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ABSTRACT

Image reconstruction is one of the key stages in computed tomography (CT). V/ith

limited dose, the reconstruction accuracy can only be improved by the development of

more efficient detectors and the optimization of reconstruction algorithms to make more

efficient use of the available dose. The work in this thesis addresses largely the latter

issue considering the detectors'efficiency to have already reached their limit.

In CT, two image reconstruction techniques have been formulated: the Convolution

Backprojection (CBP) method and the Algebraic Reconstruction Techniques (ART). In

this thesis, we filst analyze the factors affecting the performance of ART. V/e then

present a novel projection access order, the multilevel scheme (MLS), for ART. MLS

is exactly the sequence for lD Fast Fourier Transform (FFT) if the number of

projections is a power of 2. Experimental testing using real CT data demonstrates that

the new technique outperforms CBP, by producing better spatial resolution when the

number of projections is sufficient to satisff the sampling criterion, or reduced noise

when the number of projections is relatively small. A simulation study which matches

real CT dosage and noise conditions, and a further comparison which employs

reprojected CT scans of phantoms, demonstrate that MLS produces a larger

modulation transfer function (MTF) when the number of projections is taken above half

of that required by the sampling criterion, and a larger signal to noise ratio (SNR) when

the number of projections is taken less than half. MLS also improves the performance

of ART itself, in both the computational speed (by more than 10 times) and the physical

image quality (both the high and low contrast detectabilities). This work provides a

thorough physical comparison among CT reconstruction techniques and it confirms that

MLS will find wide applications in reconstructions of differcnt CT models.
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Chapter 1
Introduction

The aim of compuæd tomography is to estimate aphysical characteristic at

each point within an object from external measurements. X-ray Computed

tomography (CT) is an indispensable diagnostic imaging tool in medicine, and

is widely used in radiotherapy treatment planning. It offers high spatial and

contrast resolution. Quantitative CT allows measurements that are both

accurate and precise [McClean, Holdsworth, Goodsitt, Robertson]. There are

many laboratory CT scanners specifically designed to provide high resolution

images for research purposes [Holdsworth, Hangartner, Drangova].

To obtain high quality tomograms, image reconstruction is essential. A
reconstruction algorithm determines, along with the measured data, how

accurately the linear attenuation coefficient can be calculated in medical x-ray

CT. In clinical scanning, since the patient's dose must be limited and the

efficiency of the detectors are constrained both by the techniques and costs

(the quantum detection efficiency is very high in x-ray CT currently [Krestel,

Morganl), the most convenient way to improve the accuracy is to optimize the

reconstruction algorithm. High performance algorithms are sought to achieve

reconstructions yielding more diagnostic information IWaggener,
Keselbrener, Cline, Crawford, Chase].

Several key factors characterize the performance of a CT reconstruction

algorithm. The first and most important one is accuracy: how faithfully the

precious diagnostic information can be reconstructed and presented in the

tomogram. The image quality can be evaluated by different criteria, each

characterizing a specific kind of information. (Subjective image quality is also

critical since most images are interpreted visually. Freedom from artifacts is



crucial to avoid misleading human interpretations) Another important factor is

the computational speed. Fast reconstruction is always expected to reduce the

diagnostic time. Other factors include how flexible the algorithm is, how easy

it is to be implemented, etc.

Improving the image quality when there is a limited amount of projection

data is also important in x-ray CT. Research indicates that there are potential

hazards that can result from the use of diagnostic x-rays, as discussed in detail

in [Hall, Mazur]. Some human organs such as the female breasts are known to

be particularly susceptible to radiation induced cancer UCRP, NIHI. For the

patient's sake, the amount of dose delivered during a single examination

should be as low as possible. This contradicts the requirement for a high

quality image which requires high dose. Developing dose-efficient

reconstruction methods is the only direct way to improve the tomogram

quality when scanning with limited dosage. Further, low dose CT is just one

of many tomographic situations (see Chapter 8) where the data are either

sparse or noisy. These include different CT models for basic science research

and industrial applications. An efficient reconstruction algoritl-rm benefits all

kinds of tomographic irnaging with limitecl clata.

Major progl'ess in developing CT reconstruction algoritl-rms took place in

late 60's and early 70's, in pace with the extensive research and development

work for clinical x-ray CT scanners. In the past several years, a rnajor-thrust

has been to improve algorithms for spiral/l-relical CT [Vannier, Wang] and

cone beam CT [Wang 1993, Smith, Defrise]. Basically, two kinds of irnage

reconstruction techniques were formulated. The first kind is the Convolution

Backprojection (CBP) method and the second is the Algebraic Reconstruction

Technique (ART). In CBP, the reconstruction doesn't depencl on the

projection access order in which the projection data is used (I will restrict this

2



thesis to parallel projections, so that the projection access order can be

specified by the angles of the projections), since it is a backprojection back-

summation method, and these operations are linear and commutative.

However, in ART, that dependence is heavy for in ART each projection

modifies the reconstruction by previous projections. Many people realized the

importance of projection access order and tried various ways to optimi ze the

order [Hounsfield, Shepp, Kuhl, Herman, van Dijke], but the optimal order

remained unknown. If such an ordering were found, then a technique

upgrading the current performance of ART and outperforming the CBp in
some aspects may be developed.

The organization of this thesis is as follows. The principle of computed

tomography (CT) and the concept of image reconstruction in CT are briefly
reviewed in Chapter 2, along with the description of two major categories of
reconstruction methods: CBP and ART, their advantages and limitations. In

Chapter 2, we also discuss commonly used image quality criteria. In Chapter

3, we first analyze the factors affecting the perfornance of classical ART.

Then we present a novel projection access order, called the multilevel scheme

(MLS), which appears to yield the most efficient algebraic image

reconstruction. Chapters 4-7 cover thorough experimental tests to demonstrate

the advantages of the new algorithm over the conventional ones by using

those image quality criteria outlined in Section 2.4. rn Chapter 4, the

comparison between CBP and MLS is made using the real data taken from

two laboratory CT scanners. Chapter 5 extends the comparison study of
Chapter 4 with a detailed computer simulation of CT as well as CT

reconstructions. In Chapter 6, we further extend the comparison of MLS and

CBP by using data reprojected from CT scans. Such scans were

experimentally taken from CT phantoms by a clinical scanner. Chapter 7

3



covers a performance comparison between MLS and the classical ART

algorithm. Chapter 8 discusses the applications of the new algorithm in

medicine, both for diagnostic and therapeutic CT. In Chapter 8, we also

outlined the recent progress in CT, CT applications in both medical and non-

medical areas, CT models using different kinds of radiation, covering different

energy ranges, imaging different types of interaction parameters, using

different kinds of detectots, etc. We also discuss the role that the new

algorithm may play in these new CT models. Concluding remarks and future

work are included in the last chapter: how to employ more complicated image

quality criteria for additional comparison studies, what are the further CT

reconstruction research topics based on the MLS technique, how to implement

MLS in divergent beam CT. (Nowadays most conventional CT scanners use

high intensity fan beam x-ray sources to acquire data for fast scanning). The

application of MLS ART in nuclear medicine tomograpl,ic reconstruction and

its comparison to the conventional algorithms in the field is also an important

research topic, and is outlined.
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Chapter 2
Physical Principles of Computed

Tomography (CT), CT Reconstruction and
CT Image Quality Evaluation

In this chapter, we first give a brief introduction to the physical

principles of computed tomography (CT) as well as the concept of image

reconstruction in CT. (A detailed discussion of these topics can be found in

many books [Krestel, Hendee, Morgan, Herman 1980, Natterer, Kak 1gB7).)

We then discuss two major categories of reconstruction methods, their

principles, advantages and limitations. Descriptions of various physical

criteria for the evaluation of medical images follow afterwards.

2.1 Physical principles of CT

The fundamental concept underlying the technique of CT is the capability

of reconstructing a cross-section of the internal structure of an object from

multiple projections of a collimated beam of radiation passing through the

object. The mathematical basis dates back to the work of J. Radon in l191il,
who proved that a 2D or 3D object could be reproduced from an infinite set

of all projections. The physical application of the concept was first utilized

by Bracewell [1956] to recoÍrstruct a rnap of solar microwave emissions.

Oldendorf 119611 and Cormack 11963l later each built a laboratory model

using isotope y-ray sources (also see [Kalos]). Kuhl and Edwarcls [19631

introduced transverse body section imaging by isotope scanning,

subsequently further developing and refining the technique referred to now

as emission computed tomography. The first CT for clinical application, the

EMI head scanner, was developed by Hounsfield in 11972, 1973). It was the



first time that the attenuation differences between various soft tissues, which

are less than a few percent, were observed. The minimum attenuation

difference detectable in CT is -O.SVo while the conventional x-ray
radiograph cannot show an attenuation difference less than I TVo due to the

tissue overlap fKrestel].

To discuss the principle of cr, we first cite cormack tlgsgl and

Hounsfield's [1980] early concept of "tomogram". Cormack originated his

idea of a tomogram from radiation therapy. It occured to him that "i¡
order to improve the radiation treatment planning, one had to know the

distribution of the attenuation coefficient of tissues in the body, and that this

distribution had to be found by measurements made external to the body."

"If a fine beam of gamma rays of intensity /¿ is incident on the body and the
emerging intensity is /, then the measurable quantity g:ln (tstt ):Jrfds.
Hence if / is a function in two dimensions, and g is known for all lines

intersecting the body, the question is: can f be determined if g is known?".

Hounsfield, on the other hand, "first investigated the possibility that a

computer might be able to reconstruct a picture from sets of very accurate

x-ray measurements taken through the body at a multitude of different
angles. Many hundreds of thousancls of measurements woulcl have to be

taken, and reconstructing a picture from them seemed to be a mammoth task,

as it appeared at the time that it would require hundreds of thousands of
simultaneous equations to be solved". When he "investigated the advanta_ees

over conventional x-ray techniques, however, it become apparent that the

conventional methods were not making full use of all the information the x-

rays could give. On the other hand, calculations showed that the new system

uses the data very efficiently and would be two magnitudes more sensitive

than conventional x-rays".
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Although today different generations of cr scanners including
modern spiral/helical CT vary in design, the procedure of acquiring a

image basically consists of 3 steps:

1. A thin slice of l-l\mm is examined from multiple angles. In each

angle (see Fig. 2.1), finely collimated x-ray beams are measured across a

slice before and after the transmission. Collimation is employed to greatly

reduce the photons scattered into the detector system.

2. The transmitted photons are counted or accumulated by high signal-to-
noise detectors which allow a minimum 0.5Vo difference of the x-ray
attenuation to be detected and recorded. In accordance with Beer's law:

N = Noe IÉG'YYr
(2.1)

The attenuation integral \ít(x,yþl of a single measurement is

Il-t(x,y) dt- tn *N
where Ne and N is the number of incident and transmitted x-ray photons in

the measurement, respectively.

3. The attenuation integrals of all measurements in all directions are reacl

into a computer and reconstructecl as a tomographic image usinq
reconstruction algorithm. TIle tomogram represents a map of the linear-
attenuation coefficients ¡.r(x,y) of the cross section.

Fig.2.1 shows schematically a CT in its simplest design form to illustrate
the formation of a tomogram [Krestel].

The p(x,),) is a function of the x-ray photon energy E, the atomic

number Z , and the electron density of the substance. It consists of two parts:

the absorption by the Photoelectric Effect (P.E.) and the absorption and

scattering by the Compton Effect, or

the

CT

l0



Telev¡sion monitor

Fig. 2.1Basic representation of a computer tomograph in the simplest design form (the
early EMI scanner). The measurement system, consisting of x-ray tube and radiation
detector, is first moved linearly in the slice plane over the entire object cross section. The
measurement system is then rotated -10 and then a new linear scanning movement
performed, etc., until an angle of at least 180ohas been traversed. Throughout the entire
scanni¡g process, the measurement signal is fiansferred to a computer. This computes a two-
dimensional distribution of attenuation values corresponding to the object layer from the
measurement values, which is displayed as a tomogram on a TV monitor after conversion to
video signals. (courtesy of the Siemens Aktiengesellschaft [Krestel]).

It(x, y): lt,,(x,!) + þr(x, y)

The subscripts p and c referring to the photoelectric and Compton effects,
respectivelY. trp(x,y) is strongly dependent on both the atomic number

(-23 ) and the beam energy (-llÛs ), and þr(x,y) depends on erectron

density but not atomic number. The energy dependence of ¡tr(x,y) is also

much less [Krestel, Morgan, Hendee].

The difference in attenuation among different tissues for the P.E.,

depending upon their atomic numbers, results in a marked difference in

absorption and leads to great contrast between the different tissues, a

11



desirable property in producing an image. The lack of any dependence of the

Compton effect upon the atomic number provides little contrast enhancement

between different tissues.

The effective energy of the x-ray source is 60 KeV (100- l40KV tube

voltage) [Herman 1980, Krestel] with a beam width of -25 KeV. For a beam

energy lower than 60 KeV, due to restrictions on the patient dosage, few

photons have to be used. Although the attenuation differences are larger, the

image noise also considerably increases. For higher energy beams, the

attenuation differences are smaller and hence the image contrast is reduced.

(The attenuation increment due to Compton scattering cannot balance the

increment due to scattering.) Brooks and Di Chiro 11976l also calculated

that beam energies around 60KeV yield the minimum noise standard

deviation for a fixed amount of dosage since for higher energy photons,

despite more photon transmission, quantum noise per photon appears larger.

In practice, the x-ray beam is polychromatic. Since the softer x-rays are

absorbed preferentially compared to higher energy photons, the remaining

rclative penetrating capability of the beam increases and it is said to become

"harder". This is a non-linear effect which is largely attributecl to the

photoelectric effect. The problern of be¿rm harclening ancl its correction have

been discussed in detail in [Barrett] and also in fKrester].

There are two kinds of x-ray detectors generally usecl: scintillation crystal

and ionization chamber. The overall detection efficiencies for both are about

tlre same (-50Vo). Both technologies have reached their detection limits

[Krestel, Morgan].

12
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As discussed above, image reconstruction is one of the key stages in

computed tomography. Cormack [1980] in his Nobel lecrure addressed CT

largely as a reconstruction problem. Herman t19g0l also took image

reconstruction as the fundamentals of CT.

In principle, the accuracy to determine the linear attenuation coefficients,

both absolutely and relatively, is only limited by the patient's exposure, the

detector's properties (efficiency, sizes, etc.), and the reconstruction

technique. With limited dose, it can only be improved by the development of
more efficient detectors and the optimization of the reconstruction algorithm

to make more efficient use of the dose. The work in this thesis addresses

largely the latter issue considering that the detectors'efficiency is technically

difficult to improve and beyond the scope of this dissertation.

Fig. 2.2 Geometry of a projectiott P g(r) in computed tomography

In general, image reconstruction refers to the problem of estimating a

function f (x,)') from a finite number of integrals or projections. In x-ray
cr, this function is the linear attenuation coefficient p(x,¡t).

13



The measurement of one projection from parallel beams is shown in Fig.
2.2. A projection is denoted as Pr(r), where 0 is the measurementangle and

r is the distance of the detector from the origin, with t = xcos g * ysin g for
any point (x,y). For p(x,y),

PeG) = Il*li*pQ,fl õ(xcos g * ysin 0 - t)dxdy

which represents the attenuation integral of tt(x,y)
rcos I + ysin 0 = t, and ô is the Dirac delta function.

Projections using fan beams are taken in the modern clinical CT scanners

for fast data acquisition. A schematic diagram is shown in Fig. 2.3. Ftay

integrals are also measured in the same manner but the image reconstruction

is more complicated than that for parallel beam. The fan beam

reconstruction algorithm, however, can be derived from the parallel one by

coordinates transformation [Krestel]. Further, the set of projection data

originally measured by the fan-beam are usually rearranged to parallel
projections before the actual reconstruction starts fKrestel]. Therefore in this

thesis, our concern is only with reconstructions from parallel projection

data, which will allow us to focus on the essential details. The principles of
direct fan-beam reconstruction can be found in many other sources [Kak,
Edelheit, Ledley, Crawford 19881.

2.3 Reconstruction methods

There are two major categories of image reconstruction methods used in

CT. The first kind is a direct analytical method based on the Fourier

transform and is called the Filtered or Convolution Backprojection (FBp or

CBP) technique. It is first proposed by Ramachandran and

Lakshminarayanan U9711. The second kind takes the image reconstruction as

(2.2)

along the line
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a problem of solving a system of simultaneous linear equations using

iterative methods. These are called the Algebraic Reconstruction Techniques

(ART). Historically, ART was first used in the early EMI scanner

[Hounsfield] and in electron microscopy [Gordon 19701.In the following two

subsections, we give a brief introduction to each of the two techniques.

Fig.2.3 Geometry of fan-beam data acquisition in computed tomography

2.3.1 Filtered or convolution backprojection (FBp or cBp)

FBP (CBP) is based on the central stice theorem that relates the 1D

Fourier transform of a projection of ¡t(x,y) to its 2D Fourier transform.

Let F(u,v) be the Fourier transform of lt(x,y), i.e.,

F (u,v)- J: Ii* UG, y)¿- i2tr("+r'Ð ¿¡çl7t (2.3)

PeG), that isAlso let Se(a;)be the Fourier transform of the projection

sr(ø) - J: Preþ-iz"'dt

- J: Poçt¡n-izo'' cJt -,so(ar)

Then by considering F(u,v) along the line y:0, Eq. (2.3) gives

F(u,0) - J: t|i*pG,1,)dyle-i2.tut dx

(2.4)
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where Po(t) = I p\,Ðdy is the projection along 0 :0. l.lote that for this

special orientation, x=t. Eq.(2.5) indicates that the Fourier transform of a
projection along

as illustrated in

0 =0 (1D) represents

Fig. 2.4. This result

the line y = 0 in F(u,v) plane (2D),

can be generalized to show that if
F(0t,0) denotes the values of F(u,u) along a line at an angle g passing

through the center, as shown in Fig. 2.3, and if Sr(ø) is the Fourier

transform of the projection Pr(t),then

SeG¿): F(t't,0)
(2.6)

Fig.2.4 An illustlation of the Fourier central slice theorcm

E,q. (2.6) is known as the Fouríer central slice theorem [Ramachandran].

Note that this theorem is only applicable for parallel beams. There is no

counterpart for fan-beam projections. The reason reconstruction is not

directly performed in frequency domain by filling So(ø) to F(os,g) is that

in a digital case, the 1D function .lr(a,r) has to be interpolated to fill the 2D

F(u,v) since u:(t)cosO and v-(ùsing may not be integers. such a

interpolation in frequency domain may cause large errors in the spatial

domain. Although there are some studies on minimizing such interpolation

erors [Stark, Matej], the method still lacks wide application.

The Fourier Backprojection (FBP) method is inversely formulated as

follows:

16
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F(x,y) - J: Il*r(r,v)¿i2n(r'+v'ù dudv

- Iî Ë" o (at, 0)ei2 o(xa cos}+vr't'i" 0) ada¡dT

- Iî Ë" oça,e¡eiz"'' adado

= l. IJ*larls, (co)eiz"''daldo

(i)

(ii)

(iii)

(iv)

(2.7)

where (i) is just the 2-D inverse FT, (ii) we use ,¿ -ú)cos1, v:ú)sing
where o is the frequency axis u rotated by an angle e, (iii) we use

ncos I + ysin 0 - t and (iv) we use the Fourier slice theorem

Se(ar) - F(ø,9) plus some mathematical manipulation. Step (iv) indicates

that the procedure for the reconstruction is:

1. take the Fourier transform of 'a projection pee) to obtain its FT

se (¿t)),

2. multiply Sa @) by lø1, then do the inverse FT to obtain the filtered
projection p'e(t)- lilrls, ça¡ei2"o, dat,

3. do backprojection to obtain the estimated function lt(x,y):

It(x,y): Ii ,'r(t)d0 - J: ,r(xcos I + ysi¡ Ðde (2.8)

Theoretically, fiiter løl is for high frequency enhancement. In practice,

noise is always introduced into the projection data ancl propagated into the

reconstruction. If noise is not negligible, using larl tends to amplify it as

well. To achieve a compromise, Shepp and Logan llgj|l designed a

rnodified filter lø.sinc(a-r)l to reduce the high frequency amplificarion,

wlrile for the low frequencies it converges to lar.sin c(a)l=lø],.
The filtered projection P, (t) can be equivalently calculated in the spatial

domain by convoluting the projection d,ata Ps(t) with h(t), the inverse

Fourier transform of filter løl (or lø .sinc(ar)l) bV
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where

For the modified

Pe(t).h(r - a)da

h(t¡ = J"" løle*n{,r 2nør)clø =
Wsin(ZnWr) sinz (nwr)

- - ("rf

)1, the corresponding

tz= 0

-1)) n+0

P' ,(r) = [**

In reality, the above operations have to be performed in digital form.

Suppose the projection data is sampled at an interval of r, then it implies

thatabandwidth of w=1/(2t) has to be used in order that no aliasing effor

occur [Kak 1984] (CT sampling will be discussed in detail in sections 5.4 and

5.5). Replace t = nr and r =1, (2.10) becomes

(2.e)

(2.t0)

(2.11)

representation is

(2.12)

I tt+ n=0
h(n)={ O n=even

l-ttçrn¡z n=odct

hs

filter lø .sinc(ar

lzt o'(n)=4
l-21 (n'(4n"

Some research on the design and application of different filters

[Keselbrener, Chase] and their impact on the utility of CT has been reportecl.

2.3.2 Algebraic reconstruction technique (ART)

In contrast to CBP which is analytically formulated, ART directly does

reconstructions in discrete form. Fig. 2.5 shows a region overlaid with a

grid of pixels to be reconstructed from its equal-spaced parallel projections.

Weuse p, -the discretized lt(*,y) above, to denote the attenuation value of

each pixel (voxel), where i=(1,2,-..,1/) and N:n2 is the total number of
pixels. Hence trr=(ltt,þ2,...,þu) is a vector in an l/-dimensional space. A

ray is defined to be a projection line with the width equal to the detector
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width (which generally equals the pixel size). All rays along one direction

form a projection. The integral of the pixel values along one ray is denoted

as P¡, the discretized PeQ). If there is a total of P projections and in each

projection there are R rays, then j -(1,2,...,M) where M = p x R. The

relationship between ¡t and p can be expressed as

/w¡iVi= P¡,
i= I

or

j - (r,2,-.',M)

wnl\ * wnþz+ .'.+wÀ,IrN = pt

wuþt * wzzþz*...lwzulLw = Pz
(2.13)

wutl4l
::

wuzþz*...lwuull¡¡ - Pu

where w¡¡ rePresents the contribution of the ith pixelto the jth ray integral.

Assuming the total attenuation by a pixel is proportional to its volume and

the scanning slice is constant in thickness, the attenuation is proportional to
area. w¡¡ can therefore be taken as the fractionalarea of the ith pixel in the

jth tay. Note in each equation in (2.13) only those pixels intercepted by the
jth ruy (u,r7>0) contribute to the integral p¡ and most of the w¡¡ are zero.

Tlrus the w ¡t matrix is sparse. (In a simple vector form, (2.13) can also be

written as wp = P, where w is the weight matrix, p and p are the unknown

and the projection vectors, respectively.)

A direct matrix inversion of (2.13) is practically impossible [Kak,
Barrettl. The ART algorithm, first proposed for CT by Gordon et al Uglo,
197 41, provides an efficient iterative method to solve the problem. It is a
variation of the early Kaczmarz's [1937]projection method for solving a

system of linear equations. The process can be described by the sequence of
functions
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hatched area

Fig.2.5 A schematic diagram of a region overlaid with a grid of pixels ( N = n2¡ to be

reconstructed from its equally-spaced parallel projections, where P¡ and P;+r are two
adjacent rays in one projection and P¡ is aray in a perpendicular projection. The ray width
equal to pixel size. P¡ and P¡ has an intersection (shadowed) whose area equal to that of a
pixel.

¡¡(i-L,nt).w¡_p¡
¡¡(i'm) -¡¡Q-l'nt) -¡

where j is the subiteration index

w j Q.14)

M ' w j : (w 
.¡t, w ¡2, ... ,\u ¡."),

m is the iteration index and )":1. In 1/-dimensional space, each equation in

(2.13) represents a hyperplane and an image is a point represented by

trL=(14,þ2,...,[Lu).When a unique solution to these equations exists, the

intersection of all these hyperplanes is that single point. The first iteration

starts with an initial guess ltto'". It is projected on the hyperplane 1

represented by the firstequation in (2.13). The resulting point p(''', is then

projected on hyperplane 2 represented by the second equation to yield trLr'.',,

and so on. When i: M, the first iteration is finished (over all rays in all

projections). In the second iteration, W@'t) works as p(0'2) and the above

wj 'wj

over rays 1 to
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process repeats. This procedure will eventually converge to the intersection

point. The convergence may also be slowed by using a value of )" <t ()" is
called the relaxation factor [Herman 1980]) to improve the noise

performance.

The procedure can be illustrated intuitively

variables are involved and constrained by

wnl4*wnþz= Pt

wxl4*wzzpz= pz

in a case in which just two

(2.1s)

The process for locating the solution of (2.15) using (2.14), as shown in

Fig.2.6, is to start with an initial guess A (pto'tr¡ and then have it projected

onto the first line to get R,(ptt't').Projection of R, on the second line

generates S,(pt'") and projection of E back onto the first line generates Rr.

Repeat of the projections between the two lines back and forth will
eventually arrive at the solution Q.

Tanabe 1197ll once showed that if a unique solution of Eqs.(2.13) exists,

Eq. (2.14) will converge to the solution. Herman 119731also investigated the

theoretical foundation of ART for image reconstruction and proved that it

converges in the case of consistent projection data. In practice, whether the

data is consistent or not totally depends on the amount of noise introduced. If
noise is negligible such that the projections accurately represent the

attenuatior-r integrai, the system can be thought of as essentially consistent.

The success of ART with a pseudo random projection access order applied in

the early EMI scanner lHousfield 1972) suggests that if the noise is less than

l7o (the number of photons > lOaper measurement), the system can be

thought consistent. The switch from ART to CBP later in the EMI scanner is

largely due to the slow speed of ART.
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Fig.2.6 The process for locating the solution of Eqs. (2.15) with two variables using
ART (Eq. 2.14): start with an initial guess,4 and then have it projected onto the first line to
get R7. Projection of R7 on the second line generates .i7 and projection of ,S, back onto the
first line generates ,R2 . Repeat of such projections between the two lines back and forth will
eventually arrive at the solution Q .

Eq. (2.14) is called the additive ART. There are also variations of it such

as the multiplicative ART (MART), rhe simulraneous ART (SART)

[Anderson 1984] and others [Gordon, Herman, Natterer] etc. Recent work

with ART can also be found in [Kouris, Censor, Lewitt, Natterer, Anderson

1989]. There are also variant iterative techniques such as the simultaneous

iterative reconstruction technique (SIRT fGilbert], which differs from ART

in that each pixel in the image is addressecl one at a time. Rays from all

projections passing through the pixel are calculated and summed. It is slow

and requires large number of iterations for convergence), the iterative least

squares technique (ILST) fGoitein] and the maximum likelihood methods

(MLE) [Lange].
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In the next chapter, we first analyze

of ART. Based on the analyses, we

technique.

the factors affecting the performance

then introduce a novel MLS ART

2.3.3 Comparisons of CBP and ART

A comparison of classical ART and CBP is outlined below. Later we will
demonstrate that our new multilevel ART can significantly eliminate the

major limitations of classical ART making ART superior to CBp in many

circumstances.

ART and CBP are not equivalent. ART is more accurately constrained by

the projection data. CBP, even in the cases where it performs better than

ART, yields large errors and produces images having inconsistent ray

integrals with the given projection data [Herman 1976, cho].

ART is slow, generally needing 3-10 iterations [Herman lg76]. CBp is

much faster and the reconstruction can even be performed during the data

acquisition (using the pipeline method [Krestel]). But in those scanners such

as the fourth generation systems witll a stationary cletector array, it is no

Ion-eer possible for CBP to process the data clurine the data acquisition

[Krestel], since all measurements have to be collected first and then

rearranged to obtain proper projection data. In these systems, the fan beam

projections are usually remapped to parallel ones. When noisy data neecls to

be smoothed using a low pass filter such as sinc, CBP needs no extra time

due to its analytical formulation. However, smoothing is an extra
computation for ART. In most applications, one iteration of ART costs about

the same computation time as cBp required [Herman 1976, Morgan, Brooks

1976b1.
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The accuracy of ART is limited by the number of iterations one is willing

to compute and its possible lack of convergence with noisy data. One has to

adopt a criterion to end the iteration scheme, which may affect the accuracy

as well. A principal limitation to the accuracy of CBP is the bandlimiting or

spatial frequency cutoff [Morgan, Brooks Ig76b]. Not only has the

projection data ro be filtered with a limited bandwidth (Eq. 2. 10), bur

practically the convolution involves only a few kernel points [Crawford
19911. These factors reduce the spatial resolution in reconstructions. In

contrast, in ART, the modifications are only made to the pixels along a ray

path itself and therefore the spatial resolution is better. This is
experimentallydemonstratedlater.,

In the case where one can take a large number of projections, ART will
produce a poorer reconstruction than CBP fHerman 1976]. On the other

hand, in the case of a limited number of projections (p < r I 3n, n is the

number of rays per projection), ART was found to be more accurate than

CBP. ART also works much better in cases where the data is incomplete

(limited range of projection angle, missed detector rays or projections, etc.)

while CBP is generally much more adversely affected by such kinds of data.

ART can easily incorporate prior information and constraints while CBp

cannot do this atall. Nonlinear constraints like: 1) no attenuation value can

be less than 0 or exceed a specific maximum; 2) pixels within rays whose ray

sum is 0 are assigned attenuation value of 0; are commonly incorporated in

ART to speed up the convergence and improve the accuracy. They are not

available for CBP, except by post processing.

In Table 2.7, we summarize the comparisons discussed above. It is

interesting to note that there is also an investigation studying the connection

between ART and CBP. Under the formulation of least square matrices,
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Older t19931 thought that the dichotomy between the two differenr
approaches reduces to the choice of metric.

Table2.l rhe important reconstruction features of ART and cBp

CBP

Speed can proceed
m some scanners

Accuracy
inærpolation

rtmg

less consistent with oroi
Constraints not allowed

performs relatively less well

2.4 PhysÍcal evaluation of reconstruction techniques

Since image reconstruction is one of a series of cascaded processes in CT
imaging, we can employ the commonly used physical image quality criteria

for the evaluation of reconstruction techniques. In the past l0-15 years, there

has been significant progress in the area of image evaluation. For example,

unified noise theory by Wagn er [1977] demonstrates that noise is the major

factor affecting low contrast object cletection [Evans]. To date, the

modulation transfer function (MTF) is a standarcl way to characterize the

spatial resolution. The si-enal to noise ratio (sNR) or simply, the noise

standard deviation (SD), is a common measure for low contrast detectibility.

The noise power spectrum (NPS), on the other hand, depicts noise energy

distribution versus spatial frequency. The contrast detail (CD) evaluation

provides an additional assessment for combined low and high contrast

threshold detection.

There are some more complicated measures such as the detective quantum

efficiency (DQE), the noise equivalent quanta (NEQ) etc., which describe rhe
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lack of convergence with noisy data
more consistent with projection data)

Allows additional constaints

perform s relatively better



noise in a frequency dependent form. These quantities, when coupled with
the MTF of a cascaded imaging system, which may include human v.ision,

provides additional image quality characterizations [wagner, Munro,
Cunninghaml. Further, there aÍe also sophisticated SNR measures

representing different models of detection process [Loo]. Details of them

will be discussed in chapter 9.

In the present work, we employ MTF, sNR, cD, Nps for comparing the

performance of CT reconstruction techniques. Below we give a short
introduction to each of them.

2.4.1 Image noise description

Image noise can be described by either the local statistics or the spatial

correlation between different locations. Typically the local noise distribution
is Gaussian and can be characterized by a single parameter - the standard

deviation (SD) of the local image intensity. Although in CT noise is spatially
correlated, Gaussian is still a good approximation at least for a local region

such that the standard deviation is still commonly usecl to quantify the noise

level, both in research [Brooks, Gooclenou-eh] and in CT quality assurance

r¡'ork [Bassano, Payne]. The spatial pattern of the noise is generally

characterized by the autocorelation function (ACF ) and the noise po*er
spectrum (NPS ).

The autocorrelation function ACF(x,y) of an image I(x,y) is defined as

[Barrett, Leszczynski ] :

(2.16)

Ocation (.r,)'), i.e.,

of I (x,¡,) for an

ACF(.x,¡,) = (il þrx,,),,) 
.n(x +Ì,,),* 1,,)ar, a1,,)

where n(x,y) is the local noise intensity at the I

n(.x,¡r) = 1(x,¡') - 1(.r,¡,¡ . /(r-,),) is the expectation value
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ensemble of images. The ( ) symbol represents the process of taking an

ensemble average of the quantity inside and A represents the image area.

The NPS is then defined as the Fourier transform of the ACF:

NP S(u,u) = J J 
eCf ç*, y)¿- i2r(u'r+qù dxdy

A

Equivalently, the NPS can be defined as the squared magnitude of the

Fourier transform of the noise image n(x,y):

N P s ( u,,' : (* 
lJ I,r*, 

y) ¿- i2,,{u*.,, **l) (2.18)

(2.17)

In Chapter 5, we will adopt Eq. (2.18) ro calculare the NpS.

2.4.2 The signal to noise ratio (SNR)

The low contrast detectibility measures the threshold contrast for
detecting a tumor against its background. It is characterized, by the SNR.

Although there are many complicated definitions of SNR [Munro, Loo], a

straightforward one defined as [Rajapakshe, Goodenough]

(2.1e)

is used most commonly to evaluate CT (and other radiological imaging

system) detectibility, where CT#l andCT#2 are the average CT#'s insicle the

tumor and its background, respectively. ot and o, at'e the corresponding

noise standard deviations inside the two regions.

2.4.3 The contrast detait (CD) evaluation

The contrast detail evaluation is a quantity combining both the high and

low contrast resolution measures for the minimum detectable contrast of an
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object versus its size. At high contrast the minimum detectable object size

depends largely on the spatial resolution, whereas a low contrast object's

detection is relatively independent of the spatial resolution but rather

depends on image noise or patient dose [McDavid]. In general, the threshold

contrast is plotted against the object size, termed the contrast detail diagram.

It was first applied by Cohen U9791 for evaluating CT image quality.

Faulkner [1986] later did furrher work on rhis ropic.

Rose U948, 79731, in his pioneering work, recognized that the threshold

contrast of a human observer ultimately depends on the number of photons

incident on the scene and the ability of the imaging system to utilize these

photons. For an object having an area of ¿ imaged by a photon flux of ¡¿,

the object contrast is c:ÂNr¡¿ where 
^N 

is the amount of photon flux
attenuated by the object. Rose suggested that for threshold detection with a
given detection uncertainty, this contrast must be a few times larger than the

noise level, which is represented by 1l^lñA, that is,
LNIN _t,

MflT " or for threshold detection, /._ kLr = aNAfD Q.zo)

Eq. (2.20) is termed as tlre Rose model. This simple moclel predicts that the

required threshold contrast is larger for smaller size of objects ancl smaller

for larger size of objects, in agreement with our intuition. Schn izler [1973)
has analyzed the data of Blackwell t19631 and founcl k to be approximately

2-5+0.35 over a scene brightness range of six orders of magnitude for a

detection probability of 50Vo. Comparisons of the Rose model to experi-

mental data and the further modifications of it can be founcl in [Evans].
In section 4.3 we will employ the Rose model to estimate the number of

photons per measurement in CT from the known CT contrast detectibility. In
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section 5.8, we will design a contrast detail phantom for an experimental

stucly of the detectibility in CT reconstructions.

2.4.4 The modulation transfer function (MTF)

The modulation transfer function (MTF) characterizes the spatial

resolution of an imaging system. It is generally measured with a high dosage

to reduce the noise effect (that is why the spatial resolution is also called high

dose high contrast resolution). The MTF can be measured in two ways: 1.

1D Fourier transform of the line spread function (LSF) (or 2D Fourier

transform of the point spread function (PSF)), 2. measurement of the

standard deviation inside a set of bar patterns. The first is a direct method

following the definition of MTF, whereas the second one is a derived

technique by Droege et al l19S2l. In real measurement, the first method

requires extreme care in aligning the test object (thin wire) while the second

method is more practical to perform. Details of experimental MTF

measurement can be found in [Rao, Linstrom].

The Fourier transform of the PSF of an imaging system is referred to as

the Optical Transfer Function (OTF) [Krestel, Leszczynski]:

OTF (u,"1 = Jl P SF (x, y)s-'i2.t(ur+')Ù dxdy (2.21)

The MTF is the amplitude (modulus) of rhe OTF.

In the derived method [Droege], the MTF is calculated from images of

cyclic bar patterns according to the formula:

MrF(f)=fi¡a<t,.43 -ry+Aqf) t e.zz)

where Ao is the amplitude of a square wave input, Ag') is the amplitude of a

sinusoidal component of frequency ¡' and so on. Eq. (2.22) is based on the
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theorem that a square wave of frequency J' can be considered to be a sum of

sinusoidal components of frequency 7', 3f etc. If the MTF is O beyond a

cutoff frequency 7. which is less than z¡, then

MTF( il = 
ftA(f)
4A\

In the presence of CT noise, the signal amplitude A is difficult to determine.

However, the standard devi ation M is easily measured. One can then utilize
the relationship between A and ¡ø (for a square wave input, M:: A:, for the

sinusoidal output, M'=1tzA') to get

M*(n=*W 
e.24)

This method also has the advantage of easy noise effect correction. In
presence of noise, M(fl is corrected to be 1[ntç'y-¡r¡r, where N is

standard deviation within a uniform region.

In chapters 5-7, we frequently use F,q. (Z.za) (occasionally use Eq. z.zl)
for the MTF calculation.
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Chapter 3

lntroduction

Algebraic reconstruction techniques (ART) and its variants are important

image reconstruction techniques for computed tomography. It is often used

in CT for 2D and 3D reconstructions when the projections are sparse, noisy

or non-uniformly distributed. The principal disadvantages of ART are its

excessive computing time and its possible lack of convergence under noisy

situations.

The key point to improve the computational efficiency of ART is to speed

up the convergence rate of the high frequency components of the image.

Considering that in an iterative process, the low frequency components are

recovered first and the high frequency components are recovered late and

slowly (we will show this later experimentally for ART), Rangan ath et al.

[1988] introduced an iterative expectation tnaximization (EM) algorithm in a

mr,rltigrid multiresolution fashion for positron emission tomography (PET)

l'econstruction. Their approach allows the low frequency colllponents to be

efficiently approximated ancl recovered on coarse gricis while the liigh

frequency components are recoverecl on the fine grids, resulting in a speecl-

up factor of 10 for EM.

A multigrid ART which gradually recovers frequencies from low to high

might still lack efficiency. A scheme wl'rich can recover high frequencies

from its initiation is desirable. Since high correlation between projections

makes ART very slow in recovering high frequency information (in fact, the

more the projections, the higher the correlation and hence the slower the

convergence of ART), we adjusted the pro.jection orciers such tþat

A Multilevel Projection Access Scheme for
Multiresolution Image Reconstruction using ART
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projections at angles far apart are updated consecutively. Two projections

that are 90o apart are minimally correlated (but not to zero due to the finite

digitization). Note that the reconstruction object itself may also influence the

convergence speed as we discuss later, but we leave that for future work.

In principle, the efficiency of ART can be maximized if the total number

of M constrained equations each with ¡/ variables are orthogonalized,

where M is the total number of measurements (rays) in all the projections

and N is the total number of pixels in the image. However, in practice, the

full orthogonalization is computationally not feasible. Ramakrishnam et al.

tt979l suggested a pairwise orthogonalization scheme with less

computational complexity.

Early experimental work on algebraic reconstruction using orthogonal

pairs of projections was due to Kuhl et al U9i3l. They presented an

orthogonal tangent correction technique to do nuclear medicine section

reconstruction. A recent study was reported by Herman and Meyer [1993]

where a permutation operation for divergent beams was introduced which

performs the same ordering for projections and the rays in each projection.

They applied the technique to PET reconstruction and concludecl that ART

can be made to match the perforrnance of EM but is ntore than 10 times

colrputationally more efficient. Unfortunately, their permutation cannot

apply when either the number of projections or the number of rays in each

projection is a prime number. Van Dijke 119921attemptecl to permute among

the projections and concluded that random permutation sequence was best.

In this chapter, we report our investigation for a projection access orcler

that maximizes the oltl-rogonality among projections at each iterative step for

parallel beams (published in [Guan and Gordon 1994)). We first analyze the

factors affecting the performance of ART. In section 3.3 we discuss the

access scheme itself. In section 3.4 we experiment with reconstructions using
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this scheme and compare our results with conventional ordering. Further

discussion and conclusion are included in the last section.

The performance of ART3.2

we begin analyses of the performance of ART using a simple two-

variable system (see Eq. 2.15) as shown in Fig 3.1, in which each plot is

similar to Fig. 2.6 but simplified. As Figs. 3.Ia and 3.1b demonstrate, the

larger the acute angle between the two lines, the less the number of iterations

needed for convergence. Only two steps are needed to reach the solution

when the two lines are perpendicular to each other (Fig. 3.1c). In this case,

the orthogonal condition cos r:0 ( wr . wz = 0) is satisfied, where

wr = (.n,wn) and w2=(wzt,wzz) are vectors in 2-D space. similarry,

for a large system defined by Eq. (2.13) in the N-dimensional space, rhe

hyper-angle formed by two hyperplanes j and k is

cos t;,r _- 
wi 'wr,

l*,ll*- I

lN
where l*rl= lÐ,*3, 

is rhe "lengrh" of ray p ¡. rf all rhe M -hyperplanes

defined by Eqs. (2.13) are mutually orthogonal, i.e ., cosu ¡¡t:0 for any

.i * k, tlren M iteration steps guarantee the convergence.

Arnong the equations in (2.13), if r,¡t's are sirnply replaceci by 1's or

0's in the 1st order approxirnzttion, those correspot'ìcling to rays within the

same projection are orthogonal to each other. If the fi'actional area is usecl

for w jit then consecutive equations for acljacent rays are correlate d.

(Occasionally a correlation may exist between rals lt ¡_r and p.¡+r as shown

in Fig. 3.2(a), but it is negligible.) The worsr case is shown in Fig. 3.2(b),

where half of a pixel is in ray j ancl the other half is in ray .i + I.

Correlation is due to pixels whose centers lie on the interface of the two

rays. Since the hyperangle formed by ray .i and ray j+l is about

(3.1)
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cosu j,.¡*t =114 (a¡,¡*t =800), the two are still orthogonal, to a good

approximation. This suggests that reordering the rays in each projection

would have little effect on the convergence performance. This conclusion is

also applicable to the divergent beam case and hence permutation of rays

done in Herman and Meyer 119931may not be necessary.

For any two rays not in the same projection, as shown in Fig. 2.5

chapter 2, those pixels that fall partly under the intersections of the ray paths

will have their values contributed to by each equation (by different weights)

and make them correlated. Any two rays each from one of the two

projections will have the same intersection area. But the smaller the

difference of the projection angles 0, the large the rhomboidal intersection

area 1l sin? and hence the more the correlation (the curve of 1 I sin? versus

0 is plotted in Fig. 3.3) The correlation is highest when both the rays have
short "lengths" lwrl anO lwol {i.e., the rays cross the corner of the image).

In this situation, the hyperangle calculated from Eq.(3.1) could be quite

small. Thus if iterations are performed projection by projection,

sequentially, the update step will be very small, as in the 2-D case shown in

Fig. 3.1a. on the other hand, for two projections that are 900 apart, the

correlation will be a minimum since any two rays each from one projection

have the smallest intersection area 1. Another important feature is that, when

tlre "length" of one ïay is short, the other is correspondingly long

considering that their intersection area shoulcl fall insicle the reconstruction

region (see Fig. 2.3).This ensures a reasonably large hyperangle a such

that the convergence can be taken in a large step. We intuitively illustrate the

point in Fig. 3.4by showing 4 symbolic "hyperplanes" - lines, u¡ith the angle

formed in between any two being the hyperangles (i.e., a, is the hyperangle

between hyperplanes 1 and 2, etc.). A is the initial guess and e is the

solution. Clearly, in l-iteration, the sequential access A to E (solid line,

access order 1234) is much slower in convergence than that by route A to F

of
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(dash line, access order 1342) toward

distance than FQ. The MLS scheme we

analyses.

Q, i.e., EQ is

describe below is

much longer in

based on these

(a) (c)

Fig. 3.1 In a two-variable system (see Eq. (2.15)) for the thlee different angles between
the two lines shown in (a), (b) and (c), the number of steps by ART taken to approach the

intersection point Q to a given accuracy decreases. Each of (a), (b) and (c) is similar. to Fig.
2.6but simplifìed.

Fig. 3.2 (a) Example of the negligible colrelation existing between rays P¡-t attd P¡+ r.
(b) Worst situation of con'elation between adjacent rays in one projection. Con.elation is clue

to pixels whose centers lie on the interface of the two rays.

(b)
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versus 0, giving the overlap between twoFig. 3.3 The curve of 1 I sin 0
width 1 intersectin g at angle 0 .

rays of

Fig. 3.4 Reordering four symbolic "hyperplanes" - thick lines ( a.r, is the hyperangle

between hyperplanes I and 2, etc.). A is the initial guess and Q is the solution. In l-
iteration, the sequential access A to E (solid line, access order 1234) is much slower in
convergence than that by route A to F (dash line, access ot'cl,er 1342) toward Q, i.e., EQ is
much longer in distance than FQ.

3.3 A multilevel projection access ordering

Before proceeding to discuss l'ìow to order the projections, we show th¿it

fortwo rays intersecting atan angle 9,, (Fig. 3.5a), a 3rd ray could orient at

the direction either halving 0,, or halving its complementary angle 1900 - g,,

sucl-r that its total intersection area to the two rays would be a minimum (Fig.

3.5b). This is straightforward since for the ray in the 0,, region (Fig. 3.5a),

the total intersection area is

LL,)

(t)
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Fig. 3.5 (a) Two rays 1 andZ intersecting at a fixed angle 0o, withny 3 at an angle g
varied to ray l. (b) Ray 3, set either halving 0,, or halving the complementary angle

1 800 - 0,,, willmake its total intersection area with ray I and ray Z, A@),a minimum. (c)

The plot of A(0) againsr g over the whole 1800 region for 0,, = 650. A(0) goes ro

infinity when ray 3 coincides with either ray I or ray 2.

@

A@) -
1_+ (3.2)sin9 sin(9,-9)

By taking the first order derivative of A(0) ancl setting it to 0, we obtain

0 = 0o I 2. A similar derivation can be made for the ray in tl-re

complementary region and 0: (1800 - 0,,) l 2. Fig. 3.5c shows how A(0)

changes with 0 over the whole 1800 region for 0o:650. A(0) goes to

infinity when the 3rd ray coincides with eithel of the first two rays. The two

minima values are

and Aët;%):A(0,, I 2) - sin0,, l2
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Fig. 3.6 The access orders for 8 projections in

or 1800 - 0o, whichever > 900. In this

the three rays, or the three projections

the last section), is at a minimum. When

and the 3rd ray could be set along either

0

the multilevel scheme.

The above derivation, together with that two projections of 900 apart ate

minimally correlated, will in fact decide what is the ideal number of equally

spaced projections to take, and hence leads us to a multilevel scheme (MLS).

Clearly, the number of projections P should ideally be a power of 2, say

P:21. suppose they are inctexed as 0,r ,,, p-1 sequentially. Then projectiou

0 (00) ancl plojection P12 (900; with a maximum orthogonality are accessecf

first. The 3rd one could be either projection Pl4 (450) or projectiot't 3pl4
(1350) both halving tl-re first two. V/e decide that if trvo projections have the

same access privilege, then the one with a smaller plojection angle is

preferred: in this case, projection P14 (450) and then projection 3pl4
(1350). Following the rules, the next one is projection P18 (22.50) and then

5 P 18 (112.5\, 3 P 18 (67.5") and, I p lB (135") projecrions erc. Each time

we select a projection to keep the overall correlation minimal (minimal to

the last one, and also to the others aheady accessed). One sees that in such a

scheme, projections can be nominally arrangecl in a total of L levels for
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If 0,,<g}o, then A(0o l2)> A(+Øt) or vice versa. Hence we should set

the 3rd ray to the angle halving 0,,

way, the overall correlation among

each ray belongs to (see analyses in

0,,:90o, the two minima are equal

of the two directions.



accessing. In level l:l: 0 and P12,level l:2: P14 and 3 P14 and level /:3:
Pl\, 5Pl8,3Pl8 and 7Pl8 and so on. views in one level halve the

projections in all previous levels and hence double the total number. Fig. 3.6

shows the situation for P:8 by labeling the projection index on the

corresponding projection angles. Table 3.1 summaúzes the result for a few

levels. It is interesting to note that the 2L projections are arranged in the

same order as that in doing a lD FFT with 2L data.

This scheme will allow speedy convergence since the update is initially

very large and then gradually reduces to approach the solution. The

implementation of the ordering is also easy if P is a power of Z. one

method is to do the bit reversal to the sequential projection number as that in

doing lD FFT. The other is that starting at level l:2 (see Table 3.1), the

number of projections in each level is equal to sum of all preceding levels

(from l to I-1).By adding a value of P l2t to each of the projection index

number in all preceding levels wilt yield the access orders for level /.

In practical situations, for a given number of projections that is not a
power of 2, the MLS scheme can still apply. In level l:1, any two

projections that are 900(or close) apart are upclated and in l:2, the two that

halve (or nearly) the angles between the first two are updated, and so on.

Plojection access can still follow the sequence listed in Table 3.1, with a total

of L-ltogf]+1 levels (t l: truncate to integer). The implernentarion of the

ordering is exactly the same as the second method usecl for P a power of 2
case but just with the values rounded to integers. Note that in level L only

tlre first P-2L-t projections are taken. From level l:l to I= L-1, no

reuse occurs since the minimum difference is P I 2L-t >1. A flag is set for

each of the values used. In level L, additional work needs to be done since

occasionally the calculated value rnay have been already accessed. If so, we

search both sides of the value until the closest unused value is found and then

put it into the sequence and set a fl,ag.In general it is just the neighbor or
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next neighbor. Our tests suggest that only for the last one or two values, a

large difference may occur.

Shown in Fig. 3.7 is the flow chart for image reconstruction using MLS

ART .

Yes

output image

Fig.3.7 The flow chalt of image reconstruction using MLS ART.

Read in the number of
projections, the image size,
and the projection data Pij
(Pij: for ith ray data
in jth projection)

pixels Nij for all rays in

guess to the image to
reconstructed

Compare Qij to the
measured projection
data Pij and do update

in the image by

^f 
= (PU-Qij)/Nij

last projection
the MLS order

# of iterations to
meet some

iteration #
n=rì*l ,

repeat the
MLS order
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Table 3.1 Access orders for P total projections in the multilevel scheme (MLS).

t.(x P/2) 01
2.(x PtA) 3

3.(x P/8) 537
4.(x Pt16) r 9 5 13 3 11 7 15

5.(x P/32\ t i7 9 2s 5 2t 13 29 3 t9 11 27 7---B--T5-71
6.(x Pt64) I 3317

3.4 Experiments and results

Additive ART, Eq. (2.14), is used for the experiments presented here.

We measure the ray integrals using the same method as that in Mazur and

Gordon 119941. The Shepp-Logan (1974) phanrom shown in Fig. 3.8 is rhe

first object we tested.

To compare the multilevel scheme (MLS), the sequential accessing

scheme (SAS) and the random permutation scheme (RPS), we show for each

scheme, with 30 projections, 5 images each representing an intermediate

reconstruction from the first 2,4,8, 16 and 30 projections in Fig. 3.9,

respectively. SAS recovers most of the high frequency information in the

latter half of the iteration while the other two recover it right from tl-re

beginning. Comparing MLS and RPS, we see that multilevel accessing

produces better images at each intermediate reconstruction. MLS yields

Fig. 3.8 The Shepp-Logan phantom used for the experimental test.
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Fig. 3. 9 Intemtediate l'econstlLrctions of the Shepp-Logan phantom from the ftst 2,4,
8, 15,30 plojections within I itelation, under total of 30 projections. The firstcolumn is

from the multilevel scheme (MLS), the second column is from the sequential accessing

scheme (SAS) and the last column is fi'om the random permutation scheme (RPS). The

t'econsü'Llction accuracy (defined in Eq. (3.3) below) is measurcd and the results are plotted

in Fig. 3.11(a).
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liðr'àTior'r #

Fig. 3.10 Reconstructions of the Shepp-Logan phantom from 2 and 5 iterations,

under a total of 30 projections. The first column is fiom MLS, the second column is from

SAS and the last column is from RPS. The reconstruction accuracy (defined in Eq. (3.3)

below) is measurcd for upto 10 iterations and the results are plotted in Fig. 3.1 1(b).

reasonable reconstructions even after only 8 projections are accessed. Fig.

3.10 shows for each scheme, two reconstructions from 2 and 5 iterations.

There are no perceivable difference among the three 5-iteration images on

the 2nd row.

For a preliminary evaluation of the reconstructed images, the following

correlation coefficient measure is used:

s - ::: 
-:i:.Llþ¡- lt)(l-r¡ - l-L¡ )

¡=ltr = TlN ^ ¡/

I L,{u¡- tt)z . > Qti
Lr=r i=l

¡712

-+.c I

-tt¡)- 
|

I

(3.3)

wlrere lrt(P) ancl, ¡t,'(lt¡') each represent the pixel value in the original ancl

the reconstructed images, respectively. tl measures the extent to which two

images are similar to each other and it takes the highest value of 1 if the two

are exactly the same. The t1 versus the accessed numbel of projections

within the first iteration for each of the three schemes are measured and
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plotted in Fig. 3.11(a). Clearly, MLS recovers the image features early ancl

fast. The €1 is also measured for a few iterations and the results are plotted

in Fig.3.11(b). The three different schemes reach the same €¡ value after 5

iterations, in agreement with the visual appearance of reconstructions (see

Fig. 3. 10. Note that for RPS, we used different orders from iteration to

iteration). A detailed physical evaluation of the effect of these schemes on

ART reconstructions will be conducted in Chapter J and, we will see that the

performance of RPS varies in between those of MLS and SAS.

5 10 15 20 25
Accessed view number

(a)

0.985

0.975

0.965
w

MLS
SAS
RPS

0.955
345678
Iteration number

(b)

Fig. 3.1I Plots of the correlation coefficients t1 @) versus the accessed plojection

numbet'within the first iteration and (b) versus the iteration numbels, for tlle reconstl.uctions

of the Shepp-Logan phantom using the multilevel scheme (MLS), the sequential accessing

scheme (SAS), and the random permutation scheme (RPS). Note that the access ol.ders for
RPS change from iteration to iteration in (b).
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Fig. 3.I2 Part of a brain magnetic resonance image (BMRÐ in a volumetric human

sagitøl scan. It is just used as a test image (size 128x128).

We have carried out similar tests on a few other medical images. The

MLS scheme outperforms the other two on all of the images. As an example,

for the one shown in Fig. 3.12, which is part of a brain magnetic resonance

image (BMRI), we show its intermediate reconstructions in Fig. 3.13.

Similar effects as seen in Fig. 3.9 can be observed.

In doing the tests above, we used an initial image of 0. We also tried

using different initial images and found that compared to SAS, MLS has littte

dependence on initial image. The result will appear in [Guan 1996]. We also

checked that 1-iteration MLS takes - (ll3-1) more in computation time than

CBP does. This is consistent with Herman's conclusion that 1-iteration ART

takes -(1-3) times of computations by CBP. It is hard to be more precise

than this, since even the same programs will require different times relative

to each other depending on the number of projections and the image size

[Herman 1976). In [Brooks 1976], a detailed analysis indicated that 1-

iteration ART requires a number of 4n' multiplications for reconstructing a

single projection, while that number for FBP (cBp) is (nz+4ntogä). The

numbers of additions are about the same for each method.
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RPS

Fig. 3. l 3 Intelrrediate reconstructions of the BMRI image from the first 2, 4, 8, 15,

30 plojectiolls within 1-itelation, under total 30 plojections. The first column is front the

nlultilevel schente (MLS), the second cohlmn is from the sequential accessing scheme

(sAS) and the last column is flom the landom pennutation scheme (Rps).
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3.5 A look at the reconstructions in Fourier space

We also demonstrate that MLS represents an efficient and fast

implementation of the Fourier central slice theorem in the frequency

domain.

Fig. 3.14 shows the Fourier transform of the intermediate reconstructions

of the s-L phantom from the first 2, 4,8, 16, 32 and 64 projections for a

total of 64 projections, by MLS (1st row), RPS (2nd row) and sAS (3rd

row), respectively. Also shown at the bottom-right is the Fourier transform

of the phantom itself. One sees that each projection updated by MLS fills the

Fourier domain by a line passing through the origin, in good agreement with

the central slice theorem. The frequency domain is uniformly and

symmetrically filled to each level. On the other hand, in the corresponding

versions of RPS or SAS, besides the central lines, spurious lines also appear

(especially the first three). These spurious lines represent the 2-D spatial

correlation of the updated projections. In the last one of each row, the MLS

and RPS versions (minor difference between them) looks very close to the

original, but not the SAS version, in which only the latter half of the

projections efficiently fill the Fourier domain.

3.6 Discussion and conclusion

The multilevel scheme described here is in some sense also a

multiresolution reconstruction. Frequency components corresponcling to

different scales are reconstructed gradually, with edges of large objects

being reconstructed first and smail objects late, as can be seen from Fig. 3.9.

Each level makes the best use of the image information reconstructed in the

preceding levels and hence the information recovered from consecutive

projections is less redundant compared to sequential updating.
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Fig. 3.14 The Fourier transfotm of the intemlediate reconstructions of the Shepp-Logan

phantom from the first 2, 4, 8, 16, 32 and 64 projections for a total of 64 plojections within
I iteration, by MLS (1st low), RPS (2nd row) and SAS (3rd row), respectively. Also shown

at the bottom-right is the Fourier transform of the phantom itself.
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Fig. 3.15 Two objects, (a) a disk and (b) a checkerboard, to illustrate how the spatial

distribution but not the syntmetry of the object affects the reconstruction speed. Each object's

00 projection and 900 plojection are identical.

a
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A potential practical application of the MLS scheme is to control the

patient dose in CT imaging. Projections could be taken directly in the MLS

orders and hence images could be reconstructed at each level (this is also

applicable to CBP or FBP). If, from a certain level, specific diagnostic

information is available, then no more projections need be taken.

The spatial distribution of the object also influences the convergence

speed. A larger imaging region than the object's section may be used such

that the section's contour can be reconstructed very fast, as Fig. 3.9 but not

Fig. 3.13 demonstrated. The spatial distribution, not the symmetry,

determines how much high frequency information (variations of the intensity

normalized by the ray "length") is contained in each projection. For extreme

cases, consider two objects shown in Fig.3.15, (a) a disk and (b) a

chessboard. Each object has its own identical 00 projection and 900

projection. After these two projections are accessed, the disk can be

reconstructed to a large extent but not the checkerboard. This is because each

projection of the disk contains high frequency components to modify the

initial guess, which is blank, while the chessboard's two projections

themselves are flat and hence do nothing to the initial guess. For the

checkerboard, the 450 projection is a bettel choice to start the reconstruction

than the 0o projection.

In conclusion, MLS is the best choice for the algebraic reconstruction

technique: it yields speedy convergence without orthogonalization. It is the

optimal oldeling for that at any time during the reconstruction, it produces

both the maximum space uniformity and projection orthogonality. Tl-ris

scheme, easily implemented, performs a multi-level reconstruction using

parallel projection data.Its extension to fan beam CT reconstruction is easy

(see Chapter 9). It parallel implementation is also feasible since Fitchetr

t1993) already implemented a version for the sequentiai ART (also see
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[Lattard]). Experimental tests using various sources of ciata and empioying

different physical criteria will be made in following chapters.
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Chapter 4
A ComparÍson between CBP and MLS

flsÍng Real Data from CT Scans

4.1 Introduction

In chapter 3, we presented a novel MLS scheme for the most efficient
algebraic image reconstruction. One iteration of this multilevel ART yields

high quality images in a preliminary evaluation, nearly eliminating the

iterative nature of ART. In this chapter, we will investigate the physical

performance of the scheme using real CT projections. The reconstructions

are compared to those from CBP.

Shepp and Logan 11974) once made a comparison study between CBp and

ART by computer simulation. They concluded that |2-iteration ART is not
much different from CBP and both are about equally sensitive to noise. In
fact, they found that with noisy projections, reconstructions by ART exhibit
more SNR than CBP. They further incorporated, a sínc filter in CBp and

then claimed that this modified versi on, or sinc CBP for short, shows 50Zo

less noise amplification than the 12th iteration of ART. From then,

considering both the image quality and the computation time, almost all
commercial x-ray CT machines use CBp.

Since we have dramatically enhanced the computation efficiency and

image quality of ART, a new comparison between it and CBp on both the

spatial and noise characteristics is worth carrying out here, by employing

real data. In Section 4.2 we first test with raw projection data taken from a

prototype y-ray CT. Section 4.3 covers further experiments using the data
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scanned from a special purpose x-ray cr. Discussion

included in the last section.

and conclusion are

4.2 Test with the rear data of a prototype y-ray cr

Brian wowk ll9g2l built a prototype labor atory cr scanner doing
computed y-ray tomography. He used a 57co source of approximately
7 mCi' The detector was a sodium iodide scintillator and photo-multiplier
tube. The system schematic was shown in Fig. 4.2.r (a). objects to be
scanned were placed on the rotatingltranslating turnable table (the
source/detector system remains fixed). The translation and rotation were
each driven by a motor. The collimators produced a y ray beam 3.05 mm
wide and 2 cm height. The scanning usecl the I 22 KeV line of 57Co 

whose
attenuation in water is about 0.145/cm. There are 64 translation steps
(samples) in each projection and there are 100 rotation steps (projections).
The translation and rotation sampling satisfy the sampling criterion (see Eq.
5'16)' Each sampling took 5 sec to acquire -10000 counts such that the
statistical uncertainty is about l%o, which is close to that of clinical CT.
tlsing the system, wowk scanned a number of objects such as the
COMPLEX shown in Fig. 4.2.1(b), the biological specimen like rhe honey
dew (DEW) shown in Fig. 4.2.1(c). He kindly provided me his experimenral
data for a teal test of the new algorithm. (No more data is available since
this scanner has been disassembled.)

For the objects COMPLEX and DEw, we show three reconstructions in
Fiç.4.2.2 and Fig. 4.2.3 respecrively, by (a) 1-irerarion MLS, (b) cBp and
(c) sinc cBP. clearry, for coMpLEX, the MLS version shows better
spatial resolution than the CBP versions, with the small objects having been
more compactly reconstructed and the edges more sharply exhibited. For the
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(a) MLS 1 (c) sinc CBP

Fig. 4.2.2 Reconstructions of COMPLEX by (a) 1-iteration MLS-ART, (b) CBP and (c)

sinc CBP, fi'om a total of 100 projections. The image size is 64x64.

(a) MLS I (b) cBP (c),slnc CBP

Fig. 4.2.3 Reconstructions of DEW by (a) I -itelation MLS-ART, (b) CBP ancl (c) ,s¿rr

CBP, fi'om a total of 100 projections. The ir-nage size is 64x64.

object DEw, although the difference is less visually apparent, the MLS

reconstruction still shows a marginally higher contrast than those of CBP.

We also tested these algorithms using a subset of equal-spaced pro jections.

In Fig. a.2.a@) and (b), we show the 1 and 2-iteration lesults of MLS for

COMPLEX fi'om 25 projections. The reconstruction from CBP and sinc

CBP are shown in 4.2.4(c) and (d), respectively. Strong streak artifacts
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Fig. 4.2.4 The reconstructions of COMPLEX by (a) l-iteration MLS, (b) 2-iteration MLS,
(c) CBP and (d) s¡¡zc CBP, fi'oni 25 projections. The con'espondilìg foul leconstructions
from 50 projections are shown in (e), (f), (g) and (h), in parallel to (a), (b), (c) ancl (d)

res¡rectively. The individual image size is 64x64.
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appeared in both (c) and (d), although the latter is less severely affected due

to the filtering. It is hard to distinguish small objects from artifacts. The
corresponding four reconstructions from 50 projections are shown in Fig.
4.2.4 (e), (f), (g) and (h), in parallel to (a), (b), (c) and (d) respecrively. The
streak artifacts are still seen in the CBP versions (g) and (h). In chapter 5 we
will demonstrate that when the number of projections is less than that
required by the sampling criterion (see Eq. 5.16), 2 or more iterations can

improve the spatial resolution. This effect is exhibited in Fig. 4.2.4 if one

compares (a) and (b), or (e) and (f).

By comparing Fig. 4.2.2 (b) and Fig. 4.2.4 (f), one sees thar Z-iteration
MLS with 50 projections produces even sharper and more compact
reconstruction than CBP with 100 projections. It suggests that at least for
this object having many small and sharp details, dose can be cut by a factor
of 2 using MLS.

Fig. 4.2.5 shows 4 another images of DEW, by (a) r -ireration MLS and
(b) sinc cBP from 25 projecrions, and (c) I -irerarion MLS and (d) cBp
from 50 projections. Similar effect as Fig. 4.2.4 can be perceived.

one may also notice rhar not only do the objects in Fig. 4.2.2(b) look
more blurred than those in (a), but the image also appears more noisy. The
reason is that with many details of high contrast close to each other, CBp
spreads the edges of each one such that the background is "messy',. MLS
however, reconstructs the objects more compactly and hence the background
is cleaner. This is also seen in the DEW images in Fig. a.2.3(a) and (b). we
measured the noise standard deviation (SD) inside two small regions as

drawn in Fig. 4.2.1(b), one in air (region r, noise onry) and the other in the

central block wood (region 2, inside an object). Fig. 4.2.6 (a) and (b) show
the plots of the measured SD versus the number of projections for region 1
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and region 2, respectively. In region 1, both CBP and sinc CBp produce

more noise than both 1 and Z-iteration MLS. The Z-iteration MLS shows the

lowest noise level, whereas in region 2, the CBPs generate much more noise

than the MLSs when the number of projections is less than 50. The 2-

iteration MLS produces greater noise than its 1-iteration's, in contrast to the

result of region 1.

MLË.1

IIIL"È 1

'-_ ,1

Fig.4.2.5 Rcconstlt¡ctions of DEW by (a) 1-iterat"ion MLS ancl (b) slrzc CBP f'roni 25

plojections, and (c) l-iteratiotr MLS and (d) CBP fi'om 50 pro.jections. The iniage size is
64x64.

4.3 Test with the real data scanned from a research x-ray cr

Another set of real plojection data, taken from a special purpose x-ray

CT dedicated to trabecular bone density measurement for the slice of the
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distal end of a cadaver femur [Mccrean, Rathee], was kindry provided by Dr.
s' Rathee ( Department of Medical Physics, Manitoba cancer Treatment and

cbp
sinc cbo
mls il ^

mls i2

25 50 75 t00
Number of projections

(a) region I

cbn
siric cbn
mls il ^

mls i2

2s .50 75 io
Number of projections

(b) region 2

Fig' 4'2'6 Plots of the standard deviation measured in (a) region I and (b) region 2 in
the reconstructions of GoMPLEX object (see Fig. 4.2.1b) ver-sus the number of projections
by I and 2-iteration MLS, CBp and sinc CBp.

Research Foundation) for our reconstruction tests. This is a rotate only,
third-generation geometry fan beam cr scanner using an equivalent beam
energy of 40KeV' A system schematic of this scanner is shown in Fig. 4.3.1
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[Ì\4cClean]. Ulllike sintilarly clesignecl scanners, it allows user-definecl,

Variable spatial resolution for a fixed object size. The photon detection
system is an arl'ay of 26 photomultiplier tube/Nal detectors uniforrnly spaced

at2o intervals in the beant. TIle initially collected fan beam data is remapped

to parallel data- The remapping process is relatively trivial and one can refer
to [Kak] for details. The number of samplings per projection is 256 (image

size is 256x256) and the total number of projections is 270, evenly spaced

over I800. Notice tliat the nurnber of projections is much less than 4O0 - that
lequired by the sanrpling crirerion Eq. (5. 16).

Fig. 4.3.1 A svstcnl schcnlatic of- thc x-r.a)¡ CT sca¡lner dcclicafecl for bone l.esearch
IJ\{cClcan].
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Fig. 4.3.2 shows four images reconstructed from this data set, with (a),

(b) and (c) by 1,2 and 4-iterution MLS, respectively, and (d) by cBp. while

the visual quality of (a) is about the same as (d), (b) and (c) show more

readibility of small bone details. Because the number of projections is less

than that required by the sampling criterion, 1-iteration MLS doesn't show

superiority over CBP. Fig. 4.3.3 shows another three reconstructions by half

of the data, or 135 projections, with (a) and (b) by 2and 5-iteration MLS,

respectively, and (c) by CBP. Although there appears little difference in the

printed images of Fig. 4.3.2 and 4.3.3, the differences are more apparent on

the computer screen. It is the opinion of the author that both (a) ancl (b),

especially (b), reveal more small details than (c) does.

Whether the MLS truly reconstructs more small details but not lead to

more amplification of noise artifacts (since noise always exists in real data)

than CBP needed further verification. To test this, we measured the stanclard

deviation (SD) inside 4 regions of inrerest (RoI) as shown in Fig. 4.3.4,

where just the noise exists, versus tl-re number of projections. Fig. 4.3.5

shows the plots of the SD measured in (a) region 1 and (b) region 4, for the

7, 2 and S-iteration MLS as well as in the CBP reconstructions. Clearly,

MLS produces less noise u,ith ¿r small number of projections ancl rlore with a

Iarge number of projections, than CBP. Also the more the MLS iteratiol-ls,

the bigger the SD. These results agree with those seen in Fig. 4.2.5(b) but

not in a.2.5(a). For 210 projections, the noise level of CBP is about the same

as those of I or 2-iteration MLS. For 135 projections, the noise of CBP is

about the same as that of S-iteration MLS. This confirms that 2 ol' lltore

MLS iterations tluly produces more detectibility than cBp cioes.
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MLS 1 b MLS2

C MLS4 d tBp
Fi9.4.3.2 Four reconstructions of the distal end of a cadaver femur, by (a) 1, (b) 2

and (c) 4-iteration MLS, respectively, and (d) CBP, from a total of 27O projections.

C CBP

Fig. 4.3.3 Three reconstructions of the distal end of a cadaver femur, by (a)

1-iteration MLS, (b) 2 -iteration MLS and (c) CBP, from 135 projections.

A MLS2 b ML54
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To check the noise structure, we also measured the noise intensity

distribution (histogram) inside the 4 regions. Fig. a3.6(a) shows such

histograms for 1-iteration MLS and CBP in region 1, and (b) shows them

for 2-iteration MLS and CBP in region 4. The number of projections is 270.

4.4 Discussion and conclusion

Since the data we used are not scanned from CT phantoms, those physical

quantities such as MTF and SNR which characterize the high and low

contrast detectibilities of CT can not be directly measured. This is left for

the future work using the data scanned from a number of CT quality

assurance phantoms by the clinical scanners provided by the Picker

Intemational Corporation t19951.

A sínc filter used in CBP reduces noise in the reconstruction, at the cost

of reduced spatial resolution. Again although the paper print images do not

adequately reflect the computer screen image, the sinc CBP image shown in

Fig. 4.3.4 Fout'rloise ortly region of interest inside the reconstruction circle for noise

standard deviation llieasurement.
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Fig. 4.3.5 Plots of the standard deviation nreasured in (a) region I and (b) region 4, from 1,

2 and 5-iteration MLS as well as from CBP reconstructions, versus the number of
projections (3 different number of projections: 270, I35 and 67 are tested).
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MLË2 C3P
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Fíg.4.3.6 Noise histograms. (a) l-iteration MLS (mean 1.02) and CBP (mean 1.08) in
region 1, and (b) 2-iteration MLS (mean 1.54) and CBP (mean 1.57) in region 4. The

number of projections is 270.

Fig. 4.2.2(c) is smoother than the CBP version in Fig. 4.2.2(b), with the

edges of objects more blurred. The sinc filtering commonly improves the

readability of relatively large objects [McDavid]. Objects of small sizes need

larger threshold contrast to be detected (i.e., need better spatial resolution,

see the contrast detail analysis in section 5.7) and the filtering won't improve

effectively. V/e have performed a sinc CBP reconstruction for the bone

image and found no improvement with bone detail reading.

From the test results of COMPLEX (Fig. 4.2.1b), we conclude rhat MLS

can do better job than CBP for reconstructions of high contrast objects, at

least in cases where the number of projections is above half of that required

by the sampling criterion, producing sharper edges and smaller background

noise even with half of the CBP dosage. The noise standard deviation

measurements also demonstrate that MLS has more dose efficiency than CBP

for low contrast object detection when the number of projections is less than

half of that required by the sampling criterion. Such a conclusion is in
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excellent agreement with that obtained by computer simulation in the next
chapter.
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simutation of #ffifäi Reconsrrucrions
using MLS ART and CBp

5.1 Introduction

In this chapter, we perform a computer simulation on CT and CT
reconstructions using MLS ART and CBP. The tomogram qualities are

measured using four physicat criteria: signal to noise ratio (SNR),

modulation transfer function (MTF), contrast detail (CD) evaluation and

noise power spectmm (NPS). Details of these have been discussed in section

2.4.The simulation study has advantages in:

1. Allowing one to understand the influence purely of the reconstruction

algorithm (or any other particular process in the cascaded CT imaging
process) on the tomogram quality. This cannot be directly measured frorn a

real scan because of the interconnections among individual processes;

Z.Low cost, flexibility of adjusting various parameters and test of
extreme cases.

This work provides a thorough physical comparison among cr
reconstruction techniques. Sections 5.2 to 5.5 discuss in detail the physical

arangements of the simulation study, whereas sections 5.6 to 5.10 cover the

results generaûed from the study. In each section of 5.6 to 5.9, we design a

phantom to test one physical quality. All the phantoms are 25cm in

diameûer, 5l2x5t2 pixels in size (i.e., 512 samples/projection, or 20 samples

in |cm ) and cover a cr# range of 0 - 255. For each phantom, ray integrals

of the phantom along a series of angles are calculated to obtain a set of
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projection data. Section 5.2 below discuss how to introduce Poission noise

into the projections to simulate the real CT data.

This simulation study was implemented in Sun Pascal and performed on

the Sun Unix system. The program was simply procedure based and no user

interface used. All parameters such as the number of projections, the image

size and the number of photons per measurement etc. are defined as

const¿nts. All variables are implemented in single precision (word length 16

bits). The computer source codes are included in Appendix I.

5.2 Projection noise simulation

ln computed tomography, there are five different noise sources [Morgan]:
statistical noise, electronic noise, roundoff errors, artifactual noise and

reconstruction algorithm noise. Among these, statistical or Poisson noise,

which is due to the quantum nature of x-ray photons, inherently plays the

major and crucial role (also in other radiographic imaging systems),

primarily because of the large energy of x-ray photons (compare to the

visible range photons in photography). Most importantly, poisson noise from

different detectors is uncorrelated or "white". Electronics in CT are

sufficiently well designed such that the electronic noise contribution is only a

small fraction of that of the statistical noise [Cohen]. Also, sufficiently
accurate digitizers with many bits today make the roundoff error negligible.

Artifactual noise due to beam hardening, defective detectors and patient

motion, etc., is assumed absent in this simulation study (except for that

introduced by the reconstmction ûechnique which, of course, is not primary
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By assuming Poisson noise is the major noise source, Kijewski and Judy

t19871 calculated the noise power specrrum (NpS) of CT by computer

simulation. Their calculation agrees very well with the experimentally

measured NPS of a real scanner. Many simulation studies on CT also

consider Poisson noise the only primary source [Riederer, Wagner, Goodsitt,

Mazurl.

In the acquisition of projection data, the number of photons reaching each

detector follows the Poisson distribution:

P(K)=exp(-F)r K / Kt

The Poisson distribution will approach a Gaussian for a

(empirically for F> tO¡:

I
P(K)= 

ffi"*et-(,K- R), t(zx)l (s.2)

In the simulation, we introduce quantum noise directly into the detector

reading by assuming that the number of photons reaching a single detector is

the mean in the distribution of that detector. The simulation procedure for
generating a single measurement is as follows:

l. For a well collimated beam with No monochromatic photons emitted

from the x-ray tube toward the i - th detector, the average number reaching

the detector will become

N = Noe-J 
pdl 

= Nor-Pi = ¡gor-kl|dl
(s.3)

due to the attenuation, whereP¿ is the attenuation inægral along a line l, and

g is the CT number in the simulaæd object. g is scaled by a constant fr such

that it can match the linear atûenuation coeffïcient p of tissues to x-rays as

discussed in section 5.6.

(s.1)

large mean K
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2. For a mean number of N photons reaching the j - th detnctor, the

actually detecæd number, say M, can be selected from the Poisson statistics

(5.1), where K-=N, using a Monte Carlo method. The noisy attenuation

integral can then be calculated inversely by

Pl = -hil,N
o

Since the Poisson noise in separate detectors is uncorrelated, one can then

repeat the procedure for each detector to generate one noisy projection.

Rotating the source/deûector combination generates multiple projections.

5.3 Incident photon number per measurement

Different numbers of incident photons ranging from No:10s to 198 per

measurement were used: 2xl0s, l.6x 106, I .28x107 and I .02x 108. we
assume that the incident number is the same for each single measurement.

The last two numbers are of the order used in clinical CT scanners, which

we estimated to be 102- 198 (not seen in publications) in two ways: 1. a

reverse calculation from the typical surface dosage and 2. an estimate based

on the contrast detectibility of a CT scanner. Theoretically, calculation of the

bremsstrahlung x-ray production based on the x-ray tube voltage (KV), the

tube currentxexposure time (mAs) and the target material atomic number

(Z) can be made (see p. 69-70 in [Krestel]). But it is difficult to calculare rhe

x-ray attenuation within the target, by the tube window and by the added

filærs to shape the spectrum (all are machine dependent). Estimation based

on the case independent quantities is more approachable.

(s.4)
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The calculation procedure is: l. convert the tissue surface dose Q to the

equivalent air dose Do; 2. calculate the exposure X from the air dose D";

3. calculate the photon fluence from the exposure X.

Under the same photon fluence, the absorbed dose in two different media,

say tissue (4) and air (D), is relaæd by

D" _(+)"
D, (+),

where 3 ,t the mass energy absorption coefficient. For an average energy

of 60 KeV in x-ray CT, (+)" : 0.0289 cmzlg and (ff),: 0.03l2cm2lg

[Jones]. Hence F,q. (5.5) reduces to Do - 0.926D,.

The exposure X relates to the air dose Do by
D,(rad) = 0.873X(R) (s.6)

(s.s)

and the exposure x itself can be directly calculated from

x = r.833 x l0-"o81+)"# 
(5.7)

where Õ is the photon fluence (l I cmz), (?)" is the mass energy transfer

coefficient in air and E is the photon energy. For 6oKeV x-rays,
(?)"=(+)". Combining (5.5), (5.6) and (5.7), we ger

o = 3.3 xloto D, I cm2 
(5.g)

The typical value of tissue surface dose D, is z-5 Rad. Taking Dt:3Rad,

then Õ-101t lr*2.
In a simple picture for head scanning as shown in Fig. s.z.l (assume z

:25 cm), consider a small volume v close to the surface being cylindrical

(isotropic) and its diameter equal to the detector width w (assumed 1.5 mm)

and its height equal to the scanning slice thickness (assumed 10mm), then the

total number of photons across the volume (cross section O.lícmz) is
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1.5 x 1010. This number of photons is contributed from all of the projections

each having one measurement passing through the small volume. The

contribution from each depends on the attenuation length.

Fig. 5.2.1 A simplifîed view of head scanning in CT, where v is a small cylindrical
volume close to skin surface.

Beams from the right hand side (l0l< 900) will be atrenuared by a lengrh

Lcos9 while beams from the left hand (l0l>900) are free of artenuarion.

For a total of P projections and a number of photons per measurement Ng,

the number of photons from all the left beams is simpl y ftt: Nop I z.

The number of photons from all the right beams is approximately

n,. = 2 
I'o' 

oryoe-t¿Lcot # ¿o

- 2NoP I:ta ,-aLcoslw ¿,

For 60 Kev x-ray, p -0.201 cm, pL- 5. A numerical calculation of the

integration in (5.9) gives 0.0335 and hence nr:0.067N0p. The total number

of photons reaching the small volume is hence t7¡*ttr=0.567N0p.

Commonly, a total of P =1000 projections is used in clinicat CT. Therefore
the number of photons per measurement is No - 2.65x 107.

5.3.2 Calculation from the contrast detection threshold of CT

(s.e)
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CT scanners allow measuring the attenuation coefficient of tissues with an

accuracy of ll.5vo lMorgan, Hendeel. This means that for 6o Kev x-rays,
p can be measured to an accuracy of Llt=0.0011cm for þ-0.2olcm.
Suppose, as shown in Fig. 5.2.2, we want to analyze a circular object with a

constant p except for a small square object along a diameter, whose size

equals the detector width w and whose attenuation coefficient is p- Lp.
With an incident number of photons ng, the detected photon number is

greater than that detected without the small object by an amount

Ln = nse-PL (s^u'* - 1) = no . e-aL Lp . w -- n/,lt .w 
(5.10)

The number n of photons arriving at the detector will follow the poisson

distribution with a standard deviation equal to "ln. To be able to detect the

difference of the small square from the background, Ân must be greater

than "Jn:

n\p .* > 
^ln (s.11)

Fig. 5.2-2 A circular object with a constant attenuation coefficient of lt,except for a
small square object along a diameter whose attenuation is /¿-.

Further, in accordance with Rose model [Rose, Hasagawa] (see section
2.4-3), if the difference Â¡r is to be reliably detected, Å¿ should be ft times

greater than 4n, or n\¡t.w-k^,\n. Then the detecæd photon number must

be
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k2n=
w'(Ltt)' (s.12)

For k:2.5 [Schnitzler], w=l.Smm, ft=2.8x108 or the number of
incident photons rh=net'L --net'j =4.1X1010. It was shown [Brooks] that

these ng courits can be divided independently among the total number of p

projections. For P:1000, the number of the incident photons for a single

measurement is

No=th lP-4.10x107

From the two different estimation methods, we conclude that the number

of incident photons per measurement in the real cr scanner is (2-5)x107.

5.4 The number of samples in one projection

Suppose a sampling interval of d is used, then the number of samples in a
projection is

nr=Lld (s. r 3)

Note that, in principle, d is not equal to the width of the detector w¿. A

detailed analysis based on sampling theory [Barrett] gives that
d<w¿12 (s.14)

That is, the detector-source line of sight should be stepped in increments
of half the detector width or less. v/e assume the detector width wd:l mm

and the data sampling increment d:0.5mm. Therefore for head scanning of
L:25 cm, we need 512 samples per projection. The reconstructed matrix is

hence 512x5I2.

CT artifacts due to digitâl sampling (particularly, undersampling in both

radial and azimuthal directions), such as the aliasing streaks and Moire
pattern etc. have been discussed in detail and demonstrated in [Kak lgg4].
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Many important points were also in section 6

[1983]. Some of the arrifacts, either from the

or from the limited number of measured data

in [Krestel] from real x-ray CT scans.

of [Brooks 1976b] and Hendee

Iimited number of projections

per projection, are also shown

(s.1s)

(projections) ru|, which relares

5.5 The number of projections

We discuss the azimuthal sampling (the number of projections) by

considering from: 1. sampling theory and 2. determinacy of the

reconstruction problem.

In order to completely sample the Fourier space of an object having a

width of L, the spacing between samples in azimuthal direction must be at
least Lf :l/r. considering the highest spatial frequency is .f,,,n^ =r/(zd), the

angle A@ between two adjacent projections should be

Af 2doa = j:=;
Hence the number of azimuthal sampling

the number of sampling per projection n., is

n', - n / LA -- nL / (2d)= tcn. I 2 (s.16)

From a different point of view, reconstruction is also a problem of
solving a large linear system with a total of n( t + unknown pixel values

inside the circle containing the object. For n, measurements made in each

projection, nn, / 4 projections should be taken if the equations are to be

determined. With more scans the system is overdetermined; with fewer it is
underdetermined. This numberis justhalf of the zi in (5.16). The reason is

that the azimuthal sampling is non-uniform. Meeting the Nyquist criterion

requires the periphery of the circle being adequately sampled. The interior is
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unavoidably oversampled [Barrett]. In x-ray CT, the projection number is

even more than n]. For example, in the Siemens Somotom Plus-S CT model

l199ll, the projection number is as high as 1254. Brooks tl976l thought rhat

the extra projections do not yield independent information but rather help to

improve the statistics. In this simulation work, we decided that three

different number of projections, En,l2, nn,/4, and, nn"lg, would be tested. For

n":512, they are 800, 400 and 200, respectively. The underdetermined

situation happens in cases where the data is either inherently limited or when

the dose must be minimized [Gordon 1976].

5.6 Low contrast detectibility (SNR)

We designed a simulated phantom as shown in Fig. 5.6.1(a) to simulate

the low contrast detection of CT. The out-most circle is bone (CT# 255) and

the inside region is tissue (cr# -I2B). The air has a cr# of -0.
The phantom is digitized into 20 pixels/ cm, with a total artenuation of

-2560/cm in CT#. Therefore for tissue attenuation lt-0.21 an, the scaling

factor fr in Eq.(5.3) is 1/ 12800. This value also applies for phantoms in the

next few sections. Fig. 5.6.1(b) displays the central parr of the phantom

windowed at a CT# of 124 with a width of 12. There are 5 low conrrast

disks: each has a difference in CT# against its background (CT# 127) equal

to its index number, i.e., I to 5 units. The diameter of these disks is2.3cm.

Disk t has a contrast value of 11255 : 0.4Vo, close to the detection limit
0.5Vo of x-ray CT.

we measured the SNR of Disk 1 versus the number of photons per

measurement from the raw reconstructed image and plotted the results in
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12.5 cm (258 pix+ls)
(b)

Fig. 5.6.1 (a) A low contrast CT phantom containing 5low contrast disks (25 cm in
diameter, image size 512x512). Since the disks have contrast < ZVo against the background,

they are difficult to perceive. The central part containing the disks is windowed to a small
range of gray level in (b) (center: I24, width 12) to show an enhanced visual contrast.
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Fig. 5.6.2 Plots of the SNR of Disk 1 versus the number of photons per ray for both the
l-iteration MLS and CBP, each with 2 different number of projections: 800 and 4O0.
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Fig. 5.6.3 Plots of the SNR of Disk 1 versus the number of projections for I and 2-
iteration MLS as well as for CBP and sinc CBP, with photons per measurement equal to
1.28x107.
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Fig.5.6.2, for both 1-iteration MLS and CBP. The reconstructions are from

two different numbers of projections: 800 and 400. With 800 projections,

CBP produces a higher SNR value than MLS, but with 400 projections, the

result is the opposite. We observed that the SNR reduces as the projection

number decreases. It was known that the typical standard deviation of the

early EMI scanner is 3.8 HU [Brooks]. Considering a0.4Vo detection limit,
or 4HU for the early -500 to +500 range (now is -1000 - to 1000), rhe SNR

of the EMI scanner is around 1.0. In the next chapter, we will see that the

SNR of a Siemens Somotom-Plus CT is also about 1.0 for the 0.4Vo detection

limit. These threshold SNR values fall in the range of our calculation here,

indicating that this simulation study matches the real CT dosage and noise

conditions. Conversely, from the CBP's curve for 800 projections in Fig.

5.6-2, a SNR of 1.0 will require a number of photons per measurement

being about (2-3)x107. This number is also close to those we estimated in

section 5.2 above. The other four disks also show consistent SNR values

versus the disk contrast (see Fig. I .2.2, the MLS curves).

Fig. 5.6.3 shows how the SNR of Disk 1 varies with the number of
projections for I and 2-iteration MLS as well as for CBP and sinc CBp, with

the plrotons per measurement at I .28x 107. The 2-iteration MLS generates

more noise. The sinc filter provides larger SNR for CBP, especially at

larger number of projections. The trends of these curves are consistent with

those seen in Fig. 4.2.5(b) and 4.3.4 from real data, since the larger the

standard deviation, the smaller the SNR.

Fig. 5.6.4 shows the cenffal part of the phantom reconstructed by (a) 1-

iteration MLS, (b) CBP and (c) sinc CBp, from g00 projections and

windowed the same as Fig. 5.6.1(b) did (photons per measurement:

1.28x107).Fig. 5.6.5 shows another three images with just 200 projections.
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Apparently, the MLS version in Fig. 5.6.4 is more noisy than both the CBp

and sinc CBP images, but in Fig. 5.6.5, the situation is just opposite (sinc

CBP didn't show improved smoothness over CBP). The visual appearance

agrees with the SNR measures.

We also measured the noise histograms inside Disk 1 for both the 1-

iteration MLS and CBP, each from two different number of projections: 800

and 200. The results are shown in Fig. 5.6.6 and the distributions are

visually close to Gaussian. We also tested the dependence of 1-iteration MLS

on the initial starting projection. For a sample of 8 reconstructions, the mean

SNR from 800 projections is 0.705+0.017 and the mean SNR from 200

projections is 0.530 +0.037.

We calculated the mean SNR of Disk 1 and its standard deviation from a

sample of 10 reconstructions for both 1-iteration MLS and CBP. In Fig.

5.6.7 we plot the ratio of MLS's mean SNR over that of CBP versus the

number of projections (photons per measurement: 1.28x107). The fractional

error of the ratio (summing the standard deviation over mean for both the

MLS and CBP) is -10Vo.

5.7 The contrast detail (CD) evaluation

A contrast-detail (CD) phantom of 25cm in diameter was designed and is

shown in Fig. 5.7.1(a) for a contrast-detail evaluation of CT reconstruction

algorithms. The phantom consists of 6 sets of disks. Each set has 6 disks of
the same size but with different contrast. The smallest contrast is O.4Vo and

the largest is 2.4Vo. The smallest disk size is 0.2cm and the largest is Zcm.

The central part, windowed the same as Fig. 5.6.1(b), is shown in Fig.

s.7.1 (b).
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(a) l-iteration MLS

Fig. 5.6.4 The central part of the low contrast phantom reconstructed by (a) 1-iteration
MLS, (b) CBP and (continue on the next page )
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(c) sinc CBP

Fig. 5.6.4 (continued from the last page) (c) sinc CBP, from 800 projections and

windowed the same as Fig.5.6.1(b) did (photons permeasurement 1.28x107). Note that

although Disk 1's contrast (0.4vo) is less than rhe detection limit (0.5ro), it is still readable

in (b) and (c) for its relatively large size. (In a real CT scan as shown in Fig. 6.3.Ic, a

"tumor" of 0.4Vo contrast is also visible.) Disks of sizes less than 0.4cm are difficult to

perceive (see the bottom left two disks in Fig. 5.7.3b in the contrast derail phantom). The

threshold detection contrast for a 2cm disk is -0.27o (see the contrast detail diagram in

[McDavid]).
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(a) 1-iteration MLS

(b) cBP

Fig. 5.6.5 The central part of the low contrast phantom in the reconstructions by (a) 1-

iteration MLS, (b) CBP and (continue on the next page )
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(c) sinc CBP

Fig. 5.6.5 (continued from the last page) (c) sinc CBP, from 200 projections and

windowed the same as Fig. 5.6.1(b) did (photons per measurement l.2ïxr}t).
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Fig. 5.6.6

reconstructions,

(b) ætrProjectiorn

Noise histograms in Disk 1 in both
from (a) 800 and (b) 200 projecrions.

the l-iteration MLS and CBp

200 400 600

Number of Projections

Fig. 5.6.7 PIot of the ratio of I-iteration MLS's mean SNR over that of CBp for Disk l,
from a sample of l0 reconstructions of the low contrast phantom, versus the number of
projections (photons per measurement: t.Zgx107). The fractional error of the ratio of SNR
(summing the ratio of standard deviation over mean) is -l\Vo.

90



(b)

Fig. 5.7.1 (a) A contrast detail CT phantom containing 6 sets of low contrast disks (25

cm in diameter, image size 5I2x512). Since the disks have contrast ( 2.4Vo against the
background, they are hard to perceive. The central part containing the disks is windowed to
a small range of gray level in (b) (center: 124, width: 12) to show enhanced visual contrast.
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Fig. 5.7-2 shows four images of the central part from 100 projections,

with the photon number per measurement being 1.28x107. Images in (a) ancl

(b) are from I and 2-iteration MLS, respecrivery. (c) is from cBp and (d) is
from sinc CBP. Clearly, l-iteration MLS produces much more readability

on the lower contrast disks as well as the small size ones than CBp and sinc
CBP do. The Z-iteration MLS, however, doesn't show much difference from

its I -iteration counterpart for the lower contrast disks in the left two

columns, especially the smaller ones. For the higher contrast disks, it appears

that 2-iteration MLS even produces a little better readability, at least for
smaller disks. This is because 2-iteration MLS yields larger high contrast

resolution. The sinc CBP image in Fig. 5.7.2(d) doesn't show noticeable

improved smoothness over its CBp counterpart (c).

Fig. 5.7.3 shows three reconstructions from g00 projections, by (a) i -
iteration MLS, (b) cBP and (c) sínc cBp. In this case, (a) appears more

noisy than (b) and (c), similar ro Fig. s.6.4. The disks in the lefr most

column of (a) are more difficult to perceive than their coffesponding ones in
(b) and (c). The sinc filter also produce noticable smoothness over CBp
such that the left most disks appear more readable. (Due to the fact that disks

(signals ) themselves are not properly reconstructed, using filters with even

larger high frequency suppression won't yield better results than sinc .)

5.8 The high contrast high resolution detectibility (MTF)

Fig. 5.8.1 shows a high contrast phantom in which 5 sets of bar pa¡¡ems

which are consecutively doubled in size, are laid. The standard deviation

inside a small square centered at each set of bar pattern, as the one drawn in

the bottom-right for the largest bars, were measured in the reconstructions.

92



(a) l-iteration MLS

(b) Z-iteration MLS

Fig. 5.7.2 The central part of the reconstructions (windowed) from 100 projections,
with the photon number per ray being 1.28x107, by (a) l-iteration MLS, (b) 2-iterarion
MLS, (continued on next page)
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(c) cne

(d) slnc CBP

Fig.5.7.2 (continued from the last page) (c) CBP and (d) si¡zc CBP.
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(a) l-iteration MLS

(b) cBP

Fig. 5.7.3 The central part of the reconstructions (windowed) from 800 projections,
with the photon number per ray being r.zïxr}f , by (a) l-iteration MLS, (b) cBp and
(continue on the next page)
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(c) sinc CBP

Fig.5.7.3 (continued from the last page) (c) sinc CBP.

Fig. 5.8. i A high contrast phantom of 25 cm in diameter, 5l2x5l2 pixels, in which 5

sets of bar patterns that are consecutiveiy doubled in size (I,2,4,8 and 16 pixels/bar), are

laid. The standard deviation inside a small square centered at each set of bar pattern, as the
one shown in the bottom-right for the largest set, will be measured in the reconstructions.
The central part of the phantom containing all the bars (inside the large square) will be

shown in Fig. 5.8.2 after reconstructions.
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Fig.5.8.2 shows four reconstructions from g00 projections, by (a) 1-

iteration MLS, (b) CBP, (c) 2-iteration MLS and (d) sinc CBp. The number

of photons per measurement is 1.28x107. Apparently the bars in the CBp

versions (b) and (d) appear to have more blurring in edges than those in the

MLS versions (a) and (c). The measured standard deviation of each set is then

plugged into Eq. (2.24) ro calculate the MTF. In Fig. 5.g.3, we plot these

calculated MTF values. That MLS produces better spatial resolution is

quantitatively exhibited. The largest improvement is at half of the Nyquist

limit (the second set of bars from the top-left). Note that at very high

frequencies near the Nyquist timit (the top-left set of smallest sizes), 1-

iteration MLS is not better than CBP but 2-iteration outperforms. This can be

seen from both the images in Fig. 5.8.2 and the MTF plots in Fig. 5.g.3.

In Fig. 5.8.4, we show the MTF plots for 400 projections. In this case, the

1-iteration MLS is just a little better than CBP for frequencies below half of
the Nyquist limit but not above. 2-iteration MLS yields larger MTF than that

of CBP at frequencies above 8 lp/cm and matches that of 1-iteration MLS for
800 projections in Fig. 5.8.3. Fig. 5.8.5 shows the images of the rhree smaller

sets of bars (bar size 1 ,2 and 4 pixels) from 400 projections, by (a) 1-iteration

MLS, (b) CBP and (c) 2-iteration MLS. The visual appearance agrces with the

MTF measures.

We also tested the dependence of MTF on different locations ancl

orientations of bars. We found that the standard deviation I mean Mtp is not

more than I Vo for all 5 sets, for both 1-iteration MLS and CBP. The results are

based on a sample of 8 reconstructions (4 with changed positions and 4 with

changed orientations) from 800 projections.
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(a) l-iteration MLS

(b) cBP

Fig. 5.8.2 Reconstructions of the bar patterns from 800 projections, by (a) 1-iteration
MLS, (b) CBP, (continue on the next page)
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(c) 2-iteration MLS

(d) srnc CBP

Fig. 5.8.2 (continued from the last page) (c) 2-iteration MLS and (d) sinc CBP. The
number of photons per measurement is 1.28x107.
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(a) t-iteration MLS (b) CBP

(c) Z-iterarion MLS

Fig. 5.8.5 Images of the three smaller sets of bars reconstructed from 400 projections by
(a) l-iteration MLS, (b) CBP and (c) 2-iterationMls.
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In Fig. 5.8.6, we plot the MTF for 3 different number of projections,

800, 400 and 200 togerher, in (a) for I -ireration MLS and in (b) for CBp.

The MTF of CBP from 800 prqections is also plotted in (a) for comparison.

One sees that while the MLS's MTF drop as the number of projections

reduce, the CBP's do not change much (the improvement with smaller

number of projections is not obvious and it is not in other measures of image

qualities). This might be attributed to CBP satisfying the "Fourier cenrral

slice theorem" and to its linearity. MLS is a somewhat nonlinear algorithm.

5.9 The noise power spectrum (NpS)

we calculated the noise power spectrum following Eq. (2.1g). A noise

only image is obtained by subtracting the CT reconstruction of a water only
phantom from its original, a method similar ro rhat used by Kijewski Il9g7l
and Rathee [ 1 992] in investigating the NPS of CT scanners (they subtracred

consecutive pairs of CT scans and hence the noise amplitude is doubled). A
water only phantom of 25cnt diameter is used. After doin_e a reconstruction

(on 512x512 pixels), the subtraction of itfrom its original is made. Then the

central 256x256 subimage in the difference image was extracted to make

sure it was contained in the water region. In order to reduce the truncation

errors (reducing the effects of a square window superimposed on the data

such that a discrete Fourier transform is used to approximate an analytic

Fourier transform [Press]), we multiplied the sub-image with a 2D "parzen"
window (similar to the one used in [Kijewski])

w (i, j) - t -ti - if--J-li - if
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and then computed the 2D FFT of this subimage. The squared amplitude of
the FFT was then averaged over a total of 25 images and the result was the

NPS of the reconstruction.

Fig. 5.9.1 shows the NPS of (a) CBP and (b) 1-iterarion MLS. (c) and (d)

are (a) and (b) displayed in 3D, respectively. A total of 800 projecrions is

used and the number of photons per measurement is 1.28x102. The CBp
version looks the same as those in [Kijewski, Rathee], in both 2D and 3D

forms, indicating that the calculation is correct. No NPS has previously been

computed for CT reconstructions using the algebraic method and hence no

comparison can be made.

The NPS of CBP and MLS looks quite different. The MLS's has quite

large low frequency components, whereas the CBP version has few low

frequency amplitudes. There is a common feature in both: NPS is affected by

the digital sampling (both within the projection and angular), such that the

distributions are not circularly symmetrical as predicted by the continuous

theory [Wagner, Hanson]. The digital sampling causes 2-D aliasing such that

the noise power amplitude is larger along 0o and 90o polar angles and

smaller along 45o and 135o, as seen more clearly from the 3D versions in

Fig.5.9.1 (c) and (d). This is also the reason for a non-zero NPS at zeïo-

frequency for CBP, as should be in the continuous model. This phenomenon

was first noted by Kijewski and Judy U9871. They derived an analyrical NpS

expression for CBP and then did a computer simulation of it assuming

Poission statistics for the projection noise, both agree with the

experimentally measured NPS from a CT scanner.

Fig.5.9.2 shows, the same as Fig.5.9.1(a) and (b) did, the NpS from 100

projections instead of 800. It appears that the noise energy of MLS version is

more concentrated in lower frequencies whereas that of CBP is more in high
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(a) CBP (b) 1-iteration MLS

(c) CBP (d) l-iæration MLS

Fig. 5.9.1 The noise power spectrum (NPS) of CT reconsrructions by (a) CBp and (b)1-
iteration MLS. (c) and (d) are the NPS displayed in 3D. A total of 800 projections is used
and the number of photons per ray is 1 .28x 107.
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frequencies. This could be part of the reason for MLS producing larger SNR

than CBP when the number of projections is small.

5.10 The reconstruction accuracy measures

First we demonstrate that MLS is more accurate than CBP by showing the

subtractions of reconstructions (the number of projections is 800) from

original test phantoms. Fig. 5.10.1 exhibits two such subtractions for the bar

pattern phantom, for (a) CBP and (b) I -iteration MLS. Clearly, the errors of
the four larger size bars in (a) appear larger in intensity than those in (b),

especially the Znd smallest set from the top-left. For the smallest set, the

differences are visually about the same. These agree with the MTF measures

in Fig. 5.8.3.

(a) CBP (b) 1-iteration MLS

Fig. 5.9 .2 The noise power specfum (NPS) of CT reconsrrucrions by (a) CBp and (b) I -

iteration MLS, from a total of 100 projections. The number of photons per ray is 1.28x I 07.
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'We also measured the correlation coefficient (cc) following Eq. (3.3) and

the root mean square (rms) error to quantify the reconstruction accuracy.

For the low contrast phantom (see Fig. 5.6.1), Fig. 5.10.2 shows the plots of
(a) cc and (b) rms elror versus the number of photons per measurement

from 800 projections. These criteria demonstrate that 1-iteration MLS
produces more accurate reconstructions than CBP (errors occur mostly

around edges), even with less than 1110 of photon numbers per

measurement. However, these global measures give us a false sense of local

image quality in terms of SNR since we saw in Fig. 5.6.2 that CBP produces

larger SNR than 1-iteration MLS does in the case of 800 projections. The

sínc filter produces more accurate reconstructions for CBP only when the

number of photons per measurement is less than 196 (otherwise it smoothes

the reconstructions too much such that the accuracy is reduced.)

The cc and rms error versus the number of projections have also been

quantified for I and 2-iteration MLS as well as for CBP, at a fixed number

of photons per measurement I .28x107. The results are plotted in Fig.5.lO.3
for tlre low contrast phantom. The 1 and 2-iteration MLS don't show much

differences when the number of projections is large, and both result in better

accuracy than CBP. As the number reduces to below 200 where I -iteration

MLS is less accurate than CBP,2 iteration MLS improves dramatically. That

cc and rms are somewhat opposite measures to SNR (but rather proportional

to MTF) is demonstrated again.

5.11 Discussion and conclusion

In doing the simulation study, we made some implicit approximations

besides those in section 5.2-5.5 such as: (1) the attenuation coefficient of
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Fig. 5.10'2 Plots of the (a) correlation coefficient and (b) root mean square error versus
the number of photons per measurement for the reconstructions of the low contrast phantom
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water is used instead of that of tissue, (2) the reference detector noise is

neglected, (3) beam scattering is completely eliminated. However, at least

based on our calculated SNR, which is consistent with the values of real CT

scanning, these approximations are acceptable.

In conclusion, MLS produces larger high contrast resolution in cases

when the number of projections is taken above half of that required by the

sampling criterion. In the low contrast detection, CBP produces larger SNIR

when the number of projections is taken to satisfy the sampling criterion (the

number is 800 for a 512x512 image). But even in this case, the SNR of MLS

may be improved by applying a low pass filter such as sinc to smooth the

projection data prior to reconstruction, and further, due to the nonlinearity

of MLS, better spatial resolution may still be achievable. When the number

of projections is less than 400, 1-iteration MLS produces a larger SNR than

both CBP and sínc CBP. Note that the SNR is only calculated from a

uniform "tumor" against its uniform background - an ideal situation. If there

are small, sharp details in the background, as we have seen in Fig. a.2.2(b)

and (c), then CBP will be affected more by the influence of edge spreadine

or cluttering.

From the test results of this chapter, we conclude that dose reduction in

CT can be made in two cases by using MLS ART instead of CBp. l. When

the spatial resolution is of primary concern, reduce the number of
projections from 800 down to 400 (see Fig. 5.8.4). The 2 or 3-iteration MLS

ART will produce spatial resolutions as better as that from CBp using g00

projections. 2. In cases where limited number of projections can be taken, 1-

iteration MLS ART will provide a few times more dose efficiency than CBp

for low contrast object detection. For example, in the pair of SNR curves in

Fig.5.6.2 for 400 projections, 1-iteration MLS need -1110 CBP dosage (i.e.,
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1/10 photon number per measurement: from 108 down to 107) to produce a

same SNR value.
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Chapter 6
A Comparison of CBP and MLS [Jsing the

Reprojected Data from CT Scans

6.1 Introduction

In this chapter, we provide further comparisons between MLS and CBP

using the data reprojected from a number of CT quality assurance (QA) scans

taken from a clinical scanner. Two physical quantities MTF and SNR will be

measured from the corresponding high and low contrast inserts respectively.

Scans of two phantoms have been taken from a Siemens Somotom PLUS-S

l199ll CT machine. All the images are 512x512 pixels in size. The first

phantom is the one in the Department of Medical Physics, Manitoba Cancer

Treatment and Research Foundation (MCTRF), which is designed fNuclear

Associates, AAPM 1916) for the acceptance test and routine QA of CT

scanners. It has a number of inserts each designed to test one physical

parameter, such as the high and low contrast resolutions, the linearity of

attenuation coefficient, etc. The other one is a Siemens phantom which has a

bar pattem insert and a thin wire insert not available in the first one. The scans

were taken at 500mAs and 120KV (mean energy 60KeV ) and 7 cm slice

thickness - the settings for general QA and following the AAPM 11976, 19931

guidelines for CT QA testing. For each of the scans, we reproject the image to

obtain a set of projection dat¿ to approximately simulate the real data with

noise.

6.2 SpatÍal resolution

The MTF has been measured by using both the Fourier and the st¿ndard

deviation methods as described in section 2.4.4.
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Fig. 6.2.1 The dark point is the cross section of a thin wire (d:0.01mm) inserted in the

Siemens phantom to test the MTF of CT scanners. (the out-circle d:22cm is made of
plexiglass.) The image size is 512x512.
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0.5 1.0 1.5 2.0 2.5 3.0
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Fig. 6.2.2 Plots of the MTF measured from the Fourier transform of the thin wire in the

CBP and 1-iteration MLS reconstructions from a total of 800 projections.
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Fi9.6.2.3 The enlarged thin wire cross section after reconstruction by (a) 1-iteration

MLS and (b) CBP. (c) and (d) are their corresponding Fourier transforms.

Test with a thin wire insert The dark point shown in Fig. 6.2.I is the

cross section of a thin wire (d:0.}lmm ) inserted in the Siemens phantom.

After reprojecting the scan for a total of 800 projections and doing the

reconstructions using both the 1-iteration MLS and CBP, we performed the

FFT of a 32x32 sub-image centered at the wire, a method similar to that used

by Droege 119821. The MTF is rhen calculated by averaging the FFT

amplitude along the 00 and 900 axes. In Fig. 6.2.2, we plotted these MTF

values versus the spatial frequency. Apparently, MLS enhances the MTF more

at medium to high frequencies than does CBP. For a straightforward

demonstration, we show the point image itself (enlarged) and its Fourier

transform in Fig. 6.2.3 after reconstructions. Clearly, the MLS point (a)

spreads less than its CBP counterpart (b), while the result in Fourier space is

just opposite, as should be expected.
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Fig.6.2.4 shows the plots of MTF for a number of different projections for

(a) l-iteration MLS and (b) CBP. We see that while the MLS curves drop as

the projection number reduce, the CBP curves coincide. We do not see the

little differences among curves at high frequencies as we did in Fig. 5.8.6. The

reason is explained in section 6.5 below. In Fig. 6.2.4(a), the CBP's MTF for

800 projections is also plotted and one sees that as long as a projection

number is 400 or greater, the l-iteration MLS's MTF is higher than that of

CBP.

Test with bar patterns Shown in Fig. 6.2.5 is an insert for testing the

spatial resolution as well, which consists of bar patterns of 5 different sizes.

The standard deviations (SD) in a marked region in each set were measured

from the reconstructions and are directly proportional to MTF (see Eq. 2.24).

In Fig. 6.2.6, we plot these SD measures for the case of 800 projections. That

MLS allows higher modulation ffansfer functions is again demonstrated. The

two images are shown in Fig. 6.2.7 (a) and (b), where the bars (a) in the MLS

version exhibit more high contrast and sharper edges than their counterparts

(b) in the CBP version.

The test proceeds using a series of projection numbers. Fig. 6.2.8 shows

together these SD plots, similar to Fig. 6.2.4, for (a)1-iteration MLS and (b)

CBP. The same as noted above, MLS curves drop as the number of
projections decreases but the CBPs don't change (the difference between Figs.

6.2.8 and 5.8. 6 is also noted in section 6.5). Also, the l-iteration MLS has

higher values than CBP when the number of projections is larger than 400,

and, lower otherwise. In Fig. 6.2.9 we plot the SD measures from 400

projections, for both 1 and Z-iteration MLS as well as CBP. One sees that 2-
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Fig. 6.2.5 A bar-pattern insert in a CT phantom for testing the spatial resolution. The
standard deviations (SD) inside the marked square region in each set will be measured from
the reconstructions. Note that in applying this method, each marked square should cover a

same number of blacli/white pixels and it does not necessarily align with the bars. The
phantom diameter is 22cm and the image size is 512x512.

280

Ë.o 240
F
G'5 2oo
oo

160
tt
.3 120
c
ct

õ80
40

3
Ba rs

5

marked regions from theFig. 6.2.6 Plots of the standard deviation measured inside the

reconstructions of 800 projections, by CBP and l-iteration MLS.
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Fi5.6.2.7 Reconstructions of the bar pattern phantom by (a) l-iteration MLS and (b) CBp
from a total of 800 projections.
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Fig. 6.2.8 Plots of the standard deviation measured inside the marked regions of the bar
patterns in the reconstructions from a number of different projections by (a) the I -iteration
MLS and (b) CBP.
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iteration MLS improves its 1-iteration's performance dramatically and its

curve overlaps with that of 800 projections.

MLS400i1
MLS400i2
CBP4OO
MLSSOO

3

Bars

Fig. 6.2.9 Plots of the standard deviation measured inside the marked regions of bar
patterns in the reconstructions by 1 and 2-iteration MLS from 400 projections, l-iteration
MLS from 800 projections and CBP from 400 projecrions.

Fig. 6.2.10 shows two reconstructions of an adult chest from 800

projections by (a) 1-iteration MLS and (b) CBP. As indicated by arrows, rhe

small details and blood vessels in (a) appear sharper and more clearly

delineated than their countetparts in (b).

6.3 Low contrast resolution

Fig.6.3.1(a) is the scan of a low contrast insert. Fig. 6.3.1(b) is its
windowed version centered at a CT # of 1080, spanning 1080 + 126 for better

visibility inside. The regions indicated by circle 1 are located in warer (CT #

1024) and circle 2 is located in a material whose average CT # is 1030. The

dark central region (circle 3) is plexiglass (CT# IIIT) inside which, a small
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Fi5.6.2.10 The reconstructions of an adult thorax from 800 projections by (a) l-iteration
MLS and (b) CBP. The arrows in (a) indicate some small details which look sharper and

clearer than their corresponding ones in (b). The two images have been scaled and

windowed to the same ranges in CT number.
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Fig. 6.3.1 (a) A low contrast CT scan (the phantom is 25cm in diameter,5l2x5l2 pixels,

CT #: 0-4095) and (b) its windowed version centered at a CT # of 1080, spanning

1080t 126.(c)ThecentraldarkerregionwindowedataCT#of ll20withawidth of 32.

The arrows indicate a number of small details in the phantom.
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area (circle 4) was further replaced by a different kind of glass whose average

CT # is 1125 for simulating a tumor. The central region is further windowed at

CT # 1120 with a width of 32 in Fig. 6.3.1(c). The "tumor" has a contrast of

about 0.4Vo against its background representing the detectibility limit of CT

scanners. There are also a number of small details having about the same

contrast as the tumor, as indicated by arrows.
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Fig. 6.3.2 Plots of the SNR of the "tumor" (region 4) against its background (region 3)

versus the number of projections in the I and 2-iteration MLS, as well as in the CBP

reconstructions. The SNR in the original CT scan is also plotted as a horizontal line.

We measured the SNR of the "tumor" (region 4) versus the number of

projections in the I and 2-iteration MLS, as well as in the cBp
reconstructions. The SNR definition Eq. (2.19) is used. In Fig. 6.3.2, we

plotted these SNR values, along with the value in the original CT scan as a

horizontal line. It is seen that with more than 400 projections, CBP will
produce a little larger SNR than MLS. with less than 400, the MLS's SNR

becomes larger. The 2-iteration MLS further degrades the SNR. It seems that

É.z
.n
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the better SNR of CBP can be attributed, at least partly, to its band limitation

property, since, as we found, the same amplitude of signals (lcr#l-cr#21)
has been generated by both the methods, but just in the CBP version, the

standard deviation is smaller. Band limitation restricts the reconstruction of
high frequency components and hence it smoothes the noise. Note that MLS is

more accurate since its SNR curves are closer to the SNR of the original. Here

we infer that those physical alrangements and approximations made in the last

chapter are correct, since the SNR of the original scan is about 1.0 for a

detection conffast of 0.4Vo, the same as that from the calculation (see Figs.

5.6.2 and 5.6.3).

Fig. 6.3.3 shows the noise histograms inside the "tumor" in (a) the original

CT scan; (b) l-iteration MLS and CBP reconstructions from 800 projections;

(c) 1-iteration MLS and CBP reconstructions from 200 projections. Clearly,

the l-iteration MLS's histogram is broader than that of CBP from 800

projections. But in the case of 200 projections, CBP's histogram is broader.

MLS 1 CEP

(b) 800 projections

MLS 1 CBP

(c) 100 projectioru(a) onginnl

Fig. 6.3.3 The noise histograms inside the "tumor" in (a) original CT scan; (b) l-
iteration MLS and CBP reconstructions from 800 projections; (c) 1-iteration ML,S and CBp
reconstructions from 1 00 projections.
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tri5.6.3.4 displays the central region of the reconstructions, windowed the

same as Fig. 6.3.1(c), for four different numbers of projections, each for one

row as labeled. The lstcolumn contains the CBP images. The2nd and 3rd

columns exhibit the corresponding l-and 2-iteration MLS reconstructions. We

find that as the number of projections decrease, the CBP versions become

more noisy, in contrast to the MLS ones which are increasingly smooth. The

CBP image from 100 projections (the bottom left one) is so noisy that those

small details as indicated in Fig.6.3.1(c) are hard to perceive. In short, the

visual appearance agrees with the SNR measures for all images.

Reconstruction error measures

The reconstruction error is also intuitively exhibited by subtracting images

from the original scan. Fig. 6.4.1 shows, for the low contrast insert in Fig.

6.3.1(a), two such error images for (a) l-iteration MLS and (b) CBP. We

measured the mean of three small squares in both the images and found that

the CBP generates much larger errors around edges and wherever abrupt

changes occur. In smooth regions, there is not much difference.

The reconstruction accuracy is also quantified by measuring the correlation

coefficient (cc) and the root mean square (rms) error for the low conffast insert

versus the number of projections. The results are plotted in Fig. 6.4.2 for I and

Z-iteration MLS as well as CBP. The two plots look almost the same as those

in Fig. 5.10.3. The cc and rms are not applicable for quantifying the SNR.

Discussion and conclusion

The experimental results agree, at least qualitatively, with those seen in the

previous 2 chapters. The results further qualitatively verify that MLS can
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Fig. 6.3.4 The central region after reconstructions, windowed the same as Fig. 6.3.1(c),
for four different numbers of projections from the lst to 4th rows. The lst column contains

the CBP images. The 2nd and 3rd columns exhibit the corresponding l-and Z-iteration
MLS images.
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Fig. 6.4.1 The subtraction of the reconstruction of the low contrast insert from the

original CT image, for (a) l-iteration MLS and (b) CBP.

reduce the dosage by half while still preserve the spatial resolution. MLS also

provides higher dose efficiency in low contrast detectibility when the number

of projections is small (see Fig. 6.3.3).

It is worth noting that in Fig.6.3.2, as the projection number decreases, the

SNR of MLS shows a slow increase, in contrast to a slow decrease in Fig.

5.6.3 and also, the CBP curve drops less steeply, in spite of the agreement of

relative ffends. This suggests that using reprojected data from CT scans only

partially or qualitatively simulated the real situation. The reason is: in CT

scans noises are already correlated (see the NPS in Figs. 5.9.1 and 5.9.2).

Reprojection can not fully duplicate the original projection in which the noise

is totally Gaussian (white). This may also explain why in Fig. 6.3.3, the 1-

iteration MLS images from 100 or 200 projections appears too smooth.

tblcBP
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Fig- 6-4.2 Measurcs of the (a) conelation coefficient and (b) root mean square error for
the low contrast insert reconstructions versus the number of projections for I and 2-
iteration MLS as well as CBP.

In testing the MTF of reconstructions, we used a "thin" wire of a few pixels

in diameter and a set of bar patterns (especially the small size ones) which are

already bluned by edges (so that it is very difficult to assign exactly the same

number of black/white pixels in each marked square in Fig. 6.2.5). Therefore

the MTF, especially at high frequencies, can not be accurately determined for

both the MLS and CBP, such that the tittle differences among curves of
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different projections in Fig. 5.8.6 are not seen in Figs. 6.2.4 and 6.2.9. For

example, in the bar pattern image (Fig. 6.2.5), the 5th set would be rather a

single large bar than a set of smallest bars. The further reason to address the

difference may be the one we discussed above: reprojection of CT scans

cannot fully duplicate the characteristics of the original projection. Even

further, the effect of interconnections among cascaded CT processes may have

been distorted in the reprojection data. One actually has to resort to real

projection data scanned from a thin wire or a set of bar pattems for accurate

MTF determination, which we left for future work.
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Chapter 7
The Improvement of MLS over the

Conventional Schemes of ART

7.t Introduction

In section 3.1 we saw that MLS outperforms the two conventionally used

projection access orderings of ART, the random perrnutation scheme (RPS)

and the sequential access scheme (SAS). In this chapter, we provide further

experiments to verify that MLS truly and dramatically improves the

performance of ART itself, not only in computational speed, but also in the

physical image quality produced. The tests employ simulated projection data,

reprojected data of CT scans and real data, which have been extensively used

in the last three chapters.

Historically, ART was first used in the early EMI scanner. Hounsfield

U9721realized the problem of correlations among projections and suggested

a pseudo-random ordering of them. (He took projections of 40o apart.)

Shepp and Logan 119741 followed the poinr by raking 3Toberween

consecutive projections. The EMI scanner later switched from ART to CBp,

basically because of the possible lack of convergence with noisy data and the

longer reconstruction time of ART. The orthogonal pair ordering, which

inherently differs from the random one, was first used by Kuhl et al [ 1973].

But they arranged just 4 projections and stopped going any further to get a

scheme applicable for any number of projections. It was not until very

recently that van Dijke 119921and Herman [1993] picked up this topic again,

but unfortunately they were still trying random or intuitive ordering. In this

chapter, we demonstrate for the first time that classical ART using orders

such as SAS and RPS truly lead to poor (and even very poor) low contrast
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detection, let alone needing many iterations for convergence (note that the

reconstruction times for 1-iteration MLS, RPS and SAS are exactly the

same). With the advent of the MLS scheme, l-iteration yields the largest

SNR such that the fundamental limitations of classical ART are nearly

eliminated.

Sections 7.2 and 7.3 cover tests using simulated projection data and

reprojected CT data, respectively. Comparisons using real data are described

in Section 7.4. Discussion and conclusion are included in the last section.

The simulations and reconstructions were performed on a Sun Sparc 4

workstation. Typical reconstruction times were about 30 minutes per

iteration for a 512x512 matrix and 800 projections, with the program and all

data stored in memory.

7.2 Tests with the simulated data

Shown in Fig. 1.2.1 are 5 images of the central part of the low contrast

plrantom (see Fig. 5.6.1b) reconsrrucred by (a) l, (b) 6, (c) t2 and (d) 20-

iteration SAS, and (e) 1-iteration MLS. The number of projections is 100

and tl-re number of photons per measurement is 1.28x102. Visually, in (a),

(b) and even (c), a large part of the object is poorly reconstructecl ancl clisks

having relatively higher contrast cannot even be perceived. Although the full
features are adequately reconstructed in (cl) by 20 iterations, the image,

however, appears more noisy than the 1-iteration MLS version (e).

Fig. 7.2.2 shows tl-re plots of the SI{R measurecl from the disks versus

theircontrast, for 1 and 16-iteration MLS as well as for 1,6 and 20-iteration

SAS. The MLS's SNR monotonically ancl linearly increases with the clisk

contrast (the l st iteration has the lalgest sNR). But in the sAS
reconstructions, larger contl'ast disks have lower SNR ancl lower contrast
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Fi5.7.2.1 The central part of the low contrast phantom (Fig. 5.6.1) in the reconstructions

by (a) l, (b) 6, (c) 12and (d) 20 iterations of SAS, and (e) l-iteration MLS, from 100

projections with a photon number per measurement of l.2BxI07.
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Disk Contrast (Vo)

Fig. 7.2.2 Plots of the SNR measured from the 5 disks versus their contrast for I and
l6-iteration MLS and also for 1,6 and 2O-iteration SAS. The reconstructions are from 100

projections with a photon number per measurement of 1.28x107. The MLS's SNR
monotonically and almost linearly increases with the disk contrast (the I st iteration has the
largest SNR). But in the SAS reconstructions, larger contrast disks have lower SNR and
lower contrast ones have larger SNR, as the I and 6-iteration curves exhibited. For example,
Disk 4 (having the second largest contrast l.6%o) has almost 0 SNR in the lst iteration.
Although the 2O-iteration SAS curve approaches a reasonable trend, its values are much
lower than those of l-iteration MLS's.
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Fig. 7.2.3 The cenrr.al part of the low
reconstructions by (a) 1 , (b) I 2, (c) 18 and (cl)

MLS, fi'oni 800 projections with a photon nunibel

e tritLS I

contrast phantom (Fig. 5.6.1) in the

24 iterations of SAS, and (e) l-iter.ation
per nreasurement of 1.28x107 .
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ones have larger SNR, as the 1 and 6-iteration curves exhibited. Although

the Z0-iteration SAS curve approaches a reasonable trend, its values are

much lower than those of 1-iteration MLS's.

The performance of SAS becomes even poorer when the number of
projections is larger. Fig. 7.2.3 shows another 5 reconstructions from 800

projections. In this case, image features still look poorly reconstructed even

after Z4-iterations. Fig. 7.2.4 displays two full images by l}-iteration SAS

from (a) 100 and (b) 800 projections. We see that (a) converges faster than

(b). Fig. 7.2.5 shows further the reconstructions of the contrast detail

phantom (see Fig. 5.7.1b) from 400 projections, arranged in the same way as

Figs. 7.2.1 and 7.2.3. Fig. i.2.6 (a) is rhe l-iteration MLS from 100

projections, while SAS needs about 2O-iterations to get a uniform
reconstruction, as (b) exhibited. Even then, the latter still appears with a

larger noise level than the former, such that disks of lower contrasts and

smaller sizes are relatively difficult to perceive.

We ran further tests to compare MLS to the random permutation scheme

(RPS). By doing a sample of 1-iteration RPS reconstructions, we found that

tlre results of RPS just sit in-between those of MLS ancl SAS. Fig. 7.2.7 and,

Fig- 7.2.8 each shows 3 reconstructions of the low contrast phantom, from

200 ancl 800 projections, respectively. In each figure, (a) is from 1-iteration

MLS while (b) and (c) are two images ranclomly pickecl up from a sarnple of
RPS reconstructions. We found that with a smaller number of projections,

like 200, RPS cannot match the performance of MLS (as the two exhibited in

Fi5.7.2.7). But with a larger number of projections, like 800, RPS perforrns

relatively better (as Fig. 7.2.8(b) ancl (c) demonstrate, they look close to (a)

altlrough with more noise.) In Fig. 7.2.9, we show the central par-t of the

contrast detail phantom using 1-iteration reconstructions, two by MLS (left)
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and the other two by RPS (right). The top two are from 800 projections

while the bottom two are from 200 projections. The visual difference

between (c) and (d) is clearly larger than thar berween (a) and (b).

The test was also extended to the high contrast bar pattern phantom (see

Fig.5.8.1). Fig. 7.2.10(a) shows its reconstruction from 800 projections by

(a)

Fi9.7.2.4 Full display

reconstructed by 12-iteration

faster than (b).

(b)

(windowed) of the low contrast phantom

SAS from (a) 100 and (b) 800 projections.

(Fig. 5.6. l)
(a) converges
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Fig. 7 '2.5 The central part of the contrast cletail phantom (Fig. 5.7.1) in the
reconstluctions by (a) 1, (b) 6, (c) l2and (d) 16-iteration SAS, ancl (e) 1-iteratio' MLS,
li'onr 400 projections with a photon uumbel per measuïelrlent of 1.2gx107 .
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Fi5.7.2.6 The central part of the contrast detail phantom in the reconstructions from
100 projections, by (a) 1-iteration MLS and (b) 2O-irerarion SAS.

a.b
Fig.7 .2.7 The central part of the low contrast phantom in the

fi'om 200 projections by (a) MLS, (b) and (c) RpS.

ab

Fig.7.2.8 The central part of the low contrast phantom in the

from 800 projections by (a) MLS, (b) and (c) RpS.

I -iterati on reconsûuction s

l.

I -iteration reconstructions
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Fig.7 .2.9 The central part of the contrast detail phantom in the 1-iteration rcconstructions
by MLS and RPS. The top twos are fi'on 800 projections while the bottom twos are from
200 projections.
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(b)

Fig.7 .2.10 Reconstructions of the bar pattern phantom by SAS from (a) 800 projections
by 16-iteration, (b) 200 projections by 8-iteration.
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16-iteration SAS and one sees that the bars are still not fully reconstructed

and the background appears not uniform in grayness. We also show a

reconstruction in 1.2.10(b) from 200 projections by 8-iteration SAS, and in

this case, the patterns aÍe relatively quickly reconstructed. In visual

appeatance, SAS reconstructs a high contrast object much faster than it did a

low contrast one. ( Compare the number of iterations needed for Fig. 7.2.3d

to that needed for Fig. 7.2.9a). The performance of RPS is similar to that

noted above.

7.3 Test with the reprojected data from CT Scans

we started this test with the low contrast phantom (Fig. 6.3.1) by

reprojecting its CT scan and then doing the reconstruction following the SAS

scheme. Fig. 7.3.1 shows four images of its central part from 200

projections, with (a), (b) and (c) from z, 8 and 16-iteration sAS,

respectively, and (d) from 1-iteration MLS. It appears that 16-iteration is

still not enough for SAS to produce a uniform reconstruction. Its image (c)

is also noisier than the 1-iteration MLS version in (d). Fig.7.3.Z shows

another 2 reconstructions from 800 projections. In this case,  }-iteration

SAS (a) is far from generating a satisfactory image comparable to that of I -

iteration MLS (b). Fig. 7.3.3 displays two full images from 200 projecrions,

windowed the same as Fig. 6.3.1c, by (a) 8-iteration SAS and (b) l-ireration

MLS. The image features are twisted severely in (a) while those in (b) are

uniformly reconstructed. Fig. 7.3.4 shows the reconstructions of the thin

wire (See trig. 6.2.1) and their corresponding F'ourier transforms for the

first three iterations of SAS. The point and its Fourier counterpart both are

twisted (can be clearly seen in the first two iterations).
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Fig. 7.3.1 Display

reconstructed fi'om 200

iteration MLS.

of the central

projections, by

part of the low
(a) 2, (b) 8 and

contrast phantom (Fig. 6.3.1)

(c) 16-iteration SAS, and (d) 1-

Fig. 7.3.2 Display of the central part of the low contrast phantom (Fig. 6.3.1)
reconstuucted fiom 800 projections, by (a) 4}-iteration and (b) by i-iteration MLS.
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(a) (b)

Fig.7 .3.3 Display of two full images reconstructed from 200 projections (windowed the
same as Fig.6.3.1b), by (a) 8-itelation SAS and (b) 1-iteration MLS. Image fearures in (a)

are twisted while those in (b) are uniformly rcconstructed.

'rtffi',

Fig. 7.3.4 The thin wire images (See Fig.
transform for the first three iterations of SAS.

'ffi,,,,

::::i:::i:::
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6.2.1) and their corresponding Fourier



Fig. 7.3.5 The central part of the reconstructions by 1-iteration RPS. The top two ale

from 800 projections while the bottom two arc fiom 200 projections.
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Fig.7.3.5 shows four sample 1-iteration reconstructions by RPS. The top

two are from 800 projections where one ordering may produce a good

image (a) while the other may not (b). The bottom two are from 200

projections; both hardly match the visual appearance of the 1-iteration MLS

version as shown in Fig. 7.3.1(d).

Tests with the bar pattern phantom (Fig. 6.2.6) also confirm that SAS is

relatively faster in reconstructing a high contrast object than a low contrast

one. Iterations with a smaller number of projections converge faster than

those with larger numbers. For RPS, the performance for a larger number

of projections is relatively better.

7.4 Test with real data

These tests employ the data scanned from objects COMPLEX and DEW
(see Fig. 4.2.1b and c), by a y-ray cr [wowk]. Fig.7.4.1 and Fig.7.4.Z

each show six reconstructions for coMpLEX and DEW, respectively. In

each figure, (a), (b) and (c) are from 1,2and  -iteration MLS, respectively,

while (d), (e) and (f) are the corresponding three reconstructions from SAS.

1-iteration MLS produces visually the most promising images for both the

objects. (2 and  -iteration's results appear sharper, but also noisier). The I

and even Z-iteration SAS cannot fully reconstruct the object's features. The

edges are spread and deformed. Hardly had an object gotten adequately

reconstructed (as shown in Figs. 7.4.1d and 7.4.2d by 4-iteration), when its

image features start appearing much noisier. We found that SAS is also

relatively faster for reconstructing high contrast objects in a smaller image

matrix than it is in a larger matrix. For example, for COMPLEX and DEw
(64x64, 100 projections), 4-iteration SAS is almost adequate and the images

look close to those of 4-iteration MLS. But for the bar patterns (see Fig.
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Fig.7.4.1 Reconstructions of the object COMPLEX fi'om 100 projecrions. (a), (b) and
(c) are by 1,2 and 4-iteration MLS, respectively. (d), (e) and (f) are the corresponding three
reconstructions by SAS, in parallel to (a), (b) and (c) respectively.
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c

Fi9.7.4.2 Reconstructions of the object DEW from 100 projections. (a), (b) and (c) ar-e

by 1,2 and 4-iteration MLS, respectively. (d), (e) and (f) are the corresponding three
rcconstructions by SAS, in parallel to (a), (b) and (c) r'espectively.
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Fig. 7.4.3 The noise standard deviation inside (a) region 1 and (b) region 2 i1 object
COMPLEX (see Fig. 4.2.1b) versus the iteration number of MLS and SAS.
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'7 .2-I0a, 512x512,800 projections), 16-iteration SAS is not enough, although

in both situations the sampling criterion Eq. (5.16) was satisfied.

For COMPLEX, we plot in Fig. 7.4.3 the noise standard deviation (SD)

measured inside (a) region 1 and (b) region 2 (see Fig. 4.2.1b) versus rhe

iteration number. We found that SAS produces unanimously greater noise

than MLS in region 1. In region 2, the sD of sAS, oscillating versus

iterations, is always larger than that of 1-iteration MLS.

We also compared MLS to RPS by doing a sample of l-iteration RpS

reconstructions. Fig. 7 .4.4 shows 3 images of COMpLEX, (a) is from MLS,
(b) and (c) are randomly picked up from the RPS samples. One sees that

while (b) is about the same as (a) in visual appearance, (c) is much inferior
to (a). Fig. 7.4.5 shows the plots of noise standard deviation measured in the

2 small regions in Fig. 4.2.rb, for a sample of l0 images by RpS. Also
plotted, as horizontal lines, are the two values of MLS, each for one region.

Clearly, RPS is more noise prone than MLS.

7.5 Discussion and conclusion

The key disadvantage of SAS is that it cannot reconstruct object features

uniformly and symmetrically. The features are twisted severely in the early

stages of iterations. It is also very hard to reconstruct a low contrast object,

especially from a larger number of projections. (For example, for g00

projections, 40 iterations are still far from enough.) Even if a uniform
reconstruction is obtained after many iterations, it cannnot show a low
contrast detectibility matching that of 1-iteration MLS. Although RpS

outperforms SAS dramatically for some orderings, it is not a reliable
scheme, let alone being able to produce intermediate multiresolution
reconstructions at multilevels as the MLS does (see Figs. 3.8 and 3.11). Also
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Fig. 7.4.4 Reconstructions of object COMPLEX from 100 projections. (a) is by 1-

iteration MLS. (b) and (c) are picked up from a sample of 1-iteration RPS reconsûuctions
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Also plotted in horizontal lines are the two values, each for one region, measured û.onr the
reconstl'tlctions by MLS. Note that since RPS procluces less uniform l'ecollstlrctions than
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note that RPS t¿kes time to permute projections, which is not negligible for a

large number of projections such as 800.

In conclusion, MLS not only outperforms CBP in many situations as we

, fested in the last three chapters, but also improves the performance of ART
.

itself as seen in this chapter. At this point, we conclude that MLS is superior

to all of the current CT reconstruction techniques, particularly for imaging

low contrast objects from smaller numbers of projections.

References

, Herman G. T. and L. B. Meyer, Algebraic reconstruction techniques can be made

computationally efficient IEEE Trans. Med. Imaging 12,600-609, 1993.

' þounsfield G. N., A method of and apparatus for examination of a body by radiation such

as x or gamma ladiation. The Patent Office, London, Patent Specifrcation 1283915,1972.

Kuhl D. 8., R. Q. Edwards, A. R. Ricci and M. Reivich, Quantitative section scanning
using orthogonal tangent correction, J. Nucl. Med. 14, 196-200,19rj.

' McClean B. 4., T. R. Overton, T. N. Hangartner and S. Rathee, A special purpose x-ray
fan-beam CT scanner for trabecular bone density measurement in the appendicular skeleton,

; Pb's. Med. Biol. 35, 11-19, 1990.

' nathee S., Z. J. Koles and T. R. Overton, Image restoration in. cornputecl Íomography:
restr¡raÍiott oJ'experintenÍal CT images, IEEE Trans. Med. Irutgin¡g I 1, 546-553, 1992.

, Shepp L. A. and B. F. Logan, The Fourier reconstruction of a head section, IEEE Trans.

: Nucl. Sci. 21, 2l-43, 1974.
l

a, van Dijke M. C. A., Iterative methods in image reconstraction, Ph.D. dissertation,
, Rijksuniversiteit Utrecht, Utrecht, The Netherlands, 1992.

Wowk 8., Computed Gamma Ray Tomography, Lab report, Department of Physics,
University of Manitoba, Winnipeg, Manitob a, Canada, 1992.

152



apptication s 
"t 

nnllïfrä- l" c T Reconsrru crions
and Recent Progress in CT

In this chapter, we first discuss the applications of MLS ART to diagnostic

x-ray CT and other kinds of CT reconsfructions in medicine. 'We then briefly
discuss recent progress in CT research and development including CT
applications to both basic and applied science research. The MLS scheme can

be readily applied to almost all of the recent CT models for improved SNR

since in these machines the projection data is limiæd.

8.1 Dose reduction in x-ray CT

In section 3.6, we suggested that patient dose control in CT is possible if
projections are directly taken along the MLS directions and the

reconstructions are done at each consecutive MLS level.

The experimental tests made in chapters 4, 5 and 6 further confirm that

MLS can reduce patient dosage in two ways, in comparison to CBp: 1. when

the number of projections is taken to satisfy the sampling criterion, reducing

the number of projections by at least a factor of 2 can preserve the spatial

resolution; 2. in situations where a limited amount of projection data can be

taken, MLS also needs smaller dosage for low contrast object detections.

For case 1, dose reduction can be made in situations where spatial

resolution is of prime concern. For example, in diagnostic CT for imaging

small details such as the spine or middle ear and bones such as the temporal

bones [Morgan]. If the number of projections reduces from 800 down to 400

projections, then 2 to 3 iteration MLS is required. High spatial resolution CT

is also important in the initial assessment and follow-up of patients with
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infiltrative lung disease, for which clinical practice has been limited to some
extent by concem over the high dose delivered to the thorax [Mayo].

In cr, there is a relationship between patient dosage (a), detector (or
beam) width (w), noise standard deviation (o) and slice thickness (or beam
height t) derived by Brooks and Di Chiro U9761:

D__!._
wt o'h

For a fixed beam height tt and beam width ¡,, reducing the standard
deviation o. by 2 will quadrupre the dosage D. on the other hand, if the
standard deviation o is kept unchanged, reduction of w for a twoford
improvement of resolution is at the expense of an eightfold increase in dosage.
This means spatial resolution has the strongest effect on the patient dose (if ø

is chosen to vary in proportion with 1a,, thefl resolution enters even as a fourth
power [Brooks, Barrett]). By using MLS, the improvement in spatial
resolution is equivalent to using a smaller size of detector, which technically
may be difficult to accomplish.

For case 2, when a limited amount of projection data can be taken, MLS
will produce lar-eer SNR than CBP. Further, the smaller the number of
projections, the larger the ratio of tlle MLS dose efficiency over that of cBp.

8.2 More applications of MLS ill medicine

MLS can also find applications in medicine in the following areas:

1' Quantitative x-ray CT, particularly bone densitometry [McCIean, Goodsitt,
Holdsworth, Robertsoir].

2. CT angiography or DSA using CT [Henri, Stehling, Napel].
3. Emission compured romography (pET, spECT) [Herman].
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4.Tomographic therapy [Mackie, Brahme, Redpath, Lewis, swindell,
Bortfeld, Webb, Galvin, Iwamotol and inverse treatment planning [Holmes,

Gokhalel.

5. CT fluoroscopy fKatada, Hiraoka].

For topic 1, the reconstruction accuracy of the attenuation coefficients is
important and information is quantitatively extracted after processing the

attenuation map.

For topic 2, imaging blood vessels of small diameter also requires that CT

images have higher spatial resolution and accuracy.

For topic 3, emission tomographic reconstruction can obtain the greatest

benefits from the new technique for its inherently limited data and for that

CBP cannot be employed at all. Recently, Herman [1993] used a projection

access order for ART (which is inferior to MLS) applied to pET

reconstruction. He found that ART can be made to match the performance of a
standard expectation maximization (EM) technique but at an order of
magnitude less computations. We expect MLS will provide even better

results. Researches to compare MLS with all conventional emission

reconstruction techniques such as the EM, the MLE (rnaxirnurn likelihoocl

estimation) zir-rcl the MAP ( maxir-r-rufiraposÍeriori. ) can be macle basecl on t¡e
physical criteria.

Topic 4 covers new research and clevelopment areas ill racliotherapy

[reatment planning by cr. Tomographic therapy, as its name implies, is for
radiation treatlrrent lnade at a number of orientations. The treated volume can

be reconstructed by measuring the transmittecl rays of treatment beams. A¡
obvious aclvantage of this technique is to monitor the patient alignment during

the treatment. Details of the technique have been cliscussecl by Henclee t19951.

Recently, a therapeutic cr, called cr-poRT, I-ras been developecl ancl
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marketed by Toshiba. It was claimed to allow extremely accurate treatment
planning and to fully replace the conventional x-ray simulator [ogino].
Inverse treatment planning, on the other hand, reconstructs the dosage

distribution itself instead of the rinear attenuation coefficients.

For topic 5, an important potential application of MLS lies in cT
fluoroscopy [Katada, Hiraoka], a relatively new concept which has been
demonstrated in 1994 and 1995 Radiological Society of North American
(RSNA) meeting. A 1-second 3rd-generation scanner has been equipped with
a slip ring such that a continuous stream of projections are available. These
projections are submitted to a pipeline of 6 independent CBp processors to
reconstruct up to 6 irnages/second (reconstruction time per frame < 0.2s) (The
technique, which allows real time viewing, is used in CT guided interventional
procedures such as tumor location using needels, etc.) The MLS ART
processor may be manufactured to replace the CBP ones to further reduce the
reconstruction time by using smaller number of projections without loss of
image quality (images of multi-resolution level are available).

Further advantages of MLS

MLS does not need normalization clue to the fact that it modifies the

reconstruction to conform to the projection data ateach step, while CBp does

need normalization to scale the very large pixel values (since the projection
data, after being filtered, is further backprojected) down to the CT# range.
This suggests that using MLS, the calibration and eA work for CT scanners

can be reduced.

Non-linear corrections such as the beam hardening effect can be made
during the iterative MLS reconstruction (this can be a future research topic).

8.3
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Kijewski 119181 once proposed an efficient iterative correction method for

multicomponent objects such as the human body. In this method, a
preliminary reconstruction is made using the single component (such as water)

beam hardening correction algorithm which is detailed in [Barrett]. This

eliminates gross shading and cupping artifacts. The resulting image is then

subjected to a threshold (any attenuation coefficient larger or smaller than

some certain value) or other test which simply determines those parts of the

body that contain bone. The algorithm then corrects the projections to account

for the different spectral absorption properties in these regions, resulting in an

essentially artifact free image. Now we can employ MLS to do this iterative

correction more efficiently. (The l st order correction can be made by 1

iteration. Each higher order can also be made in 1-iteration.) Other artifacts

such as those streaks generated from opaque objects (surgical clips, metal

implants, dental fillings etc.) can also be minimized by removing rays that

pass through or gtaze them. The corrections on CT using CBP now are made

prior to the reconstruction, and hence are less precise.

XLecent progress in CT and its applications

Much research and development in CT now employs synchrotron r¿icliation

(SR) for its excellent properties of hi,qh monochromaticity (elirninating beam

lrardening effects), high intensity ancl tunable energy [Momose ,Itai, Nagata,

Diln-ranian, Zeman, Wu] .

The rnost important progress in SR-CT is the cleveloprnent of pliase-

contrast x-ray (PCX) CT [Mornose] which is an extension of the phase-

contrast optical CT fNoda and Cheng] to the x-ray energy range. It provicles

sectional ima-ees of organic rnaterials with liigh contrast. For organic

8.4
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materials, the common attenuation x-ray CT produces little contrast. Using

PCX-CT, the phase shift (refractive index) integral (in addition ro the

attenuation integral) is measured across the object with an interferometer.

These phase shift integrals taken along different directions were fed into a
reconstruction algorithm to produce a phase-contrast tomogram. Highly

monochromatic synchrotron radiation x rays with 0.lVo FWHM (full width

half maximum, -407o in clinical x-ray CT) make the phase shift measurement

feasible.

The chemical shift of an x-ray absorption edge (for example K edge) of an

element can also be measured by fluorescence detection with higher

sensitivity than that by absorption measurement tlidal. SR x-rays are used to

excite the chemical state of the element. The emitted x-ray fluorescence is

detected and then reconstructed (similar to emission computed tomography).

The SR source also allows K-edge subtraction of iodine and other high-Z

elements for digital subtraction imaging using CT lZeman, Wul. Dual energy

scans, one just below and tl-re other just above the K-edge of iodine have been

taken and then subtracted. The difference image is basically the iodine

attenuation at the K-eclge. This is also called single element CT in-ra_eing or,

dual photon absorption-retry (DPA) fFryer]. Naturally, with ¿ìrì energy ru¡able

source, multiple elements can be irnaged one at a tinie by SR-cr.

In all of the CT reconstructions using an SR source to clate, a lirnitecl

number of projections have been taken. For example, in [Momose], only 100

pl-rase-sl-rift projections were taken, but the in-rage was reconstructed on a lar-ge

512x5I2matrix. In ftrlagata], the image size is also 512x512but the number

of projections is just 200. In [Iida], the irnage size is 65x65 and the pr-ojection

number is 40.
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High energy x-rays (bremsstrahlung) of a few Mevs produced from

electron linear accelerators have also been used for large and dense object

scanning [Kanamori, Isumi], but the projection data are also limited. In

[Isumi], a 1024x1024 image is reconstructed from just 900 projections.

CT models using heavy particles have also been developed. Proton CT

was shown to have more dose efficiency than x-ray CT to obtain a tomogram

of better low contrast resolution. Different properties like energy loss

[Hanson], nuclear scattering centers [Duchazeaubeneix] and electron density

lTakada] have been measured and reconstructed. Neutron CT [Overlay,

McFarland, Pfister] was also built to take advantage of the neutron's unique

scattering and absorption properties to study structure and flaw development

of materials. Although x-rays are poorly absorbed by light elements, low

energy neutrons can interact strongly with light elements. Further, due to the

details of nuclear structure, a small difference in atomic number between

nuclei can result in interaction properties differing by several orders of

rnagnitude, thus offering the potential of tremendous increases in detection

sensitivity. Proton or neutron CT machines are also limited in their ability to

take many projections. In [Takadaf, a 174x174 image is reconstructed from

180 projections. In [McFarland], a number of 512x512 images are

reconstructed from only 90 or 45 projections, which is far less than that

required by the sampling criterion.

Other types of CT models using different kinds of radiation or interactions,

such as infrared [Kassab], ultrasound [Jago], laser [Faris, Kawata], x-ray

diffraction [Harding] and biomagnetics [Ramon], etc., are either developed or

under investigation. Scattering x-ray CT has been designed to reconstruct the

electron density of objects since the Compton cross section is directly

proportional ûo elecfton density. Dual energy x-rays were also used in CT for
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the classification of tissue types by decomposing the attenuation coefficients

from Photoelectric and Compton scattering and displaying them in a2D space

[Macovski]. Dual energy CT scans combined with two additional physical

quantities of an MRI scan, such as the proton relaxation times (T1 , T2) may

lead to finer discrimination amongst normal and pathological tissues in a 4D

space [Gordon]. CT scanners using different techniques such as film [Segal],

nuclear spectroscopy [Martz], and video [ou] have also been developed.

CT has evolved to a new stage where many applications have been found

besides the medical applications. The inner structure of any object can be

nondestructively viewed as long as an adequaüe radiation source and detection

sysûem is available. For example, in nuclear physics, CT has been used to

determine the relative amount of light collected as the result of the deposition

of a known amount of energy at a point within the volume of a scintillating

detector [Dowell]. In [Dowell], muons traverse many well defined paths

through the scintillator. A CT technique is used to produce 3D images of the

nonuniformities in light generation and collection. CT has also been applied to

evaluate radioactive objects and materials [Sawicka, Goto, Gould] such as the

ceramic reactor-fuel pellets, the nuclear reactor assembly [Kalos].
Applications in geophysics [Kawamura], astronomy [eiu], plasma physics

[Hino], material science and nondestructive testing [Phillips, Bossi, Mafiz],

ionospheric investigation [Raymund], environmental sciences [Brown,
Lindgren] and many other areas have been found. There are also experiments

applying CT technique for temporal observation of rapidly translating or

dynamically deforming objects lZoltanil. Recently, there is a new and

important imaging technique developed in materials science [Wolfe]. It may

be adapted to become a phase contrast acoustic CT or phonon CT method.
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Conclusion

In conclusion, except for clinical x-ray CT where a large number of
projections can be easily taken by its very specific design, almost all other CT

applications are limited in the amount of projection data. Usually data

acquisition takes too much time or the technique and setup have inherent

limitations. In these cases our new MLS reconstruction technique can be

readily applied for improved SNR. To date, almost all the non-medical x-ray

CT's use CBP for image reconstruction and strong streak artifacts can be seen

in the images of many publications, as in phase contrast images [Momose] and

in neutron tomograms [McFarland].
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Chapter 9 Discussion, Conclusion and Future Work

In this chapter, we first summarize a conclusion of the thesis work. After

that, we propose some topics for future studies.

9.1 Discussion and Conclusion

Morgan t19831 (also see [Brooks 1976b]) once pointed out that there are

two major limitations of CBP: 1. bandlimiting and 2. interpolation, both

affecting the spatial resolution. Although the backprojection can be made

without interpolation (at the cost of reducing reconstruction speed), the

bandlimiting cannot be improved since CBP itself is an integration method

and it suffers from bandlimiting in digital situations. He also indicated that

tlrere are two major limitations of ART: 1. slow speed and.2. possible lack of
convergence, both affecting the image quality and speed. We see that with the

advent of new MLS technique, both the drawbacks of ART are addressed.

The MLS ART may be applied to solve other large non-tomographic linear

systems when the unknowns are also similarly intercorrelated. For example, it
Inight be applicable for solving multi-body interaction ploblerns in quantum

mechanics. It rnay also be useful in the design of large electronic circuit

networl<s and control systems, etc. The solution can be initially coarse ancl

then refined gradually.

It is worth noting that although there are some parallel implernentations of
ART [Fitchetti which can also appleciably increase the computational speecl

of classical ART, they can not produce image qualities matching those

produced from the MLS ART in noisy situations. Unless the parallelism is

169



also confined to pairs of projections approximately 90o apart, the correlations

between neighboring projections will still exist.

In this thesis we proposed a novel algebraic image reconstruction

technique for computed tomography in which the projections are affanged and

accessed in a multilevel scheme (MLS). Extensive tests using various sources

of data confirmed that the scheme outperforms the conventional convolution

backprojection (CBP) method, by producing a larger MTF when the number

of projections is taken above half of that required by the sampling criterion

and a larger SNR when the number is taken below that half. It also improves

the performance of ART itself, in both the computational speed (by more than

10 times) and the physical image quality (both the high and low contrast

detectibilities).

9.2 Future work

Future work can be classified into three different categories: 1) further

comparison study between CBP and MLS by employing more sophisticated

irnage quality criteria and using real data, 2) furtl-rer CT reconstruction

research topics based on the MLS tecl-rniqr-re itself, and 3) the irnplementation

of MLS on modern fan bean CT scanners.

9.2"1 Sophisticated physical rneasures and real data determination

Tl-re comparison studies made in chapterc 4-7 can be further extendecl by

ernploying more sophisticated physical criteria. These measures are either the

spatial frequency depender-rt ones, or quantities based on the different models

of tl-re cletection process. From the measurecl MTF, b{PS (as in Cliapter- 5),
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and/or the visual spatial frequency response function (vRF), the more
complicated measures Iisted below can be calculated.

Spatial frequency dependent measures These measures include
signal-to-noise ratio (sNR), the derective quantum efficiency (DeE) and
noise equivalent quanta (NEe.The .sNR(,f) is defined as fMunro]

s¡¿Rr(/) _s'(fl.urp'U)
NPs(/)

where s(/) is the sinusoidally varying unit contrast input signal [Doi,
Nishikawal and S(/). MrF(f)is rhe output signal.

The DQE(/) is a measure of the efficiency of a real detector compared to
an ideal detector which is capable of detecting all of the quanta and adding no
additional noise to the image. It is defined as [Munro, Barrett]

DQE(Í') = ISNR,,, (Í') I SNRù,(f\,
(e.2)

considering ^lNR,,(f')=s(/)lN for an x-ray beam of N incicrent quantas

which obeys Poission statistics, Eq. (9.2) becomes

DQE(.f) = MrFz (.f) tLN.NPS(.1.)I

The noise equivalent quanta (lt{EQ) is rhe multiplication of DeE with the
number of input x-ray quanta N, or

NEQ(f) = N . DQE(.Í') = MTF' (.f) t Nps(.f)

the

the

(e.1)

(e.3)

Measures based on the detection process models The relationship
between the physical and visual image quality was investigated by Loo et al.
[1984] for the task of detecting nylon beads in radiographs. They calculared
the physical image quality according to different models of the detection
process. The results of the work indicate that human detection performance
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most closely resembles that of a sub-optimal statistical decision process whose

SNR is in the form of

sNR2 _ rznlir'tt">'vnr'?Q)du)2
2"Ip.qg çu¡vni, @)) <s,,,(r)r*o\, (e.4)

where {(r) and s,,,(u)are the signar and noise power spectra, respectively

and vRF(z) is the visual response function of human eyes [carlson].
Experimental determination of physical measures Tests can be further

made using the real projection data taken from clinical x-ray CT. picker

International [Picker] kindly provided scan data from a series of CT quality
assurance phantoms. Therefore all the quantities can be precisely measured or
calculated.

9.2.2 Further cr reconstruction research topics

Besides those applications MLS can find in CT reconstructions (see

sections 8.2 and 8.3) such that corresponding researches can be carried out,
some further research topics based on MLS are outlined as follows:

I . Apply MLS for reconstructions using incomplete data (less than l g0o

view, nlissed rays or projections, pal't of an object scanned etc.) which
occasionally happens in inclustrial tomography. In these situations, classical

ART produces better results than CBP. We expect MLS-ART can do even

better work.

2. Incorporate a priori information for the reconstruction. The information
can be obtained either from an adjacent slice of the cross section to be

reconstructed, or from an estimation of the information content of projection
data using some modeling techniques, such as those in [Soderstrom, Gokhale].
MLS can then start with the projection containing the largest high frequency
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information. A different way is to take a few projections first and then do the
reconstruction. Further projections can then be selectively taken. Henri et al.
U9931performed an analysis of the projection geometry for few projection
reconstructions of sparse objects. Their interests lie in reconstructing cerebral
vasculature from a limited set of digital subtraction angiography (DSA) data,
which remains the preferred method for imaging blood vessels.

3' Apply 'Wiener deconvolution of the point spread function (pSF) of the
"reconstruction operator" [Dhawan] for MLS ART. This will further improve
the high and low contrast detectibilities of CT reconstructions, especially from
a limited number of projections. Since the PSF of CT is not quite space
invariant [Banett], those methods used by Rathe e 119921for non-linear CT
image restoration can be readily employed.

4' Apply MLS ART to the modern spiral/helical CT and cone beam CT. In
the past several years' the major thrust in CT has been to improve the
reconstruction algorithms for spiral/helical CT [Wang, Vannier, Kalender] and
cone beam CT obtained using area detectors fSmith, Wang 1gg3,Lee, Chen].
The primary advantage of spiral/helical CT is its capability of scanni ng a
complete anatomical volume in a single breath holcl, ensuring slice-to-slice
contiguity. spiral/helical cr Iequires that planar projection sets be pr.ocluced

from raw helical scan clata via interpolation. We can apply the MLS version
for fan beam geometry as described below to do helical CT reconstructions
using the planar data after the interpolation. The MLS ordering can also be
directly used for cone beam reconstruction using ART or other techniques.

5' Feasibility investigation of CT mammography. The typical skin dosage
for a routine mammography is -450mRad (2exposures), and the x_ray beam
energy is 20KeV. For this energy, (+)" : 0.4942 cmrl g and

<ff1,:0.5026 cm'tg. combining Eqs. (5.5), (5.6) and (5.7) wiil yietd
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@ = 6.1lx10e D, I cmz

For Q -0-45Rad, the incident photon fluence @=2.75x10e /crzr. Suppose

the scanning slice has a diameter of L:1 \mm. (pL=7.i2) For a reasonable

spatial resolution, we assume thickness of h:I.\mtn, and the detector width
w:7.0mm, then a totâl of nr=@hv,=2.75x10i photons can be used and the

detected photons will be

n=,toc-H' =2.75x 107 x5x l0-a = 1.3g x 103

If we expect the uncertainty of detected photons <-lTo (in the clinical CT
level), then marginally only 1 projection can be taken. Therefore it is worth to
investigate how the spatial and low contrast detectibilities varies with different
number of projections, or different number of x-ray quanta per detector
reading, under the constraint of a fixed total dosage. Higher energy x-rays
may also be used to improve the noise statistics at the cost of reduced contrast.

9.2.3 Implementation of MLS in fan beam cr scanners

The MLS scheme so far is only appliecl for parallel projections. In moclem
CT machines inclucling spiral/helical ones, fan beams are commonly used for
fast ima-eing. The scanning generally covers 0o-360o. One way of usin_e MLS
is to remap the divergent projections into parallel ones. Since t¡e remapped
data also spans 0o-360o, one must first employ the MLS scheme to reorcler the
projections in between 0o-180o and then to those in between l g0o-360o.

We can also consider rearranging the fan beam data itself. The direct
employment of MLS won't work efficiently for ordering projections. For
example, in the Siemens Somotom-Plus scanner, the fan beam opening angle
is 42-5o, the minimum intersection angle of rays in two projections 90o apart
can be as low as 47.So(see Fig.9.l). To avoid this problem, one idea may be
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as follows. For a pair of projections 90o apart, instead of updating all the rays

in one projection and then all those in the other, we can update, one ray in one

projection and one in the other, with the two perpendicular to each other. For
instance, in Fig.9.1, the update sequence is: ray 1 in 0oview and then ray I in
90o view, and ray 2 in 0o view and then ray 2 in 90o view... The update

continues for rays in the next pair of projections: 45o and 135o. An even better
way is to update all rays having the same index number, each from one

projection, in the MLS ordering. Suppose there areatotal of R rays in one

projection, then the update will take R rounds to update the projections in 0o-

180o. In one round, the situation is exactly the same as that for parallel
projections. A more efficient way is to update rays in bundles since a bundle
of rays covering a small angle is still reasonably close to parallel.

Fig. 9.1 A schematic diagram for fan-beanl cr projections.
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Appendix The Computer Source Codes

The source codes listed in this appendix are written in Pascal (for Sun

workstations) and used throughout the thesis. They consist of nvo parts. Part

I are the procedures for image reconstruction for both the MLS ART and

CBP, which includes projecting an image for a set of projection data,

projecting and reconstructing one projection, adding Gaussian noise to a

projection etc. Part II are the codes for constructing test phantoms in

Chapter 5. In each part, we first gave a short explanation for each

procedure (their objective, their typical input and o,utpur plus an additional

note ). The computer codes are listed afterwards.
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Part I

procedure FultProjection(v ar vsize, hsi ze: inæger) ;- 
Objective: Futiprojection of an input image to get a set ofproþtion data.

Inpït æimageim-of size 512x512(vsi{e xhsize ) read in from an extemal text file.
OûtpuC a total of nproj projections stored io thg an-ay ptheta, *ith its weight^ mafix snoiø-in ttrð anay W, where k is the projection index and j is the ray

index.
Noæ: Linear inærpolation is used when doing the projection.

procedure OneProjection(projnum : integer) ;' Objective: Get õne prqjèctiôn (i.e. repioþtion) from an intermediaæ ART reconsbuction.
Infut the projectiôn index pìojnum an¿ Ure image irn reconstucted from the previous

projections.
ouþuü tlre single projection data stored in the ary"y ptrytuq wilh k . Prolnym .

Notè: Linear ñteipoÏation is used when doing theprojection. Qe ry?ge iln will be

updated in the procedure inndification below,by comparing this projection wiül
the actual proþtion data stored in the anay ptheta.

procedure imodifi cation(projnum: integer) ;- 
Objsctive: update the image un oneprojection at a qme ÞV ênT.
Inpït the piojection data-obtained fiom the procedure OneProjectinn (projnwn ) above.

Output: the updated image im bY ART.
Notè: Lineai interpolation is used when doing the image modification.

procedure ReconsOneProj (projnum : integer);' 
Objective: backprojecti-on of one projection r4{exed proinury to the iTage rrn by CBP.
Inpït: the projútiõn data after convblution filration using the procedure

C onvF ilt e r ing P roj e c t ion below.
Output the updaæd image im by CBP.
Notã: Linea¡ inærpolation is used when doing the backprojection.

procedure ProjectionData;- 
Objective: Full projection of an image im to get a set of projection data.

Input: an image im of size 512 x5l2 (vsize x hsize ).
Oûtput: a total of nproj projections stored in the an?y p , ryiq. is_ weight matrix strored' 

in the array v,,- wheie k is the projection index and d is the r9Y index.
Note: this is the same procedure as the FullProjection above except for th_at precise

projection instead of linear interpolation is used when doing the calculation.
It is slower although more accurate.

procedure On eProjectionAndModi fi cati on (k : h t ggÐ ;^ Objective: Get óne projection (i.e. reprojection) from an intermediaæ ART reconstruction
im and update rrn using this projection.

Input: the projechon index k and the image in reconsbucted from the previous
proJectlons.

Output: the updated image im by ART.
Noé: ûris is ihe procedure combining both the OneProjectign. an! imodificarion above.

Further, þrecise projection instead of linear inærpolation is used when doing the
calculation. It is slower altltough more accurate.
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procedure Recon struction OneProjection (k : in teger) ; 
-^ Objective: backprojection of a-single projectión indexed ft to the image im by CBP.

Input ttre projection data after convolution filfation using the procedure

ConvF ilteringP rojection below.
Outpuc the updated image rln by CBP.
Notè: this is the same pr-oceduraasthe FullProjection above exceptfor ttrat precise

projection instå¿ of linear interpolation is used when doing the calculation.
It is slower although more accurate.

procedure AddPhotonNoise;- 
Objective: Add Gaussian noise to a set of projection daø.
Input the pseudo proþtion data calculated either from the procedureFullProjection or

from the procedure ProjectionData.
Output the noisy projection data to simulate real CT data.
Noæ: See Section 5.2for more detail.

procedure MlSProjectionOrders;- 
Objective: calculâæ the MLS orders for a total of nproj projections.
Input the number of projections nproj .

Oûtput the MLS ordêr of the nproj projections stored in the lD array projord.
Note: the algorithm is detailed in

H. õuan and R. Gordon, A projection access order for speedy convetgence of
algebraic reconstructions techniques (ART): A multilevelscheme (MLS) for
computed tomography, Phys. in tr'te¿. and Biol. 39, 2005-2022,1994.

procedure Con vFilteringProjecti on (fB AN D : in teger) ;- 
Objective: Convolutión filration (fBAND:l) of a setof nproj projection daø by CBP.
lnput: a set of nproj projections data stored in the ryay p _
Oùtput: the set of npio¡ þrojections data after convolution filration. They are stored in

the same anay p (replace the input).
Note: See Section 2.3.1 for more detail.

Computer codes:

{Full Projection of an input image to get a set of projection data. Linear interpolation is used }
procedure Ful lProjection (v ar vsize, hsize : in teger) ;

var
theta, costh, sinth, f, pthmax, pthmin, total: real;
i, j, k, t: integer;
dFile: æxq

begin- reset(dFile,'input.dat'); {readinputimage}
vsize::512;
hsize::512;
for i :: -vsize div 2 to vsize div 2 - I do

for j :: -hsize div 2 to hsize div 2 - 1 do
read(dFile, imn[i, j]);

close(dFile);
Pthmax :: -maxint;
pthmin :- maxint;

{initialize the projection and the weight arrayt.

181



{pt}reta is the actual projection ¿uray,

{pthetaq is the array store temporary projection
for updating)
fori:-0tonproj-ldo

for j :- -hsize to hsize - I do
begin

ptheta^[i, j] :- 0;
pthetaq^[i, j] :- 0;
w^[i, j] ::0;

end;

fork:-0tonproj- I do
begin

{projection angle}
if nproj mod 4:0 then

theta :- (k + 0.5) * 180.0 / nproj
else

theta :: k * 180.0 / nproj;
costh :: cos(theta * pi / 180);
sinth :: sin(theø * pi / 180);

for i :: -vsize div 2 to vsize div 2 - I do
for j :: -hsize div 2 to hsize div 2 - 1 do

if (theø:0) then
begin

ptheta^[k, i] :: ptheta"[k, i] + im^[i, j];
W^[k, i] :: W^[k, i] + l;

end
else if (theø : 90) then

begin
ptheta^[k, j] :: pthetanlk, j] + im^[i, j];
Wn[k, j] :: W^[k, j] + 1;

end
else
begin
tr::i*costh+j*sinth;
if (tr >:0) then

t:: trunc(t)
else

t :: trunc(tr - I );
ptheta^[k, t] :: ptheta"[k, t] + im^[i, j] *

(1-abs(tr-t));
ptheta^[k, t + 1] :: ptheta^[k, t + 1] +

im^[i, j] * abs(tr - 0;
W^[k, t] :: W^[k, t] + (l - abs(tr - t));
w^[k, t + l] :: W^[k, t + 1] + abs(tr - t);

end;
end;

{Get one projection (reprojection), indexed as proinum., from an intennediate ART
reconstruction. Linea¡ Interpolation is used. )
procdure OneProjection(projnum : integer) ;

var
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theta, costh, sinth, f: real;
i, j, k, ü integer;

begin
ft ;: proþum;
ifnprojmod4-0then

theta :- (k + 0.5) * 180.0 / nproj
else

theta :: k * 180.0 / nproj;
costh :- cos(theta * pi / 180);
sinth :- sin(theta * pi / 180);

for t :- -hsize to hsize - I do
pthetaq^[k, t] ::0;

for i :: -vsize div 2 to vsize div 2 - I do
for j :: -hsize div 2 to hsize div 2 - I do
if (theta - 0) then

pthetaq^[k, i] :: ptheøq^[k, i] + im^[i, j]
else if (theta : 90) then

ptheøq^[k, j] :- pt]reøq"[k, j] + im^[i, j]
else
begin

û:: i * costh + j * sinth;
if (tr >: 0) then

t :: trunc(t)
else

t :: trunc(tr - l);
ptheøq^[k, t] :- pthetaq"lk, t] +

im^[i, j] * (l - abs(tr - t));
ptheøq^[k, t + 1] :: pthetaq^[k, t + 1]

+ im^[i, j] * abs(t - t);
end;

end;

{Update the projection indexed as projnum by ART. Linear interpolation is used}
procedure imodification(projnum: integer);

var 
theta, costh, sinth, tr: real;
i, j, k, t: integer;

begin
lç 1: projnuml
ifnprojmod4-0then

theta :: (k + 0.5) * 180.0 i nproj
else

theta :: k * 180.0 / nproj;
costh :: cos(theta * pi / 180);
sinth :: sin(theta * pi / 180);

for i :: -vsize div 2 to vsize div 2 - I do
for j :: -hsize div 2 to hsize div 2 - | do
begin

if (theta:0) then
begin
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t::i;
t:: i;

end
else if (theta : 90) then

begin

else
begin

E:-i*costh+j*sinth;
if (tr >: 0) then

t:: trunc(t)
else

t:- trunc(t - l);
end;

if W^[k, t] o 0 then
im^[i, j] :: im^[i, j] + (ptheta"[k, t] -

pthetaq^[k, t])/ W^[k, t] * (1 - abs(tr - t));
if W^[k, t + l] o 0 then

im^[i, j] :- im^[i, j] + (ptheta^[k, t + l] -
pthetaq^lk, t + l])/ V/^[k, t + l] * abs(tr - t);

if im^[i, j] < 0 then
im^[i, j] ::0;

end;
end;

{Backprojection of one projection indexed asprojnum to the image rn by CBP.
Linear interpolation is used )
procedure ReconsOneProj (projnum: integer);

var
theta, costh, sinth: real;
i, j, k, t: integer;
t: real;

begin
l¡ ;: projnum;
if nproj mod 4:0 then

rheta :: (k + 0.5) * 180.0 / nproj
else

theta :: k * 180.0/ nproj;
costh :- cos(theta * pi / 180);
sinth :: sin(theta * pi / 180);

for i :: -vsize div 2 to vsize div 2 - I do
for j :: -hsize div 2 to hsize div 2 - I do
begin

if (theta:0) then
begin

end
else if (theta : 90) then

begin

t:-j;
t:- j;
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,,: j'
tr:: j;

else
begin

tr:: i * costh + j * sinth;
if (tr >: 0) then

t :- trunc(û)
else

t:- trunc(E - 1);

end;
im^[i, j] :: im^[i, j] + ptheta^lk, t] *
(l -abs(tr-t))+ptheta^[k,t+ 1] *

abs(û - t);
end;

end;

{Precise projection of an input image im to get a total of nproj projection daø. It is much

slower rirad tne inærpolatiòn method although more accuraÚe. )
{im: input image. -Global}
{p: projection data. -Global}
procedure Projecti onData;

var
theta,sinth,costh,abssinth,abscosth,oc,luc,btc, opl2,op23,halffre,fr: real;
op: ¿uray [..4] of real;
dw: array il..31 of real;
i,j,k,d,dstart,dmiddl e,n: in teger;

begin
for k ::0 to nproj - I do

for d :: -hsize to hsize - I do
p^[k, d] ::0;

for d :: -hsize to hsize - I do
vn[d] ::0;

fork:-0tonproj- l do
begin

theta :: k*pilnproj;
costh :: cos(theta);
sinth :: sin(theø);
abscosth :: abs(costh);
abssinth :: abs(sinth) ;

luc : - abs(abscosth-abssinth)/2;
btc :- (abscosth+abssinth)/2;

if (theta<:prl4) or (theta >3*pi/4) then
halffre:: I /(2*abscosth)

else if (theta<:3xprl4) or (ttreø>pi/4) then
halffre:: 1 /(2*abssinth);

for i :: -vsize div 2 to vsize div 2 - 1 do
for j :: -hsize div 2 to hsize div 2 - I do

begin
oc :: i*costh +j *sinth;
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opfi]::oc-btc;
op[2]::oc-luc;
op[3]::oc+luc;
op[4]::oc+btc;
op l2::abs(op[ I ]-oP[2]);
op23 ::abs(op[2]-op[3]);

for n:-1 to 4 do
begin

d::nunc(op[n]);
fr::op[n]-d;
if (oplnl>4) and (Þ:0.5) then

d:-d+l
else if (oplnl<O) and (fr<-0.5) then

d:=d-l;
vnldl::vnldl+1;
ifn:l then

dsørt{
end;
dmiddle:-dstart+l;

case vnldstart] of
begin

dw I I ]:: (dstart+O.5-op[ 1 ])xhalffre;
case vn[dmiddle] of
2: dwÍ21:: I - dw I t ] -(op[4] -dmiddle-O. 5) *halffre;

3: dw[2]::1-dw[l];
end;
end;
begin

0w t I I : : (op 1 2+(dstart+O.5-op [2]) *2) *halffre;

dw[2]:: 1- dw[1];
end;
begin

¿ w t t I : : (op I 2+ op23 * 2+(d start+0. 5 - op[3 ] ) ) 
*halffre 

;

dw[2]:: l- dwlll;
end;

end;
dw[3]::1 - dw[ 1 ]-dw[2];

for d::dstart to dstart+2 do
begin

p^[k,d] : :p^ [k,d]+dw[d-dstart+ I ]*im"Iii] ;

w^[k,d] : -w^[k,d]+dw[d-dstart+ I ] ;
vn[d]::0;

end;
end;

end;
end;

{Make one projection of the rpconstructing image by ARTSmd compare it to the

àctual projéctión data and then update the reconstruction. Precise projection is used. )
{im: input image. -Global}

t:

3:
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{p: projection data. -Global}
{pq: one projection data for updating. -Global }
procedure OneProjecti onAndM odifi cation (k: in teger) ;

var
theta,sinth,costh,abssinth,abscosth,oc,luc,btc, opl2,op23,

halffre,fr: real;
op: array [..4] of real;
dw: array [..3] of real;
i j,d,dstart,dmiddle,n: integer;

begin
theta :- k * pi/ nProj;
costh :- cos(theta);
sinth :- sin(theta);
abscosth :- abs(costh);
abssinth :: abs(sinth)l
bt,c : - abs(abscosth+abssinth)/2;
luc :- abs(abscosth-abssinth)/2;
if (theta<:prl4) or (theta >3*pi/4) then

halffre: : I /(2*abscosth)
else if (theta<:3xprl4) or (thetæpi/4) then

halffre:: I /(2*abssinth);
for i :- -vsize div 2 to vsize div 2 - I do

for j :: -hsize div 2 to hsize div 2 - I do
begin

oc :: i*costh +j *sinth;
op[1]::oc-bfc;
op[2]:-oc-luc;
op[3]::oc+luc;
op[4]::oc+btc;
op I 2: :abs(opI I ]-op[2]);
op23 : :abs(op[2] -op[3]) ;

for n::1 to 4 do
begin

d::trunc(op[n]);
fr::op[n]_d;
if (oplnl>{) and (fr>:O.5) then

d::d+l
else if (op[n]<O) and (fr<-0.5) then

d:d-l;
vnldl::vn[d]+1;
if n:l then

dstart::d
end;
dmiddle:=dstart+ l;

case vnfdstart] of
l: begin

dwI I ]:= (dstart+0.5-opI I ])*halffre;
case vn[dmiddle] of
2: dw[Z]: - I - dw I I ] - (oplal -dm iddle-0.5) *halffr e ;

3: dw[2]::1-dw[1];
end;
end;
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2: begin
dw I I ] : : (op I 2+(dstart+0.5-op [2]) * 2) *halffre;
dw[2]:: 1- dwlll;

end;
3: begin

dw I I ] : - (op I 2+ op23 * 2+ (d start+0. 5 - op [3 ] )) 
* halffre ;

dw[2]:- l- dwill;
end;

end;
dw[3]::1 - dwI I ]-dw[2];

for d::dstaf to dsta¡t+2 do
begin 

pg^[k,d]:-pq^[k,d]+dw[d-dstart+1 ]*im^[ij];
vn[d]:={;

end;
end;

for i :- -vsize div 2 to vsize div 2 - 1 do
for j :- -hsize div 2 to hsize div 2 - I do
begin

oc:- i*costh +j *sinth;

op[]::oc-btc;
op[2]::oc-luc;
op[3]::oc+luc;
op[4]::oc+btc;
op I 2::abs(opI I ]-op[2]) ;

op23 :-abs(op[2]-op[3] ) ;

for n::1 to 4 do
begin

d::trunc(op[n]);
fr::op[n]_d;
if (op[n]>:O) and (fP:0.5) then

d::d+1
else if (oplnl<O) and (fr<-0.5) then

d::d- l;
vnldl::vnldl+l;
if n: I then

dstart::d
end;
dmiddle:dsørt+ l;

case vnldstart] of
1: begin

dwI I ] :: (dstart+0.5-opI I ])thalffre;
case vn[dmiddle] of
2: dw[2]:: I - dw[l ]-(op[4]-dmiddle-0.5)"halffre;
3: dw[2]::l-dw[1];

end;
end;

2: begin
dwI I ] : : (op I 2+(dstart+O.5-op[2] ) 

x 2)xhalffre;
dwl2]:: l- dwll];
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end;
3: begin

¿l I I ] : : (op I 2+op23 * 2+ (dstart+O. 5 - op [3 ] )) 
*halffre;

dw[2]:: l- dwl1];
end;

end;
dw[3]::1 - dw[ 1 ]-dw[2];

for d::dstart to dstart+2 do
begin

if w^[k,d]>O then
im"tiji: -in^ [i j]+(p^[k,d]-pq^ [k,d])/w^[k,d] *dwld-dsørt+ I I ;

vn[d]:-0;
end;

if im^[i, j] < 0 then
imnli, jl ::0;

end;
end;

{Reconstruction one projection for CBP after the convolution filtration. Precise

backprojection is used )
{im: input image. -Global}
{p: projection data. -Global)
fioi:edure ReconstructionOneProjection(k: inæger);

var
theta,sinth,costh,abssinth,abscosth,oc,luc,bt c,opl 2,op23,
halffre,fr: real;

op: Íuray [1..4] of real;
dw: array [1..3] of real;
i j,d,dstart,dmiddle,n: integer;

begin
theta :: k * pi/ nproj,
costh :: cos(theta);
sinth :: sin(theta);
abscosth :: abs(costh);
abssinth :: abs(sinth);
btc : : abs(abscosth+abssinth)/2;
luc : : abs(abscosth-abssinth)/2;
if (theta<:pil ) or (theta >3*pi/4) then

halffre:: I /(2*abscosth)
else if (theta<:3xpl4) or (theta>pi/4) then

halffre:: l/(2*abssinth);
for i :- -vsize div 2 to vsize div 2 - | do

for j :- -hsize div 2 to hsize div 2 - I do
begin

oc :: i*costh +j *sinth;

op[ 1]:-oc-btc;
op[2]::oc-luc;
op[3]:-oc+luc;
op[4]::oc+btc;
op I 2::abs(oP[ I ]-oP[2]);
op23 : :abs(oP[2]-oP[3] );
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for n::1 to 4 do
begin

d::nunc(op[n]);
fr::op[n]-d;
if (oP[n]>=O) and (ft-.':0.5) then

d:-d+l
else if (oplnl<0) and (fr<-0.5) then

d:-d-l;
vn[d]:-vn[d]+1;
if n:l then

dstart:-d
end;
dmiddle:dstart+l;

case vn[dstart] of
l: begin

dwI I ]:: (dstart+0.5-opI I ])*halffre;
case vn[dmiddle] of
2: dwl2l:: I - dw I I ] - (op[ a] -dmiddle-O. 5) *halffr e;

3: dw[2]::1-dwlll;
end;
end;

2: begin
dw I I ] : : (op I 2+(dstart+O.5-op[2]) *2)*halffre;
dw[2]:: l- dwlll;

end;
3: begin

d w [ 1 ] : : (op 1 2+ op23 * 2+ (d s tart+0. 5 - op [ 3 ] ) ) 
* halffre ;

dw[2]:: 1- dwl1];
end;

end;
dw[3]::l- dw[ I ]-dw[2];

for d::dstart to dstart+2 do
begin

im^[i, j] :: im^[i, j]+dw[d-dstañ+l ]*p"[k,d];
vnldl::0;

end;
end;

end;

{Add Gaussian noise to projection data}
{nproj: the number of CT projections. - Global }
{photón: the number of photons used in a single measurement. -Global}
{þhonum: the number of photons detected in a single measurement }
{p: the projection daø. -Global}
{hsize, vsize: an image's vertical and horizontal size}
{SD: the standard deviation of photons }
{NOISE: the noise deviation obtained afær the Gaussian sampling}
procedure AddPhotonNoise;

var
k, d: integer;
ranl, ran2, rart3, rut4, S D, NOI SE, phonum : real ;
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begin
for k::0 to nproj - I do
for d :: -hsize to hsize - I do

begin
{scale ttre proþtion data down to tissue attenuation range}
p"[k, d] ¡- p^[k, d] / (3200 * vsize I 128);

{after attenuation}
phonum ¡- photon * exp(-p"[k, d]);
SD:: sqrt(phonum);

if (SD :0) then {Gaussian sampling}
NOISE ::0

else
begin

repeat
ran I :-random(seed)*2- I ;
ranZ :-3 * sqrt(2) * ranl t SD;
ran3::random(seed);
rart4:: exp(-(ran2 * ran2) / (2 * SD * SD));

until (ran3 <: ran4)l
NOISE::t7n2i

end;
phonum ;: phonum + NOISE; {the actually detected photons}

{output noisy projection data}
p"[k, d] :: In(photon / phonum) * (3200 * vsize I 128);

end;
end;

{MlShojectionOrders: Calculate the MLS orders for a total of nproj projections, the
details of it is published in:
H. Guan and R. Gordon, A projection access order for speedy convergence of algebraic
reconstructions techniques (ARÐ: A multilevel scheme (MLS) for computed tomography,
Phys. in Med. and Biol. 39, 2005-2022,1994.)
{nproj: the number of CT projections. - Global}
{projord: the array to hold the MLS ordering. - Global}
{pflag: the flag array to signal if a proþtion index in a sequential
order is used or not: I used, 0 not used. - Global)
{L: the index of a multilevel}
{N: the number of projections in a level}
{kl, kr: search the Ieft and right side of an index which is already used, in the last level }
procedure MlSProjectionOrders ;

label
10,20:,

var
i,j,k,N,kl,kr: integer;

begin

projord[ 1] :: 0; {ordering the fust level }
projord[2] :: nproj I 2i
N :- l; {ordering the second to the second last levels}
fori::ltoL-ldo

begin
N::N x 2;
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forj::ltoNdo
projord[N + j] :: projordff] + nproj / (2 * N);

end;
for j ::0 to nprojminusl do

pflag[i] ::0;
forj:-ltoNdo

begin
k :- round(projordff]);
Projordff] :- k;
pflag[k] :: l;

end;

for j :- N + I to nproj do {ordering the last level}
begin

k :- round(projordlil);
ifpflaglkl:lthen

begin
for i :: k to nprojminusl do

if (pflag[i] : 0) then
begin

kr:: i - k;
goto 10;

end;
kr::0;

10:
fori::kdownto0do

if (pfiaglil : 0) then
begin

kl::i-k;
goto 20;

end;
kl ::0;

20:
if (kl :0) or (kr:0) then

k::k+kl+k¡
else if kr + kl <: 0 then

k::k+kr
else 

k::k+kr
end;

projord[j] :: k;
pflaglkl :: 1;

end;
end;

{Convolution filtration of the projection daø by the ramp filter }
{h: the kernal for the ramP filær}
{p: the projection data}
{hsize, vsize: an image's vertical and horizontal size}
procedure ConvFilteringProjection (fBANDl integer); 

_var {Frequency BAND 1:full Band, -l:half Band}
k, m, n: integer;
hlnMINUSm, phi, temp, sign: real;
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data: arrayü..ndat2l of double;
begin
fór k ::0 to nproj - I do {theta , tao:l}

begin
for n :: -hsize to hsize - I do {t}

begin
ÛemP ::0;
for m :: -hsize to hsize - I do {t'}
if p^[k, m] <> 0 then

begin
if (fBAND : 1) then {tull Band}

if ((n - m) mod 2 -0) and (n <> m) then
hlnMINUSm i:0

elseifn:mttren
hlnMINUSm:: I I 4

else
hInMINUSûr r: -l / (sqr((n - m) * pi))

else
begin {half band}

ifn:mthen
hlnMlNUSm:: I I 16

else if (n - m) mod 4 : 0 then
hlnMINUStrt t= 0

else
begin

phi::(n-m)*pil4;
if (n - m) mod 2 :0 then

hInMINUSûr r: -1 I (16* phi * phi)
else

begin
phi::(n-m)*pil4;
if(n-m)mod2:0then

hlnMINUSm r: -l I (16 * phi * phi)
else

begin
sign :: abs(n - m) / (n - m);
ifabs(n-m)mod4:3then

sign :: -sign;
hlnMINUSm :: -(1 I (32 x phi + phi) -

sign/(16*phi));
end;

end;
end;

end;
temp:: temp + p"[k, m] * hlnMINUSm;

end;
daø[n + hsize t l] :: temp;

end;

for n :- -hsize to hsize - I do
p"[k, n] :: dataln + hsize + 1];

end;
end;

t93



Part II

procedure CD-DiskCenterPositions;- 
Obþctive: set the disk center coordinates and the radius in tÌ¡e contrast dctaíl phantom

(see Fig. 5.7.1).
Input: none
Output the disk center coordinates (x, y) for a total of 6 sets of disks ( each set consists of' 

6 disks of the same size) stored in the array centers and the 6 radius stored in the
¿uÏay r .

Note: The disks a¡e laid on an 5 I 2x 512 image (-256 to 255, -256 to 255)

procedure CD-CreaæPhantom ;- 
Objective: create the confrast detail phantom (see Fig. 5.7.1).
Input the disk cenûer coordinates (x, y) and the radius r created using the procedure

CD DiskCenferPositioræ above.
Output: thenowrast detail phanf om.
Noæ: a large background dist wittr a dark edge is first creaæd before creating the contrast

detail disks.

procedu re BarCenterPositions ;' Objective: set the ba¡ center coordinates in the bar pattern phantom (see Fig. 5.8.1).
lnput: none
Oúçut the bar center coordinates (x, y) stored in the aîay cenlers for the total 5 sets of

bars.
Note: The bars are laid on an 51 2x512 image (-256 to 255, -256 to 255)

procedure B ar-CreatePhantom ;- 
Objective: create the bar patternphantom (seeFig. 5.8.1).
Inpul the ba¡ center coordinates (x, y) creaæd using the procedure

BarC enterP ositions above.
Ouþut: the bar paÍlern phantom
Note: a large baôkground disk with a dark edge is first created before creating the bars.

procedure MeanS tdMTF(pp: integer);- 
Objective: calculate the MTF from the reconstructions of the bar pattem phantom.
Input: the reconstructed bar pattern phantom image im.
Output: the MTF stored in the alray msm.
Note: see section 2.4.4 for more detail .

procedure LC-Di skCenterPositi ons ;- 
Objective: set the disk center coordinates and the radius in the low contrast phantorn (se'e

Fig.5.6.l).
lnput: none
Output the disk center coordinates (x-, y) for a toql_oJ 5 disks.
Notð: The disks are laid on an 5l2x5l2 image (-256 to 255, -256 to 255)

procedu re LC-CreatePhan tom ;- 
Objective: create the lotv contrasÍ phantom (sen Fig.5.6.1).
Input: the disk center coordinates (x, y) created using the procedure

LC DiskCenterPositions above.
. Output: th{lot+, contrasî phantom.
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Note: a large background disk with a dark edge is fust created before creating the conftast
detail disks.
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procedure MeanS tdSNR(pp: integer) ;- 
Objective: calculate the SNR from the reconstructions of the low contast phantom.
Input: the reconstructed low contrast phantom image im.
Outpuc the SNR stored in the array msc.
NoL,e: see section 2.4.2 for more detail .

procedure FFTran;- 
Objective: Fourier transform of the cental part of an image i^ ,

Input an image im of sizes 512x512. Only the central 256x256 is calculaæd.
Output the Fourier ampliflrde of the cental part of im .

Notè: There are two mâ.¡or applications of this procedure as described on the top of the
code.

Computer codes:

{Disk center coordinates and radius in the conhast detail phantom.
Image size 5l2x5l2 (-256 to 255, -256 to 255)
Both r and centers are global arrays)

procedure CD-DiskCenterPositions ;

var
i, j, x, y:

begin
integer;

fori:: I
begin

{radius for each set of 6 disks having
r[i] ::20-(i-l)*4'
if (i:6) then

rlil::2;
x :: -100 + (56 - 4*(i-2))*(i-1);
forj:: I to6do

begin
y::-160+64*0-l);

isllsllll j: ål ;: ir
end;

end;

same size )

end;

{Create the contrast detail phantom image im. hfhvsize is half of the image size or 256}
procedure CD-CreatePhan tom ;

var
i, j, i0, j0, p, q: integer;
graystep: real;

begin
{ create a large background disk wit}r edges }
for i :- -hfhvsize to hftrvsizeminusl do

for j :: -hfhvsize to hfhvsizeminus I do
if (i*i+j*j< sqr(hflrvsizeminus I )) and

(i *i+jxj>: sqr(hfhvsizeminus I -2)) then
im^[i, j]::255

else if i*i+j*j< sqr(hfhvsizeminus 1-2) then

to6do
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im^[i, j]:-127
else

im^[i, j]:-0;

{creaæ the 6 group of disks, total36 ones }
graystep :- l;
forp::1to6do

forq:-1to6do
begin
i0:: centers[p, q, l];
j0 :- centers[p, q, 2];
for i :- i0 - r[p]-l to i0 +r[p]+l do

for j:- j0 - rlpl-l to j0+r[P]+l do
if sqr(i-i0)+sqr(-j0)<: r[p]*rlpl then
im^[i, j]::im^[ij] - q*graystep;

end;
end;

{Bar center coordinates in the Bar pattem phantom - Global, lmagg¡iz-e^ 51.2x512. a:16.
ihe standard deviation will be mean¡red inside a central square of 32x32 pixels:npxls
in each set of bar pattems)
procedure B arCenterPosi tion s;

var
i, j: integer;

begin
centers[1, ll - -ll2;
centers[ 1, 2) :: -ll2;
centers[2, l] :: -56;
centers[2, 2]:: -56;
centersl3, l] :: 0;
centers[3, 2]'.: 0;
centersl4, 1] :: 56;
centers[4, 2):: 56;
centersls, l]:: ll2;
centers[5, 2]:: ll2;

{No. 6 is not for a bar pattern, but for
a uniform square laær for the noise
correction)

centersl6, 1] :: -vsize div 4;
centers[6, 2):- 0;
npxls::0;

for i::-a to a-l do
for j::-a to a-l do

npxls:-npxls+1;
end;

{ Creaæ the bar pattern phantom, hftrvsize is half of the image size or 256 >

procedure B ar-CreatePhantom ;

var
I' J'

begin
i0, j0, k, n, barwidth: integer;
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{create a large background disk with edges }
for i :: -hfhvsize to hftvsizeminusl do

for j :: -hft¡vsize to hfltvsizeminusl do
if (i*i+j*j< sqr(hftrvsizeminus I )) and

(i*i+jxj>: sqr(hftrvsizeminus I -2)) then
im^[i, j]:-143

else if i*i+j *j< sqr(trftrv sizeminus I -2) then
im^[i, j):-127

else
iin^[i, j]::0;

{create the 5 sets of bar patterns, A : 24. Each set occupies 48x48 pixels }
barwidth::l;
fork:-1to5do

begin
i0 :- centerslk, l];
j0 :- centerslk, 2];
fori::i0-Atoi0+A-ldo

forj::j0-Ato j0+A- I do
begin
û'-0-j0+A) div barwidth;
if n mod 2:0 then

im^[i, j] ::im^[i,j] +128;
end;

barwidth: :barwidth * 2;

end;
end;

{The MTF calculation from the Bar pattem reconstructions'
msm is a 3D global anay:

lst index: pp - iæration number.
2nd index: 1 - mean, 2 - the standard deviation, 3 - MTF value.
3rd index: k - bar pattern index)

procedure MeanStdMTF(pp : integer) ;

var
ij,k,i0,j0: integer;
sum, M0: real;

begin
{the mean}
fork::lto6do

begin
SUm:=O;
i0 :: centers[k, 1];
j0 :: centerslk, 2];
fori::i0-atoi0+a-1 do

forj::j0-ato j0+a-1do
SUÍr:- sum +im^[ij];

msm[pP, l, k]::sum/nPxls;
end;

{t}re søndard deviation }
fork:: lto6do
begin
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SUm:-0;
i0 :: centerslk, l];
j0 :: cenûerslk, 2];
fori:-i0-atoi0+a-ldo

forj::j0-atoj0+a-1 do
surtrl- sum + sqr(im^[ij]-msm[pp, I, k]);

msm[pp, 2, k]:-sum/(npxls- I );
end;

{MTF calculation}
M0:=ó4;
fork:-1to5do

begin
{noise correction by the No. 6 square}

msm[pp, 3, k]:: sqrt(msmlpp, 2, k] - msm[pp, 2,6]);
msm[pp, 3, k]:: pi*sqrt(2)*msm[pp, 3, k]/(4*M0);

end;
msm[pp,3,6]::0;

end;

{Disk center coordinates in the low conftast phantom. Image size 5 l2x512,vsize:572,
hsize:SlZ, r:20. The noise standard deviation will be measured inside a circle of r,

'conterod at each disk whose radius tO -24>
procedure LC-DiskCenterPosition s ;

vaf
i, j: integer;

begin
centers[ 1, 1] :- -(vsize div I 6)*3;
centers[ ,2] :: -(hsize div 16)*3;
centers[2, 1] :: -(vsize div l6)x3;
centersl2, 2] :- thsize div l6)*3;
centersl3, l] :: 0;
centers[3, 2]:: 0;
centers[4, 1] :: (vsize div l6)*3;
centers[4, 2] :: -(hsize div l6)+3;
centerslS, 1]:: (vsizediv l6)*3;
centers[S, 2] :: (hsize div 16)*3;

{No. 6 is not for a disk center, but for
a uniform circle in the background)

centersl6, l] :: -vsize div 4;
centersl6, 2):: 0;
npxls::O;
for i:--r- l to r+1 do

for j::-r-l to r+l do
if i*i+j*j <:r*r then

npxls::npxls+l;
end;

{Create the low contrast phantom: hfhvsize is half of the image size or 256}
procedu re LC-CreatePhan tom ;

var
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i, j, i0, j0, k: integer;
graystep: real;

begin
{ðreate a large background disk with edges}
for i :: -hfhvsize to hftrvsizeminusl do
for j :: -hftrvsize to hfhvsizeminusl do

lf 1i*i+¡*i< sqr(hfhvsizeminus 1 )) a¡d
(i* i+j *¡>: sqr(hftrv sizeminus I -2)) then

im^[i, j):-255
else if i*i+j*j< sqr(hftrvsizeminusl-2) then

im^[i, j]::127
else

im^[i, j]:4;

{create the 5 low contmst disks, r0 - 24 }
graystep :: l;
fork::lto5do

begin
i0 :: centerslk, 1];
j0 :- centerslk, 2];
ior i :: i0 - Ú-1 to i0 +r0+1 do

for j :: j0 - r0-l to j0+r0+1 do
if sqr(i-i0)+sqr(-j0)<: r0*r0 then
im^[i, j]::im^[ij] - k*graYsteP;

end;
end;

{Calculate the signal to noise ratio SNR of the low con¡ast disks, r:20}
{msm is a 3D global alray:
l st index: pp - iteration number.
2nd indexi i - mean, 2 - he standard deviation, 3 - SNR value'
3rd index: k - disk index)
procedure MeanS tdS NR(pp: in teger);

var
ij,k,i0,j0: integer;
sum : real;

begin
{tlre mean }
fork::1to6do

begin
sum::0;
i0 :: centers[k, 1];
j0 :: centerslk, 2];
ior i :: i0 - r-1 to i0 + r+1 do

for j:: j0 - r-l to j0 + r+l do
if sqr(i-i0)+sqr(l-j0)<: r*r then

SUIIti: sum +im^[ij];
msc[PP, l, k]::sum/nPxls;

end;

{the noise standard deviation}
fork::lto6do
begin



SUm:-0;
i0 :: centers[k, l];
j0 :- centerslk, 2];
for i :: i0 - r-1 to i0 + r+1 do

for j :- j0 - r-1 r.,o j0 + r+l do
if sqr(i-i0)+sqr(i-j0)<- r*r then

surnt: sum + sqr(im^[ij]-msc[pp, I, k]);
msc[pp, 2, k]:-sum/(npxls- 1);

end;

{the SNR}
fork:-lto5do

msc[pp, 3, k]:: abs(msc[pp, l, k]-msc[pp, 1, 6]) /sqrt(msclpp, 2,k7+ msc[pp, 2,6));
msc[pp, 3,6]::0;

end;

{Fourier transform of the difference image of a reconstruction to its original water only
phantom for calculating the noise power specûum, only the cental part256x256 is
calculated )

{This procedure is also used for calculating ttre MTF using the thin wire method if desired,

þst put a small square of image lke32x32 centered at the wire (i0, jO) into the data
anayby replacing hflrvsize with 32 and im^[i - hfhvsize div 2,j - hfhvsize div 2]
with im^[i+iO-16, j+jO- l6] ]

procedure FFTran;
var

i, j, ii, ndim: integer;
begin

{put ttre 256x256 image im nto a lD array data -Global }
for i :-0 tohfhvsize - 1 do

for j:= 0 to hftrvsize - I do
begin

ii::l +2* j+2*i *hfhvsize;
data^[ii] :: im^[i - hflrvsize div 2,

j - hfhvsize div 2l;
if (i + j) mod 2 : I then {FFT always centered }

data^[ii] :: -data^[ii];
data^[ii + l] ::0;

end;
nn[1] :: hftivsize;
nn[2] :- hfhvsize;
ndim ::2;

{Fourier tansform of the data, see Numerical Recipe the fourn function }
fourn(data, nn, ndim, -l);

{Get ttre Fourier amplitude}
for i ::0 to hfhvsize - I do

for j :- 0 to hfhvsize - I do
begin

ii :: I + 2* i + 2* i* hftrvsize;
c[i, j]:: clijl + sqrt(sqr(data^lii])+ sqr(data^[ii+l ]));

end;
end;
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