates a seaward gradient flow. If such a flow can be maintained, saltwater intrusion can be controlled.

The least explored method for saltwater intrusion control is a subsurface barrier. A subsurface barrier is an underground structure made from puddled clay, emulsified asphalt, cement grout, bentonite, silica gel, calcium acrylate or plastics. The use of such materials creates a less pervious layer in the subsurface barrier. This layer works as a stopper for the movement of seawater intrusion. It also works as a dam to increase groundwater storage. Despite some advantages, Todd (1980) reported that this method has many problems related to construction cost, resistance to earthquakes, and chemical erosion.

Literature published on controlling saltwater intrusion using subsurface barriers is very limited: Aiba (1983), Sugio et. al. (1987), and several publications in Japanese. Aiba reported the results of experimenting with one subsurface barrier at Miyako Jima Island, Japan and a plan for constructing five other barriers on the same island. Sugio presented the simulation of a moving interface which involves subsurface barrier analysis under transient conditions. Both reported studies have not yet included the optimization approach in their analyses. The

optimization of some design parameters in analyzing subsurface barriers may be beneficial. The parameters to be included in the optimization are the barrier width, the construction material and the location of the subsurface barrier. Without using the optimization approach, the implementation of a subsurface barrier method leads to high construction costs. This is because these costs are dependent upon the width and construction material of the barrier. The location of the subsurface barrier is another important factor because if built at an optimum site the barrier will maximize the freshwater region to be protected. The location of the subsurface barrier is an important factor in maximizing the freshwater region to be protected.

It is clear that saltwater intrusion control using the subsurface barrier method has not been extensively discussed. Therefore, this thesis explores this method and its advantages in order for it to be applied in the future. Also, the author is motivated by the saltwater intrusion problem in Jakarta, the capital city of Indonesia. The author originally comes from that city. In the Jakarta Groundwater Basin, saltwater intrusion is a major groundwater quality problem and tends to be very serious. Seawater continues to advance inland. This is because no action has yet been taken. A very rapid increase in demand for water from industrial, domestic and agricultural sectors aggravates the situation.

A number of studies have been conducted concerning the problem in Jakarta. Most of these studies conclude with suggestions to reduce the pumping rate, to modify the pumping pattern and to implement artificial recharge. These recommendations, to date have been difficult to implement. The author suggests an alternative method - that of a subsurface barrier which should be considered in order to halt or to lessen the acute intrusion problem in the Jakarta Groundwater Basin. The subsurface barrier method may provide a better solution to this

serious problem. Therefore, the author has chosen to explore this method and its advantages for future application in Indonesia.

A review of the literature indicates that only two studies have resulted in shapes of fresh-saltwater interfaces which can be closely compared with those in laboratory tests. The rest of the studies have shown unmatched calculated and observed values. The two successful approaches have been developed using the finite difference method (Sugio et al., 1987) and the boundary integral element method (Liu et al., 1990). As a matter of fact, these two methods are not as widely used as the finite element method. Therefore, an analysis of a moving fresh-saltwater interface using the finite element method is presented in this work.

The objective of the present research is to examine the use of the FLOTRAN computer program, for predicting the location of a fresh-saltwater moving interface with or without a subsurface barrier in an unconfined aquifer. The second objective is to optimize the design of the subsurface barrier and its location subject to a number of constraints using the Sequential Unconstrained Minimization Technique.

1.2 The Objectives of the Study

Groundwater constitutes an important freshwater source which is used to fulfill a basic human need. In recent years the demand for freshwater has increased dramatically. Therefore, more and more people are using groundwater. A rapid increase in population, aggressive industrial growth and a steady rise in the standard of living, together with a diminishing quality of surface water, are reasons for an increase in the use of groundwater. In most cases, the groundwater flow is bordered by the sea. This situation may create problems. Once the

pumping rate exceeds the natural replenishment, flow from the sea starts advancing inland. As a result, saltwater intrusion in coastal aquifers can hardly be avoided.

As mentioned previously, the discussion of saltwater intrusion in coastal aquifers has been motivated by the problems in the Jakarta Groundwater Basin. Knowing that some methods for stopping the invasion of seawater intrusion in the basin have failed to be implemented, the author does believe that the subsurface barrier method is an alternative way to limit the intrusion.

A review of the literature indicates that the investigation of subsurface barriers for saltwater intrusion control is very limited. No approach has been reported which discusses the effort to minimize the construction costs. To date, this cost is still a major constraint in implementing the subsurface barrier method. Thus, research of the subsurface barrier which includes the optimization approach to reduce its contribution cost becomes very important in groundwater management of coastal aquifers.

The literature on the fresh-saltwater interface has been investigated as well. It was found that the shape of the fresh-saltwater interface does not closely compare with the result achieved in laboratory tests. Therefore, a study which examines another model to obtain a better shape of the interface is valuable. One objective of the study is to examine the heat transfer analogy model which may provide acceptable solution. Another objective is to simulate the moving freshsaltwater interface in response to the existence of a subsurface barrier at some locations in the freshwater region. At the same time, the design parameters and location of the barrier are optimized to create the largest possible freshwater region or the smallest possible intruded area.

To achieve this, the following steps are completed in the research presented in this thesis:

- 1. Development of a thermal analogy model derived from the Navier-Stokes, continuity, and energy equations for modeling seawater intrusion in coastal aquifers.
- 2. A numerical simulation of the fresh-saltwater interface in a steady state using the finite element method. A sharp interface model and a transition zone model, which are commonly accepted, are investigated using a simulation approach.
- 3. Comparison of the numerical results obtained using the FLOTRAN computer program with the laboratory results of Sugio et al. (1987) obtained by the Sand-Box model.
- 4. Analysis of previous studies that fail to obtain the expected shape of the freshsaltwater interface, and conducting further simulations in order to improve the solution.
- 5. Investigating the movement of the fresh-saltwater interface when a subsurface barrier is constructed.
- 6. Optimization of the design and location of a subsurface barrier in order to maximize benefits from constructing a barrier for seawater intrusion control.

1.3 Outline of the Thesis

This thesis consists of seven chapters. The method of controlling seawater intrusion discussed in this study is one alternative among four other methods. These methods are presented in Chapter 2. Chapter 3 is devoted to an extensive review of the literature on the topics relevant to the present study. This chapter is divided into three sections. The first section deals with the transition zone approach in simulating seawater intrusion. The second section covers the abrupt interface model. The last section presents the literature on subsurface barriers in more detail.

Mathematical modeling issues involved in groundwater flow calculations are given in Chapter 4. Background on the Sequential Unconstrained Minimization Technique is described in the same chapter.

Chapter 5 presents the solution procedure for the saltwater intrusion problem using the subsurface barrier. A description of the simulation model used in this study, the mesh generation applied and boundary conditions, numerical calculation, data requirement, and primary difficulties constitute this chapter. The optimization procedure, optimization problem formulation and input/output data requirements are also covered in Chapter 5.

Chapter 6 records the results and presents a detailed discussion regarding the findings of this study.

Finally, conclusions derived from the present research as well as recommendations for possible future work are presented in Chapter 7.

Chapter 2

Methods of Controlling Saltwater Intrusion

Under natural undisturbed conditions, a state of equilibrium at the fresh-saltwater interface in a coastal aquifer is maintained. It has a stationary seawater wedge and a freshwater flow to the sea above it. This condition tends to form a hydraulic gradient toward the sea.

By pumping water from a coastal aquifer in excess of natural replenishment, the water table in the freshwater region is lowered to the extent that the piezometric head becomes lower than in the vicinity of the seawater wedge. Under these conditions, the interface starts to advance landward. Once it moves inland, it will reach a new equilibrium. This phenomenon is called seawater intrusion.

Coastal aquifers constitute important sources of water. Many coastal aquifers are intensively exploited. The exploited water may exceed the storage capacity of the aquifer. Consequently, a new equilibrium may not be reached. The lack of equilibrium causes the encroachment of seawater and is a crucial problem. To prevent further intrusion inland, several methods for controlling saltwater intrusion may be applied. A description of the methods for controlling seawater intrusion follows.

2.1 Altering existing pumping schedules.

The method of altering the existing pumping schedule is often called modification of the pumping pattern. This method is widely used for limiting seawater intrusion. It involves changing the location of production wells. Spreading the wells throughout inland areas may reduce the accumulated drawdown.

The main objective of this measure is to reestablish the lowest groundwater level required to form the seaward hydraulic gradient. Usually, the relocation of wells is followed up by altering the pumping schedule. Although the ideas of relocating and scheduling have been widely used, sometimes they are not sufficient to reestablish the water table. The additional action of reducing pumping rates is then required. If the reduction of the amount of groundwater extracted becomes more important than the need for relocation and scheduling changes, the method is no longer called altering the existing pumping schedule but instead, reduction of groundwater extraction.

This situation is shown in Figure 2.1. The figure illustrates the effect of the concentration of pumping wells on the drawdown of the water table. High concentration tends to create groundwater overdraft. Lowering of the water table due to an individual pumping is much less than that due to group pumping.

Figure 2.1 Schematic cross section showing individual and composite drawdowns.

Determination of how much water is to be pumped, the schedule of pumping over the entire basin, and the relocation of production wells are essential factors in the implementation of this approach. Hence, this method requires special tools to make the system working properly. A groundwater management model can be used to manage these factors. The model is not a simple system. It involves the recharge system as well. The model becomes more complicated when the source of water is not only from groundwater but also from surface water or even imported water.

Groundwater management, without considering the water surface distribution system as an integral part, simply simulates the rate of withdrawal and the pumping schedule. Then the response can be seen in the observation wells. The level in the observation wells should not be lower than the acceptable level. This level indicates the safe yield of the aquifer. When integrating the surface and groundwater systems, it is necessary to deal with not only the capacity of each, but both. In this case the problem becomes a dual capacity problem. The system, which depends upon the availability of surface water, must consider the quality of water as well as the storage. Modeling a coupled surface-groundwater system is more difficult to handle.

The cost of production is also an important factor to be considered. In most cases, pricing of surface and groundwater supplies is quite different. Based on the quality, accessibility, and exploitation cost considerations, the use of surface water is not more attractive than the use of groundwater. In reality it is quite the opposite. The groundwater source is much more attractive than the surface water source in many cases. It is important to note that the choice exists and is very subjective. People who have been served by fairly reliable piped water consider exploitation of groundwater as the second alternative.

Another important point is that in recent years, economic growth is a main concern in developing countries. A result of this is the growing need for water. Accordingly, the application of this method is not appropriate. It is viable theoretically, but not feasible practically. For instance, pumpers tend to discourage the policy of reduction of pumping rates, the schedule of pumping time or any type of control.

2.2 Artificial Recharge.

Todd (1980) has defined artificial recharge as augmenting the natural movement of surface water into underground formations by some method of construction. The objective of an artificial recharge project may be increased water supply, groundwater quality improvement or low flow augmentation. One of the primary purposes for using artificial recharges in coastal areas is to prevent seawater intrusion. The method of construction depends on several factors, such as topography, geology, soil conditions and, of course, the availability of water surrounding the area of interest. The artificial recharge methods that have been developed include: water spreading, recharge wells and induced recharge wells.

The water spreading method is a method whereby groundwater is recharged by infiltration into unsaturated media and percolates to the water table. Structures like stream channels, ditches and furrows, as well as flooding and irrigation are often used in the water spreading method of artificial recharge. This surface spreading method works very well if there is no impervious layer between the water table to be raised and the bottom layer of flooded areas. It suits only unconfined aquifers. In the case of confined aquifers, an impervious layer is too

difficult to percolate without additional effort. Therefore, recharging water into a confined aquifer, by means of recharge wells is more effective.

Whether or not to choose the surface spreading technique is dependent on several factors. The first is cost and availability of land. The availability of land to be occupied as a flooded area is a necessary condition to be met. The cost of land is an important factor when considering an area of land to be used. The type of soil is the second factor to be taken into account. Gravel, or gravel and sand are strongly recommended. One basic concern is the infiltration rate, which may become the bottleneck in the application of this technique over time. The third factor that should be considered is evaporation. The loss of water by evaporation is a major constraint in areas where the evaporation rate is very high.

After assessing the three main factors above, additional consideration should be given to the following factors: benefit from recreation, the environmental impact, and in some cases, the distance between the recharge areas and the exploited areas.

The effectiveness of this technique is questioned when it faces clogging problems. The surface water spreading method relies on the rate of infiltration to transfer water from the surface into porous formations. The rate of infiltration is high only at the beginning of the operation and it decreases considerably after reaching the peak. This is due to saturation of the soil. The saturated soil causes the swelling of soil particles. At the same time, the soil dispersion phenomenon takes place. Both soil responses due to saturated conditions may reduce the pore space for water infiltration. Furthermore, Bear (1979) points out a number of causes of clogging after the soil saturation is reached. They are: the retention of the suspended solids; growth of algae and bacteria; entrained or dissolved gases released from water; and chemical reactions between dissolved solids and the soil particles and/or the native water present in the void space. As a result, the spreading operation method works very well only at the outset. After working a relatively short period of time, in most cases the bottom of the infiltration basin is clogged.

Another type of artificial recharge method is the recharge well method. A well is utilized to recharge water from the surface into the aquifer. The well used may be an ordinary pumping well or one specially designed for this purpose. A multi-purpose well that has two functions, to discharge and recharge water from/to aquifer, is a very attractive mechanism. Use of a multi-purpose well is more economical than the construction of a special recharge well. The purpose of this method is indeed to overcome the high cost of the water spreading method in urban areas.

The design of the recharge well makes it appear as if it reverses the function of a pumping well. Unfortunately, this is not the case. The design of a recharge well involves many complicated tasks and solves several problems. It has been acknowledged that pumping water from an aquifer withdraws not only freshwater, but also fine material. This material can go through the pores of water-bearing formations and then approach the well. This may cause clogging of the well screen. Conversely, recharging water from the surface quite often carries fine material such as silt. Again, clogging of the screen and the aquifer itself may occur.

In addition to clogging problems, there are several other difficulties related to the recharge well method. For instance, a large amount of dissolved air is carried together with recharge water. The existence of dissolved air in aquifers may lessen their permeability. Research on water quality indicates that different bacteria can also be found in recharge water. Under certain circumstances, bacteria can grow quickly and eventually reduce the opening space of the well screen. It has also been found that recharge water contains chemical constituents

which in turn lead to flocculation. This is described as a reaction between high sodium water content and soil particles.

Despite the several mentioned disadvantages, this method remains as the primary option to combat seawater intrusion.

Figure 2.2 Diagram showing the method of induced recharge from the lake.

The third type of artificial recharge method is induced recharge. The induced recharge method is an indirect way of recharging water into the aquifer. The water recharged into the aquifers is supplied by lakes, ponds or rivers. By pumping groundwater surrounding the lakes, ponds or lakes, the water table in the vicinity of the source is decreased. The water table must be lower than the water level of the lake, pond, or river. In this case, the water flows from the lake, pond, or river to the areas where the water table needs to be raised. Therefore, these wells induce water to flow to the aquifer. Figure 2.2 illustrates the way an induced well works.

The effectiveness of this method in terms of the amount of water to be recharged depends upon several factors. The most important factor is the permeability of the aquifer and areas adjacent to the lake, pond or river. Higher permeability allows more induced water to enter the aquifers. The second factor is the pumping rate which affects the hydraulic gradient. Clearly, flow rate from

the lake to the aquifer is a function of the hydraulic gradient. Other factors such as type of soil, distance from the stream surface and natural groundwater movement also contribute to the increase in the amount of water to be stored in the aquifer. By analyzing the factors above, one can ascertain that this method is similar to the water spreading method.

2.3 Hydraulic Ridge (Injection Barrier)

The purpose of this method is to recharge freshwater into the aquifer by injection. It requires a line of recharge wells. These wells are usually located upstream from the toe of the interface or seawater wedge. The wells must be located far enough from the interface toe to provide enough space for seaward flow. Thus, the pressure of recharged water can push the interface seaward. By injecting freshwater with pressure, it is hoped that a pressure ridge can be maintained (see Figure 2.3).

Figure 2.3 Diagram showing injection well increasing water table and forming seaward gradient.

The advantages and disadvantages of this method are quite similar to those of the artificial recharge method. In addition to the information discussed in the two previous sections, it is important to mention that the freshwater to be recharged must be cleaner than the water used in the artificial recharge methods.

2.4 Pumping Trough (Extraction Barrier).

In contrast to the injection wells method, the pumping trough or extraction barrier method requires a line of pumping wells. They control how much water will be pumped along the fresh-saltwater interface region. These pumping wells should be located between the interface toe and the coast line. The exact location should be determined based on the shape of the interface (see Figure 2.4). Pumping wells are used to withdraw intruded saline water and to drain it to the sea. Pumping wells work if the seaward hydraulic gradient is not large enough to push the freshwater-seawater interface. In addition to withdrawing seawater through trough wells, the groundwater level along the line of trough wells will be lowered. This will cause a seaward flow of freshwater. After a period of time a new equilibrium may eventually be reached. Conversely, if the water table in the freshwater zones decreases, a landward hydraulic gradient is formed.

A major disadvantage of this method is that the amount of freshwater that can be pumped must be reduced. Without reducing the pumping rate, it is impossible to let the system reach equilibrium. Reducing the demand for water is not a popular solution. Other difficulties in implementing this method are related to monitoring the water table and determining the amount of water pumped. Monitoring of the water table over the entire groundwater basin is needed. This will indirectly provide information on the location of the interface toe. Water table data can be used to predict the time when a new equilibrium will be reached. To ensure the shape of saline wedge and the location of the interface toe, there must

be additional monitoring of groundwater quality (for example, monitoring the concentration of Cl⁻ or salinity). Using a concentration of chlor is more accurate in providing the position of the saline wedge. However, it is an expensive monitoring system.

Figure 2.4 Example of pumping trough withdrawing seawater.

After gathering the interface information, determining the amount of water to be pumped is the next task. Pumping less water than is actually needed will lead to the following problems: (a) leaving some saline water in the freshwater region which in turn moves inland; and (b) a seaward hydraulic gradient may not be formed. Conversely, if more water is pumped than what is actually needed, not only saline water but also some freshwater will be withdrawn from the aquifer. Although the amount of freshwater pumped is not very large, it may still cause problem in areas where there is a lack of freshwater sources. Ideally, the amount of water to be pumped should be slightly more than the rate at which seawater is intruding.

2.5 Subsurface barrier.

In the past, constructing a subsurface barrier for controlling saltwater intrusion was not really popular. This is because the construction costs of a physical barrier were very high and the technology was not available. This method was ranked last as a measure of controlling seawater intrusion. A subsurface barrier can be defined as an underground semi-impervious structure in an unconfined coastal aquifer. It is used to delay the movement of seawater inland, and at the same time to increase the groundwater storage capacity.

This idea is illustrated in Figure 2.5a-d. In the first case (Figure 2.5a), the groundwater flow runs off to the sea because of a considerable difference in the water table relative to sea level. Thus, a large amount of potential groundwater can not be used. To avoid groundwater flow toward the sea, it is possible to construct a barrier at an appropriate location. The function of the barrier is to increase the groundwater storage capacity (see Figure 2.5b). In other words, the barrier can raise the water table close to the ground surface. In the second case, the slight difference between the water table and sea level may cause seawater intrusion (Figure 2.5c). As illustrated in Figure 2.5d, the barrier can effectively stop the movement of seawater. As a consequence, it would be possible to maintain a stable water table, or an even higher level, than without the barrier.

The structure is placed between the sea water and the production wells and constructed parallel to the coast. It works in the same fashion as a dam across a river, thus the name of "underground dam" given to it by engineers. In the same way as a dam, the barrier should rest on an impervious layer. The method of construction for such a substructure might be an excavated trench backfilled with bentonite clay, or a closely spaced line of wells through which impermeable grout is injected. It is likely that such a barrier could be effective only in relatively

shallow formations. It is also important to monitor the effectiveness of the barrier to determine the magnitude of the leakage of sea water.

Figure 2.5 An illustration of subsurface barrier.

(a) Minimum groundwater storage out of the barrier; (b) Groundwater table increase with the barrier; (c) Seawater intrusion advancing inland; (d) Seawater intrusion delayed by the subsurface barrier.
The material used for the subsurface barrier is one of the most important factors in its construction. This is not only due to the fact that the material will be used as underground structure, but also because it must solve three major problems explained in the next paragraph. A material which has the properties needed to fulfill all requirements is very rare. However, sheet piling, puddled clay, emulsified asphalt, silica gel, calcium acrylate, and plastics may be used.

Monitoring seawater leakage is an important aspect to be taken into account. Leakage is often used as the measure of whether a barrier works effectively or not. Leakage from the bottom part of the barrier is allowed to release undesirable substances, such as fertilizers, pesticides, or other chemical waste from agricultural and industrial uses. It is important to note that this leakage flow should have a seaward gradient. In coastal aquifers where such dangerous materials can be negligible in the sense of their quantity, there is no need to consider leakage flow through the barrier.

Todd (1980) reported that there are three major obstacles in implementing this method of controlling seawater intrusion: construction cost, resistance to earthquakes, and chemical erosion. Since constructing a physical barrier involves underground work, the cost of construction becomes fairly high compared to other methods. Although many groundwater engineers believe that construction cost is a major constraint in building a barrier, Japanese engineers have succeeded in reducing the cost by utilizing a cement grouting technique. The effect of earthquakes on the barrier has not been intensively investigated. Chemical erosion is related to the aforementioned leakage problem. Subsurface outflow from the basin is difficult to control in order to achieve a balance of salinity.

If the subsurface barrier is effective, the system has the advantage of not allowing significant drawdowns of water levels, which might permit the use of large amounts of stored fresh water. The steepening of the seaward gradient can

be achieved as well. Basically, this method provides a delay, or halts saltwater intrusion into the freshwater zones and therefore enhances the groundwater storage capacity of the aquifer.

Chapter 3

Subsurface Barrier: Literature Review

Literature on groundwater flow and related fields discussing the saltwater intrusion problem and methods of making predictions on the interface encroachment over time, falls into two categories. The first category includes methods that acknowledge the existence of a transition zone between freshwater and saltwater. Investigators using the transition zone assumption are Lee and Cheng (1974), Segol et al. (1975), Liu et al. (1981), Volker and Rushton (1982), Frind (1982b), Rubin (1983), Huyakorn et al. (1986), Huyakorn et al. (1987), Voss and Souza (1987), and Herbert et al. (1988). The second category concentrates on numerical modeling with an abrupt interface in the contact zone. The sharp interface assumption is used by Bear and Dagan (1964), Shamir and Dagan (1971), Volker and Rushton (1982), Taigbenu et al. (1984), Sugio et al. (1987), Contractor and Srivastava (1990), Calvache and Pulido-Bosch (1991), Sugio and Mohamed (1992), and Sugio and Nakada (1992).

3.1 Transition Zone Models

A very common approach dealing with saltwater intrusion is modeling coupled groundwater flow and solute transport with varied density. Fluid density in this approach is a function of solute concentration in the groundwater. Although the density of the groundwater, generally, is nearly constant, it can vary considerably near the coast. This is because seawater near the coast contains much stronger saline solutions than freshwater. The difference in concentration between seawater and freshwater can be modeled using density variations which are a function of solute concentration.

A number of authors have discussed variable density flow and solute transport to analyze and to simulate the fresh-saltwater interface. Henry (1959) developed the first analytical solution for the simulation of saltwater intrusion. This solution is based on the assumption that there is transport of salt in densitydependent fluid flow and a transition zone between the freshwater and saltwater. The transition zone formed is due to hydrodynamic dispersion which in turn varies the density from freshwater to saltwater. Henry's model which is valid only for steady state conditions and confined aquifers was then developed and referred to by many investigators as a basis for their model verification. The shape and position of the interface in Henry's solution are shown in Figure 3.1. The figure does not only present the result of Henry's work but also that of Pinder and Cooper (1970) and Segol et al. (1975). As shown, the interface can be divided into two parts: one being convex, the other concave. The convex part is close to the interface toe. It forms wide angle to the impervious boundary. The concave part is close to the upper interface toe. It is important to note that the starting point of the upper interface toe is at the top boundary.

Using the method of characteristics, Pinder and Cooper (1970) attempted to solve the problem initiated by Henry for unsteady state conditions. The model, known as a particle tracking model, provides results nearly identical to Henry's work but uses reversed initial conditions. Usually, non-zero velocity as an initial value is given to the freshwater side at time t = 0. The velocity is then decreased instantly to zero velocity at time $t \neq 0$. In their simulation, zero velocity is the initial value and is increased suddenly. The shape and the location of the interface obtained from this model match Henry's steady state result. Voss and Souza (1987) indicated that porosity included in solute mass balance in Pinder and Cooper's model results in a different shape of the interface. In Henry's original work, it does not. Although Pinder & Cooper and Henry worked with different assumption, their results are almost identical (see Figure 3.1). The only difference is the location of the interface toe. Henry's interface toe is a little further left than Pinder & Cooper's interface.

Figure 3.1 Comparison of freshwater-saltwater interface results obtained by Segol et al., Pinder & Cooper and Henry's analytical solution. (After Willis & Yeh, 1987).

The diffused interface model simulation was analyzed by Lee and Cheng (1974). The approach used in their model is similar to Henry's work so that the results are almost identical. Both solutions have the same interface shape, even though they differ in the location of the interface toe. They also have a different upper interface toe, located at the top boundary of the model. Other studies resulted in the upper interface toe being located at the seaside boundary. There are two reasons why this can happen. First, Lee and Cheng specified different transport boundary conditions. Second, they used different numerical techniques (Huyakorn et al., 1987). The numerical technique used in Lee and Cheng's study is the stream function finite element method. This work can be distinguished from previous methods because it treats solute concentration as a dependent variable. Figure 3.2 depicts the results of Lee and Cheng's work. Again, it closely resembles Henry's interface. There are two other interfaces which provide a more reliable solution than those given by Lee & Cheng and Henry. They are those given by Frind (1982b) and Huyakorn et al. (1987) in Figure 3.2 and are represented by solid and dashed lines. They will also be described later.

Another important research document in this group is a study done by Segol et al. (1975) and Segol and Pinder (1976). The model was developed based on the assumption that solute concentration is a dependent variable. They introduced the use of fluid pressure and a velocity component in the formulation of their finite element model. This approach results in the shape of the interface approximating the real one, where the upper interface toe is in the seaside boundary. Although the lower interface toe (this point on called the interface) has a less sharp angle than that obtained under laboratory conditions, results are much improved over those achieved in the two previous studies done by Henry and Lee & Cheng (see Figure 3.1). The location of the upper interface line to the sea.

The outflow above the interface can be used to explain the mass balance over the entire domain. There is outflow to the sea to balance the inflow from the freshwater boundary. The real phenomenon proves this outflow.

Figure 3.2 Comparison of the result obtained by Huyakorn et al. (1987) for the constant dispersion and several other interfaces (From Huyakorn, 1987).

Frind (1982b) proposed the use of a consistent method to deal with the difficulty in numerical calculations. Using the Galerkin finite element approximation with a consistent method implies the use of one velocity per element. This single value is calculated at the element centroid. Another implication is that the calculation of density is based on the average value. Also, other variables in the mass balance must use an average concentration for each element. Except for these numerical differences, specifying the boundary conditions is practically the same as in the Huyakorn's case. The results of this model were in agreement with the results of the model developed by Huyakorn (see Figure 3.2 and Figure 3.3). One aspect to be noted is that all interfaces in both figures are almost perpendicular to the impervious layer (compared to the sharp interface solution). These results will be improved in this research.

An attempt to complete the consistent approximation developed firstly by Frind was carried out by Voss and Souza (1987). The authors pointed out that inaccuracies in numerical modeling lead to unsuccessful results in solving variable density flow and solute transport problems. To overcome this numerical problem, they proposed three steps toward improved accuracy. The use of a consistent approach in fluid velocity is the first step to be performed. Similar to the approach used in Frind's model, velocities must be evaluated within each finite element. Consequently, the standard Galerkin finite element should be modified in order to have consistent velocities. The second remedy is to have sufficient verification in order to obtain an accurate and stable model. It is simply not enough to verify the model comparing it with Henry's solution. The third aspect to be considered is to use finer spatial and temporal discretization. The size of an element and time step remain major factors in numerical analysis to simulate a narrow transition zone.

The investigation of coupled groundwater flow and solute transport was followed by Huyakorn et al. (1987). As previously described, most investigations dealt with a coupled problem for a confined single layer aquifer. This research was carried out to elaborate more complicated situations, such as multi-aquifer systems and phreatic aquifers. The model was developed not only for the simulation of many types of aquifers, but also for a three dimensional regional coastal aquifer. A Picard sequential solution algorithm with special provisions is used to converge to the Frind and Segol et al. solutions. It can be concluded that these three solutions result in exactly the same interface (see Figure 3.4).

Figure 3.3 Comparison of the 0.5 isochlor for the variable dispersion at steady state obtained by Huyakorn et al. (1987) and freshwater-saltwater interface given by Frind (1982a). (From Huyakorn, 1987).

Figure 3.4 Comparison of the 0.5 isochlor for Huyakorn et al. (1987) under transient solution and the results given by Frind (1982b) and Segol et al. (1975). (From Huyakorn et al., 1987).

Figure 3.3 and Figure 3.4 show the difficulty in solving fresh-saltwater interface problems. Although three different research studies substantiate each other, the intersection to the bottom boundary still forms a wide angle.

Another coupled groundwater flow and solute transport model is a model developed by Herbert et al. (1988). Contrary to many solute transport models which assume that the density of the fluid can not be affected by the presence of the solute or tracer, these authors believe that the solute may weaken the density. In the case of density which is strongly dependent upon the concentration of the tracer, applying the mass fraction weighted average velocity, the mass fraction of concentrated salt solution and underlying approximations on the formulation of conservation equations are suggested. The three equations of mass, salt and momentum conservation, should be modified. Since this model was not verified by comparing it with Henry's solution or with other previously mentioned work, the results can not be commented on. The most important contribution of Herbert's work is that it offers an approach which avoids the need for a very fine grid.

3.2 Sharp Interface Models

Ì

After discussing the first approach for the simulation of saltwater intrusion, this section deals with the second approach, namely the sharp interface approach. Many researchers believe that a coupled groundwater flow and solute transport approach is more logical to the phenomenon of saltwater intrusion. On the other hand, many others proved that a sharp interface assumption is more often found in the contact zone between freshwater and saltwater. Investigations by Jacobs and Schmorak (1960) and Schmorak (1967) along a coastal aquifer in Israel showed that the shape and the position of the interface approaches an abrupt front. Since the width of the contact zone between freshwater freshwater and saltwater is too small compared to the aquifer thickness, the sharp interface is a valid concept used to

explain the intrusion problem. The results of this investigation are used as a basis for later analysis.

An analytical solution for the movement of the fresh-saltwater interface in a confined coastal aquifer was derived by Bear and Dagan (1964). There are several assumptions used in deriving this solution. There are three assumptions used in deriving this solution. They are that the Dupuit approximation must be applied, that the aquifer is homogeneous and isotropic and that there is no hydrodynamic dispersion and compressibility. A rectangular Hele-Shaw cell with an impervious layer on both horizontal boundaries, top and bottom, is used to observe the moving interface over a period of time when a sudden reduction of the discharge from the freshwater side boundary is applied. The observed interfaces from this experiment are compared with the analytical solution. Both solutions, in general, indicate good agreement.

The moving interface under several conditions using the sharp interface assumption was discussed by Strack (1976). The conditions which are valid for steady state flow with homogeneous isotropic permeability are applied to confined and unconfined aquifers. The three dimensional moving interface model is developed to complete the single potential theory of previous studies. For the sake of simplicity, this three dimensional model is treated as two dimensional by discarding the velocity in the y direction. The use of a single potential technique can solve the problem of the discontinuity of velocity gradients and potential at the boundaries. The author suggested that this analytical solution may be used as a part of the numerical solutions. Using the results of this study, it is possible to locate pumping wells properly in the freshwater zone in order to prevent the seawater from advancing toward the inland areas.

One of the authors who used the boundary integral equation method (BIEM) for solving the moving interface in coastal aquifers is Liu et al. (1981).

The BIEM code was developed to simulate the movement of a sharp interface. This numerical solution is verified by comparing the results with the Hele-Shaw experimental model. The comparison shows good agreement. The results were also compared to the experimental results reached by Bear and Dagan (1964) and the finite element model developed by Costa and Wilson (1979) under transient conditions (see Figure 3.5 and Figure 3.6). They are very similar. The observed values obtained by Bear and Dagan show a concave interface at higher time steps. There is a strong indication that an error in performing the Bear & Dagan's experiment causes the results to be different from the numerical calculations. The authors claimed that the difficulty in predicting the shape and location of the interface with any method can be resolved by using the BIEM.

Figure 3.5 Comparison of numerical results obtained by Costa & Wilson (Finite Element) and Liu et al. (Boundary Element) with experimental result observed by Bear & Dagan. Sudden decrease of freshwater level is applied. (After Liu et al., 1981)

Figure 3.6 Comparison of numerical results obtained by Costa & Wilson (Finite Element) and Liu et al. (Boundary Element) with experimental result observed by Bear & Dagan. Sudden increase of freshwater level is applied (After Liu et al., 1981)

All interfaces in Figure 3.5 are different from those in Figure 3.6. The differences occur because of the use of different experimental procedures. Interfaces in Figure 3.5 are obtained from the experiment with a decrease in discharge flow. In contrast, interfaces in Figure 3.6 are obtained from the experiment with an increase in discharge flow. A sudden decrease of inflow is more meaningful than a sudden increase. Most research on this topic does use the former procedure. However, the interfaces tend to form a convex curve over a longer time. To obtain a concave interface, the procedure is reversed.

The use of a microcomputer to simulate saltwater intrusion was introduced by Contractor and Srivastava (1990). They modified a two-dimensional finite element model developed by Contractor (1983). The reduction in bandwidth size and the manipulation in the stiffness matrix are carried out to obtain an efficient code. This reduces the need for computer memory considerably so that a microcomputer can be used. The modified model applied to the Northern Guam aquifer, indicates that most sub-aquifers match the assumption of the sharp interface. Another conclusion is that verification using the Ghyben-Herzberg approximation does not provide good parameters for aquifers affected by sea level fluctuation. This can be explained by looking at the assumption used in the Ghyben-Herzberg investigation. They assumed static equilibrium with a hydrodinamic pressure distribution in the freshwater region and with stationary seawater. Obviously, Contractor and Srivastava's model use a dynamic equilibrium. Therefore, the use of the Ghyben-Herzberg approximation is not advocated.

Calvache and Pulido-Bosch (1991) also used the sharp interface approach in analyzing saltwater intrusion in Southern Spain. The finite element model (MODEN2) developed by Verruijt (1987) and the finite difference model (MOCDENSE) by Konikow and Bredehoeft (1984) were applied for the analysis. The finite element model is used to analyze the geometry of the interface and its movement over the time. The groundwater flow equation with the Ghyben-Herzberg relation is used to derive the finite element formulation (Bear and Verruijt, 1987). Unfortunately, due to lack of available data, the results of this simulation can not be verified.

3.3 Subsurface Barrier

A number of research projects have evaluated the success of both approaches, the transition zone and sharp interface, for the analysis of the saltwater intrusion phenomena. Many papers have been published about methods for controlling saltwater intrusion. However, very limited literature is available about saltwater intrusion control using the subsurface barrier method.

Aiba (1980) reported the plan for using a subsurface barrier in several groundwater basins in the South of Japan. The groundwater basins with high permeability and favorable geological structure as well as with the problem of raising groundwater levels are considered to be the best candidates for

construction of subsurface barriers. To examine the ability of a barrier to store groundwater, an experimental subsurface barrier in a small valley of Miyako Island was built. By using the cement grouting method on coral reef limestone it was proved that the barrier can increase the groundwater level even before the construction has been completed.

After the experience with the first subsurface barrier, it was also reported that the design and planning of a subsurface barrier for the National Irrigation Project in Miyako Island was being prepared. A complete plan for five subsurface barriers is still being discussed. In the meantime, the study on the subsurface barrier for coral reef limestone is still continuing. Other geologic conditions, such as alluvial fans, river valleys with gravel and the piedmonts of volcanoes are being extensively investigated as well.

Another research study which focuses on subsurface barriers is the finite difference model developed by Sugio et al. (1987). This study also included an experiment in the laboratory with a physical sand-box model. Sugio's numerical model assumes that there is no transition zone. In other words, it is classified as the sharp interface model. The investigation concentrates on an unconfined aquifer or phreatic aquifer. Test results obtained from the physical sand-box model were used to validate the numerical model. The sand-box apparatus is 1.2 meters long, 0.10 meters wide, and 0.45 meters high. The hydraulic conductivity and porosity of sand material as an aquifer are 0.0038 m/sec. and 0.34 respectively. The freshwater enters the aquifer at the left hand side at the level of 0.403 meters and the saltwater at the right hand side at the level of 0.381 meters. The freshwater and saltwater have densities of 1002 kg/m3 and 1025 kg/m3, respectively. The steady state flow is observed. After reaching an equilibrium, the water level at the left side is lowered instantly. The unsteady state flow is

then observed during a period of 210 minutes using time step of 30 minutes. All these parameters will then be used in this study.

The determination of the location of the interface toe and its shape is the most difficult problem in the simulation of the fresh-saltwater interface. Most of the research indicates that the interface line is perpendicular to the bottom of the impervious layer or that it approaches the bottom at a wide angle. On the other hand, results of laboratory tests show a sharp angle. To solve such a problem, there are a number of techniques that can be employed. A moving grid proposed by Shamir & Dagan (1971) and Bear & Kapuler (1981) and a pseudo interface used by Wilson and Costa (1982) are the most commonly applied. Sugio et al. used the latter method to form a better shape of the interface line. The result proves that the calculated values are exactly the same as the observed values from the sand-box model (see Figure 3.7).

After successfully predicting the fresh-saltwater interface under transient conditions, the next step consists of the simulation of a moving interface with a subsurface barrier. The exact location of the barrier is 0.40 m from the saltwater side. The barrier has a permeability of 0.00005 m/sec. which is a lower permeability than that of the aquifer. The width of the barrier is 0.05 m. At the second stage of the experiment, the density of saltwater and the water level at both sides are changed. The density of saltwater is 1030 kg/m3 and the water levels at the freshwater and saltwater sides are 0.381 m and 0.311 m, respectively. Then, the level at the freshwater side is decreased to 0.312 m. The location of the interface and its movement are observed during a period of 150 minutes (see Figure 3.8). Although calculated and observed values are a poor match, the shape and position of the interface are similar to the expected results.

From the results it can be inferred that the subsurface barrier can stop the movement effectively even though the agreement between the calculated and

observed values is not as good as in the case without the barrier. The authors claim that, even in the worst case scenario, the barrier is able to delay seawater intrusion and to increase the water table.

Figure 3.7 Comparison of the finite difference method and observed experimental values (without a subsurface barrier) given by Sugio et al. (After Sugio et al., 1987).

Figure 3.8 Comparison of the finite difference method and observed experimental values (with a subsurface barrier) given by Sugio et al. (After Sugio et al., 1987).

Chapter 4

Subsurface Barrier: Theoretical Background

4.1 Modeling Saltwater Intrusion Using The Heat-Transfer Analogy

A variety of methods have been developed, from physical to complex mathematical models, to simulate saltwater intrusion in coastal aquifers. The thermal analogy model is considered in this thesis. It has not been used for analysis of the seawater intrusion phenomena. The flow of heat can be modeled using the same governing equations are used for groundwater flow. Therefore, the heat-transfer problem is analogous to groundwater flow problems. The analogy as presented by (Todd, 1980) is in Table 4.1.

T	'abl	e 4	1.1	Seawater	Intrusion	Analogy
---	------	-----	-----	----------	-----------	---------

GROUNDWATER MODEL	THERMAL MODEL
Hydraulic conductivity	Permeability factor
Diffusion coefficient	Fluid conductivity
Storage coefficient	Model thickness*density*specific heat
Flow rate	Heat Flow
Solute concentration	Temperature

The model used in this present study is developed based on the analogy shown in Table 4.1.

4.1.1 Governing Equations

The mathematical model describing incompressible laminar fluid flow with density variations consists of three partial differential equations: the continuity equation, the Navier-Stokes equation and the energy transport equation.

The continuity equation derived from mass conservation in a twodimensional Cartesian coordinate system may be expressed as:

$$\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x}(\rho u) + \frac{\partial}{\partial y}(\rho v) = 0$$
(4.1)

where ρ is fluid density, *u* and *v* are velocities and *t* is time.

The set of Navier-Stokes equations is used to describe the motion of fluid flow through porous media and may be written as:

$$\frac{\partial(\rho u)}{\partial t} + \frac{\partial(\rho u u)}{\partial x} + \frac{\partial(\rho v u)}{\partial y} = \rho g_x - \frac{\partial p}{\partial x} + \frac{\partial}{\partial x} \left(\mu \frac{\partial u}{\partial x}\right) + \frac{\partial}{\partial y} \left(\mu \frac{\partial u}{\partial y}\right) + f_x + R_x$$

$$\frac{\partial(\rho v)}{\partial t} + \frac{\partial(\rho u v)}{\partial x} + \frac{\partial(\rho v v)}{\partial y} = \rho g_y - \frac{\partial p}{\partial y} + \frac{\partial}{\partial x} \left(\mu \frac{\partial v}{\partial x}\right) + \frac{\partial}{\partial y} \left(\mu \frac{\partial v}{\partial y}\right) + f_y + R_y$$
(4.2)

where μ is the dynamic viscosity of fluid, g_x and g_y are the gravitational acceleration, p is the fluid static pressure, R_x and R_y are distributed resistance terms. For the sake of simplicity, R_x and R_y are replaced by R_i . R_i is a distributed resistance term for enforcing the barriers that are distributed uniformly over the cross section of porous media. These barriers create uniform resistance

to flow. Therefore, R_i may be characterized as the loss due to the flow through porous media and is then written as:

$$R_i = C\mu V_i \tag{4.3}$$

where C is the permeability factor, and V_i is velocity. The permeability factor in the flow through porous media was discussed by Idelchik (1986). From Equation (4.2) it can be derived that the permeability factor has units [1/length²] because of the following relationship:

$$R = \frac{\Delta P}{l_0} = C\mu V \tag{4.4}$$

where ΔP is a difference in pressure and l_o is a specified length.

To relate the permeability factor to characteristics of an aquifer, the intrinsic permeability term which depends solely on properties of the solid matrix is used. Combining the permeability factor and the intrinsic permeability leads to:

$$C = \frac{1}{k} \tag{4.5}$$

where k is intrinsic permeability.

Nutting (as quoted by Bear, 1979) developed the relationship between hydraulic conductivity and intrinsic permeability. The relationship is given by:

$$K = \frac{k\rho g}{\mu} \tag{4.6}$$

where K is hydraulic conductivity, ρ is fluid density, g is gravitational acceleration, and μ is the dynamic viscosity. Inserting Equation (4.6) in the Equation (4.5) yields:

$$K = \frac{\rho g}{C\mu} \tag{4.7}$$

Using Equation (4.7), hydraulic conductivity can be replaced by the permeability factor.

For incompressible fluid flow the energy transport equation can be expressed in the following form:

$$\frac{\partial(\rho T)}{\partial t} + \frac{\partial(\rho u C_p T)}{\partial x} + \frac{\partial(\rho v C_p T)}{\partial y} = \frac{\partial}{\partial x} \left(K \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(K \frac{\partial T}{\partial y} \right) + Q_v$$
(4.8)

where T is static temperature, C_p is specific heat, Q_v is an unspecified volumetric energy source. Several assumptions are made regarding a number of values in the incompressible energy equation above. First, dynamic temperature is much smaller than static temperature. Therefore, the kinetic energy term can be ignored. Second, the extra viscous term is much smaller than the advection, diffusion, and volumetric heat source terms and therefore, is neglected. Third, the pressure work term is not taken into account in the energy equation.

Equation (4.8) comprises two major terms: (a) the advection term which is described by the two non-linear terms on the left hand side and (b) the diffusion term which is represented by the first two terms on the right hand side. The first term on the right hand side is the transient fluctuation of scalar quantity in an infinite control volume and the last term is a generalized source term.

A summary of the governing equations for laminar incompressible flow in porous media is:

(1) Continuity Equation.

$$\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x}(\rho u) + \frac{\partial}{\partial y}(\rho v) = 0$$

(2) Navier-Stokes Equations.

$$\frac{\partial(\rho u)}{\partial t} + \frac{\partial(\rho u u)}{\partial x} + \frac{\partial(\rho v u)}{\partial y} = \rho g_x - \frac{\partial p}{\partial x} + \frac{\partial}{\partial x} \left(\mu \frac{\partial u}{\partial x}\right) + \frac{\partial}{\partial y} \left(\mu \frac{\partial u}{\partial y}\right) + f_x + R_x$$
$$\frac{\partial(\rho v)}{\partial t} + \frac{\partial(\rho v v)}{\partial x} + \frac{\partial(\rho v v)}{\partial y} = \rho g_y - \frac{\partial p}{\partial y} + \frac{\partial}{\partial x} \left(\mu \frac{\partial v}{\partial x}\right) + \frac{\partial}{\partial y} \left(\mu \frac{\partial v}{\partial y}\right) + f_y + R_y$$

(3) Energy Transport Equation.

$$\frac{\partial(\rho T)}{\partial t} + \frac{\partial(\rho u C_p T)}{\partial x} + \frac{\partial(\rho v C_p T)}{\partial y} = \frac{\partial}{\partial x} \left(K \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(K \frac{\partial T}{\partial y} \right) + Q_v$$

The following three dependent variables should be solved from these three equations:

(1) Velocities in x and y directions;

(2) Static pressure; and

(3) Static temperature.

The variable required in saltwater intrusion problems is the density which varies from freshwater to saltwater. The density is then related to the static temperature. The linear relationship between density and temperature is used:

$$\rho = 1025 - 2.3 \ (T - 288) \tag{4.9}$$

4.1.2 Finite Element Method

The finite element method is a numerical technique for solving partial differential equations using an integral equation. This method is more powerful in comparison to the finite difference method developed earlier. It has been applied to numerous problems of flow through porous media, groundwater flow and any other fluid flow. In other disciplines, the use of the finite element method is more advanced than in water resources engineering. The major advantage of the finite element method is that it can accommodate any form of boundary conditions and any combination of them.

The basic partial differential equation describing the advection term for steady state conditions in porous media is:

$$\frac{\partial}{\partial x} \left(\Gamma_{\phi} \frac{\partial \phi}{\partial x} \right) + \frac{\partial}{\partial y} \left(\Gamma_{\phi} \frac{\partial \phi}{\partial y} \right) + S_{\phi} = 0$$
(4.10)

in which ϕ is the general term used to express temperature in Equation (4.8). Equation (4.9) is based on the assumption that for steady state conditions, the flow is dominated by diffusion. Compared to diffusion, advection is much smaller so that it can be neglected. Hence, the second term in the energy equation is eliminated. Due to no variation in temperature over time, the transient term is also ignored.

To discretize the entire domain in the finite element scheme, the Galerkin method of weighted residuals is used. This method requires the integration of the main governing equation:

$$\int W \left[\frac{\partial}{\partial x} \left(\Gamma_{\phi} \frac{\partial \phi}{\partial x} \right) + \frac{\partial}{\partial y} \left(\Gamma_{\phi} \frac{\partial \phi}{\partial y} \right) + S_{\phi} \right] d \forall^{e} = 0$$
(4.11)

where W is the weighting factor which has the same meaning as the element interpolation function in the Galerkin weighted residual finite element method.

The integration as described above is performed over elements independently, and summed to provide the total contribution. Because the weighting function is made equal to the shape function defining the approximation, there is a requirement of a higher order of continuity in the shape function. To obtain the first order derivative term, an integration by parts is used to transform the second order derivative term, then:

$$\int \Gamma_{\phi} \left[\frac{\partial W}{\partial x} \frac{\partial \phi}{\partial y} + \frac{\partial W}{\partial y} \frac{\partial \phi}{\partial y} \right] d\forall^{e} - \int W \Gamma_{\phi} \left[\frac{\partial \phi}{\partial x} + \frac{\partial \phi}{\partial y} \right] dS^{e} - \int W S_{\phi} dV^{e} = 0$$
(4.12)

One way to solve Equation (4.12) is to assume a trial solution of the form:

$$\phi = \sum_{i=1}^{N^n} W_i \phi_i \tag{4.13}$$

$$S_{\phi} = \sum_{i=1}^{N^{n}} W_{i} S_{\phi_{i}}$$
(4.14)

$$\Gamma_{\phi} = \sum_{i=1}^{N^n} W_i \Gamma_{\phi_i} \tag{4.15}$$

where N_n is the number of nodes in the element, W_i are interpolation or shape functions satisfying the boundary conditions imposed on (4.10) and ϕ_i , S_i , and Γ_i are, respectively, the nodal values of variables at N_n discrete node points of the finite element grid.

Substituting these three equations above into Equation (4.12) yields:

$$\int \sum_{i,j,k=1}^{N^{n}} W_{i} \Gamma_{\phi_{i}} \left[\frac{\partial W_{j}}{\partial x} \frac{\partial W_{k}}{\partial x} \phi_{k} + \frac{\partial W_{j}}{\partial y} \frac{\partial W_{k}}{\partial y} \phi_{k} \right] d\forall^{e}$$
$$-\int \sum_{i,j,k=1}^{N^{n}} W_{i} W_{j} \Gamma_{\phi_{j}} \left[\frac{\partial W_{k}}{\partial x} \phi_{k} + \frac{\partial W_{k}}{\partial x} \phi_{k} \right] dS^{e} - \int \sum_{i,j=1}^{N^{n}} W_{i} W_{j} S_{\phi_{j}} d\forall^{e} = 0$$
(4.16)

Let:

$$K_{ij}^{e} = \int \sum_{i,j,k=1}^{N^{n}} W_{i} \Gamma_{\phi_{i}} \left[\frac{\partial W_{j}}{\partial x} \frac{\partial W_{k}}{\partial x} \phi_{k} + \frac{\partial W_{j}}{\partial y} \frac{\partial W_{k}}{\partial y} \phi_{k} \right] d\forall^{e}$$
$$-\int \sum_{i,j,k=1}^{N^{n}} W_{i} W_{j} \Gamma_{\phi_{j}} \left[\frac{\partial W_{k}}{\partial x} \phi_{k} + \frac{\partial W_{k}}{\partial x} \phi_{k} \right] dS^{e}$$
(4.17)

and:

$$F_i^e = \int \sum_{i,j=1}^{N^n} W_i W_j S_{\phi_j} d \forall^e$$
(4.18)

then, Equation (4.15) becomes:

$$\sum_{j=1}^{N^n} K^e_{ij} \phi^e_j = F^e_i \dots \dots j = 1, 2, 3, ., N^n$$
(4.19)

In matrix form (4.18) can be expressed as:

$$[K]{X} = {F} \tag{4.20}$$

The discretization of Equation (4.18) is done on an element basis and assembled into the global system in which coefficient matrix K_{ij} and source vector are defined as:

$$K_{ij} = \sum_{e=1}^{N^n} K_{ij}^e \dots F_i = \sum_{e=1}^{N^n} F_j^e \dots$$
(4.21)

where N_e is the number of elements in the solution domain.

The element used is the bilinear quadrilateral. The weighting or interpolation function have the following form for each element:

$$W_i = a_i + b_i x + c_i y + d_i x y \tag{4.22}$$

where the constants a, b, c, and d are expressed in terms of the four grid-point values of ϕ .

4.1.3 Advection Term

The use of Galerkin's method for solving the advection terms numerically causes a dispersion error (Patankar, 1980). The dispersion error describes a spatial oscillation in the solution field of ϕ . This is due to a central difference approximation for any first order derivative term not including ϕ_i for calculating any variable at node *i*. To resolve this problem, the upwind discretization scheme is used. This scheme uses the value of ϕ at the grid point on the upwind side of the face to the value of ϕ at an interface. The monotone streamline upwind method which can minimize 'crosswind' numerical diffusion considers upwinding occurring along the streamline.

Consider the advection term without the source term in the general form:

$$\frac{\partial(\rho u\phi)}{\partial x} + \frac{\partial(\rho v\phi)}{\partial y} = 0$$
(4.23)

This expression can be rewritten in term of the stream wise coordinate system as:

$$\frac{\partial(\rho u_s \phi)}{\partial s} = 0 \tag{4.24}$$

where $(\rho u_S \phi)$ is constant along a streamline. It implies that the change of $(\rho u_S \phi)$ in the element basis is also constant as:

$$\left[\frac{\partial(\rho u_s \phi)}{\partial s}\right]^e = const \tag{4.25}$$

Consequently, the discretization of the advective term leads to:

$$A^{e} = \int W \left[\frac{\partial(\rho u \phi)}{\partial x} + \frac{\partial(\rho v \phi)}{\partial y} \right]^{e} d\forall^{e} = \int W \left[\frac{\partial(\rho u_{s} \phi)}{\partial s} \right]^{e} d\forall^{e} = \left[\frac{\partial(\rho u_{s} \phi)}{\partial s} \right]^{e} \int W d\forall^{e}$$

$$(4.26)$$

To start discretizing the advective term, the downwind node is first defined. A downwind node is a node which has the velocity vector originated from the element itself. This node is at the opposite side from the outflow. The outflow side or face is determined based on the mass flow through each of the element faces. The next step is to calculate the weighting factors for the nodes on the opposite sides using a ratio of mass flows. For instance, in Figure 4.1 N1 is the downwind node. The weighting factors for N2, N3, and N4 would be:

$$WF_{N2} = \frac{\dot{m}_{F2}}{\dot{m}_{F1}} \dots WF_{N3} = \frac{\dot{m}_{F3}}{\dot{m}_{F1}} \dots WF_{N4} = \frac{\dot{m}_{F4}}{\dot{m}_{F1}}$$
(4.27)

where m is mass flow and F denotes a face opposed from the downwind node.

The calculation is followed by the determination of the intersection point between the upstream face and the streamline that coincides with the downstream node. The same figure indicates that the point having the coordinates of X_{us} , Y_{us} and Z_{us} is the intersection point and is defined as:

$$X_{u_s} = \sum_{j=N2,N4} WF_j X_j \qquad Y_{u_s} = \sum_{j=N2,N4} WF_j Y_j \qquad Z_{u_s} = \sum_{j=N2,N4} WF_j Z_j$$
(4.28)

The following equation is used to calculate the distance from the downwind node to the intersection point:

$$ds = \sqrt{\left(X_{N1} - X_{u_s}\right)^2 + \left(Y_{N1} - Y_{u_s}\right)^2} \tag{4.29}$$

Therefore, the gradient in Equation (4.24) is formed as:

Figure 4.1 Example of a 3-D tetrahedron element in streamline upwind.

Then the influence of the other nodes on the downwind node is calculated and assigned to the off-diagonal terms of the element matrix E_{ij} as the negative of sum of the off-diagonal terms.

$$E_{N1j} = \frac{-\rho_j \sqrt{u_j^2 + v_j^2}}{ds} WF_j$$
(4.31)

When all element matrices have been computed, they are assembled into the global coefficient matrix.

4.1.4 Velocity-Pressure Solution

The discretized energy equation is solved for static temperature and the Navier-Stokes equations are solved for the velocity components. Therefore, the continuity equation is needed to relate the velocity components to static temperature. As usual, this relationship can be solved using the velocity-pressure coupling manipulation. Velocity-pressure coupling is performed in two stages. The first stage consists of relating velocity to pressure. This can be done by rearrangement of the partially discretized momentum equations:

$$a_{ii}^{u}u_{i} = -\sum_{j}^{j\neq 1}a_{ij}^{u}u_{j} + f_{i}^{u} - \int W\left[\frac{\partial p}{\partial x}\right]^{e}d\forall^{e}$$

$$a_{ii}^{v}v_{i} = -\sum_{j}^{j\neq 1}a_{ij}^{v}v_{j} + f_{i}^{v} - \int W\left[\frac{\partial p}{\partial y}\right]^{e}d\forall^{e}$$
(4.32)

where a's are coefficients that contribute to the element matrix from the streamline upwind advection terms and the diffusion terms, and f's represent the buoyancy terms, natural boundary condition terms and any other source terms. Equations (4.32) can be rewritten in the form of:

$$u_{i} = \hat{u}_{i} - \frac{1}{a_{ii}^{u}} \int W \left[\frac{\partial p}{\partial x} \right]^{e} d\forall^{e} \qquad v_{i} = \hat{v}_{i} - \frac{1}{a_{ii}^{v}} \int W \left[\frac{\partial p}{\partial y} \right]^{e} d\forall^{e} \qquad (4.33)$$

51

where:

$$\hat{u}_{i} = -\frac{\sum_{j=1}^{j\neq 1} a_{ij}^{\mu} u_{j} + f_{i}^{\mu}}{a_{ii}^{\mu}} \qquad \qquad \hat{v}_{i} = -\frac{\sum_{j=1}^{j\neq 1} a_{ij}^{\nu} v_{j} + f_{i}^{\nu}}{a_{ii}^{\nu}}$$
(4.34)

Assuming that the pressure gradient is constant over the elements, Equations (4.33) can be reformulated as:

$$u_{i} = \hat{u}_{i} - K_{i}^{u} \frac{\partial p}{\partial x} \qquad \qquad v_{i} = \hat{v}_{i} - K_{i}^{v} \frac{\partial p}{\partial y} \qquad (4.35)$$

where:

$$K_i^u = \frac{\int W d\forall^e}{a_{ii}^u} \qquad \qquad K_i^v = \frac{\int W d\forall^e}{a_{ii}^v} \tag{4.36}$$

Equations (4.35) are then called coupled velocity-pressure equations. These equations are used to update the velocities after achieving the pressure solution.

At the second stage the continuity equation is discretized using Galerkin's weighted residual finite element method. This method implies that the velocity-pressure coupling equations are substituted into the discretized continuity equation. This can lead to the flow pressure equation expressed for the case of incompressible flow in the following form:

$$\int \left[\frac{\partial W}{\partial x} \rho K^{u} \frac{\partial p}{\partial x} + \frac{\partial W}{\partial y} \rho K^{v} \frac{\partial p}{\partial y} \right] d\forall^{e} = \int \left[\frac{\partial W}{\partial x} \rho \hat{u} + \frac{\partial W}{\partial y} \rho \hat{v} \right] d\forall^{e}$$
$$-\int W \left[\rho u \right]^{s} dA^{s} - \int W \left[\rho v \right]^{s} dA^{s}$$
(4.37)

where the integral on the left hand side denotes the pressure diffusion term. The first integral on the right hand side represents known values, and the second integral includes the pressure boundary conditions at the inlet and outlet.

4.2 Optimization

Saltwater intrusion control using a subsurface barrier is optimized by considering two objectives: (a) minimizing the intruded areas; and (b) minimizing subsurface barrier parameters. The optimization scheme is developed based on fresh and saltwater densities. The state variable is the saltwater density at a certain node, and the decision variables are the design parameters (width and construction material) and location of the subsurface barrier.

In general, the optimization problem involves minimization of the nonlinear objective function:

$$Min \ F = F(X_1, X_2, ..., X_n) \tag{4.38}$$

subject to

$$\underline{X}_i \le X_i \le \overline{X}_i \cdots (i=1,N) \tag{4.39}$$

$$\underline{g}_{j} \leq G_{j}(X_{1}, X_{2}, \cdots X_{N}) \leq \overline{g}_{j} \cdots \cdots \cdots (j = 1, M)$$

$$(4.40)$$

where F is the objective function, X_i is a decision variable, N is the number of decision variables, G_i is a state variable, and M is the number of state variables. \underline{X}_i and \overline{X}_i are the lower and upper bounds of the decision variables and \underline{g}_j and \overline{g}_j are the lower and upper values of the state variables, respectively.

A number of nonlinear solution methods and algorithms can be employed to deal with the above formulation. They include: primary methods, penalty and barrier methods, dual methods and quasi-linearization. The primal solution methods can be divided into four groups in terms of algorithms used: (a) feasible direction; (b) gradient projection; (c) reduced gradient; and (d) projected Lagrangian methods. In the group of penalty and barrier solution methods, the Sequential Unconstrained Minimization Technique (SUMT) is one of the most known algorithms. Dual methods of nonlinear programming include the gradient and cutting plane algorithms. Algorithms of linear and quadratic programming are commonly employed for the quasi-linearization of nonlinear problems.

In this study, the ANSYS computer package is used to optimize a number of parameters. In the ANSYS package, the SUMT optimization algorithm (Fiacco and McCormick, 1968) is applied.

In the ANSYS computer package, F is not a real function of the decision variables, but an approximation. Therefore, F is formulated as the approximation of f. Also, an approximation is introduced for state variables so that G_j is the approximation of g_j . The following equations are the approximations for both the objective function and state variables.

$$F = f + error \tag{4.41}$$

 $G_j = g_j + error....(j = 1, M)$ (4.42)

The normalized decision variables X_i of the least square regression are used to derive the approximations of F and G_j where X_i is given by:

$$X_{i} = \frac{x_{i} - \underline{x}_{i}}{\overline{x}_{i} - \underline{x}_{i}}.....(i = 1, N)$$
(4.43)

If the approximations of F and G are replaced by H, the form of the approximation for H is:

$$H = a_0 + \sum_{i=1}^{N} a_i X_i + \sum_{i=1}^{N} b_i X_i^2 + \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} c_{ij} X_i X_j$$
(4.44)

where the coefficients a_o, a_i , b_i , c_{ij} are determined by the least square regression. Assuming that h(k) is the k-th function value for design set $x_{i(k)}$, the weighted least square error is:

$$E_k^2 = W^k (h^{(k)} - H^{(k)})^2 \tag{4.45}$$

where K(k) is the weight for design set k. For the design set the total least square error is:

$$E^{2} = \sum_{k=1}^{K} E_{k}^{2} = \sum_{k=1}^{K} W^{(k)} (h^{(k)} - H^{(k)})^{2}$$
(4.46)

where K is the total number of design sets.

To obtain the best approximation, the total least square error must be at the minimum. It reaches the minimum value if the first derivative in respect to each coefficient is equal to zero:

$$\frac{\partial E^2}{\partial a_0} = 0, \dots \frac{\partial E^2}{\partial a_1} = 0, \dots \frac{\partial E^2}{\partial b_1} = 0, \dots \frac{\partial E^2}{\partial c_1} = 0$$
(4.47)

Then a set of linear simultaneous equations is formed.

The criteria used to obtain the best curve fitting is the weighted multiple regression coefficient:

$$R^{2} = 1 - \frac{(K-1)\sum_{k=1}^{K} W^{(k)} (h^{(k)} - H^{(k)})^{2}}{(K-Q)\sum_{k=1}^{K} W^{(k)} (h^{(k)} - \overline{h})^{2}}$$
(4.48)

where Q = 2N+1 for the quadratic curve fit, K is the total number of design sets and h is the weighted mean value of h given by:

$$\overline{h} = \frac{1}{K} \sum_{k=1}^{K} W^{(k)} h^{(k)}$$
(4.49)

The curve fitting is finished if:

$$K > 2N + 1$$

 $K > \frac{1}{2}(N + 3)N + 1$
(4.50)

During the process of determining the best curve fit, the initial fit value is obtained as:

$$H = a_0 + a_1 x_1 + b_1 X_1^2 \tag{4.51}$$

The weight to be used in Equation (4.49) is:

$$W^{(k)} = \left(W_2^{(k)} W_3^{(k)} W_4^{(k)}\right)^q \tag{4.52}$$

where q is an aging exponent defined by:

$$q = \frac{K - M_r}{M_r} \dots (1 \le q \le 5) \tag{4.53}$$

in which M_r is the number of required design sets to be run. While each weight may be defined as:

$$W_{2}^{(k)} = 1 - \left[\frac{1}{N} \sum_{i=1}^{N} \left(X_{i}^{*} - X_{i}^{(k)}\right)^{2}\right]^{\frac{1}{2}}$$
(4.54)

$$W_3^{(k)} = 1 - \frac{\left| f^* - f^{(k)} \right|}{f_r} \tag{4.55}$$

where:

$$f_r = \frac{\max}{k} \left| f^* - f^{(k)} \right|$$
(4.56)

and:
$$W_{4}^{(k)} = \begin{cases} 1.0 \\ 0.001 \\ \frac{1}{M} \sum_{j=1}^{M} (9I_{j} + 1)^{-1} \end{cases}$$
(4.57)

The value of I_j is formed using the following relationship

$$I_{j} = \begin{cases} \frac{-g_{j}^{(k)} + \underline{g}_{j} - \tau_{j}}{\overline{g}_{j} - \underline{g}_{j} + 2\tau_{j}} & \text{if } g_{j}^{(k)} < (\underline{g}_{j} - \tau_{j}) \\ 0 & \text{if } (\underline{g}_{j} - \tau_{j}) \le g_{j}^{(k)} \le (\overline{g}_{j} + \tau_{j}) \\ \frac{g_{j}^{(k)} - \overline{g}_{j} - \tau_{j}}{\overline{g}_{j} - \underline{g}_{j} + 2\tau_{j}} & \text{if } g_{j}^{(k)} > (\overline{g}_{j} + \tau_{j}) \end{cases}$$
(4.58)

where τ_j is the tolerance level for state variable j.

To enforce the decision and state variables to stay within the prespecified constraints, the penalty functions are employed within the optimization formulation. The penalty function for state variables, is illustrated in Figure 4.2.

Figure 4.2 Example of Penalty Function for State Variable

The mathematical form of penalty functions for the decision variables is presented in Table 4.2 and for state variables in Table 4.3.

Region	Limits	Penalty Function Pn(Gj)
Ι	$x_i \leq \left(\underline{x}_i + \frac{\varepsilon_i}{4}\right)$	$10^{3} \left[7 - 16 \frac{(x_{i} - \underline{x}_{i})}{\varepsilon_{i}} \right]$
II	$\left(\underline{x}_i + \frac{\varepsilon_i}{4}\right) \le x_i \le \left(\underline{x}_i + \varepsilon_i\right)$	$10^3 \left[\frac{\varepsilon_i}{(x_i - \underline{x}_i)} - 1 \right]$
III	$\left(\underline{x}_i + \varepsilon_i\right) \le x_i \le \left(\overline{x}_i - \varepsilon_i\right)$	0
IV	$\left(\overline{x}_i - \varepsilon_i\right) \le x_i \le \left(\overline{x}_i - \frac{\varepsilon_i}{4}\right)$	$10^{3}\left[\frac{\varepsilon_{i}}{\left(\overline{x}_{i}-x_{i}\right)}-1\right]$
V	$\left(\frac{\overline{x}_i}{4} - \frac{\varepsilon_i}{4}\right) \le x_i$	$10^{3}\left[7-16\frac{\left(\overline{x}_{i}-x_{i}\right)}{\varepsilon_{i}}\right]$

Table 4.2 Penalty function for decision variables.

ς.

Region	Limits	Penalty Function Pn(Gj)
Ι	$G_j \leq \left(\underline{g}_j + \frac{\varepsilon_{nj}}{4}\right)$	$7-16\frac{\left(G_{j}-\underline{g}_{j}\right)}{\varepsilon_{nj}}$
II	$\left(\underline{g}_{j} + \frac{\varepsilon_{nj}}{4}\right) \leq G_{j} \leq \left(\underline{g}_{j} + \varepsilon_{nj}\right)$	$\frac{\varepsilon_{nj}}{\left(G_{j}-\underline{g}_{j}\right)}-1$
III	$\left(\underline{g}_{j}+\varepsilon_{nj}\right)\leq G_{j}\leq\left(\overline{g}_{j}-\varepsilon_{nj}\right)$	0
IV	$\left(\overline{g}_{j}-\varepsilon_{nj}\right)\leq G_{j}\leq\left(\overline{g}_{j}-\frac{\varepsilon_{nj}}{4}\right)$	$\frac{\varepsilon_{nj}}{\left(\overline{g}_j - G_j\right)} - 1$
V	$\left(\frac{-}{g_j} - \frac{\varepsilon_{nj}}{4}\right) \le G_j$	$7-16\frac{\left(\overline{g}_{j}-G_{j}\right)}{\varepsilon_{nj}}$

Table 4.3 Penalty function for state variables

In Tables 4.2 and 4.3, ϵ_{nj} is a tolerance factor that can be calculated from:

$$\varepsilon_{nj} = (0.002)3^{(3-n)}(\bar{g}_j - \underline{g}_j)$$
(4.59)

in which n is the response surface number that varies from 1 to 5.

Adding the penalty function from Table 4.2 and Table 4.3 to the approximated objective function, the unconstrained function or response surface is formed as follows:

$$\phi_n^{(l)} = F^{(l)} + 3^{(n-3)} F^{(l)} \left[\sum_{i=1}^N P(x_i^{(l)}) + \sum_{j=1}^M P_n(G_j^{(l)}) \right]$$
(4.60)

where $\phi_n^{(l)}$ is the n-th response surface of the design loop 1, $F^{(l)}$ is the least square fit objective function for the design loop 1, $P(x_i^{(l)})$ and $P(G_j^{(l)})$ are penalty functions for the decision and state variables, respectively.

The idea behind the SUMT algorithm is to search for the minimum value of Equation (4.60). This is done using the result from one response surface for the search in the next iteration. This statement can be expressed as:

 $x_i^{(l)} \to \hat{x}_i \qquad (i=1,N) \tag{4.61}$

or:

$$\phi_n^{(l)} \to a \min \text{ with respect to } x_i^{(l)}$$
(4.62)

For the next loop, a new trial combination is defined as:

$$x_i^{(l+1)} = x_i^* + A(\hat{x}_i - x_i^*) \dots i = 1, N$$
(4.63)

where x_i^* is the current best combination set, \hat{x}_i is the minimum solution from the updated response surface, and $x_i^{(l+1)}$ is a new trial combination which is used to calculate the next objective function. The constant A is calculated using the following expression:

$$A = 1.0 - C_0 - C_r C_i^* \tag{4.64}$$

with the constants C_0 , C_i , and C_j :

$$C_0 = C_0$$
 (4.65)

$$C_{r}^{'} = \min \begin{cases} \max \begin{cases} 0.25 \\ C_{r} \\ 1.0 - C_{0}^{'} \end{cases}$$
(4.66)

$$C_0'' = \max \begin{cases} 0.75 \\ C_0 \end{cases}$$
(4.67)

and

$$C_r^{"} = 1.0 - C_0^{"} \tag{4.68}$$

Finally, to reach the convergence the following criteria must be met.

$$\left|f^{(l)} - f^*\right| < \tau \tag{4.69}$$

$$\left| f^{(l)} - f^{(l-1)} \right| < \tau \tag{4.70}$$

$$\left| f_{i}^{(l)} - f_{i}^{*} \right| < \tau_{i} \quad \text{for all } i = 1, N$$

(4.71)

$$\left| f_{i}^{(l)} - f_{i}^{(l-1)} \right| < \tau_{i} \quad \text{for all } i = 1, N \tag{4.72}$$

Using the theoretical background of the optimization approach mentioned above, the optimization procedure, the input/output data and any limitations of the procedure will be presented in Chapter 5.

Chapter 5

Subsurface Barrier: Problem Solution

5.1 Saltwater Intrusion

The analysis of saltwater intrusion presented here can be broken down into six subsections: model description, mesh generation, boundary conditions, numerical calculation, data requirements, and primary difficulties.

5.1.1 Model Description

The problem considered in this study is schematically presented in Figure 5.1. This is an idealization of the laboratory Sand-Box model developed by Sugio et al. (1987). The aquifer thickness 0.45 meters in Sugio's model of will not to be considered in this research. The aquifer thickness is determined on the basis of water tables imposed at both sides. As illustrated, an isotropic phreatic aquifer is subjected to seawater. Freshwater enters the aquifer from the left hand side (or upper side), and seawater from the right hand side. The water table depth at the left hand side and at the right hand side is 0.403 and 0.381 meters, respectively, and it is assigned as the depth of aquifer. The depth of the aquifer between the

sides is assumed to be a straight line. The length of the aquifer is 1.2 meters. Other characteristics of the model are enclosed in the Table 5.1.

Figure 5.1 Schematic diagram of the model.

Table 5.1 Input data.

Properties of Aquifer and Fluid	Symbols	Values	Units
Permeability factor	С	7.58e ⁺⁹	m ⁻²
Density (freshwater)	ρ _f	1002	kg/m³
Density (saltwater)	ρ	1025	kg/m³
Temperature (freshwater)	T_f	278	°K
Temperature (saltwater)	T_{S}	288	°K
Dynamic Viscosity (constant)	μ	1.518*10 ⁻³	kg/m-sec.
Specific Heat	C_p	4186	J/kg-K
Conductivity	K	6.11*10-4	W/m-K

The relationship between density and temperature is given by:

$$\rho = 1025 - 2.3(T - 288) \tag{5.1}$$

where ρ is the fluid density, T is the fluid temperature.

The simulation of fresh-saltwater intrusion uses velocity approximated by Darcy's Law. The hydraulic gradient and the hydraulic conductivity of the aquifer are known, so velocity can be calculated. Velocity and permeability are subjected to change until an acceptable agreement between calculated and observed values (using laboratory tests done by Sugio et al.) is achieved.

5.1.2 Mesh Generation

In solving groundwater flow and solute transport problems, mesh generation plays an important role in obtaining a reliable and reasonable numerical solution. The domain near the bottom of the impervious boundary must be finely discretized. Finer mesh may provide a more accurate representation of the angle between the freshwater-saltwater interface and the impervious boundary. After examining previous work, it became clear that discretization strongly contributed to inaccurate interface estimation. For example, Voss and Souza (1987) concluded that unrealistically fine mesh is required to obtain a reliable shape of the interface. Accordingly, the need for sufficiently fine mesh is an absolute condition to obtain a stable and accurate interface. To obtain such an interface, a higher density of nodes and elements is discretized in the region near the impervious boundary. A coarser grid is placed near the top boundary. Figure 5.2 shows a sufficiently fine grid.

In order to perform the analysis with the subsurface barrier, a similar mesh generation is used to divide the model domain. The subsurface barrier is discretized with finer mesh to allow the smooth interface through the barrier and to fulfill the requirements of the optimization process. In the optimization process, the width of the barrier and its location are decision variables changing

from iteration to iteration. These changes may affect the mesh generation. Each iteration of the optimization process requires the horizontal discretization to be based on the predefined spatial grid, not on the division of lines. The effect of the slope of the top boundary (phreatic surface) on the division of lines close to the top and the bottom boundaries is also considered. The division of lines may result in a different number of lines between the top and the bottom boundaries. This different number of lines can not be discretized. The initial mesh generated for the simulation of fresh-saltwater interface with the subsurface barrier can be seen in Figure 5.3.

ANSYS 5.0 JUL 14 1994 11:31:53 PLOT NO. 1 ELEMENTS TYPE NUM

ZV =1 DIST=0.968 XF =0.6 YF =0.2015

ANSYS 5.0 4 JUL 14 1994 11:56:01 PLOT NO. 1 ELEMENTS TYPE NUM

ZV =1 DIST=0.968 XF =0.6 YF =0.2015

5.1.3 Boundary Conditions

Boundary conditions employed in this numerical simulation are shown in Figure 5.1. At the left hand side (freshwater boundary) the inlet velocity profile, zero ydirection velocity, and the temperature representing freshwater density are specified. The inlet velocity profile is homogeneous because of the laminar flow assumption. Flow in the y direction is not allowed at the inlet boundary so that zero velocity is specified. Similar to the transition zone approach where zero concentration is specified as representing freshwater, the temperature (278°K) is specified to represent the density of freshwater in this model. At the saltwater front, the temperature of 288°K at the lower portion is specified to simulate saltwater density. Water is allowed to flow out of the system over the top portion of the saltwater boundary.

Boundary conditions for flow variables at the impervious layer are specified as no flow in all directions. Therefore, the velocity components in xand y-directions are equal to zero.

Finally, the phreatic surface boundary which has no flow out of the system is considered. Due to the fact that the drawdown of the water table is too small compared to the aquifer thickness, the phreatic surface is assumed to be constant. Zero vertical velocity is specified at the top boundary.

The trial and error process is used to determine the extent of outflow through the seawater boundary. The outflow is considered adequate if the shape of interface and its toe agree with the laboratory results of Sugio's work.

5.1.4 Numerical Calculation

A numerical solution procedure using the finite element method has been presented in Chapter 4. This section is devoted to the description of numerical calculations. The FLOTRAN computer program is used in solving the governing equations. FLOTRAN solves the Navier-Stokes equations employing the Galerkin weighted integral method. Velocity components are solved. By substituting the momentum equations into the continuity equation, the pressure equation is derived. The pressure equation is then solved for static pressure. Finally, the energy equation is solved for static temperature.

In solving the three governing equations, FLOTRAN uses the iterative procedure. It is intended to reduce the amount of required computing time (CPU) as well as the amount of computer memory (RAM). To do this, FLOTRAN uses three iterative solvers: the Tri-Diagonal Matrix Algorithm (TDMA), the Conjugate Residual (CR) and the Conjugate Gradient (CG). In this thesis, the last iterative method is used. The CG iterative solver is derived for incompressible flow and provides the results faster. This can be done by considering only non-zero elements in the matrices.

In brief, the numerical calculation can be summarized as follows:

1. Generate initial guess for velocity field;

2. Calculate the coefficients for velocity solution;

3. Apply velocity boundary conditions;

4. Solve momentum equations with guessed pressure sequentially;

5. Calculate the coefficients for pressure solution;

6. Apply pressure boundary conditions;

7. Solve the pressure equation;

8. Update velocities;

9. Solve energy equation for static temperature; and

10. Update fluid properties.

5.1.5 Data Requirement

From the above description, solution variables obtained from discretized equations are velocities, static pressure and static temperature. These three dependent variables are the output of the model. However, the main concern of this research is the varied density flow. Therefore, the densities for the entire domain are then calculated using Equation (5.1).

Obtaining the discretized equations does not mean that the solution will be obtained. In order to have a complete model, the boundary conditions are needed. These boundary conditions must be considered as the most important component in the development of the complete model. Also, boundary conditions present the greatest difficulty in obtaining a meaningful solution. Generally, there are three types of boundary conditions: the inflow boundary condition, the wall boundary condition and the outflow boundary condition.

The inflow boundary condition consists of prescribed velocities, pressure or temperature. The dependent variables used are those for which there are known values. In this study, velocity and temperature are specified at the inflow boundary. This means that velocity and temperature at the freshwater boundary (left hand side) must be known in advance.

The wall boundary condition is sometimes referred to as the "no slip" boundary. The impervious layer is one example of this type of boundary condition. In this case, the wall boundary condition is at the bottom layer. As

usual, velocity in all directions must be equal to zero. Therefore, the input data for this type of boundary are zero velocities.

The outflow boundary condition can be specified for all three dependent variables. However, in the case of incompressible flow zero pressure is most commonly specified at the outflow boundary. To determine the size of the outflow boundary in the saltwater front, trial and error procedure is carried out.

In most cases the three boundary conditions discussed above are sufficient in order to obtain a solution. Seawater intrusion, discussed in this thesis, is considered for an unconfined aquifer only. Therefore, the phreatic surface boundary must be known. Clearly, the phreatic surface boundary is at the top boundary. It is assumed that the drawdown of the water table in the freshwater region is relatively constant. Hence, specifying zero velocity in the y-direction is the last input data required.

Besides the input boundary conditions, the properties of fluid and the aquifer characteristics are also required. These data are given in Table 5.1 in section 5.1.1.

5.1.6 Primary Difficulties

It is commonly known that using a computer program developed by others is not an easy task. Although theoretical information and user's manuals are available and read, the program may still not be completely understood. For the purpose of this research it was found that a number of important FLOTRAN commands concerning the flow through porous media, were obsolete. Unfortunately, there is no explanation as to which commands can replace the obsolete commands. One can not reach a developer of FLOTRAN without following the chain of command

- support staff, distributor and finally head office. The distributor and support staff, are also users of FLOTRAN. Dealing with each level takes a certain amount of time. If, at the lower level, no answer is obtained, the question may then be presented at the top level (main office in the US). At this level, the importance of any question asked must be proved. Strong arguments supported by output from FLOTRAN are required to convince the FLOTRAN developers to respond to the questions being asked. This takes even more time. Simply put, the version of FLOTRAN used in this thesis seems to have flaws and trying to find another way required much time and energy.

Another difficulty in using FLOTRAN for the research presented was that of limited computer resources. FLOTRAN has large RAM and CPU time requirements. The University of Manitoba Computer Services have identified that FLOTRAN combined with ANSYS represents the largest burden on their resources. The computer resources at the University of Manitoba are designed for multi-user purposes. When the same machine is used by many users, running FLOTRAN becomes a serious problem. Eventually, one machine was specially assigned for FLOTRAN users. This arrangement worked for approximately one month. Then other University needs took precedence and the machine was removed.

5.2 Subsurface Barrier Optimization

This section includes the description of the optimization procedure, the optimization problem formulation and input/output data requirements.

5.2.1 Optimization Procedure

In order to understand the optimization using the SUMT algorithm, several terms are described. Decision variables are independent variables that are subject to upper and lower bounds. State variables are dependent variables that are the function of the decision variables. Typically, state variables are response quantities that can also be constrained by upper and lower limits. The objective function is also a dependent variable and is the quantity to be minimized. As a dependent quantity, the objective function should be the function of the decision variables. A feasible solution refers to a set of decision variables that satisfy all specified constraints and provide the minimum value of the objective function. An infeasible solution is a set of decision variables that violates at least one of the constraints.

Optimization is carried out once the simulation of a fresh-saltwater interface without a subsurface barrier has been successfully completed. The objective of the optimization procedure is to obtain a subsurface barrier which minimizes construction cost as well as maximizes freshwater storage.

Due to the fact that construction cost data are not available, the width and construction material of the barrier, which affect the construction cost, are used as decision variables.

Before explaining the optimization procedure, the link of the optimization routine with ANSYS and FLOTRAN is presented in Figure 5.4.

The optimization procedure is integrated with the analysis of the fresh-saltwater interface.

The procedure includes the following steps:

- 1. Generation of a set of random decision values (width, material and location of the barrier) in order to obtain a sufficient number of combination sets. More combination sets will increase the chances of obtaining the optimal solution.
- 2. Calculation of the approximated values for the objective function and state variables. These approximations are calculated using the least square regression on the decision variables. A quadratic plus cross term fit is used to approximate the objective function and a quadratic fit is used to approximate the state variables.
- 3. Conversion of approximated objective function and approximated state variables to an unconstrained optimization problem. This conversion is performed to achieve a more efficient search for the optimum value. The conversion is performed using penalties for both approximations to take into account constraints on the decision variable and state variables.
- 4. Optimization of an unconstrained problem. The sequential unconstrained minimization technique (SUMT) is used. The minimum value of decision variables found by SUMT is called the predicted value or the predicted combination.
- 5. Calculation of the new combination with the best set of decision variables.

To sort a new set of decision variables, the criteria to be used are: Criterion (a):

$$\left|F_{current} - F_{best}\right| < T_F \tag{5.2}$$

where $F_{current}$ is the objective function value of the current iteration, F_{best} is the objective function value for the best combination of the decision variables, and T_f is the objective function tolerance level.

Criterion (b):

$$\left|F_{current} - F_{current-1}\right| < T_{F} \tag{5.3}$$

where $F_{current-I}$ is the objective function value from the previous iteration. Criterion (c):

$$\left|X_{n(current)} - X_{n(best)}\right| < T_n \tag{5.4}$$

where $X_{n(current)}$ is the current value of decision variables, $X_{n(best)}$ is the best value of decision variables, and T_n is the decision variable tolerance level. This is calculated using:

$$T_n = 0.01 * \left(\overline{X}_n - \underline{X}_n\right) \tag{5.5}$$

where \overline{X}_n and \underline{X}_n are the upper and lower bounds of the decision variables. Criterion (d):

$$\left|X_{n(current)} - X_{n(current-1)}\right| < T_n \tag{5.6}$$

where $X_{n(current-1)}$ is the value of the decision variables from the previous iteration. If one of these conditions is violated, the process continues by returning to step 2 until convergence is achieved.

5.2.2 Optimization Problem Formulation

In most cases concerning the management of groundwater coastal aquifers, modelers tend to use pumping rate as an objective function. When the pumping rate is the single objective function, the maximum extraction is the main goal. In other cases, groundwater level could be used as the objective function. If this the case, then minimum drawdown is the main concern. In this thesis neither pumping rate nor groundwater level is considered. Instead, the freshwater region is used as an objective function. Thus the main goal is to maximize the freshwater region or to minimize the saltwater region. To represent the freshwater region in the optimization formulation, the total density for the entire model is used. For example, if the domain of the model is occupied by saltwater, the total density is equal to 1025 times the number of nodes. Conversely, if the domain is occupied by freshwater, the total density would be 1002 times the number of nodes. In both cases, the number of nodes is constant. The optimum value is somewhere in between what the total density would be with a domain of saltwater and what the total density would be with a domain of freshwater. Therefore, the objective function is to minimize the total density for the whole domain of the model.

In the case of protecting freshwater zones from seawater intrusion using a subsurface barrier, the width of the subsurface barrier (wid), the location of the subsurface barrier from the coast line (loca), and the construction material of the subsurface barrier (c) are chosen as decision variables. Both wid and loca can not be zero or negative and have the upper and lower limits. Taking wid as equal to zero, really means there is no barrier in the fresh-saltwater interface model; in contrast, a very wide barrier results in a very costly solution.

In the same way, taking zero **loca**, or locating the barrier too close to the seawater front allows all the saline water to approach the freshwater area. On the other hand, locating the barrier far away from the saline wedge may decrease the benefits derived from constructing a subsurface barrier.

In the case of the first two decision variable one can see that the ideal solution is not always possible. This is also true for the third decision variable - construction material. The subsurface barrier can not be made of as porous material as the aquifer. This will reduce the main function of the barrier which is to delay saltwater intrusion. However, a fully impervious material for the subsurface barrier will increase the construction cost considerably. A trade-off among the three decision variables is required in order to obtain an optimal solution.

Experience with subsurface barriers using different types of materials is still limited. Consequently, information on construction costs related to various types of material is incomplete. It is believed that the cost of subsurface barriers made of fully impervious material is much higher than those made with less impervious materials. For instance, the cement grouting material and sheet piles that are used to construct fully impervious barriers are costly. Other materials, such as puddle clay and bentonite that can be used to construct less impervious barriers are less expensive. In brief, the cost of constructing the subsurface barrier may vary substantially depending upon the type of construction material used. Therefore, use of the type of material as a decision variable is justifiable.

5.2.3 Input/Output Data Requirements

The most important task in the optimization process within ANSYS is to mesh the domain parametrically. This means that using numbers in generating the mesh becomes invalid in the optimization process. Search for the optimal solution is an iterative process. Each iterative uses different values of decision variables. These different values may provide different grids which can sometimes terminate the calculation. The only way to keep FLOTRAN calculating is to mesh the domain using variables, not numbers. This has been explained in the mesh generation section. The requirements for optimization must be met in developing the grid.

Once the domain is appropriately discretized, input data for optimization are few. The first input is to determine the initial value of decision variables. This starting point is needed in the search for global optimum. The second input is to define decision variables (loca, wid, and c) including the lower and upper bounds on their values. The third input is to define the state variable (tnode2) including the lower and upper bounds. The fourth input is to define the objective function (densum) without the lower and upper bounds. Finally, the number of iterations needed to reach the expected optimal solution must be specified. Appendix I (Problem Set-up: Optimization) shows the input data required for optimization. Note that the preparation of input data for the optimization is only a small portion of the whole analysis.

The results of the optimization procedure are the output which reports the status of the solution. The solution may be infeasible and/or feasible. If all solutions are infeasible, a new input with a different starting point must be attempted. After obtaining some feasible solutions, the best solution can be identified. Using the best solution, the search can continue. The same procedure can be repeated until the best solution is obtained. Appendix 3 presents an

example of optimization results. All decision variables, state variables and objective function values are reported for every iteration.

Chapter 6

Results and Discussion

6.1 Results

The moving interface phenomena using the heat transfer analogy model has been used. As described in Chapter 5, the simulations have been carried out for unconfined coastal aquifers under steady state conditions. An unconfined aquifer or phreatic aquifer is considered because a subsurface barrier is suitable for this type of aquifer. Technological difficulties have been encountered during construction of the subsurface barrier in deeper aquifers (Todd, 1980). Two main reasons why the simulations were done under steady state conditions are: (a) to provide the expected solution; and (b) to spend less CPU time.

Running the program under transient conditions is more preferable than under steady state conditions. The transient condition is a closer representation of the real problem of seawater intrusion. However, due to the numerical complexity in deriving the discretization equation, the solution can not be obtained by the FLOTRAN program in an efficient manner. Furthermore, limited research has been done regarding the phreatic surface model. Another problem is the seepage face. It is ignored in many studies. Therefore, an approach under steady state conditions is a good approach to model the problem of saltwater intrusion. Under steady state conditions the FLOTRAN program provides the expected results.

CPU time is also taken into consideration. Running the program under transient conditions, takes much more CPU time than under steady state conditions. With the limited computer resources at the University of Manitoba, the transient condition is not a feasible option.

The problem of saltwater intrusion in an unconfined aquifer has typical difficulties with boundary conditions. The first difficulty is mentioned in the second paragraph of this section - that of the phreatic surface boundary. Because the phreatic boundary changes over time, it becomes a moving boundary. The problem with a moving boundary is still unresolved. The second difficulty is, again, related to a boundary. In the freshwater boundary, the specified load changes because of the fluctuation in the water table over time. Accordingly, the input of the loading system at that boundary must be changed to reflect this. This kind of difficulty has not been resolved by FLOTRAN or by other commercial software. Also, this typical problem has not been solved by most groundwater models. At this point, modeling saltwater intrusion in an unconfined aquifer under steady state conditions is still the best choice. Assuming constant free surface means that the loading system is not necessarily changed.

The simulation begins by matching the fresh-saltwater interface line with observed values of laboratory tests done by Sugio et al. (1987). This matching process, or calibration stage is intended to find approximated values of the aquifer characteristics in terms of the heat transfer analogy scheme. Theoretically, the parameters of Sugio's experimental work can be converted using Equation (4.5), (4.6) or (4.7). However, some required values in those equations are not available. For instance, dynamic viscosity is required but not known. Therefore, the dynamic viscosity was taken by an approximation to obtain a permeability

factor which is a function of dynamic viscosity. This approximation, of course, creates some errors. To avoid unnecessary errors, the calibration was carried out.

The result of the calibration is shown in Figure 6.1. The interface line in this figure was said to match Sugio's observed values, if three criteria were met. The first and second criteria refer to the position of the interface toe and upper interface toe, respectively. They are given by the first line of Table 6.1. These two numerical criteria must be visually matched with the shape of the freshsaltwater interface line of Sugio's work. Visual calibration as the third criterion for the shape of the interface line was carried out because the numerical results are not available.

The parameters obtained from the calibration were used to determine the shape of the interface line and the position of the interface toe and upper interface toe for the subsequent decrease of a steady state condition. The water table is gradually decreased from 0.403 meters to 0.386 meters. If the three criteria are not met, the parameters may be changed. Then the first run of calibration (water table at 0.403 meters) must be repeated. This trial and error method is repeated until three criteria are matched between calculated and observed values. Appendix 3 presents an example of calculated values for every iteration. This output is taken from the first run in calibration stages and indicates the progress of convergence every ten iterations. All dependent variables for all nodes can be printed. However, in this example, only temperatures are given.

Figures 6.1-6.8 at the end of this section display the results of finite element simulations using the computational fluid dynamic to investigate the shape of the fresh-saltwater interface and the location of its toe. As mentioned, Figure 6.1 depicts the fresh-saltwater interface at the freshwater level of 0.403 meters (see Table 6.1). This is equivalent to the simulation at time t=0 (the number in the brackets in the first column of Table 6.1) of Sugio's experiment. Figure 6.2

presents the interface when the freshwater level drops to 0.3970 meters. It is equivalent to the simulation at time t=30 minutes of Sugio's experiment. Figure 6.3 to Figure 6.8 are the interface lines at the following stages of decreasing freshwater level from 0.3970 meters to 0.3884 meters. These decreases are equivalent to the simulation from t=60 minutes to t=210 minutes of Sugio's experiment.

Table 6.1 Comparison of the location of the freshwater-saltwater interface toe.

		Interface Toe (m)***		Upper Interface Toe (m)****		
Freshwater	Present	Observed	Numerical	Present	Observed	Numerical
Level (m)	Study	Values*	Results**	Study	Values*	Results**
0.4030 [0]	0.83478	0.84	0.84	0.26713	0.273	0.273
0.3970 [30]	0.67857	0.68	0.68	0.28745	0.345	0.345
0.3938 [60]	0.53571	0.53	0.53	0.30893	0.352	0.352
0.3916 [90]	0.41071	0.41	0.40	0.30893	0.352	0.352
0.3905 [120]	0.32143	0.32	0.30	0.30893	0.352	0.352
0.3894 [150]	0.21429	0.21	0.19	0.33163	0.352	0.352
0.3887 [180]	0.14286	0.14	0.11	0.33163	0.352	0.352
0.3884 [210]	0.08928	0.07	0.03	0.33163	0.352	0.352

* Sand-Box physical model (Sugio et al., 1987)

** Numerical solution (Sugio et al., 1987)

*** Measured from seawater front (right hand side boundary).

**** Measured from seawater level (downstream top boundary).

It appears that the interface line forms a sharp angle with the bottom impervious boundary. This is valid for all runs at which the velocity of 6.575 m/sec. (freshwater level of 0.403 meters) and less, has been applied. In each step where the water table at the freshwater boundary was lowered from 0.403 meters to 0.386 meters, the shape of the interface did not change considerably. All figures demonstrate a concave interface line. In addition, the location of the upper interface toe is not located at the top of the phreatic surface boundary. Clearly, these findings indicate that there is outflow at the seawater boundary. This may

be used to explain the mass balance included in the formulation of the computational fluid dynamic. These results are nearly identical with those of Sugio et al. (1987). A comparison of results is presented in Table 6.1. This table shows the comparison of the location of the interface toe and the upper interface toe: (a) of this study; (b) observed values from the Sand-Box model (Sugio et al., 1987); and (c) numerical values obtained by Sugio et al.. The values in brackets in the first column indicate time increments in minutes taken by Sugio et al.. They are also a good match with observed values from the Sand-Box model performed by Sugio et al.

Table 6.2 summarizes the optimization results of the subsurface barrier analysis. It seems that the optimum solution has been reached with two combinations of decision variables. The first combination is: the location of the barrier at 0.54 meter from the seawater boundary, width of 0.056 meters; and 9.83 10^{+9} /m² permeability factor. This combination results in the total density for all nodes over the entire domain (**densum**) of 2119500 kg/m³ and the density at node number 2 which is the lowest point of the barrier structure at the freshwater side of 1013 kg/m³. The second combination is: the location at 0.89 meter; width of 0.042 meter; and permeability factor of 5.99 10^{+9} /m². Using this combination, the total density of 211700 kg/m³ and the density at node number 2 of 1012 kg/m³ were obtained. It is likely that the global optimum is in the vicinity of the second combination. Simply put, it is the point where total density shows the lowest value. This result provides the optimum solution based on the criteria developed for the optimization of a subsurface barrier.

Simulation Location Midth Q Matal Marg							
Number	11	LOCALION of Dommion	Width of Downlow	C.	Total	Temp.	
Number	~	OI BATTIET	OI Barrier	values	Density	Node 2	
1.	Initial Points	0,50 m	0.060 m	1.0e+10	2119900	280.17	
	Feasible Solutions	0.54 m	0.056 m	9.83e+9	2119500	281.29	
2.	Initial Points	0.30 m	0.020 m	1.2e+11	2127600	287.98	
	Feasible Solutions	all infeas	ible				
3.	Initial Points	0.55 m	0.035 m	1.9e+10	2118600	278 00	
	Feasible Solutions	all infeasible					
4.	Initial Points	035 m	0 030 m	3 90+9	2129000	287 98	
	Feasible Solutions	0 87 m	0.040126 m	6 570+9	2117100	207.50	
	I ONDIDIO DOINCIOND	0.89 m	0.040120 m	5 990+9	2117100	200.14	
		0.05 11	0.042134 1	3.33813	211/000	200.17	
5.	Initial Points	0.60 m	0.045 m	9.0e+9	2119800	287.76	
	Feasible Solutions	all infeas:	ible				
б.	Initial Points	0.42 m	0.040 m	9.0e+9	2123400	287.98	
	Feasible Solutions	all infeasible					
7.	Initial Points	0.50 m	0.060 m	1.2e+10	2119200	278 00	
	Feasible Solutions	0.87 m	0 040 m	6 57e+9	2117200	281 08	
		0.89 m	0 040 m	6 00e+9	2117100	282 28	
		0 54 m	0 056 m	9 830+9	2119600	202.20	
		0 8967	0.04128	6 030+9	2117000	201.75	
		0.0507	0.04120	0.05215	2117000	200.00	
8.	Initial Points	0.35 m	0.064 m	3.2e+10	2119600	278.00	
	Feasible Solutions	all infeasi	ible				
Constraint	s Upper hounds	0.00 m	0.070 m	0.00110		202 00	
conscrutin	Lover bounds	0.30 m	0.070 #	3.98710		203.00	
	HOWET DOULINS	0.30 10	0.012 W	1.0e+09		280.00	

Table 6.2 Results of Optimization

ANSYS 5.0 JUL 18 1994 11:17:16 PLOT NO. 1 NODAL SOLUTION NDEN SMN =1002 SMX = 1025ZV =1 DIST=0.68309 XF = 0.6YF =0.2015 CENTROID HIDDEN EDGE 1002 00000 1013 1025

ANSYS 5.0 4 JUL 18 1994 09:40:02 PLOT NO. 1 NODAL SOLUTION NDEN SMN =1002 SMX =1025

Figure 6.2 Position of the Interface Toe at Hf=0.397 m

· ·

ANSYS 5.0 1 JUL 18 1994 10:35:38 PLOT NO. 1 NODAL SOLUTION NDEN SMN =1002 SMX =1025 ZV =1 DIST=0.68309 XF =0.6 YF =0.2015 CENTROID HIDDEN EDGE 1002 1013 1. . 1025

ANSYS 5.0 JUL 18 1994 11:22:38 PLOT NO. 1 NODAL SOLUTION NDEN SMN = 1002SMX =1025 ZV =1 DIST=0.68309 XF = 0.6YF =0.2015 CENTROID HIDDEN EDGE 1002 1013 1025

ANSYS 5.0 JUL 18 1994 10:47:42 PLOT NO. 1 NODAL SOLUTION NDEN SMN = 1002SMX =1025 ZV =1 DIST=0.68309 XF = 0.6YF =0.2015 CENTROID HIDDEN EDGE 1002 1013 1025

ANSYS 5.0 JUL 18 1994 10:52:33 PLOT NO. 1 NODAL SOLUTION NDEN SMN =1002 SMX =1025 ZV =1 DIST=0.68309 XF =0.6 YF =0.2015 CENTROID HIDDEN EDGE 1002 1013 1025

Figure 6.7 Position of the Interfact Toe at Hf=0.3887 m.

ANSYS 5.0 JUL 18 1994 10:57:36 PLOT NO. 1 NODAL SOLUTION NDEN SMN =1002 SMX =1025 ZV =1DIST=0.68309 XF =0.6 YF =0.2015 CENTROID HIDDEN EDGE

1002 1013 1025

ANSYS 5.0 JUL 18 1994 11:01:41 PLOT NO. 1 NODAL SOLUTION NDEN SMN = 1002SMX =1025 ZV =1 DIST=0.68309 XF = 0.6YF =0.2015 CENTROID HIDDEN EDGE 1002 1013 1025

6.2 Discussion

The theory governing the sharp fresh-saltwater interface leads us to the conclusion that the shape of the interface curves inwards reaching the interface toe and forms a sharp angle with the impervious boundary (see Figures 3.3, 3.5, 3.6 and 3.7). The experiments conducted by Bear and Dagan (1964) and Sugio et al. (1987) offer clear evidence of the concave shape of the interface and the sharp angle intersecting the bottom of the impervious boundary, supporting the theory. Many studies which use the transition zone model show a convex interface and a wide angle or even perpendicular intersection with the impervious boundary. This research, which also assumes that the transition zone exists in the contact zone, provides a similar shape of the interface to the theory and experimental results. It means that the shape of the interface is concave and the angle with the impervious boundary is sharp.

The results of this research (Figure 6.1- Figure 6.8) can be evaluated by considering at least two points. First, spatial discretization, which is a major component in numerical modeling should be taken into account. It is widely known that adequately fine discretization will result in good calculated values. In contrast, coarse discretization will produce poor results. In the case of saltwater intrusion simulation, Voss and Souza (1987) have addressed the discretization problem when using a transition zone approach. More specifically, the authors have concluded that an unrealistically fine discretization is required to guarantee accuracy and stability for a predominantly horizontal flow. It seems that it is impossible to obtain a successful simulation for this problem. Based on many simulations with several types of discretization, it can be concluded that Voss and Souza's conclusion is correct if the discretization used is homogeneous (i.e. the same density mesh from the bottom of the aquifer to the top, and from the

freshwater to saltwater boundaries). At the beginning of the simulations, a homogeneous grid (2324 nodes and 2100 elements) has been used. The results indicated that the interface shape is not different from previous work, but is, perhaps more convex. Of course, by using a coarser grid, a poorer shape may be obtained. However, the proper grid changes the results significantly. The proper grid is the one with finer mesh in the lower part of the domain and coarser mesh in the upper part. This grid, although having fewer nodes and elements, provides a much better fresh-saltwater interface. The improvement of the shape of the interface and its contact angle to the impervious boundary, is not the only advantage of using the proper grid. The proper grid helps to provide convergence (less iterations). This grid has been suggested by Herbert et al. (1988). In their simulations, three types of grid were used: coarse grid, fine grid and finer grid. All grids had the same pattern; finer at the bottom and coarser at the top of the model domain. Furthermore, they treated the finer grid with higher density mesh in both the freshwater and saltwater boundaries. This indicates that they paid much attention to generating the mesh in order to get better results. A homogeneous grid provides good results if the loads are also homogeneous. Otherwise, another approach must be used.

The application of imaginary nodes in generating the mesh provides good results. This has also been explored in evaluating the effect of discretization on the numerical calculations. The imaginary nodes may eliminate the difficulty of calculating the dependent variable at the nearest boundaries. It is important to note that Sugio et al. (1987) did not use as fine a grid as the one used in the present research. However, the results match the observed values of the Sand-Box model. In other words, the shape of the interface is concave and the angle with the impervious boundary is sharp. One possible explanation for this result is the use of imaginary nodes in their simulation. Additional elements at the impervious

boundary may eliminate the effect of the wide angle on the shape of the interface. Therefore, adding virtual elements at the bottom of the impervious boundary is another way to overcome unrealistically fine discretization problems as suggested by Voss and Souza.

This research has used the proper grid. A gradation of the mesh from the bottom to the top has been made. The ratio of bottom ΔY and top ΔY of 1:7 is sufficient. The ratio of 1:6 will lead to the wide angle of the interface line to the impervious boundary. Using a bigger ratio than 1:7 will result in a coarser grid at the top boundary. It will then provide poor estimation on the upper interface toe. The deviation of the upper interface toe from observed values can be clearly seen after running all simulations. Upper interface toes in several simulations have the same value. This is, of course, due to the coarser grid at the top boundary.

Second, the value of fluid conductivity used can affect how wide the contact zone between freshwater and saltwater is going to be. The basic assumption in that the contact zone can be derived from the fluid conductivity term. This term behaves as a hydrodynamic dispersion in the original formulation of groundwater flow and a solute transport system. Taking a very small value for the fluid conductivity, but non zero, means the hydrodynamic dispersion is neglected. Thus, it leads to the sharp interface model. This research uses the small value of 0.000611 for fluid conductivity. On the other hand, taking a higher value for fluid conductivity provides the transition zone model. This is nicely illustrated in Figure 6.9 which shows the change of density from freshwater (p $f=1002 \text{ kg/m}^3$) to saltwater ($\rho_s=1025 \text{ kg/m}^3$). The value of fluid conductivity of 0.611 is taken. It can be seen from this figure that a higher value of fluid conductivity will affect the shape of the interface line. The interface is still concave close to the seawater density. However, this shape changes to convex for lower density (close to the freshwater boundary).

ANSYS 5.0 4 JUL 13 1994 11:31:06 PLOT NO. 1 NODAL SOLUTION NDEN SMN =1002 SMX =1025 ZV =1 DIST=0.68309 XF =0.6 YF =0.2015 CENTROID HIDDEN EDGE 1002 1005 1007 1010 1012 1015 1017 1020 1022 1025

The implications of these findings are important for groundwater use management policy. The different shape of the interface leads to a different management policy. This is due to the fact that the convex interface tends to come close to the water table at the top of phreatic boundary, while the concave interface is a fair distance away from the water table. For example, in the case of the convex interface, a certain pumping rate may be applied to avoid pumping brackish water. This rate is less than the rate would be if the concave interface were applied. The real interface is indeed a concave curve and is a fair distance from the water table. This concave interface has been proved by several experimental research studies. Therefore, the pumping rate as an output of the management policy is much higher for a concave interface than a convex interface. Eventually, this will affect the overall system of groundwater management.

The implications of these findings become worse over time. Once the convex interface is obtained at time t=0 or the initial simulation, a more convex interface will be obtained at time $t\neq 0$ or at later time steps. This research indicates that implication. Before getting concave interfaces, the majority of the results are convex interfaces. The interfaces are more convex when the freshwater level is lowered. When it comes to the lower level (or lower velocity), the whole domain of the model becomes salty water.

The present study has not considered the existence of pumping wells in the freshwater zone. Under real conditions, the reduction of velocity at the freshwater boundary is caused by a gradual drop in the water table. The change in the water table occurs in response to the pumping of water from the aquifers. In addition, this simulation is valid only under steady state conditions. Although the simulations under steady state conditions have shown satisfactory results, it is still important to do similar simulations under transient conditions. These transient conditions are the real phenomena of the movement of seawater in

coastal aquifers. However, running the simulations under transient conditions requires a higher capability of computer resources and presents several difficulties which, at present, remained unsolved.

If the optimization formulation is applied to Sugio's problem, it will lead to: (1) the location of the subsurface barrier at less than 0.4 meters from the seawater front; and (2) the width of the barrier being smaller than 0.05 meters. As a matter of fact, the findings contradict these two conclusions. The location of the barrier is not close to the seawater boundary and the barrier is wider than 0.05 meters (see Table 6.2). Table 6.2 shows that with a number of initial combination points, the feasible solutions seem to approach **loca=**0.89 meters and **wid=**0.065 meters. Using that combination, the total density of the entire domain is minimum density (**densum=**211900 kg/m³). Several combinations provide the value of total density less than 211900 kg/m³ but a higher density at node number 2 (above 1012.5 kg/m³). This means that there is saltwater passing through the subsurface barrier. In this study, such combinations are considered as infeasible solutions.

There are several reasons why the optimal solution falls into an unexpected region. First, considering the properties of the barrier as a decision variable affects the optimal solution. The result will be quite different if only two decision variables (the location and width of the barrier) are considered. Most probably, the optimum solution will be in the expected location. Another possible explanation is that the feasible values for the barrier material vary widely. Consequently, the optimal solution also varies widely. Using the state variable at node number 2 for 1010 - 1012.5 kg/m³ has a particular consequence too. It means that saltwater with the maximum density of 1012.5 kg/m³ may not pass through the barrier (see Figure 6.10). The purpose of this state variable is to reduce the effort needed to remove intruded water from behind the barrier. Also, it is used to account for the width of the barrier in the optimization process.

Without setting the state variable at node 2, the impervious barrier would be the optimal solution. The optimal solution tends to go to the minimum total density i.e. no saltwater going through the barrier. For various reasons, letting the saltwater pass through the barrier is not acceptable.

One implication of allowing seawater to pass through the barrier (in this case, the passing node is node number 2) is the necessity of pumping saltwater from behind the barrier. Certainly, this is an additional task to be dealt with in the management of coastal aquifers. If intruding seawater can not be moved back, it may increase further. Eventually, it may threaten the production wells in the freshwater region which are initially to be protected.

It is also important to note that simulations done by Sugio et al. use different values of some variables. In their study, the density of saltwater is 1030 kg/m³ and the initial water levels at both sides of boundaries are not the same as they would be without a subsurface barrier. This simulation uses the same values of variables for both cases (with and without a subsurface barrier). Therefore, the expected results are not obtained.

Running the model under steady state conditions is the limitation of this research. Under steady state conditions, it is difficult to simulate the moving back of intruded seawater to the initial position. It is possible, of course, to do such simulation under unsteady state or transient conditions. Again, however, simulation under transient condition presents some difficulties which remain unsolved. It is believed that future simulation should employ transient flow including the existence of pumping wells.

ANSYS 5.0 4 JUN 15 1994 09:37:33 PLOT NO. 1 NODAL SOLUTION NDEN SMN =1002 SMX =1025 1002 1005 1007 1010 1012 1015 1017 1020 1022 1025

Chapter 7

Conclusions and Future Work

This chapter presents the conclusions of this study concerning the optimization of design and location of a subsurface barrier for saltwater intrusion control. Recommendations for future work are also presented.

7.1 Conclusions

The conclusions that can be drawn from this present study are:

- 1. A system of the Navier-Stokes, continuity, and energy transport equations in the primitive form is more appropriate for modeling the fresh-saltwater interface phenomena than a coupled groundwater flow and solute transport models.
- 2. For steady state problems, the two-dimensional fresh-saltwater interface model using a computational fluid dynamic yields numerical results that are in good agreement with results obtained from the laboratory Sand-Box model.
- 3. Generating higher density mesh in the lower portion of model domain leads to reliable and reasonable fresh-saltwater interface estimates. On the other hand, the homogeneous discretization over the domain of the model results in a poor shape of the fresh-saltwater interface.

- 4. The fluid conductivity in the computational fluid dynamic can be used to examine the sharp interface and the transition zone models.
- 5. The optimum width, location and material to create a subsurface barrier can be obtained using the Sequential Unconstrained Optimization Technique. Therefore, an effective control of saltwater intrusion problems may be obtained.

7.2 Future Work

This work can be used as an initial step to conduct further studies. A better understanding of the phenomena of aquifer responses to excessive groundwater pumping is hoped to be reached. Eventually, this will lead to efficient and effective control of coastal aquifers.

In future the following three tasks should be addressed:

- 1. The simulation of the fresh-saltwater interface under a steady state using the computational fluid dynamic model provides good results. This model can be used to assess the intrusion problems facing the exploitation of groundwater resources. The study may be extended to address transient condition to examine the effect of re-establishment of the freshwater level on the seawater wedge behind a subsurface barrier. Such a study would be very useful in developing better criteria for optimization.
- 2. The relationship between density and temperature has long been accepted. It is known that higher densities correspond to higher temperatures. This relationship is valid only for a single fluid, not for two different fluids. The application of this model to real coastal aquifers will open opportunities to relate density to temperature in two different fluids.

3. The application of the present research for seawater intrusion control is possible in narrow groundwater basins. In the case of alluvial fan basins, the crest length of the subsurface barrier is quite long. It also has no impervious boundary parallel to the flow so that a two-dimensional model can no longer be used. A three-dimensional simulation of the fresh-saltwater intrusion model will be a valuable tool to use in future research.

Bibliography

- [1] Aiba, M. 1983. Irrigation Water Resources Development Project by Groundwater Storage Dam. Civil Engineering in Japan. 22: 152-163.
- [2] American Society of Civil Engineers Manuals and Reports on Engineering Practice No. 40. 1987. Ground Water Management.
- [3] ANSYS. 1992. User's Manual. Revision 5.0. Vol. 1: Procedures. Swanson Analysis Systems, Inc. Houston, PA
- [4] ANSYS. 1992. User's Manual. Revision 5.0. Vol. 2: Commands. Swanson Analysis Systems, Inc. Houston, PA
- [5] ANSYS. 1992. User's Manual. Revision 5.0. Vol. 3: Elements . Swanson Analysis Systems, Inc. Houston, PA
- [6] ANSYS. 1992. User's Manual. Revision 5.0. Vol. 4: Theory. Swanson Analysis Systems, Inc. Houston, PA.
- [7] Asano, T. 1985. Artificial Recharge of Groundwater, (Butterworth, England).

- [8] Bear, J. 1979. *Hydraulics of Groundwater*, (Mc Graw Hill, New York).
- [9] Bear, J. & Dagan, G. 1964. Moving Interface in Coastal Aquifers. J. Hydraulics Division, ASCE 90: 193-216.
- [10] Bearm, J. & Verruijt, A. 1992. Modeling Groundwater Flow and Pollution: Theory and Application of Transport in Porous Media. D. Reidel, Dordrecht, Holland.
- [11] Calvache, M.L. & Pulido-Bosch, A. 1991. Saltwater Intrusion into A Small Coastal Aquifer (Rio Verde, Almunecar, Southern Spain). J. Hydrology. 129: 195-213.
- [12] Contractor, D.N. & Srivastava, R. 1990. Simulation of Saltwater Intrusion in the Northern Guam Lens Using A Microcomputer. J. Hydrology. 118: 87-106.
- [13] Fiacco, A.V. & McCormick, G.P. 1968. Nonlinear Programming: SequentialUnconstrained Minimization Techniques, (John Wiley and Sons, New York).

[14] FLOTRAN. 1992. Release Notes. Compufio Inc., Houston, PA

[15] FLOTRAN. 1992. Theoretical Manual. Compufio Inc., Houston, PA.

[16] FLOTRAN. 1992. User's Manual. Compufio Inc., Houoston, PA.

- [17] Frind, E.O. 1982a. Seawater Intrusion in Continuous Coastal Aquifer-Aquitard Systems. Adv. Water Resour. 5:89-97.
- [18] Frind, E. O. 1982b. Simulation of Long-term Transient Density-Dependent Transport in Groundwater. Adv. Water Resour. 5: 73-88.
- [19] Herbert, A.W., Jackson, C.P. & Lever, D.A. 1988. Coupled Groundwater Flow and Solute Transport With Fluid Density Strongly Dependent Upon Concentration. J. Water Resource Research. 24: 1781-1795.
- [20] Hoddinghaus, T., Rubin, H., Daniels, H. & Rouve, G. 1992. On the Application of Multiphase Flow Models for the Simulation of Density Stratified Flow in Aquifers. Groundwater Symposium 268-274.
- [21] Huyakorn, P.S., Andersen, P.F., Mercer, J.W. & White, H.O. 1987.
 Saltwater Intrusion in Aquifers: Development and Testing of a Three-Dimensional Finite Element Model. J. Water Resource Research. 23: 293-312.
- [22] Huyakorn, P.S., Thomas, S.D. & Thomson, B.M. 1984. Techniques for Making Finite Elements Competitive in Modeling Flow in Variably Saturated Porous Media. J. Water Resource Research, 20: 1099-1115.
- [23] Huyakorn, P.S., Springer, E.P., Guvanasen, V. & Wadsworth, T.D. 1986. A Three-Dimensional Finite Element Model for Simulating Water Flow in Variably Saturated Porous Media. J. Water Resource Research, 22: 1790-1808.

- [24] Idelchik, I.E. 1986. Handbook of Hydraulic Resistance, (Hemisphere, New York).
- [25] Lee, C.H. & Cheng, R.T. 1974. On Seawater Encroachment in Coastal Aquifers. J. Water Resource Research, 10: 1039-1043.
- [26] Liu, P.L.-F, Cheng, A.H.-D, Ligget, J.A. & Lee, J.H. 1981. Boundary Integral Equation Solutions at Moving Interface Between Two Fluids in Porous Media. J. Water Resource Research, 17: 1445-1452.
- [27] Mercer, J.W., Larson, S.P. & Faust, C.R. 1980. Simulation of Salt-Water Interface Motion. J. Ground Water, 18: 374-385.
- [28] Patankar, S.V. 1980. Numerical Heat Transfer and Fluid Flow, (Hemisphere, New York).
- [29] Pinder, G.F. & Page, R.H. 1970. A Numerical Technique for Calculating the Transient Position of the Saltwater Front. J. Water Resource Research, 6: 875-880.
- [30] Rubin, H. 1983. On the Application of the Boundary Layer Approximation for the Simulation of Density Stratified Flows in Aquifers. Adv. Water Resour. 6: 96-105.
- [31] Rumer, R.R., Drinker, P.A. 1966. Resistance to Laminar Flow Through Porous Media. J. Hydraulics Division, ASCE, 92:155-163.

- [32] Segol, G., Pinder, G.F. & Gray, W.G. 1975. A Galerkin Finite Element Technique for Calculating the Transient Position of the Saltwater Front. J. Water Resource Research, 11: 343-347.
- [33] Shamir, V. & Bear, J. 1984. Optimal Annual Operation of a Coastal Aquifer.J. Water Resource Research, 20: 435-444.
- [34] Shamir, V. & Dagan, G. 1971. Motion of the Seawater Interface in Coastal Aquifers: A Numerical Solution. J. Water Resource Research, 7: 644-657.
- [35] Sugio, A. & Mohamed, A.R. 1992. Protection of Coastal Aquifer from Saltwater Intrusion by Artificial Recharge. The 12th Sea Water Intrusion Meeting.
- [36] Sugio, S. & Nakada, K. 1992. Abrupt Interface Model of Seawater in Coastal Aquifer. International Conference on Interaction of Computational Methods and Measurements in Hydraulics and Hydrology. Budapest, Hungary.
- [37] Sugio, S., Nakada, K. & Urish, D.W. 1987. Subsurface Seawater Intrusion Barrier Analysis. J. Hydraulic Engineering, ASCE 113: 767-779.
- [38] Taigbenu, A.E., Ligget, J.A. & Cheng, A.H. 1984. Boundary Integral Solution to Seawater Intrusion into Coastal Aquifers. J. Water Resource Research, 20: 1150-1158.

- [39] Todd, D.K. 1980. Groundwater Hydrology, (John Wiley & Sons, New York).
- [40] Volker, R.E. & Rushton, K.R. 1982. An Assessment of the Importance of Some Parameters for Seawater Intrusion in Aquifers and a Comparison of Dispersive and Sharp-Interface Modelling Approaches. J. Hydrology. 56: 239-250.
- [41] Voss, C.I. & Souza, W.R. 1987. Variable Density Flow and Solute Transport Simulation of Regional Aquifers Containing a Narrow Freshwater-Saltwater Transition Zone. J. Water Resource Research. 23: 1851-1866.
- [42] Willis, R. & Finney, B.A. 1987. Planning Model for Optimal Control of Saltwater Intrusion. J. Water Resources Planning and Management. 114: 163-178.
- [43] Willis, R. & Yeh, W.G. 1987. Groundwater Systems Planning and Management, (Prentice-Hall, New Jersey).
- [44] Wilson, J.L. & Costa, A.D. 1982. Finite Element Simulation of a Saltwater/Freshwater Interface With Indirect Toe Tracking. J. Water Resource Research. 18: 1069-1080.

APPENDIX 1

PROBLEM SET-UP: Freshwater-saltwater Interface

/BATCH /COM,ANSYS REVISION 5.0 24 09:58:24 11/17/1993 /show,x11 !/menu,on /FILNAM,velc0 /title,Position of the Interface Toe at Level=0.403 m Without Subsurface Barrier /UNITS,SI loc=.4wid=.05/PREP7 ETYPE STAT ET, 1,55 R,2,1,1,0,.758e+9,0,0 RMORE,1 R,3,1,1,0,.758E+9,0,0 RMORE,1 R,4,1,1,0,.758e+9,0.0 RMORE,1 hf=.403 hs=.381 lbas=1.20lfre=lbas-(loc+wid) k,1,0,0 k,2,lfre,0 k,3,(lfre+wid),0K,4,1bas,0 k,5,lbas,hs K,6,(lfre+wid),(hs+loc*(hf-hs)/lbas) k,7,lfre,(hs+(loc+wid)*(hf-hs)/lbas) k,8,0,hf 1,1,2 1,2,3 1,3,4 1,4,5 1,5,6 1,3,6 1,6,7 1,2,7 1,7,8 1,1,8 nd=30 rd=5

ld=.018 lz=.018 a,1,2,7,8 a,2,3,6,7 a,3,4,5,6 lesize,1,ld lesize,8,,,nd,rd lesize,9,1d lesize,10,,,nd,rd lesise,2,1z lesize,6,,,nd,rd lesize,7,1z lesize,3,ld lesize,4,,,nd,rd lesize,5,1d eshape,2 real,2 amesh,1 real,3 amesh,2 real,4 amesh,3 aglue,all DOF,VX,VY,,PRES,TEMP nummrg,node numcmp,node numcmp,elem asel,all lsel,all ksel,all esel,all nsel,all lsel,s,loc,x,0.0 nsll,s,1 d,all,vx,6.9666e-05 d,all,vy,0.0 d,all,temp,278 nsel,s,loc,x,lbas nsel,r,loc,y,0.0,(.052333) d,all,vy,0.0 d,all,temp,288 nall lsel,s,loc,y,0 nsll,s,1 d,all,vx,0

d,all,vy,0 nall nsel,s,loc,x,lbas nsel,r,loc,y,(.052333),hs d,all,pres,0 nall ksel,s,,,5,8,1 lslk,s,1 nsll,s,1 d,all,vy,0.0 nall FLDA,1S,JB,vel0 FLDA,1S,IT,112 FLDA,1S,OF,10 FLDA,1S,RS,f FLDA,1S,FL,T FLDA,1S,TH,T FLDA,1S,PT,t FLDA,1s,pv,t FLDA,1s,pp,t FLDA,2S,PD,f FLDA,2S,FL,LIQUID FLDA,2S,VD,T FLDA,2S,VV,f FLDA,2P,D0,1025 FLDA,2P,D1,288 FLDA,2P,D2,2.3 FLDA,2P,C0,.000611 FLDA,2P,V0,1.518e-3 FLDA,2P,CP,4186 FLDA,2P,SR,1.0001 flda,2s,np,101325 FLDA,2S,NT,288 FLDA,2S,at,0 FLDA,2S,AY,-9.8066 FLDA,4S,AV,.001 FLDA,4S,RU,.308 flda,4s,rv,.308 FLDA,4S,RP,.308 flda,5s,cg,t flda,1s,pu,t flda,6s,ts,f flda,6s,dt,10 flda,6s,nt,20 flda,6s,st,200

flda,6s,to,100 flda,6s,so,10 FLWRITE FLORUN,vel0 save,vel0,db finish /exit /eof

~

.

>

PROBLEM SET-UP: Optimization

/COM, ANSYS REVISION 5.0 24 09:58:24 07/17/1994 /show,x11 !/menu.on /FILNAM,file /title,Optimization with Subsurface Barrier /UNITS,SI loca=.54wid=.05/PREP7 ETYPE STAT ET, 1,55 R,2,1,1,0,.758e+9,0,0 RMORE,1 R,3,1,1,0,7e+9,0,0 RMORE,1 R,4,1,1,0,.758e+9,0.0 RMORE,1 rmore,loca,wid,c hf=.403 hs=.381 lbas=1.20 lfre=lbas-(loca+wid) k,1,0,0 k,2,1fre,0 k,3,(lfre+wid),0 K,4,1bas,0 k,5,lbas,hs K,6,(lfre+wid),(hs+loca*(hf-hs)/lbas) k,7,lfre,(hs+(loca+wid)*(hf-hs)/lbas) k,8,0,hf 1,1,2 1,2,3 1,3,4 1,4,5 1,5,6 1,3,6 1,6,7 1,2,7 1,7,8 1,1,8 nd=30 nz=10

rd=5 a,1,2,7,8 a,2,3,6,7 a,3,4,5,6 lesize,1,,,nd lesize,8,,,nd,rd lesize,9,,,nd lesize,10,,,nd,rd lesise,2,,,nz lesize,6,,,nd,rd lesize,7,,,nz lesize,3,,,nd lesize,4,,,nd,rd lesize,5,,,nd eshape,2 real,2 amesh,1 real,3 amesh,2 real,4 amesh,3 aglue,all DOF,VX,VY,,PRES,TEMP nummrg,node numcmp,node numcmp,elem asel,all lsel,all ksel,all esel,all nsel,all lsel,s,loc,x,0.0 nsll,s,1 d,all,vx,2.3e-05 d,all,vy,0.0 d,all,temp,278 nsel,s,loc,x,lbas nsel,r,loc,y,0.0,(.052333) d,all,vy,0.0 d,all,temp,288 nall lsel,s,loc,y,0 nsll,s,1 d,all,vx,0 d,all,vy,0

nall nsel,s,loc,x,lbas nsel,r,loc,y,(.052333),hs d,all,pres,0 nall ksel,s,,,5,8,1 lslk,s,1 nsll,s,1 d,all,vy,0.0 nall FLDA,1S,JB,optimz FLDA,1S,IT,141 FLDA,1S,OF,10 FLDA,1S,RS,f FLDA,1S,FL,T FLDA,1S,TH,T FLDA,1S,PT,f FLDA,1s,pv,f FLDA,1s,pp,f FLDA,2S,PD,f FLDA,2S,FL,LIQUID FLDA,2S,VD,T FLDA,2S,VV,f FLDA,2P,D0,1025 FLDA,2P,D1,288 FLDA,2P,D2,2.3 FLDA,2P,C0,.000611 FLDA,2P,V0,1.518e-3 FLDA,2P,CP,4186 FLDA,2P,SR,1.0001 flda,2s,np,101325 FLDA,2S,NT,288 FLDA,2S,at,0 FLDA,2S,AY,-9.8066 FLDA,4S,AV,.001 FLDA,4S,RU,.308 flda,4s,rv,.308 FLDA,4S,RP,.308 flda,5s,cg,t flda,1s,pu,f flda,6s,ts,f flda,6s,dt,10 flda,6s,nt,20 flda,6s,st,200 flda,6s,to,100

flda,6s,so,10 FLWRITE FLORUN, optimz save,optimz,db finish /post1 flread *get,tnode2,node,2,temp etable,delem,nden ssum *get,densum,ssum,,item,delem finish /opt opvar,loca,dv,0.3,.90 opvar,wid,dv,.015,.07 opvar,tnode2,sv,280,283 opvar,densum,obj,,,0.1 opfile opcopy run loca=.54 wid=.035 run loca=.450 wid=.045 run loca=.44wid=.04 run oprun,40,,,12 finish /exit /eof

FLOTRAN Production Dynamic

Version 2.1a SUN 4 6/01/93

License No	040000
Licensee	WLW-DEMO
Expiration	7/31/94
Max Nodes	15000

Copyright (c) 1987,1988,1989,1990,1992,1993 Swanson Analysis Systems Inc, All Rights Reserved

This is the FLOTRAN (R) general purpose finite element computer program for fluid flow and heat transfer analysis. Neither Swanson Analysis Systems, Inc. nor any distributor supplying this program assume any responsibility for the validity, accuracy, or applicability of any results obtained from the FLOTRAN (R) program. Users must verify their own results.

0

vel0.run vel0 06/13/94 22:23:20 ANSYS 5.0 24 Position of the Interface Toe at t=0 min. Without Subsurface Barrier vel.geom 06/13/94 22:23:23 GEOMETRY 2.0 ANSYS FLOPRE 2.1a Position of the Interface Toe at t=0 min. Without Subsurface Barrier vel0.bc 06/13/94 22:23:23 BOUNDARY-CONDITIONS 2.0 ANSYS FLOPRE 2.1a Position of the Interface Toe at t=0 min. Without Subsurface Barrier vel0.res

 RESULTS
 0
 ANSYS
 06/13/94
 22:23:23
 FLOPRE
 2.1a

 Position of the Interface Toe at t=0 min. Without Subsurface Barrier
 0
 ITERATIONS
 INITIAL DATA

1Position of the Interface Toe at t=0 min. Without Subsurface Barrier0FLOTRAN2.1aRUN file06/13/94 22:23:

	Problem v	el0		Restart Batch	F F
0Ana:	lysis Options Flow Solution Turbulent Compressible Thermal Swirl Transient	T F T F F	т	Yermination Criteria Flow Convergence Energy Convergence Maximum Iterations Output Frequency	0.00E+00 0.00E+00 112 10
OTran	nsient Solution Contr Number of Time Steps Time Step Size Solution Stop Time	ol 1.00 2.00	20 000E+01 000E+02	Output Time Incremen Output Step Incremen	t 1.0000E+02 t 10
0Debu	ig Output Print Residuals Solution Error Est.	F	0	Debug Print Level	0
0Semi	-direct Solution Con Pressure Energy	trol T F	Iterations 300 300	Convergence 1.00000E-07 1.00000E-05	
00pe1	cating Conditions Reference Pressure Ambient Temperature Stagnation Temperatu	1.01 r	F 132E+05 0.00 293.00	luid Property Informati Fluid Heat Capacity Ratio CP/CV Gas Constant	on LIQUID 4.1860E+03 1.0001E+00 3.4324E-01

Nominal Temperature Nominal Density Nominal Viscosity Nominal Conductivity OVariable Property Input C	288.00 1.0250E+03 1.5180E-03 6.1100E-04	Updat Varia Varia Varia	e Frequency ble Density ble Viscosit ble Conducti	1 T Y F vity F
Density Viscosity Conductivity	1.02500E+03 1.51800E-03 6.11000E-04	2.88000E+ 0.00000E+ 0.00000E+	02 2.30000 00 0.00000 00 0.00000	E+00 0.00000E+00 E+00 0.00000E+00 E+00 0.00000E+00
0Acceleration X component Y component Z component	0.0000E+00 -9.8066E+00 0.0000E+00			
1 Position of the Int OFLOTRAN 2.1a	erface Toe at RU	t=0 min. W: N file	ithout Subsu:	rface Barrier 06/13/94 22:23:
Variable Schmid	Rela: t # Under	xation Inertial	Quadrature Diff Src	TDMA Sweep Print
U Velocity 1.0 V Velocity 1.0 W Velocity 1.0 Pressure 0.0 Turb. Kin. Enrg. 1.0 Turb. Enrg. Diss. 1.3 Temperature 1.0 Density 0.0 Viscosity 0.0 Conductivity 0.0 Eff. Viscosity 0.0 Eff. Conductivity 0.0 Fotal Temperature 1.0 Artificial Viscosity 0 OTurbulence Inlet Paramete Turbulence Intensity	0 0.308 0 0.308 0 0.500 0 0.500 1.000E-02 rs 1.0000E-02	1.00E+15 1.00E+15 1.00E+15 1.00E+15 1.00E+15 1.00E+15 1.00E+20 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.00E+20 Effective Ratio	0 0 0 0 0 1 1 0 2 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 T 1 T 1 F 100 T 10 F 10 F 25 T 0 F 0 F 0 F 0 F 0 F 25 T 0 F 0 F 0 F 0 F 0 F 0 F 0 F 0 F
Length Scale Factor OTurbulence Constants CMu 0.090 Kappa 0.400	1.0000E-02 C1 C2	L.440 L.920	E A	9.000 26.000
0Rotational Terms Rotational Speed X 0.0000E+00 Y 0.0000E+00 Z 0.0000E+00		Rota X Y Z	tional Axis 0.0000E+C 0.0000E+C 0.0000E+C	Offset 00 00 00
OProperty Calculations Fo Density Viscosity Conductivity	orm (1 3.62600E+ 1 1.51800E- 1 6.11000E-	Coefficients -02 2.30000 -03 -04	: E+00 0.0000	0E+00
0Geometry :	2D Cartesian	(XY)		
ODistributed Resistance Pa: 0 Region Type K 101 1 0.0000E+ 102 1 0.0000E+ 103 1 0.0000E+ 1 Position of the Inte OFLOTRAN 2.1a ITER U-MOM V-MOM 1 0.000E+00 0.000E+00 2 6.190E-02 4.576E-03 3 4.173E-02 7.843E-03	rameters C C 7.5800E+C C 7.580	Dh 08 1.0000E 08 1.0000E 08 1.0000E 08 1.0000E 08 1.0000E 08 1.0000E 000E+00 4.96 088E-01 5.00 000E+00 4.96 000E+00 5.02	(a) +00 0.0000 +00 0.0000 +00 0.0000 thout Subsur ERG K 5E-04 0.000E 6E-04 0.000E	(b) 2E+00 1.0000E+00 2E+00 1.0000E+00 2E+00 1.0000E+00 2E+00 1.0000E+00 2E+00 1.000E+00 2E+00 0.000E+00 2E+00 0.000E+00 2E+

.

5 6 7 8 9 10	1.894E-02 1.3191 1.302E-02 1.5061 9.330E-03 1.6451 7.019E-03 1.7321 5.532E-03 1.7741 4.540E-03 1.7851	E-02 0.000E+00 E-02 0.000E+00 E-02 0.000E+00 E-02 0.000E+00 E-02 0.000E+00 E-02 0.000E+00	1.162E-0 7.805E-0 5.416E-0 4.009E-0 3.206E-0 2.766E-0	1 4.910E-04 2 4.843E-04 2 4.616E-04 2 4.444E-04 2 4.336E-04 2 4.276E-04	0.000E+00 0.000 0.000E+00 0.000 0.000E+00 0.000 0.000E+00 0.000 0.000E+00 0.000 0.000E+00 0.000	DE+00 DE+00 DE+00 DE+00 DE+00 DE+00
Err Sig OFLOTRA O V	U-MOM V-M(3.904E+03 3.4751 3.446E+03 2.2461 Lumped (Position of the N 2.1a Variable	Global Con M W-MOM C+03 0.000E+00 Convergence Cr: Interface Toe Summa Average	vergence PRESS 3.206E+0 5.418E+0 iteria: at t=0 m ary - Ite Mini	Statistics ENERG 5 3.035E-01 5 2.071E-01 0.733E+00 in. Without r 10 mum Nod	K EPSII 0.000E+00 0.000 0.000E+00 0.000 Subsurface Barn 06/13/9 e Maximum	LON DE+00 DE+00 rier 94 22:23: Node
U Velc V Velc W Velc Pressu Turb. Turb. Temper Densit Viscos Conduc Eff. C Total 0 0INLETS	ocity ocity ocity mre Kin. Enrg. Enrg. Diss. ature Sy Sity Sity Sity Solutivity Temperature SyOUTLETS	6.3401E-05 5.1469E-07 0.0000E+00 4.7382E+01 1.0210E-14 1.9456E-19 2.8652E+02 1.0219E+03 1.5180E-03 6.1099E-04 0.0000E+00 2.9300E+02	-1.6478 -2.8680 0.0000 0.0000 2.7800 1.0020 1.5180 6.1100 0.0000 2.9300	$\begin{array}{ccccccc} E-05 & 348\\ E-05 & 542\\ E+00 & 1\\ E+00 & 1450\\ E+00 & 1\\ E+02 & 1\\ E+02 & 1\\ E-03 & 1\\ E-03 & 1\\ E-04 & 1\\ E+00 & 1\\ E+00 & 1\\ E+02 & 1\\ \end{array}$	$\begin{array}{c} 1.5462E-04\\ 9.1749E-05\\ 0.0000E+00\\ 1.2113E+02\\ 7.2800E-13\\ 1.3872E-17\\ 2.8800E+02\\ 1.0250E+03\\ 1.5180E-03\\ 6.1100E-04\\ 0.0000E+00\\ 0.0000E+00\\ 2.9300E+02 \end{array}$	108 164 74 74 1577 1577 1 1 1 1 1 1 1 1
Region 1 2 OTotal	Node 1 X 116 0. 1458 1.20 Mass Flow In =	Y 0.537E-02 0.497E-01 0.27945E-01	z 1 0. 0.	Mass Flow 0.2794E-01 0.2748E-01	Pressure Bu 96.43 27 0.2238E-01 28	alk T 8.00 8.00
OTOtal OTotal OTotal	Energy Flow In Energy Flow Out	= 32520. = -33124.				
1 OFLOTRA ITER 11 12 13 14 15 16 17 18 19 20	Position of the N 2.1a U-MOM V-MC 3.851E-03 1.779E 3.372E-03 1.766E 3.042E-03 1.756E 2.820E-03 1.752E 2.687E-03 1.760E 2.624E-03 1.783E 2.611E-03 1.821E 2.629E-03 1.866E 2.668E-03 1.918E 2.719E-03 1.972E	Interface Toe Conve M W-MOM -02 0.000E+00 -02 0.000E+00 -02 0.000E+00 -02 0.000E+00 -02 0.000E+00 -02 0.000E+00 -02 0.000E+00 -02 0.000E+00 -02 0.000E+00	at t=0 m press 2.533E-0 2.417E-0 2.370E-0 2.356E-0 2.366E-0 2.385E-0 2.412E-0 2.438E-0 2.488E-0 2.488E-0	in. Without ENERG 2 4.256E-04 2 4.241E-04 2 4.244E-04 2 4.244E-04 2 4.433E-04 2 4.550E-04 2 4.713E-04 2 4.782E-04 2 4.970E-04 2 5.068E-04 2 5.085E-04	Subsurface Barr 06/13/9 K EPSII 0.000E+00 0.000 0.000E+00 0.000 0.000E+00 0.000 0.000E+00 0.000 0.000E+00 0.000 0.000E+00 0.000 0.000E+00 0.000 0.000E+00 0.000	tier 4 22:23: ON E+00 E+00 E+00 E+00 E+00 E+00 E+00 E+00 E+00 E+00 E+00 E+00 E+00
Err Sig 1 OFLOTRA 0 V	U-MOM V-MO 6.559E+01 4.443E 7.392E+01 3.921E Lumped C Position of the N 2.1a ariable	Global Conv M W-MOM +02 0.000E+00 +02 0.000E+00 onvergence Cri Interface Toe Summa Average	rergence & PRESS 1.885E+0: 2.677E+0: teria: at t=0 mi ry - Iten Minin	Statistics ENERG 3 3.666E-01 3 2.253E-01 0.449E+00 in. Without c 20 num Node	K EPSIL 0.000E+00 0.000 0.000E+00 0.000 Subsurface Barr 06/13/9 Maximum	ON E+00 ier 4 22:23: Node
U Velo V Velo W Velo Pressu Turb. Turb. Temper Densit	city city city re Kin. Enrg. Enrg. Diss. ature y	6.1466E-05 5.0329E-07 0.0000E+00 4.6527E+01 1.0210E-14 1.9456E-19 2.8523E+02 1.0190E+03	0.0000 -2.5757 0.0000 0.0000 0.0000 0.0000 2.7800 1.0020	E+00 1 E+05 862 E+00 1 S+00 1450 E+00 1 E+00 1 E+02 4 E+03 4	1.5574E-04 7.7110E-05 0.0000E+00 1.3759E+02 7.2800E-13 1.3872E-17 2.8800E+02 1.0250E+03	99 2118 1 74 74 74 1823 1780

Viscosity Conductivity Eff. Viscosity Eff. Conductivity Total Temperature 0 0INLETS/OUTLETS	1.5180E-03 6.1099E-04 0.0000E+00 0.0000E+00 2.9300E+02	1.5180E-03 6.1100E-04 0.0000E+00 0.0000E+00 2.9300E+02	1 1.5180E-03 1 6.1100E-04 1 0.0000E+00 1 0.0000E+00 1 2.9300E+02	1 1 1 1
Region Node 1 X 1 116 0. 2 1458 1.20	Y 0.537E-02 0.497E-01	Z Mass Flow 0. 0.2794E-0 00.2748E-0	Pressure Bul 98.39 278 0.2234E-01 288	.k T 1.00 1.00
OTotal Mass Flow In OTotal Mass Flow Out	= 0.27944E-01 = -0.27475E-01			
0Total Energy Flow In 0Total Energy Flow Ou	= 32519. t = -33123.			
1 Position of th OFLOTRAN 2.1a ITER U-MOM V- 21 2.775E-03 2.01 22 2.829E-03 2.05 23 2.879E-03 2.07 24 2.923E-03 2.09 25 2.961E-03 2.10 26 2.993E-03 2.10 27 3.021E-03 2.11 28 3.044E-03 2.11 29 3.063E-03 2.12	e Interface Toe Conv MOM W-MOM 8E-02 0.000E+00 2E-02 0.000E+00 0E-02 0.000E+00 0E-02 0.000E+00 7E-02 0.000E+00 2E-02 0.000E+00 8E-02 0.000E+00 0E-02 0.000E+00	at t=0 min. Withou rergence Monitor PRESS ENERG 2.506E-02 5.035E-(2.519E-02 5.004E-(2.537E-02 4.987E-(2.537E-02 4.980E-(2.539E-02 4.979E-(2.539E-02 4.981E-(2.543E-02 4.984E-(2.545E-02 4.994E-(2.547E-02 4.999E-(2.547E-02 4.999	t Subsurface Barri 06/13/94 K EPSILC 4 0.000E+00 0.000E 4 0.000E+00 0.000E	er 22:23: N +00 +00 +00 +00 +00 +00 +00 +00 +00
U-MOM V- Err 1.125E+01 3.73 Sig 4.191E+00 3.61	Global Con MOM W-MOM 2E+02 0.000E+00 8E+02 0.000E+00	vergence Statistics PRESS ENERG 1.821E+02 4.538E-0 1.664E+02 5.068E-0 1.664E+02 5.068E-0	K EPSILO 2 0.000E+00 0.000E 2 0.000E+00 0.000E	N ++00 ++00
1 Position of th OFLOTRAN 2.1a O Variable	e Interface Toe Summ Average	at t=0 min. Withou ary - Iter 30 Minimum No	t Subsurface Barri 06/13/94 de Maximum	er 22:23: Node
U Velocity V Velocity W Velocity Pressure Turb. Kin. Enrg. Turb. Enrg. Diss. Temperature Density Viscosity Conductivity Eff. Viscosity Eff. Conductivity Total Temperature 0 OINLETS/OUTLETS	6.0995E-05 5.0610E-07 0.0000E+00 4.5096E+01 1.0210E-14 1.9456E-19 2.8381E+02 1.0157E+03 1.5180E-03 6.1099E-04 0.0000E+00 2.9300E+02	0.0000E+00 -2.0728E-05 0.0000E+00 0.0000E+00 0.0000E+00 2.7800E+02 1.0020E+03 1.5180E-03 6.1100E-04 0.0000E+00 2.9300E+02	1 1.4683E-04 9 7.5731E-05 1 0.0000E+00 0 1.4264E+02 1 7.2800E-13 1 1.3872E-17 1 2.8800E+02 5 1.0250E+03 1 1.5180E-03 1 6.1100E-04 1 0.0000E+00 1 2.9300E+02	90 2118 1 74 74 1427 1478 1 1478 1 1 1 1
Region Node 1 X 1 116 0. 2 1458 1.20	¥ 0.537E-02 0.497E-01	Z Mass Flow 0. 0.2794E-01 00.2748E-01	Pressure Bul 99.10 278 0.2164E-01 288	k T .00 .00
OTotal Mass Flow In OTotal Mass Flow Out	= 0.27944E-01 = -0.27483E-01			
OTotal Energy Flow In OTotal Energy Flow Ou	= 32519. t = -33132.			
1 Position of the OFLOTRAN 2.1a ITER U-MOM V-1 31 3.089E-03 2.12: 32 3.096E-03 2.12: 33 3.101E-03 2.12: 34 3.101E-03 2.12:	E Interface Toe Conv. 40M W-MOM 2E-02 0.000E+00 3E-02 0.000E+00 1E-02 0.000E+00 5E-02 0.000E+00	at t=0 min. Withou ergence Monitor PRESS ENERG 2.549E-02 5.003E-0 2.551E-02 5.013E-0 2.553E-02 5.017E-0	t Subsurface Barri 06/13/94 K EPSILO 4 0.000E+00 0.000E 4 0.000E+00 0.000E 4 0.000E+00 0.000E	er 22:23: N +00 +00 +00 +00

35 3.100E-03 2.126 36 3.095E-03 2.126 37 3.087E-03 2.126 38 3.077E-03 2.125 39 3.065E-03 2.124 40 3.049E-03 2.122	E-02 0.000E+00 E-02 0.000E+00 E-02 0.000E+00 E-02 0.000E+00 E-02 0.000E+00 E-02 0.000E+00	2.553E-02 5.021E- 2.553E-02 5.024E- 2.553E-02 5.026E- 2.553E-02 5.027E- 2.551E-02 5.028E- 2.547E-02 5.026E-	04 0.000E+00 0.000E+00 04 0.000E+00 0.000E+00 04 0.000E+00 0.000E+00 04 0.000E+00 0.000E+00 04 0.000E+00 0.000E+00 04 0.000E+00 0.000E+00
U-MOM V-M Err 2.214E+00 2.163 Sig 1.336E+00 1.336 Lumped 1 Position of the OFLOTRAN 2.1a 0 Variable	Global Con OM W-MOM E+01 0.000E+00 E+01 0.000E+00 Convergence Cr Interface Toe Summ Average	vergence Statistic PRESS ENERG 2.774E+01 1.290E- 2.129E+01 6.511E- iteria: 0.205E+0 at t=0 min. Without ary - Iter 40 Minimum No	s K EPSILON 02 0.000E+00 0.000E+00 03 0.000E+00 0.000E+00 0 ut Subsurface Barrier 06/13/94 22:23: ode Maximum Node
U Velocity V Velocity W Velocity Pressure Turb. Kin. Enrg. Turb. Enrg. Diss. Temperature Density Viscosity Conductivity Eff. Viscosity Eff. Conductivity Total Temperature 0 0INLETS/OUTLETS	6.1024E-05 7.3103E-07 0.0000E+00 4.3741E+01 1.0210E-14 1.9456E-19 2.8239E+02 1.0124E+03 1.5180E-03 6.1099E-04 0.0000E+00 2.9300E+02	0.0000E+00 -1.7354E-05 0.0000E+00 0.0000E+00 0.0000E+00 2.7800E+02 1.0020E+03 2.15180E-03 6.1100E-04 0.0000E+00 2.9300E+02	1 1.4002E-04 80 81 6.8880E-05 2118 1 0.0000E+00 1 50 1.4461E+02 74 1 7.2800E-13 74 1 1.3872E-17 74 54 2.8800E+02 1427 37 1.0250E+03 1427 1 6.1100E-04 1 1 0.0000E+00 1 1 0.0000E+00 1 1 2.9300E+02 1
Region Node 1 X 1 116 0. 2 1458 1.20 OTotal Mass Flow In =	Y 0.537E-02 0.497E-01 0.27944E-01	Z Mass Flow 0. 0.2794E-0 00.2752E-0	Pressure Bulk T L 99.74 278.00 L 0.1828E-01 287.97
OTotal Mass Flow Out = OTotal Energy Flow In OTotal Energy Flow Out	-0.27524E-01 = 32519. = -33179.		
1 Position of the 0FLOTRAN 2.1a ITER U-MOM V-MA 41 3.032E-03 2.1191 42 3.013E-03 2.1161 43 2.992E-03 2.1121 44 2.969E-03 2.1071 45 2.944E-03 2.1001 46 2.917E-03 2.0921 47 2.889E-03 2.0831 48 2.860E-03 2.0721 49 2.830E-03 2.0581 50 2.800E-03 2.0421	Interface Toe Conv. DM W-MOM E-02 0.000E+00 E-02 0.000E+00 E-02 0.000E+00 E-02 0.000E+00 E-02 0.000E+00 E-02 0.000E+00 E-02 0.000E+00 E-02 0.000E+00 E-02 0.000E+00	at t=0 min. Withou ergence Monitor PRESS ENERG 2.546E-02 5.023E-(2.535E-02 5.017E-(2.535E-02 4.997E-(2.521E-02 4.982E-(2.510E-02 4.961E-(2.497E-02 4.935E-(2.481E-02 4.903E-(2.461E-02 4.863E-(2.438E-02 4.816E-(At Subsurface Barrier 06/13/94 22:23: K EPSILON 04 0.000E+00 0.000E+00 04 0.000E+00
U-MOM V-M0 Err 6.555E+00 1.509 Sig 1.324E+00 8.6571 Lumped 0 1 Position of the 0FLOTRAN 2.1a 0 Variable	Global Conv DM W-MOM E+02 0.000E+00 E+01 0.000E+00 Convergence Cr: Interface Toe Summa Average	vergence Statistics PRESS ENERG 2.486E+02 7.147E-(1.581E+02 5.344E-(iteria: 0.321E+0(at t=0 min. Withou ary - Iter 50 Minimum No	K EPSILON 22 0.000E+00 0.000E+00 22 0.000E+00 0.000E+00 34 15 Subsurface Barrier 06/13/94 22:23: 54 56 56 56 57 50 50 50 50 50 50 50 50 50 50 50 50 50
U Velocity V Velocity W Velocity Pressure Turb. Kin. Enrg. Turb. Enrg. Diss. Temperature Density	6.1296E-05 1.8073E-06 0.0000E+00 4.2410E+01 1.0210E-14 1.9456E-19 2.8099E+02 1.0092E+03	0.0000E+00 -1.0930E-05 181 0.0000E+00 0.0000E+00 145 0.0000E+00 0.0000E+00 2.7800E+02 38 1.0020E+03 35	1 1.3666E-04 1501 .4 4.3519E-05 2118 1 0.0000E+00 1 00 1.4550E+02 74 1 7.2800E-13 74 1 1.3872E-17 74 3 2.8800E+02 1427 4 1.0250E+03 1427

Viscos Conduc Eff. V Eff. C Total 0 0INLETS	sity ctivity Viscosity Conductivity Temperature S/OUTLETS	1.5180E-03 6.1099E-04 0.0000E+00 0.0000E+00 2.9300E+02	1.51 6.11 0.00 0.00 2.93	80E-03 00E-04 00E+00 00E+00 00E+02	1 1 1 1	1.5180E 6.1100E 0.0000E 0.0000E 2.9300E	-03 -04 +00 +00 +02	1 1 1 1
Region 1 2	n Node 1 X 116 0. 1458 1.20	Y 0.537E-02 0.497E-01	Z 0. 0.	Mass F] 0.27941 -0.27681	Low 5-01 5-01	Pressure 100.2 0.7580E-02	Bulk T 278.00 287.53	
OTotal OTotal	Mass Flow In = Mass Flow Out =	0.27944E-01 -0.27677E-01						
OTotal OTotal	Energy Flow In Energy Flow Out	= 32519. = -33312.						
1 0FLOTR# 51 52 53 54 55 56 57 58 59 60	Position of the AN 2.1a U-MOM V-MOU 2.769E-03 2.024E 2.737E-03 2.002E 2.703E-03 1.978E 2.667E-03 1.978E 2.68E-03 1.918E 2.587E-03 1.882E 2.544E-03 1.842E 2.497E-03 1.746E 2.394E-03 1.688E	Interface Toe Conv. W-MOM 02 0.000E+00 02 0.000E+00 02 0.000E+00 02 0.000E+00 02 0.000E+00 02 0.000E+00 02 0.000E+00 02 0.000E+00 02 0.000E+00	at t=0 PRES 2.411E 2.379E 2.343E 2.258E 2.210E 2.155E 2.096E 2.030E 1.952E	min. Wit Monitor S ENF -02 4.759 -02 4.693 -02 4.616 -02 4.528 -02 4.428 -02 4.316 -02 4.182 -02 4.025 -02 3.709	Ehout ERG BE-04 BE-04 BE-04 BE-04 BE-04 BE-04 BE-04 BE-04 BE-04 BE-04 BE-04	Subsurface 06/ K E 0.000E+00 0 0.000E+00 0 0.000E+00 0 0.000E+00 0 0.000E+00 0 0.000E+00 0 0.000E+00 0 0.000E+00 0 0.000E+00 0	Barrier 13/94 22 PSILON .000E+00 .000E+00 .000E+00 .000E+00 .000E+00 .000E+00 .000E+00 .000E+00	:23:
Err Sig 1	U-MOM V-MO 9.065E+00 5.699E- 1.658E+00 2.102E- Lumped Co Position of the 1	Global Conv 4 W-MOM 02 0.000E+00 02 0.000E+00 onvergence Cr: Interface Toe	vergence PRES 9.101E 2.979E iteria: at t=0	e Statist S ENE +02 2.865 +02 1.088 0.382E min. Wit	cics CRG SE-01 SE-01 C+00 Chout	K E 0.000E+00 0 0.000E+00 0 Subsurface 1	PSILON .000E+00 .000E+00 Barrier	
0FLOTRA 0 V	AN 2.1a Variable	Summa Average	ary - I Min	ter 60 nimum	Node	06/2 Maxin	13/94 22 mum 1	:23: Node
U Velc V Velc W Velc Fressu Turb. Turb. Temper Densit Viscos Conduc Eff. V Eff. C Total 0	boity boity boity lire Kin. Enrg. Enrg. Diss. cature Ey Sity bity bity bity bity bity conductivity Temperature E/OUTLETS	6.1769E-05 4.3312E-06 0.0000E+00 4.1069E+01 1.0210E-14 1.9456E-19 2.7979E+02 1.0064E+03 1.5180E-03 6.1099E-04 0.0000E+00 2.9300E+02	-1.73 -7.06 0.000 -1.68 0.000 2.780 1.000 1.518 6.110 0.000 2.930	51E-05 36E-06 00E+00 33E+00 00E+00 00E+02 20E+03 30E-03 00E-03 00E-04 00E+00 00E+00	1459 2117 1 1446 1 585 585 585 1 1 1 1 1	1.9320E 3.1355E 0.0000E 1.4576E 7.2800E 1.3872E 2.8800E 1.0250E 1.5180E 6.1100E 0.0000E 2.9300E	-04 149 -05 14 +00 -13 - -17 - +02 142 +03 142 -03 - 04 +00 +00 +02	50 73 74 74 74 27 1 1 1 1
Region 1 2	Node 1 X 116 0. 1458 1.20	¥ 0.537E-02 0.497E-01	Z 0. 0.	Mass F1 0.2794E -0.2799E	ow -01 -01	Pressure 100.3 0.5496E-03	Bulk T 278.00 285.64	
OTotal OTotal	Mass Flow In = Mass Flow Out = -	0.27944E-01 0.27993E-01						
OTotal OTotal	Energy Flow In = Energy Flow Out =	32519. -33470.						
1 0FLOTRA 1TER 61 62 63 64	Position of the I N 2.1a U-MOM V-MOM 2.339E-03 1.616E- 2.283E-03 1.531E- 2.229E-03 1.439E- 2.172E-03 1.361E-	interface Toe Conve W-MOM 02 0.000E+00 02 0.000E+00 02 0.000E+00 02 0.000E+00	at t=0 ergence PRESS 1.856E- 1.748E- 1.644E- 1.541E-	min. Wit Monitor 02 3.567 02 3.436 02 3.301 02 3.172	hout RG E-04 E-04 E-04 E-04	Subsurface H 06/1 K EH 0.000E+00 0. 0.000E+00 0. 0.000E+00 0. 0.000E+00 0.	Barrier 23/94 22: 25ILON 000E+00 000E+00 000E+00 000E+00	23:

. .

. 2

65 2.113E-03 3 66 2.049E-03 3 67 1.980E-03 3 68 1.908E-03 3 69 1.837E-03 3 70 1.768E-03 3	L.292E-02 0.000E+00 L.228E-02 0.000E+00 L.167E-02 0.000E+00 L.110E-02 0.000E+00 L.054E-02 0.000E+00 9.980E-03 0.000E+00	1.444E-02 3.036E-0 1.345E-02 2.919E-0 1.249E-02 2.773E-0 1.157E-02 2.627E-0 1.067E-02 2.532E-0 9.811E-03 2.356E-0	4 0.000E+00 0.000E+00					
U-MOM Err 1.033E+01 6 Sig 1.183E+00 1 Lun 1 Position of OFLOTRAN 2.1a 0 Variable	Global Con V-MOM W-MOM 5.924E+02 0.000E+00 .175E+02 0.000E+00 uped Convergence Cr the Interface Toe Summ Average	vergence Statistics PRESS ENERG 9.534E+02 1.816E-0 6.553E+01 1.030E-0 iteria: 0.377E+00 at t=0 min. Withou ary - Iter 70 Minimum No	K EPSILON 1 0.000E+00 0.000E+00 2 0.000E+00 0.000E+00 t Subsurface Barrier 06/13/94 22:23: de Maximum Node					
U Velocity V Velocity W Velocity Pressure Turb. Kin. Enrg. Turb. Enrg. Diss. Temperature Density Viscosity Conductivity Eff. Viscosity Eff. Conductivity Total Temperature 0 0INLETS/OUTLETS	$\begin{array}{c} 6.1974E-05\\ 6.8103E-06\\ 0.0000E+00\\ 4.0394E+01\\ 1.0210E-14\\ 1.9456E-19\\ 2.7923E+02\\ 1.0049E+03\\ 1.5180E-03\\ 6.1099E-04\\ 0.0000E+00\\ 2.9300E+02\\ \end{array}$	-6.3345E-05 145 -3.4385E-05 211 0.0000E+00 -8.3628E+00 143 0.0000E+00 0.0000E+00 2.7800E+02 76 1.0020E+03 76 1.5180E-03 6.1100E-04 0.0000E+00 2.9300E+02	9 3.0442E-04 1450 7 8.6118E-05 1476 1 0.0000E+00 1 7 1.4601E+02 74 1 7.2800E-13 74 1 1.3872E-17 74 0 2.8800E+02 1427 0 1.0250E+03 1427 1 1.5180E-03 1 1 6.1100E-04 1 1 0.0000E+00 1 2.9300E+02 1					
Region Node 1 X 1 116 0 2 1458 1.2 OTotal Mass Flow I	Y 0.537E-02 0 0.497E-01 n = 0.27944E-01	Z Mass Flow 0. 0.2794E-01 00.2815E-01	Pressure Bulk T 100.6 278.00 0.5945E-02 282.26					
OTotal Mass Flow C OTotal Energy Flow OTotal Energy Flow	ut = -0.28151E-01 T In = 32519. Out = -33262.							
1 Position of OFLOTRAN 2.1a ITER U-MOM 71 1.698E-03 9 72 1.627E-03 8 73 1.556E-03 8 74 1.482E-03 7 75 1.405E-03 7 75 1.405E-03 7 76 1.329E-03 7 77 1.254E-03 6 78 1.183E-03 5 80 1.053E-03 5	the Interface Toe Conve V-MOM W-MOM .463E-03 0.000E+00 .937E-03 0.000E+00 .957E-03 0.000E+00 .488E-03 0.000E+00 .057E-03 0.000E+00 .627E-03 0.000E+00 .225E-03 0.000E+00 .842E-03 0.000E+00	at t=0 min. Withou PRESS ENERG 8.992E-03 2.263E-0 8.227E-03 2.100E-0 0.956E-03 1.862E-0 6.258E-03 1.787E-0 5.640E-03 1.651E-0 5.091E-03 1.502E-0 4.597E-03 1.495E-0 3.915E-03 1.211E-0	t Subsurface Barrier 06/13/94 22:23: K EPSILON 4 0.000E+00 0.000E+00 4 0.000E+00 0.000E+00					
U-MOM Err 6.852E+00 2 Sig 3.337E-01 3 Lum	Global Conv V-MOM W-MOM .495E+02 0.000E+00 .141E+01 0.000E+00 ped Convergence Cri the Interface Toe	vergence Statistics PRESS ENERG 2.348E+02 2.446E-0 6.376E+01 5.172E-0 iteria: 0.309E+00 at t=0 min Withou	K EPSILON 2 0.000E+00 0.000E+00 3 0.000E+00 0.000E+00					
0 Variable	Average	ary - Iter 80 Minimum No	06/13/94 22:23: de Maximum Node					
U Velocity V Velocity W Velocity Pressure Turb. Kin. Enrg. Turb. Enrg. Diss. Temperature Density	6.2030E-05 7.6477E-06 0.0000E+00 4.0338E+01 1.0210E-14 1.9456E-19 2.7920E+02 1.0047E+03	-5.7925E-05 145 -3.0488E-05 211 0.0000E+00 -1.1418E+01 143 0.0000E+00 0.0000E+00 2.7800E+02 81 1.0020E+03 81	9 3.8678E-04 1450 7 1.3519E-04 1477 1 0.000E+00 1 3 1.4628E+02 74 1 7.2800E-13 74 1 1.3872E-17 74 3 2.8800E+02 1427 3 1.0250E+03 1427					
Viscos Conduc Eff. V Eff. C Total 0 0 0INLETS	ity tivity iscosity onductivity Temperature /OUTLETS	1.5180E-03 6.1099E-04 0.0000E+00 0.0000E+00 2.9300E+02	$1.51 \\ 6.11 \\ 0.00 \\ 0.00 \\ 2.93$	80E-03 00E-04 00E+00 00E+00 00E+02	1 1 1 1	1.5180E 6.1100E 0.0000E 0.0000E 2.9300E	-03 -04 +00 +00 +02	1 1 1 1
---	--	--	---	--	--	---	---	--
Region 1 2	Node 1 X 116 0. 1458 1.20	Y 0.537E-02 0.497E-01	Z 0. 0.	Mass F 0.2794 -0.2814	low E-01 E-01	Pressure 100.8 0.4856E-02	Bulk T 278.00 279.62	
OTotal I OTotal I	Mass Flow In = Mass Flow Out =	= 0.27944E-01 = -0.28144E-01						
OTotal 1 OTotal 1	Energy Flow In Energy Flow Out	= 32519. z = -32942.						
1 0FLOTRAN 0FLOTRAN ITER 81 9 82 9 83 8 84 8 85 5 86 7 86 7 88 6 89 0 90 9	Position of the N 2.1a U-MOM V-1 9.929E-04 5.144 9.374E-04 4.816 8.824E-04 4.529 8.320E-04 4.249 7.832E-04 3.949 7.411E-04 3.710 6.994E-04 3.504 6.597E-04 3.279 6.208E-04 3.033 5.835E-04 2.856	Interface Toe Conv 40M W-MOM 5E-03 0.000E+00 5E-03 0.000E+00	at t=0 ergence PRES 3.584E 3.027E 2.796E 2.796E 2.414E 2.254E 2.100E 1.958E 1.878E	min. Wi Monitor S EN -03 1.21 -03 1.13 -03 1.00 -03 8.98 -03 9.46 -03 8.72 -03 7.55 -03 7.55 -03 7.43 -03 6.83	thout ERG 1E-04 3E-04 9E-04 0E-05 3E-05 9E-05 4E-05 1E-05 0E-05 3E-05	Subsurface :	Barrier 13/94 22 PSILON .000E+00 .000E+00 .000E+00 .000E+00 .000E+00 .000E+00 .000E+00 .000E+00 .000E+00	:23:
Err 2 Sig 4	U-MOM V-1 2.335E+00 7.533 4.052E-01 1.398 Lumped	Global Con MOM W-MOM BE+01 0.000E+00 BE+01 0.000E+00 Convergence Cr	vergenc PRES 3.948E 1.498E iteria:	e Statis S EN +01 0.000 +01 0.000 0.2421	tics ERG DE+00 DE+00 E+00	K E1 0.000E+00 0 0.000E+00 0	PSILON 000E+00 000E+00	
1 I OFLOTRAN O Va	Position of the N 2.1a ariable	e Interface Toe Summ Average	at t=0 ary - I Mi	min. Wit ter 90 nimum	thout Node	Subsurface 1 06/3 Maxin	Barrier 13/94 22: num 1	:23: Node
U Veloc V Veloc W Veloc Pressur Turb. H Turb. H Tempera Density Viscos Conduct Eff. Vi Eff. Co Total 7 0 0INLETS/	city city city ce Kin. Enrg. Enrg. Diss. ature Y ity tivity Liscosity onductivity Temperature Y OUTLETS	6.2035E-05 7.7382E-06 0.0000E+00 4.0450E+01 1.0210E-14 1.9456E-19 2.7930E+02 1.0050E+03 1.5180E-03 6.1099E-04 0.0000E+00 2.9300E+02	-4.67 -2.43 0.00 -1.03 0.00 2.77 1.00 1.51 6.11 0.00 0.00 2.93	18E-05 98E-05 00E+00 57E+01 00E+00 95E+02 20E+03 80E-03 00E-04 00E+00 00E+00 00E+02	1459 2118 1431 1431 1429 1429 1429 1429 1 1 1 1	4.2427E 1.6176E 0.0000E 1.4641E 7.2800E 1.3872E 2.8800E 1.0250E 1.5180E 6.1100E 0.0000E 0.0000E 2.9300E	-04 145 -04 147 -00 -13 7 -17 7 -02 142 -03 142 -03 -04 -00 -02	50 77 1 74 74 74 27 27 1 1 1
Region 1 2	Node 1 X 116 0. 1458 1.20	Y 0.537E-02 0.497E-01	Z 0. 0.	Mass F] 0.2794E -0.2811E	Low 2-01 2-01	Pressure 101.0 0.3135E-02	Bulk T 278.00 278.37	
OTotal M OTotal M	ass Flow In = ass Flow Out =	0.27944E-01 -0.28114E-01						
OTotal E OTotal E	Energy Flow In Energy Flow Out	= 32519. = -32760.						
1 F OFLOTRAN ITER 91 5 92 5 93 4 93 4	Position of the V 2.1a U-MOM V-M 5.514E-04 2.708 5.231E-04 2.532 4.965E-04 2.352 4.704E-04 2.173	E Interface Toe Convo 0M W-MOM E-03 0.000E+00 E-03 0.000E+00 E-03 0.000E+00 E-03 0.000E+00	at t=0 ergence PRES 1.821E 1.785E 1.681E 1.580E	min. Wit Monitor 5 ENE -03 6.296 -03 5.724 -03 4.682 -03 5.603	RG E-05 E-05 E-05 E-05 E-05	Subsurface E 06/1 K EE 0.000E+00 0. 0.000E+00 0. 0.000E+00 0. 0.000E+00 0.	Barrier .3/94 22: PSILON 000E+00 000E+00 000E+00 000E+00	23:

95 4.448E-04 2.046 96 4.203E-04 1.946 97 3.973E-04 1.840 98 3.737E-04 1.840 99 3.475E-04 1.525 100 3.176E-04 1.308	E-03 0.000E+00 E-03 0.000E+00 E-03 0.000E+00 E-03 0.000E+00 E-03 0.000E+00 E-03 0.000E+00	1.531E-03 4.93 1.389E-03 4.25 1.300E-03 3.34 1.214E-03 2.62 1.078E-03 2.59 9.774E-04 2.69	0E-05 0.00 0E-05 0.00 4E-05 0.00 1E-05 0.00 2E-05 0.00 8E-05 0.00	00E+00 0.000E 00E+00 0.000E 00E+00 0.000E 00E+00 0.000E 00E+00 0.000E 00E+00 0.000E	++00 ++00 ++00 ++00 ++00 ++00
U-MOM V-M Err 5.870E-01 1.852 Sig 7.444E-02 3.689 Lumped 0 1 Position of the 0FLOTRAN 2.1a 0 Variable	Global Con DM W-MOM E+01 0.000E+00 E+00 0.000E+00 Convergence Cr Interface Toe Summ Average	vergence Statis PRESS EN 2.086E+00 0.00 iteria: 0.166 at t=0 min. Wi ary - Iter 100 Minimum	tics ERG 0E+00 0.00 0E+00 0.00 thout Subs Node	K EPSILC 00E+00 0.000E 00E+00 0.000E surface Barri 06/13/94 Maximum	N +00 +00 er 22:23: Node
U Velocity V Velocity W Velocity Pressure Turb. Kin. Enrg. Turb. Enrg. Diss. Temperature Density Viscosity Conductivity Eff. Viscosity Eff. Conductivity Total Temperature 0 0INLETS/OUTLETS	6.2019E-05 7.5990E-06 0.0000E+00 4.0564E+01 1.0210E-14 1.9456E-19 2.7938E+02 1.0052E+03 1.5180E-03 6.1099E-04 0.0000E+00 2.9300E+02	-3.6927E-05 -1.9348E-05 0.0000E+00 -8.6861E+00 0.0000E+00 2.7795E+02 1.0019E+03 1.5180E-03 6.1100E-04 0.0000E+00 2.9300E+02	1459 2118 1 1429 1 1428 1428 1428 1 1 1 1	4.3595E-04 1.7506E-04 0.0000E+00 1.4648E+02 7.2800E-13 1.3872E-17 2.8800E+02 1.0250E+03 1.5180E-03 6.1100E-04 0.0000E+00 2.9300E+02	1450 1477 1 74 74 74 1427 1427 1427 1 1 1 1 1
Region Node 1 X 1 116 0. 2 1458 1.20	Y 0.537E-02 0.497E-01	Z Mass F 0. 0.2794 00.2808	low Pres E-01 103 E-01 0.19	ssure Bul L.O 278 046E-02 278	k T .00 .01
OTotal Mass Flow In = OTotal Mass Flow Out =	0.27944E-01 -0.28084E-01				
OTotal Energy Flow In OTotal Energy Flow Out	= 32519. = -32683.				
1 Position of the 0FLOTRAN 2.1a ITER U-MOM V-MC 101 2.825E-04 1.0833 102 2.441E-04 8.2244 103 1.959E-04 6.6911 104 1.611E-04 6.0099 105 1.450E-04 5.5271 106 1.308E-04 5.0688 107 1.183E-04 4.7551 108 1.060E-04 4.2781 109 9.612E-05 4.2551 110 9.300E-05 3.8921	Interface Toe Conv. DM W-MOM 2-03 0.000E+00 2-04 0.000E+00 2-04 0.000E+00 2-04 0.000E+00 2-04 0.000E+00 2-04 0.000E+00 2-04 0.000E+00 2-04 0.000E+00 2-04 0.000E+00 2-04 0.000E+00	at t=0 min. Wi ergence Monitor PRESS EN 8.418E-04 4.12 7.082E-04 3.64 6.771E-04 2.42 5.885E-04 2.30 5.597E-04 2.13 5.234E-04 1.85 4.706E-04 2.11 4.470E-04 3.68 4.489E-04 2.84 3.883E-04 2.37	thout Subs 6E-05 0.00 6E-05 0.00 2E-05 0.00 2E-05 0.00 5E-05 0.00 4E-05 0.00 5E-05 0.00 8E-05 0.00 1E-05 0.00 5E-05 0.00	surface Barri 06/13/94 K EPSILO 00E+00 0.000E 00E+00 0.000E 00E+00 0.000E 00E+00 0.000E 00E+00 0.000E 00E+00 0.000E 00E+00 0.000E 00E+00 0.000E	er 22:23: N +00 +00 +00 +00 +00 +00 +00 +00 +00 +
U-MOM V-MC Err 0.000E+00 2.921E Sig 0.000E+00 2.567E Lumped C 1 Position of the 0FLOTRAN 2.1a 0 Variable	Global Conv M W-MOM HOO 0.000E+00 HOO 0.000E+00 Convergence Cr: Interface Toe Summa Average	Vergence Statis PRESS EN 1.758E+00 0.00 1.150E+00 0.00 iteria: 0.857 at t=0 min. Wi ary - Iter 110 Minimum	tics ERG 0E+00 0.00 0E+00 0.00 E-01 thout Subs Node	K EPSILO 10E+00 0.000E 10E+00 0.000E surface Barri 06/13/94 Maximum	N +00 +00 er 22:23: Node
U Velocity V Velocity W Velocity Pressure Turb. Kin. Enrg. Turb. Enrg. Diss. Temperature Density	6.2006E-05 7.4754E-06 0.000E+00 4.0615E+01 1.0210E-14 1.9456E-19 2.7940E+02 1.0052E+03	-3.1516E-05 -1.6860E-05 0.0000E+00 -8.2220E+00 0.0000E+00 0.0000E+00 2.7796E+02 1.0019E+03	1459 2118 1 1428 1 1 334 1334	4.3822E-04 1.7886E-04 0.0000E+00 1.4651E+02 7.2800E-13 1.3872E-17 2.8800E+02 1.0250E+03	1450 1477 1 74 74 74 1427 1427

р

Viscosity Conductivity Eff. Viscosity Eff. Conductivity Total Temperature 0 OINLETS/OUTLETS	1.5180E-03 6.1099E-04 0.0000E+00 0.0000E+00 2.9300E+02	1.51 6.11 0.00 0.00 2.93	30E-03 00E-04 00E+00 00E+00 00E+02	1 1 1 1	1.5180E- 6.1100E- 0.0000E+ 0.0000E+ 2.9300E+	03 04 00 00 02	1 1 1 1
Region Node 1 X	v	7.	Mass Flow	,	Dreccure	թոլե դ	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.537E-02 0.497E-01	0. 0.	0.2794E-0 -0.2807E-0)1)1	101.0 0.1405E-02	278.00 278.00)
OTotal Mass Flow In = OTotal Mass Flow Out =	0.27944E-01 -0.28068E-01						
OTotal Energy Flow In OTotal Energy Flow Out	= 32519. = -32662.						
1 Position of the OFLOTRAN 2.1a ITER U-MOM V-MO 111 8.889E-05 3.717E 112 8.280E-05 3.807E	Interface Toe Conv M W-MOM -04 0.000E+00 -04 0.000E+00	at t=0 ergence PRESS 4.020E 3.966E	min. Witho Monitor SENERG 04 2.062E- 04 3.046E-	05 05	Subsurface B 06/1 K EP 0.000E+00 0. 0.000E+00 0.	arrier 3/94 22 SILON 000E+00 000E+00	:23:
U-MOM V-MC Err 0.000E+00 4.372E Sig 0.000E+00 4.496E Lumped C	Global Con M W-MOM -01 0.000E+00 -01 0.000E+00 convergence Cr	vergence PRESS 4.093E 4.057E iteria:	e Statistic 5 ENERG 01 0.000E+ 01 0.000E+ -0.139E-0	s 00 00	K EP 0.000E+00 0. 0.000E+00 0.	SILON 000E+00 000E+00	
1 Position of the OFLOTRAN 2.1a O Variable	Interface Toe Summa Average	at t=0 ary - It Mir	min. Witho er 112 nimum N	out : ode	Subsurface B 06/1 Maxim	arrier 3/94 22 um	:23: Node
U Velocity V Velocity W Velocity Pressure Turb. Kin. Enrg. Turb. Enrg. Diss. Temperature Density Viscosity Conductivity Eff. Viscosity Eff. Conductivity Total Temperature	$\begin{array}{c} 6.2005 \pm -05\\ 7.4574 \pm -06\\ 0.0000 \pm +00\\ 4.0622 \pm +01\\ 1.0210 \pm -14\\ 1.9456 \pm -19\\ 2.7941 \pm +02\\ 1.0052 \pm +03\\ 1.5180 \pm -03\\ 6.1099 \pm -04\\ 0.0000 \pm +00\\ 0.0000 \pm +00\\ 2.9300 \pm +02\\ \end{array}$	-3.074 -1.651 0.000 -8.176 0.000 2.779 1.001 1.518 6.110 0.000 2.930	66 - 05 14 .8E - 05 21 .00 + 00	59 18 1 28 1 34 34 1 1 1 1	4.3830E- 1.7904E- 0.0000E+ 1.4651E+ 7.2800E- 1.3872E- 2.8800E+ 1.0250E+ 1.0250E+ 1.5180E- 6.1100E- 0.0000E+ 0.0000E+ 2.9300E+	04 14 04 14 00 12 13 17 02 14 03 14 03 04 00 00 02 12	50 77 1 74 74 74 27 27 1 1 1 1
0 0INLETS/OUTLETS							
Region Node 1 X 1 116 0. 2 1458 1.20	Y 0.537E-02 0.497E-01	Z 0. 0.	Mass Flow 0.2794E-0 -0.2807E-0	1 1 1 (Pressure 101.1).1335E-02	Bulk T 278.00 278.01	
OTotal Mass Flow In = OTotal Mass Flow Out =	0.27944E-01 -0.28066E-01						
OTotal Energy Flow In OTotal Energy Flow Out	= 32519. = -32661.						
OHEAT TRANSFER							
Energy of Fluid Volume Energy of Solid Volume	tric Heat Sour tric Heat Sour	rces = rces =	0. 0.				
Positive Heat Transfer Negative Heat Transfer Net Heat Transfer to W	to Wall Faces to Wall Faces all Faces =	5 = 0.2 5 = -0.2 -0.2	7334E-04 8775E-02 8502E-02				
Net Conduction Across	Inlet/Outlet H	aces =	-0.13258E-0	01			

1Position of the Interface Toe at t=0 min. Without Subsurface BarrierOFLOTRAN2.1aTemperature06/13/94 22:23:

Temperature

ITERATION 112

1	2	2		~
L 2007-00	2 7007.00	3	4	5
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
6	7	8	9	10
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
11	12	13	14	15
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
16	17	18	10	20
2 7008402	2 70000402	2 7008+02	2 7000+02	20000+02
2.7000.02	2.7005102	2.7005102	2.7001:02	2.7000102
21	22	23	24	25
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
26	27	28	29	30
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
31	32	33	34	35
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
36	37	38	39	40
2 780 - + 02	2 780 02	2 7805+02	2 780 8+02	2 7808+02
A1	43	42	2.7000.02	2.700EF02
41	42	43	44	45
2.7805+02	2.7805+02	2.7805+02	2.7806+02	2.780E+02
46	4 /	48	49	50
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
51	52	53	54	55
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
56	57	58	59	60
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
61	62	63	64	65
2 7808+02	2 7805+02	2 7805+02	2 7808+02	2 7808+02
66	67	£0	2.7000.02	2.7005102
00 2005.00	2 2000/02	00 7005.00	0.9	2 7007.02
2.7805+02	2.7805+02	2.7806+02	2.7806+02	2.780E+02
71	72	73	74	75
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
76	77	78	79	80
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
81	82	83	84	85
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
86	87	88	89	90
2 7805+02	2 7808+02	2 7805+02	2 7805+02	2 7805+02
01	2.7005+02	2.7005+02	2.7806+02	2.7006+02
2 7000.00	2 2000100	2 2005.00	94	90
2.7806+02	2.7806+02	2.780E+02	2.780E+02	2.7806+02
96	97	98 9	99	100
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
101	102	103	104	105
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
106	107	108	109	110
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
111	112	113	114	115
2 7808+02	2 780	2 7808+02	2 780 8+02	2 2805402
116	117	110	110	1005102
7 2000100	2 7007102	110 110	119	120
2./005+02	2.7806+02	2.7805+02	2.7805+02	2.780E+02
121	122	123	124	125
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
126	127	128	129	130
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
131	132	133	134	135
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
136	137	138	139	140
2 780E+02	2 780E+02	2 780E+02	2 7805+02	2 7805+02
1/1	1/2	1/2	144	1/5
1 7005100	2 7000100	1 7005×00	144	140
2.7005+02	2.7005+02	2.7805+02	2.7806+02	2.7806+02
140	14/	148	149	150
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
151	152	153	154	155
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
156	157	158	159	160
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
161	162	163	164	165
2 780 -	2 7805+02	2 7805+02	2 7805+02	2 7805+02
166	167	169	160	170
2 790 P±02	2 700p±02	2 200 84.02	2 2000100	2 7005102
2./UVDTV2 171	2.100DTU2	2.70VETUZ	2./OULTUZ	2./OULTUZ
7/7	±14	1/2	工/住	T/2

3 7000103	3 7005103	2 7000102	2 7000.00	2 2005102
2.7006402	2.760E+02	2.7605402	2,7805+02	2.7805+02
1/6	177	178	179	180
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
181	182	183	184	185
2 7808+02	2 780	2 7805+02	2 7805+02	2 7805+02
100	107	100	100	100
180	187	188	189	TA0
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
191	192	193	194	195
2 780E+02	2 780E+02	2 7808+02	2 7805+02	2 780 - + 02
106	107	100	100	2.7000102
196	TA1	198	199	200
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
201	202	203	204	205
2 7808+02	2 7805+02	2 7805+02	2 780 -	2 7805+02
2.7000.02	2.7000.02	2.7001.02	2.7000.02	2.7000702
206	207	208	209	210
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
211	212	213	214	215
2 780E+02	2 780E+02	2 7808+02	2 7808+02	2 7805+02
216	217	21000102	210	2.7000102
210	217	218	219	220
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
221	222	223	224	225
2 780 -	2 7805+02	2 780 8402	2 7805+02	2 2005102
2.7000102	2.7000.02	2.70000.02	2.7001102	2.7000102
220	221	228	229	230
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
231	232	233	234	235
2 7802+02	2 780 -	2 7805+02	2 7905+02	2 7000402
2.7000.02	2.7000102	2.7000.02	2.7000.02	2.7000.02
230	237	238	239	240
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
241	242	243	244	245
2 780E+02	2 780E+02	2 780 - + 02	2 780	2 7808+02
2.7000.02	2.7000.02	2.7001102	2.7001102	2.7005102
240	247	248	249	250
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
251	252	253	254	255
2 780E+02	2 7808+02	2 7806+02	2 780 02	2 7805+02
2.7000702	2.7000.02	2.7000.02	2.7000.02	2.7000.02
200	257	208	259	260
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
261	262	263	264	265
2 780E+02	2 780E+02	2 780E+02	2 780E+02	2 7805+02
2.7000.02	2.7000.02	2.7000102	2,7000102	2.7005102
200	207	208	269	270
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
271	272	273	274	275
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2 780E+02
276	277	270	270	200
270	2//	2/0	279	200
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
281	282	283	284	285
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
286	207	200	200	200
200	207	200	209	290
2.7808+02	2.7806+02	2.780E+02	2.780E+02	2.780E+02
291	292	293	294	295
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
296	207	208	200	300
0 7000.00	0 7005100	2,20	2 200 - 200	0 700 - 00
2.7805+02	2.7806+02	2.7806+02	2.7806+02	2.780E+02
301	302	303	304	305
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
306	307	308	209	310
0 700 8400	2 7005102	200	2 200 1 02	0 7007100
2.7806+02	2.7806+02	2.7806+02	2.7806+02	2.7805+02
311	312	313	314	315
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
316	317	319	310	320
3 7005 02	2 2007:02	3 7005103	2 2005-00	0 7007100
2.7806+02	2.7806+02	2.7805+02	2.7806+02	2.7805+02
321	322	323	324	325
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
326	327	328	320	330
2 200 102	2 200 100	2 200 - 102	0 7007100	2 2000:02
2.7805+02	2.7805+02	2.7805+02	2.780E+02	2.7805+02
331	332	333	334	335
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
336	337	338	339	340
2 7005-02	2 7000000	2 7005-02	2 7005.00	2 7000-00
2./005+02	2.1805+02	2.700E+U2	2.7805+02	2.7805+02
341	342	343	344	345
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
346	347	348	349	350
2 7000:00	2 7000-00	3 7005100	3 7000100	3 7005-00
2.7005+02	2.7805+02	2./005+02	2.7805+02	2.7806+02
351	352	353	354	355
2.780E+02	2 7005402	2.780E+02	2.780E+02	2.780E+02
	2.7005402			
356	357	358	359	360
356 2 7805±02	357 2 780	358 2 780 E±02	359 2 7805±02	360 2 7800±02

261	262	262	261	265
301	302	303	304	305
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
366	367	368	369	370
2,780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
371	372	373	374	375
2 2000:02	2 700 102	2 7005102	2 7005102	2,2
2.7805402	2.7005402	2.7805402	2.7806402	2.7805+02
376	377	378	379	380
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
3.9.1	383	383	384	395
0 0000.00	0 7007/00	0 7007.00	0 7007.00	202
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
386	387	388	389	390
2 780E+02	2 780E+02	2 780E+02	2 780E+02	2 780E+02
201	200	202	201	2.7000.02
391	392	393	394	395
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
396	397	398	399	400
2 7000+02	2 7005+02	2 7005402	2 7005-02	2 2005102
2.7006402	2.7001102	2.7005402	2.7006+02	2.7006702
401	402	403	404	405
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
406	407	408	409	410
2 2005102	2 2005:02	2 7005102	2 2000 (02	2 2005102
2.7006-02	2.7006702	2.7005702	2.7005702	2.7006402
411	412	413	414	415
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
416	417	418	419	120
0 700 00	3 3005100	0 700 7 00	0 700H-00	420
2.7805+02	2.7806+02	2.780E+02	2./80E+02	2.7806+02
421	422	423	424	425
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
106	107	400	400	120
420	42/	420	429	430
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
431	432	433	434	435
2 780E+02	2 7805+02	2 7805+02	2 7805+02	2 780 -
2.7000102	2.7000.02	1000102	2.7000102	2.7000102
436	437	438	439	440
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
441	442	443	444	445
2 70000102	2 7000402	2 2008102	2 7008402	2 7000+02
2.7000.02	2.7005102	2.7001102	2.7000102	2.7000402
446	44/	448	449	450
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
451	452	453	454	455
2 7005402	2 7000+02	2 7005402	2 7000+02	2 7005+02
2.7005402	2.7005702	2.7005702	2.7005402	2.7006-02
456	457	458	459	460
2,780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
461	462	463	464	465
3 3000100	2 2005102	2 2005-02	2 2002102	200
2.7805+02	2.780E+02	2.7806+02	2./806+02	2.780E+02
466	467	468	469	470
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
471	172	173	171	475
4/1	414	4/J	4/4	47J
2.780E+02	2.7806+02	2.7806+02	2.780E+02	2.780E+02
476	477	478	479	480
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2 780E+02
101	100	402	101	105
401	402	405	404	405
2.7808+02	2.780E+02	2./80E+02	2.780E+02	2.780E+02
486	487	488	489	490
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
401	102	103	101	105
0 7000.00	3 7000-00	1 7000-00	774 0 700m·00	
2.7806+02	2.780E+02	2.7805402	2.780E+02	2./80E+02
496	497	498	499	500
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
501	502	502	501	505
0 0000.00	0 0000000	303	504	505
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
506	507	508	509	510
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
511	510	510	E1/	C1C
D D D D D D D D D D D D D D D D D D D	512	213	514 5 B04 - 11	272
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
516	517	518	519	520
2 780E+02	2 7808+02	2 780E+02	2 780 - + 02	2 780 -
E01	E00	5.7000-02	5.700BTU2 507	2.700BTUZ
DZT	522	545	524	525
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
526	527	528	529	530
2 7805+02	2 7808+02	2 7805-02	2 7805±03	2 7800+02
E . 1000TUZ	2.700ETUZ	2.7005702	2.100LTUZ	4.70ULTUZ
531	532	533	534	535
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
536	537	538	539	540
2 7805+02	2 7805+02	2 7805+02	2 7905+02	2 7000.00
2.100GTUZ	4.70VDTV2	2.70VDTV2	2./OULTUZ	2.7005+02
541	542	543	544	545
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
546	547	548	549	550

•

2 780E+02	2 780E+02	2 780E+02	2 780E+02	2 780E+02
551	552	553	554	555
3 7005 (03	2 2000102	2 2002102	2 2002102	2 200 102
2.7605+02	2.7806+02	2.7805+02	2.7805+02	2.7805+02
556	557	558	559	560
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
561	562	563	564	565
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
566	567	568	569	570
2 7808+02	2 7805+02	2 7808+02	2 7808+02	2 780 -
2.7000102	2.7000102	2.700E102	574	2.7000.02
5/1	572	5/3	574	5/5
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
576	577	578	579	580
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
581	582	583	584	585
2 780E+02	2 780E+02	2 780E+02	2 780E+02	2 780E+02
586	597	588	590	500
2 2008+02	2 7008402	2 200 102	2 7005102	2 7000:02
2.7006402	2.7005402	2.7005402	2.7005+02	2.7605+02
591	592	593	594	595
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
596	597	598	599	600
2.780E+02	2,780E+02	2.780E+02	2,780E+02	2.780E+02
601	602	603	604	605
2 7805+02	2 7805+02	2 7805402	2 7805+02	2 7808402
2.7000102	2.7000.02	2.7000102	2.7000.02	2.7001102
000	007	008	609	610
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
611	612	613	614	615
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
616	617	618	619	620
2 780E+02	2 780E+02	2 780E+02	2 780E+02	2 780E+02
601	622	602	624	625
0.21	0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	023	024	020
2.780E+02	2.7805+02	2.780E+02	2.780E+02	2.780E+02
626	627	628	629	630
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
631	632	633	634	635
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
636	637	638	630	640
2 7000102	2 700 102	0.00	0.000	0 700 0 00
2.7005-02	2.7606+02	2.7805+02	2.7806+02	2.7806+02
641	642	643	644	645
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
646	647	648	649	650
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
651	652	653	654	655
2 7805+02	2 7805+02	2 7805+02	2 7805+02	2 7808+02
2.7001.02	2.7000102	2.7001102	2.7000.02	2.7000.02
000	057	000	039	000
2./806+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
661	662	663	664	665
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
666	667	668	669	670
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2 780E+02
671	672	673	674	675
071 07000±00	2 7000402	3 7005403	073	075
2.7006402	2.7005402	2.7005702	2.7005402	2.7005+02
0/0	6//	678	6/9	680
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
681	682	683	684	685
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
686	687	688	689	690
2 780E+02	2 780E+02	2 780E+02	2 780E+02	2 780E+02
601	602	602	604	2.7001102
0.91	0 7 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0	093	094	095
2.780E+02	2.7806+02	2.7805+02	2.7805+02	2.780E+02
696	697	698	699	700
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
701	702	703	704	705
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
706	707	708	709	710
2 2000-02	2 7005102	2 700 00	2 200 102	2 2005102
2.70VLTVZ	2.7005402	2.7005TUZ	2.70UETUZ	2.7005402
/11	/12	/13	/14	/15
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
716	717	718	719	720
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
721	722	723	724	725
2 7808+02	2 7805+02	2 7805+02	2 7805+02	2 7805+02
756	2.1000702	2,1000-02	2.70VDTV2 700	21100DTU2 730
720	141	120	129	/ 30
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
731	732	733	734	735
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02

· • •

736	737	738	739	740
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
741	742	743	744	745
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
746	747	748	749	750
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
751	752	753	754	755
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
756	757	758	759	760
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
761	762	763	764	765
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
766	767	768	769	770
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
771	772	773	774	775
2 780E+02	2 780E+02	2 780E+02	2 780E+02	2 780E+02
776	777	778	779	780
2 780E+02	2 780E+02	2 780E+02	2 780E+02	2 780E+02
781	782	783	784	785
2 780E+02	2 780E+02	2 780E+02	2 780E+02	2 780E+02
786	787	788	789	790
2 780E+02	2 780E+02	2 780E+02	2 780E+02	2 780E+02
791	792	793	794	795
2 7805+02	2 7808+02	2 7805+02	2 7805+02	2 780E+02
796	797	798	799	800
2 7805+02	2 7808+02	2 7805+02	2 780E+02	2 780 -
801	802	803	804	805
2 7808+02	2 7805+02	2 7805+02	2 7805+02	2 7805+02
806	807	808	809	810
2 780E+02	2 780E+02	2 780E+02	2 7808+02	2 780E+02
£11	2.700L.02 912	813	81 <i>A</i>	815
2 780E+02	2 780E+02	2 7805+02	2 7805+02	2 780E+02
816	£17	818	2.700 <u>0</u> .02 810	820
2 7805+02	2 7808+02	2 7808+02	2 7805+02	2 7805+02
821	822	823	824	825
2 7805+02	2 7805+02	2 7805+02	2 7805+02	2 7808+02
826	827	828	829	830
2 7808+02	2 7808+02	2 7808+02	2 78012+02	2 7805+02
2.700E102 931	2.7000102	833	2.700E+02	2.700ET02
2 7805+02	2 7805+02	2 7805+02	2 78010+02	2 7805+02
836	2.700L:02 937	838	830	840
2 7808+02	2 780F+02	2 780F+02	2 780R+02	2 780F±02
8/1	2.700D-02 9/2	843	844	2.700E102
2 7805+02	042 0780F±00	043 2 780F+02	2 780F±02	2 780ETU2
846	2.700E-02 9/7	9/9	2.7000102	2.7001102
2 7805+02	2 780F+02	2 780F+02	049 2 780F+02	2 790F±02
2.700D702 951	2,700E+02 050	2.7005102	2.750E102 954	2.7001.02
2 7805+02	2 7808+02	2 7805+02	2 7805+02	2 7805+02
2.7000-02	2,7005+02	2.7000+02	2.700E+02 050	2.7000+02
2 780F+02	2 7805+02	2 7808+02	2 7808+02	2 7805+02
861	862	863	864	865
2 7808+02	2 7805+02	2 780E+02	2 7805+02	2 780 -
866	867	868	869	870
2.780E+02	2.780 - + 02	2.780 =+02	2.780	2.780 -
871	872	873	874	875
2 780E+02	2 780E+02	2 780E+02	2 780E+02	2 780E+02
876	877	878	879	880
2 780E+02	2 780E+02	2 780E+02	2 780E+02	2 7802+02
881	882	883	884	885
2 7805+02	2 7805+02	2 7805+02	2 7808+02	2 7805+02
886	887	888	880	800
2 7808+02	2 7805+02	2 7805+02	2 7808+02	2 7800402
891	800	893	894	895
2 780 - + 02	2 780 02	2 780 =+02	2 780E+02	2 780 -
896	897	898	899	900
2 780 - + 02	2 780 -	2 7808+02	2 780 -	2 7808+02
901	902	903	904	905
2 7805+02	2 7808+02	2 7805+02	2 7805+02	2 7808+02
906	907	908	909	910
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
911	912	913	914	915
2.7805+02	2.7808+02	2.780E+02	2.7802+02	2.780 - + 02
916	917	918	919	920
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
921	922	923	924	925

	0.0000.00			
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
926	927	928	929	930
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
031	032	033	034	035
2 2005-02	2 700 102	2 2005102	2 2000-00	2 2000 00
2.7806+02	2.7806+02	2.7806402	2.780E+02	2.7805+02
936	937	938	939	940
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
941	942	943	944	945
2 780	2 7805+02	2 780	2 7805+02	2 7808+02
2.7000102	2.7000.02	2.7000102	2.7000102	2.7001102
940	947	948	949	950
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
951	952	953	954	955
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
956	957	958	959	960
2 7005+02	2 2008402	2 7000102	2 2000102	2 7005102
2.7005-02	2.7005402	2.7606402	2.7606402	2.7806402
96T	962	963	964	965
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
966	967	968	969	970
2 780E+02	2 780E+02	2 780E+02	2 780E+02	2 780E+02
071	2.7000.02	073	2.7000102	2.7000102
971	972	973	974	975
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
976	977	978	979	980
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
981	982	083	0.8.4	085
0 700 E+00	2 7005402	2 7005.02	2 7005102	2 7005102
2.7006702	2.7005702	2.7005702	2.7806+02	2.7806+02
986	987	988	989	990
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
991	992	993	994	995
2 7805+02	2 7805+02	2 7805+02	2 7905402	2 7905403
2.7005102	2.7005102	2.7005102	2.7000+02	1000-02
996	997	998	999	1000
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
1001	1002	1003	1004	1005
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
1006	1007	1008	1000	1010
2 7000+02	2 700 8402	2 700 102	2 700 1 02	2 7005102
2.7805402	2.7801+02	2.7806+02	2.7806+02	2.7806+02
1011	1012	1013	1014	1015
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
1016	1017	1018	1019	1020
2 780E+02	2 780E+02	2 780 8+02	2 780 - + 02	2 780 02
1001	1000	1000	1004	10000102
1021		1023	1024	1025
2./80E+02	2./80E+02	2.780E+02	2.780E+02	2.780E+02
1026	1027	1028	1029	1030
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
1031	1032	1033	1034	1035
2 7005+02	2 7000+02	2 7000102	2 2004	2 7005 02
2.7000702	2.7006402	2.7005702	2.7805+02	2.7805+02
1030	1037	T038	1039	1040
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
1041	1042	1043	1044	1045
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
1046	1047	1048	1040	1050
2 7000 02	2 2008100	2 7000102	2 7007:02	1000
2.7805+02	2.7806+02	2.7805+02	2.7805+02	2.7805+02
1051	1052	1053	1054	1055
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
1056	1057	1058	1059	1060
2.780E+02	2.780E+02	2 780E+02	2 780E+02	2 780E+02
1061	1062	1062	1064	1065
1001	1002	1003	1004	1003
2.7805+02	2./80E+02	2.780E+02	2.780E+02	2.780E+02
1066	1067	1068	1069	1070
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
1071	1072	1073	1074	1075
2 7805+02	2 780	2 780	2 780 5+02	2 7805+02
3070	2.70000702	2.7000102	2.7005102	1000
T0/0	1077	1070	1070	
2.780E+02	1077	1078	1079	1080
1081	1077 2.780E+02	1078 2.780E+02	1079 2.780E+02	1080 2.780E+02
	1077 2.780E+02 1082	1078 2.780E+02 1083	1079 2.780E+02 1084	1080 2.780E+02 1085
2.780E+02	1077 2.780E+02 1082 2.780E+02	1078 2.780E+02 1083 2.780E+02	1079 2.780E+02 1084 2.780E+02	2.780E+02 1085 2.780E+02
2.780E+02 1086	1077 2.780E+02 1082 2.780E+02 1087	1078 2.780E+02 1083 2.780E+02 1088	1079 2.780E+02 1084 2.780E+02 1089	1080 2.780E+02 1085 2.780E+02 1090
2.780E+02 1086 2.780E+02	1077 2.780E+02 1082 2.780E+02 1087 2.780E+02	1078 2.780E+02 1083 2.780E+02 1088 2.780E+02	1079 2.780E+02 1084 2.780E+02 1089 2.780E+02	1080 2.780E+02 1085 2.780E+02 1090
2.780E+02 1086 2.780E+02	1077 2.780E+02 1082 2.780E+02 1087 2.780E+02	1078 2.780E+02 1083 2.780E+02 1088 2.780E+02	1079 2.780E+02 1084 2.780E+02 1089 2.780E+02	1080 2.780E+02 1085 2.780E+02 1090 2.780E+02
2.780E+02 1086 2.780E+02 1091	1077 2.780E+02 1082 2.780E+02 1087 2.780E+02 1092	1078 2.780E+02 1083 2.780E+02 1088 2.780E+02 1093	1079 2.780E+02 1084 2.780E+02 1089 2.780E+02 1094	2.780E+02 1085 2.780E+02 1090 2.780E+02 1095
2.780E+02 1086 2.780E+02 1091 2.780E+02	1077 2.780E+02 1082 2.780E+02 1087 2.780E+02 1092 2.780E+02	1078 2.780E+02 1083 2.780E+02 1088 2.780E+02 1093 2.780E+02	1079 2.780E+02 1084 2.780E+02 1089 2.780E+02 1094 2.780E+02	1080 2.780E+02 1085 2.780E+02 1090 2.780E+02 1095 2.780E+02
2.780E+02 1086 2.780E+02 1091 2.780E+02 1096	1077 2.780E+02 1082 2.780E+02 1087 2.780E+02 1092 2.780E+02 1097	1078 2.780E+02 1083 2.780E+02 1088 2.780E+02 1093 2.780E+02 1098	1079 2.780E+02 1084 2.780E+02 1089 2.780E+02 1094 2.780E+02 1099	1080 2.780E+02 1085 2.780E+02 1090 2.780E+02 1095 2.780E+02 1100
2.780E+02 1086 2.780E+02 1091 2.780E+02 1096 2.780E+02	1077 2.780E+02 1082 2.780E+02 1087 2.780E+02 1092 2.780E+02 1097 2.780E+02	1078 2.780E+02 1083 2.780E+02 1088 2.780E+02 1093 2.780E+02 1098 2.780E+02	1079 2.780E+02 1084 2.780E+02 1089 2.780E+02 1094 2.780E+02 1099 2.780E+02	1080 2.780E+02 1085 2.780E+02 1090 2.780E+02 1095 2.780E+02 1100 2.780E+02
2.780E+02 1086 2.780E+02 1091 2.780E+02 1096 2.780E+02 1101	1077 2.780E+02 1082 2.780E+02 1087 2.780E+02 1092 2.780E+02 1097 2.780E+02 1102	1078 2.780E+02 1083 2.780E+02 1088 2.780E+02 1093 2.780E+02 1098 2.780E+02 103	1079 2.780E+02 1084 2.780E+02 1089 2.780E+02 1094 2.780E+02 1099 2.780E+02	1080 2.780E+02 1085 2.780E+02 1090 2.780E+02 1095 2.780E+02 1100 2.780E+02
2.780E+02 1086 2.780E+02 1091 2.780E+02 1096 2.780E+02 1101 2.780E+02	1077 2.780E+02 1082 2.780E+02 1087 2.780E+02 1092 2.780E+02 1097 2.780E+02 1102	1078 2.780E+02 1083 2.780E+02 1088 2.780E+02 1093 2.780E+02 1098 2.780E+02 1103 2.780E+02	1079 2.780E+02 1084 2.780E+02 1089 2.780E+02 1094 2.780E+02 1099 2.780E+02 1104 2.780E+02	1080 2.780E+02 1085 2.780E+02 1090 2.780E+02 1095 2.780E+02 1100 2.780E+02 1105 2.780E+02
2.780E+02 1086 2.780E+02 1091 2.780E+02 1096 2.780E+02 1101 2.780E+02	1077 2.780E+02 1082 2.780E+02 1087 2.780E+02 1092 2.780E+02 1097 2.780E+02 1102 2.780E+02	1078 2.780E+02 1083 2.780E+02 1088 2.780E+02 1093 2.780E+02 1098 2.780E+02 1103 2.780E+02	1079 2.780E+02 1084 2.780E+02 1089 2.780E+02 1094 2.780E+02 1099 2.780E+02 1104 2.780E+02	1080 2.780E+02 1085 2.780E+02 1090 2.780E+02 1095 2.780E+02 1100 2.780E+02 1105 2.780E+02
2.780E+02 1086 2.780E+02 1091 2.780E+02 1096 2.780E+02 1101 2.780E+02 1106	1077 2.780E+02 1082 2.780E+02 1087 2.780E+02 1092 2.780E+02 1097 2.780E+02 1102 2.780E+02 1107	1078 2.780E+02 1083 2.780E+02 1098 2.780E+02 1093 2.780E+02 1098 2.780E+02 1103 2.780E+02 1103	1079 2.780E+02 1084 2.780E+02 1089 2.780E+02 1094 2.780E+02 1099 2.780E+02 1104 2.780E+02 1109	1080 2.780E+02 1085 2.780E+02 1090 2.780E+02 1095 2.780E+02 1100 2.780E+02 1105 2.780E+02 1110

1111	1112	1113	1114	1115
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
1116	1117	1118	1119	1120
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
1121	2 7005+02	1123 2 7005±02	1124	1125 0 700mi 00
1126	2.700ET02 1127	2.7005702	1120	1130
2 780E+02	2 780E+02	2 780E+02	2 7808+02	2 7805+02
1131	1132	1133	1134	1135
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
1136	1137	1138	1139	1140
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
1141	1142	1143	1144	1145
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
1146	1147	1148	1149	1150
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
1131 3 700E+03	1132 2 780F+02	1100	1104 0 700p±00	1100 1100 100 100 100
1156	1157	1158	1159	2.7606702
2.780E+02	2.780E+02	2.780E+02	2 780E+02	2 780E+02
1161	1162	1163	1164	1165
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
1166	1167	1168	1169	1170
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
1171	1172	1173	1174	1175
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
1176	1177	1178	1179	1180
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
1181	1182	1183	1184	1182 1182
2.7005402	2.7806+02	2.7805+02	2.780E+02 1190	2.7806+02
2.780E+02	2.780E+02	2 780E+02	2 780E+02	2 780E+02
1191	1192	1193	1194	1195
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
1196	1197	1198	1199	1200
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
1201	1202	1203	1204	1205
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
1206	1207	1208	1209	1210
1011	1010	2,7805402	2.7805+02	2.7805+02
2.780E+02	2.780E+02	2.780E+02	2 780E+02	2 780E+02
1216	1217	1218	1219	1220
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
1221	1222	1223	1224	1225
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
1226	1227	1228	1229	1230
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
1431 2 780F+02	1232 3 780F+03	1233 2 700F+02	1234 0 790F+00	1235 0 780 Et00
1236	1237	1238	1239	1240
2.780E+02	2,780E+02	2.780E+02	2.780E+02	2.780E+02
1241	1242	1243	1244	1245
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
1246	1247	1248	1249	1250
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
1251	1252	1253	1254	1255
2.7805+02	2.7805+02	2.780E+02	2.780E+02	2.780E+02
1200 2 780F+02	1237	1200 2 780F+02	1209	1260 2 700p±02
1261	1262	1263	1264	1265
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
1266	1267	1268	1269	1270
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
1271	1272	1273	1274	1275
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
1276	1277	1278	1279	1280
2./80E+02 1201	2./80E+02	2.780E+02	2.780E+02	2.780E+02
1201 2 780R+02	1404 2 780F+02	±∠03 2 780₽±02	⊥∠04 2 780₽±02	1200 2 7808100
1286	1287	1288	1289	1290
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
1291	1292	1293	1294	1295
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
1296	1297	1298	1299	1300

2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
1301	1302	1303	1304	1305
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
1306	1307	1308	1309	1310
1311	2.7005402	2.7006+02	1314	2.7005+02
2,780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
1316	1317	1318	1319	1320
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
1321	1322	1323	1324	1325
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
1326	1327	1328	1329	1330
2.780E+02	2.7805+02	2.780E+02	2.780E+02	2.780E+02
1331 2 780F+02	1332 2 780F+02	1333 2 780F+02	1334 2 770F+02	1335 2 780F+02
1336	1337	1338	1339	1340
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2,780E+02
1341	1342	1343	1344	1345
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
1346	1347	1348	1349	1350
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
1351	1352	1353	1354	1355
2./80E+02 1256	2.780E+02	2.780E+02	2.7808+02	2./80E+02
2 780E+02	2 780E+02	2 780E+02	2 780E+02	2 7805+02
1361	1362	1363	1364	1365
2.780E+02	2,780E+02	2,780E+02	2.780E+02	2,780E+02
1366	1367	1368	1369	1370
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
1371	1372	1373	1374	1375
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
1376	1377	1378	1379	1380
2./80E+02 1201	2./80E+02	2.780E+02	2.780E+02	2.780E+02
2 780E+02	2 7802+02	1303 2 780E+02	2 7808+02	1305 2 780F+02
1386	1387	1388	1389	1390
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
1391	1392	1393	1394	1395
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
1396	1397	1398	1399	1400
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
1401 2 700F±02	1402 0 7905±00	1403 2 700EL02	1404 2 700m±02	1405
1406	1407	1408	1409	2.7805+02
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
1411	1412	1413	1414	1415
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
1416	1417	1418	1419	1420
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
1421	1422	1423	1424	1425
2.7805+02	2.7805+02	2.7805+02	2./805+02	2./805+02 1420
2.780E+02	2 880E+02	2 7848+02	2 826E+02	2 875E+02
1431	1432	1433	1434	1435
2.879E+02	2.879E+02	2.879E+02	2.879E+02	2.879E+02
1436	1437	1438	1439	1440
2.879E+02	2.879E+02	2.879E+02	2.879E+02	2.879E+02
1441	1442	1443	1444	1445
2.879E+02	2.879E+02	2.879E+02	2.879E+02	2.879E+02
1440	1447	1448	1449	1450
1451	1452	2.0795402	2.0005702	2.7806+02
2.880E+02	2.880E+02	2.880E+02	2.880E+02	2.880E+02
1456	1457	1458	1459	1460
2.880E+02	2.880E+02	2.880E+02	2.879E+02	2.878E+02
1461	1462	1463	1464	1465
2.877E+02	2.877E+02	2.876E+02	2.876E+02	2.875E+02
1466	1467	1468	1469	1470
2.875E+02	2.875E+02	2.874E+02	2.874E+02	2.874E+02
14/1 2 8728±02	14/2 ጋ 873 ምታላን	14/3 2 8705-01	14/4 0 8515400	14/5
2.0/25TU2 1476	2.0/25+U2 1477	2.0/UETU2 1478	∠.0515+02 1479	2.0215+02
2.789E+02	2.781E+02	2.780E+02	2.780E+02	2.780E+02
1481	1482	1483	1484	1485
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02

1486	1487	1488	1489	1490
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
1491	1492	1493	1494	1495
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
1496	1497	1498	1499	1500
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
1501	1502	1503	1504	1505
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
1200	1007	1208 T208	T202 (02	1510
1511	2.700ETU2 1510	2.7000702	2.700ET02 1514	2.7005702
2 7808+02	2 7805+02	2 7808+02	2 7805+02	2 7805+02
1516	1517	1518	1519	1520
2.780E+02	2.780E+02	2.780E+02	2,780E+02	2.780E+02
1521	1522	1523	1524	1525
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
1526	1527	1528	1529	1530
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
1531	1532	1533	1534	1535
2.841E+02	2.785E+02	2.781E+02	2.780E+02	2.780E+02
1536	1537	1538	1539	1540
2./805+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
1041	1042	1043	1544	1040
2.7000-02	2.7005402	2.700E+02 1540	2.7805+02	2.7805+02
2 780 2+02	2 7805+02	2 7808+02	1049 0 780F+00	1000 1000 1000
1551	1552	1553	1554	1555
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
1556	1557	1558	1559	1560
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.877E+02
1561	1562	1563	1564	1565
2.874E+02	2.797E+02	2.787E+02	2.783E+02	2.781E+02
1566	1567	1568	1569	1570
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
1571	1572	1573	1574	1575
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
15/6	15//	1578	1579	1580
1501	1500	2.780E+02	2./80E+02	2.7805+02
1001 0 780F100	1362 2 700F102	1003	1084	1383
1586	1587	1588	2.7805-02	2.7005+02 1500
2.780E+02	2.780E+02	2.780E+02	2 879E+02	2 877E+02
1591	1592	1593	1594	1595
2.847E+02	2,808E+02	2.795E+02	2.787E+02	2.782E+02
1596	1597	1598	1599	1600
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
1601	1602	1603	1604	1605
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
1606	1607	1608	1609	1610
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
1011	1612	1613	1614	1615
2.7805+02	2.7805+02	2.780E+02	2.780E+02	2.780E+02
2 780E+02	2 780E+02	2 8798+02	2 8788402	2 8778+02
1621	1622	1623	1624	1625
2.874E+02	2.832E+02	2.807E+02	2.793E+02	2.785E+02
1626	1627	1628	1629	1630
2.781E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
1631	1632	1633	1634	1635
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
1636	1637	1638	1639	1640
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
1641	1642	1643	1644	1645
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
1040 0 7000-00	104/	1048	1649 2.0705-22	1650 0.0775:00
2./005+02 1651	∠.0/95+U2 1650	∠.8/9£+U2 1652	2.8/8E+U2	2.8//E+02
2 8568+02	2 841F+02	2 815P+02	1034 2 7982102	1000 0 7875100
1656	1657	1658	1659	1660
2.782E+02	2.780E+02	2.780E+02	2,780E+02	2,780E+02
1661	1662	1663	1664	1665
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
1666	1667	1668	1669	1670
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
1671	1672	1673	1674	1675

2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
1676	1677	1678	1679	1680
2 879E+02	2 879E+02	2 878E+02	2 878E+02	2 877E+02
1681	1682	1683	1684	1685
3 967EL03	2 0/0ETU2	1 0335403	J 003ET0J	2 7005+02
1606	1607	1600	1600	1600
1000 TOOD	1007	1000	1009	1090
2,/836+02	2.7805+02	2.7806+02	2.7805+02	2.7805+02
1091	1692	1693	1694	1095
2.7806+02	2.7805+02	2.780E+02	2.7805+02	2.780E+02
1696	1697	1698	1699	1700
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
1701	1702	1703	1704	1705
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.879E+02
1706	1707	1708	1709	1710
2.879E+02	2.878E+02	2.878E+02	2.877E+02	2.877E+02
1711	1712	1713	1714	1715
2.865E+02	2.854E+02	2.826E+02	2.807E+02	2.792E+02
1716	1717	1718	1719	1720
2.783E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
1721	1722	1723	1724	1725
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
1726	1727	1728	1729	1730
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
1731	1732	1733	1734	1735
2.780E+02	2.780E+02	2.780E+02	2.879E+02	2.879E+02
1736	1737	1738	1739	1740
2.879E+02	2 8785+02	2 877E+02	2 877E+02	2 876E+02
1741	1742	1743	1744	1745
2 8688+02	2 8588+02	2 830E+02	2 8098+02	2 7948+02
1746	1747	17/8	17/0	1750
2 784 8+02	2 7805+02	2 7805+02	2 7805+02	2 7805+02
1751	1752	1753	1754	1755
2 7808+02	2 7808+02	2 780F+02	2 7808+02	2 7805+02
1756	1757	1750	1750	1760
1/00 0 7000±00	1/J/ 2 7000±02	1730 2 700 Et 02	17000+00	1700 1700 E+01
2.7006T02 1761	2.7005702	2.700ET02	2.7005T02 1764	2.7005T02
1/01	1/02	1/03	1/04	1/05 0.070100
2.7805+02	2.7805+02	2.8/95+02	2.8/95+02	2.8/9E+U2
1/00	1/0/ 0.070E+00	1/08	1/09	1//0
2.8/85+UZ	2.8/85+02	2.8//5+02	2.8776+02	2.8/05+02
7/17	1//2	1//3	1//4	1//5
2.0036TUZ	2.0395702	2.0325702	2.0126+02	2.7955402
1//0	1///	1//8	1//9	1/80
2./84E+UZ	2.7806+02	2.7805+02	2.7806+02	2.7805+02
1/81	1/82	1/83	1/84	1/85
2.7805+02	2.7805+02	2.7805+02	2.7806+02	2.7806+02
1/86	1/8/	1/88	1789	1790
2.7805+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
1791	1792	1793	1794	1795
2.780E+02	2.879E+02	2.879E+02	2.879E+02	2.878E+02
1796	1797	1798	1799	1800
2.878E+02	2.877E+02	2.877E+02	2.877E+02	2.876E+02
1801	1802	1803	1804	1805
2.866E+02	2.860E+02	2.834E+02	2.813E+02	2.796E+02
1806	1807	1808	1809	1810
2.784E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
1811	1812	1813	1814	1815
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
1816	1817	1818	1819	1820
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
1821	1822	1823	1824	1825
2.879E+02	2.879E+02	2.879E+02	2.878E+02	2.878E+02
1826	1827	1828	1829	1830
2.877E+02	2.877E+02	2.877E+02	2.877E+02	2.876E+02
1831	1832	1833	1834	1835
2.866E+02	2.861E+02	2.835E+02	2.814E+02	2.796E+02
1836	1837	1838	1839	1840
2.783E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
1841	1842	1843	1844	1845
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
1846	1847	1848	1849	1850
2.780E+02	2,780E+02	2,780E+02	2,780E+02	2,879E+02
1851	1852	1853	1854	1855
2.879E+02	2.879E+02	2.878E+02	2.878E+02	2,878E+02
1856	1857	1858	1859	1860
2.877E+02	2.877E+02	2.877E+02	2.876E+02	2.876E+02

-

140

.

•

1861	1862	1863	1864	1865
2.867E+02	2.861E+02	2.836E+02	2.815E+02	2.796E+02
1866	1867	1868	1869	1870
2.783E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
18/1 2 7005±02	18/2	10/3 2 700E+02	18/4 3 700 ELOS	18/5 2 7005±02
1876	1877	1878	1879	1880
2.780E+02	2.780E+02	2.780E+02	2.879E+02	2.879E+02
1881	1882	1883	1884	1885
2.879E+02	2.879E+02	2.878E+02	2.878E+02	2.877E+02
1886	1887	1888	1889	1890
2.877E+02	2.877E+02	2.877E+02	2.876E+02	2.876E+02
1891	1892	1893	1894	1895
2.8/25+02	2.801E+U2 1907	2.8376402	2.815E+UZ 1800	1000
2.783E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
1901	1902	1903	1904	1905
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
1906	1907	1908	1909	1910
2.780E+02	2.780E+02	2.879E+02	2.879E+02	2.879E+02
1911	1912	1913	1914	1915
2.8/9E+02 1016	2.8/85+02	2.8/85+02 1019	2.8//6+02	2.8//E+U2 1020
2.877E+02	2.877E+02	2.876E+02	2 876E+02	2 876E+02
1921	1922	1923	1924	1925
2.875E+02	2.861E+02	2.837E+02	2.815E+02	2.795E+02
1926	1927	1928	1929	1930
2.782E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
1931	1932	1933	1934	1935
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
1930 2 780F+02	1937 2 879F+02	1930 2 879F+02	2 8798+02	1940 2 870F+02
1941	1942	1943	1944	1945
2.878E+02	2.878E+02	2.878E+02	2.877E+02	2.877E+02
1946	1947	1948	1949	1950
2.877E+02	2.877E+02	2.876E+02	2.876E+02	2.876E+02
1951	1952	1953	1954	1955
2.875E+02	2.861E+02	2.837E+02	2.815E+02	2.794E+02
2 782E+02	2 7808+02	2 780E+02	1939 2 780E+02	1900 2 780E+02
1961	1962	1963	1964	1965
2.780E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
1966	1967	1968	1969	1970
2.879E+02	2.879E+02	2.879E+02	2.879E+02	2.878E+02
1971	1972	1973	1974	1975
2.878E+02	2.878E+02	2.877E+02	2.877E+02	2.877E+02
2 877E+02	2 876E+02	2 876E+02	1979 2 876E+02	2 8768+02
1981	1982	1983	1984	1985
2.875E+02	2.860E+02	2.838E+02	2.815E+02	2.793E+02
1986	1987	1988	1989	1990
2.781E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02
1991	1992	1993	1994	1995
2.7805+02	2./80E+02 1007	2.7805+02	2.7805+02	2.8/95+02
2.879E+02	2 8798+02	2 8798+02	2 878E+02	2000 2 878F+02
2001	2002	2003	2004	2005
2.878E+02	2.878E+02	2.877E+02	2.877E+02	2.877E+02
2006	2007	2008	2009	2010
2.877E+02	2.876E+02	2.876E+02	2.876E+02	2.875E+02
2011	2012	2013	2014	2015
2.875E+02	2.861E+02	2.838E+02	2.815E+02	2.792E+02
2010 2 781F+02	2017	2010 2 780F+02	2019	2020
2021	2022	2023	2024	2025
2.780E+02	2.780E+02	2.780E+02	2.879E+02	2.879E+02
2026	2027	2028	2029	2030
2.879E+02	2.879E+02	2.879E+02	2.878E+02	2.878E+02
2031	2032	2033	2034	2035
2.878E+02	2.877E+02	2.877E+02	2.877E+02	2.877E+02
2030 2 876₽±03	2037 2 8768+02	2038 2 876₽±02	2039 2 875₽±02	2040 2 8755±00
2041	2042	2043	2044	2045
2.875E+02	2.862E+02	2.838E+02	2.815E+02	2.791E+02
2046	2047	2048	2049	2050

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.781E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2051	2052	2053	2054	2055	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.780E+02	2.780E+02	2.879E+02	2.879E+02	2.879E+02	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2056	2057	2058	2059	2060	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.879E+02	2.879E+02	2.878E+02	2.878E+02	2.878E+02	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2061	2062	2063	2064	2065	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.878E+02	2.877E+02	2.877E+02	2.877E+02	2.876E+02	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2066	2067	2068	2069	2070	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.876E+02	2.876E+02	2.875E+02	2.875E+02	2.875E+02	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2071	2072	2073	2074	2075	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.875E+02	2.863E+02	2.840E+02	2.814E+02	2.790E+02	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2076	2077	2078	2079	2080	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.781E+02	2.780E+02	2.780E+02	2.780E+02	2,780E+02	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2081	2082	2083	2084	2085	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.780E+02	2.879E+02	2.879E+02	2.879E+02	2.879E+02	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2086	2087	2088	2089	2090	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.879E+02	2.879E+02	2.878E+02	2.878E+02	2.878E+02	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2091	2092	2093	2094	2095	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.878E+02	2.877E+02	2.877E+02	2.876E+02	2.876E+02	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2096	2097	2098	2099	2100	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.876E+02	2.875E+02	2.875E+02	2.875E+02	2.875E+02	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2101	2102	2103	2104	2105	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.874E+02	2.866E+02	2.841E+02	2.814E+02	2.789E+02	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2106	2107	2108	2109	2110	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2,781E+02	2.780E+02	2.780E+02	2.780E+02	2.780E+02	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2111	2112	2113	2114	2115	
2116 2117 2118 2119 2120 2.879E+02 2.879E+02 2.879E+02 2.878E+02 2.878E+02 2121 2122 2123 2124 2125 2.877E+02 2.877E+02 2.876E+02 2.876E+02 2.876E+02 2126 2127 2128 2129 2130 2.875E+02 2.875E+02 2.875E+02 2.874E+02 2.874E+02 2131 2132 2133 2134 2135 2.874E+02 2.869E+02 2.846E+02 2.817E+02 2.789E+02 2136 2137 2138 2139 2136 2136 2137 2138 2139 2139	2,880E+02	2.879E+02	2.879E+02	2.879E+02	2.879E+02	
2.879E+02 2.879E+02 2.879E+02 2.878E+02 2.878E+02 2121 2122 2123 2124 2125 2.877E+02 2.877E+02 2.876E+02 2.876E+02 2.876E+02 2126 2127 2128 2129 2130 2.875E+02 2.875E+02 2.875E+02 2.874E+02 2131 2132 2133 2134 2135 2.874E+02 2.869E+02 2.846E+02 2.817E+02 2.789E+02 2136 2137 2138 2139 2139	2116	2117	2118	2119	2120	
2121 2122 2123 2124 2125 2.877E+02 2.877E+02 2.876E+02 2.876E+02 2.876E+02 2126 2127 2128 2129 2130 2.875E+02 2.875E+02 2.875E+02 2.874E+02 2.874E+02 2131 2132 2133 2134 2135 2.874E+02 2.869E+02 2.846E+02 2.817E+02 2.789E+02 2136 2137 2138 2139	2.879E+02	2.879E+02	2.879E+02	2.878E+02	2.878E+02	
2.877E+02 2.877E+02 2.876E+02 2.876E+02 2.876E+02 2126 2127 2128 2129 2130 2.875E+02 2.875E+02 2.875E+02 2.874E+02 2.874E+02 2131 2132 2133 2134 2135 2.874E+02 2.869E+02 2.846E+02 2.817E+02 2.789E+02 2136 2137 2138 2139	2121	2122	2123	2124	2125	
212621272128212921302.875E+022.875E+022.875E+022.874E+022.874E+02213121322133213421352.874E+022.869E+022.846E+022.817E+022.789E+022136213721382139	2.877E+02	2.877E+02	2.876E+02	2.876E+02	2.876E+02	
2.875E+02 2.875E+02 2.875E+02 2.874E+02 2.874E+02 2131 2132 2133 2134 2135 2.874E+02 2.869E+02 2.846E+02 2.817E+02 2.789E+02 2136 2137 2138 2139 2012000 0000000000000000000000000000000	2126	2127	2128	2129	2130	
2131 2132 2133 2134 2135 2.874E+02 2.869E+02 2.846E+02 2.817E+02 2.789E+02 2136 2137 2138 2139	2,875E+02	2.875E+02	2.875E+02	2.874E+02	2.874E+02	
2.874E+02 2.869E+02 2.846E+02 2.817E+02 2.789E+02 2136 2137 2138 2139	2131	2132	2133	2134	2135	
2136 2137 2138 2139	2.874E+02	2.869E+02	2.846E+02	2.817E+02	2.789E+02	
	2136	2137	2138	2139		
2,/81E+02 2,780E+02 2,780E+02 2,780E+02	2.781E+02	2.780E+02	2.780E+02	2.780E+02		
1 Position of the Interface Toe at t=0 min. Without Subsurface Barrier	1 Position	of the Inte	rface Toe at	t=0 min. Wi	thout Subsurf	ace Barrier
OFLOTRAN 2.1a CPU 06/13/94 22:23:	OFLOTRAN 2.1a			CPU		06/13/94 22:23:

Calculations required 552.50 CPU seconds Total CPU seconds = 554.11

.

TNODE2 LOCA WID C DENSUM	SET 1 (INFEASIBLE) > 283.74 0.79124 0.45352E-01 0.68043E+10 0.21178E+07	SET 2 (FEASIBLE) 281.19 0.80779 0.44818E-01 0.69509E+10 0.21176E+07	SET 3 (FEASIBLE) 280.45 0.82930 0.45395E-01 0.65585E+10 0.21174E+07	SET 4 (FEASIBLE) 280.91 0.83263 0.45450E-01 0.64389E+10 0.21174E+07	SET 5 (INFEASIBLE) > 278.02 0.88312 0.44419E-01 0.60237E+10 0.21167E+07
TNODE2 LOCA WID C DENSUM	SET 6 (INFEASIBLE) > 278.97 0.84350 0.45909E-01 0.68056E+10 0.21173E+07	SET 7 (INFEASIBLE) > 278.00 0.88093 0.46534E-01 0.74555E+10 0.21165E+07	SET 8 (FEASIBLE) 280.50 0.85685 0.45361E-01 0.62804E+10 0.21173E+07	SET 9 (INFEASIBLE) > 278.36 0.88738 0.47337E-01 0.58207E+10 0.21170E+07	SET 10 (FEASIBLE) 282.56 0.85116 0.44404E-01 0.61050E+10 0.21174E+07
TNODE2 LOCA WID C DENSUM	SET 11 (FEASIBLE) 281.41 0.88312 0.49568E-01 0.51549E+10 0.21172E+07				
SELECT A	AND SAVE THE BES	ST 6 DESIGN S	SETS FOR SUBSEQ	QUENT OPTIMIZAT	TION LOOPING
REMOVED	DESIGN SET 1	(DENSUM = 0.2)	21178E+07)		
REMOVED	DESIGN SET 2	(DENSUM = 0.2)	21176E+07)		
REMOVED	DESIGN SET 3	(DENSUM = 0.2	21174E+07)		
REMOVED	DESIGN SET 4	(DENSUM = 0.2)	21174E+07)		
REMOVED	DESIGN SET 10	(DENSUM = 0.2)	21174E+07)		
LIST OP1	TIMIZATION SETS	FROM SET 1 T	CO SET 13, AND	SHOW ONLY OPI	TIMIZATION PARAMETERS
TNODE2 LOCA WID C DENSUM	SET 1 (INFEASIBLE) > 278.02 0.88312 0.44419E-01 0.60237E+10 0.21167E+07	SET 2 (INFEASIBLE) > 278.97 0.84350 0.45909E-01 0.68056E+10 0.21173E+07	SET 3 (INFEASIBLE) > 278.00 0.88093 0.46534E-01 0.74555E+10 0.21165E+07	SET 4 (FEASIBLE) 280.50 0.85685 0.45361E-01 0.62804E+10 0.21173E+07	SET 5 (INFEASIBLE) > 278.36 0.88738 0.47337E-01 0.58207E+10 0.21170E+07
TNODE2 LOCA WID C DENSUM	SET 6 (FEASIBLE) 281.41 0.88312 0.49568E-01 0.51549E+10 0.21172E+07	SET 7 (INFEASIBLE) > 285.15 0.85580 0.51045E-01 0.47602E+10 0.21176E+07	SET 8 (INFEASIBLE) > 279.39 0.89331 0.20251E-01 0.12217E+11 0.21166E+07	SET 9 (INFEASIBLE) > 278.01 0.88630 0.47977E-01 0.62562E+10 0.21168E+07	SET 10 (INFEASIBLE) > 278.00 0.89676 0.45849E-01 0.10698E+11 0.21161E+07
TNODE2 LOCA WID C DENSUM	SET 11 (INFEASIBLE) > 278.00 0.88668 0.56351E-01 0.57825E+10 0.21167E+07	SET 12 (INFEASIBLE) > 278.00 0.74557 0.61936E-01 0.16802E+11 0.21172E+07	SET 13 (INFEASIBLE) > 278.00 0.86032 0.53664E-01 0.67440E+10 0.21168E+07		

SELECT AND SAVE THE BEST 6 DESIGN SETS FOR SUBSEQUENT OPTIMIZATION LOOPING

REMOVED DESIGN SET 8 (DENSUM = 0.21166E+07) REMOVED DESIGN SET 12 (DENSUM = 0.21172E+07) REMOVED DESIGN SET 11 (DENSUM = 0.21167E+07) REMOVED DESIGN SET 2 (DENSUM = 0.21173E+07)

. >

LIST OPTIMIZATION SETS FROM SET 1 TO SET 11, AND SHOW ONLY OPTIMIZATION PARAMETERS

REMOVED	DESIGN	SET	1	(DENSUM	= 0.21167E+07)
REMOVED	DESIGN	SET	10	(DENSUM	= 0.21161E+07)
REMOVED	DESIGN	SET	4	(DENSUM	= 0.21173E+07)
SELECT I	AND SAV	E THE	BES	ST 6 DE	SIGN SETS FOR SUBSEQUENT OPTIMIZATION LOOPING
REMOVED	DESIGN	SET	9	(DENSUM	= 0.21205E+07)
REMOVED	DESTON	erm	10	(DENSIN	$= 0.21160 \pm 0.7$
REMOVED	DEDIGN	051	10	(DENSON	
REMUVED	DESIGN	SET	18	(DENSOM	= 0.21169E+07)
REMOVED	DESIGN	SET	12	(DENSUM	= 0.21217E+07)
REMOVED	DESIGN	SET	17	(DENSUM	= 0.21170E+07)
REMOVED	DESIGN	SET	16	(DENSUM	= 0.21171E+07)
REMOVED	DESIGN	SET	13	(DENSUM	= 0.21166E+07)
REMOVED	DESIGN	SET	14	(DENSUM	= 0.21170E+07)
REMOVED	DESIGN	SET	б	(DENSUM	= 0.21179E+07)
REMOVED	DESIGN	SET	15	(DENSUM	= 0.21178E+07)
REMOVED	DESIGN	SET	11	(DENSUM	= 0.21180E+07)
REMOVED	DESIGN	SET	10	(DENSUM	= 0.21226E+07)
REMOVED	DESIGN	SET	3	(DENSUM	= 0.21230E+07)
REMOVED	DESIGN	SET	5	(DENSUM	= 0.21243E+07)
REMOVED	DESIGN	SET	4	(DENSUM	= 0.21235E+07)
REMOVED	DESIGN	SET	8	(DENSUM	= 0.21202E+07)
REMOVED	DESIGN	SET	21	(DENSUM	= 0.21203E+07)
REMOVED	DESIGN	SET	26	(DENSUM	= 0.21221E+07)
REMOVED	DESIGN	SET	22	(DENSUM	= 0.21214E+07)
REMOVED	DESIGN	SET	24	(DENSUM	= 0.21221E+07)
REMOVED	DESIGN	SET	7	(DENSUM	= 0.21214E+07)

BEST VARIABLES ARE

	SET 3
	(FEASIBLE)
TNODE2	280.53
LOCA	0.54000
WID	0.50000E-01
DENSUM	0.21169E+07

****** SUMMARY OF CONSTRAINTS (IF ANY) EVALUATED AT THE CURRENT OPTIMAL SOLUTION ******

****** DESIGN SENSITIVITY SUMMARY TABLE ******

DERIVATIVES ARE EVALUATED AT THE CURRENT OPTIMAL DESIGN VECTOR

	DENSUM	TNODE2
LOCA	-0.3093E+06	-581.6
WID	0.	-634.6

LIST OPTIMIZATION SETS FROM SET 1 TO SET 7, AND SHOW ONLY OPTIMIZATION PARAMETERS SET 1 SET 2 SET 3 SET 4 SET 5 (INFEASIBLE) (INFEASIBLE) (FEASIBLE) (INFEASIBLE) (INFEASIBLE) TNODE2 287.97 > 287.97 280.53 > 287.97 > 287.97 0.51885 LOCA 0.54000 0.54000 0.54000 0.52201 0.50000E-01 0.50000E-01 0.50640E-01 0.50000E-01 0.49615E-01 WID DENSIIM 0.21215E+07 0.21215E+07 0.21169E+07 0.21218E+07 0.21218E+07 SET 6 SET 7 (INFEASIBLE) (INFEASIBLE) TNODE2 > 287.97 > 287.98 LOCA 0.50597 0.46543 WID 0.50360E-01 0.57657E-01 DENSUM 0.21220E+07 0.21221E+07 SELECT AND SAVE THE BEST 6 DESIGN SETS FOR SUBSEQUENT OPTIMIZATION LOOPING REMOVED DESIGN SET 6 (DENSUM = 0.21220E+07) LIST OPTIMIZATION SETS FROM SET 1 TO SET 7, AND SHOW ONLY OPTIMIZATION PARAMETERS SET 3 SET 1 SET 2 SET 4 SET 5 (INFEASIBLE) (INFEASIBLE) (FEASIBLE) (INFEASIBLE) (INFEASIBLE) TNODE2 > 287.97 > 287.97 280.53 > 287.97 > 287.97 LOCA 0.54000 0.54000 0.54000 0.52201 0.51885 WID 0.50000E-01 0.50000E-01 0.50000E-01 0.49615E-01 0.50640E-01 DENSUM 0.21215E+07 0.21215E+07 0.21169E+07 0.21218E+07 0.21218E+07 SET 6 SET 7 (INFEASIBLE) (INFEASIBLE) TNODE2 > 287.98 > 287.98 0.46543 0.47732 LOCA WID 0.57657E-01 0.43399E-01 DENSUM 0.21221E+07 0.21233E+07 SELECT AND SAVE THE BEST 6 DESIGN SETS FOR SUBSEQUENT OPTIMIZATION LOOPING REMOVED DESIGN SET 6 (DENSUM = 0.21221E+07)

BEST VARIABLES ARE

	SET 3
	(FEASIBLE)
TNODE2	280.53
LOCA	0.54000
WID	0.50000E-01
DENSUM	0.21169E+07

****** SUMMARY OF CONSTRAINTS (IF ANY) EVALUATED AT THE CURRENT OPTIMAL SOLUTION ******

****** DESIGN SENSITIVITY SUMMARY TABLE ******

DERIVATIVES ARE EVALUATED AT THE CURRENT OPTIMAL DESIGN VECTOR

	DENSUM	TNODE2
LOCA	-0.1046E+06	-5521.
WID	0.	0.1179E+05

LIST OPTIMIZATION SETS FROM SET 1 TO SET 7, AND SHOW ONLY OPTIMIZATION PARAMETERS

	SET 1	SET 2	SET 3	SET 4	SET 5
	(INFEASIBLE)	(INFEASIBLE)	(FEASIBLE)	(INFEASIBLE)	(INFEASIBLE)
TNODE2	> 287.97	> 287.97	280.53	> 287.97	> 287.97
LOCA	0.54000	0.54000	0.54000	0.52201	0.51885
WID	0.50000E-01	0.50000E-01	0.50000E-01	0.49615E-01	0.50640E-01
DENSUM	0.21215E+07	0.21215E+07	0.21169E+07	0.21218E+07	0.21218E+07

TNODE2 LOCA WID DENSUM	SET 6 SET 7 (INFEASIBLE) (INFEASIBLE) > 287.98 > 287.97 0.47732 0.54224 0.43399E-01 0.48604E-01 0.21233E+07 0.21216E+07	
**** RO	OUTINE COMPLETED ***** CP =	1935.560
LIST OPT	TIMIZATION SETS FROM SET 1 TO	SET 6, AND SHOW ONLY OPTIMIZATION PARAMETERS
TNODE2 LOCA WID DENSUM	SET 1 SET 2 (INFEASIBLE) (INFEASIBLE) (I > 287.97 > 287.97 0.54000 0.54000 0.50000E-01 0.50000E-01 0.21215E+07 0.21215E+07	SET 3SET 4SET 5FEASIBLE)(INFEASIBLE)(INFEASIBLE)280.53> 287.97> 287.970.540000.522010.518850.50000E-010.49615E-010.50640E-010.21169E+070.21218E+070.21218E+07
TNODE2 LOCA WID DENSUM	SET 6 (INFEASIBLE) > 287.97 0.50597 0.50360E-01 0.21220E+07	
*** EXIT	F FROM ANSYS DESIGN OPTIMIZATION	N (/OPT) ***
**** RO	DUTINE COMPLETED ***** CP =	1.490
LIST OPT	FIMIZATION SETS FROM SET 1 TO	SET 15, AND SHOW ONLY OPTIMIZATION PARAMETERS
TNODE2 LOCA WID C DENSUM	SET 1SET 2(INFEASIBLE)(INFEASIBLE)(I> 278.00> 278.000.500000.500000.60000E-010.60000E-010.12000E+110.12000E+110.21192E+070.21192E+07	SET 3SET 4SET 5FEASIBLE)(FEASIBLE)(FEASIBLE)281.75282.28281.750.870000.890000.540000.40000E-010.40000E-010.56000E-010.65700E+100.60000E+100.98300E+100.21172E+070.21171E+070.21196E+07
TNODE2 LOCA WID C DENSUM	SET 6 SET 7 (INFEASIBLE) (INFEASIBLE) (I > 278.00 > 278.00 0.80830 0.71542 0.40145E-01 0.39023E+11 0.61556E+11 0.21168E+07 0.21174E+07	SET 8SET 9SET 10INFEASIBLE) (FEASIBLE) (INFEASIBLE)(INFEASIBLE)278.01280.08> 279.610.808710.896750.898230.15183E-010.41279E-010.41337E-010.46972E+110.60355E+100.60794E+100.21168E+070.21170E+070.21169E+07
TNODE2 LOCA WID C DENSUM ***** ROU	SET 11 SET 12 (INFEASIBLE) (INFEASIBLE) (I > 279.97 > 279.79 > 0.89745 0.89820 0.41281E-01 0.41284E-01 0.60422E+10 0.60649E+10 0.21169E+07 0.21169E+07 0.21169E+07 > DUTINE COMPLETED ***** CP =	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
LIST OPT:	IMIZATION SETS FROM SET 1 TO	SET 15, AND SHOW ONLY OPTIMIZATION PARAMETERS
TNODE2 LOCA WID C DENSUM	SET 1 SET 2 (INFEASIBLE) (INFEASIBLE) (I > 278.00 > 278.00 > 0.35000 0.35000 0.64000E-01 0.64000E-01 0.64000E-01 0.32000E+11 0.21196E+07 0.21196E+07	SET 3SET 4SET 5CNFEASIBLE)(INFEASIBLE)(INFEASIBLE)287.90>278.00>0.870000.320000.840000.20000E-010.65000E-010.26000E-010.65700E+100.62000E+110.95300E+110.21187E+070.21197E+070.21166E+07
TNODE2 LOCA WID C	SET 6 SET 7 (INFEASIBLE) (INFEASIBLE) (I > 278.00 > 278.00 > 0.80830 0.71542 > 0.40145E-01 0.44566E-01 > 0.39023E+11 0.61556E+11 >	SET8SET9SET10INFEASIBLE)(INFEASIBLE)(INFEASIBLE)278.01>278.00>278.000.808710.870990.858480.15183E-010.19661E-010.19902E-010.46972E+110.47342E+110.47231E+11

	$e_{\rm PT} = 11$ $e_{\rm PT} = 12$ $e_{\rm PT} = 12$ $e_{\rm PT} = 13$ $e_{\rm PT} = 14$ $e_{\rm PT} = 15$
	(INFEASIBLE) (INFEASIBLE) (INFEASIBLE) (INFEASIBLE)
TNODE2	> 278.00 > 278.01 > 278.01 > 278.01 > 278.01 > 278.01
WID	0.17733E-01 0.15122E-01 0.15165E-01 0.15121E-01 0.15167E-01
C	0.46222E+11 0.75063E+11 0.46861E+11 0.47003E+11 0.47049E+11
DENSUM	0.2116/E+0/ 0.211/2E+0/ 0.21169E+0/ 0.211/0E+0/ 0.211/0E+0/
SELECT /	AND SAVE THE BEST 15 DESIGN SETS FOR SUBSEQUENT OPTIMIZATION LOOPING
LIST OP	TIMIZATION SETS FROM SET 1 TO SET 11, AND SHOW ONLY OPTIMIZATION PARAMETERS
	SET 1 SET 2 SET 3 SET 4 SET 5
TNODE2	(FEASIBLE) (INFEASIBLE) (
LOCA	0.54000 0.54000 0.54000 0.45000 0.44000
C C	0.50000E-01 0.50000E-01 0.35000E-01 0.45000E-01 0.40000E-01 0.11300E+11 0.11300E+11 0.17000E+13 0.15000E+11 0.15300E+11
DENSUM	0.21194E+07 0.21194E+07 0.21192E+07 0.21199E+07 0.21203E+07
	SET 6 SET 7 SET 8 SET 9 SET 10
	(INFEASIBLE) (FEASIBLE) (INFEASIBLE) (FEASIBLE) (FEASIBLE)
TNODE2	> 278.96 281.56 > 283.74 280.27 281.19 0 75348 0 60092 0 79124 0 65404 0 80779
WID	0.46364E-01 0.48817E-01 0.45352E-01 0.49207E-01 0.44818E-01
C	0.81771E+10 0.10162E+11 0.68043E+10 0.92967E+10 0.69509E+10 0.21170E+07 0.21101E+07 0.21170E+07 0.21107E+07 0.21177E+07
DENSON	0.211/9E+0/ 0.21191E+0/ 0.211/8E+0/ 0.2118/E+0/ 0.211/6E+0/
	SET 11
TNODE2	(INFERSIBLE) > 278.06
LOCA	0.87957
WID	0.48236E-01 0.52832E+10
DENSUM	0.21169E+07
SELECT A	
ochier i	AND SAVE THE BEST 6 DESIGN SETS FOR SUBSEQUENT OPTIMIZATION LOOPING
REMOVED	AND SAVE THE BEST 6 DESIGN SETS FOR SUBSEQUENT OPTIMIZATION LOOPING DESIGN SET 5 (DENSUM = 0.21203E+07)
REMOVED REMOVED	AND SAVE THE BEST 6 DESIGN SETS FOR SUBSEQUENT OPTIMIZATION LOOPING DESIGN SET 5 (DENSUM = 0.21203E+07) DESIGN SET 4 (DENSUM = 0.21199E+07)
REMOVED REMOVED REMOVED	AND SAVE THE BEST 6 DESIGN SETS FOR SUBSEQUENT OPTIMIZATION LOOPING DESIGN SET 5 (DENSUM = 0.21203E+07) DESIGN SET 4 (DENSUM = 0.21199E+07) DESIGN SET 3 (DENSUM = 0.21192E+07)
REMOVED REMOVED REMOVED REMOVED	AND SAVE THE BEST 6 DESIGN SETS FOR SUBSEQUENT OPTIMIZATION LOOPING DESIGN SET 5 (DENSUM = 0.21203E+07) DESIGN SET 4 (DENSUM = 0.21199E+07) DESIGN SET 3 (DENSUM = 0.21192E+07) DESIGN SET 1 (DENSUM = 0.21194E+07)
REMOVED REMOVED REMOVED REMOVED	AND SAVE THE BEST 6 DESIGN SETS FOR SUBSEQUENT OPTIMIZATION LOOPING DESIGN SET 5 (DENSUM = 0.21203E+07) DESIGN SET 4 (DENSUM = 0.21199E+07) DESIGN SET 3 (DENSUM = 0.21192E+07) DESIGN SET 1 (DENSUM = 0.21194E+07) DESIGN SET 2 (DENSUM = 0.21194E+07)
REMOVED REMOVED REMOVED REMOVED REMOVED	AND SAVE THE BEST 6 DESIGN SETS FOR SUBSEQUENT OPTIMIZATION LOOPING DESIGN SET 5 (DENSUM = 0.21203E+07) DESIGN SET 4 (DENSUM = 0.21199E+07) DESIGN SET 3 (DENSUM = 0.21192E+07) DESIGN SET 1 (DENSUM = 0.21194E+07) DESIGN SET 2 (DENSUM = 0.21194E+07)
REMOVED REMOVED REMOVED REMOVED REMOVED DESIGN S	AND SAVE THE BEST 6 DESIGN SETS FOR SUBSEQUENT OPTIMIZATION LOOPING DESIGN SET 5 (DENSUM = 0.21203E+07) DESIGN SET 4 (DENSUM = 0.21199E+07) DESIGN SET 3 (DENSUM = 0.21192E+07) DESIGN SET 1 (DENSUM = 0.21194E+07) DESIGN SET 2 (DENSUM = 0.21194E+07) SET 5 IS THE BEST DESIGN WITH DENSUM = 0.21176E+07 (FEASIBLE)
REMOVED REMOVED REMOVED REMOVED REMOVED DESIGN S STATE VA	AND SAVE THE BEST 6 DESIGN SETS FOR SUBSEQUENT OPTIMIZATION LOOPING DESIGN SET 5 (DENSUM = 0.21203E+07) DESIGN SET 4 (DENSUM = 0.21199E+07) DESIGN SET 3 (DENSUM = 0.21192E+07) DESIGN SET 1 (DENSUM = 0.21194E+07) DESIGN SET 2 (DENSUM = 0.21194E+07) SET 5 IS THE BEST DESIGN WITH DENSUM = 0.21176E+07 (FEASIBLE) ARIABLE VIOLATION FOR DESIGN SET 6 (TNODE2 = 278.062)
REMOVED REMOVED REMOVED REMOVED REMOVED DESIGN S STATE VA LIST OPT	AND SAVE THE BEST 6 DESIGN SETS FOR SUBSEQUENT OPTIMIZATION LOOPING DESIGN SET 5 (DENSUM = 0.21203E+07) DESIGN SET 4 (DENSUM = 0.21199E+07) DESIGN SET 3 (DENSUM = 0.21192E+07) DESIGN SET 1 (DENSUM = 0.21194E+07) DESIGN SET 2 (DENSUM = 0.21194E+07) SET 5 IS THE BEST DESIGN WITH DENSUM = 0.21176E+07 (FEASIBLE) ARIABLE VIOLATION FOR DESIGN SET 6 (TNODE2 = 278.062) PIMIZATION SETS FROM SET 1 TO SET 10, AND SHOW ONLY OPTIMIZATION PARAMETERS
REMOVED REMOVED REMOVED REMOVED REMOVED DESIGN S STATE VA LIST OPT	AND SAVE THE BEST 6 DESIGN SETS FOR SUBSEQUENT OPTIMIZATION LOOPING DESIGN SET 5 (DENSUM = 0.21203E+07) DESIGN SET 4 (DENSUM = 0.21199E+07) DESIGN SET 3 (DENSUM = 0.21192E+07) DESIGN SET 1 (DENSUM = 0.21194E+07) DESIGN SET 2 (DENSUM = 0.21194E+07) SET 5 IS THE BEST DESIGN WITH DENSUM = 0.21176E+07 (FEASIBLE) RIABLE VIOLATION FOR DESIGN SET 6 (TNODE2 = 278.062) PIMIZATION SETS FROM SET 1 TO SET 10, AND SHOW ONLY OPTIMIZATION PARAMETERS SET 1 SET 2 SET 3 SET 4 SET 5
REMOVED REMOVED REMOVED REMOVED REMOVED DESIGN S STATE VA LIST OPT	AND SAVE THE BEST 6 DESIGN SETS FOR SUBSEQUENT OPTIMIZATION LOOPING DESIGN SET 5 (DENSUM = 0.21203E+07) DESIGN SET 4 (DENSUM = 0.21199E+07) DESIGN SET 3 (DENSUM = 0.21192E+07) DESIGN SET 1 (DENSUM = 0.21194E+07) DESIGN SET 2 (DENSUM = 0.21194E+07) SET 5 IS THE BEST DESIGN WITH DENSUM = 0.21176E+07 (FEASIBLE) RIABLE VIOLATION FOR DESIGN SET 6 (TNODE2 = 278.062) CIMIZATION SETS FROM SET 1 TO SET 10, AND SHOW ONLY OPTIMIZATION PARAMETERS SET 1 SET 2 SET 3 SET 4 SET 5 (INFEASIBLE) (FEASIBLE) (INFEASIBLE) (FEASIBLE) ≥ 278.96 281.56 > 283.74 280.27 281.19
REMOVED REMOVED REMOVED REMOVED REMOVED DESIGN S STATE VA LIST OPT TNODE2 LOCA	AND SAVE THE BEST 6 DESIGN SETS FOR SUBSEQUENT OPTIMIZATION LOOPING DESIGN SET 5 (DENSUM = 0.21203E+07) DESIGN SET 4 (DENSUM = 0.21199E+07) DESIGN SET 1 (DENSUM = 0.21194E+07) DESIGN SET 1 (DENSUM = 0.21194E+07) DESIGN SET 2 (DENSUM = 0.21194E+07) SET 5 IS THE BEST DESIGN WITH DENSUM = 0.21176E+07 (FEASIBLE) ARIABLE VIOLATION FOR DESIGN SET 6 (TNODE2 = 278.062) CIMIZATION SETS FROM SET 1 TO SET 10, AND SHOW ONLY OPTIMIZATION PARAMETERS SET 1 SET 2 SET 3 SET 4 SET 5 (INFEASIBLE) (FEASIBLE) (INFEASIBLE) (FEASIBLE) (FEASIBLE) 278.96 281.56 > 283.74 280.27 281.19 0.75348 0.60092 0.79124 0.65404 0.80779
REMOVED REMOVED REMOVED REMOVED REMOVED DESIGN S STATE VA LIST OPT TNODE2 LOCA WID	ND SAVE THE BEST 6 DESIGN SETS FOR SUBSEQUENT OPTIMIZATION LOOPING DESIGN SET 5 (DENSUM = $0.21203E+07$) DESIGN SET 4 (DENSUM = $0.21199E+07$) DESIGN SET 3 (DENSUM = $0.21192E+07$) DESIGN SET 1 (DENSUM = $0.21194E+07$) DESIGN SET 2 (DENSUM = $0.21194E+07$) SET 5 IS THE BEST DESIGN WITH DENSUM = $0.21176E+07$ (FEASIBLE) ARIABLE VIOLATION FOR DESIGN SET 6 (TNODE2 = 278.062) TIMIZATION SETS FROM SET 1 TO SET 10, AND SHOW ONLY OPTIMIZATION PARAMETERS SET 1 SET 2 SET 3 SET 4 SET 5 (INFEASIBLE) (FEASIBLE) (INFEASIBLE) (FEASIBLE) > 278.96 281.56 > 283.74 280.27 281.19 0.75348 0.60092 0.79124 0.65404 0.80779 0.46364E-01 0.48817E-01 0.45352E-01 0.49207E-01 0.44818E-01 0.07171E100 0.10167E110 0.00027
REMOVED REMOVED REMOVED REMOVED REMOVED DESIGN S STATE VA LIST OPT TNODE2 LOCA WID C DENSUM	NND SAVE THE BEST 6 DESIGN SETS FOR SUBSEQUENT OPTIMIZATION LOOPING DESIGN SET 5 (DENSUM = 0.21203E+07) DESIGN SET 4 (DENSUM = 0.21199E+07) DESIGN SET 3 (DENSUM = 0.21192E+07) DESIGN SET 1 (DENSUM = 0.21194E+07) DESIGN SET 2 (DENSUM = 0.21194E+07) DESIGN SET 2 (DENSUM = 0.21194E+07) DESIGN SET 2 (DENSUM = 0.21194E+07) SET 5 IS THE BEST DESIGN WITH DENSUM = 0.21176E+07 (FEASIBLE) RIABLE VIOLATION FOR DESIGN SET 6 (TNODE2 = 278.062) CIMIZATION SETS FROM SET 1 TO SET 10, AND SHOW ONLY OPTIMIZATION PARAMETERS SET 1 SET 2 SET 3 SET 4 SET 5 (INFEASIBLE) (FEASIBLE) (INFEASIBLE) (FEASIBLE) (FEASIBLE) > 278.96 281.56 > 283.74 280.27 281.19 0.75348 0.60092 0.79124 0.65404 0.80779 0.46364E-01 0.48817E-01 0.45352E-01 0.49207E-01 0.448818E-01 0.81771E+10 0.10162E+11 0.68043E+10 0.92967E+10 0.69509E+10 0.21176E+07 0.21176E+07 0.21176E+07 0.21176E+07
REMOVED REMOVED REMOVED REMOVED REMOVED DESIGN S STATE VA LIST OPT TNODE2 LOCA WID C DENSUM	NND SAVE THE BEST 6 DESIGN SETS FOR SUBSEQUENT OPTIMIZATION LOOPING DESIGN SET 5 (DENSUM = 0.21203E+07) DESIGN SET 4 (DENSUM = 0.21199E+07) DESIGN SET 3 (DENSUM = 0.21192E+07) DESIGN SET 1 (DENSUM = 0.21194E+07) DESIGN SET 2 (DENSUM = 0.21194E+07) DESIGN SET 2 (DENSUM = 0.21194E+07) SET 5 IS THE BEST DESIGN WITH DENSUM = 0.21176E+07 (FEASIBLE) RIABLE VIOLATION FOR DESIGN SET 6 (TNODE2 = 278.062) YIMIZATION SETS FROM SET 1 TO SET 10, AND SHOW ONLY OPTIMIZATION PARAMETERS SET 1 SET 2 SET 3 SET 4 SET 5 (INFEASIBLE) (FEASIBLE) (INFEASIBLE) (FEASIBLE) (FEASIBLE) > 278.96 281.56 > 283.74 280.27 281.19 0.75348 0.60092 0.79124 0.65404 0.80779 0.46364E-01 0.48817E-01 0.49207E-01 0.44818E-01 0.21179E+07 0.21191E+07 0.21178E+07 0.21187E+07 0.21176E+07
REMOVED REMOVED REMOVED REMOVED REMOVED DESIGN S STATE VA LIST OPT TNODE2 LOCA WID C DENSUM	<pre>NND SAVE THE BEST 6 DESIGN SETS FOR SUBSEQUENT OPTIMIZATION LOOPING DESIGN SET 5 (DENSUM = 0.21203E+07) DESIGN SET 4 (DENSUM = 0.21199E+07) DESIGN SET 3 (DENSUM = 0.21192E+07) DESIGN SET 1 (DENSUM = 0.21194E+07) DESIGN SET 2 (DENSUM = 0.21194E+07) SET 5 IS THE BEST DESIGN WITH DENSUM = 0.21176E+07 (FEASIBLE) RIABLE VIOLATION FOR DESIGN SET 6 (TNODE2 = 278.062) PIMIZATION SETS FROM SET 1 TO SET 10, AND SHOW ONLY OPTIMIZATION PARAMETERS SET 1 SET 2 SET 3 SET 4 SET 5 (INFEASIBLE) (FEASIBLE) (INFEASIBLE) (FEASIBLE) > 278.96 281.56 > 283.74 280.27 281.19 0.75348 0.60092 0.79124 0.65404 0.80779 0.46364E-01 0.48817E-01 0.45352E-01 0.49207E-01 0.44818E-01 0.81771E+10 0.10162E+11 0.68043E+10 0.92967E+10 0.69509E+10 0.21179E+07 0.21191E+07 0.21178E+07 0.21187E+07 0.21176E+07 SET 6 SET 7 SET 8 SET 9 SET 10 (INFEASIBLE) (INFEASIBLE) (INFEASIBLE) (FEASIBLE)</pre>
REMOVED REMOVED REMOVED REMOVED REMOVED DESIGN S STATE VA LIST OPT TNODE2 LOCA WID C DENSUM	NND SAVE THE BEST 6 DESIGN SETS FOR SUBSEQUENT OPTIMIZATION LOOPING DESIGN SET 5 (DENSUM = 0.21203E+07) DESIGN SET 4 (DENSUM = 0.21199E+07) DESIGN SET 3 (DENSUM = 0.21192E+07) DESIGN SET 1 (DENSUM = 0.21194E+07) DESIGN SET 2 (DENSUM = 0.21194E+07) DESIGN SET 2 (DENSUM = 0.21194E+07) SET 5 IS THE BEST DESIGN WITH DENSUM = 0.21176E+07 (FEASIBLE) RIABLE VIOLATION FOR DESIGN SET 6 (TNODE2 = 278.062) PUNIZATION SETS FROM SET 1 TO SET 10, AND SHOW ONLY OPTIMIZATION PARAMETERS SET 1 SET 2 SET 3 SET 4 SET 5 (INFEASIBLE) (FEASIBLE) (INFEASIBLE) (FEASIBLE) (FEASIBLE) > 278.96 281.56 > 283.74 280.27 281.19 0.75348 0.60092 0.79124 0.65404 0.80779 0.46364E-01 0.48317E-01 0.45352E-01 0.49207E-01 0.44818E-01 0.81771E+10 0.10162E+11 0.6043E+10 0.92967E+10 0.69509E+10 0.21179E+07 0.21191E+07 0.21178E+07 0.21187E+07 0.21176E+07 SET 6 SET 7 SET 8 SET 9 SET 10 (INFEASIBLE) (INFEASIBLE) (FEASIBLE) (INFEASIBLE) (FEASIBLE) <
REMOVED REMOVED REMOVED REMOVED REMOVED DESIGN S STATE VA LIST OPT TNODE2 LOCA WID C DENSUM	NND SAVE THE BEST 6 DESIGN SETS FOR SUBSEQUENT OPTIMIZATION LOOPING DESIGN SET 5 (DENSUM = 0.21203E+07) DESIGN SET 4 (DENSUM = 0.21199E+07) DESIGN SET 3 (DENSUM = 0.21194E+07) DESIGN SET 1 (DENSUM = 0.21194E+07) DESIGN SET 2 (DENSUM = 0.21194E+07) DESIGN SET 2 (DENSUM = 0.21194E+07) DESIGN SET 2 (DENSUM = 0.21194E+07) SET 5 IS THE BEST DESIGN WITH DENSUM = 0.21176E+07 (FEASIBLE) RIABLE VIOLATION FOR DESIGN SET 6 (TNODE2 = 278.062) NULZATION SETS FROM SET 1 TO SET SET 1 TO SET 10, AND SHOW ONLY OPTIMIZATION PARAMETERS SET 1 SET SET 1 SET 0.75348 0.60092 0.79124 0.65404 0.81771E+10 0.10162E+11 0.810771E+10 0.21178E+07 0.21179E+07 0.21191E+07 0.21179E+07 0.21191E+07 0.21179E+07 0.21191E+07 (INFEASIBLE)
REMOVED REMOVED REMOVED REMOVED REMOVED DESIGN S STATE VA LIST OPT TNODE2 LOCA WID C TNODE2 LOCA WID C	NND SAVE THE BEST 6 DESIGN SETS FOR SUBSEQUENT OPTIMIZATION LOOPING DESIGN SET 5 (DENSUM = 0.21203E+07) DESIGN SET 4 (DENSUM = 0.21199E+07) DESIGN SET 1 (DENSUM = 0.21194E+07) DESIGN SET 1 (DENSUM = 0.21194E+07) DESIGN SET 2 (DENSUM = 0.21194E+07) DESIGN SET 2 (DENSUM = 0.21194E+07) SET 5 IS THE BEST DESIGN WITH DENSUM = 0.21176E+07 (FEASIBLE) RIABLE VIOLATION FOR DESIGN SET 6 (TNODE2 = 278.062) NULZATION SETS FROM SET 1 TO SET 10, AND SHOW ONLY OPTIMIZATION PARAMETERS SET 1 SET 2 SET 3 SET 4 SET 5 (INFEASIBLE) (FEASIBLE) (INFFASIBLE) (FEASIBLE) (FEASIBLE) > 278.96 281.56 > 283.74 280.27 281.19 0.75348 0.60092 0.79124 0.65404 0.80779 0.46364E-01 0.48817E-01 0.45352E-01 0.49207E-01 0.44818E-01 0.81771E+10 0.10162E+11 0.60043E+10 0.92967E+10 0.69509E+10 0.81771E+10 0.21191E+07 0.21178E+07 0.21176E+07 0.21176E+07 SET 6 SET 7 SET 8 SET 9 SET 10 (INFEASIBLE) (INFEASIBLE) (INFEASIBLE) (IFEASIBLE) (FE