
Design and Implementation of a Convolutional Neural Network Using

Tensor-Train Decomposition

by

Junyao Pu

A thesis submitted to the Faculty of Graduate Studies of

The University of Manitoba

in partial fulfillment of the requirements of the degree of

Master of Science

Department of Electrical and Computer Engineering

University of Manitoba

Winnipeg, MB, Canada

Copyright © 2022 by Junyao Pu

Abstract

Neural networks show state-of-the-art performance in different fields. However, this technique suffers a

memory consumption issue as we are handling high-dimensional data more and more often. In this

thesis, we introduce a new formulation of the convolutional layer and verify a new training algorithm

using Bayesian inference. Here we refer to any neural networks with any tensor-train-layers and trained

by Bayesian training algorithm as a Bayesian TensorNet (BTN). The BTN provides a compressed

network size and simplifies the operation in the neural network forward computation.

We developed a novel tensor-train formulation of a convolutional neural network and trained it with a

Bayesian training algorithm for a plant classification problem. We used the idea of representing the

fully connected layer given by Novikov, and our novel tensor-train representation for the convolutional

layer which is more general and straight than the tensor-train representation given by Garipov. We

tested our BTN with a Bayesian training algorithm, which is a algorithm completely different than the

backpropagation training algorithm where we do not need to compute any gradient of the network’s

weights. The training of our BTN was done with a dataset of plant images from the TerraByte

project, an academic agriculture project focusing on the machine learning application development

in modern digital agriculture. We have tested the training result by achieve a 67% accuracy in the

plant classification problem. Currently, the BTN developed here is still computationally expensive. It

could benefit from further optimization, graphics processing unit (GPU) acceleration support and new

development of neural network architectures. Suggested future work includes the exploration of another

numerical integration method and a fair comparison to the backpropagation training algorithm.

Keywords: Machine Learning, Deep learning, Digital Agriculture Bayesian inference, Tensor decompo-

sition, Sequential Monte Carlo method.

Acknowledgment

Above all, I would like to express my very great appreciation to my supervisors, Dr. Sherif Sherif

and Dr. Christopher Bidinosti for their excellent guidance, encouragement, and all the support in my

master’s program. It was a great opportunity to work under their supervision. I would also like to

thank my thesis committee members, Dr. Christopher Henry and Dr. Ahmed Ashraf for his expertise

and assistance.

Thank you as well to my girlfriend and parents for your continuous support and love.

i

Dedication

In dedication to my family.

ii

Contents

Contents iii

List of Figures vii

1 Introduction 1

1.1 Organization of This Thesis . 2

1.2 Thesis Research Contributions . 2

2 Artificial Neural Network 5

2.1 Applications of Neural Network to Digital Agriculture 5

2.2 The TerraByte Project . 5

2.3 Fully Connected Neural Network . 7

2.3.1 Fully Connected Layer . 7

2.3.2 The Activation Function . 8

2.4 Convolutional Neural Network . 10

2.4.1 Convolutional Layer . 11

2.4.2 Flatten Layer . 12

2.5 Neural Network Training . 13

2.5.1 Backpropogation Training Algorithm . 13

2.5.2 Bayesian Training Algorithm . 14

2.6 Convolutional Neural Network in Tensor Train Format 14

2.6.1 Limitations of Modern Convolutional Neural Network 15

2.6.2 Tensor Train Decomposition . 15

iii

3 Tensor Methodology 17

3.1 Tensor Notation . 18

3.2 Tensor Graphical Representation . 18

3.3 Basic Tensor Operations . 19

3.3.1 Multi-Indices . 19

3.3.2 Matricization . 20

3.3.3 Tensorization . 20

3.3.4 Tensor Product . 20

3.3.5 Mode-n Product . 21

3.3.6 Contracted Product . 21

3.3.7 Convolution . 22

3.3.8 Partial Mode-n Convolution . 22

3.3.9 Correlation . 22

3.3.10 Partial Mode-n Correlation . 23

3.4 Tensor Decompositions . 23

3.4.1 Curse of Dimensionality . 23

3.4.2 Rank One Tensor . 24

3.4.3 The Canonical Polyadic Decomposition . 24

3.4.4 The Tucker Decomposition . 25

3.4.5 The Hierarchical Tucker Decomposition . 26

3.4.6 The Tensor Train Decomposition . 27

3.4.7 The Quantized Tensor Train Decomposition . 29

4 Bayesian Neural Network 31

4.1 Derivation of the Recursive Bayesian Solution . 31

4.2 Monte Carlo Integration . 35

4.2.1 Importance Sampling . 36

4.3 The Sequential Monte Carlo Method . 37

4.3.1 Sequential Importance Sampling . 39

4.3.2 Resampling Algorithm . 39

iv

5 Development and Algorithm Implementation 41

5.1 Bayesian TensorNet . 41

5.1.1 Correlation Operation in Tensor Train Format 41

5.1.2 Convolutional Layer in Tensor Train Format . 42

5.1.3 Fully Connected Layer in Tensor Train Format 44

5.1.4 Evaluating the Recursive Bayesian Solution . 45

5.2 Bayesian TensorNet Training Workflow . 48

5.2.1 Preparing the Training Dataset . 49

5.2.2 Neural Network in Tensor Train Format . 51

5.2.3 Prediction Step . 52

5.2.4 Update Step . 52

5.2.5 Variance Threshold . 53

5.2.6 Resampling Implementation . 53

5.3 TensorFlow and T3F Library . 53

6 Training Performance Comparision and Analysis 55

6.1 Training Preformance with Small Prediction Noise . 55

6.2 Training Preformance with Large Prediction Noise . 59

7 Conclusion 63

7.1 Summary . 63

7.2 Future Work and Discussion . 63

Bibliography 65

v

vi

List of Figures

2.1 The EAGL-I system. 6

2.2 TerraByte single plant images. 6

2.3 Fully connected neural network. 8

2.4 Fully connected layer. 9

2.5 Activation functions. 9

2.6 The convolutional nerual network. 10

2.7 Fully overlapping correlation. 12

2.8 Flatten layer. 13

2.9 Tensor Train format of a 3rd order tensor . 16

3.1 Samples of low order tensor. 17

3.2 Tensor graphical representation. 18

3.3 Tensor operation graphical representation. 19

3.4 The tensorization of a vector. 21

3.5 Rank one tensor. 24

3.6 The Canonical Polyadic format. 25

3.7 The Tucker format. 26

3.8 The Hierarchical Tucker decomposition. 27

3.9 The Tensor Train decomposition. 27

3.10 The Tensor Train format. 28

vii

3.11 Low rank tensor to high order tensor . 29

4.1 Importance sampling. 37

4.2 The Sequential Monte Carlo method. 38

4.3 Resampling algorithm. 40

4.4 Multinomial resampling algorithm. 40

5.1 Conversion of tensor to Tensor Train format. 42

5.2 The correlation operation in Tensor Train format. 43

5.3 The Bayesian TensorNet training workflow chart. 49

5.4 Single plant training dataset. 50

5.5 Nerual network architeccture. 52

6.1 Training performance with a small prediction noise. 56

6.2 Mean estimator performance with a small predition noise. 57

6.3 MAP estimator performance with a small predition noise. 58

6.4 Training performance with a large prediction noise. 59

6.5 Mean estimator performance with a small predition noise. 60

6.6 MAP estimator performance with a large predition noise. 61

viii

Chapter 1

Introduction

In recent years, we have witnessed the rise of the artificial neural network (ANN), and the technique has

made great success in almost every field [1, 2, 3, 4, 5]. The success of the ANNs is made by algorithmic

advances, large amounts of data, and modern computing hardware. However, expensive hardware and

long training and inference times tend to prohibit the use of cheap or portable devices [6] and therefore

limit the further application of ANNs.

A reduction of the neural network size and fast forward computation is immediately needed to equip

this state-of-the-art technology for cheaper or portable devices. One such approach is the tensor-train

decomposition method, first introduced by Oseledets in 2011, which decomposes a high order tensor

into lower-order tensor cores with fast tensor operations [7]. After that, Novikov and Podoprikhin

proposed their tensor-train representation of fully connected layers in 2015 [6]. In the following year,

the tensor-train representation of convolutional layers was introduced by Garipov as an extension of

Novikov’s work [8].

However, the decomposition of both the fully connected layer and convolutional layer is based on a

similar idea, which is representing a huge vector or matrix into the tensor-train format. The tensor-train

format will be used to operate a matrix-matrix multiplication [6, 8]. This idea of representing the

fully connected layer is fine, since the fully connected layer is a matrix-matrix multiplication. The

convolutional layer with multiple filters is a high-order tensor performing the correlation operation

instead of the matrix-matrix multiplication. Therefore, a more general tensor-train formulation of the

convolutional layer with simple tensor operations exists. We developed a more general tensor-train

formulation on the convolutional layer. Our novel formulation can deal with tensors of any dimension

and is not restricted with the matrix-matrix multiplication. Such a tensor-train formulation would help

us to reduce the overall size of the ANN and speed up the ANN training and inference time.

1

2 CHAPTER 1. INTRODUCTION

Training a neural network is usually done by using the backpropagation algorithm. The neural network

in tensor-train format is not a typical neural network, since the gradient of each layer is not easy to

calculate. Therefore, a Bayesian algorithm was used to train and test our tensor-train neural network

given by Doucet [9].

The development of a tensor-train neural network would be extremely useful. Such a neural network

would be a powerful tool to use on the cheap and portable hardware due to its smaller size and faster

forward computation.

1.1 Organization of This Thesis

Developing a new tensor-train formulation of the convolutional neural network requires an understanding

of the operation of convolutional neural network, in addition to understanding the tensorization technique

and training with a Bayesian algorithm.

In Chapter 2 the theory of convolutional neural network and different types of training algorithms are

briefly discussed.

To represent the convolutional neural network in a tensor-train format, one needs to know the tensoriza-

tion methods. Therefore Chapter 3 discusses the basic tensor operations and tensor decomposition

methods.

In Chapter 4 we provide a idea of Bayes’ theorem train any neural networks, and discuss some numerical

methods for solving the recursive Bayesian solution.

In Chapter 5 we present our novel tensor-train formulation of the convolutional layer and the idea of

evaluating the recursive Bayesian solution by using the Sequential Monte Carlo method.

In Chapter 6 we validate our tensorization method and the training algorithm by showing the training

results with a plant images classification problem where the plant dataset was used from the TerraByte

project. We also analyze the trained model performance with different training noise and different

estimator selection. Finally, in Chapter 7 we present our conclusions and suggested future work on the

next development of our research.

1.2 Thesis Research Contributions

We developed a novel tensor-train formulation of the convolutional neural network and trained it with a

Bayesian training algorithm for a plant classification problem.

1.2. THESIS RESEARCH CONTRIBUTIONS 3

A convolutional neural network is mainly made by fully connected layers and convolutional layers. We

used the idea of representing the fully connected layer given by Novikov [6]. On the other hand, we

used our novel tensor-train representation for the convolutional layer which is more general and straight

than the tensor-train representation given by Garipov [8]. Our tensor-train representation can deal with

any convolutional layer with arbitrary dimension and operation.

Our novel tensor-train convolutional neural network was trained with a Bayesian training algorithm.

We have tested the training result by achieve a 67% accuracy in the plant classification problem. We

presented our model inference result with the mean and MAP estimators. We analyzed the training

performance of this training algorithm with different training noise.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Artificial Neural Network

2.1 Applications of Neural Network to Digital Agriculture

Digital agriculture is important to confront the challenges of food production as the need for food

explodes as mankind’s population increases. Nowadays, integrating ANN into digital agriculture is

helping us with crop diseases detection, weed classification, harvesting rate approximation, and soil

moisture prediction [10]. These applications would help us farm more efficiently and produce more food

for the total agriculture output.

Developing ANN applications in digital agriculture heavily relies on training data. A lack of sufficient

training data, both in terms of variety and quantity, is often the bottleneck in the development [11].

To overcome this problem, The University of Winnipeg TerraByte project has developed a robotic

system to automatically generate and label a large dataset of plant images for the development of ANN

applications for the digital agriculture development.

2.2 The TerraByte Project

The TerraByte is a digital agriculture project led by professor Christopher Bidinosti and professor

Christopher Henry at the University of Winnipeg. The project focuses on the lack of sufficient training

data both in terms of variety and quantity, which is the bottleneck in the development of modern

agriculture machine learning applications. Recently, TerraByte has successfully developed an embedded

robotic system called EAGL-I (Embedded Automated Generator of Labeled Images), which is able to

automatically generate and label plant images for machine learning applications [11]. The EAGL-I

system at the TerraByte project is shown in Fig. 2.1. TerraByte provides a large number of images

5

6 CHAPTER 2. ARTIFICIAL NEURAL NETWORK

Figure 2.1: Figure A shows the full view of the EAGL-I system, where individual plant are placed inside the
EAGL-I system. Pictures of plants from different angles and distances are captured by a GoPro camera. Figure
B is a close view of the camera system which can move in 3 dimensions and rotate the camera for a different view
of the plant [11].

with labels of various crop plants and weeds found in Manitoba Canada. There include canola, soybean,

wheat, foxtail, etc. The datasets include multi-plant images and single plants images in RGB, as well as

hyperspectral and 3D point clouds.

In this thesis, we focus on verifying our new tensor-train (TT) format of the convolutional layer in a

convolutional neural network. To set up our experiment, we have chosen the TerraByte single plant

dataset for a classification problem. The benefits of using this dataset are easy to access to the dataset,

high-quality plant images, excellent class labels, and a connection to an important real-world application.

Samples of single plant image from the TerraByte dataset are shown in Fig. 2.2

Figure 2.2: The plot shows some plant images captured by the EAGL-I system. Image A is a picture of wild
buckwheat from a side-angle view. Images B and C are images of yellow foxtail and barnyard grass from oblique
angle views, respectively. Image D is canola from a top view [11].

2.3. FULLY CONNECTED NEURAL NETWORK 7

2.3 Fully Connected Neural Network

The term neural network was first introduced by McCullough and Pitts in 1943 who proposed a

computational model called threshold logic [12]. In 1958, Frank proposed the idea of perception which

is the first neural network [13]. After a long period after the first introduction of the neural network,

Dreyfus adapted the neural network parameter backpropagation with error gradients. This improved

the backpropagation algorithm which enabled multiple layers of neural network training, his method

became widely used in the neural network community. In the recent decade, the increased computing

power from GPUs allowed us to use the larger and more complex neural networks, which enabled us

to solve a lot of problems we thought could not be done with the neural network [14]. In the general

sense, the neural network includes the fully connected network, convolutional neural network, recurrent

network, etc.

The simplest neural network is the fully connected neural network, where all the network layers are all

fully connected. The mathematical representation for a fully connected neural network is given by
l0 = x

ln = h(Wnln−1 + bn)

lN = y,

(2.1)

where l0 = x is the neural network input, ln is the the nth hidden layers, the function h() is the

non-linear activation function, and Wn and bn are weights and bias, respectively. The last layer or

the output of a fully connected neural network is lN = y. For an example of an image classification

problem, the neural network input l0 = x is the pixels of the image, Wn and bn are trainable parameters

to optimize the neural network, and the output lN = y is the predicted class of the input image. A

graphical representation of the fully connected neural network is shown in Fig. 2.3

2.3.1 Fully Connected Layer

The fully connected layer is the main building block for the fully connected neural network. The job of

fully connected layers is doing a matrix multiplication that computes the next layer’s value. The input

of a fully connected layer is usually a vector x ∈ R(J), and the layer’s weight is a matrix W ∈ R(I×J).

The layer’s weight matrix is first multiplied by the input vector. The computation of a single fully

connected layer can be represented mathematically by

l = h(Wx+ b), (2.2)

8 CHAPTER 2. ARTIFICIAL NEURAL NETWORK

Figure 2.3: A graphical representation of a fully connected neural network. The neural network input is on the
left-hand side, the neural network output is on the right-hand side, and the hidden layers are in the between of
the input and output layer. In the example of the image classification, the left-hand side neurons are image pixels,
and the right-hand side neuron are the classes. These hidden layers are representing the relationship between the
input and output in the neural network.

where l is the layer’s output, W is the layer’s weight matrix, x is the layer’s input vector, and b is the

bias. A graphical representation of a fully connected layer with all trainable parameters is given in

Fig. 2.4

2.3.2 The Activation Function

The activation function h() plays an important role to enable our neural network to deal with non-linear

problems. The activation function is usually used after every layer to provide a non-linearity into the

neural network. It helps the neural network to solve non-linear problems. After years of development, the

most common activation functions are sigmoid function, tanh function, ReLU function, etc. Examples

of some activation functions such as ReLU and sigmoid are

ReLU function

h(x) = max(0, x). (2.3)

Sigmoid function

h(x) =
1

1 + exp(−x)
. (2.4)

2.3. FULLY CONNECTED NEURAL NETWORK 9

Figure 2.4: A graphical representation of a fully connected layer, the layer’s input is on the left-hand side, the
layer’s output is on the right-hand side. The solid lines are the layer’s weight W which is doing the matrix-vector
multiplication with the input. The dash lines are the layer’s bias which is simply added to the result. After
computing the result with the layer’s weight and bias, a non-linearity activation function h() is applied to the
result.

The choice of the activation function is based on the use of application. Here we also show the graphical

representation of a ReLu and sigmoid function in Fig. 2.5.

Figure 2.5: Graphical representation of the ReLU on the left-hand side, and Sigmoid activation function on the
right-hand side. The ReLU have value 0 for x ≤ 0 and a linear positive value for x ≥ 0. On the other hand, the
sigmoid activation function has a value rapidly increasing from x = −∞ to ∞.

10 CHAPTER 2. ARTIFICIAL NEURAL NETWORK

2.4 Convolutional Neural Network

Convolutional neural networks, also referred to as CNNs, are a particular class of neural networks.

CNNs show state-of-the-art performance on image classification, image segmentation, object detection,

etc. However, the CNNs are nothing but an extension of the fully connected neural networks, where

the CNNs are made with several convolutional layers and a single flatten layer on the top of a fully

connected neural network. So, the CNNs can be considered as an input layer, numbers of convolutional

layers and a flatten layer to connect to a fully connected neural network.

For the example of an image classification problem, let us consider a CNN that has a RBG image

I ∈ R(I1×I2×C) as the input. Assuming the CNN has only one convolutional layer, and it has M number

of filters given byF ∈ R(J1×J2×C×M), those filters with the input RGB images produce the convolutional

layer output called the activation map given by R ∈ R(I1−J1+1)×(I2−J2+1)×(M). After the operation with

the convolutional layer, the activation map will be vectorized by the flatten layer into a vector. The

vector will be used as the input to the fully connected neural network, where the fully connected neural

network will classify those input from the activation map features into its class or the output of the

convolutional neural network. A graphical representation of the CNN with image classification problem

is shown in Fig. 2.6

Figure 2.6: The graphical representation of a convolutional neural network for an image classification problem.
An RGB image is sent to the convolutional neural network as an input, the image features are extracted by
multiple convolutional layers. After the feature extraction, the image features are passed to a fully connected
neural network via a flatten layer, these image features are used to classify the input image to its class by the
fully connected neural network on the right-hand side.

Therefore, the most important part of the convolutional neural network is the convolutional layers

which capture the spatial and color information of the image. In addition, the flatten layer is a bridge

2.4. CONVOLUTIONAL NEURAL NETWORK 11

to pass these image features to a fully connected neural network. The classification part is actually

done by the fully connected neural network.

2.4.1 Convolutional Layer

The convolutional layer is the key part of the convolutional neural network, allowing improved perfor-

mance over the fully connected neural network, and giving the ability to capture the image features.

The way of the convolutional layer captures image features is using multiple filters via the correlation

between the input image and each filter.

Let us consider a simple case, by giving a grayscale image X ∈ R(I1×I2) as input image where I1 is the

image width and l2 is the image height. Also given a convolutional layer with single filter Y ∈ R(J1×J2)

where J1 and J2 are the size of each filter. The fully overlapping correlation is the correlation operation

but ignores the boundary, the fully overlapping correlation result between the grayscale image and

single filter is given by P (m) ∈ R(I1−J1+1)×(I2−J2+1). Fig 2.7 demonstrates how the fully overlapping

operation is implemented on the image and filter.

Now, let us consider that the convolutional layer has M filters given by Y ∈ R(J1×J2×M). Every filter is

doing the same fully overlapping correlation with the input image. By stacking all results produced

by the image and every filter, we end with the convolutional layer’s result or the activation map

P ∈ R(I1−J1+1)×(I2−J2+1)×(M).

12 CHAPTER 2. ARTIFICIAL NEURAL NETWORK

Figure 2.7: Let us assume the blue matrix X is a 3 by 3 image, the yellow matrix Y is a 2 by 2 filter. The fully
overlapping correlation result of the image and the filter is the green matrix Y. The first line shows the final
result of the fully overlapping correlation, the second line shows how the element Y (0, 0) is computed and the last
line shows how the element Y (1, 1) is computed.

2.4.2 Flatten Layer

We consider the flatten layer as a bridge that connects an activation map and the first fully connected

layer. It rearranges the last activation map into a vector that can be accepted by the fully connected

layer. For example, the final activation map is given by R ∈ R(I1−J1+1)×(I2−J2+1)×(M). we then flatten

this 3-rd order tensor into a vector r ∈ R(I1−J1+1)·(I2−J2+1)·(M). After the flatten layer, the elements of

the vector r are used by the fully connected neural network for the purpose of the problem, which in

our case is used to classify the image to its class. The transformation of the high order tensor into a

vector by the flatten layer is demonstrated in Fig.2.8.

2.5. NEURAL NETWORK TRAINING 13

Figure 2.8: Graphical representation of the flatten layer. The flatten layer reshapes the activation map, which
is a tensor, into a vector of elements.

2.5 Neural Network Training

Neural network training is a key part of deploying the neural network. Training a neural network means

to find the appropriate weights to fit the given training data. It is usually the most time comsuming

part in the development of a neural network.

2.5.1 Backpropogation Training Algorithm

The backpropagation or the backward propagation of errors method was first introduced in 1970s. In

the last decade, backpropagation became the most common algorithm to train the neural network.

This algorithm use the gradient of a loss function to adjust the neural network’s weights. The training

process of the backpropagation with gradient descent can be represented in the following equation

θt+1 = θt − α
∂L(θ,X)

∂θ
, (2.5)

where θt = {W,b} is the neural network weights, including the layer’s weights W and biases b at time

t. α is a small scalar called the learning rate and the function L is the loss or error function to measure

the difference between the prediction and the target. The simplest loss function is the mean squared

error which is given by

L(θ,X) =
1

2N

N∑
n=1

(ŷn − yn)2, (2.6)

14 CHAPTER 2. ARTIFICIAL NEURAL NETWORK

where N is the total number of training pairs, ŷn is the model prediction of n-th training pair, and yn

is the ground truth of the n-th training pair.

However, not every neural network is trainable with the backpropagation algorithm, especially if it is

hard or impossible to compute the gradient of the loss function. Our tensor-train neural network is one

such example where the gradient is not easy to compute. Fortunately, a stochastic algorithm such as

the Bayesian training algorithm dose not required a gradient. It is a ideal training algorithm for our

tensor-train neural network.

2.5.2 Bayesian Training Algorithm

Training a neural network is just fitting the training data with the neural network model. Therefore,

training the neural network model can be thought as finding the relationship in the training data.

Here we can consider the neural network with current weight as a hypothesis of the relationship in

the training data between the input and output. To have a neural network model with good trainable

parameters is to have a good hypothesis by giving the relationship in the training data.

Bayes theorem is a useful tool to test the hypotheses. It provides a probabilistic neural network to

represent the relationship between the training data and hypothesis as

Pr(Hypothesis|Data) =
Pr(Data|Hypothesis)Pr(Hypothesis)

Pr(Data)
, (2.7)

where the probability of the testing hypothesis given by the data is computed by the probability of the

data given by the hypothesis is true , the probability of the hypothesis is true and the probability of the

data is given. Under the Bayesian inference, we can derive a Bayesian recursive solution to sequentially

estimate the neural network’s trainable parameters. However, the Bayesian recursive solution can not

usually be done analytically, and a numerical method is needed to approximate the solution.

The Monte Carlo (MC) method is a simple and intuitive method to numerically solve high-dimensional

problems. One of the MC methods is the Sequential Monte Carlo (SMC) method which allows us to

solve a high dimensional problem sequentially. This sequential property fits the need for approximating

the Bayesian recursive solution. Therefore, the SMC method is used in this thesis for estimating our

Bayesian solution.

2.6 Convolutional Neural Network in Tensor Train Format

2.6. CONVOLUTIONAL NEURAL NETWORK IN TENSOR TRAIN FORMAT 15

2.6.1 Limitations of Modern Convolutional Neural Network

As we are able to solve more and more complex problems with these state-of-the-art techniques, the

number of convolutional layers and fully connected layers are increasing the complexity of the problem.

In particular, a large amount of memory is needed for modern neural networks, making it hard to

use the neural networks on low-end hardware and stopping the further increase of the neural network

size [6].

However, the weights of the neural network layers, such as the convolutional layer can be considered as

a 4th order tensor, and the fully connected layer is a huge matrix or 2nd order tensor. One solution to

reduce the tensor size and simplify the computational operations is using low-rank representation or

tensor decomposition, such as the Canonical Polyadic decomposition, the Tucker decomposition, and

the tensor-train decomposition. The tensor-train decomposition is chosen in this thesis to overcome

these storage and computational operation limitations.

For a convolutional neural network, the network trainable parameters are stored in the fully connected

layers and convolutional layers. Decomposing these layers into tensor train format allows us to benefit

from storage reduction and simplify the forward computation by using tensor operations on the smaller

tensor cores.

2.6.2 Tensor Train Decomposition

Tensor decomposition is a technique to decompose a high-order tensor into numbers of low-order

tensors, this reduces the total size of the elements needed to represent a high order tensor and simplify

the operation by operating on these low-order tensors instead of the original tensor. For example,

to decompose a 3rd order tensor with the tensor-train decomposition, the 3rd order tensor can be

represented by 3 smaller tensors. The tensor train format of the 3rd order tensor is shown in Fig. 2.9.

The tensor rrain format provides a lot of tensor operations such as correlation and tensor product,

which allows us to use those operations on the smaller tensor core to operate on the original tensor.

And the convolutional layer and fully connected layer are basically made by tensors and operate the

correlation and matrix multiplications. As a result the tensor train format can help us to improve the

convolutional neural network’s performance.

16 CHAPTER 2. ARTIFICIAL NEURAL NETWORK

Figure 2.9: Let us consider a 3rd order tensor on the left-hand side. The tensor-train format of the 3rd order
tensor is constructed by a tensor core 1, a 2nd order tensor; a tensor core 2, a smaller 3rd order tensor; and tensor
core 3, a 2nd order tensor. Overall, the right hand side has fewer elements than the left hand side.

Chapter 3

Tensor Methodology

The name tensor was first introduced by William in 1846. He described something different from what

we see as a tensor today. The tensor with today’s meaning was given by Woldemar in 1898 [15]. However,

the development of tensor analysis really started around 1915 with Einstein’s theory of general relativity,

and Einstein’s general relativity was formulated completely in the language of tensors. In recent years,

tensor algebra and tensors are attracting attention due to the huge amount of computational data

processing in high dimensions and sizes. The tensor that we see every day, can be just as simple as a

vector or a 1st order tensor, a matrix is a 2nd order tensor, etc. Examples of low order tensors from

order 0 to 4 are shown in Fig. 3.1.

Figure 3.1: Graphical representation of multi-dimensional tensors. The first one is a scalar or tensor of order 0,
the second one is a vector or tensor of order 1, the third one is a matrix or tensor of order 2, the fourth one is a
tensor of order 3 and the last one is a tensor of order 4.

17

18 CHAPTER 3. TENSOR METHODOLOGY

3.1 Tensor Notation

For convenience and ease in explaining the tensor concept, we first define our notation describing

tensors. In this thesis, scalars are denoted by lower non-capital letter, e.g., x, vectors are denoted by

bold lower non-capital letter, e.g., x ∈ RI ; matrices are denoted by bold capital letter, e.g., X ∈ RI1×I2 ;

and N th-order tensor is denoted by a bold script letter, e.g.,X ∈ RI1×···×In×···×IN . The element of the

N th-order tensor is denoted by Xi1,...,in,...,iN = X [i1, . . . , in, . . . , iN]. Unless otherwise stated, we will

use this notation in this thesis.

3.2 Tensor Graphical Representation

The graphical representation shows the tensor shape and tensor operation graphically. When working

on high-order tensor operations, the graphical representation helps us to visualize the process. In the

tensor graphical representation, we will represent an N th-order tensor as a blue circle with N arms

where those arms indicate the number of dimensions. Samples of the tensor graphical representation

are shown in Fig. 3.2. In addition, some simple tensor operations like matrix-vector multiplication,

matrix-matrix multiplication, and tensor contraction are also shown in Fig. 3.3.

Figure 3.2: Graphical representation of scalar, vector, matrix, and 3rd order tensor, where the number of arms
is the number of dimensions of the tensor. This representation can easily identify the order of the tensor [16].

3.3. BASIC TENSOR OPERATIONS 19

Figure 3.3: Graphical representation of the matrix-vector multiplication on the top, where the matrix is a I
by J matrix and the vector has J element. After the matrix-vector multiplication, the result will only remain
with one arm. The matrix-matrix multiplication in the middle shows is a I1 by I2 matrix multiplied by a I2 by
I3 matrix. The result will be a I1 by I3 matrix. The last is the tensor contraction in the bottom, showing a
contraction between a 3rd order tensor and a 4th order tensor. The result is a 5th order tensor [16].

3.3 Basic Tensor Operations

Tensor operations are basic operations in tensor algebra. It can be as simple as a vector-vector

multiplication, and it can also be as hard as the tensor product between two higher-order tensors. The

reason for tensorizing our data into tensor format is to allow us to implement tensor operations on

the data. A tensor operation can be more computationally efficient and easier to perform comparing

implementing the same operation on the raw data directly.

3.3.1 Multi-Indices

Since we are dealing with high dimensional tensors with a lot of indices, multi-indices is a useful tool.

Multi-indices compute all possible arrangements of the indices, and it used to reorganize the tensor

elements after the tensor operation. The multi-indices operation is donated by

i = i1i2 . . . iN , (3.1)

where i1i2 . . . iN are all the possible combination of the indices i1i2 . . . iN with in = 1, 2, . . . , In and

n = 1, 2, . . . , N . The two most common type of multi-indices are the little-endian and the big-endian.

The mathematical representation of these two multi-indices are given as follows [16].

The little-endian is computed as

20 CHAPTER 3. TENSOR METHODOLOGY

i1i2 . . . iN = i1 + (i2 − 1)I1 + (i3 − 1)I1I2 + · · ·+ (iN − 1)I1 . . . IN−1. (3.2)

The big-endian is computed as

i1i2 . . . iN = iN + (iN−1 − 1)IN + (iN−2 − 1)ININ−1 + · · ·+ (ii − 1)I2 . . . IN . (3.3)

All tensor operations are consistent with one of these multi-indices. In this thesis, unless otherwise

stated, we will use the little-endian indices.

3.3.2 Matricization

Tensor matricization or tensor flattening is an operation to flatten a tensor into a 2nd order tensor.

The most common matricization is the mode-n matricization, where one selects a mode-n and flattens

the tensor according to that mode. For example, given an N th order tensor X ∈ RI1×···×In×···×IN , the

mode-n matricization of X is given by

X (n) ∈ RIn×I1I2...In−1In+1...IN , (3.4)

where the matrix X (n) has In rows and I1I2 . . . In−1In+1 . . . IN columns.

3.3.3 Tensorization

The tensorization of a vector or a matrix is like the reverse process of the tensor matricization. It is

an operation to tensorize a vector or a matrix to a higher order tensor. For example, a vector can be

tensorized into a matrix, then tensorized again into a 3rd order tensor. A example of the process is

shown in Fig. 3.4.

3.3.4 Tensor Product

The tensor product is an operation between two tensors. Given two tensors X ∈ RI1×···×In×···×IN and

Y ∈ RJ1×···×Jm×···×JM , the tensor product is denoted by ◦ and the result P = X ◦Y is given by

P = X ◦Y ∈ RI1×···×In×···×IN×J1×···×Jm×...JM . (3.5)

3.3. BASIC TENSOR OPERATIONS 21

Figure 3.4: Let us consider a vector with 4 × I element where the I is an arbitrary integer. This vector can be
reorganized as a matrix or a 3rd order tensor [16]. The process is know as tensorization.

3.3.5 Mode-n Product

The mode-n product or the tensor-times-matrix product is a tensor product between a tensor and a

matrix. Given a tensor X ∈ RI1×···×In×···×IN and a matrix Y ∈ RJ×In , the mode-n product is denoted

by ×n and the result P = X ×n Y is given by

P = X ×n Y ∈ RI1×···×In−1×J×In+1×···×IN . (3.6)

3.3.6 Contracted Product

The contraction of a tensor is very similar to mode-n product but operates on two tensors instead of a

tensor and a matrix. Given two tensors X ∈ RI1×···×In×···×IN and Y ∈ RJ1×···×Jm×···×JM with common

mode In = Jm, the contraction product between those two tensors is denoted by ×mn and the result

P = X×mn Y is given by

P = X×mn Y ∈ RI1×···×In−1×In+1×···×IN×J1×···×Jm−1×Jm+1×···×JM . (3.7)

22 CHAPTER 3. TENSOR METHODOLOGY

3.3.7 Convolution

Convolution is one of the most important operations in signal processsing. Given two multi-dimensional

tensors X ∈ RI1×···×In×···×IN and Y ∈ RJ1×···×Jn×···×JN , the convolution is denoted by ∗. The operation

of P = X ∗Y is given by

P [i, j, . . .] =
∑
x

∑
y

· · ·
∑

Y [x, y, . . .]X [i− x, j − y, . . .], (3.8)

where x and y are index to shitf the tensor X and tensor Y along its dimension, i and j are index of the re-

sult P along its dimension The result of convolution has output of P ∈ R(I1+J1−1)×···×(In+Jn−1)×···×(IN+JN−1).

3.3.8 Partial Mode-n Convolution

The partial (mode-n) convolution is a special tensor operation donate by ∗ n. Given two tensors

X ∈ RI1×···×In×···×IN and Y ∈ RJ1×···×Jn×···×JN , the partial mode-n convolution is given by [16]

P = X ∗ nY ∈ R(I1J1)×···×(In+Jn−1)×···×(INJN), (3.9)

where the subtensor of P(f1, . . . , :, . . . , fN) = X (i1, . . . , :, . . . , iN)∗Y(j1, . . . , :, . . . , jN) ∈ RIn+Jn−1 with

the multi-indices f = ij.

3.3.9 Correlation

Correlation is another basic signal processing operation. Given two multi-dimensional tensors X ∈

RI1×···×In×···×IN and Y ∈ RJ1×···×Jn×···×JN , the correlation of X and Y is a means of comparing how

similar they are. The correlation is denoted by
⊗

and the operation of P = X
⊗

Y is given by

P [i, j, . . .] =
∑
x

∑
y

· · ·
∑

Y [x, y, . . .]X [i+ x, j + y, . . .], (3.10)

where x and y are index to shitf the tensor X and tensor Y along its dimension, i and j are in-

dex of the result P along its dimension. If it is a fully correlation, where we fill the zero padding

on the boundary, the result of the correlation is P ∈ R(I1+J1−1)×···×(In+Jn−1)×···×(IN+JN−1). How-

ever, if we use the fully overlapping correlation, where we ignore the boundary, the result is P ∈

R(I1−J1+1)×···×(In−Jn+1)×···×(IN−JN+1). A simple fully overlapping correlation was shown in Fig.2.7,

which is the same fully overlapping correlation in the convolutional layer in the CNNs.

3.4. TENSOR DECOMPOSITIONS 23

3.3.10 Partial Mode-n Correlation

The partial mode-n fully overlapping correlation is a tensor operation denoted by ⊗
n
. Given two

tensors X ∈ RI1×···×In×···×IN and Y ∈ RJ1×···×Jn×···×JN , the partial mode-n Correlation is given by

Cichocki [16]

P = X ⊗
n
Y ∈ R(I1J1)×···×(In−Jn+1)×···×(INJN), (3.11)

where the subtensor of P(f1, . . . , :, . . . , fN) = X (i1, . . . , :, . . . , iN)
⊗

Y(j1, . . . , :, . . . , jN) ∈ RIn−Jn+1

with the multi-indices f = ij.

3.4 Tensor Decompositions

The concept of tensor decomposition was first introduced in 1927 by Hitchcock [15], and the tensor

decomposition with a multiway model was given by Cattell in 1944 [17, 18]. Tensor decomposition

become popular in the field of chemometrics when Appellof and Davidson first used this technique in

1981 [19]. In the last decade, interest in tensor decomposition is being raising in different fields. For

example, in signal processing [20, 21], computer vision [22, 23] and machine learning [6, 8]. In this

section, we will discuss the difficulty of the high dimensional computation, and how can we deal with

it by using tensor decomposition methods such as the canonical polyadic decomposition, the Tucker

decomposition, and tensor train decomposition.

3.4.1 Curse of Dimensionality

When we deal with high dimensional tensors, we will suffer from the curse of dimensionality. The

definition of the curse of dimensionality is that the total number of elements of a tensor will increase expo-

nentially as the number of dimensions increases. For example, an N th order tensor X ∈ RI1×···×In×···×IN

has a total number of elements I1 × · · · × In × · · · × IN . Since the number of elements increases

exponentially with dimension, the storage consumption is getting bigger when we deal with large-scale

or high dimension problems. One solution to mitigate the curse of dimensionality in high dimension

problems is to use low-rank tensor representations or tensor decomposition.

24 CHAPTER 3. TENSOR METHODOLOGY

3.4.2 Rank One Tensor

A rank-one tensor is the simplest form of tensor decomposition, it is a tensor that is represented by a

set of vectors through the tensor product. For example, a tensor A ∈ RI1×···×In×···×IN is a rank-one

tensor if it can be written as

A = a(1) ◦ · · · ◦ a(n) ◦ · · · ◦ a(N), (3.12)

where a(n) ∈ RIn are non-zero vectors, and the operation ◦ is the tensor product between vectors as

defined in Section 3.3.4. A graphical representation of the rank one tensor is shown in Fig 3.5. The

rank-one tensor is good for most low-rank tensors. However, when we handle high order tensors we could

extend the idea of the rank-one tensor for more complex tensor decompositions such as the canonical

polyadic decomposition.

Figure 3.5: A 3rd order tensor A is a rank one tensor, if we can reconstruct the tensor by using vectors a(1),
a(2) and a(3) with a tensor product. In this representation, each vector contains the unique information of the
tensor A along each dimension [24].

3.4.3 The Canonical Polyadic Decomposition

The canonical polyadic decomposition or CPD is a very popular tensor decomposition technique that is

using the idea of multi rank-one tensors to represent a high order tensor. The CPD is used to represent

a tensor by a summation of a set of rank-one tensors, as shown in Fig 3.14. For example, an N th order

tensor A ∈ RI1×···×In×···×IN is decomposed into the CPD format if

A ∼=
R∑
r=1

λra
(1)
r ◦ · · · ◦ a(n)

r ◦ · · · ◦ a(N)
r , (3.13)

3.4. TENSOR DECOMPOSITIONS 25

where λr is a weighted scalar, a
(n)
r are non-zero vectors, and the R is called the canonical rank of the

decomposition. The CPD format can also be rewritten as a diagonal N th order tensor core G which

contains those scalars λr and a number of factor matrices A made by vectors a
(n)
r with mode-n product.

It is written as

A ∼= G ×1 A
(1) · · · ×n A(n) · · · ×N A(N), (3.14)

where the tensor core G ∈ RR×R×···×R is non-zero except on the diagonal, which is made with the weight

scalars λr. These factor matrices A(n) = [a
(n)
1 ,a

(n)
2 , . . . ,a

(n)
R] ∈ RIn×R are constructed by vectors.

The benefit of the CPD format is that it only takes N +
∑N

n=1(RIn) memory to store the tensor A.

The storage consumption is linear with the number of dimensions N, thus the CPD format can mitigate

the curse of dimensionality. However, the canonical format is numerically unstable and may not always

exist.

Figure 3.6: The CPD format of a 3rd order tensor that is made with a summation of a numbers of rank-one
tensors. Each rank-one tensor contains some information of the original tensor. A we add infinite number of the
rank-one tensors, we will have the exact tensor as the original tensor [24]

3.4.4 The Tucker Decomposition

The Tucker decomposition is a more stable technique than the CPD, and always exists for any tensor.

The Tucker format of N-th order tensor A ∈ RI1×···×In×···×IN is also given by a summation of rank-one

tensors:

A ∼=
R1∑
r1=1

· · ·
RN∑
rN=1

λr1,...,rNa
(1)
r1 ◦ · · · ◦ a

(n)
rn ◦ · · · ◦ a

(N)
rN , (3.15)

where λr1,...,rN is the weight scalar, a
(n)
rn are non-zero vectors, and the collection (R1, . . . , RN) is called

the Tucker ranks. We can rewrite this Tucker format as more general representation as

26 CHAPTER 3. TENSOR METHODOLOGY

A ∼= G ×1 A
(1) · · · ×n A(n) · · · ×N A(N), (3.16)

where G ∈ RR1×R2×···×RN is called the Tucker core, which is made up by the weight scalars λr1,...,rN .

These factor matrices A(n) = [a
(n)
1 ,a

(n)
2 , . . . ,a

(n)
Rn

] ∈ RIn×Rn are constructed by these vectors a
(n)
rn . A

graphic representation of the Tucker format with tensor core and factor matrices is shown in Fig 3.7.

The CPD format can be seen as a special case of Tucker format with a diagonal tensor core G.

The Tucker format is useful since it is always exists as a tensor decomposition. However, it takes∏N
n=1Rn +

∑N
n=1(RnIn) memory, which does not mitigate the curse of dimensionality. As a result, the

Tucker format is only good when the tensor order is small.

Figure 3.7: A 3-rd order tensor can be represented in the Tucker format with a tensor core with 3 factor
matrices. The tensor core contains all the scaler weights which is used to weight the factor matrices [24].

3.4.5 The Hierarchical Tucker Decomposition

Since the Tucker format is not able to mitigate the curse of dimensionality, one solution to overcome this

problem is to generalize a tree-structured tensor format called the hierarchical Tucker decomposition or

the hierarchical tensor representation [25]. The hierarchical Tucker decomposition splits the set of modes

of a tensor in a hierarchical way. In this tree-structured tensor format, a tensor is decomposed into

matrices and smaller tensor cores, where those matrices are at the end leaves and the tensor core is like

tree branches to connect those leaves with other branches. A graphic representation of the hierarchical

Tucker decomposition is shown in Fig 3.8. The hierarchical Tucker format has the advantages of both

the canonical format and The Tucker format, where it mitigates the curse of dimensionality and it is

numerically stable.

3.4. TENSOR DECOMPOSITIONS 27

Figure 3.8: Graphical representation of the Tucker format on the left-hand side. The top green bar represents the
Tucker tensor core, and the matrices under the green bar are the factor matrices. The Hierarchical Tucker format
is represented on the right hand side, which has no high order tensor cores or the green bar. The Hierarchical
Tucker format is constructed by 3rd order tensor and 2nd order tensor [25].

3.4.6 The Tensor Train Decomposition

The tensor train (TT) decomposition is a special case of the hierarchical Tucker format where the tree

structure only has one main branch as shown in Fig.3.9.

Figure 3.9: Graphical representation of the tensor train format for a 5th order tensor. The tensor train is the
simplest hierarchical Tucker format and has only one branch. It is constructed by two 2nd order tensor with three
3rd order tensor to represent the 5th order tensor [25].

The TT format is no different than the canonical format and tucker format, they are all made by

a summation of a bunch of rank-one tensors. For example, the TT format of an N-th order tensor

A ∈ RI1×···×In×···×IN is given by

A ∼=
R1∑
r1=1

· · ·
RN−1∑
rN−1=1

a
(1)
1,r1
◦ · · · ◦ a(n)

rn,rn+1 ◦ · · · ◦ a
(N)
rN−1,1

, (3.17)

28 CHAPTER 3. TENSOR METHODOLOGY

where a
(n)
rn,rn+1 ∈ RIn are non-zero vectors, R0 = RN = 1 by the constraints of the tensor train

decomposition, and the collection of (R1, . . . , RN−1) is called the TT ranks. We can rewrite this TT

format as more general representation as

A ∼= G(1) ×1 G(2) · · · ×1 G(N−1) ×1 G(N), (3.18)

where G(n) ∈ RRn−1×In×Rn are TT cores with multilinear product ×1. Since R0 = RN = 1 the first

tensor core and the last tensor core can be considered as matrices, where they are made by

G(1) = [a
(1)
1,1, . . . ,a

(1)
1,r1

, . . . ,a
(1)
1,R1

] ∈ RI1×R1 , (3.19)

G(N) = [a
(N)
1,1 , . . . ,a

(N)
rN ,1, . . . ,a

(N)
RN ,1] ∈ RIN×RN−1 . (3.20)

The rest of the tensor cores G(n) in mode-2 matricization are constructed as

G(n)
(2) = [a

(n)
1,1 ,a

(n)
2,1 , . . . ,a

(n)
rn−1,1

,a
(n)
1,2 , . . . ,a

(n)
Rn−1,Rn

] ∈ RIn×Rn−1Rn . (3.21)

A graphically representation of the TT format is shown in Fig 3.10. The storage consumption of TT

format of N-th order tensor A is
∑N

n=1(Rn−1InRn) which is not increasing exponentially.

Figure 3.10: The tensor train format of a 3rd order tensor can be represented by 3 tensor cores. The first tensor
core is a 2nd order tensor, the second tensor core is a 3rd order tensor, and the last tensor core is a 2nd order
tensor [25].

3.4. TENSOR DECOMPOSITIONS 29

3.4.7 The Quantized Tensor Train Decomposition

Let us consider a big vector or matrix, that we want to decompose with the TT decomposition. However,

decomposing a vector or matrix directly into a TT format is the same as the low-rank approximation.

If we want to take advantage of all the benefits of the TT format, one needs to use the quantized TT

format instead of the general TT format. The idea of the quantized TT format is simple: one just

needs to take the vector or matrix and rearrange it into a high order tensor by using the tensorization

method. Once they are high order tensors, we now can decompose the high order tensor with Tensor

Train decomposition. For example, given a vector V ∈ RI where I = 26, this vector can be rewritten as

a 6th order tensor as V ∈ R2×2×2×2×2×2. Now, the total number of elements in this tensor is 26, but

the order of the tensor is 6. So, we can decompose this tensor into TT format with a 6th order tensor

instead of a 1st order tensor. The conversion of a vector to a 6th order tensor is shown in Fig 3.11.

Figure 3.11: The plot shows that initially we have a 1st order tensor V ∈ RI where I = 26. The 1st order
tensor is converted to a 6th order tensor represented in the middle. The graphical representation of the 6th order
tensor is shown on the right hand side [26].

30 CHAPTER 3. TENSOR METHODOLOGY

Chapter 4

Bayesian Neural Network

The definition of a Bayesian neural network is a stochastic ANN that is trained under Bayesian inference

[27]. The main difference between a conventional neural network and the Bayesian neural network

(BNN) is that we assume the weights of the conventional neural network are deterministic but those in

the BNN are probabilistic. The BNN can be represented mathematically as

θ ∼ Pr(θ), (4.1)

y = NN(θ, x) + v, (4.2)

where θ is the neural network parameter sampled from a probability distribution function Pr(θ), NN ()

is the approximation function of the neural network, x and y are the input and output of the neural

network, and v is random noise. For the BNN trained under Bayesian inference, we try to estimate the

parameter θ = {W,b} based on the given training data D = {x, y}, where W and b are the layer

weights and bias.

4.1 Derivation of the Recursive Bayesian Solution

BNN training via Bayesian inference is based on Bayes’ theorem. Let us consider two events A and B.

The joint probability of A and B, or Pr(A,B), is given by

Pr(A,B) = Pr(A|B)Pr(B)− Pr(B|A)Pr(A). (4.3)

By using Eq 4.3 twice, Bayes’ theorem is given by

Pr(A|B) =
Pr(B|A)Pr(A)

Pr(B)
. (4.4)

31

32 CHAPTER 4. BAYESIAN NEURAL NETWORK

In this thesis, we mainly focus on the parameter estimation of the BNN. The probabilistic information

describing the BNN’s parameters is given by the joint probability distribution function Pr(θ0:K) =

Pr(θ0, θ1, . . . θk, . . . , θK), where θk is the parameter state at time t = k of the training step. To train

the BNN, we are given a set of training data, D1:K = (D1, D2, . . . , Dk, . . . , DK), where every training

data Dk is a pair of output and input Dk = (yk, xk). We want to fit our BNN with the training data.

The training process can be described based the Bayes’ theorem as

Pr(θ0:K |D1:K) =
Pr(D1:K |θ0:K)Pr(θ0:K)

Pr(D1:K)
, (4.5)

since the training data D1:K is made by a pair of output and input. Therefore, by substituting

D1:K = (y1:K , x1:K) into Eq 4.5 we get

Pr(θ0:K |y1:K , x1:K) =
Pr(y1:K , x1:K |θ0:K)Pr(θ0:K)

Pr(y1:K , x1:K)
, (4.6)

since Pr(y1:K , x1:K |θ0:K) = Pr(y1:K |x1:K , θ0:K)Pr(x1:K |θ0:K), and the input x is independent of

the network parameter θ. Given that Pr(x1:K |θ0:K) = Pr(x1:K), the above equation can be rewritten

as

Pr(θ0:K |y1:K , x1:K) =
Pr(y1:K |x1:K , θ0:K)Pr(x1:K)Pr(θ0:K)

Pr(y1:K |x1:K)Pr(x1:K)
. (4.7)

By cancelling both Pr(x1:K) in the numerator and denominator, we end up with following equation

Pr(θ0:K |y1:K , x1:K) =
Pr(y1:K |x1:K , θ0:K)Pr(θ0:K)

Pr(y1:K |x1:K)
, (4.8)

where the Pr(y1:K |x1:K , θ0:K) is the likelihood function, Pr(θ0:K) is the prior function and Pr(y1:K |x1:K)

is the evidence function. Our goal is to compute the posterior function Pr(θ0:K |y1:K , x1:K) which

contains the information of how likely our parameter is given to the training data set.

To compute the posterior function, let us first consider expanding following functions.

The likelihood function:
Pr(y1:K |x1:K , θ0:K) = Pr(yK , y1:K−1|x1:K , θ0:K)

= Pr(yK |y1:K−1, x1:K , θ0:K)Pr(y1:K−1|x1:K , θ0:K).
(4.9)

The prior function:
Pr(θ0:K) = Pr(θK , θ0:K−1)

= Pr(θK |θ0:K−1)Pr(θ0:K−1).
(4.10)

4.1. DERIVATION OF THE RECURSIVE BAYESIAN SOLUTION 33

And the evidence function:
Pr(y1:K |x1:K) = Pr(yK , y1:K−1|x1:K)

= Pr(yK |y1:K−1, x1:K)Pr(y1:K−1|x1:K).
(4.11)

Since the output yt=k−1 at step t = t− 1 does not depend on the input xt≥k and the BNN’s parameter

θt≥k, therefore we can write

Pr(y1:K−1|x1:K , θ0:K) = Pr(y1:K−1|x1:K−1, θ0:K−1). (4.12)

By using the above simplified equation, we can further simplify the likelihood function Eq 4.9 and the

evidence function Eq 4.11 as

Pr(y1:K |x1:K , θ0:K) = Pr(yK |y1:K−1, x1:K , θ0:K)×

Pr(y1:K−1|x1:K−1, θ0:K−1), (4.13)

and

Pr(y1:K |x1:K) = Pr(yK |y1:K−1, x1:K)×

Pr(y1:K−1|x1:K−1). (4.14)

Substituting Eq 4.10, Eq 4.13 and Eq 4.14 back into Eq 4.8, the Bayesian training process can be

represented as

Pr(θ0:K |y1:K , x1:K) =
[Pr(yK |y1:K−1, x1:K , θ0:K)Pr(y1:K−1|x1:K−1, θ0:K−1)]

Pr(yK |y1:K−1, x1:K)Pr(y1:K−1|x1:K−1)
×

[Pr(θK |θ0:K−1)Pr(θ0:K−1)]. (4.15)

Rearranging these terms, we end up with following equation

Pr(θ0:K |y1:K , x1:K) =
Pr(yK |y1:K−1, x1:K , θ0:K)Pr(θK |θ0:K−1)

Pr(yK |y1:K−1, x1:K)
×

[
Pr(y1:K−1|x1:K−1, θ0:K−1)Pr(θ0:K−1)

Pr(y1:K−1|x1:K−1)
], (4.16)

where the last term in the bracket is the previous posterior estimation given by

Pr(θ0:K−1|y1:K−1, x1:K−1) = [
Pr(y1:K−1|x1:K−1, θ0:K−1)Pr(θ0:K−1)

Pr(y1:K−1|x1:K−1)
]. (4.17)

34 CHAPTER 4. BAYESIAN NEURAL NETWORK

Now, we can recursively update our posterior function by using the previous estimation. We will refer

to the following equation as the recursive Bayesian solution of the Bayesian training process:

Pr(θ0:K |y1:K , x1:K) =
Pr(yK |y1:K−1, x1:K , θ0:K)Pr(θK |θ0:K−1)

Pr(yK |y1:K−1, x1:K)
×

Pr(θ0:K−1|y1:K−1, x1:K−1). (4.18)

However, the output yt=k at t = k only depends on the current input xk and the network parameter

θt=k, and it is also independent of any output yt≤k−1. In addition, the transition of the network

parameter has the Markov property which the current neural network’s parameter θk only depends

on the previous parameter θk−1. With the above assumptions, we can rewrite the Bayesian recursive

solution as

Pr(θ0:K |y1:K , x1:K) =
Pr(yK |xK , θK)Pr(θK |θ0:K−1)

Pr(yK |xK)
×

Pr(θ0:K−1|y1:K−1, x1:K−1). (4.19)

In the network training process, the history of the network parameter evolution in the training

process is not important to us. Our interest is the final trained parameter θK that fits our training data

Dk = (yk, xk) with confidence. Moreover, tracking all the parameter update histories is computationally

inefficient and more complex. One solution is to integrate those terms off from our recursive Bayesian

solution and leave the final probabilistic knowledge of the final trained network parameter θK . This can

be done by

Pr(θK |y1:K , x1:K) =

∫
· · ·

∫
θi

Pr(θ0:k|y1:k, x1:k)dθ0 . . . dθK−1. (4.20)

We then insert Eq 4.18 into Eq 4.20, and end up with the following equation

Pr(θK |y1:K , x1:K) =
Pr(yK |xK , θK)

Pr(yK |xK)
×

∫
θ
Pr(θK |θK−1)×

[

∫
· · ·

∫
θ
Pr(θ0:K−1|y1:K−1, x1:K−1)dθ0 . . . dθK−2]dθK−1. (4.21)

We can write the bracket term as

4.2. MONTE CARLO INTEGRATION 35

Pr(θK−1|y1:K−1, x1:K−1) = [

∫
· · ·

∫
θ
Pr(θ0:K−1|y1:K−1, x1:K−1)dθ0 . . . dθK−2]. (4.22)

Inserting Eq 4.22 back into Eq 4.21, we finally end with the state conditional density of the Bayesian

training process given by

Pr(θK |y1:K , x1:K) =
Pr(yK |xK , θK)

Pr(yK |xK)
×

∫
θ
Pr(θK |θK−1)Pr(θK−1|y1:K−1, x1:K−1)dθK−1, (4.23)

where Pr(yK |xK , θK) is the likelihood function, Pr(θK |θ0:K−1) is the transition function and

Pr(θK−1|y1:K−1, x1:K−1) is the previous posterior estimation of the network parameter.

It should be noted that the analytical solution for the above equation does not usually exit, or it is

hard to compute. However, we can approximate the solutions by using numerical simulations, such

as the MC method. In this thesis, the MC method is used to recursively solve the Bayesian solution.

Specifically, we will employ the SMC method due to its simple implementation and its ability to simulate

the training process sequentially.

4.2 Monte Carlo Integration

In practice, there are many integrals that cannot be solved analytically. Fortunately, MC methods

provide a convenient and accurate means to evaluate complex integrals numerically. As noted above in

the BNN training, we want to compute the state conditional density of the Bayesian training process.

The solution has a series of integrals but cannot be solved analytically. As a result, MC methods are an

ideal tool for the BNN training process. Here, we first present how to evaluate a simple integral using

MC methods, and then discuss more advanced MC techniques for evaluating the complex integrals of

Eq 4.23 such as the SMC method.

Let us first consider approximating a distribution as

p(x0:t|y1:t) =
1

N

∞∑
i=1

δ
x
(i)
0:t

(x0:t), (4.24)

where δ
x
(i)
0:t

is the delta-Dirac function, and x
(i)
0:t are independent and identically distributed random

samples from the distribution p(x0:t|y1:t).

36 CHAPTER 4. BAYESIAN NEURAL NETWORK

Now, consider a integral function

I =

∫
g(x0:t)p(x0:t|y1:t)dx0:t. (4.25)

Equation 4.25 can be estimated by a MC method as the summation of samples from the probability

distribution function p(x0:t|y1:t) [9]:

Î =
1

N

∞∑
i=1

g(x
(i)
0:t), (4.26)

where x
(i)
0:t is randomly sampled from the target distribution function p(x0:t|y1:t), and N is the total

number of samples. Numerical methods such as these that rely on random sampling are called Monte

Carlo in reference to the famous gambling casino. In the limit N →∞, Î = I. For finite N , the error

for this estimation is given by

|e1| ∼=
σ1√
N
, (4.27)

where the variance σ1
2 is given by [28]

σ1
2 ≡

∫
g2(x0:t)p(x0:t)dx− I2 . (4.28)

4.2.1 Importance Sampling

Let us now consider a situation from which the target distribution function p(x0:t|y1:t) is difficult to

sample. In this case, we evaluate the integral by using the basic MC method above with a new sampling

technique known as importance sampling. This approach allows one to sample from a simpler, more

convenient, importance function, instead of sampling from the original target distribution. In order

to capture the features of p(x0:t|y1:t), however, importance weights must be used to statistically weigh

how likely the sample would be if it were coming from the target distribution. The idea of Importance

sampling is illustrated in Fig. 4.1.

One can rewrite Eq 4.25 as

I =

∫
g(x0:t)p(x0:t|y1:t)dx =

∫
g(x0:t)

p(x0:t|y1:t)
q(x0:t|y1:t)

q(x0:t|y1:t) dx0:t , (4.29)

where q(x0:t|y1:t) is the importance function, which is easy to sample from the function g(x0:t) and also

has to be greater than zero. Letting w(x0:t) be the importance weight

w(x0:t) =
p(x0:t|y1:t)
q(x0:t|y1:t)

. (4.30)

4.3. THE SEQUENTIAL MONTE CARLO METHOD 37

Figure 4.1: A target distribution that is hard to sample from represents on the left-hand side. One can use an
importance function in the middle, let us consider a uniform distribution that is easy to sample. Therefore, these
samples can easily sample from the importance function must include important weight shows on the right-hand
side. The important weights are represented by the size of the red spheres, which tells indicates how likely those
samples are from the target distribution.

Eq 4.29 can now be rewritten as

I =

∫
[g(x0:t)w(x0:t)]q(x0:t|y1:t) dx0:t . (4.31)

Now, the function in this integral is [g(x0:t)w(x0:t)] and the distribution function is q(x0:t|y1:t). As a

result, the MC estimation of this integral can be written as

Î =
1

N

∞∑
i=1

g(x
(i)
0:t)w̃(x

(i)
t), (4.32)

where x
(i)
0:t are randomly sampled from the importance function q(x0:t|y1:t) and w̃(x

(i)
t) is the normalized

importance weights given by

w̃(x
(i)
t) =

w(x
(i)
0:t)∑N

j=1w(x
(j)
0:t)

. (4.33)

The error of the estimation here is again

|e2| ∼=
σ2√
N
, (4.34)

where the variance σ2
2 is given by [28]

σ2
2 ≡

∫
w2(x0:t)q(x0:t|y1:t)dx0:t − I2 . (4.35)

4.3 The Sequential Monte Carlo Method

Let us consider Eq 4.23 again, where we are trying to evaluate this complex equation for the BNN

training process. It is a series of integrals that could be evaluated individually using the standard

38 CHAPTER 4. BAYESIAN NEURAL NETWORK

MC method with importance sampling described above. However, such an approach would be very

inefficient, as computational complexity increases at least linearly with dimension [9]. A more suitable

evaluation of this kind of equation can be achieved with the sequential Monte Carlo (SMC) method

described below, which allows for more efficient use of samples. The graphic representation of the SMC

is shown in Fig. 4.2.

Figure 4.2: This plot shows a simple SMC method to sequentially approximate a distribution function. First, we
randomly initialize 10 particles from an importance distribution. The particle will be weighted by the normalized
importance weight represented by the size of the circle. Resampling of the particles will be performed to produce
more particles with high weight and reduce particles with low weights. After that, these new particles will be
used to sequentially approximate the probability distribution [9].

4.3. THE SEQUENTIAL MONTE CARLO METHOD 39

4.3.1 Sequential Importance Sampling

The core idea of SMC is to use what is known as the sequential importance sampling (SIS) technique to

evaluate the integrals of Eq 4.23 sequentially [9]. In this case, the numerical samples used to evaluate

the previous integral will be reused to evaluate the next integral. In doing so, we can evaluate the

integral recursively.

To be able to sequentially sample from the importance function, the importance function q(x0:t|y1:t)

at time t needs to be a marginal distribution at time t− 1 the importance function q(x0:t−1|y1:t−1) is

given by Doucet [9]

q(x0:t|y1:t) = p(x0:t−1|y1:t−1)q(xt|x0:t−1|y1:t), (4.36)

which is equivalent to

q(x0:t|y1:t) = q(x0)
t∏

k=1

q(xt|x0:t−1, y1:t). (4.37)

Therefore, one can recursively compute the normalized importance weights by using the previous

normalized importance weights as

w̃(x
(i)
t) ∝ w̃(x

(i)
t−1)

p(yt|x(i)t)p(x
(i)
t |x

(i)
t−1))

q(x
(i)
t)|q(x(i)0:t−1, yi:t)

. (4.38)

If we select the prior distribution as the importance distribution, this recursive computation of the

normalized importance weight can be simplified as

w̃(x
(i)
t) ∝ w̃(x

(i)
t−1)p(yt|x

(i)
t). (4.39)

Therefore, we can update the normalized importance weights and reuse these samples to sequentially

approximate the probability distribution function. By doing this, we saved the computation of generating

new particles and recomputing their importance weights for the estimation.

4.3.2 Resampling Algorithm

The SMC method is a powerful tool for evaluating complex integrals like those from the solution of

Eq 4.23. The drawback of the SMC method, however, is an effect known as weight degeneracy, whereby

the variance of importance weights increases exponentially as the number of sampling steps [9]. One can

fix this problem by using resampling methods. In this section, we will introduce a resampling method

and describe how we will implement this method in the training process.

40 CHAPTER 4. BAYESIAN NEURAL NETWORK

The idea behind resampling is to preserve samples with large weights while discarding those with small

weights. The selection probability is based on each sample’s normalized weight. Fig. 4.3 illustrates

the resampling process. Because we terminate the tracing on those low-weight samples by discarding

them earlier, we would expect a reduction in computational time. In addition, by preserving those

high-weight samples, one expects an increase in the approximation accuracy.

Figure 4.3: Let us consider a set of samples represented by the top spheres, where the size of the sphere is
the size of the importance weights. The idea of resampling is to resample the current samples according to
the importance weights. The sample with high weight will be reproduced and the small weight sample will be
discarded.

There are several algorithms available for resampling method, such as multinomial resampling, systematic

resampling, and residual resampling [29]. The simplest resampling method is the multinomial resampling

algorithm, since the selection probability of the resampling method depends on the sample’s normalized

weight. Thus the number of times Ni for each sample in the population set is selected as a binomial

distribution Bin(Ni,Wi). For a series of samples, it is distributed according to a multinomial distribution

[29]. The multinomial resampling process is illustrated in Fig. 4.4.

Figure 4.4: Graphical representation of the multinomial resampling process. Samples A B C D and E are stored
in a column. The column has space from 0 to 1. These samples occupy the column’s space according to their
normalized weight. one can select a single sample by randomly generating a number from a uniform distribution
(1, 0]. The new sample is selected based the number, that mean the sample with large normalized weight will
have higher chance to be selected [30].

Chapter 5

Development and Algorithm
Implementation

As mentioned previously, any neural network with one or more TT-layers can be referred to as a

TensorNet (TN) [6], and a neural network is called a Bayesian neural network (BNN) if it has stochastic

network weights and was trained via Bayesian inference [27]. We will therefore refer to any neural

network with any TT-layers and trained via Bayesian inference as a Bayesian TensorNet(BTN). In this

section, we will present how to represent a CNN into TT-format and train such a network with the

TerraByte’s plant dataset via Bayesian inference.

5.1 Bayesian TensorNet

In a CNN, the network trainable parameters are stored in the convolutional layers and fully connected

layers. To represent the CNN, one needs to represent these layers in TT format.

5.1.1 Correlation Operation in Tensor Train Format

Since we are working on the CNN, the correlation is a important operation especially for the fully

overlapping correlation. Given two tensors X ∈ RI1×···×In×···×IN and Y ∈ RJ1×···×Jn×···×JN , we want to

compute P = X
⊗

Y ∈ R(I1−J1+1)×···×(In−Jn+1)×···×(IN−JN+1) with fully overlapping correlation. To do

this in the TT format, let us first write X ∈ RI1×···×In×···×IN and Y ∈ RJ1×···×Jn×···×JN in TT format

with TT rank (R0 = 1, R1, . . . RN−1, RN = 1) and (Q0 = 1, Q1, . . . QN−1, QN = 1) as follows:

X ∼= G(1) ×1 G(2) · · · ×1 G(N−1) ×1 G(N), (5.1)

41

42 CHAPTER 5. DEVELOPMENT AND ALGORITHM IMPLEMENTATION

where G(n) ∈ RRn−1×In×Rn with (R0 = 1, R1, . . . RN−1, RN = 1), and

Y ∼= H(1) ×1 H(2) · · · ×1 H(N−1) ×1 H(N), (5.2)

where H(n) ∈ RQn−1×Jn×Qn with (Q0 = 1, Q1, . . . QN−1, QN = 1). Fig. 5.1 shows the graphical

transformation from an N th order tensor into N number of small tensor cores.

Figure 5.1: Let us consider an N th order tensor such as X represented on the left hand side with N arms. the
N th order tensor can be represent by using N tensor cores on the right hand side. The first and the last tensor
cores are 2nd order tensors with only two arms. The rest of them are 3rd order tensors with three arms.

For computing P = X
⊗

Y , the TT format of P can be calculated TT core by another one TT core

with partial mode-2 correlation, such as

U(n) = G(n) ⊗
2
H(n) ∈ R(Rn−1Qn−1)×(In−Jn+1)×(RnQn), (5.3)

where n = 1, 2, . . . N . Therefore,

P ∼= U(1) ×1 U(2) · · · ×1 U(N−1) ×1 U(N). (5.4)

Once, we have those TT cores ready, the result of the fully overlapping correlation P = X
⊗

Y ∈

R(I1−J1+1)×···×(In−Jn+1)×···×(IN−JN+1) can be reconstructed by the TT cores U(1),U(2), . . . ,U(N). The

computation of P is illustrated in Fig. 5.2.

5.1.2 Convolutional Layer in Tensor Train Format

For a convolutional layer in the convolutional nerual network, let us first consider a batch of input

images as a 4th order tensor I ∈ RI1×I2×C×N , and a batch of filters as another 4th order tensor

F ∈ RJ1×J2×C×M . We can represent these 4th orders tensor by two 5th orders tensor with an empty

dimension such as I ∈ RI1×I2×C×N×1 and F ∈ RJ1×J2×C×1×M . As such, they are basically the same

tensors but with an additional dimension. We write tensors I and J into TT format representation

with TT ranks (R0, R1, R2, R3, R4, R5) and (Q0, Q1, Q2, Q3, Q4, Q5) where the first and the last TT

rank are 1, so that R0 = R5 = Q0 = Q5 = 1. The TT format of the batch of image I is then given by

5.1. BAYESIAN TENSORNET 43

Figure 5.2: On the left hand side, each tensor core G(n) is used to implement the partial mode-2 correlation
with corresponding tensor core H(n). The result is shows in the middle, which is a TT format constructed by the
results of the partial mode-2 correlatio or tensor cores U(n). The final result is on the right hand side using the
tensor cores U(n) to reconstruct the high order tensor P .

I ∼= G(1) ×1 G(2) ×1 G(3) ×1 G(4) ×1 G(5), (5.5)

where

G(1) ∈ R1×I1×R1

G(2) ∈ RR1×I2×R2

G(3) ∈ RR2×C×R3

G(4) ∈ RR3×N×R4

G(5) ∈ RR4×1×1.

(5.6)

Similarly, The TT format of the batch of filters F is given by

F ∼= H(1) ×1 H(2) ×1 H(3) ×1 H(4) ×1 H(5), (5.7)

where

H(1) ∈ R1×J1×Q1

H(2) ∈ RQ1×J2×Q2

H(3) ∈ RQ2×C×Q3

H(4) ∈ RQ3×1×Q4

H(5) ∈ RQ4×M×1.

(5.8)

44 CHAPTER 5. DEVELOPMENT AND ALGORITHM IMPLEMENTATION

To compute the fully overlapping correlation in a normal convolutional layer P = I
⊗

F , we can just

simply implement the partial mode-2 correlation between each TT cores as

U(1) = G(1) ⊗
2
H(1) ∈ R(1)×(I1−J1+1)×(R1Q1)

U(2) = G(2) ⊗
2
H(2) ∈ R(R1Q1)×(I2−J2+1)×(R2Q2)

U(3) = G(3) ⊗
2
H(3) ∈ R(R2Q2)×(1)×(R3Q3)

U(4) = G(4) ⊗
2
H(4) ∈ R(R3Q3)×(N)×(R4Q4)

U(5) = G(5) ⊗
2
H(5) ∈ R(R4Q4)×(M)×(1).

(5.9)

The convolutional layer’s result P is recomstructed using these TT cores from above as

P ∼= U(1) ×1 U(2) ×1 U(3) ×1 U(4) ×1 U(5), (5.10)

where P ∈ R((I1−J1+1))×(I2−J2+1)×1×N×M is the result or the activation map of the convolutional layer

with N images, and P(:, :, :, n, :) is the result of the convolutional layer with nth image.

5.1.3 Fully Connected Layer in Tensor Train Format

To convert a conventional CNN into a BTN and train with our Bayesian training algorithm, we need

not only convert the convolutional layer into TT format but also the fully connected layer. However, our

work was mainly focused on the formulation of the convolutional layer in the TT format and verifying

the training of the BTN with our new TT convolutional layer formulation. Therefore, the conversion of

TT format for fully connected layer was adopted from Noviko [6]. His idea is based on the vector-matrix

multiplication in the TT format, since the fully connected layer is just a vector-matrix multiplication.

However, the decomposition on a big vector or matrix by using the TT decomposition is the same as the

low-rank approximation as we discussed in Section 3.4.7, so he used the quantized tensor train format to

convert the big vector and matrix into TT format and then performs the vector-matrix multiplication

on these tensor cores.

Overall, the benefit to representing the CNN in this manner is to reduce the storage consumption and

fast forward computation, since these high order tensors are represented by smaller tensor cores and the

tensor operation is done on these tensor cores. However, the conversion between the original tensor

and the decomposed tensor will increase the complexity of the neural network, since we need to switch

between the original representation and the decomposed representation. Unless we develop new neural

network architecture that is designed specifically for the TensorNet, we must suffer the conversion issue.

5.1. BAYESIAN TENSORNET 45

5.1.4 Evaluating the Recursive Bayesian Solution

The conversion issue leads to a problem when training this TensorNet with the standard backpropagation

algorithm, where every time we want to update the layer’s weights with the gradient, we need to compute

the gradient and run into the tensor decomposition conversion issue. Fortunately, the TensorNet has

the advantage of fast-forward computation. We could train the TensorNet using Bayesian inference as

we referred to as BTN, since it only requires the forward computation result to test the hypothesis. By

training the BTN we could ignore the gradient computation on these trainable parameters and avoid

the conversion issue.

To train the BTN, let us consider approximating of the posterior function in Eq 4.19 by the following

MC approximation

P̂ r(θ0:K |y1:K , x1:K) =
1

N

N∑
i=1

δ(θ0:K − θ
(i)
0:K), (5.11)

where θ
(i)
0:K are samples from posterior distribution function Pr(θ0:K |y1:K , x1:K). We can approximate

any expectation of the form

E[fk(θ0:K)] =

∫
fk(θ0:K)Pr(θ0:K |y1:K , x1:K)dθ0:K , (5.12)

by MC simulation as

E[fk(θ0:K)] ≈ 1

N

N∑
i=1

fk(θ
(i)
0:K), (5.13)

where θ
(i)
0:K is sampled from the posterior density function Pr(θ0:K |y1:K , x1:K).

However, it is very common that we are not able to sample directly from the posterior function

Pr(θ0:K |y1:K , x1:K). But we can sample from a proposal distribution q(θ0:K |y1:K , x1:K) over the

target distribution Pr(θ0:K |y1:K , x1:K) as we discussed in Section 4.2.1:

E[fk(θ0:K)] =

∫
fk(θ0:K)Pr(θ0:K |y1:K , x1:K)

q(θ0:K |y1:K , x1:K)

q(θ0:K |y1:K , x1:K)
dθ0:K . (5.14)

Applying the Bayes’ theorem

Pr(θ0:K |y1:K , x1:K) =
Pr(y1:K , x1:K |θ0:K)Pr(θ0:K)

Pr(y1:K , x1:K)
, (5.15)

and we can rewrite the above equation as

46 CHAPTER 5. DEVELOPMENT AND ALGORITHM IMPLEMENTATION

E[fk(θ0:K)] =

∫
fk(θ0:K)

Pr(y1:K , x1:K |θ0:K)Pr(θ0:K)

Pr(y1:K , x1:K)

q(θ0:K |y1:K , x1:K)

q(θ0:K |y1:K , x1:K)
dθ0:K . (5.16)

Rearranging the above equation gives

E[fk(θ0:K)] =

∫
fk(θ0:K)

Pr(y1:K , x1:K |θ0:K)Pr(θ0:K)

q(θ0:K |y1:K , x1:K)

q(θ0:K |y1:K , x1:K)

Pr(y1:K , x1:K)
dθ0:K . (5.17)

If we now let the unnormalized importance ratio be

wk(θ0:K) =
Pr(y1:K , x1:K |θ0:K)Pr(θ0:K)

q(θ0:K |y1:K , x1:K)
, (5.18)

insert this equation back into Eq 5.17, we get

E[fk(θ0:K)] =

∫
fk(θ0:K)wk(θ0:K)

q(θ0:K |y1:K , x1:K)

Pr(y1:K , x1:K)
dθ0:K . (5.19)

We are able to remove the normalized constant Pr(y1:K , x1:K) to simplify our equation by doing the

following steps. Fisrt, we write

E[fk(θ0:K)] =
1

Pr(y1:K , x1:K)

∫
fk(θ0:K)wk(θ0:K)q(θ0:K |y1:K , x1:K)dθ0:K . (5.20)

Then, recognizing that

Pr(y1:K , x1:K) =

∫
Pr(y1:K , x1:K |θ0:K)Pr(θ0:K)dθ0:K , (5.21)

we can write

Pr(y1:K , x1:K) =

∫
Pr(y1:K , x1:K |θ0:K)Pr(θ0:K)

q(θ0:K |y1:K , x1:K)

q(θ0:K |y1:K , x1:K)
dθ0:K . (5.22)

By simplify the equation with the unnormalized importance ratio on Eq 5.18

Pr(y1:K , x1:K) =

∫
wk(θ0:K)q(θ0:K |y1:K , x1:K)dθ0:K . (5.23)

Now, we can rewrte Eq 5.20 as

E[fk(θ0:K)] =

∫
fk(θ0:K)wk(θ0:K)q(θ0:K |y1:K , x1:K)dθ0:K∫

wk(θ0:K)q(θ0:K |y1:K , x1:K)dθ0:K
. (5.24)

Finally, recognizing the numerator and denominator of Eq 5.20 have the same form, we can write

E[fk(θ0:K)] =
Eq[wk(θ0:K)fk(θ0:K)]

Eq[wk(θ0:K)]
. (5.25)

5.1. BAYESIAN TENSORNET 47

Both the numerator and denominator can now be approximated by MC approximation by sampling

from the proposal distribution q(θ0:K |y1:K , x1:K). This is written as

E[fk(θ0:K)] ≈
1
N

∑N
i=1wk(θ

(i)
0:K)fk(θ

(i)
0:K)

1
N

∑N
i=1wk(θ

(i)
0:K)

. (5.26)

Letting w̃(i) be the normalized importance ratio given by

w̃k
(i) =

wk
(i)∑N

i=1wk
(i)
, (5.27)

we can further simplify Eq 5.26 with the normalized importance as

E[fk(θ0:K)] ≈
N∑
i=1

w̃k(θ
(i)
0:K)fk(θ

(i)
0:K). (5.28)

To approximate our solution sequentially without modifying our samples θ0:k−1, we need to select a

proposal distribution like the following

q(θ0:K |y1:K , x1:K) = q(θ0)
k∏
j=1

q(θj|θ0:j−1, y1:j, x1:j), (5.29)

or

q(θ0:K |y1:K , x1:K) = q(θ0:K−1|y1:K−1, x1:K−1)q(θk|θ0:K−1, y1:K , x1:K). (5.30)

Since the BTN parameters evolved in the training process is a Markov process, where the current BNN’s

parameters only depend on the previous parameters, we can write

Pr(θ0:K) = Pr(θ0)

k∏
j=1

Pr(θj|θj−1). (5.31)

The network’s output is conditionally independent of the network parameter, therefore we can rewrite

this equation as

Pr(y1:K , x1:K |θ0:K) =
k∏
j=1

Pr(yj, xj|θj). (5.32)

By using Eqs. 5.30, 5.31 and 5.32, we can sequentially compute the importance ratio in the Eq 5.18 by

wk = wk−1
Pr(yk, xk|θk)Pr(θk|θk−1)

q(θk|θ0:K−1, y1:K , x1:K)
. (5.33)

We are able to update our importance ratio based on Eq 5.33, and the estimation of the solution can be

computed with the normalized importance ratio as

48 CHAPTER 5. DEVELOPMENT AND ALGORITHM IMPLEMENTATION

E[fk(θ0:K)] ≈
N∑
i=1

q̃k
(i)fk(θ

(i)
0:K). (5.34)

At this stage, the immediate question is which proposal function we should use in our SMC design. For

the convenient implementation of the training algorithm, we have decided in the work to use this most

popular choice of the proposal distribution, which is the transition function from the state conditional

density of the Bayesian training process:

q(θk|θ0:k−1, y1:k, x1:k) = Pr(θk|θk−1) (5.35)

As a result, our importance ratio is based on the choice of the proposal distribution as we discussed in

Section 4.2.1:

wk = wk−1
Pr(yk, xk|θk)Pr(θk|θk−1)

Pr(θk|θk−1)
, (5.36)

wk = wk−1Pr(yk, xk|θk) (5.37)

where the likelihood function Pr(yk, xk|θk) is easy to compute and will be used to update the importance

ratio sequentially.

5.2 Bayesian TensorNet Training Workflow

In this thesis, we trained our BTN for a classification problem with a dataset of single-plant images.

The BTN was constructed with a single TT-convolutional layer, one flatten layer, one TT-full connected

layer, and one fully connected layer. The training of BTN is basically approximated by the recursive

Bayesian solution by using the SMC method.

The training workflow of our experiment is shown in Fig 5.3. We start by creating the training data

and selecting the architecture of the conventional neural network, then we decompose the convolutional

and fully connected layers into TT format by using the TT decomposition technique. To approximate

the recursive Bayesian solution via SMC method, samples used in the SMC method are predicted and

updated via the transition and measurement equation. These prediction and update steps are sequential

in evaluating the recursive solution. These samples construct the representation of the posterior function

we are approximating. When we have the information of the posterior function, we can compute our

estimator, such as mean, median maximum a posteriori (MAP), etc. Some important components of

the training workflow will be discussed in the following subsections.

5.2. BAYESIAN TENSORNET TRAINING WORKFLOW 49

Figure 5.3: The diagram shows the main components in our BTN training. The left top part is the pre-processing
where we set up the training dataset and neural network in the TT format. The right-hand side in the gray box
is the main body of the SMC method to simulate and optimize our BTN’s trainable parameters. The left bottom
part is an extension of our SMC method, where we use the resampling method to improve the simulation or
training.

5.2.1 Preparing the Training Dataset

The BTN input is RGB single-plant images, where a single plant is in a blue poy surrounded by a

blue background. Therefore, we can focus on classifying the plant type and ignoring the background

noise. Plant images with different classes are saved in different folders (canola, wheat, and soy). A

python script was written to construct a CSV file with the image file name and class label from each

50 CHAPTER 5. DEVELOPMENT AND ALGORITHM IMPLEMENTATION

folder. The CSV file is then used in our TensorFlow script for loading those training images and labels.

Examples of images are shown in Fig 5.4.

Figure 5.4: A single plant dataset from TerraByte with 3 classes: canola, wheat and soy bean. A total of 10000
images was used in our training with 3522 canola images, 3711 wheat images, and 2731 soy images. These image
are resized to 64 by 64 for better illustration and training.

Before we start the training, we need to first implement pre-processing of the raw images that were first

resized to 64× 64 to have them all with the same resolution. They were normalized with the ImageNet

normalization mean and variance. Finally the training images were rearranged into batches representing

by a 4th order tensor such as I ∈ R64×64×3×N .

Since our first layer is a TT-convolutional layer in TT-format, we need to send the batch of images in

TT-format as well. The 4th order tensor will be rearranged as a 5th order tensor I ∈ R64×64×3×N×1 by

adding an empty dimension. This 5th order tensor was decomposed into a TT format representing by 5

tensor cores and TT ranks (R0, R1, R2, R3, R4, R5) as

G(1) ∈ R1×64×R1

G(2) ∈ RR1×64×R2

G(3) ∈ RR2×3×R3

G(4) ∈ RR3×N×R4

G(5) ∈ RR4×1×1.

(5.38)

5.2. BAYESIAN TENSORNET TRAINING WORKFLOW 51

The five tensor cores become the input we send to our BTN for training. One can represent the input

images by using fewer elements than the actual size of the input images, therefore the bandwidth of the

neural network is smaller than the original one.

5.2.2 Neural Network in Tensor Train Format

The CNN we tested was constructed by one convolutional layer with two fully connected layers. Usually,

the convolutional layer is the bottleneck for the forward and backward computation, where doing the

correlation between two high order tensors is computationally expensive. On the other hand, the fully

connected layer is the bottleneck from the storage point of view, since it stores a huge matrix for the

linear operation in the neural network. Simplification of the convolutional layer computation and fully

connected layer storage will be needed to enable the use of the neural network in a cheaper or portable

device.

In our experiment, the convolutional layer is represented in TT format by using the idea of Section

5.1.2. For these two fully connected layers, we will only represent the first fully connected layer into

TT-format by using the idea of Section 5.1.3. the second fully connected layer will stay in the regular

format. We chose to do this because the second fully connected layer is the last layer of the BTN, and

the size of this layer is not big. A diagram of the BTN is shown in Fig 5.5.

The convolutional layer has thirty-two 3 × 3 filters and is a 4th order tensor. However, we want to

rewrite it as a 5th order tensor given by F ∈ R3×3×3×1×32 by adding an empty dimension, alowing it to

be represented in TT format with five tensor cores as the formulation in Section 5.1.2. The five tensor

cores with TT ranks (Q0, Q1, Q2, Q3, Q4, Q5) is given by

H(1) ∈ R1×3×Q1

H(2) ∈ RQ1×3×Q2

H(3) ∈ RQ2×3×Q3

H(4) ∈ RQ3×1×Q4

H(5) ∈ RQ4×32×1.

(5.39)

The method to represent the fully connected layer into a TT-format is exactly the same as the method

Alexander proposed [6], where they tensorize the matrix into a high order tensor and represented the

high order tensor into QTT format. For more detailed implementation, refer to Novikov’s paper [6].

52 CHAPTER 5. DEVELOPMENT AND ALGORITHM IMPLEMENTATION

Figure 5.5: A simple CNN with RGB image as input. The CNN is made by one convolutional layer in TT
format (refered to as TT-Convolutional layer), one fully connected layer in TT format (refered to as TT-Fully
connected layer), and a regular fully connected layer. A softmax function is used on the output of the fully
connected layer to compute the output.

5.2.3 Prediction Step

The prediction step is an important part of our training process, where the previous BTN parameters

are predicted based on Eq 5.35. We randomly predict the next BTN parameters by using Gaussian

noise, which can be mathematically represented as

θ
(i)
k = θ

(i)
k−1 + n

(i)
k−1, (5.40)

where n
(i)
k−1 is sample from a Gaussian distribution N(0, varn). The predicted parameter of the BTN is

basically searching in the parameter space for an optimized parameter set.

5.2.4 Update Step

After the prediction step, we have a BTN with a new set of predicted parameters. However, we do not

know how good the random prediction was. We need a way to guide us toward a better parameter set.

Here, we employ an update step which is based on the Eq 5.37. The equation was used to update our

importance ratio. The updated importance ratio is the information indicating how good our prediction

5.3. TENSORFLOW AND T3F LIBRARY 53

is. If the prediction is good, the importance ratio of that prediction sample will be greater than those

of bad prediction.

5.2.5 Variance Threshold

After the prediction and update steps on the BTN’s parameters, the importance ratio will be normalized.

We want to check the variance threshold to ensure we need to implement the resampling method to

prevent particle variance degeneracy of the SMC method, as discussed in Section 4.3.2. To do this,

we used a variance threshold to check if the implementation of resampling is required. The variance

threshold used here is given by Doucet [31]:

Neff =
1∑N

i=1(w̃k
(i))2

, (5.41)

where Neff is the variance threshold, and w̃k
(i) is the normalized important ratio for each particle

at t = k. If the variance of the normalized particle is great than the Neff , we need to perform the

resampling on all particles. Otherwise, we skip the resampling step and perform the next training step.

5.2.6 Resampling Implementation

Every time the normalized importance ratio’s variance is above the variance threshold, we will perform

the resampling algorithm. In our training, the normalized ratio of the particle is used as the selection

probability in the resampling algorithm, where the normalized importance ratio is given by

W ′i =
Wi∑N
i=1Wi

, (5.42)

and the variance of the normalized importance ratio is given by

σ2 =

∑N
i=1(Wi −W)2

N
, (5.43)

where the W is the mean of importance ratio. The calculated variance is compared with a variance

threshold Neff to decide if resampling should be implemented or not.

5.3 TensorFlow and T3F Library

All the implementation was done on the TensorFlow platform. TensorFlow was created by Google Brain

and is an open-source library for machine learning [32]. TensorFlow provides easy access for building

54 CHAPTER 5. DEVELOPMENT AND ALGORITHM IMPLEMENTATION

machine learning applications. We chose TensorFlow as our programming language because TensorFlow

allows the speed-up of the construction of machine learning models, so we do not have to build them

from scratch. The machine learning model can be generated in just a few lines instead of hours of work.

TensorFlow is an excellent programming language for doing machine learning research, However,

TensorFlow was developed mainly for backpropagation training algorithm, which is a totally different

training algorithm than our Bayesian training algorithm in this thesis. As a result, we were not able

to use the full benefits from TensorFlow, such as GPUs support and fast computation algorithm.

The TensorFlow code in our project was mainly used for the basic model construction and forward

computation pipeline with our tensor operation.

T3F is a library built on top of TensorFlow for researchers working with the Tensor Train decomposition

created by Novikov and Izmailov [33]. This library gives researchers easy access to Tensor Train

decomposition with the TensorFlow API. It also provides basic tensor operations for tensor computations

such as tensor addition, multiplication, and tensor product. The T3F library was used in our project to

represent the convolutional layer and fully connected layer into the TT format.

Chapter 6

Training Performance Comparision and
Analysis

We implemented our BTN training on an Intel i9-10980XE CPU with 3.0GHz and 256GB RAM. We

trained our BTN with the TerraByte plant images for a classification problem. We tested our BTN

with various prediction noises for searching better training performance. A different estimator was used

to verify the BTN’s training and inference. In the following results, we will show two BTN trainings

with different Gaussian noise and compare their performance on the BTN inference.

However, it is not only the prediction noise that can affect our BTN performance, since the BTN’s

trainable parameters are probabilistic instead of deterministic. Therefore, choosing an estimator is

also a key to having a good model. In our experiment, we have found the mean and the maximum a

posteriori (MAP) estimator has the best performance compared with others. In the following result, we

will use the mean and the MAP as our estimator to test our BTN performance.

6.1 Training Preformance with Small Prediction Noise

In this experiment, we set up our prediction noise with Gaussian noise and the standard deviation

as 0.001. The training was done with the TerraByte single plant dataset where 10000 images were

used. 5000 images for the training step and the other 5000 for the validation step. We sequentially

approximated the posterior function by using the SMC method. The mean estimator of the posterior

function was computed every 100 training steps, and the estimator was used to compute the training

loss against the training step plot. The training loss against the training step plot is shown in Fig. 6.1.

The plot shows we were able to train our BTN, and we reduced the loss value from 1.10 to 0.81 in 10000

55

56 CHAPTER 6. TRAINING PERFORMANCE COMPARISION AND ANALYSIS

training steps. However, due to the lack of GPU acceleration support on our new algorithm, the total

training time took approximately 73 hours on a single Intel i9-10980XE CPU. We expect this training

speed will improve with better programming coding and hardware support.

Figure 6.1: In this plot, the trianing loss function was the Tensorflow built-in loss function SparseCategorical-
Crossentropy. The loss value was computed every 100 trianing step when the mean estimator is avaliable. The
BTN with predition noise N(0,std = 0.001) was able to reduce the loss value from 1.10 to 0.81 in 10000 steps.

6.1. TRAINING PREFORMANCE WITH SMALL PREDICTION NOISE 57

After the BTN finishes the 10000 training steps, it will stop the training and compute the final mean

estimator and MAP estimator of the posterior. The performance of the BTN was tested with the mean

estimator and the MAP estimator. A confusion matrix plot was used to present the BTN prediction

accuracy on the validation images. Fig. 6.2 and 6.3 show the confusion matrices for the mean and MAP

estimator respectively.

Figure 6.2: The plot shows the trained BTN with the mean estimator. The folowing accuracies were achieved:
0.53 on the wheat image prediction; 0.61 on the canola image prediction and 0.56 on the soybean image prediction.
As shown in the legend, higher prediction levels are indicated by a darker colour.

58 CHAPTER 6. TRAINING PERFORMANCE COMPARISION AND ANALYSIS

Figure 6.3: The plot shows the trained BTN with the MAP estimator. The folowing accuracies were achieved:
0.62 on the wheat image prediction; 0.65 on the canola image prediction and 0.57 on the soybean image prediction.
As shown in the legend, higher prediction levels are indicated by a darker colour.

The BTN was successfully trained with our Bayesian training algorithm without computing any gradient.

6.2. TRAINING PREFORMANCE WITH LARGE PREDICTION NOISE 59

6.2 Training Preformance with Large Prediction Noise

The BTN trained with prediction noise N(0, std = 0.001) shows a good prediction result after the

10000 training steps. If we choose a proper prediction noise, we could reduce the loss value further and

improve our BTN’s performance. Here we present the training result with the prediction noise N(0, std

= 0.005) with the same training setup and training dataset as in Section 6.1. The training loss against

the training step plot is shown in Fig 6.4. We were able to reduce the loss value from 1.10 to 0.68 in

10000 training steps. The total training time took approximately 75 hours on a single Intel i9-10980XE

CPU.

Figure 6.4: In this plot, the trianing loss function was the Tensorflow build-in loss function SparseCategorical-
Crossentropy. The loss value was computed every 100 trianing step when the mean estimator is avaliable. The
BTN with predition noise N(0,std = 0.005) was able to reduce the loss value from 1.10 to 0.68 in 10000 steps.

60 CHAPTER 6. TRAINING PERFORMANCE COMPARISION AND ANALYSIS

By doing the same process, we trained the BTN with prediction noise N(0, std = 0.005) with 10000

steps. The mean and MAP estimator were computed after the training. The performance of the BTN

was tested with the mean estimator and the MAP estimator. A confusion matrix plot was used to

present the BTN prediction accuracy on the validation images. Fig. 6.5 and 6.6 is the confusion matrix

for the mean and MAP estimator respectively.

Figure 6.5: The plot shows the trained BTN with the mean estimator. The folowing accuracies were achieved:
0.70 on the wheat image prediction; 0.61 on the canola image prediction and 0.67 on the soybean image prediction.
As shown in the legend, higher prediction levels are indicated by a darker colour.

6.2. TRAINING PREFORMANCE WITH LARGE PREDICTION NOISE 61

Figure 6.6: The plot shows the trained BTN with the MAP estimator. The folowing accuracies were achieved:
0.72 on the wheat image prediction; 0.67 on the canola image prediction and 0.69 on the soybean image prediction.
As shown in the legend, higher prediction levels are indicated by a darker colour.

We increased the prediction noise to further reduce the loss value and improved our BTN performance

in the same 10000 training steps. However, there is a limit to using a bigger prediction noise. After a

lot of training experiments, we found the BTN with the single plant dataset is only able to train with

Gaussian noise N(0, std<0.01). If the prediction noise has a standard deviation greater than 0.01, the

BTN will not be able to converge. On the other hand, if we use a very small prediction noise, it will

slow down training convergence. Therefore, the role of the prediction noise in our Bayesian training

algorithm is like the learning rate in the backpropagation algorithm. It is a hyperparameter in the

training process and one needs to be careful with the choice of noise level.

62 CHAPTER 6. TRAINING PERFORMANCE COMPARISION AND ANALYSIS

Chapter 7

Conclusion

7.1 Summary

In this thesis, we developed a novel tensor-train formulation of a convolutional neural network and

trained it with a Bayesian training algorithm for a plant classification problem. We represented the

fully connected layer with the same idea given by Novikov [6]. We also used our novel tensor-train

representation for the convolutional layer. In our experiment with the TerraByte plant dataset, we

successfully trained the BTN for a classification problem with an average 67% accuracy on the validation

dataset. We also found the MAP estimator has the best performance in this plant dataset classification

experiment. We discussed the property of the prediction noise in our training algorithm and found our

prediction noise cannot exceed N(0,std>0.01).

By using the tensorization method on the neural network, we could reduce the network’s size and

improve the inference time. The digital agriculture development usually needs portable and power-saving

hardware to implement the neural network for various applications in the outdoor field. This work

could be valuable to digital agriculture to integrate the state-of-art technology, since our neural network

required a smaller memory size and a simpler forward computation on the model inference.

7.2 Future Work and Discussion

Still more research that needs to be done on the BTN to make the BTN more efficient and practical.

Since there is no GPU acceleration support on the BTN, further optimization and GPU parallelization

are required to speed up the training process with our new training algorithm. A fair comparison

between our training algorithm and the backpropagation training algorithm is also needed. To compare

63

64 CHAPTER 7. CONCLUSION

both training algorithms fairly, one needs to formulate the backpropagation training algorithm on the

TT-layers and train the TensorNet on the same hardware support. The most important thing is that we

need more development of the new neural network architecture specifically for the BTN, since most of

the neural network architecture is built based on the regular tensor representation and backpropagation

training algorithm.

The approximation by using other numerical algorithm could also help us to solve the recursive Bayesian

solution. In our thesis we used the SMC method. Exploring other Monte Carlo methods to estimate

the posterior function could include Reversible-jump Markov chain Monte Carlo and Resample-move

Sequential Monte Carlo method.

Finally, replacing the TT decomposition by using other tensor decomposition method, such as more

general hierachical Tucker decomposition to further reduce the total number of CNN parameters and

improve the inference time.

Bibliography

[1] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image

segmentation,” in MICCAI, 2015.

[2] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional

neural networks,” Communications of the ACM, vol. 60, pp. 84 – 90, 2012.

[3] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” 2016 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778, 2016.

[4] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. E. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and

A. Rabinovich, “Going deeper with convolutions,” 2015 IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), pp. 1–9, 2015.

[5] R. B. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for accurate object

detection and semantic segmentation,” 2014 IEEE Conference on Computer Vision and Pattern

Recognition, pp. 580–587, 2014.

[6] A. Novikov, D. Podoprikhin, A. Osokin, and D. P. Vetrov, “Tensorizing neural networks,” in NIPS,

2015.

[7] I. Oseledets, “Tensor-train decomposition,” SIAM J. Sci. Comput., vol. 33, pp. 2295–2317, 2011.

[8] T. Garipov, D. Podoprikhin, A. Novikov, and D. P. Vetrov, “Ultimate tensorization: compressing

convolutional and fc layers alike,” ArXiv, vol. abs/1611.03214, 2016.

[9] A. Doucet, N. de Freitas, and N. J. Gordon, “Sequential monte carlo methods in practice,” in

Statistics for Engineering and Information Science, 2001.

65

66 BIBLIOGRAPHY

[10] H. collaboration V. Andreev, M. Arratia, A. Baghdasaryan, A. Baty, and K. Begzsuren, “Mea-

surement of lepton-jet correlation in deep-inelastic scattering with the h1 detector using machine

learning for unfolding,” 2021.

[11] M. A. Beck, C.-Y. Liu, C. P. Bidinosti, C. J. Henry, C. M. Godee, and M. Ajmani, “An embedded

system for the automated generation of labeled plant images to enable machine learning applications

in agriculture,” PLoS ONE, vol. 15, 2020.

[12] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in nervous activity,”

Bulletin of Mathematical Biology, vol. 52, pp. 99–115, 1990.

[13] F. Rosenblatt, “The perceptron: a probabilistic model for information storage and organization in

the brain.,” Psychological review, vol. 65 6, pp. 386–408, 1958.

[14] I. J. Goodfellow, Y. Bengio, and A. C. Courville, “Deep learning,” Nature, vol. 521, pp. 436–444,

2015.

[15] F. L. Hitchcock., “The expression of a tensor or a polyadic as a sum of products,” 1927.

[16] A. Cichocki, N. Lee, I. Oseledets, A. Phan, Q. Zhao, and D. P. Mandic, “Low-rank tensor networks

for dimensionality reduction and large-scale optimization problems: Perspectives and challenges

part 1,” ArXiv, vol. abs/1609.00893, 2016.

[17] R. B. Cattell, ““parallel proportional profiles” and other principles for determining the choice of

factors by rotation,” Psychometrika, vol. 9, pp. 267–283, 1944.

[18] R. B. Cattell, “The three basic factor-analytic research designs-their interrelations and derivatives.,”

Psychological bulletin, vol. 49 5, pp. 499–520, 1952.

[19] C. J. Appellof and E. R. Davidson, “Strategies for analyzing data from video fluorometric monitoring

of liquid chromatographic effluents,” Analytical Chemistry, vol. 53, pp. 2053–2056, 1981.

[20] L. D. Lathauwer and A. de Baynast, “Blind deconvolution of ds-cdma signals by means of

decomposition in rank-$(1,l,l)$ terms,” IEEE Transactions on Signal Processing, vol. 56, pp. 1562–

1571, 2008.

[21] L. D. Lathauwer, B. D. Moor, and J. Vandewalle, “A multilinear singular value decomposition,”

SIAM J. Matrix Anal. Appl., vol. 21, pp. 1253–1278, 2000.

BIBLIOGRAPHY 67

[22] M. A. O. Vasilescu and D. Terzopoulos, “Multilinear analysis of image ensembles: Tensorfaces,” in

ECCV, 2002.

[23] M. A. O. Vasilescu and D. Terzopoulos, “Multilinear image analysis for facial recognition,” Object

recognition supported by user interaction for service robots, vol. 2, pp. 511–514 vol.2, 2002.

[24] T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,” SIAM Rev., vol. 51,

pp. 455–500, 2009.

[25] P. Gelß, “The tensor-train format and its applications,” 2017.

[26] A. Cichocki, “Tensor networks for big data analytics and large-scale optimization problems,” ArXiv,

vol. abs/1407.3124, 2014.

[27] L. V. Jospin, W. L. Buntine, F. Boussaid, H. Laga, and Bennamoun, “Hands-on bayesian neural

networks - a tutorial for deep learning users,” ArXiv, vol. abs/2007.06823, 2020.

[28] W. L. Dunn, “Exploring monte carlo methods,” 2011.

[29] J. V. Candy, “Bayesian signal processing: Classical, modern and particle filtering methods,” 2009.

[30] T. Li, M. Bolic, and P. M. Djurić, “Resampling methods for particle filtering,” 2015.

[31] A. Doucet and A. M. Johansen, “A tutorial on particle filtering and smoothing: Fifteen years later,”

2008.

[32] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving,

M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. G. Murray, B. Steiner, P. A. Tucker,

V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and X. Zhang, “Tensorflow: A system for large-scale

machine learning,” ArXiv, vol. abs/1605.08695, 2016.

[33] A. Novikov, P. Izmailov, V. Khrulkov, M. Figurnov, and I. Oseledets, “Tensor train decomposition

on tensorflow (t3f),” J. Mach. Learn. Res., vol. 21, pp. 30:1–30:7, 2020.

	Contents
	List of Figures
	Introduction
	Organization of This Thesis
	Thesis Research Contributions

	Artificial Neural Network
	Applications of Neural Network to Digital Agriculture
	The TerraByte Project
	Fully Connected Neural Network
	Fully Connected Layer
	The Activation Function

	Convolutional Neural Network
	Convolutional Layer
	Flatten Layer

	Neural Network Training
	Backpropogation Training Algorithm
	Bayesian Training Algorithm

	Convolutional Neural Network in Tensor Train Format
	Limitations of Modern Convolutional Neural Network
	Tensor Train Decomposition

	Tensor Methodology
	Tensor Notation
	Tensor Graphical Representation
	Basic Tensor Operations
	Multi-Indices
	Matricization
	Tensorization
	Tensor Product
	Mode-n Product
	Contracted Product
	Convolution
	Partial Mode-n Convolution
	Correlation
	Partial Mode-n Correlation

	Tensor Decompositions
	Curse of Dimensionality
	Rank One Tensor
	The Canonical Polyadic Decomposition
	The Tucker Decomposition
	The Hierarchical Tucker Decomposition
	The Tensor Train Decomposition
	The Quantized Tensor Train Decomposition

	Bayesian Neural Network
	Derivation of the Recursive Bayesian Solution
	Monte Carlo Integration
	Importance Sampling

	The Sequential Monte Carlo Method
	Sequential Importance Sampling
	Resampling Algorithm

	Development and Algorithm Implementation
	Bayesian TensorNet
	Correlation Operation in Tensor Train Format
	Convolutional Layer in Tensor Train Format
	Fully Connected Layer in Tensor Train Format
	Evaluating the Recursive Bayesian Solution

	Bayesian TensorNet Training Workflow
	Preparing the Training Dataset
	Neural Network in Tensor Train Format
	Prediction Step
	Update Step
	Variance Threshold
	Resampling Implementation

	TensorFlow and T3F Library

	Training Performance Comparision and Analysis
	Training Preformance with Small Prediction Noise
	Training Preformance with Large Prediction Noise

	Conclusion
	Summary
	Future Work and Discussion

	Bibliography

