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ABSTRACT

Image reconstruction is one of the key stages in computed tomography (CT). With
limited dose, the reconstruction accuracy can only be improved by the development of
more efficient detectors and the optimization of reconstruction algorithms to make more
efficient use of the available dose. The work in this thesis addresses largely the latter
issue considering the detectors' efficiency to have already reached their limit.

In CT, two image reconstruction techniques have been formulated: the Convolution
Backprojection (CBP) method and the Algebraic Reconstruction Techniques (ART). In
this _thesis, we first analyze the factors affecting the performance of ART. We then
present a novel projection access order, the multilevel scheme (MLS), for ART. MLS
is exactly the sequence for 1D Fast Fourier Transform (FFT) if the number of
projections is a power of 2. Experimental testing using real CT data demonstrates that
the new technique outperforms CBP, by producing better spatial resolution when the
number of projections is sufficient to satisfy the sampling criterion, or reduced noise
when the number of projections is relatively small. A simulation study which matches
real CT dosage and noise conditions, and a further comparison which employs
reprojected CT scans of phantoms, demonstrate that MLS produces a larger
modulation transfer function (MTF) when the number of projections is taken above half
of that required by the sampling criterion, and a larger signal to noise ratio (SNR) when
the number of projections is taken less than half. MLS also improves the performance
of ART itself, in both the computational speed (by more than 10 times) and the physical
image quality (both the high and low contrast detectabilities). This work provides a
thorough physical comparison among CT reconstruction techniques and it confirms that

MLS will find wide applications in reconstructions of different CT models.
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Chapter 1
Introduction

The aim of computed tomography is to estimate a physical characteristic at
each point within an object from external measurements. X-ray Computed
tomography (CT) is an indispensable diagnostic imaging tool in medicine, and
is widely used in radiotherapy treatment planning. It offers high spatial and
contrast resolution. Quantitative CT allows measurements that are both
accurate and precise [McClean, Holdsworth, Goodsitt, Robertson]. There are
many laboratory CT scanners specifically designed to provide high resolution
images for research purposes [Holdsworth, Hangartner, Drangbva].

To obtain high quality tomograms, image reconstruction is essential. A
reconstruction algorithm determines, along with the measured data, how
accurately the linear attenuation coefficient can be calculated in medical x-ray
CT. In clinical scanning, since the patient's dose must be limited and the
efficiency of the detectors are constrained both by the techniques and costs
(the quantum detection efficiency is very high in x-ray CT currently [Krestel,
Morgan]), the most convenient way to improve the accuracy is to optimize the
reconstruction algorithm. High performance algorithms are sought to achieve
reconstructions yielding more diagnostic information [Waggener,
Keselbrener, Cline, Crawford, Chase].

Several key factors characterize the performance of a CT reconstruction
algorithm. The first and most important one is accuracy: how faithfully the
precious diagnostic information can be reconstructed and presented in the
tomogram. The image quality can be evaluated by different criteria, each
characterizing a specific kind of information. (Subjective image quality is also

critical since most images are interpreted visually. Freedom from artifacts is



crucial to avoid misleading human interpretations) Another important factor is
the computational speed. Fast reconstruction is always expected to reduce the
diagnostic time. Other factors include how flexible the algorithm is, how easy
it is to be implemented, etc.

Improving the image quality when there is a limited amount of projection
data is also important in x-ray CT. Research indicates that there are potential
hazards that can result from the use of diagnostic x-rays, as discussed in detail
in [Hall, Mazur]. Some human organs such as the female breasts are known to
be particularly susceptible to radiation induced cancer [ICRP, NIH]. For the
patient's sake, the amount of dose delivered during a single examination
should be as low as possible. This contradicts the requirement for a high
quality image which requires high dose. Developing dose-efficient
reconstruction methods is the only direct way to improve the tomogram
quality when scanning with limited dosage. Further, low dose CT is just one
of many tomographic situations (see Chapter 8) where the data are either
sparse or noisy. These include different CT models for basic science research
and industrial applications. An efficient reconstruction algorithm benefits all
kinds of tomographic imaging with limited data.

Major progress in developing CT reconstruction algorithms took place in
late 60's and early 70's, in pace with the extensive research and development
work for clinical x-ray CT scanners. In the past several years, a major thrust
has been to improve algorithms for spiral/helical CT [Vannier, Wang] and
cone beam CT [Wang 1993, Smith, Defrise]. Basically, two kinds of image
reconstruction techniques were formulated. The first kind is the Convolution
Backprojection (CBP) method and the second is the Algebraic Reconstruction
Technique (ART). In CBP, the reconstruction doesn't depend on the

projection access order in which the projection data is used (I will restrict this



thesis to parallel projections, so that the projection access order can be
specified by the angles of the projections), since it is a backprojection back-
summation method, and these operations are linear and commutative.
However, in ART, that dependence is heavy for in ART each projection
modifies the reconstruction by previous projections. Many people realized the
importance of projection access order and tried various ways to optimize the
order [Hounsfield, Shepp, Kuhl, Herman, van Dijke], but the optimal order
remained unknown. If such an ordering were found, then a technique
upgrading the current performance of ART and outperforming the CBP in
some aspects may be developed.

The organization of this thesis is as follows. The principle of computed
tomography (CT) and the concept of image reconstruction in CT are briefly
reviewed in Chapter 2, along with the description of two major categories of
reconstruction methods: CBP and ART, their advantages and limitations. In
Chapter 2, we also discuss commonly used image quality criteria. In Chapter
3, we first analyze the factors affecting the performance of classical ART.
Then we present a novel projection access order, called the multilevel scheme
(MLS), which appears to yield the most efficient algebraic image
reconstruction. Chapters 4-7 cover thorough experimental tests to demonstrate
the advantages of the new algorithm over the conventional ones by using
those image quality criteria outlined in Section 2.4. In Chapter 4, the
comparison between CBP and MLS is made using the real data taken from
two laboratory CT scanners. Chapter 5 extends the comparison study of
Chapter 4 with a detailed computer simulation of CT as well as CT
reconstructions. In Chapter 6, we further extend the comparison of MLS and
CBP by using data reprojected from CT scans. Such scans were

experimentally taken from CT phantoms by a clinical scanner. Chapter 7



covers a performance comparison between MLS and the classical ART
algorithm. Chapter 8 discusses the applications of the new algorithm in
medicine, both for diagnostic and therapeutic CT. In Chapter 8, we also
outlined the recent progress in CT, CT applications in both medical and non-
medical areas, CT models using different kinds of radiation, covering different
energy ranges, imaging different types of interaction parameters, using
different kinds of detectors, etc. We also discuss the role that the new
algorithm may play in these new CT models. Concluding remarks and future
work are included in the last chapter: how to employ more complicated image
quality criteria for additional comparison studies, what are the further CT
reconstruction research topics based on the MLS technique, how to implement
MLS in divergent beam CT. (Nowadays most conventional CT scanners use
high intensity fan beam x-ray sources to acquire data for fast scanning). The
application of MLS ART in nuclear medicine tomographic reconstruction and
its comparison to the conventional algorithms in the field is also an important

research topic, and is outlined.
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Chapter 2
Physical Principles of Computed
Tomography (CT), CT Reconstruction and
CT Image Quality Evaluation

In this chapter, we first give a brief introduction to the physical
principles of computed tomography (CT) as well as the concept of image
reconstruction in CT. (A detailed discussion of these topics can be found in
many books [Krestel, Hendee, Morgan, Herman 1980, Natterer, Kak 1987].)
We then discuss two major categories of reconstruction methods, their
principles, advantages and limitations. Descriptions of various physical

criteria for the evaluation of medical images follow afterwards.
2.1 Physical principles of CT

The fundamental concept underlying the technique of CT is the capability
of reconstructing a cross-section of the internal structure of an object from
multiple projections of a collimated beam of radiation passing through the
object. The mathematical basis dates back to the work of J. Radon in [1917],
who proved that a 2D or 3D object could be reproduced from an infinite set
of all projections. The physical application of the concept was first utilized
by Bracewell [1956] to reconstruct a map of solar microwave emissions.
Oldendorf [1961] and Cormack [1963] later each built a laboratory model
using isotope y-ray sources (also see [Kalos]). Kuhl and Edwards [1963]
introduced transverse body section imaging by isotope scanning,
subsequently further developing and refining the technique referred to now
as emission computed tomography. The first CT for clinical application, the

EMI head scanner, was developed by Hounsfield in [1972, 1973]. It was the



first time that the attenuation differences between various soft tissues, which
are less than a few percent, were observed. The minimum attenuation
difference detectable in CT is ~0.5% while the conventional X-ray
radiograph cannot show an attenuation difference less than 10% due to the
tissue overlap [Krestel].

To discuss the principle of CT, we first cite Cormack [1980] and
Hounsfield's [1980] early concept of "tomogram". Cormack originated his
idea of a tomogram from radiation therapy. It occurred to him that "in
order to improve the radiation treatment planning, one had to know the
distribution of the attenuation coefficient of tissues in the body, and that this
distribution had to be found by measurements made external to the body."
"If a fine beam of gamma rays of intensity I, is incident on the body and the
emerging intensity is I, then the measurable quantity g=In(ly/l )=_|'L fds.
Hence if f is a function in two dimensions, and g is known for all lines
intersecting the body, the question is: can f be determined if g is known?".
Hounsfield, on the other hand, "first investigated the possibility that a
computer might be able to reconstruct a picture from sets of very accurate
X-ray measurements taken through the body at a multitude of different
angles. Many hundreds of thousands of measurements would have to be
taken, and reconstructing a picture from them seemed to be a mammoth task,
as it appeared at the time that it would require hundreds of thousands of
simultaneous equations to be solved". When he "investigated the advantages
over conventional x-ray techniques, however, it become apparent that the
conventional methods were not making full use of all the information the x-
rays could give. On the other hand, calculations showed that the new system
uses the data very efficiently and would be two magnitudes more sensitive

than conventional x-rays".



Although today different generations of CT scanners including the
modern spiral/helical CT vary in design, the procedure of acquiring a CT
image basically consists of 3 steps:

1. A thin slice of 1-10mm is examined from multiple angles. In each
angle (see Fig. 2.1), finely collimated x-ray beams are measured across a
slice before and after the transmission. Collimation is employed to greatly
reduce the photons scattered into the detector system.

2. The transmitted photons are counted or accumulated by high signal-to-
noise detectors which allow a minimum 0.5% difference of the X-ray

attenuation to be detected and recorded. In accordance with Beer's law:
—_ ‘.f[ﬂ(x,}’)d[ ’
N = Noe (2. 1 )

The attenuation integral i(x,y)dl of a single measurement is

N
x,y) dl=1n=-2
Ju(x,y) ~

where N, and N is the number of incident and transmitted x-ray photons in
the measurement, respectively.

3. The attenuation integrals of all measurements in all directions are read
into a computer and reconstructed as a tomographic image using
reconstruction algorithm. The tomogram represents a map of the linear
attenuation coefficients p(x,y) of the cross section.

Fig. 2.1 shows schematically a CT in its simplest design form to illustrate
the formation of a tomogram [Krestel].

The p(x,y) is a function of the x-ray photon energy E, the atomic
number Z , and the electron density of the substance. It consists of two parts:
the absorption by the Photoelectric Effect (P.E.) and the absorption and
scattering by the Compton Effect, or
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Television monitor

X-ray tube

Measurement
electronics

Computer

Fig. 2.1 Basic representation of a computer tomograph in the simplest design form (the
early EMI scanner). The measurement system, consisting of x-ray tube and radiation
detector, is first moved linearly in the slice plane over the entire object cross section. The
measurement system is then rotated ~1° and then a new linear scanning movement
performed, etc., until an angle of at least 180°has been traversed. Throughout the entire
scanning process, the measurement signal is transferred to a computer. This computes a two-
dimensional distribution of attenuation values corresponding to the object layer from the
measurement values, which is displayed as a tomogram on a TV monitor after conversion to
video signals. (Courtesy of the Siemens Aktiengesellschaft [Krestel]).

u(x9y)=:up(x’y)+l‘l’6'(x9y)

The subscripts p and ¢ referring to the photoelectric and Compton effects,
respectively. H,(x,y) is strongly dependent on both the atomic number

(~Z3) and the beam energy (~I/E3), and pu.(x,y) depends on electron
density but not atomic number. The energy dependence of U.(x,y) is also
much less [Krestel, Morgan, Hendee].

The difference in attenuation among different tissues for the P.E.,
depending upon their atomic numbers, results in a marked difference in

absorption and leads to great contrast between the different tissues, a
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desirable property in producing an image. The lack of any dependence of the
Compton effect upon the atomic number provides little contrast enhancement
between different tissues.

The effective energy of the x-ray source is 60 KeV (100-140KV tube
voltage) [Herman 1980, Krestel] with a beam width of ~25 KeV. For a beam
energy lower than 60 KeV, due to restrictions on the patient dosage, few
photons have to be used. Although the attenuation differences are larger, the
image noise also considerably increases. For higher energy beams, the
attenuation differences are smaller and hence the image contrast is reduced.
(The attenuation increment due to Compton scattering cannot balance the
increment due to scattering.) Brooks and Di Chiro [1976] also calculated
that beam energies around 60KeV yield the minimum noise standard
deviation for a fixed amount of dosage since for higher energy photons,
despite more photon transmission, quantum noise per photon appears larger.
In practice, the x-ray beam is polychromatic. Since the softer X-rays are
absorbed preferentially compared to higher energy photons, the remaining
relative penetrating capability of the beam increases and it is said to become
"harder". This is a non-linear effect which is largely attributed to the
photoelectric effect. The problem of beam hardening and its correction have
been discussed in detail in [Barrett] and also in [Krestel].

There are two kinds of x-ray detectors generally used: scintillation crystal
and ionization chamber. The overall detection efficiencies for both are about
the same (~50%). Both technologies have reached their detection limits

[Krestel, Morgan].

2.2 Image reconstruction in CT



As discussed above, image reconstruction is one of the key stages in
computed tomography. Cormack [1980] in his Nobel lecture addressed CT
largely as a reconstruction problem. Herman [1980] also took image
reconstruction as the fundamentals of CT.

In principle, the accuracy to determine the linear attenuation coefficients,
both absolutely and relatively, is only limited by the patient's exposure, the
detector's properties (efficiency, sizes, etc.), and the reconstruction
technique. With limited dose, it can only be improved by the development of
more efficient detectors and the optimization of the reconstruction algorithm
to make more efficient use of the dose. The work in this thesis addresses
largely the latter issue considering that the detectors' efficiency is technically

difficult to improve and beyond the scope of this dissertation.

S
\a®!
)

&

Fig. 2.2 Geometry of a projection P4 (t) in computed tomography

In general, image reconstruction refers to the problem of estimating a
function f(x,y) from a finite number of integrals or projections. In x-ray

CT, this function is the linear attenuation coefficient Hix,y).
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The measurement of one projection from parallel beams is shown in Fig.
2.2. A projection is denoted as P,(#), where 6 is the measurement angle and

t is the distance of the detector from the origin, with = xcos 8 + ysin @ for

any point (x,y). For u(x,y),
Pe(t)zfwfwu(x,y)ﬁ(xCOSGJrysin@—z‘)dxdy 2.2)

which represents the attenuation integral of u(x,y) along the line
xcos@+ysin@=t,and & is the Dirac delta function.

Projections using fan beams are taken in the modern clinical CT scanners
for fast data acquisition. A schematic diagram is shown in Fig. 2.3. Ray
integrals are also measured in the same manner but the image reconstruction
is more complicated than that for parallel beam. The fan beam
reconstruction algorithm, however, can be derived from the parallel one by
coordinates transformation [Krestel]. Further, the set of projection data
originally measured by the fan-beam are usually rearranged to parallel
projections before the actual reconstruction starts [Krestel]. Therefore in this
thesis, our concern is only with reconstructions from paralle]l projection
data, which will allow us to focus on the essential details. The principles of
direct fan-beam reconstruction can be found in many other sources [Kak,

Edelheit, Ledley, Crawford 1988].
2.3 Reconstruction methods

There are two major categories of image reconstruction methods used in
CT. The first kind is a direct analytical method based on the Fourier
transform and is called the Filtered or Convolution Backprojection (FBP or
CBP) technique. It is first proposed by Ramachandran and

Lakshminarayanan [1971]. The second kind takes the image reconstruction as
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a problem of solving a system of simultaneous linear equations using
iterative methods. These are called the Algebraic Reconstruction Techniques
(ART). Historically, ART was first used in the early EMI scanner
[Hounsfield] and in electron microscopy [Gordon 1970]. In the following two

subsections, we give a brief introduction to each of the two techniques.

X-ray
detectors

Fig. 2.3 Geometry of fan-beam data acquisition in computed tomography

2.3.1 Filtered or convolution backprojection (FBP or CBP)

FBP (CBP) is based on the central slice theorem that relates the 1D

Fourier transform of a projection of w(x,y) to its 2D Fourier transform.

Let F(u,v) be the Fourier transform of u(x,y), i.e.,
Fuv)=[" |7 pu(x,y)e 7 dxdy (2.3)

Also let Sq(w)be the Fourier transform of the projection Py (z), that is

So(@)=[7 Py dr 2.4
Then by considering F(u,v) along the line v=0, Eq. (2.3) gives

F(u,0)=[" [[7_uCx,y)dyle™ ™ dx

- f:, Py (De™ ™" dt = Sy(w) (2.3)
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where Po(t):ju(x,y)dy is the projection along 8 =0. Note that for this
special orientation, x =¢. Eq.(2.5) indicates that the Fourier transform of a
projection along 6 =0 (1D) represents the line v=0 in F(u,v) plane (2D),
as illustrated in Fig. 2.4. This result can be generalized to show that if
F(w,8) denotes the values of F(u,v) along a line at an angle 6 passing
through the center, as shown in Fig. 2.3, and if S,(w) is the Fourier

transform of the projection P,(t), then

Sp(w)=F(w,0)

g
72\ (F(u,v)
o

4.

(2.6)

u

Fig. 2.4 An illustration of the Fourier central slice theorem

Eq. (2.6) is known as the Fourier central slice theorem [Ramachandran].
Note that this theorem is only applicable for parallel beams. There is no
counterpart for fan-beam projections. The reason reconstruction is not
directly performed in frequency domain by filling S,(w) to F(w,#) is that
in a digital case, the 1D function S, (w) has to be interpolated to fill the 2D
F(u,v) since u=wcos® and v=wsin® may not be integers. Such a
interpolation in frequency domain may cause large errors in the spatial
domain. Although there are some studies on minimizing such interpolation
errors [Stark, Matej], the method still lacks wide application.

The Fourier Backprojection (FBP) method is inversely formulated as

follows:
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U(x,y)= f; J':OF(I’L’ v)ejZn(xquyv)dudv (i)
:J‘:J'OzﬁF(w’9)6j27r(xa)cose+ya)sinQ)dedg (11)
=" [ F(0,0)¢™™ wdwd6 aiy @7

= j;’[ 7 w|Ss(@)e”*™ dewd6 (iv)

where (i) is just the 2-D inverse FT, (ii) we use u=wcos8, v=wsin O
where @ is the frequency axis u rotated by an angle 0, (iii) we use
xcos@+ysin@=¢ and (iv) we use the Fourier slice theorem
Se(w) = F(w, ) plus some mathematical manipulation. Step (iv) indicates
that the procedure for the reconstruction is:

1. take the Fourier transform of ‘a projection Pgy(t) to obtain its FT
Se (@),

2. multiply Sy(w) by |w|, then do the inverse FT to obtain the filtered
projection P, (t)= J':IcolSe(w)ejz”‘*”dcq,

3. do backprojection to obtain the estimated function u(x,y):

H(x,y) =[] Py(1)d6 = [ Py(xcosd+ ysin 0)d6 2.8)

Theoretically, filter |w| is for high frequency enhancement. In practice,
noise is always introduced into the projection data and propagated into the
reconstruction. If noise is not negligible, using || tends to amplify it as
well. To achieve a compromise, Shepp and Logan [1974] designed a
modified filter |w -sinc(w)| to reduce the high frequency amplification,
while for the low frequencies it converges to |@ -sinc(w)| = |w|.

The filtered projection P'Q (1) can be equivalently calculated in the spatial
domain by convoluting the projection data Pg(t) with h(t), the inverse

Fourier transform of filter || (or | -sinc(w)|) by
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Po()= | Pyn)-h(t - a)da (2.9)

where
Wsin2aWr)  sin’(zWr)
it (mr)*

h(ry= [ |wlexp(j2rende = (2.10)

In reality, the above operations have to be performed in digital form.
Suppose the projection data is sampled at an interval of 7, then it implies
that a bandwidth of W =1/(27) has to be used in order that no aliasing error
occur [Kak 1984] (CT sampling will be discussed in detail in sections 5.4 and
5.5). Replace t=nt and 7=1, (2.10) becomes

1/4 n=0

h(n) = 0 n=even

~1/(nm)* n=odd (2.11)

For the modified filter |w -sinc(w)|, the corresponding representation is

h(n) = 2/ m* n=0
g 2/ (Z*(4n*-1) n#0 (2.12)

Some research on the design and application of different filters

[Keselbrener, Chase] and their impact on the utility of CT has been reported.
2.3.2 Algebraic reconstruction technique (ART)

In contrast to CBP which is analytically formulated, ART directly does
reconstructions in discrete form. Fig. 2.5 shows a region overlaid with a

grid of pixels to be reconstructed from its equal-spaced parallel projections.

We use u; - the discretized u(x,y) above, to denote the attenuation value of

each pixel (voxel), where i=(1,2,---,N) and N=nr? is the total number of

pixels. Hence W= (u,,u, -+, 1y) is a vector in an N-dimensional space. A

ray is defined to be a projection line with the width equal to the detector
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width (which generally equals the pixel size). All rays along one direction
form a projection. The integral of the pixel values along one ray is denoted
as Pj, the discretized Py(¢). If there is a total of P projections and in each
projection there are R rays, then j=(1,2,---,M) where M =P xR. The

relationship between u and p can be expressed as

AI
Sowilti=p; j=(1,2,,M)
i=1

or
Wkl + wpll, + e tw iy = P

Wylly + Wylly+etwynlly = p, (2.13)

Wity + Wy lly + Wyl = Py

where w ; represents the contribution of the itk pixel to the jih ray integral.

Assuming the total attenuation by a pixel is proportional to its volume and
the scanning slice is constant in thickness, the attenuation is proportional to

area. wj; can therefore be taken as the fractional area of the ith pixel in the

Jth ray. Note in each equation in (2.13) only those pixels intercepted by the

Jjth ray (w ;>0) contribute to the integral p j and most of the w; are zero.

Thus the w; matrix is sparse. (In a simple vector form, (2.13) can also be
written as Wu =P, where W is the weight matrix, p and P are the unknown
and the projection vectors, respectively.)

A direct matrix inversion of (2.13) is practically impossible [Kak,
Barrett]. The ART algorithm, first proposed for CT by Gordon er al [1970,
1974], provides an efficient iterative method to solve the problem. It is a
variation of the early Kaczmarz's [1937] projection method for solving a
system of linear equations. The process can be described by the sequence of

functions
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Fig. 2.5 A schematic diagram of a region overlaid with a grid of pixels (N = nz) to be
reconstructed from its equally-spaced parallel projections, where P; and Pj,; are two
adjacent rays in one projection and P; is a ray in a perpendicular projection. The ray width
equal to pixel size. P; and P; has an intersection (shadowed) whose area equal to that of a

pixel.

(j—1l.m) . .
g W;,—p;

(j.m) — (J-lm) ﬂ, w.
MO = ma— (2.14)

where j is the subiteration index over rays 1 to M, W=(wy wi o wy),

m is the iteration index and A =1. In N -dimensional space, each equation in
(2.13) represents a hyperplane and an image is a point represented by

W=y, 1, -+, iy). When a unique solution to these equations exists, the

intersection of all these hyperplanes is that single point. The first iteration

@Y1t is projected on the hyperplane 1

starts with an initial guess L
represented by the first equation in (2.13). The resulting point """ is then
projected on hyperplane 2 represented by the second equation to yield u®",
and so on. When j=M, the first iteration is finished (over all rays in all

projections). In the second iteration, W' works as u®? and the above
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process repeats. This procedure will eventually converge to the intersection
point. The convergence may also be slowed by using a value of A <1 (2 is
called the relaxation factor [Herman 1980]) to improve the noise
performance.

The procedure can be illustrated intuitively in a case in which just two
variables are involved and constrained by

Wit Wil = Py
Wyl + Wy ll, = P, (2.15)

The process for locating the solution of (2.15) using (2.14), as shown in

Fig. 2.6, is to start with an initial guess A (L") and then have it projected
onto the first line to get R (U""). Projection of R, on the second line
generates S,(L*") and projection of S, back onto the first line generates R,.
Repeat of the projections between the two lines back and forth will
eventually arrive at the solution Q.

Tanabe [1971] once showed that if a unique solution of Egs.(2.13) exists,
Eq. (2.14) will converge to the solution. Herman [1973] also investigated the
theoretical foundation of ART for image reconstruction and proved that it
converges in the case of consistent projection data. In practice, whether the
data is consistent or not totally depends on the amount of noise introduced. If
noise is negligible such that the projections accurately represent the
attenuation integral, the system can be thought of as essentially consistent.
The success of ART with a pseudo random projection access order applied in
the early EMI scanner [Housfield 1972] suggests that if the noise is less than
1% (the number of photons > 104 per measurement), the system can be
thought consistent. The switch from ART to CBP later in the EMI scanner is

largely due to the slow speed of ART.
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Fig. 2.6 The process for locating the solution of Egs. (2.15) with two variables using
ART (Eq. 2.14): start with an initial guess A and then have it projected onto the first line to
get R;. Projection of R; on the second line generates S, and projection of S, back onto the
first line generates R, . Repeat of such projections between the two lines back and forth will

eventually arrive at the solution Q .

Eq. (2.14) is called the additive ART. There are also variations of it such
as the multiplicative ART (MART), the simultaneous ART (SART)
[Anderson 1984] and others [Gordon, Herman, Natterer] etc. Recent work
with ART can also be found in [Kouris, Censor, Lewitt, Natterer, Anderson
1989]. There are also variant iterative techniques such as the simultaneous
iterative reconstruction technique (SIRT [Gilbert], which differs from ART
in that each pixel in the image is addressed one at a time. Rays from all
projections passing through the pixel are calculated and summed. It is slow
and requires large number of iterations for convergence), the iterative least
squares technique (JLST) [Goitein] and the maximum likelihood methods

(MLE) [Lange].
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In the next chapter, we first analyze the factors affecting the performance

of ART. Based on the analyses, we then introduce a novel MLS ART
technique.

2.3.3 Comparisons of CBP and ART

A comparison of classical ART and CBP is outlined below. Later we will
demonstrate that our new multilevel ART can significantly eliminate the
major limitations of classical ART making ART superior to CBP in many
circumstances.

ART and CBP are not equivalent. ART is more accurately constrained by
the projection data. CBP, even in the cases where it performs better than
ART, yields large errors and produces images having inconsistent ray
integrals with the given projection data [Herman 1976, Chol].

ART is slow, generally needing 3-10 iterations [Herman 1976]. CBP is
much faster and the reconstruction can even be performed during the data
acquisition (using the pipeline method [Krestel]). But in those scanners such
as the fourth generation systems with a stationary detector array, it is no
longer possible for CBP to process the data during the data acquisition
[Krestel], since all measurements have to be collected first and then
rearranged to obtain proper projection data. In these systems, the fan beam
projections are usually remapped to parallel ones. When noisy data needs to
be smoothed using a low pass filter such as sinc, CBP needs no extra time
due to its analytical formulation. However, smoothing is an extra
computation for ART. In most applications, one iteration of ART costs about
the same computation time as CBP required [Herman 1976, Morgan, Brooks

1976b].
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The accuracy of ART is limited by the number of iterations one is willing
to compute and its possible lack of convergence with noisy data. One has to
adopt a criterion to end the iteration scheme, which may affect the accuracy
as well. A principal limitation to the accuracy of CBP is the bandlimiting or
spatial frequency cutoff [Morgan, Brooks 1976b]. Not only has the
projection data to be filtered with a limited bandwidth (Eq. 2. 10), but
practically the convolution involves only a few kernel points [Crawford
1991]. These factors reduce the spatial resolution in reconstructions. In
contrast, in ART, the modifications are only made to the pixels along a ray
path itself and therefore the spatial resolution is better. This is
experimentally demonstrated later. :

In the case where one can take a large number of projections, ART will
produce a poorer reconstruction than CBP [Herman 1976]. On the other
hand, in the case of a limited number of projections (P<1/3n, n is the
number of rays per projection), ART was found to be more accurate than
CBP. ART also works much better in cases where the data is incomplete
(limited range of projection angle, missed detector rays or projections, etc.)
while CBP is generally much more adversely affected by such kinds of data.
ART can easily incorporate prior information and constraints while CBP
cannot do this at all. Nonlinear constraints like: 1) no attenuation value can
be less than O or exceed a specific maximum; 2) pixels within rays whose ray
sum is O are assigned attenuation value of 0; are commonly incorporated in
ART to speed up the convergence and improve the accuracy. They are not
available for CBP, except by post processing.

In Table 2.1, we summarize the comparisons discussed above. It is
interesting to note that there is also an investigation studying the connection

between ART and CBP. Under the formulation of least square matrices,
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Older [1993] thought that the dichotomy between the two different

approaches reduces to the choice of metric.

Table 2.1 The important reconstruction features of ART and CBP

ART CBP
Speed Considerably slower (3-10 iterations) | Significantly faster (can proceed
p during scanning in some scanners)

Accurac Limited by finite iterations and possible | Problem with band limiting and

Y |lack of convergence with noisy data interpolation

(more consistent with projection data) | (less consistent with projection data)

Constraints| Allows additional constraints not allowed
g‘a"tg“ﬁd performs relatively better performs relatively less well

2.4 Physical evaluation of reconstruction techniques

Since image reconstruction is one of a series of cascaded processes in CT
imaging, we can employ the commonly used physical image quality criteria
for the evaluation of reconstruction techniques. In the past 10-15 years, there
has been significant progress in the area of image evaluation. For example,
unified noise theory by Wagner [1977] demonstrates that noise is the major
factor affecting low contrast object detection [Evans]. To date, the
modulation transfer function (MTF) is a standard way to characterize the
spatial resolution. The signal to noise ratio (SNR) or simply, the noise
standard deviation (SD), is a common measure for low contrast detectibility.
The noise power spectrum (NPS), on the other hand, depicts noise energy
distribution versus spatial frequency. The contrast detail (CD) evaluation
provides an additional assessment for combined low and high contrast
threshold detection.

There are some more complicated measures such as the detective quantum

efficiency (DQE), the noise equivalent quanta (NEQ) etc., which describe the
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noise in a frequency dependent form. These quantities, when coupled with
the MTF of a cascaded imaging system, which may include human vision,
provides additional image quality characterizations [Wagner, Munro,
Cunningham]. Further, there are also sophisticated SNR measures
representing different models of detection process [Loo]. Details of them
will be discussed in chapter 9.

In the present work, we employ MTF, SNR, CD, NPS for comparing the
performance of CT reconstruction techniques. Below we give a short

introduction to each of them.
2.4.1 Image noise description

Image noise can be described by either the local statistics or the spatial
correlation between different locations. Typically the local noise distribution
is Gaussian and can be characterized by a single parameter - the standard
deviation (SD) of the local image intensity. Although in CT noise is spatially
correlated, Gaussian is still a good approximation at least for a local region
such that the standard deviation is still commonly used to quantify the noise
level, both in research [Brooks, Goodenough] and in CT quality assurance
work [Bassano, Payne]. The spatial pattern of the noise is generally
characterized by the autocorrelation function (ACF ) and the noise power
spectrum (NPS).

The autocorrelation function ACF(x,y) of an image I(x,y) is defined as

[Barrett, Leszczynski]:

ACF(x,y) = <:L—Jlfn(x' ) en(x+ Xy + 3y )dy! dy'> (2.16)

where n(x,y) is the local noise intensity at the location (x,y), ie.,

n(x,y)=1(x,y)~1(x,y). I(x,y) is the expectation value of I(x,y) for an
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ensemble of images. The ( ) symbol represents the process of taking an

ensemble average of the quantity inside and A represents the image area.

The NPS is then defined as the Fourier transform of the ACF:

NPS(u,v) = [ [ ACF(x,y)e 2" gxqy (2.17)
A

Equivalently, the NPS can be defined as the squared magnitude of the

> (2.18)

In Chapter 5, we will adopt Eq. (2.18) to calculate the NPS.

Fourier transform of the noise image n(x, y):

NPS(u,v):<—j{~

Jjn(x,y)e—ﬂfr(ux+vy)dxdy
A

2.4.2 The signal to noise ratio (SNR)

The low contrast detectibility measures the threshold contrast for
detecting a tumor against its background. It is characterized by the SNR.
Although there are many complicated definitions of SNR [Munro, Loo], a

straightforward one defined as [Rajapakshe, Goodenough]
|CT#1-CT#2)

\O? + 0] (2.19)

is used most commonly to evaluate CT (and other radiological imaging

SNR =

system) detectibility, where CT#1 and CT#2 are the average CT#'s inside the

tumor and its background, respectively. o, and o, are the corresponding

noise standard deviations inside the two regions.
2.4.3 The contrast detail (CD) evaluation

The contrast detail evaluation is a quantity combining both the high and

low contrast resolution measures for the minimum detectable contrast of an
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object versus its size. At high contrast the minimum detectable object size
depends largely on the spatial resolution, whereas a low contrast object's
detection is relatively independent of the spatial resolution but rather
depends on image noise or patient dose [McDavid]. In general, the threshold
contrast is plotted against the object size, termed the contrast detail diagram.
It was first applied by Cohen [1979] for evaluating CT image quality.
Faulkner [1986] later did further work on this topic.

Rose [1948, 1973], in his pioneering work, recognized that the threshold
contrast of a human observer ultimately depends on the number of photons
incident on the scene and the ability of the imaging system to utilize these
photons. For an object having an area of A imaged by a photon flux of w,
the object contrast is C=AN/N where AN is the amount of photon flux
attenuated by the object. Rose suggested that for threshold detection with a
given detection uncertainty, this contrast must be a few times larger than the

noise level, which is represented by 1/+/NA, that is,
AN/ N

NAYTZ T k (2.20)

or for threshold detection, CT:W

Eq. (2.20) is termed as the Rose model. This simple model predicts that the
required threshold contrast is larger for smaller size of objects and smaller
for larger size of objects, in agreement with our intuition. Schnizler [1973]
has analyzed the data of Blackwell [1963] and found k to be approximately
2.5£0.35 over a scene brightness range of six orders of magnitude for a
detection probability of 50%. Comparisons of the Rose model to experi-
mental data and the further modifications of it can be found in [Evans].

In section 4.3 we will employ the Rose model to estimate the number of

photons per measurement in CT from the known CT contrast detectibility. In
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section 5.8, we will design a contrast detail phantom for an experimental

study of the detectibility in CT reconstructions.

2.4.4 The modulation transfer function (MTF)

The modulation transfer function (MTF) characterizes the spatial
resolution of an imaging system. It is generally measured with a high dosage
to reduce the noise effect (that is why the spatial resolution is also called high
dose high contrast resolution). The MTF can be measured in two ways: 1.
ID Fourier transform of the line spread function (LSF) (or 2D Fourier
transform of the point spread function (PSF)), 2. measurement of the
standard deviation inside a set of bar patterns. The first is a direct method
following the definition of MTF, whereas the second one is a derived
technique by Droege er al [1982]. In real measurement, the first method
requires extreme care in aligning the test object (thin wire) while the second
method is more practical to perform. Details of experimental MTF
measurement can be found in [Rao, Linstrom].

The Fourier transform of the PSF of an imaging system is referred to as

the Optical Transfer Function (OTF) [Krestel, Leszczynski]:

OTF (u,v) = J‘:o PSF(X’y)e—./'2/'r(u.\'+\’y)dxdy (221 )

The MTF is the amplitude (modulus) of the OTF.
In the derived method [Droege], the MTF is calculated from images of

cyclic bar patterns according to the formula:

AGS) _AGDH AP
3 5 7

MTF(f)= ZZ—[A( H+ ] (2.22)

where 4, is the amplitude of a square wave input, A(f) is the amplitude of a

sinusoidal component of frequency f and so on. Eq. (2.22) is based on the
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theorem that a square wave of frequency f can be considered to be a sum of
sinusoidal components of frequency f, 37 etc. If the MTF is O beyond a
cutoff frequency f, which is less than 37, then

MTF(f) = %% f<f/3 (2.23)
In the presence of CT noise, the signal amplitude A is difficult to determine.
However, the standard deviation M is easily measured. One can then utilize
the relationship between A and M (for a square wave input, M2 =42, for the

sinusoidal output, M*=1/24%) to get

T2 M(p)

M= m, (2.24)

This method also has the advantage of easy noise effect correction. In the
presence of noise, M(f) is corrected to be \M(f)*-~N?, where N is the

standard deviation within a uniform region.
In chapters 5-7, we frequently use Eq. (2.24) (occasionally use Eq. 2.21)
for the MTF calculation.
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Chapter 3
A Multilevel Projection Access Scheme for
Multiresolution Image Reconstruction using ART

3.1 Introduction

Algebraic reconstruction techniques (ART) and its variants are important
image reconstruction techniques for computed tomography. It is often used
in CT for 2D and 3D reconstructions when the projections are sparse, noisy
or non-uniformly distributed. The principal disadvantages of ART are its
excessive computing time and its possible lack of convergence under noisy
situations.

The key point to improve the computational efficiency of ART is to speed
up the convergence rate of the high frequency components of the image.
Considering that in an iterative process, the low frequency components are
recovered first and the high frequency components are recovered late and
slowly (we will show this later experimentally for ART), Ranganath ez al.
[1988] introduced an iterative expectation maximization (EM) algorithm in a
multigrid multiresolution fashion for positron emission tomography (PET)
reconstruction. Their approach allows the low frequency components to be
efficiently approximated and recovered on coarse grids while the high
frequency components are recovered on the fine grids, resulting in a speed-
up factor of 10 for EM.

A multigrid ART which gradually recovers frequencies from low to high
might still lack efficiency. A scheme which can recover high frequencies
from its initiation is desirable. Since high correlation between projections
makes ART very slow in recovering high frequency information (in fact, the
more the projections, the higher the correlation and hence the slower the

convergence of ART), we adjusted the projection orders such that



projections at angles far apart are updated consecutively. Two projections
that are 909 apart are minimally correlated (but not to zero due to the finite
digitization). Note that the reconstruction object itself may also influence the
convergence speed as we discuss later, but we leave that for future work.

In principle, the efficiency of ART can be maximized if the total number
of M constrained equations each with N variables are orthogonalized,
where M is the total number of measurements (rays) in all the projections
and N is the total number of pixels in the image. However, in practice, the
full orthogonalization is computationally not feasible. Ramakrishnam et al.
[1979] suggested a pairwise orthogonalization scheme with less
computational complexity.

Early experimental work on algebraic reconstruction using orthogonal
pairs of projections was due to Kuhl er al [1973]. They presented an
orthogonal tangent correction technique to do nuclear medicine section
reconstruction. A recent study was reported by Herman and Meyer [1993]
where a permutation operation for divergent beams was introduced which
performs the same ordering for projections and the rays in each projection.
They applied the technique to PET reconstruction and concluded that ART
can be made to match the performance of EM but is more than 10 times
computationally more efficient. Unfortunately, their permutation cannot
apply when either the number of projections or the number of rays in each
projection is a prime number. Van Dijke [1992] attempted to permute among
the projections and concluded that random permutation sequence was best.

In this chapter, we report our investigation for a projection access order
that maximizes the orthogonality among projections at each iterative step for
parallel beams (published in [Guan and Gordon 1994]). We first analyze the
factors affecting the performance of ART. In section 3.3 we discuss the

access scheme itself. In section 3.4 we experiment with reconstructions using
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this scheme and compare our results with conventional ordering. Further

discussion and conclusion are included in the last section.

3.2 The performance of ART

We begin analyses of the performance of ART using a simple two-
variable system (see Eq. 2.15) as shown in Fig 3.1, in which each plot is
similar to Fig. 2.6 but simplified. As Figs. 3.1a and 3.1b demonstrate, the
larger the acute angle between the two lines, the less the number of iterations
needed for convergence. Only two steps are needed to reach the solution
when the two lines are perpendicular to each other (Fig. 3.1c). In this case,
the orthogonal condition cosa=0 (w;-w, =0) is satisfied, where
Wy =(wyq, wip) and W, =(wy; wy,) are vectors in 2-D space. Similarly,
for a large system defined by Eq. (2.13) in the N-dimensional space, the
hyper-angle formed by two hyperplanes ; and & is

cosa; :m (3.1)

N

where ’W,-’= /2”’127 is the "length" of ray p; If all the M -hyperplanes
i=1

defined by Egs. (2.13) are mutually orthogonal, i.e., cosax; =0 for any

J#k, then M iteration steps guarantee the convergence.
Among the equations in (2.13), if w's are simply replaced by 1's or
O's in the Ist order approximation, those corresponding to rays within the

same projection are orthogonal to each other. If the fractional area is used
for wj, then consecutive equations for adjacent rays are correlated.

(Occasionally a correlation may exist between rays pj-; and p;,, as shown
in Fig. 3.2(a), but it is negligible.) The worst case is shown in Fig. 3.2(b),
where half of a pixel is in ray j and the other half is in ray j+1.

Correlation is due to pixels whose centers lie on the interface of the two

rays. Since the hyperangle formed by ray j and ray j+1 is about
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cosa; i, ~1/4 (a; ~809), the two are still orthogonal, to a good

approximation. This suggests that reordering the rays in each projection
would have little effect on the convergence performance. This conclusion is
also applicable to the divergent beam case and hence permutation of rays as
done in Herman and Meyer [1993] may not be necessary.

For any two rays not in the same projection, as shown in Fig. 2.5 of
chapter 2, those pixels that fall partly under the intersections of the ray paths
will have their values contributed to by each equation (by different weights)
and make them correlated. Any two rays each from one of the two
projections will have the same intersection area. But the smaller the
difference of the projection angles 6, the large the rhomboidal intersection
area 1/sin @ and hence the more the correlation (the curve of 1/ sin 8 versus
0 is plotted in Fig. 3.3) The correlation is highest when both the rays have
short "lengths" ‘wj’ and |wk| (i.e., the rays cross the corner of the image).
In this situation, the hyperangle calculated from Eq. (3.1) could be quite
small. Thus if iterations are performed projection by projection,
sequentially, the update step will be very small, as in the 2-D case shown in
Fig. 3.1a. On the other hand, for two projections that are 90° apart, the
correlation will be a minimum since any two rays each from one projection
have the smallest intersection area 1. Another important feature is that, when
the "length" of one ray is short, the other is correspondingly long
considering that their intersection area should fall inside the reconstruction
region (see Fig. 2.3). This ensures a reasonably large hyperangle a such
that the convergence can be taken in a large step. We intuitively illustrate the
point in Fig. 3.4 by showing 4 symbolic "hyperplanes" - lines, with the angle
formed in between any two being the hyperangles (i.e., ¢, is the hyperangle
between hyperplanes 1 and 2, etc.). A is the initial guess and Q is the
solution. Clearly, in I-iteration, the sequential access A to E (solid line,

access order 1234) is much slower in convergence than that by route A to F
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(dash line, access order 1342) toward Q, i.., EQ is much longer in
distance than FQ. The MLS scheme we describe below is based on these

analyses.

‘v 2k %

\Sém SR2
S ) —

N

»,u'] I »-‘Ll, 1 ’u 1

(@) (b) (©)

Fig. 3.1 In a two-variable system (see Eq. (2.15)) for the three different angles between
the two lines shown in (a), (b) and (c), the number of steps by ART taken to approach the
intersection point Q to a given accuracy decreases. Each of (a), (b) and (c) is similar to Fig.
2.6 but simplified.

(a) (b)

Fig. 3.2 (a) Example of the negligible correlation existing between rays Pjjand Pjyy.
(b) Worst situation of correlation between adjacent rays in one projection. Correlation is due
to pixels whose centers lie on the interface of the two rays.
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Fig. 3.3 The curve of 1/8in @ versus 0, giving the overlap between two rays of

width 1 intersecting at angle 6.

Fig. 3.4 Reordering four symbolic "hyperplanes" - thick lines ( Q,, is the hyperangle
between hyperplanes | and 2, etc.). A is the initial guess and Q is the solution. In 1-
iteration, the sequential access A to E (solid line, access order 1234) is much slower in
convergence than that by route A to F' (dash line, access order 1342) toward Q, ie., EQis
much longer in distance than FQ.

3.3 A multilevel projection access ordering

Before proceeding to discuss how to order the projections, we show that

for two rays intersecting at an angle 6, (Fig. 3.5a), a 3rd ray could orient at

the direction either halving 6, or halving its complementary angle 180° — 0,

such that its total intersection area to the two rays would be a minimum (Fig.

3.5b). This is straightforward since for the ray in the 8, region (Fig. 3.5a),

the total intersection area is
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Fig. 3.5 (a) Tworays 1 and 2 intersecting at a fixed angle 0, with ray 3 at an angle 0
varied to ray 1. (b) Ray 3, set either halving 6, or halving the complementary angle
180 — 6, will make its total intersection area with ray 1 and ray 2, A(0), a minimum. (c)
The plot of A(8) against 6 over the whole 180° region for 8, = 65°. A(0) goes to

infinity when ray 3 coincides with either ray 1 or ray 2.

I 1
A0=Get sin(6, — 0) (3:2)

By taking the first order derivative of A(6) and setting it to 0, we obtain
0=0,/2. A similar derivation can be made for the ray in the
complementary region and 6 = (180O —~8,)/2. Fig. 3.5¢c shows how A(8)
changes with @ over the whole 180° region for 6, =65% A(0) goes to
infinity when the 3rd ray coincides with either of the first two rays. The two
minima values are

2 180°-9 2
AB,/2)=—2— and Ay
Ol 2= Gna 72 @ A cos8, /2

0
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0
If 6, <90°, then A(6,/2)> A(2L %

) or vice versa. Hence we should set
the 3rd ray to the angle halving 6, or 180° — 6,, whichever > 90°. In this
way, the overall correlation among the three rays, or the three projections

each ray belongs to (see analyses in the last section), is at a minimum. When

6, =907, the two minima are equal and the 3rd ray could be set along either

of the two directions.

Fig. 3.6 The access orders for 8 projections in the multilevel scheme.

The above derivation, together with that two projections of 90° apart are
minimally correlated, will in fact decide what is the ideal number of equally
spaced projections to take, and hence leads us to a multilevel scheme (MLS).
Clearly, the number of projections P should ideally be a power of 2, say
P =2" Suppose they are indexed as 0,1,1, P-1 sequentially. Then projection
0 (0°) and projection P/2 (90°%) with a maximum orthogonality are accessed
first. The 3rd one could be either projection P/4 (45°) or projection 3 P/4
(135°) both halving the first two. We decide that if two projections have the
same access privilege, then the one with a smaller projection angle is
preferred: in this case, projection P/4 (45%) and then projection 3 P/4
(135°). Following the rules, the next one is projection P/8 (22.5°) and then
5P/8 (112.5%, 3P/8 (67.5°) and 7P/8 (135°) projections etc. Each time
we select a projection to keep the overall correlation minimal (minimal to
the last one, and also to the others already accessed). One sees that in such a

scheme, projections can be nominally arranged in a total of L levels for
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accessing. Inlevel [=1: 0 and P/2, level [=2: P/4 and 3 P/4 and level [=3:
P/8, 5P/8, 3P/8 and 7P/8 and so on. Views in one level halve the
projections in all previous levels and hence double the total number. Fig. 3.6
shows the situation for P=8 by labeling the projection index on the
corresponding projection angles. Table 3.1 summarizes the result for a few
levels. It is interesting to note that the 2" projections are arranged in the
same order as that in doing a 1D FFT with 2* data.

This scheme will allow speedy convergence since the update is initially
very large and then gradually reduces to approach the solution. The
implementation of the ordering is also easy if P is a power of 2. One
method is to do the bit reversal to the sequential projection number as that in
doing 1D FFT. The other is that starting at level /=2 (see Table 3.1), the
number of projections in each level is equal to sum of all preceding levels
(from 1 to I-1). By adding a value of P/ 2’ to each of the projection index
number in all preceding levels will yield the access orders for level .

In practical situations, for a given number of projections that is not a
power of 2, the MLS scheme can still apply. In level /=1, any two
projections that are 90°(or close) apart are updated and in /=2, the two that
halve (or nearly) the angles between the first two are updated, and so on.
Projection access can still follow the sequence listed in Table 3.1, with a total
of L= [logg I+1 levels ([ ] = truncate to integer). The implementation of the
ordering is exactly the same as the second method used for P a power of 2
case but just with the values rounded to integers. Note that in level L only
the first P—25"! projections are taken. From level /=1 to /=L—-1, no
reuse occurs since the minimum difference is P/2%'>1. A flag is set for
each of the values used. In level L, additional work needs to be done since
occasionally the calculated value may have been already accessed. If so, we
search both sides of the value until the closest unused value is found and then

put it into the sequence and set a flag. In general it is just the neighbor or
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next neighbor. Our tests suggest that only for the last one or two values, a

large difference may occur.

Shown in Fig. 3.7 is the flow chart for image reconstruction using MLS

ART .

Read in the number of
projections, the image size,
and the projection data Pij
(Pij: for ith ray data
in jth projection)

Calculate the number of
pixels Nij for all rays in
all projections

Assign an initial
guess to the image to be
reconstructed

MLS ordering of
the projections

For jth projection,
calculate the
projection data Qij

Compare Qjj to the
measured projection
data Pij and do update

in the image by
Af = (Pij - Qij) / Nij

The next
Lprojection j in
the MLS order

last projection
and updated

iteration # reach the
n=n+T7, # of iterations to

repeat the meet some

MLS order criterion?

output image

Fig. 3.7 The flow chart of image reconstruction using MLS ART.
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Table 3.1 Access orders for P total projections in the multilevel scheme (MLS).

T(XP/2) JO 1
2.(X P/4) |1 3

3.(XPR) [T 5 3 7

4.(XP/&|1 9 5 13 3 11 7 15

5(xPR)|T 17 9 25 5 21 13 29 3 19 11 27 7 23 15 31
6.(X PI6d) |1 33 17

3.4 Experiments and results

Additive ART, Eq. (2.14), is used for the experiments presented here.
We measure the ray integrals using the same method as that in Mazur and
Gordon [1994]. The Shepp-Logan (1974) phantom shown in Fig. 3.8 is the
first object we tested.

To compare the multilevel scheme (MLS), the sequential accessing
scheme (SAS) and the random permutation scheme (RPS), we show for each
scheme, with 30 projections, 5 images each representing an intermediate
reconstruction from the first 2, 4, 8, 16 and 30 projections in Fig. 3.9,
respectively. SAS recovers most of the high frequency information in the
latter half of the iteration while the other two recover it right from the
beginning. Comparing MLS and RPS, we see that multilevel accessing

produces better images at each intermediate reconstruction. MLS yields

Fig. 3.8 The Shepp-Logan phantom used for the experimental test.
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Fig. 3. 9 Intermediate reconstructions of the Shepp-Logan phantom from the first 2, 4,
8, 15, 30 projections within 1 iteration, under total of 30 projections. The first column is
from the multilevel scheme (MLS), the second column is from the sequential accessing
scheme (SAS) and the last column is from the random permutation scheme (RPS). The
reconstruction accuracy (defined in Eq. (3.3) below) is measbured and the results are plotted
in Fig. 3.11(a).
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SAK

Fig. 3.10 Reconstructions of the Shepp-Logan phantom from 2 and 5 iterations,
under a total of 30 projections. The first column is from MLS, the second column is from
SAS and the last column is from RPS. The reconstruction accuracy (defined in Eq. (3.3)
below) is measured for upto 10 iterations and the results are plotted in Fig. 3.11(b).

reasonable reconstructions even after only 8 projections are accessed. Fig.
3.10 shows for each scheme, two reconstructions from 2 and 5 iterations.
There are no perceivable difference among the three 5-iteration images on
the 2nd row.

For a preliminary evaluation of the reconstructed images, the following

correlation coefficient measure is used:

N e
Z(,U,“/’_L)(:ul _‘uf)
i=]

E =
1 N . N . e 1/2 (33)

=1

where 1,(I) and w, (I, ) each represent the pixel value in the original and
the reconstructed images, respectively. €; measures the extent to which two

images are similar to each other and it takes the highest value of 1 if the two

are exactly the same. The & versus the accessed number of projections

within the first iteration for each of the three schemes are measured and
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plotted in Fig. 3.11(a). Clearly, MLS recovers the image features early and

fast. The € is also measured for a few iterations and the results are plotted

in Fig. 3.11(b). The three different schemes reach the same £, value after 5

iterations, in agreement with the visual appearance of reconstructions (see
Fig. 3. 10. Note that for RPS, we used different orders from iteration to
iteration). A detailed physical evaluation of the effect of these schemes on
ART reconstructions will be conducted in Chapter 7 and we will see that the

performance of RPS varies in between those of MLS and SAS.

Correlation coefficient

0.985

0.975

coefficient

0.965
4

Correlation

0.955 T r . Y :
1 2 3 4 5 6 7 8 9 10
Iteration number

(b)

Fig. 3.11 Plots of the correlation coefficients &, (a) versus the accessed projection

number within the first iteration and (b) versus the iteration numbers, for the reconstructions
of the Shepp-Logan phantom using the multilevel scheme (MLS), the sequential accessing
scheme (SAS), and the random permutation scheme (RPS). Note that the access orders for

RPS change from iteration to iteration in (b).
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Fig. 3.12 Part of a brain magnetic resonance image (BMRI) in a volumetric human

sagittal scan. It is just used as a test image (size 128x128).

We have carried out similar tests on a few other medical images. The
MLS scheme outperforms the other two on all of the images. As an example,
for the one shown in Fig. 3.12, which is part of a brain magnetic resonance
image (BMRI), we show its intermediate reconstructions in Fig. 3.13.
Similar effects as seen in Fig. 3.9 can be observed.

In doing the tests above, we used an initial image of 0. We also tried
using different initial images and found that compared to SAS, MLS has little
dependence on initial image. The result will appear in [Guan 1996]. We also
checked that 1-iteration MLS takes ~ (1/3-1) more in computation time than
CBP does. This is consistent with Herman's conclusion that 1-iteration ART
takes ~(1-3) times of computations by CBP. It is hard to be more precise
than this, since even the same programs will require different times relative
to each other depending on the number of projections and the image size
[Herman 1976]. In [Brooks 1976], a detailed analysis indicated that 1-
iteration ART requires a number of 4»* multiplications for reconstructing a
single projection, while that number for FBP (CBP) is (n’+ 4nlog;). The

numbers of additions are about the same for each method.
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Fig. 3. 13 Intermediate reconstructions of the BMRI image from the first 2, 4, 8, 15,
30 projections within I-iteration, under total 30 projections. The first column is from the
multilevel scheme (MLS), the second column is from the sequential accessing scheme
(SAS) and the last column is from the random permutation scheme (RPS).
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3.5 A look at the reconstructions in Fourier space

We also demonstrate that MLS represents an efficient and fast
implementation of the Fourier central slice theorem in the frequency
domain.

Fig. 3.14 shows the Fourier transform of the intermediate reconstructions
of the S-L phantom from the first 2, 4, 8, 16, 32 and 64 projections for a
total of 64 projections, by MLS (1st row), RPS (2nd row) and SAS (3rd
row), respectively. Also shown at the bottom-right is the Fourier transform
of the phantom itself. One sees that each projection updated by MLS fills the
Fourier domain by a line passing through the origin, in good agreement with
the central slice theorem. The frequency domain is uniformly and
symmetrically filled to each level. On the other hand, in the corresponding
versions of RPS or SAS, besides the central lines, spurious lines also appear
(especially the first three). These spurious lines represent the 2-D spatial
correlation of the updated projections. In the last one of each row, the MLS
and RPS versions (minor difference between them) looks very close to the
original, but not the SAS version, in which only the latter half of the

projections efficiently fill the Fourier domain.
3.6 Discussion and conclusion

The multilevel scheme described here is in some sense also a
multiresolution reconstruction. Frequency components corresponding to
different scales are reconstructed gradually, with edges of large objects
being reconstructed first and small objects late, as can be seen from Fig. 3.9.
Each level makes the best use of the image information reconstructed in the
preceding levels and hence the information recovered from consecutive

projections is less redundant compared to sequential updating.
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Fig. 3.14 The Fourier transform of the intermediate reconstructions of the Shepp-Logan
phantom from the first 2, 4, 8, 16, 32 and 64 projections for a total of 64 projections within
1 iteration, by MLS (Ist row), RPS (2nd row) and SAS (3rd row), respectively. Also shown
at the bottom-right is the Fourier transform of the phantom itself.

a 1}

Fig. 3.15 Two objects, (a) a disk and (b) a checkerboard, to illustrate how the spatial
distribution but not the symmetry of the object affects the reconstruction speed. Each object's
0° projection and 90" projection are identical.
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A potential practical application of the MLS scheme is to control the
patient dose in CT imaging. Projections could be taken directly in the MLS
orders and hence images could be reconstructed at each level (this is also
applicable to CBP or FBP). If, from a certain level, specific diagnostic
information is available, then no more projections need be taken.

The spatial distribution of the object also influences the convergence
speed. A larger imaging region than the object's section may be used such
that the section's contour can be reconstructed very fast, as Fig. 3.9 but not
Fig. 3.13 demonstrated. The spatial distribution, not the symmetry,
determines how much high frequency information (variations of the intensity
normalized by the ray "length") is contained in each projection. For extreme
cases, consider two objects shown in Fig. 3.15, (a) a disk and (b) a
chessboard. Each object has its own identical 0° projection and 90°
projection. After these two projections are accessed, the disk can be
reconstructed to a large extent but not the checkerboard. This is because each
projection of the disk contains high frequency components to modify the
initial guess, which is blank, while the chessboard's two projections
themselves are flat and hence do nothing to the initial guess. For the
checkerboard, the 45° projection is a better choice to start the reconstruction
than the 0° projection.

In conclusion, MLS is the best choice for the algebraic reconstruction
technique: it yields speedy convergence without orthogonalization. It is the
optimal ordering for that at any time during the reconstruction, it produces
both the maximum space uniformity and projection orthogonality. This
scheme, easily implemented, performs a multi-level reconstruction using
parallel projection data. Its extension to fan beam CT reconstruction is easy
(see Chapter 9). It parallel implementation is also feasible since Fitchett

[1993] already implemented a version for the sequential ART (also see
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[Lattard]). Experimental tests using various sources of data and employing

different physical criteria will be made in following chapters.
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Chapter 4
A Comparison between CBP and MLS
Using Real Data from CT Scans

4.1 Introduction

In chapter 3, we presented a novel MLS scheme for the most efficient
algebraic image reconstruction. One iteration of this multileve] ART yields
high quality images in a preliminary evaluation, nearly eliminating the
iterative nature of ART. In this chapter, we will investigate the physical
performance of the scheme using real CT projections. The reconstructions
are compared to those from CBP.

Shepp and Logan [1974] once made a comparison study between CBP and
ART by computer simulation. They concluded that 12-iteration ART is not
much different from CBP and both are about equally sensitive to noise. In
fact, they found that with noisy projections, reconstructions by ART exhibit
more SNR than CBP. They further incorporated a sinc filter in CBP and
then claimed that this modified version, or sinc CBP for short, shows 50%
less noise amplification than the 12th iteration of ART. From then,
considering both the image quality and the computation time, almost all
commercial x-ray CT machines use CBP.

Since we have dramatically enhanced the computation efficiency and
image quality of ART, a new comparison between it and CBP on both the
spatial and noise characteristics is worth carrying out here, by employing

real data. In Section 4.2 we first test with raw projection data taken from a

prototype y-ray CT. Section 4.3 covers further experiments using the data
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scanned from a special purpose x-ray CT. Discussion and conclusion are

included in the last section.

4.2 Test with the real data of a prototype y-ray CT

Brian Wowk [1992] built a prototype laboratory CT scanner doing
computed y-ray tomography. He used a °’Co source of approximately
1 mCi. The detector was a sodium iodide scintillator and photo-multiplier
tube. The system schematic was shown in Fig. 4.2.1(a). Objects to be
scanned were placed on the rotating/translating turnable table (the
source/detector system remains fixed). The translation and rotation were
each driven by a motor. The collimators produced a y ray beam 3.05 mm
wide and 2 cm height. The scanning used the 122 KeV line of ’Co whose
attenuation in water is about 0.145/cm. There are 64 translation steps
(samples) in each projection and there are 100 rotation steps (projections).
The translation and rotation sampling satisfy the sampling criterion (see Eq.
5.16). Each sampling took 5 sec to acquire ~10000 counts such that the
statistical uncertainty is about 1%, which is close to that of clinical CT.
Using the system, Wowk scanned a number of objects such as the
COMPLEX shown in Fig. 4.2.1(b), the biological specimen like the honey
dew (DEW) shown in Fig. 4.2.1(c). He kindly provided me his experimental
data for a real test of the new algorithm. (No more data is available since
this scanner has been disassembled.)

For the objects COMPLEX and DEW, we show three reconstructions in
Fig. 4.2.2 and Fig. 4.2.3 respectively, by (a) I-iteration MLS, (b) CBP and
(c) sinc CBP. Clearly, for COMPLEX, the MLS version shows better
spatial resolution than the CBP versions, with the small objects having been

more compactly reconstructed and the edges more sharply exhibited. For the
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Fig. 4.2.1 (a) The system schematic of a y-ray CT (lst generation geometry, pencil
beam) and (b) an object COMPLEX under scanning (standard deviations will be measured
inside the two marked squares in the reconstructions). (c) Another object, a honey dew
melon (DEW) for scanning. A total of 100 projections were taken and the reconstruction size
is 64x64.




(a) MLS 1 (b) CBP (c) sinc CBP

Fig. 4.2.2 Reconstructions of COMPLEX by (a) l-iteration MLS-ART, (b) CBP and (c)
sinc CBP, from a total of 100 projections. The image size is 64 x 64.

(a) MLS 1 (b) CBP (c) sinc CBP

Fig. 42.3 Reconstructions of DEW by (a) I-iteration MLS-ART, (b) CBP and (c¢) sinc
CBP, from a total of 100 projections. The image size is 64 x 64.

object DEW, although the difference is less visually apparent, the MLS
reconstruction still shows a marginally higher contrast than those of CBP.
We also tested these algorithms using a subset of equal-spaced projections.
In Fig. 4.2.4(a) and (b), we show the 1 and 2-iteration results of MLS for
COMPLEX from 25 projections. The reconstruction from CBP and sinc
CBP are shown in 4.2.4(c) and (d), respectively. Strong streak artifacts
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Fig. 4.2.4 The reconstructions of COMPLEX by (a) 1-iteration MLS, (b) 2-iteration MLS,
(c) CBP and (d) sinc CBP, from 25 projections. The corresponding four reconstructions
from 50 projections are shown in (e), (f), (g) and (h), in parallel to (a), (b), (¢) and (d
respectively. The individual image size is 64 X 64.
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appeared in both (c) and (d), although the latter is less severely affected due
to the filtering. It is hard to distinguish small objects from artifacts. The
corresponding four reconstructions from 50 projections are shown} in Fig.
4.2.4 (e), (f), (g) and (h), in parallel to (a), (b), (¢) and (d) respectively. The
streak artifacts are still seen in the CBP versions (g) and (h). In chapter 5 we
will demonstrate that when the number of projections is less than that
required by the sampling criterion (see Eq. 5.16), 2 or more iterations can
improve the spatial resolution. This effect is exhibited in Fig. 4.2.4 if one
compares (a) and (b), or (e) and (f).

By comparing Fig. 4.2.2 (b) and Fig. 4.2.4 (f), one sees that 2-iteration
MLS with 50 projections produces even sharper and more compact
reconstruction than CBP with 100 projections. It suggests that at least for
this object having many small and sharp details, dose can be cut by a factor
of 2 using MLS.

Fig. 4.2.5 shows 4 another images of DEW, by (a) 1-iteration MLS and
(b) sinc CBP from 25 projections, and (c) I-iteration MLS and (d) CBP
from 50 projections. Similar effect as Fig. 4.2.4 can be perceived.

One may also notice that not only do the objects in Fig. 4.2.2(b) look
more blurred than those in (a), but the image also appears more noisy. The
reason is that with many details of high contrast close to each other, CBP
spreads the edges of each one such that the background is "messy". MLS
however, reconstructs the objects more compactly and hence the background
is cleaner. This is also seen in the DEW images in Fig. 4.2.3(a) and (b). We
measured the noise standard deviation (SD) inside two small regions as
drawn in Fig. 4.2.1(b), one in air (region 1, noise only) and the other in the
central block wood (region 2, inside an object). Fig. 4.2.6 (a) and (b) show

the plots of the measured SD versus the number of projections for region 1



and region 2, respectively. In region 1, both CBP and sinc CBP produce
more noise than both 1 and 2-iteration MLS. The 2-iteration MLS shows the
lowest noise level, whereas in region 2, the CBPs generate much more noise
than the MLSs when the number of projections is less than 50. The 2-
iteration MLS produces greater noise than its 1-iteration's, in contrast to the

result of region 1.

25
Projs

L

Frojs

LILE1L ZEF

o d
Fig. 4.2.5 Reconstructions of DEW by (a) I-iteration MLS and (b) sinc CBP from 25
projections, and (c) I-iteration MLS and (d) CBP from 50 projections. The image size is
64x64.

4.3 Test with the real data scanned from a research x-ray CT

Another set of real projection data, taken from a special purpose x-ray

CT dedicated to trabecular bone density measurement for the slice of the
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distal end of a cadaver femur [McClean, Rathee], was kindly provided by Dr.
S. Rathee ( Department of Medical Physics, Manitoba Cancer Treatment and
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Fig. 4.2.6 Plots of the standard deviation measured in (a) region 1 and (b) region 2 in
the reconstructions of COMPLEX object (see Fig. 4.2.1b) versus the number of projections
by I and 2-iteration MLS, CBP and sinc CBP.

Research Foundation) for our reconstruction tests. This is a rotate only,
third-generation geometry fan beam CT scanner using an equivalent beam

energy of 40KeV. A system schematic of this scanner is shown in Fig, 4.3.1



{McClean]. Unlike similarly designed scanners, it allows user-defined,
variable spatial resolution for a fixed object size. The photon detection
system is an array of 26 photomultiplier tube/Nal detectors uniformly spaced
at 2° intervals in the beam. The initially collected fan beam data is remapped
to parallel data. The remapping process is relatively trivial and one can refer
to [Kak] for details. The number of samplings per projection is 256 (image
size is 256x256) and the total number of projections is 270, evenly spaced
over 180°. Notice that the number of projections is much less than 400 - that

required by the sampling criterion Eq. (5. 16).
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Fig. 43.1 A system schematic of the x-ray CT scanner dedicated for bone research
[McClean].



Fig. 4.3.2 shows four images reconstructed from this data set, with (a),
(b) and (c¢) by 1, 2 and 4-iteration MLS, respectively, and (d) by CBP. While
the visual quality of (a) is about the same as (d), (b) and (c) show more
readibility of small bone details. Because the number of projections is less
than that required by the sampling criterion, 1-iteration MLS doesn't show
superiority over CBP. Fig. 4.3.3 shows another three reconstructions by half
of the data, or 135 projections, with (a) and (b) by 2 and S-iteration MLS,
respectively, and (c) by CBP. Although there appears little difference in the
printed images of Fig. 4.3.2 and 4.3.3, the differences are more apparent on
the computer screen. It is the opinion of the author that both (a) and (b),
especially (b), reveal more small details than (c) does.

Whether the MLS truly reconstructs more small details but not lead to
more amplification of noise artifacts (since noise always exists in real data)
than CBP needed further verification. To test this, we measured the standard
deviation (SD) inside 4 regions of interest (ROI) as shown in Fig. 4.3.4,
where just the noise exists, versus the number of projections. Fig. 4.3.5
shows the plots of the SD measured in (a) region 1 and (b) region 4, for the
1, 2 and 5-iteration MLS as well as in the CBP reconstructions. Clearly,
MLS produces less noise with a small number of projections and more with a
large number of projections, than CBP. Also the more the MLS iterations,
the bigger the SD. These results agree with those seen in Fig. 4.2.5(b) but
not in 4.2.5(a). For 270 projections, the noise level of CBP is about the same
as those of 1 or 2-iteration MLS. For 135 projections, the noise of CBP is
about the same as that of S-iteration MLS. This confirms that 2 or more

MLS iterations truly produces more detectibility than CBP does.
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a ML51 b ML52

¢ ML54 d CBP

Fig. 4.3.2 Four reconstructions of the distal end of a cadaver femur, by (a) 1, (b) 2

and (c) 4-iteration MLS, respectively, and (d) CBP, from a total of 270 projections.

aML52 b ML54

¢ CBP

Fig. 4.3.3 Three reconstructions of the distal end of a cadaver femur, by (a)

l-iteration MLS, (b) 2 -iteration MLS and (c) CBP, from 135 projections.
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To check the noise structure, we also measured the noise intensity
distribution (histogram) inside the 4 regions. Fig. 4.3.6(a) shows such
histograms for 1-iteration MLS and CBP in region 1, and (b) shows them
for 2-iteration MLS and CBP in region 4. The number of projections is 270.

4.4 Discussion and conclusion

Since the data we used are not scanned from CT phantoms, those physical
quantities such as MTF and SNR which characterize the high and low
contrast detectibilities of CT can not be directly measured. This is left for
the future work using the data scanned from a number of CT quality
assurance phantoms by the clinical scanners provided by the Picker
International Corporation [1995].

A sinc filter used in CBP reduces noise in the reconstruction, at the cost
of reduced spatial resolution. Again although the paper print images do not

adequately reflect the computer screen image, the sinc CBP image shown in

Fig. 4.3.4 Four noise only region of interest inside the reconstruction circle for noise

standard deviation measurement.
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Fig. 4.3.6 Noise histograms. (a) I-iteration MLS (mean 1.02) and CBP (mean 1.08) in
region 1, and (b) 2-iteration MLS (mean 1.54) and CBP (mean 1.57) in region 4. The

number of projections is 270.

Fig. 4.2.2(c) is smoother than the CBP version in Fig. 4.2.2(b), with the
edges of objects more blurred. The sinc filtering commonly improves the
readability of relatively large objects [McDavid]. Objects of small sizes need
larger threshold contrast to be detected (i.e., need better spatial resolution,
see the contrast detail analysis in section 5.7) and the filtering won't improve
effectively. We have performed a sinc CBP reconstruction for the bone
image and found no improvement with bone detail reading.

From the test results of COMPLEX (Fig. 4.2.1b), we conclude that MLS
can do better job than CBP for reconstructions of high contrast objects, at
least in cases where the number of projections is above half of that required
by the sampling criterion, producing sharper edges and smaller background
noise even with half of the CBP dosage. The noise standard deviation
measurements also demonstrate that MLS has more dose efficiency than CBP
for low contrast object detection when the number of projections is less than

half of that required by the sampling criterion. Such a conclusion is in
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excellent agreement with that obtained by computer simulation in the next

chapter.
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Chapter 5
Simulation of CT and CT Reconstructions
using MLS ART and CBP

5.1 Introduction

In this chapter, we perform a computer simulation on CT and CT
reconstructions using MLS ART and CBP. The tomogram qualities are
measured using four physical criteria: signal to noise ratio (SNR),
modulation transfer function (MTF), contrast detail (CD) evaluation and
noise power spectrum (NPS). Details of these have been discussed in section
2.4. The simulation study has advantages in:

1. Allowing one to understand the influence purely of the reconstruction
algorithm (or any other particular process in the cascaded CT imaging
process) on the tomogram quality. This cannot be directly measured from a
real scan because of the interconnections among individual processes;

2.Low cost, flexibility of adjusting various parameters and test of
extreme cases.

This work provides a thorough physical comparison among CT
reconstruction techniques. Sections 5.2 to 5.5 discuss in detail the physical
arrangements of the simulation study, whereas sections 5.6 to 5.10 cover the
results generated from the study. In each section of 5.6 to 5.9, we design a
phantom to test one physical quality. All the phantoms are 25cm in
diameter, 512x512 pixels in size (i.e., 512 samples/projection, or 20 samples
in 1cm ) and cover a CT# range of 0 - 255. For each phantom, ray integrals

of the phantom along a series of angles are calculated to obtain a set of
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projection data. Section 5.2 below discuss how to introduce Poission noise
into the projections to simulate the real CT data.

This simulation study was implemented in Sun Pascal and performed on
the Sun Unix system. The program was simply procedure based and no user
interface used. All parameters such as the number of projections, the image
size and the number of photons per measurement etc. are defined as
constants. All variables are implemented in single precision (word length 16

bits). The computer source codes are included in Appendix L.
5.2 Projection noise simulation

In computed tomography, there are five different noise sources [Morgan]:
statistical noise, electronic noise, roundoff errors, artifactual noise and
reconstruction algorithm noise. Among these, statistical or Poisson noise,
which is due to the quantum nature of x-ray photons, inherently plays the
major and crucial role (also in other radiographic imaging systems),
primarily because of the large energy of x-ray photons (compare to the
visible range photons in photography). Most importantly, Poisson noise from
different detectors is uncorrelated or "white". Electronics in CT are
sufficiently well designed such that the electronic noise contribution is only a
small fraction of that of the statistical noise [Cohen]. Also, sufficiently
accurate digitizers with many bits today make the roundoff error negligible.
Artifactual noise due to beam hardening, defective detectors and patient
motion, etc., is assumed absent in this simulation study (except for that
introduced by the reconstruction technique which, of course, is not primary

noise involved in projection data).



74

By assuming Poisson noise is the major noise source, Kijewski and Judy
[1987] calculated the noise power spectrum (NPS) of CT by computer
simulation. Their calculation agrees very well with the experimentally
measured NPS of a real scanner. Many simulation studies on CT also
consider Poisson noise the only primary source [Riederer, Wagner, Goodsitt,
Mazurl].

In the acquisition of projection data, the number of photons reaching each
detector follows the Poisson distribution:

_ B\ K
P(K)=exp(-K)K" / K! (5.1)

The Poisson distribution will approach a Gaussian for a large mean K

(empirically for K = 10):

P(K) = ﬁ;—k.exp[—m—f?)z/(ﬂ?)l (5.2)

In the simulation, we introduce quantum noise directly into the detector
reading by assuming that the number of photons reaching a single detector is
the mean in the distribution of that detector. The simulation procedure for
generating a single measurement is as follows:

1. For a well collimated beam with N, monochromatic photons emitted
from the x-ray tube toward the i —th detector, the average number reaching

the detector will become

_ -.“.Ldl _ —Pi _ —kfgdl
N =N, Nye Nye (5.3)

due to the attenuation, where P; is the attenuation integral along a line I, and

g is the CT number in the simulated object. g is scaled by a constant & such

that it can match the linear attenuation coefficient u of tissues to X-rays as

discussed in section 5.6.
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2. For a mean number of N photons reaching the i~ detector, the
actually detected number, say N', can be selected from the Poisson statistics
(5.1), where K =N, using a Monte Carlo method. The noisy attenuation

integral can then be calculated inversely by

. N
Pi=-In-—— (5.4)

o

Since the Poisson noise in separate detectors is uncorrelated, one can then
repeat the procedure for each detector to generate one noisy projection.

Rotating the source/detector combination generates multiple projections.

5.3 Incident photon number per measurement

Different numbers of incident photons ranging from NO= 105 to 108 per

measurement were used: 2x105, 1.6x106, 1.28x107 and 1.02x108. We
assume that the incident number is the same for each single measurement.
The last two numbers are of the order used in clinical CT scanners, which
we estimated to be 107-108 (not seen in publications) in two ways: 1. a
reverse calculation from the typical surface dosage and 2. an estimate based
on the contrast detectibility of a CT scanner. Theoretically, calculation of the
bremsstrahlung x-ray production based on the x-ray tube voltage (KV), the
tube currentxexposure time (mAs) and the target material atomic number
(Z) can be made (see p. 69-70 in [Krestel]). But it is difficult to calculate the
x-ray attenuation within the target, by the tube window and by the added
filters to shape the spectrum (all are machine dependent). Estimation based

on the case independent quantities is more approachable.

3.3.1 Calculation from the surface dosage
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The calculation procedure is: 1. convert the tissue surface dose D, to the

equivalent air dose D,; 2. calculate the exposure X from the air dose D,;

3. calculate the photon fluence from the exposure X.

Under the same photon fluence, the absorbed dose in two different media,
say tissue (D,) and air (D,), is related by

D, _ (%),
D, (%), (5.5)

where E;;i is the mass energy absorption coefficient. For an average energy

of 60 KeV in x-ray CT, (&), = 0.0289 cm®/g and (%), = 0.0312cm%/ g
[Jones]. Hence Eq. (5.5) reduces to D, =0.926D,.
The exposure X relates to the air dose D, by

D,(rad) = 0.873X(R) (5.6)

and the exposure X itself can be directly calculated from

X =1.833x10""DE(Le) £X
pJa ke (5.7)

where @ is the photon fluence (1/ cm?), (&2), is the mass energy transfer
coefficient in air and E is the photon energy. For 60KeV X-rays,
%), = (4+),. Combining (5.5), (5.6) and (5.7), we get

® =3.3x10"D, / cm?
(5.8)

The typical value of tissue surface dose D, is 2-5 Rad. Taking D,=3Rad,
then @ ~ 10" / cm?.

In a simple picture for head scanning as shown in Fig. 5.2.1 (assume L
=25 cm), consider a small volume v close to the surface being cylindrical
(isotropic) and its diameter equal to the detector width w (assumed 1.5 mm)
and its height equal to the scanning slice thickness (assumed 10mm), then the

total number of photons across the volume (cross section 0.15cm2) is
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1.5x10'°. This number of photons is contributed from all of the projections
cach having one measurement passing through the small volume. The

contribution from each depends on the attenuation length.

Fig. 5.2.1 A simplified view of head scanning in CT, where v is a small cylindrical
volume close to skin surface.

Beams from the right hand side (]6]<90°) will be attenuated by a length
Lcos 6 while beams from the left hand (]8> 90°) are free of attenuation.
For a total of P projections and a number of photons per measurement N,

the number of photons from all the left beams is simply nj=NyP/2.

The number of photons from all the right beams is approximately

n. = 2]:/4N0e_uc°sg’gdp
- 2NOPJ‘;/46—#LCOSZ7Z}'dy (5.9)

For 60 KeV x-ray, u~0.20/cm, puL=5. A numerical calculation of the
integration in (5.9) gives 0.0335 and hence 1,=0.067 NoP. The total number

of photons reaching the small volume is hence n +n, =0.567NyP.

Commonly, a total of P =1000 projections is used in clinical CT. Therefore
the number of photons per measurement is N, ~2.65x107.

5.3.2 Calculation from the contrast detection threshold of CT



CT scanners allow measuring the attenuation coefficient of tissues with an
accuracy of £0.5% [Morgan, Hendee]. This means that for 60 KeV X-rays,
{4 can be measured to an accuracy of A =0.001/cm for p~0.20/cm.
Suppose, as shown in Fig. 5.2.2, we want to analyze a circular object with a
constant y except for a small square object along a diameter, whose size
equals the detector width w and whose attenuation coefficient is u-Au.
With an incident number of photons ng, the detected photon number is
greater than that detected without the small object by an amount

=n.e M (™™ —1NV=n .0 Ay .y = .
An=nye ™" (e D=ny-e™Ap-w=nAu-w (5.10)

The number » of photons arriving at the detector will follow the Poisson
distribution with a standard deviation equal to +/n. To be able to detect the
difference of the small square from the background, An must be greater

than n:
nA-w>n (5.11)

J7;

X
) BTN |

Fig. 5.2.2 A circular object with a constant attenuation coefficient of M, except for a

small square object along a diameter whose attenuation is MH-.

Further, in accordance with Rose model [Rose, Hasagawa] (see section
2.4.3), if the difference Ay is to be reliably detected, An should be  times

greater than /i, or nAp-w=k+/n. Then the detected photon number must
be
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k2
Ve (5.12)

For k=2.5 [Schnitzler], w=15mm, n=2.8x10% or the number of
incident photons ny = ne" = ne*® = 4.1x10'. It was shown [Brooks] that
these 7y counts can be divided independently among the total number of P
projections. For P=1000, the number of the incident photons for a single
measurement is

N, =n,/ P=4.10x10’

From the two different estimation methods, we conclude that the number

of incident photons per measurement in the real CT scanner is (2— 5)x107.

54 The number of samples in one projection

Suppose a sampling interval of d is used, then the number of samples in a

projection is
n,=L/d (5.13)

Note that, in principle, d is not equal to the width of the detector wy. A

detailed analysis based on sampling theory [Barrett] gives that
d<w, /2 (5.14)

That is, the detector-source line of sight should be stepped in increments
of half the detector width or less. We assume the detector width wa=1mm
and the data sampling increment d=0.5mm. Therefore for head scanning of
L=25 cm, we need 512 samples per projection. The reconstructed matrix is
hence 512x512.

CT artifacts due to digital sampling (particularly, undersampling in both
radial and azimuthal directions), such as the aliasing streaks and Moire

pattern etc. have been discussed in detail and demonstrated in [Kak 1984].
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Many important points were also in section 6 of [Brooks 1976b] and Hendee
[1983]. Some of the artifacts, either from the limited number of projections
or from the limited number of measured data per projection, are also shown

in [Krestel] from real x-ray CT scans.
5.5 The number of projections

We discuss the azimuthal sampling (the number of projections) by
considering from: 1. sampling theory and 2. determinacy of the
reconstruction problem.

In order to completely sample the Fourier space of an object having a
width of L, the spacing between samples in azimuthal direction must be at
least Af=1/L. Considering the highest spatial frequency is Fome =1/ (2d), the
angle A¢ between two adjacent projections should be

p=2 _2d
S L (5.15)

Hence the number of azimuthal sampling (projections) n,, which relates

the number of sampling per projection n_, is

n, =n/Ap=nLl(2d)=rmn_|2 (5.16)

From a different point of view, reconstruction is also a problem of

solving a large linear system with a total of 7’ /4 unknown pixel values
inside the circle containing the object. For n, measurements made in each

projection, 7n, /4 projections should be taken if the equations are to be

determined. With more scans the system is overdetermined; with fewer it is
underdetermined. This number is just half of the n, in (5.16). The reason is

that the azimuthal sampling is non-uniform. Meeting the Nyquist criterion

requires the periphery of the circle being adequately sampled. The interior is
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unavoidably oversampled [Barrett]. In x-ray CT, the projection number is
even more than n; . For example, in the Siemens Somotom Plus-S CT model
[1991], the projection number is as high as 1254. Brooks [1976] thought that
the extra projections do not yield independent information but rather help to

improve the statistics. In this simulation work, we decided that three

different number of projections, zn, /2, nn/4, and nn /8, would be tested. For
n=512, they are 800, 400 and 200, respectively. The underdetermined
situation happens in cases where the data is either inherently limited or when

the dose must be minimized [Gordon 1976].
5.6 Low contrast detectibility (SNR)

We designed a simulated phantom as shown in Fig. 5.6.1(a) to simulate
the low contrast detection of CT. The out-most circle is bone (CT# 255) and
the inside region is tissue (CT# ~128). The air has a CT# of ~0.

The phantom is digitized into 20 pixels/cm, with a total attenuation of
~2560/cm in CT#. Therefore for tissue attenuation 4~0.2/cm, the scaling
factor & in Eq.(5.3) is 1/12800. This value also applies for phantoms in the
next few sections. Fig. 5.6.1(b) displays the central part of the phantom
windowed at a CT# of 124 with a width of 12. There are 5 low contrast
disks: each has a difference in CT# against its background (CT# 127) equal
to its index number, i.e., 1 to 5 units. The diameter of these disks is 2.3 cn.
Disk 1 has a contrast value of 1/255 = 0.4%, close to the detection limit
0.5% of x-ray CT.

We measured the SNR of Disk 1 versus the number of photons per

measurement from the raw reconstructed image and plotted the results in



12.5 cm (256 pixels)
(b)

Fig. 5.6.1 (a) A low contrast CT phantom containing 5 low contrast disks (25 cm in
diameter, image size 512x512). Since the disks have contrast < 2% against the background,
they are difficult to perceive. The central part containing the disks is windowed to a small
range of gray level in (b) (center: 124, width: 12) to show an enhanced visual contrast.

82



10° 108 107 108 109
Photon Number/Measurement

Fig. 5.6.2 Plots of the SNR of Disk | versus the number of photons per ray for both the
I-iteration MLS and CBP, each with 2 different number of projections: 800 and 400.
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Fig. 5.6.3 Plots of the SNR of Disk 1 versus the number of projections for 1 and 2-
iteration MLS as well as for CBP and sinc CBP, with photons per measurement equal to

1.28x107.
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Fig. 5.6.2, for both I-iteration MLS and CBP. The reconstructions are from
two different numbers of projections: 800 and 400. With 800 projections,
CBP produces a higher SNR value than MLS, but with 400 projections, the
result is the opposite. We observed that the SNR reduces as the projection
number decreases. It was known that the typical standard deviation of the
early EMI scanner is 3.8 HU [Brooks]. Considering a 0.4% detection limit,
or 4HU for the early -500 to +500 range (now is -1000 - to 1000), the SNR
of the EMI scanner is around 1.0. In the next chapter, we will see that the
SNR of a Siemens Somotom-Plus CT is also about 1.0 for the 0.4% detection
limit. These threshold SNR values fall in the range of our calculation here,
indicating that this simulation study matches the real CT dosage and noise
conditions. Conversely, from the CBP's curve for 800 projections in Fig.
5.6.2, a SNR of 1.0 will require a number of photons per measurement
being about (2-3)x107. This number is also close to those we estimated in
section 5.2 above. The other four disks also show consistent SNR values
versus the disk contrast (see Fig. 7.2.2, the MLS curves).

Fig. 5.6.3 shows how the SNR of Disk 1 varies with the number of
projections for 1 and 2-iteration MLS as well as for CBP and sinc CBP, with
the photons per measurement at 1.28x107. The 2-iteration MLS generates
more noise. The sinc filter provides larger SNR for CBP, especially at
larger number of projections. The trends of these curves are consistent with
those seen in Fig. 4.2.5(b) and 4.3.4 from real data, since the larger the
standard deviation, the smaller the SNR.

Fig. 5.6.4 shows the central part of the phantom reconstructed by (a) 1-
iteration MLS, (b) CBP and (c) sinc CBP, from 800 projections and
windowed the same as Fig. 5.6.1(b) did (photons per measurement:

1.28x107). Fig. 5.6.5 shows another three images with just 200 projections.
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Apparently, the MLS version in Fig. 5.6.4 is more noisy than both the CBP
and sinc CBP images, but in Fig. 5.6.5, the situation is just opposite (sinc
CBP didn't show improved smoothness over CBP). The visual appearance
agrees with the SNR measures.

We also measured the noise histograms inside Disk 1 for both the 1-
iteration MLS and CBP, each from two different number of projections: 800
and 200. The results are shown in Fig. 5.6.6 and the distributions are
visually close to Gaussian. We also tested the dependence of 1-iteration MLS
on the initial starting projection. For a sample of 8 reconstructions, the mean
SNR from 800 projections is 0.705+£0.017 and the mean SNR from 200
projections is 0.530£0.037.

We calculated the mean SNR of Disk 1 and its standard deviation from a
sample of 10 reconstructions for both 1-iteration MLS and CBP. In Fig.
5.6.7 we plot the ratio of MLS's mean SNR over that of CBP versus the
number of projections (photons per measurement: 1.28x107). The fractional
error of the ratio (summing the standard deviation over mean for both the

MLS and CBP) is ~10%.
5.7 The contrast detail (CD) evaluation

A contrast-detail (CD) phantom of 25¢m in diameter was designed and is
shown in Fig. 5.7.1(a) for a contrast-detail evaluation of CT reconstruction
algorithms. The phantom consists of 6 sets of disks. Each set has 6 disks of
the same size but with different contrast. The smallest contrast is 0.4% and
the largest is 2.4%. The smallest disk size is 0.2cm and the largest is 2cm.
The central part, windowed the same as Fig. 5.6.1(b), is shown in Fig.

5.7.1(b).



(@) l-iteration MLS

(by CBP

Fig. 5.6.4 The central part of the low contrast phantom reconstructed by (a) 1-iteration
MLS, (b) CBP and (continue on the next page )
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(¢) sinc CBP

Fig. 5.6.4 (continued from the last page) (c) sinc CBP, from 800 projections and
windowed the same as Fig. 5.6.1(b) did (photons per measurement 1.28x107). Note that
although Disk 1's contrast (0.4%) is less than the detection limit (0.5%), it is still readable
in (b) and (c) for its relatively large size. (In a real CT scan as shown in Fig. 6.3.1c, a
"tumor" of 0.4% contrast is also visible.) Disks of sizes less than 0.4cm are difficult to
perceive (see the bottom left two disks in Fig. 5.7.3b in the contrast detail phantom). The
threshold detection contrast for a 2cm disk is ~0.2% (see the contrast detail diagram in
[McDavid]).
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(b) CBP
Fig. 5.6.5 The central part of the low contrast phantom in the reconstructions by (a) 1-
iteration MLS, (b) CBP and (continue on the next page )
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(c) sinc CBP

Fig. 5.6.5 (continued from the last page) (c) sinc CBP, from 200 projections and
windowed the same as Fig. 5.6.1(b) did (photons per measurement 1.28x107).
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Fig. 5.6.6 Noise histograms in Disk 1 in both the I-iteration MLS and CBP
reconstructions, from (a) 800 and (b) 200 projections.
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Fig. 5.6.7 Plot of the ratio of 1-iteration MLS's mean SNR over that of CBP for Disk 1,
from a sample of 10 reconstructions of the low contrast phantom, versus the number of
projections (photons per measurement: 1.28x107). The fractional error of the ratio of SNR
(summing the ratio of standard deviation over mean) is ~10%.
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(b)

Fig. 5.7.1 (a) A contrast detail CT phantom containing 6 sets of low contrast disks (25
cm in diameter, image size 512x512). Since the disks have contrast < 2.4% against the
background, they are hard to perceive. The central part containing the disks is windowed to

a small range of gray level in (b) (center: 124, width: 12) to show enhanced visual contrast.
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Fig. 5.7.2 shows four images of the central part from 100 projections,
with the photon number per measurement being 1.28x107. Images in (a) and
(b) are from 1 and 2-iteration MLS, respectively. (c) is from CBP and (d) is
from sinc CBP. Clearly, 1-iteration MLS produces much more readability
on the lower contrast disks as well as the small size ones than CBP and sinc
CBP do. The 2-iteration MLS, however, doesn't show much difference from
its 1-iteration counterpart for the lower contrast disks in the left two
columns, especially the smaller ones. For the higher contrast disks, it appears
that 2-iteration MLS even produces a little better readability, at least for
smaller disks. This is because 2-iteration MLS yields larger high contrast
resolution. The sinc CBP image in Fig. 5.7.2(d) doesn't show noticeable
improved smoothness over its CBP counterpart (c).

Fig. 5.7.3 shows three reconstructions from 800 projections, by (a) 1-
iteration MLS, (b) CBP and (c) sinc CBP. In this case, (a) appears more
noisy than (b) and (c), similar to Fig. 5.6.4. The disks in the left most
column of (a) are more difficult to perceive than their corresponding ones in
(b) and (c). The sinc filter also produce noticable smoothness over CBP
such that the left most disks appear more readable. (Due to the fact that disks
(signals ) themselves are not properly reconstructed, using filters with even

larger high frequency suppression won't yield better results than sinc .)
5.8 The high contrast high resolution detectibility (MTF)

Fig. 5.8.1 shows a high contrast phantom in which 5 sets of bar patterns
which are consecutively doubled in size, are laid. The standard deviation
inside a small square centered at each set of bar pattern, as the one drawn in

the bottom-right for the largest bars, were measured in the reconstructions.



(a) 1-iteration MLS

(b) 2-iteration MLS

Fig. 5.7.2 The central part of the reconstructions (windowed) from 100 projections,
with the photon number per ray being 1.28x107, by (a) 1-iteration MLS, (b) 2-iteration
MLS, (continued on next page)
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(d) sinc CBP

Fig. 5.7.2 (continued from the last page) (¢) CBP and (d) sinc CBP.

94



(a) 1-iteration MLS

(b) CBP

Fig. 5.7.3 The central part of the reconstructions (windowed) from 800 projections,

with the photon number per ray being 1.28x107, by (a) 1-iteration MLS, (b) CBP and
(continue on the next page)
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(c) sinc CBP

Fig. 5.7.3 (continued from the last page) (c) sinc CBP.

Fig. 5.8.1 A high contrast phantom of 25 cm in diameter, 512x512 pixels, in which 5
sets of bar patterns that are consecutively doubled in size (1, 2, 4, 8 and 16 pixels/bar), are
laid. The standard deviation inside a small square centered at each set of bar pattern, as the
one shown in the bottom-right for the largest set, will be measured in the reconstructions.
The central part of the phantom containing all the bars (inside the large square) will be
shown in Fig. 5.8.2 after reconstructions.
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Fig. 5.8.2 shows four reconstructions from 800 projections, by (a) 1-
iteration MLS, (b) CBP, (c) 2-iteration MLS and (d) sinc CBP. The number
of photons per measurement is 1.28x107. Apparently the bars in the CBP
versions (b) and (d) appear to have more blurring in edges than those in the
MLS versions (a) and (c). The measured standard deviation of each set is then
plugged into Eq. (2.24) to calculate the MTF. In Fig. 5.8.3, we plot these
calculated MTF values. That MLS produces better spatial resolution is
quantitatively exhibited. The largest improvement is at half of the Nyquist
limit (the second set of bars from the top-left). Note that at very high
frequencies near the Nyquist limit (the top-left set of smallest sizes), 1-
iteration MLS is not better than CBP but 2-iteration outperforms. This can be
seen from both the images in Fig. 5.8.2 and the MTF plots in Fig. 5.8.3.

In Fig. 5.8.4, we show the MTF plots for 400 projections. In this case, the
I-iteration MLS is just a little better than CBP for frequencies below half of
the Nyquist limit but not above. 2-iteration MLS yields larger MTF than that
of CBP at frequencies above 8 Ip/cm and matches that of 1-iteration MLS for
800 projections in Fig. 5.8.3. Fig. 5.8.5 shows the images of the three smaller
sets of bars (bar size 1, 2 and 4 pixels) from 400 projections, by (a) 1-iteration
MLS, (b) CBP and (c) 2-iteration MLS. The visual appearance agrees with the
MTF measures.

We also tested the dependence of MTF on different locations and
orientations of bars. We found that the standard deviation / mean MTF is not
more than 1% for all 5 sets, for both 1-iteration MLS and CBP. The results are
based on a sample of 8 reconstructions (4 with changed positions and 4 with

changed orientations) from 800 projections.
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Fig. 5.8.3 Plots of the MTF (calculated from the standard deviations inside the bar

patterns reconstructed from 800 projections), for 1 and 2-iteration MLS, as well as for CBP
and sinc CBP.
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Fig. 5.8.4 Plots of the MTF (calculated from the standard deviations inside the bar
patterns reconstructed from 400 projections), for 1 and 2-iteration MLS as well as CBP.
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Fig. 5.8.6 Plots of MTF for three different number of projections 800, 400 and 200, in
(a) for 1-iteration MLS and in (b) for CBP. The MTF of CBP from 800 projections is also

plotted in (a) for comparison.
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In Fig. 5.8.6, we plot the MTF for 3 different number of projections,
800, 400 and 200 together, in (a) for 1-iteration MLS and in (b) for CBP.
The MTF of CBP from 800 projections is also plotted in (a) for comparison.
One sees that while the MLS's MTF drop as the number of projections
reduce, the CBP's do not change much (the improvement with smaller
number of projections is not obvious and it is not in other measures of image
qualities). This might be attributed to CBP satisfying the '"Fourier central

slice theorem" and to its linearity. MLS is a somewhat nonlinear algorithm.
5.9 The noise power spectrum (NPS)

We calculated the noise power spectrum following Eq. (2.18). A noise
only image is obtained by subtracting the CT reconstruction of a water only
phantom from its original, a method similar to that used by Kijewski [1987]
and Rathee [1992] in investigating the NPS of CT scanners (they subtracted
consecutive pairs of CT scans and hence the noise amplitude is doubled). A
water only phantom of 25¢m diameter is used. After doing a reconstruction
(on 512x512 pixels), the subtraction of it from its original is made. Then the
central 256x256 subimage in the difference image was extracted to make
sure it was contained in the water region. In order to reduce the truncation
errors (reducing the effects of a square window superimposed on the data
such that a discrete Fourier transform is used to approximate an analytic
Fourier transform [Press]), we multiplied the sub-image with a 2D "Parzen"
window (similar to the one used in [Kijewski])

. [i—41 +[j—2T
W@, ) =1-
@) w2
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and then computed the 2D FFT of this subimage. The squared amplitude of
the FFT was then averaged over a total of 25 images and the result was the
NPS of the reconstruction.

Fig. 5.9.1 shows the NPS of (a) CBP and (b) 1-iteration MLS. (c) and (d)
are (a) and (b) displayed in 3D, respectively. A total of 800 projections is
used and the number of photons per measurement is 1.28x107. The CBP
version looks the same as those in [Kijewski, Rathee], in both 2D and 3D
forms, indicating that the calculation is correct. No NPS has previously been
computed for CT reconstructions using the algebraic method and hence no
comparison can be made.

The NPS of CBP and MLS looks quite different. The MLS's has quite
large low frequency components, whereas the CBP version has few low
frequency amplitudes. There is a common feature in both: NPS is affected by
the digital sampling (both within the projection and angular), such that the
distributions are not circularly symmetrical as predicted by the continuous
theory [Wagner, Hanson]. The digital sampling causes 2-D aliasing such that
the noise power amplitude is larger along 0° and 900 polar angles and
smaller along 450 and 1350, as seen more clearly from the 3D versions in
Fig. 5.9.1 (c) and (d). This is also the reason for a non-zero NPS at zero-
frequency for CBP, as should be in the continuous model. This phenomenon
was first noted by Kijewski and Judy [1987]. They derived an analytical NPS
expression for CBP and then did a computer simulation of it assuming
Poission statistics for the projection noise, both agree with the
experimentally measured NPS from a CT scanner.

Fig. 5.9.2 shows, the same as Fig. 5.9.1(a) and (b) did, the NPS from 100
projections instead of 800. It appears that the noise energy of MLS version is

more concentrated in lower frequencies whereas that of CBP is more in high
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(a) CBP (b) 1-iteration MLS

(c) CBP (d) I-iteration MLS

Fig. 5.9.1 The noise power spectrum (NPS) of CT reconstructions by (a) CBP and (b)1-
iteration MLS. (c) and (d) are the NPS displayed in 3D. A total of 800 projections is used
and the number of photons per ray is 1.28x107.
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frequencies. This could be part of the reason for MLS producing larger SNR

than CBP when the number of projections is small.
5.10 The reconstruction accuracy measures

First we demonstrate that MLS is more accurate than CBP by showing the
subtractions of reconstructions (the number of projections is 800) from
original test phantoms. Fig. 5.10.1 exhibits two such subtractions for the bar
pattern phantom, for (a) CBP and (b) 1-iteration MLS. Clearly, the errors of
the four larger size bars in (a) appear larger in intensity than those in (b),
especially the 2nd smallest set from the top-left. For the smallest set, the
differences are visually about the same. These agree with the MTF measures

in Fig. 5.8.3.

(a) CBP (b) 1-iteration MLS

Fig. 5.9.2 The noise power spectrum (NPS) of CT reconstructions by (a) CBP and (b)1-
iteration MLS, from a total of 100 projections. The number of photons per ray is 1.28x107.
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We also measured the correlation coefficient (cc) following Eq. (3.3) and
the root mean square (rms) error to quantify the reconstruction accuracy.
For the low contrast phantom (see Fig. 5.6.1), Fig. 5.10.2 shows the plots of
(a) cc and (b) rms error versus the number of photons per measurement
from 800 projections. These criteria demonstrate that 1-iteration MLS
produces more accurate reconstructions than CBP (errors occur mostly
around edges), even with less than 1/10 of photon numbers per
measurement. However, these global measures give us a false sense of local
image quality in terms of SNR since we saw in Fig. 5.6.2 that CBP produces
larger SNR than I-iteration MLS does in the case of 800 projections. The
sinc filter produces more accurate reconstructions for CBP only when the
number of photons per measurement is less than 106 (otherwise it smoothes
the reconstructions too much such that the accuracy is reduced.)

The cc and rms error versus the number of projections have also been
quantified for 1 and 2-iteration MLS as well as for CBP, at a fixed number
of photons per measurement 1.28x107. The results are plotted in Fig. 5.10.3
for the low contrast phantom. The 1 and 2-iteration MLS don't show much
differences when the number of projections is large, and both result in better
accuracy than CBP. As the number reduces to below 200 where 1-iteration
MLS is less accurate than CBP, 2 iteration MLS improves dramatically. That
cc and rms are somewhat opposite measures to SNR (but rather proportional

to MTF) is demonstrated again.
5.11 Discussion and conclusion

In doing the simulation study, we made some implicit approximations

besides those in section 5.2-5.5 such as: (1) the attenuation coefficient of
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Fig. 5.10.1 The subtractions of the reconstructions (the number of projections is 800)
from the original for the bar pattern phantom for (a) CBP and (b) 1-iteration MLS.
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Fig. 5.10.2 Plots of the (a) correlation coefficient and (b) root mean square error versus

the number of photons per measurement for the reconstructions of the low contrast phantom
from 800 projections, by the 1-iteration MLS, CBP and sinc CBP.
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Fig. 5.10.3 Plots of the (a) correlation coefficient and (b) root mean square error versus

the number of projections for the reconstructions of the low contrast phantom, by | and 2-
iteration MLS as well as CBP.
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water is used instead of that of tissue, (2) the reference detector noise is
neglected, (3) beam scattering is completely eliminated. However, at least
based on our calculated SNR, which is consistent with the values of real CT
scanning, these approximations are acceptable.

In conclusion, MLS produces larger high contrast resolution in cases
when the number of projections is taken above half of that required by the
sampling criterion. In the low contrast detection, CBP produces larger SNR
when the number of projections is taken to satisfy the sampling criterion (the
number is 800 for a 512x512 image). But even in this case, the SNR of MLS
may be improved by applying a low pass filter such as sinc to smooth the
projection data prior to reconstruction, and further, due to the nonlinearity
of MLS, better spatial resolution may still be achievable. When the number
of projections is less than 400, 1-iteration MLS produces a larger SNR than
both CBP and sinc CBP. Note that the SNR is only calculated from a
uniform "tumor" against its uniform background - an ideal situation. If there
are small, sharp details in the background, as we have seen in Fig. 4.2.2(b)
and (c), then CBP will be affected more by the influence of edge spreading
or cluttering.

From the test results of this chapter, we conclude that dose reduction in
CT can be made in two cases by using MLS ART instead of CBP. 1. When
the spatial resolution is of primary concern, reduce the number of
projections from 800 down to 400 (see Fig. 5.8.4). The 2 or 3-iteration MLS
ART will produce spatial resolutions as better as that from CBP using 800
projections. 2. In cases where limited number of projections can be taken, 1-
iteration MLS ART will provide a few times more dose efficiency than CBP
for low contrast object detection. For example, in the pair of SNR curves in

Fig. 5.6.2 for 400 projections, 1-iteration MLS need ~1/10 CBP dosage (i.e.,
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1/10 photon number per measurement: from 108 down to 107) to produce a

same SNR value.
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Chapter 6
A Comparison of CBP and MLS Using the
Reprojected Data from CT Scans

6.1 Introduction

In this chapter, we provide further comparisons between MLS and CBP
using the data reprojected from a number of CT quality assurance (QA) scans
taken from a clinical scanner. Two physical quantities MTF and SNR will be
measured from the corresponding high and low contrast inserts respectively.

Scans of two phantoms have been taken from a Siemens Somotom PLUS-S
[1991] CT machine. All the images are 512x512 pixels in size. The first
phantom is the one in the Department of Medical Physics, Manitoba Cancer
Treatment and Research Foundation (MCTRF), which is designed [Nuclear
Associates, AAPM 1976] for the acceptance test and routine QA of CT
scanners. It has a number of inserts each designed to test one physical
parameter, such as the high and low contrast resolutions, the linearity of
attenuation coefficient, etc. The other one is a Siemens phantom which has a
bar pattern insert and a thin wire insert not available in the first one. The scans
were taken at 500mAs and 120KV (mean energy 60KeV ) and 1 cm slice
thickness - the settings for general QA and following the AAPM [1976, 1993]
guidelines for CT QA testing. For each of the scans, we reproject the image to
obtain a set of projection data to approximately simulate the real data with

noise.
6.2 Spatial resolution

The MTF has been measured by using both the Fourier and the standard

deviation methods as described in section 2.4.4.
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Fig. 6.2.1 The dark point is the cross section of a thin wire (d=0.01mm) inserted in the
Siemens phantom to test the MTF of CT scanners. (the out-circle d=22cm is made of
plexiglass.) The image size is 512x512.
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Fig. 6.2.2 Plots of the MTF measured from the Fourier transform of the thin wire in the
CBP and 1-iteration MLS reconstructions from a total of 800 projections.

115



a MLS  bCBP

¢ MLS d CBP

Fig. 6.2.3 The enlarged thin wire cross section after reconstruction by (a) 1-iteration
MLS and (b) CBP. (c) and (d) are their corresponding Fourier transforms.

Test with a thin wire insert The dark point shown in Fig. 6.2.1 is the
cross section of a thin wire (d=0.01mm ) inserted in the Siemens phantom.
After reprojecting the scan for a total of 800 projections and doing the
reconstructions using both the 1-iteration MLS and CBP, we performed the
FFT of a 32x32 sub-image centered at the wire, a method similar to that used
by Droege [1982]. The MTF is then calculated by averaging the FFT
amplitude along the 00 and 900 axes. In Fig. 6.2.2, we plotted these MTF
values versus the spatial frequency. Apparently, MLS enhances the MTFE more
at medium to high frequencies than does CBP. For a straightforward
demonstration, we show the point image itself (enlarged) and its Fourier
transform in Fig. 6.2.3 after reconstructions. Clearly, the MLS point (a)
spreads less than its CBP counterpart (b), while the result in Fourier space is

Jjust opposite, as should be expected.
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Fig. 6.2.4 shows the plots of MTF for a number of different projections for
(a) 1-iteration MLS and (b) CBP. We see that while the MLS curves drop as
the projection number reduce, the CBP curves coincide. We do not see the
little differences among curves at high frequencies as we did in Fig. 5.8.6. The
reason is explained in section 6.5 below. In Fig. 6.2.4(a), the CBP's MTF for
800 projections is also plotted and one sees that as long as a projection
number is 400 or greater, the 1-iteration MLS's MTF is higher than that of
CBP.

Test with bar patterns Shown in Fig. 6.2.5 is an insert for testing the
spatial resolution as well, which consists of bar patterns of 5 different sizes.
The standard deviations (SD) in a marked region in each set were measured
from the reconstructions and are directly proportional to MTF (see Eq. 2.24).
In Fig. 6.2.6, we plot these SD measures for the case of 800 projections. That
MLS allows higher modulation transfer functions is again demonstrated. The
two images are shown in Fig. 6.2.7 (a) and (b), where the bars (a) in the MLS
version exhibit more high contrast and sharper edges than their counterparts
(b) in the CBP version.

The test proceeds using a series of projection numbers. Fig. 6.2.8 shows
together these SD plots, similar to Fig. 6.2.4, for (a)l-iteration MLS and (b)
CBP. The same as noted above, MLS curves drop as the number of
projections decreases but the CBPs don't change (the difference between Figs.
6.2.8 and 5.8. 6 is also noted in section 6.5). Also, the 1-iteration MLS has
higher values than CBP when the number of projections is larger than 400,
and, lower otherwise. In Fig. 6.2.9 we plot the SD measures from 400

projections, for both 1 and 2-iteration MLS as well as CBP. One sees that 2-
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Fig. 6.2.4 Plots of MTF by measuring the Fourier transform of the thin wire in the
reconstructions from a number of different projections for (a) the 1-iteration MLS and (b)
CBP.

118



Fig. 6.2.5 A bar-pattern insert in a CT phantom for testing the spatial resolution. The

standard deviations (SD) inside the marked square region in each set will be measured from

the reconstructions. Note that in applying this method, each marked square should cover a

same number of black/white pixels and it does not necessarily align with the bars. The

phantom diameter is 22cm and the image size is 512x512.
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Fig. 6.2.6 Plots of the standard deviation measured inside the marked regions from the
reconstructions of 800 projections, by CBP and 1-iteration MLS.
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Fig. 6.2.7 Reconstructions of the bar pattern phantom by (a) 1-iteration MLS and (b) CBP
from a total of 800 projections.
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Fig. 6.2.8 Plots of the standard deviation measured inside the marked regions of the bar
patterns in the reconstructions from a number of different projections by (a) the 1-iteration

MLS and (b) CBP.
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iteration MLS improves its 1-iteration's performance dramatically and its

curve overlaps with that of 800 projections.
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Fig. 6.2.9 Plots of the standard deviation measured inside the marked regions of bar
patterns in the reconstructions by 1 and 2-iteration MLS from 400 projections, 1-iteration
MLS from 800 projections and CBP from 400 projections.

Fig. 6.2.10 shows two reconstructions of an adult chest from 800
projections by (a) 1-iteration MLS and (b) CBP. As indicated by arrows, the
small details and blood vessels in (a) appear sharper and more clearly

delineated than their counterparts in (b).
6.3 Low contrast resolution

Fig. 6.3.1(a) is the scan of a low contrast insert. Fig. 6.3.1(b) is its
windowed version centered at a CT # of 1080, spanning 1080 126 for better
visibility inside. The regions indicated by circle 1 are located in water (CT #
1024) and circle 2 is located in a material whose average CT # is 1030. The
dark central region (circle 3) is plexiglass (CT# 1117) inside which, a small
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Fig. 6.3.1 (a) A low contrast CT scan (the phantom is 25cm in diameter, 512x512 pixels,
CT #: 0-4095) and (b) its windowed version centered at a CT # of 1080, spanning
1080 £ 126. (c) The central darker region windowed at a CT # of 1120 with a width of 32.
The arrows indicate a number of small details in the phantom.
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area (circle 4) was further replaced by a different kind of glass whose average
CT # is 1125 for simulating a tumor. The central region is further windowed at
CT # 1120 with a width of 32 in Fig. 6.3.1(c). The "tumor" has a contrast of
about 0.4% against its background representing the detectibility limit of CT
scanners. There are also a number of small details having about the same

contrast as the tumor, as indicated by arrows.
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Fig. 6.3.2 Plots of the SNR of the "tumor" (region 4) against its background (region 3)
versus the number of projections in the 1 and 2-iteration MLS, as well as in the CBP
reconstructions. The SNR in the original CT scan is also plotted as a horizontal line.

We measured the SNR of the "tumor" (region 4) versus the number of
projections in the 1 and 2-iteration MLS, as well as in the CBP
reconstructions. The SNR definition Eq. (2.19) is used. In Fig. 6.3.2, we
plotted these SNR values, along with the value in the original CT scan as a
horizontal line. It is seen that with more than 400 projections, CBP will
produce a little larger SNR than MLS. With less than 400, the MLS's SNR
becomes larger. The 2-iteration MLS further degrades the SNR. It seems that
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the better SNR of CBP can be attributed, at least partly, to its band limitation
property, since, as we found, the same amplitude of signals (|CT#1~ CT#2|)
has been generated by both the methods, but just in the CBP version, the
standard deviation is smaller. Band l‘imitation restricts the reconstruction of
high frequency components and hence it smoothes the noise. Note that MLS is
more accurate since its SNR curves are closer to the SNR of the original. Here
we infer that those physical arrangements and approximations made in the last
chapter are correct, since the SNR of the original scan is about 1.0 for a
detection contrast of 0.4%, the same as that from the calculation (see Figs.
5.6.2 and 5.6.3).

Fig. 6.3.3 shows the noise histograms inside the "tumor" in (a) the original
CT scan; (b) 1-iteration MLS and CBP reconstructions from 800 projections;
(c) 1-iteration MLS and CBP reconstructions from 200 projections. Clearly,
the 1-iteration MLS's histogram is broader than that of CBP from 800

projections. But in the case of 200 projections, CBP's histogram is broader.

1|

ML& 1 CBP MLS1 CBP

{#) originsl {b) 800 projections {c) 100 projections

Fig. 6.3.3 The noise histograms inside the "tumor" in (a) original CT scan; (b) 1-
iteration MLS and CBP reconstructions from 800 projections; (c) 1-iteration MLS and CBP

reconstructions from 100 projections.
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Fig. 6.3.4 displays the central region of the reconstructions, windowed the
same as Fig. 6.3.1(c), for four different numbers of projections, each for one
row as labeled. The 1st column contains the CBP images. The 2nd and 3rd
columns exhibit the corresponding l-énd 2-iteration MLS reconstructions. We
find that as the number of projections decrease, the CBP versions become
more noisy, in contrast to the MLS ones which are increasingly smooth. The
CBP image from 100 projections (the bottom left one) is so noisy that those
small details as indicated in Fig. 6.3.1(c) are hard to perceive. In short, the

visual appearance agrees with the SNR measures for all images.
6.4 Reconstruction error measures

The reconstruction error is also intuitively exhibited by subtracting images
from the original scan. Fig. 6.4.1 shows, for the low contrast insert in Fig.
6.3.1(a), two such error images for (a) 1-iteration MLS and (b) CBP. We
measured the mean of three small squares in both the images and found that
the CBP generates much larger errors around edges and wherever abrupt
changes occur. In smooth regions, there is not much difference.

The reconstruction accuracy is also quantified by measuring the correlation
coefficient (cc) and the root mean square (rms) error for the low contrast insert
versus the number of projections. The results are plotted in Fig. 6.4.2 for 1 and
2-iteration MLS as well as CBP. The two plots look almost the same as those

in Fig. 5.10.3. The cc and rms are not applicable for quantifying the SNR.

6.5 Discussion and conclusion

The experimental results agree, at least qualitatively, with those seen in the

previous 2 chapters. The results further qualitatively verify that MLS can
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Fig. 6.3.4 The central region after reconstructions, windowed the same as Fig. 6.3.1(c),
for four different numbers of projections from the 1st to 4th rows. The 1st column contains
the CBP images. The 2nd and 3rd columns exhibit the corresponding 1-and 2-iteration

MLS images.
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{a) MLS (b) CEP

Fig. 6.4.1 The subtraction of the reconstruction of the low contrast insert from the
original CT image, for (a) 1-iteration MLS and (b) CBP.

reduce the dosage by half while still preserve the spatial resolution. MLS also
provides higher dose efficiency in low contrast detectibility when the number
of projections is small (see Fig. 6.3.3).

It is worth noting that in Fig. 6.3.2, as the projection number decreases, the
SNR of MLS shows a slow increase, in contrast to a slow decrease in Fig.
5.6.3 and also, the CBP curve drops less steeply, in spite of the agreement of
relative trends. This suggests that using reprojected data from CT scans only
partially or qualitatively simulated the real situation. The reason is: in CT
scans noises are already correlated (see the NPS in Figs. 5.9.1 and 5.9.2).
Reprojection can not fully duplicate the original projection in which the noise
is totally Gaussian (white). This may also explain why in Fig. 6.3.3, the 1-

iteration MLS images from 100 or 200 projections appears too smooth.
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Fig. 6.4.2 Measures of the (a) correlation coefficient and (b) root mean square error for
the low contrast insert reconstructions versus the number of projections for 1 and 2-
iteration MLS as well as CBP.

In testing the MTF of reconstructions, we used a "thin" wire of a few pixels
in diameter and a set of bar patterns (especially the small size ones) which are
already blurred by edges (so that it is very difficult to assign exactly the same
number of black/white pixels in each marked square in Fig. 6.2.5). Therefore
the MTF, especially at high frequencies, can not be accurately determined for

both the MLS and CBP, such that the little differences among curves of
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different projections in Fig. 5.8.6 are not seen in Figs. 6.2.4 and 6.2.8. For
example, in the bar pattern image (Fig. 6.2.5), the 5th set would be rather a
single large bar than a set of smallest bars. The further reason to address the
difference may be the one we discussed above: reprojection of CT scans
cannot fully duplicate the characteristics of the original projection. Even
further, the effect of interconnections among cascaded CT processes may have
been distorted in the reprojection data. One actually has to resort to real
projection data scanned from a thin wire or a set of bar patterns for accurate

MTF determination, which we left for future work.

References

AAPM Report No. 1, Phantoms for performance evaluation and quality assurance of CT

scanners, 1976.

AAPM Report No. 39, Specification and acceptance testing of computed tomography

scanners, 1993.

Droege R. T. and R. L. Morin, A practical method to measure the MTF of CT scanners,
Med. Phys. 9, 758-760, 1982.

Nuclear Associates, Instruction manual, Computed tomography performance phantom,
Models 76-410 and 76-411, 1980.

Siemens, Somatom PLUS-S operator's manual (with SOMARIS/2 ), Version 11.91, Siemens
Medical Systems Inc., Erlangen, Germany, 1991.

131



Chapter 7
The Improvement of MLS over the
Conventional Schemes of ART

7.1 Introduction

In section 3.1 we saw that MLS outperforms the two conventionally used
projection access orderings of ART, the random permutation scheme (RPS)
and the sequential access scheme (SAS). In this chapter, we provide further
experiments to verify that MLS truly and dramatically improves the
performance of ART itself, not only in computational speed, but also in the
physical image quality produced. The tests employ simulated projection data,
reprojected data of CT scans and real data, which have been extensively used
in the last three chapters.

Historically, ART was first used in the early EMI scanner. Hounsfield
[1972] realized the problem of correlations among projections and suggested
a pseudo-random ordering of them. (He took projections of 400 apart.)
Shepp and Logan [1974] followed the point by taking 37° between
consecutive projections. The EMI scanner later switched from ART to CBP,
basically because of the possible lack of convergence with noisy data and the
longer reconstruction time of ART. The orthogonal pair ordering, which
inherently differs from the random one, was first used by Kuhl et al [1973].
But they arranged just 4 projections and stopped going any further to get a
scheme applicable for any number of projections. It was not until very
recently that van Dijke [1992] and Herman [1993] picked up this topic again,
but unfortunately they were still trying random or intuitive ordering. In this
chapter, we demonstrate for the first time that classical ART using orders

such as SAS and RPS truly lead to poor (and even very poor) low contrast
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detection, let alone needing many iterations for convergence (note that the
reconstruction times for 1-iteration MLS, RPS and SAS are exactly the
same). With the advent of the MLS scheme, 1-iteration yields the largest
SNR such that the fundamental limitations of classical ART are nearly
eliminated.

Sections 7.2 and 7.3 cover tests using simulated projection data and
reprojected CT data, respectively. Comparisons using real data are described
in Section 7.4. Discussion and conclusion are included in the last section.

The simulations and reconstructions were performed on a Sun Sparc 4
workstation. Typical reconstruction times were about 30 minutes per
iteration for a 512x512 matrix and 800 projections, with the program and all

data stored in memory.

7.2 Tests with the simulated data

Shown in Fig. 7.2.1 are 5 images of the central part of the low contrast
phantom (see Fig. 5.6.1b) reconstructed by (a) 1, (b) 6, (c) 12 and (d) 20-
iteration SAS, and (e) 1-iteration MLS. The number of projections is 100
and the number of photons per measurement is 1.28x107. Visually, in (a),
(b) and even (c), a large part of the object is poorly reconstructed and disks
having relatively higher contrast cannot even be perceived. Although the full
features are adequately reconstructed in (d) by 20 iterations, the image,
however, appears more noisy than the 1-iteration MLS version (e).

Fig. 7.2.2 shows the plots of the SNR measured from the disks versus
their contrast, for 1 and 16-iteration MLS as well as for 1, 6 and 20-iteration
SAS. The MLS's SNR monotonically and linearly increases with the disk
contrast (the Ist iteration has the largest SNR). But in the SAS

reconstructions, larger contrast disks have lower SNR and lower contrast
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Fig. 7.2.1 The central part of the low contrast phantom (Fig. 5.6.1) in the reconstructions
by (a) 1, (b) 6, (c) 12 and (d) 20 iterations of SAS, and (e) 1-iteration MLS, from 100

projections with a photon number per measurement of 1.28x107.
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Fig. 7.2.2 Plots of the SNR measured from the 5 disks versus their contrast for 1 and
16-iteration MLS and also for 1, 6 and 20-iteration SAS. The reconstructions are from 100
projections with a photon number per measurement of 1.28x107. The MLS's SNR
monotonically and almost linearly increases with the disk contrast (the 1st iteration has the
largest SNR). But in the SAS reconstructions, larger contrast disks have lower SNR and
lower contrast ones have larger SNR, as the 1 and 6-iteration curves exhibited. For example,
Disk 4 (having the second largest contrast 1.6%) has almost 0 SNR in the st iteration.
Although the 20-iteration SAS curve approaches a reasonable trend, its values are much
lower than those of 1-iteration MLS's.
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Fig. 7.2.3 The central part of the low contrast phantom (Fig. 5.6.1) in the
reconstructions by (a) 1, (b) 12, (¢) 18 and (d) 24 iterations of SAS, and (e) I-iteration
MLS, from 800 projections with a photon number per measurement of 1.28x107.




ones have larger SNR, as the 1 and 6-iteration curves exhibited. Although
the 20-iteration SAS curve approaches a reasonable trend, its values are
much lower than those of 1-iteration MLS's.

The performance of SAS becomes even poorer when the number of
projections is larger. Fig. 7.2.3 shows another 5 reconstructions from 800
projections. In this case, image features still look poorly reconstructed even
after 24-iterations. Fig. 7.2.4 displays two full images by 12-iteration SAS
from (a) 100 and (b) 800 projections. We see that (a) converges faster than
(b). Fig. 7.2.5 shows further the reconstructions of the contrast detail
phantom (see Fig. 5.7.1b) from 400 projections, arranged in the same way as
Figs. 7.2.1 and 7.2.3. Fig. 7.2.6 (a) is the 1-iteration MLS from 100
projections, while SAS needs about 20-iterations to get a uniform
reconstruction, as (b) exhibited. Even then, the latter still appears with a
larger noise level than the former, such that disks of lower contrasts and
smaller sizes are relatively difficult to perceive.

We ran further tests to compare MLS to the random permutation scheme
(RPS). By doing a sample of 1-iteration RPS reconstructions, we found that
the results of RPS just sit in-between those of MLS and SAS. Fig. 7.2.7 and
Fig. 7.2.8 each shows 3 reconstructions of the low contrast phantom, from
200 and 800 projections, respectively. In each figure, (a) is from I-iteration
MLS while (b) and (c) are two images randomly picked up from a sample of
RPS reconstructions. We found that with a smaller number of projections,
like 200, RPS cannot match the performance of MLS (as the two exhibited in
Fig. 7.2.7). But with a larger number of projections, like 800, RPS performs
relatively better (as Fig. 7.2.8(b) and (c) demonstrate, they look close to (a)
although with more noise.) In Fig. 7.2.9, we show the central part of the

contrast detail phantom using I-iteration reconstructions, two by MLS (left)
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and the other two by RPS (right). The top two are from 800 projections
while the bottom two are from 200 projections. The visual difference
between (c) and (d) is clearly larger than that between (a) and (b).

The test was also extended to the high contrast bar pattern phantom (see

Fig.5.8.1). Fig. 7.2.10(a) shows its reconstruction from 800 projections by

(a) (b)

Fig.7.2.4  Full display (windowed) of the low contrast phantom (Fig. 5.6.1)
reconstructed by 12-iteration SAS from (a) 100 and (b) 800 projections. (a) converges
faster than (b).
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Fig. 7.2.5 The central part of the contrast detail phantom (Fig. 5.7.1) in the
reconstructions by (a) 1, (b) 6, (¢) 12 and (d) 16-iteration SAS, and (e) 1-iteration MLS,
from 400 projections with a photon number per measurement of 1.28x107.
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Fig. 7.2.6 The central part of the contrast detail phantom in the reconstructions from
100 projections, by (a) 1-iteration MLS and (b) 20-iteration SAS.

a b <

Fig. 7.2.7 The central part of the low contrast phantom in the 1-iteration reconstructions
from 200 projections by (a) MLS, (b) and (c) RPS.

Fig. 7.2.8 The central part of the low contrast phantom in the 1-iteration reconstructions
from 800 projections by (a) MLS, (b) and (c) RPS.
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Fig. 7.2.9 The central part of the contrast detail phantom in the I-iteration reconstructions

by MLS and RPS. The top twos are from 800 projections while the bottom twos are from
200 projections.
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16-iteration SAS and one sees that the bars are still not fully reconstructed
and the background appears not uniform in grayness. We also show a
reconstruction in 7.2.10(b) from 200 projections by 8-iteration SAS, and in
this case, the patterns are relativély quickly reconstructed. In visual
appearance, SAS reconstructs a high contrast object much faster than it did a
low contrast one. ( Compare the number of iterations needed for Fig. 7.2.3d
to that needed for Fig. 7.2.9a). The performance of RPS is similar to that

noted above.

7.3 Test with the reprojected data from CT Scans

We started this test with the low contrast phantom (Fig. 6.3.1) by
reprojecting its CT scan and then doing the reconstruction following the SAS
scheme. Fig. 7.3.1 shows four images of its central part from 200
projections, with (a), (b) and (c) from 2, 8 and 16-iteration SAS,
respectively, and (d) from 1-iteration MLS. It appears that 16-iteration is
still not enough for SAS to produce a uniform reconstruction. Its image (c)
is also noisier than the 1-iteration MLS version in (d). Fig. 7.3.2 shows
another 2 reconstructions from 800 projections. In this case, 42-iteration
SAS (a) is far from generating a satisfactory image comparable to that of 1-
iteration MLS (b). Fig. 7.3.3 displays two full images from 200 projections,
windowed the same as Fig. 6.3.1c, by (a) 8-iteration SAS and (b) 1-iteration
MLS. The image features are twisted severely in (a) while those in (b) are
uniformly reconstructed. Fig. 7.3.4 shows the reconstructions of the thin
wire (See Fig. 6.2.1) and their corresponding Fourier transforms for the
first three iterations of SAS. The point and its Fourier counterpart both are

twisted (can be clearly seen in the first two iterations).



Fig. 7.3.1 Display of the central part of the low contrast phantom (Fig. 6.3.1)

reconstructed from 200 projections, by (a) 2, (b) 8 and (c) 16-iteration SAS, and @ 1-
iteration MLS.

Fig. 7.3.2 Display of the central part of the low contrast phantom (Fig. 6.3.1)
reconstructed from 800 projections, by (a) 42-iteration and (b) by I-iteration MLS.
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Fig. 7.3.3 Display of two full images reconstructed from 200 projections (windowed the
same as Fig. 6.3.1b), by (a) 8-iteration SAS and (b) 1-iteration MLS. Image features in (a)
are twisted while those in (b) are uniformly reconstructed.

Fig. 7.3.4 The thin wire images (See Fig. 6.2.1) and their corresponding Fourier
transform for the first three iterations of SAS.
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Fig. 7.3.5 The central part of the reconstructions by 1-iteration RPS. The top two are
from 800 projections while the bottom two are from 200 projections.
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Fig. 7.3.5 shows four sample I-iteration reconstructions by RPS. The top
two are from 800 projections where one ordering may produce a good
image (a) while the other may not (b). The bottom two are from 200
projections; both hardly match the visual appearance of the 1-iteration MLS
version as shown in Fig. 7.3.1(d).

Tests with the bar pattern phantom (Fig. 6.2.6) also confirm that SAS is
relatively faster in reconstructing a high contrast object than a low contrast
one. Iterations with a smaller number of projections converge faster than
those with larger numbers. For RPS, the performance for a larger number

of projections is relatively better.

7.4 Test with real data

These tests employ the data scanned from objects COMPLEX and DEW
(see Fig. 4.2.1b and ¢), by a y-ray CT [Wowk]. Fig. 7.4.1 and Fig. 7.4.2
each show six reconstructions for COMPLEX and DEW, respectively. In
each figure, (a), (b) and (c) are from 1, 2 and 4-iteration MLS, respectively,
while (d), (e) and (f) are the corresponding three reconstructions from SAS.
I-iteration MLS produces visually the most promising images for both the
objects. (2 and 4-iteration's results appear sharper, but also noisier). The 1
and even 2-iteration SAS cannot fully reconstruct the object's features. The
edges are spread and deformed. Hardly had an object gotten adequately
reconstructed (as shown in Figs. 7.4.1d and 7.4.2d by 4-iteration), when its
image features start appearing much noisier. We found that SAS is also
relatively faster for reconstructing high contrast objects in a smaller image
matrix than it is in a larger matrix. For example, for COMPLEX and DEW
(64x64, 100 projections), 4-iteration SAS is almost adequate and the images
look close to those of 4-iteration MLS. But for the bar patterns (see Fig.



Fig. 7.4.1 Reconstructions of the object COMPLEX from 100 projections. (a), (b) and
(c) are by 1, 2 and 4-iteration MLS, respectively. (d), (¢) and (f) are the corresponding three
reconstructions by SAS, in parallel to (a), (b) and (c) respectively.
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Fig. 7.4.2 Reconstructions of the object DEW from 100 projections. (a), (b) and (c) are
by 1, 2 and 4-iteration MLS, respectively. (d), (¢) and (f) are the corresponding three
reconstructions by SAS, in parallel to (a), (b) and (c) respectively.
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COMPLEX (see Fig. 4.2.1b) versus the iteration number of MLS and SAS.
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7.2.10a, 512x512, 800 projections), 16-iteration SAS is not enough, although
in both situations the sampling criterion Eq. (5.16) was satisfied.

For COMPLEX, we plot in Fig. 7.4.3 the noise standard deviation (SD)
measured inside (a) region 1 and (b) region 2 (see Fig. 4.2.1b) versus the
iteration number. We found that SAS produces unanimously greater noise
than MLS in region 1. In region 2, the SD of SAS, oscillating versus
iterations, is always larger than that of 1-iteration MLS.

We also compared MLS to RPS by doing a sample of 1-iteration RPS
reconstructions. Fig. 7.4.4 shows 3 images of COMPLEX, (a) is from MLS,
(b) and (c) are randomly picked up from the RPS samples. One sees that
while (b) is about the same as (a) in visual appearance, (c) is much inferior
to (a). Fig. 7.4.5 shows the plots of noise standard deviation measured in the
2 small regions in Fig. 4.2.1b, for a sample of 10 images by RPS. Also
plotted, as horizontal lines, are the two values of MLS, each for one region.

Clearly, RPS is more noise prone than MLS.
7.5 Discussion and conclusion

The key disadvantage of SAS is that it cannot reconstruct object features
uniformly and symmetrically. The features are twisted severely in the early
stages of iterations. It is also very hard to reconstruct a low contrast object,
especially from a larger number of projections. (For example, for 800
projections, 40 iterations are still far from enough.) Even if a uniform
reconstruction is obtained after many iterations, it cannnot show a low
contrast detectibility matching that of 1-iteration MLS. Although RPS
outperforms SAS dramatically for some orderings, it is not a reliable
scheme, let alone being able to produce intermediate multiresolution

reconstructions at multilevels as the MLS does (see Figs. 3.8 and 3.1 1). Also



Fig. 7.4.4 Reconstructions of object COMPLEX from 100 projections. (a) is by 1-
iteration MLS. (b) and (c) are picked up from a sample of 1-iteration RPS reconstructions

regionl RPS
region] MLS

region2 RPS
region2 MLS

Noise Standard Deviation

1 2 3 4 5 6 7 8 9 10
Reconstructions

Fig. 7.4.5 Plots of the noise standard deviation inside region | and region 2 of object
COMPLEX (see Fig.4.2.1b and c) for a sample of 10 |-iteration reconstructions by RPS.
Also plotted in horizontal lines are the two values, each for one region, measured from the
reconstructions by MLS. Note that since RPS produces less uniform reconstructions than
MLS, itis possible that in some small regions, the noise standard deviation of RPS is smaller
than that of MLS (see the 7-iteration results in region 2 in this fi gure).
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note that RPS takes time to permute projections, which is not negligible for a
large number of projections such as 800.

In conclusion, MLS not only outperforms CBP in many situations as we
tested in the last three chapters, but also improves the performance of ART
itself as seen in this chapter. At this point, we conclude that MLS is superior
to all of the current CT reconstruction techniques, particularly for imaging

low contrast objects from smaller numbers of projections.
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Chapter 8
Appllcatlons of MLS ART to CT Reconstructions
and Recent Progress in CT

In this chapter, we first discuss the applications of MLS ART to diagnostic
x-ray CT and other kinds of CT reconstructions in medicine. We then briefly
discuss recent progress in CT research and development including CT
applications to both basic and applied science research. The MLS scheme can
be readily applied to almost all of the recent CT models for improved SNR

since in these machines the projection data is limited.

8.1 Dose reduction in x-ray CT

In section 3.6, we suggested that patient dose control in CT is possible if
projections are directly taken along the MLS directions and the
reconstructions are done at each consecutive MLS level.

The experimental tests made in chapters 4, 5 and 6 further confirm that
MLS can reduce patient dosage in two ways, in comparison to CBP: 1. when
the number of projections is taken to satisfy the sampling criterion, reducing
the number of projections by at least a factor of 2 can preserve the spatial
resolution; 2. in situations where a limited amount of projection data can be
taken, MLS also needs smaller dosage for low contrast object detections.

For case 1, dose reduction can be made in situations where spatial
resolution is of prime concern. For example, in diagnostic CT for imaging
small details such as the spine or middle ear and bones such as the temporal
bones [Morgan]. If the number of projections reduces from 800 down to 400
projections, then 2 to 3 iteration MLS is required. High spatial resolution CT

is also important in the initial assessment and follow-up of patients with
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infiltrative lung disease, for which clinjcal practice has been limited to some
extent by concern over the high dose delivered to the thorax [Mayo].

In CT, there is a relationship between patient dosage (D), detector (or
beam) width (w), noise standard deviation (o) and slice thickness (or beam

height #) derived by Brooks and Di Chiro [1976]:
1
0o

For a fixed beam height # and beam width w, reducing the standard
deviation o by 2 will quadruple the dosage D. On the other hand, if the
standard deviation o is kept unchanged, reduction of w for a twofold
improvement of resolution is at the expense of an eightfold increase in dosage.
This means spatial resolution has the strongest effect on the patient dose (if 4
is chosen to vary in proportion with w, then resolution enters even as a fourth
power [Brooks, Barrett]). By using MLS, the improvement in spatial
resolution is equivalent to using a smaller size of detector, which technically
may be difficult to accomplish.

For case 2, when a limited amount of projection data can be taken, MLS

will produce larger SNR than CBP., Further, the smaller the number of

projections, the larger the ratio of the MLS dose efficiency over that of CBP.

8.2 More applications of MLS in medicine

MLS can also find applications in medicine in the following areas:
1. Quantitative x-ray CT, particularly bone densitometry [McClean, Goodsitt,
Holdsworth, Robertson].
2. CT angiography or DSA using CT [Henri, Stehling, Napel].
3. Emission computed tomography (PET, SPECT) [Herman).
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4. Tomographic therapy [Mackie, Brahme, Redpath, Lewis, Swindell,
Bortfeld, Webb, Galvin, Iwamoto] and inverse treatment planning [Holmes,
Gokhale].

5. CT fluoroscopy [Katada, Hiraokal].

For topic 1, the reconstruction accuracy of the attenuation coefficients is
important and information is quantitatively extracted after processing the
attenuation map.

For topic 2, imaging blood vessels of small diameter also requires that CT
images have higher spatial resolution and accuracy.

For topic 3, emission tomographic reconstruction can obtain the greatest
benefits from the new technique for its inherently limited data and for that
CBP cannot be employed at all. Recently, Herman [1993] used a projection
access order for ART (which is inferior to MLS) applied to PET
reconstruction. He found that ART can be made to match the performance of a
standard expectation maximization (EM) technique but at an order of
magnitude less computations. We expect MLS will provide even better
results. Researches to compare MLS with all conventional emission
reconstruction techniques such as the EM, the MLE (maximum likelihood
estimation) and the MAP ( maximum a posteriori ) can be made based on the
physical criteria.

Topic 4 covers new research and development areas in radiotherapy
treatment planning by CT. Tomographic therapy, as its name implies, is for
radiation treatment made at a number of orientations. The treated volume can
be reconstructed by measuring the transmitted rays of treatment beams. An
obvious advantage of this technique is to monitor the patient alignment during
the treatment. Details of the technique have been discussed by Hendee [1995].

Recently, a therapeutic CT, called CT-PORT, has been developed and
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marketed by Toshiba. It was claimed to allow extremely accurate treatment
planning and to fully replace the conventional x-ray simulator [Ogino].
Inverse treatment planning, on the other hand, reconstructs the dosage
distribution itself instead of the linear attenuation coefficients.

For topic 5, an important potential application of MLS lies in CT
fluoroscopy [Katada, Hiraoka], a relatively new concept which has been
demonstrated in 1994 and 1995 Radiological Society of North American
(RSNA) meeting. A 1-second 3rd-generation scanner has been equipped with
a slip ring such that a continuous stream of projections are available. These
projections are submitted to a pipeline of 6 independent CBP processors to
reconstruct up to 6 images/second (reconstruction time per frame < 0.2s) (The
technique, which allows real time viewing, is used in CT guided interventional
procedures such as tumor location using needels, etc.) The MLS ART
processor may be manufactured to replace the CBP ones to further reduce the
reconstruction time by using smaller number of projections without loss of

image quality (images of multi-resolution level are available).
8.3  Further advantages of MLS

MLS does not need normalization due to the fact that it modifies the
reconstruction to conform to the projection data at each step, while CBP does
need normalization to scale the very large pixel values (since the projection
data, after being filtered, is further backprojected) down to the CT# range.
This suggests that using MLS, the calibration and QA work for CT scanners
can be reduced.

Non-linear corrections such as the beam hardening effect can be made

during the iterative MLS reconstruction (this can be a future research topic).
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Kijewski [1978] once proposed an efficient iterative correction method for
multicomponent objects such as the human body. In this method, a
preliminary reconstruction is made using the single component (such as water)
beam hardening correction algorithm which is detailed in [Barrett]. This
eliminates gross shading and cupping artifacts. The resulting image is then
subjected to a threshold (any attenuation coefficient larger or smaller than
some certain value) or other test which simply determines those parts of the
body that contain bone. The algorithm then corrects the projections to account
for the different spectral absorption properties in these regions, resulting in an
essentially artifact free image. Now we can employ MLS to do this iterative
correction more efficiently. (The 1st order correction can be made by 1
iteration. Each higher order can also be made in 1-iteration.) Other artifacts
such as those streaks generated from opaque objects (surgical clips, metal
implants, dental fillings etc.) can also be minimized by removing rays that
pass through or graze them. The corrections on CT using CBP now are made

prior to the reconstruction, and hence are less precise.
84 Recent progress in CT and its applications

Much research and development in CT now employs synchrotron radiation
(SR) for its excellent properties of high monochromaticity (eliminating beam
hardening effects), high intensity and tunable energy [Momose, Itai, Nagata,
Dilmanian, Zeman, Wu].

The most important progress in SR-CT is the development of phase-
contrast x-ray (PCX) CT [Momose] which is an extension of the phase-
contrast optical CT [Noda and Cheng] to the x-ray energy range. It provides

sectional images of organic materials with high contrast. For organic
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materials, the common attenuation x-ray CT produces little contrast. Using
PCX-CT, the phase shift (refractive index) integral (in addition to the
attenuation integral) is measured across the object with an interferometer.
These phase shift integrals taken along different directions were fed into a
reconstruction algorithm to produce a phase-contrast tomogram. Highly
monochromatic synchrotron radiation x rays with 0.1% FWHM (full width
half maximum, ~40% in clinical x-ray CT) make the phase shift measurement
feasible.

The chemical shift of an x-ray absorption edge (for example K edge) of an
element can also be measured by fluorescence detection with higher
sensitivity than that by absorption measurement [lida]. SR x-rays are used to
excite the chemical state of the element. The emitted x-ray fluorescence is
detected and then reconstructed (similar to emission computed tomography).

The SR source also allows K-edge subtraction of iodine and other high-Z
elements for digital subtraction imaging using CT [Zeman, Wu]. Dual energy
scans, one just below and the other just above the K-edge of iodine have been
taken and then subtracted. The difference image is basically the iodine
attenuation at the K-edge. This is also called single element CT imaging or,
dual photon absorptiometry (DPA) [Fryer]. Naturally, with an energy tunable
source, multiple elements can be imaged one at a time by SR-CT.

In all of the CT reconstructions using an SR source to date, a limited
number of projections have been taken. For example, in [Momose], only 100
phase-shift projections were taken, but the image was reconstructed on a large
512x512 matrix. In [Nagata], the image size is also 512x512 but the number
of projections is just 200. In [Tida], the image size is 65x65 and the projection

number is 40.
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High energy x-rays (bremsstrahlung) of a few MeVs produced from
electron linear accelerators have also been used for large and dense object
scanning [Kanamori, Isumi], but the projection data are also limited. In
[Isumi], a 1024x1024 image is reconstructed from just 900 projections.

CT models using heavy particles have also been developed. Proton CT
was shown to have more dose efficiency than x-ray CT to obtain a tomogram
of better low contrast resolution. Different properties like energy loss
[Hanson], nuclear scattering centers [Duchazeaubeneix] and electron density
[Takada] have been measured and reconstructed. Neutron CT [Overlay,
McFarland, Pfister] was also built to take advantage of the neutron's unique
scattering and absorption properties to study structure and flaw development
of materials. Although x-rays are poorly absorbed by light elements, low
energy neutrons can interact strongly with light elements. Further, due to the
details of nuclear structure, a small difference in atomic number between
nuclei can result in interaction properties differing by several orders of
magnitude, thus offering the potential of tremendous increases in detection
sensitivity. Proton or neutron CT machines are also limited in their ability to
take many projections. In [Takada], a 174x174 image is reconstructed from
180 projections. In [McFarland], a number of 512x512 images are
reconstructed from only 90 or 45 projections, which is far less than that
required by the sampling criterion.

Other types of CT models using different kinds of radiation or interactions,
such as infrared [Kassab], ultrasound [Jago], laser [Faris, Kawata], x-ray
diffraction [Harding] and biomagnetics [Ramon], etc., are either developed or
under investigation. Scattering x-ray CT has been designed to reconstruct the
electron density of objects since the Compton cross section is directly

proportional to electron density. Dual energy x-rays were also used in CT for
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the classification of tissue types by decomposing the attenuation coefficients
from Photoelectric and Compton scattering and displaying them in a 2D space
[Macovski]. Dual energy CT scans combined with two additional physical
quantities of an MRI scan, such as the proton relaxation times (T, , T,) may
lead to finer discrimination amongst normal and pathological tissues in a 4D
space [Gordon]. CT scanners using different techniques such as film [Segal],
nuclear spectroscopy [Martz], and video [Ou] have also been developed.

CT has evolved to a new stage where many applications have been found
besides the medical applications. The inner structure of any object can be
nondestructively viewed as long as an adequate radiation source and detection
system is available. For example, in nuclear physics, CT has been used to
determine the relative amount of light collected as the result of the deposition
of a known amount of energy at a point within the volume of a scintillating
detector [Dowell]. In [Dowell], muons traverse many well defined paths
through the scintillator. A CT technique is used to produce 3D images of the
nonuniformities in light generation and collection. CT has also been applied to
evaluate radioactive objects and materials [Sawicka, Goto, Gould] such as the
ceramic reactor-fuel pellets, the nuclear reactor assembly [Kalos].
Applications in geophysics [Kawamura], astronomy [Qiu], plasma physics
[Hino], material science and nondestructive testing [Phillips, Bossi, Martz],
ionospheric investigation [Raymund], environmental sciences [Brown,
Lindgren] and many other areas have been found. There are also experiments
applying CT technique for temporal observation of rapidly translating or
dynamically deforming objects [Zoltani]. Recently, there is a new and
important imaging technique developed in materials science [Wolfe]. It may

- be adapted to become a phase contrast acoustic CT or phonon CT method.
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Conclusion

In conclusion, except for clinical x-ray CT where a large number of
projections can be easily taken by its very specific design, almost all other CT
applications are limited in the amount of projection data. Usually data
acquisition takes too much time or the technique and setup have inherent
limitations. In these cases our new MLS reconstruction technique can be
readily applied for improved SNR. To date, almost all the non-medical x-ray
CT's use CBP for image reconstruction and strong streak artifacts can be seen
in the images of many publications, as in phase contrast images [Momose] and

in neutron tomograms [McFarland].
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Chapter 9 Discussion, Conclusion and Future Work

In this chapter, we first summarize a conclusion of the thesis work. After

that, we propose some topics for future studies.
9.1 Discussion and Conclusion

Morgan [1983] (also see [Brooks 1976b]) once pointed out that there are
two major limitations of CBP: 1. bandlimiting and 2. interpolation, both
affecting the spatial resolution. Although the backprojection can be made
without interpolation (at the cost of reducing reconstruction speed), the
bandlimiting cannot be improved since CBP itself is an integration method
and it suffers from bandlimiting in digital situations. He also indicated that
there are two major limitations of ART: 1. slow speed and 2. possible lack of
convergence, both affecting the image quality and speed. We see that with the
advent of new MLS technique, both the drawbacks of ART are addressed.

The MLS ART may be applied to solve other large non-tomographic linear
systems when the unknowns are also similarly intercorrelated. For example, it
might be applicable for solving multi-body interaction problems in quantum
mechanics. It may also be useful in the design of large electronic circuit
networks and control systems, etc. The solution can be initially coarse and
then refined gradually.

It is worth noting that although there are some parallel implementations of
ART [Fitchett] which can also appreciably increase the computational speed
of classical ART, they can not produce image qualities matching those

produced from the MLS ART in noisy situations. Unless the parallelism is
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also confined to pairs of projections approximately 90° apart, the correlations
between neighboring projections will still exist.

In this thesis we proposed a novel algebraic image reconstruction
technique for computed tomography in which the projections are arranged and
accessed in a multilevel scheme (MLS). Extensive tests using various sources
of data confirmed that the scheme outperforms the conventional convolution
backprojection (CBP) method, by producing a larger MTF when the number
of projections is taken above half of that required by the sampling criterion
and a larger SNR when the number is taken below that half. It also improves
the performance of ART itself, in both the computational speed (by more than
10 times) and the physical image quality (both the high and low contrast

detectibilities).
9.2 Future work

Future work can be classified into three different categories: 1) further
comparison study between CBP and MLS by employing more sophisticated
image quality criteria and using real data, 2) further CT reconstruction
research topics based on the MLS technique itself, and 3) the implementation

of MLS on modern fan beam CT scanners.
9.2.1 Sophisticated physical measures and real data determination

The comparison studies made in chapters 4-7 can be further extended by
employing more sophisticated physical criteria. These measures are either the
spatial frequency dependent ones, or quantities based on the different models

of the detection process. From the measured MTF, NPS (as in Chapter 5),
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and/or the visual spatial frequency response function (VRF), the more
complicated measures listed below can be calculated.

Spatial frequency dependent measures These measures include the
signal-to-noise ratio (SNR), the detective quantum efficiency (DQE) and the
noise equivalent quanta (NEQ). The SNR(f) is defined as [Munro]

Ry = S MIF(£)
NPS(f)

(9.1)

where S(f) is the sinusoidally varying unit contrast input signal [Doi,
Nishikawa] and S(f)- MTF(f)is the output signal.

The DQE(f) is a measure of the efficiency of a real detector compared to
an ideal detector which is capable of detecting all of the quanta and addin gno

additional noise to the image. It is defined as [Munro, Barrett]

DQE(f)=[SNR,,,(f)/ SNR, (/)T
9.2)

Considering SNR.,(f)=S(f)JN for an x-ray beam of N incident quantas

n

which obeys Poission statistics, Eq. (9.2) becomes

DQE(f)=MTF*(f)/[N-NPS(f)]

The noise equivalent quanta (NEQ) is the multiplication of DQE with the
number of input x-ray quanta N, or

NEQ(f)=N-DQE(f)=MTF*(f)/ NPS(f) 9.3)

Measures based on the detection process models The relationship
between the physical and visual image quality was investigated by Loo et al.
[1984] for the task of detecting nylon beads in radiographs. They calculated
the physical image quality according to differént models of the detection

process. The results of the work indicate that human detection performance
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most closely resembles that of a sub-optimal statistical decision process whose

SNR is in the form of

(27 [y S2(u)- VRF? (u)du?

SNR?* =
27 [ - (ST (u)VRF* (u))- (S, (u)VRF? (1)) du 9.4)

where S (u) and S, (u)are the signal and noise power spectra, respectively
and VRF(u) is the visual response function of human eyes [Carlson].
Experimental determination of physical measures Tests can be further
made using the real projection data taken from clinical x-ray CT. Picker
International [Picker] kindly provided scan data from a series of CT quality
assurance phantoms. Therefore all the quantities can be precisely measured or

calculated.

9.2.2 Further CT reconstruction research topics

Besides those applications MLS can find in CT reconstructions (see
sections 8.2 and 8.3) such that corresponding researches can be carried out,
some further research topics based on MLS are outlined as follows:

I. Apply MLS for reconstructions using incomplete data (less than 1800
view, missed rays or projections, part of an object scanned etc.) which
occasionally happens in industrial tomography. In these situations, classical
ART produces better results than CBP. We expect MLS-ART can do even
better work.

2. Incorporate a priori information for the reconstruction. The information
can be obtained either from an adjacent slice of the cross section to be
reconstructed, or from an estimation of the information content of projection
data using some modeling techniques, such as those in [Soderstrom, Gokhale].

MLS can then start with the projection containing the largest high frequency
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information. A different way is to take a few projections first and then do the
reconstruction. Further projections can then be selectively taken. Henri et al.
[1993] performed an analysis of the projection geometry for few projection
reconstructions of sparse objects. Their interests lie in reconstructing cerebral
vasculature from a limited set of digital subtraction angiography (DSA) data,
which remains the preferred method for imaging blood vessels.

3. Apply Wiener deconvolution of the point spread function (PSF) of the
"reconstruction operator" [Dhawan] for MLS ART. This will further improve
the high and low contrast detectibilities of CT reconstructions, especially from
a limited number of projections. Since the PSF of CT is not quite space
invariant [Barrett], those methods used by Rathee [1992] for non-linear CT
image restoration can be readily employed.

4. Apply MLS ART to the modern spiral/helical CT and cone beam CT. In
the past several years, the major thrust in CT has been to improve the
reconstruction algorithms for spiral/helical CT [Wang, Vannier, Kalender] and
cone beam CT obtained using area detectors [Smith, Wang 1993, Lee, Chen].
The primary advantage of spiral/helical CT is its capability of scanning a
complete anatomical volume in a single breath hold, ensuring slice-to-slice
contiguity. Spiral/helical CT requires that planar projection sets be produced
from raw helical scan data via interpolation. We can apply the MLS version
for fan beam geometry as described below to do helical CT reconstructions
using the planar data after the interpolation. The MLS ordering can also be
directly used for cone beam reconstruction using ART or other techniques.

5. Feasibility investigation of CT mammography. The typical skin dosage
for a routine mammography is ~450mRad (2 exposures), and the x-ray beam

energy is ~ 20KeV. For this energy, (%”i)a = 0.4942 cm®/g and
(%)50-5026 cm’/ g. Combining Egs. (5.5), (5.6) and (5.7) will yield
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®=6.11x10°D, / cm®
For D, =0.45Rad, the incident photon fluence @ = 2.75x10° / cm’. Suppose
the scanning slice has a diameter of L=10m. (uL=17.72) For a reasonable
spatial resolution, we assume thickness of h=1.0mm., and the detector width

w=1.0mm , then a total of n, = ®hw =2.75x 107 photons can be used and the

detected photons will be
n=nge™ =2.75%10" x5%10™ =1.38 x10°

If we expect the uncertainty of detected photons <~1% (in the clinical CT
level), then marginally only 1 projection can be taken. Therefore it is worth to
investigate how the spatial and low contrast detectibilities varies with different
number of projections, or different number of X-ray quanta per detector
reading, under the constraint of a fixed total dosage. Higher energy x-rays

may also be used to improve the noise statistics at the cost of reduced contrast.
9. 2.3 Implementation of MLS in fan beam CT scanners

The MLS scheme so far is only applied for parallel projections. In modern
CT machines including spiral/helical ones, fan beams are commonly used for
fast imaging. The scanning generally covers 00-3600. One way of using MLS
is to remap the divergent projections into parallel ones. Since the remapped
data also spans 00-360°, one must first employ the MLS scheme to reorder the
projections in between 0°-1800 and then to those in between 1800-3600,

We can also consider rearranging the fan beam data itself. The direct
employment of MLS won't work efficiently for ordering projections. For
example, in the Siemens Somotom-Plus scanner, the fan beam opening angle
is 42.50, the minimum intersection angle of rays in two projections 900 apart

can be as low as 47.5¢ (see Fig. 9.1). To avoid this problem, one idea may be
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as follows. For a pair of projections 900 apart, instead of updating all the rays
in one projection and then all those in the other, we can update, one ray in one
projection and one in the other, with the two perpendicular to each other. For
instance, in Fig. 9.1, the update sequence is: ray 1 in 0° view and then ray 1 in
900 view, and ray 2 in Oc view and then ray 2 in 90°view... The update
continues for rays in the next pair of projections: 45° and 135°. An even better
way Is to update all rays having the same index number, each from one
projection, in the MLS ordering. Suppose there are a total of R rays in one
projection, then the update will take R rounds to update the projections in Qo-
180°. 1In one round, the situation is exactly the same as that for parallel
projections. A more efficient way is to update rays in bundles since a bundle

of rays covering a small angle is still reasonably close to parallel.

Fig. 9.1 A schematic diagram for fan-beam CT projections.
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Appendix The Computer Source Codes

The source codes listed in this appendix are written in Pascal (for Sun
workstations) and used throughout the thesis. They consist of two parts. Part
I are the procedures for image reconstruction for both the MLS ART and
CBP, which includes projecting an image for a set of projection data,
projecting and reconstructing one projection, adding Gaussian noise to a
projection etc. Part II are the codes for constructing test phantoms in
Chapter 5. In each part, we first gave a short explanation for each
procedure (their objective, their typical input and output plus an additional

note ). The computer codes are listed afterwards.
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Part I

procedure FullProjection(var vsize, hsize: integer);
Objective: Full projection of an input image to get a set of projection data.
Input: an image im of size 512 x512 (vsize x hsize ) read in from an external text file.
Output: a total of nproj projections stored in the array ptheta , with its weight
matrix strored in the array W, where k is the projection index and j is the ray
index.
Note: Linear interpolation is used when doing the projection.

procedure OneProjection(projnum: integer),

Objective: Get one projection (i.e. reprojection) from an intermediate ART reconstruction.

Input: the projection index projnum and the image im reconstructed from the previous
projections.

Output: the single projection data stored in the array pthetaq with k = projnum .

Note: Linear interpolation is used when doing the projection. The image im will be
updated in the procedure imodification below, by comparing this projection with
the actual projection data stored in the array prheta.

procedure imodification(projnum: integer);
Objective: update the image im one projection at a time by ART.
Input: the projection data obtained from the procedure OneProjection (projnum ) above.
Output: the updated image im by ART.
Note: Linear interpolation is used when doing the image modification.

procedure ReconsOneProj (projnum: integer);
Objective: backprojection of one projection indexed projnum to the image im by CBP.
Input: the projection data after convolution filtration using the procedure
ConvFilteringProjection below.
Output: the updated image im by CBP.
Note: Linear interpolation is used when doing the backprojection.

procedure ProjectionData,

Objective: Full projection of an image im to get a set of projection data.

Input: an image im of size 512 x512 (vsize X hsize).

Output: a total of nproj projections stored in the array p , with its weight matrix strored
in the array w, where k is the projection index and d is the ray index.

Note: this is the same procedure as the FullProjection above except for that precise
projection instead of linear interpolation is used when doing the calculation.
It is slower although more accurate.

procedure OneProjectionAndModification(k: integer);

Objective: Get one projection (i.e. reprojection) from an intermediate ART reconstruction
im and update im using this projection.

Input: the projection index k and the image im reconstructed from the previous
projections.

Output: the updated image im by ART.

Note: this is the procedure combining both the OneProjection and imodification above.
Further, precise projection instead of linear interpolation is used when doing the
calculation. It is slower although more accurate.
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procedure ReconstructionOneProjection(k: integer);

Objective: backprojection of a single projection indexed k to the image im by CBP.

Input: the projection data after convolution filtration using the procedure
ConvFilteringProjection below.

Output: the updated image im by CBP.

Note: this is the same procedure as the FullProjection above except for that precise
projection instead of linear interpolation is used when doing the calculation.
It is slower although more accurate.

procedure AddPhotonNoise;
Objective: Add Gaussian noise to a set of projection data.
Input: the pseudo projection data calculated either from the procedureFullProjection or
from the procedure ProjectionData.
Output: the noisy projection data to simulate real CT data.
Note: See Section 5.2 for more detail.

procedure MLSProjectionOrders;

Objective: calculate the MLS orders for a total of nproj projections.

Input: the number of projections nproj .

Output: the MLS order of the nproj projections stored in the 1D array projord.

Note: the algorithm is detailed in
H. Guan and R. Gordon, A projection access order for speedy convergence of
algebraic reconstructions techniques (ART): A multilevelscheme (MLS) for
computed tomography, Phys. in Med. and Biol. 39, 2005-2022, 1994.

procedure ConvFilteringProjection (fBAND: integer);
Objective: Convolution filtration (fBAND=1) of a set of nproj projection data by CBP.
Input: a set of nproj projections data stored in the array p
Output: the set of nproj projections data after convolution filtration. They are stored in
the same array p (replace the input).
Note: See Section 2.3.1 for more detail.

Computer codes:

{Full Projection of an input image to get a set of projection data. Linear interpolation is used }
procedure FullProjection(var vsize, hsize: integer);
var
theta, costh, sinth, tr, pthmax, pthmin, total: real;
i, j, k, t: integer,
dFile: text,
begin
reset(dFile, 'input.dat'); {read input image}
vsize:=512;
hsize:=512;
for i :=-vsize div 2 to vsize div 2- 1 do
for j := -hsize div 2 to hsize div 2 - 1 do
read(dFile, im"[i, j]);
close(dFile),
pthmax := -maxint;
pthmin := maxint,

{initialize the projection and the weight array }
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{ptheta is the actual projection array,
{pthetaq is the array store temporary projection
for updating }
fori:=0tonproj-1do
for j := -hsize to hsize - 1 do

begin
ptheta™[i, j] :=0;
pthetag™[i, j] :=0;
WA, jl:=0;

end;

fork :=0tonproj- 1do
begin
{projection angle}
if nproj mod 4 = 0 then
theta := (k + 0.5) * 180.0 / nproj
else
theta := k * 180.0/ nproj;
costh := cos(theta * pi / 180);
sinth := sin(theta * pi/ 180);

for i := -vsize div 2 to vsize div 2- 1 do
for j := -hsize div 2 to hsize div 2 - 1 do
if (theta = 0) then
begin
ptheta[k, i] := ptheta”[k, i] + im"([i, j};
WAk, 1] := WAk, 1] + 1;
end
else if (theta = 90) then
begin
ptheta” [k, j] := ptheta™[k, j] + im"[i, j};
WALK, j1:= WALk, j1 + 1,
end
else
begin
tr:=1* costh + j * sinth;
if (tr >=0) then
t ;= trunc(tr)
else
t := trunc(tr - 1);
ptheta™[k, t] := ptheta’[k, t] + im"[i, j] *
(1 - abs(tr - t));
pthetar[k, t + 1] := ptheta™[k, t+ 1] +
im/[i, j] * abs(tr - t);
WALK, t] := WALK, t] + (1 - abs(tr - t));
WALk, t+ 1] := WALk, t + 1] + abs(tr - t);
end;
end;

{Get one projection (reprojection), indexed as projnum., from an intermediate ART
reconstruction. Linear Interpolation is used. }
procedure OneProjection(projoum: integer);

var
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theta, costh, sinth, tr: real,
i, J, k, t: integer;

begin
k := projnum;
if nproj mod 4 = 0 then
theta := (k + 0.5) * 180.0 / nproj
else

theta :=k * 180.0 / nproj;
costh := cos(theta * pi/ 180);
sinth := sin(theta * pi / 180);

for t := -hsize to hsize - 1 do
pthetagM[k, t] :=0;

for i :=-vsize div 2 to vsize div 2- 1 do
for j := -hsize div 2 to hsize div 2 - 1 do
if (theta = 0) then
pthetaq™[k, i] := pthetaq”[k, i] + im"[i, j]
else if (theta = 90) then
pthetag”[k, j] := pthetag”[k, j] + im"[i, j]

else
begin
tr :=1 * costh + j * sinth;
if (tr >=0) then
t .= trunc(tr)
else
t ;= trunc(tr - 1);
pthetag”[k, t] := pthetag™[k, t] +
im"\[i, j] * (1 - abs(tr - 1));
pthetag”[k, t + 1] := pthetag™[k, t + 1]
+ im"[i, j] * abs(tr - t);
end;

end;

{Update the projection indexed as projnum by ART. Linear interpolation is used }
procedure imodification(projnum: integer),
var
theta, costh, sinth, tr: real;
i, j, k, t: integer;
begin
k := projnum;
if nproj mod 4 =0 then
theta := (k + 0.5) * 180.0 / nproj
else
theta :=k * 180.0 / nproj;
costh := cos(theta * pi / 180);
sinth := sin(theta * pi/ 180);

for i :=-vsize div 2 to vsize div 2- 1 do
for j :=-hsize div 2 to hsize div 2 - 1 do
begin
if (theta = 0) then
begin
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t:=1;

tr.=1,
end
else if (theta = 90) then
begin
t:=j;
tr.=7j;
end
else
begin
tr ;=1 * costh + j * sinth;
if (tr >=0) then
t ;= trunc(tr)
else
t .= trunc(tr - 1);
end;

if WALk, t] < 0 then

im"[i, j] :=im"[i, j] + (ptheta”(k, t] -
pthetag[k, t])/ WALk, t] * (1 - abs(tr - t));
if WALk, t+ 1] < O then

im"[i, j] := im"[i, j] + (ptheta[k, t + 1] -

pthetaq”[k, t + 11)/ WALk, t + 1] * abs(tr - t);
if im”(i, j] < O then
im”[i, j] :=0;
end;
end;

{Backprojection of one projection indexed asprojnum to the image im by CBP.
Linear interpolation is used }
procedure ReconsOneProj (projnum: integer);

var
theta, costh, sinth: real;
1, j, k, t: integer,;
tr: real;
begin
k := projnum;

if nproj mod 4 = 0 then
theta := (k + 0.5) * 180.0 / nproj
else
theta :=k * 180.0/ nproj;
costh := cos(theta * pi/ 180),
sinth := sin(theta * pi / 180);

for i:=-vsize div 2 to vsize div 2- 1 do
for j ;= -hsize div 2 to hsize div 2 - 1 do
begin
if (theta = 0) then
begin
t:=1
tr:=1i,
end
else if (theta = 90) then
begin
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end
else
begin
tr ;=i * costh + j * sinth;
if (tr >=0) then
t ;= trunc(tr)
else
t := trunc(tr - 1);
end;

im7[i, j] ;= im”[i, j] + pthetak, t] *
(1 - abs(tr - t)) + ptheta[k, t + 1] *
abs(tr - t);
end;
end;

{Precise projection of an input image im to get a total of nproj projection data. It is much
slower than the interpolation method although more accurate. }
{im: input image. -Global}
{p: projection data. -Global }
procedure ProjectionData;
var
theta,sinth,costh,abssinth,abscosth,oc,luc,btc,op12,0p23,halffre,fr: real;
op: array [1..4] of real,
dw: array [1..3] of real;
i,j.k,d,dstart,dmiddle,n:integer,
begin
for k :=0tonproj- 1do
for d := -hsize to hsize - 1 do

prk,d] =0,
for d ;= -hsize to hsize - 1 do
vn[d] :=0;

for k :=0 to nproj - 1 do
begin

theta := k*pi/nproj;
costh := cos(theta);
sinth := sin(theta);
abscosth := abs(costh);
abssinth := abs(sinth);
luc := abs(abscosth-abssinth)/2;
btc ;= (abscosth+abssinth)/2;

if (theta<=pi/4) or (theta >3*pi/4) then
halffre:= 1/(2*abscosth)

else if (theta<=3*pi/4) or (theta>pi/4) then
halffre:= 1/(2*abssinth);

fori:=-vsize div 2 to vsize div 2- 1 do
for j := -hsize div 2 to hsize div2 - 1 do
begin
oc := i*costh +j *sinth;
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op[ 1]:=oc-btc;
op[2]:=oc-luc;
op[3]:=oc+luc;
op[4]:=oc+btc;
op12:=abs(op[1]-op[2]),
op23:=abs(op[2]-op[3]);

forn:=1to 4 do
begin
d:=trunc(op[nl);
fr:=op[n]-d;
if (op[n]>=0) and (fr>=0.5) then
d:=d+1

else if (op[n]<0) and (fr<-0.5) then
d:=d-1;

?

von[d):=vn[d]+];

if n=1 then
dstart:=d
end;
dmiddle:=dstart+1;

case vn[dstart] of
I: begin
dw[1]:= (dstart+0.5-op[1])*halffre,
case vn[dmiddle] of
2: dw[2]:= 1- dw[1]-(op[4]-dmiddle-0.5)*halffre;
3: dw[2]:=1-dw[1];
end;
end;
2 begin
dw[1]:= (op12+(dstart+0.5-op[2])*2)*halffre;
dw[2]:= 1-dw[1];
end;
3 begin
dw[1]:= (op12+0p23*2+(dstart+0.5-op[3]))*halffre;
dw[2]:=1-dw[1];
end;
end;
dw[3}:=1- dw[1]-dw([2];

for d:=dstart to dstart+2 do

begin
pk,d]:=p"[k,d]+dw[d-dstart+1]*im"\[i,j];
whk,d]:=wN[k,d]+dw[d-dstart+1];
vn[d]:=0;

end;

end;
end;
end;

{Make one projection of the reconstructing image by ART and compare it to the
actual projection data and then update the reconstruction. Precise projection is used. }
{im: input image. -Global }
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{p: projection data. -Global }
{pq: one projection data for updating. -Global }
procedure OneProjectionAndModification(k: integer);
var
theta,sinth,costh,abssinth,abscosth,oc,luc,btc,0p12,0p23,
halffre fr: real;
op: array [1..4] of real;
dw: array [1..3] of real;
i,j,d,dstart,dmiddle,n:integer;
begin
theta :=k * pi/ nproj;
costh := cos(theta);
sinth := sin(theta);
abscosth ;= abs(costh);
abssinth := abs(sinth);
btc := abs(abscosth+abssinth)/2;
luc := abs(abscosth-abssinth)/2;
if (theta<=pi/4) or (theta >3*pi/4) then
halffre:= 1/(2*abscosth)
else if (theta<=3*pi/4) or (theta>pi/4) then
halffre:= 1/(2*abssinth);
fori:=-vsize div 2 to vsize div2- 1 do
for j := -hsize div 2 to hsize div 2 - 1 do
begin
oc ;= i*costh +j *sinth;
op[1]:=oc-btc;
opl2]:=oc-luc;
opl[3]:=oc+luc;
op{4]:=oc+btc;
op12:=abs(op[1]-op[2]);
op23:=abs(op[2]-op[3]);

forn:=1to4do
begin
d:=trunc(op{n]);
fr:=op[n]-d;
if (op[n]>=0) and (fr>=0.5) then
d:=d+1
else if (op[n}<0) and (fr<-0.5) then
d:=d-1:

vn[d] :=vﬁ[d]+’1 ;

if n=1 then
dstart:=d
end;
dmiddle:=dstart+1;

case vn[dstart] of
1: begin
dw[1]:= (dstart+0.5-op[1])*halffre;
case vn[dmiddle] of
2: dw[2]:= 1- dw[1]-(op[4]-dmiddle-0.5)*halffre;
3: dw[2):=1-dw[1];
end;
end;
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end;

begin
dw[1]:= (op12+(dstart+0.5-op[2])*2)*halffre,
dw([2]:=1-dwl[l1];

end;

begin
dw[1]:= (op12+0p23*2+(dstart+0.5-op[3])) *halffre;
dw[2]:=1- dw[1];

end;

dw[3]:=1- dw[1]-dw[2];

for d:=dstart to dstart+2 do

end;

begin
pa’k,d]:=pg’[k,d]+dw[d-dstart+1]*im"[i,j];
va[d]:=0;

end;

fori:=-vsize div 2 to vsize div 2 - 1 do
for j := -hsize div 2 to hsize div 2- 1 do

begin

oc := i*costh +j *sinth;
op[1]:=oc-btc;
op[2]:=oc-luc;
op[3]:=oc+luc;
op[4]:=oc+btc;
op12:=abs(op[1]-op[2]),
op23:=abs(op[2]-op[3]);

forn:=1to4do
begin
d:=trunc(op[n]));
fr:=op[n]-d;
if (op[n]>=0) and (fr>=0.5) then
d:=d+1
else if (op[n]<0) and (fr<-0.5) then
d: ;

%

vn[d]:=vn[d]+1;

if n=1 then
dstart:=d
end;
dmiddle:=dstart+1;

case vn[dstart] of
1: begin
dw[1]:= (dstart+0.5-op[ 1])*halffre;
case vio[dmiddle] of
2: dw[2]:= 1- dw[1]}-(op[4]-dmiddle-0.5)*halffre;
3: dw[2]:=1-dw[1];
end;
end;
2: begin
dw[1}:= (op12+(dstart+0.5-op[2])*2)*halffre;
dw[2]:=1- dw[l];
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end;
3 begin
dw[1]:= (op12+0op23*2+(dstart+0.5-op[3])) *halffre;
dw[2]:= 1-dw][1];
end;
end;
dw[3]):=1- dw[1]-dw[2];

for d:=dstart to dstart+2 do
begin
if wA[k,d}>0 then
imA[i,j]:=im?[i,j]+(p"[k.d]-pg’ [k,d])/wAk,d]*dw[d-dstart+1];
vn[d]:=0;
end;
if im”[i, j] <O then
im”"[i, j] :=0;
end;

{Reconstruction one projection for CBP after the convolution filtration. Precise
backprojection is used }

{im: input image. -Global }

{p: projection data. -Global }

procedure ReconstructionOneProjection(k: integer);

var

theta,sinth,costh,abssinth,abscosth,oc,luc,btc,0p12,0p23,
halffre fr: real;

op: array [1..4] of real,

dw: array [1..3] of real;

i,j,d,dstart,dmiddle,n:integer;

begin

theta :=k * pi/ nproj;

costh := cos(theta);

sinth := sin(theta);

abscosth := abs(costh);

abssinth := abs(sinth);

btc := abs(abscosth+abssinth)/2,

luc ;= abs(abscosth-abssinth)/2;

if (theta<=pi/4) or (theta >3*pi/4) then
halffre:= 1/(2*abscosth)

else if (theta<=3*pi/4) or (theta>pi/4) then
halffre:= 1/(2*abssinth);

fori :=-vsize div 2 to vsize div 2- 1 do

for j :=-hsize div 2 to hsize div 2 - 1 do

begin
oc := i*costh +j *sinth;
op[1]:=0c-btc;

op[2]:=oc-luc;
op[3]:=oc+luc;
op[4]:=oc+btc;
opl2:=abs(op[1]-op[2));
op23:=abs(op[2]-op[3]);
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forn:i=1to4do
begin
d:=trunc(op[n});
fr:=op[n]-d;
if (op[n]>=0) and (fr>=0.5) then
d:=d+1

else if (op[n]<0) and (fr<-0.5) then
d. 1 .

vn[d}:=vn[d]+1;
if n=1 then
dstart:=d
end;
dmiddle:=dstart+1;

case vn[dstart] of
I: begin
dw[1]:= (dstart+0.5-op[1])*halffre;
case vn[dmiddie] of
2: dw[2]:= 1- dw[1]-(op[4]-dmiddle-0.5)*halffre;
3: dw[2]:=1-dw[1];
end;
end;
2 begin
dw[1]:= (op12+(dstart+0.5-op[2])*2)*halffre;
dw[2]:= 1- dw[1];
end;
3 begin
dw[1]:= (op12+0p23*2+(dstart+0.5-op[3])) *halffre;
dw[2]:=1-dw[1};
end;
end;
dw[3}:=1- dw[1]-dw[2];

for d:=dstart to dstart+2 do
begin
im”[i, j] .= im"[i, jl+dw[d-dstart+1]*p*[k,d];
vn[d]:=0;
end;

{Add Gaussian noise to projection data}

{nproj: the number of CT projections. - Global }

{photon: the number of photons used in a single measurement. -Global }
{phonum: the number of photons detected in a single measurement }

{p: the projection data. -Global }

{hsize, vsize: an image's vertical and horizontal size }

{SD: the standard deviation of photons}

{NOISE: the noise deviation obtained after the Gaussian sampling }
procedure AddPhotonNoise;

k, d: integer;
ranl, ran2, ran3, ran4, SD, NOISE, phonum: real,
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begin
for k :=0 tonproj- 1 do
for d := -hsize to hsize - 1 do
begin

{scale the projection data down to tissue attenuation range }
prk, d] := prk, d1/ (3200 * vsize / 128);
{after attenuation}
phonum := photon * exp(-p*[k, d]);
SD := sqrt(phonum);

if (SD = 0) then {Gaussian sampling }
NOISE :=0
else
begin
repeat
ranl:=random(seed)*2-1;
ran2 := 3 * sqrt(2) * ranl * SD;
ran3:=random(seed);
ran4 := exp(-(ran2 * ran2) / (2 * SD * SD));
until (ran3 <= ran4);
NOISE :=ran2;
end;
phonum := phonum + NOISE; {the actually detected photons}
{output noisy projection data }
p"[k, d] := In(photon / phonum) * (3200 * vsize / 128),
end;
end;

{MLSProjectionOrders: Calculate the MLS orders for a total of nproj projections, the
details of it is published in:

H. Guan and R. Gordon, A projection access order for speedy convergence of algebraic
reconstructions techniques (ART): A multilevel scheme (MLS) for computed tomography,
Phys. in Med. and Biol. 39, 2005-2022, 1994.}

{nproj: the number of CT projections. - Global }

{projord: the array to hold the MLS ordering. - Global}

{pflag: the flag array to signal if a projection index in a sequential

order is used or not: 1 used, O not used. - Global}

{L: the index of a multilevel }

{N: the number of projections in a level}

{kl, kr: search the left and right side of an index which is already used, in the last level }
procedure MLSProjectionOrders;

label

10, 20;
var

i,j,k,N kLkr:integer,
begin

projord[1] := O; {ordering the first level}
projord{2] :=nproj/ 2,
N:=1; {ordering the second to the second last levels}
forii=1toL-1do
begin
N:=N*2;
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end;

forj:=1toNdo
projord[N + j] := projord[j] + nproj/ (2 * N),
end;
for j := 0 to nprojminus! do
pflag[j] :=0;
forj:=1toNdo
begin
k :=round(projord[j]);
projord[j] :=k;
pflag[k] :=1;
end;

for j:=N+ 1 to nprojdo {ordering the last level }
begin
k := round(projord(j]);
if pflag{k] = 1 then

begin
for i :=k to nprojminus] do
if (pflag[i] = O) then
begin
kr:=i-k;
goto 10;
end;
kr:=0;
10:
fori:=k downto 0 do
if (pflag[i] = 0) then
begin
kl:=i-k;
goto 20;
end;
kl:=0;
20:
if (kI = 0) or (kr = 0) then
k:=k+kl+kr
else if kr + kl <=0 then
k:=k+kr
else
k:=k+Kkl
end;
projord[j] :=K;
pflaglk] := 1,
end;

{Convolution filtration of the projection data by the ramp filter }
{h: the kernal for the ramp filter}

* {p: the projection data}

{hsize, vsize: an image's vertical and horizontal size }
procedure ConvFilteringProjection (fBAND: integer),

var {Frequency BAND 1:full Band, -1:half Band}
k, m, n: integer;
h1nMINUSm, phi, temp, sign: real;
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data: array[1..ndat2] of double;

begin
fork:=0tonproj- 1do {theta, tao=1}
begin
for n := -hsize to hsize - 1 do {t}
begin
temp :=0;
for m := -hsize to hsize - 1 do {t'}
if pAk, m] <> O then
begin
if fBAND = 1) then  {full Band}
if ((n - m) mod 2 =0) and (n <> m) then
hinMINUSm :=0
else if n = m then
h1nMINUSm :=1/4
else
h1nMINUSm := -1/ (sqr((n - m) * pi))
else
begin {half band }
if n = m then
hInMINUSm :=1/16
else if (n - m) mod 4 =0 then
h1nMINUSm :=0
else
begin
phi:=(n-m) * pi/ 4,
if (0 - m) mod 2 =0 then
hinMINUSm :=-1/ (16 * phi * phi)
else
begin
phi:=(n-m) * pi/ 4,
if (n - m) mod 2 =0 then
h1nMINUSm :=-1/ (16 * phi * phi)
else
begin
sign :=abs(n - m)/ (n - m);
if abs(n - m) mod 4 = 3 then
sign ;= -sign;
h1nMINUSm :=-(1 /(32 * phi * phi) -
sign / (16 * phi));
end;
end;
end;
end;
temp :=temp + p Mk, m] * hInMINUSm;
end;
data[n + hsize + 1] := temp;,
end;
for n ;= -hsize to hsize - 1 do
p [k, n] := data[n + hsize + 1];
end;
end;

193



Part 11

procedure CD_DiskCenterPositions;

Objective: set the disk center coordinates and the radius in the contrast detail phantom
(see Fig. 5.7.1).

Input: none

Output: the disk center coordinates (x, y) for a total of 6 sets of disks ( each set consists of
6 disks of the same size) stored in the array centers and the 6 radius stored in the
array r .

Note: The disks are laid on an 512x512 image (-256 to 255, -256 to 255)

procedure CD_CreatePhantom;
Objective: create the contrast detail phantom (see Fig. 5.7.1).
Input: the disk center coordinates (x, y) and the radius r created using the procedure
CD_DiskCenterPositions above.
Output: the contrast detail phantom.
Note: a large background disk with a dark edge is first created before creating the contrast
detail disks.

procedure BarCenterPositions;
Objective: set the bar center coordinates in the bar pattern phantom (see Fig. 5.8.1).
Input: none
Output: the bar center coordinates (x, y) stored in the array centers for the total 5 sets of
bars.
Note: The bars are laid on an 512x512 image (-256 to 255, -256 to 255)

procedure Bar__ CreatePhantom;
Objective: create the bar pattern phantom (see Fig. 5.8.1).
Input: the bar center coordinates (x, y) created using the procedure
BarCenterPositions above.
Output: the bar pattern phantom
Note: a large background disk with a dark edge is first created before creating the bars.

procedure MeanStdMTF(pp:integer);
Objective: calculate the MTF from the reconstructions of the bar pattern phantom.
Input: the reconstructed bar pattern phantom image im.
Output: the MTF stored in the array msm.
Note: see section 2.4.4 for more detail .

procedure LC_DiskCenterPositions;
Objective: set the disk center coordinates and the radius in the low contrast phantom (see
Fig. 5.6.1).
Input: none
Output: the disk center coordinates (x, y) for a total of 5 disks.
Note: The disks are laid on an 512x512 image (-256 to 255, -256 to 255)

procedure LC_CreatePhantom;
Objective: create the low contrast phantom (see Fig. 5.6.1).
Input: the disk center coordinates (x, y) created using the procedure
LC DiskCenterPositions above.
Output: the low contrast phantom.

194



Note: a large background disk with a dark edge is first created before creating the contrast
detail disks.
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procedure MeanStdSNR(pp:integer);
Objective: calculate the SNR from the reconstructions of the low contrast phantom.
Input: the reconstructed low contrast phantom image im.
Output: the SNR stored in the array msc.
Note: see section 2.4.2 for more detail .

procedure FFTran;
Objective: Fourier transform of the central part of an image im .
Input: an image im of sizes 512x512. Only the central 256x256 is calculated.
Output: the Fourier amplitude of the central part of im .
Note: There are two major applications of this procedure as described on the top of the
code.

Computer codes:

{Disk center coordinates and radius in the contrast detail phantom.
Image size 512x512 (-256 to 255, -256 to 255)
Both r and centers are global arrays}

procedure CD_DiskCenterPositions;

var
i, j, X, y: integer,
begin
fori:=1to6do
begin
{radius for each set of 6 disks having same size }
r[i] := 20-(i-1)*4;
if (i=06) then
rfi] :=2;
X :=-100 + (56 - 4*(i-2))*(i-1);
forj:i=1to6do
begin
y :=-160 + 64 * (j-1);
centers[i, j, 1] :=x;
centers(i, j, 2] :i=y;
end;
end;
end;

{Create the contrast detail phantom image im . hfhvsize is half of the image size or 256}
procedure CD_CreatePhantom;
var
i, j, 10, jO, p, q: integer,
graystep: real;
begin
{ create a large background disk with edges}
for i := -hfhvsize to hfhvsizeminus! do
for j := -hfhvsize to hfhvsizeminus! do
if (i*i+j*j< sqr(hfhvsizeminus1)) and
(i*i+j*j>= sqr(hfhvsizeminus1-2)) then
im”[i, j]:=255
else if i*i+j*j< sqr(hfhvsizeminus1-2) then
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im”[i, j1:=127
else
im"[i, j1:=0;

{create the 6 group of disks, total 36 ones }
graystep := 1,
forp:=1to6do
forq:=1to6do
begin
i0 := centers[p, q, 1];
jO := centers[p, q, 2];
for i :=i0 - r[p]-1 to i0 +r[p]+1 do
for j :=jO - r{p]-1 to jO+r[p]+1 do
if sqr(i-i0)+sqr(j-j0)<= r{p)*rp] then
im”[i, j}:=im"[i,j] - q*graystep;
end;
end;

{Bar center coordinates in the Bar pattern phantom - Global, Image size 512x512. a=16.
The standard deviation will be measured inside a central square of 32x32 pixels=npxls

in each set of bar patterns}

procedure BarCenterPositions;

var
i, j: integer,
begin
centers[1, 1] :=-112;
centers[1, 2] :=-112;
centers[2, 1] :=-56;
centers[2, 2] :=-56;
centers[3, 1] := O;
centers[3, 2] := O;
centers[4, 1] := 56;
centers[4, 2] := 56;
centers[5, 1] := 112;
centers[5, 2] := 112;
{No. 6 is not for a bar pattern, but for
a uniform square later for the noise
correction }
centers[6, 1] := -vsize div 4;
centers[6, 2] := 0;
npxls:=0;
for i:=-a to a-1 do
for j;=-atoa-1do
npxls:=npxls+1;
end;

{ Create the bar pattern phantom, hfhvsize is half of the image size or 256 }
procedure Bar__CreatePhantom,;
var
i, j, i0, jO, k, n, barwidth: integer;
begin
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{create a large background disk with edges}
for i := -hfhvsize to hfhvsizeminus! do
for j := -hfhvsize to hfhvsizeminusl do
if (i*i+j*j< sqr(hfhvsizeminus1)) and
(i*i+j*>= sqr(hfhvsizeminus1-2)) then
im"\[i, j]:=143
else if i*i+j*j< sqr(hfhvsizeminus1-2) then
imAi, jl:=127
else
im"[i, j]:=0;

{create the 5 sets of bar patterns, A = 24. Each set occupies 48x48 pixels}

barwidth:=1;
fork:=1toS5do
begin
i0 := centers[k, 1];
jO := centers[k, 2];
fori:=i0-Atoi0+A-1do
forj:=j0-Atoj0+A-1do
begin
n:=(j-jO+A) div barwidth;
ifn mod 2 =0 then
im”[i, j):=im"[i,j]+128;
end;
barwidth:=barwidth*2;
end;
end;

{The MTF calculation from the Bar pattern reconstructions.

msm is a 3D global array:
1st index: pp - iteration number.
2nd index: 1 - mean, 2 - the standard deviation, 3 - MTF value.
3rd index: k - bar pattern index }
procedure MeanStdMTF(pp:integer);
var
i,j,k,10,jO: integer;
sum, MO : real;
begin
{the mean}
fork:=1to6do
begin
sum:=0;
i0 := centers[k, 1];
jO := centers[k, 2],
fori:=i0-atoi0+a-1do
forj:=j0-atoj0+a-1do
sum:= sum +im"[i,j];
msm[pp, 1, k]:=sum/npxls;

end;

{the standard deviation }
fork:=1to6do
begin
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sum:=(;
i0 := centers[k, 1];
jO := centers[k, 2];
fori:=i0-atoi0+a-1do
forj:=j0-atoj0+a-1do
sum:= sum + sqr(im”"[i,j]-msm{pp, 1, k]);
msm[pp, 2, k]:=sum/(npxls-1);

end;
{MTF calculation }
MO:=64;
fork:=1toS5do
begin
{noise correction by the No. 6 square }
msm([pp, 3, k]:= sqrt(msm[pp, 2, k] - msm{pp, 2, 61);
msm([pp, 3, k]:= pi*sqrt(2)*msm[pp, 3, k)/(4*MO0);
end;

msm[pp, 3, 6]:=0;
end;

{Disk center coordinates in the low contrast phantom. Image size 512x512, vsize=512,
hsize=512, r=20. The noise standard deviation will be measured inside a circle of r,

.centered at each disk whose radius 10 = 24}
procedure LC_DiskCenterPositions;
var
i, j: integer,
begin
centers[1, 1] := -(vsize div 16)*3;
centers[1, 2] := -(hsize div 16)*3;
centers[2, 1] := -(vsize div 16)*3;
centers[2, 2] := (hsize div 16)*3;
centers[3, 1] := 0;
centers(3, 2] ;.= 0O;
centers[4, 1] := (vsize div 16)*3;

= (vsize div 16)*3;
centers[5, 2] := (hsize div 16)*3;

{No. 6 is not for a disk center, but for

a uniform circle in the background}
centers[6, 1] ;= -vsize div 4;
centers[6, 2] := 0,
npxls:=0;
for i:=-r-1 tor+1 do

for j:=-r-1 tor+1 do

if i*i+j*j <=r*r then
npxls:=npxls+1;

end;

{Create the low contrast phantom: hfhvsize is half of the image size or 256}
procedure LC_CreatePhantom,
var
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i, j, 10, jO, k: integer,
graystep: real;
begin
{create a large background disk with edges}
for i ;= -hfhvsize to hfhvsizeminusi do
for j := -hfhvsize to hfhvsizeminus1 do
if (i*i+j*j< sqr(hfhvsizeminus1)) and
(i*i+j*j>= sqr(hfhvsizeminus1-2)) then
imA\[i, j]:=255
else if i*i+j*j< sqr(hfhvsizeminus1-2) then
imA[i, j}:=127
else
im"[i, j]:=0;

{create the 5 low contrast disks, 10 = 24 }
graystep ;= 1;
fork:=1toSdo
begin
i0 := centersfk, 1];
jO := centerslk, 2],
fori:=1i0-10-1t0i0 +10+1 do
for j := jO - 10-1 to jO+10+1 do
if sqr(i-i0)+sqr(j-j0)<= r0*r0 then
im”[i, jl:=im"[i,j] - k*graystep;
end;
end;

{Calculate the signal to noise ratio SNR of the low contrast disks, r=20}
{msm is a 3D global array:

1st index: pp - iteration number.

2nd index: 1 - mean, 2 - the standard deviation, 3 - SNR value.

3rd index: k - disk index }

procedure MeanStdSNR(pp:integer);

var
i,j,k,i0,jO: integer;
sum : real;
begin
{the mean }
fork:=1to6do
begin
sum:=0;
i0 := centers[k, 1];
jO .= centers[k, 2],
fori:=i0-r-1t0i0 +r+1 do
forj:=j0-r-1t0j0+r+l do
if sqr(i-10)+sqr(j-j0)<= r*r then
sum:= sum +m”"[i,jl;
msc[pp, 1, k]:=sum/npxls;
end;

{the noise standard deviation }
fork:=1to6do
begin
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sum:=0,
i0 := centers[k, 11;
jO := centers[k, 2],
fori:=i0-r-1toi0 +r+1 do
forj:=jO-r-1t0jO+r+ldo
if sqr(i-i0)+sqr(j-j0)<=r*r then
sum:= sum + sqr(im"[i,j]-msc[pp, 1, k]);
msc[pp, 2, k]:=sum/(npxls-1);
end;

{the SNR}
fork:=1to5do
msc[pp, 3, k]:= abs(msc[pp, 1, k]-msc[pp, 1, 6]) /sgrt(msc[pp, 2, k]+ msc[pp, 2, 6]);
msc[pp, 3, 6]:=0;
end;

{Fourier transform of the difference image of a reconstruction to its original water only
phantom for calculating the noise power spectrum, only the central part 256x256 is
calculated }

{This procedure is also used for calculating the MTF using the thin wire method if desired,
just put a small square of image like 32x32 centered at the wire (i0, jO) into the data
array by replacing hfhvsize with 32 and im”[i - hfhvsize div 2, j - hfhvsize div 2]
with im*[i+i0-16, j+j0-16]}

procedure FFTran;
var
i, j, ii, ndim: integer;
begin
{put the 256x256 image im into a 1D array data -Global }
fori:=0to hthvsize - 1 do
for j:=0 to hthvsize - 1 do
begin
ii:=1+2%*j+2*]i*hthvsize,
data’[ii] :=im"[i - hthvsize div 2,
j - hfhvsize div 2J;
if (i + j) mod 2 = 1 then {FFT always centered }
data™[ii] := -data"[ii];
data™[ii + 1] :=0;
end;
nn[1] := hfhvsize;
nn[2] := hthvsize;
ndim := 2;

{Fourier transform of the data, see Numerical Recipe the fourn function }
fourn(data, nn, ndim, -1);

{Get the Fourier amplitude }
for i := 0 to hfhvsize - 1 do
for j := 0 to hthvsize - 1 do
begin
ii:=1+42%*j+2*i*hthvsize;

cli, jl:= c[i,j] + sqrt(sqr(data’[ii])+ sqr(data™[ii+1]));
end;
end;
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